xref: /openbmc/linux/lib/bch.c (revision e53134fe)
1 /*
2  * Generic binary BCH encoding/decoding library
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License version 2 as published by
6  * the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 51
15  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
16  *
17  * Copyright © 2011 Parrot S.A.
18  *
19  * Author: Ivan Djelic <ivan.djelic@parrot.com>
20  *
21  * Description:
22  *
23  * This library provides runtime configurable encoding/decoding of binary
24  * Bose-Chaudhuri-Hocquenghem (BCH) codes.
25  *
26  * Call init_bch to get a pointer to a newly allocated bch_control structure for
27  * the given m (Galois field order), t (error correction capability) and
28  * (optional) primitive polynomial parameters.
29  *
30  * Call encode_bch to compute and store ecc parity bytes to a given buffer.
31  * Call decode_bch to detect and locate errors in received data.
32  *
33  * On systems supporting hw BCH features, intermediate results may be provided
34  * to decode_bch in order to skip certain steps. See decode_bch() documentation
35  * for details.
36  *
37  * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of
38  * parameters m and t; thus allowing extra compiler optimizations and providing
39  * better (up to 2x) encoding performance. Using this option makes sense when
40  * (m,t) are fixed and known in advance, e.g. when using BCH error correction
41  * on a particular NAND flash device.
42  *
43  * Algorithmic details:
44  *
45  * Encoding is performed by processing 32 input bits in parallel, using 4
46  * remainder lookup tables.
47  *
48  * The final stage of decoding involves the following internal steps:
49  * a. Syndrome computation
50  * b. Error locator polynomial computation using Berlekamp-Massey algorithm
51  * c. Error locator root finding (by far the most expensive step)
52  *
53  * In this implementation, step c is not performed using the usual Chien search.
54  * Instead, an alternative approach described in [1] is used. It consists in
55  * factoring the error locator polynomial using the Berlekamp Trace algorithm
56  * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial
57  * solving techniques [2] are used. The resulting algorithm, called BTZ, yields
58  * much better performance than Chien search for usual (m,t) values (typically
59  * m >= 13, t < 32, see [1]).
60  *
61  * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields
62  * of characteristic 2, in: Western European Workshop on Research in Cryptology
63  * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear.
64  * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over
65  * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996.
66  */
67 
68 #include <linux/kernel.h>
69 #include <linux/errno.h>
70 #include <linux/init.h>
71 #include <linux/module.h>
72 #include <linux/slab.h>
73 #include <linux/bitops.h>
74 #include <asm/byteorder.h>
75 #include <linux/bch.h>
76 
77 #if defined(CONFIG_BCH_CONST_PARAMS)
78 #define GF_M(_p)               (CONFIG_BCH_CONST_M)
79 #define GF_T(_p)               (CONFIG_BCH_CONST_T)
80 #define GF_N(_p)               ((1 << (CONFIG_BCH_CONST_M))-1)
81 #define BCH_MAX_M              (CONFIG_BCH_CONST_M)
82 #else
83 #define GF_M(_p)               ((_p)->m)
84 #define GF_T(_p)               ((_p)->t)
85 #define GF_N(_p)               ((_p)->n)
86 #define BCH_MAX_M              15
87 #endif
88 
89 #define BCH_MAX_T              (((1 << BCH_MAX_M) - 1) / BCH_MAX_M)
90 
91 #define BCH_ECC_WORDS(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32)
92 #define BCH_ECC_BYTES(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
93 
94 #define BCH_ECC_MAX_WORDS      DIV_ROUND_UP(BCH_MAX_M * BCH_MAX_T, 32)
95 #define BCH_ECC_MAX_BYTES      DIV_ROUND_UP(BCH_MAX_M * BCH_MAX_T, 8)
96 
97 #ifndef dbg
98 #define dbg(_fmt, args...)     do {} while (0)
99 #endif
100 
101 /*
102  * represent a polynomial over GF(2^m)
103  */
104 struct gf_poly {
105 	unsigned int deg;    /* polynomial degree */
106 	unsigned int c[0];   /* polynomial terms */
107 };
108 
109 /* given its degree, compute a polynomial size in bytes */
110 #define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
111 
112 /* polynomial of degree 1 */
113 struct gf_poly_deg1 {
114 	struct gf_poly poly;
115 	unsigned int   c[2];
116 };
117 
118 /*
119  * same as encode_bch(), but process input data one byte at a time
120  */
121 static void encode_bch_unaligned(struct bch_control *bch,
122 				 const unsigned char *data, unsigned int len,
123 				 uint32_t *ecc)
124 {
125 	int i;
126 	const uint32_t *p;
127 	const int l = BCH_ECC_WORDS(bch)-1;
128 
129 	while (len--) {
130 		p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff);
131 
132 		for (i = 0; i < l; i++)
133 			ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++);
134 
135 		ecc[l] = (ecc[l] << 8)^(*p);
136 	}
137 }
138 
139 /*
140  * convert ecc bytes to aligned, zero-padded 32-bit ecc words
141  */
142 static void load_ecc8(struct bch_control *bch, uint32_t *dst,
143 		      const uint8_t *src)
144 {
145 	uint8_t pad[4] = {0, 0, 0, 0};
146 	unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
147 
148 	for (i = 0; i < nwords; i++, src += 4)
149 		dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3];
150 
151 	memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords);
152 	dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3];
153 }
154 
155 /*
156  * convert 32-bit ecc words to ecc bytes
157  */
158 static void store_ecc8(struct bch_control *bch, uint8_t *dst,
159 		       const uint32_t *src)
160 {
161 	uint8_t pad[4];
162 	unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
163 
164 	for (i = 0; i < nwords; i++) {
165 		*dst++ = (src[i] >> 24);
166 		*dst++ = (src[i] >> 16) & 0xff;
167 		*dst++ = (src[i] >>  8) & 0xff;
168 		*dst++ = (src[i] >>  0) & 0xff;
169 	}
170 	pad[0] = (src[nwords] >> 24);
171 	pad[1] = (src[nwords] >> 16) & 0xff;
172 	pad[2] = (src[nwords] >>  8) & 0xff;
173 	pad[3] = (src[nwords] >>  0) & 0xff;
174 	memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords);
175 }
176 
177 /**
178  * encode_bch - calculate BCH ecc parity of data
179  * @bch:   BCH control structure
180  * @data:  data to encode
181  * @len:   data length in bytes
182  * @ecc:   ecc parity data, must be initialized by caller
183  *
184  * The @ecc parity array is used both as input and output parameter, in order to
185  * allow incremental computations. It should be of the size indicated by member
186  * @ecc_bytes of @bch, and should be initialized to 0 before the first call.
