xref: /openbmc/linux/kernel/workqueue.c (revision cdfce539)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There is one worker pool for each CPU and
20  * one extra for works which are better served by workers which are
21  * not bound to any specific CPU.
22  *
23  * Please read Documentation/workqueue.txt for details.
24  */
25 
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/jhash.h>
45 #include <linux/hashtable.h>
46 #include <linux/rculist.h>
47 #include <linux/nodemask.h>
48 #include <linux/moduleparam.h>
49 #include <linux/uaccess.h>
50 
51 #include "workqueue_internal.h"
52 
53 enum {
54 	/*
55 	 * worker_pool flags
56 	 *
57 	 * A bound pool is either associated or disassociated with its CPU.
58 	 * While associated (!DISASSOCIATED), all workers are bound to the
59 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
60 	 * is in effect.
61 	 *
62 	 * While DISASSOCIATED, the cpu may be offline and all workers have
63 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
64 	 * be executing on any CPU.  The pool behaves as an unbound one.
65 	 *
66 	 * Note that DISASSOCIATED should be flipped only while holding
67 	 * manager_mutex to avoid changing binding state while
68 	 * create_worker() is in progress.
69 	 */
70 	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
71 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72 	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
73 
74 	/* worker flags */
75 	WORKER_STARTED		= 1 << 0,	/* started */
76 	WORKER_DIE		= 1 << 1,	/* die die die */
77 	WORKER_IDLE		= 1 << 2,	/* is idle */
78 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
79 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
80 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
81 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
82 
83 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
84 				  WORKER_UNBOUND | WORKER_REBOUND,
85 
86 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
87 
88 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
89 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
90 
91 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
92 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
93 
94 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
95 						/* call for help after 10ms
96 						   (min two ticks) */
97 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
98 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
99 
100 	/*
101 	 * Rescue workers are used only on emergencies and shared by
102 	 * all cpus.  Give -20.
103 	 */
104 	RESCUER_NICE_LEVEL	= -20,
105 	HIGHPRI_NICE_LEVEL	= -20,
106 
107 	WQ_NAME_LEN		= 24,
108 };
109 
110 /*
111  * Structure fields follow one of the following exclusion rules.
112  *
113  * I: Modifiable by initialization/destruction paths and read-only for
114  *    everyone else.
115  *
116  * P: Preemption protected.  Disabling preemption is enough and should
117  *    only be modified and accessed from the local cpu.
118  *
119  * L: pool->lock protected.  Access with pool->lock held.
120  *
121  * X: During normal operation, modification requires pool->lock and should
122  *    be done only from local cpu.  Either disabling preemption on local
123  *    cpu or grabbing pool->lock is enough for read access.  If
124  *    POOL_DISASSOCIATED is set, it's identical to L.
125  *
126  * MG: pool->manager_mutex and pool->lock protected.  Writes require both
127  *     locks.  Reads can happen under either lock.
128  *
129  * PL: wq_pool_mutex protected.
130  *
131  * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
132  *
133  * WQ: wq->mutex protected.
134  *
135  * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
136  *
137  * MD: wq_mayday_lock protected.
138  */
139 
140 /* struct worker is defined in workqueue_internal.h */
141 
142 struct worker_pool {
143 	spinlock_t		lock;		/* the pool lock */
144 	int			cpu;		/* I: the associated cpu */
145 	int			node;		/* I: the associated node ID */
146 	int			id;		/* I: pool ID */
147 	unsigned int		flags;		/* X: flags */
148 
149 	struct list_head	worklist;	/* L: list of pending works */
150 	int			nr_workers;	/* L: total number of workers */
151 
152 	/* nr_idle includes the ones off idle_list for rebinding */
153 	int			nr_idle;	/* L: currently idle ones */
154 
155 	struct list_head	idle_list;	/* X: list of idle workers */
156 	struct timer_list	idle_timer;	/* L: worker idle timeout */
157 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
158 
159 	/* a workers is either on busy_hash or idle_list, or the manager */
160 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
161 						/* L: hash of busy workers */
162 
163 	/* see manage_workers() for details on the two manager mutexes */
164 	struct mutex		manager_arb;	/* manager arbitration */
165 	struct mutex		manager_mutex;	/* manager exclusion */
166 	struct idr		worker_idr;	/* MG: worker IDs and iteration */
167 
168 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
169 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
170 	int			refcnt;		/* PL: refcnt for unbound pools */
171 
172 	/*
173 	 * The current concurrency level.  As it's likely to be accessed
174 	 * from other CPUs during try_to_wake_up(), put it in a separate
175 	 * cacheline.
176 	 */
177 	atomic_t		nr_running ____cacheline_aligned_in_smp;
178 
179 	/*
180 	 * Destruction of pool is sched-RCU protected to allow dereferences
181 	 * from get_work_pool().
182 	 */
183 	struct rcu_head		rcu;
184 } ____cacheline_aligned_in_smp;
185 
186 /*
187  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
188  * of work_struct->data are used for flags and the remaining high bits
189  * point to the pwq; thus, pwqs need to be aligned at two's power of the
190  * number of flag bits.
191  */
192 struct pool_workqueue {
193 	struct worker_pool	*pool;		/* I: the associated pool */
194 	struct workqueue_struct *wq;		/* I: the owning workqueue */
195 	int			work_color;	/* L: current color */
196 	int			flush_color;	/* L: flushing color */
197 	int			refcnt;		/* L: reference count */
198 	int			nr_in_flight[WORK_NR_COLORS];
199 						/* L: nr of in_flight works */
200 	int			nr_active;	/* L: nr of active works */
201 	int			max_active;	/* L: max active works */
202 	struct list_head	delayed_works;	/* L: delayed works */
203 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
204 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
205 
206 	/*
207 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
208 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
209 	 * itself is also sched-RCU protected so that the first pwq can be
210 	 * determined without grabbing wq->mutex.
211 	 */
212 	struct work_struct	unbound_release_work;
213 	struct rcu_head		rcu;
214 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
215 
216 /*
217  * Structure used to wait for workqueue flush.
218  */
219 struct wq_flusher {
220 	struct list_head	list;		/* WQ: list of flushers */
221 	int			flush_color;	/* WQ: flush color waiting for */
222 	struct completion	done;		/* flush completion */
223 };
224 
225 struct wq_device;
226 
227 /*
228  * The externally visible workqueue.  It relays the issued work items to
229  * the appropriate worker_pool through its pool_workqueues.
230  */
231 struct workqueue_struct {
232 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
233 	struct list_head	list;		/* PL: list of all workqueues */
234 
235 	struct mutex		mutex;		/* protects this wq */
236 	int			work_color;	/* WQ: current work color */
237 	int			flush_color;	/* WQ: current flush color */
238 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
239 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
240 	struct list_head	flusher_queue;	/* WQ: flush waiters */
241 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
242 
243 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
244 	struct worker		*rescuer;	/* I: rescue worker */
245 
246 	int			nr_drainers;	/* WQ: drain in progress */
247 	int			saved_max_active; /* WQ: saved pwq max_active */
248 
249 	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
250 	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
251 
252 #ifdef CONFIG_SYSFS
253 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
254 #endif
255 #ifdef CONFIG_LOCKDEP
256 	struct lockdep_map	lockdep_map;
257 #endif
258 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
259 
260 	/* hot fields used during command issue, aligned to cacheline */
261 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
262 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
263 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
264 };
265 
266 static struct kmem_cache *pwq_cache;
267 
268 static int wq_numa_tbl_len;		/* highest possible NUMA node id + 1 */
269 static cpumask_var_t *wq_numa_possible_cpumask;
270 					/* possible CPUs of each node */
271 
272 static bool wq_disable_numa;
273 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
274 
275 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
276 
277 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
278 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
279 
280 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
281 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
282 
283 static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
284 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
285 
286 /* the per-cpu worker pools */
287 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
288 				     cpu_worker_pools);
289 
290 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
291 
292 /* PL: hash of all unbound pools keyed by pool->attrs */
293 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
294 
295 /* I: attributes used when instantiating standard unbound pools on demand */
296 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
297 
298 struct workqueue_struct *system_wq __read_mostly;
299 EXPORT_SYMBOL(system_wq);
300 struct workqueue_struct *system_highpri_wq __read_mostly;
301 EXPORT_SYMBOL_GPL(system_highpri_wq);
302 struct workqueue_struct *system_long_wq __read_mostly;
303 EXPORT_SYMBOL_GPL(system_long_wq);
304 struct workqueue_struct *system_unbound_wq __read_mostly;
305 EXPORT_SYMBOL_GPL(system_unbound_wq);
306 struct workqueue_struct *system_freezable_wq __read_mostly;
307 EXPORT_SYMBOL_GPL(system_freezable_wq);
308 
309 static int worker_thread(void *__worker);
310 static void copy_workqueue_attrs(struct workqueue_attrs *to,
311 				 const struct workqueue_attrs *from);
312 
313 #define CREATE_TRACE_POINTS
314 #include <trace/events/workqueue.h>
315 
316 #define assert_rcu_or_pool_mutex()					\
317 	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
318 			   lockdep_is_held(&wq_pool_mutex),		\
319 			   "sched RCU or wq_pool_mutex should be held")
320 
321 #define assert_rcu_or_wq_mutex(wq)					\
322 	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
323 			   lockdep_is_held(&wq->mutex),			\
324 			   "sched RCU or wq->mutex should be held")
325 
326 #ifdef CONFIG_LOCKDEP
327 #define assert_manager_or_pool_lock(pool)				\
328 	WARN_ONCE(debug_locks &&					\
329 		  !lockdep_is_held(&(pool)->manager_mutex) &&		\
330 		  !lockdep_is_held(&(pool)->lock),			\
331 		  "pool->manager_mutex or ->lock should be held")
332 #else
333 #define assert_manager_or_pool_lock(pool)	do { } while (0)
334 #endif
335 
336 #define for_each_cpu_worker_pool(pool, cpu)				\
337 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
338 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
339 	     (pool)++)
340 
341 /**
342  * for_each_pool - iterate through all worker_pools in the system
343  * @pool: iteration cursor
344  * @pi: integer used for iteration
345  *
346  * This must be called either with wq_pool_mutex held or sched RCU read
347  * locked.  If the pool needs to be used beyond the locking in effect, the
348  * caller is responsible for guaranteeing that the pool stays online.
349  *
350  * The if/else clause exists only for the lockdep assertion and can be
351  * ignored.
352  */
353 #define for_each_pool(pool, pi)						\
354 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
355 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
356 		else
357 
358 /**
359  * for_each_pool_worker - iterate through all workers of a worker_pool
360  * @worker: iteration cursor
361  * @wi: integer used for iteration
362  * @pool: worker_pool to iterate workers of
363  *
364  * This must be called with either @pool->manager_mutex or ->lock held.
365  *
366  * The if/else clause exists only for the lockdep assertion and can be
367  * ignored.
368  */
369 #define for_each_pool_worker(worker, wi, pool)				\
370 	idr_for_each_entry(&(pool)->worker_idr, (worker), (wi))		\
371 		if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
372 		else
373 
374 /**
375  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
376  * @pwq: iteration cursor
377  * @wq: the target workqueue
378  *
379  * This must be called either with wq->mutex held or sched RCU read locked.
380  * If the pwq needs to be used beyond the locking in effect, the caller is
381  * responsible for guaranteeing that the pwq stays online.
382  *
383  * The if/else clause exists only for the lockdep assertion and can be
384  * ignored.
385  */
386 #define for_each_pwq(pwq, wq)						\
387 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
388 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
389 		else
390 
391 #ifdef CONFIG_DEBUG_OBJECTS_WORK
392 
393 static struct debug_obj_descr work_debug_descr;
394 
395 static void *work_debug_hint(void *addr)
396 {
397 	return ((struct work_struct *) addr)->func;
398 }
399 
400 /*
401  * fixup_init is called when:
402  * - an active object is initialized
403  */
404 static int work_fixup_init(void *addr, enum debug_obj_state state)
405 {
406 	struct work_struct *work = addr;
407 
408 	switch (state) {
409 	case ODEBUG_STATE_ACTIVE:
410 		cancel_work_sync(work);
411 		debug_object_init(work, &work_debug_descr);
412 		return 1;
413 	default:
414 		return 0;
415 	}
416 }
417 
418 /*
419  * fixup_activate is called when:
420  * - an active object is activated
421  * - an unknown object is activated (might be a statically initialized object)
422  */
423 static int work_fixup_activate(void *addr, enum debug_obj_state state)
424 {
425 	struct work_struct *work = addr;
426 
427 	switch (state) {
428 
429 	case ODEBUG_STATE_NOTAVAILABLE:
430 		/*
431 		 * This is not really a fixup. The work struct was
432 		 * statically initialized. We just make sure that it
433 		 * is tracked in the object tracker.
434 		 */
435 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
436 			debug_object_init(work, &work_debug_descr);
437 			debug_object_activate(work, &work_debug_descr);
438 			return 0;
439 		}
440 		WARN_ON_ONCE(1);
441 		return 0;
442 
443 	case ODEBUG_STATE_ACTIVE:
444 		WARN_ON(1);
445 
446 	default:
447 		return 0;
448 	}
449 }
450 
451 /*
452  * fixup_free is called when:
453  * - an active object is freed
454  */
455 static int work_fixup_free(void *addr, enum debug_obj_state state)
456 {
457 	struct work_struct *work = addr;
458 
459 	switch (state) {
460 	case ODEBUG_STATE_ACTIVE:
461 		cancel_work_sync(work);
462 		debug_object_free(work, &work_debug_descr);
463 		return 1;
464 	default:
465 		return 0;
466 	}
467 }
468 
469 static struct debug_obj_descr work_debug_descr = {
470 	.name		= "work_struct",
471 	.debug_hint	= work_debug_hint,
472 	.fixup_init	= work_fixup_init,
473 	.fixup_activate	= work_fixup_activate,
474 	.fixup_free	= work_fixup_free,
475 };
476 
477 static inline void debug_work_activate(struct work_struct *work)
478 {
479 	debug_object_activate(work, &work_debug_descr);
480 }
481 
482 static inline void debug_work_deactivate(struct work_struct *work)
483 {
484 	debug_object_deactivate(work, &work_debug_descr);
485 }
486 
487 void __init_work(struct work_struct *work, int onstack)
488 {
489 	if (onstack)
490 		debug_object_init_on_stack(work, &work_debug_descr);
491 	else
492 		debug_object_init(work, &work_debug_descr);
493 }
494 EXPORT_SYMBOL_GPL(__init_work);
495 
496 void destroy_work_on_stack(struct work_struct *work)
497 {
498 	debug_object_free(work, &work_debug_descr);
499 }
500 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
501 
502 #else
503 static inline void debug_work_activate(struct work_struct *work) { }
504 static inline void debug_work_deactivate(struct work_struct *work) { }
505 #endif
506 
507 /* allocate ID and assign it to @pool */
508 static int worker_pool_assign_id(struct worker_pool *pool)
509 {
510 	int ret;
511 
512 	lockdep_assert_held(&wq_pool_mutex);
513 
514 	ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL);
515 	if (ret >= 0) {
516 		pool->id = ret;
517 		return 0;
518 	}
519 	return ret;
520 }
521 
522 /**
523  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
524  * @wq: the target workqueue
525  * @node: the node ID
526  *
527  * This must be called either with pwq_lock held or sched RCU read locked.
528  * If the pwq needs to be used beyond the locking in effect, the caller is
529  * responsible for guaranteeing that the pwq stays online.
530  */
531 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
532 						  int node)
533 {
534 	assert_rcu_or_wq_mutex(wq);
535 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
536 }
537 
538 static unsigned int work_color_to_flags(int color)
539 {
540 	return color << WORK_STRUCT_COLOR_SHIFT;
541 }
542 
543 static int get_work_color(struct work_struct *work)
544 {
545 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
546 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
547 }
548 
549 static int work_next_color(int color)
550 {
551 	return (color + 1) % WORK_NR_COLORS;
552 }
553 
554 /*
555  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
556  * contain the pointer to the queued pwq.  Once execution starts, the flag
557  * is cleared and the high bits contain OFFQ flags and pool ID.
558  *
559  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
560  * and clear_work_data() can be used to set the pwq, pool or clear
561  * work->data.  These functions should only be called while the work is
562  * owned - ie. while the PENDING bit is set.
563  *
564  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
565  * corresponding to a work.  Pool is available once the work has been
566  * queued anywhere after initialization until it is sync canceled.  pwq is
567  * available only while the work item is queued.
568  *
569  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
570  * canceled.  While being canceled, a work item may have its PENDING set
571  * but stay off timer and worklist for arbitrarily long and nobody should
572  * try to steal the PENDING bit.
573  */
574 static inline void set_work_data(struct work_struct *work, unsigned long data,
575 				 unsigned long flags)
576 {
577 	WARN_ON_ONCE(!work_pending(work));
578 	atomic_long_set(&work->data, data | flags | work_static(work));
579 }
580 
581 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
582 			 unsigned long extra_flags)
583 {
584 	set_work_data(work, (unsigned long)pwq,
585 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
586 }
587 
588 static void set_work_pool_and_keep_pending(struct work_struct *work,
589 					   int pool_id)
590 {
591 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
592 		      WORK_STRUCT_PENDING);
593 }
594 
595 static void set_work_pool_and_clear_pending(struct work_struct *work,
596 					    int pool_id)
597 {
598 	/*
599 	 * The following wmb is paired with the implied mb in
600 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
601 	 * here are visible to and precede any updates by the next PENDING
602 	 * owner.
603 	 */
604 	smp_wmb();
605 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
606 }
607 
608 static void clear_work_data(struct work_struct *work)
609 {
610 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
611 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
612 }
613 
614 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
615 {
616 	unsigned long data = atomic_long_read(&work->data);
617 
618 	if (data & WORK_STRUCT_PWQ)
619 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
620 	else
621 		return NULL;
622 }
623 
624 /**
625  * get_work_pool - return the worker_pool a given work was associated with
626  * @work: the work item of interest
627  *
628  * Return the worker_pool @work was last associated with.  %NULL if none.
629  *
630  * Pools are created and destroyed under wq_pool_mutex, and allows read
631  * access under sched-RCU read lock.  As such, this function should be
632  * called under wq_pool_mutex or with preemption disabled.
633  *
634  * All fields of the returned pool are accessible as long as the above
635  * mentioned locking is in effect.  If the returned pool needs to be used
636  * beyond the critical section, the caller is responsible for ensuring the
637  * returned pool is and stays online.
638  */
639 static struct worker_pool *get_work_pool(struct work_struct *work)
640 {
641 	unsigned long data = atomic_long_read(&work->data);
642 	int pool_id;
643 
644 	assert_rcu_or_pool_mutex();
645 
646 	if (data & WORK_STRUCT_PWQ)
647 		return ((struct pool_workqueue *)
648 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
649 
650 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
651 	if (pool_id == WORK_OFFQ_POOL_NONE)
652 		return NULL;
653 
654 	return idr_find(&worker_pool_idr, pool_id);
655 }
656 
657 /**
658  * get_work_pool_id - return the worker pool ID a given work is associated with
659  * @work: the work item of interest
660  *
661  * Return the worker_pool ID @work was last associated with.
662  * %WORK_OFFQ_POOL_NONE if none.
663  */
664 static int get_work_pool_id(struct work_struct *work)
665 {
666 	unsigned long data = atomic_long_read(&work->data);
667 
668 	if (data & WORK_STRUCT_PWQ)
669 		return ((struct pool_workqueue *)
670 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
671 
672 	return data >> WORK_OFFQ_POOL_SHIFT;
673 }
674 
675 static void mark_work_canceling(struct work_struct *work)
676 {
677 	unsigned long pool_id = get_work_pool_id(work);
678 
679 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
680 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
681 }
682 
683 static bool work_is_canceling(struct work_struct *work)
684 {
685 	unsigned long data = atomic_long_read(&work->data);
686 
687 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
688 }
689 
690 /*
691  * Policy functions.  These define the policies on how the global worker
692  * pools are managed.  Unless noted otherwise, these functions assume that
693  * they're being called with pool->lock held.
