1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There is one worker pool for each CPU and 20 * one extra for works which are better served by workers which are 21 * not bound to any specific CPU. 22 * 23 * Please read Documentation/workqueue.txt for details. 24 */ 25 26 #include <linux/export.h> 27 #include <linux/kernel.h> 28 #include <linux/sched.h> 29 #include <linux/init.h> 30 #include <linux/signal.h> 31 #include <linux/completion.h> 32 #include <linux/workqueue.h> 33 #include <linux/slab.h> 34 #include <linux/cpu.h> 35 #include <linux/notifier.h> 36 #include <linux/kthread.h> 37 #include <linux/hardirq.h> 38 #include <linux/mempolicy.h> 39 #include <linux/freezer.h> 40 #include <linux/kallsyms.h> 41 #include <linux/debug_locks.h> 42 #include <linux/lockdep.h> 43 #include <linux/idr.h> 44 #include <linux/jhash.h> 45 #include <linux/hashtable.h> 46 #include <linux/rculist.h> 47 #include <linux/nodemask.h> 48 #include <linux/moduleparam.h> 49 #include <linux/uaccess.h> 50 51 #include "workqueue_internal.h" 52 53 enum { 54 /* 55 * worker_pool flags 56 * 57 * A bound pool is either associated or disassociated with its CPU. 58 * While associated (!DISASSOCIATED), all workers are bound to the 59 * CPU and none has %WORKER_UNBOUND set and concurrency management 60 * is in effect. 61 * 62 * While DISASSOCIATED, the cpu may be offline and all workers have 63 * %WORKER_UNBOUND set and concurrency management disabled, and may 64 * be executing on any CPU. The pool behaves as an unbound one. 65 * 66 * Note that DISASSOCIATED should be flipped only while holding 67 * manager_mutex to avoid changing binding state while 68 * create_worker() is in progress. 69 */ 70 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */ 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 72 POOL_FREEZING = 1 << 3, /* freeze in progress */ 73 74 /* worker flags */ 75 WORKER_STARTED = 1 << 0, /* started */ 76 WORKER_DIE = 1 << 1, /* die die die */ 77 WORKER_IDLE = 1 << 2, /* is idle */ 78 WORKER_PREP = 1 << 3, /* preparing to run works */ 79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 81 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 82 83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 84 WORKER_UNBOUND | WORKER_REBOUND, 85 86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 87 88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 90 91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 93 94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 95 /* call for help after 10ms 96 (min two ticks) */ 97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 98 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 99 100 /* 101 * Rescue workers are used only on emergencies and shared by 102 * all cpus. Give -20. 103 */ 104 RESCUER_NICE_LEVEL = -20, 105 HIGHPRI_NICE_LEVEL = -20, 106 107 WQ_NAME_LEN = 24, 108 }; 109 110 /* 111 * Structure fields follow one of the following exclusion rules. 112 * 113 * I: Modifiable by initialization/destruction paths and read-only for 114 * everyone else. 115 * 116 * P: Preemption protected. Disabling preemption is enough and should 117 * only be modified and accessed from the local cpu. 118 * 119 * L: pool->lock protected. Access with pool->lock held. 120 * 121 * X: During normal operation, modification requires pool->lock and should 122 * be done only from local cpu. Either disabling preemption on local 123 * cpu or grabbing pool->lock is enough for read access. If 124 * POOL_DISASSOCIATED is set, it's identical to L. 125 * 126 * MG: pool->manager_mutex and pool->lock protected. Writes require both 127 * locks. Reads can happen under either lock. 128 * 129 * PL: wq_pool_mutex protected. 130 * 131 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads. 132 * 133 * WQ: wq->mutex protected. 134 * 135 * WR: wq->mutex protected for writes. Sched-RCU protected for reads. 136 * 137 * MD: wq_mayday_lock protected. 138 */ 139 140 /* struct worker is defined in workqueue_internal.h */ 141 142 struct worker_pool { 143 spinlock_t lock; /* the pool lock */ 144 int cpu; /* I: the associated cpu */ 145 int node; /* I: the associated node ID */ 146 int id; /* I: pool ID */ 147 unsigned int flags; /* X: flags */ 148 149 struct list_head worklist; /* L: list of pending works */ 150 int nr_workers; /* L: total number of workers */ 151 152 /* nr_idle includes the ones off idle_list for rebinding */ 153 int nr_idle; /* L: currently idle ones */ 154 155 struct list_head idle_list; /* X: list of idle workers */ 156 struct timer_list idle_timer; /* L: worker idle timeout */ 157 struct timer_list mayday_timer; /* L: SOS timer for workers */ 158 159 /* a workers is either on busy_hash or idle_list, or the manager */ 160 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 161 /* L: hash of busy workers */ 162 163 /* see manage_workers() for details on the two manager mutexes */ 164 struct mutex manager_arb; /* manager arbitration */ 165 struct mutex manager_mutex; /* manager exclusion */ 166 struct idr worker_idr; /* MG: worker IDs and iteration */ 167 168 struct workqueue_attrs *attrs; /* I: worker attributes */ 169 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 170 int refcnt; /* PL: refcnt for unbound pools */ 171 172 /* 173 * The current concurrency level. As it's likely to be accessed 174 * from other CPUs during try_to_wake_up(), put it in a separate 175 * cacheline. 176 */ 177 atomic_t nr_running ____cacheline_aligned_in_smp; 178 179 /* 180 * Destruction of pool is sched-RCU protected to allow dereferences 181 * from get_work_pool(). 182 */ 183 struct rcu_head rcu; 184 } ____cacheline_aligned_in_smp; 185 186 /* 187 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 188 * of work_struct->data are used for flags and the remaining high bits 189 * point to the pwq; thus, pwqs need to be aligned at two's power of the 190 * number of flag bits. 191 */ 192 struct pool_workqueue { 193 struct worker_pool *pool; /* I: the associated pool */ 194 struct workqueue_struct *wq; /* I: the owning workqueue */ 195 int work_color; /* L: current color */ 196 int flush_color; /* L: flushing color */ 197 int refcnt; /* L: reference count */ 198 int nr_in_flight[WORK_NR_COLORS]; 199 /* L: nr of in_flight works */ 200 int nr_active; /* L: nr of active works */ 201 int max_active; /* L: max active works */ 202 struct list_head delayed_works; /* L: delayed works */ 203 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 204 struct list_head mayday_node; /* MD: node on wq->maydays */ 205 206 /* 207 * Release of unbound pwq is punted to system_wq. See put_pwq() 208 * and pwq_unbound_release_workfn() for details. pool_workqueue 209 * itself is also sched-RCU protected so that the first pwq can be 210 * determined without grabbing wq->mutex. 211 */ 212 struct work_struct unbound_release_work; 213 struct rcu_head rcu; 214 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 215 216 /* 217 * Structure used to wait for workqueue flush. 218 */ 219 struct wq_flusher { 220 struct list_head list; /* WQ: list of flushers */ 221 int flush_color; /* WQ: flush color waiting for */ 222 struct completion done; /* flush completion */ 223 }; 224 225 struct wq_device; 226 227 /* 228 * The externally visible workqueue. It relays the issued work items to 229 * the appropriate worker_pool through its pool_workqueues. 230 */ 231 struct workqueue_struct { 232 struct list_head pwqs; /* WR: all pwqs of this wq */ 233 struct list_head list; /* PL: list of all workqueues */ 234 235 struct mutex mutex; /* protects this wq */ 236 int work_color; /* WQ: current work color */ 237 int flush_color; /* WQ: current flush color */ 238 atomic_t nr_pwqs_to_flush; /* flush in progress */ 239 struct wq_flusher *first_flusher; /* WQ: first flusher */ 240 struct list_head flusher_queue; /* WQ: flush waiters */ 241 struct list_head flusher_overflow; /* WQ: flush overflow list */ 242 243 struct list_head maydays; /* MD: pwqs requesting rescue */ 244 struct worker *rescuer; /* I: rescue worker */ 245 246 int nr_drainers; /* WQ: drain in progress */ 247 int saved_max_active; /* WQ: saved pwq max_active */ 248 249 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */ 250 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */ 251 252 #ifdef CONFIG_SYSFS 253 struct wq_device *wq_dev; /* I: for sysfs interface */ 254 #endif 255 #ifdef CONFIG_LOCKDEP 256 struct lockdep_map lockdep_map; 257 #endif 258 char name[WQ_NAME_LEN]; /* I: workqueue name */ 259 260 /* hot fields used during command issue, aligned to cacheline */ 261 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 262 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 263 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */ 264 }; 265 266 static struct kmem_cache *pwq_cache; 267 268 static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */ 269 static cpumask_var_t *wq_numa_possible_cpumask; 270 /* possible CPUs of each node */ 271 272 static bool wq_disable_numa; 273 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 274 275 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 276 277 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 278 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 279 280 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 281 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 282 283 static LIST_HEAD(workqueues); /* PL: list of all workqueues */ 284 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 285 286 /* the per-cpu worker pools */ 287 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 288 cpu_worker_pools); 289 290 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 291 292 /* PL: hash of all unbound pools keyed by pool->attrs */ 293 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 294 295 /* I: attributes used when instantiating standard unbound pools on demand */ 296 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 297 298 struct workqueue_struct *system_wq __read_mostly; 299 EXPORT_SYMBOL(system_wq); 300 struct workqueue_struct *system_highpri_wq __read_mostly; 301 EXPORT_SYMBOL_GPL(system_highpri_wq); 302 struct workqueue_struct *system_long_wq __read_mostly; 303 EXPORT_SYMBOL_GPL(system_long_wq); 304 struct workqueue_struct *system_unbound_wq __read_mostly; 305 EXPORT_SYMBOL_GPL(system_unbound_wq); 306 struct workqueue_struct *system_freezable_wq __read_mostly; 307 EXPORT_SYMBOL_GPL(system_freezable_wq); 308 309 static int worker_thread(void *__worker); 310 static void copy_workqueue_attrs(struct workqueue_attrs *to, 311 const struct workqueue_attrs *from); 312 313 #define CREATE_TRACE_POINTS 314 #include <trace/events/workqueue.h> 315 316 #define assert_rcu_or_pool_mutex() \ 317 rcu_lockdep_assert(rcu_read_lock_sched_held() || \ 318 lockdep_is_held(&wq_pool_mutex), \ 319 "sched RCU or wq_pool_mutex should be held") 320 321 #define assert_rcu_or_wq_mutex(wq) \ 322 rcu_lockdep_assert(rcu_read_lock_sched_held() || \ 323 lockdep_is_held(&wq->mutex), \ 324 "sched RCU or wq->mutex should be held") 325 326 #ifdef CONFIG_LOCKDEP 327 #define assert_manager_or_pool_lock(pool) \ 328 WARN_ONCE(debug_locks && \ 329 !lockdep_is_held(&(pool)->manager_mutex) && \ 330 !lockdep_is_held(&(pool)->lock), \ 331 "pool->manager_mutex or ->lock should be held") 332 #else 333 #define assert_manager_or_pool_lock(pool) do { } while (0) 334 #endif 335 336 #define for_each_cpu_worker_pool(pool, cpu) \ 337 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 338 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 339 (pool)++) 340 341 /** 342 * for_each_pool - iterate through all worker_pools in the system 343 * @pool: iteration cursor 344 * @pi: integer used for iteration 345 * 346 * This must be called either with wq_pool_mutex held or sched RCU read 347 * locked. If the pool needs to be used beyond the locking in effect, the 348 * caller is responsible for guaranteeing that the pool stays online. 349 * 350 * The if/else clause exists only for the lockdep assertion and can be 351 * ignored. 352 */ 353 #define for_each_pool(pool, pi) \ 354 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 355 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 356 else 357 358 /** 359 * for_each_pool_worker - iterate through all workers of a worker_pool 360 * @worker: iteration cursor 361 * @wi: integer used for iteration 362 * @pool: worker_pool to iterate workers of 363 * 364 * This must be called with either @pool->manager_mutex or ->lock held. 365 * 366 * The if/else clause exists only for the lockdep assertion and can be 367 * ignored. 368 */ 369 #define for_each_pool_worker(worker, wi, pool) \ 370 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \ 371 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \ 372 else 373 374 /** 375 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 376 * @pwq: iteration cursor 377 * @wq: the target workqueue 378 * 379 * This must be called either with wq->mutex held or sched RCU read locked. 380 * If the pwq needs to be used beyond the locking in effect, the caller is 381 * responsible for guaranteeing that the pwq stays online. 382 * 383 * The if/else clause exists only for the lockdep assertion and can be 384 * ignored. 385 */ 386 #define for_each_pwq(pwq, wq) \ 387 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \ 388 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ 389 else 390 391 #ifdef CONFIG_DEBUG_OBJECTS_WORK 392 393 static struct debug_obj_descr work_debug_descr; 394 395 static void *work_debug_hint(void *addr) 396 { 397 return ((struct work_struct *) addr)->func; 398 } 399 400 /* 401 * fixup_init is called when: 402 * - an active object is initialized 403 */ 404 static int work_fixup_init(void *addr, enum debug_obj_state state) 405 { 406 struct work_struct *work = addr; 407 408 switch (state) { 409 case ODEBUG_STATE_ACTIVE: 410 cancel_work_sync(work); 411 debug_object_init(work, &work_debug_descr); 412 return 1; 413 default: 414 return 0; 415 } 416 } 417 418 /* 419 * fixup_activate is called when: 420 * - an active object is activated 421 * - an unknown object is activated (might be a statically initialized object) 422 */ 423 static int work_fixup_activate(void *addr, enum debug_obj_state state) 424 { 425 struct work_struct *work = addr; 426 427 switch (state) { 428 429 case ODEBUG_STATE_NOTAVAILABLE: 430 /* 431 * This is not really a fixup. The work struct was 432 * statically initialized. We just make sure that it 433 * is tracked in the object tracker. 434 */ 435 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) { 436 debug_object_init(work, &work_debug_descr); 437 debug_object_activate(work, &work_debug_descr); 438 return 0; 439 } 440 WARN_ON_ONCE(1); 441 return 0; 442 443 case ODEBUG_STATE_ACTIVE: 444 WARN_ON(1); 445 446 default: 447 return 0; 448 } 449 } 450 451 /* 452 * fixup_free is called when: 453 * - an active object is freed 454 */ 455 static int work_fixup_free(void *addr, enum debug_obj_state state) 456 { 457 struct work_struct *work = addr; 458 459 switch (state) { 460 case ODEBUG_STATE_ACTIVE: 461 cancel_work_sync(work); 462 debug_object_free(work, &work_debug_descr); 463 return 1; 464 default: 465 return 0; 466 } 467 } 468 469 static struct debug_obj_descr work_debug_descr = { 470 .name = "work_struct", 471 .debug_hint = work_debug_hint, 472 .fixup_init = work_fixup_init, 473 .fixup_activate = work_fixup_activate, 474 .fixup_free = work_fixup_free, 475 }; 476 477 static inline void debug_work_activate(struct work_struct *work) 478 { 479 debug_object_activate(work, &work_debug_descr); 480 } 481 482 static inline void debug_work_deactivate(struct work_struct *work) 483 { 484 debug_object_deactivate(work, &work_debug_descr); 485 } 486 487 void __init_work(struct work_struct *work, int onstack) 488 { 489 if (onstack) 490 debug_object_init_on_stack(work, &work_debug_descr); 491 else 492 debug_object_init(work, &work_debug_descr); 493 } 494 EXPORT_SYMBOL_GPL(__init_work); 495 496 void destroy_work_on_stack(struct work_struct *work) 497 { 498 debug_object_free(work, &work_debug_descr); 499 } 500 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 501 502 #else 503 static inline void debug_work_activate(struct work_struct *work) { } 504 static inline void debug_work_deactivate(struct work_struct *work) { } 505 #endif 506 507 /* allocate ID and assign it to @pool */ 508 static int worker_pool_assign_id(struct worker_pool *pool) 509 { 510 int ret; 511 512 lockdep_assert_held(&wq_pool_mutex); 513 514 ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL); 515 if (ret >= 0) { 516 pool->id = ret; 517 return 0; 518 } 519 return ret; 520 } 521 522 /** 523 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 524 * @wq: the target workqueue 525 * @node: the node ID 526 * 527 * This must be called either with pwq_lock held or sched RCU read locked. 528 * If the pwq needs to be used beyond the locking in effect, the caller is 529 * responsible for guaranteeing that the pwq stays online. 530 */ 531 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 532 int node) 533 { 534 assert_rcu_or_wq_mutex(wq); 535 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 536 } 537 538 static unsigned int work_color_to_flags(int color) 539 { 540 return color << WORK_STRUCT_COLOR_SHIFT; 541 } 542 543 static int get_work_color(struct work_struct *work) 544 { 545 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 546 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 547 } 548 549 static int work_next_color(int color) 550 { 551 return (color + 1) % WORK_NR_COLORS; 552 } 553 554 /* 555 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 556 * contain the pointer to the queued pwq. Once execution starts, the flag 557 * is cleared and the high bits contain OFFQ flags and pool ID. 558 * 559 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 560 * and clear_work_data() can be used to set the pwq, pool or clear 561 * work->data. These functions should only be called while the work is 562 * owned - ie. while the PENDING bit is set. 563 * 564 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 565 * corresponding to a work. Pool is available once the work has been 566 * queued anywhere after initialization until it is sync canceled. pwq is 567 * available only while the work item is queued. 568 * 569 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 570 * canceled. While being canceled, a work item may have its PENDING set 571 * but stay off timer and worklist for arbitrarily long and nobody should 572 * try to steal the PENDING bit. 573 */ 574 static inline void set_work_data(struct work_struct *work, unsigned long data, 575 unsigned long flags) 576 { 577 WARN_ON_ONCE(!work_pending(work)); 578 atomic_long_set(&work->data, data | flags | work_static(work)); 579 } 580 581 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 582 unsigned long extra_flags) 583 { 584 set_work_data(work, (unsigned long)pwq, 585 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 586 } 587 588 static void set_work_pool_and_keep_pending(struct work_struct *work, 589 int pool_id) 590 { 591 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 592 WORK_STRUCT_PENDING); 593 } 594 595 static void set_work_pool_and_clear_pending(struct work_struct *work, 596 int pool_id) 597 { 598 /* 599 * The following wmb is paired with the implied mb in 600 * test_and_set_bit(PENDING) and ensures all updates to @work made 601 * here are visible to and precede any updates by the next PENDING 602 * owner. 