1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 5 * Copyright (C) 2002 Ingo Molnar 6 * 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <dwmw2@infradead.org> 9 * Andrew Morton 10 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 11 * Theodore Ts'o <tytso@mit.edu> 12 * 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 17 * 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 24 * 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 27 28 #include <linux/export.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 32 #include <linux/signal.h> 33 #include <linux/completion.h> 34 #include <linux/workqueue.h> 35 #include <linux/slab.h> 36 #include <linux/cpu.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/hardirq.h> 40 #include <linux/mempolicy.h> 41 #include <linux/freezer.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 #include <linux/sched/isolation.h> 52 #include <linux/nmi.h> 53 54 #include "workqueue_internal.h" 55 56 enum { 57 /* 58 * worker_pool flags 59 * 60 * A bound pool is either associated or disassociated with its CPU. 61 * While associated (!DISASSOCIATED), all workers are bound to the 62 * CPU and none has %WORKER_UNBOUND set and concurrency management 63 * is in effect. 64 * 65 * While DISASSOCIATED, the cpu may be offline and all workers have 66 * %WORKER_UNBOUND set and concurrency management disabled, and may 67 * be executing on any CPU. The pool behaves as an unbound one. 68 * 69 * Note that DISASSOCIATED should be flipped only while holding 70 * wq_pool_attach_mutex to avoid changing binding state while 71 * worker_attach_to_pool() is in progress. 72 */ 73 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */ 74 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 75 76 /* worker flags */ 77 WORKER_DIE = 1 << 1, /* die die die */ 78 WORKER_IDLE = 1 << 2, /* is idle */ 79 WORKER_PREP = 1 << 3, /* preparing to run works */ 80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 82 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 83 84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 85 WORKER_UNBOUND | WORKER_REBOUND, 86 87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 88 89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 91 92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 94 95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 96 /* call for help after 10ms 97 (min two ticks) */ 98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 99 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 100 101 /* 102 * Rescue workers are used only on emergencies and shared by 103 * all cpus. Give MIN_NICE. 104 */ 105 RESCUER_NICE_LEVEL = MIN_NICE, 106 HIGHPRI_NICE_LEVEL = MIN_NICE, 107 108 WQ_NAME_LEN = 24, 109 }; 110 111 /* 112 * Structure fields follow one of the following exclusion rules. 113 * 114 * I: Modifiable by initialization/destruction paths and read-only for 115 * everyone else. 116 * 117 * P: Preemption protected. Disabling preemption is enough and should 118 * only be modified and accessed from the local cpu. 119 * 120 * L: pool->lock protected. Access with pool->lock held. 121 * 122 * X: During normal operation, modification requires pool->lock and should 123 * be done only from local cpu. Either disabling preemption on local 124 * cpu or grabbing pool->lock is enough for read access. If 125 * POOL_DISASSOCIATED is set, it's identical to L. 126 * 127 * A: wq_pool_attach_mutex protected. 128 * 129 * PL: wq_pool_mutex protected. 130 * 131 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 132 * 133 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 134 * 135 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 136 * RCU for reads. 137 * 138 * WQ: wq->mutex protected. 139 * 140 * WR: wq->mutex protected for writes. RCU protected for reads. 141 * 142 * MD: wq_mayday_lock protected. 143 */ 144 145 /* struct worker is defined in workqueue_internal.h */ 146 147 struct worker_pool { 148 raw_spinlock_t lock; /* the pool lock */ 149 int cpu; /* I: the associated cpu */ 150 int node; /* I: the associated node ID */ 151 int id; /* I: pool ID */ 152 unsigned int flags; /* X: flags */ 153 154 unsigned long watchdog_ts; /* L: watchdog timestamp */ 155 156 struct list_head worklist; /* L: list of pending works */ 157 158 int nr_workers; /* L: total number of workers */ 159 int nr_idle; /* L: currently idle workers */ 160 161 struct list_head idle_list; /* X: list of idle workers */ 162 struct timer_list idle_timer; /* L: worker idle timeout */ 163 struct timer_list mayday_timer; /* L: SOS timer for workers */ 164 165 /* a workers is either on busy_hash or idle_list, or the manager */ 166 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 167 /* L: hash of busy workers */ 168 169 struct worker *manager; /* L: purely informational */ 170 struct list_head workers; /* A: attached workers */ 171 struct completion *detach_completion; /* all workers detached */ 172 173 struct ida worker_ida; /* worker IDs for task name */ 174 175 struct workqueue_attrs *attrs; /* I: worker attributes */ 176 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 177 int refcnt; /* PL: refcnt for unbound pools */ 178 179 /* 180 * The current concurrency level. As it's likely to be accessed 181 * from other CPUs during try_to_wake_up(), put it in a separate 182 * cacheline. 183 */ 184 atomic_t nr_running ____cacheline_aligned_in_smp; 185 186 /* 187 * Destruction of pool is RCU protected to allow dereferences 188 * from get_work_pool(). 189 */ 190 struct rcu_head rcu; 191 } ____cacheline_aligned_in_smp; 192 193 /* 194 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 195 * of work_struct->data are used for flags and the remaining high bits 196 * point to the pwq; thus, pwqs need to be aligned at two's power of the 197 * number of flag bits. 198 */ 199 struct pool_workqueue { 200 struct worker_pool *pool; /* I: the associated pool */ 201 struct workqueue_struct *wq; /* I: the owning workqueue */ 202 int work_color; /* L: current color */ 203 int flush_color; /* L: flushing color */ 204 int refcnt; /* L: reference count */ 205 int nr_in_flight[WORK_NR_COLORS]; 206 /* L: nr of in_flight works */ 207 int nr_active; /* L: nr of active works */ 208 int max_active; /* L: max active works */ 209 struct list_head delayed_works; /* L: delayed works */ 210 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 211 struct list_head mayday_node; /* MD: node on wq->maydays */ 212 213 /* 214 * Release of unbound pwq is punted to system_wq. See put_pwq() 215 * and pwq_unbound_release_workfn() for details. pool_workqueue 216 * itself is also RCU protected so that the first pwq can be 217 * determined without grabbing wq->mutex. 218 */ 219 struct work_struct unbound_release_work; 220 struct rcu_head rcu; 221 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 222 223 /* 224 * Structure used to wait for workqueue flush. 225 */ 226 struct wq_flusher { 227 struct list_head list; /* WQ: list of flushers */ 228 int flush_color; /* WQ: flush color waiting for */ 229 struct completion done; /* flush completion */ 230 }; 231 232 struct wq_device; 233 234 /* 235 * The externally visible workqueue. It relays the issued work items to 236 * the appropriate worker_pool through its pool_workqueues. 237 */ 238 struct workqueue_struct { 239 struct list_head pwqs; /* WR: all pwqs of this wq */ 240 struct list_head list; /* PR: list of all workqueues */ 241 242 struct mutex mutex; /* protects this wq */ 243 int work_color; /* WQ: current work color */ 244 int flush_color; /* WQ: current flush color */ 245 atomic_t nr_pwqs_to_flush; /* flush in progress */ 246 struct wq_flusher *first_flusher; /* WQ: first flusher */ 247 struct list_head flusher_queue; /* WQ: flush waiters */ 248 struct list_head flusher_overflow; /* WQ: flush overflow list */ 249 250 struct list_head maydays; /* MD: pwqs requesting rescue */ 251 struct worker *rescuer; /* MD: rescue worker */ 252 253 int nr_drainers; /* WQ: drain in progress */ 254 int saved_max_active; /* WQ: saved pwq max_active */ 255 256 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 257 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 258 259 #ifdef CONFIG_SYSFS 260 struct wq_device *wq_dev; /* I: for sysfs interface */ 261 #endif 262 #ifdef CONFIG_LOCKDEP 263 char *lock_name; 264 struct lock_class_key key; 265 struct lockdep_map lockdep_map; 266 #endif 267 char name[WQ_NAME_LEN]; /* I: workqueue name */ 268 269 /* 270 * Destruction of workqueue_struct is RCU protected to allow walking 271 * the workqueues list without grabbing wq_pool_mutex. 272 * This is used to dump all workqueues from sysrq. 273 */ 274 struct rcu_head rcu; 275 276 /* hot fields used during command issue, aligned to cacheline */ 277 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 278 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 279 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 280 }; 281 282 static struct kmem_cache *pwq_cache; 283 284 static cpumask_var_t *wq_numa_possible_cpumask; 285 /* possible CPUs of each node */ 286 287 static bool wq_disable_numa; 288 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 289 290 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 291 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 292 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 293 294 static bool wq_online; /* can kworkers be created yet? */ 295 296 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 297 298 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 299 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 300 301 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 302 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 303 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 304 /* wait for manager to go away */ 305 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait); 306 307 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 308 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 309 310 /* PL: allowable cpus for unbound wqs and work items */ 311 static cpumask_var_t wq_unbound_cpumask; 312 313 /* CPU where unbound work was last round robin scheduled from this CPU */ 314 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 315 316 /* 317 * Local execution of unbound work items is no longer guaranteed. The 318 * following always forces round-robin CPU selection on unbound work items 319 * to uncover usages which depend on it. 320 */ 321 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 322 static bool wq_debug_force_rr_cpu = true; 323 #else 324 static bool wq_debug_force_rr_cpu = false; 325 #endif 326 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 327 328 /* the per-cpu worker pools */ 329 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 330 331 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 332 333 /* PL: hash of all unbound pools keyed by pool->attrs */ 334 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 335 336 /* I: attributes used when instantiating standard unbound pools on demand */ 337 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 338 339 /* I: attributes used when instantiating ordered pools on demand */ 340 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 341 342 struct workqueue_struct *system_wq __read_mostly; 343 EXPORT_SYMBOL(system_wq); 344 struct workqueue_struct *system_highpri_wq __read_mostly; 345 EXPORT_SYMBOL_GPL(system_highpri_wq); 346 struct workqueue_struct *system_long_wq __read_mostly; 347 EXPORT_SYMBOL_GPL(system_long_wq); 348 struct workqueue_struct *system_unbound_wq __read_mostly; 349 EXPORT_SYMBOL_GPL(system_unbound_wq); 350 struct workqueue_struct *system_freezable_wq __read_mostly; 351 EXPORT_SYMBOL_GPL(system_freezable_wq); 352 struct workqueue_struct *system_power_efficient_wq __read_mostly; 353 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 354 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 355 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 356 357 static int worker_thread(void *__worker); 358 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 359 static void show_pwq(struct pool_workqueue *pwq); 360 361 #define CREATE_TRACE_POINTS 362 #include <trace/events/workqueue.h> 363 364 #define assert_rcu_or_pool_mutex() \ 365 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 366 !lockdep_is_held(&wq_pool_mutex), \ 367 "RCU or wq_pool_mutex should be held") 368 369 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 370 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 371 !lockdep_is_held(&wq->mutex) && \ 372 !lockdep_is_held(&wq_pool_mutex), \ 373 "RCU, wq->mutex or wq_pool_mutex should be held") 374 375 #define for_each_cpu_worker_pool(pool, cpu) \ 376 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 377 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 378 (pool)++) 379 380 /** 381 * for_each_pool - iterate through all worker_pools in the system 382 * @pool: iteration cursor 383 * @pi: integer used for iteration 384 * 385 * This must be called either with wq_pool_mutex held or RCU read 386 * locked. If the pool needs to be used beyond the locking in effect, the 387 * caller is responsible for guaranteeing that the pool stays online. 388 * 389 * The if/else clause exists only for the lockdep assertion and can be 390 * ignored. 391 */ 392 #define for_each_pool(pool, pi) \ 393 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 394 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 395 else 396 397 /** 398 * for_each_pool_worker - iterate through all workers of a worker_pool 399 * @worker: iteration cursor 400 * @pool: worker_pool to iterate workers of 401 * 402 * This must be called with wq_pool_attach_mutex. 403 * 404 * The if/else clause exists only for the lockdep assertion and can be 405 * ignored. 406 */ 407 #define for_each_pool_worker(worker, pool) \ 408 list_for_each_entry((worker), &(pool)->workers, node) \ 409 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 410 else 411 412 /** 413 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 414 * @pwq: iteration cursor 415 * @wq: the target workqueue 416 * 417 * This must be called either with wq->mutex held or RCU read locked. 418 * If the pwq needs to be used beyond the locking in effect, the caller is 419 * responsible for guaranteeing that the pwq stays online. 420 * 421 * The if/else clause exists only for the lockdep assertion and can be 422 * ignored. 423 */ 424 #define for_each_pwq(pwq, wq) \ 425 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ 426 lockdep_is_held(&(wq->mutex))) 427 428 #ifdef CONFIG_DEBUG_OBJECTS_WORK 429 430 static struct debug_obj_descr work_debug_descr; 431 432 static void *work_debug_hint(void *addr) 433 { 434 return ((struct work_struct *) addr)->func; 435 } 436 437 static bool work_is_static_object(void *addr) 438 { 439 struct work_struct *work = addr; 440 441 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 442 } 443 444 /* 445 * fixup_init is called when: 446 * - an active object is initialized 447 */ 448 static bool work_fixup_init(void *addr, enum debug_obj_state state) 449 { 450 struct work_struct *work = addr; 451 452 switch (state) { 453 case ODEBUG_STATE_ACTIVE: 454 cancel_work_sync(work); 455 debug_object_init(work, &work_debug_descr); 456 return true; 457 default: 458 return false; 459 } 460 } 461 462 /* 463 * fixup_free is called when: 464 * - an active object is freed 465 */ 466 static bool work_fixup_free(void *addr, enum debug_obj_state state) 467 { 468 struct work_struct *work = addr; 469 470 switch (state) { 471 case ODEBUG_STATE_ACTIVE: 472 cancel_work_sync(work); 473 debug_object_free(work, &work_debug_descr); 474 return true; 475 default: 476 return false; 477 } 478 } 479 480 static struct debug_obj_descr work_debug_descr = { 481 .name = "work_struct", 482 .debug_hint = work_debug_hint, 483 .is_static_object = work_is_static_object, 484 .fixup_init = work_fixup_init, 485 .fixup_free = work_fixup_free, 486 }; 487 488 static inline void debug_work_activate(struct work_struct *work) 489 { 490 debug_object_activate(work, &work_debug_descr); 491 } 492 493 static inline void debug_work_deactivate(struct work_struct *work) 494 { 495 debug_object_deactivate(work, &work_debug_descr); 496 } 497 498 void __init_work(struct work_struct *work, int onstack) 499 { 500 if (onstack) 501 debug_object_init_on_stack(work, &work_debug_descr); 502 else 503 debug_object_init(work, &work_debug_descr); 504 } 505 EXPORT_SYMBOL_GPL(__init_work); 506 507 void destroy_work_on_stack(struct work_struct *work) 508 { 509 debug_object_free(work, &work_debug_descr); 510 } 511 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 512 513 void destroy_delayed_work_on_stack(struct delayed_work *work) 514 { 515 destroy_timer_on_stack(&work->timer); 516 debug_object_free(&work->work, &work_debug_descr); 517 } 518 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 519 520 #else 521 static inline void debug_work_activate(struct work_struct *work) { } 522 static inline void debug_work_deactivate(struct work_struct *work) { } 523 #endif 524 525 /** 526 * worker_pool_assign_id - allocate ID and assing it to @pool 527 * @pool: the pool pointer of interest 528 * 529 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 530 * successfully, -errno on failure. 531 */ 532 static int worker_pool_assign_id(struct worker_pool *pool) 533 { 534 int ret; 535 536 lockdep_assert_held(&wq_pool_mutex); 537 538 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 539 GFP_KERNEL); 540 if (ret >= 0) { 541 pool->id = ret; 542 return 0; 543 } 544 return ret; 545 } 546 547 /** 548 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 549 * @wq: the target workqueue 550 * @node: the node ID 551 * 552 * This must be called with any of wq_pool_mutex, wq->mutex or RCU 553 * read locked. 554 * If the pwq needs to be used beyond the locking in effect, the caller is 555 * responsible for guaranteeing that the pwq stays online. 556 * 557 * Return: The unbound pool_workqueue for @node. 558 */ 559 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 560 int node) 561 { 562 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 563 564 /* 565 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a 566 * delayed item is pending. The plan is to keep CPU -> NODE 567 * mapping valid and stable across CPU on/offlines. Once that 568 * happens, this workaround can be removed. 569 */ 570 if (unlikely(node == NUMA_NO_NODE)) 571 return wq->dfl_pwq; 572 573 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 574 } 575 576 static unsigned int work_color_to_flags(int color) 577 { 578 return color << WORK_STRUCT_COLOR_SHIFT; 579 } 580 581 static int get_work_color(struct work_struct *work) 582 { 583 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 584 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 585 } 586 587 static int work_next_color(int color) 588 { 589 return (color + 1) % WORK_NR_COLORS; 590 } 591 592 /* 593 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 594 * contain the pointer to the queued pwq. Once execution starts, the flag 595 * is cleared and the high bits contain OFFQ flags and pool ID. 596 * 597 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 598 * and clear_work_data() can be used to set the pwq, pool or clear 599 * work->data. These functions should only be called while the work is 600 * owned - ie. while the PENDING bit is set. 601 * 602 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 603 * corresponding to a work. Pool is available once the work has been 604 * queued anywhere after initialization until it is sync canceled. pwq is 605 * available only while the work item is queued. 606 * 607 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 608 * canceled. While being canceled, a work item may have its PENDING set 609 * but stay off timer and worklist for arbitrarily long and nobody should 610 * try to steal the PENDING bit. 611 */ 612 static inline void set_work_data(struct work_struct *work, unsigned long data, 613 unsigned long flags) 614 { 615 WARN_ON_ONCE(!work_pending(work)); 616 atomic_long_set(&work->data, data | flags | work_static(work)); 617 } 618 619 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 620 unsigned long extra_flags) 621 { 622 set_work_data(work, (unsigned long)pwq, 623 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 624 } 625 626 static void set_work_pool_and_keep_pending(struct work_struct *work, 627 int pool_id) 628 { 629 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 630 WORK_STRUCT_PENDING); 631 } 632 633 static void set_work_pool_and_clear_pending(struct work_struct *work, 634 int pool_id) 635 { 636 /* 637 * The following wmb is paired with the implied mb in 638 * test_and_set_bit(PENDING) and ensures all updates to @work made 639 * here are visible to and precede any updates by the next PENDING 640 * owner. 641 */ 642 smp_wmb(); 643 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 644 /* 645 * The following mb guarantees that previous clear of a PENDING bit 646 * will not be reordered with any speculative LOADS or STORES from 647 * work->current_func, which is executed afterwards. This possible 648 * reordering can lead to a missed execution on attempt to queue 649 * the same @work. E.g. consider this case: 650 * 651 * CPU#0 CPU#1 652 * ---------------------------- -------------------------------- 653 * 654 * 1 STORE event_indicated 655 * 2 queue_work_on() { 656 * 3 test_and_set_bit(PENDING) 657 * 4 } set_..._and_clear_pending() { 658 * 5 set_work_data() # clear bit 659 * 6 smp_mb() 660 * 7 work->current_func() { 661 * 8 LOAD event_indicated 662 * } 663 * 664 * Without an explicit full barrier speculative LOAD on line 8 can 665 * be executed before CPU#0 does STORE on line 1. If that happens, 666 * CPU#0 observes the PENDING bit is still set and new execution of 667 * a @work is not queued in a hope, that CPU#1 will eventually 668 * finish the queued @work. Meanwhile CPU#1 does not see 669 * event_indicated is set, because speculative LOAD was executed 670 * before actual STORE. 671 */ 672 smp_mb(); 673 } 674 675 static void clear_work_data(struct work_struct *work) 676 { 677 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 678 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 679 } 680 681 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 682 { 683 unsigned long data = atomic_long_read(&work->data); 684 685 if (data & WORK_STRUCT_PWQ) 686 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 687 else 688 return NULL; 689 } 690 691 /** 692 * get_work_pool - return the worker_pool a given work was associated with 693 * @work: the work item of interest 694 * 695 * Pools are created and destroyed under wq_pool_mutex, and allows read 696 * access under RCU read lock. As such, this function should be 697 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 698 * 699 * All fields of the returned pool are accessible as long as the above 700 * mentioned locking is in effect. If the returned pool needs to be used 701 * beyond the critical section, the caller is responsible for ensuring the 702 * returned pool is and stays online. 