xref: /openbmc/linux/kernel/workqueue.c (revision f26e4331)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53 
54 #include "workqueue_internal.h"
55 
56 enum {
57 	/*
58 	 * worker_pool flags
59 	 *
60 	 * A bound pool is either associated or disassociated with its CPU.
61 	 * While associated (!DISASSOCIATED), all workers are bound to the
62 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
63 	 * is in effect.
64 	 *
65 	 * While DISASSOCIATED, the cpu may be offline and all workers have
66 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
67 	 * be executing on any CPU.  The pool behaves as an unbound one.
68 	 *
69 	 * Note that DISASSOCIATED should be flipped only while holding
70 	 * wq_pool_attach_mutex to avoid changing binding state while
71 	 * worker_attach_to_pool() is in progress.
72 	 */
73 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
74 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
75 
76 	/* worker flags */
77 	WORKER_DIE		= 1 << 1,	/* die die die */
78 	WORKER_IDLE		= 1 << 2,	/* is idle */
79 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
80 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
81 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
82 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
83 
84 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
85 				  WORKER_UNBOUND | WORKER_REBOUND,
86 
87 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
88 
89 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
90 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
91 
92 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
93 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
94 
95 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
96 						/* call for help after 10ms
97 						   (min two ticks) */
98 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
99 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
100 
101 	/*
102 	 * Rescue workers are used only on emergencies and shared by
103 	 * all cpus.  Give MIN_NICE.
104 	 */
105 	RESCUER_NICE_LEVEL	= MIN_NICE,
106 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
107 
108 	WQ_NAME_LEN		= 24,
109 };
110 
111 /*
112  * Structure fields follow one of the following exclusion rules.
113  *
114  * I: Modifiable by initialization/destruction paths and read-only for
115  *    everyone else.
116  *
117  * P: Preemption protected.  Disabling preemption is enough and should
118  *    only be modified and accessed from the local cpu.
119  *
120  * L: pool->lock protected.  Access with pool->lock held.
121  *
122  * X: During normal operation, modification requires pool->lock and should
123  *    be done only from local cpu.  Either disabling preemption on local
124  *    cpu or grabbing pool->lock is enough for read access.  If
125  *    POOL_DISASSOCIATED is set, it's identical to L.
126  *
127  * A: wq_pool_attach_mutex protected.
128  *
129  * PL: wq_pool_mutex protected.
130  *
131  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
132  *
133  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
134  *
135  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
136  *      RCU for reads.
137  *
138  * WQ: wq->mutex protected.
139  *
140  * WR: wq->mutex protected for writes.  RCU protected for reads.
141  *
142  * MD: wq_mayday_lock protected.
143  */
144 
145 /* struct worker is defined in workqueue_internal.h */
146 
147 struct worker_pool {
148 	spinlock_t		lock;		/* the pool lock */
149 	int			cpu;		/* I: the associated cpu */
150 	int			node;		/* I: the associated node ID */
151 	int			id;		/* I: pool ID */
152 	unsigned int		flags;		/* X: flags */
153 
154 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
155 
156 	struct list_head	worklist;	/* L: list of pending works */
157 
158 	int			nr_workers;	/* L: total number of workers */
159 	int			nr_idle;	/* L: currently idle workers */
160 
161 	struct list_head	idle_list;	/* X: list of idle workers */
162 	struct timer_list	idle_timer;	/* L: worker idle timeout */
163 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
164 
165 	/* a workers is either on busy_hash or idle_list, or the manager */
166 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
167 						/* L: hash of busy workers */
168 
169 	struct worker		*manager;	/* L: purely informational */
170 	struct list_head	workers;	/* A: attached workers */
171 	struct completion	*detach_completion; /* all workers detached */
172 
173 	struct ida		worker_ida;	/* worker IDs for task name */
174 
175 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
176 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
177 	int			refcnt;		/* PL: refcnt for unbound pools */
178 
179 	/*
180 	 * The current concurrency level.  As it's likely to be accessed
181 	 * from other CPUs during try_to_wake_up(), put it in a separate
182 	 * cacheline.
183 	 */
184 	atomic_t		nr_running ____cacheline_aligned_in_smp;
185 
186 	/*
187 	 * Destruction of pool is RCU protected to allow dereferences
188 	 * from get_work_pool().
189 	 */
190 	struct rcu_head		rcu;
191 } ____cacheline_aligned_in_smp;
192 
193 /*
194  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
195  * of work_struct->data are used for flags and the remaining high bits
196  * point to the pwq; thus, pwqs need to be aligned at two's power of the
197  * number of flag bits.
198  */
199 struct pool_workqueue {
200 	struct worker_pool	*pool;		/* I: the associated pool */
201 	struct workqueue_struct *wq;		/* I: the owning workqueue */
202 	int			work_color;	/* L: current color */
203 	int			flush_color;	/* L: flushing color */
204 	int			refcnt;		/* L: reference count */
205 	int			nr_in_flight[WORK_NR_COLORS];
206 						/* L: nr of in_flight works */
207 	int			nr_active;	/* L: nr of active works */
208 	int			max_active;	/* L: max active works */
209 	struct list_head	delayed_works;	/* L: delayed works */
210 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
211 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
212 
213 	/*
214 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
215 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
216 	 * itself is also RCU protected so that the first pwq can be
217 	 * determined without grabbing wq->mutex.
218 	 */
219 	struct work_struct	unbound_release_work;
220 	struct rcu_head		rcu;
221 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
222 
223 /*
224  * Structure used to wait for workqueue flush.
225  */
226 struct wq_flusher {
227 	struct list_head	list;		/* WQ: list of flushers */
228 	int			flush_color;	/* WQ: flush color waiting for */
229 	struct completion	done;		/* flush completion */
230 };
231 
232 struct wq_device;
233 
234 /*
235  * The externally visible workqueue.  It relays the issued work items to
236  * the appropriate worker_pool through its pool_workqueues.
237  */
238 struct workqueue_struct {
239 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
240 	struct list_head	list;		/* PR: list of all workqueues */
241 
242 	struct mutex		mutex;		/* protects this wq */
243 	int			work_color;	/* WQ: current work color */
244 	int			flush_color;	/* WQ: current flush color */
245 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
246 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
247 	struct list_head	flusher_queue;	/* WQ: flush waiters */
248 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
249 
250 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
251 	struct worker		*rescuer;	/* MD: rescue worker */
252 
253 	int			nr_drainers;	/* WQ: drain in progress */
254 	int			saved_max_active; /* WQ: saved pwq max_active */
255 
256 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
257 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
258 
259 #ifdef CONFIG_SYSFS
260 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
261 #endif
262 #ifdef CONFIG_LOCKDEP
263 	char			*lock_name;
264 	struct lock_class_key	key;
265 	struct lockdep_map	lockdep_map;
266 #endif
267 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
268 
269 	/*
270 	 * Destruction of workqueue_struct is RCU protected to allow walking
271 	 * the workqueues list without grabbing wq_pool_mutex.
272 	 * This is used to dump all workqueues from sysrq.
273 	 */
274 	struct rcu_head		rcu;
275 
276 	/* hot fields used during command issue, aligned to cacheline */
277 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
278 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
279 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
280 };
281 
282 static struct kmem_cache *pwq_cache;
283 
284 static cpumask_var_t *wq_numa_possible_cpumask;
285 					/* possible CPUs of each node */
286 
287 static bool wq_disable_numa;
288 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
289 
290 /* see the comment above the definition of WQ_POWER_EFFICIENT */
291 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
292 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
293 
294 static bool wq_online;			/* can kworkers be created yet? */
295 
296 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
297 
298 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
299 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
300 
301 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
302 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
303 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
304 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
305 
306 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
307 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
308 
309 /* PL: allowable cpus for unbound wqs and work items */
310 static cpumask_var_t wq_unbound_cpumask;
311 
312 /* CPU where unbound work was last round robin scheduled from this CPU */
313 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
314 
315 /*
316  * Local execution of unbound work items is no longer guaranteed.  The
317  * following always forces round-robin CPU selection on unbound work items
318  * to uncover usages which depend on it.
319  */
320 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
321 static bool wq_debug_force_rr_cpu = true;
322 #else
323 static bool wq_debug_force_rr_cpu = false;
324 #endif
325 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
326 
327 /* the per-cpu worker pools */
328 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
329 
330 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
331 
332 /* PL: hash of all unbound pools keyed by pool->attrs */
333 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
334 
335 /* I: attributes used when instantiating standard unbound pools on demand */
336 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
337 
338 /* I: attributes used when instantiating ordered pools on demand */
339 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
340 
341 struct workqueue_struct *system_wq __read_mostly;
342 EXPORT_SYMBOL(system_wq);
343 struct workqueue_struct *system_highpri_wq __read_mostly;
344 EXPORT_SYMBOL_GPL(system_highpri_wq);
345 struct workqueue_struct *system_long_wq __read_mostly;
346 EXPORT_SYMBOL_GPL(system_long_wq);
347 struct workqueue_struct *system_unbound_wq __read_mostly;
348 EXPORT_SYMBOL_GPL(system_unbound_wq);
349 struct workqueue_struct *system_freezable_wq __read_mostly;
350 EXPORT_SYMBOL_GPL(system_freezable_wq);
351 struct workqueue_struct *system_power_efficient_wq __read_mostly;
352 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
353 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
354 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
355 
356 static int worker_thread(void *__worker);
357 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
358 static void show_pwq(struct pool_workqueue *pwq);
359 
360 #define CREATE_TRACE_POINTS
361 #include <trace/events/workqueue.h>
362 
363 #define assert_rcu_or_pool_mutex()					\
364 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
365 			 !lockdep_is_held(&wq_pool_mutex),		\
366 			 "RCU or wq_pool_mutex should be held")
367 
368 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
369 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
370 			 !lockdep_is_held(&wq->mutex) &&		\
371 			 !lockdep_is_held(&wq_pool_mutex),		\
372 			 "RCU, wq->mutex or wq_pool_mutex should be held")
373 
374 #define for_each_cpu_worker_pool(pool, cpu)				\
375 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
376 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
377 	     (pool)++)
378 
379 /**
380  * for_each_pool - iterate through all worker_pools in the system
381  * @pool: iteration cursor
382  * @pi: integer used for iteration
383  *
384  * This must be called either with wq_pool_mutex held or RCU read
385  * locked.  If the pool needs to be used beyond the locking in effect, the
386  * caller is responsible for guaranteeing that the pool stays online.
387  *
388  * The if/else clause exists only for the lockdep assertion and can be
389  * ignored.
390  */
391 #define for_each_pool(pool, pi)						\
392 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
393 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
394 		else
395 
396 /**
397  * for_each_pool_worker - iterate through all workers of a worker_pool
398  * @worker: iteration cursor
399  * @pool: worker_pool to iterate workers of
400  *
401  * This must be called with wq_pool_attach_mutex.
402  *
403  * The if/else clause exists only for the lockdep assertion and can be
404  * ignored.
405  */
406 #define for_each_pool_worker(worker, pool)				\
407 	list_for_each_entry((worker), &(pool)->workers, node)		\
408 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
409 		else
410 
411 /**
412  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
413  * @pwq: iteration cursor
414  * @wq: the target workqueue
415  *
416  * This must be called either with wq->mutex held or RCU read locked.
417  * If the pwq needs to be used beyond the locking in effect, the caller is
418  * responsible for guaranteeing that the pwq stays online.
419  *
420  * The if/else clause exists only for the lockdep assertion and can be
421  * ignored.
422  */
423 #define for_each_pwq(pwq, wq)						\
424 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
425 				 lockdep_is_held(&(wq->mutex)))
426 
427 #ifdef CONFIG_DEBUG_OBJECTS_WORK
428 
429 static struct debug_obj_descr work_debug_descr;
430 
431 static void *work_debug_hint(void *addr)
432 {
433 	return ((struct work_struct *) addr)->func;
434 }
435 
436 static bool work_is_static_object(void *addr)
437 {
438 	struct work_struct *work = addr;
439 
440 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
441 }
442 
443 /*
444  * fixup_init is called when:
445  * - an active object is initialized
446  */
447 static bool work_fixup_init(void *addr, enum debug_obj_state state)
448 {
449 	struct work_struct *work = addr;
450 
451 	switch (state) {
452 	case ODEBUG_STATE_ACTIVE:
453 		cancel_work_sync(work);
454 		debug_object_init(work, &work_debug_descr);
455 		return true;
456 	default:
457 		return false;
458 	}
459 }
460 
461 /*
462  * fixup_free is called when:
463  * - an active object is freed
464  */
465 static bool work_fixup_free(void *addr, enum debug_obj_state state)
466 {
467 	struct work_struct *work = addr;
468 
469 	switch (state) {
470 	case ODEBUG_STATE_ACTIVE:
471 		cancel_work_sync(work);
472 		debug_object_free(work, &work_debug_descr);
473 		return true;
474 	default:
475 		return false;
476 	}
477 }
478 
479 static struct debug_obj_descr work_debug_descr = {
480 	.name		= "work_struct",
481 	.debug_hint	= work_debug_hint,
482 	.is_static_object = work_is_static_object,
483 	.fixup_init	= work_fixup_init,
484 	.fixup_free	= work_fixup_free,
485 };
486 
487 static inline void debug_work_activate(struct work_struct *work)
488 {
489 	debug_object_activate(work, &work_debug_descr);
490 }
491 
492 static inline void debug_work_deactivate(struct work_struct *work)
493 {
494 	debug_object_deactivate(work, &work_debug_descr);
495 }
496 
497 void __init_work(struct work_struct *work, int onstack)
498 {
499 	if (onstack)
500 		debug_object_init_on_stack(work, &work_debug_descr);
501 	else
502 		debug_object_init(work, &work_debug_descr);
503 }
504 EXPORT_SYMBOL_GPL(__init_work);
505 
506 void destroy_work_on_stack(struct work_struct *work)
507 {
508 	debug_object_free(work, &work_debug_descr);
509 }
510 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
511 
512 void destroy_delayed_work_on_stack(struct delayed_work *work)
513 {
514 	destroy_timer_on_stack(&work->timer);
515 	debug_object_free(&work->work, &work_debug_descr);
516 }
517 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
518 
519 #else
520 static inline void debug_work_activate(struct work_struct *work) { }
521 static inline void debug_work_deactivate(struct work_struct *work) { }
522 #endif
523 
524 /**
525  * worker_pool_assign_id - allocate ID and assing it to @pool
526  * @pool: the pool pointer of interest
527  *
528  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
529  * successfully, -errno on failure.
530  */
531 static int worker_pool_assign_id(struct worker_pool *pool)
532 {
533 	int ret;
534 
535 	lockdep_assert_held(&wq_pool_mutex);
536 
537 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
538 			GFP_KERNEL);
539 	if (ret >= 0) {
540 		pool->id = ret;
541 		return 0;
542 	}
543 	return ret;
544 }
545 
546 /**
547  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
548  * @wq: the target workqueue
549  * @node: the node ID
550  *
551  * This must be called with any of wq_pool_mutex, wq->mutex or RCU
552  * read locked.
553  * If the pwq needs to be used beyond the locking in effect, the caller is
554  * responsible for guaranteeing that the pwq stays online.
555  *
556  * Return: The unbound pool_workqueue for @node.
557  */
558 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
559 						  int node)
560 {
561 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
562 
563 	/*
564 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
565 	 * delayed item is pending.  The plan is to keep CPU -> NODE
566 	 * mapping valid and stable across CPU on/offlines.  Once that
567 	 * happens, this workaround can be removed.
568 	 */
569 	if (unlikely(node == NUMA_NO_NODE))
570 		return wq->dfl_pwq;
571 
572 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
573 }
574 
575 static unsigned int work_color_to_flags(int color)
576 {
577 	return color << WORK_STRUCT_COLOR_SHIFT;
578 }
579 
580 static int get_work_color(struct work_struct *work)
581 {
582 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
583 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
584 }
585 
586 static int work_next_color(int color)
587 {
588 	return (color + 1) % WORK_NR_COLORS;
589 }
590 
591 /*
592  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
593  * contain the pointer to the queued pwq.  Once execution starts, the flag
594  * is cleared and the high bits contain OFFQ flags and pool ID.
595  *
596  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
597  * and clear_work_data() can be used to set the pwq, pool or clear
598  * work->data.  These functions should only be called while the work is
599  * owned - ie. while the PENDING bit is set.
600  *
601  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
602  * corresponding to a work.  Pool is available once the work has been
603  * queued anywhere after initialization until it is sync canceled.  pwq is
604  * available only while the work item is queued.
605  *
606  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
607  * canceled.  While being canceled, a work item may have its PENDING set
608  * but stay off timer and worklist for arbitrarily long and nobody should
609  * try to steal the PENDING bit.
610  */
611 static inline void set_work_data(struct work_struct *work, unsigned long data,
612 				 unsigned long flags)
613 {
614 	WARN_ON_ONCE(!work_pending(work));
615 	atomic_long_set(&work->data, data | flags | work_static(work));
616 }
617 
618 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
619 			 unsigned long extra_flags)
620 {
621 	set_work_data(work, (unsigned long)pwq,
622 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
623 }
624 
625 static void set_work_pool_and_keep_pending(struct work_struct *work,
626 					   int pool_id)
627 {
628 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
629 		      WORK_STRUCT_PENDING);
630 }
631 
632 static void set_work_pool_and_clear_pending(struct work_struct *work,
633 					    int pool_id)
634 {
635 	/*
636 	 * The following wmb is paired with the implied mb in
637 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
638 	 * here are visible to and precede any updates by the next PENDING
639 	 * owner.
640 	 */
641 	smp_wmb();
642 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
643 	/*
644 	 * The following mb guarantees that previous clear of a PENDING bit
645 	 * will not be reordered with any speculative LOADS or STORES from
646 	 * work->current_func, which is executed afterwards.  This possible
647 	 * reordering can lead to a missed execution on attempt to queue
648 	 * the same @work.  E.g. consider this case:
649 	 *
650 	 *   CPU#0                         CPU#1
651 	 *   ----------------------------  --------------------------------
652 	 *
653 	 * 1  STORE event_indicated
654 	 * 2  queue_work_on() {
655 	 * 3    test_and_set_bit(PENDING)
656 	 * 4 }                             set_..._and_clear_pending() {
657 	 * 5                                 set_work_data() # clear bit
658 	 * 6                                 smp_mb()
659 	 * 7                               work->current_func() {
660 	 * 8				      LOAD event_indicated
661 	 *				   }
662 	 *
663 	 * Without an explicit full barrier speculative LOAD on line 8 can
664 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
665 	 * CPU#0 observes the PENDING bit is still set and new execution of
666 	 * a @work is not queued in a hope, that CPU#1 will eventually
667 	 * finish the queued @work.  Meanwhile CPU#1 does not see
668 	 * event_indicated is set, because speculative LOAD was executed
669 	 * before actual STORE.
670 	 */
671 	smp_mb();
672 }
673 
674 static void clear_work_data(struct work_struct *work)
675 {
676 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
677 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
678 }
679 
680 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
681 {
682 	unsigned long data = atomic_long_read(&work->data);
683 
684 	if (data & WORK_STRUCT_PWQ)
685 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
686 	else
687 		return NULL;
688 }
689 
690 /**
691  * get_work_pool - return the worker_pool a given work was associated with
692  * @work: the work item of interest
693  *
694  * Pools are created and destroyed under wq_pool_mutex, and allows read
695  * access under RCU read lock.  As such, this function should be
696  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
697  *
698  * All fields of the returned pool are accessible as long as the above
699  * mentioned locking is in effect.  If the returned pool needs to be used
700  * beyond the critical section, the caller is responsible for ensuring the
701  * returned pool is and stays online.
702  *
703  * Return: The worker_pool @work was last associated with.  %NULL if none.
704  */
705 static struct worker_pool *get_work_pool(struct work_struct *work)
706 {
707 	unsigned long data = atomic_long_read(&work->data);
708 	int pool_id;
709 
710 	assert_rcu_or_pool_mutex();
711 
712 	if (data & WORK_STRUCT_PWQ)
713 		return ((struct pool_workqueue *)
714 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
715 
716 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
717 	if (pool_id == WORK_OFFQ_POOL_NONE)
718 		return NULL;
719 
720 	return idr_find(&worker_pool_idr, pool_id);
721 }
722 
723 /**
724  * get_work_pool_id - return the worker pool ID a given work is associated with
725  * @work: the work item of interest
726  *
727  * Return: The worker_pool ID @work was last associated with.
728  * %WORK_OFFQ_POOL_NONE if none.
729  */
730 static int get_work_pool_id(struct work_struct *work)
731 {
732 	unsigned long data = atomic_long_read(&work->data);
733 
734 	if (data & WORK_STRUCT_PWQ)
735 		return ((struct pool_workqueue *)
736 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
737 
738 	return data >> WORK_OFFQ_POOL_SHIFT;
739 }
740 
741 static void mark_work_canceling(struct work_struct *work)
742 {
743 	unsigned long pool_id = get_work_pool_id(work);
744 
745 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
746 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
747 }
748 
749 static bool work_is_canceling(struct work_struct *work)
750 {
751 	unsigned long data = atomic_long_read(&work->data);
752 
753 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
754 }
755 
756 /*
757  * Policy functions.  These define the policies on how the global worker
758  * pools are managed.  Unless noted otherwise, these functions assume that
759  * they're being called with pool->lock held.
760  */
761 
762 static bool __need_more_worker(struct worker_pool *pool)
763 {
764 	return !atomic_read(&pool->nr_running);
765 }
766 
767 /*
768  * Need to wake up a worker?  Called from anything but currently
769  * running workers.
770  *
771  * Note that, because unbound workers never contribute to nr_running, this
772  * function will always return %true for unbound pools as long as the
773  * worklist isn't empty.
774  */
775 static bool need_more_worker(struct worker_pool *pool)
776 {
777 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
778 }
779 
780 /* Can I start working?  Called from busy but !running workers. */
781 static bool may_start_working(struct worker_pool *pool)
782 {
783 	return pool->nr_idle;
784 }
785 
786 /* Do I need to keep working?  Called from currently running workers. */
787 static bool keep_working(struct worker_pool *pool)
788 {
789 	return !list_empty(&pool->worklist) &&
790 		atomic_read(&pool->nr_running) <= 1;
791 }
792 
793 /* Do we need a new worker?  Called from manager. */
794 static bool need_to_create_worker(struct worker_pool *pool)
795 {
796 	return need_more_worker(pool) && !may_start_working(pool);
797 }
798 
799 /* Do we have too many workers and should some go away? */
800 static bool too_many_workers(struct worker_pool *pool)
801 {
802 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
803 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
804 	int nr_busy = pool->nr_workers - nr_idle;
805 
806 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
807 }
808 
809 /*
810  * Wake up functions.
811  */
812 
813 /* Return the first idle worker.  Safe with preemption disabled */
814 static struct worker *first_idle_worker(struct worker_pool *pool)
815 {
816 	if (unlikely(list_empty(&pool->idle_list)))
817 		return NULL;
818 
819 	return list_first_entry(&pool->idle_list, struct worker, entry);
820 }
821 
822 /**
823  * wake_up_worker - wake up an idle worker
824  * @pool: worker pool to wake worker from
825  *
826  * Wake up the first idle worker of @pool.
827  *
828  * CONTEXT:
829  * spin_lock_irq(pool->lock).
830  */
831 static void wake_up_worker(struct worker_pool *pool)
832 {
833 	struct worker *worker = first_idle_worker(pool);
834 
835 	if (likely(worker))
836 		wake_up_process(worker->task);
837 }
838 
839 /**
840  * wq_worker_running - a worker is running again
841  * @task: task waking up
842  *
843  * This function is called when a worker returns from schedule()
844  */
845 void wq_worker_running(struct task_struct *task)
846 {
847 	struct worker *worker = kthread_data(task);
848 
849 	if (!worker->sleeping)
850 		return;
851 	if (!(worker->flags & WORKER_NOT_RUNNING))
852 		atomic_inc(&worker->pool->nr_running);
853 	worker->sleeping = 0;
854 }
855 
856 /**
857  * wq_worker_sleeping - a worker is going to sleep
858  * @task: task going to sleep
859  *
860  * This function is called from schedule() when a busy worker is
861  * going to sleep.