603 */ 604 smp_wmb(); 605 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 606 } 607 608 static void clear_work_data(struct work_struct *work) 609 { 610 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 611 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 612 } 613 614 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 615 { 616 unsigned long data = atomic_long_read(&work->data); 617 618 if (data & WORK_STRUCT_PWQ) 619 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 620 else 621 return NULL; 622 } 623 624 /** 625 * get_work_pool - return the worker_pool a given work was associated with 626 * @work: the work item of interest 627 * 628 * Return the worker_pool @work was last associated with. %NULL if none. 629 * 630 * Pools are created and destroyed under wq_pool_mutex, and allows read 631 * access under sched-RCU read lock. As such, this function should be 632 * called under wq_pool_mutex or with preemption disabled. 633 * 634 * All fields of the returned pool are accessible as long as the above 635 * mentioned locking is in effect. If the returned pool needs to be used 636 * beyond the critical section, the caller is responsible for ensuring the 637 * returned pool is and stays online. 638 */ 639 static struct worker_pool *get_work_pool(struct work_struct *work) 640 { 641 unsigned long data = atomic_long_read(&work->data); 642 int pool_id; 643 644 assert_rcu_or_pool_mutex(); 645 646 if (data & WORK_STRUCT_PWQ) 647 return ((struct pool_workqueue *) 648 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 649 650 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 651 if (pool_id == WORK_OFFQ_POOL_NONE) 652 return NULL; 653 654 return idr_find(&worker_pool_idr, pool_id); 655 } 656 657 /** 658 * get_work_pool_id - return the worker pool ID a given work is associated with 659 * @work: the work item of interest 660 * 661 * Return the worker_pool ID @work was last associated with. 662 * %WORK_OFFQ_POOL_NONE if none. 663 */ 664 static int get_work_pool_id(struct work_struct *work) 665 { 666 unsigned long data = atomic_long_read(&work->data); 667 668 if (data & WORK_STRUCT_PWQ) 669 return ((struct pool_workqueue *) 670 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 671 672 return data >> WORK_OFFQ_POOL_SHIFT; 673 } 674 675 static void mark_work_canceling(struct work_struct *work) 676 { 677 unsigned long pool_id = get_work_pool_id(work); 678 679 pool_id <<= WORK_OFFQ_POOL_SHIFT; 680 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 681 } 682 683 static bool work_is_canceling(struct work_struct *work) 684 { 685 unsigned long data = atomic_long_read(&work->data); 686 687 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 688 } 689 690 /* 691 * Policy functions. These define the policies on how the global worker 692 * pools are managed. Unless noted otherwise, these functions assume that 693 * they're being called with pool->lock held. 694 */ 695 696 static bool __need_more_worker(struct worker_pool *pool) 697 { 698 return !atomic_read(&pool->nr_running); 699 } 700 701 /* 702 * Need to wake up a worker? Called from anything but currently 703 * running workers. 704 * 705 * Note that, because unbound workers never contribute to nr_running, this 706 * function will always return %true for unbound pools as long as the 707 * worklist isn't empty. 708 */ 709 static bool need_more_worker(struct worker_pool *pool) 710 { 711 return !list_empty(&pool->worklist) && __need_more_worker(pool); 712 } 713 714 /* Can I start working? Called from busy but !running workers. */ 715 static bool may_start_working(struct worker_pool *pool) 716 { 717 return pool->nr_idle; 718 } 719 720 /* Do I need to keep working? Called from currently running workers. */ 721 static bool keep_working(struct worker_pool *pool) 722 { 723 return !list_empty(&pool->worklist) && 724 atomic_read(&pool->nr_running) <= 1; 725 } 726 727 /* Do we need a new worker? Called from manager. */ 728 static bool need_to_create_worker(struct worker_pool *pool) 729 { 730 return need_more_worker(pool) && !may_start_working(pool); 731 } 732 733 /* Do I need to be the manager? */ 734 static bool need_to_manage_workers(struct worker_pool *pool) 735 { 736 return need_to_create_worker(pool) || 737 (pool->flags & POOL_MANAGE_WORKERS); 738 } 739 740 /* Do we have too many workers and should some go away? */ 741 static bool too_many_workers(struct worker_pool *pool) 742 { 743 bool managing = mutex_is_locked(&pool->manager_arb); 744 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 745 int nr_busy = pool->nr_workers - nr_idle; 746 747 /* 748 * nr_idle and idle_list may disagree if idle rebinding is in 749 * progress. Never return %true if idle_list is empty. 750 */ 751 if (list_empty(&pool->idle_list)) 752 return false; 753 754 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 755 } 756 757 /* 758 * Wake up functions. 759 */ 760 761 /* Return the first worker. Safe with preemption disabled */ 762 static struct worker *first_worker(struct worker_pool *pool) 763 { 764 if (unlikely(list_empty(&pool->idle_list))) 765 return NULL; 766 767 return list_first_entry(&pool->idle_list, struct worker, entry); 768 } 769 770 /** 771 * wake_up_worker - wake up an idle worker 772 * @pool: worker pool to wake worker from 773 * 774 * Wake up the first idle worker of @pool. 775 * 776 * CONTEXT: 777 * spin_lock_irq(pool->lock). 778 */ 779 static void wake_up_worker(struct worker_pool *pool) 780 { 781 struct worker *worker = first_worker(pool); 782 783 if (likely(worker)) 784 wake_up_process(worker->task); 785 } 786 787 /** 788 * wq_worker_waking_up - a worker is waking up 789 * @task: task waking up 790 * @cpu: CPU @task is waking up to 791 * 792 * This function is called during try_to_wake_up() when a worker is 793 * being awoken. 794 * 795 * CONTEXT: 796 * spin_lock_irq(rq->lock) 797 */ 798 void wq_worker_waking_up(struct task_struct *task, int cpu) 799 { 800 struct worker *worker = kthread_data(task); 801 802 if (!(worker->flags & WORKER_NOT_RUNNING)) { 803 WARN_ON_ONCE(worker->pool->cpu != cpu); 804 atomic_inc(&worker->pool->nr_running); 805 } 806 } 807 808 /** 809 * wq_worker_sleeping - a worker is going to sleep 810 * @task: task going to sleep 811 * @cpu: CPU in question, must be the current CPU number 812 * 813 * This function is called during schedule() when a busy worker is 814 * going to sleep. Worker on the same cpu can be woken up by 815 * returning pointer to its task. 816 * 817 * CONTEXT: 818 * spin_lock_irq(rq->lock) 819 * 820 * RETURNS: 821 * Worker task on @cpu to wake up, %NULL if none. 822 */ 823 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu) 824 { 825 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 826 struct worker_pool *pool; 827 828 /* 829 * Rescuers, which may not have all the fields set up like normal 830 * workers, also reach here, let's not access anything before 831 * checking NOT_RUNNING. 832 */ 833 if (worker->flags & WORKER_NOT_RUNNING) 834 return NULL; 835 836 pool = worker->pool; 837 838 /* this can only happen on the local cpu */ 839 if (WARN_ON_ONCE(cpu != raw_smp_processor_id())) 840 return NULL; 841 842 /* 843 * The counterpart of the following dec_and_test, implied mb, 844 * worklist not empty test sequence is in insert_work(). 845 * Please read comment there. 846 * 847 * NOT_RUNNING is clear. This means that we're bound to and 848 * running on the local cpu w/ rq lock held and preemption 849 * disabled, which in turn means that none else could be 850 * manipulating idle_list, so dereferencing idle_list without pool 851 * lock is safe. 852 */ 853 if (atomic_dec_and_test(&pool->nr_running) && 854 !list_empty(&pool->worklist)) 855 to_wakeup = first_worker(pool); 856 return to_wakeup ? to_wakeup->task : NULL; 857 } 858 859 /** 860 * worker_set_flags - set worker flags and adjust nr_running accordingly 861 * @worker: self 862 * @flags: flags to set 863 * @wakeup: wakeup an idle worker if necessary 864 * 865 * Set @flags in @worker->flags and adjust nr_running accordingly. If 866 * nr_running becomes zero and @wakeup is %true, an idle worker is 867 * woken up. 868 * 869 * CONTEXT: 870 * spin_lock_irq(pool->lock) 871 */ 872 static inline void worker_set_flags(struct worker *worker, unsigned int flags, 873 bool wakeup) 874 { 875 struct worker_pool *pool = worker->pool; 876 877 WARN_ON_ONCE(worker->task != current); 878 879 /* 880 * If transitioning into NOT_RUNNING, adjust nr_running and 881 * wake up an idle worker as necessary if requested by 882 * @wakeup. 883 */ 884 if ((flags & WORKER_NOT_RUNNING) && 885 !(worker->flags & WORKER_NOT_RUNNING)) { 886 if (wakeup) { 887 if (atomic_dec_and_test(&pool->nr_running) && 888 !list_empty(&pool->worklist)) 889 wake_up_worker(pool); 890 } else 891 atomic_dec(&pool->nr_running); 892 } 893 894 worker->flags |= flags; 895 } 896 897 /** 898 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 899 * @worker: self 900 * @flags: flags to clear 901 * 902 * Clear @flags in @worker->flags and adjust nr_running accordingly. 903 * 904 * CONTEXT: 905 * spin_lock_irq(pool->lock) 906 */ 907 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 908 { 909 struct worker_pool *pool = worker->pool; 910 unsigned int oflags = worker->flags; 911 912 WARN_ON_ONCE(worker->task != current); 913 914 worker->flags &= ~flags; 915 916 /* 917 * If transitioning out of NOT_RUNNING, increment nr_running. Note 918 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 919 * of multiple flags, not a single flag. 920 */ 921 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 922 if (!(worker->flags & WORKER_NOT_RUNNING)) 923 atomic_inc(&pool->nr_running); 924 } 925 926 /** 927 * find_worker_executing_work - find worker which is executing a work 928 * @pool: pool of interest 929 * @work: work to find worker for 930 * 931 * Find a worker which is executing @work on @pool by searching 932 * @pool->busy_hash which is keyed by the address of @work. For a worker 933 * to match, its current execution should match the address of @work and 934 * its work function. This is to avoid unwanted dependency between 935 * unrelated work executions through a work item being recycled while still 936 * being executed. 937 * 938 * This is a bit tricky. A work item may be freed once its execution 939 * starts and nothing prevents the freed area from being recycled for 940 * another work item. If the same work item address ends up being reused 941 * before the original execution finishes, workqueue will identify the 942 * recycled work item as currently executing and make it wait until the 943 * current execution finishes, introducing an unwanted dependency. 944 * 945 * This function checks the work item address and work function to avoid 946 * false positives. Note that this isn't complete as one may construct a 947 * work function which can introduce dependency onto itself through a 948 * recycled work item. Well, if somebody wants to shoot oneself in the 949 * foot that badly, there's only so much we can do, and if such deadlock 950 * actually occurs, it should be easy to locate the culprit work function. 951 * 952 * CONTEXT: 953 * spin_lock_irq(pool->lock). 954 * 955 * RETURNS: 956 * Pointer to worker which is executing @work if found, NULL 957 * otherwise. 958 */ 959 static struct worker *find_worker_executing_work(struct worker_pool *pool, 960 struct work_struct *work) 961 { 962 struct worker *worker; 963 964 hash_for_each_possible(pool->busy_hash, worker, hentry, 965 (unsigned long)work) 966 if (worker->current_work == work && 967 worker->current_func == work->func) 968 return worker; 969 970 return NULL; 971 } 972 973 /** 974 * move_linked_works - move linked works to a list 975 * @work: start of series of works to be scheduled 976 * @head: target list to append @work to 977 * @nextp: out paramter for nested worklist walking 978 * 979 * Schedule linked works starting from @work to @head. Work series to 980 * be scheduled starts at @work and includes any consecutive work with 981 * WORK_STRUCT_LINKED set in its predecessor. 982 * 983 * If @nextp is not NULL, it's updated to point to the next work of 984 * the last scheduled work. This allows move_linked_works() to be 985 * nested inside outer list_for_each_entry_safe(). 986 * 987 * CONTEXT: 988 * spin_lock_irq(pool->lock). 989 */ 990 static void move_linked_works(struct work_struct *work, struct list_head *head, 991 struct work_struct **nextp) 992 { 993 struct work_struct *n; 994 995 /* 996 * Linked worklist will always end before the end of the list, 997 * use NULL for list head. 998 */ 999 list_for_each_entry_safe_from(work, n, NULL, entry) { 1000 list_move_tail(&work->entry, head); 1001 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1002 break; 1003 } 1004 1005 /* 1006 * If we're already inside safe list traversal and have moved 1007 * multiple works to the scheduled queue, the next position 1008 * needs to be updated. 1009 */ 1010 if (nextp) 1011 *nextp = n; 1012 } 1013 1014 /** 1015 * get_pwq - get an extra reference on the specified pool_workqueue 1016 * @pwq: pool_workqueue to get 1017 * 1018 * Obtain an extra reference on @pwq. The caller should guarantee that 1019 * @pwq has positive refcnt and be holding the matching pool->lock. 1020 */ 1021 static void get_pwq(struct pool_workqueue *pwq) 1022 { 1023 lockdep_assert_held(&pwq->pool->lock); 1024 WARN_ON_ONCE(pwq->refcnt <= 0); 1025 pwq->refcnt++; 1026 } 1027 1028 /** 1029 * put_pwq - put a pool_workqueue reference 1030 * @pwq: pool_workqueue to put 1031 * 1032 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1033 * destruction. The caller should be holding the matching pool->lock. 1034 */ 1035 static void put_pwq(struct pool_workqueue *pwq) 1036 { 1037 lockdep_assert_held(&pwq->pool->lock); 1038 if (likely(--pwq->refcnt)) 1039 return; 1040 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1041 return; 1042 /* 1043 * @pwq can't be released under pool->lock, bounce to 1044 * pwq_unbound_release_workfn(). This never recurses on the same 1045 * pool->lock as this path is taken only for unbound workqueues and 1046 * the release work item is scheduled on a per-cpu workqueue. To 1047 * avoid lockdep warning, unbound pool->locks are given lockdep 1048 * subclass of 1 in get_unbound_pool(). 1049 */ 1050 schedule_work(&pwq->unbound_release_work); 1051 } 1052 1053 /** 1054 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1055 * @pwq: pool_workqueue to put (can be %NULL) 1056 * 1057 * put_pwq() with locking. This function also allows %NULL @pwq. 1058 */ 1059 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1060 { 1061 if (pwq) { 1062 /* 1063 * As both pwqs and pools are sched-RCU protected, the 1064 * following lock operations are safe. 1065 */ 1066 spin_lock_irq(&pwq->pool->lock); 1067 put_pwq(pwq); 1068 spin_unlock_irq(&pwq->pool->lock); 1069 } 1070 } 1071 1072 static void pwq_activate_delayed_work(struct work_struct *work) 1073 { 1074 struct pool_workqueue *pwq = get_work_pwq(work); 1075 1076 trace_workqueue_activate_work(work); 1077 move_linked_works(work, &pwq->pool->worklist, NULL); 1078 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1079 pwq->nr_active++; 1080 } 1081 1082 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1083 { 1084 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1085 struct work_struct, entry); 1086 1087 pwq_activate_delayed_work(work); 1088 } 1089 1090 /** 1091 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1092 * @pwq: pwq of interest 1093 * @color: color of work which left the queue 1094 * 1095 * A work either has completed or is removed from pending queue, 1096 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1097 * 1098 * CONTEXT: 1099 * spin_lock_irq(pool->lock). 1100 */ 1101 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1102 { 1103 /* uncolored work items don't participate in flushing or nr_active */ 1104 if (color == WORK_NO_COLOR) 1105 goto out_put; 1106 1107 pwq->nr_in_flight[color]--; 1108 1109 pwq->nr_active--; 1110 if (!list_empty(&pwq->delayed_works)) { 1111 /* one down, submit a delayed one */ 1112 if (pwq->nr_active < pwq->max_active) 1113 pwq_activate_first_delayed(pwq); 1114 } 1115 1116 /* is flush in progress and are we at the flushing tip? */ 1117 if (likely(pwq->flush_color != color)) 1118 goto out_put; 1119 1120 /* are there still in-flight works? */ 1121 if (pwq->nr_in_flight[color]) 1122 goto out_put; 1123 1124 /* this pwq is done, clear flush_color */ 1125 pwq->flush_color = -1; 1126 1127 /* 1128 * If this was the last pwq, wake up the first flusher. It 1129 * will handle the rest. 1130 */ 1131 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1132 complete(&pwq->wq->first_flusher->done); 1133 out_put: 1134 put_pwq(pwq); 1135 } 1136 1137 /** 1138 * try_to_grab_pending - steal work item from worklist and disable irq 1139 * @work: work item to steal 1140 * @is_dwork: @work is a delayed_work 1141 * @flags: place to store irq state 1142 * 1143 * Try to grab PENDING bit of @work. This function can handle @work in any 1144 * stable state - idle, on timer or on worklist. Return values are 1145 * 1146 * 1 if @work was pending and we successfully stole PENDING 1147 * 0 if @work was idle and we claimed PENDING 1148 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1149 * -ENOENT if someone else is canceling @work, this state may persist 1150 * for arbitrarily long 1151 * 1152 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1153 * interrupted while holding PENDING and @work off queue, irq must be 1154 * disabled on entry. This, combined with delayed_work->timer being 1155 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1156 * 1157 * On successful return, >= 0, irq is disabled and the caller is 1158 * responsible for releasing it using local_irq_restore(*@flags). 1159 * 1160 * This function is safe to call from any context including IRQ handler. 1161 */ 1162 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1163 unsigned long *flags) 1164 { 1165 struct worker_pool *pool; 1166 struct pool_workqueue *pwq; 1167 1168 local_irq_save(*flags); 1169 1170 /* try to steal the timer if it exists */ 1171 if (is_dwork) { 1172 struct delayed_work *dwork = to_delayed_work(work); 1173 1174 /* 1175 * dwork->timer is irqsafe. If del_timer() fails, it's 1176 * guaranteed that the timer is not queued anywhere and not 1177 * running on the local CPU. 1178 */ 1179 if (likely(del_timer(&dwork->timer))) 1180 return 1; 1181 } 1182 1183 /* try to claim PENDING the normal way */ 1184 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1185 return 0; 1186 1187 /* 1188 * The queueing is in progress, or it is already queued. Try to 1189 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1190 */ 1191 pool = get_work_pool(work); 1192 if (!pool) 1193 goto fail; 1194 1195 spin_lock(&pool->lock); 1196 /* 1197 * work->data is guaranteed to point to pwq only while the work 1198 * item is queued on pwq->wq, and both updating work->data to point 1199 * to pwq on queueing and to pool on dequeueing are done under 1200 * pwq->pool->lock. This in turn guarantees that, if work->data 1201 * points to pwq which is associated with a locked pool, the work 1202 * item is currently queued on that pool. 1203 */ 1204 pwq = get_work_pwq(work); 1205 if (pwq && pwq->pool == pool) { 1206 debug_work_deactivate(work); 1207 1208 /* 1209 * A delayed work item cannot be grabbed directly because 1210 * it might have linked NO_COLOR work items which, if left 1211 * on the delayed_list, will confuse pwq->nr_active 1212 * management later on and cause stall. Make sure the work 1213 * item is activated before grabbing. 