703 * 704 * Return: The worker_pool @work was last associated with. %NULL if none. 705 */ 706 static struct worker_pool *get_work_pool(struct work_struct *work) 707 { 708 unsigned long data = atomic_long_read(&work->data); 709 int pool_id; 710 711 assert_rcu_or_pool_mutex(); 712 713 if (data & WORK_STRUCT_PWQ) 714 return ((struct pool_workqueue *) 715 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 716 717 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 718 if (pool_id == WORK_OFFQ_POOL_NONE) 719 return NULL; 720 721 return idr_find(&worker_pool_idr, pool_id); 722 } 723 724 /** 725 * get_work_pool_id - return the worker pool ID a given work is associated with 726 * @work: the work item of interest 727 * 728 * Return: The worker_pool ID @work was last associated with. 729 * %WORK_OFFQ_POOL_NONE if none. 730 */ 731 static int get_work_pool_id(struct work_struct *work) 732 { 733 unsigned long data = atomic_long_read(&work->data); 734 735 if (data & WORK_STRUCT_PWQ) 736 return ((struct pool_workqueue *) 737 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 738 739 return data >> WORK_OFFQ_POOL_SHIFT; 740 } 741 742 static void mark_work_canceling(struct work_struct *work) 743 { 744 unsigned long pool_id = get_work_pool_id(work); 745 746 pool_id <<= WORK_OFFQ_POOL_SHIFT; 747 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 748 } 749 750 static bool work_is_canceling(struct work_struct *work) 751 { 752 unsigned long data = atomic_long_read(&work->data); 753 754 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 755 } 756 757 /* 758 * Policy functions. These define the policies on how the global worker 759 * pools are managed. Unless noted otherwise, these functions assume that 760 * they're being called with pool->lock held. 761 */ 762 763 static bool __need_more_worker(struct worker_pool *pool) 764 { 765 return !atomic_read(&pool->nr_running); 766 } 767 768 /* 769 * Need to wake up a worker? Called from anything but currently 770 * running workers. 771 * 772 * Note that, because unbound workers never contribute to nr_running, this 773 * function will always return %true for unbound pools as long as the 774 * worklist isn't empty. 775 */ 776 static bool need_more_worker(struct worker_pool *pool) 777 { 778 return !list_empty(&pool->worklist) && __need_more_worker(pool); 779 } 780 781 /* Can I start working? Called from busy but !running workers. */ 782 static bool may_start_working(struct worker_pool *pool) 783 { 784 return pool->nr_idle; 785 } 786 787 /* Do I need to keep working? Called from currently running workers. */ 788 static bool keep_working(struct worker_pool *pool) 789 { 790 return !list_empty(&pool->worklist) && 791 atomic_read(&pool->nr_running) <= 1; 792 } 793 794 /* Do we need a new worker? Called from manager. */ 795 static bool need_to_create_worker(struct worker_pool *pool) 796 { 797 return need_more_worker(pool) && !may_start_working(pool); 798 } 799 800 /* Do we have too many workers and should some go away? */ 801 static bool too_many_workers(struct worker_pool *pool) 802 { 803 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 804 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 805 int nr_busy = pool->nr_workers - nr_idle; 806 807 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 808 } 809 810 /* 811 * Wake up functions. 812 */ 813 814 /* Return the first idle worker. Safe with preemption disabled */ 815 static struct worker *first_idle_worker(struct worker_pool *pool) 816 { 817 if (unlikely(list_empty(&pool->idle_list))) 818 return NULL; 819 820 return list_first_entry(&pool->idle_list, struct worker, entry); 821 } 822 823 /** 824 * wake_up_worker - wake up an idle worker 825 * @pool: worker pool to wake worker from 826 * 827 * Wake up the first idle worker of @pool. 828 * 829 * CONTEXT: 830 * raw_spin_lock_irq(pool->lock). 831 */ 832 static void wake_up_worker(struct worker_pool *pool) 833 { 834 struct worker *worker = first_idle_worker(pool); 835 836 if (likely(worker)) 837 wake_up_process(worker->task); 838 } 839 840 /** 841 * wq_worker_running - a worker is running again 842 * @task: task waking up 843 * 844 * This function is called when a worker returns from schedule() 845 */ 846 void wq_worker_running(struct task_struct *task) 847 { 848 struct worker *worker = kthread_data(task); 849 850 if (!worker->sleeping) 851 return; 852 if (!(worker->flags & WORKER_NOT_RUNNING)) 853 atomic_inc(&worker->pool->nr_running); 854 worker->sleeping = 0; 855 } 856 857 /** 858 * wq_worker_sleeping - a worker is going to sleep 859 * @task: task going to sleep 860 * 861 * This function is called from schedule() when a busy worker is 862 * going to sleep. Preemption needs to be disabled to protect ->sleeping 863 * assignment. 864 */ 865 void wq_worker_sleeping(struct task_struct *task) 866 { 867 struct worker *next, *worker = kthread_data(task); 868 struct worker_pool *pool; 869 870 /* 871 * Rescuers, which may not have all the fields set up like normal 872 * workers, also reach here, let's not access anything before 873 * checking NOT_RUNNING. 874 */ 875 if (worker->flags & WORKER_NOT_RUNNING) 876 return; 877 878 pool = worker->pool; 879 880 /* Return if preempted before wq_worker_running() was reached */ 881 if (worker->sleeping) 882 return; 883 884 worker->sleeping = 1; 885 raw_spin_lock_irq(&pool->lock); 886 887 /* 888 * The counterpart of the following dec_and_test, implied mb, 889 * worklist not empty test sequence is in insert_work(). 890 * Please read comment there. 891 * 892 * NOT_RUNNING is clear. This means that we're bound to and 893 * running on the local cpu w/ rq lock held and preemption 894 * disabled, which in turn means that none else could be 895 * manipulating idle_list, so dereferencing idle_list without pool 896 * lock is safe. 897 */ 898 if (atomic_dec_and_test(&pool->nr_running) && 899 !list_empty(&pool->worklist)) { 900 next = first_idle_worker(pool); 901 if (next) 902 wake_up_process(next->task); 903 } 904 raw_spin_unlock_irq(&pool->lock); 905 } 906 907 /** 908 * wq_worker_last_func - retrieve worker's last work function 909 * @task: Task to retrieve last work function of. 910 * 911 * Determine the last function a worker executed. This is called from 912 * the scheduler to get a worker's last known identity. 913 * 914 * CONTEXT: 915 * raw_spin_lock_irq(rq->lock) 916 * 917 * This function is called during schedule() when a kworker is going 918 * to sleep. It's used by psi to identify aggregation workers during 919 * dequeuing, to allow periodic aggregation to shut-off when that 920 * worker is the last task in the system or cgroup to go to sleep. 921 * 922 * As this function doesn't involve any workqueue-related locking, it 923 * only returns stable values when called from inside the scheduler's 924 * queuing and dequeuing paths, when @task, which must be a kworker, 925 * is guaranteed to not be processing any works. 926 * 927 * Return: 928 * The last work function %current executed as a worker, NULL if it 929 * hasn't executed any work yet. 930 */ 931 work_func_t wq_worker_last_func(struct task_struct *task) 932 { 933 struct worker *worker = kthread_data(task); 934 935 return worker->last_func; 936 } 937 938 /** 939 * worker_set_flags - set worker flags and adjust nr_running accordingly 940 * @worker: self 941 * @flags: flags to set 942 * 943 * Set @flags in @worker->flags and adjust nr_running accordingly. 944 * 945 * CONTEXT: 946 * raw_spin_lock_irq(pool->lock) 947 */ 948 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 949 { 950 struct worker_pool *pool = worker->pool; 951 952 WARN_ON_ONCE(worker->task != current); 953 954 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 955 if ((flags & WORKER_NOT_RUNNING) && 956 !(worker->flags & WORKER_NOT_RUNNING)) { 957 atomic_dec(&pool->nr_running); 958 } 959 960 worker->flags |= flags; 961 } 962 963 /** 964 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 965 * @worker: self 966 * @flags: flags to clear 967 * 968 * Clear @flags in @worker->flags and adjust nr_running accordingly. 969 * 970 * CONTEXT: 971 * raw_spin_lock_irq(pool->lock) 972 */ 973 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 974 { 975 struct worker_pool *pool = worker->pool; 976 unsigned int oflags = worker->flags; 977 978 WARN_ON_ONCE(worker->task != current); 979 980 worker->flags &= ~flags; 981 982 /* 983 * If transitioning out of NOT_RUNNING, increment nr_running. Note 984 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 985 * of multiple flags, not a single flag. 986 */ 987 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 988 if (!(worker->flags & WORKER_NOT_RUNNING)) 989 atomic_inc(&pool->nr_running); 990 } 991 992 /** 993 * find_worker_executing_work - find worker which is executing a work 994 * @pool: pool of interest 995 * @work: work to find worker for 996 * 997 * Find a worker which is executing @work on @pool by searching 998 * @pool->busy_hash which is keyed by the address of @work. For a worker 999 * to match, its current execution should match the address of @work and 1000 * its work function. This is to avoid unwanted dependency between 1001 * unrelated work executions through a work item being recycled while still 1002 * being executed. 1003 * 1004 * This is a bit tricky. A work item may be freed once its execution 1005 * starts and nothing prevents the freed area from being recycled for 1006 * another work item. If the same work item address ends up being reused 1007 * before the original execution finishes, workqueue will identify the 1008 * recycled work item as currently executing and make it wait until the 1009 * current execution finishes, introducing an unwanted dependency. 1010 * 1011 * This function checks the work item address and work function to avoid 1012 * false positives. Note that this isn't complete as one may construct a 1013 * work function which can introduce dependency onto itself through a 1014 * recycled work item. Well, if somebody wants to shoot oneself in the 1015 * foot that badly, there's only so much we can do, and if such deadlock 1016 * actually occurs, it should be easy to locate the culprit work function. 1017 * 1018 * CONTEXT: 1019 * raw_spin_lock_irq(pool->lock). 1020 * 1021 * Return: 1022 * Pointer to worker which is executing @work if found, %NULL 1023 * otherwise. 1024 */ 1025 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1026 struct work_struct *work) 1027 { 1028 struct worker *worker; 1029 1030 hash_for_each_possible(pool->busy_hash, worker, hentry, 1031 (unsigned long)work) 1032 if (worker->current_work == work && 1033 worker->current_func == work->func) 1034 return worker; 1035 1036 return NULL; 1037 } 1038 1039 /** 1040 * move_linked_works - move linked works to a list 1041 * @work: start of series of works to be scheduled 1042 * @head: target list to append @work to 1043 * @nextp: out parameter for nested worklist walking 1044 * 1045 * Schedule linked works starting from @work to @head. Work series to 1046 * be scheduled starts at @work and includes any consecutive work with 1047 * WORK_STRUCT_LINKED set in its predecessor. 1048 * 1049 * If @nextp is not NULL, it's updated to point to the next work of 1050 * the last scheduled work. This allows move_linked_works() to be 1051 * nested inside outer list_for_each_entry_safe(). 1052 * 1053 * CONTEXT: 1054 * raw_spin_lock_irq(pool->lock). 1055 */ 1056 static void move_linked_works(struct work_struct *work, struct list_head *head, 1057 struct work_struct **nextp) 1058 { 1059 struct work_struct *n; 1060 1061 /* 1062 * Linked worklist will always end before the end of the list, 1063 * use NULL for list head. 1064 */ 1065 list_for_each_entry_safe_from(work, n, NULL, entry) { 1066 list_move_tail(&work->entry, head); 1067 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1068 break; 1069 } 1070 1071 /* 1072 * If we're already inside safe list traversal and have moved 1073 * multiple works to the scheduled queue, the next position 1074 * needs to be updated. 1075 */ 1076 if (nextp) 1077 *nextp = n; 1078 } 1079 1080 /** 1081 * get_pwq - get an extra reference on the specified pool_workqueue 1082 * @pwq: pool_workqueue to get 1083 * 1084 * Obtain an extra reference on @pwq. The caller should guarantee that 1085 * @pwq has positive refcnt and be holding the matching pool->lock. 1086 */ 1087 static void get_pwq(struct pool_workqueue *pwq) 1088 { 1089 lockdep_assert_held(&pwq->pool->lock); 1090 WARN_ON_ONCE(pwq->refcnt <= 0); 1091 pwq->refcnt++; 1092 } 1093 1094 /** 1095 * put_pwq - put a pool_workqueue reference 1096 * @pwq: pool_workqueue to put 1097 * 1098 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1099 * destruction. The caller should be holding the matching pool->lock. 1100 */ 1101 static void put_pwq(struct pool_workqueue *pwq) 1102 { 1103 lockdep_assert_held(&pwq->pool->lock); 1104 if (likely(--pwq->refcnt)) 1105 return; 1106 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1107 return; 1108 /* 1109 * @pwq can't be released under pool->lock, bounce to 1110 * pwq_unbound_release_workfn(). This never recurses on the same 1111 * pool->lock as this path is taken only for unbound workqueues and 1112 * the release work item is scheduled on a per-cpu workqueue. To 1113 * avoid lockdep warning, unbound pool->locks are given lockdep 1114 * subclass of 1 in get_unbound_pool(). 1115 */ 1116 schedule_work(&pwq->unbound_release_work); 1117 } 1118 1119 /** 1120 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1121 * @pwq: pool_workqueue to put (can be %NULL) 1122 * 1123 * put_pwq() with locking. This function also allows %NULL @pwq. 1124 */ 1125 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1126 { 1127 if (pwq) { 1128 /* 1129 * As both pwqs and pools are RCU protected, the 1130 * following lock operations are safe. 1131 */ 1132 raw_spin_lock_irq(&pwq->pool->lock); 1133 put_pwq(pwq); 1134 raw_spin_unlock_irq(&pwq->pool->lock); 1135 } 1136 } 1137 1138 static void pwq_activate_delayed_work(struct work_struct *work) 1139 { 1140 struct pool_workqueue *pwq = get_work_pwq(work); 1141 1142 trace_workqueue_activate_work(work); 1143 if (list_empty(&pwq->pool->worklist)) 1144 pwq->pool->watchdog_ts = jiffies; 1145 move_linked_works(work, &pwq->pool->worklist, NULL); 1146 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1147 pwq->nr_active++; 1148 } 1149 1150 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1151 { 1152 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1153 struct work_struct, entry); 1154 1155 pwq_activate_delayed_work(work); 1156 } 1157 1158 /** 1159 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1160 * @pwq: pwq of interest 1161 * @color: color of work which left the queue 1162 * 1163 * A work either has completed or is removed from pending queue, 1164 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1165 * 1166 * CONTEXT: 1167 * raw_spin_lock_irq(pool->lock). 1168 */ 1169 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1170 { 1171 /* uncolored work items don't participate in flushing or nr_active */ 1172 if (color == WORK_NO_COLOR) 1173 goto out_put; 1174 1175 pwq->nr_in_flight[color]--; 1176 1177 pwq->nr_active--; 1178 if (!list_empty(&pwq->delayed_works)) { 1179 /* one down, submit a delayed one */ 1180 if (pwq->nr_active < pwq->max_active) 1181 pwq_activate_first_delayed(pwq); 1182 } 1183 1184 /* is flush in progress and are we at the flushing tip? */ 1185 if (likely(pwq->flush_color != color)) 1186 goto out_put; 1187 1188 /* are there still in-flight works? */ 1189 if (pwq->nr_in_flight[color]) 1190 goto out_put; 1191 1192 /* this pwq is done, clear flush_color */ 1193 pwq->flush_color = -1; 1194 1195 /* 1196 * If this was the last pwq, wake up the first flusher. It 1197 * will handle the rest. 1198 */ 1199 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1200 complete(&pwq->wq->first_flusher->done); 1201 out_put: 1202 put_pwq(pwq); 1203 } 1204 1205 /** 1206 * try_to_grab_pending - steal work item from worklist and disable irq 1207 * @work: work item to steal 1208 * @is_dwork: @work is a delayed_work 1209 * @flags: place to store irq state 1210 * 1211 * Try to grab PENDING bit of @work. This function can handle @work in any 1212 * stable state - idle, on timer or on worklist. 1213 * 1214 * Return: 1215 * 1 if @work was pending and we successfully stole PENDING 1216 * 0 if @work was idle and we claimed PENDING 1217 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1218 * -ENOENT if someone else is canceling @work, this state may persist 1219 * for arbitrarily long 1220 * 1221 * Note: 1222 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1223 * interrupted while holding PENDING and @work off queue, irq must be 1224 * disabled on entry. This, combined with delayed_work->timer being 1225 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1226 * 1227 * On successful return, >= 0, irq is disabled and the caller is 1228 * responsible for releasing it using local_irq_restore(*@flags). 1229 * 1230 * This function is safe to call from any context including IRQ handler. 1231 */ 1232 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1233 unsigned long *flags) 1234 { 1235 struct worker_pool *pool; 1236 struct pool_workqueue *pwq; 1237 1238 local_irq_save(*flags); 1239 1240 /* try to steal the timer if it exists */ 1241 if (is_dwork) { 1242 struct delayed_work *dwork = to_delayed_work(work); 1243 1244 /* 1245 * dwork->timer is irqsafe. If del_timer() fails, it's 1246 * guaranteed that the timer is not queued anywhere and not 1247 * running on the local CPU. 1248 */ 1249 if (likely(del_timer(&dwork->timer))) 1250 return 1; 1251 } 1252 1253 /* try to claim PENDING the normal way */ 1254 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1255 return 0; 1256 1257 rcu_read_lock(); 1258 /* 1259 * The queueing is in progress, or it is already queued. Try to 1260 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1261 */ 1262 pool = get_work_pool(work); 1263 if (!pool) 1264 goto fail; 1265 1266 raw_spin_lock(&pool->lock); 1267 /* 1268 * work->data is guaranteed to point to pwq only while the work 1269 * item is queued on pwq->wq, and both updating work->data to point 1270 * to pwq on queueing and to pool on dequeueing are done under 1271 * pwq->pool->lock. This in turn guarantees that, if work->data 1272 * points to pwq which is associated with a locked pool, the work 1273 * item is currently queued on that pool. 1274 */ 1275 pwq = get_work_pwq(work); 1276 if (pwq && pwq->pool == pool) { 1277 debug_work_deactivate(work); 1278 1279 /* 1280 * A delayed work item cannot be grabbed directly because 1281 * it might have linked NO_COLOR work items which, if left 1282 * on the delayed_list, will confuse pwq->nr_active 1283 * management later on and cause stall. Make sure the work 1284 * item is activated before grabbing. 1285 */ 1286 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1287 pwq_activate_delayed_work(work); 1288 1289 list_del_init(&work->entry); 1290 pwq_dec_nr_in_flight(pwq, get_work_color(work)); 1291 1292 /* work->data points to pwq iff queued, point to pool */ 1293 set_work_pool_and_keep_pending(work, pool->id); 1294 1295 raw_spin_unlock(&pool->lock); 1296 rcu_read_unlock(); 1297 return 1; 1298 } 1299 raw_spin_unlock(&pool->lock); 1300 fail: 1301 rcu_read_unlock(); 1302 local_irq_restore(*flags); 1303 if (work_is_canceling(work)) 1304 return -ENOENT; 1305 cpu_relax(); 1306 return -EAGAIN; 1307 } 1308 1309 /** 1310 * insert_work - insert a work into a pool 1311 * @pwq: pwq @work belongs to 1312 * @work: work to insert 1313 * @head: insertion point 1314 * @extra_flags: extra WORK_STRUCT_* flags to set 1315 * 1316 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1317 * work_struct flags. 1318 * 1319 * CONTEXT: 1320 * raw_spin_lock_irq(pool->lock). 1321 */ 1322 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1323 struct list_head *head, unsigned int extra_flags) 1324 { 1325 struct worker_pool *pool = pwq->pool; 1326 1327 /* we own @work, set data and link */ 1328 set_work_pwq(work, pwq, extra_flags); 1329 list_add_tail(&work->entry, head); 1330 get_pwq(pwq); 1331 1332 /* 1333 * Ensure either wq_worker_sleeping() sees the above 1334 * list_add_tail() or we see zero nr_running to avoid workers lying 1335 * around lazily while there are works to be processed. 1336 */ 1337 smp_mb(); 1338 1339 if (__need_more_worker(pool)) 1340 wake_up_worker(pool); 1341 } 1342 1343 /* 1344 * Test whether @work is being queued from another work executing on the 1345 * same workqueue. 1346 */ 1347 static bool is_chained_work(struct workqueue_struct *wq) 1348 { 1349 struct worker *worker; 1350 1351 worker = current_wq_worker(); 1352 /* 1353 * Return %true iff I'm a worker executing a work item on @wq. If 1354 * I'm @worker, it's safe to dereference it without locking. 1355 */ 1356 return worker && worker->current_pwq->wq == wq; 1357 } 1358 1359 /* 1360 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1361 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1362 * avoid perturbing sensitive tasks. 1363 */ 1364 static int wq_select_unbound_cpu(int cpu) 1365 { 1366 static bool printed_dbg_warning; 1367 int new_cpu; 1368 1369 if (likely(!wq_debug_force_rr_cpu)) { 1370 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1371 return cpu; 1372 } else if (!printed_dbg_warning) { 1373 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1374 printed_dbg_warning = true; 1375 } 1376 1377 if (cpumask_empty(wq_unbound_cpumask)) 1378 return cpu; 1379 1380 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1381 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1382 if (unlikely(new_cpu >= nr_cpu_ids)) { 1383 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1384 if (unlikely(new_cpu >= nr_cpu_ids)) 1385 return cpu; 1386 } 1387 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1388 1389 return new_cpu; 1390 } 1391 1392 static void __queue_work(int cpu, struct workqueue_struct *wq, 1393 struct work_struct *work) 1394 { 1395 struct pool_workqueue *pwq; 1396 struct worker_pool *last_pool; 1397 struct list_head *worklist; 1398 unsigned int work_flags; 1399 unsigned int req_cpu = cpu; 1400 1401 /* 1402 * While a work item is PENDING && off queue, a task trying to 1403 * steal the PENDING will busy-loop waiting for it to either get 1404 * queued or lose PENDING. Grabbing PENDING and queueing should 1405 * happen with IRQ disabled. 1406 */ 1407 lockdep_assert_irqs_disabled(); 1408 1409 debug_work_activate(work); 1410 1411 /* if draining, only works from the same workqueue are allowed */ 1412 if (unlikely(wq->flags & __WQ_DRAINING) && 1413 WARN_ON_ONCE(!is_chained_work(wq))) 1414 return; 1415 rcu_read_lock(); 1416 retry: 1417 /* pwq which will be used unless @work is executing elsewhere */ 1418 if (wq->flags & WQ_UNBOUND) { 1419 if (req_cpu == WORK_CPU_UNBOUND) 1420 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1421 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1422 } else { 1423 if (req_cpu == WORK_CPU_UNBOUND) 1424 cpu = raw_smp_processor_id(); 1425 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1426 } 1427 1428 /* 1429 * If @work was previously on a different pool, it might still be 1430 * running there, in which case the work needs to be queued on that 1431 * pool to guarantee non-reentrancy. 