xref: /openbmc/linux/lib/assoc_array.c (revision 812f77b749a8ae11f58dacf0d3ed65e7ede47458)
1 /* Generic associative array implementation.
2  *
3  * See Documentation/core-api/assoc_array.rst for information.
4  *
5  * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
6  * Written by David Howells (dhowells@redhat.com)
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public Licence
10  * as published by the Free Software Foundation; either version
11  * 2 of the Licence, or (at your option) any later version.
12  */
13 //#define DEBUG
14 #include <linux/rcupdate.h>
15 #include <linux/slab.h>
16 #include <linux/err.h>
17 #include <linux/assoc_array_priv.h>
18 
19 /*
20  * Iterate over an associative array.  The caller must hold the RCU read lock
21  * or better.
22  */
23 static int assoc_array_subtree_iterate(const struct assoc_array_ptr *root,
24 				       const struct assoc_array_ptr *stop,
25 				       int (*iterator)(const void *leaf,
26 						       void *iterator_data),
27 				       void *iterator_data)
28 {
29 	const struct assoc_array_shortcut *shortcut;
30 	const struct assoc_array_node *node;
31 	const struct assoc_array_ptr *cursor, *ptr, *parent;
32 	unsigned long has_meta;
33 	int slot, ret;
34 
35 	cursor = root;
36 
37 begin_node:
38 	if (assoc_array_ptr_is_shortcut(cursor)) {
39 		/* Descend through a shortcut */
40 		shortcut = assoc_array_ptr_to_shortcut(cursor);
41 		smp_read_barrier_depends();
42 		cursor = READ_ONCE(shortcut->next_node);
43 	}
44 
45 	node = assoc_array_ptr_to_node(cursor);
46 	smp_read_barrier_depends();
47 	slot = 0;
48 
49 	/* We perform two passes of each node.
50 	 *
51 	 * The first pass does all the leaves in this node.  This means we
52 	 * don't miss any leaves if the node is split up by insertion whilst
53 	 * we're iterating over the branches rooted here (we may, however, see
54 	 * some leaves twice).
55 	 */
56 	has_meta = 0;
57 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
58 		ptr = READ_ONCE(node->slots[slot]);
59 		has_meta |= (unsigned long)ptr;
60 		if (ptr && assoc_array_ptr_is_leaf(ptr)) {
61 			/* We need a barrier between the read of the pointer
62 			 * and dereferencing the pointer - but only if we are
63 			 * actually going to dereference it.
64 			 */
65 			smp_read_barrier_depends();
66 
67 			/* Invoke the callback */
68 			ret = iterator(assoc_array_ptr_to_leaf(ptr),
69 				       iterator_data);
70 			if (ret)
71 				return ret;
72 		}
73 	}
74 
75 	/* The second pass attends to all the metadata pointers.  If we follow
76 	 * one of these we may find that we don't come back here, but rather go
77 	 * back to a replacement node with the leaves in a different layout.
78 	 *
79 	 * We are guaranteed to make progress, however, as the slot number for
80 	 * a particular portion of the key space cannot change - and we
81 	 * continue at the back pointer + 1.
82 	 */
83 	if (!(has_meta & ASSOC_ARRAY_PTR_META_TYPE))
84 		goto finished_node;
85 	slot = 0;
86 
87 continue_node:
88 	node = assoc_array_ptr_to_node(cursor);
89 	smp_read_barrier_depends();
90 
91 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
92 		ptr = READ_ONCE(node->slots[slot]);
93 		if (assoc_array_ptr_is_meta(ptr)) {
94 			cursor = ptr;
95 			goto begin_node;
96 		}
97 	}
98 
99 finished_node:
100 	/* Move up to the parent (may need to skip back over a shortcut) */
101 	parent = READ_ONCE(node->back_pointer);
102 	slot = node->parent_slot;
103 	if (parent == stop)
104 		return 0;
105 
106 	if (assoc_array_ptr_is_shortcut(parent)) {
107 		shortcut = assoc_array_ptr_to_shortcut(parent);
108 		smp_read_barrier_depends();
109 		cursor = parent;
110 		parent = READ_ONCE(shortcut->back_pointer);
111 		slot = shortcut->parent_slot;
112 		if (parent == stop)
113 			return 0;
114 	}
115 
116 	/* Ascend to next slot in parent node */
117 	cursor = parent;
118 	slot++;
119 	goto continue_node;
120 }
121 
122 /**
123  * assoc_array_iterate - Pass all objects in the array to a callback
124  * @array: The array to iterate over.
125  * @iterator: The callback function.
126  * @iterator_data: Private data for the callback function.
127  *
128  * Iterate over all the objects in an associative array.  Each one will be
129  * presented to the iterator function.
130  *
131  * If the array is being modified concurrently with the iteration then it is
132  * possible that some objects in the array will be passed to the iterator
133  * callback more than once - though every object should be passed at least
134  * once.  If this is undesirable then the caller must lock against modification
135  * for the duration of this function.
136  *
137  * The function will return 0 if no objects were in the array or else it will
138  * return the result of the last iterator function called.  Iteration stops
139  * immediately if any call to the iteration function results in a non-zero
140  * return.
141  *
142  * The caller should hold the RCU read lock or better if concurrent
143  * modification is possible.
144  */
145 int assoc_array_iterate(const struct assoc_array *array,
146 			int (*iterator)(const void *object,
147 					void *iterator_data),
148 			void *iterator_data)
149 {
150 	struct assoc_array_ptr *root = READ_ONCE(array->root);
151 
152 	if (!root)
153 		return 0;
154 	return assoc_array_subtree_iterate(root, NULL, iterator, iterator_data);
155 }
156 
157 enum assoc_array_walk_status {
158 	assoc_array_walk_tree_empty,
159 	assoc_array_walk_found_terminal_node,
160 	assoc_array_walk_found_wrong_shortcut,
161 };
162 
163 struct assoc_array_walk_result {
164 	struct {
165 		struct assoc_array_node	*node;	/* Node in which leaf might be found */
166 		int		level;
167 		int		slot;
168 	} terminal_node;
169 	struct {
170 		struct assoc_array_shortcut *shortcut;
171 		int		level;
172 		int		sc_level;
173 		unsigned long	sc_segments;
174 		unsigned long	dissimilarity;
175 	} wrong_shortcut;
176 };
177 
178 /*
179  * Navigate through the internal tree looking for the closest node to the key.
180  */
181 static enum assoc_array_walk_status
182 assoc_array_walk(const struct assoc_array *array,
183 		 const struct assoc_array_ops *ops,
184 		 const void *index_key,
185 		 struct assoc_array_walk_result *result)
186 {
187 	struct assoc_array_shortcut *shortcut;
188 	struct assoc_array_node *node;
189 	struct assoc_array_ptr *cursor, *ptr;
190 	unsigned long sc_segments, dissimilarity;
191 	unsigned long segments;
192 	int level, sc_level, next_sc_level;
193 	int slot;
194 
195 	pr_devel("-->%s()\n", __func__);
196 
197 	cursor = READ_ONCE(array->root);
198 	if (!cursor)
199 		return assoc_array_walk_tree_empty;
200 
201 	level = 0;
202 
203 	/* Use segments from the key for the new leaf to navigate through the
204 	 * internal tree, skipping through nodes and shortcuts that are on
205 	 * route to the destination.  Eventually we'll come to a slot that is
206 	 * either empty or contains a leaf at which point we've found a node in
207 	 * which the leaf we're looking for might be found or into which it
208 	 * should be inserted.
209 	 */
210 jumped:
211 	segments = ops->get_key_chunk(index_key, level);
212 	pr_devel("segments[%d]: %lx\n", level, segments);
213 
214 	if (assoc_array_ptr_is_shortcut(cursor))
215 		goto follow_shortcut;
216 
217 consider_node:
218 	node = assoc_array_ptr_to_node(cursor);
219 	smp_read_barrier_depends();
220 
221 	slot = segments >> (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
222 	slot &= ASSOC_ARRAY_FAN_MASK;
223 	ptr = READ_ONCE(node->slots[slot]);
224 
225 	pr_devel("consider slot %x [ix=%d type=%lu]\n",
226 		 slot, level, (unsigned long)ptr & 3);
227 
228 	if (!assoc_array_ptr_is_meta(ptr)) {
229 		/* The node doesn't have a node/shortcut pointer in the slot
230 		 * corresponding to the index key that we have to follow.
231 		 */
232 		result->terminal_node.node = node;
233 		result->terminal_node.level = level;
234 		result->terminal_node.slot = slot;
235 		pr_devel("<--%s() = terminal_node\n", __func__);
236 		return assoc_array_walk_found_terminal_node;
237 	}
238 
239 	if (assoc_array_ptr_is_node(ptr)) {
240 		/* There is a pointer to a node in the slot corresponding to
241 		 * this index key segment, so we need to follow it.