1214 */ 1215 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1216 pwq_activate_delayed_work(work); 1217 1218 list_del_init(&work->entry); 1219 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work)); 1220 1221 /* work->data points to pwq iff queued, point to pool */ 1222 set_work_pool_and_keep_pending(work, pool->id); 1223 1224 spin_unlock(&pool->lock); 1225 return 1; 1226 } 1227 spin_unlock(&pool->lock); 1228 fail: 1229 local_irq_restore(*flags); 1230 if (work_is_canceling(work)) 1231 return -ENOENT; 1232 cpu_relax(); 1233 return -EAGAIN; 1234 } 1235 1236 /** 1237 * insert_work - insert a work into a pool 1238 * @pwq: pwq @work belongs to 1239 * @work: work to insert 1240 * @head: insertion point 1241 * @extra_flags: extra WORK_STRUCT_* flags to set 1242 * 1243 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1244 * work_struct flags. 1245 * 1246 * CONTEXT: 1247 * spin_lock_irq(pool->lock). 1248 */ 1249 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1250 struct list_head *head, unsigned int extra_flags) 1251 { 1252 struct worker_pool *pool = pwq->pool; 1253 1254 /* we own @work, set data and link */ 1255 set_work_pwq(work, pwq, extra_flags); 1256 list_add_tail(&work->entry, head); 1257 get_pwq(pwq); 1258 1259 /* 1260 * Ensure either wq_worker_sleeping() sees the above 1261 * list_add_tail() or we see zero nr_running to avoid workers lying 1262 * around lazily while there are works to be processed. 1263 */ 1264 smp_mb(); 1265 1266 if (__need_more_worker(pool)) 1267 wake_up_worker(pool); 1268 } 1269 1270 /* 1271 * Test whether @work is being queued from another work executing on the 1272 * same workqueue. 1273 */ 1274 static bool is_chained_work(struct workqueue_struct *wq) 1275 { 1276 struct worker *worker; 1277 1278 worker = current_wq_worker(); 1279 /* 1280 * Return %true iff I'm a worker execuing a work item on @wq. If 1281 * I'm @worker, it's safe to dereference it without locking. 1282 */ 1283 return worker && worker->current_pwq->wq == wq; 1284 } 1285 1286 static void __queue_work(int cpu, struct workqueue_struct *wq, 1287 struct work_struct *work) 1288 { 1289 struct pool_workqueue *pwq; 1290 struct worker_pool *last_pool; 1291 struct list_head *worklist; 1292 unsigned int work_flags; 1293 unsigned int req_cpu = cpu; 1294 1295 /* 1296 * While a work item is PENDING && off queue, a task trying to 1297 * steal the PENDING will busy-loop waiting for it to either get 1298 * queued or lose PENDING. Grabbing PENDING and queueing should 1299 * happen with IRQ disabled. 1300 */ 1301 WARN_ON_ONCE(!irqs_disabled()); 1302 1303 debug_work_activate(work); 1304 1305 /* if dying, only works from the same workqueue are allowed */ 1306 if (unlikely(wq->flags & __WQ_DRAINING) && 1307 WARN_ON_ONCE(!is_chained_work(wq))) 1308 return; 1309 retry: 1310 if (req_cpu == WORK_CPU_UNBOUND) 1311 cpu = raw_smp_processor_id(); 1312 1313 /* pwq which will be used unless @work is executing elsewhere */ 1314 if (!(wq->flags & WQ_UNBOUND)) 1315 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1316 else 1317 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1318 1319 /* 1320 * If @work was previously on a different pool, it might still be 1321 * running there, in which case the work needs to be queued on that 1322 * pool to guarantee non-reentrancy. 1323 */ 1324 last_pool = get_work_pool(work); 1325 if (last_pool && last_pool != pwq->pool) { 1326 struct worker *worker; 1327 1328 spin_lock(&last_pool->lock); 1329 1330 worker = find_worker_executing_work(last_pool, work); 1331 1332 if (worker && worker->current_pwq->wq == wq) { 1333 pwq = worker->current_pwq; 1334 } else { 1335 /* meh... not running there, queue here */ 1336 spin_unlock(&last_pool->lock); 1337 spin_lock(&pwq->pool->lock); 1338 } 1339 } else { 1340 spin_lock(&pwq->pool->lock); 1341 } 1342 1343 /* 1344 * pwq is determined and locked. For unbound pools, we could have 1345 * raced with pwq release and it could already be dead. If its 1346 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1347 * without another pwq replacing it in the numa_pwq_tbl or while 1348 * work items are executing on it, so the retrying is guaranteed to 1349 * make forward-progress. 1350 */ 1351 if (unlikely(!pwq->refcnt)) { 1352 if (wq->flags & WQ_UNBOUND) { 1353 spin_unlock(&pwq->pool->lock); 1354 cpu_relax(); 1355 goto retry; 1356 } 1357 /* oops */ 1358 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1359 wq->name, cpu); 1360 } 1361 1362 /* pwq determined, queue */ 1363 trace_workqueue_queue_work(req_cpu, pwq, work); 1364 1365 if (WARN_ON(!list_empty(&work->entry))) { 1366 spin_unlock(&pwq->pool->lock); 1367 return; 1368 } 1369 1370 pwq->nr_in_flight[pwq->work_color]++; 1371 work_flags = work_color_to_flags(pwq->work_color); 1372 1373 if (likely(pwq->nr_active < pwq->max_active)) { 1374 trace_workqueue_activate_work(work); 1375 pwq->nr_active++; 1376 worklist = &pwq->pool->worklist; 1377 } else { 1378 work_flags |= WORK_STRUCT_DELAYED; 1379 worklist = &pwq->delayed_works; 1380 } 1381 1382 insert_work(pwq, work, worklist, work_flags); 1383 1384 spin_unlock(&pwq->pool->lock); 1385 } 1386 1387 /** 1388 * queue_work_on - queue work on specific cpu 1389 * @cpu: CPU number to execute work on 1390 * @wq: workqueue to use 1391 * @work: work to queue 1392 * 1393 * Returns %false if @work was already on a queue, %true otherwise. 1394 * 1395 * We queue the work to a specific CPU, the caller must ensure it 1396 * can't go away. 1397 */ 1398 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1399 struct work_struct *work) 1400 { 1401 bool ret = false; 1402 unsigned long flags; 1403 1404 local_irq_save(flags); 1405 1406 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1407 __queue_work(cpu, wq, work); 1408 ret = true; 1409 } 1410 1411 local_irq_restore(flags); 1412 return ret; 1413 } 1414 EXPORT_SYMBOL(queue_work_on); 1415 1416 void delayed_work_timer_fn(unsigned long __data) 1417 { 1418 struct delayed_work *dwork = (struct delayed_work *)__data; 1419 1420 /* should have been called from irqsafe timer with irq already off */ 1421 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1422 } 1423 EXPORT_SYMBOL(delayed_work_timer_fn); 1424 1425 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1426 struct delayed_work *dwork, unsigned long delay) 1427 { 1428 struct timer_list *timer = &dwork->timer; 1429 struct work_struct *work = &dwork->work; 1430 1431 WARN_ON_ONCE(timer->function != delayed_work_timer_fn || 1432 timer->data != (unsigned long)dwork); 1433 WARN_ON_ONCE(timer_pending(timer)); 1434 WARN_ON_ONCE(!list_empty(&work->entry)); 1435 1436 /* 1437 * If @delay is 0, queue @dwork->work immediately. This is for 1438 * both optimization and correctness. The earliest @timer can 1439 * expire is on the closest next tick and delayed_work users depend 1440 * on that there's no such delay when @delay is 0. 1441 */ 1442 if (!delay) { 1443 __queue_work(cpu, wq, &dwork->work); 1444 return; 1445 } 1446 1447 timer_stats_timer_set_start_info(&dwork->timer); 1448 1449 dwork->wq = wq; 1450 dwork->cpu = cpu; 1451 timer->expires = jiffies + delay; 1452 1453 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1454 add_timer_on(timer, cpu); 1455 else 1456 add_timer(timer); 1457 } 1458 1459 /** 1460 * queue_delayed_work_on - queue work on specific CPU after delay 1461 * @cpu: CPU number to execute work on 1462 * @wq: workqueue to use 1463 * @dwork: work to queue 1464 * @delay: number of jiffies to wait before queueing 1465 * 1466 * Returns %false if @work was already on a queue, %true otherwise. If 1467 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1468 * execution. 1469 */ 1470 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1471 struct delayed_work *dwork, unsigned long delay) 1472 { 1473 struct work_struct *work = &dwork->work; 1474 bool ret = false; 1475 unsigned long flags; 1476 1477 /* read the comment in __queue_work() */ 1478 local_irq_save(flags); 1479 1480 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1481 __queue_delayed_work(cpu, wq, dwork, delay); 1482 ret = true; 1483 } 1484 1485 local_irq_restore(flags); 1486 return ret; 1487 } 1488 EXPORT_SYMBOL(queue_delayed_work_on); 1489 1490 /** 1491 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1492 * @cpu: CPU number to execute work on 1493 * @wq: workqueue to use 1494 * @dwork: work to queue 1495 * @delay: number of jiffies to wait before queueing 1496 * 1497 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1498 * modify @dwork's timer so that it expires after @delay. If @delay is 1499 * zero, @work is guaranteed to be scheduled immediately regardless of its 1500 * current state. 1501 * 1502 * Returns %false if @dwork was idle and queued, %true if @dwork was 1503 * pending and its timer was modified. 1504 * 1505 * This function is safe to call from any context including IRQ handler. 1506 * See try_to_grab_pending() for details. 1507 */ 1508 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1509 struct delayed_work *dwork, unsigned long delay) 1510 { 1511 unsigned long flags; 1512 int ret; 1513 1514 do { 1515 ret = try_to_grab_pending(&dwork->work, true, &flags); 1516 } while (unlikely(ret == -EAGAIN)); 1517 1518 if (likely(ret >= 0)) { 1519 __queue_delayed_work(cpu, wq, dwork, delay); 1520 local_irq_restore(flags); 1521 } 1522 1523 /* -ENOENT from try_to_grab_pending() becomes %true */ 1524 return ret; 1525 } 1526 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1527 1528 /** 1529 * worker_enter_idle - enter idle state 1530 * @worker: worker which is entering idle state 1531 * 1532 * @worker is entering idle state. Update stats and idle timer if 1533 * necessary. 1534 * 1535 * LOCKING: 1536 * spin_lock_irq(pool->lock). 1537 */ 1538 static void worker_enter_idle(struct worker *worker) 1539 { 1540 struct worker_pool *pool = worker->pool; 1541 1542 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1543 WARN_ON_ONCE(!list_empty(&worker->entry) && 1544 (worker->hentry.next || worker->hentry.pprev))) 1545 return; 1546 1547 /* can't use worker_set_flags(), also called from start_worker() */ 1548 worker->flags |= WORKER_IDLE; 1549 pool->nr_idle++; 1550 worker->last_active = jiffies; 1551 1552 /* idle_list is LIFO */ 1553 list_add(&worker->entry, &pool->idle_list); 1554 1555 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1556 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1557 1558 /* 1559 * Sanity check nr_running. Because wq_unbind_fn() releases 1560 * pool->lock between setting %WORKER_UNBOUND and zapping 1561 * nr_running, the warning may trigger spuriously. Check iff 1562 * unbind is not in progress. 1563 */ 1564 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1565 pool->nr_workers == pool->nr_idle && 1566 atomic_read(&pool->nr_running)); 1567 } 1568 1569 /** 1570 * worker_leave_idle - leave idle state 1571 * @worker: worker which is leaving idle state 1572 * 1573 * @worker is leaving idle state. Update stats. 1574 * 1575 * LOCKING: 1576 * spin_lock_irq(pool->lock). 1577 */ 1578 static void worker_leave_idle(struct worker *worker) 1579 { 1580 struct worker_pool *pool = worker->pool; 1581 1582 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1583 return; 1584 worker_clr_flags(worker, WORKER_IDLE); 1585 pool->nr_idle--; 1586 list_del_init(&worker->entry); 1587 } 1588 1589 /** 1590 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it 1591 * @pool: target worker_pool 1592 * 1593 * Bind %current to the cpu of @pool if it is associated and lock @pool. 1594 * 1595 * Works which are scheduled while the cpu is online must at least be 1596 * scheduled to a worker which is bound to the cpu so that if they are 1597 * flushed from cpu callbacks while cpu is going down, they are 1598 * guaranteed to execute on the cpu. 1599 * 1600 * This function is to be used by unbound workers and rescuers to bind 1601 * themselves to the target cpu and may race with cpu going down or 1602 * coming online. kthread_bind() can't be used because it may put the 1603 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used 1604 * verbatim as it's best effort and blocking and pool may be 1605 * [dis]associated in the meantime. 1606 * 1607 * This function tries set_cpus_allowed() and locks pool and verifies the 1608 * binding against %POOL_DISASSOCIATED which is set during 1609 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker 1610 * enters idle state or fetches works without dropping lock, it can 1611 * guarantee the scheduling requirement described in the first paragraph. 1612 * 1613 * CONTEXT: 1614 * Might sleep. Called without any lock but returns with pool->lock 1615 * held. 1616 * 1617 * RETURNS: 1618 * %true if the associated pool is online (@worker is successfully 1619 * bound), %false if offline. 1620 */ 1621 static bool worker_maybe_bind_and_lock(struct worker_pool *pool) 1622 __acquires(&pool->lock) 1623 { 1624 while (true) { 1625 /* 1626 * The following call may fail, succeed or succeed 1627 * without actually migrating the task to the cpu if 1628 * it races with cpu hotunplug operation. Verify 1629 * against POOL_DISASSOCIATED. 1630 */ 1631 if (!(pool->flags & POOL_DISASSOCIATED)) 1632 set_cpus_allowed_ptr(current, pool->attrs->cpumask); 1633 1634 spin_lock_irq(&pool->lock); 1635 if (pool->flags & POOL_DISASSOCIATED) 1636 return false; 1637 if (task_cpu(current) == pool->cpu && 1638 cpumask_equal(¤t->cpus_allowed, pool->attrs->cpumask)) 1639 return true; 1640 spin_unlock_irq(&pool->lock); 1641 1642 /* 1643 * We've raced with CPU hot[un]plug. Give it a breather 1644 * and retry migration. cond_resched() is required here; 1645 * otherwise, we might deadlock against cpu_stop trying to 1646 * bring down the CPU on non-preemptive kernel. 1647 */ 1648 cpu_relax(); 1649 cond_resched(); 1650 } 1651 } 1652 1653 static struct worker *alloc_worker(void) 1654 { 1655 struct worker *worker; 1656 1657 worker = kzalloc(sizeof(*worker), GFP_KERNEL); 1658 if (worker) { 1659 INIT_LIST_HEAD(&worker->entry); 1660 INIT_LIST_HEAD(&worker->scheduled); 1661 /* on creation a worker is in !idle && prep state */ 1662 worker->flags = WORKER_PREP; 1663 } 1664 return worker; 1665 } 1666 1667 /** 1668 * create_worker - create a new workqueue worker 1669 * @pool: pool the new worker will belong to 1670 * 1671 * Create a new worker which is bound to @pool. The returned worker 1672 * can be started by calling start_worker() or destroyed using 1673 * destroy_worker(). 1674 * 1675 * CONTEXT: 1676 * Might sleep. Does GFP_KERNEL allocations. 1677 * 1678 * RETURNS: 1679 * Pointer to the newly created worker. 1680 */ 1681 static struct worker *create_worker(struct worker_pool *pool) 1682 { 1683 struct worker *worker = NULL; 1684 int id = -1; 1685 char id_buf[16]; 1686 1687 lockdep_assert_held(&pool->manager_mutex); 1688 1689 /* 1690 * ID is needed to determine kthread name. Allocate ID first 1691 * without installing the pointer. 1692 */ 1693 idr_preload(GFP_KERNEL); 1694 spin_lock_irq(&pool->lock); 1695 1696 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT); 1697 1698 spin_unlock_irq(&pool->lock); 1699 idr_preload_end(); 1700 if (id < 0) 1701 goto fail; 1702 1703 worker = alloc_worker(); 1704 if (!worker) 1705 goto fail; 1706 1707 worker->pool = pool; 1708 worker->id = id; 1709 1710 if (pool->cpu >= 0) 1711 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1712 pool->attrs->nice < 0 ? "H" : ""); 1713 else 1714 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1715 1716 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1717 "kworker/%s", id_buf); 1718 if (IS_ERR(worker->task)) 1719 goto fail; 1720 1721 /* 1722 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1723 * online CPUs. It'll be re-applied when any of the CPUs come up. 1724 */ 1725 set_user_nice(worker->task, pool->attrs->nice); 1726 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1727 1728 /* prevent userland from meddling with cpumask of workqueue workers */ 1729 worker->task->flags |= PF_NO_SETAFFINITY; 1730 1731 /* 1732 * The caller is responsible for ensuring %POOL_DISASSOCIATED 1733 * remains stable across this function. See the comments above the 1734 * flag definition for details. 1735 */ 1736 if (pool->flags & POOL_DISASSOCIATED) 1737 worker->flags |= WORKER_UNBOUND; 1738 1739 /* successful, commit the pointer to idr */ 1740 spin_lock_irq(&pool->lock); 1741 idr_replace(&pool->worker_idr, worker, worker->id); 1742 spin_unlock_irq(&pool->lock); 1743 1744 return worker; 1745 1746 fail: 1747 if (id >= 0) { 1748 spin_lock_irq(&pool->lock); 1749 idr_remove(&pool->worker_idr, id); 1750 spin_unlock_irq(&pool->lock); 1751 } 1752 kfree(worker); 1753 return NULL; 1754 } 1755 1756 /** 1757 * start_worker - start a newly created worker 1758 * @worker: worker to start 1759 * 1760 * Make the pool aware of @worker and start it. 1761 * 1762 * CONTEXT: 1763 * spin_lock_irq(pool->lock). 1764 */ 1765 static void start_worker(struct worker *worker) 1766 { 1767 worker->flags |= WORKER_STARTED; 1768 worker->pool->nr_workers++; 1769 worker_enter_idle(worker); 1770 wake_up_process(worker->task); 1771 } 1772 1773 /** 1774 * create_and_start_worker - create and start a worker for a pool 1775 * @pool: the target pool 1776 * 1777 * Grab the managership of @pool and create and start a new worker for it. 1778 */ 1779 static int create_and_start_worker(struct worker_pool *pool) 1780 { 1781 struct worker *worker; 1782 1783 mutex_lock(&pool->manager_mutex); 1784 1785 worker = create_worker(pool); 1786 if (worker) { 1787 spin_lock_irq(&pool->lock); 1788 start_worker(worker); 1789 spin_unlock_irq(&pool->lock); 1790 } 1791 1792 mutex_unlock(&pool->manager_mutex); 1793 1794 return worker ? 0 : -ENOMEM; 1795 } 1796 1797 /** 1798 * destroy_worker - destroy a workqueue worker 1799 * @worker: worker to be destroyed 1800 * 1801 * Destroy @worker and adjust @pool stats accordingly. 1802 * 1803 * CONTEXT: 1804 * spin_lock_irq(pool->lock) which is released and regrabbed. 