xref: /openbmc/linux/kernel/workqueue.c (revision f3a8b664)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There are two worker pools for each CPU (one for
20  * normal work items and the other for high priority ones) and some extra
21  * pools for workqueues which are not bound to any specific CPU - the
22  * number of these backing pools is dynamic.
23  *
24  * Please read Documentation/workqueue.txt for details.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 
52 #include "workqueue_internal.h"
53 
54 enum {
55 	/*
56 	 * worker_pool flags
57 	 *
58 	 * A bound pool is either associated or disassociated with its CPU.
59 	 * While associated (!DISASSOCIATED), all workers are bound to the
60 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 	 * is in effect.
62 	 *
63 	 * While DISASSOCIATED, the cpu may be offline and all workers have
64 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 	 * be executing on any CPU.  The pool behaves as an unbound one.
66 	 *
67 	 * Note that DISASSOCIATED should be flipped only while holding
68 	 * attach_mutex to avoid changing binding state while
69 	 * worker_attach_to_pool() is in progress.
70 	 */
71 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72 
73 	/* worker flags */
74 	WORKER_DIE		= 1 << 1,	/* die die die */
75 	WORKER_IDLE		= 1 << 2,	/* is idle */
76 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
77 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
80 
81 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
82 				  WORKER_UNBOUND | WORKER_REBOUND,
83 
84 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
85 
86 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
87 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
88 
89 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
90 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
91 
92 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
93 						/* call for help after 10ms
94 						   (min two ticks) */
95 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
96 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
97 
98 	/*
99 	 * Rescue workers are used only on emergencies and shared by
100 	 * all cpus.  Give MIN_NICE.
101 	 */
102 	RESCUER_NICE_LEVEL	= MIN_NICE,
103 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
104 
105 	WQ_NAME_LEN		= 24,
106 };
107 
108 /*
109  * Structure fields follow one of the following exclusion rules.
110  *
111  * I: Modifiable by initialization/destruction paths and read-only for
112  *    everyone else.
113  *
114  * P: Preemption protected.  Disabling preemption is enough and should
115  *    only be modified and accessed from the local cpu.
116  *
117  * L: pool->lock protected.  Access with pool->lock held.
118  *
119  * X: During normal operation, modification requires pool->lock and should
120  *    be done only from local cpu.  Either disabling preemption on local
121  *    cpu or grabbing pool->lock is enough for read access.  If
122  *    POOL_DISASSOCIATED is set, it's identical to L.
123  *
124  * A: pool->attach_mutex protected.
125  *
126  * PL: wq_pool_mutex protected.
127  *
128  * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
129  *
130  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
131  *
132  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
133  *      sched-RCU for reads.
134  *
135  * WQ: wq->mutex protected.
136  *
137  * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
138  *
139  * MD: wq_mayday_lock protected.
140  */
141 
142 /* struct worker is defined in workqueue_internal.h */
143 
144 struct worker_pool {
145 	spinlock_t		lock;		/* the pool lock */
146 	int			cpu;		/* I: the associated cpu */
147 	int			node;		/* I: the associated node ID */
148 	int			id;		/* I: pool ID */
149 	unsigned int		flags;		/* X: flags */
150 
151 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
152 
153 	struct list_head	worklist;	/* L: list of pending works */
154 	int			nr_workers;	/* L: total number of workers */
155 
156 	/* nr_idle includes the ones off idle_list for rebinding */
157 	int			nr_idle;	/* L: currently idle ones */
158 
159 	struct list_head	idle_list;	/* X: list of idle workers */
160 	struct timer_list	idle_timer;	/* L: worker idle timeout */
161 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
162 
163 	/* a workers is either on busy_hash or idle_list, or the manager */
164 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
165 						/* L: hash of busy workers */
166 
167 	/* see manage_workers() for details on the two manager mutexes */
168 	struct mutex		manager_arb;	/* manager arbitration */
169 	struct worker		*manager;	/* L: purely informational */
170 	struct mutex		attach_mutex;	/* attach/detach exclusion */
171 	struct list_head	workers;	/* A: attached workers */
172 	struct completion	*detach_completion; /* all workers detached */
173 
174 	struct ida		worker_ida;	/* worker IDs for task name */
175 
176 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
177 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
178 	int			refcnt;		/* PL: refcnt for unbound pools */
179 
180 	/*
181 	 * The current concurrency level.  As it's likely to be accessed
182 	 * from other CPUs during try_to_wake_up(), put it in a separate
183 	 * cacheline.
184 	 */
185 	atomic_t		nr_running ____cacheline_aligned_in_smp;
186 
187 	/*
188 	 * Destruction of pool is sched-RCU protected to allow dereferences
189 	 * from get_work_pool().
190 	 */
191 	struct rcu_head		rcu;
192 } ____cacheline_aligned_in_smp;
193 
194 /*
195  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
196  * of work_struct->data are used for flags and the remaining high bits
197  * point to the pwq; thus, pwqs need to be aligned at two's power of the
198  * number of flag bits.
199  */
200 struct pool_workqueue {
201 	struct worker_pool	*pool;		/* I: the associated pool */
202 	struct workqueue_struct *wq;		/* I: the owning workqueue */
203 	int			work_color;	/* L: current color */
204 	int			flush_color;	/* L: flushing color */
205 	int			refcnt;		/* L: reference count */
206 	int			nr_in_flight[WORK_NR_COLORS];
207 						/* L: nr of in_flight works */
208 	int			nr_active;	/* L: nr of active works */
209 	int			max_active;	/* L: max active works */
210 	struct list_head	delayed_works;	/* L: delayed works */
211 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
212 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
213 
214 	/*
215 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
216 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
217 	 * itself is also sched-RCU protected so that the first pwq can be
218 	 * determined without grabbing wq->mutex.
219 	 */
220 	struct work_struct	unbound_release_work;
221 	struct rcu_head		rcu;
222 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
223 
224 /*
225  * Structure used to wait for workqueue flush.
226  */
227 struct wq_flusher {
228 	struct list_head	list;		/* WQ: list of flushers */
229 	int			flush_color;	/* WQ: flush color waiting for */
230 	struct completion	done;		/* flush completion */
231 };
232 
233 struct wq_device;
234 
235 /*
236  * The externally visible workqueue.  It relays the issued work items to
237  * the appropriate worker_pool through its pool_workqueues.
238  */
239 struct workqueue_struct {
240 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
241 	struct list_head	list;		/* PR: list of all workqueues */
242 
243 	struct mutex		mutex;		/* protects this wq */
244 	int			work_color;	/* WQ: current work color */
245 	int			flush_color;	/* WQ: current flush color */
246 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
247 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
248 	struct list_head	flusher_queue;	/* WQ: flush waiters */
249 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
250 
251 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
252 	struct worker		*rescuer;	/* I: rescue worker */
253 
254 	int			nr_drainers;	/* WQ: drain in progress */
255 	int			saved_max_active; /* WQ: saved pwq max_active */
256 
257 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
258 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
259 
260 #ifdef CONFIG_SYSFS
261 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
262 #endif
263 #ifdef CONFIG_LOCKDEP
264 	struct lockdep_map	lockdep_map;
265 #endif
266 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
267 
268 	/*
269 	 * Destruction of workqueue_struct is sched-RCU protected to allow
270 	 * walking the workqueues list without grabbing wq_pool_mutex.
271 	 * This is used to dump all workqueues from sysrq.
272 	 */
273 	struct rcu_head		rcu;
274 
275 	/* hot fields used during command issue, aligned to cacheline */
276 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
278 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
279 };
280 
281 static struct kmem_cache *pwq_cache;
282 
283 static cpumask_var_t *wq_numa_possible_cpumask;
284 					/* possible CPUs of each node */
285 
286 static bool wq_disable_numa;
287 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
288 
289 /* see the comment above the definition of WQ_POWER_EFFICIENT */
290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
291 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
292 
293 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
294 
295 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
296 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
297 
298 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
299 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
300 
301 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
302 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
303 
304 /* PL: allowable cpus for unbound wqs and work items */
305 static cpumask_var_t wq_unbound_cpumask;
306 
307 /* CPU where unbound work was last round robin scheduled from this CPU */
308 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
309 
310 /*
311  * Local execution of unbound work items is no longer guaranteed.  The
312  * following always forces round-robin CPU selection on unbound work items
313  * to uncover usages which depend on it.
314  */
315 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
316 static bool wq_debug_force_rr_cpu = true;
317 #else
318 static bool wq_debug_force_rr_cpu = false;
319 #endif
320 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
321 
322 /* the per-cpu worker pools */
323 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
324 
325 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
326 
327 /* PL: hash of all unbound pools keyed by pool->attrs */
328 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
329 
330 /* I: attributes used when instantiating standard unbound pools on demand */
331 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
332 
333 /* I: attributes used when instantiating ordered pools on demand */
334 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
335 
336 struct workqueue_struct *system_wq __read_mostly;
337 EXPORT_SYMBOL(system_wq);
338 struct workqueue_struct *system_highpri_wq __read_mostly;
339 EXPORT_SYMBOL_GPL(system_highpri_wq);
340 struct workqueue_struct *system_long_wq __read_mostly;
341 EXPORT_SYMBOL_GPL(system_long_wq);
342 struct workqueue_struct *system_unbound_wq __read_mostly;
343 EXPORT_SYMBOL_GPL(system_unbound_wq);
344 struct workqueue_struct *system_freezable_wq __read_mostly;
345 EXPORT_SYMBOL_GPL(system_freezable_wq);
346 struct workqueue_struct *system_power_efficient_wq __read_mostly;
347 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
348 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
349 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
350 
351 static int worker_thread(void *__worker);
352 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
353 
354 #define CREATE_TRACE_POINTS
355 #include <trace/events/workqueue.h>
356 
357 #define assert_rcu_or_pool_mutex()					\
358 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
359 			 !lockdep_is_held(&wq_pool_mutex),		\
360 			 "sched RCU or wq_pool_mutex should be held")
361 
362 #define assert_rcu_or_wq_mutex(wq)					\
363 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
364 			 !lockdep_is_held(&wq->mutex),			\
365 			 "sched RCU or wq->mutex should be held")
366 
367 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
368 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
369 			 !lockdep_is_held(&wq->mutex) &&		\
370 			 !lockdep_is_held(&wq_pool_mutex),		\
371 			 "sched RCU, wq->mutex or wq_pool_mutex should be held")
372 
373 #define for_each_cpu_worker_pool(pool, cpu)				\
374 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
375 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
376 	     (pool)++)
377 
378 /**
379  * for_each_pool - iterate through all worker_pools in the system
380  * @pool: iteration cursor
381  * @pi: integer used for iteration
382  *
383  * This must be called either with wq_pool_mutex held or sched RCU read
384  * locked.  If the pool needs to be used beyond the locking in effect, the
385  * caller is responsible for guaranteeing that the pool stays online.
386  *
387  * The if/else clause exists only for the lockdep assertion and can be
388  * ignored.
389  */
390 #define for_each_pool(pool, pi)						\
391 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
392 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
393 		else
394 
395 /**
396  * for_each_pool_worker - iterate through all workers of a worker_pool
397  * @worker: iteration cursor
398  * @pool: worker_pool to iterate workers of
399  *
400  * This must be called with @pool->attach_mutex.
401  *
402  * The if/else clause exists only for the lockdep assertion and can be
403  * ignored.
404  */
405 #define for_each_pool_worker(worker, pool)				\
406 	list_for_each_entry((worker), &(pool)->workers, node)		\
407 		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
408 		else
409 
410 /**
411  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
412  * @pwq: iteration cursor
413  * @wq: the target workqueue
414  *
415  * This must be called either with wq->mutex held or sched RCU read locked.
416  * If the pwq needs to be used beyond the locking in effect, the caller is
417  * responsible for guaranteeing that the pwq stays online.
418  *
419  * The if/else clause exists only for the lockdep assertion and can be
420  * ignored.
421  */
422 #define for_each_pwq(pwq, wq)						\
423 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
424 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
425 		else
426 
427 #ifdef CONFIG_DEBUG_OBJECTS_WORK
428 
429 static struct debug_obj_descr work_debug_descr;
430 
431 static void *work_debug_hint(void *addr)
432 {
433 	return ((struct work_struct *) addr)->func;
434 }
435 
436 static bool work_is_static_object(void *addr)
437 {
438 	struct work_struct *work = addr;
439 
440 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
441 }
442 
443 /*
444  * fixup_init is called when:
445  * - an active object is initialized
446  */
447 static bool work_fixup_init(void *addr, enum debug_obj_state state)
448 {
449 	struct work_struct *work = addr;
450 
451 	switch (state) {
452 	case ODEBUG_STATE_ACTIVE:
453 		cancel_work_sync(work);
454 		debug_object_init(work, &work_debug_descr);
455 		return true;
456 	default:
457 		return false;
458 	}
459 }
460 
461 /*
462  * fixup_free is called when:
463  * - an active object is freed
464  */
465 static bool work_fixup_free(void *addr, enum debug_obj_state state)
466 {
467 	struct work_struct *work = addr;
468 
469 	switch (state) {
470 	case ODEBUG_STATE_ACTIVE:
471 		cancel_work_sync(work);
472 		debug_object_free(work, &work_debug_descr);
473 		return true;
474 	default:
475 		return false;
476 	}
477 }
478 
479 static struct debug_obj_descr work_debug_descr = {
480 	.name		= "work_struct",
481 	.debug_hint	= work_debug_hint,
482 	.is_static_object = work_is_static_object,
483 	.fixup_init	= work_fixup_init,
484 	.fixup_free	= work_fixup_free,
485 };
486 
487 static inline void debug_work_activate(struct work_struct *work)
488 {
489 	debug_object_activate(work, &work_debug_descr);
490 }
491 
492 static inline void debug_work_deactivate(struct work_struct *work)
493 {
494 	debug_object_deactivate(work, &work_debug_descr);
495 }
496 
497 void __init_work(struct work_struct *work, int onstack)
498 {
499 	if (onstack)
500 		debug_object_init_on_stack(work, &work_debug_descr);
501 	else
502 		debug_object_init(work, &work_debug_descr);
503 }
504 EXPORT_SYMBOL_GPL(__init_work);
505 
506 void destroy_work_on_stack(struct work_struct *work)
507 {
508 	debug_object_free(work, &work_debug_descr);
509 }
510 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
511 
512 void destroy_delayed_work_on_stack(struct delayed_work *work)
513 {
514 	destroy_timer_on_stack(&work->timer);
515 	debug_object_free(&work->work, &work_debug_descr);
516 }
517 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
518 
519 #else
520 static inline void debug_work_activate(struct work_struct *work) { }
521 static inline void debug_work_deactivate(struct work_struct *work) { }
522 #endif
523 
524 /**
525  * worker_pool_assign_id - allocate ID and assing it to @pool
526  * @pool: the pool pointer of interest
527  *
528  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
529  * successfully, -errno on failure.
530  */
531 static int worker_pool_assign_id(struct worker_pool *pool)
532 {
533 	int ret;
534 
535 	lockdep_assert_held(&wq_pool_mutex);
536 
537 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
538 			GFP_KERNEL);
539 	if (ret >= 0) {
540 		pool->id = ret;
541 		return 0;
542 	}
543 	return ret;
544 }
545 
546 /**
547  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
548  * @wq: the target workqueue
549  * @node: the node ID
550  *
551  * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
552  * read locked.
553  * If the pwq needs to be used beyond the locking in effect, the caller is
554  * responsible for guaranteeing that the pwq stays online.
555  *
556  * Return: The unbound pool_workqueue for @node.
557  */
558 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
559 						  int node)
560 {
561 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
562 
563 	/*
564 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
565 	 * delayed item is pending.  The plan is to keep CPU -> NODE
566 	 * mapping valid and stable across CPU on/offlines.  Once that
567 	 * happens, this workaround can be removed.
568 	 */
569 	if (unlikely(node == NUMA_NO_NODE))
570 		return wq->dfl_pwq;
571 
572 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
573 }
574 
575 static unsigned int work_color_to_flags(int color)
576 {
577 	return color << WORK_STRUCT_COLOR_SHIFT;
578 }
579 
580 static int get_work_color(struct work_struct *work)
581 {
582 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
583 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
584 }
585 
586 static int work_next_color(int color)
587 {
588 	return (color + 1) % WORK_NR_COLORS;
589 }
590 
591 /*
592  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
593  * contain the pointer to the queued pwq.  Once execution starts, the flag
594  * is cleared and the high bits contain OFFQ flags and pool ID.
595  *
596  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
597  * and clear_work_data() can be used to set the pwq, pool or clear
598  * work->data.  These functions should only be called while the work is
599  * owned - ie. while the PENDING bit is set.
600  *
601  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
602  * corresponding to a work.  Pool is available once the work has been
603  * queued anywhere after initialization until it is sync canceled.  pwq is
604  * available only while the work item is queued.
605  *
606  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
607  * canceled.  While being canceled, a work item may have its PENDING set
608  * but stay off timer and worklist for arbitrarily long and nobody should
609  * try to steal the PENDING bit.
610  */
611 static inline void set_work_data(struct work_struct *work, unsigned long data,
612 				 unsigned long flags)
613 {
614 	WARN_ON_ONCE(!work_pending(work));
615 	atomic_long_set(&work->data, data | flags | work_static(work));
616 }
617 
618 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
619 			 unsigned long extra_flags)
620 {
621 	set_work_data(work, (unsigned long)pwq,
622 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
623 }
624 
625 static void set_work_pool_and_keep_pending(struct work_struct *work,
626 					   int pool_id)
627 {
628 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
629 		      WORK_STRUCT_PENDING);
630 }
631 
632 static void set_work_pool_and_clear_pending(struct work_struct *work,
633 					    int pool_id)
634 {
635 	/*
636 	 * The following wmb is paired with the implied mb in
637 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
638 	 * here are visible to and precede any updates by the next PENDING
639 	 * owner.
640 	 */
641 	smp_wmb();
642 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
643 	/*
644 	 * The following mb guarantees that previous clear of a PENDING bit
645 	 * will not be reordered with any speculative LOADS or STORES from
646 	 * work->current_func, which is executed afterwards.  This possible
647 	 * reordering can lead to a missed execution on attempt to qeueue
648 	 * the same @work.  E.g. consider this case:
649 	 *
650 	 *   CPU#0                         CPU#1
651 	 *   ----------------------------  --------------------------------
652 	 *
653 	 * 1  STORE event_indicated
654 	 * 2  queue_work_on() {
655 	 * 3    test_and_set_bit(PENDING)
656 	 * 4 }                             set_..._and_clear_pending() {
657 	 * 5                                 set_work_data() # clear bit
658 	 * 6                                 smp_mb()
659 	 * 7                               work->current_func() {
660 	 * 8				      LOAD event_indicated
661 	 *				   }
662 	 *
663 	 * Without an explicit full barrier speculative LOAD on line 8 can
664 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
665 	 * CPU#0 observes the PENDING bit is still set and new execution of
666 	 * a @work is not queued in a hope, that CPU#1 will eventually
667 	 * finish the queued @work.  Meanwhile CPU#1 does not see
668 	 * event_indicated is set, because speculative LOAD was executed
669 	 * before actual STORE.
670 	 */
671 	smp_mb();
672 }
673 
674 static void clear_work_data(struct work_struct *work)
675 {
676 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
677 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
678 }
679 
680 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
681 {
682 	unsigned long data = atomic_long_read(&work->data);
683 
684 	if (data & WORK_STRUCT_PWQ)
685 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
686 	else
687 		return NULL;
688 }
689 
690 /**
691  * get_work_pool - return the worker_pool a given work was associated with
692  * @work: the work item of interest
693  *
694  * Pools are created and destroyed under wq_pool_mutex, and allows read
695  * access under sched-RCU read lock.  As such, this function should be
696  * called under wq_pool_mutex or with preemption disabled.
697  *
698  * All fields of the returned pool are accessible as long as the above
699  * mentioned locking is in effect.  If the returned pool needs to be used
700  * beyond the critical section, the caller is responsible for ensuring the
701  * returned pool is and stays online.
702  *
703  * Return: The worker_pool @work was last associated with.  %NULL if none.
704  */
705 static struct worker_pool *get_work_pool(struct work_struct *work)
706 {
707 	unsigned long data = atomic_long_read(&work->data);
708 	int pool_id;
709 
710 	assert_rcu_or_pool_mutex();
711 
712 	if (data & WORK_STRUCT_PWQ)
713 		return ((struct pool_workqueue *)
714 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
715 
716 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
717 	if (pool_id == WORK_OFFQ_POOL_NONE)
718 		return NULL;
719 
720 	return idr_find(&worker_pool_idr, pool_id);
721 }
722 
723 /**
724  * get_work_pool_id - return the worker pool ID a given work is associated with
725  * @work: the work item of interest
726  *
727  * Return: The worker_pool ID @work was last associated with.
728  * %WORK_OFFQ_POOL_NONE if none.
729  */
730 static int get_work_pool_id(struct work_struct *work)
731 {
732 	unsigned long data = atomic_long_read(&work->data);
733 
734 	if (data & WORK_STRUCT_PWQ)
735 		return ((struct pool_workqueue *)
736 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
737 
738 	return data >> WORK_OFFQ_POOL_SHIFT;
739 }
740 
741 static void mark_work_canceling(struct work_struct *work)
742 {
743 	unsigned long pool_id = get_work_pool_id(work);
744 
745 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
746 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
747 }
748 
749 static bool work_is_canceling(struct work_struct *work)
750 {
751 	unsigned long data = atomic_long_read(&work->data);
752 
753 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
754 }
755 
756 /*
757  * Policy functions.  These define the policies on how the global worker
758  * pools are managed.  Unless noted otherwise, these functions assume that
759  * they're being called with pool->lock held.
760  */
761 
762 static bool __need_more_worker(struct worker_pool *pool)
763 {
764 	return !atomic_read(&pool->nr_running);
765 }
766 
767 /*
768  * Need to wake up a worker?  Called from anything but currently
769  * running workers.