187  *
188  * The exact number of computed ecc parity bits is given by member @ecc_bits of
189  * @bch; it may be less than m*t for large values of t.
190  */
191 void encode_bch(struct bch_control *bch, const uint8_t *data,
192 		unsigned int len, uint8_t *ecc)
193 {
194 	const unsigned int l = BCH_ECC_WORDS(bch)-1;
195 	unsigned int i, mlen;
196 	unsigned long m;
197 	uint32_t w, r[BCH_ECC_MAX_WORDS];
198 	const size_t r_bytes = BCH_ECC_WORDS(bch) * sizeof(*r);
199 	const uint32_t * const tab0 = bch->mod8_tab;
200 	const uint32_t * const tab1 = tab0 + 256*(l+1);
201 	const uint32_t * const tab2 = tab1 + 256*(l+1);
202 	const uint32_t * const tab3 = tab2 + 256*(l+1);
203 	const uint32_t *pdata, *p0, *p1, *p2, *p3;
204 
205 	if (ecc) {
206 		/* load ecc parity bytes into internal 32-bit buffer */
207 		load_ecc8(bch, bch->ecc_buf, ecc);
208 	} else {
209 		memset(bch->ecc_buf, 0, r_bytes);
210 	}
211 
212 	/* process first unaligned data bytes */
213 	m = ((unsigned long)data) & 3;
214 	if (m) {
215 		mlen = (len < (4-m)) ? len : 4-m;
216 		encode_bch_unaligned(bch, data, mlen, bch->ecc_buf);
217 		data += mlen;
218 		len  -= mlen;
219 	}
220 
221 	/* process 32-bit aligned data words */
222 	pdata = (uint32_t *)data;
223 	mlen  = len/4;
224 	data += 4*mlen;
225 	len  -= 4*mlen;
226 	memcpy(r, bch->ecc_buf, r_bytes);
227 
228 	/*
229 	 * split each 32-bit word into 4 polynomials of weight 8 as follows:
230 	 *
231 	 * 31 ...24  23 ...16  15 ... 8  7 ... 0
232 	 * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt
233 	 *                               tttttttt  mod g = r0 (precomputed)
234 	 *                     zzzzzzzz  00000000  mod g = r1 (precomputed)
235 	 *           yyyyyyyy  00000000  00000000  mod g = r2 (precomputed)
236 	 * xxxxxxxx  00000000  00000000  00000000  mod g = r3 (precomputed)
237 	 * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt  mod g = r0^r1^r2^r3
238 	 */
239 	while (mlen--) {
240 		/* input data is read in big-endian format */
241 		w = r[0]^cpu_to_be32(*pdata++);
242 		p0 = tab0 + (l+1)*((w >>  0) & 0xff);
243 		p1 = tab1 + (l+1)*((w >>  8) & 0xff);
244 		p2 = tab2 + (l+1)*((w >> 16) & 0xff);
245 		p3 = tab3 + (l+1)*((w >> 24) & 0xff);
246 
247 		for (i = 0; i < l; i++)
248 			r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i];
249 
250 		r[l] = p0[l]^p1[l]^p2[l]^p3[l];
251 	}
252 	memcpy(bch->ecc_buf, r, r_bytes);
253 
254 	/* process last unaligned bytes */
255 	if (len)
256 		encode_bch_unaligned(bch, data, len, bch->ecc_buf);
257 
258 	/* store ecc parity bytes into original parity buffer */
259 	if (ecc)
260 		store_ecc8(bch, ecc, bch->ecc_buf);
261 }
262 EXPORT_SYMBOL_GPL(encode_bch);
263 
264 static inline int modulo(struct bch_control *bch, unsigned int v)
265 {
266 	const unsigned int n = GF_N(bch);
267 	while (v >= n) {
268 		v -= n;
269 		v = (v & n) + (v >> GF_M(bch));
270 	}
271 	return v;
272 }
273 
274 /*
275  * shorter and faster modulo function, only works when v < 2N.
