1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There are two worker pools for each CPU (one for 20 * normal work items and the other for high priority ones) and some extra 21 * pools for workqueues which are not bound to any specific CPU - the 22 * number of these backing pools is dynamic. 23 * 24 * Please read Documentation/core-api/workqueue.rst for details. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kernel.h> 29 #include <linux/sched.h> 30 #include <linux/init.h> 31 #include <linux/signal.h> 32 #include <linux/completion.h> 33 #include <linux/workqueue.h> 34 #include <linux/slab.h> 35 #include <linux/cpu.h> 36 #include <linux/notifier.h> 37 #include <linux/kthread.h> 38 #include <linux/hardirq.h> 39 #include <linux/mempolicy.h> 40 #include <linux/freezer.h> 41 #include <linux/debug_locks.h> 42 #include <linux/lockdep.h> 43 #include <linux/idr.h> 44 #include <linux/jhash.h> 45 #include <linux/hashtable.h> 46 #include <linux/rculist.h> 47 #include <linux/nodemask.h> 48 #include <linux/moduleparam.h> 49 #include <linux/uaccess.h> 50 #include <linux/sched/isolation.h> 51 #include <linux/nmi.h> 52 53 #include "workqueue_internal.h" 54 55 enum { 56 /* 57 * worker_pool flags 58 * 59 * A bound pool is either associated or disassociated with its CPU. 60 * While associated (!DISASSOCIATED), all workers are bound to the 61 * CPU and none has %WORKER_UNBOUND set and concurrency management 62 * is in effect. 63 * 64 * While DISASSOCIATED, the cpu may be offline and all workers have 65 * %WORKER_UNBOUND set and concurrency management disabled, and may 66 * be executing on any CPU. The pool behaves as an unbound one. 67 * 68 * Note that DISASSOCIATED should be flipped only while holding 69 * wq_pool_attach_mutex to avoid changing binding state while 70 * worker_attach_to_pool() is in progress. 71 */ 72 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */ 73 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 74 75 /* worker flags */ 76 WORKER_DIE = 1 << 1, /* die die die */ 77 WORKER_IDLE = 1 << 2, /* is idle */ 78 WORKER_PREP = 1 << 3, /* preparing to run works */ 79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 81 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 82 83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 84 WORKER_UNBOUND | WORKER_REBOUND, 85 86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 87 88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 90 91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 93 94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 95 /* call for help after 10ms 96 (min two ticks) */ 97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 98 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 99 100 /* 101 * Rescue workers are used only on emergencies and shared by 102 * all cpus. Give MIN_NICE. 103 */ 104 RESCUER_NICE_LEVEL = MIN_NICE, 105 HIGHPRI_NICE_LEVEL = MIN_NICE, 106 107 WQ_NAME_LEN = 24, 108 }; 109 110 /* 111 * Structure fields follow one of the following exclusion rules. 112 * 113 * I: Modifiable by initialization/destruction paths and read-only for 114 * everyone else. 115 * 116 * P: Preemption protected. Disabling preemption is enough and should 117 * only be modified and accessed from the local cpu. 118 * 119 * L: pool->lock protected. Access with pool->lock held. 120 * 121 * X: During normal operation, modification requires pool->lock and should 122 * be done only from local cpu. Either disabling preemption on local 123 * cpu or grabbing pool->lock is enough for read access. If 124 * POOL_DISASSOCIATED is set, it's identical to L. 125 * 126 * A: wq_pool_attach_mutex protected. 127 * 128 * PL: wq_pool_mutex protected. 129 * 130 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads. 131 * 132 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 133 * 134 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 135 * sched-RCU for reads. 136 * 137 * WQ: wq->mutex protected. 138 * 139 * WR: wq->mutex protected for writes. Sched-RCU protected for reads. 140 * 141 * MD: wq_mayday_lock protected. 142 */ 143 144 /* struct worker is defined in workqueue_internal.h */ 145 146 struct worker_pool { 147 spinlock_t lock; /* the pool lock */ 148 int cpu; /* I: the associated cpu */ 149 int node; /* I: the associated node ID */ 150 int id; /* I: pool ID */ 151 unsigned int flags; /* X: flags */ 152 153 unsigned long watchdog_ts; /* L: watchdog timestamp */ 154 155 struct list_head worklist; /* L: list of pending works */ 156 157 int nr_workers; /* L: total number of workers */ 158 int nr_idle; /* L: currently idle workers */ 159 160 struct list_head idle_list; /* X: list of idle workers */ 161 struct timer_list idle_timer; /* L: worker idle timeout */ 162 struct timer_list mayday_timer; /* L: SOS timer for workers */ 163 164 /* a workers is either on busy_hash or idle_list, or the manager */ 165 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 166 /* L: hash of busy workers */ 167 168 struct worker *manager; /* L: purely informational */ 169 struct list_head workers; /* A: attached workers */ 170 struct completion *detach_completion; /* all workers detached */ 171 172 struct ida worker_ida; /* worker IDs for task name */ 173 174 struct workqueue_attrs *attrs; /* I: worker attributes */ 175 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 176 int refcnt; /* PL: refcnt for unbound pools */ 177 178 /* 179 * The current concurrency level. As it's likely to be accessed 180 * from other CPUs during try_to_wake_up(), put it in a separate 181 * cacheline. 182 */ 183 atomic_t nr_running ____cacheline_aligned_in_smp; 184 185 /* 186 * Destruction of pool is sched-RCU protected to allow dereferences 187 * from get_work_pool(). 188 */ 189 struct rcu_head rcu; 190 } ____cacheline_aligned_in_smp; 191 192 /* 193 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 194 * of work_struct->data are used for flags and the remaining high bits 195 * point to the pwq; thus, pwqs need to be aligned at two's power of the 196 * number of flag bits. 197 */ 198 struct pool_workqueue { 199 struct worker_pool *pool; /* I: the associated pool */ 200 struct workqueue_struct *wq; /* I: the owning workqueue */ 201 int work_color; /* L: current color */ 202 int flush_color; /* L: flushing color */ 203 int refcnt; /* L: reference count */ 204 int nr_in_flight[WORK_NR_COLORS]; 205 /* L: nr of in_flight works */ 206 int nr_active; /* L: nr of active works */ 207 int max_active; /* L: max active works */ 208 struct list_head delayed_works; /* L: delayed works */ 209 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 210 struct list_head mayday_node; /* MD: node on wq->maydays */ 211 212 /* 213 * Release of unbound pwq is punted to system_wq. See put_pwq() 214 * and pwq_unbound_release_workfn() for details. pool_workqueue 215 * itself is also sched-RCU protected so that the first pwq can be 216 * determined without grabbing wq->mutex. 217 */ 218 struct work_struct unbound_release_work; 219 struct rcu_head rcu; 220 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 221 222 /* 223 * Structure used to wait for workqueue flush. 224 */ 225 struct wq_flusher { 226 struct list_head list; /* WQ: list of flushers */ 227 int flush_color; /* WQ: flush color waiting for */ 228 struct completion done; /* flush completion */ 229 }; 230 231 struct wq_device; 232 233 /* 234 * The externally visible workqueue. It relays the issued work items to 235 * the appropriate worker_pool through its pool_workqueues. 236 */ 237 struct workqueue_struct { 238 struct list_head pwqs; /* WR: all pwqs of this wq */ 239 struct list_head list; /* PR: list of all workqueues */ 240 241 struct mutex mutex; /* protects this wq */ 242 int work_color; /* WQ: current work color */ 243 int flush_color; /* WQ: current flush color */ 244 atomic_t nr_pwqs_to_flush; /* flush in progress */ 245 struct wq_flusher *first_flusher; /* WQ: first flusher */ 246 struct list_head flusher_queue; /* WQ: flush waiters */ 247 struct list_head flusher_overflow; /* WQ: flush overflow list */ 248 249 struct list_head maydays; /* MD: pwqs requesting rescue */ 250 struct worker *rescuer; /* I: rescue worker */ 251 252 int nr_drainers; /* WQ: drain in progress */ 253 int saved_max_active; /* WQ: saved pwq max_active */ 254 255 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 256 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 257 258 #ifdef CONFIG_SYSFS 259 struct wq_device *wq_dev; /* I: for sysfs interface */ 260 #endif 261 #ifdef CONFIG_LOCKDEP 262 struct lockdep_map lockdep_map; 263 #endif 264 char name[WQ_NAME_LEN]; /* I: workqueue name */ 265 266 /* 267 * Destruction of workqueue_struct is sched-RCU protected to allow 268 * walking the workqueues list without grabbing wq_pool_mutex. 269 * This is used to dump all workqueues from sysrq. 270 */ 271 struct rcu_head rcu; 272 273 /* hot fields used during command issue, aligned to cacheline */ 274 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 275 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 276 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 277 }; 278 279 static struct kmem_cache *pwq_cache; 280 281 static cpumask_var_t *wq_numa_possible_cpumask; 282 /* possible CPUs of each node */ 283 284 static bool wq_disable_numa; 285 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 286 287 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 288 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 289 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 290 291 static bool wq_online; /* can kworkers be created yet? */ 292 293 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 294 295 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 296 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 297 298 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 299 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 300 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 301 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */ 302 303 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 304 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 305 306 /* PL: allowable cpus for unbound wqs and work items */ 307 static cpumask_var_t wq_unbound_cpumask; 308 309 /* CPU where unbound work was last round robin scheduled from this CPU */ 310 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 311 312 /* 313 * Local execution of unbound work items is no longer guaranteed. The 314 * following always forces round-robin CPU selection on unbound work items 315 * to uncover usages which depend on it. 316 */ 317 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 318 static bool wq_debug_force_rr_cpu = true; 319 #else 320 static bool wq_debug_force_rr_cpu = false; 321 #endif 322 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 323 324 /* the per-cpu worker pools */ 325 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 326 327 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 328 329 /* PL: hash of all unbound pools keyed by pool->attrs */ 330 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 331 332 /* I: attributes used when instantiating standard unbound pools on demand */ 333 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 334 335 /* I: attributes used when instantiating ordered pools on demand */ 336 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 337 338 struct workqueue_struct *system_wq __read_mostly; 339 EXPORT_SYMBOL(system_wq); 340 struct workqueue_struct *system_highpri_wq __read_mostly; 341 EXPORT_SYMBOL_GPL(system_highpri_wq); 342 struct workqueue_struct *system_long_wq __read_mostly; 343 EXPORT_SYMBOL_GPL(system_long_wq); 344 struct workqueue_struct *system_unbound_wq __read_mostly; 345 EXPORT_SYMBOL_GPL(system_unbound_wq); 346 struct workqueue_struct *system_freezable_wq __read_mostly; 347 EXPORT_SYMBOL_GPL(system_freezable_wq); 348 struct workqueue_struct *system_power_efficient_wq __read_mostly; 349 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 350 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 351 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 352 353 static int worker_thread(void *__worker); 354 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 355 356 #define CREATE_TRACE_POINTS 357 #include <trace/events/workqueue.h> 358 359 #define assert_rcu_or_pool_mutex() \ 360 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 361 !lockdep_is_held(&wq_pool_mutex), \ 362 "sched RCU or wq_pool_mutex should be held") 363 364 #define assert_rcu_or_wq_mutex(wq) \ 365 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 366 !lockdep_is_held(&wq->mutex), \ 367 "sched RCU or wq->mutex should be held") 368 369 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 370 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 371 !lockdep_is_held(&wq->mutex) && \ 372 !lockdep_is_held(&wq_pool_mutex), \ 373 "sched RCU, wq->mutex or wq_pool_mutex should be held") 374 375 #define for_each_cpu_worker_pool(pool, cpu) \ 376 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 377 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 378 (pool)++) 379 380 /** 381 * for_each_pool - iterate through all worker_pools in the system 382 * @pool: iteration cursor 383 * @pi: integer used for iteration 384 * 385 * This must be called either with wq_pool_mutex held or sched RCU read 386 * locked. If the pool needs to be used beyond the locking in effect, the 387 * caller is responsible for guaranteeing that the pool stays online. 388 * 389 * The if/else clause exists only for the lockdep assertion and can be 390 * ignored. 391 */ 392 #define for_each_pool(pool, pi) \ 393 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 394 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 395 else 396 397 /** 398 * for_each_pool_worker - iterate through all workers of a worker_pool 399 * @worker: iteration cursor 400 * @pool: worker_pool to iterate workers of 401 * 402 * This must be called with wq_pool_attach_mutex. 403 * 404 * The if/else clause exists only for the lockdep assertion and can be 405 * ignored. 406 */ 407 #define for_each_pool_worker(worker, pool) \ 408 list_for_each_entry((worker), &(pool)->workers, node) \ 409 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 410 else 411 412 /** 413 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 414 * @pwq: iteration cursor 415 * @wq: the target workqueue 416 * 417 * This must be called either with wq->mutex held or sched RCU read locked. 418 * If the pwq needs to be used beyond the locking in effect, the caller is 419 * responsible for guaranteeing that the pwq stays online. 420 * 421 * The if/else clause exists only for the lockdep assertion and can be 422 * ignored. 423 */ 424 #define for_each_pwq(pwq, wq) \ 425 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \ 426 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ 427 else 428 429 #ifdef CONFIG_DEBUG_OBJECTS_WORK 430 431 static struct debug_obj_descr work_debug_descr; 432 433 static void *work_debug_hint(void *addr) 434 { 435 return ((struct work_struct *) addr)->func; 436 } 437 438 static bool work_is_static_object(void *addr) 439 { 440 struct work_struct *work = addr; 441 442 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 443 } 444 445 /* 446 * fixup_init is called when: 447 * - an active object is initialized 448 */ 449 static bool work_fixup_init(void *addr, enum debug_obj_state state) 450 { 451 struct work_struct *work = addr; 452 453 switch (state) { 454 case ODEBUG_STATE_ACTIVE: 455 cancel_work_sync(work); 456 debug_object_init(work, &work_debug_descr); 457 return true; 458 default: 459 return false; 460 } 461 } 462 463 /* 464 * fixup_free is called when: 465 * - an active object is freed 466 */ 467 static bool work_fixup_free(void *addr, enum debug_obj_state state) 468 { 469 struct work_struct *work = addr; 470 471 switch (state) { 472 case ODEBUG_STATE_ACTIVE: 473 cancel_work_sync(work); 474 debug_object_free(work, &work_debug_descr); 475 return true; 476 default: 477 return false; 478 } 479 } 480 481 static struct debug_obj_descr work_debug_descr = { 482 .name = "work_struct", 483 .debug_hint = work_debug_hint, 484 .is_static_object = work_is_static_object, 485 .fixup_init = work_fixup_init, 486 .fixup_free = work_fixup_free, 487 }; 488 489 static inline void debug_work_activate(struct work_struct *work) 490 { 491 debug_object_activate(work, &work_debug_descr); 492 } 493 494 static inline void debug_work_deactivate(struct work_struct *work) 495 { 496 debug_object_deactivate(work, &work_debug_descr); 497 } 498 499 void __init_work(struct work_struct *work, int onstack) 500 { 501 if (onstack) 502 debug_object_init_on_stack(work, &work_debug_descr); 503 else 504 debug_object_init(work, &work_debug_descr); 505 } 506 EXPORT_SYMBOL_GPL(__init_work); 507 508 void destroy_work_on_stack(struct work_struct *work) 509 { 510 debug_object_free(work, &work_debug_descr); 511 } 512 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 513 514 void destroy_delayed_work_on_stack(struct delayed_work *work) 515 { 516 destroy_timer_on_stack(&work->timer); 517 debug_object_free(&work->work, &work_debug_descr); 518 } 519 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 520 521 #else 522 static inline void debug_work_activate(struct work_struct *work) { } 523 static inline void debug_work_deactivate(struct work_struct *work) { } 524 #endif 525 526 /** 527 * worker_pool_assign_id - allocate ID and assing it to @pool 528 * @pool: the pool pointer of interest 529 * 530 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 531 * successfully, -errno on failure. 532 */ 533 static int worker_pool_assign_id(struct worker_pool *pool) 534 { 535 int ret; 536 537 lockdep_assert_held(&wq_pool_mutex); 538 539 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 540 GFP_KERNEL); 541 if (ret >= 0) { 542 pool->id = ret; 543 return 0; 544 } 545 return ret; 546 } 547 548 /** 549 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 550 * @wq: the target workqueue 551 * @node: the node ID 552 * 553 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU 554 * read locked. 555 * If the pwq needs to be used beyond the locking in effect, the caller is 556 * responsible for guaranteeing that the pwq stays online. 557 * 558 * Return: The unbound pool_workqueue for @node. 559 */ 560 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 561 int node) 562 { 563 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 564 565 /* 566 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a 567 * delayed item is pending. The plan is to keep CPU -> NODE 568 * mapping valid and stable across CPU on/offlines. Once that 569 * happens, this workaround can be removed. 570 */ 571 if (unlikely(node == NUMA_NO_NODE)) 572 return wq->dfl_pwq; 573 574 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 575 } 576 577 static unsigned int work_color_to_flags(int color) 578 { 579 return color << WORK_STRUCT_COLOR_SHIFT; 580 } 581 582 static int get_work_color(struct work_struct *work) 583 { 584 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 585 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 586 } 587 588 static int work_next_color(int color) 589 { 590 return (color + 1) % WORK_NR_COLORS; 591 } 592 593 /* 594 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 595 * contain the pointer to the queued pwq. Once execution starts, the flag 596 * is cleared and the high bits contain OFFQ flags and pool ID. 597 * 598 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 599 * and clear_work_data() can be used to set the pwq, pool or clear 600 * work->data. These functions should only be called while the work is 601 * owned - ie. while the PENDING bit is set. 602 * 603 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 604 * corresponding to a work. Pool is available once the work has been 605 * queued anywhere after initialization until it is sync canceled. pwq is 606 * available only while the work item is queued. 607 * 608 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 609 * canceled. While being canceled, a work item may have its PENDING set 610 * but stay off timer and worklist for arbitrarily long and nobody should 611 * try to steal the PENDING bit. 612 */ 613 static inline void set_work_data(struct work_struct *work, unsigned long data, 614 unsigned long flags) 615 { 616 WARN_ON_ONCE(!work_pending(work)); 617 atomic_long_set(&work->data, data | flags | work_static(work)); 618 } 619 620 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 621 unsigned long extra_flags) 622 { 623 set_work_data(work, (unsigned long)pwq, 624 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 625 } 626 627 static void set_work_pool_and_keep_pending(struct work_struct *work, 628 int pool_id) 629 { 630 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 631 WORK_STRUCT_PENDING); 632 } 633 634 static void set_work_pool_and_clear_pending(struct work_struct *work, 635 int pool_id) 636 { 637 /* 638 * The following wmb is paired with the implied mb in 639 * test_and_set_bit(PENDING) and ensures all updates to @work made 640 * here are visible to and precede any updates by the next PENDING 641 * owner. 642 */ 643 smp_wmb(); 644 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 645 /* 646 * The following mb guarantees that previous clear of a PENDING bit 647 * will not be reordered with any speculative LOADS or STORES from 648 * work->current_func, which is executed afterwards. This possible 649 * reordering can lead to a missed execution on attempt to qeueue 650 * the same @work. E.g. consider this case: 651 * 652 * CPU#0 CPU#1 653 * ---------------------------- -------------------------------- 654 * 655 * 1 STORE event_indicated 656 * 2 queue_work_on() { 657 * 3 test_and_set_bit(PENDING) 658 * 4 } set_..._and_clear_pending() { 659 * 5 set_work_data() # clear bit 660 * 6 smp_mb() 661 * 7 work->current_func() { 662 * 8 LOAD event_indicated 663 * } 664 * 665 * Without an explicit full barrier speculative LOAD on line 8 can 666 * be executed before CPU#0 does STORE on line 1. If that happens, 667 * CPU#0 observes the PENDING bit is still set and new execution of 668 * a @work is not queued in a hope, that CPU#1 will eventually 669 * finish the queued @work. Meanwhile CPU#1 does not see 670 * event_indicated is set, because speculative LOAD was executed 671 * before actual STORE. 