1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There are two worker pools for each CPU (one for 20 * normal work items and the other for high priority ones) and some extra 21 * pools for workqueues which are not bound to any specific CPU - the 22 * number of these backing pools is dynamic. 23 * 24 * Please read Documentation/core-api/workqueue.rst for details. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kernel.h> 29 #include <linux/sched.h> 30 #include <linux/init.h> 31 #include <linux/signal.h> 32 #include <linux/completion.h> 33 #include <linux/workqueue.h> 34 #include <linux/slab.h> 35 #include <linux/cpu.h> 36 #include <linux/notifier.h> 37 #include <linux/kthread.h> 38 #include <linux/hardirq.h> 39 #include <linux/mempolicy.h> 40 #include <linux/freezer.h> 41 #include <linux/debug_locks.h> 42 #include <linux/lockdep.h> 43 #include <linux/idr.h> 44 #include <linux/jhash.h> 45 #include <linux/hashtable.h> 46 #include <linux/rculist.h> 47 #include <linux/nodemask.h> 48 #include <linux/moduleparam.h> 49 #include <linux/uaccess.h> 50 #include <linux/sched/isolation.h> 51 #include <linux/nmi.h> 52 53 #include "workqueue_internal.h" 54 55 enum { 56 /* 57 * worker_pool flags 58 * 59 * A bound pool is either associated or disassociated with its CPU. 60 * While associated (!DISASSOCIATED), all workers are bound to the 61 * CPU and none has %WORKER_UNBOUND set and concurrency management 62 * is in effect. 63 * 64 * While DISASSOCIATED, the cpu may be offline and all workers have 65 * %WORKER_UNBOUND set and concurrency management disabled, and may 66 * be executing on any CPU. The pool behaves as an unbound one. 67 * 68 * Note that DISASSOCIATED should be flipped only while holding 69 * attach_mutex to avoid changing binding state while 70 * worker_attach_to_pool() is in progress. 71 */ 72 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */ 73 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 74 75 /* worker flags */ 76 WORKER_DIE = 1 << 1, /* die die die */ 77 WORKER_IDLE = 1 << 2, /* is idle */ 78 WORKER_PREP = 1 << 3, /* preparing to run works */ 79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 81 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 82 83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 84 WORKER_UNBOUND | WORKER_REBOUND, 85 86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 87 88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 90 91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 93 94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 95 /* call for help after 10ms 96 (min two ticks) */ 97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 98 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 99 100 /* 101 * Rescue workers are used only on emergencies and shared by 102 * all cpus. Give MIN_NICE. 103 */ 104 RESCUER_NICE_LEVEL = MIN_NICE, 105 HIGHPRI_NICE_LEVEL = MIN_NICE, 106 107 WQ_NAME_LEN = 24, 108 }; 109 110 /* 111 * Structure fields follow one of the following exclusion rules. 112 * 113 * I: Modifiable by initialization/destruction paths and read-only for 114 * everyone else. 115 * 116 * P: Preemption protected. Disabling preemption is enough and should 117 * only be modified and accessed from the local cpu. 118 * 119 * L: pool->lock protected. Access with pool->lock held. 120 * 121 * X: During normal operation, modification requires pool->lock and should 122 * be done only from local cpu. Either disabling preemption on local 123 * cpu or grabbing pool->lock is enough for read access. If 124 * POOL_DISASSOCIATED is set, it's identical to L. 125 * 126 * A: pool->attach_mutex protected. 127 * 128 * PL: wq_pool_mutex protected. 129 * 130 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads. 131 * 132 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 133 * 134 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 135 * sched-RCU for reads. 136 * 137 * WQ: wq->mutex protected. 138 * 139 * WR: wq->mutex protected for writes. Sched-RCU protected for reads. 140 * 141 * MD: wq_mayday_lock protected. 142 */ 143 144 /* struct worker is defined in workqueue_internal.h */ 145 146 struct worker_pool { 147 spinlock_t lock; /* the pool lock */ 148 int cpu; /* I: the associated cpu */ 149 int node; /* I: the associated node ID */ 150 int id; /* I: pool ID */ 151 unsigned int flags; /* X: flags */ 152 153 unsigned long watchdog_ts; /* L: watchdog timestamp */ 154 155 struct list_head worklist; /* L: list of pending works */ 156 157 int nr_workers; /* L: total number of workers */ 158 int nr_idle; /* L: currently idle workers */ 159 160 struct list_head idle_list; /* X: list of idle workers */ 161 struct timer_list idle_timer; /* L: worker idle timeout */ 162 struct timer_list mayday_timer; /* L: SOS timer for workers */ 163 164 /* a workers is either on busy_hash or idle_list, or the manager */ 165 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 166 /* L: hash of busy workers */ 167 168 struct worker *manager; /* L: purely informational */ 169 struct mutex attach_mutex; /* attach/detach exclusion */ 170 struct list_head workers; /* A: attached workers */ 171 struct completion *detach_completion; /* all workers detached */ 172 173 struct ida worker_ida; /* worker IDs for task name */ 174 175 struct workqueue_attrs *attrs; /* I: worker attributes */ 176 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 177 int refcnt; /* PL: refcnt for unbound pools */ 178 179 /* 180 * The current concurrency level. As it's likely to be accessed 181 * from other CPUs during try_to_wake_up(), put it in a separate 182 * cacheline. 183 */ 184 atomic_t nr_running ____cacheline_aligned_in_smp; 185 186 /* 187 * Destruction of pool is sched-RCU protected to allow dereferences 188 * from get_work_pool(). 189 */ 190 struct rcu_head rcu; 191 } ____cacheline_aligned_in_smp; 192 193 /* 194 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 195 * of work_struct->data are used for flags and the remaining high bits 196 * point to the pwq; thus, pwqs need to be aligned at two's power of the 197 * number of flag bits. 198 */ 199 struct pool_workqueue { 200 struct worker_pool *pool; /* I: the associated pool */ 201 struct workqueue_struct *wq; /* I: the owning workqueue */ 202 int work_color; /* L: current color */ 203 int flush_color; /* L: flushing color */ 204 int refcnt; /* L: reference count */ 205 int nr_in_flight[WORK_NR_COLORS]; 206 /* L: nr of in_flight works */ 207 int nr_active; /* L: nr of active works */ 208 int max_active; /* L: max active works */ 209 struct list_head delayed_works; /* L: delayed works */ 210 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 211 struct list_head mayday_node; /* MD: node on wq->maydays */ 212 213 /* 214 * Release of unbound pwq is punted to system_wq. See put_pwq() 215 * and pwq_unbound_release_workfn() for details. pool_workqueue 216 * itself is also sched-RCU protected so that the first pwq can be 217 * determined without grabbing wq->mutex. 218 */ 219 struct work_struct unbound_release_work; 220 struct rcu_head rcu; 221 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 222 223 /* 224 * Structure used to wait for workqueue flush. 225 */ 226 struct wq_flusher { 227 struct list_head list; /* WQ: list of flushers */ 228 int flush_color; /* WQ: flush color waiting for */ 229 struct completion done; /* flush completion */ 230 }; 231 232 struct wq_device; 233 234 /* 235 * The externally visible workqueue. It relays the issued work items to 236 * the appropriate worker_pool through its pool_workqueues. 237 */ 238 struct workqueue_struct { 239 struct list_head pwqs; /* WR: all pwqs of this wq */ 240 struct list_head list; /* PR: list of all workqueues */ 241 242 struct mutex mutex; /* protects this wq */ 243 int work_color; /* WQ: current work color */ 244 int flush_color; /* WQ: current flush color */ 245 atomic_t nr_pwqs_to_flush; /* flush in progress */ 246 struct wq_flusher *first_flusher; /* WQ: first flusher */ 247 struct list_head flusher_queue; /* WQ: flush waiters */ 248 struct list_head flusher_overflow; /* WQ: flush overflow list */ 249 250 struct list_head maydays; /* MD: pwqs requesting rescue */ 251 struct worker *rescuer; /* I: rescue worker */ 252 253 int nr_drainers; /* WQ: drain in progress */ 254 int saved_max_active; /* WQ: saved pwq max_active */ 255 256 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 257 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 258 259 #ifdef CONFIG_SYSFS 260 struct wq_device *wq_dev; /* I: for sysfs interface */ 261 #endif 262 #ifdef CONFIG_LOCKDEP 263 struct lockdep_map lockdep_map; 264 #endif 265 char name[WQ_NAME_LEN]; /* I: workqueue name */ 266 267 /* 268 * Destruction of workqueue_struct is sched-RCU protected to allow 269 * walking the workqueues list without grabbing wq_pool_mutex. 270 * This is used to dump all workqueues from sysrq. 271 */ 272 struct rcu_head rcu; 273 274 /* hot fields used during command issue, aligned to cacheline */ 275 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 276 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 277 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 278 }; 279 280 static struct kmem_cache *pwq_cache; 281 282 static cpumask_var_t *wq_numa_possible_cpumask; 283 /* possible CPUs of each node */ 284 285 static bool wq_disable_numa; 286 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 287 288 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 289 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 290 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 291 292 static bool wq_online; /* can kworkers be created yet? */ 293 294 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 295 296 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 297 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 298 299 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 300 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 301 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */ 302 303 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 304 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 305 306 /* PL: allowable cpus for unbound wqs and work items */ 307 static cpumask_var_t wq_unbound_cpumask; 308 309 /* CPU where unbound work was last round robin scheduled from this CPU */ 310 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 311 312 /* 313 * Local execution of unbound work items is no longer guaranteed. The 314 * following always forces round-robin CPU selection on unbound work items 315 * to uncover usages which depend on it. 316 */ 317 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 318 static bool wq_debug_force_rr_cpu = true; 319 #else 320 static bool wq_debug_force_rr_cpu = false; 321 #endif 322 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 323 324 /* the per-cpu worker pools */ 325 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 326 327 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 328 329 /* PL: hash of all unbound pools keyed by pool->attrs */ 330 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 331 332 /* I: attributes used when instantiating standard unbound pools on demand */ 333 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 334 335 /* I: attributes used when instantiating ordered pools on demand */ 336 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 337 338 struct workqueue_struct *system_wq __read_mostly; 339 EXPORT_SYMBOL(system_wq); 340 struct workqueue_struct *system_highpri_wq __read_mostly; 341 EXPORT_SYMBOL_GPL(system_highpri_wq); 342 struct workqueue_struct *system_long_wq __read_mostly; 343 EXPORT_SYMBOL_GPL(system_long_wq); 344 struct workqueue_struct *system_unbound_wq __read_mostly; 345 EXPORT_SYMBOL_GPL(system_unbound_wq); 346 struct workqueue_struct *system_freezable_wq __read_mostly; 347 EXPORT_SYMBOL_GPL(system_freezable_wq); 348 struct workqueue_struct *system_power_efficient_wq __read_mostly; 349 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 350 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 351 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 352 353 static int worker_thread(void *__worker); 354 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 355 356 #define CREATE_TRACE_POINTS 357 #include <trace/events/workqueue.h> 358 359 #define assert_rcu_or_pool_mutex() \ 360 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 361 !lockdep_is_held(&wq_pool_mutex), \ 362 "sched RCU or wq_pool_mutex should be held") 363 364 #define assert_rcu_or_wq_mutex(wq) \ 365 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 366 !lockdep_is_held(&wq->mutex), \ 367 "sched RCU or wq->mutex should be held") 368 369 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 370 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 371 !lockdep_is_held(&wq->mutex) && \ 372 !lockdep_is_held(&wq_pool_mutex), \ 373 "sched RCU, wq->mutex or wq_pool_mutex should be held") 374 375 #define for_each_cpu_worker_pool(pool, cpu) \ 376 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 377 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 378 (pool)++) 379 380 /** 381 * for_each_pool - iterate through all worker_pools in the system 382 * @pool: iteration cursor 383 * @pi: integer used for iteration 384 * 385 * This must be called either with wq_pool_mutex held or sched RCU read 386 * locked. If the pool needs to be used beyond the locking in effect, the 387 * caller is responsible for guaranteeing that the pool stays online. 388 * 389 * The if/else clause exists only for the lockdep assertion and can be 390 * ignored. 391 */ 392 #define for_each_pool(pool, pi) \ 393 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 394 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 395 else 396 397 /** 398 * for_each_pool_worker - iterate through all workers of a worker_pool 399 * @worker: iteration cursor 400 * @pool: worker_pool to iterate workers of 401 * 402 * This must be called with @pool->attach_mutex. 403 * 404 * The if/else clause exists only for the lockdep assertion and can be 405 * ignored. 406 */ 407 #define for_each_pool_worker(worker, pool) \ 408 list_for_each_entry((worker), &(pool)->workers, node) \ 409 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \ 410 else 411 412 /** 413 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 414 * @pwq: iteration cursor 415 * @wq: the target workqueue 416 * 417 * This must be called either with wq->mutex held or sched RCU read locked. 418 * If the pwq needs to be used beyond the locking in effect, the caller is 419 * responsible for guaranteeing that the pwq stays online. 420 * 421 * The if/else clause exists only for the lockdep assertion and can be 422 * ignored. 423 */ 424 #define for_each_pwq(pwq, wq) \ 425 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \ 426 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ 427 else 428 429 #ifdef CONFIG_DEBUG_OBJECTS_WORK 430 431 static struct debug_obj_descr work_debug_descr; 432 433 static void *work_debug_hint(void *addr) 434 { 435 return ((struct work_struct *) addr)->func; 436 } 437 438 static bool work_is_static_object(void *addr) 439 { 440 struct work_struct *work = addr; 441 442 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 443 } 444 445 /* 446 * fixup_init is called when: 447 * - an active object is initialized 448 */ 449 static bool work_fixup_init(void *addr, enum debug_obj_state state) 450 { 451 struct work_struct *work = addr; 452 453 switch (state) { 454 case ODEBUG_STATE_ACTIVE: 455 cancel_work_sync(work); 456 debug_object_init(work, &work_debug_descr); 457 return true; 458 default: 459 return false; 460 } 461 } 462 463 /* 464 * fixup_free is called when: 465 * - an active object is freed 466 */ 467 static bool work_fixup_free(void *addr, enum debug_obj_state state) 468 { 469 struct work_struct *work = addr; 470 471 switch (state) { 472 case ODEBUG_STATE_ACTIVE: 473 cancel_work_sync(work); 474 debug_object_free(work, &work_debug_descr); 475 return true; 476 default: 477 return false; 478 } 479 } 480 481 static struct debug_obj_descr work_debug_descr = { 482 .name = "work_struct", 483 .debug_hint = work_debug_hint, 484 .is_static_object = work_is_static_object, 485 .fixup_init = work_fixup_init, 486 .fixup_free = work_fixup_free, 487 }; 488 489 static inline void debug_work_activate(struct work_struct *work) 490 { 491 debug_object_activate(work, &work_debug_descr); 492 } 493 494 static inline void debug_work_deactivate(struct work_struct *work) 495 { 496 debug_object_deactivate(work, &work_debug_descr); 497 } 498 499 void __init_work(struct work_struct *work, int onstack) 500 { 501 if (onstack) 502 debug_object_init_on_stack(work, &work_debug_descr); 503 else 504 debug_object_init(work, &work_debug_descr); 505 } 506 EXPORT_SYMBOL_GPL(__init_work); 507 508 void destroy_work_on_stack(struct work_struct *work) 509 { 510 debug_object_free(work, &work_debug_descr); 511 } 512 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 513 514 void destroy_delayed_work_on_stack(struct delayed_work *work) 515 { 516 destroy_timer_on_stack(&work->timer); 517 debug_object_free(&work->work, &work_debug_descr); 518 } 519 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 520 521 #else 522 static inline void debug_work_activate(struct work_struct *work) { } 523 static inline void debug_work_deactivate(struct work_struct *work) { } 524 #endif 525 526 /** 527 * worker_pool_assign_id - allocate ID and assing it to @pool 528 * @pool: the pool pointer of interest 529 * 530 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 531 * successfully, -errno on failure. 532 */ 533 static int worker_pool_assign_id(struct worker_pool *pool) 534 { 535 int ret; 536 537 lockdep_assert_held(&wq_pool_mutex); 538 539 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 540 GFP_KERNEL); 541 if (ret >= 0) { 542 pool->id = ret; 543 return 0; 544 } 545 return ret; 546 } 547 548 /** 549 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 550 * @wq: the target workqueue 551 * @node: the node ID 552 * 553 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU 554 * read locked. 555 * If the pwq needs to be used beyond the locking in effect, the caller is 556 * responsible for guaranteeing that the pwq stays online. 557 * 558 * Return: The unbound pool_workqueue for @node. 559 */ 560 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 561 int node) 562 { 563 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 564 565 /* 566 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a 567 * delayed item is pending. The plan is to keep CPU -> NODE 568 * mapping valid and stable across CPU on/offlines. Once that 569 * happens, this workaround can be removed. 570 */ 571 if (unlikely(node == NUMA_NO_NODE)) 572 return wq->dfl_pwq; 573 574 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 575 } 576 577 static unsigned int work_color_to_flags(int color) 578 { 579 return color << WORK_STRUCT_COLOR_SHIFT; 580 } 581 582 static int get_work_color(struct work_struct *work) 583 { 584 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 585 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 586 } 587 588 static int work_next_color(int color) 589 { 590 return (color + 1) % WORK_NR_COLORS; 591 } 592 593 /* 594 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 595 * contain the pointer to the queued pwq. Once execution starts, the flag 596 * is cleared and the high bits contain OFFQ flags and pool ID. 597 * 598 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 599 * and clear_work_data() can be used to set the pwq, pool or clear 600 * work->data. These functions should only be called while the work is 601 * owned - ie. while the PENDING bit is set. 602 * 603 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 604 * corresponding to a work. Pool is available once the work has been 605 * queued anywhere after initialization until it is sync canceled. pwq is 606 * available only while the work item is queued. 607 * 608 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 609 * canceled. While being canceled, a work item may have its PENDING set 610 * but stay off timer and worklist for arbitrarily long and nobody should 611 * try to steal the PENDING bit. 612 */ 613 static inline void set_work_data(struct work_struct *work, unsigned long data, 614 unsigned long flags) 615 { 616 WARN_ON_ONCE(!work_pending(work)); 617 atomic_long_set(&work->data, data | flags | work_static(work)); 618 } 619 620 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 621 unsigned long extra_flags) 622 { 623 set_work_data(work, (unsigned long)pwq, 624 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 625 } 626 627 static void set_work_pool_and_keep_pending(struct work_struct *work, 628 int pool_id) 629 { 630 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 631 WORK_STRUCT_PENDING); 632 } 633 634 static void set_work_pool_and_clear_pending(struct work_struct *work, 635 int pool_id) 636 { 637 /* 638 * The following wmb is paired with the implied mb in 639 * test_and_set_bit(PENDING) and ensures all updates to @work made 640 * here are visible to and precede any updates by the next PENDING 641 * owner. 642 */ 643 smp_wmb(); 644 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 645 /* 646 * The following mb guarantees that previous clear of a PENDING bit 647 * will not be reordered with any speculative LOADS or STORES from 648 * work->current_func, which is executed afterwards. This possible 649 * reordering can lead to a missed execution on attempt to qeueue 650 * the same @work. E.g. consider this case: 651 * 652 * CPU#0 CPU#1 653 * ---------------------------- -------------------------------- 654 * 655 * 1 STORE event_indicated 656 * 2 queue_work_on() { 657 * 3 test_and_set_bit(PENDING) 658 * 4 } set_..._and_clear_pending() { 659 * 5 set_work_data() # clear bit 660 * 6 smp_mb() 661 * 7 work->current_func() { 662 * 8 LOAD event_indicated 663 * } 664 * 665 * Without an explicit full barrier speculative LOAD on line 8 can 666 * be executed before CPU#0 does STORE on line 1. If that happens, 667 * CPU#0 observes the PENDING bit is still set and new execution of 668 * a @work is not queued in a hope, that CPU#1 will eventually 669 * finish the queued @work. Meanwhile CPU#1 does not see 670 * event_indicated is set, because speculative LOAD was executed 671 * before actual STORE. 