276  */
277 static inline int mod_s(struct bch_control *bch, unsigned int v)
278 {
279 	const unsigned int n = GF_N(bch);
280 	return (v < n) ? v : v-n;
281 }
282 
283 static inline int deg(unsigned int poly)
284 {
285 	/* polynomial degree is the most-significant bit index */
286 	return fls(poly)-1;
287 }
288 
289 static inline int parity(unsigned int x)
290 {
291 	/*
292 	 * public domain code snippet, lifted from
293 	 * http://www-graphics.stanford.edu/~seander/bithacks.html
294 	 */
295 	x ^= x >> 1;
296 	x ^= x >> 2;
297 	x = (x & 0x11111111U) * 0x11111111U;
298 	return (x >> 28) & 1;
299 }
300 
301 /* Galois field basic operations: multiply, divide, inverse, etc. */
302 
303 static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a,
304 				  unsigned int b)
305 {
306 	return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
307 					       bch->a_log_tab[b])] : 0;
308 }
309 
310 static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a)
311 {
312 	return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0;
313 }
314 
315 static inline unsigned int gf_div(struct bch_control *bch, unsigned int a,
316 				  unsigned int b)
317 {
318 	return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
319 					GF_N(bch)-bch->a_log_tab[b])] : 0;
320 }
321 
322 static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a)
323 {
324 	return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]];
325 }
326 
327 static inline unsigned int a_pow(struct bch_control *bch, int i)
328 {
329 	return bch->a_pow_tab[modulo(bch, i)];
330 }
331 
332 static inline int a_log(struct bch_control *bch, unsigned int x)
333 {
334 	return bch->a_log_tab[x];
335 }
336 
337 static inline int a_ilog(struct bch_control *bch, unsigned int x)
338 {
339 	return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]);
340 }
341 
342 /*
343  * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t
344  */
345 static void compute_syndromes(struct bch_control *bch, uint32_t *ecc,
346 			      unsigned int *syn)
347 {
348 	int i, j, s;
349 	unsigned int m;
350 	uint32_t poly;
351 	const int t = GF_T(bch);
352 
353 	s = bch->ecc_bits;
354 
355 	/* make sure extra bits in last ecc word are cleared */
356 	m = ((unsigned int)s) & 31;
357 	if (m)
358 		ecc[s/32] &= ~((1u << (32-m))-1);
359 	memset(syn, 0, 2*t*sizeof(*syn));
360 
361 	/* compute v(a^j) for j=1 .. 2t-1 */
362 	do {
363 		poly = *ecc++;
364 		s -= 32;
365 		while (poly) {
366 			i = deg(poly);
367 			for (j = 0; j < 2*t; j += 2)
368 				syn[j] ^= a_pow(bch, (j+1)*(i+s));
369 
370 			poly ^= (1 << i);
371 		}
372 	} while (s > 0);
373 
374 	/* v(a^(2j)) = v(a^j)^2 */
375 	for (j = 0; j < t; j++)
376 		syn[2*j+1] = gf_sqr(bch, syn[j]);
377 }
378 
379 static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src)
380 {
381 	memcpy(dst, src, GF_POLY_SZ(src->deg));
382 }
383 
384 static int compute_error_locator_polynomial(struct bch_control *bch,
385 					    const unsigned int *syn)
386 {
387 	const unsigned int t = GF_T(bch);
388 	const unsigned int n = GF_N(bch);
389 	unsigned int i, j, tmp, l, pd = 1, d = syn[0];
390 	struct gf_poly *elp = bch->elp;
391 	struct gf_poly *pelp = bch->poly_2t[0];
392 	struct gf_poly *elp_copy = bch->poly_2t[1];
393 	int k, pp = -1;
394 
395 	memset(pelp, 0, GF_POLY_SZ(2*t));
396 	memset(elp, 0, GF_POLY_SZ(2*t));
397 
398 	pelp->deg = 0;
399 	pelp->c[0] = 1;
400 	elp->deg = 0;
401 	elp->c[0] = 1;
402 
403 	/* use simplified binary Berlekamp-Massey algorithm */
404 	for (i = 0; (i < t) && (elp->deg <= t); i++) {
405 		if (d) {
406 			k = 2*i-pp;
407 			gf_poly_copy(elp_copy, elp);
408 			/* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */
409 			tmp = a_log(bch, d)+n-a_log(bch, pd);
410 			for (j = 0; j <= pelp->deg; j++) {
411 				if (pelp->c[j]) {
412 					l = a_log(bch, pelp->c[j]);
413 					elp->c[j+k] ^= a_pow(bch, tmp+l);
414 				}
415 			}
416 			/* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */
417 			tmp = pelp->deg+k;
418 			if (tmp > elp->deg) {
419 				elp->deg = tmp;
420 				gf_poly_copy(pelp, elp_copy);
421 				pd = d;
422 				pp = 2*i;
423 			}
424 		}
425 		/* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */
426 		if (i < t-1) {
427 			d = syn[2*i+2];
428 			for (j = 1; j <= elp->deg; j++)
429 				d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]);
430 		}
431 	}
432 	dbg("elp=%s\n", gf_poly_str(elp));
433 	return (elp->deg > t) ? -1 : (int)elp->deg;
434 }
435 
436 /*
437  * solve a m x m linear system in GF(2) with an expected number of solutions,
438  * and return the number of found solutions
439  */
440 static int solve_linear_system(struct bch_control *bch, unsigned int *rows,
441 			       unsigned int *sol, int nsol)
442 {
443 	const int m = GF_M(bch);
444 	unsigned int tmp, mask;
445 	int rem, c, r, p, k, param[BCH_MAX_M];
446 
447 	k = 0;
448 	mask = 1 << m;
449 
450 	/* Gaussian elimination */
451 	for (c = 0; c < m; c++) {
452 		rem = 0;
453 		p = c-k;
454 		/* find suitable row for elimination */
455 		for (r = p; r < m; r++) {
456 			if (rows[r] & mask) {
457 				if (r != p) {
458 					tmp = rows[r];
459 					rows[r] = rows[p];
460 					rows[p] = tmp;
461 				}
462 				rem = r+1;
463 				break;
464 			}
465 		}
466 		if (rem) {
467 			/* perform elimination on remaining rows */
468 			tmp = rows[p];
469 			for (r = rem; r < m; r++) {
470 				if (rows[r] & mask)
471 					rows[r] ^= tmp;
472 			}
473 		} else {
474 			/* elimination not needed, store defective row index */
475 			param[k++] = c;
476 		}
477 		mask >>= 1;
478 	}
479 	/* rewrite system, inserting fake parameter rows */
480 	if (k > 0) {
481 		p = k;
482 		for (r = m-1; r >= 0; r--) {
483 			if ((r > m-1-k) && rows[r])
484 				/* system has no solution */
485 				return 0;
486 
487 			rows[r] = (p && (r == param[p-1])) ?
488 				p--, 1u << (m-r) : rows[r-p];
489 		}
490 	}
491 
492 	if (nsol != (1 << k))
493 		/* unexpected number of solutions */
494 		return 0;
495 
496 	for (p = 0; p < nsol; p++) {
497 		/* set parameters for p-th solution */
498 		for (c = 0; c < k; c++)
499 			rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1);
500 
501 		/* compute unique solution */
502 		tmp = 0;
503 		for (r = m-1; r >= 0; r--) {
504 			mask = rows[r] & (tmp|1);
505 			tmp |= parity(mask) << (m-r);
506 		}
507 		sol[p] = tmp >> 1;
508 	}
509 	return nsol;
510 }
511 
512 /*
513  * this function builds and solves a linear system for finding roots of a degree
514  * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m).
