xref: /openbmc/linux/kernel/workqueue.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53 
54 #include "workqueue_internal.h"
55 
56 enum {
57 	/*
58 	 * worker_pool flags
59 	 *
60 	 * A bound pool is either associated or disassociated with its CPU.
61 	 * While associated (!DISASSOCIATED), all workers are bound to the
62 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
63 	 * is in effect.
64 	 *
65 	 * While DISASSOCIATED, the cpu may be offline and all workers have
66 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
67 	 * be executing on any CPU.  The pool behaves as an unbound one.
68 	 *
69 	 * Note that DISASSOCIATED should be flipped only while holding
70 	 * wq_pool_attach_mutex to avoid changing binding state while
71 	 * worker_attach_to_pool() is in progress.
72 	 */
73 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
74 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
75 
76 	/* worker flags */
77 	WORKER_DIE		= 1 << 1,	/* die die die */
78 	WORKER_IDLE		= 1 << 2,	/* is idle */
79 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
80 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
81 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
82 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
83 
84 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
85 				  WORKER_UNBOUND | WORKER_REBOUND,
86 
87 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
88 
89 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
90 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
91 
92 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
93 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
94 
95 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
96 						/* call for help after 10ms
97 						   (min two ticks) */
98 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
99 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
100 
101 	/*
102 	 * Rescue workers are used only on emergencies and shared by
103 	 * all cpus.  Give MIN_NICE.
104 	 */
105 	RESCUER_NICE_LEVEL	= MIN_NICE,
106 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
107 
108 	WQ_NAME_LEN		= 24,
109 };
110 
111 /*
112  * Structure fields follow one of the following exclusion rules.
113  *
114  * I: Modifiable by initialization/destruction paths and read-only for
115  *    everyone else.
116  *
117  * P: Preemption protected.  Disabling preemption is enough and should
118  *    only be modified and accessed from the local cpu.
119  *
120  * L: pool->lock protected.  Access with pool->lock held.
121  *
122  * X: During normal operation, modification requires pool->lock and should
123  *    be done only from local cpu.  Either disabling preemption on local
124  *    cpu or grabbing pool->lock is enough for read access.  If
125  *    POOL_DISASSOCIATED is set, it's identical to L.
126  *
127  * A: wq_pool_attach_mutex protected.
128  *
129  * PL: wq_pool_mutex protected.
130  *
131  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
132  *
133  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
134  *
135  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
136  *      RCU for reads.
137  *
138  * WQ: wq->mutex protected.
139  *
140  * WR: wq->mutex protected for writes.  RCU protected for reads.
141  *
142  * MD: wq_mayday_lock protected.
143  */
144 
145 /* struct worker is defined in workqueue_internal.h */
146 
147 struct worker_pool {
148 	spinlock_t		lock;		/* the pool lock */
149 	int			cpu;		/* I: the associated cpu */
150 	int			node;		/* I: the associated node ID */
151 	int			id;		/* I: pool ID */
152 	unsigned int		flags;		/* X: flags */
153 
154 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
155 
156 	struct list_head	worklist;	/* L: list of pending works */
157 
158 	int			nr_workers;	/* L: total number of workers */
159 	int			nr_idle;	/* L: currently idle workers */
160 
161 	struct list_head	idle_list;	/* X: list of idle workers */
162 	struct timer_list	idle_timer;	/* L: worker idle timeout */
163 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
164 
165 	/* a workers is either on busy_hash or idle_list, or the manager */
166 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
167 						/* L: hash of busy workers */
168 
169 	struct worker		*manager;	/* L: purely informational */
170 	struct list_head	workers;	/* A: attached workers */
171 	struct completion	*detach_completion; /* all workers detached */
172 
173 	struct ida		worker_ida;	/* worker IDs for task name */
174 
175 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
176 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
177 	int			refcnt;		/* PL: refcnt for unbound pools */
178 
179 	/*
180 	 * The current concurrency level.  As it's likely to be accessed
181 	 * from other CPUs during try_to_wake_up(), put it in a separate
182 	 * cacheline.
183 	 */
184 	atomic_t		nr_running ____cacheline_aligned_in_smp;
185 
186 	/*
187 	 * Destruction of pool is RCU protected to allow dereferences
188 	 * from get_work_pool().
189 	 */
190 	struct rcu_head		rcu;
191 } ____cacheline_aligned_in_smp;
192 
193 /*
194  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
195  * of work_struct->data are used for flags and the remaining high bits
196  * point to the pwq; thus, pwqs need to be aligned at two's power of the
197  * number of flag bits.
198  */
199 struct pool_workqueue {
200 	struct worker_pool	*pool;		/* I: the associated pool */
201 	struct workqueue_struct *wq;		/* I: the owning workqueue */
202 	int			work_color;	/* L: current color */
203 	int			flush_color;	/* L: flushing color */
204 	int			refcnt;		/* L: reference count */
205 	int			nr_in_flight[WORK_NR_COLORS];
206 						/* L: nr of in_flight works */
207 	int			nr_active;	/* L: nr of active works */
208 	int			max_active;	/* L: max active works */
209 	struct list_head	delayed_works;	/* L: delayed works */
210 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
211 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
212 
213 	/*
214 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
215 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
216 	 * itself is also RCU protected so that the first pwq can be
217 	 * determined without grabbing wq->mutex.
218 	 */
219 	struct work_struct	unbound_release_work;
220 	struct rcu_head		rcu;
221 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
222 
223 /*
224  * Structure used to wait for workqueue flush.
225  */
226 struct wq_flusher {
227 	struct list_head	list;		/* WQ: list of flushers */
228 	int			flush_color;	/* WQ: flush color waiting for */
229 	struct completion	done;		/* flush completion */
230 };
231 
232 struct wq_device;
233 
234 /*
235  * The externally visible workqueue.  It relays the issued work items to
236  * the appropriate worker_pool through its pool_workqueues.
237  */
238 struct workqueue_struct {
239 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
240 	struct list_head	list;		/* PR: list of all workqueues */
241 
242 	struct mutex		mutex;		/* protects this wq */
243 	int			work_color;	/* WQ: current work color */
244 	int			flush_color;	/* WQ: current flush color */
245 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
246 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
247 	struct list_head	flusher_queue;	/* WQ: flush waiters */
248 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
249 
250 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
251 	struct worker		*rescuer;	/* MD: rescue worker */
252 
253 	int			nr_drainers;	/* WQ: drain in progress */
254 	int			saved_max_active; /* WQ: saved pwq max_active */
255 
256 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
257 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
258 
259 #ifdef CONFIG_SYSFS
260 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
261 #endif
262 #ifdef CONFIG_LOCKDEP
263 	char			*lock_name;
264 	struct lock_class_key	key;
265 	struct lockdep_map	lockdep_map;
266 #endif
267 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
268 
269 	/*
270 	 * Destruction of workqueue_struct is RCU protected to allow walking
271 	 * the workqueues list without grabbing wq_pool_mutex.
272 	 * This is used to dump all workqueues from sysrq.
273 	 */
274 	struct rcu_head		rcu;
275 
276 	/* hot fields used during command issue, aligned to cacheline */
277 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
278 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
279 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
280 };
281 
282 static struct kmem_cache *pwq_cache;
283 
284 static cpumask_var_t *wq_numa_possible_cpumask;
285 					/* possible CPUs of each node */
286 
287 static bool wq_disable_numa;
288 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
289 
290 /* see the comment above the definition of WQ_POWER_EFFICIENT */
291 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
292 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
293 
294 static bool wq_online;			/* can kworkers be created yet? */
295 
296 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
297 
298 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
299 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
300 
301 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
302 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
303 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
304 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
305 
306 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
307 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
308 
309 /* PL: allowable cpus for unbound wqs and work items */
310 static cpumask_var_t wq_unbound_cpumask;
311 
312 /* CPU where unbound work was last round robin scheduled from this CPU */
313 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
314 
315 /*
316  * Local execution of unbound work items is no longer guaranteed.  The
317  * following always forces round-robin CPU selection on unbound work items
318  * to uncover usages which depend on it.
319  */
320 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
321 static bool wq_debug_force_rr_cpu = true;
322 #else
323 static bool wq_debug_force_rr_cpu = false;
324 #endif
325 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
326 
327 /* the per-cpu worker pools */
328 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
329 
330 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
331 
332 /* PL: hash of all unbound pools keyed by pool->attrs */
333 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
334 
335 /* I: attributes used when instantiating standard unbound pools on demand */
336 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
337 
338 /* I: attributes used when instantiating ordered pools on demand */
339 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
340 
341 struct workqueue_struct *system_wq __read_mostly;
342 EXPORT_SYMBOL(system_wq);
343 struct workqueue_struct *system_highpri_wq __read_mostly;
344 EXPORT_SYMBOL_GPL(system_highpri_wq);
345 struct workqueue_struct *system_long_wq __read_mostly;
346 EXPORT_SYMBOL_GPL(system_long_wq);
347 struct workqueue_struct *system_unbound_wq __read_mostly;
348 EXPORT_SYMBOL_GPL(system_unbound_wq);
349 struct workqueue_struct *system_freezable_wq __read_mostly;
350 EXPORT_SYMBOL_GPL(system_freezable_wq);
351 struct workqueue_struct *system_power_efficient_wq __read_mostly;
352 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
353 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
354 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
355 
356 static int worker_thread(void *__worker);
357 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
358 static void show_pwq(struct pool_workqueue *pwq);
359 
360 #define CREATE_TRACE_POINTS
361 #include <trace/events/workqueue.h>
362 
363 #define assert_rcu_or_pool_mutex()					\
364 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
365 			 !lockdep_is_held(&wq_pool_mutex),		\
366 			 "RCU or wq_pool_mutex should be held")
367 
368 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
369 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
370 			 !lockdep_is_held(&wq->mutex) &&		\
371 			 !lockdep_is_held(&wq_pool_mutex),		\
372 			 "RCU, wq->mutex or wq_pool_mutex should be held")
373 
374 #define for_each_cpu_worker_pool(pool, cpu)				\
375 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
376 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
377 	     (pool)++)
378 
379 /**
380  * for_each_pool - iterate through all worker_pools in the system
381  * @pool: iteration cursor
382  * @pi: integer used for iteration
383  *
384  * This must be called either with wq_pool_mutex held or RCU read
385  * locked.  If the pool needs to be used beyond the locking in effect, the
386  * caller is responsible for guaranteeing that the pool stays online.
387  *
388  * The if/else clause exists only for the lockdep assertion and can be
389  * ignored.
390  */
391 #define for_each_pool(pool, pi)						\
392 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
393 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
394 		else
395 
396 /**
397  * for_each_pool_worker - iterate through all workers of a worker_pool
398  * @worker: iteration cursor
399  * @pool: worker_pool to iterate workers of
400  *
401  * This must be called with wq_pool_attach_mutex.
402  *
403  * The if/else clause exists only for the lockdep assertion and can be
404  * ignored.
405  */
406 #define for_each_pool_worker(worker, pool)				\
407 	list_for_each_entry((worker), &(pool)->workers, node)		\
408 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
409 		else
410 
411 /**
412  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
413  * @pwq: iteration cursor
414  * @wq: the target workqueue
415  *
416  * This must be called either with wq->mutex held or RCU read locked.
417  * If the pwq needs to be used beyond the locking in effect, the caller is
418  * responsible for guaranteeing that the pwq stays online.
419  *
420  * The if/else clause exists only for the lockdep assertion and can be
421  * ignored.
422  */
423 #define for_each_pwq(pwq, wq)						\
424 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
425 				 lockdep_is_held(&(wq->mutex)))
426 
427 #ifdef CONFIG_DEBUG_OBJECTS_WORK
428 
429 static struct debug_obj_descr work_debug_descr;
430 
431 static void *work_debug_hint(void *addr)
432 {
433 	return ((struct work_struct *) addr)->func;
434 }
435 
436 static bool work_is_static_object(void *addr)
437 {
438 	struct work_struct *work = addr;
439 
440 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
441 }
442 
443 /*
444  * fixup_init is called when:
445  * - an active object is initialized
446  */
447 static bool work_fixup_init(void *addr, enum debug_obj_state state)
448 {
449 	struct work_struct *work = addr;
450 
451 	switch (state) {
452 	case ODEBUG_STATE_ACTIVE:
453 		cancel_work_sync(work);
454 		debug_object_init(work, &work_debug_descr);
455 		return true;
456 	default:
457 		return false;
458 	}
459 }
460 
461 /*
462  * fixup_free is called when:
463  * - an active object is freed
464  */
465 static bool work_fixup_free(void *addr, enum debug_obj_state state)
466 {
467 	struct work_struct *work = addr;
468 
469 	switch (state) {
470 	case ODEBUG_STATE_ACTIVE:
471 		cancel_work_sync(work);
472 		debug_object_free(work, &work_debug_descr);
473 		return true;
474 	default:
475 		return false;
476 	}
477 }
478 
479 static struct debug_obj_descr work_debug_descr = {
480 	.name		= "work_struct",
481 	.debug_hint	= work_debug_hint,
482 	.is_static_object = work_is_static_object,
483 	.fixup_init	= work_fixup_init,
484 	.fixup_free	= work_fixup_free,
485 };
486 
487 static inline void debug_work_activate(struct work_struct *work)
488 {
489 	debug_object_activate(work, &work_debug_descr);
490 }
491 
492 static inline void debug_work_deactivate(struct work_struct *work)
493 {
494 	debug_object_deactivate(work, &work_debug_descr);
495 }
496 
497 void __init_work(struct work_struct *work, int onstack)
498 {
499 	if (onstack)
500 		debug_object_init_on_stack(work, &work_debug_descr);
501 	else
502 		debug_object_init(work, &work_debug_descr);
503 }
504 EXPORT_SYMBOL_GPL(__init_work);
505 
506 void destroy_work_on_stack(struct work_struct *work)
507 {
508 	debug_object_free(work, &work_debug_descr);
509 }
510 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
511 
512 void destroy_delayed_work_on_stack(struct delayed_work *work)
513 {
514 	destroy_timer_on_stack(&work->timer);
515 	debug_object_free(&work->work, &work_debug_descr);
516 }
517 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
518 
519 #else
520 static inline void debug_work_activate(struct work_struct *work) { }
521 static inline void debug_work_deactivate(struct work_struct *work) { }
522 #endif
523 
524 /**
525  * worker_pool_assign_id - allocate ID and assing it to @pool
526  * @pool: the pool pointer of interest
527  *
528  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
529  * successfully, -errno on failure.
530  */
531 static int worker_pool_assign_id(struct worker_pool *pool)
532 {
533 	int ret;
534 
535 	lockdep_assert_held(&wq_pool_mutex);
536 
537 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
538 			GFP_KERNEL);
539 	if (ret >= 0) {
540 		pool->id = ret;
541 		return 0;
542 	}
543 	return ret;
544 }
545 
546 /**
547  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
548  * @wq: the target workqueue
549  * @node: the node ID
550  *
551  * This must be called with any of wq_pool_mutex, wq->mutex or RCU
552  * read locked.
553  * If the pwq needs to be used beyond the locking in effect, the caller is
554  * responsible for guaranteeing that the pwq stays online.
555  *
556  * Return: The unbound pool_workqueue for @node.
557  */
558 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
559 						  int node)
560 {
561 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
562 
563 	/*
564 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
565 	 * delayed item is pending.  The plan is to keep CPU -> NODE
566 	 * mapping valid and stable across CPU on/offlines.  Once that
567 	 * happens, this workaround can be removed.
568 	 */
569 	if (unlikely(node == NUMA_NO_NODE))
570 		return wq->dfl_pwq;
571 
572 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
573 }
574 
575 static unsigned int work_color_to_flags(int color)
576 {
577 	return color << WORK_STRUCT_COLOR_SHIFT;
578 }
579 
580 static int get_work_color(struct work_struct *work)
581 {
582 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
583 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
584 }
585 
586 static int work_next_color(int color)
587 {
588 	return (color + 1) % WORK_NR_COLORS;
589 }
590 
591 /*
592  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
593  * contain the pointer to the queued pwq.  Once execution starts, the flag
594  * is cleared and the high bits contain OFFQ flags and pool ID.
595  *
596  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
597  * and clear_work_data() can be used to set the pwq, pool or clear
598  * work->data.  These functions should only be called while the work is
599  * owned - ie. while the PENDING bit is set.
600  *
601  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
602  * corresponding to a work.  Pool is available once the work has been
603  * queued anywhere after initialization until it is sync canceled.  pwq is
604  * available only while the work item is queued.
605  *
606  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
607  * canceled.  While being canceled, a work item may have its PENDING set
608  * but stay off timer and worklist for arbitrarily long and nobody should
609  * try to steal the PENDING bit.
610  */
611 static inline void set_work_data(struct work_struct *work, unsigned long data,
612 				 unsigned long flags)
613 {
614 	WARN_ON_ONCE(!work_pending(work));
615 	atomic_long_set(&work->data, data | flags | work_static(work));
616 }
617 
618 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
619 			 unsigned long extra_flags)
620 {
621 	set_work_data(work, (unsigned long)pwq,
622 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
623 }
624 
625 static void set_work_pool_and_keep_pending(struct work_struct *work,
626 					   int pool_id)
627 {
628 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
629 		      WORK_STRUCT_PENDING);
630 }
631 
632 static void set_work_pool_and_clear_pending(struct work_struct *work,
633 					    int pool_id)
634 {
635 	/*
636 	 * The following wmb is paired with the implied mb in
637 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
638 	 * here are visible to and precede any updates by the next PENDING
639 	 * owner.
640 	 */
641 	smp_wmb();
642 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
643 	/*
644 	 * The following mb guarantees that previous clear of a PENDING bit
645 	 * will not be reordered with any speculative LOADS or STORES from
646 	 * work->current_func, which is executed afterwards.  This possible
647 	 * reordering can lead to a missed execution on attempt to queue
648 	 * the same @work.  E.g. consider this case:
649 	 *
650 	 *   CPU#0                         CPU#1
651 	 *   ----------------------------  --------------------------------
652 	 *
653 	 * 1  STORE event_indicated
654 	 * 2  queue_work_on() {
655 	 * 3    test_and_set_bit(PENDING)
656 	 * 4 }                             set_..._and_clear_pending() {
657 	 * 5                                 set_work_data() # clear bit
658 	 * 6                                 smp_mb()
659 	 * 7                               work->current_func() {
660 	 * 8				      LOAD event_indicated
661 	 *				   }
662 	 *
663 	 * Without an explicit full barrier speculative LOAD on line 8 can
664 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
665 	 * CPU#0 observes the PENDING bit is still set and new execution of
666 	 * a @work is not queued in a hope, that CPU#1 will eventually
667 	 * finish the queued @work.  Meanwhile CPU#1 does not see
668 	 * event_indicated is set, because speculative LOAD was executed
669 	 * before actual STORE.
670 	 */
671 	smp_mb();
672 }
673 
674 static void clear_work_data(struct work_struct *work)
675 {
676 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
677 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
678 }
679 
680 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
681 {
682 	unsigned long data = atomic_long_read(&work->data);
683 
684 	if (data & WORK_STRUCT_PWQ)
685 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
686 	else
687 		return NULL;
688 }
689 
690 /**
691  * get_work_pool - return the worker_pool a given work was associated with
692  * @work: the work item of interest
693  *
694  * Pools are created and destroyed under wq_pool_mutex, and allows read
695  * access under RCU read lock.  As such, this function should be
696  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
697  *
698  * All fields of the returned pool are accessible as long as the above
699  * mentioned locking is in effect.  If the returned pool needs to be used
700  * beyond the critical section, the caller is responsible for ensuring the
701  * returned pool is and stays online.
702  *
703  * Return: The worker_pool @work was last associated with.  %NULL if none.
704  */
705 static struct worker_pool *get_work_pool(struct work_struct *work)
706 {
707 	unsigned long data = atomic_long_read(&work->data);
708 	int pool_id;
709 
710 	assert_rcu_or_pool_mutex();
711 
712 	if (data & WORK_STRUCT_PWQ)
713 		return ((struct pool_workqueue *)
714 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
715 
716 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
717 	if (pool_id == WORK_OFFQ_POOL_NONE)
718 		return NULL;
719 
720 	return idr_find(&worker_pool_idr, pool_id);
721 }
722 
723 /**
724  * get_work_pool_id - return the worker pool ID a given work is associated with
725  * @work: the work item of interest
726  *
727  * Return: The worker_pool ID @work was last associated with.
728  * %WORK_OFFQ_POOL_NONE if none.
729  */
730 static int get_work_pool_id(struct work_struct *work)
731 {
732 	unsigned long data = atomic_long_read(&work->data);
733 
734 	if (data & WORK_STRUCT_PWQ)
735 		return ((struct pool_workqueue *)
736 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
737 
738 	return data >> WORK_OFFQ_POOL_SHIFT;
739 }
740 
741 static void mark_work_canceling(struct work_struct *work)
742 {
743 	unsigned long pool_id = get_work_pool_id(work);
744 
745 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
746 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
747 }
748 
749 static bool work_is_canceling(struct work_struct *work)
750 {
751 	unsigned long data = atomic_long_read(&work->data);
752 
753 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
754 }
755 
756 /*
757  * Policy functions.  These define the policies on how the global worker
758  * pools are managed.  Unless noted otherwise, these functions assume that
759  * they're being called with pool->lock held.
760  */
761 
762 static bool __need_more_worker(struct worker_pool *pool)
763 {
764 	return !atomic_read(&pool->nr_running);
765 }
766 
767 /*
768  * Need to wake up a worker?  Called from anything but currently
769  * running workers.
770  *
771  * Note that, because unbound workers never contribute to nr_running, this
772  * function will always return %true for unbound pools as long as the
773  * worklist isn't empty.
774  */
775 static bool need_more_worker(struct worker_pool *pool)
776 {
777 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
778 }
779 
780 /* Can I start working?  Called from busy but !running workers. */
781 static bool may_start_working(struct worker_pool *pool)
782 {
783 	return pool->nr_idle;
784 }
785 
786 /* Do I need to keep working?  Called from currently running workers. */
787 static bool keep_working(struct worker_pool *pool)
788 {
789 	return !list_empty(&pool->worklist) &&
790 		atomic_read(&pool->nr_running) <= 1;
791 }
792 
793 /* Do we need a new worker?  Called from manager. */
794 static bool need_to_create_worker(struct worker_pool *pool)
795 {
796 	return need_more_worker(pool) && !may_start_working(pool);
797 }
798 
799 /* Do we have too many workers and should some go away? */
800 static bool too_many_workers(struct worker_pool *pool)
801 {
802 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
803 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
804 	int nr_busy = pool->nr_workers - nr_idle;
805 
806 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
807 }
808 
809 /*
810  * Wake up functions.
811  */
812 
813 /* Return the first idle worker.  Safe with preemption disabled */
814 static struct worker *first_idle_worker(struct worker_pool *pool)
815 {
816 	if (unlikely(list_empty(&pool->idle_list)))
817 		return NULL;
818 
819 	return list_first_entry(&pool->idle_list, struct worker, entry);
820 }
821 
822 /**
823  * wake_up_worker - wake up an idle worker
824  * @pool: worker pool to wake worker from
825  *
826  * Wake up the first idle worker of @pool.
827  *
828  * CONTEXT:
829  * spin_lock_irq(pool->lock).
830  */
831 static void wake_up_worker(struct worker_pool *pool)
832 {
833 	struct worker *worker = first_idle_worker(pool);
834 
835 	if (likely(worker))
836 		wake_up_process(worker->task);
837 }
838 
839 /**
840  * wq_worker_running - a worker is running again
841  * @task: task waking up
842  *
843  * This function is called when a worker returns from schedule()
844  */
845 void wq_worker_running(struct task_struct *task)
846 {
847 	struct worker *worker = kthread_data(task);
848 
849 	if (!worker->sleeping)
850 		return;
851 	if (!(worker->flags & WORKER_NOT_RUNNING))
852 		atomic_inc(&worker->pool->nr_running);
853 	worker->sleeping = 0;
854 }
855 
856 /**
857  * wq_worker_sleeping - a worker is going to sleep
858  * @task: task going to sleep
859  *
860  * This function is called from schedule() when a busy worker is
861  * going to sleep.