242 		 */
243 		cursor = ptr;
244 		level += ASSOC_ARRAY_LEVEL_STEP;
245 		if ((level & ASSOC_ARRAY_KEY_CHUNK_MASK) != 0)
246 			goto consider_node;
247 		goto jumped;
248 	}
249 
250 	/* There is a shortcut in the slot corresponding to the index key
251 	 * segment.  We follow the shortcut if its partial index key matches
252 	 * this leaf's.  Otherwise we need to split the shortcut.
253 	 */
254 	cursor = ptr;
255 follow_shortcut:
256 	shortcut = assoc_array_ptr_to_shortcut(cursor);
257 	smp_read_barrier_depends();
258 	pr_devel("shortcut to %d\n", shortcut->skip_to_level);
259 	sc_level = level + ASSOC_ARRAY_LEVEL_STEP;
260 	BUG_ON(sc_level > shortcut->skip_to_level);
261 
262 	do {
263 		/* Check the leaf against the shortcut's index key a word at a
264 		 * time, trimming the final word (the shortcut stores the index
265 		 * key completely from the root to the shortcut's target).
266 		 */
267 		if ((sc_level & ASSOC_ARRAY_KEY_CHUNK_MASK) == 0)
268 			segments = ops->get_key_chunk(index_key, sc_level);
269 
270 		sc_segments = shortcut->index_key[sc_level >> ASSOC_ARRAY_KEY_CHUNK_SHIFT];
271 		dissimilarity = segments ^ sc_segments;
272 
273 		if (round_up(sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE) > shortcut->skip_to_level) {
274 			/* Trim segments that are beyond the shortcut */
275 			int shift = shortcut->skip_to_level & ASSOC_ARRAY_KEY_CHUNK_MASK;
276 			dissimilarity &= ~(ULONG_MAX << shift);
277 			next_sc_level = shortcut->skip_to_level;
278 		} else {
279 			next_sc_level = sc_level + ASSOC_ARRAY_KEY_CHUNK_SIZE;
280 			next_sc_level = round_down(next_sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
281 		}
282 
283 		if (dissimilarity != 0) {
284 			/* This shortcut points elsewhere */
285 			result->wrong_shortcut.shortcut = shortcut;
286 			result->wrong_shortcut.level = level;
287 			result->wrong_shortcut.sc_level = sc_level;
288 			result->wrong_shortcut.sc_segments = sc_segments;
289 			result->wrong_shortcut.dissimilarity = dissimilarity;
290 			return assoc_array_walk_found_wrong_shortcut;
291 		}
292 
293 		sc_level = next_sc_level;
294 	} while (sc_level < shortcut->skip_to_level);
295 
296 	/* The shortcut matches the leaf's index to this point. */
297 	cursor = READ_ONCE(shortcut->next_node);
298 	if (((level ^ sc_level) & ~ASSOC_ARRAY_KEY_CHUNK_MASK) != 0) {
299 		level = sc_level;
300 		goto jumped;
301 	} else {
302 		level = sc_level;
303 		goto consider_node;
304 	}
305 }
306 
307 /**
308  * assoc_array_find - Find an object by index key
309  * @array: The associative array to search.
310  * @ops: The operations to use.
311  * @index_key: The key to the object.
312  *
313  * Find an object in an associative array by walking through the internal tree
314  * to the node that should contain the object and then searching the leaves
315  * there.  NULL is returned if the requested object was not found in the array.
316  *
317  * The caller must hold the RCU read lock or better.
318  */
319 void *assoc_array_find(const struct assoc_array *array,
320 		       const struct assoc_array_ops *ops,
321 		       const void *index_key)
322 {
323 	struct assoc_array_walk_result result;
324 	const struct assoc_array_node *node;
325 	const struct assoc_array_ptr *ptr;
326 	const void *leaf;
327 	int slot;
328 
329 	if (assoc_array_walk(array, ops, index_key, &result) !=
330 	    assoc_array_walk_found_terminal_node)
331 		return NULL;
332 
333 	node = result.terminal_node.node;
334 	smp_read_barrier_depends();
335 
336 	/* If the target key is available to us, it's has to be pointed to by
337 	 * the terminal node.
338 	 */
339 	for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
340 		ptr = READ_ONCE(node->slots[slot]);
341 		if (ptr && assoc_array_ptr_is_leaf(ptr)) {
342 			/* We need a barrier between the read of the pointer
343 			 * and dereferencing the pointer - but only if we are
344 			 * actually going to dereference it.
345 			 */
346 			leaf = assoc_array_ptr_to_leaf(ptr);
347 			smp_read_barrier_depends();
348 			if (ops->compare_object(leaf, index_key))
349 				return (void *)leaf;
350 		}
351 	}
352 
353 	return NULL;
354 }
355 
356 /*
357  * Destructively iterate over an associative array.  The caller must prevent
358  * other simultaneous accesses.
359  */
360 static void assoc_array_destroy_subtree(struct assoc_array_ptr *root,
361 					const struct assoc_array_ops *ops)
362 {
363 	struct assoc_array_shortcut *shortcut;
364 	struct assoc_array_node *node;
365 	struct assoc_array_ptr *cursor, *parent = NULL;
366 	int slot = -1;
367 
368 	pr_devel("-->%s()\n", __func__);
369 
370 	cursor = root;
371 	if (!cursor) {
372 		pr_devel("empty\n");
373 		return;
374 	}
375 
376 move_to_meta:
377 	if (assoc_array_ptr_is_shortcut(cursor)) {
378 		/* Descend through a shortcut */
379 		pr_devel("[%d] shortcut\n", slot);
380 		BUG_ON(!assoc_array_ptr_is_shortcut(cursor));
381 		shortcut = assoc_array_ptr_to_shortcut(cursor);
382 		BUG_ON(shortcut->back_pointer != parent);
383 		BUG_ON(slot != -1 && shortcut->parent_slot != slot);
384 		parent = cursor;
385 		cursor = shortcut->next_node;
386 		slot = -1;
387 		BUG_ON(!assoc_array_ptr_is_node(cursor));
388 	}
389 
390 	pr_devel("[%d] node\n", slot);
391 	node = assoc_array_ptr_to_node(cursor);
392 	BUG_ON(node->back_pointer != parent);
393 	BUG_ON(slot != -1 && node->parent_slot != slot);
394 	slot = 0;
395 
396 continue_node:
397 	pr_devel("Node %p [back=%p]\n", node, node->back_pointer);
398 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
399 		struct assoc_array_ptr *ptr = node->slots[slot];
400 		if (!ptr)
401 			continue;
402 		if (assoc_array_ptr_is_meta(ptr)) {
403 			parent = cursor;
404 			cursor = ptr;
405 			goto move_to_meta;
406 		}
407 
408 		if (ops) {
409 			pr_devel("[%d] free leaf\n", slot);
410 			ops->free_object(assoc_array_ptr_to_leaf(ptr));
411 		}
412 	}
413 
414 	parent = node->back_pointer;
415 	slot = node->parent_slot;
416 	pr_devel("free node\n");
417 	kfree(node);
418 	if (!parent)
419 		return; /* Done */
420 
421 	/* Move back up to the parent (may need to free a shortcut on
422 	 * the way up) */
423 	if (assoc_array_ptr_is_shortcut(parent)) {
424 		shortcut = assoc_array_ptr_to_shortcut(parent);
425 		BUG_ON(shortcut->next_node != cursor);
426 		cursor = parent;
427 		parent = shortcut->back_pointer;
428 		slot = shortcut->parent_slot;
429 		pr_devel("free shortcut\n");
430 		kfree(shortcut);
431 		if (!parent)
432 			return;
433 
434 		BUG_ON(!assoc_array_ptr_is_node(parent));
435 	}
436 
437 	/* Ascend to next slot in parent node */
438 	pr_devel("ascend to %p[%d]\n", parent, slot);
439 	cursor = parent;
440 	node = assoc_array_ptr_to_node(cursor);
441 	slot++;
442 	goto continue_node;
443 }
444 
445 /**
446  * assoc_array_destroy - Destroy an associative array
447  * @array: The array to destroy.
448  * @ops: The operations to use.
449  *
450  * Discard all metadata and free all objects in an associative array.  The
451  * array will be empty and ready to use again upon completion.  This function
452  * cannot fail.
453  *
454  * The caller must prevent all other accesses whilst this takes place as no
455  * attempt is made to adjust pointers gracefully to permit RCU readlock-holding
456  * accesses to continue.  On the other hand, no memory allocation is required.