515  */
516 static int find_affine4_roots(struct bch_control *bch, unsigned int a,
517 			      unsigned int b, unsigned int c,
518 			      unsigned int *roots)
519 {
520 	int i, j, k;
521 	const int m = GF_M(bch);
522 	unsigned int mask = 0xff, t, rows[16] = {0,};
523 
524 	j = a_log(bch, b);
525 	k = a_log(bch, a);
526 	rows[0] = c;
527 
528 	/* buid linear system to solve X^4+aX^2+bX+c = 0 */
529 	for (i = 0; i < m; i++) {
530 		rows[i+1] = bch->a_pow_tab[4*i]^
531 			(a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^
532 			(b ? bch->a_pow_tab[mod_s(bch, j)] : 0);
533 		j++;
534 		k += 2;
535 	}
536 	/*
537 	 * transpose 16x16 matrix before passing it to linear solver
538 	 * warning: this code assumes m < 16
539 	 */
540 	for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) {
541 		for (k = 0; k < 16; k = (k+j+1) & ~j) {
542 			t = ((rows[k] >> j)^rows[k+j]) & mask;
543 			rows[k] ^= (t << j);
544 			rows[k+j] ^= t;
545 		}
546 	}
547 	return solve_linear_system(bch, rows, roots, 4);
548 }
549 
550 /*
551  * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r))
552  */
553 static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly,
554 				unsigned int *roots)
555 {
556 	int n = 0;
557 
558 	if (poly->c[0])
559 		/* poly[X] = bX+c with c!=0, root=c/b */
560 		roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+
561 				   bch->a_log_tab[poly->c[1]]);
562 	return n;
563 }
564 
565 /*
566  * compute roots of a degree 2 polynomial over GF(2^m)
567  */
568 static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly,
569 				unsigned int *roots)
570 {
571 	int n = 0, i, l0, l1, l2;
572 	unsigned int u, v, r;
573 
574 	if (poly->c[0] && poly->c[1]) {
575 
576 		l0 = bch->a_log_tab[poly->c[0]];
577 		l1 = bch->a_log_tab[poly->c[1]];
578 		l2 = bch->a_log_tab[poly->c[2]];
579 
580 		/* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */
581 		u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1));
582 		/*
583 		 * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi):
584 		 * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) =
585 		 * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u)
586 		 * i.e. r and r+1 are roots iff Tr(u)=0
587 		 */
588 		r = 0;
589 		v = u;
590 		while (v) {
591 			i = deg(v);
592 			r ^= bch->xi_tab[i];
593 			v ^= (1 << i);
594 		}
595 		/* verify root */
596 		if ((gf_sqr(bch, r)^r) == u) {
597 			/* reverse z=a/bX transformation and compute log(1/r) */
598 			roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
599 					    bch->a_log_tab[r]+l2);
600 			roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
601 					    bch->a_log_tab[r^1]+l2);
602 		}
603 	}
604 	return n;
605 }
606 
607 /*
608  * compute roots of a degree 3 polynomial over GF(2^m)
609  */
610 static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly,
611 				unsigned int *roots)
612 {
613 	int i, n = 0;
614 	unsigned int a, b, c, a2, b2, c2, e3, tmp[4];
615 
616 	if (poly->c[0]) {
617 		/* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */
618 		e3 = poly->c[3];
619 		c2 = gf_div(bch, poly->c[0], e3);
620 		b2 = gf_div(bch, poly->c[1], e3);
621 		a2 = gf_div(bch, poly->c[2], e3);
622 
623 		/* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */
624 		c = gf_mul(bch, a2, c2);           /* c = a2c2      */
625 		b = gf_mul(bch, a2, b2)^c2;        /* b = a2b2 + c2 */
626 		a = gf_sqr(bch, a2)^b2;            /* a = a2^2 + b2 */
627 
628 		/* find the 4 roots of this affine polynomial */
629 		if (find_affine4_roots(bch, a, b, c, tmp) == 4) {
630 			/* remove a2 from final list of roots */
631 			for (i = 0; i < 4; i++) {
632 				if (tmp[i] != a2)
633 					roots[n++] = a_ilog(bch, tmp[i]);
634 			}
635 		}
636 	}
637 	return n;
638 }
639 
640 /*
641  * compute roots of a degree 4 polynomial over GF(2^m)
642  */
643 static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly,
644 				unsigned int *roots)
645 {
646 	int i, l, n = 0;
647 	unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4;
648 
649 	if (poly->c[0] == 0)
650 		return 0;
651 
652 	/* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */
653 	e4 = poly->c[4];
654 	d = gf_div(bch, poly->c[0], e4);
655 	c = gf_div(bch, poly->c[1], e4);
656 	b = gf_div(bch, poly->c[2], e4);
657 	a = gf_div(bch, poly->c[3], e4);
658 
659 	/* use Y=1/X transformation to get an affine polynomial */
660 	if (a) {
661 		/* first, eliminate cX by using z=X+e with ae^2+c=0 */
662 		if (c) {
663 			/* compute e such that e^2 = c/a */
664 			f = gf_div(bch, c, a);
665 			l = a_log(bch, f);
666 			l += (l & 1) ? GF_N(bch) : 0;
667 			e = a_pow(bch, l/2);
668 			/*
669 			 * use transformation z=X+e:
670 			 * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d
671 			 * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d
672 			 * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d
673 			 * z^4 + az^3 +     b'z^2 + d'
674 			 */
675 			d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d;
676 			b = gf_mul(bch, a, e)^b;
677 		}
678 		/* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */
679 		if (d == 0)
680 			/* assume all roots have multiplicity 1 */
681 			return 0;
682 
683 		c2 = gf_inv(bch, d);
684 		b2 = gf_div(bch, a, d);
685 		a2 = gf_div(bch, b, d);
686 	} else {
687 		/* polynomial is already affine */
688 		c2 = d;
689 		b2 = c;
690 		a2 = b;
691 	}
692 	/* find the 4 roots of this affine polynomial */
693 	if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) {
