xref: /openbmc/linux/kernel/workqueue.c (revision c8ec3743)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There are two worker pools for each CPU (one for
20  * normal work items and the other for high priority ones) and some extra
21  * pools for workqueues which are not bound to any specific CPU - the
22  * number of these backing pools is dynamic.
23  *
24  * Please read Documentation/core-api/workqueue.rst for details.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/jhash.h>
45 #include <linux/hashtable.h>
46 #include <linux/rculist.h>
47 #include <linux/nodemask.h>
48 #include <linux/moduleparam.h>
49 #include <linux/uaccess.h>
50 #include <linux/sched/isolation.h>
51 #include <linux/nmi.h>
52 
53 #include "workqueue_internal.h"
54 
55 enum {
56 	/*
57 	 * worker_pool flags
58 	 *
59 	 * A bound pool is either associated or disassociated with its CPU.
60 	 * While associated (!DISASSOCIATED), all workers are bound to the
61 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
62 	 * is in effect.
63 	 *
64 	 * While DISASSOCIATED, the cpu may be offline and all workers have
65 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
66 	 * be executing on any CPU.  The pool behaves as an unbound one.
67 	 *
68 	 * Note that DISASSOCIATED should be flipped only while holding
69 	 * wq_pool_attach_mutex to avoid changing binding state while
70 	 * worker_attach_to_pool() is in progress.
71 	 */
72 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
73 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
74 
75 	/* worker flags */
76 	WORKER_DIE		= 1 << 1,	/* die die die */
77 	WORKER_IDLE		= 1 << 2,	/* is idle */
78 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
79 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
80 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
81 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
82 
83 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
84 				  WORKER_UNBOUND | WORKER_REBOUND,
85 
86 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
87 
88 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
89 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
90 
91 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
92 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
93 
94 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
95 						/* call for help after 10ms
96 						   (min two ticks) */
97 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
98 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
99 
100 	/*
101 	 * Rescue workers are used only on emergencies and shared by
102 	 * all cpus.  Give MIN_NICE.
103 	 */
104 	RESCUER_NICE_LEVEL	= MIN_NICE,
105 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
106 
107 	WQ_NAME_LEN		= 24,
108 };
109 
110 /*
111  * Structure fields follow one of the following exclusion rules.
112  *
113  * I: Modifiable by initialization/destruction paths and read-only for
114  *    everyone else.
115  *
116  * P: Preemption protected.  Disabling preemption is enough and should
117  *    only be modified and accessed from the local cpu.
118  *
119  * L: pool->lock protected.  Access with pool->lock held.
120  *
121  * X: During normal operation, modification requires pool->lock and should
122  *    be done only from local cpu.  Either disabling preemption on local
123  *    cpu or grabbing pool->lock is enough for read access.  If
124  *    POOL_DISASSOCIATED is set, it's identical to L.
125  *
126  * A: wq_pool_attach_mutex protected.
127  *
128  * PL: wq_pool_mutex protected.
129  *
130  * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
131  *
132  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
133  *
134  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
135  *      sched-RCU for reads.
136  *
137  * WQ: wq->mutex protected.
138  *
139  * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
140  *
141  * MD: wq_mayday_lock protected.
142  */
143 
144 /* struct worker is defined in workqueue_internal.h */
145 
146 struct worker_pool {
147 	spinlock_t		lock;		/* the pool lock */
148 	int			cpu;		/* I: the associated cpu */
149 	int			node;		/* I: the associated node ID */
150 	int			id;		/* I: pool ID */
151 	unsigned int		flags;		/* X: flags */
152 
153 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
154 
155 	struct list_head	worklist;	/* L: list of pending works */
156 
157 	int			nr_workers;	/* L: total number of workers */
158 	int			nr_idle;	/* L: currently idle workers */
159 
160 	struct list_head	idle_list;	/* X: list of idle workers */
161 	struct timer_list	idle_timer;	/* L: worker idle timeout */
162 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
163 
164 	/* a workers is either on busy_hash or idle_list, or the manager */
165 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
166 						/* L: hash of busy workers */
167 
168 	struct worker		*manager;	/* L: purely informational */
169 	struct list_head	workers;	/* A: attached workers */
170 	struct completion	*detach_completion; /* all workers detached */
171 
172 	struct ida		worker_ida;	/* worker IDs for task name */
173 
174 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
175 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
176 	int			refcnt;		/* PL: refcnt for unbound pools */
177 
178 	/*
179 	 * The current concurrency level.  As it's likely to be accessed
180 	 * from other CPUs during try_to_wake_up(), put it in a separate
181 	 * cacheline.
182 	 */
183 	atomic_t		nr_running ____cacheline_aligned_in_smp;
184 
185 	/*
186 	 * Destruction of pool is sched-RCU protected to allow dereferences
187 	 * from get_work_pool().
188 	 */
189 	struct rcu_head		rcu;
190 } ____cacheline_aligned_in_smp;
191 
192 /*
193  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
194  * of work_struct->data are used for flags and the remaining high bits
195  * point to the pwq; thus, pwqs need to be aligned at two's power of the
196  * number of flag bits.
197  */
198 struct pool_workqueue {
199 	struct worker_pool	*pool;		/* I: the associated pool */
200 	struct workqueue_struct *wq;		/* I: the owning workqueue */
201 	int			work_color;	/* L: current color */
202 	int			flush_color;	/* L: flushing color */
203 	int			refcnt;		/* L: reference count */
204 	int			nr_in_flight[WORK_NR_COLORS];
205 						/* L: nr of in_flight works */
206 	int			nr_active;	/* L: nr of active works */
207 	int			max_active;	/* L: max active works */
208 	struct list_head	delayed_works;	/* L: delayed works */
209 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
210 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
211 
212 	/*
213 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
214 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
215 	 * itself is also sched-RCU protected so that the first pwq can be
216 	 * determined without grabbing wq->mutex.
217 	 */
218 	struct work_struct	unbound_release_work;
219 	struct rcu_head		rcu;
220 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
221 
222 /*
223  * Structure used to wait for workqueue flush.
224  */
225 struct wq_flusher {
226 	struct list_head	list;		/* WQ: list of flushers */
227 	int			flush_color;	/* WQ: flush color waiting for */
228 	struct completion	done;		/* flush completion */
229 };
230 
231 struct wq_device;
232 
233 /*
234  * The externally visible workqueue.  It relays the issued work items to
235  * the appropriate worker_pool through its pool_workqueues.
236  */
237 struct workqueue_struct {
238 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
239 	struct list_head	list;		/* PR: list of all workqueues */
240 
241 	struct mutex		mutex;		/* protects this wq */
242 	int			work_color;	/* WQ: current work color */
243 	int			flush_color;	/* WQ: current flush color */
244 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
245 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
246 	struct list_head	flusher_queue;	/* WQ: flush waiters */
247 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
248 
249 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
250 	struct worker		*rescuer;	/* I: rescue worker */
251 
252 	int			nr_drainers;	/* WQ: drain in progress */
253 	int			saved_max_active; /* WQ: saved pwq max_active */
254 
255 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
256 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
257 
258 #ifdef CONFIG_SYSFS
259 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
260 #endif
261 #ifdef CONFIG_LOCKDEP
262 	struct lockdep_map	lockdep_map;
263 #endif
264 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
265 
266 	/*
267 	 * Destruction of workqueue_struct is sched-RCU protected to allow
268 	 * walking the workqueues list without grabbing wq_pool_mutex.
269 	 * This is used to dump all workqueues from sysrq.
270 	 */
271 	struct rcu_head		rcu;
272 
273 	/* hot fields used during command issue, aligned to cacheline */
274 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
275 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
276 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
277 };
278 
279 static struct kmem_cache *pwq_cache;
280 
281 static cpumask_var_t *wq_numa_possible_cpumask;
282 					/* possible CPUs of each node */
283 
284 static bool wq_disable_numa;
285 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
286 
287 /* see the comment above the definition of WQ_POWER_EFFICIENT */
288 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
289 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
290 
291 static bool wq_online;			/* can kworkers be created yet? */
292 
293 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
294 
295 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
296 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
297 
298 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
299 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
300 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
301 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
302 
303 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
304 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
305 
306 /* PL: allowable cpus for unbound wqs and work items */
307 static cpumask_var_t wq_unbound_cpumask;
308 
309 /* CPU where unbound work was last round robin scheduled from this CPU */
310 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
311 
312 /*
313  * Local execution of unbound work items is no longer guaranteed.  The
314  * following always forces round-robin CPU selection on unbound work items
315  * to uncover usages which depend on it.
316  */
317 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
318 static bool wq_debug_force_rr_cpu = true;
319 #else
320 static bool wq_debug_force_rr_cpu = false;
321 #endif
322 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
323 
324 /* the per-cpu worker pools */
325 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
326 
327 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
328 
329 /* PL: hash of all unbound pools keyed by pool->attrs */
330 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
331 
332 /* I: attributes used when instantiating standard unbound pools on demand */
333 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
334 
335 /* I: attributes used when instantiating ordered pools on demand */
336 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
337 
338 struct workqueue_struct *system_wq __read_mostly;
339 EXPORT_SYMBOL(system_wq);
340 struct workqueue_struct *system_highpri_wq __read_mostly;
341 EXPORT_SYMBOL_GPL(system_highpri_wq);
342 struct workqueue_struct *system_long_wq __read_mostly;
343 EXPORT_SYMBOL_GPL(system_long_wq);
344 struct workqueue_struct *system_unbound_wq __read_mostly;
345 EXPORT_SYMBOL_GPL(system_unbound_wq);
346 struct workqueue_struct *system_freezable_wq __read_mostly;
347 EXPORT_SYMBOL_GPL(system_freezable_wq);
348 struct workqueue_struct *system_power_efficient_wq __read_mostly;
349 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
350 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
351 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
352 
353 static int worker_thread(void *__worker);
354 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
355 
356 #define CREATE_TRACE_POINTS
357 #include <trace/events/workqueue.h>
358 
359 #define assert_rcu_or_pool_mutex()					\
360 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
361 			 !lockdep_is_held(&wq_pool_mutex),		\
362 			 "sched RCU or wq_pool_mutex should be held")
363 
364 #define assert_rcu_or_wq_mutex(wq)					\
365 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
366 			 !lockdep_is_held(&wq->mutex),			\
367 			 "sched RCU or wq->mutex should be held")
368 
369 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
370 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
371 			 !lockdep_is_held(&wq->mutex) &&		\
372 			 !lockdep_is_held(&wq_pool_mutex),		\
373 			 "sched RCU, wq->mutex or wq_pool_mutex should be held")
374 
375 #define for_each_cpu_worker_pool(pool, cpu)				\
376 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
377 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
378 	     (pool)++)
379 
380 /**
381  * for_each_pool - iterate through all worker_pools in the system
382  * @pool: iteration cursor
383  * @pi: integer used for iteration
384  *
385  * This must be called either with wq_pool_mutex held or sched RCU read
386  * locked.  If the pool needs to be used beyond the locking in effect, the
387  * caller is responsible for guaranteeing that the pool stays online.
388  *
389  * The if/else clause exists only for the lockdep assertion and can be
390  * ignored.
391  */
392 #define for_each_pool(pool, pi)						\
393 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
394 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
395 		else
396 
397 /**
398  * for_each_pool_worker - iterate through all workers of a worker_pool
399  * @worker: iteration cursor
400  * @pool: worker_pool to iterate workers of
401  *
402  * This must be called with wq_pool_attach_mutex.
403  *
404  * The if/else clause exists only for the lockdep assertion and can be
405  * ignored.