862  */
863 void wq_worker_sleeping(struct task_struct *task)
864 {
865 	struct worker *next, *worker = kthread_data(task);
866 	struct worker_pool *pool;
867 
868 	/*
869 	 * Rescuers, which may not have all the fields set up like normal
870 	 * workers, also reach here, let's not access anything before
871 	 * checking NOT_RUNNING.
872 	 */
873 	if (worker->flags & WORKER_NOT_RUNNING)
874 		return;
875 
876 	pool = worker->pool;
877 
878 	if (WARN_ON_ONCE(worker->sleeping))
879 		return;
880 
881 	worker->sleeping = 1;
882 	spin_lock_irq(&pool->lock);
883 
884 	/*
885 	 * The counterpart of the following dec_and_test, implied mb,
886 	 * worklist not empty test sequence is in insert_work().
887 	 * Please read comment there.
888 	 *
889 	 * NOT_RUNNING is clear.  This means that we're bound to and
890 	 * running on the local cpu w/ rq lock held and preemption
891 	 * disabled, which in turn means that none else could be
892 	 * manipulating idle_list, so dereferencing idle_list without pool
893 	 * lock is safe.
894 	 */
895 	if (atomic_dec_and_test(&pool->nr_running) &&
896 	    !list_empty(&pool->worklist)) {
897 		next = first_idle_worker(pool);
898 		if (next)
899 			wake_up_process(next->task);
900 	}
901 	spin_unlock_irq(&pool->lock);
902 }
903 
904 /**
905  * wq_worker_last_func - retrieve worker's last work function
906  * @task: Task to retrieve last work function of.
907  *
908  * Determine the last function a worker executed. This is called from
909  * the scheduler to get a worker's last known identity.
910  *
911  * CONTEXT:
912  * spin_lock_irq(rq->lock)
913  *
914  * This function is called during schedule() when a kworker is going
915  * to sleep. It's used by psi to identify aggregation workers during
916  * dequeuing, to allow periodic aggregation to shut-off when that
917  * worker is the last task in the system or cgroup to go to sleep.
918  *
919  * As this function doesn't involve any workqueue-related locking, it
920  * only returns stable values when called from inside the scheduler's
921  * queuing and dequeuing paths, when @task, which must be a kworker,
922  * is guaranteed to not be processing any works.
923  *
924  * Return:
925  * The last work function %current executed as a worker, NULL if it
926  * hasn't executed any work yet.
927  */
928 work_func_t wq_worker_last_func(struct task_struct *task)
929 {
930 	struct worker *worker = kthread_data(task);
931 
932 	return worker->last_func;
933 }
934 
935 /**
936  * worker_set_flags - set worker flags and adjust nr_running accordingly
937  * @worker: self
938  * @flags: flags to set
939  *
940  * Set @flags in @worker->flags and adjust nr_running accordingly.
941  *
942  * CONTEXT:
943  * spin_lock_irq(pool->lock)
944  */
945 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
946 {
947 	struct worker_pool *pool = worker->pool;
948 
949 	WARN_ON_ONCE(worker->task != current);
950 
951 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
952 	if ((flags & WORKER_NOT_RUNNING) &&
953 	    !(worker->flags & WORKER_NOT_RUNNING)) {
954 		atomic_dec(&pool->nr_running);
955 	}
956 
957 	worker->flags |= flags;
958 }
959 
960 /**
961  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
962  * @worker: self
963  * @flags: flags to clear
964  *
965  * Clear @flags in @worker->flags and adjust nr_running accordingly.
966  *
967  * CONTEXT:
968  * spin_lock_irq(pool->lock)
969  */
970 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
971 {
972 	struct worker_pool *pool = worker->pool;
973 	unsigned int oflags = worker->flags;
974 
975 	WARN_ON_ONCE(worker->task != current);
976 
977 	worker->flags &= ~flags;
978 
979 	/*
980 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
981 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
982 	 * of multiple flags, not a single flag.
983 	 */
984 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
985 		if (!(worker->flags & WORKER_NOT_RUNNING))
986 			atomic_inc(&pool->nr_running);
987 }
988 
989 /**
990  * find_worker_executing_work - find worker which is executing a work
991  * @pool: pool of interest
992  * @work: work to find worker for
993  *
994  * Find a worker which is executing @work on @pool by searching
995  * @pool->busy_hash which is keyed by the address of @work.  For a worker
996  * to match, its current execution should match the address of @work and
997  * its work function.  This is to avoid unwanted dependency between
998  * unrelated work executions through a work item being recycled while still
999  * being executed.
1000  *
1001  * This is a bit tricky.  A work item may be freed once its execution
1002  * starts and nothing prevents the freed area from being recycled for
1003  * another work item.  If the same work item address ends up being reused
1004  * before the original execution finishes, workqueue will identify the
1005  * recycled work item as currently executing and make it wait until the
1006  * current execution finishes, introducing an unwanted dependency.
1007  *
1008  * This function checks the work item address and work function to avoid
1009  * false positives.  Note that this isn't complete as one may construct a
1010  * work function which can introduce dependency onto itself through a
1011  * recycled work item.  Well, if somebody wants to shoot oneself in the
1012  * foot that badly, there's only so much we can do, and if such deadlock
1013  * actually occurs, it should be easy to locate the culprit work function.
1014  *
1015  * CONTEXT:
1016  * spin_lock_irq(pool->lock).
1017  *
1018  * Return:
1019  * Pointer to worker which is executing @work if found, %NULL
1020  * otherwise.
1021  */
1022 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1023 						 struct work_struct *work)
1024 {
1025 	struct worker *worker;
1026 
1027 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1028 			       (unsigned long)work)
1029 		if (worker->current_work == work &&
1030 		    worker->current_func == work->func)
1031 			return worker;
1032 
1033 	return NULL;
1034 }
1035 
1036 /**
1037  * move_linked_works - move linked works to a list
1038  * @work: start of series of works to be scheduled
1039  * @head: target list to append @work to
1040  * @nextp: out parameter for nested worklist walking
1041  *
1042  * Schedule linked works starting from @work to @head.  Work series to
1043  * be scheduled starts at @work and includes any consecutive work with
1044  * WORK_STRUCT_LINKED set in its predecessor.
1045  *
1046  * If @nextp is not NULL, it's updated to point to the next work of
1047  * the last scheduled work.  This allows move_linked_works() to be
1048  * nested inside outer list_for_each_entry_safe().
1049  *
1050  * CONTEXT:
1051  * spin_lock_irq(pool->lock).
1052  */
1053 static void move_linked_works(struct work_struct *work, struct list_head *head,
1054 			      struct work_struct **nextp)
1055 {
1056 	struct work_struct *n;
1057 
1058 	/*
1059 	 * Linked worklist will always end before the end of the list,
1060 	 * use NULL for list head.
1061 	 */
1062 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1063 		list_move_tail(&work->entry, head);
1064 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1065 			break;
1066 	}
1067 
1068 	/*
1069 	 * If we're already inside safe list traversal and have moved
1070 	 * multiple works to the scheduled queue, the next position
1071 	 * needs to be updated.
1072 	 */
1073 	if (nextp)
1074 		*nextp = n;
1075 }
1076 
1077 /**
1078  * get_pwq - get an extra reference on the specified pool_workqueue
1079  * @pwq: pool_workqueue to get
1080  *
1081  * Obtain an extra reference on @pwq.  The caller should guarantee that
1082  * @pwq has positive refcnt and be holding the matching pool->lock.
1083  */
1084 static void get_pwq(struct pool_workqueue *pwq)
1085 {
1086 	lockdep_assert_held(&pwq->pool->lock);
1087 	WARN_ON_ONCE(pwq->refcnt <= 0);
1088 	pwq->refcnt++;
1089 }
1090 
1091 /**
1092  * put_pwq - put a pool_workqueue reference
1093  * @pwq: pool_workqueue to put
1094  *
1095  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1096  * destruction.  The caller should be holding the matching pool->lock.
1097  */
1098 static void put_pwq(struct pool_workqueue *pwq)
1099 {
1100 	lockdep_assert_held(&pwq->pool->lock);
1101 	if (likely(--pwq->refcnt))
1102 		return;
1103 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1104 		return;
1105 	/*
1106 	 * @pwq can't be released under pool->lock, bounce to
1107 	 * pwq_unbound_release_workfn().  This never recurses on the same
1108 	 * pool->lock as this path is taken only for unbound workqueues and
1109 	 * the release work item is scheduled on a per-cpu workqueue.  To
1110 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1111 	 * subclass of 1 in get_unbound_pool().
1112 	 */
1113 	schedule_work(&pwq->unbound_release_work);
1114 }
1115 
1116 /**
1117  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1118  * @pwq: pool_workqueue to put (can be %NULL)
1119  *
1120  * put_pwq() with locking.  This function also allows %NULL @pwq.
1121  */
1122 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1123 {
1124 	if (pwq) {
1125 		/*
1126 		 * As both pwqs and pools are RCU protected, the
1127 		 * following lock operations are safe.
1128 		 */
1129 		spin_lock_irq(&pwq->pool->lock);
1130 		put_pwq(pwq);
1131 		spin_unlock_irq(&pwq->pool->lock);
1132 	}
1133 }
1134 
1135 static void pwq_activate_delayed_work(struct work_struct *work)
1136 {
1137 	struct pool_workqueue *pwq = get_work_pwq(work);
1138 
1139 	trace_workqueue_activate_work(work);
1140 	if (list_empty(&pwq->pool->worklist))
1141 		pwq->pool->watchdog_ts = jiffies;
1142 	move_linked_works(work, &pwq->pool->worklist, NULL);
1143 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1144 	pwq->nr_active++;
1145 }
1146 
1147 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1148 {
1149 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1150 						    struct work_struct, entry);
1151 
1152 	pwq_activate_delayed_work(work);
1153 }
1154 
1155 /**
1156  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1157  * @pwq: pwq of interest
1158  * @color: color of work which left the queue
1159  *
1160  * A work either has completed or is removed from pending queue,
1161  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1162  *
1163  * CONTEXT:
1164  * spin_lock_irq(pool->lock).
1165  */
1166 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1167 {
1168 	/* uncolored work items don't participate in flushing or nr_active */
1169 	if (color == WORK_NO_COLOR)
1170 		goto out_put;
1171 
1172 	pwq->nr_in_flight[color]--;
1173 
1174 	pwq->nr_active--;
1175 	if (!list_empty(&pwq->delayed_works)) {
1176 		/* one down, submit a delayed one */
1177 		if (pwq->nr_active < pwq->max_active)
1178 			pwq_activate_first_delayed(pwq);
1179 	}
1180 
1181 	/* is flush in progress and are we at the flushing tip? */
1182 	if (likely(pwq->flush_color != color))
1183 		goto out_put;
1184 
1185 	/* are there still in-flight works? */
1186 	if (pwq->nr_in_flight[color])
1187 		goto out_put;
1188 
1189 	/* this pwq is done, clear flush_color */
1190 	pwq->flush_color = -1;
1191 
1192 	/*
1193 	 * If this was the last pwq, wake up the first flusher.  It
1194 	 * will handle the rest.
1195 	 */
1196 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1197 		complete(&pwq->wq->first_flusher->done);
1198 out_put:
1199 	put_pwq(pwq);
1200 }
1201 
1202 /**
1203  * try_to_grab_pending - steal work item from worklist and disable irq
1204  * @work: work item to steal
1205  * @is_dwork: @work is a delayed_work
1206  * @flags: place to store irq state
1207  *
1208  * Try to grab PENDING bit of @work.  This function can handle @work in any
1209  * stable state - idle, on timer or on worklist.
1210  *
1211  * Return:
1212  *  1		if @work was pending and we successfully stole PENDING
1213  *  0		if @work was idle and we claimed PENDING
1214  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1215  *  -ENOENT	if someone else is canceling @work, this state may persist
1216  *		for arbitrarily long
1217  *
1218  * Note:
1219  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1220  * interrupted while holding PENDING and @work off queue, irq must be
1221  * disabled on entry.  This, combined with delayed_work->timer being
1222  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1223  *
1224  * On successful return, >= 0, irq is disabled and the caller is
1225  * responsible for releasing it using local_irq_restore(*@flags).
1226  *
1227  * This function is safe to call from any context including IRQ handler.
1228  */
1229 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1230 			       unsigned long *flags)
1231 {
1232 	struct worker_pool *pool;
1233 	struct pool_workqueue *pwq;
1234 
1235 	local_irq_save(*flags);
1236 
1237 	/* try to steal the timer if it exists */
1238 	if (is_dwork) {
1239 		struct delayed_work *dwork = to_delayed_work(work);
1240 
1241 		/*
1242 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1243 		 * guaranteed that the timer is not queued anywhere and not
1244 		 * running on the local CPU.
1245 		 */
1246 		if (likely(del_timer(&dwork->timer)))
1247 			return 1;
1248 	}
1249 
1250 	/* try to claim PENDING the normal way */
1251 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1252 		return 0;
1253 
1254 	rcu_read_lock();
1255 	/*
1256 	 * The queueing is in progress, or it is already queued. Try to
1257 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1258 	 */
1259 	pool = get_work_pool(work);
1260 	if (!pool)
1261 		goto fail;
1262 
1263 	spin_lock(&pool->lock);
1264 	/*
1265 	 * work->data is guaranteed to point to pwq only while the work
1266 	 * item is queued on pwq->wq, and both updating work->data to point
1267 	 * to pwq on queueing and to pool on dequeueing are done under
1268 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1269 	 * points to pwq which is associated with a locked pool, the work
1270 	 * item is currently queued on that pool.
1271 	 */
1272 	pwq = get_work_pwq(work);
1273 	if (pwq && pwq->pool == pool) {
1274 		debug_work_deactivate(work);
1275 
1276 		/*
1277 		 * A delayed work item cannot be grabbed directly because
1278 		 * it might have linked NO_COLOR work items which, if left
1279 		 * on the delayed_list, will confuse pwq->nr_active
1280 		 * management later on and cause stall.  Make sure the work
1281 		 * item is activated before grabbing.
1282 		 */
1283 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1284 			pwq_activate_delayed_work(work);
1285 
1286 		list_del_init(&work->entry);
1287 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1288 
1289 		/* work->data points to pwq iff queued, point to pool */
1290 		set_work_pool_and_keep_pending(work, pool->id);
1291 
1292 		spin_unlock(&pool->lock);
1293 		rcu_read_unlock();
1294 		return 1;
1295 	}
1296 	spin_unlock(&pool->lock);
1297 fail:
1298 	rcu_read_unlock();
1299 	local_irq_restore(*flags);
1300 	if (work_is_canceling(work))
1301 		return -ENOENT;
1302 	cpu_relax();
1303 	return -EAGAIN;
1304 }
1305 
1306 /**
1307  * insert_work - insert a work into a pool
1308  * @pwq: pwq @work belongs to
1309  * @work: work to insert
1310  * @head: insertion point
1311  * @extra_flags: extra WORK_STRUCT_* flags to set
1312  *
1313  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1314  * work_struct flags.
1315  *
1316  * CONTEXT:
1317  * spin_lock_irq(pool->lock).
1318  */
1319 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1320 			struct list_head *head, unsigned int extra_flags)
1321 {
1322 	struct worker_pool *pool = pwq->pool;
1323 
1324 	/* we own @work, set data and link */
1325 	set_work_pwq(work, pwq, extra_flags);
1326 	list_add_tail(&work->entry, head);
1327 	get_pwq(pwq);
1328 
1329 	/*
1330 	 * Ensure either wq_worker_sleeping() sees the above
1331 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1332 	 * around lazily while there are works to be processed.
1333 	 */
1334 	smp_mb();
1335 
1336 	if (__need_more_worker(pool))
1337 		wake_up_worker(pool);
1338 }
1339 
1340 /*
1341  * Test whether @work is being queued from another work executing on the
1342  * same workqueue.
1343  */
1344 static bool is_chained_work(struct workqueue_struct *wq)
1345 {
1346 	struct worker *worker;
1347 
1348 	worker = current_wq_worker();
1349 	/*
1350 	 * Return %true iff I'm a worker executing a work item on @wq.  If
1351 	 * I'm @worker, it's safe to dereference it without locking.
1352 	 */
1353 	return worker && worker->current_pwq->wq == wq;
1354 }
1355 
1356 /*
1357  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1358  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1359  * avoid perturbing sensitive tasks.
1360  */
1361 static int wq_select_unbound_cpu(int cpu)
1362 {
1363 	static bool printed_dbg_warning;
1364 	int new_cpu;
1365 
1366 	if (likely(!wq_debug_force_rr_cpu)) {
1367 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1368 			return cpu;
1369 	} else if (!printed_dbg_warning) {
1370 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1371 		printed_dbg_warning = true;
1372 	}
1373 
1374 	if (cpumask_empty(wq_unbound_cpumask))
1375 		return cpu;
1376 
1377 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1378 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1379 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1380 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1381 		if (unlikely(new_cpu >= nr_cpu_ids))
1382 			return cpu;
1383 	}
1384 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1385 
1386 	return new_cpu;
1387 }
1388 
1389 static void __queue_work(int cpu, struct workqueue_struct *wq,
1390 			 struct work_struct *work)
1391 {
1392 	struct pool_workqueue *pwq;
1393 	struct worker_pool *last_pool;
1394 	struct list_head *worklist;
1395 	unsigned int work_flags;
1396 	unsigned int req_cpu = cpu;
1397 
1398 	/*
1399 	 * While a work item is PENDING && off queue, a task trying to
1400 	 * steal the PENDING will busy-loop waiting for it to either get
1401 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1402 	 * happen with IRQ disabled.
1403 	 */
1404 	lockdep_assert_irqs_disabled();
1405 
1406 	debug_work_activate(work);
1407 
1408 	/* if draining, only works from the same workqueue are allowed */
1409 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1410 	    WARN_ON_ONCE(!is_chained_work(wq)))
1411 		return;
1412 	rcu_read_lock();
1413 retry:
1414 	/* pwq which will be used unless @work is executing elsewhere */
1415 	if (wq->flags & WQ_UNBOUND) {
1416 		if (req_cpu == WORK_CPU_UNBOUND)
1417 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1418 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1419 	} else {
1420 		if (req_cpu == WORK_CPU_UNBOUND)
1421 			cpu = raw_smp_processor_id();
1422 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1423 	}
1424 
1425 	/*
1426 	 * If @work was previously on a different pool, it might still be
1427 	 * running there, in which case the work needs to be queued on that
1428 	 * pool to guarantee non-reentrancy.
1429 	 */
1430 	last_pool = get_work_pool(work);
1431 	if (last_pool && last_pool != pwq->pool) {
1432 		struct worker *worker;
1433 
1434 		spin_lock(&last_pool->lock);
1435 
1436 		worker = find_worker_executing_work(last_pool, work);
1437 
1438 		if (worker && worker->current_pwq->wq == wq) {
1439 			pwq = worker->current_pwq;
1440 		} else {
1441 			/* meh... not running there, queue here */
1442 			spin_unlock(&last_pool->lock);
1443 			spin_lock(&pwq->pool->lock);
1444 		}
1445 	} else {
1446 		spin_lock(&pwq->pool->lock);
1447 	}
1448 
1449 	/*
1450 	 * pwq is determined and locked.  For unbound pools, we could have
1451 	 * raced with pwq release and it could already be dead.  If its
1452 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1453 	 * without another pwq replacing it in the numa_pwq_tbl or while
1454 	 * work items are executing on it, so the retrying is guaranteed to
1455 	 * make forward-progress.
1456 	 */
1457 	if (unlikely(!pwq->refcnt)) {
1458 		if (wq->flags & WQ_UNBOUND) {
1459 			spin_unlock(&pwq->pool->lock);
1460 			cpu_relax();
1461 			goto retry;
1462 		}
1463 		/* oops */
1464 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1465 			  wq->name, cpu);
1466 	}
1467 
1468 	/* pwq determined, queue */
1469 	trace_workqueue_queue_work(req_cpu, pwq, work);
1470 
1471 	if (WARN_ON(!list_empty(&work->entry)))
1472 		goto out;
1473 
1474 	pwq->nr_in_flight[pwq->work_color]++;
1475 	work_flags = work_color_to_flags(pwq->work_color);
1476 
1477 	if (likely(pwq->nr_active < pwq->max_active)) {
1478 		trace_workqueue_activate_work(work);
1479 		pwq->nr_active++;
1480 		worklist = &pwq->pool->worklist;
1481 		if (list_empty(worklist))
1482 			pwq->pool->watchdog_ts = jiffies;
1483 	} else {
1484 		work_flags |= WORK_STRUCT_DELAYED;
1485 		worklist = &pwq->delayed_works;
1486 	}
1487 
1488 	insert_work(pwq, work, worklist, work_flags);
1489 
1490 out:
1491 	spin_unlock(&pwq->pool->lock);
1492 	rcu_read_unlock();
1493 }
1494 
1495 /**
1496  * queue_work_on - queue work on specific cpu
1497  * @cpu: CPU number to execute work on
1498  * @wq: workqueue to use
1499  * @work: work to queue
1500  *
1501  * We queue the work to a specific CPU, the caller must ensure it
1502  * can't go away.
1503  *
1504  * Return: %false if @work was already on a queue, %true otherwise.
1505  */
1506 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1507 		   struct work_struct *work)
1508 {
1509 	bool ret = false;
1510 	unsigned long flags;
1511 
1512 	local_irq_save(flags);
1513 
1514 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1515 		__queue_work(cpu, wq, work);
1516 		ret = true;
1517 	}
1518 
1519 	local_irq_restore(flags);
1520 	return ret;
1521 }
1522 EXPORT_SYMBOL(queue_work_on);
1523 
1524 /**
1525  * workqueue_select_cpu_near - Select a CPU based on NUMA node
1526  * @node: NUMA node ID that we want to select a CPU from
1527  *
1528  * This function will attempt to find a "random" cpu available on a given
1529  * node. If there are no CPUs available on the given node it will return
1530  * WORK_CPU_UNBOUND indicating that we should just schedule to any
1531  * available CPU if we need to schedule this work.
1532  */
1533 static int workqueue_select_cpu_near(int node)
1534 {
1535 	int cpu;
1536 
1537 	/* No point in doing this if NUMA isn't enabled for workqueues */
1538 	if (!wq_numa_enabled)
1539 		return WORK_CPU_UNBOUND;
1540 
1541 	/* Delay binding to CPU if node is not valid or online */
1542 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1543 		return WORK_CPU_UNBOUND;
1544 
1545 	/* Use local node/cpu if we are already there */
1546 	cpu = raw_smp_processor_id();
1547 	if (node == cpu_to_node(cpu))
1548 		return cpu;
1549 
1550 	/* Use "random" otherwise know as "first" online CPU of node */
1551 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1552 
1553 	/* If CPU is valid return that, otherwise just defer */
1554 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1555 }
1556 
1557 /**
1558  * queue_work_node - queue work on a "random" cpu for a given NUMA node
1559  * @node: NUMA node that we are targeting the work for
1560  * @wq: workqueue to use
1561  * @work: work to queue
1562  *
1563  * We queue the work to a "random" CPU within a given NUMA node. The basic
1564  * idea here is to provide a way to somehow associate work with a given
1565  * NUMA node.
1566  *
1567  * This function will only make a best effort attempt at getting this onto
1568  * the right NUMA node. If no node is requested or the requested node is
1569  * offline then we just fall back to standard queue_work behavior.
