xref: /openbmc/linux/kernel/workqueue.c (revision f42b3800)
1 /*
2  * linux/kernel/workqueue.c
3  *
4  * Generic mechanism for defining kernel helper threads for running
5  * arbitrary tasks in process context.
6  *
7  * Started by Ingo Molnar, Copyright (C) 2002
8  *
9  * Derived from the taskqueue/keventd code by:
10  *
11  *   David Woodhouse <dwmw2@infradead.org>
12  *   Andrew Morton <andrewm@uow.edu.au>
13  *   Kai Petzke <wpp@marie.physik.tu-berlin.de>
14  *   Theodore Ts'o <tytso@mit.edu>
15  *
16  * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
17  */
18 
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
35 #include <linux/lockdep.h>
36 
37 /*
38  * The per-CPU workqueue (if single thread, we always use the first
39  * possible cpu).
40  */
41 struct cpu_workqueue_struct {
42 
43 	spinlock_t lock;
44 
45 	struct list_head worklist;
46 	wait_queue_head_t more_work;
47 	struct work_struct *current_work;
48 
49 	struct workqueue_struct *wq;
50 	struct task_struct *thread;
51 
52 	int run_depth;		/* Detect run_workqueue() recursion depth */
53 } ____cacheline_aligned;
54 
55 /*
56  * The externally visible workqueue abstraction is an array of
57  * per-CPU workqueues:
58  */
59 struct workqueue_struct {
60 	struct cpu_workqueue_struct *cpu_wq;
61 	struct list_head list;
62 	const char *name;
63 	int singlethread;
64 	int freezeable;		/* Freeze threads during suspend */
65 #ifdef CONFIG_LOCKDEP
66 	struct lockdep_map lockdep_map;
67 #endif
68 };
69 
70 /* Serializes the accesses to the list of workqueues. */
71 static DEFINE_SPINLOCK(workqueue_lock);
72 static LIST_HEAD(workqueues);
73 
74 static int singlethread_cpu __read_mostly;
75 static cpumask_t cpu_singlethread_map __read_mostly;
76 /*
77  * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD
78  * flushes cwq->worklist. This means that flush_workqueue/wait_on_work
79  * which comes in between can't use for_each_online_cpu(). We could
80  * use cpu_possible_map, the cpumask below is more a documentation
81  * than optimization.
82  */
83 static cpumask_t cpu_populated_map __read_mostly;
84 
85 /* If it's single threaded, it isn't in the list of workqueues. */
86 static inline int is_single_threaded(struct workqueue_struct *wq)
87 {
88 	return wq->singlethread;
89 }
90 
91 static const cpumask_t *wq_cpu_map(struct workqueue_struct *wq)
92 {
93 	return is_single_threaded(wq)
94 		? &cpu_singlethread_map : &cpu_populated_map;
95 }
96 
97 static
98 struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu)
99 {
100 	if (unlikely(is_single_threaded(wq)))
101 		cpu = singlethread_cpu;
102 	return per_cpu_ptr(wq->cpu_wq, cpu);
103 }
104 
105 /*
106  * Set the workqueue on which a work item is to be run
107  * - Must *only* be called if the pending flag is set
108  */
109 static inline void set_wq_data(struct work_struct *work,
110 				struct cpu_workqueue_struct *cwq)
111 {
112 	unsigned long new;
113 
114 	BUG_ON(!work_pending(work));
115 
116 	new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING);
117 	new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
118 	atomic_long_set(&work->data, new);
119 }
120 
121 static inline
122 struct cpu_workqueue_struct *get_wq_data(struct work_struct *work)
123 {
124 	return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
125 }
126 
127 static void insert_work(struct cpu_workqueue_struct *cwq,
128 				struct work_struct *work, int tail)
129 {
130 	set_wq_data(work, cwq);
131 	/*
132 	 * Ensure that we get the right work->data if we see the
133 	 * result of list_add() below, see try_to_grab_pending().