1432 */ 1433 last_pool = get_work_pool(work); 1434 if (last_pool && last_pool != pwq->pool) { 1435 struct worker *worker; 1436 1437 raw_spin_lock(&last_pool->lock); 1438 1439 worker = find_worker_executing_work(last_pool, work); 1440 1441 if (worker && worker->current_pwq->wq == wq) { 1442 pwq = worker->current_pwq; 1443 } else { 1444 /* meh... not running there, queue here */ 1445 raw_spin_unlock(&last_pool->lock); 1446 raw_spin_lock(&pwq->pool->lock); 1447 } 1448 } else { 1449 raw_spin_lock(&pwq->pool->lock); 1450 } 1451 1452 /* 1453 * pwq is determined and locked. For unbound pools, we could have 1454 * raced with pwq release and it could already be dead. If its 1455 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1456 * without another pwq replacing it in the numa_pwq_tbl or while 1457 * work items are executing on it, so the retrying is guaranteed to 1458 * make forward-progress. 1459 */ 1460 if (unlikely(!pwq->refcnt)) { 1461 if (wq->flags & WQ_UNBOUND) { 1462 raw_spin_unlock(&pwq->pool->lock); 1463 cpu_relax(); 1464 goto retry; 1465 } 1466 /* oops */ 1467 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1468 wq->name, cpu); 1469 } 1470 1471 /* pwq determined, queue */ 1472 trace_workqueue_queue_work(req_cpu, pwq, work); 1473 1474 if (WARN_ON(!list_empty(&work->entry))) 1475 goto out; 1476 1477 pwq->nr_in_flight[pwq->work_color]++; 1478 work_flags = work_color_to_flags(pwq->work_color); 1479 1480 if (likely(pwq->nr_active < pwq->max_active)) { 1481 trace_workqueue_activate_work(work); 1482 pwq->nr_active++; 1483 worklist = &pwq->pool->worklist; 1484 if (list_empty(worklist)) 1485 pwq->pool->watchdog_ts = jiffies; 1486 } else { 1487 work_flags |= WORK_STRUCT_DELAYED; 1488 worklist = &pwq->delayed_works; 1489 } 1490 1491 insert_work(pwq, work, worklist, work_flags); 1492 1493 out: 1494 raw_spin_unlock(&pwq->pool->lock); 1495 rcu_read_unlock(); 1496 } 1497 1498 /** 1499 * queue_work_on - queue work on specific cpu 1500 * @cpu: CPU number to execute work on 1501 * @wq: workqueue to use 1502 * @work: work to queue 1503 * 1504 * We queue the work to a specific CPU, the caller must ensure it 1505 * can't go away. 1506 * 1507 * Return: %false if @work was already on a queue, %true otherwise. 1508 */ 1509 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1510 struct work_struct *work) 1511 { 1512 bool ret = false; 1513 unsigned long flags; 1514 1515 local_irq_save(flags); 1516 1517 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1518 __queue_work(cpu, wq, work); 1519 ret = true; 1520 } 1521 1522 local_irq_restore(flags); 1523 return ret; 1524 } 1525 EXPORT_SYMBOL(queue_work_on); 1526 1527 /** 1528 * workqueue_select_cpu_near - Select a CPU based on NUMA node 1529 * @node: NUMA node ID that we want to select a CPU from 1530 * 1531 * This function will attempt to find a "random" cpu available on a given 1532 * node. If there are no CPUs available on the given node it will return 1533 * WORK_CPU_UNBOUND indicating that we should just schedule to any 1534 * available CPU if we need to schedule this work. 1535 */ 1536 static int workqueue_select_cpu_near(int node) 1537 { 1538 int cpu; 1539 1540 /* No point in doing this if NUMA isn't enabled for workqueues */ 1541 if (!wq_numa_enabled) 1542 return WORK_CPU_UNBOUND; 1543 1544 /* Delay binding to CPU if node is not valid or online */ 1545 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 1546 return WORK_CPU_UNBOUND; 1547 1548 /* Use local node/cpu if we are already there */ 1549 cpu = raw_smp_processor_id(); 1550 if (node == cpu_to_node(cpu)) 1551 return cpu; 1552 1553 /* Use "random" otherwise know as "first" online CPU of node */ 1554 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 1555 1556 /* If CPU is valid return that, otherwise just defer */ 1557 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 1558 } 1559 1560 /** 1561 * queue_work_node - queue work on a "random" cpu for a given NUMA node 1562 * @node: NUMA node that we are targeting the work for 1563 * @wq: workqueue to use 1564 * @work: work to queue 1565 * 1566 * We queue the work to a "random" CPU within a given NUMA node. The basic 1567 * idea here is to provide a way to somehow associate work with a given 1568 * NUMA node. 1569 * 1570 * This function will only make a best effort attempt at getting this onto 1571 * the right NUMA node. If no node is requested or the requested node is 1572 * offline then we just fall back to standard queue_work behavior. 1573 * 1574 * Currently the "random" CPU ends up being the first available CPU in the 1575 * intersection of cpu_online_mask and the cpumask of the node, unless we 1576 * are running on the node. In that case we just use the current CPU. 1577 * 1578 * Return: %false if @work was already on a queue, %true otherwise. 1579 */ 1580 bool queue_work_node(int node, struct workqueue_struct *wq, 1581 struct work_struct *work) 1582 { 1583 unsigned long flags; 1584 bool ret = false; 1585 1586 /* 1587 * This current implementation is specific to unbound workqueues. 1588 * Specifically we only return the first available CPU for a given 1589 * node instead of cycling through individual CPUs within the node. 1590 * 1591 * If this is used with a per-cpu workqueue then the logic in 1592 * workqueue_select_cpu_near would need to be updated to allow for 1593 * some round robin type logic. 1594 */ 1595 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 1596 1597 local_irq_save(flags); 1598 1599 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1600 int cpu = workqueue_select_cpu_near(node); 1601 1602 __queue_work(cpu, wq, work); 1603 ret = true; 1604 } 1605 1606 local_irq_restore(flags); 1607 return ret; 1608 } 1609 EXPORT_SYMBOL_GPL(queue_work_node); 1610 1611 void delayed_work_timer_fn(struct timer_list *t) 1612 { 1613 struct delayed_work *dwork = from_timer(dwork, t, timer); 1614 1615 /* should have been called from irqsafe timer with irq already off */ 1616 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1617 } 1618 EXPORT_SYMBOL(delayed_work_timer_fn); 1619 1620 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1621 struct delayed_work *dwork, unsigned long delay) 1622 { 1623 struct timer_list *timer = &dwork->timer; 1624 struct work_struct *work = &dwork->work; 1625 1626 WARN_ON_ONCE(!wq); 1627 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 1628 WARN_ON_ONCE(timer_pending(timer)); 1629 WARN_ON_ONCE(!list_empty(&work->entry)); 1630 1631 /* 1632 * If @delay is 0, queue @dwork->work immediately. This is for 1633 * both optimization and correctness. The earliest @timer can 1634 * expire is on the closest next tick and delayed_work users depend 1635 * on that there's no such delay when @delay is 0. 1636 */ 1637 if (!delay) { 1638 __queue_work(cpu, wq, &dwork->work); 1639 return; 1640 } 1641 1642 dwork->wq = wq; 1643 dwork->cpu = cpu; 1644 timer->expires = jiffies + delay; 1645 1646 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1647 add_timer_on(timer, cpu); 1648 else 1649 add_timer(timer); 1650 } 1651 1652 /** 1653 * queue_delayed_work_on - queue work on specific CPU after delay 1654 * @cpu: CPU number to execute work on 1655 * @wq: workqueue to use 1656 * @dwork: work to queue 1657 * @delay: number of jiffies to wait before queueing 1658 * 1659 * Return: %false if @work was already on a queue, %true otherwise. If 1660 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1661 * execution. 1662 */ 1663 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1664 struct delayed_work *dwork, unsigned long delay) 1665 { 1666 struct work_struct *work = &dwork->work; 1667 bool ret = false; 1668 unsigned long flags; 1669 1670 /* read the comment in __queue_work() */ 1671 local_irq_save(flags); 1672 1673 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1674 __queue_delayed_work(cpu, wq, dwork, delay); 1675 ret = true; 1676 } 1677 1678 local_irq_restore(flags); 1679 return ret; 1680 } 1681 EXPORT_SYMBOL(queue_delayed_work_on); 1682 1683 /** 1684 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1685 * @cpu: CPU number to execute work on 1686 * @wq: workqueue to use 1687 * @dwork: work to queue 1688 * @delay: number of jiffies to wait before queueing 1689 * 1690 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1691 * modify @dwork's timer so that it expires after @delay. If @delay is 1692 * zero, @work is guaranteed to be scheduled immediately regardless of its 1693 * current state. 1694 * 1695 * Return: %false if @dwork was idle and queued, %true if @dwork was 1696 * pending and its timer was modified. 1697 * 1698 * This function is safe to call from any context including IRQ handler. 1699 * See try_to_grab_pending() for details. 1700 */ 1701 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1702 struct delayed_work *dwork, unsigned long delay) 1703 { 1704 unsigned long flags; 1705 int ret; 1706 1707 do { 1708 ret = try_to_grab_pending(&dwork->work, true, &flags); 1709 } while (unlikely(ret == -EAGAIN)); 1710 1711 if (likely(ret >= 0)) { 1712 __queue_delayed_work(cpu, wq, dwork, delay); 1713 local_irq_restore(flags); 1714 } 1715 1716 /* -ENOENT from try_to_grab_pending() becomes %true */ 1717 return ret; 1718 } 1719 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1720 1721 static void rcu_work_rcufn(struct rcu_head *rcu) 1722 { 1723 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 1724 1725 /* read the comment in __queue_work() */ 1726 local_irq_disable(); 1727 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 1728 local_irq_enable(); 1729 } 1730 1731 /** 1732 * queue_rcu_work - queue work after a RCU grace period 1733 * @wq: workqueue to use 1734 * @rwork: work to queue 1735 * 1736 * Return: %false if @rwork was already pending, %true otherwise. Note 1737 * that a full RCU grace period is guaranteed only after a %true return. 1738 * While @rwork is guaranteed to be executed after a %false return, the 1739 * execution may happen before a full RCU grace period has passed. 1740 */ 1741 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 1742 { 1743 struct work_struct *work = &rwork->work; 1744 1745 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1746 rwork->wq = wq; 1747 call_rcu(&rwork->rcu, rcu_work_rcufn); 1748 return true; 1749 } 1750 1751 return false; 1752 } 1753 EXPORT_SYMBOL(queue_rcu_work); 1754 1755 /** 1756 * worker_enter_idle - enter idle state 1757 * @worker: worker which is entering idle state 1758 * 1759 * @worker is entering idle state. Update stats and idle timer if 1760 * necessary. 1761 * 1762 * LOCKING: 1763 * raw_spin_lock_irq(pool->lock). 1764 */ 1765 static void worker_enter_idle(struct worker *worker) 1766 { 1767 struct worker_pool *pool = worker->pool; 1768 1769 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1770 WARN_ON_ONCE(!list_empty(&worker->entry) && 1771 (worker->hentry.next || worker->hentry.pprev))) 1772 return; 1773 1774 /* can't use worker_set_flags(), also called from create_worker() */ 1775 worker->flags |= WORKER_IDLE; 1776 pool->nr_idle++; 1777 worker->last_active = jiffies; 1778 1779 /* idle_list is LIFO */ 1780 list_add(&worker->entry, &pool->idle_list); 1781 1782 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1783 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1784 1785 /* 1786 * Sanity check nr_running. Because unbind_workers() releases 1787 * pool->lock between setting %WORKER_UNBOUND and zapping 1788 * nr_running, the warning may trigger spuriously. Check iff 1789 * unbind is not in progress. 1790 */ 1791 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1792 pool->nr_workers == pool->nr_idle && 1793 atomic_read(&pool->nr_running)); 1794 } 1795 1796 /** 1797 * worker_leave_idle - leave idle state 1798 * @worker: worker which is leaving idle state 1799 * 1800 * @worker is leaving idle state. Update stats. 1801 * 1802 * LOCKING: 1803 * raw_spin_lock_irq(pool->lock). 1804 */ 1805 static void worker_leave_idle(struct worker *worker) 1806 { 1807 struct worker_pool *pool = worker->pool; 1808 1809 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1810 return; 1811 worker_clr_flags(worker, WORKER_IDLE); 1812 pool->nr_idle--; 1813 list_del_init(&worker->entry); 1814 } 1815 1816 static struct worker *alloc_worker(int node) 1817 { 1818 struct worker *worker; 1819 1820 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1821 if (worker) { 1822 INIT_LIST_HEAD(&worker->entry); 1823 INIT_LIST_HEAD(&worker->scheduled); 1824 INIT_LIST_HEAD(&worker->node); 1825 /* on creation a worker is in !idle && prep state */ 1826 worker->flags = WORKER_PREP; 1827 } 1828 return worker; 1829 } 1830 1831 /** 1832 * worker_attach_to_pool() - attach a worker to a pool 1833 * @worker: worker to be attached 1834 * @pool: the target pool 1835 * 1836 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1837 * cpu-binding of @worker are kept coordinated with the pool across 1838 * cpu-[un]hotplugs. 1839 */ 1840 static void worker_attach_to_pool(struct worker *worker, 1841 struct worker_pool *pool) 1842 { 1843 mutex_lock(&wq_pool_attach_mutex); 1844 1845 /* 1846 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1847 * online CPUs. It'll be re-applied when any of the CPUs come up. 1848 */ 1849 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1850 1851 /* 1852 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains 1853 * stable across this function. See the comments above the flag 1854 * definition for details. 1855 */ 1856 if (pool->flags & POOL_DISASSOCIATED) 1857 worker->flags |= WORKER_UNBOUND; 1858 1859 list_add_tail(&worker->node, &pool->workers); 1860 worker->pool = pool; 1861 1862 mutex_unlock(&wq_pool_attach_mutex); 1863 } 1864 1865 /** 1866 * worker_detach_from_pool() - detach a worker from its pool 1867 * @worker: worker which is attached to its pool 1868 * 1869 * Undo the attaching which had been done in worker_attach_to_pool(). The 1870 * caller worker shouldn't access to the pool after detached except it has 1871 * other reference to the pool. 1872 */ 1873 static void worker_detach_from_pool(struct worker *worker) 1874 { 1875 struct worker_pool *pool = worker->pool; 1876 struct completion *detach_completion = NULL; 1877 1878 mutex_lock(&wq_pool_attach_mutex); 1879 1880 list_del(&worker->node); 1881 worker->pool = NULL; 1882 1883 if (list_empty(&pool->workers)) 1884 detach_completion = pool->detach_completion; 1885 mutex_unlock(&wq_pool_attach_mutex); 1886 1887 /* clear leftover flags without pool->lock after it is detached */ 1888 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1889 1890 if (detach_completion) 1891 complete(detach_completion); 1892 } 1893 1894 /** 1895 * create_worker - create a new workqueue worker 1896 * @pool: pool the new worker will belong to 1897 * 1898 * Create and start a new worker which is attached to @pool. 1899 * 1900 * CONTEXT: 1901 * Might sleep. Does GFP_KERNEL allocations. 1902 * 1903 * Return: 1904 * Pointer to the newly created worker. 1905 */ 1906 static struct worker *create_worker(struct worker_pool *pool) 1907 { 1908 struct worker *worker = NULL; 1909 int id = -1; 1910 char id_buf[16]; 1911 1912 /* ID is needed to determine kthread name */ 1913 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL); 1914 if (id < 0) 1915 goto fail; 1916 1917 worker = alloc_worker(pool->node); 1918 if (!worker) 1919 goto fail; 1920 1921 worker->id = id; 1922 1923 if (pool->cpu >= 0) 1924 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1925 pool->attrs->nice < 0 ? "H" : ""); 1926 else 1927 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1928 1929 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1930 "kworker/%s", id_buf); 1931 if (IS_ERR(worker->task)) 1932 goto fail; 1933 1934 set_user_nice(worker->task, pool->attrs->nice); 1935 kthread_bind_mask(worker->task, pool->attrs->cpumask); 1936 1937 /* successful, attach the worker to the pool */ 1938 worker_attach_to_pool(worker, pool); 1939 1940 /* start the newly created worker */ 1941 raw_spin_lock_irq(&pool->lock); 1942 worker->pool->nr_workers++; 1943 worker_enter_idle(worker); 1944 wake_up_process(worker->task); 1945 raw_spin_unlock_irq(&pool->lock); 1946 1947 return worker; 1948 1949 fail: 1950 if (id >= 0) 1951 ida_simple_remove(&pool->worker_ida, id); 1952 kfree(worker); 1953 return NULL; 1954 } 1955 1956 /** 1957 * destroy_worker - destroy a workqueue worker 1958 * @worker: worker to be destroyed 1959 * 1960 * Destroy @worker and adjust @pool stats accordingly. The worker should 1961 * be idle. 1962 * 1963 * CONTEXT: 1964 * raw_spin_lock_irq(pool->lock). 1965 */ 1966 static void destroy_worker(struct worker *worker) 1967 { 1968 struct worker_pool *pool = worker->pool; 1969 1970 lockdep_assert_held(&pool->lock); 1971 1972 /* sanity check frenzy */ 1973 if (WARN_ON(worker->current_work) || 1974 WARN_ON(!list_empty(&worker->scheduled)) || 1975 WARN_ON(!(worker->flags & WORKER_IDLE))) 1976 return; 1977 1978 pool->nr_workers--; 1979 pool->nr_idle--; 1980 1981 list_del_init(&worker->entry); 1982 worker->flags |= WORKER_DIE; 1983 wake_up_process(worker->task); 1984 } 1985 1986 static void idle_worker_timeout(struct timer_list *t) 1987 { 1988 struct worker_pool *pool = from_timer(pool, t, idle_timer); 1989 1990 raw_spin_lock_irq(&pool->lock); 1991 1992 while (too_many_workers(pool)) { 1993 struct worker *worker; 1994 unsigned long expires; 1995 1996 /* idle_list is kept in LIFO order, check the last one */ 1997 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1998 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1999 2000 if (time_before(jiffies, expires)) { 2001 mod_timer(&pool->idle_timer, expires); 2002 break; 2003 } 2004 2005 destroy_worker(worker); 2006 } 2007 2008 raw_spin_unlock_irq(&pool->lock); 2009 } 2010 2011 static void send_mayday(struct work_struct *work) 2012 { 2013 struct pool_workqueue *pwq = get_work_pwq(work); 2014 struct workqueue_struct *wq = pwq->wq; 2015 2016 lockdep_assert_held(&wq_mayday_lock); 2017 2018 if (!wq->rescuer) 2019 return; 2020 2021 /* mayday mayday mayday */ 2022 if (list_empty(&pwq->mayday_node)) { 2023 /* 2024 * If @pwq is for an unbound wq, its base ref may be put at 2025 * any time due to an attribute change. Pin @pwq until the 2026 * rescuer is done with it. 2027 */ 2028 get_pwq(pwq); 2029 list_add_tail(&pwq->mayday_node, &wq->maydays); 2030 wake_up_process(wq->rescuer->task); 2031 } 2032 } 2033 2034 static void pool_mayday_timeout(struct timer_list *t) 2035 { 2036 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 2037 struct work_struct *work; 2038 2039 raw_spin_lock_irq(&pool->lock); 2040 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */ 2041 2042 if (need_to_create_worker(pool)) { 2043 /* 2044 * We've been trying to create a new worker but 2045 * haven't been successful. We might be hitting an 2046 * allocation deadlock. Send distress signals to 2047 * rescuers. 2048 */ 2049 list_for_each_entry(work, &pool->worklist, entry) 2050 send_mayday(work); 2051 } 2052 2053 raw_spin_unlock(&wq_mayday_lock); 2054 raw_spin_unlock_irq(&pool->lock); 2055 2056 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 2057 } 2058 2059 /** 2060 * maybe_create_worker - create a new worker if necessary 2061 * @pool: pool to create a new worker for 2062 * 2063 * Create a new worker for @pool if necessary. @pool is guaranteed to 2064 * have at least one idle worker on return from this function. If 2065 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 2066 * sent to all rescuers with works scheduled on @pool to resolve 2067 * possible allocation deadlock. 2068 * 2069 * On return, need_to_create_worker() is guaranteed to be %false and 2070 * may_start_working() %true. 2071 * 2072 * LOCKING: 2073 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2074 * multiple times. Does GFP_KERNEL allocations. Called only from 2075 * manager. 2076 */ 2077 static void maybe_create_worker(struct worker_pool *pool) 2078 __releases(&pool->lock) 2079 __acquires(&pool->lock) 2080 { 2081 restart: 2082 raw_spin_unlock_irq(&pool->lock); 2083 2084 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 2085 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 2086 2087 while (true) { 2088 if (create_worker(pool) || !need_to_create_worker(pool)) 2089 break; 2090 2091 schedule_timeout_interruptible(CREATE_COOLDOWN); 2092 2093 if (!need_to_create_worker(pool)) 2094 break; 2095 } 2096 2097 del_timer_sync(&pool->mayday_timer); 2098 raw_spin_lock_irq(&pool->lock); 2099 /* 2100 * This is necessary even after a new worker was just successfully 2101 * created as @pool->lock was dropped and the new worker might have 2102 * already become busy. 2103 */ 2104 if (need_to_create_worker(pool)) 2105 goto restart; 2106 } 2107 2108 /** 2109 * manage_workers - manage worker pool 2110 * @worker: self 2111 * 2112 * Assume the manager role and manage the worker pool @worker belongs 2113 * to. At any given time, there can be only zero or one manager per 2114 * pool. The exclusion is handled automatically by this function. 2115 * 2116 * The caller can safely start processing works on false return. On 2117 * true return, it's guaranteed that need_to_create_worker() is false 2118 * and may_start_working() is true. 2119 * 2120 * CONTEXT: 2121 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2122 * multiple times. Does GFP_KERNEL allocations. 2123 * 2124 * Return: 2125 * %false if the pool doesn't need management and the caller can safely 2126 * start processing works, %true if management function was performed and 2127 * the conditions that the caller verified before calling the function may 2128 * no longer be true. 2129 */ 2130 static bool manage_workers(struct worker *worker) 2131 { 2132 struct worker_pool *pool = worker->pool; 2133 2134 if (pool->flags & POOL_MANAGER_ACTIVE) 2135 return false; 2136 2137 pool->flags |= POOL_MANAGER_ACTIVE; 2138 pool->manager = worker; 2139 2140 maybe_create_worker(pool); 2141 2142 pool->manager = NULL; 2143 pool->flags &= ~POOL_MANAGER_ACTIVE; 2144 rcuwait_wake_up(&manager_wait); 2145 return true; 2146 } 2147 2148 /** 2149 * process_one_work - process single work 2150 * @worker: self 2151 * @work: work to process 2152 * 2153 * Process @work. This function contains all the logics necessary to 2154 * process a single work including synchronization against and 2155 * interaction with other workers on the same cpu, queueing and 2156 * flushing. As long as context requirement is met, any worker can 2157 * call this function to process a work. 2158 * 2159 * CONTEXT: 2160 * raw_spin_lock_irq(pool->lock) which is released and regrabbed. 