xref: /openbmc/linux/kernel/workqueue.c (revision dc3401c8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53 #include <linux/kvm_para.h>
54 
55 #include "workqueue_internal.h"
56 
57 enum {
58 	/*
59 	 * worker_pool flags
60 	 *
61 	 * A bound pool is either associated or disassociated with its CPU.
62 	 * While associated (!DISASSOCIATED), all workers are bound to the
63 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
64 	 * is in effect.
65 	 *
66 	 * While DISASSOCIATED, the cpu may be offline and all workers have
67 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
68 	 * be executing on any CPU.  The pool behaves as an unbound one.
69 	 *
70 	 * Note that DISASSOCIATED should be flipped only while holding
71 	 * wq_pool_attach_mutex to avoid changing binding state while
72 	 * worker_attach_to_pool() is in progress.
73 	 */
74 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
75 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
76 
77 	/* worker flags */
78 	WORKER_DIE		= 1 << 1,	/* die die die */
79 	WORKER_IDLE		= 1 << 2,	/* is idle */
80 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
81 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
82 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
83 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
84 
85 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
86 				  WORKER_UNBOUND | WORKER_REBOUND,
87 
88 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
89 
90 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
91 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
92 
93 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
94 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
95 
96 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
97 						/* call for help after 10ms
98 						   (min two ticks) */
99 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
100 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
101 
102 	/*
103 	 * Rescue workers are used only on emergencies and shared by
104 	 * all cpus.  Give MIN_NICE.
105 	 */
106 	RESCUER_NICE_LEVEL	= MIN_NICE,
107 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
108 
109 	WQ_NAME_LEN		= 24,
110 };
111 
112 /*
113  * Structure fields follow one of the following exclusion rules.
114  *
115  * I: Modifiable by initialization/destruction paths and read-only for
116  *    everyone else.
117  *
118  * P: Preemption protected.  Disabling preemption is enough and should
119  *    only be modified and accessed from the local cpu.
120  *
121  * L: pool->lock protected.  Access with pool->lock held.
122  *
123  * X: During normal operation, modification requires pool->lock and should
124  *    be done only from local cpu.  Either disabling preemption on local
125  *    cpu or grabbing pool->lock is enough for read access.  If
126  *    POOL_DISASSOCIATED is set, it's identical to L.
127  *
128  * A: wq_pool_attach_mutex protected.
129  *
130  * PL: wq_pool_mutex protected.
131  *
132  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
133  *
134  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
135  *
136  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
137  *      RCU for reads.
138  *
139  * WQ: wq->mutex protected.
140  *
141  * WR: wq->mutex protected for writes.  RCU protected for reads.
142  *
143  * MD: wq_mayday_lock protected.
144  */
145 
146 /* struct worker is defined in workqueue_internal.h */
147 
148 struct worker_pool {
149 	raw_spinlock_t		lock;		/* the pool lock */
150 	int			cpu;		/* I: the associated cpu */
151 	int			node;		/* I: the associated node ID */
152 	int			id;		/* I: pool ID */
153 	unsigned int		flags;		/* X: flags */
154 
155 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
156 
157 	struct list_head	worklist;	/* L: list of pending works */
158 
159 	int			nr_workers;	/* L: total number of workers */
160 	int			nr_idle;	/* L: currently idle workers */
161 
162 	struct list_head	idle_list;	/* X: list of idle workers */
163 	struct timer_list	idle_timer;	/* L: worker idle timeout */
164 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
165 
166 	/* a workers is either on busy_hash or idle_list, or the manager */
167 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
168 						/* L: hash of busy workers */
169 
170 	struct worker		*manager;	/* L: purely informational */
171 	struct list_head	workers;	/* A: attached workers */
172 	struct completion	*detach_completion; /* all workers detached */
173 
174 	struct ida		worker_ida;	/* worker IDs for task name */
175 
176 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
177 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
178 	int			refcnt;		/* PL: refcnt for unbound pools */
179 
180 	/*
181 	 * The current concurrency level.  As it's likely to be accessed
182 	 * from other CPUs during try_to_wake_up(), put it in a separate
183 	 * cacheline.
184 	 */
185 	atomic_t		nr_running ____cacheline_aligned_in_smp;
186 
187 	/*
188 	 * Destruction of pool is RCU protected to allow dereferences
189 	 * from get_work_pool().
190 	 */
191 	struct rcu_head		rcu;
192 } ____cacheline_aligned_in_smp;
193 
194 /*
195  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
196  * of work_struct->data are used for flags and the remaining high bits
197  * point to the pwq; thus, pwqs need to be aligned at two's power of the
198  * number of flag bits.
199  */
200 struct pool_workqueue {
201 	struct worker_pool	*pool;		/* I: the associated pool */
202 	struct workqueue_struct *wq;		/* I: the owning workqueue */
203 	int			work_color;	/* L: current color */
204 	int			flush_color;	/* L: flushing color */
205 	int			refcnt;		/* L: reference count */
206 	int			nr_in_flight[WORK_NR_COLORS];
207 						/* L: nr of in_flight works */
208 
209 	/*
210 	 * nr_active management and WORK_STRUCT_INACTIVE:
211 	 *
212 	 * When pwq->nr_active >= max_active, new work item is queued to
213 	 * pwq->inactive_works instead of pool->worklist and marked with
214 	 * WORK_STRUCT_INACTIVE.
215 	 *
216 	 * All work items marked with WORK_STRUCT_INACTIVE do not participate
217 	 * in pwq->nr_active and all work items in pwq->inactive_works are
218 	 * marked with WORK_STRUCT_INACTIVE.  But not all WORK_STRUCT_INACTIVE
219 	 * work items are in pwq->inactive_works.  Some of them are ready to
220 	 * run in pool->worklist or worker->scheduled.  Those work itmes are
221 	 * only struct wq_barrier which is used for flush_work() and should
222 	 * not participate in pwq->nr_active.  For non-barrier work item, it
223 	 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
224 	 */
225 	int			nr_active;	/* L: nr of active works */
226 	int			max_active;	/* L: max active works */
227 	struct list_head	inactive_works;	/* L: inactive works */
228 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
229 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
230 
231 	/*
232 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
233 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
234 	 * itself is also RCU protected so that the first pwq can be
235 	 * determined without grabbing wq->mutex.
236 	 */
237 	struct work_struct	unbound_release_work;
238 	struct rcu_head		rcu;
239 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
240 
241 /*
242  * Structure used to wait for workqueue flush.
243  */
244 struct wq_flusher {
245 	struct list_head	list;		/* WQ: list of flushers */
246 	int			flush_color;	/* WQ: flush color waiting for */
247 	struct completion	done;		/* flush completion */
248 };
249 
250 struct wq_device;
251 
252 /*
253  * The externally visible workqueue.  It relays the issued work items to
254  * the appropriate worker_pool through its pool_workqueues.
255  */
256 struct workqueue_struct {
257 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
258 	struct list_head	list;		/* PR: list of all workqueues */
259 
260 	struct mutex		mutex;		/* protects this wq */
261 	int			work_color;	/* WQ: current work color */
262 	int			flush_color;	/* WQ: current flush color */
263 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
264 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
265 	struct list_head	flusher_queue;	/* WQ: flush waiters */
266 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
267 
268 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
269 	struct worker		*rescuer;	/* MD: rescue worker */
270 
271 	int			nr_drainers;	/* WQ: drain in progress */
272 	int			saved_max_active; /* WQ: saved pwq max_active */
273 
274 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
275 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
276 
277 #ifdef CONFIG_SYSFS
278 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
279 #endif
280 #ifdef CONFIG_LOCKDEP
281 	char			*lock_name;
282 	struct lock_class_key	key;
283 	struct lockdep_map	lockdep_map;
284 #endif
285 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
286 
287 	/*
288 	 * Destruction of workqueue_struct is RCU protected to allow walking
289 	 * the workqueues list without grabbing wq_pool_mutex.
290 	 * This is used to dump all workqueues from sysrq.
291 	 */
292 	struct rcu_head		rcu;
293 
294 	/* hot fields used during command issue, aligned to cacheline */
295 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
296 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
297 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
298 };
299 
300 static struct kmem_cache *pwq_cache;
301 
302 static cpumask_var_t *wq_numa_possible_cpumask;
303 					/* possible CPUs of each node */
304 
305 static bool wq_disable_numa;
306 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
307 
308 /* see the comment above the definition of WQ_POWER_EFFICIENT */
309 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
310 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
311 
312 static bool wq_online;			/* can kworkers be created yet? */
313 
314 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
315 
316 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
317 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
318 
319 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
320 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
321 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
322 /* wait for manager to go away */
323 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
324 
325 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
326 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
327 
328 /* PL: allowable cpus for unbound wqs and work items */
329 static cpumask_var_t wq_unbound_cpumask;
330 
331 /* CPU where unbound work was last round robin scheduled from this CPU */
332 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
333 
334 /*
335  * Local execution of unbound work items is no longer guaranteed.  The
336  * following always forces round-robin CPU selection on unbound work items
337  * to uncover usages which depend on it.
338  */
339 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
340 static bool wq_debug_force_rr_cpu = true;
341 #else
342 static bool wq_debug_force_rr_cpu = false;
343 #endif
344 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
345 
346 /* the per-cpu worker pools */
347 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
348 
349 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
350 
351 /* PL: hash of all unbound pools keyed by pool->attrs */
352 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
353 
354 /* I: attributes used when instantiating standard unbound pools on demand */
355 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
356 
357 /* I: attributes used when instantiating ordered pools on demand */
358 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
359 
360 struct workqueue_struct *system_wq __read_mostly;
361 EXPORT_SYMBOL(system_wq);
362 struct workqueue_struct *system_highpri_wq __read_mostly;
363 EXPORT_SYMBOL_GPL(system_highpri_wq);
364 struct workqueue_struct *system_long_wq __read_mostly;
365 EXPORT_SYMBOL_GPL(system_long_wq);
366 struct workqueue_struct *system_unbound_wq __read_mostly;
367 EXPORT_SYMBOL_GPL(system_unbound_wq);
368 struct workqueue_struct *system_freezable_wq __read_mostly;
369 EXPORT_SYMBOL_GPL(system_freezable_wq);
370 struct workqueue_struct *system_power_efficient_wq __read_mostly;
371 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
372 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
373 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
374 
375 static int worker_thread(void *__worker);
376 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
377 static void show_pwq(struct pool_workqueue *pwq);
378 
379 #define CREATE_TRACE_POINTS
380 #include <trace/events/workqueue.h>
381 
382 #define assert_rcu_or_pool_mutex()					\
383 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
384 			 !lockdep_is_held(&wq_pool_mutex),		\
385 			 "RCU or wq_pool_mutex should be held")
386 
387 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
388 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
389 			 !lockdep_is_held(&wq->mutex) &&		\
390 			 !lockdep_is_held(&wq_pool_mutex),		\
391 			 "RCU, wq->mutex or wq_pool_mutex should be held")
392 
393 #define for_each_cpu_worker_pool(pool, cpu)				\
394 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
395 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
396 	     (pool)++)
397 
398 /**
399  * for_each_pool - iterate through all worker_pools in the system
400  * @pool: iteration cursor
401  * @pi: integer used for iteration
402  *
403  * This must be called either with wq_pool_mutex held or RCU read
404  * locked.  If the pool needs to be used beyond the locking in effect, the
405  * caller is responsible for guaranteeing that the pool stays online.
406  *
407  * The if/else clause exists only for the lockdep assertion and can be
408  * ignored.
409  */
410 #define for_each_pool(pool, pi)						\
411 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
412 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
413 		else
414 
415 /**
416  * for_each_pool_worker - iterate through all workers of a worker_pool
417  * @worker: iteration cursor
418  * @pool: worker_pool to iterate workers of
419  *
420  * This must be called with wq_pool_attach_mutex.
421  *
422  * The if/else clause exists only for the lockdep assertion and can be
423  * ignored.
424  */
425 #define for_each_pool_worker(worker, pool)				\
426 	list_for_each_entry((worker), &(pool)->workers, node)		\
427 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
428 		else
429 
430 /**
431  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
432  * @pwq: iteration cursor
433  * @wq: the target workqueue
434  *
435  * This must be called either with wq->mutex held or RCU read locked.
436  * If the pwq needs to be used beyond the locking in effect, the caller is
437  * responsible for guaranteeing that the pwq stays online.
438  *
439  * The if/else clause exists only for the lockdep assertion and can be
440  * ignored.
441  */
442 #define for_each_pwq(pwq, wq)						\
443 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
444 				 lockdep_is_held(&(wq->mutex)))
445 
446 #ifdef CONFIG_DEBUG_OBJECTS_WORK
447 
448 static const struct debug_obj_descr work_debug_descr;
449 
450 static void *work_debug_hint(void *addr)
451 {
452 	return ((struct work_struct *) addr)->func;
453 }
454 
455 static bool work_is_static_object(void *addr)
456 {
457 	struct work_struct *work = addr;
458 
459 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
460 }
461 
462 /*
463  * fixup_init is called when:
464  * - an active object is initialized
465  */
466 static bool work_fixup_init(void *addr, enum debug_obj_state state)
467 {
468 	struct work_struct *work = addr;
469 
470 	switch (state) {
471 	case ODEBUG_STATE_ACTIVE:
472 		cancel_work_sync(work);
473 		debug_object_init(work, &work_debug_descr);
474 		return true;
475 	default:
476 		return false;
477 	}
478 }
479 
480 /*
481  * fixup_free is called when:
482  * - an active object is freed
483  */
484 static bool work_fixup_free(void *addr, enum debug_obj_state state)
485 {
486 	struct work_struct *work = addr;
487 
488 	switch (state) {
489 	case ODEBUG_STATE_ACTIVE:
490 		cancel_work_sync(work);
491 		debug_object_free(work, &work_debug_descr);
492 		return true;
493 	default:
494 		return false;
495 	}
496 }
497 
498 static const struct debug_obj_descr work_debug_descr = {
499 	.name		= "work_struct",
500 	.debug_hint	= work_debug_hint,
501 	.is_static_object = work_is_static_object,
502 	.fixup_init	= work_fixup_init,
503 	.fixup_free	= work_fixup_free,
504 };
505 
506 static inline void debug_work_activate(struct work_struct *work)
507 {
508 	debug_object_activate(work, &work_debug_descr);
509 }
510 
511 static inline void debug_work_deactivate(struct work_struct *work)
512 {
513 	debug_object_deactivate(work, &work_debug_descr);
514 }
515 
516 void __init_work(struct work_struct *work, int onstack)
517 {
518 	if (onstack)
519 		debug_object_init_on_stack(work, &work_debug_descr);
520 	else
521 		debug_object_init(work, &work_debug_descr);
522 }
523 EXPORT_SYMBOL_GPL(__init_work);
524 
525 void destroy_work_on_stack(struct work_struct *work)
526 {
527 	debug_object_free(work, &work_debug_descr);
528 }
529 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
530 
531 void destroy_delayed_work_on_stack(struct delayed_work *work)
532 {
533 	destroy_timer_on_stack(&work->timer);
534 	debug_object_free(&work->work, &work_debug_descr);
535 }
536 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
537 
538 #else
539 static inline void debug_work_activate(struct work_struct *work) { }
540 static inline void debug_work_deactivate(struct work_struct *work) { }
541 #endif
542 
543 /**
544  * worker_pool_assign_id - allocate ID and assign it to @pool
545  * @pool: the pool pointer of interest
546  *
547  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
548  * successfully, -errno on failure.
549  */
550 static int worker_pool_assign_id(struct worker_pool *pool)
551 {
552 	int ret;
553 
554 	lockdep_assert_held(&wq_pool_mutex);
555 
556 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
557 			GFP_KERNEL);
558 	if (ret >= 0) {
559 		pool->id = ret;
560 		return 0;
561 	}
562 	return ret;
563 }
564 
565 /**
566  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
567  * @wq: the target workqueue
568  * @node: the node ID
569  *
570  * This must be called with any of wq_pool_mutex, wq->mutex or RCU
571  * read locked.
572  * If the pwq needs to be used beyond the locking in effect, the caller is
573  * responsible for guaranteeing that the pwq stays online.
574  *
575  * Return: The unbound pool_workqueue for @node.
576  */
577 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
578 						  int node)
579 {
580 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
581 
582 	/*
583 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
584 	 * delayed item is pending.  The plan is to keep CPU -> NODE
585 	 * mapping valid and stable across CPU on/offlines.  Once that
586 	 * happens, this workaround can be removed.
587 	 */
588 	if (unlikely(node == NUMA_NO_NODE))
589 		return wq->dfl_pwq;
590 
591 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
592 }
593 
594 static unsigned int work_color_to_flags(int color)
595 {
596 	return color << WORK_STRUCT_COLOR_SHIFT;
597 }
598 
599 static int get_work_color(unsigned long work_data)
600 {
601 	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
602 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
603 }
604 
605 static int work_next_color(int color)
606 {
607 	return (color + 1) % WORK_NR_COLORS;
608 }
609 
610 /*
611  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
612  * contain the pointer to the queued pwq.  Once execution starts, the flag
613  * is cleared and the high bits contain OFFQ flags and pool ID.
614  *
615  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
616  * and clear_work_data() can be used to set the pwq, pool or clear
617  * work->data.  These functions should only be called while the work is
618  * owned - ie. while the PENDING bit is set.
619  *
620  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
621  * corresponding to a work.  Pool is available once the work has been
622  * queued anywhere after initialization until it is sync canceled.  pwq is
623  * available only while the work item is queued.
624  *
625  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
626  * canceled.  While being canceled, a work item may have its PENDING set
627  * but stay off timer and worklist for arbitrarily long and nobody should
628  * try to steal the PENDING bit.
629  */
630 static inline void set_work_data(struct work_struct *work, unsigned long data,
631 				 unsigned long flags)
632 {
633 	WARN_ON_ONCE(!work_pending(work));
634 	atomic_long_set(&work->data, data | flags | work_static(work));
635 }
636 
637 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
638 			 unsigned long extra_flags)
639 {
640 	set_work_data(work, (unsigned long)pwq,
641 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
642 }
643 
644 static void set_work_pool_and_keep_pending(struct work_struct *work,
645 					   int pool_id)
646 {
647 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
648 		      WORK_STRUCT_PENDING);
649 }
650 
651 static void set_work_pool_and_clear_pending(struct work_struct *work,
652 					    int pool_id)
653 {
654 	/*
655 	 * The following wmb is paired with the implied mb in
656 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
657 	 * here are visible to and precede any updates by the next PENDING
658 	 * owner.
659 	 */
660 	smp_wmb();
661 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
662 	/*
663 	 * The following mb guarantees that previous clear of a PENDING bit
664 	 * will not be reordered with any speculative LOADS or STORES from
665 	 * work->current_func, which is executed afterwards.  This possible
666 	 * reordering can lead to a missed execution on attempt to queue
667 	 * the same @work.  E.g. consider this case:
668 	 *
669 	 *   CPU#0                         CPU#1
670 	 *   ----------------------------  --------------------------------
671 	 *
672 	 * 1  STORE event_indicated
673 	 * 2  queue_work_on() {
674 	 * 3    test_and_set_bit(PENDING)
675 	 * 4 }                             set_..._and_clear_pending() {
676 	 * 5                                 set_work_data() # clear bit
677 	 * 6                                 smp_mb()
678 	 * 7                               work->current_func() {
679 	 * 8				      LOAD event_indicated
680 	 *				   }
681 	 *
682 	 * Without an explicit full barrier speculative LOAD on line 8 can
683 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
684 	 * CPU#0 observes the PENDING bit is still set and new execution of
685 	 * a @work is not queued in a hope, that CPU#1 will eventually
686 	 * finish the queued @work.  Meanwhile CPU#1 does not see
687 	 * event_indicated is set, because speculative LOAD was executed
688 	 * before actual STORE.
689 	 */
690 	smp_mb();
691 }
692 
693 static void clear_work_data(struct work_struct *work)
694 {
695 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
696 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
697 }
698 
699 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
700 {
701 	unsigned long data = atomic_long_read(&work->data);
702 
703 	if (data & WORK_STRUCT_PWQ)
704 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
705 	else
706 		return NULL;
707 }
708 
709 /**
710  * get_work_pool - return the worker_pool a given work was associated with
711  * @work: the work item of interest
712  *
713  * Pools are created and destroyed under wq_pool_mutex, and allows read
714  * access under RCU read lock.  As such, this function should be
715  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
716  *
717  * All fields of the returned pool are accessible as long as the above
718  * mentioned locking is in effect.  If the returned pool needs to be used
719  * beyond the critical section, the caller is responsible for ensuring the
720  * returned pool is and stays online.
721  *
722  * Return: The worker_pool @work was last associated with.  %NULL if none.
723  */
724 static struct worker_pool *get_work_pool(struct work_struct *work)
725 {
726 	unsigned long data = atomic_long_read(&work->data);
727 	int pool_id;
728 
729 	assert_rcu_or_pool_mutex();
730 
731 	if (data & WORK_STRUCT_PWQ)
732 		return ((struct pool_workqueue *)
733 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
734 
735 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
736 	if (pool_id == WORK_OFFQ_POOL_NONE)
737 		return NULL;
738 
739 	return idr_find(&worker_pool_idr, pool_id);
740 }
741 
742 /**
743  * get_work_pool_id - return the worker pool ID a given work is associated with
744  * @work: the work item of interest
745  *
746  * Return: The worker_pool ID @work was last associated with.
747  * %WORK_OFFQ_POOL_NONE if none.
748  */
749 static int get_work_pool_id(struct work_struct *work)
750 {
751 	unsigned long data = atomic_long_read(&work->data);
752 
753 	if (data & WORK_STRUCT_PWQ)
754 		return ((struct pool_workqueue *)
755 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
756 
757 	return data >> WORK_OFFQ_POOL_SHIFT;
758 }
759 
760 static void mark_work_canceling(struct work_struct *work)
761 {
762 	unsigned long pool_id = get_work_pool_id(work);
763 
764 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
765 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
766 }
767 
768 static bool work_is_canceling(struct work_struct *work)
769 {
770 	unsigned long data = atomic_long_read(&work->data);
771 
772 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
773 }
774 
775 /*
776  * Policy functions.  These define the policies on how the global worker
777  * pools are managed.  Unless noted otherwise, these functions assume that
778  * they're being called with pool->lock held.
779  */
780 
781 static bool __need_more_worker(struct worker_pool *pool)
782 {
783 	return !atomic_read(&pool->nr_running);
784 }
785 
786 /*
787  * Need to wake up a worker?  Called from anything but currently
788  * running workers.
789  *
790  * Note that, because unbound workers never contribute to nr_running, this
791  * function will always return %true for unbound pools as long as the
792  * worklist isn't empty.
793  */
794 static bool need_more_worker(struct worker_pool *pool)
795 {
796 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
797 }
798 
799 /* Can I start working?  Called from busy but !running workers. */
800 static bool may_start_working(struct worker_pool *pool)
801 {
802 	return pool->nr_idle;
803 }
804 
805 /* Do I need to keep working?  Called from currently running workers. */
806 static bool keep_working(struct worker_pool *pool)
807 {
808 	return !list_empty(&pool->worklist) &&
809 		atomic_read(&pool->nr_running) <= 1;
810 }
811 
812 /* Do we need a new worker?  Called from manager. */
813 static bool need_to_create_worker(struct worker_pool *pool)
814 {
815 	return need_more_worker(pool) && !may_start_working(pool);
816 }
817 
818 /* Do we have too many workers and should some go away? */
819 static bool too_many_workers(struct worker_pool *pool)
820 {
821 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
822 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
823 	int nr_busy = pool->nr_workers - nr_idle;
824 
825 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
826 }
827 
828 /*
829  * Wake up functions.
830  */
831 
832 /* Return the first idle worker.  Safe with preemption disabled */
833 static struct worker *first_idle_worker(struct worker_pool *pool)
834 {
835 	if (unlikely(list_empty(&pool->idle_list)))
836 		return NULL;
837 
838 	return list_first_entry(&pool->idle_list, struct worker, entry);
839 }
840 
841 /**
842  * wake_up_worker - wake up an idle worker
843  * @pool: worker pool to wake worker from
844  *
845  * Wake up the first idle worker of @pool.
846  *
847  * CONTEXT:
848  * raw_spin_lock_irq(pool->lock).