406  */
407 #define for_each_pool_worker(worker, pool)				\
408 	list_for_each_entry((worker), &(pool)->workers, node)		\
409 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
410 		else
411 
412 /**
413  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
414  * @pwq: iteration cursor
415  * @wq: the target workqueue
416  *
417  * This must be called either with wq->mutex held or sched RCU read locked.
418  * If the pwq needs to be used beyond the locking in effect, the caller is
419  * responsible for guaranteeing that the pwq stays online.
420  *
421  * The if/else clause exists only for the lockdep assertion and can be
422  * ignored.
423  */
424 #define for_each_pwq(pwq, wq)						\
425 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
426 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
427 		else
428 
429 #ifdef CONFIG_DEBUG_OBJECTS_WORK
430 
431 static struct debug_obj_descr work_debug_descr;
432 
433 static void *work_debug_hint(void *addr)
434 {
435 	return ((struct work_struct *) addr)->func;
436 }
437 
438 static bool work_is_static_object(void *addr)
439 {
440 	struct work_struct *work = addr;
441 
442 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
443 }
444 
445 /*
446  * fixup_init is called when:
447  * - an active object is initialized
448  */
449 static bool work_fixup_init(void *addr, enum debug_obj_state state)
450 {
451 	struct work_struct *work = addr;
452 
453 	switch (state) {
454 	case ODEBUG_STATE_ACTIVE:
455 		cancel_work_sync(work);
456 		debug_object_init(work, &work_debug_descr);
457 		return true;
458 	default:
459 		return false;
460 	}
461 }
462 
463 /*
464  * fixup_free is called when:
465  * - an active object is freed
466  */
467 static bool work_fixup_free(void *addr, enum debug_obj_state state)
468 {
469 	struct work_struct *work = addr;
470 
471 	switch (state) {
472 	case ODEBUG_STATE_ACTIVE:
473 		cancel_work_sync(work);
474 		debug_object_free(work, &work_debug_descr);
475 		return true;
476 	default:
477 		return false;
478 	}
479 }
480 
481 static struct debug_obj_descr work_debug_descr = {
482 	.name		= "work_struct",
483 	.debug_hint	= work_debug_hint,
484 	.is_static_object = work_is_static_object,
485 	.fixup_init	= work_fixup_init,
486 	.fixup_free	= work_fixup_free,
487 };
488 
489 static inline void debug_work_activate(struct work_struct *work)
490 {
491 	debug_object_activate(work, &work_debug_descr);
492 }
493 
494 static inline void debug_work_deactivate(struct work_struct *work)
495 {
496 	debug_object_deactivate(work, &work_debug_descr);
497 }
498 
499 void __init_work(struct work_struct *work, int onstack)
500 {
501 	if (onstack)
502 		debug_object_init_on_stack(work, &work_debug_descr);
503 	else
504 		debug_object_init(work, &work_debug_descr);
505 }
506 EXPORT_SYMBOL_GPL(__init_work);
507 
508 void destroy_work_on_stack(struct work_struct *work)
509 {
510 	debug_object_free(work, &work_debug_descr);
511 }
512 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
513 
514 void destroy_delayed_work_on_stack(struct delayed_work *work)
515 {
516 	destroy_timer_on_stack(&work->timer);
517 	debug_object_free(&work->work, &work_debug_descr);
518 }
519 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
520 
521 #else
522 static inline void debug_work_activate(struct work_struct *work) { }
523 static inline void debug_work_deactivate(struct work_struct *work) { }
524 #endif
525 
526 /**
527  * worker_pool_assign_id - allocate ID and assing it to @pool
528  * @pool: the pool pointer of interest
529  *
530  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
531  * successfully, -errno on failure.
532  */
533 static int worker_pool_assign_id(struct worker_pool *pool)
534 {
535 	int ret;
536 
537 	lockdep_assert_held(&wq_pool_mutex);
538 
539 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
540 			GFP_KERNEL);
541 	if (ret >= 0) {
542 		pool->id = ret;
543 		return 0;
544 	}
545 	return ret;
546 }
547 
548 /**
549  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
550  * @wq: the target workqueue
551  * @node: the node ID
552  *
553  * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
554  * read locked.
555  * If the pwq needs to be used beyond the locking in effect, the caller is
556  * responsible for guaranteeing that the pwq stays online.
557  *
558  * Return: The unbound pool_workqueue for @node.
559  */
560 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
561 						  int node)
562 {
563 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
564 
565 	/*
566 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
567 	 * delayed item is pending.  The plan is to keep CPU -> NODE
568 	 * mapping valid and stable across CPU on/offlines.  Once that
569 	 * happens, this workaround can be removed.
570 	 */
571 	if (unlikely(node == NUMA_NO_NODE))
572 		return wq->dfl_pwq;
573 
574 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
575 }
576 
577 static unsigned int work_color_to_flags(int color)
578 {
579 	return color << WORK_STRUCT_COLOR_SHIFT;
580 }
581 
582 static int get_work_color(struct work_struct *work)
583 {
584 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
585 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
586 }
587 
588 static int work_next_color(int color)
589 {
590 	return (color + 1) % WORK_NR_COLORS;
591 }
592 
593 /*
594  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
595  * contain the pointer to the queued pwq.  Once execution starts, the flag
596  * is cleared and the high bits contain OFFQ flags and pool ID.
597  *
598  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
599  * and clear_work_data() can be used to set the pwq, pool or clear
600  * work->data.  These functions should only be called while the work is
601  * owned - ie. while the PENDING bit is set.
602  *
603  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
604  * corresponding to a work.  Pool is available once the work has been
605  * queued anywhere after initialization until it is sync canceled.  pwq is
606  * available only while the work item is queued.
607  *
608  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
609  * canceled.  While being canceled, a work item may have its PENDING set
610  * but stay off timer and worklist for arbitrarily long and nobody should
611  * try to steal the PENDING bit.
612  */
613 static inline void set_work_data(struct work_struct *work, unsigned long data,
614 				 unsigned long flags)
615 {
616 	WARN_ON_ONCE(!work_pending(work));
617 	atomic_long_set(&work->data, data | flags | work_static(work));
618 }
619 
620 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
621 			 unsigned long extra_flags)
622 {
623 	set_work_data(work, (unsigned long)pwq,
624 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
625 }
626 
627 static void set_work_pool_and_keep_pending(struct work_struct *work,
628 					   int pool_id)
629 {
630 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
631 		      WORK_STRUCT_PENDING);
632 }
633 
634 static void set_work_pool_and_clear_pending(struct work_struct *work,
635 					    int pool_id)
636 {
637 	/*
638 	 * The following wmb is paired with the implied mb in
639 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
640 	 * here are visible to and precede any updates by the next PENDING
641 	 * owner.
642 	 */
643 	smp_wmb();
644 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
645 	/*
646 	 * The following mb guarantees that previous clear of a PENDING bit
647 	 * will not be reordered with any speculative LOADS or STORES from
648 	 * work->current_func, which is executed afterwards.  This possible
649 	 * reordering can lead to a missed execution on attempt to qeueue
650 	 * the same @work.  E.g. consider this case:
651 	 *
652 	 *   CPU#0                         CPU#1
653 	 *   ----------------------------  --------------------------------
654 	 *
655 	 * 1  STORE event_indicated
656 	 * 2  queue_work_on() {
657 	 * 3    test_and_set_bit(PENDING)
658 	 * 4 }                             set_..._and_clear_pending() {
659 	 * 5                                 set_work_data() # clear bit
660 	 * 6                                 smp_mb()
661 	 * 7                               work->current_func() {
662 	 * 8				      LOAD event_indicated
663 	 *				   }
664 	 *
665 	 * Without an explicit full barrier speculative LOAD on line 8 can
666 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
667 	 * CPU#0 observes the PENDING bit is still set and new execution of
668 	 * a @work is not queued in a hope, that CPU#1 will eventually
669 	 * finish the queued @work.  Meanwhile CPU#1 does not see
670 	 * event_indicated is set, because speculative LOAD was executed
671 	 * before actual STORE.
672 	 */
673 	smp_mb();
674 }
675 
676 static void clear_work_data(struct work_struct *work)
677 {
678 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
679 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
680 }
681 
682 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
683 {
684 	unsigned long data = atomic_long_read(&work->data);
685 
686 	if (data & WORK_STRUCT_PWQ)
687 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
688 	else
689 		return NULL;
690 }
691 
692 /**
693  * get_work_pool - return the worker_pool a given work was associated with
694  * @work: the work item of interest
695  *
696  * Pools are created and destroyed under wq_pool_mutex, and allows read
697  * access under sched-RCU read lock.  As such, this function should be
698  * called under wq_pool_mutex or with preemption disabled.
699  *
700  * All fields of the returned pool are accessible as long as the above
701  * mentioned locking is in effect.  If the returned pool needs to be used
702  * beyond the critical section, the caller is responsible for ensuring the
703  * returned pool is and stays online.
704  *
705  * Return: The worker_pool @work was last associated with.  %NULL if none.
706  */
707 static struct worker_pool *get_work_pool(struct work_struct *work)
708 {
709 	unsigned long data = atomic_long_read(&work->data);
710 	int pool_id;
711 
712 	assert_rcu_or_pool_mutex();
713 
714 	if (data & WORK_STRUCT_PWQ)
715 		return ((struct pool_workqueue *)
716 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
717 
718 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
719 	if (pool_id == WORK_OFFQ_POOL_NONE)
720 		return NULL;
721 
722 	return idr_find(&worker_pool_idr, pool_id);
723 }
724 
725 /**
726  * get_work_pool_id - return the worker pool ID a given work is associated with
727  * @work: the work item of interest
728  *
729  * Return: The worker_pool ID @work was last associated with.
730  * %WORK_OFFQ_POOL_NONE if none.
731  */
732 static int get_work_pool_id(struct work_struct *work)
733 {
734 	unsigned long data = atomic_long_read(&work->data);
735 
736 	if (data & WORK_STRUCT_PWQ)
737 		return ((struct pool_workqueue *)
738 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
739 
740 	return data >> WORK_OFFQ_POOL_SHIFT;
741 }
742 
743 static void mark_work_canceling(struct work_struct *work)
744 {
745 	unsigned long pool_id = get_work_pool_id(work);
746 
747 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
748 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
749 }
750 
751 static bool work_is_canceling(struct work_struct *work)
752 {
753 	unsigned long data = atomic_long_read(&work->data);
754 
755 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
756 }
757 
758 /*
759  * Policy functions.  These define the policies on how the global worker
760  * pools are managed.  Unless noted otherwise, these functions assume that
761  * they're being called with pool->lock held.
762  */
763 
764 static bool __need_more_worker(struct worker_pool *pool)
765 {
766 	return !atomic_read(&pool->nr_running);
767 }
768 
769 /*
770  * Need to wake up a worker?  Called from anything but currently
771  * running workers.
772  *
773  * Note that, because unbound workers never contribute to nr_running, this
774  * function will always return %true for unbound pools as long as the
775  * worklist isn't empty.
776  */
777 static bool need_more_worker(struct worker_pool *pool)
778 {
779 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
780 }
781 
782 /* Can I start working?  Called from busy but !running workers. */
783 static bool may_start_working(struct worker_pool *pool)
784 {
785 	return pool->nr_idle;
786 }
787 
788 /* Do I need to keep working?  Called from currently running workers. */
789 static bool keep_working(struct worker_pool *pool)
790 {
791 	return !list_empty(&pool->worklist) &&
792 		atomic_read(&pool->nr_running) <= 1;
793 }
794 
795 /* Do we need a new worker?  Called from manager. */
796 static bool need_to_create_worker(struct worker_pool *pool)
797 {
798 	return need_more_worker(pool) && !may_start_working(pool);
799 }
800 
801 /* Do we have too many workers and should some go away? */
802 static bool too_many_workers(struct worker_pool *pool)
803 {
804 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
805 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
806 	int nr_busy = pool->nr_workers - nr_idle;
807 
808 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
809 }
810 
811 /*
812  * Wake up functions.