694 		for (i = 0; i < 4; i++) {
695 			/* post-process roots (reverse transformations) */
696 			f = a ? gf_inv(bch, roots[i]) : roots[i];
697 			roots[i] = a_ilog(bch, f^e);
698 		}
699 		n = 4;
700 	}
701 	return n;
702 }
703 
704 /*
705  * build monic, log-based representation of a polynomial
706  */
707 static void gf_poly_logrep(struct bch_control *bch,
708 			   const struct gf_poly *a, int *rep)
709 {
710 	int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]);
711 
712 	/* represent 0 values with -1; warning, rep[d] is not set to 1 */
713 	for (i = 0; i < d; i++)
714 		rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1;
715 }
716 
717 /*
718  * compute polynomial Euclidean division remainder in GF(2^m)[X]
719  */
720 static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a,
721 			const struct gf_poly *b, int *rep)
722 {
723 	int la, p, m;
724 	unsigned int i, j, *c = a->c;
725 	const unsigned int d = b->deg;
726 
727 	if (a->deg < d)
728 		return;
729 
730 	/* reuse or compute log representation of denominator */
731 	if (!rep) {
732 		rep = bch->cache;
733 		gf_poly_logrep(bch, b, rep);
734 	}
735 
736 	for (j = a->deg; j >= d; j--) {
737 		if (c[j]) {
738 			la = a_log(bch, c[j]);
739 			p = j-d;
740 			for (i = 0; i < d; i++, p++) {
741 				m = rep[i];
742 				if (m >= 0)
743 					c[p] ^= bch->a_pow_tab[mod_s(bch,
744 								     m+la)];
745 			}
746 		}
747 	}
748 	a->deg = d-1;
749 	while (!c[a->deg] && a->deg)
750 		a->deg--;
751 }
752 
753 /*
754  * compute polynomial Euclidean division quotient in GF(2^m)[X]
755  */
756 static void gf_poly_div(struct bch_control *bch, struct gf_poly *a,
757 			const struct gf_poly *b, struct gf_poly *q)
758 {
759 	if (a->deg >= b->deg) {
760 		q->deg = a->deg-b->deg;
761 		/* compute a mod b (modifies a) */
762 		gf_poly_mod(bch, a, b, NULL);
763 		/* quotient is stored in upper part of polynomial a */
764 		memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int));
765 	} else {
766 		q->deg = 0;
767 		q->c[0] = 0;
768 	}
769 }
770 
771 /*
772  * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X]
773  */
774 static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a,
775 				   struct gf_poly *b)
776 {
777 	struct gf_poly *tmp;
778 
779 	dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b));
780 
781 	if (a->deg < b->deg) {
782 		tmp = b;
783 		b = a;
784 		a = tmp;
785 	}
786 
787 	while (b->deg > 0) {
788 		gf_poly_mod(bch, a, b, NULL);
789 		tmp = b;
790 		b = a;
791 		a = tmp;
792 	}
793 
794 	dbg("%s\n", gf_poly_str(a));
795 
796 	return a;
797 }
798 
799 /*
800  * Given a polynomial f and an integer k, compute Tr(a^kX) mod f
801  * This is used in Berlekamp Trace algorithm for splitting polynomials
802  */
803 static void compute_trace_bk_mod(struct bch_control *bch, int k,
804 				 const struct gf_poly *f, struct gf_poly *z,
805 				 struct gf_poly *out)
806 {
807 	const int m = GF_M(bch);
808 	int i, j;
809 
810 	/* z contains z^2j mod f */
811 	z->deg = 1;
812 	z->c[0] = 0;
813 	z->c[1] = bch->a_pow_tab[k];
814 
815 	out->deg = 0;
816 	memset(out, 0, GF_POLY_SZ(f->deg));
817 
818 	/* compute f log representation only once */
819 	gf_poly_logrep(bch, f, bch->cache);
820 
821 	for (i = 0; i < m; i++) {
822 		/* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */
823 		for (j = z->deg; j >= 0; j--) {
824 			out->c[j] ^= z->c[j];
825 			z->c[2*j] = gf_sqr(bch, z->c[j]);
826 			z->c[2*j+1] = 0;
827 		}
828 		if (z->deg > out->deg)
829 			out->deg = z->deg;
830 
831 		if (i < m-1) {
832 			z->deg *= 2;
833 			/* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */
834 			gf_poly_mod(bch, z, f, bch->cache);
835 		}
836 	}
837 	while (!out->c[out->deg] && out->deg)
838 		out->deg--;
839 
840 	dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out));
841 }
842 
843 /*
844  * factor a polynomial using Berlekamp Trace algorithm (BTA)
845  */
846 static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f,
847 			      struct gf_poly **g, struct gf_poly **h)
848 {
849 	struct gf_poly *f2 = bch->poly_2t[0];
850 	struct gf_poly *q  = bch->poly_2t[1];
851 	struct gf_poly *tk = bch->poly_2t[2];
852 	struct gf_poly *z  = bch->poly_2t[3];
853 	struct gf_poly *gcd;
854 
855 	dbg("factoring %s...\n", gf_poly_str(f));
856 
857 	*g = f;
858 	*h = NULL;
859 
860 	/* tk = Tr(a^k.X) mod f */
861 	compute_trace_bk_mod(bch, k, f, z, tk);
862 
863 	if (tk->deg > 0) {
864 		/* compute g = gcd(f, tk) (destructive operation) */
865 		gf_poly_copy(f2, f);
866 		gcd = gf_poly_gcd(bch, f2, tk);
867 		if (gcd->deg < f->deg) {
868 			/* compute h=f/gcd(f,tk); this will modify f and q */
869 			gf_poly_div(bch, f, gcd, q);
870 			/* store g and h in-place (clobbering f) */
871 			*h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly;
872 			gf_poly_copy(*g, gcd);
873 			gf_poly_copy(*h, q);
874 		}
875 	}
876 }
877 
878 /*
879  * find roots of a polynomial, using BTZ algorithm; see the beginning of this
880  * file for details
881  */
882 static int find_poly_roots(struct bch_control *bch, unsigned int k,
883 			   struct gf_poly *poly, unsigned int *roots)
884 {
885 	int cnt;
886 	struct gf_poly *f1, *f2;
887 
888 	switch (poly->deg) {
889 		/* handle low degree polynomials with ad hoc techniques */
890 	case 1:
891 		cnt = find_poly_deg1_roots(bch, poly, roots);
892 		break;
893 	case 2:
894 		cnt = find_poly_deg2_roots(bch, poly, roots);
895 		break;
896 	case 3:
897 		cnt = find_poly_deg3_roots(bch, poly, roots);
898 		break;
