xref: /openbmc/linux/kernel/workqueue.c (revision d2ba09c1)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There are two worker pools for each CPU (one for
20  * normal work items and the other for high priority ones) and some extra
21  * pools for workqueues which are not bound to any specific CPU - the
22  * number of these backing pools is dynamic.
23  *
24  * Please read Documentation/core-api/workqueue.rst for details.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/jhash.h>
45 #include <linux/hashtable.h>
46 #include <linux/rculist.h>
47 #include <linux/nodemask.h>
48 #include <linux/moduleparam.h>
49 #include <linux/uaccess.h>
50 #include <linux/sched/isolation.h>
51 #include <linux/nmi.h>
52 
53 #include "workqueue_internal.h"
54 
55 enum {
56 	/*
57 	 * worker_pool flags
58 	 *
59 	 * A bound pool is either associated or disassociated with its CPU.
60 	 * While associated (!DISASSOCIATED), all workers are bound to the
61 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
62 	 * is in effect.
63 	 *
64 	 * While DISASSOCIATED, the cpu may be offline and all workers have
65 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
66 	 * be executing on any CPU.  The pool behaves as an unbound one.
67 	 *
68 	 * Note that DISASSOCIATED should be flipped only while holding
69 	 * attach_mutex to avoid changing binding state while
70 	 * worker_attach_to_pool() is in progress.
71 	 */
72 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
73 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
74 
75 	/* worker flags */
76 	WORKER_DIE		= 1 << 1,	/* die die die */
77 	WORKER_IDLE		= 1 << 2,	/* is idle */
78 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
79 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
80 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
81 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
82 
83 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
84 				  WORKER_UNBOUND | WORKER_REBOUND,
85 
86 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
87 
88 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
89 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
90 
91 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
92 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
93 
94 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
95 						/* call for help after 10ms
96 						   (min two ticks) */
97 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
98 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
99 
100 	/*
101 	 * Rescue workers are used only on emergencies and shared by
102 	 * all cpus.  Give MIN_NICE.
103 	 */
104 	RESCUER_NICE_LEVEL	= MIN_NICE,
105 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
106 
107 	WQ_NAME_LEN		= 24,
108 };
109 
110 /*
111  * Structure fields follow one of the following exclusion rules.
112  *
113  * I: Modifiable by initialization/destruction paths and read-only for
114  *    everyone else.
115  *
116  * P: Preemption protected.  Disabling preemption is enough and should
117  *    only be modified and accessed from the local cpu.
118  *
119  * L: pool->lock protected.  Access with pool->lock held.
120  *
121  * X: During normal operation, modification requires pool->lock and should
122  *    be done only from local cpu.  Either disabling preemption on local
123  *    cpu or grabbing pool->lock is enough for read access.  If
124  *    POOL_DISASSOCIATED is set, it's identical to L.
125  *
126  * A: pool->attach_mutex protected.
127  *
128  * PL: wq_pool_mutex protected.
129  *
130  * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
131  *
132  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
133  *
134  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
135  *      sched-RCU for reads.
136  *
137  * WQ: wq->mutex protected.
138  *
139  * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
140  *
141  * MD: wq_mayday_lock protected.
142  */
143 
144 /* struct worker is defined in workqueue_internal.h */
145 
146 struct worker_pool {
147 	spinlock_t		lock;		/* the pool lock */
148 	int			cpu;		/* I: the associated cpu */
149 	int			node;		/* I: the associated node ID */
150 	int			id;		/* I: pool ID */
151 	unsigned int		flags;		/* X: flags */
152 
153 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
154 
155 	struct list_head	worklist;	/* L: list of pending works */
156 
157 	int			nr_workers;	/* L: total number of workers */
158 	int			nr_idle;	/* L: currently idle workers */
159 
160 	struct list_head	idle_list;	/* X: list of idle workers */
161 	struct timer_list	idle_timer;	/* L: worker idle timeout */
162 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
163 
164 	/* a workers is either on busy_hash or idle_list, or the manager */
165 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
166 						/* L: hash of busy workers */
167 
168 	struct worker		*manager;	/* L: purely informational */
169 	struct mutex		attach_mutex;	/* attach/detach exclusion */
170 	struct list_head	workers;	/* A: attached workers */
171 	struct completion	*detach_completion; /* all workers detached */
172 
173 	struct ida		worker_ida;	/* worker IDs for task name */
174 
175 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
176 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
177 	int			refcnt;		/* PL: refcnt for unbound pools */
178 
179 	/*
180 	 * The current concurrency level.  As it's likely to be accessed
181 	 * from other CPUs during try_to_wake_up(), put it in a separate
182 	 * cacheline.
183 	 */
184 	atomic_t		nr_running ____cacheline_aligned_in_smp;
185 
186 	/*
187 	 * Destruction of pool is sched-RCU protected to allow dereferences
188 	 * from get_work_pool().
189 	 */
190 	struct rcu_head		rcu;
191 } ____cacheline_aligned_in_smp;
192 
193 /*
194  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
195  * of work_struct->data are used for flags and the remaining high bits
196  * point to the pwq; thus, pwqs need to be aligned at two's power of the
197  * number of flag bits.
198  */
199 struct pool_workqueue {
200 	struct worker_pool	*pool;		/* I: the associated pool */
201 	struct workqueue_struct *wq;		/* I: the owning workqueue */
202 	int			work_color;	/* L: current color */
203 	int			flush_color;	/* L: flushing color */
204 	int			refcnt;		/* L: reference count */
205 	int			nr_in_flight[WORK_NR_COLORS];
206 						/* L: nr of in_flight works */
207 	int			nr_active;	/* L: nr of active works */
208 	int			max_active;	/* L: max active works */
209 	struct list_head	delayed_works;	/* L: delayed works */
210 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
211 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
212 
213 	/*
214 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
215 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
216 	 * itself is also sched-RCU protected so that the first pwq can be
217 	 * determined without grabbing wq->mutex.
218 	 */
219 	struct work_struct	unbound_release_work;
220 	struct rcu_head		rcu;
221 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
222 
223 /*
224  * Structure used to wait for workqueue flush.
225  */
226 struct wq_flusher {
227 	struct list_head	list;		/* WQ: list of flushers */
228 	int			flush_color;	/* WQ: flush color waiting for */
229 	struct completion	done;		/* flush completion */
230 };
231 
232 struct wq_device;
233 
234 /*
235  * The externally visible workqueue.  It relays the issued work items to
236  * the appropriate worker_pool through its pool_workqueues.
237  */
238 struct workqueue_struct {
239 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
240 	struct list_head	list;		/* PR: list of all workqueues */
241 
242 	struct mutex		mutex;		/* protects this wq */
243 	int			work_color;	/* WQ: current work color */
244 	int			flush_color;	/* WQ: current flush color */
245 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
246 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
247 	struct list_head	flusher_queue;	/* WQ: flush waiters */
248 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
249 
250 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
251 	struct worker		*rescuer;	/* I: rescue worker */
252 
253 	int			nr_drainers;	/* WQ: drain in progress */
254 	int			saved_max_active; /* WQ: saved pwq max_active */
255 
256 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
257 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
258 
259 #ifdef CONFIG_SYSFS
260 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
261 #endif
262 #ifdef CONFIG_LOCKDEP
263 	struct lockdep_map	lockdep_map;
264 #endif
265 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
266 
267 	/*
268 	 * Destruction of workqueue_struct is sched-RCU protected to allow
269 	 * walking the workqueues list without grabbing wq_pool_mutex.
270 	 * This is used to dump all workqueues from sysrq.
271 	 */
272 	struct rcu_head		rcu;
273 
274 	/* hot fields used during command issue, aligned to cacheline */
275 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
276 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
277 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
278 };
279 
280 static struct kmem_cache *pwq_cache;
281 
282 static cpumask_var_t *wq_numa_possible_cpumask;
283 					/* possible CPUs of each node */
284 
285 static bool wq_disable_numa;
286 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
287 
288 /* see the comment above the definition of WQ_POWER_EFFICIENT */
289 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
290 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
291 
292 static bool wq_online;			/* can kworkers be created yet? */
293 
294 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
295 
296 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
297 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
298 
299 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
300 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
301 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
302 
303 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
304 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
305 
306 /* PL: allowable cpus for unbound wqs and work items */
307 static cpumask_var_t wq_unbound_cpumask;
308 
309 /* CPU where unbound work was last round robin scheduled from this CPU */
310 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
311 
312 /*
313  * Local execution of unbound work items is no longer guaranteed.  The
314  * following always forces round-robin CPU selection on unbound work items
315  * to uncover usages which depend on it.
316  */
317 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
318 static bool wq_debug_force_rr_cpu = true;
319 #else
320 static bool wq_debug_force_rr_cpu = false;
321 #endif
322 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
323 
324 /* the per-cpu worker pools */
325 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
326 
327 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
328 
329 /* PL: hash of all unbound pools keyed by pool->attrs */
330 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
331 
332 /* I: attributes used when instantiating standard unbound pools on demand */
333 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
334 
335 /* I: attributes used when instantiating ordered pools on demand */
336 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
337 
338 struct workqueue_struct *system_wq __read_mostly;
339 EXPORT_SYMBOL(system_wq);
340 struct workqueue_struct *system_highpri_wq __read_mostly;
341 EXPORT_SYMBOL_GPL(system_highpri_wq);
342 struct workqueue_struct *system_long_wq __read_mostly;
343 EXPORT_SYMBOL_GPL(system_long_wq);
344 struct workqueue_struct *system_unbound_wq __read_mostly;
345 EXPORT_SYMBOL_GPL(system_unbound_wq);
346 struct workqueue_struct *system_freezable_wq __read_mostly;
347 EXPORT_SYMBOL_GPL(system_freezable_wq);
348 struct workqueue_struct *system_power_efficient_wq __read_mostly;
349 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
350 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
351 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
352 
353 static int worker_thread(void *__worker);
354 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
355 
356 #define CREATE_TRACE_POINTS
357 #include <trace/events/workqueue.h>
358 
359 #define assert_rcu_or_pool_mutex()					\
360 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
361 			 !lockdep_is_held(&wq_pool_mutex),		\
362 			 "sched RCU or wq_pool_mutex should be held")
363 
364 #define assert_rcu_or_wq_mutex(wq)					\
365 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
366 			 !lockdep_is_held(&wq->mutex),			\
367 			 "sched RCU or wq->mutex should be held")
368 
369 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
370 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
371 			 !lockdep_is_held(&wq->mutex) &&		\
372 			 !lockdep_is_held(&wq_pool_mutex),		\
373 			 "sched RCU, wq->mutex or wq_pool_mutex should be held")
374 
375 #define for_each_cpu_worker_pool(pool, cpu)				\
376 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
377 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
378 	     (pool)++)
379 
380 /**
381  * for_each_pool - iterate through all worker_pools in the system
382  * @pool: iteration cursor
383  * @pi: integer used for iteration
384  *
385  * This must be called either with wq_pool_mutex held or sched RCU read
386  * locked.  If the pool needs to be used beyond the locking in effect, the
387  * caller is responsible for guaranteeing that the pool stays online.
388  *
389  * The if/else clause exists only for the lockdep assertion and can be
390  * ignored.
391  */
392 #define for_each_pool(pool, pi)						\
393 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
394 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
395 		else
396 
397 /**
398  * for_each_pool_worker - iterate through all workers of a worker_pool
399  * @worker: iteration cursor
400  * @pool: worker_pool to iterate workers of
401  *
402  * This must be called with @pool->attach_mutex.
403  *
404  * The if/else clause exists only for the lockdep assertion and can be
405  * ignored.
406  */
407 #define for_each_pool_worker(worker, pool)				\
408 	list_for_each_entry((worker), &(pool)->workers, node)		\
409 		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
410 		else
411 
412 /**
413  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
414  * @pwq: iteration cursor
415  * @wq: the target workqueue
416  *
417  * This must be called either with wq->mutex held or sched RCU read locked.
418  * If the pwq needs to be used beyond the locking in effect, the caller is
419  * responsible for guaranteeing that the pwq stays online.
420  *
421  * The if/else clause exists only for the lockdep assertion and can be
422  * ignored.
423  */
424 #define for_each_pwq(pwq, wq)						\
425 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
426 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
427 		else
428 
429 #ifdef CONFIG_DEBUG_OBJECTS_WORK
430 
431 static struct debug_obj_descr work_debug_descr;
432 
433 static void *work_debug_hint(void *addr)
434 {
435 	return ((struct work_struct *) addr)->func;
436 }
437 
438 static bool work_is_static_object(void *addr)
439 {
440 	struct work_struct *work = addr;
441 
442 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
443 }
444 
445 /*
446  * fixup_init is called when:
447  * - an active object is initialized
448  */
449 static bool work_fixup_init(void *addr, enum debug_obj_state state)
450 {
451 	struct work_struct *work = addr;
452 
453 	switch (state) {
454 	case ODEBUG_STATE_ACTIVE:
455 		cancel_work_sync(work);
456 		debug_object_init(work, &work_debug_descr);
457 		return true;
458 	default:
459 		return false;
460 	}
461 }
462 
463 /*
464  * fixup_free is called when:
465  * - an active object is freed
466  */
467 static bool work_fixup_free(void *addr, enum debug_obj_state state)
468 {
469 	struct work_struct *work = addr;
470 
471 	switch (state) {
472 	case ODEBUG_STATE_ACTIVE:
473 		cancel_work_sync(work);
474 		debug_object_free(work, &work_debug_descr);
475 		return true;
476 	default:
477 		return false;
478 	}
479 }
480 
481 static struct debug_obj_descr work_debug_descr = {
482 	.name		= "work_struct",
483 	.debug_hint	= work_debug_hint,
484 	.is_static_object = work_is_static_object,
485 	.fixup_init	= work_fixup_init,
486 	.fixup_free	= work_fixup_free,
487 };
488 
489 static inline void debug_work_activate(struct work_struct *work)
490 {
491 	debug_object_activate(work, &work_debug_descr);
492 }
493 
494 static inline void debug_work_deactivate(struct work_struct *work)
495 {
496 	debug_object_deactivate(work, &work_debug_descr);
497 }
498 
499 void __init_work(struct work_struct *work, int onstack)
500 {
501 	if (onstack)
502 		debug_object_init_on_stack(work, &work_debug_descr);
503 	else
504 		debug_object_init(work, &work_debug_descr);
505 }
506 EXPORT_SYMBOL_GPL(__init_work);
507 
508 void destroy_work_on_stack(struct work_struct *work)
509 {
510 	debug_object_free(work, &work_debug_descr);
511 }
512 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
513 
514 void destroy_delayed_work_on_stack(struct delayed_work *work)
515 {
516 	destroy_timer_on_stack(&work->timer);
517 	debug_object_free(&work->work, &work_debug_descr);
518 }
519 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
520 
521 #else
522 static inline void debug_work_activate(struct work_struct *work) { }
523 static inline void debug_work_deactivate(struct work_struct *work) { }
524 #endif
525 
526 /**
527  * worker_pool_assign_id - allocate ID and assing it to @pool
528  * @pool: the pool pointer of interest
529  *
530  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
531  * successfully, -errno on failure.
532  */
533 static int worker_pool_assign_id(struct worker_pool *pool)
534 {
535 	int ret;
536 
537 	lockdep_assert_held(&wq_pool_mutex);
538 
539 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
540 			GFP_KERNEL);
541 	if (ret >= 0) {
542 		pool->id = ret;
543 		return 0;
544 	}
545 	return ret;
546 }
547 
548 /**
549  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
550  * @wq: the target workqueue
551  * @node: the node ID
552  *
553  * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
554  * read locked.
555  * If the pwq needs to be used beyond the locking in effect, the caller is
556  * responsible for guaranteeing that the pwq stays online.
557  *
558  * Return: The unbound pool_workqueue for @node.
559  */
560 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
561 						  int node)
562 {
563 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
564 
565 	/*
566 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
567 	 * delayed item is pending.  The plan is to keep CPU -> NODE
568 	 * mapping valid and stable across CPU on/offlines.  Once that
569 	 * happens, this workaround can be removed.
570 	 */
571 	if (unlikely(node == NUMA_NO_NODE))
572 		return wq->dfl_pwq;
573 
574 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
575 }
576 
577 static unsigned int work_color_to_flags(int color)
578 {
579 	return color << WORK_STRUCT_COLOR_SHIFT;
580 }
581 
582 static int get_work_color(struct work_struct *work)
583 {
584 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
585 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
586 }
587 
588 static int work_next_color(int color)
589 {
590 	return (color + 1) % WORK_NR_COLORS;
591 }
592 
593 /*
594  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
595  * contain the pointer to the queued pwq.  Once execution starts, the flag
596  * is cleared and the high bits contain OFFQ flags and pool ID.
597  *
598  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
599  * and clear_work_data() can be used to set the pwq, pool or clear
600  * work->data.  These functions should only be called while the work is
601  * owned - ie. while the PENDING bit is set.
602  *
603  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
604  * corresponding to a work.  Pool is available once the work has been
605  * queued anywhere after initialization until it is sync canceled.  pwq is
606  * available only while the work item is queued.
607  *
608  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
609  * canceled.  While being canceled, a work item may have its PENDING set
610  * but stay off timer and worklist for arbitrarily long and nobody should
611  * try to steal the PENDING bit.
612  */
613 static inline void set_work_data(struct work_struct *work, unsigned long data,
614 				 unsigned long flags)
615 {
616 	WARN_ON_ONCE(!work_pending(work));
617 	atomic_long_set(&work->data, data | flags | work_static(work));
618 }
619 
620 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
621 			 unsigned long extra_flags)
622 {
623 	set_work_data(work, (unsigned long)pwq,
624 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
625 }
626 
627 static void set_work_pool_and_keep_pending(struct work_struct *work,
628 					   int pool_id)
629 {
630 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
631 		      WORK_STRUCT_PENDING);
632 }
633 
634 static void set_work_pool_and_clear_pending(struct work_struct *work,
635 					    int pool_id)
636 {
637 	/*
638 	 * The following wmb is paired with the implied mb in
639 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
640 	 * here are visible to and precede any updates by the next PENDING
641 	 * owner.
642 	 */
643 	smp_wmb();
644 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
645 	/*
646 	 * The following mb guarantees that previous clear of a PENDING bit
647 	 * will not be reordered with any speculative LOADS or STORES from
648 	 * work->current_func, which is executed afterwards.  This possible
649 	 * reordering can lead to a missed execution on attempt to qeueue
650 	 * the same @work.  E.g. consider this case:
651 	 *
652 	 *   CPU#0                         CPU#1
653 	 *   ----------------------------  --------------------------------
654 	 *
655 	 * 1  STORE event_indicated
656 	 * 2  queue_work_on() {
657 	 * 3    test_and_set_bit(PENDING)
658 	 * 4 }                             set_..._and_clear_pending() {
659 	 * 5                                 set_work_data() # clear bit
660 	 * 6                                 smp_mb()
661 	 * 7                               work->current_func() {
662 	 * 8				      LOAD event_indicated
663 	 *				   }
664 	 *
665 	 * Without an explicit full barrier speculative LOAD on line 8 can
666 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
667 	 * CPU#0 observes the PENDING bit is still set and new execution of
668 	 * a @work is not queued in a hope, that CPU#1 will eventually
669 	 * finish the queued @work.  Meanwhile CPU#1 does not see
670 	 * event_indicated is set, because speculative LOAD was executed
671 	 * before actual STORE.
672 	 */
673 	smp_mb();
674 }
675 
676 static void clear_work_data(struct work_struct *work)
677 {
678 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
679 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
680 }
681 
682 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
683 {
684 	unsigned long data = atomic_long_read(&work->data);
685 
686 	if (data & WORK_STRUCT_PWQ)
687 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
688 	else
689 		return NULL;
690 }
691 
692 /**
693  * get_work_pool - return the worker_pool a given work was associated with
694  * @work: the work item of interest
695  *
696  * Pools are created and destroyed under wq_pool_mutex, and allows read
697  * access under sched-RCU read lock.  As such, this function should be
698  * called under wq_pool_mutex or with preemption disabled.
699  *
700  * All fields of the returned pool are accessible as long as the above
701  * mentioned locking is in effect.  If the returned pool needs to be used
702  * beyond the critical section, the caller is responsible for ensuring the
703  * returned pool is and stays online.
704  *
705  * Return: The worker_pool @work was last associated with.  %NULL if none.
706  */
707 static struct worker_pool *get_work_pool(struct work_struct *work)
708 {
709 	unsigned long data = atomic_long_read(&work->data);
710 	int pool_id;
711 
712 	assert_rcu_or_pool_mutex();
713 
714 	if (data & WORK_STRUCT_PWQ)
715 		return ((struct pool_workqueue *)
716 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
717 
718 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
719 	if (pool_id == WORK_OFFQ_POOL_NONE)
720 		return NULL;
721 
722 	return idr_find(&worker_pool_idr, pool_id);
723 }
724 
725 /**
726  * get_work_pool_id - return the worker pool ID a given work is associated with
727  * @work: the work item of interest
728  *
729  * Return: The worker_pool ID @work was last associated with.
730  * %WORK_OFFQ_POOL_NONE if none.
731  */
732 static int get_work_pool_id(struct work_struct *work)
733 {
734 	unsigned long data = atomic_long_read(&work->data);
735 
736 	if (data & WORK_STRUCT_PWQ)
737 		return ((struct pool_workqueue *)
738 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
739 
740 	return data >> WORK_OFFQ_POOL_SHIFT;
741 }
742 
743 static void mark_work_canceling(struct work_struct *work)
744 {
745 	unsigned long pool_id = get_work_pool_id(work);
746 
747 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
748 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
749 }
750 
751 static bool work_is_canceling(struct work_struct *work)
752 {
753 	unsigned long data = atomic_long_read(&work->data);
754 
755 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
756 }
757 
758 /*
759  * Policy functions.  These define the policies on how the global worker
760  * pools are managed.  Unless noted otherwise, these functions assume that
761  * they're being called with pool->lock held.
762  */
763 
764 static bool __need_more_worker(struct worker_pool *pool)
765 {
766 	return !atomic_read(&pool->nr_running);
767 }
768 
769 /*
770  * Need to wake up a worker?  Called from anything but currently
771  * running workers.
772  *
773  * Note that, because unbound workers never contribute to nr_running, this
774  * function will always return %true for unbound pools as long as the
775  * worklist isn't empty.