457  */
458 void assoc_array_destroy(struct assoc_array *array,
459 			 const struct assoc_array_ops *ops)
460 {
461 	assoc_array_destroy_subtree(array->root, ops);
462 	array->root = NULL;
463 }
464 
465 /*
466  * Handle insertion into an empty tree.
467  */
468 static bool assoc_array_insert_in_empty_tree(struct assoc_array_edit *edit)
469 {
470 	struct assoc_array_node *new_n0;
471 
472 	pr_devel("-->%s()\n", __func__);
473 
474 	new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
475 	if (!new_n0)
476 		return false;
477 
478 	edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
479 	edit->leaf_p = &new_n0->slots[0];
480 	edit->adjust_count_on = new_n0;
481 	edit->set[0].ptr = &edit->array->root;
482 	edit->set[0].to = assoc_array_node_to_ptr(new_n0);
483 
484 	pr_devel("<--%s() = ok [no root]\n", __func__);
485 	return true;
486 }
487 
488 /*
489  * Handle insertion into a terminal node.
490  */
491 static bool assoc_array_insert_into_terminal_node(struct assoc_array_edit *edit,
492 						  const struct assoc_array_ops *ops,
493 						  const void *index_key,
494 						  struct assoc_array_walk_result *result)
495 {
496 	struct assoc_array_shortcut *shortcut, *new_s0;
497 	struct assoc_array_node *node, *new_n0, *new_n1, *side;
498 	struct assoc_array_ptr *ptr;
499 	unsigned long dissimilarity, base_seg, blank;
500 	size_t keylen;
501 	bool have_meta;
502 	int level, diff;
503 	int slot, next_slot, free_slot, i, j;
504 
505 	node	= result->terminal_node.node;
506 	level	= result->terminal_node.level;
507 	edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = result->terminal_node.slot;
508 
509 	pr_devel("-->%s()\n", __func__);
510 
511 	/* We arrived at a node which doesn't have an onward node or shortcut
512 	 * pointer that we have to follow.  This means that (a) the leaf we
513 	 * want must go here (either by insertion or replacement) or (b) we
514 	 * need to split this node and insert in one of the fragments.
515 	 */
516 	free_slot = -1;
517 
518 	/* Firstly, we have to check the leaves in this node to see if there's
519 	 * a matching one we should replace in place.
520 	 */
521 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
522 		ptr = node->slots[i];
523 		if (!ptr) {
524 			free_slot = i;
525 			continue;
526 		}
527 		if (assoc_array_ptr_is_leaf(ptr) &&
528 		    ops->compare_object(assoc_array_ptr_to_leaf(ptr),
529 					index_key)) {
530 			pr_devel("replace in slot %d\n", i);
531 			edit->leaf_p = &node->slots[i];
532 			edit->dead_leaf = node->slots[i];
533 			pr_devel("<--%s() = ok [replace]\n", __func__);
534 			return true;
535 		}
536 	}
537 
538 	/* If there is a free slot in this node then we can just insert the
539 	 * leaf here.
540 	 */
541 	if (free_slot >= 0) {
542 		pr_devel("insert in free slot %d\n", free_slot);
543 		edit->leaf_p = &node->slots[free_slot];
544 		edit->adjust_count_on = node;
545 		pr_devel("<--%s() = ok [insert]\n", __func__);
546 		return true;
547 	}
548 
549 	/* The node has no spare slots - so we're either going to have to split
550 	 * it or insert another node before it.
551 	 *
552 	 * Whatever, we're going to need at least two new nodes - so allocate
553 	 * those now.  We may also need a new shortcut, but we deal with that
554 	 * when we need it.
555 	 */
556 	new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
557 	if (!new_n0)
558 		return false;
559 	edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
560 	new_n1 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
561 	if (!new_n1)
562 		return false;
563 	edit->new_meta[1] = assoc_array_node_to_ptr(new_n1);
564 
565 	/* We need to find out how similar the leaves are. */
566 	pr_devel("no spare slots\n");
567 	have_meta = false;
568 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
569 		ptr = node->slots[i];
570 		if (assoc_array_ptr_is_meta(ptr)) {
571 			edit->segment_cache[i] = 0xff;
572 			have_meta = true;
573 			continue;
574 		}
575 		base_seg = ops->get_object_key_chunk(
576 			assoc_array_ptr_to_leaf(ptr), level);
577 		base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
578 		edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
579 	}
580 
581 	if (have_meta) {
582 		pr_devel("have meta\n");
583 		goto split_node;
584 	}
585 
586 	/* The node contains only leaves */
587 	dissimilarity = 0;
588 	base_seg = edit->segment_cache[0];
589 	for (i = 1; i < ASSOC_ARRAY_FAN_OUT; i++)
590 		dissimilarity |= edit->segment_cache[i] ^ base_seg;
591 
592 	pr_devel("only leaves; dissimilarity=%lx\n", dissimilarity);
593 
594 	if ((dissimilarity & ASSOC_ARRAY_FAN_MASK) == 0) {
595 		/* The old leaves all cluster in the same slot.  We will need
596 		 * to insert a shortcut if the new node wants to cluster with them.
597 		 */
598 		if ((edit->segment_cache[ASSOC_ARRAY_FAN_OUT] ^ base_seg) == 0)
599 			goto all_leaves_cluster_together;
600 
601 		/* Otherwise all the old leaves cluster in the same slot, but
602 		 * the new leaf wants to go into a different slot - so we
603 		 * create a new node (n0) to hold the new leaf and a pointer to
604 		 * a new node (n1) holding all the old leaves.
605 		 *
606 		 * This can be done by falling through to the node splitting
607 		 * path.
608 		 */
609 		pr_devel("present leaves cluster but not new leaf\n");
610 	}
611 
612 split_node:
613 	pr_devel("split node\n");
614 
615 	/* We need to split the current node.  The node must contain anything
616 	 * from a single leaf (in the one leaf case, this leaf will cluster
617 	 * with the new leaf) and the rest meta-pointers, to all leaves, some
618 	 * of which may cluster.
619 	 *
620 	 * It won't contain the case in which all the current leaves plus the
621 	 * new leaves want to cluster in the same slot.
622 	 *
623 	 * We need to expel at least two leaves out of a set consisting of the
624 	 * leaves in the node and the new leaf.  The current meta pointers can
625 	 * just be copied as they shouldn't cluster with any of the leaves.
626 	 *
627 	 * We need a new node (n0) to replace the current one and a new node to
628 	 * take the expelled nodes (n1).
629 	 */
630 	edit->set[0].to = assoc_array_node_to_ptr(new_n0);
631 	new_n0->back_pointer = node->back_pointer;
632 	new_n0->parent_slot = node->parent_slot;
633 	new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
634 	new_n1->parent_slot = -1; /* Need to calculate this */
635 
636 do_split_node:
637 	pr_devel("do_split_node\n");
638 
639 	new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
640 	new_n1->nr_leaves_on_branch = 0;
641 
642 	/* Begin by finding two matching leaves.  There have to be at least two
643 	 * that match - even if there are meta pointers - because any leaf that
644 	 * would match a slot with a meta pointer in it must be somewhere
645 	 * behind that meta pointer and cannot be here.  Further, given N
646 	 * remaining leaf slots, we now have N+1 leaves to go in them.
