1 /* Generic associative array implementation. 2 * 3 * See Documentation/core-api/assoc_array.rst for information. 4 * 5 * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved. 6 * Written by David Howells (dhowells@redhat.com) 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public Licence 10 * as published by the Free Software Foundation; either version 11 * 2 of the Licence, or (at your option) any later version. 12 */ 13 //#define DEBUG 14 #include <linux/rcupdate.h> 15 #include <linux/slab.h> 16 #include <linux/err.h> 17 #include <linux/assoc_array_priv.h> 18 19 /* 20 * Iterate over an associative array. The caller must hold the RCU read lock 21 * or better. 22 */ 23 static int assoc_array_subtree_iterate(const struct assoc_array_ptr *root, 24 const struct assoc_array_ptr *stop, 25 int (*iterator)(const void *leaf, 26 void *iterator_data), 27 void *iterator_data) 28 { 29 const struct assoc_array_shortcut *shortcut; 30 const struct assoc_array_node *node; 31 const struct assoc_array_ptr *cursor, *ptr, *parent; 32 unsigned long has_meta; 33 int slot, ret; 34 35 cursor = root; 36 37 begin_node: 38 if (assoc_array_ptr_is_shortcut(cursor)) { 39 /* Descend through a shortcut */ 40 shortcut = assoc_array_ptr_to_shortcut(cursor); 41 cursor = READ_ONCE(shortcut->next_node); /* Address dependency. */ 42 } 43 44 node = assoc_array_ptr_to_node(cursor); 45 slot = 0; 46 47 /* We perform two passes of each node. 48 * 49 * The first pass does all the leaves in this node. This means we 50 * don't miss any leaves if the node is split up by insertion whilst 51 * we're iterating over the branches rooted here (we may, however, see 52 * some leaves twice). 53 */ 54 has_meta = 0; 55 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { 56 ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */ 57 has_meta |= (unsigned long)ptr; 58 if (ptr && assoc_array_ptr_is_leaf(ptr)) { 59 /* We need a barrier between the read of the pointer, 60 * which is supplied by the above READ_ONCE(). 61 */ 62 /* Invoke the callback */ 63 ret = iterator(assoc_array_ptr_to_leaf(ptr), 64 iterator_data); 65 if (ret) 66 return ret; 67 } 68 } 69 70 /* The second pass attends to all the metadata pointers. If we follow 71 * one of these we may find that we don't come back here, but rather go 72 * back to a replacement node with the leaves in a different layout. 73 * 74 * We are guaranteed to make progress, however, as the slot number for 75 * a particular portion of the key space cannot change - and we 76 * continue at the back pointer + 1. 77 */ 78 if (!(has_meta & ASSOC_ARRAY_PTR_META_TYPE)) 79 goto finished_node; 80 slot = 0; 81 82 continue_node: 83 node = assoc_array_ptr_to_node(cursor); 84 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { 85 ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */ 86 if (assoc_array_ptr_is_meta(ptr)) { 87 cursor = ptr; 88 goto begin_node; 89 } 90 } 91 92 finished_node: 93 /* Move up to the parent (may need to skip back over a shortcut) */ 94 parent = READ_ONCE(node->back_pointer); /* Address dependency. */ 95 slot = node->parent_slot; 96 if (parent == stop) 97 return 0; 98 99 if (assoc_array_ptr_is_shortcut(parent)) { 100 shortcut = assoc_array_ptr_to_shortcut(parent); 101 cursor = parent; 102 parent = READ_ONCE(shortcut->back_pointer); /* Address dependency. */ 103 slot = shortcut->parent_slot; 104 if (parent == stop) 105 return 0; 106 } 107 108 /* Ascend to next slot in parent node */ 109 cursor = parent; 110 slot++; 111 goto continue_node; 112 } 113 114 /** 115 * assoc_array_iterate - Pass all objects in the array to a callback 116 * @array: The array to iterate over. 117 * @iterator: The callback function. 118 * @iterator_data: Private data for the callback function. 119 * 120 * Iterate over all the objects in an associative array. Each one will be 121 * presented to the iterator function. 122 * 123 * If the array is being modified concurrently with the iteration then it is 124 * possible that some objects in the array will be passed to the iterator 125 * callback more than once - though every object should be passed at least 126 * once. If this is undesirable then the caller must lock against modification 127 * for the duration of this function. 128 * 129 * The function will return 0 if no objects were in the array or else it will 130 * return the result of the last iterator function called. Iteration stops 131 * immediately if any call to the iteration function results in a non-zero 132 * return. 133 * 134 * The caller should hold the RCU read lock or better if concurrent 135 * modification is possible. 136 */ 137 int assoc_array_iterate(const struct assoc_array *array, 138 int (*iterator)(const void *object, 139 void *iterator_data), 140 void *iterator_data) 141 { 142 struct assoc_array_ptr *root = READ_ONCE(array->root); /* Address dependency. */ 143 144 if (!root) 145 return 0; 146 return assoc_array_subtree_iterate(root, NULL, iterator, iterator_data); 147 } 148 149 enum assoc_array_walk_status { 150 assoc_array_walk_tree_empty, 151 assoc_array_walk_found_terminal_node, 152 assoc_array_walk_found_wrong_shortcut, 153 }; 154 155 struct assoc_array_walk_result { 156 struct { 157 struct assoc_array_node *node; /* Node in which leaf might be found */ 158 int level; 159 int slot; 160 } terminal_node; 161 struct { 162 struct assoc_array_shortcut *shortcut; 163 int level; 164 int sc_level; 165 unsigned long sc_segments; 166 unsigned long dissimilarity; 167 } wrong_shortcut; 168 }; 169 170 /* 171 * Navigate through the internal tree looking for the closest node to the key. 172 */ 173 static enum assoc_array_walk_status 174 assoc_array_walk(const struct assoc_array *array, 175 const struct assoc_array_ops *ops, 176 const void *index_key, 177 struct assoc_array_walk_result *result) 178 { 179 struct assoc_array_shortcut *shortcut; 180 struct assoc_array_node *node; 181 struct assoc_array_ptr *cursor, *ptr; 182 unsigned long sc_segments, dissimilarity; 183 unsigned long segments; 184 int level, sc_level, next_sc_level; 185 int slot; 186 187 pr_devel("-->%s()\n", __func__); 188 189 cursor = READ_ONCE(array->root); /* Address dependency. */ 190 if (!cursor) 191 return assoc_array_walk_tree_empty; 192 193 level = 0; 194 195 /* Use segments from the key for the new leaf to navigate through the 196 * internal tree, skipping through nodes and shortcuts that are on 197 * route to the destination. Eventually we'll come to a slot that is 198 * either empty or contains a leaf at which point we've found a node in 199 * which the leaf we're looking for might be found or into which it 200 * should be inserted. 201 */ 202 jumped: 203 segments = ops->get_key_chunk(index_key, level); 204 pr_devel("segments[%d]: %lx\n", level, segments); 205 206 if (assoc_array_ptr_is_shortcut(cursor)) 207 goto follow_shortcut; 208 209 consider_node: 210 node = assoc_array_ptr_to_node(cursor); 211 slot = segments >> (level & ASSOC_ARRAY_KEY_CHUNK_MASK); 212 slot &= ASSOC_ARRAY_FAN_MASK; 213 ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */ 214 215 pr_devel("consider slot %x [ix=%d type=%lu]\n", 216 slot, level, (unsigned long)ptr & 3); 217 218 if (!assoc_array_ptr_is_meta(ptr)) { 219 /* The node doesn't have a node/shortcut pointer in the slot 220 * corresponding to the index key that we have to follow. 