862  */
863 void wq_worker_sleeping(struct task_struct *task)
864 {
865 	struct worker *next, *worker = kthread_data(task);
866 	struct worker_pool *pool;
867 
868 	/*
869 	 * Rescuers, which may not have all the fields set up like normal
870 	 * workers, also reach here, let's not access anything before
871 	 * checking NOT_RUNNING.
872 	 */
873 	if (worker->flags & WORKER_NOT_RUNNING)
874 		return;
875 
876 	pool = worker->pool;
877 
878 	if (WARN_ON_ONCE(worker->sleeping))
879 		return;
880 
881 	worker->sleeping = 1;
882 	spin_lock_irq(&pool->lock);
883 
884 	/*
885 	 * The counterpart of the following dec_and_test, implied mb,
886 	 * worklist not empty test sequence is in insert_work().
887 	 * Please read comment there.
888 	 *
889 	 * NOT_RUNNING is clear.  This means that we're bound to and
890 	 * running on the local cpu w/ rq lock held and preemption
891 	 * disabled, which in turn means that none else could be
892 	 * manipulating idle_list, so dereferencing idle_list without pool
893 	 * lock is safe.
894 	 */
895 	if (atomic_dec_and_test(&pool->nr_running) &&
896 	    !list_empty(&pool->worklist)) {
897 		next = first_idle_worker(pool);
898 		if (next)
899 			wake_up_process(next->task);
900 	}
901 	spin_unlock_irq(&pool->lock);
902 }
903 
904 /**
905  * wq_worker_last_func - retrieve worker's last work function
906  * @task: Task to retrieve last work function of.
907  *
908  * Determine the last function a worker executed. This is called from
909  * the scheduler to get a worker's last known identity.
910  *
911  * CONTEXT:
912  * spin_lock_irq(rq->lock)
913  *
914  * This function is called during schedule() when a kworker is going
915  * to sleep. It's used by psi to identify aggregation workers during
916  * dequeuing, to allow periodic aggregation to shut-off when that
917  * worker is the last task in the system or cgroup to go to sleep.
918  *
919  * As this function doesn't involve any workqueue-related locking, it
920  * only returns stable values when called from inside the scheduler's
921  * queuing and dequeuing paths, when @task, which must be a kworker,
922  * is guaranteed to not be processing any works.
923  *
924  * Return:
925  * The last work function %current executed as a worker, NULL if it
926  * hasn't executed any work yet.
927  */
928 work_func_t wq_worker_last_func(struct task_struct *task)
929 {
930 	struct worker *worker = kthread_data(task);
931 
932 	return worker->last_func;
933 }
934 
935 /**
936  * worker_set_flags - set worker flags and adjust nr_running accordingly
937  * @worker: self
938  * @flags: flags to set
939  *
940  * Set @flags in @worker->flags and adjust nr_running accordingly.
941  *
942  * CONTEXT:
943  * spin_lock_irq(pool->lock)
944  */
945 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
946 {
947 	struct worker_pool *pool = worker->pool;
948 
949 	WARN_ON_ONCE(worker->task != current);
950 
951 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
952 	if ((flags & WORKER_NOT_RUNNING) &&
953 	    !(worker->flags & WORKER_NOT_RUNNING)) {
954 		atomic_dec(&pool->nr_running);
955 	}
956 
957 	worker->flags |= flags;
958 }
959 
960 /**
961  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
962  * @worker: self
963  * @flags: flags to clear
964  *
965  * Clear @flags in @worker->flags and adjust nr_running accordingly.
966  *
967  * CONTEXT:
968  * spin_lock_irq(pool->lock)
969  */
970 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
971 {
972 	struct worker_pool *pool = worker->pool;
973 	unsigned int oflags = worker->flags;
974 
975 	WARN_ON_ONCE(worker->task != current);
976 
977 	worker->flags &= ~flags;
978 
979 	/*
980 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
981 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
982 	 * of multiple flags, not a single flag.
983 	 */
984 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
985 		if (!(worker->flags & WORKER_NOT_RUNNING))
986 			atomic_inc(&pool->nr_running);
987 }
988 
989 /**
990  * find_worker_executing_work - find worker which is executing a work
991  * @pool: pool of interest
992  * @work: work to find worker for
993  *
994  * Find a worker which is executing @work on @pool by searching
995  * @pool->busy_hash which is keyed by the address of @work.  For a worker
996  * to match, its current execution should match the address of @work and
997  * its work function.  This is to avoid unwanted dependency between
998  * unrelated work executions through a work item being recycled while still
999  * being executed.
1000  *
1001  * This is a bit tricky.  A work item may be freed once its execution
1002  * starts and nothing prevents the freed area from being recycled for
1003  * another work item.  If the same work item address ends up being reused
1004  * before the original execution finishes, workqueue will identify the
1005  * recycled work item as currently executing and make it wait until the
1006  * current execution finishes, introducing an unwanted dependency.
1007  *
1008  * This function checks the work item address and work function to avoid
1009  * false positives.  Note that this isn't complete as one may construct a
1010  * work function which can introduce dependency onto itself through a
1011  * recycled work item.  Well, if somebody wants to shoot oneself in the
1012  * foot that badly, there's only so much we can do, and if such deadlock
1013  * actually occurs, it should be easy to locate the culprit work function.
1014  *
1015  * CONTEXT:
1016  * spin_lock_irq(pool->lock).
1017  *
1018  * Return:
1019  * Pointer to worker which is executing @work if found, %NULL
1020  * otherwise.
1021  */
1022 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1023 						 struct work_struct *work)
1024 {
1025 	struct worker *worker;
1026 
1027 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1028 			       (unsigned long)work)
1029 		if (worker->current_work == work &&
1030 		    worker->current_func == work->func)
1031 			return worker;
1032 
1033 	return NULL;
1034 }
1035 
1036 /**
1037  * move_linked_works - move linked works to a list
1038  * @work: start of series of works to be scheduled
1039  * @head: target list to append @work to
1040  * @nextp: out parameter for nested worklist walking
1041  *
1042  * Schedule linked works starting from @work to @head.  Work series to
1043  * be scheduled starts at @work and includes any consecutive work with
1044  * WORK_STRUCT_LINKED set in its predecessor.
1045  *
1046  * If @nextp is not NULL, it's updated to point to the next work of
1047  * the last scheduled work.  This allows move_linked_works() to be
1048  * nested inside outer list_for_each_entry_safe().
1049  *
1050  * CONTEXT:
1051  * spin_lock_irq(pool->lock).
1052  */
1053 static void move_linked_works(struct work_struct *work, struct list_head *head,
1054 			      struct work_struct **nextp)
1055 {
1056 	struct work_struct *n;
1057 
1058 	/*
1059 	 * Linked worklist will always end before the end of the list,
1060 	 * use NULL for list head.
1061 	 */
1062 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1063 		list_move_tail(&work->entry, head);
1064 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1065 			break;
1066 	}
1067 
1068 	/*
1069 	 * If we're already inside safe list traversal and have moved
1070 	 * multiple works to the scheduled queue, the next position
1071 	 * needs to be updated.
1072 	 */
1073 	if (nextp)
1074 		*nextp = n;
1075 }
1076 
1077 /**
1078  * get_pwq - get an extra reference on the specified pool_workqueue
1079  * @pwq: pool_workqueue to get
1080  *
1081  * Obtain an extra reference on @pwq.  The caller should guarantee that
1082  * @pwq has positive refcnt and be holding the matching pool->lock.
1083  */
1084 static void get_pwq(struct pool_workqueue *pwq)
1085 {
1086 	lockdep_assert_held(&pwq->pool->lock);
1087 	WARN_ON_ONCE(pwq->refcnt <= 0);
1088 	pwq->refcnt++;
1089 }
1090 
1091 /**
1092  * put_pwq - put a pool_workqueue reference
1093  * @pwq: pool_workqueue to put
1094  *
1095  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1096  * destruction.  The caller should be holding the matching pool->lock.
1097  */
1098 static void put_pwq(struct pool_workqueue *pwq)
1099 {
1100 	lockdep_assert_held(&pwq->pool->lock);
1101 	if (likely(--pwq->refcnt))
1102 		return;
1103 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1104 		return;
1105 	/*
1106 	 * @pwq can't be released under pool->lock, bounce to
1107 	 * pwq_unbound_release_workfn().  This never recurses on the same
1108 	 * pool->lock as this path is taken only for unbound workqueues and
1109 	 * the release work item is scheduled on a per-cpu workqueue.  To
1110 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1111 	 * subclass of 1 in get_unbound_pool().
1112 	 */
1113 	schedule_work(&pwq->unbound_release_work);
1114 }
1115 
1116 /**
1117  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1118  * @pwq: pool_workqueue to put (can be %NULL)
1119  *
1120  * put_pwq() with locking.  This function also allows %NULL @pwq.
1121  */
1122 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1123 {
1124 	if (pwq) {
1125 		/*
1126 		 * As both pwqs and pools are RCU protected, the
1127 		 * following lock operations are safe.
1128 		 */
1129 		spin_lock_irq(&pwq->pool->lock);
1130 		put_pwq(pwq);
1131 		spin_unlock_irq(&pwq->pool->lock);
1132 	}
1133 }
1134 
1135 static void pwq_activate_delayed_work(struct work_struct *work)
1136 {
1137 	struct pool_workqueue *pwq = get_work_pwq(work);
1138 
1139 	trace_workqueue_activate_work(work);
1140 	if (list_empty(&pwq->pool->worklist))
1141 		pwq->pool->watchdog_ts = jiffies;
1142 	move_linked_works(work, &pwq->pool->worklist, NULL);
1143 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1144 	pwq->nr_active++;
1145 }
1146 
1147 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1148 {
1149 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1150 						    struct work_struct, entry);
1151 
1152 	pwq_activate_delayed_work(work);
1153 }
1154 
1155 /**
1156  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1157  * @pwq: pwq of interest
1158  * @color: color of work which left the queue
1159  *
1160  * A work either has completed or is removed from pending queue,
1161  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1162  *
1163  * CONTEXT:
1164  * spin_lock_irq(pool->lock).
1165  */
1166 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1167 {
1168 	/* uncolored work items don't participate in flushing or nr_active */
1169 	if (color == WORK_NO_COLOR)
1170 		goto out_put;
1171 
1172 	pwq->nr_in_flight[color]--;
1173 
1174 	pwq->nr_active--;
1175 	if (!list_empty(&pwq->delayed_works)) {
1176 		/* one down, submit a delayed one */
1177 		if (pwq->nr_active < pwq->max_active)
1178 			pwq_activate_first_delayed(pwq);
1179 	}
1180 
1181 	/* is flush in progress and are we at the flushing tip? */
1182 	if (likely(pwq->flush_color != color))
1183 		goto out_put;
1184 
1185 	/* are there still in-flight works? */
1186 	if (pwq->nr_in_flight[color])
1187 		goto out_put;
1188 
1189 	/* this pwq is done, clear flush_color */
1190 	pwq->flush_color = -1;
1191 
1192 	/*
1193 	 * If this was the last pwq, wake up the first flusher.  It
1194 	 * will handle the rest.
1195 	 */
1196 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1197 		complete(&pwq->wq->first_flusher->done);
1198 out_put:
1199 	put_pwq(pwq);
1200 }
1201 
1202 /**
1203  * try_to_grab_pending - steal work item from worklist and disable irq
1204  * @work: work item to steal
1205  * @is_dwork: @work is a delayed_work
1206  * @flags: place to store irq state
1207  *
1208  * Try to grab PENDING bit of @work.  This function can handle @work in any
1209  * stable state - idle, on timer or on worklist.
1210  *
1211  * Return:
1212  *  1		if @work was pending and we successfully stole PENDING
1213  *  0		if @work was idle and we claimed PENDING
1214  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1215  *  -ENOENT	if someone else is canceling @work, this state may persist
1216  *		for arbitrarily long
1217  *
1218  * Note:
1219  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1220  * interrupted while holding PENDING and @work off queue, irq must be
1221  * disabled on entry.  This, combined with delayed_work->timer being
1222  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1223  *
1224  * On successful return, >= 0, irq is disabled and the caller is
1225  * responsible for releasing it using local_irq_restore(*@flags).
1226  *
1227  * This function is safe to call from any context including IRQ handler.
1228  */
1229 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1230 			       unsigned long *flags)
1231 {
1232 	struct worker_pool *pool;
1233 	struct pool_workqueue *pwq;
1234 
1235 	local_irq_save(*flags);
1236 
1237 	/* try to steal the timer if it exists */
1238 	if (is_dwork) {
1239 		struct delayed_work *dwork = to_delayed_work(work);
1240 
1241 		/*
1242 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1243 		 * guaranteed that the timer is not queued anywhere and not
1244 		 * running on the local CPU.
1245 		 */
1246 		if (likely(del_timer(&dwork->timer)))
1247 			return 1;
1248 	}
1249 
1250 	/* try to claim PENDING the normal way */
1251 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1252 		return 0;
1253 
1254 	rcu_read_lock();
1255 	/*
1256 	 * The queueing is in progress, or it is already queued. Try to
1257 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1258 	 */
1259 	pool = get_work_pool(work);
1260 	if (!pool)
1261 		goto fail;
1262 
1263 	spin_lock(&pool->lock);
1264 	/*
1265 	 * work->data is guaranteed to point to pwq only while the work
1266 	 * item is queued on pwq->wq, and both updating work->data to point
1267 	 * to pwq on queueing and to pool on dequeueing are done under
1268 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1269 	 * points to pwq which is associated with a locked pool, the work
1270 	 * item is currently queued on that pool.
1271 	 */
1272 	pwq = get_work_pwq(work);
1273 	if (pwq && pwq->pool == pool) {
1274 		debug_work_deactivate(work);
1275 
1276 		/*
1277 		 * A delayed work item cannot be grabbed directly because
1278 		 * it might have linked NO_COLOR work items which, if left
1279 		 * on the delayed_list, will confuse pwq->nr_active
1280 		 * management later on and cause stall.  Make sure the work
1281 		 * item is activated before grabbing.
1282 		 */
1283 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1284 			pwq_activate_delayed_work(work);
1285 
1286 		list_del_init(&work->entry);
1287 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1288 
1289 		/* work->data points to pwq iff queued, point to pool */
1290 		set_work_pool_and_keep_pending(work, pool->id);
1291 
1292 		spin_unlock(&pool->lock);
1293 		rcu_read_unlock();
1294 		return 1;
1295 	}
1296 	spin_unlock(&pool->lock);
1297 fail:
1298 	rcu_read_unlock();
1299 	local_irq_restore(*flags);
1300 	if (work_is_canceling(work))
1301 		return -ENOENT;
1302 	cpu_relax();
1303 	return -EAGAIN;
1304 }
1305 
1306 /**
1307  * insert_work - insert a work into a pool
1308  * @pwq: pwq @work belongs to
1309  * @work: work to insert
1310  * @head: insertion point
1311  * @extra_flags: extra WORK_STRUCT_* flags to set
1312  *
1313  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1314  * work_struct flags.
1315  *
1316  * CONTEXT:
1317  * spin_lock_irq(pool->lock).
1318  */
1319 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1320 			struct list_head *head, unsigned int extra_flags)
1321 {
1322 	struct worker_pool *pool = pwq->pool;
1323 
1324 	/* we own @work, set data and link */
1325 	set_work_pwq(work, pwq, extra_flags);
1326 	list_add_tail(&work->entry, head);
1327 	get_pwq(pwq);
1328 
1329 	/*
1330 	 * Ensure either wq_worker_sleeping() sees the above
1331 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1332 	 * around lazily while there are works to be processed.
1333 	 */
1334 	smp_mb();
1335 
1336 	if (__need_more_worker(pool))
1337 		wake_up_worker(pool);
1338 }
1339 
1340 /*
1341  * Test whether @work is being queued from another work executing on the
1342  * same workqueue.
1343  */
1344 static bool is_chained_work(struct workqueue_struct *wq)
1345 {
1346 	struct worker *worker;
1347 
1348 	worker = current_wq_worker();
1349 	/*
1350 	 * Return %true iff I'm a worker executing a work item on @wq.  If
1351 	 * I'm @worker, it's safe to dereference it without locking.
1352 	 */
1353 	return worker && worker->current_pwq->wq == wq;
1354 }
1355 
1356 /*
1357  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1358  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1359  * avoid perturbing sensitive tasks.
1360  */
1361 static int wq_select_unbound_cpu(int cpu)
1362 {
1363 	static bool printed_dbg_warning;
1364 	int new_cpu;
1365 
1366 	if (likely(!wq_debug_force_rr_cpu)) {
1367 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1368 			return cpu;
1369 	} else if (!printed_dbg_warning) {
1370 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1371 		printed_dbg_warning = true;
1372 	}
1373 
1374 	if (cpumask_empty(wq_unbound_cpumask))
1375 		return cpu;
1376 
1377 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1378 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1379 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1380 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1381 		if (unlikely(new_cpu >= nr_cpu_ids))
1382 			return cpu;
1383 	}
1384 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1385 
1386 	return new_cpu;
1387 }
1388 
1389 static void __queue_work(int cpu, struct workqueue_struct *wq,
1390 			 struct work_struct *work)
1391 {
1392 	struct pool_workqueue *pwq;
1393 	struct worker_pool *last_pool;
1394 	struct list_head *worklist;
1395 	unsigned int work_flags;
1396 	unsigned int req_cpu = cpu;
1397 
1398 	/*
1399 	 * While a work item is PENDING && off queue, a task trying to
1400 	 * steal the PENDING will busy-loop waiting for it to either get
1401 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1402 	 * happen with IRQ disabled.
1403 	 */
1404 	lockdep_assert_irqs_disabled();
1405 
1406 	debug_work_activate(work);
1407 
1408 	/* if draining, only works from the same workqueue are allowed */
1409 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1410 	    WARN_ON_ONCE(!is_chained_work(wq)))
1411 		return;
1412 	rcu_read_lock();
1413 retry:
1414 	if (req_cpu == WORK_CPU_UNBOUND)
1415 		cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1416 
1417 	/* pwq which will be used unless @work is executing elsewhere */
1418 	if (!(wq->flags & WQ_UNBOUND))
1419 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1420 	else
1421 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1422 
1423 	/*
1424 	 * If @work was previously on a different pool, it might still be
1425 	 * running there, in which case the work needs to be queued on that
1426 	 * pool to guarantee non-reentrancy.
1427 	 */
1428 	last_pool = get_work_pool(work);
1429 	if (last_pool && last_pool != pwq->pool) {
1430 		struct worker *worker;
1431 
1432 		spin_lock(&last_pool->lock);
1433 
1434 		worker = find_worker_executing_work(last_pool, work);
1435 
1436 		if (worker && worker->current_pwq->wq == wq) {
1437 			pwq = worker->current_pwq;
1438 		} else {
1439 			/* meh... not running there, queue here */
1440 			spin_unlock(&last_pool->lock);
1441 			spin_lock(&pwq->pool->lock);
1442 		}
1443 	} else {
1444 		spin_lock(&pwq->pool->lock);
1445 	}
1446 
1447 	/*
1448 	 * pwq is determined and locked.  For unbound pools, we could have
1449 	 * raced with pwq release and it could already be dead.  If its
1450 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1451 	 * without another pwq replacing it in the numa_pwq_tbl or while
1452 	 * work items are executing on it, so the retrying is guaranteed to
1453 	 * make forward-progress.
1454 	 */
1455 	if (unlikely(!pwq->refcnt)) {
1456 		if (wq->flags & WQ_UNBOUND) {
1457 			spin_unlock(&pwq->pool->lock);
1458 			cpu_relax();
1459 			goto retry;
1460 		}
1461 		/* oops */
1462 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1463 			  wq->name, cpu);
1464 	}
1465 
1466 	/* pwq determined, queue */
1467 	trace_workqueue_queue_work(req_cpu, pwq, work);
1468 
1469 	if (WARN_ON(!list_empty(&work->entry)))
1470 		goto out;
1471 
1472 	pwq->nr_in_flight[pwq->work_color]++;
1473 	work_flags = work_color_to_flags(pwq->work_color);
1474 
1475 	if (likely(pwq->nr_active < pwq->max_active)) {
1476 		trace_workqueue_activate_work(work);
1477 		pwq->nr_active++;
1478 		worklist = &pwq->pool->worklist;
1479 		if (list_empty(worklist))
1480 			pwq->pool->watchdog_ts = jiffies;
1481 	} else {
1482 		work_flags |= WORK_STRUCT_DELAYED;
1483 		worklist = &pwq->delayed_works;
1484 	}
1485 
1486 	insert_work(pwq, work, worklist, work_flags);
1487 
1488 out:
1489 	spin_unlock(&pwq->pool->lock);
1490 	rcu_read_unlock();
1491 }
1492 
1493 /**
1494  * queue_work_on - queue work on specific cpu
1495  * @cpu: CPU number to execute work on
1496  * @wq: workqueue to use
1497  * @work: work to queue
1498  *
1499  * We queue the work to a specific CPU, the caller must ensure it
1500  * can't go away.
1501  *
1502  * Return: %false if @work was already on a queue, %true otherwise.
1503  */
1504 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1505 		   struct work_struct *work)
1506 {
1507 	bool ret = false;
1508 	unsigned long flags;
1509 
1510 	local_irq_save(flags);
1511 
1512 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1513 		__queue_work(cpu, wq, work);
1514 		ret = true;
1515 	}
1516 
1517 	local_irq_restore(flags);
1518 	return ret;
1519 }
1520 EXPORT_SYMBOL(queue_work_on);
1521 
1522 /**
1523  * workqueue_select_cpu_near - Select a CPU based on NUMA node
1524  * @node: NUMA node ID that we want to select a CPU from
1525  *
1526  * This function will attempt to find a "random" cpu available on a given
1527  * node. If there are no CPUs available on the given node it will return
1528  * WORK_CPU_UNBOUND indicating that we should just schedule to any
1529  * available CPU if we need to schedule this work.
1530  */
1531 static int workqueue_select_cpu_near(int node)
1532 {
1533 	int cpu;
1534 
1535 	/* No point in doing this if NUMA isn't enabled for workqueues */
1536 	if (!wq_numa_enabled)
1537 		return WORK_CPU_UNBOUND;
1538 
1539 	/* Delay binding to CPU if node is not valid or online */
1540 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1541 		return WORK_CPU_UNBOUND;
1542 
1543 	/* Use local node/cpu if we are already there */
1544 	cpu = raw_smp_processor_id();
1545 	if (node == cpu_to_node(cpu))
1546 		return cpu;
1547 
1548 	/* Use "random" otherwise know as "first" online CPU of node */
1549 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1550 
1551 	/* If CPU is valid return that, otherwise just defer */
1552 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1553 }
1554 
1555 /**
1556  * queue_work_node - queue work on a "random" cpu for a given NUMA node
1557  * @node: NUMA node that we are targeting the work for
1558  * @wq: workqueue to use
1559  * @work: work to queue
1560  *
1561  * We queue the work to a "random" CPU within a given NUMA node. The basic
1562  * idea here is to provide a way to somehow associate work with a given
1563  * NUMA node.
1564  *
1565  * This function will only make a best effort attempt at getting this onto
1566  * the right NUMA node. If no node is requested or the requested node is
1567  * offline then we just fall back to standard queue_work behavior.