647 	 */
648 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
649 		slot = edit->segment_cache[i];
650 		if (slot != 0xff)
651 			for (j = i + 1; j < ASSOC_ARRAY_FAN_OUT + 1; j++)
652 				if (edit->segment_cache[j] == slot)
653 					goto found_slot_for_multiple_occupancy;
654 	}
655 found_slot_for_multiple_occupancy:
656 	pr_devel("same slot: %x %x [%02x]\n", i, j, slot);
657 	BUG_ON(i >= ASSOC_ARRAY_FAN_OUT);
658 	BUG_ON(j >= ASSOC_ARRAY_FAN_OUT + 1);
659 	BUG_ON(slot >= ASSOC_ARRAY_FAN_OUT);
660 
661 	new_n1->parent_slot = slot;
662 
663 	/* Metadata pointers cannot change slot */
664 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++)
665 		if (assoc_array_ptr_is_meta(node->slots[i]))
666 			new_n0->slots[i] = node->slots[i];
667 		else
668 			new_n0->slots[i] = NULL;
669 	BUG_ON(new_n0->slots[slot] != NULL);
670 	new_n0->slots[slot] = assoc_array_node_to_ptr(new_n1);
671 
672 	/* Filter the leaf pointers between the new nodes */
673 	free_slot = -1;
674 	next_slot = 0;
675 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
676 		if (assoc_array_ptr_is_meta(node->slots[i]))
677 			continue;
678 		if (edit->segment_cache[i] == slot) {
679 			new_n1->slots[next_slot++] = node->slots[i];
680 			new_n1->nr_leaves_on_branch++;
681 		} else {
682 			do {
683 				free_slot++;
684 			} while (new_n0->slots[free_slot] != NULL);
685 			new_n0->slots[free_slot] = node->slots[i];
686 		}
687 	}
688 
689 	pr_devel("filtered: f=%x n=%x\n", free_slot, next_slot);
690 
691 	if (edit->segment_cache[ASSOC_ARRAY_FAN_OUT] != slot) {
692 		do {
693 			free_slot++;
694 		} while (new_n0->slots[free_slot] != NULL);
695 		edit->leaf_p = &new_n0->slots[free_slot];
696 		edit->adjust_count_on = new_n0;
697 	} else {
698 		edit->leaf_p = &new_n1->slots[next_slot++];
699 		edit->adjust_count_on = new_n1;
700 	}
701 
702 	BUG_ON(next_slot <= 1);
703 
704 	edit->set_backpointers_to = assoc_array_node_to_ptr(new_n0);
705 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
706 		if (edit->segment_cache[i] == 0xff) {
707 			ptr = node->slots[i];
708 			BUG_ON(assoc_array_ptr_is_leaf(ptr));
709 			if (assoc_array_ptr_is_node(ptr)) {
710 				side = assoc_array_ptr_to_node(ptr);
711 				edit->set_backpointers[i] = &side->back_pointer;
712 			} else {
713 				shortcut = assoc_array_ptr_to_shortcut(ptr);
714 				edit->set_backpointers[i] = &shortcut->back_pointer;
715 			}
716 		}
717 	}
718 
719 	ptr = node->back_pointer;
720 	if (!ptr)
721 		edit->set[0].ptr = &edit->array->root;
722 	else if (assoc_array_ptr_is_node(ptr))
723 		edit->set[0].ptr = &assoc_array_ptr_to_node(ptr)->slots[node->parent_slot];
724 	else
725 		edit->set[0].ptr = &assoc_array_ptr_to_shortcut(ptr)->next_node;
726 	edit->excised_meta[0] = assoc_array_node_to_ptr(node);
727 	pr_devel("<--%s() = ok [split node]\n", __func__);
728 	return true;
729 
730 all_leaves_cluster_together:
731 	/* All the leaves, new and old, want to cluster together in this node
732 	 * in the same slot, so we have to replace this node with a shortcut to
733 	 * skip over the identical parts of the key and then place a pair of
734 	 * nodes, one inside the other, at the end of the shortcut and
735 	 * distribute the keys between them.
736 	 *
737 	 * Firstly we need to work out where the leaves start diverging as a
738 	 * bit position into their keys so that we know how big the shortcut
739 	 * needs to be.
740 	 *
741 	 * We only need to make a single pass of N of the N+1 leaves because if
742 	 * any keys differ between themselves at bit X then at least one of
743 	 * them must also differ with the base key at bit X or before.
744 	 */
745 	pr_devel("all leaves cluster together\n");
746 	diff = INT_MAX;
747 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
748 		int x = ops->diff_objects(assoc_array_ptr_to_leaf(node->slots[i]),
749 					  index_key);
750 		if (x < diff) {
751 			BUG_ON(x < 0);
752 			diff = x;
753 		}
754 	}
755 	BUG_ON(diff == INT_MAX);
756 	BUG_ON(diff < level + ASSOC_ARRAY_LEVEL_STEP);
757 
758 	keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
759 	keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
760 
761 	new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
762 			 keylen * sizeof(unsigned long), GFP_KERNEL);
763 	if (!new_s0)
764 		return false;
765 	edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s0);
766 
767 	edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
768 	new_s0->back_pointer = node->back_pointer;
769 	new_s0->parent_slot = node->parent_slot;
770 	new_s0->next_node = assoc_array_node_to_ptr(new_n0);
771 	new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
772 	new_n0->parent_slot = 0;
773 	new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
774 	new_n1->parent_slot = -1; /* Need to calculate this */
775 
776 	new_s0->skip_to_level = level = diff & ~ASSOC_ARRAY_LEVEL_STEP_MASK;
777 	pr_devel("skip_to_level = %d [diff %d]\n", level, diff);
778 	BUG_ON(level <= 0);
779 
780 	for (i = 0; i < keylen; i++)
781 		new_s0->index_key[i] =
782 			ops->get_key_chunk(index_key, i * ASSOC_ARRAY_KEY_CHUNK_SIZE);
783 
784 	blank = ULONG_MAX << (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
785 	pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, level, blank);
786 	new_s0->index_key[keylen - 1] &= ~blank;
787 
788 	/* This now reduces to a node splitting exercise for which we'll need
789 	 * to regenerate the disparity table.
790 	 */
791 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
792 		ptr = node->slots[i];
793 		base_seg = ops->get_object_key_chunk(assoc_array_ptr_to_leaf(ptr),
794 						     level);
795 		base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
796 		edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
797 	}
798 
799 	base_seg = ops->get_key_chunk(index_key, level);
800 	base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
801 	edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = base_seg & ASSOC_ARRAY_FAN_MASK;
802 	goto do_split_node;
803 }
804 
805 /*
806  * Handle insertion into the middle of a shortcut.
807  */
808 static bool assoc_array_insert_mid_shortcut(struct assoc_array_edit *edit,
809 					    const struct assoc_array_ops *ops,
810 					    struct assoc_array_walk_result *result)
811 {
812 	struct assoc_array_shortcut *shortcut, *new_s0, *new_s1;
813 	struct assoc_array_node *node, *new_n0, *side;
814 	unsigned long sc_segments, dissimilarity, blank;
815 	size_t keylen;
816 	int level, sc_level, diff;
817 	int sc_slot;
818 
819 	shortcut	= result->wrong_shortcut.shortcut;
820 	level		= result->wrong_shortcut.level;
821 	sc_level	= result->wrong_shortcut.sc_level;
822 	sc_segments	= result->wrong_shortcut.sc_segments;
823 	dissimilarity	= result->wrong_shortcut.dissimilarity;
824 
825 	pr_devel("-->%s(ix=%d dis=%lx scix=%d)\n",
826 		 __func__, level, dissimilarity, sc_level);
827 
828 	/* We need to split a shortcut and insert a node between the two
829 	 * pieces.  Zero-length pieces will be dispensed with entirely.
830 	 *
831 	 * First of all, we need to find out in which level the first
832 	 * difference was.
833 	 */
834 	diff = __ffs(dissimilarity);
835 	diff &= ~ASSOC_ARRAY_LEVEL_STEP_MASK;
836 	diff += sc_level & ~ASSOC_ARRAY_KEY_CHUNK_MASK;
837 	pr_devel("diff=%d\n", diff);
838 
839 	if (!shortcut->back_pointer) {
840 		edit->set[0].ptr = &edit->array->root;
841 	} else if (assoc_array_ptr_is_node(shortcut->back_pointer)) {
842 		node = assoc_array_ptr_to_node(shortcut->back_pointer);
843 		edit->set[0].ptr = &node->slots[shortcut->parent_slot];
844 	} else {
845 		BUG();
846 	}
847 
848 	edit->excised_meta[0] = assoc_array_shortcut_to_ptr(shortcut);
849 
850 	/* Create a new node now since we're going to need it anyway */
851 	new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
852 	if (!new_n0)
853 		return false;
854 	edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
855 	edit->adjust_count_on = new_n0;
856 
857 	/* Insert a new shortcut before the new node if this segment isn't of
858 	 * zero length - otherwise we just connect the new node directly to the
859 	 * parent.
860 	 */
861 	level += ASSOC_ARRAY_LEVEL_STEP;
862 	if (diff > level) {
863 		pr_devel("pre-shortcut %d...%d\n", level, diff);
864 		keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
865 		keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
866 
867 		new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
868 				 keylen * sizeof(unsigned long), GFP_KERNEL);
869 		if (!new_s0)
870 			return false;
871 		edit->new_meta[1] = assoc_array_shortcut_to_ptr(new_s0);
872 		edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
873 		new_s0->back_pointer = shortcut->back_pointer;
874 		new_s0->parent_slot = shortcut->parent_slot;
875 		new_s0->next_node = assoc_array_node_to_ptr(new_n0);
876 		new_s0->skip_to_level = diff;
877 
878 		new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
879 		new_n0->parent_slot = 0;
880 
881 		memcpy(new_s0->index_key, shortcut->index_key,
882 		       keylen * sizeof(unsigned long));
883 
884 		blank = ULONG_MAX << (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
885 		pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, diff, blank);
886 		new_s0->index_key[keylen - 1] &= ~blank;
887 	} else {
888 		pr_devel("no pre-shortcut\n");
889 		edit->set[0].to = assoc_array_node_to_ptr(new_n0);
890 		new_n0->back_pointer = shortcut->back_pointer;
891 		new_n0->parent_slot = shortcut->parent_slot;
892 	}
893 
894 	side = assoc_array_ptr_to_node(shortcut->next_node);
895 	new_n0->nr_leaves_on_branch = side->nr_leaves_on_branch;
896 
897 	/* We need to know which slot in the new node is going to take a
898 	 * metadata pointer.