221 */ 222 result->terminal_node.node = node; 223 result->terminal_node.level = level; 224 result->terminal_node.slot = slot; 225 pr_devel("<--%s() = terminal_node\n", __func__); 226 return assoc_array_walk_found_terminal_node; 227 } 228 229 if (assoc_array_ptr_is_node(ptr)) { 230 /* There is a pointer to a node in the slot corresponding to 231 * this index key segment, so we need to follow it. 232 */ 233 cursor = ptr; 234 level += ASSOC_ARRAY_LEVEL_STEP; 235 if ((level & ASSOC_ARRAY_KEY_CHUNK_MASK) != 0) 236 goto consider_node; 237 goto jumped; 238 } 239 240 /* There is a shortcut in the slot corresponding to the index key 241 * segment. We follow the shortcut if its partial index key matches 242 * this leaf's. Otherwise we need to split the shortcut. 243 */ 244 cursor = ptr; 245 follow_shortcut: 246 shortcut = assoc_array_ptr_to_shortcut(cursor); 247 pr_devel("shortcut to %d\n", shortcut->skip_to_level); 248 sc_level = level + ASSOC_ARRAY_LEVEL_STEP; 249 BUG_ON(sc_level > shortcut->skip_to_level); 250 251 do { 252 /* Check the leaf against the shortcut's index key a word at a 253 * time, trimming the final word (the shortcut stores the index 254 * key completely from the root to the shortcut's target). 255 */ 256 if ((sc_level & ASSOC_ARRAY_KEY_CHUNK_MASK) == 0) 257 segments = ops->get_key_chunk(index_key, sc_level); 258 259 sc_segments = shortcut->index_key[sc_level >> ASSOC_ARRAY_KEY_CHUNK_SHIFT]; 260 dissimilarity = segments ^ sc_segments; 261 262 if (round_up(sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE) > shortcut->skip_to_level) { 263 /* Trim segments that are beyond the shortcut */ 264 int shift = shortcut->skip_to_level & ASSOC_ARRAY_KEY_CHUNK_MASK; 265 dissimilarity &= ~(ULONG_MAX << shift); 266 next_sc_level = shortcut->skip_to_level; 267 } else { 268 next_sc_level = sc_level + ASSOC_ARRAY_KEY_CHUNK_SIZE; 269 next_sc_level = round_down(next_sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE); 270 } 271 272 if (dissimilarity != 0) { 273 /* This shortcut points elsewhere */ 274 result->wrong_shortcut.shortcut = shortcut; 275 result->wrong_shortcut.level = level; 276 result->wrong_shortcut.sc_level = sc_level; 277 result->wrong_shortcut.sc_segments = sc_segments; 278 result->wrong_shortcut.dissimilarity = dissimilarity; 279 return assoc_array_walk_found_wrong_shortcut; 280 } 281 282 sc_level = next_sc_level; 283 } while (sc_level < shortcut->skip_to_level); 284 285 /* The shortcut matches the leaf's index to this point. */ 286 cursor = READ_ONCE(shortcut->next_node); /* Address dependency. */ 287 if (((level ^ sc_level) & ~ASSOC_ARRAY_KEY_CHUNK_MASK) != 0) { 288 level = sc_level; 289 goto jumped; 290 } else { 291 level = sc_level; 292 goto consider_node; 293 } 294 } 295 296 /** 297 * assoc_array_find - Find an object by index key 298 * @array: The associative array to search. 299 * @ops: The operations to use. 300 * @index_key: The key to the object. 301 * 302 * Find an object in an associative array by walking through the internal tree 303 * to the node that should contain the object and then searching the leaves 304 * there. NULL is returned if the requested object was not found in the array. 305 * 306 * The caller must hold the RCU read lock or better. 307 */ 308 void *assoc_array_find(const struct assoc_array *array, 309 const struct assoc_array_ops *ops, 310 const void *index_key) 311 { 312 struct assoc_array_walk_result result; 313 const struct assoc_array_node *node; 314 const struct assoc_array_ptr *ptr; 315 const void *leaf; 316 int slot; 317 318 if (assoc_array_walk(array, ops, index_key, &result) != 319 assoc_array_walk_found_terminal_node) 320 return NULL; 321 322 node = result.terminal_node.node; 323 324 /* If the target key is available to us, it's has to be pointed to by 325 * the terminal node. 326 */ 327 for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) { 328 ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */ 329 if (ptr && assoc_array_ptr_is_leaf(ptr)) { 330 /* We need a barrier between the read of the pointer 331 * and dereferencing the pointer - but only if we are 332 * actually going to dereference it. 333 */ 334 leaf = assoc_array_ptr_to_leaf(ptr); 335 if (ops->compare_object(leaf, index_key)) 336 return (void *)leaf; 337 } 338 } 339 340 return NULL; 341 } 342 343 /* 344 * Destructively iterate over an associative array. The caller must prevent 345 * other simultaneous accesses. 346 */ 347 static void assoc_array_destroy_subtree(struct assoc_array_ptr *root, 348 const struct assoc_array_ops *ops) 349 { 350 struct assoc_array_shortcut *shortcut; 351 struct assoc_array_node *node; 352 struct assoc_array_ptr *cursor, *parent = NULL; 353 int slot = -1; 354 355 pr_devel("-->%s()\n", __func__); 356 357 cursor = root; 358 if (!cursor) { 359 pr_devel("empty\n"); 360 return; 361 } 362 363 move_to_meta: 364 if (assoc_array_ptr_is_shortcut(cursor)) { 365 /* Descend through a shortcut */ 366 pr_devel("[%d] shortcut\n", slot); 367 BUG_ON(!assoc_array_ptr_is_shortcut(cursor)); 368 shortcut = assoc_array_ptr_to_shortcut(cursor); 369 BUG_ON(shortcut->back_pointer != parent); 370 BUG_ON(slot != -1 && shortcut->parent_slot != slot); 371 parent = cursor; 372 cursor = shortcut->next_node; 373 slot = -1; 374 BUG_ON(!assoc_array_ptr_is_node(cursor)); 375 } 376 377 pr_devel("[%d] node\n", slot); 378 node = assoc_array_ptr_to_node(cursor); 379 BUG_ON(node->back_pointer != parent); 380 BUG_ON(slot != -1 && node->parent_slot != slot); 381 slot = 0; 382 383 continue_node: 384 pr_devel("Node %p [back=%p]\n", node, node->back_pointer); 385 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { 386 struct assoc_array_ptr *ptr = node->slots[slot]; 387 if (!ptr) 388 continue; 389 if (assoc_array_ptr_is_meta(ptr)) { 390 parent = cursor; 391 cursor = ptr; 392 goto move_to_meta; 393 } 394 395 if (ops) { 396 pr_devel("[%d] free leaf\n", slot); 397 ops->free_object(assoc_array_ptr_to_leaf(ptr)); 398 } 399 } 400 401 parent = node->back_pointer; 402 slot = node->parent_slot; 403 pr_devel("free node\n"); 404 kfree(node); 405 if (!parent) 406 return; /* Done */ 407 408 /* Move back up to the parent (may need to free a shortcut on 409 * the way up) */ 410 if (assoc_array_ptr_is_shortcut(parent)) { 411 shortcut = assoc_array_ptr_to_shortcut(parent); 412 BUG_ON(shortcut->next_node != cursor); 413 cursor = parent; 414 parent = shortcut->back_pointer; 415 slot = shortcut->parent_slot; 416 pr_devel("free shortcut\n"); 417 kfree(shortcut); 418 if (!parent) 419 return; 420 421 BUG_ON(!assoc_array_ptr_is_node(parent)); 422 } 423 424 /* Ascend to next slot in parent node */ 425 pr_devel("ascend to %p[%d]\n", parent, slot); 426 cursor = parent; 427 node = assoc_array_ptr_to_node(cursor); 428 slot++; 429 goto continue_node; 430 } 431 432 /** 433 * assoc_array_destroy - Destroy an associative array 434 * @array: The array to destroy. 435 * @ops: The operations to use. 436 * 437 * Discard all metadata and free all objects in an associative array. The 438 * array will be empty and ready to use again upon completion. This function 439 * cannot fail. 440 * 441 * The caller must prevent all other accesses whilst this takes place as no 442 * attempt is made to adjust pointers gracefully to permit RCU readlock-holding 443 * accesses to continue. On the other hand, no memory allocation is required. 