1568  *
1569  * Currently the "random" CPU ends up being the first available CPU in the
1570  * intersection of cpu_online_mask and the cpumask of the node, unless we
1571  * are running on the node. In that case we just use the current CPU.
1572  *
1573  * Return: %false if @work was already on a queue, %true otherwise.
1574  */
1575 bool queue_work_node(int node, struct workqueue_struct *wq,
1576 		     struct work_struct *work)
1577 {
1578 	unsigned long flags;
1579 	bool ret = false;
1580 
1581 	/*
1582 	 * This current implementation is specific to unbound workqueues.
1583 	 * Specifically we only return the first available CPU for a given
1584 	 * node instead of cycling through individual CPUs within the node.
1585 	 *
1586 	 * If this is used with a per-cpu workqueue then the logic in
1587 	 * workqueue_select_cpu_near would need to be updated to allow for
1588 	 * some round robin type logic.
1589 	 */
1590 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1591 
1592 	local_irq_save(flags);
1593 
1594 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1595 		int cpu = workqueue_select_cpu_near(node);
1596 
1597 		__queue_work(cpu, wq, work);
1598 		ret = true;
1599 	}
1600 
1601 	local_irq_restore(flags);
1602 	return ret;
1603 }
1604 EXPORT_SYMBOL_GPL(queue_work_node);
1605 
1606 void delayed_work_timer_fn(struct timer_list *t)
1607 {
1608 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1609 
1610 	/* should have been called from irqsafe timer with irq already off */
1611 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1612 }
1613 EXPORT_SYMBOL(delayed_work_timer_fn);
1614 
1615 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1616 				struct delayed_work *dwork, unsigned long delay)
1617 {
1618 	struct timer_list *timer = &dwork->timer;
1619 	struct work_struct *work = &dwork->work;
1620 
1621 	WARN_ON_ONCE(!wq);
1622 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1623 	WARN_ON_ONCE(timer_pending(timer));
1624 	WARN_ON_ONCE(!list_empty(&work->entry));
1625 
1626 	/*
1627 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1628 	 * both optimization and correctness.  The earliest @timer can
1629 	 * expire is on the closest next tick and delayed_work users depend
1630 	 * on that there's no such delay when @delay is 0.
1631 	 */
1632 	if (!delay) {
1633 		__queue_work(cpu, wq, &dwork->work);
1634 		return;
1635 	}
1636 
1637 	dwork->wq = wq;
1638 	dwork->cpu = cpu;
1639 	timer->expires = jiffies + delay;
1640 
1641 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1642 		add_timer_on(timer, cpu);
1643 	else
1644 		add_timer(timer);
1645 }
1646 
1647 /**
1648  * queue_delayed_work_on - queue work on specific CPU after delay
1649  * @cpu: CPU number to execute work on
1650  * @wq: workqueue to use
1651  * @dwork: work to queue
1652  * @delay: number of jiffies to wait before queueing
1653  *
1654  * Return: %false if @work was already on a queue, %true otherwise.  If
1655  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1656  * execution.
1657  */
1658 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1659 			   struct delayed_work *dwork, unsigned long delay)
1660 {
1661 	struct work_struct *work = &dwork->work;
1662 	bool ret = false;
1663 	unsigned long flags;
1664 
1665 	/* read the comment in __queue_work() */
1666 	local_irq_save(flags);
1667 
1668 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1669 		__queue_delayed_work(cpu, wq, dwork, delay);
1670 		ret = true;
1671 	}
1672 
1673 	local_irq_restore(flags);
1674 	return ret;
1675 }
1676 EXPORT_SYMBOL(queue_delayed_work_on);
1677 
1678 /**
1679  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1680  * @cpu: CPU number to execute work on
1681  * @wq: workqueue to use
1682  * @dwork: work to queue
1683  * @delay: number of jiffies to wait before queueing
1684  *
1685  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1686  * modify @dwork's timer so that it expires after @delay.  If @delay is
1687  * zero, @work is guaranteed to be scheduled immediately regardless of its
1688  * current state.
1689  *
1690  * Return: %false if @dwork was idle and queued, %true if @dwork was
1691  * pending and its timer was modified.
1692  *
1693  * This function is safe to call from any context including IRQ handler.
1694  * See try_to_grab_pending() for details.
1695  */
1696 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1697 			 struct delayed_work *dwork, unsigned long delay)
1698 {
1699 	unsigned long flags;
1700 	int ret;
1701 
1702 	do {
1703 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1704 	} while (unlikely(ret == -EAGAIN));
1705 
1706 	if (likely(ret >= 0)) {
1707 		__queue_delayed_work(cpu, wq, dwork, delay);
1708 		local_irq_restore(flags);
1709 	}
1710 
1711 	/* -ENOENT from try_to_grab_pending() becomes %true */
1712 	return ret;
1713 }
1714 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1715 
1716 static void rcu_work_rcufn(struct rcu_head *rcu)
1717 {
1718 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1719 
1720 	/* read the comment in __queue_work() */
1721 	local_irq_disable();
1722 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1723 	local_irq_enable();
1724 }
1725 
1726 /**
1727  * queue_rcu_work - queue work after a RCU grace period
1728  * @wq: workqueue to use
1729  * @rwork: work to queue
1730  *
1731  * Return: %false if @rwork was already pending, %true otherwise.  Note
1732  * that a full RCU grace period is guaranteed only after a %true return.
1733  * While @rwork is guaranteed to be executed after a %false return, the
1734  * execution may happen before a full RCU grace period has passed.
1735  */
1736 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1737 {
1738 	struct work_struct *work = &rwork->work;
1739 
1740 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1741 		rwork->wq = wq;
1742 		call_rcu(&rwork->rcu, rcu_work_rcufn);
1743 		return true;
1744 	}
1745 
1746 	return false;
1747 }
1748 EXPORT_SYMBOL(queue_rcu_work);
1749 
1750 /**
1751  * worker_enter_idle - enter idle state
1752  * @worker: worker which is entering idle state
1753  *
1754  * @worker is entering idle state.  Update stats and idle timer if
1755  * necessary.
1756  *
1757  * LOCKING:
1758  * spin_lock_irq(pool->lock).
1759  */
1760 static void worker_enter_idle(struct worker *worker)
1761 {
1762 	struct worker_pool *pool = worker->pool;
1763 
1764 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1765 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1766 			 (worker->hentry.next || worker->hentry.pprev)))
1767 		return;
1768 
1769 	/* can't use worker_set_flags(), also called from create_worker() */
1770 	worker->flags |= WORKER_IDLE;
1771 	pool->nr_idle++;
1772 	worker->last_active = jiffies;
1773 
1774 	/* idle_list is LIFO */
1775 	list_add(&worker->entry, &pool->idle_list);
1776 
1777 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1778 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1779 
1780 	/*
1781 	 * Sanity check nr_running.  Because unbind_workers() releases
1782 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1783 	 * nr_running, the warning may trigger spuriously.  Check iff
1784 	 * unbind is not in progress.
1785 	 */
1786 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1787 		     pool->nr_workers == pool->nr_idle &&
1788 		     atomic_read(&pool->nr_running));
1789 }
1790 
1791 /**
1792  * worker_leave_idle - leave idle state
1793  * @worker: worker which is leaving idle state
1794  *
1795  * @worker is leaving idle state.  Update stats.
1796  *
1797  * LOCKING:
1798  * spin_lock_irq(pool->lock).
1799  */
1800 static void worker_leave_idle(struct worker *worker)
1801 {
1802 	struct worker_pool *pool = worker->pool;
1803 
1804 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1805 		return;
1806 	worker_clr_flags(worker, WORKER_IDLE);
1807 	pool->nr_idle--;
1808 	list_del_init(&worker->entry);
1809 }
1810 
1811 static struct worker *alloc_worker(int node)
1812 {
1813 	struct worker *worker;
1814 
1815 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1816 	if (worker) {
1817 		INIT_LIST_HEAD(&worker->entry);
1818 		INIT_LIST_HEAD(&worker->scheduled);
1819 		INIT_LIST_HEAD(&worker->node);
1820 		/* on creation a worker is in !idle && prep state */
1821 		worker->flags = WORKER_PREP;
1822 	}
1823 	return worker;
1824 }
1825 
1826 /**
1827  * worker_attach_to_pool() - attach a worker to a pool
1828  * @worker: worker to be attached
1829  * @pool: the target pool
1830  *
1831  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1832  * cpu-binding of @worker are kept coordinated with the pool across
1833  * cpu-[un]hotplugs.
1834  */
1835 static void worker_attach_to_pool(struct worker *worker,
1836 				   struct worker_pool *pool)
1837 {
1838 	mutex_lock(&wq_pool_attach_mutex);
1839 
1840 	/*
1841 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1842 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1843 	 */
1844 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1845 
1846 	/*
1847 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1848 	 * stable across this function.  See the comments above the flag
1849 	 * definition for details.
1850 	 */
1851 	if (pool->flags & POOL_DISASSOCIATED)
1852 		worker->flags |= WORKER_UNBOUND;
1853 
1854 	list_add_tail(&worker->node, &pool->workers);
1855 	worker->pool = pool;
1856 
1857 	mutex_unlock(&wq_pool_attach_mutex);
1858 }
1859 
1860 /**
1861  * worker_detach_from_pool() - detach a worker from its pool
1862  * @worker: worker which is attached to its pool
1863  *
1864  * Undo the attaching which had been done in worker_attach_to_pool().  The
1865  * caller worker shouldn't access to the pool after detached except it has
1866  * other reference to the pool.
1867  */
1868 static void worker_detach_from_pool(struct worker *worker)
1869 {
1870 	struct worker_pool *pool = worker->pool;
1871 	struct completion *detach_completion = NULL;
1872 
1873 	mutex_lock(&wq_pool_attach_mutex);
1874 
1875 	list_del(&worker->node);
1876 	worker->pool = NULL;
1877 
1878 	if (list_empty(&pool->workers))
1879 		detach_completion = pool->detach_completion;
1880 	mutex_unlock(&wq_pool_attach_mutex);
1881 
1882 	/* clear leftover flags without pool->lock after it is detached */
1883 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1884 
1885 	if (detach_completion)
1886 		complete(detach_completion);
1887 }
1888 
1889 /**
1890  * create_worker - create a new workqueue worker
1891  * @pool: pool the new worker will belong to
1892  *
1893  * Create and start a new worker which is attached to @pool.
1894  *
1895  * CONTEXT:
1896  * Might sleep.  Does GFP_KERNEL allocations.
1897  *
1898  * Return:
1899  * Pointer to the newly created worker.
1900  */
1901 static struct worker *create_worker(struct worker_pool *pool)
1902 {
1903 	struct worker *worker = NULL;
1904 	int id = -1;
1905 	char id_buf[16];
1906 
1907 	/* ID is needed to determine kthread name */
1908 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1909 	if (id < 0)
1910 		goto fail;
1911 
1912 	worker = alloc_worker(pool->node);
1913 	if (!worker)
1914 		goto fail;
1915 
1916 	worker->id = id;
1917 
1918 	if (pool->cpu >= 0)
1919 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1920 			 pool->attrs->nice < 0  ? "H" : "");
1921 	else
1922 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1923 
1924 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1925 					      "kworker/%s", id_buf);
1926 	if (IS_ERR(worker->task))
1927 		goto fail;
1928 
1929 	set_user_nice(worker->task, pool->attrs->nice);
1930 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1931 
1932 	/* successful, attach the worker to the pool */
1933 	worker_attach_to_pool(worker, pool);
1934 
1935 	/* start the newly created worker */
1936 	spin_lock_irq(&pool->lock);
1937 	worker->pool->nr_workers++;
1938 	worker_enter_idle(worker);
1939 	wake_up_process(worker->task);
1940 	spin_unlock_irq(&pool->lock);
1941 
1942 	return worker;
1943 
1944 fail:
1945 	if (id >= 0)
1946 		ida_simple_remove(&pool->worker_ida, id);
1947 	kfree(worker);
1948 	return NULL;
1949 }
1950 
1951 /**
1952  * destroy_worker - destroy a workqueue worker
1953  * @worker: worker to be destroyed
1954  *
1955  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1956  * be idle.
1957  *
1958  * CONTEXT:
1959  * spin_lock_irq(pool->lock).
1960  */
1961 static void destroy_worker(struct worker *worker)
1962 {
1963 	struct worker_pool *pool = worker->pool;
1964 
1965 	lockdep_assert_held(&pool->lock);
1966 
1967 	/* sanity check frenzy */
1968 	if (WARN_ON(worker->current_work) ||
1969 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1970 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1971 		return;
1972 
1973 	pool->nr_workers--;
1974 	pool->nr_idle--;
1975 
1976 	list_del_init(&worker->entry);
1977 	worker->flags |= WORKER_DIE;
1978 	wake_up_process(worker->task);
1979 }
1980 
1981 static void idle_worker_timeout(struct timer_list *t)
1982 {
1983 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
1984 
1985 	spin_lock_irq(&pool->lock);
1986 
1987 	while (too_many_workers(pool)) {
1988 		struct worker *worker;
1989 		unsigned long expires;
1990 
1991 		/* idle_list is kept in LIFO order, check the last one */
1992 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1993 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1994 
1995 		if (time_before(jiffies, expires)) {
1996 			mod_timer(&pool->idle_timer, expires);
1997 			break;
1998 		}
1999 
2000 		destroy_worker(worker);
2001 	}
2002 
2003 	spin_unlock_irq(&pool->lock);
2004 }
2005 
2006 static void send_mayday(struct work_struct *work)
2007 {
2008 	struct pool_workqueue *pwq = get_work_pwq(work);
2009 	struct workqueue_struct *wq = pwq->wq;
2010 
2011 	lockdep_assert_held(&wq_mayday_lock);
2012 
2013 	if (!wq->rescuer)
2014 		return;
2015 
2016 	/* mayday mayday mayday */
2017 	if (list_empty(&pwq->mayday_node)) {
2018 		/*
2019 		 * If @pwq is for an unbound wq, its base ref may be put at
2020 		 * any time due to an attribute change.  Pin @pwq until the
2021 		 * rescuer is done with it.
2022 		 */
2023 		get_pwq(pwq);
2024 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2025 		wake_up_process(wq->rescuer->task);
2026 	}
2027 }
2028 
2029 static void pool_mayday_timeout(struct timer_list *t)
2030 {
2031 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2032 	struct work_struct *work;
2033 
2034 	spin_lock_irq(&pool->lock);
2035 	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2036 
2037 	if (need_to_create_worker(pool)) {
2038 		/*
2039 		 * We've been trying to create a new worker but
2040 		 * haven't been successful.  We might be hitting an
2041 		 * allocation deadlock.  Send distress signals to
2042 		 * rescuers.
2043 		 */
2044 		list_for_each_entry(work, &pool->worklist, entry)
2045 			send_mayday(work);
2046 	}
2047 
2048 	spin_unlock(&wq_mayday_lock);
2049 	spin_unlock_irq(&pool->lock);
2050 
2051 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2052 }
2053 
2054 /**
2055  * maybe_create_worker - create a new worker if necessary
2056  * @pool: pool to create a new worker for
2057  *
2058  * Create a new worker for @pool if necessary.  @pool is guaranteed to
2059  * have at least one idle worker on return from this function.  If
2060  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2061  * sent to all rescuers with works scheduled on @pool to resolve
2062  * possible allocation deadlock.
2063  *
2064  * On return, need_to_create_worker() is guaranteed to be %false and
2065  * may_start_working() %true.
2066  *
2067  * LOCKING:
2068  * spin_lock_irq(pool->lock) which may be released and regrabbed
2069  * multiple times.  Does GFP_KERNEL allocations.  Called only from
2070  * manager.
2071  */
2072 static void maybe_create_worker(struct worker_pool *pool)
2073 __releases(&pool->lock)
2074 __acquires(&pool->lock)
2075 {
2076 restart:
2077 	spin_unlock_irq(&pool->lock);
2078 
2079 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2080 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2081 
2082 	while (true) {
2083 		if (create_worker(pool) || !need_to_create_worker(pool))
2084 			break;
2085 
2086 		schedule_timeout_interruptible(CREATE_COOLDOWN);
2087 
2088 		if (!need_to_create_worker(pool))
2089 			break;
2090 	}
2091 
2092 	del_timer_sync(&pool->mayday_timer);
2093 	spin_lock_irq(&pool->lock);
2094 	/*
2095 	 * This is necessary even after a new worker was just successfully
2096 	 * created as @pool->lock was dropped and the new worker might have
2097 	 * already become busy.
2098 	 */
2099 	if (need_to_create_worker(pool))
2100 		goto restart;
2101 }
2102 
2103 /**
2104  * manage_workers - manage worker pool
2105  * @worker: self
2106  *
2107  * Assume the manager role and manage the worker pool @worker belongs
2108  * to.  At any given time, there can be only zero or one manager per
2109  * pool.  The exclusion is handled automatically by this function.
2110  *
2111  * The caller can safely start processing works on false return.  On
2112  * true return, it's guaranteed that need_to_create_worker() is false
2113  * and may_start_working() is true.
2114  *
2115  * CONTEXT:
2116  * spin_lock_irq(pool->lock) which may be released and regrabbed
2117  * multiple times.  Does GFP_KERNEL allocations.
2118  *
2119  * Return:
2120  * %false if the pool doesn't need management and the caller can safely
2121  * start processing works, %true if management function was performed and
2122  * the conditions that the caller verified before calling the function may
2123  * no longer be true.
2124  */
2125 static bool manage_workers(struct worker *worker)
2126 {
2127 	struct worker_pool *pool = worker->pool;
2128 
2129 	if (pool->flags & POOL_MANAGER_ACTIVE)
2130 		return false;
2131 
2132 	pool->flags |= POOL_MANAGER_ACTIVE;
2133 	pool->manager = worker;
2134 
2135 	maybe_create_worker(pool);
2136 
2137 	pool->manager = NULL;
2138 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2139 	wake_up(&wq_manager_wait);
2140 	return true;
2141 }
2142 
2143 /**
2144  * process_one_work - process single work
2145  * @worker: self
2146  * @work: work to process
2147  *
2148  * Process @work.  This function contains all the logics necessary to
2149  * process a single work including synchronization against and
2150  * interaction with other workers on the same cpu, queueing and
2151  * flushing.  As long as context requirement is met, any worker can
2152  * call this function to process a work.
2153  *
2154  * CONTEXT:
2155  * spin_lock_irq(pool->lock) which is released and regrabbed.
2156  */
2157 static void process_one_work(struct worker *worker, struct work_struct *work)
2158 __releases(&pool->lock)
2159 __acquires(&pool->lock)
2160 {
2161 	struct pool_workqueue *pwq = get_work_pwq(work);
2162 	struct worker_pool *pool = worker->pool;
2163 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2164 	int work_color;
2165 	struct worker *collision;
2166 #ifdef CONFIG_LOCKDEP
2167 	/*
2168 	 * It is permissible to free the struct work_struct from
2169 	 * inside the function that is called from it, this we need to
2170 	 * take into account for lockdep too.  To avoid bogus "held
2171 	 * lock freed" warnings as well as problems when looking into
2172 	 * work->lockdep_map, make a copy and use that here.
2173 	 */
2174 	struct lockdep_map lockdep_map;
2175 
2176 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2177 #endif
2178 	/* ensure we're on the correct CPU */
2179 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2180 		     raw_smp_processor_id() != pool->cpu);
2181 
2182 	/*
2183 	 * A single work shouldn't be executed concurrently by
2184 	 * multiple workers on a single cpu.  Check whether anyone is
2185 	 * already processing the work.  If so, defer the work to the
2186 	 * currently executing one.
2187 	 */
2188 	collision = find_worker_executing_work(pool, work);
2189 	if (unlikely(collision)) {
2190 		move_linked_works(work, &collision->scheduled, NULL);
2191 		return;
2192 	}
2193 
2194 	/* claim and dequeue */
2195 	debug_work_deactivate(work);
2196 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2197 	worker->current_work = work;
2198 	worker->current_func = work->func;
2199 	worker->current_pwq = pwq;
2200 	work_color = get_work_color(work);
2201 
2202 	/*
2203 	 * Record wq name for cmdline and debug reporting, may get
2204 	 * overridden through set_worker_desc().
2205 	 */
2206 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2207 
2208 	list_del_init(&work->entry);
2209 
2210 	/*
2211 	 * CPU intensive works don't participate in concurrency management.
2212 	 * They're the scheduler's responsibility.  This takes @worker out
2213 	 * of concurrency management and the next code block will chain
2214 	 * execution of the pending work items.
2215 	 */
2216 	if (unlikely(cpu_intensive))
2217 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2218 
2219 	/*
2220 	 * Wake up another worker if necessary.  The condition is always
2221 	 * false for normal per-cpu workers since nr_running would always
2222 	 * be >= 1 at this point.  This is used to chain execution of the
2223 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2224 	 * UNBOUND and CPU_INTENSIVE ones.
2225 	 */
2226 	if (need_more_worker(pool))
2227 		wake_up_worker(pool);
2228 
2229 	/*
2230 	 * Record the last pool and clear PENDING which should be the last
2231 	 * update to @work.  Also, do this inside @pool->lock so that
2232 	 * PENDING and queued state changes happen together while IRQ is
2233 	 * disabled.
2234 	 */
2235 	set_work_pool_and_clear_pending(work, pool->id);
2236 
2237 	spin_unlock_irq(&pool->lock);
2238 
2239 	lock_map_acquire(&pwq->wq->lockdep_map);
2240 	lock_map_acquire(&lockdep_map);
2241 	/*
2242 	 * Strictly speaking we should mark the invariant state without holding
2243 	 * any locks, that is, before these two lock_map_acquire()'s.
2244 	 *
2245 	 * However, that would result in:
2246 	 *
2247 	 *   A(W1)
2248 	 *   WFC(C)
2249 	 *		A(W1)
2250 	 *		C(C)
2251 	 *
2252 	 * Which would create W1->C->W1 dependencies, even though there is no
2253 	 * actual deadlock possible. There are two solutions, using a
2254 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2255 	 * hit the lockdep limitation on recursive locks, or simply discard
2256 	 * these locks.
2257 	 *
2258 	 * AFAICT there is no possible deadlock scenario between the
2259 	 * flush_work() and complete() primitives (except for single-threaded
2260 	 * workqueues), so hiding them isn't a problem.
2261 	 */
2262 	lockdep_invariant_state(true);
2263 	trace_workqueue_execute_start(work);
2264 	worker->current_func(work);
2265 	/*
2266 	 * While we must be careful to not use "work" after this, the trace
2267 	 * point will only record its address.
2268 	 */
2269 	trace_workqueue_execute_end(work, worker->current_func);
2270 	lock_map_release(&lockdep_map);
2271 	lock_map_release(&pwq->wq->lockdep_map);
2272 
2273 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2274 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2275 		       "     last function: %ps\n",
2276 		       current->comm, preempt_count(), task_pid_nr(current),
2277 		       worker->current_func);
2278 		debug_show_held_locks(current);
2279 		dump_stack();
2280 	}
2281 
2282 	/*
2283 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
2284 	 * kernels, where a requeueing work item waiting for something to
2285 	 * happen could deadlock with stop_machine as such work item could
2286 	 * indefinitely requeue itself while all other CPUs are trapped in
2287 	 * stop_machine. At the same time, report a quiescent RCU state so
2288 	 * the same condition doesn't freeze RCU.
