xref: /openbmc/linux/lib/assoc_array.c (revision 4cff79e9)
1 /* Generic associative array implementation.
2  *
3  * See Documentation/core-api/assoc_array.rst for information.
4  *
5  * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
6  * Written by David Howells (dhowells@redhat.com)
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public Licence
10  * as published by the Free Software Foundation; either version
11  * 2 of the Licence, or (at your option) any later version.
12  */
13 //#define DEBUG
14 #include <linux/rcupdate.h>
15 #include <linux/slab.h>
16 #include <linux/err.h>
17 #include <linux/assoc_array_priv.h>
18 
19 /*
20  * Iterate over an associative array.  The caller must hold the RCU read lock
21  * or better.
22  */
23 static int assoc_array_subtree_iterate(const struct assoc_array_ptr *root,
24 				       const struct assoc_array_ptr *stop,
25 				       int (*iterator)(const void *leaf,
26 						       void *iterator_data),
27 				       void *iterator_data)
28 {
29 	const struct assoc_array_shortcut *shortcut;
30 	const struct assoc_array_node *node;
31 	const struct assoc_array_ptr *cursor, *ptr, *parent;
32 	unsigned long has_meta;
33 	int slot, ret;
34 
35 	cursor = root;
36 
37 begin_node:
38 	if (assoc_array_ptr_is_shortcut(cursor)) {
39 		/* Descend through a shortcut */
40 		shortcut = assoc_array_ptr_to_shortcut(cursor);
41 		cursor = READ_ONCE(shortcut->next_node); /* Address dependency. */
42 	}
43 
44 	node = assoc_array_ptr_to_node(cursor);
45 	slot = 0;
46 
47 	/* We perform two passes of each node.
48 	 *
49 	 * The first pass does all the leaves in this node.  This means we
50 	 * don't miss any leaves if the node is split up by insertion whilst
51 	 * we're iterating over the branches rooted here (we may, however, see
52 	 * some leaves twice).
53 	 */
54 	has_meta = 0;
55 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
56 		ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */
57 		has_meta |= (unsigned long)ptr;
58 		if (ptr && assoc_array_ptr_is_leaf(ptr)) {
59 			/* We need a barrier between the read of the pointer,
60 			 * which is supplied by the above READ_ONCE().
61 			 */
62 			/* Invoke the callback */
63 			ret = iterator(assoc_array_ptr_to_leaf(ptr),
64 				       iterator_data);
65 			if (ret)
66 				return ret;
67 		}
68 	}
69 
70 	/* The second pass attends to all the metadata pointers.  If we follow
71 	 * one of these we may find that we don't come back here, but rather go
72 	 * back to a replacement node with the leaves in a different layout.
73 	 *
74 	 * We are guaranteed to make progress, however, as the slot number for
75 	 * a particular portion of the key space cannot change - and we
76 	 * continue at the back pointer + 1.
77 	 */
78 	if (!(has_meta & ASSOC_ARRAY_PTR_META_TYPE))
79 		goto finished_node;
80 	slot = 0;
81 
82 continue_node:
83 	node = assoc_array_ptr_to_node(cursor);
84 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
85 		ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */
86 		if (assoc_array_ptr_is_meta(ptr)) {
87 			cursor = ptr;
88 			goto begin_node;
89 		}
90 	}
91 
92 finished_node:
93 	/* Move up to the parent (may need to skip back over a shortcut) */
94 	parent = READ_ONCE(node->back_pointer); /* Address dependency. */
95 	slot = node->parent_slot;
96 	if (parent == stop)
97 		return 0;
98 
99 	if (assoc_array_ptr_is_shortcut(parent)) {
100 		shortcut = assoc_array_ptr_to_shortcut(parent);
101 		cursor = parent;
102 		parent = READ_ONCE(shortcut->back_pointer); /* Address dependency. */
103 		slot = shortcut->parent_slot;
104 		if (parent == stop)
105 			return 0;
106 	}
107 
108 	/* Ascend to next slot in parent node */
109 	cursor = parent;
110 	slot++;
111 	goto continue_node;
112 }
113 
114 /**
115  * assoc_array_iterate - Pass all objects in the array to a callback
116  * @array: The array to iterate over.
117  * @iterator: The callback function.
118  * @iterator_data: Private data for the callback function.
119  *
120  * Iterate over all the objects in an associative array.  Each one will be
121  * presented to the iterator function.
122  *
123  * If the array is being modified concurrently with the iteration then it is
124  * possible that some objects in the array will be passed to the iterator
125  * callback more than once - though every object should be passed at least
126  * once.  If this is undesirable then the caller must lock against modification
127  * for the duration of this function.
128  *
129  * The function will return 0 if no objects were in the array or else it will
130  * return the result of the last iterator function called.  Iteration stops
131  * immediately if any call to the iteration function results in a non-zero
132  * return.
133  *
134  * The caller should hold the RCU read lock or better if concurrent
135  * modification is possible.
136  */
137 int assoc_array_iterate(const struct assoc_array *array,
138 			int (*iterator)(const void *object,
139 					void *iterator_data),
140 			void *iterator_data)
141 {
142 	struct assoc_array_ptr *root = READ_ONCE(array->root); /* Address dependency. */
143 
144 	if (!root)
145 		return 0;
146 	return assoc_array_subtree_iterate(root, NULL, iterator, iterator_data);
147 }
148 
149 enum assoc_array_walk_status {
150 	assoc_array_walk_tree_empty,
151 	assoc_array_walk_found_terminal_node,
152 	assoc_array_walk_found_wrong_shortcut,
153 };
154 
155 struct assoc_array_walk_result {
156 	struct {
157 		struct assoc_array_node	*node;	/* Node in which leaf might be found */
158 		int		level;
159 		int		slot;
160 	} terminal_node;
161 	struct {
162 		struct assoc_array_shortcut *shortcut;
163 		int		level;
164 		int		sc_level;
165 		unsigned long	sc_segments;
166 		unsigned long	dissimilarity;
167 	} wrong_shortcut;
168 };
169 
170 /*
171  * Navigate through the internal tree looking for the closest node to the key.
172  */
173 static enum assoc_array_walk_status
174 assoc_array_walk(const struct assoc_array *array,
175 		 const struct assoc_array_ops *ops,
176 		 const void *index_key,
177 		 struct assoc_array_walk_result *result)
178 {
179 	struct assoc_array_shortcut *shortcut;
180 	struct assoc_array_node *node;
181 	struct assoc_array_ptr *cursor, *ptr;
182 	unsigned long sc_segments, dissimilarity;
183 	unsigned long segments;
184 	int level, sc_level, next_sc_level;
185 	int slot;
186 
187 	pr_devel("-->%s()\n", __func__);
188 
189 	cursor = READ_ONCE(array->root);  /* Address dependency. */
190 	if (!cursor)
191 		return assoc_array_walk_tree_empty;
192 
193 	level = 0;
194 
195 	/* Use segments from the key for the new leaf to navigate through the
196 	 * internal tree, skipping through nodes and shortcuts that are on
197 	 * route to the destination.  Eventually we'll come to a slot that is
198 	 * either empty or contains a leaf at which point we've found a node in
199 	 * which the leaf we're looking for might be found or into which it
200 	 * should be inserted.
201 	 */
202 jumped:
203 	segments = ops->get_key_chunk(index_key, level);
204 	pr_devel("segments[%d]: %lx\n", level, segments);
205 
206 	if (assoc_array_ptr_is_shortcut(cursor))
207 		goto follow_shortcut;
208 
209 consider_node:
210 	node = assoc_array_ptr_to_node(cursor);
211 	slot = segments >> (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
212 	slot &= ASSOC_ARRAY_FAN_MASK;
213 	ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */
214 
215 	pr_devel("consider slot %x [ix=%d type=%lu]\n",
216 		 slot, level, (unsigned long)ptr & 3);
217 
218 	if (!assoc_array_ptr_is_meta(ptr)) {
219 		/* The node doesn't have a node/shortcut pointer in the slot
220 		 * corresponding to the index key that we have to follow.
221 		 */
222 		result->terminal_node.node = node;
223 		result->terminal_node.level = level;
224 		result->terminal_node.slot = slot;
225 		pr_devel("<--%s() = terminal_node\n", __func__);
226 		return assoc_array_walk_found_terminal_node;
227 	}
228 
229 	if (assoc_array_ptr_is_node(ptr)) {
230 		/* There is a pointer to a node in the slot corresponding to
231 		 * this index key segment, so we need to follow it.