1805 */ 1806 static void destroy_worker(struct worker *worker) 1807 { 1808 struct worker_pool *pool = worker->pool; 1809 1810 lockdep_assert_held(&pool->manager_mutex); 1811 lockdep_assert_held(&pool->lock); 1812 1813 /* sanity check frenzy */ 1814 if (WARN_ON(worker->current_work) || 1815 WARN_ON(!list_empty(&worker->scheduled))) 1816 return; 1817 1818 if (worker->flags & WORKER_STARTED) 1819 pool->nr_workers--; 1820 if (worker->flags & WORKER_IDLE) 1821 pool->nr_idle--; 1822 1823 list_del_init(&worker->entry); 1824 worker->flags |= WORKER_DIE; 1825 1826 idr_remove(&pool->worker_idr, worker->id); 1827 1828 spin_unlock_irq(&pool->lock); 1829 1830 kthread_stop(worker->task); 1831 kfree(worker); 1832 1833 spin_lock_irq(&pool->lock); 1834 } 1835 1836 static void idle_worker_timeout(unsigned long __pool) 1837 { 1838 struct worker_pool *pool = (void *)__pool; 1839 1840 spin_lock_irq(&pool->lock); 1841 1842 if (too_many_workers(pool)) { 1843 struct worker *worker; 1844 unsigned long expires; 1845 1846 /* idle_list is kept in LIFO order, check the last one */ 1847 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1848 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1849 1850 if (time_before(jiffies, expires)) 1851 mod_timer(&pool->idle_timer, expires); 1852 else { 1853 /* it's been idle for too long, wake up manager */ 1854 pool->flags |= POOL_MANAGE_WORKERS; 1855 wake_up_worker(pool); 1856 } 1857 } 1858 1859 spin_unlock_irq(&pool->lock); 1860 } 1861 1862 static void send_mayday(struct work_struct *work) 1863 { 1864 struct pool_workqueue *pwq = get_work_pwq(work); 1865 struct workqueue_struct *wq = pwq->wq; 1866 1867 lockdep_assert_held(&wq_mayday_lock); 1868 1869 if (!wq->rescuer) 1870 return; 1871 1872 /* mayday mayday mayday */ 1873 if (list_empty(&pwq->mayday_node)) { 1874 list_add_tail(&pwq->mayday_node, &wq->maydays); 1875 wake_up_process(wq->rescuer->task); 1876 } 1877 } 1878 1879 static void pool_mayday_timeout(unsigned long __pool) 1880 { 1881 struct worker_pool *pool = (void *)__pool; 1882 struct work_struct *work; 1883 1884 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */ 1885 spin_lock(&pool->lock); 1886 1887 if (need_to_create_worker(pool)) { 1888 /* 1889 * We've been trying to create a new worker but 1890 * haven't been successful. We might be hitting an 1891 * allocation deadlock. Send distress signals to 1892 * rescuers. 1893 */ 1894 list_for_each_entry(work, &pool->worklist, entry) 1895 send_mayday(work); 1896 } 1897 1898 spin_unlock(&pool->lock); 1899 spin_unlock_irq(&wq_mayday_lock); 1900 1901 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 1902 } 1903 1904 /** 1905 * maybe_create_worker - create a new worker if necessary 1906 * @pool: pool to create a new worker for 1907 * 1908 * Create a new worker for @pool if necessary. @pool is guaranteed to 1909 * have at least one idle worker on return from this function. If 1910 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1911 * sent to all rescuers with works scheduled on @pool to resolve 1912 * possible allocation deadlock. 1913 * 1914 * On return, need_to_create_worker() is guaranteed to be %false and 1915 * may_start_working() %true. 1916 * 1917 * LOCKING: 1918 * spin_lock_irq(pool->lock) which may be released and regrabbed 1919 * multiple times. Does GFP_KERNEL allocations. Called only from 1920 * manager. 1921 * 1922 * RETURNS: 1923 * %false if no action was taken and pool->lock stayed locked, %true 1924 * otherwise. 1925 */ 1926 static bool maybe_create_worker(struct worker_pool *pool) 1927 __releases(&pool->lock) 1928 __acquires(&pool->lock) 1929 { 1930 if (!need_to_create_worker(pool)) 1931 return false; 1932 restart: 1933 spin_unlock_irq(&pool->lock); 1934 1935 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1936 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1937 1938 while (true) { 1939 struct worker *worker; 1940 1941 worker = create_worker(pool); 1942 if (worker) { 1943 del_timer_sync(&pool->mayday_timer); 1944 spin_lock_irq(&pool->lock); 1945 start_worker(worker); 1946 if (WARN_ON_ONCE(need_to_create_worker(pool))) 1947 goto restart; 1948 return true; 1949 } 1950 1951 if (!need_to_create_worker(pool)) 1952 break; 1953 1954 __set_current_state(TASK_INTERRUPTIBLE); 1955 schedule_timeout(CREATE_COOLDOWN); 1956 1957 if (!need_to_create_worker(pool)) 1958 break; 1959 } 1960 1961 del_timer_sync(&pool->mayday_timer); 1962 spin_lock_irq(&pool->lock); 1963 if (need_to_create_worker(pool)) 1964 goto restart; 1965 return true; 1966 } 1967 1968 /** 1969 * maybe_destroy_worker - destroy workers which have been idle for a while 1970 * @pool: pool to destroy workers for 1971 * 1972 * Destroy @pool workers which have been idle for longer than 1973 * IDLE_WORKER_TIMEOUT. 1974 * 1975 * LOCKING: 1976 * spin_lock_irq(pool->lock) which may be released and regrabbed 1977 * multiple times. Called only from manager. 1978 * 1979 * RETURNS: 1980 * %false if no action was taken and pool->lock stayed locked, %true 1981 * otherwise. 1982 */ 1983 static bool maybe_destroy_workers(struct worker_pool *pool) 1984 { 1985 bool ret = false; 1986 1987 while (too_many_workers(pool)) { 1988 struct worker *worker; 1989 unsigned long expires; 1990 1991 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1992 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1993 1994 if (time_before(jiffies, expires)) { 1995 mod_timer(&pool->idle_timer, expires); 1996 break; 1997 } 1998 1999 destroy_worker(worker); 2000 ret = true; 2001 } 2002 2003 return ret; 2004 } 2005 2006 /** 2007 * manage_workers - manage worker pool 2008 * @worker: self 2009 * 2010 * Assume the manager role and manage the worker pool @worker belongs 2011 * to. At any given time, there can be only zero or one manager per 2012 * pool. The exclusion is handled automatically by this function. 2013 * 2014 * The caller can safely start processing works on false return. On 2015 * true return, it's guaranteed that need_to_create_worker() is false 2016 * and may_start_working() is true. 2017 * 2018 * CONTEXT: 2019 * spin_lock_irq(pool->lock) which may be released and regrabbed 2020 * multiple times. Does GFP_KERNEL allocations. 2021 * 2022 * RETURNS: 2023 * spin_lock_irq(pool->lock) which may be released and regrabbed 2024 * multiple times. Does GFP_KERNEL allocations. 2025 */ 2026 static bool manage_workers(struct worker *worker) 2027 { 2028 struct worker_pool *pool = worker->pool; 2029 bool ret = false; 2030 2031 /* 2032 * Managership is governed by two mutexes - manager_arb and 2033 * manager_mutex. manager_arb handles arbitration of manager role. 2034 * Anyone who successfully grabs manager_arb wins the arbitration 2035 * and becomes the manager. mutex_trylock() on pool->manager_arb 2036 * failure while holding pool->lock reliably indicates that someone 2037 * else is managing the pool and the worker which failed trylock 2038 * can proceed to executing work items. This means that anyone 2039 * grabbing manager_arb is responsible for actually performing 2040 * manager duties. If manager_arb is grabbed and released without 2041 * actual management, the pool may stall indefinitely. 2042 * 2043 * manager_mutex is used for exclusion of actual management 2044 * operations. The holder of manager_mutex can be sure that none 2045 * of management operations, including creation and destruction of 2046 * workers, won't take place until the mutex is released. Because 2047 * manager_mutex doesn't interfere with manager role arbitration, 2048 * it is guaranteed that the pool's management, while may be 2049 * delayed, won't be disturbed by someone else grabbing 2050 * manager_mutex. 2051 */ 2052 if (!mutex_trylock(&pool->manager_arb)) 2053 return ret; 2054 2055 /* 2056 * With manager arbitration won, manager_mutex would be free in 2057 * most cases. trylock first without dropping @pool->lock. 2058 */ 2059 if (unlikely(!mutex_trylock(&pool->manager_mutex))) { 2060 spin_unlock_irq(&pool->lock); 2061 mutex_lock(&pool->manager_mutex); 2062 spin_lock_irq(&pool->lock); 2063 ret = true; 2064 } 2065 2066 pool->flags &= ~POOL_MANAGE_WORKERS; 2067 2068 /* 2069 * Destroy and then create so that may_start_working() is true 2070 * on return. 2071 */ 2072 ret |= maybe_destroy_workers(pool); 2073 ret |= maybe_create_worker(pool); 2074 2075 mutex_unlock(&pool->manager_mutex); 2076 mutex_unlock(&pool->manager_arb); 2077 return ret; 2078 } 2079 2080 /** 2081 * process_one_work - process single work 2082 * @worker: self 2083 * @work: work to process 2084 * 2085 * Process @work. This function contains all the logics necessary to 2086 * process a single work including synchronization against and 2087 * interaction with other workers on the same cpu, queueing and 2088 * flushing. As long as context requirement is met, any worker can 2089 * call this function to process a work. 2090 * 2091 * CONTEXT: 2092 * spin_lock_irq(pool->lock) which is released and regrabbed. 2093 */ 2094 static void process_one_work(struct worker *worker, struct work_struct *work) 2095 __releases(&pool->lock) 2096 __acquires(&pool->lock) 2097 { 2098 struct pool_workqueue *pwq = get_work_pwq(work); 2099 struct worker_pool *pool = worker->pool; 2100 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2101 int work_color; 2102 struct worker *collision; 2103 #ifdef CONFIG_LOCKDEP 2104 /* 2105 * It is permissible to free the struct work_struct from 2106 * inside the function that is called from it, this we need to 2107 * take into account for lockdep too. To avoid bogus "held 2108 * lock freed" warnings as well as problems when looking into 2109 * work->lockdep_map, make a copy and use that here. 2110 */ 2111 struct lockdep_map lockdep_map; 2112 2113 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2114 #endif 2115 /* 2116 * Ensure we're on the correct CPU. DISASSOCIATED test is 2117 * necessary to avoid spurious warnings from rescuers servicing the 2118 * unbound or a disassociated pool. 2119 */ 2120 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) && 2121 !(pool->flags & POOL_DISASSOCIATED) && 2122 raw_smp_processor_id() != pool->cpu); 2123 2124 /* 2125 * A single work shouldn't be executed concurrently by 2126 * multiple workers on a single cpu. Check whether anyone is 2127 * already processing the work. If so, defer the work to the 2128 * currently executing one. 2129 */ 2130 collision = find_worker_executing_work(pool, work); 2131 if (unlikely(collision)) { 2132 move_linked_works(work, &collision->scheduled, NULL); 2133 return; 2134 } 2135 2136 /* claim and dequeue */ 2137 debug_work_deactivate(work); 2138 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2139 worker->current_work = work; 2140 worker->current_func = work->func; 2141 worker->current_pwq = pwq; 2142 work_color = get_work_color(work); 2143 2144 list_del_init(&work->entry); 2145 2146 /* 2147 * CPU intensive works don't participate in concurrency 2148 * management. They're the scheduler's responsibility. 2149 */ 2150 if (unlikely(cpu_intensive)) 2151 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true); 2152 2153 /* 2154 * Unbound pool isn't concurrency managed and work items should be 2155 * executed ASAP. Wake up another worker if necessary. 2156 */ 2157 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool)) 2158 wake_up_worker(pool); 2159 2160 /* 2161 * Record the last pool and clear PENDING which should be the last 2162 * update to @work. Also, do this inside @pool->lock so that 2163 * PENDING and queued state changes happen together while IRQ is 2164 * disabled. 2165 */ 2166 set_work_pool_and_clear_pending(work, pool->id); 2167 2168 spin_unlock_irq(&pool->lock); 2169 2170 lock_map_acquire_read(&pwq->wq->lockdep_map); 2171 lock_map_acquire(&lockdep_map); 2172 trace_workqueue_execute_start(work); 2173 worker->current_func(work); 2174 /* 2175 * While we must be careful to not use "work" after this, the trace 2176 * point will only record its address. 2177 */ 2178 trace_workqueue_execute_end(work); 2179 lock_map_release(&lockdep_map); 2180 lock_map_release(&pwq->wq->lockdep_map); 2181 2182 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2183 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2184 " last function: %pf\n", 2185 current->comm, preempt_count(), task_pid_nr(current), 2186 worker->current_func); 2187 debug_show_held_locks(current); 2188 dump_stack(); 2189 } 2190 2191 spin_lock_irq(&pool->lock); 2192 2193 /* clear cpu intensive status */ 2194 if (unlikely(cpu_intensive)) 2195 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2196 2197 /* we're done with it, release */ 2198 hash_del(&worker->hentry); 2199 worker->current_work = NULL; 2200 worker->current_func = NULL; 2201 worker->current_pwq = NULL; 2202 worker->desc_valid = false; 2203 pwq_dec_nr_in_flight(pwq, work_color); 2204 } 2205 2206 /** 2207 * process_scheduled_works - process scheduled works 2208 * @worker: self 2209 * 2210 * Process all scheduled works. Please note that the scheduled list 2211 * may change while processing a work, so this function repeatedly 2212 * fetches a work from the top and executes it. 2213 * 2214 * CONTEXT: 2215 * spin_lock_irq(pool->lock) which may be released and regrabbed 2216 * multiple times. 2217 */ 2218 static void process_scheduled_works(struct worker *worker) 2219 { 2220 while (!list_empty(&worker->scheduled)) { 2221 struct work_struct *work = list_first_entry(&worker->scheduled, 2222 struct work_struct, entry); 2223 process_one_work(worker, work); 2224 } 2225 } 2226 2227 /** 2228 * worker_thread - the worker thread function 2229 * @__worker: self 2230 * 2231 * The worker thread function. All workers belong to a worker_pool - 2232 * either a per-cpu one or dynamic unbound one. These workers process all 2233 * work items regardless of their specific target workqueue. The only 2234 * exception is work items which belong to workqueues with a rescuer which 2235 * will be explained in rescuer_thread(). 2236 */ 2237 static int worker_thread(void *__worker) 2238 { 2239 struct worker *worker = __worker; 2240 struct worker_pool *pool = worker->pool; 2241 2242 /* tell the scheduler that this is a workqueue worker */ 2243 worker->task->flags |= PF_WQ_WORKER; 2244 woke_up: 2245 spin_lock_irq(&pool->lock); 2246 2247 /* am I supposed to die? */ 2248 if (unlikely(worker->flags & WORKER_DIE)) { 2249 spin_unlock_irq(&pool->lock); 2250 WARN_ON_ONCE(!list_empty(&worker->entry)); 2251 worker->task->flags &= ~PF_WQ_WORKER; 2252 return 0; 2253 } 2254 2255 worker_leave_idle(worker); 2256 recheck: 2257 /* no more worker necessary? */ 2258 if (!need_more_worker(pool)) 2259 goto sleep; 2260 2261 /* do we need to manage? */ 2262 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2263 goto recheck; 2264 2265 /* 2266 * ->scheduled list can only be filled while a worker is 2267 * preparing to process a work or actually processing it. 2268 * Make sure nobody diddled with it while I was sleeping. 2269 */ 2270 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2271 2272 /* 2273 * Finish PREP stage. We're guaranteed to have at least one idle 2274 * worker or that someone else has already assumed the manager 2275 * role. This is where @worker starts participating in concurrency 2276 * management if applicable and concurrency management is restored 2277 * after being rebound. See rebind_workers() for details. 2278 */ 2279 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2280 2281 do { 2282 struct work_struct *work = 2283 list_first_entry(&pool->worklist, 2284 struct work_struct, entry); 2285 2286 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2287 /* optimization path, not strictly necessary */ 2288 process_one_work(worker, work); 2289 if (unlikely(!list_empty(&worker->scheduled))) 2290 process_scheduled_works(worker); 2291 } else { 2292 move_linked_works(work, &worker->scheduled, NULL); 2293 process_scheduled_works(worker); 2294 } 2295 } while (keep_working(pool)); 2296 2297 worker_set_flags(worker, WORKER_PREP, false); 2298 sleep: 2299 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker)) 2300 goto recheck; 2301 2302 /* 2303 * pool->lock is held and there's no work to process and no need to 2304 * manage, sleep. Workers are woken up only while holding 2305 * pool->lock or from local cpu, so setting the current state 2306 * before releasing pool->lock is enough to prevent losing any 2307 * event. 2308 */ 2309 worker_enter_idle(worker); 2310 __set_current_state(TASK_INTERRUPTIBLE); 2311 spin_unlock_irq(&pool->lock); 2312 schedule(); 2313 goto woke_up; 2314 } 2315 2316 /** 2317 * rescuer_thread - the rescuer thread function 2318 * @__rescuer: self 2319 * 2320 * Workqueue rescuer thread function. There's one rescuer for each 2321 * workqueue which has WQ_MEM_RECLAIM set. 2322 * 2323 * Regular work processing on a pool may block trying to create a new 2324 * worker which uses GFP_KERNEL allocation which has slight chance of 2325 * developing into deadlock if some works currently on the same queue 2326 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2327 * the problem rescuer solves. 2328 * 2329 * When such condition is possible, the pool summons rescuers of all 2330 * workqueues which have works queued on the pool and let them process 2331 * those works so that forward progress can be guaranteed. 2332 * 2333 * This should happen rarely. 2334 */ 2335 static int rescuer_thread(void *__rescuer) 2336 { 2337 struct worker *rescuer = __rescuer; 2338 struct workqueue_struct *wq = rescuer->rescue_wq; 2339 struct list_head *scheduled = &rescuer->scheduled; 2340 2341 set_user_nice(current, RESCUER_NICE_LEVEL); 2342 2343 /* 2344 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2345 * doesn't participate in concurrency management. 2346 */ 2347 rescuer->task->flags |= PF_WQ_WORKER; 2348 repeat: 2349 set_current_state(TASK_INTERRUPTIBLE); 2350 2351 if (kthread_should_stop()) { 2352 __set_current_state(TASK_RUNNING); 2353 rescuer->task->flags &= ~PF_WQ_WORKER; 2354 return 0; 2355 } 2356 2357 /* see whether any pwq is asking for help */ 2358 spin_lock_irq(&wq_mayday_lock); 2359 2360 while (!list_empty(&wq->maydays)) { 2361 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2362 struct pool_workqueue, mayday_node); 2363 struct worker_pool *pool = pwq->pool; 2364 struct work_struct *work, *n; 2365 2366 __set_current_state(TASK_RUNNING); 2367 list_del_init(&pwq->mayday_node); 2368 2369 spin_unlock_irq(&wq_mayday_lock); 2370 2371 /* migrate to the target cpu if possible */ 2372 worker_maybe_bind_and_lock(pool); 2373 rescuer->pool = pool; 2374 2375 /* 2376 * Slurp in all works issued via this workqueue and 2377 * process'em. 2378 */ 2379 WARN_ON_ONCE(!list_empty(&rescuer->scheduled)); 2380 list_for_each_entry_safe(work, n, &pool->worklist, entry) 2381 if (get_work_pwq(work) == pwq) 2382 move_linked_works(work, scheduled, &n); 2383 2384 process_scheduled_works(rescuer); 2385 2386 /* 2387 * Leave this pool. If keep_working() is %true, notify a 2388 * regular worker; otherwise, we end up with 0 concurrency 2389 * and stalling the execution. 2390 */ 2391 if (keep_working(pool)) 2392 wake_up_worker(pool); 2393 2394 rescuer->pool = NULL; 2395 spin_unlock(&pool->lock); 2396 spin_lock(&wq_mayday_lock); 2397 } 2398 2399 spin_unlock_irq(&wq_mayday_lock); 2400 2401 /* rescuers should never participate in concurrency management */ 2402 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2403 schedule(); 2404 goto repeat; 2405 } 2406 2407 struct wq_barrier { 2408 struct work_struct work; 2409 struct completion done; 2410 }; 2411 2412 static void wq_barrier_func(struct work_struct *work) 2413 { 2414 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2415 complete(&barr->done); 2416 } 2417 2418 /** 2419 * insert_wq_barrier - insert a barrier work 2420 * @pwq: pwq to insert barrier into 2421 * @barr: wq_barrier to insert 2422 * @target: target work to attach @barr to 2423 * @worker: worker currently executing @target, NULL if @target is not executing 2424 * 2425 * @barr is linked to @target such that @barr is completed only after 2426 * @target finishes execution. Please note that the ordering 2427 * guarantee is observed only with respect to @target and on the local 2428 * cpu. 2429 * 2430 * Currently, a queued barrier can't be canceled. This is because 2431 * try_to_grab_pending() can't determine whether the work to be 2432 * grabbed is at the head of the queue and thus can't clear LINKED 2433 * flag of the previous work while there must be a valid next work 2434 * after a work with LINKED flag set. 2435 * 2436 * Note that when @worker is non-NULL, @target may be modified 2437 * underneath us, so we can't reliably determine pwq from @target. 