849  */
850 static void wake_up_worker(struct worker_pool *pool)
851 {
852 	struct worker *worker = first_idle_worker(pool);
853 
854 	if (likely(worker))
855 		wake_up_process(worker->task);
856 }
857 
858 /**
859  * wq_worker_running - a worker is running again
860  * @task: task waking up
861  *
862  * This function is called when a worker returns from schedule()
863  */
864 void wq_worker_running(struct task_struct *task)
865 {
866 	struct worker *worker = kthread_data(task);
867 
868 	if (!worker->sleeping)
869 		return;
870 	if (!(worker->flags & WORKER_NOT_RUNNING))
871 		atomic_inc(&worker->pool->nr_running);
872 	worker->sleeping = 0;
873 }
874 
875 /**
876  * wq_worker_sleeping - a worker is going to sleep
877  * @task: task going to sleep
878  *
879  * This function is called from schedule() when a busy worker is
880  * going to sleep. Preemption needs to be disabled to protect ->sleeping
881  * assignment.
882  */
883 void wq_worker_sleeping(struct task_struct *task)
884 {
885 	struct worker *next, *worker = kthread_data(task);
886 	struct worker_pool *pool;
887 
888 	/*
889 	 * Rescuers, which may not have all the fields set up like normal
890 	 * workers, also reach here, let's not access anything before
891 	 * checking NOT_RUNNING.
892 	 */
893 	if (worker->flags & WORKER_NOT_RUNNING)
894 		return;
895 
896 	pool = worker->pool;
897 
898 	/* Return if preempted before wq_worker_running() was reached */
899 	if (worker->sleeping)
900 		return;
901 
902 	worker->sleeping = 1;
903 	raw_spin_lock_irq(&pool->lock);
904 
905 	/*
906 	 * The counterpart of the following dec_and_test, implied mb,
907 	 * worklist not empty test sequence is in insert_work().
908 	 * Please read comment there.
909 	 *
910 	 * NOT_RUNNING is clear.  This means that we're bound to and
911 	 * running on the local cpu w/ rq lock held and preemption
912 	 * disabled, which in turn means that none else could be
913 	 * manipulating idle_list, so dereferencing idle_list without pool
914 	 * lock is safe.
915 	 */
916 	if (atomic_dec_and_test(&pool->nr_running) &&
917 	    !list_empty(&pool->worklist)) {
918 		next = first_idle_worker(pool);
919 		if (next)
920 			wake_up_process(next->task);
921 	}
922 	raw_spin_unlock_irq(&pool->lock);
923 }
924 
925 /**
926  * wq_worker_last_func - retrieve worker's last work function
927  * @task: Task to retrieve last work function of.
928  *
929  * Determine the last function a worker executed. This is called from
930  * the scheduler to get a worker's last known identity.
931  *
932  * CONTEXT:
933  * raw_spin_lock_irq(rq->lock)
934  *
935  * This function is called during schedule() when a kworker is going
936  * to sleep. It's used by psi to identify aggregation workers during
937  * dequeuing, to allow periodic aggregation to shut-off when that
938  * worker is the last task in the system or cgroup to go to sleep.
939  *
940  * As this function doesn't involve any workqueue-related locking, it
941  * only returns stable values when called from inside the scheduler's
942  * queuing and dequeuing paths, when @task, which must be a kworker,
943  * is guaranteed to not be processing any works.
944  *
945  * Return:
946  * The last work function %current executed as a worker, NULL if it
947  * hasn't executed any work yet.
948  */
949 work_func_t wq_worker_last_func(struct task_struct *task)
950 {
951 	struct worker *worker = kthread_data(task);
952 
953 	return worker->last_func;
954 }
955 
956 /**
957  * worker_set_flags - set worker flags and adjust nr_running accordingly
958  * @worker: self
959  * @flags: flags to set
960  *
961  * Set @flags in @worker->flags and adjust nr_running accordingly.
962  *
963  * CONTEXT:
964  * raw_spin_lock_irq(pool->lock)
965  */
966 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
967 {
968 	struct worker_pool *pool = worker->pool;
969 
970 	WARN_ON_ONCE(worker->task != current);
971 
972 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
973 	if ((flags & WORKER_NOT_RUNNING) &&
974 	    !(worker->flags & WORKER_NOT_RUNNING)) {
975 		atomic_dec(&pool->nr_running);
976 	}
977 
978 	worker->flags |= flags;
979 }
980 
981 /**
982  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
983  * @worker: self
984  * @flags: flags to clear
985  *
986  * Clear @flags in @worker->flags and adjust nr_running accordingly.
987  *
988  * CONTEXT:
989  * raw_spin_lock_irq(pool->lock)
990  */
991 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
992 {
993 	struct worker_pool *pool = worker->pool;
994 	unsigned int oflags = worker->flags;
995 
996 	WARN_ON_ONCE(worker->task != current);
997 
998 	worker->flags &= ~flags;
999 
1000 	/*
1001 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1002 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1003 	 * of multiple flags, not a single flag.
1004 	 */
1005 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1006 		if (!(worker->flags & WORKER_NOT_RUNNING))
1007 			atomic_inc(&pool->nr_running);
1008 }
1009 
1010 /**
1011  * find_worker_executing_work - find worker which is executing a work
1012  * @pool: pool of interest
1013  * @work: work to find worker for
1014  *
1015  * Find a worker which is executing @work on @pool by searching
1016  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1017  * to match, its current execution should match the address of @work and
1018  * its work function.  This is to avoid unwanted dependency between
1019  * unrelated work executions through a work item being recycled while still
1020  * being executed.
1021  *
1022  * This is a bit tricky.  A work item may be freed once its execution
1023  * starts and nothing prevents the freed area from being recycled for
1024  * another work item.  If the same work item address ends up being reused
1025  * before the original execution finishes, workqueue will identify the
1026  * recycled work item as currently executing and make it wait until the
1027  * current execution finishes, introducing an unwanted dependency.
1028  *
1029  * This function checks the work item address and work function to avoid
1030  * false positives.  Note that this isn't complete as one may construct a
1031  * work function which can introduce dependency onto itself through a
1032  * recycled work item.  Well, if somebody wants to shoot oneself in the
1033  * foot that badly, there's only so much we can do, and if such deadlock
1034  * actually occurs, it should be easy to locate the culprit work function.
1035  *
1036  * CONTEXT:
1037  * raw_spin_lock_irq(pool->lock).
1038  *
1039  * Return:
1040  * Pointer to worker which is executing @work if found, %NULL
1041  * otherwise.
1042  */
1043 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1044 						 struct work_struct *work)
1045 {
1046 	struct worker *worker;
1047 
1048 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1049 			       (unsigned long)work)
1050 		if (worker->current_work == work &&
1051 		    worker->current_func == work->func)
1052 			return worker;
1053 
1054 	return NULL;
1055 }
1056 
1057 /**
1058  * move_linked_works - move linked works to a list
1059  * @work: start of series of works to be scheduled
1060  * @head: target list to append @work to
1061  * @nextp: out parameter for nested worklist walking
1062  *
1063  * Schedule linked works starting from @work to @head.  Work series to
1064  * be scheduled starts at @work and includes any consecutive work with
1065  * WORK_STRUCT_LINKED set in its predecessor.
1066  *
1067  * If @nextp is not NULL, it's updated to point to the next work of
1068  * the last scheduled work.  This allows move_linked_works() to be
1069  * nested inside outer list_for_each_entry_safe().
1070  *
1071  * CONTEXT:
1072  * raw_spin_lock_irq(pool->lock).
1073  */
1074 static void move_linked_works(struct work_struct *work, struct list_head *head,
1075 			      struct work_struct **nextp)
1076 {
1077 	struct work_struct *n;
1078 
1079 	/*
1080 	 * Linked worklist will always end before the end of the list,
1081 	 * use NULL for list head.
1082 	 */
1083 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1084 		list_move_tail(&work->entry, head);
1085 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1086 			break;
1087 	}
1088 
1089 	/*
1090 	 * If we're already inside safe list traversal and have moved
1091 	 * multiple works to the scheduled queue, the next position
1092 	 * needs to be updated.
1093 	 */
1094 	if (nextp)
1095 		*nextp = n;
1096 }
1097 
1098 /**
1099  * get_pwq - get an extra reference on the specified pool_workqueue
1100  * @pwq: pool_workqueue to get
1101  *
1102  * Obtain an extra reference on @pwq.  The caller should guarantee that
1103  * @pwq has positive refcnt and be holding the matching pool->lock.
1104  */
1105 static void get_pwq(struct pool_workqueue *pwq)
1106 {
1107 	lockdep_assert_held(&pwq->pool->lock);
1108 	WARN_ON_ONCE(pwq->refcnt <= 0);
1109 	pwq->refcnt++;
1110 }
1111 
1112 /**
1113  * put_pwq - put a pool_workqueue reference
1114  * @pwq: pool_workqueue to put
1115  *
1116  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1117  * destruction.  The caller should be holding the matching pool->lock.
1118  */
1119 static void put_pwq(struct pool_workqueue *pwq)
1120 {
1121 	lockdep_assert_held(&pwq->pool->lock);
1122 	if (likely(--pwq->refcnt))
1123 		return;
1124 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1125 		return;
1126 	/*
1127 	 * @pwq can't be released under pool->lock, bounce to
1128 	 * pwq_unbound_release_workfn().  This never recurses on the same
1129 	 * pool->lock as this path is taken only for unbound workqueues and
1130 	 * the release work item is scheduled on a per-cpu workqueue.  To
1131 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1132 	 * subclass of 1 in get_unbound_pool().
1133 	 */
1134 	schedule_work(&pwq->unbound_release_work);
1135 }
1136 
1137 /**
1138  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1139  * @pwq: pool_workqueue to put (can be %NULL)
1140  *
1141  * put_pwq() with locking.  This function also allows %NULL @pwq.
1142  */
1143 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1144 {
1145 	if (pwq) {
1146 		/*
1147 		 * As both pwqs and pools are RCU protected, the
1148 		 * following lock operations are safe.
1149 		 */
1150 		raw_spin_lock_irq(&pwq->pool->lock);
1151 		put_pwq(pwq);
1152 		raw_spin_unlock_irq(&pwq->pool->lock);
1153 	}
1154 }
1155 
1156 static void pwq_activate_inactive_work(struct work_struct *work)
1157 {
1158 	struct pool_workqueue *pwq = get_work_pwq(work);
1159 
1160 	trace_workqueue_activate_work(work);
1161 	if (list_empty(&pwq->pool->worklist))
1162 		pwq->pool->watchdog_ts = jiffies;
1163 	move_linked_works(work, &pwq->pool->worklist, NULL);
1164 	__clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
1165 	pwq->nr_active++;
1166 }
1167 
1168 static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
1169 {
1170 	struct work_struct *work = list_first_entry(&pwq->inactive_works,
1171 						    struct work_struct, entry);
1172 
1173 	pwq_activate_inactive_work(work);
1174 }
1175 
1176 /**
1177  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1178  * @pwq: pwq of interest
1179  * @work_data: work_data of work which left the queue
1180  *
1181  * A work either has completed or is removed from pending queue,
1182  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1183  *
1184  * CONTEXT:
1185  * raw_spin_lock_irq(pool->lock).
1186  */
1187 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1188 {
1189 	int color = get_work_color(work_data);
1190 
1191 	if (!(work_data & WORK_STRUCT_INACTIVE)) {
1192 		pwq->nr_active--;
1193 		if (!list_empty(&pwq->inactive_works)) {
1194 			/* one down, submit an inactive one */
1195 			if (pwq->nr_active < pwq->max_active)
1196 				pwq_activate_first_inactive(pwq);
1197 		}
1198 	}
1199 
1200 	pwq->nr_in_flight[color]--;
1201 
1202 	/* is flush in progress and are we at the flushing tip? */
1203 	if (likely(pwq->flush_color != color))
1204 		goto out_put;
1205 
1206 	/* are there still in-flight works? */
1207 	if (pwq->nr_in_flight[color])
1208 		goto out_put;
1209 
1210 	/* this pwq is done, clear flush_color */
1211 	pwq->flush_color = -1;
1212 
1213 	/*
1214 	 * If this was the last pwq, wake up the first flusher.  It
1215 	 * will handle the rest.
1216 	 */
1217 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1218 		complete(&pwq->wq->first_flusher->done);
1219 out_put:
1220 	put_pwq(pwq);
1221 }
1222 
1223 /**
1224  * try_to_grab_pending - steal work item from worklist and disable irq
1225  * @work: work item to steal
1226  * @is_dwork: @work is a delayed_work
1227  * @flags: place to store irq state
1228  *
1229  * Try to grab PENDING bit of @work.  This function can handle @work in any
1230  * stable state - idle, on timer or on worklist.
1231  *
1232  * Return:
1233  *
1234  *  ========	================================================================
1235  *  1		if @work was pending and we successfully stole PENDING
1236  *  0		if @work was idle and we claimed PENDING
1237  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1238  *  -ENOENT	if someone else is canceling @work, this state may persist
1239  *		for arbitrarily long
1240  *  ========	================================================================
1241  *
1242  * Note:
1243  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1244  * interrupted while holding PENDING and @work off queue, irq must be
1245  * disabled on entry.  This, combined with delayed_work->timer being
1246  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1247  *
1248  * On successful return, >= 0, irq is disabled and the caller is
1249  * responsible for releasing it using local_irq_restore(*@flags).
1250  *
1251  * This function is safe to call from any context including IRQ handler.
1252  */
1253 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1254 			       unsigned long *flags)
1255 {
1256 	struct worker_pool *pool;
1257 	struct pool_workqueue *pwq;
1258 
1259 	local_irq_save(*flags);
1260 
1261 	/* try to steal the timer if it exists */
1262 	if (is_dwork) {
1263 		struct delayed_work *dwork = to_delayed_work(work);
1264 
1265 		/*
1266 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1267 		 * guaranteed that the timer is not queued anywhere and not
1268 		 * running on the local CPU.
1269 		 */
1270 		if (likely(del_timer(&dwork->timer)))
1271 			return 1;
1272 	}
1273 
1274 	/* try to claim PENDING the normal way */
1275 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1276 		return 0;
1277 
1278 	rcu_read_lock();
1279 	/*
1280 	 * The queueing is in progress, or it is already queued. Try to
1281 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1282 	 */
1283 	pool = get_work_pool(work);
1284 	if (!pool)
1285 		goto fail;
1286 
1287 	raw_spin_lock(&pool->lock);
1288 	/*
1289 	 * work->data is guaranteed to point to pwq only while the work
1290 	 * item is queued on pwq->wq, and both updating work->data to point
1291 	 * to pwq on queueing and to pool on dequeueing are done under
1292 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1293 	 * points to pwq which is associated with a locked pool, the work
1294 	 * item is currently queued on that pool.
1295 	 */
1296 	pwq = get_work_pwq(work);
1297 	if (pwq && pwq->pool == pool) {
1298 		debug_work_deactivate(work);
1299 
1300 		/*
1301 		 * A cancelable inactive work item must be in the
1302 		 * pwq->inactive_works since a queued barrier can't be
1303 		 * canceled (see the comments in insert_wq_barrier()).
1304 		 *
1305 		 * An inactive work item cannot be grabbed directly because
1306 		 * it might have linked barrier work items which, if left
1307 		 * on the inactive_works list, will confuse pwq->nr_active
1308 		 * management later on and cause stall.  Make sure the work
1309 		 * item is activated before grabbing.
1310 		 */
1311 		if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1312 			pwq_activate_inactive_work(work);
1313 
1314 		list_del_init(&work->entry);
1315 		pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
1316 
1317 		/* work->data points to pwq iff queued, point to pool */
1318 		set_work_pool_and_keep_pending(work, pool->id);
1319 
1320 		raw_spin_unlock(&pool->lock);
1321 		rcu_read_unlock();
1322 		return 1;
1323 	}
1324 	raw_spin_unlock(&pool->lock);
1325 fail:
1326 	rcu_read_unlock();
1327 	local_irq_restore(*flags);
1328 	if (work_is_canceling(work))
1329 		return -ENOENT;
1330 	cpu_relax();
1331 	return -EAGAIN;
1332 }
1333 
1334 /**
1335  * insert_work - insert a work into a pool
1336  * @pwq: pwq @work belongs to
1337  * @work: work to insert
1338  * @head: insertion point
1339  * @extra_flags: extra WORK_STRUCT_* flags to set
1340  *
1341  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1342  * work_struct flags.
1343  *
1344  * CONTEXT:
1345  * raw_spin_lock_irq(pool->lock).
1346  */
1347 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1348 			struct list_head *head, unsigned int extra_flags)
1349 {
1350 	struct worker_pool *pool = pwq->pool;
1351 
1352 	/* record the work call stack in order to print it in KASAN reports */
1353 	kasan_record_aux_stack(work);
1354 
1355 	/* we own @work, set data and link */
1356 	set_work_pwq(work, pwq, extra_flags);
1357 	list_add_tail(&work->entry, head);
1358 	get_pwq(pwq);
1359 
1360 	/*
1361 	 * Ensure either wq_worker_sleeping() sees the above
1362 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1363 	 * around lazily while there are works to be processed.
1364 	 */
1365 	smp_mb();
1366 
1367 	if (__need_more_worker(pool))
1368 		wake_up_worker(pool);
1369 }
1370 
1371 /*
1372  * Test whether @work is being queued from another work executing on the
1373  * same workqueue.
1374  */
1375 static bool is_chained_work(struct workqueue_struct *wq)
1376 {
1377 	struct worker *worker;
1378 
1379 	worker = current_wq_worker();
1380 	/*
1381 	 * Return %true iff I'm a worker executing a work item on @wq.  If
1382 	 * I'm @worker, it's safe to dereference it without locking.
1383 	 */
1384 	return worker && worker->current_pwq->wq == wq;
1385 }
1386 
1387 /*
1388  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1389  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1390  * avoid perturbing sensitive tasks.
1391  */
1392 static int wq_select_unbound_cpu(int cpu)
1393 {
1394 	static bool printed_dbg_warning;
1395 	int new_cpu;
1396 
1397 	if (likely(!wq_debug_force_rr_cpu)) {
1398 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1399 			return cpu;
1400 	} else if (!printed_dbg_warning) {
1401 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1402 		printed_dbg_warning = true;
1403 	}
1404 
1405 	if (cpumask_empty(wq_unbound_cpumask))
1406 		return cpu;
1407 
1408 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1409 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1410 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1411 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1412 		if (unlikely(new_cpu >= nr_cpu_ids))
1413 			return cpu;
1414 	}
1415 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1416 
1417 	return new_cpu;
1418 }
1419 
1420 static void __queue_work(int cpu, struct workqueue_struct *wq,
1421 			 struct work_struct *work)
1422 {
1423 	struct pool_workqueue *pwq;
1424 	struct worker_pool *last_pool;
1425 	struct list_head *worklist;
1426 	unsigned int work_flags;
1427 	unsigned int req_cpu = cpu;
1428 
1429 	/*
1430 	 * While a work item is PENDING && off queue, a task trying to
1431 	 * steal the PENDING will busy-loop waiting for it to either get
1432 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1433 	 * happen with IRQ disabled.
1434 	 */
1435 	lockdep_assert_irqs_disabled();
1436 
1437 
1438 	/* if draining, only works from the same workqueue are allowed */
1439 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1440 	    WARN_ON_ONCE(!is_chained_work(wq)))
1441 		return;
1442 	rcu_read_lock();
1443 retry:
1444 	/* pwq which will be used unless @work is executing elsewhere */
1445 	if (wq->flags & WQ_UNBOUND) {
1446 		if (req_cpu == WORK_CPU_UNBOUND)
1447 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1448 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1449 	} else {
1450 		if (req_cpu == WORK_CPU_UNBOUND)
1451 			cpu = raw_smp_processor_id();
1452 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1453 	}
1454 
1455 	/*
1456 	 * If @work was previously on a different pool, it might still be
1457 	 * running there, in which case the work needs to be queued on that
1458 	 * pool to guarantee non-reentrancy.
1459 	 */
1460 	last_pool = get_work_pool(work);
1461 	if (last_pool && last_pool != pwq->pool) {
1462 		struct worker *worker;
1463 
1464 		raw_spin_lock(&last_pool->lock);
1465 
1466 		worker = find_worker_executing_work(last_pool, work);
1467 
1468 		if (worker && worker->current_pwq->wq == wq) {
1469 			pwq = worker->current_pwq;
1470 		} else {
1471 			/* meh... not running there, queue here */
1472 			raw_spin_unlock(&last_pool->lock);
1473 			raw_spin_lock(&pwq->pool->lock);
1474 		}
1475 	} else {
1476 		raw_spin_lock(&pwq->pool->lock);
1477 	}
1478 
1479 	/*
1480 	 * pwq is determined and locked.  For unbound pools, we could have
1481 	 * raced with pwq release and it could already be dead.  If its
1482 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1483 	 * without another pwq replacing it in the numa_pwq_tbl or while
1484 	 * work items are executing on it, so the retrying is guaranteed to
1485 	 * make forward-progress.
1486 	 */
1487 	if (unlikely(!pwq->refcnt)) {
1488 		if (wq->flags & WQ_UNBOUND) {
1489 			raw_spin_unlock(&pwq->pool->lock);
1490 			cpu_relax();
1491 			goto retry;
1492 		}
1493 		/* oops */
1494 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1495 			  wq->name, cpu);
1496 	}
1497 
1498 	/* pwq determined, queue */
1499 	trace_workqueue_queue_work(req_cpu, pwq, work);
1500 
1501 	if (WARN_ON(!list_empty(&work->entry)))
1502 		goto out;
1503 
1504 	pwq->nr_in_flight[pwq->work_color]++;
1505 	work_flags = work_color_to_flags(pwq->work_color);
1506 
1507 	if (likely(pwq->nr_active < pwq->max_active)) {
1508 		trace_workqueue_activate_work(work);
1509 		pwq->nr_active++;
1510 		worklist = &pwq->pool->worklist;
1511 		if (list_empty(worklist))
1512 			pwq->pool->watchdog_ts = jiffies;
1513 	} else {
1514 		work_flags |= WORK_STRUCT_INACTIVE;
1515 		worklist = &pwq->inactive_works;
1516 	}
1517 
1518 	debug_work_activate(work);
1519 	insert_work(pwq, work, worklist, work_flags);
1520 
1521 out:
1522 	raw_spin_unlock(&pwq->pool->lock);
1523 	rcu_read_unlock();
1524 }
1525 
1526 /**
1527  * queue_work_on - queue work on specific cpu
1528  * @cpu: CPU number to execute work on
1529  * @wq: workqueue to use
1530  * @work: work to queue
1531  *
1532  * We queue the work to a specific CPU, the caller must ensure it
1533  * can't go away.
1534  *
1535  * Return: %false if @work was already on a queue, %true otherwise.
1536  */
1537 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1538 		   struct work_struct *work)
1539 {
1540 	bool ret = false;
1541 	unsigned long flags;
1542 
1543 	local_irq_save(flags);
1544 
1545 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1546 		__queue_work(cpu, wq, work);
1547 		ret = true;
1548 	}
1549 
1550 	local_irq_restore(flags);
1551 	return ret;
1552 }
1553 EXPORT_SYMBOL(queue_work_on);
1554 
1555 /**
1556  * workqueue_select_cpu_near - Select a CPU based on NUMA node
1557  * @node: NUMA node ID that we want to select a CPU from
1558  *
1559  * This function will attempt to find a "random" cpu available on a given
1560  * node. If there are no CPUs available on the given node it will return
1561  * WORK_CPU_UNBOUND indicating that we should just schedule to any
1562  * available CPU if we need to schedule this work.