813  */
814 
815 /* Return the first idle worker.  Safe with preemption disabled */
816 static struct worker *first_idle_worker(struct worker_pool *pool)
817 {
818 	if (unlikely(list_empty(&pool->idle_list)))
819 		return NULL;
820 
821 	return list_first_entry(&pool->idle_list, struct worker, entry);
822 }
823 
824 /**
825  * wake_up_worker - wake up an idle worker
826  * @pool: worker pool to wake worker from
827  *
828  * Wake up the first idle worker of @pool.
829  *
830  * CONTEXT:
831  * spin_lock_irq(pool->lock).
832  */
833 static void wake_up_worker(struct worker_pool *pool)
834 {
835 	struct worker *worker = first_idle_worker(pool);
836 
837 	if (likely(worker))
838 		wake_up_process(worker->task);
839 }
840 
841 /**
842  * wq_worker_waking_up - a worker is waking up
843  * @task: task waking up
844  * @cpu: CPU @task is waking up to
845  *
846  * This function is called during try_to_wake_up() when a worker is
847  * being awoken.
848  *
849  * CONTEXT:
850  * spin_lock_irq(rq->lock)
851  */
852 void wq_worker_waking_up(struct task_struct *task, int cpu)
853 {
854 	struct worker *worker = kthread_data(task);
855 
856 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
857 		WARN_ON_ONCE(worker->pool->cpu != cpu);
858 		atomic_inc(&worker->pool->nr_running);
859 	}
860 }
861 
862 /**
863  * wq_worker_sleeping - a worker is going to sleep
864  * @task: task going to sleep
865  *
866  * This function is called during schedule() when a busy worker is
867  * going to sleep.  Worker on the same cpu can be woken up by
868  * returning pointer to its task.
869  *
870  * CONTEXT:
871  * spin_lock_irq(rq->lock)
872  *
873  * Return:
874  * Worker task on @cpu to wake up, %NULL if none.
875  */
876 struct task_struct *wq_worker_sleeping(struct task_struct *task)
877 {
878 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
879 	struct worker_pool *pool;
880 
881 	/*
882 	 * Rescuers, which may not have all the fields set up like normal
883 	 * workers, also reach here, let's not access anything before
884 	 * checking NOT_RUNNING.
885 	 */
886 	if (worker->flags & WORKER_NOT_RUNNING)
887 		return NULL;
888 
889 	pool = worker->pool;
890 
891 	/* this can only happen on the local cpu */
892 	if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
893 		return NULL;
894 
895 	/*
896 	 * The counterpart of the following dec_and_test, implied mb,
897 	 * worklist not empty test sequence is in insert_work().
898 	 * Please read comment there.
899 	 *
900 	 * NOT_RUNNING is clear.  This means that we're bound to and
901 	 * running on the local cpu w/ rq lock held and preemption
902 	 * disabled, which in turn means that none else could be
903 	 * manipulating idle_list, so dereferencing idle_list without pool
904 	 * lock is safe.
905 	 */
906 	if (atomic_dec_and_test(&pool->nr_running) &&
907 	    !list_empty(&pool->worklist))
908 		to_wakeup = first_idle_worker(pool);
909 	return to_wakeup ? to_wakeup->task : NULL;
910 }
911 
912 /**
913  * wq_worker_last_func - retrieve worker's last work function
914  *
915  * Determine the last function a worker executed. This is called from
916  * the scheduler to get a worker's last known identity.
917  *
918  * CONTEXT:
919  * spin_lock_irq(rq->lock)
920  *
921  * Return:
922  * The last work function %current executed as a worker, NULL if it
923  * hasn't executed any work yet.
924  */
925 work_func_t wq_worker_last_func(struct task_struct *task)
926 {
927 	struct worker *worker = kthread_data(task);
928 
929 	return worker->last_func;
930 }
931 
932 /**
933  * worker_set_flags - set worker flags and adjust nr_running accordingly
934  * @worker: self
935  * @flags: flags to set
936  *
937  * Set @flags in @worker->flags and adjust nr_running accordingly.
938  *
939  * CONTEXT:
940  * spin_lock_irq(pool->lock)
941  */
942 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
943 {
944 	struct worker_pool *pool = worker->pool;
945 
946 	WARN_ON_ONCE(worker->task != current);
947 
948 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
949 	if ((flags & WORKER_NOT_RUNNING) &&
950 	    !(worker->flags & WORKER_NOT_RUNNING)) {
951 		atomic_dec(&pool->nr_running);
952 	}
953 
954 	worker->flags |= flags;
955 }
956 
957 /**
958  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
959  * @worker: self
960  * @flags: flags to clear
961  *
962  * Clear @flags in @worker->flags and adjust nr_running accordingly.
963  *
964  * CONTEXT:
965  * spin_lock_irq(pool->lock)
966  */
967 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
968 {
969 	struct worker_pool *pool = worker->pool;
970 	unsigned int oflags = worker->flags;
971 
972 	WARN_ON_ONCE(worker->task != current);
973 
974 	worker->flags &= ~flags;
975 
976 	/*
977 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
978 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
979 	 * of multiple flags, not a single flag.
980 	 */
981 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
982 		if (!(worker->flags & WORKER_NOT_RUNNING))
983 			atomic_inc(&pool->nr_running);
984 }
985 
986 /**
987  * find_worker_executing_work - find worker which is executing a work
988  * @pool: pool of interest
989  * @work: work to find worker for
990  *
991  * Find a worker which is executing @work on @pool by searching
992  * @pool->busy_hash which is keyed by the address of @work.  For a worker
993  * to match, its current execution should match the address of @work and
994  * its work function.  This is to avoid unwanted dependency between
995  * unrelated work executions through a work item being recycled while still
996  * being executed.
997  *
998  * This is a bit tricky.  A work item may be freed once its execution
999  * starts and nothing prevents the freed area from being recycled for
1000  * another work item.  If the same work item address ends up being reused
1001  * before the original execution finishes, workqueue will identify the
1002  * recycled work item as currently executing and make it wait until the
1003  * current execution finishes, introducing an unwanted dependency.
1004  *
1005  * This function checks the work item address and work function to avoid
1006  * false positives.  Note that this isn't complete as one may construct a
1007  * work function which can introduce dependency onto itself through a
1008  * recycled work item.  Well, if somebody wants to shoot oneself in the
1009  * foot that badly, there's only so much we can do, and if such deadlock
1010  * actually occurs, it should be easy to locate the culprit work function.
1011  *
1012  * CONTEXT:
1013  * spin_lock_irq(pool->lock).
1014  *
1015  * Return:
1016  * Pointer to worker which is executing @work if found, %NULL
1017  * otherwise.
1018  */
1019 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1020 						 struct work_struct *work)
1021 {
1022 	struct worker *worker;
1023 
1024 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1025 			       (unsigned long)work)
1026 		if (worker->current_work == work &&
1027 		    worker->current_func == work->func)
1028 			return worker;
1029 
1030 	return NULL;
1031 }
1032 
1033 /**
1034  * move_linked_works - move linked works to a list
1035  * @work: start of series of works to be scheduled
1036  * @head: target list to append @work to
1037  * @nextp: out parameter for nested worklist walking
1038  *
1039  * Schedule linked works starting from @work to @head.  Work series to
1040  * be scheduled starts at @work and includes any consecutive work with
1041  * WORK_STRUCT_LINKED set in its predecessor.
1042  *
1043  * If @nextp is not NULL, it's updated to point to the next work of
1044  * the last scheduled work.  This allows move_linked_works() to be
1045  * nested inside outer list_for_each_entry_safe().
1046  *
1047  * CONTEXT:
1048  * spin_lock_irq(pool->lock).
1049  */
1050 static void move_linked_works(struct work_struct *work, struct list_head *head,
1051 			      struct work_struct **nextp)
1052 {
1053 	struct work_struct *n;
1054 
1055 	/*
1056 	 * Linked worklist will always end before the end of the list,
1057 	 * use NULL for list head.
1058 	 */
1059 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1060 		list_move_tail(&work->entry, head);
1061 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1062 			break;
1063 	}
1064 
1065 	/*
1066 	 * If we're already inside safe list traversal and have moved
1067 	 * multiple works to the scheduled queue, the next position
1068 	 * needs to be updated.
1069 	 */
1070 	if (nextp)
1071 		*nextp = n;
1072 }
1073 
1074 /**
1075  * get_pwq - get an extra reference on the specified pool_workqueue
1076  * @pwq: pool_workqueue to get
1077  *
1078  * Obtain an extra reference on @pwq.  The caller should guarantee that
1079  * @pwq has positive refcnt and be holding the matching pool->lock.
1080  */
1081 static void get_pwq(struct pool_workqueue *pwq)
1082 {
1083 	lockdep_assert_held(&pwq->pool->lock);
1084 	WARN_ON_ONCE(pwq->refcnt <= 0);
1085 	pwq->refcnt++;
1086 }
1087 
1088 /**
1089  * put_pwq - put a pool_workqueue reference
1090  * @pwq: pool_workqueue to put
1091  *
1092  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1093  * destruction.  The caller should be holding the matching pool->lock.
1094  */
1095 static void put_pwq(struct pool_workqueue *pwq)
1096 {
1097 	lockdep_assert_held(&pwq->pool->lock);
1098 	if (likely(--pwq->refcnt))
1099 		return;
1100 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1101 		return;
1102 	/*
1103 	 * @pwq can't be released under pool->lock, bounce to
1104 	 * pwq_unbound_release_workfn().  This never recurses on the same
1105 	 * pool->lock as this path is taken only for unbound workqueues and
1106 	 * the release work item is scheduled on a per-cpu workqueue.  To
1107 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1108 	 * subclass of 1 in get_unbound_pool().
1109 	 */
1110 	schedule_work(&pwq->unbound_release_work);
1111 }
1112 
1113 /**
1114  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1115  * @pwq: pool_workqueue to put (can be %NULL)
1116  *
1117  * put_pwq() with locking.  This function also allows %NULL @pwq.
1118  */
1119 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1120 {
1121 	if (pwq) {
1122 		/*
1123 		 * As both pwqs and pools are sched-RCU protected, the
1124 		 * following lock operations are safe.
1125 		 */
1126 		spin_lock_irq(&pwq->pool->lock);
1127 		put_pwq(pwq);
1128 		spin_unlock_irq(&pwq->pool->lock);
1129 	}
1130 }
1131 
1132 static void pwq_activate_delayed_work(struct work_struct *work)
1133 {
1134 	struct pool_workqueue *pwq = get_work_pwq(work);
1135 
1136 	trace_workqueue_activate_work(work);
1137 	if (list_empty(&pwq->pool->worklist))
1138 		pwq->pool->watchdog_ts = jiffies;
1139 	move_linked_works(work, &pwq->pool->worklist, NULL);
1140 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1141 	pwq->nr_active++;
1142 }
1143 
1144 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1145 {
1146 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1147 						    struct work_struct, entry);
1148 
1149 	pwq_activate_delayed_work(work);
1150 }
1151 
1152 /**
1153  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1154  * @pwq: pwq of interest
1155  * @color: color of work which left the queue
1156  *
1157  * A work either has completed or is removed from pending queue,
1158  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1159  *
1160  * CONTEXT:
1161  * spin_lock_irq(pool->lock).