694  */
695 
696 static bool __need_more_worker(struct worker_pool *pool)
697 {
698 	return !atomic_read(&pool->nr_running);
699 }
700 
701 /*
702  * Need to wake up a worker?  Called from anything but currently
703  * running workers.
704  *
705  * Note that, because unbound workers never contribute to nr_running, this
706  * function will always return %true for unbound pools as long as the
707  * worklist isn't empty.
708  */
709 static bool need_more_worker(struct worker_pool *pool)
710 {
711 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
712 }
713 
714 /* Can I start working?  Called from busy but !running workers. */
715 static bool may_start_working(struct worker_pool *pool)
716 {
717 	return pool->nr_idle;
718 }
719 
720 /* Do I need to keep working?  Called from currently running workers. */
721 static bool keep_working(struct worker_pool *pool)
722 {
723 	return !list_empty(&pool->worklist) &&
724 		atomic_read(&pool->nr_running) <= 1;
725 }
726 
727 /* Do we need a new worker?  Called from manager. */
728 static bool need_to_create_worker(struct worker_pool *pool)
729 {
730 	return need_more_worker(pool) && !may_start_working(pool);
731 }
732 
733 /* Do I need to be the manager? */
734 static bool need_to_manage_workers(struct worker_pool *pool)
735 {
736 	return need_to_create_worker(pool) ||
737 		(pool->flags & POOL_MANAGE_WORKERS);
738 }
739 
740 /* Do we have too many workers and should some go away? */
741 static bool too_many_workers(struct worker_pool *pool)
742 {
743 	bool managing = mutex_is_locked(&pool->manager_arb);
744 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
745 	int nr_busy = pool->nr_workers - nr_idle;
746 
747 	/*
748 	 * nr_idle and idle_list may disagree if idle rebinding is in
749 	 * progress.  Never return %true if idle_list is empty.
750 	 */
751 	if (list_empty(&pool->idle_list))
752 		return false;
753 
754 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
755 }
756 
757 /*
758  * Wake up functions.
759  */
760 
761 /* Return the first worker.  Safe with preemption disabled */
762 static struct worker *first_worker(struct worker_pool *pool)
763 {
764 	if (unlikely(list_empty(&pool->idle_list)))
765 		return NULL;
766 
767 	return list_first_entry(&pool->idle_list, struct worker, entry);
768 }
769 
770 /**
771  * wake_up_worker - wake up an idle worker
772  * @pool: worker pool to wake worker from
773  *
774  * Wake up the first idle worker of @pool.
775  *
776  * CONTEXT:
777  * spin_lock_irq(pool->lock).
778  */
779 static void wake_up_worker(struct worker_pool *pool)
780 {
781 	struct worker *worker = first_worker(pool);
782 
783 	if (likely(worker))
784 		wake_up_process(worker->task);
785 }
786 
787 /**
788  * wq_worker_waking_up - a worker is waking up
789  * @task: task waking up
790  * @cpu: CPU @task is waking up to
791  *
792  * This function is called during try_to_wake_up() when a worker is
793  * being awoken.
794  *
795  * CONTEXT:
796  * spin_lock_irq(rq->lock)
797  */
798 void wq_worker_waking_up(struct task_struct *task, int cpu)
799 {
800 	struct worker *worker = kthread_data(task);
801 
802 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
803 		WARN_ON_ONCE(worker->pool->cpu != cpu);
804 		atomic_inc(&worker->pool->nr_running);
805 	}
806 }
807 
808 /**
809  * wq_worker_sleeping - a worker is going to sleep
810  * @task: task going to sleep
811  * @cpu: CPU in question, must be the current CPU number
812  *
813  * This function is called during schedule() when a busy worker is
814  * going to sleep.  Worker on the same cpu can be woken up by
815  * returning pointer to its task.
816  *
817  * CONTEXT:
818  * spin_lock_irq(rq->lock)
819  *
820  * RETURNS:
821  * Worker task on @cpu to wake up, %NULL if none.
822  */
823 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
824 {
825 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
826 	struct worker_pool *pool;
827 
828 	/*
829 	 * Rescuers, which may not have all the fields set up like normal
830 	 * workers, also reach here, let's not access anything before
831 	 * checking NOT_RUNNING.
832 	 */
833 	if (worker->flags & WORKER_NOT_RUNNING)
834 		return NULL;
835 
836 	pool = worker->pool;
837 
838 	/* this can only happen on the local cpu */
839 	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
840 		return NULL;
841 
842 	/*
843 	 * The counterpart of the following dec_and_test, implied mb,
844 	 * worklist not empty test sequence is in insert_work().
845 	 * Please read comment there.
846 	 *
847 	 * NOT_RUNNING is clear.  This means that we're bound to and
848 	 * running on the local cpu w/ rq lock held and preemption
849 	 * disabled, which in turn means that none else could be
850 	 * manipulating idle_list, so dereferencing idle_list without pool
851 	 * lock is safe.
852 	 */
853 	if (atomic_dec_and_test(&pool->nr_running) &&
854 	    !list_empty(&pool->worklist))
855 		to_wakeup = first_worker(pool);
856 	return to_wakeup ? to_wakeup->task : NULL;
857 }
858 
859 /**
860  * worker_set_flags - set worker flags and adjust nr_running accordingly
861  * @worker: self
862  * @flags: flags to set
863  * @wakeup: wakeup an idle worker if necessary
864  *
865  * Set @flags in @worker->flags and adjust nr_running accordingly.  If
866  * nr_running becomes zero and @wakeup is %true, an idle worker is
867  * woken up.
868  *
869  * CONTEXT:
870  * spin_lock_irq(pool->lock)
871  */
872 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
873 				    bool wakeup)
874 {
875 	struct worker_pool *pool = worker->pool;
876 
877 	WARN_ON_ONCE(worker->task != current);
878 
879 	/*
880 	 * If transitioning into NOT_RUNNING, adjust nr_running and
881 	 * wake up an idle worker as necessary if requested by
882 	 * @wakeup.
883 	 */
884 	if ((flags & WORKER_NOT_RUNNING) &&
885 	    !(worker->flags & WORKER_NOT_RUNNING)) {
886 		if (wakeup) {
887 			if (atomic_dec_and_test(&pool->nr_running) &&
888 			    !list_empty(&pool->worklist))
889 				wake_up_worker(pool);
890 		} else
891 			atomic_dec(&pool->nr_running);
892 	}
893 
894 	worker->flags |= flags;
895 }
896 
897 /**
898  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
899  * @worker: self
900  * @flags: flags to clear
901  *
902  * Clear @flags in @worker->flags and adjust nr_running accordingly.
903  *
904  * CONTEXT:
905  * spin_lock_irq(pool->lock)
906  */
907 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
908 {
909 	struct worker_pool *pool = worker->pool;
910 	unsigned int oflags = worker->flags;
911 
912 	WARN_ON_ONCE(worker->task != current);
913 
914 	worker->flags &= ~flags;
915 
916 	/*
917 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
918 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
919 	 * of multiple flags, not a single flag.
920 	 */
921 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
922 		if (!(worker->flags & WORKER_NOT_RUNNING))
923 			atomic_inc(&pool->nr_running);
924 }
925 
926 /**
927  * find_worker_executing_work - find worker which is executing a work
928  * @pool: pool of interest
929  * @work: work to find worker for
930  *
931  * Find a worker which is executing @work on @pool by searching
932  * @pool->busy_hash which is keyed by the address of @work.  For a worker
933  * to match, its current execution should match the address of @work and
934  * its work function.  This is to avoid unwanted dependency between
935  * unrelated work executions through a work item being recycled while still
936  * being executed.
937  *
938  * This is a bit tricky.  A work item may be freed once its execution
939  * starts and nothing prevents the freed area from being recycled for
940  * another work item.  If the same work item address ends up being reused
941  * before the original execution finishes, workqueue will identify the
942  * recycled work item as currently executing and make it wait until the
943  * current execution finishes, introducing an unwanted dependency.
944  *
945  * This function checks the work item address and work function to avoid
946  * false positives.  Note that this isn't complete as one may construct a
947  * work function which can introduce dependency onto itself through a
948  * recycled work item.  Well, if somebody wants to shoot oneself in the
949  * foot that badly, there's only so much we can do, and if such deadlock
950  * actually occurs, it should be easy to locate the culprit work function.
951  *
952  * CONTEXT:
953  * spin_lock_irq(pool->lock).
954  *
955  * RETURNS:
956  * Pointer to worker which is executing @work if found, NULL
957  * otherwise.
958  */
959 static struct worker *find_worker_executing_work(struct worker_pool *pool,
960 						 struct work_struct *work)
961 {
962 	struct worker *worker;
963 
964 	hash_for_each_possible(pool->busy_hash, worker, hentry,
965 			       (unsigned long)work)
966 		if (worker->current_work == work &&
967 		    worker->current_func == work->func)
968 			return worker;
969 
970 	return NULL;
971 }
972 
973 /**
974  * move_linked_works - move linked works to a list
975  * @work: start of series of works to be scheduled
976  * @head: target list to append @work to
977  * @nextp: out paramter for nested worklist walking
978  *
979  * Schedule linked works starting from @work to @head.  Work series to
980  * be scheduled starts at @work and includes any consecutive work with
981  * WORK_STRUCT_LINKED set in its predecessor.
982  *
983  * If @nextp is not NULL, it's updated to point to the next work of
984  * the last scheduled work.  This allows move_linked_works() to be
985  * nested inside outer list_for_each_entry_safe().
986  *
987  * CONTEXT:
988  * spin_lock_irq(pool->lock).
989  */
990 static void move_linked_works(struct work_struct *work, struct list_head *head,
991 			      struct work_struct **nextp)
992 {
993 	struct work_struct *n;
994 
995 	/*
996 	 * Linked worklist will always end before the end of the list,
997 	 * use NULL for list head.
998 	 */
999 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1000 		list_move_tail(&work->entry, head);
1001 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1002 			break;
1003 	}
1004 
1005 	/*
1006 	 * If we're already inside safe list traversal and have moved
1007 	 * multiple works to the scheduled queue, the next position
1008 	 * needs to be updated.
1009 	 */
1010 	if (nextp)
1011 		*nextp = n;
1012 }
1013 
1014 /**
1015  * get_pwq - get an extra reference on the specified pool_workqueue
1016  * @pwq: pool_workqueue to get
1017  *
1018  * Obtain an extra reference on @pwq.  The caller should guarantee that
1019  * @pwq has positive refcnt and be holding the matching pool->lock.
1020  */
1021 static void get_pwq(struct pool_workqueue *pwq)
1022 {
1023 	lockdep_assert_held(&pwq->pool->lock);
1024 	WARN_ON_ONCE(pwq->refcnt <= 0);
1025 	pwq->refcnt++;
1026 }
1027 
1028 /**
1029  * put_pwq - put a pool_workqueue reference
1030  * @pwq: pool_workqueue to put
1031  *
1032  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1033  * destruction.  The caller should be holding the matching pool->lock.
1034  */
1035 static void put_pwq(struct pool_workqueue *pwq)
1036 {
1037 	lockdep_assert_held(&pwq->pool->lock);
1038 	if (likely(--pwq->refcnt))
1039 		return;
1040 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1041 		return;
1042 	/*
1043 	 * @pwq can't be released under pool->lock, bounce to
1044 	 * pwq_unbound_release_workfn().  This never recurses on the same
1045 	 * pool->lock as this path is taken only for unbound workqueues and
1046 	 * the release work item is scheduled on a per-cpu workqueue.  To
1047 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1048 	 * subclass of 1 in get_unbound_pool().
1049 	 */
1050 	schedule_work(&pwq->unbound_release_work);
1051 }
1052 
1053 /**
1054  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1055  * @pwq: pool_workqueue to put (can be %NULL)
1056  *
1057  * put_pwq() with locking.  This function also allows %NULL @pwq.
1058  */
1059 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1060 {
1061 	if (pwq) {
1062 		/*
1063 		 * As both pwqs and pools are sched-RCU protected, the
1064 		 * following lock operations are safe.
1065 		 */
1066 		spin_lock_irq(&pwq->pool->lock);
1067 		put_pwq(pwq);
1068 		spin_unlock_irq(&pwq->pool->lock);
1069 	}
1070 }
1071 
1072 static void pwq_activate_delayed_work(struct work_struct *work)
1073 {
1074 	struct pool_workqueue *pwq = get_work_pwq(work);
1075 
1076 	trace_workqueue_activate_work(work);
1077 	move_linked_works(work, &pwq->pool->worklist, NULL);
1078 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1079 	pwq->nr_active++;
1080 }
1081 
1082 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1083 {
1084 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1085 						    struct work_struct, entry);
1086 
1087 	pwq_activate_delayed_work(work);
1088 }
1089 
1090 /**
1091  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1092  * @pwq: pwq of interest
1093  * @color: color of work which left the queue
1094  *
1095  * A work either has completed or is removed from pending queue,
1096  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1097  *
1098  * CONTEXT:
1099  * spin_lock_irq(pool->lock).
1100  */
1101 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1102 {
1103 	/* uncolored work items don't participate in flushing or nr_active */
1104 	if (color == WORK_NO_COLOR)
1105 		goto out_put;
1106 
1107 	pwq->nr_in_flight[color]--;
1108 
1109 	pwq->nr_active--;
1110 	if (!list_empty(&pwq->delayed_works)) {
1111 		/* one down, submit a delayed one */
1112 		if (pwq->nr_active < pwq->max_active)
1113 			pwq_activate_first_delayed(pwq);
1114 	}
1115 
1116 	/* is flush in progress and are we at the flushing tip? */
1117 	if (likely(pwq->flush_color != color))
1118 		goto out_put;
1119 
1120 	/* are there still in-flight works? */
1121 	if (pwq->nr_in_flight[color])
1122 		goto out_put;
1123 
1124 	/* this pwq is done, clear flush_color */
1125 	pwq->flush_color = -1;
1126 
1127 	/*
1128 	 * If this was the last pwq, wake up the first flusher.  It
1129 	 * will handle the rest.
1130 	 */
1131 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1132 		complete(&pwq->wq->first_flusher->done);
1133 out_put:
1134 	put_pwq(pwq);
1135 }
1136 
1137 /**
1138  * try_to_grab_pending - steal work item from worklist and disable irq
1139  * @work: work item to steal
1140  * @is_dwork: @work is a delayed_work
1141  * @flags: place to store irq state
1142  *
1143  * Try to grab PENDING bit of @work.  This function can handle @work in any
1144  * stable state - idle, on timer or on worklist.  Return values are
1145  *
1146  *  1		if @work was pending and we successfully stole PENDING
1147  *  0		if @work was idle and we claimed PENDING
1148  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1149  *  -ENOENT	if someone else is canceling @work, this state may persist
1150  *		for arbitrarily long
1151  *
1152  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1153  * interrupted while holding PENDING and @work off queue, irq must be
1154  * disabled on entry.  This, combined with delayed_work->timer being
1155  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1156  *
1157  * On successful return, >= 0, irq is disabled and the caller is
1158  * responsible for releasing it using local_irq_restore(*@flags).
1159  *
1160  * This function is safe to call from any context including IRQ handler.
1161  */
1162 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1163 			       unsigned long *flags)
1164 {
1165 	struct worker_pool *pool;
1166 	struct pool_workqueue *pwq;
1167 
1168 	local_irq_save(*flags);
1169 
1170 	/* try to steal the timer if it exists */
1171 	if (is_dwork) {
1172 		struct delayed_work *dwork = to_delayed_work(work);
1173 
1174 		/*
1175 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1176 		 * guaranteed that the timer is not queued anywhere and not
1177 		 * running on the local CPU.
1178 		 */
1179 		if (likely(del_timer(&dwork->timer)))
1180 			return 1;
1181 	}
1182 
1183 	/* try to claim PENDING the normal way */
1184 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1185 		return 0;
1186 
1187 	/*
1188 	 * The queueing is in progress, or it is already queued. Try to
1189 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1190 	 */
1191 	pool = get_work_pool(work);
1192 	if (!pool)
1193 		goto fail;
1194 
1195 	spin_lock(&pool->lock);
1196 	/*
1197 	 * work->data is guaranteed to point to pwq only while the work
1198 	 * item is queued on pwq->wq, and both updating work->data to point
1199 	 * to pwq on queueing and to pool on dequeueing are done under
1200 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1201 	 * points to pwq which is associated with a locked pool, the work
1202 	 * item is currently queued on that pool.
1203 	 */
1204 	pwq = get_work_pwq(work);
1205 	if (pwq && pwq->pool == pool) {
1206 		debug_work_deactivate(work);
1207 
1208 		/*
1209 		 * A delayed work item cannot be grabbed directly because
1210 		 * it might have linked NO_COLOR work items which, if left
1211 		 * on the delayed_list, will confuse pwq->nr_active
1212 		 * management later on and cause stall.  Make sure the work
1213 		 * item is activated before grabbing.
1214 		 */
1215 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1216 			pwq_activate_delayed_work(work);
1217 
1218 		list_del_init(&work->entry);
1219 		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1220 
1221 		/* work->data points to pwq iff queued, point to pool */
1222 		set_work_pool_and_keep_pending(work, pool->id);
1223 
1224 		spin_unlock(&pool->lock);
1225 		return 1;
1226 	}
1227 	spin_unlock(&pool->lock);
1228 fail:
1229 	local_irq_restore(*flags);
1230 	if (work_is_canceling(work))
1231 		return -ENOENT;
1232 	cpu_relax();
1233 	return -EAGAIN;
1234 }
1235 
1236 /**
1237  * insert_work - insert a work into a pool
1238  * @pwq: pwq @work belongs to
1239  * @work: work to insert
1240  * @head: insertion point
1241  * @extra_flags: extra WORK_STRUCT_* flags to set
1242  *
1243  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1244  * work_struct flags.
1245  *
1246  * CONTEXT:
1247  * spin_lock_irq(pool->lock).
1248  */
1249 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1250 			struct list_head *head, unsigned int extra_flags)
1251 {
1252 	struct worker_pool *pool = pwq->pool;
1253 
1254 	/* we own @work, set data and link */
1255 	set_work_pwq(work, pwq, extra_flags);
1256 	list_add_tail(&work->entry, head);
1257 	get_pwq(pwq);
1258 
1259 	/*
1260 	 * Ensure either wq_worker_sleeping() sees the above
1261 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1262 	 * around lazily while there are works to be processed.
1263 	 */
1264 	smp_mb();
1265 
1266 	if (__need_more_worker(pool))
1267 		wake_up_worker(pool);
1268 }
1269 
1270 /*
1271  * Test whether @work is being queued from another work executing on the
1272  * same workqueue.
1273  */
1274 static bool is_chained_work(struct workqueue_struct *wq)
1275 {
1276 	struct worker *worker;
1277 
1278 	worker = current_wq_worker();
1279 	/*
1280 	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1281 	 * I'm @worker, it's safe to dereference it without locking.
1282 	 */
1283 	return worker && worker->current_pwq->wq == wq;
1284 }
1285 
1286 static void __queue_work(int cpu, struct workqueue_struct *wq,
1287 			 struct work_struct *work)
1288 {
1289 	struct pool_workqueue *pwq;
1290 	struct worker_pool *last_pool;
1291 	struct list_head *worklist;
1292 	unsigned int work_flags;
1293 	unsigned int req_cpu = cpu;
1294 
1295 	/*
1296 	 * While a work item is PENDING && off queue, a task trying to
1297 	 * steal the PENDING will busy-loop waiting for it to either get
1298 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1299 	 * happen with IRQ disabled.
1300 	 */
1301 	WARN_ON_ONCE(!irqs_disabled());
1302 
1303 	debug_work_activate(work);
1304 
1305 	/* if dying, only works from the same workqueue are allowed */
1306 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1307 	    WARN_ON_ONCE(!is_chained_work(wq)))
1308 		return;
1309 retry:
1310 	if (req_cpu == WORK_CPU_UNBOUND)
1311 		cpu = raw_smp_processor_id();
1312 
1313 	/* pwq which will be used unless @work is executing elsewhere */
1314 	if (!(wq->flags & WQ_UNBOUND))
1315 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1316 	else
1317 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1318 
1319 	/*
1320 	 * If @work was previously on a different pool, it might still be
1321 	 * running there, in which case the work needs to be queued on that
1322 	 * pool to guarantee non-reentrancy.