1563  */
1564 static int workqueue_select_cpu_near(int node)
1565 {
1566 	int cpu;
1567 
1568 	/* No point in doing this if NUMA isn't enabled for workqueues */
1569 	if (!wq_numa_enabled)
1570 		return WORK_CPU_UNBOUND;
1571 
1572 	/* Delay binding to CPU if node is not valid or online */
1573 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1574 		return WORK_CPU_UNBOUND;
1575 
1576 	/* Use local node/cpu if we are already there */
1577 	cpu = raw_smp_processor_id();
1578 	if (node == cpu_to_node(cpu))
1579 		return cpu;
1580 
1581 	/* Use "random" otherwise know as "first" online CPU of node */
1582 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1583 
1584 	/* If CPU is valid return that, otherwise just defer */
1585 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1586 }
1587 
1588 /**
1589  * queue_work_node - queue work on a "random" cpu for a given NUMA node
1590  * @node: NUMA node that we are targeting the work for
1591  * @wq: workqueue to use
1592  * @work: work to queue
1593  *
1594  * We queue the work to a "random" CPU within a given NUMA node. The basic
1595  * idea here is to provide a way to somehow associate work with a given
1596  * NUMA node.
1597  *
1598  * This function will only make a best effort attempt at getting this onto
1599  * the right NUMA node. If no node is requested or the requested node is
1600  * offline then we just fall back to standard queue_work behavior.
1601  *
1602  * Currently the "random" CPU ends up being the first available CPU in the
1603  * intersection of cpu_online_mask and the cpumask of the node, unless we
1604  * are running on the node. In that case we just use the current CPU.
1605  *
1606  * Return: %false if @work was already on a queue, %true otherwise.
1607  */
1608 bool queue_work_node(int node, struct workqueue_struct *wq,
1609 		     struct work_struct *work)
1610 {
1611 	unsigned long flags;
1612 	bool ret = false;
1613 
1614 	/*
1615 	 * This current implementation is specific to unbound workqueues.
1616 	 * Specifically we only return the first available CPU for a given
1617 	 * node instead of cycling through individual CPUs within the node.
1618 	 *
1619 	 * If this is used with a per-cpu workqueue then the logic in
1620 	 * workqueue_select_cpu_near would need to be updated to allow for
1621 	 * some round robin type logic.
1622 	 */
1623 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1624 
1625 	local_irq_save(flags);
1626 
1627 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1628 		int cpu = workqueue_select_cpu_near(node);
1629 
1630 		__queue_work(cpu, wq, work);
1631 		ret = true;
1632 	}
1633 
1634 	local_irq_restore(flags);
1635 	return ret;
1636 }
1637 EXPORT_SYMBOL_GPL(queue_work_node);
1638 
1639 void delayed_work_timer_fn(struct timer_list *t)
1640 {
1641 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1642 
1643 	/* should have been called from irqsafe timer with irq already off */
1644 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1645 }
1646 EXPORT_SYMBOL(delayed_work_timer_fn);
1647 
1648 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1649 				struct delayed_work *dwork, unsigned long delay)
1650 {
1651 	struct timer_list *timer = &dwork->timer;
1652 	struct work_struct *work = &dwork->work;
1653 
1654 	WARN_ON_ONCE(!wq);
1655 	WARN_ON_FUNCTION_MISMATCH(timer->function, delayed_work_timer_fn);
1656 	WARN_ON_ONCE(timer_pending(timer));
1657 	WARN_ON_ONCE(!list_empty(&work->entry));
1658 
1659 	/*
1660 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1661 	 * both optimization and correctness.  The earliest @timer can
1662 	 * expire is on the closest next tick and delayed_work users depend
1663 	 * on that there's no such delay when @delay is 0.
1664 	 */
1665 	if (!delay) {
1666 		__queue_work(cpu, wq, &dwork->work);
1667 		return;
1668 	}
1669 
1670 	dwork->wq = wq;
1671 	dwork->cpu = cpu;
1672 	timer->expires = jiffies + delay;
1673 
1674 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1675 		add_timer_on(timer, cpu);
1676 	else
1677 		add_timer(timer);
1678 }
1679 
1680 /**
1681  * queue_delayed_work_on - queue work on specific CPU after delay
1682  * @cpu: CPU number to execute work on
1683  * @wq: workqueue to use
1684  * @dwork: work to queue
1685  * @delay: number of jiffies to wait before queueing
1686  *
1687  * Return: %false if @work was already on a queue, %true otherwise.  If
1688  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1689  * execution.
1690  */
1691 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1692 			   struct delayed_work *dwork, unsigned long delay)
1693 {
1694 	struct work_struct *work = &dwork->work;
1695 	bool ret = false;
1696 	unsigned long flags;
1697 
1698 	/* read the comment in __queue_work() */
1699 	local_irq_save(flags);
1700 
1701 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1702 		__queue_delayed_work(cpu, wq, dwork, delay);
1703 		ret = true;
1704 	}
1705 
1706 	local_irq_restore(flags);
1707 	return ret;
1708 }
1709 EXPORT_SYMBOL(queue_delayed_work_on);
1710 
1711 /**
1712  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1713  * @cpu: CPU number to execute work on
1714  * @wq: workqueue to use
1715  * @dwork: work to queue
1716  * @delay: number of jiffies to wait before queueing
1717  *
1718  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1719  * modify @dwork's timer so that it expires after @delay.  If @delay is
1720  * zero, @work is guaranteed to be scheduled immediately regardless of its
1721  * current state.
1722  *
1723  * Return: %false if @dwork was idle and queued, %true if @dwork was
1724  * pending and its timer was modified.
1725  *
1726  * This function is safe to call from any context including IRQ handler.
1727  * See try_to_grab_pending() for details.
1728  */
1729 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1730 			 struct delayed_work *dwork, unsigned long delay)
1731 {
1732 	unsigned long flags;
1733 	int ret;
1734 
1735 	do {
1736 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1737 	} while (unlikely(ret == -EAGAIN));
1738 
1739 	if (likely(ret >= 0)) {
1740 		__queue_delayed_work(cpu, wq, dwork, delay);
1741 		local_irq_restore(flags);
1742 	}
1743 
1744 	/* -ENOENT from try_to_grab_pending() becomes %true */
1745 	return ret;
1746 }
1747 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1748 
1749 static void rcu_work_rcufn(struct rcu_head *rcu)
1750 {
1751 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1752 
1753 	/* read the comment in __queue_work() */
1754 	local_irq_disable();
1755 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1756 	local_irq_enable();
1757 }
1758 
1759 /**
1760  * queue_rcu_work - queue work after a RCU grace period
1761  * @wq: workqueue to use
1762  * @rwork: work to queue
1763  *
1764  * Return: %false if @rwork was already pending, %true otherwise.  Note
1765  * that a full RCU grace period is guaranteed only after a %true return.
1766  * While @rwork is guaranteed to be executed after a %false return, the
1767  * execution may happen before a full RCU grace period has passed.
1768  */
1769 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1770 {
1771 	struct work_struct *work = &rwork->work;
1772 
1773 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1774 		rwork->wq = wq;
1775 		call_rcu(&rwork->rcu, rcu_work_rcufn);
1776 		return true;
1777 	}
1778 
1779 	return false;
1780 }
1781 EXPORT_SYMBOL(queue_rcu_work);
1782 
1783 /**
1784  * worker_enter_idle - enter idle state
1785  * @worker: worker which is entering idle state
1786  *
1787  * @worker is entering idle state.  Update stats and idle timer if
1788  * necessary.
1789  *
1790  * LOCKING:
1791  * raw_spin_lock_irq(pool->lock).
1792  */
1793 static void worker_enter_idle(struct worker *worker)
1794 {
1795 	struct worker_pool *pool = worker->pool;
1796 
1797 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1798 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1799 			 (worker->hentry.next || worker->hentry.pprev)))
1800 		return;
1801 
1802 	/* can't use worker_set_flags(), also called from create_worker() */
1803 	worker->flags |= WORKER_IDLE;
1804 	pool->nr_idle++;
1805 	worker->last_active = jiffies;
1806 
1807 	/* idle_list is LIFO */
1808 	list_add(&worker->entry, &pool->idle_list);
1809 
1810 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1811 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1812 
1813 	/*
1814 	 * Sanity check nr_running.  Because unbind_workers() releases
1815 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1816 	 * nr_running, the warning may trigger spuriously.  Check iff
1817 	 * unbind is not in progress.
1818 	 */
1819 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1820 		     pool->nr_workers == pool->nr_idle &&
1821 		     atomic_read(&pool->nr_running));
1822 }
1823 
1824 /**
1825  * worker_leave_idle - leave idle state
1826  * @worker: worker which is leaving idle state
1827  *
1828  * @worker is leaving idle state.  Update stats.
1829  *
1830  * LOCKING:
1831  * raw_spin_lock_irq(pool->lock).
1832  */
1833 static void worker_leave_idle(struct worker *worker)
1834 {
1835 	struct worker_pool *pool = worker->pool;
1836 
1837 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1838 		return;
1839 	worker_clr_flags(worker, WORKER_IDLE);
1840 	pool->nr_idle--;
1841 	list_del_init(&worker->entry);
1842 }
1843 
1844 static struct worker *alloc_worker(int node)
1845 {
1846 	struct worker *worker;
1847 
1848 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1849 	if (worker) {
1850 		INIT_LIST_HEAD(&worker->entry);
1851 		INIT_LIST_HEAD(&worker->scheduled);
1852 		INIT_LIST_HEAD(&worker->node);
1853 		/* on creation a worker is in !idle && prep state */
1854 		worker->flags = WORKER_PREP;
1855 	}
1856 	return worker;
1857 }
1858 
1859 /**
1860  * worker_attach_to_pool() - attach a worker to a pool
1861  * @worker: worker to be attached
1862  * @pool: the target pool
1863  *
1864  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1865  * cpu-binding of @worker are kept coordinated with the pool across
1866  * cpu-[un]hotplugs.
1867  */
1868 static void worker_attach_to_pool(struct worker *worker,
1869 				   struct worker_pool *pool)
1870 {
1871 	mutex_lock(&wq_pool_attach_mutex);
1872 
1873 	/*
1874 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1875 	 * stable across this function.  See the comments above the flag
1876 	 * definition for details.
1877 	 */
1878 	if (pool->flags & POOL_DISASSOCIATED)
1879 		worker->flags |= WORKER_UNBOUND;
1880 	else
1881 		kthread_set_per_cpu(worker->task, pool->cpu);
1882 
1883 	if (worker->rescue_wq)
1884 		set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1885 
1886 	list_add_tail(&worker->node, &pool->workers);
1887 	worker->pool = pool;
1888 
1889 	mutex_unlock(&wq_pool_attach_mutex);
1890 }
1891 
1892 /**
1893  * worker_detach_from_pool() - detach a worker from its pool
1894  * @worker: worker which is attached to its pool
1895  *
1896  * Undo the attaching which had been done in worker_attach_to_pool().  The
1897  * caller worker shouldn't access to the pool after detached except it has
1898  * other reference to the pool.
1899  */
1900 static void worker_detach_from_pool(struct worker *worker)
1901 {
1902 	struct worker_pool *pool = worker->pool;
1903 	struct completion *detach_completion = NULL;
1904 
1905 	mutex_lock(&wq_pool_attach_mutex);
1906 
1907 	kthread_set_per_cpu(worker->task, -1);
1908 	list_del(&worker->node);
1909 	worker->pool = NULL;
1910 
1911 	if (list_empty(&pool->workers))
1912 		detach_completion = pool->detach_completion;
1913 	mutex_unlock(&wq_pool_attach_mutex);
1914 
1915 	/* clear leftover flags without pool->lock after it is detached */
1916 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1917 
1918 	if (detach_completion)
1919 		complete(detach_completion);
1920 }
1921 
1922 /**
1923  * create_worker - create a new workqueue worker
1924  * @pool: pool the new worker will belong to
1925  *
1926  * Create and start a new worker which is attached to @pool.
1927  *
1928  * CONTEXT:
1929  * Might sleep.  Does GFP_KERNEL allocations.
1930  *
1931  * Return:
1932  * Pointer to the newly created worker.
1933  */
1934 static struct worker *create_worker(struct worker_pool *pool)
1935 {
1936 	struct worker *worker;
1937 	int id;
1938 	char id_buf[16];
1939 
1940 	/* ID is needed to determine kthread name */
1941 	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
1942 	if (id < 0)
1943 		return NULL;
1944 
1945 	worker = alloc_worker(pool->node);
1946 	if (!worker)
1947 		goto fail;
1948 
1949 	worker->id = id;
1950 
1951 	if (pool->cpu >= 0)
1952 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1953 			 pool->attrs->nice < 0  ? "H" : "");
1954 	else
1955 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1956 
1957 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1958 					      "kworker/%s", id_buf);
1959 	if (IS_ERR(worker->task))
1960 		goto fail;
1961 
1962 	set_user_nice(worker->task, pool->attrs->nice);
1963 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1964 
1965 	/* successful, attach the worker to the pool */
1966 	worker_attach_to_pool(worker, pool);
1967 
1968 	/* start the newly created worker */
1969 	raw_spin_lock_irq(&pool->lock);
1970 	worker->pool->nr_workers++;
1971 	worker_enter_idle(worker);
1972 	wake_up_process(worker->task);
1973 	raw_spin_unlock_irq(&pool->lock);
1974 
1975 	return worker;
1976 
1977 fail:
1978 	ida_free(&pool->worker_ida, id);
1979 	kfree(worker);
1980 	return NULL;
1981 }
1982 
1983 /**
1984  * destroy_worker - destroy a workqueue worker
1985  * @worker: worker to be destroyed
1986  *
1987  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1988  * be idle.
1989  *
1990  * CONTEXT:
1991  * raw_spin_lock_irq(pool->lock).
1992  */
1993 static void destroy_worker(struct worker *worker)
1994 {
1995 	struct worker_pool *pool = worker->pool;
1996 
1997 	lockdep_assert_held(&pool->lock);
1998 
1999 	/* sanity check frenzy */
2000 	if (WARN_ON(worker->current_work) ||
2001 	    WARN_ON(!list_empty(&worker->scheduled)) ||
2002 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2003 		return;
2004 
2005 	pool->nr_workers--;
2006 	pool->nr_idle--;
2007 
2008 	list_del_init(&worker->entry);
2009 	worker->flags |= WORKER_DIE;
2010 	wake_up_process(worker->task);
2011 }
2012 
2013 static void idle_worker_timeout(struct timer_list *t)
2014 {
2015 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2016 
2017 	raw_spin_lock_irq(&pool->lock);
2018 
2019 	while (too_many_workers(pool)) {
2020 		struct worker *worker;
2021 		unsigned long expires;
2022 
2023 		/* idle_list is kept in LIFO order, check the last one */
2024 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2025 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2026 
2027 		if (time_before(jiffies, expires)) {
2028 			mod_timer(&pool->idle_timer, expires);
2029 			break;
2030 		}
2031 
2032 		destroy_worker(worker);
2033 	}
2034 
2035 	raw_spin_unlock_irq(&pool->lock);
2036 }
2037 
2038 static void send_mayday(struct work_struct *work)
2039 {
2040 	struct pool_workqueue *pwq = get_work_pwq(work);
2041 	struct workqueue_struct *wq = pwq->wq;
2042 
2043 	lockdep_assert_held(&wq_mayday_lock);
2044 
2045 	if (!wq->rescuer)
2046 		return;
2047 
2048 	/* mayday mayday mayday */
2049 	if (list_empty(&pwq->mayday_node)) {
2050 		/*
2051 		 * If @pwq is for an unbound wq, its base ref may be put at
2052 		 * any time due to an attribute change.  Pin @pwq until the
2053 		 * rescuer is done with it.
2054 		 */
2055 		get_pwq(pwq);
2056 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2057 		wake_up_process(wq->rescuer->task);
2058 	}
2059 }
2060 
2061 static void pool_mayday_timeout(struct timer_list *t)
2062 {
2063 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2064 	struct work_struct *work;
2065 
2066 	raw_spin_lock_irq(&pool->lock);
2067 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2068 
2069 	if (need_to_create_worker(pool)) {
2070 		/*
2071 		 * We've been trying to create a new worker but
2072 		 * haven't been successful.  We might be hitting an
2073 		 * allocation deadlock.  Send distress signals to
2074 		 * rescuers.
2075 		 */
2076 		list_for_each_entry(work, &pool->worklist, entry)
2077 			send_mayday(work);
2078 	}
2079 
2080 	raw_spin_unlock(&wq_mayday_lock);
2081 	raw_spin_unlock_irq(&pool->lock);
2082 
2083 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2084 }
2085 
2086 /**
2087  * maybe_create_worker - create a new worker if necessary
2088  * @pool: pool to create a new worker for
2089  *
2090  * Create a new worker for @pool if necessary.  @pool is guaranteed to
2091  * have at least one idle worker on return from this function.  If
2092  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2093  * sent to all rescuers with works scheduled on @pool to resolve
2094  * possible allocation deadlock.
2095  *
2096  * On return, need_to_create_worker() is guaranteed to be %false and
2097  * may_start_working() %true.
2098  *
2099  * LOCKING:
2100  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2101  * multiple times.  Does GFP_KERNEL allocations.  Called only from
2102  * manager.
2103  */
2104 static void maybe_create_worker(struct worker_pool *pool)
2105 __releases(&pool->lock)
2106 __acquires(&pool->lock)
2107 {
2108 restart:
2109 	raw_spin_unlock_irq(&pool->lock);
2110 
2111 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2112 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2113 
2114 	while (true) {
2115 		if (create_worker(pool) || !need_to_create_worker(pool))
2116 			break;
2117 
2118 		schedule_timeout_interruptible(CREATE_COOLDOWN);
2119 
2120 		if (!need_to_create_worker(pool))
2121 			break;
2122 	}
2123 
2124 	del_timer_sync(&pool->mayday_timer);
2125 	raw_spin_lock_irq(&pool->lock);
2126 	/*
2127 	 * This is necessary even after a new worker was just successfully
2128 	 * created as @pool->lock was dropped and the new worker might have
2129 	 * already become busy.
2130 	 */
2131 	if (need_to_create_worker(pool))
2132 		goto restart;
2133 }
2134 
2135 /**
2136  * manage_workers - manage worker pool
2137  * @worker: self
2138  *
2139  * Assume the manager role and manage the worker pool @worker belongs
2140  * to.  At any given time, there can be only zero or one manager per
2141  * pool.  The exclusion is handled automatically by this function.
2142  *
2143  * The caller can safely start processing works on false return.  On
2144  * true return, it's guaranteed that need_to_create_worker() is false
2145  * and may_start_working() is true.
2146  *
2147  * CONTEXT:
2148  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2149  * multiple times.  Does GFP_KERNEL allocations.
2150  *
2151  * Return:
2152  * %false if the pool doesn't need management and the caller can safely
2153  * start processing works, %true if management function was performed and
2154  * the conditions that the caller verified before calling the function may
2155  * no longer be true.
2156  */
2157 static bool manage_workers(struct worker *worker)
2158 {
2159 	struct worker_pool *pool = worker->pool;
2160 
2161 	if (pool->flags & POOL_MANAGER_ACTIVE)
2162 		return false;
2163 
2164 	pool->flags |= POOL_MANAGER_ACTIVE;
2165 	pool->manager = worker;
2166 
2167 	maybe_create_worker(pool);
2168 
2169 	pool->manager = NULL;
2170 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2171 	rcuwait_wake_up(&manager_wait);
2172 	return true;
2173 }
2174 
2175 /**
2176  * process_one_work - process single work
2177  * @worker: self
2178  * @work: work to process
2179  *
2180  * Process @work.  This function contains all the logics necessary to
2181  * process a single work including synchronization against and
2182  * interaction with other workers on the same cpu, queueing and
2183  * flushing.  As long as context requirement is met, any worker can
2184  * call this function to process a work.
2185  *
2186  * CONTEXT:
2187  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2188  */
2189 static void process_one_work(struct worker *worker, struct work_struct *work)
2190 __releases(&pool->lock)
2191 __acquires(&pool->lock)
2192 {
2193 	struct pool_workqueue *pwq = get_work_pwq(work);
2194 	struct worker_pool *pool = worker->pool;
2195 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2196 	unsigned long work_data;
2197 	struct worker *collision;
2198 #ifdef CONFIG_LOCKDEP
2199 	/*
2200 	 * It is permissible to free the struct work_struct from
2201 	 * inside the function that is called from it, this we need to
2202 	 * take into account for lockdep too.  To avoid bogus "held
2203 	 * lock freed" warnings as well as problems when looking into
2204 	 * work->lockdep_map, make a copy and use that here.
2205 	 */
2206 	struct lockdep_map lockdep_map;
2207 
2208 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2209 #endif
2210 	/* ensure we're on the correct CPU */
2211 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2212 		     raw_smp_processor_id() != pool->cpu);
2213 
2214 	/*
2215 	 * A single work shouldn't be executed concurrently by
2216 	 * multiple workers on a single cpu.  Check whether anyone is
2217 	 * already processing the work.  If so, defer the work to the
2218 	 * currently executing one.
2219 	 */
2220 	collision = find_worker_executing_work(pool, work);
2221 	if (unlikely(collision)) {
2222 		move_linked_works(work, &collision->scheduled, NULL);
2223 		return;
2224 	}
2225 
2226 	/* claim and dequeue */
2227 	debug_work_deactivate(work);
2228 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2229 	worker->current_work = work;
2230 	worker->current_func = work->func;
2231 	worker->current_pwq = pwq;
2232 	work_data = *work_data_bits(work);
2233 	worker->current_color = get_work_color(work_data);
2234 
2235 	/*
2236 	 * Record wq name for cmdline and debug reporting, may get
2237 	 * overridden through set_worker_desc().
2238 	 */
2239 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2240 
2241 	list_del_init(&work->entry);
2242 
2243 	/*
2244 	 * CPU intensive works don't participate in concurrency management.
2245 	 * They're the scheduler's responsibility.  This takes @worker out
2246 	 * of concurrency management and the next code block will chain
2247 	 * execution of the pending work items.
2248 	 */
2249 	if (unlikely(cpu_intensive))
2250 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2251 
2252 	/*
2253 	 * Wake up another worker if necessary.  The condition is always
2254 	 * false for normal per-cpu workers since nr_running would always
2255 	 * be >= 1 at this point.  This is used to chain execution of the
2256 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2257 	 * UNBOUND and CPU_INTENSIVE ones.
2258 	 */
2259 	if (need_more_worker(pool))
2260 		wake_up_worker(pool);
2261 
2262 	/*
2263 	 * Record the last pool and clear PENDING which should be the last
2264 	 * update to @work.  Also, do this inside @pool->lock so that
2265 	 * PENDING and queued state changes happen together while IRQ is
2266 	 * disabled.
2267 	 */
2268 	set_work_pool_and_clear_pending(work, pool->id);
2269 
2270 	raw_spin_unlock_irq(&pool->lock);
2271 
2272 	lock_map_acquire(&pwq->wq->lockdep_map);
2273 	lock_map_acquire(&lockdep_map);
2274 	/*
2275 	 * Strictly speaking we should mark the invariant state without holding
2276 	 * any locks, that is, before these two lock_map_acquire()'s.
2277 	 *
2278 	 * However, that would result in:
2279 	 *
2280 	 *   A(W1)
2281 	 *   WFC(C)
2282 	 *		A(W1)
2283 	 *		C(C)
2284 	 *
2285 	 * Which would create W1->C->W1 dependencies, even though there is no
2286 	 * actual deadlock possible. There are two solutions, using a
2287 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2288 	 * hit the lockdep limitation on recursive locks, or simply discard
2289 	 * these locks.
2290 	 *
2291 	 * AFAICT there is no possible deadlock scenario between the
2292 	 * flush_work() and complete() primitives (except for single-threaded
2293 	 * workqueues), so hiding them isn't a problem.
2294 	 */
2295 	lockdep_invariant_state(true);
2296 	trace_workqueue_execute_start(work);
2297 	worker->current_func(work);
2298 	/*
2299 	 * While we must be careful to not use "work" after this, the trace
2300 	 * point will only record its address.
2301 	 */
2302 	trace_workqueue_execute_end(work, worker->current_func);
2303 	lock_map_release(&lockdep_map);
2304 	lock_map_release(&pwq->wq->lockdep_map);
2305 
2306 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2307 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2308 		       "     last function: %ps\n",
2309 		       current->comm, preempt_count(), task_pid_nr(current),
2310 		       worker->current_func);
2311 		debug_show_held_locks(current);
2312 		dump_stack();
2313 	}
2314 
2315 	/*
2316 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
2317 	 * kernels, where a requeueing work item waiting for something to
2318 	 * happen could deadlock with stop_machine as such work item could
2319 	 * indefinitely requeue itself while all other CPUs are trapped in
2320 	 * stop_machine. At the same time, report a quiescent RCU state so
2321 	 * the same condition doesn't freeze RCU.