1162  */
1163 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1164 {
1165 	/* uncolored work items don't participate in flushing or nr_active */
1166 	if (color == WORK_NO_COLOR)
1167 		goto out_put;
1168 
1169 	pwq->nr_in_flight[color]--;
1170 
1171 	pwq->nr_active--;
1172 	if (!list_empty(&pwq->delayed_works)) {
1173 		/* one down, submit a delayed one */
1174 		if (pwq->nr_active < pwq->max_active)
1175 			pwq_activate_first_delayed(pwq);
1176 	}
1177 
1178 	/* is flush in progress and are we at the flushing tip? */
1179 	if (likely(pwq->flush_color != color))
1180 		goto out_put;
1181 
1182 	/* are there still in-flight works? */
1183 	if (pwq->nr_in_flight[color])
1184 		goto out_put;
1185 
1186 	/* this pwq is done, clear flush_color */
1187 	pwq->flush_color = -1;
1188 
1189 	/*
1190 	 * If this was the last pwq, wake up the first flusher.  It
1191 	 * will handle the rest.
1192 	 */
1193 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1194 		complete(&pwq->wq->first_flusher->done);
1195 out_put:
1196 	put_pwq(pwq);
1197 }
1198 
1199 /**
1200  * try_to_grab_pending - steal work item from worklist and disable irq
1201  * @work: work item to steal
1202  * @is_dwork: @work is a delayed_work
1203  * @flags: place to store irq state
1204  *
1205  * Try to grab PENDING bit of @work.  This function can handle @work in any
1206  * stable state - idle, on timer or on worklist.
1207  *
1208  * Return:
1209  *  1		if @work was pending and we successfully stole PENDING
1210  *  0		if @work was idle and we claimed PENDING
1211  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1212  *  -ENOENT	if someone else is canceling @work, this state may persist
1213  *		for arbitrarily long
1214  *
1215  * Note:
1216  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1217  * interrupted while holding PENDING and @work off queue, irq must be
1218  * disabled on entry.  This, combined with delayed_work->timer being
1219  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1220  *
1221  * On successful return, >= 0, irq is disabled and the caller is
1222  * responsible for releasing it using local_irq_restore(*@flags).
1223  *
1224  * This function is safe to call from any context including IRQ handler.
1225  */
1226 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1227 			       unsigned long *flags)
1228 {
1229 	struct worker_pool *pool;
1230 	struct pool_workqueue *pwq;
1231 
1232 	local_irq_save(*flags);
1233 
1234 	/* try to steal the timer if it exists */
1235 	if (is_dwork) {
1236 		struct delayed_work *dwork = to_delayed_work(work);
1237 
1238 		/*
1239 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1240 		 * guaranteed that the timer is not queued anywhere and not
1241 		 * running on the local CPU.
1242 		 */
1243 		if (likely(del_timer(&dwork->timer)))
1244 			return 1;
1245 	}
1246 
1247 	/* try to claim PENDING the normal way */
1248 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1249 		return 0;
1250 
1251 	/*
1252 	 * The queueing is in progress, or it is already queued. Try to
1253 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1254 	 */
1255 	pool = get_work_pool(work);
1256 	if (!pool)
1257 		goto fail;
1258 
1259 	spin_lock(&pool->lock);
1260 	/*
1261 	 * work->data is guaranteed to point to pwq only while the work
1262 	 * item is queued on pwq->wq, and both updating work->data to point
1263 	 * to pwq on queueing and to pool on dequeueing are done under
1264 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1265 	 * points to pwq which is associated with a locked pool, the work
1266 	 * item is currently queued on that pool.
1267 	 */
1268 	pwq = get_work_pwq(work);
1269 	if (pwq && pwq->pool == pool) {
1270 		debug_work_deactivate(work);
1271 
1272 		/*
1273 		 * A delayed work item cannot be grabbed directly because
1274 		 * it might have linked NO_COLOR work items which, if left
1275 		 * on the delayed_list, will confuse pwq->nr_active
1276 		 * management later on and cause stall.  Make sure the work
1277 		 * item is activated before grabbing.
1278 		 */
1279 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1280 			pwq_activate_delayed_work(work);
1281 
1282 		list_del_init(&work->entry);
1283 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1284 
1285 		/* work->data points to pwq iff queued, point to pool */
1286 		set_work_pool_and_keep_pending(work, pool->id);
1287 
1288 		spin_unlock(&pool->lock);
1289 		return 1;
1290 	}
1291 	spin_unlock(&pool->lock);
1292 fail:
1293 	local_irq_restore(*flags);
1294 	if (work_is_canceling(work))
1295 		return -ENOENT;
1296 	cpu_relax();
1297 	return -EAGAIN;
1298 }
1299 
1300 /**
1301  * insert_work - insert a work into a pool
1302  * @pwq: pwq @work belongs to
1303  * @work: work to insert
1304  * @head: insertion point
1305  * @extra_flags: extra WORK_STRUCT_* flags to set
1306  *
1307  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1308  * work_struct flags.
1309  *
1310  * CONTEXT:
1311  * spin_lock_irq(pool->lock).
1312  */
1313 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1314 			struct list_head *head, unsigned int extra_flags)
1315 {
1316 	struct worker_pool *pool = pwq->pool;
1317 
1318 	/* we own @work, set data and link */
1319 	set_work_pwq(work, pwq, extra_flags);
1320 	list_add_tail(&work->entry, head);
1321 	get_pwq(pwq);
1322 
1323 	/*
1324 	 * Ensure either wq_worker_sleeping() sees the above
1325 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1326 	 * around lazily while there are works to be processed.
1327 	 */
1328 	smp_mb();
1329 
1330 	if (__need_more_worker(pool))
1331 		wake_up_worker(pool);
1332 }
1333 
1334 /*
1335  * Test whether @work is being queued from another work executing on the
1336  * same workqueue.
1337  */
1338 static bool is_chained_work(struct workqueue_struct *wq)
1339 {
1340 	struct worker *worker;
1341 
1342 	worker = current_wq_worker();
1343 	/*
1344 	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1345 	 * I'm @worker, it's safe to dereference it without locking.
1346 	 */
1347 	return worker && worker->current_pwq->wq == wq;
1348 }
1349 
1350 /*
1351  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1352  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1353  * avoid perturbing sensitive tasks.
1354  */
1355 static int wq_select_unbound_cpu(int cpu)
1356 {
1357 	static bool printed_dbg_warning;
1358 	int new_cpu;
1359 
1360 	if (likely(!wq_debug_force_rr_cpu)) {
1361 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1362 			return cpu;
1363 	} else if (!printed_dbg_warning) {
1364 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1365 		printed_dbg_warning = true;
1366 	}
1367 
1368 	if (cpumask_empty(wq_unbound_cpumask))
1369 		return cpu;
1370 
1371 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1372 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1373 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1374 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1375 		if (unlikely(new_cpu >= nr_cpu_ids))
1376 			return cpu;
1377 	}
1378 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1379 
1380 	return new_cpu;
1381 }
1382 
1383 static void __queue_work(int cpu, struct workqueue_struct *wq,
1384 			 struct work_struct *work)
1385 {
1386 	struct pool_workqueue *pwq;
1387 	struct worker_pool *last_pool;
1388 	struct list_head *worklist;
1389 	unsigned int work_flags;
1390 	unsigned int req_cpu = cpu;
1391 
1392 	/*
1393 	 * While a work item is PENDING && off queue, a task trying to
1394 	 * steal the PENDING will busy-loop waiting for it to either get
1395 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1396 	 * happen with IRQ disabled.
1397 	 */
1398 	lockdep_assert_irqs_disabled();
1399 
1400 	debug_work_activate(work);
1401 
1402 	/* if draining, only works from the same workqueue are allowed */
1403 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1404 	    WARN_ON_ONCE(!is_chained_work(wq)))
1405 		return;
1406 retry:
1407 	if (req_cpu == WORK_CPU_UNBOUND)
1408 		cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1409 
1410 	/* pwq which will be used unless @work is executing elsewhere */
1411 	if (!(wq->flags & WQ_UNBOUND))
1412 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1413 	else
1414 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1415 
1416 	/*
1417 	 * If @work was previously on a different pool, it might still be
1418 	 * running there, in which case the work needs to be queued on that
1419 	 * pool to guarantee non-reentrancy.
1420 	 */
1421 	last_pool = get_work_pool(work);
1422 	if (last_pool && last_pool != pwq->pool) {
1423 		struct worker *worker;
1424 
1425 		spin_lock(&last_pool->lock);
1426 
1427 		worker = find_worker_executing_work(last_pool, work);
1428 
1429 		if (worker && worker->current_pwq->wq == wq) {
1430 			pwq = worker->current_pwq;
1431 		} else {
1432 			/* meh... not running there, queue here */
1433 			spin_unlock(&last_pool->lock);
1434 			spin_lock(&pwq->pool->lock);
1435 		}
1436 	} else {
1437 		spin_lock(&pwq->pool->lock);
1438 	}
1439 
1440 	/*
1441 	 * pwq is determined and locked.  For unbound pools, we could have
1442 	 * raced with pwq release and it could already be dead.  If its
1443 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1444 	 * without another pwq replacing it in the numa_pwq_tbl or while
1445 	 * work items are executing on it, so the retrying is guaranteed to
1446 	 * make forward-progress.
1447 	 */
1448 	if (unlikely(!pwq->refcnt)) {
1449 		if (wq->flags & WQ_UNBOUND) {
1450 			spin_unlock(&pwq->pool->lock);
1451 			cpu_relax();
1452 			goto retry;
1453 		}
1454 		/* oops */
1455 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1456 			  wq->name, cpu);
1457 	}
1458 
1459 	/* pwq determined, queue */
1460 	trace_workqueue_queue_work(req_cpu, pwq, work);
1461 
1462 	if (WARN_ON(!list_empty(&work->entry))) {
1463 		spin_unlock(&pwq->pool->lock);
1464 		return;
1465 	}
1466 
1467 	pwq->nr_in_flight[pwq->work_color]++;
1468 	work_flags = work_color_to_flags(pwq->work_color);
1469 
1470 	if (likely(pwq->nr_active < pwq->max_active)) {
1471 		trace_workqueue_activate_work(work);
1472 		pwq->nr_active++;
1473 		worklist = &pwq->pool->worklist;
1474 		if (list_empty(worklist))
1475 			pwq->pool->watchdog_ts = jiffies;
1476 	} else {
1477 		work_flags |= WORK_STRUCT_DELAYED;
1478 		worklist = &pwq->delayed_works;
1479 	}
1480 
1481 	insert_work(pwq, work, worklist, work_flags);
1482 
1483 	spin_unlock(&pwq->pool->lock);
1484 }
1485 
1486 /**
1487  * queue_work_on - queue work on specific cpu
1488  * @cpu: CPU number to execute work on
1489  * @wq: workqueue to use
1490  * @work: work to queue
1491  *
1492  * We queue the work to a specific CPU, the caller must ensure it
1493  * can't go away.
1494  *
1495  * Return: %false if @work was already on a queue, %true otherwise.
1496  */
1497 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1498 		   struct work_struct *work)
1499 {
1500 	bool ret = false;
1501 	unsigned long flags;
1502 
1503 	local_irq_save(flags);
1504 
1505 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1506 		__queue_work(cpu, wq, work);
1507 		ret = true;
1508 	}
1509 
1510 	local_irq_restore(flags);
1511 	return ret;
1512 }
1513 EXPORT_SYMBOL(queue_work_on);
1514 
1515 void delayed_work_timer_fn(struct timer_list *t)
1516 {
1517 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1518 
1519 	/* should have been called from irqsafe timer with irq already off */
1520 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1521 }
1522 EXPORT_SYMBOL(delayed_work_timer_fn);
1523 
1524 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1525 				struct delayed_work *dwork, unsigned long delay)
1526 {
1527 	struct timer_list *timer = &dwork->timer;
1528 	struct work_struct *work = &dwork->work;
1529 
1530 	WARN_ON_ONCE(!wq);
1531 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1532 	WARN_ON_ONCE(timer_pending(timer));
1533 	WARN_ON_ONCE(!list_empty(&work->entry));
1534 
1535 	/*
1536 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1537 	 * both optimization and correctness.  The earliest @timer can
1538 	 * expire is on the closest next tick and delayed_work users depend
1539 	 * on that there's no such delay when @delay is 0.
