xref: /openbmc/linux/kernel/workqueue.c (revision fb7df12d)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There are two worker pools for each CPU (one for
20  * normal work items and the other for high priority ones) and some extra
21  * pools for workqueues which are not bound to any specific CPU - the
22  * number of these backing pools is dynamic.
23  *
24  * Please read Documentation/core-api/workqueue.rst for details.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 
52 #include "workqueue_internal.h"
53 
54 enum {
55 	/*
56 	 * worker_pool flags
57 	 *
58 	 * A bound pool is either associated or disassociated with its CPU.
59 	 * While associated (!DISASSOCIATED), all workers are bound to the
60 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 	 * is in effect.
62 	 *
63 	 * While DISASSOCIATED, the cpu may be offline and all workers have
64 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 	 * be executing on any CPU.  The pool behaves as an unbound one.
66 	 *
67 	 * Note that DISASSOCIATED should be flipped only while holding
68 	 * attach_mutex to avoid changing binding state while
69 	 * worker_attach_to_pool() is in progress.
70 	 */
71 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
72 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
73 
74 	/* worker flags */
75 	WORKER_DIE		= 1 << 1,	/* die die die */
76 	WORKER_IDLE		= 1 << 2,	/* is idle */
77 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
78 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
79 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
80 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
81 
82 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
83 				  WORKER_UNBOUND | WORKER_REBOUND,
84 
85 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
86 
87 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
88 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
89 
90 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
91 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
92 
93 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
94 						/* call for help after 10ms
95 						   (min two ticks) */
96 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
97 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
98 
99 	/*
100 	 * Rescue workers are used only on emergencies and shared by
101 	 * all cpus.  Give MIN_NICE.
102 	 */
103 	RESCUER_NICE_LEVEL	= MIN_NICE,
104 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
105 
106 	WQ_NAME_LEN		= 24,
107 };
108 
109 /*
110  * Structure fields follow one of the following exclusion rules.
111  *
112  * I: Modifiable by initialization/destruction paths and read-only for
113  *    everyone else.
114  *
115  * P: Preemption protected.  Disabling preemption is enough and should
116  *    only be modified and accessed from the local cpu.
117  *
118  * L: pool->lock protected.  Access with pool->lock held.
119  *
120  * X: During normal operation, modification requires pool->lock and should
121  *    be done only from local cpu.  Either disabling preemption on local
122  *    cpu or grabbing pool->lock is enough for read access.  If
123  *    POOL_DISASSOCIATED is set, it's identical to L.
124  *
125  * A: pool->attach_mutex protected.
126  *
127  * PL: wq_pool_mutex protected.
128  *
129  * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
130  *
131  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
132  *
133  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
134  *      sched-RCU for reads.
135  *
136  * WQ: wq->mutex protected.
137  *
138  * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
139  *
140  * MD: wq_mayday_lock protected.
141  */
142 
143 /* struct worker is defined in workqueue_internal.h */
144 
145 struct worker_pool {
146 	spinlock_t		lock;		/* the pool lock */
147 	int			cpu;		/* I: the associated cpu */
148 	int			node;		/* I: the associated node ID */
149 	int			id;		/* I: pool ID */
150 	unsigned int		flags;		/* X: flags */
151 
152 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
153 
154 	struct list_head	worklist;	/* L: list of pending works */
155 	int			nr_workers;	/* L: total number of workers */
156 
157 	/* nr_idle includes the ones off idle_list for rebinding */
158 	int			nr_idle;	/* L: currently idle ones */
159 
160 	struct list_head	idle_list;	/* X: list of idle workers */
161 	struct timer_list	idle_timer;	/* L: worker idle timeout */
162 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
163 
164 	/* a workers is either on busy_hash or idle_list, or the manager */
165 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
166 						/* L: hash of busy workers */
167 
168 	/* see manage_workers() for details on the two manager mutexes */
169 	struct worker		*manager;	/* L: purely informational */
170 	struct mutex		attach_mutex;	/* attach/detach exclusion */
171 	struct list_head	workers;	/* A: attached workers */
172 	struct completion	*detach_completion; /* all workers detached */
173 
174 	struct ida		worker_ida;	/* worker IDs for task name */
175 
176 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
177 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
178 	int			refcnt;		/* PL: refcnt for unbound pools */
179 
180 	/*
181 	 * The current concurrency level.  As it's likely to be accessed
182 	 * from other CPUs during try_to_wake_up(), put it in a separate
183 	 * cacheline.
184 	 */
185 	atomic_t		nr_running ____cacheline_aligned_in_smp;
186 
187 	/*
188 	 * Destruction of pool is sched-RCU protected to allow dereferences
189 	 * from get_work_pool().
190 	 */
191 	struct rcu_head		rcu;
192 } ____cacheline_aligned_in_smp;
193 
194 /*
195  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
196  * of work_struct->data are used for flags and the remaining high bits
197  * point to the pwq; thus, pwqs need to be aligned at two's power of the
198  * number of flag bits.
199  */
200 struct pool_workqueue {
201 	struct worker_pool	*pool;		/* I: the associated pool */
202 	struct workqueue_struct *wq;		/* I: the owning workqueue */
203 	int			work_color;	/* L: current color */
204 	int			flush_color;	/* L: flushing color */
205 	int			refcnt;		/* L: reference count */
206 	int			nr_in_flight[WORK_NR_COLORS];
207 						/* L: nr of in_flight works */
208 	int			nr_active;	/* L: nr of active works */
209 	int			max_active;	/* L: max active works */
210 	struct list_head	delayed_works;	/* L: delayed works */
211 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
212 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
213 
214 	/*
215 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
216 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
217 	 * itself is also sched-RCU protected so that the first pwq can be
218 	 * determined without grabbing wq->mutex.
219 	 */
220 	struct work_struct	unbound_release_work;
221 	struct rcu_head		rcu;
222 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
223 
224 /*
225  * Structure used to wait for workqueue flush.
226  */
227 struct wq_flusher {
228 	struct list_head	list;		/* WQ: list of flushers */
229 	int			flush_color;	/* WQ: flush color waiting for */
230 	struct completion	done;		/* flush completion */
231 };
232 
233 struct wq_device;
234 
235 /*
236  * The externally visible workqueue.  It relays the issued work items to
237  * the appropriate worker_pool through its pool_workqueues.
238  */
239 struct workqueue_struct {
240 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
241 	struct list_head	list;		/* PR: list of all workqueues */
242 
243 	struct mutex		mutex;		/* protects this wq */
244 	int			work_color;	/* WQ: current work color */
245 	int			flush_color;	/* WQ: current flush color */
246 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
247 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
248 	struct list_head	flusher_queue;	/* WQ: flush waiters */
249 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
250 
251 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
252 	struct worker		*rescuer;	/* I: rescue worker */
253 
254 	int			nr_drainers;	/* WQ: drain in progress */
255 	int			saved_max_active; /* WQ: saved pwq max_active */
256 
257 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
258 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
259 
260 #ifdef CONFIG_SYSFS
261 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
262 #endif
263 #ifdef CONFIG_LOCKDEP
264 	struct lockdep_map	lockdep_map;
265 #endif
266 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
267 
268 	/*
269 	 * Destruction of workqueue_struct is sched-RCU protected to allow
270 	 * walking the workqueues list without grabbing wq_pool_mutex.
271 	 * This is used to dump all workqueues from sysrq.
272 	 */
273 	struct rcu_head		rcu;
274 
275 	/* hot fields used during command issue, aligned to cacheline */
276 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
278 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
279 };
280 
281 static struct kmem_cache *pwq_cache;
282 
283 static cpumask_var_t *wq_numa_possible_cpumask;
284 					/* possible CPUs of each node */
285 
286 static bool wq_disable_numa;
287 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
288 
289 /* see the comment above the definition of WQ_POWER_EFFICIENT */
290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
291 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
292 
293 static bool wq_online;			/* can kworkers be created yet? */
294 
295 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
296 
297 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
298 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
299 
300 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
301 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
302 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
303 
304 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
305 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
306 
307 /* PL: allowable cpus for unbound wqs and work items */
308 static cpumask_var_t wq_unbound_cpumask;
309 
310 /* CPU where unbound work was last round robin scheduled from this CPU */
311 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
312 
313 /*
314  * Local execution of unbound work items is no longer guaranteed.  The
315  * following always forces round-robin CPU selection on unbound work items
316  * to uncover usages which depend on it.
317  */
318 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
319 static bool wq_debug_force_rr_cpu = true;
320 #else
321 static bool wq_debug_force_rr_cpu = false;
322 #endif
323 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
324 
325 /* the per-cpu worker pools */
326 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
327 
328 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
329 
330 /* PL: hash of all unbound pools keyed by pool->attrs */
331 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
332 
333 /* I: attributes used when instantiating standard unbound pools on demand */
334 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
335 
336 /* I: attributes used when instantiating ordered pools on demand */
337 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
338 
339 struct workqueue_struct *system_wq __read_mostly;
340 EXPORT_SYMBOL(system_wq);
341 struct workqueue_struct *system_highpri_wq __read_mostly;
342 EXPORT_SYMBOL_GPL(system_highpri_wq);
343 struct workqueue_struct *system_long_wq __read_mostly;
344 EXPORT_SYMBOL_GPL(system_long_wq);
345 struct workqueue_struct *system_unbound_wq __read_mostly;
346 EXPORT_SYMBOL_GPL(system_unbound_wq);
347 struct workqueue_struct *system_freezable_wq __read_mostly;
348 EXPORT_SYMBOL_GPL(system_freezable_wq);
349 struct workqueue_struct *system_power_efficient_wq __read_mostly;
350 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
351 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
352 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
353 
354 static int worker_thread(void *__worker);
355 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
356 
357 #define CREATE_TRACE_POINTS
358 #include <trace/events/workqueue.h>
359 
360 #define assert_rcu_or_pool_mutex()					\
361 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
362 			 !lockdep_is_held(&wq_pool_mutex),		\
363 			 "sched RCU or wq_pool_mutex should be held")
364 
365 #define assert_rcu_or_wq_mutex(wq)					\
366 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
367 			 !lockdep_is_held(&wq->mutex),			\
368 			 "sched RCU or wq->mutex should be held")
369 
370 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
371 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
372 			 !lockdep_is_held(&wq->mutex) &&		\
373 			 !lockdep_is_held(&wq_pool_mutex),		\
374 			 "sched RCU, wq->mutex or wq_pool_mutex should be held")
375 
376 #define for_each_cpu_worker_pool(pool, cpu)				\
377 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
378 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
379 	     (pool)++)
380 
381 /**
382  * for_each_pool - iterate through all worker_pools in the system
383  * @pool: iteration cursor
384  * @pi: integer used for iteration
385  *
386  * This must be called either with wq_pool_mutex held or sched RCU read
387  * locked.  If the pool needs to be used beyond the locking in effect, the
388  * caller is responsible for guaranteeing that the pool stays online.
389  *
390  * The if/else clause exists only for the lockdep assertion and can be
391  * ignored.
392  */
393 #define for_each_pool(pool, pi)						\
394 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
395 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
396 		else
397 
398 /**
399  * for_each_pool_worker - iterate through all workers of a worker_pool
400  * @worker: iteration cursor
401  * @pool: worker_pool to iterate workers of
402  *
403  * This must be called with @pool->attach_mutex.
404  *
405  * The if/else clause exists only for the lockdep assertion and can be
406  * ignored.
407  */
408 #define for_each_pool_worker(worker, pool)				\
409 	list_for_each_entry((worker), &(pool)->workers, node)		\
410 		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
411 		else
412 
413 /**
414  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
415  * @pwq: iteration cursor
416  * @wq: the target workqueue
417  *
418  * This must be called either with wq->mutex held or sched RCU read locked.
419  * If the pwq needs to be used beyond the locking in effect, the caller is
420  * responsible for guaranteeing that the pwq stays online.
421  *
422  * The if/else clause exists only for the lockdep assertion and can be
423  * ignored.
424  */
425 #define for_each_pwq(pwq, wq)						\
426 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
427 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
428 		else
429 
430 #ifdef CONFIG_DEBUG_OBJECTS_WORK
431 
432 static struct debug_obj_descr work_debug_descr;
433 
434 static void *work_debug_hint(void *addr)
435 {
436 	return ((struct work_struct *) addr)->func;
437 }
438 
439 static bool work_is_static_object(void *addr)
440 {
441 	struct work_struct *work = addr;
442 
443 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
444 }
445 
446 /*
447  * fixup_init is called when:
448  * - an active object is initialized
449  */
450 static bool work_fixup_init(void *addr, enum debug_obj_state state)
451 {
452 	struct work_struct *work = addr;
453 
454 	switch (state) {
455 	case ODEBUG_STATE_ACTIVE:
456 		cancel_work_sync(work);
457 		debug_object_init(work, &work_debug_descr);
458 		return true;
459 	default:
460 		return false;
461 	}
462 }
463 
464 /*
465  * fixup_free is called when:
466  * - an active object is freed
467  */
468 static bool work_fixup_free(void *addr, enum debug_obj_state state)
469 {
470 	struct work_struct *work = addr;
471 
472 	switch (state) {
473 	case ODEBUG_STATE_ACTIVE:
474 		cancel_work_sync(work);
475 		debug_object_free(work, &work_debug_descr);
476 		return true;
477 	default:
478 		return false;
479 	}
480 }
481 
482 static struct debug_obj_descr work_debug_descr = {
483 	.name		= "work_struct",
484 	.debug_hint	= work_debug_hint,
485 	.is_static_object = work_is_static_object,
486 	.fixup_init	= work_fixup_init,
487 	.fixup_free	= work_fixup_free,
488 };
489 
490 static inline void debug_work_activate(struct work_struct *work)
491 {
492 	debug_object_activate(work, &work_debug_descr);
493 }
494 
495 static inline void debug_work_deactivate(struct work_struct *work)
496 {
497 	debug_object_deactivate(work, &work_debug_descr);
498 }
499 
500 void __init_work(struct work_struct *work, int onstack)
501 {
502 	if (onstack)
503 		debug_object_init_on_stack(work, &work_debug_descr);
504 	else
505 		debug_object_init(work, &work_debug_descr);
506 }
507 EXPORT_SYMBOL_GPL(__init_work);
508 
509 void destroy_work_on_stack(struct work_struct *work)
510 {
511 	debug_object_free(work, &work_debug_descr);
512 }
513 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
514 
515 void destroy_delayed_work_on_stack(struct delayed_work *work)
516 {
517 	destroy_timer_on_stack(&work->timer);
518 	debug_object_free(&work->work, &work_debug_descr);
519 }
520 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
521 
522 #else
523 static inline void debug_work_activate(struct work_struct *work) { }
524 static inline void debug_work_deactivate(struct work_struct *work) { }
525 #endif
526 
527 /**
528  * worker_pool_assign_id - allocate ID and assing it to @pool
529  * @pool: the pool pointer of interest
530  *
531  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
532  * successfully, -errno on failure.
533  */
534 static int worker_pool_assign_id(struct worker_pool *pool)
535 {
536 	int ret;
537 
538 	lockdep_assert_held(&wq_pool_mutex);
539 
540 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
541 			GFP_KERNEL);
542 	if (ret >= 0) {
543 		pool->id = ret;
544 		return 0;
545 	}
546 	return ret;
547 }
548 
549 /**
550  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
551  * @wq: the target workqueue
552  * @node: the node ID
553  *
554  * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
555  * read locked.
556  * If the pwq needs to be used beyond the locking in effect, the caller is
557  * responsible for guaranteeing that the pwq stays online.
558  *
559  * Return: The unbound pool_workqueue for @node.
560  */
561 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
562 						  int node)
563 {
564 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
565 
566 	/*
567 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
568 	 * delayed item is pending.  The plan is to keep CPU -> NODE
569 	 * mapping valid and stable across CPU on/offlines.  Once that
570 	 * happens, this workaround can be removed.
571 	 */
572 	if (unlikely(node == NUMA_NO_NODE))
573 		return wq->dfl_pwq;
574 
575 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
576 }
577 
578 static unsigned int work_color_to_flags(int color)
579 {
580 	return color << WORK_STRUCT_COLOR_SHIFT;
581 }
582 
583 static int get_work_color(struct work_struct *work)
584 {
585 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
586 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
587 }
588 
589 static int work_next_color(int color)
590 {
591 	return (color + 1) % WORK_NR_COLORS;
592 }
593 
594 /*
595  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
596  * contain the pointer to the queued pwq.  Once execution starts, the flag
597  * is cleared and the high bits contain OFFQ flags and pool ID.
598  *
599  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
600  * and clear_work_data() can be used to set the pwq, pool or clear
601  * work->data.  These functions should only be called while the work is
602  * owned - ie. while the PENDING bit is set.
603  *
604  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
605  * corresponding to a work.  Pool is available once the work has been
606  * queued anywhere after initialization until it is sync canceled.  pwq is
607  * available only while the work item is queued.
608  *
609  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
610  * canceled.  While being canceled, a work item may have its PENDING set
611  * but stay off timer and worklist for arbitrarily long and nobody should
612  * try to steal the PENDING bit.
613  */
614 static inline void set_work_data(struct work_struct *work, unsigned long data,
615 				 unsigned long flags)
616 {
617 	WARN_ON_ONCE(!work_pending(work));
618 	atomic_long_set(&work->data, data | flags | work_static(work));
619 }
620 
621 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
622 			 unsigned long extra_flags)
623 {
624 	set_work_data(work, (unsigned long)pwq,
625 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
626 }
627 
628 static void set_work_pool_and_keep_pending(struct work_struct *work,
629 					   int pool_id)
630 {
631 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
632 		      WORK_STRUCT_PENDING);
633 }
634 
635 static void set_work_pool_and_clear_pending(struct work_struct *work,
636 					    int pool_id)
637 {
638 	/*
639 	 * The following wmb is paired with the implied mb in
640 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
641 	 * here are visible to and precede any updates by the next PENDING
642 	 * owner.
643 	 */
644 	smp_wmb();
645 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
646 	/*
647 	 * The following mb guarantees that previous clear of a PENDING bit
648 	 * will not be reordered with any speculative LOADS or STORES from
649 	 * work->current_func, which is executed afterwards.  This possible
650 	 * reordering can lead to a missed execution on attempt to qeueue
651 	 * the same @work.  E.g. consider this case:
652 	 *
653 	 *   CPU#0                         CPU#1
654 	 *   ----------------------------  --------------------------------
655 	 *
656 	 * 1  STORE event_indicated
657 	 * 2  queue_work_on() {
658 	 * 3    test_and_set_bit(PENDING)
659 	 * 4 }                             set_..._and_clear_pending() {
660 	 * 5                                 set_work_data() # clear bit
661 	 * 6                                 smp_mb()
662 	 * 7                               work->current_func() {
663 	 * 8				      LOAD event_indicated
664 	 *				   }
665 	 *
666 	 * Without an explicit full barrier speculative LOAD on line 8 can
667 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
668 	 * CPU#0 observes the PENDING bit is still set and new execution of
669 	 * a @work is not queued in a hope, that CPU#1 will eventually
670 	 * finish the queued @work.  Meanwhile CPU#1 does not see
671 	 * event_indicated is set, because speculative LOAD was executed
672 	 * before actual STORE.
673 	 */
674 	smp_mb();
675 }
676 
677 static void clear_work_data(struct work_struct *work)
678 {
679 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
680 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
681 }
682 
683 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
684 {
685 	unsigned long data = atomic_long_read(&work->data);
686 
687 	if (data & WORK_STRUCT_PWQ)
688 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
689 	else
690 		return NULL;
691 }
692 
693 /**
694  * get_work_pool - return the worker_pool a given work was associated with
695  * @work: the work item of interest
696  *
697  * Pools are created and destroyed under wq_pool_mutex, and allows read
698  * access under sched-RCU read lock.  As such, this function should be
699  * called under wq_pool_mutex or with preemption disabled.
700  *
701  * All fields of the returned pool are accessible as long as the above
702  * mentioned locking is in effect.  If the returned pool needs to be used
703  * beyond the critical section, the caller is responsible for ensuring the
704  * returned pool is and stays online.
705  *
706  * Return: The worker_pool @work was last associated with.  %NULL if none.
707  */
708 static struct worker_pool *get_work_pool(struct work_struct *work)
709 {
710 	unsigned long data = atomic_long_read(&work->data);
711 	int pool_id;
712 
713 	assert_rcu_or_pool_mutex();
714 
715 	if (data & WORK_STRUCT_PWQ)
716 		return ((struct pool_workqueue *)
717 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
718 
719 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
720 	if (pool_id == WORK_OFFQ_POOL_NONE)
721 		return NULL;
722 
723 	return idr_find(&worker_pool_idr, pool_id);
724 }
725 
726 /**
727  * get_work_pool_id - return the worker pool ID a given work is associated with
728  * @work: the work item of interest
729  *
730  * Return: The worker_pool ID @work was last associated with.
731  * %WORK_OFFQ_POOL_NONE if none.
732  */
733 static int get_work_pool_id(struct work_struct *work)
734 {
735 	unsigned long data = atomic_long_read(&work->data);
736 
737 	if (data & WORK_STRUCT_PWQ)
738 		return ((struct pool_workqueue *)
739 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
740 
741 	return data >> WORK_OFFQ_POOL_SHIFT;
742 }
743 
744 static void mark_work_canceling(struct work_struct *work)
745 {
746 	unsigned long pool_id = get_work_pool_id(work);
747 
748 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
749 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
750 }
751 
752 static bool work_is_canceling(struct work_struct *work)
753 {
754 	unsigned long data = atomic_long_read(&work->data);
755 
756 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
757 }
758 
759 /*
760  * Policy functions.  These define the policies on how the global worker
761  * pools are managed.  Unless noted otherwise, these functions assume that
762  * they're being called with pool->lock held.
763  */
764 
765 static bool __need_more_worker(struct worker_pool *pool)
766 {
767 	return !atomic_read(&pool->nr_running);
768 }
769 
770 /*
771  * Need to wake up a worker?  Called from anything but currently
772  * running workers.
773  *
774  * Note that, because unbound workers never contribute to nr_running, this
775  * function will always return %true for unbound pools as long as the
776  * worklist isn't empty.