2322 	 */
2323 	cond_resched();
2324 
2325 	raw_spin_lock_irq(&pool->lock);
2326 
2327 	/* clear cpu intensive status */
2328 	if (unlikely(cpu_intensive))
2329 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2330 
2331 	/* tag the worker for identification in schedule() */
2332 	worker->last_func = worker->current_func;
2333 
2334 	/* we're done with it, release */
2335 	hash_del(&worker->hentry);
2336 	worker->current_work = NULL;
2337 	worker->current_func = NULL;
2338 	worker->current_pwq = NULL;
2339 	worker->current_color = INT_MAX;
2340 	pwq_dec_nr_in_flight(pwq, work_data);
2341 }
2342 
2343 /**
2344  * process_scheduled_works - process scheduled works
2345  * @worker: self
2346  *
2347  * Process all scheduled works.  Please note that the scheduled list
2348  * may change while processing a work, so this function repeatedly
2349  * fetches a work from the top and executes it.
2350  *
2351  * CONTEXT:
2352  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2353  * multiple times.
2354  */
2355 static void process_scheduled_works(struct worker *worker)
2356 {
2357 	while (!list_empty(&worker->scheduled)) {
2358 		struct work_struct *work = list_first_entry(&worker->scheduled,
2359 						struct work_struct, entry);
2360 		process_one_work(worker, work);
2361 	}
2362 }
2363 
2364 static void set_pf_worker(bool val)
2365 {
2366 	mutex_lock(&wq_pool_attach_mutex);
2367 	if (val)
2368 		current->flags |= PF_WQ_WORKER;
2369 	else
2370 		current->flags &= ~PF_WQ_WORKER;
2371 	mutex_unlock(&wq_pool_attach_mutex);
2372 }
2373 
2374 /**
2375  * worker_thread - the worker thread function
2376  * @__worker: self
2377  *
2378  * The worker thread function.  All workers belong to a worker_pool -
2379  * either a per-cpu one or dynamic unbound one.  These workers process all
2380  * work items regardless of their specific target workqueue.  The only
2381  * exception is work items which belong to workqueues with a rescuer which
2382  * will be explained in rescuer_thread().
2383  *
2384  * Return: 0
2385  */
2386 static int worker_thread(void *__worker)
2387 {
2388 	struct worker *worker = __worker;
2389 	struct worker_pool *pool = worker->pool;
2390 
2391 	/* tell the scheduler that this is a workqueue worker */
2392 	set_pf_worker(true);
2393 woke_up:
2394 	raw_spin_lock_irq(&pool->lock);
2395 
2396 	/* am I supposed to die? */
2397 	if (unlikely(worker->flags & WORKER_DIE)) {
2398 		raw_spin_unlock_irq(&pool->lock);
2399 		WARN_ON_ONCE(!list_empty(&worker->entry));
2400 		set_pf_worker(false);
2401 
2402 		set_task_comm(worker->task, "kworker/dying");
2403 		ida_free(&pool->worker_ida, worker->id);
2404 		worker_detach_from_pool(worker);
2405 		kfree(worker);
2406 		return 0;
2407 	}
2408 
2409 	worker_leave_idle(worker);
2410 recheck:
2411 	/* no more worker necessary? */
2412 	if (!need_more_worker(pool))
2413 		goto sleep;
2414 
2415 	/* do we need to manage? */
2416 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2417 		goto recheck;
2418 
2419 	/*
2420 	 * ->scheduled list can only be filled while a worker is
2421 	 * preparing to process a work or actually processing it.
2422 	 * Make sure nobody diddled with it while I was sleeping.
2423 	 */
2424 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2425 
2426 	/*
2427 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2428 	 * worker or that someone else has already assumed the manager
2429 	 * role.  This is where @worker starts participating in concurrency
2430 	 * management if applicable and concurrency management is restored
2431 	 * after being rebound.  See rebind_workers() for details.
2432 	 */
2433 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2434 
2435 	do {
2436 		struct work_struct *work =
2437 			list_first_entry(&pool->worklist,
2438 					 struct work_struct, entry);
2439 
2440 		pool->watchdog_ts = jiffies;
2441 
2442 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2443 			/* optimization path, not strictly necessary */
2444 			process_one_work(worker, work);
2445 			if (unlikely(!list_empty(&worker->scheduled)))
2446 				process_scheduled_works(worker);
2447 		} else {
2448 			move_linked_works(work, &worker->scheduled, NULL);
2449 			process_scheduled_works(worker);
2450 		}
2451 	} while (keep_working(pool));
2452 
2453 	worker_set_flags(worker, WORKER_PREP);
2454 sleep:
2455 	/*
2456 	 * pool->lock is held and there's no work to process and no need to
2457 	 * manage, sleep.  Workers are woken up only while holding
2458 	 * pool->lock or from local cpu, so setting the current state
2459 	 * before releasing pool->lock is enough to prevent losing any
2460 	 * event.
2461 	 */
2462 	worker_enter_idle(worker);
2463 	__set_current_state(TASK_IDLE);
2464 	raw_spin_unlock_irq(&pool->lock);
2465 	schedule();
2466 	goto woke_up;
2467 }
2468 
2469 /**
2470  * rescuer_thread - the rescuer thread function
2471  * @__rescuer: self
2472  *
2473  * Workqueue rescuer thread function.  There's one rescuer for each
2474  * workqueue which has WQ_MEM_RECLAIM set.
2475  *
2476  * Regular work processing on a pool may block trying to create a new
2477  * worker which uses GFP_KERNEL allocation which has slight chance of
2478  * developing into deadlock if some works currently on the same queue
2479  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2480  * the problem rescuer solves.
2481  *
2482  * When such condition is possible, the pool summons rescuers of all
2483  * workqueues which have works queued on the pool and let them process
2484  * those works so that forward progress can be guaranteed.
2485  *
2486  * This should happen rarely.
2487  *
2488  * Return: 0
2489  */
2490 static int rescuer_thread(void *__rescuer)
2491 {
2492 	struct worker *rescuer = __rescuer;
2493 	struct workqueue_struct *wq = rescuer->rescue_wq;
2494 	struct list_head *scheduled = &rescuer->scheduled;
2495 	bool should_stop;
2496 
2497 	set_user_nice(current, RESCUER_NICE_LEVEL);
2498 
2499 	/*
2500 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2501 	 * doesn't participate in concurrency management.
2502 	 */
2503 	set_pf_worker(true);
2504 repeat:
2505 	set_current_state(TASK_IDLE);
2506 
2507 	/*
2508 	 * By the time the rescuer is requested to stop, the workqueue
2509 	 * shouldn't have any work pending, but @wq->maydays may still have
2510 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2511 	 * all the work items before the rescuer got to them.  Go through
2512 	 * @wq->maydays processing before acting on should_stop so that the
2513 	 * list is always empty on exit.
2514 	 */
2515 	should_stop = kthread_should_stop();
2516 
2517 	/* see whether any pwq is asking for help */
2518 	raw_spin_lock_irq(&wq_mayday_lock);
2519 
2520 	while (!list_empty(&wq->maydays)) {
2521 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2522 					struct pool_workqueue, mayday_node);
2523 		struct worker_pool *pool = pwq->pool;
2524 		struct work_struct *work, *n;
2525 		bool first = true;
2526 
2527 		__set_current_state(TASK_RUNNING);
2528 		list_del_init(&pwq->mayday_node);
2529 
2530 		raw_spin_unlock_irq(&wq_mayday_lock);
2531 
2532 		worker_attach_to_pool(rescuer, pool);
2533 
2534 		raw_spin_lock_irq(&pool->lock);
2535 
2536 		/*
2537 		 * Slurp in all works issued via this workqueue and
2538 		 * process'em.
2539 		 */
2540 		WARN_ON_ONCE(!list_empty(scheduled));
2541 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2542 			if (get_work_pwq(work) == pwq) {
2543 				if (first)
2544 					pool->watchdog_ts = jiffies;
2545 				move_linked_works(work, scheduled, &n);
2546 			}
2547 			first = false;
2548 		}
2549 
2550 		if (!list_empty(scheduled)) {
2551 			process_scheduled_works(rescuer);
2552 
2553 			/*
2554 			 * The above execution of rescued work items could
2555 			 * have created more to rescue through
2556 			 * pwq_activate_first_inactive() or chained
2557 			 * queueing.  Let's put @pwq back on mayday list so
2558 			 * that such back-to-back work items, which may be
2559 			 * being used to relieve memory pressure, don't
2560 			 * incur MAYDAY_INTERVAL delay inbetween.
2561 			 */
2562 			if (pwq->nr_active && need_to_create_worker(pool)) {
2563 				raw_spin_lock(&wq_mayday_lock);
2564 				/*
2565 				 * Queue iff we aren't racing destruction
2566 				 * and somebody else hasn't queued it already.
2567 				 */
2568 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2569 					get_pwq(pwq);
2570 					list_add_tail(&pwq->mayday_node, &wq->maydays);
2571 				}
2572 				raw_spin_unlock(&wq_mayday_lock);
2573 			}
2574 		}
2575 
2576 		/*
2577 		 * Put the reference grabbed by send_mayday().  @pool won't
2578 		 * go away while we're still attached to it.
2579 		 */
2580 		put_pwq(pwq);
2581 
2582 		/*
2583 		 * Leave this pool.  If need_more_worker() is %true, notify a
2584 		 * regular worker; otherwise, we end up with 0 concurrency
2585 		 * and stalling the execution.
2586 		 */
2587 		if (need_more_worker(pool))
2588 			wake_up_worker(pool);
2589 
2590 		raw_spin_unlock_irq(&pool->lock);
2591 
2592 		worker_detach_from_pool(rescuer);
2593 
2594 		raw_spin_lock_irq(&wq_mayday_lock);
2595 	}
2596 
2597 	raw_spin_unlock_irq(&wq_mayday_lock);
2598 
2599 	if (should_stop) {
2600 		__set_current_state(TASK_RUNNING);
2601 		set_pf_worker(false);
2602 		return 0;
2603 	}
2604 
2605 	/* rescuers should never participate in concurrency management */
2606 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2607 	schedule();
2608 	goto repeat;
2609 }
2610 
2611 /**
2612  * check_flush_dependency - check for flush dependency sanity
2613  * @target_wq: workqueue being flushed
2614  * @target_work: work item being flushed (NULL for workqueue flushes)
2615  *
2616  * %current is trying to flush the whole @target_wq or @target_work on it.
2617  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2618  * reclaiming memory or running on a workqueue which doesn't have
2619  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2620  * a deadlock.
2621  */
2622 static void check_flush_dependency(struct workqueue_struct *target_wq,
2623 				   struct work_struct *target_work)
2624 {
2625 	work_func_t target_func = target_work ? target_work->func : NULL;
2626 	struct worker *worker;
2627 
2628 	if (target_wq->flags & WQ_MEM_RECLAIM)
2629 		return;
2630 
2631 	worker = current_wq_worker();
2632 
2633 	WARN_ONCE(current->flags & PF_MEMALLOC,
2634 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2635 		  current->pid, current->comm, target_wq->name, target_func);
2636 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2637 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2638 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2639 		  worker->current_pwq->wq->name, worker->current_func,
2640 		  target_wq->name, target_func);
2641 }
2642 
2643 struct wq_barrier {
2644 	struct work_struct	work;
2645 	struct completion	done;
2646 	struct task_struct	*task;	/* purely informational */
2647 };
2648 
2649 static void wq_barrier_func(struct work_struct *work)
2650 {
2651 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2652 	complete(&barr->done);
2653 }
2654 
2655 /**
2656  * insert_wq_barrier - insert a barrier work
2657  * @pwq: pwq to insert barrier into
2658  * @barr: wq_barrier to insert
2659  * @target: target work to attach @barr to
2660  * @worker: worker currently executing @target, NULL if @target is not executing
2661  *
2662  * @barr is linked to @target such that @barr is completed only after
2663  * @target finishes execution.  Please note that the ordering
2664  * guarantee is observed only with respect to @target and on the local
2665  * cpu.
2666  *
2667  * Currently, a queued barrier can't be canceled.  This is because
2668  * try_to_grab_pending() can't determine whether the work to be
2669  * grabbed is at the head of the queue and thus can't clear LINKED
2670  * flag of the previous work while there must be a valid next work
2671  * after a work with LINKED flag set.
2672  *
2673  * Note that when @worker is non-NULL, @target may be modified
2674  * underneath us, so we can't reliably determine pwq from @target.
2675  *
2676  * CONTEXT:
2677  * raw_spin_lock_irq(pool->lock).
2678  */
2679 static void insert_wq_barrier(struct pool_workqueue *pwq,
2680 			      struct wq_barrier *barr,
2681 			      struct work_struct *target, struct worker *worker)
2682 {
2683 	unsigned int work_flags = 0;
2684 	unsigned int work_color;
2685 	struct list_head *head;
2686 
2687 	/*
2688 	 * debugobject calls are safe here even with pool->lock locked
2689 	 * as we know for sure that this will not trigger any of the
2690 	 * checks and call back into the fixup functions where we
2691 	 * might deadlock.
2692 	 */
2693 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2694 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2695 
2696 	init_completion_map(&barr->done, &target->lockdep_map);
2697 
2698 	barr->task = current;
2699 
2700 	/* The barrier work item does not participate in pwq->nr_active. */
2701 	work_flags |= WORK_STRUCT_INACTIVE;
2702 
2703 	/*
2704 	 * If @target is currently being executed, schedule the
2705 	 * barrier to the worker; otherwise, put it after @target.
2706 	 */
2707 	if (worker) {
2708 		head = worker->scheduled.next;
2709 		work_color = worker->current_color;
2710 	} else {
2711 		unsigned long *bits = work_data_bits(target);
2712 
2713 		head = target->entry.next;
2714 		/* there can already be other linked works, inherit and set */
2715 		work_flags |= *bits & WORK_STRUCT_LINKED;
2716 		work_color = get_work_color(*bits);
2717 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2718 	}
2719 
2720 	pwq->nr_in_flight[work_color]++;
2721 	work_flags |= work_color_to_flags(work_color);
2722 
2723 	debug_work_activate(&barr->work);
2724 	insert_work(pwq, &barr->work, head, work_flags);
2725 }
2726 
2727 /**
2728  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2729  * @wq: workqueue being flushed
2730  * @flush_color: new flush color, < 0 for no-op
2731  * @work_color: new work color, < 0 for no-op
2732  *
2733  * Prepare pwqs for workqueue flushing.
2734  *
2735  * If @flush_color is non-negative, flush_color on all pwqs should be
2736  * -1.  If no pwq has in-flight commands at the specified color, all
2737  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2738  * has in flight commands, its pwq->flush_color is set to
2739  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2740  * wakeup logic is armed and %true is returned.
2741  *
2742  * The caller should have initialized @wq->first_flusher prior to
2743  * calling this function with non-negative @flush_color.  If
2744  * @flush_color is negative, no flush color update is done and %false
2745  * is returned.
2746  *
2747  * If @work_color is non-negative, all pwqs should have the same
2748  * work_color which is previous to @work_color and all will be
2749  * advanced to @work_color.
2750  *
2751  * CONTEXT:
2752  * mutex_lock(wq->mutex).
2753  *
2754  * Return:
2755  * %true if @flush_color >= 0 and there's something to flush.  %false
2756  * otherwise.
2757  */
2758 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2759 				      int flush_color, int work_color)
2760 {
2761 	bool wait = false;
2762 	struct pool_workqueue *pwq;
2763 
2764 	if (flush_color >= 0) {
2765 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2766 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2767 	}
2768 
2769 	for_each_pwq(pwq, wq) {
2770 		struct worker_pool *pool = pwq->pool;
2771 
2772 		raw_spin_lock_irq(&pool->lock);
2773 
2774 		if (flush_color >= 0) {
2775 			WARN_ON_ONCE(pwq->flush_color != -1);
2776 
2777 			if (pwq->nr_in_flight[flush_color]) {
2778 				pwq->flush_color = flush_color;
2779 				atomic_inc(&wq->nr_pwqs_to_flush);
2780 				wait = true;
2781 			}
2782 		}
2783 
2784 		if (work_color >= 0) {
2785 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2786 			pwq->work_color = work_color;
2787 		}
2788 
2789 		raw_spin_unlock_irq(&pool->lock);
2790 	}
2791 
2792 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2793 		complete(&wq->first_flusher->done);
2794 
2795 	return wait;
2796 }
2797 
2798 /**
2799  * flush_workqueue - ensure that any scheduled work has run to completion.
2800  * @wq: workqueue to flush
2801  *
2802  * This function sleeps until all work items which were queued on entry
2803  * have finished execution, but it is not livelocked by new incoming ones.
2804  */
2805 void flush_workqueue(struct workqueue_struct *wq)
2806 {
2807 	struct wq_flusher this_flusher = {
2808 		.list = LIST_HEAD_INIT(this_flusher.list),
2809 		.flush_color = -1,
2810 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2811 	};
2812 	int next_color;
2813 
2814 	if (WARN_ON(!wq_online))
2815 		return;
2816 
2817 	lock_map_acquire(&wq->lockdep_map);
2818 	lock_map_release(&wq->lockdep_map);
2819 
2820 	mutex_lock(&wq->mutex);
2821 
2822 	/*
2823 	 * Start-to-wait phase
2824 	 */
2825 	next_color = work_next_color(wq->work_color);
2826 
2827 	if (next_color != wq->flush_color) {
2828 		/*
2829 		 * Color space is not full.  The current work_color
2830 		 * becomes our flush_color and work_color is advanced
2831 		 * by one.
2832 		 */
2833 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2834 		this_flusher.flush_color = wq->work_color;
2835 		wq->work_color = next_color;
2836 
2837 		if (!wq->first_flusher) {
2838 			/* no flush in progress, become the first flusher */
2839 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2840 
2841 			wq->first_flusher = &this_flusher;
2842 
2843 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2844 						       wq->work_color)) {
2845 				/* nothing to flush, done */
2846 				wq->flush_color = next_color;
2847 				wq->first_flusher = NULL;
2848 				goto out_unlock;
2849 			}
2850 		} else {
2851 			/* wait in queue */
2852 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2853 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2854 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2855 		}
2856 	} else {
2857 		/*
2858 		 * Oops, color space is full, wait on overflow queue.
2859 		 * The next flush completion will assign us
2860 		 * flush_color and transfer to flusher_queue.
2861 		 */
2862 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2863 	}
2864 
2865 	check_flush_dependency(wq, NULL);
2866 
2867 	mutex_unlock(&wq->mutex);
2868 
2869 	wait_for_completion(&this_flusher.done);
2870 
2871 	/*
2872 	 * Wake-up-and-cascade phase
2873 	 *
2874 	 * First flushers are responsible for cascading flushes and
2875 	 * handling overflow.  Non-first flushers can simply return.
2876 	 */
2877 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
2878 		return;
2879 
2880 	mutex_lock(&wq->mutex);
2881 
2882 	/* we might have raced, check again with mutex held */
2883 	if (wq->first_flusher != &this_flusher)
2884 		goto out_unlock;
2885 
2886 	WRITE_ONCE(wq->first_flusher, NULL);
2887 
2888 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2889 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2890 
2891 	while (true) {
2892 		struct wq_flusher *next, *tmp;
2893 
2894 		/* complete all the flushers sharing the current flush color */
2895 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2896 			if (next->flush_color != wq->flush_color)
2897 				break;
2898 			list_del_init(&next->list);
2899 			complete(&next->done);
2900 		}
2901 
2902 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2903 			     wq->flush_color != work_next_color(wq->work_color));
2904 
2905 		/* this flush_color is finished, advance by one */
2906 		wq->flush_color = work_next_color(wq->flush_color);
2907 
2908 		/* one color has been freed, handle overflow queue */
2909 		if (!list_empty(&wq->flusher_overflow)) {
2910 			/*
2911 			 * Assign the same color to all overflowed
2912 			 * flushers, advance work_color and append to
2913 			 * flusher_queue.  This is the start-to-wait
2914 			 * phase for these overflowed flushers.
2915 			 */
2916 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2917 				tmp->flush_color = wq->work_color;
2918 
2919 			wq->work_color = work_next_color(wq->work_color);
2920 
2921 			list_splice_tail_init(&wq->flusher_overflow,
2922 					      &wq->flusher_queue);
2923 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2924 		}
2925 
2926 		if (list_empty(&wq->flusher_queue)) {
2927 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2928 			break;
2929 		}
2930 
2931 		/*
2932 		 * Need to flush more colors.  Make the next flusher
2933 		 * the new first flusher and arm pwqs.
2934 		 */
2935 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2936 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2937 
2938 		list_del_init(&next->list);
2939 		wq->first_flusher = next;
2940 
2941 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2942 			break;
2943 
2944 		/*
2945 		 * Meh... this color is already done, clear first
2946 		 * flusher and repeat cascading.
2947 		 */
2948 		wq->first_flusher = NULL;
2949 	}
2950 
2951 out_unlock:
2952 	mutex_unlock(&wq->mutex);
2953 }
2954 EXPORT_SYMBOL(flush_workqueue);
2955 
2956 /**
2957  * drain_workqueue - drain a workqueue
2958  * @wq: workqueue to drain
2959  *
2960  * Wait until the workqueue becomes empty.  While draining is in progress,
2961  * only chain queueing is allowed.  IOW, only currently pending or running
2962  * work items on @wq can queue further work items on it.  @wq is flushed
2963  * repeatedly until it becomes empty.  The number of flushing is determined
2964  * by the depth of chaining and should be relatively short.  Whine if it
2965  * takes too long.
2966  */
2967 void drain_workqueue(struct workqueue_struct *wq)
2968 {
2969 	unsigned int flush_cnt = 0;
2970 	struct pool_workqueue *pwq;
2971 
2972 	/*
2973 	 * __queue_work() needs to test whether there are drainers, is much
2974 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2975 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2976 	 */
2977 	mutex_lock(&wq->mutex);
2978 	if (!wq->nr_drainers++)
2979 		wq->flags |= __WQ_DRAINING;
2980 	mutex_unlock(&wq->mutex);
2981 reflush:
2982 	flush_workqueue(wq);
2983 
2984 	mutex_lock(&wq->mutex);
2985 
2986 	for_each_pwq(pwq, wq) {
2987 		bool drained;
2988 
2989 		raw_spin_lock_irq(&pwq->pool->lock);
2990 		drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
2991 		raw_spin_unlock_irq(&pwq->pool->lock);
2992 
2993 		if (drained)
2994 			continue;
2995 
2996 		if (++flush_cnt == 10 ||
2997 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2998 			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
2999 				wq->name, __func__, flush_cnt);
3000 
3001 		mutex_unlock(&wq->mutex);
3002 		goto reflush;
3003 	}
3004 
3005 	if (!--wq->nr_drainers)
3006 		wq->flags &= ~__WQ_DRAINING;
3007 	mutex_unlock(&wq->mutex);
3008 }
3009 EXPORT_SYMBOL_GPL(drain_workqueue);
3010 
3011 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3012 			     bool from_cancel)
3013 {
3014 	struct worker *worker = NULL;
3015 	struct worker_pool *pool;
3016 	struct pool_workqueue *pwq;
3017 
3018 	might_sleep();
3019 
3020 	rcu_read_lock();
3021 	pool = get_work_pool(work);
3022 	if (!pool) {
3023 		rcu_read_unlock();
3024 		return false;
3025 	}
3026 
3027 	raw_spin_lock_irq(&pool->lock);
3028 	/* see the comment in try_to_grab_pending() with the same code */
3029 	pwq = get_work_pwq(work);
3030 	if (pwq) {
3031 		if (unlikely(pwq->pool != pool))
3032 			goto already_gone;
3033 	} else {
3034 		worker = find_worker_executing_work(pool, work);
3035 		if (!worker)
3036 			goto already_gone;
3037 		pwq = worker->current_pwq;
3038 	}
3039 
3040 	check_flush_dependency(pwq->wq, work);
3041 
3042 	insert_wq_barrier(pwq, barr, work, worker);
3043 	raw_spin_unlock_irq(&pool->lock);
3044 
3045 	/*
3046 	 * Force a lock recursion deadlock when using flush_work() inside a
3047 	 * single-threaded or rescuer equipped workqueue.