232 		 */
233 		cursor = ptr;
234 		level += ASSOC_ARRAY_LEVEL_STEP;
235 		if ((level & ASSOC_ARRAY_KEY_CHUNK_MASK) != 0)
236 			goto consider_node;
237 		goto jumped;
238 	}
239 
240 	/* There is a shortcut in the slot corresponding to the index key
241 	 * segment.  We follow the shortcut if its partial index key matches
242 	 * this leaf's.  Otherwise we need to split the shortcut.
243 	 */
244 	cursor = ptr;
245 follow_shortcut:
246 	shortcut = assoc_array_ptr_to_shortcut(cursor);
247 	pr_devel("shortcut to %d\n", shortcut->skip_to_level);
248 	sc_level = level + ASSOC_ARRAY_LEVEL_STEP;
249 	BUG_ON(sc_level > shortcut->skip_to_level);
250 
251 	do {
252 		/* Check the leaf against the shortcut's index key a word at a
253 		 * time, trimming the final word (the shortcut stores the index
254 		 * key completely from the root to the shortcut's target).
255 		 */
256 		if ((sc_level & ASSOC_ARRAY_KEY_CHUNK_MASK) == 0)
257 			segments = ops->get_key_chunk(index_key, sc_level);
258 
259 		sc_segments = shortcut->index_key[sc_level >> ASSOC_ARRAY_KEY_CHUNK_SHIFT];
260 		dissimilarity = segments ^ sc_segments;
261 
262 		if (round_up(sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE) > shortcut->skip_to_level) {
263 			/* Trim segments that are beyond the shortcut */
264 			int shift = shortcut->skip_to_level & ASSOC_ARRAY_KEY_CHUNK_MASK;
265 			dissimilarity &= ~(ULONG_MAX << shift);
266 			next_sc_level = shortcut->skip_to_level;
267 		} else {
268 			next_sc_level = sc_level + ASSOC_ARRAY_KEY_CHUNK_SIZE;
269 			next_sc_level = round_down(next_sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
270 		}
271 
272 		if (dissimilarity != 0) {
273 			/* This shortcut points elsewhere */
274 			result->wrong_shortcut.shortcut = shortcut;
275 			result->wrong_shortcut.level = level;
276 			result->wrong_shortcut.sc_level = sc_level;
277 			result->wrong_shortcut.sc_segments = sc_segments;
278 			result->wrong_shortcut.dissimilarity = dissimilarity;
279 			return assoc_array_walk_found_wrong_shortcut;
280 		}
281 
282 		sc_level = next_sc_level;
283 	} while (sc_level < shortcut->skip_to_level);
284 
285 	/* The shortcut matches the leaf's index to this point. */
286 	cursor = READ_ONCE(shortcut->next_node); /* Address dependency. */
287 	if (((level ^ sc_level) & ~ASSOC_ARRAY_KEY_CHUNK_MASK) != 0) {
288 		level = sc_level;
289 		goto jumped;
290 	} else {
291 		level = sc_level;
292 		goto consider_node;
293 	}
294 }
295 
296 /**
297  * assoc_array_find - Find an object by index key
298  * @array: The associative array to search.
299  * @ops: The operations to use.
300  * @index_key: The key to the object.
301  *
302  * Find an object in an associative array by walking through the internal tree
303  * to the node that should contain the object and then searching the leaves
304  * there.  NULL is returned if the requested object was not found in the array.
305  *
306  * The caller must hold the RCU read lock or better.
307  */
308 void *assoc_array_find(const struct assoc_array *array,
309 		       const struct assoc_array_ops *ops,
310 		       const void *index_key)
311 {
312 	struct assoc_array_walk_result result;
313 	const struct assoc_array_node *node;
314 	const struct assoc_array_ptr *ptr;
315 	const void *leaf;
316 	int slot;
317 
318 	if (assoc_array_walk(array, ops, index_key, &result) !=
319 	    assoc_array_walk_found_terminal_node)
320 		return NULL;
321 
322 	node = result.terminal_node.node;
323 
324 	/* If the target key is available to us, it's has to be pointed to by
325 	 * the terminal node.
326 	 */
327 	for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
328 		ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */
329 		if (ptr && assoc_array_ptr_is_leaf(ptr)) {
330 			/* We need a barrier between the read of the pointer
331 			 * and dereferencing the pointer - but only if we are
332 			 * actually going to dereference it.
333 			 */
334 			leaf = assoc_array_ptr_to_leaf(ptr);
335 			if (ops->compare_object(leaf, index_key))
336 				return (void *)leaf;
337 		}
338 	}
339 
340 	return NULL;
341 }
342 
343 /*
344  * Destructively iterate over an associative array.  The caller must prevent
345  * other simultaneous accesses.
346  */
347 static void assoc_array_destroy_subtree(struct assoc_array_ptr *root,
348 					const struct assoc_array_ops *ops)
349 {
350 	struct assoc_array_shortcut *shortcut;
351 	struct assoc_array_node *node;
352 	struct assoc_array_ptr *cursor, *parent = NULL;
353 	int slot = -1;
354 
355 	pr_devel("-->%s()\n", __func__);
356 
357 	cursor = root;
358 	if (!cursor) {
359 		pr_devel("empty\n");
360 		return;
361 	}
362 
363 move_to_meta:
364 	if (assoc_array_ptr_is_shortcut(cursor)) {
365 		/* Descend through a shortcut */
366 		pr_devel("[%d] shortcut\n", slot);
367 		BUG_ON(!assoc_array_ptr_is_shortcut(cursor));
368 		shortcut = assoc_array_ptr_to_shortcut(cursor);
369 		BUG_ON(shortcut->back_pointer != parent);
370 		BUG_ON(slot != -1 && shortcut->parent_slot != slot);
371 		parent = cursor;
372 		cursor = shortcut->next_node;
373 		slot = -1;
374 		BUG_ON(!assoc_array_ptr_is_node(cursor));
375 	}
376 
377 	pr_devel("[%d] node\n", slot);
378 	node = assoc_array_ptr_to_node(cursor);
379 	BUG_ON(node->back_pointer != parent);
380 	BUG_ON(slot != -1 && node->parent_slot != slot);
381 	slot = 0;
382 
383 continue_node:
384 	pr_devel("Node %p [back=%p]\n", node, node->back_pointer);
385 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
386 		struct assoc_array_ptr *ptr = node->slots[slot];
387 		if (!ptr)
388 			continue;
389 		if (assoc_array_ptr_is_meta(ptr)) {
390 			parent = cursor;
391 			cursor = ptr;
392 			goto move_to_meta;
393 		}
394 
395 		if (ops) {
396 			pr_devel("[%d] free leaf\n", slot);
397 			ops->free_object(assoc_array_ptr_to_leaf(ptr));
398 		}
399 	}
400 
401 	parent = node->back_pointer;
402 	slot = node->parent_slot;
403 	pr_devel("free node\n");
404 	kfree(node);
405 	if (!parent)
406 		return; /* Done */
407 
408 	/* Move back up to the parent (may need to free a shortcut on
409 	 * the way up) */
410 	if (assoc_array_ptr_is_shortcut(parent)) {
411 		shortcut = assoc_array_ptr_to_shortcut(parent);
412 		BUG_ON(shortcut->next_node != cursor);
413 		cursor = parent;
414 		parent = shortcut->back_pointer;
415 		slot = shortcut->parent_slot;
416 		pr_devel("free shortcut\n");
417 		kfree(shortcut);
418 		if (!parent)
419 			return;
420 
421 		BUG_ON(!assoc_array_ptr_is_node(parent));
422 	}
423 
424 	/* Ascend to next slot in parent node */
425 	pr_devel("ascend to %p[%d]\n", parent, slot);
426 	cursor = parent;
427 	node = assoc_array_ptr_to_node(cursor);
428 	slot++;
429 	goto continue_node;
430 }
431 
432 /**
433  * assoc_array_destroy - Destroy an associative array
434  * @array: The array to destroy.
435  * @ops: The operations to use.
436  *
437  * Discard all metadata and free all objects in an associative array.  The
438  * array will be empty and ready to use again upon completion.  This function
439  * cannot fail.
440  *
441  * The caller must prevent all other accesses whilst this takes place as no
442  * attempt is made to adjust pointers gracefully to permit RCU readlock-holding
443  * accesses to continue.  On the other hand, no memory allocation is required.
444  */
445 void assoc_array_destroy(struct assoc_array *array,
446 			 const struct assoc_array_ops *ops)
447 {
448 	assoc_array_destroy_subtree(array->root, ops);
449 	array->root = NULL;
450 }
451 
452 /*
453  * Handle insertion into an empty tree.