777  */
778 static bool need_more_worker(struct worker_pool *pool)
779 {
780 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
781 }
782 
783 /* Can I start working?  Called from busy but !running workers. */
784 static bool may_start_working(struct worker_pool *pool)
785 {
786 	return pool->nr_idle;
787 }
788 
789 /* Do I need to keep working?  Called from currently running workers. */
790 static bool keep_working(struct worker_pool *pool)
791 {
792 	return !list_empty(&pool->worklist) &&
793 		atomic_read(&pool->nr_running) <= 1;
794 }
795 
796 /* Do we need a new worker?  Called from manager. */
797 static bool need_to_create_worker(struct worker_pool *pool)
798 {
799 	return need_more_worker(pool) && !may_start_working(pool);
800 }
801 
802 /* Do we have too many workers and should some go away? */
803 static bool too_many_workers(struct worker_pool *pool)
804 {
805 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
806 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
807 	int nr_busy = pool->nr_workers - nr_idle;
808 
809 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
810 }
811 
812 /*
813  * Wake up functions.
814  */
815 
816 /* Return the first idle worker.  Safe with preemption disabled */
817 static struct worker *first_idle_worker(struct worker_pool *pool)
818 {
819 	if (unlikely(list_empty(&pool->idle_list)))
820 		return NULL;
821 
822 	return list_first_entry(&pool->idle_list, struct worker, entry);
823 }
824 
825 /**
826  * wake_up_worker - wake up an idle worker
827  * @pool: worker pool to wake worker from
828  *
829  * Wake up the first idle worker of @pool.
830  *
831  * CONTEXT:
832  * spin_lock_irq(pool->lock).
833  */
834 static void wake_up_worker(struct worker_pool *pool)
835 {
836 	struct worker *worker = first_idle_worker(pool);
837 
838 	if (likely(worker))
839 		wake_up_process(worker->task);
840 }
841 
842 /**
843  * wq_worker_waking_up - a worker is waking up
844  * @task: task waking up
845  * @cpu: CPU @task is waking up to
846  *
847  * This function is called during try_to_wake_up() when a worker is
848  * being awoken.
849  *
850  * CONTEXT:
851  * spin_lock_irq(rq->lock)
852  */
853 void wq_worker_waking_up(struct task_struct *task, int cpu)
854 {
855 	struct worker *worker = kthread_data(task);
856 
857 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
858 		WARN_ON_ONCE(worker->pool->cpu != cpu);
859 		atomic_inc(&worker->pool->nr_running);
860 	}
861 }
862 
863 /**
864  * wq_worker_sleeping - a worker is going to sleep
865  * @task: task going to sleep
866  *
867  * This function is called during schedule() when a busy worker is
868  * going to sleep.  Worker on the same cpu can be woken up by
869  * returning pointer to its task.
870  *
871  * CONTEXT:
872  * spin_lock_irq(rq->lock)
873  *
874  * Return:
875  * Worker task on @cpu to wake up, %NULL if none.
876  */
877 struct task_struct *wq_worker_sleeping(struct task_struct *task)
878 {
879 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
880 	struct worker_pool *pool;
881 
882 	/*
883 	 * Rescuers, which may not have all the fields set up like normal
884 	 * workers, also reach here, let's not access anything before
885 	 * checking NOT_RUNNING.
886 	 */
887 	if (worker->flags & WORKER_NOT_RUNNING)
888 		return NULL;
889 
890 	pool = worker->pool;
891 
892 	/* this can only happen on the local cpu */
893 	if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
894 		return NULL;
895 
896 	/*
897 	 * The counterpart of the following dec_and_test, implied mb,
898 	 * worklist not empty test sequence is in insert_work().
899 	 * Please read comment there.
900 	 *
901 	 * NOT_RUNNING is clear.  This means that we're bound to and
902 	 * running on the local cpu w/ rq lock held and preemption
903 	 * disabled, which in turn means that none else could be
904 	 * manipulating idle_list, so dereferencing idle_list without pool
905 	 * lock is safe.
906 	 */
907 	if (atomic_dec_and_test(&pool->nr_running) &&
908 	    !list_empty(&pool->worklist))
909 		to_wakeup = first_idle_worker(pool);
910 	return to_wakeup ? to_wakeup->task : NULL;
911 }
912 
913 /**
914  * worker_set_flags - set worker flags and adjust nr_running accordingly
915  * @worker: self
916  * @flags: flags to set
917  *
918  * Set @flags in @worker->flags and adjust nr_running accordingly.
919  *
920  * CONTEXT:
921  * spin_lock_irq(pool->lock)
922  */
923 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
924 {
925 	struct worker_pool *pool = worker->pool;
926 
927 	WARN_ON_ONCE(worker->task != current);
928 
929 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
930 	if ((flags & WORKER_NOT_RUNNING) &&
931 	    !(worker->flags & WORKER_NOT_RUNNING)) {
932 		atomic_dec(&pool->nr_running);
933 	}
934 
935 	worker->flags |= flags;
936 }
937 
938 /**
939  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
940  * @worker: self
941  * @flags: flags to clear
942  *
943  * Clear @flags in @worker->flags and adjust nr_running accordingly.
944  *
945  * CONTEXT:
946  * spin_lock_irq(pool->lock)
947  */
948 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
949 {
950 	struct worker_pool *pool = worker->pool;
951 	unsigned int oflags = worker->flags;
952 
953 	WARN_ON_ONCE(worker->task != current);
954 
955 	worker->flags &= ~flags;
956 
957 	/*
958 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
959 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
960 	 * of multiple flags, not a single flag.
961 	 */
962 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
963 		if (!(worker->flags & WORKER_NOT_RUNNING))
964 			atomic_inc(&pool->nr_running);
965 }
966 
967 /**
968  * find_worker_executing_work - find worker which is executing a work
969  * @pool: pool of interest
970  * @work: work to find worker for
971  *
972  * Find a worker which is executing @work on @pool by searching
973  * @pool->busy_hash which is keyed by the address of @work.  For a worker
974  * to match, its current execution should match the address of @work and
975  * its work function.  This is to avoid unwanted dependency between
976  * unrelated work executions through a work item being recycled while still
977  * being executed.
978  *
979  * This is a bit tricky.  A work item may be freed once its execution
980  * starts and nothing prevents the freed area from being recycled for
981  * another work item.  If the same work item address ends up being reused
982  * before the original execution finishes, workqueue will identify the
983  * recycled work item as currently executing and make it wait until the
984  * current execution finishes, introducing an unwanted dependency.
985  *
986  * This function checks the work item address and work function to avoid
987  * false positives.  Note that this isn't complete as one may construct a
988  * work function which can introduce dependency onto itself through a
989  * recycled work item.  Well, if somebody wants to shoot oneself in the
990  * foot that badly, there's only so much we can do, and if such deadlock
991  * actually occurs, it should be easy to locate the culprit work function.
992  *
993  * CONTEXT:
994  * spin_lock_irq(pool->lock).
995  *
996  * Return:
997  * Pointer to worker which is executing @work if found, %NULL
998  * otherwise.
999  */
1000 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1001 						 struct work_struct *work)
1002 {
1003 	struct worker *worker;
1004 
1005 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1006 			       (unsigned long)work)
1007 		if (worker->current_work == work &&
1008 		    worker->current_func == work->func)
1009 			return worker;
1010 
1011 	return NULL;
1012 }
1013 
1014 /**
1015  * move_linked_works - move linked works to a list
1016  * @work: start of series of works to be scheduled
1017  * @head: target list to append @work to
1018  * @nextp: out parameter for nested worklist walking
1019  *
1020  * Schedule linked works starting from @work to @head.  Work series to
1021  * be scheduled starts at @work and includes any consecutive work with
1022  * WORK_STRUCT_LINKED set in its predecessor.
1023  *
1024  * If @nextp is not NULL, it's updated to point to the next work of
1025  * the last scheduled work.  This allows move_linked_works() to be
1026  * nested inside outer list_for_each_entry_safe().
1027  *
1028  * CONTEXT:
1029  * spin_lock_irq(pool->lock).
1030  */
1031 static void move_linked_works(struct work_struct *work, struct list_head *head,
1032 			      struct work_struct **nextp)
1033 {
1034 	struct work_struct *n;
1035 
1036 	/*
1037 	 * Linked worklist will always end before the end of the list,
1038 	 * use NULL for list head.
1039 	 */
1040 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1041 		list_move_tail(&work->entry, head);
1042 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1043 			break;
1044 	}
1045 
1046 	/*
1047 	 * If we're already inside safe list traversal and have moved
1048 	 * multiple works to the scheduled queue, the next position
1049 	 * needs to be updated.
1050 	 */
1051 	if (nextp)
1052 		*nextp = n;
1053 }
1054 
1055 /**
1056  * get_pwq - get an extra reference on the specified pool_workqueue
1057  * @pwq: pool_workqueue to get
1058  *
1059  * Obtain an extra reference on @pwq.  The caller should guarantee that
1060  * @pwq has positive refcnt and be holding the matching pool->lock.
1061  */
1062 static void get_pwq(struct pool_workqueue *pwq)
1063 {
1064 	lockdep_assert_held(&pwq->pool->lock);
1065 	WARN_ON_ONCE(pwq->refcnt <= 0);
1066 	pwq->refcnt++;
1067 }
1068 
1069 /**
1070  * put_pwq - put a pool_workqueue reference
1071  * @pwq: pool_workqueue to put
1072  *
1073  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1074  * destruction.  The caller should be holding the matching pool->lock.
1075  */
1076 static void put_pwq(struct pool_workqueue *pwq)
1077 {
1078 	lockdep_assert_held(&pwq->pool->lock);
1079 	if (likely(--pwq->refcnt))
1080 		return;
1081 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1082 		return;
1083 	/*
1084 	 * @pwq can't be released under pool->lock, bounce to
1085 	 * pwq_unbound_release_workfn().  This never recurses on the same
1086 	 * pool->lock as this path is taken only for unbound workqueues and
1087 	 * the release work item is scheduled on a per-cpu workqueue.  To
1088 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1089 	 * subclass of 1 in get_unbound_pool().
1090 	 */
1091 	schedule_work(&pwq->unbound_release_work);
1092 }
1093 
1094 /**
1095  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1096  * @pwq: pool_workqueue to put (can be %NULL)
1097  *
1098  * put_pwq() with locking.  This function also allows %NULL @pwq.
1099  */
1100 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1101 {
1102 	if (pwq) {
1103 		/*
1104 		 * As both pwqs and pools are sched-RCU protected, the
1105 		 * following lock operations are safe.
1106 		 */
1107 		spin_lock_irq(&pwq->pool->lock);
1108 		put_pwq(pwq);
1109 		spin_unlock_irq(&pwq->pool->lock);
1110 	}
1111 }
1112 
1113 static void pwq_activate_delayed_work(struct work_struct *work)
1114 {
1115 	struct pool_workqueue *pwq = get_work_pwq(work);
1116 
1117 	trace_workqueue_activate_work(work);
1118 	if (list_empty(&pwq->pool->worklist))
1119 		pwq->pool->watchdog_ts = jiffies;
1120 	move_linked_works(work, &pwq->pool->worklist, NULL);
1121 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1122 	pwq->nr_active++;
1123 }
1124 
1125 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1126 {
1127 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1128 						    struct work_struct, entry);
1129 
1130 	pwq_activate_delayed_work(work);
1131 }
1132 
1133 /**
1134  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1135  * @pwq: pwq of interest
1136  * @color: color of work which left the queue
1137  *
1138  * A work either has completed or is removed from pending queue,
1139  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1140  *
1141  * CONTEXT:
1142  * spin_lock_irq(pool->lock).
1143  */
1144 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1145 {
1146 	/* uncolored work items don't participate in flushing or nr_active */
1147 	if (color == WORK_NO_COLOR)
1148 		goto out_put;
1149 
1150 	pwq->nr_in_flight[color]--;
1151 
1152 	pwq->nr_active--;
1153 	if (!list_empty(&pwq->delayed_works)) {
1154 		/* one down, submit a delayed one */
1155 		if (pwq->nr_active < pwq->max_active)
1156 			pwq_activate_first_delayed(pwq);
1157 	}
1158 
1159 	/* is flush in progress and are we at the flushing tip? */
1160 	if (likely(pwq->flush_color != color))
1161 		goto out_put;
1162 
1163 	/* are there still in-flight works? */
1164 	if (pwq->nr_in_flight[color])
1165 		goto out_put;
1166 
1167 	/* this pwq is done, clear flush_color */
1168 	pwq->flush_color = -1;
1169 
1170 	/*
1171 	 * If this was the last pwq, wake up the first flusher.  It
1172 	 * will handle the rest.
1173 	 */
1174 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1175 		complete(&pwq->wq->first_flusher->done);
1176 out_put:
1177 	put_pwq(pwq);
1178 }
1179 
1180 /**
1181  * try_to_grab_pending - steal work item from worklist and disable irq
1182  * @work: work item to steal
1183  * @is_dwork: @work is a delayed_work
1184  * @flags: place to store irq state
1185  *
1186  * Try to grab PENDING bit of @work.  This function can handle @work in any
1187  * stable state - idle, on timer or on worklist.
1188  *
1189  * Return:
1190  *  1		if @work was pending and we successfully stole PENDING
1191  *  0		if @work was idle and we claimed PENDING
1192  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1193  *  -ENOENT	if someone else is canceling @work, this state may persist
1194  *		for arbitrarily long
1195  *
1196  * Note:
1197  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1198  * interrupted while holding PENDING and @work off queue, irq must be
1199  * disabled on entry.  This, combined with delayed_work->timer being
1200  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1201  *
1202  * On successful return, >= 0, irq is disabled and the caller is
1203  * responsible for releasing it using local_irq_restore(*@flags).
1204  *
1205  * This function is safe to call from any context including IRQ handler.
1206  */
1207 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1208 			       unsigned long *flags)
1209 {
1210 	struct worker_pool *pool;
1211 	struct pool_workqueue *pwq;
1212 
1213 	local_irq_save(*flags);
1214 
1215 	/* try to steal the timer if it exists */
1216 	if (is_dwork) {
1217 		struct delayed_work *dwork = to_delayed_work(work);
1218 
1219 		/*
1220 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1221 		 * guaranteed that the timer is not queued anywhere and not
1222 		 * running on the local CPU.
1223 		 */
1224 		if (likely(del_timer(&dwork->timer)))
1225 			return 1;
1226 	}
1227 
1228 	/* try to claim PENDING the normal way */
1229 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1230 		return 0;
1231 
1232 	/*
1233 	 * The queueing is in progress, or it is already queued. Try to
1234 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1235 	 */
1236 	pool = get_work_pool(work);
1237 	if (!pool)
1238 		goto fail;
1239 
1240 	spin_lock(&pool->lock);
1241 	/*
1242 	 * work->data is guaranteed to point to pwq only while the work
1243 	 * item is queued on pwq->wq, and both updating work->data to point
1244 	 * to pwq on queueing and to pool on dequeueing are done under
1245 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1246 	 * points to pwq which is associated with a locked pool, the work
1247 	 * item is currently queued on that pool.
1248 	 */
1249 	pwq = get_work_pwq(work);
1250 	if (pwq && pwq->pool == pool) {
1251 		debug_work_deactivate(work);
1252 
1253 		/*
1254 		 * A delayed work item cannot be grabbed directly because
1255 		 * it might have linked NO_COLOR work items which, if left
1256 		 * on the delayed_list, will confuse pwq->nr_active
1257 		 * management later on and cause stall.  Make sure the work
1258 		 * item is activated before grabbing.
1259 		 */
1260 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1261 			pwq_activate_delayed_work(work);
1262 
1263 		list_del_init(&work->entry);
1264 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1265 
1266 		/* work->data points to pwq iff queued, point to pool */
1267 		set_work_pool_and_keep_pending(work, pool->id);
1268 
1269 		spin_unlock(&pool->lock);
1270 		return 1;
1271 	}
1272 	spin_unlock(&pool->lock);
1273 fail:
1274 	local_irq_restore(*flags);
1275 	if (work_is_canceling(work))
1276 		return -ENOENT;
1277 	cpu_relax();
1278 	return -EAGAIN;
1279 }
1280 
1281 /**
1282  * insert_work - insert a work into a pool
1283  * @pwq: pwq @work belongs to
1284  * @work: work to insert
1285  * @head: insertion point
1286  * @extra_flags: extra WORK_STRUCT_* flags to set
1287  *
1288  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1289  * work_struct flags.
1290  *
1291  * CONTEXT:
1292  * spin_lock_irq(pool->lock).
1293  */
1294 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1295 			struct list_head *head, unsigned int extra_flags)
1296 {
1297 	struct worker_pool *pool = pwq->pool;
1298 
1299 	/* we own @work, set data and link */
1300 	set_work_pwq(work, pwq, extra_flags);
1301 	list_add_tail(&work->entry, head);
1302 	get_pwq(pwq);
1303 
1304 	/*
1305 	 * Ensure either wq_worker_sleeping() sees the above
1306 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1307 	 * around lazily while there are works to be processed.
1308 	 */
1309 	smp_mb();
1310 
1311 	if (__need_more_worker(pool))
1312 		wake_up_worker(pool);
1313 }
1314 
1315 /*
1316  * Test whether @work is being queued from another work executing on the
1317  * same workqueue.
1318  */
1319 static bool is_chained_work(struct workqueue_struct *wq)
1320 {
1321 	struct worker *worker;
1322 
1323 	worker = current_wq_worker();
1324 	/*
1325 	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1326 	 * I'm @worker, it's safe to dereference it without locking.
1327 	 */
1328 	return worker && worker->current_pwq->wq == wq;
1329 }
1330 
1331 /*
1332  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1333  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1334  * avoid perturbing sensitive tasks.
1335  */
1336 static int wq_select_unbound_cpu(int cpu)
1337 {
1338 	static bool printed_dbg_warning;
1339 	int new_cpu;
1340 
1341 	if (likely(!wq_debug_force_rr_cpu)) {
1342 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1343 			return cpu;
1344 	} else if (!printed_dbg_warning) {
1345 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1346 		printed_dbg_warning = true;
1347 	}
1348 
1349 	if (cpumask_empty(wq_unbound_cpumask))
1350 		return cpu;
1351 
1352 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1353 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1354 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1355 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1356 		if (unlikely(new_cpu >= nr_cpu_ids))
1357 			return cpu;
1358 	}
1359 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1360 
1361 	return new_cpu;
1362 }
1363 
1364 static void __queue_work(int cpu, struct workqueue_struct *wq,
1365 			 struct work_struct *work)
1366 {
1367 	struct pool_workqueue *pwq;
1368 	struct worker_pool *last_pool;
1369 	struct list_head *worklist;
1370 	unsigned int work_flags;
1371 	unsigned int req_cpu = cpu;
1372 
1373 	/*
1374 	 * While a work item is PENDING && off queue, a task trying to
1375 	 * steal the PENDING will busy-loop waiting for it to either get
1376 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1377 	 * happen with IRQ disabled.
1378 	 */
1379 	WARN_ON_ONCE(!irqs_disabled());
1380 
1381 	debug_work_activate(work);
1382 
1383 	/* if draining, only works from the same workqueue are allowed */
1384 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1385 	    WARN_ON_ONCE(!is_chained_work(wq)))
1386 		return;
1387 retry:
1388 	if (req_cpu == WORK_CPU_UNBOUND)
1389 		cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1390 
1391 	/* pwq which will be used unless @work is executing elsewhere */
1392 	if (!(wq->flags & WQ_UNBOUND))
1393 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1394 	else
1395 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1396 
1397 	/*
1398 	 * If @work was previously on a different pool, it might still be
1399 	 * running there, in which case the work needs to be queued on that
1400 	 * pool to guarantee non-reentrancy.
1401 	 */
1402 	last_pool = get_work_pool(work);
1403 	if (last_pool && last_pool != pwq->pool) {
1404 		struct worker *worker;
1405 
1406 		spin_lock(&last_pool->lock);
1407 
1408 		worker = find_worker_executing_work(last_pool, work);
1409 
1410 		if (worker && worker->current_pwq->wq == wq) {
1411 			pwq = worker->current_pwq;
1412 		} else {
1413 			/* meh... not running there, queue here */
1414 			spin_unlock(&last_pool->lock);
1415 			spin_lock(&pwq->pool->lock);
1416 		}
1417 	} else {
1418 		spin_lock(&pwq->pool->lock);
1419 	}
1420 
1421 	/*
1422 	 * pwq is determined and locked.  For unbound pools, we could have
1423 	 * raced with pwq release and it could already be dead.  If its
1424 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1425 	 * without another pwq replacing it in the numa_pwq_tbl or while
1426 	 * work items are executing on it, so the retrying is guaranteed to
1427 	 * make forward-progress.
1428 	 */
1429 	if (unlikely(!pwq->refcnt)) {
1430 		if (wq->flags & WQ_UNBOUND) {
1431 			spin_unlock(&pwq->pool->lock);
1432 			cpu_relax();
1433 			goto retry;
1434 		}
1435 		/* oops */
1436 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1437 			  wq->name, cpu);
1438 	}
1439 
1440 	/* pwq determined, queue */
1441 	trace_workqueue_queue_work(req_cpu, pwq, work);
1442 
1443 	if (WARN_ON(!list_empty(&work->entry))) {
1444 		spin_unlock(&pwq->pool->lock);
1445 		return;
1446 	}
1447 
1448 	pwq->nr_in_flight[pwq->work_color]++;
1449 	work_flags = work_color_to_flags(pwq->work_color);
1450 
1451 	if (likely(pwq->nr_active < pwq->max_active)) {
1452 		trace_workqueue_activate_work(work);
1453 		pwq->nr_active++;
1454 		worklist = &pwq->pool->worklist;
1455 		if (list_empty(worklist))
1456 			pwq->pool->watchdog_ts = jiffies;
1457 	} else {
1458 		work_flags |= WORK_STRUCT_DELAYED;
1459 		worklist = &pwq->delayed_works;
1460 	}
1461 
1462 	insert_work(pwq, work, worklist, work_flags);
1463 
1464 	spin_unlock(&pwq->pool->lock);
1465 }
1466 
1467 /**
1468  * queue_work_on - queue work on specific cpu
1469  * @cpu: CPU number to execute work on
1470  * @wq: workqueue to use
1471  * @work: work to queue
1472  *
1473  * We queue the work to a specific CPU, the caller must ensure it
1474  * can't go away.
1475  *
1476  * Return: %false if @work was already on a queue, %true otherwise.