3048 	 *
3049 	 * For single threaded workqueues the deadlock happens when the work
3050 	 * is after the work issuing the flush_work(). For rescuer equipped
3051 	 * workqueues the deadlock happens when the rescuer stalls, blocking
3052 	 * forward progress.
3053 	 */
3054 	if (!from_cancel &&
3055 	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3056 		lock_map_acquire(&pwq->wq->lockdep_map);
3057 		lock_map_release(&pwq->wq->lockdep_map);
3058 	}
3059 	rcu_read_unlock();
3060 	return true;
3061 already_gone:
3062 	raw_spin_unlock_irq(&pool->lock);
3063 	rcu_read_unlock();
3064 	return false;
3065 }
3066 
3067 static bool __flush_work(struct work_struct *work, bool from_cancel)
3068 {
3069 	struct wq_barrier barr;
3070 
3071 	if (WARN_ON(!wq_online))
3072 		return false;
3073 
3074 	if (WARN_ON(!work->func))
3075 		return false;
3076 
3077 	if (!from_cancel) {
3078 		lock_map_acquire(&work->lockdep_map);
3079 		lock_map_release(&work->lockdep_map);
3080 	}
3081 
3082 	if (start_flush_work(work, &barr, from_cancel)) {
3083 		wait_for_completion(&barr.done);
3084 		destroy_work_on_stack(&barr.work);
3085 		return true;
3086 	} else {
3087 		return false;
3088 	}
3089 }
3090 
3091 /**
3092  * flush_work - wait for a work to finish executing the last queueing instance
3093  * @work: the work to flush
3094  *
3095  * Wait until @work has finished execution.  @work is guaranteed to be idle
3096  * on return if it hasn't been requeued since flush started.
3097  *
3098  * Return:
3099  * %true if flush_work() waited for the work to finish execution,
3100  * %false if it was already idle.
3101  */
3102 bool flush_work(struct work_struct *work)
3103 {
3104 	return __flush_work(work, false);
3105 }
3106 EXPORT_SYMBOL_GPL(flush_work);
3107 
3108 struct cwt_wait {
3109 	wait_queue_entry_t		wait;
3110 	struct work_struct	*work;
3111 };
3112 
3113 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3114 {
3115 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3116 
3117 	if (cwait->work != key)
3118 		return 0;
3119 	return autoremove_wake_function(wait, mode, sync, key);
3120 }
3121 
3122 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3123 {
3124 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3125 	unsigned long flags;
3126 	int ret;
3127 
3128 	do {
3129 		ret = try_to_grab_pending(work, is_dwork, &flags);
3130 		/*
3131 		 * If someone else is already canceling, wait for it to
3132 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3133 		 * because we may get scheduled between @work's completion
3134 		 * and the other canceling task resuming and clearing
3135 		 * CANCELING - flush_work() will return false immediately
3136 		 * as @work is no longer busy, try_to_grab_pending() will
3137 		 * return -ENOENT as @work is still being canceled and the
3138 		 * other canceling task won't be able to clear CANCELING as
3139 		 * we're hogging the CPU.
3140 		 *
3141 		 * Let's wait for completion using a waitqueue.  As this
3142 		 * may lead to the thundering herd problem, use a custom
3143 		 * wake function which matches @work along with exclusive
3144 		 * wait and wakeup.
3145 		 */
3146 		if (unlikely(ret == -ENOENT)) {
3147 			struct cwt_wait cwait;
3148 
3149 			init_wait(&cwait.wait);
3150 			cwait.wait.func = cwt_wakefn;
3151 			cwait.work = work;
3152 
3153 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3154 						  TASK_UNINTERRUPTIBLE);
3155 			if (work_is_canceling(work))
3156 				schedule();
3157 			finish_wait(&cancel_waitq, &cwait.wait);
3158 		}
3159 	} while (unlikely(ret < 0));
3160 
3161 	/* tell other tasks trying to grab @work to back off */
3162 	mark_work_canceling(work);
3163 	local_irq_restore(flags);
3164 
3165 	/*
3166 	 * This allows canceling during early boot.  We know that @work
3167 	 * isn't executing.
3168 	 */
3169 	if (wq_online)
3170 		__flush_work(work, true);
3171 
3172 	clear_work_data(work);
3173 
3174 	/*
3175 	 * Paired with prepare_to_wait() above so that either
3176 	 * waitqueue_active() is visible here or !work_is_canceling() is
3177 	 * visible there.
3178 	 */
3179 	smp_mb();
3180 	if (waitqueue_active(&cancel_waitq))
3181 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3182 
3183 	return ret;
3184 }
3185 
3186 /**
3187  * cancel_work_sync - cancel a work and wait for it to finish
3188  * @work: the work to cancel
3189  *
3190  * Cancel @work and wait for its execution to finish.  This function
3191  * can be used even if the work re-queues itself or migrates to
3192  * another workqueue.  On return from this function, @work is
3193  * guaranteed to be not pending or executing on any CPU.
3194  *
3195  * cancel_work_sync(&delayed_work->work) must not be used for
3196  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3197  *
3198  * The caller must ensure that the workqueue on which @work was last
3199  * queued can't be destroyed before this function returns.
3200  *
3201  * Return:
3202  * %true if @work was pending, %false otherwise.
3203  */
3204 bool cancel_work_sync(struct work_struct *work)
3205 {
3206 	return __cancel_work_timer(work, false);
3207 }
3208 EXPORT_SYMBOL_GPL(cancel_work_sync);
3209 
3210 /**
3211  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3212  * @dwork: the delayed work to flush
3213  *
3214  * Delayed timer is cancelled and the pending work is queued for
3215  * immediate execution.  Like flush_work(), this function only
3216  * considers the last queueing instance of @dwork.
3217  *
3218  * Return:
3219  * %true if flush_work() waited for the work to finish execution,
3220  * %false if it was already idle.
3221  */
3222 bool flush_delayed_work(struct delayed_work *dwork)
3223 {
3224 	local_irq_disable();
3225 	if (del_timer_sync(&dwork->timer))
3226 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3227 	local_irq_enable();
3228 	return flush_work(&dwork->work);
3229 }
3230 EXPORT_SYMBOL(flush_delayed_work);
3231 
3232 /**
3233  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3234  * @rwork: the rcu work to flush
3235  *
3236  * Return:
3237  * %true if flush_rcu_work() waited for the work to finish execution,
3238  * %false if it was already idle.
3239  */
3240 bool flush_rcu_work(struct rcu_work *rwork)
3241 {
3242 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3243 		rcu_barrier();
3244 		flush_work(&rwork->work);
3245 		return true;
3246 	} else {
3247 		return flush_work(&rwork->work);
3248 	}
3249 }
3250 EXPORT_SYMBOL(flush_rcu_work);
3251 
3252 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3253 {
3254 	unsigned long flags;
3255 	int ret;
3256 
3257 	do {
3258 		ret = try_to_grab_pending(work, is_dwork, &flags);
3259 	} while (unlikely(ret == -EAGAIN));
3260 
3261 	if (unlikely(ret < 0))
3262 		return false;
3263 
3264 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3265 	local_irq_restore(flags);
3266 	return ret;
3267 }
3268 
3269 /**
3270  * cancel_delayed_work - cancel a delayed work
3271  * @dwork: delayed_work to cancel
3272  *
3273  * Kill off a pending delayed_work.
3274  *
3275  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3276  * pending.
3277  *
3278  * Note:
3279  * The work callback function may still be running on return, unless
3280  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3281  * use cancel_delayed_work_sync() to wait on it.
3282  *
3283  * This function is safe to call from any context including IRQ handler.
3284  */
3285 bool cancel_delayed_work(struct delayed_work *dwork)
3286 {
3287 	return __cancel_work(&dwork->work, true);
3288 }
3289 EXPORT_SYMBOL(cancel_delayed_work);
3290 
3291 /**
3292  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3293  * @dwork: the delayed work cancel
3294  *
3295  * This is cancel_work_sync() for delayed works.
3296  *
3297  * Return:
3298  * %true if @dwork was pending, %false otherwise.
3299  */
3300 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3301 {
3302 	return __cancel_work_timer(&dwork->work, true);
3303 }
3304 EXPORT_SYMBOL(cancel_delayed_work_sync);
3305 
3306 /**
3307  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3308  * @func: the function to call
3309  *
3310  * schedule_on_each_cpu() executes @func on each online CPU using the
3311  * system workqueue and blocks until all CPUs have completed.
3312  * schedule_on_each_cpu() is very slow.
3313  *
3314  * Return:
3315  * 0 on success, -errno on failure.
3316  */
3317 int schedule_on_each_cpu(work_func_t func)
3318 {
3319 	int cpu;
3320 	struct work_struct __percpu *works;
3321 
3322 	works = alloc_percpu(struct work_struct);
3323 	if (!works)
3324 		return -ENOMEM;
3325 
3326 	cpus_read_lock();
3327 
3328 	for_each_online_cpu(cpu) {
3329 		struct work_struct *work = per_cpu_ptr(works, cpu);
3330 
3331 		INIT_WORK(work, func);
3332 		schedule_work_on(cpu, work);
3333 	}
3334 
3335 	for_each_online_cpu(cpu)
3336 		flush_work(per_cpu_ptr(works, cpu));
3337 
3338 	cpus_read_unlock();
3339 	free_percpu(works);
3340 	return 0;
3341 }
3342 
3343 /**
3344  * execute_in_process_context - reliably execute the routine with user context
3345  * @fn:		the function to execute
3346  * @ew:		guaranteed storage for the execute work structure (must
3347  *		be available when the work executes)
3348  *
3349  * Executes the function immediately if process context is available,
3350  * otherwise schedules the function for delayed execution.
3351  *
3352  * Return:	0 - function was executed
3353  *		1 - function was scheduled for execution
3354  */
3355 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3356 {
3357 	if (!in_interrupt()) {
3358 		fn(&ew->work);
3359 		return 0;
3360 	}
3361 
3362 	INIT_WORK(&ew->work, fn);
3363 	schedule_work(&ew->work);
3364 
3365 	return 1;
3366 }
3367 EXPORT_SYMBOL_GPL(execute_in_process_context);
3368 
3369 /**
3370  * free_workqueue_attrs - free a workqueue_attrs
3371  * @attrs: workqueue_attrs to free
3372  *
3373  * Undo alloc_workqueue_attrs().
3374  */
3375 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3376 {
3377 	if (attrs) {
3378 		free_cpumask_var(attrs->cpumask);
3379 		kfree(attrs);
3380 	}
3381 }
3382 
3383 /**
3384  * alloc_workqueue_attrs - allocate a workqueue_attrs
3385  *
3386  * Allocate a new workqueue_attrs, initialize with default settings and
3387  * return it.
3388  *
3389  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3390  */
3391 struct workqueue_attrs *alloc_workqueue_attrs(void)
3392 {
3393 	struct workqueue_attrs *attrs;
3394 
3395 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3396 	if (!attrs)
3397 		goto fail;
3398 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3399 		goto fail;
3400 
3401 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3402 	return attrs;
3403 fail:
3404 	free_workqueue_attrs(attrs);
3405 	return NULL;
3406 }
3407 
3408 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3409 				 const struct workqueue_attrs *from)
3410 {
3411 	to->nice = from->nice;
3412 	cpumask_copy(to->cpumask, from->cpumask);
3413 	/*
3414 	 * Unlike hash and equality test, this function doesn't ignore
3415 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3416 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3417 	 */
3418 	to->no_numa = from->no_numa;
3419 }
3420 
3421 /* hash value of the content of @attr */
3422 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3423 {
3424 	u32 hash = 0;
3425 
3426 	hash = jhash_1word(attrs->nice, hash);
3427 	hash = jhash(cpumask_bits(attrs->cpumask),
3428 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3429 	return hash;
3430 }
3431 
3432 /* content equality test */
3433 static bool wqattrs_equal(const struct workqueue_attrs *a,
3434 			  const struct workqueue_attrs *b)
3435 {
3436 	if (a->nice != b->nice)
3437 		return false;
3438 	if (!cpumask_equal(a->cpumask, b->cpumask))
3439 		return false;
3440 	return true;
3441 }
3442 
3443 /**
3444  * init_worker_pool - initialize a newly zalloc'd worker_pool
3445  * @pool: worker_pool to initialize
3446  *
3447  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3448  *
3449  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3450  * inside @pool proper are initialized and put_unbound_pool() can be called
3451  * on @pool safely to release it.
3452  */
3453 static int init_worker_pool(struct worker_pool *pool)
3454 {
3455 	raw_spin_lock_init(&pool->lock);
3456 	pool->id = -1;
3457 	pool->cpu = -1;
3458 	pool->node = NUMA_NO_NODE;
3459 	pool->flags |= POOL_DISASSOCIATED;
3460 	pool->watchdog_ts = jiffies;
3461 	INIT_LIST_HEAD(&pool->worklist);
3462 	INIT_LIST_HEAD(&pool->idle_list);
3463 	hash_init(pool->busy_hash);
3464 
3465 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3466 
3467 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3468 
3469 	INIT_LIST_HEAD(&pool->workers);
3470 
3471 	ida_init(&pool->worker_ida);
3472 	INIT_HLIST_NODE(&pool->hash_node);
3473 	pool->refcnt = 1;
3474 
3475 	/* shouldn't fail above this point */
3476 	pool->attrs = alloc_workqueue_attrs();
3477 	if (!pool->attrs)
3478 		return -ENOMEM;
3479 	return 0;
3480 }
3481 
3482 #ifdef CONFIG_LOCKDEP
3483 static void wq_init_lockdep(struct workqueue_struct *wq)
3484 {
3485 	char *lock_name;
3486 
3487 	lockdep_register_key(&wq->key);
3488 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3489 	if (!lock_name)
3490 		lock_name = wq->name;
3491 
3492 	wq->lock_name = lock_name;
3493 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3494 }
3495 
3496 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3497 {
3498 	lockdep_unregister_key(&wq->key);
3499 }
3500 
3501 static void wq_free_lockdep(struct workqueue_struct *wq)
3502 {
3503 	if (wq->lock_name != wq->name)
3504 		kfree(wq->lock_name);
3505 }
3506 #else
3507 static void wq_init_lockdep(struct workqueue_struct *wq)
3508 {
3509 }
3510 
3511 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3512 {
3513 }
3514 
3515 static void wq_free_lockdep(struct workqueue_struct *wq)
3516 {
3517 }
3518 #endif
3519 
3520 static void rcu_free_wq(struct rcu_head *rcu)
3521 {
3522 	struct workqueue_struct *wq =
3523 		container_of(rcu, struct workqueue_struct, rcu);
3524 
3525 	wq_free_lockdep(wq);
3526 
3527 	if (!(wq->flags & WQ_UNBOUND))
3528 		free_percpu(wq->cpu_pwqs);
3529 	else
3530 		free_workqueue_attrs(wq->unbound_attrs);
3531 
3532 	kfree(wq);
3533 }
3534 
3535 static void rcu_free_pool(struct rcu_head *rcu)
3536 {
3537 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3538 
3539 	ida_destroy(&pool->worker_ida);
3540 	free_workqueue_attrs(pool->attrs);
3541 	kfree(pool);
3542 }
3543 
3544 /* This returns with the lock held on success (pool manager is inactive). */
3545 static bool wq_manager_inactive(struct worker_pool *pool)
3546 {
3547 	raw_spin_lock_irq(&pool->lock);
3548 
3549 	if (pool->flags & POOL_MANAGER_ACTIVE) {
3550 		raw_spin_unlock_irq(&pool->lock);
3551 		return false;
3552 	}
3553 	return true;
3554 }
3555 
3556 /**
3557  * put_unbound_pool - put a worker_pool
3558  * @pool: worker_pool to put
3559  *
3560  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3561  * safe manner.  get_unbound_pool() calls this function on its failure path
3562  * and this function should be able to release pools which went through,
3563  * successfully or not, init_worker_pool().
3564  *
3565  * Should be called with wq_pool_mutex held.
3566  */
3567 static void put_unbound_pool(struct worker_pool *pool)
3568 {
3569 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3570 	struct worker *worker;
3571 
3572 	lockdep_assert_held(&wq_pool_mutex);
3573 
3574 	if (--pool->refcnt)
3575 		return;
3576 
3577 	/* sanity checks */
3578 	if (WARN_ON(!(pool->cpu < 0)) ||
3579 	    WARN_ON(!list_empty(&pool->worklist)))
3580 		return;
3581 
3582 	/* release id and unhash */
3583 	if (pool->id >= 0)
3584 		idr_remove(&worker_pool_idr, pool->id);
3585 	hash_del(&pool->hash_node);
3586 
3587 	/*
3588 	 * Become the manager and destroy all workers.  This prevents
3589 	 * @pool's workers from blocking on attach_mutex.  We're the last
3590 	 * manager and @pool gets freed with the flag set.
3591 	 * Because of how wq_manager_inactive() works, we will hold the
3592 	 * spinlock after a successful wait.
3593 	 */
3594 	rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3595 			   TASK_UNINTERRUPTIBLE);
3596 	pool->flags |= POOL_MANAGER_ACTIVE;
3597 
3598 	while ((worker = first_idle_worker(pool)))
3599 		destroy_worker(worker);
3600 	WARN_ON(pool->nr_workers || pool->nr_idle);
3601 	raw_spin_unlock_irq(&pool->lock);
3602 
3603 	mutex_lock(&wq_pool_attach_mutex);
3604 	if (!list_empty(&pool->workers))
3605 		pool->detach_completion = &detach_completion;
3606 	mutex_unlock(&wq_pool_attach_mutex);
3607 
3608 	if (pool->detach_completion)
3609 		wait_for_completion(pool->detach_completion);
3610 
3611 	/* shut down the timers */
3612 	del_timer_sync(&pool->idle_timer);
3613 	del_timer_sync(&pool->mayday_timer);
3614 
3615 	/* RCU protected to allow dereferences from get_work_pool() */
3616 	call_rcu(&pool->rcu, rcu_free_pool);
3617 }
3618 
3619 /**
3620  * get_unbound_pool - get a worker_pool with the specified attributes
3621  * @attrs: the attributes of the worker_pool to get
3622  *
3623  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3624  * reference count and return it.  If there already is a matching
3625  * worker_pool, it will be used; otherwise, this function attempts to
3626  * create a new one.
3627  *
3628  * Should be called with wq_pool_mutex held.
3629  *
3630  * Return: On success, a worker_pool with the same attributes as @attrs.
3631  * On failure, %NULL.
3632  */
3633 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3634 {
3635 	u32 hash = wqattrs_hash(attrs);
3636 	struct worker_pool *pool;
3637 	int node;
3638 	int target_node = NUMA_NO_NODE;
3639 
3640 	lockdep_assert_held(&wq_pool_mutex);
3641 
3642 	/* do we already have a matching pool? */
3643 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3644 		if (wqattrs_equal(pool->attrs, attrs)) {
3645 			pool->refcnt++;
3646 			return pool;
3647 		}
3648 	}
3649 
3650 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3651 	if (wq_numa_enabled) {
3652 		for_each_node(node) {
3653 			if (cpumask_subset(attrs->cpumask,
3654 					   wq_numa_possible_cpumask[node])) {
3655 				target_node = node;
3656 				break;
3657 			}
3658 		}
3659 	}
3660 
3661 	/* nope, create a new one */
3662 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3663 	if (!pool || init_worker_pool(pool) < 0)
3664 		goto fail;
3665 
3666 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3667 	copy_workqueue_attrs(pool->attrs, attrs);
3668 	pool->node = target_node;
3669 
3670 	/*
3671 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3672 	 * 'struct workqueue_attrs' comments for detail.
3673 	 */
3674 	pool->attrs->no_numa = false;
3675 
3676 	if (worker_pool_assign_id(pool) < 0)
3677 		goto fail;
3678 
3679 	/* create and start the initial worker */
3680 	if (wq_online && !create_worker(pool))
3681 		goto fail;
3682 
3683 	/* install */
3684 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3685 
3686 	return pool;
3687 fail:
3688 	if (pool)
3689 		put_unbound_pool(pool);
3690 	return NULL;
3691 }
3692 
3693 static void rcu_free_pwq(struct rcu_head *rcu)
3694 {
3695 	kmem_cache_free(pwq_cache,
3696 			container_of(rcu, struct pool_workqueue, rcu));
3697 }
3698 
3699 /*
3700  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3701  * and needs to be destroyed.
3702  */
3703 static void pwq_unbound_release_workfn(struct work_struct *work)
3704 {
3705 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3706 						  unbound_release_work);
3707 	struct workqueue_struct *wq = pwq->wq;
3708 	struct worker_pool *pool = pwq->pool;
3709 	bool is_last = false;
3710 
3711 	/*
3712 	 * when @pwq is not linked, it doesn't hold any reference to the
3713 	 * @wq, and @wq is invalid to access.
3714 	 */
3715 	if (!list_empty(&pwq->pwqs_node)) {
3716 		if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3717 			return;
3718 
3719 		mutex_lock(&wq->mutex);
3720 		list_del_rcu(&pwq->pwqs_node);
3721 		is_last = list_empty(&wq->pwqs);
3722 		mutex_unlock(&wq->mutex);
3723 	}
3724 
3725 	mutex_lock(&wq_pool_mutex);
3726 	put_unbound_pool(pool);
3727 	mutex_unlock(&wq_pool_mutex);
3728 
3729 	call_rcu(&pwq->rcu, rcu_free_pwq);
3730 
3731 	/*
3732 	 * If we're the last pwq going away, @wq is already dead and no one
3733 	 * is gonna access it anymore.  Schedule RCU free.
3734 	 */
3735 	if (is_last) {
3736 		wq_unregister_lockdep(wq);
3737 		call_rcu(&wq->rcu, rcu_free_wq);
3738 	}
3739 }
3740 
3741 /**
3742  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3743  * @pwq: target pool_workqueue
3744  *
3745  * If @pwq isn't freezing, set @pwq->max_active to the associated
3746  * workqueue's saved_max_active and activate inactive work items
3747  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3748  */
3749 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3750 {
3751 	struct workqueue_struct *wq = pwq->wq;
3752 	bool freezable = wq->flags & WQ_FREEZABLE;
3753 	unsigned long flags;
3754 
3755 	/* for @wq->saved_max_active */
3756 	lockdep_assert_held(&wq->mutex);
3757 
3758 	/* fast exit for non-freezable wqs */
3759 	if (!freezable && pwq->max_active == wq->saved_max_active)
3760 		return;
3761 
3762 	/* this function can be called during early boot w/ irq disabled */
3763 	raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3764 
3765 	/*
3766 	 * During [un]freezing, the caller is responsible for ensuring that
3767 	 * this function is called at least once after @workqueue_freezing
3768 	 * is updated and visible.
3769 	 */
3770 	if (!freezable || !workqueue_freezing) {
3771 		bool kick = false;
3772 
3773 		pwq->max_active = wq->saved_max_active;
3774 
3775 		while (!list_empty(&pwq->inactive_works) &&
3776 		       pwq->nr_active < pwq->max_active) {
3777 			pwq_activate_first_inactive(pwq);
3778 			kick = true;
3779 		}
3780 
3781 		/*
3782 		 * Need to kick a worker after thawed or an unbound wq's
3783 		 * max_active is bumped. In realtime scenarios, always kicking a
3784 		 * worker will cause interference on the isolated cpu cores, so
3785 		 * let's kick iff work items were activated.
