xref: /openbmc/linux/kernel/workqueue.c (revision cf028200)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There is one worker pool for each CPU and
20  * one extra for works which are better served by workers which are
21  * not bound to any specific CPU.
22  *
23  * Please read Documentation/workqueue.txt for details.
24  */
25 
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 
45 #include "workqueue_sched.h"
46 
47 enum {
48 	/*
49 	 * global_cwq flags
50 	 *
51 	 * A bound gcwq is either associated or disassociated with its CPU.
52 	 * While associated (!DISASSOCIATED), all workers are bound to the
53 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
54 	 * is in effect.
55 	 *
56 	 * While DISASSOCIATED, the cpu may be offline and all workers have
57 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
58 	 * be executing on any CPU.  The gcwq behaves as an unbound one.
59 	 *
60 	 * Note that DISASSOCIATED can be flipped only while holding
61 	 * assoc_mutex of all pools on the gcwq to avoid changing binding
62 	 * state while create_worker() is in progress.
63 	 */
64 	GCWQ_DISASSOCIATED	= 1 << 0,	/* cpu can't serve workers */
65 	GCWQ_FREEZING		= 1 << 1,	/* freeze in progress */
66 
67 	/* pool flags */
68 	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
69 	POOL_MANAGING_WORKERS   = 1 << 1,       /* managing workers */
70 
71 	/* worker flags */
72 	WORKER_STARTED		= 1 << 0,	/* started */
73 	WORKER_DIE		= 1 << 1,	/* die die die */
74 	WORKER_IDLE		= 1 << 2,	/* is idle */
75 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
76 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
77 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
78 
79 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_UNBOUND |
80 				  WORKER_CPU_INTENSIVE,
81 
82 	NR_WORKER_POOLS		= 2,		/* # worker pools per gcwq */
83 
84 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
85 	BUSY_WORKER_HASH_SIZE	= 1 << BUSY_WORKER_HASH_ORDER,
86 	BUSY_WORKER_HASH_MASK	= BUSY_WORKER_HASH_SIZE - 1,
87 
88 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
89 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
90 
91 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
92 						/* call for help after 10ms
93 						   (min two ticks) */
94 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
95 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
96 
97 	/*
98 	 * Rescue workers are used only on emergencies and shared by
99 	 * all cpus.  Give -20.
100 	 */
101 	RESCUER_NICE_LEVEL	= -20,
102 	HIGHPRI_NICE_LEVEL	= -20,
103 };
104 
105 /*
106  * Structure fields follow one of the following exclusion rules.
107  *
108  * I: Modifiable by initialization/destruction paths and read-only for
109  *    everyone else.
110  *
111  * P: Preemption protected.  Disabling preemption is enough and should
112  *    only be modified and accessed from the local cpu.
113  *
114  * L: gcwq->lock protected.  Access with gcwq->lock held.
115  *
116  * X: During normal operation, modification requires gcwq->lock and
117  *    should be done only from local cpu.  Either disabling preemption
118  *    on local cpu or grabbing gcwq->lock is enough for read access.
119  *    If GCWQ_DISASSOCIATED is set, it's identical to L.
120  *
121  * F: wq->flush_mutex protected.
122  *
123  * W: workqueue_lock protected.
124  */
125 
126 struct global_cwq;
127 struct worker_pool;
128 
129 /*
130  * The poor guys doing the actual heavy lifting.  All on-duty workers
131  * are either serving the manager role, on idle list or on busy hash.
132  */
133 struct worker {
134 	/* on idle list while idle, on busy hash table while busy */
135 	union {
136 		struct list_head	entry;	/* L: while idle */
137 		struct hlist_node	hentry;	/* L: while busy */
138 	};
139 
140 	struct work_struct	*current_work;	/* L: work being processed */
141 	struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
142 	struct list_head	scheduled;	/* L: scheduled works */
143 	struct task_struct	*task;		/* I: worker task */
144 	struct worker_pool	*pool;		/* I: the associated pool */
145 	/* 64 bytes boundary on 64bit, 32 on 32bit */
146 	unsigned long		last_active;	/* L: last active timestamp */
147 	unsigned int		flags;		/* X: flags */
148 	int			id;		/* I: worker id */
149 
150 	/* for rebinding worker to CPU */
151 	struct work_struct	rebind_work;	/* L: for busy worker */
152 };
153 
154 struct worker_pool {
155 	struct global_cwq	*gcwq;		/* I: the owning gcwq */
156 	unsigned int		flags;		/* X: flags */
157 
158 	struct list_head	worklist;	/* L: list of pending works */
159 	int			nr_workers;	/* L: total number of workers */
160 
161 	/* nr_idle includes the ones off idle_list for rebinding */
162 	int			nr_idle;	/* L: currently idle ones */
163 
164 	struct list_head	idle_list;	/* X: list of idle workers */
165 	struct timer_list	idle_timer;	/* L: worker idle timeout */
166 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
167 
168 	struct mutex		assoc_mutex;	/* protect GCWQ_DISASSOCIATED */
169 	struct ida		worker_ida;	/* L: for worker IDs */
170 };
171 
172 /*
173  * Global per-cpu workqueue.  There's one and only one for each cpu
174  * and all works are queued and processed here regardless of their
175  * target workqueues.
176  */
177 struct global_cwq {
178 	spinlock_t		lock;		/* the gcwq lock */
179 	unsigned int		cpu;		/* I: the associated cpu */
180 	unsigned int		flags;		/* L: GCWQ_* flags */
181 
182 	/* workers are chained either in busy_hash or pool idle_list */
183 	struct hlist_head	busy_hash[BUSY_WORKER_HASH_SIZE];
184 						/* L: hash of busy workers */
185 
186 	struct worker_pool	pools[NR_WORKER_POOLS];
187 						/* normal and highpri pools */
188 } ____cacheline_aligned_in_smp;
189 
190 /*
191  * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
192  * work_struct->data are used for flags and thus cwqs need to be
193  * aligned at two's power of the number of flag bits.
194  */
195 struct cpu_workqueue_struct {
196 	struct worker_pool	*pool;		/* I: the associated pool */
197 	struct workqueue_struct *wq;		/* I: the owning workqueue */
198 	int			work_color;	/* L: current color */
199 	int			flush_color;	/* L: flushing color */
200 	int			nr_in_flight[WORK_NR_COLORS];
201 						/* L: nr of in_flight works */
202 	int			nr_active;	/* L: nr of active works */
203 	int			max_active;	/* L: max active works */
204 	struct list_head	delayed_works;	/* L: delayed works */
205 };
206 
207 /*
208  * Structure used to wait for workqueue flush.
209  */
210 struct wq_flusher {
211 	struct list_head	list;		/* F: list of flushers */
212 	int			flush_color;	/* F: flush color waiting for */
213 	struct completion	done;		/* flush completion */
214 };
215 
216 /*
217  * All cpumasks are assumed to be always set on UP and thus can't be
218  * used to determine whether there's something to be done.
219  */
220 #ifdef CONFIG_SMP
221 typedef cpumask_var_t mayday_mask_t;
222 #define mayday_test_and_set_cpu(cpu, mask)	\
223 	cpumask_test_and_set_cpu((cpu), (mask))
224 #define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
225 #define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
226 #define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
227 #define free_mayday_mask(mask)			free_cpumask_var((mask))
228 #else
229 typedef unsigned long mayday_mask_t;
230 #define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
231 #define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
232 #define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
233 #define alloc_mayday_mask(maskp, gfp)		true
234 #define free_mayday_mask(mask)			do { } while (0)
235 #endif
236 
237 /*
238  * The externally visible workqueue abstraction is an array of
239  * per-CPU workqueues:
240  */
241 struct workqueue_struct {
242 	unsigned int		flags;		/* W: WQ_* flags */
243 	union {
244 		struct cpu_workqueue_struct __percpu	*pcpu;
245 		struct cpu_workqueue_struct		*single;
246 		unsigned long				v;
247 	} cpu_wq;				/* I: cwq's */
248 	struct list_head	list;		/* W: list of all workqueues */
249 
250 	struct mutex		flush_mutex;	/* protects wq flushing */
251 	int			work_color;	/* F: current work color */
252 	int			flush_color;	/* F: current flush color */
253 	atomic_t		nr_cwqs_to_flush; /* flush in progress */
254 	struct wq_flusher	*first_flusher;	/* F: first flusher */
255 	struct list_head	flusher_queue;	/* F: flush waiters */
256 	struct list_head	flusher_overflow; /* F: flush overflow list */
257 
258 	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
259 	struct worker		*rescuer;	/* I: rescue worker */
260 
261 	int			nr_drainers;	/* W: drain in progress */
262 	int			saved_max_active; /* W: saved cwq max_active */
263 #ifdef CONFIG_LOCKDEP
264 	struct lockdep_map	lockdep_map;
265 #endif
266 	char			name[];		/* I: workqueue name */
267 };
268 
269 struct workqueue_struct *system_wq __read_mostly;
270 EXPORT_SYMBOL_GPL(system_wq);
271 struct workqueue_struct *system_highpri_wq __read_mostly;
272 EXPORT_SYMBOL_GPL(system_highpri_wq);
273 struct workqueue_struct *system_long_wq __read_mostly;
274 EXPORT_SYMBOL_GPL(system_long_wq);
275 struct workqueue_struct *system_unbound_wq __read_mostly;
276 EXPORT_SYMBOL_GPL(system_unbound_wq);
277 struct workqueue_struct *system_freezable_wq __read_mostly;
278 EXPORT_SYMBOL_GPL(system_freezable_wq);
279 
280 #define CREATE_TRACE_POINTS
281 #include <trace/events/workqueue.h>
282 
283 #define for_each_worker_pool(pool, gcwq)				\
284 	for ((pool) = &(gcwq)->pools[0];				\
285 	     (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
286 
287 #define for_each_busy_worker(worker, i, pos, gcwq)			\
288 	for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)			\
289 		hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
290 
291 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
292 				  unsigned int sw)
293 {
294 	if (cpu < nr_cpu_ids) {
295 		if (sw & 1) {
296 			cpu = cpumask_next(cpu, mask);
297 			if (cpu < nr_cpu_ids)
298 				return cpu;
299 		}
300 		if (sw & 2)
301 			return WORK_CPU_UNBOUND;
302 	}
303 	return WORK_CPU_NONE;
304 }
305 
306 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
307 				struct workqueue_struct *wq)
308 {
309 	return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
310 }
311 
312 /*
313  * CPU iterators
314  *
315  * An extra gcwq is defined for an invalid cpu number
316  * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
317  * specific CPU.  The following iterators are similar to
318  * for_each_*_cpu() iterators but also considers the unbound gcwq.
319  *
320  * for_each_gcwq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
321  * for_each_online_gcwq_cpu()	: online CPUs + WORK_CPU_UNBOUND
322  * for_each_cwq_cpu()		: possible CPUs for bound workqueues,
323  *				  WORK_CPU_UNBOUND for unbound workqueues
324  */
325 #define for_each_gcwq_cpu(cpu)						\
326 	for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3);		\
327 	     (cpu) < WORK_CPU_NONE;					\
328 	     (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
329 
330 #define for_each_online_gcwq_cpu(cpu)					\
331 	for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3);		\
332 	     (cpu) < WORK_CPU_NONE;					\
333 	     (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
334 
335 #define for_each_cwq_cpu(cpu, wq)					\
336 	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq));	\
337 	     (cpu) < WORK_CPU_NONE;					\
338 	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
339 
340 #ifdef CONFIG_DEBUG_OBJECTS_WORK
341 
342 static struct debug_obj_descr work_debug_descr;
343 
344 static void *work_debug_hint(void *addr)
345 {
346 	return ((struct work_struct *) addr)->func;
347 }
348 
349 /*
350  * fixup_init is called when:
351  * - an active object is initialized
352  */
353 static int work_fixup_init(void *addr, enum debug_obj_state state)
354 {
355 	struct work_struct *work = addr;
356 
357 	switch (state) {
358 	case ODEBUG_STATE_ACTIVE:
359 		cancel_work_sync(work);
360 		debug_object_init(work, &work_debug_descr);
361 		return 1;
362 	default:
363 		return 0;
364 	}
365 }
366 
367 /*
368  * fixup_activate is called when:
369  * - an active object is activated
370  * - an unknown object is activated (might be a statically initialized object)
371  */
372 static int work_fixup_activate(void *addr, enum debug_obj_state state)
373 {
374 	struct work_struct *work = addr;
375 
376 	switch (state) {
377 
378 	case ODEBUG_STATE_NOTAVAILABLE:
379 		/*
380 		 * This is not really a fixup. The work struct was
381 		 * statically initialized. We just make sure that it
382 		 * is tracked in the object tracker.
383 		 */
384 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
385 			debug_object_init(work, &work_debug_descr);
386 			debug_object_activate(work, &work_debug_descr);
387 			return 0;
388 		}
389 		WARN_ON_ONCE(1);
390 		return 0;
391 
392 	case ODEBUG_STATE_ACTIVE:
393 		WARN_ON(1);
394 
395 	default:
396 		return 0;
397 	}
398 }
399 
400 /*
401  * fixup_free is called when:
402  * - an active object is freed
403  */
404 static int work_fixup_free(void *addr, enum debug_obj_state state)
405 {
406 	struct work_struct *work = addr;
407 
408 	switch (state) {
409 	case ODEBUG_STATE_ACTIVE:
410 		cancel_work_sync(work);
411 		debug_object_free(work, &work_debug_descr);
412 		return 1;
413 	default:
414 		return 0;
415 	}
416 }
417 
418 static struct debug_obj_descr work_debug_descr = {
419 	.name		= "work_struct",
420 	.debug_hint	= work_debug_hint,
421 	.fixup_init	= work_fixup_init,
422 	.fixup_activate	= work_fixup_activate,
423 	.fixup_free	= work_fixup_free,
424 };
425 
426 static inline void debug_work_activate(struct work_struct *work)
427 {
428 	debug_object_activate(work, &work_debug_descr);
429 }
430 
431 static inline void debug_work_deactivate(struct work_struct *work)
432 {
433 	debug_object_deactivate(work, &work_debug_descr);
434 }
435 
436 void __init_work(struct work_struct *work, int onstack)
437 {
438 	if (onstack)
439 		debug_object_init_on_stack(work, &work_debug_descr);
440 	else
441 		debug_object_init(work, &work_debug_descr);
442 }
443 EXPORT_SYMBOL_GPL(__init_work);
444 
445 void destroy_work_on_stack(struct work_struct *work)
446 {
447 	debug_object_free(work, &work_debug_descr);
448 }
449 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
450 
451 #else
452 static inline void debug_work_activate(struct work_struct *work) { }
453 static inline void debug_work_deactivate(struct work_struct *work) { }
454 #endif
455 
456 /* Serializes the accesses to the list of workqueues. */
457 static DEFINE_SPINLOCK(workqueue_lock);
458 static LIST_HEAD(workqueues);
459 static bool workqueue_freezing;		/* W: have wqs started freezing? */
460 
461 /*
462  * The almighty global cpu workqueues.  nr_running is the only field
463  * which is expected to be used frequently by other cpus via
464  * try_to_wake_up().  Put it in a separate cacheline.
465  */
466 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
467 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
468 
469 /*
470  * Global cpu workqueue and nr_running counter for unbound gcwq.  The
471  * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
472  * workers have WORKER_UNBOUND set.
473  */
474 static struct global_cwq unbound_global_cwq;
475 static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
476 	[0 ... NR_WORKER_POOLS - 1]	= ATOMIC_INIT(0),	/* always 0 */
477 };
478 
479 static int worker_thread(void *__worker);
480 
481 static int worker_pool_pri(struct worker_pool *pool)
482 {
483 	return pool - pool->gcwq->pools;
484 }
485 
486 static struct global_cwq *get_gcwq(unsigned int cpu)
487 {
488 	if (cpu != WORK_CPU_UNBOUND)
489 		return &per_cpu(global_cwq, cpu);
490 	else
491 		return &unbound_global_cwq;
492 }
493 
494 static atomic_t *get_pool_nr_running(struct worker_pool *pool)
495 {
496 	int cpu = pool->gcwq->cpu;
497 	int idx = worker_pool_pri(pool);
498 
499 	if (cpu != WORK_CPU_UNBOUND)
500 		return &per_cpu(pool_nr_running, cpu)[idx];
501 	else
502 		return &unbound_pool_nr_running[idx];
503 }
504 
505 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
506 					    struct workqueue_struct *wq)
507 {
508 	if (!(wq->flags & WQ_UNBOUND)) {
509 		if (likely(cpu < nr_cpu_ids))
510 			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
511 	} else if (likely(cpu == WORK_CPU_UNBOUND))
512 		return wq->cpu_wq.single;
513 	return NULL;
514 }
515 
516 static unsigned int work_color_to_flags(int color)
517 {
518 	return color << WORK_STRUCT_COLOR_SHIFT;
519 }
520 
521 static int get_work_color(struct work_struct *work)
522 {
523 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
524 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
525 }
526 
527 static int work_next_color(int color)
528 {
529 	return (color + 1) % WORK_NR_COLORS;
530 }
531 
532 /*
533  * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
534  * contain the pointer to the queued cwq.  Once execution starts, the flag
535  * is cleared and the high bits contain OFFQ flags and CPU number.