1477  */
1478 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1479 		   struct work_struct *work)
1480 {
1481 	bool ret = false;
1482 	unsigned long flags;
1483 
1484 	local_irq_save(flags);
1485 
1486 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1487 		__queue_work(cpu, wq, work);
1488 		ret = true;
1489 	}
1490 
1491 	local_irq_restore(flags);
1492 	return ret;
1493 }
1494 EXPORT_SYMBOL(queue_work_on);
1495 
1496 void delayed_work_timer_fn(unsigned long __data)
1497 {
1498 	struct delayed_work *dwork = (struct delayed_work *)__data;
1499 
1500 	/* should have been called from irqsafe timer with irq already off */
1501 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1502 }
1503 EXPORT_SYMBOL(delayed_work_timer_fn);
1504 
1505 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1506 				struct delayed_work *dwork, unsigned long delay)
1507 {
1508 	struct timer_list *timer = &dwork->timer;
1509 	struct work_struct *work = &dwork->work;
1510 
1511 	WARN_ON_ONCE(!wq);
1512 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1513 		     timer->data != (unsigned long)dwork);
1514 	WARN_ON_ONCE(timer_pending(timer));
1515 	WARN_ON_ONCE(!list_empty(&work->entry));
1516 
1517 	/*
1518 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1519 	 * both optimization and correctness.  The earliest @timer can
1520 	 * expire is on the closest next tick and delayed_work users depend
1521 	 * on that there's no such delay when @delay is 0.
1522 	 */
1523 	if (!delay) {
1524 		__queue_work(cpu, wq, &dwork->work);
1525 		return;
1526 	}
1527 
1528 	dwork->wq = wq;
1529 	dwork->cpu = cpu;
1530 	timer->expires = jiffies + delay;
1531 
1532 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1533 		add_timer_on(timer, cpu);
1534 	else
1535 		add_timer(timer);
1536 }
1537 
1538 /**
1539  * queue_delayed_work_on - queue work on specific CPU after delay
1540  * @cpu: CPU number to execute work on
1541  * @wq: workqueue to use
1542  * @dwork: work to queue
1543  * @delay: number of jiffies to wait before queueing
1544  *
1545  * Return: %false if @work was already on a queue, %true otherwise.  If
1546  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1547  * execution.
1548  */
1549 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1550 			   struct delayed_work *dwork, unsigned long delay)
1551 {
1552 	struct work_struct *work = &dwork->work;
1553 	bool ret = false;
1554 	unsigned long flags;
1555 
1556 	/* read the comment in __queue_work() */
1557 	local_irq_save(flags);
1558 
1559 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1560 		__queue_delayed_work(cpu, wq, dwork, delay);
1561 		ret = true;
1562 	}
1563 
1564 	local_irq_restore(flags);
1565 	return ret;
1566 }
1567 EXPORT_SYMBOL(queue_delayed_work_on);
1568 
1569 /**
1570  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1571  * @cpu: CPU number to execute work on
1572  * @wq: workqueue to use
1573  * @dwork: work to queue
1574  * @delay: number of jiffies to wait before queueing
1575  *
1576  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1577  * modify @dwork's timer so that it expires after @delay.  If @delay is
1578  * zero, @work is guaranteed to be scheduled immediately regardless of its
1579  * current state.
1580  *
1581  * Return: %false if @dwork was idle and queued, %true if @dwork was
1582  * pending and its timer was modified.
1583  *
1584  * This function is safe to call from any context including IRQ handler.
1585  * See try_to_grab_pending() for details.
1586  */
1587 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1588 			 struct delayed_work *dwork, unsigned long delay)
1589 {
1590 	unsigned long flags;
1591 	int ret;
1592 
1593 	do {
1594 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1595 	} while (unlikely(ret == -EAGAIN));
1596 
1597 	if (likely(ret >= 0)) {
1598 		__queue_delayed_work(cpu, wq, dwork, delay);
1599 		local_irq_restore(flags);
1600 	}
1601 
1602 	/* -ENOENT from try_to_grab_pending() becomes %true */
1603 	return ret;
1604 }
1605 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1606 
1607 /**
1608  * worker_enter_idle - enter idle state
1609  * @worker: worker which is entering idle state
1610  *
1611  * @worker is entering idle state.  Update stats and idle timer if
1612  * necessary.
1613  *
1614  * LOCKING:
1615  * spin_lock_irq(pool->lock).
1616  */
1617 static void worker_enter_idle(struct worker *worker)
1618 {
1619 	struct worker_pool *pool = worker->pool;
1620 
1621 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1622 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1623 			 (worker->hentry.next || worker->hentry.pprev)))
1624 		return;
1625 
1626 	/* can't use worker_set_flags(), also called from create_worker() */
1627 	worker->flags |= WORKER_IDLE;
1628 	pool->nr_idle++;
1629 	worker->last_active = jiffies;
1630 
1631 	/* idle_list is LIFO */
1632 	list_add(&worker->entry, &pool->idle_list);
1633 
1634 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1635 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1636 
1637 	/*
1638 	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1639 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1640 	 * nr_running, the warning may trigger spuriously.  Check iff
1641 	 * unbind is not in progress.
1642 	 */
1643 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1644 		     pool->nr_workers == pool->nr_idle &&
1645 		     atomic_read(&pool->nr_running));
1646 }
1647 
1648 /**
1649  * worker_leave_idle - leave idle state
1650  * @worker: worker which is leaving idle state
1651  *
1652  * @worker is leaving idle state.  Update stats.
1653  *
1654  * LOCKING:
1655  * spin_lock_irq(pool->lock).
1656  */
1657 static void worker_leave_idle(struct worker *worker)
1658 {
1659 	struct worker_pool *pool = worker->pool;
1660 
1661 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1662 		return;
1663 	worker_clr_flags(worker, WORKER_IDLE);
1664 	pool->nr_idle--;
1665 	list_del_init(&worker->entry);
1666 }
1667 
1668 static struct worker *alloc_worker(int node)
1669 {
1670 	struct worker *worker;
1671 
1672 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1673 	if (worker) {
1674 		INIT_LIST_HEAD(&worker->entry);
1675 		INIT_LIST_HEAD(&worker->scheduled);
1676 		INIT_LIST_HEAD(&worker->node);
1677 		/* on creation a worker is in !idle && prep state */
1678 		worker->flags = WORKER_PREP;
1679 	}
1680 	return worker;
1681 }
1682 
1683 /**
1684  * worker_attach_to_pool() - attach a worker to a pool
1685  * @worker: worker to be attached
1686  * @pool: the target pool
1687  *
1688  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1689  * cpu-binding of @worker are kept coordinated with the pool across
1690  * cpu-[un]hotplugs.
1691  */
1692 static void worker_attach_to_pool(struct worker *worker,
1693 				   struct worker_pool *pool)
1694 {
1695 	mutex_lock(&pool->attach_mutex);
1696 
1697 	/*
1698 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1699 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1700 	 */
1701 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1702 
1703 	/*
1704 	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1705 	 * stable across this function.  See the comments above the
1706 	 * flag definition for details.
1707 	 */
1708 	if (pool->flags & POOL_DISASSOCIATED)
1709 		worker->flags |= WORKER_UNBOUND;
1710 
1711 	list_add_tail(&worker->node, &pool->workers);
1712 
1713 	mutex_unlock(&pool->attach_mutex);
1714 }
1715 
1716 /**
1717  * worker_detach_from_pool() - detach a worker from its pool
1718  * @worker: worker which is attached to its pool
1719  * @pool: the pool @worker is attached to
1720  *
1721  * Undo the attaching which had been done in worker_attach_to_pool().  The
1722  * caller worker shouldn't access to the pool after detached except it has
1723  * other reference to the pool.
1724  */
1725 static void worker_detach_from_pool(struct worker *worker,
1726 				    struct worker_pool *pool)
1727 {
1728 	struct completion *detach_completion = NULL;
1729 
1730 	mutex_lock(&pool->attach_mutex);
1731 	list_del(&worker->node);
1732 	if (list_empty(&pool->workers))
1733 		detach_completion = pool->detach_completion;
1734 	mutex_unlock(&pool->attach_mutex);
1735 
1736 	/* clear leftover flags without pool->lock after it is detached */
1737 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1738 
1739 	if (detach_completion)
1740 		complete(detach_completion);
1741 }
1742 
1743 /**
1744  * create_worker - create a new workqueue worker
1745  * @pool: pool the new worker will belong to
1746  *
1747  * Create and start a new worker which is attached to @pool.
1748  *
1749  * CONTEXT:
1750  * Might sleep.  Does GFP_KERNEL allocations.
1751  *
1752  * Return:
1753  * Pointer to the newly created worker.
1754  */
1755 static struct worker *create_worker(struct worker_pool *pool)
1756 {
1757 	struct worker *worker = NULL;
1758 	int id = -1;
1759 	char id_buf[16];
1760 
1761 	/* ID is needed to determine kthread name */
1762 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1763 	if (id < 0)
1764 		goto fail;
1765 
1766 	worker = alloc_worker(pool->node);
1767 	if (!worker)
1768 		goto fail;
1769 
1770 	worker->pool = pool;
1771 	worker->id = id;
1772 
1773 	if (pool->cpu >= 0)
1774 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1775 			 pool->attrs->nice < 0  ? "H" : "");
1776 	else
1777 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1778 
1779 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1780 					      "kworker/%s", id_buf);
1781 	if (IS_ERR(worker->task))
1782 		goto fail;
1783 
1784 	set_user_nice(worker->task, pool->attrs->nice);
1785 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1786 
1787 	/* successful, attach the worker to the pool */
1788 	worker_attach_to_pool(worker, pool);
1789 
1790 	/* start the newly created worker */
1791 	spin_lock_irq(&pool->lock);
1792 	worker->pool->nr_workers++;
1793 	worker_enter_idle(worker);
1794 	wake_up_process(worker->task);
1795 	spin_unlock_irq(&pool->lock);
1796 
1797 	return worker;
1798 
1799 fail:
1800 	if (id >= 0)
1801 		ida_simple_remove(&pool->worker_ida, id);
1802 	kfree(worker);
1803 	return NULL;
1804 }
1805 
1806 /**
1807  * destroy_worker - destroy a workqueue worker
1808  * @worker: worker to be destroyed
1809  *
1810  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1811  * be idle.
1812  *
1813  * CONTEXT:
1814  * spin_lock_irq(pool->lock).
1815  */
1816 static void destroy_worker(struct worker *worker)
1817 {
1818 	struct worker_pool *pool = worker->pool;
1819 
1820 	lockdep_assert_held(&pool->lock);
1821 
1822 	/* sanity check frenzy */
1823 	if (WARN_ON(worker->current_work) ||
1824 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1825 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1826 		return;
1827 
1828 	pool->nr_workers--;
1829 	pool->nr_idle--;
1830 
1831 	list_del_init(&worker->entry);
1832 	worker->flags |= WORKER_DIE;
1833 	wake_up_process(worker->task);
1834 }
1835 
1836 static void idle_worker_timeout(unsigned long __pool)
1837 {
1838 	struct worker_pool *pool = (void *)__pool;
1839 
1840 	spin_lock_irq(&pool->lock);
1841 
1842 	while (too_many_workers(pool)) {
1843 		struct worker *worker;
1844 		unsigned long expires;
1845 
1846 		/* idle_list is kept in LIFO order, check the last one */
1847 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1848 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1849 
1850 		if (time_before(jiffies, expires)) {
1851 			mod_timer(&pool->idle_timer, expires);
1852 			break;
1853 		}
1854 
1855 		destroy_worker(worker);
1856 	}
1857 
1858 	spin_unlock_irq(&pool->lock);
1859 }
1860 
1861 static void send_mayday(struct work_struct *work)
1862 {
1863 	struct pool_workqueue *pwq = get_work_pwq(work);
1864 	struct workqueue_struct *wq = pwq->wq;
1865 
1866 	lockdep_assert_held(&wq_mayday_lock);
1867 
1868 	if (!wq->rescuer)
1869 		return;
1870 
1871 	/* mayday mayday mayday */
1872 	if (list_empty(&pwq->mayday_node)) {
1873 		/*
1874 		 * If @pwq is for an unbound wq, its base ref may be put at
1875 		 * any time due to an attribute change.  Pin @pwq until the
1876 		 * rescuer is done with it.
1877 		 */
1878 		get_pwq(pwq);
1879 		list_add_tail(&pwq->mayday_node, &wq->maydays);
1880 		wake_up_process(wq->rescuer->task);
1881 	}
1882 }
1883 
1884 static void pool_mayday_timeout(unsigned long __pool)
1885 {
1886 	struct worker_pool *pool = (void *)__pool;
1887 	struct work_struct *work;
1888 
1889 	spin_lock_irq(&pool->lock);
1890 	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1891 
1892 	if (need_to_create_worker(pool)) {
1893 		/*
1894 		 * We've been trying to create a new worker but
1895 		 * haven't been successful.  We might be hitting an
1896 		 * allocation deadlock.  Send distress signals to
1897 		 * rescuers.
1898 		 */
1899 		list_for_each_entry(work, &pool->worklist, entry)
1900 			send_mayday(work);
1901 	}
1902 
1903 	spin_unlock(&wq_mayday_lock);
1904 	spin_unlock_irq(&pool->lock);
1905 
1906 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1907 }
1908 
1909 /**
1910  * maybe_create_worker - create a new worker if necessary
1911  * @pool: pool to create a new worker for
1912  *
1913  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1914  * have at least one idle worker on return from this function.  If
1915  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1916  * sent to all rescuers with works scheduled on @pool to resolve
1917  * possible allocation deadlock.
1918  *
1919  * On return, need_to_create_worker() is guaranteed to be %false and
1920  * may_start_working() %true.
1921  *
1922  * LOCKING:
1923  * spin_lock_irq(pool->lock) which may be released and regrabbed
1924  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1925  * manager.
1926  */
1927 static void maybe_create_worker(struct worker_pool *pool)
1928 __releases(&pool->lock)
1929 __acquires(&pool->lock)
1930 {
1931 restart:
1932 	spin_unlock_irq(&pool->lock);
1933 
1934 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1935 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1936 
1937 	while (true) {
1938 		if (create_worker(pool) || !need_to_create_worker(pool))
1939 			break;
1940 
1941 		schedule_timeout_interruptible(CREATE_COOLDOWN);
1942 
1943 		if (!need_to_create_worker(pool))
1944 			break;
1945 	}
1946 
1947 	del_timer_sync(&pool->mayday_timer);
1948 	spin_lock_irq(&pool->lock);
1949 	/*
1950 	 * This is necessary even after a new worker was just successfully
1951 	 * created as @pool->lock was dropped and the new worker might have
1952 	 * already become busy.
1953 	 */
1954 	if (need_to_create_worker(pool))
1955 		goto restart;
1956 }
1957 
1958 /**
1959  * manage_workers - manage worker pool
1960  * @worker: self
1961  *
1962  * Assume the manager role and manage the worker pool @worker belongs
1963  * to.  At any given time, there can be only zero or one manager per
1964  * pool.  The exclusion is handled automatically by this function.
1965  *
1966  * The caller can safely start processing works on false return.  On
1967  * true return, it's guaranteed that need_to_create_worker() is false
1968  * and may_start_working() is true.
1969  *
1970  * CONTEXT:
1971  * spin_lock_irq(pool->lock) which may be released and regrabbed
1972  * multiple times.  Does GFP_KERNEL allocations.
1973  *
1974  * Return:
1975  * %false if the pool doesn't need management and the caller can safely
1976  * start processing works, %true if management function was performed and
1977  * the conditions that the caller verified before calling the function may
1978  * no longer be true.
1979  */
1980 static bool manage_workers(struct worker *worker)
1981 {
1982 	struct worker_pool *pool = worker->pool;
1983 
1984 	if (pool->flags & POOL_MANAGER_ACTIVE)
1985 		return false;
1986 
1987 	pool->flags |= POOL_MANAGER_ACTIVE;
1988 	pool->manager = worker;
1989 
1990 	maybe_create_worker(pool);
1991 
1992 	pool->manager = NULL;
1993 	pool->flags &= ~POOL_MANAGER_ACTIVE;
1994 	wake_up(&wq_manager_wait);
1995 	return true;
1996 }
1997 
1998 /**
1999  * process_one_work - process single work
2000  * @worker: self
2001  * @work: work to process
2002  *
2003  * Process @work.  This function contains all the logics necessary to
2004  * process a single work including synchronization against and
2005  * interaction with other workers on the same cpu, queueing and
2006  * flushing.  As long as context requirement is met, any worker can
2007  * call this function to process a work.
2008  *
2009  * CONTEXT:
2010  * spin_lock_irq(pool->lock) which is released and regrabbed.
2011  */
2012 static void process_one_work(struct worker *worker, struct work_struct *work)
2013 __releases(&pool->lock)
2014 __acquires(&pool->lock)
2015 {
2016 	struct pool_workqueue *pwq = get_work_pwq(work);
2017 	struct worker_pool *pool = worker->pool;
2018 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2019 	int work_color;
2020 	struct worker *collision;
2021 #ifdef CONFIG_LOCKDEP
2022 	/*
2023 	 * It is permissible to free the struct work_struct from
2024 	 * inside the function that is called from it, this we need to
2025 	 * take into account for lockdep too.  To avoid bogus "held
2026 	 * lock freed" warnings as well as problems when looking into
2027 	 * work->lockdep_map, make a copy and use that here.
2028 	 */
2029 	struct lockdep_map lockdep_map;
2030 
2031 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2032 #endif
2033 	/* ensure we're on the correct CPU */
2034 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2035 		     raw_smp_processor_id() != pool->cpu);
2036 
2037 	/*
2038 	 * A single work shouldn't be executed concurrently by
2039 	 * multiple workers on a single cpu.  Check whether anyone is
2040 	 * already processing the work.  If so, defer the work to the
2041 	 * currently executing one.
2042 	 */
2043 	collision = find_worker_executing_work(pool, work);
2044 	if (unlikely(collision)) {
2045 		move_linked_works(work, &collision->scheduled, NULL);
2046 		return;
2047 	}
2048 
2049 	/* claim and dequeue */
2050 	debug_work_deactivate(work);
2051 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2052 	worker->current_work = work;
2053 	worker->current_func = work->func;
2054 	worker->current_pwq = pwq;
2055 	work_color = get_work_color(work);
2056 
2057 	list_del_init(&work->entry);
2058 
2059 	/*
2060 	 * CPU intensive works don't participate in concurrency management.
2061 	 * They're the scheduler's responsibility.  This takes @worker out
2062 	 * of concurrency management and the next code block will chain
2063 	 * execution of the pending work items.
2064 	 */
2065 	if (unlikely(cpu_intensive))
2066 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2067 
2068 	/*
2069 	 * Wake up another worker if necessary.  The condition is always
2070 	 * false for normal per-cpu workers since nr_running would always
2071 	 * be >= 1 at this point.  This is used to chain execution of the
2072 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2073 	 * UNBOUND and CPU_INTENSIVE ones.
2074 	 */
2075 	if (need_more_worker(pool))
2076 		wake_up_worker(pool);
2077 
2078 	/*
2079 	 * Record the last pool and clear PENDING which should be the last
2080 	 * update to @work.  Also, do this inside @pool->lock so that
2081 	 * PENDING and queued state changes happen together while IRQ is
2082 	 * disabled.
2083 	 */
2084 	set_work_pool_and_clear_pending(work, pool->id);
2085 
2086 	spin_unlock_irq(&pool->lock);
2087 
2088 	lock_map_acquire(&pwq->wq->lockdep_map);
2089 	lock_map_acquire(&lockdep_map);
2090 	/*
2091 	 * Strictly speaking we should mark the invariant state without holding
2092 	 * any locks, that is, before these two lock_map_acquire()'s.
2093 	 *
2094 	 * However, that would result in:
2095 	 *
2096 	 *   A(W1)
2097 	 *   WFC(C)
2098 	 *		A(W1)
2099 	 *		C(C)
2100 	 *
2101 	 * Which would create W1->C->W1 dependencies, even though there is no
2102 	 * actual deadlock possible. There are two solutions, using a
2103 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2104 	 * hit the lockdep limitation on recursive locks, or simply discard
2105 	 * these locks.
2106 	 *
2107 	 * AFAICT there is no possible deadlock scenario between the
2108 	 * flush_work() and complete() primitives (except for single-threaded
2109 	 * workqueues), so hiding them isn't a problem.
2110 	 */
2111 	lockdep_invariant_state(true);
2112 	trace_workqueue_execute_start(work);
2113 	worker->current_func(work);
2114 	/*
2115 	 * While we must be careful to not use "work" after this, the trace
2116 	 * point will only record its address.
2117 	 */
2118 	trace_workqueue_execute_end(work);
2119 	lock_map_release(&lockdep_map);
2120 	lock_map_release(&pwq->wq->lockdep_map);
2121 
2122 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2123 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2124 		       "     last function: %pf\n",
2125 		       current->comm, preempt_count(), task_pid_nr(current),
2126 		       worker->current_func);
2127 		debug_show_held_locks(current);
2128 		dump_stack();
2129 	}
2130 
2131 	/*
2132 	 * The following prevents a kworker from hogging CPU on !PREEMPT
2133 	 * kernels, where a requeueing work item waiting for something to
2134 	 * happen could deadlock with stop_machine as such work item could
2135 	 * indefinitely requeue itself while all other CPUs are trapped in
2136 	 * stop_machine. At the same time, report a quiescent RCU state so
2137 	 * the same condition doesn't freeze RCU.
2138 	 */
2139 	cond_resched_rcu_qs();
2140 
2141 	spin_lock_irq(&pool->lock);
2142 
2143 	/* clear cpu intensive status */
2144 	if (unlikely(cpu_intensive))
2145 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2146 
2147 	/* we're done with it, release */
2148 	hash_del(&worker->hentry);
2149 	worker->current_work = NULL;
2150 	worker->current_func = NULL;
2151 	worker->current_pwq = NULL;
2152 	worker->desc_valid = false;
2153 	pwq_dec_nr_in_flight(pwq, work_color);
2154 }
2155 
2156 /**
2157  * process_scheduled_works - process scheduled works
2158  * @worker: self
2159  *
2160  * Process all scheduled works.  Please note that the scheduled list
2161  * may change while processing a work, so this function repeatedly
2162  * fetches a work from the top and executes it.
2163  *
2164  * CONTEXT:
2165  * spin_lock_irq(pool->lock) which may be released and regrabbed
2166  * multiple times.