134 	 */
135 	smp_wmb();
136 	if (tail)
137 		list_add_tail(&work->entry, &cwq->worklist);
138 	else
139 		list_add(&work->entry, &cwq->worklist);
140 	wake_up(&cwq->more_work);
141 }
142 
143 /* Preempt must be disabled. */
144 static void __queue_work(struct cpu_workqueue_struct *cwq,
145 			 struct work_struct *work)
146 {
147 	unsigned long flags;
148 
149 	spin_lock_irqsave(&cwq->lock, flags);
150 	insert_work(cwq, work, 1);
151 	spin_unlock_irqrestore(&cwq->lock, flags);
152 }
153 
154 /**
155  * queue_work - queue work on a workqueue
156  * @wq: workqueue to use
157  * @work: work to queue
158  *
159  * Returns 0 if @work was already on a queue, non-zero otherwise.
160  *
161  * We queue the work to the CPU it was submitted, but there is no
162  * guarantee that it will be processed by that CPU.
163  */
164 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
165 {
166 	int ret = 0;
167 
168 	if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
169 		BUG_ON(!list_empty(&work->entry));
170 		__queue_work(wq_per_cpu(wq, get_cpu()), work);
171 		put_cpu();
172 		ret = 1;
173 	}
174 	return ret;
175 }
176 EXPORT_SYMBOL_GPL(queue_work);
177 
178 static void delayed_work_timer_fn(unsigned long __data)
179 {
180 	struct delayed_work *dwork = (struct delayed_work *)__data;
181 	struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
182 	struct workqueue_struct *wq = cwq->wq;
183 
184 	__queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work);
185 }
186 
187 /**
188  * queue_delayed_work - queue work on a workqueue after delay
189  * @wq: workqueue to use
190  * @dwork: delayable work to queue
191  * @delay: number of jiffies to wait before queueing
192  *
193  * Returns 0 if @work was already on a queue, non-zero otherwise.
194  */
195 int queue_delayed_work(struct workqueue_struct *wq,
196 			struct delayed_work *dwork, unsigned long delay)
197 {
198 	timer_stats_timer_set_start_info(&dwork->timer);
199 	if (delay == 0)
200 		return queue_work(wq, &dwork->work);
201 
202 	return queue_delayed_work_on(-1, wq, dwork, delay);
203 }
204 EXPORT_SYMBOL_GPL(queue_delayed_work);
205 
206 /**
207  * queue_delayed_work_on - queue work on specific CPU after delay
208  * @cpu: CPU number to execute work on
209  * @wq: workqueue to use
210  * @dwork: work to queue
211  * @delay: number of jiffies to wait before queueing
212  *
213  * Returns 0 if @work was already on a queue, non-zero otherwise.
214  */
215 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
216 			struct delayed_work *dwork, unsigned long delay)
217 {
218 	int ret = 0;
219 	struct timer_list *timer = &dwork->timer;
220 	struct work_struct *work = &dwork->work;
221 
222 	timer_stats_timer_set_start_info(&dwork->timer);
223 	if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
224 		BUG_ON(timer_pending(timer));
225 		BUG_ON(!list_empty(&work->entry));
226 
227 		/* This stores cwq for the moment, for the timer_fn */
228 		set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id()));
229 		timer->expires = jiffies + delay;
230 		timer->data = (unsigned long)dwork;
231 		timer->function = delayed_work_timer_fn;
232 
233 		if (unlikely(cpu >= 0))
234 			add_timer_on(timer, cpu);
235 		else
236 			add_timer(timer);
237 		ret = 1;
238 	}
239 	return ret;
240 }
241 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
242 
243 static void run_workqueue(struct cpu_workqueue_struct *cwq)
244 {
245 	spin_lock_irq(&cwq->lock);
246 	cwq->run_depth++;
247 	if (cwq->run_depth > 3) {
248 		/* morton gets to eat his hat */
249 		printk("%s: recursion depth exceeded: %d\n",
250 			__FUNCTION__, cwq->run_depth);
251 		dump_stack();
252 	}
253 	while (!list_empty(&cwq->worklist)) {
254 		struct work_struct *work = list_entry(cwq->worklist.next,
255 						struct work_struct, entry);
256 		work_func_t f = work->func;
257 #ifdef CONFIG_LOCKDEP
258 		/*
259 		 * It is permissible to free the struct work_struct
260 		 * from inside the function that is called from it,
261 		 * this we need to take into account for lockdep too.