1323 	 */
1324 	last_pool = get_work_pool(work);
1325 	if (last_pool && last_pool != pwq->pool) {
1326 		struct worker *worker;
1327 
1328 		spin_lock(&last_pool->lock);
1329 
1330 		worker = find_worker_executing_work(last_pool, work);
1331 
1332 		if (worker && worker->current_pwq->wq == wq) {
1333 			pwq = worker->current_pwq;
1334 		} else {
1335 			/* meh... not running there, queue here */
1336 			spin_unlock(&last_pool->lock);
1337 			spin_lock(&pwq->pool->lock);
1338 		}
1339 	} else {
1340 		spin_lock(&pwq->pool->lock);
1341 	}
1342 
1343 	/*
1344 	 * pwq is determined and locked.  For unbound pools, we could have
1345 	 * raced with pwq release and it could already be dead.  If its
1346 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1347 	 * without another pwq replacing it in the numa_pwq_tbl or while
1348 	 * work items are executing on it, so the retrying is guaranteed to
1349 	 * make forward-progress.
1350 	 */
1351 	if (unlikely(!pwq->refcnt)) {
1352 		if (wq->flags & WQ_UNBOUND) {
1353 			spin_unlock(&pwq->pool->lock);
1354 			cpu_relax();
1355 			goto retry;
1356 		}
1357 		/* oops */
1358 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1359 			  wq->name, cpu);
1360 	}
1361 
1362 	/* pwq determined, queue */
1363 	trace_workqueue_queue_work(req_cpu, pwq, work);
1364 
1365 	if (WARN_ON(!list_empty(&work->entry))) {
1366 		spin_unlock(&pwq->pool->lock);
1367 		return;
1368 	}
1369 
1370 	pwq->nr_in_flight[pwq->work_color]++;
1371 	work_flags = work_color_to_flags(pwq->work_color);
1372 
1373 	if (likely(pwq->nr_active < pwq->max_active)) {
1374 		trace_workqueue_activate_work(work);
1375 		pwq->nr_active++;
1376 		worklist = &pwq->pool->worklist;
1377 	} else {
1378 		work_flags |= WORK_STRUCT_DELAYED;
1379 		worklist = &pwq->delayed_works;
1380 	}
1381 
1382 	insert_work(pwq, work, worklist, work_flags);
1383 
1384 	spin_unlock(&pwq->pool->lock);
1385 }
1386 
1387 /**
1388  * queue_work_on - queue work on specific cpu
1389  * @cpu: CPU number to execute work on
1390  * @wq: workqueue to use
1391  * @work: work to queue
1392  *
1393  * Returns %false if @work was already on a queue, %true otherwise.
1394  *
1395  * We queue the work to a specific CPU, the caller must ensure it
1396  * can't go away.
1397  */
1398 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1399 		   struct work_struct *work)
1400 {
1401 	bool ret = false;
1402 	unsigned long flags;
1403 
1404 	local_irq_save(flags);
1405 
1406 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1407 		__queue_work(cpu, wq, work);
1408 		ret = true;
1409 	}
1410 
1411 	local_irq_restore(flags);
1412 	return ret;
1413 }
1414 EXPORT_SYMBOL(queue_work_on);
1415 
1416 void delayed_work_timer_fn(unsigned long __data)
1417 {
1418 	struct delayed_work *dwork = (struct delayed_work *)__data;
1419 
1420 	/* should have been called from irqsafe timer with irq already off */
1421 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1422 }
1423 EXPORT_SYMBOL(delayed_work_timer_fn);
1424 
1425 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1426 				struct delayed_work *dwork, unsigned long delay)
1427 {
1428 	struct timer_list *timer = &dwork->timer;
1429 	struct work_struct *work = &dwork->work;
1430 
1431 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1432 		     timer->data != (unsigned long)dwork);
1433 	WARN_ON_ONCE(timer_pending(timer));
1434 	WARN_ON_ONCE(!list_empty(&work->entry));
1435 
1436 	/*
1437 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1438 	 * both optimization and correctness.  The earliest @timer can
1439 	 * expire is on the closest next tick and delayed_work users depend
1440 	 * on that there's no such delay when @delay is 0.
1441 	 */
1442 	if (!delay) {
1443 		__queue_work(cpu, wq, &dwork->work);
1444 		return;
1445 	}
1446 
1447 	timer_stats_timer_set_start_info(&dwork->timer);
1448 
1449 	dwork->wq = wq;
1450 	dwork->cpu = cpu;
1451 	timer->expires = jiffies + delay;
1452 
1453 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1454 		add_timer_on(timer, cpu);
1455 	else
1456 		add_timer(timer);
1457 }
1458 
1459 /**
1460  * queue_delayed_work_on - queue work on specific CPU after delay
1461  * @cpu: CPU number to execute work on
1462  * @wq: workqueue to use
1463  * @dwork: work to queue
1464  * @delay: number of jiffies to wait before queueing
1465  *
1466  * Returns %false if @work was already on a queue, %true otherwise.  If
1467  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1468  * execution.
1469  */
1470 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1471 			   struct delayed_work *dwork, unsigned long delay)
1472 {
1473 	struct work_struct *work = &dwork->work;
1474 	bool ret = false;
1475 	unsigned long flags;
1476 
1477 	/* read the comment in __queue_work() */
1478 	local_irq_save(flags);
1479 
1480 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1481 		__queue_delayed_work(cpu, wq, dwork, delay);
1482 		ret = true;
1483 	}
1484 
1485 	local_irq_restore(flags);
1486 	return ret;
1487 }
1488 EXPORT_SYMBOL(queue_delayed_work_on);
1489 
1490 /**
1491  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1492  * @cpu: CPU number to execute work on
1493  * @wq: workqueue to use
1494  * @dwork: work to queue
1495  * @delay: number of jiffies to wait before queueing
1496  *
1497  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1498  * modify @dwork's timer so that it expires after @delay.  If @delay is
1499  * zero, @work is guaranteed to be scheduled immediately regardless of its
1500  * current state.
1501  *
1502  * Returns %false if @dwork was idle and queued, %true if @dwork was
1503  * pending and its timer was modified.
1504  *
1505  * This function is safe to call from any context including IRQ handler.
1506  * See try_to_grab_pending() for details.
1507  */
1508 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1509 			 struct delayed_work *dwork, unsigned long delay)
1510 {
1511 	unsigned long flags;
1512 	int ret;
1513 
1514 	do {
1515 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1516 	} while (unlikely(ret == -EAGAIN));
1517 
1518 	if (likely(ret >= 0)) {
1519 		__queue_delayed_work(cpu, wq, dwork, delay);
1520 		local_irq_restore(flags);
1521 	}
1522 
1523 	/* -ENOENT from try_to_grab_pending() becomes %true */
1524 	return ret;
1525 }
1526 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1527 
1528 /**
1529  * worker_enter_idle - enter idle state
1530  * @worker: worker which is entering idle state
1531  *
1532  * @worker is entering idle state.  Update stats and idle timer if
1533  * necessary.
1534  *
1535  * LOCKING:
1536  * spin_lock_irq(pool->lock).
1537  */
1538 static void worker_enter_idle(struct worker *worker)
1539 {
1540 	struct worker_pool *pool = worker->pool;
1541 
1542 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1543 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1544 			 (worker->hentry.next || worker->hentry.pprev)))
1545 		return;
1546 
1547 	/* can't use worker_set_flags(), also called from start_worker() */
1548 	worker->flags |= WORKER_IDLE;
1549 	pool->nr_idle++;
1550 	worker->last_active = jiffies;
1551 
1552 	/* idle_list is LIFO */
1553 	list_add(&worker->entry, &pool->idle_list);
1554 
1555 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1556 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1557 
1558 	/*
1559 	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1560 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1561 	 * nr_running, the warning may trigger spuriously.  Check iff
1562 	 * unbind is not in progress.
1563 	 */
1564 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1565 		     pool->nr_workers == pool->nr_idle &&
1566 		     atomic_read(&pool->nr_running));
1567 }
1568 
1569 /**
1570  * worker_leave_idle - leave idle state
1571  * @worker: worker which is leaving idle state
1572  *
1573  * @worker is leaving idle state.  Update stats.
1574  *
1575  * LOCKING:
1576  * spin_lock_irq(pool->lock).
1577  */
1578 static void worker_leave_idle(struct worker *worker)
1579 {
1580 	struct worker_pool *pool = worker->pool;
1581 
1582 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1583 		return;
1584 	worker_clr_flags(worker, WORKER_IDLE);
1585 	pool->nr_idle--;
1586 	list_del_init(&worker->entry);
1587 }
1588 
1589 /**
1590  * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1591  * @pool: target worker_pool
1592  *
1593  * Bind %current to the cpu of @pool if it is associated and lock @pool.
1594  *
1595  * Works which are scheduled while the cpu is online must at least be
1596  * scheduled to a worker which is bound to the cpu so that if they are
1597  * flushed from cpu callbacks while cpu is going down, they are
1598  * guaranteed to execute on the cpu.
1599  *
1600  * This function is to be used by unbound workers and rescuers to bind
1601  * themselves to the target cpu and may race with cpu going down or
1602  * coming online.  kthread_bind() can't be used because it may put the
1603  * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1604  * verbatim as it's best effort and blocking and pool may be
1605  * [dis]associated in the meantime.
1606  *
1607  * This function tries set_cpus_allowed() and locks pool and verifies the
1608  * binding against %POOL_DISASSOCIATED which is set during
1609  * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1610  * enters idle state or fetches works without dropping lock, it can
1611  * guarantee the scheduling requirement described in the first paragraph.
1612  *
1613  * CONTEXT:
1614  * Might sleep.  Called without any lock but returns with pool->lock
1615  * held.
1616  *
1617  * RETURNS:
1618  * %true if the associated pool is online (@worker is successfully
1619  * bound), %false if offline.
1620  */
1621 static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1622 __acquires(&pool->lock)
1623 {
1624 	while (true) {
1625 		/*
1626 		 * The following call may fail, succeed or succeed
1627 		 * without actually migrating the task to the cpu if
1628 		 * it races with cpu hotunplug operation.  Verify
1629 		 * against POOL_DISASSOCIATED.
1630 		 */
1631 		if (!(pool->flags & POOL_DISASSOCIATED))
1632 			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1633 
1634 		spin_lock_irq(&pool->lock);
1635 		if (pool->flags & POOL_DISASSOCIATED)
1636 			return false;
1637 		if (task_cpu(current) == pool->cpu &&
1638 		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1639 			return true;
1640 		spin_unlock_irq(&pool->lock);
1641 
1642 		/*
1643 		 * We've raced with CPU hot[un]plug.  Give it a breather
1644 		 * and retry migration.  cond_resched() is required here;
1645 		 * otherwise, we might deadlock against cpu_stop trying to
1646 		 * bring down the CPU on non-preemptive kernel.
1647 		 */
1648 		cpu_relax();
1649 		cond_resched();
1650 	}
1651 }
1652 
1653 static struct worker *alloc_worker(void)
1654 {
1655 	struct worker *worker;
1656 
1657 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1658 	if (worker) {
1659 		INIT_LIST_HEAD(&worker->entry);
1660 		INIT_LIST_HEAD(&worker->scheduled);
1661 		/* on creation a worker is in !idle && prep state */
1662 		worker->flags = WORKER_PREP;
1663 	}
1664 	return worker;
1665 }
1666 
1667 /**
1668  * create_worker - create a new workqueue worker
1669  * @pool: pool the new worker will belong to
1670  *
1671  * Create a new worker which is bound to @pool.  The returned worker
1672  * can be started by calling start_worker() or destroyed using
1673  * destroy_worker().
1674  *
1675  * CONTEXT:
1676  * Might sleep.  Does GFP_KERNEL allocations.
1677  *
1678  * RETURNS:
1679  * Pointer to the newly created worker.
1680  */
1681 static struct worker *create_worker(struct worker_pool *pool)
1682 {
1683 	struct worker *worker = NULL;
1684 	int id = -1;
1685 	char id_buf[16];
1686 
1687 	lockdep_assert_held(&pool->manager_mutex);
1688 
1689 	/*
1690 	 * ID is needed to determine kthread name.  Allocate ID first
1691 	 * without installing the pointer.
1692 	 */
1693 	idr_preload(GFP_KERNEL);
1694 	spin_lock_irq(&pool->lock);
1695 
1696 	id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1697 
1698 	spin_unlock_irq(&pool->lock);
1699 	idr_preload_end();
1700 	if (id < 0)
1701 		goto fail;
1702 
1703 	worker = alloc_worker();
1704 	if (!worker)
1705 		goto fail;
1706 
1707 	worker->pool = pool;
1708 	worker->id = id;
1709 
1710 	if (pool->cpu >= 0)
1711 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1712 			 pool->attrs->nice < 0  ? "H" : "");
1713 	else
1714 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1715 
1716 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1717 					      "kworker/%s", id_buf);
1718 	if (IS_ERR(worker->task))
1719 		goto fail;
1720 
1721 	/*
1722 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1723 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1724 	 */
1725 	set_user_nice(worker->task, pool->attrs->nice);
1726 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1727 
1728 	/* prevent userland from meddling with cpumask of workqueue workers */
1729 	worker->task->flags |= PF_NO_SETAFFINITY;
1730 
1731 	/*
1732 	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1733 	 * remains stable across this function.  See the comments above the
1734 	 * flag definition for details.
1735 	 */
1736 	if (pool->flags & POOL_DISASSOCIATED)
1737 		worker->flags |= WORKER_UNBOUND;
1738 
1739 	/* successful, commit the pointer to idr */
1740 	spin_lock_irq(&pool->lock);
1741 	idr_replace(&pool->worker_idr, worker, worker->id);
1742 	spin_unlock_irq(&pool->lock);
1743 
1744 	return worker;
1745 
1746 fail:
1747 	if (id >= 0) {
1748 		spin_lock_irq(&pool->lock);
1749 		idr_remove(&pool->worker_idr, id);
1750 		spin_unlock_irq(&pool->lock);
1751 	}
1752 	kfree(worker);
1753 	return NULL;
1754 }
1755 
1756 /**
1757  * start_worker - start a newly created worker
1758  * @worker: worker to start
1759  *
1760  * Make the pool aware of @worker and start it.
1761  *
1762  * CONTEXT:
1763  * spin_lock_irq(pool->lock).
1764  */
1765 static void start_worker(struct worker *worker)
1766 {
1767 	worker->flags |= WORKER_STARTED;
1768 	worker->pool->nr_workers++;
1769 	worker_enter_idle(worker);
1770 	wake_up_process(worker->task);
1771 }
1772 
1773 /**
1774  * create_and_start_worker - create and start a worker for a pool
1775  * @pool: the target pool
1776  *
1777  * Grab the managership of @pool and create and start a new worker for it.
1778  */
1779 static int create_and_start_worker(struct worker_pool *pool)
1780 {
1781 	struct worker *worker;
1782 
1783 	mutex_lock(&pool->manager_mutex);
1784 
1785 	worker = create_worker(pool);
1786 	if (worker) {
1787 		spin_lock_irq(&pool->lock);
1788 		start_worker(worker);
1789 		spin_unlock_irq(&pool->lock);
1790 	}
1791 
1792 	mutex_unlock(&pool->manager_mutex);
1793 
1794 	return worker ? 0 : -ENOMEM;
1795 }
1796 
1797 /**
1798  * destroy_worker - destroy a workqueue worker
1799  * @worker: worker to be destroyed
1800  *
1801  * Destroy @worker and adjust @pool stats accordingly.
1802  *
1803  * CONTEXT:
1804  * spin_lock_irq(pool->lock) which is released and regrabbed.
1805  */
1806 static void destroy_worker(struct worker *worker)
1807 {
1808 	struct worker_pool *pool = worker->pool;
1809 
1810 	lockdep_assert_held(&pool->manager_mutex);
1811 	lockdep_assert_held(&pool->lock);
1812 
1813 	/* sanity check frenzy */
1814 	if (WARN_ON(worker->current_work) ||
1815 	    WARN_ON(!list_empty(&worker->scheduled)))
1816 		return;
1817 
1818 	if (worker->flags & WORKER_STARTED)
1819 		pool->nr_workers--;
1820 	if (worker->flags & WORKER_IDLE)
1821 		pool->nr_idle--;
1822 
1823 	list_del_init(&worker->entry);
1824 	worker->flags |= WORKER_DIE;
1825 
1826 	idr_remove(&pool->worker_idr, worker->id);
1827 
1828 	spin_unlock_irq(&pool->lock);
1829 
1830 	kthread_stop(worker->task);
1831 	kfree(worker);
1832 
1833 	spin_lock_irq(&pool->lock);
1834 }
1835 
1836 static void idle_worker_timeout(unsigned long __pool)
1837 {
1838 	struct worker_pool *pool = (void *)__pool;
1839 
1840 	spin_lock_irq(&pool->lock);
1841 
1842 	if (too_many_workers(pool)) {
1843 		struct worker *worker;
1844 		unsigned long expires;
1845 
1846 		/* idle_list is kept in LIFO order, check the last one */
1847 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1848 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1849 
1850 		if (time_before(jiffies, expires))
1851 			mod_timer(&pool->idle_timer, expires);
1852 		else {
1853 			/* it's been idle for too long, wake up manager */
1854 			pool->flags |= POOL_MANAGE_WORKERS;
1855 			wake_up_worker(pool);
1856 		}
1857 	}
1858 
1859 	spin_unlock_irq(&pool->lock);
1860 }
1861 
1862 static void send_mayday(struct work_struct *work)
1863 {
1864 	struct pool_workqueue *pwq = get_work_pwq(work);
1865 	struct workqueue_struct *wq = pwq->wq;
1866 
1867 	lockdep_assert_held(&wq_mayday_lock);
1868 
1869 	if (!wq->rescuer)
1870 		return;
1871 
1872 	/* mayday mayday mayday */
1873 	if (list_empty(&pwq->mayday_node)) {
1874 		list_add_tail(&pwq->mayday_node, &wq->maydays);
1875 		wake_up_process(wq->rescuer->task);
1876 	}
1877 }
1878 
1879 static void pool_mayday_timeout(unsigned long __pool)
1880 {
1881 	struct worker_pool *pool = (void *)__pool;
1882 	struct work_struct *work;
1883 
1884 	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1885 	spin_lock(&pool->lock);
1886 
1887 	if (need_to_create_worker(pool)) {
1888 		/*
1889 		 * We've been trying to create a new worker but
1890 		 * haven't been successful.  We might be hitting an
1891 		 * allocation deadlock.  Send distress signals to
1892 		 * rescuers.
1893 		 */
1894 		list_for_each_entry(work, &pool->worklist, entry)
1895 			send_mayday(work);
1896 	}
1897 
1898 	spin_unlock(&pool->lock);
1899 	spin_unlock_irq(&wq_mayday_lock);
1900 
1901 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1902 }
1903 
1904 /**
1905  * maybe_create_worker - create a new worker if necessary
1906  * @pool: pool to create a new worker for
1907  *
1908  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1909  * have at least one idle worker on return from this function.  If
1910  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1911  * sent to all rescuers with works scheduled on @pool to resolve
1912  * possible allocation deadlock.
1913  *
1914  * On return, need_to_create_worker() is guaranteed to be %false and
1915  * may_start_working() %true.
1916  *
1917  * LOCKING:
1918  * spin_lock_irq(pool->lock) which may be released and regrabbed
1919  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1920  * manager.
1921  *
1922  * RETURNS:
1923  * %false if no action was taken and pool->lock stayed locked, %true
1924  * otherwise.