2167  */
2168 static void process_scheduled_works(struct worker *worker)
2169 {
2170 	while (!list_empty(&worker->scheduled)) {
2171 		struct work_struct *work = list_first_entry(&worker->scheduled,
2172 						struct work_struct, entry);
2173 		process_one_work(worker, work);
2174 	}
2175 }
2176 
2177 /**
2178  * worker_thread - the worker thread function
2179  * @__worker: self
2180  *
2181  * The worker thread function.  All workers belong to a worker_pool -
2182  * either a per-cpu one or dynamic unbound one.  These workers process all
2183  * work items regardless of their specific target workqueue.  The only
2184  * exception is work items which belong to workqueues with a rescuer which
2185  * will be explained in rescuer_thread().
2186  *
2187  * Return: 0
2188  */
2189 static int worker_thread(void *__worker)
2190 {
2191 	struct worker *worker = __worker;
2192 	struct worker_pool *pool = worker->pool;
2193 
2194 	/* tell the scheduler that this is a workqueue worker */
2195 	worker->task->flags |= PF_WQ_WORKER;
2196 woke_up:
2197 	spin_lock_irq(&pool->lock);
2198 
2199 	/* am I supposed to die? */
2200 	if (unlikely(worker->flags & WORKER_DIE)) {
2201 		spin_unlock_irq(&pool->lock);
2202 		WARN_ON_ONCE(!list_empty(&worker->entry));
2203 		worker->task->flags &= ~PF_WQ_WORKER;
2204 
2205 		set_task_comm(worker->task, "kworker/dying");
2206 		ida_simple_remove(&pool->worker_ida, worker->id);
2207 		worker_detach_from_pool(worker, pool);
2208 		kfree(worker);
2209 		return 0;
2210 	}
2211 
2212 	worker_leave_idle(worker);
2213 recheck:
2214 	/* no more worker necessary? */
2215 	if (!need_more_worker(pool))
2216 		goto sleep;
2217 
2218 	/* do we need to manage? */
2219 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2220 		goto recheck;
2221 
2222 	/*
2223 	 * ->scheduled list can only be filled while a worker is
2224 	 * preparing to process a work or actually processing it.
2225 	 * Make sure nobody diddled with it while I was sleeping.
2226 	 */
2227 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2228 
2229 	/*
2230 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2231 	 * worker or that someone else has already assumed the manager
2232 	 * role.  This is where @worker starts participating in concurrency
2233 	 * management if applicable and concurrency management is restored
2234 	 * after being rebound.  See rebind_workers() for details.
2235 	 */
2236 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2237 
2238 	do {
2239 		struct work_struct *work =
2240 			list_first_entry(&pool->worklist,
2241 					 struct work_struct, entry);
2242 
2243 		pool->watchdog_ts = jiffies;
2244 
2245 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2246 			/* optimization path, not strictly necessary */
2247 			process_one_work(worker, work);
2248 			if (unlikely(!list_empty(&worker->scheduled)))
2249 				process_scheduled_works(worker);
2250 		} else {
2251 			move_linked_works(work, &worker->scheduled, NULL);
2252 			process_scheduled_works(worker);
2253 		}
2254 	} while (keep_working(pool));
2255 
2256 	worker_set_flags(worker, WORKER_PREP);
2257 sleep:
2258 	/*
2259 	 * pool->lock is held and there's no work to process and no need to
2260 	 * manage, sleep.  Workers are woken up only while holding
2261 	 * pool->lock or from local cpu, so setting the current state
2262 	 * before releasing pool->lock is enough to prevent losing any
2263 	 * event.
2264 	 */
2265 	worker_enter_idle(worker);
2266 	__set_current_state(TASK_IDLE);
2267 	spin_unlock_irq(&pool->lock);
2268 	schedule();
2269 	goto woke_up;
2270 }
2271 
2272 /**
2273  * rescuer_thread - the rescuer thread function
2274  * @__rescuer: self
2275  *
2276  * Workqueue rescuer thread function.  There's one rescuer for each
2277  * workqueue which has WQ_MEM_RECLAIM set.
2278  *
2279  * Regular work processing on a pool may block trying to create a new
2280  * worker which uses GFP_KERNEL allocation which has slight chance of
2281  * developing into deadlock if some works currently on the same queue
2282  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2283  * the problem rescuer solves.
2284  *
2285  * When such condition is possible, the pool summons rescuers of all
2286  * workqueues which have works queued on the pool and let them process
2287  * those works so that forward progress can be guaranteed.
2288  *
2289  * This should happen rarely.
2290  *
2291  * Return: 0
2292  */
2293 static int rescuer_thread(void *__rescuer)
2294 {
2295 	struct worker *rescuer = __rescuer;
2296 	struct workqueue_struct *wq = rescuer->rescue_wq;
2297 	struct list_head *scheduled = &rescuer->scheduled;
2298 	bool should_stop;
2299 
2300 	set_user_nice(current, RESCUER_NICE_LEVEL);
2301 
2302 	/*
2303 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2304 	 * doesn't participate in concurrency management.
2305 	 */
2306 	rescuer->task->flags |= PF_WQ_WORKER;
2307 repeat:
2308 	set_current_state(TASK_IDLE);
2309 
2310 	/*
2311 	 * By the time the rescuer is requested to stop, the workqueue
2312 	 * shouldn't have any work pending, but @wq->maydays may still have
2313 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2314 	 * all the work items before the rescuer got to them.  Go through
2315 	 * @wq->maydays processing before acting on should_stop so that the
2316 	 * list is always empty on exit.
2317 	 */
2318 	should_stop = kthread_should_stop();
2319 
2320 	/* see whether any pwq is asking for help */
2321 	spin_lock_irq(&wq_mayday_lock);
2322 
2323 	while (!list_empty(&wq->maydays)) {
2324 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2325 					struct pool_workqueue, mayday_node);
2326 		struct worker_pool *pool = pwq->pool;
2327 		struct work_struct *work, *n;
2328 		bool first = true;
2329 
2330 		__set_current_state(TASK_RUNNING);
2331 		list_del_init(&pwq->mayday_node);
2332 
2333 		spin_unlock_irq(&wq_mayday_lock);
2334 
2335 		worker_attach_to_pool(rescuer, pool);
2336 
2337 		spin_lock_irq(&pool->lock);
2338 		rescuer->pool = pool;
2339 
2340 		/*
2341 		 * Slurp in all works issued via this workqueue and
2342 		 * process'em.
2343 		 */
2344 		WARN_ON_ONCE(!list_empty(scheduled));
2345 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2346 			if (get_work_pwq(work) == pwq) {
2347 				if (first)
2348 					pool->watchdog_ts = jiffies;
2349 				move_linked_works(work, scheduled, &n);
2350 			}
2351 			first = false;
2352 		}
2353 
2354 		if (!list_empty(scheduled)) {
2355 			process_scheduled_works(rescuer);
2356 
2357 			/*
2358 			 * The above execution of rescued work items could
2359 			 * have created more to rescue through
2360 			 * pwq_activate_first_delayed() or chained
2361 			 * queueing.  Let's put @pwq back on mayday list so
2362 			 * that such back-to-back work items, which may be
2363 			 * being used to relieve memory pressure, don't
2364 			 * incur MAYDAY_INTERVAL delay inbetween.
2365 			 */
2366 			if (need_to_create_worker(pool)) {
2367 				spin_lock(&wq_mayday_lock);
2368 				get_pwq(pwq);
2369 				list_move_tail(&pwq->mayday_node, &wq->maydays);
2370 				spin_unlock(&wq_mayday_lock);
2371 			}
2372 		}
2373 
2374 		/*
2375 		 * Put the reference grabbed by send_mayday().  @pool won't
2376 		 * go away while we're still attached to it.
2377 		 */
2378 		put_pwq(pwq);
2379 
2380 		/*
2381 		 * Leave this pool.  If need_more_worker() is %true, notify a
2382 		 * regular worker; otherwise, we end up with 0 concurrency
2383 		 * and stalling the execution.
2384 		 */
2385 		if (need_more_worker(pool))
2386 			wake_up_worker(pool);
2387 
2388 		rescuer->pool = NULL;
2389 		spin_unlock_irq(&pool->lock);
2390 
2391 		worker_detach_from_pool(rescuer, pool);
2392 
2393 		spin_lock_irq(&wq_mayday_lock);
2394 	}
2395 
2396 	spin_unlock_irq(&wq_mayday_lock);
2397 
2398 	if (should_stop) {
2399 		__set_current_state(TASK_RUNNING);
2400 		rescuer->task->flags &= ~PF_WQ_WORKER;
2401 		return 0;
2402 	}
2403 
2404 	/* rescuers should never participate in concurrency management */
2405 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2406 	schedule();
2407 	goto repeat;
2408 }
2409 
2410 /**
2411  * check_flush_dependency - check for flush dependency sanity
2412  * @target_wq: workqueue being flushed
2413  * @target_work: work item being flushed (NULL for workqueue flushes)
2414  *
2415  * %current is trying to flush the whole @target_wq or @target_work on it.
2416  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2417  * reclaiming memory or running on a workqueue which doesn't have
2418  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2419  * a deadlock.
2420  */
2421 static void check_flush_dependency(struct workqueue_struct *target_wq,
2422 				   struct work_struct *target_work)
2423 {
2424 	work_func_t target_func = target_work ? target_work->func : NULL;
2425 	struct worker *worker;
2426 
2427 	if (target_wq->flags & WQ_MEM_RECLAIM)
2428 		return;
2429 
2430 	worker = current_wq_worker();
2431 
2432 	WARN_ONCE(current->flags & PF_MEMALLOC,
2433 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2434 		  current->pid, current->comm, target_wq->name, target_func);
2435 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2436 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2437 		  "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2438 		  worker->current_pwq->wq->name, worker->current_func,
2439 		  target_wq->name, target_func);
2440 }
2441 
2442 struct wq_barrier {
2443 	struct work_struct	work;
2444 	struct completion	done;
2445 	struct task_struct	*task;	/* purely informational */
2446 };
2447 
2448 static void wq_barrier_func(struct work_struct *work)
2449 {
2450 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2451 	complete(&barr->done);
2452 }
2453 
2454 /**
2455  * insert_wq_barrier - insert a barrier work
2456  * @pwq: pwq to insert barrier into
2457  * @barr: wq_barrier to insert
2458  * @target: target work to attach @barr to
2459  * @worker: worker currently executing @target, NULL if @target is not executing
2460  *
2461  * @barr is linked to @target such that @barr is completed only after
2462  * @target finishes execution.  Please note that the ordering
2463  * guarantee is observed only with respect to @target and on the local
2464  * cpu.
2465  *
2466  * Currently, a queued barrier can't be canceled.  This is because
2467  * try_to_grab_pending() can't determine whether the work to be
2468  * grabbed is at the head of the queue and thus can't clear LINKED
2469  * flag of the previous work while there must be a valid next work
2470  * after a work with LINKED flag set.
2471  *
2472  * Note that when @worker is non-NULL, @target may be modified
2473  * underneath us, so we can't reliably determine pwq from @target.
2474  *
2475  * CONTEXT:
2476  * spin_lock_irq(pool->lock).
2477  */
2478 static void insert_wq_barrier(struct pool_workqueue *pwq,
2479 			      struct wq_barrier *barr,
2480 			      struct work_struct *target, struct worker *worker)
2481 {
2482 	struct list_head *head;
2483 	unsigned int linked = 0;
2484 
2485 	/*
2486 	 * debugobject calls are safe here even with pool->lock locked
2487 	 * as we know for sure that this will not trigger any of the
2488 	 * checks and call back into the fixup functions where we
2489 	 * might deadlock.
2490 	 */
2491 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2492 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2493 
2494 	/*
2495 	 * Explicitly init the crosslock for wq_barrier::done, make its lock
2496 	 * key a subkey of the corresponding work. As a result we won't
2497 	 * build a dependency between wq_barrier::done and unrelated work.
2498 	 */
2499 	lockdep_init_map_crosslock((struct lockdep_map *)&barr->done.map,
2500 				   "(complete)wq_barr::done",
2501 				   target->lockdep_map.key, 1);
2502 	__init_completion(&barr->done);
2503 	barr->task = current;
2504 
2505 	/*
2506 	 * If @target is currently being executed, schedule the
2507 	 * barrier to the worker; otherwise, put it after @target.
2508 	 */
2509 	if (worker)
2510 		head = worker->scheduled.next;
2511 	else {
2512 		unsigned long *bits = work_data_bits(target);
2513 
2514 		head = target->entry.next;
2515 		/* there can already be other linked works, inherit and set */
2516 		linked = *bits & WORK_STRUCT_LINKED;
2517 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2518 	}
2519 
2520 	debug_work_activate(&barr->work);
2521 	insert_work(pwq, &barr->work, head,
2522 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2523 }
2524 
2525 /**
2526  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2527  * @wq: workqueue being flushed
2528  * @flush_color: new flush color, < 0 for no-op
2529  * @work_color: new work color, < 0 for no-op
2530  *
2531  * Prepare pwqs for workqueue flushing.
2532  *
2533  * If @flush_color is non-negative, flush_color on all pwqs should be
2534  * -1.  If no pwq has in-flight commands at the specified color, all
2535  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2536  * has in flight commands, its pwq->flush_color is set to
2537  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2538  * wakeup logic is armed and %true is returned.
2539  *
2540  * The caller should have initialized @wq->first_flusher prior to
2541  * calling this function with non-negative @flush_color.  If
2542  * @flush_color is negative, no flush color update is done and %false
2543  * is returned.
2544  *
2545  * If @work_color is non-negative, all pwqs should have the same
2546  * work_color which is previous to @work_color and all will be
2547  * advanced to @work_color.
2548  *
2549  * CONTEXT:
2550  * mutex_lock(wq->mutex).
2551  *
2552  * Return:
2553  * %true if @flush_color >= 0 and there's something to flush.  %false
2554  * otherwise.
2555  */
2556 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2557 				      int flush_color, int work_color)
2558 {
2559 	bool wait = false;
2560 	struct pool_workqueue *pwq;
2561 
2562 	if (flush_color >= 0) {
2563 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2564 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2565 	}
2566 
2567 	for_each_pwq(pwq, wq) {
2568 		struct worker_pool *pool = pwq->pool;
2569 
2570 		spin_lock_irq(&pool->lock);
2571 
2572 		if (flush_color >= 0) {
2573 			WARN_ON_ONCE(pwq->flush_color != -1);
2574 
2575 			if (pwq->nr_in_flight[flush_color]) {
2576 				pwq->flush_color = flush_color;
2577 				atomic_inc(&wq->nr_pwqs_to_flush);
2578 				wait = true;
2579 			}
2580 		}
2581 
2582 		if (work_color >= 0) {
2583 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2584 			pwq->work_color = work_color;
2585 		}
2586 
2587 		spin_unlock_irq(&pool->lock);
2588 	}
2589 
2590 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2591 		complete(&wq->first_flusher->done);
2592 
2593 	return wait;
2594 }
2595 
2596 /**
2597  * flush_workqueue - ensure that any scheduled work has run to completion.
2598  * @wq: workqueue to flush
2599  *
2600  * This function sleeps until all work items which were queued on entry
2601  * have finished execution, but it is not livelocked by new incoming ones.
2602  */
2603 void flush_workqueue(struct workqueue_struct *wq)
2604 {
2605 	struct wq_flusher this_flusher = {
2606 		.list = LIST_HEAD_INIT(this_flusher.list),
2607 		.flush_color = -1,
2608 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2609 	};
2610 	int next_color;
2611 
2612 	if (WARN_ON(!wq_online))
2613 		return;
2614 
2615 	lock_map_acquire(&wq->lockdep_map);
2616 	lock_map_release(&wq->lockdep_map);
2617 
2618 	mutex_lock(&wq->mutex);
2619 
2620 	/*
2621 	 * Start-to-wait phase
2622 	 */
2623 	next_color = work_next_color(wq->work_color);
2624 
2625 	if (next_color != wq->flush_color) {
2626 		/*
2627 		 * Color space is not full.  The current work_color
2628 		 * becomes our flush_color and work_color is advanced
2629 		 * by one.
2630 		 */
2631 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2632 		this_flusher.flush_color = wq->work_color;
2633 		wq->work_color = next_color;
2634 
2635 		if (!wq->first_flusher) {
2636 			/* no flush in progress, become the first flusher */
2637 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2638 
2639 			wq->first_flusher = &this_flusher;
2640 
2641 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2642 						       wq->work_color)) {
2643 				/* nothing to flush, done */
2644 				wq->flush_color = next_color;
2645 				wq->first_flusher = NULL;
2646 				goto out_unlock;
2647 			}
2648 		} else {
2649 			/* wait in queue */
2650 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2651 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2652 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2653 		}
2654 	} else {
2655 		/*
2656 		 * Oops, color space is full, wait on overflow queue.
2657 		 * The next flush completion will assign us
2658 		 * flush_color and transfer to flusher_queue.
2659 		 */
2660 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2661 	}
2662 
2663 	check_flush_dependency(wq, NULL);
2664 
2665 	mutex_unlock(&wq->mutex);
2666 
2667 	wait_for_completion(&this_flusher.done);
2668 
2669 	/*
2670 	 * Wake-up-and-cascade phase
2671 	 *
2672 	 * First flushers are responsible for cascading flushes and
2673 	 * handling overflow.  Non-first flushers can simply return.
2674 	 */
2675 	if (wq->first_flusher != &this_flusher)
2676 		return;
2677 
2678 	mutex_lock(&wq->mutex);
2679 
2680 	/* we might have raced, check again with mutex held */
2681 	if (wq->first_flusher != &this_flusher)
2682 		goto out_unlock;
2683 
2684 	wq->first_flusher = NULL;
2685 
2686 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2687 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2688 
2689 	while (true) {
2690 		struct wq_flusher *next, *tmp;
2691 
2692 		/* complete all the flushers sharing the current flush color */
2693 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2694 			if (next->flush_color != wq->flush_color)
2695 				break;
2696 			list_del_init(&next->list);
2697 			complete(&next->done);
2698 		}
2699 
2700 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2701 			     wq->flush_color != work_next_color(wq->work_color));
2702 
2703 		/* this flush_color is finished, advance by one */
2704 		wq->flush_color = work_next_color(wq->flush_color);
2705 
2706 		/* one color has been freed, handle overflow queue */
2707 		if (!list_empty(&wq->flusher_overflow)) {
2708 			/*
2709 			 * Assign the same color to all overflowed
2710 			 * flushers, advance work_color and append to
2711 			 * flusher_queue.  This is the start-to-wait
2712 			 * phase for these overflowed flushers.
2713 			 */
2714 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2715 				tmp->flush_color = wq->work_color;
2716 
2717 			wq->work_color = work_next_color(wq->work_color);
2718 
2719 			list_splice_tail_init(&wq->flusher_overflow,
2720 					      &wq->flusher_queue);
2721 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2722 		}
2723 
2724 		if (list_empty(&wq->flusher_queue)) {
2725 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2726 			break;
2727 		}
2728 
2729 		/*
2730 		 * Need to flush more colors.  Make the next flusher
2731 		 * the new first flusher and arm pwqs.
2732 		 */
2733 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2734 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2735 
2736 		list_del_init(&next->list);
2737 		wq->first_flusher = next;
2738 
2739 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2740 			break;
2741 
2742 		/*
2743 		 * Meh... this color is already done, clear first
2744 		 * flusher and repeat cascading.
2745 		 */
2746 		wq->first_flusher = NULL;
2747 	}
2748 
2749 out_unlock:
2750 	mutex_unlock(&wq->mutex);
2751 }
2752 EXPORT_SYMBOL(flush_workqueue);
2753 
2754 /**
2755  * drain_workqueue - drain a workqueue
2756  * @wq: workqueue to drain
2757  *
2758  * Wait until the workqueue becomes empty.  While draining is in progress,
2759  * only chain queueing is allowed.  IOW, only currently pending or running
2760  * work items on @wq can queue further work items on it.  @wq is flushed
2761  * repeatedly until it becomes empty.  The number of flushing is determined
2762  * by the depth of chaining and should be relatively short.  Whine if it
2763  * takes too long.
2764  */
2765 void drain_workqueue(struct workqueue_struct *wq)
2766 {
2767 	unsigned int flush_cnt = 0;
2768 	struct pool_workqueue *pwq;
2769 
2770 	/*
2771 	 * __queue_work() needs to test whether there are drainers, is much
2772 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2773 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2774 	 */
2775 	mutex_lock(&wq->mutex);
2776 	if (!wq->nr_drainers++)
2777 		wq->flags |= __WQ_DRAINING;
2778 	mutex_unlock(&wq->mutex);
2779 reflush:
2780 	flush_workqueue(wq);
2781 
2782 	mutex_lock(&wq->mutex);
2783 
2784 	for_each_pwq(pwq, wq) {
2785 		bool drained;
2786 
2787 		spin_lock_irq(&pwq->pool->lock);
2788 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2789 		spin_unlock_irq(&pwq->pool->lock);
2790 
2791 		if (drained)
2792 			continue;
2793 
2794 		if (++flush_cnt == 10 ||
2795 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2796 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2797 				wq->name, flush_cnt);
2798 
2799 		mutex_unlock(&wq->mutex);
2800 		goto reflush;
2801 	}
2802 
2803 	if (!--wq->nr_drainers)
2804 		wq->flags &= ~__WQ_DRAINING;
2805 	mutex_unlock(&wq->mutex);
2806 }
2807 EXPORT_SYMBOL_GPL(drain_workqueue);
2808 
2809 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2810 {
2811 	struct worker *worker = NULL;
2812 	struct worker_pool *pool;
2813 	struct pool_workqueue *pwq;
2814 
2815 	might_sleep();
2816 
2817 	local_irq_disable();
2818 	pool = get_work_pool(work);
2819 	if (!pool) {
2820 		local_irq_enable();
2821 		return false;
2822 	}
2823 
2824 	spin_lock(&pool->lock);
2825 	/* see the comment in try_to_grab_pending() with the same code */
2826 	pwq = get_work_pwq(work);
2827 	if (pwq) {
2828 		if (unlikely(pwq->pool != pool))
2829 			goto already_gone;
2830 	} else {
2831 		worker = find_worker_executing_work(pool, work);
2832 		if (!worker)
2833 			goto already_gone;
2834 		pwq = worker->current_pwq;
2835 	}
2836 
2837 	check_flush_dependency(pwq->wq, work);
2838 
2839 	insert_wq_barrier(pwq, barr, work, worker);
2840 	spin_unlock_irq(&pool->lock);
2841 
2842 	/*
2843 	 * Force a lock recursion deadlock when using flush_work() inside a
2844 	 * single-threaded or rescuer equipped workqueue.