776  */
777 static bool need_more_worker(struct worker_pool *pool)
778 {
779 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
780 }
781 
782 /* Can I start working?  Called from busy but !running workers. */
783 static bool may_start_working(struct worker_pool *pool)
784 {
785 	return pool->nr_idle;
786 }
787 
788 /* Do I need to keep working?  Called from currently running workers. */
789 static bool keep_working(struct worker_pool *pool)
790 {
791 	return !list_empty(&pool->worklist) &&
792 		atomic_read(&pool->nr_running) <= 1;
793 }
794 
795 /* Do we need a new worker?  Called from manager. */
796 static bool need_to_create_worker(struct worker_pool *pool)
797 {
798 	return need_more_worker(pool) && !may_start_working(pool);
799 }
800 
801 /* Do we have too many workers and should some go away? */
802 static bool too_many_workers(struct worker_pool *pool)
803 {
804 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
805 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
806 	int nr_busy = pool->nr_workers - nr_idle;
807 
808 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
809 }
810 
811 /*
812  * Wake up functions.
813  */
814 
815 /* Return the first idle worker.  Safe with preemption disabled */
816 static struct worker *first_idle_worker(struct worker_pool *pool)
817 {
818 	if (unlikely(list_empty(&pool->idle_list)))
819 		return NULL;
820 
821 	return list_first_entry(&pool->idle_list, struct worker, entry);
822 }
823 
824 /**
825  * wake_up_worker - wake up an idle worker
826  * @pool: worker pool to wake worker from
827  *
828  * Wake up the first idle worker of @pool.
829  *
830  * CONTEXT:
831  * spin_lock_irq(pool->lock).
832  */
833 static void wake_up_worker(struct worker_pool *pool)
834 {
835 	struct worker *worker = first_idle_worker(pool);
836 
837 	if (likely(worker))
838 		wake_up_process(worker->task);
839 }
840 
841 /**
842  * wq_worker_waking_up - a worker is waking up
843  * @task: task waking up
844  * @cpu: CPU @task is waking up to
845  *
846  * This function is called during try_to_wake_up() when a worker is
847  * being awoken.
848  *
849  * CONTEXT:
850  * spin_lock_irq(rq->lock)
851  */
852 void wq_worker_waking_up(struct task_struct *task, int cpu)
853 {
854 	struct worker *worker = kthread_data(task);
855 
856 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
857 		WARN_ON_ONCE(worker->pool->cpu != cpu);
858 		atomic_inc(&worker->pool->nr_running);
859 	}
860 }
861 
862 /**
863  * wq_worker_sleeping - a worker is going to sleep
864  * @task: task going to sleep
865  *
866  * This function is called during schedule() when a busy worker is
867  * going to sleep.  Worker on the same cpu can be woken up by
868  * returning pointer to its task.
869  *
870  * CONTEXT:
871  * spin_lock_irq(rq->lock)
872  *
873  * Return:
874  * Worker task on @cpu to wake up, %NULL if none.
875  */
876 struct task_struct *wq_worker_sleeping(struct task_struct *task)
877 {
878 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
879 	struct worker_pool *pool;
880 
881 	/*
882 	 * Rescuers, which may not have all the fields set up like normal
883 	 * workers, also reach here, let's not access anything before
884 	 * checking NOT_RUNNING.
885 	 */
886 	if (worker->flags & WORKER_NOT_RUNNING)
887 		return NULL;
888 
889 	pool = worker->pool;
890 
891 	/* this can only happen on the local cpu */
892 	if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
893 		return NULL;
894 
895 	/*
896 	 * The counterpart of the following dec_and_test, implied mb,
897 	 * worklist not empty test sequence is in insert_work().
898 	 * Please read comment there.
899 	 *
900 	 * NOT_RUNNING is clear.  This means that we're bound to and
901 	 * running on the local cpu w/ rq lock held and preemption
902 	 * disabled, which in turn means that none else could be
903 	 * manipulating idle_list, so dereferencing idle_list without pool
904 	 * lock is safe.
905 	 */
906 	if (atomic_dec_and_test(&pool->nr_running) &&
907 	    !list_empty(&pool->worklist))
908 		to_wakeup = first_idle_worker(pool);
909 	return to_wakeup ? to_wakeup->task : NULL;
910 }
911 
912 /**
913  * worker_set_flags - set worker flags and adjust nr_running accordingly
914  * @worker: self
915  * @flags: flags to set
916  *
917  * Set @flags in @worker->flags and adjust nr_running accordingly.
918  *
919  * CONTEXT:
920  * spin_lock_irq(pool->lock)
921  */
922 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
923 {
924 	struct worker_pool *pool = worker->pool;
925 
926 	WARN_ON_ONCE(worker->task != current);
927 
928 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
929 	if ((flags & WORKER_NOT_RUNNING) &&
930 	    !(worker->flags & WORKER_NOT_RUNNING)) {
931 		atomic_dec(&pool->nr_running);
932 	}
933 
934 	worker->flags |= flags;
935 }
936 
937 /**
938  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
939  * @worker: self
940  * @flags: flags to clear
941  *
942  * Clear @flags in @worker->flags and adjust nr_running accordingly.
943  *
944  * CONTEXT:
945  * spin_lock_irq(pool->lock)
946  */
947 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
948 {
949 	struct worker_pool *pool = worker->pool;
950 	unsigned int oflags = worker->flags;
951 
952 	WARN_ON_ONCE(worker->task != current);
953 
954 	worker->flags &= ~flags;
955 
956 	/*
957 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
958 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
959 	 * of multiple flags, not a single flag.
960 	 */
961 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
962 		if (!(worker->flags & WORKER_NOT_RUNNING))
963 			atomic_inc(&pool->nr_running);
964 }
965 
966 /**
967  * find_worker_executing_work - find worker which is executing a work
968  * @pool: pool of interest
969  * @work: work to find worker for
970  *
971  * Find a worker which is executing @work on @pool by searching
972  * @pool->busy_hash which is keyed by the address of @work.  For a worker
973  * to match, its current execution should match the address of @work and
974  * its work function.  This is to avoid unwanted dependency between
975  * unrelated work executions through a work item being recycled while still
976  * being executed.
977  *
978  * This is a bit tricky.  A work item may be freed once its execution
979  * starts and nothing prevents the freed area from being recycled for
980  * another work item.  If the same work item address ends up being reused
981  * before the original execution finishes, workqueue will identify the
982  * recycled work item as currently executing and make it wait until the
983  * current execution finishes, introducing an unwanted dependency.
984  *
985  * This function checks the work item address and work function to avoid
986  * false positives.  Note that this isn't complete as one may construct a
987  * work function which can introduce dependency onto itself through a
988  * recycled work item.  Well, if somebody wants to shoot oneself in the
989  * foot that badly, there's only so much we can do, and if such deadlock
990  * actually occurs, it should be easy to locate the culprit work function.
991  *
992  * CONTEXT:
993  * spin_lock_irq(pool->lock).
994  *
995  * Return:
996  * Pointer to worker which is executing @work if found, %NULL
997  * otherwise.
998  */
999 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1000 						 struct work_struct *work)
1001 {
1002 	struct worker *worker;
1003 
1004 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1005 			       (unsigned long)work)
1006 		if (worker->current_work == work &&
1007 		    worker->current_func == work->func)
1008 			return worker;
1009 
1010 	return NULL;
1011 }
1012 
1013 /**
1014  * move_linked_works - move linked works to a list
1015  * @work: start of series of works to be scheduled
1016  * @head: target list to append @work to
1017  * @nextp: out parameter for nested worklist walking
1018  *
1019  * Schedule linked works starting from @work to @head.  Work series to
1020  * be scheduled starts at @work and includes any consecutive work with
1021  * WORK_STRUCT_LINKED set in its predecessor.
1022  *
1023  * If @nextp is not NULL, it's updated to point to the next work of
1024  * the last scheduled work.  This allows move_linked_works() to be
1025  * nested inside outer list_for_each_entry_safe().
1026  *
1027  * CONTEXT:
1028  * spin_lock_irq(pool->lock).
1029  */
1030 static void move_linked_works(struct work_struct *work, struct list_head *head,
1031 			      struct work_struct **nextp)
1032 {
1033 	struct work_struct *n;
1034 
1035 	/*
1036 	 * Linked worklist will always end before the end of the list,
1037 	 * use NULL for list head.
1038 	 */
1039 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1040 		list_move_tail(&work->entry, head);
1041 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1042 			break;
1043 	}
1044 
1045 	/*
1046 	 * If we're already inside safe list traversal and have moved
1047 	 * multiple works to the scheduled queue, the next position
1048 	 * needs to be updated.
1049 	 */
1050 	if (nextp)
1051 		*nextp = n;
1052 }
1053 
1054 /**
1055  * get_pwq - get an extra reference on the specified pool_workqueue
1056  * @pwq: pool_workqueue to get
1057  *
1058  * Obtain an extra reference on @pwq.  The caller should guarantee that
1059  * @pwq has positive refcnt and be holding the matching pool->lock.
1060  */
1061 static void get_pwq(struct pool_workqueue *pwq)
1062 {
1063 	lockdep_assert_held(&pwq->pool->lock);
1064 	WARN_ON_ONCE(pwq->refcnt <= 0);
1065 	pwq->refcnt++;
1066 }
1067 
1068 /**
1069  * put_pwq - put a pool_workqueue reference
1070  * @pwq: pool_workqueue to put
1071  *
1072  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1073  * destruction.  The caller should be holding the matching pool->lock.
1074  */
1075 static void put_pwq(struct pool_workqueue *pwq)
1076 {
1077 	lockdep_assert_held(&pwq->pool->lock);
1078 	if (likely(--pwq->refcnt))
1079 		return;
1080 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1081 		return;
1082 	/*
1083 	 * @pwq can't be released under pool->lock, bounce to
1084 	 * pwq_unbound_release_workfn().  This never recurses on the same
1085 	 * pool->lock as this path is taken only for unbound workqueues and
1086 	 * the release work item is scheduled on a per-cpu workqueue.  To
1087 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1088 	 * subclass of 1 in get_unbound_pool().
1089 	 */
1090 	schedule_work(&pwq->unbound_release_work);
1091 }
1092 
1093 /**
1094  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1095  * @pwq: pool_workqueue to put (can be %NULL)
1096  *
1097  * put_pwq() with locking.  This function also allows %NULL @pwq.
1098  */
1099 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1100 {
1101 	if (pwq) {
1102 		/*
1103 		 * As both pwqs and pools are sched-RCU protected, the
1104 		 * following lock operations are safe.
1105 		 */
1106 		spin_lock_irq(&pwq->pool->lock);
1107 		put_pwq(pwq);
1108 		spin_unlock_irq(&pwq->pool->lock);
1109 	}
1110 }
1111 
1112 static void pwq_activate_delayed_work(struct work_struct *work)
1113 {
1114 	struct pool_workqueue *pwq = get_work_pwq(work);
1115 
1116 	trace_workqueue_activate_work(work);
1117 	if (list_empty(&pwq->pool->worklist))
1118 		pwq->pool->watchdog_ts = jiffies;
1119 	move_linked_works(work, &pwq->pool->worklist, NULL);
1120 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1121 	pwq->nr_active++;
1122 }
1123 
1124 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1125 {
1126 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1127 						    struct work_struct, entry);
1128 
1129 	pwq_activate_delayed_work(work);
1130 }
1131 
1132 /**
1133  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1134  * @pwq: pwq of interest
1135  * @color: color of work which left the queue
1136  *
1137  * A work either has completed or is removed from pending queue,
1138  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1139  *
1140  * CONTEXT:
1141  * spin_lock_irq(pool->lock).
1142  */
1143 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1144 {
1145 	/* uncolored work items don't participate in flushing or nr_active */
1146 	if (color == WORK_NO_COLOR)
1147 		goto out_put;
1148 
1149 	pwq->nr_in_flight[color]--;
1150 
1151 	pwq->nr_active--;
1152 	if (!list_empty(&pwq->delayed_works)) {
1153 		/* one down, submit a delayed one */
1154 		if (pwq->nr_active < pwq->max_active)
1155 			pwq_activate_first_delayed(pwq);
1156 	}
1157 
1158 	/* is flush in progress and are we at the flushing tip? */
1159 	if (likely(pwq->flush_color != color))
1160 		goto out_put;
1161 
1162 	/* are there still in-flight works? */
1163 	if (pwq->nr_in_flight[color])
1164 		goto out_put;
1165 
1166 	/* this pwq is done, clear flush_color */
1167 	pwq->flush_color = -1;
1168 
1169 	/*
1170 	 * If this was the last pwq, wake up the first flusher.  It
1171 	 * will handle the rest.
1172 	 */
1173 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1174 		complete(&pwq->wq->first_flusher->done);
1175 out_put:
1176 	put_pwq(pwq);
1177 }
1178 
1179 /**
1180  * try_to_grab_pending - steal work item from worklist and disable irq
1181  * @work: work item to steal
1182  * @is_dwork: @work is a delayed_work
1183  * @flags: place to store irq state
1184  *
1185  * Try to grab PENDING bit of @work.  This function can handle @work in any
1186  * stable state - idle, on timer or on worklist.
1187  *
1188  * Return:
1189  *  1		if @work was pending and we successfully stole PENDING
1190  *  0		if @work was idle and we claimed PENDING
1191  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1192  *  -ENOENT	if someone else is canceling @work, this state may persist
1193  *		for arbitrarily long
1194  *
1195  * Note:
1196  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1197  * interrupted while holding PENDING and @work off queue, irq must be
1198  * disabled on entry.  This, combined with delayed_work->timer being
1199  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1200  *
1201  * On successful return, >= 0, irq is disabled and the caller is
1202  * responsible for releasing it using local_irq_restore(*@flags).
1203  *
1204  * This function is safe to call from any context including IRQ handler.
1205  */
1206 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1207 			       unsigned long *flags)
1208 {
1209 	struct worker_pool *pool;
1210 	struct pool_workqueue *pwq;
1211 
1212 	local_irq_save(*flags);
1213 
1214 	/* try to steal the timer if it exists */
1215 	if (is_dwork) {
1216 		struct delayed_work *dwork = to_delayed_work(work);
1217 
1218 		/*
1219 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1220 		 * guaranteed that the timer is not queued anywhere and not
1221 		 * running on the local CPU.
1222 		 */
1223 		if (likely(del_timer(&dwork->timer)))
1224 			return 1;
1225 	}
1226 
1227 	/* try to claim PENDING the normal way */
1228 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1229 		return 0;
1230 
1231 	/*
1232 	 * The queueing is in progress, or it is already queued. Try to
1233 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1234 	 */
1235 	pool = get_work_pool(work);
1236 	if (!pool)
1237 		goto fail;
1238 
1239 	spin_lock(&pool->lock);
1240 	/*
1241 	 * work->data is guaranteed to point to pwq only while the work
1242 	 * item is queued on pwq->wq, and both updating work->data to point
1243 	 * to pwq on queueing and to pool on dequeueing are done under
1244 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1245 	 * points to pwq which is associated with a locked pool, the work
1246 	 * item is currently queued on that pool.
1247 	 */
1248 	pwq = get_work_pwq(work);
1249 	if (pwq && pwq->pool == pool) {
1250 		debug_work_deactivate(work);
1251 
1252 		/*
1253 		 * A delayed work item cannot be grabbed directly because
1254 		 * it might have linked NO_COLOR work items which, if left
1255 		 * on the delayed_list, will confuse pwq->nr_active
1256 		 * management later on and cause stall.  Make sure the work
1257 		 * item is activated before grabbing.
1258 		 */
1259 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1260 			pwq_activate_delayed_work(work);
1261 
1262 		list_del_init(&work->entry);
1263 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1264 
1265 		/* work->data points to pwq iff queued, point to pool */
1266 		set_work_pool_and_keep_pending(work, pool->id);
1267 
1268 		spin_unlock(&pool->lock);
1269 		return 1;
1270 	}
1271 	spin_unlock(&pool->lock);
1272 fail:
1273 	local_irq_restore(*flags);
1274 	if (work_is_canceling(work))
1275 		return -ENOENT;
1276 	cpu_relax();
1277 	return -EAGAIN;
1278 }
1279 
1280 /**
1281  * insert_work - insert a work into a pool
1282  * @pwq: pwq @work belongs to
1283  * @work: work to insert
1284  * @head: insertion point
1285  * @extra_flags: extra WORK_STRUCT_* flags to set
1286  *
1287  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1288  * work_struct flags.
1289  *
1290  * CONTEXT:
1291  * spin_lock_irq(pool->lock).
1292  */
1293 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1294 			struct list_head *head, unsigned int extra_flags)
1295 {
1296 	struct worker_pool *pool = pwq->pool;
1297 
1298 	/* we own @work, set data and link */
1299 	set_work_pwq(work, pwq, extra_flags);
1300 	list_add_tail(&work->entry, head);
1301 	get_pwq(pwq);
1302 
1303 	/*
1304 	 * Ensure either wq_worker_sleeping() sees the above
1305 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1306 	 * around lazily while there are works to be processed.
1307 	 */
1308 	smp_mb();
1309 
1310 	if (__need_more_worker(pool))
1311 		wake_up_worker(pool);
1312 }
1313 
1314 /*
1315  * Test whether @work is being queued from another work executing on the
1316  * same workqueue.
1317  */
1318 static bool is_chained_work(struct workqueue_struct *wq)
1319 {
1320 	struct worker *worker;
1321 
1322 	worker = current_wq_worker();
1323 	/*
1324 	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1325 	 * I'm @worker, it's safe to dereference it without locking.
1326 	 */
1327 	return worker && worker->current_pwq->wq == wq;
1328 }
1329 
1330 /*
1331  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1332  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1333  * avoid perturbing sensitive tasks.
1334  */
1335 static int wq_select_unbound_cpu(int cpu)
1336 {
1337 	static bool printed_dbg_warning;
1338 	int new_cpu;
1339 
1340 	if (likely(!wq_debug_force_rr_cpu)) {
1341 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1342 			return cpu;
1343 	} else if (!printed_dbg_warning) {
1344 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1345 		printed_dbg_warning = true;
1346 	}
1347 
1348 	if (cpumask_empty(wq_unbound_cpumask))
1349 		return cpu;
1350 
1351 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1352 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1353 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1354 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1355 		if (unlikely(new_cpu >= nr_cpu_ids))
1356 			return cpu;
1357 	}
1358 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1359 
1360 	return new_cpu;
1361 }
1362 
1363 static void __queue_work(int cpu, struct workqueue_struct *wq,
1364 			 struct work_struct *work)
1365 {
1366 	struct pool_workqueue *pwq;
1367 	struct worker_pool *last_pool;
1368 	struct list_head *worklist;
1369 	unsigned int work_flags;
1370 	unsigned int req_cpu = cpu;
1371 
1372 	/*
1373 	 * While a work item is PENDING && off queue, a task trying to
1374 	 * steal the PENDING will busy-loop waiting for it to either get
1375 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1376 	 * happen with IRQ disabled.
1377 	 */
1378 	lockdep_assert_irqs_disabled();
1379 
1380 	debug_work_activate(work);
1381 
1382 	/* if draining, only works from the same workqueue are allowed */
1383 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1384 	    WARN_ON_ONCE(!is_chained_work(wq)))
1385 		return;
1386 retry:
1387 	if (req_cpu == WORK_CPU_UNBOUND)
1388 		cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1389 
1390 	/* pwq which will be used unless @work is executing elsewhere */
1391 	if (!(wq->flags & WQ_UNBOUND))
1392 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1393 	else
1394 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1395 
1396 	/*
1397 	 * If @work was previously on a different pool, it might still be
1398 	 * running there, in which case the work needs to be queued on that
1399 	 * pool to guarantee non-reentrancy.
1400 	 */
1401 	last_pool = get_work_pool(work);
1402 	if (last_pool && last_pool != pwq->pool) {
1403 		struct worker *worker;
1404 
1405 		spin_lock(&last_pool->lock);
1406 
1407 		worker = find_worker_executing_work(last_pool, work);
1408 
1409 		if (worker && worker->current_pwq->wq == wq) {
1410 			pwq = worker->current_pwq;
1411 		} else {
1412 			/* meh... not running there, queue here */
1413 			spin_unlock(&last_pool->lock);
1414 			spin_lock(&pwq->pool->lock);
1415 		}
1416 	} else {
1417 		spin_lock(&pwq->pool->lock);
1418 	}
1419 
1420 	/*
1421 	 * pwq is determined and locked.  For unbound pools, we could have
1422 	 * raced with pwq release and it could already be dead.  If its
1423 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1424 	 * without another pwq replacing it in the numa_pwq_tbl or while
1425 	 * work items are executing on it, so the retrying is guaranteed to
1426 	 * make forward-progress.
1427 	 */
1428 	if (unlikely(!pwq->refcnt)) {
1429 		if (wq->flags & WQ_UNBOUND) {
1430 			spin_unlock(&pwq->pool->lock);
1431 			cpu_relax();
1432 			goto retry;
1433 		}
1434 		/* oops */
1435 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1436 			  wq->name, cpu);
1437 	}
1438 
1439 	/* pwq determined, queue */
1440 	trace_workqueue_queue_work(req_cpu, pwq, work);
1441 
1442 	if (WARN_ON(!list_empty(&work->entry))) {
1443 		spin_unlock(&pwq->pool->lock);
1444 		return;
1445 	}
1446 
1447 	pwq->nr_in_flight[pwq->work_color]++;
1448 	work_flags = work_color_to_flags(pwq->work_color);
1449 
1450 	if (likely(pwq->nr_active < pwq->max_active)) {
1451 		trace_workqueue_activate_work(work);
1452 		pwq->nr_active++;
1453 		worklist = &pwq->pool->worklist;
1454 		if (list_empty(worklist))
1455 			pwq->pool->watchdog_ts = jiffies;
1456 	} else {
1457 		work_flags |= WORK_STRUCT_DELAYED;
1458 		worklist = &pwq->delayed_works;
1459 	}
1460 
1461 	insert_work(pwq, work, worklist, work_flags);
1462 
1463 	spin_unlock(&pwq->pool->lock);
1464 }
1465 
1466 /**
1467  * queue_work_on - queue work on specific cpu
1468  * @cpu: CPU number to execute work on
1469  * @wq: workqueue to use
1470  * @work: work to queue
1471  *
1472  * We queue the work to a specific CPU, the caller must ensure it
1473  * can't go away.
1474  *
1475  * Return: %false if @work was already on a queue, %true otherwise.