536  *
537  * set_work_cwq(), set_work_cpu_and_clear_pending(), mark_work_canceling()
538  * and clear_work_data() can be used to set the cwq, cpu or clear
539  * work->data.  These functions should only be called while the work is
540  * owned - ie. while the PENDING bit is set.
541  *
542  * get_work_[g]cwq() can be used to obtain the gcwq or cwq corresponding to
543  * a work.  gcwq is available once the work has been queued anywhere after
544  * initialization until it is sync canceled.  cwq is available only while
545  * the work item is queued.
546  *
547  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
548  * canceled.  While being canceled, a work item may have its PENDING set
549  * but stay off timer and worklist for arbitrarily long and nobody should
550  * try to steal the PENDING bit.
551  */
552 static inline void set_work_data(struct work_struct *work, unsigned long data,
553 				 unsigned long flags)
554 {
555 	BUG_ON(!work_pending(work));
556 	atomic_long_set(&work->data, data | flags | work_static(work));
557 }
558 
559 static void set_work_cwq(struct work_struct *work,
560 			 struct cpu_workqueue_struct *cwq,
561 			 unsigned long extra_flags)
562 {
563 	set_work_data(work, (unsigned long)cwq,
564 		      WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
565 }
566 
567 static void set_work_cpu_and_clear_pending(struct work_struct *work,
568 					   unsigned int cpu)
569 {
570 	/*
571 	 * The following wmb is paired with the implied mb in
572 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
573 	 * here are visible to and precede any updates by the next PENDING
574 	 * owner.
575 	 */
576 	smp_wmb();
577 	set_work_data(work, (unsigned long)cpu << WORK_OFFQ_CPU_SHIFT, 0);
578 }
579 
580 static void clear_work_data(struct work_struct *work)
581 {
582 	smp_wmb();	/* see set_work_cpu_and_clear_pending() */
583 	set_work_data(work, WORK_STRUCT_NO_CPU, 0);
584 }
585 
586 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
587 {
588 	unsigned long data = atomic_long_read(&work->data);
589 
590 	if (data & WORK_STRUCT_CWQ)
591 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
592 	else
593 		return NULL;
594 }
595 
596 static struct global_cwq *get_work_gcwq(struct work_struct *work)
597 {
598 	unsigned long data = atomic_long_read(&work->data);
599 	unsigned int cpu;
600 
601 	if (data & WORK_STRUCT_CWQ)
602 		return ((struct cpu_workqueue_struct *)
603 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
604 
605 	cpu = data >> WORK_OFFQ_CPU_SHIFT;
606 	if (cpu == WORK_CPU_NONE)
607 		return NULL;
608 
609 	BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
610 	return get_gcwq(cpu);
611 }
612 
613 static void mark_work_canceling(struct work_struct *work)
614 {
615 	struct global_cwq *gcwq = get_work_gcwq(work);
616 	unsigned long cpu = gcwq ? gcwq->cpu : WORK_CPU_NONE;
617 
618 	set_work_data(work, (cpu << WORK_OFFQ_CPU_SHIFT) | WORK_OFFQ_CANCELING,
619 		      WORK_STRUCT_PENDING);
620 }
621 
622 static bool work_is_canceling(struct work_struct *work)
623 {
624 	unsigned long data = atomic_long_read(&work->data);
625 
626 	return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
627 }
628 
629 /*
630  * Policy functions.  These define the policies on how the global worker
631  * pools are managed.  Unless noted otherwise, these functions assume that
632  * they're being called with gcwq->lock held.
633  */
634 
635 static bool __need_more_worker(struct worker_pool *pool)
636 {
637 	return !atomic_read(get_pool_nr_running(pool));
638 }
639 
640 /*
641  * Need to wake up a worker?  Called from anything but currently
642  * running workers.
643  *
644  * Note that, because unbound workers never contribute to nr_running, this
645  * function will always return %true for unbound gcwq as long as the
646  * worklist isn't empty.
647  */
648 static bool need_more_worker(struct worker_pool *pool)
649 {
650 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
651 }
652 
653 /* Can I start working?  Called from busy but !running workers. */
654 static bool may_start_working(struct worker_pool *pool)
655 {
656 	return pool->nr_idle;
657 }
658 
659 /* Do I need to keep working?  Called from currently running workers. */
660 static bool keep_working(struct worker_pool *pool)
661 {
662 	atomic_t *nr_running = get_pool_nr_running(pool);
663 
664 	return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
665 }
666 
667 /* Do we need a new worker?  Called from manager. */
668 static bool need_to_create_worker(struct worker_pool *pool)
669 {
670 	return need_more_worker(pool) && !may_start_working(pool);
671 }
672 
673 /* Do I need to be the manager? */
674 static bool need_to_manage_workers(struct worker_pool *pool)
675 {
676 	return need_to_create_worker(pool) ||
677 		(pool->flags & POOL_MANAGE_WORKERS);
678 }
679 
680 /* Do we have too many workers and should some go away? */
681 static bool too_many_workers(struct worker_pool *pool)
682 {
683 	bool managing = pool->flags & POOL_MANAGING_WORKERS;
684 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
685 	int nr_busy = pool->nr_workers - nr_idle;
686 
687 	/*
688 	 * nr_idle and idle_list may disagree if idle rebinding is in
689 	 * progress.  Never return %true if idle_list is empty.
690 	 */
691 	if (list_empty(&pool->idle_list))
692 		return false;
693 
694 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
695 }
696 
697 /*
698  * Wake up functions.
699  */
700 
701 /* Return the first worker.  Safe with preemption disabled */
702 static struct worker *first_worker(struct worker_pool *pool)
703 {
704 	if (unlikely(list_empty(&pool->idle_list)))
705 		return NULL;
706 
707 	return list_first_entry(&pool->idle_list, struct worker, entry);
708 }
709 
710 /**
711  * wake_up_worker - wake up an idle worker
712  * @pool: worker pool to wake worker from
713  *
714  * Wake up the first idle worker of @pool.
715  *
716  * CONTEXT:
717  * spin_lock_irq(gcwq->lock).
718  */
719 static void wake_up_worker(struct worker_pool *pool)
720 {
721 	struct worker *worker = first_worker(pool);
722 
723 	if (likely(worker))
724 		wake_up_process(worker->task);
725 }
726 
727 /**
728  * wq_worker_waking_up - a worker is waking up
729  * @task: task waking up
730  * @cpu: CPU @task is waking up to
731  *
732  * This function is called during try_to_wake_up() when a worker is
733  * being awoken.
734  *
735  * CONTEXT:
736  * spin_lock_irq(rq->lock)
737  */
738 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
739 {
740 	struct worker *worker = kthread_data(task);
741 
742 	if (!(worker->flags & WORKER_NOT_RUNNING))
743 		atomic_inc(get_pool_nr_running(worker->pool));
744 }
745 
746 /**
747  * wq_worker_sleeping - a worker is going to sleep
748  * @task: task going to sleep
749  * @cpu: CPU in question, must be the current CPU number
750  *
751  * This function is called during schedule() when a busy worker is
752  * going to sleep.  Worker on the same cpu can be woken up by
753  * returning pointer to its task.
754  *
755  * CONTEXT:
756  * spin_lock_irq(rq->lock)
757  *
758  * RETURNS:
759  * Worker task on @cpu to wake up, %NULL if none.
760  */
761 struct task_struct *wq_worker_sleeping(struct task_struct *task,
762 				       unsigned int cpu)
763 {
764 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
765 	struct worker_pool *pool = worker->pool;
766 	atomic_t *nr_running = get_pool_nr_running(pool);
767 
768 	if (worker->flags & WORKER_NOT_RUNNING)
769 		return NULL;
770 
771 	/* this can only happen on the local cpu */
772 	BUG_ON(cpu != raw_smp_processor_id());
773 
774 	/*
775 	 * The counterpart of the following dec_and_test, implied mb,
776 	 * worklist not empty test sequence is in insert_work().
777 	 * Please read comment there.
778 	 *
779 	 * NOT_RUNNING is clear.  This means that we're bound to and
780 	 * running on the local cpu w/ rq lock held and preemption
781 	 * disabled, which in turn means that none else could be
782 	 * manipulating idle_list, so dereferencing idle_list without gcwq
783 	 * lock is safe.
784 	 */
785 	if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
786 		to_wakeup = first_worker(pool);
787 	return to_wakeup ? to_wakeup->task : NULL;
788 }
789 
790 /**
791  * worker_set_flags - set worker flags and adjust nr_running accordingly
792  * @worker: self
793  * @flags: flags to set
794  * @wakeup: wakeup an idle worker if necessary
795  *
796  * Set @flags in @worker->flags and adjust nr_running accordingly.  If
797  * nr_running becomes zero and @wakeup is %true, an idle worker is
798  * woken up.
799  *
800  * CONTEXT:
801  * spin_lock_irq(gcwq->lock)
802  */
803 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
804 				    bool wakeup)
805 {
806 	struct worker_pool *pool = worker->pool;
807 
808 	WARN_ON_ONCE(worker->task != current);
809 
810 	/*
811 	 * If transitioning into NOT_RUNNING, adjust nr_running and
812 	 * wake up an idle worker as necessary if requested by
813 	 * @wakeup.
814 	 */
815 	if ((flags & WORKER_NOT_RUNNING) &&
816 	    !(worker->flags & WORKER_NOT_RUNNING)) {
817 		atomic_t *nr_running = get_pool_nr_running(pool);
818 
819 		if (wakeup) {
820 			if (atomic_dec_and_test(nr_running) &&
821 			    !list_empty(&pool->worklist))
822 				wake_up_worker(pool);
823 		} else
824 			atomic_dec(nr_running);
825 	}
826 
827 	worker->flags |= flags;
828 }
829 
830 /**
831  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
832  * @worker: self
833  * @flags: flags to clear
834  *
835  * Clear @flags in @worker->flags and adjust nr_running accordingly.
836  *
837  * CONTEXT:
838  * spin_lock_irq(gcwq->lock)
839  */
840 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
841 {
842 	struct worker_pool *pool = worker->pool;
843 	unsigned int oflags = worker->flags;
844 
845 	WARN_ON_ONCE(worker->task != current);
846 
847 	worker->flags &= ~flags;
848 
849 	/*
850 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
851 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
852 	 * of multiple flags, not a single flag.
853 	 */
854 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
855 		if (!(worker->flags & WORKER_NOT_RUNNING))
856 			atomic_inc(get_pool_nr_running(pool));
857 }
858 
859 /**
860  * busy_worker_head - return the busy hash head for a work
861  * @gcwq: gcwq of interest
862  * @work: work to be hashed
863  *
864  * Return hash head of @gcwq for @work.
865  *
866  * CONTEXT:
867  * spin_lock_irq(gcwq->lock).
868  *
869  * RETURNS:
870  * Pointer to the hash head.
871  */
872 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
873 					   struct work_struct *work)
874 {
875 	const int base_shift = ilog2(sizeof(struct work_struct));
876 	unsigned long v = (unsigned long)work;
877 
878 	/* simple shift and fold hash, do we need something better? */
879 	v >>= base_shift;
880 	v += v >> BUSY_WORKER_HASH_ORDER;
881 	v &= BUSY_WORKER_HASH_MASK;
882 
883 	return &gcwq->busy_hash[v];
884 }
885 
886 /**
887  * __find_worker_executing_work - find worker which is executing a work
888  * @gcwq: gcwq of interest
889  * @bwh: hash head as returned by busy_worker_head()
890  * @work: work to find worker for
891  *
892  * Find a worker which is executing @work on @gcwq.  @bwh should be
893  * the hash head obtained by calling busy_worker_head() with the same
894  * work.
895  *
896  * CONTEXT:
897  * spin_lock_irq(gcwq->lock).
898  *
899  * RETURNS:
900  * Pointer to worker which is executing @work if found, NULL
901  * otherwise.
902  */
903 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
904 						   struct hlist_head *bwh,
905 						   struct work_struct *work)
906 {
907 	struct worker *worker;
908 	struct hlist_node *tmp;
909 
910 	hlist_for_each_entry(worker, tmp, bwh, hentry)
911 		if (worker->current_work == work)
912 			return worker;
913 	return NULL;
914 }
915 
916 /**
917  * find_worker_executing_work - find worker which is executing a work
918  * @gcwq: gcwq of interest
919  * @work: work to find worker for
920  *
921  * Find a worker which is executing @work on @gcwq.  This function is
922  * identical to __find_worker_executing_work() except that this
923  * function calculates @bwh itself.
924  *
925  * CONTEXT:
926  * spin_lock_irq(gcwq->lock).
927  *
928  * RETURNS:
929  * Pointer to worker which is executing @work if found, NULL
930  * otherwise.
931  */
932 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
933 						 struct work_struct *work)
934 {
935 	return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
936 					    work);
937 }
938 
939 /**
940  * move_linked_works - move linked works to a list
941  * @work: start of series of works to be scheduled
942  * @head: target list to append @work to
943  * @nextp: out paramter for nested worklist walking
944  *
945  * Schedule linked works starting from @work to @head.  Work series to
946  * be scheduled starts at @work and includes any consecutive work with
947  * WORK_STRUCT_LINKED set in its predecessor.
948  *
949  * If @nextp is not NULL, it's updated to point to the next work of
950  * the last scheduled work.  This allows move_linked_works() to be
951  * nested inside outer list_for_each_entry_safe().
952  *
953  * CONTEXT:
954  * spin_lock_irq(gcwq->lock).
955  */
956 static void move_linked_works(struct work_struct *work, struct list_head *head,
957 			      struct work_struct **nextp)
958 {
959 	struct work_struct *n;
960 
961 	/*
962 	 * Linked worklist will always end before the end of the list,
963 	 * use NULL for list head.
964 	 */
965 	list_for_each_entry_safe_from(work, n, NULL, entry) {
966 		list_move_tail(&work->entry, head);
967 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
968 			break;
969 	}
970 
971 	/*
972 	 * If we're already inside safe list traversal and have moved
973 	 * multiple works to the scheduled queue, the next position
974 	 * needs to be updated.
975 	 */
976 	if (nextp)
977 		*nextp = n;
978 }
979 
980 static void cwq_activate_delayed_work(struct work_struct *work)
981 {
982 	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
983 
984 	trace_workqueue_activate_work(work);
985 	move_linked_works(work, &cwq->pool->worklist, NULL);
986 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
987 	cwq->nr_active++;
988 }
989 
990 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
991 {
992 	struct work_struct *work = list_first_entry(&cwq->delayed_works,
993 						    struct work_struct, entry);
994 
995 	cwq_activate_delayed_work(work);
996 }
997 
998 /**
999  * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1000  * @cwq: cwq of interest
1001  * @color: color of work which left the queue
1002  *
1003  * A work either has completed or is removed from pending queue,
1004  * decrement nr_in_flight of its cwq and handle workqueue flushing.
1005  *
1006  * CONTEXT:
1007  * spin_lock_irq(gcwq->lock).
1008  */
1009 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
1010 {
1011 	/* ignore uncolored works */
1012 	if (color == WORK_NO_COLOR)
1013 		return;
1014 
1015 	cwq->nr_in_flight[color]--;
1016 
1017 	cwq->nr_active--;
1018 	if (!list_empty(&cwq->delayed_works)) {
1019 		/* one down, submit a delayed one */
1020 		if (cwq->nr_active < cwq->max_active)
1021 			cwq_activate_first_delayed(cwq);
1022 	}
1023 
1024 	/* is flush in progress and are we at the flushing tip? */
1025 	if (likely(cwq->flush_color != color))
1026 		return;
1027 
1028 	/* are there still in-flight works? */
1029 	if (cwq->nr_in_flight[color])
1030 		return;
1031 
1032 	/* this cwq is done, clear flush_color */
1033 	cwq->flush_color = -1;
1034 
1035 	/*
1036 	 * If this was the last cwq, wake up the first flusher.  It
1037 	 * will handle the rest.