2845 	 *
2846 	 * For single threaded workqueues the deadlock happens when the work
2847 	 * is after the work issuing the flush_work(). For rescuer equipped
2848 	 * workqueues the deadlock happens when the rescuer stalls, blocking
2849 	 * forward progress.
2850 	 */
2851 	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) {
2852 		lock_map_acquire(&pwq->wq->lockdep_map);
2853 		lock_map_release(&pwq->wq->lockdep_map);
2854 	}
2855 
2856 	return true;
2857 already_gone:
2858 	spin_unlock_irq(&pool->lock);
2859 	return false;
2860 }
2861 
2862 /**
2863  * flush_work - wait for a work to finish executing the last queueing instance
2864  * @work: the work to flush
2865  *
2866  * Wait until @work has finished execution.  @work is guaranteed to be idle
2867  * on return if it hasn't been requeued since flush started.
2868  *
2869  * Return:
2870  * %true if flush_work() waited for the work to finish execution,
2871  * %false if it was already idle.
2872  */
2873 bool flush_work(struct work_struct *work)
2874 {
2875 	struct wq_barrier barr;
2876 
2877 	if (WARN_ON(!wq_online))
2878 		return false;
2879 
2880 	lock_map_acquire(&work->lockdep_map);
2881 	lock_map_release(&work->lockdep_map);
2882 
2883 	if (start_flush_work(work, &barr)) {
2884 		wait_for_completion(&barr.done);
2885 		destroy_work_on_stack(&barr.work);
2886 		return true;
2887 	} else {
2888 		return false;
2889 	}
2890 }
2891 EXPORT_SYMBOL_GPL(flush_work);
2892 
2893 struct cwt_wait {
2894 	wait_queue_entry_t		wait;
2895 	struct work_struct	*work;
2896 };
2897 
2898 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2899 {
2900 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2901 
2902 	if (cwait->work != key)
2903 		return 0;
2904 	return autoremove_wake_function(wait, mode, sync, key);
2905 }
2906 
2907 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2908 {
2909 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2910 	unsigned long flags;
2911 	int ret;
2912 
2913 	do {
2914 		ret = try_to_grab_pending(work, is_dwork, &flags);
2915 		/*
2916 		 * If someone else is already canceling, wait for it to
2917 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
2918 		 * because we may get scheduled between @work's completion
2919 		 * and the other canceling task resuming and clearing
2920 		 * CANCELING - flush_work() will return false immediately
2921 		 * as @work is no longer busy, try_to_grab_pending() will
2922 		 * return -ENOENT as @work is still being canceled and the
2923 		 * other canceling task won't be able to clear CANCELING as
2924 		 * we're hogging the CPU.
2925 		 *
2926 		 * Let's wait for completion using a waitqueue.  As this
2927 		 * may lead to the thundering herd problem, use a custom
2928 		 * wake function which matches @work along with exclusive
2929 		 * wait and wakeup.
2930 		 */
2931 		if (unlikely(ret == -ENOENT)) {
2932 			struct cwt_wait cwait;
2933 
2934 			init_wait(&cwait.wait);
2935 			cwait.wait.func = cwt_wakefn;
2936 			cwait.work = work;
2937 
2938 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2939 						  TASK_UNINTERRUPTIBLE);
2940 			if (work_is_canceling(work))
2941 				schedule();
2942 			finish_wait(&cancel_waitq, &cwait.wait);
2943 		}
2944 	} while (unlikely(ret < 0));
2945 
2946 	/* tell other tasks trying to grab @work to back off */
2947 	mark_work_canceling(work);
2948 	local_irq_restore(flags);
2949 
2950 	/*
2951 	 * This allows canceling during early boot.  We know that @work
2952 	 * isn't executing.
2953 	 */
2954 	if (wq_online)
2955 		flush_work(work);
2956 
2957 	clear_work_data(work);
2958 
2959 	/*
2960 	 * Paired with prepare_to_wait() above so that either
2961 	 * waitqueue_active() is visible here or !work_is_canceling() is
2962 	 * visible there.
2963 	 */
2964 	smp_mb();
2965 	if (waitqueue_active(&cancel_waitq))
2966 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2967 
2968 	return ret;
2969 }
2970 
2971 /**
2972  * cancel_work_sync - cancel a work and wait for it to finish
2973  * @work: the work to cancel
2974  *
2975  * Cancel @work and wait for its execution to finish.  This function
2976  * can be used even if the work re-queues itself or migrates to
2977  * another workqueue.  On return from this function, @work is
2978  * guaranteed to be not pending or executing on any CPU.
2979  *
2980  * cancel_work_sync(&delayed_work->work) must not be used for
2981  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2982  *
2983  * The caller must ensure that the workqueue on which @work was last
2984  * queued can't be destroyed before this function returns.
2985  *
2986  * Return:
2987  * %true if @work was pending, %false otherwise.
2988  */
2989 bool cancel_work_sync(struct work_struct *work)
2990 {
2991 	return __cancel_work_timer(work, false);
2992 }
2993 EXPORT_SYMBOL_GPL(cancel_work_sync);
2994 
2995 /**
2996  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2997  * @dwork: the delayed work to flush
2998  *
2999  * Delayed timer is cancelled and the pending work is queued for
3000  * immediate execution.  Like flush_work(), this function only
3001  * considers the last queueing instance of @dwork.
3002  *
3003  * Return:
3004  * %true if flush_work() waited for the work to finish execution,
3005  * %false if it was already idle.
3006  */
3007 bool flush_delayed_work(struct delayed_work *dwork)
3008 {
3009 	local_irq_disable();
3010 	if (del_timer_sync(&dwork->timer))
3011 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3012 	local_irq_enable();
3013 	return flush_work(&dwork->work);
3014 }
3015 EXPORT_SYMBOL(flush_delayed_work);
3016 
3017 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3018 {
3019 	unsigned long flags;
3020 	int ret;
3021 
3022 	do {
3023 		ret = try_to_grab_pending(work, is_dwork, &flags);
3024 	} while (unlikely(ret == -EAGAIN));
3025 
3026 	if (unlikely(ret < 0))
3027 		return false;
3028 
3029 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3030 	local_irq_restore(flags);
3031 	return ret;
3032 }
3033 
3034 /*
3035  * See cancel_delayed_work()
3036  */
3037 bool cancel_work(struct work_struct *work)
3038 {
3039 	return __cancel_work(work, false);
3040 }
3041 
3042 /**
3043  * cancel_delayed_work - cancel a delayed work
3044  * @dwork: delayed_work to cancel
3045  *
3046  * Kill off a pending delayed_work.
3047  *
3048  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3049  * pending.
3050  *
3051  * Note:
3052  * The work callback function may still be running on return, unless
3053  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3054  * use cancel_delayed_work_sync() to wait on it.
3055  *
3056  * This function is safe to call from any context including IRQ handler.
3057  */
3058 bool cancel_delayed_work(struct delayed_work *dwork)
3059 {
3060 	return __cancel_work(&dwork->work, true);
3061 }
3062 EXPORT_SYMBOL(cancel_delayed_work);
3063 
3064 /**
3065  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3066  * @dwork: the delayed work cancel
3067  *
3068  * This is cancel_work_sync() for delayed works.
3069  *
3070  * Return:
3071  * %true if @dwork was pending, %false otherwise.
3072  */
3073 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3074 {
3075 	return __cancel_work_timer(&dwork->work, true);
3076 }
3077 EXPORT_SYMBOL(cancel_delayed_work_sync);
3078 
3079 /**
3080  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3081  * @func: the function to call
3082  *
3083  * schedule_on_each_cpu() executes @func on each online CPU using the
3084  * system workqueue and blocks until all CPUs have completed.
3085  * schedule_on_each_cpu() is very slow.
3086  *
3087  * Return:
3088  * 0 on success, -errno on failure.
3089  */
3090 int schedule_on_each_cpu(work_func_t func)
3091 {
3092 	int cpu;
3093 	struct work_struct __percpu *works;
3094 
3095 	works = alloc_percpu(struct work_struct);
3096 	if (!works)
3097 		return -ENOMEM;
3098 
3099 	get_online_cpus();
3100 
3101 	for_each_online_cpu(cpu) {
3102 		struct work_struct *work = per_cpu_ptr(works, cpu);
3103 
3104 		INIT_WORK(work, func);
3105 		schedule_work_on(cpu, work);
3106 	}
3107 
3108 	for_each_online_cpu(cpu)
3109 		flush_work(per_cpu_ptr(works, cpu));
3110 
3111 	put_online_cpus();
3112 	free_percpu(works);
3113 	return 0;
3114 }
3115 
3116 /**
3117  * execute_in_process_context - reliably execute the routine with user context
3118  * @fn:		the function to execute
3119  * @ew:		guaranteed storage for the execute work structure (must
3120  *		be available when the work executes)
3121  *
3122  * Executes the function immediately if process context is available,
3123  * otherwise schedules the function for delayed execution.
3124  *
3125  * Return:	0 - function was executed
3126  *		1 - function was scheduled for execution
3127  */
3128 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3129 {
3130 	if (!in_interrupt()) {
3131 		fn(&ew->work);
3132 		return 0;
3133 	}
3134 
3135 	INIT_WORK(&ew->work, fn);
3136 	schedule_work(&ew->work);
3137 
3138 	return 1;
3139 }
3140 EXPORT_SYMBOL_GPL(execute_in_process_context);
3141 
3142 /**
3143  * free_workqueue_attrs - free a workqueue_attrs
3144  * @attrs: workqueue_attrs to free
3145  *
3146  * Undo alloc_workqueue_attrs().
3147  */
3148 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3149 {
3150 	if (attrs) {
3151 		free_cpumask_var(attrs->cpumask);
3152 		kfree(attrs);
3153 	}
3154 }
3155 
3156 /**
3157  * alloc_workqueue_attrs - allocate a workqueue_attrs
3158  * @gfp_mask: allocation mask to use
3159  *
3160  * Allocate a new workqueue_attrs, initialize with default settings and
3161  * return it.
3162  *
3163  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3164  */
3165 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3166 {
3167 	struct workqueue_attrs *attrs;
3168 
3169 	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3170 	if (!attrs)
3171 		goto fail;
3172 	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3173 		goto fail;
3174 
3175 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3176 	return attrs;
3177 fail:
3178 	free_workqueue_attrs(attrs);
3179 	return NULL;
3180 }
3181 
3182 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3183 				 const struct workqueue_attrs *from)
3184 {
3185 	to->nice = from->nice;
3186 	cpumask_copy(to->cpumask, from->cpumask);
3187 	/*
3188 	 * Unlike hash and equality test, this function doesn't ignore
3189 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3190 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3191 	 */
3192 	to->no_numa = from->no_numa;
3193 }
3194 
3195 /* hash value of the content of @attr */
3196 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3197 {
3198 	u32 hash = 0;
3199 
3200 	hash = jhash_1word(attrs->nice, hash);
3201 	hash = jhash(cpumask_bits(attrs->cpumask),
3202 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3203 	return hash;
3204 }
3205 
3206 /* content equality test */
3207 static bool wqattrs_equal(const struct workqueue_attrs *a,
3208 			  const struct workqueue_attrs *b)
3209 {
3210 	if (a->nice != b->nice)
3211 		return false;
3212 	if (!cpumask_equal(a->cpumask, b->cpumask))
3213 		return false;
3214 	return true;
3215 }
3216 
3217 /**
3218  * init_worker_pool - initialize a newly zalloc'd worker_pool
3219  * @pool: worker_pool to initialize
3220  *
3221  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3222  *
3223  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3224  * inside @pool proper are initialized and put_unbound_pool() can be called
3225  * on @pool safely to release it.
3226  */
3227 static int init_worker_pool(struct worker_pool *pool)
3228 {
3229 	spin_lock_init(&pool->lock);
3230 	pool->id = -1;
3231 	pool->cpu = -1;
3232 	pool->node = NUMA_NO_NODE;
3233 	pool->flags |= POOL_DISASSOCIATED;
3234 	pool->watchdog_ts = jiffies;
3235 	INIT_LIST_HEAD(&pool->worklist);
3236 	INIT_LIST_HEAD(&pool->idle_list);
3237 	hash_init(pool->busy_hash);
3238 
3239 	setup_deferrable_timer(&pool->idle_timer, idle_worker_timeout,
3240 			       (unsigned long)pool);
3241 
3242 	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3243 		    (unsigned long)pool);
3244 
3245 	mutex_init(&pool->attach_mutex);
3246 	INIT_LIST_HEAD(&pool->workers);
3247 
3248 	ida_init(&pool->worker_ida);
3249 	INIT_HLIST_NODE(&pool->hash_node);
3250 	pool->refcnt = 1;
3251 
3252 	/* shouldn't fail above this point */
3253 	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3254 	if (!pool->attrs)
3255 		return -ENOMEM;
3256 	return 0;
3257 }
3258 
3259 static void rcu_free_wq(struct rcu_head *rcu)
3260 {
3261 	struct workqueue_struct *wq =
3262 		container_of(rcu, struct workqueue_struct, rcu);
3263 
3264 	if (!(wq->flags & WQ_UNBOUND))
3265 		free_percpu(wq->cpu_pwqs);
3266 	else
3267 		free_workqueue_attrs(wq->unbound_attrs);
3268 
3269 	kfree(wq->rescuer);
3270 	kfree(wq);
3271 }
3272 
3273 static void rcu_free_pool(struct rcu_head *rcu)
3274 {
3275 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3276 
3277 	ida_destroy(&pool->worker_ida);
3278 	free_workqueue_attrs(pool->attrs);
3279 	kfree(pool);
3280 }
3281 
3282 /**
3283  * put_unbound_pool - put a worker_pool
3284  * @pool: worker_pool to put
3285  *
3286  * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3287  * safe manner.  get_unbound_pool() calls this function on its failure path
3288  * and this function should be able to release pools which went through,
3289  * successfully or not, init_worker_pool().
3290  *
3291  * Should be called with wq_pool_mutex held.
3292  */
3293 static void put_unbound_pool(struct worker_pool *pool)
3294 {
3295 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3296 	struct worker *worker;
3297 
3298 	lockdep_assert_held(&wq_pool_mutex);
3299 
3300 	if (--pool->refcnt)
3301 		return;
3302 
3303 	/* sanity checks */
3304 	if (WARN_ON(!(pool->cpu < 0)) ||
3305 	    WARN_ON(!list_empty(&pool->worklist)))
3306 		return;
3307 
3308 	/* release id and unhash */
3309 	if (pool->id >= 0)
3310 		idr_remove(&worker_pool_idr, pool->id);
3311 	hash_del(&pool->hash_node);
3312 
3313 	/*
3314 	 * Become the manager and destroy all workers.  This prevents
3315 	 * @pool's workers from blocking on attach_mutex.  We're the last
3316 	 * manager and @pool gets freed with the flag set.
3317 	 */
3318 	spin_lock_irq(&pool->lock);
3319 	wait_event_lock_irq(wq_manager_wait,
3320 			    !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3321 	pool->flags |= POOL_MANAGER_ACTIVE;
3322 
3323 	while ((worker = first_idle_worker(pool)))
3324 		destroy_worker(worker);
3325 	WARN_ON(pool->nr_workers || pool->nr_idle);
3326 	spin_unlock_irq(&pool->lock);
3327 
3328 	mutex_lock(&pool->attach_mutex);
3329 	if (!list_empty(&pool->workers))
3330 		pool->detach_completion = &detach_completion;
3331 	mutex_unlock(&pool->attach_mutex);
3332 
3333 	if (pool->detach_completion)
3334 		wait_for_completion(pool->detach_completion);
3335 
3336 	/* shut down the timers */
3337 	del_timer_sync(&pool->idle_timer);
3338 	del_timer_sync(&pool->mayday_timer);
3339 
3340 	/* sched-RCU protected to allow dereferences from get_work_pool() */
3341 	call_rcu_sched(&pool->rcu, rcu_free_pool);
3342 }
3343 
3344 /**
3345  * get_unbound_pool - get a worker_pool with the specified attributes
3346  * @attrs: the attributes of the worker_pool to get
3347  *
3348  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3349  * reference count and return it.  If there already is a matching
3350  * worker_pool, it will be used; otherwise, this function attempts to
3351  * create a new one.
3352  *
3353  * Should be called with wq_pool_mutex held.
3354  *
3355  * Return: On success, a worker_pool with the same attributes as @attrs.
3356  * On failure, %NULL.
3357  */
3358 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3359 {
3360 	u32 hash = wqattrs_hash(attrs);
3361 	struct worker_pool *pool;
3362 	int node;
3363 	int target_node = NUMA_NO_NODE;
3364 
3365 	lockdep_assert_held(&wq_pool_mutex);
3366 
3367 	/* do we already have a matching pool? */
3368 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3369 		if (wqattrs_equal(pool->attrs, attrs)) {
3370 			pool->refcnt++;
3371 			return pool;
3372 		}
3373 	}
3374 
3375 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3376 	if (wq_numa_enabled) {
3377 		for_each_node(node) {
3378 			if (cpumask_subset(attrs->cpumask,
3379 					   wq_numa_possible_cpumask[node])) {
3380 				target_node = node;
3381 				break;
3382 			}
3383 		}
3384 	}
3385 
3386 	/* nope, create a new one */
3387 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3388 	if (!pool || init_worker_pool(pool) < 0)
3389 		goto fail;
3390 
3391 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3392 	copy_workqueue_attrs(pool->attrs, attrs);
3393 	pool->node = target_node;
3394 
3395 	/*
3396 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3397 	 * 'struct workqueue_attrs' comments for detail.
3398 	 */
3399 	pool->attrs->no_numa = false;
3400 
3401 	if (worker_pool_assign_id(pool) < 0)
3402 		goto fail;
3403 
3404 	/* create and start the initial worker */
3405 	if (wq_online && !create_worker(pool))
3406 		goto fail;
3407 
3408 	/* install */
3409 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3410 
3411 	return pool;
3412 fail:
3413 	if (pool)
3414 		put_unbound_pool(pool);
3415 	return NULL;
3416 }
3417 
3418 static void rcu_free_pwq(struct rcu_head *rcu)
3419 {
3420 	kmem_cache_free(pwq_cache,
3421 			container_of(rcu, struct pool_workqueue, rcu));
3422 }
3423 
3424 /*
3425  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3426  * and needs to be destroyed.
3427  */
3428 static void pwq_unbound_release_workfn(struct work_struct *work)
3429 {
3430 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3431 						  unbound_release_work);
3432 	struct workqueue_struct *wq = pwq->wq;
3433 	struct worker_pool *pool = pwq->pool;
3434 	bool is_last;
3435 
3436 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3437 		return;
3438 
3439 	mutex_lock(&wq->mutex);
3440 	list_del_rcu(&pwq->pwqs_node);
3441 	is_last = list_empty(&wq->pwqs);
3442 	mutex_unlock(&wq->mutex);
3443 
3444 	mutex_lock(&wq_pool_mutex);
3445 	put_unbound_pool(pool);
3446 	mutex_unlock(&wq_pool_mutex);
3447 
3448 	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3449 
3450 	/*
3451 	 * If we're the last pwq going away, @wq is already dead and no one
3452 	 * is gonna access it anymore.  Schedule RCU free.
3453 	 */
3454 	if (is_last)
3455 		call_rcu_sched(&wq->rcu, rcu_free_wq);
3456 }
3457 
3458 /**
3459  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3460  * @pwq: target pool_workqueue
3461  *
3462  * If @pwq isn't freezing, set @pwq->max_active to the associated
3463  * workqueue's saved_max_active and activate delayed work items
3464  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3465  */
3466 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3467 {
3468 	struct workqueue_struct *wq = pwq->wq;
3469 	bool freezable = wq->flags & WQ_FREEZABLE;
3470 	unsigned long flags;
3471 
3472 	/* for @wq->saved_max_active */
3473 	lockdep_assert_held(&wq->mutex);
3474 
3475 	/* fast exit for non-freezable wqs */
3476 	if (!freezable && pwq->max_active == wq->saved_max_active)
3477 		return;
3478 
3479 	/* this function can be called during early boot w/ irq disabled */
3480 	spin_lock_irqsave(&pwq->pool->lock, flags);
3481 
3482 	/*
3483 	 * During [un]freezing, the caller is responsible for ensuring that
3484 	 * this function is called at least once after @workqueue_freezing
3485 	 * is updated and visible.
3486 	 */
3487 	if (!freezable || !workqueue_freezing) {
3488 		pwq->max_active = wq->saved_max_active;
3489 
3490 		while (!list_empty(&pwq->delayed_works) &&
3491 		       pwq->nr_active < pwq->max_active)
3492 			pwq_activate_first_delayed(pwq);
3493 
3494 		/*
3495 		 * Need to kick a worker after thawed or an unbound wq's
3496 		 * max_active is bumped.  It's a slow path.  Do it always.
3497 		 */
3498 		wake_up_worker(pwq->pool);
3499 	} else {
3500 		pwq->max_active = 0;
3501 	}
3502 
3503 	spin_unlock_irqrestore(&pwq->pool->lock, flags);
3504 }
3505 
3506 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3507 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3508 		     struct worker_pool *pool)
3509 {
3510 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3511 
3512 	memset(pwq, 0, sizeof(*pwq));
3513 
3514 	pwq->pool = pool;
3515 	pwq->wq = wq;
3516 	pwq->flush_color = -1;
3517 	pwq->refcnt = 1;
3518 	INIT_LIST_HEAD(&pwq->delayed_works);
3519 	INIT_LIST_HEAD(&pwq->pwqs_node);
3520 	INIT_LIST_HEAD(&pwq->mayday_node);
3521 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3522 }
3523 
3524 /* sync @pwq with the current state of its associated wq and link it */
3525 static void link_pwq(struct pool_workqueue *pwq)
3526 {
3527 	struct workqueue_struct *wq = pwq->wq;
3528 
3529 	lockdep_assert_held(&wq->mutex);
3530 
3531 	/* may be called multiple times, ignore if already linked */
3532 	if (!list_empty(&pwq->pwqs_node))
3533 		return;
3534 
3535 	/* set the matching work_color */
3536 	pwq->work_color = wq->work_color;
3537 
3538 	/* sync max_active to the current setting */
3539 	pwq_adjust_max_active(pwq);
3540 
3541 	/* link in @pwq */
3542 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3543 }
3544 
3545 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3546 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3547 					const struct workqueue_attrs *attrs)
3548 {
3549 	struct worker_pool *pool;
3550 	struct pool_workqueue *pwq;
3551 
3552 	lockdep_assert_held(&wq_pool_mutex);
3553 
3554 	pool = get_unbound_pool(attrs);
3555 	if (!pool)
3556 		return NULL;
3557 
3558 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3559 	if (!pwq) {
3560 		put_unbound_pool(pool);
3561 		return NULL;
3562 	}
3563 
3564 	init_pwq(pwq, wq, pool);
3565 	return pwq;
3566 }
3567 
3568 /**
3569  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3570  * @attrs: the wq_attrs of the default pwq of the target workqueue
3571  * @node: the target NUMA node
3572  * @cpu_going_down: if >= 0, the CPU to consider as offline
3573  * @cpumask: outarg, the resulting cpumask
3574  *
3575  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3576  * @cpu_going_down is >= 0, that cpu is considered offline during
3577  * calculation.  The result is stored in @cpumask.