444 */ 445 void assoc_array_destroy(struct assoc_array *array, 446 const struct assoc_array_ops *ops) 447 { 448 assoc_array_destroy_subtree(array->root, ops); 449 array->root = NULL; 450 } 451 452 /* 453 * Handle insertion into an empty tree. 454 */ 455 static bool assoc_array_insert_in_empty_tree(struct assoc_array_edit *edit) 456 { 457 struct assoc_array_node *new_n0; 458 459 pr_devel("-->%s()\n", __func__); 460 461 new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); 462 if (!new_n0) 463 return false; 464 465 edit->new_meta[0] = assoc_array_node_to_ptr(new_n0); 466 edit->leaf_p = &new_n0->slots[0]; 467 edit->adjust_count_on = new_n0; 468 edit->set[0].ptr = &edit->array->root; 469 edit->set[0].to = assoc_array_node_to_ptr(new_n0); 470 471 pr_devel("<--%s() = ok [no root]\n", __func__); 472 return true; 473 } 474 475 /* 476 * Handle insertion into a terminal node. 477 */ 478 static bool assoc_array_insert_into_terminal_node(struct assoc_array_edit *edit, 479 const struct assoc_array_ops *ops, 480 const void *index_key, 481 struct assoc_array_walk_result *result) 482 { 483 struct assoc_array_shortcut *shortcut, *new_s0; 484 struct assoc_array_node *node, *new_n0, *new_n1, *side; 485 struct assoc_array_ptr *ptr; 486 unsigned long dissimilarity, base_seg, blank; 487 size_t keylen; 488 bool have_meta; 489 int level, diff; 490 int slot, next_slot, free_slot, i, j; 491 492 node = result->terminal_node.node; 493 level = result->terminal_node.level; 494 edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = result->terminal_node.slot; 495 496 pr_devel("-->%s()\n", __func__); 497 498 /* We arrived at a node which doesn't have an onward node or shortcut 499 * pointer that we have to follow. This means that (a) the leaf we 500 * want must go here (either by insertion or replacement) or (b) we 501 * need to split this node and insert in one of the fragments. 502 */ 503 free_slot = -1; 504 505 /* Firstly, we have to check the leaves in this node to see if there's 506 * a matching one we should replace in place. 507 */ 508 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { 509 ptr = node->slots[i]; 510 if (!ptr) { 511 free_slot = i; 512 continue; 513 } 514 if (assoc_array_ptr_is_leaf(ptr) && 515 ops->compare_object(assoc_array_ptr_to_leaf(ptr), 516 index_key)) { 517 pr_devel("replace in slot %d\n", i); 518 edit->leaf_p = &node->slots[i]; 519 edit->dead_leaf = node->slots[i]; 520 pr_devel("<--%s() = ok [replace]\n", __func__); 521 return true; 522 } 523 } 524 525 /* If there is a free slot in this node then we can just insert the 526 * leaf here. 527 */ 528 if (free_slot >= 0) { 529 pr_devel("insert in free slot %d\n", free_slot); 530 edit->leaf_p = &node->slots[free_slot]; 531 edit->adjust_count_on = node; 532 pr_devel("<--%s() = ok [insert]\n", __func__); 533 return true; 534 } 535 536 /* The node has no spare slots - so we're either going to have to split 537 * it or insert another node before it. 538 * 539 * Whatever, we're going to need at least two new nodes - so allocate 540 * those now. We may also need a new shortcut, but we deal with that 541 * when we need it. 542 */ 543 new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); 544 if (!new_n0) 545 return false; 546 edit->new_meta[0] = assoc_array_node_to_ptr(new_n0); 547 new_n1 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); 548 if (!new_n1) 549 return false; 550 edit->new_meta[1] = assoc_array_node_to_ptr(new_n1); 551 552 /* We need to find out how similar the leaves are. */ 553 pr_devel("no spare slots\n"); 554 have_meta = false; 555 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { 556 ptr = node->slots[i]; 557 if (assoc_array_ptr_is_meta(ptr)) { 558 edit->segment_cache[i] = 0xff; 559 have_meta = true; 560 continue; 561 } 562 base_seg = ops->get_object_key_chunk( 563 assoc_array_ptr_to_leaf(ptr), level); 564 base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK; 565 edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK; 566 } 567 568 if (have_meta) { 569 pr_devel("have meta\n"); 570 goto split_node; 571 } 572 573 /* The node contains only leaves */ 574 dissimilarity = 0; 575 base_seg = edit->segment_cache[0]; 576 for (i = 1; i < ASSOC_ARRAY_FAN_OUT; i++) 577 dissimilarity |= edit->segment_cache[i] ^ base_seg; 578 579 pr_devel("only leaves; dissimilarity=%lx\n", dissimilarity); 580 581 if ((dissimilarity & ASSOC_ARRAY_FAN_MASK) == 0) { 582 /* The old leaves all cluster in the same slot. We will need 583 * to insert a shortcut if the new node wants to cluster with them. 584 */ 585 if ((edit->segment_cache[ASSOC_ARRAY_FAN_OUT] ^ base_seg) == 0) 586 goto all_leaves_cluster_together; 587 588 /* Otherwise all the old leaves cluster in the same slot, but 589 * the new leaf wants to go into a different slot - so we 590 * create a new node (n0) to hold the new leaf and a pointer to 591 * a new node (n1) holding all the old leaves. 592 * 593 * This can be done by falling through to the node splitting 594 * path. 595 */ 596 pr_devel("present leaves cluster but not new leaf\n"); 597 } 598 599 split_node: 600 pr_devel("split node\n"); 601 602 /* We need to split the current node. The node must contain anything 603 * from a single leaf (in the one leaf case, this leaf will cluster 604 * with the new leaf) and the rest meta-pointers, to all leaves, some 605 * of which may cluster. 606 * 607 * It won't contain the case in which all the current leaves plus the 608 * new leaves want to cluster in the same slot. 609 * 610 * We need to expel at least two leaves out of a set consisting of the 611 * leaves in the node and the new leaf. The current meta pointers can 612 * just be copied as they shouldn't cluster with any of the leaves. 613 * 614 * We need a new node (n0) to replace the current one and a new node to 615 * take the expelled nodes (n1). 616 */ 617 edit->set[0].to = assoc_array_node_to_ptr(new_n0); 618 new_n0->back_pointer = node->back_pointer; 619 new_n0->parent_slot = node->parent_slot; 620 new_n1->back_pointer = assoc_array_node_to_ptr(new_n0); 621 new_n1->parent_slot = -1; /* Need to calculate this */ 622 623 do_split_node: 624 pr_devel("do_split_node\n"); 625 626 new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch; 627 new_n1->nr_leaves_on_branch = 0; 628 629 /* Begin by finding two matching leaves. There have to be at least two 630 * that match - even if there are meta pointers - because any leaf that 631 * would match a slot with a meta pointer in it must be somewhere 632 * behind that meta pointer and cannot be here. Further, given N 633 * remaining leaf slots, we now have N+1 leaves to go in them. 634 */ 635 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { 636 slot = edit->segment_cache[i]; 637 if (slot != 0xff) 638 for (j = i + 1; j < ASSOC_ARRAY_FAN_OUT + 1; j++) 639 if (edit->segment_cache[j] == slot) 640 goto found_slot_for_multiple_occupancy; 641 } 642 found_slot_for_multiple_occupancy: 643 pr_devel("same slot: %x %x [%02x]\n", i, j, slot); 644 BUG_ON(i >= ASSOC_ARRAY_FAN_OUT); 645 BUG_ON(j >= ASSOC_ARRAY_FAN_OUT + 1); 646 BUG_ON(slot >= ASSOC_ARRAY_FAN_OUT); 647 648 new_n1->parent_slot = slot; 649 650 /* Metadata pointers cannot change slot */ 651 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) 652 if (assoc_array_ptr_is_meta(node->slots[i])) 653 new_n0->slots[i] = node->slots[i]; 654 else 655 new_n0->slots[i] = NULL; 656 BUG_ON(new_n0->slots[slot] != NULL); 657 new_n0->slots[slot] = assoc_array_node_to_ptr(new_n1); 658 659 /* Filter the leaf pointers between the new nodes */ 660 free_slot = -1; 661 next_slot = 0; 662 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { 663 if (assoc_array_ptr_is_meta(node->slots[i])) 664 continue; 665 if (edit->segment_cache[i] == slot) { 666 new_n1->slots[next_slot++] = node->slots[i]; 667 new_n1->nr_leaves_on_branch++; 668 } else { 669 do { 670 free_slot++; 671 } while (new_n0->slots[free_slot] != NULL); 672 new_n0->slots[free_slot] = node->slots[i]; 673 } 674 } 675 676 pr_devel("filtered: f=%x n=%x\n", free_slot, next_slot); 677 678 if (edit->segment_cache[ASSOC_ARRAY_FAN_OUT] != slot) { 679 do { 680 free_slot++; 681 } while (new_n0->slots[free_slot] != NULL); 682 edit->leaf_p = &new_n0->slots[free_slot]; 683 edit->adjust_count_on = new_n0; 684 } else { 685 edit->leaf_p = &new_n1->slots[next_slot++]; 686 edit->adjust_count_on = new_n1; 687 } 688 689 BUG_ON(next_slot <= 1); 690 691 edit->set_backpointers_to = assoc_array_node_to_ptr(new_n0); 692 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { 693 if (edit->segment_cache[i] == 0xff) { 694 ptr = node->slots[i]; 695 BUG_ON(assoc_array_ptr_is_leaf(ptr)); 696 if (assoc_array_ptr_is_node(ptr)) { 697 side = assoc_array_ptr_to_node(ptr); 698 edit->set_backpointers[i] = &side->back_pointer; 699 } else { 700 shortcut = assoc_array_ptr_to_shortcut(ptr); 701 edit->set_backpointers[i] = &shortcut->back_pointer; 702 } 703 } 704 } 705 706 ptr = node->back_pointer; 707 if (!ptr) 708 edit->set[0].ptr = &edit->array->root; 709 else if (assoc_array_ptr_is_node(ptr)) 710 edit->set[0].ptr = &assoc_array_ptr_to_node(ptr)->slots[node->parent_slot]; 711 else 712 edit->set[0].ptr = &assoc_array_ptr_to_shortcut(ptr)->next_node; 713 edit->excised_meta[0] = assoc_array_node_to_ptr(node); 714 pr_devel("<--%s() = ok [split node]\n", __func__); 715 return true; 716 717 all_leaves_cluster_together: 718 /* All the leaves, new and old, want to cluster together in this node 719 * in the same slot, so we have to replace this node with a shortcut to 720 * skip over the identical parts of the key and then place a pair of 721 * nodes, one inside the other, at the end of the shortcut and 722 * distribute the keys between them. 723 * 724 * Firstly we need to work out where the leaves start diverging as a 725 * bit position into their keys so that we know how big the shortcut 726 * needs to be. 727 * 728 * We only need to make a single pass of N of the N+1 leaves because if 729 * any keys differ between themselves at bit X then at least one of 730 * them must also differ with the base key at bit X or before. 731 */ 732 pr_devel("all leaves cluster together\n"); 733 diff = INT_MAX; 734 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { 735 int x = ops->diff_objects(assoc_array_ptr_to_leaf(node->slots[i]), 736 index_key); 737 if (x < diff) { 738 BUG_ON(x < 0); 739 diff = x; 740 } 741 } 742 BUG_ON(diff == INT_MAX); 743 BUG_ON(diff < level + ASSOC_ARRAY_LEVEL_STEP); 744 745 keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE); 746 keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT; 747 748 new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) + 749 keylen * sizeof(unsigned long), GFP_KERNEL); 750 if (!new_s0) 751 return false; 752 edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s0); 753 754 edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0); 755 new_s0->back_pointer = node->back_pointer; 756 new_s0->parent_slot = node->parent_slot; 757 new_s0->next_node = assoc_array_node_to_ptr(new_n0); 758 new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0); 759 new_n0->parent_slot = 0; 760 new_n1->back_pointer = assoc_array_node_to_ptr(new_n0); 761 new_n1->parent_slot = -1; /* Need to calculate this */ 762 763 new_s0->skip_to_level = level = diff & ~ASSOC_ARRAY_LEVEL_STEP_MASK; 764 pr_devel("skip_to_level = %d [diff %d]\n", level, diff); 765 BUG_ON(level <= 0); 766 767 for (i = 0; i < keylen; i++) 768 new_s0->index_key[i] = 769 ops->get_key_chunk(index_key, i * ASSOC_ARRAY_KEY_CHUNK_SIZE); 770 771 blank = ULONG_MAX << (level & ASSOC_ARRAY_KEY_CHUNK_MASK); 772 pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, level, blank); 773 new_s0->index_key[keylen - 1] &= ~blank; 774 775 /* This now reduces to a node splitting exercise for which we'll need 776 * to regenerate the disparity table. 777 */ 778 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { 779 ptr = node->slots[i]; 780 base_seg = ops->get_object_key_chunk(assoc_array_ptr_to_leaf(ptr), 781 level); 782 base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK; 783 edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK; 784 } 785 786 base_seg = ops->get_key_chunk(index_key, level); 787 base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK; 788 edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = base_seg & ASSOC_ARRAY_FAN_MASK; 789 goto do_split_node; 790 } 791 792 /* 793 * Handle insertion into the middle of a shortcut. 794 */ 795 static bool assoc_array_insert_mid_shortcut(struct assoc_array_edit *edit, 796 const struct assoc_array_ops *ops, 797 struct assoc_array_walk_result *result) 798 { 799 struct assoc_array_shortcut *shortcut, *new_s0, *new_s1; 800 struct assoc_array_node *node, *new_n0, *side; 801 unsigned long sc_segments, dissimilarity, blank; 802 size_t keylen; 803 int level, sc_level, diff; 804 int sc_slot; 805 806 shortcut = result->wrong_shortcut.shortcut; 807 level = result->wrong_shortcut.level; 808 sc_level = result->wrong_shortcut.sc_level; 809 sc_segments = result->wrong_shortcut.sc_segments; 810 dissimilarity = result->wrong_shortcut.dissimilarity; 811 812 pr_devel("-->%s(ix=%d dis=%lx scix=%d)\n", 813 __func__, level, dissimilarity, sc_level); 814 815 /* We need to split a shortcut and insert a node between the two 816 * pieces. Zero-length pieces will be dispensed with entirely. 817 * 818 * First of all, we need to find out in which level the first 819 * difference was. 820 */ 821 diff = __ffs(dissimilarity); 822 diff &= ~ASSOC_ARRAY_LEVEL_STEP_MASK; 823 diff += sc_level & ~ASSOC_ARRAY_KEY_CHUNK_MASK; 824 pr_devel("diff=%d\n", diff); 825 826 if (!shortcut->back_pointer) { 827 edit->set[0].ptr = &edit->array->root; 828 } else if (assoc_array_ptr_is_node(shortcut->back_pointer)) { 829 node = assoc_array_ptr_to_node(shortcut->back_pointer); 830 edit->set[0].ptr = &node->slots[shortcut->parent_slot]; 831 } else { 832 BUG(); 833 } 834 835 edit->excised_meta[0] = assoc_array_shortcut_to_ptr(shortcut); 836 837 /* Create a new node now since we're going to need it anyway */ 838 new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); 839 if (!new_n0) 840 return false; 841 edit->new_meta[0] = assoc_array_node_to_ptr(new_n0); 842 edit->adjust_count_on = new_n0; 843 844 /* Insert a new shortcut before the new node if this segment isn't of 845 * zero length - otherwise we just connect the new node directly to the 846 * parent. 