1570  *
1571  * Currently the "random" CPU ends up being the first available CPU in the
1572  * intersection of cpu_online_mask and the cpumask of the node, unless we
1573  * are running on the node. In that case we just use the current CPU.
1574  *
1575  * Return: %false if @work was already on a queue, %true otherwise.
1576  */
1577 bool queue_work_node(int node, struct workqueue_struct *wq,
1578 		     struct work_struct *work)
1579 {
1580 	unsigned long flags;
1581 	bool ret = false;
1582 
1583 	/*
1584 	 * This current implementation is specific to unbound workqueues.
1585 	 * Specifically we only return the first available CPU for a given
1586 	 * node instead of cycling through individual CPUs within the node.
1587 	 *
1588 	 * If this is used with a per-cpu workqueue then the logic in
1589 	 * workqueue_select_cpu_near would need to be updated to allow for
1590 	 * some round robin type logic.
1591 	 */
1592 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1593 
1594 	local_irq_save(flags);
1595 
1596 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1597 		int cpu = workqueue_select_cpu_near(node);
1598 
1599 		__queue_work(cpu, wq, work);
1600 		ret = true;
1601 	}
1602 
1603 	local_irq_restore(flags);
1604 	return ret;
1605 }
1606 EXPORT_SYMBOL_GPL(queue_work_node);
1607 
1608 void delayed_work_timer_fn(struct timer_list *t)
1609 {
1610 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1611 
1612 	/* should have been called from irqsafe timer with irq already off */
1613 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1614 }
1615 EXPORT_SYMBOL(delayed_work_timer_fn);
1616 
1617 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1618 				struct delayed_work *dwork, unsigned long delay)
1619 {
1620 	struct timer_list *timer = &dwork->timer;
1621 	struct work_struct *work = &dwork->work;
1622 
1623 	WARN_ON_ONCE(!wq);
1624 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1625 	WARN_ON_ONCE(timer_pending(timer));
1626 	WARN_ON_ONCE(!list_empty(&work->entry));
1627 
1628 	/*
1629 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1630 	 * both optimization and correctness.  The earliest @timer can
1631 	 * expire is on the closest next tick and delayed_work users depend
1632 	 * on that there's no such delay when @delay is 0.
1633 	 */
1634 	if (!delay) {
1635 		__queue_work(cpu, wq, &dwork->work);
1636 		return;
1637 	}
1638 
1639 	dwork->wq = wq;
1640 	dwork->cpu = cpu;
1641 	timer->expires = jiffies + delay;
1642 
1643 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1644 		add_timer_on(timer, cpu);
1645 	else
1646 		add_timer(timer);
1647 }
1648 
1649 /**
1650  * queue_delayed_work_on - queue work on specific CPU after delay
1651  * @cpu: CPU number to execute work on
1652  * @wq: workqueue to use
1653  * @dwork: work to queue
1654  * @delay: number of jiffies to wait before queueing
1655  *
1656  * Return: %false if @work was already on a queue, %true otherwise.  If
1657  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1658  * execution.
1659  */
1660 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1661 			   struct delayed_work *dwork, unsigned long delay)
1662 {
1663 	struct work_struct *work = &dwork->work;
1664 	bool ret = false;
1665 	unsigned long flags;
1666 
1667 	/* read the comment in __queue_work() */
1668 	local_irq_save(flags);
1669 
1670 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1671 		__queue_delayed_work(cpu, wq, dwork, delay);
1672 		ret = true;
1673 	}
1674 
1675 	local_irq_restore(flags);
1676 	return ret;
1677 }
1678 EXPORT_SYMBOL(queue_delayed_work_on);
1679 
1680 /**
1681  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1682  * @cpu: CPU number to execute work on
1683  * @wq: workqueue to use
1684  * @dwork: work to queue
1685  * @delay: number of jiffies to wait before queueing
1686  *
1687  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1688  * modify @dwork's timer so that it expires after @delay.  If @delay is
1689  * zero, @work is guaranteed to be scheduled immediately regardless of its
1690  * current state.
1691  *
1692  * Return: %false if @dwork was idle and queued, %true if @dwork was
1693  * pending and its timer was modified.
1694  *
1695  * This function is safe to call from any context including IRQ handler.
1696  * See try_to_grab_pending() for details.
1697  */
1698 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1699 			 struct delayed_work *dwork, unsigned long delay)
1700 {
1701 	unsigned long flags;
1702 	int ret;
1703 
1704 	do {
1705 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1706 	} while (unlikely(ret == -EAGAIN));
1707 
1708 	if (likely(ret >= 0)) {
1709 		__queue_delayed_work(cpu, wq, dwork, delay);
1710 		local_irq_restore(flags);
1711 	}
1712 
1713 	/* -ENOENT from try_to_grab_pending() becomes %true */
1714 	return ret;
1715 }
1716 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1717 
1718 static void rcu_work_rcufn(struct rcu_head *rcu)
1719 {
1720 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1721 
1722 	/* read the comment in __queue_work() */
1723 	local_irq_disable();
1724 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1725 	local_irq_enable();
1726 }
1727 
1728 /**
1729  * queue_rcu_work - queue work after a RCU grace period
1730  * @wq: workqueue to use
1731  * @rwork: work to queue
1732  *
1733  * Return: %false if @rwork was already pending, %true otherwise.  Note
1734  * that a full RCU grace period is guaranteed only after a %true return.
1735  * While @rwork is guaranteed to be executed after a %false return, the
1736  * execution may happen before a full RCU grace period has passed.
1737  */
1738 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1739 {
1740 	struct work_struct *work = &rwork->work;
1741 
1742 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1743 		rwork->wq = wq;
1744 		call_rcu(&rwork->rcu, rcu_work_rcufn);
1745 		return true;
1746 	}
1747 
1748 	return false;
1749 }
1750 EXPORT_SYMBOL(queue_rcu_work);
1751 
1752 /**
1753  * worker_enter_idle - enter idle state
1754  * @worker: worker which is entering idle state
1755  *
1756  * @worker is entering idle state.  Update stats and idle timer if
1757  * necessary.
1758  *
1759  * LOCKING:
1760  * spin_lock_irq(pool->lock).
1761  */
1762 static void worker_enter_idle(struct worker *worker)
1763 {
1764 	struct worker_pool *pool = worker->pool;
1765 
1766 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1767 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1768 			 (worker->hentry.next || worker->hentry.pprev)))
1769 		return;
1770 
1771 	/* can't use worker_set_flags(), also called from create_worker() */
1772 	worker->flags |= WORKER_IDLE;
1773 	pool->nr_idle++;
1774 	worker->last_active = jiffies;
1775 
1776 	/* idle_list is LIFO */
1777 	list_add(&worker->entry, &pool->idle_list);
1778 
1779 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1780 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1781 
1782 	/*
1783 	 * Sanity check nr_running.  Because unbind_workers() releases
1784 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1785 	 * nr_running, the warning may trigger spuriously.  Check iff
1786 	 * unbind is not in progress.
1787 	 */
1788 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1789 		     pool->nr_workers == pool->nr_idle &&
1790 		     atomic_read(&pool->nr_running));
1791 }
1792 
1793 /**
1794  * worker_leave_idle - leave idle state
1795  * @worker: worker which is leaving idle state
1796  *
1797  * @worker is leaving idle state.  Update stats.
1798  *
1799  * LOCKING:
1800  * spin_lock_irq(pool->lock).
1801  */
1802 static void worker_leave_idle(struct worker *worker)
1803 {
1804 	struct worker_pool *pool = worker->pool;
1805 
1806 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1807 		return;
1808 	worker_clr_flags(worker, WORKER_IDLE);
1809 	pool->nr_idle--;
1810 	list_del_init(&worker->entry);
1811 }
1812 
1813 static struct worker *alloc_worker(int node)
1814 {
1815 	struct worker *worker;
1816 
1817 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1818 	if (worker) {
1819 		INIT_LIST_HEAD(&worker->entry);
1820 		INIT_LIST_HEAD(&worker->scheduled);
1821 		INIT_LIST_HEAD(&worker->node);
1822 		/* on creation a worker is in !idle && prep state */
1823 		worker->flags = WORKER_PREP;
1824 	}
1825 	return worker;
1826 }
1827 
1828 /**
1829  * worker_attach_to_pool() - attach a worker to a pool
1830  * @worker: worker to be attached
1831  * @pool: the target pool
1832  *
1833  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1834  * cpu-binding of @worker are kept coordinated with the pool across
1835  * cpu-[un]hotplugs.
1836  */
1837 static void worker_attach_to_pool(struct worker *worker,
1838 				   struct worker_pool *pool)
1839 {
1840 	mutex_lock(&wq_pool_attach_mutex);
1841 
1842 	/*
1843 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1844 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1845 	 */
1846 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1847 
1848 	/*
1849 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1850 	 * stable across this function.  See the comments above the flag
1851 	 * definition for details.
1852 	 */
1853 	if (pool->flags & POOL_DISASSOCIATED)
1854 		worker->flags |= WORKER_UNBOUND;
1855 
1856 	list_add_tail(&worker->node, &pool->workers);
1857 	worker->pool = pool;
1858 
1859 	mutex_unlock(&wq_pool_attach_mutex);
1860 }
1861 
1862 /**
1863  * worker_detach_from_pool() - detach a worker from its pool
1864  * @worker: worker which is attached to its pool
1865  *
1866  * Undo the attaching which had been done in worker_attach_to_pool().  The
1867  * caller worker shouldn't access to the pool after detached except it has
1868  * other reference to the pool.
1869  */
1870 static void worker_detach_from_pool(struct worker *worker)
1871 {
1872 	struct worker_pool *pool = worker->pool;
1873 	struct completion *detach_completion = NULL;
1874 
1875 	mutex_lock(&wq_pool_attach_mutex);
1876 
1877 	list_del(&worker->node);
1878 	worker->pool = NULL;
1879 
1880 	if (list_empty(&pool->workers))
1881 		detach_completion = pool->detach_completion;
1882 	mutex_unlock(&wq_pool_attach_mutex);
1883 
1884 	/* clear leftover flags without pool->lock after it is detached */
1885 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1886 
1887 	if (detach_completion)
1888 		complete(detach_completion);
1889 }
1890 
1891 /**
1892  * create_worker - create a new workqueue worker
1893  * @pool: pool the new worker will belong to
1894  *
1895  * Create and start a new worker which is attached to @pool.
1896  *
1897  * CONTEXT:
1898  * Might sleep.  Does GFP_KERNEL allocations.
1899  *
1900  * Return:
1901  * Pointer to the newly created worker.
1902  */
1903 static struct worker *create_worker(struct worker_pool *pool)
1904 {
1905 	struct worker *worker = NULL;
1906 	int id = -1;
1907 	char id_buf[16];
1908 
1909 	/* ID is needed to determine kthread name */
1910 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1911 	if (id < 0)
1912 		goto fail;
1913 
1914 	worker = alloc_worker(pool->node);
1915 	if (!worker)
1916 		goto fail;
1917 
1918 	worker->id = id;
1919 
1920 	if (pool->cpu >= 0)
1921 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1922 			 pool->attrs->nice < 0  ? "H" : "");
1923 	else
1924 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1925 
1926 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1927 					      "kworker/%s", id_buf);
1928 	if (IS_ERR(worker->task))
1929 		goto fail;
1930 
1931 	set_user_nice(worker->task, pool->attrs->nice);
1932 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1933 
1934 	/* successful, attach the worker to the pool */
1935 	worker_attach_to_pool(worker, pool);
1936 
1937 	/* start the newly created worker */
1938 	spin_lock_irq(&pool->lock);
1939 	worker->pool->nr_workers++;
1940 	worker_enter_idle(worker);
1941 	wake_up_process(worker->task);
1942 	spin_unlock_irq(&pool->lock);
1943 
1944 	return worker;
1945 
1946 fail:
1947 	if (id >= 0)
1948 		ida_simple_remove(&pool->worker_ida, id);
1949 	kfree(worker);
1950 	return NULL;
1951 }
1952 
1953 /**
1954  * destroy_worker - destroy a workqueue worker
1955  * @worker: worker to be destroyed
1956  *
1957  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1958  * be idle.
1959  *
1960  * CONTEXT:
1961  * spin_lock_irq(pool->lock).
1962  */
1963 static void destroy_worker(struct worker *worker)
1964 {
1965 	struct worker_pool *pool = worker->pool;
1966 
1967 	lockdep_assert_held(&pool->lock);
1968 
1969 	/* sanity check frenzy */
1970 	if (WARN_ON(worker->current_work) ||
1971 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1972 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1973 		return;
1974 
1975 	pool->nr_workers--;
1976 	pool->nr_idle--;
1977 
1978 	list_del_init(&worker->entry);
1979 	worker->flags |= WORKER_DIE;
1980 	wake_up_process(worker->task);
1981 }
1982 
1983 static void idle_worker_timeout(struct timer_list *t)
1984 {
1985 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
1986 
1987 	spin_lock_irq(&pool->lock);
1988 
1989 	while (too_many_workers(pool)) {
1990 		struct worker *worker;
1991 		unsigned long expires;
1992 
1993 		/* idle_list is kept in LIFO order, check the last one */
1994 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1995 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1996 
1997 		if (time_before(jiffies, expires)) {
1998 			mod_timer(&pool->idle_timer, expires);
1999 			break;
2000 		}
2001 
2002 		destroy_worker(worker);
2003 	}
2004 
2005 	spin_unlock_irq(&pool->lock);
2006 }
2007 
2008 static void send_mayday(struct work_struct *work)
2009 {
2010 	struct pool_workqueue *pwq = get_work_pwq(work);
2011 	struct workqueue_struct *wq = pwq->wq;
2012 
2013 	lockdep_assert_held(&wq_mayday_lock);
2014 
2015 	if (!wq->rescuer)
2016 		return;
2017 
2018 	/* mayday mayday mayday */
2019 	if (list_empty(&pwq->mayday_node)) {
2020 		/*
2021 		 * If @pwq is for an unbound wq, its base ref may be put at
2022 		 * any time due to an attribute change.  Pin @pwq until the
2023 		 * rescuer is done with it.
2024 		 */
2025 		get_pwq(pwq);
2026 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2027 		wake_up_process(wq->rescuer->task);
2028 	}
2029 }
2030 
2031 static void pool_mayday_timeout(struct timer_list *t)
2032 {
2033 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2034 	struct work_struct *work;
2035 
2036 	spin_lock_irq(&pool->lock);
2037 	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2038 
2039 	if (need_to_create_worker(pool)) {
2040 		/*
2041 		 * We've been trying to create a new worker but
2042 		 * haven't been successful.  We might be hitting an
2043 		 * allocation deadlock.  Send distress signals to
2044 		 * rescuers.
2045 		 */
2046 		list_for_each_entry(work, &pool->worklist, entry)
2047 			send_mayday(work);
2048 	}
2049 
2050 	spin_unlock(&wq_mayday_lock);
2051 	spin_unlock_irq(&pool->lock);
2052 
2053 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2054 }
2055 
2056 /**
2057  * maybe_create_worker - create a new worker if necessary
2058  * @pool: pool to create a new worker for
2059  *
2060  * Create a new worker for @pool if necessary.  @pool is guaranteed to
2061  * have at least one idle worker on return from this function.  If
2062  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2063  * sent to all rescuers with works scheduled on @pool to resolve
2064  * possible allocation deadlock.
2065  *
2066  * On return, need_to_create_worker() is guaranteed to be %false and
2067  * may_start_working() %true.
2068  *
2069  * LOCKING:
2070  * spin_lock_irq(pool->lock) which may be released and regrabbed
2071  * multiple times.  Does GFP_KERNEL allocations.  Called only from
2072  * manager.
2073  */
2074 static void maybe_create_worker(struct worker_pool *pool)
2075 __releases(&pool->lock)
2076 __acquires(&pool->lock)
2077 {
2078 restart:
2079 	spin_unlock_irq(&pool->lock);
2080 
2081 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2082 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2083 
2084 	while (true) {
2085 		if (create_worker(pool) || !need_to_create_worker(pool))
2086 			break;
2087 
2088 		schedule_timeout_interruptible(CREATE_COOLDOWN);
2089 
2090 		if (!need_to_create_worker(pool))
2091 			break;
2092 	}
2093 
2094 	del_timer_sync(&pool->mayday_timer);
2095 	spin_lock_irq(&pool->lock);
2096 	/*
2097 	 * This is necessary even after a new worker was just successfully
2098 	 * created as @pool->lock was dropped and the new worker might have
2099 	 * already become busy.
2100 	 */
2101 	if (need_to_create_worker(pool))
2102 		goto restart;
2103 }
2104 
2105 /**
2106  * manage_workers - manage worker pool
2107  * @worker: self
2108  *
2109  * Assume the manager role and manage the worker pool @worker belongs
2110  * to.  At any given time, there can be only zero or one manager per
2111  * pool.  The exclusion is handled automatically by this function.
2112  *
2113  * The caller can safely start processing works on false return.  On
2114  * true return, it's guaranteed that need_to_create_worker() is false
2115  * and may_start_working() is true.
2116  *
2117  * CONTEXT:
2118  * spin_lock_irq(pool->lock) which may be released and regrabbed
2119  * multiple times.  Does GFP_KERNEL allocations.
2120  *
2121  * Return:
2122  * %false if the pool doesn't need management and the caller can safely
2123  * start processing works, %true if management function was performed and
2124  * the conditions that the caller verified before calling the function may
2125  * no longer be true.
2126  */
2127 static bool manage_workers(struct worker *worker)
2128 {
2129 	struct worker_pool *pool = worker->pool;
2130 
2131 	if (pool->flags & POOL_MANAGER_ACTIVE)
2132 		return false;
2133 
2134 	pool->flags |= POOL_MANAGER_ACTIVE;
2135 	pool->manager = worker;
2136 
2137 	maybe_create_worker(pool);
2138 
2139 	pool->manager = NULL;
2140 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2141 	wake_up(&wq_manager_wait);
2142 	return true;
2143 }
2144 
2145 /**
2146  * process_one_work - process single work
2147  * @worker: self
2148  * @work: work to process
2149  *
2150  * Process @work.  This function contains all the logics necessary to
2151  * process a single work including synchronization against and
2152  * interaction with other workers on the same cpu, queueing and
2153  * flushing.  As long as context requirement is met, any worker can
2154  * call this function to process a work.
2155  *
2156  * CONTEXT:
2157  * spin_lock_irq(pool->lock) which is released and regrabbed.
2158  */
2159 static void process_one_work(struct worker *worker, struct work_struct *work)
2160 __releases(&pool->lock)
2161 __acquires(&pool->lock)
2162 {
2163 	struct pool_workqueue *pwq = get_work_pwq(work);
2164 	struct worker_pool *pool = worker->pool;
2165 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2166 	int work_color;
2167 	struct worker *collision;
2168 #ifdef CONFIG_LOCKDEP
2169 	/*
2170 	 * It is permissible to free the struct work_struct from
2171 	 * inside the function that is called from it, this we need to
2172 	 * take into account for lockdep too.  To avoid bogus "held
2173 	 * lock freed" warnings as well as problems when looking into
2174 	 * work->lockdep_map, make a copy and use that here.
2175 	 */
2176 	struct lockdep_map lockdep_map;
2177 
2178 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2179 #endif
2180 	/* ensure we're on the correct CPU */
2181 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2182 		     raw_smp_processor_id() != pool->cpu);
2183 
2184 	/*
2185 	 * A single work shouldn't be executed concurrently by
2186 	 * multiple workers on a single cpu.  Check whether anyone is
2187 	 * already processing the work.  If so, defer the work to the
2188 	 * currently executing one.
2189 	 */
2190 	collision = find_worker_executing_work(pool, work);
2191 	if (unlikely(collision)) {
2192 		move_linked_works(work, &collision->scheduled, NULL);
2193 		return;
2194 	}
2195 
2196 	/* claim and dequeue */
2197 	debug_work_deactivate(work);
2198 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2199 	worker->current_work = work;
2200 	worker->current_func = work->func;
2201 	worker->current_pwq = pwq;
2202 	work_color = get_work_color(work);
2203 
2204 	/*
2205 	 * Record wq name for cmdline and debug reporting, may get
2206 	 * overridden through set_worker_desc().
2207 	 */
2208 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2209 
2210 	list_del_init(&work->entry);
2211 
2212 	/*
2213 	 * CPU intensive works don't participate in concurrency management.
2214 	 * They're the scheduler's responsibility.  This takes @worker out
2215 	 * of concurrency management and the next code block will chain
2216 	 * execution of the pending work items.
2217 	 */
2218 	if (unlikely(cpu_intensive))
2219 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2220 
2221 	/*
2222 	 * Wake up another worker if necessary.  The condition is always
2223 	 * false for normal per-cpu workers since nr_running would always
2224 	 * be >= 1 at this point.  This is used to chain execution of the
2225 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2226 	 * UNBOUND and CPU_INTENSIVE ones.
2227 	 */
2228 	if (need_more_worker(pool))
2229 		wake_up_worker(pool);
2230 
2231 	/*
2232 	 * Record the last pool and clear PENDING which should be the last
2233 	 * update to @work.  Also, do this inside @pool->lock so that
2234 	 * PENDING and queued state changes happen together while IRQ is
2235 	 * disabled.
2236 	 */
2237 	set_work_pool_and_clear_pending(work, pool->id);
2238 
2239 	spin_unlock_irq(&pool->lock);
2240 
2241 	lock_map_acquire(&pwq->wq->lockdep_map);
2242 	lock_map_acquire(&lockdep_map);
2243 	/*
2244 	 * Strictly speaking we should mark the invariant state without holding
2245 	 * any locks, that is, before these two lock_map_acquire()'s.
2246 	 *
2247 	 * However, that would result in:
2248 	 *
2249 	 *   A(W1)
2250 	 *   WFC(C)
2251 	 *		A(W1)
2252 	 *		C(C)
2253 	 *
2254 	 * Which would create W1->C->W1 dependencies, even though there is no
2255 	 * actual deadlock possible. There are two solutions, using a
2256 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2257 	 * hit the lockdep limitation on recursive locks, or simply discard
2258 	 * these locks.
2259 	 *
2260 	 * AFAICT there is no possible deadlock scenario between the
2261 	 * flush_work() and complete() primitives (except for single-threaded
2262 	 * workqueues), so hiding them isn't a problem.
2263 	 */
2264 	lockdep_invariant_state(true);
2265 	trace_workqueue_execute_start(work);
2266 	worker->current_func(work);
2267 	/*
2268 	 * While we must be careful to not use "work" after this, the trace
2269 	 * point will only record its address.
2270 	 */
2271 	trace_workqueue_execute_end(work, worker->current_func);
2272 	lock_map_release(&lockdep_map);
2273 	lock_map_release(&pwq->wq->lockdep_map);
2274 
2275 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2276 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2277 		       "     last function: %ps\n",
2278 		       current->comm, preempt_count(), task_pid_nr(current),
2279 		       worker->current_func);
2280 		debug_show_held_locks(current);
2281 		dump_stack();
2282 	}
2283 
2284 	/*
2285 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
2286 	 * kernels, where a requeueing work item waiting for something to
2287 	 * happen could deadlock with stop_machine as such work item could
2288 	 * indefinitely requeue itself while all other CPUs are trapped in
2289 	 * stop_machine. At the same time, report a quiescent RCU state so
2290 	 * the same condition doesn't freeze RCU.