454  */
455 static bool assoc_array_insert_in_empty_tree(struct assoc_array_edit *edit)
456 {
457 	struct assoc_array_node *new_n0;
458 
459 	pr_devel("-->%s()\n", __func__);
460 
461 	new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
462 	if (!new_n0)
463 		return false;
464 
465 	edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
466 	edit->leaf_p = &new_n0->slots[0];
467 	edit->adjust_count_on = new_n0;
468 	edit->set[0].ptr = &edit->array->root;
469 	edit->set[0].to = assoc_array_node_to_ptr(new_n0);
470 
471 	pr_devel("<--%s() = ok [no root]\n", __func__);
472 	return true;
473 }
474 
475 /*
476  * Handle insertion into a terminal node.
477  */
478 static bool assoc_array_insert_into_terminal_node(struct assoc_array_edit *edit,
479 						  const struct assoc_array_ops *ops,
480 						  const void *index_key,
481 						  struct assoc_array_walk_result *result)
482 {
483 	struct assoc_array_shortcut *shortcut, *new_s0;
484 	struct assoc_array_node *node, *new_n0, *new_n1, *side;
485 	struct assoc_array_ptr *ptr;
486 	unsigned long dissimilarity, base_seg, blank;
487 	size_t keylen;
488 	bool have_meta;
489 	int level, diff;
490 	int slot, next_slot, free_slot, i, j;
491 
492 	node	= result->terminal_node.node;
493 	level	= result->terminal_node.level;
494 	edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = result->terminal_node.slot;
495 
496 	pr_devel("-->%s()\n", __func__);
497 
498 	/* We arrived at a node which doesn't have an onward node or shortcut
499 	 * pointer that we have to follow.  This means that (a) the leaf we
500 	 * want must go here (either by insertion or replacement) or (b) we
501 	 * need to split this node and insert in one of the fragments.
502 	 */
503 	free_slot = -1;
504 
505 	/* Firstly, we have to check the leaves in this node to see if there's
506 	 * a matching one we should replace in place.
507 	 */
508 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
509 		ptr = node->slots[i];
510 		if (!ptr) {
511 			free_slot = i;
512 			continue;
513 		}
514 		if (assoc_array_ptr_is_leaf(ptr) &&
515 		    ops->compare_object(assoc_array_ptr_to_leaf(ptr),
516 					index_key)) {
517 			pr_devel("replace in slot %d\n", i);
518 			edit->leaf_p = &node->slots[i];
519 			edit->dead_leaf = node->slots[i];
520 			pr_devel("<--%s() = ok [replace]\n", __func__);
521 			return true;
522 		}
523 	}
524 
525 	/* If there is a free slot in this node then we can just insert the
526 	 * leaf here.
527 	 */
528 	if (free_slot >= 0) {
529 		pr_devel("insert in free slot %d\n", free_slot);
530 		edit->leaf_p = &node->slots[free_slot];
531 		edit->adjust_count_on = node;
532 		pr_devel("<--%s() = ok [insert]\n", __func__);
533 		return true;
534 	}
535 
536 	/* The node has no spare slots - so we're either going to have to split
537 	 * it or insert another node before it.
538 	 *
539 	 * Whatever, we're going to need at least two new nodes - so allocate
540 	 * those now.  We may also need a new shortcut, but we deal with that
541 	 * when we need it.
542 	 */
543 	new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
544 	if (!new_n0)
545 		return false;
546 	edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
547 	new_n1 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
548 	if (!new_n1)
549 		return false;
550 	edit->new_meta[1] = assoc_array_node_to_ptr(new_n1);
551 
552 	/* We need to find out how similar the leaves are. */
553 	pr_devel("no spare slots\n");
554 	have_meta = false;
555 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
556 		ptr = node->slots[i];
557 		if (assoc_array_ptr_is_meta(ptr)) {
558 			edit->segment_cache[i] = 0xff;
559 			have_meta = true;
560 			continue;
561 		}
562 		base_seg = ops->get_object_key_chunk(
563 			assoc_array_ptr_to_leaf(ptr), level);
564 		base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
565 		edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
566 	}
567 
568 	if (have_meta) {
569 		pr_devel("have meta\n");
570 		goto split_node;
571 	}
572 
573 	/* The node contains only leaves */
574 	dissimilarity = 0;
575 	base_seg = edit->segment_cache[0];
576 	for (i = 1; i < ASSOC_ARRAY_FAN_OUT; i++)
577 		dissimilarity |= edit->segment_cache[i] ^ base_seg;
578 
579 	pr_devel("only leaves; dissimilarity=%lx\n", dissimilarity);
580 
581 	if ((dissimilarity & ASSOC_ARRAY_FAN_MASK) == 0) {
582 		/* The old leaves all cluster in the same slot.  We will need
583 		 * to insert a shortcut if the new node wants to cluster with them.
584 		 */
585 		if ((edit->segment_cache[ASSOC_ARRAY_FAN_OUT] ^ base_seg) == 0)
586 			goto all_leaves_cluster_together;
587 
588 		/* Otherwise all the old leaves cluster in the same slot, but
589 		 * the new leaf wants to go into a different slot - so we
590 		 * create a new node (n0) to hold the new leaf and a pointer to
591 		 * a new node (n1) holding all the old leaves.
592 		 *
593 		 * This can be done by falling through to the node splitting
594 		 * path.
595 		 */
596 		pr_devel("present leaves cluster but not new leaf\n");
597 	}
598 
599 split_node:
600 	pr_devel("split node\n");
601 
602 	/* We need to split the current node.  The node must contain anything
603 	 * from a single leaf (in the one leaf case, this leaf will cluster
604 	 * with the new leaf) and the rest meta-pointers, to all leaves, some
605 	 * of which may cluster.
606 	 *
607 	 * It won't contain the case in which all the current leaves plus the
608 	 * new leaves want to cluster in the same slot.
609 	 *
610 	 * We need to expel at least two leaves out of a set consisting of the
611 	 * leaves in the node and the new leaf.  The current meta pointers can
612 	 * just be copied as they shouldn't cluster with any of the leaves.
613 	 *
614 	 * We need a new node (n0) to replace the current one and a new node to
615 	 * take the expelled nodes (n1).
616 	 */
617 	edit->set[0].to = assoc_array_node_to_ptr(new_n0);
618 	new_n0->back_pointer = node->back_pointer;
619 	new_n0->parent_slot = node->parent_slot;
620 	new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
621 	new_n1->parent_slot = -1; /* Need to calculate this */
622 
623 do_split_node:
624 	pr_devel("do_split_node\n");
625 
626 	new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
627 	new_n1->nr_leaves_on_branch = 0;
628 
629 	/* Begin by finding two matching leaves.  There have to be at least two
630 	 * that match - even if there are meta pointers - because any leaf that
631 	 * would match a slot with a meta pointer in it must be somewhere
632 	 * behind that meta pointer and cannot be here.  Further, given N
633 	 * remaining leaf slots, we now have N+1 leaves to go in them.