899 	case 4:
900 		cnt = find_poly_deg4_roots(bch, poly, roots);
901 		break;
902 	default:
903 		/* factor polynomial using Berlekamp Trace Algorithm (BTA) */
904 		cnt = 0;
905 		if (poly->deg && (k <= GF_M(bch))) {
906 			factor_polynomial(bch, k, poly, &f1, &f2);
907 			if (f1)
908 				cnt += find_poly_roots(bch, k+1, f1, roots);
909 			if (f2)
910 				cnt += find_poly_roots(bch, k+1, f2, roots+cnt);
911 		}
912 		break;
913 	}
914 	return cnt;
915 }
916 
917 #if defined(USE_CHIEN_SEARCH)
918 /*
919  * exhaustive root search (Chien) implementation - not used, included only for
920  * reference/comparison tests
921  */
922 static int chien_search(struct bch_control *bch, unsigned int len,
923 			struct gf_poly *p, unsigned int *roots)
924 {
925 	int m;
926 	unsigned int i, j, syn, syn0, count = 0;
927 	const unsigned int k = 8*len+bch->ecc_bits;
928 
929 	/* use a log-based representation of polynomial */
930 	gf_poly_logrep(bch, p, bch->cache);
931 	bch->cache[p->deg] = 0;
932 	syn0 = gf_div(bch, p->c[0], p->c[p->deg]);
933 
934 	for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) {
935 		/* compute elp(a^i) */
936 		for (j = 1, syn = syn0; j <= p->deg; j++) {
937 			m = bch->cache[j];
938 			if (m >= 0)
939 				syn ^= a_pow(bch, m+j*i);
940 		}
941 		if (syn == 0) {
942 			roots[count++] = GF_N(bch)-i;
943 			if (count == p->deg)
944 				break;
945 		}
946 	}
947 	return (count == p->deg) ? count : 0;
948 }
949 #define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc)
950 #endif /* USE_CHIEN_SEARCH */
951 
952 /**
953  * decode_bch - decode received codeword and find bit error locations
954  * @bch:      BCH control structure
955  * @data:     received data, ignored if @calc_ecc is provided
956  * @len:      data length in bytes, must always be provided
957  * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc
958  * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data
959  * @syn:      hw computed syndrome data (if NULL, syndrome is calculated)
960  * @errloc:   output array of error locations
961  *
962  * Returns:
963  *  The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if
964  *  invalid parameters were provided
965  *
966  * Depending on the available hw BCH support and the need to compute @calc_ecc
967  * separately (using encode_bch()), this function should be called with one of
968  * the following parameter configurations -
969  *
970  * by providing @data and @recv_ecc only:
971  *   decode_bch(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc)
972  *
973  * by providing @recv_ecc and @calc_ecc:
974  *   decode_bch(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc)
975  *
976  * by providing ecc = recv_ecc XOR calc_ecc:
977  *   decode_bch(@bch, NULL, @len, NULL, ecc, NULL, @errloc)
978  *
979  * by providing syndrome results @syn:
980  *   decode_bch(@bch, NULL, @len, NULL, NULL, @syn, @errloc)
981  *
982  * Once decode_bch() has successfully returned with a positive value, error
983  * locations returned in array @errloc should be interpreted as follows -
984  *
985  * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for
986  * data correction)
987  *
988  * if (errloc[n] < 8*len), then n-th error is located in data and can be
989  * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8);
990  *
991  * Note that this function does not perform any data correction by itself, it
992  * merely indicates error locations.
993  */
994 int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len,
995 	       const uint8_t *recv_ecc, const uint8_t *calc_ecc,
996 	       const unsigned int *syn, unsigned int *errloc)
997 {
998 	const unsigned int ecc_words = BCH_ECC_WORDS(bch);
999 	unsigned int nbits;
1000 	int i, err, nroots;
1001 	uint32_t sum;
1002 
1003 	/* sanity check: make sure data length can be handled */
1004 	if (8*len > (bch->n-bch->ecc_bits))
1005 		return -EINVAL;
1006 
1007 	/* if caller does not provide syndromes, compute them */
1008 	if (!syn) {
1009 		if (!calc_ecc) {
1010 			/* compute received data ecc into an internal buffer */
1011 			if (!data || !recv_ecc)
1012 				return -EINVAL;
1013 			encode_bch(bch, data, len, NULL);
1014 		} else {
1015 			/* load provided calculated ecc */
1016 			load_ecc8(bch, bch->ecc_buf, calc_ecc);
1017 		}
1018 		/* load received ecc or assume it was XORed in calc_ecc */
1019 		if (recv_ecc) {
1020 			load_ecc8(bch, bch->ecc_buf2, recv_ecc);
1021 			/* XOR received and calculated ecc */
1022 			for (i = 0, sum = 0; i < (int)ecc_words; i++) {
1023 				bch->ecc_buf[i] ^= bch->ecc_buf2[i];
1024 				sum |= bch->ecc_buf[i];
1025 			}
1026 			if (!sum)
1027 				/* no error found */
1028 				return 0;
1029 		}
1030 		compute_syndromes(bch, bch->ecc_buf, bch->syn);
1031 		syn = bch->syn;
1032 	}
1033 
1034 	err = compute_error_locator_polynomial(bch, syn);
1035 	if (err > 0) {
1036 		nroots = find_poly_roots(bch, 1, bch->elp, errloc);
1037 		if (err != nroots)
1038 			err = -1;
1039 	}
1040 	if (err > 0) {
1041 		/* post-process raw error locations for easier correction */
1042 		nbits = (len*8)+bch->ecc_bits;
1043 		for (i = 0; i < err; i++) {
1044 			if (errloc[i] >= nbits) {
1045 				err = -1;
1046 				break;
1047 			}
1048 			errloc[i] = nbits-1-errloc[i];
1049 			errloc[i] = (errloc[i] & ~7)|(7-(errloc[i] & 7));
1050 		}
1051 	}
1052 	return (err >= 0) ? err : -EBADMSG;
1053 }
1054 EXPORT_SYMBOL_GPL(decode_bch);
1055 
1056 /*
1057  * generate Galois field lookup tables
1058  */