770  *
771  * Note that, because unbound workers never contribute to nr_running, this
772  * function will always return %true for unbound pools as long as the
773  * worklist isn't empty.
774  */
775 static bool need_more_worker(struct worker_pool *pool)
776 {
777 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
778 }
779 
780 /* Can I start working?  Called from busy but !running workers. */
781 static bool may_start_working(struct worker_pool *pool)
782 {
783 	return pool->nr_idle;
784 }
785 
786 /* Do I need to keep working?  Called from currently running workers. */
787 static bool keep_working(struct worker_pool *pool)
788 {
789 	return !list_empty(&pool->worklist) &&
790 		atomic_read(&pool->nr_running) <= 1;
791 }
792 
793 /* Do we need a new worker?  Called from manager. */
794 static bool need_to_create_worker(struct worker_pool *pool)
795 {
796 	return need_more_worker(pool) && !may_start_working(pool);
797 }
798 
799 /* Do we have too many workers and should some go away? */
800 static bool too_many_workers(struct worker_pool *pool)
801 {
802 	bool managing = mutex_is_locked(&pool->manager_arb);
803 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
804 	int nr_busy = pool->nr_workers - nr_idle;
805 
806 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
807 }
808 
809 /*
810  * Wake up functions.
811  */
812 
813 /* Return the first idle worker.  Safe with preemption disabled */
814 static struct worker *first_idle_worker(struct worker_pool *pool)
815 {
816 	if (unlikely(list_empty(&pool->idle_list)))
817 		return NULL;
818 
819 	return list_first_entry(&pool->idle_list, struct worker, entry);
820 }
821 
822 /**
823  * wake_up_worker - wake up an idle worker
824  * @pool: worker pool to wake worker from
825  *
826  * Wake up the first idle worker of @pool.
827  *
828  * CONTEXT:
829  * spin_lock_irq(pool->lock).
830  */
831 static void wake_up_worker(struct worker_pool *pool)
832 {
833 	struct worker *worker = first_idle_worker(pool);
834 
835 	if (likely(worker))
836 		wake_up_process(worker->task);
837 }
838 
839 /**
840  * wq_worker_waking_up - a worker is waking up
841  * @task: task waking up
842  * @cpu: CPU @task is waking up to
843  *
844  * This function is called during try_to_wake_up() when a worker is
845  * being awoken.
846  *
847  * CONTEXT:
848  * spin_lock_irq(rq->lock)
849  */
850 void wq_worker_waking_up(struct task_struct *task, int cpu)
851 {
852 	struct worker *worker = kthread_data(task);
853 
854 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
855 		WARN_ON_ONCE(worker->pool->cpu != cpu);
856 		atomic_inc(&worker->pool->nr_running);
857 	}
858 }
859 
860 /**
861  * wq_worker_sleeping - a worker is going to sleep
862  * @task: task going to sleep
863  *
864  * This function is called during schedule() when a busy worker is
865  * going to sleep.  Worker on the same cpu can be woken up by
866  * returning pointer to its task.
867  *
868  * CONTEXT:
869  * spin_lock_irq(rq->lock)
870  *
871  * Return:
872  * Worker task on @cpu to wake up, %NULL if none.
873  */
874 struct task_struct *wq_worker_sleeping(struct task_struct *task)
875 {
876 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
877 	struct worker_pool *pool;
878 
879 	/*
880 	 * Rescuers, which may not have all the fields set up like normal
881 	 * workers, also reach here, let's not access anything before
882 	 * checking NOT_RUNNING.
883 	 */
884 	if (worker->flags & WORKER_NOT_RUNNING)
885 		return NULL;
886 
887 	pool = worker->pool;
888 
889 	/* this can only happen on the local cpu */
890 	if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
891 		return NULL;
892 
893 	/*
894 	 * The counterpart of the following dec_and_test, implied mb,
895 	 * worklist not empty test sequence is in insert_work().
896 	 * Please read comment there.
897 	 *
898 	 * NOT_RUNNING is clear.  This means that we're bound to and
899 	 * running on the local cpu w/ rq lock held and preemption
900 	 * disabled, which in turn means that none else could be
901 	 * manipulating idle_list, so dereferencing idle_list without pool
902 	 * lock is safe.
903 	 */
904 	if (atomic_dec_and_test(&pool->nr_running) &&
905 	    !list_empty(&pool->worklist))
906 		to_wakeup = first_idle_worker(pool);
907 	return to_wakeup ? to_wakeup->task : NULL;
908 }
909 
910 /**
911  * worker_set_flags - set worker flags and adjust nr_running accordingly
912  * @worker: self
913  * @flags: flags to set
914  *
915  * Set @flags in @worker->flags and adjust nr_running accordingly.
916  *
917  * CONTEXT:
918  * spin_lock_irq(pool->lock)
919  */
920 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
921 {
922 	struct worker_pool *pool = worker->pool;
923 
924 	WARN_ON_ONCE(worker->task != current);
925 
926 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
927 	if ((flags & WORKER_NOT_RUNNING) &&
928 	    !(worker->flags & WORKER_NOT_RUNNING)) {
929 		atomic_dec(&pool->nr_running);
930 	}
931 
932 	worker->flags |= flags;
933 }
934 
935 /**
936  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
937  * @worker: self
938  * @flags: flags to clear
939  *
940  * Clear @flags in @worker->flags and adjust nr_running accordingly.
941  *
942  * CONTEXT:
943  * spin_lock_irq(pool->lock)
944  */
945 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
946 {
947 	struct worker_pool *pool = worker->pool;
948 	unsigned int oflags = worker->flags;
949 
950 	WARN_ON_ONCE(worker->task != current);
951 
952 	worker->flags &= ~flags;
953 
954 	/*
955 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
956 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
957 	 * of multiple flags, not a single flag.
958 	 */
959 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
960 		if (!(worker->flags & WORKER_NOT_RUNNING))
961 			atomic_inc(&pool->nr_running);
962 }
963 
964 /**
965  * find_worker_executing_work - find worker which is executing a work
966  * @pool: pool of interest
967  * @work: work to find worker for
968  *
969  * Find a worker which is executing @work on @pool by searching
970  * @pool->busy_hash which is keyed by the address of @work.  For a worker
971  * to match, its current execution should match the address of @work and
972  * its work function.  This is to avoid unwanted dependency between
973  * unrelated work executions through a work item being recycled while still
974  * being executed.
975  *
976  * This is a bit tricky.  A work item may be freed once its execution
977  * starts and nothing prevents the freed area from being recycled for
978  * another work item.  If the same work item address ends up being reused
979  * before the original execution finishes, workqueue will identify the
980  * recycled work item as currently executing and make it wait until the
981  * current execution finishes, introducing an unwanted dependency.
982  *
983  * This function checks the work item address and work function to avoid
984  * false positives.  Note that this isn't complete as one may construct a
985  * work function which can introduce dependency onto itself through a
986  * recycled work item.  Well, if somebody wants to shoot oneself in the
987  * foot that badly, there's only so much we can do, and if such deadlock
988  * actually occurs, it should be easy to locate the culprit work function.
989  *
990  * CONTEXT:
991  * spin_lock_irq(pool->lock).
992  *
993  * Return:
994  * Pointer to worker which is executing @work if found, %NULL
995  * otherwise.
996  */
997 static struct worker *find_worker_executing_work(struct worker_pool *pool,
998 						 struct work_struct *work)
999 {
1000 	struct worker *worker;
1001 
1002 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1003 			       (unsigned long)work)
1004 		if (worker->current_work == work &&
1005 		    worker->current_func == work->func)
1006 			return worker;
1007 
1008 	return NULL;
1009 }
1010 
1011 /**
1012  * move_linked_works - move linked works to a list
1013  * @work: start of series of works to be scheduled
1014  * @head: target list to append @work to
1015  * @nextp: out parameter for nested worklist walking
1016  *
1017  * Schedule linked works starting from @work to @head.  Work series to
1018  * be scheduled starts at @work and includes any consecutive work with
1019  * WORK_STRUCT_LINKED set in its predecessor.
1020  *
1021  * If @nextp is not NULL, it's updated to point to the next work of
1022  * the last scheduled work.  This allows move_linked_works() to be
1023  * nested inside outer list_for_each_entry_safe().
1024  *
1025  * CONTEXT:
1026  * spin_lock_irq(pool->lock).
1027  */
1028 static void move_linked_works(struct work_struct *work, struct list_head *head,
1029 			      struct work_struct **nextp)
1030 {
1031 	struct work_struct *n;
1032 
1033 	/*
1034 	 * Linked worklist will always end before the end of the list,
1035 	 * use NULL for list head.
1036 	 */
1037 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1038 		list_move_tail(&work->entry, head);
1039 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1040 			break;
1041 	}
1042 
1043 	/*
1044 	 * If we're already inside safe list traversal and have moved
1045 	 * multiple works to the scheduled queue, the next position
1046 	 * needs to be updated.
1047 	 */
1048 	if (nextp)
1049 		*nextp = n;
1050 }
1051 
1052 /**
1053  * get_pwq - get an extra reference on the specified pool_workqueue
1054  * @pwq: pool_workqueue to get
1055  *
1056  * Obtain an extra reference on @pwq.  The caller should guarantee that
1057  * @pwq has positive refcnt and be holding the matching pool->lock.
1058  */
1059 static void get_pwq(struct pool_workqueue *pwq)
1060 {
1061 	lockdep_assert_held(&pwq->pool->lock);
1062 	WARN_ON_ONCE(pwq->refcnt <= 0);
1063 	pwq->refcnt++;
1064 }
1065 
1066 /**
1067  * put_pwq - put a pool_workqueue reference
1068  * @pwq: pool_workqueue to put
1069  *
1070  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1071  * destruction.  The caller should be holding the matching pool->lock.
1072  */
1073 static void put_pwq(struct pool_workqueue *pwq)
1074 {
1075 	lockdep_assert_held(&pwq->pool->lock);
1076 	if (likely(--pwq->refcnt))
1077 		return;
1078 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1079 		return;
1080 	/*
1081 	 * @pwq can't be released under pool->lock, bounce to
1082 	 * pwq_unbound_release_workfn().  This never recurses on the same
1083 	 * pool->lock as this path is taken only for unbound workqueues and
1084 	 * the release work item is scheduled on a per-cpu workqueue.  To
1085 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1086 	 * subclass of 1 in get_unbound_pool().
1087 	 */
1088 	schedule_work(&pwq->unbound_release_work);
1089 }
1090 
1091 /**
1092  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1093  * @pwq: pool_workqueue to put (can be %NULL)
1094  *
1095  * put_pwq() with locking.  This function also allows %NULL @pwq.
1096  */
1097 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1098 {
1099 	if (pwq) {
1100 		/*
1101 		 * As both pwqs and pools are sched-RCU protected, the
1102 		 * following lock operations are safe.
1103 		 */
1104 		spin_lock_irq(&pwq->pool->lock);
1105 		put_pwq(pwq);
1106 		spin_unlock_irq(&pwq->pool->lock);
1107 	}
1108 }
1109 
1110 static void pwq_activate_delayed_work(struct work_struct *work)
1111 {
1112 	struct pool_workqueue *pwq = get_work_pwq(work);
1113 
1114 	trace_workqueue_activate_work(work);
1115 	if (list_empty(&pwq->pool->worklist))
1116 		pwq->pool->watchdog_ts = jiffies;
1117 	move_linked_works(work, &pwq->pool->worklist, NULL);
1118 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1119 	pwq->nr_active++;
1120 }
1121 
1122 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1123 {
1124 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1125 						    struct work_struct, entry);
1126 
1127 	pwq_activate_delayed_work(work);
1128 }
1129 
1130 /**
1131  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1132  * @pwq: pwq of interest
1133  * @color: color of work which left the queue
1134  *
1135  * A work either has completed or is removed from pending queue,
1136  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1137  *
1138  * CONTEXT:
1139  * spin_lock_irq(pool->lock).
1140  */
1141 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1142 {
1143 	/* uncolored work items don't participate in flushing or nr_active */
1144 	if (color == WORK_NO_COLOR)
1145 		goto out_put;
1146 
1147 	pwq->nr_in_flight[color]--;
1148 
1149 	pwq->nr_active--;
1150 	if (!list_empty(&pwq->delayed_works)) {
1151 		/* one down, submit a delayed one */
1152 		if (pwq->nr_active < pwq->max_active)
1153 			pwq_activate_first_delayed(pwq);
1154 	}
1155 
1156 	/* is flush in progress and are we at the flushing tip? */
1157 	if (likely(pwq->flush_color != color))
1158 		goto out_put;
1159 
1160 	/* are there still in-flight works? */
1161 	if (pwq->nr_in_flight[color])
1162 		goto out_put;
1163 
1164 	/* this pwq is done, clear flush_color */
1165 	pwq->flush_color = -1;
1166 
1167 	/*
1168 	 * If this was the last pwq, wake up the first flusher.  It
1169 	 * will handle the rest.
1170 	 */
1171 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1172 		complete(&pwq->wq->first_flusher->done);
1173 out_put:
1174 	put_pwq(pwq);
1175 }
1176 
1177 /**
1178  * try_to_grab_pending - steal work item from worklist and disable irq
1179  * @work: work item to steal
1180  * @is_dwork: @work is a delayed_work
1181  * @flags: place to store irq state
1182  *
1183  * Try to grab PENDING bit of @work.  This function can handle @work in any
1184  * stable state - idle, on timer or on worklist.
1185  *
1186  * Return:
1187  *  1		if @work was pending and we successfully stole PENDING
1188  *  0		if @work was idle and we claimed PENDING
1189  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1190  *  -ENOENT	if someone else is canceling @work, this state may persist
1191  *		for arbitrarily long
1192  *
1193  * Note:
1194  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1195  * interrupted while holding PENDING and @work off queue, irq must be
1196  * disabled on entry.  This, combined with delayed_work->timer being
1197  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1198  *
1199  * On successful return, >= 0, irq is disabled and the caller is
1200  * responsible for releasing it using local_irq_restore(*@flags).
1201  *
1202  * This function is safe to call from any context including IRQ handler.
1203  */
1204 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1205 			       unsigned long *flags)
1206 {
1207 	struct worker_pool *pool;
1208 	struct pool_workqueue *pwq;
1209 
1210 	local_irq_save(*flags);
1211 
1212 	/* try to steal the timer if it exists */
1213 	if (is_dwork) {
1214 		struct delayed_work *dwork = to_delayed_work(work);
1215 
1216 		/*
1217 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1218 		 * guaranteed that the timer is not queued anywhere and not
1219 		 * running on the local CPU.
1220 		 */
1221 		if (likely(del_timer(&dwork->timer)))
1222 			return 1;
1223 	}
1224 
1225 	/* try to claim PENDING the normal way */
1226 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1227 		return 0;
1228 
1229 	/*
1230 	 * The queueing is in progress, or it is already queued. Try to
1231 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1232 	 */
1233 	pool = get_work_pool(work);
1234 	if (!pool)
1235 		goto fail;
1236 
1237 	spin_lock(&pool->lock);
1238 	/*
1239 	 * work->data is guaranteed to point to pwq only while the work
1240 	 * item is queued on pwq->wq, and both updating work->data to point
1241 	 * to pwq on queueing and to pool on dequeueing are done under
1242 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1243 	 * points to pwq which is associated with a locked pool, the work
1244 	 * item is currently queued on that pool.
1245 	 */
1246 	pwq = get_work_pwq(work);
1247 	if (pwq && pwq->pool == pool) {
1248 		debug_work_deactivate(work);
1249 
1250 		/*
1251 		 * A delayed work item cannot be grabbed directly because
1252 		 * it might have linked NO_COLOR work items which, if left
1253 		 * on the delayed_list, will confuse pwq->nr_active
1254 		 * management later on and cause stall.  Make sure the work
1255 		 * item is activated before grabbing.
1256 		 */
1257 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1258 			pwq_activate_delayed_work(work);
1259 
1260 		list_del_init(&work->entry);
1261 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1262 
1263 		/* work->data points to pwq iff queued, point to pool */
1264 		set_work_pool_and_keep_pending(work, pool->id);
1265 
1266 		spin_unlock(&pool->lock);
1267 		return 1;
1268 	}
1269 	spin_unlock(&pool->lock);
1270 fail:
1271 	local_irq_restore(*flags);
1272 	if (work_is_canceling(work))
1273 		return -ENOENT;
1274 	cpu_relax();
1275 	return -EAGAIN;
1276 }
1277 
1278 /**
1279  * insert_work - insert a work into a pool
1280  * @pwq: pwq @work belongs to
1281  * @work: work to insert
1282  * @head: insertion point
1283  * @extra_flags: extra WORK_STRUCT_* flags to set
1284  *
1285  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1286  * work_struct flags.
1287  *
1288  * CONTEXT:
1289  * spin_lock_irq(pool->lock).
1290  */
1291 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1292 			struct list_head *head, unsigned int extra_flags)
1293 {
1294 	struct worker_pool *pool = pwq->pool;
1295 
1296 	/* we own @work, set data and link */
1297 	set_work_pwq(work, pwq, extra_flags);
1298 	list_add_tail(&work->entry, head);
1299 	get_pwq(pwq);
1300 
1301 	/*
1302 	 * Ensure either wq_worker_sleeping() sees the above
1303 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1304 	 * around lazily while there are works to be processed.
1305 	 */
1306 	smp_mb();
1307 
1308 	if (__need_more_worker(pool))
1309 		wake_up_worker(pool);
1310 }
1311 
1312 /*
1313  * Test whether @work is being queued from another work executing on the
1314  * same workqueue.
1315  */
1316 static bool is_chained_work(struct workqueue_struct *wq)
1317 {
1318 	struct worker *worker;
1319 
1320 	worker = current_wq_worker();
1321 	/*
1322 	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1323 	 * I'm @worker, it's safe to dereference it without locking.
1324 	 */
1325 	return worker && worker->current_pwq->wq == wq;
1326 }
1327 
1328 /*
1329  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1330  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1331  * avoid perturbing sensitive tasks.
1332  */
1333 static int wq_select_unbound_cpu(int cpu)
1334 {
1335 	static bool printed_dbg_warning;
1336 	int new_cpu;
1337 
1338 	if (likely(!wq_debug_force_rr_cpu)) {
1339 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1340 			return cpu;
1341 	} else if (!printed_dbg_warning) {
1342 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1343 		printed_dbg_warning = true;
1344 	}
1345 
1346 	if (cpumask_empty(wq_unbound_cpumask))
1347 		return cpu;
1348 
1349 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1350 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1351 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1352 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1353 		if (unlikely(new_cpu >= nr_cpu_ids))
1354 			return cpu;
1355 	}
1356 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1357 
1358 	return new_cpu;
1359 }
1360 
1361 static void __queue_work(int cpu, struct workqueue_struct *wq,
1362 			 struct work_struct *work)
1363 {
1364 	struct pool_workqueue *pwq;
1365 	struct worker_pool *last_pool;
1366 	struct list_head *worklist;
1367 	unsigned int work_flags;
1368 	unsigned int req_cpu = cpu;
1369 
1370 	/*
1371 	 * While a work item is PENDING && off queue, a task trying to
1372 	 * steal the PENDING will busy-loop waiting for it to either get
1373 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1374 	 * happen with IRQ disabled.
1375 	 */
1376 	WARN_ON_ONCE(!irqs_disabled());
1377 
1378 	debug_work_activate(work);
1379 
1380 	/* if draining, only works from the same workqueue are allowed */
1381 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1382 	    WARN_ON_ONCE(!is_chained_work(wq)))
1383 		return;
1384 retry:
1385 	if (req_cpu == WORK_CPU_UNBOUND)
1386 		cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1387 
1388 	/* pwq which will be used unless @work is executing elsewhere */
1389 	if (!(wq->flags & WQ_UNBOUND))
1390 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1391 	else
1392 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1393 
1394 	/*
1395 	 * If @work was previously on a different pool, it might still be
1396 	 * running there, in which case the work needs to be queued on that
1397 	 * pool to guarantee non-reentrancy.
1398 	 */
1399 	last_pool = get_work_pool(work);
1400 	if (last_pool && last_pool != pwq->pool) {
1401 		struct worker *worker;
1402 
1403 		spin_lock(&last_pool->lock);
1404 
1405 		worker = find_worker_executing_work(last_pool, work);
1406 
1407 		if (worker && worker->current_pwq->wq == wq) {
1408 			pwq = worker->current_pwq;
1409 		} else {
1410 			/* meh... not running there, queue here */
1411 			spin_unlock(&last_pool->lock);
1412 			spin_lock(&pwq->pool->lock);
1413 		}
1414 	} else {
1415 		spin_lock(&pwq->pool->lock);
1416 	}
1417 
1418 	/*
1419 	 * pwq is determined and locked.  For unbound pools, we could have
1420 	 * raced with pwq release and it could already be dead.  If its
1421 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1422 	 * without another pwq replacing it in the numa_pwq_tbl or while
1423 	 * work items are executing on it, so the retrying is guaranteed to
1424 	 * make forward-progress.