1476  */
1477 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1478 		   struct work_struct *work)
1479 {
1480 	bool ret = false;
1481 	unsigned long flags;
1482 
1483 	local_irq_save(flags);
1484 
1485 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1486 		__queue_work(cpu, wq, work);
1487 		ret = true;
1488 	}
1489 
1490 	local_irq_restore(flags);
1491 	return ret;
1492 }
1493 EXPORT_SYMBOL(queue_work_on);
1494 
1495 void delayed_work_timer_fn(struct timer_list *t)
1496 {
1497 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1498 
1499 	/* should have been called from irqsafe timer with irq already off */
1500 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1501 }
1502 EXPORT_SYMBOL(delayed_work_timer_fn);
1503 
1504 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1505 				struct delayed_work *dwork, unsigned long delay)
1506 {
1507 	struct timer_list *timer = &dwork->timer;
1508 	struct work_struct *work = &dwork->work;
1509 
1510 	WARN_ON_ONCE(!wq);
1511 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1512 	WARN_ON_ONCE(timer_pending(timer));
1513 	WARN_ON_ONCE(!list_empty(&work->entry));
1514 
1515 	/*
1516 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1517 	 * both optimization and correctness.  The earliest @timer can
1518 	 * expire is on the closest next tick and delayed_work users depend
1519 	 * on that there's no such delay when @delay is 0.
1520 	 */
1521 	if (!delay) {
1522 		__queue_work(cpu, wq, &dwork->work);
1523 		return;
1524 	}
1525 
1526 	dwork->wq = wq;
1527 	dwork->cpu = cpu;
1528 	timer->expires = jiffies + delay;
1529 
1530 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1531 		add_timer_on(timer, cpu);
1532 	else
1533 		add_timer(timer);
1534 }
1535 
1536 /**
1537  * queue_delayed_work_on - queue work on specific CPU after delay
1538  * @cpu: CPU number to execute work on
1539  * @wq: workqueue to use
1540  * @dwork: work to queue
1541  * @delay: number of jiffies to wait before queueing
1542  *
1543  * Return: %false if @work was already on a queue, %true otherwise.  If
1544  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1545  * execution.
1546  */
1547 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1548 			   struct delayed_work *dwork, unsigned long delay)
1549 {
1550 	struct work_struct *work = &dwork->work;
1551 	bool ret = false;
1552 	unsigned long flags;
1553 
1554 	/* read the comment in __queue_work() */
1555 	local_irq_save(flags);
1556 
1557 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1558 		__queue_delayed_work(cpu, wq, dwork, delay);
1559 		ret = true;
1560 	}
1561 
1562 	local_irq_restore(flags);
1563 	return ret;
1564 }
1565 EXPORT_SYMBOL(queue_delayed_work_on);
1566 
1567 /**
1568  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1569  * @cpu: CPU number to execute work on
1570  * @wq: workqueue to use
1571  * @dwork: work to queue
1572  * @delay: number of jiffies to wait before queueing
1573  *
1574  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1575  * modify @dwork's timer so that it expires after @delay.  If @delay is
1576  * zero, @work is guaranteed to be scheduled immediately regardless of its
1577  * current state.
1578  *
1579  * Return: %false if @dwork was idle and queued, %true if @dwork was
1580  * pending and its timer was modified.
1581  *
1582  * This function is safe to call from any context including IRQ handler.
1583  * See try_to_grab_pending() for details.
1584  */
1585 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1586 			 struct delayed_work *dwork, unsigned long delay)
1587 {
1588 	unsigned long flags;
1589 	int ret;
1590 
1591 	do {
1592 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1593 	} while (unlikely(ret == -EAGAIN));
1594 
1595 	if (likely(ret >= 0)) {
1596 		__queue_delayed_work(cpu, wq, dwork, delay);
1597 		local_irq_restore(flags);
1598 	}
1599 
1600 	/* -ENOENT from try_to_grab_pending() becomes %true */
1601 	return ret;
1602 }
1603 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1604 
1605 static void rcu_work_rcufn(struct rcu_head *rcu)
1606 {
1607 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1608 
1609 	/* read the comment in __queue_work() */
1610 	local_irq_disable();
1611 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1612 	local_irq_enable();
1613 }
1614 
1615 /**
1616  * queue_rcu_work - queue work after a RCU grace period
1617  * @wq: workqueue to use
1618  * @rwork: work to queue
1619  *
1620  * Return: %false if @rwork was already pending, %true otherwise.  Note
1621  * that a full RCU grace period is guaranteed only after a %true return.
1622  * While @rwork is guarnateed to be executed after a %false return, the
1623  * execution may happen before a full RCU grace period has passed.
1624  */
1625 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1626 {
1627 	struct work_struct *work = &rwork->work;
1628 
1629 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1630 		rwork->wq = wq;
1631 		call_rcu(&rwork->rcu, rcu_work_rcufn);
1632 		return true;
1633 	}
1634 
1635 	return false;
1636 }
1637 EXPORT_SYMBOL(queue_rcu_work);
1638 
1639 /**
1640  * worker_enter_idle - enter idle state
1641  * @worker: worker which is entering idle state
1642  *
1643  * @worker is entering idle state.  Update stats and idle timer if
1644  * necessary.
1645  *
1646  * LOCKING:
1647  * spin_lock_irq(pool->lock).
1648  */
1649 static void worker_enter_idle(struct worker *worker)
1650 {
1651 	struct worker_pool *pool = worker->pool;
1652 
1653 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1654 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1655 			 (worker->hentry.next || worker->hentry.pprev)))
1656 		return;
1657 
1658 	/* can't use worker_set_flags(), also called from create_worker() */
1659 	worker->flags |= WORKER_IDLE;
1660 	pool->nr_idle++;
1661 	worker->last_active = jiffies;
1662 
1663 	/* idle_list is LIFO */
1664 	list_add(&worker->entry, &pool->idle_list);
1665 
1666 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1667 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1668 
1669 	/*
1670 	 * Sanity check nr_running.  Because unbind_workers() releases
1671 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1672 	 * nr_running, the warning may trigger spuriously.  Check iff
1673 	 * unbind is not in progress.
1674 	 */
1675 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1676 		     pool->nr_workers == pool->nr_idle &&
1677 		     atomic_read(&pool->nr_running));
1678 }
1679 
1680 /**
1681  * worker_leave_idle - leave idle state
1682  * @worker: worker which is leaving idle state
1683  *
1684  * @worker is leaving idle state.  Update stats.
1685  *
1686  * LOCKING:
1687  * spin_lock_irq(pool->lock).
1688  */
1689 static void worker_leave_idle(struct worker *worker)
1690 {
1691 	struct worker_pool *pool = worker->pool;
1692 
1693 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1694 		return;
1695 	worker_clr_flags(worker, WORKER_IDLE);
1696 	pool->nr_idle--;
1697 	list_del_init(&worker->entry);
1698 }
1699 
1700 static struct worker *alloc_worker(int node)
1701 {
1702 	struct worker *worker;
1703 
1704 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1705 	if (worker) {
1706 		INIT_LIST_HEAD(&worker->entry);
1707 		INIT_LIST_HEAD(&worker->scheduled);
1708 		INIT_LIST_HEAD(&worker->node);
1709 		/* on creation a worker is in !idle && prep state */
1710 		worker->flags = WORKER_PREP;
1711 	}
1712 	return worker;
1713 }
1714 
1715 /**
1716  * worker_attach_to_pool() - attach a worker to a pool
1717  * @worker: worker to be attached
1718  * @pool: the target pool
1719  *
1720  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1721  * cpu-binding of @worker are kept coordinated with the pool across
1722  * cpu-[un]hotplugs.
1723  */
1724 static void worker_attach_to_pool(struct worker *worker,
1725 				   struct worker_pool *pool)
1726 {
1727 	mutex_lock(&pool->attach_mutex);
1728 
1729 	/*
1730 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1731 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1732 	 */
1733 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1734 
1735 	/*
1736 	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1737 	 * stable across this function.  See the comments above the
1738 	 * flag definition for details.
1739 	 */
1740 	if (pool->flags & POOL_DISASSOCIATED)
1741 		worker->flags |= WORKER_UNBOUND;
1742 
1743 	list_add_tail(&worker->node, &pool->workers);
1744 
1745 	mutex_unlock(&pool->attach_mutex);
1746 }
1747 
1748 /**
1749  * worker_detach_from_pool() - detach a worker from its pool
1750  * @worker: worker which is attached to its pool
1751  * @pool: the pool @worker is attached to
1752  *
1753  * Undo the attaching which had been done in worker_attach_to_pool().  The
1754  * caller worker shouldn't access to the pool after detached except it has
1755  * other reference to the pool.
1756  */
1757 static void worker_detach_from_pool(struct worker *worker,
1758 				    struct worker_pool *pool)
1759 {
1760 	struct completion *detach_completion = NULL;
1761 
1762 	mutex_lock(&pool->attach_mutex);
1763 	list_del(&worker->node);
1764 	if (list_empty(&pool->workers))
1765 		detach_completion = pool->detach_completion;
1766 	mutex_unlock(&pool->attach_mutex);
1767 
1768 	/* clear leftover flags without pool->lock after it is detached */
1769 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1770 
1771 	if (detach_completion)
1772 		complete(detach_completion);
1773 }
1774 
1775 /**
1776  * create_worker - create a new workqueue worker
1777  * @pool: pool the new worker will belong to
1778  *
1779  * Create and start a new worker which is attached to @pool.
1780  *
1781  * CONTEXT:
1782  * Might sleep.  Does GFP_KERNEL allocations.
1783  *
1784  * Return:
1785  * Pointer to the newly created worker.
1786  */
1787 static struct worker *create_worker(struct worker_pool *pool)
1788 {
1789 	struct worker *worker = NULL;
1790 	int id = -1;
1791 	char id_buf[16];
1792 
1793 	/* ID is needed to determine kthread name */
1794 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1795 	if (id < 0)
1796 		goto fail;
1797 
1798 	worker = alloc_worker(pool->node);
1799 	if (!worker)
1800 		goto fail;
1801 
1802 	worker->pool = pool;
1803 	worker->id = id;
1804 
1805 	if (pool->cpu >= 0)
1806 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1807 			 pool->attrs->nice < 0  ? "H" : "");
1808 	else
1809 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1810 
1811 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1812 					      "kworker/%s", id_buf);
1813 	if (IS_ERR(worker->task))
1814 		goto fail;
1815 
1816 	set_user_nice(worker->task, pool->attrs->nice);
1817 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1818 
1819 	/* successful, attach the worker to the pool */
1820 	worker_attach_to_pool(worker, pool);
1821 
1822 	/* start the newly created worker */
1823 	spin_lock_irq(&pool->lock);
1824 	worker->pool->nr_workers++;
1825 	worker_enter_idle(worker);
1826 	wake_up_process(worker->task);
1827 	spin_unlock_irq(&pool->lock);
1828 
1829 	return worker;
1830 
1831 fail:
1832 	if (id >= 0)
1833 		ida_simple_remove(&pool->worker_ida, id);
1834 	kfree(worker);
1835 	return NULL;
1836 }
1837 
1838 /**
1839  * destroy_worker - destroy a workqueue worker
1840  * @worker: worker to be destroyed
1841  *
1842  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1843  * be idle.
1844  *
1845  * CONTEXT:
1846  * spin_lock_irq(pool->lock).
1847  */
1848 static void destroy_worker(struct worker *worker)
1849 {
1850 	struct worker_pool *pool = worker->pool;
1851 
1852 	lockdep_assert_held(&pool->lock);
1853 
1854 	/* sanity check frenzy */
1855 	if (WARN_ON(worker->current_work) ||
1856 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1857 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1858 		return;
1859 
1860 	pool->nr_workers--;
1861 	pool->nr_idle--;
1862 
1863 	list_del_init(&worker->entry);
1864 	worker->flags |= WORKER_DIE;
1865 	wake_up_process(worker->task);
1866 }
1867 
1868 static void idle_worker_timeout(struct timer_list *t)
1869 {
1870 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
1871 
1872 	spin_lock_irq(&pool->lock);
1873 
1874 	while (too_many_workers(pool)) {
1875 		struct worker *worker;
1876 		unsigned long expires;
1877 
1878 		/* idle_list is kept in LIFO order, check the last one */
1879 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1880 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1881 
1882 		if (time_before(jiffies, expires)) {
1883 			mod_timer(&pool->idle_timer, expires);
1884 			break;
1885 		}
1886 
1887 		destroy_worker(worker);
1888 	}
1889 
1890 	spin_unlock_irq(&pool->lock);
1891 }
1892 
1893 static void send_mayday(struct work_struct *work)
1894 {
1895 	struct pool_workqueue *pwq = get_work_pwq(work);
1896 	struct workqueue_struct *wq = pwq->wq;
1897 
1898 	lockdep_assert_held(&wq_mayday_lock);
1899 
1900 	if (!wq->rescuer)
1901 		return;
1902 
1903 	/* mayday mayday mayday */
1904 	if (list_empty(&pwq->mayday_node)) {
1905 		/*
1906 		 * If @pwq is for an unbound wq, its base ref may be put at
1907 		 * any time due to an attribute change.  Pin @pwq until the
1908 		 * rescuer is done with it.
1909 		 */
1910 		get_pwq(pwq);
1911 		list_add_tail(&pwq->mayday_node, &wq->maydays);
1912 		wake_up_process(wq->rescuer->task);
1913 	}
1914 }
1915 
1916 static void pool_mayday_timeout(struct timer_list *t)
1917 {
1918 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
1919 	struct work_struct *work;
1920 
1921 	spin_lock_irq(&pool->lock);
1922 	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1923 
1924 	if (need_to_create_worker(pool)) {
1925 		/*
1926 		 * We've been trying to create a new worker but
1927 		 * haven't been successful.  We might be hitting an
1928 		 * allocation deadlock.  Send distress signals to
1929 		 * rescuers.
1930 		 */
1931 		list_for_each_entry(work, &pool->worklist, entry)
1932 			send_mayday(work);
1933 	}
1934 
1935 	spin_unlock(&wq_mayday_lock);
1936 	spin_unlock_irq(&pool->lock);
1937 
1938 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1939 }
1940 
1941 /**
1942  * maybe_create_worker - create a new worker if necessary
1943  * @pool: pool to create a new worker for
1944  *
1945  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1946  * have at least one idle worker on return from this function.  If
1947  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1948  * sent to all rescuers with works scheduled on @pool to resolve
1949  * possible allocation deadlock.
1950  *
1951  * On return, need_to_create_worker() is guaranteed to be %false and
1952  * may_start_working() %true.
1953  *
1954  * LOCKING:
1955  * spin_lock_irq(pool->lock) which may be released and regrabbed
1956  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1957  * manager.
1958  */
1959 static void maybe_create_worker(struct worker_pool *pool)
1960 __releases(&pool->lock)
1961 __acquires(&pool->lock)
1962 {
1963 restart:
1964 	spin_unlock_irq(&pool->lock);
1965 
1966 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1967 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1968 
1969 	while (true) {
1970 		if (create_worker(pool) || !need_to_create_worker(pool))
1971 			break;
1972 
1973 		schedule_timeout_interruptible(CREATE_COOLDOWN);
1974 
1975 		if (!need_to_create_worker(pool))
1976 			break;
1977 	}
1978 
1979 	del_timer_sync(&pool->mayday_timer);
1980 	spin_lock_irq(&pool->lock);
1981 	/*
1982 	 * This is necessary even after a new worker was just successfully
1983 	 * created as @pool->lock was dropped and the new worker might have
1984 	 * already become busy.
1985 	 */
1986 	if (need_to_create_worker(pool))
1987 		goto restart;
1988 }
1989 
1990 /**
1991  * manage_workers - manage worker pool
1992  * @worker: self
1993  *
1994  * Assume the manager role and manage the worker pool @worker belongs
1995  * to.  At any given time, there can be only zero or one manager per
1996  * pool.  The exclusion is handled automatically by this function.
1997  *
1998  * The caller can safely start processing works on false return.  On
1999  * true return, it's guaranteed that need_to_create_worker() is false
2000  * and may_start_working() is true.
2001  *
2002  * CONTEXT:
2003  * spin_lock_irq(pool->lock) which may be released and regrabbed
2004  * multiple times.  Does GFP_KERNEL allocations.
2005  *
2006  * Return:
2007  * %false if the pool doesn't need management and the caller can safely
2008  * start processing works, %true if management function was performed and
2009  * the conditions that the caller verified before calling the function may
2010  * no longer be true.
2011  */
2012 static bool manage_workers(struct worker *worker)
2013 {
2014 	struct worker_pool *pool = worker->pool;
2015 
2016 	if (pool->flags & POOL_MANAGER_ACTIVE)
2017 		return false;
2018 
2019 	pool->flags |= POOL_MANAGER_ACTIVE;
2020 	pool->manager = worker;
2021 
2022 	maybe_create_worker(pool);
2023 
2024 	pool->manager = NULL;
2025 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2026 	wake_up(&wq_manager_wait);
2027 	return true;
2028 }
2029 
2030 /**
2031  * process_one_work - process single work
2032  * @worker: self
2033  * @work: work to process
2034  *
2035  * Process @work.  This function contains all the logics necessary to
2036  * process a single work including synchronization against and
2037  * interaction with other workers on the same cpu, queueing and
2038  * flushing.  As long as context requirement is met, any worker can
2039  * call this function to process a work.
2040  *
2041  * CONTEXT:
2042  * spin_lock_irq(pool->lock) which is released and regrabbed.
2043  */
2044 static void process_one_work(struct worker *worker, struct work_struct *work)
2045 __releases(&pool->lock)
2046 __acquires(&pool->lock)
2047 {
2048 	struct pool_workqueue *pwq = get_work_pwq(work);
2049 	struct worker_pool *pool = worker->pool;
2050 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2051 	int work_color;
2052 	struct worker *collision;
2053 #ifdef CONFIG_LOCKDEP
2054 	/*
2055 	 * It is permissible to free the struct work_struct from
2056 	 * inside the function that is called from it, this we need to
2057 	 * take into account for lockdep too.  To avoid bogus "held
2058 	 * lock freed" warnings as well as problems when looking into
2059 	 * work->lockdep_map, make a copy and use that here.
2060 	 */
2061 	struct lockdep_map lockdep_map;
2062 
2063 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2064 #endif
2065 	/* ensure we're on the correct CPU */
2066 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2067 		     raw_smp_processor_id() != pool->cpu);
2068 
2069 	/*
2070 	 * A single work shouldn't be executed concurrently by
2071 	 * multiple workers on a single cpu.  Check whether anyone is
2072 	 * already processing the work.  If so, defer the work to the
2073 	 * currently executing one.
2074 	 */
2075 	collision = find_worker_executing_work(pool, work);
2076 	if (unlikely(collision)) {
2077 		move_linked_works(work, &collision->scheduled, NULL);
2078 		return;
2079 	}
2080 
2081 	/* claim and dequeue */
2082 	debug_work_deactivate(work);
2083 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2084 	worker->current_work = work;
2085 	worker->current_func = work->func;
2086 	worker->current_pwq = pwq;
2087 	work_color = get_work_color(work);
2088 
2089 	list_del_init(&work->entry);
2090 
2091 	/*
2092 	 * CPU intensive works don't participate in concurrency management.
2093 	 * They're the scheduler's responsibility.  This takes @worker out
2094 	 * of concurrency management and the next code block will chain
2095 	 * execution of the pending work items.
2096 	 */
2097 	if (unlikely(cpu_intensive))
2098 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2099 
2100 	/*
2101 	 * Wake up another worker if necessary.  The condition is always
2102 	 * false for normal per-cpu workers since nr_running would always
2103 	 * be >= 1 at this point.  This is used to chain execution of the
2104 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2105 	 * UNBOUND and CPU_INTENSIVE ones.
2106 	 */
2107 	if (need_more_worker(pool))
2108 		wake_up_worker(pool);
2109 
2110 	/*
2111 	 * Record the last pool and clear PENDING which should be the last
2112 	 * update to @work.  Also, do this inside @pool->lock so that
2113 	 * PENDING and queued state changes happen together while IRQ is
2114 	 * disabled.
2115 	 */
2116 	set_work_pool_and_clear_pending(work, pool->id);
2117 
2118 	spin_unlock_irq(&pool->lock);
2119 
2120 	lock_map_acquire(&pwq->wq->lockdep_map);
2121 	lock_map_acquire(&lockdep_map);
2122 	/*
2123 	 * Strictly speaking we should mark the invariant state without holding
2124 	 * any locks, that is, before these two lock_map_acquire()'s.
2125 	 *
2126 	 * However, that would result in:
2127 	 *
2128 	 *   A(W1)
2129 	 *   WFC(C)
2130 	 *		A(W1)
2131 	 *		C(C)
2132 	 *
2133 	 * Which would create W1->C->W1 dependencies, even though there is no
2134 	 * actual deadlock possible. There are two solutions, using a
2135 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2136 	 * hit the lockdep limitation on recursive locks, or simply discard
2137 	 * these locks.
2138 	 *
2139 	 * AFAICT there is no possible deadlock scenario between the
2140 	 * flush_work() and complete() primitives (except for single-threaded
2141 	 * workqueues), so hiding them isn't a problem.
2142 	 */
2143 	lockdep_invariant_state(true);
2144 	trace_workqueue_execute_start(work);
2145 	worker->current_func(work);
2146 	/*
2147 	 * While we must be careful to not use "work" after this, the trace
2148 	 * point will only record its address.
2149 	 */
2150 	trace_workqueue_execute_end(work);
2151 	lock_map_release(&lockdep_map);
2152 	lock_map_release(&pwq->wq->lockdep_map);
2153 
2154 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2155 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2156 		       "     last function: %pf\n",
2157 		       current->comm, preempt_count(), task_pid_nr(current),
2158 		       worker->current_func);
2159 		debug_show_held_locks(current);
2160 		dump_stack();
2161 	}
2162 
2163 	/*
2164 	 * The following prevents a kworker from hogging CPU on !PREEMPT
2165 	 * kernels, where a requeueing work item waiting for something to
2166 	 * happen could deadlock with stop_machine as such work item could
2167 	 * indefinitely requeue itself while all other CPUs are trapped in
2168 	 * stop_machine. At the same time, report a quiescent RCU state so
2169 	 * the same condition doesn't freeze RCU.
2170 	 */
2171 	cond_resched();
2172 
2173 	spin_lock_irq(&pool->lock);
2174 
2175 	/* clear cpu intensive status */
2176 	if (unlikely(cpu_intensive))
2177 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2178 
2179 	/* we're done with it, release */
2180 	hash_del(&worker->hentry);
2181 	worker->current_work = NULL;
2182 	worker->current_func = NULL;
2183 	worker->current_pwq = NULL;
2184 	worker->desc_valid = false;
2185 	pwq_dec_nr_in_flight(pwq, work_color);
2186 }
2187 
2188 /**
2189  * process_scheduled_works - process scheduled works
2190  * @worker: self
2191  *
2192  * Process all scheduled works.  Please note that the scheduled list
2193  * may change while processing a work, so this function repeatedly
2194  * fetches a work from the top and executes it.