2161 */ 2162 static void process_one_work(struct worker *worker, struct work_struct *work) 2163 __releases(&pool->lock) 2164 __acquires(&pool->lock) 2165 { 2166 struct pool_workqueue *pwq = get_work_pwq(work); 2167 struct worker_pool *pool = worker->pool; 2168 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2169 int work_color; 2170 struct worker *collision; 2171 #ifdef CONFIG_LOCKDEP 2172 /* 2173 * It is permissible to free the struct work_struct from 2174 * inside the function that is called from it, this we need to 2175 * take into account for lockdep too. To avoid bogus "held 2176 * lock freed" warnings as well as problems when looking into 2177 * work->lockdep_map, make a copy and use that here. 2178 */ 2179 struct lockdep_map lockdep_map; 2180 2181 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2182 #endif 2183 /* ensure we're on the correct CPU */ 2184 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2185 raw_smp_processor_id() != pool->cpu); 2186 2187 /* 2188 * A single work shouldn't be executed concurrently by 2189 * multiple workers on a single cpu. Check whether anyone is 2190 * already processing the work. If so, defer the work to the 2191 * currently executing one. 2192 */ 2193 collision = find_worker_executing_work(pool, work); 2194 if (unlikely(collision)) { 2195 move_linked_works(work, &collision->scheduled, NULL); 2196 return; 2197 } 2198 2199 /* claim and dequeue */ 2200 debug_work_deactivate(work); 2201 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2202 worker->current_work = work; 2203 worker->current_func = work->func; 2204 worker->current_pwq = pwq; 2205 work_color = get_work_color(work); 2206 2207 /* 2208 * Record wq name for cmdline and debug reporting, may get 2209 * overridden through set_worker_desc(). 2210 */ 2211 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 2212 2213 list_del_init(&work->entry); 2214 2215 /* 2216 * CPU intensive works don't participate in concurrency management. 2217 * They're the scheduler's responsibility. This takes @worker out 2218 * of concurrency management and the next code block will chain 2219 * execution of the pending work items. 2220 */ 2221 if (unlikely(cpu_intensive)) 2222 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2223 2224 /* 2225 * Wake up another worker if necessary. The condition is always 2226 * false for normal per-cpu workers since nr_running would always 2227 * be >= 1 at this point. This is used to chain execution of the 2228 * pending work items for WORKER_NOT_RUNNING workers such as the 2229 * UNBOUND and CPU_INTENSIVE ones. 2230 */ 2231 if (need_more_worker(pool)) 2232 wake_up_worker(pool); 2233 2234 /* 2235 * Record the last pool and clear PENDING which should be the last 2236 * update to @work. Also, do this inside @pool->lock so that 2237 * PENDING and queued state changes happen together while IRQ is 2238 * disabled. 2239 */ 2240 set_work_pool_and_clear_pending(work, pool->id); 2241 2242 raw_spin_unlock_irq(&pool->lock); 2243 2244 lock_map_acquire(&pwq->wq->lockdep_map); 2245 lock_map_acquire(&lockdep_map); 2246 /* 2247 * Strictly speaking we should mark the invariant state without holding 2248 * any locks, that is, before these two lock_map_acquire()'s. 2249 * 2250 * However, that would result in: 2251 * 2252 * A(W1) 2253 * WFC(C) 2254 * A(W1) 2255 * C(C) 2256 * 2257 * Which would create W1->C->W1 dependencies, even though there is no 2258 * actual deadlock possible. There are two solutions, using a 2259 * read-recursive acquire on the work(queue) 'locks', but this will then 2260 * hit the lockdep limitation on recursive locks, or simply discard 2261 * these locks. 2262 * 2263 * AFAICT there is no possible deadlock scenario between the 2264 * flush_work() and complete() primitives (except for single-threaded 2265 * workqueues), so hiding them isn't a problem. 2266 */ 2267 lockdep_invariant_state(true); 2268 trace_workqueue_execute_start(work); 2269 worker->current_func(work); 2270 /* 2271 * While we must be careful to not use "work" after this, the trace 2272 * point will only record its address. 2273 */ 2274 trace_workqueue_execute_end(work, worker->current_func); 2275 lock_map_release(&lockdep_map); 2276 lock_map_release(&pwq->wq->lockdep_map); 2277 2278 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2279 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2280 " last function: %ps\n", 2281 current->comm, preempt_count(), task_pid_nr(current), 2282 worker->current_func); 2283 debug_show_held_locks(current); 2284 dump_stack(); 2285 } 2286 2287 /* 2288 * The following prevents a kworker from hogging CPU on !PREEMPTION 2289 * kernels, where a requeueing work item waiting for something to 2290 * happen could deadlock with stop_machine as such work item could 2291 * indefinitely requeue itself while all other CPUs are trapped in 2292 * stop_machine. At the same time, report a quiescent RCU state so 2293 * the same condition doesn't freeze RCU. 2294 */ 2295 cond_resched(); 2296 2297 raw_spin_lock_irq(&pool->lock); 2298 2299 /* clear cpu intensive status */ 2300 if (unlikely(cpu_intensive)) 2301 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2302 2303 /* tag the worker for identification in schedule() */ 2304 worker->last_func = worker->current_func; 2305 2306 /* we're done with it, release */ 2307 hash_del(&worker->hentry); 2308 worker->current_work = NULL; 2309 worker->current_func = NULL; 2310 worker->current_pwq = NULL; 2311 pwq_dec_nr_in_flight(pwq, work_color); 2312 } 2313 2314 /** 2315 * process_scheduled_works - process scheduled works 2316 * @worker: self 2317 * 2318 * Process all scheduled works. Please note that the scheduled list 2319 * may change while processing a work, so this function repeatedly 2320 * fetches a work from the top and executes it. 2321 * 2322 * CONTEXT: 2323 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2324 * multiple times. 2325 */ 2326 static void process_scheduled_works(struct worker *worker) 2327 { 2328 while (!list_empty(&worker->scheduled)) { 2329 struct work_struct *work = list_first_entry(&worker->scheduled, 2330 struct work_struct, entry); 2331 process_one_work(worker, work); 2332 } 2333 } 2334 2335 static void set_pf_worker(bool val) 2336 { 2337 mutex_lock(&wq_pool_attach_mutex); 2338 if (val) 2339 current->flags |= PF_WQ_WORKER; 2340 else 2341 current->flags &= ~PF_WQ_WORKER; 2342 mutex_unlock(&wq_pool_attach_mutex); 2343 } 2344 2345 /** 2346 * worker_thread - the worker thread function 2347 * @__worker: self 2348 * 2349 * The worker thread function. All workers belong to a worker_pool - 2350 * either a per-cpu one or dynamic unbound one. These workers process all 2351 * work items regardless of their specific target workqueue. The only 2352 * exception is work items which belong to workqueues with a rescuer which 2353 * will be explained in rescuer_thread(). 2354 * 2355 * Return: 0 2356 */ 2357 static int worker_thread(void *__worker) 2358 { 2359 struct worker *worker = __worker; 2360 struct worker_pool *pool = worker->pool; 2361 2362 /* tell the scheduler that this is a workqueue worker */ 2363 set_pf_worker(true); 2364 woke_up: 2365 raw_spin_lock_irq(&pool->lock); 2366 2367 /* am I supposed to die? */ 2368 if (unlikely(worker->flags & WORKER_DIE)) { 2369 raw_spin_unlock_irq(&pool->lock); 2370 WARN_ON_ONCE(!list_empty(&worker->entry)); 2371 set_pf_worker(false); 2372 2373 set_task_comm(worker->task, "kworker/dying"); 2374 ida_simple_remove(&pool->worker_ida, worker->id); 2375 worker_detach_from_pool(worker); 2376 kfree(worker); 2377 return 0; 2378 } 2379 2380 worker_leave_idle(worker); 2381 recheck: 2382 /* no more worker necessary? */ 2383 if (!need_more_worker(pool)) 2384 goto sleep; 2385 2386 /* do we need to manage? */ 2387 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2388 goto recheck; 2389 2390 /* 2391 * ->scheduled list can only be filled while a worker is 2392 * preparing to process a work or actually processing it. 2393 * Make sure nobody diddled with it while I was sleeping. 2394 */ 2395 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2396 2397 /* 2398 * Finish PREP stage. We're guaranteed to have at least one idle 2399 * worker or that someone else has already assumed the manager 2400 * role. This is where @worker starts participating in concurrency 2401 * management if applicable and concurrency management is restored 2402 * after being rebound. See rebind_workers() for details. 2403 */ 2404 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2405 2406 do { 2407 struct work_struct *work = 2408 list_first_entry(&pool->worklist, 2409 struct work_struct, entry); 2410 2411 pool->watchdog_ts = jiffies; 2412 2413 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2414 /* optimization path, not strictly necessary */ 2415 process_one_work(worker, work); 2416 if (unlikely(!list_empty(&worker->scheduled))) 2417 process_scheduled_works(worker); 2418 } else { 2419 move_linked_works(work, &worker->scheduled, NULL); 2420 process_scheduled_works(worker); 2421 } 2422 } while (keep_working(pool)); 2423 2424 worker_set_flags(worker, WORKER_PREP); 2425 sleep: 2426 /* 2427 * pool->lock is held and there's no work to process and no need to 2428 * manage, sleep. Workers are woken up only while holding 2429 * pool->lock or from local cpu, so setting the current state 2430 * before releasing pool->lock is enough to prevent losing any 2431 * event. 2432 */ 2433 worker_enter_idle(worker); 2434 __set_current_state(TASK_IDLE); 2435 raw_spin_unlock_irq(&pool->lock); 2436 schedule(); 2437 goto woke_up; 2438 } 2439 2440 /** 2441 * rescuer_thread - the rescuer thread function 2442 * @__rescuer: self 2443 * 2444 * Workqueue rescuer thread function. There's one rescuer for each 2445 * workqueue which has WQ_MEM_RECLAIM set. 2446 * 2447 * Regular work processing on a pool may block trying to create a new 2448 * worker which uses GFP_KERNEL allocation which has slight chance of 2449 * developing into deadlock if some works currently on the same queue 2450 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2451 * the problem rescuer solves. 2452 * 2453 * When such condition is possible, the pool summons rescuers of all 2454 * workqueues which have works queued on the pool and let them process 2455 * those works so that forward progress can be guaranteed. 2456 * 2457 * This should happen rarely. 2458 * 2459 * Return: 0 2460 */ 2461 static int rescuer_thread(void *__rescuer) 2462 { 2463 struct worker *rescuer = __rescuer; 2464 struct workqueue_struct *wq = rescuer->rescue_wq; 2465 struct list_head *scheduled = &rescuer->scheduled; 2466 bool should_stop; 2467 2468 set_user_nice(current, RESCUER_NICE_LEVEL); 2469 2470 /* 2471 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2472 * doesn't participate in concurrency management. 2473 */ 2474 set_pf_worker(true); 2475 repeat: 2476 set_current_state(TASK_IDLE); 2477 2478 /* 2479 * By the time the rescuer is requested to stop, the workqueue 2480 * shouldn't have any work pending, but @wq->maydays may still have 2481 * pwq(s) queued. This can happen by non-rescuer workers consuming 2482 * all the work items before the rescuer got to them. Go through 2483 * @wq->maydays processing before acting on should_stop so that the 2484 * list is always empty on exit. 2485 */ 2486 should_stop = kthread_should_stop(); 2487 2488 /* see whether any pwq is asking for help */ 2489 raw_spin_lock_irq(&wq_mayday_lock); 2490 2491 while (!list_empty(&wq->maydays)) { 2492 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2493 struct pool_workqueue, mayday_node); 2494 struct worker_pool *pool = pwq->pool; 2495 struct work_struct *work, *n; 2496 bool first = true; 2497 2498 __set_current_state(TASK_RUNNING); 2499 list_del_init(&pwq->mayday_node); 2500 2501 raw_spin_unlock_irq(&wq_mayday_lock); 2502 2503 worker_attach_to_pool(rescuer, pool); 2504 2505 raw_spin_lock_irq(&pool->lock); 2506 2507 /* 2508 * Slurp in all works issued via this workqueue and 2509 * process'em. 2510 */ 2511 WARN_ON_ONCE(!list_empty(scheduled)); 2512 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2513 if (get_work_pwq(work) == pwq) { 2514 if (first) 2515 pool->watchdog_ts = jiffies; 2516 move_linked_works(work, scheduled, &n); 2517 } 2518 first = false; 2519 } 2520 2521 if (!list_empty(scheduled)) { 2522 process_scheduled_works(rescuer); 2523 2524 /* 2525 * The above execution of rescued work items could 2526 * have created more to rescue through 2527 * pwq_activate_first_delayed() or chained 2528 * queueing. Let's put @pwq back on mayday list so 2529 * that such back-to-back work items, which may be 2530 * being used to relieve memory pressure, don't 2531 * incur MAYDAY_INTERVAL delay inbetween. 2532 */ 2533 if (pwq->nr_active && need_to_create_worker(pool)) { 2534 raw_spin_lock(&wq_mayday_lock); 2535 /* 2536 * Queue iff we aren't racing destruction 2537 * and somebody else hasn't queued it already. 2538 */ 2539 if (wq->rescuer && list_empty(&pwq->mayday_node)) { 2540 get_pwq(pwq); 2541 list_add_tail(&pwq->mayday_node, &wq->maydays); 2542 } 2543 raw_spin_unlock(&wq_mayday_lock); 2544 } 2545 } 2546 2547 /* 2548 * Put the reference grabbed by send_mayday(). @pool won't 2549 * go away while we're still attached to it. 2550 */ 2551 put_pwq(pwq); 2552 2553 /* 2554 * Leave this pool. If need_more_worker() is %true, notify a 2555 * regular worker; otherwise, we end up with 0 concurrency 2556 * and stalling the execution. 2557 */ 2558 if (need_more_worker(pool)) 2559 wake_up_worker(pool); 2560 2561 raw_spin_unlock_irq(&pool->lock); 2562 2563 worker_detach_from_pool(rescuer); 2564 2565 raw_spin_lock_irq(&wq_mayday_lock); 2566 } 2567 2568 raw_spin_unlock_irq(&wq_mayday_lock); 2569 2570 if (should_stop) { 2571 __set_current_state(TASK_RUNNING); 2572 set_pf_worker(false); 2573 return 0; 2574 } 2575 2576 /* rescuers should never participate in concurrency management */ 2577 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2578 schedule(); 2579 goto repeat; 2580 } 2581 2582 /** 2583 * check_flush_dependency - check for flush dependency sanity 2584 * @target_wq: workqueue being flushed 2585 * @target_work: work item being flushed (NULL for workqueue flushes) 2586 * 2587 * %current is trying to flush the whole @target_wq or @target_work on it. 2588 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2589 * reclaiming memory or running on a workqueue which doesn't have 2590 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2591 * a deadlock. 2592 */ 2593 static void check_flush_dependency(struct workqueue_struct *target_wq, 2594 struct work_struct *target_work) 2595 { 2596 work_func_t target_func = target_work ? target_work->func : NULL; 2597 struct worker *worker; 2598 2599 if (target_wq->flags & WQ_MEM_RECLAIM) 2600 return; 2601 2602 worker = current_wq_worker(); 2603 2604 WARN_ONCE(current->flags & PF_MEMALLOC, 2605 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 2606 current->pid, current->comm, target_wq->name, target_func); 2607 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2608 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2609 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 2610 worker->current_pwq->wq->name, worker->current_func, 2611 target_wq->name, target_func); 2612 } 2613 2614 struct wq_barrier { 2615 struct work_struct work; 2616 struct completion done; 2617 struct task_struct *task; /* purely informational */ 2618 }; 2619 2620 static void wq_barrier_func(struct work_struct *work) 2621 { 2622 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2623 complete(&barr->done); 2624 } 2625 2626 /** 2627 * insert_wq_barrier - insert a barrier work 2628 * @pwq: pwq to insert barrier into 2629 * @barr: wq_barrier to insert 2630 * @target: target work to attach @barr to 2631 * @worker: worker currently executing @target, NULL if @target is not executing 2632 * 2633 * @barr is linked to @target such that @barr is completed only after 2634 * @target finishes execution. Please note that the ordering 2635 * guarantee is observed only with respect to @target and on the local 2636 * cpu. 2637 * 2638 * Currently, a queued barrier can't be canceled. This is because 2639 * try_to_grab_pending() can't determine whether the work to be 2640 * grabbed is at the head of the queue and thus can't clear LINKED 2641 * flag of the previous work while there must be a valid next work 2642 * after a work with LINKED flag set. 2643 * 2644 * Note that when @worker is non-NULL, @target may be modified 2645 * underneath us, so we can't reliably determine pwq from @target. 2646 * 2647 * CONTEXT: 2648 * raw_spin_lock_irq(pool->lock). 2649 */ 2650 static void insert_wq_barrier(struct pool_workqueue *pwq, 2651 struct wq_barrier *barr, 2652 struct work_struct *target, struct worker *worker) 2653 { 2654 struct list_head *head; 2655 unsigned int linked = 0; 2656 2657 /* 2658 * debugobject calls are safe here even with pool->lock locked 2659 * as we know for sure that this will not trigger any of the 2660 * checks and call back into the fixup functions where we 2661 * might deadlock. 2662 */ 2663 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2664 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2665 2666 init_completion_map(&barr->done, &target->lockdep_map); 2667 2668 barr->task = current; 2669 2670 /* 2671 * If @target is currently being executed, schedule the 2672 * barrier to the worker; otherwise, put it after @target. 2673 */ 2674 if (worker) 2675 head = worker->scheduled.next; 2676 else { 2677 unsigned long *bits = work_data_bits(target); 2678 2679 head = target->entry.next; 2680 /* there can already be other linked works, inherit and set */ 2681 linked = *bits & WORK_STRUCT_LINKED; 2682 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2683 } 2684 2685 debug_work_activate(&barr->work); 2686 insert_work(pwq, &barr->work, head, 2687 work_color_to_flags(WORK_NO_COLOR) | linked); 2688 } 2689 2690 /** 2691 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2692 * @wq: workqueue being flushed 2693 * @flush_color: new flush color, < 0 for no-op 2694 * @work_color: new work color, < 0 for no-op 2695 * 2696 * Prepare pwqs for workqueue flushing. 2697 * 2698 * If @flush_color is non-negative, flush_color on all pwqs should be 2699 * -1. If no pwq has in-flight commands at the specified color, all 2700 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2701 * has in flight commands, its pwq->flush_color is set to 2702 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2703 * wakeup logic is armed and %true is returned. 2704 * 2705 * The caller should have initialized @wq->first_flusher prior to 2706 * calling this function with non-negative @flush_color. If 2707 * @flush_color is negative, no flush color update is done and %false 2708 * is returned. 2709 * 2710 * If @work_color is non-negative, all pwqs should have the same 2711 * work_color which is previous to @work_color and all will be 2712 * advanced to @work_color. 2713 * 2714 * CONTEXT: 2715 * mutex_lock(wq->mutex). 2716 * 2717 * Return: 2718 * %true if @flush_color >= 0 and there's something to flush. %false 2719 * otherwise. 2720 */ 2721 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2722 int flush_color, int work_color) 2723 { 2724 bool wait = false; 2725 struct pool_workqueue *pwq; 2726 2727 if (flush_color >= 0) { 2728 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2729 atomic_set(&wq->nr_pwqs_to_flush, 1); 2730 } 2731 2732 for_each_pwq(pwq, wq) { 2733 struct worker_pool *pool = pwq->pool; 2734 2735 raw_spin_lock_irq(&pool->lock); 2736 2737 if (flush_color >= 0) { 2738 WARN_ON_ONCE(pwq->flush_color != -1); 2739 2740 if (pwq->nr_in_flight[flush_color]) { 2741 pwq->flush_color = flush_color; 2742 atomic_inc(&wq->nr_pwqs_to_flush); 2743 wait = true; 2744 } 2745 } 2746 2747 if (work_color >= 0) { 2748 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2749 pwq->work_color = work_color; 2750 } 2751 2752 raw_spin_unlock_irq(&pool->lock); 2753 } 2754 2755 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2756 complete(&wq->first_flusher->done); 2757 2758 return wait; 2759 } 2760 2761 /** 2762 * flush_workqueue - ensure that any scheduled work has run to completion. 2763 * @wq: workqueue to flush 2764 * 2765 * This function sleeps until all work items which were queued on entry 2766 * have finished execution, but it is not livelocked by new incoming ones. 2767 */ 2768 void flush_workqueue(struct workqueue_struct *wq) 2769 { 2770 struct wq_flusher this_flusher = { 2771 .list = LIST_HEAD_INIT(this_flusher.list), 2772 .flush_color = -1, 2773 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 2774 }; 2775 int next_color; 2776 2777 if (WARN_ON(!wq_online)) 2778 return; 2779 2780 lock_map_acquire(&wq->lockdep_map); 2781 lock_map_release(&wq->lockdep_map); 2782 2783 mutex_lock(&wq->mutex); 2784 2785 /* 2786 * Start-to-wait phase 2787 */ 2788 next_color = work_next_color(wq->work_color); 2789 2790 if (next_color != wq->flush_color) { 2791 /* 2792 * Color space is not full. The current work_color 2793 * becomes our flush_color and work_color is advanced 2794 * by one. 2795 */ 2796 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2797 this_flusher.flush_color = wq->work_color; 2798 wq->work_color = next_color; 2799 2800 if (!wq->first_flusher) { 2801 /* no flush in progress, become the first flusher */ 2802 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2803 2804 wq->first_flusher = &this_flusher; 2805 2806 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2807 wq->work_color)) { 2808 /* nothing to flush, done */ 2809 wq->flush_color = next_color; 2810 wq->first_flusher = NULL; 2811 goto out_unlock; 2812 } 2813 } else { 2814 /* wait in queue */ 2815 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2816 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2817 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2818 } 2819 } else { 2820 /* 2821 * Oops, color space is full, wait on overflow queue. 2822 * The next flush completion will assign us 2823 * flush_color and transfer to flusher_queue. 2824 */ 2825 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2826 } 2827 2828 check_flush_dependency(wq, NULL); 2829 2830 mutex_unlock(&wq->mutex); 2831 2832 wait_for_completion(&this_flusher.done); 2833 2834 /* 2835 * Wake-up-and-cascade phase 2836 * 2837 * First flushers are responsible for cascading flushes and 2838 * handling overflow. Non-first flushers can simply return. 2839 */ 2840 if (READ_ONCE(wq->first_flusher) != &this_flusher) 2841 return; 2842 2843 mutex_lock(&wq->mutex); 2844 2845 /* we might have raced, check again with mutex held */ 2846 if (wq->first_flusher != &this_flusher) 2847 goto out_unlock; 2848 2849 WRITE_ONCE(wq->first_flusher, NULL); 2850 2851 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2852 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2853 2854 while (true) { 2855 struct wq_flusher *next, *tmp; 2856 2857 /* complete all the flushers sharing the current flush color */ 2858 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2859 if (next->flush_color != wq->flush_color) 2860 break; 2861 list_del_init(&next->list); 2862 complete(&next->done); 2863 } 2864 2865 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2866 wq->flush_color != work_next_color(wq->work_color)); 2867 2868 /* this flush_color is finished, advance by one */ 2869 wq->flush_color = work_next_color(wq->flush_color); 2870 2871 /* one color has been freed, handle overflow queue */ 2872 if (!list_empty(&wq->flusher_overflow)) { 2873 /* 2874 * Assign the same color to all overflowed 2875 * flushers, advance work_color and append to 2876 * flusher_queue. This is the start-to-wait 2877 * phase for these overflowed flushers. 