634 	 */
635 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
636 		slot = edit->segment_cache[i];
637 		if (slot != 0xff)
638 			for (j = i + 1; j < ASSOC_ARRAY_FAN_OUT + 1; j++)
639 				if (edit->segment_cache[j] == slot)
640 					goto found_slot_for_multiple_occupancy;
641 	}
642 found_slot_for_multiple_occupancy:
643 	pr_devel("same slot: %x %x [%02x]\n", i, j, slot);
644 	BUG_ON(i >= ASSOC_ARRAY_FAN_OUT);
645 	BUG_ON(j >= ASSOC_ARRAY_FAN_OUT + 1);
646 	BUG_ON(slot >= ASSOC_ARRAY_FAN_OUT);
647 
648 	new_n1->parent_slot = slot;
649 
650 	/* Metadata pointers cannot change slot */
651 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++)
652 		if (assoc_array_ptr_is_meta(node->slots[i]))
653 			new_n0->slots[i] = node->slots[i];
654 		else
655 			new_n0->slots[i] = NULL;
656 	BUG_ON(new_n0->slots[slot] != NULL);
657 	new_n0->slots[slot] = assoc_array_node_to_ptr(new_n1);
658 
659 	/* Filter the leaf pointers between the new nodes */
660 	free_slot = -1;
661 	next_slot = 0;
662 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
663 		if (assoc_array_ptr_is_meta(node->slots[i]))
664 			continue;
665 		if (edit->segment_cache[i] == slot) {
666 			new_n1->slots[next_slot++] = node->slots[i];
667 			new_n1->nr_leaves_on_branch++;
668 		} else {
669 			do {
670 				free_slot++;
671 			} while (new_n0->slots[free_slot] != NULL);
672 			new_n0->slots[free_slot] = node->slots[i];
673 		}
674 	}
675 
676 	pr_devel("filtered: f=%x n=%x\n", free_slot, next_slot);
677 
678 	if (edit->segment_cache[ASSOC_ARRAY_FAN_OUT] != slot) {
679 		do {
680 			free_slot++;
681 		} while (new_n0->slots[free_slot] != NULL);
682 		edit->leaf_p = &new_n0->slots[free_slot];
683 		edit->adjust_count_on = new_n0;
684 	} else {
685 		edit->leaf_p = &new_n1->slots[next_slot++];
686 		edit->adjust_count_on = new_n1;
687 	}
688 
689 	BUG_ON(next_slot <= 1);
690 
691 	edit->set_backpointers_to = assoc_array_node_to_ptr(new_n0);
692 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
693 		if (edit->segment_cache[i] == 0xff) {
694 			ptr = node->slots[i];
695 			BUG_ON(assoc_array_ptr_is_leaf(ptr));
696 			if (assoc_array_ptr_is_node(ptr)) {
697 				side = assoc_array_ptr_to_node(ptr);
698 				edit->set_backpointers[i] = &side->back_pointer;
699 			} else {
700 				shortcut = assoc_array_ptr_to_shortcut(ptr);
701 				edit->set_backpointers[i] = &shortcut->back_pointer;
702 			}
703 		}
704 	}
705 
706 	ptr = node->back_pointer;
707 	if (!ptr)
708 		edit->set[0].ptr = &edit->array->root;
709 	else if (assoc_array_ptr_is_node(ptr))
710 		edit->set[0].ptr = &assoc_array_ptr_to_node(ptr)->slots[node->parent_slot];
711 	else
712 		edit->set[0].ptr = &assoc_array_ptr_to_shortcut(ptr)->next_node;
713 	edit->excised_meta[0] = assoc_array_node_to_ptr(node);
714 	pr_devel("<--%s() = ok [split node]\n", __func__);
715 	return true;
716 
717 all_leaves_cluster_together:
718 	/* All the leaves, new and old, want to cluster together in this node
719 	 * in the same slot, so we have to replace this node with a shortcut to
720 	 * skip over the identical parts of the key and then place a pair of
721 	 * nodes, one inside the other, at the end of the shortcut and
722 	 * distribute the keys between them.
723 	 *
724 	 * Firstly we need to work out where the leaves start diverging as a
725 	 * bit position into their keys so that we know how big the shortcut
726 	 * needs to be.
727 	 *
728 	 * We only need to make a single pass of N of the N+1 leaves because if
729 	 * any keys differ between themselves at bit X then at least one of
730 	 * them must also differ with the base key at bit X or before.
731 	 */
732 	pr_devel("all leaves cluster together\n");
733 	diff = INT_MAX;
734 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
735 		int x = ops->diff_objects(assoc_array_ptr_to_leaf(node->slots[i]),
736 					  index_key);
737 		if (x < diff) {
738 			BUG_ON(x < 0);
739 			diff = x;
740 		}
741 	}
742 	BUG_ON(diff == INT_MAX);
743 	BUG_ON(diff < level + ASSOC_ARRAY_LEVEL_STEP);
744 
745 	keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
746 	keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
747 
748 	new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
749 			 keylen * sizeof(unsigned long), GFP_KERNEL);
750 	if (!new_s0)
751 		return false;
752 	edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s0);
753 
754 	edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
755 	new_s0->back_pointer = node->back_pointer;
756 	new_s0->parent_slot = node->parent_slot;
757 	new_s0->next_node = assoc_array_node_to_ptr(new_n0);
758 	new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
759 	new_n0->parent_slot = 0;
760 	new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
761 	new_n1->parent_slot = -1; /* Need to calculate this */
762 
763 	new_s0->skip_to_level = level = diff & ~ASSOC_ARRAY_LEVEL_STEP_MASK;
764 	pr_devel("skip_to_level = %d [diff %d]\n", level, diff);
765 	BUG_ON(level <= 0);
766 
767 	for (i = 0; i < keylen; i++)
768 		new_s0->index_key[i] =
769 			ops->get_key_chunk(index_key, i * ASSOC_ARRAY_KEY_CHUNK_SIZE);
770 
771 	blank = ULONG_MAX << (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
772 	pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, level, blank);
773 	new_s0->index_key[keylen - 1] &= ~blank;
774 
775 	/* This now reduces to a node splitting exercise for which we'll need
776 	 * to regenerate the disparity table.
777 	 */
778 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
779 		ptr = node->slots[i];
780 		base_seg = ops->get_object_key_chunk(assoc_array_ptr_to_leaf(ptr),
781 						     level);
782 		base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
783 		edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
784 	}
785 
786 	base_seg = ops->get_key_chunk(index_key, level);
787 	base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
788 	edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = base_seg & ASSOC_ARRAY_FAN_MASK;
789 	goto do_split_node;
790 }
791 
792 /*
793  * Handle insertion into the middle of a shortcut.
794  */
795 static bool assoc_array_insert_mid_shortcut(struct assoc_array_edit *edit,
796 					    const struct assoc_array_ops *ops,
797 					    struct assoc_array_walk_result *result)
798 {
799 	struct assoc_array_shortcut *shortcut, *new_s0, *new_s1;
800 	struct assoc_array_node *node, *new_n0, *side;
801 	unsigned long sc_segments, dissimilarity, blank;
802 	size_t keylen;
803 	int level, sc_level, diff;
804 	int sc_slot;
805 
806 	shortcut	= result->wrong_shortcut.shortcut;
807 	level		= result->wrong_shortcut.level;
808 	sc_level	= result->wrong_shortcut.sc_level;
809 	sc_segments	= result->wrong_shortcut.sc_segments;
810 	dissimilarity	= result->wrong_shortcut.dissimilarity;
811 
812 	pr_devel("-->%s(ix=%d dis=%lx scix=%d)\n",
813 		 __func__, level, dissimilarity, sc_level);
814 
815 	/* We need to split a shortcut and insert a node between the two
816 	 * pieces.  Zero-length pieces will be dispensed with entirely.
817 	 *
818 	 * First of all, we need to find out in which level the first
819 	 * difference was.
820 	 */
821 	diff = __ffs(dissimilarity);
822 	diff &= ~ASSOC_ARRAY_LEVEL_STEP_MASK;
823 	diff += sc_level & ~ASSOC_ARRAY_KEY_CHUNK_MASK;
824 	pr_devel("diff=%d\n", diff);
825 
826 	if (!shortcut->back_pointer) {
827 		edit->set[0].ptr = &edit->array->root;
828 	} else if (assoc_array_ptr_is_node(shortcut->back_pointer)) {
829 		node = assoc_array_ptr_to_node(shortcut->back_pointer);
830 		edit->set[0].ptr = &node->slots[shortcut->parent_slot];
831 	} else {
832 		BUG();
833 	}
834 
835 	edit->excised_meta[0] = assoc_array_shortcut_to_ptr(shortcut);
836 
837 	/* Create a new node now since we're going to need it anyway */
838 	new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
839 	if (!new_n0)
840 		return false;
841 	edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
842 	edit->adjust_count_on = new_n0;
843 
844 	/* Insert a new shortcut before the new node if this segment isn't of
845 	 * zero length - otherwise we just connect the new node directly to the
846 	 * parent.
847 	 */
848 	level += ASSOC_ARRAY_LEVEL_STEP;
849 	if (diff > level) {
850 		pr_devel("pre-shortcut %d...%d\n", level, diff);
851 		keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
852 		keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
853 
854 		new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
855 				 keylen * sizeof(unsigned long), GFP_KERNEL);
856 		if (!new_s0)
857 			return false;
858 		edit->new_meta[1] = assoc_array_shortcut_to_ptr(new_s0);
859 		edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
860 		new_s0->back_pointer = shortcut->back_pointer;
861 		new_s0->parent_slot = shortcut->parent_slot;
862 		new_s0->next_node = assoc_array_node_to_ptr(new_n0);
863 		new_s0->skip_to_level = diff;
864 
865 		new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
866 		new_n0->parent_slot = 0;
867 
868 		memcpy(new_s0->index_key, shortcut->index_key,
869 		       keylen * sizeof(unsigned long));
870 
871 		blank = ULONG_MAX << (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
872 		pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, diff, blank);
873 		new_s0->index_key[keylen - 1] &= ~blank;
874 	} else {
875 		pr_devel("no pre-shortcut\n");
876 		edit->set[0].to = assoc_array_node_to_ptr(new_n0);
877 		new_n0->back_pointer = shortcut->back_pointer;
878 		new_n0->parent_slot = shortcut->parent_slot;
879 	}
880 
881 	side = assoc_array_ptr_to_node(shortcut->next_node);
882 	new_n0->nr_leaves_on_branch = side->nr_leaves_on_branch;
883 
884 	/* We need to know which slot in the new node is going to take a
885 	 * metadata pointer.