1540 	 */
1541 	if (!delay) {
1542 		__queue_work(cpu, wq, &dwork->work);
1543 		return;
1544 	}
1545 
1546 	dwork->wq = wq;
1547 	dwork->cpu = cpu;
1548 	timer->expires = jiffies + delay;
1549 
1550 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1551 		add_timer_on(timer, cpu);
1552 	else
1553 		add_timer(timer);
1554 }
1555 
1556 /**
1557  * queue_delayed_work_on - queue work on specific CPU after delay
1558  * @cpu: CPU number to execute work on
1559  * @wq: workqueue to use
1560  * @dwork: work to queue
1561  * @delay: number of jiffies to wait before queueing
1562  *
1563  * Return: %false if @work was already on a queue, %true otherwise.  If
1564  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1565  * execution.
1566  */
1567 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1568 			   struct delayed_work *dwork, unsigned long delay)
1569 {
1570 	struct work_struct *work = &dwork->work;
1571 	bool ret = false;
1572 	unsigned long flags;
1573 
1574 	/* read the comment in __queue_work() */
1575 	local_irq_save(flags);
1576 
1577 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1578 		__queue_delayed_work(cpu, wq, dwork, delay);
1579 		ret = true;
1580 	}
1581 
1582 	local_irq_restore(flags);
1583 	return ret;
1584 }
1585 EXPORT_SYMBOL(queue_delayed_work_on);
1586 
1587 /**
1588  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1589  * @cpu: CPU number to execute work on
1590  * @wq: workqueue to use
1591  * @dwork: work to queue
1592  * @delay: number of jiffies to wait before queueing
1593  *
1594  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1595  * modify @dwork's timer so that it expires after @delay.  If @delay is
1596  * zero, @work is guaranteed to be scheduled immediately regardless of its
1597  * current state.
1598  *
1599  * Return: %false if @dwork was idle and queued, %true if @dwork was
1600  * pending and its timer was modified.
1601  *
1602  * This function is safe to call from any context including IRQ handler.
1603  * See try_to_grab_pending() for details.
1604  */
1605 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1606 			 struct delayed_work *dwork, unsigned long delay)
1607 {
1608 	unsigned long flags;
1609 	int ret;
1610 
1611 	do {
1612 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1613 	} while (unlikely(ret == -EAGAIN));
1614 
1615 	if (likely(ret >= 0)) {
1616 		__queue_delayed_work(cpu, wq, dwork, delay);
1617 		local_irq_restore(flags);
1618 	}
1619 
1620 	/* -ENOENT from try_to_grab_pending() becomes %true */
1621 	return ret;
1622 }
1623 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1624 
1625 static void rcu_work_rcufn(struct rcu_head *rcu)
1626 {
1627 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1628 
1629 	/* read the comment in __queue_work() */
1630 	local_irq_disable();
1631 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1632 	local_irq_enable();
1633 }
1634 
1635 /**
1636  * queue_rcu_work - queue work after a RCU grace period
1637  * @wq: workqueue to use
1638  * @rwork: work to queue
1639  *
1640  * Return: %false if @rwork was already pending, %true otherwise.  Note
1641  * that a full RCU grace period is guaranteed only after a %true return.
1642  * While @rwork is guarnateed to be executed after a %false return, the
1643  * execution may happen before a full RCU grace period has passed.
1644  */
1645 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1646 {
1647 	struct work_struct *work = &rwork->work;
1648 
1649 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1650 		rwork->wq = wq;
1651 		call_rcu(&rwork->rcu, rcu_work_rcufn);
1652 		return true;
1653 	}
1654 
1655 	return false;
1656 }
1657 EXPORT_SYMBOL(queue_rcu_work);
1658 
1659 /**
1660  * worker_enter_idle - enter idle state
1661  * @worker: worker which is entering idle state
1662  *
1663  * @worker is entering idle state.  Update stats and idle timer if
1664  * necessary.
1665  *
1666  * LOCKING:
1667  * spin_lock_irq(pool->lock).
1668  */
1669 static void worker_enter_idle(struct worker *worker)
1670 {
1671 	struct worker_pool *pool = worker->pool;
1672 
1673 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1674 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1675 			 (worker->hentry.next || worker->hentry.pprev)))
1676 		return;
1677 
1678 	/* can't use worker_set_flags(), also called from create_worker() */
1679 	worker->flags |= WORKER_IDLE;
1680 	pool->nr_idle++;
1681 	worker->last_active = jiffies;
1682 
1683 	/* idle_list is LIFO */
1684 	list_add(&worker->entry, &pool->idle_list);
1685 
1686 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1687 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1688 
1689 	/*
1690 	 * Sanity check nr_running.  Because unbind_workers() releases
1691 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1692 	 * nr_running, the warning may trigger spuriously.  Check iff
1693 	 * unbind is not in progress.
1694 	 */
1695 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1696 		     pool->nr_workers == pool->nr_idle &&
1697 		     atomic_read(&pool->nr_running));
1698 }
1699 
1700 /**
1701  * worker_leave_idle - leave idle state
1702  * @worker: worker which is leaving idle state
1703  *
1704  * @worker is leaving idle state.  Update stats.
1705  *
1706  * LOCKING:
1707  * spin_lock_irq(pool->lock).
1708  */
1709 static void worker_leave_idle(struct worker *worker)
1710 {
1711 	struct worker_pool *pool = worker->pool;
1712 
1713 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1714 		return;
1715 	worker_clr_flags(worker, WORKER_IDLE);
1716 	pool->nr_idle--;
1717 	list_del_init(&worker->entry);
1718 }
1719 
1720 static struct worker *alloc_worker(int node)
1721 {
1722 	struct worker *worker;
1723 
1724 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1725 	if (worker) {
1726 		INIT_LIST_HEAD(&worker->entry);
1727 		INIT_LIST_HEAD(&worker->scheduled);
1728 		INIT_LIST_HEAD(&worker->node);
1729 		/* on creation a worker is in !idle && prep state */
1730 		worker->flags = WORKER_PREP;
1731 	}
1732 	return worker;
1733 }
1734 
1735 /**
1736  * worker_attach_to_pool() - attach a worker to a pool
1737  * @worker: worker to be attached
1738  * @pool: the target pool
1739  *
1740  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1741  * cpu-binding of @worker are kept coordinated with the pool across
1742  * cpu-[un]hotplugs.
1743  */
1744 static void worker_attach_to_pool(struct worker *worker,
1745 				   struct worker_pool *pool)
1746 {
1747 	mutex_lock(&wq_pool_attach_mutex);
1748 
1749 	/*
1750 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1751 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1752 	 */
1753 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1754 
1755 	/*
1756 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1757 	 * stable across this function.  See the comments above the flag
1758 	 * definition for details.
1759 	 */
1760 	if (pool->flags & POOL_DISASSOCIATED)
1761 		worker->flags |= WORKER_UNBOUND;
1762 
1763 	list_add_tail(&worker->node, &pool->workers);
1764 	worker->pool = pool;
1765 
1766 	mutex_unlock(&wq_pool_attach_mutex);
1767 }
1768 
1769 /**
1770  * worker_detach_from_pool() - detach a worker from its pool
1771  * @worker: worker which is attached to its pool
1772  *
1773  * Undo the attaching which had been done in worker_attach_to_pool().  The
1774  * caller worker shouldn't access to the pool after detached except it has
1775  * other reference to the pool.
1776  */
1777 static void worker_detach_from_pool(struct worker *worker)
1778 {
1779 	struct worker_pool *pool = worker->pool;
1780 	struct completion *detach_completion = NULL;
1781 
1782 	mutex_lock(&wq_pool_attach_mutex);
1783 
1784 	list_del(&worker->node);
1785 	worker->pool = NULL;
1786 
1787 	if (list_empty(&pool->workers))
1788 		detach_completion = pool->detach_completion;
1789 	mutex_unlock(&wq_pool_attach_mutex);
1790 
1791 	/* clear leftover flags without pool->lock after it is detached */
1792 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1793 
1794 	if (detach_completion)
1795 		complete(detach_completion);
1796 }
1797 
1798 /**
1799  * create_worker - create a new workqueue worker
1800  * @pool: pool the new worker will belong to
1801  *
1802  * Create and start a new worker which is attached to @pool.
1803  *
1804  * CONTEXT:
1805  * Might sleep.  Does GFP_KERNEL allocations.
1806  *
1807  * Return:
1808  * Pointer to the newly created worker.
1809  */
1810 static struct worker *create_worker(struct worker_pool *pool)
1811 {
1812 	struct worker *worker = NULL;
1813 	int id = -1;
1814 	char id_buf[16];
1815 
1816 	/* ID is needed to determine kthread name */
1817 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1818 	if (id < 0)
1819 		goto fail;
1820 
1821 	worker = alloc_worker(pool->node);
1822 	if (!worker)
1823 		goto fail;
1824 
1825 	worker->id = id;
1826 
1827 	if (pool->cpu >= 0)
1828 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1829 			 pool->attrs->nice < 0  ? "H" : "");
1830 	else
1831 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1832 
1833 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1834 					      "kworker/%s", id_buf);
1835 	if (IS_ERR(worker->task))
1836 		goto fail;
1837 
1838 	set_user_nice(worker->task, pool->attrs->nice);
1839 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1840 
1841 	/* successful, attach the worker to the pool */
1842 	worker_attach_to_pool(worker, pool);
1843 
1844 	/* start the newly created worker */
1845 	spin_lock_irq(&pool->lock);
1846 	worker->pool->nr_workers++;
1847 	worker_enter_idle(worker);
1848 	wake_up_process(worker->task);
1849 	spin_unlock_irq(&pool->lock);
1850 
1851 	return worker;
1852 
1853 fail:
1854 	if (id >= 0)
1855 		ida_simple_remove(&pool->worker_ida, id);
1856 	kfree(worker);
1857 	return NULL;
1858 }
1859 
1860 /**
1861  * destroy_worker - destroy a workqueue worker
1862  * @worker: worker to be destroyed
1863  *
1864  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1865  * be idle.
1866  *
1867  * CONTEXT:
1868  * spin_lock_irq(pool->lock).
1869  */
1870 static void destroy_worker(struct worker *worker)
1871 {
1872 	struct worker_pool *pool = worker->pool;
1873 
1874 	lockdep_assert_held(&pool->lock);
1875 
1876 	/* sanity check frenzy */
1877 	if (WARN_ON(worker->current_work) ||
1878 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1879 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1880 		return;
1881 
1882 	pool->nr_workers--;
1883 	pool->nr_idle--;
1884 
1885 	list_del_init(&worker->entry);
1886 	worker->flags |= WORKER_DIE;
1887 	wake_up_process(worker->task);
1888 }
1889 
1890 static void idle_worker_timeout(struct timer_list *t)
1891 {
1892 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
1893 
1894 	spin_lock_irq(&pool->lock);
1895 
1896 	while (too_many_workers(pool)) {
1897 		struct worker *worker;
1898 		unsigned long expires;
1899 
1900 		/* idle_list is kept in LIFO order, check the last one */
1901 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1902 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1903 
1904 		if (time_before(jiffies, expires)) {
1905 			mod_timer(&pool->idle_timer, expires);
1906 			break;
1907 		}
1908 
1909 		destroy_worker(worker);
1910 	}
1911 
1912 	spin_unlock_irq(&pool->lock);
1913 }
1914 
1915 static void send_mayday(struct work_struct *work)
1916 {
1917 	struct pool_workqueue *pwq = get_work_pwq(work);
1918 	struct workqueue_struct *wq = pwq->wq;
1919 
1920 	lockdep_assert_held(&wq_mayday_lock);
1921 
1922 	if (!wq->rescuer)
1923 		return;
1924 
1925 	/* mayday mayday mayday */
1926 	if (list_empty(&pwq->mayday_node)) {
1927 		/*
1928 		 * If @pwq is for an unbound wq, its base ref may be put at
1929 		 * any time due to an attribute change.  Pin @pwq until the
1930 		 * rescuer is done with it.