2289 	 */
2290 	cond_resched();
2291 
2292 	spin_lock_irq(&pool->lock);
2293 
2294 	/* clear cpu intensive status */
2295 	if (unlikely(cpu_intensive))
2296 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2297 
2298 	/* tag the worker for identification in schedule() */
2299 	worker->last_func = worker->current_func;
2300 
2301 	/* we're done with it, release */
2302 	hash_del(&worker->hentry);
2303 	worker->current_work = NULL;
2304 	worker->current_func = NULL;
2305 	worker->current_pwq = NULL;
2306 	pwq_dec_nr_in_flight(pwq, work_color);
2307 }
2308 
2309 /**
2310  * process_scheduled_works - process scheduled works
2311  * @worker: self
2312  *
2313  * Process all scheduled works.  Please note that the scheduled list
2314  * may change while processing a work, so this function repeatedly
2315  * fetches a work from the top and executes it.
2316  *
2317  * CONTEXT:
2318  * spin_lock_irq(pool->lock) which may be released and regrabbed
2319  * multiple times.
2320  */
2321 static void process_scheduled_works(struct worker *worker)
2322 {
2323 	while (!list_empty(&worker->scheduled)) {
2324 		struct work_struct *work = list_first_entry(&worker->scheduled,
2325 						struct work_struct, entry);
2326 		process_one_work(worker, work);
2327 	}
2328 }
2329 
2330 static void set_pf_worker(bool val)
2331 {
2332 	mutex_lock(&wq_pool_attach_mutex);
2333 	if (val)
2334 		current->flags |= PF_WQ_WORKER;
2335 	else
2336 		current->flags &= ~PF_WQ_WORKER;
2337 	mutex_unlock(&wq_pool_attach_mutex);
2338 }
2339 
2340 /**
2341  * worker_thread - the worker thread function
2342  * @__worker: self
2343  *
2344  * The worker thread function.  All workers belong to a worker_pool -
2345  * either a per-cpu one or dynamic unbound one.  These workers process all
2346  * work items regardless of their specific target workqueue.  The only
2347  * exception is work items which belong to workqueues with a rescuer which
2348  * will be explained in rescuer_thread().
2349  *
2350  * Return: 0
2351  */
2352 static int worker_thread(void *__worker)
2353 {
2354 	struct worker *worker = __worker;
2355 	struct worker_pool *pool = worker->pool;
2356 
2357 	/* tell the scheduler that this is a workqueue worker */
2358 	set_pf_worker(true);
2359 woke_up:
2360 	spin_lock_irq(&pool->lock);
2361 
2362 	/* am I supposed to die? */
2363 	if (unlikely(worker->flags & WORKER_DIE)) {
2364 		spin_unlock_irq(&pool->lock);
2365 		WARN_ON_ONCE(!list_empty(&worker->entry));
2366 		set_pf_worker(false);
2367 
2368 		set_task_comm(worker->task, "kworker/dying");
2369 		ida_simple_remove(&pool->worker_ida, worker->id);
2370 		worker_detach_from_pool(worker);
2371 		kfree(worker);
2372 		return 0;
2373 	}
2374 
2375 	worker_leave_idle(worker);
2376 recheck:
2377 	/* no more worker necessary? */
2378 	if (!need_more_worker(pool))
2379 		goto sleep;
2380 
2381 	/* do we need to manage? */
2382 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2383 		goto recheck;
2384 
2385 	/*
2386 	 * ->scheduled list can only be filled while a worker is
2387 	 * preparing to process a work or actually processing it.
2388 	 * Make sure nobody diddled with it while I was sleeping.
2389 	 */
2390 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2391 
2392 	/*
2393 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2394 	 * worker or that someone else has already assumed the manager
2395 	 * role.  This is where @worker starts participating in concurrency
2396 	 * management if applicable and concurrency management is restored
2397 	 * after being rebound.  See rebind_workers() for details.
2398 	 */
2399 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2400 
2401 	do {
2402 		struct work_struct *work =
2403 			list_first_entry(&pool->worklist,
2404 					 struct work_struct, entry);
2405 
2406 		pool->watchdog_ts = jiffies;
2407 
2408 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2409 			/* optimization path, not strictly necessary */
2410 			process_one_work(worker, work);
2411 			if (unlikely(!list_empty(&worker->scheduled)))
2412 				process_scheduled_works(worker);
2413 		} else {
2414 			move_linked_works(work, &worker->scheduled, NULL);
2415 			process_scheduled_works(worker);
2416 		}
2417 	} while (keep_working(pool));
2418 
2419 	worker_set_flags(worker, WORKER_PREP);
2420 sleep:
2421 	/*
2422 	 * pool->lock is held and there's no work to process and no need to
2423 	 * manage, sleep.  Workers are woken up only while holding
2424 	 * pool->lock or from local cpu, so setting the current state
2425 	 * before releasing pool->lock is enough to prevent losing any
2426 	 * event.
2427 	 */
2428 	worker_enter_idle(worker);
2429 	__set_current_state(TASK_IDLE);
2430 	spin_unlock_irq(&pool->lock);
2431 	schedule();
2432 	goto woke_up;
2433 }
2434 
2435 /**
2436  * rescuer_thread - the rescuer thread function
2437  * @__rescuer: self
2438  *
2439  * Workqueue rescuer thread function.  There's one rescuer for each
2440  * workqueue which has WQ_MEM_RECLAIM set.
2441  *
2442  * Regular work processing on a pool may block trying to create a new
2443  * worker which uses GFP_KERNEL allocation which has slight chance of
2444  * developing into deadlock if some works currently on the same queue
2445  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2446  * the problem rescuer solves.
2447  *
2448  * When such condition is possible, the pool summons rescuers of all
2449  * workqueues which have works queued on the pool and let them process
2450  * those works so that forward progress can be guaranteed.
2451  *
2452  * This should happen rarely.
2453  *
2454  * Return: 0
2455  */
2456 static int rescuer_thread(void *__rescuer)
2457 {
2458 	struct worker *rescuer = __rescuer;
2459 	struct workqueue_struct *wq = rescuer->rescue_wq;
2460 	struct list_head *scheduled = &rescuer->scheduled;
2461 	bool should_stop;
2462 
2463 	set_user_nice(current, RESCUER_NICE_LEVEL);
2464 
2465 	/*
2466 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2467 	 * doesn't participate in concurrency management.
2468 	 */
2469 	set_pf_worker(true);
2470 repeat:
2471 	set_current_state(TASK_IDLE);
2472 
2473 	/*
2474 	 * By the time the rescuer is requested to stop, the workqueue
2475 	 * shouldn't have any work pending, but @wq->maydays may still have
2476 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2477 	 * all the work items before the rescuer got to them.  Go through
2478 	 * @wq->maydays processing before acting on should_stop so that the
2479 	 * list is always empty on exit.
2480 	 */
2481 	should_stop = kthread_should_stop();
2482 
2483 	/* see whether any pwq is asking for help */
2484 	spin_lock_irq(&wq_mayday_lock);
2485 
2486 	while (!list_empty(&wq->maydays)) {
2487 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2488 					struct pool_workqueue, mayday_node);
2489 		struct worker_pool *pool = pwq->pool;
2490 		struct work_struct *work, *n;
2491 		bool first = true;
2492 
2493 		__set_current_state(TASK_RUNNING);
2494 		list_del_init(&pwq->mayday_node);
2495 
2496 		spin_unlock_irq(&wq_mayday_lock);
2497 
2498 		worker_attach_to_pool(rescuer, pool);
2499 
2500 		spin_lock_irq(&pool->lock);
2501 
2502 		/*
2503 		 * Slurp in all works issued via this workqueue and
2504 		 * process'em.
2505 		 */
2506 		WARN_ON_ONCE(!list_empty(scheduled));
2507 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2508 			if (get_work_pwq(work) == pwq) {
2509 				if (first)
2510 					pool->watchdog_ts = jiffies;
2511 				move_linked_works(work, scheduled, &n);
2512 			}
2513 			first = false;
2514 		}
2515 
2516 		if (!list_empty(scheduled)) {
2517 			process_scheduled_works(rescuer);
2518 
2519 			/*
2520 			 * The above execution of rescued work items could
2521 			 * have created more to rescue through
2522 			 * pwq_activate_first_delayed() or chained
2523 			 * queueing.  Let's put @pwq back on mayday list so
2524 			 * that such back-to-back work items, which may be
2525 			 * being used to relieve memory pressure, don't
2526 			 * incur MAYDAY_INTERVAL delay inbetween.
2527 			 */
2528 			if (need_to_create_worker(pool)) {
2529 				spin_lock(&wq_mayday_lock);
2530 				/*
2531 				 * Queue iff we aren't racing destruction
2532 				 * and somebody else hasn't queued it already.
2533 				 */
2534 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2535 					get_pwq(pwq);
2536 					list_add_tail(&pwq->mayday_node, &wq->maydays);
2537 				}
2538 				spin_unlock(&wq_mayday_lock);
2539 			}
2540 		}
2541 
2542 		/*
2543 		 * Put the reference grabbed by send_mayday().  @pool won't
2544 		 * go away while we're still attached to it.
2545 		 */
2546 		put_pwq(pwq);
2547 
2548 		/*
2549 		 * Leave this pool.  If need_more_worker() is %true, notify a
2550 		 * regular worker; otherwise, we end up with 0 concurrency
2551 		 * and stalling the execution.
2552 		 */
2553 		if (need_more_worker(pool))
2554 			wake_up_worker(pool);
2555 
2556 		spin_unlock_irq(&pool->lock);
2557 
2558 		worker_detach_from_pool(rescuer);
2559 
2560 		spin_lock_irq(&wq_mayday_lock);
2561 	}
2562 
2563 	spin_unlock_irq(&wq_mayday_lock);
2564 
2565 	if (should_stop) {
2566 		__set_current_state(TASK_RUNNING);
2567 		set_pf_worker(false);
2568 		return 0;
2569 	}
2570 
2571 	/* rescuers should never participate in concurrency management */
2572 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2573 	schedule();
2574 	goto repeat;
2575 }
2576 
2577 /**
2578  * check_flush_dependency - check for flush dependency sanity
2579  * @target_wq: workqueue being flushed
2580  * @target_work: work item being flushed (NULL for workqueue flushes)
2581  *
2582  * %current is trying to flush the whole @target_wq or @target_work on it.
2583  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2584  * reclaiming memory or running on a workqueue which doesn't have
2585  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2586  * a deadlock.
2587  */
2588 static void check_flush_dependency(struct workqueue_struct *target_wq,
2589 				   struct work_struct *target_work)
2590 {
2591 	work_func_t target_func = target_work ? target_work->func : NULL;
2592 	struct worker *worker;
2593 
2594 	if (target_wq->flags & WQ_MEM_RECLAIM)
2595 		return;
2596 
2597 	worker = current_wq_worker();
2598 
2599 	WARN_ONCE(current->flags & PF_MEMALLOC,
2600 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2601 		  current->pid, current->comm, target_wq->name, target_func);
2602 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2603 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2604 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2605 		  worker->current_pwq->wq->name, worker->current_func,
2606 		  target_wq->name, target_func);
2607 }
2608 
2609 struct wq_barrier {
2610 	struct work_struct	work;
2611 	struct completion	done;
2612 	struct task_struct	*task;	/* purely informational */
2613 };
2614 
2615 static void wq_barrier_func(struct work_struct *work)
2616 {
2617 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2618 	complete(&barr->done);
2619 }
2620 
2621 /**
2622  * insert_wq_barrier - insert a barrier work
2623  * @pwq: pwq to insert barrier into
2624  * @barr: wq_barrier to insert
2625  * @target: target work to attach @barr to
2626  * @worker: worker currently executing @target, NULL if @target is not executing
2627  *
2628  * @barr is linked to @target such that @barr is completed only after
2629  * @target finishes execution.  Please note that the ordering
2630  * guarantee is observed only with respect to @target and on the local
2631  * cpu.
2632  *
2633  * Currently, a queued barrier can't be canceled.  This is because
2634  * try_to_grab_pending() can't determine whether the work to be
2635  * grabbed is at the head of the queue and thus can't clear LINKED
2636  * flag of the previous work while there must be a valid next work
2637  * after a work with LINKED flag set.
2638  *
2639  * Note that when @worker is non-NULL, @target may be modified
2640  * underneath us, so we can't reliably determine pwq from @target.
2641  *
2642  * CONTEXT:
2643  * spin_lock_irq(pool->lock).
2644  */
2645 static void insert_wq_barrier(struct pool_workqueue *pwq,
2646 			      struct wq_barrier *barr,
2647 			      struct work_struct *target, struct worker *worker)
2648 {
2649 	struct list_head *head;
2650 	unsigned int linked = 0;
2651 
2652 	/*
2653 	 * debugobject calls are safe here even with pool->lock locked
2654 	 * as we know for sure that this will not trigger any of the
2655 	 * checks and call back into the fixup functions where we
2656 	 * might deadlock.
2657 	 */
2658 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2659 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2660 
2661 	init_completion_map(&barr->done, &target->lockdep_map);
2662 
2663 	barr->task = current;
2664 
2665 	/*
2666 	 * If @target is currently being executed, schedule the
2667 	 * barrier to the worker; otherwise, put it after @target.
2668 	 */
2669 	if (worker)
2670 		head = worker->scheduled.next;
2671 	else {
2672 		unsigned long *bits = work_data_bits(target);
2673 
2674 		head = target->entry.next;
2675 		/* there can already be other linked works, inherit and set */
2676 		linked = *bits & WORK_STRUCT_LINKED;
2677 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2678 	}
2679 
2680 	debug_work_activate(&barr->work);
2681 	insert_work(pwq, &barr->work, head,
2682 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2683 }
2684 
2685 /**
2686  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2687  * @wq: workqueue being flushed
2688  * @flush_color: new flush color, < 0 for no-op
2689  * @work_color: new work color, < 0 for no-op
2690  *
2691  * Prepare pwqs for workqueue flushing.
2692  *
2693  * If @flush_color is non-negative, flush_color on all pwqs should be
2694  * -1.  If no pwq has in-flight commands at the specified color, all
2695  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2696  * has in flight commands, its pwq->flush_color is set to
2697  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2698  * wakeup logic is armed and %true is returned.
2699  *
2700  * The caller should have initialized @wq->first_flusher prior to
2701  * calling this function with non-negative @flush_color.  If
2702  * @flush_color is negative, no flush color update is done and %false
2703  * is returned.
2704  *
2705  * If @work_color is non-negative, all pwqs should have the same
2706  * work_color which is previous to @work_color and all will be
2707  * advanced to @work_color.
2708  *
2709  * CONTEXT:
2710  * mutex_lock(wq->mutex).
2711  *
2712  * Return:
2713  * %true if @flush_color >= 0 and there's something to flush.  %false
2714  * otherwise.
2715  */
2716 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2717 				      int flush_color, int work_color)
2718 {
2719 	bool wait = false;
2720 	struct pool_workqueue *pwq;
2721 
2722 	if (flush_color >= 0) {
2723 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2724 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2725 	}
2726 
2727 	for_each_pwq(pwq, wq) {
2728 		struct worker_pool *pool = pwq->pool;
2729 
2730 		spin_lock_irq(&pool->lock);
2731 
2732 		if (flush_color >= 0) {
2733 			WARN_ON_ONCE(pwq->flush_color != -1);
2734 
2735 			if (pwq->nr_in_flight[flush_color]) {
2736 				pwq->flush_color = flush_color;
2737 				atomic_inc(&wq->nr_pwqs_to_flush);
2738 				wait = true;
2739 			}
2740 		}
2741 
2742 		if (work_color >= 0) {
2743 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2744 			pwq->work_color = work_color;
2745 		}
2746 
2747 		spin_unlock_irq(&pool->lock);
2748 	}
2749 
2750 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2751 		complete(&wq->first_flusher->done);
2752 
2753 	return wait;
2754 }
2755 
2756 /**
2757  * flush_workqueue - ensure that any scheduled work has run to completion.
2758  * @wq: workqueue to flush
2759  *
2760  * This function sleeps until all work items which were queued on entry
2761  * have finished execution, but it is not livelocked by new incoming ones.
2762  */
2763 void flush_workqueue(struct workqueue_struct *wq)
2764 {
2765 	struct wq_flusher this_flusher = {
2766 		.list = LIST_HEAD_INIT(this_flusher.list),
2767 		.flush_color = -1,
2768 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2769 	};
2770 	int next_color;
2771 
2772 	if (WARN_ON(!wq_online))
2773 		return;
2774 
2775 	lock_map_acquire(&wq->lockdep_map);
2776 	lock_map_release(&wq->lockdep_map);
2777 
2778 	mutex_lock(&wq->mutex);
2779 
2780 	/*
2781 	 * Start-to-wait phase
2782 	 */
2783 	next_color = work_next_color(wq->work_color);
2784 
2785 	if (next_color != wq->flush_color) {
2786 		/*
2787 		 * Color space is not full.  The current work_color
2788 		 * becomes our flush_color and work_color is advanced
2789 		 * by one.
2790 		 */
2791 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2792 		this_flusher.flush_color = wq->work_color;
2793 		wq->work_color = next_color;
2794 
2795 		if (!wq->first_flusher) {
2796 			/* no flush in progress, become the first flusher */
2797 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2798 
2799 			wq->first_flusher = &this_flusher;
2800 
2801 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2802 						       wq->work_color)) {
2803 				/* nothing to flush, done */
2804 				wq->flush_color = next_color;
2805 				wq->first_flusher = NULL;
2806 				goto out_unlock;
2807 			}
2808 		} else {
2809 			/* wait in queue */
2810 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2811 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2812 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2813 		}
2814 	} else {
2815 		/*
2816 		 * Oops, color space is full, wait on overflow queue.
2817 		 * The next flush completion will assign us
2818 		 * flush_color and transfer to flusher_queue.
2819 		 */
2820 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2821 	}
2822 
2823 	check_flush_dependency(wq, NULL);
2824 
2825 	mutex_unlock(&wq->mutex);
2826 
2827 	wait_for_completion(&this_flusher.done);
2828 
2829 	/*
2830 	 * Wake-up-and-cascade phase
2831 	 *
2832 	 * First flushers are responsible for cascading flushes and
2833 	 * handling overflow.  Non-first flushers can simply return.
2834 	 */
2835 	if (wq->first_flusher != &this_flusher)
2836 		return;
2837 
2838 	mutex_lock(&wq->mutex);
2839 
2840 	/* we might have raced, check again with mutex held */
2841 	if (wq->first_flusher != &this_flusher)
2842 		goto out_unlock;
2843 
2844 	wq->first_flusher = NULL;
2845 
2846 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2847 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2848 
2849 	while (true) {
2850 		struct wq_flusher *next, *tmp;
2851 
2852 		/* complete all the flushers sharing the current flush color */
2853 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2854 			if (next->flush_color != wq->flush_color)
2855 				break;
2856 			list_del_init(&next->list);
2857 			complete(&next->done);
2858 		}
2859 
2860 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2861 			     wq->flush_color != work_next_color(wq->work_color));
2862 
2863 		/* this flush_color is finished, advance by one */
2864 		wq->flush_color = work_next_color(wq->flush_color);
2865 
2866 		/* one color has been freed, handle overflow queue */
2867 		if (!list_empty(&wq->flusher_overflow)) {
2868 			/*
2869 			 * Assign the same color to all overflowed
2870 			 * flushers, advance work_color and append to
2871 			 * flusher_queue.  This is the start-to-wait
2872 			 * phase for these overflowed flushers.
2873 			 */
2874 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2875 				tmp->flush_color = wq->work_color;
2876 
2877 			wq->work_color = work_next_color(wq->work_color);
2878 
2879 			list_splice_tail_init(&wq->flusher_overflow,
2880 					      &wq->flusher_queue);
2881 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2882 		}
2883 
2884 		if (list_empty(&wq->flusher_queue)) {
2885 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2886 			break;
2887 		}
2888 
2889 		/*
2890 		 * Need to flush more colors.  Make the next flusher
2891 		 * the new first flusher and arm pwqs.
2892 		 */
2893 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2894 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2895 
2896 		list_del_init(&next->list);
2897 		wq->first_flusher = next;
2898 
2899 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2900 			break;
2901 
2902 		/*
2903 		 * Meh... this color is already done, clear first
2904 		 * flusher and repeat cascading.
2905 		 */
2906 		wq->first_flusher = NULL;
2907 	}
2908 
2909 out_unlock:
2910 	mutex_unlock(&wq->mutex);
2911 }
2912 EXPORT_SYMBOL(flush_workqueue);
2913 
2914 /**
2915  * drain_workqueue - drain a workqueue
2916  * @wq: workqueue to drain
2917  *
2918  * Wait until the workqueue becomes empty.  While draining is in progress,
2919  * only chain queueing is allowed.  IOW, only currently pending or running
2920  * work items on @wq can queue further work items on it.  @wq is flushed
2921  * repeatedly until it becomes empty.  The number of flushing is determined
2922  * by the depth of chaining and should be relatively short.  Whine if it
2923  * takes too long.
2924  */
2925 void drain_workqueue(struct workqueue_struct *wq)
2926 {
2927 	unsigned int flush_cnt = 0;
2928 	struct pool_workqueue *pwq;
2929 
2930 	/*
2931 	 * __queue_work() needs to test whether there are drainers, is much
2932 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2933 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2934 	 */
2935 	mutex_lock(&wq->mutex);
2936 	if (!wq->nr_drainers++)
2937 		wq->flags |= __WQ_DRAINING;
2938 	mutex_unlock(&wq->mutex);
2939 reflush:
2940 	flush_workqueue(wq);
2941 
2942 	mutex_lock(&wq->mutex);
2943 
2944 	for_each_pwq(pwq, wq) {
2945 		bool drained;
2946 
2947 		spin_lock_irq(&pwq->pool->lock);
2948 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2949 		spin_unlock_irq(&pwq->pool->lock);
2950 
2951 		if (drained)
2952 			continue;
2953 
2954 		if (++flush_cnt == 10 ||
2955 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2956 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2957 				wq->name, flush_cnt);
2958 
2959 		mutex_unlock(&wq->mutex);
2960 		goto reflush;
2961 	}
2962 
2963 	if (!--wq->nr_drainers)
2964 		wq->flags &= ~__WQ_DRAINING;
2965 	mutex_unlock(&wq->mutex);
2966 }
2967 EXPORT_SYMBOL_GPL(drain_workqueue);
2968 
2969 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2970 			     bool from_cancel)
2971 {
2972 	struct worker *worker = NULL;
2973 	struct worker_pool *pool;
2974 	struct pool_workqueue *pwq;
2975 
2976 	might_sleep();
2977 
2978 	rcu_read_lock();
2979 	pool = get_work_pool(work);
2980 	if (!pool) {
2981 		rcu_read_unlock();
2982 		return false;
2983 	}
2984 
2985 	spin_lock_irq(&pool->lock);
2986 	/* see the comment in try_to_grab_pending() with the same code */
2987 	pwq = get_work_pwq(work);
2988 	if (pwq) {
2989 		if (unlikely(pwq->pool != pool))
2990 			goto already_gone;
2991 	} else {
2992 		worker = find_worker_executing_work(pool, work);
2993 		if (!worker)
2994 			goto already_gone;
2995 		pwq = worker->current_pwq;
2996 	}
2997 
2998 	check_flush_dependency(pwq->wq, work);
2999 
3000 	insert_wq_barrier(pwq, barr, work, worker);
3001 	spin_unlock_irq(&pool->lock);
3002 
3003 	/*
3004 	 * Force a lock recursion deadlock when using flush_work() inside a
3005 	 * single-threaded or rescuer equipped workqueue.
3006 	 *
3007 	 * For single threaded workqueues the deadlock happens when the work
3008 	 * is after the work issuing the flush_work(). For rescuer equipped
3009 	 * workqueues the deadlock happens when the rescuer stalls, blocking
3010 	 * forward progress.