672 */ 673 smp_mb(); 674 } 675 676 static void clear_work_data(struct work_struct *work) 677 { 678 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 679 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 680 } 681 682 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 683 { 684 unsigned long data = atomic_long_read(&work->data); 685 686 if (data & WORK_STRUCT_PWQ) 687 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 688 else 689 return NULL; 690 } 691 692 /** 693 * get_work_pool - return the worker_pool a given work was associated with 694 * @work: the work item of interest 695 * 696 * Pools are created and destroyed under wq_pool_mutex, and allows read 697 * access under sched-RCU read lock. As such, this function should be 698 * called under wq_pool_mutex or with preemption disabled. 699 * 700 * All fields of the returned pool are accessible as long as the above 701 * mentioned locking is in effect. If the returned pool needs to be used 702 * beyond the critical section, the caller is responsible for ensuring the 703 * returned pool is and stays online. 704 * 705 * Return: The worker_pool @work was last associated with. %NULL if none. 706 */ 707 static struct worker_pool *get_work_pool(struct work_struct *work) 708 { 709 unsigned long data = atomic_long_read(&work->data); 710 int pool_id; 711 712 assert_rcu_or_pool_mutex(); 713 714 if (data & WORK_STRUCT_PWQ) 715 return ((struct pool_workqueue *) 716 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 717 718 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 719 if (pool_id == WORK_OFFQ_POOL_NONE) 720 return NULL; 721 722 return idr_find(&worker_pool_idr, pool_id); 723 } 724 725 /** 726 * get_work_pool_id - return the worker pool ID a given work is associated with 727 * @work: the work item of interest 728 * 729 * Return: The worker_pool ID @work was last associated with. 730 * %WORK_OFFQ_POOL_NONE if none. 731 */ 732 static int get_work_pool_id(struct work_struct *work) 733 { 734 unsigned long data = atomic_long_read(&work->data); 735 736 if (data & WORK_STRUCT_PWQ) 737 return ((struct pool_workqueue *) 738 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 739 740 return data >> WORK_OFFQ_POOL_SHIFT; 741 } 742 743 static void mark_work_canceling(struct work_struct *work) 744 { 745 unsigned long pool_id = get_work_pool_id(work); 746 747 pool_id <<= WORK_OFFQ_POOL_SHIFT; 748 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 749 } 750 751 static bool work_is_canceling(struct work_struct *work) 752 { 753 unsigned long data = atomic_long_read(&work->data); 754 755 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 756 } 757 758 /* 759 * Policy functions. These define the policies on how the global worker 760 * pools are managed. Unless noted otherwise, these functions assume that 761 * they're being called with pool->lock held. 762 */ 763 764 static bool __need_more_worker(struct worker_pool *pool) 765 { 766 return !atomic_read(&pool->nr_running); 767 } 768 769 /* 770 * Need to wake up a worker? Called from anything but currently 771 * running workers. 772 * 773 * Note that, because unbound workers never contribute to nr_running, this 774 * function will always return %true for unbound pools as long as the 775 * worklist isn't empty. 776 */ 777 static bool need_more_worker(struct worker_pool *pool) 778 { 779 return !list_empty(&pool->worklist) && __need_more_worker(pool); 780 } 781 782 /* Can I start working? Called from busy but !running workers. */ 783 static bool may_start_working(struct worker_pool *pool) 784 { 785 return pool->nr_idle; 786 } 787 788 /* Do I need to keep working? Called from currently running workers. */ 789 static bool keep_working(struct worker_pool *pool) 790 { 791 return !list_empty(&pool->worklist) && 792 atomic_read(&pool->nr_running) <= 1; 793 } 794 795 /* Do we need a new worker? Called from manager. */ 796 static bool need_to_create_worker(struct worker_pool *pool) 797 { 798 return need_more_worker(pool) && !may_start_working(pool); 799 } 800 801 /* Do we have too many workers and should some go away? */ 802 static bool too_many_workers(struct worker_pool *pool) 803 { 804 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 805 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 806 int nr_busy = pool->nr_workers - nr_idle; 807 808 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 809 } 810 811 /* 812 * Wake up functions. 813 */ 814 815 /* Return the first idle worker. Safe with preemption disabled */ 816 static struct worker *first_idle_worker(struct worker_pool *pool) 817 { 818 if (unlikely(list_empty(&pool->idle_list))) 819 return NULL; 820 821 return list_first_entry(&pool->idle_list, struct worker, entry); 822 } 823 824 /** 825 * wake_up_worker - wake up an idle worker 826 * @pool: worker pool to wake worker from 827 * 828 * Wake up the first idle worker of @pool. 829 * 830 * CONTEXT: 831 * spin_lock_irq(pool->lock). 832 */ 833 static void wake_up_worker(struct worker_pool *pool) 834 { 835 struct worker *worker = first_idle_worker(pool); 836 837 if (likely(worker)) 838 wake_up_process(worker->task); 839 } 840 841 /** 842 * wq_worker_waking_up - a worker is waking up 843 * @task: task waking up 844 * @cpu: CPU @task is waking up to 845 * 846 * This function is called during try_to_wake_up() when a worker is 847 * being awoken. 848 * 849 * CONTEXT: 850 * spin_lock_irq(rq->lock) 851 */ 852 void wq_worker_waking_up(struct task_struct *task, int cpu) 853 { 854 struct worker *worker = kthread_data(task); 855 856 if (!(worker->flags & WORKER_NOT_RUNNING)) { 857 WARN_ON_ONCE(worker->pool->cpu != cpu); 858 atomic_inc(&worker->pool->nr_running); 859 } 860 } 861 862 /** 863 * wq_worker_sleeping - a worker is going to sleep 864 * @task: task going to sleep 865 * 866 * This function is called during schedule() when a busy worker is 867 * going to sleep. Worker on the same cpu can be woken up by 868 * returning pointer to its task. 869 * 870 * CONTEXT: 871 * spin_lock_irq(rq->lock) 872 * 873 * Return: 874 * Worker task on @cpu to wake up, %NULL if none. 875 */ 876 struct task_struct *wq_worker_sleeping(struct task_struct *task) 877 { 878 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 879 struct worker_pool *pool; 880 881 /* 882 * Rescuers, which may not have all the fields set up like normal 883 * workers, also reach here, let's not access anything before 884 * checking NOT_RUNNING. 885 */ 886 if (worker->flags & WORKER_NOT_RUNNING) 887 return NULL; 888 889 pool = worker->pool; 890 891 /* this can only happen on the local cpu */ 892 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id())) 893 return NULL; 894 895 /* 896 * The counterpart of the following dec_and_test, implied mb, 897 * worklist not empty test sequence is in insert_work(). 898 * Please read comment there. 899 * 900 * NOT_RUNNING is clear. This means that we're bound to and 901 * running on the local cpu w/ rq lock held and preemption 902 * disabled, which in turn means that none else could be 903 * manipulating idle_list, so dereferencing idle_list without pool 904 * lock is safe. 905 */ 906 if (atomic_dec_and_test(&pool->nr_running) && 907 !list_empty(&pool->worklist)) 908 to_wakeup = first_idle_worker(pool); 909 return to_wakeup ? to_wakeup->task : NULL; 910 } 911 912 /** 913 * worker_set_flags - set worker flags and adjust nr_running accordingly 914 * @worker: self 915 * @flags: flags to set 916 * 917 * Set @flags in @worker->flags and adjust nr_running accordingly. 918 * 919 * CONTEXT: 920 * spin_lock_irq(pool->lock) 921 */ 922 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 923 { 924 struct worker_pool *pool = worker->pool; 925 926 WARN_ON_ONCE(worker->task != current); 927 928 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 929 if ((flags & WORKER_NOT_RUNNING) && 930 !(worker->flags & WORKER_NOT_RUNNING)) { 931 atomic_dec(&pool->nr_running); 932 } 933 934 worker->flags |= flags; 935 } 936 937 /** 938 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 939 * @worker: self 940 * @flags: flags to clear 941 * 942 * Clear @flags in @worker->flags and adjust nr_running accordingly. 943 * 944 * CONTEXT: 945 * spin_lock_irq(pool->lock) 946 */ 947 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 948 { 949 struct worker_pool *pool = worker->pool; 950 unsigned int oflags = worker->flags; 951 952 WARN_ON_ONCE(worker->task != current); 953 954 worker->flags &= ~flags; 955 956 /* 957 * If transitioning out of NOT_RUNNING, increment nr_running. Note 958 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 959 * of multiple flags, not a single flag. 960 */ 961 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 962 if (!(worker->flags & WORKER_NOT_RUNNING)) 963 atomic_inc(&pool->nr_running); 964 } 965 966 /** 967 * find_worker_executing_work - find worker which is executing a work 968 * @pool: pool of interest 969 * @work: work to find worker for 970 * 971 * Find a worker which is executing @work on @pool by searching 972 * @pool->busy_hash which is keyed by the address of @work. For a worker 973 * to match, its current execution should match the address of @work and 974 * its work function. This is to avoid unwanted dependency between 975 * unrelated work executions through a work item being recycled while still 976 * being executed. 977 * 978 * This is a bit tricky. A work item may be freed once its execution 979 * starts and nothing prevents the freed area from being recycled for 980 * another work item. If the same work item address ends up being reused 981 * before the original execution finishes, workqueue will identify the 982 * recycled work item as currently executing and make it wait until the 983 * current execution finishes, introducing an unwanted dependency. 984 * 985 * This function checks the work item address and work function to avoid 986 * false positives. Note that this isn't complete as one may construct a 987 * work function which can introduce dependency onto itself through a 988 * recycled work item. Well, if somebody wants to shoot oneself in the 989 * foot that badly, there's only so much we can do, and if such deadlock 990 * actually occurs, it should be easy to locate the culprit work function. 991 * 992 * CONTEXT: 993 * spin_lock_irq(pool->lock). 994 * 995 * Return: 996 * Pointer to worker which is executing @work if found, %NULL 997 * otherwise. 998 */ 999 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1000 struct work_struct *work) 1001 { 1002 struct worker *worker; 1003 1004 hash_for_each_possible(pool->busy_hash, worker, hentry, 1005 (unsigned long)work) 1006 if (worker->current_work == work && 1007 worker->current_func == work->func) 1008 return worker; 1009 1010 return NULL; 1011 } 1012 1013 /** 1014 * move_linked_works - move linked works to a list 1015 * @work: start of series of works to be scheduled 1016 * @head: target list to append @work to 1017 * @nextp: out parameter for nested worklist walking 1018 * 1019 * Schedule linked works starting from @work to @head. Work series to 1020 * be scheduled starts at @work and includes any consecutive work with 1021 * WORK_STRUCT_LINKED set in its predecessor. 1022 * 1023 * If @nextp is not NULL, it's updated to point to the next work of 1024 * the last scheduled work. This allows move_linked_works() to be 1025 * nested inside outer list_for_each_entry_safe(). 1026 * 1027 * CONTEXT: 1028 * spin_lock_irq(pool->lock). 1029 */ 1030 static void move_linked_works(struct work_struct *work, struct list_head *head, 1031 struct work_struct **nextp) 1032 { 1033 struct work_struct *n; 1034 1035 /* 1036 * Linked worklist will always end before the end of the list, 1037 * use NULL for list head. 1038 */ 1039 list_for_each_entry_safe_from(work, n, NULL, entry) { 1040 list_move_tail(&work->entry, head); 1041 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1042 break; 1043 } 1044 1045 /* 1046 * If we're already inside safe list traversal and have moved 1047 * multiple works to the scheduled queue, the next position 1048 * needs to be updated. 1049 */ 1050 if (nextp) 1051 *nextp = n; 1052 } 1053 1054 /** 1055 * get_pwq - get an extra reference on the specified pool_workqueue 1056 * @pwq: pool_workqueue to get 1057 * 1058 * Obtain an extra reference on @pwq. The caller should guarantee that 1059 * @pwq has positive refcnt and be holding the matching pool->lock. 1060 */ 1061 static void get_pwq(struct pool_workqueue *pwq) 1062 { 1063 lockdep_assert_held(&pwq->pool->lock); 1064 WARN_ON_ONCE(pwq->refcnt <= 0); 1065 pwq->refcnt++; 1066 } 1067 1068 /** 1069 * put_pwq - put a pool_workqueue reference 1070 * @pwq: pool_workqueue to put 1071 * 1072 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1073 * destruction. The caller should be holding the matching pool->lock. 1074 */ 1075 static void put_pwq(struct pool_workqueue *pwq) 1076 { 1077 lockdep_assert_held(&pwq->pool->lock); 1078 if (likely(--pwq->refcnt)) 1079 return; 1080 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1081 return; 1082 /* 1083 * @pwq can't be released under pool->lock, bounce to 1084 * pwq_unbound_release_workfn(). This never recurses on the same 1085 * pool->lock as this path is taken only for unbound workqueues and 1086 * the release work item is scheduled on a per-cpu workqueue. To 1087 * avoid lockdep warning, unbound pool->locks are given lockdep 1088 * subclass of 1 in get_unbound_pool(). 1089 */ 1090 schedule_work(&pwq->unbound_release_work); 1091 } 1092 1093 /** 1094 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1095 * @pwq: pool_workqueue to put (can be %NULL) 1096 * 1097 * put_pwq() with locking. This function also allows %NULL @pwq. 1098 */ 1099 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1100 { 1101 if (pwq) { 1102 /* 1103 * As both pwqs and pools are sched-RCU protected, the 1104 * following lock operations are safe. 1105 */ 1106 spin_lock_irq(&pwq->pool->lock); 1107 put_pwq(pwq); 1108 spin_unlock_irq(&pwq->pool->lock); 1109 } 1110 } 1111 1112 static void pwq_activate_delayed_work(struct work_struct *work) 1113 { 1114 struct pool_workqueue *pwq = get_work_pwq(work); 1115 1116 trace_workqueue_activate_work(work); 1117 if (list_empty(&pwq->pool->worklist)) 1118 pwq->pool->watchdog_ts = jiffies; 1119 move_linked_works(work, &pwq->pool->worklist, NULL); 1120 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1121 pwq->nr_active++; 1122 } 1123 1124 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1125 { 1126 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1127 struct work_struct, entry); 1128 1129 pwq_activate_delayed_work(work); 1130 } 1131 1132 /** 1133 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1134 * @pwq: pwq of interest 1135 * @color: color of work which left the queue 1136 * 1137 * A work either has completed or is removed from pending queue, 1138 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1139 * 1140 * CONTEXT: 1141 * spin_lock_irq(pool->lock). 1142 */ 1143 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1144 { 1145 /* uncolored work items don't participate in flushing or nr_active */ 1146 if (color == WORK_NO_COLOR) 1147 goto out_put; 1148 1149 pwq->nr_in_flight[color]--; 1150 1151 pwq->nr_active--; 1152 if (!list_empty(&pwq->delayed_works)) { 1153 /* one down, submit a delayed one */ 1154 if (pwq->nr_active < pwq->max_active) 1155 pwq_activate_first_delayed(pwq); 1156 } 1157 1158 /* is flush in progress and are we at the flushing tip? */ 1159 if (likely(pwq->flush_color != color)) 1160 goto out_put; 1161 1162 /* are there still in-flight works? */ 1163 if (pwq->nr_in_flight[color]) 1164 goto out_put; 1165 1166 /* this pwq is done, clear flush_color */ 1167 pwq->flush_color = -1; 1168 1169 /* 1170 * If this was the last pwq, wake up the first flusher. It 1171 * will handle the rest. 1172 */ 1173 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1174 complete(&pwq->wq->first_flusher->done); 1175 out_put: 1176 put_pwq(pwq); 1177 } 1178 1179 /** 1180 * try_to_grab_pending - steal work item from worklist and disable irq 1181 * @work: work item to steal 1182 * @is_dwork: @work is a delayed_work 1183 * @flags: place to store irq state 1184 * 1185 * Try to grab PENDING bit of @work. This function can handle @work in any 1186 * stable state - idle, on timer or on worklist. 1187 * 1188 * Return: 1189 * 1 if @work was pending and we successfully stole PENDING 1190 * 0 if @work was idle and we claimed PENDING 1191 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1192 * -ENOENT if someone else is canceling @work, this state may persist 1193 * for arbitrarily long 1194 * 1195 * Note: 1196 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1197 * interrupted while holding PENDING and @work off queue, irq must be 1198 * disabled on entry. This, combined with delayed_work->timer being 1199 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1200 * 1201 * On successful return, >= 0, irq is disabled and the caller is 1202 * responsible for releasing it using local_irq_restore(*@flags). 1203 * 1204 * This function is safe to call from any context including IRQ handler. 1205 */ 1206 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1207 unsigned long *flags) 1208 { 1209 struct worker_pool *pool; 1210 struct pool_workqueue *pwq; 1211 1212 local_irq_save(*flags); 1213 1214 /* try to steal the timer if it exists */ 1215 if (is_dwork) { 1216 struct delayed_work *dwork = to_delayed_work(work); 1217 1218 /* 1219 * dwork->timer is irqsafe. If del_timer() fails, it's 1220 * guaranteed that the timer is not queued anywhere and not 1221 * running on the local CPU. 1222 */ 1223 if (likely(del_timer(&dwork->timer))) 1224 return 1; 1225 } 1226 1227 /* try to claim PENDING the normal way */ 1228 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1229 return 0; 1230 1231 /* 1232 * The queueing is in progress, or it is already queued. Try to 1233 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1234 */ 1235 pool = get_work_pool(work); 1236 if (!pool) 1237 goto fail; 1238 1239 spin_lock(&pool->lock); 1240 /* 1241 * work->data is guaranteed to point to pwq only while the work 1242 * item is queued on pwq->wq, and both updating work->data to point 1243 * to pwq on queueing and to pool on dequeueing are done under 1244 * pwq->pool->lock. This in turn guarantees that, if work->data 1245 * points to pwq which is associated with a locked pool, the work 1246 * item is currently queued on that pool. 1247 */ 1248 pwq = get_work_pwq(work); 1249 if (pwq && pwq->pool == pool) { 1250 debug_work_deactivate(work); 1251 1252 /* 1253 * A delayed work item cannot be grabbed directly because 1254 * it might have linked NO_COLOR work items which, if left 1255 * on the delayed_list, will confuse pwq->nr_active 1256 * management later on and cause stall. Make sure the work 1257 * item is activated before grabbing. 1258 */ 1259 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1260 pwq_activate_delayed_work(work); 1261 1262 list_del_init(&work->entry); 1263 pwq_dec_nr_in_flight(pwq, get_work_color(work)); 1264 1265 /* work->data points to pwq iff queued, point to pool */ 1266 set_work_pool_and_keep_pending(work, pool->id); 1267 1268 spin_unlock(&pool->lock); 1269 return 1; 1270 } 1271 spin_unlock(&pool->lock); 1272 fail: 1273 local_irq_restore(*flags); 1274 if (work_is_canceling(work)) 1275 return -ENOENT; 1276 cpu_relax(); 1277 return -EAGAIN; 1278 } 1279 1280 /** 1281 * insert_work - insert a work into a pool 1282 * @pwq: pwq @work belongs to 1283 * @work: work to insert 1284 * @head: insertion point 1285 * @extra_flags: extra WORK_STRUCT_* flags to set 1286 * 1287 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1288 * work_struct flags. 1289 * 1290 * CONTEXT: 1291 * spin_lock_irq(pool->lock). 1292 */ 1293 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1294 struct list_head *head, unsigned int extra_flags) 1295 { 1296 struct worker_pool *pool = pwq->pool; 1297 1298 /* we own @work, set data and link */ 1299 set_work_pwq(work, pwq, extra_flags); 1300 list_add_tail(&work->entry, head); 1301 get_pwq(pwq); 1302 1303 /* 1304 * Ensure either wq_worker_sleeping() sees the above 1305 * list_add_tail() or we see zero nr_running to avoid workers lying 1306 * around lazily while there are works to be processed. 1307 */ 1308 smp_mb(); 1309 1310 if (__need_more_worker(pool)) 1311 wake_up_worker(pool); 1312 } 1313 1314 /* 1315 * Test whether @work is being queued from another work executing on the 1316 * same workqueue. 1317 */ 1318 static bool is_chained_work(struct workqueue_struct *wq) 1319 { 1320 struct worker *worker; 1321 1322 worker = current_wq_worker(); 1323 /* 1324 * Return %true iff I'm a worker execuing a work item on @wq. If 1325 * I'm @worker, it's safe to dereference it without locking. 1326 */ 1327 return worker && worker->current_pwq->wq == wq; 1328 } 1329 1330 /* 1331 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1332 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1333 * avoid perturbing sensitive tasks. 1334 */ 1335 static int wq_select_unbound_cpu(int cpu) 1336 { 1337 static bool printed_dbg_warning; 1338 int new_cpu; 1339 1340 if (likely(!wq_debug_force_rr_cpu)) { 1341 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1342 return cpu; 1343 } else if (!printed_dbg_warning) { 1344 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1345 printed_dbg_warning = true; 1346 } 1347 1348 if (cpumask_empty(wq_unbound_cpumask)) 1349 return cpu; 1350 1351 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1352 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1353 if (unlikely(new_cpu >= nr_cpu_ids)) { 1354 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1355 if (unlikely(new_cpu >= nr_cpu_ids)) 1356 return cpu; 1357 } 1358 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1359 1360 return new_cpu; 1361 } 1362 1363 static void __queue_work(int cpu, struct workqueue_struct *wq, 1364 struct work_struct *work) 1365 { 1366 struct pool_workqueue *pwq; 1367 struct worker_pool *last_pool; 1368 struct list_head *worklist; 1369 unsigned int work_flags; 1370 unsigned int req_cpu = cpu; 1371 1372 /* 1373 * While a work item is PENDING && off queue, a task trying to 1374 * steal the PENDING will busy-loop waiting for it to either get 1375 * queued or lose PENDING. Grabbing PENDING and queueing should 1376 * happen with IRQ disabled. 