1931 		 */
1932 		get_pwq(pwq);
1933 		list_add_tail(&pwq->mayday_node, &wq->maydays);
1934 		wake_up_process(wq->rescuer->task);
1935 	}
1936 }
1937 
1938 static void pool_mayday_timeout(struct timer_list *t)
1939 {
1940 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
1941 	struct work_struct *work;
1942 
1943 	spin_lock_irq(&pool->lock);
1944 	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1945 
1946 	if (need_to_create_worker(pool)) {
1947 		/*
1948 		 * We've been trying to create a new worker but
1949 		 * haven't been successful.  We might be hitting an
1950 		 * allocation deadlock.  Send distress signals to
1951 		 * rescuers.
1952 		 */
1953 		list_for_each_entry(work, &pool->worklist, entry)
1954 			send_mayday(work);
1955 	}
1956 
1957 	spin_unlock(&wq_mayday_lock);
1958 	spin_unlock_irq(&pool->lock);
1959 
1960 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1961 }
1962 
1963 /**
1964  * maybe_create_worker - create a new worker if necessary
1965  * @pool: pool to create a new worker for
1966  *
1967  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1968  * have at least one idle worker on return from this function.  If
1969  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1970  * sent to all rescuers with works scheduled on @pool to resolve
1971  * possible allocation deadlock.
1972  *
1973  * On return, need_to_create_worker() is guaranteed to be %false and
1974  * may_start_working() %true.
1975  *
1976  * LOCKING:
1977  * spin_lock_irq(pool->lock) which may be released and regrabbed
1978  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1979  * manager.
1980  */
1981 static void maybe_create_worker(struct worker_pool *pool)
1982 __releases(&pool->lock)
1983 __acquires(&pool->lock)
1984 {
1985 restart:
1986 	spin_unlock_irq(&pool->lock);
1987 
1988 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1989 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1990 
1991 	while (true) {
1992 		if (create_worker(pool) || !need_to_create_worker(pool))
1993 			break;
1994 
1995 		schedule_timeout_interruptible(CREATE_COOLDOWN);
1996 
1997 		if (!need_to_create_worker(pool))
1998 			break;
1999 	}
2000 
2001 	del_timer_sync(&pool->mayday_timer);
2002 	spin_lock_irq(&pool->lock);
2003 	/*
2004 	 * This is necessary even after a new worker was just successfully
2005 	 * created as @pool->lock was dropped and the new worker might have
2006 	 * already become busy.
2007 	 */
2008 	if (need_to_create_worker(pool))
2009 		goto restart;
2010 }
2011 
2012 /**
2013  * manage_workers - manage worker pool
2014  * @worker: self
2015  *
2016  * Assume the manager role and manage the worker pool @worker belongs
2017  * to.  At any given time, there can be only zero or one manager per
2018  * pool.  The exclusion is handled automatically by this function.
2019  *
2020  * The caller can safely start processing works on false return.  On
2021  * true return, it's guaranteed that need_to_create_worker() is false
2022  * and may_start_working() is true.
2023  *
2024  * CONTEXT:
2025  * spin_lock_irq(pool->lock) which may be released and regrabbed
2026  * multiple times.  Does GFP_KERNEL allocations.
2027  *
2028  * Return:
2029  * %false if the pool doesn't need management and the caller can safely
2030  * start processing works, %true if management function was performed and
2031  * the conditions that the caller verified before calling the function may
2032  * no longer be true.
2033  */
2034 static bool manage_workers(struct worker *worker)
2035 {
2036 	struct worker_pool *pool = worker->pool;
2037 
2038 	if (pool->flags & POOL_MANAGER_ACTIVE)
2039 		return false;
2040 
2041 	pool->flags |= POOL_MANAGER_ACTIVE;
2042 	pool->manager = worker;
2043 
2044 	maybe_create_worker(pool);
2045 
2046 	pool->manager = NULL;
2047 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2048 	wake_up(&wq_manager_wait);
2049 	return true;
2050 }
2051 
2052 /**
2053  * process_one_work - process single work
2054  * @worker: self
2055  * @work: work to process
2056  *
2057  * Process @work.  This function contains all the logics necessary to
2058  * process a single work including synchronization against and
2059  * interaction with other workers on the same cpu, queueing and
2060  * flushing.  As long as context requirement is met, any worker can
2061  * call this function to process a work.
2062  *
2063  * CONTEXT:
2064  * spin_lock_irq(pool->lock) which is released and regrabbed.
2065  */
2066 static void process_one_work(struct worker *worker, struct work_struct *work)
2067 __releases(&pool->lock)
2068 __acquires(&pool->lock)
2069 {
2070 	struct pool_workqueue *pwq = get_work_pwq(work);
2071 	struct worker_pool *pool = worker->pool;
2072 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2073 	int work_color;
2074 	struct worker *collision;
2075 #ifdef CONFIG_LOCKDEP
2076 	/*
2077 	 * It is permissible to free the struct work_struct from
2078 	 * inside the function that is called from it, this we need to
2079 	 * take into account for lockdep too.  To avoid bogus "held
2080 	 * lock freed" warnings as well as problems when looking into
2081 	 * work->lockdep_map, make a copy and use that here.
2082 	 */
2083 	struct lockdep_map lockdep_map;
2084 
2085 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2086 #endif
2087 	/* ensure we're on the correct CPU */
2088 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2089 		     raw_smp_processor_id() != pool->cpu);
2090 
2091 	/*
2092 	 * A single work shouldn't be executed concurrently by
2093 	 * multiple workers on a single cpu.  Check whether anyone is
2094 	 * already processing the work.  If so, defer the work to the
2095 	 * currently executing one.
2096 	 */
2097 	collision = find_worker_executing_work(pool, work);
2098 	if (unlikely(collision)) {
2099 		move_linked_works(work, &collision->scheduled, NULL);
2100 		return;
2101 	}
2102 
2103 	/* claim and dequeue */
2104 	debug_work_deactivate(work);
2105 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2106 	worker->current_work = work;
2107 	worker->current_func = work->func;
2108 	worker->current_pwq = pwq;
2109 	work_color = get_work_color(work);
2110 
2111 	/*
2112 	 * Record wq name for cmdline and debug reporting, may get
2113 	 * overridden through set_worker_desc().
2114 	 */
2115 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2116 
2117 	list_del_init(&work->entry);
2118 
2119 	/*
2120 	 * CPU intensive works don't participate in concurrency management.
2121 	 * They're the scheduler's responsibility.  This takes @worker out
2122 	 * of concurrency management and the next code block will chain
2123 	 * execution of the pending work items.
2124 	 */
2125 	if (unlikely(cpu_intensive))
2126 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2127 
2128 	/*
2129 	 * Wake up another worker if necessary.  The condition is always
2130 	 * false for normal per-cpu workers since nr_running would always
2131 	 * be >= 1 at this point.  This is used to chain execution of the
2132 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2133 	 * UNBOUND and CPU_INTENSIVE ones.
2134 	 */
2135 	if (need_more_worker(pool))
2136 		wake_up_worker(pool);
2137 
2138 	/*
2139 	 * Record the last pool and clear PENDING which should be the last
2140 	 * update to @work.  Also, do this inside @pool->lock so that
2141 	 * PENDING and queued state changes happen together while IRQ is
2142 	 * disabled.
2143 	 */
2144 	set_work_pool_and_clear_pending(work, pool->id);
2145 
2146 	spin_unlock_irq(&pool->lock);
2147 
2148 	lock_map_acquire(&pwq->wq->lockdep_map);
2149 	lock_map_acquire(&lockdep_map);
2150 	/*
2151 	 * Strictly speaking we should mark the invariant state without holding
2152 	 * any locks, that is, before these two lock_map_acquire()'s.
2153 	 *
2154 	 * However, that would result in:
2155 	 *
2156 	 *   A(W1)
2157 	 *   WFC(C)
2158 	 *		A(W1)
2159 	 *		C(C)
2160 	 *
2161 	 * Which would create W1->C->W1 dependencies, even though there is no
2162 	 * actual deadlock possible. There are two solutions, using a
2163 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2164 	 * hit the lockdep limitation on recursive locks, or simply discard
2165 	 * these locks.
2166 	 *
2167 	 * AFAICT there is no possible deadlock scenario between the
2168 	 * flush_work() and complete() primitives (except for single-threaded
2169 	 * workqueues), so hiding them isn't a problem.
2170 	 */
2171 	lockdep_invariant_state(true);
2172 	trace_workqueue_execute_start(work);
2173 	worker->current_func(work);
2174 	/*
2175 	 * While we must be careful to not use "work" after this, the trace
2176 	 * point will only record its address.
2177 	 */
2178 	trace_workqueue_execute_end(work);
2179 	lock_map_release(&lockdep_map);
2180 	lock_map_release(&pwq->wq->lockdep_map);
2181 
2182 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2183 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2184 		       "     last function: %pf\n",
2185 		       current->comm, preempt_count(), task_pid_nr(current),
2186 		       worker->current_func);
2187 		debug_show_held_locks(current);
2188 		dump_stack();
2189 	}
2190 
2191 	/*
2192 	 * The following prevents a kworker from hogging CPU on !PREEMPT
2193 	 * kernels, where a requeueing work item waiting for something to
2194 	 * happen could deadlock with stop_machine as such work item could
2195 	 * indefinitely requeue itself while all other CPUs are trapped in
2196 	 * stop_machine. At the same time, report a quiescent RCU state so
2197 	 * the same condition doesn't freeze RCU.
2198 	 */
2199 	cond_resched();
2200 
2201 	spin_lock_irq(&pool->lock);
2202 
2203 	/* clear cpu intensive status */
2204 	if (unlikely(cpu_intensive))
2205 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2206 
2207 	/* tag the worker for identification in schedule() */
2208 	worker->last_func = worker->current_func;
2209 
2210 	/* we're done with it, release */
2211 	hash_del(&worker->hentry);
2212 	worker->current_work = NULL;
2213 	worker->current_func = NULL;
2214 	worker->current_pwq = NULL;
2215 	pwq_dec_nr_in_flight(pwq, work_color);
2216 }
2217 
2218 /**
2219  * process_scheduled_works - process scheduled works
2220  * @worker: self
2221  *
2222  * Process all scheduled works.  Please note that the scheduled list
2223  * may change while processing a work, so this function repeatedly
2224  * fetches a work from the top and executes it.
2225  *
2226  * CONTEXT:
2227  * spin_lock_irq(pool->lock) which may be released and regrabbed
2228  * multiple times.