1425 	 */
1426 	if (unlikely(!pwq->refcnt)) {
1427 		if (wq->flags & WQ_UNBOUND) {
1428 			spin_unlock(&pwq->pool->lock);
1429 			cpu_relax();
1430 			goto retry;
1431 		}
1432 		/* oops */
1433 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1434 			  wq->name, cpu);
1435 	}
1436 
1437 	/* pwq determined, queue */
1438 	trace_workqueue_queue_work(req_cpu, pwq, work);
1439 
1440 	if (WARN_ON(!list_empty(&work->entry))) {
1441 		spin_unlock(&pwq->pool->lock);
1442 		return;
1443 	}
1444 
1445 	pwq->nr_in_flight[pwq->work_color]++;
1446 	work_flags = work_color_to_flags(pwq->work_color);
1447 
1448 	if (likely(pwq->nr_active < pwq->max_active)) {
1449 		trace_workqueue_activate_work(work);
1450 		pwq->nr_active++;
1451 		worklist = &pwq->pool->worklist;
1452 		if (list_empty(worklist))
1453 			pwq->pool->watchdog_ts = jiffies;
1454 	} else {
1455 		work_flags |= WORK_STRUCT_DELAYED;
1456 		worklist = &pwq->delayed_works;
1457 	}
1458 
1459 	insert_work(pwq, work, worklist, work_flags);
1460 
1461 	spin_unlock(&pwq->pool->lock);
1462 }
1463 
1464 /**
1465  * queue_work_on - queue work on specific cpu
1466  * @cpu: CPU number to execute work on
1467  * @wq: workqueue to use
1468  * @work: work to queue
1469  *
1470  * We queue the work to a specific CPU, the caller must ensure it
1471  * can't go away.
1472  *
1473  * Return: %false if @work was already on a queue, %true otherwise.
1474  */
1475 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1476 		   struct work_struct *work)
1477 {
1478 	bool ret = false;
1479 	unsigned long flags;
1480 
1481 	local_irq_save(flags);
1482 
1483 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1484 		__queue_work(cpu, wq, work);
1485 		ret = true;
1486 	}
1487 
1488 	local_irq_restore(flags);
1489 	return ret;
1490 }
1491 EXPORT_SYMBOL(queue_work_on);
1492 
1493 void delayed_work_timer_fn(unsigned long __data)
1494 {
1495 	struct delayed_work *dwork = (struct delayed_work *)__data;
1496 
1497 	/* should have been called from irqsafe timer with irq already off */
1498 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1499 }
1500 EXPORT_SYMBOL(delayed_work_timer_fn);
1501 
1502 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1503 				struct delayed_work *dwork, unsigned long delay)
1504 {
1505 	struct timer_list *timer = &dwork->timer;
1506 	struct work_struct *work = &dwork->work;
1507 
1508 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1509 		     timer->data != (unsigned long)dwork);
1510 	WARN_ON_ONCE(timer_pending(timer));
1511 	WARN_ON_ONCE(!list_empty(&work->entry));
1512 
1513 	/*
1514 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1515 	 * both optimization and correctness.  The earliest @timer can
1516 	 * expire is on the closest next tick and delayed_work users depend
1517 	 * on that there's no such delay when @delay is 0.
1518 	 */
1519 	if (!delay) {
1520 		__queue_work(cpu, wq, &dwork->work);
1521 		return;
1522 	}
1523 
1524 	timer_stats_timer_set_start_info(&dwork->timer);
1525 
1526 	dwork->wq = wq;
1527 	dwork->cpu = cpu;
1528 	timer->expires = jiffies + delay;
1529 
1530 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1531 		add_timer_on(timer, cpu);
1532 	else
1533 		add_timer(timer);
1534 }
1535 
1536 /**
1537  * queue_delayed_work_on - queue work on specific CPU after delay
1538  * @cpu: CPU number to execute work on
1539  * @wq: workqueue to use
1540  * @dwork: work to queue
1541  * @delay: number of jiffies to wait before queueing
1542  *
1543  * Return: %false if @work was already on a queue, %true otherwise.  If
1544  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1545  * execution.
1546  */
1547 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1548 			   struct delayed_work *dwork, unsigned long delay)
1549 {
1550 	struct work_struct *work = &dwork->work;
1551 	bool ret = false;
1552 	unsigned long flags;
1553 
1554 	/* read the comment in __queue_work() */
1555 	local_irq_save(flags);
1556 
1557 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1558 		__queue_delayed_work(cpu, wq, dwork, delay);
1559 		ret = true;
1560 	}
1561 
1562 	local_irq_restore(flags);
1563 	return ret;
1564 }
1565 EXPORT_SYMBOL(queue_delayed_work_on);
1566 
1567 /**
1568  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1569  * @cpu: CPU number to execute work on
1570  * @wq: workqueue to use
1571  * @dwork: work to queue
1572  * @delay: number of jiffies to wait before queueing
1573  *
1574  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1575  * modify @dwork's timer so that it expires after @delay.  If @delay is
1576  * zero, @work is guaranteed to be scheduled immediately regardless of its
1577  * current state.
1578  *
1579  * Return: %false if @dwork was idle and queued, %true if @dwork was
1580  * pending and its timer was modified.
1581  *
1582  * This function is safe to call from any context including IRQ handler.
1583  * See try_to_grab_pending() for details.
1584  */
1585 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1586 			 struct delayed_work *dwork, unsigned long delay)
1587 {
1588 	unsigned long flags;
1589 	int ret;
1590 
1591 	do {
1592 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1593 	} while (unlikely(ret == -EAGAIN));
1594 
1595 	if (likely(ret >= 0)) {
1596 		__queue_delayed_work(cpu, wq, dwork, delay);
1597 		local_irq_restore(flags);
1598 	}
1599 
1600 	/* -ENOENT from try_to_grab_pending() becomes %true */
1601 	return ret;
1602 }
1603 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1604 
1605 /**
1606  * worker_enter_idle - enter idle state
1607  * @worker: worker which is entering idle state
1608  *
1609  * @worker is entering idle state.  Update stats and idle timer if
1610  * necessary.
1611  *
1612  * LOCKING:
1613  * spin_lock_irq(pool->lock).
1614  */
1615 static void worker_enter_idle(struct worker *worker)
1616 {
1617 	struct worker_pool *pool = worker->pool;
1618 
1619 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1620 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1621 			 (worker->hentry.next || worker->hentry.pprev)))
1622 		return;
1623 
1624 	/* can't use worker_set_flags(), also called from create_worker() */
1625 	worker->flags |= WORKER_IDLE;
1626 	pool->nr_idle++;
1627 	worker->last_active = jiffies;
1628 
1629 	/* idle_list is LIFO */
1630 	list_add(&worker->entry, &pool->idle_list);
1631 
1632 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1633 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1634 
1635 	/*
1636 	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1637 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1638 	 * nr_running, the warning may trigger spuriously.  Check iff
1639 	 * unbind is not in progress.
1640 	 */
1641 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1642 		     pool->nr_workers == pool->nr_idle &&
1643 		     atomic_read(&pool->nr_running));
1644 }
1645 
1646 /**
1647  * worker_leave_idle - leave idle state
1648  * @worker: worker which is leaving idle state
1649  *
1650  * @worker is leaving idle state.  Update stats.
1651  *
1652  * LOCKING:
1653  * spin_lock_irq(pool->lock).
1654  */
1655 static void worker_leave_idle(struct worker *worker)
1656 {
1657 	struct worker_pool *pool = worker->pool;
1658 
1659 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1660 		return;
1661 	worker_clr_flags(worker, WORKER_IDLE);
1662 	pool->nr_idle--;
1663 	list_del_init(&worker->entry);
1664 }
1665 
1666 static struct worker *alloc_worker(int node)
1667 {
1668 	struct worker *worker;
1669 
1670 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1671 	if (worker) {
1672 		INIT_LIST_HEAD(&worker->entry);
1673 		INIT_LIST_HEAD(&worker->scheduled);
1674 		INIT_LIST_HEAD(&worker->node);
1675 		/* on creation a worker is in !idle && prep state */
1676 		worker->flags = WORKER_PREP;
1677 	}
1678 	return worker;
1679 }
1680 
1681 /**
1682  * worker_attach_to_pool() - attach a worker to a pool
1683  * @worker: worker to be attached
1684  * @pool: the target pool
1685  *
1686  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1687  * cpu-binding of @worker are kept coordinated with the pool across
1688  * cpu-[un]hotplugs.
1689  */
1690 static void worker_attach_to_pool(struct worker *worker,
1691 				   struct worker_pool *pool)
1692 {
1693 	mutex_lock(&pool->attach_mutex);
1694 
1695 	/*
1696 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1697 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1698 	 */
1699 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1700 
1701 	/*
1702 	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1703 	 * stable across this function.  See the comments above the
1704 	 * flag definition for details.
1705 	 */
1706 	if (pool->flags & POOL_DISASSOCIATED)
1707 		worker->flags |= WORKER_UNBOUND;
1708 
1709 	list_add_tail(&worker->node, &pool->workers);
1710 
1711 	mutex_unlock(&pool->attach_mutex);
1712 }
1713 
1714 /**
1715  * worker_detach_from_pool() - detach a worker from its pool
1716  * @worker: worker which is attached to its pool
1717  * @pool: the pool @worker is attached to
1718  *
1719  * Undo the attaching which had been done in worker_attach_to_pool().  The
1720  * caller worker shouldn't access to the pool after detached except it has
1721  * other reference to the pool.
1722  */
1723 static void worker_detach_from_pool(struct worker *worker,
1724 				    struct worker_pool *pool)
1725 {
1726 	struct completion *detach_completion = NULL;
1727 
1728 	mutex_lock(&pool->attach_mutex);
1729 	list_del(&worker->node);
1730 	if (list_empty(&pool->workers))
1731 		detach_completion = pool->detach_completion;
1732 	mutex_unlock(&pool->attach_mutex);
1733 
1734 	/* clear leftover flags without pool->lock after it is detached */
1735 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1736 
1737 	if (detach_completion)
1738 		complete(detach_completion);
1739 }
1740 
1741 /**
1742  * create_worker - create a new workqueue worker
1743  * @pool: pool the new worker will belong to
1744  *
1745  * Create and start a new worker which is attached to @pool.
1746  *
1747  * CONTEXT:
1748  * Might sleep.  Does GFP_KERNEL allocations.
1749  *
1750  * Return:
1751  * Pointer to the newly created worker.
1752  */
1753 static struct worker *create_worker(struct worker_pool *pool)
1754 {
1755 	struct worker *worker = NULL;
1756 	int id = -1;
1757 	char id_buf[16];
1758 
1759 	/* ID is needed to determine kthread name */
1760 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1761 	if (id < 0)
1762 		goto fail;
1763 
1764 	worker = alloc_worker(pool->node);
1765 	if (!worker)
1766 		goto fail;
1767 
1768 	worker->pool = pool;
1769 	worker->id = id;
1770 
1771 	if (pool->cpu >= 0)
1772 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1773 			 pool->attrs->nice < 0  ? "H" : "");
1774 	else
1775 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1776 
1777 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1778 					      "kworker/%s", id_buf);
1779 	if (IS_ERR(worker->task))
1780 		goto fail;
1781 
1782 	set_user_nice(worker->task, pool->attrs->nice);
1783 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1784 
1785 	/* successful, attach the worker to the pool */
1786 	worker_attach_to_pool(worker, pool);
1787 
1788 	/* start the newly created worker */
1789 	spin_lock_irq(&pool->lock);
1790 	worker->pool->nr_workers++;
1791 	worker_enter_idle(worker);
1792 	wake_up_process(worker->task);
1793 	spin_unlock_irq(&pool->lock);
1794 
1795 	return worker;
1796 
1797 fail:
1798 	if (id >= 0)
1799 		ida_simple_remove(&pool->worker_ida, id);
1800 	kfree(worker);
1801 	return NULL;
1802 }
1803 
1804 /**
1805  * destroy_worker - destroy a workqueue worker
1806  * @worker: worker to be destroyed
1807  *
1808  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1809  * be idle.
1810  *
1811  * CONTEXT:
1812  * spin_lock_irq(pool->lock).
1813  */
1814 static void destroy_worker(struct worker *worker)
1815 {
1816 	struct worker_pool *pool = worker->pool;
1817 
1818 	lockdep_assert_held(&pool->lock);
1819 
1820 	/* sanity check frenzy */
1821 	if (WARN_ON(worker->current_work) ||
1822 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1823 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1824 		return;
1825 
1826 	pool->nr_workers--;
1827 	pool->nr_idle--;
1828 
1829 	list_del_init(&worker->entry);
1830 	worker->flags |= WORKER_DIE;
1831 	wake_up_process(worker->task);
1832 }
1833 
1834 static void idle_worker_timeout(unsigned long __pool)
1835 {
1836 	struct worker_pool *pool = (void *)__pool;
1837 
1838 	spin_lock_irq(&pool->lock);
1839 
1840 	while (too_many_workers(pool)) {
1841 		struct worker *worker;
1842 		unsigned long expires;
1843 
1844 		/* idle_list is kept in LIFO order, check the last one */
1845 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1846 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1847 
1848 		if (time_before(jiffies, expires)) {
1849 			mod_timer(&pool->idle_timer, expires);
1850 			break;
1851 		}
1852 
1853 		destroy_worker(worker);
1854 	}
1855 
1856 	spin_unlock_irq(&pool->lock);
1857 }
1858 
1859 static void send_mayday(struct work_struct *work)
1860 {
1861 	struct pool_workqueue *pwq = get_work_pwq(work);
1862 	struct workqueue_struct *wq = pwq->wq;
1863 
1864 	lockdep_assert_held(&wq_mayday_lock);
1865 
1866 	if (!wq->rescuer)
1867 		return;
1868 
1869 	/* mayday mayday mayday */
1870 	if (list_empty(&pwq->mayday_node)) {
1871 		/*
1872 		 * If @pwq is for an unbound wq, its base ref may be put at
1873 		 * any time due to an attribute change.  Pin @pwq until the
1874 		 * rescuer is done with it.
1875 		 */
1876 		get_pwq(pwq);
1877 		list_add_tail(&pwq->mayday_node, &wq->maydays);
1878 		wake_up_process(wq->rescuer->task);
1879 	}
1880 }
1881 
1882 static void pool_mayday_timeout(unsigned long __pool)
1883 {
1884 	struct worker_pool *pool = (void *)__pool;
1885 	struct work_struct *work;
1886 
1887 	spin_lock_irq(&pool->lock);
1888 	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1889 
1890 	if (need_to_create_worker(pool)) {
1891 		/*
1892 		 * We've been trying to create a new worker but
1893 		 * haven't been successful.  We might be hitting an
1894 		 * allocation deadlock.  Send distress signals to
1895 		 * rescuers.
1896 		 */
1897 		list_for_each_entry(work, &pool->worklist, entry)
1898 			send_mayday(work);
1899 	}
1900 
1901 	spin_unlock(&wq_mayday_lock);
1902 	spin_unlock_irq(&pool->lock);
1903 
1904 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1905 }
1906 
1907 /**
1908  * maybe_create_worker - create a new worker if necessary
1909  * @pool: pool to create a new worker for
1910  *
1911  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1912  * have at least one idle worker on return from this function.  If
1913  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1914  * sent to all rescuers with works scheduled on @pool to resolve
1915  * possible allocation deadlock.
1916  *
1917  * On return, need_to_create_worker() is guaranteed to be %false and
1918  * may_start_working() %true.
1919  *
1920  * LOCKING:
1921  * spin_lock_irq(pool->lock) which may be released and regrabbed
1922  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1923  * manager.
1924  */
1925 static void maybe_create_worker(struct worker_pool *pool)
1926 __releases(&pool->lock)
1927 __acquires(&pool->lock)
1928 {
1929 restart:
1930 	spin_unlock_irq(&pool->lock);
1931 
1932 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1933 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1934 
1935 	while (true) {
1936 		if (create_worker(pool) || !need_to_create_worker(pool))
1937 			break;
1938 
1939 		schedule_timeout_interruptible(CREATE_COOLDOWN);
1940 
1941 		if (!need_to_create_worker(pool))
1942 			break;
1943 	}
1944 
1945 	del_timer_sync(&pool->mayday_timer);
1946 	spin_lock_irq(&pool->lock);
1947 	/*
1948 	 * This is necessary even after a new worker was just successfully
1949 	 * created as @pool->lock was dropped and the new worker might have
1950 	 * already become busy.
1951 	 */
1952 	if (need_to_create_worker(pool))
1953 		goto restart;
1954 }
1955 
1956 /**
1957  * manage_workers - manage worker pool
1958  * @worker: self
1959  *
1960  * Assume the manager role and manage the worker pool @worker belongs
1961  * to.  At any given time, there can be only zero or one manager per
1962  * pool.  The exclusion is handled automatically by this function.
1963  *
1964  * The caller can safely start processing works on false return.  On
1965  * true return, it's guaranteed that need_to_create_worker() is false
1966  * and may_start_working() is true.
1967  *
1968  * CONTEXT:
1969  * spin_lock_irq(pool->lock) which may be released and regrabbed
1970  * multiple times.  Does GFP_KERNEL allocations.
1971  *
1972  * Return:
1973  * %false if the pool doesn't need management and the caller can safely
1974  * start processing works, %true if management function was performed and
1975  * the conditions that the caller verified before calling the function may
1976  * no longer be true.
1977  */
1978 static bool manage_workers(struct worker *worker)
1979 {
1980 	struct worker_pool *pool = worker->pool;
1981 
1982 	/*
1983 	 * Anyone who successfully grabs manager_arb wins the arbitration
1984 	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
1985 	 * failure while holding pool->lock reliably indicates that someone
1986 	 * else is managing the pool and the worker which failed trylock
1987 	 * can proceed to executing work items.  This means that anyone
1988 	 * grabbing manager_arb is responsible for actually performing
1989 	 * manager duties.  If manager_arb is grabbed and released without
1990 	 * actual management, the pool may stall indefinitely.
1991 	 */
1992 	if (!mutex_trylock(&pool->manager_arb))
1993 		return false;
1994 	pool->manager = worker;
1995 
1996 	maybe_create_worker(pool);
1997 
1998 	pool->manager = NULL;
1999 	mutex_unlock(&pool->manager_arb);
2000 	return true;
2001 }
2002 
2003 /**
2004  * process_one_work - process single work
2005  * @worker: self
2006  * @work: work to process
2007  *
2008  * Process @work.  This function contains all the logics necessary to
2009  * process a single work including synchronization against and
2010  * interaction with other workers on the same cpu, queueing and
2011  * flushing.  As long as context requirement is met, any worker can
2012  * call this function to process a work.
2013  *
2014  * CONTEXT:
2015  * spin_lock_irq(pool->lock) which is released and regrabbed.
2016  */
2017 static void process_one_work(struct worker *worker, struct work_struct *work)
2018 __releases(&pool->lock)
2019 __acquires(&pool->lock)
2020 {
2021 	struct pool_workqueue *pwq = get_work_pwq(work);
2022 	struct worker_pool *pool = worker->pool;
2023 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2024 	int work_color;
2025 	struct worker *collision;
2026 #ifdef CONFIG_LOCKDEP
2027 	/*
2028 	 * It is permissible to free the struct work_struct from
2029 	 * inside the function that is called from it, this we need to
2030 	 * take into account for lockdep too.  To avoid bogus "held
2031 	 * lock freed" warnings as well as problems when looking into
2032 	 * work->lockdep_map, make a copy and use that here.
2033 	 */
2034 	struct lockdep_map lockdep_map;
2035 
2036 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2037 #endif
2038 	/* ensure we're on the correct CPU */
2039 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2040 		     raw_smp_processor_id() != pool->cpu);
2041 
2042 	/*
2043 	 * A single work shouldn't be executed concurrently by
2044 	 * multiple workers on a single cpu.  Check whether anyone is
2045 	 * already processing the work.  If so, defer the work to the
2046 	 * currently executing one.
2047 	 */
2048 	collision = find_worker_executing_work(pool, work);
2049 	if (unlikely(collision)) {
2050 		move_linked_works(work, &collision->scheduled, NULL);
2051 		return;
2052 	}
2053 
2054 	/* claim and dequeue */
2055 	debug_work_deactivate(work);
2056 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2057 	worker->current_work = work;
2058 	worker->current_func = work->func;
2059 	worker->current_pwq = pwq;
2060 	work_color = get_work_color(work);
2061 
2062 	list_del_init(&work->entry);
2063 
2064 	/*
2065 	 * CPU intensive works don't participate in concurrency management.
2066 	 * They're the scheduler's responsibility.  This takes @worker out
2067 	 * of concurrency management and the next code block will chain
2068 	 * execution of the pending work items.
2069 	 */
2070 	if (unlikely(cpu_intensive))
2071 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2072 
2073 	/*
2074 	 * Wake up another worker if necessary.  The condition is always
2075 	 * false for normal per-cpu workers since nr_running would always
2076 	 * be >= 1 at this point.  This is used to chain execution of the
2077 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2078 	 * UNBOUND and CPU_INTENSIVE ones.
2079 	 */
2080 	if (need_more_worker(pool))
2081 		wake_up_worker(pool);
2082 
2083 	/*
2084 	 * Record the last pool and clear PENDING which should be the last
2085 	 * update to @work.  Also, do this inside @pool->lock so that
2086 	 * PENDING and queued state changes happen together while IRQ is
2087 	 * disabled.
2088 	 */
2089 	set_work_pool_and_clear_pending(work, pool->id);
2090 
2091 	spin_unlock_irq(&pool->lock);
2092 
2093 	lock_map_acquire_read(&pwq->wq->lockdep_map);
2094 	lock_map_acquire(&lockdep_map);
2095 	trace_workqueue_execute_start(work);
2096 	worker->current_func(work);
2097 	/*
2098 	 * While we must be careful to not use "work" after this, the trace
2099 	 * point will only record its address.
2100 	 */
2101 	trace_workqueue_execute_end(work);
2102 	lock_map_release(&lockdep_map);
2103 	lock_map_release(&pwq->wq->lockdep_map);
2104 
2105 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2106 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2107 		       "     last function: %pf\n",
2108 		       current->comm, preempt_count(), task_pid_nr(current),
2109 		       worker->current_func);
2110 		debug_show_held_locks(current);
2111 		dump_stack();
2112 	}
2113 
2114 	/*
2115 	 * The following prevents a kworker from hogging CPU on !PREEMPT
2116 	 * kernels, where a requeueing work item waiting for something to
2117 	 * happen could deadlock with stop_machine as such work item could
2118 	 * indefinitely requeue itself while all other CPUs are trapped in
2119 	 * stop_machine. At the same time, report a quiescent RCU state so
2120 	 * the same condition doesn't freeze RCU.