1038 	 */
1039 	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1040 		complete(&cwq->wq->first_flusher->done);
1041 }
1042 
1043 /**
1044  * try_to_grab_pending - steal work item from worklist and disable irq
1045  * @work: work item to steal
1046  * @is_dwork: @work is a delayed_work
1047  * @flags: place to store irq state
1048  *
1049  * Try to grab PENDING bit of @work.  This function can handle @work in any
1050  * stable state - idle, on timer or on worklist.  Return values are
1051  *
1052  *  1		if @work was pending and we successfully stole PENDING
1053  *  0		if @work was idle and we claimed PENDING
1054  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1055  *  -ENOENT	if someone else is canceling @work, this state may persist
1056  *		for arbitrarily long
1057  *
1058  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1059  * interrupted while holding PENDING and @work off queue, irq must be
1060  * disabled on entry.  This, combined with delayed_work->timer being
1061  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1062  *
1063  * On successful return, >= 0, irq is disabled and the caller is
1064  * responsible for releasing it using local_irq_restore(*@flags).
1065  *
1066  * This function is safe to call from any context including IRQ handler.
1067  */
1068 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1069 			       unsigned long *flags)
1070 {
1071 	struct global_cwq *gcwq;
1072 
1073 	local_irq_save(*flags);
1074 
1075 	/* try to steal the timer if it exists */
1076 	if (is_dwork) {
1077 		struct delayed_work *dwork = to_delayed_work(work);
1078 
1079 		/*
1080 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1081 		 * guaranteed that the timer is not queued anywhere and not
1082 		 * running on the local CPU.
1083 		 */
1084 		if (likely(del_timer(&dwork->timer)))
1085 			return 1;
1086 	}
1087 
1088 	/* try to claim PENDING the normal way */
1089 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1090 		return 0;
1091 
1092 	/*
1093 	 * The queueing is in progress, or it is already queued. Try to
1094 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1095 	 */
1096 	gcwq = get_work_gcwq(work);
1097 	if (!gcwq)
1098 		goto fail;
1099 
1100 	spin_lock(&gcwq->lock);
1101 	if (!list_empty(&work->entry)) {
1102 		/*
1103 		 * This work is queued, but perhaps we locked the wrong gcwq.
1104 		 * In that case we must see the new value after rmb(), see
1105 		 * insert_work()->wmb().
1106 		 */
1107 		smp_rmb();
1108 		if (gcwq == get_work_gcwq(work)) {
1109 			debug_work_deactivate(work);
1110 
1111 			/*
1112 			 * A delayed work item cannot be grabbed directly
1113 			 * because it might have linked NO_COLOR work items
1114 			 * which, if left on the delayed_list, will confuse
1115 			 * cwq->nr_active management later on and cause
1116 			 * stall.  Make sure the work item is activated
1117 			 * before grabbing.
1118 			 */
1119 			if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1120 				cwq_activate_delayed_work(work);
1121 
1122 			list_del_init(&work->entry);
1123 			cwq_dec_nr_in_flight(get_work_cwq(work),
1124 				get_work_color(work));
1125 
1126 			spin_unlock(&gcwq->lock);
1127 			return 1;
1128 		}
1129 	}
1130 	spin_unlock(&gcwq->lock);
1131 fail:
1132 	local_irq_restore(*flags);
1133 	if (work_is_canceling(work))
1134 		return -ENOENT;
1135 	cpu_relax();
1136 	return -EAGAIN;
1137 }
1138 
1139 /**
1140  * insert_work - insert a work into gcwq
1141  * @cwq: cwq @work belongs to
1142  * @work: work to insert
1143  * @head: insertion point
1144  * @extra_flags: extra WORK_STRUCT_* flags to set
1145  *
1146  * Insert @work which belongs to @cwq into @gcwq after @head.
1147  * @extra_flags is or'd to work_struct flags.
1148  *
1149  * CONTEXT:
1150  * spin_lock_irq(gcwq->lock).
1151  */
1152 static void insert_work(struct cpu_workqueue_struct *cwq,
1153 			struct work_struct *work, struct list_head *head,
1154 			unsigned int extra_flags)
1155 {
1156 	struct worker_pool *pool = cwq->pool;
1157 
1158 	/* we own @work, set data and link */
1159 	set_work_cwq(work, cwq, extra_flags);
1160 
1161 	/*
1162 	 * Ensure that we get the right work->data if we see the
1163 	 * result of list_add() below, see try_to_grab_pending().
1164 	 */
1165 	smp_wmb();
1166 
1167 	list_add_tail(&work->entry, head);
1168 
1169 	/*
1170 	 * Ensure either worker_sched_deactivated() sees the above
1171 	 * list_add_tail() or we see zero nr_running to avoid workers
1172 	 * lying around lazily while there are works to be processed.
1173 	 */
1174 	smp_mb();
1175 
1176 	if (__need_more_worker(pool))
1177 		wake_up_worker(pool);
1178 }
1179 
1180 /*
1181  * Test whether @work is being queued from another work executing on the
1182  * same workqueue.  This is rather expensive and should only be used from
1183  * cold paths.
1184  */
1185 static bool is_chained_work(struct workqueue_struct *wq)
1186 {
1187 	unsigned long flags;
1188 	unsigned int cpu;
1189 
1190 	for_each_gcwq_cpu(cpu) {
1191 		struct global_cwq *gcwq = get_gcwq(cpu);
1192 		struct worker *worker;
1193 		struct hlist_node *pos;
1194 		int i;
1195 
1196 		spin_lock_irqsave(&gcwq->lock, flags);
1197 		for_each_busy_worker(worker, i, pos, gcwq) {
1198 			if (worker->task != current)
1199 				continue;
1200 			spin_unlock_irqrestore(&gcwq->lock, flags);
1201 			/*
1202 			 * I'm @worker, no locking necessary.  See if @work
1203 			 * is headed to the same workqueue.
1204 			 */
1205 			return worker->current_cwq->wq == wq;
1206 		}
1207 		spin_unlock_irqrestore(&gcwq->lock, flags);
1208 	}
1209 	return false;
1210 }
1211 
1212 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1213 			 struct work_struct *work)
1214 {
1215 	struct global_cwq *gcwq;
1216 	struct cpu_workqueue_struct *cwq;
1217 	struct list_head *worklist;
1218 	unsigned int work_flags;
1219 	unsigned int req_cpu = cpu;
1220 
1221 	/*
1222 	 * While a work item is PENDING && off queue, a task trying to
1223 	 * steal the PENDING will busy-loop waiting for it to either get
1224 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1225 	 * happen with IRQ disabled.
1226 	 */
1227 	WARN_ON_ONCE(!irqs_disabled());
1228 
1229 	debug_work_activate(work);
1230 
1231 	/* if dying, only works from the same workqueue are allowed */
1232 	if (unlikely(wq->flags & WQ_DRAINING) &&
1233 	    WARN_ON_ONCE(!is_chained_work(wq)))
1234 		return;
1235 
1236 	/* determine gcwq to use */
1237 	if (!(wq->flags & WQ_UNBOUND)) {
1238 		struct global_cwq *last_gcwq;
1239 
1240 		if (cpu == WORK_CPU_UNBOUND)
1241 			cpu = raw_smp_processor_id();
1242 
1243 		/*
1244 		 * It's multi cpu.  If @work was previously on a different
1245 		 * cpu, it might still be running there, in which case the
1246 		 * work needs to be queued on that cpu to guarantee
1247 		 * non-reentrancy.
1248 		 */
1249 		gcwq = get_gcwq(cpu);
1250 		last_gcwq = get_work_gcwq(work);
1251 
1252 		if (last_gcwq && last_gcwq != gcwq) {
1253 			struct worker *worker;
1254 
1255 			spin_lock(&last_gcwq->lock);
1256 
1257 			worker = find_worker_executing_work(last_gcwq, work);
1258 
1259 			if (worker && worker->current_cwq->wq == wq)
1260 				gcwq = last_gcwq;
1261 			else {
1262 				/* meh... not running there, queue here */
1263 				spin_unlock(&last_gcwq->lock);
1264 				spin_lock(&gcwq->lock);
1265 			}
1266 		} else {
1267 			spin_lock(&gcwq->lock);
1268 		}
1269 	} else {
1270 		gcwq = get_gcwq(WORK_CPU_UNBOUND);
1271 		spin_lock(&gcwq->lock);
1272 	}
1273 
1274 	/* gcwq determined, get cwq and queue */
1275 	cwq = get_cwq(gcwq->cpu, wq);
1276 	trace_workqueue_queue_work(req_cpu, cwq, work);
1277 
1278 	if (WARN_ON(!list_empty(&work->entry))) {
1279 		spin_unlock(&gcwq->lock);
1280 		return;
1281 	}
1282 
1283 	cwq->nr_in_flight[cwq->work_color]++;
1284 	work_flags = work_color_to_flags(cwq->work_color);
1285 
1286 	if (likely(cwq->nr_active < cwq->max_active)) {
1287 		trace_workqueue_activate_work(work);
1288 		cwq->nr_active++;
1289 		worklist = &cwq->pool->worklist;
1290 	} else {
1291 		work_flags |= WORK_STRUCT_DELAYED;
1292 		worklist = &cwq->delayed_works;
1293 	}
1294 
1295 	insert_work(cwq, work, worklist, work_flags);
1296 
1297 	spin_unlock(&gcwq->lock);
1298 }
1299 
1300 /**
1301  * queue_work_on - queue work on specific cpu
1302  * @cpu: CPU number to execute work on
1303  * @wq: workqueue to use
1304  * @work: work to queue
1305  *
1306  * Returns %false if @work was already on a queue, %true otherwise.
1307  *
1308  * We queue the work to a specific CPU, the caller must ensure it
1309  * can't go away.
1310  */
1311 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1312 		   struct work_struct *work)
1313 {
1314 	bool ret = false;
1315 	unsigned long flags;
1316 
1317 	local_irq_save(flags);
1318 
1319 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1320 		__queue_work(cpu, wq, work);
1321 		ret = true;
1322 	}
1323 
1324 	local_irq_restore(flags);
1325 	return ret;
1326 }
1327 EXPORT_SYMBOL_GPL(queue_work_on);
1328 
1329 /**
1330  * queue_work - queue work on a workqueue
1331  * @wq: workqueue to use
1332  * @work: work to queue
1333  *
1334  * Returns %false if @work was already on a queue, %true otherwise.
1335  *
1336  * We queue the work to the CPU on which it was submitted, but if the CPU dies
1337  * it can be processed by another CPU.
1338  */
1339 bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1340 {
1341 	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1342 }
1343 EXPORT_SYMBOL_GPL(queue_work);
1344 
1345 void delayed_work_timer_fn(unsigned long __data)
1346 {
1347 	struct delayed_work *dwork = (struct delayed_work *)__data;
1348 	struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1349 
1350 	/* should have been called from irqsafe timer with irq already off */
1351 	__queue_work(dwork->cpu, cwq->wq, &dwork->work);
1352 }
1353 EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1354 
1355 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1356 				struct delayed_work *dwork, unsigned long delay)
1357 {
1358 	struct timer_list *timer = &dwork->timer;
1359 	struct work_struct *work = &dwork->work;
1360 	unsigned int lcpu;
1361 
1362 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1363 		     timer->data != (unsigned long)dwork);
1364 	BUG_ON(timer_pending(timer));
1365 	BUG_ON(!list_empty(&work->entry));
1366 
1367 	/*
1368 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1369 	 * both optimization and correctness.  The earliest @timer can
1370 	 * expire is on the closest next tick and delayed_work users depend
1371 	 * on that there's no such delay when @delay is 0.
1372 	 */
1373 	if (!delay) {
1374 		__queue_work(cpu, wq, &dwork->work);
1375 		return;
1376 	}
1377 
1378 	timer_stats_timer_set_start_info(&dwork->timer);
1379 
1380 	/*
1381 	 * This stores cwq for the moment, for the timer_fn.  Note that the
1382 	 * work's gcwq is preserved to allow reentrance detection for
1383 	 * delayed works.
1384 	 */
1385 	if (!(wq->flags & WQ_UNBOUND)) {
1386 		struct global_cwq *gcwq = get_work_gcwq(work);
1387 
1388 		/*
1389 		 * If we cannot get the last gcwq from @work directly,
1390 		 * select the last CPU such that it avoids unnecessarily
1391 		 * triggering non-reentrancy check in __queue_work().
1392 		 */
1393 		lcpu = cpu;
1394 		if (gcwq)
1395 			lcpu = gcwq->cpu;
1396 		if (lcpu == WORK_CPU_UNBOUND)
1397 			lcpu = raw_smp_processor_id();
1398 	} else {
1399 		lcpu = WORK_CPU_UNBOUND;
1400 	}
1401 
1402 	set_work_cwq(work, get_cwq(lcpu, wq), 0);
1403 
1404 	dwork->cpu = cpu;
1405 	timer->expires = jiffies + delay;
1406 
1407 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1408 		add_timer_on(timer, cpu);
1409 	else
1410 		add_timer(timer);
1411 }
1412 
1413 /**
1414  * queue_delayed_work_on - queue work on specific CPU after delay
1415  * @cpu: CPU number to execute work on
1416  * @wq: workqueue to use
1417  * @dwork: work to queue
1418  * @delay: number of jiffies to wait before queueing
1419  *
1420  * Returns %false if @work was already on a queue, %true otherwise.  If
1421  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1422  * execution.
1423  */
1424 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1425 			   struct delayed_work *dwork, unsigned long delay)
1426 {
1427 	struct work_struct *work = &dwork->work;
1428 	bool ret = false;
1429 	unsigned long flags;
1430 
1431 	/* read the comment in __queue_work() */
1432 	local_irq_save(flags);
1433 
1434 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1435 		__queue_delayed_work(cpu, wq, dwork, delay);
1436 		ret = true;
1437 	}
1438 
1439 	local_irq_restore(flags);
1440 	return ret;
1441 }
1442 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1443 
1444 /**
1445  * queue_delayed_work - queue work on a workqueue after delay
1446  * @wq: workqueue to use
1447  * @dwork: delayable work to queue
1448  * @delay: number of jiffies to wait before queueing
1449  *
1450  * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1451  */
1452 bool queue_delayed_work(struct workqueue_struct *wq,
1453 			struct delayed_work *dwork, unsigned long delay)
1454 {
1455 	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1456 }
1457 EXPORT_SYMBOL_GPL(queue_delayed_work);
1458 
1459 /**
1460  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1461  * @cpu: CPU number to execute work on
1462  * @wq: workqueue to use
1463  * @dwork: work to queue
1464  * @delay: number of jiffies to wait before queueing
1465  *
1466  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1467  * modify @dwork's timer so that it expires after @delay.  If @delay is
1468  * zero, @work is guaranteed to be scheduled immediately regardless of its
1469  * current state.
1470  *
1471  * Returns %false if @dwork was idle and queued, %true if @dwork was
1472  * pending and its timer was modified.
1473  *
1474  * This function is safe to call from any context including IRQ handler.
1475  * See try_to_grab_pending() for details.
1476  */
1477 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1478 			 struct delayed_work *dwork, unsigned long delay)
1479 {
1480 	unsigned long flags;
1481 	int ret;
1482 
1483 	do {
1484 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1485 	} while (unlikely(ret == -EAGAIN));
1486 
1487 	if (likely(ret >= 0)) {
1488 		__queue_delayed_work(cpu, wq, dwork, delay);
1489 		local_irq_restore(flags);
1490 	}
1491 
1492 	/* -ENOENT from try_to_grab_pending() becomes %true */
1493 	return ret;
1494 }
1495 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1496 
1497 /**
1498  * mod_delayed_work - modify delay of or queue a delayed work
1499  * @wq: workqueue to use
1500  * @dwork: work to queue
1501  * @delay: number of jiffies to wait before queueing
1502  *
1503  * mod_delayed_work_on() on local CPU.
1504  */
1505 bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1506 		      unsigned long delay)
1507 {
1508 	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1509 }
1510 EXPORT_SYMBOL_GPL(mod_delayed_work);
1511 
1512 /**
1513  * worker_enter_idle - enter idle state
1514  * @worker: worker which is entering idle state
1515  *
1516  * @worker is entering idle state.  Update stats and idle timer if
1517  * necessary.
