1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There are two worker pools for each CPU (one for 20 * normal work items and the other for high priority ones) and some extra 21 * pools for workqueues which are not bound to any specific CPU - the 22 * number of these backing pools is dynamic. 23 * 24 * Please read Documentation/workqueue.txt for details. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kernel.h> 29 #include <linux/sched.h> 30 #include <linux/init.h> 31 #include <linux/signal.h> 32 #include <linux/completion.h> 33 #include <linux/workqueue.h> 34 #include <linux/slab.h> 35 #include <linux/cpu.h> 36 #include <linux/notifier.h> 37 #include <linux/kthread.h> 38 #include <linux/hardirq.h> 39 #include <linux/mempolicy.h> 40 #include <linux/freezer.h> 41 #include <linux/kallsyms.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 52 #include "workqueue_internal.h" 53 54 enum { 55 /* 56 * worker_pool flags 57 * 58 * A bound pool is either associated or disassociated with its CPU. 59 * While associated (!DISASSOCIATED), all workers are bound to the 60 * CPU and none has %WORKER_UNBOUND set and concurrency management 61 * is in effect. 62 * 63 * While DISASSOCIATED, the cpu may be offline and all workers have 64 * %WORKER_UNBOUND set and concurrency management disabled, and may 65 * be executing on any CPU. The pool behaves as an unbound one. 66 * 67 * Note that DISASSOCIATED should be flipped only while holding 68 * attach_mutex to avoid changing binding state while 69 * worker_attach_to_pool() is in progress. 70 */ 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 72 73 /* worker flags */ 74 WORKER_DIE = 1 << 1, /* die die die */ 75 WORKER_IDLE = 1 << 2, /* is idle */ 76 WORKER_PREP = 1 << 3, /* preparing to run works */ 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 79 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 80 81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 82 WORKER_UNBOUND | WORKER_REBOUND, 83 84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 85 86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 88 89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 91 92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 93 /* call for help after 10ms 94 (min two ticks) */ 95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 96 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 97 98 /* 99 * Rescue workers are used only on emergencies and shared by 100 * all cpus. Give MIN_NICE. 101 */ 102 RESCUER_NICE_LEVEL = MIN_NICE, 103 HIGHPRI_NICE_LEVEL = MIN_NICE, 104 105 WQ_NAME_LEN = 24, 106 }; 107 108 /* 109 * Structure fields follow one of the following exclusion rules. 110 * 111 * I: Modifiable by initialization/destruction paths and read-only for 112 * everyone else. 113 * 114 * P: Preemption protected. Disabling preemption is enough and should 115 * only be modified and accessed from the local cpu. 116 * 117 * L: pool->lock protected. Access with pool->lock held. 118 * 119 * X: During normal operation, modification requires pool->lock and should 120 * be done only from local cpu. Either disabling preemption on local 121 * cpu or grabbing pool->lock is enough for read access. If 122 * POOL_DISASSOCIATED is set, it's identical to L. 123 * 124 * A: pool->attach_mutex protected. 125 * 126 * PL: wq_pool_mutex protected. 127 * 128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads. 129 * 130 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 131 * 132 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 133 * sched-RCU for reads. 134 * 135 * WQ: wq->mutex protected. 136 * 137 * WR: wq->mutex protected for writes. Sched-RCU protected for reads. 138 * 139 * MD: wq_mayday_lock protected. 140 */ 141 142 /* struct worker is defined in workqueue_internal.h */ 143 144 struct worker_pool { 145 spinlock_t lock; /* the pool lock */ 146 int cpu; /* I: the associated cpu */ 147 int node; /* I: the associated node ID */ 148 int id; /* I: pool ID */ 149 unsigned int flags; /* X: flags */ 150 151 struct list_head worklist; /* L: list of pending works */ 152 int nr_workers; /* L: total number of workers */ 153 154 /* nr_idle includes the ones off idle_list for rebinding */ 155 int nr_idle; /* L: currently idle ones */ 156 157 struct list_head idle_list; /* X: list of idle workers */ 158 struct timer_list idle_timer; /* L: worker idle timeout */ 159 struct timer_list mayday_timer; /* L: SOS timer for workers */ 160 161 /* a workers is either on busy_hash or idle_list, or the manager */ 162 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 163 /* L: hash of busy workers */ 164 165 /* see manage_workers() for details on the two manager mutexes */ 166 struct mutex manager_arb; /* manager arbitration */ 167 struct worker *manager; /* L: purely informational */ 168 struct mutex attach_mutex; /* attach/detach exclusion */ 169 struct list_head workers; /* A: attached workers */ 170 struct completion *detach_completion; /* all workers detached */ 171 172 struct ida worker_ida; /* worker IDs for task name */ 173 174 struct workqueue_attrs *attrs; /* I: worker attributes */ 175 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 176 int refcnt; /* PL: refcnt for unbound pools */ 177 178 /* 179 * The current concurrency level. As it's likely to be accessed 180 * from other CPUs during try_to_wake_up(), put it in a separate 181 * cacheline. 182 */ 183 atomic_t nr_running ____cacheline_aligned_in_smp; 184 185 /* 186 * Destruction of pool is sched-RCU protected to allow dereferences 187 * from get_work_pool(). 188 */ 189 struct rcu_head rcu; 190 } ____cacheline_aligned_in_smp; 191 192 /* 193 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 194 * of work_struct->data are used for flags and the remaining high bits 195 * point to the pwq; thus, pwqs need to be aligned at two's power of the 196 * number of flag bits. 197 */ 198 struct pool_workqueue { 199 struct worker_pool *pool; /* I: the associated pool */ 200 struct workqueue_struct *wq; /* I: the owning workqueue */ 201 int work_color; /* L: current color */ 202 int flush_color; /* L: flushing color */ 203 int refcnt; /* L: reference count */ 204 int nr_in_flight[WORK_NR_COLORS]; 205 /* L: nr of in_flight works */ 206 int nr_active; /* L: nr of active works */ 207 int max_active; /* L: max active works */ 208 struct list_head delayed_works; /* L: delayed works */ 209 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 210 struct list_head mayday_node; /* MD: node on wq->maydays */ 211 212 /* 213 * Release of unbound pwq is punted to system_wq. See put_pwq() 214 * and pwq_unbound_release_workfn() for details. pool_workqueue 215 * itself is also sched-RCU protected so that the first pwq can be 216 * determined without grabbing wq->mutex. 217 */ 218 struct work_struct unbound_release_work; 219 struct rcu_head rcu; 220 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 221 222 /* 223 * Structure used to wait for workqueue flush. 224 */ 225 struct wq_flusher { 226 struct list_head list; /* WQ: list of flushers */ 227 int flush_color; /* WQ: flush color waiting for */ 228 struct completion done; /* flush completion */ 229 }; 230 231 struct wq_device; 232 233 /* 234 * The externally visible workqueue. It relays the issued work items to 235 * the appropriate worker_pool through its pool_workqueues. 236 */ 237 struct workqueue_struct { 238 struct list_head pwqs; /* WR: all pwqs of this wq */ 239 struct list_head list; /* PR: list of all workqueues */ 240 241 struct mutex mutex; /* protects this wq */ 242 int work_color; /* WQ: current work color */ 243 int flush_color; /* WQ: current flush color */ 244 atomic_t nr_pwqs_to_flush; /* flush in progress */ 245 struct wq_flusher *first_flusher; /* WQ: first flusher */ 246 struct list_head flusher_queue; /* WQ: flush waiters */ 247 struct list_head flusher_overflow; /* WQ: flush overflow list */ 248 249 struct list_head maydays; /* MD: pwqs requesting rescue */ 250 struct worker *rescuer; /* I: rescue worker */ 251 252 int nr_drainers; /* WQ: drain in progress */ 253 int saved_max_active; /* WQ: saved pwq max_active */ 254 255 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 256 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 257 258 #ifdef CONFIG_SYSFS 259 struct wq_device *wq_dev; /* I: for sysfs interface */ 260 #endif 261 #ifdef CONFIG_LOCKDEP 262 struct lockdep_map lockdep_map; 263 #endif 264 char name[WQ_NAME_LEN]; /* I: workqueue name */ 265 266 /* 267 * Destruction of workqueue_struct is sched-RCU protected to allow 268 * walking the workqueues list without grabbing wq_pool_mutex. 269 * This is used to dump all workqueues from sysrq. 270 */ 271 struct rcu_head rcu; 272 273 /* hot fields used during command issue, aligned to cacheline */ 274 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 275 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 276 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 277 }; 278 279 static struct kmem_cache *pwq_cache; 280 281 static cpumask_var_t *wq_numa_possible_cpumask; 282 /* possible CPUs of each node */ 283 284 static bool wq_disable_numa; 285 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 286 287 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 288 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 289 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 290 291 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 292 293 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 294 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 295 296 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 297 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 298 299 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 300 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 301 302 static cpumask_var_t wq_unbound_cpumask; /* PL: low level cpumask for all unbound wqs */ 303 304 /* the per-cpu worker pools */ 305 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 306 cpu_worker_pools); 307 308 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 309 310 /* PL: hash of all unbound pools keyed by pool->attrs */ 311 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 312 313 /* I: attributes used when instantiating standard unbound pools on demand */ 314 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 315 316 /* I: attributes used when instantiating ordered pools on demand */ 317 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 318 319 struct workqueue_struct *system_wq __read_mostly; 320 EXPORT_SYMBOL(system_wq); 321 struct workqueue_struct *system_highpri_wq __read_mostly; 322 EXPORT_SYMBOL_GPL(system_highpri_wq); 323 struct workqueue_struct *system_long_wq __read_mostly; 324 EXPORT_SYMBOL_GPL(system_long_wq); 325 struct workqueue_struct *system_unbound_wq __read_mostly; 326 EXPORT_SYMBOL_GPL(system_unbound_wq); 327 struct workqueue_struct *system_freezable_wq __read_mostly; 328 EXPORT_SYMBOL_GPL(system_freezable_wq); 329 struct workqueue_struct *system_power_efficient_wq __read_mostly; 330 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 331 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 332 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 333 334 static int worker_thread(void *__worker); 335 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 336 337 #define CREATE_TRACE_POINTS 338 #include <trace/events/workqueue.h> 339 340 #define assert_rcu_or_pool_mutex() \ 341 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 342 !lockdep_is_held(&wq_pool_mutex), \ 343 "sched RCU or wq_pool_mutex should be held") 344 345 #define assert_rcu_or_wq_mutex(wq) \ 346 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 347 !lockdep_is_held(&wq->mutex), \ 348 "sched RCU or wq->mutex should be held") 349 350 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 351 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 352 !lockdep_is_held(&wq->mutex) && \ 353 !lockdep_is_held(&wq_pool_mutex), \ 354 "sched RCU, wq->mutex or wq_pool_mutex should be held") 355 356 #define for_each_cpu_worker_pool(pool, cpu) \ 357 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 358 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 359 (pool)++) 360 361 /** 362 * for_each_pool - iterate through all worker_pools in the system 363 * @pool: iteration cursor 364 * @pi: integer used for iteration 365 * 366 * This must be called either with wq_pool_mutex held or sched RCU read 367 * locked. If the pool needs to be used beyond the locking in effect, the 368 * caller is responsible for guaranteeing that the pool stays online. 369 * 370 * The if/else clause exists only for the lockdep assertion and can be 371 * ignored. 372 */ 373 #define for_each_pool(pool, pi) \ 374 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 375 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 376 else 377 378 /** 379 * for_each_pool_worker - iterate through all workers of a worker_pool 380 * @worker: iteration cursor 381 * @pool: worker_pool to iterate workers of 382 * 383 * This must be called with @pool->attach_mutex. 384 * 385 * The if/else clause exists only for the lockdep assertion and can be 386 * ignored. 387 */ 388 #define for_each_pool_worker(worker, pool) \ 389 list_for_each_entry((worker), &(pool)->workers, node) \ 390 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \ 391 else 392 393 /** 394 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 395 * @pwq: iteration cursor 396 * @wq: the target workqueue 397 * 398 * This must be called either with wq->mutex held or sched RCU read locked. 399 * If the pwq needs to be used beyond the locking in effect, the caller is 400 * responsible for guaranteeing that the pwq stays online. 401 * 402 * The if/else clause exists only for the lockdep assertion and can be 403 * ignored. 404 */ 405 #define for_each_pwq(pwq, wq) \ 406 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \ 407 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ 408 else 409 410 #ifdef CONFIG_DEBUG_OBJECTS_WORK 411 412 static struct debug_obj_descr work_debug_descr; 413 414 static void *work_debug_hint(void *addr) 415 { 416 return ((struct work_struct *) addr)->func; 417 } 418 419 /* 420 * fixup_init is called when: 421 * - an active object is initialized 422 */ 423 static int work_fixup_init(void *addr, enum debug_obj_state state) 424 { 425 struct work_struct *work = addr; 426 427 switch (state) { 428 case ODEBUG_STATE_ACTIVE: 429 cancel_work_sync(work); 430 debug_object_init(work, &work_debug_descr); 431 return 1; 432 default: 433 return 0; 434 } 435 } 436 437 /* 438 * fixup_activate is called when: 439 * - an active object is activated 440 * - an unknown object is activated (might be a statically initialized object) 441 */ 442 static int work_fixup_activate(void *addr, enum debug_obj_state state) 443 { 444 struct work_struct *work = addr; 445 446 switch (state) { 447 448 case ODEBUG_STATE_NOTAVAILABLE: 449 /* 450 * This is not really a fixup. The work struct was 451 * statically initialized. We just make sure that it 452 * is tracked in the object tracker. 453 */ 454 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) { 455 debug_object_init(work, &work_debug_descr); 456 debug_object_activate(work, &work_debug_descr); 457 return 0; 458 } 459 WARN_ON_ONCE(1); 460 return 0; 461 462 case ODEBUG_STATE_ACTIVE: 463 WARN_ON(1); 464 465 default: 466 return 0; 467 } 468 } 469 470 /* 471 * fixup_free is called when: 472 * - an active object is freed 473 */ 474 static int work_fixup_free(void *addr, enum debug_obj_state state) 475 { 476 struct work_struct *work = addr; 477 478 switch (state) { 479 case ODEBUG_STATE_ACTIVE: 480 cancel_work_sync(work); 481 debug_object_free(work, &work_debug_descr); 482 return 1; 483 default: 484 return 0; 485 } 486 } 487 488 static struct debug_obj_descr work_debug_descr = { 489 .name = "work_struct", 490 .debug_hint = work_debug_hint, 491 .fixup_init = work_fixup_init, 492 .fixup_activate = work_fixup_activate, 493 .fixup_free = work_fixup_free, 494 }; 495 496 static inline void debug_work_activate(struct work_struct *work) 497 { 498 debug_object_activate(work, &work_debug_descr); 499 } 500 501 static inline void debug_work_deactivate(struct work_struct *work) 502 { 503 debug_object_deactivate(work, &work_debug_descr); 504 } 505 506 void __init_work(struct work_struct *work, int onstack) 507 { 508 if (onstack) 509 debug_object_init_on_stack(work, &work_debug_descr); 510 else 511 debug_object_init(work, &work_debug_descr); 512 } 513 EXPORT_SYMBOL_GPL(__init_work); 514 515 void destroy_work_on_stack(struct work_struct *work) 516 { 517 debug_object_free(work, &work_debug_descr); 518 } 519 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 520 521 void destroy_delayed_work_on_stack(struct delayed_work *work) 522 { 523 destroy_timer_on_stack(&work->timer); 524 debug_object_free(&work->work, &work_debug_descr); 525 } 526 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 527 528 #else 529 static inline void debug_work_activate(struct work_struct *work) { } 530 static inline void debug_work_deactivate(struct work_struct *work) { } 531 #endif 532 533 /** 534 * worker_pool_assign_id - allocate ID and assing it to @pool 535 * @pool: the pool pointer of interest 536 * 537 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 538 * successfully, -errno on failure. 539 */ 540 static int worker_pool_assign_id(struct worker_pool *pool) 541 { 542 int ret; 543 544 lockdep_assert_held(&wq_pool_mutex); 545 546 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 547 GFP_KERNEL); 548 if (ret >= 0) { 549 pool->id = ret; 550 return 0; 551 } 552 return ret; 553 } 554 555 /** 556 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 557 * @wq: the target workqueue 558 * @node: the node ID 559 * 560 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU 561 * read locked. 562 * If the pwq needs to be used beyond the locking in effect, the caller is 563 * responsible for guaranteeing that the pwq stays online. 564 * 565 * Return: The unbound pool_workqueue for @node. 566 */ 567 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 568 int node) 569 { 570 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 571 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 572 } 573 574 static unsigned int work_color_to_flags(int color) 575 { 576 return color << WORK_STRUCT_COLOR_SHIFT; 577 } 578 579 static int get_work_color(struct work_struct *work) 580 { 581 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 582 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 583 } 584 585 static int work_next_color(int color) 586 { 587 return (color + 1) % WORK_NR_COLORS; 588 } 589 590 /* 591 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 592 * contain the pointer to the queued pwq. Once execution starts, the flag 593 * is cleared and the high bits contain OFFQ flags and pool ID. 594 * 595 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 596 * and clear_work_data() can be used to set the pwq, pool or clear 597 * work->data. These functions should only be called while the work is 598 * owned - ie. while the PENDING bit is set. 599 * 600 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 601 * corresponding to a work. Pool is available once the work has been 602 * queued anywhere after initialization until it is sync canceled. pwq is 603 * available only while the work item is queued. 604 * 605 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 606 * canceled. While being canceled, a work item may have its PENDING set 607 * but stay off timer and worklist for arbitrarily long and nobody should 608 * try to steal the PENDING bit. 609 */ 610 static inline void set_work_data(struct work_struct *work, unsigned long data, 611 unsigned long flags) 612 { 613 WARN_ON_ONCE(!work_pending(work)); 614 atomic_long_set(&work->data, data | flags | work_static(work)); 615 } 616 617 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 618 unsigned long extra_flags) 619 { 620 set_work_data(work, (unsigned long)pwq, 621 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 622 } 623 624 static void set_work_pool_and_keep_pending(struct work_struct *work, 625 int pool_id) 626 { 627 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 628 WORK_STRUCT_PENDING); 629 } 630 631 static void set_work_pool_and_clear_pending(struct work_struct *work, 632 int pool_id) 633 { 634 /* 635 * The following wmb is paired with the implied mb in 636 * test_and_set_bit(PENDING) and ensures all updates to @work made 637 * here are visible to and precede any updates by the next PENDING 638 * owner. 