2121 	 */
2122 	cond_resched_rcu_qs();
2123 
2124 	spin_lock_irq(&pool->lock);
2125 
2126 	/* clear cpu intensive status */
2127 	if (unlikely(cpu_intensive))
2128 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2129 
2130 	/* we're done with it, release */
2131 	hash_del(&worker->hentry);
2132 	worker->current_work = NULL;
2133 	worker->current_func = NULL;
2134 	worker->current_pwq = NULL;
2135 	worker->desc_valid = false;
2136 	pwq_dec_nr_in_flight(pwq, work_color);
2137 }
2138 
2139 /**
2140  * process_scheduled_works - process scheduled works
2141  * @worker: self
2142  *
2143  * Process all scheduled works.  Please note that the scheduled list
2144  * may change while processing a work, so this function repeatedly
2145  * fetches a work from the top and executes it.
2146  *
2147  * CONTEXT:
2148  * spin_lock_irq(pool->lock) which may be released and regrabbed
2149  * multiple times.
2150  */
2151 static void process_scheduled_works(struct worker *worker)
2152 {
2153 	while (!list_empty(&worker->scheduled)) {
2154 		struct work_struct *work = list_first_entry(&worker->scheduled,
2155 						struct work_struct, entry);
2156 		process_one_work(worker, work);
2157 	}
2158 }
2159 
2160 /**
2161  * worker_thread - the worker thread function
2162  * @__worker: self
2163  *
2164  * The worker thread function.  All workers belong to a worker_pool -
2165  * either a per-cpu one or dynamic unbound one.  These workers process all
2166  * work items regardless of their specific target workqueue.  The only
2167  * exception is work items which belong to workqueues with a rescuer which
2168  * will be explained in rescuer_thread().
2169  *
2170  * Return: 0
2171  */
2172 static int worker_thread(void *__worker)
2173 {
2174 	struct worker *worker = __worker;
2175 	struct worker_pool *pool = worker->pool;
2176 
2177 	/* tell the scheduler that this is a workqueue worker */
2178 	worker->task->flags |= PF_WQ_WORKER;
2179 woke_up:
2180 	spin_lock_irq(&pool->lock);
2181 
2182 	/* am I supposed to die? */
2183 	if (unlikely(worker->flags & WORKER_DIE)) {
2184 		spin_unlock_irq(&pool->lock);
2185 		WARN_ON_ONCE(!list_empty(&worker->entry));
2186 		worker->task->flags &= ~PF_WQ_WORKER;
2187 
2188 		set_task_comm(worker->task, "kworker/dying");
2189 		ida_simple_remove(&pool->worker_ida, worker->id);
2190 		worker_detach_from_pool(worker, pool);
2191 		kfree(worker);
2192 		return 0;
2193 	}
2194 
2195 	worker_leave_idle(worker);
2196 recheck:
2197 	/* no more worker necessary? */
2198 	if (!need_more_worker(pool))
2199 		goto sleep;
2200 
2201 	/* do we need to manage? */
2202 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2203 		goto recheck;
2204 
2205 	/*
2206 	 * ->scheduled list can only be filled while a worker is
2207 	 * preparing to process a work or actually processing it.
2208 	 * Make sure nobody diddled with it while I was sleeping.
2209 	 */
2210 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2211 
2212 	/*
2213 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2214 	 * worker or that someone else has already assumed the manager
2215 	 * role.  This is where @worker starts participating in concurrency
2216 	 * management if applicable and concurrency management is restored
2217 	 * after being rebound.  See rebind_workers() for details.
2218 	 */
2219 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2220 
2221 	do {
2222 		struct work_struct *work =
2223 			list_first_entry(&pool->worklist,
2224 					 struct work_struct, entry);
2225 
2226 		pool->watchdog_ts = jiffies;
2227 
2228 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2229 			/* optimization path, not strictly necessary */
2230 			process_one_work(worker, work);
2231 			if (unlikely(!list_empty(&worker->scheduled)))
2232 				process_scheduled_works(worker);
2233 		} else {
2234 			move_linked_works(work, &worker->scheduled, NULL);
2235 			process_scheduled_works(worker);
2236 		}
2237 	} while (keep_working(pool));
2238 
2239 	worker_set_flags(worker, WORKER_PREP);
2240 sleep:
2241 	/*
2242 	 * pool->lock is held and there's no work to process and no need to
2243 	 * manage, sleep.  Workers are woken up only while holding
2244 	 * pool->lock or from local cpu, so setting the current state
2245 	 * before releasing pool->lock is enough to prevent losing any
2246 	 * event.
2247 	 */
2248 	worker_enter_idle(worker);
2249 	__set_current_state(TASK_INTERRUPTIBLE);
2250 	spin_unlock_irq(&pool->lock);
2251 	schedule();
2252 	goto woke_up;
2253 }
2254 
2255 /**
2256  * rescuer_thread - the rescuer thread function
2257  * @__rescuer: self
2258  *
2259  * Workqueue rescuer thread function.  There's one rescuer for each
2260  * workqueue which has WQ_MEM_RECLAIM set.
2261  *
2262  * Regular work processing on a pool may block trying to create a new
2263  * worker which uses GFP_KERNEL allocation which has slight chance of
2264  * developing into deadlock if some works currently on the same queue
2265  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2266  * the problem rescuer solves.
2267  *
2268  * When such condition is possible, the pool summons rescuers of all
2269  * workqueues which have works queued on the pool and let them process
2270  * those works so that forward progress can be guaranteed.
2271  *
2272  * This should happen rarely.
2273  *
2274  * Return: 0
2275  */
2276 static int rescuer_thread(void *__rescuer)
2277 {
2278 	struct worker *rescuer = __rescuer;
2279 	struct workqueue_struct *wq = rescuer->rescue_wq;
2280 	struct list_head *scheduled = &rescuer->scheduled;
2281 	bool should_stop;
2282 
2283 	set_user_nice(current, RESCUER_NICE_LEVEL);
2284 
2285 	/*
2286 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2287 	 * doesn't participate in concurrency management.
2288 	 */
2289 	rescuer->task->flags |= PF_WQ_WORKER;
2290 repeat:
2291 	set_current_state(TASK_INTERRUPTIBLE);
2292 
2293 	/*
2294 	 * By the time the rescuer is requested to stop, the workqueue
2295 	 * shouldn't have any work pending, but @wq->maydays may still have
2296 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2297 	 * all the work items before the rescuer got to them.  Go through
2298 	 * @wq->maydays processing before acting on should_stop so that the
2299 	 * list is always empty on exit.
2300 	 */
2301 	should_stop = kthread_should_stop();
2302 
2303 	/* see whether any pwq is asking for help */
2304 	spin_lock_irq(&wq_mayday_lock);
2305 
2306 	while (!list_empty(&wq->maydays)) {
2307 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2308 					struct pool_workqueue, mayday_node);
2309 		struct worker_pool *pool = pwq->pool;
2310 		struct work_struct *work, *n;
2311 		bool first = true;
2312 
2313 		__set_current_state(TASK_RUNNING);
2314 		list_del_init(&pwq->mayday_node);
2315 
2316 		spin_unlock_irq(&wq_mayday_lock);
2317 
2318 		worker_attach_to_pool(rescuer, pool);
2319 
2320 		spin_lock_irq(&pool->lock);
2321 		rescuer->pool = pool;
2322 
2323 		/*
2324 		 * Slurp in all works issued via this workqueue and
2325 		 * process'em.
2326 		 */
2327 		WARN_ON_ONCE(!list_empty(scheduled));
2328 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2329 			if (get_work_pwq(work) == pwq) {
2330 				if (first)
2331 					pool->watchdog_ts = jiffies;
2332 				move_linked_works(work, scheduled, &n);
2333 			}
2334 			first = false;
2335 		}
2336 
2337 		if (!list_empty(scheduled)) {
2338 			process_scheduled_works(rescuer);
2339 
2340 			/*
2341 			 * The above execution of rescued work items could
2342 			 * have created more to rescue through
2343 			 * pwq_activate_first_delayed() or chained
2344 			 * queueing.  Let's put @pwq back on mayday list so
2345 			 * that such back-to-back work items, which may be
2346 			 * being used to relieve memory pressure, don't
2347 			 * incur MAYDAY_INTERVAL delay inbetween.
2348 			 */
2349 			if (need_to_create_worker(pool)) {
2350 				spin_lock(&wq_mayday_lock);
2351 				get_pwq(pwq);
2352 				list_move_tail(&pwq->mayday_node, &wq->maydays);
2353 				spin_unlock(&wq_mayday_lock);
2354 			}
2355 		}
2356 
2357 		/*
2358 		 * Put the reference grabbed by send_mayday().  @pool won't
2359 		 * go away while we're still attached to it.
2360 		 */
2361 		put_pwq(pwq);
2362 
2363 		/*
2364 		 * Leave this pool.  If need_more_worker() is %true, notify a
2365 		 * regular worker; otherwise, we end up with 0 concurrency
2366 		 * and stalling the execution.
2367 		 */
2368 		if (need_more_worker(pool))
2369 			wake_up_worker(pool);
2370 
2371 		rescuer->pool = NULL;
2372 		spin_unlock_irq(&pool->lock);
2373 
2374 		worker_detach_from_pool(rescuer, pool);
2375 
2376 		spin_lock_irq(&wq_mayday_lock);
2377 	}
2378 
2379 	spin_unlock_irq(&wq_mayday_lock);
2380 
2381 	if (should_stop) {
2382 		__set_current_state(TASK_RUNNING);
2383 		rescuer->task->flags &= ~PF_WQ_WORKER;
2384 		return 0;
2385 	}
2386 
2387 	/* rescuers should never participate in concurrency management */
2388 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2389 	schedule();
2390 	goto repeat;
2391 }
2392 
2393 /**
2394  * check_flush_dependency - check for flush dependency sanity
2395  * @target_wq: workqueue being flushed
2396  * @target_work: work item being flushed (NULL for workqueue flushes)
2397  *
2398  * %current is trying to flush the whole @target_wq or @target_work on it.
2399  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2400  * reclaiming memory or running on a workqueue which doesn't have
2401  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2402  * a deadlock.
2403  */
2404 static void check_flush_dependency(struct workqueue_struct *target_wq,
2405 				   struct work_struct *target_work)
2406 {
2407 	work_func_t target_func = target_work ? target_work->func : NULL;
2408 	struct worker *worker;
2409 
2410 	if (target_wq->flags & WQ_MEM_RECLAIM)
2411 		return;
2412 
2413 	worker = current_wq_worker();
2414 
2415 	WARN_ONCE(current->flags & PF_MEMALLOC,
2416 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2417 		  current->pid, current->comm, target_wq->name, target_func);
2418 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2419 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2420 		  "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2421 		  worker->current_pwq->wq->name, worker->current_func,
2422 		  target_wq->name, target_func);
2423 }
2424 
2425 struct wq_barrier {
2426 	struct work_struct	work;
2427 	struct completion	done;
2428 	struct task_struct	*task;	/* purely informational */
2429 };
2430 
2431 static void wq_barrier_func(struct work_struct *work)
2432 {
2433 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2434 	complete(&barr->done);
2435 }
2436 
2437 /**
2438  * insert_wq_barrier - insert a barrier work
2439  * @pwq: pwq to insert barrier into
2440  * @barr: wq_barrier to insert
2441  * @target: target work to attach @barr to
2442  * @worker: worker currently executing @target, NULL if @target is not executing
2443  *
2444  * @barr is linked to @target such that @barr is completed only after
2445  * @target finishes execution.  Please note that the ordering
2446  * guarantee is observed only with respect to @target and on the local
2447  * cpu.
2448  *
2449  * Currently, a queued barrier can't be canceled.  This is because
2450  * try_to_grab_pending() can't determine whether the work to be
2451  * grabbed is at the head of the queue and thus can't clear LINKED
2452  * flag of the previous work while there must be a valid next work
2453  * after a work with LINKED flag set.
2454  *
2455  * Note that when @worker is non-NULL, @target may be modified
2456  * underneath us, so we can't reliably determine pwq from @target.
2457  *
2458  * CONTEXT:
2459  * spin_lock_irq(pool->lock).
2460  */
2461 static void insert_wq_barrier(struct pool_workqueue *pwq,
2462 			      struct wq_barrier *barr,
2463 			      struct work_struct *target, struct worker *worker)
2464 {
2465 	struct list_head *head;
2466 	unsigned int linked = 0;
2467 
2468 	/*
2469 	 * debugobject calls are safe here even with pool->lock locked
2470 	 * as we know for sure that this will not trigger any of the
2471 	 * checks and call back into the fixup functions where we
2472 	 * might deadlock.
2473 	 */
2474 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2475 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2476 	init_completion(&barr->done);
2477 	barr->task = current;
2478 
2479 	/*
2480 	 * If @target is currently being executed, schedule the
2481 	 * barrier to the worker; otherwise, put it after @target.
2482 	 */
2483 	if (worker)
2484 		head = worker->scheduled.next;
2485 	else {
2486 		unsigned long *bits = work_data_bits(target);
2487 
2488 		head = target->entry.next;
2489 		/* there can already be other linked works, inherit and set */
2490 		linked = *bits & WORK_STRUCT_LINKED;
2491 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2492 	}
2493 
2494 	debug_work_activate(&barr->work);
2495 	insert_work(pwq, &barr->work, head,
2496 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2497 }
2498 
2499 /**
2500  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2501  * @wq: workqueue being flushed
2502  * @flush_color: new flush color, < 0 for no-op
2503  * @work_color: new work color, < 0 for no-op
2504  *
2505  * Prepare pwqs for workqueue flushing.
2506  *
2507  * If @flush_color is non-negative, flush_color on all pwqs should be
2508  * -1.  If no pwq has in-flight commands at the specified color, all
2509  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2510  * has in flight commands, its pwq->flush_color is set to
2511  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2512  * wakeup logic is armed and %true is returned.
2513  *
2514  * The caller should have initialized @wq->first_flusher prior to
2515  * calling this function with non-negative @flush_color.  If
2516  * @flush_color is negative, no flush color update is done and %false
2517  * is returned.
2518  *
2519  * If @work_color is non-negative, all pwqs should have the same
2520  * work_color which is previous to @work_color and all will be
2521  * advanced to @work_color.
2522  *
2523  * CONTEXT:
2524  * mutex_lock(wq->mutex).
2525  *
2526  * Return:
2527  * %true if @flush_color >= 0 and there's something to flush.  %false
2528  * otherwise.
2529  */
2530 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2531 				      int flush_color, int work_color)
2532 {
2533 	bool wait = false;
2534 	struct pool_workqueue *pwq;
2535 
2536 	if (flush_color >= 0) {
2537 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2538 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2539 	}
2540 
2541 	for_each_pwq(pwq, wq) {
2542 		struct worker_pool *pool = pwq->pool;
2543 
2544 		spin_lock_irq(&pool->lock);
2545 
2546 		if (flush_color >= 0) {
2547 			WARN_ON_ONCE(pwq->flush_color != -1);
2548 
2549 			if (pwq->nr_in_flight[flush_color]) {
2550 				pwq->flush_color = flush_color;
2551 				atomic_inc(&wq->nr_pwqs_to_flush);
2552 				wait = true;
2553 			}
2554 		}
2555 
2556 		if (work_color >= 0) {
2557 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2558 			pwq->work_color = work_color;
2559 		}
2560 
2561 		spin_unlock_irq(&pool->lock);
2562 	}
2563 
2564 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2565 		complete(&wq->first_flusher->done);
2566 
2567 	return wait;
2568 }
2569 
2570 /**
2571  * flush_workqueue - ensure that any scheduled work has run to completion.
2572  * @wq: workqueue to flush
2573  *
2574  * This function sleeps until all work items which were queued on entry
2575  * have finished execution, but it is not livelocked by new incoming ones.
2576  */
2577 void flush_workqueue(struct workqueue_struct *wq)
2578 {
2579 	struct wq_flusher this_flusher = {
2580 		.list = LIST_HEAD_INIT(this_flusher.list),
2581 		.flush_color = -1,
2582 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2583 	};
2584 	int next_color;
2585 
2586 	lock_map_acquire(&wq->lockdep_map);
2587 	lock_map_release(&wq->lockdep_map);
2588 
2589 	mutex_lock(&wq->mutex);
2590 
2591 	/*
2592 	 * Start-to-wait phase
2593 	 */
2594 	next_color = work_next_color(wq->work_color);
2595 
2596 	if (next_color != wq->flush_color) {
2597 		/*
2598 		 * Color space is not full.  The current work_color
2599 		 * becomes our flush_color and work_color is advanced
2600 		 * by one.
2601 		 */
2602 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2603 		this_flusher.flush_color = wq->work_color;
2604 		wq->work_color = next_color;
2605 
2606 		if (!wq->first_flusher) {
2607 			/* no flush in progress, become the first flusher */
2608 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2609 
2610 			wq->first_flusher = &this_flusher;
2611 
2612 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2613 						       wq->work_color)) {
2614 				/* nothing to flush, done */
2615 				wq->flush_color = next_color;
2616 				wq->first_flusher = NULL;
2617 				goto out_unlock;
2618 			}
2619 		} else {
2620 			/* wait in queue */
2621 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2622 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2623 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2624 		}
2625 	} else {
2626 		/*
2627 		 * Oops, color space is full, wait on overflow queue.
2628 		 * The next flush completion will assign us
2629 		 * flush_color and transfer to flusher_queue.
2630 		 */
2631 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2632 	}
2633 
2634 	check_flush_dependency(wq, NULL);
2635 
2636 	mutex_unlock(&wq->mutex);
2637 
2638 	wait_for_completion(&this_flusher.done);
2639 
2640 	/*
2641 	 * Wake-up-and-cascade phase
2642 	 *
2643 	 * First flushers are responsible for cascading flushes and
2644 	 * handling overflow.  Non-first flushers can simply return.
2645 	 */
2646 	if (wq->first_flusher != &this_flusher)
2647 		return;
2648 
2649 	mutex_lock(&wq->mutex);
2650 
2651 	/* we might have raced, check again with mutex held */
2652 	if (wq->first_flusher != &this_flusher)
2653 		goto out_unlock;
2654 
2655 	wq->first_flusher = NULL;
2656 
2657 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2658 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2659 
2660 	while (true) {
2661 		struct wq_flusher *next, *tmp;
2662 
2663 		/* complete all the flushers sharing the current flush color */
2664 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2665 			if (next->flush_color != wq->flush_color)
2666 				break;
2667 			list_del_init(&next->list);
2668 			complete(&next->done);
2669 		}
2670 
2671 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2672 			     wq->flush_color != work_next_color(wq->work_color));
2673 
2674 		/* this flush_color is finished, advance by one */
2675 		wq->flush_color = work_next_color(wq->flush_color);
2676 
2677 		/* one color has been freed, handle overflow queue */
2678 		if (!list_empty(&wq->flusher_overflow)) {
2679 			/*
2680 			 * Assign the same color to all overflowed
2681 			 * flushers, advance work_color and append to
2682 			 * flusher_queue.  This is the start-to-wait
2683 			 * phase for these overflowed flushers.
2684 			 */
2685 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2686 				tmp->flush_color = wq->work_color;
2687 
2688 			wq->work_color = work_next_color(wq->work_color);
2689 
2690 			list_splice_tail_init(&wq->flusher_overflow,
2691 					      &wq->flusher_queue);
2692 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2693 		}
2694 
2695 		if (list_empty(&wq->flusher_queue)) {
2696 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2697 			break;
2698 		}
2699 
2700 		/*
2701 		 * Need to flush more colors.  Make the next flusher
2702 		 * the new first flusher and arm pwqs.
2703 		 */
2704 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2705 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2706 
2707 		list_del_init(&next->list);
2708 		wq->first_flusher = next;
2709 
2710 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2711 			break;
2712 
2713 		/*
2714 		 * Meh... this color is already done, clear first
2715 		 * flusher and repeat cascading.
2716 		 */
2717 		wq->first_flusher = NULL;
2718 	}
2719 
2720 out_unlock:
2721 	mutex_unlock(&wq->mutex);
2722 }
2723 EXPORT_SYMBOL(flush_workqueue);
2724 
2725 /**
2726  * drain_workqueue - drain a workqueue
2727  * @wq: workqueue to drain
2728  *
2729  * Wait until the workqueue becomes empty.  While draining is in progress,
2730  * only chain queueing is allowed.  IOW, only currently pending or running
2731  * work items on @wq can queue further work items on it.  @wq is flushed
2732  * repeatedly until it becomes empty.  The number of flushing is determined
2733  * by the depth of chaining and should be relatively short.  Whine if it
2734  * takes too long.