672 */ 673 smp_mb(); 674 } 675 676 static void clear_work_data(struct work_struct *work) 677 { 678 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 679 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 680 } 681 682 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 683 { 684 unsigned long data = atomic_long_read(&work->data); 685 686 if (data & WORK_STRUCT_PWQ) 687 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 688 else 689 return NULL; 690 } 691 692 /** 693 * get_work_pool - return the worker_pool a given work was associated with 694 * @work: the work item of interest 695 * 696 * Pools are created and destroyed under wq_pool_mutex, and allows read 697 * access under sched-RCU read lock. As such, this function should be 698 * called under wq_pool_mutex or with preemption disabled. 699 * 700 * All fields of the returned pool are accessible as long as the above 701 * mentioned locking is in effect. If the returned pool needs to be used 702 * beyond the critical section, the caller is responsible for ensuring the 703 * returned pool is and stays online. 704 * 705 * Return: The worker_pool @work was last associated with. %NULL if none. 706 */ 707 static struct worker_pool *get_work_pool(struct work_struct *work) 708 { 709 unsigned long data = atomic_long_read(&work->data); 710 int pool_id; 711 712 assert_rcu_or_pool_mutex(); 713 714 if (data & WORK_STRUCT_PWQ) 715 return ((struct pool_workqueue *) 716 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 717 718 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 719 if (pool_id == WORK_OFFQ_POOL_NONE) 720 return NULL; 721 722 return idr_find(&worker_pool_idr, pool_id); 723 } 724 725 /** 726 * get_work_pool_id - return the worker pool ID a given work is associated with 727 * @work: the work item of interest 728 * 729 * Return: The worker_pool ID @work was last associated with. 730 * %WORK_OFFQ_POOL_NONE if none. 731 */ 732 static int get_work_pool_id(struct work_struct *work) 733 { 734 unsigned long data = atomic_long_read(&work->data); 735 736 if (data & WORK_STRUCT_PWQ) 737 return ((struct pool_workqueue *) 738 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 739 740 return data >> WORK_OFFQ_POOL_SHIFT; 741 } 742 743 static void mark_work_canceling(struct work_struct *work) 744 { 745 unsigned long pool_id = get_work_pool_id(work); 746 747 pool_id <<= WORK_OFFQ_POOL_SHIFT; 748 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 749 } 750 751 static bool work_is_canceling(struct work_struct *work) 752 { 753 unsigned long data = atomic_long_read(&work->data); 754 755 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 756 } 757 758 /* 759 * Policy functions. These define the policies on how the global worker 760 * pools are managed. Unless noted otherwise, these functions assume that 761 * they're being called with pool->lock held. 762 */ 763 764 static bool __need_more_worker(struct worker_pool *pool) 765 { 766 return !atomic_read(&pool->nr_running); 767 } 768 769 /* 770 * Need to wake up a worker? Called from anything but currently 771 * running workers. 772 * 773 * Note that, because unbound workers never contribute to nr_running, this 774 * function will always return %true for unbound pools as long as the 775 * worklist isn't empty. 776 */ 777 static bool need_more_worker(struct worker_pool *pool) 778 { 779 return !list_empty(&pool->worklist) && __need_more_worker(pool); 780 } 781 782 /* Can I start working? Called from busy but !running workers. */ 783 static bool may_start_working(struct worker_pool *pool) 784 { 785 return pool->nr_idle; 786 } 787 788 /* Do I need to keep working? Called from currently running workers. */ 789 static bool keep_working(struct worker_pool *pool) 790 { 791 return !list_empty(&pool->worklist) && 792 atomic_read(&pool->nr_running) <= 1; 793 } 794 795 /* Do we need a new worker? Called from manager. */ 796 static bool need_to_create_worker(struct worker_pool *pool) 797 { 798 return need_more_worker(pool) && !may_start_working(pool); 799 } 800 801 /* Do we have too many workers and should some go away? */ 802 static bool too_many_workers(struct worker_pool *pool) 803 { 804 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 805 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 806 int nr_busy = pool->nr_workers - nr_idle; 807 808 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 809 } 810 811 /* 812 * Wake up functions. 813 */ 814 815 /* Return the first idle worker. Safe with preemption disabled */ 816 static struct worker *first_idle_worker(struct worker_pool *pool) 817 { 818 if (unlikely(list_empty(&pool->idle_list))) 819 return NULL; 820 821 return list_first_entry(&pool->idle_list, struct worker, entry); 822 } 823 824 /** 825 * wake_up_worker - wake up an idle worker 826 * @pool: worker pool to wake worker from 827 * 828 * Wake up the first idle worker of @pool. 829 * 830 * CONTEXT: 831 * spin_lock_irq(pool->lock). 832 */ 833 static void wake_up_worker(struct worker_pool *pool) 834 { 835 struct worker *worker = first_idle_worker(pool); 836 837 if (likely(worker)) 838 wake_up_process(worker->task); 839 } 840 841 /** 842 * wq_worker_waking_up - a worker is waking up 843 * @task: task waking up 844 * @cpu: CPU @task is waking up to 845 * 846 * This function is called during try_to_wake_up() when a worker is 847 * being awoken. 848 * 849 * CONTEXT: 850 * spin_lock_irq(rq->lock) 851 */ 852 void wq_worker_waking_up(struct task_struct *task, int cpu) 853 { 854 struct worker *worker = kthread_data(task); 855 856 if (!(worker->flags & WORKER_NOT_RUNNING)) { 857 WARN_ON_ONCE(worker->pool->cpu != cpu); 858 atomic_inc(&worker->pool->nr_running); 859 } 860 } 861 862 /** 863 * wq_worker_sleeping - a worker is going to sleep 864 * @task: task going to sleep 865 * 866 * This function is called during schedule() when a busy worker is 867 * going to sleep. Worker on the same cpu can be woken up by 868 * returning pointer to its task. 869 * 870 * CONTEXT: 871 * spin_lock_irq(rq->lock) 872 * 873 * Return: 874 * Worker task on @cpu to wake up, %NULL if none. 875 */ 876 struct task_struct *wq_worker_sleeping(struct task_struct *task) 877 { 878 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 879 struct worker_pool *pool; 880 881 /* 882 * Rescuers, which may not have all the fields set up like normal 883 * workers, also reach here, let's not access anything before 884 * checking NOT_RUNNING. 885 */ 886 if (worker->flags & WORKER_NOT_RUNNING) 887 return NULL; 888 889 pool = worker->pool; 890 891 /* this can only happen on the local cpu */ 892 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id())) 893 return NULL; 894 895 /* 896 * The counterpart of the following dec_and_test, implied mb, 897 * worklist not empty test sequence is in insert_work(). 898 * Please read comment there. 899 * 900 * NOT_RUNNING is clear. This means that we're bound to and 901 * running on the local cpu w/ rq lock held and preemption 902 * disabled, which in turn means that none else could be 903 * manipulating idle_list, so dereferencing idle_list without pool 904 * lock is safe. 905 */ 906 if (atomic_dec_and_test(&pool->nr_running) && 907 !list_empty(&pool->worklist)) 908 to_wakeup = first_idle_worker(pool); 909 return to_wakeup ? to_wakeup->task : NULL; 910 } 911 912 /** 913 * worker_set_flags - set worker flags and adjust nr_running accordingly 914 * @worker: self 915 * @flags: flags to set 916 * 917 * Set @flags in @worker->flags and adjust nr_running accordingly. 918 * 919 * CONTEXT: 920 * spin_lock_irq(pool->lock) 921 */ 922 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 923 { 924 struct worker_pool *pool = worker->pool; 925 926 WARN_ON_ONCE(worker->task != current); 927 928 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 929 if ((flags & WORKER_NOT_RUNNING) && 930 !(worker->flags & WORKER_NOT_RUNNING)) { 931 atomic_dec(&pool->nr_running); 932 } 933 934 worker->flags |= flags; 935 } 936 937 /** 938 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 939 * @worker: self 940 * @flags: flags to clear 941 * 942 * Clear @flags in @worker->flags and adjust nr_running accordingly. 943 * 944 * CONTEXT: 945 * spin_lock_irq(pool->lock) 946 */ 947 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 948 { 949 struct worker_pool *pool = worker->pool; 950 unsigned int oflags = worker->flags; 951 952 WARN_ON_ONCE(worker->task != current); 953 954 worker->flags &= ~flags; 955 956 /* 957 * If transitioning out of NOT_RUNNING, increment nr_running. Note 958 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 959 * of multiple flags, not a single flag. 960 */ 961 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 962 if (!(worker->flags & WORKER_NOT_RUNNING)) 963 atomic_inc(&pool->nr_running); 964 } 965 966 /** 967 * find_worker_executing_work - find worker which is executing a work 968 * @pool: pool of interest 969 * @work: work to find worker for 970 * 971 * Find a worker which is executing @work on @pool by searching 972 * @pool->busy_hash which is keyed by the address of @work. For a worker 973 * to match, its current execution should match the address of @work and 974 * its work function. This is to avoid unwanted dependency between 975 * unrelated work executions through a work item being recycled while still 976 * being executed. 977 * 978 * This is a bit tricky. A work item may be freed once its execution 979 * starts and nothing prevents the freed area from being recycled for 980 * another work item. If the same work item address ends up being reused 981 * before the original execution finishes, workqueue will identify the 982 * recycled work item as currently executing and make it wait until the 983 * current execution finishes, introducing an unwanted dependency. 984 * 985 * This function checks the work item address and work function to avoid 986 * false positives. Note that this isn't complete as one may construct a 987 * work function which can introduce dependency onto itself through a 988 * recycled work item. Well, if somebody wants to shoot oneself in the 989 * foot that badly, there's only so much we can do, and if such deadlock 990 * actually occurs, it should be easy to locate the culprit work function. 991 * 992 * CONTEXT: 993 * spin_lock_irq(pool->lock). 994 * 995 * Return: 996 * Pointer to worker which is executing @work if found, %NULL 997 * otherwise. 998 */ 999 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1000 struct work_struct *work) 1001 { 1002 struct worker *worker; 1003 1004 hash_for_each_possible(pool->busy_hash, worker, hentry, 1005 (unsigned long)work) 1006 if (worker->current_work == work && 1007 worker->current_func == work->func) 1008 return worker; 1009 1010 return NULL; 1011 } 1012 1013 /** 1014 * move_linked_works - move linked works to a list 1015 * @work: start of series of works to be scheduled 1016 * @head: target list to append @work to 1017 * @nextp: out parameter for nested worklist walking 1018 * 1019 * Schedule linked works starting from @work to @head. Work series to 1020 * be scheduled starts at @work and includes any consecutive work with 1021 * WORK_STRUCT_LINKED set in its predecessor. 1022 * 1023 * If @nextp is not NULL, it's updated to point to the next work of 1024 * the last scheduled work. This allows move_linked_works() to be 1025 * nested inside outer list_for_each_entry_safe(). 1026 * 1027 * CONTEXT: 1028 * spin_lock_irq(pool->lock). 1029 */ 1030 static void move_linked_works(struct work_struct *work, struct list_head *head, 1031 struct work_struct **nextp) 1032 { 1033 struct work_struct *n; 1034 1035 /* 1036 * Linked worklist will always end before the end of the list, 1037 * use NULL for list head. 1038 */ 1039 list_for_each_entry_safe_from(work, n, NULL, entry) { 1040 list_move_tail(&work->entry, head); 1041 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1042 break; 1043 } 1044 1045 /* 1046 * If we're already inside safe list traversal and have moved 1047 * multiple works to the scheduled queue, the next position 1048 * needs to be updated. 1049 */ 1050 if (nextp) 1051 *nextp = n; 1052 } 1053 1054 /** 1055 * get_pwq - get an extra reference on the specified pool_workqueue 1056 * @pwq: pool_workqueue to get 1057 * 1058 * Obtain an extra reference on @pwq. The caller should guarantee that 1059 * @pwq has positive refcnt and be holding the matching pool->lock. 1060 */ 1061 static void get_pwq(struct pool_workqueue *pwq) 1062 { 1063 lockdep_assert_held(&pwq->pool->lock); 1064 WARN_ON_ONCE(pwq->refcnt <= 0); 1065 pwq->refcnt++; 1066 } 1067 1068 /** 1069 * put_pwq - put a pool_workqueue reference 1070 * @pwq: pool_workqueue to put 1071 * 1072 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1073 * destruction. The caller should be holding the matching pool->lock. 1074 */ 1075 static void put_pwq(struct pool_workqueue *pwq) 1076 { 1077 lockdep_assert_held(&pwq->pool->lock); 1078 if (likely(--pwq->refcnt)) 1079 return; 1080 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1081 return; 1082 /* 1083 * @pwq can't be released under pool->lock, bounce to 1084 * pwq_unbound_release_workfn(). This never recurses on the same 1085 * pool->lock as this path is taken only for unbound workqueues and 1086 * the release work item is scheduled on a per-cpu workqueue. To 1087 * avoid lockdep warning, unbound pool->locks are given lockdep 1088 * subclass of 1 in get_unbound_pool(). 1089 */ 1090 schedule_work(&pwq->unbound_release_work); 1091 } 1092 1093 /** 1094 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1095 * @pwq: pool_workqueue to put (can be %NULL) 1096 * 1097 * put_pwq() with locking. This function also allows %NULL @pwq. 1098 */ 1099 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1100 { 1101 if (pwq) { 1102 /* 1103 * As both pwqs and pools are sched-RCU protected, the 1104 * following lock operations are safe. 1105 */ 1106 spin_lock_irq(&pwq->pool->lock); 1107 put_pwq(pwq); 1108 spin_unlock_irq(&pwq->pool->lock); 1109 } 1110 } 1111 1112 static void pwq_activate_delayed_work(struct work_struct *work) 1113 { 1114 struct pool_workqueue *pwq = get_work_pwq(work); 1115 1116 trace_workqueue_activate_work(work); 1117 if (list_empty(&pwq->pool->worklist)) 1118 pwq->pool->watchdog_ts = jiffies; 1119 move_linked_works(work, &pwq->pool->worklist, NULL); 1120 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1121 pwq->nr_active++; 1122 } 1123 1124 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1125 { 1126 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1127 struct work_struct, entry); 1128 1129 pwq_activate_delayed_work(work); 1130 } 1131 1132 /** 1133 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1134 * @pwq: pwq of interest 1135 * @color: color of work which left the queue 1136 * 1137 * A work either has completed or is removed from pending queue, 1138 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1139 * 1140 * CONTEXT: 1141 * spin_lock_irq(pool->lock). 1142 */ 1143 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1144 { 1145 /* uncolored work items don't participate in flushing or nr_active */ 1146 if (color == WORK_NO_COLOR) 1147 goto out_put; 1148 1149 pwq->nr_in_flight[color]--; 1150 1151 pwq->nr_active--; 1152 if (!list_empty(&pwq->delayed_works)) { 1153 /* one down, submit a delayed one */ 1154 if (pwq->nr_active < pwq->max_active) 1155 pwq_activate_first_delayed(pwq); 1156 } 1157 1158 /* is flush in progress and are we at the flushing tip? */ 1159 if (likely(pwq->flush_color != color)) 1160 goto out_put; 1161 1162 /* are there still in-flight works? */ 1163 if (pwq->nr_in_flight[color]) 1164 goto out_put; 1165 1166 /* this pwq is done, clear flush_color */ 1167 pwq->flush_color = -1; 1168 1169 /* 1170 * If this was the last pwq, wake up the first flusher. It 1171 * will handle the rest. 1172 */ 1173 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1174 complete(&pwq->wq->first_flusher->done); 1175 out_put: 1176 put_pwq(pwq); 1177 } 1178 1179 /** 1180 * try_to_grab_pending - steal work item from worklist and disable irq 1181 * @work: work item to steal 1182 * @is_dwork: @work is a delayed_work 1183 * @flags: place to store irq state 1184 * 1185 * Try to grab PENDING bit of @work. This function can handle @work in any 1186 * stable state - idle, on timer or on worklist. 1187 * 1188 * Return: 1189 * 1 if @work was pending and we successfully stole PENDING 1190 * 0 if @work was idle and we claimed PENDING 1191 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1192 * -ENOENT if someone else is canceling @work, this state may persist 1193 * for arbitrarily long 1194 * 1195 * Note: 1196 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1197 * interrupted while holding PENDING and @work off queue, irq must be 1198 * disabled on entry. This, combined with delayed_work->timer being 1199 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1200 * 1201 * On successful return, >= 0, irq is disabled and the caller is 1202 * responsible for releasing it using local_irq_restore(*@flags). 1203 * 1204 * This function is safe to call from any context including IRQ handler. 1205 */ 1206 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1207 unsigned long *flags) 1208 { 1209 struct worker_pool *pool; 1210 struct pool_workqueue *pwq; 1211 1212 local_irq_save(*flags); 1213 1214 /* try to steal the timer if it exists */ 1215 if (is_dwork) { 1216 struct delayed_work *dwork = to_delayed_work(work); 1217 1218 /* 1219 * dwork->timer is irqsafe. If del_timer() fails, it's 1220 * guaranteed that the timer is not queued anywhere and not 1221 * running on the local CPU. 1222 */ 1223 if (likely(del_timer(&dwork->timer))) 1224 return 1; 1225 } 1226 1227 /* try to claim PENDING the normal way */ 1228 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1229 return 0; 1230 1231 /* 1232 * The queueing is in progress, or it is already queued. Try to 1233 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1234 */ 1235 pool = get_work_pool(work); 1236 if (!pool) 1237 goto fail; 1238 1239 spin_lock(&pool->lock); 1240 /* 1241 * work->data is guaranteed to point to pwq only while the work 1242 * item is queued on pwq->wq, and both updating work->data to point 1243 * to pwq on queueing and to pool on dequeueing are done under 1244 * pwq->pool->lock. This in turn guarantees that, if work->data 1245 * points to pwq which is associated with a locked pool, the work 1246 * item is currently queued on that pool. 1247 */ 1248 pwq = get_work_pwq(work); 1249 if (pwq && pwq->pool == pool) { 1250 debug_work_deactivate(work); 1251 1252 /* 1253 * A delayed work item cannot be grabbed directly because 1254 * it might have linked NO_COLOR work items which, if left 1255 * on the delayed_list, will confuse pwq->nr_active 1256 * management later on and cause stall. Make sure the work 1257 * item is activated before grabbing. 1258 */ 1259 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1260 pwq_activate_delayed_work(work); 1261 1262 list_del_init(&work->entry); 1263 pwq_dec_nr_in_flight(pwq, get_work_color(work)); 1264 1265 /* work->data points to pwq iff queued, point to pool */ 1266 set_work_pool_and_keep_pending(work, pool->id); 1267 1268 spin_unlock(&pool->lock); 1269 return 1; 1270 } 1271 spin_unlock(&pool->lock); 1272 fail: 1273 local_irq_restore(*flags); 1274 if (work_is_canceling(work)) 1275 return -ENOENT; 1276 cpu_relax(); 1277 return -EAGAIN; 1278 } 1279 1280 /** 1281 * insert_work - insert a work into a pool 1282 * @pwq: pwq @work belongs to 1283 * @work: work to insert 1284 * @head: insertion point 1285 * @extra_flags: extra WORK_STRUCT_* flags to set 1286 * 1287 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1288 * work_struct flags. 1289 * 1290 * CONTEXT: 1291 * spin_lock_irq(pool->lock). 1292 */ 1293 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1294 struct list_head *head, unsigned int extra_flags) 1295 { 1296 struct worker_pool *pool = pwq->pool; 1297 1298 /* we own @work, set data and link */ 1299 set_work_pwq(work, pwq, extra_flags); 1300 list_add_tail(&work->entry, head); 1301 get_pwq(pwq); 1302 1303 /* 1304 * Ensure either wq_worker_sleeping() sees the above 1305 * list_add_tail() or we see zero nr_running to avoid workers lying 1306 * around lazily while there are works to be processed. 1307 */ 1308 smp_mb(); 1309 1310 if (__need_more_worker(pool)) 1311 wake_up_worker(pool); 1312 } 1313 1314 /* 1315 * Test whether @work is being queued from another work executing on the 1316 * same workqueue. 1317 */ 1318 static bool is_chained_work(struct workqueue_struct *wq) 1319 { 1320 struct worker *worker; 1321 1322 worker = current_wq_worker(); 1323 /* 1324 * Return %true iff I'm a worker execuing a work item on @wq. If 1325 * I'm @worker, it's safe to dereference it without locking. 1326 */ 1327 return worker && worker->current_pwq->wq == wq; 1328 } 1329 1330 /* 1331 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1332 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1333 * avoid perturbing sensitive tasks. 1334 */ 1335 static int wq_select_unbound_cpu(int cpu) 1336 { 1337 static bool printed_dbg_warning; 1338 int new_cpu; 1339 1340 if (likely(!wq_debug_force_rr_cpu)) { 1341 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1342 return cpu; 1343 } else if (!printed_dbg_warning) { 1344 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1345 printed_dbg_warning = true; 1346 } 1347 1348 if (cpumask_empty(wq_unbound_cpumask)) 1349 return cpu; 1350 1351 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1352 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1353 if (unlikely(new_cpu >= nr_cpu_ids)) { 1354 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1355 if (unlikely(new_cpu >= nr_cpu_ids)) 1356 return cpu; 1357 } 1358 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1359 1360 return new_cpu; 1361 } 1362 1363 static void __queue_work(int cpu, struct workqueue_struct *wq, 1364 struct work_struct *work) 1365 { 1366 struct pool_workqueue *pwq; 1367 struct worker_pool *last_pool; 1368 struct list_head *worklist; 1369 unsigned int work_flags; 1370 unsigned int req_cpu = cpu; 1371 1372 /* 1373 * While a work item is PENDING && off queue, a task trying to 1374 * steal the PENDING will busy-loop waiting for it to either get 1375 * queued or lose PENDING. Grabbing PENDING and queueing should 1376 * happen with IRQ disabled. 