1059 static int build_gf_tables(struct bch_control *bch, unsigned int poly)
1060 {
1061 	unsigned int i, x = 1;
1062 	const unsigned int k = 1 << deg(poly);
1063 
1064 	/* primitive polynomial must be of degree m */
1065 	if (k != (1u << GF_M(bch)))
1066 		return -1;
1067 
1068 	for (i = 0; i < GF_N(bch); i++) {
1069 		bch->a_pow_tab[i] = x;
1070 		bch->a_log_tab[x] = i;
1071 		if (i && (x == 1))
1072 			/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
1073 			return -1;
1074 		x <<= 1;
1075 		if (x & k)
1076 			x ^= poly;
1077 	}
1078 	bch->a_pow_tab[GF_N(bch)] = 1;
1079 	bch->a_log_tab[0] = 0;
1080 
1081 	return 0;
1082 }
1083 
1084 /*
1085  * compute generator polynomial remainder tables for fast encoding
1086  */
1087 static void build_mod8_tables(struct bch_control *bch, const uint32_t *g)
1088 {
1089 	int i, j, b, d;
1090 	uint32_t data, hi, lo, *tab;
1091 	const int l = BCH_ECC_WORDS(bch);
1092 	const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32);
1093 	const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32);
1094 
1095 	memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab));
1096 
1097 	for (i = 0; i < 256; i++) {
1098 		/* p(X)=i is a small polynomial of weight <= 8 */
1099 		for (b = 0; b < 4; b++) {
1100 			/* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */
1101 			tab = bch->mod8_tab + (b*256+i)*l;
1102 			data = i << (8*b);
1103 			while (data) {
1104 				d = deg(data);
1105 				/* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */
1106 				data ^= g[0] >> (31-d);
1107 				for (j = 0; j < ecclen; j++) {
1108 					hi = (d < 31) ? g[j] << (d+1) : 0;
1109 					lo = (j+1 < plen) ?
1110 						g[j+1] >> (31-d) : 0;
1111 					tab[j] ^= hi|lo;
1112 				}
1113 			}
1114 		}
1115 	}
1116 }
1117 
1118 /*
1119  * build a base for factoring degree 2 polynomials
1120  */
1121 static int build_deg2_base(struct bch_control *bch)
1122 {
1123 	const int m = GF_M(bch);
1124 	int i, j, r;
1125 	unsigned int sum, x, y, remaining, ak = 0, xi[BCH_MAX_M];
1126 
1127 	/* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
1128 	for (i = 0; i < m; i++) {
1129 		for (j = 0, sum = 0; j < m; j++)
1130 			sum ^= a_pow(bch, i*(1 << j));
1131 
1132 		if (sum) {
1133 			ak = bch->a_pow_tab[i];
1134 			break;
1135 		}
1136 	}
1137 	/* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */
1138 	remaining = m;
1139 	memset(xi, 0, sizeof(xi));
1140 
1141 	for (x = 0; (x <= GF_N(bch)) && remaining; x++) {
1142 		y = gf_sqr(bch, x)^x;
1143 		for (i = 0; i < 2; i++) {
1144 			r = a_log(bch, y);
1145 			if (y && (r < m) && !xi[r]) {
1146 				bch->xi_tab[r] = x;
1147 				xi[r] = 1;
1148 				remaining--;
1149 				dbg("x%d = %x\n", r, x);
1150 				break;
1151 			}
1152 			y ^= ak;
1153 		}
1154 	}
1155 	/* should not happen but check anyway */
1156 	return remaining ? -1 : 0;
1157 }
1158 
1159 static void *bch_alloc(size_t size, int *err)
1160 {
1161 	void *ptr;
1162 
1163 	ptr = kmalloc(size, GFP_KERNEL);
1164 	if (ptr == NULL)
1165 		*err = 1;
1166 	return ptr;
1167 }
1168 
1169 /*
1170  * compute generator polynomial for given (m,t) parameters.
1171  */
1172 static uint32_t *compute_generator_polynomial(struct bch_control *bch)
1173 {
1174 	const unsigned int m = GF_M(bch);
1175 	const unsigned int t = GF_T(bch);
1176 	int n, err = 0;
1177 	unsigned int i, j, nbits, r, word, *roots;
1178 	struct gf_poly *g;
1179 	uint32_t *genpoly;
1180 
1181 	g = bch_alloc(GF_POLY_SZ(m*t), &err);
1182 	roots = bch_alloc((bch->n+1)*sizeof(*roots), &err);
1183 	genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err);
1184 
1185 	if (err) {
1186 		kfree(genpoly);
1187 		genpoly = NULL;
1188 		goto finish;
1189 	}
1190 
1191 	/* enumerate all roots of g(X) */
1192 	memset(roots , 0, (bch->n+1)*sizeof(*roots));
1193 	for (i = 0; i < t; i++) {
1194 		for (j = 0, r = 2*i+1; j < m; j++) {
1195 			roots[r] = 1;
1196 			r = mod_s(bch, 2*r);
1197 		}
1198 	}
1199 	/* build generator polynomial g(X) */
1200 	g->deg = 0;
1201 	g->c[0] = 1;
1202 	for (i = 0; i < GF_N(bch); i++) {
1203 		if (roots[i]) {
1204 			/* multiply g(X) by (X+root) */
1205 			r = bch->a_pow_tab[i];
1206 			g->c[g->deg+1] = 1;
1207 			for (j = g->deg; j > 0; j--)
1208 				g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1];
1209 
1210 			g->c[0] = gf_mul(bch, g->c[0], r);
1211 			g->deg++;
1212 		}
1213 	}
1214 	/* store left-justified binary representation of g(X) */
1215 	n = g->deg+1;
1216 	i = 0;
1217 
1218 	while (n > 0) {
1219 		nbits = (n > 32) ? 32 : n;
1220 		for (j = 0, word = 0; j < nbits; j++) {
1221 			if (g->c[n-1-j])
1222 				word |= 1u << (31-j);
1223 		}
1224 		genpoly[i++] = word;
1225 		n -= nbits;
1226 	}
1227 	bch->ecc_bits = g->deg;
1228 
1229 finish:
1230 	kfree(g);
1231 	kfree(roots);
1232 
1233 	return genpoly;
1234 }
1235 
1236 /**
1237  * init_bch - initialize a BCH encoder/decoder
1238  * @m:          Galois field order, should be in the range 5-15
1239  * @t:          maximum error correction capability, in bits
1240  * @prim_poly:  user-provided primitive polynomial (or 0 to use default)
1241  *
1242  * Returns:
1243  *  a newly allocated BCH control structure if successful, NULL otherwise
1244  *
1245  * This initialization can take some time, as lookup tables are built for fast
1246  * encoding/decoding; make sure not to call this function from a time critical
1247  * path. Usually, init_bch() should be called on module/driver init and
1248  * free_bch() should be called to release memory on exit.