899 	 */
900 	sc_slot = sc_segments >> (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
901 	sc_slot &= ASSOC_ARRAY_FAN_MASK;
902 
903 	pr_devel("new slot %lx >> %d -> %d\n",
904 		 sc_segments, diff & ASSOC_ARRAY_KEY_CHUNK_MASK, sc_slot);
905 
906 	/* Determine whether we need to follow the new node with a replacement
907 	 * for the current shortcut.  We could in theory reuse the current
908 	 * shortcut if its parent slot number doesn't change - but that's a
909 	 * 1-in-16 chance so not worth expending the code upon.
910 	 */
911 	level = diff + ASSOC_ARRAY_LEVEL_STEP;
912 	if (level < shortcut->skip_to_level) {
913 		pr_devel("post-shortcut %d...%d\n", level, shortcut->skip_to_level);
914 		keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
915 		keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
916 
917 		new_s1 = kzalloc(sizeof(struct assoc_array_shortcut) +
918 				 keylen * sizeof(unsigned long), GFP_KERNEL);
919 		if (!new_s1)
920 			return false;
921 		edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s1);
922 
923 		new_s1->back_pointer = assoc_array_node_to_ptr(new_n0);
924 		new_s1->parent_slot = sc_slot;
925 		new_s1->next_node = shortcut->next_node;
926 		new_s1->skip_to_level = shortcut->skip_to_level;
927 
928 		new_n0->slots[sc_slot] = assoc_array_shortcut_to_ptr(new_s1);
929 
930 		memcpy(new_s1->index_key, shortcut->index_key,
931 		       keylen * sizeof(unsigned long));
932 
933 		edit->set[1].ptr = &side->back_pointer;
934 		edit->set[1].to = assoc_array_shortcut_to_ptr(new_s1);
935 	} else {
936 		pr_devel("no post-shortcut\n");
937 
938 		/* We don't have to replace the pointed-to node as long as we
939 		 * use memory barriers to make sure the parent slot number is
940 		 * changed before the back pointer (the parent slot number is
941 		 * irrelevant to the old parent shortcut).
942 		 */
943 		new_n0->slots[sc_slot] = shortcut->next_node;
944 		edit->set_parent_slot[0].p = &side->parent_slot;
945 		edit->set_parent_slot[0].to = sc_slot;
946 		edit->set[1].ptr = &side->back_pointer;
947 		edit->set[1].to = assoc_array_node_to_ptr(new_n0);
948 	}
949 
950 	/* Install the new leaf in a spare slot in the new node. */
951 	if (sc_slot == 0)
952 		edit->leaf_p = &new_n0->slots[1];
953 	else
954 		edit->leaf_p = &new_n0->slots[0];
955 
956 	pr_devel("<--%s() = ok [split shortcut]\n", __func__);
957 	return edit;
958 }
959 
960 /**
961  * assoc_array_insert - Script insertion of an object into an associative array
962  * @array: The array to insert into.
963  * @ops: The operations to use.
964  * @index_key: The key to insert at.
965  * @object: The object to insert.
966  *
967  * Precalculate and preallocate a script for the insertion or replacement of an
968  * object in an associative array.  This results in an edit script that can
969  * either be applied or cancelled.
970  *
971  * The function returns a pointer to an edit script or -ENOMEM.
972  *
973  * The caller should lock against other modifications and must continue to hold
974  * the lock until assoc_array_apply_edit() has been called.
975  *
976  * Accesses to the tree may take place concurrently with this function,
977  * provided they hold the RCU read lock.
978  */
979 struct assoc_array_edit *assoc_array_insert(struct assoc_array *array,
980 					    const struct assoc_array_ops *ops,
981 					    const void *index_key,
982 					    void *object)
983 {
984 	struct assoc_array_walk_result result;
985 	struct assoc_array_edit *edit;
986 
987 	pr_devel("-->%s()\n", __func__);
988 
989 	/* The leaf pointer we're given must not have the bottom bit set as we
990 	 * use those for type-marking the pointer.  NULL pointers are also not
991 	 * allowed as they indicate an empty slot but we have to allow them
992 	 * here as they can be updated later.
993 	 */
994 	BUG_ON(assoc_array_ptr_is_meta(object));
995 
996 	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
997 	if (!edit)
998 		return ERR_PTR(-ENOMEM);
999 	edit->array = array;
1000 	edit->ops = ops;
1001 	edit->leaf = assoc_array_leaf_to_ptr(object);
1002 	edit->adjust_count_by = 1;
1003 
1004 	switch (assoc_array_walk(array, ops, index_key, &result)) {
1005 	case assoc_array_walk_tree_empty:
1006 		/* Allocate a root node if there isn't one yet */
1007 		if (!assoc_array_insert_in_empty_tree(edit))
1008 			goto enomem;
1009 		return edit;
1010 
1011 	case assoc_array_walk_found_terminal_node:
1012 		/* We found a node that doesn't have a node/shortcut pointer in
1013 		 * the slot corresponding to the index key that we have to
1014 		 * follow.
1015 		 */
1016 		if (!assoc_array_insert_into_terminal_node(edit, ops, index_key,
1017 							   &result))
1018 			goto enomem;
1019 		return edit;
1020 
1021 	case assoc_array_walk_found_wrong_shortcut:
1022 		/* We found a shortcut that didn't match our key in a slot we
1023 		 * needed to follow.
1024 		 */
1025 		if (!assoc_array_insert_mid_shortcut(edit, ops, &result))
1026 			goto enomem;
1027 		return edit;
1028 	}
1029 
1030 enomem:
1031 	/* Clean up after an out of memory error */
1032 	pr_devel("enomem\n");
1033 	assoc_array_cancel_edit(edit);
1034 	return ERR_PTR(-ENOMEM);
1035 }
1036 
1037 /**
1038  * assoc_array_insert_set_object - Set the new object pointer in an edit script
1039  * @edit: The edit script to modify.
1040  * @object: The object pointer to set.
1041  *
1042  * Change the object to be inserted in an edit script.  The object pointed to
1043  * by the old object is not freed.  This must be done prior to applying the
1044  * script.
1045  */
1046 void assoc_array_insert_set_object(struct assoc_array_edit *edit, void *object)
1047 {
1048 	BUG_ON(!object);
1049 	edit->leaf = assoc_array_leaf_to_ptr(object);
1050 }
1051 
1052 struct assoc_array_delete_collapse_context {
1053 	struct assoc_array_node	*node;
1054 	const void		*skip_leaf;
1055 	int			slot;
1056 };
1057 
1058 /*
1059  * Subtree collapse to node iterator.
1060  */
1061 static int assoc_array_delete_collapse_iterator(const void *leaf,
1062 						void *iterator_data)
1063 {
1064 	struct assoc_array_delete_collapse_context *collapse = iterator_data;
1065 
1066 	if (leaf == collapse->skip_leaf)
1067 		return 0;
1068 
1069 	BUG_ON(collapse->slot >= ASSOC_ARRAY_FAN_OUT);
1070 
1071 	collapse->node->slots[collapse->slot++] = assoc_array_leaf_to_ptr(leaf);
1072 	return 0;
1073 }
1074 
1075 /**
1076  * assoc_array_delete - Script deletion of an object from an associative array
1077  * @array: The array to search.
1078  * @ops: The operations to use.
1079  * @index_key: The key to the object.
1080  *
1081  * Precalculate and preallocate a script for the deletion of an object from an
1082  * associative array.  This results in an edit script that can either be
1083  * applied or cancelled.
1084  *
1085  * The function returns a pointer to an edit script if the object was found,
1086  * NULL if the object was not found or -ENOMEM.
1087  *
1088  * The caller should lock against other modifications and must continue to hold
1089  * the lock until assoc_array_apply_edit() has been called.
1090  *
1091  * Accesses to the tree may take place concurrently with this function,
1092  * provided they hold the RCU read lock.