2438 * 2439 * CONTEXT: 2440 * spin_lock_irq(pool->lock). 2441 */ 2442 static void insert_wq_barrier(struct pool_workqueue *pwq, 2443 struct wq_barrier *barr, 2444 struct work_struct *target, struct worker *worker) 2445 { 2446 struct list_head *head; 2447 unsigned int linked = 0; 2448 2449 /* 2450 * debugobject calls are safe here even with pool->lock locked 2451 * as we know for sure that this will not trigger any of the 2452 * checks and call back into the fixup functions where we 2453 * might deadlock. 2454 */ 2455 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2456 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2457 init_completion(&barr->done); 2458 2459 /* 2460 * If @target is currently being executed, schedule the 2461 * barrier to the worker; otherwise, put it after @target. 2462 */ 2463 if (worker) 2464 head = worker->scheduled.next; 2465 else { 2466 unsigned long *bits = work_data_bits(target); 2467 2468 head = target->entry.next; 2469 /* there can already be other linked works, inherit and set */ 2470 linked = *bits & WORK_STRUCT_LINKED; 2471 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2472 } 2473 2474 debug_work_activate(&barr->work); 2475 insert_work(pwq, &barr->work, head, 2476 work_color_to_flags(WORK_NO_COLOR) | linked); 2477 } 2478 2479 /** 2480 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2481 * @wq: workqueue being flushed 2482 * @flush_color: new flush color, < 0 for no-op 2483 * @work_color: new work color, < 0 for no-op 2484 * 2485 * Prepare pwqs for workqueue flushing. 2486 * 2487 * If @flush_color is non-negative, flush_color on all pwqs should be 2488 * -1. If no pwq has in-flight commands at the specified color, all 2489 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2490 * has in flight commands, its pwq->flush_color is set to 2491 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2492 * wakeup logic is armed and %true is returned. 2493 * 2494 * The caller should have initialized @wq->first_flusher prior to 2495 * calling this function with non-negative @flush_color. If 2496 * @flush_color is negative, no flush color update is done and %false 2497 * is returned. 2498 * 2499 * If @work_color is non-negative, all pwqs should have the same 2500 * work_color which is previous to @work_color and all will be 2501 * advanced to @work_color. 2502 * 2503 * CONTEXT: 2504 * mutex_lock(wq->mutex). 2505 * 2506 * RETURNS: 2507 * %true if @flush_color >= 0 and there's something to flush. %false 2508 * otherwise. 2509 */ 2510 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2511 int flush_color, int work_color) 2512 { 2513 bool wait = false; 2514 struct pool_workqueue *pwq; 2515 2516 if (flush_color >= 0) { 2517 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2518 atomic_set(&wq->nr_pwqs_to_flush, 1); 2519 } 2520 2521 for_each_pwq(pwq, wq) { 2522 struct worker_pool *pool = pwq->pool; 2523 2524 spin_lock_irq(&pool->lock); 2525 2526 if (flush_color >= 0) { 2527 WARN_ON_ONCE(pwq->flush_color != -1); 2528 2529 if (pwq->nr_in_flight[flush_color]) { 2530 pwq->flush_color = flush_color; 2531 atomic_inc(&wq->nr_pwqs_to_flush); 2532 wait = true; 2533 } 2534 } 2535 2536 if (work_color >= 0) { 2537 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2538 pwq->work_color = work_color; 2539 } 2540 2541 spin_unlock_irq(&pool->lock); 2542 } 2543 2544 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2545 complete(&wq->first_flusher->done); 2546 2547 return wait; 2548 } 2549 2550 /** 2551 * flush_workqueue - ensure that any scheduled work has run to completion. 2552 * @wq: workqueue to flush 2553 * 2554 * This function sleeps until all work items which were queued on entry 2555 * have finished execution, but it is not livelocked by new incoming ones. 2556 */ 2557 void flush_workqueue(struct workqueue_struct *wq) 2558 { 2559 struct wq_flusher this_flusher = { 2560 .list = LIST_HEAD_INIT(this_flusher.list), 2561 .flush_color = -1, 2562 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2563 }; 2564 int next_color; 2565 2566 lock_map_acquire(&wq->lockdep_map); 2567 lock_map_release(&wq->lockdep_map); 2568 2569 mutex_lock(&wq->mutex); 2570 2571 /* 2572 * Start-to-wait phase 2573 */ 2574 next_color = work_next_color(wq->work_color); 2575 2576 if (next_color != wq->flush_color) { 2577 /* 2578 * Color space is not full. The current work_color 2579 * becomes our flush_color and work_color is advanced 2580 * by one. 2581 */ 2582 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2583 this_flusher.flush_color = wq->work_color; 2584 wq->work_color = next_color; 2585 2586 if (!wq->first_flusher) { 2587 /* no flush in progress, become the first flusher */ 2588 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2589 2590 wq->first_flusher = &this_flusher; 2591 2592 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2593 wq->work_color)) { 2594 /* nothing to flush, done */ 2595 wq->flush_color = next_color; 2596 wq->first_flusher = NULL; 2597 goto out_unlock; 2598 } 2599 } else { 2600 /* wait in queue */ 2601 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2602 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2603 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2604 } 2605 } else { 2606 /* 2607 * Oops, color space is full, wait on overflow queue. 2608 * The next flush completion will assign us 2609 * flush_color and transfer to flusher_queue. 2610 */ 2611 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2612 } 2613 2614 mutex_unlock(&wq->mutex); 2615 2616 wait_for_completion(&this_flusher.done); 2617 2618 /* 2619 * Wake-up-and-cascade phase 2620 * 2621 * First flushers are responsible for cascading flushes and 2622 * handling overflow. Non-first flushers can simply return. 2623 */ 2624 if (wq->first_flusher != &this_flusher) 2625 return; 2626 2627 mutex_lock(&wq->mutex); 2628 2629 /* we might have raced, check again with mutex held */ 2630 if (wq->first_flusher != &this_flusher) 2631 goto out_unlock; 2632 2633 wq->first_flusher = NULL; 2634 2635 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2636 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2637 2638 while (true) { 2639 struct wq_flusher *next, *tmp; 2640 2641 /* complete all the flushers sharing the current flush color */ 2642 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2643 if (next->flush_color != wq->flush_color) 2644 break; 2645 list_del_init(&next->list); 2646 complete(&next->done); 2647 } 2648 2649 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2650 wq->flush_color != work_next_color(wq->work_color)); 2651 2652 /* this flush_color is finished, advance by one */ 2653 wq->flush_color = work_next_color(wq->flush_color); 2654 2655 /* one color has been freed, handle overflow queue */ 2656 if (!list_empty(&wq->flusher_overflow)) { 2657 /* 2658 * Assign the same color to all overflowed 2659 * flushers, advance work_color and append to 2660 * flusher_queue. This is the start-to-wait 2661 * phase for these overflowed flushers. 2662 */ 2663 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2664 tmp->flush_color = wq->work_color; 2665 2666 wq->work_color = work_next_color(wq->work_color); 2667 2668 list_splice_tail_init(&wq->flusher_overflow, 2669 &wq->flusher_queue); 2670 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2671 } 2672 2673 if (list_empty(&wq->flusher_queue)) { 2674 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2675 break; 2676 } 2677 2678 /* 2679 * Need to flush more colors. Make the next flusher 2680 * the new first flusher and arm pwqs. 2681 */ 2682 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2683 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2684 2685 list_del_init(&next->list); 2686 wq->first_flusher = next; 2687 2688 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2689 break; 2690 2691 /* 2692 * Meh... this color is already done, clear first 2693 * flusher and repeat cascading. 2694 */ 2695 wq->first_flusher = NULL; 2696 } 2697 2698 out_unlock: 2699 mutex_unlock(&wq->mutex); 2700 } 2701 EXPORT_SYMBOL_GPL(flush_workqueue); 2702 2703 /** 2704 * drain_workqueue - drain a workqueue 2705 * @wq: workqueue to drain 2706 * 2707 * Wait until the workqueue becomes empty. While draining is in progress, 2708 * only chain queueing is allowed. IOW, only currently pending or running 2709 * work items on @wq can queue further work items on it. @wq is flushed 2710 * repeatedly until it becomes empty. The number of flushing is detemined 2711 * by the depth of chaining and should be relatively short. Whine if it 2712 * takes too long. 2713 */ 2714 void drain_workqueue(struct workqueue_struct *wq) 2715 { 2716 unsigned int flush_cnt = 0; 2717 struct pool_workqueue *pwq; 2718 2719 /* 2720 * __queue_work() needs to test whether there are drainers, is much 2721 * hotter than drain_workqueue() and already looks at @wq->flags. 2722 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2723 */ 2724 mutex_lock(&wq->mutex); 2725 if (!wq->nr_drainers++) 2726 wq->flags |= __WQ_DRAINING; 2727 mutex_unlock(&wq->mutex); 2728 reflush: 2729 flush_workqueue(wq); 2730 2731 mutex_lock(&wq->mutex); 2732 2733 for_each_pwq(pwq, wq) { 2734 bool drained; 2735 2736 spin_lock_irq(&pwq->pool->lock); 2737 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2738 spin_unlock_irq(&pwq->pool->lock); 2739 2740 if (drained) 2741 continue; 2742 2743 if (++flush_cnt == 10 || 2744 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2745 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2746 wq->name, flush_cnt); 2747 2748 mutex_unlock(&wq->mutex); 2749 goto reflush; 2750 } 2751 2752 if (!--wq->nr_drainers) 2753 wq->flags &= ~__WQ_DRAINING; 2754 mutex_unlock(&wq->mutex); 2755 } 2756 EXPORT_SYMBOL_GPL(drain_workqueue); 2757 2758 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr) 2759 { 2760 struct worker *worker = NULL; 2761 struct worker_pool *pool; 2762 struct pool_workqueue *pwq; 2763 2764 might_sleep(); 2765 2766 local_irq_disable(); 2767 pool = get_work_pool(work); 2768 if (!pool) { 2769 local_irq_enable(); 2770 return false; 2771 } 2772 2773 spin_lock(&pool->lock); 2774 /* see the comment in try_to_grab_pending() with the same code */ 2775 pwq = get_work_pwq(work); 2776 if (pwq) { 2777 if (unlikely(pwq->pool != pool)) 2778 goto already_gone; 2779 } else { 2780 worker = find_worker_executing_work(pool, work); 2781 if (!worker) 2782 goto already_gone; 2783 pwq = worker->current_pwq; 2784 } 2785 2786 insert_wq_barrier(pwq, barr, work, worker); 2787 spin_unlock_irq(&pool->lock); 2788 2789 /* 2790 * If @max_active is 1 or rescuer is in use, flushing another work 2791 * item on the same workqueue may lead to deadlock. Make sure the 2792 * flusher is not running on the same workqueue by verifying write 2793 * access. 2794 */ 2795 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) 2796 lock_map_acquire(&pwq->wq->lockdep_map); 2797 else 2798 lock_map_acquire_read(&pwq->wq->lockdep_map); 2799 lock_map_release(&pwq->wq->lockdep_map); 2800 2801 return true; 2802 already_gone: 2803 spin_unlock_irq(&pool->lock); 2804 return false; 2805 } 2806 2807 /** 2808 * flush_work - wait for a work to finish executing the last queueing instance 2809 * @work: the work to flush 2810 * 2811 * Wait until @work has finished execution. @work is guaranteed to be idle 2812 * on return if it hasn't been requeued since flush started. 2813 * 2814 * RETURNS: 2815 * %true if flush_work() waited for the work to finish execution, 2816 * %false if it was already idle. 2817 */ 2818 bool flush_work(struct work_struct *work) 2819 { 2820 struct wq_barrier barr; 2821 2822 lock_map_acquire(&work->lockdep_map); 2823 lock_map_release(&work->lockdep_map); 2824 2825 if (start_flush_work(work, &barr)) { 2826 wait_for_completion(&barr.done); 2827 destroy_work_on_stack(&barr.work); 2828 return true; 2829 } else { 2830 return false; 2831 } 2832 } 2833 EXPORT_SYMBOL_GPL(flush_work); 2834 2835 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 2836 { 2837 unsigned long flags; 2838 int ret; 2839 2840 do { 2841 ret = try_to_grab_pending(work, is_dwork, &flags); 2842 /* 2843 * If someone else is canceling, wait for the same event it 2844 * would be waiting for before retrying. 2845 */ 2846 if (unlikely(ret == -ENOENT)) 2847 flush_work(work); 2848 } while (unlikely(ret < 0)); 2849 2850 /* tell other tasks trying to grab @work to back off */ 2851 mark_work_canceling(work); 2852 local_irq_restore(flags); 2853 2854 flush_work(work); 2855 clear_work_data(work); 2856 return ret; 2857 } 2858 2859 /** 2860 * cancel_work_sync - cancel a work and wait for it to finish 2861 * @work: the work to cancel 2862 * 2863 * Cancel @work and wait for its execution to finish. This function 2864 * can be used even if the work re-queues itself or migrates to 2865 * another workqueue. On return from this function, @work is 2866 * guaranteed to be not pending or executing on any CPU. 2867 * 2868 * cancel_work_sync(&delayed_work->work) must not be used for 2869 * delayed_work's. Use cancel_delayed_work_sync() instead. 2870 * 2871 * The caller must ensure that the workqueue on which @work was last 2872 * queued can't be destroyed before this function returns. 2873 * 2874 * RETURNS: 2875 * %true if @work was pending, %false otherwise. 2876 */ 2877 bool cancel_work_sync(struct work_struct *work) 2878 { 2879 return __cancel_work_timer(work, false); 2880 } 2881 EXPORT_SYMBOL_GPL(cancel_work_sync); 2882 2883 /** 2884 * flush_delayed_work - wait for a dwork to finish executing the last queueing 2885 * @dwork: the delayed work to flush 2886 * 2887 * Delayed timer is cancelled and the pending work is queued for 2888 * immediate execution. Like flush_work(), this function only 2889 * considers the last queueing instance of @dwork. 2890 * 2891 * RETURNS: 2892 * %true if flush_work() waited for the work to finish execution, 2893 * %false if it was already idle. 2894 */ 2895 bool flush_delayed_work(struct delayed_work *dwork) 2896 { 2897 local_irq_disable(); 2898 if (del_timer_sync(&dwork->timer)) 2899 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2900 local_irq_enable(); 2901 return flush_work(&dwork->work); 2902 } 2903 EXPORT_SYMBOL(flush_delayed_work); 2904 2905 /** 2906 * cancel_delayed_work - cancel a delayed work 2907 * @dwork: delayed_work to cancel 2908 * 2909 * Kill off a pending delayed_work. Returns %true if @dwork was pending 2910 * and canceled; %false if wasn't pending. Note that the work callback 2911 * function may still be running on return, unless it returns %true and the 2912 * work doesn't re-arm itself. Explicitly flush or use 2913 * cancel_delayed_work_sync() to wait on it. 2914 * 2915 * This function is safe to call from any context including IRQ handler. 2916 */ 2917 bool cancel_delayed_work(struct delayed_work *dwork) 2918 { 2919 unsigned long flags; 2920 int ret; 2921 2922 do { 2923 ret = try_to_grab_pending(&dwork->work, true, &flags); 2924 } while (unlikely(ret == -EAGAIN)); 2925 2926 if (unlikely(ret < 0)) 2927 return false; 2928 2929 set_work_pool_and_clear_pending(&dwork->work, 2930 get_work_pool_id(&dwork->work)); 2931 local_irq_restore(flags); 2932 return ret; 2933 } 2934 EXPORT_SYMBOL(cancel_delayed_work); 2935 2936 /** 2937 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 2938 * @dwork: the delayed work cancel 2939 * 2940 * This is cancel_work_sync() for delayed works. 2941 * 2942 * RETURNS: 2943 * %true if @dwork was pending, %false otherwise. 2944 */ 2945 bool cancel_delayed_work_sync(struct delayed_work *dwork) 2946 { 2947 return __cancel_work_timer(&dwork->work, true); 2948 } 2949 EXPORT_SYMBOL(cancel_delayed_work_sync); 2950 2951 /** 2952 * schedule_on_each_cpu - execute a function synchronously on each online CPU 2953 * @func: the function to call 2954 * 2955 * schedule_on_each_cpu() executes @func on each online CPU using the 2956 * system workqueue and blocks until all CPUs have completed. 2957 * schedule_on_each_cpu() is very slow. 2958 * 2959 * RETURNS: 2960 * 0 on success, -errno on failure. 2961 */ 2962 int schedule_on_each_cpu(work_func_t func) 2963 { 2964 int cpu; 2965 struct work_struct __percpu *works; 2966 2967 works = alloc_percpu(struct work_struct); 2968 if (!works) 2969 return -ENOMEM; 2970 2971 get_online_cpus(); 2972 2973 for_each_online_cpu(cpu) { 2974 struct work_struct *work = per_cpu_ptr(works, cpu); 2975 2976 INIT_WORK(work, func); 2977 schedule_work_on(cpu, work); 2978 } 2979 2980 for_each_online_cpu(cpu) 2981 flush_work(per_cpu_ptr(works, cpu)); 2982 2983 put_online_cpus(); 2984 free_percpu(works); 2985 return 0; 2986 } 2987 2988 /** 2989 * flush_scheduled_work - ensure that any scheduled work has run to completion. 2990 * 2991 * Forces execution of the kernel-global workqueue and blocks until its 2992 * completion. 2993 * 2994 * Think twice before calling this function! It's very easy to get into 2995 * trouble if you don't take great care. Either of the following situations 2996 * will lead to deadlock: 2997 * 2998 * One of the work items currently on the workqueue needs to acquire 2999 * a lock held by your code or its caller. 3000 * 3001 * Your code is running in the context of a work routine. 3002 * 3003 * They will be detected by lockdep when they occur, but the first might not 3004 * occur very often. It depends on what work items are on the workqueue and 3005 * what locks they need, which you have no control over. 3006 * 3007 * In most situations flushing the entire workqueue is overkill; you merely 3008 * need to know that a particular work item isn't queued and isn't running. 3009 * In such cases you should use cancel_delayed_work_sync() or 3010 * cancel_work_sync() instead. 3011 */ 3012 void flush_scheduled_work(void) 3013 { 3014 flush_workqueue(system_wq); 3015 } 3016 EXPORT_SYMBOL(flush_scheduled_work); 3017 3018 /** 3019 * execute_in_process_context - reliably execute the routine with user context 3020 * @fn: the function to execute 3021 * @ew: guaranteed storage for the execute work structure (must 3022 * be available when the work executes) 3023 * 3024 * Executes the function immediately if process context is available, 3025 * otherwise schedules the function for delayed execution. 3026 * 3027 * Returns: 0 - function was executed 3028 * 1 - function was scheduled for execution 3029 */ 3030 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3031 { 3032 if (!in_interrupt()) { 3033 fn(&ew->work); 3034 return 0; 3035 } 3036 3037 INIT_WORK(&ew->work, fn); 3038 schedule_work(&ew->work); 3039 3040 return 1; 3041 } 3042 EXPORT_SYMBOL_GPL(execute_in_process_context); 3043 3044 #ifdef CONFIG_SYSFS 3045 /* 3046 * Workqueues with WQ_SYSFS flag set is visible to userland via 3047 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 3048 * following attributes. 