639 */ 640 smp_wmb(); 641 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 642 } 643 644 static void clear_work_data(struct work_struct *work) 645 { 646 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 647 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 648 } 649 650 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 651 { 652 unsigned long data = atomic_long_read(&work->data); 653 654 if (data & WORK_STRUCT_PWQ) 655 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 656 else 657 return NULL; 658 } 659 660 /** 661 * get_work_pool - return the worker_pool a given work was associated with 662 * @work: the work item of interest 663 * 664 * Pools are created and destroyed under wq_pool_mutex, and allows read 665 * access under sched-RCU read lock. As such, this function should be 666 * called under wq_pool_mutex or with preemption disabled. 667 * 668 * All fields of the returned pool are accessible as long as the above 669 * mentioned locking is in effect. If the returned pool needs to be used 670 * beyond the critical section, the caller is responsible for ensuring the 671 * returned pool is and stays online. 672 * 673 * Return: The worker_pool @work was last associated with. %NULL if none. 674 */ 675 static struct worker_pool *get_work_pool(struct work_struct *work) 676 { 677 unsigned long data = atomic_long_read(&work->data); 678 int pool_id; 679 680 assert_rcu_or_pool_mutex(); 681 682 if (data & WORK_STRUCT_PWQ) 683 return ((struct pool_workqueue *) 684 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 685 686 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 687 if (pool_id == WORK_OFFQ_POOL_NONE) 688 return NULL; 689 690 return idr_find(&worker_pool_idr, pool_id); 691 } 692 693 /** 694 * get_work_pool_id - return the worker pool ID a given work is associated with 695 * @work: the work item of interest 696 * 697 * Return: The worker_pool ID @work was last associated with. 698 * %WORK_OFFQ_POOL_NONE if none. 699 */ 700 static int get_work_pool_id(struct work_struct *work) 701 { 702 unsigned long data = atomic_long_read(&work->data); 703 704 if (data & WORK_STRUCT_PWQ) 705 return ((struct pool_workqueue *) 706 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 707 708 return data >> WORK_OFFQ_POOL_SHIFT; 709 } 710 711 static void mark_work_canceling(struct work_struct *work) 712 { 713 unsigned long pool_id = get_work_pool_id(work); 714 715 pool_id <<= WORK_OFFQ_POOL_SHIFT; 716 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 717 } 718 719 static bool work_is_canceling(struct work_struct *work) 720 { 721 unsigned long data = atomic_long_read(&work->data); 722 723 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 724 } 725 726 /* 727 * Policy functions. These define the policies on how the global worker 728 * pools are managed. Unless noted otherwise, these functions assume that 729 * they're being called with pool->lock held. 730 */ 731 732 static bool __need_more_worker(struct worker_pool *pool) 733 { 734 return !atomic_read(&pool->nr_running); 735 } 736 737 /* 738 * Need to wake up a worker? Called from anything but currently 739 * running workers. 740 * 741 * Note that, because unbound workers never contribute to nr_running, this 742 * function will always return %true for unbound pools as long as the 743 * worklist isn't empty. 744 */ 745 static bool need_more_worker(struct worker_pool *pool) 746 { 747 return !list_empty(&pool->worklist) && __need_more_worker(pool); 748 } 749 750 /* Can I start working? Called from busy but !running workers. */ 751 static bool may_start_working(struct worker_pool *pool) 752 { 753 return pool->nr_idle; 754 } 755 756 /* Do I need to keep working? Called from currently running workers. */ 757 static bool keep_working(struct worker_pool *pool) 758 { 759 return !list_empty(&pool->worklist) && 760 atomic_read(&pool->nr_running) <= 1; 761 } 762 763 /* Do we need a new worker? Called from manager. */ 764 static bool need_to_create_worker(struct worker_pool *pool) 765 { 766 return need_more_worker(pool) && !may_start_working(pool); 767 } 768 769 /* Do we have too many workers and should some go away? */ 770 static bool too_many_workers(struct worker_pool *pool) 771 { 772 bool managing = mutex_is_locked(&pool->manager_arb); 773 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 774 int nr_busy = pool->nr_workers - nr_idle; 775 776 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 777 } 778 779 /* 780 * Wake up functions. 781 */ 782 783 /* Return the first idle worker. Safe with preemption disabled */ 784 static struct worker *first_idle_worker(struct worker_pool *pool) 785 { 786 if (unlikely(list_empty(&pool->idle_list))) 787 return NULL; 788 789 return list_first_entry(&pool->idle_list, struct worker, entry); 790 } 791 792 /** 793 * wake_up_worker - wake up an idle worker 794 * @pool: worker pool to wake worker from 795 * 796 * Wake up the first idle worker of @pool. 797 * 798 * CONTEXT: 799 * spin_lock_irq(pool->lock). 800 */ 801 static void wake_up_worker(struct worker_pool *pool) 802 { 803 struct worker *worker = first_idle_worker(pool); 804 805 if (likely(worker)) 806 wake_up_process(worker->task); 807 } 808 809 /** 810 * wq_worker_waking_up - a worker is waking up 811 * @task: task waking up 812 * @cpu: CPU @task is waking up to 813 * 814 * This function is called during try_to_wake_up() when a worker is 815 * being awoken. 816 * 817 * CONTEXT: 818 * spin_lock_irq(rq->lock) 819 */ 820 void wq_worker_waking_up(struct task_struct *task, int cpu) 821 { 822 struct worker *worker = kthread_data(task); 823 824 if (!(worker->flags & WORKER_NOT_RUNNING)) { 825 WARN_ON_ONCE(worker->pool->cpu != cpu); 826 atomic_inc(&worker->pool->nr_running); 827 } 828 } 829 830 /** 831 * wq_worker_sleeping - a worker is going to sleep 832 * @task: task going to sleep 833 * @cpu: CPU in question, must be the current CPU number 834 * 835 * This function is called during schedule() when a busy worker is 836 * going to sleep. Worker on the same cpu can be woken up by 837 * returning pointer to its task. 838 * 839 * CONTEXT: 840 * spin_lock_irq(rq->lock) 841 * 842 * Return: 843 * Worker task on @cpu to wake up, %NULL if none. 844 */ 845 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu) 846 { 847 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 848 struct worker_pool *pool; 849 850 /* 851 * Rescuers, which may not have all the fields set up like normal 852 * workers, also reach here, let's not access anything before 853 * checking NOT_RUNNING. 854 */ 855 if (worker->flags & WORKER_NOT_RUNNING) 856 return NULL; 857 858 pool = worker->pool; 859 860 /* this can only happen on the local cpu */ 861 if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu)) 862 return NULL; 863 864 /* 865 * The counterpart of the following dec_and_test, implied mb, 866 * worklist not empty test sequence is in insert_work(). 867 * Please read comment there. 868 * 869 * NOT_RUNNING is clear. This means that we're bound to and 870 * running on the local cpu w/ rq lock held and preemption 871 * disabled, which in turn means that none else could be 872 * manipulating idle_list, so dereferencing idle_list without pool 873 * lock is safe. 874 */ 875 if (atomic_dec_and_test(&pool->nr_running) && 876 !list_empty(&pool->worklist)) 877 to_wakeup = first_idle_worker(pool); 878 return to_wakeup ? to_wakeup->task : NULL; 879 } 880 881 /** 882 * worker_set_flags - set worker flags and adjust nr_running accordingly 883 * @worker: self 884 * @flags: flags to set 885 * 886 * Set @flags in @worker->flags and adjust nr_running accordingly. 887 * 888 * CONTEXT: 889 * spin_lock_irq(pool->lock) 890 */ 891 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 892 { 893 struct worker_pool *pool = worker->pool; 894 895 WARN_ON_ONCE(worker->task != current); 896 897 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 898 if ((flags & WORKER_NOT_RUNNING) && 899 !(worker->flags & WORKER_NOT_RUNNING)) { 900 atomic_dec(&pool->nr_running); 901 } 902 903 worker->flags |= flags; 904 } 905 906 /** 907 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 908 * @worker: self 909 * @flags: flags to clear 910 * 911 * Clear @flags in @worker->flags and adjust nr_running accordingly. 912 * 913 * CONTEXT: 914 * spin_lock_irq(pool->lock) 915 */ 916 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 917 { 918 struct worker_pool *pool = worker->pool; 919 unsigned int oflags = worker->flags; 920 921 WARN_ON_ONCE(worker->task != current); 922 923 worker->flags &= ~flags; 924 925 /* 926 * If transitioning out of NOT_RUNNING, increment nr_running. Note 927 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 928 * of multiple flags, not a single flag. 929 */ 930 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 931 if (!(worker->flags & WORKER_NOT_RUNNING)) 932 atomic_inc(&pool->nr_running); 933 } 934 935 /** 936 * find_worker_executing_work - find worker which is executing a work 937 * @pool: pool of interest 938 * @work: work to find worker for 939 * 940 * Find a worker which is executing @work on @pool by searching 941 * @pool->busy_hash which is keyed by the address of @work. For a worker 942 * to match, its current execution should match the address of @work and 943 * its work function. This is to avoid unwanted dependency between 944 * unrelated work executions through a work item being recycled while still 945 * being executed. 946 * 947 * This is a bit tricky. A work item may be freed once its execution 948 * starts and nothing prevents the freed area from being recycled for 949 * another work item. If the same work item address ends up being reused 950 * before the original execution finishes, workqueue will identify the 951 * recycled work item as currently executing and make it wait until the 952 * current execution finishes, introducing an unwanted dependency. 953 * 954 * This function checks the work item address and work function to avoid 955 * false positives. Note that this isn't complete as one may construct a 956 * work function which can introduce dependency onto itself through a 957 * recycled work item. Well, if somebody wants to shoot oneself in the 958 * foot that badly, there's only so much we can do, and if such deadlock 959 * actually occurs, it should be easy to locate the culprit work function. 960 * 961 * CONTEXT: 962 * spin_lock_irq(pool->lock). 963 * 964 * Return: 965 * Pointer to worker which is executing @work if found, %NULL 966 * otherwise. 967 */ 968 static struct worker *find_worker_executing_work(struct worker_pool *pool, 969 struct work_struct *work) 970 { 971 struct worker *worker; 972 973 hash_for_each_possible(pool->busy_hash, worker, hentry, 974 (unsigned long)work) 975 if (worker->current_work == work && 976 worker->current_func == work->func) 977 return worker; 978 979 return NULL; 980 } 981 982 /** 983 * move_linked_works - move linked works to a list 984 * @work: start of series of works to be scheduled 985 * @head: target list to append @work to 986 * @nextp: out parameter for nested worklist walking 987 * 988 * Schedule linked works starting from @work to @head. Work series to 989 * be scheduled starts at @work and includes any consecutive work with 990 * WORK_STRUCT_LINKED set in its predecessor. 991 * 992 * If @nextp is not NULL, it's updated to point to the next work of 993 * the last scheduled work. This allows move_linked_works() to be 994 * nested inside outer list_for_each_entry_safe(). 995 * 996 * CONTEXT: 997 * spin_lock_irq(pool->lock). 998 */ 999 static void move_linked_works(struct work_struct *work, struct list_head *head, 1000 struct work_struct **nextp) 1001 { 1002 struct work_struct *n; 1003 1004 /* 1005 * Linked worklist will always end before the end of the list, 1006 * use NULL for list head. 1007 */ 1008 list_for_each_entry_safe_from(work, n, NULL, entry) { 1009 list_move_tail(&work->entry, head); 1010 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1011 break; 1012 } 1013 1014 /* 1015 * If we're already inside safe list traversal and have moved 1016 * multiple works to the scheduled queue, the next position 1017 * needs to be updated. 1018 */ 1019 if (nextp) 1020 *nextp = n; 1021 } 1022 1023 /** 1024 * get_pwq - get an extra reference on the specified pool_workqueue 1025 * @pwq: pool_workqueue to get 1026 * 1027 * Obtain an extra reference on @pwq. The caller should guarantee that 1028 * @pwq has positive refcnt and be holding the matching pool->lock. 1029 */ 1030 static void get_pwq(struct pool_workqueue *pwq) 1031 { 1032 lockdep_assert_held(&pwq->pool->lock); 1033 WARN_ON_ONCE(pwq->refcnt <= 0); 1034 pwq->refcnt++; 1035 } 1036 1037 /** 1038 * put_pwq - put a pool_workqueue reference 1039 * @pwq: pool_workqueue to put 1040 * 1041 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1042 * destruction. The caller should be holding the matching pool->lock. 1043 */ 1044 static void put_pwq(struct pool_workqueue *pwq) 1045 { 1046 lockdep_assert_held(&pwq->pool->lock); 1047 if (likely(--pwq->refcnt)) 1048 return; 1049 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1050 return; 1051 /* 1052 * @pwq can't be released under pool->lock, bounce to 1053 * pwq_unbound_release_workfn(). This never recurses on the same 1054 * pool->lock as this path is taken only for unbound workqueues and 1055 * the release work item is scheduled on a per-cpu workqueue. To 1056 * avoid lockdep warning, unbound pool->locks are given lockdep 1057 * subclass of 1 in get_unbound_pool(). 1058 */ 1059 schedule_work(&pwq->unbound_release_work); 1060 } 1061 1062 /** 1063 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1064 * @pwq: pool_workqueue to put (can be %NULL) 1065 * 1066 * put_pwq() with locking. This function also allows %NULL @pwq. 1067 */ 1068 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1069 { 1070 if (pwq) { 1071 /* 1072 * As both pwqs and pools are sched-RCU protected, the 1073 * following lock operations are safe. 1074 */ 1075 spin_lock_irq(&pwq->pool->lock); 1076 put_pwq(pwq); 1077 spin_unlock_irq(&pwq->pool->lock); 1078 } 1079 } 1080 1081 static void pwq_activate_delayed_work(struct work_struct *work) 1082 { 1083 struct pool_workqueue *pwq = get_work_pwq(work); 1084 1085 trace_workqueue_activate_work(work); 1086 move_linked_works(work, &pwq->pool->worklist, NULL); 1087 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1088 pwq->nr_active++; 1089 } 1090 1091 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1092 { 1093 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1094 struct work_struct, entry); 1095 1096 pwq_activate_delayed_work(work); 1097 } 1098 1099 /** 1100 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1101 * @pwq: pwq of interest 1102 * @color: color of work which left the queue 1103 * 1104 * A work either has completed or is removed from pending queue, 1105 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1106 * 1107 * CONTEXT: 1108 * spin_lock_irq(pool->lock). 1109 */ 1110 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1111 { 1112 /* uncolored work items don't participate in flushing or nr_active */ 1113 if (color == WORK_NO_COLOR) 1114 goto out_put; 1115 1116 pwq->nr_in_flight[color]--; 1117 1118 pwq->nr_active--; 1119 if (!list_empty(&pwq->delayed_works)) { 1120 /* one down, submit a delayed one */ 1121 if (pwq->nr_active < pwq->max_active) 1122 pwq_activate_first_delayed(pwq); 1123 } 1124 1125 /* is flush in progress and are we at the flushing tip? */ 1126 if (likely(pwq->flush_color != color)) 1127 goto out_put; 1128 1129 /* are there still in-flight works? */ 1130 if (pwq->nr_in_flight[color]) 1131 goto out_put; 1132 1133 /* this pwq is done, clear flush_color */ 1134 pwq->flush_color = -1; 1135 1136 /* 1137 * If this was the last pwq, wake up the first flusher. It 1138 * will handle the rest. 1139 */ 1140 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1141 complete(&pwq->wq->first_flusher->done); 1142 out_put: 1143 put_pwq(pwq); 1144 } 1145 1146 /** 1147 * try_to_grab_pending - steal work item from worklist and disable irq 1148 * @work: work item to steal 1149 * @is_dwork: @work is a delayed_work 1150 * @flags: place to store irq state 1151 * 1152 * Try to grab PENDING bit of @work. This function can handle @work in any 1153 * stable state - idle, on timer or on worklist. 1154 * 1155 * Return: 1156 * 1 if @work was pending and we successfully stole PENDING 1157 * 0 if @work was idle and we claimed PENDING 1158 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1159 * -ENOENT if someone else is canceling @work, this state may persist 1160 * for arbitrarily long 1161 * 1162 * Note: 1163 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1164 * interrupted while holding PENDING and @work off queue, irq must be 1165 * disabled on entry. This, combined with delayed_work->timer being 1166 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1167 * 1168 * On successful return, >= 0, irq is disabled and the caller is 1169 * responsible for releasing it using local_irq_restore(*@flags). 1170 * 1171 * This function is safe to call from any context including IRQ handler. 1172 */ 1173 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1174 unsigned long *flags) 1175 { 1176 struct worker_pool *pool; 1177 struct pool_workqueue *pwq; 1178 1179 local_irq_save(*flags); 1180 1181 /* try to steal the timer if it exists */ 1182 if (is_dwork) { 1183 struct delayed_work *dwork = to_delayed_work(work); 1184 1185 /* 1186 * dwork->timer is irqsafe. If del_timer() fails, it's 1187 * guaranteed that the timer is not queued anywhere and not 1188 * running on the local CPU. 1189 */ 1190 if (likely(del_timer(&dwork->timer))) 1191 return 1; 1192 } 1193 1194 /* try to claim PENDING the normal way */ 1195 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1196 return 0; 1197 1198 /* 1199 * The queueing is in progress, or it is already queued. Try to 1200 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1201 */ 1202 pool = get_work_pool(work); 1203 if (!pool) 1204 goto fail; 1205 1206 spin_lock(&pool->lock); 1207 /* 1208 * work->data is guaranteed to point to pwq only while the work 1209 * item is queued on pwq->wq, and both updating work->data to point 1210 * to pwq on queueing and to pool on dequeueing are done under 1211 * pwq->pool->lock. This in turn guarantees that, if work->data 1212 * points to pwq which is associated with a locked pool, the work 1213 * item is currently queued on that pool. 1214 */ 1215 pwq = get_work_pwq(work); 1216 if (pwq && pwq->pool == pool) { 1217 debug_work_deactivate(work); 1218 1219 /* 1220 * A delayed work item cannot be grabbed directly because 1221 * it might have linked NO_COLOR work items which, if left 1222 * on the delayed_list, will confuse pwq->nr_active 1223 * management later on and cause stall. Make sure the work 1224 * item is activated before grabbing. 1225 */ 1226 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1227 pwq_activate_delayed_work(work); 1228 1229 list_del_init(&work->entry); 1230 pwq_dec_nr_in_flight(pwq, get_work_color(work)); 1231 1232 /* work->data points to pwq iff queued, point to pool */ 1233 set_work_pool_and_keep_pending(work, pool->id); 1234 1235 spin_unlock(&pool->lock); 1236 return 1; 1237 } 1238 spin_unlock(&pool->lock); 1239 fail: 1240 local_irq_restore(*flags); 1241 if (work_is_canceling(work)) 1242 return -ENOENT; 1243 cpu_relax(); 1244 return -EAGAIN; 1245 } 1246 1247 /** 1248 * insert_work - insert a work into a pool 1249 * @pwq: pwq @work belongs to 1250 * @work: work to insert 1251 * @head: insertion point 1252 * @extra_flags: extra WORK_STRUCT_* flags to set 1253 * 1254 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1255 * work_struct flags. 1256 * 1257 * CONTEXT: 1258 * spin_lock_irq(pool->lock). 