1093  */
1094 struct assoc_array_edit *assoc_array_delete(struct assoc_array *array,
1095 					    const struct assoc_array_ops *ops,
1096 					    const void *index_key)
1097 {
1098 	struct assoc_array_delete_collapse_context collapse;
1099 	struct assoc_array_walk_result result;
1100 	struct assoc_array_node *node, *new_n0;
1101 	struct assoc_array_edit *edit;
1102 	struct assoc_array_ptr *ptr;
1103 	bool has_meta;
1104 	int slot, i;
1105 
1106 	pr_devel("-->%s()\n", __func__);
1107 
1108 	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1109 	if (!edit)
1110 		return ERR_PTR(-ENOMEM);
1111 	edit->array = array;
1112 	edit->ops = ops;
1113 	edit->adjust_count_by = -1;
1114 
1115 	switch (assoc_array_walk(array, ops, index_key, &result)) {
1116 	case assoc_array_walk_found_terminal_node:
1117 		/* We found a node that should contain the leaf we've been
1118 		 * asked to remove - *if* it's in the tree.
1119 		 */
1120 		pr_devel("terminal_node\n");
1121 		node = result.terminal_node.node;
1122 
1123 		for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1124 			ptr = node->slots[slot];
1125 			if (ptr &&
1126 			    assoc_array_ptr_is_leaf(ptr) &&
1127 			    ops->compare_object(assoc_array_ptr_to_leaf(ptr),
1128 						index_key))
1129 				goto found_leaf;
1130 		}
1131 	case assoc_array_walk_tree_empty:
1132 	case assoc_array_walk_found_wrong_shortcut:
1133 	default:
1134 		assoc_array_cancel_edit(edit);
1135 		pr_devel("not found\n");
1136 		return NULL;
1137 	}
1138 
1139 found_leaf:
1140 	BUG_ON(array->nr_leaves_on_tree <= 0);
1141 
1142 	/* In the simplest form of deletion we just clear the slot and release
1143 	 * the leaf after a suitable interval.
1144 	 */
1145 	edit->dead_leaf = node->slots[slot];
1146 	edit->set[0].ptr = &node->slots[slot];
1147 	edit->set[0].to = NULL;
1148 	edit->adjust_count_on = node;
1149 
1150 	/* If that concludes erasure of the last leaf, then delete the entire
1151 	 * internal array.
1152 	 */
1153 	if (array->nr_leaves_on_tree == 1) {
1154 		edit->set[1].ptr = &array->root;
1155 		edit->set[1].to = NULL;
1156 		edit->adjust_count_on = NULL;
1157 		edit->excised_subtree = array->root;
1158 		pr_devel("all gone\n");
1159 		return edit;
1160 	}
1161 
1162 	/* However, we'd also like to clear up some metadata blocks if we
1163 	 * possibly can.
1164 	 *
1165 	 * We go for a simple algorithm of: if this node has FAN_OUT or fewer
1166 	 * leaves in it, then attempt to collapse it - and attempt to
1167 	 * recursively collapse up the tree.
1168 	 *
1169 	 * We could also try and collapse in partially filled subtrees to take
1170 	 * up space in this node.
1171 	 */
1172 	if (node->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
1173 		struct assoc_array_node *parent, *grandparent;
1174 		struct assoc_array_ptr *ptr;
1175 
1176 		/* First of all, we need to know if this node has metadata so
1177 		 * that we don't try collapsing if all the leaves are already
1178 		 * here.
1179 		 */
1180 		has_meta = false;
1181 		for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
1182 			ptr = node->slots[i];
1183 			if (assoc_array_ptr_is_meta(ptr)) {
1184 				has_meta = true;
1185 				break;
1186 			}
1187 		}
1188 
1189 		pr_devel("leaves: %ld [m=%d]\n",
1190 			 node->nr_leaves_on_branch - 1, has_meta);
1191 
1192 		/* Look further up the tree to see if we can collapse this node
1193 		 * into a more proximal node too.
1194 		 */
1195 		parent = node;
1196 	collapse_up:
1197 		pr_devel("collapse subtree: %ld\n", parent->nr_leaves_on_branch);
1198 
1199 		ptr = parent->back_pointer;
1200 		if (!ptr)
1201 			goto do_collapse;
1202 		if (assoc_array_ptr_is_shortcut(ptr)) {
1203 			struct assoc_array_shortcut *s = assoc_array_ptr_to_shortcut(ptr);
1204 			ptr = s->back_pointer;
1205 			if (!ptr)
1206 				goto do_collapse;
1207 		}
1208 
1209 		grandparent = assoc_array_ptr_to_node(ptr);
1210 		if (grandparent->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
1211 			parent = grandparent;
1212 			goto collapse_up;
1213 		}
1214 
1215 	do_collapse:
1216 		/* There's no point collapsing if the original node has no meta
1217 		 * pointers to discard and if we didn't merge into one of that
1218 		 * node's ancestry.
1219 		 */
1220 		if (has_meta || parent != node) {
1221 			node = parent;
1222 
1223 			/* Create a new node to collapse into */
1224 			new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
1225 			if (!new_n0)
1226 				goto enomem;
1227 			edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
1228 
1229 			new_n0->back_pointer = node->back_pointer;
1230 			new_n0->parent_slot = node->parent_slot;
1231 			new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
1232 			edit->adjust_count_on = new_n0;
1233 
1234 			collapse.node = new_n0;
1235 			collapse.skip_leaf = assoc_array_ptr_to_leaf(edit->dead_leaf);
1236 			collapse.slot = 0;
1237 			assoc_array_subtree_iterate(assoc_array_node_to_ptr(node),
1238 						    node->back_pointer,
1239 						    assoc_array_delete_collapse_iterator,
1240 						    &collapse);
1241 			pr_devel("collapsed %d,%lu\n", collapse.slot, new_n0->nr_leaves_on_branch);
1242 			BUG_ON(collapse.slot != new_n0->nr_leaves_on_branch - 1);
1243 
1244 			if (!node->back_pointer) {
1245 				edit->set[1].ptr = &array->root;
1246 			} else if (assoc_array_ptr_is_leaf(node->back_pointer)) {
1247 				BUG();
1248 			} else if (assoc_array_ptr_is_node(node->back_pointer)) {
1249 				struct assoc_array_node *p =
1250 					assoc_array_ptr_to_node(node->back_pointer);
1251 				edit->set[1].ptr = &p->slots[node->parent_slot];
1252 			} else if (assoc_array_ptr_is_shortcut(node->back_pointer)) {
1253 				struct assoc_array_shortcut *s =
1254 					assoc_array_ptr_to_shortcut(node->back_pointer);
1255 				edit->set[1].ptr = &s->next_node;
1256 			}
1257 			edit->set[1].to = assoc_array_node_to_ptr(new_n0);
1258 			edit->excised_subtree = assoc_array_node_to_ptr(node);
1259 		}
1260 	}
1261 
1262 	return edit;
1263 
1264 enomem:
1265 	/* Clean up after an out of memory error */
1266 	pr_devel("enomem\n");
1267 	assoc_array_cancel_edit(edit);
1268 	return ERR_PTR(-ENOMEM);
1269 }
1270 
1271 /**
1272  * assoc_array_clear - Script deletion of all objects from an associative array
1273  * @array: The array to clear.
1274  * @ops: The operations to use.
1275  *
1276  * Precalculate and preallocate a script for the deletion of all the objects
1277  * from an associative array.  This results in an edit script that can either
1278  * be applied or cancelled.
1279  *
1280  * The function returns a pointer to an edit script if there are objects to be
1281  * deleted, NULL if there are no objects in the array or -ENOMEM.
1282  *
1283  * The caller should lock against other modifications and must continue to hold
1284  * the lock until assoc_array_apply_edit() has been called.
1285  *
1286  * Accesses to the tree may take place concurrently with this function,
1287  * provided they hold the RCU read lock.
1288  */
1289 struct assoc_array_edit *assoc_array_clear(struct assoc_array *array,
1290 					   const struct assoc_array_ops *ops)
1291 {
1292 	struct assoc_array_edit *edit;
1293 
1294 	pr_devel("-->%s()\n", __func__);
1295 
1296 	if (!array->root)
1297 		return NULL;
1298 
1299 	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1300 	if (!edit)
1301 		return ERR_PTR(-ENOMEM);
1302 	edit->array = array;
1303 	edit->ops = ops;
1304 	edit->set[1].ptr = &array->root;
1305 	edit->set[1].to = NULL;
1306 	edit->excised_subtree = array->root;
1307 	edit->ops_for_excised_subtree = ops;
1308 	pr_devel("all gone\n");
1309 	return edit;
1310 }
1311 
1312 /*
1313  * Handle the deferred destruction after an applied edit.