2735  */
2736 void drain_workqueue(struct workqueue_struct *wq)
2737 {
2738 	unsigned int flush_cnt = 0;
2739 	struct pool_workqueue *pwq;
2740 
2741 	/*
2742 	 * __queue_work() needs to test whether there are drainers, is much
2743 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2744 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2745 	 */
2746 	mutex_lock(&wq->mutex);
2747 	if (!wq->nr_drainers++)
2748 		wq->flags |= __WQ_DRAINING;
2749 	mutex_unlock(&wq->mutex);
2750 reflush:
2751 	flush_workqueue(wq);
2752 
2753 	mutex_lock(&wq->mutex);
2754 
2755 	for_each_pwq(pwq, wq) {
2756 		bool drained;
2757 
2758 		spin_lock_irq(&pwq->pool->lock);
2759 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2760 		spin_unlock_irq(&pwq->pool->lock);
2761 
2762 		if (drained)
2763 			continue;
2764 
2765 		if (++flush_cnt == 10 ||
2766 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2767 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2768 				wq->name, flush_cnt);
2769 
2770 		mutex_unlock(&wq->mutex);
2771 		goto reflush;
2772 	}
2773 
2774 	if (!--wq->nr_drainers)
2775 		wq->flags &= ~__WQ_DRAINING;
2776 	mutex_unlock(&wq->mutex);
2777 }
2778 EXPORT_SYMBOL_GPL(drain_workqueue);
2779 
2780 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2781 {
2782 	struct worker *worker = NULL;
2783 	struct worker_pool *pool;
2784 	struct pool_workqueue *pwq;
2785 
2786 	might_sleep();
2787 
2788 	local_irq_disable();
2789 	pool = get_work_pool(work);
2790 	if (!pool) {
2791 		local_irq_enable();
2792 		return false;
2793 	}
2794 
2795 	spin_lock(&pool->lock);
2796 	/* see the comment in try_to_grab_pending() with the same code */
2797 	pwq = get_work_pwq(work);
2798 	if (pwq) {
2799 		if (unlikely(pwq->pool != pool))
2800 			goto already_gone;
2801 	} else {
2802 		worker = find_worker_executing_work(pool, work);
2803 		if (!worker)
2804 			goto already_gone;
2805 		pwq = worker->current_pwq;
2806 	}
2807 
2808 	check_flush_dependency(pwq->wq, work);
2809 
2810 	insert_wq_barrier(pwq, barr, work, worker);
2811 	spin_unlock_irq(&pool->lock);
2812 
2813 	/*
2814 	 * If @max_active is 1 or rescuer is in use, flushing another work
2815 	 * item on the same workqueue may lead to deadlock.  Make sure the
2816 	 * flusher is not running on the same workqueue by verifying write
2817 	 * access.
2818 	 */
2819 	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2820 		lock_map_acquire(&pwq->wq->lockdep_map);
2821 	else
2822 		lock_map_acquire_read(&pwq->wq->lockdep_map);
2823 	lock_map_release(&pwq->wq->lockdep_map);
2824 
2825 	return true;
2826 already_gone:
2827 	spin_unlock_irq(&pool->lock);
2828 	return false;
2829 }
2830 
2831 /**
2832  * flush_work - wait for a work to finish executing the last queueing instance
2833  * @work: the work to flush
2834  *
2835  * Wait until @work has finished execution.  @work is guaranteed to be idle
2836  * on return if it hasn't been requeued since flush started.
2837  *
2838  * Return:
2839  * %true if flush_work() waited for the work to finish execution,
2840  * %false if it was already idle.
2841  */
2842 bool flush_work(struct work_struct *work)
2843 {
2844 	struct wq_barrier barr;
2845 
2846 	lock_map_acquire(&work->lockdep_map);
2847 	lock_map_release(&work->lockdep_map);
2848 
2849 	if (start_flush_work(work, &barr)) {
2850 		wait_for_completion(&barr.done);
2851 		destroy_work_on_stack(&barr.work);
2852 		return true;
2853 	} else {
2854 		return false;
2855 	}
2856 }
2857 EXPORT_SYMBOL_GPL(flush_work);
2858 
2859 struct cwt_wait {
2860 	wait_queue_t		wait;
2861 	struct work_struct	*work;
2862 };
2863 
2864 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2865 {
2866 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2867 
2868 	if (cwait->work != key)
2869 		return 0;
2870 	return autoremove_wake_function(wait, mode, sync, key);
2871 }
2872 
2873 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2874 {
2875 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2876 	unsigned long flags;
2877 	int ret;
2878 
2879 	do {
2880 		ret = try_to_grab_pending(work, is_dwork, &flags);
2881 		/*
2882 		 * If someone else is already canceling, wait for it to
2883 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
2884 		 * because we may get scheduled between @work's completion
2885 		 * and the other canceling task resuming and clearing
2886 		 * CANCELING - flush_work() will return false immediately
2887 		 * as @work is no longer busy, try_to_grab_pending() will
2888 		 * return -ENOENT as @work is still being canceled and the
2889 		 * other canceling task won't be able to clear CANCELING as
2890 		 * we're hogging the CPU.
2891 		 *
2892 		 * Let's wait for completion using a waitqueue.  As this
2893 		 * may lead to the thundering herd problem, use a custom
2894 		 * wake function which matches @work along with exclusive
2895 		 * wait and wakeup.
2896 		 */
2897 		if (unlikely(ret == -ENOENT)) {
2898 			struct cwt_wait cwait;
2899 
2900 			init_wait(&cwait.wait);
2901 			cwait.wait.func = cwt_wakefn;
2902 			cwait.work = work;
2903 
2904 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2905 						  TASK_UNINTERRUPTIBLE);
2906 			if (work_is_canceling(work))
2907 				schedule();
2908 			finish_wait(&cancel_waitq, &cwait.wait);
2909 		}
2910 	} while (unlikely(ret < 0));
2911 
2912 	/* tell other tasks trying to grab @work to back off */
2913 	mark_work_canceling(work);
2914 	local_irq_restore(flags);
2915 
2916 	flush_work(work);
2917 	clear_work_data(work);
2918 
2919 	/*
2920 	 * Paired with prepare_to_wait() above so that either
2921 	 * waitqueue_active() is visible here or !work_is_canceling() is
2922 	 * visible there.
2923 	 */
2924 	smp_mb();
2925 	if (waitqueue_active(&cancel_waitq))
2926 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2927 
2928 	return ret;
2929 }
2930 
2931 /**
2932  * cancel_work_sync - cancel a work and wait for it to finish
2933  * @work: the work to cancel
2934  *
2935  * Cancel @work and wait for its execution to finish.  This function
2936  * can be used even if the work re-queues itself or migrates to
2937  * another workqueue.  On return from this function, @work is
2938  * guaranteed to be not pending or executing on any CPU.
2939  *
2940  * cancel_work_sync(&delayed_work->work) must not be used for
2941  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2942  *
2943  * The caller must ensure that the workqueue on which @work was last
2944  * queued can't be destroyed before this function returns.
2945  *
2946  * Return:
2947  * %true if @work was pending, %false otherwise.
2948  */
2949 bool cancel_work_sync(struct work_struct *work)
2950 {
2951 	return __cancel_work_timer(work, false);
2952 }
2953 EXPORT_SYMBOL_GPL(cancel_work_sync);
2954 
2955 /**
2956  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2957  * @dwork: the delayed work to flush
2958  *
2959  * Delayed timer is cancelled and the pending work is queued for
2960  * immediate execution.  Like flush_work(), this function only
2961  * considers the last queueing instance of @dwork.
2962  *
2963  * Return:
2964  * %true if flush_work() waited for the work to finish execution,
2965  * %false if it was already idle.
2966  */
2967 bool flush_delayed_work(struct delayed_work *dwork)
2968 {
2969 	local_irq_disable();
2970 	if (del_timer_sync(&dwork->timer))
2971 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2972 	local_irq_enable();
2973 	return flush_work(&dwork->work);
2974 }
2975 EXPORT_SYMBOL(flush_delayed_work);
2976 
2977 static bool __cancel_work(struct work_struct *work, bool is_dwork)
2978 {
2979 	unsigned long flags;
2980 	int ret;
2981 
2982 	do {
2983 		ret = try_to_grab_pending(work, is_dwork, &flags);
2984 	} while (unlikely(ret == -EAGAIN));
2985 
2986 	if (unlikely(ret < 0))
2987 		return false;
2988 
2989 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
2990 	local_irq_restore(flags);
2991 	return ret;
2992 }
2993 
2994 /*
2995  * See cancel_delayed_work()
2996  */
2997 bool cancel_work(struct work_struct *work)
2998 {
2999 	return __cancel_work(work, false);
3000 }
3001 
3002 /**
3003  * cancel_delayed_work - cancel a delayed work
3004  * @dwork: delayed_work to cancel
3005  *
3006  * Kill off a pending delayed_work.
3007  *
3008  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3009  * pending.
3010  *
3011  * Note:
3012  * The work callback function may still be running on return, unless
3013  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3014  * use cancel_delayed_work_sync() to wait on it.
3015  *
3016  * This function is safe to call from any context including IRQ handler.
3017  */
3018 bool cancel_delayed_work(struct delayed_work *dwork)
3019 {
3020 	return __cancel_work(&dwork->work, true);
3021 }
3022 EXPORT_SYMBOL(cancel_delayed_work);
3023 
3024 /**
3025  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3026  * @dwork: the delayed work cancel
3027  *
3028  * This is cancel_work_sync() for delayed works.
3029  *
3030  * Return:
3031  * %true if @dwork was pending, %false otherwise.
3032  */
3033 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3034 {
3035 	return __cancel_work_timer(&dwork->work, true);
3036 }
3037 EXPORT_SYMBOL(cancel_delayed_work_sync);
3038 
3039 /**
3040  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3041  * @func: the function to call
3042  *
3043  * schedule_on_each_cpu() executes @func on each online CPU using the
3044  * system workqueue and blocks until all CPUs have completed.
3045  * schedule_on_each_cpu() is very slow.
3046  *
3047  * Return:
3048  * 0 on success, -errno on failure.
3049  */
3050 int schedule_on_each_cpu(work_func_t func)
3051 {
3052 	int cpu;
3053 	struct work_struct __percpu *works;
3054 
3055 	works = alloc_percpu(struct work_struct);
3056 	if (!works)
3057 		return -ENOMEM;
3058 
3059 	get_online_cpus();
3060 
3061 	for_each_online_cpu(cpu) {
3062 		struct work_struct *work = per_cpu_ptr(works, cpu);
3063 
3064 		INIT_WORK(work, func);
3065 		schedule_work_on(cpu, work);
3066 	}
3067 
3068 	for_each_online_cpu(cpu)
3069 		flush_work(per_cpu_ptr(works, cpu));
3070 
3071 	put_online_cpus();
3072 	free_percpu(works);
3073 	return 0;
3074 }
3075 
3076 /**
3077  * execute_in_process_context - reliably execute the routine with user context
3078  * @fn:		the function to execute
3079  * @ew:		guaranteed storage for the execute work structure (must
3080  *		be available when the work executes)
3081  *
3082  * Executes the function immediately if process context is available,
3083  * otherwise schedules the function for delayed execution.
3084  *
3085  * Return:	0 - function was executed
3086  *		1 - function was scheduled for execution
3087  */
3088 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3089 {
3090 	if (!in_interrupt()) {
3091 		fn(&ew->work);
3092 		return 0;
3093 	}
3094 
3095 	INIT_WORK(&ew->work, fn);
3096 	schedule_work(&ew->work);
3097 
3098 	return 1;
3099 }
3100 EXPORT_SYMBOL_GPL(execute_in_process_context);
3101 
3102 /**
3103  * free_workqueue_attrs - free a workqueue_attrs
3104  * @attrs: workqueue_attrs to free
3105  *
3106  * Undo alloc_workqueue_attrs().
3107  */
3108 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3109 {
3110 	if (attrs) {
3111 		free_cpumask_var(attrs->cpumask);
3112 		kfree(attrs);
3113 	}
3114 }
3115 
3116 /**
3117  * alloc_workqueue_attrs - allocate a workqueue_attrs
3118  * @gfp_mask: allocation mask to use
3119  *
3120  * Allocate a new workqueue_attrs, initialize with default settings and
3121  * return it.
3122  *
3123  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3124  */
3125 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3126 {
3127 	struct workqueue_attrs *attrs;
3128 
3129 	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3130 	if (!attrs)
3131 		goto fail;
3132 	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3133 		goto fail;
3134 
3135 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3136 	return attrs;
3137 fail:
3138 	free_workqueue_attrs(attrs);
3139 	return NULL;
3140 }
3141 
3142 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3143 				 const struct workqueue_attrs *from)
3144 {
3145 	to->nice = from->nice;
3146 	cpumask_copy(to->cpumask, from->cpumask);
3147 	/*
3148 	 * Unlike hash and equality test, this function doesn't ignore
3149 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3150 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3151 	 */
3152 	to->no_numa = from->no_numa;
3153 }
3154 
3155 /* hash value of the content of @attr */
3156 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3157 {
3158 	u32 hash = 0;
3159 
3160 	hash = jhash_1word(attrs->nice, hash);
3161 	hash = jhash(cpumask_bits(attrs->cpumask),
3162 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3163 	return hash;
3164 }
3165 
3166 /* content equality test */
3167 static bool wqattrs_equal(const struct workqueue_attrs *a,
3168 			  const struct workqueue_attrs *b)
3169 {
3170 	if (a->nice != b->nice)
3171 		return false;
3172 	if (!cpumask_equal(a->cpumask, b->cpumask))
3173 		return false;
3174 	return true;
3175 }
3176 
3177 /**
3178  * init_worker_pool - initialize a newly zalloc'd worker_pool
3179  * @pool: worker_pool to initialize
3180  *
3181  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3182  *
3183  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3184  * inside @pool proper are initialized and put_unbound_pool() can be called
3185  * on @pool safely to release it.
3186  */
3187 static int init_worker_pool(struct worker_pool *pool)
3188 {
3189 	spin_lock_init(&pool->lock);
3190 	pool->id = -1;
3191 	pool->cpu = -1;
3192 	pool->node = NUMA_NO_NODE;
3193 	pool->flags |= POOL_DISASSOCIATED;
3194 	pool->watchdog_ts = jiffies;
3195 	INIT_LIST_HEAD(&pool->worklist);
3196 	INIT_LIST_HEAD(&pool->idle_list);
3197 	hash_init(pool->busy_hash);
3198 
3199 	init_timer_deferrable(&pool->idle_timer);
3200 	pool->idle_timer.function = idle_worker_timeout;
3201 	pool->idle_timer.data = (unsigned long)pool;
3202 
3203 	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3204 		    (unsigned long)pool);
3205 
3206 	mutex_init(&pool->manager_arb);
3207 	mutex_init(&pool->attach_mutex);
3208 	INIT_LIST_HEAD(&pool->workers);
3209 
3210 	ida_init(&pool->worker_ida);
3211 	INIT_HLIST_NODE(&pool->hash_node);
3212 	pool->refcnt = 1;
3213 
3214 	/* shouldn't fail above this point */
3215 	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3216 	if (!pool->attrs)
3217 		return -ENOMEM;
3218 	return 0;
3219 }
3220 
3221 static void rcu_free_wq(struct rcu_head *rcu)
3222 {
3223 	struct workqueue_struct *wq =
3224 		container_of(rcu, struct workqueue_struct, rcu);
3225 
3226 	if (!(wq->flags & WQ_UNBOUND))
3227 		free_percpu(wq->cpu_pwqs);
3228 	else
3229 		free_workqueue_attrs(wq->unbound_attrs);
3230 
3231 	kfree(wq->rescuer);
3232 	kfree(wq);
3233 }
3234 
3235 static void rcu_free_pool(struct rcu_head *rcu)
3236 {
3237 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3238 
3239 	ida_destroy(&pool->worker_ida);
3240 	free_workqueue_attrs(pool->attrs);
3241 	kfree(pool);
3242 }
3243 
3244 /**
3245  * put_unbound_pool - put a worker_pool
3246  * @pool: worker_pool to put
3247  *
3248  * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3249  * safe manner.  get_unbound_pool() calls this function on its failure path
3250  * and this function should be able to release pools which went through,
3251  * successfully or not, init_worker_pool().
3252  *
3253  * Should be called with wq_pool_mutex held.
3254  */
3255 static void put_unbound_pool(struct worker_pool *pool)
3256 {
3257 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3258 	struct worker *worker;
3259 
3260 	lockdep_assert_held(&wq_pool_mutex);
3261 
3262 	if (--pool->refcnt)
3263 		return;
3264 
3265 	/* sanity checks */
3266 	if (WARN_ON(!(pool->cpu < 0)) ||
3267 	    WARN_ON(!list_empty(&pool->worklist)))
3268 		return;
3269 
3270 	/* release id and unhash */
3271 	if (pool->id >= 0)
3272 		idr_remove(&worker_pool_idr, pool->id);
3273 	hash_del(&pool->hash_node);
3274 
3275 	/*
3276 	 * Become the manager and destroy all workers.  Grabbing
3277 	 * manager_arb prevents @pool's workers from blocking on
3278 	 * attach_mutex.
3279 	 */
3280 	mutex_lock(&pool->manager_arb);
3281 
3282 	spin_lock_irq(&pool->lock);
3283 	while ((worker = first_idle_worker(pool)))
3284 		destroy_worker(worker);
3285 	WARN_ON(pool->nr_workers || pool->nr_idle);
3286 	spin_unlock_irq(&pool->lock);
3287 
3288 	mutex_lock(&pool->attach_mutex);
3289 	if (!list_empty(&pool->workers))
3290 		pool->detach_completion = &detach_completion;
3291 	mutex_unlock(&pool->attach_mutex);
3292 
3293 	if (pool->detach_completion)
3294 		wait_for_completion(pool->detach_completion);
3295 
3296 	mutex_unlock(&pool->manager_arb);
3297 
3298 	/* shut down the timers */
3299 	del_timer_sync(&pool->idle_timer);
3300 	del_timer_sync(&pool->mayday_timer);
3301 
3302 	/* sched-RCU protected to allow dereferences from get_work_pool() */
3303 	call_rcu_sched(&pool->rcu, rcu_free_pool);
3304 }
3305 
3306 /**
3307  * get_unbound_pool - get a worker_pool with the specified attributes
3308  * @attrs: the attributes of the worker_pool to get
3309  *
3310  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3311  * reference count and return it.  If there already is a matching
3312  * worker_pool, it will be used; otherwise, this function attempts to
3313  * create a new one.
3314  *
3315  * Should be called with wq_pool_mutex held.
3316  *
3317  * Return: On success, a worker_pool with the same attributes as @attrs.
3318  * On failure, %NULL.
3319  */
3320 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3321 {
3322 	u32 hash = wqattrs_hash(attrs);
3323 	struct worker_pool *pool;
3324 	int node;
3325 	int target_node = NUMA_NO_NODE;
3326 
3327 	lockdep_assert_held(&wq_pool_mutex);
3328 
3329 	/* do we already have a matching pool? */
3330 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3331 		if (wqattrs_equal(pool->attrs, attrs)) {
3332 			pool->refcnt++;
3333 			return pool;
3334 		}
3335 	}
3336 
3337 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3338 	if (wq_numa_enabled) {
3339 		for_each_node(node) {
3340 			if (cpumask_subset(attrs->cpumask,
3341 					   wq_numa_possible_cpumask[node])) {
3342 				target_node = node;
3343 				break;
3344 			}
3345 		}
3346 	}
3347 
3348 	/* nope, create a new one */
3349 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3350 	if (!pool || init_worker_pool(pool) < 0)
3351 		goto fail;
3352 
3353 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3354 	copy_workqueue_attrs(pool->attrs, attrs);
3355 	pool->node = target_node;
3356 
3357 	/*
3358 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3359 	 * 'struct workqueue_attrs' comments for detail.
3360 	 */
3361 	pool->attrs->no_numa = false;
3362 
3363 	if (worker_pool_assign_id(pool) < 0)
3364 		goto fail;
3365 
3366 	/* create and start the initial worker */
3367 	if (!create_worker(pool))
3368 		goto fail;
3369 
3370 	/* install */
3371 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3372 
3373 	return pool;
3374 fail:
3375 	if (pool)
3376 		put_unbound_pool(pool);
3377 	return NULL;
3378 }
3379 
3380 static void rcu_free_pwq(struct rcu_head *rcu)
3381 {
3382 	kmem_cache_free(pwq_cache,
3383 			container_of(rcu, struct pool_workqueue, rcu));
3384 }
3385 
3386 /*
3387  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3388  * and needs to be destroyed.
3389  */
3390 static void pwq_unbound_release_workfn(struct work_struct *work)
3391 {
3392 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3393 						  unbound_release_work);
3394 	struct workqueue_struct *wq = pwq->wq;
3395 	struct worker_pool *pool = pwq->pool;
3396 	bool is_last;
3397 
3398 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3399 		return;
3400 
3401 	mutex_lock(&wq->mutex);
3402 	list_del_rcu(&pwq->pwqs_node);
3403 	is_last = list_empty(&wq->pwqs);
3404 	mutex_unlock(&wq->mutex);
3405 
3406 	mutex_lock(&wq_pool_mutex);
3407 	put_unbound_pool(pool);
3408 	mutex_unlock(&wq_pool_mutex);
3409 
3410 	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3411 
3412 	/*
3413 	 * If we're the last pwq going away, @wq is already dead and no one
3414 	 * is gonna access it anymore.  Schedule RCU free.
3415 	 */
3416 	if (is_last)
3417 		call_rcu_sched(&wq->rcu, rcu_free_wq);
3418 }
3419 
3420 /**
3421  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3422  * @pwq: target pool_workqueue
3423  *
3424  * If @pwq isn't freezing, set @pwq->max_active to the associated
3425  * workqueue's saved_max_active and activate delayed work items
3426  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3427  */
3428 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3429 {
3430 	struct workqueue_struct *wq = pwq->wq;
3431 	bool freezable = wq->flags & WQ_FREEZABLE;
3432 
3433 	/* for @wq->saved_max_active */
3434 	lockdep_assert_held(&wq->mutex);
3435 
3436 	/* fast exit for non-freezable wqs */
3437 	if (!freezable && pwq->max_active == wq->saved_max_active)
3438 		return;
3439 
3440 	spin_lock_irq(&pwq->pool->lock);
3441 
3442 	/*
3443 	 * During [un]freezing, the caller is responsible for ensuring that
3444 	 * this function is called at least once after @workqueue_freezing
3445 	 * is updated and visible.
3446 	 */
3447 	if (!freezable || !workqueue_freezing) {
3448 		pwq->max_active = wq->saved_max_active;
3449 
3450 		while (!list_empty(&pwq->delayed_works) &&
3451 		       pwq->nr_active < pwq->max_active)
3452 			pwq_activate_first_delayed(pwq);
3453 
3454 		/*
3455 		 * Need to kick a worker after thawed or an unbound wq's
3456 		 * max_active is bumped.  It's a slow path.  Do it always.