1377 */ 1378 lockdep_assert_irqs_disabled(); 1379 1380 debug_work_activate(work); 1381 1382 /* if draining, only works from the same workqueue are allowed */ 1383 if (unlikely(wq->flags & __WQ_DRAINING) && 1384 WARN_ON_ONCE(!is_chained_work(wq))) 1385 return; 1386 retry: 1387 if (req_cpu == WORK_CPU_UNBOUND) 1388 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1389 1390 /* pwq which will be used unless @work is executing elsewhere */ 1391 if (!(wq->flags & WQ_UNBOUND)) 1392 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1393 else 1394 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1395 1396 /* 1397 * If @work was previously on a different pool, it might still be 1398 * running there, in which case the work needs to be queued on that 1399 * pool to guarantee non-reentrancy. 1400 */ 1401 last_pool = get_work_pool(work); 1402 if (last_pool && last_pool != pwq->pool) { 1403 struct worker *worker; 1404 1405 spin_lock(&last_pool->lock); 1406 1407 worker = find_worker_executing_work(last_pool, work); 1408 1409 if (worker && worker->current_pwq->wq == wq) { 1410 pwq = worker->current_pwq; 1411 } else { 1412 /* meh... not running there, queue here */ 1413 spin_unlock(&last_pool->lock); 1414 spin_lock(&pwq->pool->lock); 1415 } 1416 } else { 1417 spin_lock(&pwq->pool->lock); 1418 } 1419 1420 /* 1421 * pwq is determined and locked. For unbound pools, we could have 1422 * raced with pwq release and it could already be dead. If its 1423 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1424 * without another pwq replacing it in the numa_pwq_tbl or while 1425 * work items are executing on it, so the retrying is guaranteed to 1426 * make forward-progress. 1427 */ 1428 if (unlikely(!pwq->refcnt)) { 1429 if (wq->flags & WQ_UNBOUND) { 1430 spin_unlock(&pwq->pool->lock); 1431 cpu_relax(); 1432 goto retry; 1433 } 1434 /* oops */ 1435 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1436 wq->name, cpu); 1437 } 1438 1439 /* pwq determined, queue */ 1440 trace_workqueue_queue_work(req_cpu, pwq, work); 1441 1442 if (WARN_ON(!list_empty(&work->entry))) { 1443 spin_unlock(&pwq->pool->lock); 1444 return; 1445 } 1446 1447 pwq->nr_in_flight[pwq->work_color]++; 1448 work_flags = work_color_to_flags(pwq->work_color); 1449 1450 if (likely(pwq->nr_active < pwq->max_active)) { 1451 trace_workqueue_activate_work(work); 1452 pwq->nr_active++; 1453 worklist = &pwq->pool->worklist; 1454 if (list_empty(worklist)) 1455 pwq->pool->watchdog_ts = jiffies; 1456 } else { 1457 work_flags |= WORK_STRUCT_DELAYED; 1458 worklist = &pwq->delayed_works; 1459 } 1460 1461 insert_work(pwq, work, worklist, work_flags); 1462 1463 spin_unlock(&pwq->pool->lock); 1464 } 1465 1466 /** 1467 * queue_work_on - queue work on specific cpu 1468 * @cpu: CPU number to execute work on 1469 * @wq: workqueue to use 1470 * @work: work to queue 1471 * 1472 * We queue the work to a specific CPU, the caller must ensure it 1473 * can't go away. 1474 * 1475 * Return: %false if @work was already on a queue, %true otherwise. 1476 */ 1477 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1478 struct work_struct *work) 1479 { 1480 bool ret = false; 1481 unsigned long flags; 1482 1483 local_irq_save(flags); 1484 1485 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1486 __queue_work(cpu, wq, work); 1487 ret = true; 1488 } 1489 1490 local_irq_restore(flags); 1491 return ret; 1492 } 1493 EXPORT_SYMBOL(queue_work_on); 1494 1495 void delayed_work_timer_fn(struct timer_list *t) 1496 { 1497 struct delayed_work *dwork = from_timer(dwork, t, timer); 1498 1499 /* should have been called from irqsafe timer with irq already off */ 1500 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1501 } 1502 EXPORT_SYMBOL(delayed_work_timer_fn); 1503 1504 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1505 struct delayed_work *dwork, unsigned long delay) 1506 { 1507 struct timer_list *timer = &dwork->timer; 1508 struct work_struct *work = &dwork->work; 1509 1510 WARN_ON_ONCE(!wq); 1511 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 1512 WARN_ON_ONCE(timer_pending(timer)); 1513 WARN_ON_ONCE(!list_empty(&work->entry)); 1514 1515 /* 1516 * If @delay is 0, queue @dwork->work immediately. This is for 1517 * both optimization and correctness. The earliest @timer can 1518 * expire is on the closest next tick and delayed_work users depend 1519 * on that there's no such delay when @delay is 0. 1520 */ 1521 if (!delay) { 1522 __queue_work(cpu, wq, &dwork->work); 1523 return; 1524 } 1525 1526 dwork->wq = wq; 1527 dwork->cpu = cpu; 1528 timer->expires = jiffies + delay; 1529 1530 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1531 add_timer_on(timer, cpu); 1532 else 1533 add_timer(timer); 1534 } 1535 1536 /** 1537 * queue_delayed_work_on - queue work on specific CPU after delay 1538 * @cpu: CPU number to execute work on 1539 * @wq: workqueue to use 1540 * @dwork: work to queue 1541 * @delay: number of jiffies to wait before queueing 1542 * 1543 * Return: %false if @work was already on a queue, %true otherwise. If 1544 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1545 * execution. 1546 */ 1547 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1548 struct delayed_work *dwork, unsigned long delay) 1549 { 1550 struct work_struct *work = &dwork->work; 1551 bool ret = false; 1552 unsigned long flags; 1553 1554 /* read the comment in __queue_work() */ 1555 local_irq_save(flags); 1556 1557 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1558 __queue_delayed_work(cpu, wq, dwork, delay); 1559 ret = true; 1560 } 1561 1562 local_irq_restore(flags); 1563 return ret; 1564 } 1565 EXPORT_SYMBOL(queue_delayed_work_on); 1566 1567 /** 1568 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1569 * @cpu: CPU number to execute work on 1570 * @wq: workqueue to use 1571 * @dwork: work to queue 1572 * @delay: number of jiffies to wait before queueing 1573 * 1574 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1575 * modify @dwork's timer so that it expires after @delay. If @delay is 1576 * zero, @work is guaranteed to be scheduled immediately regardless of its 1577 * current state. 1578 * 1579 * Return: %false if @dwork was idle and queued, %true if @dwork was 1580 * pending and its timer was modified. 1581 * 1582 * This function is safe to call from any context including IRQ handler. 1583 * See try_to_grab_pending() for details. 1584 */ 1585 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1586 struct delayed_work *dwork, unsigned long delay) 1587 { 1588 unsigned long flags; 1589 int ret; 1590 1591 do { 1592 ret = try_to_grab_pending(&dwork->work, true, &flags); 1593 } while (unlikely(ret == -EAGAIN)); 1594 1595 if (likely(ret >= 0)) { 1596 __queue_delayed_work(cpu, wq, dwork, delay); 1597 local_irq_restore(flags); 1598 } 1599 1600 /* -ENOENT from try_to_grab_pending() becomes %true */ 1601 return ret; 1602 } 1603 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1604 1605 static void rcu_work_rcufn(struct rcu_head *rcu) 1606 { 1607 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 1608 1609 /* read the comment in __queue_work() */ 1610 local_irq_disable(); 1611 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 1612 local_irq_enable(); 1613 } 1614 1615 /** 1616 * queue_rcu_work - queue work after a RCU grace period 1617 * @wq: workqueue to use 1618 * @rwork: work to queue 1619 * 1620 * Return: %false if @rwork was already pending, %true otherwise. Note 1621 * that a full RCU grace period is guaranteed only after a %true return. 1622 * While @rwork is guarnateed to be executed after a %false return, the 1623 * execution may happen before a full RCU grace period has passed. 1624 */ 1625 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 1626 { 1627 struct work_struct *work = &rwork->work; 1628 1629 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1630 rwork->wq = wq; 1631 call_rcu(&rwork->rcu, rcu_work_rcufn); 1632 return true; 1633 } 1634 1635 return false; 1636 } 1637 EXPORT_SYMBOL(queue_rcu_work); 1638 1639 /** 1640 * worker_enter_idle - enter idle state 1641 * @worker: worker which is entering idle state 1642 * 1643 * @worker is entering idle state. Update stats and idle timer if 1644 * necessary. 1645 * 1646 * LOCKING: 1647 * spin_lock_irq(pool->lock). 1648 */ 1649 static void worker_enter_idle(struct worker *worker) 1650 { 1651 struct worker_pool *pool = worker->pool; 1652 1653 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1654 WARN_ON_ONCE(!list_empty(&worker->entry) && 1655 (worker->hentry.next || worker->hentry.pprev))) 1656 return; 1657 1658 /* can't use worker_set_flags(), also called from create_worker() */ 1659 worker->flags |= WORKER_IDLE; 1660 pool->nr_idle++; 1661 worker->last_active = jiffies; 1662 1663 /* idle_list is LIFO */ 1664 list_add(&worker->entry, &pool->idle_list); 1665 1666 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1667 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1668 1669 /* 1670 * Sanity check nr_running. Because unbind_workers() releases 1671 * pool->lock between setting %WORKER_UNBOUND and zapping 1672 * nr_running, the warning may trigger spuriously. Check iff 1673 * unbind is not in progress. 1674 */ 1675 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1676 pool->nr_workers == pool->nr_idle && 1677 atomic_read(&pool->nr_running)); 1678 } 1679 1680 /** 1681 * worker_leave_idle - leave idle state 1682 * @worker: worker which is leaving idle state 1683 * 1684 * @worker is leaving idle state. Update stats. 1685 * 1686 * LOCKING: 1687 * spin_lock_irq(pool->lock). 1688 */ 1689 static void worker_leave_idle(struct worker *worker) 1690 { 1691 struct worker_pool *pool = worker->pool; 1692 1693 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1694 return; 1695 worker_clr_flags(worker, WORKER_IDLE); 1696 pool->nr_idle--; 1697 list_del_init(&worker->entry); 1698 } 1699 1700 static struct worker *alloc_worker(int node) 1701 { 1702 struct worker *worker; 1703 1704 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1705 if (worker) { 1706 INIT_LIST_HEAD(&worker->entry); 1707 INIT_LIST_HEAD(&worker->scheduled); 1708 INIT_LIST_HEAD(&worker->node); 1709 /* on creation a worker is in !idle && prep state */ 1710 worker->flags = WORKER_PREP; 1711 } 1712 return worker; 1713 } 1714 1715 /** 1716 * worker_attach_to_pool() - attach a worker to a pool 1717 * @worker: worker to be attached 1718 * @pool: the target pool 1719 * 1720 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1721 * cpu-binding of @worker are kept coordinated with the pool across 1722 * cpu-[un]hotplugs. 1723 */ 1724 static void worker_attach_to_pool(struct worker *worker, 1725 struct worker_pool *pool) 1726 { 1727 mutex_lock(&pool->attach_mutex); 1728 1729 /* 1730 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1731 * online CPUs. It'll be re-applied when any of the CPUs come up. 1732 */ 1733 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1734 1735 /* 1736 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains 1737 * stable across this function. See the comments above the 1738 * flag definition for details. 1739 */ 1740 if (pool->flags & POOL_DISASSOCIATED) 1741 worker->flags |= WORKER_UNBOUND; 1742 1743 list_add_tail(&worker->node, &pool->workers); 1744 1745 mutex_unlock(&pool->attach_mutex); 1746 } 1747 1748 /** 1749 * worker_detach_from_pool() - detach a worker from its pool 1750 * @worker: worker which is attached to its pool 1751 * @pool: the pool @worker is attached to 1752 * 1753 * Undo the attaching which had been done in worker_attach_to_pool(). The 1754 * caller worker shouldn't access to the pool after detached except it has 1755 * other reference to the pool. 1756 */ 1757 static void worker_detach_from_pool(struct worker *worker, 1758 struct worker_pool *pool) 1759 { 1760 struct completion *detach_completion = NULL; 1761 1762 mutex_lock(&pool->attach_mutex); 1763 list_del(&worker->node); 1764 if (list_empty(&pool->workers)) 1765 detach_completion = pool->detach_completion; 1766 mutex_unlock(&pool->attach_mutex); 1767 1768 /* clear leftover flags without pool->lock after it is detached */ 1769 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1770 1771 if (detach_completion) 1772 complete(detach_completion); 1773 } 1774 1775 /** 1776 * create_worker - create a new workqueue worker 1777 * @pool: pool the new worker will belong to 1778 * 1779 * Create and start a new worker which is attached to @pool. 1780 * 1781 * CONTEXT: 1782 * Might sleep. Does GFP_KERNEL allocations. 1783 * 1784 * Return: 1785 * Pointer to the newly created worker. 1786 */ 1787 static struct worker *create_worker(struct worker_pool *pool) 1788 { 1789 struct worker *worker = NULL; 1790 int id = -1; 1791 char id_buf[16]; 1792 1793 /* ID is needed to determine kthread name */ 1794 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL); 1795 if (id < 0) 1796 goto fail; 1797 1798 worker = alloc_worker(pool->node); 1799 if (!worker) 1800 goto fail; 1801 1802 worker->pool = pool; 1803 worker->id = id; 1804 1805 if (pool->cpu >= 0) 1806 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1807 pool->attrs->nice < 0 ? "H" : ""); 1808 else 1809 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1810 1811 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1812 "kworker/%s", id_buf); 1813 if (IS_ERR(worker->task)) 1814 goto fail; 1815 1816 set_user_nice(worker->task, pool->attrs->nice); 1817 kthread_bind_mask(worker->task, pool->attrs->cpumask); 1818 1819 /* successful, attach the worker to the pool */ 1820 worker_attach_to_pool(worker, pool); 1821 1822 /* start the newly created worker */ 1823 spin_lock_irq(&pool->lock); 1824 worker->pool->nr_workers++; 1825 worker_enter_idle(worker); 1826 wake_up_process(worker->task); 1827 spin_unlock_irq(&pool->lock); 1828 1829 return worker; 1830 1831 fail: 1832 if (id >= 0) 1833 ida_simple_remove(&pool->worker_ida, id); 1834 kfree(worker); 1835 return NULL; 1836 } 1837 1838 /** 1839 * destroy_worker - destroy a workqueue worker 1840 * @worker: worker to be destroyed 1841 * 1842 * Destroy @worker and adjust @pool stats accordingly. The worker should 1843 * be idle. 1844 * 1845 * CONTEXT: 1846 * spin_lock_irq(pool->lock). 1847 */ 1848 static void destroy_worker(struct worker *worker) 1849 { 1850 struct worker_pool *pool = worker->pool; 1851 1852 lockdep_assert_held(&pool->lock); 1853 1854 /* sanity check frenzy */ 1855 if (WARN_ON(worker->current_work) || 1856 WARN_ON(!list_empty(&worker->scheduled)) || 1857 WARN_ON(!(worker->flags & WORKER_IDLE))) 1858 return; 1859 1860 pool->nr_workers--; 1861 pool->nr_idle--; 1862 1863 list_del_init(&worker->entry); 1864 worker->flags |= WORKER_DIE; 1865 wake_up_process(worker->task); 1866 } 1867 1868 static void idle_worker_timeout(struct timer_list *t) 1869 { 1870 struct worker_pool *pool = from_timer(pool, t, idle_timer); 1871 1872 spin_lock_irq(&pool->lock); 1873 1874 while (too_many_workers(pool)) { 1875 struct worker *worker; 1876 unsigned long expires; 1877 1878 /* idle_list is kept in LIFO order, check the last one */ 1879 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1880 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1881 1882 if (time_before(jiffies, expires)) { 1883 mod_timer(&pool->idle_timer, expires); 1884 break; 1885 } 1886 1887 destroy_worker(worker); 1888 } 1889 1890 spin_unlock_irq(&pool->lock); 1891 } 1892 1893 static void send_mayday(struct work_struct *work) 1894 { 1895 struct pool_workqueue *pwq = get_work_pwq(work); 1896 struct workqueue_struct *wq = pwq->wq; 1897 1898 lockdep_assert_held(&wq_mayday_lock); 1899 1900 if (!wq->rescuer) 1901 return; 1902 1903 /* mayday mayday mayday */ 1904 if (list_empty(&pwq->mayday_node)) { 1905 /* 1906 * If @pwq is for an unbound wq, its base ref may be put at 1907 * any time due to an attribute change. Pin @pwq until the 1908 * rescuer is done with it. 1909 */ 1910 get_pwq(pwq); 1911 list_add_tail(&pwq->mayday_node, &wq->maydays); 1912 wake_up_process(wq->rescuer->task); 1913 } 1914 } 1915 1916 static void pool_mayday_timeout(struct timer_list *t) 1917 { 1918 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 1919 struct work_struct *work; 1920 1921 spin_lock_irq(&pool->lock); 1922 spin_lock(&wq_mayday_lock); /* for wq->maydays */ 1923 1924 if (need_to_create_worker(pool)) { 1925 /* 1926 * We've been trying to create a new worker but 1927 * haven't been successful. We might be hitting an 1928 * allocation deadlock. Send distress signals to 1929 * rescuers. 1930 */ 1931 list_for_each_entry(work, &pool->worklist, entry) 1932 send_mayday(work); 1933 } 1934 1935 spin_unlock(&wq_mayday_lock); 1936 spin_unlock_irq(&pool->lock); 1937 1938 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 1939 } 1940 1941 /** 1942 * maybe_create_worker - create a new worker if necessary 1943 * @pool: pool to create a new worker for 1944 * 1945 * Create a new worker for @pool if necessary. @pool is guaranteed to 1946 * have at least one idle worker on return from this function. If 1947 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1948 * sent to all rescuers with works scheduled on @pool to resolve 1949 * possible allocation deadlock. 1950 * 1951 * On return, need_to_create_worker() is guaranteed to be %false and 1952 * may_start_working() %true. 1953 * 1954 * LOCKING: 1955 * spin_lock_irq(pool->lock) which may be released and regrabbed 1956 * multiple times. Does GFP_KERNEL allocations. Called only from 1957 * manager. 1958 */ 1959 static void maybe_create_worker(struct worker_pool *pool) 1960 __releases(&pool->lock) 1961 __acquires(&pool->lock) 1962 { 1963 restart: 1964 spin_unlock_irq(&pool->lock); 1965 1966 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1967 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1968 1969 while (true) { 1970 if (create_worker(pool) || !need_to_create_worker(pool)) 1971 break; 1972 1973 schedule_timeout_interruptible(CREATE_COOLDOWN); 1974 1975 if (!need_to_create_worker(pool)) 1976 break; 1977 } 1978 1979 del_timer_sync(&pool->mayday_timer); 1980 spin_lock_irq(&pool->lock); 1981 /* 1982 * This is necessary even after a new worker was just successfully 1983 * created as @pool->lock was dropped and the new worker might have 1984 * already become busy. 1985 */ 1986 if (need_to_create_worker(pool)) 1987 goto restart; 1988 } 1989 1990 /** 1991 * manage_workers - manage worker pool 1992 * @worker: self 1993 * 1994 * Assume the manager role and manage the worker pool @worker belongs 1995 * to. At any given time, there can be only zero or one manager per 1996 * pool. The exclusion is handled automatically by this function. 1997 * 1998 * The caller can safely start processing works on false return. On 1999 * true return, it's guaranteed that need_to_create_worker() is false 2000 * and may_start_working() is true. 2001 * 2002 * CONTEXT: 2003 * spin_lock_irq(pool->lock) which may be released and regrabbed 2004 * multiple times. Does GFP_KERNEL allocations. 2005 * 2006 * Return: 2007 * %false if the pool doesn't need management and the caller can safely 2008 * start processing works, %true if management function was performed and 2009 * the conditions that the caller verified before calling the function may 2010 * no longer be true. 2011 */ 2012 static bool manage_workers(struct worker *worker) 2013 { 2014 struct worker_pool *pool = worker->pool; 2015 2016 if (pool->flags & POOL_MANAGER_ACTIVE) 2017 return false; 2018 2019 pool->flags |= POOL_MANAGER_ACTIVE; 2020 pool->manager = worker; 2021 2022 maybe_create_worker(pool); 2023 2024 pool->manager = NULL; 2025 pool->flags &= ~POOL_MANAGER_ACTIVE; 2026 wake_up(&wq_manager_wait); 2027 return true; 2028 } 2029 2030 /** 2031 * process_one_work - process single work 2032 * @worker: self 2033 * @work: work to process 2034 * 2035 * Process @work. This function contains all the logics necessary to 2036 * process a single work including synchronization against and 2037 * interaction with other workers on the same cpu, queueing and 2038 * flushing. As long as context requirement is met, any worker can 2039 * call this function to process a work. 2040 * 2041 * CONTEXT: 2042 * spin_lock_irq(pool->lock) which is released and regrabbed. 2043 */ 2044 static void process_one_work(struct worker *worker, struct work_struct *work) 2045 __releases(&pool->lock) 2046 __acquires(&pool->lock) 2047 { 2048 struct pool_workqueue *pwq = get_work_pwq(work); 2049 struct worker_pool *pool = worker->pool; 2050 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2051 int work_color; 2052 struct worker *collision; 2053 #ifdef CONFIG_LOCKDEP 2054 /* 2055 * It is permissible to free the struct work_struct from 2056 * inside the function that is called from it, this we need to 2057 * take into account for lockdep too. To avoid bogus "held 2058 * lock freed" warnings as well as problems when looking into 2059 * work->lockdep_map, make a copy and use that here. 2060 */ 2061 struct lockdep_map lockdep_map; 2062 2063 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2064 #endif 2065 /* ensure we're on the correct CPU */ 2066 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2067 raw_smp_processor_id() != pool->cpu); 2068 2069 /* 2070 * A single work shouldn't be executed concurrently by 2071 * multiple workers on a single cpu. Check whether anyone is 2072 * already processing the work. If so, defer the work to the 2073 * currently executing one. 2074 */ 2075 collision = find_worker_executing_work(pool, work); 2076 if (unlikely(collision)) { 2077 move_linked_works(work, &collision->scheduled, NULL); 2078 return; 2079 } 2080 2081 /* claim and dequeue */ 2082 debug_work_deactivate(work); 2083 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2084 worker->current_work = work; 2085 worker->current_func = work->func; 2086 worker->current_pwq = pwq; 2087 work_color = get_work_color(work); 2088 2089 list_del_init(&work->entry); 2090 2091 /* 2092 * CPU intensive works don't participate in concurrency management. 