1377 */ 1378 lockdep_assert_irqs_disabled(); 1379 1380 debug_work_activate(work); 1381 1382 /* if draining, only works from the same workqueue are allowed */ 1383 if (unlikely(wq->flags & __WQ_DRAINING) && 1384 WARN_ON_ONCE(!is_chained_work(wq))) 1385 return; 1386 retry: 1387 if (req_cpu == WORK_CPU_UNBOUND) 1388 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1389 1390 /* pwq which will be used unless @work is executing elsewhere */ 1391 if (!(wq->flags & WQ_UNBOUND)) 1392 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1393 else 1394 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1395 1396 /* 1397 * If @work was previously on a different pool, it might still be 1398 * running there, in which case the work needs to be queued on that 1399 * pool to guarantee non-reentrancy. 1400 */ 1401 last_pool = get_work_pool(work); 1402 if (last_pool && last_pool != pwq->pool) { 1403 struct worker *worker; 1404 1405 spin_lock(&last_pool->lock); 1406 1407 worker = find_worker_executing_work(last_pool, work); 1408 1409 if (worker && worker->current_pwq->wq == wq) { 1410 pwq = worker->current_pwq; 1411 } else { 1412 /* meh... not running there, queue here */ 1413 spin_unlock(&last_pool->lock); 1414 spin_lock(&pwq->pool->lock); 1415 } 1416 } else { 1417 spin_lock(&pwq->pool->lock); 1418 } 1419 1420 /* 1421 * pwq is determined and locked. For unbound pools, we could have 1422 * raced with pwq release and it could already be dead. If its 1423 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1424 * without another pwq replacing it in the numa_pwq_tbl or while 1425 * work items are executing on it, so the retrying is guaranteed to 1426 * make forward-progress. 1427 */ 1428 if (unlikely(!pwq->refcnt)) { 1429 if (wq->flags & WQ_UNBOUND) { 1430 spin_unlock(&pwq->pool->lock); 1431 cpu_relax(); 1432 goto retry; 1433 } 1434 /* oops */ 1435 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1436 wq->name, cpu); 1437 } 1438 1439 /* pwq determined, queue */ 1440 trace_workqueue_queue_work(req_cpu, pwq, work); 1441 1442 if (WARN_ON(!list_empty(&work->entry))) { 1443 spin_unlock(&pwq->pool->lock); 1444 return; 1445 } 1446 1447 pwq->nr_in_flight[pwq->work_color]++; 1448 work_flags = work_color_to_flags(pwq->work_color); 1449 1450 if (likely(pwq->nr_active < pwq->max_active)) { 1451 trace_workqueue_activate_work(work); 1452 pwq->nr_active++; 1453 worklist = &pwq->pool->worklist; 1454 if (list_empty(worklist)) 1455 pwq->pool->watchdog_ts = jiffies; 1456 } else { 1457 work_flags |= WORK_STRUCT_DELAYED; 1458 worklist = &pwq->delayed_works; 1459 } 1460 1461 insert_work(pwq, work, worklist, work_flags); 1462 1463 spin_unlock(&pwq->pool->lock); 1464 } 1465 1466 /** 1467 * queue_work_on - queue work on specific cpu 1468 * @cpu: CPU number to execute work on 1469 * @wq: workqueue to use 1470 * @work: work to queue 1471 * 1472 * We queue the work to a specific CPU, the caller must ensure it 1473 * can't go away. 1474 * 1475 * Return: %false if @work was already on a queue, %true otherwise. 1476 */ 1477 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1478 struct work_struct *work) 1479 { 1480 bool ret = false; 1481 unsigned long flags; 1482 1483 local_irq_save(flags); 1484 1485 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1486 __queue_work(cpu, wq, work); 1487 ret = true; 1488 } 1489 1490 local_irq_restore(flags); 1491 return ret; 1492 } 1493 EXPORT_SYMBOL(queue_work_on); 1494 1495 void delayed_work_timer_fn(struct timer_list *t) 1496 { 1497 struct delayed_work *dwork = from_timer(dwork, t, timer); 1498 1499 /* should have been called from irqsafe timer with irq already off */ 1500 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1501 } 1502 EXPORT_SYMBOL(delayed_work_timer_fn); 1503 1504 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1505 struct delayed_work *dwork, unsigned long delay) 1506 { 1507 struct timer_list *timer = &dwork->timer; 1508 struct work_struct *work = &dwork->work; 1509 1510 WARN_ON_ONCE(!wq); 1511 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 1512 WARN_ON_ONCE(timer_pending(timer)); 1513 WARN_ON_ONCE(!list_empty(&work->entry)); 1514 1515 /* 1516 * If @delay is 0, queue @dwork->work immediately. This is for 1517 * both optimization and correctness. The earliest @timer can 1518 * expire is on the closest next tick and delayed_work users depend 1519 * on that there's no such delay when @delay is 0. 1520 */ 1521 if (!delay) { 1522 __queue_work(cpu, wq, &dwork->work); 1523 return; 1524 } 1525 1526 dwork->wq = wq; 1527 dwork->cpu = cpu; 1528 timer->expires = jiffies + delay; 1529 1530 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1531 add_timer_on(timer, cpu); 1532 else 1533 add_timer(timer); 1534 } 1535 1536 /** 1537 * queue_delayed_work_on - queue work on specific CPU after delay 1538 * @cpu: CPU number to execute work on 1539 * @wq: workqueue to use 1540 * @dwork: work to queue 1541 * @delay: number of jiffies to wait before queueing 1542 * 1543 * Return: %false if @work was already on a queue, %true otherwise. If 1544 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1545 * execution. 1546 */ 1547 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1548 struct delayed_work *dwork, unsigned long delay) 1549 { 1550 struct work_struct *work = &dwork->work; 1551 bool ret = false; 1552 unsigned long flags; 1553 1554 /* read the comment in __queue_work() */ 1555 local_irq_save(flags); 1556 1557 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1558 __queue_delayed_work(cpu, wq, dwork, delay); 1559 ret = true; 1560 } 1561 1562 local_irq_restore(flags); 1563 return ret; 1564 } 1565 EXPORT_SYMBOL(queue_delayed_work_on); 1566 1567 /** 1568 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1569 * @cpu: CPU number to execute work on 1570 * @wq: workqueue to use 1571 * @dwork: work to queue 1572 * @delay: number of jiffies to wait before queueing 1573 * 1574 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1575 * modify @dwork's timer so that it expires after @delay. If @delay is 1576 * zero, @work is guaranteed to be scheduled immediately regardless of its 1577 * current state. 1578 * 1579 * Return: %false if @dwork was idle and queued, %true if @dwork was 1580 * pending and its timer was modified. 1581 * 1582 * This function is safe to call from any context including IRQ handler. 1583 * See try_to_grab_pending() for details. 1584 */ 1585 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1586 struct delayed_work *dwork, unsigned long delay) 1587 { 1588 unsigned long flags; 1589 int ret; 1590 1591 do { 1592 ret = try_to_grab_pending(&dwork->work, true, &flags); 1593 } while (unlikely(ret == -EAGAIN)); 1594 1595 if (likely(ret >= 0)) { 1596 __queue_delayed_work(cpu, wq, dwork, delay); 1597 local_irq_restore(flags); 1598 } 1599 1600 /* -ENOENT from try_to_grab_pending() becomes %true */ 1601 return ret; 1602 } 1603 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1604 1605 static void rcu_work_rcufn(struct rcu_head *rcu) 1606 { 1607 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 1608 1609 /* read the comment in __queue_work() */ 1610 local_irq_disable(); 1611 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 1612 local_irq_enable(); 1613 } 1614 1615 /** 1616 * queue_rcu_work - queue work after a RCU grace period 1617 * @wq: workqueue to use 1618 * @rwork: work to queue 1619 * 1620 * Return: %false if @rwork was already pending, %true otherwise. Note 1621 * that a full RCU grace period is guaranteed only after a %true return. 1622 * While @rwork is guarnateed to be executed after a %false return, the 1623 * execution may happen before a full RCU grace period has passed. 1624 */ 1625 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 1626 { 1627 struct work_struct *work = &rwork->work; 1628 1629 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1630 rwork->wq = wq; 1631 call_rcu(&rwork->rcu, rcu_work_rcufn); 1632 return true; 1633 } 1634 1635 return false; 1636 } 1637 EXPORT_SYMBOL(queue_rcu_work); 1638 1639 /** 1640 * worker_enter_idle - enter idle state 1641 * @worker: worker which is entering idle state 1642 * 1643 * @worker is entering idle state. Update stats and idle timer if 1644 * necessary. 1645 * 1646 * LOCKING: 1647 * spin_lock_irq(pool->lock). 1648 */ 1649 static void worker_enter_idle(struct worker *worker) 1650 { 1651 struct worker_pool *pool = worker->pool; 1652 1653 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1654 WARN_ON_ONCE(!list_empty(&worker->entry) && 1655 (worker->hentry.next || worker->hentry.pprev))) 1656 return; 1657 1658 /* can't use worker_set_flags(), also called from create_worker() */ 1659 worker->flags |= WORKER_IDLE; 1660 pool->nr_idle++; 1661 worker->last_active = jiffies; 1662 1663 /* idle_list is LIFO */ 1664 list_add(&worker->entry, &pool->idle_list); 1665 1666 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1667 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1668 1669 /* 1670 * Sanity check nr_running. Because unbind_workers() releases 1671 * pool->lock between setting %WORKER_UNBOUND and zapping 1672 * nr_running, the warning may trigger spuriously. Check iff 1673 * unbind is not in progress. 1674 */ 1675 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1676 pool->nr_workers == pool->nr_idle && 1677 atomic_read(&pool->nr_running)); 1678 } 1679 1680 /** 1681 * worker_leave_idle - leave idle state 1682 * @worker: worker which is leaving idle state 1683 * 1684 * @worker is leaving idle state. Update stats. 1685 * 1686 * LOCKING: 1687 * spin_lock_irq(pool->lock). 1688 */ 1689 static void worker_leave_idle(struct worker *worker) 1690 { 1691 struct worker_pool *pool = worker->pool; 1692 1693 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1694 return; 1695 worker_clr_flags(worker, WORKER_IDLE); 1696 pool->nr_idle--; 1697 list_del_init(&worker->entry); 1698 } 1699 1700 static struct worker *alloc_worker(int node) 1701 { 1702 struct worker *worker; 1703 1704 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1705 if (worker) { 1706 INIT_LIST_HEAD(&worker->entry); 1707 INIT_LIST_HEAD(&worker->scheduled); 1708 INIT_LIST_HEAD(&worker->node); 1709 /* on creation a worker is in !idle && prep state */ 1710 worker->flags = WORKER_PREP; 1711 } 1712 return worker; 1713 } 1714 1715 /** 1716 * worker_attach_to_pool() - attach a worker to a pool 1717 * @worker: worker to be attached 1718 * @pool: the target pool 1719 * 1720 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1721 * cpu-binding of @worker are kept coordinated with the pool across 1722 * cpu-[un]hotplugs. 1723 */ 1724 static void worker_attach_to_pool(struct worker *worker, 1725 struct worker_pool *pool) 1726 { 1727 mutex_lock(&wq_pool_attach_mutex); 1728 1729 /* 1730 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1731 * online CPUs. It'll be re-applied when any of the CPUs come up. 1732 */ 1733 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1734 1735 /* 1736 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains 1737 * stable across this function. See the comments above the flag 1738 * definition for details. 1739 */ 1740 if (pool->flags & POOL_DISASSOCIATED) 1741 worker->flags |= WORKER_UNBOUND; 1742 1743 list_add_tail(&worker->node, &pool->workers); 1744 worker->pool = pool; 1745 1746 mutex_unlock(&wq_pool_attach_mutex); 1747 } 1748 1749 /** 1750 * worker_detach_from_pool() - detach a worker from its pool 1751 * @worker: worker which is attached to its pool 1752 * 1753 * Undo the attaching which had been done in worker_attach_to_pool(). The 1754 * caller worker shouldn't access to the pool after detached except it has 1755 * other reference to the pool. 1756 */ 1757 static void worker_detach_from_pool(struct worker *worker) 1758 { 1759 struct worker_pool *pool = worker->pool; 1760 struct completion *detach_completion = NULL; 1761 1762 mutex_lock(&wq_pool_attach_mutex); 1763 1764 list_del(&worker->node); 1765 worker->pool = NULL; 1766 1767 if (list_empty(&pool->workers)) 1768 detach_completion = pool->detach_completion; 1769 mutex_unlock(&wq_pool_attach_mutex); 1770 1771 /* clear leftover flags without pool->lock after it is detached */ 1772 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1773 1774 if (detach_completion) 1775 complete(detach_completion); 1776 } 1777 1778 /** 1779 * create_worker - create a new workqueue worker 1780 * @pool: pool the new worker will belong to 1781 * 1782 * Create and start a new worker which is attached to @pool. 1783 * 1784 * CONTEXT: 1785 * Might sleep. Does GFP_KERNEL allocations. 1786 * 1787 * Return: 1788 * Pointer to the newly created worker. 1789 */ 1790 static struct worker *create_worker(struct worker_pool *pool) 1791 { 1792 struct worker *worker = NULL; 1793 int id = -1; 1794 char id_buf[16]; 1795 1796 /* ID is needed to determine kthread name */ 1797 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL); 1798 if (id < 0) 1799 goto fail; 1800 1801 worker = alloc_worker(pool->node); 1802 if (!worker) 1803 goto fail; 1804 1805 worker->id = id; 1806 1807 if (pool->cpu >= 0) 1808 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1809 pool->attrs->nice < 0 ? "H" : ""); 1810 else 1811 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1812 1813 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1814 "kworker/%s", id_buf); 1815 if (IS_ERR(worker->task)) 1816 goto fail; 1817 1818 set_user_nice(worker->task, pool->attrs->nice); 1819 kthread_bind_mask(worker->task, pool->attrs->cpumask); 1820 1821 /* successful, attach the worker to the pool */ 1822 worker_attach_to_pool(worker, pool); 1823 1824 /* start the newly created worker */ 1825 spin_lock_irq(&pool->lock); 1826 worker->pool->nr_workers++; 1827 worker_enter_idle(worker); 1828 wake_up_process(worker->task); 1829 spin_unlock_irq(&pool->lock); 1830 1831 return worker; 1832 1833 fail: 1834 if (id >= 0) 1835 ida_simple_remove(&pool->worker_ida, id); 1836 kfree(worker); 1837 return NULL; 1838 } 1839 1840 /** 1841 * destroy_worker - destroy a workqueue worker 1842 * @worker: worker to be destroyed 1843 * 1844 * Destroy @worker and adjust @pool stats accordingly. The worker should 1845 * be idle. 1846 * 1847 * CONTEXT: 1848 * spin_lock_irq(pool->lock). 1849 */ 1850 static void destroy_worker(struct worker *worker) 1851 { 1852 struct worker_pool *pool = worker->pool; 1853 1854 lockdep_assert_held(&pool->lock); 1855 1856 /* sanity check frenzy */ 1857 if (WARN_ON(worker->current_work) || 1858 WARN_ON(!list_empty(&worker->scheduled)) || 1859 WARN_ON(!(worker->flags & WORKER_IDLE))) 1860 return; 1861 1862 pool->nr_workers--; 1863 pool->nr_idle--; 1864 1865 list_del_init(&worker->entry); 1866 worker->flags |= WORKER_DIE; 1867 wake_up_process(worker->task); 1868 } 1869 1870 static void idle_worker_timeout(struct timer_list *t) 1871 { 1872 struct worker_pool *pool = from_timer(pool, t, idle_timer); 1873 1874 spin_lock_irq(&pool->lock); 1875 1876 while (too_many_workers(pool)) { 1877 struct worker *worker; 1878 unsigned long expires; 1879 1880 /* idle_list is kept in LIFO order, check the last one */ 1881 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1882 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1883 1884 if (time_before(jiffies, expires)) { 1885 mod_timer(&pool->idle_timer, expires); 1886 break; 1887 } 1888 1889 destroy_worker(worker); 1890 } 1891 1892 spin_unlock_irq(&pool->lock); 1893 } 1894 1895 static void send_mayday(struct work_struct *work) 1896 { 1897 struct pool_workqueue *pwq = get_work_pwq(work); 1898 struct workqueue_struct *wq = pwq->wq; 1899 1900 lockdep_assert_held(&wq_mayday_lock); 1901 1902 if (!wq->rescuer) 1903 return; 1904 1905 /* mayday mayday mayday */ 1906 if (list_empty(&pwq->mayday_node)) { 1907 /* 1908 * If @pwq is for an unbound wq, its base ref may be put at 1909 * any time due to an attribute change. Pin @pwq until the 1910 * rescuer is done with it. 1911 */ 1912 get_pwq(pwq); 1913 list_add_tail(&pwq->mayday_node, &wq->maydays); 1914 wake_up_process(wq->rescuer->task); 1915 } 1916 } 1917 1918 static void pool_mayday_timeout(struct timer_list *t) 1919 { 1920 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 1921 struct work_struct *work; 1922 1923 spin_lock_irq(&pool->lock); 1924 spin_lock(&wq_mayday_lock); /* for wq->maydays */ 1925 1926 if (need_to_create_worker(pool)) { 1927 /* 1928 * We've been trying to create a new worker but 1929 * haven't been successful. We might be hitting an 1930 * allocation deadlock. Send distress signals to 1931 * rescuers. 1932 */ 1933 list_for_each_entry(work, &pool->worklist, entry) 1934 send_mayday(work); 1935 } 1936 1937 spin_unlock(&wq_mayday_lock); 1938 spin_unlock_irq(&pool->lock); 1939 1940 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 1941 } 1942 1943 /** 1944 * maybe_create_worker - create a new worker if necessary 1945 * @pool: pool to create a new worker for 1946 * 1947 * Create a new worker for @pool if necessary. @pool is guaranteed to 1948 * have at least one idle worker on return from this function. If 1949 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1950 * sent to all rescuers with works scheduled on @pool to resolve 1951 * possible allocation deadlock. 1952 * 1953 * On return, need_to_create_worker() is guaranteed to be %false and 1954 * may_start_working() %true. 1955 * 1956 * LOCKING: 1957 * spin_lock_irq(pool->lock) which may be released and regrabbed 1958 * multiple times. Does GFP_KERNEL allocations. Called only from 1959 * manager. 1960 */ 1961 static void maybe_create_worker(struct worker_pool *pool) 1962 __releases(&pool->lock) 1963 __acquires(&pool->lock) 1964 { 1965 restart: 1966 spin_unlock_irq(&pool->lock); 1967 1968 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1969 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1970 1971 while (true) { 1972 if (create_worker(pool) || !need_to_create_worker(pool)) 1973 break; 1974 1975 schedule_timeout_interruptible(CREATE_COOLDOWN); 1976 1977 if (!need_to_create_worker(pool)) 1978 break; 1979 } 1980 1981 del_timer_sync(&pool->mayday_timer); 1982 spin_lock_irq(&pool->lock); 1983 /* 1984 * This is necessary even after a new worker was just successfully 1985 * created as @pool->lock was dropped and the new worker might have 1986 * already become busy. 1987 */ 1988 if (need_to_create_worker(pool)) 1989 goto restart; 1990 } 1991 1992 /** 1993 * manage_workers - manage worker pool 1994 * @worker: self 1995 * 1996 * Assume the manager role and manage the worker pool @worker belongs 1997 * to. At any given time, there can be only zero or one manager per 1998 * pool. The exclusion is handled automatically by this function. 1999 * 2000 * The caller can safely start processing works on false return. On 2001 * true return, it's guaranteed that need_to_create_worker() is false 2002 * and may_start_working() is true. 2003 * 2004 * CONTEXT: 2005 * spin_lock_irq(pool->lock) which may be released and regrabbed 2006 * multiple times. Does GFP_KERNEL allocations. 2007 * 2008 * Return: 2009 * %false if the pool doesn't need management and the caller can safely 2010 * start processing works, %true if management function was performed and 2011 * the conditions that the caller verified before calling the function may 2012 * no longer be true. 2013 */ 2014 static bool manage_workers(struct worker *worker) 2015 { 2016 struct worker_pool *pool = worker->pool; 2017 2018 if (pool->flags & POOL_MANAGER_ACTIVE) 2019 return false; 2020 2021 pool->flags |= POOL_MANAGER_ACTIVE; 2022 pool->manager = worker; 2023 2024 maybe_create_worker(pool); 2025 2026 pool->manager = NULL; 2027 pool->flags &= ~POOL_MANAGER_ACTIVE; 2028 wake_up(&wq_manager_wait); 2029 return true; 2030 } 2031 2032 /** 2033 * process_one_work - process single work 2034 * @worker: self 2035 * @work: work to process 2036 * 2037 * Process @work. This function contains all the logics necessary to 2038 * process a single work including synchronization against and 2039 * interaction with other workers on the same cpu, queueing and 2040 * flushing. As long as context requirement is met, any worker can 2041 * call this function to process a work. 2042 * 2043 * CONTEXT: 2044 * spin_lock_irq(pool->lock) which is released and regrabbed. 2045 */ 2046 static void process_one_work(struct worker *worker, struct work_struct *work) 2047 __releases(&pool->lock) 2048 __acquires(&pool->lock) 2049 { 2050 struct pool_workqueue *pwq = get_work_pwq(work); 2051 struct worker_pool *pool = worker->pool; 2052 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2053 int work_color; 2054 struct worker *collision; 2055 #ifdef CONFIG_LOCKDEP 2056 /* 2057 * It is permissible to free the struct work_struct from 2058 * inside the function that is called from it, this we need to 2059 * take into account for lockdep too. To avoid bogus "held 2060 * lock freed" warnings as well as problems when looking into 2061 * work->lockdep_map, make a copy and use that here. 2062 */ 2063 struct lockdep_map lockdep_map; 2064 2065 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2066 #endif 2067 /* ensure we're on the correct CPU */ 2068 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2069 raw_smp_processor_id() != pool->cpu); 2070 2071 /* 2072 * A single work shouldn't be executed concurrently by 2073 * multiple workers on a single cpu. Check whether anyone is 2074 * already processing the work. If so, defer the work to the 2075 * currently executing one. 2076 */ 2077 collision = find_worker_executing_work(pool, work); 2078 if (unlikely(collision)) { 2079 move_linked_works(work, &collision->scheduled, NULL); 2080 return; 2081 } 2082 2083 /* claim and dequeue */ 2084 debug_work_deactivate(work); 2085 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2086 worker->current_work = work; 2087 worker->current_func = work->func; 2088 worker->current_pwq = pwq; 2089 work_color = get_work_color(work); 2090 2091 /* 2092 * Record wq name for cmdline and debug reporting, may get 2093 * overridden through set_worker_desc(). 