1259 */ 1260 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1261 struct list_head *head, unsigned int extra_flags) 1262 { 1263 struct worker_pool *pool = pwq->pool; 1264 1265 /* we own @work, set data and link */ 1266 set_work_pwq(work, pwq, extra_flags); 1267 list_add_tail(&work->entry, head); 1268 get_pwq(pwq); 1269 1270 /* 1271 * Ensure either wq_worker_sleeping() sees the above 1272 * list_add_tail() or we see zero nr_running to avoid workers lying 1273 * around lazily while there are works to be processed. 1274 */ 1275 smp_mb(); 1276 1277 if (__need_more_worker(pool)) 1278 wake_up_worker(pool); 1279 } 1280 1281 /* 1282 * Test whether @work is being queued from another work executing on the 1283 * same workqueue. 1284 */ 1285 static bool is_chained_work(struct workqueue_struct *wq) 1286 { 1287 struct worker *worker; 1288 1289 worker = current_wq_worker(); 1290 /* 1291 * Return %true iff I'm a worker execuing a work item on @wq. If 1292 * I'm @worker, it's safe to dereference it without locking. 1293 */ 1294 return worker && worker->current_pwq->wq == wq; 1295 } 1296 1297 static void __queue_work(int cpu, struct workqueue_struct *wq, 1298 struct work_struct *work) 1299 { 1300 struct pool_workqueue *pwq; 1301 struct worker_pool *last_pool; 1302 struct list_head *worklist; 1303 unsigned int work_flags; 1304 unsigned int req_cpu = cpu; 1305 1306 /* 1307 * While a work item is PENDING && off queue, a task trying to 1308 * steal the PENDING will busy-loop waiting for it to either get 1309 * queued or lose PENDING. Grabbing PENDING and queueing should 1310 * happen with IRQ disabled. 1311 */ 1312 WARN_ON_ONCE(!irqs_disabled()); 1313 1314 debug_work_activate(work); 1315 1316 /* if draining, only works from the same workqueue are allowed */ 1317 if (unlikely(wq->flags & __WQ_DRAINING) && 1318 WARN_ON_ONCE(!is_chained_work(wq))) 1319 return; 1320 retry: 1321 if (req_cpu == WORK_CPU_UNBOUND) 1322 cpu = raw_smp_processor_id(); 1323 1324 /* pwq which will be used unless @work is executing elsewhere */ 1325 if (!(wq->flags & WQ_UNBOUND)) 1326 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1327 else 1328 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1329 1330 /* 1331 * If @work was previously on a different pool, it might still be 1332 * running there, in which case the work needs to be queued on that 1333 * pool to guarantee non-reentrancy. 1334 */ 1335 last_pool = get_work_pool(work); 1336 if (last_pool && last_pool != pwq->pool) { 1337 struct worker *worker; 1338 1339 spin_lock(&last_pool->lock); 1340 1341 worker = find_worker_executing_work(last_pool, work); 1342 1343 if (worker && worker->current_pwq->wq == wq) { 1344 pwq = worker->current_pwq; 1345 } else { 1346 /* meh... not running there, queue here */ 1347 spin_unlock(&last_pool->lock); 1348 spin_lock(&pwq->pool->lock); 1349 } 1350 } else { 1351 spin_lock(&pwq->pool->lock); 1352 } 1353 1354 /* 1355 * pwq is determined and locked. For unbound pools, we could have 1356 * raced with pwq release and it could already be dead. If its 1357 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1358 * without another pwq replacing it in the numa_pwq_tbl or while 1359 * work items are executing on it, so the retrying is guaranteed to 1360 * make forward-progress. 1361 */ 1362 if (unlikely(!pwq->refcnt)) { 1363 if (wq->flags & WQ_UNBOUND) { 1364 spin_unlock(&pwq->pool->lock); 1365 cpu_relax(); 1366 goto retry; 1367 } 1368 /* oops */ 1369 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1370 wq->name, cpu); 1371 } 1372 1373 /* pwq determined, queue */ 1374 trace_workqueue_queue_work(req_cpu, pwq, work); 1375 1376 if (WARN_ON(!list_empty(&work->entry))) { 1377 spin_unlock(&pwq->pool->lock); 1378 return; 1379 } 1380 1381 pwq->nr_in_flight[pwq->work_color]++; 1382 work_flags = work_color_to_flags(pwq->work_color); 1383 1384 if (likely(pwq->nr_active < pwq->max_active)) { 1385 trace_workqueue_activate_work(work); 1386 pwq->nr_active++; 1387 worklist = &pwq->pool->worklist; 1388 } else { 1389 work_flags |= WORK_STRUCT_DELAYED; 1390 worklist = &pwq->delayed_works; 1391 } 1392 1393 insert_work(pwq, work, worklist, work_flags); 1394 1395 spin_unlock(&pwq->pool->lock); 1396 } 1397 1398 /** 1399 * queue_work_on - queue work on specific cpu 1400 * @cpu: CPU number to execute work on 1401 * @wq: workqueue to use 1402 * @work: work to queue 1403 * 1404 * We queue the work to a specific CPU, the caller must ensure it 1405 * can't go away. 1406 * 1407 * Return: %false if @work was already on a queue, %true otherwise. 1408 */ 1409 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1410 struct work_struct *work) 1411 { 1412 bool ret = false; 1413 unsigned long flags; 1414 1415 local_irq_save(flags); 1416 1417 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1418 __queue_work(cpu, wq, work); 1419 ret = true; 1420 } 1421 1422 local_irq_restore(flags); 1423 return ret; 1424 } 1425 EXPORT_SYMBOL(queue_work_on); 1426 1427 void delayed_work_timer_fn(unsigned long __data) 1428 { 1429 struct delayed_work *dwork = (struct delayed_work *)__data; 1430 1431 /* should have been called from irqsafe timer with irq already off */ 1432 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1433 } 1434 EXPORT_SYMBOL(delayed_work_timer_fn); 1435 1436 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1437 struct delayed_work *dwork, unsigned long delay) 1438 { 1439 struct timer_list *timer = &dwork->timer; 1440 struct work_struct *work = &dwork->work; 1441 1442 WARN_ON_ONCE(timer->function != delayed_work_timer_fn || 1443 timer->data != (unsigned long)dwork); 1444 WARN_ON_ONCE(timer_pending(timer)); 1445 WARN_ON_ONCE(!list_empty(&work->entry)); 1446 1447 /* 1448 * If @delay is 0, queue @dwork->work immediately. This is for 1449 * both optimization and correctness. The earliest @timer can 1450 * expire is on the closest next tick and delayed_work users depend 1451 * on that there's no such delay when @delay is 0. 1452 */ 1453 if (!delay) { 1454 __queue_work(cpu, wq, &dwork->work); 1455 return; 1456 } 1457 1458 timer_stats_timer_set_start_info(&dwork->timer); 1459 1460 dwork->wq = wq; 1461 dwork->cpu = cpu; 1462 timer->expires = jiffies + delay; 1463 1464 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1465 add_timer_on(timer, cpu); 1466 else 1467 add_timer(timer); 1468 } 1469 1470 /** 1471 * queue_delayed_work_on - queue work on specific CPU after delay 1472 * @cpu: CPU number to execute work on 1473 * @wq: workqueue to use 1474 * @dwork: work to queue 1475 * @delay: number of jiffies to wait before queueing 1476 * 1477 * Return: %false if @work was already on a queue, %true otherwise. If 1478 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1479 * execution. 1480 */ 1481 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1482 struct delayed_work *dwork, unsigned long delay) 1483 { 1484 struct work_struct *work = &dwork->work; 1485 bool ret = false; 1486 unsigned long flags; 1487 1488 /* read the comment in __queue_work() */ 1489 local_irq_save(flags); 1490 1491 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1492 __queue_delayed_work(cpu, wq, dwork, delay); 1493 ret = true; 1494 } 1495 1496 local_irq_restore(flags); 1497 return ret; 1498 } 1499 EXPORT_SYMBOL(queue_delayed_work_on); 1500 1501 /** 1502 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1503 * @cpu: CPU number to execute work on 1504 * @wq: workqueue to use 1505 * @dwork: work to queue 1506 * @delay: number of jiffies to wait before queueing 1507 * 1508 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1509 * modify @dwork's timer so that it expires after @delay. If @delay is 1510 * zero, @work is guaranteed to be scheduled immediately regardless of its 1511 * current state. 1512 * 1513 * Return: %false if @dwork was idle and queued, %true if @dwork was 1514 * pending and its timer was modified. 1515 * 1516 * This function is safe to call from any context including IRQ handler. 1517 * See try_to_grab_pending() for details. 1518 */ 1519 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1520 struct delayed_work *dwork, unsigned long delay) 1521 { 1522 unsigned long flags; 1523 int ret; 1524 1525 do { 1526 ret = try_to_grab_pending(&dwork->work, true, &flags); 1527 } while (unlikely(ret == -EAGAIN)); 1528 1529 if (likely(ret >= 0)) { 1530 __queue_delayed_work(cpu, wq, dwork, delay); 1531 local_irq_restore(flags); 1532 } 1533 1534 /* -ENOENT from try_to_grab_pending() becomes %true */ 1535 return ret; 1536 } 1537 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1538 1539 /** 1540 * worker_enter_idle - enter idle state 1541 * @worker: worker which is entering idle state 1542 * 1543 * @worker is entering idle state. Update stats and idle timer if 1544 * necessary. 1545 * 1546 * LOCKING: 1547 * spin_lock_irq(pool->lock). 1548 */ 1549 static void worker_enter_idle(struct worker *worker) 1550 { 1551 struct worker_pool *pool = worker->pool; 1552 1553 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1554 WARN_ON_ONCE(!list_empty(&worker->entry) && 1555 (worker->hentry.next || worker->hentry.pprev))) 1556 return; 1557 1558 /* can't use worker_set_flags(), also called from create_worker() */ 1559 worker->flags |= WORKER_IDLE; 1560 pool->nr_idle++; 1561 worker->last_active = jiffies; 1562 1563 /* idle_list is LIFO */ 1564 list_add(&worker->entry, &pool->idle_list); 1565 1566 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1567 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1568 1569 /* 1570 * Sanity check nr_running. Because wq_unbind_fn() releases 1571 * pool->lock between setting %WORKER_UNBOUND and zapping 1572 * nr_running, the warning may trigger spuriously. Check iff 1573 * unbind is not in progress. 1574 */ 1575 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1576 pool->nr_workers == pool->nr_idle && 1577 atomic_read(&pool->nr_running)); 1578 } 1579 1580 /** 1581 * worker_leave_idle - leave idle state 1582 * @worker: worker which is leaving idle state 1583 * 1584 * @worker is leaving idle state. Update stats. 1585 * 1586 * LOCKING: 1587 * spin_lock_irq(pool->lock). 1588 */ 1589 static void worker_leave_idle(struct worker *worker) 1590 { 1591 struct worker_pool *pool = worker->pool; 1592 1593 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1594 return; 1595 worker_clr_flags(worker, WORKER_IDLE); 1596 pool->nr_idle--; 1597 list_del_init(&worker->entry); 1598 } 1599 1600 static struct worker *alloc_worker(int node) 1601 { 1602 struct worker *worker; 1603 1604 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1605 if (worker) { 1606 INIT_LIST_HEAD(&worker->entry); 1607 INIT_LIST_HEAD(&worker->scheduled); 1608 INIT_LIST_HEAD(&worker->node); 1609 /* on creation a worker is in !idle && prep state */ 1610 worker->flags = WORKER_PREP; 1611 } 1612 return worker; 1613 } 1614 1615 /** 1616 * worker_attach_to_pool() - attach a worker to a pool 1617 * @worker: worker to be attached 1618 * @pool: the target pool 1619 * 1620 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1621 * cpu-binding of @worker are kept coordinated with the pool across 1622 * cpu-[un]hotplugs. 1623 */ 1624 static void worker_attach_to_pool(struct worker *worker, 1625 struct worker_pool *pool) 1626 { 1627 mutex_lock(&pool->attach_mutex); 1628 1629 /* 1630 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1631 * online CPUs. It'll be re-applied when any of the CPUs come up. 1632 */ 1633 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1634 1635 /* 1636 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains 1637 * stable across this function. See the comments above the 1638 * flag definition for details. 1639 */ 1640 if (pool->flags & POOL_DISASSOCIATED) 1641 worker->flags |= WORKER_UNBOUND; 1642 1643 list_add_tail(&worker->node, &pool->workers); 1644 1645 mutex_unlock(&pool->attach_mutex); 1646 } 1647 1648 /** 1649 * worker_detach_from_pool() - detach a worker from its pool 1650 * @worker: worker which is attached to its pool 1651 * @pool: the pool @worker is attached to 1652 * 1653 * Undo the attaching which had been done in worker_attach_to_pool(). The 1654 * caller worker shouldn't access to the pool after detached except it has 1655 * other reference to the pool. 1656 */ 1657 static void worker_detach_from_pool(struct worker *worker, 1658 struct worker_pool *pool) 1659 { 1660 struct completion *detach_completion = NULL; 1661 1662 mutex_lock(&pool->attach_mutex); 1663 list_del(&worker->node); 1664 if (list_empty(&pool->workers)) 1665 detach_completion = pool->detach_completion; 1666 mutex_unlock(&pool->attach_mutex); 1667 1668 /* clear leftover flags without pool->lock after it is detached */ 1669 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1670 1671 if (detach_completion) 1672 complete(detach_completion); 1673 } 1674 1675 /** 1676 * create_worker - create a new workqueue worker 1677 * @pool: pool the new worker will belong to 1678 * 1679 * Create and start a new worker which is attached to @pool. 1680 * 1681 * CONTEXT: 1682 * Might sleep. Does GFP_KERNEL allocations. 1683 * 1684 * Return: 1685 * Pointer to the newly created worker. 1686 */ 1687 static struct worker *create_worker(struct worker_pool *pool) 1688 { 1689 struct worker *worker = NULL; 1690 int id = -1; 1691 char id_buf[16]; 1692 1693 /* ID is needed to determine kthread name */ 1694 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL); 1695 if (id < 0) 1696 goto fail; 1697 1698 worker = alloc_worker(pool->node); 1699 if (!worker) 1700 goto fail; 1701 1702 worker->pool = pool; 1703 worker->id = id; 1704 1705 if (pool->cpu >= 0) 1706 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1707 pool->attrs->nice < 0 ? "H" : ""); 1708 else 1709 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1710 1711 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1712 "kworker/%s", id_buf); 1713 if (IS_ERR(worker->task)) 1714 goto fail; 1715 1716 set_user_nice(worker->task, pool->attrs->nice); 1717 kthread_bind_mask(worker->task, pool->attrs->cpumask); 1718 1719 /* successful, attach the worker to the pool */ 1720 worker_attach_to_pool(worker, pool); 1721 1722 /* start the newly created worker */ 1723 spin_lock_irq(&pool->lock); 1724 worker->pool->nr_workers++; 1725 worker_enter_idle(worker); 1726 wake_up_process(worker->task); 1727 spin_unlock_irq(&pool->lock); 1728 1729 return worker; 1730 1731 fail: 1732 if (id >= 0) 1733 ida_simple_remove(&pool->worker_ida, id); 1734 kfree(worker); 1735 return NULL; 1736 } 1737 1738 /** 1739 * destroy_worker - destroy a workqueue worker 1740 * @worker: worker to be destroyed 1741 * 1742 * Destroy @worker and adjust @pool stats accordingly. The worker should 1743 * be idle. 1744 * 1745 * CONTEXT: 1746 * spin_lock_irq(pool->lock). 1747 */ 1748 static void destroy_worker(struct worker *worker) 1749 { 1750 struct worker_pool *pool = worker->pool; 1751 1752 lockdep_assert_held(&pool->lock); 1753 1754 /* sanity check frenzy */ 1755 if (WARN_ON(worker->current_work) || 1756 WARN_ON(!list_empty(&worker->scheduled)) || 1757 WARN_ON(!(worker->flags & WORKER_IDLE))) 1758 return; 1759 1760 pool->nr_workers--; 1761 pool->nr_idle--; 1762 1763 list_del_init(&worker->entry); 1764 worker->flags |= WORKER_DIE; 1765 wake_up_process(worker->task); 1766 } 1767 1768 static void idle_worker_timeout(unsigned long __pool) 1769 { 1770 struct worker_pool *pool = (void *)__pool; 1771 1772 spin_lock_irq(&pool->lock); 1773 1774 while (too_many_workers(pool)) { 1775 struct worker *worker; 1776 unsigned long expires; 1777 1778 /* idle_list is kept in LIFO order, check the last one */ 1779 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1780 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1781 1782 if (time_before(jiffies, expires)) { 1783 mod_timer(&pool->idle_timer, expires); 1784 break; 1785 } 1786 1787 destroy_worker(worker); 1788 } 1789 1790 spin_unlock_irq(&pool->lock); 1791 } 1792 1793 static void send_mayday(struct work_struct *work) 1794 { 1795 struct pool_workqueue *pwq = get_work_pwq(work); 1796 struct workqueue_struct *wq = pwq->wq; 1797 1798 lockdep_assert_held(&wq_mayday_lock); 1799 1800 if (!wq->rescuer) 1801 return; 1802 1803 /* mayday mayday mayday */ 1804 if (list_empty(&pwq->mayday_node)) { 1805 /* 1806 * If @pwq is for an unbound wq, its base ref may be put at 1807 * any time due to an attribute change. Pin @pwq until the 1808 * rescuer is done with it. 1809 */ 1810 get_pwq(pwq); 1811 list_add_tail(&pwq->mayday_node, &wq->maydays); 1812 wake_up_process(wq->rescuer->task); 1813 } 1814 } 1815 1816 static void pool_mayday_timeout(unsigned long __pool) 1817 { 1818 struct worker_pool *pool = (void *)__pool; 1819 struct work_struct *work; 1820 1821 spin_lock_irq(&pool->lock); 1822 spin_lock(&wq_mayday_lock); /* for wq->maydays */ 1823 1824 if (need_to_create_worker(pool)) { 1825 /* 1826 * We've been trying to create a new worker but 1827 * haven't been successful. We might be hitting an 1828 * allocation deadlock. Send distress signals to 1829 * rescuers. 1830 */ 1831 list_for_each_entry(work, &pool->worklist, entry) 1832 send_mayday(work); 1833 } 1834 1835 spin_unlock(&wq_mayday_lock); 1836 spin_unlock_irq(&pool->lock); 1837 1838 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 1839 } 1840 1841 /** 1842 * maybe_create_worker - create a new worker if necessary 1843 * @pool: pool to create a new worker for 1844 * 1845 * Create a new worker for @pool if necessary. @pool is guaranteed to 1846 * have at least one idle worker on return from this function. If 1847 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1848 * sent to all rescuers with works scheduled on @pool to resolve 1849 * possible allocation deadlock. 1850 * 1851 * On return, need_to_create_worker() is guaranteed to be %false and 1852 * may_start_working() %true. 1853 * 1854 * LOCKING: 1855 * spin_lock_irq(pool->lock) which may be released and regrabbed 1856 * multiple times. Does GFP_KERNEL allocations. Called only from 1857 * manager. 1858 */ 1859 static void maybe_create_worker(struct worker_pool *pool) 1860 __releases(&pool->lock) 1861 __acquires(&pool->lock) 1862 { 1863 restart: 1864 spin_unlock_irq(&pool->lock); 1865 1866 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1867 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1868 1869 while (true) { 1870 if (create_worker(pool) || !need_to_create_worker(pool)) 1871 break; 1872 1873 schedule_timeout_interruptible(CREATE_COOLDOWN); 1874 1875 if (!need_to_create_worker(pool)) 1876 break; 1877 } 1878 1879 del_timer_sync(&pool->mayday_timer); 1880 spin_lock_irq(&pool->lock); 1881 /* 1882 * This is necessary even after a new worker was just successfully 1883 * created as @pool->lock was dropped and the new worker might have 1884 * already become busy. 1885 */ 1886 if (need_to_create_worker(pool)) 1887 goto restart; 1888 } 1889 1890 /** 1891 * manage_workers - manage worker pool 1892 * @worker: self 1893 * 1894 * Assume the manager role and manage the worker pool @worker belongs 1895 * to. At any given time, there can be only zero or one manager per 1896 * pool. The exclusion is handled automatically by this function. 1897 * 1898 * The caller can safely start processing works on false return. On 1899 * true return, it's guaranteed that need_to_create_worker() is false 1900 * and may_start_working() is true. 1901 * 1902 * CONTEXT: 1903 * spin_lock_irq(pool->lock) which may be released and regrabbed 1904 * multiple times. Does GFP_KERNEL allocations. 1905 * 1906 * Return: 1907 * %false if the pool doesn't need management and the caller can safely 1908 * start processing works, %true if management function was performed and 1909 * the conditions that the caller verified before calling the function may 1910 * no longer be true. 1911 */ 1912 static bool manage_workers(struct worker *worker) 1913 { 1914 struct worker_pool *pool = worker->pool; 1915 1916 /* 1917 * Anyone who successfully grabs manager_arb wins the arbitration 1918 * and becomes the manager. mutex_trylock() on pool->manager_arb 1919 * failure while holding pool->lock reliably indicates that someone 1920 * else is managing the pool and the worker which failed trylock 1921 * can proceed to executing work items. This means that anyone 1922 * grabbing manager_arb is responsible for actually performing 1923 * manager duties. If manager_arb is grabbed and released without 1924 * actual management, the pool may stall indefinitely. 