262 		 * To avoid bogus "held lock freed" warnings as well
263 		 * as problems when looking into work->lockdep_map,
264 		 * make a copy and use that here.
265 		 */
266 		struct lockdep_map lockdep_map = work->lockdep_map;
267 #endif
268 
269 		cwq->current_work = work;
270 		list_del_init(cwq->worklist.next);
271 		spin_unlock_irq(&cwq->lock);
272 
273 		BUG_ON(get_wq_data(work) != cwq);
274 		work_clear_pending(work);
275 		lock_acquire(&cwq->wq->lockdep_map, 0, 0, 0, 2, _THIS_IP_);
276 		lock_acquire(&lockdep_map, 0, 0, 0, 2, _THIS_IP_);
277 		f(work);
278 		lock_release(&lockdep_map, 1, _THIS_IP_);
279 		lock_release(&cwq->wq->lockdep_map, 1, _THIS_IP_);
280 
281 		if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
282 			printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
283 					"%s/0x%08x/%d\n",
284 					current->comm, preempt_count(),
285 				       	task_pid_nr(current));
286 			printk(KERN_ERR "    last function: ");
287 			print_symbol("%s\n", (unsigned long)f);
288 			debug_show_held_locks(current);
289 			dump_stack();
290 		}
291 
292 		spin_lock_irq(&cwq->lock);
293 		cwq->current_work = NULL;
294 	}
295 	cwq->run_depth--;
296 	spin_unlock_irq(&cwq->lock);
297 }
298 
299 static int worker_thread(void *__cwq)
300 {
301 	struct cpu_workqueue_struct *cwq = __cwq;
302 	DEFINE_WAIT(wait);
303 
304 	if (cwq->wq->freezeable)
305 		set_freezable();
306 
307 	set_user_nice(current, -5);
308 
309 	for (;;) {
310 		prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
311 		if (!freezing(current) &&
312 		    !kthread_should_stop() &&
313 		    list_empty(&cwq->worklist))
314 			schedule();
315 		finish_wait(&cwq->more_work, &wait);
316 
317 		try_to_freeze();
318 
319 		if (kthread_should_stop())
320 			break;
321 
322 		run_workqueue(cwq);
323 	}
324 
325 	return 0;
326 }
327 
328 struct wq_barrier {
329 	struct work_struct	work;
330 	struct completion	done;
331 };
332 
333 static void wq_barrier_func(struct work_struct *work)
334 {
335 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
336 	complete(&barr->done);
337 }
338 
339 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
340 					struct wq_barrier *barr, int tail)
341 {
342 	INIT_WORK(&barr->work, wq_barrier_func);
343 	__set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
344 
345 	init_completion(&barr->done);
346 
347 	insert_work(cwq, &barr->work, tail);
348 }
349 
350 static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
351 {
352 	int active;
353 
354 	if (cwq->thread == current) {
355 		/*
356 		 * Probably keventd trying to flush its own queue. So simply run
357 		 * it by hand rather than deadlocking.
358 		 */
359 		run_workqueue(cwq);
360 		active = 1;
361 	} else {
362 		struct wq_barrier barr;
363 
364 		active = 0;
365 		spin_lock_irq(&cwq->lock);
366 		if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) {
367 			insert_wq_barrier(cwq, &barr, 1);
368 			active = 1;
369 		}
370 		spin_unlock_irq(&cwq->lock);
371 
372 		if (active)
373 			wait_for_completion(&barr.done);
374 	}
375 
376 	return active;
377 }
378 
379 /**
380  * flush_workqueue - ensure that any scheduled work has run to completion.
381  * @wq: workqueue to flush
382  *
383  * Forces execution of the workqueue and blocks until its completion.
384  * This is typically used in driver shutdown handlers.