1518  *
1519  * LOCKING:
1520  * spin_lock_irq(gcwq->lock).
1521  */
1522 static void worker_enter_idle(struct worker *worker)
1523 {
1524 	struct worker_pool *pool = worker->pool;
1525 	struct global_cwq *gcwq = pool->gcwq;
1526 
1527 	BUG_ON(worker->flags & WORKER_IDLE);
1528 	BUG_ON(!list_empty(&worker->entry) &&
1529 	       (worker->hentry.next || worker->hentry.pprev));
1530 
1531 	/* can't use worker_set_flags(), also called from start_worker() */
1532 	worker->flags |= WORKER_IDLE;
1533 	pool->nr_idle++;
1534 	worker->last_active = jiffies;
1535 
1536 	/* idle_list is LIFO */
1537 	list_add(&worker->entry, &pool->idle_list);
1538 
1539 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1540 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1541 
1542 	/*
1543 	 * Sanity check nr_running.  Because gcwq_unbind_fn() releases
1544 	 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1545 	 * nr_running, the warning may trigger spuriously.  Check iff
1546 	 * unbind is not in progress.
1547 	 */
1548 	WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
1549 		     pool->nr_workers == pool->nr_idle &&
1550 		     atomic_read(get_pool_nr_running(pool)));
1551 }
1552 
1553 /**
1554  * worker_leave_idle - leave idle state
1555  * @worker: worker which is leaving idle state
1556  *
1557  * @worker is leaving idle state.  Update stats.
1558  *
1559  * LOCKING:
1560  * spin_lock_irq(gcwq->lock).
1561  */
1562 static void worker_leave_idle(struct worker *worker)
1563 {
1564 	struct worker_pool *pool = worker->pool;
1565 
1566 	BUG_ON(!(worker->flags & WORKER_IDLE));
1567 	worker_clr_flags(worker, WORKER_IDLE);
1568 	pool->nr_idle--;
1569 	list_del_init(&worker->entry);
1570 }
1571 
1572 /**
1573  * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1574  * @worker: self
1575  *
1576  * Works which are scheduled while the cpu is online must at least be
1577  * scheduled to a worker which is bound to the cpu so that if they are
1578  * flushed from cpu callbacks while cpu is going down, they are
1579  * guaranteed to execute on the cpu.
1580  *
1581  * This function is to be used by rogue workers and rescuers to bind
1582  * themselves to the target cpu and may race with cpu going down or
1583  * coming online.  kthread_bind() can't be used because it may put the
1584  * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1585  * verbatim as it's best effort and blocking and gcwq may be
1586  * [dis]associated in the meantime.
1587  *
1588  * This function tries set_cpus_allowed() and locks gcwq and verifies the
1589  * binding against %GCWQ_DISASSOCIATED which is set during
1590  * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1591  * enters idle state or fetches works without dropping lock, it can
1592  * guarantee the scheduling requirement described in the first paragraph.
1593  *
1594  * CONTEXT:
1595  * Might sleep.  Called without any lock but returns with gcwq->lock
1596  * held.
1597  *
1598  * RETURNS:
1599  * %true if the associated gcwq is online (@worker is successfully
1600  * bound), %false if offline.
1601  */
1602 static bool worker_maybe_bind_and_lock(struct worker *worker)
1603 __acquires(&gcwq->lock)
1604 {
1605 	struct global_cwq *gcwq = worker->pool->gcwq;
1606 	struct task_struct *task = worker->task;
1607 
1608 	while (true) {
1609 		/*
1610 		 * The following call may fail, succeed or succeed
1611 		 * without actually migrating the task to the cpu if
1612 		 * it races with cpu hotunplug operation.  Verify
1613 		 * against GCWQ_DISASSOCIATED.
1614 		 */
1615 		if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1616 			set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1617 
1618 		spin_lock_irq(&gcwq->lock);
1619 		if (gcwq->flags & GCWQ_DISASSOCIATED)
1620 			return false;
1621 		if (task_cpu(task) == gcwq->cpu &&
1622 		    cpumask_equal(&current->cpus_allowed,
1623 				  get_cpu_mask(gcwq->cpu)))
1624 			return true;
1625 		spin_unlock_irq(&gcwq->lock);
1626 
1627 		/*
1628 		 * We've raced with CPU hot[un]plug.  Give it a breather
1629 		 * and retry migration.  cond_resched() is required here;
1630 		 * otherwise, we might deadlock against cpu_stop trying to
1631 		 * bring down the CPU on non-preemptive kernel.
1632 		 */
1633 		cpu_relax();
1634 		cond_resched();
1635 	}
1636 }
1637 
1638 /*
1639  * Rebind an idle @worker to its CPU.  worker_thread() will test
1640  * list_empty(@worker->entry) before leaving idle and call this function.
1641  */
1642 static void idle_worker_rebind(struct worker *worker)
1643 {
1644 	struct global_cwq *gcwq = worker->pool->gcwq;
1645 
1646 	/* CPU may go down again inbetween, clear UNBOUND only on success */
1647 	if (worker_maybe_bind_and_lock(worker))
1648 		worker_clr_flags(worker, WORKER_UNBOUND);
1649 
1650 	/* rebind complete, become available again */
1651 	list_add(&worker->entry, &worker->pool->idle_list);
1652 	spin_unlock_irq(&gcwq->lock);
1653 }
1654 
1655 /*
1656  * Function for @worker->rebind.work used to rebind unbound busy workers to
1657  * the associated cpu which is coming back online.  This is scheduled by
1658  * cpu up but can race with other cpu hotplug operations and may be
1659  * executed twice without intervening cpu down.
1660  */
1661 static void busy_worker_rebind_fn(struct work_struct *work)
1662 {
1663 	struct worker *worker = container_of(work, struct worker, rebind_work);
1664 	struct global_cwq *gcwq = worker->pool->gcwq;
1665 
1666 	if (worker_maybe_bind_and_lock(worker))
1667 		worker_clr_flags(worker, WORKER_UNBOUND);
1668 
1669 	spin_unlock_irq(&gcwq->lock);
1670 }
1671 
1672 /**
1673  * rebind_workers - rebind all workers of a gcwq to the associated CPU
1674  * @gcwq: gcwq of interest
1675  *
1676  * @gcwq->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
1677  * is different for idle and busy ones.
1678  *
1679  * Idle ones will be removed from the idle_list and woken up.  They will
1680  * add themselves back after completing rebind.  This ensures that the
1681  * idle_list doesn't contain any unbound workers when re-bound busy workers
1682  * try to perform local wake-ups for concurrency management.
1683  *
1684  * Busy workers can rebind after they finish their current work items.
1685  * Queueing the rebind work item at the head of the scheduled list is
1686  * enough.  Note that nr_running will be properly bumped as busy workers
1687  * rebind.
1688  *
1689  * On return, all non-manager workers are scheduled for rebind - see
1690  * manage_workers() for the manager special case.  Any idle worker
1691  * including the manager will not appear on @idle_list until rebind is
1692  * complete, making local wake-ups safe.
1693  */
1694 static void rebind_workers(struct global_cwq *gcwq)
1695 {
1696 	struct worker_pool *pool;
1697 	struct worker *worker, *n;
1698 	struct hlist_node *pos;
1699 	int i;
1700 
1701 	lockdep_assert_held(&gcwq->lock);
1702 
1703 	for_each_worker_pool(pool, gcwq)
1704 		lockdep_assert_held(&pool->assoc_mutex);
1705 
1706 	/* dequeue and kick idle ones */
1707 	for_each_worker_pool(pool, gcwq) {
1708 		list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1709 			/*
1710 			 * idle workers should be off @pool->idle_list
1711 			 * until rebind is complete to avoid receiving
1712 			 * premature local wake-ups.
1713 			 */
1714 			list_del_init(&worker->entry);
1715 
1716 			/*
1717 			 * worker_thread() will see the above dequeuing
1718 			 * and call idle_worker_rebind().
1719 			 */
1720 			wake_up_process(worker->task);
1721 		}
1722 	}
1723 
1724 	/* rebind busy workers */
1725 	for_each_busy_worker(worker, i, pos, gcwq) {
1726 		struct work_struct *rebind_work = &worker->rebind_work;
1727 		struct workqueue_struct *wq;
1728 
1729 		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1730 				     work_data_bits(rebind_work)))
1731 			continue;
1732 
1733 		debug_work_activate(rebind_work);
1734 
1735 		/*
1736 		 * wq doesn't really matter but let's keep @worker->pool
1737 		 * and @cwq->pool consistent for sanity.
1738 		 */
1739 		if (worker_pool_pri(worker->pool))
1740 			wq = system_highpri_wq;
1741 		else
1742 			wq = system_wq;
1743 
1744 		insert_work(get_cwq(gcwq->cpu, wq), rebind_work,
1745 			worker->scheduled.next,
1746 			work_color_to_flags(WORK_NO_COLOR));
1747 	}
1748 }
1749 
1750 static struct worker *alloc_worker(void)
1751 {
1752 	struct worker *worker;
1753 
1754 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1755 	if (worker) {
1756 		INIT_LIST_HEAD(&worker->entry);
1757 		INIT_LIST_HEAD(&worker->scheduled);
1758 		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1759 		/* on creation a worker is in !idle && prep state */
1760 		worker->flags = WORKER_PREP;
1761 	}
1762 	return worker;
1763 }
1764 
1765 /**
1766  * create_worker - create a new workqueue worker
1767  * @pool: pool the new worker will belong to
1768  *
1769  * Create a new worker which is bound to @pool.  The returned worker
1770  * can be started by calling start_worker() or destroyed using
1771  * destroy_worker().
1772  *
1773  * CONTEXT:
1774  * Might sleep.  Does GFP_KERNEL allocations.
1775  *
1776  * RETURNS:
1777  * Pointer to the newly created worker.
1778  */
1779 static struct worker *create_worker(struct worker_pool *pool)
1780 {
1781 	struct global_cwq *gcwq = pool->gcwq;
1782 	const char *pri = worker_pool_pri(pool) ? "H" : "";
1783 	struct worker *worker = NULL;
1784 	int id = -1;
1785 
1786 	spin_lock_irq(&gcwq->lock);
1787 	while (ida_get_new(&pool->worker_ida, &id)) {
1788 		spin_unlock_irq(&gcwq->lock);
1789 		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
1790 			goto fail;
1791 		spin_lock_irq(&gcwq->lock);
1792 	}
1793 	spin_unlock_irq(&gcwq->lock);
1794 
1795 	worker = alloc_worker();
1796 	if (!worker)
1797 		goto fail;
1798 
1799 	worker->pool = pool;
1800 	worker->id = id;
1801 
1802 	if (gcwq->cpu != WORK_CPU_UNBOUND)
1803 		worker->task = kthread_create_on_node(worker_thread,
1804 					worker, cpu_to_node(gcwq->cpu),
1805 					"kworker/%u:%d%s", gcwq->cpu, id, pri);
1806 	else
1807 		worker->task = kthread_create(worker_thread, worker,
1808 					      "kworker/u:%d%s", id, pri);
1809 	if (IS_ERR(worker->task))
1810 		goto fail;
1811 
1812 	if (worker_pool_pri(pool))
1813 		set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1814 
1815 	/*
1816 	 * Determine CPU binding of the new worker depending on
1817 	 * %GCWQ_DISASSOCIATED.  The caller is responsible for ensuring the
1818 	 * flag remains stable across this function.  See the comments
1819 	 * above the flag definition for details.
1820 	 *
1821 	 * As an unbound worker may later become a regular one if CPU comes
1822 	 * online, make sure every worker has %PF_THREAD_BOUND set.
1823 	 */
1824 	if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
1825 		kthread_bind(worker->task, gcwq->cpu);
1826 	} else {
1827 		worker->task->flags |= PF_THREAD_BOUND;
1828 		worker->flags |= WORKER_UNBOUND;
1829 	}
1830 
1831 	return worker;
1832 fail:
1833 	if (id >= 0) {
1834 		spin_lock_irq(&gcwq->lock);
1835 		ida_remove(&pool->worker_ida, id);
1836 		spin_unlock_irq(&gcwq->lock);
1837 	}
1838 	kfree(worker);
1839 	return NULL;
1840 }
1841 
1842 /**
1843  * start_worker - start a newly created worker
1844  * @worker: worker to start
1845  *
1846  * Make the gcwq aware of @worker and start it.
1847  *
1848  * CONTEXT:
1849  * spin_lock_irq(gcwq->lock).
1850  */
1851 static void start_worker(struct worker *worker)
1852 {
1853 	worker->flags |= WORKER_STARTED;
1854 	worker->pool->nr_workers++;
1855 	worker_enter_idle(worker);
1856 	wake_up_process(worker->task);
1857 }
1858 
1859 /**
1860  * destroy_worker - destroy a workqueue worker
1861  * @worker: worker to be destroyed
1862  *
1863  * Destroy @worker and adjust @gcwq stats accordingly.
1864  *
1865  * CONTEXT:
1866  * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1867  */
1868 static void destroy_worker(struct worker *worker)
1869 {
1870 	struct worker_pool *pool = worker->pool;
1871 	struct global_cwq *gcwq = pool->gcwq;
1872 	int id = worker->id;
1873 
1874 	/* sanity check frenzy */
1875 	BUG_ON(worker->current_work);
1876 	BUG_ON(!list_empty(&worker->scheduled));
1877 
1878 	if (worker->flags & WORKER_STARTED)
1879 		pool->nr_workers--;
1880 	if (worker->flags & WORKER_IDLE)
1881 		pool->nr_idle--;
1882 
1883 	list_del_init(&worker->entry);
1884 	worker->flags |= WORKER_DIE;
1885 
1886 	spin_unlock_irq(&gcwq->lock);
1887 
1888 	kthread_stop(worker->task);
1889 	kfree(worker);
1890 
1891 	spin_lock_irq(&gcwq->lock);
1892 	ida_remove(&pool->worker_ida, id);
1893 }
1894 
1895 static void idle_worker_timeout(unsigned long __pool)
1896 {
1897 	struct worker_pool *pool = (void *)__pool;
1898 	struct global_cwq *gcwq = pool->gcwq;
1899 
1900 	spin_lock_irq(&gcwq->lock);
1901 
1902 	if (too_many_workers(pool)) {
1903 		struct worker *worker;
1904 		unsigned long expires;
1905 
1906 		/* idle_list is kept in LIFO order, check the last one */
1907 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1908 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1909 
1910 		if (time_before(jiffies, expires))
1911 			mod_timer(&pool->idle_timer, expires);
1912 		else {
1913 			/* it's been idle for too long, wake up manager */
1914 			pool->flags |= POOL_MANAGE_WORKERS;
1915 			wake_up_worker(pool);
1916 		}
1917 	}
1918 
1919 	spin_unlock_irq(&gcwq->lock);
1920 }
1921 
1922 static bool send_mayday(struct work_struct *work)
1923 {
1924 	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1925 	struct workqueue_struct *wq = cwq->wq;
1926 	unsigned int cpu;
1927 
1928 	if (!(wq->flags & WQ_RESCUER))
1929 		return false;
1930 
1931 	/* mayday mayday mayday */
1932 	cpu = cwq->pool->gcwq->cpu;
1933 	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1934 	if (cpu == WORK_CPU_UNBOUND)
1935 		cpu = 0;
1936 	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1937 		wake_up_process(wq->rescuer->task);
1938 	return true;
1939 }
1940 
1941 static void gcwq_mayday_timeout(unsigned long __pool)
1942 {
1943 	struct worker_pool *pool = (void *)__pool;
1944 	struct global_cwq *gcwq = pool->gcwq;
1945 	struct work_struct *work;
1946 
1947 	spin_lock_irq(&gcwq->lock);
1948 
1949 	if (need_to_create_worker(pool)) {
1950 		/*
1951 		 * We've been trying to create a new worker but
1952 		 * haven't been successful.  We might be hitting an
1953 		 * allocation deadlock.  Send distress signals to
1954 		 * rescuers.
1955 		 */
1956 		list_for_each_entry(work, &pool->worklist, entry)
1957 			send_mayday(work);
1958 	}
1959 
1960 	spin_unlock_irq(&gcwq->lock);
1961 
1962 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1963 }
1964 
1965 /**
1966  * maybe_create_worker - create a new worker if necessary
1967  * @pool: pool to create a new worker for
1968  *
1969  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1970  * have at least one idle worker on return from this function.  If
1971  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1972  * sent to all rescuers with works scheduled on @pool to resolve
1973  * possible allocation deadlock.