3011 	 */
3012 	if (!from_cancel &&
3013 	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3014 		lock_map_acquire(&pwq->wq->lockdep_map);
3015 		lock_map_release(&pwq->wq->lockdep_map);
3016 	}
3017 	rcu_read_unlock();
3018 	return true;
3019 already_gone:
3020 	spin_unlock_irq(&pool->lock);
3021 	rcu_read_unlock();
3022 	return false;
3023 }
3024 
3025 static bool __flush_work(struct work_struct *work, bool from_cancel)
3026 {
3027 	struct wq_barrier barr;
3028 
3029 	if (WARN_ON(!wq_online))
3030 		return false;
3031 
3032 	if (WARN_ON(!work->func))
3033 		return false;
3034 
3035 	if (!from_cancel) {
3036 		lock_map_acquire(&work->lockdep_map);
3037 		lock_map_release(&work->lockdep_map);
3038 	}
3039 
3040 	if (start_flush_work(work, &barr, from_cancel)) {
3041 		wait_for_completion(&barr.done);
3042 		destroy_work_on_stack(&barr.work);
3043 		return true;
3044 	} else {
3045 		return false;
3046 	}
3047 }
3048 
3049 /**
3050  * flush_work - wait for a work to finish executing the last queueing instance
3051  * @work: the work to flush
3052  *
3053  * Wait until @work has finished execution.  @work is guaranteed to be idle
3054  * on return if it hasn't been requeued since flush started.
3055  *
3056  * Return:
3057  * %true if flush_work() waited for the work to finish execution,
3058  * %false if it was already idle.
3059  */
3060 bool flush_work(struct work_struct *work)
3061 {
3062 	return __flush_work(work, false);
3063 }
3064 EXPORT_SYMBOL_GPL(flush_work);
3065 
3066 struct cwt_wait {
3067 	wait_queue_entry_t		wait;
3068 	struct work_struct	*work;
3069 };
3070 
3071 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3072 {
3073 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3074 
3075 	if (cwait->work != key)
3076 		return 0;
3077 	return autoremove_wake_function(wait, mode, sync, key);
3078 }
3079 
3080 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3081 {
3082 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3083 	unsigned long flags;
3084 	int ret;
3085 
3086 	do {
3087 		ret = try_to_grab_pending(work, is_dwork, &flags);
3088 		/*
3089 		 * If someone else is already canceling, wait for it to
3090 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3091 		 * because we may get scheduled between @work's completion
3092 		 * and the other canceling task resuming and clearing
3093 		 * CANCELING - flush_work() will return false immediately
3094 		 * as @work is no longer busy, try_to_grab_pending() will
3095 		 * return -ENOENT as @work is still being canceled and the
3096 		 * other canceling task won't be able to clear CANCELING as
3097 		 * we're hogging the CPU.
3098 		 *
3099 		 * Let's wait for completion using a waitqueue.  As this
3100 		 * may lead to the thundering herd problem, use a custom
3101 		 * wake function which matches @work along with exclusive
3102 		 * wait and wakeup.
3103 		 */
3104 		if (unlikely(ret == -ENOENT)) {
3105 			struct cwt_wait cwait;
3106 
3107 			init_wait(&cwait.wait);
3108 			cwait.wait.func = cwt_wakefn;
3109 			cwait.work = work;
3110 
3111 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3112 						  TASK_UNINTERRUPTIBLE);
3113 			if (work_is_canceling(work))
3114 				schedule();
3115 			finish_wait(&cancel_waitq, &cwait.wait);
3116 		}
3117 	} while (unlikely(ret < 0));
3118 
3119 	/* tell other tasks trying to grab @work to back off */
3120 	mark_work_canceling(work);
3121 	local_irq_restore(flags);
3122 
3123 	/*
3124 	 * This allows canceling during early boot.  We know that @work
3125 	 * isn't executing.
3126 	 */
3127 	if (wq_online)
3128 		__flush_work(work, true);
3129 
3130 	clear_work_data(work);
3131 
3132 	/*
3133 	 * Paired with prepare_to_wait() above so that either
3134 	 * waitqueue_active() is visible here or !work_is_canceling() is
3135 	 * visible there.
3136 	 */
3137 	smp_mb();
3138 	if (waitqueue_active(&cancel_waitq))
3139 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3140 
3141 	return ret;
3142 }
3143 
3144 /**
3145  * cancel_work_sync - cancel a work and wait for it to finish
3146  * @work: the work to cancel
3147  *
3148  * Cancel @work and wait for its execution to finish.  This function
3149  * can be used even if the work re-queues itself or migrates to
3150  * another workqueue.  On return from this function, @work is
3151  * guaranteed to be not pending or executing on any CPU.
3152  *
3153  * cancel_work_sync(&delayed_work->work) must not be used for
3154  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3155  *
3156  * The caller must ensure that the workqueue on which @work was last
3157  * queued can't be destroyed before this function returns.
3158  *
3159  * Return:
3160  * %true if @work was pending, %false otherwise.
3161  */
3162 bool cancel_work_sync(struct work_struct *work)
3163 {
3164 	return __cancel_work_timer(work, false);
3165 }
3166 EXPORT_SYMBOL_GPL(cancel_work_sync);
3167 
3168 /**
3169  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3170  * @dwork: the delayed work to flush
3171  *
3172  * Delayed timer is cancelled and the pending work is queued for
3173  * immediate execution.  Like flush_work(), this function only
3174  * considers the last queueing instance of @dwork.
3175  *
3176  * Return:
3177  * %true if flush_work() waited for the work to finish execution,
3178  * %false if it was already idle.
3179  */
3180 bool flush_delayed_work(struct delayed_work *dwork)
3181 {
3182 	local_irq_disable();
3183 	if (del_timer_sync(&dwork->timer))
3184 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3185 	local_irq_enable();
3186 	return flush_work(&dwork->work);
3187 }
3188 EXPORT_SYMBOL(flush_delayed_work);
3189 
3190 /**
3191  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3192  * @rwork: the rcu work to flush
3193  *
3194  * Return:
3195  * %true if flush_rcu_work() waited for the work to finish execution,
3196  * %false if it was already idle.
3197  */
3198 bool flush_rcu_work(struct rcu_work *rwork)
3199 {
3200 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3201 		rcu_barrier();
3202 		flush_work(&rwork->work);
3203 		return true;
3204 	} else {
3205 		return flush_work(&rwork->work);
3206 	}
3207 }
3208 EXPORT_SYMBOL(flush_rcu_work);
3209 
3210 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3211 {
3212 	unsigned long flags;
3213 	int ret;
3214 
3215 	do {
3216 		ret = try_to_grab_pending(work, is_dwork, &flags);
3217 	} while (unlikely(ret == -EAGAIN));
3218 
3219 	if (unlikely(ret < 0))
3220 		return false;
3221 
3222 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3223 	local_irq_restore(flags);
3224 	return ret;
3225 }
3226 
3227 /**
3228  * cancel_delayed_work - cancel a delayed work
3229  * @dwork: delayed_work to cancel
3230  *
3231  * Kill off a pending delayed_work.
3232  *
3233  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3234  * pending.
3235  *
3236  * Note:
3237  * The work callback function may still be running on return, unless
3238  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3239  * use cancel_delayed_work_sync() to wait on it.
3240  *
3241  * This function is safe to call from any context including IRQ handler.
3242  */
3243 bool cancel_delayed_work(struct delayed_work *dwork)
3244 {
3245 	return __cancel_work(&dwork->work, true);
3246 }
3247 EXPORT_SYMBOL(cancel_delayed_work);
3248 
3249 /**
3250  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3251  * @dwork: the delayed work cancel
3252  *
3253  * This is cancel_work_sync() for delayed works.
3254  *
3255  * Return:
3256  * %true if @dwork was pending, %false otherwise.
3257  */
3258 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3259 {
3260 	return __cancel_work_timer(&dwork->work, true);
3261 }
3262 EXPORT_SYMBOL(cancel_delayed_work_sync);
3263 
3264 /**
3265  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3266  * @func: the function to call
3267  *
3268  * schedule_on_each_cpu() executes @func on each online CPU using the
3269  * system workqueue and blocks until all CPUs have completed.
3270  * schedule_on_each_cpu() is very slow.
3271  *
3272  * Return:
3273  * 0 on success, -errno on failure.
3274  */
3275 int schedule_on_each_cpu(work_func_t func)
3276 {
3277 	int cpu;
3278 	struct work_struct __percpu *works;
3279 
3280 	works = alloc_percpu(struct work_struct);
3281 	if (!works)
3282 		return -ENOMEM;
3283 
3284 	get_online_cpus();
3285 
3286 	for_each_online_cpu(cpu) {
3287 		struct work_struct *work = per_cpu_ptr(works, cpu);
3288 
3289 		INIT_WORK(work, func);
3290 		schedule_work_on(cpu, work);
3291 	}
3292 
3293 	for_each_online_cpu(cpu)
3294 		flush_work(per_cpu_ptr(works, cpu));
3295 
3296 	put_online_cpus();
3297 	free_percpu(works);
3298 	return 0;
3299 }
3300 
3301 /**
3302  * execute_in_process_context - reliably execute the routine with user context
3303  * @fn:		the function to execute
3304  * @ew:		guaranteed storage for the execute work structure (must
3305  *		be available when the work executes)
3306  *
3307  * Executes the function immediately if process context is available,
3308  * otherwise schedules the function for delayed execution.
3309  *
3310  * Return:	0 - function was executed
3311  *		1 - function was scheduled for execution
3312  */
3313 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3314 {
3315 	if (!in_interrupt()) {
3316 		fn(&ew->work);
3317 		return 0;
3318 	}
3319 
3320 	INIT_WORK(&ew->work, fn);
3321 	schedule_work(&ew->work);
3322 
3323 	return 1;
3324 }
3325 EXPORT_SYMBOL_GPL(execute_in_process_context);
3326 
3327 /**
3328  * free_workqueue_attrs - free a workqueue_attrs
3329  * @attrs: workqueue_attrs to free
3330  *
3331  * Undo alloc_workqueue_attrs().
3332  */
3333 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3334 {
3335 	if (attrs) {
3336 		free_cpumask_var(attrs->cpumask);
3337 		kfree(attrs);
3338 	}
3339 }
3340 
3341 /**
3342  * alloc_workqueue_attrs - allocate a workqueue_attrs
3343  *
3344  * Allocate a new workqueue_attrs, initialize with default settings and
3345  * return it.
3346  *
3347  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3348  */
3349 struct workqueue_attrs *alloc_workqueue_attrs(void)
3350 {
3351 	struct workqueue_attrs *attrs;
3352 
3353 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3354 	if (!attrs)
3355 		goto fail;
3356 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3357 		goto fail;
3358 
3359 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3360 	return attrs;
3361 fail:
3362 	free_workqueue_attrs(attrs);
3363 	return NULL;
3364 }
3365 
3366 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3367 				 const struct workqueue_attrs *from)
3368 {
3369 	to->nice = from->nice;
3370 	cpumask_copy(to->cpumask, from->cpumask);
3371 	/*
3372 	 * Unlike hash and equality test, this function doesn't ignore
3373 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3374 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3375 	 */
3376 	to->no_numa = from->no_numa;
3377 }
3378 
3379 /* hash value of the content of @attr */
3380 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3381 {
3382 	u32 hash = 0;
3383 
3384 	hash = jhash_1word(attrs->nice, hash);
3385 	hash = jhash(cpumask_bits(attrs->cpumask),
3386 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3387 	return hash;
3388 }
3389 
3390 /* content equality test */
3391 static bool wqattrs_equal(const struct workqueue_attrs *a,
3392 			  const struct workqueue_attrs *b)
3393 {
3394 	if (a->nice != b->nice)
3395 		return false;
3396 	if (!cpumask_equal(a->cpumask, b->cpumask))
3397 		return false;
3398 	return true;
3399 }
3400 
3401 /**
3402  * init_worker_pool - initialize a newly zalloc'd worker_pool
3403  * @pool: worker_pool to initialize
3404  *
3405  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3406  *
3407  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3408  * inside @pool proper are initialized and put_unbound_pool() can be called
3409  * on @pool safely to release it.
3410  */
3411 static int init_worker_pool(struct worker_pool *pool)
3412 {
3413 	spin_lock_init(&pool->lock);
3414 	pool->id = -1;
3415 	pool->cpu = -1;
3416 	pool->node = NUMA_NO_NODE;
3417 	pool->flags |= POOL_DISASSOCIATED;
3418 	pool->watchdog_ts = jiffies;
3419 	INIT_LIST_HEAD(&pool->worklist);
3420 	INIT_LIST_HEAD(&pool->idle_list);
3421 	hash_init(pool->busy_hash);
3422 
3423 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3424 
3425 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3426 
3427 	INIT_LIST_HEAD(&pool->workers);
3428 
3429 	ida_init(&pool->worker_ida);
3430 	INIT_HLIST_NODE(&pool->hash_node);
3431 	pool->refcnt = 1;
3432 
3433 	/* shouldn't fail above this point */
3434 	pool->attrs = alloc_workqueue_attrs();
3435 	if (!pool->attrs)
3436 		return -ENOMEM;
3437 	return 0;
3438 }
3439 
3440 #ifdef CONFIG_LOCKDEP
3441 static void wq_init_lockdep(struct workqueue_struct *wq)
3442 {
3443 	char *lock_name;
3444 
3445 	lockdep_register_key(&wq->key);
3446 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3447 	if (!lock_name)
3448 		lock_name = wq->name;
3449 
3450 	wq->lock_name = lock_name;
3451 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3452 }
3453 
3454 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3455 {
3456 	lockdep_unregister_key(&wq->key);
3457 }
3458 
3459 static void wq_free_lockdep(struct workqueue_struct *wq)
3460 {
3461 	if (wq->lock_name != wq->name)
3462 		kfree(wq->lock_name);
3463 }
3464 #else
3465 static void wq_init_lockdep(struct workqueue_struct *wq)
3466 {
3467 }
3468 
3469 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3470 {
3471 }
3472 
3473 static void wq_free_lockdep(struct workqueue_struct *wq)
3474 {
3475 }
3476 #endif
3477 
3478 static void rcu_free_wq(struct rcu_head *rcu)
3479 {
3480 	struct workqueue_struct *wq =
3481 		container_of(rcu, struct workqueue_struct, rcu);
3482 
3483 	wq_free_lockdep(wq);
3484 
3485 	if (!(wq->flags & WQ_UNBOUND))
3486 		free_percpu(wq->cpu_pwqs);
3487 	else
3488 		free_workqueue_attrs(wq->unbound_attrs);
3489 
3490 	kfree(wq->rescuer);
3491 	kfree(wq);
3492 }
3493 
3494 static void rcu_free_pool(struct rcu_head *rcu)
3495 {
3496 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3497 
3498 	ida_destroy(&pool->worker_ida);
3499 	free_workqueue_attrs(pool->attrs);
3500 	kfree(pool);
3501 }
3502 
3503 /**
3504  * put_unbound_pool - put a worker_pool
3505  * @pool: worker_pool to put
3506  *
3507  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3508  * safe manner.  get_unbound_pool() calls this function on its failure path
3509  * and this function should be able to release pools which went through,
3510  * successfully or not, init_worker_pool().
3511  *
3512  * Should be called with wq_pool_mutex held.
3513  */
3514 static void put_unbound_pool(struct worker_pool *pool)
3515 {
3516 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3517 	struct worker *worker;
3518 
3519 	lockdep_assert_held(&wq_pool_mutex);
3520 
3521 	if (--pool->refcnt)
3522 		return;
3523 
3524 	/* sanity checks */
3525 	if (WARN_ON(!(pool->cpu < 0)) ||
3526 	    WARN_ON(!list_empty(&pool->worklist)))
3527 		return;
3528 
3529 	/* release id and unhash */
3530 	if (pool->id >= 0)
3531 		idr_remove(&worker_pool_idr, pool->id);
3532 	hash_del(&pool->hash_node);
3533 
3534 	/*
3535 	 * Become the manager and destroy all workers.  This prevents
3536 	 * @pool's workers from blocking on attach_mutex.  We're the last
3537 	 * manager and @pool gets freed with the flag set.
3538 	 */
3539 	spin_lock_irq(&pool->lock);
3540 	wait_event_lock_irq(wq_manager_wait,
3541 			    !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3542 	pool->flags |= POOL_MANAGER_ACTIVE;
3543 
3544 	while ((worker = first_idle_worker(pool)))
3545 		destroy_worker(worker);
3546 	WARN_ON(pool->nr_workers || pool->nr_idle);
3547 	spin_unlock_irq(&pool->lock);
3548 
3549 	mutex_lock(&wq_pool_attach_mutex);
3550 	if (!list_empty(&pool->workers))
3551 		pool->detach_completion = &detach_completion;
3552 	mutex_unlock(&wq_pool_attach_mutex);
3553 
3554 	if (pool->detach_completion)
3555 		wait_for_completion(pool->detach_completion);
3556 
3557 	/* shut down the timers */
3558 	del_timer_sync(&pool->idle_timer);
3559 	del_timer_sync(&pool->mayday_timer);
3560 
3561 	/* RCU protected to allow dereferences from get_work_pool() */
3562 	call_rcu(&pool->rcu, rcu_free_pool);
3563 }
3564 
3565 /**
3566  * get_unbound_pool - get a worker_pool with the specified attributes
3567  * @attrs: the attributes of the worker_pool to get
3568  *
3569  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3570  * reference count and return it.  If there already is a matching
3571  * worker_pool, it will be used; otherwise, this function attempts to
3572  * create a new one.
3573  *
3574  * Should be called with wq_pool_mutex held.
3575  *
3576  * Return: On success, a worker_pool with the same attributes as @attrs.
3577  * On failure, %NULL.
3578  */
3579 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3580 {
3581 	u32 hash = wqattrs_hash(attrs);
3582 	struct worker_pool *pool;
3583 	int node;
3584 	int target_node = NUMA_NO_NODE;
3585 
3586 	lockdep_assert_held(&wq_pool_mutex);
3587 
3588 	/* do we already have a matching pool? */
3589 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3590 		if (wqattrs_equal(pool->attrs, attrs)) {
3591 			pool->refcnt++;
3592 			return pool;
3593 		}
3594 	}
3595 
3596 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3597 	if (wq_numa_enabled) {
3598 		for_each_node(node) {
3599 			if (cpumask_subset(attrs->cpumask,
3600 					   wq_numa_possible_cpumask[node])) {
3601 				target_node = node;
3602 				break;
3603 			}
3604 		}
3605 	}
3606 
3607 	/* nope, create a new one */
3608 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3609 	if (!pool || init_worker_pool(pool) < 0)
3610 		goto fail;
3611 
3612 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3613 	copy_workqueue_attrs(pool->attrs, attrs);
3614 	pool->node = target_node;
3615 
3616 	/*
3617 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3618 	 * 'struct workqueue_attrs' comments for detail.
3619 	 */
3620 	pool->attrs->no_numa = false;
3621 
3622 	if (worker_pool_assign_id(pool) < 0)
3623 		goto fail;
3624 
3625 	/* create and start the initial worker */
3626 	if (wq_online && !create_worker(pool))
3627 		goto fail;
3628 
3629 	/* install */
3630 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3631 
3632 	return pool;
3633 fail:
3634 	if (pool)
3635 		put_unbound_pool(pool);
3636 	return NULL;
3637 }
3638 
3639 static void rcu_free_pwq(struct rcu_head *rcu)
3640 {
3641 	kmem_cache_free(pwq_cache,
3642 			container_of(rcu, struct pool_workqueue, rcu));
3643 }
3644 
3645 /*
3646  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3647  * and needs to be destroyed.
3648  */
3649 static void pwq_unbound_release_workfn(struct work_struct *work)
3650 {
3651 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3652 						  unbound_release_work);
3653 	struct workqueue_struct *wq = pwq->wq;
3654 	struct worker_pool *pool = pwq->pool;
3655 	bool is_last;
3656 
3657 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3658 		return;
3659 
3660 	mutex_lock(&wq->mutex);
3661 	list_del_rcu(&pwq->pwqs_node);
3662 	is_last = list_empty(&wq->pwqs);
3663 	mutex_unlock(&wq->mutex);
3664 
3665 	mutex_lock(&wq_pool_mutex);
3666 	put_unbound_pool(pool);
3667 	mutex_unlock(&wq_pool_mutex);
3668 
3669 	call_rcu(&pwq->rcu, rcu_free_pwq);
3670 
3671 	/*
3672 	 * If we're the last pwq going away, @wq is already dead and no one
3673 	 * is gonna access it anymore.  Schedule RCU free.
3674 	 */
3675 	if (is_last) {
3676 		wq_unregister_lockdep(wq);
3677 		call_rcu(&wq->rcu, rcu_free_wq);
3678 	}
3679 }
3680 
3681 /**
3682  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3683  * @pwq: target pool_workqueue
3684  *
3685  * If @pwq isn't freezing, set @pwq->max_active to the associated
3686  * workqueue's saved_max_active and activate delayed work items
3687  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3688  */
3689 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3690 {
3691 	struct workqueue_struct *wq = pwq->wq;
3692 	bool freezable = wq->flags & WQ_FREEZABLE;
3693 	unsigned long flags;
3694 
3695 	/* for @wq->saved_max_active */
3696 	lockdep_assert_held(&wq->mutex);
3697 
3698 	/* fast exit for non-freezable wqs */
3699 	if (!freezable && pwq->max_active == wq->saved_max_active)
3700 		return;
3701 
3702 	/* this function can be called during early boot w/ irq disabled */
3703 	spin_lock_irqsave(&pwq->pool->lock, flags);
3704 
3705 	/*
3706 	 * During [un]freezing, the caller is responsible for ensuring that
3707 	 * this function is called at least once after @workqueue_freezing
3708 	 * is updated and visible.
3709 	 */
3710 	if (!freezable || !workqueue_freezing) {
3711 		pwq->max_active = wq->saved_max_active;
3712 
3713 		while (!list_empty(&pwq->delayed_works) &&
3714 		       pwq->nr_active < pwq->max_active)
3715 			pwq_activate_first_delayed(pwq);
3716 
3717 		/*
3718 		 * Need to kick a worker after thawed or an unbound wq's
3719 		 * max_active is bumped.  It's a slow path.  Do it always.
3720 		 */
3721 		wake_up_worker(pwq->pool);
3722 	} else {
3723 		pwq->max_active = 0;
3724 	}
3725 
3726 	spin_unlock_irqrestore(&pwq->pool->lock, flags);
3727 }
3728 
3729 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3730 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3731 		     struct worker_pool *pool)
3732 {
3733 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3734 
3735 	memset(pwq, 0, sizeof(*pwq));
3736 
3737 	pwq->pool = pool;
3738 	pwq->wq = wq;
3739 	pwq->flush_color = -1;
3740 	pwq->refcnt = 1;
3741 	INIT_LIST_HEAD(&pwq->delayed_works);
3742 	INIT_LIST_HEAD(&pwq->pwqs_node);
3743 	INIT_LIST_HEAD(&pwq->mayday_node);
3744 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3745 }
3746 
3747 /* sync @pwq with the current state of its associated wq and link it */
3748 static void link_pwq(struct pool_workqueue *pwq)
3749 {
3750 	struct workqueue_struct *wq = pwq->wq;
3751 
3752 	lockdep_assert_held(&wq->mutex);
3753 
3754 	/* may be called multiple times, ignore if already linked */
3755 	if (!list_empty(&pwq->pwqs_node))
3756 		return;
3757 
3758 	/* set the matching work_color */
3759 	pwq->work_color = wq->work_color;
3760 
3761 	/* sync max_active to the current setting */
3762 	pwq_adjust_max_active(pwq);
3763 
3764 	/* link in @pwq */
3765 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3766 }
3767 
3768 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3769 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3770 					const struct workqueue_attrs *attrs)
3771 {
3772 	struct worker_pool *pool;
3773 	struct pool_workqueue *pwq;
3774 
3775 	lockdep_assert_held(&wq_pool_mutex);
3776 
3777 	pool = get_unbound_pool(attrs);
3778 	if (!pool)
3779 		return NULL;
3780 
3781 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3782 	if (!pwq) {
3783 		put_unbound_pool(pool);
3784 		return NULL;
3785 	}
3786 
3787 	init_pwq(pwq, wq, pool);
3788 	return pwq;
3789 }
3790 
3791 /**
3792  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3793  * @attrs: the wq_attrs of the default pwq of the target workqueue
3794  * @node: the target NUMA node
3795  * @cpu_going_down: if >= 0, the CPU to consider as offline
3796  * @cpumask: outarg, the resulting cpumask
3797  *
3798  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3799  * @cpu_going_down is >= 0, that cpu is considered offline during
3800  * calculation.  The result is stored in @cpumask.