2229  */
2230 static void process_scheduled_works(struct worker *worker)
2231 {
2232 	while (!list_empty(&worker->scheduled)) {
2233 		struct work_struct *work = list_first_entry(&worker->scheduled,
2234 						struct work_struct, entry);
2235 		process_one_work(worker, work);
2236 	}
2237 }
2238 
2239 static void set_pf_worker(bool val)
2240 {
2241 	mutex_lock(&wq_pool_attach_mutex);
2242 	if (val)
2243 		current->flags |= PF_WQ_WORKER;
2244 	else
2245 		current->flags &= ~PF_WQ_WORKER;
2246 	mutex_unlock(&wq_pool_attach_mutex);
2247 }
2248 
2249 /**
2250  * worker_thread - the worker thread function
2251  * @__worker: self
2252  *
2253  * The worker thread function.  All workers belong to a worker_pool -
2254  * either a per-cpu one or dynamic unbound one.  These workers process all
2255  * work items regardless of their specific target workqueue.  The only
2256  * exception is work items which belong to workqueues with a rescuer which
2257  * will be explained in rescuer_thread().
2258  *
2259  * Return: 0
2260  */
2261 static int worker_thread(void *__worker)
2262 {
2263 	struct worker *worker = __worker;
2264 	struct worker_pool *pool = worker->pool;
2265 
2266 	/* tell the scheduler that this is a workqueue worker */
2267 	set_pf_worker(true);
2268 woke_up:
2269 	spin_lock_irq(&pool->lock);
2270 
2271 	/* am I supposed to die? */
2272 	if (unlikely(worker->flags & WORKER_DIE)) {
2273 		spin_unlock_irq(&pool->lock);
2274 		WARN_ON_ONCE(!list_empty(&worker->entry));
2275 		set_pf_worker(false);
2276 
2277 		set_task_comm(worker->task, "kworker/dying");
2278 		ida_simple_remove(&pool->worker_ida, worker->id);
2279 		worker_detach_from_pool(worker);
2280 		kfree(worker);
2281 		return 0;
2282 	}
2283 
2284 	worker_leave_idle(worker);
2285 recheck:
2286 	/* no more worker necessary? */
2287 	if (!need_more_worker(pool))
2288 		goto sleep;
2289 
2290 	/* do we need to manage? */
2291 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2292 		goto recheck;
2293 
2294 	/*
2295 	 * ->scheduled list can only be filled while a worker is
2296 	 * preparing to process a work or actually processing it.
2297 	 * Make sure nobody diddled with it while I was sleeping.
2298 	 */
2299 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2300 
2301 	/*
2302 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2303 	 * worker or that someone else has already assumed the manager
2304 	 * role.  This is where @worker starts participating in concurrency
2305 	 * management if applicable and concurrency management is restored
2306 	 * after being rebound.  See rebind_workers() for details.
2307 	 */
2308 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2309 
2310 	do {
2311 		struct work_struct *work =
2312 			list_first_entry(&pool->worklist,
2313 					 struct work_struct, entry);
2314 
2315 		pool->watchdog_ts = jiffies;
2316 
2317 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2318 			/* optimization path, not strictly necessary */
2319 			process_one_work(worker, work);
2320 			if (unlikely(!list_empty(&worker->scheduled)))
2321 				process_scheduled_works(worker);
2322 		} else {
2323 			move_linked_works(work, &worker->scheduled, NULL);
2324 			process_scheduled_works(worker);
2325 		}
2326 	} while (keep_working(pool));
2327 
2328 	worker_set_flags(worker, WORKER_PREP);
2329 sleep:
2330 	/*
2331 	 * pool->lock is held and there's no work to process and no need to
2332 	 * manage, sleep.  Workers are woken up only while holding
2333 	 * pool->lock or from local cpu, so setting the current state
2334 	 * before releasing pool->lock is enough to prevent losing any
2335 	 * event.
2336 	 */
2337 	worker_enter_idle(worker);
2338 	__set_current_state(TASK_IDLE);
2339 	spin_unlock_irq(&pool->lock);
2340 	schedule();
2341 	goto woke_up;
2342 }
2343 
2344 /**
2345  * rescuer_thread - the rescuer thread function
2346  * @__rescuer: self
2347  *
2348  * Workqueue rescuer thread function.  There's one rescuer for each
2349  * workqueue which has WQ_MEM_RECLAIM set.
2350  *
2351  * Regular work processing on a pool may block trying to create a new
2352  * worker which uses GFP_KERNEL allocation which has slight chance of
2353  * developing into deadlock if some works currently on the same queue
2354  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2355  * the problem rescuer solves.
2356  *
2357  * When such condition is possible, the pool summons rescuers of all
2358  * workqueues which have works queued on the pool and let them process
2359  * those works so that forward progress can be guaranteed.
2360  *
2361  * This should happen rarely.
2362  *
2363  * Return: 0
2364  */
2365 static int rescuer_thread(void *__rescuer)
2366 {
2367 	struct worker *rescuer = __rescuer;
2368 	struct workqueue_struct *wq = rescuer->rescue_wq;
2369 	struct list_head *scheduled = &rescuer->scheduled;
2370 	bool should_stop;
2371 
2372 	set_user_nice(current, RESCUER_NICE_LEVEL);
2373 
2374 	/*
2375 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2376 	 * doesn't participate in concurrency management.
2377 	 */
2378 	set_pf_worker(true);
2379 repeat:
2380 	set_current_state(TASK_IDLE);
2381 
2382 	/*
2383 	 * By the time the rescuer is requested to stop, the workqueue
2384 	 * shouldn't have any work pending, but @wq->maydays may still have
2385 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2386 	 * all the work items before the rescuer got to them.  Go through
2387 	 * @wq->maydays processing before acting on should_stop so that the
2388 	 * list is always empty on exit.
2389 	 */
2390 	should_stop = kthread_should_stop();
2391 
2392 	/* see whether any pwq is asking for help */
2393 	spin_lock_irq(&wq_mayday_lock);
2394 
2395 	while (!list_empty(&wq->maydays)) {
2396 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2397 					struct pool_workqueue, mayday_node);
2398 		struct worker_pool *pool = pwq->pool;
2399 		struct work_struct *work, *n;
2400 		bool first = true;
2401 
2402 		__set_current_state(TASK_RUNNING);
2403 		list_del_init(&pwq->mayday_node);
2404 
2405 		spin_unlock_irq(&wq_mayday_lock);
2406 
2407 		worker_attach_to_pool(rescuer, pool);
2408 
2409 		spin_lock_irq(&pool->lock);
2410 
2411 		/*
2412 		 * Slurp in all works issued via this workqueue and
2413 		 * process'em.
2414 		 */
2415 		WARN_ON_ONCE(!list_empty(scheduled));
2416 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2417 			if (get_work_pwq(work) == pwq) {
2418 				if (first)
2419 					pool->watchdog_ts = jiffies;
2420 				move_linked_works(work, scheduled, &n);
2421 			}
2422 			first = false;
2423 		}
2424 
2425 		if (!list_empty(scheduled)) {
2426 			process_scheduled_works(rescuer);
2427 
2428 			/*
2429 			 * The above execution of rescued work items could
2430 			 * have created more to rescue through
2431 			 * pwq_activate_first_delayed() or chained
2432 			 * queueing.  Let's put @pwq back on mayday list so
2433 			 * that such back-to-back work items, which may be
2434 			 * being used to relieve memory pressure, don't
2435 			 * incur MAYDAY_INTERVAL delay inbetween.
2436 			 */
2437 			if (need_to_create_worker(pool)) {
2438 				spin_lock(&wq_mayday_lock);
2439 				get_pwq(pwq);
2440 				list_move_tail(&pwq->mayday_node, &wq->maydays);
2441 				spin_unlock(&wq_mayday_lock);
2442 			}
2443 		}
2444 
2445 		/*
2446 		 * Put the reference grabbed by send_mayday().  @pool won't
2447 		 * go away while we're still attached to it.
2448 		 */
2449 		put_pwq(pwq);
2450 
2451 		/*
2452 		 * Leave this pool.  If need_more_worker() is %true, notify a
2453 		 * regular worker; otherwise, we end up with 0 concurrency
2454 		 * and stalling the execution.
2455 		 */
2456 		if (need_more_worker(pool))
2457 			wake_up_worker(pool);
2458 
2459 		spin_unlock_irq(&pool->lock);
2460 
2461 		worker_detach_from_pool(rescuer);
2462 
2463 		spin_lock_irq(&wq_mayday_lock);
2464 	}
2465 
2466 	spin_unlock_irq(&wq_mayday_lock);
2467 
2468 	if (should_stop) {
2469 		__set_current_state(TASK_RUNNING);
2470 		set_pf_worker(false);
2471 		return 0;
2472 	}
2473 
2474 	/* rescuers should never participate in concurrency management */
2475 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2476 	schedule();
2477 	goto repeat;
2478 }
2479 
2480 /**
2481  * check_flush_dependency - check for flush dependency sanity
2482  * @target_wq: workqueue being flushed
2483  * @target_work: work item being flushed (NULL for workqueue flushes)
2484  *
2485  * %current is trying to flush the whole @target_wq or @target_work on it.
2486  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2487  * reclaiming memory or running on a workqueue which doesn't have
2488  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2489  * a deadlock.
2490  */
2491 static void check_flush_dependency(struct workqueue_struct *target_wq,
2492 				   struct work_struct *target_work)
2493 {
2494 	work_func_t target_func = target_work ? target_work->func : NULL;
2495 	struct worker *worker;
2496 
2497 	if (target_wq->flags & WQ_MEM_RECLAIM)
2498 		return;
2499 
2500 	worker = current_wq_worker();
2501 
2502 	WARN_ONCE(current->flags & PF_MEMALLOC,
2503 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2504 		  current->pid, current->comm, target_wq->name, target_func);
2505 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2506 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2507 		  "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2508 		  worker->current_pwq->wq->name, worker->current_func,
2509 		  target_wq->name, target_func);
2510 }
2511 
2512 struct wq_barrier {
2513 	struct work_struct	work;
2514 	struct completion	done;
2515 	struct task_struct	*task;	/* purely informational */
2516 };
2517 
2518 static void wq_barrier_func(struct work_struct *work)
2519 {
2520 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2521 	complete(&barr->done);
2522 }
2523 
2524 /**
2525  * insert_wq_barrier - insert a barrier work
2526  * @pwq: pwq to insert barrier into
2527  * @barr: wq_barrier to insert
2528  * @target: target work to attach @barr to
2529  * @worker: worker currently executing @target, NULL if @target is not executing
2530  *
2531  * @barr is linked to @target such that @barr is completed only after
2532  * @target finishes execution.  Please note that the ordering
2533  * guarantee is observed only with respect to @target and on the local
2534  * cpu.
2535  *
2536  * Currently, a queued barrier can't be canceled.  This is because
2537  * try_to_grab_pending() can't determine whether the work to be
2538  * grabbed is at the head of the queue and thus can't clear LINKED
2539  * flag of the previous work while there must be a valid next work
2540  * after a work with LINKED flag set.
2541  *
2542  * Note that when @worker is non-NULL, @target may be modified
2543  * underneath us, so we can't reliably determine pwq from @target.
2544  *
2545  * CONTEXT:
2546  * spin_lock_irq(pool->lock).
2547  */
2548 static void insert_wq_barrier(struct pool_workqueue *pwq,
2549 			      struct wq_barrier *barr,
2550 			      struct work_struct *target, struct worker *worker)
2551 {
2552 	struct list_head *head;
2553 	unsigned int linked = 0;
2554 
2555 	/*
2556 	 * debugobject calls are safe here even with pool->lock locked
2557 	 * as we know for sure that this will not trigger any of the
2558 	 * checks and call back into the fixup functions where we
2559 	 * might deadlock.
2560 	 */
2561 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2562 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2563 
2564 	init_completion_map(&barr->done, &target->lockdep_map);
2565 
2566 	barr->task = current;
2567 
2568 	/*
2569 	 * If @target is currently being executed, schedule the
2570 	 * barrier to the worker; otherwise, put it after @target.