2093 * They're the scheduler's responsibility. This takes @worker out 2094 * of concurrency management and the next code block will chain 2095 * execution of the pending work items. 2096 */ 2097 if (unlikely(cpu_intensive)) 2098 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2099 2100 /* 2101 * Wake up another worker if necessary. The condition is always 2102 * false for normal per-cpu workers since nr_running would always 2103 * be >= 1 at this point. This is used to chain execution of the 2104 * pending work items for WORKER_NOT_RUNNING workers such as the 2105 * UNBOUND and CPU_INTENSIVE ones. 2106 */ 2107 if (need_more_worker(pool)) 2108 wake_up_worker(pool); 2109 2110 /* 2111 * Record the last pool and clear PENDING which should be the last 2112 * update to @work. Also, do this inside @pool->lock so that 2113 * PENDING and queued state changes happen together while IRQ is 2114 * disabled. 2115 */ 2116 set_work_pool_and_clear_pending(work, pool->id); 2117 2118 spin_unlock_irq(&pool->lock); 2119 2120 lock_map_acquire(&pwq->wq->lockdep_map); 2121 lock_map_acquire(&lockdep_map); 2122 /* 2123 * Strictly speaking we should mark the invariant state without holding 2124 * any locks, that is, before these two lock_map_acquire()'s. 2125 * 2126 * However, that would result in: 2127 * 2128 * A(W1) 2129 * WFC(C) 2130 * A(W1) 2131 * C(C) 2132 * 2133 * Which would create W1->C->W1 dependencies, even though there is no 2134 * actual deadlock possible. There are two solutions, using a 2135 * read-recursive acquire on the work(queue) 'locks', but this will then 2136 * hit the lockdep limitation on recursive locks, or simply discard 2137 * these locks. 2138 * 2139 * AFAICT there is no possible deadlock scenario between the 2140 * flush_work() and complete() primitives (except for single-threaded 2141 * workqueues), so hiding them isn't a problem. 2142 */ 2143 lockdep_invariant_state(true); 2144 trace_workqueue_execute_start(work); 2145 worker->current_func(work); 2146 /* 2147 * While we must be careful to not use "work" after this, the trace 2148 * point will only record its address. 2149 */ 2150 trace_workqueue_execute_end(work); 2151 lock_map_release(&lockdep_map); 2152 lock_map_release(&pwq->wq->lockdep_map); 2153 2154 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2155 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2156 " last function: %pf\n", 2157 current->comm, preempt_count(), task_pid_nr(current), 2158 worker->current_func); 2159 debug_show_held_locks(current); 2160 dump_stack(); 2161 } 2162 2163 /* 2164 * The following prevents a kworker from hogging CPU on !PREEMPT 2165 * kernels, where a requeueing work item waiting for something to 2166 * happen could deadlock with stop_machine as such work item could 2167 * indefinitely requeue itself while all other CPUs are trapped in 2168 * stop_machine. At the same time, report a quiescent RCU state so 2169 * the same condition doesn't freeze RCU. 2170 */ 2171 cond_resched(); 2172 2173 spin_lock_irq(&pool->lock); 2174 2175 /* clear cpu intensive status */ 2176 if (unlikely(cpu_intensive)) 2177 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2178 2179 /* we're done with it, release */ 2180 hash_del(&worker->hentry); 2181 worker->current_work = NULL; 2182 worker->current_func = NULL; 2183 worker->current_pwq = NULL; 2184 worker->desc_valid = false; 2185 pwq_dec_nr_in_flight(pwq, work_color); 2186 } 2187 2188 /** 2189 * process_scheduled_works - process scheduled works 2190 * @worker: self 2191 * 2192 * Process all scheduled works. Please note that the scheduled list 2193 * may change while processing a work, so this function repeatedly 2194 * fetches a work from the top and executes it. 2195 * 2196 * CONTEXT: 2197 * spin_lock_irq(pool->lock) which may be released and regrabbed 2198 * multiple times. 2199 */ 2200 static void process_scheduled_works(struct worker *worker) 2201 { 2202 while (!list_empty(&worker->scheduled)) { 2203 struct work_struct *work = list_first_entry(&worker->scheduled, 2204 struct work_struct, entry); 2205 process_one_work(worker, work); 2206 } 2207 } 2208 2209 /** 2210 * worker_thread - the worker thread function 2211 * @__worker: self 2212 * 2213 * The worker thread function. All workers belong to a worker_pool - 2214 * either a per-cpu one or dynamic unbound one. These workers process all 2215 * work items regardless of their specific target workqueue. The only 2216 * exception is work items which belong to workqueues with a rescuer which 2217 * will be explained in rescuer_thread(). 2218 * 2219 * Return: 0 2220 */ 2221 static int worker_thread(void *__worker) 2222 { 2223 struct worker *worker = __worker; 2224 struct worker_pool *pool = worker->pool; 2225 2226 /* tell the scheduler that this is a workqueue worker */ 2227 worker->task->flags |= PF_WQ_WORKER; 2228 woke_up: 2229 spin_lock_irq(&pool->lock); 2230 2231 /* am I supposed to die? */ 2232 if (unlikely(worker->flags & WORKER_DIE)) { 2233 spin_unlock_irq(&pool->lock); 2234 WARN_ON_ONCE(!list_empty(&worker->entry)); 2235 worker->task->flags &= ~PF_WQ_WORKER; 2236 2237 set_task_comm(worker->task, "kworker/dying"); 2238 ida_simple_remove(&pool->worker_ida, worker->id); 2239 worker_detach_from_pool(worker, pool); 2240 kfree(worker); 2241 return 0; 2242 } 2243 2244 worker_leave_idle(worker); 2245 recheck: 2246 /* no more worker necessary? */ 2247 if (!need_more_worker(pool)) 2248 goto sleep; 2249 2250 /* do we need to manage? */ 2251 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2252 goto recheck; 2253 2254 /* 2255 * ->scheduled list can only be filled while a worker is 2256 * preparing to process a work or actually processing it. 2257 * Make sure nobody diddled with it while I was sleeping. 2258 */ 2259 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2260 2261 /* 2262 * Finish PREP stage. We're guaranteed to have at least one idle 2263 * worker or that someone else has already assumed the manager 2264 * role. This is where @worker starts participating in concurrency 2265 * management if applicable and concurrency management is restored 2266 * after being rebound. See rebind_workers() for details. 2267 */ 2268 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2269 2270 do { 2271 struct work_struct *work = 2272 list_first_entry(&pool->worklist, 2273 struct work_struct, entry); 2274 2275 pool->watchdog_ts = jiffies; 2276 2277 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2278 /* optimization path, not strictly necessary */ 2279 process_one_work(worker, work); 2280 if (unlikely(!list_empty(&worker->scheduled))) 2281 process_scheduled_works(worker); 2282 } else { 2283 move_linked_works(work, &worker->scheduled, NULL); 2284 process_scheduled_works(worker); 2285 } 2286 } while (keep_working(pool)); 2287 2288 worker_set_flags(worker, WORKER_PREP); 2289 sleep: 2290 /* 2291 * pool->lock is held and there's no work to process and no need to 2292 * manage, sleep. Workers are woken up only while holding 2293 * pool->lock or from local cpu, so setting the current state 2294 * before releasing pool->lock is enough to prevent losing any 2295 * event. 2296 */ 2297 worker_enter_idle(worker); 2298 __set_current_state(TASK_IDLE); 2299 spin_unlock_irq(&pool->lock); 2300 schedule(); 2301 goto woke_up; 2302 } 2303 2304 /** 2305 * rescuer_thread - the rescuer thread function 2306 * @__rescuer: self 2307 * 2308 * Workqueue rescuer thread function. There's one rescuer for each 2309 * workqueue which has WQ_MEM_RECLAIM set. 2310 * 2311 * Regular work processing on a pool may block trying to create a new 2312 * worker which uses GFP_KERNEL allocation which has slight chance of 2313 * developing into deadlock if some works currently on the same queue 2314 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2315 * the problem rescuer solves. 2316 * 2317 * When such condition is possible, the pool summons rescuers of all 2318 * workqueues which have works queued on the pool and let them process 2319 * those works so that forward progress can be guaranteed. 2320 * 2321 * This should happen rarely. 2322 * 2323 * Return: 0 2324 */ 2325 static int rescuer_thread(void *__rescuer) 2326 { 2327 struct worker *rescuer = __rescuer; 2328 struct workqueue_struct *wq = rescuer->rescue_wq; 2329 struct list_head *scheduled = &rescuer->scheduled; 2330 bool should_stop; 2331 2332 set_user_nice(current, RESCUER_NICE_LEVEL); 2333 2334 /* 2335 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2336 * doesn't participate in concurrency management. 2337 */ 2338 rescuer->task->flags |= PF_WQ_WORKER; 2339 repeat: 2340 set_current_state(TASK_IDLE); 2341 2342 /* 2343 * By the time the rescuer is requested to stop, the workqueue 2344 * shouldn't have any work pending, but @wq->maydays may still have 2345 * pwq(s) queued. This can happen by non-rescuer workers consuming 2346 * all the work items before the rescuer got to them. Go through 2347 * @wq->maydays processing before acting on should_stop so that the 2348 * list is always empty on exit. 2349 */ 2350 should_stop = kthread_should_stop(); 2351 2352 /* see whether any pwq is asking for help */ 2353 spin_lock_irq(&wq_mayday_lock); 2354 2355 while (!list_empty(&wq->maydays)) { 2356 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2357 struct pool_workqueue, mayday_node); 2358 struct worker_pool *pool = pwq->pool; 2359 struct work_struct *work, *n; 2360 bool first = true; 2361 2362 __set_current_state(TASK_RUNNING); 2363 list_del_init(&pwq->mayday_node); 2364 2365 spin_unlock_irq(&wq_mayday_lock); 2366 2367 worker_attach_to_pool(rescuer, pool); 2368 2369 spin_lock_irq(&pool->lock); 2370 rescuer->pool = pool; 2371 2372 /* 2373 * Slurp in all works issued via this workqueue and 2374 * process'em. 2375 */ 2376 WARN_ON_ONCE(!list_empty(scheduled)); 2377 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2378 if (get_work_pwq(work) == pwq) { 2379 if (first) 2380 pool->watchdog_ts = jiffies; 2381 move_linked_works(work, scheduled, &n); 2382 } 2383 first = false; 2384 } 2385 2386 if (!list_empty(scheduled)) { 2387 process_scheduled_works(rescuer); 2388 2389 /* 2390 * The above execution of rescued work items could 2391 * have created more to rescue through 2392 * pwq_activate_first_delayed() or chained 2393 * queueing. Let's put @pwq back on mayday list so 2394 * that such back-to-back work items, which may be 2395 * being used to relieve memory pressure, don't 2396 * incur MAYDAY_INTERVAL delay inbetween. 2397 */ 2398 if (need_to_create_worker(pool)) { 2399 spin_lock(&wq_mayday_lock); 2400 get_pwq(pwq); 2401 list_move_tail(&pwq->mayday_node, &wq->maydays); 2402 spin_unlock(&wq_mayday_lock); 2403 } 2404 } 2405 2406 /* 2407 * Put the reference grabbed by send_mayday(). @pool won't 2408 * go away while we're still attached to it. 2409 */ 2410 put_pwq(pwq); 2411 2412 /* 2413 * Leave this pool. If need_more_worker() is %true, notify a 2414 * regular worker; otherwise, we end up with 0 concurrency 2415 * and stalling the execution. 2416 */ 2417 if (need_more_worker(pool)) 2418 wake_up_worker(pool); 2419 2420 rescuer->pool = NULL; 2421 spin_unlock_irq(&pool->lock); 2422 2423 worker_detach_from_pool(rescuer, pool); 2424 2425 spin_lock_irq(&wq_mayday_lock); 2426 } 2427 2428 spin_unlock_irq(&wq_mayday_lock); 2429 2430 if (should_stop) { 2431 __set_current_state(TASK_RUNNING); 2432 rescuer->task->flags &= ~PF_WQ_WORKER; 2433 return 0; 2434 } 2435 2436 /* rescuers should never participate in concurrency management */ 2437 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2438 schedule(); 2439 goto repeat; 2440 } 2441 2442 /** 2443 * check_flush_dependency - check for flush dependency sanity 2444 * @target_wq: workqueue being flushed 2445 * @target_work: work item being flushed (NULL for workqueue flushes) 2446 * 2447 * %current is trying to flush the whole @target_wq or @target_work on it. 2448 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2449 * reclaiming memory or running on a workqueue which doesn't have 2450 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2451 * a deadlock. 2452 */ 2453 static void check_flush_dependency(struct workqueue_struct *target_wq, 2454 struct work_struct *target_work) 2455 { 2456 work_func_t target_func = target_work ? target_work->func : NULL; 2457 struct worker *worker; 2458 2459 if (target_wq->flags & WQ_MEM_RECLAIM) 2460 return; 2461 2462 worker = current_wq_worker(); 2463 2464 WARN_ONCE(current->flags & PF_MEMALLOC, 2465 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf", 2466 current->pid, current->comm, target_wq->name, target_func); 2467 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2468 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2469 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf", 2470 worker->current_pwq->wq->name, worker->current_func, 2471 target_wq->name, target_func); 2472 } 2473 2474 struct wq_barrier { 2475 struct work_struct work; 2476 struct completion done; 2477 struct task_struct *task; /* purely informational */ 2478 }; 2479 2480 static void wq_barrier_func(struct work_struct *work) 2481 { 2482 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2483 complete(&barr->done); 2484 } 2485 2486 /** 2487 * insert_wq_barrier - insert a barrier work 2488 * @pwq: pwq to insert barrier into 2489 * @barr: wq_barrier to insert 2490 * @target: target work to attach @barr to 2491 * @worker: worker currently executing @target, NULL if @target is not executing 2492 * 2493 * @barr is linked to @target such that @barr is completed only after 2494 * @target finishes execution. Please note that the ordering 2495 * guarantee is observed only with respect to @target and on the local 2496 * cpu. 2497 * 2498 * Currently, a queued barrier can't be canceled. This is because 2499 * try_to_grab_pending() can't determine whether the work to be 2500 * grabbed is at the head of the queue and thus can't clear LINKED 2501 * flag of the previous work while there must be a valid next work 2502 * after a work with LINKED flag set. 2503 * 2504 * Note that when @worker is non-NULL, @target may be modified 2505 * underneath us, so we can't reliably determine pwq from @target. 2506 * 2507 * CONTEXT: 2508 * spin_lock_irq(pool->lock). 2509 */ 2510 static void insert_wq_barrier(struct pool_workqueue *pwq, 2511 struct wq_barrier *barr, 2512 struct work_struct *target, struct worker *worker) 2513 { 2514 struct list_head *head; 2515 unsigned int linked = 0; 2516 2517 /* 2518 * debugobject calls are safe here even with pool->lock locked 2519 * as we know for sure that this will not trigger any of the 2520 * checks and call back into the fixup functions where we 2521 * might deadlock. 2522 */ 2523 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2524 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2525 2526 init_completion_map(&barr->done, &target->lockdep_map); 2527 2528 barr->task = current; 2529 2530 /* 2531 * If @target is currently being executed, schedule the 2532 * barrier to the worker; otherwise, put it after @target. 2533 */ 2534 if (worker) 2535 head = worker->scheduled.next; 2536 else { 2537 unsigned long *bits = work_data_bits(target); 2538 2539 head = target->entry.next; 2540 /* there can already be other linked works, inherit and set */ 2541 linked = *bits & WORK_STRUCT_LINKED; 2542 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2543 } 2544 2545 debug_work_activate(&barr->work); 2546 insert_work(pwq, &barr->work, head, 2547 work_color_to_flags(WORK_NO_COLOR) | linked); 2548 } 2549 2550 /** 2551 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2552 * @wq: workqueue being flushed 2553 * @flush_color: new flush color, < 0 for no-op 2554 * @work_color: new work color, < 0 for no-op 2555 * 2556 * Prepare pwqs for workqueue flushing. 2557 * 2558 * If @flush_color is non-negative, flush_color on all pwqs should be 2559 * -1. If no pwq has in-flight commands at the specified color, all 2560 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2561 * has in flight commands, its pwq->flush_color is set to 2562 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2563 * wakeup logic is armed and %true is returned. 2564 * 2565 * The caller should have initialized @wq->first_flusher prior to 2566 * calling this function with non-negative @flush_color. If 2567 * @flush_color is negative, no flush color update is done and %false 2568 * is returned. 2569 * 2570 * If @work_color is non-negative, all pwqs should have the same 2571 * work_color which is previous to @work_color and all will be 2572 * advanced to @work_color. 2573 * 2574 * CONTEXT: 2575 * mutex_lock(wq->mutex). 2576 * 2577 * Return: 2578 * %true if @flush_color >= 0 and there's something to flush. %false 2579 * otherwise. 2580 */ 2581 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2582 int flush_color, int work_color) 2583 { 2584 bool wait = false; 2585 struct pool_workqueue *pwq; 2586 2587 if (flush_color >= 0) { 2588 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2589 atomic_set(&wq->nr_pwqs_to_flush, 1); 2590 } 2591 2592 for_each_pwq(pwq, wq) { 2593 struct worker_pool *pool = pwq->pool; 2594 2595 spin_lock_irq(&pool->lock); 2596 2597 if (flush_color >= 0) { 2598 WARN_ON_ONCE(pwq->flush_color != -1); 2599 2600 if (pwq->nr_in_flight[flush_color]) { 2601 pwq->flush_color = flush_color; 2602 atomic_inc(&wq->nr_pwqs_to_flush); 2603 wait = true; 2604 } 2605 } 2606 2607 if (work_color >= 0) { 2608 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2609 pwq->work_color = work_color; 2610 } 2611 2612 spin_unlock_irq(&pool->lock); 2613 } 2614 2615 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2616 complete(&wq->first_flusher->done); 2617 2618 return wait; 2619 } 2620 2621 /** 2622 * flush_workqueue - ensure that any scheduled work has run to completion. 2623 * @wq: workqueue to flush 2624 * 2625 * This function sleeps until all work items which were queued on entry 2626 * have finished execution, but it is not livelocked by new incoming ones. 2627 */ 2628 void flush_workqueue(struct workqueue_struct *wq) 2629 { 2630 struct wq_flusher this_flusher = { 2631 .list = LIST_HEAD_INIT(this_flusher.list), 2632 .flush_color = -1, 2633 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 2634 }; 2635 int next_color; 2636 2637 if (WARN_ON(!wq_online)) 2638 return; 2639 2640 mutex_lock(&wq->mutex); 2641 2642 /* 2643 * Start-to-wait phase 2644 */ 2645 next_color = work_next_color(wq->work_color); 2646 2647 if (next_color != wq->flush_color) { 2648 /* 2649 * Color space is not full. The current work_color 2650 * becomes our flush_color and work_color is advanced 2651 * by one. 2652 */ 2653 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2654 this_flusher.flush_color = wq->work_color; 2655 wq->work_color = next_color; 2656 2657 if (!wq->first_flusher) { 2658 /* no flush in progress, become the first flusher */ 2659 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2660 2661 wq->first_flusher = &this_flusher; 2662 2663 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2664 wq->work_color)) { 2665 /* nothing to flush, done */ 2666 wq->flush_color = next_color; 2667 wq->first_flusher = NULL; 2668 goto out_unlock; 2669 } 2670 } else { 2671 /* wait in queue */ 2672 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2673 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2674 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2675 } 2676 } else { 2677 /* 2678 * Oops, color space is full, wait on overflow queue. 2679 * The next flush completion will assign us 2680 * flush_color and transfer to flusher_queue. 2681 */ 2682 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2683 } 2684 2685 check_flush_dependency(wq, NULL); 2686 2687 mutex_unlock(&wq->mutex); 2688 2689 wait_for_completion(&this_flusher.done); 2690 2691 /* 2692 * Wake-up-and-cascade phase 2693 * 2694 * First flushers are responsible for cascading flushes and 2695 * handling overflow. Non-first flushers can simply return. 2696 */ 2697 if (wq->first_flusher != &this_flusher) 2698 return; 2699 2700 mutex_lock(&wq->mutex); 2701 2702 /* we might have raced, check again with mutex held */ 2703 if (wq->first_flusher != &this_flusher) 2704 goto out_unlock; 2705 2706 wq->first_flusher = NULL; 2707 2708 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2709 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2710 2711 while (true) { 2712 struct wq_flusher *next, *tmp; 2713 2714 /* complete all the flushers sharing the current flush color */ 2715 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2716 if (next->flush_color != wq->flush_color) 2717 break; 2718 list_del_init(&next->list); 2719 complete(&next->done); 2720 } 2721 2722 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2723 wq->flush_color != work_next_color(wq->work_color)); 2724 2725 /* this flush_color is finished, advance by one */ 2726 wq->flush_color = work_next_color(wq->flush_color); 2727 2728 /* one color has been freed, handle overflow queue */ 2729 if (!list_empty(&wq->flusher_overflow)) { 2730 /* 2731 * Assign the same color to all overflowed 2732 * flushers, advance work_color and append to 2733 * flusher_queue. This is the start-to-wait 2734 * phase for these overflowed flushers. 