2094 */ 2095 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 2096 2097 list_del_init(&work->entry); 2098 2099 /* 2100 * CPU intensive works don't participate in concurrency management. 2101 * They're the scheduler's responsibility. This takes @worker out 2102 * of concurrency management and the next code block will chain 2103 * execution of the pending work items. 2104 */ 2105 if (unlikely(cpu_intensive)) 2106 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2107 2108 /* 2109 * Wake up another worker if necessary. The condition is always 2110 * false for normal per-cpu workers since nr_running would always 2111 * be >= 1 at this point. This is used to chain execution of the 2112 * pending work items for WORKER_NOT_RUNNING workers such as the 2113 * UNBOUND and CPU_INTENSIVE ones. 2114 */ 2115 if (need_more_worker(pool)) 2116 wake_up_worker(pool); 2117 2118 /* 2119 * Record the last pool and clear PENDING which should be the last 2120 * update to @work. Also, do this inside @pool->lock so that 2121 * PENDING and queued state changes happen together while IRQ is 2122 * disabled. 2123 */ 2124 set_work_pool_and_clear_pending(work, pool->id); 2125 2126 spin_unlock_irq(&pool->lock); 2127 2128 lock_map_acquire(&pwq->wq->lockdep_map); 2129 lock_map_acquire(&lockdep_map); 2130 /* 2131 * Strictly speaking we should mark the invariant state without holding 2132 * any locks, that is, before these two lock_map_acquire()'s. 2133 * 2134 * However, that would result in: 2135 * 2136 * A(W1) 2137 * WFC(C) 2138 * A(W1) 2139 * C(C) 2140 * 2141 * Which would create W1->C->W1 dependencies, even though there is no 2142 * actual deadlock possible. There are two solutions, using a 2143 * read-recursive acquire on the work(queue) 'locks', but this will then 2144 * hit the lockdep limitation on recursive locks, or simply discard 2145 * these locks. 2146 * 2147 * AFAICT there is no possible deadlock scenario between the 2148 * flush_work() and complete() primitives (except for single-threaded 2149 * workqueues), so hiding them isn't a problem. 2150 */ 2151 lockdep_invariant_state(true); 2152 trace_workqueue_execute_start(work); 2153 worker->current_func(work); 2154 /* 2155 * While we must be careful to not use "work" after this, the trace 2156 * point will only record its address. 2157 */ 2158 trace_workqueue_execute_end(work); 2159 lock_map_release(&lockdep_map); 2160 lock_map_release(&pwq->wq->lockdep_map); 2161 2162 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2163 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2164 " last function: %pf\n", 2165 current->comm, preempt_count(), task_pid_nr(current), 2166 worker->current_func); 2167 debug_show_held_locks(current); 2168 dump_stack(); 2169 } 2170 2171 /* 2172 * The following prevents a kworker from hogging CPU on !PREEMPT 2173 * kernels, where a requeueing work item waiting for something to 2174 * happen could deadlock with stop_machine as such work item could 2175 * indefinitely requeue itself while all other CPUs are trapped in 2176 * stop_machine. At the same time, report a quiescent RCU state so 2177 * the same condition doesn't freeze RCU. 2178 */ 2179 cond_resched(); 2180 2181 spin_lock_irq(&pool->lock); 2182 2183 /* clear cpu intensive status */ 2184 if (unlikely(cpu_intensive)) 2185 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2186 2187 /* we're done with it, release */ 2188 hash_del(&worker->hentry); 2189 worker->current_work = NULL; 2190 worker->current_func = NULL; 2191 worker->current_pwq = NULL; 2192 pwq_dec_nr_in_flight(pwq, work_color); 2193 } 2194 2195 /** 2196 * process_scheduled_works - process scheduled works 2197 * @worker: self 2198 * 2199 * Process all scheduled works. Please note that the scheduled list 2200 * may change while processing a work, so this function repeatedly 2201 * fetches a work from the top and executes it. 2202 * 2203 * CONTEXT: 2204 * spin_lock_irq(pool->lock) which may be released and regrabbed 2205 * multiple times. 2206 */ 2207 static void process_scheduled_works(struct worker *worker) 2208 { 2209 while (!list_empty(&worker->scheduled)) { 2210 struct work_struct *work = list_first_entry(&worker->scheduled, 2211 struct work_struct, entry); 2212 process_one_work(worker, work); 2213 } 2214 } 2215 2216 static void set_pf_worker(bool val) 2217 { 2218 mutex_lock(&wq_pool_attach_mutex); 2219 if (val) 2220 current->flags |= PF_WQ_WORKER; 2221 else 2222 current->flags &= ~PF_WQ_WORKER; 2223 mutex_unlock(&wq_pool_attach_mutex); 2224 } 2225 2226 /** 2227 * worker_thread - the worker thread function 2228 * @__worker: self 2229 * 2230 * The worker thread function. All workers belong to a worker_pool - 2231 * either a per-cpu one or dynamic unbound one. These workers process all 2232 * work items regardless of their specific target workqueue. The only 2233 * exception is work items which belong to workqueues with a rescuer which 2234 * will be explained in rescuer_thread(). 2235 * 2236 * Return: 0 2237 */ 2238 static int worker_thread(void *__worker) 2239 { 2240 struct worker *worker = __worker; 2241 struct worker_pool *pool = worker->pool; 2242 2243 /* tell the scheduler that this is a workqueue worker */ 2244 set_pf_worker(true); 2245 woke_up: 2246 spin_lock_irq(&pool->lock); 2247 2248 /* am I supposed to die? */ 2249 if (unlikely(worker->flags & WORKER_DIE)) { 2250 spin_unlock_irq(&pool->lock); 2251 WARN_ON_ONCE(!list_empty(&worker->entry)); 2252 set_pf_worker(false); 2253 2254 set_task_comm(worker->task, "kworker/dying"); 2255 ida_simple_remove(&pool->worker_ida, worker->id); 2256 worker_detach_from_pool(worker); 2257 kfree(worker); 2258 return 0; 2259 } 2260 2261 worker_leave_idle(worker); 2262 recheck: 2263 /* no more worker necessary? */ 2264 if (!need_more_worker(pool)) 2265 goto sleep; 2266 2267 /* do we need to manage? */ 2268 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2269 goto recheck; 2270 2271 /* 2272 * ->scheduled list can only be filled while a worker is 2273 * preparing to process a work or actually processing it. 2274 * Make sure nobody diddled with it while I was sleeping. 2275 */ 2276 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2277 2278 /* 2279 * Finish PREP stage. We're guaranteed to have at least one idle 2280 * worker or that someone else has already assumed the manager 2281 * role. This is where @worker starts participating in concurrency 2282 * management if applicable and concurrency management is restored 2283 * after being rebound. See rebind_workers() for details. 2284 */ 2285 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2286 2287 do { 2288 struct work_struct *work = 2289 list_first_entry(&pool->worklist, 2290 struct work_struct, entry); 2291 2292 pool->watchdog_ts = jiffies; 2293 2294 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2295 /* optimization path, not strictly necessary */ 2296 process_one_work(worker, work); 2297 if (unlikely(!list_empty(&worker->scheduled))) 2298 process_scheduled_works(worker); 2299 } else { 2300 move_linked_works(work, &worker->scheduled, NULL); 2301 process_scheduled_works(worker); 2302 } 2303 } while (keep_working(pool)); 2304 2305 worker_set_flags(worker, WORKER_PREP); 2306 sleep: 2307 /* 2308 * pool->lock is held and there's no work to process and no need to 2309 * manage, sleep. Workers are woken up only while holding 2310 * pool->lock or from local cpu, so setting the current state 2311 * before releasing pool->lock is enough to prevent losing any 2312 * event. 2313 */ 2314 worker_enter_idle(worker); 2315 __set_current_state(TASK_IDLE); 2316 spin_unlock_irq(&pool->lock); 2317 schedule(); 2318 goto woke_up; 2319 } 2320 2321 /** 2322 * rescuer_thread - the rescuer thread function 2323 * @__rescuer: self 2324 * 2325 * Workqueue rescuer thread function. There's one rescuer for each 2326 * workqueue which has WQ_MEM_RECLAIM set. 2327 * 2328 * Regular work processing on a pool may block trying to create a new 2329 * worker which uses GFP_KERNEL allocation which has slight chance of 2330 * developing into deadlock if some works currently on the same queue 2331 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2332 * the problem rescuer solves. 2333 * 2334 * When such condition is possible, the pool summons rescuers of all 2335 * workqueues which have works queued on the pool and let them process 2336 * those works so that forward progress can be guaranteed. 2337 * 2338 * This should happen rarely. 2339 * 2340 * Return: 0 2341 */ 2342 static int rescuer_thread(void *__rescuer) 2343 { 2344 struct worker *rescuer = __rescuer; 2345 struct workqueue_struct *wq = rescuer->rescue_wq; 2346 struct list_head *scheduled = &rescuer->scheduled; 2347 bool should_stop; 2348 2349 set_user_nice(current, RESCUER_NICE_LEVEL); 2350 2351 /* 2352 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2353 * doesn't participate in concurrency management. 2354 */ 2355 set_pf_worker(true); 2356 repeat: 2357 set_current_state(TASK_IDLE); 2358 2359 /* 2360 * By the time the rescuer is requested to stop, the workqueue 2361 * shouldn't have any work pending, but @wq->maydays may still have 2362 * pwq(s) queued. This can happen by non-rescuer workers consuming 2363 * all the work items before the rescuer got to them. Go through 2364 * @wq->maydays processing before acting on should_stop so that the 2365 * list is always empty on exit. 2366 */ 2367 should_stop = kthread_should_stop(); 2368 2369 /* see whether any pwq is asking for help */ 2370 spin_lock_irq(&wq_mayday_lock); 2371 2372 while (!list_empty(&wq->maydays)) { 2373 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2374 struct pool_workqueue, mayday_node); 2375 struct worker_pool *pool = pwq->pool; 2376 struct work_struct *work, *n; 2377 bool first = true; 2378 2379 __set_current_state(TASK_RUNNING); 2380 list_del_init(&pwq->mayday_node); 2381 2382 spin_unlock_irq(&wq_mayday_lock); 2383 2384 worker_attach_to_pool(rescuer, pool); 2385 2386 spin_lock_irq(&pool->lock); 2387 2388 /* 2389 * Slurp in all works issued via this workqueue and 2390 * process'em. 2391 */ 2392 WARN_ON_ONCE(!list_empty(scheduled)); 2393 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2394 if (get_work_pwq(work) == pwq) { 2395 if (first) 2396 pool->watchdog_ts = jiffies; 2397 move_linked_works(work, scheduled, &n); 2398 } 2399 first = false; 2400 } 2401 2402 if (!list_empty(scheduled)) { 2403 process_scheduled_works(rescuer); 2404 2405 /* 2406 * The above execution of rescued work items could 2407 * have created more to rescue through 2408 * pwq_activate_first_delayed() or chained 2409 * queueing. Let's put @pwq back on mayday list so 2410 * that such back-to-back work items, which may be 2411 * being used to relieve memory pressure, don't 2412 * incur MAYDAY_INTERVAL delay inbetween. 2413 */ 2414 if (need_to_create_worker(pool)) { 2415 spin_lock(&wq_mayday_lock); 2416 get_pwq(pwq); 2417 list_move_tail(&pwq->mayday_node, &wq->maydays); 2418 spin_unlock(&wq_mayday_lock); 2419 } 2420 } 2421 2422 /* 2423 * Put the reference grabbed by send_mayday(). @pool won't 2424 * go away while we're still attached to it. 2425 */ 2426 put_pwq(pwq); 2427 2428 /* 2429 * Leave this pool. If need_more_worker() is %true, notify a 2430 * regular worker; otherwise, we end up with 0 concurrency 2431 * and stalling the execution. 2432 */ 2433 if (need_more_worker(pool)) 2434 wake_up_worker(pool); 2435 2436 spin_unlock_irq(&pool->lock); 2437 2438 worker_detach_from_pool(rescuer); 2439 2440 spin_lock_irq(&wq_mayday_lock); 2441 } 2442 2443 spin_unlock_irq(&wq_mayday_lock); 2444 2445 if (should_stop) { 2446 __set_current_state(TASK_RUNNING); 2447 set_pf_worker(false); 2448 return 0; 2449 } 2450 2451 /* rescuers should never participate in concurrency management */ 2452 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2453 schedule(); 2454 goto repeat; 2455 } 2456 2457 /** 2458 * check_flush_dependency - check for flush dependency sanity 2459 * @target_wq: workqueue being flushed 2460 * @target_work: work item being flushed (NULL for workqueue flushes) 2461 * 2462 * %current is trying to flush the whole @target_wq or @target_work on it. 2463 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2464 * reclaiming memory or running on a workqueue which doesn't have 2465 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2466 * a deadlock. 2467 */ 2468 static void check_flush_dependency(struct workqueue_struct *target_wq, 2469 struct work_struct *target_work) 2470 { 2471 work_func_t target_func = target_work ? target_work->func : NULL; 2472 struct worker *worker; 2473 2474 if (target_wq->flags & WQ_MEM_RECLAIM) 2475 return; 2476 2477 worker = current_wq_worker(); 2478 2479 WARN_ONCE(current->flags & PF_MEMALLOC, 2480 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf", 2481 current->pid, current->comm, target_wq->name, target_func); 2482 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2483 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2484 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf", 2485 worker->current_pwq->wq->name, worker->current_func, 2486 target_wq->name, target_func); 2487 } 2488 2489 struct wq_barrier { 2490 struct work_struct work; 2491 struct completion done; 2492 struct task_struct *task; /* purely informational */ 2493 }; 2494 2495 static void wq_barrier_func(struct work_struct *work) 2496 { 2497 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2498 complete(&barr->done); 2499 } 2500 2501 /** 2502 * insert_wq_barrier - insert a barrier work 2503 * @pwq: pwq to insert barrier into 2504 * @barr: wq_barrier to insert 2505 * @target: target work to attach @barr to 2506 * @worker: worker currently executing @target, NULL if @target is not executing 2507 * 2508 * @barr is linked to @target such that @barr is completed only after 2509 * @target finishes execution. Please note that the ordering 2510 * guarantee is observed only with respect to @target and on the local 2511 * cpu. 2512 * 2513 * Currently, a queued barrier can't be canceled. This is because 2514 * try_to_grab_pending() can't determine whether the work to be 2515 * grabbed is at the head of the queue and thus can't clear LINKED 2516 * flag of the previous work while there must be a valid next work 2517 * after a work with LINKED flag set. 2518 * 2519 * Note that when @worker is non-NULL, @target may be modified 2520 * underneath us, so we can't reliably determine pwq from @target. 2521 * 2522 * CONTEXT: 2523 * spin_lock_irq(pool->lock). 2524 */ 2525 static void insert_wq_barrier(struct pool_workqueue *pwq, 2526 struct wq_barrier *barr, 2527 struct work_struct *target, struct worker *worker) 2528 { 2529 struct list_head *head; 2530 unsigned int linked = 0; 2531 2532 /* 2533 * debugobject calls are safe here even with pool->lock locked 2534 * as we know for sure that this will not trigger any of the 2535 * checks and call back into the fixup functions where we 2536 * might deadlock. 2537 */ 2538 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2539 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2540 2541 init_completion_map(&barr->done, &target->lockdep_map); 2542 2543 barr->task = current; 2544 2545 /* 2546 * If @target is currently being executed, schedule the 2547 * barrier to the worker; otherwise, put it after @target. 2548 */ 2549 if (worker) 2550 head = worker->scheduled.next; 2551 else { 2552 unsigned long *bits = work_data_bits(target); 2553 2554 head = target->entry.next; 2555 /* there can already be other linked works, inherit and set */ 2556 linked = *bits & WORK_STRUCT_LINKED; 2557 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2558 } 2559 2560 debug_work_activate(&barr->work); 2561 insert_work(pwq, &barr->work, head, 2562 work_color_to_flags(WORK_NO_COLOR) | linked); 2563 } 2564 2565 /** 2566 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2567 * @wq: workqueue being flushed 2568 * @flush_color: new flush color, < 0 for no-op 2569 * @work_color: new work color, < 0 for no-op 2570 * 2571 * Prepare pwqs for workqueue flushing. 2572 * 2573 * If @flush_color is non-negative, flush_color on all pwqs should be 2574 * -1. If no pwq has in-flight commands at the specified color, all 2575 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2576 * has in flight commands, its pwq->flush_color is set to 2577 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2578 * wakeup logic is armed and %true is returned. 2579 * 2580 * The caller should have initialized @wq->first_flusher prior to 2581 * calling this function with non-negative @flush_color. If 2582 * @flush_color is negative, no flush color update is done and %false 2583 * is returned. 2584 * 2585 * If @work_color is non-negative, all pwqs should have the same 2586 * work_color which is previous to @work_color and all will be 2587 * advanced to @work_color. 2588 * 2589 * CONTEXT: 2590 * mutex_lock(wq->mutex). 2591 * 2592 * Return: 2593 * %true if @flush_color >= 0 and there's something to flush. %false 2594 * otherwise. 2595 */ 2596 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2597 int flush_color, int work_color) 2598 { 2599 bool wait = false; 2600 struct pool_workqueue *pwq; 2601 2602 if (flush_color >= 0) { 2603 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2604 atomic_set(&wq->nr_pwqs_to_flush, 1); 2605 } 2606 2607 for_each_pwq(pwq, wq) { 2608 struct worker_pool *pool = pwq->pool; 2609 2610 spin_lock_irq(&pool->lock); 2611 2612 if (flush_color >= 0) { 2613 WARN_ON_ONCE(pwq->flush_color != -1); 2614 2615 if (pwq->nr_in_flight[flush_color]) { 2616 pwq->flush_color = flush_color; 2617 atomic_inc(&wq->nr_pwqs_to_flush); 2618 wait = true; 2619 } 2620 } 2621 2622 if (work_color >= 0) { 2623 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2624 pwq->work_color = work_color; 2625 } 2626 2627 spin_unlock_irq(&pool->lock); 2628 } 2629 2630 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2631 complete(&wq->first_flusher->done); 2632 2633 return wait; 2634 } 2635 2636 /** 2637 * flush_workqueue - ensure that any scheduled work has run to completion. 2638 * @wq: workqueue to flush 2639 * 2640 * This function sleeps until all work items which were queued on entry 2641 * have finished execution, but it is not livelocked by new incoming ones. 2642 */ 2643 void flush_workqueue(struct workqueue_struct *wq) 2644 { 2645 struct wq_flusher this_flusher = { 2646 .list = LIST_HEAD_INIT(this_flusher.list), 2647 .flush_color = -1, 2648 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 2649 }; 2650 int next_color; 2651 2652 if (WARN_ON(!wq_online)) 2653 return; 2654 2655 lock_map_acquire(&wq->lockdep_map); 2656 lock_map_release(&wq->lockdep_map); 2657 2658 mutex_lock(&wq->mutex); 2659 2660 /* 2661 * Start-to-wait phase 2662 */ 2663 next_color = work_next_color(wq->work_color); 2664 2665 if (next_color != wq->flush_color) { 2666 /* 2667 * Color space is not full. The current work_color 2668 * becomes our flush_color and work_color is advanced 2669 * by one. 2670 */ 2671 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2672 this_flusher.flush_color = wq->work_color; 2673 wq->work_color = next_color; 2674 2675 if (!wq->first_flusher) { 2676 /* no flush in progress, become the first flusher */ 2677 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2678 2679 wq->first_flusher = &this_flusher; 2680 2681 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2682 wq->work_color)) { 2683 /* nothing to flush, done */ 2684 wq->flush_color = next_color; 2685 wq->first_flusher = NULL; 2686 goto out_unlock; 2687 } 2688 } else { 2689 /* wait in queue */ 2690 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2691 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2692 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2693 } 2694 } else { 2695 /* 2696 * Oops, color space is full, wait on overflow queue. 2697 * The next flush completion will assign us 2698 * flush_color and transfer to flusher_queue. 2699 */ 2700 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2701 } 2702 2703 check_flush_dependency(wq, NULL); 2704 2705 mutex_unlock(&wq->mutex); 2706 2707 wait_for_completion(&this_flusher.done); 2708 2709 /* 2710 * Wake-up-and-cascade phase 2711 * 2712 * First flushers are responsible for cascading flushes and 2713 * handling overflow. Non-first flushers can simply return. 2714 */ 2715 if (wq->first_flusher != &this_flusher) 2716 return; 2717 2718 mutex_lock(&wq->mutex); 2719 2720 /* we might have raced, check again with mutex held */ 2721 if (wq->first_flusher != &this_flusher) 2722 goto out_unlock; 2723 2724 wq->first_flusher = NULL; 2725 2726 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2727 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2728 2729 while (true) { 2730 struct wq_flusher *next, *tmp; 2731 2732 /* complete all the flushers sharing the current flush color */ 2733 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2734 if (next->flush_color != wq->flush_color) 2735 break; 2736 list_del_init(&next->list); 2737 complete(&next->done); 2738 } 2739 2740 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2741 wq->flush_color != work_next_color(wq->work_color)); 2742 2743 /* this flush_color is finished, advance by one */ 2744 wq->flush_color = work_next_color(wq->flush_color); 2745 2746 /* one color has been freed, handle overflow queue */ 2747 if (!list_empty(&wq->flusher_overflow)) { 2748 /* 2749 * Assign the same color to all overflowed 2750 * flushers, advance work_color and append to 2751 * flusher_queue. This is the start-to-wait 2752 * phase for these overflowed flushers. 2753 */ 2754 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2755 tmp->flush_color = wq->work_color; 2756 2757 wq->work_color = work_next_color(wq->work_color); 2758 2759 list_splice_tail_init(&wq->flusher_overflow, 2760 &wq->flusher_queue); 2761 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2762 } 2763 2764 if (list_empty(&wq->flusher_queue)) { 2765 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2766 break; 2767 } 2768 2769 /* 2770 * Need to flush more colors. Make the next flusher 2771 * the new first flusher and arm pwqs. 2772 */ 2773 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2774 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2775 2776 list_del_init(&next->list); 2777 wq->first_flusher = next; 2778 2779 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2780 break; 2781 2782 /* 2783 * Meh... this color is already done, clear first 2784 * flusher and repeat cascading. 