3786 		 */
3787 		if (kick)
3788 			wake_up_worker(pwq->pool);
3789 	} else {
3790 		pwq->max_active = 0;
3791 	}
3792 
3793 	raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3794 }
3795 
3796 /* initialize newly allocated @pwq which is associated with @wq and @pool */
3797 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3798 		     struct worker_pool *pool)
3799 {
3800 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3801 
3802 	memset(pwq, 0, sizeof(*pwq));
3803 
3804 	pwq->pool = pool;
3805 	pwq->wq = wq;
3806 	pwq->flush_color = -1;
3807 	pwq->refcnt = 1;
3808 	INIT_LIST_HEAD(&pwq->inactive_works);
3809 	INIT_LIST_HEAD(&pwq->pwqs_node);
3810 	INIT_LIST_HEAD(&pwq->mayday_node);
3811 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3812 }
3813 
3814 /* sync @pwq with the current state of its associated wq and link it */
3815 static void link_pwq(struct pool_workqueue *pwq)
3816 {
3817 	struct workqueue_struct *wq = pwq->wq;
3818 
3819 	lockdep_assert_held(&wq->mutex);
3820 
3821 	/* may be called multiple times, ignore if already linked */
3822 	if (!list_empty(&pwq->pwqs_node))
3823 		return;
3824 
3825 	/* set the matching work_color */
3826 	pwq->work_color = wq->work_color;
3827 
3828 	/* sync max_active to the current setting */
3829 	pwq_adjust_max_active(pwq);
3830 
3831 	/* link in @pwq */
3832 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3833 }
3834 
3835 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3836 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3837 					const struct workqueue_attrs *attrs)
3838 {
3839 	struct worker_pool *pool;
3840 	struct pool_workqueue *pwq;
3841 
3842 	lockdep_assert_held(&wq_pool_mutex);
3843 
3844 	pool = get_unbound_pool(attrs);
3845 	if (!pool)
3846 		return NULL;
3847 
3848 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3849 	if (!pwq) {
3850 		put_unbound_pool(pool);
3851 		return NULL;
3852 	}
3853 
3854 	init_pwq(pwq, wq, pool);
3855 	return pwq;
3856 }
3857 
3858 /**
3859  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3860  * @attrs: the wq_attrs of the default pwq of the target workqueue
3861  * @node: the target NUMA node
3862  * @cpu_going_down: if >= 0, the CPU to consider as offline
3863  * @cpumask: outarg, the resulting cpumask
3864  *
3865  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3866  * @cpu_going_down is >= 0, that cpu is considered offline during
3867  * calculation.  The result is stored in @cpumask.
3868  *
3869  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3870  * enabled and @node has online CPUs requested by @attrs, the returned
3871  * cpumask is the intersection of the possible CPUs of @node and
3872  * @attrs->cpumask.
3873  *
3874  * The caller is responsible for ensuring that the cpumask of @node stays
3875  * stable.
3876  *
3877  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3878  * %false if equal.
3879  */
3880 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3881 				 int cpu_going_down, cpumask_t *cpumask)
3882 {
3883 	if (!wq_numa_enabled || attrs->no_numa)
3884 		goto use_dfl;
3885 
3886 	/* does @node have any online CPUs @attrs wants? */
3887 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3888 	if (cpu_going_down >= 0)
3889 		cpumask_clear_cpu(cpu_going_down, cpumask);
3890 
3891 	if (cpumask_empty(cpumask))
3892 		goto use_dfl;
3893 
3894 	/* yeap, return possible CPUs in @node that @attrs wants */
3895 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3896 
3897 	if (cpumask_empty(cpumask)) {
3898 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3899 				"possible intersect\n");
3900 		return false;
3901 	}
3902 
3903 	return !cpumask_equal(cpumask, attrs->cpumask);
3904 
3905 use_dfl:
3906 	cpumask_copy(cpumask, attrs->cpumask);
3907 	return false;
3908 }
3909 
3910 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3911 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3912 						   int node,
3913 						   struct pool_workqueue *pwq)
3914 {
3915 	struct pool_workqueue *old_pwq;
3916 
3917 	lockdep_assert_held(&wq_pool_mutex);
3918 	lockdep_assert_held(&wq->mutex);
3919 
3920 	/* link_pwq() can handle duplicate calls */
3921 	link_pwq(pwq);
3922 
3923 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3924 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3925 	return old_pwq;
3926 }
3927 
3928 /* context to store the prepared attrs & pwqs before applying */
3929 struct apply_wqattrs_ctx {
3930 	struct workqueue_struct	*wq;		/* target workqueue */
3931 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3932 	struct list_head	list;		/* queued for batching commit */
3933 	struct pool_workqueue	*dfl_pwq;
3934 	struct pool_workqueue	*pwq_tbl[];
3935 };
3936 
3937 /* free the resources after success or abort */
3938 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3939 {
3940 	if (ctx) {
3941 		int node;
3942 
3943 		for_each_node(node)
3944 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3945 		put_pwq_unlocked(ctx->dfl_pwq);
3946 
3947 		free_workqueue_attrs(ctx->attrs);
3948 
3949 		kfree(ctx);
3950 	}
3951 }
3952 
3953 /* allocate the attrs and pwqs for later installation */
3954 static struct apply_wqattrs_ctx *
3955 apply_wqattrs_prepare(struct workqueue_struct *wq,
3956 		      const struct workqueue_attrs *attrs)
3957 {
3958 	struct apply_wqattrs_ctx *ctx;
3959 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3960 	int node;
3961 
3962 	lockdep_assert_held(&wq_pool_mutex);
3963 
3964 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3965 
3966 	new_attrs = alloc_workqueue_attrs();
3967 	tmp_attrs = alloc_workqueue_attrs();
3968 	if (!ctx || !new_attrs || !tmp_attrs)
3969 		goto out_free;
3970 
3971 	/*
3972 	 * Calculate the attrs of the default pwq.
3973 	 * If the user configured cpumask doesn't overlap with the
3974 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3975 	 */
3976 	copy_workqueue_attrs(new_attrs, attrs);
3977 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3978 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3979 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3980 
3981 	/*
3982 	 * We may create multiple pwqs with differing cpumasks.  Make a
3983 	 * copy of @new_attrs which will be modified and used to obtain
3984 	 * pools.
3985 	 */
3986 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3987 
3988 	/*
3989 	 * If something goes wrong during CPU up/down, we'll fall back to
3990 	 * the default pwq covering whole @attrs->cpumask.  Always create
3991 	 * it even if we don't use it immediately.
3992 	 */
3993 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3994 	if (!ctx->dfl_pwq)
3995 		goto out_free;
3996 
3997 	for_each_node(node) {
3998 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3999 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
4000 			if (!ctx->pwq_tbl[node])
4001 				goto out_free;
4002 		} else {
4003 			ctx->dfl_pwq->refcnt++;
4004 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
4005 		}
4006 	}
4007 
4008 	/* save the user configured attrs and sanitize it. */
4009 	copy_workqueue_attrs(new_attrs, attrs);
4010 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4011 	ctx->attrs = new_attrs;
4012 
4013 	ctx->wq = wq;
4014 	free_workqueue_attrs(tmp_attrs);
4015 	return ctx;
4016 
4017 out_free:
4018 	free_workqueue_attrs(tmp_attrs);
4019 	free_workqueue_attrs(new_attrs);
4020 	apply_wqattrs_cleanup(ctx);
4021 	return NULL;
4022 }
4023 
4024 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
4025 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4026 {
4027 	int node;
4028 
4029 	/* all pwqs have been created successfully, let's install'em */
4030 	mutex_lock(&ctx->wq->mutex);
4031 
4032 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4033 
4034 	/* save the previous pwq and install the new one */
4035 	for_each_node(node)
4036 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4037 							  ctx->pwq_tbl[node]);
4038 
4039 	/* @dfl_pwq might not have been used, ensure it's linked */
4040 	link_pwq(ctx->dfl_pwq);
4041 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4042 
4043 	mutex_unlock(&ctx->wq->mutex);
4044 }
4045 
4046 static void apply_wqattrs_lock(void)
4047 {
4048 	/* CPUs should stay stable across pwq creations and installations */
4049 	cpus_read_lock();
4050 	mutex_lock(&wq_pool_mutex);
4051 }
4052 
4053 static void apply_wqattrs_unlock(void)
4054 {
4055 	mutex_unlock(&wq_pool_mutex);
4056 	cpus_read_unlock();
4057 }
4058 
4059 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4060 					const struct workqueue_attrs *attrs)
4061 {
4062 	struct apply_wqattrs_ctx *ctx;
4063 
4064 	/* only unbound workqueues can change attributes */
4065 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4066 		return -EINVAL;
4067 
4068 	/* creating multiple pwqs breaks ordering guarantee */
4069 	if (!list_empty(&wq->pwqs)) {
4070 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4071 			return -EINVAL;
4072 
4073 		wq->flags &= ~__WQ_ORDERED;
4074 	}
4075 
4076 	ctx = apply_wqattrs_prepare(wq, attrs);
4077 	if (!ctx)
4078 		return -ENOMEM;
4079 
4080 	/* the ctx has been prepared successfully, let's commit it */
4081 	apply_wqattrs_commit(ctx);
4082 	apply_wqattrs_cleanup(ctx);
4083 
4084 	return 0;
4085 }
4086 
4087 /**
4088  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4089  * @wq: the target workqueue
4090  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4091  *
4092  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
4093  * machines, this function maps a separate pwq to each NUMA node with
4094  * possibles CPUs in @attrs->cpumask so that work items are affine to the
4095  * NUMA node it was issued on.  Older pwqs are released as in-flight work
4096  * items finish.  Note that a work item which repeatedly requeues itself
4097  * back-to-back will stay on its current pwq.
4098  *
4099  * Performs GFP_KERNEL allocations.
4100  *
4101  * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
4102  *
4103  * Return: 0 on success and -errno on failure.
4104  */
4105 int apply_workqueue_attrs(struct workqueue_struct *wq,
4106 			  const struct workqueue_attrs *attrs)
4107 {
4108 	int ret;
4109 
4110 	lockdep_assert_cpus_held();
4111 
4112 	mutex_lock(&wq_pool_mutex);
4113 	ret = apply_workqueue_attrs_locked(wq, attrs);
4114 	mutex_unlock(&wq_pool_mutex);
4115 
4116 	return ret;
4117 }
4118 
4119 /**
4120  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4121  * @wq: the target workqueue
4122  * @cpu: the CPU coming up or going down
4123  * @online: whether @cpu is coming up or going down
4124  *
4125  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4126  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4127  * @wq accordingly.
4128  *
4129  * If NUMA affinity can't be adjusted due to memory allocation failure, it
4130  * falls back to @wq->dfl_pwq which may not be optimal but is always
4131  * correct.
4132  *
4133  * Note that when the last allowed CPU of a NUMA node goes offline for a
4134  * workqueue with a cpumask spanning multiple nodes, the workers which were
4135  * already executing the work items for the workqueue will lose their CPU
4136  * affinity and may execute on any CPU.  This is similar to how per-cpu
4137  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4138  * affinity, it's the user's responsibility to flush the work item from
4139  * CPU_DOWN_PREPARE.
4140  */
4141 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4142 				   bool online)
4143 {
4144 	int node = cpu_to_node(cpu);
4145 	int cpu_off = online ? -1 : cpu;
4146 	struct pool_workqueue *old_pwq = NULL, *pwq;
4147 	struct workqueue_attrs *target_attrs;
4148 	cpumask_t *cpumask;
4149 
4150 	lockdep_assert_held(&wq_pool_mutex);
4151 
4152 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4153 	    wq->unbound_attrs->no_numa)
4154 		return;
4155 
4156 	/*
4157 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4158 	 * Let's use a preallocated one.  The following buf is protected by
4159 	 * CPU hotplug exclusion.
4160 	 */
4161 	target_attrs = wq_update_unbound_numa_attrs_buf;
4162 	cpumask = target_attrs->cpumask;
4163 
4164 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4165 	pwq = unbound_pwq_by_node(wq, node);
4166 
4167 	/*
4168 	 * Let's determine what needs to be done.  If the target cpumask is
4169 	 * different from the default pwq's, we need to compare it to @pwq's
4170 	 * and create a new one if they don't match.  If the target cpumask
4171 	 * equals the default pwq's, the default pwq should be used.
4172 	 */
4173 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4174 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4175 			return;
4176 	} else {
4177 		goto use_dfl_pwq;
4178 	}
4179 
4180 	/* create a new pwq */
4181 	pwq = alloc_unbound_pwq(wq, target_attrs);
4182 	if (!pwq) {
4183 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4184 			wq->name);
4185 		goto use_dfl_pwq;
4186 	}
4187 
4188 	/* Install the new pwq. */
4189 	mutex_lock(&wq->mutex);
4190 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4191 	goto out_unlock;
4192 
4193 use_dfl_pwq:
4194 	mutex_lock(&wq->mutex);
4195 	raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4196 	get_pwq(wq->dfl_pwq);
4197 	raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4198 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4199 out_unlock:
4200 	mutex_unlock(&wq->mutex);
4201 	put_pwq_unlocked(old_pwq);
4202 }
4203 
4204 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4205 {
4206 	bool highpri = wq->flags & WQ_HIGHPRI;
4207 	int cpu, ret;
4208 
4209 	if (!(wq->flags & WQ_UNBOUND)) {
4210 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4211 		if (!wq->cpu_pwqs)
4212 			return -ENOMEM;
4213 
4214 		for_each_possible_cpu(cpu) {
4215 			struct pool_workqueue *pwq =
4216 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4217 			struct worker_pool *cpu_pools =
4218 				per_cpu(cpu_worker_pools, cpu);
4219 
4220 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4221 
4222 			mutex_lock(&wq->mutex);
4223 			link_pwq(pwq);
4224 			mutex_unlock(&wq->mutex);
4225 		}
4226 		return 0;
4227 	}
4228 
4229 	cpus_read_lock();
4230 	if (wq->flags & __WQ_ORDERED) {
4231 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4232 		/* there should only be single pwq for ordering guarantee */
4233 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4234 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4235 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4236 	} else {
4237 		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4238 	}
4239 	cpus_read_unlock();
4240 
4241 	return ret;
4242 }
4243 
4244 static int wq_clamp_max_active(int max_active, unsigned int flags,
4245 			       const char *name)
4246 {
4247 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4248 
4249 	if (max_active < 1 || max_active > lim)
4250 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4251 			max_active, name, 1, lim);
4252 
4253 	return clamp_val(max_active, 1, lim);
4254 }
4255 
4256 /*
4257  * Workqueues which may be used during memory reclaim should have a rescuer
4258  * to guarantee forward progress.
4259  */
4260 static int init_rescuer(struct workqueue_struct *wq)
4261 {
4262 	struct worker *rescuer;
4263 	int ret;
4264 
4265 	if (!(wq->flags & WQ_MEM_RECLAIM))
4266 		return 0;
4267 
4268 	rescuer = alloc_worker(NUMA_NO_NODE);
4269 	if (!rescuer)
4270 		return -ENOMEM;
4271 
4272 	rescuer->rescue_wq = wq;
4273 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4274 	if (IS_ERR(rescuer->task)) {
4275 		ret = PTR_ERR(rescuer->task);
4276 		kfree(rescuer);
4277 		return ret;
4278 	}
4279 
4280 	wq->rescuer = rescuer;
4281 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4282 	wake_up_process(rescuer->task);
4283 
4284 	return 0;
4285 }
4286 
4287 __printf(1, 4)
4288 struct workqueue_struct *alloc_workqueue(const char *fmt,
4289 					 unsigned int flags,
4290 					 int max_active, ...)
4291 {
4292 	size_t tbl_size = 0;
4293 	va_list args;
4294 	struct workqueue_struct *wq;
4295 	struct pool_workqueue *pwq;
4296 
4297 	/*
4298 	 * Unbound && max_active == 1 used to imply ordered, which is no
4299 	 * longer the case on NUMA machines due to per-node pools.  While
4300 	 * alloc_ordered_workqueue() is the right way to create an ordered
4301 	 * workqueue, keep the previous behavior to avoid subtle breakages
4302 	 * on NUMA.
4303 	 */
4304 	if ((flags & WQ_UNBOUND) && max_active == 1)
4305 		flags |= __WQ_ORDERED;
4306 
4307 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4308 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4309 		flags |= WQ_UNBOUND;
4310 
4311 	/* allocate wq and format name */
4312 	if (flags & WQ_UNBOUND)
4313 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4314 
4315 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4316 	if (!wq)
4317 		return NULL;
4318 
4319 	if (flags & WQ_UNBOUND) {
4320 		wq->unbound_attrs = alloc_workqueue_attrs();
4321 		if (!wq->unbound_attrs)
4322 			goto err_free_wq;
4323 	}
4324 
4325 	va_start(args, max_active);
4326 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4327 	va_end(args);
4328 
4329 	max_active = max_active ?: WQ_DFL_ACTIVE;
4330 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4331 
4332 	/* init wq */
4333 	wq->flags = flags;
4334 	wq->saved_max_active = max_active;
4335 	mutex_init(&wq->mutex);
4336 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4337 	INIT_LIST_HEAD(&wq->pwqs);
4338 	INIT_LIST_HEAD(&wq->flusher_queue);
4339 	INIT_LIST_HEAD(&wq->flusher_overflow);
4340 	INIT_LIST_HEAD(&wq->maydays);
4341 
4342 	wq_init_lockdep(wq);
4343 	INIT_LIST_HEAD(&wq->list);
4344 
4345 	if (alloc_and_link_pwqs(wq) < 0)
4346 		goto err_unreg_lockdep;
4347 
4348 	if (wq_online && init_rescuer(wq) < 0)
4349 		goto err_destroy;
4350 
4351 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4352 		goto err_destroy;
4353 
4354 	/*
4355 	 * wq_pool_mutex protects global freeze state and workqueues list.
4356 	 * Grab it, adjust max_active and add the new @wq to workqueues
4357 	 * list.
4358 	 */
4359 	mutex_lock(&wq_pool_mutex);
4360 
4361 	mutex_lock(&wq->mutex);
4362 	for_each_pwq(pwq, wq)
4363 		pwq_adjust_max_active(pwq);
4364 	mutex_unlock(&wq->mutex);
4365 
4366 	list_add_tail_rcu(&wq->list, &workqueues);
4367 
4368 	mutex_unlock(&wq_pool_mutex);
4369 
4370 	return wq;
4371 
4372 err_unreg_lockdep:
4373 	wq_unregister_lockdep(wq);
4374 	wq_free_lockdep(wq);
4375 err_free_wq:
4376 	free_workqueue_attrs(wq->unbound_attrs);
4377 	kfree(wq);
4378 	return NULL;
4379 err_destroy:
4380 	destroy_workqueue(wq);
4381 	return NULL;
4382 }
4383 EXPORT_SYMBOL_GPL(alloc_workqueue);
4384 
4385 static bool pwq_busy(struct pool_workqueue *pwq)
4386 {
4387 	int i;
4388 
4389 	for (i = 0; i < WORK_NR_COLORS; i++)
4390 		if (pwq->nr_in_flight[i])
4391 			return true;
4392 
4393 	if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4394 		return true;
4395 	if (pwq->nr_active || !list_empty(&pwq->inactive_works))
4396 		return true;
4397 
4398 	return false;
4399 }
4400 
4401 /**
4402  * destroy_workqueue - safely terminate a workqueue
4403  * @wq: target workqueue
4404  *
4405  * Safely destroy a workqueue. All work currently pending will be done first.
4406  */
4407 void destroy_workqueue(struct workqueue_struct *wq)
4408 {
4409 	struct pool_workqueue *pwq;
4410 	int node;
4411 
4412 	/*
4413 	 * Remove it from sysfs first so that sanity check failure doesn't
4414 	 * lead to sysfs name conflicts.
4415 	 */
4416 	workqueue_sysfs_unregister(wq);
4417 
4418 	/* drain it before proceeding with destruction */
4419 	drain_workqueue(wq);
4420 
4421 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4422 	if (wq->rescuer) {
4423 		struct worker *rescuer = wq->rescuer;
4424 
4425 		/* this prevents new queueing */
4426 		raw_spin_lock_irq(&wq_mayday_lock);
4427 		wq->rescuer = NULL;
4428 		raw_spin_unlock_irq(&wq_mayday_lock);
4429 
4430 		/* rescuer will empty maydays list before exiting */
4431 		kthread_stop(rescuer->task);
4432 		kfree(rescuer);
4433 	}
4434 
4435 	/*
4436 	 * Sanity checks - grab all the locks so that we wait for all
4437 	 * in-flight operations which may do put_pwq().
4438 	 */
4439 	mutex_lock(&wq_pool_mutex);
4440 	mutex_lock(&wq->mutex);
4441 	for_each_pwq(pwq, wq) {
4442 		raw_spin_lock_irq(&pwq->pool->lock);
4443 		if (WARN_ON(pwq_busy(pwq))) {
4444 			pr_warn("%s: %s has the following busy pwq\n",
4445 				__func__, wq->name);
4446 			show_pwq(pwq);
4447 			raw_spin_unlock_irq(&pwq->pool->lock);
4448 			mutex_unlock(&wq->mutex);
4449 			mutex_unlock(&wq_pool_mutex);
4450 			show_workqueue_state();
4451 			return;
4452 		}
4453 		raw_spin_unlock_irq(&pwq->pool->lock);
4454 	}
4455 	mutex_unlock(&wq->mutex);
4456 
4457 	/*
4458 	 * wq list is used to freeze wq, remove from list after
4459 	 * flushing is complete in case freeze races us.
4460 	 */
4461 	list_del_rcu(&wq->list);
4462 	mutex_unlock(&wq_pool_mutex);
4463 
4464 	if (!(wq->flags & WQ_UNBOUND)) {
4465 		wq_unregister_lockdep(wq);
4466 		/*
4467 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4468 		 * schedule RCU free.
4469 		 */
4470 		call_rcu(&wq->rcu, rcu_free_wq);
4471 	} else {
4472 		/*
4473 		 * We're the sole accessor of @wq at this point.  Directly
4474 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4475 		 * @wq will be freed when the last pwq is released.
4476 		 */
4477 		for_each_node(node) {
4478 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4479 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4480 			put_pwq_unlocked(pwq);
4481 		}
4482 
4483 		/*
4484 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4485 		 * put.  Don't access it afterwards.
4486 		 */
4487 		pwq = wq->dfl_pwq;
4488 		wq->dfl_pwq = NULL;
4489 		put_pwq_unlocked(pwq);
4490 	}
4491 }
4492 EXPORT_SYMBOL_GPL(destroy_workqueue);
4493 
4494 /**
4495  * workqueue_set_max_active - adjust max_active of a workqueue
4496  * @wq: target workqueue
4497  * @max_active: new max_active value.
4498  *
4499  * Set max_active of @wq to @max_active.
4500  *
4501  * CONTEXT:
4502  * Don't call from IRQ context.
4503  */
4504 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4505 {
4506 	struct pool_workqueue *pwq;
4507 
4508 	/* disallow meddling with max_active for ordered workqueues */
4509 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4510 		return;
4511 
4512 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4513 
4514 	mutex_lock(&wq->mutex);
4515 
4516 	wq->flags &= ~__WQ_ORDERED;
4517 	wq->saved_max_active = max_active;
4518 
4519 	for_each_pwq(pwq, wq)
4520 		pwq_adjust_max_active(pwq);
4521 
4522 	mutex_unlock(&wq->mutex);
4523 }
4524 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4525 
4526 /**
4527  * current_work - retrieve %current task's work struct
4528  *
4529  * Determine if %current task is a workqueue worker and what it's working on.
4530  * Useful to find out the context that the %current task is running in.
4531  *
4532  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4533  */
4534 struct work_struct *current_work(void)
4535 {
4536 	struct worker *worker = current_wq_worker();
4537 
4538 	return worker ? worker->current_work : NULL;
4539 }
4540 EXPORT_SYMBOL(current_work);
4541 
4542 /**
4543  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4544  *
4545  * Determine whether %current is a workqueue rescuer.  Can be used from
4546  * work functions to determine whether it's being run off the rescuer task.
4547  *
4548  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4549  */
4550 bool current_is_workqueue_rescuer(void)
4551 {
4552 	struct worker *worker = current_wq_worker();
4553 
4554 	return worker && worker->rescue_wq;
4555 }
4556 
4557 /**
4558  * workqueue_congested - test whether a workqueue is congested
4559  * @cpu: CPU in question
4560  * @wq: target workqueue
4561  *
4562  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4563  * no synchronization around this function and the test result is
4564  * unreliable and only useful as advisory hints or for debugging.
4565  *
4566  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4567  * Note that both per-cpu and unbound workqueues may be associated with
4568  * multiple pool_workqueues which have separate congested states.  A
4569  * workqueue being congested on one CPU doesn't mean the workqueue is also
4570  * contested on other CPUs / NUMA nodes.
4571  *
4572  * Return:
4573  * %true if congested, %false otherwise.