385  *
386  * We sleep until all works which were queued on entry have been handled,
387  * but we are not livelocked by new incoming ones.
388  *
389  * This function used to run the workqueues itself.  Now we just wait for the
390  * helper threads to do it.
391  */
392 void flush_workqueue(struct workqueue_struct *wq)
393 {
394 	const cpumask_t *cpu_map = wq_cpu_map(wq);
395 	int cpu;
396 
397 	might_sleep();
398 	lock_acquire(&wq->lockdep_map, 0, 0, 0, 2, _THIS_IP_);
399 	lock_release(&wq->lockdep_map, 1, _THIS_IP_);
400 	for_each_cpu_mask(cpu, *cpu_map)
401 		flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
402 }
403 EXPORT_SYMBOL_GPL(flush_workqueue);
404 
405 /*
406  * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
407  * so this work can't be re-armed in any way.
408  */
409 static int try_to_grab_pending(struct work_struct *work)
410 {
411 	struct cpu_workqueue_struct *cwq;
412 	int ret = -1;
413 
414 	if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work)))
415 		return 0;
416 
417 	/*
418 	 * The queueing is in progress, or it is already queued. Try to
419 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
420 	 */
421 
422 	cwq = get_wq_data(work);
423 	if (!cwq)
424 		return ret;
425 
426 	spin_lock_irq(&cwq->lock);
427 	if (!list_empty(&work->entry)) {
428 		/*
429 		 * This work is queued, but perhaps we locked the wrong cwq.
430 		 * In that case we must see the new value after rmb(), see
431 		 * insert_work()->wmb().
432 		 */
433 		smp_rmb();
434 		if (cwq == get_wq_data(work)) {
435 			list_del_init(&work->entry);
436 			ret = 1;
437 		}
438 	}
439 	spin_unlock_irq(&cwq->lock);
440 
441 	return ret;
442 }
443 
444 static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq,
445 				struct work_struct *work)
446 {
447 	struct wq_barrier barr;
448 	int running = 0;
449 
450 	spin_lock_irq(&cwq->lock);
451 	if (unlikely(cwq->current_work == work)) {
452 		insert_wq_barrier(cwq, &barr, 0);
453 		running = 1;
454 	}
455 	spin_unlock_irq(&cwq->lock);
456 
457 	if (unlikely(running))
458 		wait_for_completion(&barr.done);
459 }
460 
461 static void wait_on_work(struct work_struct *work)
462 {
463 	struct cpu_workqueue_struct *cwq;
464 	struct workqueue_struct *wq;
465 	const cpumask_t *cpu_map;
466 	int cpu;
467 
468 	might_sleep();
469 
470 	lock_acquire(&work->lockdep_map, 0, 0, 0, 2, _THIS_IP_);
471 	lock_release(&work->lockdep_map, 1, _THIS_IP_);
472 
473 	cwq = get_wq_data(work);
474 	if (!cwq)
475 		return;
476 
477 	wq = cwq->wq;
478 	cpu_map = wq_cpu_map(wq);
479 
480 	for_each_cpu_mask(cpu, *cpu_map)
481 		wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
482 }
483 
484 static int __cancel_work_timer(struct work_struct *work,
485 				struct timer_list* timer)
486 {
487 	int ret;
488 
489 	do {
490 		ret = (timer && likely(del_timer(timer)));
491 		if (!ret)
492 			ret = try_to_grab_pending(work);
493 		wait_on_work(work);
494 	} while (unlikely(ret < 0));
495 
496 	work_clear_pending(work);
497 	return ret;
498 }
499 
500 /**
501  * cancel_work_sync - block until a work_struct's callback has terminated
502  * @work: the work which is to be flushed
503  *
504  * Returns true if @work was pending.
505  *
506  * cancel_work_sync() will cancel the work if it is queued. If the work's
507  * callback appears to be running, cancel_work_sync() will block until it
508  * has completed.
509  *
510  * It is possible to use this function if the work re-queues itself. It can
511  * cancel the work even if it migrates to another workqueue, however in that
512  * case it only guarantees that work->func() has completed on the last queued
513  * workqueue.