1925  */
1926 static bool maybe_create_worker(struct worker_pool *pool)
1927 __releases(&pool->lock)
1928 __acquires(&pool->lock)
1929 {
1930 	if (!need_to_create_worker(pool))
1931 		return false;
1932 restart:
1933 	spin_unlock_irq(&pool->lock);
1934 
1935 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1936 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1937 
1938 	while (true) {
1939 		struct worker *worker;
1940 
1941 		worker = create_worker(pool);
1942 		if (worker) {
1943 			del_timer_sync(&pool->mayday_timer);
1944 			spin_lock_irq(&pool->lock);
1945 			start_worker(worker);
1946 			if (WARN_ON_ONCE(need_to_create_worker(pool)))
1947 				goto restart;
1948 			return true;
1949 		}
1950 
1951 		if (!need_to_create_worker(pool))
1952 			break;
1953 
1954 		__set_current_state(TASK_INTERRUPTIBLE);
1955 		schedule_timeout(CREATE_COOLDOWN);
1956 
1957 		if (!need_to_create_worker(pool))
1958 			break;
1959 	}
1960 
1961 	del_timer_sync(&pool->mayday_timer);
1962 	spin_lock_irq(&pool->lock);
1963 	if (need_to_create_worker(pool))
1964 		goto restart;
1965 	return true;
1966 }
1967 
1968 /**
1969  * maybe_destroy_worker - destroy workers which have been idle for a while
1970  * @pool: pool to destroy workers for
1971  *
1972  * Destroy @pool workers which have been idle for longer than
1973  * IDLE_WORKER_TIMEOUT.
1974  *
1975  * LOCKING:
1976  * spin_lock_irq(pool->lock) which may be released and regrabbed
1977  * multiple times.  Called only from manager.
1978  *
1979  * RETURNS:
1980  * %false if no action was taken and pool->lock stayed locked, %true
1981  * otherwise.
1982  */
1983 static bool maybe_destroy_workers(struct worker_pool *pool)
1984 {
1985 	bool ret = false;
1986 
1987 	while (too_many_workers(pool)) {
1988 		struct worker *worker;
1989 		unsigned long expires;
1990 
1991 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1992 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1993 
1994 		if (time_before(jiffies, expires)) {
1995 			mod_timer(&pool->idle_timer, expires);
1996 			break;
1997 		}
1998 
1999 		destroy_worker(worker);
2000 		ret = true;
2001 	}
2002 
2003 	return ret;
2004 }
2005 
2006 /**
2007  * manage_workers - manage worker pool
2008  * @worker: self
2009  *
2010  * Assume the manager role and manage the worker pool @worker belongs
2011  * to.  At any given time, there can be only zero or one manager per
2012  * pool.  The exclusion is handled automatically by this function.
2013  *
2014  * The caller can safely start processing works on false return.  On
2015  * true return, it's guaranteed that need_to_create_worker() is false
2016  * and may_start_working() is true.
2017  *
2018  * CONTEXT:
2019  * spin_lock_irq(pool->lock) which may be released and regrabbed
2020  * multiple times.  Does GFP_KERNEL allocations.
2021  *
2022  * RETURNS:
2023  * spin_lock_irq(pool->lock) which may be released and regrabbed
2024  * multiple times.  Does GFP_KERNEL allocations.
2025  */
2026 static bool manage_workers(struct worker *worker)
2027 {
2028 	struct worker_pool *pool = worker->pool;
2029 	bool ret = false;
2030 
2031 	/*
2032 	 * Managership is governed by two mutexes - manager_arb and
2033 	 * manager_mutex.  manager_arb handles arbitration of manager role.
2034 	 * Anyone who successfully grabs manager_arb wins the arbitration
2035 	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
2036 	 * failure while holding pool->lock reliably indicates that someone
2037 	 * else is managing the pool and the worker which failed trylock
2038 	 * can proceed to executing work items.  This means that anyone
2039 	 * grabbing manager_arb is responsible for actually performing
2040 	 * manager duties.  If manager_arb is grabbed and released without
2041 	 * actual management, the pool may stall indefinitely.
2042 	 *
2043 	 * manager_mutex is used for exclusion of actual management
2044 	 * operations.  The holder of manager_mutex can be sure that none
2045 	 * of management operations, including creation and destruction of
2046 	 * workers, won't take place until the mutex is released.  Because
2047 	 * manager_mutex doesn't interfere with manager role arbitration,
2048 	 * it is guaranteed that the pool's management, while may be
2049 	 * delayed, won't be disturbed by someone else grabbing
2050 	 * manager_mutex.
2051 	 */
2052 	if (!mutex_trylock(&pool->manager_arb))
2053 		return ret;
2054 
2055 	/*
2056 	 * With manager arbitration won, manager_mutex would be free in
2057 	 * most cases.  trylock first without dropping @pool->lock.
2058 	 */
2059 	if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2060 		spin_unlock_irq(&pool->lock);
2061 		mutex_lock(&pool->manager_mutex);
2062 		spin_lock_irq(&pool->lock);
2063 		ret = true;
2064 	}
2065 
2066 	pool->flags &= ~POOL_MANAGE_WORKERS;
2067 
2068 	/*
2069 	 * Destroy and then create so that may_start_working() is true
2070 	 * on return.
2071 	 */
2072 	ret |= maybe_destroy_workers(pool);
2073 	ret |= maybe_create_worker(pool);
2074 
2075 	mutex_unlock(&pool->manager_mutex);
2076 	mutex_unlock(&pool->manager_arb);
2077 	return ret;
2078 }
2079 
2080 /**
2081  * process_one_work - process single work
2082  * @worker: self
2083  * @work: work to process
2084  *
2085  * Process @work.  This function contains all the logics necessary to
2086  * process a single work including synchronization against and
2087  * interaction with other workers on the same cpu, queueing and
2088  * flushing.  As long as context requirement is met, any worker can
2089  * call this function to process a work.
2090  *
2091  * CONTEXT:
2092  * spin_lock_irq(pool->lock) which is released and regrabbed.
2093  */
2094 static void process_one_work(struct worker *worker, struct work_struct *work)
2095 __releases(&pool->lock)
2096 __acquires(&pool->lock)
2097 {
2098 	struct pool_workqueue *pwq = get_work_pwq(work);
2099 	struct worker_pool *pool = worker->pool;
2100 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2101 	int work_color;
2102 	struct worker *collision;
2103 #ifdef CONFIG_LOCKDEP
2104 	/*
2105 	 * It is permissible to free the struct work_struct from
2106 	 * inside the function that is called from it, this we need to
2107 	 * take into account for lockdep too.  To avoid bogus "held
2108 	 * lock freed" warnings as well as problems when looking into
2109 	 * work->lockdep_map, make a copy and use that here.
2110 	 */
2111 	struct lockdep_map lockdep_map;
2112 
2113 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2114 #endif
2115 	/*
2116 	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
2117 	 * necessary to avoid spurious warnings from rescuers servicing the
2118 	 * unbound or a disassociated pool.
2119 	 */
2120 	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2121 		     !(pool->flags & POOL_DISASSOCIATED) &&
2122 		     raw_smp_processor_id() != pool->cpu);
2123 
2124 	/*
2125 	 * A single work shouldn't be executed concurrently by
2126 	 * multiple workers on a single cpu.  Check whether anyone is
2127 	 * already processing the work.  If so, defer the work to the
2128 	 * currently executing one.
2129 	 */
2130 	collision = find_worker_executing_work(pool, work);
2131 	if (unlikely(collision)) {
2132 		move_linked_works(work, &collision->scheduled, NULL);
2133 		return;
2134 	}
2135 
2136 	/* claim and dequeue */
2137 	debug_work_deactivate(work);
2138 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2139 	worker->current_work = work;
2140 	worker->current_func = work->func;
2141 	worker->current_pwq = pwq;
2142 	work_color = get_work_color(work);
2143 
2144 	list_del_init(&work->entry);
2145 
2146 	/*
2147 	 * CPU intensive works don't participate in concurrency
2148 	 * management.  They're the scheduler's responsibility.
2149 	 */
2150 	if (unlikely(cpu_intensive))
2151 		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2152 
2153 	/*
2154 	 * Unbound pool isn't concurrency managed and work items should be
2155 	 * executed ASAP.  Wake up another worker if necessary.
2156 	 */
2157 	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2158 		wake_up_worker(pool);
2159 
2160 	/*
2161 	 * Record the last pool and clear PENDING which should be the last
2162 	 * update to @work.  Also, do this inside @pool->lock so that
2163 	 * PENDING and queued state changes happen together while IRQ is
2164 	 * disabled.
2165 	 */
2166 	set_work_pool_and_clear_pending(work, pool->id);
2167 
2168 	spin_unlock_irq(&pool->lock);
2169 
2170 	lock_map_acquire_read(&pwq->wq->lockdep_map);
2171 	lock_map_acquire(&lockdep_map);
2172 	trace_workqueue_execute_start(work);
2173 	worker->current_func(work);
2174 	/*
2175 	 * While we must be careful to not use "work" after this, the trace
2176 	 * point will only record its address.
2177 	 */
2178 	trace_workqueue_execute_end(work);
2179 	lock_map_release(&lockdep_map);
2180 	lock_map_release(&pwq->wq->lockdep_map);
2181 
2182 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2183 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2184 		       "     last function: %pf\n",
2185 		       current->comm, preempt_count(), task_pid_nr(current),
2186 		       worker->current_func);
2187 		debug_show_held_locks(current);
2188 		dump_stack();
2189 	}
2190 
2191 	spin_lock_irq(&pool->lock);
2192 
2193 	/* clear cpu intensive status */
2194 	if (unlikely(cpu_intensive))
2195 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2196 
2197 	/* we're done with it, release */
2198 	hash_del(&worker->hentry);
2199 	worker->current_work = NULL;
2200 	worker->current_func = NULL;
2201 	worker->current_pwq = NULL;
2202 	worker->desc_valid = false;
2203 	pwq_dec_nr_in_flight(pwq, work_color);
2204 }
2205 
2206 /**
2207  * process_scheduled_works - process scheduled works
2208  * @worker: self
2209  *
2210  * Process all scheduled works.  Please note that the scheduled list
2211  * may change while processing a work, so this function repeatedly
2212  * fetches a work from the top and executes it.
2213  *
2214  * CONTEXT:
2215  * spin_lock_irq(pool->lock) which may be released and regrabbed
2216  * multiple times.
2217  */
2218 static void process_scheduled_works(struct worker *worker)
2219 {
2220 	while (!list_empty(&worker->scheduled)) {
2221 		struct work_struct *work = list_first_entry(&worker->scheduled,
2222 						struct work_struct, entry);
2223 		process_one_work(worker, work);
2224 	}
2225 }
2226 
2227 /**
2228  * worker_thread - the worker thread function
2229  * @__worker: self
2230  *
2231  * The worker thread function.  All workers belong to a worker_pool -
2232  * either a per-cpu one or dynamic unbound one.  These workers process all
2233  * work items regardless of their specific target workqueue.  The only
2234  * exception is work items which belong to workqueues with a rescuer which
2235  * will be explained in rescuer_thread().
2236  */
2237 static int worker_thread(void *__worker)
2238 {
2239 	struct worker *worker = __worker;
2240 	struct worker_pool *pool = worker->pool;
2241 
2242 	/* tell the scheduler that this is a workqueue worker */
2243 	worker->task->flags |= PF_WQ_WORKER;
2244 woke_up:
2245 	spin_lock_irq(&pool->lock);
2246 
2247 	/* am I supposed to die? */
2248 	if (unlikely(worker->flags & WORKER_DIE)) {
2249 		spin_unlock_irq(&pool->lock);
2250 		WARN_ON_ONCE(!list_empty(&worker->entry));
2251 		worker->task->flags &= ~PF_WQ_WORKER;
2252 		return 0;
2253 	}
2254 
2255 	worker_leave_idle(worker);
2256 recheck:
2257 	/* no more worker necessary? */
2258 	if (!need_more_worker(pool))
2259 		goto sleep;
2260 
2261 	/* do we need to manage? */
2262 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2263 		goto recheck;
2264 
2265 	/*
2266 	 * ->scheduled list can only be filled while a worker is
2267 	 * preparing to process a work or actually processing it.
2268 	 * Make sure nobody diddled with it while I was sleeping.
2269 	 */
2270 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2271 
2272 	/*
2273 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2274 	 * worker or that someone else has already assumed the manager
2275 	 * role.  This is where @worker starts participating in concurrency
2276 	 * management if applicable and concurrency management is restored
2277 	 * after being rebound.  See rebind_workers() for details.
2278 	 */
2279 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2280 
2281 	do {
2282 		struct work_struct *work =
2283 			list_first_entry(&pool->worklist,
2284 					 struct work_struct, entry);
2285 
2286 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2287 			/* optimization path, not strictly necessary */
2288 			process_one_work(worker, work);
2289 			if (unlikely(!list_empty(&worker->scheduled)))
2290 				process_scheduled_works(worker);
2291 		} else {
2292 			move_linked_works(work, &worker->scheduled, NULL);
2293 			process_scheduled_works(worker);
2294 		}
2295 	} while (keep_working(pool));
2296 
2297 	worker_set_flags(worker, WORKER_PREP, false);
2298 sleep:
2299 	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2300 		goto recheck;
2301 
2302 	/*
2303 	 * pool->lock is held and there's no work to process and no need to
2304 	 * manage, sleep.  Workers are woken up only while holding
2305 	 * pool->lock or from local cpu, so setting the current state
2306 	 * before releasing pool->lock is enough to prevent losing any
2307 	 * event.
2308 	 */
2309 	worker_enter_idle(worker);
2310 	__set_current_state(TASK_INTERRUPTIBLE);
2311 	spin_unlock_irq(&pool->lock);
2312 	schedule();
2313 	goto woke_up;
2314 }
2315 
2316 /**
2317  * rescuer_thread - the rescuer thread function
2318  * @__rescuer: self
2319  *
2320  * Workqueue rescuer thread function.  There's one rescuer for each
2321  * workqueue which has WQ_MEM_RECLAIM set.
2322  *
2323  * Regular work processing on a pool may block trying to create a new
2324  * worker which uses GFP_KERNEL allocation which has slight chance of
2325  * developing into deadlock if some works currently on the same queue
2326  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2327  * the problem rescuer solves.
2328  *
2329  * When such condition is possible, the pool summons rescuers of all
2330  * workqueues which have works queued on the pool and let them process
2331  * those works so that forward progress can be guaranteed.
2332  *
2333  * This should happen rarely.
2334  */
2335 static int rescuer_thread(void *__rescuer)
2336 {
2337 	struct worker *rescuer = __rescuer;
2338 	struct workqueue_struct *wq = rescuer->rescue_wq;
2339 	struct list_head *scheduled = &rescuer->scheduled;
2340 
2341 	set_user_nice(current, RESCUER_NICE_LEVEL);
2342 
2343 	/*
2344 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2345 	 * doesn't participate in concurrency management.
2346 	 */
2347 	rescuer->task->flags |= PF_WQ_WORKER;
2348 repeat:
2349 	set_current_state(TASK_INTERRUPTIBLE);
2350 
2351 	if (kthread_should_stop()) {
2352 		__set_current_state(TASK_RUNNING);
2353 		rescuer->task->flags &= ~PF_WQ_WORKER;
2354 		return 0;
2355 	}
2356 
2357 	/* see whether any pwq is asking for help */
2358 	spin_lock_irq(&wq_mayday_lock);
2359 
2360 	while (!list_empty(&wq->maydays)) {
2361 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2362 					struct pool_workqueue, mayday_node);
2363 		struct worker_pool *pool = pwq->pool;
2364 		struct work_struct *work, *n;
2365 
2366 		__set_current_state(TASK_RUNNING);
2367 		list_del_init(&pwq->mayday_node);
2368 
2369 		spin_unlock_irq(&wq_mayday_lock);
2370 
2371 		/* migrate to the target cpu if possible */
2372 		worker_maybe_bind_and_lock(pool);
2373 		rescuer->pool = pool;
2374 
2375 		/*
2376 		 * Slurp in all works issued via this workqueue and
2377 		 * process'em.
2378 		 */
2379 		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2380 		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2381 			if (get_work_pwq(work) == pwq)
2382 				move_linked_works(work, scheduled, &n);
2383 
2384 		process_scheduled_works(rescuer);
2385 
2386 		/*
2387 		 * Leave this pool.  If keep_working() is %true, notify a
2388 		 * regular worker; otherwise, we end up with 0 concurrency
2389 		 * and stalling the execution.
2390 		 */
2391 		if (keep_working(pool))
2392 			wake_up_worker(pool);
2393 
2394 		rescuer->pool = NULL;
2395 		spin_unlock(&pool->lock);
2396 		spin_lock(&wq_mayday_lock);
2397 	}
2398 
2399 	spin_unlock_irq(&wq_mayday_lock);
2400 
2401 	/* rescuers should never participate in concurrency management */
2402 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2403 	schedule();
2404 	goto repeat;
2405 }
2406 
2407 struct wq_barrier {
2408 	struct work_struct	work;
2409 	struct completion	done;
2410 };
2411 
2412 static void wq_barrier_func(struct work_struct *work)
2413 {
2414 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2415 	complete(&barr->done);
2416 }
2417 
2418 /**
2419  * insert_wq_barrier - insert a barrier work
2420  * @pwq: pwq to insert barrier into
2421  * @barr: wq_barrier to insert
2422  * @target: target work to attach @barr to
2423  * @worker: worker currently executing @target, NULL if @target is not executing
2424  *
2425  * @barr is linked to @target such that @barr is completed only after
2426  * @target finishes execution.  Please note that the ordering
2427  * guarantee is observed only with respect to @target and on the local
2428  * cpu.
2429  *
2430  * Currently, a queued barrier can't be canceled.  This is because
2431  * try_to_grab_pending() can't determine whether the work to be
2432  * grabbed is at the head of the queue and thus can't clear LINKED
2433  * flag of the previous work while there must be a valid next work
2434  * after a work with LINKED flag set.
2435  *
2436  * Note that when @worker is non-NULL, @target may be modified
2437  * underneath us, so we can't reliably determine pwq from @target.
2438  *
2439  * CONTEXT:
2440  * spin_lock_irq(pool->lock).
2441  */
2442 static void insert_wq_barrier(struct pool_workqueue *pwq,
2443 			      struct wq_barrier *barr,
2444 			      struct work_struct *target, struct worker *worker)
2445 {
2446 	struct list_head *head;
2447 	unsigned int linked = 0;
2448 
2449 	/*
2450 	 * debugobject calls are safe here even with pool->lock locked
2451 	 * as we know for sure that this will not trigger any of the
2452 	 * checks and call back into the fixup functions where we
2453 	 * might deadlock.
2454 	 */
2455 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2456 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2457 	init_completion(&barr->done);
2458 
2459 	/*
2460 	 * If @target is currently being executed, schedule the
2461 	 * barrier to the worker; otherwise, put it after @target.
2462 	 */
2463 	if (worker)
2464 		head = worker->scheduled.next;
2465 	else {
2466 		unsigned long *bits = work_data_bits(target);
2467 
2468 		head = target->entry.next;
2469 		/* there can already be other linked works, inherit and set */
2470 		linked = *bits & WORK_STRUCT_LINKED;
2471 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2472 	}
2473 
2474 	debug_work_activate(&barr->work);
2475 	insert_work(pwq, &barr->work, head,
2476 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2477 }
2478 
2479 /**
2480  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2481  * @wq: workqueue being flushed
2482  * @flush_color: new flush color, < 0 for no-op
2483  * @work_color: new work color, < 0 for no-op
2484  *
2485  * Prepare pwqs for workqueue flushing.
2486  *
2487  * If @flush_color is non-negative, flush_color on all pwqs should be
2488  * -1.  If no pwq has in-flight commands at the specified color, all
2489  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2490  * has in flight commands, its pwq->flush_color is set to
2491  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2492  * wakeup logic is armed and %true is returned.
2493  *
2494  * The caller should have initialized @wq->first_flusher prior to
2495  * calling this function with non-negative @flush_color.  If
2496  * @flush_color is negative, no flush color update is done and %false
2497  * is returned.