847 */ 848 level += ASSOC_ARRAY_LEVEL_STEP; 849 if (diff > level) { 850 pr_devel("pre-shortcut %d...%d\n", level, diff); 851 keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE); 852 keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT; 853 854 new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) + 855 keylen * sizeof(unsigned long), GFP_KERNEL); 856 if (!new_s0) 857 return false; 858 edit->new_meta[1] = assoc_array_shortcut_to_ptr(new_s0); 859 edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0); 860 new_s0->back_pointer = shortcut->back_pointer; 861 new_s0->parent_slot = shortcut->parent_slot; 862 new_s0->next_node = assoc_array_node_to_ptr(new_n0); 863 new_s0->skip_to_level = diff; 864 865 new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0); 866 new_n0->parent_slot = 0; 867 868 memcpy(new_s0->index_key, shortcut->index_key, 869 keylen * sizeof(unsigned long)); 870 871 blank = ULONG_MAX << (diff & ASSOC_ARRAY_KEY_CHUNK_MASK); 872 pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, diff, blank); 873 new_s0->index_key[keylen - 1] &= ~blank; 874 } else { 875 pr_devel("no pre-shortcut\n"); 876 edit->set[0].to = assoc_array_node_to_ptr(new_n0); 877 new_n0->back_pointer = shortcut->back_pointer; 878 new_n0->parent_slot = shortcut->parent_slot; 879 } 880 881 side = assoc_array_ptr_to_node(shortcut->next_node); 882 new_n0->nr_leaves_on_branch = side->nr_leaves_on_branch; 883 884 /* We need to know which slot in the new node is going to take a 885 * metadata pointer. 886 */ 887 sc_slot = sc_segments >> (diff & ASSOC_ARRAY_KEY_CHUNK_MASK); 888 sc_slot &= ASSOC_ARRAY_FAN_MASK; 889 890 pr_devel("new slot %lx >> %d -> %d\n", 891 sc_segments, diff & ASSOC_ARRAY_KEY_CHUNK_MASK, sc_slot); 892 893 /* Determine whether we need to follow the new node with a replacement 894 * for the current shortcut. We could in theory reuse the current 895 * shortcut if its parent slot number doesn't change - but that's a 896 * 1-in-16 chance so not worth expending the code upon. 897 */ 898 level = diff + ASSOC_ARRAY_LEVEL_STEP; 899 if (level < shortcut->skip_to_level) { 900 pr_devel("post-shortcut %d...%d\n", level, shortcut->skip_to_level); 901 keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE); 902 keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT; 903 904 new_s1 = kzalloc(sizeof(struct assoc_array_shortcut) + 905 keylen * sizeof(unsigned long), GFP_KERNEL); 906 if (!new_s1) 907 return false; 908 edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s1); 909 910 new_s1->back_pointer = assoc_array_node_to_ptr(new_n0); 911 new_s1->parent_slot = sc_slot; 912 new_s1->next_node = shortcut->next_node; 913 new_s1->skip_to_level = shortcut->skip_to_level; 914 915 new_n0->slots[sc_slot] = assoc_array_shortcut_to_ptr(new_s1); 916 917 memcpy(new_s1->index_key, shortcut->index_key, 918 keylen * sizeof(unsigned long)); 919 920 edit->set[1].ptr = &side->back_pointer; 921 edit->set[1].to = assoc_array_shortcut_to_ptr(new_s1); 922 } else { 923 pr_devel("no post-shortcut\n"); 924 925 /* We don't have to replace the pointed-to node as long as we 926 * use memory barriers to make sure the parent slot number is 927 * changed before the back pointer (the parent slot number is 928 * irrelevant to the old parent shortcut). 929 */ 930 new_n0->slots[sc_slot] = shortcut->next_node; 931 edit->set_parent_slot[0].p = &side->parent_slot; 932 edit->set_parent_slot[0].to = sc_slot; 933 edit->set[1].ptr = &side->back_pointer; 934 edit->set[1].to = assoc_array_node_to_ptr(new_n0); 935 } 936 937 /* Install the new leaf in a spare slot in the new node. */ 938 if (sc_slot == 0) 939 edit->leaf_p = &new_n0->slots[1]; 940 else 941 edit->leaf_p = &new_n0->slots[0]; 942 943 pr_devel("<--%s() = ok [split shortcut]\n", __func__); 944 return edit; 945 } 946 947 /** 948 * assoc_array_insert - Script insertion of an object into an associative array 949 * @array: The array to insert into. 950 * @ops: The operations to use. 951 * @index_key: The key to insert at. 952 * @object: The object to insert. 953 * 954 * Precalculate and preallocate a script for the insertion or replacement of an 955 * object in an associative array. This results in an edit script that can 956 * either be applied or cancelled. 957 * 958 * The function returns a pointer to an edit script or -ENOMEM. 959 * 960 * The caller should lock against other modifications and must continue to hold 961 * the lock until assoc_array_apply_edit() has been called. 962 * 963 * Accesses to the tree may take place concurrently with this function, 964 * provided they hold the RCU read lock. 965 */ 966 struct assoc_array_edit *assoc_array_insert(struct assoc_array *array, 967 const struct assoc_array_ops *ops, 968 const void *index_key, 969 void *object) 970 { 971 struct assoc_array_walk_result result; 972 struct assoc_array_edit *edit; 973 974 pr_devel("-->%s()\n", __func__); 975 976 /* The leaf pointer we're given must not have the bottom bit set as we 977 * use those for type-marking the pointer. NULL pointers are also not 978 * allowed as they indicate an empty slot but we have to allow them 979 * here as they can be updated later. 980 */ 981 BUG_ON(assoc_array_ptr_is_meta(object)); 982 983 edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL); 984 if (!edit) 985 return ERR_PTR(-ENOMEM); 986 edit->array = array; 987 edit->ops = ops; 988 edit->leaf = assoc_array_leaf_to_ptr(object); 989 edit->adjust_count_by = 1; 990 991 switch (assoc_array_walk(array, ops, index_key, &result)) { 992 case assoc_array_walk_tree_empty: 993 /* Allocate a root node if there isn't one yet */ 994 if (!assoc_array_insert_in_empty_tree(edit)) 995 goto enomem; 996 return edit; 997 998 case assoc_array_walk_found_terminal_node: 999 /* We found a node that doesn't have a node/shortcut pointer in 1000 * the slot corresponding to the index key that we have to 1001 * follow. 1002 */ 1003 if (!assoc_array_insert_into_terminal_node(edit, ops, index_key, 1004 &result)) 1005 goto enomem; 1006 return edit; 1007 1008 case assoc_array_walk_found_wrong_shortcut: 1009 /* We found a shortcut that didn't match our key in a slot we 1010 * needed to follow. 1011 */ 1012 if (!assoc_array_insert_mid_shortcut(edit, ops, &result)) 1013 goto enomem; 1014 return edit; 1015 } 1016 1017 enomem: 1018 /* Clean up after an out of memory error */ 1019 pr_devel("enomem\n"); 1020 assoc_array_cancel_edit(edit); 1021 return ERR_PTR(-ENOMEM); 1022 } 1023 1024 /** 1025 * assoc_array_insert_set_object - Set the new object pointer in an edit script 1026 * @edit: The edit script to modify. 1027 * @object: The object pointer to set. 1028 * 1029 * Change the object to be inserted in an edit script. The object pointed to 1030 * by the old object is not freed. This must be done prior to applying the 1031 * script. 1032 */ 1033 void assoc_array_insert_set_object(struct assoc_array_edit *edit, void *object) 1034 { 1035 BUG_ON(!object); 1036 edit->leaf = assoc_array_leaf_to_ptr(object); 1037 } 1038 1039 struct assoc_array_delete_collapse_context { 1040 struct assoc_array_node *node; 1041 const void *skip_leaf; 1042 int slot; 1043 }; 1044 1045 /* 1046 * Subtree collapse to node iterator. 