3578  *
3579  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3580  * enabled and @node has online CPUs requested by @attrs, the returned
3581  * cpumask is the intersection of the possible CPUs of @node and
3582  * @attrs->cpumask.
3583  *
3584  * The caller is responsible for ensuring that the cpumask of @node stays
3585  * stable.
3586  *
3587  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3588  * %false if equal.
3589  */
3590 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3591 				 int cpu_going_down, cpumask_t *cpumask)
3592 {
3593 	if (!wq_numa_enabled || attrs->no_numa)
3594 		goto use_dfl;
3595 
3596 	/* does @node have any online CPUs @attrs wants? */
3597 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3598 	if (cpu_going_down >= 0)
3599 		cpumask_clear_cpu(cpu_going_down, cpumask);
3600 
3601 	if (cpumask_empty(cpumask))
3602 		goto use_dfl;
3603 
3604 	/* yeap, return possible CPUs in @node that @attrs wants */
3605 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3606 
3607 	if (cpumask_empty(cpumask)) {
3608 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3609 				"possible intersect\n");
3610 		return false;
3611 	}
3612 
3613 	return !cpumask_equal(cpumask, attrs->cpumask);
3614 
3615 use_dfl:
3616 	cpumask_copy(cpumask, attrs->cpumask);
3617 	return false;
3618 }
3619 
3620 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3621 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3622 						   int node,
3623 						   struct pool_workqueue *pwq)
3624 {
3625 	struct pool_workqueue *old_pwq;
3626 
3627 	lockdep_assert_held(&wq_pool_mutex);
3628 	lockdep_assert_held(&wq->mutex);
3629 
3630 	/* link_pwq() can handle duplicate calls */
3631 	link_pwq(pwq);
3632 
3633 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3634 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3635 	return old_pwq;
3636 }
3637 
3638 /* context to store the prepared attrs & pwqs before applying */
3639 struct apply_wqattrs_ctx {
3640 	struct workqueue_struct	*wq;		/* target workqueue */
3641 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3642 	struct list_head	list;		/* queued for batching commit */
3643 	struct pool_workqueue	*dfl_pwq;
3644 	struct pool_workqueue	*pwq_tbl[];
3645 };
3646 
3647 /* free the resources after success or abort */
3648 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3649 {
3650 	if (ctx) {
3651 		int node;
3652 
3653 		for_each_node(node)
3654 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3655 		put_pwq_unlocked(ctx->dfl_pwq);
3656 
3657 		free_workqueue_attrs(ctx->attrs);
3658 
3659 		kfree(ctx);
3660 	}
3661 }
3662 
3663 /* allocate the attrs and pwqs for later installation */
3664 static struct apply_wqattrs_ctx *
3665 apply_wqattrs_prepare(struct workqueue_struct *wq,
3666 		      const struct workqueue_attrs *attrs)
3667 {
3668 	struct apply_wqattrs_ctx *ctx;
3669 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3670 	int node;
3671 
3672 	lockdep_assert_held(&wq_pool_mutex);
3673 
3674 	ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3675 		      GFP_KERNEL);
3676 
3677 	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3678 	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3679 	if (!ctx || !new_attrs || !tmp_attrs)
3680 		goto out_free;
3681 
3682 	/*
3683 	 * Calculate the attrs of the default pwq.
3684 	 * If the user configured cpumask doesn't overlap with the
3685 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3686 	 */
3687 	copy_workqueue_attrs(new_attrs, attrs);
3688 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3689 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3690 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3691 
3692 	/*
3693 	 * We may create multiple pwqs with differing cpumasks.  Make a
3694 	 * copy of @new_attrs which will be modified and used to obtain
3695 	 * pools.
3696 	 */
3697 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3698 
3699 	/*
3700 	 * If something goes wrong during CPU up/down, we'll fall back to
3701 	 * the default pwq covering whole @attrs->cpumask.  Always create
3702 	 * it even if we don't use it immediately.
3703 	 */
3704 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3705 	if (!ctx->dfl_pwq)
3706 		goto out_free;
3707 
3708 	for_each_node(node) {
3709 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3710 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3711 			if (!ctx->pwq_tbl[node])
3712 				goto out_free;
3713 		} else {
3714 			ctx->dfl_pwq->refcnt++;
3715 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3716 		}
3717 	}
3718 
3719 	/* save the user configured attrs and sanitize it. */
3720 	copy_workqueue_attrs(new_attrs, attrs);
3721 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3722 	ctx->attrs = new_attrs;
3723 
3724 	ctx->wq = wq;
3725 	free_workqueue_attrs(tmp_attrs);
3726 	return ctx;
3727 
3728 out_free:
3729 	free_workqueue_attrs(tmp_attrs);
3730 	free_workqueue_attrs(new_attrs);
3731 	apply_wqattrs_cleanup(ctx);
3732 	return NULL;
3733 }
3734 
3735 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3736 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3737 {
3738 	int node;
3739 
3740 	/* all pwqs have been created successfully, let's install'em */
3741 	mutex_lock(&ctx->wq->mutex);
3742 
3743 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3744 
3745 	/* save the previous pwq and install the new one */
3746 	for_each_node(node)
3747 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3748 							  ctx->pwq_tbl[node]);
3749 
3750 	/* @dfl_pwq might not have been used, ensure it's linked */
3751 	link_pwq(ctx->dfl_pwq);
3752 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3753 
3754 	mutex_unlock(&ctx->wq->mutex);
3755 }
3756 
3757 static void apply_wqattrs_lock(void)
3758 {
3759 	/* CPUs should stay stable across pwq creations and installations */
3760 	get_online_cpus();
3761 	mutex_lock(&wq_pool_mutex);
3762 }
3763 
3764 static void apply_wqattrs_unlock(void)
3765 {
3766 	mutex_unlock(&wq_pool_mutex);
3767 	put_online_cpus();
3768 }
3769 
3770 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3771 					const struct workqueue_attrs *attrs)
3772 {
3773 	struct apply_wqattrs_ctx *ctx;
3774 
3775 	/* only unbound workqueues can change attributes */
3776 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3777 		return -EINVAL;
3778 
3779 	/* creating multiple pwqs breaks ordering guarantee */
3780 	if (!list_empty(&wq->pwqs)) {
3781 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3782 			return -EINVAL;
3783 
3784 		wq->flags &= ~__WQ_ORDERED;
3785 	}
3786 
3787 	ctx = apply_wqattrs_prepare(wq, attrs);
3788 	if (!ctx)
3789 		return -ENOMEM;
3790 
3791 	/* the ctx has been prepared successfully, let's commit it */
3792 	apply_wqattrs_commit(ctx);
3793 	apply_wqattrs_cleanup(ctx);
3794 
3795 	return 0;
3796 }
3797 
3798 /**
3799  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3800  * @wq: the target workqueue
3801  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3802  *
3803  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3804  * machines, this function maps a separate pwq to each NUMA node with
3805  * possibles CPUs in @attrs->cpumask so that work items are affine to the
3806  * NUMA node it was issued on.  Older pwqs are released as in-flight work
3807  * items finish.  Note that a work item which repeatedly requeues itself
3808  * back-to-back will stay on its current pwq.
3809  *
3810  * Performs GFP_KERNEL allocations.
3811  *
3812  * Return: 0 on success and -errno on failure.
3813  */
3814 int apply_workqueue_attrs(struct workqueue_struct *wq,
3815 			  const struct workqueue_attrs *attrs)
3816 {
3817 	int ret;
3818 
3819 	apply_wqattrs_lock();
3820 	ret = apply_workqueue_attrs_locked(wq, attrs);
3821 	apply_wqattrs_unlock();
3822 
3823 	return ret;
3824 }
3825 
3826 /**
3827  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3828  * @wq: the target workqueue
3829  * @cpu: the CPU coming up or going down
3830  * @online: whether @cpu is coming up or going down
3831  *
3832  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3833  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3834  * @wq accordingly.
3835  *
3836  * If NUMA affinity can't be adjusted due to memory allocation failure, it
3837  * falls back to @wq->dfl_pwq which may not be optimal but is always
3838  * correct.
3839  *
3840  * Note that when the last allowed CPU of a NUMA node goes offline for a
3841  * workqueue with a cpumask spanning multiple nodes, the workers which were
3842  * already executing the work items for the workqueue will lose their CPU
3843  * affinity and may execute on any CPU.  This is similar to how per-cpu
3844  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3845  * affinity, it's the user's responsibility to flush the work item from
3846  * CPU_DOWN_PREPARE.
3847  */
3848 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3849 				   bool online)
3850 {
3851 	int node = cpu_to_node(cpu);
3852 	int cpu_off = online ? -1 : cpu;
3853 	struct pool_workqueue *old_pwq = NULL, *pwq;
3854 	struct workqueue_attrs *target_attrs;
3855 	cpumask_t *cpumask;
3856 
3857 	lockdep_assert_held(&wq_pool_mutex);
3858 
3859 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3860 	    wq->unbound_attrs->no_numa)
3861 		return;
3862 
3863 	/*
3864 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3865 	 * Let's use a preallocated one.  The following buf is protected by
3866 	 * CPU hotplug exclusion.
3867 	 */
3868 	target_attrs = wq_update_unbound_numa_attrs_buf;
3869 	cpumask = target_attrs->cpumask;
3870 
3871 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3872 	pwq = unbound_pwq_by_node(wq, node);
3873 
3874 	/*
3875 	 * Let's determine what needs to be done.  If the target cpumask is
3876 	 * different from the default pwq's, we need to compare it to @pwq's
3877 	 * and create a new one if they don't match.  If the target cpumask
3878 	 * equals the default pwq's, the default pwq should be used.
3879 	 */
3880 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3881 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3882 			return;
3883 	} else {
3884 		goto use_dfl_pwq;
3885 	}
3886 
3887 	/* create a new pwq */
3888 	pwq = alloc_unbound_pwq(wq, target_attrs);
3889 	if (!pwq) {
3890 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3891 			wq->name);
3892 		goto use_dfl_pwq;
3893 	}
3894 
3895 	/* Install the new pwq. */
3896 	mutex_lock(&wq->mutex);
3897 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3898 	goto out_unlock;
3899 
3900 use_dfl_pwq:
3901 	mutex_lock(&wq->mutex);
3902 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
3903 	get_pwq(wq->dfl_pwq);
3904 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3905 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3906 out_unlock:
3907 	mutex_unlock(&wq->mutex);
3908 	put_pwq_unlocked(old_pwq);
3909 }
3910 
3911 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3912 {
3913 	bool highpri = wq->flags & WQ_HIGHPRI;
3914 	int cpu, ret;
3915 
3916 	if (!(wq->flags & WQ_UNBOUND)) {
3917 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3918 		if (!wq->cpu_pwqs)
3919 			return -ENOMEM;
3920 
3921 		for_each_possible_cpu(cpu) {
3922 			struct pool_workqueue *pwq =
3923 				per_cpu_ptr(wq->cpu_pwqs, cpu);
3924 			struct worker_pool *cpu_pools =
3925 				per_cpu(cpu_worker_pools, cpu);
3926 
3927 			init_pwq(pwq, wq, &cpu_pools[highpri]);
3928 
3929 			mutex_lock(&wq->mutex);
3930 			link_pwq(pwq);
3931 			mutex_unlock(&wq->mutex);
3932 		}
3933 		return 0;
3934 	} else if (wq->flags & __WQ_ORDERED) {
3935 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3936 		/* there should only be single pwq for ordering guarantee */
3937 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3938 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3939 		     "ordering guarantee broken for workqueue %s\n", wq->name);
3940 		return ret;
3941 	} else {
3942 		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3943 	}
3944 }
3945 
3946 static int wq_clamp_max_active(int max_active, unsigned int flags,
3947 			       const char *name)
3948 {
3949 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3950 
3951 	if (max_active < 1 || max_active > lim)
3952 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3953 			max_active, name, 1, lim);
3954 
3955 	return clamp_val(max_active, 1, lim);
3956 }
3957 
3958 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3959 					       unsigned int flags,
3960 					       int max_active,
3961 					       struct lock_class_key *key,
3962 					       const char *lock_name, ...)
3963 {
3964 	size_t tbl_size = 0;
3965 	va_list args;
3966 	struct workqueue_struct *wq;
3967 	struct pool_workqueue *pwq;
3968 
3969 	/*
3970 	 * Unbound && max_active == 1 used to imply ordered, which is no
3971 	 * longer the case on NUMA machines due to per-node pools.  While
3972 	 * alloc_ordered_workqueue() is the right way to create an ordered
3973 	 * workqueue, keep the previous behavior to avoid subtle breakages
3974 	 * on NUMA.
3975 	 */
3976 	if ((flags & WQ_UNBOUND) && max_active == 1)
3977 		flags |= __WQ_ORDERED;
3978 
3979 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
3980 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3981 		flags |= WQ_UNBOUND;
3982 
3983 	/* allocate wq and format name */
3984 	if (flags & WQ_UNBOUND)
3985 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3986 
3987 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3988 	if (!wq)
3989 		return NULL;
3990 
3991 	if (flags & WQ_UNBOUND) {
3992 		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3993 		if (!wq->unbound_attrs)
3994 			goto err_free_wq;
3995 	}
3996 
3997 	va_start(args, lock_name);
3998 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3999 	va_end(args);
4000 
4001 	max_active = max_active ?: WQ_DFL_ACTIVE;
4002 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4003 
4004 	/* init wq */
4005 	wq->flags = flags;
4006 	wq->saved_max_active = max_active;
4007 	mutex_init(&wq->mutex);
4008 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4009 	INIT_LIST_HEAD(&wq->pwqs);
4010 	INIT_LIST_HEAD(&wq->flusher_queue);
4011 	INIT_LIST_HEAD(&wq->flusher_overflow);
4012 	INIT_LIST_HEAD(&wq->maydays);
4013 
4014 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4015 	INIT_LIST_HEAD(&wq->list);
4016 
4017 	if (alloc_and_link_pwqs(wq) < 0)
4018 		goto err_free_wq;
4019 
4020 	/*
4021 	 * Workqueues which may be used during memory reclaim should
4022 	 * have a rescuer to guarantee forward progress.
4023 	 */
4024 	if (flags & WQ_MEM_RECLAIM) {
4025 		struct worker *rescuer;
4026 
4027 		rescuer = alloc_worker(NUMA_NO_NODE);
4028 		if (!rescuer)
4029 			goto err_destroy;
4030 
4031 		rescuer->rescue_wq = wq;
4032 		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4033 					       wq->name);
4034 		if (IS_ERR(rescuer->task)) {
4035 			kfree(rescuer);
4036 			goto err_destroy;
4037 		}
4038 
4039 		wq->rescuer = rescuer;
4040 		kthread_bind_mask(rescuer->task, cpu_possible_mask);
4041 		wake_up_process(rescuer->task);
4042 	}
4043 
4044 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4045 		goto err_destroy;
4046 
4047 	/*
4048 	 * wq_pool_mutex protects global freeze state and workqueues list.
4049 	 * Grab it, adjust max_active and add the new @wq to workqueues
4050 	 * list.
4051 	 */
4052 	mutex_lock(&wq_pool_mutex);
4053 
4054 	mutex_lock(&wq->mutex);
4055 	for_each_pwq(pwq, wq)
4056 		pwq_adjust_max_active(pwq);
4057 	mutex_unlock(&wq->mutex);
4058 
4059 	list_add_tail_rcu(&wq->list, &workqueues);
4060 
4061 	mutex_unlock(&wq_pool_mutex);
4062 
4063 	return wq;
4064 
4065 err_free_wq:
4066 	free_workqueue_attrs(wq->unbound_attrs);
4067 	kfree(wq);
4068 	return NULL;
4069 err_destroy:
4070 	destroy_workqueue(wq);
4071 	return NULL;
4072 }
4073 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4074 
4075 /**
4076  * destroy_workqueue - safely terminate a workqueue
4077  * @wq: target workqueue
4078  *
4079  * Safely destroy a workqueue. All work currently pending will be done first.
4080  */
4081 void destroy_workqueue(struct workqueue_struct *wq)
4082 {
4083 	struct pool_workqueue *pwq;
4084 	int node;
4085 
4086 	/* drain it before proceeding with destruction */
4087 	drain_workqueue(wq);
4088 
4089 	/* sanity checks */
4090 	mutex_lock(&wq->mutex);
4091 	for_each_pwq(pwq, wq) {
4092 		int i;
4093 
4094 		for (i = 0; i < WORK_NR_COLORS; i++) {
4095 			if (WARN_ON(pwq->nr_in_flight[i])) {
4096 				mutex_unlock(&wq->mutex);
4097 				show_workqueue_state();
4098 				return;
4099 			}
4100 		}
4101 
4102 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4103 		    WARN_ON(pwq->nr_active) ||
4104 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4105 			mutex_unlock(&wq->mutex);
4106 			show_workqueue_state();
4107 			return;
4108 		}
4109 	}
4110 	mutex_unlock(&wq->mutex);
4111 
4112 	/*
4113 	 * wq list is used to freeze wq, remove from list after
4114 	 * flushing is complete in case freeze races us.
4115 	 */
4116 	mutex_lock(&wq_pool_mutex);
4117 	list_del_rcu(&wq->list);
4118 	mutex_unlock(&wq_pool_mutex);
4119 
4120 	workqueue_sysfs_unregister(wq);
4121 
4122 	if (wq->rescuer)
4123 		kthread_stop(wq->rescuer->task);
4124 
4125 	if (!(wq->flags & WQ_UNBOUND)) {
4126 		/*
4127 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4128 		 * schedule RCU free.
4129 		 */
4130 		call_rcu_sched(&wq->rcu, rcu_free_wq);
4131 	} else {
4132 		/*
4133 		 * We're the sole accessor of @wq at this point.  Directly
4134 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4135 		 * @wq will be freed when the last pwq is released.
4136 		 */
4137 		for_each_node(node) {
4138 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4139 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4140 			put_pwq_unlocked(pwq);
4141 		}
4142 
4143 		/*
4144 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4145 		 * put.  Don't access it afterwards.
4146 		 */
4147 		pwq = wq->dfl_pwq;
4148 		wq->dfl_pwq = NULL;
4149 		put_pwq_unlocked(pwq);
4150 	}
4151 }
4152 EXPORT_SYMBOL_GPL(destroy_workqueue);
4153 
4154 /**
4155  * workqueue_set_max_active - adjust max_active of a workqueue
4156  * @wq: target workqueue
4157  * @max_active: new max_active value.
4158  *
4159  * Set max_active of @wq to @max_active.
4160  *
4161  * CONTEXT:
4162  * Don't call from IRQ context.
4163  */
4164 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4165 {
4166 	struct pool_workqueue *pwq;
4167 
4168 	/* disallow meddling with max_active for ordered workqueues */
4169 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4170 		return;
4171 
4172 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4173 
4174 	mutex_lock(&wq->mutex);
4175 
4176 	wq->flags &= ~__WQ_ORDERED;
4177 	wq->saved_max_active = max_active;
4178 
4179 	for_each_pwq(pwq, wq)
4180 		pwq_adjust_max_active(pwq);
4181 
4182 	mutex_unlock(&wq->mutex);
4183 }
4184 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4185 
4186 /**
4187  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4188  *
4189  * Determine whether %current is a workqueue rescuer.  Can be used from
4190  * work functions to determine whether it's being run off the rescuer task.
4191  *
4192  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4193  */
4194 bool current_is_workqueue_rescuer(void)
4195 {
4196 	struct worker *worker = current_wq_worker();
4197 
4198 	return worker && worker->rescue_wq;
4199 }
4200 
4201 /**
4202  * workqueue_congested - test whether a workqueue is congested
4203  * @cpu: CPU in question
4204  * @wq: target workqueue
4205  *
4206  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4207  * no synchronization around this function and the test result is
4208  * unreliable and only useful as advisory hints or for debugging.
4209  *
4210  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4211  * Note that both per-cpu and unbound workqueues may be associated with
4212  * multiple pool_workqueues which have separate congested states.  A
4213  * workqueue being congested on one CPU doesn't mean the workqueue is also
4214  * contested on other CPUs / NUMA nodes.
4215  *
4216  * Return:
4217  * %true if congested, %false otherwise.
4218  */
4219 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4220 {
4221 	struct pool_workqueue *pwq;
4222 	bool ret;
4223 
4224 	rcu_read_lock_sched();
4225 
4226 	if (cpu == WORK_CPU_UNBOUND)
4227 		cpu = smp_processor_id();
4228 
4229 	if (!(wq->flags & WQ_UNBOUND))
4230 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4231 	else
4232 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4233 
4234 	ret = !list_empty(&pwq->delayed_works);
4235 	rcu_read_unlock_sched();
4236 
4237 	return ret;
4238 }
4239 EXPORT_SYMBOL_GPL(workqueue_congested);
4240 
4241 /**
4242  * work_busy - test whether a work is currently pending or running
4243  * @work: the work to be tested
4244  *
4245  * Test whether @work is currently pending or running.  There is no
4246  * synchronization around this function and the test result is
4247  * unreliable and only useful as advisory hints or for debugging.
4248  *
4249  * Return:
4250  * OR'd bitmask of WORK_BUSY_* bits.