2878 */ 2879 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2880 tmp->flush_color = wq->work_color; 2881 2882 wq->work_color = work_next_color(wq->work_color); 2883 2884 list_splice_tail_init(&wq->flusher_overflow, 2885 &wq->flusher_queue); 2886 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2887 } 2888 2889 if (list_empty(&wq->flusher_queue)) { 2890 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2891 break; 2892 } 2893 2894 /* 2895 * Need to flush more colors. Make the next flusher 2896 * the new first flusher and arm pwqs. 2897 */ 2898 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2899 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2900 2901 list_del_init(&next->list); 2902 wq->first_flusher = next; 2903 2904 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2905 break; 2906 2907 /* 2908 * Meh... this color is already done, clear first 2909 * flusher and repeat cascading. 2910 */ 2911 wq->first_flusher = NULL; 2912 } 2913 2914 out_unlock: 2915 mutex_unlock(&wq->mutex); 2916 } 2917 EXPORT_SYMBOL(flush_workqueue); 2918 2919 /** 2920 * drain_workqueue - drain a workqueue 2921 * @wq: workqueue to drain 2922 * 2923 * Wait until the workqueue becomes empty. While draining is in progress, 2924 * only chain queueing is allowed. IOW, only currently pending or running 2925 * work items on @wq can queue further work items on it. @wq is flushed 2926 * repeatedly until it becomes empty. The number of flushing is determined 2927 * by the depth of chaining and should be relatively short. Whine if it 2928 * takes too long. 2929 */ 2930 void drain_workqueue(struct workqueue_struct *wq) 2931 { 2932 unsigned int flush_cnt = 0; 2933 struct pool_workqueue *pwq; 2934 2935 /* 2936 * __queue_work() needs to test whether there are drainers, is much 2937 * hotter than drain_workqueue() and already looks at @wq->flags. 2938 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2939 */ 2940 mutex_lock(&wq->mutex); 2941 if (!wq->nr_drainers++) 2942 wq->flags |= __WQ_DRAINING; 2943 mutex_unlock(&wq->mutex); 2944 reflush: 2945 flush_workqueue(wq); 2946 2947 mutex_lock(&wq->mutex); 2948 2949 for_each_pwq(pwq, wq) { 2950 bool drained; 2951 2952 raw_spin_lock_irq(&pwq->pool->lock); 2953 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2954 raw_spin_unlock_irq(&pwq->pool->lock); 2955 2956 if (drained) 2957 continue; 2958 2959 if (++flush_cnt == 10 || 2960 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2961 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2962 wq->name, flush_cnt); 2963 2964 mutex_unlock(&wq->mutex); 2965 goto reflush; 2966 } 2967 2968 if (!--wq->nr_drainers) 2969 wq->flags &= ~__WQ_DRAINING; 2970 mutex_unlock(&wq->mutex); 2971 } 2972 EXPORT_SYMBOL_GPL(drain_workqueue); 2973 2974 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 2975 bool from_cancel) 2976 { 2977 struct worker *worker = NULL; 2978 struct worker_pool *pool; 2979 struct pool_workqueue *pwq; 2980 2981 might_sleep(); 2982 2983 rcu_read_lock(); 2984 pool = get_work_pool(work); 2985 if (!pool) { 2986 rcu_read_unlock(); 2987 return false; 2988 } 2989 2990 raw_spin_lock_irq(&pool->lock); 2991 /* see the comment in try_to_grab_pending() with the same code */ 2992 pwq = get_work_pwq(work); 2993 if (pwq) { 2994 if (unlikely(pwq->pool != pool)) 2995 goto already_gone; 2996 } else { 2997 worker = find_worker_executing_work(pool, work); 2998 if (!worker) 2999 goto already_gone; 3000 pwq = worker->current_pwq; 3001 } 3002 3003 check_flush_dependency(pwq->wq, work); 3004 3005 insert_wq_barrier(pwq, barr, work, worker); 3006 raw_spin_unlock_irq(&pool->lock); 3007 3008 /* 3009 * Force a lock recursion deadlock when using flush_work() inside a 3010 * single-threaded or rescuer equipped workqueue. 3011 * 3012 * For single threaded workqueues the deadlock happens when the work 3013 * is after the work issuing the flush_work(). For rescuer equipped 3014 * workqueues the deadlock happens when the rescuer stalls, blocking 3015 * forward progress. 3016 */ 3017 if (!from_cancel && 3018 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) { 3019 lock_map_acquire(&pwq->wq->lockdep_map); 3020 lock_map_release(&pwq->wq->lockdep_map); 3021 } 3022 rcu_read_unlock(); 3023 return true; 3024 already_gone: 3025 raw_spin_unlock_irq(&pool->lock); 3026 rcu_read_unlock(); 3027 return false; 3028 } 3029 3030 static bool __flush_work(struct work_struct *work, bool from_cancel) 3031 { 3032 struct wq_barrier barr; 3033 3034 if (WARN_ON(!wq_online)) 3035 return false; 3036 3037 if (WARN_ON(!work->func)) 3038 return false; 3039 3040 if (!from_cancel) { 3041 lock_map_acquire(&work->lockdep_map); 3042 lock_map_release(&work->lockdep_map); 3043 } 3044 3045 if (start_flush_work(work, &barr, from_cancel)) { 3046 wait_for_completion(&barr.done); 3047 destroy_work_on_stack(&barr.work); 3048 return true; 3049 } else { 3050 return false; 3051 } 3052 } 3053 3054 /** 3055 * flush_work - wait for a work to finish executing the last queueing instance 3056 * @work: the work to flush 3057 * 3058 * Wait until @work has finished execution. @work is guaranteed to be idle 3059 * on return if it hasn't been requeued since flush started. 3060 * 3061 * Return: 3062 * %true if flush_work() waited for the work to finish execution, 3063 * %false if it was already idle. 3064 */ 3065 bool flush_work(struct work_struct *work) 3066 { 3067 return __flush_work(work, false); 3068 } 3069 EXPORT_SYMBOL_GPL(flush_work); 3070 3071 struct cwt_wait { 3072 wait_queue_entry_t wait; 3073 struct work_struct *work; 3074 }; 3075 3076 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 3077 { 3078 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 3079 3080 if (cwait->work != key) 3081 return 0; 3082 return autoremove_wake_function(wait, mode, sync, key); 3083 } 3084 3085 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 3086 { 3087 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 3088 unsigned long flags; 3089 int ret; 3090 3091 do { 3092 ret = try_to_grab_pending(work, is_dwork, &flags); 3093 /* 3094 * If someone else is already canceling, wait for it to 3095 * finish. flush_work() doesn't work for PREEMPT_NONE 3096 * because we may get scheduled between @work's completion 3097 * and the other canceling task resuming and clearing 3098 * CANCELING - flush_work() will return false immediately 3099 * as @work is no longer busy, try_to_grab_pending() will 3100 * return -ENOENT as @work is still being canceled and the 3101 * other canceling task won't be able to clear CANCELING as 3102 * we're hogging the CPU. 3103 * 3104 * Let's wait for completion using a waitqueue. As this 3105 * may lead to the thundering herd problem, use a custom 3106 * wake function which matches @work along with exclusive 3107 * wait and wakeup. 3108 */ 3109 if (unlikely(ret == -ENOENT)) { 3110 struct cwt_wait cwait; 3111 3112 init_wait(&cwait.wait); 3113 cwait.wait.func = cwt_wakefn; 3114 cwait.work = work; 3115 3116 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 3117 TASK_UNINTERRUPTIBLE); 3118 if (work_is_canceling(work)) 3119 schedule(); 3120 finish_wait(&cancel_waitq, &cwait.wait); 3121 } 3122 } while (unlikely(ret < 0)); 3123 3124 /* tell other tasks trying to grab @work to back off */ 3125 mark_work_canceling(work); 3126 local_irq_restore(flags); 3127 3128 /* 3129 * This allows canceling during early boot. We know that @work 3130 * isn't executing. 3131 */ 3132 if (wq_online) 3133 __flush_work(work, true); 3134 3135 clear_work_data(work); 3136 3137 /* 3138 * Paired with prepare_to_wait() above so that either 3139 * waitqueue_active() is visible here or !work_is_canceling() is 3140 * visible there. 3141 */ 3142 smp_mb(); 3143 if (waitqueue_active(&cancel_waitq)) 3144 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 3145 3146 return ret; 3147 } 3148 3149 /** 3150 * cancel_work_sync - cancel a work and wait for it to finish 3151 * @work: the work to cancel 3152 * 3153 * Cancel @work and wait for its execution to finish. This function 3154 * can be used even if the work re-queues itself or migrates to 3155 * another workqueue. On return from this function, @work is 3156 * guaranteed to be not pending or executing on any CPU. 3157 * 3158 * cancel_work_sync(&delayed_work->work) must not be used for 3159 * delayed_work's. Use cancel_delayed_work_sync() instead. 3160 * 3161 * The caller must ensure that the workqueue on which @work was last 3162 * queued can't be destroyed before this function returns. 3163 * 3164 * Return: 3165 * %true if @work was pending, %false otherwise. 3166 */ 3167 bool cancel_work_sync(struct work_struct *work) 3168 { 3169 return __cancel_work_timer(work, false); 3170 } 3171 EXPORT_SYMBOL_GPL(cancel_work_sync); 3172 3173 /** 3174 * flush_delayed_work - wait for a dwork to finish executing the last queueing 3175 * @dwork: the delayed work to flush 3176 * 3177 * Delayed timer is cancelled and the pending work is queued for 3178 * immediate execution. Like flush_work(), this function only 3179 * considers the last queueing instance of @dwork. 3180 * 3181 * Return: 3182 * %true if flush_work() waited for the work to finish execution, 3183 * %false if it was already idle. 3184 */ 3185 bool flush_delayed_work(struct delayed_work *dwork) 3186 { 3187 local_irq_disable(); 3188 if (del_timer_sync(&dwork->timer)) 3189 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 3190 local_irq_enable(); 3191 return flush_work(&dwork->work); 3192 } 3193 EXPORT_SYMBOL(flush_delayed_work); 3194 3195 /** 3196 * flush_rcu_work - wait for a rwork to finish executing the last queueing 3197 * @rwork: the rcu work to flush 3198 * 3199 * Return: 3200 * %true if flush_rcu_work() waited for the work to finish execution, 3201 * %false if it was already idle. 3202 */ 3203 bool flush_rcu_work(struct rcu_work *rwork) 3204 { 3205 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 3206 rcu_barrier(); 3207 flush_work(&rwork->work); 3208 return true; 3209 } else { 3210 return flush_work(&rwork->work); 3211 } 3212 } 3213 EXPORT_SYMBOL(flush_rcu_work); 3214 3215 static bool __cancel_work(struct work_struct *work, bool is_dwork) 3216 { 3217 unsigned long flags; 3218 int ret; 3219 3220 do { 3221 ret = try_to_grab_pending(work, is_dwork, &flags); 3222 } while (unlikely(ret == -EAGAIN)); 3223 3224 if (unlikely(ret < 0)) 3225 return false; 3226 3227 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 3228 local_irq_restore(flags); 3229 return ret; 3230 } 3231 3232 /** 3233 * cancel_delayed_work - cancel a delayed work 3234 * @dwork: delayed_work to cancel 3235 * 3236 * Kill off a pending delayed_work. 3237 * 3238 * Return: %true if @dwork was pending and canceled; %false if it wasn't 3239 * pending. 3240 * 3241 * Note: 3242 * The work callback function may still be running on return, unless 3243 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 3244 * use cancel_delayed_work_sync() to wait on it. 3245 * 3246 * This function is safe to call from any context including IRQ handler. 3247 */ 3248 bool cancel_delayed_work(struct delayed_work *dwork) 3249 { 3250 return __cancel_work(&dwork->work, true); 3251 } 3252 EXPORT_SYMBOL(cancel_delayed_work); 3253 3254 /** 3255 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3256 * @dwork: the delayed work cancel 3257 * 3258 * This is cancel_work_sync() for delayed works. 3259 * 3260 * Return: 3261 * %true if @dwork was pending, %false otherwise. 3262 */ 3263 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3264 { 3265 return __cancel_work_timer(&dwork->work, true); 3266 } 3267 EXPORT_SYMBOL(cancel_delayed_work_sync); 3268 3269 /** 3270 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3271 * @func: the function to call 3272 * 3273 * schedule_on_each_cpu() executes @func on each online CPU using the 3274 * system workqueue and blocks until all CPUs have completed. 3275 * schedule_on_each_cpu() is very slow. 3276 * 3277 * Return: 3278 * 0 on success, -errno on failure. 3279 */ 3280 int schedule_on_each_cpu(work_func_t func) 3281 { 3282 int cpu; 3283 struct work_struct __percpu *works; 3284 3285 works = alloc_percpu(struct work_struct); 3286 if (!works) 3287 return -ENOMEM; 3288 3289 get_online_cpus(); 3290 3291 for_each_online_cpu(cpu) { 3292 struct work_struct *work = per_cpu_ptr(works, cpu); 3293 3294 INIT_WORK(work, func); 3295 schedule_work_on(cpu, work); 3296 } 3297 3298 for_each_online_cpu(cpu) 3299 flush_work(per_cpu_ptr(works, cpu)); 3300 3301 put_online_cpus(); 3302 free_percpu(works); 3303 return 0; 3304 } 3305 3306 /** 3307 * execute_in_process_context - reliably execute the routine with user context 3308 * @fn: the function to execute 3309 * @ew: guaranteed storage for the execute work structure (must 3310 * be available when the work executes) 3311 * 3312 * Executes the function immediately if process context is available, 3313 * otherwise schedules the function for delayed execution. 3314 * 3315 * Return: 0 - function was executed 3316 * 1 - function was scheduled for execution 3317 */ 3318 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3319 { 3320 if (!in_interrupt()) { 3321 fn(&ew->work); 3322 return 0; 3323 } 3324 3325 INIT_WORK(&ew->work, fn); 3326 schedule_work(&ew->work); 3327 3328 return 1; 3329 } 3330 EXPORT_SYMBOL_GPL(execute_in_process_context); 3331 3332 /** 3333 * free_workqueue_attrs - free a workqueue_attrs 3334 * @attrs: workqueue_attrs to free 3335 * 3336 * Undo alloc_workqueue_attrs(). 3337 */ 3338 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3339 { 3340 if (attrs) { 3341 free_cpumask_var(attrs->cpumask); 3342 kfree(attrs); 3343 } 3344 } 3345 3346 /** 3347 * alloc_workqueue_attrs - allocate a workqueue_attrs 3348 * 3349 * Allocate a new workqueue_attrs, initialize with default settings and 3350 * return it. 3351 * 3352 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3353 */ 3354 struct workqueue_attrs *alloc_workqueue_attrs(void) 3355 { 3356 struct workqueue_attrs *attrs; 3357 3358 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); 3359 if (!attrs) 3360 goto fail; 3361 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) 3362 goto fail; 3363 3364 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3365 return attrs; 3366 fail: 3367 free_workqueue_attrs(attrs); 3368 return NULL; 3369 } 3370 3371 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3372 const struct workqueue_attrs *from) 3373 { 3374 to->nice = from->nice; 3375 cpumask_copy(to->cpumask, from->cpumask); 3376 /* 3377 * Unlike hash and equality test, this function doesn't ignore 3378 * ->no_numa as it is used for both pool and wq attrs. Instead, 3379 * get_unbound_pool() explicitly clears ->no_numa after copying. 3380 */ 3381 to->no_numa = from->no_numa; 3382 } 3383 3384 /* hash value of the content of @attr */ 3385 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3386 { 3387 u32 hash = 0; 3388 3389 hash = jhash_1word(attrs->nice, hash); 3390 hash = jhash(cpumask_bits(attrs->cpumask), 3391 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3392 return hash; 3393 } 3394 3395 /* content equality test */ 3396 static bool wqattrs_equal(const struct workqueue_attrs *a, 3397 const struct workqueue_attrs *b) 3398 { 3399 if (a->nice != b->nice) 3400 return false; 3401 if (!cpumask_equal(a->cpumask, b->cpumask)) 3402 return false; 3403 return true; 3404 } 3405 3406 /** 3407 * init_worker_pool - initialize a newly zalloc'd worker_pool 3408 * @pool: worker_pool to initialize 3409 * 3410 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3411 * 3412 * Return: 0 on success, -errno on failure. Even on failure, all fields 3413 * inside @pool proper are initialized and put_unbound_pool() can be called 3414 * on @pool safely to release it. 3415 */ 3416 static int init_worker_pool(struct worker_pool *pool) 3417 { 3418 raw_spin_lock_init(&pool->lock); 3419 pool->id = -1; 3420 pool->cpu = -1; 3421 pool->node = NUMA_NO_NODE; 3422 pool->flags |= POOL_DISASSOCIATED; 3423 pool->watchdog_ts = jiffies; 3424 INIT_LIST_HEAD(&pool->worklist); 3425 INIT_LIST_HEAD(&pool->idle_list); 3426 hash_init(pool->busy_hash); 3427 3428 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 3429 3430 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 3431 3432 INIT_LIST_HEAD(&pool->workers); 3433 3434 ida_init(&pool->worker_ida); 3435 INIT_HLIST_NODE(&pool->hash_node); 3436 pool->refcnt = 1; 3437 3438 /* shouldn't fail above this point */ 3439 pool->attrs = alloc_workqueue_attrs(); 3440 if (!pool->attrs) 3441 return -ENOMEM; 3442 return 0; 3443 } 3444 3445 #ifdef CONFIG_LOCKDEP 3446 static void wq_init_lockdep(struct workqueue_struct *wq) 3447 { 3448 char *lock_name; 3449 3450 lockdep_register_key(&wq->key); 3451 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 3452 if (!lock_name) 3453 lock_name = wq->name; 3454 3455 wq->lock_name = lock_name; 3456 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); 3457 } 3458 3459 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3460 { 3461 lockdep_unregister_key(&wq->key); 3462 } 3463 3464 static void wq_free_lockdep(struct workqueue_struct *wq) 3465 { 3466 if (wq->lock_name != wq->name) 3467 kfree(wq->lock_name); 3468 } 3469 #else 3470 static void wq_init_lockdep(struct workqueue_struct *wq) 3471 { 3472 } 3473 3474 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3475 { 3476 } 3477 3478 static void wq_free_lockdep(struct workqueue_struct *wq) 3479 { 3480 } 3481 #endif 3482 3483 static void rcu_free_wq(struct rcu_head *rcu) 3484 { 3485 struct workqueue_struct *wq = 3486 container_of(rcu, struct workqueue_struct, rcu); 3487 3488 wq_free_lockdep(wq); 3489 3490 if (!(wq->flags & WQ_UNBOUND)) 3491 free_percpu(wq->cpu_pwqs); 3492 else 3493 free_workqueue_attrs(wq->unbound_attrs); 3494 3495 kfree(wq); 3496 } 3497 3498 static void rcu_free_pool(struct rcu_head *rcu) 3499 { 3500 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3501 3502 ida_destroy(&pool->worker_ida); 3503 free_workqueue_attrs(pool->attrs); 3504 kfree(pool); 3505 } 3506 3507 /* This returns with the lock held on success (pool manager is inactive). */ 3508 static bool wq_manager_inactive(struct worker_pool *pool) 3509 { 3510 raw_spin_lock_irq(&pool->lock); 3511 3512 if (pool->flags & POOL_MANAGER_ACTIVE) { 3513 raw_spin_unlock_irq(&pool->lock); 3514 return false; 3515 } 3516 return true; 3517 } 3518 3519 /** 3520 * put_unbound_pool - put a worker_pool 3521 * @pool: worker_pool to put 3522 * 3523 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 3524 * safe manner. get_unbound_pool() calls this function on its failure path 3525 * and this function should be able to release pools which went through, 3526 * successfully or not, init_worker_pool(). 3527 * 3528 * Should be called with wq_pool_mutex held. 3529 */ 3530 static void put_unbound_pool(struct worker_pool *pool) 3531 { 3532 DECLARE_COMPLETION_ONSTACK(detach_completion); 3533 struct worker *worker; 3534 3535 lockdep_assert_held(&wq_pool_mutex); 3536 3537 if (--pool->refcnt) 3538 return; 3539 3540 /* sanity checks */ 3541 if (WARN_ON(!(pool->cpu < 0)) || 3542 WARN_ON(!list_empty(&pool->worklist))) 3543 return; 3544 3545 /* release id and unhash */ 3546 if (pool->id >= 0) 3547 idr_remove(&worker_pool_idr, pool->id); 3548 hash_del(&pool->hash_node); 3549 3550 /* 3551 * Become the manager and destroy all workers. This prevents 3552 * @pool's workers from blocking on attach_mutex. We're the last 3553 * manager and @pool gets freed with the flag set. 3554 * Because of how wq_manager_inactive() works, we will hold the 3555 * spinlock after a successful wait. 3556 */ 3557 rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool), 3558 TASK_UNINTERRUPTIBLE); 3559 pool->flags |= POOL_MANAGER_ACTIVE; 3560 3561 while ((worker = first_idle_worker(pool))) 3562 destroy_worker(worker); 3563 WARN_ON(pool->nr_workers || pool->nr_idle); 3564 raw_spin_unlock_irq(&pool->lock); 3565 3566 mutex_lock(&wq_pool_attach_mutex); 3567 if (!list_empty(&pool->workers)) 3568 pool->detach_completion = &detach_completion; 3569 mutex_unlock(&wq_pool_attach_mutex); 3570 3571 if (pool->detach_completion) 3572 wait_for_completion(pool->detach_completion); 3573 3574 /* shut down the timers */ 3575 del_timer_sync(&pool->idle_timer); 3576 del_timer_sync(&pool->mayday_timer); 3577 3578 /* RCU protected to allow dereferences from get_work_pool() */ 3579 call_rcu(&pool->rcu, rcu_free_pool); 3580 } 3581 3582 /** 3583 * get_unbound_pool - get a worker_pool with the specified attributes 3584 * @attrs: the attributes of the worker_pool to get 3585 * 3586 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3587 * reference count and return it. If there already is a matching 3588 * worker_pool, it will be used; otherwise, this function attempts to 3589 * create a new one. 3590 * 3591 * Should be called with wq_pool_mutex held. 3592 * 3593 * Return: On success, a worker_pool with the same attributes as @attrs. 3594 * On failure, %NULL. 3595 */ 3596 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3597 { 3598 u32 hash = wqattrs_hash(attrs); 3599 struct worker_pool *pool; 3600 int node; 3601 int target_node = NUMA_NO_NODE; 3602 3603 lockdep_assert_held(&wq_pool_mutex); 3604 3605 /* do we already have a matching pool? */ 3606 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3607 if (wqattrs_equal(pool->attrs, attrs)) { 3608 pool->refcnt++; 3609 return pool; 3610 } 3611 } 3612 3613 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3614 if (wq_numa_enabled) { 3615 for_each_node(node) { 3616 if (cpumask_subset(attrs->cpumask, 3617 wq_numa_possible_cpumask[node])) { 3618 target_node = node; 3619 break; 3620 } 3621 } 3622 } 3623 3624 /* nope, create a new one */ 3625 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3626 if (!pool || init_worker_pool(pool) < 0) 3627 goto fail; 3628 3629 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3630 copy_workqueue_attrs(pool->attrs, attrs); 3631 pool->node = target_node; 3632 3633 /* 3634 * no_numa isn't a worker_pool attribute, always clear it. See 3635 * 'struct workqueue_attrs' comments for detail. 3636 */ 3637 pool->attrs->no_numa = false; 3638 3639 if (worker_pool_assign_id(pool) < 0) 3640 goto fail; 3641 3642 /* create and start the initial worker */ 3643 if (wq_online && !create_worker(pool)) 3644 goto fail; 3645 3646 /* install */ 3647 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3648 3649 return pool; 3650 fail: 3651 if (pool) 3652 put_unbound_pool(pool); 3653 return NULL; 3654 } 3655 3656 static void rcu_free_pwq(struct rcu_head *rcu) 3657 { 3658 kmem_cache_free(pwq_cache, 3659 container_of(rcu, struct pool_workqueue, rcu)); 3660 } 3661 3662 /* 3663 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3664 * and needs to be destroyed. 