2195  *
2196  * CONTEXT:
2197  * spin_lock_irq(pool->lock) which may be released and regrabbed
2198  * multiple times.
2199  */
2200 static void process_scheduled_works(struct worker *worker)
2201 {
2202 	while (!list_empty(&worker->scheduled)) {
2203 		struct work_struct *work = list_first_entry(&worker->scheduled,
2204 						struct work_struct, entry);
2205 		process_one_work(worker, work);
2206 	}
2207 }
2208 
2209 /**
2210  * worker_thread - the worker thread function
2211  * @__worker: self
2212  *
2213  * The worker thread function.  All workers belong to a worker_pool -
2214  * either a per-cpu one or dynamic unbound one.  These workers process all
2215  * work items regardless of their specific target workqueue.  The only
2216  * exception is work items which belong to workqueues with a rescuer which
2217  * will be explained in rescuer_thread().
2218  *
2219  * Return: 0
2220  */
2221 static int worker_thread(void *__worker)
2222 {
2223 	struct worker *worker = __worker;
2224 	struct worker_pool *pool = worker->pool;
2225 
2226 	/* tell the scheduler that this is a workqueue worker */
2227 	worker->task->flags |= PF_WQ_WORKER;
2228 woke_up:
2229 	spin_lock_irq(&pool->lock);
2230 
2231 	/* am I supposed to die? */
2232 	if (unlikely(worker->flags & WORKER_DIE)) {
2233 		spin_unlock_irq(&pool->lock);
2234 		WARN_ON_ONCE(!list_empty(&worker->entry));
2235 		worker->task->flags &= ~PF_WQ_WORKER;
2236 
2237 		set_task_comm(worker->task, "kworker/dying");
2238 		ida_simple_remove(&pool->worker_ida, worker->id);
2239 		worker_detach_from_pool(worker, pool);
2240 		kfree(worker);
2241 		return 0;
2242 	}
2243 
2244 	worker_leave_idle(worker);
2245 recheck:
2246 	/* no more worker necessary? */
2247 	if (!need_more_worker(pool))
2248 		goto sleep;
2249 
2250 	/* do we need to manage? */
2251 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2252 		goto recheck;
2253 
2254 	/*
2255 	 * ->scheduled list can only be filled while a worker is
2256 	 * preparing to process a work or actually processing it.
2257 	 * Make sure nobody diddled with it while I was sleeping.
2258 	 */
2259 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2260 
2261 	/*
2262 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2263 	 * worker or that someone else has already assumed the manager
2264 	 * role.  This is where @worker starts participating in concurrency
2265 	 * management if applicable and concurrency management is restored
2266 	 * after being rebound.  See rebind_workers() for details.
2267 	 */
2268 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2269 
2270 	do {
2271 		struct work_struct *work =
2272 			list_first_entry(&pool->worklist,
2273 					 struct work_struct, entry);
2274 
2275 		pool->watchdog_ts = jiffies;
2276 
2277 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2278 			/* optimization path, not strictly necessary */
2279 			process_one_work(worker, work);
2280 			if (unlikely(!list_empty(&worker->scheduled)))
2281 				process_scheduled_works(worker);
2282 		} else {
2283 			move_linked_works(work, &worker->scheduled, NULL);
2284 			process_scheduled_works(worker);
2285 		}
2286 	} while (keep_working(pool));
2287 
2288 	worker_set_flags(worker, WORKER_PREP);
2289 sleep:
2290 	/*
2291 	 * pool->lock is held and there's no work to process and no need to
2292 	 * manage, sleep.  Workers are woken up only while holding
2293 	 * pool->lock or from local cpu, so setting the current state
2294 	 * before releasing pool->lock is enough to prevent losing any
2295 	 * event.
2296 	 */
2297 	worker_enter_idle(worker);
2298 	__set_current_state(TASK_IDLE);
2299 	spin_unlock_irq(&pool->lock);
2300 	schedule();
2301 	goto woke_up;
2302 }
2303 
2304 /**
2305  * rescuer_thread - the rescuer thread function
2306  * @__rescuer: self
2307  *
2308  * Workqueue rescuer thread function.  There's one rescuer for each
2309  * workqueue which has WQ_MEM_RECLAIM set.
2310  *
2311  * Regular work processing on a pool may block trying to create a new
2312  * worker which uses GFP_KERNEL allocation which has slight chance of
2313  * developing into deadlock if some works currently on the same queue
2314  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2315  * the problem rescuer solves.
2316  *
2317  * When such condition is possible, the pool summons rescuers of all
2318  * workqueues which have works queued on the pool and let them process
2319  * those works so that forward progress can be guaranteed.
2320  *
2321  * This should happen rarely.
2322  *
2323  * Return: 0
2324  */
2325 static int rescuer_thread(void *__rescuer)
2326 {
2327 	struct worker *rescuer = __rescuer;
2328 	struct workqueue_struct *wq = rescuer->rescue_wq;
2329 	struct list_head *scheduled = &rescuer->scheduled;
2330 	bool should_stop;
2331 
2332 	set_user_nice(current, RESCUER_NICE_LEVEL);
2333 
2334 	/*
2335 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2336 	 * doesn't participate in concurrency management.
2337 	 */
2338 	rescuer->task->flags |= PF_WQ_WORKER;
2339 repeat:
2340 	set_current_state(TASK_IDLE);
2341 
2342 	/*
2343 	 * By the time the rescuer is requested to stop, the workqueue
2344 	 * shouldn't have any work pending, but @wq->maydays may still have
2345 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2346 	 * all the work items before the rescuer got to them.  Go through
2347 	 * @wq->maydays processing before acting on should_stop so that the
2348 	 * list is always empty on exit.
2349 	 */
2350 	should_stop = kthread_should_stop();
2351 
2352 	/* see whether any pwq is asking for help */
2353 	spin_lock_irq(&wq_mayday_lock);
2354 
2355 	while (!list_empty(&wq->maydays)) {
2356 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2357 					struct pool_workqueue, mayday_node);
2358 		struct worker_pool *pool = pwq->pool;
2359 		struct work_struct *work, *n;
2360 		bool first = true;
2361 
2362 		__set_current_state(TASK_RUNNING);
2363 		list_del_init(&pwq->mayday_node);
2364 
2365 		spin_unlock_irq(&wq_mayday_lock);
2366 
2367 		worker_attach_to_pool(rescuer, pool);
2368 
2369 		spin_lock_irq(&pool->lock);
2370 		rescuer->pool = pool;
2371 
2372 		/*
2373 		 * Slurp in all works issued via this workqueue and
2374 		 * process'em.
2375 		 */
2376 		WARN_ON_ONCE(!list_empty(scheduled));
2377 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2378 			if (get_work_pwq(work) == pwq) {
2379 				if (first)
2380 					pool->watchdog_ts = jiffies;
2381 				move_linked_works(work, scheduled, &n);
2382 			}
2383 			first = false;
2384 		}
2385 
2386 		if (!list_empty(scheduled)) {
2387 			process_scheduled_works(rescuer);
2388 
2389 			/*
2390 			 * The above execution of rescued work items could
2391 			 * have created more to rescue through
2392 			 * pwq_activate_first_delayed() or chained
2393 			 * queueing.  Let's put @pwq back on mayday list so
2394 			 * that such back-to-back work items, which may be
2395 			 * being used to relieve memory pressure, don't
2396 			 * incur MAYDAY_INTERVAL delay inbetween.
2397 			 */
2398 			if (need_to_create_worker(pool)) {
2399 				spin_lock(&wq_mayday_lock);
2400 				get_pwq(pwq);
2401 				list_move_tail(&pwq->mayday_node, &wq->maydays);
2402 				spin_unlock(&wq_mayday_lock);
2403 			}
2404 		}
2405 
2406 		/*
2407 		 * Put the reference grabbed by send_mayday().  @pool won't
2408 		 * go away while we're still attached to it.
2409 		 */
2410 		put_pwq(pwq);
2411 
2412 		/*
2413 		 * Leave this pool.  If need_more_worker() is %true, notify a
2414 		 * regular worker; otherwise, we end up with 0 concurrency
2415 		 * and stalling the execution.
2416 		 */
2417 		if (need_more_worker(pool))
2418 			wake_up_worker(pool);
2419 
2420 		rescuer->pool = NULL;
2421 		spin_unlock_irq(&pool->lock);
2422 
2423 		worker_detach_from_pool(rescuer, pool);
2424 
2425 		spin_lock_irq(&wq_mayday_lock);
2426 	}
2427 
2428 	spin_unlock_irq(&wq_mayday_lock);
2429 
2430 	if (should_stop) {
2431 		__set_current_state(TASK_RUNNING);
2432 		rescuer->task->flags &= ~PF_WQ_WORKER;
2433 		return 0;
2434 	}
2435 
2436 	/* rescuers should never participate in concurrency management */
2437 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2438 	schedule();
2439 	goto repeat;
2440 }
2441 
2442 /**
2443  * check_flush_dependency - check for flush dependency sanity
2444  * @target_wq: workqueue being flushed
2445  * @target_work: work item being flushed (NULL for workqueue flushes)
2446  *
2447  * %current is trying to flush the whole @target_wq or @target_work on it.
2448  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2449  * reclaiming memory or running on a workqueue which doesn't have
2450  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2451  * a deadlock.
2452  */
2453 static void check_flush_dependency(struct workqueue_struct *target_wq,
2454 				   struct work_struct *target_work)
2455 {
2456 	work_func_t target_func = target_work ? target_work->func : NULL;
2457 	struct worker *worker;
2458 
2459 	if (target_wq->flags & WQ_MEM_RECLAIM)
2460 		return;
2461 
2462 	worker = current_wq_worker();
2463 
2464 	WARN_ONCE(current->flags & PF_MEMALLOC,
2465 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2466 		  current->pid, current->comm, target_wq->name, target_func);
2467 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2468 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2469 		  "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2470 		  worker->current_pwq->wq->name, worker->current_func,
2471 		  target_wq->name, target_func);
2472 }
2473 
2474 struct wq_barrier {
2475 	struct work_struct	work;
2476 	struct completion	done;
2477 	struct task_struct	*task;	/* purely informational */
2478 };
2479 
2480 static void wq_barrier_func(struct work_struct *work)
2481 {
2482 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2483 	complete(&barr->done);
2484 }
2485 
2486 /**
2487  * insert_wq_barrier - insert a barrier work
2488  * @pwq: pwq to insert barrier into
2489  * @barr: wq_barrier to insert
2490  * @target: target work to attach @barr to
2491  * @worker: worker currently executing @target, NULL if @target is not executing
2492  *
2493  * @barr is linked to @target such that @barr is completed only after
2494  * @target finishes execution.  Please note that the ordering
2495  * guarantee is observed only with respect to @target and on the local
2496  * cpu.
2497  *
2498  * Currently, a queued barrier can't be canceled.  This is because
2499  * try_to_grab_pending() can't determine whether the work to be
2500  * grabbed is at the head of the queue and thus can't clear LINKED
2501  * flag of the previous work while there must be a valid next work
2502  * after a work with LINKED flag set.
2503  *
2504  * Note that when @worker is non-NULL, @target may be modified
2505  * underneath us, so we can't reliably determine pwq from @target.
2506  *
2507  * CONTEXT:
2508  * spin_lock_irq(pool->lock).
2509  */
2510 static void insert_wq_barrier(struct pool_workqueue *pwq,
2511 			      struct wq_barrier *barr,
2512 			      struct work_struct *target, struct worker *worker)
2513 {
2514 	struct list_head *head;
2515 	unsigned int linked = 0;
2516 
2517 	/*
2518 	 * debugobject calls are safe here even with pool->lock locked
2519 	 * as we know for sure that this will not trigger any of the
2520 	 * checks and call back into the fixup functions where we
2521 	 * might deadlock.
2522 	 */
2523 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2524 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2525 
2526 	init_completion_map(&barr->done, &target->lockdep_map);
2527 
2528 	barr->task = current;
2529 
2530 	/*
2531 	 * If @target is currently being executed, schedule the
2532 	 * barrier to the worker; otherwise, put it after @target.
2533 	 */
2534 	if (worker)
2535 		head = worker->scheduled.next;
2536 	else {
2537 		unsigned long *bits = work_data_bits(target);
2538 
2539 		head = target->entry.next;
2540 		/* there can already be other linked works, inherit and set */
2541 		linked = *bits & WORK_STRUCT_LINKED;
2542 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2543 	}
2544 
2545 	debug_work_activate(&barr->work);
2546 	insert_work(pwq, &barr->work, head,
2547 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2548 }
2549 
2550 /**
2551  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2552  * @wq: workqueue being flushed
2553  * @flush_color: new flush color, < 0 for no-op
2554  * @work_color: new work color, < 0 for no-op
2555  *
2556  * Prepare pwqs for workqueue flushing.
2557  *
2558  * If @flush_color is non-negative, flush_color on all pwqs should be
2559  * -1.  If no pwq has in-flight commands at the specified color, all
2560  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2561  * has in flight commands, its pwq->flush_color is set to
2562  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2563  * wakeup logic is armed and %true is returned.
2564  *
2565  * The caller should have initialized @wq->first_flusher prior to
2566  * calling this function with non-negative @flush_color.  If
2567  * @flush_color is negative, no flush color update is done and %false
2568  * is returned.
2569  *
2570  * If @work_color is non-negative, all pwqs should have the same
2571  * work_color which is previous to @work_color and all will be
2572  * advanced to @work_color.
2573  *
2574  * CONTEXT:
2575  * mutex_lock(wq->mutex).
2576  *
2577  * Return:
2578  * %true if @flush_color >= 0 and there's something to flush.  %false
2579  * otherwise.
2580  */
2581 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2582 				      int flush_color, int work_color)
2583 {
2584 	bool wait = false;
2585 	struct pool_workqueue *pwq;
2586 
2587 	if (flush_color >= 0) {
2588 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2589 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2590 	}
2591 
2592 	for_each_pwq(pwq, wq) {
2593 		struct worker_pool *pool = pwq->pool;
2594 
2595 		spin_lock_irq(&pool->lock);
2596 
2597 		if (flush_color >= 0) {
2598 			WARN_ON_ONCE(pwq->flush_color != -1);
2599 
2600 			if (pwq->nr_in_flight[flush_color]) {
2601 				pwq->flush_color = flush_color;
2602 				atomic_inc(&wq->nr_pwqs_to_flush);
2603 				wait = true;
2604 			}
2605 		}
2606 
2607 		if (work_color >= 0) {
2608 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2609 			pwq->work_color = work_color;
2610 		}
2611 
2612 		spin_unlock_irq(&pool->lock);
2613 	}
2614 
2615 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2616 		complete(&wq->first_flusher->done);
2617 
2618 	return wait;
2619 }
2620 
2621 /**
2622  * flush_workqueue - ensure that any scheduled work has run to completion.
2623  * @wq: workqueue to flush
2624  *
2625  * This function sleeps until all work items which were queued on entry
2626  * have finished execution, but it is not livelocked by new incoming ones.
2627  */
2628 void flush_workqueue(struct workqueue_struct *wq)
2629 {
2630 	struct wq_flusher this_flusher = {
2631 		.list = LIST_HEAD_INIT(this_flusher.list),
2632 		.flush_color = -1,
2633 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2634 	};
2635 	int next_color;
2636 
2637 	if (WARN_ON(!wq_online))
2638 		return;
2639 
2640 	mutex_lock(&wq->mutex);
2641 
2642 	/*
2643 	 * Start-to-wait phase
2644 	 */
2645 	next_color = work_next_color(wq->work_color);
2646 
2647 	if (next_color != wq->flush_color) {
2648 		/*
2649 		 * Color space is not full.  The current work_color
2650 		 * becomes our flush_color and work_color is advanced
2651 		 * by one.
2652 		 */
2653 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2654 		this_flusher.flush_color = wq->work_color;
2655 		wq->work_color = next_color;
2656 
2657 		if (!wq->first_flusher) {
2658 			/* no flush in progress, become the first flusher */
2659 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2660 
2661 			wq->first_flusher = &this_flusher;
2662 
2663 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2664 						       wq->work_color)) {
2665 				/* nothing to flush, done */
2666 				wq->flush_color = next_color;
2667 				wq->first_flusher = NULL;
2668 				goto out_unlock;
2669 			}
2670 		} else {
2671 			/* wait in queue */
2672 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2673 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2674 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2675 		}
2676 	} else {
2677 		/*
2678 		 * Oops, color space is full, wait on overflow queue.
2679 		 * The next flush completion will assign us
2680 		 * flush_color and transfer to flusher_queue.
2681 		 */
2682 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2683 	}
2684 
2685 	check_flush_dependency(wq, NULL);
2686 
2687 	mutex_unlock(&wq->mutex);
2688 
2689 	wait_for_completion(&this_flusher.done);
2690 
2691 	/*
2692 	 * Wake-up-and-cascade phase
2693 	 *
2694 	 * First flushers are responsible for cascading flushes and
2695 	 * handling overflow.  Non-first flushers can simply return.
2696 	 */
2697 	if (wq->first_flusher != &this_flusher)
2698 		return;
2699 
2700 	mutex_lock(&wq->mutex);
2701 
2702 	/* we might have raced, check again with mutex held */
2703 	if (wq->first_flusher != &this_flusher)
2704 		goto out_unlock;
2705 
2706 	wq->first_flusher = NULL;
2707 
2708 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2709 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2710 
2711 	while (true) {
2712 		struct wq_flusher *next, *tmp;
2713 
2714 		/* complete all the flushers sharing the current flush color */
2715 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2716 			if (next->flush_color != wq->flush_color)
2717 				break;
2718 			list_del_init(&next->list);
2719 			complete(&next->done);
2720 		}
2721 
2722 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2723 			     wq->flush_color != work_next_color(wq->work_color));
2724 
2725 		/* this flush_color is finished, advance by one */
2726 		wq->flush_color = work_next_color(wq->flush_color);
2727 
2728 		/* one color has been freed, handle overflow queue */
2729 		if (!list_empty(&wq->flusher_overflow)) {
2730 			/*
2731 			 * Assign the same color to all overflowed
2732 			 * flushers, advance work_color and append to
2733 			 * flusher_queue.  This is the start-to-wait
2734 			 * phase for these overflowed flushers.
2735 			 */
2736 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2737 				tmp->flush_color = wq->work_color;
2738 
2739 			wq->work_color = work_next_color(wq->work_color);
2740 
2741 			list_splice_tail_init(&wq->flusher_overflow,
2742 					      &wq->flusher_queue);
2743 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2744 		}
2745 
2746 		if (list_empty(&wq->flusher_queue)) {
2747 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2748 			break;
2749 		}
2750 
2751 		/*
2752 		 * Need to flush more colors.  Make the next flusher
2753 		 * the new first flusher and arm pwqs.
2754 		 */
2755 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2756 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2757 
2758 		list_del_init(&next->list);
2759 		wq->first_flusher = next;
2760 
2761 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2762 			break;
2763 
2764 		/*
2765 		 * Meh... this color is already done, clear first
2766 		 * flusher and repeat cascading.
2767 		 */
2768 		wq->first_flusher = NULL;
2769 	}
2770 
2771 out_unlock:
2772 	mutex_unlock(&wq->mutex);
2773 }
2774 EXPORT_SYMBOL(flush_workqueue);
2775 
2776 /**
2777  * drain_workqueue - drain a workqueue
2778  * @wq: workqueue to drain
2779  *
2780  * Wait until the workqueue becomes empty.  While draining is in progress,
2781  * only chain queueing is allowed.  IOW, only currently pending or running
2782  * work items on @wq can queue further work items on it.  @wq is flushed
2783  * repeatedly until it becomes empty.  The number of flushing is determined
2784  * by the depth of chaining and should be relatively short.  Whine if it
2785  * takes too long.
2786  */
2787 void drain_workqueue(struct workqueue_struct *wq)
2788 {
2789 	unsigned int flush_cnt = 0;
2790 	struct pool_workqueue *pwq;
2791 
2792 	/*
2793 	 * __queue_work() needs to test whether there are drainers, is much
2794 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2795 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2796 	 */
2797 	mutex_lock(&wq->mutex);
2798 	if (!wq->nr_drainers++)
2799 		wq->flags |= __WQ_DRAINING;
2800 	mutex_unlock(&wq->mutex);
2801 reflush:
2802 	flush_workqueue(wq);
2803 
2804 	mutex_lock(&wq->mutex);
2805 
2806 	for_each_pwq(pwq, wq) {
2807 		bool drained;
2808 
2809 		spin_lock_irq(&pwq->pool->lock);
2810 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2811 		spin_unlock_irq(&pwq->pool->lock);
2812 
2813 		if (drained)
2814 			continue;
2815 
2816 		if (++flush_cnt == 10 ||
2817 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2818 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2819 				wq->name, flush_cnt);
2820 
2821 		mutex_unlock(&wq->mutex);
2822 		goto reflush;
2823 	}
2824 
2825 	if (!--wq->nr_drainers)
2826 		wq->flags &= ~__WQ_DRAINING;
2827 	mutex_unlock(&wq->mutex);
2828 }
2829 EXPORT_SYMBOL_GPL(drain_workqueue);
2830 
2831 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2832 {
2833 	struct worker *worker = NULL;
2834 	struct worker_pool *pool;
2835 	struct pool_workqueue *pwq;
2836 
2837 	might_sleep();
2838 
2839 	local_irq_disable();
2840 	pool = get_work_pool(work);
2841 	if (!pool) {
2842 		local_irq_enable();
2843 		return false;
2844 	}
2845 
2846 	spin_lock(&pool->lock);
2847 	/* see the comment in try_to_grab_pending() with the same code */
2848 	pwq = get_work_pwq(work);
2849 	if (pwq) {
2850 		if (unlikely(pwq->pool != pool))
2851 			goto already_gone;
2852 	} else {
2853 		worker = find_worker_executing_work(pool, work);
2854 		if (!worker)
2855 			goto already_gone;
2856 		pwq = worker->current_pwq;
2857 	}
2858 
2859 	check_flush_dependency(pwq->wq, work);
2860 
2861 	insert_wq_barrier(pwq, barr, work, worker);
2862 	spin_unlock_irq(&pool->lock);
2863 
2864 	/*
2865 	 * Force a lock recursion deadlock when using flush_work() inside a
2866 	 * single-threaded or rescuer equipped workqueue.
2867 	 *
2868 	 * For single threaded workqueues the deadlock happens when the work
2869 	 * is after the work issuing the flush_work(). For rescuer equipped
2870 	 * workqueues the deadlock happens when the rescuer stalls, blocking
2871 	 * forward progress.