2291 	 */
2292 	cond_resched();
2293 
2294 	spin_lock_irq(&pool->lock);
2295 
2296 	/* clear cpu intensive status */
2297 	if (unlikely(cpu_intensive))
2298 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2299 
2300 	/* tag the worker for identification in schedule() */
2301 	worker->last_func = worker->current_func;
2302 
2303 	/* we're done with it, release */
2304 	hash_del(&worker->hentry);
2305 	worker->current_work = NULL;
2306 	worker->current_func = NULL;
2307 	worker->current_pwq = NULL;
2308 	pwq_dec_nr_in_flight(pwq, work_color);
2309 }
2310 
2311 /**
2312  * process_scheduled_works - process scheduled works
2313  * @worker: self
2314  *
2315  * Process all scheduled works.  Please note that the scheduled list
2316  * may change while processing a work, so this function repeatedly
2317  * fetches a work from the top and executes it.
2318  *
2319  * CONTEXT:
2320  * spin_lock_irq(pool->lock) which may be released and regrabbed
2321  * multiple times.
2322  */
2323 static void process_scheduled_works(struct worker *worker)
2324 {
2325 	while (!list_empty(&worker->scheduled)) {
2326 		struct work_struct *work = list_first_entry(&worker->scheduled,
2327 						struct work_struct, entry);
2328 		process_one_work(worker, work);
2329 	}
2330 }
2331 
2332 static void set_pf_worker(bool val)
2333 {
2334 	mutex_lock(&wq_pool_attach_mutex);
2335 	if (val)
2336 		current->flags |= PF_WQ_WORKER;
2337 	else
2338 		current->flags &= ~PF_WQ_WORKER;
2339 	mutex_unlock(&wq_pool_attach_mutex);
2340 }
2341 
2342 /**
2343  * worker_thread - the worker thread function
2344  * @__worker: self
2345  *
2346  * The worker thread function.  All workers belong to a worker_pool -
2347  * either a per-cpu one or dynamic unbound one.  These workers process all
2348  * work items regardless of their specific target workqueue.  The only
2349  * exception is work items which belong to workqueues with a rescuer which
2350  * will be explained in rescuer_thread().
2351  *
2352  * Return: 0
2353  */
2354 static int worker_thread(void *__worker)
2355 {
2356 	struct worker *worker = __worker;
2357 	struct worker_pool *pool = worker->pool;
2358 
2359 	/* tell the scheduler that this is a workqueue worker */
2360 	set_pf_worker(true);
2361 woke_up:
2362 	spin_lock_irq(&pool->lock);
2363 
2364 	/* am I supposed to die? */
2365 	if (unlikely(worker->flags & WORKER_DIE)) {
2366 		spin_unlock_irq(&pool->lock);
2367 		WARN_ON_ONCE(!list_empty(&worker->entry));
2368 		set_pf_worker(false);
2369 
2370 		set_task_comm(worker->task, "kworker/dying");
2371 		ida_simple_remove(&pool->worker_ida, worker->id);
2372 		worker_detach_from_pool(worker);
2373 		kfree(worker);
2374 		return 0;
2375 	}
2376 
2377 	worker_leave_idle(worker);
2378 recheck:
2379 	/* no more worker necessary? */
2380 	if (!need_more_worker(pool))
2381 		goto sleep;
2382 
2383 	/* do we need to manage? */
2384 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2385 		goto recheck;
2386 
2387 	/*
2388 	 * ->scheduled list can only be filled while a worker is
2389 	 * preparing to process a work or actually processing it.
2390 	 * Make sure nobody diddled with it while I was sleeping.
2391 	 */
2392 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2393 
2394 	/*
2395 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2396 	 * worker or that someone else has already assumed the manager
2397 	 * role.  This is where @worker starts participating in concurrency
2398 	 * management if applicable and concurrency management is restored
2399 	 * after being rebound.  See rebind_workers() for details.
2400 	 */
2401 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2402 
2403 	do {
2404 		struct work_struct *work =
2405 			list_first_entry(&pool->worklist,
2406 					 struct work_struct, entry);
2407 
2408 		pool->watchdog_ts = jiffies;
2409 
2410 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2411 			/* optimization path, not strictly necessary */
2412 			process_one_work(worker, work);
2413 			if (unlikely(!list_empty(&worker->scheduled)))
2414 				process_scheduled_works(worker);
2415 		} else {
2416 			move_linked_works(work, &worker->scheduled, NULL);
2417 			process_scheduled_works(worker);
2418 		}
2419 	} while (keep_working(pool));
2420 
2421 	worker_set_flags(worker, WORKER_PREP);
2422 sleep:
2423 	/*
2424 	 * pool->lock is held and there's no work to process and no need to
2425 	 * manage, sleep.  Workers are woken up only while holding
2426 	 * pool->lock or from local cpu, so setting the current state
2427 	 * before releasing pool->lock is enough to prevent losing any
2428 	 * event.
2429 	 */
2430 	worker_enter_idle(worker);
2431 	__set_current_state(TASK_IDLE);
2432 	spin_unlock_irq(&pool->lock);
2433 	schedule();
2434 	goto woke_up;
2435 }
2436 
2437 /**
2438  * rescuer_thread - the rescuer thread function
2439  * @__rescuer: self
2440  *
2441  * Workqueue rescuer thread function.  There's one rescuer for each
2442  * workqueue which has WQ_MEM_RECLAIM set.
2443  *
2444  * Regular work processing on a pool may block trying to create a new
2445  * worker which uses GFP_KERNEL allocation which has slight chance of
2446  * developing into deadlock if some works currently on the same queue
2447  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2448  * the problem rescuer solves.
2449  *
2450  * When such condition is possible, the pool summons rescuers of all
2451  * workqueues which have works queued on the pool and let them process
2452  * those works so that forward progress can be guaranteed.
2453  *
2454  * This should happen rarely.
2455  *
2456  * Return: 0
2457  */
2458 static int rescuer_thread(void *__rescuer)
2459 {
2460 	struct worker *rescuer = __rescuer;
2461 	struct workqueue_struct *wq = rescuer->rescue_wq;
2462 	struct list_head *scheduled = &rescuer->scheduled;
2463 	bool should_stop;
2464 
2465 	set_user_nice(current, RESCUER_NICE_LEVEL);
2466 
2467 	/*
2468 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2469 	 * doesn't participate in concurrency management.
2470 	 */
2471 	set_pf_worker(true);
2472 repeat:
2473 	set_current_state(TASK_IDLE);
2474 
2475 	/*
2476 	 * By the time the rescuer is requested to stop, the workqueue
2477 	 * shouldn't have any work pending, but @wq->maydays may still have
2478 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2479 	 * all the work items before the rescuer got to them.  Go through
2480 	 * @wq->maydays processing before acting on should_stop so that the
2481 	 * list is always empty on exit.
2482 	 */
2483 	should_stop = kthread_should_stop();
2484 
2485 	/* see whether any pwq is asking for help */
2486 	spin_lock_irq(&wq_mayday_lock);
2487 
2488 	while (!list_empty(&wq->maydays)) {
2489 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2490 					struct pool_workqueue, mayday_node);
2491 		struct worker_pool *pool = pwq->pool;
2492 		struct work_struct *work, *n;
2493 		bool first = true;
2494 
2495 		__set_current_state(TASK_RUNNING);
2496 		list_del_init(&pwq->mayday_node);
2497 
2498 		spin_unlock_irq(&wq_mayday_lock);
2499 
2500 		worker_attach_to_pool(rescuer, pool);
2501 
2502 		spin_lock_irq(&pool->lock);
2503 
2504 		/*
2505 		 * Slurp in all works issued via this workqueue and
2506 		 * process'em.
2507 		 */
2508 		WARN_ON_ONCE(!list_empty(scheduled));
2509 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2510 			if (get_work_pwq(work) == pwq) {
2511 				if (first)
2512 					pool->watchdog_ts = jiffies;
2513 				move_linked_works(work, scheduled, &n);
2514 			}
2515 			first = false;
2516 		}
2517 
2518 		if (!list_empty(scheduled)) {
2519 			process_scheduled_works(rescuer);
2520 
2521 			/*
2522 			 * The above execution of rescued work items could
2523 			 * have created more to rescue through
2524 			 * pwq_activate_first_delayed() or chained
2525 			 * queueing.  Let's put @pwq back on mayday list so
2526 			 * that such back-to-back work items, which may be
2527 			 * being used to relieve memory pressure, don't
2528 			 * incur MAYDAY_INTERVAL delay inbetween.
2529 			 */
2530 			if (need_to_create_worker(pool)) {
2531 				spin_lock(&wq_mayday_lock);
2532 				/*
2533 				 * Queue iff we aren't racing destruction
2534 				 * and somebody else hasn't queued it already.
2535 				 */
2536 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2537 					get_pwq(pwq);
2538 					list_add_tail(&pwq->mayday_node, &wq->maydays);
2539 				}
2540 				spin_unlock(&wq_mayday_lock);
2541 			}
2542 		}
2543 
2544 		/*
2545 		 * Put the reference grabbed by send_mayday().  @pool won't
2546 		 * go away while we're still attached to it.
2547 		 */
2548 		put_pwq(pwq);
2549 
2550 		/*
2551 		 * Leave this pool.  If need_more_worker() is %true, notify a
2552 		 * regular worker; otherwise, we end up with 0 concurrency
2553 		 * and stalling the execution.
2554 		 */
2555 		if (need_more_worker(pool))
2556 			wake_up_worker(pool);
2557 
2558 		spin_unlock_irq(&pool->lock);
2559 
2560 		worker_detach_from_pool(rescuer);
2561 
2562 		spin_lock_irq(&wq_mayday_lock);
2563 	}
2564 
2565 	spin_unlock_irq(&wq_mayday_lock);
2566 
2567 	if (should_stop) {
2568 		__set_current_state(TASK_RUNNING);
2569 		set_pf_worker(false);
2570 		return 0;
2571 	}
2572 
2573 	/* rescuers should never participate in concurrency management */
2574 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2575 	schedule();
2576 	goto repeat;
2577 }
2578 
2579 /**
2580  * check_flush_dependency - check for flush dependency sanity
2581  * @target_wq: workqueue being flushed
2582  * @target_work: work item being flushed (NULL for workqueue flushes)
2583  *
2584  * %current is trying to flush the whole @target_wq or @target_work on it.
2585  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2586  * reclaiming memory or running on a workqueue which doesn't have
2587  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2588  * a deadlock.
2589  */
2590 static void check_flush_dependency(struct workqueue_struct *target_wq,
2591 				   struct work_struct *target_work)
2592 {
2593 	work_func_t target_func = target_work ? target_work->func : NULL;
2594 	struct worker *worker;
2595 
2596 	if (target_wq->flags & WQ_MEM_RECLAIM)
2597 		return;
2598 
2599 	worker = current_wq_worker();
2600 
2601 	WARN_ONCE(current->flags & PF_MEMALLOC,
2602 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2603 		  current->pid, current->comm, target_wq->name, target_func);
2604 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2605 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2606 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2607 		  worker->current_pwq->wq->name, worker->current_func,
2608 		  target_wq->name, target_func);
2609 }
2610 
2611 struct wq_barrier {
2612 	struct work_struct	work;
2613 	struct completion	done;
2614 	struct task_struct	*task;	/* purely informational */
2615 };
2616 
2617 static void wq_barrier_func(struct work_struct *work)
2618 {
2619 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2620 	complete(&barr->done);
2621 }
2622 
2623 /**
2624  * insert_wq_barrier - insert a barrier work
2625  * @pwq: pwq to insert barrier into
2626  * @barr: wq_barrier to insert
2627  * @target: target work to attach @barr to
2628  * @worker: worker currently executing @target, NULL if @target is not executing
2629  *
2630  * @barr is linked to @target such that @barr is completed only after
2631  * @target finishes execution.  Please note that the ordering
2632  * guarantee is observed only with respect to @target and on the local
2633  * cpu.
2634  *
2635  * Currently, a queued barrier can't be canceled.  This is because
2636  * try_to_grab_pending() can't determine whether the work to be
2637  * grabbed is at the head of the queue and thus can't clear LINKED
2638  * flag of the previous work while there must be a valid next work
2639  * after a work with LINKED flag set.
2640  *
2641  * Note that when @worker is non-NULL, @target may be modified
2642  * underneath us, so we can't reliably determine pwq from @target.
2643  *
2644  * CONTEXT:
2645  * spin_lock_irq(pool->lock).
2646  */
2647 static void insert_wq_barrier(struct pool_workqueue *pwq,
2648 			      struct wq_barrier *barr,
2649 			      struct work_struct *target, struct worker *worker)
2650 {
2651 	struct list_head *head;
2652 	unsigned int linked = 0;
2653 
2654 	/*
2655 	 * debugobject calls are safe here even with pool->lock locked
2656 	 * as we know for sure that this will not trigger any of the
2657 	 * checks and call back into the fixup functions where we
2658 	 * might deadlock.
2659 	 */
2660 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2661 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2662 
2663 	init_completion_map(&barr->done, &target->lockdep_map);
2664 
2665 	barr->task = current;
2666 
2667 	/*
2668 	 * If @target is currently being executed, schedule the
2669 	 * barrier to the worker; otherwise, put it after @target.
2670 	 */
2671 	if (worker)
2672 		head = worker->scheduled.next;
2673 	else {
2674 		unsigned long *bits = work_data_bits(target);
2675 
2676 		head = target->entry.next;
2677 		/* there can already be other linked works, inherit and set */
2678 		linked = *bits & WORK_STRUCT_LINKED;
2679 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2680 	}
2681 
2682 	debug_work_activate(&barr->work);
2683 	insert_work(pwq, &barr->work, head,
2684 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2685 }
2686 
2687 /**
2688  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2689  * @wq: workqueue being flushed
2690  * @flush_color: new flush color, < 0 for no-op
2691  * @work_color: new work color, < 0 for no-op
2692  *
2693  * Prepare pwqs for workqueue flushing.
2694  *
2695  * If @flush_color is non-negative, flush_color on all pwqs should be
2696  * -1.  If no pwq has in-flight commands at the specified color, all
2697  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2698  * has in flight commands, its pwq->flush_color is set to
2699  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2700  * wakeup logic is armed and %true is returned.
2701  *
2702  * The caller should have initialized @wq->first_flusher prior to
2703  * calling this function with non-negative @flush_color.  If
2704  * @flush_color is negative, no flush color update is done and %false
2705  * is returned.
2706  *
2707  * If @work_color is non-negative, all pwqs should have the same
2708  * work_color which is previous to @work_color and all will be
2709  * advanced to @work_color.
2710  *
2711  * CONTEXT:
2712  * mutex_lock(wq->mutex).
2713  *
2714  * Return:
2715  * %true if @flush_color >= 0 and there's something to flush.  %false
2716  * otherwise.
2717  */
2718 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2719 				      int flush_color, int work_color)
2720 {
2721 	bool wait = false;
2722 	struct pool_workqueue *pwq;
2723 
2724 	if (flush_color >= 0) {
2725 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2726 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2727 	}
2728 
2729 	for_each_pwq(pwq, wq) {
2730 		struct worker_pool *pool = pwq->pool;
2731 
2732 		spin_lock_irq(&pool->lock);
2733 
2734 		if (flush_color >= 0) {
2735 			WARN_ON_ONCE(pwq->flush_color != -1);
2736 
2737 			if (pwq->nr_in_flight[flush_color]) {
2738 				pwq->flush_color = flush_color;
2739 				atomic_inc(&wq->nr_pwqs_to_flush);
2740 				wait = true;
2741 			}
2742 		}
2743 
2744 		if (work_color >= 0) {
2745 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2746 			pwq->work_color = work_color;
2747 		}
2748 
2749 		spin_unlock_irq(&pool->lock);
2750 	}
2751 
2752 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2753 		complete(&wq->first_flusher->done);
2754 
2755 	return wait;
2756 }
2757 
2758 /**
2759  * flush_workqueue - ensure that any scheduled work has run to completion.
2760  * @wq: workqueue to flush
2761  *
2762  * This function sleeps until all work items which were queued on entry
2763  * have finished execution, but it is not livelocked by new incoming ones.
2764  */
2765 void flush_workqueue(struct workqueue_struct *wq)
2766 {
2767 	struct wq_flusher this_flusher = {
2768 		.list = LIST_HEAD_INIT(this_flusher.list),
2769 		.flush_color = -1,
2770 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2771 	};
2772 	int next_color;
2773 
2774 	if (WARN_ON(!wq_online))
2775 		return;
2776 
2777 	lock_map_acquire(&wq->lockdep_map);
2778 	lock_map_release(&wq->lockdep_map);
2779 
2780 	mutex_lock(&wq->mutex);
2781 
2782 	/*
2783 	 * Start-to-wait phase
2784 	 */
2785 	next_color = work_next_color(wq->work_color);
2786 
2787 	if (next_color != wq->flush_color) {
2788 		/*
2789 		 * Color space is not full.  The current work_color
2790 		 * becomes our flush_color and work_color is advanced
2791 		 * by one.
2792 		 */
2793 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2794 		this_flusher.flush_color = wq->work_color;
2795 		wq->work_color = next_color;
2796 
2797 		if (!wq->first_flusher) {
2798 			/* no flush in progress, become the first flusher */
2799 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2800 
2801 			wq->first_flusher = &this_flusher;
2802 
2803 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2804 						       wq->work_color)) {
2805 				/* nothing to flush, done */
2806 				wq->flush_color = next_color;
2807 				wq->first_flusher = NULL;
2808 				goto out_unlock;
2809 			}
2810 		} else {
2811 			/* wait in queue */
2812 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2813 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2814 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2815 		}
2816 	} else {
2817 		/*
2818 		 * Oops, color space is full, wait on overflow queue.
2819 		 * The next flush completion will assign us
2820 		 * flush_color and transfer to flusher_queue.
2821 		 */
2822 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2823 	}
2824 
2825 	check_flush_dependency(wq, NULL);
2826 
2827 	mutex_unlock(&wq->mutex);
2828 
2829 	wait_for_completion(&this_flusher.done);
2830 
2831 	/*
2832 	 * Wake-up-and-cascade phase
2833 	 *
2834 	 * First flushers are responsible for cascading flushes and
2835 	 * handling overflow.  Non-first flushers can simply return.
2836 	 */
2837 	if (wq->first_flusher != &this_flusher)
2838 		return;
2839 
2840 	mutex_lock(&wq->mutex);
2841 
2842 	/* we might have raced, check again with mutex held */
2843 	if (wq->first_flusher != &this_flusher)
2844 		goto out_unlock;
2845 
2846 	wq->first_flusher = NULL;
2847 
2848 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2849 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2850 
2851 	while (true) {
2852 		struct wq_flusher *next, *tmp;
2853 
2854 		/* complete all the flushers sharing the current flush color */
2855 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2856 			if (next->flush_color != wq->flush_color)
2857 				break;
2858 			list_del_init(&next->list);
2859 			complete(&next->done);
2860 		}
2861 
2862 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2863 			     wq->flush_color != work_next_color(wq->work_color));
2864 
2865 		/* this flush_color is finished, advance by one */
2866 		wq->flush_color = work_next_color(wq->flush_color);
2867 
2868 		/* one color has been freed, handle overflow queue */
2869 		if (!list_empty(&wq->flusher_overflow)) {
2870 			/*
2871 			 * Assign the same color to all overflowed
2872 			 * flushers, advance work_color and append to
2873 			 * flusher_queue.  This is the start-to-wait
2874 			 * phase for these overflowed flushers.
2875 			 */
2876 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2877 				tmp->flush_color = wq->work_color;
2878 
2879 			wq->work_color = work_next_color(wq->work_color);
2880 
2881 			list_splice_tail_init(&wq->flusher_overflow,
2882 					      &wq->flusher_queue);
2883 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2884 		}
2885 
2886 		if (list_empty(&wq->flusher_queue)) {
2887 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2888 			break;
2889 		}
2890 
2891 		/*
2892 		 * Need to flush more colors.  Make the next flusher
2893 		 * the new first flusher and arm pwqs.
2894 		 */
2895 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2896 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2897 
2898 		list_del_init(&next->list);
2899 		wq->first_flusher = next;
2900 
2901 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2902 			break;
2903 
2904 		/*
2905 		 * Meh... this color is already done, clear first
2906 		 * flusher and repeat cascading.
2907 		 */
2908 		wq->first_flusher = NULL;
2909 	}
2910 
2911 out_unlock:
2912 	mutex_unlock(&wq->mutex);
2913 }
2914 EXPORT_SYMBOL(flush_workqueue);
2915 
2916 /**
2917  * drain_workqueue - drain a workqueue
2918  * @wq: workqueue to drain
2919  *
2920  * Wait until the workqueue becomes empty.  While draining is in progress,
2921  * only chain queueing is allowed.  IOW, only currently pending or running
2922  * work items on @wq can queue further work items on it.  @wq is flushed
2923  * repeatedly until it becomes empty.  The number of flushing is determined
2924  * by the depth of chaining and should be relatively short.  Whine if it
2925  * takes too long.
2926  */
2927 void drain_workqueue(struct workqueue_struct *wq)
2928 {
2929 	unsigned int flush_cnt = 0;
2930 	struct pool_workqueue *pwq;
2931 
2932 	/*
2933 	 * __queue_work() needs to test whether there are drainers, is much
2934 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2935 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2936 	 */
2937 	mutex_lock(&wq->mutex);
2938 	if (!wq->nr_drainers++)
2939 		wq->flags |= __WQ_DRAINING;
2940 	mutex_unlock(&wq->mutex);
2941 reflush:
2942 	flush_workqueue(wq);
2943 
2944 	mutex_lock(&wq->mutex);
2945 
2946 	for_each_pwq(pwq, wq) {
2947 		bool drained;
2948 
2949 		spin_lock_irq(&pwq->pool->lock);
2950 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2951 		spin_unlock_irq(&pwq->pool->lock);
2952 
2953 		if (drained)
2954 			continue;
2955 
2956 		if (++flush_cnt == 10 ||
2957 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2958 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2959 				wq->name, flush_cnt);
2960 
2961 		mutex_unlock(&wq->mutex);
2962 		goto reflush;
2963 	}
2964 
2965 	if (!--wq->nr_drainers)
2966 		wq->flags &= ~__WQ_DRAINING;
2967 	mutex_unlock(&wq->mutex);
2968 }
2969 EXPORT_SYMBOL_GPL(drain_workqueue);
2970 
2971 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2972 			     bool from_cancel)
2973 {
2974 	struct worker *worker = NULL;
2975 	struct worker_pool *pool;
2976 	struct pool_workqueue *pwq;
2977 
2978 	might_sleep();
2979 
2980 	rcu_read_lock();
2981 	pool = get_work_pool(work);
2982 	if (!pool) {
2983 		rcu_read_unlock();
2984 		return false;
2985 	}
2986 
2987 	spin_lock_irq(&pool->lock);
2988 	/* see the comment in try_to_grab_pending() with the same code */
2989 	pwq = get_work_pwq(work);
2990 	if (pwq) {
2991 		if (unlikely(pwq->pool != pool))
2992 			goto already_gone;
2993 	} else {
2994 		worker = find_worker_executing_work(pool, work);
2995 		if (!worker)
2996 			goto already_gone;
2997 		pwq = worker->current_pwq;
2998 	}
2999 
3000 	check_flush_dependency(pwq->wq, work);
3001 
3002 	insert_wq_barrier(pwq, barr, work, worker);
3003 	spin_unlock_irq(&pool->lock);
3004 
3005 	/*
3006 	 * Force a lock recursion deadlock when using flush_work() inside a
3007 	 * single-threaded or rescuer equipped workqueue.
3008 	 *
3009 	 * For single threaded workqueues the deadlock happens when the work
3010 	 * is after the work issuing the flush_work(). For rescuer equipped
3011 	 * workqueues the deadlock happens when the rescuer stalls, blocking
3012 	 * forward progress.