3665 */ 3666 static void pwq_unbound_release_workfn(struct work_struct *work) 3667 { 3668 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3669 unbound_release_work); 3670 struct workqueue_struct *wq = pwq->wq; 3671 struct worker_pool *pool = pwq->pool; 3672 bool is_last; 3673 3674 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3675 return; 3676 3677 mutex_lock(&wq->mutex); 3678 list_del_rcu(&pwq->pwqs_node); 3679 is_last = list_empty(&wq->pwqs); 3680 mutex_unlock(&wq->mutex); 3681 3682 mutex_lock(&wq_pool_mutex); 3683 put_unbound_pool(pool); 3684 mutex_unlock(&wq_pool_mutex); 3685 3686 call_rcu(&pwq->rcu, rcu_free_pwq); 3687 3688 /* 3689 * If we're the last pwq going away, @wq is already dead and no one 3690 * is gonna access it anymore. Schedule RCU free. 3691 */ 3692 if (is_last) { 3693 wq_unregister_lockdep(wq); 3694 call_rcu(&wq->rcu, rcu_free_wq); 3695 } 3696 } 3697 3698 /** 3699 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3700 * @pwq: target pool_workqueue 3701 * 3702 * If @pwq isn't freezing, set @pwq->max_active to the associated 3703 * workqueue's saved_max_active and activate delayed work items 3704 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3705 */ 3706 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3707 { 3708 struct workqueue_struct *wq = pwq->wq; 3709 bool freezable = wq->flags & WQ_FREEZABLE; 3710 unsigned long flags; 3711 3712 /* for @wq->saved_max_active */ 3713 lockdep_assert_held(&wq->mutex); 3714 3715 /* fast exit for non-freezable wqs */ 3716 if (!freezable && pwq->max_active == wq->saved_max_active) 3717 return; 3718 3719 /* this function can be called during early boot w/ irq disabled */ 3720 raw_spin_lock_irqsave(&pwq->pool->lock, flags); 3721 3722 /* 3723 * During [un]freezing, the caller is responsible for ensuring that 3724 * this function is called at least once after @workqueue_freezing 3725 * is updated and visible. 3726 */ 3727 if (!freezable || !workqueue_freezing) { 3728 pwq->max_active = wq->saved_max_active; 3729 3730 while (!list_empty(&pwq->delayed_works) && 3731 pwq->nr_active < pwq->max_active) 3732 pwq_activate_first_delayed(pwq); 3733 3734 /* 3735 * Need to kick a worker after thawed or an unbound wq's 3736 * max_active is bumped. It's a slow path. Do it always. 3737 */ 3738 wake_up_worker(pwq->pool); 3739 } else { 3740 pwq->max_active = 0; 3741 } 3742 3743 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); 3744 } 3745 3746 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3747 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3748 struct worker_pool *pool) 3749 { 3750 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3751 3752 memset(pwq, 0, sizeof(*pwq)); 3753 3754 pwq->pool = pool; 3755 pwq->wq = wq; 3756 pwq->flush_color = -1; 3757 pwq->refcnt = 1; 3758 INIT_LIST_HEAD(&pwq->delayed_works); 3759 INIT_LIST_HEAD(&pwq->pwqs_node); 3760 INIT_LIST_HEAD(&pwq->mayday_node); 3761 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3762 } 3763 3764 /* sync @pwq with the current state of its associated wq and link it */ 3765 static void link_pwq(struct pool_workqueue *pwq) 3766 { 3767 struct workqueue_struct *wq = pwq->wq; 3768 3769 lockdep_assert_held(&wq->mutex); 3770 3771 /* may be called multiple times, ignore if already linked */ 3772 if (!list_empty(&pwq->pwqs_node)) 3773 return; 3774 3775 /* set the matching work_color */ 3776 pwq->work_color = wq->work_color; 3777 3778 /* sync max_active to the current setting */ 3779 pwq_adjust_max_active(pwq); 3780 3781 /* link in @pwq */ 3782 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3783 } 3784 3785 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3786 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3787 const struct workqueue_attrs *attrs) 3788 { 3789 struct worker_pool *pool; 3790 struct pool_workqueue *pwq; 3791 3792 lockdep_assert_held(&wq_pool_mutex); 3793 3794 pool = get_unbound_pool(attrs); 3795 if (!pool) 3796 return NULL; 3797 3798 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3799 if (!pwq) { 3800 put_unbound_pool(pool); 3801 return NULL; 3802 } 3803 3804 init_pwq(pwq, wq, pool); 3805 return pwq; 3806 } 3807 3808 /** 3809 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3810 * @attrs: the wq_attrs of the default pwq of the target workqueue 3811 * @node: the target NUMA node 3812 * @cpu_going_down: if >= 0, the CPU to consider as offline 3813 * @cpumask: outarg, the resulting cpumask 3814 * 3815 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3816 * @cpu_going_down is >= 0, that cpu is considered offline during 3817 * calculation. The result is stored in @cpumask. 3818 * 3819 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3820 * enabled and @node has online CPUs requested by @attrs, the returned 3821 * cpumask is the intersection of the possible CPUs of @node and 3822 * @attrs->cpumask. 3823 * 3824 * The caller is responsible for ensuring that the cpumask of @node stays 3825 * stable. 3826 * 3827 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3828 * %false if equal. 3829 */ 3830 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3831 int cpu_going_down, cpumask_t *cpumask) 3832 { 3833 if (!wq_numa_enabled || attrs->no_numa) 3834 goto use_dfl; 3835 3836 /* does @node have any online CPUs @attrs wants? */ 3837 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3838 if (cpu_going_down >= 0) 3839 cpumask_clear_cpu(cpu_going_down, cpumask); 3840 3841 if (cpumask_empty(cpumask)) 3842 goto use_dfl; 3843 3844 /* yeap, return possible CPUs in @node that @attrs wants */ 3845 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3846 3847 if (cpumask_empty(cpumask)) { 3848 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 3849 "possible intersect\n"); 3850 return false; 3851 } 3852 3853 return !cpumask_equal(cpumask, attrs->cpumask); 3854 3855 use_dfl: 3856 cpumask_copy(cpumask, attrs->cpumask); 3857 return false; 3858 } 3859 3860 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3861 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3862 int node, 3863 struct pool_workqueue *pwq) 3864 { 3865 struct pool_workqueue *old_pwq; 3866 3867 lockdep_assert_held(&wq_pool_mutex); 3868 lockdep_assert_held(&wq->mutex); 3869 3870 /* link_pwq() can handle duplicate calls */ 3871 link_pwq(pwq); 3872 3873 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3874 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3875 return old_pwq; 3876 } 3877 3878 /* context to store the prepared attrs & pwqs before applying */ 3879 struct apply_wqattrs_ctx { 3880 struct workqueue_struct *wq; /* target workqueue */ 3881 struct workqueue_attrs *attrs; /* attrs to apply */ 3882 struct list_head list; /* queued for batching commit */ 3883 struct pool_workqueue *dfl_pwq; 3884 struct pool_workqueue *pwq_tbl[]; 3885 }; 3886 3887 /* free the resources after success or abort */ 3888 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 3889 { 3890 if (ctx) { 3891 int node; 3892 3893 for_each_node(node) 3894 put_pwq_unlocked(ctx->pwq_tbl[node]); 3895 put_pwq_unlocked(ctx->dfl_pwq); 3896 3897 free_workqueue_attrs(ctx->attrs); 3898 3899 kfree(ctx); 3900 } 3901 } 3902 3903 /* allocate the attrs and pwqs for later installation */ 3904 static struct apply_wqattrs_ctx * 3905 apply_wqattrs_prepare(struct workqueue_struct *wq, 3906 const struct workqueue_attrs *attrs) 3907 { 3908 struct apply_wqattrs_ctx *ctx; 3909 struct workqueue_attrs *new_attrs, *tmp_attrs; 3910 int node; 3911 3912 lockdep_assert_held(&wq_pool_mutex); 3913 3914 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL); 3915 3916 new_attrs = alloc_workqueue_attrs(); 3917 tmp_attrs = alloc_workqueue_attrs(); 3918 if (!ctx || !new_attrs || !tmp_attrs) 3919 goto out_free; 3920 3921 /* 3922 * Calculate the attrs of the default pwq. 3923 * If the user configured cpumask doesn't overlap with the 3924 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 3925 */ 3926 copy_workqueue_attrs(new_attrs, attrs); 3927 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask); 3928 if (unlikely(cpumask_empty(new_attrs->cpumask))) 3929 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask); 3930 3931 /* 3932 * We may create multiple pwqs with differing cpumasks. Make a 3933 * copy of @new_attrs which will be modified and used to obtain 3934 * pools. 3935 */ 3936 copy_workqueue_attrs(tmp_attrs, new_attrs); 3937 3938 /* 3939 * If something goes wrong during CPU up/down, we'll fall back to 3940 * the default pwq covering whole @attrs->cpumask. Always create 3941 * it even if we don't use it immediately. 3942 */ 3943 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3944 if (!ctx->dfl_pwq) 3945 goto out_free; 3946 3947 for_each_node(node) { 3948 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 3949 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3950 if (!ctx->pwq_tbl[node]) 3951 goto out_free; 3952 } else { 3953 ctx->dfl_pwq->refcnt++; 3954 ctx->pwq_tbl[node] = ctx->dfl_pwq; 3955 } 3956 } 3957 3958 /* save the user configured attrs and sanitize it. */ 3959 copy_workqueue_attrs(new_attrs, attrs); 3960 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3961 ctx->attrs = new_attrs; 3962 3963 ctx->wq = wq; 3964 free_workqueue_attrs(tmp_attrs); 3965 return ctx; 3966 3967 out_free: 3968 free_workqueue_attrs(tmp_attrs); 3969 free_workqueue_attrs(new_attrs); 3970 apply_wqattrs_cleanup(ctx); 3971 return NULL; 3972 } 3973 3974 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 3975 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 3976 { 3977 int node; 3978 3979 /* all pwqs have been created successfully, let's install'em */ 3980 mutex_lock(&ctx->wq->mutex); 3981 3982 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 3983 3984 /* save the previous pwq and install the new one */ 3985 for_each_node(node) 3986 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 3987 ctx->pwq_tbl[node]); 3988 3989 /* @dfl_pwq might not have been used, ensure it's linked */ 3990 link_pwq(ctx->dfl_pwq); 3991 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 3992 3993 mutex_unlock(&ctx->wq->mutex); 3994 } 3995 3996 static void apply_wqattrs_lock(void) 3997 { 3998 /* CPUs should stay stable across pwq creations and installations */ 3999 get_online_cpus(); 4000 mutex_lock(&wq_pool_mutex); 4001 } 4002 4003 static void apply_wqattrs_unlock(void) 4004 { 4005 mutex_unlock(&wq_pool_mutex); 4006 put_online_cpus(); 4007 } 4008 4009 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 4010 const struct workqueue_attrs *attrs) 4011 { 4012 struct apply_wqattrs_ctx *ctx; 4013 4014 /* only unbound workqueues can change attributes */ 4015 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 4016 return -EINVAL; 4017 4018 /* creating multiple pwqs breaks ordering guarantee */ 4019 if (!list_empty(&wq->pwqs)) { 4020 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4021 return -EINVAL; 4022 4023 wq->flags &= ~__WQ_ORDERED; 4024 } 4025 4026 ctx = apply_wqattrs_prepare(wq, attrs); 4027 if (!ctx) 4028 return -ENOMEM; 4029 4030 /* the ctx has been prepared successfully, let's commit it */ 4031 apply_wqattrs_commit(ctx); 4032 apply_wqattrs_cleanup(ctx); 4033 4034 return 0; 4035 } 4036 4037 /** 4038 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 4039 * @wq: the target workqueue 4040 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 4041 * 4042 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 4043 * machines, this function maps a separate pwq to each NUMA node with 4044 * possibles CPUs in @attrs->cpumask so that work items are affine to the 4045 * NUMA node it was issued on. Older pwqs are released as in-flight work 4046 * items finish. Note that a work item which repeatedly requeues itself 4047 * back-to-back will stay on its current pwq. 4048 * 4049 * Performs GFP_KERNEL allocations. 4050 * 4051 * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus(). 4052 * 4053 * Return: 0 on success and -errno on failure. 4054 */ 4055 int apply_workqueue_attrs(struct workqueue_struct *wq, 4056 const struct workqueue_attrs *attrs) 4057 { 4058 int ret; 4059 4060 lockdep_assert_cpus_held(); 4061 4062 mutex_lock(&wq_pool_mutex); 4063 ret = apply_workqueue_attrs_locked(wq, attrs); 4064 mutex_unlock(&wq_pool_mutex); 4065 4066 return ret; 4067 } 4068 4069 /** 4070 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 4071 * @wq: the target workqueue 4072 * @cpu: the CPU coming up or going down 4073 * @online: whether @cpu is coming up or going down 4074 * 4075 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 4076 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 4077 * @wq accordingly. 4078 * 4079 * If NUMA affinity can't be adjusted due to memory allocation failure, it 4080 * falls back to @wq->dfl_pwq which may not be optimal but is always 4081 * correct. 4082 * 4083 * Note that when the last allowed CPU of a NUMA node goes offline for a 4084 * workqueue with a cpumask spanning multiple nodes, the workers which were 4085 * already executing the work items for the workqueue will lose their CPU 4086 * affinity and may execute on any CPU. This is similar to how per-cpu 4087 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 4088 * affinity, it's the user's responsibility to flush the work item from 4089 * CPU_DOWN_PREPARE. 4090 */ 4091 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 4092 bool online) 4093 { 4094 int node = cpu_to_node(cpu); 4095 int cpu_off = online ? -1 : cpu; 4096 struct pool_workqueue *old_pwq = NULL, *pwq; 4097 struct workqueue_attrs *target_attrs; 4098 cpumask_t *cpumask; 4099 4100 lockdep_assert_held(&wq_pool_mutex); 4101 4102 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 4103 wq->unbound_attrs->no_numa) 4104 return; 4105 4106 /* 4107 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 4108 * Let's use a preallocated one. The following buf is protected by 4109 * CPU hotplug exclusion. 4110 */ 4111 target_attrs = wq_update_unbound_numa_attrs_buf; 4112 cpumask = target_attrs->cpumask; 4113 4114 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 4115 pwq = unbound_pwq_by_node(wq, node); 4116 4117 /* 4118 * Let's determine what needs to be done. If the target cpumask is 4119 * different from the default pwq's, we need to compare it to @pwq's 4120 * and create a new one if they don't match. If the target cpumask 4121 * equals the default pwq's, the default pwq should be used. 4122 */ 4123 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 4124 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 4125 return; 4126 } else { 4127 goto use_dfl_pwq; 4128 } 4129 4130 /* create a new pwq */ 4131 pwq = alloc_unbound_pwq(wq, target_attrs); 4132 if (!pwq) { 4133 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 4134 wq->name); 4135 goto use_dfl_pwq; 4136 } 4137 4138 /* Install the new pwq. */ 4139 mutex_lock(&wq->mutex); 4140 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 4141 goto out_unlock; 4142 4143 use_dfl_pwq: 4144 mutex_lock(&wq->mutex); 4145 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock); 4146 get_pwq(wq->dfl_pwq); 4147 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock); 4148 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 4149 out_unlock: 4150 mutex_unlock(&wq->mutex); 4151 put_pwq_unlocked(old_pwq); 4152 } 4153 4154 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4155 { 4156 bool highpri = wq->flags & WQ_HIGHPRI; 4157 int cpu, ret; 4158 4159 if (!(wq->flags & WQ_UNBOUND)) { 4160 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 4161 if (!wq->cpu_pwqs) 4162 return -ENOMEM; 4163 4164 for_each_possible_cpu(cpu) { 4165 struct pool_workqueue *pwq = 4166 per_cpu_ptr(wq->cpu_pwqs, cpu); 4167 struct worker_pool *cpu_pools = 4168 per_cpu(cpu_worker_pools, cpu); 4169 4170 init_pwq(pwq, wq, &cpu_pools[highpri]); 4171 4172 mutex_lock(&wq->mutex); 4173 link_pwq(pwq); 4174 mutex_unlock(&wq->mutex); 4175 } 4176 return 0; 4177 } 4178 4179 get_online_cpus(); 4180 if (wq->flags & __WQ_ORDERED) { 4181 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 4182 /* there should only be single pwq for ordering guarantee */ 4183 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 4184 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 4185 "ordering guarantee broken for workqueue %s\n", wq->name); 4186 } else { 4187 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4188 } 4189 put_online_cpus(); 4190 4191 return ret; 4192 } 4193 4194 static int wq_clamp_max_active(int max_active, unsigned int flags, 4195 const char *name) 4196 { 4197 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 4198 4199 if (max_active < 1 || max_active > lim) 4200 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4201 max_active, name, 1, lim); 4202 4203 return clamp_val(max_active, 1, lim); 4204 } 4205 4206 /* 4207 * Workqueues which may be used during memory reclaim should have a rescuer 4208 * to guarantee forward progress. 4209 */ 4210 static int init_rescuer(struct workqueue_struct *wq) 4211 { 4212 struct worker *rescuer; 4213 int ret; 4214 4215 if (!(wq->flags & WQ_MEM_RECLAIM)) 4216 return 0; 4217 4218 rescuer = alloc_worker(NUMA_NO_NODE); 4219 if (!rescuer) 4220 return -ENOMEM; 4221 4222 rescuer->rescue_wq = wq; 4223 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name); 4224 if (IS_ERR(rescuer->task)) { 4225 ret = PTR_ERR(rescuer->task); 4226 kfree(rescuer); 4227 return ret; 4228 } 4229 4230 wq->rescuer = rescuer; 4231 kthread_bind_mask(rescuer->task, cpu_possible_mask); 4232 wake_up_process(rescuer->task); 4233 4234 return 0; 4235 } 4236 4237 __printf(1, 4) 4238 struct workqueue_struct *alloc_workqueue(const char *fmt, 4239 unsigned int flags, 4240 int max_active, ...) 4241 { 4242 size_t tbl_size = 0; 4243 va_list args; 4244 struct workqueue_struct *wq; 4245 struct pool_workqueue *pwq; 4246 4247 /* 4248 * Unbound && max_active == 1 used to imply ordered, which is no 4249 * longer the case on NUMA machines due to per-node pools. While 4250 * alloc_ordered_workqueue() is the right way to create an ordered 4251 * workqueue, keep the previous behavior to avoid subtle breakages 4252 * on NUMA. 4253 */ 4254 if ((flags & WQ_UNBOUND) && max_active == 1) 4255 flags |= __WQ_ORDERED; 4256 4257 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4258 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4259 flags |= WQ_UNBOUND; 4260 4261 /* allocate wq and format name */ 4262 if (flags & WQ_UNBOUND) 4263 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 4264 4265 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4266 if (!wq) 4267 return NULL; 4268 4269 if (flags & WQ_UNBOUND) { 4270 wq->unbound_attrs = alloc_workqueue_attrs(); 4271 if (!wq->unbound_attrs) 4272 goto err_free_wq; 4273 } 4274 4275 va_start(args, max_active); 4276 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4277 va_end(args); 4278 4279 max_active = max_active ?: WQ_DFL_ACTIVE; 4280 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4281 4282 /* init wq */ 4283 wq->flags = flags; 4284 wq->saved_max_active = max_active; 4285 mutex_init(&wq->mutex); 4286 atomic_set(&wq->nr_pwqs_to_flush, 0); 4287 INIT_LIST_HEAD(&wq->pwqs); 4288 INIT_LIST_HEAD(&wq->flusher_queue); 4289 INIT_LIST_HEAD(&wq->flusher_overflow); 4290 INIT_LIST_HEAD(&wq->maydays); 4291 4292 wq_init_lockdep(wq); 4293 INIT_LIST_HEAD(&wq->list); 4294 4295 if (alloc_and_link_pwqs(wq) < 0) 4296 goto err_unreg_lockdep; 4297 4298 if (wq_online && init_rescuer(wq) < 0) 4299 goto err_destroy; 4300 4301 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4302 goto err_destroy; 4303 4304 /* 4305 * wq_pool_mutex protects global freeze state and workqueues list. 4306 * Grab it, adjust max_active and add the new @wq to workqueues 4307 * list. 4308 */ 4309 mutex_lock(&wq_pool_mutex); 4310 4311 mutex_lock(&wq->mutex); 4312 for_each_pwq(pwq, wq) 4313 pwq_adjust_max_active(pwq); 4314 mutex_unlock(&wq->mutex); 4315 4316 list_add_tail_rcu(&wq->list, &workqueues); 4317 4318 mutex_unlock(&wq_pool_mutex); 4319 4320 return wq; 4321 4322 err_unreg_lockdep: 4323 wq_unregister_lockdep(wq); 4324 wq_free_lockdep(wq); 4325 err_free_wq: 4326 free_workqueue_attrs(wq->unbound_attrs); 4327 kfree(wq); 4328 return NULL; 4329 err_destroy: 4330 destroy_workqueue(wq); 4331 return NULL; 4332 } 4333 EXPORT_SYMBOL_GPL(alloc_workqueue); 4334 4335 static bool pwq_busy(struct pool_workqueue *pwq) 4336 { 4337 int i; 4338 4339 for (i = 0; i < WORK_NR_COLORS; i++) 4340 if (pwq->nr_in_flight[i]) 4341 return true; 4342 4343 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1)) 4344 return true; 4345 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4346 return true; 4347 4348 return false; 4349 } 4350 4351 /** 4352 * destroy_workqueue - safely terminate a workqueue 4353 * @wq: target workqueue 4354 * 4355 * Safely destroy a workqueue. All work currently pending will be done first. 4356 */ 4357 void destroy_workqueue(struct workqueue_struct *wq) 4358 { 4359 struct pool_workqueue *pwq; 4360 int node; 4361 4362 /* 4363 * Remove it from sysfs first so that sanity check failure doesn't 4364 * lead to sysfs name conflicts. 4365 */ 4366 workqueue_sysfs_unregister(wq); 4367 4368 /* drain it before proceeding with destruction */ 4369 drain_workqueue(wq); 4370 4371 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ 4372 if (wq->rescuer) { 4373 struct worker *rescuer = wq->rescuer; 4374 4375 /* this prevents new queueing */ 4376 raw_spin_lock_irq(&wq_mayday_lock); 4377 wq->rescuer = NULL; 4378 raw_spin_unlock_irq(&wq_mayday_lock); 4379 4380 /* rescuer will empty maydays list before exiting */ 4381 kthread_stop(rescuer->task); 4382 kfree(rescuer); 4383 } 4384 4385 /* 4386 * Sanity checks - grab all the locks so that we wait for all 4387 * in-flight operations which may do put_pwq(). 4388 */ 4389 mutex_lock(&wq_pool_mutex); 4390 mutex_lock(&wq->mutex); 4391 for_each_pwq(pwq, wq) { 4392 raw_spin_lock_irq(&pwq->pool->lock); 4393 if (WARN_ON(pwq_busy(pwq))) { 4394 pr_warn("%s: %s has the following busy pwq\n", 4395 __func__, wq->name); 4396 show_pwq(pwq); 4397 raw_spin_unlock_irq(&pwq->pool->lock); 4398 mutex_unlock(&wq->mutex); 4399 mutex_unlock(&wq_pool_mutex); 4400 show_workqueue_state(); 4401 return; 4402 } 4403 raw_spin_unlock_irq(&pwq->pool->lock); 4404 } 4405 mutex_unlock(&wq->mutex); 4406 4407 /* 4408 * wq list is used to freeze wq, remove from list after 4409 * flushing is complete in case freeze races us. 4410 */ 4411 list_del_rcu(&wq->list); 4412 mutex_unlock(&wq_pool_mutex); 4413 4414 if (!(wq->flags & WQ_UNBOUND)) { 4415 wq_unregister_lockdep(wq); 4416 /* 4417 * The base ref is never dropped on per-cpu pwqs. Directly 4418 * schedule RCU free. 4419 */ 4420 call_rcu(&wq->rcu, rcu_free_wq); 4421 } else { 4422 /* 4423 * We're the sole accessor of @wq at this point. Directly 4424 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4425 * @wq will be freed when the last pwq is released. 4426 */ 4427 for_each_node(node) { 4428 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4429 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4430 put_pwq_unlocked(pwq); 4431 } 4432 4433 /* 4434 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4435 * put. Don't access it afterwards. 4436 */ 4437 pwq = wq->dfl_pwq; 4438 wq->dfl_pwq = NULL; 4439 put_pwq_unlocked(pwq); 4440 } 4441 } 4442 EXPORT_SYMBOL_GPL(destroy_workqueue); 4443 4444 /** 4445 * workqueue_set_max_active - adjust max_active of a workqueue 4446 * @wq: target workqueue 4447 * @max_active: new max_active value. 