514  *
515  * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
516  * pending, otherwise it goes into a busy-wait loop until the timer expires.
517  *
518  * The caller must ensure that workqueue_struct on which this work was last
519  * queued can't be destroyed before this function returns.
520  */
521 int cancel_work_sync(struct work_struct *work)
522 {
523 	return __cancel_work_timer(work, NULL);
524 }
525 EXPORT_SYMBOL_GPL(cancel_work_sync);
526 
527 /**
528  * cancel_delayed_work_sync - reliably kill off a delayed work.
529  * @dwork: the delayed work struct
530  *
531  * Returns true if @dwork was pending.
532  *
533  * It is possible to use this function if @dwork rearms itself via queue_work()
534  * or queue_delayed_work(). See also the comment for cancel_work_sync().
535  */
536 int cancel_delayed_work_sync(struct delayed_work *dwork)
537 {
538 	return __cancel_work_timer(&dwork->work, &dwork->timer);
539 }
540 EXPORT_SYMBOL(cancel_delayed_work_sync);
541 
542 static struct workqueue_struct *keventd_wq __read_mostly;
543 
544 /**
545  * schedule_work - put work task in global workqueue
546  * @work: job to be done
547  *
548  * This puts a job in the kernel-global workqueue.
549  */
550 int schedule_work(struct work_struct *work)
551 {
552 	return queue_work(keventd_wq, work);
553 }
554 EXPORT_SYMBOL(schedule_work);
555 
556 /**
557  * schedule_delayed_work - put work task in global workqueue after delay
558  * @dwork: job to be done
559  * @delay: number of jiffies to wait or 0 for immediate execution
560  *
561  * After waiting for a given time this puts a job in the kernel-global
562  * workqueue.
563  */
564 int schedule_delayed_work(struct delayed_work *dwork,
565 					unsigned long delay)
566 {
567 	timer_stats_timer_set_start_info(&dwork->timer);
568 	return queue_delayed_work(keventd_wq, dwork, delay);
569 }
570 EXPORT_SYMBOL(schedule_delayed_work);
571 
572 /**
573  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
574  * @cpu: cpu to use
575  * @dwork: job to be done
576  * @delay: number of jiffies to wait
577  *
578  * After waiting for a given time this puts a job in the kernel-global
579  * workqueue on the specified CPU.
580  */
581 int schedule_delayed_work_on(int cpu,
582 			struct delayed_work *dwork, unsigned long delay)
583 {
584 	timer_stats_timer_set_start_info(&dwork->timer);
585 	return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
586 }
587 EXPORT_SYMBOL(schedule_delayed_work_on);
588 
589 /**
590  * schedule_on_each_cpu - call a function on each online CPU from keventd
591  * @func: the function to call
592  *
593  * Returns zero on success.
594  * Returns -ve errno on failure.
595  *
596  * schedule_on_each_cpu() is very slow.
597  */
598 int schedule_on_each_cpu(work_func_t func)
599 {
600 	int cpu;
601 	struct work_struct *works;
602 
603 	works = alloc_percpu(struct work_struct);
604 	if (!works)
605 		return -ENOMEM;
606 
607 	get_online_cpus();
608 	for_each_online_cpu(cpu) {
609 		struct work_struct *work = per_cpu_ptr(works, cpu);
610 
611 		INIT_WORK(work, func);
612 		set_bit(WORK_STRUCT_PENDING, work_data_bits(work));
613 		__queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu), work);
614 	}
615 	flush_workqueue(keventd_wq);
616 	put_online_cpus();
617 	free_percpu(works);
618 	return 0;
619 }
620 
621 void flush_scheduled_work(void)
622 {
623 	flush_workqueue(keventd_wq);
624 }
625 EXPORT_SYMBOL(flush_scheduled_work);
626 
627 /**
628  * execute_in_process_context - reliably execute the routine with user context
629  * @fn:		the function to execute
630  * @ew:		guaranteed storage for the execute work structure (must
631  *		be available when the work executes)
632  *
633  * Executes the function immediately if process context is available,
634  * otherwise schedules the function for delayed execution.