3013 	 */
3014 	if (!from_cancel &&
3015 	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3016 		lock_map_acquire(&pwq->wq->lockdep_map);
3017 		lock_map_release(&pwq->wq->lockdep_map);
3018 	}
3019 	rcu_read_unlock();
3020 	return true;
3021 already_gone:
3022 	spin_unlock_irq(&pool->lock);
3023 	rcu_read_unlock();
3024 	return false;
3025 }
3026 
3027 static bool __flush_work(struct work_struct *work, bool from_cancel)
3028 {
3029 	struct wq_barrier barr;
3030 
3031 	if (WARN_ON(!wq_online))
3032 		return false;
3033 
3034 	if (WARN_ON(!work->func))
3035 		return false;
3036 
3037 	if (!from_cancel) {
3038 		lock_map_acquire(&work->lockdep_map);
3039 		lock_map_release(&work->lockdep_map);
3040 	}
3041 
3042 	if (start_flush_work(work, &barr, from_cancel)) {
3043 		wait_for_completion(&barr.done);
3044 		destroy_work_on_stack(&barr.work);
3045 		return true;
3046 	} else {
3047 		return false;
3048 	}
3049 }
3050 
3051 /**
3052  * flush_work - wait for a work to finish executing the last queueing instance
3053  * @work: the work to flush
3054  *
3055  * Wait until @work has finished execution.  @work is guaranteed to be idle
3056  * on return if it hasn't been requeued since flush started.
3057  *
3058  * Return:
3059  * %true if flush_work() waited for the work to finish execution,
3060  * %false if it was already idle.
3061  */
3062 bool flush_work(struct work_struct *work)
3063 {
3064 	return __flush_work(work, false);
3065 }
3066 EXPORT_SYMBOL_GPL(flush_work);
3067 
3068 struct cwt_wait {
3069 	wait_queue_entry_t		wait;
3070 	struct work_struct	*work;
3071 };
3072 
3073 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3074 {
3075 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3076 
3077 	if (cwait->work != key)
3078 		return 0;
3079 	return autoremove_wake_function(wait, mode, sync, key);
3080 }
3081 
3082 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3083 {
3084 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3085 	unsigned long flags;
3086 	int ret;
3087 
3088 	do {
3089 		ret = try_to_grab_pending(work, is_dwork, &flags);
3090 		/*
3091 		 * If someone else is already canceling, wait for it to
3092 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3093 		 * because we may get scheduled between @work's completion
3094 		 * and the other canceling task resuming and clearing
3095 		 * CANCELING - flush_work() will return false immediately
3096 		 * as @work is no longer busy, try_to_grab_pending() will
3097 		 * return -ENOENT as @work is still being canceled and the
3098 		 * other canceling task won't be able to clear CANCELING as
3099 		 * we're hogging the CPU.
3100 		 *
3101 		 * Let's wait for completion using a waitqueue.  As this
3102 		 * may lead to the thundering herd problem, use a custom
3103 		 * wake function which matches @work along with exclusive
3104 		 * wait and wakeup.
3105 		 */
3106 		if (unlikely(ret == -ENOENT)) {
3107 			struct cwt_wait cwait;
3108 
3109 			init_wait(&cwait.wait);
3110 			cwait.wait.func = cwt_wakefn;
3111 			cwait.work = work;
3112 
3113 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3114 						  TASK_UNINTERRUPTIBLE);
3115 			if (work_is_canceling(work))
3116 				schedule();
3117 			finish_wait(&cancel_waitq, &cwait.wait);
3118 		}
3119 	} while (unlikely(ret < 0));
3120 
3121 	/* tell other tasks trying to grab @work to back off */
3122 	mark_work_canceling(work);
3123 	local_irq_restore(flags);
3124 
3125 	/*
3126 	 * This allows canceling during early boot.  We know that @work
3127 	 * isn't executing.
3128 	 */
3129 	if (wq_online)
3130 		__flush_work(work, true);
3131 
3132 	clear_work_data(work);
3133 
3134 	/*
3135 	 * Paired with prepare_to_wait() above so that either
3136 	 * waitqueue_active() is visible here or !work_is_canceling() is
3137 	 * visible there.
3138 	 */
3139 	smp_mb();
3140 	if (waitqueue_active(&cancel_waitq))
3141 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3142 
3143 	return ret;
3144 }
3145 
3146 /**
3147  * cancel_work_sync - cancel a work and wait for it to finish
3148  * @work: the work to cancel
3149  *
3150  * Cancel @work and wait for its execution to finish.  This function
3151  * can be used even if the work re-queues itself or migrates to
3152  * another workqueue.  On return from this function, @work is
3153  * guaranteed to be not pending or executing on any CPU.
3154  *
3155  * cancel_work_sync(&delayed_work->work) must not be used for
3156  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3157  *
3158  * The caller must ensure that the workqueue on which @work was last
3159  * queued can't be destroyed before this function returns.
3160  *
3161  * Return:
3162  * %true if @work was pending, %false otherwise.
3163  */
3164 bool cancel_work_sync(struct work_struct *work)
3165 {
3166 	return __cancel_work_timer(work, false);
3167 }
3168 EXPORT_SYMBOL_GPL(cancel_work_sync);
3169 
3170 /**
3171  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3172  * @dwork: the delayed work to flush
3173  *
3174  * Delayed timer is cancelled and the pending work is queued for
3175  * immediate execution.  Like flush_work(), this function only
3176  * considers the last queueing instance of @dwork.
3177  *
3178  * Return:
3179  * %true if flush_work() waited for the work to finish execution,
3180  * %false if it was already idle.
3181  */
3182 bool flush_delayed_work(struct delayed_work *dwork)
3183 {
3184 	local_irq_disable();
3185 	if (del_timer_sync(&dwork->timer))
3186 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3187 	local_irq_enable();
3188 	return flush_work(&dwork->work);
3189 }
3190 EXPORT_SYMBOL(flush_delayed_work);
3191 
3192 /**
3193  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3194  * @rwork: the rcu work to flush
3195  *
3196  * Return:
3197  * %true if flush_rcu_work() waited for the work to finish execution,
3198  * %false if it was already idle.
3199  */
3200 bool flush_rcu_work(struct rcu_work *rwork)
3201 {
3202 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3203 		rcu_barrier();
3204 		flush_work(&rwork->work);
3205 		return true;
3206 	} else {
3207 		return flush_work(&rwork->work);
3208 	}
3209 }
3210 EXPORT_SYMBOL(flush_rcu_work);
3211 
3212 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3213 {
3214 	unsigned long flags;
3215 	int ret;
3216 
3217 	do {
3218 		ret = try_to_grab_pending(work, is_dwork, &flags);
3219 	} while (unlikely(ret == -EAGAIN));
3220 
3221 	if (unlikely(ret < 0))
3222 		return false;
3223 
3224 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3225 	local_irq_restore(flags);
3226 	return ret;
3227 }
3228 
3229 /**
3230  * cancel_delayed_work - cancel a delayed work
3231  * @dwork: delayed_work to cancel
3232  *
3233  * Kill off a pending delayed_work.
3234  *
3235  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3236  * pending.
3237  *
3238  * Note:
3239  * The work callback function may still be running on return, unless
3240  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3241  * use cancel_delayed_work_sync() to wait on it.
3242  *
3243  * This function is safe to call from any context including IRQ handler.
3244  */
3245 bool cancel_delayed_work(struct delayed_work *dwork)
3246 {
3247 	return __cancel_work(&dwork->work, true);
3248 }
3249 EXPORT_SYMBOL(cancel_delayed_work);
3250 
3251 /**
3252  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3253  * @dwork: the delayed work cancel
3254  *
3255  * This is cancel_work_sync() for delayed works.
3256  *
3257  * Return:
3258  * %true if @dwork was pending, %false otherwise.
3259  */
3260 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3261 {
3262 	return __cancel_work_timer(&dwork->work, true);
3263 }
3264 EXPORT_SYMBOL(cancel_delayed_work_sync);
3265 
3266 /**
3267  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3268  * @func: the function to call
3269  *
3270  * schedule_on_each_cpu() executes @func on each online CPU using the
3271  * system workqueue and blocks until all CPUs have completed.
3272  * schedule_on_each_cpu() is very slow.
3273  *
3274  * Return:
3275  * 0 on success, -errno on failure.
3276  */
3277 int schedule_on_each_cpu(work_func_t func)
3278 {
3279 	int cpu;
3280 	struct work_struct __percpu *works;
3281 
3282 	works = alloc_percpu(struct work_struct);
3283 	if (!works)
3284 		return -ENOMEM;
3285 
3286 	get_online_cpus();
3287 
3288 	for_each_online_cpu(cpu) {
3289 		struct work_struct *work = per_cpu_ptr(works, cpu);
3290 
3291 		INIT_WORK(work, func);
3292 		schedule_work_on(cpu, work);
3293 	}
3294 
3295 	for_each_online_cpu(cpu)
3296 		flush_work(per_cpu_ptr(works, cpu));
3297 
3298 	put_online_cpus();
3299 	free_percpu(works);
3300 	return 0;
3301 }
3302 
3303 /**
3304  * execute_in_process_context - reliably execute the routine with user context
3305  * @fn:		the function to execute
3306  * @ew:		guaranteed storage for the execute work structure (must
3307  *		be available when the work executes)
3308  *
3309  * Executes the function immediately if process context is available,
3310  * otherwise schedules the function for delayed execution.
3311  *
3312  * Return:	0 - function was executed
3313  *		1 - function was scheduled for execution
3314  */
3315 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3316 {
3317 	if (!in_interrupt()) {
3318 		fn(&ew->work);
3319 		return 0;
3320 	}
3321 
3322 	INIT_WORK(&ew->work, fn);
3323 	schedule_work(&ew->work);
3324 
3325 	return 1;
3326 }
3327 EXPORT_SYMBOL_GPL(execute_in_process_context);
3328 
3329 /**
3330  * free_workqueue_attrs - free a workqueue_attrs
3331  * @attrs: workqueue_attrs to free
3332  *
3333  * Undo alloc_workqueue_attrs().
3334  */
3335 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3336 {
3337 	if (attrs) {
3338 		free_cpumask_var(attrs->cpumask);
3339 		kfree(attrs);
3340 	}
3341 }
3342 
3343 /**
3344  * alloc_workqueue_attrs - allocate a workqueue_attrs
3345  *
3346  * Allocate a new workqueue_attrs, initialize with default settings and
3347  * return it.
3348  *
3349  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3350  */
3351 struct workqueue_attrs *alloc_workqueue_attrs(void)
3352 {
3353 	struct workqueue_attrs *attrs;
3354 
3355 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3356 	if (!attrs)
3357 		goto fail;
3358 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3359 		goto fail;
3360 
3361 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3362 	return attrs;
3363 fail:
3364 	free_workqueue_attrs(attrs);
3365 	return NULL;
3366 }
3367 
3368 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3369 				 const struct workqueue_attrs *from)
3370 {
3371 	to->nice = from->nice;
3372 	cpumask_copy(to->cpumask, from->cpumask);
3373 	/*
3374 	 * Unlike hash and equality test, this function doesn't ignore
3375 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3376 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3377 	 */
3378 	to->no_numa = from->no_numa;
3379 }
3380 
3381 /* hash value of the content of @attr */
3382 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3383 {
3384 	u32 hash = 0;
3385 
3386 	hash = jhash_1word(attrs->nice, hash);
3387 	hash = jhash(cpumask_bits(attrs->cpumask),
3388 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3389 	return hash;
3390 }
3391 
3392 /* content equality test */
3393 static bool wqattrs_equal(const struct workqueue_attrs *a,
3394 			  const struct workqueue_attrs *b)
3395 {
3396 	if (a->nice != b->nice)
3397 		return false;
3398 	if (!cpumask_equal(a->cpumask, b->cpumask))
3399 		return false;
3400 	return true;
3401 }
3402 
3403 /**
3404  * init_worker_pool - initialize a newly zalloc'd worker_pool
3405  * @pool: worker_pool to initialize
3406  *
3407  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3408  *
3409  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3410  * inside @pool proper are initialized and put_unbound_pool() can be called
3411  * on @pool safely to release it.
3412  */
3413 static int init_worker_pool(struct worker_pool *pool)
3414 {
3415 	spin_lock_init(&pool->lock);
3416 	pool->id = -1;
3417 	pool->cpu = -1;
3418 	pool->node = NUMA_NO_NODE;
3419 	pool->flags |= POOL_DISASSOCIATED;
3420 	pool->watchdog_ts = jiffies;
3421 	INIT_LIST_HEAD(&pool->worklist);
3422 	INIT_LIST_HEAD(&pool->idle_list);
3423 	hash_init(pool->busy_hash);
3424 
3425 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3426 
3427 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3428 
3429 	INIT_LIST_HEAD(&pool->workers);
3430 
3431 	ida_init(&pool->worker_ida);
3432 	INIT_HLIST_NODE(&pool->hash_node);
3433 	pool->refcnt = 1;
3434 
3435 	/* shouldn't fail above this point */
3436 	pool->attrs = alloc_workqueue_attrs();
3437 	if (!pool->attrs)
3438 		return -ENOMEM;
3439 	return 0;
3440 }
3441 
3442 #ifdef CONFIG_LOCKDEP
3443 static void wq_init_lockdep(struct workqueue_struct *wq)
3444 {
3445 	char *lock_name;
3446 
3447 	lockdep_register_key(&wq->key);
3448 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3449 	if (!lock_name)
3450 		lock_name = wq->name;
3451 
3452 	wq->lock_name = lock_name;
3453 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3454 }
3455 
3456 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3457 {
3458 	lockdep_unregister_key(&wq->key);
3459 }
3460 
3461 static void wq_free_lockdep(struct workqueue_struct *wq)
3462 {
3463 	if (wq->lock_name != wq->name)
3464 		kfree(wq->lock_name);
3465 }
3466 #else
3467 static void wq_init_lockdep(struct workqueue_struct *wq)
3468 {
3469 }
3470 
3471 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3472 {
3473 }
3474 
3475 static void wq_free_lockdep(struct workqueue_struct *wq)
3476 {
3477 }
3478 #endif
3479 
3480 static void rcu_free_wq(struct rcu_head *rcu)
3481 {
3482 	struct workqueue_struct *wq =
3483 		container_of(rcu, struct workqueue_struct, rcu);
3484 
3485 	wq_free_lockdep(wq);
3486 
3487 	if (!(wq->flags & WQ_UNBOUND))
3488 		free_percpu(wq->cpu_pwqs);
3489 	else
3490 		free_workqueue_attrs(wq->unbound_attrs);
3491 
3492 	kfree(wq->rescuer);
3493 	kfree(wq);
3494 }
3495 
3496 static void rcu_free_pool(struct rcu_head *rcu)
3497 {
3498 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3499 
3500 	ida_destroy(&pool->worker_ida);
3501 	free_workqueue_attrs(pool->attrs);
3502 	kfree(pool);
3503 }
3504 
3505 /**
3506  * put_unbound_pool - put a worker_pool
3507  * @pool: worker_pool to put
3508  *
3509  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3510  * safe manner.  get_unbound_pool() calls this function on its failure path
3511  * and this function should be able to release pools which went through,
3512  * successfully or not, init_worker_pool().
3513  *
3514  * Should be called with wq_pool_mutex held.
3515  */
3516 static void put_unbound_pool(struct worker_pool *pool)
3517 {
3518 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3519 	struct worker *worker;
3520 
3521 	lockdep_assert_held(&wq_pool_mutex);
3522 
3523 	if (--pool->refcnt)
3524 		return;
3525 
3526 	/* sanity checks */
3527 	if (WARN_ON(!(pool->cpu < 0)) ||
3528 	    WARN_ON(!list_empty(&pool->worklist)))
3529 		return;
3530 
3531 	/* release id and unhash */
3532 	if (pool->id >= 0)
3533 		idr_remove(&worker_pool_idr, pool->id);
3534 	hash_del(&pool->hash_node);
3535 
3536 	/*
3537 	 * Become the manager and destroy all workers.  This prevents
3538 	 * @pool's workers from blocking on attach_mutex.  We're the last
3539 	 * manager and @pool gets freed with the flag set.
3540 	 */
3541 	spin_lock_irq(&pool->lock);
3542 	wait_event_lock_irq(wq_manager_wait,
3543 			    !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3544 	pool->flags |= POOL_MANAGER_ACTIVE;
3545 
3546 	while ((worker = first_idle_worker(pool)))
3547 		destroy_worker(worker);
3548 	WARN_ON(pool->nr_workers || pool->nr_idle);
3549 	spin_unlock_irq(&pool->lock);
3550 
3551 	mutex_lock(&wq_pool_attach_mutex);
3552 	if (!list_empty(&pool->workers))
3553 		pool->detach_completion = &detach_completion;
3554 	mutex_unlock(&wq_pool_attach_mutex);
3555 
3556 	if (pool->detach_completion)
3557 		wait_for_completion(pool->detach_completion);
3558 
3559 	/* shut down the timers */
3560 	del_timer_sync(&pool->idle_timer);
3561 	del_timer_sync(&pool->mayday_timer);
3562 
3563 	/* RCU protected to allow dereferences from get_work_pool() */
3564 	call_rcu(&pool->rcu, rcu_free_pool);
3565 }
3566 
3567 /**
3568  * get_unbound_pool - get a worker_pool with the specified attributes
3569  * @attrs: the attributes of the worker_pool to get
3570  *
3571  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3572  * reference count and return it.  If there already is a matching
3573  * worker_pool, it will be used; otherwise, this function attempts to
3574  * create a new one.
3575  *
3576  * Should be called with wq_pool_mutex held.
3577  *
3578  * Return: On success, a worker_pool with the same attributes as @attrs.
3579  * On failure, %NULL.
3580  */
3581 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3582 {
3583 	u32 hash = wqattrs_hash(attrs);
3584 	struct worker_pool *pool;
3585 	int node;
3586 	int target_node = NUMA_NO_NODE;
3587 
3588 	lockdep_assert_held(&wq_pool_mutex);
3589 
3590 	/* do we already have a matching pool? */
3591 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3592 		if (wqattrs_equal(pool->attrs, attrs)) {
3593 			pool->refcnt++;
3594 			return pool;
3595 		}
3596 	}
3597 
3598 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3599 	if (wq_numa_enabled) {
3600 		for_each_node(node) {
3601 			if (cpumask_subset(attrs->cpumask,
3602 					   wq_numa_possible_cpumask[node])) {
3603 				target_node = node;
3604 				break;
3605 			}
3606 		}
3607 	}
3608 
3609 	/* nope, create a new one */
3610 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3611 	if (!pool || init_worker_pool(pool) < 0)
3612 		goto fail;
3613 
3614 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3615 	copy_workqueue_attrs(pool->attrs, attrs);
3616 	pool->node = target_node;
3617 
3618 	/*
3619 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3620 	 * 'struct workqueue_attrs' comments for detail.
3621 	 */
3622 	pool->attrs->no_numa = false;
3623 
3624 	if (worker_pool_assign_id(pool) < 0)
3625 		goto fail;
3626 
3627 	/* create and start the initial worker */
3628 	if (wq_online && !create_worker(pool))
3629 		goto fail;
3630 
3631 	/* install */
3632 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3633 
3634 	return pool;
3635 fail:
3636 	if (pool)
3637 		put_unbound_pool(pool);
3638 	return NULL;
3639 }
3640 
3641 static void rcu_free_pwq(struct rcu_head *rcu)
3642 {
3643 	kmem_cache_free(pwq_cache,
3644 			container_of(rcu, struct pool_workqueue, rcu));
3645 }
3646 
3647 /*
3648  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3649  * and needs to be destroyed.
3650  */
3651 static void pwq_unbound_release_workfn(struct work_struct *work)
3652 {
3653 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3654 						  unbound_release_work);
3655 	struct workqueue_struct *wq = pwq->wq;
3656 	struct worker_pool *pool = pwq->pool;
3657 	bool is_last;
3658 
3659 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3660 		return;
3661 
3662 	mutex_lock(&wq->mutex);
3663 	list_del_rcu(&pwq->pwqs_node);
3664 	is_last = list_empty(&wq->pwqs);
3665 	mutex_unlock(&wq->mutex);
3666 
3667 	mutex_lock(&wq_pool_mutex);
3668 	put_unbound_pool(pool);
3669 	mutex_unlock(&wq_pool_mutex);
3670 
3671 	call_rcu(&pwq->rcu, rcu_free_pwq);
3672 
3673 	/*
3674 	 * If we're the last pwq going away, @wq is already dead and no one
3675 	 * is gonna access it anymore.  Schedule RCU free.
3676 	 */
3677 	if (is_last) {
3678 		wq_unregister_lockdep(wq);
3679 		call_rcu(&wq->rcu, rcu_free_wq);
3680 	}
3681 }
3682 
3683 /**
3684  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3685  * @pwq: target pool_workqueue
3686  *
3687  * If @pwq isn't freezing, set @pwq->max_active to the associated
3688  * workqueue's saved_max_active and activate delayed work items
3689  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3690  */
3691 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3692 {
3693 	struct workqueue_struct *wq = pwq->wq;
3694 	bool freezable = wq->flags & WQ_FREEZABLE;
3695 	unsigned long flags;
3696 
3697 	/* for @wq->saved_max_active */
3698 	lockdep_assert_held(&wq->mutex);
3699 
3700 	/* fast exit for non-freezable wqs */
3701 	if (!freezable && pwq->max_active == wq->saved_max_active)
3702 		return;
3703 
3704 	/* this function can be called during early boot w/ irq disabled */
3705 	spin_lock_irqsave(&pwq->pool->lock, flags);
3706 
3707 	/*
3708 	 * During [un]freezing, the caller is responsible for ensuring that
3709 	 * this function is called at least once after @workqueue_freezing
3710 	 * is updated and visible.
3711 	 */
3712 	if (!freezable || !workqueue_freezing) {
3713 		pwq->max_active = wq->saved_max_active;
3714 
3715 		while (!list_empty(&pwq->delayed_works) &&
3716 		       pwq->nr_active < pwq->max_active)
3717 			pwq_activate_first_delayed(pwq);
3718 
3719 		/*
3720 		 * Need to kick a worker after thawed or an unbound wq's
3721 		 * max_active is bumped.  It's a slow path.  Do it always.
3722 		 */
3723 		wake_up_worker(pwq->pool);
3724 	} else {
3725 		pwq->max_active = 0;
3726 	}
3727 
3728 	spin_unlock_irqrestore(&pwq->pool->lock, flags);
3729 }
3730 
3731 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3732 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3733 		     struct worker_pool *pool)
3734 {
3735 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3736 
3737 	memset(pwq, 0, sizeof(*pwq));
3738 
3739 	pwq->pool = pool;
3740 	pwq->wq = wq;
3741 	pwq->flush_color = -1;
3742 	pwq->refcnt = 1;
3743 	INIT_LIST_HEAD(&pwq->delayed_works);
3744 	INIT_LIST_HEAD(&pwq->pwqs_node);
3745 	INIT_LIST_HEAD(&pwq->mayday_node);
3746 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3747 }
3748 
3749 /* sync @pwq with the current state of its associated wq and link it */
3750 static void link_pwq(struct pool_workqueue *pwq)
3751 {
3752 	struct workqueue_struct *wq = pwq->wq;
3753 
3754 	lockdep_assert_held(&wq->mutex);
3755 
3756 	/* may be called multiple times, ignore if already linked */
3757 	if (!list_empty(&pwq->pwqs_node))
3758 		return;
3759 
3760 	/* set the matching work_color */
3761 	pwq->work_color = wq->work_color;
3762 
3763 	/* sync max_active to the current setting */
3764 	pwq_adjust_max_active(pwq);
3765 
3766 	/* link in @pwq */
3767 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3768 }
3769 
3770 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3771 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3772 					const struct workqueue_attrs *attrs)
3773 {
3774 	struct worker_pool *pool;
3775 	struct pool_workqueue *pwq;
3776 
3777 	lockdep_assert_held(&wq_pool_mutex);
3778 
3779 	pool = get_unbound_pool(attrs);
3780 	if (!pool)
3781 		return NULL;
3782 
3783 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3784 	if (!pwq) {
3785 		put_unbound_pool(pool);
3786 		return NULL;
3787 	}
3788 
3789 	init_pwq(pwq, wq, pool);
3790 	return pwq;
3791 }
3792 
3793 /**
3794  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3795  * @attrs: the wq_attrs of the default pwq of the target workqueue
3796  * @node: the target NUMA node
3797  * @cpu_going_down: if >= 0, the CPU to consider as offline
3798  * @cpumask: outarg, the resulting cpumask
3799  *
3800  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3801  * @cpu_going_down is >= 0, that cpu is considered offline during
3802  * calculation.  The result is stored in @cpumask.