4448 * 4449 * Set max_active of @wq to @max_active. 4450 * 4451 * CONTEXT: 4452 * Don't call from IRQ context. 4453 */ 4454 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4455 { 4456 struct pool_workqueue *pwq; 4457 4458 /* disallow meddling with max_active for ordered workqueues */ 4459 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4460 return; 4461 4462 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4463 4464 mutex_lock(&wq->mutex); 4465 4466 wq->flags &= ~__WQ_ORDERED; 4467 wq->saved_max_active = max_active; 4468 4469 for_each_pwq(pwq, wq) 4470 pwq_adjust_max_active(pwq); 4471 4472 mutex_unlock(&wq->mutex); 4473 } 4474 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4475 4476 /** 4477 * current_work - retrieve %current task's work struct 4478 * 4479 * Determine if %current task is a workqueue worker and what it's working on. 4480 * Useful to find out the context that the %current task is running in. 4481 * 4482 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 4483 */ 4484 struct work_struct *current_work(void) 4485 { 4486 struct worker *worker = current_wq_worker(); 4487 4488 return worker ? worker->current_work : NULL; 4489 } 4490 EXPORT_SYMBOL(current_work); 4491 4492 /** 4493 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4494 * 4495 * Determine whether %current is a workqueue rescuer. Can be used from 4496 * work functions to determine whether it's being run off the rescuer task. 4497 * 4498 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4499 */ 4500 bool current_is_workqueue_rescuer(void) 4501 { 4502 struct worker *worker = current_wq_worker(); 4503 4504 return worker && worker->rescue_wq; 4505 } 4506 4507 /** 4508 * workqueue_congested - test whether a workqueue is congested 4509 * @cpu: CPU in question 4510 * @wq: target workqueue 4511 * 4512 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4513 * no synchronization around this function and the test result is 4514 * unreliable and only useful as advisory hints or for debugging. 4515 * 4516 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4517 * Note that both per-cpu and unbound workqueues may be associated with 4518 * multiple pool_workqueues which have separate congested states. A 4519 * workqueue being congested on one CPU doesn't mean the workqueue is also 4520 * contested on other CPUs / NUMA nodes. 4521 * 4522 * Return: 4523 * %true if congested, %false otherwise. 4524 */ 4525 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4526 { 4527 struct pool_workqueue *pwq; 4528 bool ret; 4529 4530 rcu_read_lock(); 4531 preempt_disable(); 4532 4533 if (cpu == WORK_CPU_UNBOUND) 4534 cpu = smp_processor_id(); 4535 4536 if (!(wq->flags & WQ_UNBOUND)) 4537 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4538 else 4539 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4540 4541 ret = !list_empty(&pwq->delayed_works); 4542 preempt_enable(); 4543 rcu_read_unlock(); 4544 4545 return ret; 4546 } 4547 EXPORT_SYMBOL_GPL(workqueue_congested); 4548 4549 /** 4550 * work_busy - test whether a work is currently pending or running 4551 * @work: the work to be tested 4552 * 4553 * Test whether @work is currently pending or running. There is no 4554 * synchronization around this function and the test result is 4555 * unreliable and only useful as advisory hints or for debugging. 4556 * 4557 * Return: 4558 * OR'd bitmask of WORK_BUSY_* bits. 4559 */ 4560 unsigned int work_busy(struct work_struct *work) 4561 { 4562 struct worker_pool *pool; 4563 unsigned long flags; 4564 unsigned int ret = 0; 4565 4566 if (work_pending(work)) 4567 ret |= WORK_BUSY_PENDING; 4568 4569 rcu_read_lock(); 4570 pool = get_work_pool(work); 4571 if (pool) { 4572 raw_spin_lock_irqsave(&pool->lock, flags); 4573 if (find_worker_executing_work(pool, work)) 4574 ret |= WORK_BUSY_RUNNING; 4575 raw_spin_unlock_irqrestore(&pool->lock, flags); 4576 } 4577 rcu_read_unlock(); 4578 4579 return ret; 4580 } 4581 EXPORT_SYMBOL_GPL(work_busy); 4582 4583 /** 4584 * set_worker_desc - set description for the current work item 4585 * @fmt: printf-style format string 4586 * @...: arguments for the format string 4587 * 4588 * This function can be called by a running work function to describe what 4589 * the work item is about. If the worker task gets dumped, this 4590 * information will be printed out together to help debugging. The 4591 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4592 */ 4593 void set_worker_desc(const char *fmt, ...) 4594 { 4595 struct worker *worker = current_wq_worker(); 4596 va_list args; 4597 4598 if (worker) { 4599 va_start(args, fmt); 4600 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4601 va_end(args); 4602 } 4603 } 4604 EXPORT_SYMBOL_GPL(set_worker_desc); 4605 4606 /** 4607 * print_worker_info - print out worker information and description 4608 * @log_lvl: the log level to use when printing 4609 * @task: target task 4610 * 4611 * If @task is a worker and currently executing a work item, print out the 4612 * name of the workqueue being serviced and worker description set with 4613 * set_worker_desc() by the currently executing work item. 4614 * 4615 * This function can be safely called on any task as long as the 4616 * task_struct itself is accessible. While safe, this function isn't 4617 * synchronized and may print out mixups or garbages of limited length. 4618 */ 4619 void print_worker_info(const char *log_lvl, struct task_struct *task) 4620 { 4621 work_func_t *fn = NULL; 4622 char name[WQ_NAME_LEN] = { }; 4623 char desc[WORKER_DESC_LEN] = { }; 4624 struct pool_workqueue *pwq = NULL; 4625 struct workqueue_struct *wq = NULL; 4626 struct worker *worker; 4627 4628 if (!(task->flags & PF_WQ_WORKER)) 4629 return; 4630 4631 /* 4632 * This function is called without any synchronization and @task 4633 * could be in any state. Be careful with dereferences. 4634 */ 4635 worker = kthread_probe_data(task); 4636 4637 /* 4638 * Carefully copy the associated workqueue's workfn, name and desc. 4639 * Keep the original last '\0' in case the original is garbage. 4640 */ 4641 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4642 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4643 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4644 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4645 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4646 4647 if (fn || name[0] || desc[0]) { 4648 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 4649 if (strcmp(name, desc)) 4650 pr_cont(" (%s)", desc); 4651 pr_cont("\n"); 4652 } 4653 } 4654 4655 static void pr_cont_pool_info(struct worker_pool *pool) 4656 { 4657 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4658 if (pool->node != NUMA_NO_NODE) 4659 pr_cont(" node=%d", pool->node); 4660 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4661 } 4662 4663 static void pr_cont_work(bool comma, struct work_struct *work) 4664 { 4665 if (work->func == wq_barrier_func) { 4666 struct wq_barrier *barr; 4667 4668 barr = container_of(work, struct wq_barrier, work); 4669 4670 pr_cont("%s BAR(%d)", comma ? "," : "", 4671 task_pid_nr(barr->task)); 4672 } else { 4673 pr_cont("%s %ps", comma ? "," : "", work->func); 4674 } 4675 } 4676 4677 static void show_pwq(struct pool_workqueue *pwq) 4678 { 4679 struct worker_pool *pool = pwq->pool; 4680 struct work_struct *work; 4681 struct worker *worker; 4682 bool has_in_flight = false, has_pending = false; 4683 int bkt; 4684 4685 pr_info(" pwq %d:", pool->id); 4686 pr_cont_pool_info(pool); 4687 4688 pr_cont(" active=%d/%d refcnt=%d%s\n", 4689 pwq->nr_active, pwq->max_active, pwq->refcnt, 4690 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4691 4692 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4693 if (worker->current_pwq == pwq) { 4694 has_in_flight = true; 4695 break; 4696 } 4697 } 4698 if (has_in_flight) { 4699 bool comma = false; 4700 4701 pr_info(" in-flight:"); 4702 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4703 if (worker->current_pwq != pwq) 4704 continue; 4705 4706 pr_cont("%s %d%s:%ps", comma ? "," : "", 4707 task_pid_nr(worker->task), 4708 worker->rescue_wq ? "(RESCUER)" : "", 4709 worker->current_func); 4710 list_for_each_entry(work, &worker->scheduled, entry) 4711 pr_cont_work(false, work); 4712 comma = true; 4713 } 4714 pr_cont("\n"); 4715 } 4716 4717 list_for_each_entry(work, &pool->worklist, entry) { 4718 if (get_work_pwq(work) == pwq) { 4719 has_pending = true; 4720 break; 4721 } 4722 } 4723 if (has_pending) { 4724 bool comma = false; 4725 4726 pr_info(" pending:"); 4727 list_for_each_entry(work, &pool->worklist, entry) { 4728 if (get_work_pwq(work) != pwq) 4729 continue; 4730 4731 pr_cont_work(comma, work); 4732 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4733 } 4734 pr_cont("\n"); 4735 } 4736 4737 if (!list_empty(&pwq->delayed_works)) { 4738 bool comma = false; 4739 4740 pr_info(" delayed:"); 4741 list_for_each_entry(work, &pwq->delayed_works, entry) { 4742 pr_cont_work(comma, work); 4743 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4744 } 4745 pr_cont("\n"); 4746 } 4747 } 4748 4749 /** 4750 * show_workqueue_state - dump workqueue state 4751 * 4752 * Called from a sysrq handler or try_to_freeze_tasks() and prints out 4753 * all busy workqueues and pools. 4754 */ 4755 void show_workqueue_state(void) 4756 { 4757 struct workqueue_struct *wq; 4758 struct worker_pool *pool; 4759 unsigned long flags; 4760 int pi; 4761 4762 rcu_read_lock(); 4763 4764 pr_info("Showing busy workqueues and worker pools:\n"); 4765 4766 list_for_each_entry_rcu(wq, &workqueues, list) { 4767 struct pool_workqueue *pwq; 4768 bool idle = true; 4769 4770 for_each_pwq(pwq, wq) { 4771 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) { 4772 idle = false; 4773 break; 4774 } 4775 } 4776 if (idle) 4777 continue; 4778 4779 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4780 4781 for_each_pwq(pwq, wq) { 4782 raw_spin_lock_irqsave(&pwq->pool->lock, flags); 4783 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4784 show_pwq(pwq); 4785 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); 4786 /* 4787 * We could be printing a lot from atomic context, e.g. 4788 * sysrq-t -> show_workqueue_state(). Avoid triggering 4789 * hard lockup. 4790 */ 4791 touch_nmi_watchdog(); 4792 } 4793 } 4794 4795 for_each_pool(pool, pi) { 4796 struct worker *worker; 4797 bool first = true; 4798 4799 raw_spin_lock_irqsave(&pool->lock, flags); 4800 if (pool->nr_workers == pool->nr_idle) 4801 goto next_pool; 4802 4803 pr_info("pool %d:", pool->id); 4804 pr_cont_pool_info(pool); 4805 pr_cont(" hung=%us workers=%d", 4806 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000, 4807 pool->nr_workers); 4808 if (pool->manager) 4809 pr_cont(" manager: %d", 4810 task_pid_nr(pool->manager->task)); 4811 list_for_each_entry(worker, &pool->idle_list, entry) { 4812 pr_cont(" %s%d", first ? "idle: " : "", 4813 task_pid_nr(worker->task)); 4814 first = false; 4815 } 4816 pr_cont("\n"); 4817 next_pool: 4818 raw_spin_unlock_irqrestore(&pool->lock, flags); 4819 /* 4820 * We could be printing a lot from atomic context, e.g. 4821 * sysrq-t -> show_workqueue_state(). Avoid triggering 4822 * hard lockup. 4823 */ 4824 touch_nmi_watchdog(); 4825 } 4826 4827 rcu_read_unlock(); 4828 } 4829 4830 /* used to show worker information through /proc/PID/{comm,stat,status} */ 4831 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 4832 { 4833 int off; 4834 4835 /* always show the actual comm */ 4836 off = strscpy(buf, task->comm, size); 4837 if (off < 0) 4838 return; 4839 4840 /* stabilize PF_WQ_WORKER and worker pool association */ 4841 mutex_lock(&wq_pool_attach_mutex); 4842 4843 if (task->flags & PF_WQ_WORKER) { 4844 struct worker *worker = kthread_data(task); 4845 struct worker_pool *pool = worker->pool; 4846 4847 if (pool) { 4848 raw_spin_lock_irq(&pool->lock); 4849 /* 4850 * ->desc tracks information (wq name or 4851 * set_worker_desc()) for the latest execution. If 4852 * current, prepend '+', otherwise '-'. 4853 */ 4854 if (worker->desc[0] != '\0') { 4855 if (worker->current_work) 4856 scnprintf(buf + off, size - off, "+%s", 4857 worker->desc); 4858 else 4859 scnprintf(buf + off, size - off, "-%s", 4860 worker->desc); 4861 } 4862 raw_spin_unlock_irq(&pool->lock); 4863 } 4864 } 4865 4866 mutex_unlock(&wq_pool_attach_mutex); 4867 } 4868 4869 #ifdef CONFIG_SMP 4870 4871 /* 4872 * CPU hotplug. 4873 * 4874 * There are two challenges in supporting CPU hotplug. Firstly, there 4875 * are a lot of assumptions on strong associations among work, pwq and 4876 * pool which make migrating pending and scheduled works very 4877 * difficult to implement without impacting hot paths. Secondly, 4878 * worker pools serve mix of short, long and very long running works making 4879 * blocked draining impractical. 4880 * 4881 * This is solved by allowing the pools to be disassociated from the CPU 4882 * running as an unbound one and allowing it to be reattached later if the 4883 * cpu comes back online. 4884 */ 4885 4886 static void unbind_workers(int cpu) 4887 { 4888 struct worker_pool *pool; 4889 struct worker *worker; 4890 4891 for_each_cpu_worker_pool(pool, cpu) { 4892 mutex_lock(&wq_pool_attach_mutex); 4893 raw_spin_lock_irq(&pool->lock); 4894 4895 /* 4896 * We've blocked all attach/detach operations. Make all workers 4897 * unbound and set DISASSOCIATED. Before this, all workers 4898 * except for the ones which are still executing works from 4899 * before the last CPU down must be on the cpu. After 4900 * this, they may become diasporas. 4901 */ 4902 for_each_pool_worker(worker, pool) 4903 worker->flags |= WORKER_UNBOUND; 4904 4905 pool->flags |= POOL_DISASSOCIATED; 4906 4907 raw_spin_unlock_irq(&pool->lock); 4908 mutex_unlock(&wq_pool_attach_mutex); 4909 4910 /* 4911 * Call schedule() so that we cross rq->lock and thus can 4912 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4913 * This is necessary as scheduler callbacks may be invoked 4914 * from other cpus. 4915 */ 4916 schedule(); 4917 4918 /* 4919 * Sched callbacks are disabled now. Zap nr_running. 4920 * After this, nr_running stays zero and need_more_worker() 4921 * and keep_working() are always true as long as the 4922 * worklist is not empty. This pool now behaves as an 4923 * unbound (in terms of concurrency management) pool which 4924 * are served by workers tied to the pool. 4925 */ 4926 atomic_set(&pool->nr_running, 0); 4927 4928 /* 4929 * With concurrency management just turned off, a busy 4930 * worker blocking could lead to lengthy stalls. Kick off 4931 * unbound chain execution of currently pending work items. 4932 */ 4933 raw_spin_lock_irq(&pool->lock); 4934 wake_up_worker(pool); 4935 raw_spin_unlock_irq(&pool->lock); 4936 } 4937 } 4938 4939 /** 4940 * rebind_workers - rebind all workers of a pool to the associated CPU 4941 * @pool: pool of interest 4942 * 4943 * @pool->cpu is coming online. Rebind all workers to the CPU. 4944 */ 4945 static void rebind_workers(struct worker_pool *pool) 4946 { 4947 struct worker *worker; 4948 4949 lockdep_assert_held(&wq_pool_attach_mutex); 4950 4951 /* 4952 * Restore CPU affinity of all workers. As all idle workers should 4953 * be on the run-queue of the associated CPU before any local 4954 * wake-ups for concurrency management happen, restore CPU affinity 4955 * of all workers first and then clear UNBOUND. As we're called 4956 * from CPU_ONLINE, the following shouldn't fail. 4957 */ 4958 for_each_pool_worker(worker, pool) 4959 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4960 pool->attrs->cpumask) < 0); 4961 4962 raw_spin_lock_irq(&pool->lock); 4963 4964 pool->flags &= ~POOL_DISASSOCIATED; 4965 4966 for_each_pool_worker(worker, pool) { 4967 unsigned int worker_flags = worker->flags; 4968 4969 /* 4970 * A bound idle worker should actually be on the runqueue 4971 * of the associated CPU for local wake-ups targeting it to 4972 * work. Kick all idle workers so that they migrate to the 4973 * associated CPU. Doing this in the same loop as 4974 * replacing UNBOUND with REBOUND is safe as no worker will 4975 * be bound before @pool->lock is released. 4976 */ 4977 if (worker_flags & WORKER_IDLE) 4978 wake_up_process(worker->task); 4979 4980 /* 4981 * We want to clear UNBOUND but can't directly call 4982 * worker_clr_flags() or adjust nr_running. Atomically 4983 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4984 * @worker will clear REBOUND using worker_clr_flags() when 4985 * it initiates the next execution cycle thus restoring 4986 * concurrency management. Note that when or whether 4987 * @worker clears REBOUND doesn't affect correctness. 4988 * 4989 * WRITE_ONCE() is necessary because @worker->flags may be 4990 * tested without holding any lock in 4991 * wq_worker_running(). Without it, NOT_RUNNING test may 4992 * fail incorrectly leading to premature concurrency 4993 * management operations. 4994 */ 4995 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4996 worker_flags |= WORKER_REBOUND; 4997 worker_flags &= ~WORKER_UNBOUND; 4998 WRITE_ONCE(worker->flags, worker_flags); 4999 } 5000 5001 raw_spin_unlock_irq(&pool->lock); 5002 } 5003 5004 /** 5005 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 5006 * @pool: unbound pool of interest 5007 * @cpu: the CPU which is coming up 5008 * 5009 * An unbound pool may end up with a cpumask which doesn't have any online 5010 * CPUs. When a worker of such pool get scheduled, the scheduler resets 5011 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 5012 * online CPU before, cpus_allowed of all its workers should be restored. 5013 */ 5014 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 5015 { 5016 static cpumask_t cpumask; 5017 struct worker *worker; 5018 5019 lockdep_assert_held(&wq_pool_attach_mutex); 5020 5021 /* is @cpu allowed for @pool? */ 5022 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 5023 return; 5024 5025 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 5026 5027 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 5028 for_each_pool_worker(worker, pool) 5029 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 5030 } 5031 5032 int workqueue_prepare_cpu(unsigned int cpu) 5033 { 5034 struct worker_pool *pool; 5035 5036 for_each_cpu_worker_pool(pool, cpu) { 5037 if (pool->nr_workers) 5038 continue; 5039 if (!create_worker(pool)) 5040 return -ENOMEM; 5041 } 5042 return 0; 5043 } 5044 5045 int workqueue_online_cpu(unsigned int cpu) 5046 { 5047 struct worker_pool *pool; 5048 struct workqueue_struct *wq; 5049 int pi; 5050 5051 mutex_lock(&wq_pool_mutex); 5052 5053 for_each_pool(pool, pi) { 5054 mutex_lock(&wq_pool_attach_mutex); 5055 5056 if (pool->cpu == cpu) 5057 rebind_workers(pool); 5058 else if (pool->cpu < 0) 5059 restore_unbound_workers_cpumask(pool, cpu); 5060 5061 mutex_unlock(&wq_pool_attach_mutex); 5062 } 5063 5064 /* update NUMA affinity of unbound workqueues */ 5065 list_for_each_entry(wq, &workqueues, list) 5066 wq_update_unbound_numa(wq, cpu, true); 5067 5068 mutex_unlock(&wq_pool_mutex); 5069 return 0; 5070 } 5071 5072 int workqueue_offline_cpu(unsigned int cpu) 5073 { 5074 struct workqueue_struct *wq; 5075 5076 /* unbinding per-cpu workers should happen on the local CPU */ 5077 if (WARN_ON(cpu != smp_processor_id())) 5078 return -1; 5079 5080 unbind_workers(cpu); 5081 5082 /* update NUMA affinity of unbound workqueues */ 5083 mutex_lock(&wq_pool_mutex); 5084 list_for_each_entry(wq, &workqueues, list) 5085 wq_update_unbound_numa(wq, cpu, false); 5086 mutex_unlock(&wq_pool_mutex); 5087 5088 return 0; 5089 } 5090 5091 struct work_for_cpu { 5092 struct work_struct work; 5093 long (*fn)(void *); 5094 void *arg; 5095 long ret; 5096 }; 5097 5098 static void work_for_cpu_fn(struct work_struct *work) 5099 { 5100 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 5101 5102 wfc->ret = wfc->fn(wfc->arg); 5103 } 5104 5105 /** 5106 * work_on_cpu - run a function in thread context on a particular cpu 5107 * @cpu: the cpu to run on 5108 * @fn: the function to run 5109 * @arg: the function arg 5110 * 5111 * It is up to the caller to ensure that the cpu doesn't go offline. 5112 * The caller must not hold any locks which would prevent @fn from completing. 5113 * 5114 * Return: The value @fn returns. 5115 */ 5116 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 5117 { 5118 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 5119 5120 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 5121 schedule_work_on(cpu, &wfc.work); 5122 flush_work(&wfc.work); 5123 destroy_work_on_stack(&wfc.work); 5124 return wfc.ret; 5125 } 5126 EXPORT_SYMBOL_GPL(work_on_cpu); 5127 5128 /** 5129 * work_on_cpu_safe - run a function in thread context on a particular cpu 5130 * @cpu: the cpu to run on 5131 * @fn: the function to run 5132 * @arg: the function argument 5133 * 5134 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 5135 * any locks which would prevent @fn from completing. 5136 * 5137 * Return: The value @fn returns. 5138 */ 5139 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) 5140 { 5141 long ret = -ENODEV; 5142 5143 get_online_cpus(); 5144 if (cpu_online(cpu)) 5145 ret = work_on_cpu(cpu, fn, arg); 5146 put_online_cpus(); 5147 return ret; 5148 } 5149 EXPORT_SYMBOL_GPL(work_on_cpu_safe); 5150 #endif /* CONFIG_SMP */ 5151 5152 #ifdef CONFIG_FREEZER 5153 5154 /** 5155 * freeze_workqueues_begin - begin freezing workqueues 5156 * 5157 * Start freezing workqueues. After this function returns, all freezable 5158 * workqueues will queue new works to their delayed_works list instead of 5159 * pool->worklist. 5160 * 5161 * CONTEXT: 5162 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5163 */ 5164 void freeze_workqueues_begin(void) 5165 { 5166 struct workqueue_struct *wq; 5167 struct pool_workqueue *pwq; 5168 5169 mutex_lock(&wq_pool_mutex); 5170 5171 WARN_ON_ONCE(workqueue_freezing); 5172 workqueue_freezing = true; 5173 5174 list_for_each_entry(wq, &workqueues, list) { 5175 mutex_lock(&wq->mutex); 5176 for_each_pwq(pwq, wq) 5177 pwq_adjust_max_active(pwq); 5178 mutex_unlock(&wq->mutex); 5179 } 5180 5181 mutex_unlock(&wq_pool_mutex); 5182 } 5183 5184 /** 5185 * freeze_workqueues_busy - are freezable workqueues still busy? 5186 * 5187 * Check whether freezing is complete. This function must be called 5188 * between freeze_workqueues_begin() and thaw_workqueues(). 5189 * 5190 * CONTEXT: 5191 * Grabs and releases wq_pool_mutex. 5192 * 5193 * Return: 5194 * %true if some freezable workqueues are still busy. %false if freezing 5195 * is complete. 5196 */ 5197 bool freeze_workqueues_busy(void) 5198 { 5199 bool busy = false; 5200 struct workqueue_struct *wq; 5201 struct pool_workqueue *pwq; 5202 5203 mutex_lock(&wq_pool_mutex); 5204 5205 WARN_ON_ONCE(!workqueue_freezing); 5206 5207 list_for_each_entry(wq, &workqueues, list) { 5208 if (!(wq->flags & WQ_FREEZABLE)) 5209 continue; 5210 /* 5211 * nr_active is monotonically decreasing. It's safe 5212 * to peek without lock. 5213 */ 5214 rcu_read_lock(); 5215 for_each_pwq(pwq, wq) { 5216 WARN_ON_ONCE(pwq->nr_active < 0); 5217 if (pwq->nr_active) { 5218 busy = true; 5219 rcu_read_unlock(); 5220 goto out_unlock; 5221 } 5222 } 5223 rcu_read_unlock(); 5224 } 5225 out_unlock: 5226 mutex_unlock(&wq_pool_mutex); 5227 return busy; 5228 } 5229 5230 /** 5231 * thaw_workqueues - thaw workqueues 5232 * 5233 * Thaw workqueues. Normal queueing is restored and all collected 5234 * frozen works are transferred to their respective pool worklists. 