1974  *
1975  * On return, need_to_create_worker() is guaranteed to be false and
1976  * may_start_working() true.
1977  *
1978  * LOCKING:
1979  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1980  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1981  * manager.
1982  *
1983  * RETURNS:
1984  * false if no action was taken and gcwq->lock stayed locked, true
1985  * otherwise.
1986  */
1987 static bool maybe_create_worker(struct worker_pool *pool)
1988 __releases(&gcwq->lock)
1989 __acquires(&gcwq->lock)
1990 {
1991 	struct global_cwq *gcwq = pool->gcwq;
1992 
1993 	if (!need_to_create_worker(pool))
1994 		return false;
1995 restart:
1996 	spin_unlock_irq(&gcwq->lock);
1997 
1998 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1999 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2000 
2001 	while (true) {
2002 		struct worker *worker;
2003 
2004 		worker = create_worker(pool);
2005 		if (worker) {
2006 			del_timer_sync(&pool->mayday_timer);
2007 			spin_lock_irq(&gcwq->lock);
2008 			start_worker(worker);
2009 			BUG_ON(need_to_create_worker(pool));
2010 			return true;
2011 		}
2012 
2013 		if (!need_to_create_worker(pool))
2014 			break;
2015 
2016 		__set_current_state(TASK_INTERRUPTIBLE);
2017 		schedule_timeout(CREATE_COOLDOWN);
2018 
2019 		if (!need_to_create_worker(pool))
2020 			break;
2021 	}
2022 
2023 	del_timer_sync(&pool->mayday_timer);
2024 	spin_lock_irq(&gcwq->lock);
2025 	if (need_to_create_worker(pool))
2026 		goto restart;
2027 	return true;
2028 }
2029 
2030 /**
2031  * maybe_destroy_worker - destroy workers which have been idle for a while
2032  * @pool: pool to destroy workers for
2033  *
2034  * Destroy @pool workers which have been idle for longer than
2035  * IDLE_WORKER_TIMEOUT.
2036  *
2037  * LOCKING:
2038  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2039  * multiple times.  Called only from manager.
2040  *
2041  * RETURNS:
2042  * false if no action was taken and gcwq->lock stayed locked, true
2043  * otherwise.
2044  */
2045 static bool maybe_destroy_workers(struct worker_pool *pool)
2046 {
2047 	bool ret = false;
2048 
2049 	while (too_many_workers(pool)) {
2050 		struct worker *worker;
2051 		unsigned long expires;
2052 
2053 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2054 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2055 
2056 		if (time_before(jiffies, expires)) {
2057 			mod_timer(&pool->idle_timer, expires);
2058 			break;
2059 		}
2060 
2061 		destroy_worker(worker);
2062 		ret = true;
2063 	}
2064 
2065 	return ret;
2066 }
2067 
2068 /**
2069  * manage_workers - manage worker pool
2070  * @worker: self
2071  *
2072  * Assume the manager role and manage gcwq worker pool @worker belongs
2073  * to.  At any given time, there can be only zero or one manager per
2074  * gcwq.  The exclusion is handled automatically by this function.
2075  *
2076  * The caller can safely start processing works on false return.  On
2077  * true return, it's guaranteed that need_to_create_worker() is false
2078  * and may_start_working() is true.
2079  *
2080  * CONTEXT:
2081  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2082  * multiple times.  Does GFP_KERNEL allocations.
2083  *
2084  * RETURNS:
2085  * false if no action was taken and gcwq->lock stayed locked, true if
2086  * some action was taken.
2087  */
2088 static bool manage_workers(struct worker *worker)
2089 {
2090 	struct worker_pool *pool = worker->pool;
2091 	bool ret = false;
2092 
2093 	if (pool->flags & POOL_MANAGING_WORKERS)
2094 		return ret;
2095 
2096 	pool->flags |= POOL_MANAGING_WORKERS;
2097 
2098 	/*
2099 	 * To simplify both worker management and CPU hotplug, hold off
2100 	 * management while hotplug is in progress.  CPU hotplug path can't
2101 	 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2102 	 * lead to idle worker depletion (all become busy thinking someone
2103 	 * else is managing) which in turn can result in deadlock under
2104 	 * extreme circumstances.  Use @pool->assoc_mutex to synchronize
2105 	 * manager against CPU hotplug.
2106 	 *
2107 	 * assoc_mutex would always be free unless CPU hotplug is in
2108 	 * progress.  trylock first without dropping @gcwq->lock.
2109 	 */
2110 	if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2111 		spin_unlock_irq(&pool->gcwq->lock);
2112 		mutex_lock(&pool->assoc_mutex);
2113 		/*
2114 		 * CPU hotplug could have happened while we were waiting
2115 		 * for assoc_mutex.  Hotplug itself can't handle us
2116 		 * because manager isn't either on idle or busy list, and
2117 		 * @gcwq's state and ours could have deviated.
2118 		 *
2119 		 * As hotplug is now excluded via assoc_mutex, we can
2120 		 * simply try to bind.  It will succeed or fail depending
2121 		 * on @gcwq's current state.  Try it and adjust
2122 		 * %WORKER_UNBOUND accordingly.
2123 		 */
2124 		if (worker_maybe_bind_and_lock(worker))
2125 			worker->flags &= ~WORKER_UNBOUND;
2126 		else
2127 			worker->flags |= WORKER_UNBOUND;
2128 
2129 		ret = true;
2130 	}
2131 
2132 	pool->flags &= ~POOL_MANAGE_WORKERS;
2133 
2134 	/*
2135 	 * Destroy and then create so that may_start_working() is true
2136 	 * on return.
2137 	 */
2138 	ret |= maybe_destroy_workers(pool);
2139 	ret |= maybe_create_worker(pool);
2140 
2141 	pool->flags &= ~POOL_MANAGING_WORKERS;
2142 	mutex_unlock(&pool->assoc_mutex);
2143 	return ret;
2144 }
2145 
2146 /**
2147  * process_one_work - process single work
2148  * @worker: self
2149  * @work: work to process
2150  *
2151  * Process @work.  This function contains all the logics necessary to
2152  * process a single work including synchronization against and
2153  * interaction with other workers on the same cpu, queueing and
2154  * flushing.  As long as context requirement is met, any worker can
2155  * call this function to process a work.
2156  *
2157  * CONTEXT:
2158  * spin_lock_irq(gcwq->lock) which is released and regrabbed.
2159  */
2160 static void process_one_work(struct worker *worker, struct work_struct *work)
2161 __releases(&gcwq->lock)
2162 __acquires(&gcwq->lock)
2163 {
2164 	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
2165 	struct worker_pool *pool = worker->pool;
2166 	struct global_cwq *gcwq = pool->gcwq;
2167 	struct hlist_head *bwh = busy_worker_head(gcwq, work);
2168 	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
2169 	work_func_t f = work->func;
2170 	int work_color;
2171 	struct worker *collision;
2172 #ifdef CONFIG_LOCKDEP
2173 	/*
2174 	 * It is permissible to free the struct work_struct from
2175 	 * inside the function that is called from it, this we need to
2176 	 * take into account for lockdep too.  To avoid bogus "held
2177 	 * lock freed" warnings as well as problems when looking into
2178 	 * work->lockdep_map, make a copy and use that here.
2179 	 */
2180 	struct lockdep_map lockdep_map;
2181 
2182 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2183 #endif
2184 	/*
2185 	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
2186 	 * necessary to avoid spurious warnings from rescuers servicing the
2187 	 * unbound or a disassociated gcwq.
2188 	 */
2189 	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2190 		     !(gcwq->flags & GCWQ_DISASSOCIATED) &&
2191 		     raw_smp_processor_id() != gcwq->cpu);
2192 
2193 	/*
2194 	 * A single work shouldn't be executed concurrently by
2195 	 * multiple workers on a single cpu.  Check whether anyone is
2196 	 * already processing the work.  If so, defer the work to the
2197 	 * currently executing one.
2198 	 */
2199 	collision = __find_worker_executing_work(gcwq, bwh, work);
2200 	if (unlikely(collision)) {
2201 		move_linked_works(work, &collision->scheduled, NULL);
2202 		return;
2203 	}
2204 
2205 	/* claim and dequeue */
2206 	debug_work_deactivate(work);
2207 	hlist_add_head(&worker->hentry, bwh);
2208 	worker->current_work = work;
2209 	worker->current_cwq = cwq;
2210 	work_color = get_work_color(work);
2211 
2212 	list_del_init(&work->entry);
2213 
2214 	/*
2215 	 * CPU intensive works don't participate in concurrency
2216 	 * management.  They're the scheduler's responsibility.
2217 	 */
2218 	if (unlikely(cpu_intensive))
2219 		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2220 
2221 	/*
2222 	 * Unbound gcwq isn't concurrency managed and work items should be
2223 	 * executed ASAP.  Wake up another worker if necessary.
2224 	 */
2225 	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2226 		wake_up_worker(pool);
2227 
2228 	/*
2229 	 * Record the last CPU and clear PENDING which should be the last
2230 	 * update to @work.  Also, do this inside @gcwq->lock so that
2231 	 * PENDING and queued state changes happen together while IRQ is
2232 	 * disabled.
2233 	 */
2234 	set_work_cpu_and_clear_pending(work, gcwq->cpu);
2235 
2236 	spin_unlock_irq(&gcwq->lock);
2237 
2238 	lock_map_acquire_read(&cwq->wq->lockdep_map);
2239 	lock_map_acquire(&lockdep_map);
2240 	trace_workqueue_execute_start(work);
2241 	f(work);
2242 	/*
2243 	 * While we must be careful to not use "work" after this, the trace
2244 	 * point will only record its address.
2245 	 */
2246 	trace_workqueue_execute_end(work);
2247 	lock_map_release(&lockdep_map);
2248 	lock_map_release(&cwq->wq->lockdep_map);
2249 
2250 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2251 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2252 		       "     last function: %pf\n",
2253 		       current->comm, preempt_count(), task_pid_nr(current), f);
2254 		debug_show_held_locks(current);
2255 		dump_stack();
2256 	}
2257 
2258 	spin_lock_irq(&gcwq->lock);
2259 
2260 	/* clear cpu intensive status */
2261 	if (unlikely(cpu_intensive))
2262 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2263 
2264 	/* we're done with it, release */
2265 	hlist_del_init(&worker->hentry);
2266 	worker->current_work = NULL;
2267 	worker->current_cwq = NULL;
2268 	cwq_dec_nr_in_flight(cwq, work_color);
2269 }
2270 
2271 /**
2272  * process_scheduled_works - process scheduled works
2273  * @worker: self
2274  *
2275  * Process all scheduled works.  Please note that the scheduled list
2276  * may change while processing a work, so this function repeatedly
2277  * fetches a work from the top and executes it.
2278  *
2279  * CONTEXT:
2280  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2281  * multiple times.
2282  */
2283 static void process_scheduled_works(struct worker *worker)
2284 {
2285 	while (!list_empty(&worker->scheduled)) {
2286 		struct work_struct *work = list_first_entry(&worker->scheduled,
2287 						struct work_struct, entry);
2288 		process_one_work(worker, work);
2289 	}
2290 }
2291 
2292 /**
2293  * worker_thread - the worker thread function
2294  * @__worker: self
2295  *
2296  * The gcwq worker thread function.  There's a single dynamic pool of
2297  * these per each cpu.  These workers process all works regardless of
2298  * their specific target workqueue.  The only exception is works which
2299  * belong to workqueues with a rescuer which will be explained in
2300  * rescuer_thread().
2301  */
2302 static int worker_thread(void *__worker)
2303 {
2304 	struct worker *worker = __worker;
2305 	struct worker_pool *pool = worker->pool;
2306 	struct global_cwq *gcwq = pool->gcwq;
2307 
2308 	/* tell the scheduler that this is a workqueue worker */
2309 	worker->task->flags |= PF_WQ_WORKER;
2310 woke_up:
2311 	spin_lock_irq(&gcwq->lock);
2312 
2313 	/* we are off idle list if destruction or rebind is requested */
2314 	if (unlikely(list_empty(&worker->entry))) {
2315 		spin_unlock_irq(&gcwq->lock);
2316 
2317 		/* if DIE is set, destruction is requested */
2318 		if (worker->flags & WORKER_DIE) {
2319 			worker->task->flags &= ~PF_WQ_WORKER;
2320 			return 0;
2321 		}
2322 
2323 		/* otherwise, rebind */
2324 		idle_worker_rebind(worker);
2325 		goto woke_up;
2326 	}
2327 
2328 	worker_leave_idle(worker);
2329 recheck:
2330 	/* no more worker necessary? */
2331 	if (!need_more_worker(pool))
2332 		goto sleep;
2333 
2334 	/* do we need to manage? */
2335 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2336 		goto recheck;
2337 
2338 	/*
2339 	 * ->scheduled list can only be filled while a worker is
2340 	 * preparing to process a work or actually processing it.
2341 	 * Make sure nobody diddled with it while I was sleeping.
2342 	 */
2343 	BUG_ON(!list_empty(&worker->scheduled));
2344 
2345 	/*
2346 	 * When control reaches this point, we're guaranteed to have
2347 	 * at least one idle worker or that someone else has already
2348 	 * assumed the manager role.
2349 	 */
2350 	worker_clr_flags(worker, WORKER_PREP);
2351 
2352 	do {
2353 		struct work_struct *work =
2354 			list_first_entry(&pool->worklist,
2355 					 struct work_struct, entry);
2356 
2357 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2358 			/* optimization path, not strictly necessary */
2359 			process_one_work(worker, work);
2360 			if (unlikely(!list_empty(&worker->scheduled)))
2361 				process_scheduled_works(worker);
2362 		} else {
2363 			move_linked_works(work, &worker->scheduled, NULL);
2364 			process_scheduled_works(worker);
2365 		}
2366 	} while (keep_working(pool));
2367 
2368 	worker_set_flags(worker, WORKER_PREP, false);
2369 sleep:
2370 	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2371 		goto recheck;
2372 
2373 	/*
2374 	 * gcwq->lock is held and there's no work to process and no
2375 	 * need to manage, sleep.  Workers are woken up only while
2376 	 * holding gcwq->lock or from local cpu, so setting the
2377 	 * current state before releasing gcwq->lock is enough to
2378 	 * prevent losing any event.
2379 	 */
2380 	worker_enter_idle(worker);
2381 	__set_current_state(TASK_INTERRUPTIBLE);
2382 	spin_unlock_irq(&gcwq->lock);
2383 	schedule();
2384 	goto woke_up;
2385 }
2386 
2387 /**
2388  * rescuer_thread - the rescuer thread function
2389  * @__wq: the associated workqueue
2390  *
2391  * Workqueue rescuer thread function.  There's one rescuer for each
2392  * workqueue which has WQ_RESCUER set.
2393  *
2394  * Regular work processing on a gcwq may block trying to create a new
2395  * worker which uses GFP_KERNEL allocation which has slight chance of
2396  * developing into deadlock if some works currently on the same queue
2397  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2398  * the problem rescuer solves.
2399  *
2400  * When such condition is possible, the gcwq summons rescuers of all
2401  * workqueues which have works queued on the gcwq and let them process
2402  * those works so that forward progress can be guaranteed.
2403  *
2404  * This should happen rarely.
2405  */
2406 static int rescuer_thread(void *__wq)
2407 {
2408 	struct workqueue_struct *wq = __wq;
2409 	struct worker *rescuer = wq->rescuer;
2410 	struct list_head *scheduled = &rescuer->scheduled;
2411 	bool is_unbound = wq->flags & WQ_UNBOUND;
2412 	unsigned int cpu;
2413 
2414 	set_user_nice(current, RESCUER_NICE_LEVEL);
2415 repeat:
2416 	set_current_state(TASK_INTERRUPTIBLE);
2417 
2418 	if (kthread_should_stop()) {
2419 		__set_current_state(TASK_RUNNING);
2420 		return 0;
2421 	}
2422 
2423 	/*
2424 	 * See whether any cpu is asking for help.  Unbounded
2425 	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2426 	 */
2427 	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2428 		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2429 		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2430 		struct worker_pool *pool = cwq->pool;
2431 		struct global_cwq *gcwq = pool->gcwq;
2432 		struct work_struct *work, *n;
2433 
2434 		__set_current_state(TASK_RUNNING);
2435 		mayday_clear_cpu(cpu, wq->mayday_mask);
2436 
2437 		/* migrate to the target cpu if possible */
2438 		rescuer->pool = pool;
2439 		worker_maybe_bind_and_lock(rescuer);
2440 
2441 		/*
2442 		 * Slurp in all works issued via this workqueue and
2443 		 * process'em.