3049 * 3050 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 3051 * max_active RW int : maximum number of in-flight work items 3052 * 3053 * Unbound workqueues have the following extra attributes. 3054 * 3055 * id RO int : the associated pool ID 3056 * nice RW int : nice value of the workers 3057 * cpumask RW mask : bitmask of allowed CPUs for the workers 3058 */ 3059 struct wq_device { 3060 struct workqueue_struct *wq; 3061 struct device dev; 3062 }; 3063 3064 static struct workqueue_struct *dev_to_wq(struct device *dev) 3065 { 3066 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 3067 3068 return wq_dev->wq; 3069 } 3070 3071 static ssize_t wq_per_cpu_show(struct device *dev, 3072 struct device_attribute *attr, char *buf) 3073 { 3074 struct workqueue_struct *wq = dev_to_wq(dev); 3075 3076 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 3077 } 3078 3079 static ssize_t wq_max_active_show(struct device *dev, 3080 struct device_attribute *attr, char *buf) 3081 { 3082 struct workqueue_struct *wq = dev_to_wq(dev); 3083 3084 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 3085 } 3086 3087 static ssize_t wq_max_active_store(struct device *dev, 3088 struct device_attribute *attr, 3089 const char *buf, size_t count) 3090 { 3091 struct workqueue_struct *wq = dev_to_wq(dev); 3092 int val; 3093 3094 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 3095 return -EINVAL; 3096 3097 workqueue_set_max_active(wq, val); 3098 return count; 3099 } 3100 3101 static struct device_attribute wq_sysfs_attrs[] = { 3102 __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL), 3103 __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store), 3104 __ATTR_NULL, 3105 }; 3106 3107 static ssize_t wq_pool_ids_show(struct device *dev, 3108 struct device_attribute *attr, char *buf) 3109 { 3110 struct workqueue_struct *wq = dev_to_wq(dev); 3111 const char *delim = ""; 3112 int node, written = 0; 3113 3114 rcu_read_lock_sched(); 3115 for_each_node(node) { 3116 written += scnprintf(buf + written, PAGE_SIZE - written, 3117 "%s%d:%d", delim, node, 3118 unbound_pwq_by_node(wq, node)->pool->id); 3119 delim = " "; 3120 } 3121 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 3122 rcu_read_unlock_sched(); 3123 3124 return written; 3125 } 3126 3127 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 3128 char *buf) 3129 { 3130 struct workqueue_struct *wq = dev_to_wq(dev); 3131 int written; 3132 3133 mutex_lock(&wq->mutex); 3134 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 3135 mutex_unlock(&wq->mutex); 3136 3137 return written; 3138 } 3139 3140 /* prepare workqueue_attrs for sysfs store operations */ 3141 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 3142 { 3143 struct workqueue_attrs *attrs; 3144 3145 attrs = alloc_workqueue_attrs(GFP_KERNEL); 3146 if (!attrs) 3147 return NULL; 3148 3149 mutex_lock(&wq->mutex); 3150 copy_workqueue_attrs(attrs, wq->unbound_attrs); 3151 mutex_unlock(&wq->mutex); 3152 return attrs; 3153 } 3154 3155 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 3156 const char *buf, size_t count) 3157 { 3158 struct workqueue_struct *wq = dev_to_wq(dev); 3159 struct workqueue_attrs *attrs; 3160 int ret; 3161 3162 attrs = wq_sysfs_prep_attrs(wq); 3163 if (!attrs) 3164 return -ENOMEM; 3165 3166 if (sscanf(buf, "%d", &attrs->nice) == 1 && 3167 attrs->nice >= -20 && attrs->nice <= 19) 3168 ret = apply_workqueue_attrs(wq, attrs); 3169 else 3170 ret = -EINVAL; 3171 3172 free_workqueue_attrs(attrs); 3173 return ret ?: count; 3174 } 3175 3176 static ssize_t wq_cpumask_show(struct device *dev, 3177 struct device_attribute *attr, char *buf) 3178 { 3179 struct workqueue_struct *wq = dev_to_wq(dev); 3180 int written; 3181 3182 mutex_lock(&wq->mutex); 3183 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask); 3184 mutex_unlock(&wq->mutex); 3185 3186 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 3187 return written; 3188 } 3189 3190 static ssize_t wq_cpumask_store(struct device *dev, 3191 struct device_attribute *attr, 3192 const char *buf, size_t count) 3193 { 3194 struct workqueue_struct *wq = dev_to_wq(dev); 3195 struct workqueue_attrs *attrs; 3196 int ret; 3197 3198 attrs = wq_sysfs_prep_attrs(wq); 3199 if (!attrs) 3200 return -ENOMEM; 3201 3202 ret = cpumask_parse(buf, attrs->cpumask); 3203 if (!ret) 3204 ret = apply_workqueue_attrs(wq, attrs); 3205 3206 free_workqueue_attrs(attrs); 3207 return ret ?: count; 3208 } 3209 3210 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 3211 char *buf) 3212 { 3213 struct workqueue_struct *wq = dev_to_wq(dev); 3214 int written; 3215 3216 mutex_lock(&wq->mutex); 3217 written = scnprintf(buf, PAGE_SIZE, "%d\n", 3218 !wq->unbound_attrs->no_numa); 3219 mutex_unlock(&wq->mutex); 3220 3221 return written; 3222 } 3223 3224 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 3225 const char *buf, size_t count) 3226 { 3227 struct workqueue_struct *wq = dev_to_wq(dev); 3228 struct workqueue_attrs *attrs; 3229 int v, ret; 3230 3231 attrs = wq_sysfs_prep_attrs(wq); 3232 if (!attrs) 3233 return -ENOMEM; 3234 3235 ret = -EINVAL; 3236 if (sscanf(buf, "%d", &v) == 1) { 3237 attrs->no_numa = !v; 3238 ret = apply_workqueue_attrs(wq, attrs); 3239 } 3240 3241 free_workqueue_attrs(attrs); 3242 return ret ?: count; 3243 } 3244 3245 static struct device_attribute wq_sysfs_unbound_attrs[] = { 3246 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 3247 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 3248 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 3249 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 3250 __ATTR_NULL, 3251 }; 3252 3253 static struct bus_type wq_subsys = { 3254 .name = "workqueue", 3255 .dev_attrs = wq_sysfs_attrs, 3256 }; 3257 3258 static int __init wq_sysfs_init(void) 3259 { 3260 return subsys_virtual_register(&wq_subsys, NULL); 3261 } 3262 core_initcall(wq_sysfs_init); 3263 3264 static void wq_device_release(struct device *dev) 3265 { 3266 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 3267 3268 kfree(wq_dev); 3269 } 3270 3271 /** 3272 * workqueue_sysfs_register - make a workqueue visible in sysfs 3273 * @wq: the workqueue to register 3274 * 3275 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 3276 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 3277 * which is the preferred method. 3278 * 3279 * Workqueue user should use this function directly iff it wants to apply 3280 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 3281 * apply_workqueue_attrs() may race against userland updating the 3282 * attributes. 3283 * 3284 * Returns 0 on success, -errno on failure. 3285 */ 3286 int workqueue_sysfs_register(struct workqueue_struct *wq) 3287 { 3288 struct wq_device *wq_dev; 3289 int ret; 3290 3291 /* 3292 * Adjusting max_active or creating new pwqs by applyting 3293 * attributes breaks ordering guarantee. Disallow exposing ordered 3294 * workqueues. 3295 */ 3296 if (WARN_ON(wq->flags & __WQ_ORDERED)) 3297 return -EINVAL; 3298 3299 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 3300 if (!wq_dev) 3301 return -ENOMEM; 3302 3303 wq_dev->wq = wq; 3304 wq_dev->dev.bus = &wq_subsys; 3305 wq_dev->dev.init_name = wq->name; 3306 wq_dev->dev.release = wq_device_release; 3307 3308 /* 3309 * unbound_attrs are created separately. Suppress uevent until 3310 * everything is ready. 3311 */ 3312 dev_set_uevent_suppress(&wq_dev->dev, true); 3313 3314 ret = device_register(&wq_dev->dev); 3315 if (ret) { 3316 kfree(wq_dev); 3317 wq->wq_dev = NULL; 3318 return ret; 3319 } 3320 3321 if (wq->flags & WQ_UNBOUND) { 3322 struct device_attribute *attr; 3323 3324 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 3325 ret = device_create_file(&wq_dev->dev, attr); 3326 if (ret) { 3327 device_unregister(&wq_dev->dev); 3328 wq->wq_dev = NULL; 3329 return ret; 3330 } 3331 } 3332 } 3333 3334 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 3335 return 0; 3336 } 3337 3338 /** 3339 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 3340 * @wq: the workqueue to unregister 3341 * 3342 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 3343 */ 3344 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 3345 { 3346 struct wq_device *wq_dev = wq->wq_dev; 3347 3348 if (!wq->wq_dev) 3349 return; 3350 3351 wq->wq_dev = NULL; 3352 device_unregister(&wq_dev->dev); 3353 } 3354 #else /* CONFIG_SYSFS */ 3355 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 3356 #endif /* CONFIG_SYSFS */ 3357 3358 /** 3359 * free_workqueue_attrs - free a workqueue_attrs 3360 * @attrs: workqueue_attrs to free 3361 * 3362 * Undo alloc_workqueue_attrs(). 3363 */ 3364 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3365 { 3366 if (attrs) { 3367 free_cpumask_var(attrs->cpumask); 3368 kfree(attrs); 3369 } 3370 } 3371 3372 /** 3373 * alloc_workqueue_attrs - allocate a workqueue_attrs 3374 * @gfp_mask: allocation mask to use 3375 * 3376 * Allocate a new workqueue_attrs, initialize with default settings and 3377 * return it. Returns NULL on failure. 3378 */ 3379 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask) 3380 { 3381 struct workqueue_attrs *attrs; 3382 3383 attrs = kzalloc(sizeof(*attrs), gfp_mask); 3384 if (!attrs) 3385 goto fail; 3386 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask)) 3387 goto fail; 3388 3389 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3390 return attrs; 3391 fail: 3392 free_workqueue_attrs(attrs); 3393 return NULL; 3394 } 3395 3396 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3397 const struct workqueue_attrs *from) 3398 { 3399 to->nice = from->nice; 3400 cpumask_copy(to->cpumask, from->cpumask); 3401 } 3402 3403 /* hash value of the content of @attr */ 3404 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3405 { 3406 u32 hash = 0; 3407 3408 hash = jhash_1word(attrs->nice, hash); 3409 hash = jhash(cpumask_bits(attrs->cpumask), 3410 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3411 return hash; 3412 } 3413 3414 /* content equality test */ 3415 static bool wqattrs_equal(const struct workqueue_attrs *a, 3416 const struct workqueue_attrs *b) 3417 { 3418 if (a->nice != b->nice) 3419 return false; 3420 if (!cpumask_equal(a->cpumask, b->cpumask)) 3421 return false; 3422 return true; 3423 } 3424 3425 /** 3426 * init_worker_pool - initialize a newly zalloc'd worker_pool 3427 * @pool: worker_pool to initialize 3428 * 3429 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs. 3430 * Returns 0 on success, -errno on failure. Even on failure, all fields 3431 * inside @pool proper are initialized and put_unbound_pool() can be called 3432 * on @pool safely to release it. 3433 */ 3434 static int init_worker_pool(struct worker_pool *pool) 3435 { 3436 spin_lock_init(&pool->lock); 3437 pool->id = -1; 3438 pool->cpu = -1; 3439 pool->node = NUMA_NO_NODE; 3440 pool->flags |= POOL_DISASSOCIATED; 3441 INIT_LIST_HEAD(&pool->worklist); 3442 INIT_LIST_HEAD(&pool->idle_list); 3443 hash_init(pool->busy_hash); 3444 3445 init_timer_deferrable(&pool->idle_timer); 3446 pool->idle_timer.function = idle_worker_timeout; 3447 pool->idle_timer.data = (unsigned long)pool; 3448 3449 setup_timer(&pool->mayday_timer, pool_mayday_timeout, 3450 (unsigned long)pool); 3451 3452 mutex_init(&pool->manager_arb); 3453 mutex_init(&pool->manager_mutex); 3454 idr_init(&pool->worker_idr); 3455 3456 INIT_HLIST_NODE(&pool->hash_node); 3457 pool->refcnt = 1; 3458 3459 /* shouldn't fail above this point */ 3460 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL); 3461 if (!pool->attrs) 3462 return -ENOMEM; 3463 return 0; 3464 } 3465 3466 static void rcu_free_pool(struct rcu_head *rcu) 3467 { 3468 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3469 3470 idr_destroy(&pool->worker_idr); 3471 free_workqueue_attrs(pool->attrs); 3472 kfree(pool); 3473 } 3474 3475 /** 3476 * put_unbound_pool - put a worker_pool 3477 * @pool: worker_pool to put 3478 * 3479 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU 3480 * safe manner. get_unbound_pool() calls this function on its failure path 3481 * and this function should be able to release pools which went through, 3482 * successfully or not, init_worker_pool(). 3483 * 3484 * Should be called with wq_pool_mutex held. 3485 */ 3486 static void put_unbound_pool(struct worker_pool *pool) 3487 { 3488 struct worker *worker; 3489 3490 lockdep_assert_held(&wq_pool_mutex); 3491 3492 if (--pool->refcnt) 3493 return; 3494 3495 /* sanity checks */ 3496 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) || 3497 WARN_ON(!list_empty(&pool->worklist))) 3498 return; 3499 3500 /* release id and unhash */ 3501 if (pool->id >= 0) 3502 idr_remove(&worker_pool_idr, pool->id); 3503 hash_del(&pool->hash_node); 3504 3505 /* 3506 * Become the manager and destroy all workers. Grabbing 3507 * manager_arb prevents @pool's workers from blocking on 3508 * manager_mutex. 3509 */ 3510 mutex_lock(&pool->manager_arb); 3511 mutex_lock(&pool->manager_mutex); 3512 spin_lock_irq(&pool->lock); 3513 3514 while ((worker = first_worker(pool))) 3515 destroy_worker(worker); 3516 WARN_ON(pool->nr_workers || pool->nr_idle); 3517 3518 spin_unlock_irq(&pool->lock); 3519 mutex_unlock(&pool->manager_mutex); 3520 mutex_unlock(&pool->manager_arb); 3521 3522 /* shut down the timers */ 3523 del_timer_sync(&pool->idle_timer); 3524 del_timer_sync(&pool->mayday_timer); 3525 3526 /* sched-RCU protected to allow dereferences from get_work_pool() */ 3527 call_rcu_sched(&pool->rcu, rcu_free_pool); 3528 } 3529 3530 /** 3531 * get_unbound_pool - get a worker_pool with the specified attributes 3532 * @attrs: the attributes of the worker_pool to get 3533 * 3534 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3535 * reference count and return it. If there already is a matching 3536 * worker_pool, it will be used; otherwise, this function attempts to 3537 * create a new one. On failure, returns NULL. 3538 * 3539 * Should be called with wq_pool_mutex held. 3540 */ 3541 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3542 { 3543 u32 hash = wqattrs_hash(attrs); 3544 struct worker_pool *pool; 3545 int node; 3546 3547 lockdep_assert_held(&wq_pool_mutex); 3548 3549 /* do we already have a matching pool? */ 3550 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3551 if (wqattrs_equal(pool->attrs, attrs)) { 3552 pool->refcnt++; 3553 goto out_unlock; 3554 } 3555 } 3556 3557 /* nope, create a new one */ 3558 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 3559 if (!pool || init_worker_pool(pool) < 0) 3560 goto fail; 3561 3562 if (workqueue_freezing) 3563 pool->flags |= POOL_FREEZING; 3564 3565 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3566 copy_workqueue_attrs(pool->attrs, attrs); 3567 3568 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3569 if (wq_numa_enabled) { 3570 for_each_node(node) { 3571 if (cpumask_subset(pool->attrs->cpumask, 3572 wq_numa_possible_cpumask[node])) { 3573 pool->node = node; 3574 break; 3575 } 3576 } 3577 } 3578 3579 if (worker_pool_assign_id(pool) < 0) 3580 goto fail; 3581 3582 /* create and start the initial worker */ 3583 if (create_and_start_worker(pool) < 0) 3584 goto fail; 3585 3586 /* install */ 3587 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3588 out_unlock: 3589 return pool; 3590 fail: 3591 if (pool) 3592 put_unbound_pool(pool); 3593 return NULL; 3594 } 3595 3596 static void rcu_free_pwq(struct rcu_head *rcu) 3597 { 3598 kmem_cache_free(pwq_cache, 3599 container_of(rcu, struct pool_workqueue, rcu)); 3600 } 3601 3602 /* 3603 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3604 * and needs to be destroyed. 3605 */ 3606 static void pwq_unbound_release_workfn(struct work_struct *work) 3607 { 3608 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3609 unbound_release_work); 3610 struct workqueue_struct *wq = pwq->wq; 3611 struct worker_pool *pool = pwq->pool; 3612 bool is_last; 3613 3614 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3615 return; 3616 3617 /* 3618 * Unlink @pwq. Synchronization against wq->mutex isn't strictly 3619 * necessary on release but do it anyway. It's easier to verify 3620 * and consistent with the linking path. 3621 */ 3622 mutex_lock(&wq->mutex); 3623 list_del_rcu(&pwq->pwqs_node); 3624 is_last = list_empty(&wq->pwqs); 3625 mutex_unlock(&wq->mutex); 3626 3627 mutex_lock(&wq_pool_mutex); 3628 put_unbound_pool(pool); 3629 mutex_unlock(&wq_pool_mutex); 3630 3631 call_rcu_sched(&pwq->rcu, rcu_free_pwq); 3632 3633 /* 3634 * If we're the last pwq going away, @wq is already dead and no one 3635 * is gonna access it anymore. Free it. 3636 */ 3637 if (is_last) { 3638 free_workqueue_attrs(wq->unbound_attrs); 3639 kfree(wq); 3640 } 3641 } 3642 3643 /** 3644 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3645 * @pwq: target pool_workqueue 3646 * 3647 * If @pwq isn't freezing, set @pwq->max_active to the associated 3648 * workqueue's saved_max_active and activate delayed work items 3649 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3650 */ 3651 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3652 { 3653 struct workqueue_struct *wq = pwq->wq; 3654 bool freezable = wq->flags & WQ_FREEZABLE; 3655 3656 /* for @wq->saved_max_active */ 3657 lockdep_assert_held(&wq->mutex); 3658 3659 /* fast exit for non-freezable wqs */ 3660 if (!freezable && pwq->max_active == wq->saved_max_active) 3661 return; 3662 3663 spin_lock_irq(&pwq->pool->lock); 3664 3665 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) { 3666 pwq->max_active = wq->saved_max_active; 3667 3668 while (!list_empty(&pwq->delayed_works) && 3669 pwq->nr_active < pwq->max_active) 3670 pwq_activate_first_delayed(pwq); 3671 3672 /* 3673 * Need to kick a worker after thawed or an unbound wq's 3674 * max_active is bumped. It's a slow path. Do it always. 3675 */ 3676 wake_up_worker(pwq->pool); 3677 } else { 3678 pwq->max_active = 0; 3679 } 3680 3681 spin_unlock_irq(&pwq->pool->lock); 3682 } 3683 3684 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3685 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3686 struct worker_pool *pool) 3687 { 3688 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3689 3690 memset(pwq, 0, sizeof(*pwq)); 3691 3692 pwq->pool = pool; 3693 pwq->wq = wq; 3694 pwq->flush_color = -1; 3695 pwq->refcnt = 1; 3696 INIT_LIST_HEAD(&pwq->delayed_works); 3697 INIT_LIST_HEAD(&pwq->pwqs_node); 3698 INIT_LIST_HEAD(&pwq->mayday_node); 3699 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3700 } 3701 3702 /* sync @pwq with the current state of its associated wq and link it */ 3703 static void link_pwq(struct pool_workqueue *pwq) 3704 { 3705 struct workqueue_struct *wq = pwq->wq; 3706 3707 lockdep_assert_held(&wq->mutex); 3708 3709 /* may be called multiple times, ignore if already linked */ 3710 if (!list_empty(&pwq->pwqs_node)) 3711 return; 3712 3713 /* 3714 * Set the matching work_color. This is synchronized with 3715 * wq->mutex to avoid confusing flush_workqueue(). 