4574  */
4575 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4576 {
4577 	struct pool_workqueue *pwq;
4578 	bool ret;
4579 
4580 	rcu_read_lock();
4581 	preempt_disable();
4582 
4583 	if (cpu == WORK_CPU_UNBOUND)
4584 		cpu = smp_processor_id();
4585 
4586 	if (!(wq->flags & WQ_UNBOUND))
4587 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4588 	else
4589 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4590 
4591 	ret = !list_empty(&pwq->inactive_works);
4592 	preempt_enable();
4593 	rcu_read_unlock();
4594 
4595 	return ret;
4596 }
4597 EXPORT_SYMBOL_GPL(workqueue_congested);
4598 
4599 /**
4600  * work_busy - test whether a work is currently pending or running
4601  * @work: the work to be tested
4602  *
4603  * Test whether @work is currently pending or running.  There is no
4604  * synchronization around this function and the test result is
4605  * unreliable and only useful as advisory hints or for debugging.
4606  *
4607  * Return:
4608  * OR'd bitmask of WORK_BUSY_* bits.
4609  */
4610 unsigned int work_busy(struct work_struct *work)
4611 {
4612 	struct worker_pool *pool;
4613 	unsigned long flags;
4614 	unsigned int ret = 0;
4615 
4616 	if (work_pending(work))
4617 		ret |= WORK_BUSY_PENDING;
4618 
4619 	rcu_read_lock();
4620 	pool = get_work_pool(work);
4621 	if (pool) {
4622 		raw_spin_lock_irqsave(&pool->lock, flags);
4623 		if (find_worker_executing_work(pool, work))
4624 			ret |= WORK_BUSY_RUNNING;
4625 		raw_spin_unlock_irqrestore(&pool->lock, flags);
4626 	}
4627 	rcu_read_unlock();
4628 
4629 	return ret;
4630 }
4631 EXPORT_SYMBOL_GPL(work_busy);
4632 
4633 /**
4634  * set_worker_desc - set description for the current work item
4635  * @fmt: printf-style format string
4636  * @...: arguments for the format string
4637  *
4638  * This function can be called by a running work function to describe what
4639  * the work item is about.  If the worker task gets dumped, this
4640  * information will be printed out together to help debugging.  The
4641  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4642  */
4643 void set_worker_desc(const char *fmt, ...)
4644 {
4645 	struct worker *worker = current_wq_worker();
4646 	va_list args;
4647 
4648 	if (worker) {
4649 		va_start(args, fmt);
4650 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4651 		va_end(args);
4652 	}
4653 }
4654 EXPORT_SYMBOL_GPL(set_worker_desc);
4655 
4656 /**
4657  * print_worker_info - print out worker information and description
4658  * @log_lvl: the log level to use when printing
4659  * @task: target task
4660  *
4661  * If @task is a worker and currently executing a work item, print out the
4662  * name of the workqueue being serviced and worker description set with
4663  * set_worker_desc() by the currently executing work item.
4664  *
4665  * This function can be safely called on any task as long as the
4666  * task_struct itself is accessible.  While safe, this function isn't
4667  * synchronized and may print out mixups or garbages of limited length.
4668  */
4669 void print_worker_info(const char *log_lvl, struct task_struct *task)
4670 {
4671 	work_func_t *fn = NULL;
4672 	char name[WQ_NAME_LEN] = { };
4673 	char desc[WORKER_DESC_LEN] = { };
4674 	struct pool_workqueue *pwq = NULL;
4675 	struct workqueue_struct *wq = NULL;
4676 	struct worker *worker;
4677 
4678 	if (!(task->flags & PF_WQ_WORKER))
4679 		return;
4680 
4681 	/*
4682 	 * This function is called without any synchronization and @task
4683 	 * could be in any state.  Be careful with dereferences.
4684 	 */
4685 	worker = kthread_probe_data(task);
4686 
4687 	/*
4688 	 * Carefully copy the associated workqueue's workfn, name and desc.
4689 	 * Keep the original last '\0' in case the original is garbage.
4690 	 */
4691 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4692 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4693 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4694 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4695 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4696 
4697 	if (fn || name[0] || desc[0]) {
4698 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4699 		if (strcmp(name, desc))
4700 			pr_cont(" (%s)", desc);
4701 		pr_cont("\n");
4702 	}
4703 }
4704 
4705 static void pr_cont_pool_info(struct worker_pool *pool)
4706 {
4707 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4708 	if (pool->node != NUMA_NO_NODE)
4709 		pr_cont(" node=%d", pool->node);
4710 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4711 }
4712 
4713 static void pr_cont_work(bool comma, struct work_struct *work)
4714 {
4715 	if (work->func == wq_barrier_func) {
4716 		struct wq_barrier *barr;
4717 
4718 		barr = container_of(work, struct wq_barrier, work);
4719 
4720 		pr_cont("%s BAR(%d)", comma ? "," : "",
4721 			task_pid_nr(barr->task));
4722 	} else {
4723 		pr_cont("%s %ps", comma ? "," : "", work->func);
4724 	}
4725 }
4726 
4727 static void show_pwq(struct pool_workqueue *pwq)
4728 {
4729 	struct worker_pool *pool = pwq->pool;
4730 	struct work_struct *work;
4731 	struct worker *worker;
4732 	bool has_in_flight = false, has_pending = false;
4733 	int bkt;
4734 
4735 	pr_info("  pwq %d:", pool->id);
4736 	pr_cont_pool_info(pool);
4737 
4738 	pr_cont(" active=%d/%d refcnt=%d%s\n",
4739 		pwq->nr_active, pwq->max_active, pwq->refcnt,
4740 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4741 
4742 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4743 		if (worker->current_pwq == pwq) {
4744 			has_in_flight = true;
4745 			break;
4746 		}
4747 	}
4748 	if (has_in_flight) {
4749 		bool comma = false;
4750 
4751 		pr_info("    in-flight:");
4752 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4753 			if (worker->current_pwq != pwq)
4754 				continue;
4755 
4756 			pr_cont("%s %d%s:%ps", comma ? "," : "",
4757 				task_pid_nr(worker->task),
4758 				worker->rescue_wq ? "(RESCUER)" : "",
4759 				worker->current_func);
4760 			list_for_each_entry(work, &worker->scheduled, entry)
4761 				pr_cont_work(false, work);
4762 			comma = true;
4763 		}
4764 		pr_cont("\n");
4765 	}
4766 
4767 	list_for_each_entry(work, &pool->worklist, entry) {
4768 		if (get_work_pwq(work) == pwq) {
4769 			has_pending = true;
4770 			break;
4771 		}
4772 	}
4773 	if (has_pending) {
4774 		bool comma = false;
4775 
4776 		pr_info("    pending:");
4777 		list_for_each_entry(work, &pool->worklist, entry) {
4778 			if (get_work_pwq(work) != pwq)
4779 				continue;
4780 
4781 			pr_cont_work(comma, work);
4782 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4783 		}
4784 		pr_cont("\n");
4785 	}
4786 
4787 	if (!list_empty(&pwq->inactive_works)) {
4788 		bool comma = false;
4789 
4790 		pr_info("    inactive:");
4791 		list_for_each_entry(work, &pwq->inactive_works, entry) {
4792 			pr_cont_work(comma, work);
4793 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4794 		}
4795 		pr_cont("\n");
4796 	}
4797 }
4798 
4799 /**
4800  * show_workqueue_state - dump workqueue state
4801  *
4802  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4803  * all busy workqueues and pools.
4804  */
4805 void show_workqueue_state(void)
4806 {
4807 	struct workqueue_struct *wq;
4808 	struct worker_pool *pool;
4809 	unsigned long flags;
4810 	int pi;
4811 
4812 	rcu_read_lock();
4813 
4814 	pr_info("Showing busy workqueues and worker pools:\n");
4815 
4816 	list_for_each_entry_rcu(wq, &workqueues, list) {
4817 		struct pool_workqueue *pwq;
4818 		bool idle = true;
4819 
4820 		for_each_pwq(pwq, wq) {
4821 			if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4822 				idle = false;
4823 				break;
4824 			}
4825 		}
4826 		if (idle)
4827 			continue;
4828 
4829 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4830 
4831 		for_each_pwq(pwq, wq) {
4832 			raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4833 			if (pwq->nr_active || !list_empty(&pwq->inactive_works))
4834 				show_pwq(pwq);
4835 			raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4836 			/*
4837 			 * We could be printing a lot from atomic context, e.g.
4838 			 * sysrq-t -> show_workqueue_state(). Avoid triggering
4839 			 * hard lockup.
4840 			 */
4841 			touch_nmi_watchdog();
4842 		}
4843 	}
4844 
4845 	for_each_pool(pool, pi) {
4846 		struct worker *worker;
4847 		bool first = true;
4848 
4849 		raw_spin_lock_irqsave(&pool->lock, flags);
4850 		if (pool->nr_workers == pool->nr_idle)
4851 			goto next_pool;
4852 
4853 		pr_info("pool %d:", pool->id);
4854 		pr_cont_pool_info(pool);
4855 		pr_cont(" hung=%us workers=%d",
4856 			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4857 			pool->nr_workers);
4858 		if (pool->manager)
4859 			pr_cont(" manager: %d",
4860 				task_pid_nr(pool->manager->task));
4861 		list_for_each_entry(worker, &pool->idle_list, entry) {
4862 			pr_cont(" %s%d", first ? "idle: " : "",
4863 				task_pid_nr(worker->task));
4864 			first = false;
4865 		}
4866 		pr_cont("\n");
4867 	next_pool:
4868 		raw_spin_unlock_irqrestore(&pool->lock, flags);
4869 		/*
4870 		 * We could be printing a lot from atomic context, e.g.
4871 		 * sysrq-t -> show_workqueue_state(). Avoid triggering
4872 		 * hard lockup.
4873 		 */
4874 		touch_nmi_watchdog();
4875 	}
4876 
4877 	rcu_read_unlock();
4878 }
4879 
4880 /* used to show worker information through /proc/PID/{comm,stat,status} */
4881 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4882 {
4883 	int off;
4884 
4885 	/* always show the actual comm */
4886 	off = strscpy(buf, task->comm, size);
4887 	if (off < 0)
4888 		return;
4889 
4890 	/* stabilize PF_WQ_WORKER and worker pool association */
4891 	mutex_lock(&wq_pool_attach_mutex);
4892 
4893 	if (task->flags & PF_WQ_WORKER) {
4894 		struct worker *worker = kthread_data(task);
4895 		struct worker_pool *pool = worker->pool;
4896 
4897 		if (pool) {
4898 			raw_spin_lock_irq(&pool->lock);
4899 			/*
4900 			 * ->desc tracks information (wq name or
4901 			 * set_worker_desc()) for the latest execution.  If
4902 			 * current, prepend '+', otherwise '-'.
4903 			 */
4904 			if (worker->desc[0] != '\0') {
4905 				if (worker->current_work)
4906 					scnprintf(buf + off, size - off, "+%s",
4907 						  worker->desc);
4908 				else
4909 					scnprintf(buf + off, size - off, "-%s",
4910 						  worker->desc);
4911 			}
4912 			raw_spin_unlock_irq(&pool->lock);
4913 		}
4914 	}
4915 
4916 	mutex_unlock(&wq_pool_attach_mutex);
4917 }
4918 
4919 #ifdef CONFIG_SMP
4920 
4921 /*
4922  * CPU hotplug.
4923  *
4924  * There are two challenges in supporting CPU hotplug.  Firstly, there
4925  * are a lot of assumptions on strong associations among work, pwq and
4926  * pool which make migrating pending and scheduled works very
4927  * difficult to implement without impacting hot paths.  Secondly,
4928  * worker pools serve mix of short, long and very long running works making
4929  * blocked draining impractical.
4930  *
4931  * This is solved by allowing the pools to be disassociated from the CPU
4932  * running as an unbound one and allowing it to be reattached later if the
4933  * cpu comes back online.
4934  */
4935 
4936 static void unbind_workers(int cpu)
4937 {
4938 	struct worker_pool *pool;
4939 	struct worker *worker;
4940 
4941 	for_each_cpu_worker_pool(pool, cpu) {
4942 		mutex_lock(&wq_pool_attach_mutex);
4943 		raw_spin_lock_irq(&pool->lock);
4944 
4945 		/*
4946 		 * We've blocked all attach/detach operations. Make all workers
4947 		 * unbound and set DISASSOCIATED.  Before this, all workers
4948 		 * except for the ones which are still executing works from
4949 		 * before the last CPU down must be on the cpu.  After
4950 		 * this, they may become diasporas.
4951 		 */
4952 		for_each_pool_worker(worker, pool)
4953 			worker->flags |= WORKER_UNBOUND;
4954 
4955 		pool->flags |= POOL_DISASSOCIATED;
4956 
4957 		raw_spin_unlock_irq(&pool->lock);
4958 
4959 		for_each_pool_worker(worker, pool) {
4960 			kthread_set_per_cpu(worker->task, -1);
4961 			WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
4962 		}
4963 
4964 		mutex_unlock(&wq_pool_attach_mutex);
4965 
4966 		/*
4967 		 * Call schedule() so that we cross rq->lock and thus can
4968 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4969 		 * This is necessary as scheduler callbacks may be invoked
4970 		 * from other cpus.
4971 		 */
4972 		schedule();
4973 
4974 		/*
4975 		 * Sched callbacks are disabled now.  Zap nr_running.
4976 		 * After this, nr_running stays zero and need_more_worker()
4977 		 * and keep_working() are always true as long as the
4978 		 * worklist is not empty.  This pool now behaves as an
4979 		 * unbound (in terms of concurrency management) pool which
4980 		 * are served by workers tied to the pool.
4981 		 */
4982 		atomic_set(&pool->nr_running, 0);
4983 
4984 		/*
4985 		 * With concurrency management just turned off, a busy
4986 		 * worker blocking could lead to lengthy stalls.  Kick off
4987 		 * unbound chain execution of currently pending work items.
4988 		 */
4989 		raw_spin_lock_irq(&pool->lock);
4990 		wake_up_worker(pool);
4991 		raw_spin_unlock_irq(&pool->lock);
4992 	}
4993 }
4994 
4995 /**
4996  * rebind_workers - rebind all workers of a pool to the associated CPU
4997  * @pool: pool of interest
4998  *
4999  * @pool->cpu is coming online.  Rebind all workers to the CPU.
5000  */
5001 static void rebind_workers(struct worker_pool *pool)
5002 {
5003 	struct worker *worker;
5004 
5005 	lockdep_assert_held(&wq_pool_attach_mutex);
5006 
5007 	/*
5008 	 * Restore CPU affinity of all workers.  As all idle workers should
5009 	 * be on the run-queue of the associated CPU before any local
5010 	 * wake-ups for concurrency management happen, restore CPU affinity
5011 	 * of all workers first and then clear UNBOUND.  As we're called
5012 	 * from CPU_ONLINE, the following shouldn't fail.
5013 	 */
5014 	for_each_pool_worker(worker, pool) {
5015 		kthread_set_per_cpu(worker->task, pool->cpu);
5016 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5017 						  pool->attrs->cpumask) < 0);
5018 	}
5019 
5020 	raw_spin_lock_irq(&pool->lock);
5021 
5022 	pool->flags &= ~POOL_DISASSOCIATED;
5023 
5024 	for_each_pool_worker(worker, pool) {
5025 		unsigned int worker_flags = worker->flags;
5026 
5027 		/*
5028 		 * A bound idle worker should actually be on the runqueue
5029 		 * of the associated CPU for local wake-ups targeting it to
5030 		 * work.  Kick all idle workers so that they migrate to the
5031 		 * associated CPU.  Doing this in the same loop as
5032 		 * replacing UNBOUND with REBOUND is safe as no worker will
5033 		 * be bound before @pool->lock is released.
5034 		 */
5035 		if (worker_flags & WORKER_IDLE)
5036 			wake_up_process(worker->task);
5037 
5038 		/*
5039 		 * We want to clear UNBOUND but can't directly call
5040 		 * worker_clr_flags() or adjust nr_running.  Atomically
5041 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5042 		 * @worker will clear REBOUND using worker_clr_flags() when
5043 		 * it initiates the next execution cycle thus restoring
5044 		 * concurrency management.  Note that when or whether
5045 		 * @worker clears REBOUND doesn't affect correctness.
5046 		 *
5047 		 * WRITE_ONCE() is necessary because @worker->flags may be
5048 		 * tested without holding any lock in
5049 		 * wq_worker_running().  Without it, NOT_RUNNING test may
5050 		 * fail incorrectly leading to premature concurrency
5051 		 * management operations.
5052 		 */
5053 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5054 		worker_flags |= WORKER_REBOUND;
5055 		worker_flags &= ~WORKER_UNBOUND;
5056 		WRITE_ONCE(worker->flags, worker_flags);
5057 	}
5058 
5059 	raw_spin_unlock_irq(&pool->lock);
5060 }
5061 
5062 /**
5063  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5064  * @pool: unbound pool of interest
5065  * @cpu: the CPU which is coming up
5066  *
5067  * An unbound pool may end up with a cpumask which doesn't have any online
5068  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
5069  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
5070  * online CPU before, cpus_allowed of all its workers should be restored.
5071  */
5072 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5073 {
5074 	static cpumask_t cpumask;
5075 	struct worker *worker;
5076 
5077 	lockdep_assert_held(&wq_pool_attach_mutex);
5078 
5079 	/* is @cpu allowed for @pool? */
5080 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5081 		return;
5082 
5083 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5084 
5085 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
5086 	for_each_pool_worker(worker, pool)
5087 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5088 }
5089 
5090 int workqueue_prepare_cpu(unsigned int cpu)
5091 {
5092 	struct worker_pool *pool;
5093 
5094 	for_each_cpu_worker_pool(pool, cpu) {
5095 		if (pool->nr_workers)
5096 			continue;
5097 		if (!create_worker(pool))
5098 			return -ENOMEM;
5099 	}
5100 	return 0;
5101 }
5102 
5103 int workqueue_online_cpu(unsigned int cpu)
5104 {
5105 	struct worker_pool *pool;
5106 	struct workqueue_struct *wq;
5107 	int pi;
5108 
5109 	mutex_lock(&wq_pool_mutex);
5110 
5111 	for_each_pool(pool, pi) {
5112 		mutex_lock(&wq_pool_attach_mutex);
5113 
5114 		if (pool->cpu == cpu)
5115 			rebind_workers(pool);
5116 		else if (pool->cpu < 0)
5117 			restore_unbound_workers_cpumask(pool, cpu);
5118 
5119 		mutex_unlock(&wq_pool_attach_mutex);
5120 	}
5121 
5122 	/* update NUMA affinity of unbound workqueues */
5123 	list_for_each_entry(wq, &workqueues, list)
5124 		wq_update_unbound_numa(wq, cpu, true);
5125 
5126 	mutex_unlock(&wq_pool_mutex);
5127 	return 0;
5128 }
5129 
5130 int workqueue_offline_cpu(unsigned int cpu)
5131 {
5132 	struct workqueue_struct *wq;
5133 
5134 	/* unbinding per-cpu workers should happen on the local CPU */
5135 	if (WARN_ON(cpu != smp_processor_id()))
5136 		return -1;
5137 
5138 	unbind_workers(cpu);
5139 
5140 	/* update NUMA affinity of unbound workqueues */
5141 	mutex_lock(&wq_pool_mutex);
5142 	list_for_each_entry(wq, &workqueues, list)
5143 		wq_update_unbound_numa(wq, cpu, false);
5144 	mutex_unlock(&wq_pool_mutex);
5145 
5146 	return 0;
5147 }
5148 
5149 struct work_for_cpu {
5150 	struct work_struct work;
5151 	long (*fn)(void *);
5152 	void *arg;
5153 	long ret;
5154 };
5155 
5156 static void work_for_cpu_fn(struct work_struct *work)
5157 {
5158 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5159 
5160 	wfc->ret = wfc->fn(wfc->arg);
5161 }
5162 
5163 /**
5164  * work_on_cpu - run a function in thread context on a particular cpu
5165  * @cpu: the cpu to run on
5166  * @fn: the function to run
5167  * @arg: the function arg
5168  *
5169  * It is up to the caller to ensure that the cpu doesn't go offline.
5170  * The caller must not hold any locks which would prevent @fn from completing.
5171  *
5172  * Return: The value @fn returns.
5173  */
5174 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5175 {
5176 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5177 
5178 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5179 	schedule_work_on(cpu, &wfc.work);
5180 	flush_work(&wfc.work);
5181 	destroy_work_on_stack(&wfc.work);
5182 	return wfc.ret;
5183 }
5184 EXPORT_SYMBOL_GPL(work_on_cpu);
5185 
5186 /**
5187  * work_on_cpu_safe - run a function in thread context on a particular cpu
5188  * @cpu: the cpu to run on
5189  * @fn:  the function to run
5190  * @arg: the function argument
5191  *
5192  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5193  * any locks which would prevent @fn from completing.
5194  *
5195  * Return: The value @fn returns.
5196  */
5197 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5198 {
5199 	long ret = -ENODEV;
5200 
5201 	cpus_read_lock();
5202 	if (cpu_online(cpu))
5203 		ret = work_on_cpu(cpu, fn, arg);
5204 	cpus_read_unlock();
5205 	return ret;
5206 }
5207 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5208 #endif /* CONFIG_SMP */
5209 
5210 #ifdef CONFIG_FREEZER
5211 
5212 /**
5213  * freeze_workqueues_begin - begin freezing workqueues
5214  *
5215  * Start freezing workqueues.  After this function returns, all freezable
5216  * workqueues will queue new works to their inactive_works list instead of
5217  * pool->worklist.
5218  *
5219  * CONTEXT:
5220  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5221  */
5222 void freeze_workqueues_begin(void)
5223 {
5224 	struct workqueue_struct *wq;
5225 	struct pool_workqueue *pwq;
5226 
5227 	mutex_lock(&wq_pool_mutex);
5228 
5229 	WARN_ON_ONCE(workqueue_freezing);
5230 	workqueue_freezing = true;
5231 
5232 	list_for_each_entry(wq, &workqueues, list) {
5233 		mutex_lock(&wq->mutex);
5234 		for_each_pwq(pwq, wq)
5235 			pwq_adjust_max_active(pwq);
5236 		mutex_unlock(&wq->mutex);
5237 	}
5238 
5239 	mutex_unlock(&wq_pool_mutex);
5240 }
5241 
5242 /**
5243  * freeze_workqueues_busy - are freezable workqueues still busy?
5244  *
5245  * Check whether freezing is complete.  This function must be called
5246  * between freeze_workqueues_begin() and thaw_workqueues().
5247  *
5248  * CONTEXT:
5249  * Grabs and releases wq_pool_mutex.
5250  *
5251  * Return:
5252  * %true if some freezable workqueues are still busy.  %false if freezing
5253  * is complete.
5254  */
5255 bool freeze_workqueues_busy(void)
5256 {
5257 	bool busy = false;
5258 	struct workqueue_struct *wq;
5259 	struct pool_workqueue *pwq;
5260 
5261 	mutex_lock(&wq_pool_mutex);
5262 
5263 	WARN_ON_ONCE(!workqueue_freezing);
5264 
5265 	list_for_each_entry(wq, &workqueues, list) {
5266 		if (!(wq->flags & WQ_FREEZABLE))
5267 			continue;
5268 		/*
5269 		 * nr_active is monotonically decreasing.  It's safe
5270 		 * to peek without lock.
5271 		 */
5272 		rcu_read_lock();
5273 		for_each_pwq(pwq, wq) {
5274 			WARN_ON_ONCE(pwq->nr_active < 0);
5275 			if (pwq->nr_active) {
5276 				busy = true;
5277 				rcu_read_unlock();
5278 				goto out_unlock;
5279 			}
5280 		}
5281 		rcu_read_unlock();
5282 	}
5283 out_unlock:
5284 	mutex_unlock(&wq_pool_mutex);
5285 	return busy;
5286 }
5287 
5288 /**
5289  * thaw_workqueues - thaw workqueues
5290  *
5291  * Thaw workqueues.  Normal queueing is restored and all collected
5292  * frozen works are transferred to their respective pool worklists.