1314  */
1315 static void assoc_array_rcu_cleanup(struct rcu_head *head)
1316 {
1317 	struct assoc_array_edit *edit =
1318 		container_of(head, struct assoc_array_edit, rcu);
1319 	int i;
1320 
1321 	pr_devel("-->%s()\n", __func__);
1322 
1323 	if (edit->dead_leaf)
1324 		edit->ops->free_object(assoc_array_ptr_to_leaf(edit->dead_leaf));
1325 	for (i = 0; i < ARRAY_SIZE(edit->excised_meta); i++)
1326 		if (edit->excised_meta[i])
1327 			kfree(assoc_array_ptr_to_node(edit->excised_meta[i]));
1328 
1329 	if (edit->excised_subtree) {
1330 		BUG_ON(assoc_array_ptr_is_leaf(edit->excised_subtree));
1331 		if (assoc_array_ptr_is_node(edit->excised_subtree)) {
1332 			struct assoc_array_node *n =
1333 				assoc_array_ptr_to_node(edit->excised_subtree);
1334 			n->back_pointer = NULL;
1335 		} else {
1336 			struct assoc_array_shortcut *s =
1337 				assoc_array_ptr_to_shortcut(edit->excised_subtree);
1338 			s->back_pointer = NULL;
1339 		}
1340 		assoc_array_destroy_subtree(edit->excised_subtree,
1341 					    edit->ops_for_excised_subtree);
1342 	}
1343 
1344 	kfree(edit);
1345 }
1346 
1347 /**
1348  * assoc_array_apply_edit - Apply an edit script to an associative array
1349  * @edit: The script to apply.
1350  *
1351  * Apply an edit script to an associative array to effect an insertion,
1352  * deletion or clearance.  As the edit script includes preallocated memory,
1353  * this is guaranteed not to fail.
1354  *
1355  * The edit script, dead objects and dead metadata will be scheduled for
1356  * destruction after an RCU grace period to permit those doing read-only
1357  * accesses on the array to continue to do so under the RCU read lock whilst
1358  * the edit is taking place.
1359  */
1360 void assoc_array_apply_edit(struct assoc_array_edit *edit)
1361 {
1362 	struct assoc_array_shortcut *shortcut;
1363 	struct assoc_array_node *node;
1364 	struct assoc_array_ptr *ptr;
1365 	int i;
1366 
1367 	pr_devel("-->%s()\n", __func__);
1368 
1369 	smp_wmb();
1370 	if (edit->leaf_p)
1371 		*edit->leaf_p = edit->leaf;
1372 
1373 	smp_wmb();
1374 	for (i = 0; i < ARRAY_SIZE(edit->set_parent_slot); i++)
1375 		if (edit->set_parent_slot[i].p)
1376 			*edit->set_parent_slot[i].p = edit->set_parent_slot[i].to;
1377 
1378 	smp_wmb();
1379 	for (i = 0; i < ARRAY_SIZE(edit->set_backpointers); i++)
1380 		if (edit->set_backpointers[i])
1381 			*edit->set_backpointers[i] = edit->set_backpointers_to;
1382 
1383 	smp_wmb();
1384 	for (i = 0; i < ARRAY_SIZE(edit->set); i++)
1385 		if (edit->set[i].ptr)
1386 			*edit->set[i].ptr = edit->set[i].to;
1387 
1388 	if (edit->array->root == NULL) {
1389 		edit->array->nr_leaves_on_tree = 0;
1390 	} else if (edit->adjust_count_on) {
1391 		node = edit->adjust_count_on;
1392 		for (;;) {
1393 			node->nr_leaves_on_branch += edit->adjust_count_by;
1394 
1395 			ptr = node->back_pointer;
1396 			if (!ptr)
1397 				break;
1398 			if (assoc_array_ptr_is_shortcut(ptr)) {
1399 				shortcut = assoc_array_ptr_to_shortcut(ptr);
1400 				ptr = shortcut->back_pointer;
1401 				if (!ptr)
1402 					break;
1403 			}
1404 			BUG_ON(!assoc_array_ptr_is_node(ptr));
1405 			node = assoc_array_ptr_to_node(ptr);
1406 		}
1407 
1408 		edit->array->nr_leaves_on_tree += edit->adjust_count_by;
1409 	}
1410 
1411 	call_rcu(&edit->rcu, assoc_array_rcu_cleanup);
1412 }
1413 
1414 /**
1415  * assoc_array_cancel_edit - Discard an edit script.
1416  * @edit: The script to discard.
1417  *
1418  * Free an edit script and all the preallocated data it holds without making
1419  * any changes to the associative array it was intended for.
1420  *
1421  * NOTE!  In the case of an insertion script, this does _not_ release the leaf
1422  * that was to be inserted.  That is left to the caller.
1423  */
1424 void assoc_array_cancel_edit(struct assoc_array_edit *edit)
1425 {
1426 	struct assoc_array_ptr *ptr;
1427 	int i;
1428 
1429 	pr_devel("-->%s()\n", __func__);
1430 
1431 	/* Clean up after an out of memory error */
1432 	for (i = 0; i < ARRAY_SIZE(edit->new_meta); i++) {
1433 		ptr = edit->new_meta[i];
1434 		if (ptr) {
1435 			if (assoc_array_ptr_is_node(ptr))
1436 				kfree(assoc_array_ptr_to_node(ptr));
1437 			else
1438 				kfree(assoc_array_ptr_to_shortcut(ptr));
1439 		}
1440 	}
1441 	kfree(edit);
1442 }
1443 
1444 /**
1445  * assoc_array_gc - Garbage collect an associative array.
1446  * @array: The array to clean.
1447  * @ops: The operations to use.
1448  * @iterator: A callback function to pass judgement on each object.
1449  * @iterator_data: Private data for the callback function.
1450  *
1451  * Collect garbage from an associative array and pack down the internal tree to
1452  * save memory.
1453  *
1454  * The iterator function is asked to pass judgement upon each object in the
1455  * array.  If it returns false, the object is discard and if it returns true,
1456  * the object is kept.  If it returns true, it must increment the object's
1457  * usage count (or whatever it needs to do to retain it) before returning.
1458  *
1459  * This function returns 0 if successful or -ENOMEM if out of memory.  In the
1460  * latter case, the array is not changed.
1461  *
1462  * The caller should lock against other modifications and must continue to hold
1463  * the lock until assoc_array_apply_edit() has been called.
1464  *
1465  * Accesses to the tree may take place concurrently with this function,
1466  * provided they hold the RCU read lock.
1467  */
1468 int assoc_array_gc(struct assoc_array *array,
1469 		   const struct assoc_array_ops *ops,
1470 		   bool (*iterator)(void *object, void *iterator_data),
1471 		   void *iterator_data)
1472 {
1473 	struct assoc_array_shortcut *shortcut, *new_s;
1474 	struct assoc_array_node *node, *new_n;
1475 	struct assoc_array_edit *edit;
1476 	struct assoc_array_ptr *cursor, *ptr;
1477 	struct assoc_array_ptr *new_root, *new_parent, **new_ptr_pp;
1478 	unsigned long nr_leaves_on_tree;
1479 	int keylen, slot, nr_free, next_slot, i;
1480 
1481 	pr_devel("-->%s()\n", __func__);
1482 
1483 	if (!array->root)
1484 		return 0;
1485 
1486 	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1487 	if (!edit)
1488 		return -ENOMEM;
1489 	edit->array = array;
1490 	edit->ops = ops;
1491 	edit->ops_for_excised_subtree = ops;
1492 	edit->set[0].ptr = &array->root;
1493 	edit->excised_subtree = array->root;
1494 
1495 	new_root = new_parent = NULL;
1496 	new_ptr_pp = &new_root;
1497 	cursor = array->root;
1498 
1499 descend:
1500 	/* If this point is a shortcut, then we need to duplicate it and
1501 	 * advance the target cursor.