635  *
636  * Returns:	0 - function was executed
637  *		1 - function was scheduled for execution
638  */
639 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
640 {
641 	if (!in_interrupt()) {
642 		fn(&ew->work);
643 		return 0;
644 	}
645 
646 	INIT_WORK(&ew->work, fn);
647 	schedule_work(&ew->work);
648 
649 	return 1;
650 }
651 EXPORT_SYMBOL_GPL(execute_in_process_context);
652 
653 int keventd_up(void)
654 {
655 	return keventd_wq != NULL;
656 }
657 
658 int current_is_keventd(void)
659 {
660 	struct cpu_workqueue_struct *cwq;
661 	int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */
662 	int ret = 0;
663 
664 	BUG_ON(!keventd_wq);
665 
666 	cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
667 	if (current == cwq->thread)
668 		ret = 1;
669 
670 	return ret;
671 
672 }
673 
674 static struct cpu_workqueue_struct *
675 init_cpu_workqueue(struct workqueue_struct *wq, int cpu)
676 {
677 	struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
678 
679 	cwq->wq = wq;
680 	spin_lock_init(&cwq->lock);
681 	INIT_LIST_HEAD(&cwq->worklist);
682 	init_waitqueue_head(&cwq->more_work);
683 
684 	return cwq;
685 }
686 
687 static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
688 {
689 	struct workqueue_struct *wq = cwq->wq;
690 	const char *fmt = is_single_threaded(wq) ? "%s" : "%s/%d";
691 	struct task_struct *p;
692 
693 	p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);
694 	/*
695 	 * Nobody can add the work_struct to this cwq,
696 	 *	if (caller is __create_workqueue)
697 	 *		nobody should see this wq
698 	 *	else // caller is CPU_UP_PREPARE
699 	 *		cpu is not on cpu_online_map
700 	 * so we can abort safely.
701 	 */
702 	if (IS_ERR(p))
703 		return PTR_ERR(p);
704 
705 	cwq->thread = p;
706 
707 	return 0;
708 }
709 
710 static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
711 {
712 	struct task_struct *p = cwq->thread;
713 
714 	if (p != NULL) {
715 		if (cpu >= 0)
716 			kthread_bind(p, cpu);
717 		wake_up_process(p);
718 	}
719 }
720 
721 struct workqueue_struct *__create_workqueue_key(const char *name,
722 						int singlethread,
723 						int freezeable,
724 						struct lock_class_key *key,
725 						const char *lock_name)
726 {
727 	struct workqueue_struct *wq;
728 	struct cpu_workqueue_struct *cwq;
729 	int err = 0, cpu;
730 
731 	wq = kzalloc(sizeof(*wq), GFP_KERNEL);
732 	if (!wq)
733 		return NULL;
734 
735 	wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
736 	if (!wq->cpu_wq) {
737 		kfree(wq);
738 		return NULL;
739 	}
740 
741 	wq->name = name;
742 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
743 	wq->singlethread = singlethread;
744 	wq->freezeable = freezeable;
745 	INIT_LIST_HEAD(&wq->list);
746 
747 	if (singlethread) {
748 		cwq = init_cpu_workqueue(wq, singlethread_cpu);
749 		err = create_workqueue_thread(cwq, singlethread_cpu);
750 		start_workqueue_thread(cwq, -1);
751 	} else {
752 		get_online_cpus();
753 		spin_lock(&workqueue_lock);
754 		list_add(&wq->list, &workqueues);
755 		spin_unlock(&workqueue_lock);
756 
757 		for_each_possible_cpu(cpu) {
758 			cwq = init_cpu_workqueue(wq, cpu);
759 			if (err || !cpu_online(cpu))
760 				continue;
761 			err = create_workqueue_thread(cwq, cpu);
762 			start_workqueue_thread(cwq, cpu);
763 		}
764 		put_online_cpus();
765 	}
766 
767 	if (err) {
768 		destroy_workqueue(wq);
769 		wq = NULL;
770 	}
771 	return wq;
772 }
773 EXPORT_SYMBOL_GPL(__create_workqueue_key);
774 
775 static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
776 {
777 	/*
778 	 * Our caller is either destroy_workqueue() or CPU_DEAD,
779 	 * get_online_cpus() protects cwq->thread.