1047 */ 1048 static int assoc_array_delete_collapse_iterator(const void *leaf, 1049 void *iterator_data) 1050 { 1051 struct assoc_array_delete_collapse_context *collapse = iterator_data; 1052 1053 if (leaf == collapse->skip_leaf) 1054 return 0; 1055 1056 BUG_ON(collapse->slot >= ASSOC_ARRAY_FAN_OUT); 1057 1058 collapse->node->slots[collapse->slot++] = assoc_array_leaf_to_ptr(leaf); 1059 return 0; 1060 } 1061 1062 /** 1063 * assoc_array_delete - Script deletion of an object from an associative array 1064 * @array: The array to search. 1065 * @ops: The operations to use. 1066 * @index_key: The key to the object. 1067 * 1068 * Precalculate and preallocate a script for the deletion of an object from an 1069 * associative array. This results in an edit script that can either be 1070 * applied or cancelled. 1071 * 1072 * The function returns a pointer to an edit script if the object was found, 1073 * NULL if the object was not found or -ENOMEM. 1074 * 1075 * The caller should lock against other modifications and must continue to hold 1076 * the lock until assoc_array_apply_edit() has been called. 1077 * 1078 * Accesses to the tree may take place concurrently with this function, 1079 * provided they hold the RCU read lock. 1080 */ 1081 struct assoc_array_edit *assoc_array_delete(struct assoc_array *array, 1082 const struct assoc_array_ops *ops, 1083 const void *index_key) 1084 { 1085 struct assoc_array_delete_collapse_context collapse; 1086 struct assoc_array_walk_result result; 1087 struct assoc_array_node *node, *new_n0; 1088 struct assoc_array_edit *edit; 1089 struct assoc_array_ptr *ptr; 1090 bool has_meta; 1091 int slot, i; 1092 1093 pr_devel("-->%s()\n", __func__); 1094 1095 edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL); 1096 if (!edit) 1097 return ERR_PTR(-ENOMEM); 1098 edit->array = array; 1099 edit->ops = ops; 1100 edit->adjust_count_by = -1; 1101 1102 switch (assoc_array_walk(array, ops, index_key, &result)) { 1103 case assoc_array_walk_found_terminal_node: 1104 /* We found a node that should contain the leaf we've been 1105 * asked to remove - *if* it's in the tree. 1106 */ 1107 pr_devel("terminal_node\n"); 1108 node = result.terminal_node.node; 1109 1110 for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) { 1111 ptr = node->slots[slot]; 1112 if (ptr && 1113 assoc_array_ptr_is_leaf(ptr) && 1114 ops->compare_object(assoc_array_ptr_to_leaf(ptr), 1115 index_key)) 1116 goto found_leaf; 1117 } 1118 case assoc_array_walk_tree_empty: 1119 case assoc_array_walk_found_wrong_shortcut: 1120 default: 1121 assoc_array_cancel_edit(edit); 1122 pr_devel("not found\n"); 1123 return NULL; 1124 } 1125 1126 found_leaf: 1127 BUG_ON(array->nr_leaves_on_tree <= 0); 1128 1129 /* In the simplest form of deletion we just clear the slot and release 1130 * the leaf after a suitable interval. 1131 */ 1132 edit->dead_leaf = node->slots[slot]; 1133 edit->set[0].ptr = &node->slots[slot]; 1134 edit->set[0].to = NULL; 1135 edit->adjust_count_on = node; 1136 1137 /* If that concludes erasure of the last leaf, then delete the entire 1138 * internal array. 1139 */ 1140 if (array->nr_leaves_on_tree == 1) { 1141 edit->set[1].ptr = &array->root; 1142 edit->set[1].to = NULL; 1143 edit->adjust_count_on = NULL; 1144 edit->excised_subtree = array->root; 1145 pr_devel("all gone\n"); 1146 return edit; 1147 } 1148 1149 /* However, we'd also like to clear up some metadata blocks if we 1150 * possibly can. 1151 * 1152 * We go for a simple algorithm of: if this node has FAN_OUT or fewer 1153 * leaves in it, then attempt to collapse it - and attempt to 1154 * recursively collapse up the tree. 1155 * 1156 * We could also try and collapse in partially filled subtrees to take 1157 * up space in this node. 1158 */ 1159 if (node->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) { 1160 struct assoc_array_node *parent, *grandparent; 1161 struct assoc_array_ptr *ptr; 1162 1163 /* First of all, we need to know if this node has metadata so 1164 * that we don't try collapsing if all the leaves are already 1165 * here. 1166 */ 1167 has_meta = false; 1168 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { 1169 ptr = node->slots[i]; 1170 if (assoc_array_ptr_is_meta(ptr)) { 1171 has_meta = true; 1172 break; 1173 } 1174 } 1175 1176 pr_devel("leaves: %ld [m=%d]\n", 1177 node->nr_leaves_on_branch - 1, has_meta); 1178 1179 /* Look further up the tree to see if we can collapse this node 1180 * into a more proximal node too. 1181 */ 1182 parent = node; 1183 collapse_up: 1184 pr_devel("collapse subtree: %ld\n", parent->nr_leaves_on_branch); 1185 1186 ptr = parent->back_pointer; 1187 if (!ptr) 1188 goto do_collapse; 1189 if (assoc_array_ptr_is_shortcut(ptr)) { 1190 struct assoc_array_shortcut *s = assoc_array_ptr_to_shortcut(ptr); 1191 ptr = s->back_pointer; 1192 if (!ptr) 1193 goto do_collapse; 1194 } 1195 1196 grandparent = assoc_array_ptr_to_node(ptr); 1197 if (grandparent->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) { 1198 parent = grandparent; 1199 goto collapse_up; 1200 } 1201 1202 do_collapse: 1203 /* There's no point collapsing if the original node has no meta 1204 * pointers to discard and if we didn't merge into one of that 1205 * node's ancestry. 1206 */ 1207 if (has_meta || parent != node) { 1208 node = parent; 1209 1210 /* Create a new node to collapse into */ 1211 new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); 1212 if (!new_n0) 1213 goto enomem; 1214 edit->new_meta[0] = assoc_array_node_to_ptr(new_n0); 1215 1216 new_n0->back_pointer = node->back_pointer; 1217 new_n0->parent_slot = node->parent_slot; 1218 new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch; 1219 edit->adjust_count_on = new_n0; 1220 1221 collapse.node = new_n0; 1222 collapse.skip_leaf = assoc_array_ptr_to_leaf(edit->dead_leaf); 1223 collapse.slot = 0; 1224 assoc_array_subtree_iterate(assoc_array_node_to_ptr(node), 1225 node->back_pointer, 1226 assoc_array_delete_collapse_iterator, 1227 &collapse); 1228 pr_devel("collapsed %d,%lu\n", collapse.slot, new_n0->nr_leaves_on_branch); 1229 BUG_ON(collapse.slot != new_n0->nr_leaves_on_branch - 1); 1230 1231 if (!node->back_pointer) { 1232 edit->set[1].ptr = &array->root; 1233 } else if (assoc_array_ptr_is_leaf(node->back_pointer)) { 1234 BUG(); 1235 } else if (assoc_array_ptr_is_node(node->back_pointer)) { 1236 struct assoc_array_node *p = 1237 assoc_array_ptr_to_node(node->back_pointer); 1238 edit->set[1].ptr = &p->slots[node->parent_slot]; 1239 } else if (assoc_array_ptr_is_shortcut(node->back_pointer)) { 1240 struct assoc_array_shortcut *s = 1241 assoc_array_ptr_to_shortcut(node->back_pointer); 1242 edit->set[1].ptr = &s->next_node; 1243 } 1244 edit->set[1].to = assoc_array_node_to_ptr(new_n0); 1245 edit->excised_subtree = assoc_array_node_to_ptr(node); 1246 } 1247 } 1248 1249 return edit; 1250 1251 enomem: 1252 /* Clean up after an out of memory error */ 1253 pr_devel("enomem\n"); 1254 assoc_array_cancel_edit(edit); 1255 return ERR_PTR(-ENOMEM); 1256 } 1257 1258 /** 1259 * assoc_array_clear - Script deletion of all objects from an associative array 1260 * @array: The array to clear. 