1925 */ 1926 if (!mutex_trylock(&pool->manager_arb)) 1927 return false; 1928 pool->manager = worker; 1929 1930 maybe_create_worker(pool); 1931 1932 pool->manager = NULL; 1933 mutex_unlock(&pool->manager_arb); 1934 return true; 1935 } 1936 1937 /** 1938 * process_one_work - process single work 1939 * @worker: self 1940 * @work: work to process 1941 * 1942 * Process @work. This function contains all the logics necessary to 1943 * process a single work including synchronization against and 1944 * interaction with other workers on the same cpu, queueing and 1945 * flushing. As long as context requirement is met, any worker can 1946 * call this function to process a work. 1947 * 1948 * CONTEXT: 1949 * spin_lock_irq(pool->lock) which is released and regrabbed. 1950 */ 1951 static void process_one_work(struct worker *worker, struct work_struct *work) 1952 __releases(&pool->lock) 1953 __acquires(&pool->lock) 1954 { 1955 struct pool_workqueue *pwq = get_work_pwq(work); 1956 struct worker_pool *pool = worker->pool; 1957 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 1958 int work_color; 1959 struct worker *collision; 1960 #ifdef CONFIG_LOCKDEP 1961 /* 1962 * It is permissible to free the struct work_struct from 1963 * inside the function that is called from it, this we need to 1964 * take into account for lockdep too. To avoid bogus "held 1965 * lock freed" warnings as well as problems when looking into 1966 * work->lockdep_map, make a copy and use that here. 1967 */ 1968 struct lockdep_map lockdep_map; 1969 1970 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 1971 #endif 1972 /* ensure we're on the correct CPU */ 1973 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1974 raw_smp_processor_id() != pool->cpu); 1975 1976 /* 1977 * A single work shouldn't be executed concurrently by 1978 * multiple workers on a single cpu. Check whether anyone is 1979 * already processing the work. If so, defer the work to the 1980 * currently executing one. 1981 */ 1982 collision = find_worker_executing_work(pool, work); 1983 if (unlikely(collision)) { 1984 move_linked_works(work, &collision->scheduled, NULL); 1985 return; 1986 } 1987 1988 /* claim and dequeue */ 1989 debug_work_deactivate(work); 1990 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 1991 worker->current_work = work; 1992 worker->current_func = work->func; 1993 worker->current_pwq = pwq; 1994 work_color = get_work_color(work); 1995 1996 list_del_init(&work->entry); 1997 1998 /* 1999 * CPU intensive works don't participate in concurrency management. 2000 * They're the scheduler's responsibility. This takes @worker out 2001 * of concurrency management and the next code block will chain 2002 * execution of the pending work items. 2003 */ 2004 if (unlikely(cpu_intensive)) 2005 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2006 2007 /* 2008 * Wake up another worker if necessary. The condition is always 2009 * false for normal per-cpu workers since nr_running would always 2010 * be >= 1 at this point. This is used to chain execution of the 2011 * pending work items for WORKER_NOT_RUNNING workers such as the 2012 * UNBOUND and CPU_INTENSIVE ones. 2013 */ 2014 if (need_more_worker(pool)) 2015 wake_up_worker(pool); 2016 2017 /* 2018 * Record the last pool and clear PENDING which should be the last 2019 * update to @work. Also, do this inside @pool->lock so that 2020 * PENDING and queued state changes happen together while IRQ is 2021 * disabled. 2022 */ 2023 set_work_pool_and_clear_pending(work, pool->id); 2024 2025 spin_unlock_irq(&pool->lock); 2026 2027 lock_map_acquire_read(&pwq->wq->lockdep_map); 2028 lock_map_acquire(&lockdep_map); 2029 trace_workqueue_execute_start(work); 2030 worker->current_func(work); 2031 /* 2032 * While we must be careful to not use "work" after this, the trace 2033 * point will only record its address. 2034 */ 2035 trace_workqueue_execute_end(work); 2036 lock_map_release(&lockdep_map); 2037 lock_map_release(&pwq->wq->lockdep_map); 2038 2039 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2040 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2041 " last function: %pf\n", 2042 current->comm, preempt_count(), task_pid_nr(current), 2043 worker->current_func); 2044 debug_show_held_locks(current); 2045 dump_stack(); 2046 } 2047 2048 /* 2049 * The following prevents a kworker from hogging CPU on !PREEMPT 2050 * kernels, where a requeueing work item waiting for something to 2051 * happen could deadlock with stop_machine as such work item could 2052 * indefinitely requeue itself while all other CPUs are trapped in 2053 * stop_machine. At the same time, report a quiescent RCU state so 2054 * the same condition doesn't freeze RCU. 2055 */ 2056 cond_resched_rcu_qs(); 2057 2058 spin_lock_irq(&pool->lock); 2059 2060 /* clear cpu intensive status */ 2061 if (unlikely(cpu_intensive)) 2062 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2063 2064 /* we're done with it, release */ 2065 hash_del(&worker->hentry); 2066 worker->current_work = NULL; 2067 worker->current_func = NULL; 2068 worker->current_pwq = NULL; 2069 worker->desc_valid = false; 2070 pwq_dec_nr_in_flight(pwq, work_color); 2071 } 2072 2073 /** 2074 * process_scheduled_works - process scheduled works 2075 * @worker: self 2076 * 2077 * Process all scheduled works. Please note that the scheduled list 2078 * may change while processing a work, so this function repeatedly 2079 * fetches a work from the top and executes it. 2080 * 2081 * CONTEXT: 2082 * spin_lock_irq(pool->lock) which may be released and regrabbed 2083 * multiple times. 2084 */ 2085 static void process_scheduled_works(struct worker *worker) 2086 { 2087 while (!list_empty(&worker->scheduled)) { 2088 struct work_struct *work = list_first_entry(&worker->scheduled, 2089 struct work_struct, entry); 2090 process_one_work(worker, work); 2091 } 2092 } 2093 2094 /** 2095 * worker_thread - the worker thread function 2096 * @__worker: self 2097 * 2098 * The worker thread function. All workers belong to a worker_pool - 2099 * either a per-cpu one or dynamic unbound one. These workers process all 2100 * work items regardless of their specific target workqueue. The only 2101 * exception is work items which belong to workqueues with a rescuer which 2102 * will be explained in rescuer_thread(). 2103 * 2104 * Return: 0 2105 */ 2106 static int worker_thread(void *__worker) 2107 { 2108 struct worker *worker = __worker; 2109 struct worker_pool *pool = worker->pool; 2110 2111 /* tell the scheduler that this is a workqueue worker */ 2112 worker->task->flags |= PF_WQ_WORKER; 2113 woke_up: 2114 spin_lock_irq(&pool->lock); 2115 2116 /* am I supposed to die? */ 2117 if (unlikely(worker->flags & WORKER_DIE)) { 2118 spin_unlock_irq(&pool->lock); 2119 WARN_ON_ONCE(!list_empty(&worker->entry)); 2120 worker->task->flags &= ~PF_WQ_WORKER; 2121 2122 set_task_comm(worker->task, "kworker/dying"); 2123 ida_simple_remove(&pool->worker_ida, worker->id); 2124 worker_detach_from_pool(worker, pool); 2125 kfree(worker); 2126 return 0; 2127 } 2128 2129 worker_leave_idle(worker); 2130 recheck: 2131 /* no more worker necessary? */ 2132 if (!need_more_worker(pool)) 2133 goto sleep; 2134 2135 /* do we need to manage? */ 2136 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2137 goto recheck; 2138 2139 /* 2140 * ->scheduled list can only be filled while a worker is 2141 * preparing to process a work or actually processing it. 2142 * Make sure nobody diddled with it while I was sleeping. 2143 */ 2144 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2145 2146 /* 2147 * Finish PREP stage. We're guaranteed to have at least one idle 2148 * worker or that someone else has already assumed the manager 2149 * role. This is where @worker starts participating in concurrency 2150 * management if applicable and concurrency management is restored 2151 * after being rebound. See rebind_workers() for details. 2152 */ 2153 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2154 2155 do { 2156 struct work_struct *work = 2157 list_first_entry(&pool->worklist, 2158 struct work_struct, entry); 2159 2160 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2161 /* optimization path, not strictly necessary */ 2162 process_one_work(worker, work); 2163 if (unlikely(!list_empty(&worker->scheduled))) 2164 process_scheduled_works(worker); 2165 } else { 2166 move_linked_works(work, &worker->scheduled, NULL); 2167 process_scheduled_works(worker); 2168 } 2169 } while (keep_working(pool)); 2170 2171 worker_set_flags(worker, WORKER_PREP); 2172 sleep: 2173 /* 2174 * pool->lock is held and there's no work to process and no need to 2175 * manage, sleep. Workers are woken up only while holding 2176 * pool->lock or from local cpu, so setting the current state 2177 * before releasing pool->lock is enough to prevent losing any 2178 * event. 2179 */ 2180 worker_enter_idle(worker); 2181 __set_current_state(TASK_INTERRUPTIBLE); 2182 spin_unlock_irq(&pool->lock); 2183 schedule(); 2184 goto woke_up; 2185 } 2186 2187 /** 2188 * rescuer_thread - the rescuer thread function 2189 * @__rescuer: self 2190 * 2191 * Workqueue rescuer thread function. There's one rescuer for each 2192 * workqueue which has WQ_MEM_RECLAIM set. 2193 * 2194 * Regular work processing on a pool may block trying to create a new 2195 * worker which uses GFP_KERNEL allocation which has slight chance of 2196 * developing into deadlock if some works currently on the same queue 2197 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2198 * the problem rescuer solves. 2199 * 2200 * When such condition is possible, the pool summons rescuers of all 2201 * workqueues which have works queued on the pool and let them process 2202 * those works so that forward progress can be guaranteed. 2203 * 2204 * This should happen rarely. 2205 * 2206 * Return: 0 2207 */ 2208 static int rescuer_thread(void *__rescuer) 2209 { 2210 struct worker *rescuer = __rescuer; 2211 struct workqueue_struct *wq = rescuer->rescue_wq; 2212 struct list_head *scheduled = &rescuer->scheduled; 2213 bool should_stop; 2214 2215 set_user_nice(current, RESCUER_NICE_LEVEL); 2216 2217 /* 2218 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2219 * doesn't participate in concurrency management. 2220 */ 2221 rescuer->task->flags |= PF_WQ_WORKER; 2222 repeat: 2223 set_current_state(TASK_INTERRUPTIBLE); 2224 2225 /* 2226 * By the time the rescuer is requested to stop, the workqueue 2227 * shouldn't have any work pending, but @wq->maydays may still have 2228 * pwq(s) queued. This can happen by non-rescuer workers consuming 2229 * all the work items before the rescuer got to them. Go through 2230 * @wq->maydays processing before acting on should_stop so that the 2231 * list is always empty on exit. 2232 */ 2233 should_stop = kthread_should_stop(); 2234 2235 /* see whether any pwq is asking for help */ 2236 spin_lock_irq(&wq_mayday_lock); 2237 2238 while (!list_empty(&wq->maydays)) { 2239 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2240 struct pool_workqueue, mayday_node); 2241 struct worker_pool *pool = pwq->pool; 2242 struct work_struct *work, *n; 2243 2244 __set_current_state(TASK_RUNNING); 2245 list_del_init(&pwq->mayday_node); 2246 2247 spin_unlock_irq(&wq_mayday_lock); 2248 2249 worker_attach_to_pool(rescuer, pool); 2250 2251 spin_lock_irq(&pool->lock); 2252 rescuer->pool = pool; 2253 2254 /* 2255 * Slurp in all works issued via this workqueue and 2256 * process'em. 2257 */ 2258 WARN_ON_ONCE(!list_empty(scheduled)); 2259 list_for_each_entry_safe(work, n, &pool->worklist, entry) 2260 if (get_work_pwq(work) == pwq) 2261 move_linked_works(work, scheduled, &n); 2262 2263 if (!list_empty(scheduled)) { 2264 process_scheduled_works(rescuer); 2265 2266 /* 2267 * The above execution of rescued work items could 2268 * have created more to rescue through 2269 * pwq_activate_first_delayed() or chained 2270 * queueing. Let's put @pwq back on mayday list so 2271 * that such back-to-back work items, which may be 2272 * being used to relieve memory pressure, don't 2273 * incur MAYDAY_INTERVAL delay inbetween. 2274 */ 2275 if (need_to_create_worker(pool)) { 2276 spin_lock(&wq_mayday_lock); 2277 get_pwq(pwq); 2278 list_move_tail(&pwq->mayday_node, &wq->maydays); 2279 spin_unlock(&wq_mayday_lock); 2280 } 2281 } 2282 2283 /* 2284 * Put the reference grabbed by send_mayday(). @pool won't 2285 * go away while we're still attached to it. 2286 */ 2287 put_pwq(pwq); 2288 2289 /* 2290 * Leave this pool. If need_more_worker() is %true, notify a 2291 * regular worker; otherwise, we end up with 0 concurrency 2292 * and stalling the execution. 2293 */ 2294 if (need_more_worker(pool)) 2295 wake_up_worker(pool); 2296 2297 rescuer->pool = NULL; 2298 spin_unlock_irq(&pool->lock); 2299 2300 worker_detach_from_pool(rescuer, pool); 2301 2302 spin_lock_irq(&wq_mayday_lock); 2303 } 2304 2305 spin_unlock_irq(&wq_mayday_lock); 2306 2307 if (should_stop) { 2308 __set_current_state(TASK_RUNNING); 2309 rescuer->task->flags &= ~PF_WQ_WORKER; 2310 return 0; 2311 } 2312 2313 /* rescuers should never participate in concurrency management */ 2314 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2315 schedule(); 2316 goto repeat; 2317 } 2318 2319 struct wq_barrier { 2320 struct work_struct work; 2321 struct completion done; 2322 struct task_struct *task; /* purely informational */ 2323 }; 2324 2325 static void wq_barrier_func(struct work_struct *work) 2326 { 2327 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2328 complete(&barr->done); 2329 } 2330 2331 /** 2332 * insert_wq_barrier - insert a barrier work 2333 * @pwq: pwq to insert barrier into 2334 * @barr: wq_barrier to insert 2335 * @target: target work to attach @barr to 2336 * @worker: worker currently executing @target, NULL if @target is not executing 2337 * 2338 * @barr is linked to @target such that @barr is completed only after 2339 * @target finishes execution. Please note that the ordering 2340 * guarantee is observed only with respect to @target and on the local 2341 * cpu. 2342 * 2343 * Currently, a queued barrier can't be canceled. This is because 2344 * try_to_grab_pending() can't determine whether the work to be 2345 * grabbed is at the head of the queue and thus can't clear LINKED 2346 * flag of the previous work while there must be a valid next work 2347 * after a work with LINKED flag set. 2348 * 2349 * Note that when @worker is non-NULL, @target may be modified 2350 * underneath us, so we can't reliably determine pwq from @target. 2351 * 2352 * CONTEXT: 2353 * spin_lock_irq(pool->lock). 2354 */ 2355 static void insert_wq_barrier(struct pool_workqueue *pwq, 2356 struct wq_barrier *barr, 2357 struct work_struct *target, struct worker *worker) 2358 { 2359 struct list_head *head; 2360 unsigned int linked = 0; 2361 2362 /* 2363 * debugobject calls are safe here even with pool->lock locked 2364 * as we know for sure that this will not trigger any of the 2365 * checks and call back into the fixup functions where we 2366 * might deadlock. 2367 */ 2368 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2369 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2370 init_completion(&barr->done); 2371 barr->task = current; 2372 2373 /* 2374 * If @target is currently being executed, schedule the 2375 * barrier to the worker; otherwise, put it after @target. 2376 */ 2377 if (worker) 2378 head = worker->scheduled.next; 2379 else { 2380 unsigned long *bits = work_data_bits(target); 2381 2382 head = target->entry.next; 2383 /* there can already be other linked works, inherit and set */ 2384 linked = *bits & WORK_STRUCT_LINKED; 2385 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2386 } 2387 2388 debug_work_activate(&barr->work); 2389 insert_work(pwq, &barr->work, head, 2390 work_color_to_flags(WORK_NO_COLOR) | linked); 2391 } 2392 2393 /** 2394 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2395 * @wq: workqueue being flushed 2396 * @flush_color: new flush color, < 0 for no-op 2397 * @work_color: new work color, < 0 for no-op 2398 * 2399 * Prepare pwqs for workqueue flushing. 2400 * 2401 * If @flush_color is non-negative, flush_color on all pwqs should be 2402 * -1. If no pwq has in-flight commands at the specified color, all 2403 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2404 * has in flight commands, its pwq->flush_color is set to 2405 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2406 * wakeup logic is armed and %true is returned. 2407 * 2408 * The caller should have initialized @wq->first_flusher prior to 2409 * calling this function with non-negative @flush_color. If 2410 * @flush_color is negative, no flush color update is done and %false 2411 * is returned. 2412 * 2413 * If @work_color is non-negative, all pwqs should have the same 2414 * work_color which is previous to @work_color and all will be 2415 * advanced to @work_color. 2416 * 2417 * CONTEXT: 2418 * mutex_lock(wq->mutex). 2419 * 2420 * Return: 2421 * %true if @flush_color >= 0 and there's something to flush. %false 2422 * otherwise. 2423 */ 2424 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2425 int flush_color, int work_color) 2426 { 2427 bool wait = false; 2428 struct pool_workqueue *pwq; 2429 2430 if (flush_color >= 0) { 2431 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2432 atomic_set(&wq->nr_pwqs_to_flush, 1); 2433 } 2434 2435 for_each_pwq(pwq, wq) { 2436 struct worker_pool *pool = pwq->pool; 2437 2438 spin_lock_irq(&pool->lock); 2439 2440 if (flush_color >= 0) { 2441 WARN_ON_ONCE(pwq->flush_color != -1); 2442 2443 if (pwq->nr_in_flight[flush_color]) { 2444 pwq->flush_color = flush_color; 2445 atomic_inc(&wq->nr_pwqs_to_flush); 2446 wait = true; 2447 } 2448 } 2449 2450 if (work_color >= 0) { 2451 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2452 pwq->work_color = work_color; 2453 } 2454 2455 spin_unlock_irq(&pool->lock); 2456 } 2457 2458 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2459 complete(&wq->first_flusher->done); 2460 2461 return wait; 2462 } 2463 2464 /** 2465 * flush_workqueue - ensure that any scheduled work has run to completion. 2466 * @wq: workqueue to flush 2467 * 2468 * This function sleeps until all work items which were queued on entry 2469 * have finished execution, but it is not livelocked by new incoming ones. 2470 */ 2471 void flush_workqueue(struct workqueue_struct *wq) 2472 { 2473 struct wq_flusher this_flusher = { 2474 .list = LIST_HEAD_INIT(this_flusher.list), 2475 .flush_color = -1, 2476 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2477 }; 2478 int next_color; 2479 2480 lock_map_acquire(&wq->lockdep_map); 2481 lock_map_release(&wq->lockdep_map); 2482 2483 mutex_lock(&wq->mutex); 2484 2485 /* 2486 * Start-to-wait phase 2487 */ 2488 next_color = work_next_color(wq->work_color); 2489 2490 if (next_color != wq->flush_color) { 2491 /* 2492 * Color space is not full. The current work_color 2493 * becomes our flush_color and work_color is advanced 2494 * by one. 2495 */ 2496 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2497 this_flusher.flush_color = wq->work_color; 2498 wq->work_color = next_color; 2499 2500 if (!wq->first_flusher) { 2501 /* no flush in progress, become the first flusher */ 2502 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2503 2504 wq->first_flusher = &this_flusher; 2505 2506 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2507 wq->work_color)) { 2508 /* nothing to flush, done */ 2509 wq->flush_color = next_color; 2510 wq->first_flusher = NULL; 2511 goto out_unlock; 2512 } 2513 } else { 2514 /* wait in queue */ 2515 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2516 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2517 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2518 } 2519 } else { 2520 /* 2521 * Oops, color space is full, wait on overflow queue. 2522 * The next flush completion will assign us 2523 * flush_color and transfer to flusher_queue. 2524 */ 2525 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2526 } 2527 2528 mutex_unlock(&wq->mutex); 2529 2530 wait_for_completion(&this_flusher.done); 2531 2532 /* 2533 * Wake-up-and-cascade phase 2534 * 2535 * First flushers are responsible for cascading flushes and 2536 * handling overflow. Non-first flushers can simply return. 