2498  *
2499  * If @work_color is non-negative, all pwqs should have the same
2500  * work_color which is previous to @work_color and all will be
2501  * advanced to @work_color.
2502  *
2503  * CONTEXT:
2504  * mutex_lock(wq->mutex).
2505  *
2506  * RETURNS:
2507  * %true if @flush_color >= 0 and there's something to flush.  %false
2508  * otherwise.
2509  */
2510 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2511 				      int flush_color, int work_color)
2512 {
2513 	bool wait = false;
2514 	struct pool_workqueue *pwq;
2515 
2516 	if (flush_color >= 0) {
2517 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2518 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2519 	}
2520 
2521 	for_each_pwq(pwq, wq) {
2522 		struct worker_pool *pool = pwq->pool;
2523 
2524 		spin_lock_irq(&pool->lock);
2525 
2526 		if (flush_color >= 0) {
2527 			WARN_ON_ONCE(pwq->flush_color != -1);
2528 
2529 			if (pwq->nr_in_flight[flush_color]) {
2530 				pwq->flush_color = flush_color;
2531 				atomic_inc(&wq->nr_pwqs_to_flush);
2532 				wait = true;
2533 			}
2534 		}
2535 
2536 		if (work_color >= 0) {
2537 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2538 			pwq->work_color = work_color;
2539 		}
2540 
2541 		spin_unlock_irq(&pool->lock);
2542 	}
2543 
2544 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2545 		complete(&wq->first_flusher->done);
2546 
2547 	return wait;
2548 }
2549 
2550 /**
2551  * flush_workqueue - ensure that any scheduled work has run to completion.
2552  * @wq: workqueue to flush
2553  *
2554  * This function sleeps until all work items which were queued on entry
2555  * have finished execution, but it is not livelocked by new incoming ones.
2556  */
2557 void flush_workqueue(struct workqueue_struct *wq)
2558 {
2559 	struct wq_flusher this_flusher = {
2560 		.list = LIST_HEAD_INIT(this_flusher.list),
2561 		.flush_color = -1,
2562 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2563 	};
2564 	int next_color;
2565 
2566 	lock_map_acquire(&wq->lockdep_map);
2567 	lock_map_release(&wq->lockdep_map);
2568 
2569 	mutex_lock(&wq->mutex);
2570 
2571 	/*
2572 	 * Start-to-wait phase
2573 	 */
2574 	next_color = work_next_color(wq->work_color);
2575 
2576 	if (next_color != wq->flush_color) {
2577 		/*
2578 		 * Color space is not full.  The current work_color
2579 		 * becomes our flush_color and work_color is advanced
2580 		 * by one.
2581 		 */
2582 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2583 		this_flusher.flush_color = wq->work_color;
2584 		wq->work_color = next_color;
2585 
2586 		if (!wq->first_flusher) {
2587 			/* no flush in progress, become the first flusher */
2588 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2589 
2590 			wq->first_flusher = &this_flusher;
2591 
2592 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2593 						       wq->work_color)) {
2594 				/* nothing to flush, done */
2595 				wq->flush_color = next_color;
2596 				wq->first_flusher = NULL;
2597 				goto out_unlock;
2598 			}
2599 		} else {
2600 			/* wait in queue */
2601 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2602 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2603 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2604 		}
2605 	} else {
2606 		/*
2607 		 * Oops, color space is full, wait on overflow queue.
2608 		 * The next flush completion will assign us
2609 		 * flush_color and transfer to flusher_queue.
2610 		 */
2611 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2612 	}
2613 
2614 	mutex_unlock(&wq->mutex);
2615 
2616 	wait_for_completion(&this_flusher.done);
2617 
2618 	/*
2619 	 * Wake-up-and-cascade phase
2620 	 *
2621 	 * First flushers are responsible for cascading flushes and
2622 	 * handling overflow.  Non-first flushers can simply return.
2623 	 */
2624 	if (wq->first_flusher != &this_flusher)
2625 		return;
2626 
2627 	mutex_lock(&wq->mutex);
2628 
2629 	/* we might have raced, check again with mutex held */
2630 	if (wq->first_flusher != &this_flusher)
2631 		goto out_unlock;
2632 
2633 	wq->first_flusher = NULL;
2634 
2635 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2636 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2637 
2638 	while (true) {
2639 		struct wq_flusher *next, *tmp;
2640 
2641 		/* complete all the flushers sharing the current flush color */
2642 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2643 			if (next->flush_color != wq->flush_color)
2644 				break;
2645 			list_del_init(&next->list);
2646 			complete(&next->done);
2647 		}
2648 
2649 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2650 			     wq->flush_color != work_next_color(wq->work_color));
2651 
2652 		/* this flush_color is finished, advance by one */
2653 		wq->flush_color = work_next_color(wq->flush_color);
2654 
2655 		/* one color has been freed, handle overflow queue */
2656 		if (!list_empty(&wq->flusher_overflow)) {
2657 			/*
2658 			 * Assign the same color to all overflowed
2659 			 * flushers, advance work_color and append to
2660 			 * flusher_queue.  This is the start-to-wait
2661 			 * phase for these overflowed flushers.
2662 			 */
2663 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2664 				tmp->flush_color = wq->work_color;
2665 
2666 			wq->work_color = work_next_color(wq->work_color);
2667 
2668 			list_splice_tail_init(&wq->flusher_overflow,
2669 					      &wq->flusher_queue);
2670 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2671 		}
2672 
2673 		if (list_empty(&wq->flusher_queue)) {
2674 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2675 			break;
2676 		}
2677 
2678 		/*
2679 		 * Need to flush more colors.  Make the next flusher
2680 		 * the new first flusher and arm pwqs.
2681 		 */
2682 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2683 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2684 
2685 		list_del_init(&next->list);
2686 		wq->first_flusher = next;
2687 
2688 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2689 			break;
2690 
2691 		/*
2692 		 * Meh... this color is already done, clear first
2693 		 * flusher and repeat cascading.
2694 		 */
2695 		wq->first_flusher = NULL;
2696 	}
2697 
2698 out_unlock:
2699 	mutex_unlock(&wq->mutex);
2700 }
2701 EXPORT_SYMBOL_GPL(flush_workqueue);
2702 
2703 /**
2704  * drain_workqueue - drain a workqueue
2705  * @wq: workqueue to drain
2706  *
2707  * Wait until the workqueue becomes empty.  While draining is in progress,
2708  * only chain queueing is allowed.  IOW, only currently pending or running
2709  * work items on @wq can queue further work items on it.  @wq is flushed
2710  * repeatedly until it becomes empty.  The number of flushing is detemined
2711  * by the depth of chaining and should be relatively short.  Whine if it
2712  * takes too long.
2713  */
2714 void drain_workqueue(struct workqueue_struct *wq)
2715 {
2716 	unsigned int flush_cnt = 0;
2717 	struct pool_workqueue *pwq;
2718 
2719 	/*
2720 	 * __queue_work() needs to test whether there are drainers, is much
2721 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2722 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2723 	 */
2724 	mutex_lock(&wq->mutex);
2725 	if (!wq->nr_drainers++)
2726 		wq->flags |= __WQ_DRAINING;
2727 	mutex_unlock(&wq->mutex);
2728 reflush:
2729 	flush_workqueue(wq);
2730 
2731 	mutex_lock(&wq->mutex);
2732 
2733 	for_each_pwq(pwq, wq) {
2734 		bool drained;
2735 
2736 		spin_lock_irq(&pwq->pool->lock);
2737 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2738 		spin_unlock_irq(&pwq->pool->lock);
2739 
2740 		if (drained)
2741 			continue;
2742 
2743 		if (++flush_cnt == 10 ||
2744 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2745 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2746 				wq->name, flush_cnt);
2747 
2748 		mutex_unlock(&wq->mutex);
2749 		goto reflush;
2750 	}
2751 
2752 	if (!--wq->nr_drainers)
2753 		wq->flags &= ~__WQ_DRAINING;
2754 	mutex_unlock(&wq->mutex);
2755 }
2756 EXPORT_SYMBOL_GPL(drain_workqueue);
2757 
2758 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2759 {
2760 	struct worker *worker = NULL;
2761 	struct worker_pool *pool;
2762 	struct pool_workqueue *pwq;
2763 
2764 	might_sleep();
2765 
2766 	local_irq_disable();
2767 	pool = get_work_pool(work);
2768 	if (!pool) {
2769 		local_irq_enable();
2770 		return false;
2771 	}
2772 
2773 	spin_lock(&pool->lock);
2774 	/* see the comment in try_to_grab_pending() with the same code */
2775 	pwq = get_work_pwq(work);
2776 	if (pwq) {
2777 		if (unlikely(pwq->pool != pool))
2778 			goto already_gone;
2779 	} else {
2780 		worker = find_worker_executing_work(pool, work);
2781 		if (!worker)
2782 			goto already_gone;
2783 		pwq = worker->current_pwq;
2784 	}
2785 
2786 	insert_wq_barrier(pwq, barr, work, worker);
2787 	spin_unlock_irq(&pool->lock);
2788 
2789 	/*
2790 	 * If @max_active is 1 or rescuer is in use, flushing another work
2791 	 * item on the same workqueue may lead to deadlock.  Make sure the
2792 	 * flusher is not running on the same workqueue by verifying write
2793 	 * access.
2794 	 */
2795 	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2796 		lock_map_acquire(&pwq->wq->lockdep_map);
2797 	else
2798 		lock_map_acquire_read(&pwq->wq->lockdep_map);
2799 	lock_map_release(&pwq->wq->lockdep_map);
2800 
2801 	return true;
2802 already_gone:
2803 	spin_unlock_irq(&pool->lock);
2804 	return false;
2805 }
2806 
2807 /**
2808  * flush_work - wait for a work to finish executing the last queueing instance
2809  * @work: the work to flush
2810  *
2811  * Wait until @work has finished execution.  @work is guaranteed to be idle
2812  * on return if it hasn't been requeued since flush started.
2813  *
2814  * RETURNS:
2815  * %true if flush_work() waited for the work to finish execution,
2816  * %false if it was already idle.
2817  */
2818 bool flush_work(struct work_struct *work)
2819 {
2820 	struct wq_barrier barr;
2821 
2822 	lock_map_acquire(&work->lockdep_map);
2823 	lock_map_release(&work->lockdep_map);
2824 
2825 	if (start_flush_work(work, &barr)) {
2826 		wait_for_completion(&barr.done);
2827 		destroy_work_on_stack(&barr.work);
2828 		return true;
2829 	} else {
2830 		return false;
2831 	}
2832 }
2833 EXPORT_SYMBOL_GPL(flush_work);
2834 
2835 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2836 {
2837 	unsigned long flags;
2838 	int ret;
2839 
2840 	do {
2841 		ret = try_to_grab_pending(work, is_dwork, &flags);
2842 		/*
2843 		 * If someone else is canceling, wait for the same event it
2844 		 * would be waiting for before retrying.
2845 		 */
2846 		if (unlikely(ret == -ENOENT))
2847 			flush_work(work);
2848 	} while (unlikely(ret < 0));
2849 
2850 	/* tell other tasks trying to grab @work to back off */
2851 	mark_work_canceling(work);
2852 	local_irq_restore(flags);
2853 
2854 	flush_work(work);
2855 	clear_work_data(work);
2856 	return ret;
2857 }
2858 
2859 /**
2860  * cancel_work_sync - cancel a work and wait for it to finish
2861  * @work: the work to cancel
2862  *
2863  * Cancel @work and wait for its execution to finish.  This function
2864  * can be used even if the work re-queues itself or migrates to
2865  * another workqueue.  On return from this function, @work is
2866  * guaranteed to be not pending or executing on any CPU.
2867  *
2868  * cancel_work_sync(&delayed_work->work) must not be used for
2869  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2870  *
2871  * The caller must ensure that the workqueue on which @work was last
2872  * queued can't be destroyed before this function returns.
2873  *
2874  * RETURNS:
2875  * %true if @work was pending, %false otherwise.
2876  */
2877 bool cancel_work_sync(struct work_struct *work)
2878 {
2879 	return __cancel_work_timer(work, false);
2880 }
2881 EXPORT_SYMBOL_GPL(cancel_work_sync);
2882 
2883 /**
2884  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2885  * @dwork: the delayed work to flush
2886  *
2887  * Delayed timer is cancelled and the pending work is queued for
2888  * immediate execution.  Like flush_work(), this function only
2889  * considers the last queueing instance of @dwork.
2890  *
2891  * RETURNS:
2892  * %true if flush_work() waited for the work to finish execution,
2893  * %false if it was already idle.
2894  */
2895 bool flush_delayed_work(struct delayed_work *dwork)
2896 {
2897 	local_irq_disable();
2898 	if (del_timer_sync(&dwork->timer))
2899 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2900 	local_irq_enable();
2901 	return flush_work(&dwork->work);
2902 }
2903 EXPORT_SYMBOL(flush_delayed_work);
2904 
2905 /**
2906  * cancel_delayed_work - cancel a delayed work
2907  * @dwork: delayed_work to cancel
2908  *
2909  * Kill off a pending delayed_work.  Returns %true if @dwork was pending
2910  * and canceled; %false if wasn't pending.  Note that the work callback
2911  * function may still be running on return, unless it returns %true and the
2912  * work doesn't re-arm itself.  Explicitly flush or use
2913  * cancel_delayed_work_sync() to wait on it.
2914  *
2915  * This function is safe to call from any context including IRQ handler.
2916  */
2917 bool cancel_delayed_work(struct delayed_work *dwork)
2918 {
2919 	unsigned long flags;
2920 	int ret;
2921 
2922 	do {
2923 		ret = try_to_grab_pending(&dwork->work, true, &flags);
2924 	} while (unlikely(ret == -EAGAIN));
2925 
2926 	if (unlikely(ret < 0))
2927 		return false;
2928 
2929 	set_work_pool_and_clear_pending(&dwork->work,
2930 					get_work_pool_id(&dwork->work));
2931 	local_irq_restore(flags);
2932 	return ret;
2933 }
2934 EXPORT_SYMBOL(cancel_delayed_work);
2935 
2936 /**
2937  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2938  * @dwork: the delayed work cancel
2939  *
2940  * This is cancel_work_sync() for delayed works.
2941  *
2942  * RETURNS:
2943  * %true if @dwork was pending, %false otherwise.
2944  */
2945 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2946 {
2947 	return __cancel_work_timer(&dwork->work, true);
2948 }
2949 EXPORT_SYMBOL(cancel_delayed_work_sync);
2950 
2951 /**
2952  * schedule_on_each_cpu - execute a function synchronously on each online CPU
2953  * @func: the function to call
2954  *
2955  * schedule_on_each_cpu() executes @func on each online CPU using the
2956  * system workqueue and blocks until all CPUs have completed.
2957  * schedule_on_each_cpu() is very slow.
2958  *
2959  * RETURNS:
2960  * 0 on success, -errno on failure.
2961  */
2962 int schedule_on_each_cpu(work_func_t func)
2963 {
2964 	int cpu;
2965 	struct work_struct __percpu *works;
2966 
2967 	works = alloc_percpu(struct work_struct);
2968 	if (!works)
2969 		return -ENOMEM;
2970 
2971 	get_online_cpus();
2972 
2973 	for_each_online_cpu(cpu) {
2974 		struct work_struct *work = per_cpu_ptr(works, cpu);
2975 
2976 		INIT_WORK(work, func);
2977 		schedule_work_on(cpu, work);
2978 	}
2979 
2980 	for_each_online_cpu(cpu)
2981 		flush_work(per_cpu_ptr(works, cpu));
2982 
2983 	put_online_cpus();
2984 	free_percpu(works);
2985 	return 0;
2986 }
2987 
2988 /**
2989  * flush_scheduled_work - ensure that any scheduled work has run to completion.
2990  *
2991  * Forces execution of the kernel-global workqueue and blocks until its
2992  * completion.
2993  *
2994  * Think twice before calling this function!  It's very easy to get into
2995  * trouble if you don't take great care.  Either of the following situations
2996  * will lead to deadlock:
2997  *
2998  *	One of the work items currently on the workqueue needs to acquire
2999  *	a lock held by your code or its caller.
3000  *
3001  *	Your code is running in the context of a work routine.
3002  *
3003  * They will be detected by lockdep when they occur, but the first might not
3004  * occur very often.  It depends on what work items are on the workqueue and
3005  * what locks they need, which you have no control over.
3006  *
3007  * In most situations flushing the entire workqueue is overkill; you merely
3008  * need to know that a particular work item isn't queued and isn't running.
3009  * In such cases you should use cancel_delayed_work_sync() or
3010  * cancel_work_sync() instead.
3011  */
3012 void flush_scheduled_work(void)
3013 {
3014 	flush_workqueue(system_wq);
3015 }
3016 EXPORT_SYMBOL(flush_scheduled_work);
3017 
3018 /**
3019  * execute_in_process_context - reliably execute the routine with user context
3020  * @fn:		the function to execute
3021  * @ew:		guaranteed storage for the execute work structure (must
3022  *		be available when the work executes)
3023  *
3024  * Executes the function immediately if process context is available,
3025  * otherwise schedules the function for delayed execution.
3026  *
3027  * Returns:	0 - function was executed
3028  *		1 - function was scheduled for execution
3029  */
3030 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3031 {
3032 	if (!in_interrupt()) {
3033 		fn(&ew->work);
3034 		return 0;
3035 	}
3036 
3037 	INIT_WORK(&ew->work, fn);
3038 	schedule_work(&ew->work);
3039 
3040 	return 1;
3041 }
3042 EXPORT_SYMBOL_GPL(execute_in_process_context);
3043 
3044 #ifdef CONFIG_SYSFS
3045 /*
3046  * Workqueues with WQ_SYSFS flag set is visible to userland via
3047  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
3048  * following attributes.
3049  *
3050  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
3051  *  max_active	RW int	: maximum number of in-flight work items
3052  *
3053  * Unbound workqueues have the following extra attributes.