2785 */ 2786 wq->first_flusher = NULL; 2787 } 2788 2789 out_unlock: 2790 mutex_unlock(&wq->mutex); 2791 } 2792 EXPORT_SYMBOL(flush_workqueue); 2793 2794 /** 2795 * drain_workqueue - drain a workqueue 2796 * @wq: workqueue to drain 2797 * 2798 * Wait until the workqueue becomes empty. While draining is in progress, 2799 * only chain queueing is allowed. IOW, only currently pending or running 2800 * work items on @wq can queue further work items on it. @wq is flushed 2801 * repeatedly until it becomes empty. The number of flushing is determined 2802 * by the depth of chaining and should be relatively short. Whine if it 2803 * takes too long. 2804 */ 2805 void drain_workqueue(struct workqueue_struct *wq) 2806 { 2807 unsigned int flush_cnt = 0; 2808 struct pool_workqueue *pwq; 2809 2810 /* 2811 * __queue_work() needs to test whether there are drainers, is much 2812 * hotter than drain_workqueue() and already looks at @wq->flags. 2813 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2814 */ 2815 mutex_lock(&wq->mutex); 2816 if (!wq->nr_drainers++) 2817 wq->flags |= __WQ_DRAINING; 2818 mutex_unlock(&wq->mutex); 2819 reflush: 2820 flush_workqueue(wq); 2821 2822 mutex_lock(&wq->mutex); 2823 2824 for_each_pwq(pwq, wq) { 2825 bool drained; 2826 2827 spin_lock_irq(&pwq->pool->lock); 2828 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2829 spin_unlock_irq(&pwq->pool->lock); 2830 2831 if (drained) 2832 continue; 2833 2834 if (++flush_cnt == 10 || 2835 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2836 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2837 wq->name, flush_cnt); 2838 2839 mutex_unlock(&wq->mutex); 2840 goto reflush; 2841 } 2842 2843 if (!--wq->nr_drainers) 2844 wq->flags &= ~__WQ_DRAINING; 2845 mutex_unlock(&wq->mutex); 2846 } 2847 EXPORT_SYMBOL_GPL(drain_workqueue); 2848 2849 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 2850 bool from_cancel) 2851 { 2852 struct worker *worker = NULL; 2853 struct worker_pool *pool; 2854 struct pool_workqueue *pwq; 2855 2856 might_sleep(); 2857 2858 local_irq_disable(); 2859 pool = get_work_pool(work); 2860 if (!pool) { 2861 local_irq_enable(); 2862 return false; 2863 } 2864 2865 spin_lock(&pool->lock); 2866 /* see the comment in try_to_grab_pending() with the same code */ 2867 pwq = get_work_pwq(work); 2868 if (pwq) { 2869 if (unlikely(pwq->pool != pool)) 2870 goto already_gone; 2871 } else { 2872 worker = find_worker_executing_work(pool, work); 2873 if (!worker) 2874 goto already_gone; 2875 pwq = worker->current_pwq; 2876 } 2877 2878 check_flush_dependency(pwq->wq, work); 2879 2880 insert_wq_barrier(pwq, barr, work, worker); 2881 spin_unlock_irq(&pool->lock); 2882 2883 /* 2884 * Force a lock recursion deadlock when using flush_work() inside a 2885 * single-threaded or rescuer equipped workqueue. 2886 * 2887 * For single threaded workqueues the deadlock happens when the work 2888 * is after the work issuing the flush_work(). For rescuer equipped 2889 * workqueues the deadlock happens when the rescuer stalls, blocking 2890 * forward progress. 2891 */ 2892 if (!from_cancel && 2893 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) { 2894 lock_map_acquire(&pwq->wq->lockdep_map); 2895 lock_map_release(&pwq->wq->lockdep_map); 2896 } 2897 2898 return true; 2899 already_gone: 2900 spin_unlock_irq(&pool->lock); 2901 return false; 2902 } 2903 2904 static bool __flush_work(struct work_struct *work, bool from_cancel) 2905 { 2906 struct wq_barrier barr; 2907 2908 if (WARN_ON(!wq_online)) 2909 return false; 2910 2911 if (!from_cancel) { 2912 lock_map_acquire(&work->lockdep_map); 2913 lock_map_release(&work->lockdep_map); 2914 } 2915 2916 if (start_flush_work(work, &barr, from_cancel)) { 2917 wait_for_completion(&barr.done); 2918 destroy_work_on_stack(&barr.work); 2919 return true; 2920 } else { 2921 return false; 2922 } 2923 } 2924 2925 /** 2926 * flush_work - wait for a work to finish executing the last queueing instance 2927 * @work: the work to flush 2928 * 2929 * Wait until @work has finished execution. @work is guaranteed to be idle 2930 * on return if it hasn't been requeued since flush started. 2931 * 2932 * Return: 2933 * %true if flush_work() waited for the work to finish execution, 2934 * %false if it was already idle. 2935 */ 2936 bool flush_work(struct work_struct *work) 2937 { 2938 return __flush_work(work, false); 2939 } 2940 EXPORT_SYMBOL_GPL(flush_work); 2941 2942 struct cwt_wait { 2943 wait_queue_entry_t wait; 2944 struct work_struct *work; 2945 }; 2946 2947 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2948 { 2949 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 2950 2951 if (cwait->work != key) 2952 return 0; 2953 return autoremove_wake_function(wait, mode, sync, key); 2954 } 2955 2956 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 2957 { 2958 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 2959 unsigned long flags; 2960 int ret; 2961 2962 do { 2963 ret = try_to_grab_pending(work, is_dwork, &flags); 2964 /* 2965 * If someone else is already canceling, wait for it to 2966 * finish. flush_work() doesn't work for PREEMPT_NONE 2967 * because we may get scheduled between @work's completion 2968 * and the other canceling task resuming and clearing 2969 * CANCELING - flush_work() will return false immediately 2970 * as @work is no longer busy, try_to_grab_pending() will 2971 * return -ENOENT as @work is still being canceled and the 2972 * other canceling task won't be able to clear CANCELING as 2973 * we're hogging the CPU. 2974 * 2975 * Let's wait for completion using a waitqueue. As this 2976 * may lead to the thundering herd problem, use a custom 2977 * wake function which matches @work along with exclusive 2978 * wait and wakeup. 2979 */ 2980 if (unlikely(ret == -ENOENT)) { 2981 struct cwt_wait cwait; 2982 2983 init_wait(&cwait.wait); 2984 cwait.wait.func = cwt_wakefn; 2985 cwait.work = work; 2986 2987 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 2988 TASK_UNINTERRUPTIBLE); 2989 if (work_is_canceling(work)) 2990 schedule(); 2991 finish_wait(&cancel_waitq, &cwait.wait); 2992 } 2993 } while (unlikely(ret < 0)); 2994 2995 /* tell other tasks trying to grab @work to back off */ 2996 mark_work_canceling(work); 2997 local_irq_restore(flags); 2998 2999 /* 3000 * This allows canceling during early boot. We know that @work 3001 * isn't executing. 3002 */ 3003 if (wq_online) 3004 __flush_work(work, true); 3005 3006 clear_work_data(work); 3007 3008 /* 3009 * Paired with prepare_to_wait() above so that either 3010 * waitqueue_active() is visible here or !work_is_canceling() is 3011 * visible there. 3012 */ 3013 smp_mb(); 3014 if (waitqueue_active(&cancel_waitq)) 3015 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 3016 3017 return ret; 3018 } 3019 3020 /** 3021 * cancel_work_sync - cancel a work and wait for it to finish 3022 * @work: the work to cancel 3023 * 3024 * Cancel @work and wait for its execution to finish. This function 3025 * can be used even if the work re-queues itself or migrates to 3026 * another workqueue. On return from this function, @work is 3027 * guaranteed to be not pending or executing on any CPU. 3028 * 3029 * cancel_work_sync(&delayed_work->work) must not be used for 3030 * delayed_work's. Use cancel_delayed_work_sync() instead. 3031 * 3032 * The caller must ensure that the workqueue on which @work was last 3033 * queued can't be destroyed before this function returns. 3034 * 3035 * Return: 3036 * %true if @work was pending, %false otherwise. 3037 */ 3038 bool cancel_work_sync(struct work_struct *work) 3039 { 3040 return __cancel_work_timer(work, false); 3041 } 3042 EXPORT_SYMBOL_GPL(cancel_work_sync); 3043 3044 /** 3045 * flush_delayed_work - wait for a dwork to finish executing the last queueing 3046 * @dwork: the delayed work to flush 3047 * 3048 * Delayed timer is cancelled and the pending work is queued for 3049 * immediate execution. Like flush_work(), this function only 3050 * considers the last queueing instance of @dwork. 3051 * 3052 * Return: 3053 * %true if flush_work() waited for the work to finish execution, 3054 * %false if it was already idle. 3055 */ 3056 bool flush_delayed_work(struct delayed_work *dwork) 3057 { 3058 local_irq_disable(); 3059 if (del_timer_sync(&dwork->timer)) 3060 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 3061 local_irq_enable(); 3062 return flush_work(&dwork->work); 3063 } 3064 EXPORT_SYMBOL(flush_delayed_work); 3065 3066 /** 3067 * flush_rcu_work - wait for a rwork to finish executing the last queueing 3068 * @rwork: the rcu work to flush 3069 * 3070 * Return: 3071 * %true if flush_rcu_work() waited for the work to finish execution, 3072 * %false if it was already idle. 3073 */ 3074 bool flush_rcu_work(struct rcu_work *rwork) 3075 { 3076 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 3077 rcu_barrier(); 3078 flush_work(&rwork->work); 3079 return true; 3080 } else { 3081 return flush_work(&rwork->work); 3082 } 3083 } 3084 EXPORT_SYMBOL(flush_rcu_work); 3085 3086 static bool __cancel_work(struct work_struct *work, bool is_dwork) 3087 { 3088 unsigned long flags; 3089 int ret; 3090 3091 do { 3092 ret = try_to_grab_pending(work, is_dwork, &flags); 3093 } while (unlikely(ret == -EAGAIN)); 3094 3095 if (unlikely(ret < 0)) 3096 return false; 3097 3098 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 3099 local_irq_restore(flags); 3100 return ret; 3101 } 3102 3103 /** 3104 * cancel_delayed_work - cancel a delayed work 3105 * @dwork: delayed_work to cancel 3106 * 3107 * Kill off a pending delayed_work. 3108 * 3109 * Return: %true if @dwork was pending and canceled; %false if it wasn't 3110 * pending. 3111 * 3112 * Note: 3113 * The work callback function may still be running on return, unless 3114 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 3115 * use cancel_delayed_work_sync() to wait on it. 3116 * 3117 * This function is safe to call from any context including IRQ handler. 3118 */ 3119 bool cancel_delayed_work(struct delayed_work *dwork) 3120 { 3121 return __cancel_work(&dwork->work, true); 3122 } 3123 EXPORT_SYMBOL(cancel_delayed_work); 3124 3125 /** 3126 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3127 * @dwork: the delayed work cancel 3128 * 3129 * This is cancel_work_sync() for delayed works. 3130 * 3131 * Return: 3132 * %true if @dwork was pending, %false otherwise. 3133 */ 3134 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3135 { 3136 return __cancel_work_timer(&dwork->work, true); 3137 } 3138 EXPORT_SYMBOL(cancel_delayed_work_sync); 3139 3140 /** 3141 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3142 * @func: the function to call 3143 * 3144 * schedule_on_each_cpu() executes @func on each online CPU using the 3145 * system workqueue and blocks until all CPUs have completed. 3146 * schedule_on_each_cpu() is very slow. 3147 * 3148 * Return: 3149 * 0 on success, -errno on failure. 3150 */ 3151 int schedule_on_each_cpu(work_func_t func) 3152 { 3153 int cpu; 3154 struct work_struct __percpu *works; 3155 3156 works = alloc_percpu(struct work_struct); 3157 if (!works) 3158 return -ENOMEM; 3159 3160 get_online_cpus(); 3161 3162 for_each_online_cpu(cpu) { 3163 struct work_struct *work = per_cpu_ptr(works, cpu); 3164 3165 INIT_WORK(work, func); 3166 schedule_work_on(cpu, work); 3167 } 3168 3169 for_each_online_cpu(cpu) 3170 flush_work(per_cpu_ptr(works, cpu)); 3171 3172 put_online_cpus(); 3173 free_percpu(works); 3174 return 0; 3175 } 3176 3177 /** 3178 * execute_in_process_context - reliably execute the routine with user context 3179 * @fn: the function to execute 3180 * @ew: guaranteed storage for the execute work structure (must 3181 * be available when the work executes) 3182 * 3183 * Executes the function immediately if process context is available, 3184 * otherwise schedules the function for delayed execution. 3185 * 3186 * Return: 0 - function was executed 3187 * 1 - function was scheduled for execution 3188 */ 3189 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3190 { 3191 if (!in_interrupt()) { 3192 fn(&ew->work); 3193 return 0; 3194 } 3195 3196 INIT_WORK(&ew->work, fn); 3197 schedule_work(&ew->work); 3198 3199 return 1; 3200 } 3201 EXPORT_SYMBOL_GPL(execute_in_process_context); 3202 3203 /** 3204 * free_workqueue_attrs - free a workqueue_attrs 3205 * @attrs: workqueue_attrs to free 3206 * 3207 * Undo alloc_workqueue_attrs(). 3208 */ 3209 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3210 { 3211 if (attrs) { 3212 free_cpumask_var(attrs->cpumask); 3213 kfree(attrs); 3214 } 3215 } 3216 3217 /** 3218 * alloc_workqueue_attrs - allocate a workqueue_attrs 3219 * @gfp_mask: allocation mask to use 3220 * 3221 * Allocate a new workqueue_attrs, initialize with default settings and 3222 * return it. 3223 * 3224 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3225 */ 3226 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask) 3227 { 3228 struct workqueue_attrs *attrs; 3229 3230 attrs = kzalloc(sizeof(*attrs), gfp_mask); 3231 if (!attrs) 3232 goto fail; 3233 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask)) 3234 goto fail; 3235 3236 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3237 return attrs; 3238 fail: 3239 free_workqueue_attrs(attrs); 3240 return NULL; 3241 } 3242 3243 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3244 const struct workqueue_attrs *from) 3245 { 3246 to->nice = from->nice; 3247 cpumask_copy(to->cpumask, from->cpumask); 3248 /* 3249 * Unlike hash and equality test, this function doesn't ignore 3250 * ->no_numa as it is used for both pool and wq attrs. Instead, 3251 * get_unbound_pool() explicitly clears ->no_numa after copying. 3252 */ 3253 to->no_numa = from->no_numa; 3254 } 3255 3256 /* hash value of the content of @attr */ 3257 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3258 { 3259 u32 hash = 0; 3260 3261 hash = jhash_1word(attrs->nice, hash); 3262 hash = jhash(cpumask_bits(attrs->cpumask), 3263 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3264 return hash; 3265 } 3266 3267 /* content equality test */ 3268 static bool wqattrs_equal(const struct workqueue_attrs *a, 3269 const struct workqueue_attrs *b) 3270 { 3271 if (a->nice != b->nice) 3272 return false; 3273 if (!cpumask_equal(a->cpumask, b->cpumask)) 3274 return false; 3275 return true; 3276 } 3277 3278 /** 3279 * init_worker_pool - initialize a newly zalloc'd worker_pool 3280 * @pool: worker_pool to initialize 3281 * 3282 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3283 * 3284 * Return: 0 on success, -errno on failure. Even on failure, all fields 3285 * inside @pool proper are initialized and put_unbound_pool() can be called 3286 * on @pool safely to release it. 3287 */ 3288 static int init_worker_pool(struct worker_pool *pool) 3289 { 3290 spin_lock_init(&pool->lock); 3291 pool->id = -1; 3292 pool->cpu = -1; 3293 pool->node = NUMA_NO_NODE; 3294 pool->flags |= POOL_DISASSOCIATED; 3295 pool->watchdog_ts = jiffies; 3296 INIT_LIST_HEAD(&pool->worklist); 3297 INIT_LIST_HEAD(&pool->idle_list); 3298 hash_init(pool->busy_hash); 3299 3300 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 3301 3302 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 3303 3304 INIT_LIST_HEAD(&pool->workers); 3305 3306 ida_init(&pool->worker_ida); 3307 INIT_HLIST_NODE(&pool->hash_node); 3308 pool->refcnt = 1; 3309 3310 /* shouldn't fail above this point */ 3311 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL); 3312 if (!pool->attrs) 3313 return -ENOMEM; 3314 return 0; 3315 } 3316 3317 static void rcu_free_wq(struct rcu_head *rcu) 3318 { 3319 struct workqueue_struct *wq = 3320 container_of(rcu, struct workqueue_struct, rcu); 3321 3322 if (!(wq->flags & WQ_UNBOUND)) 3323 free_percpu(wq->cpu_pwqs); 3324 else 3325 free_workqueue_attrs(wq->unbound_attrs); 3326 3327 kfree(wq->rescuer); 3328 kfree(wq); 3329 } 3330 3331 static void rcu_free_pool(struct rcu_head *rcu) 3332 { 3333 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3334 3335 ida_destroy(&pool->worker_ida); 3336 free_workqueue_attrs(pool->attrs); 3337 kfree(pool); 3338 } 3339 3340 /** 3341 * put_unbound_pool - put a worker_pool 3342 * @pool: worker_pool to put 3343 * 3344 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU 3345 * safe manner. get_unbound_pool() calls this function on its failure path 3346 * and this function should be able to release pools which went through, 3347 * successfully or not, init_worker_pool(). 3348 * 3349 * Should be called with wq_pool_mutex held. 3350 */ 3351 static void put_unbound_pool(struct worker_pool *pool) 3352 { 3353 DECLARE_COMPLETION_ONSTACK(detach_completion); 3354 struct worker *worker; 3355 3356 lockdep_assert_held(&wq_pool_mutex); 3357 3358 if (--pool->refcnt) 3359 return; 3360 3361 /* sanity checks */ 3362 if (WARN_ON(!(pool->cpu < 0)) || 3363 WARN_ON(!list_empty(&pool->worklist))) 3364 return; 3365 3366 /* release id and unhash */ 3367 if (pool->id >= 0) 3368 idr_remove(&worker_pool_idr, pool->id); 3369 hash_del(&pool->hash_node); 3370 3371 /* 3372 * Become the manager and destroy all workers. This prevents 3373 * @pool's workers from blocking on attach_mutex. We're the last 3374 * manager and @pool gets freed with the flag set. 3375 */ 3376 spin_lock_irq(&pool->lock); 3377 wait_event_lock_irq(wq_manager_wait, 3378 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock); 3379 pool->flags |= POOL_MANAGER_ACTIVE; 3380 3381 while ((worker = first_idle_worker(pool))) 3382 destroy_worker(worker); 3383 WARN_ON(pool->nr_workers || pool->nr_idle); 3384 spin_unlock_irq(&pool->lock); 3385 3386 mutex_lock(&wq_pool_attach_mutex); 3387 if (!list_empty(&pool->workers)) 3388 pool->detach_completion = &detach_completion; 3389 mutex_unlock(&wq_pool_attach_mutex); 3390 3391 if (pool->detach_completion) 3392 wait_for_completion(pool->detach_completion); 3393 3394 /* shut down the timers */ 3395 del_timer_sync(&pool->idle_timer); 3396 del_timer_sync(&pool->mayday_timer); 3397 3398 /* sched-RCU protected to allow dereferences from get_work_pool() */ 3399 call_rcu(&pool->rcu, rcu_free_pool); 3400 } 3401 3402 /** 3403 * get_unbound_pool - get a worker_pool with the specified attributes 3404 * @attrs: the attributes of the worker_pool to get 3405 * 3406 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3407 * reference count and return it. If there already is a matching 3408 * worker_pool, it will be used; otherwise, this function attempts to 3409 * create a new one. 3410 * 3411 * Should be called with wq_pool_mutex held. 3412 * 3413 * Return: On success, a worker_pool with the same attributes as @attrs. 3414 * On failure, %NULL. 3415 */ 3416 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3417 { 3418 u32 hash = wqattrs_hash(attrs); 3419 struct worker_pool *pool; 3420 int node; 3421 int target_node = NUMA_NO_NODE; 3422 3423 lockdep_assert_held(&wq_pool_mutex); 3424 3425 /* do we already have a matching pool? */ 3426 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3427 if (wqattrs_equal(pool->attrs, attrs)) { 3428 pool->refcnt++; 3429 return pool; 3430 } 3431 } 3432 3433 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3434 if (wq_numa_enabled) { 3435 for_each_node(node) { 3436 if (cpumask_subset(attrs->cpumask, 3437 wq_numa_possible_cpumask[node])) { 3438 target_node = node; 3439 break; 3440 } 3441 } 3442 } 3443 3444 /* nope, create a new one */ 3445 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3446 if (!pool || init_worker_pool(pool) < 0) 3447 goto fail; 3448 3449 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3450 copy_workqueue_attrs(pool->attrs, attrs); 3451 pool->node = target_node; 3452 3453 /* 3454 * no_numa isn't a worker_pool attribute, always clear it. See 3455 * 'struct workqueue_attrs' comments for detail. 3456 */ 3457 pool->attrs->no_numa = false; 3458 3459 if (worker_pool_assign_id(pool) < 0) 3460 goto fail; 3461 3462 /* create and start the initial worker */ 3463 if (wq_online && !create_worker(pool)) 3464 goto fail; 3465 3466 /* install */ 3467 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3468 3469 return pool; 3470 fail: 3471 if (pool) 3472 put_unbound_pool(pool); 3473 return NULL; 3474 } 3475 3476 static void rcu_free_pwq(struct rcu_head *rcu) 3477 { 3478 kmem_cache_free(pwq_cache, 3479 container_of(rcu, struct pool_workqueue, rcu)); 3480 } 3481 3482 /* 3483 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3484 * and needs to be destroyed. 3485 */ 3486 static void pwq_unbound_release_workfn(struct work_struct *work) 3487 { 3488 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3489 unbound_release_work); 3490 struct workqueue_struct *wq = pwq->wq; 3491 struct worker_pool *pool = pwq->pool; 3492 bool is_last; 3493 3494 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3495 return; 3496 3497 mutex_lock(&wq->mutex); 3498 list_del_rcu(&pwq->pwqs_node); 3499 is_last = list_empty(&wq->pwqs); 3500 mutex_unlock(&wq->mutex); 3501 3502 mutex_lock(&wq_pool_mutex); 3503 put_unbound_pool(pool); 3504 mutex_unlock(&wq_pool_mutex); 3505 3506 call_rcu(&pwq->rcu, rcu_free_pwq); 3507 3508 /* 3509 * If we're the last pwq going away, @wq is already dead and no one 3510 * is gonna access it anymore. Schedule RCU free. 3511 */ 3512 if (is_last) 3513 call_rcu(&wq->rcu, rcu_free_wq); 3514 } 3515 3516 /** 3517 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3518 * @pwq: target pool_workqueue 3519 * 3520 * If @pwq isn't freezing, set @pwq->max_active to the associated 3521 * workqueue's saved_max_active and activate delayed work items 3522 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3523 */ 3524 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3525 { 3526 struct workqueue_struct *wq = pwq->wq; 3527 bool freezable = wq->flags & WQ_FREEZABLE; 3528 unsigned long flags; 3529 3530 /* for @wq->saved_max_active */ 3531 lockdep_assert_held(&wq->mutex); 3532 3533 /* fast exit for non-freezable wqs */ 3534 if (!freezable && pwq->max_active == wq->saved_max_active) 3535 return; 3536 3537 /* this function can be called during early boot w/ irq disabled */ 3538 spin_lock_irqsave(&pwq->pool->lock, flags); 3539 3540 /* 3541 * During [un]freezing, the caller is responsible for ensuring that 3542 * this function is called at least once after @workqueue_freezing 3543 * is updated and visible. 