2537 */ 2538 if (wq->first_flusher != &this_flusher) 2539 return; 2540 2541 mutex_lock(&wq->mutex); 2542 2543 /* we might have raced, check again with mutex held */ 2544 if (wq->first_flusher != &this_flusher) 2545 goto out_unlock; 2546 2547 wq->first_flusher = NULL; 2548 2549 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2550 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2551 2552 while (true) { 2553 struct wq_flusher *next, *tmp; 2554 2555 /* complete all the flushers sharing the current flush color */ 2556 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2557 if (next->flush_color != wq->flush_color) 2558 break; 2559 list_del_init(&next->list); 2560 complete(&next->done); 2561 } 2562 2563 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2564 wq->flush_color != work_next_color(wq->work_color)); 2565 2566 /* this flush_color is finished, advance by one */ 2567 wq->flush_color = work_next_color(wq->flush_color); 2568 2569 /* one color has been freed, handle overflow queue */ 2570 if (!list_empty(&wq->flusher_overflow)) { 2571 /* 2572 * Assign the same color to all overflowed 2573 * flushers, advance work_color and append to 2574 * flusher_queue. This is the start-to-wait 2575 * phase for these overflowed flushers. 2576 */ 2577 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2578 tmp->flush_color = wq->work_color; 2579 2580 wq->work_color = work_next_color(wq->work_color); 2581 2582 list_splice_tail_init(&wq->flusher_overflow, 2583 &wq->flusher_queue); 2584 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2585 } 2586 2587 if (list_empty(&wq->flusher_queue)) { 2588 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2589 break; 2590 } 2591 2592 /* 2593 * Need to flush more colors. Make the next flusher 2594 * the new first flusher and arm pwqs. 2595 */ 2596 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2597 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2598 2599 list_del_init(&next->list); 2600 wq->first_flusher = next; 2601 2602 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2603 break; 2604 2605 /* 2606 * Meh... this color is already done, clear first 2607 * flusher and repeat cascading. 2608 */ 2609 wq->first_flusher = NULL; 2610 } 2611 2612 out_unlock: 2613 mutex_unlock(&wq->mutex); 2614 } 2615 EXPORT_SYMBOL(flush_workqueue); 2616 2617 /** 2618 * drain_workqueue - drain a workqueue 2619 * @wq: workqueue to drain 2620 * 2621 * Wait until the workqueue becomes empty. While draining is in progress, 2622 * only chain queueing is allowed. IOW, only currently pending or running 2623 * work items on @wq can queue further work items on it. @wq is flushed 2624 * repeatedly until it becomes empty. The number of flushing is determined 2625 * by the depth of chaining and should be relatively short. Whine if it 2626 * takes too long. 2627 */ 2628 void drain_workqueue(struct workqueue_struct *wq) 2629 { 2630 unsigned int flush_cnt = 0; 2631 struct pool_workqueue *pwq; 2632 2633 /* 2634 * __queue_work() needs to test whether there are drainers, is much 2635 * hotter than drain_workqueue() and already looks at @wq->flags. 2636 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2637 */ 2638 mutex_lock(&wq->mutex); 2639 if (!wq->nr_drainers++) 2640 wq->flags |= __WQ_DRAINING; 2641 mutex_unlock(&wq->mutex); 2642 reflush: 2643 flush_workqueue(wq); 2644 2645 mutex_lock(&wq->mutex); 2646 2647 for_each_pwq(pwq, wq) { 2648 bool drained; 2649 2650 spin_lock_irq(&pwq->pool->lock); 2651 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2652 spin_unlock_irq(&pwq->pool->lock); 2653 2654 if (drained) 2655 continue; 2656 2657 if (++flush_cnt == 10 || 2658 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2659 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2660 wq->name, flush_cnt); 2661 2662 mutex_unlock(&wq->mutex); 2663 goto reflush; 2664 } 2665 2666 if (!--wq->nr_drainers) 2667 wq->flags &= ~__WQ_DRAINING; 2668 mutex_unlock(&wq->mutex); 2669 } 2670 EXPORT_SYMBOL_GPL(drain_workqueue); 2671 2672 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr) 2673 { 2674 struct worker *worker = NULL; 2675 struct worker_pool *pool; 2676 struct pool_workqueue *pwq; 2677 2678 might_sleep(); 2679 2680 local_irq_disable(); 2681 pool = get_work_pool(work); 2682 if (!pool) { 2683 local_irq_enable(); 2684 return false; 2685 } 2686 2687 spin_lock(&pool->lock); 2688 /* see the comment in try_to_grab_pending() with the same code */ 2689 pwq = get_work_pwq(work); 2690 if (pwq) { 2691 if (unlikely(pwq->pool != pool)) 2692 goto already_gone; 2693 } else { 2694 worker = find_worker_executing_work(pool, work); 2695 if (!worker) 2696 goto already_gone; 2697 pwq = worker->current_pwq; 2698 } 2699 2700 insert_wq_barrier(pwq, barr, work, worker); 2701 spin_unlock_irq(&pool->lock); 2702 2703 /* 2704 * If @max_active is 1 or rescuer is in use, flushing another work 2705 * item on the same workqueue may lead to deadlock. Make sure the 2706 * flusher is not running on the same workqueue by verifying write 2707 * access. 2708 */ 2709 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) 2710 lock_map_acquire(&pwq->wq->lockdep_map); 2711 else 2712 lock_map_acquire_read(&pwq->wq->lockdep_map); 2713 lock_map_release(&pwq->wq->lockdep_map); 2714 2715 return true; 2716 already_gone: 2717 spin_unlock_irq(&pool->lock); 2718 return false; 2719 } 2720 2721 /** 2722 * flush_work - wait for a work to finish executing the last queueing instance 2723 * @work: the work to flush 2724 * 2725 * Wait until @work has finished execution. @work is guaranteed to be idle 2726 * on return if it hasn't been requeued since flush started. 2727 * 2728 * Return: 2729 * %true if flush_work() waited for the work to finish execution, 2730 * %false if it was already idle. 2731 */ 2732 bool flush_work(struct work_struct *work) 2733 { 2734 struct wq_barrier barr; 2735 2736 lock_map_acquire(&work->lockdep_map); 2737 lock_map_release(&work->lockdep_map); 2738 2739 if (start_flush_work(work, &barr)) { 2740 wait_for_completion(&barr.done); 2741 destroy_work_on_stack(&barr.work); 2742 return true; 2743 } else { 2744 return false; 2745 } 2746 } 2747 EXPORT_SYMBOL_GPL(flush_work); 2748 2749 struct cwt_wait { 2750 wait_queue_t wait; 2751 struct work_struct *work; 2752 }; 2753 2754 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key) 2755 { 2756 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 2757 2758 if (cwait->work != key) 2759 return 0; 2760 return autoremove_wake_function(wait, mode, sync, key); 2761 } 2762 2763 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 2764 { 2765 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 2766 unsigned long flags; 2767 int ret; 2768 2769 do { 2770 ret = try_to_grab_pending(work, is_dwork, &flags); 2771 /* 2772 * If someone else is already canceling, wait for it to 2773 * finish. flush_work() doesn't work for PREEMPT_NONE 2774 * because we may get scheduled between @work's completion 2775 * and the other canceling task resuming and clearing 2776 * CANCELING - flush_work() will return false immediately 2777 * as @work is no longer busy, try_to_grab_pending() will 2778 * return -ENOENT as @work is still being canceled and the 2779 * other canceling task won't be able to clear CANCELING as 2780 * we're hogging the CPU. 2781 * 2782 * Let's wait for completion using a waitqueue. As this 2783 * may lead to the thundering herd problem, use a custom 2784 * wake function which matches @work along with exclusive 2785 * wait and wakeup. 2786 */ 2787 if (unlikely(ret == -ENOENT)) { 2788 struct cwt_wait cwait; 2789 2790 init_wait(&cwait.wait); 2791 cwait.wait.func = cwt_wakefn; 2792 cwait.work = work; 2793 2794 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 2795 TASK_UNINTERRUPTIBLE); 2796 if (work_is_canceling(work)) 2797 schedule(); 2798 finish_wait(&cancel_waitq, &cwait.wait); 2799 } 2800 } while (unlikely(ret < 0)); 2801 2802 /* tell other tasks trying to grab @work to back off */ 2803 mark_work_canceling(work); 2804 local_irq_restore(flags); 2805 2806 flush_work(work); 2807 clear_work_data(work); 2808 2809 /* 2810 * Paired with prepare_to_wait() above so that either 2811 * waitqueue_active() is visible here or !work_is_canceling() is 2812 * visible there. 2813 */ 2814 smp_mb(); 2815 if (waitqueue_active(&cancel_waitq)) 2816 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 2817 2818 return ret; 2819 } 2820 2821 /** 2822 * cancel_work_sync - cancel a work and wait for it to finish 2823 * @work: the work to cancel 2824 * 2825 * Cancel @work and wait for its execution to finish. This function 2826 * can be used even if the work re-queues itself or migrates to 2827 * another workqueue. On return from this function, @work is 2828 * guaranteed to be not pending or executing on any CPU. 2829 * 2830 * cancel_work_sync(&delayed_work->work) must not be used for 2831 * delayed_work's. Use cancel_delayed_work_sync() instead. 2832 * 2833 * The caller must ensure that the workqueue on which @work was last 2834 * queued can't be destroyed before this function returns. 2835 * 2836 * Return: 2837 * %true if @work was pending, %false otherwise. 2838 */ 2839 bool cancel_work_sync(struct work_struct *work) 2840 { 2841 return __cancel_work_timer(work, false); 2842 } 2843 EXPORT_SYMBOL_GPL(cancel_work_sync); 2844 2845 /** 2846 * flush_delayed_work - wait for a dwork to finish executing the last queueing 2847 * @dwork: the delayed work to flush 2848 * 2849 * Delayed timer is cancelled and the pending work is queued for 2850 * immediate execution. Like flush_work(), this function only 2851 * considers the last queueing instance of @dwork. 2852 * 2853 * Return: 2854 * %true if flush_work() waited for the work to finish execution, 2855 * %false if it was already idle. 2856 */ 2857 bool flush_delayed_work(struct delayed_work *dwork) 2858 { 2859 local_irq_disable(); 2860 if (del_timer_sync(&dwork->timer)) 2861 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2862 local_irq_enable(); 2863 return flush_work(&dwork->work); 2864 } 2865 EXPORT_SYMBOL(flush_delayed_work); 2866 2867 /** 2868 * cancel_delayed_work - cancel a delayed work 2869 * @dwork: delayed_work to cancel 2870 * 2871 * Kill off a pending delayed_work. 2872 * 2873 * Return: %true if @dwork was pending and canceled; %false if it wasn't 2874 * pending. 2875 * 2876 * Note: 2877 * The work callback function may still be running on return, unless 2878 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 2879 * use cancel_delayed_work_sync() to wait on it. 2880 * 2881 * This function is safe to call from any context including IRQ handler. 2882 */ 2883 bool cancel_delayed_work(struct delayed_work *dwork) 2884 { 2885 unsigned long flags; 2886 int ret; 2887 2888 do { 2889 ret = try_to_grab_pending(&dwork->work, true, &flags); 2890 } while (unlikely(ret == -EAGAIN)); 2891 2892 if (unlikely(ret < 0)) 2893 return false; 2894 2895 set_work_pool_and_clear_pending(&dwork->work, 2896 get_work_pool_id(&dwork->work)); 2897 local_irq_restore(flags); 2898 return ret; 2899 } 2900 EXPORT_SYMBOL(cancel_delayed_work); 2901 2902 /** 2903 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 2904 * @dwork: the delayed work cancel 2905 * 2906 * This is cancel_work_sync() for delayed works. 2907 * 2908 * Return: 2909 * %true if @dwork was pending, %false otherwise. 2910 */ 2911 bool cancel_delayed_work_sync(struct delayed_work *dwork) 2912 { 2913 return __cancel_work_timer(&dwork->work, true); 2914 } 2915 EXPORT_SYMBOL(cancel_delayed_work_sync); 2916 2917 /** 2918 * schedule_on_each_cpu - execute a function synchronously on each online CPU 2919 * @func: the function to call 2920 * 2921 * schedule_on_each_cpu() executes @func on each online CPU using the 2922 * system workqueue and blocks until all CPUs have completed. 2923 * schedule_on_each_cpu() is very slow. 2924 * 2925 * Return: 2926 * 0 on success, -errno on failure. 2927 */ 2928 int schedule_on_each_cpu(work_func_t func) 2929 { 2930 int cpu; 2931 struct work_struct __percpu *works; 2932 2933 works = alloc_percpu(struct work_struct); 2934 if (!works) 2935 return -ENOMEM; 2936 2937 get_online_cpus(); 2938 2939 for_each_online_cpu(cpu) { 2940 struct work_struct *work = per_cpu_ptr(works, cpu); 2941 2942 INIT_WORK(work, func); 2943 schedule_work_on(cpu, work); 2944 } 2945 2946 for_each_online_cpu(cpu) 2947 flush_work(per_cpu_ptr(works, cpu)); 2948 2949 put_online_cpus(); 2950 free_percpu(works); 2951 return 0; 2952 } 2953 2954 /** 2955 * execute_in_process_context - reliably execute the routine with user context 2956 * @fn: the function to execute 2957 * @ew: guaranteed storage for the execute work structure (must 2958 * be available when the work executes) 2959 * 2960 * Executes the function immediately if process context is available, 2961 * otherwise schedules the function for delayed execution. 2962 * 2963 * Return: 0 - function was executed 2964 * 1 - function was scheduled for execution 2965 */ 2966 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 2967 { 2968 if (!in_interrupt()) { 2969 fn(&ew->work); 2970 return 0; 2971 } 2972 2973 INIT_WORK(&ew->work, fn); 2974 schedule_work(&ew->work); 2975 2976 return 1; 2977 } 2978 EXPORT_SYMBOL_GPL(execute_in_process_context); 2979 2980 /** 2981 * free_workqueue_attrs - free a workqueue_attrs 2982 * @attrs: workqueue_attrs to free 2983 * 2984 * Undo alloc_workqueue_attrs(). 2985 */ 2986 void free_workqueue_attrs(struct workqueue_attrs *attrs) 2987 { 2988 if (attrs) { 2989 free_cpumask_var(attrs->cpumask); 2990 kfree(attrs); 2991 } 2992 } 2993 2994 /** 2995 * alloc_workqueue_attrs - allocate a workqueue_attrs 2996 * @gfp_mask: allocation mask to use 2997 * 2998 * Allocate a new workqueue_attrs, initialize with default settings and 2999 * return it. 3000 * 3001 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3002 */ 3003 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask) 3004 { 3005 struct workqueue_attrs *attrs; 3006 3007 attrs = kzalloc(sizeof(*attrs), gfp_mask); 3008 if (!attrs) 3009 goto fail; 3010 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask)) 3011 goto fail; 3012 3013 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3014 return attrs; 3015 fail: 3016 free_workqueue_attrs(attrs); 3017 return NULL; 3018 } 3019 3020 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3021 const struct workqueue_attrs *from) 3022 { 3023 to->nice = from->nice; 3024 cpumask_copy(to->cpumask, from->cpumask); 3025 /* 3026 * Unlike hash and equality test, this function doesn't ignore 3027 * ->no_numa as it is used for both pool and wq attrs. Instead, 3028 * get_unbound_pool() explicitly clears ->no_numa after copying. 3029 */ 3030 to->no_numa = from->no_numa; 3031 } 3032 3033 /* hash value of the content of @attr */ 3034 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3035 { 3036 u32 hash = 0; 3037 3038 hash = jhash_1word(attrs->nice, hash); 3039 hash = jhash(cpumask_bits(attrs->cpumask), 3040 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3041 return hash; 3042 } 3043 3044 /* content equality test */ 3045 static bool wqattrs_equal(const struct workqueue_attrs *a, 3046 const struct workqueue_attrs *b) 3047 { 3048 if (a->nice != b->nice) 3049 return false; 3050 if (!cpumask_equal(a->cpumask, b->cpumask)) 3051 return false; 3052 return true; 3053 } 3054 3055 /** 3056 * init_worker_pool - initialize a newly zalloc'd worker_pool 3057 * @pool: worker_pool to initialize 3058 * 3059 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3060 * 3061 * Return: 0 on success, -errno on failure. Even on failure, all fields 3062 * inside @pool proper are initialized and put_unbound_pool() can be called 3063 * on @pool safely to release it. 3064 */ 3065 static int init_worker_pool(struct worker_pool *pool) 3066 { 3067 spin_lock_init(&pool->lock); 3068 pool->id = -1; 3069 pool->cpu = -1; 3070 pool->node = NUMA_NO_NODE; 3071 pool->flags |= POOL_DISASSOCIATED; 3072 INIT_LIST_HEAD(&pool->worklist); 3073 INIT_LIST_HEAD(&pool->idle_list); 3074 hash_init(pool->busy_hash); 3075 3076 init_timer_deferrable(&pool->idle_timer); 3077 pool->idle_timer.function = idle_worker_timeout; 3078 pool->idle_timer.data = (unsigned long)pool; 3079 3080 setup_timer(&pool->mayday_timer, pool_mayday_timeout, 3081 (unsigned long)pool); 3082 3083 mutex_init(&pool->manager_arb); 3084 mutex_init(&pool->attach_mutex); 3085 INIT_LIST_HEAD(&pool->workers); 3086 3087 ida_init(&pool->worker_ida); 3088 INIT_HLIST_NODE(&pool->hash_node); 3089 pool->refcnt = 1; 3090 3091 /* shouldn't fail above this point */ 3092 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL); 3093 if (!pool->attrs) 3094 return -ENOMEM; 3095 return 0; 3096 } 3097 3098 static void rcu_free_wq(struct rcu_head *rcu) 3099 { 3100 struct workqueue_struct *wq = 3101 container_of(rcu, struct workqueue_struct, rcu); 3102 3103 if (!(wq->flags & WQ_UNBOUND)) 3104 free_percpu(wq->cpu_pwqs); 3105 else 3106 free_workqueue_attrs(wq->unbound_attrs); 3107 3108 kfree(wq->rescuer); 3109 kfree(wq); 3110 } 3111 3112 static void rcu_free_pool(struct rcu_head *rcu) 3113 { 3114 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3115 3116 ida_destroy(&pool->worker_ida); 3117 free_workqueue_attrs(pool->attrs); 3118 kfree(pool); 3119 } 3120 3121 /** 3122 * put_unbound_pool - put a worker_pool 3123 * @pool: worker_pool to put 3124 * 3125 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU 3126 * safe manner. get_unbound_pool() calls this function on its failure path 3127 * and this function should be able to release pools which went through, 3128 * successfully or not, init_worker_pool(). 3129 * 3130 * Should be called with wq_pool_mutex held. 3131 */ 3132 static void put_unbound_pool(struct worker_pool *pool) 3133 { 3134 DECLARE_COMPLETION_ONSTACK(detach_completion); 3135 struct worker *worker; 3136 3137 lockdep_assert_held(&wq_pool_mutex); 3138 3139 if (--pool->refcnt) 3140 return; 3141 3142 /* sanity checks */ 3143 if (WARN_ON(!(pool->cpu < 0)) || 3144 WARN_ON(!list_empty(&pool->worklist))) 3145 return; 3146 3147 /* release id and unhash */ 3148 if (pool->id >= 0) 3149 idr_remove(&worker_pool_idr, pool->id); 3150 hash_del(&pool->hash_node); 3151 3152 /* 3153 * Become the manager and destroy all workers. Grabbing 3154 * manager_arb prevents @pool's workers from blocking on 3155 * attach_mutex. 3156 */ 3157 mutex_lock(&pool->manager_arb); 3158 3159 spin_lock_irq(&pool->lock); 3160 while ((worker = first_idle_worker(pool))) 3161 destroy_worker(worker); 3162 WARN_ON(pool->nr_workers || pool->nr_idle); 3163 spin_unlock_irq(&pool->lock); 3164 3165 mutex_lock(&pool->attach_mutex); 3166 if (!list_empty(&pool->workers)) 3167 pool->detach_completion = &detach_completion; 3168 mutex_unlock(&pool->attach_mutex); 3169 3170 if (pool->detach_completion) 3171 wait_for_completion(pool->detach_completion); 3172 3173 mutex_unlock(&pool->manager_arb); 3174 3175 /* shut down the timers */ 3176 del_timer_sync(&pool->idle_timer); 3177 del_timer_sync(&pool->mayday_timer); 3178 3179 /* sched-RCU protected to allow dereferences from get_work_pool() */ 3180 call_rcu_sched(&pool->rcu, rcu_free_pool); 3181 } 3182 3183 /** 3184 * get_unbound_pool - get a worker_pool with the specified attributes 3185 * @attrs: the attributes of the worker_pool to get 3186 * 3187 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3188 * reference count and return it. If there already is a matching 3189 * worker_pool, it will be used; otherwise, this function attempts to 3190 * create a new one. 3191 * 3192 * Should be called with wq_pool_mutex held. 3193 * 3194 * Return: On success, a worker_pool with the same attributes as @attrs. 3195 * On failure, %NULL. 3196 */ 3197 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3198 { 3199 u32 hash = wqattrs_hash(attrs); 3200 struct worker_pool *pool; 3201 int node; 3202 3203 lockdep_assert_held(&wq_pool_mutex); 3204 3205 /* do we already have a matching pool? */ 3206 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3207 if (wqattrs_equal(pool->attrs, attrs)) { 3208 pool->refcnt++; 3209 return pool; 3210 } 3211 } 3212 3213 /* nope, create a new one */ 3214 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 3215 if (!pool || init_worker_pool(pool) < 0) 3216 goto fail; 3217 3218 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3219 copy_workqueue_attrs(pool->attrs, attrs); 3220 3221 /* 3222 * no_numa isn't a worker_pool attribute, always clear it. See 3223 * 'struct workqueue_attrs' comments for detail. 