1261 * @ops: The operations to use. 1262 * 1263 * Precalculate and preallocate a script for the deletion of all the objects 1264 * from an associative array. This results in an edit script that can either 1265 * be applied or cancelled. 1266 * 1267 * The function returns a pointer to an edit script if there are objects to be 1268 * deleted, NULL if there are no objects in the array or -ENOMEM. 1269 * 1270 * The caller should lock against other modifications and must continue to hold 1271 * the lock until assoc_array_apply_edit() has been called. 1272 * 1273 * Accesses to the tree may take place concurrently with this function, 1274 * provided they hold the RCU read lock. 1275 */ 1276 struct assoc_array_edit *assoc_array_clear(struct assoc_array *array, 1277 const struct assoc_array_ops *ops) 1278 { 1279 struct assoc_array_edit *edit; 1280 1281 pr_devel("-->%s()\n", __func__); 1282 1283 if (!array->root) 1284 return NULL; 1285 1286 edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL); 1287 if (!edit) 1288 return ERR_PTR(-ENOMEM); 1289 edit->array = array; 1290 edit->ops = ops; 1291 edit->set[1].ptr = &array->root; 1292 edit->set[1].to = NULL; 1293 edit->excised_subtree = array->root; 1294 edit->ops_for_excised_subtree = ops; 1295 pr_devel("all gone\n"); 1296 return edit; 1297 } 1298 1299 /* 1300 * Handle the deferred destruction after an applied edit. 1301 */ 1302 static void assoc_array_rcu_cleanup(struct rcu_head *head) 1303 { 1304 struct assoc_array_edit *edit = 1305 container_of(head, struct assoc_array_edit, rcu); 1306 int i; 1307 1308 pr_devel("-->%s()\n", __func__); 1309 1310 if (edit->dead_leaf) 1311 edit->ops->free_object(assoc_array_ptr_to_leaf(edit->dead_leaf)); 1312 for (i = 0; i < ARRAY_SIZE(edit->excised_meta); i++) 1313 if (edit->excised_meta[i]) 1314 kfree(assoc_array_ptr_to_node(edit->excised_meta[i])); 1315 1316 if (edit->excised_subtree) { 1317 BUG_ON(assoc_array_ptr_is_leaf(edit->excised_subtree)); 1318 if (assoc_array_ptr_is_node(edit->excised_subtree)) { 1319 struct assoc_array_node *n = 1320 assoc_array_ptr_to_node(edit->excised_subtree); 1321 n->back_pointer = NULL; 1322 } else { 1323 struct assoc_array_shortcut *s = 1324 assoc_array_ptr_to_shortcut(edit->excised_subtree); 1325 s->back_pointer = NULL; 1326 } 1327 assoc_array_destroy_subtree(edit->excised_subtree, 1328 edit->ops_for_excised_subtree); 1329 } 1330 1331 kfree(edit); 1332 } 1333 1334 /** 1335 * assoc_array_apply_edit - Apply an edit script to an associative array 1336 * @edit: The script to apply. 1337 * 1338 * Apply an edit script to an associative array to effect an insertion, 1339 * deletion or clearance. As the edit script includes preallocated memory, 1340 * this is guaranteed not to fail. 1341 * 1342 * The edit script, dead objects and dead metadata will be scheduled for 1343 * destruction after an RCU grace period to permit those doing read-only 1344 * accesses on the array to continue to do so under the RCU read lock whilst 1345 * the edit is taking place. 1346 */ 1347 void assoc_array_apply_edit(struct assoc_array_edit *edit) 1348 { 1349 struct assoc_array_shortcut *shortcut; 1350 struct assoc_array_node *node; 1351 struct assoc_array_ptr *ptr; 1352 int i; 1353 1354 pr_devel("-->%s()\n", __func__); 1355 1356 smp_wmb(); 1357 if (edit->leaf_p) 1358 *edit->leaf_p = edit->leaf; 1359 1360 smp_wmb(); 1361 for (i = 0; i < ARRAY_SIZE(edit->set_parent_slot); i++) 1362 if (edit->set_parent_slot[i].p) 1363 *edit->set_parent_slot[i].p = edit->set_parent_slot[i].to; 1364 1365 smp_wmb(); 1366 for (i = 0; i < ARRAY_SIZE(edit->set_backpointers); i++) 1367 if (edit->set_backpointers[i]) 1368 *edit->set_backpointers[i] = edit->set_backpointers_to; 1369 1370 smp_wmb(); 1371 for (i = 0; i < ARRAY_SIZE(edit->set); i++) 1372 if (edit->set[i].ptr) 1373 *edit->set[i].ptr = edit->set[i].to; 1374 1375 if (edit->array->root == NULL) { 1376 edit->array->nr_leaves_on_tree = 0; 1377 } else if (edit->adjust_count_on) { 1378 node = edit->adjust_count_on; 1379 for (;;) { 1380 node->nr_leaves_on_branch += edit->adjust_count_by; 1381 1382 ptr = node->back_pointer; 1383 if (!ptr) 1384 break; 1385 if (assoc_array_ptr_is_shortcut(ptr)) { 1386 shortcut = assoc_array_ptr_to_shortcut(ptr); 1387 ptr = shortcut->back_pointer; 1388 if (!ptr) 1389 break; 1390 } 1391 BUG_ON(!assoc_array_ptr_is_node(ptr)); 1392 node = assoc_array_ptr_to_node(ptr); 1393 } 1394 1395 edit->array->nr_leaves_on_tree += edit->adjust_count_by; 1396 } 1397 1398 call_rcu(&edit->rcu, assoc_array_rcu_cleanup); 1399 } 1400 1401 /** 1402 * assoc_array_cancel_edit - Discard an edit script. 1403 * @edit: The script to discard. 1404 * 1405 * Free an edit script and all the preallocated data it holds without making 1406 * any changes to the associative array it was intended for. 1407 * 1408 * NOTE! In the case of an insertion script, this does _not_ release the leaf 1409 * that was to be inserted. That is left to the caller. 1410 */ 1411 void assoc_array_cancel_edit(struct assoc_array_edit *edit) 1412 { 1413 struct assoc_array_ptr *ptr; 1414 int i; 1415 1416 pr_devel("-->%s()\n", __func__); 1417 1418 /* Clean up after an out of memory error */ 1419 for (i = 0; i < ARRAY_SIZE(edit->new_meta); i++) { 1420 ptr = edit->new_meta[i]; 1421 if (ptr) { 1422 if (assoc_array_ptr_is_node(ptr)) 1423 kfree(assoc_array_ptr_to_node(ptr)); 1424 else 1425 kfree(assoc_array_ptr_to_shortcut(ptr)); 1426 } 1427 } 1428 kfree(edit); 1429 } 1430 1431 /** 1432 * assoc_array_gc - Garbage collect an associative array. 1433 * @array: The array to clean. 1434 * @ops: The operations to use. 1435 * @iterator: A callback function to pass judgement on each object. 1436 * @iterator_data: Private data for the callback function. 1437 * 1438 * Collect garbage from an associative array and pack down the internal tree to 1439 * save memory. 1440 * 1441 * The iterator function is asked to pass judgement upon each object in the 1442 * array. If it returns false, the object is discard and if it returns true, 1443 * the object is kept. If it returns true, it must increment the object's 1444 * usage count (or whatever it needs to do to retain it) before returning. 1445 * 1446 * This function returns 0 if successful or -ENOMEM if out of memory. In the 1447 * latter case, the array is not changed. 1448 * 1449 * The caller should lock against other modifications and must continue to hold 1450 * the lock until assoc_array_apply_edit() has been called. 1451 * 1452 * Accesses to the tree may take place concurrently with this function, 1453 * provided they hold the RCU read lock. 1454 */ 1455 int assoc_array_gc(struct assoc_array *array, 1456 const struct assoc_array_ops *ops, 1457 bool (*iterator)(void *object, void *iterator_data), 1458 void *iterator_data) 1459 { 1460 struct assoc_array_shortcut *shortcut, *new_s; 1461 struct assoc_array_node *node, *new_n; 1462 struct assoc_array_edit *edit; 1463 struct assoc_array_ptr *cursor, *ptr; 1464 struct assoc_array_ptr *new_root, *new_parent, **new_ptr_pp; 1465 unsigned long nr_leaves_on_tree; 1466 int keylen, slot, nr_free, next_slot, i; 1467 1468 pr_devel("-->%s()\n", __func__); 1469 1470 if (!array->root) 1471 return 0; 1472 1473 edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL); 1474 if (!edit) 1475 return -ENOMEM; 1476 edit->array = array; 1477 edit->ops = ops; 1478 edit->ops_for_excised_subtree = ops; 1479 edit->set[0].ptr = &array->root; 1480 edit->excised_subtree = array->root; 1481 1482 new_root = new_parent = NULL; 1483 new_ptr_pp = &new_root; 1484 cursor = array->root; 1485 1486 descend: 1487 /* If this point is a shortcut, then we need to duplicate it and 1488 * advance the target cursor. 