886 	 */
887 	sc_slot = sc_segments >> (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
888 	sc_slot &= ASSOC_ARRAY_FAN_MASK;
889 
890 	pr_devel("new slot %lx >> %d -> %d\n",
891 		 sc_segments, diff & ASSOC_ARRAY_KEY_CHUNK_MASK, sc_slot);
892 
893 	/* Determine whether we need to follow the new node with a replacement
894 	 * for the current shortcut.  We could in theory reuse the current
895 	 * shortcut if its parent slot number doesn't change - but that's a
896 	 * 1-in-16 chance so not worth expending the code upon.
897 	 */
898 	level = diff + ASSOC_ARRAY_LEVEL_STEP;
899 	if (level < shortcut->skip_to_level) {
900 		pr_devel("post-shortcut %d...%d\n", level, shortcut->skip_to_level);
901 		keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
902 		keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
903 
904 		new_s1 = kzalloc(sizeof(struct assoc_array_shortcut) +
905 				 keylen * sizeof(unsigned long), GFP_KERNEL);
906 		if (!new_s1)
907 			return false;
908 		edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s1);
909 
910 		new_s1->back_pointer = assoc_array_node_to_ptr(new_n0);
911 		new_s1->parent_slot = sc_slot;
912 		new_s1->next_node = shortcut->next_node;
913 		new_s1->skip_to_level = shortcut->skip_to_level;
914 
915 		new_n0->slots[sc_slot] = assoc_array_shortcut_to_ptr(new_s1);
916 
917 		memcpy(new_s1->index_key, shortcut->index_key,
918 		       keylen * sizeof(unsigned long));
919 
920 		edit->set[1].ptr = &side->back_pointer;
921 		edit->set[1].to = assoc_array_shortcut_to_ptr(new_s1);
922 	} else {
923 		pr_devel("no post-shortcut\n");
924 
925 		/* We don't have to replace the pointed-to node as long as we
926 		 * use memory barriers to make sure the parent slot number is
927 		 * changed before the back pointer (the parent slot number is
928 		 * irrelevant to the old parent shortcut).
929 		 */
930 		new_n0->slots[sc_slot] = shortcut->next_node;
931 		edit->set_parent_slot[0].p = &side->parent_slot;
932 		edit->set_parent_slot[0].to = sc_slot;
933 		edit->set[1].ptr = &side->back_pointer;
934 		edit->set[1].to = assoc_array_node_to_ptr(new_n0);
935 	}
936 
937 	/* Install the new leaf in a spare slot in the new node. */
938 	if (sc_slot == 0)
939 		edit->leaf_p = &new_n0->slots[1];
940 	else
941 		edit->leaf_p = &new_n0->slots[0];
942 
943 	pr_devel("<--%s() = ok [split shortcut]\n", __func__);
944 	return edit;
945 }
946 
947 /**
948  * assoc_array_insert - Script insertion of an object into an associative array
949  * @array: The array to insert into.
950  * @ops: The operations to use.
951  * @index_key: The key to insert at.
952  * @object: The object to insert.
953  *
954  * Precalculate and preallocate a script for the insertion or replacement of an
955  * object in an associative array.  This results in an edit script that can
956  * either be applied or cancelled.
957  *
958  * The function returns a pointer to an edit script or -ENOMEM.
959  *
960  * The caller should lock against other modifications and must continue to hold
961  * the lock until assoc_array_apply_edit() has been called.
962  *
963  * Accesses to the tree may take place concurrently with this function,
964  * provided they hold the RCU read lock.
965  */
966 struct assoc_array_edit *assoc_array_insert(struct assoc_array *array,
967 					    const struct assoc_array_ops *ops,
968 					    const void *index_key,
969 					    void *object)
970 {
971 	struct assoc_array_walk_result result;
972 	struct assoc_array_edit *edit;
973 
974 	pr_devel("-->%s()\n", __func__);
975 
976 	/* The leaf pointer we're given must not have the bottom bit set as we
977 	 * use those for type-marking the pointer.  NULL pointers are also not
978 	 * allowed as they indicate an empty slot but we have to allow them
979 	 * here as they can be updated later.
980 	 */
981 	BUG_ON(assoc_array_ptr_is_meta(object));
982 
983 	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
984 	if (!edit)
985 		return ERR_PTR(-ENOMEM);
986 	edit->array = array;
987 	edit->ops = ops;
988 	edit->leaf = assoc_array_leaf_to_ptr(object);
989 	edit->adjust_count_by = 1;
990 
991 	switch (assoc_array_walk(array, ops, index_key, &result)) {
992 	case assoc_array_walk_tree_empty:
993 		/* Allocate a root node if there isn't one yet */
994 		if (!assoc_array_insert_in_empty_tree(edit))
995 			goto enomem;
996 		return edit;
997 
998 	case assoc_array_walk_found_terminal_node:
999 		/* We found a node that doesn't have a node/shortcut pointer in
1000 		 * the slot corresponding to the index key that we have to
1001 		 * follow.
1002 		 */
1003 		if (!assoc_array_insert_into_terminal_node(edit, ops, index_key,
1004 							   &result))
1005 			goto enomem;
1006 		return edit;
1007 
1008 	case assoc_array_walk_found_wrong_shortcut:
1009 		/* We found a shortcut that didn't match our key in a slot we
1010 		 * needed to follow.
1011 		 */
1012 		if (!assoc_array_insert_mid_shortcut(edit, ops, &result))
1013 			goto enomem;
1014 		return edit;
1015 	}
1016 
1017 enomem:
1018 	/* Clean up after an out of memory error */
1019 	pr_devel("enomem\n");
1020 	assoc_array_cancel_edit(edit);
1021 	return ERR_PTR(-ENOMEM);
1022 }
1023 
1024 /**
1025  * assoc_array_insert_set_object - Set the new object pointer in an edit script
1026  * @edit: The edit script to modify.
1027  * @object: The object pointer to set.
1028  *
1029  * Change the object to be inserted in an edit script.  The object pointed to
1030  * by the old object is not freed.  This must be done prior to applying the
1031  * script.
1032  */
1033 void assoc_array_insert_set_object(struct assoc_array_edit *edit, void *object)
1034 {
1035 	BUG_ON(!object);
1036 	edit->leaf = assoc_array_leaf_to_ptr(object);
1037 }
1038 
1039 struct assoc_array_delete_collapse_context {
1040 	struct assoc_array_node	*node;
1041 	const void		*skip_leaf;
1042 	int			slot;
1043 };
1044 
1045 /*
1046  * Subtree collapse to node iterator.
1047  */
1048 static int assoc_array_delete_collapse_iterator(const void *leaf,
1049 						void *iterator_data)
1050 {
1051 	struct assoc_array_delete_collapse_context *collapse = iterator_data;
1052 
1053 	if (leaf == collapse->skip_leaf)
1054 		return 0;
1055 
1056 	BUG_ON(collapse->slot >= ASSOC_ARRAY_FAN_OUT);
1057 
1058 	collapse->node->slots[collapse->slot++] = assoc_array_leaf_to_ptr(leaf);
1059 	return 0;
1060 }
1061 
1062 /**
1063  * assoc_array_delete - Script deletion of an object from an associative array
1064  * @array: The array to search.
1065  * @ops: The operations to use.
1066  * @index_key: The key to the object.
1067  *
1068  * Precalculate and preallocate a script for the deletion of an object from an
1069  * associative array.  This results in an edit script that can either be
1070  * applied or cancelled.
1071  *
1072  * The function returns a pointer to an edit script if the object was found,
1073  * NULL if the object was not found or -ENOMEM.
1074  *
1075  * The caller should lock against other modifications and must continue to hold
1076  * the lock until assoc_array_apply_edit() has been called.
1077  *
1078  * Accesses to the tree may take place concurrently with this function,
1079  * provided they hold the RCU read lock.