1502 	 */
1503 	if (assoc_array_ptr_is_shortcut(cursor)) {
1504 		shortcut = assoc_array_ptr_to_shortcut(cursor);
1505 		keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
1506 		keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
1507 		new_s = kmalloc(sizeof(struct assoc_array_shortcut) +
1508 				keylen * sizeof(unsigned long), GFP_KERNEL);
1509 		if (!new_s)
1510 			goto enomem;
1511 		pr_devel("dup shortcut %p -> %p\n", shortcut, new_s);
1512 		memcpy(new_s, shortcut, (sizeof(struct assoc_array_shortcut) +
1513 					 keylen * sizeof(unsigned long)));
1514 		new_s->back_pointer = new_parent;
1515 		new_s->parent_slot = shortcut->parent_slot;
1516 		*new_ptr_pp = new_parent = assoc_array_shortcut_to_ptr(new_s);
1517 		new_ptr_pp = &new_s->next_node;
1518 		cursor = shortcut->next_node;
1519 	}
1520 
1521 	/* Duplicate the node at this position */
1522 	node = assoc_array_ptr_to_node(cursor);
1523 	new_n = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
1524 	if (!new_n)
1525 		goto enomem;
1526 	pr_devel("dup node %p -> %p\n", node, new_n);
1527 	new_n->back_pointer = new_parent;
1528 	new_n->parent_slot = node->parent_slot;
1529 	*new_ptr_pp = new_parent = assoc_array_node_to_ptr(new_n);
1530 	new_ptr_pp = NULL;
1531 	slot = 0;
1532 
1533 continue_node:
1534 	/* Filter across any leaves and gc any subtrees */
1535 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1536 		ptr = node->slots[slot];
1537 		if (!ptr)
1538 			continue;
1539 
1540 		if (assoc_array_ptr_is_leaf(ptr)) {
1541 			if (iterator(assoc_array_ptr_to_leaf(ptr),
1542 				     iterator_data))
1543 				/* The iterator will have done any reference
1544 				 * counting on the object for us.
1545 				 */
1546 				new_n->slots[slot] = ptr;
1547 			continue;
1548 		}
1549 
1550 		new_ptr_pp = &new_n->slots[slot];
1551 		cursor = ptr;
1552 		goto descend;
1553 	}
1554 
1555 	pr_devel("-- compress node %p --\n", new_n);
1556 
1557 	/* Count up the number of empty slots in this node and work out the
1558 	 * subtree leaf count.
1559 	 */
1560 	new_n->nr_leaves_on_branch = 0;
1561 	nr_free = 0;
1562 	for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1563 		ptr = new_n->slots[slot];
1564 		if (!ptr)
1565 			nr_free++;
1566 		else if (assoc_array_ptr_is_leaf(ptr))
1567 			new_n->nr_leaves_on_branch++;
1568 	}
1569 	pr_devel("free=%d, leaves=%lu\n", nr_free, new_n->nr_leaves_on_branch);
1570 
1571 	/* See what we can fold in */
1572 	next_slot = 0;
1573 	for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1574 		struct assoc_array_shortcut *s;
1575 		struct assoc_array_node *child;
1576 
1577 		ptr = new_n->slots[slot];
1578 		if (!ptr || assoc_array_ptr_is_leaf(ptr))
1579 			continue;
1580 
1581 		s = NULL;
1582 		if (assoc_array_ptr_is_shortcut(ptr)) {
1583 			s = assoc_array_ptr_to_shortcut(ptr);
1584 			ptr = s->next_node;
1585 		}
1586 
1587 		child = assoc_array_ptr_to_node(ptr);
1588 		new_n->nr_leaves_on_branch += child->nr_leaves_on_branch;
1589 
1590 		if (child->nr_leaves_on_branch <= nr_free + 1) {
1591 			/* Fold the child node into this one */
1592 			pr_devel("[%d] fold node %lu/%d [nx %d]\n",
1593 				 slot, child->nr_leaves_on_branch, nr_free + 1,
1594 				 next_slot);
1595 
1596 			/* We would already have reaped an intervening shortcut
1597 			 * on the way back up the tree.
1598 			 */
1599 			BUG_ON(s);
1600 
1601 			new_n->slots[slot] = NULL;
1602 			nr_free++;
1603 			if (slot < next_slot)
1604 				next_slot = slot;
1605 			for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
1606 				struct assoc_array_ptr *p = child->slots[i];
1607 				if (!p)
1608 					continue;
1609 				BUG_ON(assoc_array_ptr_is_meta(p));
1610 				while (new_n->slots[next_slot])
1611 					next_slot++;
1612 				BUG_ON(next_slot >= ASSOC_ARRAY_FAN_OUT);
1613 				new_n->slots[next_slot++] = p;
1614 				nr_free--;
1615 			}
1616 			kfree(child);
1617 		} else {
1618 			pr_devel("[%d] retain node %lu/%d [nx %d]\n",
1619 				 slot, child->nr_leaves_on_branch, nr_free + 1,
1620 				 next_slot);
1621 		}
1622 	}
1623 
1624 	pr_devel("after: %lu\n", new_n->nr_leaves_on_branch);
1625 
1626 	nr_leaves_on_tree = new_n->nr_leaves_on_branch;
1627 
1628 	/* Excise this node if it is singly occupied by a shortcut */
1629 	if (nr_free == ASSOC_ARRAY_FAN_OUT - 1) {
1630 		for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++)
1631 			if ((ptr = new_n->slots[slot]))
1632 				break;
1633 
1634 		if (assoc_array_ptr_is_meta(ptr) &&
1635 		    assoc_array_ptr_is_shortcut(ptr)) {
1636 			pr_devel("excise node %p with 1 shortcut\n", new_n);
1637 			new_s = assoc_array_ptr_to_shortcut(ptr);
1638 			new_parent = new_n->back_pointer;
1639 			slot = new_n->parent_slot;
1640 			kfree(new_n);
1641 			if (!new_parent) {
1642 				new_s->back_pointer = NULL;
1643 				new_s->parent_slot = 0;
1644 				new_root = ptr;
1645 				goto gc_complete;
1646 			}
1647 
1648 			if (assoc_array_ptr_is_shortcut(new_parent)) {
1649 				/* We can discard any preceding shortcut also */
1650 				struct assoc_array_shortcut *s =
1651 					assoc_array_ptr_to_shortcut(new_parent);
1652 
1653 				pr_devel("excise preceding shortcut\n");
1654 
1655 				new_parent = new_s->back_pointer = s->back_pointer;
1656 				slot = new_s->parent_slot = s->parent_slot;
1657 				kfree(s);
1658 				if (!new_parent) {
1659 					new_s->back_pointer = NULL;
1660 					new_s->parent_slot = 0;
1661 					new_root = ptr;
1662 					goto gc_complete;
1663 				}
1664 			}
1665 
1666 			new_s->back_pointer = new_parent;
1667 			new_s->parent_slot = slot;
1668 			new_n = assoc_array_ptr_to_node(new_parent);
1669 			new_n->slots[slot] = ptr;
1670 			goto ascend_old_tree;
1671 		}
1672 	}
1673 
1674 	/* Excise any shortcuts we might encounter that point to nodes that
1675 	 * only contain leaves.
1676 	 */
1677 	ptr = new_n->back_pointer;
1678 	if (!ptr)
1679 		goto gc_complete;
1680 
1681 	if (assoc_array_ptr_is_shortcut(ptr)) {
1682 		new_s = assoc_array_ptr_to_shortcut(ptr);
1683 		new_parent = new_s->back_pointer;
1684 		slot = new_s->parent_slot;
1685 
1686 		if (new_n->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT) {
1687 			struct assoc_array_node *n;
1688 
1689 			pr_devel("excise shortcut\n");
1690 			new_n->back_pointer = new_parent;
1691 			new_n->parent_slot = slot;
1692 			kfree(new_s);
1693 			if (!new_parent) {
1694 				new_root = assoc_array_node_to_ptr(new_n);
1695 				goto gc_complete;
1696 			}
1697 
1698 			n = assoc_array_ptr_to_node(new_parent);
1699 			n->slots[slot] = assoc_array_node_to_ptr(new_n);
1700 		}
1701 	} else {
1702 		new_parent = ptr;
1703 	}
1704 	new_n = assoc_array_ptr_to_node(new_parent);
1705 
1706 ascend_old_tree:
1707 	ptr = node->back_pointer;
1708 	if (assoc_array_ptr_is_shortcut(ptr)) {
1709 		shortcut = assoc_array_ptr_to_shortcut(ptr);
1710 		slot = shortcut->parent_slot;
1711 		cursor = shortcut->back_pointer;
1712 		if (!cursor)
1713 			goto gc_complete;
1714 	} else {
1715 		slot = node->parent_slot;
1716 		cursor = ptr;
1717 	}
1718 	BUG_ON(!cursor);
1719 	node = assoc_array_ptr_to_node(cursor);
1720 	slot++;
1721 	goto continue_node;
1722 
1723 gc_complete:
1724 	edit->set[0].to = new_root;
1725 	assoc_array_apply_edit(edit);
1726 	array->nr_leaves_on_tree = nr_leaves_on_tree;
1727 	return 0;
1728 
1729 enomem:
1730 	pr_devel("enomem\n");
1731 	assoc_array_destroy_subtree(new_root, edit->ops);
1732 	kfree(edit);
1733 	return -ENOMEM;
1734 }
1735