2872 	 */
2873 	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) {
2874 		lock_map_acquire(&pwq->wq->lockdep_map);
2875 		lock_map_release(&pwq->wq->lockdep_map);
2876 	}
2877 
2878 	return true;
2879 already_gone:
2880 	spin_unlock_irq(&pool->lock);
2881 	return false;
2882 }
2883 
2884 /**
2885  * flush_work - wait for a work to finish executing the last queueing instance
2886  * @work: the work to flush
2887  *
2888  * Wait until @work has finished execution.  @work is guaranteed to be idle
2889  * on return if it hasn't been requeued since flush started.
2890  *
2891  * Return:
2892  * %true if flush_work() waited for the work to finish execution,
2893  * %false if it was already idle.
2894  */
2895 bool flush_work(struct work_struct *work)
2896 {
2897 	struct wq_barrier barr;
2898 
2899 	if (WARN_ON(!wq_online))
2900 		return false;
2901 
2902 	if (start_flush_work(work, &barr)) {
2903 		wait_for_completion(&barr.done);
2904 		destroy_work_on_stack(&barr.work);
2905 		return true;
2906 	} else {
2907 		return false;
2908 	}
2909 }
2910 EXPORT_SYMBOL_GPL(flush_work);
2911 
2912 struct cwt_wait {
2913 	wait_queue_entry_t		wait;
2914 	struct work_struct	*work;
2915 };
2916 
2917 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2918 {
2919 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2920 
2921 	if (cwait->work != key)
2922 		return 0;
2923 	return autoremove_wake_function(wait, mode, sync, key);
2924 }
2925 
2926 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2927 {
2928 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2929 	unsigned long flags;
2930 	int ret;
2931 
2932 	do {
2933 		ret = try_to_grab_pending(work, is_dwork, &flags);
2934 		/*
2935 		 * If someone else is already canceling, wait for it to
2936 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
2937 		 * because we may get scheduled between @work's completion
2938 		 * and the other canceling task resuming and clearing
2939 		 * CANCELING - flush_work() will return false immediately
2940 		 * as @work is no longer busy, try_to_grab_pending() will
2941 		 * return -ENOENT as @work is still being canceled and the
2942 		 * other canceling task won't be able to clear CANCELING as
2943 		 * we're hogging the CPU.
2944 		 *
2945 		 * Let's wait for completion using a waitqueue.  As this
2946 		 * may lead to the thundering herd problem, use a custom
2947 		 * wake function which matches @work along with exclusive
2948 		 * wait and wakeup.
2949 		 */
2950 		if (unlikely(ret == -ENOENT)) {
2951 			struct cwt_wait cwait;
2952 
2953 			init_wait(&cwait.wait);
2954 			cwait.wait.func = cwt_wakefn;
2955 			cwait.work = work;
2956 
2957 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2958 						  TASK_UNINTERRUPTIBLE);
2959 			if (work_is_canceling(work))
2960 				schedule();
2961 			finish_wait(&cancel_waitq, &cwait.wait);
2962 		}
2963 	} while (unlikely(ret < 0));
2964 
2965 	/* tell other tasks trying to grab @work to back off */
2966 	mark_work_canceling(work);
2967 	local_irq_restore(flags);
2968 
2969 	/*
2970 	 * This allows canceling during early boot.  We know that @work
2971 	 * isn't executing.
2972 	 */
2973 	if (wq_online)
2974 		flush_work(work);
2975 
2976 	clear_work_data(work);
2977 
2978 	/*
2979 	 * Paired with prepare_to_wait() above so that either
2980 	 * waitqueue_active() is visible here or !work_is_canceling() is
2981 	 * visible there.
2982 	 */
2983 	smp_mb();
2984 	if (waitqueue_active(&cancel_waitq))
2985 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2986 
2987 	return ret;
2988 }
2989 
2990 /**
2991  * cancel_work_sync - cancel a work and wait for it to finish
2992  * @work: the work to cancel
2993  *
2994  * Cancel @work and wait for its execution to finish.  This function
2995  * can be used even if the work re-queues itself or migrates to
2996  * another workqueue.  On return from this function, @work is
2997  * guaranteed to be not pending or executing on any CPU.
2998  *
2999  * cancel_work_sync(&delayed_work->work) must not be used for
3000  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3001  *
3002  * The caller must ensure that the workqueue on which @work was last
3003  * queued can't be destroyed before this function returns.
3004  *
3005  * Return:
3006  * %true if @work was pending, %false otherwise.
3007  */
3008 bool cancel_work_sync(struct work_struct *work)
3009 {
3010 	return __cancel_work_timer(work, false);
3011 }
3012 EXPORT_SYMBOL_GPL(cancel_work_sync);
3013 
3014 /**
3015  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3016  * @dwork: the delayed work to flush
3017  *
3018  * Delayed timer is cancelled and the pending work is queued for
3019  * immediate execution.  Like flush_work(), this function only
3020  * considers the last queueing instance of @dwork.
3021  *
3022  * Return:
3023  * %true if flush_work() waited for the work to finish execution,
3024  * %false if it was already idle.
3025  */
3026 bool flush_delayed_work(struct delayed_work *dwork)
3027 {
3028 	local_irq_disable();
3029 	if (del_timer_sync(&dwork->timer))
3030 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3031 	local_irq_enable();
3032 	return flush_work(&dwork->work);
3033 }
3034 EXPORT_SYMBOL(flush_delayed_work);
3035 
3036 /**
3037  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3038  * @rwork: the rcu work to flush
3039  *
3040  * Return:
3041  * %true if flush_rcu_work() waited for the work to finish execution,
3042  * %false if it was already idle.
3043  */
3044 bool flush_rcu_work(struct rcu_work *rwork)
3045 {
3046 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3047 		rcu_barrier();
3048 		flush_work(&rwork->work);
3049 		return true;
3050 	} else {
3051 		return flush_work(&rwork->work);
3052 	}
3053 }
3054 EXPORT_SYMBOL(flush_rcu_work);
3055 
3056 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3057 {
3058 	unsigned long flags;
3059 	int ret;
3060 
3061 	do {
3062 		ret = try_to_grab_pending(work, is_dwork, &flags);
3063 	} while (unlikely(ret == -EAGAIN));
3064 
3065 	if (unlikely(ret < 0))
3066 		return false;
3067 
3068 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3069 	local_irq_restore(flags);
3070 	return ret;
3071 }
3072 
3073 /**
3074  * cancel_delayed_work - cancel a delayed work
3075  * @dwork: delayed_work to cancel
3076  *
3077  * Kill off a pending delayed_work.
3078  *
3079  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3080  * pending.
3081  *
3082  * Note:
3083  * The work callback function may still be running on return, unless
3084  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3085  * use cancel_delayed_work_sync() to wait on it.
3086  *
3087  * This function is safe to call from any context including IRQ handler.
3088  */
3089 bool cancel_delayed_work(struct delayed_work *dwork)
3090 {
3091 	return __cancel_work(&dwork->work, true);
3092 }
3093 EXPORT_SYMBOL(cancel_delayed_work);
3094 
3095 /**
3096  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3097  * @dwork: the delayed work cancel
3098  *
3099  * This is cancel_work_sync() for delayed works.
3100  *
3101  * Return:
3102  * %true if @dwork was pending, %false otherwise.
3103  */
3104 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3105 {
3106 	return __cancel_work_timer(&dwork->work, true);
3107 }
3108 EXPORT_SYMBOL(cancel_delayed_work_sync);
3109 
3110 /**
3111  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3112  * @func: the function to call
3113  *
3114  * schedule_on_each_cpu() executes @func on each online CPU using the
3115  * system workqueue and blocks until all CPUs have completed.
3116  * schedule_on_each_cpu() is very slow.
3117  *
3118  * Return:
3119  * 0 on success, -errno on failure.
3120  */
3121 int schedule_on_each_cpu(work_func_t func)
3122 {
3123 	int cpu;
3124 	struct work_struct __percpu *works;
3125 
3126 	works = alloc_percpu(struct work_struct);
3127 	if (!works)
3128 		return -ENOMEM;
3129 
3130 	get_online_cpus();
3131 
3132 	for_each_online_cpu(cpu) {
3133 		struct work_struct *work = per_cpu_ptr(works, cpu);
3134 
3135 		INIT_WORK(work, func);
3136 		schedule_work_on(cpu, work);
3137 	}
3138 
3139 	for_each_online_cpu(cpu)
3140 		flush_work(per_cpu_ptr(works, cpu));
3141 
3142 	put_online_cpus();
3143 	free_percpu(works);
3144 	return 0;
3145 }
3146 
3147 /**
3148  * execute_in_process_context - reliably execute the routine with user context
3149  * @fn:		the function to execute
3150  * @ew:		guaranteed storage for the execute work structure (must
3151  *		be available when the work executes)
3152  *
3153  * Executes the function immediately if process context is available,
3154  * otherwise schedules the function for delayed execution.
3155  *
3156  * Return:	0 - function was executed
3157  *		1 - function was scheduled for execution
3158  */
3159 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3160 {
3161 	if (!in_interrupt()) {
3162 		fn(&ew->work);
3163 		return 0;
3164 	}
3165 
3166 	INIT_WORK(&ew->work, fn);
3167 	schedule_work(&ew->work);
3168 
3169 	return 1;
3170 }
3171 EXPORT_SYMBOL_GPL(execute_in_process_context);
3172 
3173 /**
3174  * free_workqueue_attrs - free a workqueue_attrs
3175  * @attrs: workqueue_attrs to free
3176  *
3177  * Undo alloc_workqueue_attrs().
3178  */
3179 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3180 {
3181 	if (attrs) {
3182 		free_cpumask_var(attrs->cpumask);
3183 		kfree(attrs);
3184 	}
3185 }
3186 
3187 /**
3188  * alloc_workqueue_attrs - allocate a workqueue_attrs
3189  * @gfp_mask: allocation mask to use
3190  *
3191  * Allocate a new workqueue_attrs, initialize with default settings and
3192  * return it.
3193  *
3194  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3195  */
3196 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3197 {
3198 	struct workqueue_attrs *attrs;
3199 
3200 	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3201 	if (!attrs)
3202 		goto fail;
3203 	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3204 		goto fail;
3205 
3206 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3207 	return attrs;
3208 fail:
3209 	free_workqueue_attrs(attrs);
3210 	return NULL;
3211 }
3212 
3213 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3214 				 const struct workqueue_attrs *from)
3215 {
3216 	to->nice = from->nice;
3217 	cpumask_copy(to->cpumask, from->cpumask);
3218 	/*
3219 	 * Unlike hash and equality test, this function doesn't ignore
3220 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3221 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3222 	 */
3223 	to->no_numa = from->no_numa;
3224 }
3225 
3226 /* hash value of the content of @attr */
3227 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3228 {
3229 	u32 hash = 0;
3230 
3231 	hash = jhash_1word(attrs->nice, hash);
3232 	hash = jhash(cpumask_bits(attrs->cpumask),
3233 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3234 	return hash;
3235 }
3236 
3237 /* content equality test */
3238 static bool wqattrs_equal(const struct workqueue_attrs *a,
3239 			  const struct workqueue_attrs *b)
3240 {
3241 	if (a->nice != b->nice)
3242 		return false;
3243 	if (!cpumask_equal(a->cpumask, b->cpumask))
3244 		return false;
3245 	return true;
3246 }
3247 
3248 /**
3249  * init_worker_pool - initialize a newly zalloc'd worker_pool
3250  * @pool: worker_pool to initialize
3251  *
3252  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3253  *
3254  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3255  * inside @pool proper are initialized and put_unbound_pool() can be called
3256  * on @pool safely to release it.
3257  */
3258 static int init_worker_pool(struct worker_pool *pool)
3259 {
3260 	spin_lock_init(&pool->lock);
3261 	pool->id = -1;
3262 	pool->cpu = -1;
3263 	pool->node = NUMA_NO_NODE;
3264 	pool->flags |= POOL_DISASSOCIATED;
3265 	pool->watchdog_ts = jiffies;
3266 	INIT_LIST_HEAD(&pool->worklist);
3267 	INIT_LIST_HEAD(&pool->idle_list);
3268 	hash_init(pool->busy_hash);
3269 
3270 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3271 
3272 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3273 
3274 	mutex_init(&pool->attach_mutex);
3275 	INIT_LIST_HEAD(&pool->workers);
3276 
3277 	ida_init(&pool->worker_ida);
3278 	INIT_HLIST_NODE(&pool->hash_node);
3279 	pool->refcnt = 1;
3280 
3281 	/* shouldn't fail above this point */
3282 	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3283 	if (!pool->attrs)
3284 		return -ENOMEM;
3285 	return 0;
3286 }
3287 
3288 static void rcu_free_wq(struct rcu_head *rcu)
3289 {
3290 	struct workqueue_struct *wq =
3291 		container_of(rcu, struct workqueue_struct, rcu);
3292 
3293 	if (!(wq->flags & WQ_UNBOUND))
3294 		free_percpu(wq->cpu_pwqs);
3295 	else
3296 		free_workqueue_attrs(wq->unbound_attrs);
3297 
3298 	kfree(wq->rescuer);
3299 	kfree(wq);
3300 }
3301 
3302 static void rcu_free_pool(struct rcu_head *rcu)
3303 {
3304 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3305 
3306 	ida_destroy(&pool->worker_ida);
3307 	free_workqueue_attrs(pool->attrs);
3308 	kfree(pool);
3309 }
3310 
3311 /**
3312  * put_unbound_pool - put a worker_pool
3313  * @pool: worker_pool to put
3314  *
3315  * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3316  * safe manner.  get_unbound_pool() calls this function on its failure path
3317  * and this function should be able to release pools which went through,
3318  * successfully or not, init_worker_pool().
3319  *
3320  * Should be called with wq_pool_mutex held.
3321  */
3322 static void put_unbound_pool(struct worker_pool *pool)
3323 {
3324 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3325 	struct worker *worker;
3326 
3327 	lockdep_assert_held(&wq_pool_mutex);
3328 
3329 	if (--pool->refcnt)
3330 		return;
3331 
3332 	/* sanity checks */
3333 	if (WARN_ON(!(pool->cpu < 0)) ||
3334 	    WARN_ON(!list_empty(&pool->worklist)))
3335 		return;
3336 
3337 	/* release id and unhash */
3338 	if (pool->id >= 0)
3339 		idr_remove(&worker_pool_idr, pool->id);
3340 	hash_del(&pool->hash_node);
3341 
3342 	/*
3343 	 * Become the manager and destroy all workers.  This prevents
3344 	 * @pool's workers from blocking on attach_mutex.  We're the last
3345 	 * manager and @pool gets freed with the flag set.
3346 	 */
3347 	spin_lock_irq(&pool->lock);
3348 	wait_event_lock_irq(wq_manager_wait,
3349 			    !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3350 	pool->flags |= POOL_MANAGER_ACTIVE;
3351 
3352 	while ((worker = first_idle_worker(pool)))
3353 		destroy_worker(worker);
3354 	WARN_ON(pool->nr_workers || pool->nr_idle);
3355 	spin_unlock_irq(&pool->lock);
3356 
3357 	mutex_lock(&pool->attach_mutex);
3358 	if (!list_empty(&pool->workers))
3359 		pool->detach_completion = &detach_completion;
3360 	mutex_unlock(&pool->attach_mutex);
3361 
3362 	if (pool->detach_completion)
3363 		wait_for_completion(pool->detach_completion);
3364 
3365 	/* shut down the timers */
3366 	del_timer_sync(&pool->idle_timer);
3367 	del_timer_sync(&pool->mayday_timer);
3368 
3369 	/* sched-RCU protected to allow dereferences from get_work_pool() */
3370 	call_rcu_sched(&pool->rcu, rcu_free_pool);
3371 }
3372 
3373 /**
3374  * get_unbound_pool - get a worker_pool with the specified attributes
3375  * @attrs: the attributes of the worker_pool to get
3376  *
3377  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3378  * reference count and return it.  If there already is a matching
3379  * worker_pool, it will be used; otherwise, this function attempts to
3380  * create a new one.
3381  *
3382  * Should be called with wq_pool_mutex held.
3383  *
3384  * Return: On success, a worker_pool with the same attributes as @attrs.
3385  * On failure, %NULL.
3386  */
3387 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3388 {
3389 	u32 hash = wqattrs_hash(attrs);
3390 	struct worker_pool *pool;
3391 	int node;
3392 	int target_node = NUMA_NO_NODE;
3393 
3394 	lockdep_assert_held(&wq_pool_mutex);
3395 
3396 	/* do we already have a matching pool? */
3397 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3398 		if (wqattrs_equal(pool->attrs, attrs)) {
3399 			pool->refcnt++;
3400 			return pool;
3401 		}
3402 	}
3403 
3404 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3405 	if (wq_numa_enabled) {
3406 		for_each_node(node) {
3407 			if (cpumask_subset(attrs->cpumask,
3408 					   wq_numa_possible_cpumask[node])) {
3409 				target_node = node;
3410 				break;
3411 			}
3412 		}
3413 	}
3414 
3415 	/* nope, create a new one */
3416 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3417 	if (!pool || init_worker_pool(pool) < 0)
3418 		goto fail;
3419 
3420 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3421 	copy_workqueue_attrs(pool->attrs, attrs);
3422 	pool->node = target_node;
3423 
3424 	/*
3425 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3426 	 * 'struct workqueue_attrs' comments for detail.
3427 	 */
3428 	pool->attrs->no_numa = false;
3429 
3430 	if (worker_pool_assign_id(pool) < 0)
3431 		goto fail;
3432 
3433 	/* create and start the initial worker */
3434 	if (wq_online && !create_worker(pool))
3435 		goto fail;
3436 
3437 	/* install */
3438 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3439 
3440 	return pool;
3441 fail:
3442 	if (pool)
3443 		put_unbound_pool(pool);
3444 	return NULL;
3445 }
3446 
3447 static void rcu_free_pwq(struct rcu_head *rcu)
3448 {
3449 	kmem_cache_free(pwq_cache,
3450 			container_of(rcu, struct pool_workqueue, rcu));
3451 }
3452 
3453 /*
3454  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3455  * and needs to be destroyed.
3456  */
3457 static void pwq_unbound_release_workfn(struct work_struct *work)
3458 {
3459 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3460 						  unbound_release_work);
3461 	struct workqueue_struct *wq = pwq->wq;
3462 	struct worker_pool *pool = pwq->pool;
3463 	bool is_last;
3464 
3465 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3466 		return;
3467 
3468 	mutex_lock(&wq->mutex);
3469 	list_del_rcu(&pwq->pwqs_node);
3470 	is_last = list_empty(&wq->pwqs);
3471 	mutex_unlock(&wq->mutex);
3472 
3473 	mutex_lock(&wq_pool_mutex);
3474 	put_unbound_pool(pool);
3475 	mutex_unlock(&wq_pool_mutex);
3476 
3477 	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3478 
3479 	/*
3480 	 * If we're the last pwq going away, @wq is already dead and no one
3481 	 * is gonna access it anymore.  Schedule RCU free.
3482 	 */
3483 	if (is_last)
3484 		call_rcu_sched(&wq->rcu, rcu_free_wq);
3485 }
3486 
3487 /**
3488  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3489  * @pwq: target pool_workqueue
3490  *
3491  * If @pwq isn't freezing, set @pwq->max_active to the associated
3492  * workqueue's saved_max_active and activate delayed work items
3493  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3494  */
3495 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3496 {
3497 	struct workqueue_struct *wq = pwq->wq;
3498 	bool freezable = wq->flags & WQ_FREEZABLE;
3499 	unsigned long flags;
3500 
3501 	/* for @wq->saved_max_active */
3502 	lockdep_assert_held(&wq->mutex);
3503 
3504 	/* fast exit for non-freezable wqs */
3505 	if (!freezable && pwq->max_active == wq->saved_max_active)
3506 		return;
3507 
3508 	/* this function can be called during early boot w/ irq disabled */
3509 	spin_lock_irqsave(&pwq->pool->lock, flags);
3510 
3511 	/*
3512 	 * During [un]freezing, the caller is responsible for ensuring that
3513 	 * this function is called at least once after @workqueue_freezing
3514 	 * is updated and visible.
3515 	 */
3516 	if (!freezable || !workqueue_freezing) {
3517 		pwq->max_active = wq->saved_max_active;
3518 
3519 		while (!list_empty(&pwq->delayed_works) &&
3520 		       pwq->nr_active < pwq->max_active)
3521 			pwq_activate_first_delayed(pwq);
3522 
3523 		/*
3524 		 * Need to kick a worker after thawed or an unbound wq's
3525 		 * max_active is bumped.  It's a slow path.  Do it always.
3526 		 */
3527 		wake_up_worker(pwq->pool);
3528 	} else {
3529 		pwq->max_active = 0;
3530 	}
3531 
3532 	spin_unlock_irqrestore(&pwq->pool->lock, flags);
3533 }
3534 
3535 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3536 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3537 		     struct worker_pool *pool)
3538 {
3539 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3540 
3541 	memset(pwq, 0, sizeof(*pwq));
3542 
3543 	pwq->pool = pool;
3544 	pwq->wq = wq;
3545 	pwq->flush_color = -1;
3546 	pwq->refcnt = 1;
3547 	INIT_LIST_HEAD(&pwq->delayed_works);
3548 	INIT_LIST_HEAD(&pwq->pwqs_node);
3549 	INIT_LIST_HEAD(&pwq->mayday_node);
3550 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3551 }
3552 
3553 /* sync @pwq with the current state of its associated wq and link it */
3554 static void link_pwq(struct pool_workqueue *pwq)
3555 {
3556 	struct workqueue_struct *wq = pwq->wq;
3557 
3558 	lockdep_assert_held(&wq->mutex);
3559 
3560 	/* may be called multiple times, ignore if already linked */
3561 	if (!list_empty(&pwq->pwqs_node))
3562 		return;
3563 
3564 	/* set the matching work_color */
3565 	pwq->work_color = wq->work_color;
3566 
3567 	/* sync max_active to the current setting */
3568 	pwq_adjust_max_active(pwq);
3569 
3570 	/* link in @pwq */
3571 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3572 }
3573 
3574 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3575 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3576 					const struct workqueue_attrs *attrs)
3577 {
3578 	struct worker_pool *pool;
3579 	struct pool_workqueue *pwq;
3580 
3581 	lockdep_assert_held(&wq_pool_mutex);
3582 
3583 	pool = get_unbound_pool(attrs);
3584 	if (!pool)
3585 		return NULL;
3586 
3587 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3588 	if (!pwq) {
3589 		put_unbound_pool(pool);
3590 		return NULL;
3591 	}
3592 
3593 	init_pwq(pwq, wq, pool);
3594 	return pwq;
3595 }
3596 
3597 /**
3598  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3599  * @attrs: the wq_attrs of the default pwq of the target workqueue
3600  * @node: the target NUMA node
3601  * @cpu_going_down: if >= 0, the CPU to consider as offline
3602  * @cpumask: outarg, the resulting cpumask
3603  *
3604  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3605  * @cpu_going_down is >= 0, that cpu is considered offline during
3606  * calculation.  The result is stored in @cpumask.