780 	 */
781 	if (cwq->thread == NULL)
782 		return;
783 
784 	lock_acquire(&cwq->wq->lockdep_map, 0, 0, 0, 2, _THIS_IP_);
785 	lock_release(&cwq->wq->lockdep_map, 1, _THIS_IP_);
786 
787 	flush_cpu_workqueue(cwq);
788 	/*
789 	 * If the caller is CPU_DEAD and cwq->worklist was not empty,
790 	 * a concurrent flush_workqueue() can insert a barrier after us.
791 	 * However, in that case run_workqueue() won't return and check
792 	 * kthread_should_stop() until it flushes all work_struct's.
793 	 * When ->worklist becomes empty it is safe to exit because no
794 	 * more work_structs can be queued on this cwq: flush_workqueue
795 	 * checks list_empty(), and a "normal" queue_work() can't use
796 	 * a dead CPU.
797 	 */
798 	kthread_stop(cwq->thread);
799 	cwq->thread = NULL;
800 }
801 
802 /**
803  * destroy_workqueue - safely terminate a workqueue
804  * @wq: target workqueue
805  *
806  * Safely destroy a workqueue. All work currently pending will be done first.
807  */
808 void destroy_workqueue(struct workqueue_struct *wq)
809 {
810 	const cpumask_t *cpu_map = wq_cpu_map(wq);
811 	struct cpu_workqueue_struct *cwq;
812 	int cpu;
813 
814 	get_online_cpus();
815 	spin_lock(&workqueue_lock);
816 	list_del(&wq->list);
817 	spin_unlock(&workqueue_lock);
818 	put_online_cpus();
819 
820 	for_each_cpu_mask(cpu, *cpu_map) {
821 		cwq = per_cpu_ptr(wq->cpu_wq, cpu);
822 		cleanup_workqueue_thread(cwq, cpu);
823 	}
824 
825 	free_percpu(wq->cpu_wq);
826 	kfree(wq);
827 }
828 EXPORT_SYMBOL_GPL(destroy_workqueue);
829 
830 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
831 						unsigned long action,
832 						void *hcpu)
833 {
834 	unsigned int cpu = (unsigned long)hcpu;
835 	struct cpu_workqueue_struct *cwq;
836 	struct workqueue_struct *wq;
837 
838 	action &= ~CPU_TASKS_FROZEN;
839 
840 	switch (action) {
841 
842 	case CPU_UP_PREPARE:
843 		cpu_set(cpu, cpu_populated_map);
844 	}
845 
846 	list_for_each_entry(wq, &workqueues, list) {
847 		cwq = per_cpu_ptr(wq->cpu_wq, cpu);
848 
849 		switch (action) {
850 		case CPU_UP_PREPARE:
851 			if (!create_workqueue_thread(cwq, cpu))
852 				break;
853 			printk(KERN_ERR "workqueue [%s] for %i failed\n",
854 				wq->name, cpu);
855 			return NOTIFY_BAD;
856 
857 		case CPU_ONLINE:
858 			start_workqueue_thread(cwq, cpu);
859 			break;
860 
861 		case CPU_UP_CANCELED:
862 			start_workqueue_thread(cwq, -1);
863 		case CPU_DEAD:
864 			cleanup_workqueue_thread(cwq, cpu);
865 			break;
866 		}
867 	}
868 
869 	return NOTIFY_OK;
870 }
871 
872 void __init init_workqueues(void)
873 {
874 	cpu_populated_map = cpu_online_map;
875 	singlethread_cpu = first_cpu(cpu_possible_map);
876 	cpu_singlethread_map = cpumask_of_cpu(singlethread_cpu);
877 	hotcpu_notifier(workqueue_cpu_callback, 0);
878 	keventd_wq = create_workqueue("events");
879 	BUG_ON(!keventd_wq);
880 }
881