5293  *
5294  * CONTEXT:
5295  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5296  */
5297 void thaw_workqueues(void)
5298 {
5299 	struct workqueue_struct *wq;
5300 	struct pool_workqueue *pwq;
5301 
5302 	mutex_lock(&wq_pool_mutex);
5303 
5304 	if (!workqueue_freezing)
5305 		goto out_unlock;
5306 
5307 	workqueue_freezing = false;
5308 
5309 	/* restore max_active and repopulate worklist */
5310 	list_for_each_entry(wq, &workqueues, list) {
5311 		mutex_lock(&wq->mutex);
5312 		for_each_pwq(pwq, wq)
5313 			pwq_adjust_max_active(pwq);
5314 		mutex_unlock(&wq->mutex);
5315 	}
5316 
5317 out_unlock:
5318 	mutex_unlock(&wq_pool_mutex);
5319 }
5320 #endif /* CONFIG_FREEZER */
5321 
5322 static int workqueue_apply_unbound_cpumask(void)
5323 {
5324 	LIST_HEAD(ctxs);
5325 	int ret = 0;
5326 	struct workqueue_struct *wq;
5327 	struct apply_wqattrs_ctx *ctx, *n;
5328 
5329 	lockdep_assert_held(&wq_pool_mutex);
5330 
5331 	list_for_each_entry(wq, &workqueues, list) {
5332 		if (!(wq->flags & WQ_UNBOUND))
5333 			continue;
5334 		/* creating multiple pwqs breaks ordering guarantee */
5335 		if (wq->flags & __WQ_ORDERED)
5336 			continue;
5337 
5338 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5339 		if (!ctx) {
5340 			ret = -ENOMEM;
5341 			break;
5342 		}
5343 
5344 		list_add_tail(&ctx->list, &ctxs);
5345 	}
5346 
5347 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5348 		if (!ret)
5349 			apply_wqattrs_commit(ctx);
5350 		apply_wqattrs_cleanup(ctx);
5351 	}
5352 
5353 	return ret;
5354 }
5355 
5356 /**
5357  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5358  *  @cpumask: the cpumask to set
5359  *
5360  *  The low-level workqueues cpumask is a global cpumask that limits
5361  *  the affinity of all unbound workqueues.  This function check the @cpumask
5362  *  and apply it to all unbound workqueues and updates all pwqs of them.
5363  *
5364  *  Return:	0	- Success
5365  *  		-EINVAL	- Invalid @cpumask
5366  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5367  */
5368 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5369 {
5370 	int ret = -EINVAL;
5371 	cpumask_var_t saved_cpumask;
5372 
5373 	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5374 		return -ENOMEM;
5375 
5376 	/*
5377 	 * Not excluding isolated cpus on purpose.
5378 	 * If the user wishes to include them, we allow that.
5379 	 */
5380 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5381 	if (!cpumask_empty(cpumask)) {
5382 		apply_wqattrs_lock();
5383 
5384 		/* save the old wq_unbound_cpumask. */
5385 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5386 
5387 		/* update wq_unbound_cpumask at first and apply it to wqs. */
5388 		cpumask_copy(wq_unbound_cpumask, cpumask);
5389 		ret = workqueue_apply_unbound_cpumask();
5390 
5391 		/* restore the wq_unbound_cpumask when failed. */
5392 		if (ret < 0)
5393 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5394 
5395 		apply_wqattrs_unlock();
5396 	}
5397 
5398 	free_cpumask_var(saved_cpumask);
5399 	return ret;
5400 }
5401 
5402 #ifdef CONFIG_SYSFS
5403 /*
5404  * Workqueues with WQ_SYSFS flag set is visible to userland via
5405  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5406  * following attributes.
5407  *
5408  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5409  *  max_active	RW int	: maximum number of in-flight work items
5410  *
5411  * Unbound workqueues have the following extra attributes.
5412  *
5413  *  pool_ids	RO int	: the associated pool IDs for each node
5414  *  nice	RW int	: nice value of the workers
5415  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5416  *  numa	RW bool	: whether enable NUMA affinity
5417  */
5418 struct wq_device {
5419 	struct workqueue_struct		*wq;
5420 	struct device			dev;
5421 };
5422 
5423 static struct workqueue_struct *dev_to_wq(struct device *dev)
5424 {
5425 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5426 
5427 	return wq_dev->wq;
5428 }
5429 
5430 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5431 			    char *buf)
5432 {
5433 	struct workqueue_struct *wq = dev_to_wq(dev);
5434 
5435 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5436 }
5437 static DEVICE_ATTR_RO(per_cpu);
5438 
5439 static ssize_t max_active_show(struct device *dev,
5440 			       struct device_attribute *attr, char *buf)
5441 {
5442 	struct workqueue_struct *wq = dev_to_wq(dev);
5443 
5444 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5445 }
5446 
5447 static ssize_t max_active_store(struct device *dev,
5448 				struct device_attribute *attr, const char *buf,
5449 				size_t count)
5450 {
5451 	struct workqueue_struct *wq = dev_to_wq(dev);
5452 	int val;
5453 
5454 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5455 		return -EINVAL;
5456 
5457 	workqueue_set_max_active(wq, val);
5458 	return count;
5459 }
5460 static DEVICE_ATTR_RW(max_active);
5461 
5462 static struct attribute *wq_sysfs_attrs[] = {
5463 	&dev_attr_per_cpu.attr,
5464 	&dev_attr_max_active.attr,
5465 	NULL,
5466 };
5467 ATTRIBUTE_GROUPS(wq_sysfs);
5468 
5469 static ssize_t wq_pool_ids_show(struct device *dev,
5470 				struct device_attribute *attr, char *buf)
5471 {
5472 	struct workqueue_struct *wq = dev_to_wq(dev);
5473 	const char *delim = "";
5474 	int node, written = 0;
5475 
5476 	cpus_read_lock();
5477 	rcu_read_lock();
5478 	for_each_node(node) {
5479 		written += scnprintf(buf + written, PAGE_SIZE - written,
5480 				     "%s%d:%d", delim, node,
5481 				     unbound_pwq_by_node(wq, node)->pool->id);
5482 		delim = " ";
5483 	}
5484 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5485 	rcu_read_unlock();
5486 	cpus_read_unlock();
5487 
5488 	return written;
5489 }
5490 
5491 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5492 			    char *buf)
5493 {
5494 	struct workqueue_struct *wq = dev_to_wq(dev);
5495 	int written;
5496 
5497 	mutex_lock(&wq->mutex);
5498 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5499 	mutex_unlock(&wq->mutex);
5500 
5501 	return written;
5502 }
5503 
5504 /* prepare workqueue_attrs for sysfs store operations */
5505 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5506 {
5507 	struct workqueue_attrs *attrs;
5508 
5509 	lockdep_assert_held(&wq_pool_mutex);
5510 
5511 	attrs = alloc_workqueue_attrs();
5512 	if (!attrs)
5513 		return NULL;
5514 
5515 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5516 	return attrs;
5517 }
5518 
5519 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5520 			     const char *buf, size_t count)
5521 {
5522 	struct workqueue_struct *wq = dev_to_wq(dev);
5523 	struct workqueue_attrs *attrs;
5524 	int ret = -ENOMEM;
5525 
5526 	apply_wqattrs_lock();
5527 
5528 	attrs = wq_sysfs_prep_attrs(wq);
5529 	if (!attrs)
5530 		goto out_unlock;
5531 
5532 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5533 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5534 		ret = apply_workqueue_attrs_locked(wq, attrs);
5535 	else
5536 		ret = -EINVAL;
5537 
5538 out_unlock:
5539 	apply_wqattrs_unlock();
5540 	free_workqueue_attrs(attrs);
5541 	return ret ?: count;
5542 }
5543 
5544 static ssize_t wq_cpumask_show(struct device *dev,
5545 			       struct device_attribute *attr, char *buf)
5546 {
5547 	struct workqueue_struct *wq = dev_to_wq(dev);
5548 	int written;
5549 
5550 	mutex_lock(&wq->mutex);
5551 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5552 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5553 	mutex_unlock(&wq->mutex);
5554 	return written;
5555 }
5556 
5557 static ssize_t wq_cpumask_store(struct device *dev,
5558 				struct device_attribute *attr,
5559 				const char *buf, size_t count)
5560 {
5561 	struct workqueue_struct *wq = dev_to_wq(dev);
5562 	struct workqueue_attrs *attrs;
5563 	int ret = -ENOMEM;
5564 
5565 	apply_wqattrs_lock();
5566 
5567 	attrs = wq_sysfs_prep_attrs(wq);
5568 	if (!attrs)
5569 		goto out_unlock;
5570 
5571 	ret = cpumask_parse(buf, attrs->cpumask);
5572 	if (!ret)
5573 		ret = apply_workqueue_attrs_locked(wq, attrs);
5574 
5575 out_unlock:
5576 	apply_wqattrs_unlock();
5577 	free_workqueue_attrs(attrs);
5578 	return ret ?: count;
5579 }
5580 
5581 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5582 			    char *buf)
5583 {
5584 	struct workqueue_struct *wq = dev_to_wq(dev);
5585 	int written;
5586 
5587 	mutex_lock(&wq->mutex);
5588 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5589 			    !wq->unbound_attrs->no_numa);
5590 	mutex_unlock(&wq->mutex);
5591 
5592 	return written;
5593 }
5594 
5595 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5596 			     const char *buf, size_t count)
5597 {
5598 	struct workqueue_struct *wq = dev_to_wq(dev);
5599 	struct workqueue_attrs *attrs;
5600 	int v, ret = -ENOMEM;
5601 
5602 	apply_wqattrs_lock();
5603 
5604 	attrs = wq_sysfs_prep_attrs(wq);
5605 	if (!attrs)
5606 		goto out_unlock;
5607 
5608 	ret = -EINVAL;
5609 	if (sscanf(buf, "%d", &v) == 1) {
5610 		attrs->no_numa = !v;
5611 		ret = apply_workqueue_attrs_locked(wq, attrs);
5612 	}
5613 
5614 out_unlock:
5615 	apply_wqattrs_unlock();
5616 	free_workqueue_attrs(attrs);
5617 	return ret ?: count;
5618 }
5619 
5620 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5621 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5622 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5623 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5624 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5625 	__ATTR_NULL,
5626 };
5627 
5628 static struct bus_type wq_subsys = {
5629 	.name				= "workqueue",
5630 	.dev_groups			= wq_sysfs_groups,
5631 };
5632 
5633 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5634 		struct device_attribute *attr, char *buf)
5635 {
5636 	int written;
5637 
5638 	mutex_lock(&wq_pool_mutex);
5639 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5640 			    cpumask_pr_args(wq_unbound_cpumask));
5641 	mutex_unlock(&wq_pool_mutex);
5642 
5643 	return written;
5644 }
5645 
5646 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5647 		struct device_attribute *attr, const char *buf, size_t count)
5648 {
5649 	cpumask_var_t cpumask;
5650 	int ret;
5651 
5652 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5653 		return -ENOMEM;
5654 
5655 	ret = cpumask_parse(buf, cpumask);
5656 	if (!ret)
5657 		ret = workqueue_set_unbound_cpumask(cpumask);
5658 
5659 	free_cpumask_var(cpumask);
5660 	return ret ? ret : count;
5661 }
5662 
5663 static struct device_attribute wq_sysfs_cpumask_attr =
5664 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5665 	       wq_unbound_cpumask_store);
5666 
5667 static int __init wq_sysfs_init(void)
5668 {
5669 	int err;
5670 
5671 	err = subsys_virtual_register(&wq_subsys, NULL);
5672 	if (err)
5673 		return err;
5674 
5675 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5676 }
5677 core_initcall(wq_sysfs_init);
5678 
5679 static void wq_device_release(struct device *dev)
5680 {
5681 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5682 
5683 	kfree(wq_dev);
5684 }
5685 
5686 /**
5687  * workqueue_sysfs_register - make a workqueue visible in sysfs
5688  * @wq: the workqueue to register
5689  *
5690  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5691  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5692  * which is the preferred method.
5693  *
5694  * Workqueue user should use this function directly iff it wants to apply
5695  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5696  * apply_workqueue_attrs() may race against userland updating the
5697  * attributes.
5698  *
5699  * Return: 0 on success, -errno on failure.
5700  */
5701 int workqueue_sysfs_register(struct workqueue_struct *wq)
5702 {
5703 	struct wq_device *wq_dev;
5704 	int ret;
5705 
5706 	/*
5707 	 * Adjusting max_active or creating new pwqs by applying
5708 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5709 	 * workqueues.
5710 	 */
5711 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5712 		return -EINVAL;
5713 
5714 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5715 	if (!wq_dev)
5716 		return -ENOMEM;
5717 
5718 	wq_dev->wq = wq;
5719 	wq_dev->dev.bus = &wq_subsys;
5720 	wq_dev->dev.release = wq_device_release;
5721 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5722 
5723 	/*
5724 	 * unbound_attrs are created separately.  Suppress uevent until
5725 	 * everything is ready.
5726 	 */
5727 	dev_set_uevent_suppress(&wq_dev->dev, true);
5728 
5729 	ret = device_register(&wq_dev->dev);
5730 	if (ret) {
5731 		put_device(&wq_dev->dev);
5732 		wq->wq_dev = NULL;
5733 		return ret;
5734 	}
5735 
5736 	if (wq->flags & WQ_UNBOUND) {
5737 		struct device_attribute *attr;
5738 
5739 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5740 			ret = device_create_file(&wq_dev->dev, attr);
5741 			if (ret) {
5742 				device_unregister(&wq_dev->dev);
5743 				wq->wq_dev = NULL;
5744 				return ret;
5745 			}
5746 		}
5747 	}
5748 
5749 	dev_set_uevent_suppress(&wq_dev->dev, false);
5750 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5751 	return 0;
5752 }
5753 
5754 /**
5755  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5756  * @wq: the workqueue to unregister
5757  *
5758  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5759  */
5760 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5761 {
5762 	struct wq_device *wq_dev = wq->wq_dev;
5763 
5764 	if (!wq->wq_dev)
5765 		return;
5766 
5767 	wq->wq_dev = NULL;
5768 	device_unregister(&wq_dev->dev);
5769 }
5770 #else	/* CONFIG_SYSFS */
5771 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5772 #endif	/* CONFIG_SYSFS */
5773 
5774 /*
5775  * Workqueue watchdog.
5776  *
5777  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5778  * flush dependency, a concurrency managed work item which stays RUNNING
5779  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5780  * usual warning mechanisms don't trigger and internal workqueue state is
5781  * largely opaque.
5782  *
5783  * Workqueue watchdog monitors all worker pools periodically and dumps
5784  * state if some pools failed to make forward progress for a while where
5785  * forward progress is defined as the first item on ->worklist changing.
5786  *
5787  * This mechanism is controlled through the kernel parameter
5788  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5789  * corresponding sysfs parameter file.
5790  */
5791 #ifdef CONFIG_WQ_WATCHDOG
5792 
5793 static unsigned long wq_watchdog_thresh = 30;
5794 static struct timer_list wq_watchdog_timer;
5795 
5796 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5797 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5798 
5799 static void wq_watchdog_reset_touched(void)
5800 {
5801 	int cpu;
5802 
5803 	wq_watchdog_touched = jiffies;
5804 	for_each_possible_cpu(cpu)
5805 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5806 }
5807 
5808 static void wq_watchdog_timer_fn(struct timer_list *unused)
5809 {
5810 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5811 	bool lockup_detected = false;
5812 	unsigned long now = jiffies;
5813 	struct worker_pool *pool;
5814 	int pi;
5815 
5816 	if (!thresh)
5817 		return;
5818 
5819 	rcu_read_lock();
5820 
5821 	for_each_pool(pool, pi) {
5822 		unsigned long pool_ts, touched, ts;
5823 
5824 		if (list_empty(&pool->worklist))
5825 			continue;
5826 
5827 		/*
5828 		 * If a virtual machine is stopped by the host it can look to
5829 		 * the watchdog like a stall.
5830 		 */
5831 		kvm_check_and_clear_guest_paused();
5832 
5833 		/* get the latest of pool and touched timestamps */
5834 		if (pool->cpu >= 0)
5835 			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
5836 		else
5837 			touched = READ_ONCE(wq_watchdog_touched);
5838 		pool_ts = READ_ONCE(pool->watchdog_ts);
5839 
5840 		if (time_after(pool_ts, touched))
5841 			ts = pool_ts;
5842 		else
5843 			ts = touched;
5844 
5845 		/* did we stall? */
5846 		if (time_after(now, ts + thresh)) {
5847 			lockup_detected = true;
5848 			pr_emerg("BUG: workqueue lockup - pool");
5849 			pr_cont_pool_info(pool);
5850 			pr_cont(" stuck for %us!\n",
5851 				jiffies_to_msecs(now - pool_ts) / 1000);
5852 		}
5853 	}
5854 
5855 	rcu_read_unlock();
5856 
5857 	if (lockup_detected)
5858 		show_workqueue_state();
5859 
5860 	wq_watchdog_reset_touched();
5861 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5862 }
5863 
5864 notrace void wq_watchdog_touch(int cpu)
5865 {
5866 	if (cpu >= 0)
5867 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5868 
5869 	wq_watchdog_touched = jiffies;
5870 }
5871 
5872 static void wq_watchdog_set_thresh(unsigned long thresh)
5873 {
5874 	wq_watchdog_thresh = 0;
5875 	del_timer_sync(&wq_watchdog_timer);
5876 
5877 	if (thresh) {
5878 		wq_watchdog_thresh = thresh;
5879 		wq_watchdog_reset_touched();
5880 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5881 	}
5882 }
5883 
5884 static int wq_watchdog_param_set_thresh(const char *val,
5885 					const struct kernel_param *kp)
5886 {
5887 	unsigned long thresh;
5888 	int ret;
5889 
5890 	ret = kstrtoul(val, 0, &thresh);
5891 	if (ret)
5892 		return ret;
5893 
5894 	if (system_wq)
5895 		wq_watchdog_set_thresh(thresh);
5896 	else
5897 		wq_watchdog_thresh = thresh;
5898 
5899 	return 0;
5900 }
5901 
5902 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5903 	.set	= wq_watchdog_param_set_thresh,
5904 	.get	= param_get_ulong,
5905 };
5906 
5907 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5908 		0644);
5909 
5910 static void wq_watchdog_init(void)
5911 {
5912 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5913 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5914 }
5915 
5916 #else	/* CONFIG_WQ_WATCHDOG */
5917 
5918 static inline void wq_watchdog_init(void) { }
5919 
5920 #endif	/* CONFIG_WQ_WATCHDOG */
5921 
5922 static void __init wq_numa_init(void)
5923 {
5924 	cpumask_var_t *tbl;
5925 	int node, cpu;
5926 
5927 	if (num_possible_nodes() <= 1)
5928 		return;
5929 
5930 	if (wq_disable_numa) {
5931 		pr_info("workqueue: NUMA affinity support disabled\n");
5932 		return;
5933 	}
5934 
5935 	for_each_possible_cpu(cpu) {
5936 		if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
5937 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5938 			return;
5939 		}
5940 	}
5941 
5942 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5943 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5944 
5945 	/*
5946 	 * We want masks of possible CPUs of each node which isn't readily
5947 	 * available.  Build one from cpu_to_node() which should have been
5948 	 * fully initialized by now.
5949 	 */
5950 	tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5951 	BUG_ON(!tbl);
5952 
5953 	for_each_node(node)
5954 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5955 				node_online(node) ? node : NUMA_NO_NODE));
5956 
5957 	for_each_possible_cpu(cpu) {
5958 		node = cpu_to_node(cpu);
5959 		cpumask_set_cpu(cpu, tbl[node]);
5960 	}
5961 
5962 	wq_numa_possible_cpumask = tbl;
5963 	wq_numa_enabled = true;
5964 }
5965 
5966 /**
5967  * workqueue_init_early - early init for workqueue subsystem
5968  *
5969  * This is the first half of two-staged workqueue subsystem initialization
5970  * and invoked as soon as the bare basics - memory allocation, cpumasks and
5971  * idr are up.  It sets up all the data structures and system workqueues
5972  * and allows early boot code to create workqueues and queue/cancel work
5973  * items.  Actual work item execution starts only after kthreads can be
5974  * created and scheduled right before early initcalls.
5975  */
5976 void __init workqueue_init_early(void)
5977 {
5978 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5979 	int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5980 	int i, cpu;
5981 
5982 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5983 
5984 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5985 	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5986 
5987 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5988 
5989 	/* initialize CPU pools */
5990 	for_each_possible_cpu(cpu) {
5991 		struct worker_pool *pool;
5992 
5993 		i = 0;
5994 		for_each_cpu_worker_pool(pool, cpu) {
5995 			BUG_ON(init_worker_pool(pool));
5996 			pool->cpu = cpu;
5997 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5998 			pool->attrs->nice = std_nice[i++];
5999 			pool->node = cpu_to_node(cpu);
6000 
6001 			/* alloc pool ID */
6002 			mutex_lock(&wq_pool_mutex);
6003 			BUG_ON(worker_pool_assign_id(pool));
6004 			mutex_unlock(&wq_pool_mutex);
6005 		}
6006 	}
6007 
6008 	/* create default unbound and ordered wq attrs */
6009 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6010 		struct workqueue_attrs *attrs;
6011 
6012 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6013 		attrs->nice = std_nice[i];
6014 		unbound_std_wq_attrs[i] = attrs;
6015 
6016 		/*
6017 		 * An ordered wq should have only one pwq as ordering is
6018 		 * guaranteed by max_active which is enforced by pwqs.
6019 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
6020 		 */
6021 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6022 		attrs->nice = std_nice[i];
6023 		attrs->no_numa = true;
6024 		ordered_wq_attrs[i] = attrs;
6025 	}
6026 
6027 	system_wq = alloc_workqueue("events", 0, 0);
6028 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6029 	system_long_wq = alloc_workqueue("events_long", 0, 0);
6030 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6031 					    WQ_UNBOUND_MAX_ACTIVE);
6032 	system_freezable_wq = alloc_workqueue("events_freezable",
6033 					      WQ_FREEZABLE, 0);
6034 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6035 					      WQ_POWER_EFFICIENT, 0);
6036 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6037 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6038 					      0);
6039 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6040 	       !system_unbound_wq || !system_freezable_wq ||
6041 	       !system_power_efficient_wq ||
6042 	       !system_freezable_power_efficient_wq);
6043 }
6044 
6045 /**
6046  * workqueue_init - bring workqueue subsystem fully online
6047  *
6048  * This is the latter half of two-staged workqueue subsystem initialization
6049  * and invoked as soon as kthreads can be created and scheduled.
6050  * Workqueues have been created and work items queued on them, but there
6051  * are no kworkers executing the work items yet.  Populate the worker pools
6052  * with the initial workers and enable future kworker creations.
6053  */
6054 void __init workqueue_init(void)
6055 {
6056 	struct workqueue_struct *wq;
6057 	struct worker_pool *pool;
6058 	int cpu, bkt;
6059 
6060 	/*
6061 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6062 	 * CPU to node mapping may not be available that early on some
6063 	 * archs such as power and arm64.  As per-cpu pools created
6064 	 * previously could be missing node hint and unbound pools NUMA
6065 	 * affinity, fix them up.
6066 	 *
6067 	 * Also, while iterating workqueues, create rescuers if requested.
6068 	 */
6069 	wq_numa_init();
6070 
6071 	mutex_lock(&wq_pool_mutex);
6072 
6073 	for_each_possible_cpu(cpu) {
6074 		for_each_cpu_worker_pool(pool, cpu) {
6075 			pool->node = cpu_to_node(cpu);
6076 		}
6077 	}
6078 
6079 	list_for_each_entry(wq, &workqueues, list) {
6080 		wq_update_unbound_numa(wq, smp_processor_id(), true);
6081 		WARN(init_rescuer(wq),
6082 		     "workqueue: failed to create early rescuer for %s",
6083 		     wq->name);
6084 	}
6085 
6086 	mutex_unlock(&wq_pool_mutex);
6087 
6088 	/* create the initial workers */
6089 	for_each_online_cpu(cpu) {
6090 		for_each_cpu_worker_pool(pool, cpu) {
6091 			pool->flags &= ~POOL_DISASSOCIATED;
6092 			BUG_ON(!create_worker(pool));
6093 		}
6094 	}
6095 
6096 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6097 		BUG_ON(!create_worker(pool));
6098 
6099 	wq_online = true;
6100 	wq_watchdog_init();
6101 }
6102