1489 */ 1490 if (assoc_array_ptr_is_shortcut(cursor)) { 1491 shortcut = assoc_array_ptr_to_shortcut(cursor); 1492 keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE); 1493 keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT; 1494 new_s = kmalloc(sizeof(struct assoc_array_shortcut) + 1495 keylen * sizeof(unsigned long), GFP_KERNEL); 1496 if (!new_s) 1497 goto enomem; 1498 pr_devel("dup shortcut %p -> %p\n", shortcut, new_s); 1499 memcpy(new_s, shortcut, (sizeof(struct assoc_array_shortcut) + 1500 keylen * sizeof(unsigned long))); 1501 new_s->back_pointer = new_parent; 1502 new_s->parent_slot = shortcut->parent_slot; 1503 *new_ptr_pp = new_parent = assoc_array_shortcut_to_ptr(new_s); 1504 new_ptr_pp = &new_s->next_node; 1505 cursor = shortcut->next_node; 1506 } 1507 1508 /* Duplicate the node at this position */ 1509 node = assoc_array_ptr_to_node(cursor); 1510 new_n = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); 1511 if (!new_n) 1512 goto enomem; 1513 pr_devel("dup node %p -> %p\n", node, new_n); 1514 new_n->back_pointer = new_parent; 1515 new_n->parent_slot = node->parent_slot; 1516 *new_ptr_pp = new_parent = assoc_array_node_to_ptr(new_n); 1517 new_ptr_pp = NULL; 1518 slot = 0; 1519 1520 continue_node: 1521 /* Filter across any leaves and gc any subtrees */ 1522 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { 1523 ptr = node->slots[slot]; 1524 if (!ptr) 1525 continue; 1526 1527 if (assoc_array_ptr_is_leaf(ptr)) { 1528 if (iterator(assoc_array_ptr_to_leaf(ptr), 1529 iterator_data)) 1530 /* The iterator will have done any reference 1531 * counting on the object for us. 1532 */ 1533 new_n->slots[slot] = ptr; 1534 continue; 1535 } 1536 1537 new_ptr_pp = &new_n->slots[slot]; 1538 cursor = ptr; 1539 goto descend; 1540 } 1541 1542 pr_devel("-- compress node %p --\n", new_n); 1543 1544 /* Count up the number of empty slots in this node and work out the 1545 * subtree leaf count. 1546 */ 1547 new_n->nr_leaves_on_branch = 0; 1548 nr_free = 0; 1549 for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) { 1550 ptr = new_n->slots[slot]; 1551 if (!ptr) 1552 nr_free++; 1553 else if (assoc_array_ptr_is_leaf(ptr)) 1554 new_n->nr_leaves_on_branch++; 1555 } 1556 pr_devel("free=%d, leaves=%lu\n", nr_free, new_n->nr_leaves_on_branch); 1557 1558 /* See what we can fold in */ 1559 next_slot = 0; 1560 for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) { 1561 struct assoc_array_shortcut *s; 1562 struct assoc_array_node *child; 1563 1564 ptr = new_n->slots[slot]; 1565 if (!ptr || assoc_array_ptr_is_leaf(ptr)) 1566 continue; 1567 1568 s = NULL; 1569 if (assoc_array_ptr_is_shortcut(ptr)) { 1570 s = assoc_array_ptr_to_shortcut(ptr); 1571 ptr = s->next_node; 1572 } 1573 1574 child = assoc_array_ptr_to_node(ptr); 1575 new_n->nr_leaves_on_branch += child->nr_leaves_on_branch; 1576 1577 if (child->nr_leaves_on_branch <= nr_free + 1) { 1578 /* Fold the child node into this one */ 1579 pr_devel("[%d] fold node %lu/%d [nx %d]\n", 1580 slot, child->nr_leaves_on_branch, nr_free + 1, 1581 next_slot); 1582 1583 /* We would already have reaped an intervening shortcut 1584 * on the way back up the tree. 1585 */ 1586 BUG_ON(s); 1587 1588 new_n->slots[slot] = NULL; 1589 nr_free++; 1590 if (slot < next_slot) 1591 next_slot = slot; 1592 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { 1593 struct assoc_array_ptr *p = child->slots[i]; 1594 if (!p) 1595 continue; 1596 BUG_ON(assoc_array_ptr_is_meta(p)); 1597 while (new_n->slots[next_slot]) 1598 next_slot++; 1599 BUG_ON(next_slot >= ASSOC_ARRAY_FAN_OUT); 1600 new_n->slots[next_slot++] = p; 1601 nr_free--; 1602 } 1603 kfree(child); 1604 } else { 1605 pr_devel("[%d] retain node %lu/%d [nx %d]\n", 1606 slot, child->nr_leaves_on_branch, nr_free + 1, 1607 next_slot); 1608 } 1609 } 1610 1611 pr_devel("after: %lu\n", new_n->nr_leaves_on_branch); 1612 1613 nr_leaves_on_tree = new_n->nr_leaves_on_branch; 1614 1615 /* Excise this node if it is singly occupied by a shortcut */ 1616 if (nr_free == ASSOC_ARRAY_FAN_OUT - 1) { 1617 for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) 1618 if ((ptr = new_n->slots[slot])) 1619 break; 1620 1621 if (assoc_array_ptr_is_meta(ptr) && 1622 assoc_array_ptr_is_shortcut(ptr)) { 1623 pr_devel("excise node %p with 1 shortcut\n", new_n); 1624 new_s = assoc_array_ptr_to_shortcut(ptr); 1625 new_parent = new_n->back_pointer; 1626 slot = new_n->parent_slot; 1627 kfree(new_n); 1628 if (!new_parent) { 1629 new_s->back_pointer = NULL; 1630 new_s->parent_slot = 0; 1631 new_root = ptr; 1632 goto gc_complete; 1633 } 1634 1635 if (assoc_array_ptr_is_shortcut(new_parent)) { 1636 /* We can discard any preceding shortcut also */ 1637 struct assoc_array_shortcut *s = 1638 assoc_array_ptr_to_shortcut(new_parent); 1639 1640 pr_devel("excise preceding shortcut\n"); 1641 1642 new_parent = new_s->back_pointer = s->back_pointer; 1643 slot = new_s->parent_slot = s->parent_slot; 1644 kfree(s); 1645 if (!new_parent) { 1646 new_s->back_pointer = NULL; 1647 new_s->parent_slot = 0; 1648 new_root = ptr; 1649 goto gc_complete; 1650 } 1651 } 1652 1653 new_s->back_pointer = new_parent; 1654 new_s->parent_slot = slot; 1655 new_n = assoc_array_ptr_to_node(new_parent); 1656 new_n->slots[slot] = ptr; 1657 goto ascend_old_tree; 1658 } 1659 } 1660 1661 /* Excise any shortcuts we might encounter that point to nodes that 1662 * only contain leaves. 1663 */ 1664 ptr = new_n->back_pointer; 1665 if (!ptr) 1666 goto gc_complete; 1667 1668 if (assoc_array_ptr_is_shortcut(ptr)) { 1669 new_s = assoc_array_ptr_to_shortcut(ptr); 1670 new_parent = new_s->back_pointer; 1671 slot = new_s->parent_slot; 1672 1673 if (new_n->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT) { 1674 struct assoc_array_node *n; 1675 1676 pr_devel("excise shortcut\n"); 1677 new_n->back_pointer = new_parent; 1678 new_n->parent_slot = slot; 1679 kfree(new_s); 1680 if (!new_parent) { 1681 new_root = assoc_array_node_to_ptr(new_n); 1682 goto gc_complete; 1683 } 1684 1685 n = assoc_array_ptr_to_node(new_parent); 1686 n->slots[slot] = assoc_array_node_to_ptr(new_n); 1687 } 1688 } else { 1689 new_parent = ptr; 1690 } 1691 new_n = assoc_array_ptr_to_node(new_parent); 1692 1693 ascend_old_tree: 1694 ptr = node->back_pointer; 1695 if (assoc_array_ptr_is_shortcut(ptr)) { 1696 shortcut = assoc_array_ptr_to_shortcut(ptr); 1697 slot = shortcut->parent_slot; 1698 cursor = shortcut->back_pointer; 1699 if (!cursor) 1700 goto gc_complete; 1701 } else { 1702 slot = node->parent_slot; 1703 cursor = ptr; 1704 } 1705 BUG_ON(!cursor); 1706 node = assoc_array_ptr_to_node(cursor); 1707 slot++; 1708 goto continue_node; 1709 1710 gc_complete: 1711 edit->set[0].to = new_root; 1712 assoc_array_apply_edit(edit); 1713 array->nr_leaves_on_tree = nr_leaves_on_tree; 1714 return 0; 1715 1716 enomem: 1717 pr_devel("enomem\n"); 1718 assoc_array_destroy_subtree(new_root, edit->ops); 1719 kfree(edit); 1720 return -ENOMEM; 1721 } 1722