3457 		 */
3458 		wake_up_worker(pwq->pool);
3459 	} else {
3460 		pwq->max_active = 0;
3461 	}
3462 
3463 	spin_unlock_irq(&pwq->pool->lock);
3464 }
3465 
3466 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3467 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3468 		     struct worker_pool *pool)
3469 {
3470 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3471 
3472 	memset(pwq, 0, sizeof(*pwq));
3473 
3474 	pwq->pool = pool;
3475 	pwq->wq = wq;
3476 	pwq->flush_color = -1;
3477 	pwq->refcnt = 1;
3478 	INIT_LIST_HEAD(&pwq->delayed_works);
3479 	INIT_LIST_HEAD(&pwq->pwqs_node);
3480 	INIT_LIST_HEAD(&pwq->mayday_node);
3481 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3482 }
3483 
3484 /* sync @pwq with the current state of its associated wq and link it */
3485 static void link_pwq(struct pool_workqueue *pwq)
3486 {
3487 	struct workqueue_struct *wq = pwq->wq;
3488 
3489 	lockdep_assert_held(&wq->mutex);
3490 
3491 	/* may be called multiple times, ignore if already linked */
3492 	if (!list_empty(&pwq->pwqs_node))
3493 		return;
3494 
3495 	/* set the matching work_color */
3496 	pwq->work_color = wq->work_color;
3497 
3498 	/* sync max_active to the current setting */
3499 	pwq_adjust_max_active(pwq);
3500 
3501 	/* link in @pwq */
3502 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3503 }
3504 
3505 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3506 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3507 					const struct workqueue_attrs *attrs)
3508 {
3509 	struct worker_pool *pool;
3510 	struct pool_workqueue *pwq;
3511 
3512 	lockdep_assert_held(&wq_pool_mutex);
3513 
3514 	pool = get_unbound_pool(attrs);
3515 	if (!pool)
3516 		return NULL;
3517 
3518 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3519 	if (!pwq) {
3520 		put_unbound_pool(pool);
3521 		return NULL;
3522 	}
3523 
3524 	init_pwq(pwq, wq, pool);
3525 	return pwq;
3526 }
3527 
3528 /**
3529  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3530  * @attrs: the wq_attrs of the default pwq of the target workqueue
3531  * @node: the target NUMA node
3532  * @cpu_going_down: if >= 0, the CPU to consider as offline
3533  * @cpumask: outarg, the resulting cpumask
3534  *
3535  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3536  * @cpu_going_down is >= 0, that cpu is considered offline during
3537  * calculation.  The result is stored in @cpumask.
3538  *
3539  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3540  * enabled and @node has online CPUs requested by @attrs, the returned
3541  * cpumask is the intersection of the possible CPUs of @node and
3542  * @attrs->cpumask.
3543  *
3544  * The caller is responsible for ensuring that the cpumask of @node stays
3545  * stable.
3546  *
3547  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3548  * %false if equal.
3549  */
3550 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3551 				 int cpu_going_down, cpumask_t *cpumask)
3552 {
3553 	if (!wq_numa_enabled || attrs->no_numa)
3554 		goto use_dfl;
3555 
3556 	/* does @node have any online CPUs @attrs wants? */
3557 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3558 	if (cpu_going_down >= 0)
3559 		cpumask_clear_cpu(cpu_going_down, cpumask);
3560 
3561 	if (cpumask_empty(cpumask))
3562 		goto use_dfl;
3563 
3564 	/* yeap, return possible CPUs in @node that @attrs wants */
3565 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3566 	return !cpumask_equal(cpumask, attrs->cpumask);
3567 
3568 use_dfl:
3569 	cpumask_copy(cpumask, attrs->cpumask);
3570 	return false;
3571 }
3572 
3573 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3574 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3575 						   int node,
3576 						   struct pool_workqueue *pwq)
3577 {
3578 	struct pool_workqueue *old_pwq;
3579 
3580 	lockdep_assert_held(&wq_pool_mutex);
3581 	lockdep_assert_held(&wq->mutex);
3582 
3583 	/* link_pwq() can handle duplicate calls */
3584 	link_pwq(pwq);
3585 
3586 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3587 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3588 	return old_pwq;
3589 }
3590 
3591 /* context to store the prepared attrs & pwqs before applying */
3592 struct apply_wqattrs_ctx {
3593 	struct workqueue_struct	*wq;		/* target workqueue */
3594 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3595 	struct list_head	list;		/* queued for batching commit */
3596 	struct pool_workqueue	*dfl_pwq;
3597 	struct pool_workqueue	*pwq_tbl[];
3598 };
3599 
3600 /* free the resources after success or abort */
3601 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3602 {
3603 	if (ctx) {
3604 		int node;
3605 
3606 		for_each_node(node)
3607 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3608 		put_pwq_unlocked(ctx->dfl_pwq);
3609 
3610 		free_workqueue_attrs(ctx->attrs);
3611 
3612 		kfree(ctx);
3613 	}
3614 }
3615 
3616 /* allocate the attrs and pwqs for later installation */
3617 static struct apply_wqattrs_ctx *
3618 apply_wqattrs_prepare(struct workqueue_struct *wq,
3619 		      const struct workqueue_attrs *attrs)
3620 {
3621 	struct apply_wqattrs_ctx *ctx;
3622 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3623 	int node;
3624 
3625 	lockdep_assert_held(&wq_pool_mutex);
3626 
3627 	ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3628 		      GFP_KERNEL);
3629 
3630 	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3631 	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3632 	if (!ctx || !new_attrs || !tmp_attrs)
3633 		goto out_free;
3634 
3635 	/*
3636 	 * Calculate the attrs of the default pwq.
3637 	 * If the user configured cpumask doesn't overlap with the
3638 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3639 	 */
3640 	copy_workqueue_attrs(new_attrs, attrs);
3641 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3642 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3643 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3644 
3645 	/*
3646 	 * We may create multiple pwqs with differing cpumasks.  Make a
3647 	 * copy of @new_attrs which will be modified and used to obtain
3648 	 * pools.
3649 	 */
3650 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3651 
3652 	/*
3653 	 * If something goes wrong during CPU up/down, we'll fall back to
3654 	 * the default pwq covering whole @attrs->cpumask.  Always create
3655 	 * it even if we don't use it immediately.
3656 	 */
3657 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3658 	if (!ctx->dfl_pwq)
3659 		goto out_free;
3660 
3661 	for_each_node(node) {
3662 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3663 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3664 			if (!ctx->pwq_tbl[node])
3665 				goto out_free;
3666 		} else {
3667 			ctx->dfl_pwq->refcnt++;
3668 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3669 		}
3670 	}
3671 
3672 	/* save the user configured attrs and sanitize it. */
3673 	copy_workqueue_attrs(new_attrs, attrs);
3674 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3675 	ctx->attrs = new_attrs;
3676 
3677 	ctx->wq = wq;
3678 	free_workqueue_attrs(tmp_attrs);
3679 	return ctx;
3680 
3681 out_free:
3682 	free_workqueue_attrs(tmp_attrs);
3683 	free_workqueue_attrs(new_attrs);
3684 	apply_wqattrs_cleanup(ctx);
3685 	return NULL;
3686 }
3687 
3688 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3689 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3690 {
3691 	int node;
3692 
3693 	/* all pwqs have been created successfully, let's install'em */
3694 	mutex_lock(&ctx->wq->mutex);
3695 
3696 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3697 
3698 	/* save the previous pwq and install the new one */
3699 	for_each_node(node)
3700 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3701 							  ctx->pwq_tbl[node]);
3702 
3703 	/* @dfl_pwq might not have been used, ensure it's linked */
3704 	link_pwq(ctx->dfl_pwq);
3705 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3706 
3707 	mutex_unlock(&ctx->wq->mutex);
3708 }
3709 
3710 static void apply_wqattrs_lock(void)
3711 {
3712 	/* CPUs should stay stable across pwq creations and installations */
3713 	get_online_cpus();
3714 	mutex_lock(&wq_pool_mutex);
3715 }
3716 
3717 static void apply_wqattrs_unlock(void)
3718 {
3719 	mutex_unlock(&wq_pool_mutex);
3720 	put_online_cpus();
3721 }
3722 
3723 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3724 					const struct workqueue_attrs *attrs)
3725 {
3726 	struct apply_wqattrs_ctx *ctx;
3727 
3728 	/* only unbound workqueues can change attributes */
3729 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3730 		return -EINVAL;
3731 
3732 	/* creating multiple pwqs breaks ordering guarantee */
3733 	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3734 		return -EINVAL;
3735 
3736 	ctx = apply_wqattrs_prepare(wq, attrs);
3737 	if (!ctx)
3738 		return -ENOMEM;
3739 
3740 	/* the ctx has been prepared successfully, let's commit it */
3741 	apply_wqattrs_commit(ctx);
3742 	apply_wqattrs_cleanup(ctx);
3743 
3744 	return 0;
3745 }
3746 
3747 /**
3748  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3749  * @wq: the target workqueue
3750  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3751  *
3752  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3753  * machines, this function maps a separate pwq to each NUMA node with
3754  * possibles CPUs in @attrs->cpumask so that work items are affine to the
3755  * NUMA node it was issued on.  Older pwqs are released as in-flight work
3756  * items finish.  Note that a work item which repeatedly requeues itself
3757  * back-to-back will stay on its current pwq.
3758  *
3759  * Performs GFP_KERNEL allocations.
3760  *
3761  * Return: 0 on success and -errno on failure.
3762  */
3763 int apply_workqueue_attrs(struct workqueue_struct *wq,
3764 			  const struct workqueue_attrs *attrs)
3765 {
3766 	int ret;
3767 
3768 	apply_wqattrs_lock();
3769 	ret = apply_workqueue_attrs_locked(wq, attrs);
3770 	apply_wqattrs_unlock();
3771 
3772 	return ret;
3773 }
3774 
3775 /**
3776  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3777  * @wq: the target workqueue
3778  * @cpu: the CPU coming up or going down
3779  * @online: whether @cpu is coming up or going down
3780  *
3781  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3782  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3783  * @wq accordingly.
3784  *
3785  * If NUMA affinity can't be adjusted due to memory allocation failure, it
3786  * falls back to @wq->dfl_pwq which may not be optimal but is always
3787  * correct.
3788  *
3789  * Note that when the last allowed CPU of a NUMA node goes offline for a
3790  * workqueue with a cpumask spanning multiple nodes, the workers which were
3791  * already executing the work items for the workqueue will lose their CPU
3792  * affinity and may execute on any CPU.  This is similar to how per-cpu
3793  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3794  * affinity, it's the user's responsibility to flush the work item from
3795  * CPU_DOWN_PREPARE.
3796  */
3797 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3798 				   bool online)
3799 {
3800 	int node = cpu_to_node(cpu);
3801 	int cpu_off = online ? -1 : cpu;
3802 	struct pool_workqueue *old_pwq = NULL, *pwq;
3803 	struct workqueue_attrs *target_attrs;
3804 	cpumask_t *cpumask;
3805 
3806 	lockdep_assert_held(&wq_pool_mutex);
3807 
3808 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3809 	    wq->unbound_attrs->no_numa)
3810 		return;
3811 
3812 	/*
3813 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3814 	 * Let's use a preallocated one.  The following buf is protected by
3815 	 * CPU hotplug exclusion.
3816 	 */
3817 	target_attrs = wq_update_unbound_numa_attrs_buf;
3818 	cpumask = target_attrs->cpumask;
3819 
3820 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3821 	pwq = unbound_pwq_by_node(wq, node);
3822 
3823 	/*
3824 	 * Let's determine what needs to be done.  If the target cpumask is
3825 	 * different from the default pwq's, we need to compare it to @pwq's
3826 	 * and create a new one if they don't match.  If the target cpumask
3827 	 * equals the default pwq's, the default pwq should be used.
3828 	 */
3829 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3830 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3831 			return;
3832 	} else {
3833 		goto use_dfl_pwq;
3834 	}
3835 
3836 	/* create a new pwq */
3837 	pwq = alloc_unbound_pwq(wq, target_attrs);
3838 	if (!pwq) {
3839 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3840 			wq->name);
3841 		goto use_dfl_pwq;
3842 	}
3843 
3844 	/* Install the new pwq. */
3845 	mutex_lock(&wq->mutex);
3846 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3847 	goto out_unlock;
3848 
3849 use_dfl_pwq:
3850 	mutex_lock(&wq->mutex);
3851 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
3852 	get_pwq(wq->dfl_pwq);
3853 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3854 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3855 out_unlock:
3856 	mutex_unlock(&wq->mutex);
3857 	put_pwq_unlocked(old_pwq);
3858 }
3859 
3860 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3861 {
3862 	bool highpri = wq->flags & WQ_HIGHPRI;
3863 	int cpu, ret;
3864 
3865 	if (!(wq->flags & WQ_UNBOUND)) {
3866 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3867 		if (!wq->cpu_pwqs)
3868 			return -ENOMEM;
3869 
3870 		for_each_possible_cpu(cpu) {
3871 			struct pool_workqueue *pwq =
3872 				per_cpu_ptr(wq->cpu_pwqs, cpu);
3873 			struct worker_pool *cpu_pools =
3874 				per_cpu(cpu_worker_pools, cpu);
3875 
3876 			init_pwq(pwq, wq, &cpu_pools[highpri]);
3877 
3878 			mutex_lock(&wq->mutex);
3879 			link_pwq(pwq);
3880 			mutex_unlock(&wq->mutex);
3881 		}
3882 		return 0;
3883 	} else if (wq->flags & __WQ_ORDERED) {
3884 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3885 		/* there should only be single pwq for ordering guarantee */
3886 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3887 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3888 		     "ordering guarantee broken for workqueue %s\n", wq->name);
3889 		return ret;
3890 	} else {
3891 		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3892 	}
3893 }
3894 
3895 static int wq_clamp_max_active(int max_active, unsigned int flags,
3896 			       const char *name)
3897 {
3898 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3899 
3900 	if (max_active < 1 || max_active > lim)
3901 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3902 			max_active, name, 1, lim);
3903 
3904 	return clamp_val(max_active, 1, lim);
3905 }
3906 
3907 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3908 					       unsigned int flags,
3909 					       int max_active,
3910 					       struct lock_class_key *key,
3911 					       const char *lock_name, ...)
3912 {
3913 	size_t tbl_size = 0;
3914 	va_list args;
3915 	struct workqueue_struct *wq;
3916 	struct pool_workqueue *pwq;
3917 
3918 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
3919 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3920 		flags |= WQ_UNBOUND;
3921 
3922 	/* allocate wq and format name */
3923 	if (flags & WQ_UNBOUND)
3924 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3925 
3926 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3927 	if (!wq)
3928 		return NULL;
3929 
3930 	if (flags & WQ_UNBOUND) {
3931 		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3932 		if (!wq->unbound_attrs)
3933 			goto err_free_wq;
3934 	}
3935 
3936 	va_start(args, lock_name);
3937 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3938 	va_end(args);
3939 
3940 	max_active = max_active ?: WQ_DFL_ACTIVE;
3941 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3942 
3943 	/* init wq */
3944 	wq->flags = flags;
3945 	wq->saved_max_active = max_active;
3946 	mutex_init(&wq->mutex);
3947 	atomic_set(&wq->nr_pwqs_to_flush, 0);
3948 	INIT_LIST_HEAD(&wq->pwqs);
3949 	INIT_LIST_HEAD(&wq->flusher_queue);
3950 	INIT_LIST_HEAD(&wq->flusher_overflow);
3951 	INIT_LIST_HEAD(&wq->maydays);
3952 
3953 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3954 	INIT_LIST_HEAD(&wq->list);
3955 
3956 	if (alloc_and_link_pwqs(wq) < 0)
3957 		goto err_free_wq;
3958 
3959 	/*
3960 	 * Workqueues which may be used during memory reclaim should
3961 	 * have a rescuer to guarantee forward progress.
3962 	 */
3963 	if (flags & WQ_MEM_RECLAIM) {
3964 		struct worker *rescuer;
3965 
3966 		rescuer = alloc_worker(NUMA_NO_NODE);
3967 		if (!rescuer)
3968 			goto err_destroy;
3969 
3970 		rescuer->rescue_wq = wq;
3971 		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3972 					       wq->name);
3973 		if (IS_ERR(rescuer->task)) {
3974 			kfree(rescuer);
3975 			goto err_destroy;
3976 		}
3977 
3978 		wq->rescuer = rescuer;
3979 		kthread_bind_mask(rescuer->task, cpu_possible_mask);
3980 		wake_up_process(rescuer->task);
3981 	}
3982 
3983 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3984 		goto err_destroy;
3985 
3986 	/*
3987 	 * wq_pool_mutex protects global freeze state and workqueues list.
3988 	 * Grab it, adjust max_active and add the new @wq to workqueues
3989 	 * list.
3990 	 */
3991 	mutex_lock(&wq_pool_mutex);
3992 
3993 	mutex_lock(&wq->mutex);
3994 	for_each_pwq(pwq, wq)
3995 		pwq_adjust_max_active(pwq);
3996 	mutex_unlock(&wq->mutex);
3997 
3998 	list_add_tail_rcu(&wq->list, &workqueues);
3999 
4000 	mutex_unlock(&wq_pool_mutex);
4001 
4002 	return wq;
4003 
4004 err_free_wq:
4005 	free_workqueue_attrs(wq->unbound_attrs);
4006 	kfree(wq);
4007 	return NULL;
4008 err_destroy:
4009 	destroy_workqueue(wq);
4010 	return NULL;
4011 }
4012 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4013 
4014 /**
4015  * destroy_workqueue - safely terminate a workqueue
4016  * @wq: target workqueue
4017  *
4018  * Safely destroy a workqueue. All work currently pending will be done first.
4019  */
4020 void destroy_workqueue(struct workqueue_struct *wq)
4021 {
4022 	struct pool_workqueue *pwq;
4023 	int node;
4024 
4025 	/* drain it before proceeding with destruction */
4026 	drain_workqueue(wq);
4027 
4028 	/* sanity checks */
4029 	mutex_lock(&wq->mutex);
4030 	for_each_pwq(pwq, wq) {
4031 		int i;
4032 
4033 		for (i = 0; i < WORK_NR_COLORS; i++) {
4034 			if (WARN_ON(pwq->nr_in_flight[i])) {
4035 				mutex_unlock(&wq->mutex);
4036 				return;
4037 			}
4038 		}
4039 
4040 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4041 		    WARN_ON(pwq->nr_active) ||
4042 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4043 			mutex_unlock(&wq->mutex);
4044 			return;
4045 		}
4046 	}
4047 	mutex_unlock(&wq->mutex);
4048 
4049 	/*
4050 	 * wq list is used to freeze wq, remove from list after
4051 	 * flushing is complete in case freeze races us.
4052 	 */
4053 	mutex_lock(&wq_pool_mutex);
4054 	list_del_rcu(&wq->list);
4055 	mutex_unlock(&wq_pool_mutex);
4056 
4057 	workqueue_sysfs_unregister(wq);
4058 
4059 	if (wq->rescuer)
4060 		kthread_stop(wq->rescuer->task);
4061 
4062 	if (!(wq->flags & WQ_UNBOUND)) {
4063 		/*
4064 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4065 		 * schedule RCU free.
4066 		 */
4067 		call_rcu_sched(&wq->rcu, rcu_free_wq);
4068 	} else {
4069 		/*
4070 		 * We're the sole accessor of @wq at this point.  Directly
4071 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4072 		 * @wq will be freed when the last pwq is released.
4073 		 */
4074 		for_each_node(node) {
4075 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4076 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4077 			put_pwq_unlocked(pwq);
4078 		}
4079 
4080 		/*
4081 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4082 		 * put.  Don't access it afterwards.
4083 		 */
4084 		pwq = wq->dfl_pwq;
4085 		wq->dfl_pwq = NULL;
4086 		put_pwq_unlocked(pwq);
4087 	}
4088 }
4089 EXPORT_SYMBOL_GPL(destroy_workqueue);
4090 
4091 /**
4092  * workqueue_set_max_active - adjust max_active of a workqueue
4093  * @wq: target workqueue
4094  * @max_active: new max_active value.
4095  *
4096  * Set max_active of @wq to @max_active.
4097  *
4098  * CONTEXT:
4099  * Don't call from IRQ context.
4100  */
4101 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4102 {
4103 	struct pool_workqueue *pwq;
4104 
4105 	/* disallow meddling with max_active for ordered workqueues */
4106 	if (WARN_ON(wq->flags & __WQ_ORDERED))
4107 		return;
4108 
4109 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4110 
4111 	mutex_lock(&wq->mutex);
4112 
4113 	wq->saved_max_active = max_active;
4114 
4115 	for_each_pwq(pwq, wq)
4116 		pwq_adjust_max_active(pwq);
4117 
4118 	mutex_unlock(&wq->mutex);
4119 }
4120 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4121 
4122 /**
4123  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4124  *
4125  * Determine whether %current is a workqueue rescuer.  Can be used from
4126  * work functions to determine whether it's being run off the rescuer task.
4127  *
4128  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4129  */
4130 bool current_is_workqueue_rescuer(void)
4131 {
4132 	struct worker *worker = current_wq_worker();
4133 
4134 	return worker && worker->rescue_wq;
4135 }
4136 
4137 /**
4138  * workqueue_congested - test whether a workqueue is congested
4139  * @cpu: CPU in question
4140  * @wq: target workqueue
4141  *
4142  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4143  * no synchronization around this function and the test result is
4144  * unreliable and only useful as advisory hints or for debugging.
4145  *
4146  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4147  * Note that both per-cpu and unbound workqueues may be associated with
4148  * multiple pool_workqueues which have separate congested states.  A
4149  * workqueue being congested on one CPU doesn't mean the workqueue is also
4150  * contested on other CPUs / NUMA nodes.
4151  *
4152  * Return:
4153  * %true if congested, %false otherwise.