2735 */ 2736 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2737 tmp->flush_color = wq->work_color; 2738 2739 wq->work_color = work_next_color(wq->work_color); 2740 2741 list_splice_tail_init(&wq->flusher_overflow, 2742 &wq->flusher_queue); 2743 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2744 } 2745 2746 if (list_empty(&wq->flusher_queue)) { 2747 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2748 break; 2749 } 2750 2751 /* 2752 * Need to flush more colors. Make the next flusher 2753 * the new first flusher and arm pwqs. 2754 */ 2755 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2756 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2757 2758 list_del_init(&next->list); 2759 wq->first_flusher = next; 2760 2761 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2762 break; 2763 2764 /* 2765 * Meh... this color is already done, clear first 2766 * flusher and repeat cascading. 2767 */ 2768 wq->first_flusher = NULL; 2769 } 2770 2771 out_unlock: 2772 mutex_unlock(&wq->mutex); 2773 } 2774 EXPORT_SYMBOL(flush_workqueue); 2775 2776 /** 2777 * drain_workqueue - drain a workqueue 2778 * @wq: workqueue to drain 2779 * 2780 * Wait until the workqueue becomes empty. While draining is in progress, 2781 * only chain queueing is allowed. IOW, only currently pending or running 2782 * work items on @wq can queue further work items on it. @wq is flushed 2783 * repeatedly until it becomes empty. The number of flushing is determined 2784 * by the depth of chaining and should be relatively short. Whine if it 2785 * takes too long. 2786 */ 2787 void drain_workqueue(struct workqueue_struct *wq) 2788 { 2789 unsigned int flush_cnt = 0; 2790 struct pool_workqueue *pwq; 2791 2792 /* 2793 * __queue_work() needs to test whether there are drainers, is much 2794 * hotter than drain_workqueue() and already looks at @wq->flags. 2795 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2796 */ 2797 mutex_lock(&wq->mutex); 2798 if (!wq->nr_drainers++) 2799 wq->flags |= __WQ_DRAINING; 2800 mutex_unlock(&wq->mutex); 2801 reflush: 2802 flush_workqueue(wq); 2803 2804 mutex_lock(&wq->mutex); 2805 2806 for_each_pwq(pwq, wq) { 2807 bool drained; 2808 2809 spin_lock_irq(&pwq->pool->lock); 2810 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2811 spin_unlock_irq(&pwq->pool->lock); 2812 2813 if (drained) 2814 continue; 2815 2816 if (++flush_cnt == 10 || 2817 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2818 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2819 wq->name, flush_cnt); 2820 2821 mutex_unlock(&wq->mutex); 2822 goto reflush; 2823 } 2824 2825 if (!--wq->nr_drainers) 2826 wq->flags &= ~__WQ_DRAINING; 2827 mutex_unlock(&wq->mutex); 2828 } 2829 EXPORT_SYMBOL_GPL(drain_workqueue); 2830 2831 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr) 2832 { 2833 struct worker *worker = NULL; 2834 struct worker_pool *pool; 2835 struct pool_workqueue *pwq; 2836 2837 might_sleep(); 2838 2839 local_irq_disable(); 2840 pool = get_work_pool(work); 2841 if (!pool) { 2842 local_irq_enable(); 2843 return false; 2844 } 2845 2846 spin_lock(&pool->lock); 2847 /* see the comment in try_to_grab_pending() with the same code */ 2848 pwq = get_work_pwq(work); 2849 if (pwq) { 2850 if (unlikely(pwq->pool != pool)) 2851 goto already_gone; 2852 } else { 2853 worker = find_worker_executing_work(pool, work); 2854 if (!worker) 2855 goto already_gone; 2856 pwq = worker->current_pwq; 2857 } 2858 2859 check_flush_dependency(pwq->wq, work); 2860 2861 insert_wq_barrier(pwq, barr, work, worker); 2862 spin_unlock_irq(&pool->lock); 2863 2864 /* 2865 * Force a lock recursion deadlock when using flush_work() inside a 2866 * single-threaded or rescuer equipped workqueue. 2867 * 2868 * For single threaded workqueues the deadlock happens when the work 2869 * is after the work issuing the flush_work(). For rescuer equipped 2870 * workqueues the deadlock happens when the rescuer stalls, blocking 2871 * forward progress. 2872 */ 2873 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) { 2874 lock_map_acquire(&pwq->wq->lockdep_map); 2875 lock_map_release(&pwq->wq->lockdep_map); 2876 } 2877 2878 return true; 2879 already_gone: 2880 spin_unlock_irq(&pool->lock); 2881 return false; 2882 } 2883 2884 /** 2885 * flush_work - wait for a work to finish executing the last queueing instance 2886 * @work: the work to flush 2887 * 2888 * Wait until @work has finished execution. @work is guaranteed to be idle 2889 * on return if it hasn't been requeued since flush started. 2890 * 2891 * Return: 2892 * %true if flush_work() waited for the work to finish execution, 2893 * %false if it was already idle. 2894 */ 2895 bool flush_work(struct work_struct *work) 2896 { 2897 struct wq_barrier barr; 2898 2899 if (WARN_ON(!wq_online)) 2900 return false; 2901 2902 if (start_flush_work(work, &barr)) { 2903 wait_for_completion(&barr.done); 2904 destroy_work_on_stack(&barr.work); 2905 return true; 2906 } else { 2907 return false; 2908 } 2909 } 2910 EXPORT_SYMBOL_GPL(flush_work); 2911 2912 struct cwt_wait { 2913 wait_queue_entry_t wait; 2914 struct work_struct *work; 2915 }; 2916 2917 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2918 { 2919 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 2920 2921 if (cwait->work != key) 2922 return 0; 2923 return autoremove_wake_function(wait, mode, sync, key); 2924 } 2925 2926 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 2927 { 2928 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 2929 unsigned long flags; 2930 int ret; 2931 2932 do { 2933 ret = try_to_grab_pending(work, is_dwork, &flags); 2934 /* 2935 * If someone else is already canceling, wait for it to 2936 * finish. flush_work() doesn't work for PREEMPT_NONE 2937 * because we may get scheduled between @work's completion 2938 * and the other canceling task resuming and clearing 2939 * CANCELING - flush_work() will return false immediately 2940 * as @work is no longer busy, try_to_grab_pending() will 2941 * return -ENOENT as @work is still being canceled and the 2942 * other canceling task won't be able to clear CANCELING as 2943 * we're hogging the CPU. 2944 * 2945 * Let's wait for completion using a waitqueue. As this 2946 * may lead to the thundering herd problem, use a custom 2947 * wake function which matches @work along with exclusive 2948 * wait and wakeup. 2949 */ 2950 if (unlikely(ret == -ENOENT)) { 2951 struct cwt_wait cwait; 2952 2953 init_wait(&cwait.wait); 2954 cwait.wait.func = cwt_wakefn; 2955 cwait.work = work; 2956 2957 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 2958 TASK_UNINTERRUPTIBLE); 2959 if (work_is_canceling(work)) 2960 schedule(); 2961 finish_wait(&cancel_waitq, &cwait.wait); 2962 } 2963 } while (unlikely(ret < 0)); 2964 2965 /* tell other tasks trying to grab @work to back off */ 2966 mark_work_canceling(work); 2967 local_irq_restore(flags); 2968 2969 /* 2970 * This allows canceling during early boot. We know that @work 2971 * isn't executing. 2972 */ 2973 if (wq_online) 2974 flush_work(work); 2975 2976 clear_work_data(work); 2977 2978 /* 2979 * Paired with prepare_to_wait() above so that either 2980 * waitqueue_active() is visible here or !work_is_canceling() is 2981 * visible there. 2982 */ 2983 smp_mb(); 2984 if (waitqueue_active(&cancel_waitq)) 2985 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 2986 2987 return ret; 2988 } 2989 2990 /** 2991 * cancel_work_sync - cancel a work and wait for it to finish 2992 * @work: the work to cancel 2993 * 2994 * Cancel @work and wait for its execution to finish. This function 2995 * can be used even if the work re-queues itself or migrates to 2996 * another workqueue. On return from this function, @work is 2997 * guaranteed to be not pending or executing on any CPU. 2998 * 2999 * cancel_work_sync(&delayed_work->work) must not be used for 3000 * delayed_work's. Use cancel_delayed_work_sync() instead. 3001 * 3002 * The caller must ensure that the workqueue on which @work was last 3003 * queued can't be destroyed before this function returns. 3004 * 3005 * Return: 3006 * %true if @work was pending, %false otherwise. 3007 */ 3008 bool cancel_work_sync(struct work_struct *work) 3009 { 3010 return __cancel_work_timer(work, false); 3011 } 3012 EXPORT_SYMBOL_GPL(cancel_work_sync); 3013 3014 /** 3015 * flush_delayed_work - wait for a dwork to finish executing the last queueing 3016 * @dwork: the delayed work to flush 3017 * 3018 * Delayed timer is cancelled and the pending work is queued for 3019 * immediate execution. Like flush_work(), this function only 3020 * considers the last queueing instance of @dwork. 3021 * 3022 * Return: 3023 * %true if flush_work() waited for the work to finish execution, 3024 * %false if it was already idle. 3025 */ 3026 bool flush_delayed_work(struct delayed_work *dwork) 3027 { 3028 local_irq_disable(); 3029 if (del_timer_sync(&dwork->timer)) 3030 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 3031 local_irq_enable(); 3032 return flush_work(&dwork->work); 3033 } 3034 EXPORT_SYMBOL(flush_delayed_work); 3035 3036 /** 3037 * flush_rcu_work - wait for a rwork to finish executing the last queueing 3038 * @rwork: the rcu work to flush 3039 * 3040 * Return: 3041 * %true if flush_rcu_work() waited for the work to finish execution, 3042 * %false if it was already idle. 3043 */ 3044 bool flush_rcu_work(struct rcu_work *rwork) 3045 { 3046 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 3047 rcu_barrier(); 3048 flush_work(&rwork->work); 3049 return true; 3050 } else { 3051 return flush_work(&rwork->work); 3052 } 3053 } 3054 EXPORT_SYMBOL(flush_rcu_work); 3055 3056 static bool __cancel_work(struct work_struct *work, bool is_dwork) 3057 { 3058 unsigned long flags; 3059 int ret; 3060 3061 do { 3062 ret = try_to_grab_pending(work, is_dwork, &flags); 3063 } while (unlikely(ret == -EAGAIN)); 3064 3065 if (unlikely(ret < 0)) 3066 return false; 3067 3068 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 3069 local_irq_restore(flags); 3070 return ret; 3071 } 3072 3073 /** 3074 * cancel_delayed_work - cancel a delayed work 3075 * @dwork: delayed_work to cancel 3076 * 3077 * Kill off a pending delayed_work. 3078 * 3079 * Return: %true if @dwork was pending and canceled; %false if it wasn't 3080 * pending. 3081 * 3082 * Note: 3083 * The work callback function may still be running on return, unless 3084 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 3085 * use cancel_delayed_work_sync() to wait on it. 3086 * 3087 * This function is safe to call from any context including IRQ handler. 3088 */ 3089 bool cancel_delayed_work(struct delayed_work *dwork) 3090 { 3091 return __cancel_work(&dwork->work, true); 3092 } 3093 EXPORT_SYMBOL(cancel_delayed_work); 3094 3095 /** 3096 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3097 * @dwork: the delayed work cancel 3098 * 3099 * This is cancel_work_sync() for delayed works. 3100 * 3101 * Return: 3102 * %true if @dwork was pending, %false otherwise. 3103 */ 3104 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3105 { 3106 return __cancel_work_timer(&dwork->work, true); 3107 } 3108 EXPORT_SYMBOL(cancel_delayed_work_sync); 3109 3110 /** 3111 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3112 * @func: the function to call 3113 * 3114 * schedule_on_each_cpu() executes @func on each online CPU using the 3115 * system workqueue and blocks until all CPUs have completed. 3116 * schedule_on_each_cpu() is very slow. 3117 * 3118 * Return: 3119 * 0 on success, -errno on failure. 3120 */ 3121 int schedule_on_each_cpu(work_func_t func) 3122 { 3123 int cpu; 3124 struct work_struct __percpu *works; 3125 3126 works = alloc_percpu(struct work_struct); 3127 if (!works) 3128 return -ENOMEM; 3129 3130 get_online_cpus(); 3131 3132 for_each_online_cpu(cpu) { 3133 struct work_struct *work = per_cpu_ptr(works, cpu); 3134 3135 INIT_WORK(work, func); 3136 schedule_work_on(cpu, work); 3137 } 3138 3139 for_each_online_cpu(cpu) 3140 flush_work(per_cpu_ptr(works, cpu)); 3141 3142 put_online_cpus(); 3143 free_percpu(works); 3144 return 0; 3145 } 3146 3147 /** 3148 * execute_in_process_context - reliably execute the routine with user context 3149 * @fn: the function to execute 3150 * @ew: guaranteed storage for the execute work structure (must 3151 * be available when the work executes) 3152 * 3153 * Executes the function immediately if process context is available, 3154 * otherwise schedules the function for delayed execution. 3155 * 3156 * Return: 0 - function was executed 3157 * 1 - function was scheduled for execution 3158 */ 3159 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3160 { 3161 if (!in_interrupt()) { 3162 fn(&ew->work); 3163 return 0; 3164 } 3165 3166 INIT_WORK(&ew->work, fn); 3167 schedule_work(&ew->work); 3168 3169 return 1; 3170 } 3171 EXPORT_SYMBOL_GPL(execute_in_process_context); 3172 3173 /** 3174 * free_workqueue_attrs - free a workqueue_attrs 3175 * @attrs: workqueue_attrs to free 3176 * 3177 * Undo alloc_workqueue_attrs(). 3178 */ 3179 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3180 { 3181 if (attrs) { 3182 free_cpumask_var(attrs->cpumask); 3183 kfree(attrs); 3184 } 3185 } 3186 3187 /** 3188 * alloc_workqueue_attrs - allocate a workqueue_attrs 3189 * @gfp_mask: allocation mask to use 3190 * 3191 * Allocate a new workqueue_attrs, initialize with default settings and 3192 * return it. 3193 * 3194 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3195 */ 3196 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask) 3197 { 3198 struct workqueue_attrs *attrs; 3199 3200 attrs = kzalloc(sizeof(*attrs), gfp_mask); 3201 if (!attrs) 3202 goto fail; 3203 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask)) 3204 goto fail; 3205 3206 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3207 return attrs; 3208 fail: 3209 free_workqueue_attrs(attrs); 3210 return NULL; 3211 } 3212 3213 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3214 const struct workqueue_attrs *from) 3215 { 3216 to->nice = from->nice; 3217 cpumask_copy(to->cpumask, from->cpumask); 3218 /* 3219 * Unlike hash and equality test, this function doesn't ignore 3220 * ->no_numa as it is used for both pool and wq attrs. Instead, 3221 * get_unbound_pool() explicitly clears ->no_numa after copying. 3222 */ 3223 to->no_numa = from->no_numa; 3224 } 3225 3226 /* hash value of the content of @attr */ 3227 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3228 { 3229 u32 hash = 0; 3230 3231 hash = jhash_1word(attrs->nice, hash); 3232 hash = jhash(cpumask_bits(attrs->cpumask), 3233 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3234 return hash; 3235 } 3236 3237 /* content equality test */ 3238 static bool wqattrs_equal(const struct workqueue_attrs *a, 3239 const struct workqueue_attrs *b) 3240 { 3241 if (a->nice != b->nice) 3242 return false; 3243 if (!cpumask_equal(a->cpumask, b->cpumask)) 3244 return false; 3245 return true; 3246 } 3247 3248 /** 3249 * init_worker_pool - initialize a newly zalloc'd worker_pool 3250 * @pool: worker_pool to initialize 3251 * 3252 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3253 * 3254 * Return: 0 on success, -errno on failure. Even on failure, all fields 3255 * inside @pool proper are initialized and put_unbound_pool() can be called 3256 * on @pool safely to release it. 3257 */ 3258 static int init_worker_pool(struct worker_pool *pool) 3259 { 3260 spin_lock_init(&pool->lock); 3261 pool->id = -1; 3262 pool->cpu = -1; 3263 pool->node = NUMA_NO_NODE; 3264 pool->flags |= POOL_DISASSOCIATED; 3265 pool->watchdog_ts = jiffies; 3266 INIT_LIST_HEAD(&pool->worklist); 3267 INIT_LIST_HEAD(&pool->idle_list); 3268 hash_init(pool->busy_hash); 3269 3270 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 3271 3272 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 3273 3274 mutex_init(&pool->attach_mutex); 3275 INIT_LIST_HEAD(&pool->workers); 3276 3277 ida_init(&pool->worker_ida); 3278 INIT_HLIST_NODE(&pool->hash_node); 3279 pool->refcnt = 1; 3280 3281 /* shouldn't fail above this point */ 3282 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL); 3283 if (!pool->attrs) 3284 return -ENOMEM; 3285 return 0; 3286 } 3287 3288 static void rcu_free_wq(struct rcu_head *rcu) 3289 { 3290 struct workqueue_struct *wq = 3291 container_of(rcu, struct workqueue_struct, rcu); 3292 3293 if (!(wq->flags & WQ_UNBOUND)) 3294 free_percpu(wq->cpu_pwqs); 3295 else 3296 free_workqueue_attrs(wq->unbound_attrs); 3297 3298 kfree(wq->rescuer); 3299 kfree(wq); 3300 } 3301 3302 static void rcu_free_pool(struct rcu_head *rcu) 3303 { 3304 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3305 3306 ida_destroy(&pool->worker_ida); 3307 free_workqueue_attrs(pool->attrs); 3308 kfree(pool); 3309 } 3310 3311 /** 3312 * put_unbound_pool - put a worker_pool 3313 * @pool: worker_pool to put 3314 * 3315 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU 3316 * safe manner. get_unbound_pool() calls this function on its failure path 3317 * and this function should be able to release pools which went through, 3318 * successfully or not, init_worker_pool(). 3319 * 3320 * Should be called with wq_pool_mutex held. 3321 */ 3322 static void put_unbound_pool(struct worker_pool *pool) 3323 { 3324 DECLARE_COMPLETION_ONSTACK(detach_completion); 3325 struct worker *worker; 3326 3327 lockdep_assert_held(&wq_pool_mutex); 3328 3329 if (--pool->refcnt) 3330 return; 3331 3332 /* sanity checks */ 3333 if (WARN_ON(!(pool->cpu < 0)) || 3334 WARN_ON(!list_empty(&pool->worklist))) 3335 return; 3336 3337 /* release id and unhash */ 3338 if (pool->id >= 0) 3339 idr_remove(&worker_pool_idr, pool->id); 3340 hash_del(&pool->hash_node); 3341 3342 /* 3343 * Become the manager and destroy all workers. This prevents 3344 * @pool's workers from blocking on attach_mutex. We're the last 3345 * manager and @pool gets freed with the flag set. 3346 */ 3347 spin_lock_irq(&pool->lock); 3348 wait_event_lock_irq(wq_manager_wait, 3349 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock); 3350 pool->flags |= POOL_MANAGER_ACTIVE; 3351 3352 while ((worker = first_idle_worker(pool))) 3353 destroy_worker(worker); 3354 WARN_ON(pool->nr_workers || pool->nr_idle); 3355 spin_unlock_irq(&pool->lock); 3356 3357 mutex_lock(&pool->attach_mutex); 3358 if (!list_empty(&pool->workers)) 3359 pool->detach_completion = &detach_completion; 3360 mutex_unlock(&pool->attach_mutex); 3361 3362 if (pool->detach_completion) 3363 wait_for_completion(pool->detach_completion); 3364 3365 /* shut down the timers */ 3366 del_timer_sync(&pool->idle_timer); 3367 del_timer_sync(&pool->mayday_timer); 3368 3369 /* sched-RCU protected to allow dereferences from get_work_pool() */ 3370 call_rcu_sched(&pool->rcu, rcu_free_pool); 3371 } 3372 3373 /** 3374 * get_unbound_pool - get a worker_pool with the specified attributes 3375 * @attrs: the attributes of the worker_pool to get 3376 * 3377 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3378 * reference count and return it. If there already is a matching 3379 * worker_pool, it will be used; otherwise, this function attempts to 3380 * create a new one. 3381 * 3382 * Should be called with wq_pool_mutex held. 3383 * 3384 * Return: On success, a worker_pool with the same attributes as @attrs. 3385 * On failure, %NULL. 3386 */ 3387 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3388 { 3389 u32 hash = wqattrs_hash(attrs); 3390 struct worker_pool *pool; 3391 int node; 3392 int target_node = NUMA_NO_NODE; 3393 3394 lockdep_assert_held(&wq_pool_mutex); 3395 3396 /* do we already have a matching pool? */ 3397 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3398 if (wqattrs_equal(pool->attrs, attrs)) { 3399 pool->refcnt++; 3400 return pool; 3401 } 3402 } 3403 3404 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3405 if (wq_numa_enabled) { 3406 for_each_node(node) { 3407 if (cpumask_subset(attrs->cpumask, 3408 wq_numa_possible_cpumask[node])) { 3409 target_node = node; 3410 break; 3411 } 3412 } 3413 } 3414 3415 /* nope, create a new one */ 3416 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3417 if (!pool || init_worker_pool(pool) < 0) 3418 goto fail; 3419 3420 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3421 copy_workqueue_attrs(pool->attrs, attrs); 3422 pool->node = target_node; 3423 3424 /* 3425 * no_numa isn't a worker_pool attribute, always clear it. See 3426 * 'struct workqueue_attrs' comments for detail. 3427 */ 3428 pool->attrs->no_numa = false; 3429 3430 if (worker_pool_assign_id(pool) < 0) 3431 goto fail; 3432 3433 /* create and start the initial worker */ 3434 if (wq_online && !create_worker(pool)) 3435 goto fail; 3436 3437 /* install */ 3438 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3439 3440 return pool; 3441 fail: 3442 if (pool) 3443 put_unbound_pool(pool); 3444 return NULL; 3445 } 3446 3447 static void rcu_free_pwq(struct rcu_head *rcu) 3448 { 3449 kmem_cache_free(pwq_cache, 3450 container_of(rcu, struct pool_workqueue, rcu)); 3451 } 3452 3453 /* 3454 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3455 * and needs to be destroyed. 3456 */ 3457 static void pwq_unbound_release_workfn(struct work_struct *work) 3458 { 3459 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3460 unbound_release_work); 3461 struct workqueue_struct *wq = pwq->wq; 3462 struct worker_pool *pool = pwq->pool; 3463 bool is_last; 3464 3465 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3466 return; 3467 3468 mutex_lock(&wq->mutex); 3469 list_del_rcu(&pwq->pwqs_node); 3470 is_last = list_empty(&wq->pwqs); 3471 mutex_unlock(&wq->mutex); 3472 3473 mutex_lock(&wq_pool_mutex); 3474 put_unbound_pool(pool); 3475 mutex_unlock(&wq_pool_mutex); 3476 3477 call_rcu_sched(&pwq->rcu, rcu_free_pwq); 3478 3479 /* 3480 * If we're the last pwq going away, @wq is already dead and no one 3481 * is gonna access it anymore. Schedule RCU free. 3482 */ 3483 if (is_last) 3484 call_rcu_sched(&wq->rcu, rcu_free_wq); 3485 } 3486 3487 /** 3488 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3489 * @pwq: target pool_workqueue 3490 * 3491 * If @pwq isn't freezing, set @pwq->max_active to the associated 3492 * workqueue's saved_max_active and activate delayed work items 3493 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3494 */ 3495 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3496 { 3497 struct workqueue_struct *wq = pwq->wq; 3498 bool freezable = wq->flags & WQ_FREEZABLE; 3499 unsigned long flags; 3500 3501 /* for @wq->saved_max_active */ 3502 lockdep_assert_held(&wq->mutex); 3503 3504 /* fast exit for non-freezable wqs */ 3505 if (!freezable && pwq->max_active == wq->saved_max_active) 3506 return; 3507 3508 /* this function can be called during early boot w/ irq disabled */ 3509 spin_lock_irqsave(&pwq->pool->lock, flags); 3510 3511 /* 3512 * During [un]freezing, the caller is responsible for ensuring that 3513 * this function is called at least once after @workqueue_freezing 3514 * is updated and visible. 