3803  *
3804  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3805  * enabled and @node has online CPUs requested by @attrs, the returned
3806  * cpumask is the intersection of the possible CPUs of @node and
3807  * @attrs->cpumask.
3808  *
3809  * The caller is responsible for ensuring that the cpumask of @node stays
3810  * stable.
3811  *
3812  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3813  * %false if equal.
3814  */
3815 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3816 				 int cpu_going_down, cpumask_t *cpumask)
3817 {
3818 	if (!wq_numa_enabled || attrs->no_numa)
3819 		goto use_dfl;
3820 
3821 	/* does @node have any online CPUs @attrs wants? */
3822 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3823 	if (cpu_going_down >= 0)
3824 		cpumask_clear_cpu(cpu_going_down, cpumask);
3825 
3826 	if (cpumask_empty(cpumask))
3827 		goto use_dfl;
3828 
3829 	/* yeap, return possible CPUs in @node that @attrs wants */
3830 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3831 
3832 	if (cpumask_empty(cpumask)) {
3833 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3834 				"possible intersect\n");
3835 		return false;
3836 	}
3837 
3838 	return !cpumask_equal(cpumask, attrs->cpumask);
3839 
3840 use_dfl:
3841 	cpumask_copy(cpumask, attrs->cpumask);
3842 	return false;
3843 }
3844 
3845 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3846 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3847 						   int node,
3848 						   struct pool_workqueue *pwq)
3849 {
3850 	struct pool_workqueue *old_pwq;
3851 
3852 	lockdep_assert_held(&wq_pool_mutex);
3853 	lockdep_assert_held(&wq->mutex);
3854 
3855 	/* link_pwq() can handle duplicate calls */
3856 	link_pwq(pwq);
3857 
3858 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3859 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3860 	return old_pwq;
3861 }
3862 
3863 /* context to store the prepared attrs & pwqs before applying */
3864 struct apply_wqattrs_ctx {
3865 	struct workqueue_struct	*wq;		/* target workqueue */
3866 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3867 	struct list_head	list;		/* queued for batching commit */
3868 	struct pool_workqueue	*dfl_pwq;
3869 	struct pool_workqueue	*pwq_tbl[];
3870 };
3871 
3872 /* free the resources after success or abort */
3873 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3874 {
3875 	if (ctx) {
3876 		int node;
3877 
3878 		for_each_node(node)
3879 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3880 		put_pwq_unlocked(ctx->dfl_pwq);
3881 
3882 		free_workqueue_attrs(ctx->attrs);
3883 
3884 		kfree(ctx);
3885 	}
3886 }
3887 
3888 /* allocate the attrs and pwqs for later installation */
3889 static struct apply_wqattrs_ctx *
3890 apply_wqattrs_prepare(struct workqueue_struct *wq,
3891 		      const struct workqueue_attrs *attrs)
3892 {
3893 	struct apply_wqattrs_ctx *ctx;
3894 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3895 	int node;
3896 
3897 	lockdep_assert_held(&wq_pool_mutex);
3898 
3899 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3900 
3901 	new_attrs = alloc_workqueue_attrs();
3902 	tmp_attrs = alloc_workqueue_attrs();
3903 	if (!ctx || !new_attrs || !tmp_attrs)
3904 		goto out_free;
3905 
3906 	/*
3907 	 * Calculate the attrs of the default pwq.
3908 	 * If the user configured cpumask doesn't overlap with the
3909 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3910 	 */
3911 	copy_workqueue_attrs(new_attrs, attrs);
3912 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3913 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3914 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3915 
3916 	/*
3917 	 * We may create multiple pwqs with differing cpumasks.  Make a
3918 	 * copy of @new_attrs which will be modified and used to obtain
3919 	 * pools.
3920 	 */
3921 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3922 
3923 	/*
3924 	 * If something goes wrong during CPU up/down, we'll fall back to
3925 	 * the default pwq covering whole @attrs->cpumask.  Always create
3926 	 * it even if we don't use it immediately.
3927 	 */
3928 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3929 	if (!ctx->dfl_pwq)
3930 		goto out_free;
3931 
3932 	for_each_node(node) {
3933 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3934 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3935 			if (!ctx->pwq_tbl[node])
3936 				goto out_free;
3937 		} else {
3938 			ctx->dfl_pwq->refcnt++;
3939 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3940 		}
3941 	}
3942 
3943 	/* save the user configured attrs and sanitize it. */
3944 	copy_workqueue_attrs(new_attrs, attrs);
3945 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3946 	ctx->attrs = new_attrs;
3947 
3948 	ctx->wq = wq;
3949 	free_workqueue_attrs(tmp_attrs);
3950 	return ctx;
3951 
3952 out_free:
3953 	free_workqueue_attrs(tmp_attrs);
3954 	free_workqueue_attrs(new_attrs);
3955 	apply_wqattrs_cleanup(ctx);
3956 	return NULL;
3957 }
3958 
3959 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3960 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3961 {
3962 	int node;
3963 
3964 	/* all pwqs have been created successfully, let's install'em */
3965 	mutex_lock(&ctx->wq->mutex);
3966 
3967 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3968 
3969 	/* save the previous pwq and install the new one */
3970 	for_each_node(node)
3971 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3972 							  ctx->pwq_tbl[node]);
3973 
3974 	/* @dfl_pwq might not have been used, ensure it's linked */
3975 	link_pwq(ctx->dfl_pwq);
3976 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3977 
3978 	mutex_unlock(&ctx->wq->mutex);
3979 }
3980 
3981 static void apply_wqattrs_lock(void)
3982 {
3983 	/* CPUs should stay stable across pwq creations and installations */
3984 	get_online_cpus();
3985 	mutex_lock(&wq_pool_mutex);
3986 }
3987 
3988 static void apply_wqattrs_unlock(void)
3989 {
3990 	mutex_unlock(&wq_pool_mutex);
3991 	put_online_cpus();
3992 }
3993 
3994 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3995 					const struct workqueue_attrs *attrs)
3996 {
3997 	struct apply_wqattrs_ctx *ctx;
3998 
3999 	/* only unbound workqueues can change attributes */
4000 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4001 		return -EINVAL;
4002 
4003 	/* creating multiple pwqs breaks ordering guarantee */
4004 	if (!list_empty(&wq->pwqs)) {
4005 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4006 			return -EINVAL;
4007 
4008 		wq->flags &= ~__WQ_ORDERED;
4009 	}
4010 
4011 	ctx = apply_wqattrs_prepare(wq, attrs);
4012 	if (!ctx)
4013 		return -ENOMEM;
4014 
4015 	/* the ctx has been prepared successfully, let's commit it */
4016 	apply_wqattrs_commit(ctx);
4017 	apply_wqattrs_cleanup(ctx);
4018 
4019 	return 0;
4020 }
4021 
4022 /**
4023  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4024  * @wq: the target workqueue
4025  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4026  *
4027  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
4028  * machines, this function maps a separate pwq to each NUMA node with
4029  * possibles CPUs in @attrs->cpumask so that work items are affine to the
4030  * NUMA node it was issued on.  Older pwqs are released as in-flight work
4031  * items finish.  Note that a work item which repeatedly requeues itself
4032  * back-to-back will stay on its current pwq.
4033  *
4034  * Performs GFP_KERNEL allocations.
4035  *
4036  * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4037  *
4038  * Return: 0 on success and -errno on failure.
4039  */
4040 int apply_workqueue_attrs(struct workqueue_struct *wq,
4041 			  const struct workqueue_attrs *attrs)
4042 {
4043 	int ret;
4044 
4045 	lockdep_assert_cpus_held();
4046 
4047 	mutex_lock(&wq_pool_mutex);
4048 	ret = apply_workqueue_attrs_locked(wq, attrs);
4049 	mutex_unlock(&wq_pool_mutex);
4050 
4051 	return ret;
4052 }
4053 
4054 /**
4055  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4056  * @wq: the target workqueue
4057  * @cpu: the CPU coming up or going down
4058  * @online: whether @cpu is coming up or going down
4059  *
4060  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4061  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4062  * @wq accordingly.
4063  *
4064  * If NUMA affinity can't be adjusted due to memory allocation failure, it
4065  * falls back to @wq->dfl_pwq which may not be optimal but is always
4066  * correct.
4067  *
4068  * Note that when the last allowed CPU of a NUMA node goes offline for a
4069  * workqueue with a cpumask spanning multiple nodes, the workers which were
4070  * already executing the work items for the workqueue will lose their CPU
4071  * affinity and may execute on any CPU.  This is similar to how per-cpu
4072  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4073  * affinity, it's the user's responsibility to flush the work item from
4074  * CPU_DOWN_PREPARE.
4075  */
4076 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4077 				   bool online)
4078 {
4079 	int node = cpu_to_node(cpu);
4080 	int cpu_off = online ? -1 : cpu;
4081 	struct pool_workqueue *old_pwq = NULL, *pwq;
4082 	struct workqueue_attrs *target_attrs;
4083 	cpumask_t *cpumask;
4084 
4085 	lockdep_assert_held(&wq_pool_mutex);
4086 
4087 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4088 	    wq->unbound_attrs->no_numa)
4089 		return;
4090 
4091 	/*
4092 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4093 	 * Let's use a preallocated one.  The following buf is protected by
4094 	 * CPU hotplug exclusion.
4095 	 */
4096 	target_attrs = wq_update_unbound_numa_attrs_buf;
4097 	cpumask = target_attrs->cpumask;
4098 
4099 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4100 	pwq = unbound_pwq_by_node(wq, node);
4101 
4102 	/*
4103 	 * Let's determine what needs to be done.  If the target cpumask is
4104 	 * different from the default pwq's, we need to compare it to @pwq's
4105 	 * and create a new one if they don't match.  If the target cpumask
4106 	 * equals the default pwq's, the default pwq should be used.
4107 	 */
4108 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4109 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4110 			return;
4111 	} else {
4112 		goto use_dfl_pwq;
4113 	}
4114 
4115 	/* create a new pwq */
4116 	pwq = alloc_unbound_pwq(wq, target_attrs);
4117 	if (!pwq) {
4118 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4119 			wq->name);
4120 		goto use_dfl_pwq;
4121 	}
4122 
4123 	/* Install the new pwq. */
4124 	mutex_lock(&wq->mutex);
4125 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4126 	goto out_unlock;
4127 
4128 use_dfl_pwq:
4129 	mutex_lock(&wq->mutex);
4130 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
4131 	get_pwq(wq->dfl_pwq);
4132 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4133 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4134 out_unlock:
4135 	mutex_unlock(&wq->mutex);
4136 	put_pwq_unlocked(old_pwq);
4137 }
4138 
4139 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4140 {
4141 	bool highpri = wq->flags & WQ_HIGHPRI;
4142 	int cpu, ret;
4143 
4144 	if (!(wq->flags & WQ_UNBOUND)) {
4145 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4146 		if (!wq->cpu_pwqs)
4147 			return -ENOMEM;
4148 
4149 		for_each_possible_cpu(cpu) {
4150 			struct pool_workqueue *pwq =
4151 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4152 			struct worker_pool *cpu_pools =
4153 				per_cpu(cpu_worker_pools, cpu);
4154 
4155 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4156 
4157 			mutex_lock(&wq->mutex);
4158 			link_pwq(pwq);
4159 			mutex_unlock(&wq->mutex);
4160 		}
4161 		return 0;
4162 	}
4163 
4164 	get_online_cpus();
4165 	if (wq->flags & __WQ_ORDERED) {
4166 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4167 		/* there should only be single pwq for ordering guarantee */
4168 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4169 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4170 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4171 	} else {
4172 		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4173 	}
4174 	put_online_cpus();
4175 
4176 	return ret;
4177 }
4178 
4179 static int wq_clamp_max_active(int max_active, unsigned int flags,
4180 			       const char *name)
4181 {
4182 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4183 
4184 	if (max_active < 1 || max_active > lim)
4185 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4186 			max_active, name, 1, lim);
4187 
4188 	return clamp_val(max_active, 1, lim);
4189 }
4190 
4191 /*
4192  * Workqueues which may be used during memory reclaim should have a rescuer
4193  * to guarantee forward progress.
4194  */
4195 static int init_rescuer(struct workqueue_struct *wq)
4196 {
4197 	struct worker *rescuer;
4198 	int ret;
4199 
4200 	if (!(wq->flags & WQ_MEM_RECLAIM))
4201 		return 0;
4202 
4203 	rescuer = alloc_worker(NUMA_NO_NODE);
4204 	if (!rescuer)
4205 		return -ENOMEM;
4206 
4207 	rescuer->rescue_wq = wq;
4208 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4209 	ret = PTR_ERR_OR_ZERO(rescuer->task);
4210 	if (ret) {
4211 		kfree(rescuer);
4212 		return ret;
4213 	}
4214 
4215 	wq->rescuer = rescuer;
4216 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4217 	wake_up_process(rescuer->task);
4218 
4219 	return 0;
4220 }
4221 
4222 __printf(1, 4)
4223 struct workqueue_struct *alloc_workqueue(const char *fmt,
4224 					 unsigned int flags,
4225 					 int max_active, ...)
4226 {
4227 	size_t tbl_size = 0;
4228 	va_list args;
4229 	struct workqueue_struct *wq;
4230 	struct pool_workqueue *pwq;
4231 
4232 	/*
4233 	 * Unbound && max_active == 1 used to imply ordered, which is no
4234 	 * longer the case on NUMA machines due to per-node pools.  While
4235 	 * alloc_ordered_workqueue() is the right way to create an ordered
4236 	 * workqueue, keep the previous behavior to avoid subtle breakages
4237 	 * on NUMA.
4238 	 */
4239 	if ((flags & WQ_UNBOUND) && max_active == 1)
4240 		flags |= __WQ_ORDERED;
4241 
4242 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4243 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4244 		flags |= WQ_UNBOUND;
4245 
4246 	/* allocate wq and format name */
4247 	if (flags & WQ_UNBOUND)
4248 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4249 
4250 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4251 	if (!wq)
4252 		return NULL;
4253 
4254 	if (flags & WQ_UNBOUND) {
4255 		wq->unbound_attrs = alloc_workqueue_attrs();
4256 		if (!wq->unbound_attrs)
4257 			goto err_free_wq;
4258 	}
4259 
4260 	va_start(args, max_active);
4261 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4262 	va_end(args);
4263 
4264 	max_active = max_active ?: WQ_DFL_ACTIVE;
4265 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4266 
4267 	/* init wq */
4268 	wq->flags = flags;
4269 	wq->saved_max_active = max_active;
4270 	mutex_init(&wq->mutex);
4271 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4272 	INIT_LIST_HEAD(&wq->pwqs);
4273 	INIT_LIST_HEAD(&wq->flusher_queue);
4274 	INIT_LIST_HEAD(&wq->flusher_overflow);
4275 	INIT_LIST_HEAD(&wq->maydays);
4276 
4277 	wq_init_lockdep(wq);
4278 	INIT_LIST_HEAD(&wq->list);
4279 
4280 	if (alloc_and_link_pwqs(wq) < 0)
4281 		goto err_unreg_lockdep;
4282 
4283 	if (wq_online && init_rescuer(wq) < 0)
4284 		goto err_destroy;
4285 
4286 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4287 		goto err_destroy;
4288 
4289 	/*
4290 	 * wq_pool_mutex protects global freeze state and workqueues list.
4291 	 * Grab it, adjust max_active and add the new @wq to workqueues
4292 	 * list.
4293 	 */
4294 	mutex_lock(&wq_pool_mutex);
4295 
4296 	mutex_lock(&wq->mutex);
4297 	for_each_pwq(pwq, wq)
4298 		pwq_adjust_max_active(pwq);
4299 	mutex_unlock(&wq->mutex);
4300 
4301 	list_add_tail_rcu(&wq->list, &workqueues);
4302 
4303 	mutex_unlock(&wq_pool_mutex);
4304 
4305 	return wq;
4306 
4307 err_unreg_lockdep:
4308 	wq_unregister_lockdep(wq);
4309 	wq_free_lockdep(wq);
4310 err_free_wq:
4311 	free_workqueue_attrs(wq->unbound_attrs);
4312 	kfree(wq);
4313 	return NULL;
4314 err_destroy:
4315 	destroy_workqueue(wq);
4316 	return NULL;
4317 }
4318 EXPORT_SYMBOL_GPL(alloc_workqueue);
4319 
4320 static bool pwq_busy(struct pool_workqueue *pwq)
4321 {
4322 	int i;
4323 
4324 	for (i = 0; i < WORK_NR_COLORS; i++)
4325 		if (pwq->nr_in_flight[i])
4326 			return true;
4327 
4328 	if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4329 		return true;
4330 	if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4331 		return true;
4332 
4333 	return false;
4334 }
4335 
4336 /**
4337  * destroy_workqueue - safely terminate a workqueue
4338  * @wq: target workqueue
4339  *
4340  * Safely destroy a workqueue. All work currently pending will be done first.
4341  */
4342 void destroy_workqueue(struct workqueue_struct *wq)
4343 {
4344 	struct pool_workqueue *pwq;
4345 	int node;
4346 
4347 	/*
4348 	 * Remove it from sysfs first so that sanity check failure doesn't
4349 	 * lead to sysfs name conflicts.
4350 	 */
4351 	workqueue_sysfs_unregister(wq);
4352 
4353 	/* drain it before proceeding with destruction */
4354 	drain_workqueue(wq);
4355 
4356 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4357 	if (wq->rescuer) {
4358 		struct worker *rescuer = wq->rescuer;
4359 
4360 		/* this prevents new queueing */
4361 		spin_lock_irq(&wq_mayday_lock);
4362 		wq->rescuer = NULL;
4363 		spin_unlock_irq(&wq_mayday_lock);
4364 
4365 		/* rescuer will empty maydays list before exiting */
4366 		kthread_stop(rescuer->task);
4367 		kfree(rescuer);
4368 	}
4369 
4370 	/*
4371 	 * Sanity checks - grab all the locks so that we wait for all
4372 	 * in-flight operations which may do put_pwq().
4373 	 */
4374 	mutex_lock(&wq_pool_mutex);
4375 	mutex_lock(&wq->mutex);
4376 	for_each_pwq(pwq, wq) {
4377 		spin_lock_irq(&pwq->pool->lock);
4378 		if (WARN_ON(pwq_busy(pwq))) {
4379 			pr_warn("%s: %s has the following busy pwq\n",
4380 				__func__, wq->name);
4381 			show_pwq(pwq);
4382 			spin_unlock_irq(&pwq->pool->lock);
4383 			mutex_unlock(&wq->mutex);
4384 			mutex_unlock(&wq_pool_mutex);
4385 			show_workqueue_state();
4386 			return;
4387 		}
4388 		spin_unlock_irq(&pwq->pool->lock);
4389 	}
4390 	mutex_unlock(&wq->mutex);
4391 	mutex_unlock(&wq_pool_mutex);
4392 
4393 	/*
4394 	 * wq list is used to freeze wq, remove from list after
4395 	 * flushing is complete in case freeze races us.
4396 	 */
4397 	mutex_lock(&wq_pool_mutex);
4398 	list_del_rcu(&wq->list);
4399 	mutex_unlock(&wq_pool_mutex);
4400 
4401 	if (!(wq->flags & WQ_UNBOUND)) {
4402 		wq_unregister_lockdep(wq);
4403 		/*
4404 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4405 		 * schedule RCU free.
4406 		 */
4407 		call_rcu(&wq->rcu, rcu_free_wq);
4408 	} else {
4409 		/*
4410 		 * We're the sole accessor of @wq at this point.  Directly
4411 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4412 		 * @wq will be freed when the last pwq is released.
4413 		 */
4414 		for_each_node(node) {
4415 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4416 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4417 			put_pwq_unlocked(pwq);
4418 		}
4419 
4420 		/*
4421 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4422 		 * put.  Don't access it afterwards.
4423 		 */
4424 		pwq = wq->dfl_pwq;
4425 		wq->dfl_pwq = NULL;
4426 		put_pwq_unlocked(pwq);
4427 	}
4428 }
4429 EXPORT_SYMBOL_GPL(destroy_workqueue);
4430 
4431 /**
4432  * workqueue_set_max_active - adjust max_active of a workqueue
4433  * @wq: target workqueue
4434  * @max_active: new max_active value.
4435  *
4436  * Set max_active of @wq to @max_active.
4437  *
4438  * CONTEXT:
4439  * Don't call from IRQ context.
4440  */
4441 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4442 {
4443 	struct pool_workqueue *pwq;
4444 
4445 	/* disallow meddling with max_active for ordered workqueues */
4446 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4447 		return;
4448 
4449 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4450 
4451 	mutex_lock(&wq->mutex);
4452 
4453 	wq->flags &= ~__WQ_ORDERED;
4454 	wq->saved_max_active = max_active;
4455 
4456 	for_each_pwq(pwq, wq)
4457 		pwq_adjust_max_active(pwq);
4458 
4459 	mutex_unlock(&wq->mutex);
4460 }
4461 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4462 
4463 /**
4464  * current_work - retrieve %current task's work struct
4465  *
4466  * Determine if %current task is a workqueue worker and what it's working on.
4467  * Useful to find out the context that the %current task is running in.
4468  *
4469  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4470  */
4471 struct work_struct *current_work(void)
4472 {
4473 	struct worker *worker = current_wq_worker();
4474 
4475 	return worker ? worker->current_work : NULL;
4476 }
4477 EXPORT_SYMBOL(current_work);
4478 
4479 /**
4480  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4481  *
4482  * Determine whether %current is a workqueue rescuer.  Can be used from
4483  * work functions to determine whether it's being run off the rescuer task.
4484  *
4485  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4486  */
4487 bool current_is_workqueue_rescuer(void)
4488 {
4489 	struct worker *worker = current_wq_worker();
4490 
4491 	return worker && worker->rescue_wq;
4492 }
4493 
4494 /**
4495  * workqueue_congested - test whether a workqueue is congested
4496  * @cpu: CPU in question
4497  * @wq: target workqueue
4498  *
4499  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4500  * no synchronization around this function and the test result is
4501  * unreliable and only useful as advisory hints or for debugging.
4502  *
4503  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4504  * Note that both per-cpu and unbound workqueues may be associated with
4505  * multiple pool_workqueues which have separate congested states.  A
4506  * workqueue being congested on one CPU doesn't mean the workqueue is also
4507  * contested on other CPUs / NUMA nodes.
4508  *
4509  * Return:
4510  * %true if congested, %false otherwise.
4511  */
4512 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4513 {
4514 	struct pool_workqueue *pwq;
4515 	bool ret;
4516 
4517 	rcu_read_lock();
4518 	preempt_disable();
4519 
4520 	if (cpu == WORK_CPU_UNBOUND)
4521 		cpu = smp_processor_id();
4522 
4523 	if (!(wq->flags & WQ_UNBOUND))
4524 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4525 	else
4526 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4527 
4528 	ret = !list_empty(&pwq->delayed_works);
4529 	preempt_enable();
4530 	rcu_read_unlock();
4531 
4532 	return ret;
4533 }
4534 EXPORT_SYMBOL_GPL(workqueue_congested);
4535 
4536 /**
4537  * work_busy - test whether a work is currently pending or running
4538  * @work: the work to be tested
4539  *
4540  * Test whether @work is currently pending or running.  There is no
4541  * synchronization around this function and the test result is
4542  * unreliable and only useful as advisory hints or for debugging.