2444 		 */
2445 		BUG_ON(!list_empty(&rescuer->scheduled));
2446 		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2447 			if (get_work_cwq(work) == cwq)
2448 				move_linked_works(work, scheduled, &n);
2449 
2450 		process_scheduled_works(rescuer);
2451 
2452 		/*
2453 		 * Leave this gcwq.  If keep_working() is %true, notify a
2454 		 * regular worker; otherwise, we end up with 0 concurrency
2455 		 * and stalling the execution.
2456 		 */
2457 		if (keep_working(pool))
2458 			wake_up_worker(pool);
2459 
2460 		spin_unlock_irq(&gcwq->lock);
2461 	}
2462 
2463 	schedule();
2464 	goto repeat;
2465 }
2466 
2467 struct wq_barrier {
2468 	struct work_struct	work;
2469 	struct completion	done;
2470 };
2471 
2472 static void wq_barrier_func(struct work_struct *work)
2473 {
2474 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2475 	complete(&barr->done);
2476 }
2477 
2478 /**
2479  * insert_wq_barrier - insert a barrier work
2480  * @cwq: cwq to insert barrier into
2481  * @barr: wq_barrier to insert
2482  * @target: target work to attach @barr to
2483  * @worker: worker currently executing @target, NULL if @target is not executing
2484  *
2485  * @barr is linked to @target such that @barr is completed only after
2486  * @target finishes execution.  Please note that the ordering
2487  * guarantee is observed only with respect to @target and on the local
2488  * cpu.
2489  *
2490  * Currently, a queued barrier can't be canceled.  This is because
2491  * try_to_grab_pending() can't determine whether the work to be
2492  * grabbed is at the head of the queue and thus can't clear LINKED
2493  * flag of the previous work while there must be a valid next work
2494  * after a work with LINKED flag set.
2495  *
2496  * Note that when @worker is non-NULL, @target may be modified
2497  * underneath us, so we can't reliably determine cwq from @target.
2498  *
2499  * CONTEXT:
2500  * spin_lock_irq(gcwq->lock).
2501  */
2502 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2503 			      struct wq_barrier *barr,
2504 			      struct work_struct *target, struct worker *worker)
2505 {
2506 	struct list_head *head;
2507 	unsigned int linked = 0;
2508 
2509 	/*
2510 	 * debugobject calls are safe here even with gcwq->lock locked
2511 	 * as we know for sure that this will not trigger any of the
2512 	 * checks and call back into the fixup functions where we
2513 	 * might deadlock.
2514 	 */
2515 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2516 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2517 	init_completion(&barr->done);
2518 
2519 	/*
2520 	 * If @target is currently being executed, schedule the
2521 	 * barrier to the worker; otherwise, put it after @target.
2522 	 */
2523 	if (worker)
2524 		head = worker->scheduled.next;
2525 	else {
2526 		unsigned long *bits = work_data_bits(target);
2527 
2528 		head = target->entry.next;
2529 		/* there can already be other linked works, inherit and set */
2530 		linked = *bits & WORK_STRUCT_LINKED;
2531 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2532 	}
2533 
2534 	debug_work_activate(&barr->work);
2535 	insert_work(cwq, &barr->work, head,
2536 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2537 }
2538 
2539 /**
2540  * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2541  * @wq: workqueue being flushed
2542  * @flush_color: new flush color, < 0 for no-op
2543  * @work_color: new work color, < 0 for no-op
2544  *
2545  * Prepare cwqs for workqueue flushing.
2546  *
2547  * If @flush_color is non-negative, flush_color on all cwqs should be
2548  * -1.  If no cwq has in-flight commands at the specified color, all
2549  * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
2550  * has in flight commands, its cwq->flush_color is set to
2551  * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2552  * wakeup logic is armed and %true is returned.
2553  *
2554  * The caller should have initialized @wq->first_flusher prior to
2555  * calling this function with non-negative @flush_color.  If
2556  * @flush_color is negative, no flush color update is done and %false
2557  * is returned.
2558  *
2559  * If @work_color is non-negative, all cwqs should have the same
2560  * work_color which is previous to @work_color and all will be
2561  * advanced to @work_color.
2562  *
2563  * CONTEXT:
2564  * mutex_lock(wq->flush_mutex).
2565  *
2566  * RETURNS:
2567  * %true if @flush_color >= 0 and there's something to flush.  %false
2568  * otherwise.
2569  */
2570 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2571 				      int flush_color, int work_color)
2572 {
2573 	bool wait = false;
2574 	unsigned int cpu;
2575 
2576 	if (flush_color >= 0) {
2577 		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2578 		atomic_set(&wq->nr_cwqs_to_flush, 1);
2579 	}
2580 
2581 	for_each_cwq_cpu(cpu, wq) {
2582 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2583 		struct global_cwq *gcwq = cwq->pool->gcwq;
2584 
2585 		spin_lock_irq(&gcwq->lock);
2586 
2587 		if (flush_color >= 0) {
2588 			BUG_ON(cwq->flush_color != -1);
2589 
2590 			if (cwq->nr_in_flight[flush_color]) {
2591 				cwq->flush_color = flush_color;
2592 				atomic_inc(&wq->nr_cwqs_to_flush);
2593 				wait = true;
2594 			}
2595 		}
2596 
2597 		if (work_color >= 0) {
2598 			BUG_ON(work_color != work_next_color(cwq->work_color));
2599 			cwq->work_color = work_color;
2600 		}
2601 
2602 		spin_unlock_irq(&gcwq->lock);
2603 	}
2604 
2605 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2606 		complete(&wq->first_flusher->done);
2607 
2608 	return wait;
2609 }
2610 
2611 /**
2612  * flush_workqueue - ensure that any scheduled work has run to completion.
2613  * @wq: workqueue to flush
2614  *
2615  * Forces execution of the workqueue and blocks until its completion.
2616  * This is typically used in driver shutdown handlers.
2617  *
2618  * We sleep until all works which were queued on entry have been handled,
2619  * but we are not livelocked by new incoming ones.
2620  */
2621 void flush_workqueue(struct workqueue_struct *wq)
2622 {
2623 	struct wq_flusher this_flusher = {
2624 		.list = LIST_HEAD_INIT(this_flusher.list),
2625 		.flush_color = -1,
2626 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2627 	};
2628 	int next_color;
2629 
2630 	lock_map_acquire(&wq->lockdep_map);
2631 	lock_map_release(&wq->lockdep_map);
2632 
2633 	mutex_lock(&wq->flush_mutex);
2634 
2635 	/*
2636 	 * Start-to-wait phase
2637 	 */
2638 	next_color = work_next_color(wq->work_color);
2639 
2640 	if (next_color != wq->flush_color) {
2641 		/*
2642 		 * Color space is not full.  The current work_color
2643 		 * becomes our flush_color and work_color is advanced
2644 		 * by one.
2645 		 */
2646 		BUG_ON(!list_empty(&wq->flusher_overflow));
2647 		this_flusher.flush_color = wq->work_color;
2648 		wq->work_color = next_color;
2649 
2650 		if (!wq->first_flusher) {
2651 			/* no flush in progress, become the first flusher */
2652 			BUG_ON(wq->flush_color != this_flusher.flush_color);
2653 
2654 			wq->first_flusher = &this_flusher;
2655 
2656 			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2657 						       wq->work_color)) {
2658 				/* nothing to flush, done */
2659 				wq->flush_color = next_color;
2660 				wq->first_flusher = NULL;
2661 				goto out_unlock;
2662 			}
2663 		} else {
2664 			/* wait in queue */
2665 			BUG_ON(wq->flush_color == this_flusher.flush_color);
2666 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2667 			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2668 		}
2669 	} else {
2670 		/*
2671 		 * Oops, color space is full, wait on overflow queue.
2672 		 * The next flush completion will assign us
2673 		 * flush_color and transfer to flusher_queue.
2674 		 */
2675 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2676 	}
2677 
2678 	mutex_unlock(&wq->flush_mutex);
2679 
2680 	wait_for_completion(&this_flusher.done);
2681 
2682 	/*
2683 	 * Wake-up-and-cascade phase
2684 	 *
2685 	 * First flushers are responsible for cascading flushes and
2686 	 * handling overflow.  Non-first flushers can simply return.
2687 	 */
2688 	if (wq->first_flusher != &this_flusher)
2689 		return;
2690 
2691 	mutex_lock(&wq->flush_mutex);
2692 
2693 	/* we might have raced, check again with mutex held */
2694 	if (wq->first_flusher != &this_flusher)
2695 		goto out_unlock;
2696 
2697 	wq->first_flusher = NULL;
2698 
2699 	BUG_ON(!list_empty(&this_flusher.list));
2700 	BUG_ON(wq->flush_color != this_flusher.flush_color);
2701 
2702 	while (true) {
2703 		struct wq_flusher *next, *tmp;
2704 
2705 		/* complete all the flushers sharing the current flush color */
2706 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2707 			if (next->flush_color != wq->flush_color)
2708 				break;
2709 			list_del_init(&next->list);
2710 			complete(&next->done);
2711 		}
2712 
2713 		BUG_ON(!list_empty(&wq->flusher_overflow) &&
2714 		       wq->flush_color != work_next_color(wq->work_color));
2715 
2716 		/* this flush_color is finished, advance by one */
2717 		wq->flush_color = work_next_color(wq->flush_color);
2718 
2719 		/* one color has been freed, handle overflow queue */
2720 		if (!list_empty(&wq->flusher_overflow)) {
2721 			/*
2722 			 * Assign the same color to all overflowed
2723 			 * flushers, advance work_color and append to
2724 			 * flusher_queue.  This is the start-to-wait
2725 			 * phase for these overflowed flushers.
2726 			 */
2727 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2728 				tmp->flush_color = wq->work_color;
2729 
2730 			wq->work_color = work_next_color(wq->work_color);
2731 
2732 			list_splice_tail_init(&wq->flusher_overflow,
2733 					      &wq->flusher_queue);
2734 			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2735 		}
2736 
2737 		if (list_empty(&wq->flusher_queue)) {
2738 			BUG_ON(wq->flush_color != wq->work_color);
2739 			break;
2740 		}
2741 
2742 		/*
2743 		 * Need to flush more colors.  Make the next flusher
2744 		 * the new first flusher and arm cwqs.
2745 		 */
2746 		BUG_ON(wq->flush_color == wq->work_color);
2747 		BUG_ON(wq->flush_color != next->flush_color);
2748 
2749 		list_del_init(&next->list);
2750 		wq->first_flusher = next;
2751 
2752 		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2753 			break;
2754 
2755 		/*
2756 		 * Meh... this color is already done, clear first
2757 		 * flusher and repeat cascading.
2758 		 */
2759 		wq->first_flusher = NULL;
2760 	}
2761 
2762 out_unlock:
2763 	mutex_unlock(&wq->flush_mutex);
2764 }
2765 EXPORT_SYMBOL_GPL(flush_workqueue);
2766 
2767 /**
2768  * drain_workqueue - drain a workqueue
2769  * @wq: workqueue to drain
2770  *
2771  * Wait until the workqueue becomes empty.  While draining is in progress,
2772  * only chain queueing is allowed.  IOW, only currently pending or running
2773  * work items on @wq can queue further work items on it.  @wq is flushed
2774  * repeatedly until it becomes empty.  The number of flushing is detemined
2775  * by the depth of chaining and should be relatively short.  Whine if it
2776  * takes too long.
2777  */
2778 void drain_workqueue(struct workqueue_struct *wq)
2779 {
2780 	unsigned int flush_cnt = 0;
2781 	unsigned int cpu;
2782 
2783 	/*
2784 	 * __queue_work() needs to test whether there are drainers, is much
2785 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2786 	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2787 	 */
2788 	spin_lock(&workqueue_lock);
2789 	if (!wq->nr_drainers++)
2790 		wq->flags |= WQ_DRAINING;
2791 	spin_unlock(&workqueue_lock);
2792 reflush:
2793 	flush_workqueue(wq);
2794 
2795 	for_each_cwq_cpu(cpu, wq) {
2796 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2797 		bool drained;
2798 
2799 		spin_lock_irq(&cwq->pool->gcwq->lock);
2800 		drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2801 		spin_unlock_irq(&cwq->pool->gcwq->lock);
2802 
2803 		if (drained)
2804 			continue;
2805 
2806 		if (++flush_cnt == 10 ||
2807 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2808 			pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2809 				wq->name, flush_cnt);
2810 		goto reflush;
2811 	}
2812 
2813 	spin_lock(&workqueue_lock);
2814 	if (!--wq->nr_drainers)
2815 		wq->flags &= ~WQ_DRAINING;
2816 	spin_unlock(&workqueue_lock);
2817 }
2818 EXPORT_SYMBOL_GPL(drain_workqueue);
2819 
2820 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2821 {
2822 	struct worker *worker = NULL;
2823 	struct global_cwq *gcwq;
2824 	struct cpu_workqueue_struct *cwq;
2825 
2826 	might_sleep();
2827 	gcwq = get_work_gcwq(work);
2828 	if (!gcwq)
2829 		return false;
2830 
2831 	spin_lock_irq(&gcwq->lock);
2832 	if (!list_empty(&work->entry)) {
2833 		/*
2834 		 * See the comment near try_to_grab_pending()->smp_rmb().
2835 		 * If it was re-queued to a different gcwq under us, we
2836 		 * are not going to wait.
2837 		 */
2838 		smp_rmb();
2839 		cwq = get_work_cwq(work);
2840 		if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
2841 			goto already_gone;
2842 	} else {
2843 		worker = find_worker_executing_work(gcwq, work);
2844 		if (!worker)
2845 			goto already_gone;
2846 		cwq = worker->current_cwq;
2847 	}
2848 
2849 	insert_wq_barrier(cwq, barr, work, worker);
2850 	spin_unlock_irq(&gcwq->lock);
2851 
2852 	/*
2853 	 * If @max_active is 1 or rescuer is in use, flushing another work
2854 	 * item on the same workqueue may lead to deadlock.  Make sure the
2855 	 * flusher is not running on the same workqueue by verifying write
2856 	 * access.
2857 	 */
2858 	if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2859 		lock_map_acquire(&cwq->wq->lockdep_map);
2860 	else
2861 		lock_map_acquire_read(&cwq->wq->lockdep_map);
2862 	lock_map_release(&cwq->wq->lockdep_map);
2863 
2864 	return true;
2865 already_gone:
2866 	spin_unlock_irq(&gcwq->lock);
2867 	return false;
2868 }
2869 
2870 /**
2871  * flush_work - wait for a work to finish executing the last queueing instance
2872  * @work: the work to flush
2873  *
2874  * Wait until @work has finished execution.  @work is guaranteed to be idle
2875  * on return if it hasn't been requeued since flush started.
2876  *
2877  * RETURNS:
2878  * %true if flush_work() waited for the work to finish execution,
2879  * %false if it was already idle.
2880  */
2881 bool flush_work(struct work_struct *work)
2882 {
2883 	struct wq_barrier barr;
2884 
2885 	lock_map_acquire(&work->lockdep_map);
2886 	lock_map_release(&work->lockdep_map);
2887 
2888 	if (start_flush_work(work, &barr)) {
2889 		wait_for_completion(&barr.done);
2890 		destroy_work_on_stack(&barr.work);
2891 		return true;
2892 	} else {
2893 		return false;
2894 	}
2895 }
2896 EXPORT_SYMBOL_GPL(flush_work);
2897 
2898 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2899 {
2900 	unsigned long flags;
2901 	int ret;
2902 
2903 	do {
2904 		ret = try_to_grab_pending(work, is_dwork, &flags);
2905 		/*
2906 		 * If someone else is canceling, wait for the same event it
2907 		 * would be waiting for before retrying.
2908 		 */
2909 		if (unlikely(ret == -ENOENT))
2910 			flush_work(work);
2911 	} while (unlikely(ret < 0));
2912 
2913 	/* tell other tasks trying to grab @work to back off */
2914 	mark_work_canceling(work);
2915 	local_irq_restore(flags);
2916 
2917 	flush_work(work);
2918 	clear_work_data(work);
2919 	return ret;
2920 }
2921 
2922 /**
2923  * cancel_work_sync - cancel a work and wait for it to finish
2924  * @work: the work to cancel
2925  *
2926  * Cancel @work and wait for its execution to finish.  This function
2927  * can be used even if the work re-queues itself or migrates to
2928  * another workqueue.  On return from this function, @work is
2929  * guaranteed to be not pending or executing on any CPU.