3607  *
3608  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3609  * enabled and @node has online CPUs requested by @attrs, the returned
3610  * cpumask is the intersection of the possible CPUs of @node and
3611  * @attrs->cpumask.
3612  *
3613  * The caller is responsible for ensuring that the cpumask of @node stays
3614  * stable.
3615  *
3616  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3617  * %false if equal.
3618  */
3619 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3620 				 int cpu_going_down, cpumask_t *cpumask)
3621 {
3622 	if (!wq_numa_enabled || attrs->no_numa)
3623 		goto use_dfl;
3624 
3625 	/* does @node have any online CPUs @attrs wants? */
3626 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3627 	if (cpu_going_down >= 0)
3628 		cpumask_clear_cpu(cpu_going_down, cpumask);
3629 
3630 	if (cpumask_empty(cpumask))
3631 		goto use_dfl;
3632 
3633 	/* yeap, return possible CPUs in @node that @attrs wants */
3634 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3635 
3636 	if (cpumask_empty(cpumask)) {
3637 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3638 				"possible intersect\n");
3639 		return false;
3640 	}
3641 
3642 	return !cpumask_equal(cpumask, attrs->cpumask);
3643 
3644 use_dfl:
3645 	cpumask_copy(cpumask, attrs->cpumask);
3646 	return false;
3647 }
3648 
3649 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3650 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3651 						   int node,
3652 						   struct pool_workqueue *pwq)
3653 {
3654 	struct pool_workqueue *old_pwq;
3655 
3656 	lockdep_assert_held(&wq_pool_mutex);
3657 	lockdep_assert_held(&wq->mutex);
3658 
3659 	/* link_pwq() can handle duplicate calls */
3660 	link_pwq(pwq);
3661 
3662 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3663 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3664 	return old_pwq;
3665 }
3666 
3667 /* context to store the prepared attrs & pwqs before applying */
3668 struct apply_wqattrs_ctx {
3669 	struct workqueue_struct	*wq;		/* target workqueue */
3670 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3671 	struct list_head	list;		/* queued for batching commit */
3672 	struct pool_workqueue	*dfl_pwq;
3673 	struct pool_workqueue	*pwq_tbl[];
3674 };
3675 
3676 /* free the resources after success or abort */
3677 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3678 {
3679 	if (ctx) {
3680 		int node;
3681 
3682 		for_each_node(node)
3683 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3684 		put_pwq_unlocked(ctx->dfl_pwq);
3685 
3686 		free_workqueue_attrs(ctx->attrs);
3687 
3688 		kfree(ctx);
3689 	}
3690 }
3691 
3692 /* allocate the attrs and pwqs for later installation */
3693 static struct apply_wqattrs_ctx *
3694 apply_wqattrs_prepare(struct workqueue_struct *wq,
3695 		      const struct workqueue_attrs *attrs)
3696 {
3697 	struct apply_wqattrs_ctx *ctx;
3698 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3699 	int node;
3700 
3701 	lockdep_assert_held(&wq_pool_mutex);
3702 
3703 	ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3704 		      GFP_KERNEL);
3705 
3706 	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3707 	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3708 	if (!ctx || !new_attrs || !tmp_attrs)
3709 		goto out_free;
3710 
3711 	/*
3712 	 * Calculate the attrs of the default pwq.
3713 	 * If the user configured cpumask doesn't overlap with the
3714 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3715 	 */
3716 	copy_workqueue_attrs(new_attrs, attrs);
3717 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3718 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3719 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3720 
3721 	/*
3722 	 * We may create multiple pwqs with differing cpumasks.  Make a
3723 	 * copy of @new_attrs which will be modified and used to obtain
3724 	 * pools.
3725 	 */
3726 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3727 
3728 	/*
3729 	 * If something goes wrong during CPU up/down, we'll fall back to
3730 	 * the default pwq covering whole @attrs->cpumask.  Always create
3731 	 * it even if we don't use it immediately.
3732 	 */
3733 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3734 	if (!ctx->dfl_pwq)
3735 		goto out_free;
3736 
3737 	for_each_node(node) {
3738 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3739 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3740 			if (!ctx->pwq_tbl[node])
3741 				goto out_free;
3742 		} else {
3743 			ctx->dfl_pwq->refcnt++;
3744 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3745 		}
3746 	}
3747 
3748 	/* save the user configured attrs and sanitize it. */
3749 	copy_workqueue_attrs(new_attrs, attrs);
3750 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3751 	ctx->attrs = new_attrs;
3752 
3753 	ctx->wq = wq;
3754 	free_workqueue_attrs(tmp_attrs);
3755 	return ctx;
3756 
3757 out_free:
3758 	free_workqueue_attrs(tmp_attrs);
3759 	free_workqueue_attrs(new_attrs);
3760 	apply_wqattrs_cleanup(ctx);
3761 	return NULL;
3762 }
3763 
3764 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3765 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3766 {
3767 	int node;
3768 
3769 	/* all pwqs have been created successfully, let's install'em */
3770 	mutex_lock(&ctx->wq->mutex);
3771 
3772 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3773 
3774 	/* save the previous pwq and install the new one */
3775 	for_each_node(node)
3776 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3777 							  ctx->pwq_tbl[node]);
3778 
3779 	/* @dfl_pwq might not have been used, ensure it's linked */
3780 	link_pwq(ctx->dfl_pwq);
3781 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3782 
3783 	mutex_unlock(&ctx->wq->mutex);
3784 }
3785 
3786 static void apply_wqattrs_lock(void)
3787 {
3788 	/* CPUs should stay stable across pwq creations and installations */
3789 	get_online_cpus();
3790 	mutex_lock(&wq_pool_mutex);
3791 }
3792 
3793 static void apply_wqattrs_unlock(void)
3794 {
3795 	mutex_unlock(&wq_pool_mutex);
3796 	put_online_cpus();
3797 }
3798 
3799 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3800 					const struct workqueue_attrs *attrs)
3801 {
3802 	struct apply_wqattrs_ctx *ctx;
3803 
3804 	/* only unbound workqueues can change attributes */
3805 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3806 		return -EINVAL;
3807 
3808 	/* creating multiple pwqs breaks ordering guarantee */
3809 	if (!list_empty(&wq->pwqs)) {
3810 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3811 			return -EINVAL;
3812 
3813 		wq->flags &= ~__WQ_ORDERED;
3814 	}
3815 
3816 	ctx = apply_wqattrs_prepare(wq, attrs);
3817 	if (!ctx)
3818 		return -ENOMEM;
3819 
3820 	/* the ctx has been prepared successfully, let's commit it */
3821 	apply_wqattrs_commit(ctx);
3822 	apply_wqattrs_cleanup(ctx);
3823 
3824 	return 0;
3825 }
3826 
3827 /**
3828  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3829  * @wq: the target workqueue
3830  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3831  *
3832  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3833  * machines, this function maps a separate pwq to each NUMA node with
3834  * possibles CPUs in @attrs->cpumask so that work items are affine to the
3835  * NUMA node it was issued on.  Older pwqs are released as in-flight work
3836  * items finish.  Note that a work item which repeatedly requeues itself
3837  * back-to-back will stay on its current pwq.
3838  *
3839  * Performs GFP_KERNEL allocations.
3840  *
3841  * Return: 0 on success and -errno on failure.
3842  */
3843 int apply_workqueue_attrs(struct workqueue_struct *wq,
3844 			  const struct workqueue_attrs *attrs)
3845 {
3846 	int ret;
3847 
3848 	apply_wqattrs_lock();
3849 	ret = apply_workqueue_attrs_locked(wq, attrs);
3850 	apply_wqattrs_unlock();
3851 
3852 	return ret;
3853 }
3854 EXPORT_SYMBOL_GPL(apply_workqueue_attrs);
3855 
3856 /**
3857  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3858  * @wq: the target workqueue
3859  * @cpu: the CPU coming up or going down
3860  * @online: whether @cpu is coming up or going down
3861  *
3862  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3863  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3864  * @wq accordingly.
3865  *
3866  * If NUMA affinity can't be adjusted due to memory allocation failure, it
3867  * falls back to @wq->dfl_pwq which may not be optimal but is always
3868  * correct.
3869  *
3870  * Note that when the last allowed CPU of a NUMA node goes offline for a
3871  * workqueue with a cpumask spanning multiple nodes, the workers which were
3872  * already executing the work items for the workqueue will lose their CPU
3873  * affinity and may execute on any CPU.  This is similar to how per-cpu
3874  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3875  * affinity, it's the user's responsibility to flush the work item from
3876  * CPU_DOWN_PREPARE.
3877  */
3878 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3879 				   bool online)
3880 {
3881 	int node = cpu_to_node(cpu);
3882 	int cpu_off = online ? -1 : cpu;
3883 	struct pool_workqueue *old_pwq = NULL, *pwq;
3884 	struct workqueue_attrs *target_attrs;
3885 	cpumask_t *cpumask;
3886 
3887 	lockdep_assert_held(&wq_pool_mutex);
3888 
3889 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3890 	    wq->unbound_attrs->no_numa)
3891 		return;
3892 
3893 	/*
3894 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3895 	 * Let's use a preallocated one.  The following buf is protected by
3896 	 * CPU hotplug exclusion.
3897 	 */
3898 	target_attrs = wq_update_unbound_numa_attrs_buf;
3899 	cpumask = target_attrs->cpumask;
3900 
3901 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3902 	pwq = unbound_pwq_by_node(wq, node);
3903 
3904 	/*
3905 	 * Let's determine what needs to be done.  If the target cpumask is
3906 	 * different from the default pwq's, we need to compare it to @pwq's
3907 	 * and create a new one if they don't match.  If the target cpumask
3908 	 * equals the default pwq's, the default pwq should be used.
3909 	 */
3910 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3911 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3912 			return;
3913 	} else {
3914 		goto use_dfl_pwq;
3915 	}
3916 
3917 	/* create a new pwq */
3918 	pwq = alloc_unbound_pwq(wq, target_attrs);
3919 	if (!pwq) {
3920 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3921 			wq->name);
3922 		goto use_dfl_pwq;
3923 	}
3924 
3925 	/* Install the new pwq. */
3926 	mutex_lock(&wq->mutex);
3927 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3928 	goto out_unlock;
3929 
3930 use_dfl_pwq:
3931 	mutex_lock(&wq->mutex);
3932 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
3933 	get_pwq(wq->dfl_pwq);
3934 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3935 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3936 out_unlock:
3937 	mutex_unlock(&wq->mutex);
3938 	put_pwq_unlocked(old_pwq);
3939 }
3940 
3941 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3942 {
3943 	bool highpri = wq->flags & WQ_HIGHPRI;
3944 	int cpu, ret;
3945 
3946 	if (!(wq->flags & WQ_UNBOUND)) {
3947 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3948 		if (!wq->cpu_pwqs)
3949 			return -ENOMEM;
3950 
3951 		for_each_possible_cpu(cpu) {
3952 			struct pool_workqueue *pwq =
3953 				per_cpu_ptr(wq->cpu_pwqs, cpu);
3954 			struct worker_pool *cpu_pools =
3955 				per_cpu(cpu_worker_pools, cpu);
3956 
3957 			init_pwq(pwq, wq, &cpu_pools[highpri]);
3958 
3959 			mutex_lock(&wq->mutex);
3960 			link_pwq(pwq);
3961 			mutex_unlock(&wq->mutex);
3962 		}
3963 		return 0;
3964 	} else if (wq->flags & __WQ_ORDERED) {
3965 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3966 		/* there should only be single pwq for ordering guarantee */
3967 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3968 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3969 		     "ordering guarantee broken for workqueue %s\n", wq->name);
3970 		return ret;
3971 	} else {
3972 		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3973 	}
3974 }
3975 
3976 static int wq_clamp_max_active(int max_active, unsigned int flags,
3977 			       const char *name)
3978 {
3979 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3980 
3981 	if (max_active < 1 || max_active > lim)
3982 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3983 			max_active, name, 1, lim);
3984 
3985 	return clamp_val(max_active, 1, lim);
3986 }
3987 
3988 /*
3989  * Workqueues which may be used during memory reclaim should have a rescuer
3990  * to guarantee forward progress.
3991  */
3992 static int init_rescuer(struct workqueue_struct *wq)
3993 {
3994 	struct worker *rescuer;
3995 	int ret;
3996 
3997 	if (!(wq->flags & WQ_MEM_RECLAIM))
3998 		return 0;
3999 
4000 	rescuer = alloc_worker(NUMA_NO_NODE);
4001 	if (!rescuer)
4002 		return -ENOMEM;
4003 
4004 	rescuer->rescue_wq = wq;
4005 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4006 	ret = PTR_ERR_OR_ZERO(rescuer->task);
4007 	if (ret) {
4008 		kfree(rescuer);
4009 		return ret;
4010 	}
4011 
4012 	wq->rescuer = rescuer;
4013 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4014 	wake_up_process(rescuer->task);
4015 
4016 	return 0;
4017 }
4018 
4019 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4020 					       unsigned int flags,
4021 					       int max_active,
4022 					       struct lock_class_key *key,
4023 					       const char *lock_name, ...)
4024 {
4025 	size_t tbl_size = 0;
4026 	va_list args;
4027 	struct workqueue_struct *wq;
4028 	struct pool_workqueue *pwq;
4029 
4030 	/*
4031 	 * Unbound && max_active == 1 used to imply ordered, which is no
4032 	 * longer the case on NUMA machines due to per-node pools.  While
4033 	 * alloc_ordered_workqueue() is the right way to create an ordered
4034 	 * workqueue, keep the previous behavior to avoid subtle breakages
4035 	 * on NUMA.
4036 	 */
4037 	if ((flags & WQ_UNBOUND) && max_active == 1)
4038 		flags |= __WQ_ORDERED;
4039 
4040 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4041 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4042 		flags |= WQ_UNBOUND;
4043 
4044 	/* allocate wq and format name */
4045 	if (flags & WQ_UNBOUND)
4046 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4047 
4048 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4049 	if (!wq)
4050 		return NULL;
4051 
4052 	if (flags & WQ_UNBOUND) {
4053 		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4054 		if (!wq->unbound_attrs)
4055 			goto err_free_wq;
4056 	}
4057 
4058 	va_start(args, lock_name);
4059 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4060 	va_end(args);
4061 
4062 	max_active = max_active ?: WQ_DFL_ACTIVE;
4063 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4064 
4065 	/* init wq */
4066 	wq->flags = flags;
4067 	wq->saved_max_active = max_active;
4068 	mutex_init(&wq->mutex);
4069 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4070 	INIT_LIST_HEAD(&wq->pwqs);
4071 	INIT_LIST_HEAD(&wq->flusher_queue);
4072 	INIT_LIST_HEAD(&wq->flusher_overflow);
4073 	INIT_LIST_HEAD(&wq->maydays);
4074 
4075 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4076 	INIT_LIST_HEAD(&wq->list);
4077 
4078 	if (alloc_and_link_pwqs(wq) < 0)
4079 		goto err_free_wq;
4080 
4081 	if (wq_online && init_rescuer(wq) < 0)
4082 		goto err_destroy;
4083 
4084 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4085 		goto err_destroy;
4086 
4087 	/*
4088 	 * wq_pool_mutex protects global freeze state and workqueues list.
4089 	 * Grab it, adjust max_active and add the new @wq to workqueues
4090 	 * list.
4091 	 */
4092 	mutex_lock(&wq_pool_mutex);
4093 
4094 	mutex_lock(&wq->mutex);
4095 	for_each_pwq(pwq, wq)
4096 		pwq_adjust_max_active(pwq);
4097 	mutex_unlock(&wq->mutex);
4098 
4099 	list_add_tail_rcu(&wq->list, &workqueues);
4100 
4101 	mutex_unlock(&wq_pool_mutex);
4102 
4103 	return wq;
4104 
4105 err_free_wq:
4106 	free_workqueue_attrs(wq->unbound_attrs);
4107 	kfree(wq);
4108 	return NULL;
4109 err_destroy:
4110 	destroy_workqueue(wq);
4111 	return NULL;
4112 }
4113 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4114 
4115 /**
4116  * destroy_workqueue - safely terminate a workqueue
4117  * @wq: target workqueue
4118  *
4119  * Safely destroy a workqueue. All work currently pending will be done first.
4120  */
4121 void destroy_workqueue(struct workqueue_struct *wq)
4122 {
4123 	struct pool_workqueue *pwq;
4124 	int node;
4125 
4126 	/* drain it before proceeding with destruction */
4127 	drain_workqueue(wq);
4128 
4129 	/* sanity checks */
4130 	mutex_lock(&wq->mutex);
4131 	for_each_pwq(pwq, wq) {
4132 		int i;
4133 
4134 		for (i = 0; i < WORK_NR_COLORS; i++) {
4135 			if (WARN_ON(pwq->nr_in_flight[i])) {
4136 				mutex_unlock(&wq->mutex);
4137 				show_workqueue_state();
4138 				return;
4139 			}
4140 		}
4141 
4142 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4143 		    WARN_ON(pwq->nr_active) ||
4144 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4145 			mutex_unlock(&wq->mutex);
4146 			show_workqueue_state();
4147 			return;
4148 		}
4149 	}
4150 	mutex_unlock(&wq->mutex);
4151 
4152 	/*
4153 	 * wq list is used to freeze wq, remove from list after
4154 	 * flushing is complete in case freeze races us.
4155 	 */
4156 	mutex_lock(&wq_pool_mutex);
4157 	list_del_rcu(&wq->list);
4158 	mutex_unlock(&wq_pool_mutex);
4159 
4160 	workqueue_sysfs_unregister(wq);
4161 
4162 	if (wq->rescuer)
4163 		kthread_stop(wq->rescuer->task);
4164 
4165 	if (!(wq->flags & WQ_UNBOUND)) {
4166 		/*
4167 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4168 		 * schedule RCU free.
4169 		 */
4170 		call_rcu_sched(&wq->rcu, rcu_free_wq);
4171 	} else {
4172 		/*
4173 		 * We're the sole accessor of @wq at this point.  Directly
4174 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4175 		 * @wq will be freed when the last pwq is released.
4176 		 */
4177 		for_each_node(node) {
4178 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4179 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4180 			put_pwq_unlocked(pwq);
4181 		}
4182 
4183 		/*
4184 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4185 		 * put.  Don't access it afterwards.
4186 		 */
4187 		pwq = wq->dfl_pwq;
4188 		wq->dfl_pwq = NULL;
4189 		put_pwq_unlocked(pwq);
4190 	}
4191 }
4192 EXPORT_SYMBOL_GPL(destroy_workqueue);
4193 
4194 /**
4195  * workqueue_set_max_active - adjust max_active of a workqueue
4196  * @wq: target workqueue
4197  * @max_active: new max_active value.
4198  *
4199  * Set max_active of @wq to @max_active.
4200  *
4201  * CONTEXT:
4202  * Don't call from IRQ context.
4203  */
4204 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4205 {
4206 	struct pool_workqueue *pwq;
4207 
4208 	/* disallow meddling with max_active for ordered workqueues */
4209 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4210 		return;
4211 
4212 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4213 
4214 	mutex_lock(&wq->mutex);
4215 
4216 	wq->flags &= ~__WQ_ORDERED;
4217 	wq->saved_max_active = max_active;
4218 
4219 	for_each_pwq(pwq, wq)
4220 		pwq_adjust_max_active(pwq);
4221 
4222 	mutex_unlock(&wq->mutex);
4223 }
4224 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4225 
4226 /**
4227  * current_work - retrieve %current task's work struct
4228  *
4229  * Determine if %current task is a workqueue worker and what it's working on.
4230  * Useful to find out the context that the %current task is running in.
4231  *
4232  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4233  */
4234 struct work_struct *current_work(void)
4235 {
4236 	struct worker *worker = current_wq_worker();
4237 
4238 	return worker ? worker->current_work : NULL;
4239 }
4240 EXPORT_SYMBOL(current_work);
4241 
4242 /**
4243  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4244  *
4245  * Determine whether %current is a workqueue rescuer.  Can be used from
4246  * work functions to determine whether it's being run off the rescuer task.
4247  *
4248  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4249  */
4250 bool current_is_workqueue_rescuer(void)
4251 {
4252 	struct worker *worker = current_wq_worker();
4253 
4254 	return worker && worker->rescue_wq;
4255 }
4256 
4257 /**
4258  * workqueue_congested - test whether a workqueue is congested
4259  * @cpu: CPU in question
4260  * @wq: target workqueue
4261  *
4262  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4263  * no synchronization around this function and the test result is
4264  * unreliable and only useful as advisory hints or for debugging.
4265  *
4266  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4267  * Note that both per-cpu and unbound workqueues may be associated with
4268  * multiple pool_workqueues which have separate congested states.  A
4269  * workqueue being congested on one CPU doesn't mean the workqueue is also
4270  * contested on other CPUs / NUMA nodes.
4271  *
4272  * Return:
4273  * %true if congested, %false otherwise.
4274  */
4275 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4276 {
4277 	struct pool_workqueue *pwq;
4278 	bool ret;
4279 
4280 	rcu_read_lock_sched();
4281 
4282 	if (cpu == WORK_CPU_UNBOUND)
4283 		cpu = smp_processor_id();
4284 
4285 	if (!(wq->flags & WQ_UNBOUND))
4286 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4287 	else
4288 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4289 
4290 	ret = !list_empty(&pwq->delayed_works);
4291 	rcu_read_unlock_sched();
4292 
4293 	return ret;
4294 }
4295 EXPORT_SYMBOL_GPL(workqueue_congested);
4296 
4297 /**
4298  * work_busy - test whether a work is currently pending or running
4299  * @work: the work to be tested
4300  *
4301  * Test whether @work is currently pending or running.  There is no
4302  * synchronization around this function and the test result is
4303  * unreliable and only useful as advisory hints or for debugging.
4304  *
4305  * Return:
4306  * OR'd bitmask of WORK_BUSY_* bits.