3515 */ 3516 if (!freezable || !workqueue_freezing) { 3517 pwq->max_active = wq->saved_max_active; 3518 3519 while (!list_empty(&pwq->delayed_works) && 3520 pwq->nr_active < pwq->max_active) 3521 pwq_activate_first_delayed(pwq); 3522 3523 /* 3524 * Need to kick a worker after thawed or an unbound wq's 3525 * max_active is bumped. It's a slow path. Do it always. 3526 */ 3527 wake_up_worker(pwq->pool); 3528 } else { 3529 pwq->max_active = 0; 3530 } 3531 3532 spin_unlock_irqrestore(&pwq->pool->lock, flags); 3533 } 3534 3535 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3536 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3537 struct worker_pool *pool) 3538 { 3539 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3540 3541 memset(pwq, 0, sizeof(*pwq)); 3542 3543 pwq->pool = pool; 3544 pwq->wq = wq; 3545 pwq->flush_color = -1; 3546 pwq->refcnt = 1; 3547 INIT_LIST_HEAD(&pwq->delayed_works); 3548 INIT_LIST_HEAD(&pwq->pwqs_node); 3549 INIT_LIST_HEAD(&pwq->mayday_node); 3550 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3551 } 3552 3553 /* sync @pwq with the current state of its associated wq and link it */ 3554 static void link_pwq(struct pool_workqueue *pwq) 3555 { 3556 struct workqueue_struct *wq = pwq->wq; 3557 3558 lockdep_assert_held(&wq->mutex); 3559 3560 /* may be called multiple times, ignore if already linked */ 3561 if (!list_empty(&pwq->pwqs_node)) 3562 return; 3563 3564 /* set the matching work_color */ 3565 pwq->work_color = wq->work_color; 3566 3567 /* sync max_active to the current setting */ 3568 pwq_adjust_max_active(pwq); 3569 3570 /* link in @pwq */ 3571 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3572 } 3573 3574 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3575 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3576 const struct workqueue_attrs *attrs) 3577 { 3578 struct worker_pool *pool; 3579 struct pool_workqueue *pwq; 3580 3581 lockdep_assert_held(&wq_pool_mutex); 3582 3583 pool = get_unbound_pool(attrs); 3584 if (!pool) 3585 return NULL; 3586 3587 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3588 if (!pwq) { 3589 put_unbound_pool(pool); 3590 return NULL; 3591 } 3592 3593 init_pwq(pwq, wq, pool); 3594 return pwq; 3595 } 3596 3597 /** 3598 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3599 * @attrs: the wq_attrs of the default pwq of the target workqueue 3600 * @node: the target NUMA node 3601 * @cpu_going_down: if >= 0, the CPU to consider as offline 3602 * @cpumask: outarg, the resulting cpumask 3603 * 3604 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3605 * @cpu_going_down is >= 0, that cpu is considered offline during 3606 * calculation. The result is stored in @cpumask. 3607 * 3608 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3609 * enabled and @node has online CPUs requested by @attrs, the returned 3610 * cpumask is the intersection of the possible CPUs of @node and 3611 * @attrs->cpumask. 3612 * 3613 * The caller is responsible for ensuring that the cpumask of @node stays 3614 * stable. 3615 * 3616 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3617 * %false if equal. 3618 */ 3619 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3620 int cpu_going_down, cpumask_t *cpumask) 3621 { 3622 if (!wq_numa_enabled || attrs->no_numa) 3623 goto use_dfl; 3624 3625 /* does @node have any online CPUs @attrs wants? */ 3626 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3627 if (cpu_going_down >= 0) 3628 cpumask_clear_cpu(cpu_going_down, cpumask); 3629 3630 if (cpumask_empty(cpumask)) 3631 goto use_dfl; 3632 3633 /* yeap, return possible CPUs in @node that @attrs wants */ 3634 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3635 3636 if (cpumask_empty(cpumask)) { 3637 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 3638 "possible intersect\n"); 3639 return false; 3640 } 3641 3642 return !cpumask_equal(cpumask, attrs->cpumask); 3643 3644 use_dfl: 3645 cpumask_copy(cpumask, attrs->cpumask); 3646 return false; 3647 } 3648 3649 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3650 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3651 int node, 3652 struct pool_workqueue *pwq) 3653 { 3654 struct pool_workqueue *old_pwq; 3655 3656 lockdep_assert_held(&wq_pool_mutex); 3657 lockdep_assert_held(&wq->mutex); 3658 3659 /* link_pwq() can handle duplicate calls */ 3660 link_pwq(pwq); 3661 3662 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3663 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3664 return old_pwq; 3665 } 3666 3667 /* context to store the prepared attrs & pwqs before applying */ 3668 struct apply_wqattrs_ctx { 3669 struct workqueue_struct *wq; /* target workqueue */ 3670 struct workqueue_attrs *attrs; /* attrs to apply */ 3671 struct list_head list; /* queued for batching commit */ 3672 struct pool_workqueue *dfl_pwq; 3673 struct pool_workqueue *pwq_tbl[]; 3674 }; 3675 3676 /* free the resources after success or abort */ 3677 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 3678 { 3679 if (ctx) { 3680 int node; 3681 3682 for_each_node(node) 3683 put_pwq_unlocked(ctx->pwq_tbl[node]); 3684 put_pwq_unlocked(ctx->dfl_pwq); 3685 3686 free_workqueue_attrs(ctx->attrs); 3687 3688 kfree(ctx); 3689 } 3690 } 3691 3692 /* allocate the attrs and pwqs for later installation */ 3693 static struct apply_wqattrs_ctx * 3694 apply_wqattrs_prepare(struct workqueue_struct *wq, 3695 const struct workqueue_attrs *attrs) 3696 { 3697 struct apply_wqattrs_ctx *ctx; 3698 struct workqueue_attrs *new_attrs, *tmp_attrs; 3699 int node; 3700 3701 lockdep_assert_held(&wq_pool_mutex); 3702 3703 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]), 3704 GFP_KERNEL); 3705 3706 new_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3707 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3708 if (!ctx || !new_attrs || !tmp_attrs) 3709 goto out_free; 3710 3711 /* 3712 * Calculate the attrs of the default pwq. 3713 * If the user configured cpumask doesn't overlap with the 3714 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 3715 */ 3716 copy_workqueue_attrs(new_attrs, attrs); 3717 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask); 3718 if (unlikely(cpumask_empty(new_attrs->cpumask))) 3719 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask); 3720 3721 /* 3722 * We may create multiple pwqs with differing cpumasks. Make a 3723 * copy of @new_attrs which will be modified and used to obtain 3724 * pools. 3725 */ 3726 copy_workqueue_attrs(tmp_attrs, new_attrs); 3727 3728 /* 3729 * If something goes wrong during CPU up/down, we'll fall back to 3730 * the default pwq covering whole @attrs->cpumask. Always create 3731 * it even if we don't use it immediately. 3732 */ 3733 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3734 if (!ctx->dfl_pwq) 3735 goto out_free; 3736 3737 for_each_node(node) { 3738 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 3739 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3740 if (!ctx->pwq_tbl[node]) 3741 goto out_free; 3742 } else { 3743 ctx->dfl_pwq->refcnt++; 3744 ctx->pwq_tbl[node] = ctx->dfl_pwq; 3745 } 3746 } 3747 3748 /* save the user configured attrs and sanitize it. */ 3749 copy_workqueue_attrs(new_attrs, attrs); 3750 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3751 ctx->attrs = new_attrs; 3752 3753 ctx->wq = wq; 3754 free_workqueue_attrs(tmp_attrs); 3755 return ctx; 3756 3757 out_free: 3758 free_workqueue_attrs(tmp_attrs); 3759 free_workqueue_attrs(new_attrs); 3760 apply_wqattrs_cleanup(ctx); 3761 return NULL; 3762 } 3763 3764 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 3765 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 3766 { 3767 int node; 3768 3769 /* all pwqs have been created successfully, let's install'em */ 3770 mutex_lock(&ctx->wq->mutex); 3771 3772 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 3773 3774 /* save the previous pwq and install the new one */ 3775 for_each_node(node) 3776 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 3777 ctx->pwq_tbl[node]); 3778 3779 /* @dfl_pwq might not have been used, ensure it's linked */ 3780 link_pwq(ctx->dfl_pwq); 3781 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 3782 3783 mutex_unlock(&ctx->wq->mutex); 3784 } 3785 3786 static void apply_wqattrs_lock(void) 3787 { 3788 /* CPUs should stay stable across pwq creations and installations */ 3789 get_online_cpus(); 3790 mutex_lock(&wq_pool_mutex); 3791 } 3792 3793 static void apply_wqattrs_unlock(void) 3794 { 3795 mutex_unlock(&wq_pool_mutex); 3796 put_online_cpus(); 3797 } 3798 3799 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 3800 const struct workqueue_attrs *attrs) 3801 { 3802 struct apply_wqattrs_ctx *ctx; 3803 3804 /* only unbound workqueues can change attributes */ 3805 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 3806 return -EINVAL; 3807 3808 /* creating multiple pwqs breaks ordering guarantee */ 3809 if (!list_empty(&wq->pwqs)) { 3810 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 3811 return -EINVAL; 3812 3813 wq->flags &= ~__WQ_ORDERED; 3814 } 3815 3816 ctx = apply_wqattrs_prepare(wq, attrs); 3817 if (!ctx) 3818 return -ENOMEM; 3819 3820 /* the ctx has been prepared successfully, let's commit it */ 3821 apply_wqattrs_commit(ctx); 3822 apply_wqattrs_cleanup(ctx); 3823 3824 return 0; 3825 } 3826 3827 /** 3828 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 3829 * @wq: the target workqueue 3830 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 3831 * 3832 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 3833 * machines, this function maps a separate pwq to each NUMA node with 3834 * possibles CPUs in @attrs->cpumask so that work items are affine to the 3835 * NUMA node it was issued on. Older pwqs are released as in-flight work 3836 * items finish. Note that a work item which repeatedly requeues itself 3837 * back-to-back will stay on its current pwq. 3838 * 3839 * Performs GFP_KERNEL allocations. 3840 * 3841 * Return: 0 on success and -errno on failure. 3842 */ 3843 int apply_workqueue_attrs(struct workqueue_struct *wq, 3844 const struct workqueue_attrs *attrs) 3845 { 3846 int ret; 3847 3848 apply_wqattrs_lock(); 3849 ret = apply_workqueue_attrs_locked(wq, attrs); 3850 apply_wqattrs_unlock(); 3851 3852 return ret; 3853 } 3854 EXPORT_SYMBOL_GPL(apply_workqueue_attrs); 3855 3856 /** 3857 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 3858 * @wq: the target workqueue 3859 * @cpu: the CPU coming up or going down 3860 * @online: whether @cpu is coming up or going down 3861 * 3862 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 3863 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 3864 * @wq accordingly. 3865 * 3866 * If NUMA affinity can't be adjusted due to memory allocation failure, it 3867 * falls back to @wq->dfl_pwq which may not be optimal but is always 3868 * correct. 3869 * 3870 * Note that when the last allowed CPU of a NUMA node goes offline for a 3871 * workqueue with a cpumask spanning multiple nodes, the workers which were 3872 * already executing the work items for the workqueue will lose their CPU 3873 * affinity and may execute on any CPU. This is similar to how per-cpu 3874 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 3875 * affinity, it's the user's responsibility to flush the work item from 3876 * CPU_DOWN_PREPARE. 3877 */ 3878 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 3879 bool online) 3880 { 3881 int node = cpu_to_node(cpu); 3882 int cpu_off = online ? -1 : cpu; 3883 struct pool_workqueue *old_pwq = NULL, *pwq; 3884 struct workqueue_attrs *target_attrs; 3885 cpumask_t *cpumask; 3886 3887 lockdep_assert_held(&wq_pool_mutex); 3888 3889 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 3890 wq->unbound_attrs->no_numa) 3891 return; 3892 3893 /* 3894 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 3895 * Let's use a preallocated one. The following buf is protected by 3896 * CPU hotplug exclusion. 3897 */ 3898 target_attrs = wq_update_unbound_numa_attrs_buf; 3899 cpumask = target_attrs->cpumask; 3900 3901 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 3902 pwq = unbound_pwq_by_node(wq, node); 3903 3904 /* 3905 * Let's determine what needs to be done. If the target cpumask is 3906 * different from the default pwq's, we need to compare it to @pwq's 3907 * and create a new one if they don't match. If the target cpumask 3908 * equals the default pwq's, the default pwq should be used. 3909 */ 3910 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 3911 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 3912 return; 3913 } else { 3914 goto use_dfl_pwq; 3915 } 3916 3917 /* create a new pwq */ 3918 pwq = alloc_unbound_pwq(wq, target_attrs); 3919 if (!pwq) { 3920 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 3921 wq->name); 3922 goto use_dfl_pwq; 3923 } 3924 3925 /* Install the new pwq. */ 3926 mutex_lock(&wq->mutex); 3927 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 3928 goto out_unlock; 3929 3930 use_dfl_pwq: 3931 mutex_lock(&wq->mutex); 3932 spin_lock_irq(&wq->dfl_pwq->pool->lock); 3933 get_pwq(wq->dfl_pwq); 3934 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 3935 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 3936 out_unlock: 3937 mutex_unlock(&wq->mutex); 3938 put_pwq_unlocked(old_pwq); 3939 } 3940 3941 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 3942 { 3943 bool highpri = wq->flags & WQ_HIGHPRI; 3944 int cpu, ret; 3945 3946 if (!(wq->flags & WQ_UNBOUND)) { 3947 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 3948 if (!wq->cpu_pwqs) 3949 return -ENOMEM; 3950 3951 for_each_possible_cpu(cpu) { 3952 struct pool_workqueue *pwq = 3953 per_cpu_ptr(wq->cpu_pwqs, cpu); 3954 struct worker_pool *cpu_pools = 3955 per_cpu(cpu_worker_pools, cpu); 3956 3957 init_pwq(pwq, wq, &cpu_pools[highpri]); 3958 3959 mutex_lock(&wq->mutex); 3960 link_pwq(pwq); 3961 mutex_unlock(&wq->mutex); 3962 } 3963 return 0; 3964 } else if (wq->flags & __WQ_ORDERED) { 3965 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 3966 /* there should only be single pwq for ordering guarantee */ 3967 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 3968 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 3969 "ordering guarantee broken for workqueue %s\n", wq->name); 3970 return ret; 3971 } else { 3972 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 3973 } 3974 } 3975 3976 static int wq_clamp_max_active(int max_active, unsigned int flags, 3977 const char *name) 3978 { 3979 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 3980 3981 if (max_active < 1 || max_active > lim) 3982 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 3983 max_active, name, 1, lim); 3984 3985 return clamp_val(max_active, 1, lim); 3986 } 3987 3988 /* 3989 * Workqueues which may be used during memory reclaim should have a rescuer 3990 * to guarantee forward progress. 3991 */ 3992 static int init_rescuer(struct workqueue_struct *wq) 3993 { 3994 struct worker *rescuer; 3995 int ret; 3996 3997 if (!(wq->flags & WQ_MEM_RECLAIM)) 3998 return 0; 3999 4000 rescuer = alloc_worker(NUMA_NO_NODE); 4001 if (!rescuer) 4002 return -ENOMEM; 4003 4004 rescuer->rescue_wq = wq; 4005 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name); 4006 ret = PTR_ERR_OR_ZERO(rescuer->task); 4007 if (ret) { 4008 kfree(rescuer); 4009 return ret; 4010 } 4011 4012 wq->rescuer = rescuer; 4013 kthread_bind_mask(rescuer->task, cpu_possible_mask); 4014 wake_up_process(rescuer->task); 4015 4016 return 0; 4017 } 4018 4019 struct workqueue_struct *__alloc_workqueue_key(const char *fmt, 4020 unsigned int flags, 4021 int max_active, 4022 struct lock_class_key *key, 4023 const char *lock_name, ...) 4024 { 4025 size_t tbl_size = 0; 4026 va_list args; 4027 struct workqueue_struct *wq; 4028 struct pool_workqueue *pwq; 4029 4030 /* 4031 * Unbound && max_active == 1 used to imply ordered, which is no 4032 * longer the case on NUMA machines due to per-node pools. While 4033 * alloc_ordered_workqueue() is the right way to create an ordered 4034 * workqueue, keep the previous behavior to avoid subtle breakages 4035 * on NUMA. 4036 */ 4037 if ((flags & WQ_UNBOUND) && max_active == 1) 4038 flags |= __WQ_ORDERED; 4039 4040 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4041 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4042 flags |= WQ_UNBOUND; 4043 4044 /* allocate wq and format name */ 4045 if (flags & WQ_UNBOUND) 4046 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 4047 4048 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4049 if (!wq) 4050 return NULL; 4051 4052 if (flags & WQ_UNBOUND) { 4053 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL); 4054 if (!wq->unbound_attrs) 4055 goto err_free_wq; 4056 } 4057 4058 va_start(args, lock_name); 4059 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4060 va_end(args); 4061 4062 max_active = max_active ?: WQ_DFL_ACTIVE; 4063 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4064 4065 /* init wq */ 4066 wq->flags = flags; 4067 wq->saved_max_active = max_active; 4068 mutex_init(&wq->mutex); 4069 atomic_set(&wq->nr_pwqs_to_flush, 0); 4070 INIT_LIST_HEAD(&wq->pwqs); 4071 INIT_LIST_HEAD(&wq->flusher_queue); 4072 INIT_LIST_HEAD(&wq->flusher_overflow); 4073 INIT_LIST_HEAD(&wq->maydays); 4074 4075 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 4076 INIT_LIST_HEAD(&wq->list); 4077 4078 if (alloc_and_link_pwqs(wq) < 0) 4079 goto err_free_wq; 4080 4081 if (wq_online && init_rescuer(wq) < 0) 4082 goto err_destroy; 4083 4084 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4085 goto err_destroy; 4086 4087 /* 4088 * wq_pool_mutex protects global freeze state and workqueues list. 4089 * Grab it, adjust max_active and add the new @wq to workqueues 4090 * list. 4091 */ 4092 mutex_lock(&wq_pool_mutex); 4093 4094 mutex_lock(&wq->mutex); 4095 for_each_pwq(pwq, wq) 4096 pwq_adjust_max_active(pwq); 4097 mutex_unlock(&wq->mutex); 4098 4099 list_add_tail_rcu(&wq->list, &workqueues); 4100 4101 mutex_unlock(&wq_pool_mutex); 4102 4103 return wq; 4104 4105 err_free_wq: 4106 free_workqueue_attrs(wq->unbound_attrs); 4107 kfree(wq); 4108 return NULL; 4109 err_destroy: 4110 destroy_workqueue(wq); 4111 return NULL; 4112 } 4113 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 4114 4115 /** 4116 * destroy_workqueue - safely terminate a workqueue 4117 * @wq: target workqueue 4118 * 4119 * Safely destroy a workqueue. All work currently pending will be done first. 4120 */ 4121 void destroy_workqueue(struct workqueue_struct *wq) 4122 { 4123 struct pool_workqueue *pwq; 4124 int node; 4125 4126 /* drain it before proceeding with destruction */ 4127 drain_workqueue(wq); 4128 4129 /* sanity checks */ 4130 mutex_lock(&wq->mutex); 4131 for_each_pwq(pwq, wq) { 4132 int i; 4133 4134 for (i = 0; i < WORK_NR_COLORS; i++) { 4135 if (WARN_ON(pwq->nr_in_flight[i])) { 4136 mutex_unlock(&wq->mutex); 4137 show_workqueue_state(); 4138 return; 4139 } 4140 } 4141 4142 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) || 4143 WARN_ON(pwq->nr_active) || 4144 WARN_ON(!list_empty(&pwq->delayed_works))) { 4145 mutex_unlock(&wq->mutex); 4146 show_workqueue_state(); 4147 return; 4148 } 4149 } 4150 mutex_unlock(&wq->mutex); 4151 4152 /* 4153 * wq list is used to freeze wq, remove from list after 4154 * flushing is complete in case freeze races us. 4155 */ 4156 mutex_lock(&wq_pool_mutex); 4157 list_del_rcu(&wq->list); 4158 mutex_unlock(&wq_pool_mutex); 4159 4160 workqueue_sysfs_unregister(wq); 4161 4162 if (wq->rescuer) 4163 kthread_stop(wq->rescuer->task); 4164 4165 if (!(wq->flags & WQ_UNBOUND)) { 4166 /* 4167 * The base ref is never dropped on per-cpu pwqs. Directly 4168 * schedule RCU free. 4169 */ 4170 call_rcu_sched(&wq->rcu, rcu_free_wq); 4171 } else { 4172 /* 4173 * We're the sole accessor of @wq at this point. Directly 4174 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4175 * @wq will be freed when the last pwq is released. 4176 */ 4177 for_each_node(node) { 4178 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4179 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4180 put_pwq_unlocked(pwq); 4181 } 4182 4183 /* 4184 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4185 * put. Don't access it afterwards. 4186 */ 4187 pwq = wq->dfl_pwq; 4188 wq->dfl_pwq = NULL; 4189 put_pwq_unlocked(pwq); 4190 } 4191 } 4192 EXPORT_SYMBOL_GPL(destroy_workqueue); 4193 4194 /** 4195 * workqueue_set_max_active - adjust max_active of a workqueue 4196 * @wq: target workqueue 4197 * @max_active: new max_active value. 4198 * 4199 * Set max_active of @wq to @max_active. 4200 * 4201 * CONTEXT: 4202 * Don't call from IRQ context. 4203 */ 4204 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4205 { 4206 struct pool_workqueue *pwq; 4207 4208 /* disallow meddling with max_active for ordered workqueues */ 4209 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4210 return; 4211 4212 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4213 4214 mutex_lock(&wq->mutex); 4215 4216 wq->flags &= ~__WQ_ORDERED; 4217 wq->saved_max_active = max_active; 4218 4219 for_each_pwq(pwq, wq) 4220 pwq_adjust_max_active(pwq); 4221 4222 mutex_unlock(&wq->mutex); 4223 } 4224 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4225 4226 /** 4227 * current_work - retrieve %current task's work struct 4228 * 4229 * Determine if %current task is a workqueue worker and what it's working on. 4230 * Useful to find out the context that the %current task is running in. 4231 * 4232 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 4233 */ 4234 struct work_struct *current_work(void) 4235 { 4236 struct worker *worker = current_wq_worker(); 4237 4238 return worker ? worker->current_work : NULL; 4239 } 4240 EXPORT_SYMBOL(current_work); 4241 4242 /** 4243 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4244 * 4245 * Determine whether %current is a workqueue rescuer. Can be used from 4246 * work functions to determine whether it's being run off the rescuer task. 4247 * 4248 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4249 */ 4250 bool current_is_workqueue_rescuer(void) 4251 { 4252 struct worker *worker = current_wq_worker(); 4253 4254 return worker && worker->rescue_wq; 4255 } 4256 4257 /** 4258 * workqueue_congested - test whether a workqueue is congested 4259 * @cpu: CPU in question 4260 * @wq: target workqueue 4261 * 4262 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4263 * no synchronization around this function and the test result is 4264 * unreliable and only useful as advisory hints or for debugging. 