1249  *
1250  * You may provide your own primitive polynomial of degree @m in argument
1251  * @prim_poly, or let init_bch() use its default polynomial.
1252  *
1253  * Once init_bch() has successfully returned a pointer to a newly allocated
1254  * BCH control structure, ecc length in bytes is given by member @ecc_bytes of
1255  * the structure.
1256  */
1257 struct bch_control *init_bch(int m, int t, unsigned int prim_poly)
1258 {
1259 	int err = 0;
1260 	unsigned int i, words;
1261 	uint32_t *genpoly;
1262 	struct bch_control *bch = NULL;
1263 
1264 	const int min_m = 5;
1265 
1266 	/* default primitive polynomials */
1267 	static const unsigned int prim_poly_tab[] = {
1268 		0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b,
1269 		0x402b, 0x8003,
1270 	};
1271 
1272 #if defined(CONFIG_BCH_CONST_PARAMS)
1273 	if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) {
1274 		printk(KERN_ERR "bch encoder/decoder was configured to support "
1275 		       "parameters m=%d, t=%d only!\n",
1276 		       CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T);
1277 		goto fail;
1278 	}
1279 #endif
1280 	if ((m < min_m) || (m > BCH_MAX_M))
1281 		/*
1282 		 * values of m greater than 15 are not currently supported;
1283 		 * supporting m > 15 would require changing table base type
1284 		 * (uint16_t) and a small patch in matrix transposition
1285 		 */
1286 		goto fail;
1287 
1288 	/* sanity checks */
1289 	if ((t < 1) || (m*t >= ((1 << m)-1)))
1290 		/* invalid t value */
1291 		goto fail;
1292 
1293 	/* select a primitive polynomial for generating GF(2^m) */
1294 	if (prim_poly == 0)
1295 		prim_poly = prim_poly_tab[m-min_m];
1296 
1297 	bch = kzalloc(sizeof(*bch), GFP_KERNEL);
1298 	if (bch == NULL)
1299 		goto fail;
1300 
1301 	bch->m = m;
1302 	bch->t = t;
1303 	bch->n = (1 << m)-1;
1304 	words  = DIV_ROUND_UP(m*t, 32);
1305 	bch->ecc_bytes = DIV_ROUND_UP(m*t, 8);
1306 	bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err);
1307 	bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err);
1308 	bch->mod8_tab  = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err);
1309 	bch->ecc_buf   = bch_alloc(words*sizeof(*bch->ecc_buf), &err);
1310 	bch->ecc_buf2  = bch_alloc(words*sizeof(*bch->ecc_buf2), &err);
1311 	bch->xi_tab    = bch_alloc(m*sizeof(*bch->xi_tab), &err);
1312 	bch->syn       = bch_alloc(2*t*sizeof(*bch->syn), &err);
1313 	bch->cache     = bch_alloc(2*t*sizeof(*bch->cache), &err);
1314 	bch->elp       = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err);
1315 
1316 	for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1317 		bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err);
1318 
1319 	if (err)
1320 		goto fail;
1321 
1322 	err = build_gf_tables(bch, prim_poly);
1323 	if (err)
1324 		goto fail;
1325 
1326 	/* use generator polynomial for computing encoding tables */
1327 	genpoly = compute_generator_polynomial(bch);
1328 	if (genpoly == NULL)
1329 		goto fail;
1330 
1331 	build_mod8_tables(bch, genpoly);
1332 	kfree(genpoly);
1333 
1334 	err = build_deg2_base(bch);
1335 	if (err)
1336 		goto fail;
1337 
1338 	return bch;
1339 
1340 fail:
1341 	free_bch(bch);
1342 	return NULL;
1343 }
1344 EXPORT_SYMBOL_GPL(init_bch);
1345 
1346 /**
1347  *  free_bch - free the BCH control structure
1348  *  @bch:    BCH control structure to release
1349  */
1350 void free_bch(struct bch_control *bch)
1351 {
1352 	unsigned int i;
1353 
1354 	if (bch) {
1355 		kfree(bch->a_pow_tab);
1356 		kfree(bch->a_log_tab);
1357 		kfree(bch->mod8_tab);
1358 		kfree(bch->ecc_buf);
1359 		kfree(bch->ecc_buf2);
1360 		kfree(bch->xi_tab);
1361 		kfree(bch->syn);
1362 		kfree(bch->cache);
1363 		kfree(bch->elp);
1364 
1365 		for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1366 			kfree(bch->poly_2t[i]);
1367 
1368 		kfree(bch);
1369 	}
1370 }
1371 EXPORT_SYMBOL_GPL(free_bch);
1372 
1373 MODULE_LICENSE("GPL");
1374 MODULE_AUTHOR("Ivan Djelic <ivan.djelic@parrot.com>");
1375 MODULE_DESCRIPTION("Binary BCH encoder/decoder");
1376