4251  */
4252 unsigned int work_busy(struct work_struct *work)
4253 {
4254 	struct worker_pool *pool;
4255 	unsigned long flags;
4256 	unsigned int ret = 0;
4257 
4258 	if (work_pending(work))
4259 		ret |= WORK_BUSY_PENDING;
4260 
4261 	local_irq_save(flags);
4262 	pool = get_work_pool(work);
4263 	if (pool) {
4264 		spin_lock(&pool->lock);
4265 		if (find_worker_executing_work(pool, work))
4266 			ret |= WORK_BUSY_RUNNING;
4267 		spin_unlock(&pool->lock);
4268 	}
4269 	local_irq_restore(flags);
4270 
4271 	return ret;
4272 }
4273 EXPORT_SYMBOL_GPL(work_busy);
4274 
4275 /**
4276  * set_worker_desc - set description for the current work item
4277  * @fmt: printf-style format string
4278  * @...: arguments for the format string
4279  *
4280  * This function can be called by a running work function to describe what
4281  * the work item is about.  If the worker task gets dumped, this
4282  * information will be printed out together to help debugging.  The
4283  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4284  */
4285 void set_worker_desc(const char *fmt, ...)
4286 {
4287 	struct worker *worker = current_wq_worker();
4288 	va_list args;
4289 
4290 	if (worker) {
4291 		va_start(args, fmt);
4292 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4293 		va_end(args);
4294 		worker->desc_valid = true;
4295 	}
4296 }
4297 
4298 /**
4299  * print_worker_info - print out worker information and description
4300  * @log_lvl: the log level to use when printing
4301  * @task: target task
4302  *
4303  * If @task is a worker and currently executing a work item, print out the
4304  * name of the workqueue being serviced and worker description set with
4305  * set_worker_desc() by the currently executing work item.
4306  *
4307  * This function can be safely called on any task as long as the
4308  * task_struct itself is accessible.  While safe, this function isn't
4309  * synchronized and may print out mixups or garbages of limited length.
4310  */
4311 void print_worker_info(const char *log_lvl, struct task_struct *task)
4312 {
4313 	work_func_t *fn = NULL;
4314 	char name[WQ_NAME_LEN] = { };
4315 	char desc[WORKER_DESC_LEN] = { };
4316 	struct pool_workqueue *pwq = NULL;
4317 	struct workqueue_struct *wq = NULL;
4318 	bool desc_valid = false;
4319 	struct worker *worker;
4320 
4321 	if (!(task->flags & PF_WQ_WORKER))
4322 		return;
4323 
4324 	/*
4325 	 * This function is called without any synchronization and @task
4326 	 * could be in any state.  Be careful with dereferences.
4327 	 */
4328 	worker = kthread_probe_data(task);
4329 
4330 	/*
4331 	 * Carefully copy the associated workqueue's workfn and name.  Keep
4332 	 * the original last '\0' in case the original contains garbage.
4333 	 */
4334 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4335 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4336 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4337 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4338 
4339 	/* copy worker description */
4340 	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4341 	if (desc_valid)
4342 		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4343 
4344 	if (fn || name[0] || desc[0]) {
4345 		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4346 		if (desc[0])
4347 			pr_cont(" (%s)", desc);
4348 		pr_cont("\n");
4349 	}
4350 }
4351 
4352 static void pr_cont_pool_info(struct worker_pool *pool)
4353 {
4354 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4355 	if (pool->node != NUMA_NO_NODE)
4356 		pr_cont(" node=%d", pool->node);
4357 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4358 }
4359 
4360 static void pr_cont_work(bool comma, struct work_struct *work)
4361 {
4362 	if (work->func == wq_barrier_func) {
4363 		struct wq_barrier *barr;
4364 
4365 		barr = container_of(work, struct wq_barrier, work);
4366 
4367 		pr_cont("%s BAR(%d)", comma ? "," : "",
4368 			task_pid_nr(barr->task));
4369 	} else {
4370 		pr_cont("%s %pf", comma ? "," : "", work->func);
4371 	}
4372 }
4373 
4374 static void show_pwq(struct pool_workqueue *pwq)
4375 {
4376 	struct worker_pool *pool = pwq->pool;
4377 	struct work_struct *work;
4378 	struct worker *worker;
4379 	bool has_in_flight = false, has_pending = false;
4380 	int bkt;
4381 
4382 	pr_info("  pwq %d:", pool->id);
4383 	pr_cont_pool_info(pool);
4384 
4385 	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4386 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4387 
4388 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4389 		if (worker->current_pwq == pwq) {
4390 			has_in_flight = true;
4391 			break;
4392 		}
4393 	}
4394 	if (has_in_flight) {
4395 		bool comma = false;
4396 
4397 		pr_info("    in-flight:");
4398 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4399 			if (worker->current_pwq != pwq)
4400 				continue;
4401 
4402 			pr_cont("%s %d%s:%pf", comma ? "," : "",
4403 				task_pid_nr(worker->task),
4404 				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4405 				worker->current_func);
4406 			list_for_each_entry(work, &worker->scheduled, entry)
4407 				pr_cont_work(false, work);
4408 			comma = true;
4409 		}
4410 		pr_cont("\n");
4411 	}
4412 
4413 	list_for_each_entry(work, &pool->worklist, entry) {
4414 		if (get_work_pwq(work) == pwq) {
4415 			has_pending = true;
4416 			break;
4417 		}
4418 	}
4419 	if (has_pending) {
4420 		bool comma = false;
4421 
4422 		pr_info("    pending:");
4423 		list_for_each_entry(work, &pool->worklist, entry) {
4424 			if (get_work_pwq(work) != pwq)
4425 				continue;
4426 
4427 			pr_cont_work(comma, work);
4428 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4429 		}
4430 		pr_cont("\n");
4431 	}
4432 
4433 	if (!list_empty(&pwq->delayed_works)) {
4434 		bool comma = false;
4435 
4436 		pr_info("    delayed:");
4437 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4438 			pr_cont_work(comma, work);
4439 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4440 		}
4441 		pr_cont("\n");
4442 	}
4443 }
4444 
4445 /**
4446  * show_workqueue_state - dump workqueue state
4447  *
4448  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4449  * all busy workqueues and pools.
4450  */
4451 void show_workqueue_state(void)
4452 {
4453 	struct workqueue_struct *wq;
4454 	struct worker_pool *pool;
4455 	unsigned long flags;
4456 	int pi;
4457 
4458 	rcu_read_lock_sched();
4459 
4460 	pr_info("Showing busy workqueues and worker pools:\n");
4461 
4462 	list_for_each_entry_rcu(wq, &workqueues, list) {
4463 		struct pool_workqueue *pwq;
4464 		bool idle = true;
4465 
4466 		for_each_pwq(pwq, wq) {
4467 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4468 				idle = false;
4469 				break;
4470 			}
4471 		}
4472 		if (idle)
4473 			continue;
4474 
4475 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4476 
4477 		for_each_pwq(pwq, wq) {
4478 			spin_lock_irqsave(&pwq->pool->lock, flags);
4479 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4480 				show_pwq(pwq);
4481 			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4482 		}
4483 	}
4484 
4485 	for_each_pool(pool, pi) {
4486 		struct worker *worker;
4487 		bool first = true;
4488 
4489 		spin_lock_irqsave(&pool->lock, flags);
4490 		if (pool->nr_workers == pool->nr_idle)
4491 			goto next_pool;
4492 
4493 		pr_info("pool %d:", pool->id);
4494 		pr_cont_pool_info(pool);
4495 		pr_cont(" hung=%us workers=%d",
4496 			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4497 			pool->nr_workers);
4498 		if (pool->manager)
4499 			pr_cont(" manager: %d",
4500 				task_pid_nr(pool->manager->task));
4501 		list_for_each_entry(worker, &pool->idle_list, entry) {
4502 			pr_cont(" %s%d", first ? "idle: " : "",
4503 				task_pid_nr(worker->task));
4504 			first = false;
4505 		}
4506 		pr_cont("\n");
4507 	next_pool:
4508 		spin_unlock_irqrestore(&pool->lock, flags);
4509 	}
4510 
4511 	rcu_read_unlock_sched();
4512 }
4513 
4514 /*
4515  * CPU hotplug.
4516  *
4517  * There are two challenges in supporting CPU hotplug.  Firstly, there
4518  * are a lot of assumptions on strong associations among work, pwq and
4519  * pool which make migrating pending and scheduled works very
4520  * difficult to implement without impacting hot paths.  Secondly,
4521  * worker pools serve mix of short, long and very long running works making
4522  * blocked draining impractical.
4523  *
4524  * This is solved by allowing the pools to be disassociated from the CPU
4525  * running as an unbound one and allowing it to be reattached later if the
4526  * cpu comes back online.
4527  */
4528 
4529 static void wq_unbind_fn(struct work_struct *work)
4530 {
4531 	int cpu = smp_processor_id();
4532 	struct worker_pool *pool;
4533 	struct worker *worker;
4534 
4535 	for_each_cpu_worker_pool(pool, cpu) {
4536 		mutex_lock(&pool->attach_mutex);
4537 		spin_lock_irq(&pool->lock);
4538 
4539 		/*
4540 		 * We've blocked all attach/detach operations. Make all workers
4541 		 * unbound and set DISASSOCIATED.  Before this, all workers
4542 		 * except for the ones which are still executing works from
4543 		 * before the last CPU down must be on the cpu.  After
4544 		 * this, they may become diasporas.
4545 		 */
4546 		for_each_pool_worker(worker, pool)
4547 			worker->flags |= WORKER_UNBOUND;
4548 
4549 		pool->flags |= POOL_DISASSOCIATED;
4550 
4551 		spin_unlock_irq(&pool->lock);
4552 		mutex_unlock(&pool->attach_mutex);
4553 
4554 		/*
4555 		 * Call schedule() so that we cross rq->lock and thus can
4556 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4557 		 * This is necessary as scheduler callbacks may be invoked
4558 		 * from other cpus.
4559 		 */
4560 		schedule();
4561 
4562 		/*
4563 		 * Sched callbacks are disabled now.  Zap nr_running.
4564 		 * After this, nr_running stays zero and need_more_worker()
4565 		 * and keep_working() are always true as long as the
4566 		 * worklist is not empty.  This pool now behaves as an
4567 		 * unbound (in terms of concurrency management) pool which
4568 		 * are served by workers tied to the pool.
4569 		 */
4570 		atomic_set(&pool->nr_running, 0);
4571 
4572 		/*
4573 		 * With concurrency management just turned off, a busy
4574 		 * worker blocking could lead to lengthy stalls.  Kick off
4575 		 * unbound chain execution of currently pending work items.
4576 		 */
4577 		spin_lock_irq(&pool->lock);
4578 		wake_up_worker(pool);
4579 		spin_unlock_irq(&pool->lock);
4580 	}
4581 }
4582 
4583 /**
4584  * rebind_workers - rebind all workers of a pool to the associated CPU
4585  * @pool: pool of interest
4586  *
4587  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4588  */
4589 static void rebind_workers(struct worker_pool *pool)
4590 {
4591 	struct worker *worker;
4592 
4593 	lockdep_assert_held(&pool->attach_mutex);
4594 
4595 	/*
4596 	 * Restore CPU affinity of all workers.  As all idle workers should
4597 	 * be on the run-queue of the associated CPU before any local
4598 	 * wake-ups for concurrency management happen, restore CPU affinity
4599 	 * of all workers first and then clear UNBOUND.  As we're called
4600 	 * from CPU_ONLINE, the following shouldn't fail.
4601 	 */
4602 	for_each_pool_worker(worker, pool)
4603 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4604 						  pool->attrs->cpumask) < 0);
4605 
4606 	spin_lock_irq(&pool->lock);
4607 
4608 	/*
4609 	 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
4610 	 * w/o preceding DOWN_PREPARE.  Work around it.  CPU hotplug is
4611 	 * being reworked and this can go away in time.
4612 	 */
4613 	if (!(pool->flags & POOL_DISASSOCIATED)) {
4614 		spin_unlock_irq(&pool->lock);
4615 		return;
4616 	}
4617 
4618 	pool->flags &= ~POOL_DISASSOCIATED;
4619 
4620 	for_each_pool_worker(worker, pool) {
4621 		unsigned int worker_flags = worker->flags;
4622 
4623 		/*
4624 		 * A bound idle worker should actually be on the runqueue
4625 		 * of the associated CPU for local wake-ups targeting it to
4626 		 * work.  Kick all idle workers so that they migrate to the
4627 		 * associated CPU.  Doing this in the same loop as
4628 		 * replacing UNBOUND with REBOUND is safe as no worker will
4629 		 * be bound before @pool->lock is released.
4630 		 */
4631 		if (worker_flags & WORKER_IDLE)
4632 			wake_up_process(worker->task);
4633 
4634 		/*
4635 		 * We want to clear UNBOUND but can't directly call
4636 		 * worker_clr_flags() or adjust nr_running.  Atomically
4637 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4638 		 * @worker will clear REBOUND using worker_clr_flags() when
4639 		 * it initiates the next execution cycle thus restoring
4640 		 * concurrency management.  Note that when or whether
4641 		 * @worker clears REBOUND doesn't affect correctness.
4642 		 *
4643 		 * ACCESS_ONCE() is necessary because @worker->flags may be
4644 		 * tested without holding any lock in
4645 		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4646 		 * fail incorrectly leading to premature concurrency
4647 		 * management operations.
4648 		 */
4649 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4650 		worker_flags |= WORKER_REBOUND;
4651 		worker_flags &= ~WORKER_UNBOUND;
4652 		ACCESS_ONCE(worker->flags) = worker_flags;
4653 	}
4654 
4655 	spin_unlock_irq(&pool->lock);
4656 }
4657 
4658 /**
4659  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4660  * @pool: unbound pool of interest
4661  * @cpu: the CPU which is coming up
4662  *
4663  * An unbound pool may end up with a cpumask which doesn't have any online
4664  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4665  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4666  * online CPU before, cpus_allowed of all its workers should be restored.
4667  */
4668 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4669 {
4670 	static cpumask_t cpumask;
4671 	struct worker *worker;
4672 
4673 	lockdep_assert_held(&pool->attach_mutex);
4674 
4675 	/* is @cpu allowed for @pool? */
4676 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4677 		return;
4678 
4679 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4680 
4681 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4682 	for_each_pool_worker(worker, pool)
4683 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4684 }
4685 
4686 int workqueue_prepare_cpu(unsigned int cpu)
4687 {
4688 	struct worker_pool *pool;
4689 
4690 	for_each_cpu_worker_pool(pool, cpu) {
4691 		if (pool->nr_workers)
4692 			continue;
4693 		if (!create_worker(pool))
4694 			return -ENOMEM;
4695 	}
4696 	return 0;
4697 }
4698 
4699 int workqueue_online_cpu(unsigned int cpu)
4700 {
4701 	struct worker_pool *pool;
4702 	struct workqueue_struct *wq;
4703 	int pi;
4704 
4705 	mutex_lock(&wq_pool_mutex);
4706 
4707 	for_each_pool(pool, pi) {
4708 		mutex_lock(&pool->attach_mutex);
4709 
4710 		if (pool->cpu == cpu)
4711 			rebind_workers(pool);
4712 		else if (pool->cpu < 0)
4713 			restore_unbound_workers_cpumask(pool, cpu);
4714 
4715 		mutex_unlock(&pool->attach_mutex);
4716 	}
4717 
4718 	/* update NUMA affinity of unbound workqueues */
4719 	list_for_each_entry(wq, &workqueues, list)
4720 		wq_update_unbound_numa(wq, cpu, true);
4721 
4722 	mutex_unlock(&wq_pool_mutex);
4723 	return 0;
4724 }
4725 
4726 int workqueue_offline_cpu(unsigned int cpu)
4727 {
4728 	struct work_struct unbind_work;
4729 	struct workqueue_struct *wq;
4730 
4731 	/* unbinding per-cpu workers should happen on the local CPU */
4732 	INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4733 	queue_work_on(cpu, system_highpri_wq, &unbind_work);
4734 
4735 	/* update NUMA affinity of unbound workqueues */
4736 	mutex_lock(&wq_pool_mutex);
4737 	list_for_each_entry(wq, &workqueues, list)
4738 		wq_update_unbound_numa(wq, cpu, false);
4739 	mutex_unlock(&wq_pool_mutex);
4740 
4741 	/* wait for per-cpu unbinding to finish */
4742 	flush_work(&unbind_work);
4743 	destroy_work_on_stack(&unbind_work);
4744 	return 0;
4745 }
4746 
4747 #ifdef CONFIG_SMP
4748 
4749 struct work_for_cpu {
4750 	struct work_struct work;
4751 	long (*fn)(void *);
4752 	void *arg;
4753 	long ret;
4754 };
4755 
4756 static void work_for_cpu_fn(struct work_struct *work)
4757 {
4758 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4759 
4760 	wfc->ret = wfc->fn(wfc->arg);
4761 }
4762 
4763 /**
4764  * work_on_cpu - run a function in thread context on a particular cpu
4765  * @cpu: the cpu to run on
4766  * @fn: the function to run
4767  * @arg: the function arg
4768  *
4769  * It is up to the caller to ensure that the cpu doesn't go offline.
4770  * The caller must not hold any locks which would prevent @fn from completing.
4771  *
4772  * Return: The value @fn returns.
4773  */
4774 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4775 {
4776 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4777 
4778 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4779 	schedule_work_on(cpu, &wfc.work);
4780 	flush_work(&wfc.work);
4781 	destroy_work_on_stack(&wfc.work);
4782 	return wfc.ret;
4783 }
4784 EXPORT_SYMBOL_GPL(work_on_cpu);
4785 
4786 /**
4787  * work_on_cpu_safe - run a function in thread context on a particular cpu
4788  * @cpu: the cpu to run on
4789  * @fn:  the function to run
4790  * @arg: the function argument
4791  *
4792  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
4793  * any locks which would prevent @fn from completing.
4794  *
4795  * Return: The value @fn returns.
4796  */
4797 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
4798 {
4799 	long ret = -ENODEV;
4800 
4801 	get_online_cpus();
4802 	if (cpu_online(cpu))
4803 		ret = work_on_cpu(cpu, fn, arg);
4804 	put_online_cpus();
4805 	return ret;
4806 }
4807 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
4808 #endif /* CONFIG_SMP */
4809 
4810 #ifdef CONFIG_FREEZER
4811 
4812 /**
4813  * freeze_workqueues_begin - begin freezing workqueues
4814  *
4815  * Start freezing workqueues.  After this function returns, all freezable
4816  * workqueues will queue new works to their delayed_works list instead of
4817  * pool->worklist.
4818  *
4819  * CONTEXT:
4820  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4821  */
4822 void freeze_workqueues_begin(void)
4823 {
4824 	struct workqueue_struct *wq;
4825 	struct pool_workqueue *pwq;
4826 
4827 	mutex_lock(&wq_pool_mutex);
4828 
4829 	WARN_ON_ONCE(workqueue_freezing);
4830 	workqueue_freezing = true;
4831 
4832 	list_for_each_entry(wq, &workqueues, list) {
4833 		mutex_lock(&wq->mutex);
4834 		for_each_pwq(pwq, wq)
4835 			pwq_adjust_max_active(pwq);
4836 		mutex_unlock(&wq->mutex);
4837 	}
4838 
4839 	mutex_unlock(&wq_pool_mutex);
4840 }
4841 
4842 /**
4843  * freeze_workqueues_busy - are freezable workqueues still busy?
4844  *
4845  * Check whether freezing is complete.  This function must be called
4846  * between freeze_workqueues_begin() and thaw_workqueues().
4847  *
4848  * CONTEXT:
4849  * Grabs and releases wq_pool_mutex.
4850  *
4851  * Return:
4852  * %true if some freezable workqueues are still busy.  %false if freezing
4853  * is complete.
4854  */
4855 bool freeze_workqueues_busy(void)
4856 {
4857 	bool busy = false;
4858 	struct workqueue_struct *wq;
4859 	struct pool_workqueue *pwq;
4860 
4861 	mutex_lock(&wq_pool_mutex);
4862 
4863 	WARN_ON_ONCE(!workqueue_freezing);
4864 
4865 	list_for_each_entry(wq, &workqueues, list) {
4866 		if (!(wq->flags & WQ_FREEZABLE))
4867 			continue;
4868 		/*
4869 		 * nr_active is monotonically decreasing.  It's safe
4870 		 * to peek without lock.
4871 		 */
4872 		rcu_read_lock_sched();
4873 		for_each_pwq(pwq, wq) {
4874 			WARN_ON_ONCE(pwq->nr_active < 0);
4875 			if (pwq->nr_active) {
4876 				busy = true;
4877 				rcu_read_unlock_sched();
4878 				goto out_unlock;
4879 			}
4880 		}
4881 		rcu_read_unlock_sched();
4882 	}
4883 out_unlock:
4884 	mutex_unlock(&wq_pool_mutex);
4885 	return busy;
4886 }
4887 
4888 /**
4889  * thaw_workqueues - thaw workqueues
4890  *
4891  * Thaw workqueues.  Normal queueing is restored and all collected
4892  * frozen works are transferred to their respective pool worklists.
4893  *
4894  * CONTEXT:
4895  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4896  */
4897 void thaw_workqueues(void)
4898 {
4899 	struct workqueue_struct *wq;
4900 	struct pool_workqueue *pwq;
4901 
4902 	mutex_lock(&wq_pool_mutex);
4903 
4904 	if (!workqueue_freezing)
4905 		goto out_unlock;
4906 
4907 	workqueue_freezing = false;
4908 
4909 	/* restore max_active and repopulate worklist */
4910 	list_for_each_entry(wq, &workqueues, list) {
4911 		mutex_lock(&wq->mutex);
4912 		for_each_pwq(pwq, wq)
4913 			pwq_adjust_max_active(pwq);
4914 		mutex_unlock(&wq->mutex);
4915 	}
4916 
4917 out_unlock:
4918 	mutex_unlock(&wq_pool_mutex);
4919 }
4920 #endif /* CONFIG_FREEZER */
4921 
4922 static int workqueue_apply_unbound_cpumask(void)
4923 {
4924 	LIST_HEAD(ctxs);
4925 	int ret = 0;
4926 	struct workqueue_struct *wq;
4927 	struct apply_wqattrs_ctx *ctx, *n;
4928 
4929 	lockdep_assert_held(&wq_pool_mutex);
4930 
4931 	list_for_each_entry(wq, &workqueues, list) {
4932 		if (!(wq->flags & WQ_UNBOUND))
4933 			continue;
4934 		/* creating multiple pwqs breaks ordering guarantee */
4935 		if (wq->flags & __WQ_ORDERED)
4936 			continue;
4937 
4938 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4939 		if (!ctx) {
4940 			ret = -ENOMEM;
4941 			break;
4942 		}
4943 
4944 		list_add_tail(&ctx->list, &ctxs);
4945 	}
4946 
4947 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
4948 		if (!ret)
4949 			apply_wqattrs_commit(ctx);
4950 		apply_wqattrs_cleanup(ctx);
4951 	}
4952 
4953 	return ret;
4954 }
4955 
4956 /**
4957  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4958  *  @cpumask: the cpumask to set
4959  *
4960  *  The low-level workqueues cpumask is a global cpumask that limits
4961  *  the affinity of all unbound workqueues.  This function check the @cpumask
4962  *  and apply it to all unbound workqueues and updates all pwqs of them.