5235 * 5236 * CONTEXT: 5237 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5238 */ 5239 void thaw_workqueues(void) 5240 { 5241 struct workqueue_struct *wq; 5242 struct pool_workqueue *pwq; 5243 5244 mutex_lock(&wq_pool_mutex); 5245 5246 if (!workqueue_freezing) 5247 goto out_unlock; 5248 5249 workqueue_freezing = false; 5250 5251 /* restore max_active and repopulate worklist */ 5252 list_for_each_entry(wq, &workqueues, list) { 5253 mutex_lock(&wq->mutex); 5254 for_each_pwq(pwq, wq) 5255 pwq_adjust_max_active(pwq); 5256 mutex_unlock(&wq->mutex); 5257 } 5258 5259 out_unlock: 5260 mutex_unlock(&wq_pool_mutex); 5261 } 5262 #endif /* CONFIG_FREEZER */ 5263 5264 static int workqueue_apply_unbound_cpumask(void) 5265 { 5266 LIST_HEAD(ctxs); 5267 int ret = 0; 5268 struct workqueue_struct *wq; 5269 struct apply_wqattrs_ctx *ctx, *n; 5270 5271 lockdep_assert_held(&wq_pool_mutex); 5272 5273 list_for_each_entry(wq, &workqueues, list) { 5274 if (!(wq->flags & WQ_UNBOUND)) 5275 continue; 5276 /* creating multiple pwqs breaks ordering guarantee */ 5277 if (wq->flags & __WQ_ORDERED) 5278 continue; 5279 5280 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs); 5281 if (!ctx) { 5282 ret = -ENOMEM; 5283 break; 5284 } 5285 5286 list_add_tail(&ctx->list, &ctxs); 5287 } 5288 5289 list_for_each_entry_safe(ctx, n, &ctxs, list) { 5290 if (!ret) 5291 apply_wqattrs_commit(ctx); 5292 apply_wqattrs_cleanup(ctx); 5293 } 5294 5295 return ret; 5296 } 5297 5298 /** 5299 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 5300 * @cpumask: the cpumask to set 5301 * 5302 * The low-level workqueues cpumask is a global cpumask that limits 5303 * the affinity of all unbound workqueues. This function check the @cpumask 5304 * and apply it to all unbound workqueues and updates all pwqs of them. 5305 * 5306 * Retun: 0 - Success 5307 * -EINVAL - Invalid @cpumask 5308 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 5309 */ 5310 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 5311 { 5312 int ret = -EINVAL; 5313 cpumask_var_t saved_cpumask; 5314 5315 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) 5316 return -ENOMEM; 5317 5318 /* 5319 * Not excluding isolated cpus on purpose. 5320 * If the user wishes to include them, we allow that. 5321 */ 5322 cpumask_and(cpumask, cpumask, cpu_possible_mask); 5323 if (!cpumask_empty(cpumask)) { 5324 apply_wqattrs_lock(); 5325 5326 /* save the old wq_unbound_cpumask. */ 5327 cpumask_copy(saved_cpumask, wq_unbound_cpumask); 5328 5329 /* update wq_unbound_cpumask at first and apply it to wqs. */ 5330 cpumask_copy(wq_unbound_cpumask, cpumask); 5331 ret = workqueue_apply_unbound_cpumask(); 5332 5333 /* restore the wq_unbound_cpumask when failed. */ 5334 if (ret < 0) 5335 cpumask_copy(wq_unbound_cpumask, saved_cpumask); 5336 5337 apply_wqattrs_unlock(); 5338 } 5339 5340 free_cpumask_var(saved_cpumask); 5341 return ret; 5342 } 5343 5344 #ifdef CONFIG_SYSFS 5345 /* 5346 * Workqueues with WQ_SYSFS flag set is visible to userland via 5347 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 5348 * following attributes. 5349 * 5350 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 5351 * max_active RW int : maximum number of in-flight work items 5352 * 5353 * Unbound workqueues have the following extra attributes. 5354 * 5355 * pool_ids RO int : the associated pool IDs for each node 5356 * nice RW int : nice value of the workers 5357 * cpumask RW mask : bitmask of allowed CPUs for the workers 5358 * numa RW bool : whether enable NUMA affinity 5359 */ 5360 struct wq_device { 5361 struct workqueue_struct *wq; 5362 struct device dev; 5363 }; 5364 5365 static struct workqueue_struct *dev_to_wq(struct device *dev) 5366 { 5367 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5368 5369 return wq_dev->wq; 5370 } 5371 5372 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 5373 char *buf) 5374 { 5375 struct workqueue_struct *wq = dev_to_wq(dev); 5376 5377 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 5378 } 5379 static DEVICE_ATTR_RO(per_cpu); 5380 5381 static ssize_t max_active_show(struct device *dev, 5382 struct device_attribute *attr, char *buf) 5383 { 5384 struct workqueue_struct *wq = dev_to_wq(dev); 5385 5386 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 5387 } 5388 5389 static ssize_t max_active_store(struct device *dev, 5390 struct device_attribute *attr, const char *buf, 5391 size_t count) 5392 { 5393 struct workqueue_struct *wq = dev_to_wq(dev); 5394 int val; 5395 5396 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 5397 return -EINVAL; 5398 5399 workqueue_set_max_active(wq, val); 5400 return count; 5401 } 5402 static DEVICE_ATTR_RW(max_active); 5403 5404 static struct attribute *wq_sysfs_attrs[] = { 5405 &dev_attr_per_cpu.attr, 5406 &dev_attr_max_active.attr, 5407 NULL, 5408 }; 5409 ATTRIBUTE_GROUPS(wq_sysfs); 5410 5411 static ssize_t wq_pool_ids_show(struct device *dev, 5412 struct device_attribute *attr, char *buf) 5413 { 5414 struct workqueue_struct *wq = dev_to_wq(dev); 5415 const char *delim = ""; 5416 int node, written = 0; 5417 5418 get_online_cpus(); 5419 rcu_read_lock(); 5420 for_each_node(node) { 5421 written += scnprintf(buf + written, PAGE_SIZE - written, 5422 "%s%d:%d", delim, node, 5423 unbound_pwq_by_node(wq, node)->pool->id); 5424 delim = " "; 5425 } 5426 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 5427 rcu_read_unlock(); 5428 put_online_cpus(); 5429 5430 return written; 5431 } 5432 5433 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 5434 char *buf) 5435 { 5436 struct workqueue_struct *wq = dev_to_wq(dev); 5437 int written; 5438 5439 mutex_lock(&wq->mutex); 5440 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 5441 mutex_unlock(&wq->mutex); 5442 5443 return written; 5444 } 5445 5446 /* prepare workqueue_attrs for sysfs store operations */ 5447 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5448 { 5449 struct workqueue_attrs *attrs; 5450 5451 lockdep_assert_held(&wq_pool_mutex); 5452 5453 attrs = alloc_workqueue_attrs(); 5454 if (!attrs) 5455 return NULL; 5456 5457 copy_workqueue_attrs(attrs, wq->unbound_attrs); 5458 return attrs; 5459 } 5460 5461 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 5462 const char *buf, size_t count) 5463 { 5464 struct workqueue_struct *wq = dev_to_wq(dev); 5465 struct workqueue_attrs *attrs; 5466 int ret = -ENOMEM; 5467 5468 apply_wqattrs_lock(); 5469 5470 attrs = wq_sysfs_prep_attrs(wq); 5471 if (!attrs) 5472 goto out_unlock; 5473 5474 if (sscanf(buf, "%d", &attrs->nice) == 1 && 5475 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 5476 ret = apply_workqueue_attrs_locked(wq, attrs); 5477 else 5478 ret = -EINVAL; 5479 5480 out_unlock: 5481 apply_wqattrs_unlock(); 5482 free_workqueue_attrs(attrs); 5483 return ret ?: count; 5484 } 5485 5486 static ssize_t wq_cpumask_show(struct device *dev, 5487 struct device_attribute *attr, char *buf) 5488 { 5489 struct workqueue_struct *wq = dev_to_wq(dev); 5490 int written; 5491 5492 mutex_lock(&wq->mutex); 5493 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5494 cpumask_pr_args(wq->unbound_attrs->cpumask)); 5495 mutex_unlock(&wq->mutex); 5496 return written; 5497 } 5498 5499 static ssize_t wq_cpumask_store(struct device *dev, 5500 struct device_attribute *attr, 5501 const char *buf, size_t count) 5502 { 5503 struct workqueue_struct *wq = dev_to_wq(dev); 5504 struct workqueue_attrs *attrs; 5505 int ret = -ENOMEM; 5506 5507 apply_wqattrs_lock(); 5508 5509 attrs = wq_sysfs_prep_attrs(wq); 5510 if (!attrs) 5511 goto out_unlock; 5512 5513 ret = cpumask_parse(buf, attrs->cpumask); 5514 if (!ret) 5515 ret = apply_workqueue_attrs_locked(wq, attrs); 5516 5517 out_unlock: 5518 apply_wqattrs_unlock(); 5519 free_workqueue_attrs(attrs); 5520 return ret ?: count; 5521 } 5522 5523 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5524 char *buf) 5525 { 5526 struct workqueue_struct *wq = dev_to_wq(dev); 5527 int written; 5528 5529 mutex_lock(&wq->mutex); 5530 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5531 !wq->unbound_attrs->no_numa); 5532 mutex_unlock(&wq->mutex); 5533 5534 return written; 5535 } 5536 5537 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 5538 const char *buf, size_t count) 5539 { 5540 struct workqueue_struct *wq = dev_to_wq(dev); 5541 struct workqueue_attrs *attrs; 5542 int v, ret = -ENOMEM; 5543 5544 apply_wqattrs_lock(); 5545 5546 attrs = wq_sysfs_prep_attrs(wq); 5547 if (!attrs) 5548 goto out_unlock; 5549 5550 ret = -EINVAL; 5551 if (sscanf(buf, "%d", &v) == 1) { 5552 attrs->no_numa = !v; 5553 ret = apply_workqueue_attrs_locked(wq, attrs); 5554 } 5555 5556 out_unlock: 5557 apply_wqattrs_unlock(); 5558 free_workqueue_attrs(attrs); 5559 return ret ?: count; 5560 } 5561 5562 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5563 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5564 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5565 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5566 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5567 __ATTR_NULL, 5568 }; 5569 5570 static struct bus_type wq_subsys = { 5571 .name = "workqueue", 5572 .dev_groups = wq_sysfs_groups, 5573 }; 5574 5575 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5576 struct device_attribute *attr, char *buf) 5577 { 5578 int written; 5579 5580 mutex_lock(&wq_pool_mutex); 5581 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5582 cpumask_pr_args(wq_unbound_cpumask)); 5583 mutex_unlock(&wq_pool_mutex); 5584 5585 return written; 5586 } 5587 5588 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5589 struct device_attribute *attr, const char *buf, size_t count) 5590 { 5591 cpumask_var_t cpumask; 5592 int ret; 5593 5594 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5595 return -ENOMEM; 5596 5597 ret = cpumask_parse(buf, cpumask); 5598 if (!ret) 5599 ret = workqueue_set_unbound_cpumask(cpumask); 5600 5601 free_cpumask_var(cpumask); 5602 return ret ? ret : count; 5603 } 5604 5605 static struct device_attribute wq_sysfs_cpumask_attr = 5606 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5607 wq_unbound_cpumask_store); 5608 5609 static int __init wq_sysfs_init(void) 5610 { 5611 int err; 5612 5613 err = subsys_virtual_register(&wq_subsys, NULL); 5614 if (err) 5615 return err; 5616 5617 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr); 5618 } 5619 core_initcall(wq_sysfs_init); 5620 5621 static void wq_device_release(struct device *dev) 5622 { 5623 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5624 5625 kfree(wq_dev); 5626 } 5627 5628 /** 5629 * workqueue_sysfs_register - make a workqueue visible in sysfs 5630 * @wq: the workqueue to register 5631 * 5632 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5633 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5634 * which is the preferred method. 5635 * 5636 * Workqueue user should use this function directly iff it wants to apply 5637 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5638 * apply_workqueue_attrs() may race against userland updating the 5639 * attributes. 5640 * 5641 * Return: 0 on success, -errno on failure. 5642 */ 5643 int workqueue_sysfs_register(struct workqueue_struct *wq) 5644 { 5645 struct wq_device *wq_dev; 5646 int ret; 5647 5648 /* 5649 * Adjusting max_active or creating new pwqs by applying 5650 * attributes breaks ordering guarantee. Disallow exposing ordered 5651 * workqueues. 5652 */ 5653 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 5654 return -EINVAL; 5655 5656 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5657 if (!wq_dev) 5658 return -ENOMEM; 5659 5660 wq_dev->wq = wq; 5661 wq_dev->dev.bus = &wq_subsys; 5662 wq_dev->dev.release = wq_device_release; 5663 dev_set_name(&wq_dev->dev, "%s", wq->name); 5664 5665 /* 5666 * unbound_attrs are created separately. Suppress uevent until 5667 * everything is ready. 5668 */ 5669 dev_set_uevent_suppress(&wq_dev->dev, true); 5670 5671 ret = device_register(&wq_dev->dev); 5672 if (ret) { 5673 put_device(&wq_dev->dev); 5674 wq->wq_dev = NULL; 5675 return ret; 5676 } 5677 5678 if (wq->flags & WQ_UNBOUND) { 5679 struct device_attribute *attr; 5680 5681 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5682 ret = device_create_file(&wq_dev->dev, attr); 5683 if (ret) { 5684 device_unregister(&wq_dev->dev); 5685 wq->wq_dev = NULL; 5686 return ret; 5687 } 5688 } 5689 } 5690 5691 dev_set_uevent_suppress(&wq_dev->dev, false); 5692 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5693 return 0; 5694 } 5695 5696 /** 5697 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5698 * @wq: the workqueue to unregister 5699 * 5700 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5701 */ 5702 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5703 { 5704 struct wq_device *wq_dev = wq->wq_dev; 5705 5706 if (!wq->wq_dev) 5707 return; 5708 5709 wq->wq_dev = NULL; 5710 device_unregister(&wq_dev->dev); 5711 } 5712 #else /* CONFIG_SYSFS */ 5713 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5714 #endif /* CONFIG_SYSFS */ 5715 5716 /* 5717 * Workqueue watchdog. 5718 * 5719 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 5720 * flush dependency, a concurrency managed work item which stays RUNNING 5721 * indefinitely. Workqueue stalls can be very difficult to debug as the 5722 * usual warning mechanisms don't trigger and internal workqueue state is 5723 * largely opaque. 5724 * 5725 * Workqueue watchdog monitors all worker pools periodically and dumps 5726 * state if some pools failed to make forward progress for a while where 5727 * forward progress is defined as the first item on ->worklist changing. 5728 * 5729 * This mechanism is controlled through the kernel parameter 5730 * "workqueue.watchdog_thresh" which can be updated at runtime through the 5731 * corresponding sysfs parameter file. 5732 */ 5733 #ifdef CONFIG_WQ_WATCHDOG 5734 5735 static unsigned long wq_watchdog_thresh = 30; 5736 static struct timer_list wq_watchdog_timer; 5737 5738 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 5739 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 5740 5741 static void wq_watchdog_reset_touched(void) 5742 { 5743 int cpu; 5744 5745 wq_watchdog_touched = jiffies; 5746 for_each_possible_cpu(cpu) 5747 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5748 } 5749 5750 static void wq_watchdog_timer_fn(struct timer_list *unused) 5751 { 5752 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 5753 bool lockup_detected = false; 5754 struct worker_pool *pool; 5755 int pi; 5756 5757 if (!thresh) 5758 return; 5759 5760 rcu_read_lock(); 5761 5762 for_each_pool(pool, pi) { 5763 unsigned long pool_ts, touched, ts; 5764 5765 if (list_empty(&pool->worklist)) 5766 continue; 5767 5768 /* get the latest of pool and touched timestamps */ 5769 pool_ts = READ_ONCE(pool->watchdog_ts); 5770 touched = READ_ONCE(wq_watchdog_touched); 5771 5772 if (time_after(pool_ts, touched)) 5773 ts = pool_ts; 5774 else 5775 ts = touched; 5776 5777 if (pool->cpu >= 0) { 5778 unsigned long cpu_touched = 5779 READ_ONCE(per_cpu(wq_watchdog_touched_cpu, 5780 pool->cpu)); 5781 if (time_after(cpu_touched, ts)) 5782 ts = cpu_touched; 5783 } 5784 5785 /* did we stall? */ 5786 if (time_after(jiffies, ts + thresh)) { 5787 lockup_detected = true; 5788 pr_emerg("BUG: workqueue lockup - pool"); 5789 pr_cont_pool_info(pool); 5790 pr_cont(" stuck for %us!\n", 5791 jiffies_to_msecs(jiffies - pool_ts) / 1000); 5792 } 5793 } 5794 5795 rcu_read_unlock(); 5796 5797 if (lockup_detected) 5798 show_workqueue_state(); 5799 5800 wq_watchdog_reset_touched(); 5801 mod_timer(&wq_watchdog_timer, jiffies + thresh); 5802 } 5803 5804 notrace void wq_watchdog_touch(int cpu) 5805 { 5806 if (cpu >= 0) 5807 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5808 else 5809 wq_watchdog_touched = jiffies; 5810 } 5811 5812 static void wq_watchdog_set_thresh(unsigned long thresh) 5813 { 5814 wq_watchdog_thresh = 0; 5815 del_timer_sync(&wq_watchdog_timer); 5816 5817 if (thresh) { 5818 wq_watchdog_thresh = thresh; 5819 wq_watchdog_reset_touched(); 5820 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 5821 } 5822 } 5823 5824 static int wq_watchdog_param_set_thresh(const char *val, 5825 const struct kernel_param *kp) 5826 { 5827 unsigned long thresh; 5828 int ret; 5829 5830 ret = kstrtoul(val, 0, &thresh); 5831 if (ret) 5832 return ret; 5833 5834 if (system_wq) 5835 wq_watchdog_set_thresh(thresh); 5836 else 5837 wq_watchdog_thresh = thresh; 5838 5839 return 0; 5840 } 5841 5842 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 5843 .set = wq_watchdog_param_set_thresh, 5844 .get = param_get_ulong, 5845 }; 5846 5847 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 5848 0644); 5849 5850 static void wq_watchdog_init(void) 5851 { 5852 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 5853 wq_watchdog_set_thresh(wq_watchdog_thresh); 5854 } 5855 5856 #else /* CONFIG_WQ_WATCHDOG */ 5857 5858 static inline void wq_watchdog_init(void) { } 5859 5860 #endif /* CONFIG_WQ_WATCHDOG */ 5861 5862 static void __init wq_numa_init(void) 5863 { 5864 cpumask_var_t *tbl; 5865 int node, cpu; 5866 5867 if (num_possible_nodes() <= 1) 5868 return; 5869 5870 if (wq_disable_numa) { 5871 pr_info("workqueue: NUMA affinity support disabled\n"); 5872 return; 5873 } 5874 5875 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(); 5876 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5877 5878 /* 5879 * We want masks of possible CPUs of each node which isn't readily 5880 * available. Build one from cpu_to_node() which should have been 5881 * fully initialized by now. 5882 */ 5883 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL); 5884 BUG_ON(!tbl); 5885 5886 for_each_node(node) 5887 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5888 node_online(node) ? node : NUMA_NO_NODE)); 5889 5890 for_each_possible_cpu(cpu) { 5891 node = cpu_to_node(cpu); 5892 if (WARN_ON(node == NUMA_NO_NODE)) { 5893 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5894 /* happens iff arch is bonkers, let's just proceed */ 5895 return; 5896 } 5897 cpumask_set_cpu(cpu, tbl[node]); 5898 } 5899 5900 wq_numa_possible_cpumask = tbl; 5901 wq_numa_enabled = true; 5902 } 5903 5904 /** 5905 * workqueue_init_early - early init for workqueue subsystem 5906 * 5907 * This is the first half of two-staged workqueue subsystem initialization 5908 * and invoked as soon as the bare basics - memory allocation, cpumasks and 5909 * idr are up. It sets up all the data structures and system workqueues 5910 * and allows early boot code to create workqueues and queue/cancel work 5911 * items. Actual work item execution starts only after kthreads can be 5912 * created and scheduled right before early initcalls. 5913 */ 5914 void __init workqueue_init_early(void) 5915 { 5916 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5917 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ; 5918 int i, cpu; 5919 5920 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5921 5922 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 5923 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags)); 5924 5925 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5926 5927 /* initialize CPU pools */ 5928 for_each_possible_cpu(cpu) { 5929 struct worker_pool *pool; 5930 5931 i = 0; 5932 for_each_cpu_worker_pool(pool, cpu) { 5933 BUG_ON(init_worker_pool(pool)); 5934 pool->cpu = cpu; 5935 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5936 pool->attrs->nice = std_nice[i++]; 5937 pool->node = cpu_to_node(cpu); 5938 5939 /* alloc pool ID */ 5940 mutex_lock(&wq_pool_mutex); 5941 BUG_ON(worker_pool_assign_id(pool)); 5942 mutex_unlock(&wq_pool_mutex); 5943 } 5944 } 5945 5946 /* create default unbound and ordered wq attrs */ 5947 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5948 struct workqueue_attrs *attrs; 5949 5950 BUG_ON(!(attrs = alloc_workqueue_attrs())); 5951 attrs->nice = std_nice[i]; 5952 unbound_std_wq_attrs[i] = attrs; 5953 5954 /* 5955 * An ordered wq should have only one pwq as ordering is 5956 * guaranteed by max_active which is enforced by pwqs. 5957 * Turn off NUMA so that dfl_pwq is used for all nodes. 5958 */ 5959 BUG_ON(!(attrs = alloc_workqueue_attrs())); 5960 attrs->nice = std_nice[i]; 5961 attrs->no_numa = true; 5962 ordered_wq_attrs[i] = attrs; 5963 } 5964 5965 system_wq = alloc_workqueue("events", 0, 0); 5966 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5967 system_long_wq = alloc_workqueue("events_long", 0, 0); 5968 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5969 WQ_UNBOUND_MAX_ACTIVE); 5970 system_freezable_wq = alloc_workqueue("events_freezable", 5971 WQ_FREEZABLE, 0); 5972 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5973 WQ_POWER_EFFICIENT, 0); 5974 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5975 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5976 0); 5977 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5978 !system_unbound_wq || !system_freezable_wq || 5979 !system_power_efficient_wq || 5980 !system_freezable_power_efficient_wq); 5981 } 5982 5983 /** 5984 * workqueue_init - bring workqueue subsystem fully online 5985 * 5986 * This is the latter half of two-staged workqueue subsystem initialization 5987 * and invoked as soon as kthreads can be created and scheduled. 5988 * Workqueues have been created and work items queued on them, but there 5989 * are no kworkers executing the work items yet. Populate the worker pools 5990 * with the initial workers and enable future kworker creations. 5991 */ 5992 void __init workqueue_init(void) 5993 { 5994 struct workqueue_struct *wq; 5995 struct worker_pool *pool; 5996 int cpu, bkt; 5997 5998 /* 5999 * It'd be simpler to initialize NUMA in workqueue_init_early() but 6000 * CPU to node mapping may not be available that early on some 6001 * archs such as power and arm64. As per-cpu pools created 6002 * previously could be missing node hint and unbound pools NUMA 6003 * affinity, fix them up. 6004 * 6005 * Also, while iterating workqueues, create rescuers if requested. 6006 */ 6007 wq_numa_init(); 6008 6009 mutex_lock(&wq_pool_mutex); 6010 6011 for_each_possible_cpu(cpu) { 6012 for_each_cpu_worker_pool(pool, cpu) { 6013 pool->node = cpu_to_node(cpu); 6014 } 6015 } 6016 6017 list_for_each_entry(wq, &workqueues, list) { 6018 wq_update_unbound_numa(wq, smp_processor_id(), true); 6019 WARN(init_rescuer(wq), 6020 "workqueue: failed to create early rescuer for %s", 6021 wq->name); 6022 } 6023 6024 mutex_unlock(&wq_pool_mutex); 6025 6026 /* create the initial workers */ 6027 for_each_online_cpu(cpu) { 6028 for_each_cpu_worker_pool(pool, cpu) { 6029 pool->flags &= ~POOL_DISASSOCIATED; 6030 BUG_ON(!create_worker(pool)); 6031 } 6032 } 6033 6034 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 6035 BUG_ON(!create_worker(pool)); 6036 6037 wq_online = true; 6038 wq_watchdog_init(); 6039 } 6040