3054  *
3055  *  id		RO int	: the associated pool ID
3056  *  nice	RW int	: nice value of the workers
3057  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
3058  */
3059 struct wq_device {
3060 	struct workqueue_struct		*wq;
3061 	struct device			dev;
3062 };
3063 
3064 static struct workqueue_struct *dev_to_wq(struct device *dev)
3065 {
3066 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3067 
3068 	return wq_dev->wq;
3069 }
3070 
3071 static ssize_t wq_per_cpu_show(struct device *dev,
3072 			       struct device_attribute *attr, char *buf)
3073 {
3074 	struct workqueue_struct *wq = dev_to_wq(dev);
3075 
3076 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3077 }
3078 
3079 static ssize_t wq_max_active_show(struct device *dev,
3080 				  struct device_attribute *attr, char *buf)
3081 {
3082 	struct workqueue_struct *wq = dev_to_wq(dev);
3083 
3084 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3085 }
3086 
3087 static ssize_t wq_max_active_store(struct device *dev,
3088 				   struct device_attribute *attr,
3089 				   const char *buf, size_t count)
3090 {
3091 	struct workqueue_struct *wq = dev_to_wq(dev);
3092 	int val;
3093 
3094 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3095 		return -EINVAL;
3096 
3097 	workqueue_set_max_active(wq, val);
3098 	return count;
3099 }
3100 
3101 static struct device_attribute wq_sysfs_attrs[] = {
3102 	__ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
3103 	__ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
3104 	__ATTR_NULL,
3105 };
3106 
3107 static ssize_t wq_pool_ids_show(struct device *dev,
3108 				struct device_attribute *attr, char *buf)
3109 {
3110 	struct workqueue_struct *wq = dev_to_wq(dev);
3111 	const char *delim = "";
3112 	int node, written = 0;
3113 
3114 	rcu_read_lock_sched();
3115 	for_each_node(node) {
3116 		written += scnprintf(buf + written, PAGE_SIZE - written,
3117 				     "%s%d:%d", delim, node,
3118 				     unbound_pwq_by_node(wq, node)->pool->id);
3119 		delim = " ";
3120 	}
3121 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3122 	rcu_read_unlock_sched();
3123 
3124 	return written;
3125 }
3126 
3127 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3128 			    char *buf)
3129 {
3130 	struct workqueue_struct *wq = dev_to_wq(dev);
3131 	int written;
3132 
3133 	mutex_lock(&wq->mutex);
3134 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3135 	mutex_unlock(&wq->mutex);
3136 
3137 	return written;
3138 }
3139 
3140 /* prepare workqueue_attrs for sysfs store operations */
3141 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3142 {
3143 	struct workqueue_attrs *attrs;
3144 
3145 	attrs = alloc_workqueue_attrs(GFP_KERNEL);
3146 	if (!attrs)
3147 		return NULL;
3148 
3149 	mutex_lock(&wq->mutex);
3150 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
3151 	mutex_unlock(&wq->mutex);
3152 	return attrs;
3153 }
3154 
3155 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3156 			     const char *buf, size_t count)
3157 {
3158 	struct workqueue_struct *wq = dev_to_wq(dev);
3159 	struct workqueue_attrs *attrs;
3160 	int ret;
3161 
3162 	attrs = wq_sysfs_prep_attrs(wq);
3163 	if (!attrs)
3164 		return -ENOMEM;
3165 
3166 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3167 	    attrs->nice >= -20 && attrs->nice <= 19)
3168 		ret = apply_workqueue_attrs(wq, attrs);
3169 	else
3170 		ret = -EINVAL;
3171 
3172 	free_workqueue_attrs(attrs);
3173 	return ret ?: count;
3174 }
3175 
3176 static ssize_t wq_cpumask_show(struct device *dev,
3177 			       struct device_attribute *attr, char *buf)
3178 {
3179 	struct workqueue_struct *wq = dev_to_wq(dev);
3180 	int written;
3181 
3182 	mutex_lock(&wq->mutex);
3183 	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3184 	mutex_unlock(&wq->mutex);
3185 
3186 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3187 	return written;
3188 }
3189 
3190 static ssize_t wq_cpumask_store(struct device *dev,
3191 				struct device_attribute *attr,
3192 				const char *buf, size_t count)
3193 {
3194 	struct workqueue_struct *wq = dev_to_wq(dev);
3195 	struct workqueue_attrs *attrs;
3196 	int ret;
3197 
3198 	attrs = wq_sysfs_prep_attrs(wq);
3199 	if (!attrs)
3200 		return -ENOMEM;
3201 
3202 	ret = cpumask_parse(buf, attrs->cpumask);
3203 	if (!ret)
3204 		ret = apply_workqueue_attrs(wq, attrs);
3205 
3206 	free_workqueue_attrs(attrs);
3207 	return ret ?: count;
3208 }
3209 
3210 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3211 			    char *buf)
3212 {
3213 	struct workqueue_struct *wq = dev_to_wq(dev);
3214 	int written;
3215 
3216 	mutex_lock(&wq->mutex);
3217 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
3218 			    !wq->unbound_attrs->no_numa);
3219 	mutex_unlock(&wq->mutex);
3220 
3221 	return written;
3222 }
3223 
3224 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3225 			     const char *buf, size_t count)
3226 {
3227 	struct workqueue_struct *wq = dev_to_wq(dev);
3228 	struct workqueue_attrs *attrs;
3229 	int v, ret;
3230 
3231 	attrs = wq_sysfs_prep_attrs(wq);
3232 	if (!attrs)
3233 		return -ENOMEM;
3234 
3235 	ret = -EINVAL;
3236 	if (sscanf(buf, "%d", &v) == 1) {
3237 		attrs->no_numa = !v;
3238 		ret = apply_workqueue_attrs(wq, attrs);
3239 	}
3240 
3241 	free_workqueue_attrs(attrs);
3242 	return ret ?: count;
3243 }
3244 
3245 static struct device_attribute wq_sysfs_unbound_attrs[] = {
3246 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3247 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3248 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3249 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3250 	__ATTR_NULL,
3251 };
3252 
3253 static struct bus_type wq_subsys = {
3254 	.name				= "workqueue",
3255 	.dev_attrs			= wq_sysfs_attrs,
3256 };
3257 
3258 static int __init wq_sysfs_init(void)
3259 {
3260 	return subsys_virtual_register(&wq_subsys, NULL);
3261 }
3262 core_initcall(wq_sysfs_init);
3263 
3264 static void wq_device_release(struct device *dev)
3265 {
3266 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3267 
3268 	kfree(wq_dev);
3269 }
3270 
3271 /**
3272  * workqueue_sysfs_register - make a workqueue visible in sysfs
3273  * @wq: the workqueue to register
3274  *
3275  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3276  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3277  * which is the preferred method.
3278  *
3279  * Workqueue user should use this function directly iff it wants to apply
3280  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3281  * apply_workqueue_attrs() may race against userland updating the
3282  * attributes.
3283  *
3284  * Returns 0 on success, -errno on failure.
3285  */
3286 int workqueue_sysfs_register(struct workqueue_struct *wq)
3287 {
3288 	struct wq_device *wq_dev;
3289 	int ret;
3290 
3291 	/*
3292 	 * Adjusting max_active or creating new pwqs by applyting
3293 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
3294 	 * workqueues.
3295 	 */
3296 	if (WARN_ON(wq->flags & __WQ_ORDERED))
3297 		return -EINVAL;
3298 
3299 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3300 	if (!wq_dev)
3301 		return -ENOMEM;
3302 
3303 	wq_dev->wq = wq;
3304 	wq_dev->dev.bus = &wq_subsys;
3305 	wq_dev->dev.init_name = wq->name;
3306 	wq_dev->dev.release = wq_device_release;
3307 
3308 	/*
3309 	 * unbound_attrs are created separately.  Suppress uevent until
3310 	 * everything is ready.
3311 	 */
3312 	dev_set_uevent_suppress(&wq_dev->dev, true);
3313 
3314 	ret = device_register(&wq_dev->dev);
3315 	if (ret) {
3316 		kfree(wq_dev);
3317 		wq->wq_dev = NULL;
3318 		return ret;
3319 	}
3320 
3321 	if (wq->flags & WQ_UNBOUND) {
3322 		struct device_attribute *attr;
3323 
3324 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3325 			ret = device_create_file(&wq_dev->dev, attr);
3326 			if (ret) {
3327 				device_unregister(&wq_dev->dev);
3328 				wq->wq_dev = NULL;
3329 				return ret;
3330 			}
3331 		}
3332 	}
3333 
3334 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3335 	return 0;
3336 }
3337 
3338 /**
3339  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3340  * @wq: the workqueue to unregister
3341  *
3342  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3343  */
3344 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3345 {
3346 	struct wq_device *wq_dev = wq->wq_dev;
3347 
3348 	if (!wq->wq_dev)
3349 		return;
3350 
3351 	wq->wq_dev = NULL;
3352 	device_unregister(&wq_dev->dev);
3353 }
3354 #else	/* CONFIG_SYSFS */
3355 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
3356 #endif	/* CONFIG_SYSFS */
3357 
3358 /**
3359  * free_workqueue_attrs - free a workqueue_attrs
3360  * @attrs: workqueue_attrs to free
3361  *
3362  * Undo alloc_workqueue_attrs().
3363  */
3364 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3365 {
3366 	if (attrs) {
3367 		free_cpumask_var(attrs->cpumask);
3368 		kfree(attrs);
3369 	}
3370 }
3371 
3372 /**
3373  * alloc_workqueue_attrs - allocate a workqueue_attrs
3374  * @gfp_mask: allocation mask to use
3375  *
3376  * Allocate a new workqueue_attrs, initialize with default settings and
3377  * return it.  Returns NULL on failure.
3378  */
3379 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3380 {
3381 	struct workqueue_attrs *attrs;
3382 
3383 	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3384 	if (!attrs)
3385 		goto fail;
3386 	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3387 		goto fail;
3388 
3389 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3390 	return attrs;
3391 fail:
3392 	free_workqueue_attrs(attrs);
3393 	return NULL;
3394 }
3395 
3396 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3397 				 const struct workqueue_attrs *from)
3398 {
3399 	to->nice = from->nice;
3400 	cpumask_copy(to->cpumask, from->cpumask);
3401 }
3402 
3403 /* hash value of the content of @attr */
3404 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3405 {
3406 	u32 hash = 0;
3407 
3408 	hash = jhash_1word(attrs->nice, hash);
3409 	hash = jhash(cpumask_bits(attrs->cpumask),
3410 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3411 	return hash;
3412 }
3413 
3414 /* content equality test */
3415 static bool wqattrs_equal(const struct workqueue_attrs *a,
3416 			  const struct workqueue_attrs *b)
3417 {
3418 	if (a->nice != b->nice)
3419 		return false;
3420 	if (!cpumask_equal(a->cpumask, b->cpumask))
3421 		return false;
3422 	return true;
3423 }
3424 
3425 /**
3426  * init_worker_pool - initialize a newly zalloc'd worker_pool
3427  * @pool: worker_pool to initialize
3428  *
3429  * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3430  * Returns 0 on success, -errno on failure.  Even on failure, all fields
3431  * inside @pool proper are initialized and put_unbound_pool() can be called
3432  * on @pool safely to release it.
3433  */
3434 static int init_worker_pool(struct worker_pool *pool)
3435 {
3436 	spin_lock_init(&pool->lock);
3437 	pool->id = -1;
3438 	pool->cpu = -1;
3439 	pool->node = NUMA_NO_NODE;
3440 	pool->flags |= POOL_DISASSOCIATED;
3441 	INIT_LIST_HEAD(&pool->worklist);
3442 	INIT_LIST_HEAD(&pool->idle_list);
3443 	hash_init(pool->busy_hash);
3444 
3445 	init_timer_deferrable(&pool->idle_timer);
3446 	pool->idle_timer.function = idle_worker_timeout;
3447 	pool->idle_timer.data = (unsigned long)pool;
3448 
3449 	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3450 		    (unsigned long)pool);
3451 
3452 	mutex_init(&pool->manager_arb);
3453 	mutex_init(&pool->manager_mutex);
3454 	idr_init(&pool->worker_idr);
3455 
3456 	INIT_HLIST_NODE(&pool->hash_node);
3457 	pool->refcnt = 1;
3458 
3459 	/* shouldn't fail above this point */
3460 	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3461 	if (!pool->attrs)
3462 		return -ENOMEM;
3463 	return 0;
3464 }
3465 
3466 static void rcu_free_pool(struct rcu_head *rcu)
3467 {
3468 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3469 
3470 	idr_destroy(&pool->worker_idr);
3471 	free_workqueue_attrs(pool->attrs);
3472 	kfree(pool);
3473 }
3474 
3475 /**
3476  * put_unbound_pool - put a worker_pool
3477  * @pool: worker_pool to put
3478  *
3479  * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3480  * safe manner.  get_unbound_pool() calls this function on its failure path
3481  * and this function should be able to release pools which went through,
3482  * successfully or not, init_worker_pool().
3483  *
3484  * Should be called with wq_pool_mutex held.
3485  */
3486 static void put_unbound_pool(struct worker_pool *pool)
3487 {
3488 	struct worker *worker;
3489 
3490 	lockdep_assert_held(&wq_pool_mutex);
3491 
3492 	if (--pool->refcnt)
3493 		return;
3494 
3495 	/* sanity checks */
3496 	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3497 	    WARN_ON(!list_empty(&pool->worklist)))
3498 		return;
3499 
3500 	/* release id and unhash */
3501 	if (pool->id >= 0)
3502 		idr_remove(&worker_pool_idr, pool->id);
3503 	hash_del(&pool->hash_node);
3504 
3505 	/*
3506 	 * Become the manager and destroy all workers.  Grabbing
3507 	 * manager_arb prevents @pool's workers from blocking on
3508 	 * manager_mutex.
3509 	 */
3510 	mutex_lock(&pool->manager_arb);
3511 	mutex_lock(&pool->manager_mutex);
3512 	spin_lock_irq(&pool->lock);
3513 
3514 	while ((worker = first_worker(pool)))
3515 		destroy_worker(worker);
3516 	WARN_ON(pool->nr_workers || pool->nr_idle);
3517 
3518 	spin_unlock_irq(&pool->lock);
3519 	mutex_unlock(&pool->manager_mutex);
3520 	mutex_unlock(&pool->manager_arb);
3521 
3522 	/* shut down the timers */
3523 	del_timer_sync(&pool->idle_timer);
3524 	del_timer_sync(&pool->mayday_timer);
3525 
3526 	/* sched-RCU protected to allow dereferences from get_work_pool() */
3527 	call_rcu_sched(&pool->rcu, rcu_free_pool);
3528 }
3529 
3530 /**
3531  * get_unbound_pool - get a worker_pool with the specified attributes
3532  * @attrs: the attributes of the worker_pool to get
3533  *
3534  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3535  * reference count and return it.  If there already is a matching
3536  * worker_pool, it will be used; otherwise, this function attempts to
3537  * create a new one.  On failure, returns NULL.
3538  *
3539  * Should be called with wq_pool_mutex held.
3540  */
3541 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3542 {
3543 	u32 hash = wqattrs_hash(attrs);
3544 	struct worker_pool *pool;
3545 	int node;
3546 
3547 	lockdep_assert_held(&wq_pool_mutex);
3548 
3549 	/* do we already have a matching pool? */
3550 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3551 		if (wqattrs_equal(pool->attrs, attrs)) {
3552 			pool->refcnt++;
3553 			goto out_unlock;
3554 		}
3555 	}
3556 
3557 	/* nope, create a new one */
3558 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3559 	if (!pool || init_worker_pool(pool) < 0)
3560 		goto fail;
3561 
3562 	if (workqueue_freezing)
3563 		pool->flags |= POOL_FREEZING;
3564 
3565 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3566 	copy_workqueue_attrs(pool->attrs, attrs);
3567 
3568 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3569 	if (wq_numa_enabled) {
3570 		for_each_node(node) {
3571 			if (cpumask_subset(pool->attrs->cpumask,
3572 					   wq_numa_possible_cpumask[node])) {
3573 				pool->node = node;
3574 				break;
3575 			}
3576 		}
3577 	}
3578 
3579 	if (worker_pool_assign_id(pool) < 0)
3580 		goto fail;
3581 
3582 	/* create and start the initial worker */
3583 	if (create_and_start_worker(pool) < 0)
3584 		goto fail;
3585 
3586 	/* install */
3587 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3588 out_unlock:
3589 	return pool;
3590 fail:
3591 	if (pool)
3592 		put_unbound_pool(pool);
3593 	return NULL;
3594 }
3595 
3596 static void rcu_free_pwq(struct rcu_head *rcu)
3597 {
3598 	kmem_cache_free(pwq_cache,
3599 			container_of(rcu, struct pool_workqueue, rcu));
3600 }
3601 
3602 /*
3603  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3604  * and needs to be destroyed.
3605  */
3606 static void pwq_unbound_release_workfn(struct work_struct *work)
3607 {
3608 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3609 						  unbound_release_work);
3610 	struct workqueue_struct *wq = pwq->wq;
3611 	struct worker_pool *pool = pwq->pool;
3612 	bool is_last;
3613 
3614 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3615 		return;
3616 
3617 	/*
3618 	 * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3619 	 * necessary on release but do it anyway.  It's easier to verify
3620 	 * and consistent with the linking path.
3621 	 */
3622 	mutex_lock(&wq->mutex);
3623 	list_del_rcu(&pwq->pwqs_node);
3624 	is_last = list_empty(&wq->pwqs);
3625 	mutex_unlock(&wq->mutex);
3626 
3627 	mutex_lock(&wq_pool_mutex);
3628 	put_unbound_pool(pool);
3629 	mutex_unlock(&wq_pool_mutex);
3630 
3631 	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3632 
3633 	/*
3634 	 * If we're the last pwq going away, @wq is already dead and no one
3635 	 * is gonna access it anymore.  Free it.
3636 	 */
3637 	if (is_last) {
3638 		free_workqueue_attrs(wq->unbound_attrs);
3639 		kfree(wq);
3640 	}
3641 }
3642 
3643 /**
3644  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3645  * @pwq: target pool_workqueue
3646  *
3647  * If @pwq isn't freezing, set @pwq->max_active to the associated
3648  * workqueue's saved_max_active and activate delayed work items
3649  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3650  */
3651 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3652 {
3653 	struct workqueue_struct *wq = pwq->wq;
3654 	bool freezable = wq->flags & WQ_FREEZABLE;
3655 
3656 	/* for @wq->saved_max_active */
3657 	lockdep_assert_held(&wq->mutex);
3658 
3659 	/* fast exit for non-freezable wqs */
3660 	if (!freezable && pwq->max_active == wq->saved_max_active)
3661 		return;
3662 
3663 	spin_lock_irq(&pwq->pool->lock);
3664 
3665 	if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3666 		pwq->max_active = wq->saved_max_active;
3667 
3668 		while (!list_empty(&pwq->delayed_works) &&
3669 		       pwq->nr_active < pwq->max_active)
3670 			pwq_activate_first_delayed(pwq);
3671 
3672 		/*
3673 		 * Need to kick a worker after thawed or an unbound wq's
3674 		 * max_active is bumped.  It's a slow path.  Do it always.
3675 		 */
3676 		wake_up_worker(pwq->pool);
3677 	} else {
3678 		pwq->max_active = 0;
3679 	}
3680 
3681 	spin_unlock_irq(&pwq->pool->lock);
3682 }
3683 
3684 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3685 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3686 		     struct worker_pool *pool)
3687 {
3688 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3689 
3690 	memset(pwq, 0, sizeof(*pwq));
3691 
3692 	pwq->pool = pool;
3693 	pwq->wq = wq;
3694 	pwq->flush_color = -1;
3695 	pwq->refcnt = 1;
3696 	INIT_LIST_HEAD(&pwq->delayed_works);
3697 	INIT_LIST_HEAD(&pwq->pwqs_node);
3698 	INIT_LIST_HEAD(&pwq->mayday_node);
3699 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3700 }
3701 
3702 /* sync @pwq with the current state of its associated wq and link it */
3703 static void link_pwq(struct pool_workqueue *pwq)
3704 {
3705 	struct workqueue_struct *wq = pwq->wq;
3706 
3707 	lockdep_assert_held(&wq->mutex);
3708 
3709 	/* may be called multiple times, ignore if already linked */
3710 	if (!list_empty(&pwq->pwqs_node))
3711 		return;
3712 
3713 	/*
3714 	 * Set the matching work_color.  This is synchronized with
3715 	 * wq->mutex to avoid confusing flush_workqueue().
3716 	 */
3717 	pwq->work_color = wq->work_color;
3718 
3719 	/* sync max_active to the current setting */
3720 	pwq_adjust_max_active(pwq);
3721 
3722 	/* link in @pwq */
3723 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3724 }
3725 
3726 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3727 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3728 					const struct workqueue_attrs *attrs)
3729 {
3730 	struct worker_pool *pool;
3731 	struct pool_workqueue *pwq;
3732 
3733 	lockdep_assert_held(&wq_pool_mutex);
3734 
3735 	pool = get_unbound_pool(attrs);
3736 	if (!pool)
3737 		return NULL;
3738 
3739 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3740 	if (!pwq) {
3741 		put_unbound_pool(pool);
3742 		return NULL;
3743 	}
3744 
3745 	init_pwq(pwq, wq, pool);
3746 	return pwq;
3747 }
3748 
3749 /* undo alloc_unbound_pwq(), used only in the error path */
3750 static void free_unbound_pwq(struct pool_workqueue *pwq)
3751 {
3752 	lockdep_assert_held(&wq_pool_mutex);
3753 
3754 	if (pwq) {
3755 		put_unbound_pool(pwq->pool);
3756 		kmem_cache_free(pwq_cache, pwq);
3757 	}
3758 }
3759 
3760 /**
3761  * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3762  * @attrs: the wq_attrs of interest
3763  * @node: the target NUMA node
3764  * @cpu_going_down: if >= 0, the CPU to consider as offline
3765  * @cpumask: outarg, the resulting cpumask
3766  *
3767  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3768  * @cpu_going_down is >= 0, that cpu is considered offline during
3769  * calculation.  The result is stored in @cpumask.  This function returns
3770  * %true if the resulting @cpumask is different from @attrs->cpumask,
3771  * %false if equal.