4265 * 4266 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4267 * Note that both per-cpu and unbound workqueues may be associated with 4268 * multiple pool_workqueues which have separate congested states. A 4269 * workqueue being congested on one CPU doesn't mean the workqueue is also 4270 * contested on other CPUs / NUMA nodes. 4271 * 4272 * Return: 4273 * %true if congested, %false otherwise. 4274 */ 4275 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4276 { 4277 struct pool_workqueue *pwq; 4278 bool ret; 4279 4280 rcu_read_lock_sched(); 4281 4282 if (cpu == WORK_CPU_UNBOUND) 4283 cpu = smp_processor_id(); 4284 4285 if (!(wq->flags & WQ_UNBOUND)) 4286 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4287 else 4288 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4289 4290 ret = !list_empty(&pwq->delayed_works); 4291 rcu_read_unlock_sched(); 4292 4293 return ret; 4294 } 4295 EXPORT_SYMBOL_GPL(workqueue_congested); 4296 4297 /** 4298 * work_busy - test whether a work is currently pending or running 4299 * @work: the work to be tested 4300 * 4301 * Test whether @work is currently pending or running. There is no 4302 * synchronization around this function and the test result is 4303 * unreliable and only useful as advisory hints or for debugging. 4304 * 4305 * Return: 4306 * OR'd bitmask of WORK_BUSY_* bits. 4307 */ 4308 unsigned int work_busy(struct work_struct *work) 4309 { 4310 struct worker_pool *pool; 4311 unsigned long flags; 4312 unsigned int ret = 0; 4313 4314 if (work_pending(work)) 4315 ret |= WORK_BUSY_PENDING; 4316 4317 local_irq_save(flags); 4318 pool = get_work_pool(work); 4319 if (pool) { 4320 spin_lock(&pool->lock); 4321 if (find_worker_executing_work(pool, work)) 4322 ret |= WORK_BUSY_RUNNING; 4323 spin_unlock(&pool->lock); 4324 } 4325 local_irq_restore(flags); 4326 4327 return ret; 4328 } 4329 EXPORT_SYMBOL_GPL(work_busy); 4330 4331 /** 4332 * set_worker_desc - set description for the current work item 4333 * @fmt: printf-style format string 4334 * @...: arguments for the format string 4335 * 4336 * This function can be called by a running work function to describe what 4337 * the work item is about. If the worker task gets dumped, this 4338 * information will be printed out together to help debugging. The 4339 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4340 */ 4341 void set_worker_desc(const char *fmt, ...) 4342 { 4343 struct worker *worker = current_wq_worker(); 4344 va_list args; 4345 4346 if (worker) { 4347 va_start(args, fmt); 4348 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4349 va_end(args); 4350 worker->desc_valid = true; 4351 } 4352 } 4353 4354 /** 4355 * print_worker_info - print out worker information and description 4356 * @log_lvl: the log level to use when printing 4357 * @task: target task 4358 * 4359 * If @task is a worker and currently executing a work item, print out the 4360 * name of the workqueue being serviced and worker description set with 4361 * set_worker_desc() by the currently executing work item. 4362 * 4363 * This function can be safely called on any task as long as the 4364 * task_struct itself is accessible. While safe, this function isn't 4365 * synchronized and may print out mixups or garbages of limited length. 4366 */ 4367 void print_worker_info(const char *log_lvl, struct task_struct *task) 4368 { 4369 work_func_t *fn = NULL; 4370 char name[WQ_NAME_LEN] = { }; 4371 char desc[WORKER_DESC_LEN] = { }; 4372 struct pool_workqueue *pwq = NULL; 4373 struct workqueue_struct *wq = NULL; 4374 bool desc_valid = false; 4375 struct worker *worker; 4376 4377 if (!(task->flags & PF_WQ_WORKER)) 4378 return; 4379 4380 /* 4381 * This function is called without any synchronization and @task 4382 * could be in any state. Be careful with dereferences. 4383 */ 4384 worker = kthread_probe_data(task); 4385 4386 /* 4387 * Carefully copy the associated workqueue's workfn and name. Keep 4388 * the original last '\0' in case the original contains garbage. 4389 */ 4390 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4391 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4392 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4393 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4394 4395 /* copy worker description */ 4396 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid)); 4397 if (desc_valid) 4398 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4399 4400 if (fn || name[0] || desc[0]) { 4401 printk("%sWorkqueue: %s %pf", log_lvl, name, fn); 4402 if (desc[0]) 4403 pr_cont(" (%s)", desc); 4404 pr_cont("\n"); 4405 } 4406 } 4407 4408 static void pr_cont_pool_info(struct worker_pool *pool) 4409 { 4410 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4411 if (pool->node != NUMA_NO_NODE) 4412 pr_cont(" node=%d", pool->node); 4413 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4414 } 4415 4416 static void pr_cont_work(bool comma, struct work_struct *work) 4417 { 4418 if (work->func == wq_barrier_func) { 4419 struct wq_barrier *barr; 4420 4421 barr = container_of(work, struct wq_barrier, work); 4422 4423 pr_cont("%s BAR(%d)", comma ? "," : "", 4424 task_pid_nr(barr->task)); 4425 } else { 4426 pr_cont("%s %pf", comma ? "," : "", work->func); 4427 } 4428 } 4429 4430 static void show_pwq(struct pool_workqueue *pwq) 4431 { 4432 struct worker_pool *pool = pwq->pool; 4433 struct work_struct *work; 4434 struct worker *worker; 4435 bool has_in_flight = false, has_pending = false; 4436 int bkt; 4437 4438 pr_info(" pwq %d:", pool->id); 4439 pr_cont_pool_info(pool); 4440 4441 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active, 4442 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4443 4444 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4445 if (worker->current_pwq == pwq) { 4446 has_in_flight = true; 4447 break; 4448 } 4449 } 4450 if (has_in_flight) { 4451 bool comma = false; 4452 4453 pr_info(" in-flight:"); 4454 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4455 if (worker->current_pwq != pwq) 4456 continue; 4457 4458 pr_cont("%s %d%s:%pf", comma ? "," : "", 4459 task_pid_nr(worker->task), 4460 worker == pwq->wq->rescuer ? "(RESCUER)" : "", 4461 worker->current_func); 4462 list_for_each_entry(work, &worker->scheduled, entry) 4463 pr_cont_work(false, work); 4464 comma = true; 4465 } 4466 pr_cont("\n"); 4467 } 4468 4469 list_for_each_entry(work, &pool->worklist, entry) { 4470 if (get_work_pwq(work) == pwq) { 4471 has_pending = true; 4472 break; 4473 } 4474 } 4475 if (has_pending) { 4476 bool comma = false; 4477 4478 pr_info(" pending:"); 4479 list_for_each_entry(work, &pool->worklist, entry) { 4480 if (get_work_pwq(work) != pwq) 4481 continue; 4482 4483 pr_cont_work(comma, work); 4484 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4485 } 4486 pr_cont("\n"); 4487 } 4488 4489 if (!list_empty(&pwq->delayed_works)) { 4490 bool comma = false; 4491 4492 pr_info(" delayed:"); 4493 list_for_each_entry(work, &pwq->delayed_works, entry) { 4494 pr_cont_work(comma, work); 4495 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4496 } 4497 pr_cont("\n"); 4498 } 4499 } 4500 4501 /** 4502 * show_workqueue_state - dump workqueue state 4503 * 4504 * Called from a sysrq handler or try_to_freeze_tasks() and prints out 4505 * all busy workqueues and pools. 4506 */ 4507 void show_workqueue_state(void) 4508 { 4509 struct workqueue_struct *wq; 4510 struct worker_pool *pool; 4511 unsigned long flags; 4512 int pi; 4513 4514 rcu_read_lock_sched(); 4515 4516 pr_info("Showing busy workqueues and worker pools:\n"); 4517 4518 list_for_each_entry_rcu(wq, &workqueues, list) { 4519 struct pool_workqueue *pwq; 4520 bool idle = true; 4521 4522 for_each_pwq(pwq, wq) { 4523 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) { 4524 idle = false; 4525 break; 4526 } 4527 } 4528 if (idle) 4529 continue; 4530 4531 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4532 4533 for_each_pwq(pwq, wq) { 4534 spin_lock_irqsave(&pwq->pool->lock, flags); 4535 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4536 show_pwq(pwq); 4537 spin_unlock_irqrestore(&pwq->pool->lock, flags); 4538 /* 4539 * We could be printing a lot from atomic context, e.g. 4540 * sysrq-t -> show_workqueue_state(). Avoid triggering 4541 * hard lockup. 4542 */ 4543 touch_nmi_watchdog(); 4544 } 4545 } 4546 4547 for_each_pool(pool, pi) { 4548 struct worker *worker; 4549 bool first = true; 4550 4551 spin_lock_irqsave(&pool->lock, flags); 4552 if (pool->nr_workers == pool->nr_idle) 4553 goto next_pool; 4554 4555 pr_info("pool %d:", pool->id); 4556 pr_cont_pool_info(pool); 4557 pr_cont(" hung=%us workers=%d", 4558 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000, 4559 pool->nr_workers); 4560 if (pool->manager) 4561 pr_cont(" manager: %d", 4562 task_pid_nr(pool->manager->task)); 4563 list_for_each_entry(worker, &pool->idle_list, entry) { 4564 pr_cont(" %s%d", first ? "idle: " : "", 4565 task_pid_nr(worker->task)); 4566 first = false; 4567 } 4568 pr_cont("\n"); 4569 next_pool: 4570 spin_unlock_irqrestore(&pool->lock, flags); 4571 /* 4572 * We could be printing a lot from atomic context, e.g. 4573 * sysrq-t -> show_workqueue_state(). Avoid triggering 4574 * hard lockup. 4575 */ 4576 touch_nmi_watchdog(); 4577 } 4578 4579 rcu_read_unlock_sched(); 4580 } 4581 4582 /* 4583 * CPU hotplug. 4584 * 4585 * There are two challenges in supporting CPU hotplug. Firstly, there 4586 * are a lot of assumptions on strong associations among work, pwq and 4587 * pool which make migrating pending and scheduled works very 4588 * difficult to implement without impacting hot paths. Secondly, 4589 * worker pools serve mix of short, long and very long running works making 4590 * blocked draining impractical. 4591 * 4592 * This is solved by allowing the pools to be disassociated from the CPU 4593 * running as an unbound one and allowing it to be reattached later if the 4594 * cpu comes back online. 4595 */ 4596 4597 static void unbind_workers(int cpu) 4598 { 4599 struct worker_pool *pool; 4600 struct worker *worker; 4601 4602 for_each_cpu_worker_pool(pool, cpu) { 4603 mutex_lock(&pool->attach_mutex); 4604 spin_lock_irq(&pool->lock); 4605 4606 /* 4607 * We've blocked all attach/detach operations. Make all workers 4608 * unbound and set DISASSOCIATED. Before this, all workers 4609 * except for the ones which are still executing works from 4610 * before the last CPU down must be on the cpu. After 4611 * this, they may become diasporas. 4612 */ 4613 for_each_pool_worker(worker, pool) 4614 worker->flags |= WORKER_UNBOUND; 4615 4616 pool->flags |= POOL_DISASSOCIATED; 4617 4618 spin_unlock_irq(&pool->lock); 4619 mutex_unlock(&pool->attach_mutex); 4620 4621 /* 4622 * Call schedule() so that we cross rq->lock and thus can 4623 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4624 * This is necessary as scheduler callbacks may be invoked 4625 * from other cpus. 4626 */ 4627 schedule(); 4628 4629 /* 4630 * Sched callbacks are disabled now. Zap nr_running. 4631 * After this, nr_running stays zero and need_more_worker() 4632 * and keep_working() are always true as long as the 4633 * worklist is not empty. This pool now behaves as an 4634 * unbound (in terms of concurrency management) pool which 4635 * are served by workers tied to the pool. 4636 */ 4637 atomic_set(&pool->nr_running, 0); 4638 4639 /* 4640 * With concurrency management just turned off, a busy 4641 * worker blocking could lead to lengthy stalls. Kick off 4642 * unbound chain execution of currently pending work items. 4643 */ 4644 spin_lock_irq(&pool->lock); 4645 wake_up_worker(pool); 4646 spin_unlock_irq(&pool->lock); 4647 } 4648 } 4649 4650 /** 4651 * rebind_workers - rebind all workers of a pool to the associated CPU 4652 * @pool: pool of interest 4653 * 4654 * @pool->cpu is coming online. Rebind all workers to the CPU. 4655 */ 4656 static void rebind_workers(struct worker_pool *pool) 4657 { 4658 struct worker *worker; 4659 4660 lockdep_assert_held(&pool->attach_mutex); 4661 4662 /* 4663 * Restore CPU affinity of all workers. As all idle workers should 4664 * be on the run-queue of the associated CPU before any local 4665 * wake-ups for concurrency management happen, restore CPU affinity 4666 * of all workers first and then clear UNBOUND. As we're called 4667 * from CPU_ONLINE, the following shouldn't fail. 4668 */ 4669 for_each_pool_worker(worker, pool) 4670 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4671 pool->attrs->cpumask) < 0); 4672 4673 spin_lock_irq(&pool->lock); 4674 4675 pool->flags &= ~POOL_DISASSOCIATED; 4676 4677 for_each_pool_worker(worker, pool) { 4678 unsigned int worker_flags = worker->flags; 4679 4680 /* 4681 * A bound idle worker should actually be on the runqueue 4682 * of the associated CPU for local wake-ups targeting it to 4683 * work. Kick all idle workers so that they migrate to the 4684 * associated CPU. Doing this in the same loop as 4685 * replacing UNBOUND with REBOUND is safe as no worker will 4686 * be bound before @pool->lock is released. 4687 */ 4688 if (worker_flags & WORKER_IDLE) 4689 wake_up_process(worker->task); 4690 4691 /* 4692 * We want to clear UNBOUND but can't directly call 4693 * worker_clr_flags() or adjust nr_running. Atomically 4694 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4695 * @worker will clear REBOUND using worker_clr_flags() when 4696 * it initiates the next execution cycle thus restoring 4697 * concurrency management. Note that when or whether 4698 * @worker clears REBOUND doesn't affect correctness. 4699 * 4700 * WRITE_ONCE() is necessary because @worker->flags may be 4701 * tested without holding any lock in 4702 * wq_worker_waking_up(). Without it, NOT_RUNNING test may 4703 * fail incorrectly leading to premature concurrency 4704 * management operations. 4705 */ 4706 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4707 worker_flags |= WORKER_REBOUND; 4708 worker_flags &= ~WORKER_UNBOUND; 4709 WRITE_ONCE(worker->flags, worker_flags); 4710 } 4711 4712 spin_unlock_irq(&pool->lock); 4713 } 4714 4715 /** 4716 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4717 * @pool: unbound pool of interest 4718 * @cpu: the CPU which is coming up 4719 * 4720 * An unbound pool may end up with a cpumask which doesn't have any online 4721 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4722 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4723 * online CPU before, cpus_allowed of all its workers should be restored. 4724 */ 4725 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 4726 { 4727 static cpumask_t cpumask; 4728 struct worker *worker; 4729 4730 lockdep_assert_held(&pool->attach_mutex); 4731 4732 /* is @cpu allowed for @pool? */ 4733 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 4734 return; 4735 4736 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 4737 4738 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 4739 for_each_pool_worker(worker, pool) 4740 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 4741 } 4742 4743 int workqueue_prepare_cpu(unsigned int cpu) 4744 { 4745 struct worker_pool *pool; 4746 4747 for_each_cpu_worker_pool(pool, cpu) { 4748 if (pool->nr_workers) 4749 continue; 4750 if (!create_worker(pool)) 4751 return -ENOMEM; 4752 } 4753 return 0; 4754 } 4755 4756 int workqueue_online_cpu(unsigned int cpu) 4757 { 4758 struct worker_pool *pool; 4759 struct workqueue_struct *wq; 4760 int pi; 4761 4762 mutex_lock(&wq_pool_mutex); 4763 4764 for_each_pool(pool, pi) { 4765 mutex_lock(&pool->attach_mutex); 4766 4767 if (pool->cpu == cpu) 4768 rebind_workers(pool); 4769 else if (pool->cpu < 0) 4770 restore_unbound_workers_cpumask(pool, cpu); 4771 4772 mutex_unlock(&pool->attach_mutex); 4773 } 4774 4775 /* update NUMA affinity of unbound workqueues */ 4776 list_for_each_entry(wq, &workqueues, list) 4777 wq_update_unbound_numa(wq, cpu, true); 4778 4779 mutex_unlock(&wq_pool_mutex); 4780 return 0; 4781 } 4782 4783 int workqueue_offline_cpu(unsigned int cpu) 4784 { 4785 struct workqueue_struct *wq; 4786 4787 /* unbinding per-cpu workers should happen on the local CPU */ 4788 if (WARN_ON(cpu != smp_processor_id())) 4789 return -1; 4790 4791 unbind_workers(cpu); 4792 4793 /* update NUMA affinity of unbound workqueues */ 4794 mutex_lock(&wq_pool_mutex); 4795 list_for_each_entry(wq, &workqueues, list) 4796 wq_update_unbound_numa(wq, cpu, false); 4797 mutex_unlock(&wq_pool_mutex); 4798 4799 return 0; 4800 } 4801 4802 #ifdef CONFIG_SMP 4803 4804 struct work_for_cpu { 4805 struct work_struct work; 4806 long (*fn)(void *); 4807 void *arg; 4808 long ret; 4809 }; 4810 4811 static void work_for_cpu_fn(struct work_struct *work) 4812 { 4813 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 4814 4815 wfc->ret = wfc->fn(wfc->arg); 4816 } 4817 4818 /** 4819 * work_on_cpu - run a function in thread context on a particular cpu 4820 * @cpu: the cpu to run on 4821 * @fn: the function to run 4822 * @arg: the function arg 4823 * 4824 * It is up to the caller to ensure that the cpu doesn't go offline. 4825 * The caller must not hold any locks which would prevent @fn from completing. 4826 * 4827 * Return: The value @fn returns. 4828 */ 4829 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 4830 { 4831 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 4832 4833 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 4834 schedule_work_on(cpu, &wfc.work); 4835 flush_work(&wfc.work); 4836 destroy_work_on_stack(&wfc.work); 4837 return wfc.ret; 4838 } 4839 EXPORT_SYMBOL_GPL(work_on_cpu); 4840 4841 /** 4842 * work_on_cpu_safe - run a function in thread context on a particular cpu 4843 * @cpu: the cpu to run on 4844 * @fn: the function to run 4845 * @arg: the function argument 4846 * 4847 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 4848 * any locks which would prevent @fn from completing. 4849 * 4850 * Return: The value @fn returns. 4851 */ 4852 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) 4853 { 4854 long ret = -ENODEV; 4855 4856 get_online_cpus(); 4857 if (cpu_online(cpu)) 4858 ret = work_on_cpu(cpu, fn, arg); 4859 put_online_cpus(); 4860 return ret; 4861 } 4862 EXPORT_SYMBOL_GPL(work_on_cpu_safe); 4863 #endif /* CONFIG_SMP */ 4864 4865 #ifdef CONFIG_FREEZER 4866 4867 /** 4868 * freeze_workqueues_begin - begin freezing workqueues 4869 * 4870 * Start freezing workqueues. After this function returns, all freezable 4871 * workqueues will queue new works to their delayed_works list instead of 4872 * pool->worklist. 4873 * 4874 * CONTEXT: 4875 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4876 */ 4877 void freeze_workqueues_begin(void) 4878 { 4879 struct workqueue_struct *wq; 4880 struct pool_workqueue *pwq; 4881 4882 mutex_lock(&wq_pool_mutex); 4883 4884 WARN_ON_ONCE(workqueue_freezing); 4885 workqueue_freezing = true; 4886 4887 list_for_each_entry(wq, &workqueues, list) { 4888 mutex_lock(&wq->mutex); 4889 for_each_pwq(pwq, wq) 4890 pwq_adjust_max_active(pwq); 4891 mutex_unlock(&wq->mutex); 4892 } 4893 4894 mutex_unlock(&wq_pool_mutex); 4895 } 4896 4897 /** 4898 * freeze_workqueues_busy - are freezable workqueues still busy? 4899 * 4900 * Check whether freezing is complete. This function must be called 4901 * between freeze_workqueues_begin() and thaw_workqueues(). 4902 * 4903 * CONTEXT: 4904 * Grabs and releases wq_pool_mutex. 4905 * 4906 * Return: 4907 * %true if some freezable workqueues are still busy. %false if freezing 4908 * is complete. 4909 */ 4910 bool freeze_workqueues_busy(void) 4911 { 4912 bool busy = false; 4913 struct workqueue_struct *wq; 4914 struct pool_workqueue *pwq; 4915 4916 mutex_lock(&wq_pool_mutex); 4917 4918 WARN_ON_ONCE(!workqueue_freezing); 4919 4920 list_for_each_entry(wq, &workqueues, list) { 4921 if (!(wq->flags & WQ_FREEZABLE)) 4922 continue; 4923 /* 4924 * nr_active is monotonically decreasing. It's safe 4925 * to peek without lock. 4926 */ 4927 rcu_read_lock_sched(); 4928 for_each_pwq(pwq, wq) { 4929 WARN_ON_ONCE(pwq->nr_active < 0); 4930 if (pwq->nr_active) { 4931 busy = true; 4932 rcu_read_unlock_sched(); 4933 goto out_unlock; 4934 } 4935 } 4936 rcu_read_unlock_sched(); 4937 } 4938 out_unlock: 4939 mutex_unlock(&wq_pool_mutex); 4940 return busy; 4941 } 4942 4943 /** 4944 * thaw_workqueues - thaw workqueues 4945 * 4946 * Thaw workqueues. Normal queueing is restored and all collected 4947 * frozen works are transferred to their respective pool worklists. 4948 * 4949 * CONTEXT: 4950 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4951 */ 4952 void thaw_workqueues(void) 4953 { 4954 struct workqueue_struct *wq; 4955 struct pool_workqueue *pwq; 4956 4957 mutex_lock(&wq_pool_mutex); 4958 4959 if (!workqueue_freezing) 4960 goto out_unlock; 4961 4962 workqueue_freezing = false; 4963 4964 /* restore max_active and repopulate worklist */ 4965 list_for_each_entry(wq, &workqueues, list) { 4966 mutex_lock(&wq->mutex); 4967 for_each_pwq(pwq, wq) 4968 pwq_adjust_max_active(pwq); 4969 mutex_unlock(&wq->mutex); 4970 } 4971 4972 out_unlock: 4973 mutex_unlock(&wq_pool_mutex); 4974 } 4975 #endif /* CONFIG_FREEZER */ 4976 4977 static int workqueue_apply_unbound_cpumask(void) 4978 { 4979 LIST_HEAD(ctxs); 4980 int ret = 0; 4981 struct workqueue_struct *wq; 4982 struct apply_wqattrs_ctx *ctx, *n; 4983 4984 lockdep_assert_held(&wq_pool_mutex); 4985 4986 list_for_each_entry(wq, &workqueues, list) { 4987 if (!