2930  *
2931  * cancel_work_sync(&delayed_work->work) must not be used for
2932  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2933  *
2934  * The caller must ensure that the workqueue on which @work was last
2935  * queued can't be destroyed before this function returns.
2936  *
2937  * RETURNS:
2938  * %true if @work was pending, %false otherwise.
2939  */
2940 bool cancel_work_sync(struct work_struct *work)
2941 {
2942 	return __cancel_work_timer(work, false);
2943 }
2944 EXPORT_SYMBOL_GPL(cancel_work_sync);
2945 
2946 /**
2947  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2948  * @dwork: the delayed work to flush
2949  *
2950  * Delayed timer is cancelled and the pending work is queued for
2951  * immediate execution.  Like flush_work(), this function only
2952  * considers the last queueing instance of @dwork.
2953  *
2954  * RETURNS:
2955  * %true if flush_work() waited for the work to finish execution,
2956  * %false if it was already idle.
2957  */
2958 bool flush_delayed_work(struct delayed_work *dwork)
2959 {
2960 	local_irq_disable();
2961 	if (del_timer_sync(&dwork->timer))
2962 		__queue_work(dwork->cpu,
2963 			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2964 	local_irq_enable();
2965 	return flush_work(&dwork->work);
2966 }
2967 EXPORT_SYMBOL(flush_delayed_work);
2968 
2969 /**
2970  * cancel_delayed_work - cancel a delayed work
2971  * @dwork: delayed_work to cancel
2972  *
2973  * Kill off a pending delayed_work.  Returns %true if @dwork was pending
2974  * and canceled; %false if wasn't pending.  Note that the work callback
2975  * function may still be running on return, unless it returns %true and the
2976  * work doesn't re-arm itself.  Explicitly flush or use
2977  * cancel_delayed_work_sync() to wait on it.
2978  *
2979  * This function is safe to call from any context including IRQ handler.
2980  */
2981 bool cancel_delayed_work(struct delayed_work *dwork)
2982 {
2983 	unsigned long flags;
2984 	int ret;
2985 
2986 	do {
2987 		ret = try_to_grab_pending(&dwork->work, true, &flags);
2988 	} while (unlikely(ret == -EAGAIN));
2989 
2990 	if (unlikely(ret < 0))
2991 		return false;
2992 
2993 	set_work_cpu_and_clear_pending(&dwork->work, work_cpu(&dwork->work));
2994 	local_irq_restore(flags);
2995 	return ret;
2996 }
2997 EXPORT_SYMBOL(cancel_delayed_work);
2998 
2999 /**
3000  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3001  * @dwork: the delayed work cancel
3002  *
3003  * This is cancel_work_sync() for delayed works.
3004  *
3005  * RETURNS:
3006  * %true if @dwork was pending, %false otherwise.
3007  */
3008 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3009 {
3010 	return __cancel_work_timer(&dwork->work, true);
3011 }
3012 EXPORT_SYMBOL(cancel_delayed_work_sync);
3013 
3014 /**
3015  * schedule_work_on - put work task on a specific cpu
3016  * @cpu: cpu to put the work task on
3017  * @work: job to be done
3018  *
3019  * This puts a job on a specific cpu
3020  */
3021 bool schedule_work_on(int cpu, struct work_struct *work)
3022 {
3023 	return queue_work_on(cpu, system_wq, work);
3024 }
3025 EXPORT_SYMBOL(schedule_work_on);
3026 
3027 /**
3028  * schedule_work - put work task in global workqueue
3029  * @work: job to be done
3030  *
3031  * Returns %false if @work was already on the kernel-global workqueue and
3032  * %true otherwise.
3033  *
3034  * This puts a job in the kernel-global workqueue if it was not already
3035  * queued and leaves it in the same position on the kernel-global
3036  * workqueue otherwise.
3037  */
3038 bool schedule_work(struct work_struct *work)
3039 {
3040 	return queue_work(system_wq, work);
3041 }
3042 EXPORT_SYMBOL(schedule_work);
3043 
3044 /**
3045  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3046  * @cpu: cpu to use
3047  * @dwork: job to be done
3048  * @delay: number of jiffies to wait
3049  *
3050  * After waiting for a given time this puts a job in the kernel-global
3051  * workqueue on the specified CPU.
3052  */
3053 bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3054 			      unsigned long delay)
3055 {
3056 	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
3057 }
3058 EXPORT_SYMBOL(schedule_delayed_work_on);
3059 
3060 /**
3061  * schedule_delayed_work - put work task in global workqueue after delay
3062  * @dwork: job to be done
3063  * @delay: number of jiffies to wait or 0 for immediate execution
3064  *
3065  * After waiting for a given time this puts a job in the kernel-global
3066  * workqueue.
3067  */
3068 bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
3069 {
3070 	return queue_delayed_work(system_wq, dwork, delay);
3071 }
3072 EXPORT_SYMBOL(schedule_delayed_work);
3073 
3074 /**
3075  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3076  * @func: the function to call
3077  *
3078  * schedule_on_each_cpu() executes @func on each online CPU using the
3079  * system workqueue and blocks until all CPUs have completed.
3080  * schedule_on_each_cpu() is very slow.
3081  *
3082  * RETURNS:
3083  * 0 on success, -errno on failure.
3084  */
3085 int schedule_on_each_cpu(work_func_t func)
3086 {
3087 	int cpu;
3088 	struct work_struct __percpu *works;
3089 
3090 	works = alloc_percpu(struct work_struct);
3091 	if (!works)
3092 		return -ENOMEM;
3093 
3094 	get_online_cpus();
3095 
3096 	for_each_online_cpu(cpu) {
3097 		struct work_struct *work = per_cpu_ptr(works, cpu);
3098 
3099 		INIT_WORK(work, func);
3100 		schedule_work_on(cpu, work);
3101 	}
3102 
3103 	for_each_online_cpu(cpu)
3104 		flush_work(per_cpu_ptr(works, cpu));
3105 
3106 	put_online_cpus();
3107 	free_percpu(works);
3108 	return 0;
3109 }
3110 
3111 /**
3112  * flush_scheduled_work - ensure that any scheduled work has run to completion.
3113  *
3114  * Forces execution of the kernel-global workqueue and blocks until its
3115  * completion.
3116  *
3117  * Think twice before calling this function!  It's very easy to get into
3118  * trouble if you don't take great care.  Either of the following situations
3119  * will lead to deadlock:
3120  *
3121  *	One of the work items currently on the workqueue needs to acquire
3122  *	a lock held by your code or its caller.
3123  *
3124  *	Your code is running in the context of a work routine.
3125  *
3126  * They will be detected by lockdep when they occur, but the first might not
3127  * occur very often.  It depends on what work items are on the workqueue and
3128  * what locks they need, which you have no control over.
3129  *
3130  * In most situations flushing the entire workqueue is overkill; you merely
3131  * need to know that a particular work item isn't queued and isn't running.
3132  * In such cases you should use cancel_delayed_work_sync() or
3133  * cancel_work_sync() instead.
3134  */
3135 void flush_scheduled_work(void)
3136 {
3137 	flush_workqueue(system_wq);
3138 }
3139 EXPORT_SYMBOL(flush_scheduled_work);
3140 
3141 /**
3142  * execute_in_process_context - reliably execute the routine with user context
3143  * @fn:		the function to execute
3144  * @ew:		guaranteed storage for the execute work structure (must
3145  *		be available when the work executes)
3146  *
3147  * Executes the function immediately if process context is available,
3148  * otherwise schedules the function for delayed execution.
3149  *
3150  * Returns:	0 - function was executed
3151  *		1 - function was scheduled for execution
3152  */
3153 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3154 {
3155 	if (!in_interrupt()) {
3156 		fn(&ew->work);
3157 		return 0;
3158 	}
3159 
3160 	INIT_WORK(&ew->work, fn);
3161 	schedule_work(&ew->work);
3162 
3163 	return 1;
3164 }
3165 EXPORT_SYMBOL_GPL(execute_in_process_context);
3166 
3167 int keventd_up(void)
3168 {
3169 	return system_wq != NULL;
3170 }
3171 
3172 static int alloc_cwqs(struct workqueue_struct *wq)
3173 {
3174 	/*
3175 	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3176 	 * Make sure that the alignment isn't lower than that of
3177 	 * unsigned long long.
3178 	 */
3179 	const size_t size = sizeof(struct cpu_workqueue_struct);
3180 	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3181 				   __alignof__(unsigned long long));
3182 
3183 	if (!(wq->flags & WQ_UNBOUND))
3184 		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3185 	else {
3186 		void *ptr;
3187 
3188 		/*
3189 		 * Allocate enough room to align cwq and put an extra
3190 		 * pointer at the end pointing back to the originally
3191 		 * allocated pointer which will be used for free.
3192 		 */
3193 		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3194 		if (ptr) {
3195 			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3196 			*(void **)(wq->cpu_wq.single + 1) = ptr;
3197 		}
3198 	}
3199 
3200 	/* just in case, make sure it's actually aligned */
3201 	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3202 	return wq->cpu_wq.v ? 0 : -ENOMEM;
3203 }
3204 
3205 static void free_cwqs(struct workqueue_struct *wq)
3206 {
3207 	if (!(wq->flags & WQ_UNBOUND))
3208 		free_percpu(wq->cpu_wq.pcpu);
3209 	else if (wq->cpu_wq.single) {
3210 		/* the pointer to free is stored right after the cwq */
3211 		kfree(*(void **)(wq->cpu_wq.single + 1));
3212 	}
3213 }
3214 
3215 static int wq_clamp_max_active(int max_active, unsigned int flags,
3216 			       const char *name)
3217 {
3218 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3219 
3220 	if (max_active < 1 || max_active > lim)
3221 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3222 			max_active, name, 1, lim);
3223 
3224 	return clamp_val(max_active, 1, lim);
3225 }
3226 
3227 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3228 					       unsigned int flags,
3229 					       int max_active,
3230 					       struct lock_class_key *key,
3231 					       const char *lock_name, ...)
3232 {
3233 	va_list args, args1;
3234 	struct workqueue_struct *wq;
3235 	unsigned int cpu;
3236 	size_t namelen;
3237 
3238 	/* determine namelen, allocate wq and format name */
3239 	va_start(args, lock_name);
3240 	va_copy(args1, args);
3241 	namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3242 
3243 	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3244 	if (!wq)
3245 		goto err;
3246 
3247 	vsnprintf(wq->name, namelen, fmt, args1);
3248 	va_end(args);
3249 	va_end(args1);
3250 
3251 	/*
3252 	 * Workqueues which may be used during memory reclaim should
3253 	 * have a rescuer to guarantee forward progress.
3254 	 */
3255 	if (flags & WQ_MEM_RECLAIM)
3256 		flags |= WQ_RESCUER;
3257 
3258 	max_active = max_active ?: WQ_DFL_ACTIVE;
3259 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3260 
3261 	/* init wq */
3262 	wq->flags = flags;
3263 	wq->saved_max_active = max_active;
3264 	mutex_init(&wq->flush_mutex);
3265 	atomic_set(&wq->nr_cwqs_to_flush, 0);
3266 	INIT_LIST_HEAD(&wq->flusher_queue);
3267 	INIT_LIST_HEAD(&wq->flusher_overflow);
3268 
3269 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3270 	INIT_LIST_HEAD(&wq->list);
3271 
3272 	if (alloc_cwqs(wq) < 0)
3273 		goto err;
3274 
3275 	for_each_cwq_cpu(cpu, wq) {
3276 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3277 		struct global_cwq *gcwq = get_gcwq(cpu);
3278 		int pool_idx = (bool)(flags & WQ_HIGHPRI);
3279 
3280 		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3281 		cwq->pool = &gcwq->pools[pool_idx];
3282 		cwq->wq = wq;
3283 		cwq->flush_color = -1;
3284 		cwq->max_active = max_active;
3285 		INIT_LIST_HEAD(&cwq->delayed_works);
3286 	}
3287 
3288 	if (flags & WQ_RESCUER) {
3289 		struct worker *rescuer;
3290 
3291 		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3292 			goto err;
3293 
3294 		wq->rescuer = rescuer = alloc_worker();
3295 		if (!rescuer)
3296 			goto err;
3297 
3298 		rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3299 					       wq->name);
3300 		if (IS_ERR(rescuer->task))
3301 			goto err;
3302 
3303 		rescuer->task->flags |= PF_THREAD_BOUND;
3304 		wake_up_process(rescuer->task);
3305 	}
3306 
3307 	/*
3308 	 * workqueue_lock protects global freeze state and workqueues
3309 	 * list.  Grab it, set max_active accordingly and add the new
3310 	 * workqueue to workqueues list.
3311 	 */
3312 	spin_lock(&workqueue_lock);
3313 
3314 	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3315 		for_each_cwq_cpu(cpu, wq)
3316 			get_cwq(cpu, wq)->max_active = 0;
3317 
3318 	list_add(&wq->list, &workqueues);
3319 
3320 	spin_unlock(&workqueue_lock);
3321 
3322 	return wq;
3323 err:
3324 	if (wq) {
3325 		free_cwqs(wq);
3326 		free_mayday_mask(wq->mayday_mask);
3327 		kfree(wq->rescuer);
3328 		kfree(wq);
3329 	}
3330 	return NULL;
3331 }
3332 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3333 
3334 /**
3335  * destroy_workqueue - safely terminate a workqueue
3336  * @wq: target workqueue
3337  *
3338  * Safely destroy a workqueue. All work currently pending will be done first.
3339  */
3340 void destroy_workqueue(struct workqueue_struct *wq)
3341 {
3342 	unsigned int cpu;
3343 
3344 	/* drain it before proceeding with destruction */
3345 	drain_workqueue(wq);
3346 
3347 	/*
3348 	 * wq list is used to freeze wq, remove from list after
3349 	 * flushing is complete in case freeze races us.
3350 	 */
3351 	spin_lock(&workqueue_lock);
3352 	list_del(&wq->list);
3353 	spin_unlock(&workqueue_lock);
3354 
3355 	/* sanity check */
3356 	for_each_cwq_cpu(cpu, wq) {
3357 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3358 		int i;
3359 
3360 		for (i = 0; i < WORK_NR_COLORS; i++)
3361 			BUG_ON(cwq->nr_in_flight[i]);
3362 		BUG_ON(cwq->nr_active);
3363 		BUG_ON(!list_empty(&cwq->delayed_works));
3364 	}
3365 
3366 	if (wq->flags & WQ_RESCUER) {
3367 		kthread_stop(wq->rescuer->task);
3368 		free_mayday_mask(wq->mayday_mask);
3369 		kfree(wq->rescuer);
3370 	}
3371 
3372 	free_cwqs(wq);
3373 	kfree(wq);
3374 }
3375 EXPORT_SYMBOL_GPL(destroy_workqueue);
3376 
3377 /**
3378  * cwq_set_max_active - adjust max_active of a cwq
3379  * @cwq: target cpu_workqueue_struct
3380  * @max_active: new max_active value.
3381  *
3382  * Set @cwq->max_active to @max_active and activate delayed works if
3383  * increased.
3384  *
3385  * CONTEXT:
3386  * spin_lock_irq(gcwq->lock).
3387  */
3388 static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active)
3389 {
3390 	cwq->max_active = max_active;
3391 
3392 	while (!list_empty(&cwq->delayed_works) &&
3393 	       cwq->nr_active < cwq->max_active)
3394 		cwq_activate_first_delayed(cwq);
3395 }
3396 
3397 /**
3398  * workqueue_set_max_active - adjust max_active of a workqueue
3399  * @wq: target workqueue
3400  * @max_active: new max_active value.
3401  *
3402  * Set max_active of @wq to @max_active.
3403  *
3404  * CONTEXT:
3405  * Don't call from IRQ context.
3406  */
3407 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3408 {
3409 	unsigned int cpu;
3410 
3411 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3412 
3413 	spin_lock(&workqueue_lock);
3414 
3415 	wq->saved_max_active = max_active;
3416 
3417 	for_each_cwq_cpu(cpu, wq) {
3418 		struct global_cwq *gcwq = get_gcwq(cpu);
3419 
3420 		spin_lock_irq(&gcwq->lock);
3421 
3422 		if (!(wq->flags & WQ_FREEZABLE) ||
3423 		    !(gcwq->flags & GCWQ_FREEZING))
3424 			cwq_set_max_active(get_cwq(gcwq->cpu, wq), max_active);
3425 
3426 		spin_unlock_irq(&gcwq->lock);
3427 	}
3428 
3429 	spin_unlock(&workqueue_lock);
3430 }
3431 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3432 
3433 /**
3434  * workqueue_congested - test whether a workqueue is congested
3435  * @cpu: CPU in question
3436  * @wq: target workqueue
3437  *
3438  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
3439  * no synchronization around this function and the test result is
3440  * unreliable and only useful as advisory hints or for debugging.