4154  */
4155 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4156 {
4157 	struct pool_workqueue *pwq;
4158 	bool ret;
4159 
4160 	rcu_read_lock_sched();
4161 
4162 	if (cpu == WORK_CPU_UNBOUND)
4163 		cpu = smp_processor_id();
4164 
4165 	if (!(wq->flags & WQ_UNBOUND))
4166 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4167 	else
4168 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4169 
4170 	ret = !list_empty(&pwq->delayed_works);
4171 	rcu_read_unlock_sched();
4172 
4173 	return ret;
4174 }
4175 EXPORT_SYMBOL_GPL(workqueue_congested);
4176 
4177 /**
4178  * work_busy - test whether a work is currently pending or running
4179  * @work: the work to be tested
4180  *
4181  * Test whether @work is currently pending or running.  There is no
4182  * synchronization around this function and the test result is
4183  * unreliable and only useful as advisory hints or for debugging.
4184  *
4185  * Return:
4186  * OR'd bitmask of WORK_BUSY_* bits.
4187  */
4188 unsigned int work_busy(struct work_struct *work)
4189 {
4190 	struct worker_pool *pool;
4191 	unsigned long flags;
4192 	unsigned int ret = 0;
4193 
4194 	if (work_pending(work))
4195 		ret |= WORK_BUSY_PENDING;
4196 
4197 	local_irq_save(flags);
4198 	pool = get_work_pool(work);
4199 	if (pool) {
4200 		spin_lock(&pool->lock);
4201 		if (find_worker_executing_work(pool, work))
4202 			ret |= WORK_BUSY_RUNNING;
4203 		spin_unlock(&pool->lock);
4204 	}
4205 	local_irq_restore(flags);
4206 
4207 	return ret;
4208 }
4209 EXPORT_SYMBOL_GPL(work_busy);
4210 
4211 /**
4212  * set_worker_desc - set description for the current work item
4213  * @fmt: printf-style format string
4214  * @...: arguments for the format string
4215  *
4216  * This function can be called by a running work function to describe what
4217  * the work item is about.  If the worker task gets dumped, this
4218  * information will be printed out together to help debugging.  The
4219  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4220  */
4221 void set_worker_desc(const char *fmt, ...)
4222 {
4223 	struct worker *worker = current_wq_worker();
4224 	va_list args;
4225 
4226 	if (worker) {
4227 		va_start(args, fmt);
4228 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4229 		va_end(args);
4230 		worker->desc_valid = true;
4231 	}
4232 }
4233 
4234 /**
4235  * print_worker_info - print out worker information and description
4236  * @log_lvl: the log level to use when printing
4237  * @task: target task
4238  *
4239  * If @task is a worker and currently executing a work item, print out the
4240  * name of the workqueue being serviced and worker description set with
4241  * set_worker_desc() by the currently executing work item.
4242  *
4243  * This function can be safely called on any task as long as the
4244  * task_struct itself is accessible.  While safe, this function isn't
4245  * synchronized and may print out mixups or garbages of limited length.
4246  */
4247 void print_worker_info(const char *log_lvl, struct task_struct *task)
4248 {
4249 	work_func_t *fn = NULL;
4250 	char name[WQ_NAME_LEN] = { };
4251 	char desc[WORKER_DESC_LEN] = { };
4252 	struct pool_workqueue *pwq = NULL;
4253 	struct workqueue_struct *wq = NULL;
4254 	bool desc_valid = false;
4255 	struct worker *worker;
4256 
4257 	if (!(task->flags & PF_WQ_WORKER))
4258 		return;
4259 
4260 	/*
4261 	 * This function is called without any synchronization and @task
4262 	 * could be in any state.  Be careful with dereferences.
4263 	 */
4264 	worker = kthread_probe_data(task);
4265 
4266 	/*
4267 	 * Carefully copy the associated workqueue's workfn and name.  Keep
4268 	 * the original last '\0' in case the original contains garbage.
4269 	 */
4270 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4271 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4272 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4273 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4274 
4275 	/* copy worker description */
4276 	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4277 	if (desc_valid)
4278 		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4279 
4280 	if (fn || name[0] || desc[0]) {
4281 		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4282 		if (desc[0])
4283 			pr_cont(" (%s)", desc);
4284 		pr_cont("\n");
4285 	}
4286 }
4287 
4288 static void pr_cont_pool_info(struct worker_pool *pool)
4289 {
4290 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4291 	if (pool->node != NUMA_NO_NODE)
4292 		pr_cont(" node=%d", pool->node);
4293 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4294 }
4295 
4296 static void pr_cont_work(bool comma, struct work_struct *work)
4297 {
4298 	if (work->func == wq_barrier_func) {
4299 		struct wq_barrier *barr;
4300 
4301 		barr = container_of(work, struct wq_barrier, work);
4302 
4303 		pr_cont("%s BAR(%d)", comma ? "," : "",
4304 			task_pid_nr(barr->task));
4305 	} else {
4306 		pr_cont("%s %pf", comma ? "," : "", work->func);
4307 	}
4308 }
4309 
4310 static void show_pwq(struct pool_workqueue *pwq)
4311 {
4312 	struct worker_pool *pool = pwq->pool;
4313 	struct work_struct *work;
4314 	struct worker *worker;
4315 	bool has_in_flight = false, has_pending = false;
4316 	int bkt;
4317 
4318 	pr_info("  pwq %d:", pool->id);
4319 	pr_cont_pool_info(pool);
4320 
4321 	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4322 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4323 
4324 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4325 		if (worker->current_pwq == pwq) {
4326 			has_in_flight = true;
4327 			break;
4328 		}
4329 	}
4330 	if (has_in_flight) {
4331 		bool comma = false;
4332 
4333 		pr_info("    in-flight:");
4334 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4335 			if (worker->current_pwq != pwq)
4336 				continue;
4337 
4338 			pr_cont("%s %d%s:%pf", comma ? "," : "",
4339 				task_pid_nr(worker->task),
4340 				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4341 				worker->current_func);
4342 			list_for_each_entry(work, &worker->scheduled, entry)
4343 				pr_cont_work(false, work);
4344 			comma = true;
4345 		}
4346 		pr_cont("\n");
4347 	}
4348 
4349 	list_for_each_entry(work, &pool->worklist, entry) {
4350 		if (get_work_pwq(work) == pwq) {
4351 			has_pending = true;
4352 			break;
4353 		}
4354 	}
4355 	if (has_pending) {
4356 		bool comma = false;
4357 
4358 		pr_info("    pending:");
4359 		list_for_each_entry(work, &pool->worklist, entry) {
4360 			if (get_work_pwq(work) != pwq)
4361 				continue;
4362 
4363 			pr_cont_work(comma, work);
4364 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4365 		}
4366 		pr_cont("\n");
4367 	}
4368 
4369 	if (!list_empty(&pwq->delayed_works)) {
4370 		bool comma = false;
4371 
4372 		pr_info("    delayed:");
4373 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4374 			pr_cont_work(comma, work);
4375 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4376 		}
4377 		pr_cont("\n");
4378 	}
4379 }
4380 
4381 /**
4382  * show_workqueue_state - dump workqueue state
4383  *
4384  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4385  * all busy workqueues and pools.
4386  */
4387 void show_workqueue_state(void)
4388 {
4389 	struct workqueue_struct *wq;
4390 	struct worker_pool *pool;
4391 	unsigned long flags;
4392 	int pi;
4393 
4394 	rcu_read_lock_sched();
4395 
4396 	pr_info("Showing busy workqueues and worker pools:\n");
4397 
4398 	list_for_each_entry_rcu(wq, &workqueues, list) {
4399 		struct pool_workqueue *pwq;
4400 		bool idle = true;
4401 
4402 		for_each_pwq(pwq, wq) {
4403 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4404 				idle = false;
4405 				break;
4406 			}
4407 		}
4408 		if (idle)
4409 			continue;
4410 
4411 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4412 
4413 		for_each_pwq(pwq, wq) {
4414 			spin_lock_irqsave(&pwq->pool->lock, flags);
4415 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4416 				show_pwq(pwq);
4417 			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4418 		}
4419 	}
4420 
4421 	for_each_pool(pool, pi) {
4422 		struct worker *worker;
4423 		bool first = true;
4424 
4425 		spin_lock_irqsave(&pool->lock, flags);
4426 		if (pool->nr_workers == pool->nr_idle)
4427 			goto next_pool;
4428 
4429 		pr_info("pool %d:", pool->id);
4430 		pr_cont_pool_info(pool);
4431 		pr_cont(" hung=%us workers=%d",
4432 			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4433 			pool->nr_workers);
4434 		if (pool->manager)
4435 			pr_cont(" manager: %d",
4436 				task_pid_nr(pool->manager->task));
4437 		list_for_each_entry(worker, &pool->idle_list, entry) {
4438 			pr_cont(" %s%d", first ? "idle: " : "",
4439 				task_pid_nr(worker->task));
4440 			first = false;
4441 		}
4442 		pr_cont("\n");
4443 	next_pool:
4444 		spin_unlock_irqrestore(&pool->lock, flags);
4445 	}
4446 
4447 	rcu_read_unlock_sched();
4448 }
4449 
4450 /*
4451  * CPU hotplug.
4452  *
4453  * There are two challenges in supporting CPU hotplug.  Firstly, there
4454  * are a lot of assumptions on strong associations among work, pwq and
4455  * pool which make migrating pending and scheduled works very
4456  * difficult to implement without impacting hot paths.  Secondly,
4457  * worker pools serve mix of short, long and very long running works making
4458  * blocked draining impractical.
4459  *
4460  * This is solved by allowing the pools to be disassociated from the CPU
4461  * running as an unbound one and allowing it to be reattached later if the
4462  * cpu comes back online.
4463  */
4464 
4465 static void wq_unbind_fn(struct work_struct *work)
4466 {
4467 	int cpu = smp_processor_id();
4468 	struct worker_pool *pool;
4469 	struct worker *worker;
4470 
4471 	for_each_cpu_worker_pool(pool, cpu) {
4472 		mutex_lock(&pool->attach_mutex);
4473 		spin_lock_irq(&pool->lock);
4474 
4475 		/*
4476 		 * We've blocked all attach/detach operations. Make all workers
4477 		 * unbound and set DISASSOCIATED.  Before this, all workers
4478 		 * except for the ones which are still executing works from
4479 		 * before the last CPU down must be on the cpu.  After
4480 		 * this, they may become diasporas.
4481 		 */
4482 		for_each_pool_worker(worker, pool)
4483 			worker->flags |= WORKER_UNBOUND;
4484 
4485 		pool->flags |= POOL_DISASSOCIATED;
4486 
4487 		spin_unlock_irq(&pool->lock);
4488 		mutex_unlock(&pool->attach_mutex);
4489 
4490 		/*
4491 		 * Call schedule() so that we cross rq->lock and thus can
4492 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4493 		 * This is necessary as scheduler callbacks may be invoked
4494 		 * from other cpus.
4495 		 */
4496 		schedule();
4497 
4498 		/*
4499 		 * Sched callbacks are disabled now.  Zap nr_running.
4500 		 * After this, nr_running stays zero and need_more_worker()
4501 		 * and keep_working() are always true as long as the
4502 		 * worklist is not empty.  This pool now behaves as an
4503 		 * unbound (in terms of concurrency management) pool which
4504 		 * are served by workers tied to the pool.
4505 		 */
4506 		atomic_set(&pool->nr_running, 0);
4507 
4508 		/*
4509 		 * With concurrency management just turned off, a busy
4510 		 * worker blocking could lead to lengthy stalls.  Kick off
4511 		 * unbound chain execution of currently pending work items.
4512 		 */
4513 		spin_lock_irq(&pool->lock);
4514 		wake_up_worker(pool);
4515 		spin_unlock_irq(&pool->lock);
4516 	}
4517 }
4518 
4519 /**
4520  * rebind_workers - rebind all workers of a pool to the associated CPU
4521  * @pool: pool of interest
4522  *
4523  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4524  */
4525 static void rebind_workers(struct worker_pool *pool)
4526 {
4527 	struct worker *worker;
4528 
4529 	lockdep_assert_held(&pool->attach_mutex);
4530 
4531 	/*
4532 	 * Restore CPU affinity of all workers.  As all idle workers should
4533 	 * be on the run-queue of the associated CPU before any local
4534 	 * wake-ups for concurrency management happen, restore CPU affinity
4535 	 * of all workers first and then clear UNBOUND.  As we're called
4536 	 * from CPU_ONLINE, the following shouldn't fail.
4537 	 */
4538 	for_each_pool_worker(worker, pool)
4539 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4540 						  pool->attrs->cpumask) < 0);
4541 
4542 	spin_lock_irq(&pool->lock);
4543 
4544 	/*
4545 	 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
4546 	 * w/o preceding DOWN_PREPARE.  Work around it.  CPU hotplug is
4547 	 * being reworked and this can go away in time.
4548 	 */
4549 	if (!(pool->flags & POOL_DISASSOCIATED)) {
4550 		spin_unlock_irq(&pool->lock);
4551 		return;
4552 	}
4553 
4554 	pool->flags &= ~POOL_DISASSOCIATED;
4555 
4556 	for_each_pool_worker(worker, pool) {
4557 		unsigned int worker_flags = worker->flags;
4558 
4559 		/*
4560 		 * A bound idle worker should actually be on the runqueue
4561 		 * of the associated CPU for local wake-ups targeting it to
4562 		 * work.  Kick all idle workers so that they migrate to the
4563 		 * associated CPU.  Doing this in the same loop as
4564 		 * replacing UNBOUND with REBOUND is safe as no worker will
4565 		 * be bound before @pool->lock is released.
4566 		 */
4567 		if (worker_flags & WORKER_IDLE)
4568 			wake_up_process(worker->task);
4569 
4570 		/*
4571 		 * We want to clear UNBOUND but can't directly call
4572 		 * worker_clr_flags() or adjust nr_running.  Atomically
4573 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4574 		 * @worker will clear REBOUND using worker_clr_flags() when
4575 		 * it initiates the next execution cycle thus restoring
4576 		 * concurrency management.  Note that when or whether
4577 		 * @worker clears REBOUND doesn't affect correctness.
4578 		 *
4579 		 * ACCESS_ONCE() is necessary because @worker->flags may be
4580 		 * tested without holding any lock in
4581 		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4582 		 * fail incorrectly leading to premature concurrency
4583 		 * management operations.
4584 		 */
4585 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4586 		worker_flags |= WORKER_REBOUND;
4587 		worker_flags &= ~WORKER_UNBOUND;
4588 		ACCESS_ONCE(worker->flags) = worker_flags;
4589 	}
4590 
4591 	spin_unlock_irq(&pool->lock);
4592 }
4593 
4594 /**
4595  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4596  * @pool: unbound pool of interest
4597  * @cpu: the CPU which is coming up
4598  *
4599  * An unbound pool may end up with a cpumask which doesn't have any online
4600  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4601  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4602  * online CPU before, cpus_allowed of all its workers should be restored.
4603  */
4604 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4605 {
4606 	static cpumask_t cpumask;
4607 	struct worker *worker;
4608 
4609 	lockdep_assert_held(&pool->attach_mutex);
4610 
4611 	/* is @cpu allowed for @pool? */
4612 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4613 		return;
4614 
4615 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4616 
4617 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4618 	for_each_pool_worker(worker, pool)
4619 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4620 }
4621 
4622 int workqueue_prepare_cpu(unsigned int cpu)
4623 {
4624 	struct worker_pool *pool;
4625 
4626 	for_each_cpu_worker_pool(pool, cpu) {
4627 		if (pool->nr_workers)
4628 			continue;
4629 		if (!create_worker(pool))
4630 			return -ENOMEM;
4631 	}
4632 	return 0;
4633 }
4634 
4635 int workqueue_online_cpu(unsigned int cpu)
4636 {
4637 	struct worker_pool *pool;
4638 	struct workqueue_struct *wq;
4639 	int pi;
4640 
4641 	mutex_lock(&wq_pool_mutex);
4642 
4643 	for_each_pool(pool, pi) {
4644 		mutex_lock(&pool->attach_mutex);
4645 
4646 		if (pool->cpu == cpu)
4647 			rebind_workers(pool);
4648 		else if (pool->cpu < 0)
4649 			restore_unbound_workers_cpumask(pool, cpu);
4650 
4651 		mutex_unlock(&pool->attach_mutex);
4652 	}
4653 
4654 	/* update NUMA affinity of unbound workqueues */
4655 	list_for_each_entry(wq, &workqueues, list)
4656 		wq_update_unbound_numa(wq, cpu, true);
4657 
4658 	mutex_unlock(&wq_pool_mutex);
4659 	return 0;
4660 }
4661 
4662 int workqueue_offline_cpu(unsigned int cpu)
4663 {
4664 	struct work_struct unbind_work;
4665 	struct workqueue_struct *wq;
4666 
4667 	/* unbinding per-cpu workers should happen on the local CPU */
4668 	INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4669 	queue_work_on(cpu, system_highpri_wq, &unbind_work);
4670 
4671 	/* update NUMA affinity of unbound workqueues */
4672 	mutex_lock(&wq_pool_mutex);
4673 	list_for_each_entry(wq, &workqueues, list)
4674 		wq_update_unbound_numa(wq, cpu, false);
4675 	mutex_unlock(&wq_pool_mutex);
4676 
4677 	/* wait for per-cpu unbinding to finish */
4678 	flush_work(&unbind_work);
4679 	destroy_work_on_stack(&unbind_work);
4680 	return 0;
4681 }
4682 
4683 #ifdef CONFIG_SMP
4684 
4685 struct work_for_cpu {
4686 	struct work_struct work;
4687 	long (*fn)(void *);
4688 	void *arg;
4689 	long ret;
4690 };
4691 
4692 static void work_for_cpu_fn(struct work_struct *work)
4693 {
4694 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4695 
4696 	wfc->ret = wfc->fn(wfc->arg);
4697 }
4698 
4699 /**
4700  * work_on_cpu - run a function in thread context on a particular cpu
4701  * @cpu: the cpu to run on
4702  * @fn: the function to run
4703  * @arg: the function arg
4704  *
4705  * It is up to the caller to ensure that the cpu doesn't go offline.
4706  * The caller must not hold any locks which would prevent @fn from completing.
4707  *
4708  * Return: The value @fn returns.
4709  */
4710 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4711 {
4712 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4713 
4714 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4715 	schedule_work_on(cpu, &wfc.work);
4716 	flush_work(&wfc.work);
4717 	destroy_work_on_stack(&wfc.work);
4718 	return wfc.ret;
4719 }
4720 EXPORT_SYMBOL_GPL(work_on_cpu);
4721 #endif /* CONFIG_SMP */
4722 
4723 #ifdef CONFIG_FREEZER
4724 
4725 /**
4726  * freeze_workqueues_begin - begin freezing workqueues
4727  *
4728  * Start freezing workqueues.  After this function returns, all freezable
4729  * workqueues will queue new works to their delayed_works list instead of
4730  * pool->worklist.
4731  *
4732  * CONTEXT:
4733  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4734  */
4735 void freeze_workqueues_begin(void)
4736 {
4737 	struct workqueue_struct *wq;
4738 	struct pool_workqueue *pwq;
4739 
4740 	mutex_lock(&wq_pool_mutex);
4741 
4742 	WARN_ON_ONCE(workqueue_freezing);
4743 	workqueue_freezing = true;
4744 
4745 	list_for_each_entry(wq, &workqueues, list) {
4746 		mutex_lock(&wq->mutex);
4747 		for_each_pwq(pwq, wq)
4748 			pwq_adjust_max_active(pwq);
4749 		mutex_unlock(&wq->mutex);
4750 	}
4751 
4752 	mutex_unlock(&wq_pool_mutex);
4753 }
4754 
4755 /**
4756  * freeze_workqueues_busy - are freezable workqueues still busy?
4757  *
4758  * Check whether freezing is complete.  This function must be called
4759  * between freeze_workqueues_begin() and thaw_workqueues().
4760  *
4761  * CONTEXT:
4762  * Grabs and releases wq_pool_mutex.
4763  *
4764  * Return:
4765  * %true if some freezable workqueues are still busy.  %false if freezing
4766  * is complete.
4767  */
4768 bool freeze_workqueues_busy(void)
4769 {
4770 	bool busy = false;
4771 	struct workqueue_struct *wq;
4772 	struct pool_workqueue *pwq;
4773 
4774 	mutex_lock(&wq_pool_mutex);
4775 
4776 	WARN_ON_ONCE(!workqueue_freezing);
4777 
4778 	list_for_each_entry(wq, &workqueues, list) {
4779 		if (!(wq->flags & WQ_FREEZABLE))
4780 			continue;
4781 		/*
4782 		 * nr_active is monotonically decreasing.  It's safe
4783 		 * to peek without lock.
4784 		 */
4785 		rcu_read_lock_sched();
4786 		for_each_pwq(pwq, wq) {
4787 			WARN_ON_ONCE(pwq->nr_active < 0);
4788 			if (pwq->nr_active) {
4789 				busy = true;
4790 				rcu_read_unlock_sched();
4791 				goto out_unlock;
4792 			}
4793 		}
4794 		rcu_read_unlock_sched();
4795 	}
4796 out_unlock:
4797 	mutex_unlock(&wq_pool_mutex);
4798 	return busy;
4799 }
4800 
4801 /**
4802  * thaw_workqueues - thaw workqueues
4803  *
4804  * Thaw workqueues.  Normal queueing is restored and all collected
4805  * frozen works are transferred to their respective pool worklists.