3224 */ 3225 pool->attrs->no_numa = false; 3226 3227 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3228 if (wq_numa_enabled) { 3229 for_each_node(node) { 3230 if (cpumask_subset(pool->attrs->cpumask, 3231 wq_numa_possible_cpumask[node])) { 3232 pool->node = node; 3233 break; 3234 } 3235 } 3236 } 3237 3238 if (worker_pool_assign_id(pool) < 0) 3239 goto fail; 3240 3241 /* create and start the initial worker */ 3242 if (!create_worker(pool)) 3243 goto fail; 3244 3245 /* install */ 3246 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3247 3248 return pool; 3249 fail: 3250 if (pool) 3251 put_unbound_pool(pool); 3252 return NULL; 3253 } 3254 3255 static void rcu_free_pwq(struct rcu_head *rcu) 3256 { 3257 kmem_cache_free(pwq_cache, 3258 container_of(rcu, struct pool_workqueue, rcu)); 3259 } 3260 3261 /* 3262 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3263 * and needs to be destroyed. 3264 */ 3265 static void pwq_unbound_release_workfn(struct work_struct *work) 3266 { 3267 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3268 unbound_release_work); 3269 struct workqueue_struct *wq = pwq->wq; 3270 struct worker_pool *pool = pwq->pool; 3271 bool is_last; 3272 3273 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3274 return; 3275 3276 mutex_lock(&wq->mutex); 3277 list_del_rcu(&pwq->pwqs_node); 3278 is_last = list_empty(&wq->pwqs); 3279 mutex_unlock(&wq->mutex); 3280 3281 mutex_lock(&wq_pool_mutex); 3282 put_unbound_pool(pool); 3283 mutex_unlock(&wq_pool_mutex); 3284 3285 call_rcu_sched(&pwq->rcu, rcu_free_pwq); 3286 3287 /* 3288 * If we're the last pwq going away, @wq is already dead and no one 3289 * is gonna access it anymore. Schedule RCU free. 3290 */ 3291 if (is_last) 3292 call_rcu_sched(&wq->rcu, rcu_free_wq); 3293 } 3294 3295 /** 3296 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3297 * @pwq: target pool_workqueue 3298 * 3299 * If @pwq isn't freezing, set @pwq->max_active to the associated 3300 * workqueue's saved_max_active and activate delayed work items 3301 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3302 */ 3303 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3304 { 3305 struct workqueue_struct *wq = pwq->wq; 3306 bool freezable = wq->flags & WQ_FREEZABLE; 3307 3308 /* for @wq->saved_max_active */ 3309 lockdep_assert_held(&wq->mutex); 3310 3311 /* fast exit for non-freezable wqs */ 3312 if (!freezable && pwq->max_active == wq->saved_max_active) 3313 return; 3314 3315 spin_lock_irq(&pwq->pool->lock); 3316 3317 /* 3318 * During [un]freezing, the caller is responsible for ensuring that 3319 * this function is called at least once after @workqueue_freezing 3320 * is updated and visible. 3321 */ 3322 if (!freezable || !workqueue_freezing) { 3323 pwq->max_active = wq->saved_max_active; 3324 3325 while (!list_empty(&pwq->delayed_works) && 3326 pwq->nr_active < pwq->max_active) 3327 pwq_activate_first_delayed(pwq); 3328 3329 /* 3330 * Need to kick a worker after thawed or an unbound wq's 3331 * max_active is bumped. It's a slow path. Do it always. 3332 */ 3333 wake_up_worker(pwq->pool); 3334 } else { 3335 pwq->max_active = 0; 3336 } 3337 3338 spin_unlock_irq(&pwq->pool->lock); 3339 } 3340 3341 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3342 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3343 struct worker_pool *pool) 3344 { 3345 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3346 3347 memset(pwq, 0, sizeof(*pwq)); 3348 3349 pwq->pool = pool; 3350 pwq->wq = wq; 3351 pwq->flush_color = -1; 3352 pwq->refcnt = 1; 3353 INIT_LIST_HEAD(&pwq->delayed_works); 3354 INIT_LIST_HEAD(&pwq->pwqs_node); 3355 INIT_LIST_HEAD(&pwq->mayday_node); 3356 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3357 } 3358 3359 /* sync @pwq with the current state of its associated wq and link it */ 3360 static void link_pwq(struct pool_workqueue *pwq) 3361 { 3362 struct workqueue_struct *wq = pwq->wq; 3363 3364 lockdep_assert_held(&wq->mutex); 3365 3366 /* may be called multiple times, ignore if already linked */ 3367 if (!list_empty(&pwq->pwqs_node)) 3368 return; 3369 3370 /* set the matching work_color */ 3371 pwq->work_color = wq->work_color; 3372 3373 /* sync max_active to the current setting */ 3374 pwq_adjust_max_active(pwq); 3375 3376 /* link in @pwq */ 3377 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3378 } 3379 3380 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3381 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3382 const struct workqueue_attrs *attrs) 3383 { 3384 struct worker_pool *pool; 3385 struct pool_workqueue *pwq; 3386 3387 lockdep_assert_held(&wq_pool_mutex); 3388 3389 pool = get_unbound_pool(attrs); 3390 if (!pool) 3391 return NULL; 3392 3393 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3394 if (!pwq) { 3395 put_unbound_pool(pool); 3396 return NULL; 3397 } 3398 3399 init_pwq(pwq, wq, pool); 3400 return pwq; 3401 } 3402 3403 /** 3404 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3405 * @attrs: the wq_attrs of the default pwq of the target workqueue 3406 * @node: the target NUMA node 3407 * @cpu_going_down: if >= 0, the CPU to consider as offline 3408 * @cpumask: outarg, the resulting cpumask 3409 * 3410 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3411 * @cpu_going_down is >= 0, that cpu is considered offline during 3412 * calculation. The result is stored in @cpumask. 3413 * 3414 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3415 * enabled and @node has online CPUs requested by @attrs, the returned 3416 * cpumask is the intersection of the possible CPUs of @node and 3417 * @attrs->cpumask. 3418 * 3419 * The caller is responsible for ensuring that the cpumask of @node stays 3420 * stable. 3421 * 3422 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3423 * %false if equal. 3424 */ 3425 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3426 int cpu_going_down, cpumask_t *cpumask) 3427 { 3428 if (!wq_numa_enabled || attrs->no_numa) 3429 goto use_dfl; 3430 3431 /* does @node have any online CPUs @attrs wants? */ 3432 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3433 if (cpu_going_down >= 0) 3434 cpumask_clear_cpu(cpu_going_down, cpumask); 3435 3436 if (cpumask_empty(cpumask)) 3437 goto use_dfl; 3438 3439 /* yeap, return possible CPUs in @node that @attrs wants */ 3440 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3441 return !cpumask_equal(cpumask, attrs->cpumask); 3442 3443 use_dfl: 3444 cpumask_copy(cpumask, attrs->cpumask); 3445 return false; 3446 } 3447 3448 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3449 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3450 int node, 3451 struct pool_workqueue *pwq) 3452 { 3453 struct pool_workqueue *old_pwq; 3454 3455 lockdep_assert_held(&wq_pool_mutex); 3456 lockdep_assert_held(&wq->mutex); 3457 3458 /* link_pwq() can handle duplicate calls */ 3459 link_pwq(pwq); 3460 3461 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3462 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3463 return old_pwq; 3464 } 3465 3466 /* context to store the prepared attrs & pwqs before applying */ 3467 struct apply_wqattrs_ctx { 3468 struct workqueue_struct *wq; /* target workqueue */ 3469 struct workqueue_attrs *attrs; /* attrs to apply */ 3470 struct list_head list; /* queued for batching commit */ 3471 struct pool_workqueue *dfl_pwq; 3472 struct pool_workqueue *pwq_tbl[]; 3473 }; 3474 3475 /* free the resources after success or abort */ 3476 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 3477 { 3478 if (ctx) { 3479 int node; 3480 3481 for_each_node(node) 3482 put_pwq_unlocked(ctx->pwq_tbl[node]); 3483 put_pwq_unlocked(ctx->dfl_pwq); 3484 3485 free_workqueue_attrs(ctx->attrs); 3486 3487 kfree(ctx); 3488 } 3489 } 3490 3491 /* allocate the attrs and pwqs for later installation */ 3492 static struct apply_wqattrs_ctx * 3493 apply_wqattrs_prepare(struct workqueue_struct *wq, 3494 const struct workqueue_attrs *attrs) 3495 { 3496 struct apply_wqattrs_ctx *ctx; 3497 struct workqueue_attrs *new_attrs, *tmp_attrs; 3498 int node; 3499 3500 lockdep_assert_held(&wq_pool_mutex); 3501 3502 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]), 3503 GFP_KERNEL); 3504 3505 new_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3506 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3507 if (!ctx || !new_attrs || !tmp_attrs) 3508 goto out_free; 3509 3510 /* 3511 * Calculate the attrs of the default pwq. 3512 * If the user configured cpumask doesn't overlap with the 3513 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 3514 */ 3515 copy_workqueue_attrs(new_attrs, attrs); 3516 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask); 3517 if (unlikely(cpumask_empty(new_attrs->cpumask))) 3518 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask); 3519 3520 /* 3521 * We may create multiple pwqs with differing cpumasks. Make a 3522 * copy of @new_attrs which will be modified and used to obtain 3523 * pools. 3524 */ 3525 copy_workqueue_attrs(tmp_attrs, new_attrs); 3526 3527 /* 3528 * If something goes wrong during CPU up/down, we'll fall back to 3529 * the default pwq covering whole @attrs->cpumask. Always create 3530 * it even if we don't use it immediately. 3531 */ 3532 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3533 if (!ctx->dfl_pwq) 3534 goto out_free; 3535 3536 for_each_node(node) { 3537 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 3538 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3539 if (!ctx->pwq_tbl[node]) 3540 goto out_free; 3541 } else { 3542 ctx->dfl_pwq->refcnt++; 3543 ctx->pwq_tbl[node] = ctx->dfl_pwq; 3544 } 3545 } 3546 3547 /* save the user configured attrs and sanitize it. */ 3548 copy_workqueue_attrs(new_attrs, attrs); 3549 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3550 ctx->attrs = new_attrs; 3551 3552 ctx->wq = wq; 3553 free_workqueue_attrs(tmp_attrs); 3554 return ctx; 3555 3556 out_free: 3557 free_workqueue_attrs(tmp_attrs); 3558 free_workqueue_attrs(new_attrs); 3559 apply_wqattrs_cleanup(ctx); 3560 return NULL; 3561 } 3562 3563 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 3564 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 3565 { 3566 int node; 3567 3568 /* all pwqs have been created successfully, let's install'em */ 3569 mutex_lock(&ctx->wq->mutex); 3570 3571 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 3572 3573 /* save the previous pwq and install the new one */ 3574 for_each_node(node) 3575 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 3576 ctx->pwq_tbl[node]); 3577 3578 /* @dfl_pwq might not have been used, ensure it's linked */ 3579 link_pwq(ctx->dfl_pwq); 3580 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 3581 3582 mutex_unlock(&ctx->wq->mutex); 3583 } 3584 3585 static void apply_wqattrs_lock(void) 3586 { 3587 /* CPUs should stay stable across pwq creations and installations */ 3588 get_online_cpus(); 3589 mutex_lock(&wq_pool_mutex); 3590 } 3591 3592 static void apply_wqattrs_unlock(void) 3593 { 3594 mutex_unlock(&wq_pool_mutex); 3595 put_online_cpus(); 3596 } 3597 3598 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 3599 const struct workqueue_attrs *attrs) 3600 { 3601 struct apply_wqattrs_ctx *ctx; 3602 int ret = -ENOMEM; 3603 3604 /* only unbound workqueues can change attributes */ 3605 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 3606 return -EINVAL; 3607 3608 /* creating multiple pwqs breaks ordering guarantee */ 3609 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))) 3610 return -EINVAL; 3611 3612 ctx = apply_wqattrs_prepare(wq, attrs); 3613 3614 /* the ctx has been prepared successfully, let's commit it */ 3615 if (ctx) { 3616 apply_wqattrs_commit(ctx); 3617 ret = 0; 3618 } 3619 3620 apply_wqattrs_cleanup(ctx); 3621 3622 return ret; 3623 } 3624 3625 /** 3626 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 3627 * @wq: the target workqueue 3628 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 3629 * 3630 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 3631 * machines, this function maps a separate pwq to each NUMA node with 3632 * possibles CPUs in @attrs->cpumask so that work items are affine to the 3633 * NUMA node it was issued on. Older pwqs are released as in-flight work 3634 * items finish. Note that a work item which repeatedly requeues itself 3635 * back-to-back will stay on its current pwq. 3636 * 3637 * Performs GFP_KERNEL allocations. 3638 * 3639 * Return: 0 on success and -errno on failure. 3640 */ 3641 int apply_workqueue_attrs(struct workqueue_struct *wq, 3642 const struct workqueue_attrs *attrs) 3643 { 3644 int ret; 3645 3646 apply_wqattrs_lock(); 3647 ret = apply_workqueue_attrs_locked(wq, attrs); 3648 apply_wqattrs_unlock(); 3649 3650 return ret; 3651 } 3652 3653 /** 3654 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 3655 * @wq: the target workqueue 3656 * @cpu: the CPU coming up or going down 3657 * @online: whether @cpu is coming up or going down 3658 * 3659 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 3660 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 3661 * @wq accordingly. 3662 * 3663 * If NUMA affinity can't be adjusted due to memory allocation failure, it 3664 * falls back to @wq->dfl_pwq which may not be optimal but is always 3665 * correct. 3666 * 3667 * Note that when the last allowed CPU of a NUMA node goes offline for a 3668 * workqueue with a cpumask spanning multiple nodes, the workers which were 3669 * already executing the work items for the workqueue will lose their CPU 3670 * affinity and may execute on any CPU. This is similar to how per-cpu 3671 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 3672 * affinity, it's the user's responsibility to flush the work item from 3673 * CPU_DOWN_PREPARE. 3674 */ 3675 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 3676 bool online) 3677 { 3678 int node = cpu_to_node(cpu); 3679 int cpu_off = online ? -1 : cpu; 3680 struct pool_workqueue *old_pwq = NULL, *pwq; 3681 struct workqueue_attrs *target_attrs; 3682 cpumask_t *cpumask; 3683 3684 lockdep_assert_held(&wq_pool_mutex); 3685 3686 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 3687 wq->unbound_attrs->no_numa) 3688 return; 3689 3690 /* 3691 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 3692 * Let's use a preallocated one. The following buf is protected by 3693 * CPU hotplug exclusion. 3694 */ 3695 target_attrs = wq_update_unbound_numa_attrs_buf; 3696 cpumask = target_attrs->cpumask; 3697 3698 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 3699 pwq = unbound_pwq_by_node(wq, node); 3700 3701 /* 3702 * Let's determine what needs to be done. If the target cpumask is 3703 * different from the default pwq's, we need to compare it to @pwq's 3704 * and create a new one if they don't match. If the target cpumask 3705 * equals the default pwq's, the default pwq should be used. 3706 */ 3707 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 3708 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 3709 return; 3710 } else { 3711 goto use_dfl_pwq; 3712 } 3713 3714 /* create a new pwq */ 3715 pwq = alloc_unbound_pwq(wq, target_attrs); 3716 if (!pwq) { 3717 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 3718 wq->name); 3719 goto use_dfl_pwq; 3720 } 3721 3722 /* Install the new pwq. */ 3723 mutex_lock(&wq->mutex); 3724 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 3725 goto out_unlock; 3726 3727 use_dfl_pwq: 3728 mutex_lock(&wq->mutex); 3729 spin_lock_irq(&wq->dfl_pwq->pool->lock); 3730 get_pwq(wq->dfl_pwq); 3731 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 3732 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 3733 out_unlock: 3734 mutex_unlock(&wq->mutex); 3735 put_pwq_unlocked(old_pwq); 3736 } 3737 3738 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 3739 { 3740 bool highpri = wq->flags & WQ_HIGHPRI; 3741 int cpu, ret; 3742 3743 if (!(wq->flags & WQ_UNBOUND)) { 3744 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 3745 if (!wq->cpu_pwqs) 3746 return -ENOMEM; 3747 3748 for_each_possible_cpu(cpu) { 3749 struct pool_workqueue *pwq = 3750 per_cpu_ptr(wq->cpu_pwqs, cpu); 3751 struct worker_pool *cpu_pools = 3752 per_cpu(cpu_worker_pools, cpu); 3753 3754 init_pwq(pwq, wq, &cpu_pools[highpri]); 3755 3756 mutex_lock(&wq->mutex); 3757 link_pwq(pwq); 3758 mutex_unlock(&wq->mutex); 3759 } 3760 return 0; 3761 } else if (wq->flags & __WQ_ORDERED) { 3762 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 3763 /* there should only be single pwq for ordering guarantee */ 3764 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 3765 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 3766 "ordering guarantee broken for workqueue %s\n", wq->name); 3767 return ret; 3768 } else { 3769 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 3770 } 3771 } 3772 3773 static int wq_clamp_max_active(int max_active, unsigned int flags, 3774 const char *name) 3775 { 3776 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 3777 3778 if (max_active < 1 || max_active > lim) 3779 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 3780 max_active, name, 1, lim); 3781 3782 return clamp_val(max_active, 1, lim); 3783 } 3784 3785 struct workqueue_struct *__alloc_workqueue_key(const char *fmt, 3786 unsigned int flags, 3787 int max_active, 3788 struct lock_class_key *key, 3789 const char *lock_name, ...) 3790 { 3791 size_t tbl_size = 0; 3792 va_list args; 3793 struct workqueue_struct *wq; 3794 struct pool_workqueue *pwq; 3795 3796 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 3797 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 3798 flags |= WQ_UNBOUND; 3799 3800 /* allocate wq and format name */ 3801 if (flags & WQ_UNBOUND) 3802 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 3803 3804 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 3805 if (!wq) 3806 return NULL; 3807 3808 if (flags & WQ_UNBOUND) { 3809 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3810 if (!wq->unbound_attrs) 3811 goto err_free_wq; 3812 } 3813 3814 va_start(args, lock_name); 3815 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 3816 va_end(args); 3817 3818 max_active = max_active ?: WQ_DFL_ACTIVE; 3819 max_active = wq_clamp_max_active(max_active, flags, wq->name); 3820 3821 /* init wq */ 3822 wq->flags = flags; 3823 wq->saved_max_active = max_active; 3824 mutex_init(&wq->mutex); 3825 atomic_set(&wq->nr_pwqs_to_flush, 0); 3826 INIT_LIST_HEAD(&wq->pwqs); 3827 INIT_LIST_HEAD(&wq->flusher_queue); 3828 INIT_LIST_HEAD(&wq->flusher_overflow); 3829 INIT_LIST_HEAD(&wq->maydays); 3830 3831 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 3832 INIT_LIST_HEAD(&wq->list); 3833 3834 if (alloc_and_link_pwqs(wq) < 0) 3835 goto err_free_wq; 3836 3837 /* 3838 * Workqueues which may be used during memory reclaim should 3839 * have a rescuer to guarantee forward progress. 3840 */ 3841 if (flags & WQ_MEM_RECLAIM) { 3842 struct worker *rescuer; 3843 3844 rescuer = alloc_worker(NUMA_NO_NODE); 3845 if (!rescuer) 3846 goto err_destroy; 3847 3848 rescuer->rescue_wq = wq; 3849 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", 3850 wq->name); 3851 if (IS_ERR(rescuer->task)) { 3852 kfree(rescuer); 3853 goto err_destroy; 3854 } 3855 3856 wq->rescuer = rescuer; 3857 kthread_bind_mask(rescuer->task, cpu_possible_mask); 3858 wake_up_process(rescuer->task); 3859 } 3860 3861 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 3862 goto err_destroy; 3863 3864 /* 3865 * wq_pool_mutex protects global freeze state and workqueues list. 3866 * Grab it, adjust max_active and add the new @wq to workqueues 3867 * list. 3868 */ 3869 mutex_lock(&wq_pool_mutex); 3870 3871 mutex_lock(&wq->mutex); 3872 for_each_pwq(pwq, wq) 3873 pwq_adjust_max_active(pwq); 3874 mutex_unlock(&wq->mutex); 3875 3876 list_add_tail_rcu(&wq->list, &workqueues); 3877 3878 mutex_unlock(&wq_pool_mutex); 3879 3880 return wq; 3881 3882 err_free_wq: 3883 free_workqueue_attrs(wq->unbound_attrs); 3884 kfree(wq); 3885 return NULL; 3886 err_destroy: 3887 destroy_workqueue(wq); 3888 return NULL; 3889 } 3890 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 3891 3892 /** 3893 * destroy_workqueue - safely terminate a workqueue 3894 * @wq: target workqueue 3895 * 3896 * Safely destroy a workqueue. All work currently pending will be done first. 