3716 */ 3717 pwq->work_color = wq->work_color; 3718 3719 /* sync max_active to the current setting */ 3720 pwq_adjust_max_active(pwq); 3721 3722 /* link in @pwq */ 3723 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3724 } 3725 3726 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3727 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3728 const struct workqueue_attrs *attrs) 3729 { 3730 struct worker_pool *pool; 3731 struct pool_workqueue *pwq; 3732 3733 lockdep_assert_held(&wq_pool_mutex); 3734 3735 pool = get_unbound_pool(attrs); 3736 if (!pool) 3737 return NULL; 3738 3739 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3740 if (!pwq) { 3741 put_unbound_pool(pool); 3742 return NULL; 3743 } 3744 3745 init_pwq(pwq, wq, pool); 3746 return pwq; 3747 } 3748 3749 /* undo alloc_unbound_pwq(), used only in the error path */ 3750 static void free_unbound_pwq(struct pool_workqueue *pwq) 3751 { 3752 lockdep_assert_held(&wq_pool_mutex); 3753 3754 if (pwq) { 3755 put_unbound_pool(pwq->pool); 3756 kmem_cache_free(pwq_cache, pwq); 3757 } 3758 } 3759 3760 /** 3761 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node 3762 * @attrs: the wq_attrs of interest 3763 * @node: the target NUMA node 3764 * @cpu_going_down: if >= 0, the CPU to consider as offline 3765 * @cpumask: outarg, the resulting cpumask 3766 * 3767 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3768 * @cpu_going_down is >= 0, that cpu is considered offline during 3769 * calculation. The result is stored in @cpumask. This function returns 3770 * %true if the resulting @cpumask is different from @attrs->cpumask, 3771 * %false if equal. 3772 * 3773 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3774 * enabled and @node has online CPUs requested by @attrs, the returned 3775 * cpumask is the intersection of the possible CPUs of @node and 3776 * @attrs->cpumask. 3777 * 3778 * The caller is responsible for ensuring that the cpumask of @node stays 3779 * stable. 3780 */ 3781 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3782 int cpu_going_down, cpumask_t *cpumask) 3783 { 3784 if (!wq_numa_enabled || attrs->no_numa) 3785 goto use_dfl; 3786 3787 /* does @node have any online CPUs @attrs wants? */ 3788 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3789 if (cpu_going_down >= 0) 3790 cpumask_clear_cpu(cpu_going_down, cpumask); 3791 3792 if (cpumask_empty(cpumask)) 3793 goto use_dfl; 3794 3795 /* yeap, return possible CPUs in @node that @attrs wants */ 3796 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3797 return !cpumask_equal(cpumask, attrs->cpumask); 3798 3799 use_dfl: 3800 cpumask_copy(cpumask, attrs->cpumask); 3801 return false; 3802 } 3803 3804 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3805 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3806 int node, 3807 struct pool_workqueue *pwq) 3808 { 3809 struct pool_workqueue *old_pwq; 3810 3811 lockdep_assert_held(&wq->mutex); 3812 3813 /* link_pwq() can handle duplicate calls */ 3814 link_pwq(pwq); 3815 3816 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3817 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3818 return old_pwq; 3819 } 3820 3821 /** 3822 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 3823 * @wq: the target workqueue 3824 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 3825 * 3826 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 3827 * machines, this function maps a separate pwq to each NUMA node with 3828 * possibles CPUs in @attrs->cpumask so that work items are affine to the 3829 * NUMA node it was issued on. Older pwqs are released as in-flight work 3830 * items finish. Note that a work item which repeatedly requeues itself 3831 * back-to-back will stay on its current pwq. 3832 * 3833 * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on 3834 * failure. 3835 */ 3836 int apply_workqueue_attrs(struct workqueue_struct *wq, 3837 const struct workqueue_attrs *attrs) 3838 { 3839 struct workqueue_attrs *new_attrs, *tmp_attrs; 3840 struct pool_workqueue **pwq_tbl, *dfl_pwq; 3841 int node, ret; 3842 3843 /* only unbound workqueues can change attributes */ 3844 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 3845 return -EINVAL; 3846 3847 /* creating multiple pwqs breaks ordering guarantee */ 3848 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))) 3849 return -EINVAL; 3850 3851 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL); 3852 new_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3853 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3854 if (!pwq_tbl || !new_attrs || !tmp_attrs) 3855 goto enomem; 3856 3857 /* make a copy of @attrs and sanitize it */ 3858 copy_workqueue_attrs(new_attrs, attrs); 3859 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3860 3861 /* 3862 * We may create multiple pwqs with differing cpumasks. Make a 3863 * copy of @new_attrs which will be modified and used to obtain 3864 * pools. 3865 */ 3866 copy_workqueue_attrs(tmp_attrs, new_attrs); 3867 3868 /* 3869 * CPUs should stay stable across pwq creations and installations. 3870 * Pin CPUs, determine the target cpumask for each node and create 3871 * pwqs accordingly. 3872 */ 3873 get_online_cpus(); 3874 3875 mutex_lock(&wq_pool_mutex); 3876 3877 /* 3878 * If something goes wrong during CPU up/down, we'll fall back to 3879 * the default pwq covering whole @attrs->cpumask. Always create 3880 * it even if we don't use it immediately. 3881 */ 3882 dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3883 if (!dfl_pwq) 3884 goto enomem_pwq; 3885 3886 for_each_node(node) { 3887 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) { 3888 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3889 if (!pwq_tbl[node]) 3890 goto enomem_pwq; 3891 } else { 3892 dfl_pwq->refcnt++; 3893 pwq_tbl[node] = dfl_pwq; 3894 } 3895 } 3896 3897 mutex_unlock(&wq_pool_mutex); 3898 3899 /* all pwqs have been created successfully, let's install'em */ 3900 mutex_lock(&wq->mutex); 3901 3902 copy_workqueue_attrs(wq->unbound_attrs, new_attrs); 3903 3904 /* save the previous pwq and install the new one */ 3905 for_each_node(node) 3906 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]); 3907 3908 /* @dfl_pwq might not have been used, ensure it's linked */ 3909 link_pwq(dfl_pwq); 3910 swap(wq->dfl_pwq, dfl_pwq); 3911 3912 mutex_unlock(&wq->mutex); 3913 3914 /* put the old pwqs */ 3915 for_each_node(node) 3916 put_pwq_unlocked(pwq_tbl[node]); 3917 put_pwq_unlocked(dfl_pwq); 3918 3919 put_online_cpus(); 3920 ret = 0; 3921 /* fall through */ 3922 out_free: 3923 free_workqueue_attrs(tmp_attrs); 3924 free_workqueue_attrs(new_attrs); 3925 kfree(pwq_tbl); 3926 return ret; 3927 3928 enomem_pwq: 3929 free_unbound_pwq(dfl_pwq); 3930 for_each_node(node) 3931 if (pwq_tbl && pwq_tbl[node] != dfl_pwq) 3932 free_unbound_pwq(pwq_tbl[node]); 3933 mutex_unlock(&wq_pool_mutex); 3934 put_online_cpus(); 3935 enomem: 3936 ret = -ENOMEM; 3937 goto out_free; 3938 } 3939 3940 /** 3941 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 3942 * @wq: the target workqueue 3943 * @cpu: the CPU coming up or going down 3944 * @online: whether @cpu is coming up or going down 3945 * 3946 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 3947 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 3948 * @wq accordingly. 3949 * 3950 * If NUMA affinity can't be adjusted due to memory allocation failure, it 3951 * falls back to @wq->dfl_pwq which may not be optimal but is always 3952 * correct. 3953 * 3954 * Note that when the last allowed CPU of a NUMA node goes offline for a 3955 * workqueue with a cpumask spanning multiple nodes, the workers which were 3956 * already executing the work items for the workqueue will lose their CPU 3957 * affinity and may execute on any CPU. This is similar to how per-cpu 3958 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 3959 * affinity, it's the user's responsibility to flush the work item from 3960 * CPU_DOWN_PREPARE. 3961 */ 3962 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 3963 bool online) 3964 { 3965 int node = cpu_to_node(cpu); 3966 int cpu_off = online ? -1 : cpu; 3967 struct pool_workqueue *old_pwq = NULL, *pwq; 3968 struct workqueue_attrs *target_attrs; 3969 cpumask_t *cpumask; 3970 3971 lockdep_assert_held(&wq_pool_mutex); 3972 3973 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND)) 3974 return; 3975 3976 /* 3977 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 3978 * Let's use a preallocated one. The following buf is protected by 3979 * CPU hotplug exclusion. 3980 */ 3981 target_attrs = wq_update_unbound_numa_attrs_buf; 3982 cpumask = target_attrs->cpumask; 3983 3984 mutex_lock(&wq->mutex); 3985 if (wq->unbound_attrs->no_numa) 3986 goto out_unlock; 3987 3988 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 3989 pwq = unbound_pwq_by_node(wq, node); 3990 3991 /* 3992 * Let's determine what needs to be done. If the target cpumask is 3993 * different from wq's, we need to compare it to @pwq's and create 3994 * a new one if they don't match. If the target cpumask equals 3995 * wq's, the default pwq should be used. If @pwq is already the 3996 * default one, nothing to do; otherwise, install the default one. 3997 */ 3998 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) { 3999 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 4000 goto out_unlock; 4001 } else { 4002 if (pwq == wq->dfl_pwq) 4003 goto out_unlock; 4004 else 4005 goto use_dfl_pwq; 4006 } 4007 4008 mutex_unlock(&wq->mutex); 4009 4010 /* create a new pwq */ 4011 pwq = alloc_unbound_pwq(wq, target_attrs); 4012 if (!pwq) { 4013 pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 4014 wq->name); 4015 goto out_unlock; 4016 } 4017 4018 /* 4019 * Install the new pwq. As this function is called only from CPU 4020 * hotplug callbacks and applying a new attrs is wrapped with 4021 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed 4022 * inbetween. 4023 */ 4024 mutex_lock(&wq->mutex); 4025 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 4026 goto out_unlock; 4027 4028 use_dfl_pwq: 4029 spin_lock_irq(&wq->dfl_pwq->pool->lock); 4030 get_pwq(wq->dfl_pwq); 4031 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 4032 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 4033 out_unlock: 4034 mutex_unlock(&wq->mutex); 4035 put_pwq_unlocked(old_pwq); 4036 } 4037 4038 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4039 { 4040 bool highpri = wq->flags & WQ_HIGHPRI; 4041 int cpu; 4042 4043 if (!(wq->flags & WQ_UNBOUND)) { 4044 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 4045 if (!wq->cpu_pwqs) 4046 return -ENOMEM; 4047 4048 for_each_possible_cpu(cpu) { 4049 struct pool_workqueue *pwq = 4050 per_cpu_ptr(wq->cpu_pwqs, cpu); 4051 struct worker_pool *cpu_pools = 4052 per_cpu(cpu_worker_pools, cpu); 4053 4054 init_pwq(pwq, wq, &cpu_pools[highpri]); 4055 4056 mutex_lock(&wq->mutex); 4057 link_pwq(pwq); 4058 mutex_unlock(&wq->mutex); 4059 } 4060 return 0; 4061 } else { 4062 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4063 } 4064 } 4065 4066 static int wq_clamp_max_active(int max_active, unsigned int flags, 4067 const char *name) 4068 { 4069 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 4070 4071 if (max_active < 1 || max_active > lim) 4072 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4073 max_active, name, 1, lim); 4074 4075 return clamp_val(max_active, 1, lim); 4076 } 4077 4078 struct workqueue_struct *__alloc_workqueue_key(const char *fmt, 4079 unsigned int flags, 4080 int max_active, 4081 struct lock_class_key *key, 4082 const char *lock_name, ...) 4083 { 4084 size_t tbl_size = 0; 4085 va_list args; 4086 struct workqueue_struct *wq; 4087 struct pool_workqueue *pwq; 4088 4089 /* allocate wq and format name */ 4090 if (flags & WQ_UNBOUND) 4091 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]); 4092 4093 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4094 if (!wq) 4095 return NULL; 4096 4097 if (flags & WQ_UNBOUND) { 4098 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL); 4099 if (!wq->unbound_attrs) 4100 goto err_free_wq; 4101 } 4102 4103 va_start(args, lock_name); 4104 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4105 va_end(args); 4106 4107 max_active = max_active ?: WQ_DFL_ACTIVE; 4108 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4109 4110 /* init wq */ 4111 wq->flags = flags; 4112 wq->saved_max_active = max_active; 4113 mutex_init(&wq->mutex); 4114 atomic_set(&wq->nr_pwqs_to_flush, 0); 4115 INIT_LIST_HEAD(&wq->pwqs); 4116 INIT_LIST_HEAD(&wq->flusher_queue); 4117 INIT_LIST_HEAD(&wq->flusher_overflow); 4118 INIT_LIST_HEAD(&wq->maydays); 4119 4120 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 4121 INIT_LIST_HEAD(&wq->list); 4122 4123 if (alloc_and_link_pwqs(wq) < 0) 4124 goto err_free_wq; 4125 4126 /* 4127 * Workqueues which may be used during memory reclaim should 4128 * have a rescuer to guarantee forward progress. 4129 */ 4130 if (flags & WQ_MEM_RECLAIM) { 4131 struct worker *rescuer; 4132 4133 rescuer = alloc_worker(); 4134 if (!rescuer) 4135 goto err_destroy; 4136 4137 rescuer->rescue_wq = wq; 4138 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", 4139 wq->name); 4140 if (IS_ERR(rescuer->task)) { 4141 kfree(rescuer); 4142 goto err_destroy; 4143 } 4144 4145 wq->rescuer = rescuer; 4146 rescuer->task->flags |= PF_NO_SETAFFINITY; 4147 wake_up_process(rescuer->task); 4148 } 4149 4150 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4151 goto err_destroy; 4152 4153 /* 4154 * wq_pool_mutex protects global freeze state and workqueues list. 4155 * Grab it, adjust max_active and add the new @wq to workqueues 4156 * list. 4157 */ 4158 mutex_lock(&wq_pool_mutex); 4159 4160 mutex_lock(&wq->mutex); 4161 for_each_pwq(pwq, wq) 4162 pwq_adjust_max_active(pwq); 4163 mutex_unlock(&wq->mutex); 4164 4165 list_add(&wq->list, &workqueues); 4166 4167 mutex_unlock(&wq_pool_mutex); 4168 4169 return wq; 4170 4171 err_free_wq: 4172 free_workqueue_attrs(wq->unbound_attrs); 4173 kfree(wq); 4174 return NULL; 4175 err_destroy: 4176 destroy_workqueue(wq); 4177 return NULL; 4178 } 4179 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 4180 4181 /** 4182 * destroy_workqueue - safely terminate a workqueue 4183 * @wq: target workqueue 4184 * 4185 * Safely destroy a workqueue. All work currently pending will be done first. 4186 */ 4187 void destroy_workqueue(struct workqueue_struct *wq) 4188 { 4189 struct pool_workqueue *pwq; 4190 int node; 4191 4192 /* drain it before proceeding with destruction */ 4193 drain_workqueue(wq); 4194 4195 /* sanity checks */ 4196 mutex_lock(&wq->mutex); 4197 for_each_pwq(pwq, wq) { 4198 int i; 4199 4200 for (i = 0; i < WORK_NR_COLORS; i++) { 4201 if (WARN_ON(pwq->nr_in_flight[i])) { 4202 mutex_unlock(&wq->mutex); 4203 return; 4204 } 4205 } 4206 4207 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) || 4208 WARN_ON(pwq->nr_active) || 4209 WARN_ON(!list_empty(&pwq->delayed_works))) { 4210 mutex_unlock(&wq->mutex); 4211 return; 4212 } 4213 } 4214 mutex_unlock(&wq->mutex); 4215 4216 /* 4217 * wq list is used to freeze wq, remove from list after 4218 * flushing is complete in case freeze races us. 4219 */ 4220 mutex_lock(&wq_pool_mutex); 4221 list_del_init(&wq->list); 4222 mutex_unlock(&wq_pool_mutex); 4223 4224 workqueue_sysfs_unregister(wq); 4225 4226 if (wq->rescuer) { 4227 kthread_stop(wq->rescuer->task); 4228 kfree(wq->rescuer); 4229 wq->rescuer = NULL; 4230 } 4231 4232 if (!(wq->flags & WQ_UNBOUND)) { 4233 /* 4234 * The base ref is never dropped on per-cpu pwqs. Directly 4235 * free the pwqs and wq. 4236 */ 4237 free_percpu(wq->cpu_pwqs); 4238 kfree(wq); 4239 } else { 4240 /* 4241 * We're the sole accessor of @wq at this point. Directly 4242 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4243 * @wq will be freed when the last pwq is released. 4244 */ 4245 for_each_node(node) { 4246 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4247 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4248 put_pwq_unlocked(pwq); 4249 } 4250 4251 /* 4252 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4253 * put. Don't access it afterwards. 4254 */ 4255 pwq = wq->dfl_pwq; 4256 wq->dfl_pwq = NULL; 4257 put_pwq_unlocked(pwq); 4258 } 4259 } 4260 EXPORT_SYMBOL_GPL(destroy_workqueue); 4261 4262 /** 4263 * workqueue_set_max_active - adjust max_active of a workqueue 4264 * @wq: target workqueue 4265 * @max_active: new max_active value. 4266 * 4267 * Set max_active of @wq to @max_active. 4268 * 4269 * CONTEXT: 4270 * Don't call from IRQ context. 4271 */ 4272 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4273 { 4274 struct pool_workqueue *pwq; 4275 4276 /* disallow meddling with max_active for ordered workqueues */ 4277 if (WARN_ON(wq->flags & __WQ_ORDERED)) 4278 return; 4279 4280 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4281 4282 mutex_lock(&wq->mutex); 4283 4284 wq->saved_max_active = max_active; 4285 4286 for_each_pwq(pwq, wq) 4287 pwq_adjust_max_active(pwq); 4288 4289 mutex_unlock(&wq->mutex); 4290 } 4291 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4292 4293 /** 4294 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4295 * 4296 * Determine whether %current is a workqueue rescuer. Can be used from 4297 * work functions to determine whether it's being run off the rescuer task. 4298 */ 4299 bool current_is_workqueue_rescuer(void) 4300 { 4301 struct worker *worker = current_wq_worker(); 4302 4303 return worker && worker->rescue_wq; 4304 } 4305 4306 /** 4307 * workqueue_congested - test whether a workqueue is congested 4308 * @cpu: CPU in question 4309 * @wq: target workqueue 4310 * 4311 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4312 * no synchronization around this function and the test result is 4313 * unreliable and only useful as advisory hints or for debugging. 4314 * 4315 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4316 * Note that both per-cpu and unbound workqueues may be associated with 4317 * multiple pool_workqueues which have separate congested states. A 4318 * workqueue being congested on one CPU doesn't mean the workqueue is also 4319 * contested on other CPUs / NUMA nodes. 4320 * 4321 * RETURNS: 4322 * %true if congested, %false otherwise. 4323 */ 4324 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4325 { 4326 struct pool_workqueue *pwq; 4327 bool ret; 4328 4329 rcu_read_lock_sched(); 4330 4331 if (cpu == WORK_CPU_UNBOUND) 4332 cpu = smp_processor_id(); 4333 4334 if (!(wq->flags & WQ_UNBOUND)) 4335 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4336 else 4337 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4338 4339 ret = !list_empty(&pwq->delayed_works); 4340 rcu_read_unlock_sched(); 4341 4342 return ret; 4343 } 4344 EXPORT_SYMBOL_GPL(workqueue_congested); 4345 4346 /** 4347 * work_busy - test whether a work is currently pending or running 4348 * @work: the work to be tested 4349 * 4350 * Test whether @work is currently pending or running. There is no 4351 * synchronization around this function and the test result is 4352 * unreliable and only useful as advisory hints or for debugging. 