1080  */
1081 struct assoc_array_edit *assoc_array_delete(struct assoc_array *array,
1082 					    const struct assoc_array_ops *ops,
1083 					    const void *index_key)
1084 {
1085 	struct assoc_array_delete_collapse_context collapse;
1086 	struct assoc_array_walk_result result;
1087 	struct assoc_array_node *node, *new_n0;
1088 	struct assoc_array_edit *edit;
1089 	struct assoc_array_ptr *ptr;
1090 	bool has_meta;
1091 	int slot, i;
1092 
1093 	pr_devel("-->%s()\n", __func__);
1094 
1095 	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1096 	if (!edit)
1097 		return ERR_PTR(-ENOMEM);
1098 	edit->array = array;
1099 	edit->ops = ops;
1100 	edit->adjust_count_by = -1;
1101 
1102 	switch (assoc_array_walk(array, ops, index_key, &result)) {
1103 	case assoc_array_walk_found_terminal_node:
1104 		/* We found a node that should contain the leaf we've been
1105 		 * asked to remove - *if* it's in the tree.
1106 		 */
1107 		pr_devel("terminal_node\n");
1108 		node = result.terminal_node.node;
1109 
1110 		for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1111 			ptr = node->slots[slot];
1112 			if (ptr &&
1113 			    assoc_array_ptr_is_leaf(ptr) &&
1114 			    ops->compare_object(assoc_array_ptr_to_leaf(ptr),
1115 						index_key))
1116 				goto found_leaf;
1117 		}
1118 	case assoc_array_walk_tree_empty:
1119 	case assoc_array_walk_found_wrong_shortcut:
1120 	default:
1121 		assoc_array_cancel_edit(edit);
1122 		pr_devel("not found\n");
1123 		return NULL;
1124 	}
1125 
1126 found_leaf:
1127 	BUG_ON(array->nr_leaves_on_tree <= 0);
1128 
1129 	/* In the simplest form of deletion we just clear the slot and release
1130 	 * the leaf after a suitable interval.
1131 	 */
1132 	edit->dead_leaf = node->slots[slot];
1133 	edit->set[0].ptr = &node->slots[slot];
1134 	edit->set[0].to = NULL;
1135 	edit->adjust_count_on = node;
1136 
1137 	/* If that concludes erasure of the last leaf, then delete the entire
1138 	 * internal array.
1139 	 */
1140 	if (array->nr_leaves_on_tree == 1) {
1141 		edit->set[1].ptr = &array->root;
1142 		edit->set[1].to = NULL;
1143 		edit->adjust_count_on = NULL;
1144 		edit->excised_subtree = array->root;
1145 		pr_devel("all gone\n");
1146 		return edit;
1147 	}
1148 
1149 	/* However, we'd also like to clear up some metadata blocks if we
1150 	 * possibly can.
1151 	 *
1152 	 * We go for a simple algorithm of: if this node has FAN_OUT or fewer
1153 	 * leaves in it, then attempt to collapse it - and attempt to
1154 	 * recursively collapse up the tree.
1155 	 *
1156 	 * We could also try and collapse in partially filled subtrees to take
1157 	 * up space in this node.
1158 	 */
1159 	if (node->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
1160 		struct assoc_array_node *parent, *grandparent;
1161 		struct assoc_array_ptr *ptr;
1162 
1163 		/* First of all, we need to know if this node has metadata so
1164 		 * that we don't try collapsing if all the leaves are already
1165 		 * here.
1166 		 */
1167 		has_meta = false;
1168 		for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
1169 			ptr = node->slots[i];
1170 			if (assoc_array_ptr_is_meta(ptr)) {
1171 				has_meta = true;
1172 				break;
1173 			}
1174 		}
1175 
1176 		pr_devel("leaves: %ld [m=%d]\n",
1177 			 node->nr_leaves_on_branch - 1, has_meta);
1178 
1179 		/* Look further up the tree to see if we can collapse this node
1180 		 * into a more proximal node too.
1181 		 */
1182 		parent = node;
1183 	collapse_up:
1184 		pr_devel("collapse subtree: %ld\n", parent->nr_leaves_on_branch);
1185 
1186 		ptr = parent->back_pointer;
1187 		if (!ptr)
1188 			goto do_collapse;
1189 		if (assoc_array_ptr_is_shortcut(ptr)) {
1190 			struct assoc_array_shortcut *s = assoc_array_ptr_to_shortcut(ptr);
1191 			ptr = s->back_pointer;
1192 			if (!ptr)
1193 				goto do_collapse;
1194 		}
1195 
1196 		grandparent = assoc_array_ptr_to_node(ptr);
1197 		if (grandparent->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
1198 			parent = grandparent;
1199 			goto collapse_up;
1200 		}
1201 
1202 	do_collapse:
1203 		/* There's no point collapsing if the original node has no meta
1204 		 * pointers to discard and if we didn't merge into one of that
1205 		 * node's ancestry.
1206 		 */
1207 		if (has_meta || parent != node) {
1208 			node = parent;
1209 
1210 			/* Create a new node to collapse into */
1211 			new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
1212 			if (!new_n0)
1213 				goto enomem;
1214 			edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
1215 
1216 			new_n0->back_pointer = node->back_pointer;
1217 			new_n0->parent_slot = node->parent_slot;
1218 			new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
1219 			edit->adjust_count_on = new_n0;
1220 
1221 			collapse.node = new_n0;
1222 			collapse.skip_leaf = assoc_array_ptr_to_leaf(edit->dead_leaf);
1223 			collapse.slot = 0;
1224 			assoc_array_subtree_iterate(assoc_array_node_to_ptr(node),
1225 						    node->back_pointer,
1226 						    assoc_array_delete_collapse_iterator,
1227 						    &collapse);
1228 			pr_devel("collapsed %d,%lu\n", collapse.slot, new_n0->nr_leaves_on_branch);
1229 			BUG_ON(collapse.slot != new_n0->nr_leaves_on_branch - 1);
1230 
1231 			if (!node->back_pointer) {
1232 				edit->set[1].ptr = &array->root;
1233 			} else if (assoc_array_ptr_is_leaf(node->back_pointer)) {
1234 				BUG();
1235 			} else if (assoc_array_ptr_is_node(node->back_pointer)) {
1236 				struct assoc_array_node *p =
1237 					assoc_array_ptr_to_node(node->back_pointer);
1238 				edit->set[1].ptr = &p->slots[node->parent_slot];
1239 			} else if (assoc_array_ptr_is_shortcut(node->back_pointer)) {
1240 				struct assoc_array_shortcut *s =
1241 					assoc_array_ptr_to_shortcut(node->back_pointer);
1242 				edit->set[1].ptr = &s->next_node;
1243 			}
1244 			edit->set[1].to = assoc_array_node_to_ptr(new_n0);
1245 			edit->excised_subtree = assoc_array_node_to_ptr(node);
1246 		}
1247 	}
1248 
1249 	return edit;
1250 
1251 enomem:
1252 	/* Clean up after an out of memory error */
1253 	pr_devel("enomem\n");
1254 	assoc_array_cancel_edit(edit);
1255 	return ERR_PTR(-ENOMEM);
1256 }
1257 
1258 /**
1259  * assoc_array_clear - Script deletion of all objects from an associative array
1260  * @array: The array to clear.
1261  * @ops: The operations to use.
1262  *
1263  * Precalculate and preallocate a script for the deletion of all the objects
1264  * from an associative array.  This results in an edit script that can either
1265  * be applied or cancelled.
1266  *
1267  * The function returns a pointer to an edit script if there are objects to be
1268  * deleted, NULL if there are no objects in the array or -ENOMEM.
1269  *
1270  * The caller should lock against other modifications and must continue to hold
1271  * the lock until assoc_array_apply_edit() has been called.
1272  *
1273  * Accesses to the tree may take place concurrently with this function,
1274  * provided they hold the RCU read lock.
1275  */
1276 struct assoc_array_edit *assoc_array_clear(struct assoc_array *array,
1277 					   const struct assoc_array_ops *ops)
1278 {
1279 	struct assoc_array_edit *edit;
1280 
1281 	pr_devel("-->%s()\n", __func__);
1282 
1283 	if (!array->root)
1284 		return NULL;
1285 
1286 	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1287 	if (!edit)
1288 		return ERR_PTR(-ENOMEM);
1289 	edit->array = array;
1290 	edit->ops = ops;
1291 	edit->set[1].ptr = &array->root;
1292 	edit->set[1].to = NULL;
1293 	edit->excised_subtree = array->root;
1294 	edit->ops_for_excised_subtree = ops;
1295 	pr_devel("all gone\n");
1296 	return edit;
1297 }
1298 
1299 /*
1300  * Handle the deferred destruction after an applied edit.