4307  */
4308 unsigned int work_busy(struct work_struct *work)
4309 {
4310 	struct worker_pool *pool;
4311 	unsigned long flags;
4312 	unsigned int ret = 0;
4313 
4314 	if (work_pending(work))
4315 		ret |= WORK_BUSY_PENDING;
4316 
4317 	local_irq_save(flags);
4318 	pool = get_work_pool(work);
4319 	if (pool) {
4320 		spin_lock(&pool->lock);
4321 		if (find_worker_executing_work(pool, work))
4322 			ret |= WORK_BUSY_RUNNING;
4323 		spin_unlock(&pool->lock);
4324 	}
4325 	local_irq_restore(flags);
4326 
4327 	return ret;
4328 }
4329 EXPORT_SYMBOL_GPL(work_busy);
4330 
4331 /**
4332  * set_worker_desc - set description for the current work item
4333  * @fmt: printf-style format string
4334  * @...: arguments for the format string
4335  *
4336  * This function can be called by a running work function to describe what
4337  * the work item is about.  If the worker task gets dumped, this
4338  * information will be printed out together to help debugging.  The
4339  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4340  */
4341 void set_worker_desc(const char *fmt, ...)
4342 {
4343 	struct worker *worker = current_wq_worker();
4344 	va_list args;
4345 
4346 	if (worker) {
4347 		va_start(args, fmt);
4348 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4349 		va_end(args);
4350 		worker->desc_valid = true;
4351 	}
4352 }
4353 
4354 /**
4355  * print_worker_info - print out worker information and description
4356  * @log_lvl: the log level to use when printing
4357  * @task: target task
4358  *
4359  * If @task is a worker and currently executing a work item, print out the
4360  * name of the workqueue being serviced and worker description set with
4361  * set_worker_desc() by the currently executing work item.
4362  *
4363  * This function can be safely called on any task as long as the
4364  * task_struct itself is accessible.  While safe, this function isn't
4365  * synchronized and may print out mixups or garbages of limited length.
4366  */
4367 void print_worker_info(const char *log_lvl, struct task_struct *task)
4368 {
4369 	work_func_t *fn = NULL;
4370 	char name[WQ_NAME_LEN] = { };
4371 	char desc[WORKER_DESC_LEN] = { };
4372 	struct pool_workqueue *pwq = NULL;
4373 	struct workqueue_struct *wq = NULL;
4374 	bool desc_valid = false;
4375 	struct worker *worker;
4376 
4377 	if (!(task->flags & PF_WQ_WORKER))
4378 		return;
4379 
4380 	/*
4381 	 * This function is called without any synchronization and @task
4382 	 * could be in any state.  Be careful with dereferences.
4383 	 */
4384 	worker = kthread_probe_data(task);
4385 
4386 	/*
4387 	 * Carefully copy the associated workqueue's workfn and name.  Keep
4388 	 * the original last '\0' in case the original contains garbage.
4389 	 */
4390 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4391 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4392 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4393 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4394 
4395 	/* copy worker description */
4396 	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4397 	if (desc_valid)
4398 		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4399 
4400 	if (fn || name[0] || desc[0]) {
4401 		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4402 		if (desc[0])
4403 			pr_cont(" (%s)", desc);
4404 		pr_cont("\n");
4405 	}
4406 }
4407 
4408 static void pr_cont_pool_info(struct worker_pool *pool)
4409 {
4410 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4411 	if (pool->node != NUMA_NO_NODE)
4412 		pr_cont(" node=%d", pool->node);
4413 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4414 }
4415 
4416 static void pr_cont_work(bool comma, struct work_struct *work)
4417 {
4418 	if (work->func == wq_barrier_func) {
4419 		struct wq_barrier *barr;
4420 
4421 		barr = container_of(work, struct wq_barrier, work);
4422 
4423 		pr_cont("%s BAR(%d)", comma ? "," : "",
4424 			task_pid_nr(barr->task));
4425 	} else {
4426 		pr_cont("%s %pf", comma ? "," : "", work->func);
4427 	}
4428 }
4429 
4430 static void show_pwq(struct pool_workqueue *pwq)
4431 {
4432 	struct worker_pool *pool = pwq->pool;
4433 	struct work_struct *work;
4434 	struct worker *worker;
4435 	bool has_in_flight = false, has_pending = false;
4436 	int bkt;
4437 
4438 	pr_info("  pwq %d:", pool->id);
4439 	pr_cont_pool_info(pool);
4440 
4441 	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4442 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4443 
4444 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4445 		if (worker->current_pwq == pwq) {
4446 			has_in_flight = true;
4447 			break;
4448 		}
4449 	}
4450 	if (has_in_flight) {
4451 		bool comma = false;
4452 
4453 		pr_info("    in-flight:");
4454 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4455 			if (worker->current_pwq != pwq)
4456 				continue;
4457 
4458 			pr_cont("%s %d%s:%pf", comma ? "," : "",
4459 				task_pid_nr(worker->task),
4460 				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4461 				worker->current_func);
4462 			list_for_each_entry(work, &worker->scheduled, entry)
4463 				pr_cont_work(false, work);
4464 			comma = true;
4465 		}
4466 		pr_cont("\n");
4467 	}
4468 
4469 	list_for_each_entry(work, &pool->worklist, entry) {
4470 		if (get_work_pwq(work) == pwq) {
4471 			has_pending = true;
4472 			break;
4473 		}
4474 	}
4475 	if (has_pending) {
4476 		bool comma = false;
4477 
4478 		pr_info("    pending:");
4479 		list_for_each_entry(work, &pool->worklist, entry) {
4480 			if (get_work_pwq(work) != pwq)
4481 				continue;
4482 
4483 			pr_cont_work(comma, work);
4484 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4485 		}
4486 		pr_cont("\n");
4487 	}
4488 
4489 	if (!list_empty(&pwq->delayed_works)) {
4490 		bool comma = false;
4491 
4492 		pr_info("    delayed:");
4493 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4494 			pr_cont_work(comma, work);
4495 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4496 		}
4497 		pr_cont("\n");
4498 	}
4499 }
4500 
4501 /**
4502  * show_workqueue_state - dump workqueue state
4503  *
4504  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4505  * all busy workqueues and pools.
4506  */
4507 void show_workqueue_state(void)
4508 {
4509 	struct workqueue_struct *wq;
4510 	struct worker_pool *pool;
4511 	unsigned long flags;
4512 	int pi;
4513 
4514 	rcu_read_lock_sched();
4515 
4516 	pr_info("Showing busy workqueues and worker pools:\n");
4517 
4518 	list_for_each_entry_rcu(wq, &workqueues, list) {
4519 		struct pool_workqueue *pwq;
4520 		bool idle = true;
4521 
4522 		for_each_pwq(pwq, wq) {
4523 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4524 				idle = false;
4525 				break;
4526 			}
4527 		}
4528 		if (idle)
4529 			continue;
4530 
4531 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4532 
4533 		for_each_pwq(pwq, wq) {
4534 			spin_lock_irqsave(&pwq->pool->lock, flags);
4535 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4536 				show_pwq(pwq);
4537 			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4538 			/*
4539 			 * We could be printing a lot from atomic context, e.g.
4540 			 * sysrq-t -> show_workqueue_state(). Avoid triggering
4541 			 * hard lockup.
4542 			 */
4543 			touch_nmi_watchdog();
4544 		}
4545 	}
4546 
4547 	for_each_pool(pool, pi) {
4548 		struct worker *worker;
4549 		bool first = true;
4550 
4551 		spin_lock_irqsave(&pool->lock, flags);
4552 		if (pool->nr_workers == pool->nr_idle)
4553 			goto next_pool;
4554 
4555 		pr_info("pool %d:", pool->id);
4556 		pr_cont_pool_info(pool);
4557 		pr_cont(" hung=%us workers=%d",
4558 			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4559 			pool->nr_workers);
4560 		if (pool->manager)
4561 			pr_cont(" manager: %d",
4562 				task_pid_nr(pool->manager->task));
4563 		list_for_each_entry(worker, &pool->idle_list, entry) {
4564 			pr_cont(" %s%d", first ? "idle: " : "",
4565 				task_pid_nr(worker->task));
4566 			first = false;
4567 		}
4568 		pr_cont("\n");
4569 	next_pool:
4570 		spin_unlock_irqrestore(&pool->lock, flags);
4571 		/*
4572 		 * We could be printing a lot from atomic context, e.g.
4573 		 * sysrq-t -> show_workqueue_state(). Avoid triggering
4574 		 * hard lockup.
4575 		 */
4576 		touch_nmi_watchdog();
4577 	}
4578 
4579 	rcu_read_unlock_sched();
4580 }
4581 
4582 /*
4583  * CPU hotplug.
4584  *
4585  * There are two challenges in supporting CPU hotplug.  Firstly, there
4586  * are a lot of assumptions on strong associations among work, pwq and
4587  * pool which make migrating pending and scheduled works very
4588  * difficult to implement without impacting hot paths.  Secondly,
4589  * worker pools serve mix of short, long and very long running works making
4590  * blocked draining impractical.
4591  *
4592  * This is solved by allowing the pools to be disassociated from the CPU
4593  * running as an unbound one and allowing it to be reattached later if the
4594  * cpu comes back online.
4595  */
4596 
4597 static void unbind_workers(int cpu)
4598 {
4599 	struct worker_pool *pool;
4600 	struct worker *worker;
4601 
4602 	for_each_cpu_worker_pool(pool, cpu) {
4603 		mutex_lock(&pool->attach_mutex);
4604 		spin_lock_irq(&pool->lock);
4605 
4606 		/*
4607 		 * We've blocked all attach/detach operations. Make all workers
4608 		 * unbound and set DISASSOCIATED.  Before this, all workers
4609 		 * except for the ones which are still executing works from
4610 		 * before the last CPU down must be on the cpu.  After
4611 		 * this, they may become diasporas.
4612 		 */
4613 		for_each_pool_worker(worker, pool)
4614 			worker->flags |= WORKER_UNBOUND;
4615 
4616 		pool->flags |= POOL_DISASSOCIATED;
4617 
4618 		spin_unlock_irq(&pool->lock);
4619 		mutex_unlock(&pool->attach_mutex);
4620 
4621 		/*
4622 		 * Call schedule() so that we cross rq->lock and thus can
4623 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4624 		 * This is necessary as scheduler callbacks may be invoked
4625 		 * from other cpus.
4626 		 */
4627 		schedule();
4628 
4629 		/*
4630 		 * Sched callbacks are disabled now.  Zap nr_running.
4631 		 * After this, nr_running stays zero and need_more_worker()
4632 		 * and keep_working() are always true as long as the
4633 		 * worklist is not empty.  This pool now behaves as an
4634 		 * unbound (in terms of concurrency management) pool which
4635 		 * are served by workers tied to the pool.
4636 		 */
4637 		atomic_set(&pool->nr_running, 0);
4638 
4639 		/*
4640 		 * With concurrency management just turned off, a busy
4641 		 * worker blocking could lead to lengthy stalls.  Kick off
4642 		 * unbound chain execution of currently pending work items.
4643 		 */
4644 		spin_lock_irq(&pool->lock);
4645 		wake_up_worker(pool);
4646 		spin_unlock_irq(&pool->lock);
4647 	}
4648 }
4649 
4650 /**
4651  * rebind_workers - rebind all workers of a pool to the associated CPU
4652  * @pool: pool of interest
4653  *
4654  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4655  */
4656 static void rebind_workers(struct worker_pool *pool)
4657 {
4658 	struct worker *worker;
4659 
4660 	lockdep_assert_held(&pool->attach_mutex);
4661 
4662 	/*
4663 	 * Restore CPU affinity of all workers.  As all idle workers should
4664 	 * be on the run-queue of the associated CPU before any local
4665 	 * wake-ups for concurrency management happen, restore CPU affinity
4666 	 * of all workers first and then clear UNBOUND.  As we're called
4667 	 * from CPU_ONLINE, the following shouldn't fail.
4668 	 */
4669 	for_each_pool_worker(worker, pool)
4670 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4671 						  pool->attrs->cpumask) < 0);
4672 
4673 	spin_lock_irq(&pool->lock);
4674 
4675 	pool->flags &= ~POOL_DISASSOCIATED;
4676 
4677 	for_each_pool_worker(worker, pool) {
4678 		unsigned int worker_flags = worker->flags;
4679 
4680 		/*
4681 		 * A bound idle worker should actually be on the runqueue
4682 		 * of the associated CPU for local wake-ups targeting it to
4683 		 * work.  Kick all idle workers so that they migrate to the
4684 		 * associated CPU.  Doing this in the same loop as
4685 		 * replacing UNBOUND with REBOUND is safe as no worker will
4686 		 * be bound before @pool->lock is released.
4687 		 */
4688 		if (worker_flags & WORKER_IDLE)
4689 			wake_up_process(worker->task);
4690 
4691 		/*
4692 		 * We want to clear UNBOUND but can't directly call
4693 		 * worker_clr_flags() or adjust nr_running.  Atomically
4694 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4695 		 * @worker will clear REBOUND using worker_clr_flags() when
4696 		 * it initiates the next execution cycle thus restoring
4697 		 * concurrency management.  Note that when or whether
4698 		 * @worker clears REBOUND doesn't affect correctness.
4699 		 *
4700 		 * WRITE_ONCE() is necessary because @worker->flags may be
4701 		 * tested without holding any lock in
4702 		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4703 		 * fail incorrectly leading to premature concurrency
4704 		 * management operations.
4705 		 */
4706 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4707 		worker_flags |= WORKER_REBOUND;
4708 		worker_flags &= ~WORKER_UNBOUND;
4709 		WRITE_ONCE(worker->flags, worker_flags);
4710 	}
4711 
4712 	spin_unlock_irq(&pool->lock);
4713 }
4714 
4715 /**
4716  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4717  * @pool: unbound pool of interest
4718  * @cpu: the CPU which is coming up
4719  *
4720  * An unbound pool may end up with a cpumask which doesn't have any online
4721  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4722  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4723  * online CPU before, cpus_allowed of all its workers should be restored.
4724  */
4725 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4726 {
4727 	static cpumask_t cpumask;
4728 	struct worker *worker;
4729 
4730 	lockdep_assert_held(&pool->attach_mutex);
4731 
4732 	/* is @cpu allowed for @pool? */
4733 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4734 		return;
4735 
4736 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4737 
4738 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4739 	for_each_pool_worker(worker, pool)
4740 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4741 }
4742 
4743 int workqueue_prepare_cpu(unsigned int cpu)
4744 {
4745 	struct worker_pool *pool;
4746 
4747 	for_each_cpu_worker_pool(pool, cpu) {
4748 		if (pool->nr_workers)
4749 			continue;
4750 		if (!create_worker(pool))
4751 			return -ENOMEM;
4752 	}
4753 	return 0;
4754 }
4755 
4756 int workqueue_online_cpu(unsigned int cpu)
4757 {
4758 	struct worker_pool *pool;
4759 	struct workqueue_struct *wq;
4760 	int pi;
4761 
4762 	mutex_lock(&wq_pool_mutex);
4763 
4764 	for_each_pool(pool, pi) {
4765 		mutex_lock(&pool->attach_mutex);
4766 
4767 		if (pool->cpu == cpu)
4768 			rebind_workers(pool);
4769 		else if (pool->cpu < 0)
4770 			restore_unbound_workers_cpumask(pool, cpu);
4771 
4772 		mutex_unlock(&pool->attach_mutex);
4773 	}
4774 
4775 	/* update NUMA affinity of unbound workqueues */
4776 	list_for_each_entry(wq, &workqueues, list)
4777 		wq_update_unbound_numa(wq, cpu, true);
4778 
4779 	mutex_unlock(&wq_pool_mutex);
4780 	return 0;
4781 }
4782 
4783 int workqueue_offline_cpu(unsigned int cpu)
4784 {
4785 	struct workqueue_struct *wq;
4786 
4787 	/* unbinding per-cpu workers should happen on the local CPU */
4788 	if (WARN_ON(cpu != smp_processor_id()))
4789 		return -1;
4790 
4791 	unbind_workers(cpu);
4792 
4793 	/* update NUMA affinity of unbound workqueues */
4794 	mutex_lock(&wq_pool_mutex);
4795 	list_for_each_entry(wq, &workqueues, list)
4796 		wq_update_unbound_numa(wq, cpu, false);
4797 	mutex_unlock(&wq_pool_mutex);
4798 
4799 	return 0;
4800 }
4801 
4802 #ifdef CONFIG_SMP
4803 
4804 struct work_for_cpu {
4805 	struct work_struct work;
4806 	long (*fn)(void *);
4807 	void *arg;
4808 	long ret;
4809 };
4810 
4811 static void work_for_cpu_fn(struct work_struct *work)
4812 {
4813 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4814 
4815 	wfc->ret = wfc->fn(wfc->arg);
4816 }
4817 
4818 /**
4819  * work_on_cpu - run a function in thread context on a particular cpu
4820  * @cpu: the cpu to run on
4821  * @fn: the function to run
4822  * @arg: the function arg
4823  *
4824  * It is up to the caller to ensure that the cpu doesn't go offline.
4825  * The caller must not hold any locks which would prevent @fn from completing.
4826  *
4827  * Return: The value @fn returns.
4828  */
4829 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4830 {
4831 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4832 
4833 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4834 	schedule_work_on(cpu, &wfc.work);
4835 	flush_work(&wfc.work);
4836 	destroy_work_on_stack(&wfc.work);
4837 	return wfc.ret;
4838 }
4839 EXPORT_SYMBOL_GPL(work_on_cpu);
4840 
4841 /**
4842  * work_on_cpu_safe - run a function in thread context on a particular cpu
4843  * @cpu: the cpu to run on
4844  * @fn:  the function to run
4845  * @arg: the function argument
4846  *
4847  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
4848  * any locks which would prevent @fn from completing.
4849  *
4850  * Return: The value @fn returns.
4851  */
4852 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
4853 {
4854 	long ret = -ENODEV;
4855 
4856 	get_online_cpus();
4857 	if (cpu_online(cpu))
4858 		ret = work_on_cpu(cpu, fn, arg);
4859 	put_online_cpus();
4860 	return ret;
4861 }
4862 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
4863 #endif /* CONFIG_SMP */
4864 
4865 #ifdef CONFIG_FREEZER
4866 
4867 /**
4868  * freeze_workqueues_begin - begin freezing workqueues
4869  *
4870  * Start freezing workqueues.  After this function returns, all freezable
4871  * workqueues will queue new works to their delayed_works list instead of
4872  * pool->worklist.
4873  *
4874  * CONTEXT:
4875  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4876  */
4877 void freeze_workqueues_begin(void)
4878 {
4879 	struct workqueue_struct *wq;
4880 	struct pool_workqueue *pwq;
4881 
4882 	mutex_lock(&wq_pool_mutex);
4883 
4884 	WARN_ON_ONCE(workqueue_freezing);
4885 	workqueue_freezing = true;
4886 
4887 	list_for_each_entry(wq, &workqueues, list) {
4888 		mutex_lock(&wq->mutex);
4889 		for_each_pwq(pwq, wq)
4890 			pwq_adjust_max_active(pwq);
4891 		mutex_unlock(&wq->mutex);
4892 	}
4893 
4894 	mutex_unlock(&wq_pool_mutex);
4895 }
4896 
4897 /**
4898  * freeze_workqueues_busy - are freezable workqueues still busy?
4899  *
4900  * Check whether freezing is complete.  This function must be called
4901  * between freeze_workqueues_begin() and thaw_workqueues().
4902  *
4903  * CONTEXT:
4904  * Grabs and releases wq_pool_mutex.
4905  *
4906  * Return:
4907  * %true if some freezable workqueues are still busy.  %false if freezing
4908  * is complete.
4909  */
4910 bool freeze_workqueues_busy(void)
4911 {
4912 	bool busy = false;
4913 	struct workqueue_struct *wq;
4914 	struct pool_workqueue *pwq;
4915 
4916 	mutex_lock(&wq_pool_mutex);
4917 
4918 	WARN_ON_ONCE(!workqueue_freezing);
4919 
4920 	list_for_each_entry(wq, &workqueues, list) {
4921 		if (!(wq->flags & WQ_FREEZABLE))
4922 			continue;
4923 		/*
4924 		 * nr_active is monotonically decreasing.  It's safe
4925 		 * to peek without lock.
4926 		 */
4927 		rcu_read_lock_sched();
4928 		for_each_pwq(pwq, wq) {
4929 			WARN_ON_ONCE(pwq->nr_active < 0);
4930 			if (pwq->nr_active) {
4931 				busy = true;
4932 				rcu_read_unlock_sched();
4933 				goto out_unlock;
4934 			}
4935 		}
4936 		rcu_read_unlock_sched();
4937 	}
4938 out_unlock:
4939 	mutex_unlock(&wq_pool_mutex);
4940 	return busy;
4941 }
4942 
4943 /**
4944  * thaw_workqueues - thaw workqueues
4945  *
4946  * Thaw workqueues.  Normal queueing is restored and all collected
4947  * frozen works are transferred to their respective pool worklists.
4948  *
4949  * CONTEXT:
4950  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4951  */
4952 void thaw_workqueues(void)
4953 {
4954 	struct workqueue_struct *wq;
4955 	struct pool_workqueue *pwq;
4956 
4957 	mutex_lock(&wq_pool_mutex);
4958 
4959 	if (!workqueue_freezing)
4960 		goto out_unlock;
4961 
4962 	workqueue_freezing = false;
4963 
4964 	/* restore max_active and repopulate worklist */
4965 	list_for_each_entry(wq, &workqueues, list) {
4966 		mutex_lock(&wq->mutex);
4967 		for_each_pwq(pwq, wq)
4968 			pwq_adjust_max_active(pwq);
4969 		mutex_unlock(&wq->mutex);
4970 	}
4971 
4972 out_unlock:
4973 	mutex_unlock(&wq_pool_mutex);
4974 }
4975 #endif /* CONFIG_FREEZER */
4976 
4977 static int workqueue_apply_unbound_cpumask(void)
4978 {
4979 	LIST_HEAD(ctxs);
4980 	int ret = 0;
4981 	struct workqueue_struct *wq;
4982 	struct apply_wqattrs_ctx *ctx, *n;
4983 
4984 	lockdep_assert_held(&wq_pool_mutex);
4985 
4986 	list_for_each_entry(wq, &workqueues, list) {
4987 		if (!(wq->flags & WQ_UNBOUND))
4988 			continue;
4989 		/* creating multiple pwqs breaks ordering guarantee */
4990 		if (wq->flags & __WQ_ORDERED)
4991 			continue;
4992 
4993 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4994 		if (!ctx) {
4995 			ret = -ENOMEM;
4996 			break;
4997 		}
4998 
4999 		list_add_tail(&ctx->list, &ctxs);
5000 	}
5001 
5002 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5003 		if (!ret)
5004 			apply_wqattrs_commit(ctx);
5005 		apply_wqattrs_cleanup(ctx);
5006 	}
5007 
5008 	return ret;
5009 }
5010 
5011 /**
5012  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5013  *  @cpumask: the cpumask to set
5014  *
5015  *  The low-level workqueues cpumask is a global cpumask that limits
5016  *  the affinity of all unbound workqueues.  This function check the @cpumask
5017  *  and apply it to all unbound workqueues and updates all pwqs of them.