3897 */ 3898 void destroy_workqueue(struct workqueue_struct *wq) 3899 { 3900 struct pool_workqueue *pwq; 3901 int node; 3902 3903 /* drain it before proceeding with destruction */ 3904 drain_workqueue(wq); 3905 3906 /* sanity checks */ 3907 mutex_lock(&wq->mutex); 3908 for_each_pwq(pwq, wq) { 3909 int i; 3910 3911 for (i = 0; i < WORK_NR_COLORS; i++) { 3912 if (WARN_ON(pwq->nr_in_flight[i])) { 3913 mutex_unlock(&wq->mutex); 3914 return; 3915 } 3916 } 3917 3918 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) || 3919 WARN_ON(pwq->nr_active) || 3920 WARN_ON(!list_empty(&pwq->delayed_works))) { 3921 mutex_unlock(&wq->mutex); 3922 return; 3923 } 3924 } 3925 mutex_unlock(&wq->mutex); 3926 3927 /* 3928 * wq list is used to freeze wq, remove from list after 3929 * flushing is complete in case freeze races us. 3930 */ 3931 mutex_lock(&wq_pool_mutex); 3932 list_del_rcu(&wq->list); 3933 mutex_unlock(&wq_pool_mutex); 3934 3935 workqueue_sysfs_unregister(wq); 3936 3937 if (wq->rescuer) 3938 kthread_stop(wq->rescuer->task); 3939 3940 if (!(wq->flags & WQ_UNBOUND)) { 3941 /* 3942 * The base ref is never dropped on per-cpu pwqs. Directly 3943 * schedule RCU free. 3944 */ 3945 call_rcu_sched(&wq->rcu, rcu_free_wq); 3946 } else { 3947 /* 3948 * We're the sole accessor of @wq at this point. Directly 3949 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 3950 * @wq will be freed when the last pwq is released. 3951 */ 3952 for_each_node(node) { 3953 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3954 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 3955 put_pwq_unlocked(pwq); 3956 } 3957 3958 /* 3959 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 3960 * put. Don't access it afterwards. 3961 */ 3962 pwq = wq->dfl_pwq; 3963 wq->dfl_pwq = NULL; 3964 put_pwq_unlocked(pwq); 3965 } 3966 } 3967 EXPORT_SYMBOL_GPL(destroy_workqueue); 3968 3969 /** 3970 * workqueue_set_max_active - adjust max_active of a workqueue 3971 * @wq: target workqueue 3972 * @max_active: new max_active value. 3973 * 3974 * Set max_active of @wq to @max_active. 3975 * 3976 * CONTEXT: 3977 * Don't call from IRQ context. 3978 */ 3979 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 3980 { 3981 struct pool_workqueue *pwq; 3982 3983 /* disallow meddling with max_active for ordered workqueues */ 3984 if (WARN_ON(wq->flags & __WQ_ORDERED)) 3985 return; 3986 3987 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 3988 3989 mutex_lock(&wq->mutex); 3990 3991 wq->saved_max_active = max_active; 3992 3993 for_each_pwq(pwq, wq) 3994 pwq_adjust_max_active(pwq); 3995 3996 mutex_unlock(&wq->mutex); 3997 } 3998 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 3999 4000 /** 4001 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4002 * 4003 * Determine whether %current is a workqueue rescuer. Can be used from 4004 * work functions to determine whether it's being run off the rescuer task. 4005 * 4006 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4007 */ 4008 bool current_is_workqueue_rescuer(void) 4009 { 4010 struct worker *worker = current_wq_worker(); 4011 4012 return worker && worker->rescue_wq; 4013 } 4014 4015 /** 4016 * workqueue_congested - test whether a workqueue is congested 4017 * @cpu: CPU in question 4018 * @wq: target workqueue 4019 * 4020 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4021 * no synchronization around this function and the test result is 4022 * unreliable and only useful as advisory hints or for debugging. 4023 * 4024 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4025 * Note that both per-cpu and unbound workqueues may be associated with 4026 * multiple pool_workqueues which have separate congested states. A 4027 * workqueue being congested on one CPU doesn't mean the workqueue is also 4028 * contested on other CPUs / NUMA nodes. 4029 * 4030 * Return: 4031 * %true if congested, %false otherwise. 4032 */ 4033 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4034 { 4035 struct pool_workqueue *pwq; 4036 bool ret; 4037 4038 rcu_read_lock_sched(); 4039 4040 if (cpu == WORK_CPU_UNBOUND) 4041 cpu = smp_processor_id(); 4042 4043 if (!(wq->flags & WQ_UNBOUND)) 4044 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4045 else 4046 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4047 4048 ret = !list_empty(&pwq->delayed_works); 4049 rcu_read_unlock_sched(); 4050 4051 return ret; 4052 } 4053 EXPORT_SYMBOL_GPL(workqueue_congested); 4054 4055 /** 4056 * work_busy - test whether a work is currently pending or running 4057 * @work: the work to be tested 4058 * 4059 * Test whether @work is currently pending or running. There is no 4060 * synchronization around this function and the test result is 4061 * unreliable and only useful as advisory hints or for debugging. 4062 * 4063 * Return: 4064 * OR'd bitmask of WORK_BUSY_* bits. 4065 */ 4066 unsigned int work_busy(struct work_struct *work) 4067 { 4068 struct worker_pool *pool; 4069 unsigned long flags; 4070 unsigned int ret = 0; 4071 4072 if (work_pending(work)) 4073 ret |= WORK_BUSY_PENDING; 4074 4075 local_irq_save(flags); 4076 pool = get_work_pool(work); 4077 if (pool) { 4078 spin_lock(&pool->lock); 4079 if (find_worker_executing_work(pool, work)) 4080 ret |= WORK_BUSY_RUNNING; 4081 spin_unlock(&pool->lock); 4082 } 4083 local_irq_restore(flags); 4084 4085 return ret; 4086 } 4087 EXPORT_SYMBOL_GPL(work_busy); 4088 4089 /** 4090 * set_worker_desc - set description for the current work item 4091 * @fmt: printf-style format string 4092 * @...: arguments for the format string 4093 * 4094 * This function can be called by a running work function to describe what 4095 * the work item is about. If the worker task gets dumped, this 4096 * information will be printed out together to help debugging. The 4097 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4098 */ 4099 void set_worker_desc(const char *fmt, ...) 4100 { 4101 struct worker *worker = current_wq_worker(); 4102 va_list args; 4103 4104 if (worker) { 4105 va_start(args, fmt); 4106 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4107 va_end(args); 4108 worker->desc_valid = true; 4109 } 4110 } 4111 4112 /** 4113 * print_worker_info - print out worker information and description 4114 * @log_lvl: the log level to use when printing 4115 * @task: target task 4116 * 4117 * If @task is a worker and currently executing a work item, print out the 4118 * name of the workqueue being serviced and worker description set with 4119 * set_worker_desc() by the currently executing work item. 4120 * 4121 * This function can be safely called on any task as long as the 4122 * task_struct itself is accessible. While safe, this function isn't 4123 * synchronized and may print out mixups or garbages of limited length. 4124 */ 4125 void print_worker_info(const char *log_lvl, struct task_struct *task) 4126 { 4127 work_func_t *fn = NULL; 4128 char name[WQ_NAME_LEN] = { }; 4129 char desc[WORKER_DESC_LEN] = { }; 4130 struct pool_workqueue *pwq = NULL; 4131 struct workqueue_struct *wq = NULL; 4132 bool desc_valid = false; 4133 struct worker *worker; 4134 4135 if (!(task->flags & PF_WQ_WORKER)) 4136 return; 4137 4138 /* 4139 * This function is called without any synchronization and @task 4140 * could be in any state. Be careful with dereferences. 4141 */ 4142 worker = probe_kthread_data(task); 4143 4144 /* 4145 * Carefully copy the associated workqueue's workfn and name. Keep 4146 * the original last '\0' in case the original contains garbage. 4147 */ 4148 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4149 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4150 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4151 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4152 4153 /* copy worker description */ 4154 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid)); 4155 if (desc_valid) 4156 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4157 4158 if (fn || name[0] || desc[0]) { 4159 printk("%sWorkqueue: %s %pf", log_lvl, name, fn); 4160 if (desc[0]) 4161 pr_cont(" (%s)", desc); 4162 pr_cont("\n"); 4163 } 4164 } 4165 4166 static void pr_cont_pool_info(struct worker_pool *pool) 4167 { 4168 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4169 if (pool->node != NUMA_NO_NODE) 4170 pr_cont(" node=%d", pool->node); 4171 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4172 } 4173 4174 static void pr_cont_work(bool comma, struct work_struct *work) 4175 { 4176 if (work->func == wq_barrier_func) { 4177 struct wq_barrier *barr; 4178 4179 barr = container_of(work, struct wq_barrier, work); 4180 4181 pr_cont("%s BAR(%d)", comma ? "," : "", 4182 task_pid_nr(barr->task)); 4183 } else { 4184 pr_cont("%s %pf", comma ? "," : "", work->func); 4185 } 4186 } 4187 4188 static void show_pwq(struct pool_workqueue *pwq) 4189 { 4190 struct worker_pool *pool = pwq->pool; 4191 struct work_struct *work; 4192 struct worker *worker; 4193 bool has_in_flight = false, has_pending = false; 4194 int bkt; 4195 4196 pr_info(" pwq %d:", pool->id); 4197 pr_cont_pool_info(pool); 4198 4199 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active, 4200 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4201 4202 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4203 if (worker->current_pwq == pwq) { 4204 has_in_flight = true; 4205 break; 4206 } 4207 } 4208 if (has_in_flight) { 4209 bool comma = false; 4210 4211 pr_info(" in-flight:"); 4212 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4213 if (worker->current_pwq != pwq) 4214 continue; 4215 4216 pr_cont("%s %d%s:%pf", comma ? "," : "", 4217 task_pid_nr(worker->task), 4218 worker == pwq->wq->rescuer ? "(RESCUER)" : "", 4219 worker->current_func); 4220 list_for_each_entry(work, &worker->scheduled, entry) 4221 pr_cont_work(false, work); 4222 comma = true; 4223 } 4224 pr_cont("\n"); 4225 } 4226 4227 list_for_each_entry(work, &pool->worklist, entry) { 4228 if (get_work_pwq(work) == pwq) { 4229 has_pending = true; 4230 break; 4231 } 4232 } 4233 if (has_pending) { 4234 bool comma = false; 4235 4236 pr_info(" pending:"); 4237 list_for_each_entry(work, &pool->worklist, entry) { 4238 if (get_work_pwq(work) != pwq) 4239 continue; 4240 4241 pr_cont_work(comma, work); 4242 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4243 } 4244 pr_cont("\n"); 4245 } 4246 4247 if (!list_empty(&pwq->delayed_works)) { 4248 bool comma = false; 4249 4250 pr_info(" delayed:"); 4251 list_for_each_entry(work, &pwq->delayed_works, entry) { 4252 pr_cont_work(comma, work); 4253 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4254 } 4255 pr_cont("\n"); 4256 } 4257 } 4258 4259 /** 4260 * show_workqueue_state - dump workqueue state 4261 * 4262 * Called from a sysrq handler and prints out all busy workqueues and 4263 * pools. 4264 */ 4265 void show_workqueue_state(void) 4266 { 4267 struct workqueue_struct *wq; 4268 struct worker_pool *pool; 4269 unsigned long flags; 4270 int pi; 4271 4272 rcu_read_lock_sched(); 4273 4274 pr_info("Showing busy workqueues and worker pools:\n"); 4275 4276 list_for_each_entry_rcu(wq, &workqueues, list) { 4277 struct pool_workqueue *pwq; 4278 bool idle = true; 4279 4280 for_each_pwq(pwq, wq) { 4281 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) { 4282 idle = false; 4283 break; 4284 } 4285 } 4286 if (idle) 4287 continue; 4288 4289 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4290 4291 for_each_pwq(pwq, wq) { 4292 spin_lock_irqsave(&pwq->pool->lock, flags); 4293 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4294 show_pwq(pwq); 4295 spin_unlock_irqrestore(&pwq->pool->lock, flags); 4296 } 4297 } 4298 4299 for_each_pool(pool, pi) { 4300 struct worker *worker; 4301 bool first = true; 4302 4303 spin_lock_irqsave(&pool->lock, flags); 4304 if (pool->nr_workers == pool->nr_idle) 4305 goto next_pool; 4306 4307 pr_info("pool %d:", pool->id); 4308 pr_cont_pool_info(pool); 4309 pr_cont(" workers=%d", pool->nr_workers); 4310 if (pool->manager) 4311 pr_cont(" manager: %d", 4312 task_pid_nr(pool->manager->task)); 4313 list_for_each_entry(worker, &pool->idle_list, entry) { 4314 pr_cont(" %s%d", first ? "idle: " : "", 4315 task_pid_nr(worker->task)); 4316 first = false; 4317 } 4318 pr_cont("\n"); 4319 next_pool: 4320 spin_unlock_irqrestore(&pool->lock, flags); 4321 } 4322 4323 rcu_read_unlock_sched(); 4324 } 4325 4326 /* 4327 * CPU hotplug. 4328 * 4329 * There are two challenges in supporting CPU hotplug. Firstly, there 4330 * are a lot of assumptions on strong associations among work, pwq and 4331 * pool which make migrating pending and scheduled works very 4332 * difficult to implement without impacting hot paths. Secondly, 4333 * worker pools serve mix of short, long and very long running works making 4334 * blocked draining impractical. 4335 * 4336 * This is solved by allowing the pools to be disassociated from the CPU 4337 * running as an unbound one and allowing it to be reattached later if the 4338 * cpu comes back online. 4339 */ 4340 4341 static void wq_unbind_fn(struct work_struct *work) 4342 { 4343 int cpu = smp_processor_id(); 4344 struct worker_pool *pool; 4345 struct worker *worker; 4346 4347 for_each_cpu_worker_pool(pool, cpu) { 4348 mutex_lock(&pool->attach_mutex); 4349 spin_lock_irq(&pool->lock); 4350 4351 /* 4352 * We've blocked all attach/detach operations. Make all workers 4353 * unbound and set DISASSOCIATED. Before this, all workers 4354 * except for the ones which are still executing works from 4355 * before the last CPU down must be on the cpu. After 4356 * this, they may become diasporas. 4357 */ 4358 for_each_pool_worker(worker, pool) 4359 worker->flags |= WORKER_UNBOUND; 4360 4361 pool->flags |= POOL_DISASSOCIATED; 4362 4363 spin_unlock_irq(&pool->lock); 4364 mutex_unlock(&pool->attach_mutex); 4365 4366 /* 4367 * Call schedule() so that we cross rq->lock and thus can 4368 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4369 * This is necessary as scheduler callbacks may be invoked 4370 * from other cpus. 4371 */ 4372 schedule(); 4373 4374 /* 4375 * Sched callbacks are disabled now. Zap nr_running. 4376 * After this, nr_running stays zero and need_more_worker() 4377 * and keep_working() are always true as long as the 4378 * worklist is not empty. This pool now behaves as an 4379 * unbound (in terms of concurrency management) pool which 4380 * are served by workers tied to the pool. 4381 */ 4382 atomic_set(&pool->nr_running, 0); 4383 4384 /* 4385 * With concurrency management just turned off, a busy 4386 * worker blocking could lead to lengthy stalls. Kick off 4387 * unbound chain execution of currently pending work items. 4388 */ 4389 spin_lock_irq(&pool->lock); 4390 wake_up_worker(pool); 4391 spin_unlock_irq(&pool->lock); 4392 } 4393 } 4394 4395 /** 4396 * rebind_workers - rebind all workers of a pool to the associated CPU 4397 * @pool: pool of interest 4398 * 4399 * @pool->cpu is coming online. Rebind all workers to the CPU. 4400 */ 4401 static void rebind_workers(struct worker_pool *pool) 4402 { 4403 struct worker *worker; 4404 4405 lockdep_assert_held(&pool->attach_mutex); 4406 4407 /* 4408 * Restore CPU affinity of all workers. As all idle workers should 4409 * be on the run-queue of the associated CPU before any local 4410 * wake-ups for concurrency management happen, restore CPU affinity 4411 * of all workers first and then clear UNBOUND. As we're called 4412 * from CPU_ONLINE, the following shouldn't fail. 4413 */ 4414 for_each_pool_worker(worker, pool) 4415 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4416 pool->attrs->cpumask) < 0); 4417 4418 spin_lock_irq(&pool->lock); 4419 pool->flags &= ~POOL_DISASSOCIATED; 4420 4421 for_each_pool_worker(worker, pool) { 4422 unsigned int worker_flags = worker->flags; 4423 4424 /* 4425 * A bound idle worker should actually be on the runqueue 4426 * of the associated CPU for local wake-ups targeting it to 4427 * work. Kick all idle workers so that they migrate to the 4428 * associated CPU. Doing this in the same loop as 4429 * replacing UNBOUND with REBOUND is safe as no worker will 4430 * be bound before @pool->lock is released. 4431 */ 4432 if (worker_flags & WORKER_IDLE) 4433 wake_up_process(worker->task); 4434 4435 /* 4436 * We want to clear UNBOUND but can't directly call 4437 * worker_clr_flags() or adjust nr_running. Atomically 4438 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4439 * @worker will clear REBOUND using worker_clr_flags() when 4440 * it initiates the next execution cycle thus restoring 4441 * concurrency management. Note that when or whether 4442 * @worker clears REBOUND doesn't affect correctness. 4443 * 4444 * ACCESS_ONCE() is necessary because @worker->flags may be 4445 * tested without holding any lock in 4446 * wq_worker_waking_up(). Without it, NOT_RUNNING test may 4447 * fail incorrectly leading to premature concurrency 4448 * management operations. 4449 */ 4450 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4451 worker_flags |= WORKER_REBOUND; 4452 worker_flags &= ~WORKER_UNBOUND; 4453 ACCESS_ONCE(worker->flags) = worker_flags; 4454 } 4455 4456 spin_unlock_irq(&pool->lock); 4457 } 4458 4459 /** 4460 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4461 * @pool: unbound pool of interest 4462 * @cpu: the CPU which is coming up 4463 * 4464 * An unbound pool may end up with a cpumask which doesn't have any online 4465 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4466 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4467 * online CPU before, cpus_allowed of all its workers should be restored. 4468 */ 4469 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 4470 { 4471 static cpumask_t cpumask; 4472 struct worker *worker; 4473 4474 lockdep_assert_held(&pool->attach_mutex); 4475 4476 /* is @cpu allowed for @pool? */ 4477 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 4478 return; 4479 4480 /* is @cpu the only online CPU? */ 4481 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 4482 if (cpumask_weight(&cpumask) != 1) 4483 return; 4484 4485 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 4486 for_each_pool_worker(worker, pool) 4487 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4488 pool->attrs->cpumask) < 0); 4489 } 4490 4491 /* 4492 * Workqueues should be brought up before normal priority CPU notifiers. 4493 * This will be registered high priority CPU notifier. 4494 */ 4495 static int workqueue_cpu_up_callback(struct notifier_block *nfb, 4496 unsigned long action, 4497 void *hcpu) 4498 { 4499 int cpu = (unsigned long)hcpu; 4500 struct worker_pool *pool; 4501 struct workqueue_struct *wq; 4502 int pi; 4503 4504 switch (action & ~CPU_TASKS_FROZEN) { 4505 case CPU_UP_PREPARE: 4506 for_each_cpu_worker_pool(pool, cpu) { 4507 if (pool->nr_workers) 4508 continue; 4509 if (!create_worker(pool)) 4510 return NOTIFY_BAD; 4511 } 4512 break; 4513 4514 case CPU_DOWN_FAILED: 4515 case CPU_ONLINE: 4516 mutex_lock(&wq_pool_mutex); 4517 4518 for_each_pool(pool, pi) { 4519 mutex_lock(&pool->attach_mutex); 4520 4521 if (pool->cpu == cpu) 4522 rebind_workers(pool); 4523 else if (pool->cpu < 0) 4524 restore_unbound_workers_cpumask(pool, cpu); 4525 4526 mutex_unlock(&pool->attach_mutex); 4527 } 4528 4529 /* update NUMA affinity of unbound workqueues */ 4530 list_for_each_entry(wq, &workqueues, list) 4531 wq_update_unbound_numa(wq, cpu, true); 4532 4533 mutex_unlock(&wq_pool_mutex); 4534 break; 4535 } 4536 return NOTIFY_OK; 4537 } 4538 4539 /* 4540 * Workqueues should be brought down after normal priority CPU notifiers. 4541 * This will be registered as low priority CPU notifier. 