1301  */
1302 static void assoc_array_rcu_cleanup(struct rcu_head *head)
1303 {
1304 	struct assoc_array_edit *edit =
1305 		container_of(head, struct assoc_array_edit, rcu);
1306 	int i;
1307 
1308 	pr_devel("-->%s()\n", __func__);
1309 
1310 	if (edit->dead_leaf)
1311 		edit->ops->free_object(assoc_array_ptr_to_leaf(edit->dead_leaf));
1312 	for (i = 0; i < ARRAY_SIZE(edit->excised_meta); i++)
1313 		if (edit->excised_meta[i])
1314 			kfree(assoc_array_ptr_to_node(edit->excised_meta[i]));
1315 
1316 	if (edit->excised_subtree) {
1317 		BUG_ON(assoc_array_ptr_is_leaf(edit->excised_subtree));
1318 		if (assoc_array_ptr_is_node(edit->excised_subtree)) {
1319 			struct assoc_array_node *n =
1320 				assoc_array_ptr_to_node(edit->excised_subtree);
1321 			n->back_pointer = NULL;
1322 		} else {
1323 			struct assoc_array_shortcut *s =
1324 				assoc_array_ptr_to_shortcut(edit->excised_subtree);
1325 			s->back_pointer = NULL;
1326 		}
1327 		assoc_array_destroy_subtree(edit->excised_subtree,
1328 					    edit->ops_for_excised_subtree);
1329 	}
1330 
1331 	kfree(edit);
1332 }
1333 
1334 /**
1335  * assoc_array_apply_edit - Apply an edit script to an associative array
1336  * @edit: The script to apply.
1337  *
1338  * Apply an edit script to an associative array to effect an insertion,
1339  * deletion or clearance.  As the edit script includes preallocated memory,
1340  * this is guaranteed not to fail.
1341  *
1342  * The edit script, dead objects and dead metadata will be scheduled for
1343  * destruction after an RCU grace period to permit those doing read-only
1344  * accesses on the array to continue to do so under the RCU read lock whilst
1345  * the edit is taking place.
1346  */
1347 void assoc_array_apply_edit(struct assoc_array_edit *edit)
1348 {
1349 	struct assoc_array_shortcut *shortcut;
1350 	struct assoc_array_node *node;
1351 	struct assoc_array_ptr *ptr;
1352 	int i;
1353 
1354 	pr_devel("-->%s()\n", __func__);
1355 
1356 	smp_wmb();
1357 	if (edit->leaf_p)
1358 		*edit->leaf_p = edit->leaf;
1359 
1360 	smp_wmb();
1361 	for (i = 0; i < ARRAY_SIZE(edit->set_parent_slot); i++)
1362 		if (edit->set_parent_slot[i].p)
1363 			*edit->set_parent_slot[i].p = edit->set_parent_slot[i].to;
1364 
1365 	smp_wmb();
1366 	for (i = 0; i < ARRAY_SIZE(edit->set_backpointers); i++)
1367 		if (edit->set_backpointers[i])
1368 			*edit->set_backpointers[i] = edit->set_backpointers_to;
1369 
1370 	smp_wmb();
1371 	for (i = 0; i < ARRAY_SIZE(edit->set); i++)
1372 		if (edit->set[i].ptr)
1373 			*edit->set[i].ptr = edit->set[i].to;
1374 
1375 	if (edit->array->root == NULL) {
1376 		edit->array->nr_leaves_on_tree = 0;
1377 	} else if (edit->adjust_count_on) {
1378 		node = edit->adjust_count_on;
1379 		for (;;) {
1380 			node->nr_leaves_on_branch += edit->adjust_count_by;
1381 
1382 			ptr = node->back_pointer;
1383 			if (!ptr)
1384 				break;
1385 			if (assoc_array_ptr_is_shortcut(ptr)) {
1386 				shortcut = assoc_array_ptr_to_shortcut(ptr);
1387 				ptr = shortcut->back_pointer;
1388 				if (!ptr)
1389 					break;
1390 			}
1391 			BUG_ON(!assoc_array_ptr_is_node(ptr));
1392 			node = assoc_array_ptr_to_node(ptr);
1393 		}
1394 
1395 		edit->array->nr_leaves_on_tree += edit->adjust_count_by;
1396 	}
1397 
1398 	call_rcu(&edit->rcu, assoc_array_rcu_cleanup);
1399 }
1400 
1401 /**
1402  * assoc_array_cancel_edit - Discard an edit script.
1403  * @edit: The script to discard.
1404  *
1405  * Free an edit script and all the preallocated data it holds without making
1406  * any changes to the associative array it was intended for.
1407  *
1408  * NOTE!  In the case of an insertion script, this does _not_ release the leaf
1409  * that was to be inserted.  That is left to the caller.
1410  */
1411 void assoc_array_cancel_edit(struct assoc_array_edit *edit)
1412 {
1413 	struct assoc_array_ptr *ptr;
1414 	int i;
1415 
1416 	pr_devel("-->%s()\n", __func__);
1417 
1418 	/* Clean up after an out of memory error */
1419 	for (i = 0; i < ARRAY_SIZE(edit->new_meta); i++) {
1420 		ptr = edit->new_meta[i];
1421 		if (ptr) {
1422 			if (assoc_array_ptr_is_node(ptr))
1423 				kfree(assoc_array_ptr_to_node(ptr));
1424 			else
1425 				kfree(assoc_array_ptr_to_shortcut(ptr));
1426 		}
1427 	}
1428 	kfree(edit);
1429 }
1430 
1431 /**
1432  * assoc_array_gc - Garbage collect an associative array.
1433  * @array: The array to clean.
1434  * @ops: The operations to use.
1435  * @iterator: A callback function to pass judgement on each object.
1436  * @iterator_data: Private data for the callback function.
1437  *
1438  * Collect garbage from an associative array and pack down the internal tree to
1439  * save memory.
1440  *
1441  * The iterator function is asked to pass judgement upon each object in the
1442  * array.  If it returns false, the object is discard and if it returns true,
1443  * the object is kept.  If it returns true, it must increment the object's
1444  * usage count (or whatever it needs to do to retain it) before returning.
1445  *
1446  * This function returns 0 if successful or -ENOMEM if out of memory.  In the
1447  * latter case, the array is not changed.
1448  *
1449  * The caller should lock against other modifications and must continue to hold
1450  * the lock until assoc_array_apply_edit() has been called.
1451  *
1452  * Accesses to the tree may take place concurrently with this function,
1453  * provided they hold the RCU read lock.
1454  */
1455 int assoc_array_gc(struct assoc_array *array,
1456 		   const struct assoc_array_ops *ops,
1457 		   bool (*iterator)(void *object, void *iterator_data),
1458 		   void *iterator_data)
1459 {
1460 	struct assoc_array_shortcut *shortcut, *new_s;
1461 	struct assoc_array_node *node, *new_n;
1462 	struct assoc_array_edit *edit;
1463 	struct assoc_array_ptr *cursor, *ptr;
1464 	struct assoc_array_ptr *new_root, *new_parent, **new_ptr_pp;
1465 	unsigned long nr_leaves_on_tree;
1466 	int keylen, slot, nr_free, next_slot, i;
1467 
1468 	pr_devel("-->%s()\n", __func__);
1469 
1470 	if (!array->root)
1471 		return 0;
1472 
1473 	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1474 	if (!edit)
1475 		return -ENOMEM;
1476 	edit->array = array;
1477 	edit->ops = ops;
1478 	edit->ops_for_excised_subtree = ops;
1479 	edit->set[0].ptr = &array->root;
1480 	edit->excised_subtree = array->root;
1481 
1482 	new_root = new_parent = NULL;
1483 	new_ptr_pp = &new_root;
1484 	cursor = array->root;
1485 
1486 descend:
1487 	/* If this point is a shortcut, then we need to duplicate it and
1488 	 * advance the target cursor.