3772  *
3773  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3774  * enabled and @node has online CPUs requested by @attrs, the returned
3775  * cpumask is the intersection of the possible CPUs of @node and
3776  * @attrs->cpumask.
3777  *
3778  * The caller is responsible for ensuring that the cpumask of @node stays
3779  * stable.
3780  */
3781 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3782 				 int cpu_going_down, cpumask_t *cpumask)
3783 {
3784 	if (!wq_numa_enabled || attrs->no_numa)
3785 		goto use_dfl;
3786 
3787 	/* does @node have any online CPUs @attrs wants? */
3788 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3789 	if (cpu_going_down >= 0)
3790 		cpumask_clear_cpu(cpu_going_down, cpumask);
3791 
3792 	if (cpumask_empty(cpumask))
3793 		goto use_dfl;
3794 
3795 	/* yeap, return possible CPUs in @node that @attrs wants */
3796 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3797 	return !cpumask_equal(cpumask, attrs->cpumask);
3798 
3799 use_dfl:
3800 	cpumask_copy(cpumask, attrs->cpumask);
3801 	return false;
3802 }
3803 
3804 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3805 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3806 						   int node,
3807 						   struct pool_workqueue *pwq)
3808 {
3809 	struct pool_workqueue *old_pwq;
3810 
3811 	lockdep_assert_held(&wq->mutex);
3812 
3813 	/* link_pwq() can handle duplicate calls */
3814 	link_pwq(pwq);
3815 
3816 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3817 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3818 	return old_pwq;
3819 }
3820 
3821 /**
3822  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3823  * @wq: the target workqueue
3824  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3825  *
3826  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3827  * machines, this function maps a separate pwq to each NUMA node with
3828  * possibles CPUs in @attrs->cpumask so that work items are affine to the
3829  * NUMA node it was issued on.  Older pwqs are released as in-flight work
3830  * items finish.  Note that a work item which repeatedly requeues itself
3831  * back-to-back will stay on its current pwq.
3832  *
3833  * Performs GFP_KERNEL allocations.  Returns 0 on success and -errno on
3834  * failure.
3835  */
3836 int apply_workqueue_attrs(struct workqueue_struct *wq,
3837 			  const struct workqueue_attrs *attrs)
3838 {
3839 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3840 	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3841 	int node, ret;
3842 
3843 	/* only unbound workqueues can change attributes */
3844 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3845 		return -EINVAL;
3846 
3847 	/* creating multiple pwqs breaks ordering guarantee */
3848 	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3849 		return -EINVAL;
3850 
3851 	pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3852 	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3853 	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3854 	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3855 		goto enomem;
3856 
3857 	/* make a copy of @attrs and sanitize it */
3858 	copy_workqueue_attrs(new_attrs, attrs);
3859 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3860 
3861 	/*
3862 	 * We may create multiple pwqs with differing cpumasks.  Make a
3863 	 * copy of @new_attrs which will be modified and used to obtain
3864 	 * pools.
3865 	 */
3866 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3867 
3868 	/*
3869 	 * CPUs should stay stable across pwq creations and installations.
3870 	 * Pin CPUs, determine the target cpumask for each node and create
3871 	 * pwqs accordingly.
3872 	 */
3873 	get_online_cpus();
3874 
3875 	mutex_lock(&wq_pool_mutex);
3876 
3877 	/*
3878 	 * If something goes wrong during CPU up/down, we'll fall back to
3879 	 * the default pwq covering whole @attrs->cpumask.  Always create
3880 	 * it even if we don't use it immediately.
3881 	 */
3882 	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3883 	if (!dfl_pwq)
3884 		goto enomem_pwq;
3885 
3886 	for_each_node(node) {
3887 		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3888 			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3889 			if (!pwq_tbl[node])
3890 				goto enomem_pwq;
3891 		} else {
3892 			dfl_pwq->refcnt++;
3893 			pwq_tbl[node] = dfl_pwq;
3894 		}
3895 	}
3896 
3897 	mutex_unlock(&wq_pool_mutex);
3898 
3899 	/* all pwqs have been created successfully, let's install'em */
3900 	mutex_lock(&wq->mutex);
3901 
3902 	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3903 
3904 	/* save the previous pwq and install the new one */
3905 	for_each_node(node)
3906 		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3907 
3908 	/* @dfl_pwq might not have been used, ensure it's linked */
3909 	link_pwq(dfl_pwq);
3910 	swap(wq->dfl_pwq, dfl_pwq);
3911 
3912 	mutex_unlock(&wq->mutex);
3913 
3914 	/* put the old pwqs */
3915 	for_each_node(node)
3916 		put_pwq_unlocked(pwq_tbl[node]);
3917 	put_pwq_unlocked(dfl_pwq);
3918 
3919 	put_online_cpus();
3920 	ret = 0;
3921 	/* fall through */
3922 out_free:
3923 	free_workqueue_attrs(tmp_attrs);
3924 	free_workqueue_attrs(new_attrs);
3925 	kfree(pwq_tbl);
3926 	return ret;
3927 
3928 enomem_pwq:
3929 	free_unbound_pwq(dfl_pwq);
3930 	for_each_node(node)
3931 		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
3932 			free_unbound_pwq(pwq_tbl[node]);
3933 	mutex_unlock(&wq_pool_mutex);
3934 	put_online_cpus();
3935 enomem:
3936 	ret = -ENOMEM;
3937 	goto out_free;
3938 }
3939 
3940 /**
3941  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3942  * @wq: the target workqueue
3943  * @cpu: the CPU coming up or going down
3944  * @online: whether @cpu is coming up or going down
3945  *
3946  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3947  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3948  * @wq accordingly.
3949  *
3950  * If NUMA affinity can't be adjusted due to memory allocation failure, it
3951  * falls back to @wq->dfl_pwq which may not be optimal but is always
3952  * correct.
3953  *
3954  * Note that when the last allowed CPU of a NUMA node goes offline for a
3955  * workqueue with a cpumask spanning multiple nodes, the workers which were
3956  * already executing the work items for the workqueue will lose their CPU
3957  * affinity and may execute on any CPU.  This is similar to how per-cpu
3958  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3959  * affinity, it's the user's responsibility to flush the work item from
3960  * CPU_DOWN_PREPARE.
3961  */
3962 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3963 				   bool online)
3964 {
3965 	int node = cpu_to_node(cpu);
3966 	int cpu_off = online ? -1 : cpu;
3967 	struct pool_workqueue *old_pwq = NULL, *pwq;
3968 	struct workqueue_attrs *target_attrs;
3969 	cpumask_t *cpumask;
3970 
3971 	lockdep_assert_held(&wq_pool_mutex);
3972 
3973 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
3974 		return;
3975 
3976 	/*
3977 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3978 	 * Let's use a preallocated one.  The following buf is protected by
3979 	 * CPU hotplug exclusion.
3980 	 */
3981 	target_attrs = wq_update_unbound_numa_attrs_buf;
3982 	cpumask = target_attrs->cpumask;
3983 
3984 	mutex_lock(&wq->mutex);
3985 	if (wq->unbound_attrs->no_numa)
3986 		goto out_unlock;
3987 
3988 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3989 	pwq = unbound_pwq_by_node(wq, node);
3990 
3991 	/*
3992 	 * Let's determine what needs to be done.  If the target cpumask is
3993 	 * different from wq's, we need to compare it to @pwq's and create
3994 	 * a new one if they don't match.  If the target cpumask equals
3995 	 * wq's, the default pwq should be used.  If @pwq is already the
3996 	 * default one, nothing to do; otherwise, install the default one.
3997 	 */
3998 	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
3999 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4000 			goto out_unlock;
4001 	} else {
4002 		if (pwq == wq->dfl_pwq)
4003 			goto out_unlock;
4004 		else
4005 			goto use_dfl_pwq;
4006 	}
4007 
4008 	mutex_unlock(&wq->mutex);
4009 
4010 	/* create a new pwq */
4011 	pwq = alloc_unbound_pwq(wq, target_attrs);
4012 	if (!pwq) {
4013 		pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4014 			   wq->name);
4015 		goto out_unlock;
4016 	}
4017 
4018 	/*
4019 	 * Install the new pwq.  As this function is called only from CPU
4020 	 * hotplug callbacks and applying a new attrs is wrapped with
4021 	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4022 	 * inbetween.
4023 	 */
4024 	mutex_lock(&wq->mutex);
4025 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4026 	goto out_unlock;
4027 
4028 use_dfl_pwq:
4029 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
4030 	get_pwq(wq->dfl_pwq);
4031 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4032 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4033 out_unlock:
4034 	mutex_unlock(&wq->mutex);
4035 	put_pwq_unlocked(old_pwq);
4036 }
4037 
4038 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4039 {
4040 	bool highpri = wq->flags & WQ_HIGHPRI;
4041 	int cpu;
4042 
4043 	if (!(wq->flags & WQ_UNBOUND)) {
4044 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4045 		if (!wq->cpu_pwqs)
4046 			return -ENOMEM;
4047 
4048 		for_each_possible_cpu(cpu) {
4049 			struct pool_workqueue *pwq =
4050 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4051 			struct worker_pool *cpu_pools =
4052 				per_cpu(cpu_worker_pools, cpu);
4053 
4054 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4055 
4056 			mutex_lock(&wq->mutex);
4057 			link_pwq(pwq);
4058 			mutex_unlock(&wq->mutex);
4059 		}
4060 		return 0;
4061 	} else {
4062 		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4063 	}
4064 }
4065 
4066 static int wq_clamp_max_active(int max_active, unsigned int flags,
4067 			       const char *name)
4068 {
4069 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4070 
4071 	if (max_active < 1 || max_active > lim)
4072 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4073 			max_active, name, 1, lim);
4074 
4075 	return clamp_val(max_active, 1, lim);
4076 }
4077 
4078 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4079 					       unsigned int flags,
4080 					       int max_active,
4081 					       struct lock_class_key *key,
4082 					       const char *lock_name, ...)
4083 {
4084 	size_t tbl_size = 0;
4085 	va_list args;
4086 	struct workqueue_struct *wq;
4087 	struct pool_workqueue *pwq;
4088 
4089 	/* allocate wq and format name */
4090 	if (flags & WQ_UNBOUND)
4091 		tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4092 
4093 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4094 	if (!wq)
4095 		return NULL;
4096 
4097 	if (flags & WQ_UNBOUND) {
4098 		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4099 		if (!wq->unbound_attrs)
4100 			goto err_free_wq;
4101 	}
4102 
4103 	va_start(args, lock_name);
4104 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4105 	va_end(args);
4106 
4107 	max_active = max_active ?: WQ_DFL_ACTIVE;
4108 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4109 
4110 	/* init wq */
4111 	wq->flags = flags;
4112 	wq->saved_max_active = max_active;
4113 	mutex_init(&wq->mutex);
4114 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4115 	INIT_LIST_HEAD(&wq->pwqs);
4116 	INIT_LIST_HEAD(&wq->flusher_queue);
4117 	INIT_LIST_HEAD(&wq->flusher_overflow);
4118 	INIT_LIST_HEAD(&wq->maydays);
4119 
4120 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4121 	INIT_LIST_HEAD(&wq->list);
4122 
4123 	if (alloc_and_link_pwqs(wq) < 0)
4124 		goto err_free_wq;
4125 
4126 	/*
4127 	 * Workqueues which may be used during memory reclaim should
4128 	 * have a rescuer to guarantee forward progress.
4129 	 */
4130 	if (flags & WQ_MEM_RECLAIM) {
4131 		struct worker *rescuer;
4132 
4133 		rescuer = alloc_worker();
4134 		if (!rescuer)
4135 			goto err_destroy;
4136 
4137 		rescuer->rescue_wq = wq;
4138 		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4139 					       wq->name);
4140 		if (IS_ERR(rescuer->task)) {
4141 			kfree(rescuer);
4142 			goto err_destroy;
4143 		}
4144 
4145 		wq->rescuer = rescuer;
4146 		rescuer->task->flags |= PF_NO_SETAFFINITY;
4147 		wake_up_process(rescuer->task);
4148 	}
4149 
4150 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4151 		goto err_destroy;
4152 
4153 	/*
4154 	 * wq_pool_mutex protects global freeze state and workqueues list.
4155 	 * Grab it, adjust max_active and add the new @wq to workqueues
4156 	 * list.
4157 	 */
4158 	mutex_lock(&wq_pool_mutex);
4159 
4160 	mutex_lock(&wq->mutex);
4161 	for_each_pwq(pwq, wq)
4162 		pwq_adjust_max_active(pwq);
4163 	mutex_unlock(&wq->mutex);
4164 
4165 	list_add(&wq->list, &workqueues);
4166 
4167 	mutex_unlock(&wq_pool_mutex);
4168 
4169 	return wq;
4170 
4171 err_free_wq:
4172 	free_workqueue_attrs(wq->unbound_attrs);
4173 	kfree(wq);
4174 	return NULL;
4175 err_destroy:
4176 	destroy_workqueue(wq);
4177 	return NULL;
4178 }
4179 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4180 
4181 /**
4182  * destroy_workqueue - safely terminate a workqueue
4183  * @wq: target workqueue
4184  *
4185  * Safely destroy a workqueue. All work currently pending will be done first.
4186  */
4187 void destroy_workqueue(struct workqueue_struct *wq)
4188 {
4189 	struct pool_workqueue *pwq;
4190 	int node;
4191 
4192 	/* drain it before proceeding with destruction */
4193 	drain_workqueue(wq);
4194 
4195 	/* sanity checks */
4196 	mutex_lock(&wq->mutex);
4197 	for_each_pwq(pwq, wq) {
4198 		int i;
4199 
4200 		for (i = 0; i < WORK_NR_COLORS; i++) {
4201 			if (WARN_ON(pwq->nr_in_flight[i])) {
4202 				mutex_unlock(&wq->mutex);
4203 				return;
4204 			}
4205 		}
4206 
4207 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4208 		    WARN_ON(pwq->nr_active) ||
4209 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4210 			mutex_unlock(&wq->mutex);
4211 			return;
4212 		}
4213 	}
4214 	mutex_unlock(&wq->mutex);
4215 
4216 	/*
4217 	 * wq list is used to freeze wq, remove from list after
4218 	 * flushing is complete in case freeze races us.
4219 	 */
4220 	mutex_lock(&wq_pool_mutex);
4221 	list_del_init(&wq->list);
4222 	mutex_unlock(&wq_pool_mutex);
4223 
4224 	workqueue_sysfs_unregister(wq);
4225 
4226 	if (wq->rescuer) {
4227 		kthread_stop(wq->rescuer->task);
4228 		kfree(wq->rescuer);
4229 		wq->rescuer = NULL;
4230 	}
4231 
4232 	if (!(wq->flags & WQ_UNBOUND)) {
4233 		/*
4234 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4235 		 * free the pwqs and wq.
4236 		 */
4237 		free_percpu(wq->cpu_pwqs);
4238 		kfree(wq);
4239 	} else {
4240 		/*
4241 		 * We're the sole accessor of @wq at this point.  Directly
4242 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4243 		 * @wq will be freed when the last pwq is released.
4244 		 */
4245 		for_each_node(node) {
4246 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4247 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4248 			put_pwq_unlocked(pwq);
4249 		}
4250 
4251 		/*
4252 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4253 		 * put.  Don't access it afterwards.
4254 		 */
4255 		pwq = wq->dfl_pwq;
4256 		wq->dfl_pwq = NULL;
4257 		put_pwq_unlocked(pwq);
4258 	}
4259 }
4260 EXPORT_SYMBOL_GPL(destroy_workqueue);
4261 
4262 /**
4263  * workqueue_set_max_active - adjust max_active of a workqueue
4264  * @wq: target workqueue
4265  * @max_active: new max_active value.
4266  *
4267  * Set max_active of @wq to @max_active.
4268  *
4269  * CONTEXT:
4270  * Don't call from IRQ context.
4271  */
4272 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4273 {
4274 	struct pool_workqueue *pwq;
4275 
4276 	/* disallow meddling with max_active for ordered workqueues */
4277 	if (WARN_ON(wq->flags & __WQ_ORDERED))
4278 		return;
4279 
4280 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4281 
4282 	mutex_lock(&wq->mutex);
4283 
4284 	wq->saved_max_active = max_active;
4285 
4286 	for_each_pwq(pwq, wq)
4287 		pwq_adjust_max_active(pwq);
4288 
4289 	mutex_unlock(&wq->mutex);
4290 }
4291 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4292 
4293 /**
4294  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4295  *
4296  * Determine whether %current is a workqueue rescuer.  Can be used from
4297  * work functions to determine whether it's being run off the rescuer task.
4298  */
4299 bool current_is_workqueue_rescuer(void)
4300 {
4301 	struct worker *worker = current_wq_worker();
4302 
4303 	return worker && worker->rescue_wq;
4304 }
4305 
4306 /**
4307  * workqueue_congested - test whether a workqueue is congested
4308  * @cpu: CPU in question
4309  * @wq: target workqueue
4310  *
4311  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4312  * no synchronization around this function and the test result is
4313  * unreliable and only useful as advisory hints or for debugging.
4314  *
4315  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4316  * Note that both per-cpu and unbound workqueues may be associated with
4317  * multiple pool_workqueues which have separate congested states.  A
4318  * workqueue being congested on one CPU doesn't mean the workqueue is also
4319  * contested on other CPUs / NUMA nodes.
4320  *
4321  * RETURNS:
4322  * %true if congested, %false otherwise.
4323  */
4324 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4325 {
4326 	struct pool_workqueue *pwq;
4327 	bool ret;
4328 
4329 	rcu_read_lock_sched();
4330 
4331 	if (cpu == WORK_CPU_UNBOUND)
4332 		cpu = smp_processor_id();
4333 
4334 	if (!(wq->flags & WQ_UNBOUND))
4335 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4336 	else
4337 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4338 
4339 	ret = !list_empty(&pwq->delayed_works);
4340 	rcu_read_unlock_sched();
4341 
4342 	return ret;
4343 }
4344 EXPORT_SYMBOL_GPL(workqueue_congested);
4345 
4346 /**
4347  * work_busy - test whether a work is currently pending or running
4348  * @work: the work to be tested
4349  *
4350  * Test whether @work is currently pending or running.  There is no
4351  * synchronization around this function and the test result is
4352  * unreliable and only useful as advisory hints or for debugging.
4353  *
4354  * RETURNS:
4355  * OR'd bitmask of WORK_BUSY_* bits.
4356  */
4357 unsigned int work_busy(struct work_struct *work)
4358 {
4359 	struct worker_pool *pool;
4360 	unsigned long flags;
4361 	unsigned int ret = 0;
4362 
4363 	if (work_pending(work))
4364 		ret |= WORK_BUSY_PENDING;
4365 
4366 	local_irq_save(flags);
4367 	pool = get_work_pool(work);
4368 	if (pool) {
4369 		spin_lock(&pool->lock);
4370 		if (find_worker_executing_work(pool, work))
4371 			ret |= WORK_BUSY_RUNNING;
4372 		spin_unlock(&pool->lock);
4373 	}
4374 	local_irq_restore(flags);
4375 
4376 	return ret;
4377 }
4378 EXPORT_SYMBOL_GPL(work_busy);
4379 
4380 /**
4381  * set_worker_desc - set description for the current work item
4382  * @fmt: printf-style format string
4383  * @...: arguments for the format string
4384  *
4385  * This function can be called by a running work function to describe what
4386  * the work item is about.  If the worker task gets dumped, this
4387  * information will be printed out together to help debugging.  The
4388  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4389  */
4390 void set_worker_desc(const char *fmt, ...)
4391 {
4392 	struct worker *worker = current_wq_worker();
4393 	va_list args;
4394 
4395 	if (worker) {
4396 		va_start(args, fmt);
4397 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4398 		va_end(args);
4399 		worker->desc_valid = true;
4400 	}
4401 }
4402 
4403 /**
4404  * print_worker_info - print out worker information and description
4405  * @log_lvl: the log level to use when printing
4406  * @task: target task
4407  *
4408  * If @task is a worker and currently executing a work item, print out the
4409  * name of the workqueue being serviced and worker description set with
4410  * set_worker_desc() by the currently executing work item.