4542 */ 4543 static int workqueue_cpu_down_callback(struct notifier_block *nfb, 4544 unsigned long action, 4545 void *hcpu) 4546 { 4547 int cpu = (unsigned long)hcpu; 4548 struct work_struct unbind_work; 4549 struct workqueue_struct *wq; 4550 4551 switch (action & ~CPU_TASKS_FROZEN) { 4552 case CPU_DOWN_PREPARE: 4553 /* unbinding per-cpu workers should happen on the local CPU */ 4554 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn); 4555 queue_work_on(cpu, system_highpri_wq, &unbind_work); 4556 4557 /* update NUMA affinity of unbound workqueues */ 4558 mutex_lock(&wq_pool_mutex); 4559 list_for_each_entry(wq, &workqueues, list) 4560 wq_update_unbound_numa(wq, cpu, false); 4561 mutex_unlock(&wq_pool_mutex); 4562 4563 /* wait for per-cpu unbinding to finish */ 4564 flush_work(&unbind_work); 4565 destroy_work_on_stack(&unbind_work); 4566 break; 4567 } 4568 return NOTIFY_OK; 4569 } 4570 4571 #ifdef CONFIG_SMP 4572 4573 struct work_for_cpu { 4574 struct work_struct work; 4575 long (*fn)(void *); 4576 void *arg; 4577 long ret; 4578 }; 4579 4580 static void work_for_cpu_fn(struct work_struct *work) 4581 { 4582 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 4583 4584 wfc->ret = wfc->fn(wfc->arg); 4585 } 4586 4587 /** 4588 * work_on_cpu - run a function in user context on a particular cpu 4589 * @cpu: the cpu to run on 4590 * @fn: the function to run 4591 * @arg: the function arg 4592 * 4593 * It is up to the caller to ensure that the cpu doesn't go offline. 4594 * The caller must not hold any locks which would prevent @fn from completing. 4595 * 4596 * Return: The value @fn returns. 4597 */ 4598 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 4599 { 4600 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 4601 4602 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 4603 schedule_work_on(cpu, &wfc.work); 4604 flush_work(&wfc.work); 4605 destroy_work_on_stack(&wfc.work); 4606 return wfc.ret; 4607 } 4608 EXPORT_SYMBOL_GPL(work_on_cpu); 4609 #endif /* CONFIG_SMP */ 4610 4611 #ifdef CONFIG_FREEZER 4612 4613 /** 4614 * freeze_workqueues_begin - begin freezing workqueues 4615 * 4616 * Start freezing workqueues. After this function returns, all freezable 4617 * workqueues will queue new works to their delayed_works list instead of 4618 * pool->worklist. 4619 * 4620 * CONTEXT: 4621 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4622 */ 4623 void freeze_workqueues_begin(void) 4624 { 4625 struct workqueue_struct *wq; 4626 struct pool_workqueue *pwq; 4627 4628 mutex_lock(&wq_pool_mutex); 4629 4630 WARN_ON_ONCE(workqueue_freezing); 4631 workqueue_freezing = true; 4632 4633 list_for_each_entry(wq, &workqueues, list) { 4634 mutex_lock(&wq->mutex); 4635 for_each_pwq(pwq, wq) 4636 pwq_adjust_max_active(pwq); 4637 mutex_unlock(&wq->mutex); 4638 } 4639 4640 mutex_unlock(&wq_pool_mutex); 4641 } 4642 4643 /** 4644 * freeze_workqueues_busy - are freezable workqueues still busy? 4645 * 4646 * Check whether freezing is complete. This function must be called 4647 * between freeze_workqueues_begin() and thaw_workqueues(). 4648 * 4649 * CONTEXT: 4650 * Grabs and releases wq_pool_mutex. 4651 * 4652 * Return: 4653 * %true if some freezable workqueues are still busy. %false if freezing 4654 * is complete. 4655 */ 4656 bool freeze_workqueues_busy(void) 4657 { 4658 bool busy = false; 4659 struct workqueue_struct *wq; 4660 struct pool_workqueue *pwq; 4661 4662 mutex_lock(&wq_pool_mutex); 4663 4664 WARN_ON_ONCE(!workqueue_freezing); 4665 4666 list_for_each_entry(wq, &workqueues, list) { 4667 if (!(wq->flags & WQ_FREEZABLE)) 4668 continue; 4669 /* 4670 * nr_active is monotonically decreasing. It's safe 4671 * to peek without lock. 4672 */ 4673 rcu_read_lock_sched(); 4674 for_each_pwq(pwq, wq) { 4675 WARN_ON_ONCE(pwq->nr_active < 0); 4676 if (pwq->nr_active) { 4677 busy = true; 4678 rcu_read_unlock_sched(); 4679 goto out_unlock; 4680 } 4681 } 4682 rcu_read_unlock_sched(); 4683 } 4684 out_unlock: 4685 mutex_unlock(&wq_pool_mutex); 4686 return busy; 4687 } 4688 4689 /** 4690 * thaw_workqueues - thaw workqueues 4691 * 4692 * Thaw workqueues. Normal queueing is restored and all collected 4693 * frozen works are transferred to their respective pool worklists. 4694 * 4695 * CONTEXT: 4696 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4697 */ 4698 void thaw_workqueues(void) 4699 { 4700 struct workqueue_struct *wq; 4701 struct pool_workqueue *pwq; 4702 4703 mutex_lock(&wq_pool_mutex); 4704 4705 if (!workqueue_freezing) 4706 goto out_unlock; 4707 4708 workqueue_freezing = false; 4709 4710 /* restore max_active and repopulate worklist */ 4711 list_for_each_entry(wq, &workqueues, list) { 4712 mutex_lock(&wq->mutex); 4713 for_each_pwq(pwq, wq) 4714 pwq_adjust_max_active(pwq); 4715 mutex_unlock(&wq->mutex); 4716 } 4717 4718 out_unlock: 4719 mutex_unlock(&wq_pool_mutex); 4720 } 4721 #endif /* CONFIG_FREEZER */ 4722 4723 static int workqueue_apply_unbound_cpumask(void) 4724 { 4725 LIST_HEAD(ctxs); 4726 int ret = 0; 4727 struct workqueue_struct *wq; 4728 struct apply_wqattrs_ctx *ctx, *n; 4729 4730 lockdep_assert_held(&wq_pool_mutex); 4731 4732 list_for_each_entry(wq, &workqueues, list) { 4733 if (!(wq->flags & WQ_UNBOUND)) 4734 continue; 4735 /* creating multiple pwqs breaks ordering guarantee */ 4736 if (wq->flags & __WQ_ORDERED) 4737 continue; 4738 4739 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs); 4740 if (!ctx) { 4741 ret = -ENOMEM; 4742 break; 4743 } 4744 4745 list_add_tail(&ctx->list, &ctxs); 4746 } 4747 4748 list_for_each_entry_safe(ctx, n, &ctxs, list) { 4749 if (!ret) 4750 apply_wqattrs_commit(ctx); 4751 apply_wqattrs_cleanup(ctx); 4752 } 4753 4754 return ret; 4755 } 4756 4757 /** 4758 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 4759 * @cpumask: the cpumask to set 4760 * 4761 * The low-level workqueues cpumask is a global cpumask that limits 4762 * the affinity of all unbound workqueues. This function check the @cpumask 4763 * and apply it to all unbound workqueues and updates all pwqs of them. 4764 * 4765 * Retun: 0 - Success 4766 * -EINVAL - Invalid @cpumask 4767 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 4768 */ 4769 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 4770 { 4771 int ret = -EINVAL; 4772 cpumask_var_t saved_cpumask; 4773 4774 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) 4775 return -ENOMEM; 4776 4777 cpumask_and(cpumask, cpumask, cpu_possible_mask); 4778 if (!cpumask_empty(cpumask)) { 4779 apply_wqattrs_lock(); 4780 4781 /* save the old wq_unbound_cpumask. */ 4782 cpumask_copy(saved_cpumask, wq_unbound_cpumask); 4783 4784 /* update wq_unbound_cpumask at first and apply it to wqs. */ 4785 cpumask_copy(wq_unbound_cpumask, cpumask); 4786 ret = workqueue_apply_unbound_cpumask(); 4787 4788 /* restore the wq_unbound_cpumask when failed. */ 4789 if (ret < 0) 4790 cpumask_copy(wq_unbound_cpumask, saved_cpumask); 4791 4792 apply_wqattrs_unlock(); 4793 } 4794 4795 free_cpumask_var(saved_cpumask); 4796 return ret; 4797 } 4798 4799 #ifdef CONFIG_SYSFS 4800 /* 4801 * Workqueues with WQ_SYSFS flag set is visible to userland via 4802 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 4803 * following attributes. 4804 * 4805 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 4806 * max_active RW int : maximum number of in-flight work items 4807 * 4808 * Unbound workqueues have the following extra attributes. 4809 * 4810 * id RO int : the associated pool ID 4811 * nice RW int : nice value of the workers 4812 * cpumask RW mask : bitmask of allowed CPUs for the workers 4813 */ 4814 struct wq_device { 4815 struct workqueue_struct *wq; 4816 struct device dev; 4817 }; 4818 4819 static struct workqueue_struct *dev_to_wq(struct device *dev) 4820 { 4821 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 4822 4823 return wq_dev->wq; 4824 } 4825 4826 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 4827 char *buf) 4828 { 4829 struct workqueue_struct *wq = dev_to_wq(dev); 4830 4831 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 4832 } 4833 static DEVICE_ATTR_RO(per_cpu); 4834 4835 static ssize_t max_active_show(struct device *dev, 4836 struct device_attribute *attr, char *buf) 4837 { 4838 struct workqueue_struct *wq = dev_to_wq(dev); 4839 4840 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 4841 } 4842 4843 static ssize_t max_active_store(struct device *dev, 4844 struct device_attribute *attr, const char *buf, 4845 size_t count) 4846 { 4847 struct workqueue_struct *wq = dev_to_wq(dev); 4848 int val; 4849 4850 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 4851 return -EINVAL; 4852 4853 workqueue_set_max_active(wq, val); 4854 return count; 4855 } 4856 static DEVICE_ATTR_RW(max_active); 4857 4858 static struct attribute *wq_sysfs_attrs[] = { 4859 &dev_attr_per_cpu.attr, 4860 &dev_attr_max_active.attr, 4861 NULL, 4862 }; 4863 ATTRIBUTE_GROUPS(wq_sysfs); 4864 4865 static ssize_t wq_pool_ids_show(struct device *dev, 4866 struct device_attribute *attr, char *buf) 4867 { 4868 struct workqueue_struct *wq = dev_to_wq(dev); 4869 const char *delim = ""; 4870 int node, written = 0; 4871 4872 rcu_read_lock_sched(); 4873 for_each_node(node) { 4874 written += scnprintf(buf + written, PAGE_SIZE - written, 4875 "%s%d:%d", delim, node, 4876 unbound_pwq_by_node(wq, node)->pool->id); 4877 delim = " "; 4878 } 4879 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 4880 rcu_read_unlock_sched(); 4881 4882 return written; 4883 } 4884 4885 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 4886 char *buf) 4887 { 4888 struct workqueue_struct *wq = dev_to_wq(dev); 4889 int written; 4890 4891 mutex_lock(&wq->mutex); 4892 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 4893 mutex_unlock(&wq->mutex); 4894 4895 return written; 4896 } 4897 4898 /* prepare workqueue_attrs for sysfs store operations */ 4899 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 4900 { 4901 struct workqueue_attrs *attrs; 4902 4903 lockdep_assert_held(&wq_pool_mutex); 4904 4905 attrs = alloc_workqueue_attrs(GFP_KERNEL); 4906 if (!attrs) 4907 return NULL; 4908 4909 copy_workqueue_attrs(attrs, wq->unbound_attrs); 4910 return attrs; 4911 } 4912 4913 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 4914 const char *buf, size_t count) 4915 { 4916 struct workqueue_struct *wq = dev_to_wq(dev); 4917 struct workqueue_attrs *attrs; 4918 int ret = -ENOMEM; 4919 4920 apply_wqattrs_lock(); 4921 4922 attrs = wq_sysfs_prep_attrs(wq); 4923 if (!attrs) 4924 goto out_unlock; 4925 4926 if (sscanf(buf, "%d", &attrs->nice) == 1 && 4927 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 4928 ret = apply_workqueue_attrs_locked(wq, attrs); 4929 else 4930 ret = -EINVAL; 4931 4932 out_unlock: 4933 apply_wqattrs_unlock(); 4934 free_workqueue_attrs(attrs); 4935 return ret ?: count; 4936 } 4937 4938 static ssize_t wq_cpumask_show(struct device *dev, 4939 struct device_attribute *attr, char *buf) 4940 { 4941 struct workqueue_struct *wq = dev_to_wq(dev); 4942 int written; 4943 4944 mutex_lock(&wq->mutex); 4945 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 4946 cpumask_pr_args(wq->unbound_attrs->cpumask)); 4947 mutex_unlock(&wq->mutex); 4948 return written; 4949 } 4950 4951 static ssize_t wq_cpumask_store(struct device *dev, 4952 struct device_attribute *attr, 4953 const char *buf, size_t count) 4954 { 4955 struct workqueue_struct *wq = dev_to_wq(dev); 4956 struct workqueue_attrs *attrs; 4957 int ret = -ENOMEM; 4958 4959 apply_wqattrs_lock(); 4960 4961 attrs = wq_sysfs_prep_attrs(wq); 4962 if (!attrs) 4963 goto out_unlock; 4964 4965 ret = cpumask_parse(buf, attrs->cpumask); 4966 if (!ret) 4967 ret = apply_workqueue_attrs_locked(wq, attrs); 4968 4969 out_unlock: 4970 apply_wqattrs_unlock(); 4971 free_workqueue_attrs(attrs); 4972 return ret ?: count; 4973 } 4974 4975 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 4976 char *buf) 4977 { 4978 struct workqueue_struct *wq = dev_to_wq(dev); 4979 int written; 4980 4981 mutex_lock(&wq->mutex); 4982 written = scnprintf(buf, PAGE_SIZE, "%d\n", 4983 !wq->unbound_attrs->no_numa); 4984 mutex_unlock(&wq->mutex); 4985 4986 return written; 4987 } 4988 4989 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 4990 const char *buf, size_t count) 4991 { 4992 struct workqueue_struct *wq = dev_to_wq(dev); 4993 struct workqueue_attrs *attrs; 4994 int v, ret = -ENOMEM; 4995 4996 apply_wqattrs_lock(); 4997 4998 attrs = wq_sysfs_prep_attrs(wq); 4999 if (!attrs) 5000 goto out_unlock; 5001 5002 ret = -EINVAL; 5003 if (sscanf(buf, "%d", &v) == 1) { 5004 attrs->no_numa = !v; 5005 ret = apply_workqueue_attrs_locked(wq, attrs); 5006 } 5007 5008 out_unlock: 5009 apply_wqattrs_unlock(); 5010 free_workqueue_attrs(attrs); 5011 return ret ?: count; 5012 } 5013 5014 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5015 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5016 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5017 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5018 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5019 __ATTR_NULL, 5020 }; 5021 5022 static struct bus_type wq_subsys = { 5023 .name = "workqueue", 5024 .dev_groups = wq_sysfs_groups, 5025 }; 5026 5027 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5028 struct device_attribute *attr, char *buf) 5029 { 5030 int written; 5031 5032 mutex_lock(&wq_pool_mutex); 5033 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5034 cpumask_pr_args(wq_unbound_cpumask)); 5035 mutex_unlock(&wq_pool_mutex); 5036 5037 return written; 5038 } 5039 5040 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5041 struct device_attribute *attr, const char *buf, size_t count) 5042 { 5043 cpumask_var_t cpumask; 5044 int ret; 5045 5046 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5047 return -ENOMEM; 5048 5049 ret = cpumask_parse(buf, cpumask); 5050 if (!ret) 5051 ret = workqueue_set_unbound_cpumask(cpumask); 5052 5053 free_cpumask_var(cpumask); 5054 return ret ? ret : count; 5055 } 5056 5057 static struct device_attribute wq_sysfs_cpumask_attr = 5058 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5059 wq_unbound_cpumask_store); 5060 5061 static int __init wq_sysfs_init(void) 5062 { 5063 int err; 5064 5065 err = subsys_virtual_register(&wq_subsys, NULL); 5066 if (err) 5067 return err; 5068 5069 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr); 5070 } 5071 core_initcall(wq_sysfs_init); 5072 5073 static void wq_device_release(struct device *dev) 5074 { 5075 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5076 5077 kfree(wq_dev); 5078 } 5079 5080 /** 5081 * workqueue_sysfs_register - make a workqueue visible in sysfs 5082 * @wq: the workqueue to register 5083 * 5084 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5085 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5086 * which is the preferred method. 5087 * 5088 * Workqueue user should use this function directly iff it wants to apply 5089 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5090 * apply_workqueue_attrs() may race against userland updating the 5091 * attributes. 5092 * 5093 * Return: 0 on success, -errno on failure. 5094 */ 5095 int workqueue_sysfs_register(struct workqueue_struct *wq) 5096 { 5097 struct wq_device *wq_dev; 5098 int ret; 5099 5100 /* 5101 * Adjusting max_active or creating new pwqs by applying 5102 * attributes breaks ordering guarantee. Disallow exposing ordered 5103 * workqueues. 5104 */ 5105 if (WARN_ON(wq->flags & __WQ_ORDERED)) 5106 return -EINVAL; 5107 5108 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5109 if (!wq_dev) 5110 return -ENOMEM; 5111 5112 wq_dev->wq = wq; 5113 wq_dev->dev.bus = &wq_subsys; 5114 wq_dev->dev.init_name = wq->name; 5115 wq_dev->dev.release = wq_device_release; 5116 5117 /* 5118 * unbound_attrs are created separately. Suppress uevent until 5119 * everything is ready. 5120 */ 5121 dev_set_uevent_suppress(&wq_dev->dev, true); 5122 5123 ret = device_register(&wq_dev->dev); 5124 if (ret) { 5125 kfree(wq_dev); 5126 wq->wq_dev = NULL; 5127 return ret; 5128 } 5129 5130 if (wq->flags & WQ_UNBOUND) { 5131 struct device_attribute *attr; 5132 5133 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5134 ret = device_create_file(&wq_dev->dev, attr); 5135 if (ret) { 5136 device_unregister(&wq_dev->dev); 5137 wq->wq_dev = NULL; 5138 return ret; 5139 } 5140 } 5141 } 5142 5143 dev_set_uevent_suppress(&wq_dev->dev, false); 5144 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5145 return 0; 5146 } 5147 5148 /** 5149 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5150 * @wq: the workqueue to unregister 5151 * 5152 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5153 */ 5154 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5155 { 5156 struct wq_device *wq_dev = wq->wq_dev; 5157 5158 if (!wq->wq_dev) 5159 return; 5160 5161 wq->wq_dev = NULL; 5162 device_unregister(&wq_dev->dev); 5163 } 5164 #else /* CONFIG_SYSFS */ 5165 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5166 #endif /* CONFIG_SYSFS */ 5167 5168 static void __init wq_numa_init(void) 5169 { 5170 cpumask_var_t *tbl; 5171 int node, cpu; 5172 5173 if (num_possible_nodes() <= 1) 5174 return; 5175 5176 if (wq_disable_numa) { 5177 pr_info("workqueue: NUMA affinity support disabled\n"); 5178 return; 5179 } 5180 5181 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL); 5182 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5183 5184 /* 5185 * We want masks of possible CPUs of each node which isn't readily 5186 * available. Build one from cpu_to_node() which should have been 5187 * fully initialized by now. 5188 */ 5189 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL); 5190 BUG_ON(!tbl); 5191 5192 for_each_node(node) 5193 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5194 node_online(node) ? node : NUMA_NO_NODE)); 5195 5196 for_each_possible_cpu(cpu) { 5197 node = cpu_to_node(cpu); 5198 if (WARN_ON(node == NUMA_NO_NODE)) { 5199 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5200 /* happens iff arch is bonkers, let's just proceed */ 5201 return; 5202 } 5203 cpumask_set_cpu(cpu, tbl[node]); 5204 } 5205 5206 wq_numa_possible_cpumask = tbl; 5207 wq_numa_enabled = true; 5208 } 5209 5210 static int __init init_workqueues(void) 5211 { 5212 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5213 int i, cpu; 5214 5215 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5216 5217 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 5218 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask); 5219 5220 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5221 5222 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP); 5223 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN); 5224 5225 wq_numa_init(); 5226 5227 /* initialize CPU pools */ 5228 for_each_possible_cpu(cpu) { 5229 struct worker_pool *pool; 5230 5231 i = 0; 5232 for_each_cpu_worker_pool(pool, cpu) { 5233 BUG_ON(init_worker_pool(pool)); 5234 pool->cpu = cpu; 5235 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5236 pool->attrs->nice = std_nice[i++]; 5237 pool->node = cpu_to_node(cpu); 5238 5239 /* alloc pool ID */ 5240 mutex_lock(&wq_pool_mutex); 5241 BUG_ON(worker_pool_assign_id(pool)); 5242 mutex_unlock(&wq_pool_mutex); 5243 } 5244 } 5245 5246 /* create the initial worker */ 5247 for_each_online_cpu(cpu) { 5248 struct worker_pool *pool; 5249 5250 for_each_cpu_worker_pool(pool, cpu) { 5251 pool->flags &= ~POOL_DISASSOCIATED; 5252 BUG_ON(!create_worker(pool)); 5253 } 5254 } 5255 5256 /* create default unbound and ordered wq attrs */ 5257 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5258 struct workqueue_attrs *attrs; 5259 5260 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5261 attrs->nice = std_nice[i]; 5262 unbound_std_wq_attrs[i] = attrs; 5263 5264 /* 5265 * An ordered wq should have only one pwq as ordering is 5266 * guaranteed by max_active which is enforced by pwqs. 5267 * Turn off NUMA so that dfl_pwq is used for all nodes. 5268 */ 5269 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5270 attrs->nice = std_nice[i]; 5271 attrs->no_numa = true; 5272 ordered_wq_attrs[i] = attrs; 5273 } 5274 5275 system_wq = alloc_workqueue("events", 0, 0); 5276 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5277 system_long_wq = alloc_workqueue("events_long", 0, 0); 5278 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5279 WQ_UNBOUND_MAX_ACTIVE); 5280 system_freezable_wq = alloc_workqueue("events_freezable", 5281 WQ_FREEZABLE, 0); 5282 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5283 WQ_POWER_EFFICIENT, 0); 5284 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5285 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5286 0); 5287 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5288 !system_unbound_wq || !system_freezable_wq || 5289 !system_power_efficient_wq || 5290 !system_freezable_power_efficient_wq); 5291 return 0; 5292 } 5293 early_initcall(init_workqueues); 5294