5018  *
5019  *  Retun:	0	- Success
5020  *  		-EINVAL	- Invalid @cpumask
5021  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5022  */
5023 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5024 {
5025 	int ret = -EINVAL;
5026 	cpumask_var_t saved_cpumask;
5027 
5028 	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5029 		return -ENOMEM;
5030 
5031 	/*
5032 	 * Not excluding isolated cpus on purpose.
5033 	 * If the user wishes to include them, we allow that.
5034 	 */
5035 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5036 	if (!cpumask_empty(cpumask)) {
5037 		apply_wqattrs_lock();
5038 
5039 		/* save the old wq_unbound_cpumask. */
5040 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5041 
5042 		/* update wq_unbound_cpumask at first and apply it to wqs. */
5043 		cpumask_copy(wq_unbound_cpumask, cpumask);
5044 		ret = workqueue_apply_unbound_cpumask();
5045 
5046 		/* restore the wq_unbound_cpumask when failed. */
5047 		if (ret < 0)
5048 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5049 
5050 		apply_wqattrs_unlock();
5051 	}
5052 
5053 	free_cpumask_var(saved_cpumask);
5054 	return ret;
5055 }
5056 
5057 #ifdef CONFIG_SYSFS
5058 /*
5059  * Workqueues with WQ_SYSFS flag set is visible to userland via
5060  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5061  * following attributes.
5062  *
5063  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5064  *  max_active	RW int	: maximum number of in-flight work items
5065  *
5066  * Unbound workqueues have the following extra attributes.
5067  *
5068  *  pool_ids	RO int	: the associated pool IDs for each node
5069  *  nice	RW int	: nice value of the workers
5070  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5071  *  numa	RW bool	: whether enable NUMA affinity
5072  */
5073 struct wq_device {
5074 	struct workqueue_struct		*wq;
5075 	struct device			dev;
5076 };
5077 
5078 static struct workqueue_struct *dev_to_wq(struct device *dev)
5079 {
5080 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5081 
5082 	return wq_dev->wq;
5083 }
5084 
5085 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5086 			    char *buf)
5087 {
5088 	struct workqueue_struct *wq = dev_to_wq(dev);
5089 
5090 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5091 }
5092 static DEVICE_ATTR_RO(per_cpu);
5093 
5094 static ssize_t max_active_show(struct device *dev,
5095 			       struct device_attribute *attr, char *buf)
5096 {
5097 	struct workqueue_struct *wq = dev_to_wq(dev);
5098 
5099 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5100 }
5101 
5102 static ssize_t max_active_store(struct device *dev,
5103 				struct device_attribute *attr, const char *buf,
5104 				size_t count)
5105 {
5106 	struct workqueue_struct *wq = dev_to_wq(dev);
5107 	int val;
5108 
5109 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5110 		return -EINVAL;
5111 
5112 	workqueue_set_max_active(wq, val);
5113 	return count;
5114 }
5115 static DEVICE_ATTR_RW(max_active);
5116 
5117 static struct attribute *wq_sysfs_attrs[] = {
5118 	&dev_attr_per_cpu.attr,
5119 	&dev_attr_max_active.attr,
5120 	NULL,
5121 };
5122 ATTRIBUTE_GROUPS(wq_sysfs);
5123 
5124 static ssize_t wq_pool_ids_show(struct device *dev,
5125 				struct device_attribute *attr, char *buf)
5126 {
5127 	struct workqueue_struct *wq = dev_to_wq(dev);
5128 	const char *delim = "";
5129 	int node, written = 0;
5130 
5131 	rcu_read_lock_sched();
5132 	for_each_node(node) {
5133 		written += scnprintf(buf + written, PAGE_SIZE - written,
5134 				     "%s%d:%d", delim, node,
5135 				     unbound_pwq_by_node(wq, node)->pool->id);
5136 		delim = " ";
5137 	}
5138 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5139 	rcu_read_unlock_sched();
5140 
5141 	return written;
5142 }
5143 
5144 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5145 			    char *buf)
5146 {
5147 	struct workqueue_struct *wq = dev_to_wq(dev);
5148 	int written;
5149 
5150 	mutex_lock(&wq->mutex);
5151 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5152 	mutex_unlock(&wq->mutex);
5153 
5154 	return written;
5155 }
5156 
5157 /* prepare workqueue_attrs for sysfs store operations */
5158 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5159 {
5160 	struct workqueue_attrs *attrs;
5161 
5162 	lockdep_assert_held(&wq_pool_mutex);
5163 
5164 	attrs = alloc_workqueue_attrs(GFP_KERNEL);
5165 	if (!attrs)
5166 		return NULL;
5167 
5168 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5169 	return attrs;
5170 }
5171 
5172 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5173 			     const char *buf, size_t count)
5174 {
5175 	struct workqueue_struct *wq = dev_to_wq(dev);
5176 	struct workqueue_attrs *attrs;
5177 	int ret = -ENOMEM;
5178 
5179 	apply_wqattrs_lock();
5180 
5181 	attrs = wq_sysfs_prep_attrs(wq);
5182 	if (!attrs)
5183 		goto out_unlock;
5184 
5185 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5186 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5187 		ret = apply_workqueue_attrs_locked(wq, attrs);
5188 	else
5189 		ret = -EINVAL;
5190 
5191 out_unlock:
5192 	apply_wqattrs_unlock();
5193 	free_workqueue_attrs(attrs);
5194 	return ret ?: count;
5195 }
5196 
5197 static ssize_t wq_cpumask_show(struct device *dev,
5198 			       struct device_attribute *attr, char *buf)
5199 {
5200 	struct workqueue_struct *wq = dev_to_wq(dev);
5201 	int written;
5202 
5203 	mutex_lock(&wq->mutex);
5204 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5205 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5206 	mutex_unlock(&wq->mutex);
5207 	return written;
5208 }
5209 
5210 static ssize_t wq_cpumask_store(struct device *dev,
5211 				struct device_attribute *attr,
5212 				const char *buf, size_t count)
5213 {
5214 	struct workqueue_struct *wq = dev_to_wq(dev);
5215 	struct workqueue_attrs *attrs;
5216 	int ret = -ENOMEM;
5217 
5218 	apply_wqattrs_lock();
5219 
5220 	attrs = wq_sysfs_prep_attrs(wq);
5221 	if (!attrs)
5222 		goto out_unlock;
5223 
5224 	ret = cpumask_parse(buf, attrs->cpumask);
5225 	if (!ret)
5226 		ret = apply_workqueue_attrs_locked(wq, attrs);
5227 
5228 out_unlock:
5229 	apply_wqattrs_unlock();
5230 	free_workqueue_attrs(attrs);
5231 	return ret ?: count;
5232 }
5233 
5234 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5235 			    char *buf)
5236 {
5237 	struct workqueue_struct *wq = dev_to_wq(dev);
5238 	int written;
5239 
5240 	mutex_lock(&wq->mutex);
5241 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5242 			    !wq->unbound_attrs->no_numa);
5243 	mutex_unlock(&wq->mutex);
5244 
5245 	return written;
5246 }
5247 
5248 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5249 			     const char *buf, size_t count)
5250 {
5251 	struct workqueue_struct *wq = dev_to_wq(dev);
5252 	struct workqueue_attrs *attrs;
5253 	int v, ret = -ENOMEM;
5254 
5255 	apply_wqattrs_lock();
5256 
5257 	attrs = wq_sysfs_prep_attrs(wq);
5258 	if (!attrs)
5259 		goto out_unlock;
5260 
5261 	ret = -EINVAL;
5262 	if (sscanf(buf, "%d", &v) == 1) {
5263 		attrs->no_numa = !v;
5264 		ret = apply_workqueue_attrs_locked(wq, attrs);
5265 	}
5266 
5267 out_unlock:
5268 	apply_wqattrs_unlock();
5269 	free_workqueue_attrs(attrs);
5270 	return ret ?: count;
5271 }
5272 
5273 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5274 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5275 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5276 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5277 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5278 	__ATTR_NULL,
5279 };
5280 
5281 static struct bus_type wq_subsys = {
5282 	.name				= "workqueue",
5283 	.dev_groups			= wq_sysfs_groups,
5284 };
5285 
5286 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5287 		struct device_attribute *attr, char *buf)
5288 {
5289 	int written;
5290 
5291 	mutex_lock(&wq_pool_mutex);
5292 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5293 			    cpumask_pr_args(wq_unbound_cpumask));
5294 	mutex_unlock(&wq_pool_mutex);
5295 
5296 	return written;
5297 }
5298 
5299 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5300 		struct device_attribute *attr, const char *buf, size_t count)
5301 {
5302 	cpumask_var_t cpumask;
5303 	int ret;
5304 
5305 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5306 		return -ENOMEM;
5307 
5308 	ret = cpumask_parse(buf, cpumask);
5309 	if (!ret)
5310 		ret = workqueue_set_unbound_cpumask(cpumask);
5311 
5312 	free_cpumask_var(cpumask);
5313 	return ret ? ret : count;
5314 }
5315 
5316 static struct device_attribute wq_sysfs_cpumask_attr =
5317 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5318 	       wq_unbound_cpumask_store);
5319 
5320 static int __init wq_sysfs_init(void)
5321 {
5322 	int err;
5323 
5324 	err = subsys_virtual_register(&wq_subsys, NULL);
5325 	if (err)
5326 		return err;
5327 
5328 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5329 }
5330 core_initcall(wq_sysfs_init);
5331 
5332 static void wq_device_release(struct device *dev)
5333 {
5334 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5335 
5336 	kfree(wq_dev);
5337 }
5338 
5339 /**
5340  * workqueue_sysfs_register - make a workqueue visible in sysfs
5341  * @wq: the workqueue to register
5342  *
5343  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5344  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5345  * which is the preferred method.
5346  *
5347  * Workqueue user should use this function directly iff it wants to apply
5348  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5349  * apply_workqueue_attrs() may race against userland updating the
5350  * attributes.
5351  *
5352  * Return: 0 on success, -errno on failure.
5353  */
5354 int workqueue_sysfs_register(struct workqueue_struct *wq)
5355 {
5356 	struct wq_device *wq_dev;
5357 	int ret;
5358 
5359 	/*
5360 	 * Adjusting max_active or creating new pwqs by applying
5361 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5362 	 * workqueues.
5363 	 */
5364 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5365 		return -EINVAL;
5366 
5367 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5368 	if (!wq_dev)
5369 		return -ENOMEM;
5370 
5371 	wq_dev->wq = wq;
5372 	wq_dev->dev.bus = &wq_subsys;
5373 	wq_dev->dev.release = wq_device_release;
5374 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5375 
5376 	/*
5377 	 * unbound_attrs are created separately.  Suppress uevent until
5378 	 * everything is ready.
5379 	 */
5380 	dev_set_uevent_suppress(&wq_dev->dev, true);
5381 
5382 	ret = device_register(&wq_dev->dev);
5383 	if (ret) {
5384 		put_device(&wq_dev->dev);
5385 		wq->wq_dev = NULL;
5386 		return ret;
5387 	}
5388 
5389 	if (wq->flags & WQ_UNBOUND) {
5390 		struct device_attribute *attr;
5391 
5392 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5393 			ret = device_create_file(&wq_dev->dev, attr);
5394 			if (ret) {
5395 				device_unregister(&wq_dev->dev);
5396 				wq->wq_dev = NULL;
5397 				return ret;
5398 			}
5399 		}
5400 	}
5401 
5402 	dev_set_uevent_suppress(&wq_dev->dev, false);
5403 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5404 	return 0;
5405 }
5406 
5407 /**
5408  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5409  * @wq: the workqueue to unregister
5410  *
5411  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5412  */
5413 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5414 {
5415 	struct wq_device *wq_dev = wq->wq_dev;
5416 
5417 	if (!wq->wq_dev)
5418 		return;
5419 
5420 	wq->wq_dev = NULL;
5421 	device_unregister(&wq_dev->dev);
5422 }
5423 #else	/* CONFIG_SYSFS */
5424 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5425 #endif	/* CONFIG_SYSFS */
5426 
5427 /*
5428  * Workqueue watchdog.
5429  *
5430  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5431  * flush dependency, a concurrency managed work item which stays RUNNING
5432  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5433  * usual warning mechanisms don't trigger and internal workqueue state is
5434  * largely opaque.
5435  *
5436  * Workqueue watchdog monitors all worker pools periodically and dumps
5437  * state if some pools failed to make forward progress for a while where
5438  * forward progress is defined as the first item on ->worklist changing.
5439  *
5440  * This mechanism is controlled through the kernel parameter
5441  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5442  * corresponding sysfs parameter file.
5443  */
5444 #ifdef CONFIG_WQ_WATCHDOG
5445 
5446 static unsigned long wq_watchdog_thresh = 30;
5447 static struct timer_list wq_watchdog_timer;
5448 
5449 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5450 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5451 
5452 static void wq_watchdog_reset_touched(void)
5453 {
5454 	int cpu;
5455 
5456 	wq_watchdog_touched = jiffies;
5457 	for_each_possible_cpu(cpu)
5458 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5459 }
5460 
5461 static void wq_watchdog_timer_fn(struct timer_list *unused)
5462 {
5463 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5464 	bool lockup_detected = false;
5465 	struct worker_pool *pool;
5466 	int pi;
5467 
5468 	if (!thresh)
5469 		return;
5470 
5471 	rcu_read_lock();
5472 
5473 	for_each_pool(pool, pi) {
5474 		unsigned long pool_ts, touched, ts;
5475 
5476 		if (list_empty(&pool->worklist))
5477 			continue;
5478 
5479 		/* get the latest of pool and touched timestamps */
5480 		pool_ts = READ_ONCE(pool->watchdog_ts);
5481 		touched = READ_ONCE(wq_watchdog_touched);
5482 
5483 		if (time_after(pool_ts, touched))
5484 			ts = pool_ts;
5485 		else
5486 			ts = touched;
5487 
5488 		if (pool->cpu >= 0) {
5489 			unsigned long cpu_touched =
5490 				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5491 						  pool->cpu));
5492 			if (time_after(cpu_touched, ts))
5493 				ts = cpu_touched;
5494 		}
5495 
5496 		/* did we stall? */
5497 		if (time_after(jiffies, ts + thresh)) {
5498 			lockup_detected = true;
5499 			pr_emerg("BUG: workqueue lockup - pool");
5500 			pr_cont_pool_info(pool);
5501 			pr_cont(" stuck for %us!\n",
5502 				jiffies_to_msecs(jiffies - pool_ts) / 1000);
5503 		}
5504 	}
5505 
5506 	rcu_read_unlock();
5507 
5508 	if (lockup_detected)
5509 		show_workqueue_state();
5510 
5511 	wq_watchdog_reset_touched();
5512 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5513 }
5514 
5515 void wq_watchdog_touch(int cpu)
5516 {
5517 	if (cpu >= 0)
5518 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5519 	else
5520 		wq_watchdog_touched = jiffies;
5521 }
5522 
5523 static void wq_watchdog_set_thresh(unsigned long thresh)
5524 {
5525 	wq_watchdog_thresh = 0;
5526 	del_timer_sync(&wq_watchdog_timer);
5527 
5528 	if (thresh) {
5529 		wq_watchdog_thresh = thresh;
5530 		wq_watchdog_reset_touched();
5531 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5532 	}
5533 }
5534 
5535 static int wq_watchdog_param_set_thresh(const char *val,
5536 					const struct kernel_param *kp)
5537 {
5538 	unsigned long thresh;
5539 	int ret;
5540 
5541 	ret = kstrtoul(val, 0, &thresh);
5542 	if (ret)
5543 		return ret;
5544 
5545 	if (system_wq)
5546 		wq_watchdog_set_thresh(thresh);
5547 	else
5548 		wq_watchdog_thresh = thresh;
5549 
5550 	return 0;
5551 }
5552 
5553 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5554 	.set	= wq_watchdog_param_set_thresh,
5555 	.get	= param_get_ulong,
5556 };
5557 
5558 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5559 		0644);
5560 
5561 static void wq_watchdog_init(void)
5562 {
5563 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5564 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5565 }
5566 
5567 #else	/* CONFIG_WQ_WATCHDOG */
5568 
5569 static inline void wq_watchdog_init(void) { }
5570 
5571 #endif	/* CONFIG_WQ_WATCHDOG */
5572 
5573 static void __init wq_numa_init(void)
5574 {
5575 	cpumask_var_t *tbl;
5576 	int node, cpu;
5577 
5578 	if (num_possible_nodes() <= 1)
5579 		return;
5580 
5581 	if (wq_disable_numa) {
5582 		pr_info("workqueue: NUMA affinity support disabled\n");
5583 		return;
5584 	}
5585 
5586 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5587 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5588 
5589 	/*
5590 	 * We want masks of possible CPUs of each node which isn't readily
5591 	 * available.  Build one from cpu_to_node() which should have been
5592 	 * fully initialized by now.
5593 	 */
5594 	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5595 	BUG_ON(!tbl);
5596 
5597 	for_each_node(node)
5598 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5599 				node_online(node) ? node : NUMA_NO_NODE));
5600 
5601 	for_each_possible_cpu(cpu) {
5602 		node = cpu_to_node(cpu);
5603 		if (WARN_ON(node == NUMA_NO_NODE)) {
5604 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5605 			/* happens iff arch is bonkers, let's just proceed */
5606 			return;
5607 		}
5608 		cpumask_set_cpu(cpu, tbl[node]);
5609 	}
5610 
5611 	wq_numa_possible_cpumask = tbl;
5612 	wq_numa_enabled = true;
5613 }
5614 
5615 /**
5616  * workqueue_init_early - early init for workqueue subsystem
5617  *
5618  * This is the first half of two-staged workqueue subsystem initialization
5619  * and invoked as soon as the bare basics - memory allocation, cpumasks and
5620  * idr are up.  It sets up all the data structures and system workqueues
5621  * and allows early boot code to create workqueues and queue/cancel work
5622  * items.  Actual work item execution starts only after kthreads can be
5623  * created and scheduled right before early initcalls.
5624  */
5625 int __init workqueue_init_early(void)
5626 {
5627 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5628 	int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5629 	int i, cpu;
5630 
5631 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5632 
5633 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5634 	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5635 
5636 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5637 
5638 	/* initialize CPU pools */
5639 	for_each_possible_cpu(cpu) {
5640 		struct worker_pool *pool;
5641 
5642 		i = 0;
5643 		for_each_cpu_worker_pool(pool, cpu) {
5644 			BUG_ON(init_worker_pool(pool));
5645 			pool->cpu = cpu;
5646 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5647 			pool->attrs->nice = std_nice[i++];
5648 			pool->node = cpu_to_node(cpu);
5649 
5650 			/* alloc pool ID */
5651 			mutex_lock(&wq_pool_mutex);
5652 			BUG_ON(worker_pool_assign_id(pool));
5653 			mutex_unlock(&wq_pool_mutex);
5654 		}
5655 	}
5656 
5657 	/* create default unbound and ordered wq attrs */
5658 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5659 		struct workqueue_attrs *attrs;
5660 
5661 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5662 		attrs->nice = std_nice[i];
5663 		unbound_std_wq_attrs[i] = attrs;
5664 
5665 		/*
5666 		 * An ordered wq should have only one pwq as ordering is
5667 		 * guaranteed by max_active which is enforced by pwqs.
5668 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5669 		 */
5670 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5671 		attrs->nice = std_nice[i];
5672 		attrs->no_numa = true;
5673 		ordered_wq_attrs[i] = attrs;
5674 	}
5675 
5676 	system_wq = alloc_workqueue("events", 0, 0);
5677 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5678 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5679 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5680 					    WQ_UNBOUND_MAX_ACTIVE);
5681 	system_freezable_wq = alloc_workqueue("events_freezable",
5682 					      WQ_FREEZABLE, 0);
5683 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5684 					      WQ_POWER_EFFICIENT, 0);
5685 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5686 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5687 					      0);
5688 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5689 	       !system_unbound_wq || !system_freezable_wq ||
5690 	       !system_power_efficient_wq ||
5691 	       !system_freezable_power_efficient_wq);
5692 
5693 	return 0;
5694 }
5695 
5696 /**
5697  * workqueue_init - bring workqueue subsystem fully online
5698  *
5699  * This is the latter half of two-staged workqueue subsystem initialization
5700  * and invoked as soon as kthreads can be created and scheduled.
5701  * Workqueues have been created and work items queued on them, but there
5702  * are no kworkers executing the work items yet.  Populate the worker pools
5703  * with the initial workers and enable future kworker creations.
5704  */
5705 int __init workqueue_init(void)
5706 {
5707 	struct workqueue_struct *wq;
5708 	struct worker_pool *pool;
5709 	int cpu, bkt;
5710 
5711 	/*
5712 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5713 	 * CPU to node mapping may not be available that early on some
5714 	 * archs such as power and arm64.  As per-cpu pools created
5715 	 * previously could be missing node hint and unbound pools NUMA
5716 	 * affinity, fix them up.
5717 	 *
5718 	 * Also, while iterating workqueues, create rescuers if requested.
5719 	 */
5720 	wq_numa_init();
5721 
5722 	mutex_lock(&wq_pool_mutex);
5723 
5724 	for_each_possible_cpu(cpu) {
5725 		for_each_cpu_worker_pool(pool, cpu) {
5726 			pool->node = cpu_to_node(cpu);
5727 		}
5728 	}
5729 
5730 	list_for_each_entry(wq, &workqueues, list) {
5731 		wq_update_unbound_numa(wq, smp_processor_id(), true);
5732 		WARN(init_rescuer(wq),
5733 		     "workqueue: failed to create early rescuer for %s",
5734 		     wq->name);
5735 	}
5736 
5737 	mutex_unlock(&wq_pool_mutex);
5738 
5739 	/* create the initial workers */
5740 	for_each_online_cpu(cpu) {
5741 		for_each_cpu_worker_pool(pool, cpu) {
5742 			pool->flags &= ~POOL_DISASSOCIATED;
5743 			BUG_ON(!create_worker(pool));
5744 		}
5745 	}
5746 
5747 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5748 		BUG_ON(!create_worker(pool));
5749 
5750 	wq_online = true;
5751 	wq_watchdog_init();
5752 
5753 	return 0;
5754 }
5755