3801  *
3802  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3803  * enabled and @node has online CPUs requested by @attrs, the returned
3804  * cpumask is the intersection of the possible CPUs of @node and
3805  * @attrs->cpumask.
3806  *
3807  * The caller is responsible for ensuring that the cpumask of @node stays
3808  * stable.
3809  *
3810  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3811  * %false if equal.
3812  */
3813 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3814 				 int cpu_going_down, cpumask_t *cpumask)
3815 {
3816 	if (!wq_numa_enabled || attrs->no_numa)
3817 		goto use_dfl;
3818 
3819 	/* does @node have any online CPUs @attrs wants? */
3820 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3821 	if (cpu_going_down >= 0)
3822 		cpumask_clear_cpu(cpu_going_down, cpumask);
3823 
3824 	if (cpumask_empty(cpumask))
3825 		goto use_dfl;
3826 
3827 	/* yeap, return possible CPUs in @node that @attrs wants */
3828 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3829 
3830 	if (cpumask_empty(cpumask)) {
3831 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3832 				"possible intersect\n");
3833 		return false;
3834 	}
3835 
3836 	return !cpumask_equal(cpumask, attrs->cpumask);
3837 
3838 use_dfl:
3839 	cpumask_copy(cpumask, attrs->cpumask);
3840 	return false;
3841 }
3842 
3843 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3844 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3845 						   int node,
3846 						   struct pool_workqueue *pwq)
3847 {
3848 	struct pool_workqueue *old_pwq;
3849 
3850 	lockdep_assert_held(&wq_pool_mutex);
3851 	lockdep_assert_held(&wq->mutex);
3852 
3853 	/* link_pwq() can handle duplicate calls */
3854 	link_pwq(pwq);
3855 
3856 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3857 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3858 	return old_pwq;
3859 }
3860 
3861 /* context to store the prepared attrs & pwqs before applying */
3862 struct apply_wqattrs_ctx {
3863 	struct workqueue_struct	*wq;		/* target workqueue */
3864 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3865 	struct list_head	list;		/* queued for batching commit */
3866 	struct pool_workqueue	*dfl_pwq;
3867 	struct pool_workqueue	*pwq_tbl[];
3868 };
3869 
3870 /* free the resources after success or abort */
3871 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3872 {
3873 	if (ctx) {
3874 		int node;
3875 
3876 		for_each_node(node)
3877 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3878 		put_pwq_unlocked(ctx->dfl_pwq);
3879 
3880 		free_workqueue_attrs(ctx->attrs);
3881 
3882 		kfree(ctx);
3883 	}
3884 }
3885 
3886 /* allocate the attrs and pwqs for later installation */
3887 static struct apply_wqattrs_ctx *
3888 apply_wqattrs_prepare(struct workqueue_struct *wq,
3889 		      const struct workqueue_attrs *attrs)
3890 {
3891 	struct apply_wqattrs_ctx *ctx;
3892 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3893 	int node;
3894 
3895 	lockdep_assert_held(&wq_pool_mutex);
3896 
3897 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3898 
3899 	new_attrs = alloc_workqueue_attrs();
3900 	tmp_attrs = alloc_workqueue_attrs();
3901 	if (!ctx || !new_attrs || !tmp_attrs)
3902 		goto out_free;
3903 
3904 	/*
3905 	 * Calculate the attrs of the default pwq.
3906 	 * If the user configured cpumask doesn't overlap with the
3907 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3908 	 */
3909 	copy_workqueue_attrs(new_attrs, attrs);
3910 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3911 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3912 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3913 
3914 	/*
3915 	 * We may create multiple pwqs with differing cpumasks.  Make a
3916 	 * copy of @new_attrs which will be modified and used to obtain
3917 	 * pools.
3918 	 */
3919 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3920 
3921 	/*
3922 	 * If something goes wrong during CPU up/down, we'll fall back to
3923 	 * the default pwq covering whole @attrs->cpumask.  Always create
3924 	 * it even if we don't use it immediately.
3925 	 */
3926 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3927 	if (!ctx->dfl_pwq)
3928 		goto out_free;
3929 
3930 	for_each_node(node) {
3931 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3932 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3933 			if (!ctx->pwq_tbl[node])
3934 				goto out_free;
3935 		} else {
3936 			ctx->dfl_pwq->refcnt++;
3937 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3938 		}
3939 	}
3940 
3941 	/* save the user configured attrs and sanitize it. */
3942 	copy_workqueue_attrs(new_attrs, attrs);
3943 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3944 	ctx->attrs = new_attrs;
3945 
3946 	ctx->wq = wq;
3947 	free_workqueue_attrs(tmp_attrs);
3948 	return ctx;
3949 
3950 out_free:
3951 	free_workqueue_attrs(tmp_attrs);
3952 	free_workqueue_attrs(new_attrs);
3953 	apply_wqattrs_cleanup(ctx);
3954 	return NULL;
3955 }
3956 
3957 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3958 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3959 {
3960 	int node;
3961 
3962 	/* all pwqs have been created successfully, let's install'em */
3963 	mutex_lock(&ctx->wq->mutex);
3964 
3965 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3966 
3967 	/* save the previous pwq and install the new one */
3968 	for_each_node(node)
3969 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3970 							  ctx->pwq_tbl[node]);
3971 
3972 	/* @dfl_pwq might not have been used, ensure it's linked */
3973 	link_pwq(ctx->dfl_pwq);
3974 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3975 
3976 	mutex_unlock(&ctx->wq->mutex);
3977 }
3978 
3979 static void apply_wqattrs_lock(void)
3980 {
3981 	/* CPUs should stay stable across pwq creations and installations */
3982 	get_online_cpus();
3983 	mutex_lock(&wq_pool_mutex);
3984 }
3985 
3986 static void apply_wqattrs_unlock(void)
3987 {
3988 	mutex_unlock(&wq_pool_mutex);
3989 	put_online_cpus();
3990 }
3991 
3992 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3993 					const struct workqueue_attrs *attrs)
3994 {
3995 	struct apply_wqattrs_ctx *ctx;
3996 
3997 	/* only unbound workqueues can change attributes */
3998 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3999 		return -EINVAL;
4000 
4001 	/* creating multiple pwqs breaks ordering guarantee */
4002 	if (!list_empty(&wq->pwqs)) {
4003 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4004 			return -EINVAL;
4005 
4006 		wq->flags &= ~__WQ_ORDERED;
4007 	}
4008 
4009 	ctx = apply_wqattrs_prepare(wq, attrs);
4010 	if (!ctx)
4011 		return -ENOMEM;
4012 
4013 	/* the ctx has been prepared successfully, let's commit it */
4014 	apply_wqattrs_commit(ctx);
4015 	apply_wqattrs_cleanup(ctx);
4016 
4017 	return 0;
4018 }
4019 
4020 /**
4021  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4022  * @wq: the target workqueue
4023  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4024  *
4025  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
4026  * machines, this function maps a separate pwq to each NUMA node with
4027  * possibles CPUs in @attrs->cpumask so that work items are affine to the
4028  * NUMA node it was issued on.  Older pwqs are released as in-flight work
4029  * items finish.  Note that a work item which repeatedly requeues itself
4030  * back-to-back will stay on its current pwq.
4031  *
4032  * Performs GFP_KERNEL allocations.
4033  *
4034  * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4035  *
4036  * Return: 0 on success and -errno on failure.
4037  */
4038 int apply_workqueue_attrs(struct workqueue_struct *wq,
4039 			  const struct workqueue_attrs *attrs)
4040 {
4041 	int ret;
4042 
4043 	lockdep_assert_cpus_held();
4044 
4045 	mutex_lock(&wq_pool_mutex);
4046 	ret = apply_workqueue_attrs_locked(wq, attrs);
4047 	mutex_unlock(&wq_pool_mutex);
4048 
4049 	return ret;
4050 }
4051 
4052 /**
4053  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4054  * @wq: the target workqueue
4055  * @cpu: the CPU coming up or going down
4056  * @online: whether @cpu is coming up or going down
4057  *
4058  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4059  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4060  * @wq accordingly.
4061  *
4062  * If NUMA affinity can't be adjusted due to memory allocation failure, it
4063  * falls back to @wq->dfl_pwq which may not be optimal but is always
4064  * correct.
4065  *
4066  * Note that when the last allowed CPU of a NUMA node goes offline for a
4067  * workqueue with a cpumask spanning multiple nodes, the workers which were
4068  * already executing the work items for the workqueue will lose their CPU
4069  * affinity and may execute on any CPU.  This is similar to how per-cpu
4070  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4071  * affinity, it's the user's responsibility to flush the work item from
4072  * CPU_DOWN_PREPARE.
4073  */
4074 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4075 				   bool online)
4076 {
4077 	int node = cpu_to_node(cpu);
4078 	int cpu_off = online ? -1 : cpu;
4079 	struct pool_workqueue *old_pwq = NULL, *pwq;
4080 	struct workqueue_attrs *target_attrs;
4081 	cpumask_t *cpumask;
4082 
4083 	lockdep_assert_held(&wq_pool_mutex);
4084 
4085 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4086 	    wq->unbound_attrs->no_numa)
4087 		return;
4088 
4089 	/*
4090 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4091 	 * Let's use a preallocated one.  The following buf is protected by
4092 	 * CPU hotplug exclusion.
4093 	 */
4094 	target_attrs = wq_update_unbound_numa_attrs_buf;
4095 	cpumask = target_attrs->cpumask;
4096 
4097 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4098 	pwq = unbound_pwq_by_node(wq, node);
4099 
4100 	/*
4101 	 * Let's determine what needs to be done.  If the target cpumask is
4102 	 * different from the default pwq's, we need to compare it to @pwq's
4103 	 * and create a new one if they don't match.  If the target cpumask
4104 	 * equals the default pwq's, the default pwq should be used.
4105 	 */
4106 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4107 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4108 			return;
4109 	} else {
4110 		goto use_dfl_pwq;
4111 	}
4112 
4113 	/* create a new pwq */
4114 	pwq = alloc_unbound_pwq(wq, target_attrs);
4115 	if (!pwq) {
4116 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4117 			wq->name);
4118 		goto use_dfl_pwq;
4119 	}
4120 
4121 	/* Install the new pwq. */
4122 	mutex_lock(&wq->mutex);
4123 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4124 	goto out_unlock;
4125 
4126 use_dfl_pwq:
4127 	mutex_lock(&wq->mutex);
4128 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
4129 	get_pwq(wq->dfl_pwq);
4130 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4131 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4132 out_unlock:
4133 	mutex_unlock(&wq->mutex);
4134 	put_pwq_unlocked(old_pwq);
4135 }
4136 
4137 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4138 {
4139 	bool highpri = wq->flags & WQ_HIGHPRI;
4140 	int cpu, ret;
4141 
4142 	if (!(wq->flags & WQ_UNBOUND)) {
4143 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4144 		if (!wq->cpu_pwqs)
4145 			return -ENOMEM;
4146 
4147 		for_each_possible_cpu(cpu) {
4148 			struct pool_workqueue *pwq =
4149 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4150 			struct worker_pool *cpu_pools =
4151 				per_cpu(cpu_worker_pools, cpu);
4152 
4153 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4154 
4155 			mutex_lock(&wq->mutex);
4156 			link_pwq(pwq);
4157 			mutex_unlock(&wq->mutex);
4158 		}
4159 		return 0;
4160 	}
4161 
4162 	get_online_cpus();
4163 	if (wq->flags & __WQ_ORDERED) {
4164 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4165 		/* there should only be single pwq for ordering guarantee */
4166 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4167 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4168 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4169 	} else {
4170 		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4171 	}
4172 	put_online_cpus();
4173 
4174 	return ret;
4175 }
4176 
4177 static int wq_clamp_max_active(int max_active, unsigned int flags,
4178 			       const char *name)
4179 {
4180 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4181 
4182 	if (max_active < 1 || max_active > lim)
4183 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4184 			max_active, name, 1, lim);
4185 
4186 	return clamp_val(max_active, 1, lim);
4187 }
4188 
4189 /*
4190  * Workqueues which may be used during memory reclaim should have a rescuer
4191  * to guarantee forward progress.
4192  */
4193 static int init_rescuer(struct workqueue_struct *wq)
4194 {
4195 	struct worker *rescuer;
4196 	int ret;
4197 
4198 	if (!(wq->flags & WQ_MEM_RECLAIM))
4199 		return 0;
4200 
4201 	rescuer = alloc_worker(NUMA_NO_NODE);
4202 	if (!rescuer)
4203 		return -ENOMEM;
4204 
4205 	rescuer->rescue_wq = wq;
4206 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4207 	ret = PTR_ERR_OR_ZERO(rescuer->task);
4208 	if (ret) {
4209 		kfree(rescuer);
4210 		return ret;
4211 	}
4212 
4213 	wq->rescuer = rescuer;
4214 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4215 	wake_up_process(rescuer->task);
4216 
4217 	return 0;
4218 }
4219 
4220 __printf(1, 4)
4221 struct workqueue_struct *alloc_workqueue(const char *fmt,
4222 					 unsigned int flags,
4223 					 int max_active, ...)
4224 {
4225 	size_t tbl_size = 0;
4226 	va_list args;
4227 	struct workqueue_struct *wq;
4228 	struct pool_workqueue *pwq;
4229 
4230 	/*
4231 	 * Unbound && max_active == 1 used to imply ordered, which is no
4232 	 * longer the case on NUMA machines due to per-node pools.  While
4233 	 * alloc_ordered_workqueue() is the right way to create an ordered
4234 	 * workqueue, keep the previous behavior to avoid subtle breakages
4235 	 * on NUMA.
4236 	 */
4237 	if ((flags & WQ_UNBOUND) && max_active == 1)
4238 		flags |= __WQ_ORDERED;
4239 
4240 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4241 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4242 		flags |= WQ_UNBOUND;
4243 
4244 	/* allocate wq and format name */
4245 	if (flags & WQ_UNBOUND)
4246 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4247 
4248 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4249 	if (!wq)
4250 		return NULL;
4251 
4252 	if (flags & WQ_UNBOUND) {
4253 		wq->unbound_attrs = alloc_workqueue_attrs();
4254 		if (!wq->unbound_attrs)
4255 			goto err_free_wq;
4256 	}
4257 
4258 	va_start(args, max_active);
4259 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4260 	va_end(args);
4261 
4262 	max_active = max_active ?: WQ_DFL_ACTIVE;
4263 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4264 
4265 	/* init wq */
4266 	wq->flags = flags;
4267 	wq->saved_max_active = max_active;
4268 	mutex_init(&wq->mutex);
4269 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4270 	INIT_LIST_HEAD(&wq->pwqs);
4271 	INIT_LIST_HEAD(&wq->flusher_queue);
4272 	INIT_LIST_HEAD(&wq->flusher_overflow);
4273 	INIT_LIST_HEAD(&wq->maydays);
4274 
4275 	wq_init_lockdep(wq);
4276 	INIT_LIST_HEAD(&wq->list);
4277 
4278 	if (alloc_and_link_pwqs(wq) < 0)
4279 		goto err_unreg_lockdep;
4280 
4281 	if (wq_online && init_rescuer(wq) < 0)
4282 		goto err_destroy;
4283 
4284 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4285 		goto err_destroy;
4286 
4287 	/*
4288 	 * wq_pool_mutex protects global freeze state and workqueues list.
4289 	 * Grab it, adjust max_active and add the new @wq to workqueues
4290 	 * list.
4291 	 */
4292 	mutex_lock(&wq_pool_mutex);
4293 
4294 	mutex_lock(&wq->mutex);
4295 	for_each_pwq(pwq, wq)
4296 		pwq_adjust_max_active(pwq);
4297 	mutex_unlock(&wq->mutex);
4298 
4299 	list_add_tail_rcu(&wq->list, &workqueues);
4300 
4301 	mutex_unlock(&wq_pool_mutex);
4302 
4303 	return wq;
4304 
4305 err_unreg_lockdep:
4306 	wq_unregister_lockdep(wq);
4307 	wq_free_lockdep(wq);
4308 err_free_wq:
4309 	free_workqueue_attrs(wq->unbound_attrs);
4310 	kfree(wq);
4311 	return NULL;
4312 err_destroy:
4313 	destroy_workqueue(wq);
4314 	return NULL;
4315 }
4316 EXPORT_SYMBOL_GPL(alloc_workqueue);
4317 
4318 static bool pwq_busy(struct pool_workqueue *pwq)
4319 {
4320 	int i;
4321 
4322 	for (i = 0; i < WORK_NR_COLORS; i++)
4323 		if (pwq->nr_in_flight[i])
4324 			return true;
4325 
4326 	if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4327 		return true;
4328 	if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4329 		return true;
4330 
4331 	return false;
4332 }
4333 
4334 /**
4335  * destroy_workqueue - safely terminate a workqueue
4336  * @wq: target workqueue
4337  *
4338  * Safely destroy a workqueue. All work currently pending will be done first.
4339  */
4340 void destroy_workqueue(struct workqueue_struct *wq)
4341 {
4342 	struct pool_workqueue *pwq;
4343 	int node;
4344 
4345 	/*
4346 	 * Remove it from sysfs first so that sanity check failure doesn't
4347 	 * lead to sysfs name conflicts.
4348 	 */
4349 	workqueue_sysfs_unregister(wq);
4350 
4351 	/* drain it before proceeding with destruction */
4352 	drain_workqueue(wq);
4353 
4354 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4355 	if (wq->rescuer) {
4356 		struct worker *rescuer = wq->rescuer;
4357 
4358 		/* this prevents new queueing */
4359 		spin_lock_irq(&wq_mayday_lock);
4360 		wq->rescuer = NULL;
4361 		spin_unlock_irq(&wq_mayday_lock);
4362 
4363 		/* rescuer will empty maydays list before exiting */
4364 		kthread_stop(rescuer->task);
4365 		kfree(rescuer);
4366 	}
4367 
4368 	/*
4369 	 * Sanity checks - grab all the locks so that we wait for all
4370 	 * in-flight operations which may do put_pwq().
4371 	 */
4372 	mutex_lock(&wq_pool_mutex);
4373 	mutex_lock(&wq->mutex);
4374 	for_each_pwq(pwq, wq) {
4375 		spin_lock_irq(&pwq->pool->lock);
4376 		if (WARN_ON(pwq_busy(pwq))) {
4377 			pr_warn("%s: %s has the following busy pwq\n",
4378 				__func__, wq->name);
4379 			show_pwq(pwq);
4380 			spin_unlock_irq(&pwq->pool->lock);
4381 			mutex_unlock(&wq->mutex);
4382 			mutex_unlock(&wq_pool_mutex);
4383 			show_workqueue_state();
4384 			return;
4385 		}
4386 		spin_unlock_irq(&pwq->pool->lock);
4387 	}
4388 	mutex_unlock(&wq->mutex);
4389 	mutex_unlock(&wq_pool_mutex);
4390 
4391 	/*
4392 	 * wq list is used to freeze wq, remove from list after
4393 	 * flushing is complete in case freeze races us.
4394 	 */
4395 	mutex_lock(&wq_pool_mutex);
4396 	list_del_rcu(&wq->list);
4397 	mutex_unlock(&wq_pool_mutex);
4398 
4399 	if (!(wq->flags & WQ_UNBOUND)) {
4400 		wq_unregister_lockdep(wq);
4401 		/*
4402 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4403 		 * schedule RCU free.
4404 		 */
4405 		call_rcu(&wq->rcu, rcu_free_wq);
4406 	} else {
4407 		/*
4408 		 * We're the sole accessor of @wq at this point.  Directly
4409 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4410 		 * @wq will be freed when the last pwq is released.
4411 		 */
4412 		for_each_node(node) {
4413 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4414 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4415 			put_pwq_unlocked(pwq);
4416 		}
4417 
4418 		/*
4419 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4420 		 * put.  Don't access it afterwards.
4421 		 */
4422 		pwq = wq->dfl_pwq;
4423 		wq->dfl_pwq = NULL;
4424 		put_pwq_unlocked(pwq);
4425 	}
4426 }
4427 EXPORT_SYMBOL_GPL(destroy_workqueue);
4428 
4429 /**
4430  * workqueue_set_max_active - adjust max_active of a workqueue
4431  * @wq: target workqueue
4432  * @max_active: new max_active value.
4433  *
4434  * Set max_active of @wq to @max_active.
4435  *
4436  * CONTEXT:
4437  * Don't call from IRQ context.
4438  */
4439 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4440 {
4441 	struct pool_workqueue *pwq;
4442 
4443 	/* disallow meddling with max_active for ordered workqueues */
4444 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4445 		return;
4446 
4447 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4448 
4449 	mutex_lock(&wq->mutex);
4450 
4451 	wq->flags &= ~__WQ_ORDERED;
4452 	wq->saved_max_active = max_active;
4453 
4454 	for_each_pwq(pwq, wq)
4455 		pwq_adjust_max_active(pwq);
4456 
4457 	mutex_unlock(&wq->mutex);
4458 }
4459 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4460 
4461 /**
4462  * current_work - retrieve %current task's work struct
4463  *
4464  * Determine if %current task is a workqueue worker and what it's working on.
4465  * Useful to find out the context that the %current task is running in.
4466  *
4467  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4468  */
4469 struct work_struct *current_work(void)
4470 {
4471 	struct worker *worker = current_wq_worker();
4472 
4473 	return worker ? worker->current_work : NULL;
4474 }
4475 EXPORT_SYMBOL(current_work);
4476 
4477 /**
4478  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4479  *
4480  * Determine whether %current is a workqueue rescuer.  Can be used from
4481  * work functions to determine whether it's being run off the rescuer task.
4482  *
4483  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4484  */
4485 bool current_is_workqueue_rescuer(void)
4486 {
4487 	struct worker *worker = current_wq_worker();
4488 
4489 	return worker && worker->rescue_wq;
4490 }
4491 
4492 /**
4493  * workqueue_congested - test whether a workqueue is congested
4494  * @cpu: CPU in question
4495  * @wq: target workqueue
4496  *
4497  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4498  * no synchronization around this function and the test result is
4499  * unreliable and only useful as advisory hints or for debugging.
4500  *
4501  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4502  * Note that both per-cpu and unbound workqueues may be associated with
4503  * multiple pool_workqueues which have separate congested states.  A
4504  * workqueue being congested on one CPU doesn't mean the workqueue is also
4505  * contested on other CPUs / NUMA nodes.
4506  *
4507  * Return:
4508  * %true if congested, %false otherwise.
4509  */
4510 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4511 {
4512 	struct pool_workqueue *pwq;
4513 	bool ret;
4514 
4515 	rcu_read_lock();
4516 	preempt_disable();
4517 
4518 	if (cpu == WORK_CPU_UNBOUND)
4519 		cpu = smp_processor_id();
4520 
4521 	if (!(wq->flags & WQ_UNBOUND))
4522 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4523 	else
4524 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4525 
4526 	ret = !list_empty(&pwq->delayed_works);
4527 	preempt_enable();
4528 	rcu_read_unlock();
4529 
4530 	return ret;
4531 }
4532 EXPORT_SYMBOL_GPL(workqueue_congested);
4533 
4534 /**
4535  * work_busy - test whether a work is currently pending or running
4536  * @work: the work to be tested
4537  *
4538  * Test whether @work is currently pending or running.  There is no
4539  * synchronization around this function and the test result is
4540  * unreliable and only useful as advisory hints or for debugging.