3441  *
3442  * RETURNS:
3443  * %true if congested, %false otherwise.
3444  */
3445 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3446 {
3447 	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3448 
3449 	return !list_empty(&cwq->delayed_works);
3450 }
3451 EXPORT_SYMBOL_GPL(workqueue_congested);
3452 
3453 /**
3454  * work_cpu - return the last known associated cpu for @work
3455  * @work: the work of interest
3456  *
3457  * RETURNS:
3458  * CPU number if @work was ever queued.  WORK_CPU_NONE otherwise.
3459  */
3460 unsigned int work_cpu(struct work_struct *work)
3461 {
3462 	struct global_cwq *gcwq = get_work_gcwq(work);
3463 
3464 	return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3465 }
3466 EXPORT_SYMBOL_GPL(work_cpu);
3467 
3468 /**
3469  * work_busy - test whether a work is currently pending or running
3470  * @work: the work to be tested
3471  *
3472  * Test whether @work is currently pending or running.  There is no
3473  * synchronization around this function and the test result is
3474  * unreliable and only useful as advisory hints or for debugging.
3475  * Especially for reentrant wqs, the pending state might hide the
3476  * running state.
3477  *
3478  * RETURNS:
3479  * OR'd bitmask of WORK_BUSY_* bits.
3480  */
3481 unsigned int work_busy(struct work_struct *work)
3482 {
3483 	struct global_cwq *gcwq = get_work_gcwq(work);
3484 	unsigned long flags;
3485 	unsigned int ret = 0;
3486 
3487 	if (!gcwq)
3488 		return false;
3489 
3490 	spin_lock_irqsave(&gcwq->lock, flags);
3491 
3492 	if (work_pending(work))
3493 		ret |= WORK_BUSY_PENDING;
3494 	if (find_worker_executing_work(gcwq, work))
3495 		ret |= WORK_BUSY_RUNNING;
3496 
3497 	spin_unlock_irqrestore(&gcwq->lock, flags);
3498 
3499 	return ret;
3500 }
3501 EXPORT_SYMBOL_GPL(work_busy);
3502 
3503 /*
3504  * CPU hotplug.
3505  *
3506  * There are two challenges in supporting CPU hotplug.  Firstly, there
3507  * are a lot of assumptions on strong associations among work, cwq and
3508  * gcwq which make migrating pending and scheduled works very
3509  * difficult to implement without impacting hot paths.  Secondly,
3510  * gcwqs serve mix of short, long and very long running works making
3511  * blocked draining impractical.
3512  *
3513  * This is solved by allowing a gcwq to be disassociated from the CPU
3514  * running as an unbound one and allowing it to be reattached later if the
3515  * cpu comes back online.
3516  */
3517 
3518 /* claim manager positions of all pools */
3519 static void gcwq_claim_assoc_and_lock(struct global_cwq *gcwq)
3520 {
3521 	struct worker_pool *pool;
3522 
3523 	for_each_worker_pool(pool, gcwq)
3524 		mutex_lock_nested(&pool->assoc_mutex, pool - gcwq->pools);
3525 	spin_lock_irq(&gcwq->lock);
3526 }
3527 
3528 /* release manager positions */
3529 static void gcwq_release_assoc_and_unlock(struct global_cwq *gcwq)
3530 {
3531 	struct worker_pool *pool;
3532 
3533 	spin_unlock_irq(&gcwq->lock);
3534 	for_each_worker_pool(pool, gcwq)
3535 		mutex_unlock(&pool->assoc_mutex);
3536 }
3537 
3538 static void gcwq_unbind_fn(struct work_struct *work)
3539 {
3540 	struct global_cwq *gcwq = get_gcwq(smp_processor_id());
3541 	struct worker_pool *pool;
3542 	struct worker *worker;
3543 	struct hlist_node *pos;
3544 	int i;
3545 
3546 	BUG_ON(gcwq->cpu != smp_processor_id());
3547 
3548 	gcwq_claim_assoc_and_lock(gcwq);
3549 
3550 	/*
3551 	 * We've claimed all manager positions.  Make all workers unbound
3552 	 * and set DISASSOCIATED.  Before this, all workers except for the
3553 	 * ones which are still executing works from before the last CPU
3554 	 * down must be on the cpu.  After this, they may become diasporas.
3555 	 */
3556 	for_each_worker_pool(pool, gcwq)
3557 		list_for_each_entry(worker, &pool->idle_list, entry)
3558 			worker->flags |= WORKER_UNBOUND;
3559 
3560 	for_each_busy_worker(worker, i, pos, gcwq)
3561 		worker->flags |= WORKER_UNBOUND;
3562 
3563 	gcwq->flags |= GCWQ_DISASSOCIATED;
3564 
3565 	gcwq_release_assoc_and_unlock(gcwq);
3566 
3567 	/*
3568 	 * Call schedule() so that we cross rq->lock and thus can guarantee
3569 	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
3570 	 * as scheduler callbacks may be invoked from other cpus.
3571 	 */
3572 	schedule();
3573 
3574 	/*
3575 	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
3576 	 * nr_running stays zero and need_more_worker() and keep_working()
3577 	 * are always true as long as the worklist is not empty.  @gcwq now
3578 	 * behaves as unbound (in terms of concurrency management) gcwq
3579 	 * which is served by workers tied to the CPU.
3580 	 *
3581 	 * On return from this function, the current worker would trigger
3582 	 * unbound chain execution of pending work items if other workers
3583 	 * didn't already.
3584 	 */
3585 	for_each_worker_pool(pool, gcwq)
3586 		atomic_set(get_pool_nr_running(pool), 0);
3587 }
3588 
3589 /*
3590  * Workqueues should be brought up before normal priority CPU notifiers.
3591  * This will be registered high priority CPU notifier.
3592  */
3593 static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3594 					       unsigned long action,
3595 					       void *hcpu)
3596 {
3597 	unsigned int cpu = (unsigned long)hcpu;
3598 	struct global_cwq *gcwq = get_gcwq(cpu);
3599 	struct worker_pool *pool;
3600 
3601 	switch (action & ~CPU_TASKS_FROZEN) {
3602 	case CPU_UP_PREPARE:
3603 		for_each_worker_pool(pool, gcwq) {
3604 			struct worker *worker;
3605 
3606 			if (pool->nr_workers)
3607 				continue;
3608 
3609 			worker = create_worker(pool);
3610 			if (!worker)
3611 				return NOTIFY_BAD;
3612 
3613 			spin_lock_irq(&gcwq->lock);
3614 			start_worker(worker);
3615 			spin_unlock_irq(&gcwq->lock);
3616 		}
3617 		break;
3618 
3619 	case CPU_DOWN_FAILED:
3620 	case CPU_ONLINE:
3621 		gcwq_claim_assoc_and_lock(gcwq);
3622 		gcwq->flags &= ~GCWQ_DISASSOCIATED;
3623 		rebind_workers(gcwq);
3624 		gcwq_release_assoc_and_unlock(gcwq);
3625 		break;
3626 	}
3627 	return NOTIFY_OK;
3628 }
3629 
3630 /*
3631  * Workqueues should be brought down after normal priority CPU notifiers.
3632  * This will be registered as low priority CPU notifier.
3633  */
3634 static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3635 						 unsigned long action,
3636 						 void *hcpu)
3637 {
3638 	unsigned int cpu = (unsigned long)hcpu;
3639 	struct work_struct unbind_work;
3640 
3641 	switch (action & ~CPU_TASKS_FROZEN) {
3642 	case CPU_DOWN_PREPARE:
3643 		/* unbinding should happen on the local CPU */
3644 		INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3645 		queue_work_on(cpu, system_highpri_wq, &unbind_work);
3646 		flush_work(&unbind_work);
3647 		break;
3648 	}
3649 	return NOTIFY_OK;
3650 }
3651 
3652 #ifdef CONFIG_SMP
3653 
3654 struct work_for_cpu {
3655 	struct work_struct work;
3656 	long (*fn)(void *);
3657 	void *arg;
3658 	long ret;
3659 };
3660 
3661 static void work_for_cpu_fn(struct work_struct *work)
3662 {
3663 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3664 
3665 	wfc->ret = wfc->fn(wfc->arg);
3666 }
3667 
3668 /**
3669  * work_on_cpu - run a function in user context on a particular cpu
3670  * @cpu: the cpu to run on
3671  * @fn: the function to run
3672  * @arg: the function arg
3673  *
3674  * This will return the value @fn returns.
3675  * It is up to the caller to ensure that the cpu doesn't go offline.
3676  * The caller must not hold any locks which would prevent @fn from completing.
3677  */
3678 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3679 {
3680 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3681 
3682 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3683 	schedule_work_on(cpu, &wfc.work);
3684 	flush_work(&wfc.work);
3685 	return wfc.ret;
3686 }
3687 EXPORT_SYMBOL_GPL(work_on_cpu);
3688 #endif /* CONFIG_SMP */
3689 
3690 #ifdef CONFIG_FREEZER
3691 
3692 /**
3693  * freeze_workqueues_begin - begin freezing workqueues
3694  *
3695  * Start freezing workqueues.  After this function returns, all freezable
3696  * workqueues will queue new works to their frozen_works list instead of
3697  * gcwq->worklist.
3698  *
3699  * CONTEXT:
3700  * Grabs and releases workqueue_lock and gcwq->lock's.
3701  */
3702 void freeze_workqueues_begin(void)
3703 {
3704 	unsigned int cpu;
3705 
3706 	spin_lock(&workqueue_lock);
3707 
3708 	BUG_ON(workqueue_freezing);
3709 	workqueue_freezing = true;
3710 
3711 	for_each_gcwq_cpu(cpu) {
3712 		struct global_cwq *gcwq = get_gcwq(cpu);
3713 		struct workqueue_struct *wq;
3714 
3715 		spin_lock_irq(&gcwq->lock);
3716 
3717 		BUG_ON(gcwq->flags & GCWQ_FREEZING);
3718 		gcwq->flags |= GCWQ_FREEZING;
3719 
3720 		list_for_each_entry(wq, &workqueues, list) {
3721 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3722 
3723 			if (cwq && wq->flags & WQ_FREEZABLE)
3724 				cwq->max_active = 0;
3725 		}
3726 
3727 		spin_unlock_irq(&gcwq->lock);
3728 	}
3729 
3730 	spin_unlock(&workqueue_lock);
3731 }
3732 
3733 /**
3734  * freeze_workqueues_busy - are freezable workqueues still busy?
3735  *
3736  * Check whether freezing is complete.  This function must be called
3737  * between freeze_workqueues_begin() and thaw_workqueues().
3738  *
3739  * CONTEXT:
3740  * Grabs and releases workqueue_lock.
3741  *
3742  * RETURNS:
3743  * %true if some freezable workqueues are still busy.  %false if freezing
3744  * is complete.
3745  */
3746 bool freeze_workqueues_busy(void)
3747 {
3748 	unsigned int cpu;
3749 	bool busy = false;
3750 
3751 	spin_lock(&workqueue_lock);
3752 
3753 	BUG_ON(!workqueue_freezing);
3754 
3755 	for_each_gcwq_cpu(cpu) {
3756 		struct workqueue_struct *wq;
3757 		/*
3758 		 * nr_active is monotonically decreasing.  It's safe
3759 		 * to peek without lock.
3760 		 */
3761 		list_for_each_entry(wq, &workqueues, list) {
3762 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3763 
3764 			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3765 				continue;
3766 
3767 			BUG_ON(cwq->nr_active < 0);
3768 			if (cwq->nr_active) {
3769 				busy = true;
3770 				goto out_unlock;
3771 			}
3772 		}
3773 	}
3774 out_unlock:
3775 	spin_unlock(&workqueue_lock);
3776 	return busy;
3777 }
3778 
3779 /**
3780  * thaw_workqueues - thaw workqueues
3781  *
3782  * Thaw workqueues.  Normal queueing is restored and all collected
3783  * frozen works are transferred to their respective gcwq worklists.
3784  *
3785  * CONTEXT:
3786  * Grabs and releases workqueue_lock and gcwq->lock's.
3787  */
3788 void thaw_workqueues(void)
3789 {
3790 	unsigned int cpu;
3791 
3792 	spin_lock(&workqueue_lock);
3793 
3794 	if (!workqueue_freezing)
3795 		goto out_unlock;
3796 
3797 	for_each_gcwq_cpu(cpu) {
3798 		struct global_cwq *gcwq = get_gcwq(cpu);
3799 		struct worker_pool *pool;
3800 		struct workqueue_struct *wq;
3801 
3802 		spin_lock_irq(&gcwq->lock);
3803 
3804 		BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3805 		gcwq->flags &= ~GCWQ_FREEZING;
3806 
3807 		list_for_each_entry(wq, &workqueues, list) {
3808 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3809 
3810 			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3811 				continue;
3812 
3813 			/* restore max_active and repopulate worklist */
3814 			cwq_set_max_active(cwq, wq->saved_max_active);
3815 		}
3816 
3817 		for_each_worker_pool(pool, gcwq)
3818 			wake_up_worker(pool);
3819 
3820 		spin_unlock_irq(&gcwq->lock);
3821 	}
3822 
3823 	workqueue_freezing = false;
3824 out_unlock:
3825 	spin_unlock(&workqueue_lock);
3826 }
3827 #endif /* CONFIG_FREEZER */
3828 
3829 static int __init init_workqueues(void)
3830 {
3831 	unsigned int cpu;
3832 	int i;
3833 
3834 	/* make sure we have enough bits for OFFQ CPU number */
3835 	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_CPU_SHIFT)) <
3836 		     WORK_CPU_LAST);
3837 
3838 	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3839 	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3840 
3841 	/* initialize gcwqs */
3842 	for_each_gcwq_cpu(cpu) {
3843 		struct global_cwq *gcwq = get_gcwq(cpu);
3844 		struct worker_pool *pool;
3845 
3846 		spin_lock_init(&gcwq->lock);
3847 		gcwq->cpu = cpu;
3848 		gcwq->flags |= GCWQ_DISASSOCIATED;
3849 
3850 		for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3851 			INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3852 
3853 		for_each_worker_pool(pool, gcwq) {
3854 			pool->gcwq = gcwq;
3855 			INIT_LIST_HEAD(&pool->worklist);
3856 			INIT_LIST_HEAD(&pool->idle_list);
3857 
3858 			init_timer_deferrable(&pool->idle_timer);
3859 			pool->idle_timer.function = idle_worker_timeout;
3860 			pool->idle_timer.data = (unsigned long)pool;
3861 
3862 			setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3863 				    (unsigned long)pool);
3864 
3865 			mutex_init(&pool->assoc_mutex);
3866 			ida_init(&pool->worker_ida);
3867 		}
3868 	}
3869 
3870 	/* create the initial worker */
3871 	for_each_online_gcwq_cpu(cpu) {
3872 		struct global_cwq *gcwq = get_gcwq(cpu);
3873 		struct worker_pool *pool;
3874 
3875 		if (cpu != WORK_CPU_UNBOUND)
3876 			gcwq->flags &= ~GCWQ_DISASSOCIATED;
3877 
3878 		for_each_worker_pool(pool, gcwq) {
3879 			struct worker *worker;
3880 
3881 			worker = create_worker(pool);
3882 			BUG_ON(!worker);
3883 			spin_lock_irq(&gcwq->lock);
3884 			start_worker(worker);
3885 			spin_unlock_irq(&gcwq->lock);
3886 		}
3887 	}
3888 
3889 	system_wq = alloc_workqueue("events", 0, 0);
3890 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3891 	system_long_wq = alloc_workqueue("events_long", 0, 0);
3892 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3893 					    WQ_UNBOUND_MAX_ACTIVE);
3894 	system_freezable_wq = alloc_workqueue("events_freezable",
3895 					      WQ_FREEZABLE, 0);
3896 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3897 	       !system_unbound_wq || !system_freezable_wq);
3898 	return 0;
3899 }
3900 early_initcall(init_workqueues);
3901