4353 * 4354 * RETURNS: 4355 * OR'd bitmask of WORK_BUSY_* bits. 4356 */ 4357 unsigned int work_busy(struct work_struct *work) 4358 { 4359 struct worker_pool *pool; 4360 unsigned long flags; 4361 unsigned int ret = 0; 4362 4363 if (work_pending(work)) 4364 ret |= WORK_BUSY_PENDING; 4365 4366 local_irq_save(flags); 4367 pool = get_work_pool(work); 4368 if (pool) { 4369 spin_lock(&pool->lock); 4370 if (find_worker_executing_work(pool, work)) 4371 ret |= WORK_BUSY_RUNNING; 4372 spin_unlock(&pool->lock); 4373 } 4374 local_irq_restore(flags); 4375 4376 return ret; 4377 } 4378 EXPORT_SYMBOL_GPL(work_busy); 4379 4380 /** 4381 * set_worker_desc - set description for the current work item 4382 * @fmt: printf-style format string 4383 * @...: arguments for the format string 4384 * 4385 * This function can be called by a running work function to describe what 4386 * the work item is about. If the worker task gets dumped, this 4387 * information will be printed out together to help debugging. The 4388 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4389 */ 4390 void set_worker_desc(const char *fmt, ...) 4391 { 4392 struct worker *worker = current_wq_worker(); 4393 va_list args; 4394 4395 if (worker) { 4396 va_start(args, fmt); 4397 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4398 va_end(args); 4399 worker->desc_valid = true; 4400 } 4401 } 4402 4403 /** 4404 * print_worker_info - print out worker information and description 4405 * @log_lvl: the log level to use when printing 4406 * @task: target task 4407 * 4408 * If @task is a worker and currently executing a work item, print out the 4409 * name of the workqueue being serviced and worker description set with 4410 * set_worker_desc() by the currently executing work item. 4411 * 4412 * This function can be safely called on any task as long as the 4413 * task_struct itself is accessible. While safe, this function isn't 4414 * synchronized and may print out mixups or garbages of limited length. 4415 */ 4416 void print_worker_info(const char *log_lvl, struct task_struct *task) 4417 { 4418 work_func_t *fn = NULL; 4419 char name[WQ_NAME_LEN] = { }; 4420 char desc[WORKER_DESC_LEN] = { }; 4421 struct pool_workqueue *pwq = NULL; 4422 struct workqueue_struct *wq = NULL; 4423 bool desc_valid = false; 4424 struct worker *worker; 4425 4426 if (!(task->flags & PF_WQ_WORKER)) 4427 return; 4428 4429 /* 4430 * This function is called without any synchronization and @task 4431 * could be in any state. Be careful with dereferences. 4432 */ 4433 worker = probe_kthread_data(task); 4434 4435 /* 4436 * Carefully copy the associated workqueue's workfn and name. Keep 4437 * the original last '\0' in case the original contains garbage. 4438 */ 4439 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4440 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4441 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4442 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4443 4444 /* copy worker description */ 4445 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid)); 4446 if (desc_valid) 4447 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4448 4449 if (fn || name[0] || desc[0]) { 4450 printk("%sWorkqueue: %s %pf", log_lvl, name, fn); 4451 if (desc[0]) 4452 pr_cont(" (%s)", desc); 4453 pr_cont("\n"); 4454 } 4455 } 4456 4457 /* 4458 * CPU hotplug. 4459 * 4460 * There are two challenges in supporting CPU hotplug. Firstly, there 4461 * are a lot of assumptions on strong associations among work, pwq and 4462 * pool which make migrating pending and scheduled works very 4463 * difficult to implement without impacting hot paths. Secondly, 4464 * worker pools serve mix of short, long and very long running works making 4465 * blocked draining impractical. 4466 * 4467 * This is solved by allowing the pools to be disassociated from the CPU 4468 * running as an unbound one and allowing it to be reattached later if the 4469 * cpu comes back online. 4470 */ 4471 4472 static void wq_unbind_fn(struct work_struct *work) 4473 { 4474 int cpu = smp_processor_id(); 4475 struct worker_pool *pool; 4476 struct worker *worker; 4477 int wi; 4478 4479 for_each_cpu_worker_pool(pool, cpu) { 4480 WARN_ON_ONCE(cpu != smp_processor_id()); 4481 4482 mutex_lock(&pool->manager_mutex); 4483 spin_lock_irq(&pool->lock); 4484 4485 /* 4486 * We've blocked all manager operations. Make all workers 4487 * unbound and set DISASSOCIATED. Before this, all workers 4488 * except for the ones which are still executing works from 4489 * before the last CPU down must be on the cpu. After 4490 * this, they may become diasporas. 4491 */ 4492 for_each_pool_worker(worker, wi, pool) 4493 worker->flags |= WORKER_UNBOUND; 4494 4495 pool->flags |= POOL_DISASSOCIATED; 4496 4497 spin_unlock_irq(&pool->lock); 4498 mutex_unlock(&pool->manager_mutex); 4499 4500 /* 4501 * Call schedule() so that we cross rq->lock and thus can 4502 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4503 * This is necessary as scheduler callbacks may be invoked 4504 * from other cpus. 4505 */ 4506 schedule(); 4507 4508 /* 4509 * Sched callbacks are disabled now. Zap nr_running. 4510 * After this, nr_running stays zero and need_more_worker() 4511 * and keep_working() are always true as long as the 4512 * worklist is not empty. This pool now behaves as an 4513 * unbound (in terms of concurrency management) pool which 4514 * are served by workers tied to the pool. 4515 */ 4516 atomic_set(&pool->nr_running, 0); 4517 4518 /* 4519 * With concurrency management just turned off, a busy 4520 * worker blocking could lead to lengthy stalls. Kick off 4521 * unbound chain execution of currently pending work items. 4522 */ 4523 spin_lock_irq(&pool->lock); 4524 wake_up_worker(pool); 4525 spin_unlock_irq(&pool->lock); 4526 } 4527 } 4528 4529 /** 4530 * rebind_workers - rebind all workers of a pool to the associated CPU 4531 * @pool: pool of interest 4532 * 4533 * @pool->cpu is coming online. Rebind all workers to the CPU. 4534 */ 4535 static void rebind_workers(struct worker_pool *pool) 4536 { 4537 struct worker *worker; 4538 int wi; 4539 4540 lockdep_assert_held(&pool->manager_mutex); 4541 4542 /* 4543 * Restore CPU affinity of all workers. As all idle workers should 4544 * be on the run-queue of the associated CPU before any local 4545 * wake-ups for concurrency management happen, restore CPU affinty 4546 * of all workers first and then clear UNBOUND. As we're called 4547 * from CPU_ONLINE, the following shouldn't fail. 4548 */ 4549 for_each_pool_worker(worker, wi, pool) 4550 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4551 pool->attrs->cpumask) < 0); 4552 4553 spin_lock_irq(&pool->lock); 4554 4555 for_each_pool_worker(worker, wi, pool) { 4556 unsigned int worker_flags = worker->flags; 4557 4558 /* 4559 * A bound idle worker should actually be on the runqueue 4560 * of the associated CPU for local wake-ups targeting it to 4561 * work. Kick all idle workers so that they migrate to the 4562 * associated CPU. Doing this in the same loop as 4563 * replacing UNBOUND with REBOUND is safe as no worker will 4564 * be bound before @pool->lock is released. 4565 */ 4566 if (worker_flags & WORKER_IDLE) 4567 wake_up_process(worker->task); 4568 4569 /* 4570 * We want to clear UNBOUND but can't directly call 4571 * worker_clr_flags() or adjust nr_running. Atomically 4572 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4573 * @worker will clear REBOUND using worker_clr_flags() when 4574 * it initiates the next execution cycle thus restoring 4575 * concurrency management. Note that when or whether 4576 * @worker clears REBOUND doesn't affect correctness. 4577 * 4578 * ACCESS_ONCE() is necessary because @worker->flags may be 4579 * tested without holding any lock in 4580 * wq_worker_waking_up(). Without it, NOT_RUNNING test may 4581 * fail incorrectly leading to premature concurrency 4582 * management operations. 4583 */ 4584 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4585 worker_flags |= WORKER_REBOUND; 4586 worker_flags &= ~WORKER_UNBOUND; 4587 ACCESS_ONCE(worker->flags) = worker_flags; 4588 } 4589 4590 spin_unlock_irq(&pool->lock); 4591 } 4592 4593 /** 4594 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4595 * @pool: unbound pool of interest 4596 * @cpu: the CPU which is coming up 4597 * 4598 * An unbound pool may end up with a cpumask which doesn't have any online 4599 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4600 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4601 * online CPU before, cpus_allowed of all its workers should be restored. 4602 */ 4603 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 4604 { 4605 static cpumask_t cpumask; 4606 struct worker *worker; 4607 int wi; 4608 4609 lockdep_assert_held(&pool->manager_mutex); 4610 4611 /* is @cpu allowed for @pool? */ 4612 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 4613 return; 4614 4615 /* is @cpu the only online CPU? */ 4616 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 4617 if (cpumask_weight(&cpumask) != 1) 4618 return; 4619 4620 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 4621 for_each_pool_worker(worker, wi, pool) 4622 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4623 pool->attrs->cpumask) < 0); 4624 } 4625 4626 /* 4627 * Workqueues should be brought up before normal priority CPU notifiers. 4628 * This will be registered high priority CPU notifier. 4629 */ 4630 static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb, 4631 unsigned long action, 4632 void *hcpu) 4633 { 4634 int cpu = (unsigned long)hcpu; 4635 struct worker_pool *pool; 4636 struct workqueue_struct *wq; 4637 int pi; 4638 4639 switch (action & ~CPU_TASKS_FROZEN) { 4640 case CPU_UP_PREPARE: 4641 for_each_cpu_worker_pool(pool, cpu) { 4642 if (pool->nr_workers) 4643 continue; 4644 if (create_and_start_worker(pool) < 0) 4645 return NOTIFY_BAD; 4646 } 4647 break; 4648 4649 case CPU_DOWN_FAILED: 4650 case CPU_ONLINE: 4651 mutex_lock(&wq_pool_mutex); 4652 4653 for_each_pool(pool, pi) { 4654 mutex_lock(&pool->manager_mutex); 4655 4656 if (pool->cpu == cpu) { 4657 spin_lock_irq(&pool->lock); 4658 pool->flags &= ~POOL_DISASSOCIATED; 4659 spin_unlock_irq(&pool->lock); 4660 4661 rebind_workers(pool); 4662 } else if (pool->cpu < 0) { 4663 restore_unbound_workers_cpumask(pool, cpu); 4664 } 4665 4666 mutex_unlock(&pool->manager_mutex); 4667 } 4668 4669 /* update NUMA affinity of unbound workqueues */ 4670 list_for_each_entry(wq, &workqueues, list) 4671 wq_update_unbound_numa(wq, cpu, true); 4672 4673 mutex_unlock(&wq_pool_mutex); 4674 break; 4675 } 4676 return NOTIFY_OK; 4677 } 4678 4679 /* 4680 * Workqueues should be brought down after normal priority CPU notifiers. 4681 * This will be registered as low priority CPU notifier. 4682 */ 4683 static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb, 4684 unsigned long action, 4685 void *hcpu) 4686 { 4687 int cpu = (unsigned long)hcpu; 4688 struct work_struct unbind_work; 4689 struct workqueue_struct *wq; 4690 4691 switch (action & ~CPU_TASKS_FROZEN) { 4692 case CPU_DOWN_PREPARE: 4693 /* unbinding per-cpu workers should happen on the local CPU */ 4694 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn); 4695 queue_work_on(cpu, system_highpri_wq, &unbind_work); 4696 4697 /* update NUMA affinity of unbound workqueues */ 4698 mutex_lock(&wq_pool_mutex); 4699 list_for_each_entry(wq, &workqueues, list) 4700 wq_update_unbound_numa(wq, cpu, false); 4701 mutex_unlock(&wq_pool_mutex); 4702 4703 /* wait for per-cpu unbinding to finish */ 4704 flush_work(&unbind_work); 4705 break; 4706 } 4707 return NOTIFY_OK; 4708 } 4709 4710 #ifdef CONFIG_SMP 4711 4712 struct work_for_cpu { 4713 struct work_struct work; 4714 long (*fn)(void *); 4715 void *arg; 4716 long ret; 4717 }; 4718 4719 static void work_for_cpu_fn(struct work_struct *work) 4720 { 4721 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 4722 4723 wfc->ret = wfc->fn(wfc->arg); 4724 } 4725 4726 /** 4727 * work_on_cpu - run a function in user context on a particular cpu 4728 * @cpu: the cpu to run on 4729 * @fn: the function to run 4730 * @arg: the function arg 4731 * 4732 * This will return the value @fn returns. 4733 * It is up to the caller to ensure that the cpu doesn't go offline. 4734 * The caller must not hold any locks which would prevent @fn from completing. 4735 */ 4736 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 4737 { 4738 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 4739 4740 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 4741 schedule_work_on(cpu, &wfc.work); 4742 flush_work(&wfc.work); 4743 return wfc.ret; 4744 } 4745 EXPORT_SYMBOL_GPL(work_on_cpu); 4746 #endif /* CONFIG_SMP */ 4747 4748 #ifdef CONFIG_FREEZER 4749 4750 /** 4751 * freeze_workqueues_begin - begin freezing workqueues 4752 * 4753 * Start freezing workqueues. After this function returns, all freezable 4754 * workqueues will queue new works to their delayed_works list instead of 4755 * pool->worklist. 4756 * 4757 * CONTEXT: 4758 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4759 */ 4760 void freeze_workqueues_begin(void) 4761 { 4762 struct worker_pool *pool; 4763 struct workqueue_struct *wq; 4764 struct pool_workqueue *pwq; 4765 int pi; 4766 4767 mutex_lock(&wq_pool_mutex); 4768 4769 WARN_ON_ONCE(workqueue_freezing); 4770 workqueue_freezing = true; 4771 4772 /* set FREEZING */ 4773 for_each_pool(pool, pi) { 4774 spin_lock_irq(&pool->lock); 4775 WARN_ON_ONCE(pool->flags & POOL_FREEZING); 4776 pool->flags |= POOL_FREEZING; 4777 spin_unlock_irq(&pool->lock); 4778 } 4779 4780 list_for_each_entry(wq, &workqueues, list) { 4781 mutex_lock(&wq->mutex); 4782 for_each_pwq(pwq, wq) 4783 pwq_adjust_max_active(pwq); 4784 mutex_unlock(&wq->mutex); 4785 } 4786 4787 mutex_unlock(&wq_pool_mutex); 4788 } 4789 4790 /** 4791 * freeze_workqueues_busy - are freezable workqueues still busy? 4792 * 4793 * Check whether freezing is complete. This function must be called 4794 * between freeze_workqueues_begin() and thaw_workqueues(). 4795 * 4796 * CONTEXT: 4797 * Grabs and releases wq_pool_mutex. 4798 * 4799 * RETURNS: 4800 * %true if some freezable workqueues are still busy. %false if freezing 4801 * is complete. 4802 */ 4803 bool freeze_workqueues_busy(void) 4804 { 4805 bool busy = false; 4806 struct workqueue_struct *wq; 4807 struct pool_workqueue *pwq; 4808 4809 mutex_lock(&wq_pool_mutex); 4810 4811 WARN_ON_ONCE(!workqueue_freezing); 4812 4813 list_for_each_entry(wq, &workqueues, list) { 4814 if (!(wq->flags & WQ_FREEZABLE)) 4815 continue; 4816 /* 4817 * nr_active is monotonically decreasing. It's safe 4818 * to peek without lock. 4819 */ 4820 rcu_read_lock_sched(); 4821 for_each_pwq(pwq, wq) { 4822 WARN_ON_ONCE(pwq->nr_active < 0); 4823 if (pwq->nr_active) { 4824 busy = true; 4825 rcu_read_unlock_sched(); 4826 goto out_unlock; 4827 } 4828 } 4829 rcu_read_unlock_sched(); 4830 } 4831 out_unlock: 4832 mutex_unlock(&wq_pool_mutex); 4833 return busy; 4834 } 4835 4836 /** 4837 * thaw_workqueues - thaw workqueues 4838 * 4839 * Thaw workqueues. Normal queueing is restored and all collected 4840 * frozen works are transferred to their respective pool worklists. 4841 * 4842 * CONTEXT: 4843 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4844 */ 4845 void thaw_workqueues(void) 4846 { 4847 struct workqueue_struct *wq; 4848 struct pool_workqueue *pwq; 4849 struct worker_pool *pool; 4850 int pi; 4851 4852 mutex_lock(&wq_pool_mutex); 4853 4854 if (!workqueue_freezing) 4855 goto out_unlock; 4856 4857 /* clear FREEZING */ 4858 for_each_pool(pool, pi) { 4859 spin_lock_irq(&pool->lock); 4860 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING)); 4861 pool->flags &= ~POOL_FREEZING; 4862 spin_unlock_irq(&pool->lock); 4863 } 4864 4865 /* restore max_active and repopulate worklist */ 4866 list_for_each_entry(wq, &workqueues, list) { 4867 mutex_lock(&wq->mutex); 4868 for_each_pwq(pwq, wq) 4869 pwq_adjust_max_active(pwq); 4870 mutex_unlock(&wq->mutex); 4871 } 4872 4873 workqueue_freezing = false; 4874 out_unlock: 4875 mutex_unlock(&wq_pool_mutex); 4876 } 4877 #endif /* CONFIG_FREEZER */ 4878 4879 static void __init wq_numa_init(void) 4880 { 4881 cpumask_var_t *tbl; 4882 int node, cpu; 4883 4884 /* determine NUMA pwq table len - highest node id + 1 */ 4885 for_each_node(node) 4886 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1); 4887 4888 if (num_possible_nodes() <= 1) 4889 return; 4890 4891 if (wq_disable_numa) { 4892 pr_info("workqueue: NUMA affinity support disabled\n"); 4893 return; 4894 } 4895 4896 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL); 4897 BUG_ON(!wq_update_unbound_numa_attrs_buf); 4898 4899 /* 4900 * We want masks of possible CPUs of each node which isn't readily 4901 * available. Build one from cpu_to_node() which should have been 4902 * fully initialized by now. 4903 */ 4904 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL); 4905 BUG_ON(!tbl); 4906 4907 for_each_node(node) 4908 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 4909 node_online(node) ? node : NUMA_NO_NODE)); 4910 4911 for_each_possible_cpu(cpu) { 4912 node = cpu_to_node(cpu); 4913 if (WARN_ON(node == NUMA_NO_NODE)) { 4914 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 4915 /* happens iff arch is bonkers, let's just proceed */ 4916 return; 4917 } 4918 cpumask_set_cpu(cpu, tbl[node]); 4919 } 4920 4921 wq_numa_possible_cpumask = tbl; 4922 wq_numa_enabled = true; 4923 } 4924 4925 static int __init init_workqueues(void) 4926 { 4927 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 4928 int i, cpu; 4929 4930 /* make sure we have enough bits for OFFQ pool ID */ 4931 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) < 4932 WORK_CPU_END * NR_STD_WORKER_POOLS); 4933 4934 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 4935 4936 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 4937 4938 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP); 4939 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN); 4940 4941 wq_numa_init(); 4942 4943 /* initialize CPU pools */ 4944 for_each_possible_cpu(cpu) { 4945 struct worker_pool *pool; 4946 4947 i = 0; 4948 for_each_cpu_worker_pool(pool, cpu) { 4949 BUG_ON(init_worker_pool(pool)); 4950 pool->cpu = cpu; 4951 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 4952 pool->attrs->nice = std_nice[i++]; 4953 pool->node = cpu_to_node(cpu); 4954 4955 /* alloc pool ID */ 4956 mutex_lock(&wq_pool_mutex); 4957 BUG_ON(worker_pool_assign_id(pool)); 4958 mutex_unlock(&wq_pool_mutex); 4959 } 4960 } 4961 4962 /* create the initial worker */ 4963 for_each_online_cpu(cpu) { 4964 struct worker_pool *pool; 4965 4966 for_each_cpu_worker_pool(pool, cpu) { 4967 pool->flags &= ~POOL_DISASSOCIATED; 4968 BUG_ON(create_and_start_worker(pool) < 0); 4969 } 4970 } 4971 4972 /* create default unbound wq attrs */ 4973 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 4974 struct workqueue_attrs *attrs; 4975 4976 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 4977 attrs->nice = std_nice[i]; 4978 unbound_std_wq_attrs[i] = attrs; 4979 } 4980 4981 system_wq = alloc_workqueue("events", 0, 0); 4982 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 4983 system_long_wq = alloc_workqueue("events_long", 0, 0); 4984 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 4985 WQ_UNBOUND_MAX_ACTIVE); 4986 system_freezable_wq = alloc_workqueue("events_freezable", 4987 WQ_FREEZABLE, 0); 4988 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 4989 !system_unbound_wq || !system_freezable_wq); 4990 return 0; 4991 } 4992 early_initcall(init_workqueues); 4993