4411  *
4412  * This function can be safely called on any task as long as the
4413  * task_struct itself is accessible.  While safe, this function isn't
4414  * synchronized and may print out mixups or garbages of limited length.
4415  */
4416 void print_worker_info(const char *log_lvl, struct task_struct *task)
4417 {
4418 	work_func_t *fn = NULL;
4419 	char name[WQ_NAME_LEN] = { };
4420 	char desc[WORKER_DESC_LEN] = { };
4421 	struct pool_workqueue *pwq = NULL;
4422 	struct workqueue_struct *wq = NULL;
4423 	bool desc_valid = false;
4424 	struct worker *worker;
4425 
4426 	if (!(task->flags & PF_WQ_WORKER))
4427 		return;
4428 
4429 	/*
4430 	 * This function is called without any synchronization and @task
4431 	 * could be in any state.  Be careful with dereferences.
4432 	 */
4433 	worker = probe_kthread_data(task);
4434 
4435 	/*
4436 	 * Carefully copy the associated workqueue's workfn and name.  Keep
4437 	 * the original last '\0' in case the original contains garbage.
4438 	 */
4439 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4440 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4441 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4442 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4443 
4444 	/* copy worker description */
4445 	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4446 	if (desc_valid)
4447 		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4448 
4449 	if (fn || name[0] || desc[0]) {
4450 		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4451 		if (desc[0])
4452 			pr_cont(" (%s)", desc);
4453 		pr_cont("\n");
4454 	}
4455 }
4456 
4457 /*
4458  * CPU hotplug.
4459  *
4460  * There are two challenges in supporting CPU hotplug.  Firstly, there
4461  * are a lot of assumptions on strong associations among work, pwq and
4462  * pool which make migrating pending and scheduled works very
4463  * difficult to implement without impacting hot paths.  Secondly,
4464  * worker pools serve mix of short, long and very long running works making
4465  * blocked draining impractical.
4466  *
4467  * This is solved by allowing the pools to be disassociated from the CPU
4468  * running as an unbound one and allowing it to be reattached later if the
4469  * cpu comes back online.
4470  */
4471 
4472 static void wq_unbind_fn(struct work_struct *work)
4473 {
4474 	int cpu = smp_processor_id();
4475 	struct worker_pool *pool;
4476 	struct worker *worker;
4477 	int wi;
4478 
4479 	for_each_cpu_worker_pool(pool, cpu) {
4480 		WARN_ON_ONCE(cpu != smp_processor_id());
4481 
4482 		mutex_lock(&pool->manager_mutex);
4483 		spin_lock_irq(&pool->lock);
4484 
4485 		/*
4486 		 * We've blocked all manager operations.  Make all workers
4487 		 * unbound and set DISASSOCIATED.  Before this, all workers
4488 		 * except for the ones which are still executing works from
4489 		 * before the last CPU down must be on the cpu.  After
4490 		 * this, they may become diasporas.
4491 		 */
4492 		for_each_pool_worker(worker, wi, pool)
4493 			worker->flags |= WORKER_UNBOUND;
4494 
4495 		pool->flags |= POOL_DISASSOCIATED;
4496 
4497 		spin_unlock_irq(&pool->lock);
4498 		mutex_unlock(&pool->manager_mutex);
4499 
4500 		/*
4501 		 * Call schedule() so that we cross rq->lock and thus can
4502 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4503 		 * This is necessary as scheduler callbacks may be invoked
4504 		 * from other cpus.
4505 		 */
4506 		schedule();
4507 
4508 		/*
4509 		 * Sched callbacks are disabled now.  Zap nr_running.
4510 		 * After this, nr_running stays zero and need_more_worker()
4511 		 * and keep_working() are always true as long as the
4512 		 * worklist is not empty.  This pool now behaves as an
4513 		 * unbound (in terms of concurrency management) pool which
4514 		 * are served by workers tied to the pool.
4515 		 */
4516 		atomic_set(&pool->nr_running, 0);
4517 
4518 		/*
4519 		 * With concurrency management just turned off, a busy
4520 		 * worker blocking could lead to lengthy stalls.  Kick off
4521 		 * unbound chain execution of currently pending work items.
4522 		 */
4523 		spin_lock_irq(&pool->lock);
4524 		wake_up_worker(pool);
4525 		spin_unlock_irq(&pool->lock);
4526 	}
4527 }
4528 
4529 /**
4530  * rebind_workers - rebind all workers of a pool to the associated CPU
4531  * @pool: pool of interest
4532  *
4533  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4534  */
4535 static void rebind_workers(struct worker_pool *pool)
4536 {
4537 	struct worker *worker;
4538 	int wi;
4539 
4540 	lockdep_assert_held(&pool->manager_mutex);
4541 
4542 	/*
4543 	 * Restore CPU affinity of all workers.  As all idle workers should
4544 	 * be on the run-queue of the associated CPU before any local
4545 	 * wake-ups for concurrency management happen, restore CPU affinty
4546 	 * of all workers first and then clear UNBOUND.  As we're called
4547 	 * from CPU_ONLINE, the following shouldn't fail.
4548 	 */
4549 	for_each_pool_worker(worker, wi, pool)
4550 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4551 						  pool->attrs->cpumask) < 0);
4552 
4553 	spin_lock_irq(&pool->lock);
4554 
4555 	for_each_pool_worker(worker, wi, pool) {
4556 		unsigned int worker_flags = worker->flags;
4557 
4558 		/*
4559 		 * A bound idle worker should actually be on the runqueue
4560 		 * of the associated CPU for local wake-ups targeting it to
4561 		 * work.  Kick all idle workers so that they migrate to the
4562 		 * associated CPU.  Doing this in the same loop as
4563 		 * replacing UNBOUND with REBOUND is safe as no worker will
4564 		 * be bound before @pool->lock is released.
4565 		 */
4566 		if (worker_flags & WORKER_IDLE)
4567 			wake_up_process(worker->task);
4568 
4569 		/*
4570 		 * We want to clear UNBOUND but can't directly call
4571 		 * worker_clr_flags() or adjust nr_running.  Atomically
4572 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4573 		 * @worker will clear REBOUND using worker_clr_flags() when
4574 		 * it initiates the next execution cycle thus restoring
4575 		 * concurrency management.  Note that when or whether
4576 		 * @worker clears REBOUND doesn't affect correctness.
4577 		 *
4578 		 * ACCESS_ONCE() is necessary because @worker->flags may be
4579 		 * tested without holding any lock in
4580 		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4581 		 * fail incorrectly leading to premature concurrency
4582 		 * management operations.
4583 		 */
4584 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4585 		worker_flags |= WORKER_REBOUND;
4586 		worker_flags &= ~WORKER_UNBOUND;
4587 		ACCESS_ONCE(worker->flags) = worker_flags;
4588 	}
4589 
4590 	spin_unlock_irq(&pool->lock);
4591 }
4592 
4593 /**
4594  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4595  * @pool: unbound pool of interest
4596  * @cpu: the CPU which is coming up
4597  *
4598  * An unbound pool may end up with a cpumask which doesn't have any online
4599  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4600  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4601  * online CPU before, cpus_allowed of all its workers should be restored.
4602  */
4603 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4604 {
4605 	static cpumask_t cpumask;
4606 	struct worker *worker;
4607 	int wi;
4608 
4609 	lockdep_assert_held(&pool->manager_mutex);
4610 
4611 	/* is @cpu allowed for @pool? */
4612 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4613 		return;
4614 
4615 	/* is @cpu the only online CPU? */
4616 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4617 	if (cpumask_weight(&cpumask) != 1)
4618 		return;
4619 
4620 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4621 	for_each_pool_worker(worker, wi, pool)
4622 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4623 						  pool->attrs->cpumask) < 0);
4624 }
4625 
4626 /*
4627  * Workqueues should be brought up before normal priority CPU notifiers.
4628  * This will be registered high priority CPU notifier.
4629  */
4630 static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
4631 					       unsigned long action,
4632 					       void *hcpu)
4633 {
4634 	int cpu = (unsigned long)hcpu;
4635 	struct worker_pool *pool;
4636 	struct workqueue_struct *wq;
4637 	int pi;
4638 
4639 	switch (action & ~CPU_TASKS_FROZEN) {
4640 	case CPU_UP_PREPARE:
4641 		for_each_cpu_worker_pool(pool, cpu) {
4642 			if (pool->nr_workers)
4643 				continue;
4644 			if (create_and_start_worker(pool) < 0)
4645 				return NOTIFY_BAD;
4646 		}
4647 		break;
4648 
4649 	case CPU_DOWN_FAILED:
4650 	case CPU_ONLINE:
4651 		mutex_lock(&wq_pool_mutex);
4652 
4653 		for_each_pool(pool, pi) {
4654 			mutex_lock(&pool->manager_mutex);
4655 
4656 			if (pool->cpu == cpu) {
4657 				spin_lock_irq(&pool->lock);
4658 				pool->flags &= ~POOL_DISASSOCIATED;
4659 				spin_unlock_irq(&pool->lock);
4660 
4661 				rebind_workers(pool);
4662 			} else if (pool->cpu < 0) {
4663 				restore_unbound_workers_cpumask(pool, cpu);
4664 			}
4665 
4666 			mutex_unlock(&pool->manager_mutex);
4667 		}
4668 
4669 		/* update NUMA affinity of unbound workqueues */
4670 		list_for_each_entry(wq, &workqueues, list)
4671 			wq_update_unbound_numa(wq, cpu, true);
4672 
4673 		mutex_unlock(&wq_pool_mutex);
4674 		break;
4675 	}
4676 	return NOTIFY_OK;
4677 }
4678 
4679 /*
4680  * Workqueues should be brought down after normal priority CPU notifiers.
4681  * This will be registered as low priority CPU notifier.
4682  */
4683 static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
4684 						 unsigned long action,
4685 						 void *hcpu)
4686 {
4687 	int cpu = (unsigned long)hcpu;
4688 	struct work_struct unbind_work;
4689 	struct workqueue_struct *wq;
4690 
4691 	switch (action & ~CPU_TASKS_FROZEN) {
4692 	case CPU_DOWN_PREPARE:
4693 		/* unbinding per-cpu workers should happen on the local CPU */
4694 		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4695 		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4696 
4697 		/* update NUMA affinity of unbound workqueues */
4698 		mutex_lock(&wq_pool_mutex);
4699 		list_for_each_entry(wq, &workqueues, list)
4700 			wq_update_unbound_numa(wq, cpu, false);
4701 		mutex_unlock(&wq_pool_mutex);
4702 
4703 		/* wait for per-cpu unbinding to finish */
4704 		flush_work(&unbind_work);
4705 		break;
4706 	}
4707 	return NOTIFY_OK;
4708 }
4709 
4710 #ifdef CONFIG_SMP
4711 
4712 struct work_for_cpu {
4713 	struct work_struct work;
4714 	long (*fn)(void *);
4715 	void *arg;
4716 	long ret;
4717 };
4718 
4719 static void work_for_cpu_fn(struct work_struct *work)
4720 {
4721 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4722 
4723 	wfc->ret = wfc->fn(wfc->arg);
4724 }
4725 
4726 /**
4727  * work_on_cpu - run a function in user context on a particular cpu
4728  * @cpu: the cpu to run on
4729  * @fn: the function to run
4730  * @arg: the function arg
4731  *
4732  * This will return the value @fn returns.
4733  * It is up to the caller to ensure that the cpu doesn't go offline.
4734  * The caller must not hold any locks which would prevent @fn from completing.
4735  */
4736 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4737 {
4738 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4739 
4740 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4741 	schedule_work_on(cpu, &wfc.work);
4742 	flush_work(&wfc.work);
4743 	return wfc.ret;
4744 }
4745 EXPORT_SYMBOL_GPL(work_on_cpu);
4746 #endif /* CONFIG_SMP */
4747 
4748 #ifdef CONFIG_FREEZER
4749 
4750 /**
4751  * freeze_workqueues_begin - begin freezing workqueues
4752  *
4753  * Start freezing workqueues.  After this function returns, all freezable
4754  * workqueues will queue new works to their delayed_works list instead of
4755  * pool->worklist.
4756  *
4757  * CONTEXT:
4758  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4759  */
4760 void freeze_workqueues_begin(void)
4761 {
4762 	struct worker_pool *pool;
4763 	struct workqueue_struct *wq;
4764 	struct pool_workqueue *pwq;
4765 	int pi;
4766 
4767 	mutex_lock(&wq_pool_mutex);
4768 
4769 	WARN_ON_ONCE(workqueue_freezing);
4770 	workqueue_freezing = true;
4771 
4772 	/* set FREEZING */
4773 	for_each_pool(pool, pi) {
4774 		spin_lock_irq(&pool->lock);
4775 		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4776 		pool->flags |= POOL_FREEZING;
4777 		spin_unlock_irq(&pool->lock);
4778 	}
4779 
4780 	list_for_each_entry(wq, &workqueues, list) {
4781 		mutex_lock(&wq->mutex);
4782 		for_each_pwq(pwq, wq)
4783 			pwq_adjust_max_active(pwq);
4784 		mutex_unlock(&wq->mutex);
4785 	}
4786 
4787 	mutex_unlock(&wq_pool_mutex);
4788 }
4789 
4790 /**
4791  * freeze_workqueues_busy - are freezable workqueues still busy?
4792  *
4793  * Check whether freezing is complete.  This function must be called
4794  * between freeze_workqueues_begin() and thaw_workqueues().
4795  *
4796  * CONTEXT:
4797  * Grabs and releases wq_pool_mutex.
4798  *
4799  * RETURNS:
4800  * %true if some freezable workqueues are still busy.  %false if freezing
4801  * is complete.
4802  */
4803 bool freeze_workqueues_busy(void)
4804 {
4805 	bool busy = false;
4806 	struct workqueue_struct *wq;
4807 	struct pool_workqueue *pwq;
4808 
4809 	mutex_lock(&wq_pool_mutex);
4810 
4811 	WARN_ON_ONCE(!workqueue_freezing);
4812 
4813 	list_for_each_entry(wq, &workqueues, list) {
4814 		if (!(wq->flags & WQ_FREEZABLE))
4815 			continue;
4816 		/*
4817 		 * nr_active is monotonically decreasing.  It's safe
4818 		 * to peek without lock.
4819 		 */
4820 		rcu_read_lock_sched();
4821 		for_each_pwq(pwq, wq) {
4822 			WARN_ON_ONCE(pwq->nr_active < 0);
4823 			if (pwq->nr_active) {
4824 				busy = true;
4825 				rcu_read_unlock_sched();
4826 				goto out_unlock;
4827 			}
4828 		}
4829 		rcu_read_unlock_sched();
4830 	}
4831 out_unlock:
4832 	mutex_unlock(&wq_pool_mutex);
4833 	return busy;
4834 }
4835 
4836 /**
4837  * thaw_workqueues - thaw workqueues
4838  *
4839  * Thaw workqueues.  Normal queueing is restored and all collected
4840  * frozen works are transferred to their respective pool worklists.
4841  *
4842  * CONTEXT:
4843  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4844  */
4845 void thaw_workqueues(void)
4846 {
4847 	struct workqueue_struct *wq;
4848 	struct pool_workqueue *pwq;
4849 	struct worker_pool *pool;
4850 	int pi;
4851 
4852 	mutex_lock(&wq_pool_mutex);
4853 
4854 	if (!workqueue_freezing)
4855 		goto out_unlock;
4856 
4857 	/* clear FREEZING */
4858 	for_each_pool(pool, pi) {
4859 		spin_lock_irq(&pool->lock);
4860 		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4861 		pool->flags &= ~POOL_FREEZING;
4862 		spin_unlock_irq(&pool->lock);
4863 	}
4864 
4865 	/* restore max_active and repopulate worklist */
4866 	list_for_each_entry(wq, &workqueues, list) {
4867 		mutex_lock(&wq->mutex);
4868 		for_each_pwq(pwq, wq)
4869 			pwq_adjust_max_active(pwq);
4870 		mutex_unlock(&wq->mutex);
4871 	}
4872 
4873 	workqueue_freezing = false;
4874 out_unlock:
4875 	mutex_unlock(&wq_pool_mutex);
4876 }
4877 #endif /* CONFIG_FREEZER */
4878 
4879 static void __init wq_numa_init(void)
4880 {
4881 	cpumask_var_t *tbl;
4882 	int node, cpu;
4883 
4884 	/* determine NUMA pwq table len - highest node id + 1 */
4885 	for_each_node(node)
4886 		wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4887 
4888 	if (num_possible_nodes() <= 1)
4889 		return;
4890 
4891 	if (wq_disable_numa) {
4892 		pr_info("workqueue: NUMA affinity support disabled\n");
4893 		return;
4894 	}
4895 
4896 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4897 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
4898 
4899 	/*
4900 	 * We want masks of possible CPUs of each node which isn't readily
4901 	 * available.  Build one from cpu_to_node() which should have been
4902 	 * fully initialized by now.
4903 	 */
4904 	tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
4905 	BUG_ON(!tbl);
4906 
4907 	for_each_node(node)
4908 		BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
4909 				node_online(node) ? node : NUMA_NO_NODE));
4910 
4911 	for_each_possible_cpu(cpu) {
4912 		node = cpu_to_node(cpu);
4913 		if (WARN_ON(node == NUMA_NO_NODE)) {
4914 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
4915 			/* happens iff arch is bonkers, let's just proceed */
4916 			return;
4917 		}
4918 		cpumask_set_cpu(cpu, tbl[node]);
4919 	}
4920 
4921 	wq_numa_possible_cpumask = tbl;
4922 	wq_numa_enabled = true;
4923 }
4924 
4925 static int __init init_workqueues(void)
4926 {
4927 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4928 	int i, cpu;
4929 
4930 	/* make sure we have enough bits for OFFQ pool ID */
4931 	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
4932 		     WORK_CPU_END * NR_STD_WORKER_POOLS);
4933 
4934 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4935 
4936 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4937 
4938 	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4939 	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4940 
4941 	wq_numa_init();
4942 
4943 	/* initialize CPU pools */
4944 	for_each_possible_cpu(cpu) {
4945 		struct worker_pool *pool;
4946 
4947 		i = 0;
4948 		for_each_cpu_worker_pool(pool, cpu) {
4949 			BUG_ON(init_worker_pool(pool));
4950 			pool->cpu = cpu;
4951 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
4952 			pool->attrs->nice = std_nice[i++];
4953 			pool->node = cpu_to_node(cpu);
4954 
4955 			/* alloc pool ID */
4956 			mutex_lock(&wq_pool_mutex);
4957 			BUG_ON(worker_pool_assign_id(pool));
4958 			mutex_unlock(&wq_pool_mutex);
4959 		}
4960 	}
4961 
4962 	/* create the initial worker */
4963 	for_each_online_cpu(cpu) {
4964 		struct worker_pool *pool;
4965 
4966 		for_each_cpu_worker_pool(pool, cpu) {
4967 			pool->flags &= ~POOL_DISASSOCIATED;
4968 			BUG_ON(create_and_start_worker(pool) < 0);
4969 		}
4970 	}
4971 
4972 	/* create default unbound wq attrs */
4973 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4974 		struct workqueue_attrs *attrs;
4975 
4976 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4977 		attrs->nice = std_nice[i];
4978 		unbound_std_wq_attrs[i] = attrs;
4979 	}
4980 
4981 	system_wq = alloc_workqueue("events", 0, 0);
4982 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4983 	system_long_wq = alloc_workqueue("events_long", 0, 0);
4984 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4985 					    WQ_UNBOUND_MAX_ACTIVE);
4986 	system_freezable_wq = alloc_workqueue("events_freezable",
4987 					      WQ_FREEZABLE, 0);
4988 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4989 	       !system_unbound_wq || !system_freezable_wq);
4990 	return 0;
4991 }
4992 early_initcall(init_workqueues);
4993