4541  *
4542  * Return:
4543  * OR'd bitmask of WORK_BUSY_* bits.
4544  */
4545 unsigned int work_busy(struct work_struct *work)
4546 {
4547 	struct worker_pool *pool;
4548 	unsigned long flags;
4549 	unsigned int ret = 0;
4550 
4551 	if (work_pending(work))
4552 		ret |= WORK_BUSY_PENDING;
4553 
4554 	rcu_read_lock();
4555 	pool = get_work_pool(work);
4556 	if (pool) {
4557 		spin_lock_irqsave(&pool->lock, flags);
4558 		if (find_worker_executing_work(pool, work))
4559 			ret |= WORK_BUSY_RUNNING;
4560 		spin_unlock_irqrestore(&pool->lock, flags);
4561 	}
4562 	rcu_read_unlock();
4563 
4564 	return ret;
4565 }
4566 EXPORT_SYMBOL_GPL(work_busy);
4567 
4568 /**
4569  * set_worker_desc - set description for the current work item
4570  * @fmt: printf-style format string
4571  * @...: arguments for the format string
4572  *
4573  * This function can be called by a running work function to describe what
4574  * the work item is about.  If the worker task gets dumped, this
4575  * information will be printed out together to help debugging.  The
4576  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4577  */
4578 void set_worker_desc(const char *fmt, ...)
4579 {
4580 	struct worker *worker = current_wq_worker();
4581 	va_list args;
4582 
4583 	if (worker) {
4584 		va_start(args, fmt);
4585 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4586 		va_end(args);
4587 	}
4588 }
4589 EXPORT_SYMBOL_GPL(set_worker_desc);
4590 
4591 /**
4592  * print_worker_info - print out worker information and description
4593  * @log_lvl: the log level to use when printing
4594  * @task: target task
4595  *
4596  * If @task is a worker and currently executing a work item, print out the
4597  * name of the workqueue being serviced and worker description set with
4598  * set_worker_desc() by the currently executing work item.
4599  *
4600  * This function can be safely called on any task as long as the
4601  * task_struct itself is accessible.  While safe, this function isn't
4602  * synchronized and may print out mixups or garbages of limited length.
4603  */
4604 void print_worker_info(const char *log_lvl, struct task_struct *task)
4605 {
4606 	work_func_t *fn = NULL;
4607 	char name[WQ_NAME_LEN] = { };
4608 	char desc[WORKER_DESC_LEN] = { };
4609 	struct pool_workqueue *pwq = NULL;
4610 	struct workqueue_struct *wq = NULL;
4611 	struct worker *worker;
4612 
4613 	if (!(task->flags & PF_WQ_WORKER))
4614 		return;
4615 
4616 	/*
4617 	 * This function is called without any synchronization and @task
4618 	 * could be in any state.  Be careful with dereferences.
4619 	 */
4620 	worker = kthread_probe_data(task);
4621 
4622 	/*
4623 	 * Carefully copy the associated workqueue's workfn, name and desc.
4624 	 * Keep the original last '\0' in case the original is garbage.
4625 	 */
4626 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4627 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4628 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4629 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4630 	probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4631 
4632 	if (fn || name[0] || desc[0]) {
4633 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4634 		if (strcmp(name, desc))
4635 			pr_cont(" (%s)", desc);
4636 		pr_cont("\n");
4637 	}
4638 }
4639 
4640 static void pr_cont_pool_info(struct worker_pool *pool)
4641 {
4642 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4643 	if (pool->node != NUMA_NO_NODE)
4644 		pr_cont(" node=%d", pool->node);
4645 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4646 }
4647 
4648 static void pr_cont_work(bool comma, struct work_struct *work)
4649 {
4650 	if (work->func == wq_barrier_func) {
4651 		struct wq_barrier *barr;
4652 
4653 		barr = container_of(work, struct wq_barrier, work);
4654 
4655 		pr_cont("%s BAR(%d)", comma ? "," : "",
4656 			task_pid_nr(barr->task));
4657 	} else {
4658 		pr_cont("%s %ps", comma ? "," : "", work->func);
4659 	}
4660 }
4661 
4662 static void show_pwq(struct pool_workqueue *pwq)
4663 {
4664 	struct worker_pool *pool = pwq->pool;
4665 	struct work_struct *work;
4666 	struct worker *worker;
4667 	bool has_in_flight = false, has_pending = false;
4668 	int bkt;
4669 
4670 	pr_info("  pwq %d:", pool->id);
4671 	pr_cont_pool_info(pool);
4672 
4673 	pr_cont(" active=%d/%d refcnt=%d%s\n",
4674 		pwq->nr_active, pwq->max_active, pwq->refcnt,
4675 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4676 
4677 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4678 		if (worker->current_pwq == pwq) {
4679 			has_in_flight = true;
4680 			break;
4681 		}
4682 	}
4683 	if (has_in_flight) {
4684 		bool comma = false;
4685 
4686 		pr_info("    in-flight:");
4687 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4688 			if (worker->current_pwq != pwq)
4689 				continue;
4690 
4691 			pr_cont("%s %d%s:%ps", comma ? "," : "",
4692 				task_pid_nr(worker->task),
4693 				worker->rescue_wq ? "(RESCUER)" : "",
4694 				worker->current_func);
4695 			list_for_each_entry(work, &worker->scheduled, entry)
4696 				pr_cont_work(false, work);
4697 			comma = true;
4698 		}
4699 		pr_cont("\n");
4700 	}
4701 
4702 	list_for_each_entry(work, &pool->worklist, entry) {
4703 		if (get_work_pwq(work) == pwq) {
4704 			has_pending = true;
4705 			break;
4706 		}
4707 	}
4708 	if (has_pending) {
4709 		bool comma = false;
4710 
4711 		pr_info("    pending:");
4712 		list_for_each_entry(work, &pool->worklist, entry) {
4713 			if (get_work_pwq(work) != pwq)
4714 				continue;
4715 
4716 			pr_cont_work(comma, work);
4717 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4718 		}
4719 		pr_cont("\n");
4720 	}
4721 
4722 	if (!list_empty(&pwq->delayed_works)) {
4723 		bool comma = false;
4724 
4725 		pr_info("    delayed:");
4726 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4727 			pr_cont_work(comma, work);
4728 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4729 		}
4730 		pr_cont("\n");
4731 	}
4732 }
4733 
4734 /**
4735  * show_workqueue_state - dump workqueue state
4736  *
4737  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4738  * all busy workqueues and pools.
4739  */
4740 void show_workqueue_state(void)
4741 {
4742 	struct workqueue_struct *wq;
4743 	struct worker_pool *pool;
4744 	unsigned long flags;
4745 	int pi;
4746 
4747 	rcu_read_lock();
4748 
4749 	pr_info("Showing busy workqueues and worker pools:\n");
4750 
4751 	list_for_each_entry_rcu(wq, &workqueues, list) {
4752 		struct pool_workqueue *pwq;
4753 		bool idle = true;
4754 
4755 		for_each_pwq(pwq, wq) {
4756 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4757 				idle = false;
4758 				break;
4759 			}
4760 		}
4761 		if (idle)
4762 			continue;
4763 
4764 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4765 
4766 		for_each_pwq(pwq, wq) {
4767 			spin_lock_irqsave(&pwq->pool->lock, flags);
4768 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4769 				show_pwq(pwq);
4770 			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4771 			/*
4772 			 * We could be printing a lot from atomic context, e.g.
4773 			 * sysrq-t -> show_workqueue_state(). Avoid triggering
4774 			 * hard lockup.
4775 			 */
4776 			touch_nmi_watchdog();
4777 		}
4778 	}
4779 
4780 	for_each_pool(pool, pi) {
4781 		struct worker *worker;
4782 		bool first = true;
4783 
4784 		spin_lock_irqsave(&pool->lock, flags);
4785 		if (pool->nr_workers == pool->nr_idle)
4786 			goto next_pool;
4787 
4788 		pr_info("pool %d:", pool->id);
4789 		pr_cont_pool_info(pool);
4790 		pr_cont(" hung=%us workers=%d",
4791 			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4792 			pool->nr_workers);
4793 		if (pool->manager)
4794 			pr_cont(" manager: %d",
4795 				task_pid_nr(pool->manager->task));
4796 		list_for_each_entry(worker, &pool->idle_list, entry) {
4797 			pr_cont(" %s%d", first ? "idle: " : "",
4798 				task_pid_nr(worker->task));
4799 			first = false;
4800 		}
4801 		pr_cont("\n");
4802 	next_pool:
4803 		spin_unlock_irqrestore(&pool->lock, flags);
4804 		/*
4805 		 * We could be printing a lot from atomic context, e.g.
4806 		 * sysrq-t -> show_workqueue_state(). Avoid triggering
4807 		 * hard lockup.
4808 		 */
4809 		touch_nmi_watchdog();
4810 	}
4811 
4812 	rcu_read_unlock();
4813 }
4814 
4815 /* used to show worker information through /proc/PID/{comm,stat,status} */
4816 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4817 {
4818 	int off;
4819 
4820 	/* always show the actual comm */
4821 	off = strscpy(buf, task->comm, size);
4822 	if (off < 0)
4823 		return;
4824 
4825 	/* stabilize PF_WQ_WORKER and worker pool association */
4826 	mutex_lock(&wq_pool_attach_mutex);
4827 
4828 	if (task->flags & PF_WQ_WORKER) {
4829 		struct worker *worker = kthread_data(task);
4830 		struct worker_pool *pool = worker->pool;
4831 
4832 		if (pool) {
4833 			spin_lock_irq(&pool->lock);
4834 			/*
4835 			 * ->desc tracks information (wq name or
4836 			 * set_worker_desc()) for the latest execution.  If
4837 			 * current, prepend '+', otherwise '-'.
4838 			 */
4839 			if (worker->desc[0] != '\0') {
4840 				if (worker->current_work)
4841 					scnprintf(buf + off, size - off, "+%s",
4842 						  worker->desc);
4843 				else
4844 					scnprintf(buf + off, size - off, "-%s",
4845 						  worker->desc);
4846 			}
4847 			spin_unlock_irq(&pool->lock);
4848 		}
4849 	}
4850 
4851 	mutex_unlock(&wq_pool_attach_mutex);
4852 }
4853 
4854 #ifdef CONFIG_SMP
4855 
4856 /*
4857  * CPU hotplug.
4858  *
4859  * There are two challenges in supporting CPU hotplug.  Firstly, there
4860  * are a lot of assumptions on strong associations among work, pwq and
4861  * pool which make migrating pending and scheduled works very
4862  * difficult to implement without impacting hot paths.  Secondly,
4863  * worker pools serve mix of short, long and very long running works making
4864  * blocked draining impractical.
4865  *
4866  * This is solved by allowing the pools to be disassociated from the CPU
4867  * running as an unbound one and allowing it to be reattached later if the
4868  * cpu comes back online.
4869  */
4870 
4871 static void unbind_workers(int cpu)
4872 {
4873 	struct worker_pool *pool;
4874 	struct worker *worker;
4875 
4876 	for_each_cpu_worker_pool(pool, cpu) {
4877 		mutex_lock(&wq_pool_attach_mutex);
4878 		spin_lock_irq(&pool->lock);
4879 
4880 		/*
4881 		 * We've blocked all attach/detach operations. Make all workers
4882 		 * unbound and set DISASSOCIATED.  Before this, all workers
4883 		 * except for the ones which are still executing works from
4884 		 * before the last CPU down must be on the cpu.  After
4885 		 * this, they may become diasporas.
4886 		 */
4887 		for_each_pool_worker(worker, pool)
4888 			worker->flags |= WORKER_UNBOUND;
4889 
4890 		pool->flags |= POOL_DISASSOCIATED;
4891 
4892 		spin_unlock_irq(&pool->lock);
4893 		mutex_unlock(&wq_pool_attach_mutex);
4894 
4895 		/*
4896 		 * Call schedule() so that we cross rq->lock and thus can
4897 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4898 		 * This is necessary as scheduler callbacks may be invoked
4899 		 * from other cpus.
4900 		 */
4901 		schedule();
4902 
4903 		/*
4904 		 * Sched callbacks are disabled now.  Zap nr_running.
4905 		 * After this, nr_running stays zero and need_more_worker()
4906 		 * and keep_working() are always true as long as the
4907 		 * worklist is not empty.  This pool now behaves as an
4908 		 * unbound (in terms of concurrency management) pool which
4909 		 * are served by workers tied to the pool.
4910 		 */
4911 		atomic_set(&pool->nr_running, 0);
4912 
4913 		/*
4914 		 * With concurrency management just turned off, a busy
4915 		 * worker blocking could lead to lengthy stalls.  Kick off
4916 		 * unbound chain execution of currently pending work items.
4917 		 */
4918 		spin_lock_irq(&pool->lock);
4919 		wake_up_worker(pool);
4920 		spin_unlock_irq(&pool->lock);
4921 	}
4922 }
4923 
4924 /**
4925  * rebind_workers - rebind all workers of a pool to the associated CPU
4926  * @pool: pool of interest
4927  *
4928  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4929  */
4930 static void rebind_workers(struct worker_pool *pool)
4931 {
4932 	struct worker *worker;
4933 
4934 	lockdep_assert_held(&wq_pool_attach_mutex);
4935 
4936 	/*
4937 	 * Restore CPU affinity of all workers.  As all idle workers should
4938 	 * be on the run-queue of the associated CPU before any local
4939 	 * wake-ups for concurrency management happen, restore CPU affinity
4940 	 * of all workers first and then clear UNBOUND.  As we're called
4941 	 * from CPU_ONLINE, the following shouldn't fail.
4942 	 */
4943 	for_each_pool_worker(worker, pool)
4944 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4945 						  pool->attrs->cpumask) < 0);
4946 
4947 	spin_lock_irq(&pool->lock);
4948 
4949 	pool->flags &= ~POOL_DISASSOCIATED;
4950 
4951 	for_each_pool_worker(worker, pool) {
4952 		unsigned int worker_flags = worker->flags;
4953 
4954 		/*
4955 		 * A bound idle worker should actually be on the runqueue
4956 		 * of the associated CPU for local wake-ups targeting it to
4957 		 * work.  Kick all idle workers so that they migrate to the
4958 		 * associated CPU.  Doing this in the same loop as
4959 		 * replacing UNBOUND with REBOUND is safe as no worker will
4960 		 * be bound before @pool->lock is released.
4961 		 */
4962 		if (worker_flags & WORKER_IDLE)
4963 			wake_up_process(worker->task);
4964 
4965 		/*
4966 		 * We want to clear UNBOUND but can't directly call
4967 		 * worker_clr_flags() or adjust nr_running.  Atomically
4968 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4969 		 * @worker will clear REBOUND using worker_clr_flags() when
4970 		 * it initiates the next execution cycle thus restoring
4971 		 * concurrency management.  Note that when or whether
4972 		 * @worker clears REBOUND doesn't affect correctness.
4973 		 *
4974 		 * WRITE_ONCE() is necessary because @worker->flags may be
4975 		 * tested without holding any lock in
4976 		 * wq_worker_running().  Without it, NOT_RUNNING test may
4977 		 * fail incorrectly leading to premature concurrency
4978 		 * management operations.
4979 		 */
4980 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4981 		worker_flags |= WORKER_REBOUND;
4982 		worker_flags &= ~WORKER_UNBOUND;
4983 		WRITE_ONCE(worker->flags, worker_flags);
4984 	}
4985 
4986 	spin_unlock_irq(&pool->lock);
4987 }
4988 
4989 /**
4990  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4991  * @pool: unbound pool of interest
4992  * @cpu: the CPU which is coming up
4993  *
4994  * An unbound pool may end up with a cpumask which doesn't have any online
4995  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4996  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4997  * online CPU before, cpus_allowed of all its workers should be restored.
4998  */
4999 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5000 {
5001 	static cpumask_t cpumask;
5002 	struct worker *worker;
5003 
5004 	lockdep_assert_held(&wq_pool_attach_mutex);
5005 
5006 	/* is @cpu allowed for @pool? */
5007 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5008 		return;
5009 
5010 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5011 
5012 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
5013 	for_each_pool_worker(worker, pool)
5014 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5015 }
5016 
5017 int workqueue_prepare_cpu(unsigned int cpu)
5018 {
5019 	struct worker_pool *pool;
5020 
5021 	for_each_cpu_worker_pool(pool, cpu) {
5022 		if (pool->nr_workers)
5023 			continue;
5024 		if (!create_worker(pool))
5025 			return -ENOMEM;
5026 	}
5027 	return 0;
5028 }
5029 
5030 int workqueue_online_cpu(unsigned int cpu)
5031 {
5032 	struct worker_pool *pool;
5033 	struct workqueue_struct *wq;
5034 	int pi;
5035 
5036 	mutex_lock(&wq_pool_mutex);
5037 
5038 	for_each_pool(pool, pi) {
5039 		mutex_lock(&wq_pool_attach_mutex);
5040 
5041 		if (pool->cpu == cpu)
5042 			rebind_workers(pool);
5043 		else if (pool->cpu < 0)
5044 			restore_unbound_workers_cpumask(pool, cpu);
5045 
5046 		mutex_unlock(&wq_pool_attach_mutex);
5047 	}
5048 
5049 	/* update NUMA affinity of unbound workqueues */
5050 	list_for_each_entry(wq, &workqueues, list)
5051 		wq_update_unbound_numa(wq, cpu, true);
5052 
5053 	mutex_unlock(&wq_pool_mutex);
5054 	return 0;
5055 }
5056 
5057 int workqueue_offline_cpu(unsigned int cpu)
5058 {
5059 	struct workqueue_struct *wq;
5060 
5061 	/* unbinding per-cpu workers should happen on the local CPU */
5062 	if (WARN_ON(cpu != smp_processor_id()))
5063 		return -1;
5064 
5065 	unbind_workers(cpu);
5066 
5067 	/* update NUMA affinity of unbound workqueues */
5068 	mutex_lock(&wq_pool_mutex);
5069 	list_for_each_entry(wq, &workqueues, list)
5070 		wq_update_unbound_numa(wq, cpu, false);
5071 	mutex_unlock(&wq_pool_mutex);
5072 
5073 	return 0;
5074 }
5075 
5076 struct work_for_cpu {
5077 	struct work_struct work;
5078 	long (*fn)(void *);
5079 	void *arg;
5080 	long ret;
5081 };
5082 
5083 static void work_for_cpu_fn(struct work_struct *work)
5084 {
5085 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5086 
5087 	wfc->ret = wfc->fn(wfc->arg);
5088 }
5089 
5090 /**
5091  * work_on_cpu - run a function in thread context on a particular cpu
5092  * @cpu: the cpu to run on
5093  * @fn: the function to run
5094  * @arg: the function arg
5095  *
5096  * It is up to the caller to ensure that the cpu doesn't go offline.
5097  * The caller must not hold any locks which would prevent @fn from completing.
5098  *
5099  * Return: The value @fn returns.
5100  */
5101 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5102 {
5103 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5104 
5105 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5106 	schedule_work_on(cpu, &wfc.work);
5107 	flush_work(&wfc.work);
5108 	destroy_work_on_stack(&wfc.work);
5109 	return wfc.ret;
5110 }
5111 EXPORT_SYMBOL_GPL(work_on_cpu);
5112 
5113 /**
5114  * work_on_cpu_safe - run a function in thread context on a particular cpu
5115  * @cpu: the cpu to run on
5116  * @fn:  the function to run
5117  * @arg: the function argument
5118  *
5119  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5120  * any locks which would prevent @fn from completing.
5121  *
5122  * Return: The value @fn returns.
5123  */
5124 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5125 {
5126 	long ret = -ENODEV;
5127 
5128 	get_online_cpus();
5129 	if (cpu_online(cpu))
5130 		ret = work_on_cpu(cpu, fn, arg);
5131 	put_online_cpus();
5132 	return ret;
5133 }
5134 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5135 #endif /* CONFIG_SMP */
5136 
5137 #ifdef CONFIG_FREEZER
5138 
5139 /**
5140  * freeze_workqueues_begin - begin freezing workqueues
5141  *
5142  * Start freezing workqueues.  After this function returns, all freezable
5143  * workqueues will queue new works to their delayed_works list instead of
5144  * pool->worklist.
5145  *
5146  * CONTEXT:
5147  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5148  */
5149 void freeze_workqueues_begin(void)
5150 {
5151 	struct workqueue_struct *wq;
5152 	struct pool_workqueue *pwq;
5153 
5154 	mutex_lock(&wq_pool_mutex);
5155 
5156 	WARN_ON_ONCE(workqueue_freezing);
5157 	workqueue_freezing = true;
5158 
5159 	list_for_each_entry(wq, &workqueues, list) {
5160 		mutex_lock(&wq->mutex);
5161 		for_each_pwq(pwq, wq)
5162 			pwq_adjust_max_active(pwq);
5163 		mutex_unlock(&wq->mutex);
5164 	}
5165 
5166 	mutex_unlock(&wq_pool_mutex);
5167 }
5168 
5169 /**
5170  * freeze_workqueues_busy - are freezable workqueues still busy?
5171  *
5172  * Check whether freezing is complete.  This function must be called
5173  * between freeze_workqueues_begin() and thaw_workqueues().
5174  *
5175  * CONTEXT:
5176  * Grabs and releases wq_pool_mutex.
5177  *
5178  * Return:
5179  * %true if some freezable workqueues are still busy.  %false if freezing
5180  * is complete.
5181  */
5182 bool freeze_workqueues_busy(void)
5183 {
5184 	bool busy = false;
5185 	struct workqueue_struct *wq;
5186 	struct pool_workqueue *pwq;
5187 
5188 	mutex_lock(&wq_pool_mutex);
5189 
5190 	WARN_ON_ONCE(!workqueue_freezing);
5191 
5192 	list_for_each_entry(wq, &workqueues, list) {
5193 		if (!(wq->flags & WQ_FREEZABLE))
5194 			continue;
5195 		/*
5196 		 * nr_active is monotonically decreasing.  It's safe
5197 		 * to peek without lock.
5198 		 */
5199 		rcu_read_lock();
5200 		for_each_pwq(pwq, wq) {
5201 			WARN_ON_ONCE(pwq->nr_active < 0);
5202 			if (pwq->nr_active) {
5203 				busy = true;
5204 				rcu_read_unlock();
5205 				goto out_unlock;
5206 			}
5207 		}
5208 		rcu_read_unlock();
5209 	}
5210 out_unlock:
5211 	mutex_unlock(&wq_pool_mutex);
5212 	return busy;
5213 }
5214 
5215 /**
5216  * thaw_workqueues - thaw workqueues
5217  *
5218  * Thaw workqueues.  Normal queueing is restored and all collected
5219  * frozen works are transferred to their respective pool worklists.