1489 	 */
1490 	if (assoc_array_ptr_is_shortcut(cursor)) {
1491 		shortcut = assoc_array_ptr_to_shortcut(cursor);
1492 		keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
1493 		keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
1494 		new_s = kmalloc(sizeof(struct assoc_array_shortcut) +
1495 				keylen * sizeof(unsigned long), GFP_KERNEL);
1496 		if (!new_s)
1497 			goto enomem;
1498 		pr_devel("dup shortcut %p -> %p\n", shortcut, new_s);
1499 		memcpy(new_s, shortcut, (sizeof(struct assoc_array_shortcut) +
1500 					 keylen * sizeof(unsigned long)));
1501 		new_s->back_pointer = new_parent;
1502 		new_s->parent_slot = shortcut->parent_slot;
1503 		*new_ptr_pp = new_parent = assoc_array_shortcut_to_ptr(new_s);
1504 		new_ptr_pp = &new_s->next_node;
1505 		cursor = shortcut->next_node;
1506 	}
1507 
1508 	/* Duplicate the node at this position */
1509 	node = assoc_array_ptr_to_node(cursor);
1510 	new_n = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
1511 	if (!new_n)
1512 		goto enomem;
1513 	pr_devel("dup node %p -> %p\n", node, new_n);
1514 	new_n->back_pointer = new_parent;
1515 	new_n->parent_slot = node->parent_slot;
1516 	*new_ptr_pp = new_parent = assoc_array_node_to_ptr(new_n);
1517 	new_ptr_pp = NULL;
1518 	slot = 0;
1519 
1520 continue_node:
1521 	/* Filter across any leaves and gc any subtrees */
1522 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1523 		ptr = node->slots[slot];
1524 		if (!ptr)
1525 			continue;
1526 
1527 		if (assoc_array_ptr_is_leaf(ptr)) {
1528 			if (iterator(assoc_array_ptr_to_leaf(ptr),
1529 				     iterator_data))
1530 				/* The iterator will have done any reference
1531 				 * counting on the object for us.
1532 				 */
1533 				new_n->slots[slot] = ptr;
1534 			continue;
1535 		}
1536 
1537 		new_ptr_pp = &new_n->slots[slot];
1538 		cursor = ptr;
1539 		goto descend;
1540 	}
1541 
1542 	pr_devel("-- compress node %p --\n", new_n);
1543 
1544 	/* Count up the number of empty slots in this node and work out the
1545 	 * subtree leaf count.
1546 	 */
1547 	new_n->nr_leaves_on_branch = 0;
1548 	nr_free = 0;
1549 	for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1550 		ptr = new_n->slots[slot];
1551 		if (!ptr)
1552 			nr_free++;
1553 		else if (assoc_array_ptr_is_leaf(ptr))
1554 			new_n->nr_leaves_on_branch++;
1555 	}
1556 	pr_devel("free=%d, leaves=%lu\n", nr_free, new_n->nr_leaves_on_branch);
1557 
1558 	/* See what we can fold in */
1559 	next_slot = 0;
1560 	for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1561 		struct assoc_array_shortcut *s;
1562 		struct assoc_array_node *child;
1563 
1564 		ptr = new_n->slots[slot];
1565 		if (!ptr || assoc_array_ptr_is_leaf(ptr))
1566 			continue;
1567 
1568 		s = NULL;
1569 		if (assoc_array_ptr_is_shortcut(ptr)) {
1570 			s = assoc_array_ptr_to_shortcut(ptr);
1571 			ptr = s->next_node;
1572 		}
1573 
1574 		child = assoc_array_ptr_to_node(ptr);
1575 		new_n->nr_leaves_on_branch += child->nr_leaves_on_branch;
1576 
1577 		if (child->nr_leaves_on_branch <= nr_free + 1) {
1578 			/* Fold the child node into this one */
1579 			pr_devel("[%d] fold node %lu/%d [nx %d]\n",
1580 				 slot, child->nr_leaves_on_branch, nr_free + 1,
1581 				 next_slot);
1582 
1583 			/* We would already have reaped an intervening shortcut
1584 			 * on the way back up the tree.
1585 			 */
1586 			BUG_ON(s);
1587 
1588 			new_n->slots[slot] = NULL;
1589 			nr_free++;
1590 			if (slot < next_slot)
1591 				next_slot = slot;
1592 			for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
1593 				struct assoc_array_ptr *p = child->slots[i];
1594 				if (!p)
1595 					continue;
1596 				BUG_ON(assoc_array_ptr_is_meta(p));
1597 				while (new_n->slots[next_slot])
1598 					next_slot++;
1599 				BUG_ON(next_slot >= ASSOC_ARRAY_FAN_OUT);
1600 				new_n->slots[next_slot++] = p;
1601 				nr_free--;
1602 			}
1603 			kfree(child);
1604 		} else {
1605 			pr_devel("[%d] retain node %lu/%d [nx %d]\n",
1606 				 slot, child->nr_leaves_on_branch, nr_free + 1,
1607 				 next_slot);
1608 		}
1609 	}
1610 
1611 	pr_devel("after: %lu\n", new_n->nr_leaves_on_branch);
1612 
1613 	nr_leaves_on_tree = new_n->nr_leaves_on_branch;
1614 
1615 	/* Excise this node if it is singly occupied by a shortcut */
1616 	if (nr_free == ASSOC_ARRAY_FAN_OUT - 1) {
1617 		for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++)
1618 			if ((ptr = new_n->slots[slot]))
1619 				break;
1620 
1621 		if (assoc_array_ptr_is_meta(ptr) &&
1622 		    assoc_array_ptr_is_shortcut(ptr)) {
1623 			pr_devel("excise node %p with 1 shortcut\n", new_n);
1624 			new_s = assoc_array_ptr_to_shortcut(ptr);
1625 			new_parent = new_n->back_pointer;
1626 			slot = new_n->parent_slot;
1627 			kfree(new_n);
1628 			if (!new_parent) {
1629 				new_s->back_pointer = NULL;
1630 				new_s->parent_slot = 0;
1631 				new_root = ptr;
1632 				goto gc_complete;
1633 			}
1634 
1635 			if (assoc_array_ptr_is_shortcut(new_parent)) {
1636 				/* We can discard any preceding shortcut also */
1637 				struct assoc_array_shortcut *s =
1638 					assoc_array_ptr_to_shortcut(new_parent);
1639 
1640 				pr_devel("excise preceding shortcut\n");
1641 
1642 				new_parent = new_s->back_pointer = s->back_pointer;
1643 				slot = new_s->parent_slot = s->parent_slot;
1644 				kfree(s);
1645 				if (!new_parent) {
1646 					new_s->back_pointer = NULL;
1647 					new_s->parent_slot = 0;
1648 					new_root = ptr;
1649 					goto gc_complete;
1650 				}
1651 			}
1652 
1653 			new_s->back_pointer = new_parent;
1654 			new_s->parent_slot = slot;
1655 			new_n = assoc_array_ptr_to_node(new_parent);
1656 			new_n->slots[slot] = ptr;
1657 			goto ascend_old_tree;
1658 		}
1659 	}
1660 
1661 	/* Excise any shortcuts we might encounter that point to nodes that
1662 	 * only contain leaves.
1663 	 */
1664 	ptr = new_n->back_pointer;
1665 	if (!ptr)
1666 		goto gc_complete;
1667 
1668 	if (assoc_array_ptr_is_shortcut(ptr)) {
1669 		new_s = assoc_array_ptr_to_shortcut(ptr);
1670 		new_parent = new_s->back_pointer;
1671 		slot = new_s->parent_slot;
1672 
1673 		if (new_n->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT) {
1674 			struct assoc_array_node *n;
1675 
1676 			pr_devel("excise shortcut\n");
1677 			new_n->back_pointer = new_parent;
1678 			new_n->parent_slot = slot;
1679 			kfree(new_s);
1680 			if (!new_parent) {
1681 				new_root = assoc_array_node_to_ptr(new_n);
1682 				goto gc_complete;
1683 			}
1684 
1685 			n = assoc_array_ptr_to_node(new_parent);
1686 			n->slots[slot] = assoc_array_node_to_ptr(new_n);
1687 		}
1688 	} else {
1689 		new_parent = ptr;
1690 	}
1691 	new_n = assoc_array_ptr_to_node(new_parent);
1692 
1693 ascend_old_tree:
1694 	ptr = node->back_pointer;
1695 	if (assoc_array_ptr_is_shortcut(ptr)) {
1696 		shortcut = assoc_array_ptr_to_shortcut(ptr);
1697 		slot = shortcut->parent_slot;
1698 		cursor = shortcut->back_pointer;
1699 		if (!cursor)
1700 			goto gc_complete;
1701 	} else {
1702 		slot = node->parent_slot;
1703 		cursor = ptr;
1704 	}
1705 	BUG_ON(!cursor);
1706 	node = assoc_array_ptr_to_node(cursor);
1707 	slot++;
1708 	goto continue_node;
1709 
1710 gc_complete:
1711 	edit->set[0].to = new_root;
1712 	assoc_array_apply_edit(edit);
1713 	array->nr_leaves_on_tree = nr_leaves_on_tree;
1714 	return 0;
1715 
1716 enomem:
1717 	pr_devel("enomem\n");
1718 	assoc_array_destroy_subtree(new_root, edit->ops);
1719 	kfree(edit);
1720 	return -ENOMEM;
1721 }
1722