3544 */ 3545 if (!freezable || !workqueue_freezing) { 3546 pwq->max_active = wq->saved_max_active; 3547 3548 while (!list_empty(&pwq->delayed_works) && 3549 pwq->nr_active < pwq->max_active) 3550 pwq_activate_first_delayed(pwq); 3551 3552 /* 3553 * Need to kick a worker after thawed or an unbound wq's 3554 * max_active is bumped. It's a slow path. Do it always. 3555 */ 3556 wake_up_worker(pwq->pool); 3557 } else { 3558 pwq->max_active = 0; 3559 } 3560 3561 spin_unlock_irqrestore(&pwq->pool->lock, flags); 3562 } 3563 3564 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3565 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3566 struct worker_pool *pool) 3567 { 3568 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3569 3570 memset(pwq, 0, sizeof(*pwq)); 3571 3572 pwq->pool = pool; 3573 pwq->wq = wq; 3574 pwq->flush_color = -1; 3575 pwq->refcnt = 1; 3576 INIT_LIST_HEAD(&pwq->delayed_works); 3577 INIT_LIST_HEAD(&pwq->pwqs_node); 3578 INIT_LIST_HEAD(&pwq->mayday_node); 3579 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3580 } 3581 3582 /* sync @pwq with the current state of its associated wq and link it */ 3583 static void link_pwq(struct pool_workqueue *pwq) 3584 { 3585 struct workqueue_struct *wq = pwq->wq; 3586 3587 lockdep_assert_held(&wq->mutex); 3588 3589 /* may be called multiple times, ignore if already linked */ 3590 if (!list_empty(&pwq->pwqs_node)) 3591 return; 3592 3593 /* set the matching work_color */ 3594 pwq->work_color = wq->work_color; 3595 3596 /* sync max_active to the current setting */ 3597 pwq_adjust_max_active(pwq); 3598 3599 /* link in @pwq */ 3600 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3601 } 3602 3603 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3604 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3605 const struct workqueue_attrs *attrs) 3606 { 3607 struct worker_pool *pool; 3608 struct pool_workqueue *pwq; 3609 3610 lockdep_assert_held(&wq_pool_mutex); 3611 3612 pool = get_unbound_pool(attrs); 3613 if (!pool) 3614 return NULL; 3615 3616 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3617 if (!pwq) { 3618 put_unbound_pool(pool); 3619 return NULL; 3620 } 3621 3622 init_pwq(pwq, wq, pool); 3623 return pwq; 3624 } 3625 3626 /** 3627 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3628 * @attrs: the wq_attrs of the default pwq of the target workqueue 3629 * @node: the target NUMA node 3630 * @cpu_going_down: if >= 0, the CPU to consider as offline 3631 * @cpumask: outarg, the resulting cpumask 3632 * 3633 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3634 * @cpu_going_down is >= 0, that cpu is considered offline during 3635 * calculation. The result is stored in @cpumask. 3636 * 3637 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3638 * enabled and @node has online CPUs requested by @attrs, the returned 3639 * cpumask is the intersection of the possible CPUs of @node and 3640 * @attrs->cpumask. 3641 * 3642 * The caller is responsible for ensuring that the cpumask of @node stays 3643 * stable. 3644 * 3645 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3646 * %false if equal. 3647 */ 3648 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3649 int cpu_going_down, cpumask_t *cpumask) 3650 { 3651 if (!wq_numa_enabled || attrs->no_numa) 3652 goto use_dfl; 3653 3654 /* does @node have any online CPUs @attrs wants? */ 3655 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3656 if (cpu_going_down >= 0) 3657 cpumask_clear_cpu(cpu_going_down, cpumask); 3658 3659 if (cpumask_empty(cpumask)) 3660 goto use_dfl; 3661 3662 /* yeap, return possible CPUs in @node that @attrs wants */ 3663 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3664 3665 if (cpumask_empty(cpumask)) { 3666 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 3667 "possible intersect\n"); 3668 return false; 3669 } 3670 3671 return !cpumask_equal(cpumask, attrs->cpumask); 3672 3673 use_dfl: 3674 cpumask_copy(cpumask, attrs->cpumask); 3675 return false; 3676 } 3677 3678 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3679 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3680 int node, 3681 struct pool_workqueue *pwq) 3682 { 3683 struct pool_workqueue *old_pwq; 3684 3685 lockdep_assert_held(&wq_pool_mutex); 3686 lockdep_assert_held(&wq->mutex); 3687 3688 /* link_pwq() can handle duplicate calls */ 3689 link_pwq(pwq); 3690 3691 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3692 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3693 return old_pwq; 3694 } 3695 3696 /* context to store the prepared attrs & pwqs before applying */ 3697 struct apply_wqattrs_ctx { 3698 struct workqueue_struct *wq; /* target workqueue */ 3699 struct workqueue_attrs *attrs; /* attrs to apply */ 3700 struct list_head list; /* queued for batching commit */ 3701 struct pool_workqueue *dfl_pwq; 3702 struct pool_workqueue *pwq_tbl[]; 3703 }; 3704 3705 /* free the resources after success or abort */ 3706 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 3707 { 3708 if (ctx) { 3709 int node; 3710 3711 for_each_node(node) 3712 put_pwq_unlocked(ctx->pwq_tbl[node]); 3713 put_pwq_unlocked(ctx->dfl_pwq); 3714 3715 free_workqueue_attrs(ctx->attrs); 3716 3717 kfree(ctx); 3718 } 3719 } 3720 3721 /* allocate the attrs and pwqs for later installation */ 3722 static struct apply_wqattrs_ctx * 3723 apply_wqattrs_prepare(struct workqueue_struct *wq, 3724 const struct workqueue_attrs *attrs) 3725 { 3726 struct apply_wqattrs_ctx *ctx; 3727 struct workqueue_attrs *new_attrs, *tmp_attrs; 3728 int node; 3729 3730 lockdep_assert_held(&wq_pool_mutex); 3731 3732 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL); 3733 3734 new_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3735 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3736 if (!ctx || !new_attrs || !tmp_attrs) 3737 goto out_free; 3738 3739 /* 3740 * Calculate the attrs of the default pwq. 3741 * If the user configured cpumask doesn't overlap with the 3742 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 3743 */ 3744 copy_workqueue_attrs(new_attrs, attrs); 3745 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask); 3746 if (unlikely(cpumask_empty(new_attrs->cpumask))) 3747 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask); 3748 3749 /* 3750 * We may create multiple pwqs with differing cpumasks. Make a 3751 * copy of @new_attrs which will be modified and used to obtain 3752 * pools. 3753 */ 3754 copy_workqueue_attrs(tmp_attrs, new_attrs); 3755 3756 /* 3757 * If something goes wrong during CPU up/down, we'll fall back to 3758 * the default pwq covering whole @attrs->cpumask. Always create 3759 * it even if we don't use it immediately. 3760 */ 3761 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3762 if (!ctx->dfl_pwq) 3763 goto out_free; 3764 3765 for_each_node(node) { 3766 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 3767 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3768 if (!ctx->pwq_tbl[node]) 3769 goto out_free; 3770 } else { 3771 ctx->dfl_pwq->refcnt++; 3772 ctx->pwq_tbl[node] = ctx->dfl_pwq; 3773 } 3774 } 3775 3776 /* save the user configured attrs and sanitize it. */ 3777 copy_workqueue_attrs(new_attrs, attrs); 3778 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3779 ctx->attrs = new_attrs; 3780 3781 ctx->wq = wq; 3782 free_workqueue_attrs(tmp_attrs); 3783 return ctx; 3784 3785 out_free: 3786 free_workqueue_attrs(tmp_attrs); 3787 free_workqueue_attrs(new_attrs); 3788 apply_wqattrs_cleanup(ctx); 3789 return NULL; 3790 } 3791 3792 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 3793 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 3794 { 3795 int node; 3796 3797 /* all pwqs have been created successfully, let's install'em */ 3798 mutex_lock(&ctx->wq->mutex); 3799 3800 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 3801 3802 /* save the previous pwq and install the new one */ 3803 for_each_node(node) 3804 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 3805 ctx->pwq_tbl[node]); 3806 3807 /* @dfl_pwq might not have been used, ensure it's linked */ 3808 link_pwq(ctx->dfl_pwq); 3809 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 3810 3811 mutex_unlock(&ctx->wq->mutex); 3812 } 3813 3814 static void apply_wqattrs_lock(void) 3815 { 3816 /* CPUs should stay stable across pwq creations and installations */ 3817 get_online_cpus(); 3818 mutex_lock(&wq_pool_mutex); 3819 } 3820 3821 static void apply_wqattrs_unlock(void) 3822 { 3823 mutex_unlock(&wq_pool_mutex); 3824 put_online_cpus(); 3825 } 3826 3827 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 3828 const struct workqueue_attrs *attrs) 3829 { 3830 struct apply_wqattrs_ctx *ctx; 3831 3832 /* only unbound workqueues can change attributes */ 3833 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 3834 return -EINVAL; 3835 3836 /* creating multiple pwqs breaks ordering guarantee */ 3837 if (!list_empty(&wq->pwqs)) { 3838 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 3839 return -EINVAL; 3840 3841 wq->flags &= ~__WQ_ORDERED; 3842 } 3843 3844 ctx = apply_wqattrs_prepare(wq, attrs); 3845 if (!ctx) 3846 return -ENOMEM; 3847 3848 /* the ctx has been prepared successfully, let's commit it */ 3849 apply_wqattrs_commit(ctx); 3850 apply_wqattrs_cleanup(ctx); 3851 3852 return 0; 3853 } 3854 3855 /** 3856 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 3857 * @wq: the target workqueue 3858 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 3859 * 3860 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 3861 * machines, this function maps a separate pwq to each NUMA node with 3862 * possibles CPUs in @attrs->cpumask so that work items are affine to the 3863 * NUMA node it was issued on. Older pwqs are released as in-flight work 3864 * items finish. Note that a work item which repeatedly requeues itself 3865 * back-to-back will stay on its current pwq. 3866 * 3867 * Performs GFP_KERNEL allocations. 3868 * 3869 * Return: 0 on success and -errno on failure. 3870 */ 3871 int apply_workqueue_attrs(struct workqueue_struct *wq, 3872 const struct workqueue_attrs *attrs) 3873 { 3874 int ret; 3875 3876 apply_wqattrs_lock(); 3877 ret = apply_workqueue_attrs_locked(wq, attrs); 3878 apply_wqattrs_unlock(); 3879 3880 return ret; 3881 } 3882 EXPORT_SYMBOL_GPL(apply_workqueue_attrs); 3883 3884 /** 3885 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 3886 * @wq: the target workqueue 3887 * @cpu: the CPU coming up or going down 3888 * @online: whether @cpu is coming up or going down 3889 * 3890 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 3891 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 3892 * @wq accordingly. 3893 * 3894 * If NUMA affinity can't be adjusted due to memory allocation failure, it 3895 * falls back to @wq->dfl_pwq which may not be optimal but is always 3896 * correct. 3897 * 3898 * Note that when the last allowed CPU of a NUMA node goes offline for a 3899 * workqueue with a cpumask spanning multiple nodes, the workers which were 3900 * already executing the work items for the workqueue will lose their CPU 3901 * affinity and may execute on any CPU. This is similar to how per-cpu 3902 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 3903 * affinity, it's the user's responsibility to flush the work item from 3904 * CPU_DOWN_PREPARE. 3905 */ 3906 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 3907 bool online) 3908 { 3909 int node = cpu_to_node(cpu); 3910 int cpu_off = online ? -1 : cpu; 3911 struct pool_workqueue *old_pwq = NULL, *pwq; 3912 struct workqueue_attrs *target_attrs; 3913 cpumask_t *cpumask; 3914 3915 lockdep_assert_held(&wq_pool_mutex); 3916 3917 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 3918 wq->unbound_attrs->no_numa) 3919 return; 3920 3921 /* 3922 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 3923 * Let's use a preallocated one. The following buf is protected by 3924 * CPU hotplug exclusion. 3925 */ 3926 target_attrs = wq_update_unbound_numa_attrs_buf; 3927 cpumask = target_attrs->cpumask; 3928 3929 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 3930 pwq = unbound_pwq_by_node(wq, node); 3931 3932 /* 3933 * Let's determine what needs to be done. If the target cpumask is 3934 * different from the default pwq's, we need to compare it to @pwq's 3935 * and create a new one if they don't match. If the target cpumask 3936 * equals the default pwq's, the default pwq should be used. 3937 */ 3938 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 3939 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 3940 return; 3941 } else { 3942 goto use_dfl_pwq; 3943 } 3944 3945 /* create a new pwq */ 3946 pwq = alloc_unbound_pwq(wq, target_attrs); 3947 if (!pwq) { 3948 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 3949 wq->name); 3950 goto use_dfl_pwq; 3951 } 3952 3953 /* Install the new pwq. */ 3954 mutex_lock(&wq->mutex); 3955 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 3956 goto out_unlock; 3957 3958 use_dfl_pwq: 3959 mutex_lock(&wq->mutex); 3960 spin_lock_irq(&wq->dfl_pwq->pool->lock); 3961 get_pwq(wq->dfl_pwq); 3962 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 3963 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 3964 out_unlock: 3965 mutex_unlock(&wq->mutex); 3966 put_pwq_unlocked(old_pwq); 3967 } 3968 3969 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 3970 { 3971 bool highpri = wq->flags & WQ_HIGHPRI; 3972 int cpu, ret; 3973 3974 if (!(wq->flags & WQ_UNBOUND)) { 3975 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 3976 if (!wq->cpu_pwqs) 3977 return -ENOMEM; 3978 3979 for_each_possible_cpu(cpu) { 3980 struct pool_workqueue *pwq = 3981 per_cpu_ptr(wq->cpu_pwqs, cpu); 3982 struct worker_pool *cpu_pools = 3983 per_cpu(cpu_worker_pools, cpu); 3984 3985 init_pwq(pwq, wq, &cpu_pools[highpri]); 3986 3987 mutex_lock(&wq->mutex); 3988 link_pwq(pwq); 3989 mutex_unlock(&wq->mutex); 3990 } 3991 return 0; 3992 } else if (wq->flags & __WQ_ORDERED) { 3993 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 3994 /* there should only be single pwq for ordering guarantee */ 3995 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 3996 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 3997 "ordering guarantee broken for workqueue %s\n", wq->name); 3998 return ret; 3999 } else { 4000 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4001 } 4002 } 4003 4004 static int wq_clamp_max_active(int max_active, unsigned int flags, 4005 const char *name) 4006 { 4007 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 4008 4009 if (max_active < 1 || max_active > lim) 4010 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4011 max_active, name, 1, lim); 4012 4013 return clamp_val(max_active, 1, lim); 4014 } 4015 4016 /* 4017 * Workqueues which may be used during memory reclaim should have a rescuer 4018 * to guarantee forward progress. 4019 */ 4020 static int init_rescuer(struct workqueue_struct *wq) 4021 { 4022 struct worker *rescuer; 4023 int ret; 4024 4025 if (!(wq->flags & WQ_MEM_RECLAIM)) 4026 return 0; 4027 4028 rescuer = alloc_worker(NUMA_NO_NODE); 4029 if (!rescuer) 4030 return -ENOMEM; 4031 4032 rescuer->rescue_wq = wq; 4033 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name); 4034 ret = PTR_ERR_OR_ZERO(rescuer->task); 4035 if (ret) { 4036 kfree(rescuer); 4037 return ret; 4038 } 4039 4040 wq->rescuer = rescuer; 4041 kthread_bind_mask(rescuer->task, cpu_possible_mask); 4042 wake_up_process(rescuer->task); 4043 4044 return 0; 4045 } 4046 4047 struct workqueue_struct *__alloc_workqueue_key(const char *fmt, 4048 unsigned int flags, 4049 int max_active, 4050 struct lock_class_key *key, 4051 const char *lock_name, ...) 4052 { 4053 size_t tbl_size = 0; 4054 va_list args; 4055 struct workqueue_struct *wq; 4056 struct pool_workqueue *pwq; 4057 4058 /* 4059 * Unbound && max_active == 1 used to imply ordered, which is no 4060 * longer the case on NUMA machines due to per-node pools. While 4061 * alloc_ordered_workqueue() is the right way to create an ordered 4062 * workqueue, keep the previous behavior to avoid subtle breakages 4063 * on NUMA. 4064 */ 4065 if ((flags & WQ_UNBOUND) && max_active == 1) 4066 flags |= __WQ_ORDERED; 4067 4068 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4069 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4070 flags |= WQ_UNBOUND; 4071 4072 /* allocate wq and format name */ 4073 if (flags & WQ_UNBOUND) 4074 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 4075 4076 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4077 if (!wq) 4078 return NULL; 4079 4080 if (flags & WQ_UNBOUND) { 4081 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL); 4082 if (!wq->unbound_attrs) 4083 goto err_free_wq; 4084 } 4085 4086 va_start(args, lock_name); 4087 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4088 va_end(args); 4089 4090 max_active = max_active ?: WQ_DFL_ACTIVE; 4091 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4092 4093 /* init wq */ 4094 wq->flags = flags; 4095 wq->saved_max_active = max_active; 4096 mutex_init(&wq->mutex); 4097 atomic_set(&wq->nr_pwqs_to_flush, 0); 4098 INIT_LIST_HEAD(&wq->pwqs); 4099 INIT_LIST_HEAD(&wq->flusher_queue); 4100 INIT_LIST_HEAD(&wq->flusher_overflow); 4101 INIT_LIST_HEAD(&wq->maydays); 4102 4103 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 4104 INIT_LIST_HEAD(&wq->list); 4105 4106 if (alloc_and_link_pwqs(wq) < 0) 4107 goto err_free_wq; 4108 4109 if (wq_online && init_rescuer(wq) < 0) 4110 goto err_destroy; 4111 4112 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4113 goto err_destroy; 4114 4115 /* 4116 * wq_pool_mutex protects global freeze state and workqueues list. 4117 * Grab it, adjust max_active and add the new @wq to workqueues 4118 * list. 4119 */ 4120 mutex_lock(&wq_pool_mutex); 4121 4122 mutex_lock(&wq->mutex); 4123 for_each_pwq(pwq, wq) 4124 pwq_adjust_max_active(pwq); 4125 mutex_unlock(&wq->mutex); 4126 4127 list_add_tail_rcu(&wq->list, &workqueues); 4128 4129 mutex_unlock(&wq_pool_mutex); 4130 4131 return wq; 4132 4133 err_free_wq: 4134 free_workqueue_attrs(wq->unbound_attrs); 4135 kfree(wq); 4136 return NULL; 4137 err_destroy: 4138 destroy_workqueue(wq); 4139 return NULL; 4140 } 4141 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 4142 4143 /** 4144 * destroy_workqueue - safely terminate a workqueue 4145 * @wq: target workqueue 4146 * 4147 * Safely destroy a workqueue. All work currently pending will be done first. 4148 */ 4149 void destroy_workqueue(struct workqueue_struct *wq) 4150 { 4151 struct pool_workqueue *pwq; 4152 int node; 4153 4154 /* drain it before proceeding with destruction */ 4155 drain_workqueue(wq); 4156 4157 /* sanity checks */ 4158 mutex_lock(&wq->mutex); 4159 for_each_pwq(pwq, wq) { 4160 int i; 4161 4162 for (i = 0; i < WORK_NR_COLORS; i++) { 4163 if (WARN_ON(pwq->nr_in_flight[i])) { 4164 mutex_unlock(&wq->mutex); 4165 show_workqueue_state(); 4166 return; 4167 } 4168 } 4169 4170 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) || 4171 WARN_ON(pwq->nr_active) || 4172 WARN_ON(!list_empty(&pwq->delayed_works))) { 4173 mutex_unlock(&wq->mutex); 4174 show_workqueue_state(); 4175 return; 4176 } 4177 } 4178 mutex_unlock(&wq->mutex); 4179 4180 /* 4181 * wq list is used to freeze wq, remove from list after 4182 * flushing is complete in case freeze races us. 4183 */ 4184 mutex_lock(&wq_pool_mutex); 4185 list_del_rcu(&wq->list); 4186 mutex_unlock(&wq_pool_mutex); 4187 4188 workqueue_sysfs_unregister(wq); 4189 4190 if (wq->rescuer) 4191 kthread_stop(wq->rescuer->task); 4192 4193 if (!(wq->flags & WQ_UNBOUND)) { 4194 /* 4195 * The base ref is never dropped on per-cpu pwqs. Directly 4196 * schedule RCU free. 4197 */ 4198 call_rcu(&wq->rcu, rcu_free_wq); 4199 } else { 4200 /* 4201 * We're the sole accessor of @wq at this point. Directly 4202 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4203 * @wq will be freed when the last pwq is released. 4204 */ 4205 for_each_node(node) { 4206 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4207 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4208 put_pwq_unlocked(pwq); 4209 } 4210 4211 /* 4212 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4213 * put. Don't access it afterwards. 4214 */ 4215 pwq = wq->dfl_pwq; 4216 wq->dfl_pwq = NULL; 4217 put_pwq_unlocked(pwq); 4218 } 4219 } 4220 EXPORT_SYMBOL_GPL(destroy_workqueue); 4221 4222 /** 4223 * workqueue_set_max_active - adjust max_active of a workqueue 4224 * @wq: target workqueue 4225 * @max_active: new max_active value. 4226 * 4227 * Set max_active of @wq to @max_active. 4228 * 4229 * CONTEXT: 4230 * Don't call from IRQ context. 4231 */ 4232 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4233 { 4234 struct pool_workqueue *pwq; 4235 4236 /* disallow meddling with max_active for ordered workqueues */ 4237 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4238 return; 4239 4240 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4241 4242 mutex_lock(&wq->mutex); 4243 4244 wq->flags &= ~__WQ_ORDERED; 4245 wq->saved_max_active = max_active; 4246 4247 for_each_pwq(pwq, wq) 4248 pwq_adjust_max_active(pwq); 4249 4250 mutex_unlock(&wq->mutex); 4251 } 4252 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4253 4254 /** 4255 * current_work - retrieve %current task's work struct 4256 * 4257 * Determine if %current task is a workqueue worker and what it's working on. 4258 * Useful to find out the context that the %current task is running in. 4259 * 4260 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 4261 */ 4262 struct work_struct *current_work(void) 4263 { 4264 struct worker *worker = current_wq_worker(); 4265 4266 return worker ? worker->current_work : NULL; 4267 } 4268 EXPORT_SYMBOL(current_work); 4269 4270 /** 4271 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4272 * 4273 * Determine whether %current is a workqueue rescuer. Can be used from 4274 * work functions to determine whether it's being run off the rescuer task. 4275 * 4276 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4277 */ 4278 bool current_is_workqueue_rescuer(void) 4279 { 4280 struct worker *worker = current_wq_worker(); 4281 4282 return worker && worker->rescue_wq; 4283 } 4284 4285 /** 4286 * workqueue_congested - test whether a workqueue is congested 4287 * @cpu: CPU in question 4288 * @wq: target workqueue 4289 * 4290 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4291 * no synchronization around this function and the test result is 4292 * unreliable and only useful as advisory hints or for debugging. 