5220  *
5221  * CONTEXT:
5222  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5223  */
5224 void thaw_workqueues(void)
5225 {
5226 	struct workqueue_struct *wq;
5227 	struct pool_workqueue *pwq;
5228 
5229 	mutex_lock(&wq_pool_mutex);
5230 
5231 	if (!workqueue_freezing)
5232 		goto out_unlock;
5233 
5234 	workqueue_freezing = false;
5235 
5236 	/* restore max_active and repopulate worklist */
5237 	list_for_each_entry(wq, &workqueues, list) {
5238 		mutex_lock(&wq->mutex);
5239 		for_each_pwq(pwq, wq)
5240 			pwq_adjust_max_active(pwq);
5241 		mutex_unlock(&wq->mutex);
5242 	}
5243 
5244 out_unlock:
5245 	mutex_unlock(&wq_pool_mutex);
5246 }
5247 #endif /* CONFIG_FREEZER */
5248 
5249 static int workqueue_apply_unbound_cpumask(void)
5250 {
5251 	LIST_HEAD(ctxs);
5252 	int ret = 0;
5253 	struct workqueue_struct *wq;
5254 	struct apply_wqattrs_ctx *ctx, *n;
5255 
5256 	lockdep_assert_held(&wq_pool_mutex);
5257 
5258 	list_for_each_entry(wq, &workqueues, list) {
5259 		if (!(wq->flags & WQ_UNBOUND))
5260 			continue;
5261 		/* creating multiple pwqs breaks ordering guarantee */
5262 		if (wq->flags & __WQ_ORDERED)
5263 			continue;
5264 
5265 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5266 		if (!ctx) {
5267 			ret = -ENOMEM;
5268 			break;
5269 		}
5270 
5271 		list_add_tail(&ctx->list, &ctxs);
5272 	}
5273 
5274 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5275 		if (!ret)
5276 			apply_wqattrs_commit(ctx);
5277 		apply_wqattrs_cleanup(ctx);
5278 	}
5279 
5280 	return ret;
5281 }
5282 
5283 /**
5284  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5285  *  @cpumask: the cpumask to set
5286  *
5287  *  The low-level workqueues cpumask is a global cpumask that limits
5288  *  the affinity of all unbound workqueues.  This function check the @cpumask
5289  *  and apply it to all unbound workqueues and updates all pwqs of them.
5290  *
5291  *  Retun:	0	- Success
5292  *  		-EINVAL	- Invalid @cpumask
5293  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5294  */
5295 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5296 {
5297 	int ret = -EINVAL;
5298 	cpumask_var_t saved_cpumask;
5299 
5300 	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5301 		return -ENOMEM;
5302 
5303 	/*
5304 	 * Not excluding isolated cpus on purpose.
5305 	 * If the user wishes to include them, we allow that.
5306 	 */
5307 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5308 	if (!cpumask_empty(cpumask)) {
5309 		apply_wqattrs_lock();
5310 
5311 		/* save the old wq_unbound_cpumask. */
5312 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5313 
5314 		/* update wq_unbound_cpumask at first and apply it to wqs. */
5315 		cpumask_copy(wq_unbound_cpumask, cpumask);
5316 		ret = workqueue_apply_unbound_cpumask();
5317 
5318 		/* restore the wq_unbound_cpumask when failed. */
5319 		if (ret < 0)
5320 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5321 
5322 		apply_wqattrs_unlock();
5323 	}
5324 
5325 	free_cpumask_var(saved_cpumask);
5326 	return ret;
5327 }
5328 
5329 #ifdef CONFIG_SYSFS
5330 /*
5331  * Workqueues with WQ_SYSFS flag set is visible to userland via
5332  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5333  * following attributes.
5334  *
5335  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5336  *  max_active	RW int	: maximum number of in-flight work items
5337  *
5338  * Unbound workqueues have the following extra attributes.
5339  *
5340  *  pool_ids	RO int	: the associated pool IDs for each node
5341  *  nice	RW int	: nice value of the workers
5342  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5343  *  numa	RW bool	: whether enable NUMA affinity
5344  */
5345 struct wq_device {
5346 	struct workqueue_struct		*wq;
5347 	struct device			dev;
5348 };
5349 
5350 static struct workqueue_struct *dev_to_wq(struct device *dev)
5351 {
5352 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5353 
5354 	return wq_dev->wq;
5355 }
5356 
5357 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5358 			    char *buf)
5359 {
5360 	struct workqueue_struct *wq = dev_to_wq(dev);
5361 
5362 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5363 }
5364 static DEVICE_ATTR_RO(per_cpu);
5365 
5366 static ssize_t max_active_show(struct device *dev,
5367 			       struct device_attribute *attr, char *buf)
5368 {
5369 	struct workqueue_struct *wq = dev_to_wq(dev);
5370 
5371 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5372 }
5373 
5374 static ssize_t max_active_store(struct device *dev,
5375 				struct device_attribute *attr, const char *buf,
5376 				size_t count)
5377 {
5378 	struct workqueue_struct *wq = dev_to_wq(dev);
5379 	int val;
5380 
5381 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5382 		return -EINVAL;
5383 
5384 	workqueue_set_max_active(wq, val);
5385 	return count;
5386 }
5387 static DEVICE_ATTR_RW(max_active);
5388 
5389 static struct attribute *wq_sysfs_attrs[] = {
5390 	&dev_attr_per_cpu.attr,
5391 	&dev_attr_max_active.attr,
5392 	NULL,
5393 };
5394 ATTRIBUTE_GROUPS(wq_sysfs);
5395 
5396 static ssize_t wq_pool_ids_show(struct device *dev,
5397 				struct device_attribute *attr, char *buf)
5398 {
5399 	struct workqueue_struct *wq = dev_to_wq(dev);
5400 	const char *delim = "";
5401 	int node, written = 0;
5402 
5403 	get_online_cpus();
5404 	rcu_read_lock();
5405 	for_each_node(node) {
5406 		written += scnprintf(buf + written, PAGE_SIZE - written,
5407 				     "%s%d:%d", delim, node,
5408 				     unbound_pwq_by_node(wq, node)->pool->id);
5409 		delim = " ";
5410 	}
5411 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5412 	rcu_read_unlock();
5413 	put_online_cpus();
5414 
5415 	return written;
5416 }
5417 
5418 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5419 			    char *buf)
5420 {
5421 	struct workqueue_struct *wq = dev_to_wq(dev);
5422 	int written;
5423 
5424 	mutex_lock(&wq->mutex);
5425 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5426 	mutex_unlock(&wq->mutex);
5427 
5428 	return written;
5429 }
5430 
5431 /* prepare workqueue_attrs for sysfs store operations */
5432 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5433 {
5434 	struct workqueue_attrs *attrs;
5435 
5436 	lockdep_assert_held(&wq_pool_mutex);
5437 
5438 	attrs = alloc_workqueue_attrs();
5439 	if (!attrs)
5440 		return NULL;
5441 
5442 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5443 	return attrs;
5444 }
5445 
5446 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5447 			     const char *buf, size_t count)
5448 {
5449 	struct workqueue_struct *wq = dev_to_wq(dev);
5450 	struct workqueue_attrs *attrs;
5451 	int ret = -ENOMEM;
5452 
5453 	apply_wqattrs_lock();
5454 
5455 	attrs = wq_sysfs_prep_attrs(wq);
5456 	if (!attrs)
5457 		goto out_unlock;
5458 
5459 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5460 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5461 		ret = apply_workqueue_attrs_locked(wq, attrs);
5462 	else
5463 		ret = -EINVAL;
5464 
5465 out_unlock:
5466 	apply_wqattrs_unlock();
5467 	free_workqueue_attrs(attrs);
5468 	return ret ?: count;
5469 }
5470 
5471 static ssize_t wq_cpumask_show(struct device *dev,
5472 			       struct device_attribute *attr, char *buf)
5473 {
5474 	struct workqueue_struct *wq = dev_to_wq(dev);
5475 	int written;
5476 
5477 	mutex_lock(&wq->mutex);
5478 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5479 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5480 	mutex_unlock(&wq->mutex);
5481 	return written;
5482 }
5483 
5484 static ssize_t wq_cpumask_store(struct device *dev,
5485 				struct device_attribute *attr,
5486 				const char *buf, size_t count)
5487 {
5488 	struct workqueue_struct *wq = dev_to_wq(dev);
5489 	struct workqueue_attrs *attrs;
5490 	int ret = -ENOMEM;
5491 
5492 	apply_wqattrs_lock();
5493 
5494 	attrs = wq_sysfs_prep_attrs(wq);
5495 	if (!attrs)
5496 		goto out_unlock;
5497 
5498 	ret = cpumask_parse(buf, attrs->cpumask);
5499 	if (!ret)
5500 		ret = apply_workqueue_attrs_locked(wq, attrs);
5501 
5502 out_unlock:
5503 	apply_wqattrs_unlock();
5504 	free_workqueue_attrs(attrs);
5505 	return ret ?: count;
5506 }
5507 
5508 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5509 			    char *buf)
5510 {
5511 	struct workqueue_struct *wq = dev_to_wq(dev);
5512 	int written;
5513 
5514 	mutex_lock(&wq->mutex);
5515 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5516 			    !wq->unbound_attrs->no_numa);
5517 	mutex_unlock(&wq->mutex);
5518 
5519 	return written;
5520 }
5521 
5522 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5523 			     const char *buf, size_t count)
5524 {
5525 	struct workqueue_struct *wq = dev_to_wq(dev);
5526 	struct workqueue_attrs *attrs;
5527 	int v, ret = -ENOMEM;
5528 
5529 	apply_wqattrs_lock();
5530 
5531 	attrs = wq_sysfs_prep_attrs(wq);
5532 	if (!attrs)
5533 		goto out_unlock;
5534 
5535 	ret = -EINVAL;
5536 	if (sscanf(buf, "%d", &v) == 1) {
5537 		attrs->no_numa = !v;
5538 		ret = apply_workqueue_attrs_locked(wq, attrs);
5539 	}
5540 
5541 out_unlock:
5542 	apply_wqattrs_unlock();
5543 	free_workqueue_attrs(attrs);
5544 	return ret ?: count;
5545 }
5546 
5547 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5548 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5549 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5550 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5551 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5552 	__ATTR_NULL,
5553 };
5554 
5555 static struct bus_type wq_subsys = {
5556 	.name				= "workqueue",
5557 	.dev_groups			= wq_sysfs_groups,
5558 };
5559 
5560 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5561 		struct device_attribute *attr, char *buf)
5562 {
5563 	int written;
5564 
5565 	mutex_lock(&wq_pool_mutex);
5566 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5567 			    cpumask_pr_args(wq_unbound_cpumask));
5568 	mutex_unlock(&wq_pool_mutex);
5569 
5570 	return written;
5571 }
5572 
5573 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5574 		struct device_attribute *attr, const char *buf, size_t count)
5575 {
5576 	cpumask_var_t cpumask;
5577 	int ret;
5578 
5579 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5580 		return -ENOMEM;
5581 
5582 	ret = cpumask_parse(buf, cpumask);
5583 	if (!ret)
5584 		ret = workqueue_set_unbound_cpumask(cpumask);
5585 
5586 	free_cpumask_var(cpumask);
5587 	return ret ? ret : count;
5588 }
5589 
5590 static struct device_attribute wq_sysfs_cpumask_attr =
5591 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5592 	       wq_unbound_cpumask_store);
5593 
5594 static int __init wq_sysfs_init(void)
5595 {
5596 	int err;
5597 
5598 	err = subsys_virtual_register(&wq_subsys, NULL);
5599 	if (err)
5600 		return err;
5601 
5602 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5603 }
5604 core_initcall(wq_sysfs_init);
5605 
5606 static void wq_device_release(struct device *dev)
5607 {
5608 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5609 
5610 	kfree(wq_dev);
5611 }
5612 
5613 /**
5614  * workqueue_sysfs_register - make a workqueue visible in sysfs
5615  * @wq: the workqueue to register
5616  *
5617  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5618  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5619  * which is the preferred method.
5620  *
5621  * Workqueue user should use this function directly iff it wants to apply
5622  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5623  * apply_workqueue_attrs() may race against userland updating the
5624  * attributes.
5625  *
5626  * Return: 0 on success, -errno on failure.
5627  */
5628 int workqueue_sysfs_register(struct workqueue_struct *wq)
5629 {
5630 	struct wq_device *wq_dev;
5631 	int ret;
5632 
5633 	/*
5634 	 * Adjusting max_active or creating new pwqs by applying
5635 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5636 	 * workqueues.
5637 	 */
5638 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5639 		return -EINVAL;
5640 
5641 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5642 	if (!wq_dev)
5643 		return -ENOMEM;
5644 
5645 	wq_dev->wq = wq;
5646 	wq_dev->dev.bus = &wq_subsys;
5647 	wq_dev->dev.release = wq_device_release;
5648 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5649 
5650 	/*
5651 	 * unbound_attrs are created separately.  Suppress uevent until
5652 	 * everything is ready.
5653 	 */
5654 	dev_set_uevent_suppress(&wq_dev->dev, true);
5655 
5656 	ret = device_register(&wq_dev->dev);
5657 	if (ret) {
5658 		put_device(&wq_dev->dev);
5659 		wq->wq_dev = NULL;
5660 		return ret;
5661 	}
5662 
5663 	if (wq->flags & WQ_UNBOUND) {
5664 		struct device_attribute *attr;
5665 
5666 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5667 			ret = device_create_file(&wq_dev->dev, attr);
5668 			if (ret) {
5669 				device_unregister(&wq_dev->dev);
5670 				wq->wq_dev = NULL;
5671 				return ret;
5672 			}
5673 		}
5674 	}
5675 
5676 	dev_set_uevent_suppress(&wq_dev->dev, false);
5677 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5678 	return 0;
5679 }
5680 
5681 /**
5682  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5683  * @wq: the workqueue to unregister
5684  *
5685  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5686  */
5687 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5688 {
5689 	struct wq_device *wq_dev = wq->wq_dev;
5690 
5691 	if (!wq->wq_dev)
5692 		return;
5693 
5694 	wq->wq_dev = NULL;
5695 	device_unregister(&wq_dev->dev);
5696 }
5697 #else	/* CONFIG_SYSFS */
5698 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5699 #endif	/* CONFIG_SYSFS */
5700 
5701 /*
5702  * Workqueue watchdog.
5703  *
5704  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5705  * flush dependency, a concurrency managed work item which stays RUNNING
5706  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5707  * usual warning mechanisms don't trigger and internal workqueue state is
5708  * largely opaque.
5709  *
5710  * Workqueue watchdog monitors all worker pools periodically and dumps
5711  * state if some pools failed to make forward progress for a while where
5712  * forward progress is defined as the first item on ->worklist changing.
5713  *
5714  * This mechanism is controlled through the kernel parameter
5715  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5716  * corresponding sysfs parameter file.
5717  */
5718 #ifdef CONFIG_WQ_WATCHDOG
5719 
5720 static unsigned long wq_watchdog_thresh = 30;
5721 static struct timer_list wq_watchdog_timer;
5722 
5723 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5724 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5725 
5726 static void wq_watchdog_reset_touched(void)
5727 {
5728 	int cpu;
5729 
5730 	wq_watchdog_touched = jiffies;
5731 	for_each_possible_cpu(cpu)
5732 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5733 }
5734 
5735 static void wq_watchdog_timer_fn(struct timer_list *unused)
5736 {
5737 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5738 	bool lockup_detected = false;
5739 	struct worker_pool *pool;
5740 	int pi;
5741 
5742 	if (!thresh)
5743 		return;
5744 
5745 	rcu_read_lock();
5746 
5747 	for_each_pool(pool, pi) {
5748 		unsigned long pool_ts, touched, ts;
5749 
5750 		if (list_empty(&pool->worklist))
5751 			continue;
5752 
5753 		/* get the latest of pool and touched timestamps */
5754 		pool_ts = READ_ONCE(pool->watchdog_ts);
5755 		touched = READ_ONCE(wq_watchdog_touched);
5756 
5757 		if (time_after(pool_ts, touched))
5758 			ts = pool_ts;
5759 		else
5760 			ts = touched;
5761 
5762 		if (pool->cpu >= 0) {
5763 			unsigned long cpu_touched =
5764 				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5765 						  pool->cpu));
5766 			if (time_after(cpu_touched, ts))
5767 				ts = cpu_touched;
5768 		}
5769 
5770 		/* did we stall? */
5771 		if (time_after(jiffies, ts + thresh)) {
5772 			lockup_detected = true;
5773 			pr_emerg("BUG: workqueue lockup - pool");
5774 			pr_cont_pool_info(pool);
5775 			pr_cont(" stuck for %us!\n",
5776 				jiffies_to_msecs(jiffies - pool_ts) / 1000);
5777 		}
5778 	}
5779 
5780 	rcu_read_unlock();
5781 
5782 	if (lockup_detected)
5783 		show_workqueue_state();
5784 
5785 	wq_watchdog_reset_touched();
5786 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5787 }
5788 
5789 notrace void wq_watchdog_touch(int cpu)
5790 {
5791 	if (cpu >= 0)
5792 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5793 	else
5794 		wq_watchdog_touched = jiffies;
5795 }
5796 
5797 static void wq_watchdog_set_thresh(unsigned long thresh)
5798 {
5799 	wq_watchdog_thresh = 0;
5800 	del_timer_sync(&wq_watchdog_timer);
5801 
5802 	if (thresh) {
5803 		wq_watchdog_thresh = thresh;
5804 		wq_watchdog_reset_touched();
5805 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5806 	}
5807 }
5808 
5809 static int wq_watchdog_param_set_thresh(const char *val,
5810 					const struct kernel_param *kp)
5811 {
5812 	unsigned long thresh;
5813 	int ret;
5814 
5815 	ret = kstrtoul(val, 0, &thresh);
5816 	if (ret)
5817 		return ret;
5818 
5819 	if (system_wq)
5820 		wq_watchdog_set_thresh(thresh);
5821 	else
5822 		wq_watchdog_thresh = thresh;
5823 
5824 	return 0;
5825 }
5826 
5827 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5828 	.set	= wq_watchdog_param_set_thresh,
5829 	.get	= param_get_ulong,
5830 };
5831 
5832 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5833 		0644);
5834 
5835 static void wq_watchdog_init(void)
5836 {
5837 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5838 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5839 }
5840 
5841 #else	/* CONFIG_WQ_WATCHDOG */
5842 
5843 static inline void wq_watchdog_init(void) { }
5844 
5845 #endif	/* CONFIG_WQ_WATCHDOG */
5846 
5847 static void __init wq_numa_init(void)
5848 {
5849 	cpumask_var_t *tbl;
5850 	int node, cpu;
5851 
5852 	if (num_possible_nodes() <= 1)
5853 		return;
5854 
5855 	if (wq_disable_numa) {
5856 		pr_info("workqueue: NUMA affinity support disabled\n");
5857 		return;
5858 	}
5859 
5860 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5861 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5862 
5863 	/*
5864 	 * We want masks of possible CPUs of each node which isn't readily
5865 	 * available.  Build one from cpu_to_node() which should have been
5866 	 * fully initialized by now.
5867 	 */
5868 	tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5869 	BUG_ON(!tbl);
5870 
5871 	for_each_node(node)
5872 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5873 				node_online(node) ? node : NUMA_NO_NODE));
5874 
5875 	for_each_possible_cpu(cpu) {
5876 		node = cpu_to_node(cpu);
5877 		if (WARN_ON(node == NUMA_NO_NODE)) {
5878 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5879 			/* happens iff arch is bonkers, let's just proceed */
5880 			return;
5881 		}
5882 		cpumask_set_cpu(cpu, tbl[node]);
5883 	}
5884 
5885 	wq_numa_possible_cpumask = tbl;
5886 	wq_numa_enabled = true;
5887 }
5888 
5889 /**
5890  * workqueue_init_early - early init for workqueue subsystem
5891  *
5892  * This is the first half of two-staged workqueue subsystem initialization
5893  * and invoked as soon as the bare basics - memory allocation, cpumasks and
5894  * idr are up.  It sets up all the data structures and system workqueues
5895  * and allows early boot code to create workqueues and queue/cancel work
5896  * items.  Actual work item execution starts only after kthreads can be
5897  * created and scheduled right before early initcalls.
5898  */
5899 int __init workqueue_init_early(void)
5900 {
5901 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5902 	int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5903 	int i, cpu;
5904 
5905 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5906 
5907 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5908 	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5909 
5910 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5911 
5912 	/* initialize CPU pools */
5913 	for_each_possible_cpu(cpu) {
5914 		struct worker_pool *pool;
5915 
5916 		i = 0;
5917 		for_each_cpu_worker_pool(pool, cpu) {
5918 			BUG_ON(init_worker_pool(pool));
5919 			pool->cpu = cpu;
5920 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5921 			pool->attrs->nice = std_nice[i++];
5922 			pool->node = cpu_to_node(cpu);
5923 
5924 			/* alloc pool ID */
5925 			mutex_lock(&wq_pool_mutex);
5926 			BUG_ON(worker_pool_assign_id(pool));
5927 			mutex_unlock(&wq_pool_mutex);
5928 		}
5929 	}
5930 
5931 	/* create default unbound and ordered wq attrs */
5932 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5933 		struct workqueue_attrs *attrs;
5934 
5935 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
5936 		attrs->nice = std_nice[i];
5937 		unbound_std_wq_attrs[i] = attrs;
5938 
5939 		/*
5940 		 * An ordered wq should have only one pwq as ordering is
5941 		 * guaranteed by max_active which is enforced by pwqs.
5942 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5943 		 */
5944 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
5945 		attrs->nice = std_nice[i];
5946 		attrs->no_numa = true;
5947 		ordered_wq_attrs[i] = attrs;
5948 	}
5949 
5950 	system_wq = alloc_workqueue("events", 0, 0);
5951 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5952 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5953 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5954 					    WQ_UNBOUND_MAX_ACTIVE);
5955 	system_freezable_wq = alloc_workqueue("events_freezable",
5956 					      WQ_FREEZABLE, 0);
5957 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5958 					      WQ_POWER_EFFICIENT, 0);
5959 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5960 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5961 					      0);
5962 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5963 	       !system_unbound_wq || !system_freezable_wq ||
5964 	       !system_power_efficient_wq ||
5965 	       !system_freezable_power_efficient_wq);
5966 
5967 	return 0;
5968 }
5969 
5970 /**
5971  * workqueue_init - bring workqueue subsystem fully online
5972  *
5973  * This is the latter half of two-staged workqueue subsystem initialization
5974  * and invoked as soon as kthreads can be created and scheduled.
5975  * Workqueues have been created and work items queued on them, but there
5976  * are no kworkers executing the work items yet.  Populate the worker pools
5977  * with the initial workers and enable future kworker creations.
5978  */
5979 int __init workqueue_init(void)
5980 {
5981 	struct workqueue_struct *wq;
5982 	struct worker_pool *pool;
5983 	int cpu, bkt;
5984 
5985 	/*
5986 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5987 	 * CPU to node mapping may not be available that early on some
5988 	 * archs such as power and arm64.  As per-cpu pools created
5989 	 * previously could be missing node hint and unbound pools NUMA
5990 	 * affinity, fix them up.
5991 	 *
5992 	 * Also, while iterating workqueues, create rescuers if requested.
5993 	 */
5994 	wq_numa_init();
5995 
5996 	mutex_lock(&wq_pool_mutex);
5997 
5998 	for_each_possible_cpu(cpu) {
5999 		for_each_cpu_worker_pool(pool, cpu) {
6000 			pool->node = cpu_to_node(cpu);
6001 		}
6002 	}
6003 
6004 	list_for_each_entry(wq, &workqueues, list) {
6005 		wq_update_unbound_numa(wq, smp_processor_id(), true);
6006 		WARN(init_rescuer(wq),
6007 		     "workqueue: failed to create early rescuer for %s",
6008 		     wq->name);
6009 	}
6010 
6011 	mutex_unlock(&wq_pool_mutex);
6012 
6013 	/* create the initial workers */
6014 	for_each_online_cpu(cpu) {
6015 		for_each_cpu_worker_pool(pool, cpu) {
6016 			pool->flags &= ~POOL_DISASSOCIATED;
6017 			BUG_ON(!create_worker(pool));
6018 		}
6019 	}
6020 
6021 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6022 		BUG_ON(!create_worker(pool));
6023 
6024 	wq_online = true;
6025 	wq_watchdog_init();
6026 
6027 	return 0;
6028 }
6029