4543  *
4544  * Return:
4545  * OR'd bitmask of WORK_BUSY_* bits.
4546  */
4547 unsigned int work_busy(struct work_struct *work)
4548 {
4549 	struct worker_pool *pool;
4550 	unsigned long flags;
4551 	unsigned int ret = 0;
4552 
4553 	if (work_pending(work))
4554 		ret |= WORK_BUSY_PENDING;
4555 
4556 	rcu_read_lock();
4557 	pool = get_work_pool(work);
4558 	if (pool) {
4559 		spin_lock_irqsave(&pool->lock, flags);
4560 		if (find_worker_executing_work(pool, work))
4561 			ret |= WORK_BUSY_RUNNING;
4562 		spin_unlock_irqrestore(&pool->lock, flags);
4563 	}
4564 	rcu_read_unlock();
4565 
4566 	return ret;
4567 }
4568 EXPORT_SYMBOL_GPL(work_busy);
4569 
4570 /**
4571  * set_worker_desc - set description for the current work item
4572  * @fmt: printf-style format string
4573  * @...: arguments for the format string
4574  *
4575  * This function can be called by a running work function to describe what
4576  * the work item is about.  If the worker task gets dumped, this
4577  * information will be printed out together to help debugging.  The
4578  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4579  */
4580 void set_worker_desc(const char *fmt, ...)
4581 {
4582 	struct worker *worker = current_wq_worker();
4583 	va_list args;
4584 
4585 	if (worker) {
4586 		va_start(args, fmt);
4587 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4588 		va_end(args);
4589 	}
4590 }
4591 EXPORT_SYMBOL_GPL(set_worker_desc);
4592 
4593 /**
4594  * print_worker_info - print out worker information and description
4595  * @log_lvl: the log level to use when printing
4596  * @task: target task
4597  *
4598  * If @task is a worker and currently executing a work item, print out the
4599  * name of the workqueue being serviced and worker description set with
4600  * set_worker_desc() by the currently executing work item.
4601  *
4602  * This function can be safely called on any task as long as the
4603  * task_struct itself is accessible.  While safe, this function isn't
4604  * synchronized and may print out mixups or garbages of limited length.
4605  */
4606 void print_worker_info(const char *log_lvl, struct task_struct *task)
4607 {
4608 	work_func_t *fn = NULL;
4609 	char name[WQ_NAME_LEN] = { };
4610 	char desc[WORKER_DESC_LEN] = { };
4611 	struct pool_workqueue *pwq = NULL;
4612 	struct workqueue_struct *wq = NULL;
4613 	struct worker *worker;
4614 
4615 	if (!(task->flags & PF_WQ_WORKER))
4616 		return;
4617 
4618 	/*
4619 	 * This function is called without any synchronization and @task
4620 	 * could be in any state.  Be careful with dereferences.
4621 	 */
4622 	worker = kthread_probe_data(task);
4623 
4624 	/*
4625 	 * Carefully copy the associated workqueue's workfn, name and desc.
4626 	 * Keep the original last '\0' in case the original is garbage.
4627 	 */
4628 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4629 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4630 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4631 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4632 	probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4633 
4634 	if (fn || name[0] || desc[0]) {
4635 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4636 		if (strcmp(name, desc))
4637 			pr_cont(" (%s)", desc);
4638 		pr_cont("\n");
4639 	}
4640 }
4641 
4642 static void pr_cont_pool_info(struct worker_pool *pool)
4643 {
4644 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4645 	if (pool->node != NUMA_NO_NODE)
4646 		pr_cont(" node=%d", pool->node);
4647 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4648 }
4649 
4650 static void pr_cont_work(bool comma, struct work_struct *work)
4651 {
4652 	if (work->func == wq_barrier_func) {
4653 		struct wq_barrier *barr;
4654 
4655 		barr = container_of(work, struct wq_barrier, work);
4656 
4657 		pr_cont("%s BAR(%d)", comma ? "," : "",
4658 			task_pid_nr(barr->task));
4659 	} else {
4660 		pr_cont("%s %ps", comma ? "," : "", work->func);
4661 	}
4662 }
4663 
4664 static void show_pwq(struct pool_workqueue *pwq)
4665 {
4666 	struct worker_pool *pool = pwq->pool;
4667 	struct work_struct *work;
4668 	struct worker *worker;
4669 	bool has_in_flight = false, has_pending = false;
4670 	int bkt;
4671 
4672 	pr_info("  pwq %d:", pool->id);
4673 	pr_cont_pool_info(pool);
4674 
4675 	pr_cont(" active=%d/%d refcnt=%d%s\n",
4676 		pwq->nr_active, pwq->max_active, pwq->refcnt,
4677 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4678 
4679 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4680 		if (worker->current_pwq == pwq) {
4681 			has_in_flight = true;
4682 			break;
4683 		}
4684 	}
4685 	if (has_in_flight) {
4686 		bool comma = false;
4687 
4688 		pr_info("    in-flight:");
4689 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4690 			if (worker->current_pwq != pwq)
4691 				continue;
4692 
4693 			pr_cont("%s %d%s:%ps", comma ? "," : "",
4694 				task_pid_nr(worker->task),
4695 				worker->rescue_wq ? "(RESCUER)" : "",
4696 				worker->current_func);
4697 			list_for_each_entry(work, &worker->scheduled, entry)
4698 				pr_cont_work(false, work);
4699 			comma = true;
4700 		}
4701 		pr_cont("\n");
4702 	}
4703 
4704 	list_for_each_entry(work, &pool->worklist, entry) {
4705 		if (get_work_pwq(work) == pwq) {
4706 			has_pending = true;
4707 			break;
4708 		}
4709 	}
4710 	if (has_pending) {
4711 		bool comma = false;
4712 
4713 		pr_info("    pending:");
4714 		list_for_each_entry(work, &pool->worklist, entry) {
4715 			if (get_work_pwq(work) != pwq)
4716 				continue;
4717 
4718 			pr_cont_work(comma, work);
4719 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4720 		}
4721 		pr_cont("\n");
4722 	}
4723 
4724 	if (!list_empty(&pwq->delayed_works)) {
4725 		bool comma = false;
4726 
4727 		pr_info("    delayed:");
4728 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4729 			pr_cont_work(comma, work);
4730 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4731 		}
4732 		pr_cont("\n");
4733 	}
4734 }
4735 
4736 /**
4737  * show_workqueue_state - dump workqueue state
4738  *
4739  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4740  * all busy workqueues and pools.
4741  */
4742 void show_workqueue_state(void)
4743 {
4744 	struct workqueue_struct *wq;
4745 	struct worker_pool *pool;
4746 	unsigned long flags;
4747 	int pi;
4748 
4749 	rcu_read_lock();
4750 
4751 	pr_info("Showing busy workqueues and worker pools:\n");
4752 
4753 	list_for_each_entry_rcu(wq, &workqueues, list) {
4754 		struct pool_workqueue *pwq;
4755 		bool idle = true;
4756 
4757 		for_each_pwq(pwq, wq) {
4758 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4759 				idle = false;
4760 				break;
4761 			}
4762 		}
4763 		if (idle)
4764 			continue;
4765 
4766 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4767 
4768 		for_each_pwq(pwq, wq) {
4769 			spin_lock_irqsave(&pwq->pool->lock, flags);
4770 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4771 				show_pwq(pwq);
4772 			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4773 			/*
4774 			 * We could be printing a lot from atomic context, e.g.
4775 			 * sysrq-t -> show_workqueue_state(). Avoid triggering
4776 			 * hard lockup.
4777 			 */
4778 			touch_nmi_watchdog();
4779 		}
4780 	}
4781 
4782 	for_each_pool(pool, pi) {
4783 		struct worker *worker;
4784 		bool first = true;
4785 
4786 		spin_lock_irqsave(&pool->lock, flags);
4787 		if (pool->nr_workers == pool->nr_idle)
4788 			goto next_pool;
4789 
4790 		pr_info("pool %d:", pool->id);
4791 		pr_cont_pool_info(pool);
4792 		pr_cont(" hung=%us workers=%d",
4793 			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4794 			pool->nr_workers);
4795 		if (pool->manager)
4796 			pr_cont(" manager: %d",
4797 				task_pid_nr(pool->manager->task));
4798 		list_for_each_entry(worker, &pool->idle_list, entry) {
4799 			pr_cont(" %s%d", first ? "idle: " : "",
4800 				task_pid_nr(worker->task));
4801 			first = false;
4802 		}
4803 		pr_cont("\n");
4804 	next_pool:
4805 		spin_unlock_irqrestore(&pool->lock, flags);
4806 		/*
4807 		 * We could be printing a lot from atomic context, e.g.
4808 		 * sysrq-t -> show_workqueue_state(). Avoid triggering
4809 		 * hard lockup.
4810 		 */
4811 		touch_nmi_watchdog();
4812 	}
4813 
4814 	rcu_read_unlock();
4815 }
4816 
4817 /* used to show worker information through /proc/PID/{comm,stat,status} */
4818 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4819 {
4820 	int off;
4821 
4822 	/* always show the actual comm */
4823 	off = strscpy(buf, task->comm, size);
4824 	if (off < 0)
4825 		return;
4826 
4827 	/* stabilize PF_WQ_WORKER and worker pool association */
4828 	mutex_lock(&wq_pool_attach_mutex);
4829 
4830 	if (task->flags & PF_WQ_WORKER) {
4831 		struct worker *worker = kthread_data(task);
4832 		struct worker_pool *pool = worker->pool;
4833 
4834 		if (pool) {
4835 			spin_lock_irq(&pool->lock);
4836 			/*
4837 			 * ->desc tracks information (wq name or
4838 			 * set_worker_desc()) for the latest execution.  If
4839 			 * current, prepend '+', otherwise '-'.
4840 			 */
4841 			if (worker->desc[0] != '\0') {
4842 				if (worker->current_work)
4843 					scnprintf(buf + off, size - off, "+%s",
4844 						  worker->desc);
4845 				else
4846 					scnprintf(buf + off, size - off, "-%s",
4847 						  worker->desc);
4848 			}
4849 			spin_unlock_irq(&pool->lock);
4850 		}
4851 	}
4852 
4853 	mutex_unlock(&wq_pool_attach_mutex);
4854 }
4855 
4856 #ifdef CONFIG_SMP
4857 
4858 /*
4859  * CPU hotplug.
4860  *
4861  * There are two challenges in supporting CPU hotplug.  Firstly, there
4862  * are a lot of assumptions on strong associations among work, pwq and
4863  * pool which make migrating pending and scheduled works very
4864  * difficult to implement without impacting hot paths.  Secondly,
4865  * worker pools serve mix of short, long and very long running works making
4866  * blocked draining impractical.
4867  *
4868  * This is solved by allowing the pools to be disassociated from the CPU
4869  * running as an unbound one and allowing it to be reattached later if the
4870  * cpu comes back online.
4871  */
4872 
4873 static void unbind_workers(int cpu)
4874 {
4875 	struct worker_pool *pool;
4876 	struct worker *worker;
4877 
4878 	for_each_cpu_worker_pool(pool, cpu) {
4879 		mutex_lock(&wq_pool_attach_mutex);
4880 		spin_lock_irq(&pool->lock);
4881 
4882 		/*
4883 		 * We've blocked all attach/detach operations. Make all workers
4884 		 * unbound and set DISASSOCIATED.  Before this, all workers
4885 		 * except for the ones which are still executing works from
4886 		 * before the last CPU down must be on the cpu.  After
4887 		 * this, they may become diasporas.
4888 		 */
4889 		for_each_pool_worker(worker, pool)
4890 			worker->flags |= WORKER_UNBOUND;
4891 
4892 		pool->flags |= POOL_DISASSOCIATED;
4893 
4894 		spin_unlock_irq(&pool->lock);
4895 		mutex_unlock(&wq_pool_attach_mutex);
4896 
4897 		/*
4898 		 * Call schedule() so that we cross rq->lock and thus can
4899 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4900 		 * This is necessary as scheduler callbacks may be invoked
4901 		 * from other cpus.
4902 		 */
4903 		schedule();
4904 
4905 		/*
4906 		 * Sched callbacks are disabled now.  Zap nr_running.
4907 		 * After this, nr_running stays zero and need_more_worker()
4908 		 * and keep_working() are always true as long as the
4909 		 * worklist is not empty.  This pool now behaves as an
4910 		 * unbound (in terms of concurrency management) pool which
4911 		 * are served by workers tied to the pool.
4912 		 */
4913 		atomic_set(&pool->nr_running, 0);
4914 
4915 		/*
4916 		 * With concurrency management just turned off, a busy
4917 		 * worker blocking could lead to lengthy stalls.  Kick off
4918 		 * unbound chain execution of currently pending work items.
4919 		 */
4920 		spin_lock_irq(&pool->lock);
4921 		wake_up_worker(pool);
4922 		spin_unlock_irq(&pool->lock);
4923 	}
4924 }
4925 
4926 /**
4927  * rebind_workers - rebind all workers of a pool to the associated CPU
4928  * @pool: pool of interest
4929  *
4930  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4931  */
4932 static void rebind_workers(struct worker_pool *pool)
4933 {
4934 	struct worker *worker;
4935 
4936 	lockdep_assert_held(&wq_pool_attach_mutex);
4937 
4938 	/*
4939 	 * Restore CPU affinity of all workers.  As all idle workers should
4940 	 * be on the run-queue of the associated CPU before any local
4941 	 * wake-ups for concurrency management happen, restore CPU affinity
4942 	 * of all workers first and then clear UNBOUND.  As we're called
4943 	 * from CPU_ONLINE, the following shouldn't fail.
4944 	 */
4945 	for_each_pool_worker(worker, pool)
4946 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4947 						  pool->attrs->cpumask) < 0);
4948 
4949 	spin_lock_irq(&pool->lock);
4950 
4951 	pool->flags &= ~POOL_DISASSOCIATED;
4952 
4953 	for_each_pool_worker(worker, pool) {
4954 		unsigned int worker_flags = worker->flags;
4955 
4956 		/*
4957 		 * A bound idle worker should actually be on the runqueue
4958 		 * of the associated CPU for local wake-ups targeting it to
4959 		 * work.  Kick all idle workers so that they migrate to the
4960 		 * associated CPU.  Doing this in the same loop as
4961 		 * replacing UNBOUND with REBOUND is safe as no worker will
4962 		 * be bound before @pool->lock is released.
4963 		 */
4964 		if (worker_flags & WORKER_IDLE)
4965 			wake_up_process(worker->task);
4966 
4967 		/*
4968 		 * We want to clear UNBOUND but can't directly call
4969 		 * worker_clr_flags() or adjust nr_running.  Atomically
4970 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4971 		 * @worker will clear REBOUND using worker_clr_flags() when
4972 		 * it initiates the next execution cycle thus restoring
4973 		 * concurrency management.  Note that when or whether
4974 		 * @worker clears REBOUND doesn't affect correctness.
4975 		 *
4976 		 * WRITE_ONCE() is necessary because @worker->flags may be
4977 		 * tested without holding any lock in
4978 		 * wq_worker_running().  Without it, NOT_RUNNING test may
4979 		 * fail incorrectly leading to premature concurrency
4980 		 * management operations.
4981 		 */
4982 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4983 		worker_flags |= WORKER_REBOUND;
4984 		worker_flags &= ~WORKER_UNBOUND;
4985 		WRITE_ONCE(worker->flags, worker_flags);
4986 	}
4987 
4988 	spin_unlock_irq(&pool->lock);
4989 }
4990 
4991 /**
4992  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4993  * @pool: unbound pool of interest
4994  * @cpu: the CPU which is coming up
4995  *
4996  * An unbound pool may end up with a cpumask which doesn't have any online
4997  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4998  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4999  * online CPU before, cpus_allowed of all its workers should be restored.
5000  */
5001 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5002 {
5003 	static cpumask_t cpumask;
5004 	struct worker *worker;
5005 
5006 	lockdep_assert_held(&wq_pool_attach_mutex);
5007 
5008 	/* is @cpu allowed for @pool? */
5009 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5010 		return;
5011 
5012 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5013 
5014 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
5015 	for_each_pool_worker(worker, pool)
5016 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5017 }
5018 
5019 int workqueue_prepare_cpu(unsigned int cpu)
5020 {
5021 	struct worker_pool *pool;
5022 
5023 	for_each_cpu_worker_pool(pool, cpu) {
5024 		if (pool->nr_workers)
5025 			continue;
5026 		if (!create_worker(pool))
5027 			return -ENOMEM;
5028 	}
5029 	return 0;
5030 }
5031 
5032 int workqueue_online_cpu(unsigned int cpu)
5033 {
5034 	struct worker_pool *pool;
5035 	struct workqueue_struct *wq;
5036 	int pi;
5037 
5038 	mutex_lock(&wq_pool_mutex);
5039 
5040 	for_each_pool(pool, pi) {
5041 		mutex_lock(&wq_pool_attach_mutex);
5042 
5043 		if (pool->cpu == cpu)
5044 			rebind_workers(pool);
5045 		else if (pool->cpu < 0)
5046 			restore_unbound_workers_cpumask(pool, cpu);
5047 
5048 		mutex_unlock(&wq_pool_attach_mutex);
5049 	}
5050 
5051 	/* update NUMA affinity of unbound workqueues */
5052 	list_for_each_entry(wq, &workqueues, list)
5053 		wq_update_unbound_numa(wq, cpu, true);
5054 
5055 	mutex_unlock(&wq_pool_mutex);
5056 	return 0;
5057 }
5058 
5059 int workqueue_offline_cpu(unsigned int cpu)
5060 {
5061 	struct workqueue_struct *wq;
5062 
5063 	/* unbinding per-cpu workers should happen on the local CPU */
5064 	if (WARN_ON(cpu != smp_processor_id()))
5065 		return -1;
5066 
5067 	unbind_workers(cpu);
5068 
5069 	/* update NUMA affinity of unbound workqueues */
5070 	mutex_lock(&wq_pool_mutex);
5071 	list_for_each_entry(wq, &workqueues, list)
5072 		wq_update_unbound_numa(wq, cpu, false);
5073 	mutex_unlock(&wq_pool_mutex);
5074 
5075 	return 0;
5076 }
5077 
5078 struct work_for_cpu {
5079 	struct work_struct work;
5080 	long (*fn)(void *);
5081 	void *arg;
5082 	long ret;
5083 };
5084 
5085 static void work_for_cpu_fn(struct work_struct *work)
5086 {
5087 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5088 
5089 	wfc->ret = wfc->fn(wfc->arg);
5090 }
5091 
5092 /**
5093  * work_on_cpu - run a function in thread context on a particular cpu
5094  * @cpu: the cpu to run on
5095  * @fn: the function to run
5096  * @arg: the function arg
5097  *
5098  * It is up to the caller to ensure that the cpu doesn't go offline.
5099  * The caller must not hold any locks which would prevent @fn from completing.
5100  *
5101  * Return: The value @fn returns.
5102  */
5103 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5104 {
5105 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5106 
5107 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5108 	schedule_work_on(cpu, &wfc.work);
5109 	flush_work(&wfc.work);
5110 	destroy_work_on_stack(&wfc.work);
5111 	return wfc.ret;
5112 }
5113 EXPORT_SYMBOL_GPL(work_on_cpu);
5114 
5115 /**
5116  * work_on_cpu_safe - run a function in thread context on a particular cpu
5117  * @cpu: the cpu to run on
5118  * @fn:  the function to run
5119  * @arg: the function argument
5120  *
5121  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5122  * any locks which would prevent @fn from completing.
5123  *
5124  * Return: The value @fn returns.
5125  */
5126 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5127 {
5128 	long ret = -ENODEV;
5129 
5130 	get_online_cpus();
5131 	if (cpu_online(cpu))
5132 		ret = work_on_cpu(cpu, fn, arg);
5133 	put_online_cpus();
5134 	return ret;
5135 }
5136 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5137 #endif /* CONFIG_SMP */
5138 
5139 #ifdef CONFIG_FREEZER
5140 
5141 /**
5142  * freeze_workqueues_begin - begin freezing workqueues
5143  *
5144  * Start freezing workqueues.  After this function returns, all freezable
5145  * workqueues will queue new works to their delayed_works list instead of
5146  * pool->worklist.
5147  *
5148  * CONTEXT:
5149  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5150  */
5151 void freeze_workqueues_begin(void)
5152 {
5153 	struct workqueue_struct *wq;
5154 	struct pool_workqueue *pwq;
5155 
5156 	mutex_lock(&wq_pool_mutex);
5157 
5158 	WARN_ON_ONCE(workqueue_freezing);
5159 	workqueue_freezing = true;
5160 
5161 	list_for_each_entry(wq, &workqueues, list) {
5162 		mutex_lock(&wq->mutex);
5163 		for_each_pwq(pwq, wq)
5164 			pwq_adjust_max_active(pwq);
5165 		mutex_unlock(&wq->mutex);
5166 	}
5167 
5168 	mutex_unlock(&wq_pool_mutex);
5169 }
5170 
5171 /**
5172  * freeze_workqueues_busy - are freezable workqueues still busy?
5173  *
5174  * Check whether freezing is complete.  This function must be called
5175  * between freeze_workqueues_begin() and thaw_workqueues().
5176  *
5177  * CONTEXT:
5178  * Grabs and releases wq_pool_mutex.
5179  *
5180  * Return:
5181  * %true if some freezable workqueues are still busy.  %false if freezing
5182  * is complete.
5183  */
5184 bool freeze_workqueues_busy(void)
5185 {
5186 	bool busy = false;
5187 	struct workqueue_struct *wq;
5188 	struct pool_workqueue *pwq;
5189 
5190 	mutex_lock(&wq_pool_mutex);
5191 
5192 	WARN_ON_ONCE(!workqueue_freezing);
5193 
5194 	list_for_each_entry(wq, &workqueues, list) {
5195 		if (!(wq->flags & WQ_FREEZABLE))
5196 			continue;
5197 		/*
5198 		 * nr_active is monotonically decreasing.  It's safe
5199 		 * to peek without lock.
5200 		 */
5201 		rcu_read_lock();
5202 		for_each_pwq(pwq, wq) {
5203 			WARN_ON_ONCE(pwq->nr_active < 0);
5204 			if (pwq->nr_active) {
5205 				busy = true;
5206 				rcu_read_unlock();
5207 				goto out_unlock;
5208 			}
5209 		}
5210 		rcu_read_unlock();
5211 	}
5212 out_unlock:
5213 	mutex_unlock(&wq_pool_mutex);
5214 	return busy;
5215 }
5216 
5217 /**
5218  * thaw_workqueues - thaw workqueues
5219  *
5220  * Thaw workqueues.  Normal queueing is restored and all collected
5221  * frozen works are transferred to their respective pool worklists.