4963  *
4964  *  Retun:	0	- Success
4965  *  		-EINVAL	- Invalid @cpumask
4966  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
4967  */
4968 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4969 {
4970 	int ret = -EINVAL;
4971 	cpumask_var_t saved_cpumask;
4972 
4973 	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4974 		return -ENOMEM;
4975 
4976 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
4977 	if (!cpumask_empty(cpumask)) {
4978 		apply_wqattrs_lock();
4979 
4980 		/* save the old wq_unbound_cpumask. */
4981 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4982 
4983 		/* update wq_unbound_cpumask at first and apply it to wqs. */
4984 		cpumask_copy(wq_unbound_cpumask, cpumask);
4985 		ret = workqueue_apply_unbound_cpumask();
4986 
4987 		/* restore the wq_unbound_cpumask when failed. */
4988 		if (ret < 0)
4989 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4990 
4991 		apply_wqattrs_unlock();
4992 	}
4993 
4994 	free_cpumask_var(saved_cpumask);
4995 	return ret;
4996 }
4997 
4998 #ifdef CONFIG_SYSFS
4999 /*
5000  * Workqueues with WQ_SYSFS flag set is visible to userland via
5001  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5002  * following attributes.
5003  *
5004  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5005  *  max_active	RW int	: maximum number of in-flight work items
5006  *
5007  * Unbound workqueues have the following extra attributes.
5008  *
5009  *  id		RO int	: the associated pool ID
5010  *  nice	RW int	: nice value of the workers
5011  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5012  */
5013 struct wq_device {
5014 	struct workqueue_struct		*wq;
5015 	struct device			dev;
5016 };
5017 
5018 static struct workqueue_struct *dev_to_wq(struct device *dev)
5019 {
5020 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5021 
5022 	return wq_dev->wq;
5023 }
5024 
5025 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5026 			    char *buf)
5027 {
5028 	struct workqueue_struct *wq = dev_to_wq(dev);
5029 
5030 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5031 }
5032 static DEVICE_ATTR_RO(per_cpu);
5033 
5034 static ssize_t max_active_show(struct device *dev,
5035 			       struct device_attribute *attr, char *buf)
5036 {
5037 	struct workqueue_struct *wq = dev_to_wq(dev);
5038 
5039 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5040 }
5041 
5042 static ssize_t max_active_store(struct device *dev,
5043 				struct device_attribute *attr, const char *buf,
5044 				size_t count)
5045 {
5046 	struct workqueue_struct *wq = dev_to_wq(dev);
5047 	int val;
5048 
5049 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5050 		return -EINVAL;
5051 
5052 	workqueue_set_max_active(wq, val);
5053 	return count;
5054 }
5055 static DEVICE_ATTR_RW(max_active);
5056 
5057 static struct attribute *wq_sysfs_attrs[] = {
5058 	&dev_attr_per_cpu.attr,
5059 	&dev_attr_max_active.attr,
5060 	NULL,
5061 };
5062 ATTRIBUTE_GROUPS(wq_sysfs);
5063 
5064 static ssize_t wq_pool_ids_show(struct device *dev,
5065 				struct device_attribute *attr, char *buf)
5066 {
5067 	struct workqueue_struct *wq = dev_to_wq(dev);
5068 	const char *delim = "";
5069 	int node, written = 0;
5070 
5071 	rcu_read_lock_sched();
5072 	for_each_node(node) {
5073 		written += scnprintf(buf + written, PAGE_SIZE - written,
5074 				     "%s%d:%d", delim, node,
5075 				     unbound_pwq_by_node(wq, node)->pool->id);
5076 		delim = " ";
5077 	}
5078 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5079 	rcu_read_unlock_sched();
5080 
5081 	return written;
5082 }
5083 
5084 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5085 			    char *buf)
5086 {
5087 	struct workqueue_struct *wq = dev_to_wq(dev);
5088 	int written;
5089 
5090 	mutex_lock(&wq->mutex);
5091 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5092 	mutex_unlock(&wq->mutex);
5093 
5094 	return written;
5095 }
5096 
5097 /* prepare workqueue_attrs for sysfs store operations */
5098 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5099 {
5100 	struct workqueue_attrs *attrs;
5101 
5102 	lockdep_assert_held(&wq_pool_mutex);
5103 
5104 	attrs = alloc_workqueue_attrs(GFP_KERNEL);
5105 	if (!attrs)
5106 		return NULL;
5107 
5108 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5109 	return attrs;
5110 }
5111 
5112 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5113 			     const char *buf, size_t count)
5114 {
5115 	struct workqueue_struct *wq = dev_to_wq(dev);
5116 	struct workqueue_attrs *attrs;
5117 	int ret = -ENOMEM;
5118 
5119 	apply_wqattrs_lock();
5120 
5121 	attrs = wq_sysfs_prep_attrs(wq);
5122 	if (!attrs)
5123 		goto out_unlock;
5124 
5125 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5126 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5127 		ret = apply_workqueue_attrs_locked(wq, attrs);
5128 	else
5129 		ret = -EINVAL;
5130 
5131 out_unlock:
5132 	apply_wqattrs_unlock();
5133 	free_workqueue_attrs(attrs);
5134 	return ret ?: count;
5135 }
5136 
5137 static ssize_t wq_cpumask_show(struct device *dev,
5138 			       struct device_attribute *attr, char *buf)
5139 {
5140 	struct workqueue_struct *wq = dev_to_wq(dev);
5141 	int written;
5142 
5143 	mutex_lock(&wq->mutex);
5144 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5145 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5146 	mutex_unlock(&wq->mutex);
5147 	return written;
5148 }
5149 
5150 static ssize_t wq_cpumask_store(struct device *dev,
5151 				struct device_attribute *attr,
5152 				const char *buf, size_t count)
5153 {
5154 	struct workqueue_struct *wq = dev_to_wq(dev);
5155 	struct workqueue_attrs *attrs;
5156 	int ret = -ENOMEM;
5157 
5158 	apply_wqattrs_lock();
5159 
5160 	attrs = wq_sysfs_prep_attrs(wq);
5161 	if (!attrs)
5162 		goto out_unlock;
5163 
5164 	ret = cpumask_parse(buf, attrs->cpumask);
5165 	if (!ret)
5166 		ret = apply_workqueue_attrs_locked(wq, attrs);
5167 
5168 out_unlock:
5169 	apply_wqattrs_unlock();
5170 	free_workqueue_attrs(attrs);
5171 	return ret ?: count;
5172 }
5173 
5174 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5175 			    char *buf)
5176 {
5177 	struct workqueue_struct *wq = dev_to_wq(dev);
5178 	int written;
5179 
5180 	mutex_lock(&wq->mutex);
5181 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5182 			    !wq->unbound_attrs->no_numa);
5183 	mutex_unlock(&wq->mutex);
5184 
5185 	return written;
5186 }
5187 
5188 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5189 			     const char *buf, size_t count)
5190 {
5191 	struct workqueue_struct *wq = dev_to_wq(dev);
5192 	struct workqueue_attrs *attrs;
5193 	int v, ret = -ENOMEM;
5194 
5195 	apply_wqattrs_lock();
5196 
5197 	attrs = wq_sysfs_prep_attrs(wq);
5198 	if (!attrs)
5199 		goto out_unlock;
5200 
5201 	ret = -EINVAL;
5202 	if (sscanf(buf, "%d", &v) == 1) {
5203 		attrs->no_numa = !v;
5204 		ret = apply_workqueue_attrs_locked(wq, attrs);
5205 	}
5206 
5207 out_unlock:
5208 	apply_wqattrs_unlock();
5209 	free_workqueue_attrs(attrs);
5210 	return ret ?: count;
5211 }
5212 
5213 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5214 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5215 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5216 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5217 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5218 	__ATTR_NULL,
5219 };
5220 
5221 static struct bus_type wq_subsys = {
5222 	.name				= "workqueue",
5223 	.dev_groups			= wq_sysfs_groups,
5224 };
5225 
5226 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5227 		struct device_attribute *attr, char *buf)
5228 {
5229 	int written;
5230 
5231 	mutex_lock(&wq_pool_mutex);
5232 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5233 			    cpumask_pr_args(wq_unbound_cpumask));
5234 	mutex_unlock(&wq_pool_mutex);
5235 
5236 	return written;
5237 }
5238 
5239 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5240 		struct device_attribute *attr, const char *buf, size_t count)
5241 {
5242 	cpumask_var_t cpumask;
5243 	int ret;
5244 
5245 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5246 		return -ENOMEM;
5247 
5248 	ret = cpumask_parse(buf, cpumask);
5249 	if (!ret)
5250 		ret = workqueue_set_unbound_cpumask(cpumask);
5251 
5252 	free_cpumask_var(cpumask);
5253 	return ret ? ret : count;
5254 }
5255 
5256 static struct device_attribute wq_sysfs_cpumask_attr =
5257 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5258 	       wq_unbound_cpumask_store);
5259 
5260 static int __init wq_sysfs_init(void)
5261 {
5262 	int err;
5263 
5264 	err = subsys_virtual_register(&wq_subsys, NULL);
5265 	if (err)
5266 		return err;
5267 
5268 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5269 }
5270 core_initcall(wq_sysfs_init);
5271 
5272 static void wq_device_release(struct device *dev)
5273 {
5274 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5275 
5276 	kfree(wq_dev);
5277 }
5278 
5279 /**
5280  * workqueue_sysfs_register - make a workqueue visible in sysfs
5281  * @wq: the workqueue to register
5282  *
5283  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5284  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5285  * which is the preferred method.
5286  *
5287  * Workqueue user should use this function directly iff it wants to apply
5288  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5289  * apply_workqueue_attrs() may race against userland updating the
5290  * attributes.
5291  *
5292  * Return: 0 on success, -errno on failure.
5293  */
5294 int workqueue_sysfs_register(struct workqueue_struct *wq)
5295 {
5296 	struct wq_device *wq_dev;
5297 	int ret;
5298 
5299 	/*
5300 	 * Adjusting max_active or creating new pwqs by applying
5301 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5302 	 * workqueues.
5303 	 */
5304 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5305 		return -EINVAL;
5306 
5307 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5308 	if (!wq_dev)
5309 		return -ENOMEM;
5310 
5311 	wq_dev->wq = wq;
5312 	wq_dev->dev.bus = &wq_subsys;
5313 	wq_dev->dev.release = wq_device_release;
5314 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5315 
5316 	/*
5317 	 * unbound_attrs are created separately.  Suppress uevent until
5318 	 * everything is ready.
5319 	 */
5320 	dev_set_uevent_suppress(&wq_dev->dev, true);
5321 
5322 	ret = device_register(&wq_dev->dev);
5323 	if (ret) {
5324 		kfree(wq_dev);
5325 		wq->wq_dev = NULL;
5326 		return ret;
5327 	}
5328 
5329 	if (wq->flags & WQ_UNBOUND) {
5330 		struct device_attribute *attr;
5331 
5332 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5333 			ret = device_create_file(&wq_dev->dev, attr);
5334 			if (ret) {
5335 				device_unregister(&wq_dev->dev);
5336 				wq->wq_dev = NULL;
5337 				return ret;
5338 			}
5339 		}
5340 	}
5341 
5342 	dev_set_uevent_suppress(&wq_dev->dev, false);
5343 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5344 	return 0;
5345 }
5346 
5347 /**
5348  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5349  * @wq: the workqueue to unregister
5350  *
5351  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5352  */
5353 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5354 {
5355 	struct wq_device *wq_dev = wq->wq_dev;
5356 
5357 	if (!wq->wq_dev)
5358 		return;
5359 
5360 	wq->wq_dev = NULL;
5361 	device_unregister(&wq_dev->dev);
5362 }
5363 #else	/* CONFIG_SYSFS */
5364 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5365 #endif	/* CONFIG_SYSFS */
5366 
5367 /*
5368  * Workqueue watchdog.
5369  *
5370  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5371  * flush dependency, a concurrency managed work item which stays RUNNING
5372  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5373  * usual warning mechanisms don't trigger and internal workqueue state is
5374  * largely opaque.
5375  *
5376  * Workqueue watchdog monitors all worker pools periodically and dumps
5377  * state if some pools failed to make forward progress for a while where
5378  * forward progress is defined as the first item on ->worklist changing.
5379  *
5380  * This mechanism is controlled through the kernel parameter
5381  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5382  * corresponding sysfs parameter file.
5383  */
5384 #ifdef CONFIG_WQ_WATCHDOG
5385 
5386 static void wq_watchdog_timer_fn(unsigned long data);
5387 
5388 static unsigned long wq_watchdog_thresh = 30;
5389 static struct timer_list wq_watchdog_timer =
5390 	TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5391 
5392 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5393 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5394 
5395 static void wq_watchdog_reset_touched(void)
5396 {
5397 	int cpu;
5398 
5399 	wq_watchdog_touched = jiffies;
5400 	for_each_possible_cpu(cpu)
5401 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5402 }
5403 
5404 static void wq_watchdog_timer_fn(unsigned long data)
5405 {
5406 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5407 	bool lockup_detected = false;
5408 	struct worker_pool *pool;
5409 	int pi;
5410 
5411 	if (!thresh)
5412 		return;
5413 
5414 	rcu_read_lock();
5415 
5416 	for_each_pool(pool, pi) {
5417 		unsigned long pool_ts, touched, ts;
5418 
5419 		if (list_empty(&pool->worklist))
5420 			continue;
5421 
5422 		/* get the latest of pool and touched timestamps */
5423 		pool_ts = READ_ONCE(pool->watchdog_ts);
5424 		touched = READ_ONCE(wq_watchdog_touched);
5425 
5426 		if (time_after(pool_ts, touched))
5427 			ts = pool_ts;
5428 		else
5429 			ts = touched;
5430 
5431 		if (pool->cpu >= 0) {
5432 			unsigned long cpu_touched =
5433 				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5434 						  pool->cpu));
5435 			if (time_after(cpu_touched, ts))
5436 				ts = cpu_touched;
5437 		}
5438 
5439 		/* did we stall? */
5440 		if (time_after(jiffies, ts + thresh)) {
5441 			lockup_detected = true;
5442 			pr_emerg("BUG: workqueue lockup - pool");
5443 			pr_cont_pool_info(pool);
5444 			pr_cont(" stuck for %us!\n",
5445 				jiffies_to_msecs(jiffies - pool_ts) / 1000);
5446 		}
5447 	}
5448 
5449 	rcu_read_unlock();
5450 
5451 	if (lockup_detected)
5452 		show_workqueue_state();
5453 
5454 	wq_watchdog_reset_touched();
5455 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5456 }
5457 
5458 void wq_watchdog_touch(int cpu)
5459 {
5460 	if (cpu >= 0)
5461 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5462 	else
5463 		wq_watchdog_touched = jiffies;
5464 }
5465 
5466 static void wq_watchdog_set_thresh(unsigned long thresh)
5467 {
5468 	wq_watchdog_thresh = 0;
5469 	del_timer_sync(&wq_watchdog_timer);
5470 
5471 	if (thresh) {
5472 		wq_watchdog_thresh = thresh;
5473 		wq_watchdog_reset_touched();
5474 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5475 	}
5476 }
5477 
5478 static int wq_watchdog_param_set_thresh(const char *val,
5479 					const struct kernel_param *kp)
5480 {
5481 	unsigned long thresh;
5482 	int ret;
5483 
5484 	ret = kstrtoul(val, 0, &thresh);
5485 	if (ret)
5486 		return ret;
5487 
5488 	if (system_wq)
5489 		wq_watchdog_set_thresh(thresh);
5490 	else
5491 		wq_watchdog_thresh = thresh;
5492 
5493 	return 0;
5494 }
5495 
5496 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5497 	.set	= wq_watchdog_param_set_thresh,
5498 	.get	= param_get_ulong,
5499 };
5500 
5501 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5502 		0644);
5503 
5504 static void wq_watchdog_init(void)
5505 {
5506 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5507 }
5508 
5509 #else	/* CONFIG_WQ_WATCHDOG */
5510 
5511 static inline void wq_watchdog_init(void) { }
5512 
5513 #endif	/* CONFIG_WQ_WATCHDOG */
5514 
5515 static void __init wq_numa_init(void)
5516 {
5517 	cpumask_var_t *tbl;
5518 	int node, cpu;
5519 
5520 	if (num_possible_nodes() <= 1)
5521 		return;
5522 
5523 	if (wq_disable_numa) {
5524 		pr_info("workqueue: NUMA affinity support disabled\n");
5525 		return;
5526 	}
5527 
5528 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5529 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5530 
5531 	/*
5532 	 * We want masks of possible CPUs of each node which isn't readily
5533 	 * available.  Build one from cpu_to_node() which should have been
5534 	 * fully initialized by now.
5535 	 */
5536 	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5537 	BUG_ON(!tbl);
5538 
5539 	for_each_node(node)
5540 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5541 				node_online(node) ? node : NUMA_NO_NODE));
5542 
5543 	for_each_possible_cpu(cpu) {
5544 		node = cpu_to_node(cpu);
5545 		if (WARN_ON(node == NUMA_NO_NODE)) {
5546 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5547 			/* happens iff arch is bonkers, let's just proceed */
5548 			return;
5549 		}
5550 		cpumask_set_cpu(cpu, tbl[node]);
5551 	}
5552 
5553 	wq_numa_possible_cpumask = tbl;
5554 	wq_numa_enabled = true;
5555 }
5556 
5557 /**
5558  * workqueue_init_early - early init for workqueue subsystem
5559  *
5560  * This is the first half of two-staged workqueue subsystem initialization
5561  * and invoked as soon as the bare basics - memory allocation, cpumasks and
5562  * idr are up.  It sets up all the data structures and system workqueues
5563  * and allows early boot code to create workqueues and queue/cancel work
5564  * items.  Actual work item execution starts only after kthreads can be
5565  * created and scheduled right before early initcalls.
5566  */
5567 int __init workqueue_init_early(void)
5568 {
5569 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5570 	int i, cpu;
5571 
5572 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5573 
5574 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5575 	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5576 
5577 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5578 
5579 	/* initialize CPU pools */
5580 	for_each_possible_cpu(cpu) {
5581 		struct worker_pool *pool;
5582 
5583 		i = 0;
5584 		for_each_cpu_worker_pool(pool, cpu) {
5585 			BUG_ON(init_worker_pool(pool));
5586 			pool->cpu = cpu;
5587 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5588 			pool->attrs->nice = std_nice[i++];
5589 			pool->node = cpu_to_node(cpu);
5590 
5591 			/* alloc pool ID */
5592 			mutex_lock(&wq_pool_mutex);
5593 			BUG_ON(worker_pool_assign_id(pool));
5594 			mutex_unlock(&wq_pool_mutex);
5595 		}
5596 	}
5597 
5598 	/* create default unbound and ordered wq attrs */
5599 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5600 		struct workqueue_attrs *attrs;
5601 
5602 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5603 		attrs->nice = std_nice[i];
5604 		unbound_std_wq_attrs[i] = attrs;
5605 
5606 		/*
5607 		 * An ordered wq should have only one pwq as ordering is
5608 		 * guaranteed by max_active which is enforced by pwqs.
5609 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5610 		 */
5611 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5612 		attrs->nice = std_nice[i];
5613 		attrs->no_numa = true;
5614 		ordered_wq_attrs[i] = attrs;
5615 	}
5616 
5617 	system_wq = alloc_workqueue("events", 0, 0);
5618 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5619 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5620 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5621 					    WQ_UNBOUND_MAX_ACTIVE);
5622 	system_freezable_wq = alloc_workqueue("events_freezable",
5623 					      WQ_FREEZABLE, 0);
5624 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5625 					      WQ_POWER_EFFICIENT, 0);
5626 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5627 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5628 					      0);
5629 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5630 	       !system_unbound_wq || !system_freezable_wq ||
5631 	       !system_power_efficient_wq ||
5632 	       !system_freezable_power_efficient_wq);
5633 
5634 	return 0;
5635 }
5636 
5637 /**
5638  * workqueue_init - bring workqueue subsystem fully online
5639  *
5640  * This is the latter half of two-staged workqueue subsystem initialization
5641  * and invoked as soon as kthreads can be created and scheduled.
5642  * Workqueues have been created and work items queued on them, but there
5643  * are no kworkers executing the work items yet.  Populate the worker pools
5644  * with the initial workers and enable future kworker creations.
5645  */
5646 int __init workqueue_init(void)
5647 {
5648 	struct workqueue_struct *wq;
5649 	struct worker_pool *pool;
5650 	int cpu, bkt;
5651 
5652 	/*
5653 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5654 	 * CPU to node mapping may not be available that early on some
5655 	 * archs such as power and arm64.  As per-cpu pools created
5656 	 * previously could be missing node hint and unbound pools NUMA
5657 	 * affinity, fix them up.
5658 	 */
5659 	wq_numa_init();
5660 
5661 	mutex_lock(&wq_pool_mutex);
5662 
5663 	for_each_possible_cpu(cpu) {
5664 		for_each_cpu_worker_pool(pool, cpu) {
5665 			pool->node = cpu_to_node(cpu);
5666 		}
5667 	}
5668 
5669 	list_for_each_entry(wq, &workqueues, list)
5670 		wq_update_unbound_numa(wq, smp_processor_id(), true);
5671 
5672 	mutex_unlock(&wq_pool_mutex);
5673 
5674 	/* create the initial workers */
5675 	for_each_online_cpu(cpu) {
5676 		for_each_cpu_worker_pool(pool, cpu) {
5677 			pool->flags &= ~POOL_DISASSOCIATED;
5678 			BUG_ON(!create_worker(pool));
5679 		}
5680 	}
5681 
5682 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5683 		BUG_ON(!create_worker(pool));
5684 
5685 	wq_online = true;
5686 	wq_watchdog_init();
5687 
5688 	return 0;
5689 }
5690