4293 * 4294 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4295 * Note that both per-cpu and unbound workqueues may be associated with 4296 * multiple pool_workqueues which have separate congested states. A 4297 * workqueue being congested on one CPU doesn't mean the workqueue is also 4298 * contested on other CPUs / NUMA nodes. 4299 * 4300 * Return: 4301 * %true if congested, %false otherwise. 4302 */ 4303 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4304 { 4305 struct pool_workqueue *pwq; 4306 bool ret; 4307 4308 rcu_read_lock_sched(); 4309 4310 if (cpu == WORK_CPU_UNBOUND) 4311 cpu = smp_processor_id(); 4312 4313 if (!(wq->flags & WQ_UNBOUND)) 4314 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4315 else 4316 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4317 4318 ret = !list_empty(&pwq->delayed_works); 4319 rcu_read_unlock_sched(); 4320 4321 return ret; 4322 } 4323 EXPORT_SYMBOL_GPL(workqueue_congested); 4324 4325 /** 4326 * work_busy - test whether a work is currently pending or running 4327 * @work: the work to be tested 4328 * 4329 * Test whether @work is currently pending or running. There is no 4330 * synchronization around this function and the test result is 4331 * unreliable and only useful as advisory hints or for debugging. 4332 * 4333 * Return: 4334 * OR'd bitmask of WORK_BUSY_* bits. 4335 */ 4336 unsigned int work_busy(struct work_struct *work) 4337 { 4338 struct worker_pool *pool; 4339 unsigned long flags; 4340 unsigned int ret = 0; 4341 4342 if (work_pending(work)) 4343 ret |= WORK_BUSY_PENDING; 4344 4345 local_irq_save(flags); 4346 pool = get_work_pool(work); 4347 if (pool) { 4348 spin_lock(&pool->lock); 4349 if (find_worker_executing_work(pool, work)) 4350 ret |= WORK_BUSY_RUNNING; 4351 spin_unlock(&pool->lock); 4352 } 4353 local_irq_restore(flags); 4354 4355 return ret; 4356 } 4357 EXPORT_SYMBOL_GPL(work_busy); 4358 4359 /** 4360 * set_worker_desc - set description for the current work item 4361 * @fmt: printf-style format string 4362 * @...: arguments for the format string 4363 * 4364 * This function can be called by a running work function to describe what 4365 * the work item is about. If the worker task gets dumped, this 4366 * information will be printed out together to help debugging. The 4367 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4368 */ 4369 void set_worker_desc(const char *fmt, ...) 4370 { 4371 struct worker *worker = current_wq_worker(); 4372 va_list args; 4373 4374 if (worker) { 4375 va_start(args, fmt); 4376 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4377 va_end(args); 4378 } 4379 } 4380 EXPORT_SYMBOL_GPL(set_worker_desc); 4381 4382 /** 4383 * print_worker_info - print out worker information and description 4384 * @log_lvl: the log level to use when printing 4385 * @task: target task 4386 * 4387 * If @task is a worker and currently executing a work item, print out the 4388 * name of the workqueue being serviced and worker description set with 4389 * set_worker_desc() by the currently executing work item. 4390 * 4391 * This function can be safely called on any task as long as the 4392 * task_struct itself is accessible. While safe, this function isn't 4393 * synchronized and may print out mixups or garbages of limited length. 4394 */ 4395 void print_worker_info(const char *log_lvl, struct task_struct *task) 4396 { 4397 work_func_t *fn = NULL; 4398 char name[WQ_NAME_LEN] = { }; 4399 char desc[WORKER_DESC_LEN] = { }; 4400 struct pool_workqueue *pwq = NULL; 4401 struct workqueue_struct *wq = NULL; 4402 struct worker *worker; 4403 4404 if (!(task->flags & PF_WQ_WORKER)) 4405 return; 4406 4407 /* 4408 * This function is called without any synchronization and @task 4409 * could be in any state. Be careful with dereferences. 4410 */ 4411 worker = kthread_probe_data(task); 4412 4413 /* 4414 * Carefully copy the associated workqueue's workfn, name and desc. 4415 * Keep the original last '\0' in case the original is garbage. 4416 */ 4417 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4418 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4419 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4420 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4421 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4422 4423 if (fn || name[0] || desc[0]) { 4424 printk("%sWorkqueue: %s %pf", log_lvl, name, fn); 4425 if (strcmp(name, desc)) 4426 pr_cont(" (%s)", desc); 4427 pr_cont("\n"); 4428 } 4429 } 4430 4431 static void pr_cont_pool_info(struct worker_pool *pool) 4432 { 4433 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4434 if (pool->node != NUMA_NO_NODE) 4435 pr_cont(" node=%d", pool->node); 4436 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4437 } 4438 4439 static void pr_cont_work(bool comma, struct work_struct *work) 4440 { 4441 if (work->func == wq_barrier_func) { 4442 struct wq_barrier *barr; 4443 4444 barr = container_of(work, struct wq_barrier, work); 4445 4446 pr_cont("%s BAR(%d)", comma ? "," : "", 4447 task_pid_nr(barr->task)); 4448 } else { 4449 pr_cont("%s %pf", comma ? "," : "", work->func); 4450 } 4451 } 4452 4453 static void show_pwq(struct pool_workqueue *pwq) 4454 { 4455 struct worker_pool *pool = pwq->pool; 4456 struct work_struct *work; 4457 struct worker *worker; 4458 bool has_in_flight = false, has_pending = false; 4459 int bkt; 4460 4461 pr_info(" pwq %d:", pool->id); 4462 pr_cont_pool_info(pool); 4463 4464 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active, 4465 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4466 4467 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4468 if (worker->current_pwq == pwq) { 4469 has_in_flight = true; 4470 break; 4471 } 4472 } 4473 if (has_in_flight) { 4474 bool comma = false; 4475 4476 pr_info(" in-flight:"); 4477 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4478 if (worker->current_pwq != pwq) 4479 continue; 4480 4481 pr_cont("%s %d%s:%pf", comma ? "," : "", 4482 task_pid_nr(worker->task), 4483 worker == pwq->wq->rescuer ? "(RESCUER)" : "", 4484 worker->current_func); 4485 list_for_each_entry(work, &worker->scheduled, entry) 4486 pr_cont_work(false, work); 4487 comma = true; 4488 } 4489 pr_cont("\n"); 4490 } 4491 4492 list_for_each_entry(work, &pool->worklist, entry) { 4493 if (get_work_pwq(work) == pwq) { 4494 has_pending = true; 4495 break; 4496 } 4497 } 4498 if (has_pending) { 4499 bool comma = false; 4500 4501 pr_info(" pending:"); 4502 list_for_each_entry(work, &pool->worklist, entry) { 4503 if (get_work_pwq(work) != pwq) 4504 continue; 4505 4506 pr_cont_work(comma, work); 4507 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4508 } 4509 pr_cont("\n"); 4510 } 4511 4512 if (!list_empty(&pwq->delayed_works)) { 4513 bool comma = false; 4514 4515 pr_info(" delayed:"); 4516 list_for_each_entry(work, &pwq->delayed_works, entry) { 4517 pr_cont_work(comma, work); 4518 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4519 } 4520 pr_cont("\n"); 4521 } 4522 } 4523 4524 /** 4525 * show_workqueue_state - dump workqueue state 4526 * 4527 * Called from a sysrq handler or try_to_freeze_tasks() and prints out 4528 * all busy workqueues and pools. 4529 */ 4530 void show_workqueue_state(void) 4531 { 4532 struct workqueue_struct *wq; 4533 struct worker_pool *pool; 4534 unsigned long flags; 4535 int pi; 4536 4537 rcu_read_lock_sched(); 4538 4539 pr_info("Showing busy workqueues and worker pools:\n"); 4540 4541 list_for_each_entry_rcu(wq, &workqueues, list) { 4542 struct pool_workqueue *pwq; 4543 bool idle = true; 4544 4545 for_each_pwq(pwq, wq) { 4546 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) { 4547 idle = false; 4548 break; 4549 } 4550 } 4551 if (idle) 4552 continue; 4553 4554 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4555 4556 for_each_pwq(pwq, wq) { 4557 spin_lock_irqsave(&pwq->pool->lock, flags); 4558 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4559 show_pwq(pwq); 4560 spin_unlock_irqrestore(&pwq->pool->lock, flags); 4561 /* 4562 * We could be printing a lot from atomic context, e.g. 4563 * sysrq-t -> show_workqueue_state(). Avoid triggering 4564 * hard lockup. 4565 */ 4566 touch_nmi_watchdog(); 4567 } 4568 } 4569 4570 for_each_pool(pool, pi) { 4571 struct worker *worker; 4572 bool first = true; 4573 4574 spin_lock_irqsave(&pool->lock, flags); 4575 if (pool->nr_workers == pool->nr_idle) 4576 goto next_pool; 4577 4578 pr_info("pool %d:", pool->id); 4579 pr_cont_pool_info(pool); 4580 pr_cont(" hung=%us workers=%d", 4581 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000, 4582 pool->nr_workers); 4583 if (pool->manager) 4584 pr_cont(" manager: %d", 4585 task_pid_nr(pool->manager->task)); 4586 list_for_each_entry(worker, &pool->idle_list, entry) { 4587 pr_cont(" %s%d", first ? "idle: " : "", 4588 task_pid_nr(worker->task)); 4589 first = false; 4590 } 4591 pr_cont("\n"); 4592 next_pool: 4593 spin_unlock_irqrestore(&pool->lock, flags); 4594 /* 4595 * We could be printing a lot from atomic context, e.g. 4596 * sysrq-t -> show_workqueue_state(). Avoid triggering 4597 * hard lockup. 4598 */ 4599 touch_nmi_watchdog(); 4600 } 4601 4602 rcu_read_unlock_sched(); 4603 } 4604 4605 /* used to show worker information through /proc/PID/{comm,stat,status} */ 4606 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 4607 { 4608 int off; 4609 4610 /* always show the actual comm */ 4611 off = strscpy(buf, task->comm, size); 4612 if (off < 0) 4613 return; 4614 4615 /* stabilize PF_WQ_WORKER and worker pool association */ 4616 mutex_lock(&wq_pool_attach_mutex); 4617 4618 if (task->flags & PF_WQ_WORKER) { 4619 struct worker *worker = kthread_data(task); 4620 struct worker_pool *pool = worker->pool; 4621 4622 if (pool) { 4623 spin_lock_irq(&pool->lock); 4624 /* 4625 * ->desc tracks information (wq name or 4626 * set_worker_desc()) for the latest execution. If 4627 * current, prepend '+', otherwise '-'. 4628 */ 4629 if (worker->desc[0] != '\0') { 4630 if (worker->current_work) 4631 scnprintf(buf + off, size - off, "+%s", 4632 worker->desc); 4633 else 4634 scnprintf(buf + off, size - off, "-%s", 4635 worker->desc); 4636 } 4637 spin_unlock_irq(&pool->lock); 4638 } 4639 } 4640 4641 mutex_unlock(&wq_pool_attach_mutex); 4642 } 4643 4644 #ifdef CONFIG_SMP 4645 4646 /* 4647 * CPU hotplug. 4648 * 4649 * There are two challenges in supporting CPU hotplug. Firstly, there 4650 * are a lot of assumptions on strong associations among work, pwq and 4651 * pool which make migrating pending and scheduled works very 4652 * difficult to implement without impacting hot paths. Secondly, 4653 * worker pools serve mix of short, long and very long running works making 4654 * blocked draining impractical. 4655 * 4656 * This is solved by allowing the pools to be disassociated from the CPU 4657 * running as an unbound one and allowing it to be reattached later if the 4658 * cpu comes back online. 4659 */ 4660 4661 static void unbind_workers(int cpu) 4662 { 4663 struct worker_pool *pool; 4664 struct worker *worker; 4665 4666 for_each_cpu_worker_pool(pool, cpu) { 4667 mutex_lock(&wq_pool_attach_mutex); 4668 spin_lock_irq(&pool->lock); 4669 4670 /* 4671 * We've blocked all attach/detach operations. Make all workers 4672 * unbound and set DISASSOCIATED. Before this, all workers 4673 * except for the ones which are still executing works from 4674 * before the last CPU down must be on the cpu. After 4675 * this, they may become diasporas. 4676 */ 4677 for_each_pool_worker(worker, pool) 4678 worker->flags |= WORKER_UNBOUND; 4679 4680 pool->flags |= POOL_DISASSOCIATED; 4681 4682 spin_unlock_irq(&pool->lock); 4683 mutex_unlock(&wq_pool_attach_mutex); 4684 4685 /* 4686 * Call schedule() so that we cross rq->lock and thus can 4687 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4688 * This is necessary as scheduler callbacks may be invoked 4689 * from other cpus. 4690 */ 4691 schedule(); 4692 4693 /* 4694 * Sched callbacks are disabled now. Zap nr_running. 4695 * After this, nr_running stays zero and need_more_worker() 4696 * and keep_working() are always true as long as the 4697 * worklist is not empty. This pool now behaves as an 4698 * unbound (in terms of concurrency management) pool which 4699 * are served by workers tied to the pool. 4700 */ 4701 atomic_set(&pool->nr_running, 0); 4702 4703 /* 4704 * With concurrency management just turned off, a busy 4705 * worker blocking could lead to lengthy stalls. Kick off 4706 * unbound chain execution of currently pending work items. 4707 */ 4708 spin_lock_irq(&pool->lock); 4709 wake_up_worker(pool); 4710 spin_unlock_irq(&pool->lock); 4711 } 4712 } 4713 4714 /** 4715 * rebind_workers - rebind all workers of a pool to the associated CPU 4716 * @pool: pool of interest 4717 * 4718 * @pool->cpu is coming online. Rebind all workers to the CPU. 4719 */ 4720 static void rebind_workers(struct worker_pool *pool) 4721 { 4722 struct worker *worker; 4723 4724 lockdep_assert_held(&wq_pool_attach_mutex); 4725 4726 /* 4727 * Restore CPU affinity of all workers. As all idle workers should 4728 * be on the run-queue of the associated CPU before any local 4729 * wake-ups for concurrency management happen, restore CPU affinity 4730 * of all workers first and then clear UNBOUND. As we're called 4731 * from CPU_ONLINE, the following shouldn't fail. 4732 */ 4733 for_each_pool_worker(worker, pool) 4734 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4735 pool->attrs->cpumask) < 0); 4736 4737 spin_lock_irq(&pool->lock); 4738 4739 pool->flags &= ~POOL_DISASSOCIATED; 4740 4741 for_each_pool_worker(worker, pool) { 4742 unsigned int worker_flags = worker->flags; 4743 4744 /* 4745 * A bound idle worker should actually be on the runqueue 4746 * of the associated CPU for local wake-ups targeting it to 4747 * work. Kick all idle workers so that they migrate to the 4748 * associated CPU. Doing this in the same loop as 4749 * replacing UNBOUND with REBOUND is safe as no worker will 4750 * be bound before @pool->lock is released. 4751 */ 4752 if (worker_flags & WORKER_IDLE) 4753 wake_up_process(worker->task); 4754 4755 /* 4756 * We want to clear UNBOUND but can't directly call 4757 * worker_clr_flags() or adjust nr_running. Atomically 4758 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4759 * @worker will clear REBOUND using worker_clr_flags() when 4760 * it initiates the next execution cycle thus restoring 4761 * concurrency management. Note that when or whether 4762 * @worker clears REBOUND doesn't affect correctness. 4763 * 4764 * WRITE_ONCE() is necessary because @worker->flags may be 4765 * tested without holding any lock in 4766 * wq_worker_waking_up(). Without it, NOT_RUNNING test may 4767 * fail incorrectly leading to premature concurrency 4768 * management operations. 4769 */ 4770 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4771 worker_flags |= WORKER_REBOUND; 4772 worker_flags &= ~WORKER_UNBOUND; 4773 WRITE_ONCE(worker->flags, worker_flags); 4774 } 4775 4776 spin_unlock_irq(&pool->lock); 4777 } 4778 4779 /** 4780 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4781 * @pool: unbound pool of interest 4782 * @cpu: the CPU which is coming up 4783 * 4784 * An unbound pool may end up with a cpumask which doesn't have any online 4785 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4786 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4787 * online CPU before, cpus_allowed of all its workers should be restored. 4788 */ 4789 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 4790 { 4791 static cpumask_t cpumask; 4792 struct worker *worker; 4793 4794 lockdep_assert_held(&wq_pool_attach_mutex); 4795 4796 /* is @cpu allowed for @pool? */ 4797 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 4798 return; 4799 4800 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 4801 4802 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 4803 for_each_pool_worker(worker, pool) 4804 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 4805 } 4806 4807 int workqueue_prepare_cpu(unsigned int cpu) 4808 { 4809 struct worker_pool *pool; 4810 4811 for_each_cpu_worker_pool(pool, cpu) { 4812 if (pool->nr_workers) 4813 continue; 4814 if (!create_worker(pool)) 4815 return -ENOMEM; 4816 } 4817 return 0; 4818 } 4819 4820 int workqueue_online_cpu(unsigned int cpu) 4821 { 4822 struct worker_pool *pool; 4823 struct workqueue_struct *wq; 4824 int pi; 4825 4826 mutex_lock(&wq_pool_mutex); 4827 4828 for_each_pool(pool, pi) { 4829 mutex_lock(&wq_pool_attach_mutex); 4830 4831 if (pool->cpu == cpu) 4832 rebind_workers(pool); 4833 else if (pool->cpu < 0) 4834 restore_unbound_workers_cpumask(pool, cpu); 4835 4836 mutex_unlock(&wq_pool_attach_mutex); 4837 } 4838 4839 /* update NUMA affinity of unbound workqueues */ 4840 list_for_each_entry(wq, &workqueues, list) 4841 wq_update_unbound_numa(wq, cpu, true); 4842 4843 mutex_unlock(&wq_pool_mutex); 4844 return 0; 4845 } 4846 4847 int workqueue_offline_cpu(unsigned int cpu) 4848 { 4849 struct workqueue_struct *wq; 4850 4851 /* unbinding per-cpu workers should happen on the local CPU */ 4852 if (WARN_ON(cpu != smp_processor_id())) 4853 return -1; 4854 4855 unbind_workers(cpu); 4856 4857 /* update NUMA affinity of unbound workqueues */ 4858 mutex_lock(&wq_pool_mutex); 4859 list_for_each_entry(wq, &workqueues, list) 4860 wq_update_unbound_numa(wq, cpu, false); 4861 mutex_unlock(&wq_pool_mutex); 4862 4863 return 0; 4864 } 4865 4866 struct work_for_cpu { 4867 struct work_struct work; 4868 long (*fn)(void *); 4869 void *arg; 4870 long ret; 4871 }; 4872 4873 static void work_for_cpu_fn(struct work_struct *work) 4874 { 4875 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 4876 4877 wfc->ret = wfc->fn(wfc->arg); 4878 } 4879 4880 /** 4881 * work_on_cpu - run a function in thread context on a particular cpu 4882 * @cpu: the cpu to run on 4883 * @fn: the function to run 4884 * @arg: the function arg 4885 * 4886 * It is up to the caller to ensure that the cpu doesn't go offline. 4887 * The caller must not hold any locks which would prevent @fn from completing. 4888 * 4889 * Return: The value @fn returns. 4890 */ 4891 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 4892 { 4893 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 4894 4895 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 4896 schedule_work_on(cpu, &wfc.work); 4897 flush_work(&wfc.work); 4898 destroy_work_on_stack(&wfc.work); 4899 return wfc.ret; 4900 } 4901 EXPORT_SYMBOL_GPL(work_on_cpu); 4902 4903 /** 4904 * work_on_cpu_safe - run a function in thread context on a particular cpu 4905 * @cpu: the cpu to run on 4906 * @fn: the function to run 4907 * @arg: the function argument 4908 * 4909 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 4910 * any locks which would prevent @fn from completing. 4911 * 4912 * Return: The value @fn returns. 4913 */ 4914 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) 4915 { 4916 long ret = -ENODEV; 4917 4918 get_online_cpus(); 4919 if (cpu_online(cpu)) 4920 ret = work_on_cpu(cpu, fn, arg); 4921 put_online_cpus(); 4922 return ret; 4923 } 4924 EXPORT_SYMBOL_GPL(work_on_cpu_safe); 4925 #endif /* CONFIG_SMP */ 4926 4927 #ifdef CONFIG_FREEZER 4928 4929 /** 4930 * freeze_workqueues_begin - begin freezing workqueues 4931 * 4932 * Start freezing workqueues. After this function returns, all freezable 4933 * workqueues will queue new works to their delayed_works list instead of 4934 * pool->worklist. 4935 * 4936 * CONTEXT: 4937 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4938 */ 4939 void freeze_workqueues_begin(void) 4940 { 4941 struct workqueue_struct *wq; 4942 struct pool_workqueue *pwq; 4943 4944 mutex_lock(&wq_pool_mutex); 4945 4946 WARN_ON_ONCE(workqueue_freezing); 4947 workqueue_freezing = true; 4948 4949 list_for_each_entry(wq, &workqueues, list) { 4950 mutex_lock(&wq->mutex); 4951 for_each_pwq(pwq, wq) 4952 pwq_adjust_max_active(pwq); 4953 mutex_unlock(&wq->mutex); 4954 } 4955 4956 mutex_unlock(&wq_pool_mutex); 4957 } 4958 4959 /** 4960 * freeze_workqueues_busy - are freezable workqueues still busy? 4961 * 4962 * Check whether freezing is complete. This function must be called 4963 * between freeze_workqueues_begin() and thaw_workqueues(). 4964 * 4965 * CONTEXT: 4966 * Grabs and releases wq_pool_mutex. 4967 * 4968 * Return: 4969 * %true if some freezable workqueues are still busy. %false if freezing 4970 * is complete. 4971 */ 4972 bool freeze_workqueues_busy(void) 4973 { 4974 bool busy = false; 4975 struct workqueue_struct *wq; 4976 struct pool_workqueue *pwq; 4977 4978 mutex_lock(&wq_pool_mutex); 4979 4980 WARN_ON_ONCE(!workqueue_freezing); 4981 4982 list_for_each_entry(wq, &workqueues, list) { 4983 if (!(wq->flags & WQ_FREEZABLE)) 4984 continue; 4985 /* 4986 * nr_active is monotonically decreasing. It's safe 4987 * to peek without lock. 4988 */ 4989 rcu_read_lock_sched(); 4990 for_each_pwq(pwq, wq) { 4991 WARN_ON_ONCE(pwq->nr_active < 0); 4992 if (pwq->nr_active) { 4993 busy = true; 4994 rcu_read_unlock_sched(); 4995 goto out_unlock; 4996 } 4997 } 4998 rcu_read_unlock_sched(); 4999 } 5000 out_unlock: 5001 mutex_unlock(&wq_pool_mutex); 5002 return busy; 5003 } 5004 5005 /** 5006 * thaw_workqueues - thaw workqueues 5007 * 5008 * Thaw workqueues. Normal queueing is restored and all collected 5009 * frozen works are transferred to their respective pool worklists. 5010 * 5011 * CONTEXT: 5012 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5013 */ 5014 void thaw_workqueues(void) 5015 { 5016 struct workqueue_struct *wq; 5017 struct pool_workqueue *pwq; 5018 5019 mutex_lock(&wq_pool_mutex); 5020 5021 if (!workqueue_freezing) 5022 goto out_unlock; 5023 5024 workqueue_freezing = false; 5025 5026 /* restore max_active and repopulate worklist */ 5027 list_for_each_entry(wq, &workqueues, list) { 5028 mutex_lock(&wq->mutex); 5029 for_each_pwq(pwq, wq) 5030 pwq_adjust_max_active(pwq); 5031 mutex_unlock(&wq->mutex); 5032 } 5033 5034 out_unlock: 5035 mutex_unlock(&wq_pool_mutex); 5036 } 5037 #endif /* CONFIG_FREEZER */ 5038 5039 static int workqueue_apply_unbound_cpumask(void) 5040 { 5041 LIST_HEAD(ctxs); 5042 int ret = 0; 5043 struct workqueue_struct *wq; 5044 struct apply_wqattrs_ctx *ctx, *n; 5045 5046 lockdep_assert_held(&wq_pool_mutex); 5047 5048 list_for_each_entry(wq, &workqueues, list) { 5049 if (!