5222  *
5223  * CONTEXT:
5224  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5225  */
5226 void thaw_workqueues(void)
5227 {
5228 	struct workqueue_struct *wq;
5229 	struct pool_workqueue *pwq;
5230 
5231 	mutex_lock(&wq_pool_mutex);
5232 
5233 	if (!workqueue_freezing)
5234 		goto out_unlock;
5235 
5236 	workqueue_freezing = false;
5237 
5238 	/* restore max_active and repopulate worklist */
5239 	list_for_each_entry(wq, &workqueues, list) {
5240 		mutex_lock(&wq->mutex);
5241 		for_each_pwq(pwq, wq)
5242 			pwq_adjust_max_active(pwq);
5243 		mutex_unlock(&wq->mutex);
5244 	}
5245 
5246 out_unlock:
5247 	mutex_unlock(&wq_pool_mutex);
5248 }
5249 #endif /* CONFIG_FREEZER */
5250 
5251 static int workqueue_apply_unbound_cpumask(void)
5252 {
5253 	LIST_HEAD(ctxs);
5254 	int ret = 0;
5255 	struct workqueue_struct *wq;
5256 	struct apply_wqattrs_ctx *ctx, *n;
5257 
5258 	lockdep_assert_held(&wq_pool_mutex);
5259 
5260 	list_for_each_entry(wq, &workqueues, list) {
5261 		if (!(wq->flags & WQ_UNBOUND))
5262 			continue;
5263 		/* creating multiple pwqs breaks ordering guarantee */
5264 		if (wq->flags & __WQ_ORDERED)
5265 			continue;
5266 
5267 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5268 		if (!ctx) {
5269 			ret = -ENOMEM;
5270 			break;
5271 		}
5272 
5273 		list_add_tail(&ctx->list, &ctxs);
5274 	}
5275 
5276 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5277 		if (!ret)
5278 			apply_wqattrs_commit(ctx);
5279 		apply_wqattrs_cleanup(ctx);
5280 	}
5281 
5282 	return ret;
5283 }
5284 
5285 /**
5286  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5287  *  @cpumask: the cpumask to set
5288  *
5289  *  The low-level workqueues cpumask is a global cpumask that limits
5290  *  the affinity of all unbound workqueues.  This function check the @cpumask
5291  *  and apply it to all unbound workqueues and updates all pwqs of them.
5292  *
5293  *  Retun:	0	- Success
5294  *  		-EINVAL	- Invalid @cpumask
5295  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5296  */
5297 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5298 {
5299 	int ret = -EINVAL;
5300 	cpumask_var_t saved_cpumask;
5301 
5302 	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5303 		return -ENOMEM;
5304 
5305 	/*
5306 	 * Not excluding isolated cpus on purpose.
5307 	 * If the user wishes to include them, we allow that.
5308 	 */
5309 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5310 	if (!cpumask_empty(cpumask)) {
5311 		apply_wqattrs_lock();
5312 
5313 		/* save the old wq_unbound_cpumask. */
5314 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5315 
5316 		/* update wq_unbound_cpumask at first and apply it to wqs. */
5317 		cpumask_copy(wq_unbound_cpumask, cpumask);
5318 		ret = workqueue_apply_unbound_cpumask();
5319 
5320 		/* restore the wq_unbound_cpumask when failed. */
5321 		if (ret < 0)
5322 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5323 
5324 		apply_wqattrs_unlock();
5325 	}
5326 
5327 	free_cpumask_var(saved_cpumask);
5328 	return ret;
5329 }
5330 
5331 #ifdef CONFIG_SYSFS
5332 /*
5333  * Workqueues with WQ_SYSFS flag set is visible to userland via
5334  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5335  * following attributes.
5336  *
5337  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5338  *  max_active	RW int	: maximum number of in-flight work items
5339  *
5340  * Unbound workqueues have the following extra attributes.
5341  *
5342  *  pool_ids	RO int	: the associated pool IDs for each node
5343  *  nice	RW int	: nice value of the workers
5344  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5345  *  numa	RW bool	: whether enable NUMA affinity
5346  */
5347 struct wq_device {
5348 	struct workqueue_struct		*wq;
5349 	struct device			dev;
5350 };
5351 
5352 static struct workqueue_struct *dev_to_wq(struct device *dev)
5353 {
5354 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5355 
5356 	return wq_dev->wq;
5357 }
5358 
5359 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5360 			    char *buf)
5361 {
5362 	struct workqueue_struct *wq = dev_to_wq(dev);
5363 
5364 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5365 }
5366 static DEVICE_ATTR_RO(per_cpu);
5367 
5368 static ssize_t max_active_show(struct device *dev,
5369 			       struct device_attribute *attr, char *buf)
5370 {
5371 	struct workqueue_struct *wq = dev_to_wq(dev);
5372 
5373 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5374 }
5375 
5376 static ssize_t max_active_store(struct device *dev,
5377 				struct device_attribute *attr, const char *buf,
5378 				size_t count)
5379 {
5380 	struct workqueue_struct *wq = dev_to_wq(dev);
5381 	int val;
5382 
5383 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5384 		return -EINVAL;
5385 
5386 	workqueue_set_max_active(wq, val);
5387 	return count;
5388 }
5389 static DEVICE_ATTR_RW(max_active);
5390 
5391 static struct attribute *wq_sysfs_attrs[] = {
5392 	&dev_attr_per_cpu.attr,
5393 	&dev_attr_max_active.attr,
5394 	NULL,
5395 };
5396 ATTRIBUTE_GROUPS(wq_sysfs);
5397 
5398 static ssize_t wq_pool_ids_show(struct device *dev,
5399 				struct device_attribute *attr, char *buf)
5400 {
5401 	struct workqueue_struct *wq = dev_to_wq(dev);
5402 	const char *delim = "";
5403 	int node, written = 0;
5404 
5405 	get_online_cpus();
5406 	rcu_read_lock();
5407 	for_each_node(node) {
5408 		written += scnprintf(buf + written, PAGE_SIZE - written,
5409 				     "%s%d:%d", delim, node,
5410 				     unbound_pwq_by_node(wq, node)->pool->id);
5411 		delim = " ";
5412 	}
5413 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5414 	rcu_read_unlock();
5415 	put_online_cpus();
5416 
5417 	return written;
5418 }
5419 
5420 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5421 			    char *buf)
5422 {
5423 	struct workqueue_struct *wq = dev_to_wq(dev);
5424 	int written;
5425 
5426 	mutex_lock(&wq->mutex);
5427 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5428 	mutex_unlock(&wq->mutex);
5429 
5430 	return written;
5431 }
5432 
5433 /* prepare workqueue_attrs for sysfs store operations */
5434 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5435 {
5436 	struct workqueue_attrs *attrs;
5437 
5438 	lockdep_assert_held(&wq_pool_mutex);
5439 
5440 	attrs = alloc_workqueue_attrs();
5441 	if (!attrs)
5442 		return NULL;
5443 
5444 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5445 	return attrs;
5446 }
5447 
5448 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5449 			     const char *buf, size_t count)
5450 {
5451 	struct workqueue_struct *wq = dev_to_wq(dev);
5452 	struct workqueue_attrs *attrs;
5453 	int ret = -ENOMEM;
5454 
5455 	apply_wqattrs_lock();
5456 
5457 	attrs = wq_sysfs_prep_attrs(wq);
5458 	if (!attrs)
5459 		goto out_unlock;
5460 
5461 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5462 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5463 		ret = apply_workqueue_attrs_locked(wq, attrs);
5464 	else
5465 		ret = -EINVAL;
5466 
5467 out_unlock:
5468 	apply_wqattrs_unlock();
5469 	free_workqueue_attrs(attrs);
5470 	return ret ?: count;
5471 }
5472 
5473 static ssize_t wq_cpumask_show(struct device *dev,
5474 			       struct device_attribute *attr, char *buf)
5475 {
5476 	struct workqueue_struct *wq = dev_to_wq(dev);
5477 	int written;
5478 
5479 	mutex_lock(&wq->mutex);
5480 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5481 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5482 	mutex_unlock(&wq->mutex);
5483 	return written;
5484 }
5485 
5486 static ssize_t wq_cpumask_store(struct device *dev,
5487 				struct device_attribute *attr,
5488 				const char *buf, size_t count)
5489 {
5490 	struct workqueue_struct *wq = dev_to_wq(dev);
5491 	struct workqueue_attrs *attrs;
5492 	int ret = -ENOMEM;
5493 
5494 	apply_wqattrs_lock();
5495 
5496 	attrs = wq_sysfs_prep_attrs(wq);
5497 	if (!attrs)
5498 		goto out_unlock;
5499 
5500 	ret = cpumask_parse(buf, attrs->cpumask);
5501 	if (!ret)
5502 		ret = apply_workqueue_attrs_locked(wq, attrs);
5503 
5504 out_unlock:
5505 	apply_wqattrs_unlock();
5506 	free_workqueue_attrs(attrs);
5507 	return ret ?: count;
5508 }
5509 
5510 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5511 			    char *buf)
5512 {
5513 	struct workqueue_struct *wq = dev_to_wq(dev);
5514 	int written;
5515 
5516 	mutex_lock(&wq->mutex);
5517 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5518 			    !wq->unbound_attrs->no_numa);
5519 	mutex_unlock(&wq->mutex);
5520 
5521 	return written;
5522 }
5523 
5524 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5525 			     const char *buf, size_t count)
5526 {
5527 	struct workqueue_struct *wq = dev_to_wq(dev);
5528 	struct workqueue_attrs *attrs;
5529 	int v, ret = -ENOMEM;
5530 
5531 	apply_wqattrs_lock();
5532 
5533 	attrs = wq_sysfs_prep_attrs(wq);
5534 	if (!attrs)
5535 		goto out_unlock;
5536 
5537 	ret = -EINVAL;
5538 	if (sscanf(buf, "%d", &v) == 1) {
5539 		attrs->no_numa = !v;
5540 		ret = apply_workqueue_attrs_locked(wq, attrs);
5541 	}
5542 
5543 out_unlock:
5544 	apply_wqattrs_unlock();
5545 	free_workqueue_attrs(attrs);
5546 	return ret ?: count;
5547 }
5548 
5549 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5550 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5551 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5552 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5553 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5554 	__ATTR_NULL,
5555 };
5556 
5557 static struct bus_type wq_subsys = {
5558 	.name				= "workqueue",
5559 	.dev_groups			= wq_sysfs_groups,
5560 };
5561 
5562 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5563 		struct device_attribute *attr, char *buf)
5564 {
5565 	int written;
5566 
5567 	mutex_lock(&wq_pool_mutex);
5568 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5569 			    cpumask_pr_args(wq_unbound_cpumask));
5570 	mutex_unlock(&wq_pool_mutex);
5571 
5572 	return written;
5573 }
5574 
5575 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5576 		struct device_attribute *attr, const char *buf, size_t count)
5577 {
5578 	cpumask_var_t cpumask;
5579 	int ret;
5580 
5581 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5582 		return -ENOMEM;
5583 
5584 	ret = cpumask_parse(buf, cpumask);
5585 	if (!ret)
5586 		ret = workqueue_set_unbound_cpumask(cpumask);
5587 
5588 	free_cpumask_var(cpumask);
5589 	return ret ? ret : count;
5590 }
5591 
5592 static struct device_attribute wq_sysfs_cpumask_attr =
5593 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5594 	       wq_unbound_cpumask_store);
5595 
5596 static int __init wq_sysfs_init(void)
5597 {
5598 	int err;
5599 
5600 	err = subsys_virtual_register(&wq_subsys, NULL);
5601 	if (err)
5602 		return err;
5603 
5604 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5605 }
5606 core_initcall(wq_sysfs_init);
5607 
5608 static void wq_device_release(struct device *dev)
5609 {
5610 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5611 
5612 	kfree(wq_dev);
5613 }
5614 
5615 /**
5616  * workqueue_sysfs_register - make a workqueue visible in sysfs
5617  * @wq: the workqueue to register
5618  *
5619  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5620  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5621  * which is the preferred method.
5622  *
5623  * Workqueue user should use this function directly iff it wants to apply
5624  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5625  * apply_workqueue_attrs() may race against userland updating the
5626  * attributes.
5627  *
5628  * Return: 0 on success, -errno on failure.
5629  */
5630 int workqueue_sysfs_register(struct workqueue_struct *wq)
5631 {
5632 	struct wq_device *wq_dev;
5633 	int ret;
5634 
5635 	/*
5636 	 * Adjusting max_active or creating new pwqs by applying
5637 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5638 	 * workqueues.
5639 	 */
5640 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5641 		return -EINVAL;
5642 
5643 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5644 	if (!wq_dev)
5645 		return -ENOMEM;
5646 
5647 	wq_dev->wq = wq;
5648 	wq_dev->dev.bus = &wq_subsys;
5649 	wq_dev->dev.release = wq_device_release;
5650 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5651 
5652 	/*
5653 	 * unbound_attrs are created separately.  Suppress uevent until
5654 	 * everything is ready.
5655 	 */
5656 	dev_set_uevent_suppress(&wq_dev->dev, true);
5657 
5658 	ret = device_register(&wq_dev->dev);
5659 	if (ret) {
5660 		put_device(&wq_dev->dev);
5661 		wq->wq_dev = NULL;
5662 		return ret;
5663 	}
5664 
5665 	if (wq->flags & WQ_UNBOUND) {
5666 		struct device_attribute *attr;
5667 
5668 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5669 			ret = device_create_file(&wq_dev->dev, attr);
5670 			if (ret) {
5671 				device_unregister(&wq_dev->dev);
5672 				wq->wq_dev = NULL;
5673 				return ret;
5674 			}
5675 		}
5676 	}
5677 
5678 	dev_set_uevent_suppress(&wq_dev->dev, false);
5679 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5680 	return 0;
5681 }
5682 
5683 /**
5684  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5685  * @wq: the workqueue to unregister
5686  *
5687  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5688  */
5689 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5690 {
5691 	struct wq_device *wq_dev = wq->wq_dev;
5692 
5693 	if (!wq->wq_dev)
5694 		return;
5695 
5696 	wq->wq_dev = NULL;
5697 	device_unregister(&wq_dev->dev);
5698 }
5699 #else	/* CONFIG_SYSFS */
5700 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5701 #endif	/* CONFIG_SYSFS */
5702 
5703 /*
5704  * Workqueue watchdog.
5705  *
5706  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5707  * flush dependency, a concurrency managed work item which stays RUNNING
5708  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5709  * usual warning mechanisms don't trigger and internal workqueue state is
5710  * largely opaque.
5711  *
5712  * Workqueue watchdog monitors all worker pools periodically and dumps
5713  * state if some pools failed to make forward progress for a while where
5714  * forward progress is defined as the first item on ->worklist changing.
5715  *
5716  * This mechanism is controlled through the kernel parameter
5717  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5718  * corresponding sysfs parameter file.
5719  */
5720 #ifdef CONFIG_WQ_WATCHDOG
5721 
5722 static unsigned long wq_watchdog_thresh = 30;
5723 static struct timer_list wq_watchdog_timer;
5724 
5725 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5726 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5727 
5728 static void wq_watchdog_reset_touched(void)
5729 {
5730 	int cpu;
5731 
5732 	wq_watchdog_touched = jiffies;
5733 	for_each_possible_cpu(cpu)
5734 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5735 }
5736 
5737 static void wq_watchdog_timer_fn(struct timer_list *unused)
5738 {
5739 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5740 	bool lockup_detected = false;
5741 	struct worker_pool *pool;
5742 	int pi;
5743 
5744 	if (!thresh)
5745 		return;
5746 
5747 	rcu_read_lock();
5748 
5749 	for_each_pool(pool, pi) {
5750 		unsigned long pool_ts, touched, ts;
5751 
5752 		if (list_empty(&pool->worklist))
5753 			continue;
5754 
5755 		/* get the latest of pool and touched timestamps */
5756 		pool_ts = READ_ONCE(pool->watchdog_ts);
5757 		touched = READ_ONCE(wq_watchdog_touched);
5758 
5759 		if (time_after(pool_ts, touched))
5760 			ts = pool_ts;
5761 		else
5762 			ts = touched;
5763 
5764 		if (pool->cpu >= 0) {
5765 			unsigned long cpu_touched =
5766 				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5767 						  pool->cpu));
5768 			if (time_after(cpu_touched, ts))
5769 				ts = cpu_touched;
5770 		}
5771 
5772 		/* did we stall? */
5773 		if (time_after(jiffies, ts + thresh)) {
5774 			lockup_detected = true;
5775 			pr_emerg("BUG: workqueue lockup - pool");
5776 			pr_cont_pool_info(pool);
5777 			pr_cont(" stuck for %us!\n",
5778 				jiffies_to_msecs(jiffies - pool_ts) / 1000);
5779 		}
5780 	}
5781 
5782 	rcu_read_unlock();
5783 
5784 	if (lockup_detected)
5785 		show_workqueue_state();
5786 
5787 	wq_watchdog_reset_touched();
5788 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5789 }
5790 
5791 notrace void wq_watchdog_touch(int cpu)
5792 {
5793 	if (cpu >= 0)
5794 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5795 	else
5796 		wq_watchdog_touched = jiffies;
5797 }
5798 
5799 static void wq_watchdog_set_thresh(unsigned long thresh)
5800 {
5801 	wq_watchdog_thresh = 0;
5802 	del_timer_sync(&wq_watchdog_timer);
5803 
5804 	if (thresh) {
5805 		wq_watchdog_thresh = thresh;
5806 		wq_watchdog_reset_touched();
5807 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5808 	}
5809 }
5810 
5811 static int wq_watchdog_param_set_thresh(const char *val,
5812 					const struct kernel_param *kp)
5813 {
5814 	unsigned long thresh;
5815 	int ret;
5816 
5817 	ret = kstrtoul(val, 0, &thresh);
5818 	if (ret)
5819 		return ret;
5820 
5821 	if (system_wq)
5822 		wq_watchdog_set_thresh(thresh);
5823 	else
5824 		wq_watchdog_thresh = thresh;
5825 
5826 	return 0;
5827 }
5828 
5829 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5830 	.set	= wq_watchdog_param_set_thresh,
5831 	.get	= param_get_ulong,
5832 };
5833 
5834 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5835 		0644);
5836 
5837 static void wq_watchdog_init(void)
5838 {
5839 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5840 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5841 }
5842 
5843 #else	/* CONFIG_WQ_WATCHDOG */
5844 
5845 static inline void wq_watchdog_init(void) { }
5846 
5847 #endif	/* CONFIG_WQ_WATCHDOG */
5848 
5849 static void __init wq_numa_init(void)
5850 {
5851 	cpumask_var_t *tbl;
5852 	int node, cpu;
5853 
5854 	if (num_possible_nodes() <= 1)
5855 		return;
5856 
5857 	if (wq_disable_numa) {
5858 		pr_info("workqueue: NUMA affinity support disabled\n");
5859 		return;
5860 	}
5861 
5862 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5863 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5864 
5865 	/*
5866 	 * We want masks of possible CPUs of each node which isn't readily
5867 	 * available.  Build one from cpu_to_node() which should have been
5868 	 * fully initialized by now.
5869 	 */
5870 	tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5871 	BUG_ON(!tbl);
5872 
5873 	for_each_node(node)
5874 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5875 				node_online(node) ? node : NUMA_NO_NODE));
5876 
5877 	for_each_possible_cpu(cpu) {
5878 		node = cpu_to_node(cpu);
5879 		if (WARN_ON(node == NUMA_NO_NODE)) {
5880 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5881 			/* happens iff arch is bonkers, let's just proceed */
5882 			return;
5883 		}
5884 		cpumask_set_cpu(cpu, tbl[node]);
5885 	}
5886 
5887 	wq_numa_possible_cpumask = tbl;
5888 	wq_numa_enabled = true;
5889 }
5890 
5891 /**
5892  * workqueue_init_early - early init for workqueue subsystem
5893  *
5894  * This is the first half of two-staged workqueue subsystem initialization
5895  * and invoked as soon as the bare basics - memory allocation, cpumasks and
5896  * idr are up.  It sets up all the data structures and system workqueues
5897  * and allows early boot code to create workqueues and queue/cancel work
5898  * items.  Actual work item execution starts only after kthreads can be
5899  * created and scheduled right before early initcalls.
5900  */
5901 int __init workqueue_init_early(void)
5902 {
5903 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5904 	int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5905 	int i, cpu;
5906 
5907 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5908 
5909 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5910 	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5911 
5912 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5913 
5914 	/* initialize CPU pools */
5915 	for_each_possible_cpu(cpu) {
5916 		struct worker_pool *pool;
5917 
5918 		i = 0;
5919 		for_each_cpu_worker_pool(pool, cpu) {
5920 			BUG_ON(init_worker_pool(pool));
5921 			pool->cpu = cpu;
5922 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5923 			pool->attrs->nice = std_nice[i++];
5924 			pool->node = cpu_to_node(cpu);
5925 
5926 			/* alloc pool ID */
5927 			mutex_lock(&wq_pool_mutex);
5928 			BUG_ON(worker_pool_assign_id(pool));
5929 			mutex_unlock(&wq_pool_mutex);
5930 		}
5931 	}
5932 
5933 	/* create default unbound and ordered wq attrs */
5934 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5935 		struct workqueue_attrs *attrs;
5936 
5937 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
5938 		attrs->nice = std_nice[i];
5939 		unbound_std_wq_attrs[i] = attrs;
5940 
5941 		/*
5942 		 * An ordered wq should have only one pwq as ordering is
5943 		 * guaranteed by max_active which is enforced by pwqs.
5944 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5945 		 */
5946 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
5947 		attrs->nice = std_nice[i];
5948 		attrs->no_numa = true;
5949 		ordered_wq_attrs[i] = attrs;
5950 	}
5951 
5952 	system_wq = alloc_workqueue("events", 0, 0);
5953 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5954 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5955 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5956 					    WQ_UNBOUND_MAX_ACTIVE);
5957 	system_freezable_wq = alloc_workqueue("events_freezable",
5958 					      WQ_FREEZABLE, 0);
5959 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5960 					      WQ_POWER_EFFICIENT, 0);
5961 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5962 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5963 					      0);
5964 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5965 	       !system_unbound_wq || !system_freezable_wq ||
5966 	       !system_power_efficient_wq ||
5967 	       !system_freezable_power_efficient_wq);
5968 
5969 	return 0;
5970 }
5971 
5972 /**
5973  * workqueue_init - bring workqueue subsystem fully online
5974  *
5975  * This is the latter half of two-staged workqueue subsystem initialization
5976  * and invoked as soon as kthreads can be created and scheduled.
5977  * Workqueues have been created and work items queued on them, but there
5978  * are no kworkers executing the work items yet.  Populate the worker pools
5979  * with the initial workers and enable future kworker creations.
5980  */
5981 int __init workqueue_init(void)
5982 {
5983 	struct workqueue_struct *wq;
5984 	struct worker_pool *pool;
5985 	int cpu, bkt;
5986 
5987 	/*
5988 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5989 	 * CPU to node mapping may not be available that early on some
5990 	 * archs such as power and arm64.  As per-cpu pools created
5991 	 * previously could be missing node hint and unbound pools NUMA
5992 	 * affinity, fix them up.
5993 	 *
5994 	 * Also, while iterating workqueues, create rescuers if requested.
5995 	 */
5996 	wq_numa_init();
5997 
5998 	mutex_lock(&wq_pool_mutex);
5999 
6000 	for_each_possible_cpu(cpu) {
6001 		for_each_cpu_worker_pool(pool, cpu) {
6002 			pool->node = cpu_to_node(cpu);
6003 		}
6004 	}
6005 
6006 	list_for_each_entry(wq, &workqueues, list) {
6007 		wq_update_unbound_numa(wq, smp_processor_id(), true);
6008 		WARN(init_rescuer(wq),
6009 		     "workqueue: failed to create early rescuer for %s",
6010 		     wq->name);
6011 	}
6012 
6013 	mutex_unlock(&wq_pool_mutex);
6014 
6015 	/* create the initial workers */
6016 	for_each_online_cpu(cpu) {
6017 		for_each_cpu_worker_pool(pool, cpu) {
6018 			pool->flags &= ~POOL_DISASSOCIATED;
6019 			BUG_ON(!create_worker(pool));
6020 		}
6021 	}
6022 
6023 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6024 		BUG_ON(!create_worker(pool));
6025 
6026 	wq_online = true;
6027 	wq_watchdog_init();
6028 
6029 	return 0;
6030 }
6031