4806  *
4807  * CONTEXT:
4808  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4809  */
4810 void thaw_workqueues(void)
4811 {
4812 	struct workqueue_struct *wq;
4813 	struct pool_workqueue *pwq;
4814 
4815 	mutex_lock(&wq_pool_mutex);
4816 
4817 	if (!workqueue_freezing)
4818 		goto out_unlock;
4819 
4820 	workqueue_freezing = false;
4821 
4822 	/* restore max_active and repopulate worklist */
4823 	list_for_each_entry(wq, &workqueues, list) {
4824 		mutex_lock(&wq->mutex);
4825 		for_each_pwq(pwq, wq)
4826 			pwq_adjust_max_active(pwq);
4827 		mutex_unlock(&wq->mutex);
4828 	}
4829 
4830 out_unlock:
4831 	mutex_unlock(&wq_pool_mutex);
4832 }
4833 #endif /* CONFIG_FREEZER */
4834 
4835 static int workqueue_apply_unbound_cpumask(void)
4836 {
4837 	LIST_HEAD(ctxs);
4838 	int ret = 0;
4839 	struct workqueue_struct *wq;
4840 	struct apply_wqattrs_ctx *ctx, *n;
4841 
4842 	lockdep_assert_held(&wq_pool_mutex);
4843 
4844 	list_for_each_entry(wq, &workqueues, list) {
4845 		if (!(wq->flags & WQ_UNBOUND))
4846 			continue;
4847 		/* creating multiple pwqs breaks ordering guarantee */
4848 		if (wq->flags & __WQ_ORDERED)
4849 			continue;
4850 
4851 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4852 		if (!ctx) {
4853 			ret = -ENOMEM;
4854 			break;
4855 		}
4856 
4857 		list_add_tail(&ctx->list, &ctxs);
4858 	}
4859 
4860 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
4861 		if (!ret)
4862 			apply_wqattrs_commit(ctx);
4863 		apply_wqattrs_cleanup(ctx);
4864 	}
4865 
4866 	return ret;
4867 }
4868 
4869 /**
4870  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4871  *  @cpumask: the cpumask to set
4872  *
4873  *  The low-level workqueues cpumask is a global cpumask that limits
4874  *  the affinity of all unbound workqueues.  This function check the @cpumask
4875  *  and apply it to all unbound workqueues and updates all pwqs of them.
4876  *
4877  *  Retun:	0	- Success
4878  *  		-EINVAL	- Invalid @cpumask
4879  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
4880  */
4881 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4882 {
4883 	int ret = -EINVAL;
4884 	cpumask_var_t saved_cpumask;
4885 
4886 	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4887 		return -ENOMEM;
4888 
4889 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
4890 	if (!cpumask_empty(cpumask)) {
4891 		apply_wqattrs_lock();
4892 
4893 		/* save the old wq_unbound_cpumask. */
4894 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4895 
4896 		/* update wq_unbound_cpumask at first and apply it to wqs. */
4897 		cpumask_copy(wq_unbound_cpumask, cpumask);
4898 		ret = workqueue_apply_unbound_cpumask();
4899 
4900 		/* restore the wq_unbound_cpumask when failed. */
4901 		if (ret < 0)
4902 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4903 
4904 		apply_wqattrs_unlock();
4905 	}
4906 
4907 	free_cpumask_var(saved_cpumask);
4908 	return ret;
4909 }
4910 
4911 #ifdef CONFIG_SYSFS
4912 /*
4913  * Workqueues with WQ_SYSFS flag set is visible to userland via
4914  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
4915  * following attributes.
4916  *
4917  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
4918  *  max_active	RW int	: maximum number of in-flight work items
4919  *
4920  * Unbound workqueues have the following extra attributes.
4921  *
4922  *  id		RO int	: the associated pool ID
4923  *  nice	RW int	: nice value of the workers
4924  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
4925  */
4926 struct wq_device {
4927 	struct workqueue_struct		*wq;
4928 	struct device			dev;
4929 };
4930 
4931 static struct workqueue_struct *dev_to_wq(struct device *dev)
4932 {
4933 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4934 
4935 	return wq_dev->wq;
4936 }
4937 
4938 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4939 			    char *buf)
4940 {
4941 	struct workqueue_struct *wq = dev_to_wq(dev);
4942 
4943 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4944 }
4945 static DEVICE_ATTR_RO(per_cpu);
4946 
4947 static ssize_t max_active_show(struct device *dev,
4948 			       struct device_attribute *attr, char *buf)
4949 {
4950 	struct workqueue_struct *wq = dev_to_wq(dev);
4951 
4952 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4953 }
4954 
4955 static ssize_t max_active_store(struct device *dev,
4956 				struct device_attribute *attr, const char *buf,
4957 				size_t count)
4958 {
4959 	struct workqueue_struct *wq = dev_to_wq(dev);
4960 	int val;
4961 
4962 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
4963 		return -EINVAL;
4964 
4965 	workqueue_set_max_active(wq, val);
4966 	return count;
4967 }
4968 static DEVICE_ATTR_RW(max_active);
4969 
4970 static struct attribute *wq_sysfs_attrs[] = {
4971 	&dev_attr_per_cpu.attr,
4972 	&dev_attr_max_active.attr,
4973 	NULL,
4974 };
4975 ATTRIBUTE_GROUPS(wq_sysfs);
4976 
4977 static ssize_t wq_pool_ids_show(struct device *dev,
4978 				struct device_attribute *attr, char *buf)
4979 {
4980 	struct workqueue_struct *wq = dev_to_wq(dev);
4981 	const char *delim = "";
4982 	int node, written = 0;
4983 
4984 	rcu_read_lock_sched();
4985 	for_each_node(node) {
4986 		written += scnprintf(buf + written, PAGE_SIZE - written,
4987 				     "%s%d:%d", delim, node,
4988 				     unbound_pwq_by_node(wq, node)->pool->id);
4989 		delim = " ";
4990 	}
4991 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
4992 	rcu_read_unlock_sched();
4993 
4994 	return written;
4995 }
4996 
4997 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
4998 			    char *buf)
4999 {
5000 	struct workqueue_struct *wq = dev_to_wq(dev);
5001 	int written;
5002 
5003 	mutex_lock(&wq->mutex);
5004 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5005 	mutex_unlock(&wq->mutex);
5006 
5007 	return written;
5008 }
5009 
5010 /* prepare workqueue_attrs for sysfs store operations */
5011 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5012 {
5013 	struct workqueue_attrs *attrs;
5014 
5015 	lockdep_assert_held(&wq_pool_mutex);
5016 
5017 	attrs = alloc_workqueue_attrs(GFP_KERNEL);
5018 	if (!attrs)
5019 		return NULL;
5020 
5021 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5022 	return attrs;
5023 }
5024 
5025 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5026 			     const char *buf, size_t count)
5027 {
5028 	struct workqueue_struct *wq = dev_to_wq(dev);
5029 	struct workqueue_attrs *attrs;
5030 	int ret = -ENOMEM;
5031 
5032 	apply_wqattrs_lock();
5033 
5034 	attrs = wq_sysfs_prep_attrs(wq);
5035 	if (!attrs)
5036 		goto out_unlock;
5037 
5038 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5039 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5040 		ret = apply_workqueue_attrs_locked(wq, attrs);
5041 	else
5042 		ret = -EINVAL;
5043 
5044 out_unlock:
5045 	apply_wqattrs_unlock();
5046 	free_workqueue_attrs(attrs);
5047 	return ret ?: count;
5048 }
5049 
5050 static ssize_t wq_cpumask_show(struct device *dev,
5051 			       struct device_attribute *attr, char *buf)
5052 {
5053 	struct workqueue_struct *wq = dev_to_wq(dev);
5054 	int written;
5055 
5056 	mutex_lock(&wq->mutex);
5057 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5058 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5059 	mutex_unlock(&wq->mutex);
5060 	return written;
5061 }
5062 
5063 static ssize_t wq_cpumask_store(struct device *dev,
5064 				struct device_attribute *attr,
5065 				const char *buf, size_t count)
5066 {
5067 	struct workqueue_struct *wq = dev_to_wq(dev);
5068 	struct workqueue_attrs *attrs;
5069 	int ret = -ENOMEM;
5070 
5071 	apply_wqattrs_lock();
5072 
5073 	attrs = wq_sysfs_prep_attrs(wq);
5074 	if (!attrs)
5075 		goto out_unlock;
5076 
5077 	ret = cpumask_parse(buf, attrs->cpumask);
5078 	if (!ret)
5079 		ret = apply_workqueue_attrs_locked(wq, attrs);
5080 
5081 out_unlock:
5082 	apply_wqattrs_unlock();
5083 	free_workqueue_attrs(attrs);
5084 	return ret ?: count;
5085 }
5086 
5087 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5088 			    char *buf)
5089 {
5090 	struct workqueue_struct *wq = dev_to_wq(dev);
5091 	int written;
5092 
5093 	mutex_lock(&wq->mutex);
5094 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5095 			    !wq->unbound_attrs->no_numa);
5096 	mutex_unlock(&wq->mutex);
5097 
5098 	return written;
5099 }
5100 
5101 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5102 			     const char *buf, size_t count)
5103 {
5104 	struct workqueue_struct *wq = dev_to_wq(dev);
5105 	struct workqueue_attrs *attrs;
5106 	int v, ret = -ENOMEM;
5107 
5108 	apply_wqattrs_lock();
5109 
5110 	attrs = wq_sysfs_prep_attrs(wq);
5111 	if (!attrs)
5112 		goto out_unlock;
5113 
5114 	ret = -EINVAL;
5115 	if (sscanf(buf, "%d", &v) == 1) {
5116 		attrs->no_numa = !v;
5117 		ret = apply_workqueue_attrs_locked(wq, attrs);
5118 	}
5119 
5120 out_unlock:
5121 	apply_wqattrs_unlock();
5122 	free_workqueue_attrs(attrs);
5123 	return ret ?: count;
5124 }
5125 
5126 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5127 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5128 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5129 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5130 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5131 	__ATTR_NULL,
5132 };
5133 
5134 static struct bus_type wq_subsys = {
5135 	.name				= "workqueue",
5136 	.dev_groups			= wq_sysfs_groups,
5137 };
5138 
5139 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5140 		struct device_attribute *attr, char *buf)
5141 {
5142 	int written;
5143 
5144 	mutex_lock(&wq_pool_mutex);
5145 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5146 			    cpumask_pr_args(wq_unbound_cpumask));
5147 	mutex_unlock(&wq_pool_mutex);
5148 
5149 	return written;
5150 }
5151 
5152 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5153 		struct device_attribute *attr, const char *buf, size_t count)
5154 {
5155 	cpumask_var_t cpumask;
5156 	int ret;
5157 
5158 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5159 		return -ENOMEM;
5160 
5161 	ret = cpumask_parse(buf, cpumask);
5162 	if (!ret)
5163 		ret = workqueue_set_unbound_cpumask(cpumask);
5164 
5165 	free_cpumask_var(cpumask);
5166 	return ret ? ret : count;
5167 }
5168 
5169 static struct device_attribute wq_sysfs_cpumask_attr =
5170 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5171 	       wq_unbound_cpumask_store);
5172 
5173 static int __init wq_sysfs_init(void)
5174 {
5175 	int err;
5176 
5177 	err = subsys_virtual_register(&wq_subsys, NULL);
5178 	if (err)
5179 		return err;
5180 
5181 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5182 }
5183 core_initcall(wq_sysfs_init);
5184 
5185 static void wq_device_release(struct device *dev)
5186 {
5187 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5188 
5189 	kfree(wq_dev);
5190 }
5191 
5192 /**
5193  * workqueue_sysfs_register - make a workqueue visible in sysfs
5194  * @wq: the workqueue to register
5195  *
5196  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5197  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5198  * which is the preferred method.
5199  *
5200  * Workqueue user should use this function directly iff it wants to apply
5201  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5202  * apply_workqueue_attrs() may race against userland updating the
5203  * attributes.
5204  *
5205  * Return: 0 on success, -errno on failure.
5206  */
5207 int workqueue_sysfs_register(struct workqueue_struct *wq)
5208 {
5209 	struct wq_device *wq_dev;
5210 	int ret;
5211 
5212 	/*
5213 	 * Adjusting max_active or creating new pwqs by applying
5214 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5215 	 * workqueues.
5216 	 */
5217 	if (WARN_ON(wq->flags & __WQ_ORDERED))
5218 		return -EINVAL;
5219 
5220 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5221 	if (!wq_dev)
5222 		return -ENOMEM;
5223 
5224 	wq_dev->wq = wq;
5225 	wq_dev->dev.bus = &wq_subsys;
5226 	wq_dev->dev.release = wq_device_release;
5227 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5228 
5229 	/*
5230 	 * unbound_attrs are created separately.  Suppress uevent until
5231 	 * everything is ready.
5232 	 */
5233 	dev_set_uevent_suppress(&wq_dev->dev, true);
5234 
5235 	ret = device_register(&wq_dev->dev);
5236 	if (ret) {
5237 		kfree(wq_dev);
5238 		wq->wq_dev = NULL;
5239 		return ret;
5240 	}
5241 
5242 	if (wq->flags & WQ_UNBOUND) {
5243 		struct device_attribute *attr;
5244 
5245 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5246 			ret = device_create_file(&wq_dev->dev, attr);
5247 			if (ret) {
5248 				device_unregister(&wq_dev->dev);
5249 				wq->wq_dev = NULL;
5250 				return ret;
5251 			}
5252 		}
5253 	}
5254 
5255 	dev_set_uevent_suppress(&wq_dev->dev, false);
5256 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5257 	return 0;
5258 }
5259 
5260 /**
5261  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5262  * @wq: the workqueue to unregister
5263  *
5264  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5265  */
5266 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5267 {
5268 	struct wq_device *wq_dev = wq->wq_dev;
5269 
5270 	if (!wq->wq_dev)
5271 		return;
5272 
5273 	wq->wq_dev = NULL;
5274 	device_unregister(&wq_dev->dev);
5275 }
5276 #else	/* CONFIG_SYSFS */
5277 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5278 #endif	/* CONFIG_SYSFS */
5279 
5280 /*
5281  * Workqueue watchdog.
5282  *
5283  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5284  * flush dependency, a concurrency managed work item which stays RUNNING
5285  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5286  * usual warning mechanisms don't trigger and internal workqueue state is
5287  * largely opaque.
5288  *
5289  * Workqueue watchdog monitors all worker pools periodically and dumps
5290  * state if some pools failed to make forward progress for a while where
5291  * forward progress is defined as the first item on ->worklist changing.
5292  *
5293  * This mechanism is controlled through the kernel parameter
5294  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5295  * corresponding sysfs parameter file.
5296  */
5297 #ifdef CONFIG_WQ_WATCHDOG
5298 
5299 static void wq_watchdog_timer_fn(unsigned long data);
5300 
5301 static unsigned long wq_watchdog_thresh = 30;
5302 static struct timer_list wq_watchdog_timer =
5303 	TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5304 
5305 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5306 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5307 
5308 static void wq_watchdog_reset_touched(void)
5309 {
5310 	int cpu;
5311 
5312 	wq_watchdog_touched = jiffies;
5313 	for_each_possible_cpu(cpu)
5314 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5315 }
5316 
5317 static void wq_watchdog_timer_fn(unsigned long data)
5318 {
5319 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5320 	bool lockup_detected = false;
5321 	struct worker_pool *pool;
5322 	int pi;
5323 
5324 	if (!thresh)
5325 		return;
5326 
5327 	rcu_read_lock();
5328 
5329 	for_each_pool(pool, pi) {
5330 		unsigned long pool_ts, touched, ts;
5331 
5332 		if (list_empty(&pool->worklist))
5333 			continue;
5334 
5335 		/* get the latest of pool and touched timestamps */
5336 		pool_ts = READ_ONCE(pool->watchdog_ts);
5337 		touched = READ_ONCE(wq_watchdog_touched);
5338 
5339 		if (time_after(pool_ts, touched))
5340 			ts = pool_ts;
5341 		else
5342 			ts = touched;
5343 
5344 		if (pool->cpu >= 0) {
5345 			unsigned long cpu_touched =
5346 				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5347 						  pool->cpu));
5348 			if (time_after(cpu_touched, ts))
5349 				ts = cpu_touched;
5350 		}
5351 
5352 		/* did we stall? */
5353 		if (time_after(jiffies, ts + thresh)) {
5354 			lockup_detected = true;
5355 			pr_emerg("BUG: workqueue lockup - pool");
5356 			pr_cont_pool_info(pool);
5357 			pr_cont(" stuck for %us!\n",
5358 				jiffies_to_msecs(jiffies - pool_ts) / 1000);
5359 		}
5360 	}
5361 
5362 	rcu_read_unlock();
5363 
5364 	if (lockup_detected)
5365 		show_workqueue_state();
5366 
5367 	wq_watchdog_reset_touched();
5368 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5369 }
5370 
5371 void wq_watchdog_touch(int cpu)
5372 {
5373 	if (cpu >= 0)
5374 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5375 	else
5376 		wq_watchdog_touched = jiffies;
5377 }
5378 
5379 static void wq_watchdog_set_thresh(unsigned long thresh)
5380 {
5381 	wq_watchdog_thresh = 0;
5382 	del_timer_sync(&wq_watchdog_timer);
5383 
5384 	if (thresh) {
5385 		wq_watchdog_thresh = thresh;
5386 		wq_watchdog_reset_touched();
5387 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5388 	}
5389 }
5390 
5391 static int wq_watchdog_param_set_thresh(const char *val,
5392 					const struct kernel_param *kp)
5393 {
5394 	unsigned long thresh;
5395 	int ret;
5396 
5397 	ret = kstrtoul(val, 0, &thresh);
5398 	if (ret)
5399 		return ret;
5400 
5401 	if (system_wq)
5402 		wq_watchdog_set_thresh(thresh);
5403 	else
5404 		wq_watchdog_thresh = thresh;
5405 
5406 	return 0;
5407 }
5408 
5409 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5410 	.set	= wq_watchdog_param_set_thresh,
5411 	.get	= param_get_ulong,
5412 };
5413 
5414 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5415 		0644);
5416 
5417 static void wq_watchdog_init(void)
5418 {
5419 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5420 }
5421 
5422 #else	/* CONFIG_WQ_WATCHDOG */
5423 
5424 static inline void wq_watchdog_init(void) { }
5425 
5426 #endif	/* CONFIG_WQ_WATCHDOG */
5427 
5428 static void __init wq_numa_init(void)
5429 {
5430 	cpumask_var_t *tbl;
5431 	int node, cpu;
5432 
5433 	if (num_possible_nodes() <= 1)
5434 		return;
5435 
5436 	if (wq_disable_numa) {
5437 		pr_info("workqueue: NUMA affinity support disabled\n");
5438 		return;
5439 	}
5440 
5441 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5442 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5443 
5444 	/*
5445 	 * We want masks of possible CPUs of each node which isn't readily
5446 	 * available.  Build one from cpu_to_node() which should have been
5447 	 * fully initialized by now.
5448 	 */
5449 	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5450 	BUG_ON(!tbl);
5451 
5452 	for_each_node(node)
5453 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5454 				node_online(node) ? node : NUMA_NO_NODE));
5455 
5456 	for_each_possible_cpu(cpu) {
5457 		node = cpu_to_node(cpu);
5458 		if (WARN_ON(node == NUMA_NO_NODE)) {
5459 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5460 			/* happens iff arch is bonkers, let's just proceed */
5461 			return;
5462 		}
5463 		cpumask_set_cpu(cpu, tbl[node]);
5464 	}
5465 
5466 	wq_numa_possible_cpumask = tbl;
5467 	wq_numa_enabled = true;
5468 }
5469 
5470 static int __init init_workqueues(void)
5471 {
5472 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5473 	int i, cpu;
5474 
5475 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5476 
5477 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5478 	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5479 
5480 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5481 
5482 	wq_numa_init();
5483 
5484 	/* initialize CPU pools */
5485 	for_each_possible_cpu(cpu) {
5486 		struct worker_pool *pool;
5487 
5488 		i = 0;
5489 		for_each_cpu_worker_pool(pool, cpu) {
5490 			BUG_ON(init_worker_pool(pool));
5491 			pool->cpu = cpu;
5492 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5493 			pool->attrs->nice = std_nice[i++];
5494 			pool->node = cpu_to_node(cpu);
5495 
5496 			/* alloc pool ID */
5497 			mutex_lock(&wq_pool_mutex);
5498 			BUG_ON(worker_pool_assign_id(pool));
5499 			mutex_unlock(&wq_pool_mutex);
5500 		}
5501 	}
5502 
5503 	/* create the initial worker */
5504 	for_each_online_cpu(cpu) {
5505 		struct worker_pool *pool;
5506 
5507 		for_each_cpu_worker_pool(pool, cpu) {
5508 			pool->flags &= ~POOL_DISASSOCIATED;
5509 			BUG_ON(!create_worker(pool));
5510 		}
5511 	}
5512 
5513 	/* create default unbound and ordered wq attrs */
5514 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5515 		struct workqueue_attrs *attrs;
5516 
5517 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5518 		attrs->nice = std_nice[i];
5519 		unbound_std_wq_attrs[i] = attrs;
5520 
5521 		/*
5522 		 * An ordered wq should have only one pwq as ordering is
5523 		 * guaranteed by max_active which is enforced by pwqs.
5524 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5525 		 */
5526 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5527 		attrs->nice = std_nice[i];
5528 		attrs->no_numa = true;
5529 		ordered_wq_attrs[i] = attrs;
5530 	}
5531 
5532 	system_wq = alloc_workqueue("events", 0, 0);
5533 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5534 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5535 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5536 					    WQ_UNBOUND_MAX_ACTIVE);
5537 	system_freezable_wq = alloc_workqueue("events_freezable",
5538 					      WQ_FREEZABLE, 0);
5539 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5540 					      WQ_POWER_EFFICIENT, 0);
5541 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5542 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5543 					      0);
5544 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5545 	       !system_unbound_wq || !system_freezable_wq ||
5546 	       !system_power_efficient_wq ||
5547 	       !system_freezable_power_efficient_wq);
5548 
5549 	wq_watchdog_init();
5550 
5551 	return 0;
5552 }
5553 early_initcall(init_workqueues);
5554