(wq->flags & WQ_UNBOUND)) 5050 continue; 5051 /* creating multiple pwqs breaks ordering guarantee */ 5052 if (wq->flags & __WQ_ORDERED) 5053 continue; 5054 5055 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs); 5056 if (!ctx) { 5057 ret = -ENOMEM; 5058 break; 5059 } 5060 5061 list_add_tail(&ctx->list, &ctxs); 5062 } 5063 5064 list_for_each_entry_safe(ctx, n, &ctxs, list) { 5065 if (!ret) 5066 apply_wqattrs_commit(ctx); 5067 apply_wqattrs_cleanup(ctx); 5068 } 5069 5070 return ret; 5071 } 5072 5073 /** 5074 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 5075 * @cpumask: the cpumask to set 5076 * 5077 * The low-level workqueues cpumask is a global cpumask that limits 5078 * the affinity of all unbound workqueues. This function check the @cpumask 5079 * and apply it to all unbound workqueues and updates all pwqs of them. 5080 * 5081 * Retun: 0 - Success 5082 * -EINVAL - Invalid @cpumask 5083 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 5084 */ 5085 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 5086 { 5087 int ret = -EINVAL; 5088 cpumask_var_t saved_cpumask; 5089 5090 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) 5091 return -ENOMEM; 5092 5093 /* 5094 * Not excluding isolated cpus on purpose. 5095 * If the user wishes to include them, we allow that. 5096 */ 5097 cpumask_and(cpumask, cpumask, cpu_possible_mask); 5098 if (!cpumask_empty(cpumask)) { 5099 apply_wqattrs_lock(); 5100 5101 /* save the old wq_unbound_cpumask. */ 5102 cpumask_copy(saved_cpumask, wq_unbound_cpumask); 5103 5104 /* update wq_unbound_cpumask at first and apply it to wqs. */ 5105 cpumask_copy(wq_unbound_cpumask, cpumask); 5106 ret = workqueue_apply_unbound_cpumask(); 5107 5108 /* restore the wq_unbound_cpumask when failed. */ 5109 if (ret < 0) 5110 cpumask_copy(wq_unbound_cpumask, saved_cpumask); 5111 5112 apply_wqattrs_unlock(); 5113 } 5114 5115 free_cpumask_var(saved_cpumask); 5116 return ret; 5117 } 5118 5119 #ifdef CONFIG_SYSFS 5120 /* 5121 * Workqueues with WQ_SYSFS flag set is visible to userland via 5122 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 5123 * following attributes. 5124 * 5125 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 5126 * max_active RW int : maximum number of in-flight work items 5127 * 5128 * Unbound workqueues have the following extra attributes. 5129 * 5130 * pool_ids RO int : the associated pool IDs for each node 5131 * nice RW int : nice value of the workers 5132 * cpumask RW mask : bitmask of allowed CPUs for the workers 5133 * numa RW bool : whether enable NUMA affinity 5134 */ 5135 struct wq_device { 5136 struct workqueue_struct *wq; 5137 struct device dev; 5138 }; 5139 5140 static struct workqueue_struct *dev_to_wq(struct device *dev) 5141 { 5142 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5143 5144 return wq_dev->wq; 5145 } 5146 5147 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 5148 char *buf) 5149 { 5150 struct workqueue_struct *wq = dev_to_wq(dev); 5151 5152 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 5153 } 5154 static DEVICE_ATTR_RO(per_cpu); 5155 5156 static ssize_t max_active_show(struct device *dev, 5157 struct device_attribute *attr, char *buf) 5158 { 5159 struct workqueue_struct *wq = dev_to_wq(dev); 5160 5161 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 5162 } 5163 5164 static ssize_t max_active_store(struct device *dev, 5165 struct device_attribute *attr, const char *buf, 5166 size_t count) 5167 { 5168 struct workqueue_struct *wq = dev_to_wq(dev); 5169 int val; 5170 5171 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 5172 return -EINVAL; 5173 5174 workqueue_set_max_active(wq, val); 5175 return count; 5176 } 5177 static DEVICE_ATTR_RW(max_active); 5178 5179 static struct attribute *wq_sysfs_attrs[] = { 5180 &dev_attr_per_cpu.attr, 5181 &dev_attr_max_active.attr, 5182 NULL, 5183 }; 5184 ATTRIBUTE_GROUPS(wq_sysfs); 5185 5186 static ssize_t wq_pool_ids_show(struct device *dev, 5187 struct device_attribute *attr, char *buf) 5188 { 5189 struct workqueue_struct *wq = dev_to_wq(dev); 5190 const char *delim = ""; 5191 int node, written = 0; 5192 5193 rcu_read_lock_sched(); 5194 for_each_node(node) { 5195 written += scnprintf(buf + written, PAGE_SIZE - written, 5196 "%s%d:%d", delim, node, 5197 unbound_pwq_by_node(wq, node)->pool->id); 5198 delim = " "; 5199 } 5200 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 5201 rcu_read_unlock_sched(); 5202 5203 return written; 5204 } 5205 5206 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 5207 char *buf) 5208 { 5209 struct workqueue_struct *wq = dev_to_wq(dev); 5210 int written; 5211 5212 mutex_lock(&wq->mutex); 5213 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 5214 mutex_unlock(&wq->mutex); 5215 5216 return written; 5217 } 5218 5219 /* prepare workqueue_attrs for sysfs store operations */ 5220 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5221 { 5222 struct workqueue_attrs *attrs; 5223 5224 lockdep_assert_held(&wq_pool_mutex); 5225 5226 attrs = alloc_workqueue_attrs(GFP_KERNEL); 5227 if (!attrs) 5228 return NULL; 5229 5230 copy_workqueue_attrs(attrs, wq->unbound_attrs); 5231 return attrs; 5232 } 5233 5234 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 5235 const char *buf, size_t count) 5236 { 5237 struct workqueue_struct *wq = dev_to_wq(dev); 5238 struct workqueue_attrs *attrs; 5239 int ret = -ENOMEM; 5240 5241 apply_wqattrs_lock(); 5242 5243 attrs = wq_sysfs_prep_attrs(wq); 5244 if (!attrs) 5245 goto out_unlock; 5246 5247 if (sscanf(buf, "%d", &attrs->nice) == 1 && 5248 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 5249 ret = apply_workqueue_attrs_locked(wq, attrs); 5250 else 5251 ret = -EINVAL; 5252 5253 out_unlock: 5254 apply_wqattrs_unlock(); 5255 free_workqueue_attrs(attrs); 5256 return ret ?: count; 5257 } 5258 5259 static ssize_t wq_cpumask_show(struct device *dev, 5260 struct device_attribute *attr, char *buf) 5261 { 5262 struct workqueue_struct *wq = dev_to_wq(dev); 5263 int written; 5264 5265 mutex_lock(&wq->mutex); 5266 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5267 cpumask_pr_args(wq->unbound_attrs->cpumask)); 5268 mutex_unlock(&wq->mutex); 5269 return written; 5270 } 5271 5272 static ssize_t wq_cpumask_store(struct device *dev, 5273 struct device_attribute *attr, 5274 const char *buf, size_t count) 5275 { 5276 struct workqueue_struct *wq = dev_to_wq(dev); 5277 struct workqueue_attrs *attrs; 5278 int ret = -ENOMEM; 5279 5280 apply_wqattrs_lock(); 5281 5282 attrs = wq_sysfs_prep_attrs(wq); 5283 if (!attrs) 5284 goto out_unlock; 5285 5286 ret = cpumask_parse(buf, attrs->cpumask); 5287 if (!ret) 5288 ret = apply_workqueue_attrs_locked(wq, attrs); 5289 5290 out_unlock: 5291 apply_wqattrs_unlock(); 5292 free_workqueue_attrs(attrs); 5293 return ret ?: count; 5294 } 5295 5296 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5297 char *buf) 5298 { 5299 struct workqueue_struct *wq = dev_to_wq(dev); 5300 int written; 5301 5302 mutex_lock(&wq->mutex); 5303 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5304 !wq->unbound_attrs->no_numa); 5305 mutex_unlock(&wq->mutex); 5306 5307 return written; 5308 } 5309 5310 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 5311 const char *buf, size_t count) 5312 { 5313 struct workqueue_struct *wq = dev_to_wq(dev); 5314 struct workqueue_attrs *attrs; 5315 int v, ret = -ENOMEM; 5316 5317 apply_wqattrs_lock(); 5318 5319 attrs = wq_sysfs_prep_attrs(wq); 5320 if (!attrs) 5321 goto out_unlock; 5322 5323 ret = -EINVAL; 5324 if (sscanf(buf, "%d", &v) == 1) { 5325 attrs->no_numa = !v; 5326 ret = apply_workqueue_attrs_locked(wq, attrs); 5327 } 5328 5329 out_unlock: 5330 apply_wqattrs_unlock(); 5331 free_workqueue_attrs(attrs); 5332 return ret ?: count; 5333 } 5334 5335 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5336 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5337 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5338 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5339 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5340 __ATTR_NULL, 5341 }; 5342 5343 static struct bus_type wq_subsys = { 5344 .name = "workqueue", 5345 .dev_groups = wq_sysfs_groups, 5346 }; 5347 5348 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5349 struct device_attribute *attr, char *buf) 5350 { 5351 int written; 5352 5353 mutex_lock(&wq_pool_mutex); 5354 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5355 cpumask_pr_args(wq_unbound_cpumask)); 5356 mutex_unlock(&wq_pool_mutex); 5357 5358 return written; 5359 } 5360 5361 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5362 struct device_attribute *attr, const char *buf, size_t count) 5363 { 5364 cpumask_var_t cpumask; 5365 int ret; 5366 5367 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5368 return -ENOMEM; 5369 5370 ret = cpumask_parse(buf, cpumask); 5371 if (!ret) 5372 ret = workqueue_set_unbound_cpumask(cpumask); 5373 5374 free_cpumask_var(cpumask); 5375 return ret ? ret : count; 5376 } 5377 5378 static struct device_attribute wq_sysfs_cpumask_attr = 5379 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5380 wq_unbound_cpumask_store); 5381 5382 static int __init wq_sysfs_init(void) 5383 { 5384 int err; 5385 5386 err = subsys_virtual_register(&wq_subsys, NULL); 5387 if (err) 5388 return err; 5389 5390 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr); 5391 } 5392 core_initcall(wq_sysfs_init); 5393 5394 static void wq_device_release(struct device *dev) 5395 { 5396 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5397 5398 kfree(wq_dev); 5399 } 5400 5401 /** 5402 * workqueue_sysfs_register - make a workqueue visible in sysfs 5403 * @wq: the workqueue to register 5404 * 5405 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5406 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5407 * which is the preferred method. 5408 * 5409 * Workqueue user should use this function directly iff it wants to apply 5410 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5411 * apply_workqueue_attrs() may race against userland updating the 5412 * attributes. 5413 * 5414 * Return: 0 on success, -errno on failure. 5415 */ 5416 int workqueue_sysfs_register(struct workqueue_struct *wq) 5417 { 5418 struct wq_device *wq_dev; 5419 int ret; 5420 5421 /* 5422 * Adjusting max_active or creating new pwqs by applying 5423 * attributes breaks ordering guarantee. Disallow exposing ordered 5424 * workqueues. 5425 */ 5426 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 5427 return -EINVAL; 5428 5429 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5430 if (!wq_dev) 5431 return -ENOMEM; 5432 5433 wq_dev->wq = wq; 5434 wq_dev->dev.bus = &wq_subsys; 5435 wq_dev->dev.release = wq_device_release; 5436 dev_set_name(&wq_dev->dev, "%s", wq->name); 5437 5438 /* 5439 * unbound_attrs are created separately. Suppress uevent until 5440 * everything is ready. 5441 */ 5442 dev_set_uevent_suppress(&wq_dev->dev, true); 5443 5444 ret = device_register(&wq_dev->dev); 5445 if (ret) { 5446 put_device(&wq_dev->dev); 5447 wq->wq_dev = NULL; 5448 return ret; 5449 } 5450 5451 if (wq->flags & WQ_UNBOUND) { 5452 struct device_attribute *attr; 5453 5454 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5455 ret = device_create_file(&wq_dev->dev, attr); 5456 if (ret) { 5457 device_unregister(&wq_dev->dev); 5458 wq->wq_dev = NULL; 5459 return ret; 5460 } 5461 } 5462 } 5463 5464 dev_set_uevent_suppress(&wq_dev->dev, false); 5465 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5466 return 0; 5467 } 5468 5469 /** 5470 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5471 * @wq: the workqueue to unregister 5472 * 5473 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5474 */ 5475 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5476 { 5477 struct wq_device *wq_dev = wq->wq_dev; 5478 5479 if (!wq->wq_dev) 5480 return; 5481 5482 wq->wq_dev = NULL; 5483 device_unregister(&wq_dev->dev); 5484 } 5485 #else /* CONFIG_SYSFS */ 5486 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5487 #endif /* CONFIG_SYSFS */ 5488 5489 /* 5490 * Workqueue watchdog. 5491 * 5492 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 5493 * flush dependency, a concurrency managed work item which stays RUNNING 5494 * indefinitely. Workqueue stalls can be very difficult to debug as the 5495 * usual warning mechanisms don't trigger and internal workqueue state is 5496 * largely opaque. 5497 * 5498 * Workqueue watchdog monitors all worker pools periodically and dumps 5499 * state if some pools failed to make forward progress for a while where 5500 * forward progress is defined as the first item on ->worklist changing. 5501 * 5502 * This mechanism is controlled through the kernel parameter 5503 * "workqueue.watchdog_thresh" which can be updated at runtime through the 5504 * corresponding sysfs parameter file. 5505 */ 5506 #ifdef CONFIG_WQ_WATCHDOG 5507 5508 static unsigned long wq_watchdog_thresh = 30; 5509 static struct timer_list wq_watchdog_timer; 5510 5511 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 5512 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 5513 5514 static void wq_watchdog_reset_touched(void) 5515 { 5516 int cpu; 5517 5518 wq_watchdog_touched = jiffies; 5519 for_each_possible_cpu(cpu) 5520 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5521 } 5522 5523 static void wq_watchdog_timer_fn(struct timer_list *unused) 5524 { 5525 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 5526 bool lockup_detected = false; 5527 struct worker_pool *pool; 5528 int pi; 5529 5530 if (!thresh) 5531 return; 5532 5533 rcu_read_lock(); 5534 5535 for_each_pool(pool, pi) { 5536 unsigned long pool_ts, touched, ts; 5537 5538 if (list_empty(&pool->worklist)) 5539 continue; 5540 5541 /* get the latest of pool and touched timestamps */ 5542 pool_ts = READ_ONCE(pool->watchdog_ts); 5543 touched = READ_ONCE(wq_watchdog_touched); 5544 5545 if (time_after(pool_ts, touched)) 5546 ts = pool_ts; 5547 else 5548 ts = touched; 5549 5550 if (pool->cpu >= 0) { 5551 unsigned long cpu_touched = 5552 READ_ONCE(per_cpu(wq_watchdog_touched_cpu, 5553 pool->cpu)); 5554 if (time_after(cpu_touched, ts)) 5555 ts = cpu_touched; 5556 } 5557 5558 /* did we stall? */ 5559 if (time_after(jiffies, ts + thresh)) { 5560 lockup_detected = true; 5561 pr_emerg("BUG: workqueue lockup - pool"); 5562 pr_cont_pool_info(pool); 5563 pr_cont(" stuck for %us!\n", 5564 jiffies_to_msecs(jiffies - pool_ts) / 1000); 5565 } 5566 } 5567 5568 rcu_read_unlock(); 5569 5570 if (lockup_detected) 5571 show_workqueue_state(); 5572 5573 wq_watchdog_reset_touched(); 5574 mod_timer(&wq_watchdog_timer, jiffies + thresh); 5575 } 5576 5577 notrace void wq_watchdog_touch(int cpu) 5578 { 5579 if (cpu >= 0) 5580 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5581 else 5582 wq_watchdog_touched = jiffies; 5583 } 5584 5585 static void wq_watchdog_set_thresh(unsigned long thresh) 5586 { 5587 wq_watchdog_thresh = 0; 5588 del_timer_sync(&wq_watchdog_timer); 5589 5590 if (thresh) { 5591 wq_watchdog_thresh = thresh; 5592 wq_watchdog_reset_touched(); 5593 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 5594 } 5595 } 5596 5597 static int wq_watchdog_param_set_thresh(const char *val, 5598 const struct kernel_param *kp) 5599 { 5600 unsigned long thresh; 5601 int ret; 5602 5603 ret = kstrtoul(val, 0, &thresh); 5604 if (ret) 5605 return ret; 5606 5607 if (system_wq) 5608 wq_watchdog_set_thresh(thresh); 5609 else 5610 wq_watchdog_thresh = thresh; 5611 5612 return 0; 5613 } 5614 5615 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 5616 .set = wq_watchdog_param_set_thresh, 5617 .get = param_get_ulong, 5618 }; 5619 5620 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 5621 0644); 5622 5623 static void wq_watchdog_init(void) 5624 { 5625 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 5626 wq_watchdog_set_thresh(wq_watchdog_thresh); 5627 } 5628 5629 #else /* CONFIG_WQ_WATCHDOG */ 5630 5631 static inline void wq_watchdog_init(void) { } 5632 5633 #endif /* CONFIG_WQ_WATCHDOG */ 5634 5635 static void __init wq_numa_init(void) 5636 { 5637 cpumask_var_t *tbl; 5638 int node, cpu; 5639 5640 if (num_possible_nodes() <= 1) 5641 return; 5642 5643 if (wq_disable_numa) { 5644 pr_info("workqueue: NUMA affinity support disabled\n"); 5645 return; 5646 } 5647 5648 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL); 5649 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5650 5651 /* 5652 * We want masks of possible CPUs of each node which isn't readily 5653 * available. Build one from cpu_to_node() which should have been 5654 * fully initialized by now. 5655 */ 5656 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL); 5657 BUG_ON(!tbl); 5658 5659 for_each_node(node) 5660 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5661 node_online(node) ? node : NUMA_NO_NODE)); 5662 5663 for_each_possible_cpu(cpu) { 5664 node = cpu_to_node(cpu); 5665 if (WARN_ON(node == NUMA_NO_NODE)) { 5666 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5667 /* happens iff arch is bonkers, let's just proceed */ 5668 return; 5669 } 5670 cpumask_set_cpu(cpu, tbl[node]); 5671 } 5672 5673 wq_numa_possible_cpumask = tbl; 5674 wq_numa_enabled = true; 5675 } 5676 5677 /** 5678 * workqueue_init_early - early init for workqueue subsystem 5679 * 5680 * This is the first half of two-staged workqueue subsystem initialization 5681 * and invoked as soon as the bare basics - memory allocation, cpumasks and 5682 * idr are up. It sets up all the data structures and system workqueues 5683 * and allows early boot code to create workqueues and queue/cancel work 5684 * items. Actual work item execution starts only after kthreads can be 5685 * created and scheduled right before early initcalls. 5686 */ 5687 int __init workqueue_init_early(void) 5688 { 5689 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5690 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ; 5691 int i, cpu; 5692 5693 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5694 5695 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 5696 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags)); 5697 5698 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5699 5700 /* initialize CPU pools */ 5701 for_each_possible_cpu(cpu) { 5702 struct worker_pool *pool; 5703 5704 i = 0; 5705 for_each_cpu_worker_pool(pool, cpu) { 5706 BUG_ON(init_worker_pool(pool)); 5707 pool->cpu = cpu; 5708 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5709 pool->attrs->nice = std_nice[i++]; 5710 pool->node = cpu_to_node(cpu); 5711 5712 /* alloc pool ID */ 5713 mutex_lock(&wq_pool_mutex); 5714 BUG_ON(worker_pool_assign_id(pool)); 5715 mutex_unlock(&wq_pool_mutex); 5716 } 5717 } 5718 5719 /* create default unbound and ordered wq attrs */ 5720 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5721 struct workqueue_attrs *attrs; 5722 5723 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5724 attrs->nice = std_nice[i]; 5725 unbound_std_wq_attrs[i] = attrs; 5726 5727 /* 5728 * An ordered wq should have only one pwq as ordering is 5729 * guaranteed by max_active which is enforced by pwqs. 5730 * Turn off NUMA so that dfl_pwq is used for all nodes. 5731 */ 5732 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5733 attrs->nice = std_nice[i]; 5734 attrs->no_numa = true; 5735 ordered_wq_attrs[i] = attrs; 5736 } 5737 5738 system_wq = alloc_workqueue("events", 0, 0); 5739 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5740 system_long_wq = alloc_workqueue("events_long", 0, 0); 5741 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5742 WQ_UNBOUND_MAX_ACTIVE); 5743 system_freezable_wq = alloc_workqueue("events_freezable", 5744 WQ_FREEZABLE, 0); 5745 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5746 WQ_POWER_EFFICIENT, 0); 5747 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5748 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5749 0); 5750 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5751 !system_unbound_wq || !system_freezable_wq || 5752 !system_power_efficient_wq || 5753 !system_freezable_power_efficient_wq); 5754 5755 return 0; 5756 } 5757 5758 /** 5759 * workqueue_init - bring workqueue subsystem fully online 5760 * 5761 * This is the latter half of two-staged workqueue subsystem initialization 5762 * and invoked as soon as kthreads can be created and scheduled. 5763 * Workqueues have been created and work items queued on them, but there 5764 * are no kworkers executing the work items yet. Populate the worker pools 5765 * with the initial workers and enable future kworker creations. 5766 */ 5767 int __init workqueue_init(void) 5768 { 5769 struct workqueue_struct *wq; 5770 struct worker_pool *pool; 5771 int cpu, bkt; 5772 5773 /* 5774 * It'd be simpler to initialize NUMA in workqueue_init_early() but 5775 * CPU to node mapping may not be available that early on some 5776 * archs such as power and arm64. As per-cpu pools created 5777 * previously could be missing node hint and unbound pools NUMA 5778 * affinity, fix them up. 5779 * 5780 * Also, while iterating workqueues, create rescuers if requested. 5781 */ 5782 wq_numa_init(); 5783 5784 mutex_lock(&wq_pool_mutex); 5785 5786 for_each_possible_cpu(cpu) { 5787 for_each_cpu_worker_pool(pool, cpu) { 5788 pool->node = cpu_to_node(cpu); 5789 } 5790 } 5791 5792 list_for_each_entry(wq, &workqueues, list) { 5793 wq_update_unbound_numa(wq, smp_processor_id(), true); 5794 WARN(init_rescuer(wq), 5795 "workqueue: failed to create early rescuer for %s", 5796 wq->name); 5797 } 5798 5799 mutex_unlock(&wq_pool_mutex); 5800 5801 /* create the initial workers */ 5802 for_each_online_cpu(cpu) { 5803 for_each_cpu_worker_pool(pool, cpu) { 5804 pool->flags &= ~POOL_DISASSOCIATED; 5805 BUG_ON(!create_worker(pool)); 5806 } 5807 } 5808 5809 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 5810 BUG_ON(!create_worker(pool)); 5811 5812 wq_online = true; 5813 wq_watchdog_init(); 5814 5815 return 0; 5816 } 5817