(wq->flags & WQ_UNBOUND)) 4988 continue; 4989 /* creating multiple pwqs breaks ordering guarantee */ 4990 if (wq->flags & __WQ_ORDERED) 4991 continue; 4992 4993 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs); 4994 if (!ctx) { 4995 ret = -ENOMEM; 4996 break; 4997 } 4998 4999 list_add_tail(&ctx->list, &ctxs); 5000 } 5001 5002 list_for_each_entry_safe(ctx, n, &ctxs, list) { 5003 if (!ret) 5004 apply_wqattrs_commit(ctx); 5005 apply_wqattrs_cleanup(ctx); 5006 } 5007 5008 return ret; 5009 } 5010 5011 /** 5012 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 5013 * @cpumask: the cpumask to set 5014 * 5015 * The low-level workqueues cpumask is a global cpumask that limits 5016 * the affinity of all unbound workqueues. This function check the @cpumask 5017 * and apply it to all unbound workqueues and updates all pwqs of them. 5018 * 5019 * Retun: 0 - Success 5020 * -EINVAL - Invalid @cpumask 5021 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 5022 */ 5023 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 5024 { 5025 int ret = -EINVAL; 5026 cpumask_var_t saved_cpumask; 5027 5028 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) 5029 return -ENOMEM; 5030 5031 /* 5032 * Not excluding isolated cpus on purpose. 5033 * If the user wishes to include them, we allow that. 5034 */ 5035 cpumask_and(cpumask, cpumask, cpu_possible_mask); 5036 if (!cpumask_empty(cpumask)) { 5037 apply_wqattrs_lock(); 5038 5039 /* save the old wq_unbound_cpumask. */ 5040 cpumask_copy(saved_cpumask, wq_unbound_cpumask); 5041 5042 /* update wq_unbound_cpumask at first and apply it to wqs. */ 5043 cpumask_copy(wq_unbound_cpumask, cpumask); 5044 ret = workqueue_apply_unbound_cpumask(); 5045 5046 /* restore the wq_unbound_cpumask when failed. */ 5047 if (ret < 0) 5048 cpumask_copy(wq_unbound_cpumask, saved_cpumask); 5049 5050 apply_wqattrs_unlock(); 5051 } 5052 5053 free_cpumask_var(saved_cpumask); 5054 return ret; 5055 } 5056 5057 #ifdef CONFIG_SYSFS 5058 /* 5059 * Workqueues with WQ_SYSFS flag set is visible to userland via 5060 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 5061 * following attributes. 5062 * 5063 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 5064 * max_active RW int : maximum number of in-flight work items 5065 * 5066 * Unbound workqueues have the following extra attributes. 5067 * 5068 * pool_ids RO int : the associated pool IDs for each node 5069 * nice RW int : nice value of the workers 5070 * cpumask RW mask : bitmask of allowed CPUs for the workers 5071 * numa RW bool : whether enable NUMA affinity 5072 */ 5073 struct wq_device { 5074 struct workqueue_struct *wq; 5075 struct device dev; 5076 }; 5077 5078 static struct workqueue_struct *dev_to_wq(struct device *dev) 5079 { 5080 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5081 5082 return wq_dev->wq; 5083 } 5084 5085 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 5086 char *buf) 5087 { 5088 struct workqueue_struct *wq = dev_to_wq(dev); 5089 5090 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 5091 } 5092 static DEVICE_ATTR_RO(per_cpu); 5093 5094 static ssize_t max_active_show(struct device *dev, 5095 struct device_attribute *attr, char *buf) 5096 { 5097 struct workqueue_struct *wq = dev_to_wq(dev); 5098 5099 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 5100 } 5101 5102 static ssize_t max_active_store(struct device *dev, 5103 struct device_attribute *attr, const char *buf, 5104 size_t count) 5105 { 5106 struct workqueue_struct *wq = dev_to_wq(dev); 5107 int val; 5108 5109 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 5110 return -EINVAL; 5111 5112 workqueue_set_max_active(wq, val); 5113 return count; 5114 } 5115 static DEVICE_ATTR_RW(max_active); 5116 5117 static struct attribute *wq_sysfs_attrs[] = { 5118 &dev_attr_per_cpu.attr, 5119 &dev_attr_max_active.attr, 5120 NULL, 5121 }; 5122 ATTRIBUTE_GROUPS(wq_sysfs); 5123 5124 static ssize_t wq_pool_ids_show(struct device *dev, 5125 struct device_attribute *attr, char *buf) 5126 { 5127 struct workqueue_struct *wq = dev_to_wq(dev); 5128 const char *delim = ""; 5129 int node, written = 0; 5130 5131 rcu_read_lock_sched(); 5132 for_each_node(node) { 5133 written += scnprintf(buf + written, PAGE_SIZE - written, 5134 "%s%d:%d", delim, node, 5135 unbound_pwq_by_node(wq, node)->pool->id); 5136 delim = " "; 5137 } 5138 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 5139 rcu_read_unlock_sched(); 5140 5141 return written; 5142 } 5143 5144 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 5145 char *buf) 5146 { 5147 struct workqueue_struct *wq = dev_to_wq(dev); 5148 int written; 5149 5150 mutex_lock(&wq->mutex); 5151 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 5152 mutex_unlock(&wq->mutex); 5153 5154 return written; 5155 } 5156 5157 /* prepare workqueue_attrs for sysfs store operations */ 5158 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5159 { 5160 struct workqueue_attrs *attrs; 5161 5162 lockdep_assert_held(&wq_pool_mutex); 5163 5164 attrs = alloc_workqueue_attrs(GFP_KERNEL); 5165 if (!attrs) 5166 return NULL; 5167 5168 copy_workqueue_attrs(attrs, wq->unbound_attrs); 5169 return attrs; 5170 } 5171 5172 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 5173 const char *buf, size_t count) 5174 { 5175 struct workqueue_struct *wq = dev_to_wq(dev); 5176 struct workqueue_attrs *attrs; 5177 int ret = -ENOMEM; 5178 5179 apply_wqattrs_lock(); 5180 5181 attrs = wq_sysfs_prep_attrs(wq); 5182 if (!attrs) 5183 goto out_unlock; 5184 5185 if (sscanf(buf, "%d", &attrs->nice) == 1 && 5186 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 5187 ret = apply_workqueue_attrs_locked(wq, attrs); 5188 else 5189 ret = -EINVAL; 5190 5191 out_unlock: 5192 apply_wqattrs_unlock(); 5193 free_workqueue_attrs(attrs); 5194 return ret ?: count; 5195 } 5196 5197 static ssize_t wq_cpumask_show(struct device *dev, 5198 struct device_attribute *attr, char *buf) 5199 { 5200 struct workqueue_struct *wq = dev_to_wq(dev); 5201 int written; 5202 5203 mutex_lock(&wq->mutex); 5204 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5205 cpumask_pr_args(wq->unbound_attrs->cpumask)); 5206 mutex_unlock(&wq->mutex); 5207 return written; 5208 } 5209 5210 static ssize_t wq_cpumask_store(struct device *dev, 5211 struct device_attribute *attr, 5212 const char *buf, size_t count) 5213 { 5214 struct workqueue_struct *wq = dev_to_wq(dev); 5215 struct workqueue_attrs *attrs; 5216 int ret = -ENOMEM; 5217 5218 apply_wqattrs_lock(); 5219 5220 attrs = wq_sysfs_prep_attrs(wq); 5221 if (!attrs) 5222 goto out_unlock; 5223 5224 ret = cpumask_parse(buf, attrs->cpumask); 5225 if (!ret) 5226 ret = apply_workqueue_attrs_locked(wq, attrs); 5227 5228 out_unlock: 5229 apply_wqattrs_unlock(); 5230 free_workqueue_attrs(attrs); 5231 return ret ?: count; 5232 } 5233 5234 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5235 char *buf) 5236 { 5237 struct workqueue_struct *wq = dev_to_wq(dev); 5238 int written; 5239 5240 mutex_lock(&wq->mutex); 5241 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5242 !wq->unbound_attrs->no_numa); 5243 mutex_unlock(&wq->mutex); 5244 5245 return written; 5246 } 5247 5248 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 5249 const char *buf, size_t count) 5250 { 5251 struct workqueue_struct *wq = dev_to_wq(dev); 5252 struct workqueue_attrs *attrs; 5253 int v, ret = -ENOMEM; 5254 5255 apply_wqattrs_lock(); 5256 5257 attrs = wq_sysfs_prep_attrs(wq); 5258 if (!attrs) 5259 goto out_unlock; 5260 5261 ret = -EINVAL; 5262 if (sscanf(buf, "%d", &v) == 1) { 5263 attrs->no_numa = !v; 5264 ret = apply_workqueue_attrs_locked(wq, attrs); 5265 } 5266 5267 out_unlock: 5268 apply_wqattrs_unlock(); 5269 free_workqueue_attrs(attrs); 5270 return ret ?: count; 5271 } 5272 5273 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5274 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5275 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5276 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5277 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5278 __ATTR_NULL, 5279 }; 5280 5281 static struct bus_type wq_subsys = { 5282 .name = "workqueue", 5283 .dev_groups = wq_sysfs_groups, 5284 }; 5285 5286 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5287 struct device_attribute *attr, char *buf) 5288 { 5289 int written; 5290 5291 mutex_lock(&wq_pool_mutex); 5292 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5293 cpumask_pr_args(wq_unbound_cpumask)); 5294 mutex_unlock(&wq_pool_mutex); 5295 5296 return written; 5297 } 5298 5299 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5300 struct device_attribute *attr, const char *buf, size_t count) 5301 { 5302 cpumask_var_t cpumask; 5303 int ret; 5304 5305 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5306 return -ENOMEM; 5307 5308 ret = cpumask_parse(buf, cpumask); 5309 if (!ret) 5310 ret = workqueue_set_unbound_cpumask(cpumask); 5311 5312 free_cpumask_var(cpumask); 5313 return ret ? ret : count; 5314 } 5315 5316 static struct device_attribute wq_sysfs_cpumask_attr = 5317 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5318 wq_unbound_cpumask_store); 5319 5320 static int __init wq_sysfs_init(void) 5321 { 5322 int err; 5323 5324 err = subsys_virtual_register(&wq_subsys, NULL); 5325 if (err) 5326 return err; 5327 5328 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr); 5329 } 5330 core_initcall(wq_sysfs_init); 5331 5332 static void wq_device_release(struct device *dev) 5333 { 5334 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5335 5336 kfree(wq_dev); 5337 } 5338 5339 /** 5340 * workqueue_sysfs_register - make a workqueue visible in sysfs 5341 * @wq: the workqueue to register 5342 * 5343 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5344 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5345 * which is the preferred method. 5346 * 5347 * Workqueue user should use this function directly iff it wants to apply 5348 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5349 * apply_workqueue_attrs() may race against userland updating the 5350 * attributes. 5351 * 5352 * Return: 0 on success, -errno on failure. 5353 */ 5354 int workqueue_sysfs_register(struct workqueue_struct *wq) 5355 { 5356 struct wq_device *wq_dev; 5357 int ret; 5358 5359 /* 5360 * Adjusting max_active or creating new pwqs by applying 5361 * attributes breaks ordering guarantee. Disallow exposing ordered 5362 * workqueues. 5363 */ 5364 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 5365 return -EINVAL; 5366 5367 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5368 if (!wq_dev) 5369 return -ENOMEM; 5370 5371 wq_dev->wq = wq; 5372 wq_dev->dev.bus = &wq_subsys; 5373 wq_dev->dev.release = wq_device_release; 5374 dev_set_name(&wq_dev->dev, "%s", wq->name); 5375 5376 /* 5377 * unbound_attrs are created separately. Suppress uevent until 5378 * everything is ready. 5379 */ 5380 dev_set_uevent_suppress(&wq_dev->dev, true); 5381 5382 ret = device_register(&wq_dev->dev); 5383 if (ret) { 5384 put_device(&wq_dev->dev); 5385 wq->wq_dev = NULL; 5386 return ret; 5387 } 5388 5389 if (wq->flags & WQ_UNBOUND) { 5390 struct device_attribute *attr; 5391 5392 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5393 ret = device_create_file(&wq_dev->dev, attr); 5394 if (ret) { 5395 device_unregister(&wq_dev->dev); 5396 wq->wq_dev = NULL; 5397 return ret; 5398 } 5399 } 5400 } 5401 5402 dev_set_uevent_suppress(&wq_dev->dev, false); 5403 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5404 return 0; 5405 } 5406 5407 /** 5408 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5409 * @wq: the workqueue to unregister 5410 * 5411 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5412 */ 5413 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5414 { 5415 struct wq_device *wq_dev = wq->wq_dev; 5416 5417 if (!wq->wq_dev) 5418 return; 5419 5420 wq->wq_dev = NULL; 5421 device_unregister(&wq_dev->dev); 5422 } 5423 #else /* CONFIG_SYSFS */ 5424 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5425 #endif /* CONFIG_SYSFS */ 5426 5427 /* 5428 * Workqueue watchdog. 5429 * 5430 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 5431 * flush dependency, a concurrency managed work item which stays RUNNING 5432 * indefinitely. Workqueue stalls can be very difficult to debug as the 5433 * usual warning mechanisms don't trigger and internal workqueue state is 5434 * largely opaque. 5435 * 5436 * Workqueue watchdog monitors all worker pools periodically and dumps 5437 * state if some pools failed to make forward progress for a while where 5438 * forward progress is defined as the first item on ->worklist changing. 5439 * 5440 * This mechanism is controlled through the kernel parameter 5441 * "workqueue.watchdog_thresh" which can be updated at runtime through the 5442 * corresponding sysfs parameter file. 5443 */ 5444 #ifdef CONFIG_WQ_WATCHDOG 5445 5446 static unsigned long wq_watchdog_thresh = 30; 5447 static struct timer_list wq_watchdog_timer; 5448 5449 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 5450 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 5451 5452 static void wq_watchdog_reset_touched(void) 5453 { 5454 int cpu; 5455 5456 wq_watchdog_touched = jiffies; 5457 for_each_possible_cpu(cpu) 5458 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5459 } 5460 5461 static void wq_watchdog_timer_fn(struct timer_list *unused) 5462 { 5463 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 5464 bool lockup_detected = false; 5465 struct worker_pool *pool; 5466 int pi; 5467 5468 if (!thresh) 5469 return; 5470 5471 rcu_read_lock(); 5472 5473 for_each_pool(pool, pi) { 5474 unsigned long pool_ts, touched, ts; 5475 5476 if (list_empty(&pool->worklist)) 5477 continue; 5478 5479 /* get the latest of pool and touched timestamps */ 5480 pool_ts = READ_ONCE(pool->watchdog_ts); 5481 touched = READ_ONCE(wq_watchdog_touched); 5482 5483 if (time_after(pool_ts, touched)) 5484 ts = pool_ts; 5485 else 5486 ts = touched; 5487 5488 if (pool->cpu >= 0) { 5489 unsigned long cpu_touched = 5490 READ_ONCE(per_cpu(wq_watchdog_touched_cpu, 5491 pool->cpu)); 5492 if (time_after(cpu_touched, ts)) 5493 ts = cpu_touched; 5494 } 5495 5496 /* did we stall? */ 5497 if (time_after(jiffies, ts + thresh)) { 5498 lockup_detected = true; 5499 pr_emerg("BUG: workqueue lockup - pool"); 5500 pr_cont_pool_info(pool); 5501 pr_cont(" stuck for %us!\n", 5502 jiffies_to_msecs(jiffies - pool_ts) / 1000); 5503 } 5504 } 5505 5506 rcu_read_unlock(); 5507 5508 if (lockup_detected) 5509 show_workqueue_state(); 5510 5511 wq_watchdog_reset_touched(); 5512 mod_timer(&wq_watchdog_timer, jiffies + thresh); 5513 } 5514 5515 void wq_watchdog_touch(int cpu) 5516 { 5517 if (cpu >= 0) 5518 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5519 else 5520 wq_watchdog_touched = jiffies; 5521 } 5522 5523 static void wq_watchdog_set_thresh(unsigned long thresh) 5524 { 5525 wq_watchdog_thresh = 0; 5526 del_timer_sync(&wq_watchdog_timer); 5527 5528 if (thresh) { 5529 wq_watchdog_thresh = thresh; 5530 wq_watchdog_reset_touched(); 5531 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 5532 } 5533 } 5534 5535 static int wq_watchdog_param_set_thresh(const char *val, 5536 const struct kernel_param *kp) 5537 { 5538 unsigned long thresh; 5539 int ret; 5540 5541 ret = kstrtoul(val, 0, &thresh); 5542 if (ret) 5543 return ret; 5544 5545 if (system_wq) 5546 wq_watchdog_set_thresh(thresh); 5547 else 5548 wq_watchdog_thresh = thresh; 5549 5550 return 0; 5551 } 5552 5553 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 5554 .set = wq_watchdog_param_set_thresh, 5555 .get = param_get_ulong, 5556 }; 5557 5558 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 5559 0644); 5560 5561 static void wq_watchdog_init(void) 5562 { 5563 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 5564 wq_watchdog_set_thresh(wq_watchdog_thresh); 5565 } 5566 5567 #else /* CONFIG_WQ_WATCHDOG */ 5568 5569 static inline void wq_watchdog_init(void) { } 5570 5571 #endif /* CONFIG_WQ_WATCHDOG */ 5572 5573 static void __init wq_numa_init(void) 5574 { 5575 cpumask_var_t *tbl; 5576 int node, cpu; 5577 5578 if (num_possible_nodes() <= 1) 5579 return; 5580 5581 if (wq_disable_numa) { 5582 pr_info("workqueue: NUMA affinity support disabled\n"); 5583 return; 5584 } 5585 5586 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL); 5587 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5588 5589 /* 5590 * We want masks of possible CPUs of each node which isn't readily 5591 * available. Build one from cpu_to_node() which should have been 5592 * fully initialized by now. 5593 */ 5594 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL); 5595 BUG_ON(!tbl); 5596 5597 for_each_node(node) 5598 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5599 node_online(node) ? node : NUMA_NO_NODE)); 5600 5601 for_each_possible_cpu(cpu) { 5602 node = cpu_to_node(cpu); 5603 if (WARN_ON(node == NUMA_NO_NODE)) { 5604 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5605 /* happens iff arch is bonkers, let's just proceed */ 5606 return; 5607 } 5608 cpumask_set_cpu(cpu, tbl[node]); 5609 } 5610 5611 wq_numa_possible_cpumask = tbl; 5612 wq_numa_enabled = true; 5613 } 5614 5615 /** 5616 * workqueue_init_early - early init for workqueue subsystem 5617 * 5618 * This is the first half of two-staged workqueue subsystem initialization 5619 * and invoked as soon as the bare basics - memory allocation, cpumasks and 5620 * idr are up. It sets up all the data structures and system workqueues 5621 * and allows early boot code to create workqueues and queue/cancel work 5622 * items. Actual work item execution starts only after kthreads can be 5623 * created and scheduled right before early initcalls. 5624 */ 5625 int __init workqueue_init_early(void) 5626 { 5627 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5628 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ; 5629 int i, cpu; 5630 5631 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5632 5633 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 5634 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags)); 5635 5636 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5637 5638 /* initialize CPU pools */ 5639 for_each_possible_cpu(cpu) { 5640 struct worker_pool *pool; 5641 5642 i = 0; 5643 for_each_cpu_worker_pool(pool, cpu) { 5644 BUG_ON(init_worker_pool(pool)); 5645 pool->cpu = cpu; 5646 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5647 pool->attrs->nice = std_nice[i++]; 5648 pool->node = cpu_to_node(cpu); 5649 5650 /* alloc pool ID */ 5651 mutex_lock(&wq_pool_mutex); 5652 BUG_ON(worker_pool_assign_id(pool)); 5653 mutex_unlock(&wq_pool_mutex); 5654 } 5655 } 5656 5657 /* create default unbound and ordered wq attrs */ 5658 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5659 struct workqueue_attrs *attrs; 5660 5661 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5662 attrs->nice = std_nice[i]; 5663 unbound_std_wq_attrs[i] = attrs; 5664 5665 /* 5666 * An ordered wq should have only one pwq as ordering is 5667 * guaranteed by max_active which is enforced by pwqs. 5668 * Turn off NUMA so that dfl_pwq is used for all nodes. 5669 */ 5670 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5671 attrs->nice = std_nice[i]; 5672 attrs->no_numa = true; 5673 ordered_wq_attrs[i] = attrs; 5674 } 5675 5676 system_wq = alloc_workqueue("events", 0, 0); 5677 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5678 system_long_wq = alloc_workqueue("events_long", 0, 0); 5679 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5680 WQ_UNBOUND_MAX_ACTIVE); 5681 system_freezable_wq = alloc_workqueue("events_freezable", 5682 WQ_FREEZABLE, 0); 5683 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5684 WQ_POWER_EFFICIENT, 0); 5685 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5686 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5687 0); 5688 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5689 !system_unbound_wq || !system_freezable_wq || 5690 !system_power_efficient_wq || 5691 !system_freezable_power_efficient_wq); 5692 5693 return 0; 5694 } 5695 5696 /** 5697 * workqueue_init - bring workqueue subsystem fully online 5698 * 5699 * This is the latter half of two-staged workqueue subsystem initialization 5700 * and invoked as soon as kthreads can be created and scheduled. 5701 * Workqueues have been created and work items queued on them, but there 5702 * are no kworkers executing the work items yet. Populate the worker pools 5703 * with the initial workers and enable future kworker creations. 5704 */ 5705 int __init workqueue_init(void) 5706 { 5707 struct workqueue_struct *wq; 5708 struct worker_pool *pool; 5709 int cpu, bkt; 5710 5711 /* 5712 * It'd be simpler to initialize NUMA in workqueue_init_early() but 5713 * CPU to node mapping may not be available that early on some 5714 * archs such as power and arm64. As per-cpu pools created 5715 * previously could be missing node hint and unbound pools NUMA 5716 * affinity, fix them up. 5717 * 5718 * Also, while iterating workqueues, create rescuers if requested. 5719 */ 5720 wq_numa_init(); 5721 5722 mutex_lock(&wq_pool_mutex); 5723 5724 for_each_possible_cpu(cpu) { 5725 for_each_cpu_worker_pool(pool, cpu) { 5726 pool->node = cpu_to_node(cpu); 5727 } 5728 } 5729 5730 list_for_each_entry(wq, &workqueues, list) { 5731 wq_update_unbound_numa(wq, smp_processor_id(), true); 5732 WARN(init_rescuer(wq), 5733 "workqueue: failed to create early rescuer for %s", 5734 wq->name); 5735 } 5736 5737 mutex_unlock(&wq_pool_mutex); 5738 5739 /* create the initial workers */ 5740 for_each_online_cpu(cpu) { 5741 for_each_cpu_worker_pool(pool, cpu) { 5742 pool->flags &= ~POOL_DISASSOCIATED; 5743 BUG_ON(!create_worker(pool)); 5744 } 5745 } 5746 5747 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 5748 BUG_ON(!create_worker(pool)); 5749 5750 wq_online = true; 5751 wq_watchdog_init(); 5752 5753 return 0; 5754 } 5755