2571 	 */
2572 	if (worker)
2573 		head = worker->scheduled.next;
2574 	else {
2575 		unsigned long *bits = work_data_bits(target);
2576 
2577 		head = target->entry.next;
2578 		/* there can already be other linked works, inherit and set */
2579 		linked = *bits & WORK_STRUCT_LINKED;
2580 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2581 	}
2582 
2583 	debug_work_activate(&barr->work);
2584 	insert_work(pwq, &barr->work, head,
2585 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2586 }
2587 
2588 /**
2589  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2590  * @wq: workqueue being flushed
2591  * @flush_color: new flush color, < 0 for no-op
2592  * @work_color: new work color, < 0 for no-op
2593  *
2594  * Prepare pwqs for workqueue flushing.
2595  *
2596  * If @flush_color is non-negative, flush_color on all pwqs should be
2597  * -1.  If no pwq has in-flight commands at the specified color, all
2598  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2599  * has in flight commands, its pwq->flush_color is set to
2600  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2601  * wakeup logic is armed and %true is returned.
2602  *
2603  * The caller should have initialized @wq->first_flusher prior to
2604  * calling this function with non-negative @flush_color.  If
2605  * @flush_color is negative, no flush color update is done and %false
2606  * is returned.
2607  *
2608  * If @work_color is non-negative, all pwqs should have the same
2609  * work_color which is previous to @work_color and all will be
2610  * advanced to @work_color.
2611  *
2612  * CONTEXT:
2613  * mutex_lock(wq->mutex).
2614  *
2615  * Return:
2616  * %true if @flush_color >= 0 and there's something to flush.  %false
2617  * otherwise.
2618  */
2619 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2620 				      int flush_color, int work_color)
2621 {
2622 	bool wait = false;
2623 	struct pool_workqueue *pwq;
2624 
2625 	if (flush_color >= 0) {
2626 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2627 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2628 	}
2629 
2630 	for_each_pwq(pwq, wq) {
2631 		struct worker_pool *pool = pwq->pool;
2632 
2633 		spin_lock_irq(&pool->lock);
2634 
2635 		if (flush_color >= 0) {
2636 			WARN_ON_ONCE(pwq->flush_color != -1);
2637 
2638 			if (pwq->nr_in_flight[flush_color]) {
2639 				pwq->flush_color = flush_color;
2640 				atomic_inc(&wq->nr_pwqs_to_flush);
2641 				wait = true;
2642 			}
2643 		}
2644 
2645 		if (work_color >= 0) {
2646 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2647 			pwq->work_color = work_color;
2648 		}
2649 
2650 		spin_unlock_irq(&pool->lock);
2651 	}
2652 
2653 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2654 		complete(&wq->first_flusher->done);
2655 
2656 	return wait;
2657 }
2658 
2659 /**
2660  * flush_workqueue - ensure that any scheduled work has run to completion.
2661  * @wq: workqueue to flush
2662  *
2663  * This function sleeps until all work items which were queued on entry
2664  * have finished execution, but it is not livelocked by new incoming ones.
2665  */
2666 void flush_workqueue(struct workqueue_struct *wq)
2667 {
2668 	struct wq_flusher this_flusher = {
2669 		.list = LIST_HEAD_INIT(this_flusher.list),
2670 		.flush_color = -1,
2671 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2672 	};
2673 	int next_color;
2674 
2675 	if (WARN_ON(!wq_online))
2676 		return;
2677 
2678 	lock_map_acquire(&wq->lockdep_map);
2679 	lock_map_release(&wq->lockdep_map);
2680 
2681 	mutex_lock(&wq->mutex);
2682 
2683 	/*
2684 	 * Start-to-wait phase
2685 	 */
2686 	next_color = work_next_color(wq->work_color);
2687 
2688 	if (next_color != wq->flush_color) {
2689 		/*
2690 		 * Color space is not full.  The current work_color
2691 		 * becomes our flush_color and work_color is advanced
2692 		 * by one.
2693 		 */
2694 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2695 		this_flusher.flush_color = wq->work_color;
2696 		wq->work_color = next_color;
2697 
2698 		if (!wq->first_flusher) {
2699 			/* no flush in progress, become the first flusher */
2700 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2701 
2702 			wq->first_flusher = &this_flusher;
2703 
2704 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2705 						       wq->work_color)) {
2706 				/* nothing to flush, done */
2707 				wq->flush_color = next_color;
2708 				wq->first_flusher = NULL;
2709 				goto out_unlock;
2710 			}
2711 		} else {
2712 			/* wait in queue */
2713 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2714 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2715 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2716 		}
2717 	} else {
2718 		/*
2719 		 * Oops, color space is full, wait on overflow queue.
2720 		 * The next flush completion will assign us
2721 		 * flush_color and transfer to flusher_queue.
2722 		 */
2723 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2724 	}
2725 
2726 	check_flush_dependency(wq, NULL);
2727 
2728 	mutex_unlock(&wq->mutex);
2729 
2730 	wait_for_completion(&this_flusher.done);
2731 
2732 	/*
2733 	 * Wake-up-and-cascade phase
2734 	 *
2735 	 * First flushers are responsible for cascading flushes and
2736 	 * handling overflow.  Non-first flushers can simply return.
2737 	 */
2738 	if (wq->first_flusher != &this_flusher)
2739 		return;
2740 
2741 	mutex_lock(&wq->mutex);
2742 
2743 	/* we might have raced, check again with mutex held */
2744 	if (wq->first_flusher != &this_flusher)
2745 		goto out_unlock;
2746 
2747 	wq->first_flusher = NULL;
2748 
2749 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2750 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2751 
2752 	while (true) {
2753 		struct wq_flusher *next, *tmp;
2754 
2755 		/* complete all the flushers sharing the current flush color */
2756 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2757 			if (next->flush_color != wq->flush_color)
2758 				break;
2759 			list_del_init(&next->list);
2760 			complete(&next->done);
2761 		}
2762 
2763 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2764 			     wq->flush_color != work_next_color(wq->work_color));
2765 
2766 		/* this flush_color is finished, advance by one */
2767 		wq->flush_color = work_next_color(wq->flush_color);
2768 
2769 		/* one color has been freed, handle overflow queue */
2770 		if (!list_empty(&wq->flusher_overflow)) {
2771 			/*
2772 			 * Assign the same color to all overflowed
2773 			 * flushers, advance work_color and append to
2774 			 * flusher_queue.  This is the start-to-wait
2775 			 * phase for these overflowed flushers.
2776 			 */
2777 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2778 				tmp->flush_color = wq->work_color;
2779 
2780 			wq->work_color = work_next_color(wq->work_color);
2781 
2782 			list_splice_tail_init(&wq->flusher_overflow,
2783 					      &wq->flusher_queue);
2784 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2785 		}
2786 
2787 		if (list_empty(&wq->flusher_queue)) {
2788 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2789 			break;
2790 		}
2791 
2792 		/*
2793 		 * Need to flush more colors.  Make the next flusher
2794 		 * the new first flusher and arm pwqs.
2795 		 */
2796 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2797 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2798 
2799 		list_del_init(&next->list);
2800 		wq->first_flusher = next;
2801 
2802 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2803 			break;
2804 
2805 		/*
2806 		 * Meh... this color is already done, clear first
2807 		 * flusher and repeat cascading.
2808 		 */
2809 		wq->first_flusher = NULL;
2810 	}
2811 
2812 out_unlock:
2813 	mutex_unlock(&wq->mutex);
2814 }
2815 EXPORT_SYMBOL(flush_workqueue);
2816 
2817 /**
2818  * drain_workqueue - drain a workqueue
2819  * @wq: workqueue to drain
2820  *
2821  * Wait until the workqueue becomes empty.  While draining is in progress,
2822  * only chain queueing is allowed.  IOW, only currently pending or running
2823  * work items on @wq can queue further work items on it.  @wq is flushed
2824  * repeatedly until it becomes empty.  The number of flushing is determined
2825  * by the depth of chaining and should be relatively short.  Whine if it
2826  * takes too long.
2827  */
2828 void drain_workqueue(struct workqueue_struct *wq)
2829 {
2830 	unsigned int flush_cnt = 0;
2831 	struct pool_workqueue *pwq;
2832 
2833 	/*
2834 	 * __queue_work() needs to test whether there are drainers, is much
2835 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2836 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2837 	 */
2838 	mutex_lock(&wq->mutex);
2839 	if (!wq->nr_drainers++)
2840 		wq->flags |= __WQ_DRAINING;
2841 	mutex_unlock(&wq->mutex);
2842 reflush:
2843 	flush_workqueue(wq);
2844 
2845 	mutex_lock(&wq->mutex);
2846 
2847 	for_each_pwq(pwq, wq) {
2848 		bool drained;
2849 
2850 		spin_lock_irq(&pwq->pool->lock);
2851 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2852 		spin_unlock_irq(&pwq->pool->lock);
2853 
2854 		if (drained)
2855 			continue;
2856 
2857 		if (++flush_cnt == 10 ||
2858 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2859 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2860 				wq->name, flush_cnt);
2861 
2862 		mutex_unlock(&wq->mutex);
2863 		goto reflush;
2864 	}
2865 
2866 	if (!--wq->nr_drainers)
2867 		wq->flags &= ~__WQ_DRAINING;
2868 	mutex_unlock(&wq->mutex);
2869 }
2870 EXPORT_SYMBOL_GPL(drain_workqueue);
2871 
2872 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2873 			     bool from_cancel)
2874 {
2875 	struct worker *worker = NULL;
2876 	struct worker_pool *pool;
2877 	struct pool_workqueue *pwq;
2878 
2879 	might_sleep();
2880 
2881 	local_irq_disable();
2882 	pool = get_work_pool(work);
2883 	if (!pool) {
2884 		local_irq_enable();
2885 		return false;
2886 	}
2887 
2888 	spin_lock(&pool->lock);
2889 	/* see the comment in try_to_grab_pending() with the same code */
2890 	pwq = get_work_pwq(work);
2891 	if (pwq) {
2892 		if (unlikely(pwq->pool != pool))
2893 			goto already_gone;
2894 	} else {
2895 		worker = find_worker_executing_work(pool, work);
2896 		if (!worker)
2897 			goto already_gone;
2898 		pwq = worker->current_pwq;
2899 	}
2900 
2901 	check_flush_dependency(pwq->wq, work);
2902 
2903 	insert_wq_barrier(pwq, barr, work, worker);
2904 	spin_unlock_irq(&pool->lock);
2905 
2906 	/*
2907 	 * Force a lock recursion deadlock when using flush_work() inside a
2908 	 * single-threaded or rescuer equipped workqueue.
2909 	 *
2910 	 * For single threaded workqueues the deadlock happens when the work
2911 	 * is after the work issuing the flush_work(). For rescuer equipped
2912 	 * workqueues the deadlock happens when the rescuer stalls, blocking
2913 	 * forward progress.
2914 	 */
2915 	if (!from_cancel &&
2916 	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
2917 		lock_map_acquire(&pwq->wq->lockdep_map);
2918 		lock_map_release(&pwq->wq->lockdep_map);
2919 	}
2920 
2921 	return true;
2922 already_gone:
2923 	spin_unlock_irq(&pool->lock);
2924 	return false;
2925 }
2926 
2927 static bool __flush_work(struct work_struct *work, bool from_cancel)
2928 {
2929 	struct wq_barrier barr;
2930 
2931 	if (WARN_ON(!wq_online))
2932 		return false;
2933 
2934 	if (!from_cancel) {
2935 		lock_map_acquire(&work->lockdep_map);
2936 		lock_map_release(&work->lockdep_map);
2937 	}
2938 
2939 	if (start_flush_work(work, &barr, from_cancel)) {
2940 		wait_for_completion(&barr.done);
2941 		destroy_work_on_stack(&barr.work);
2942 		return true;
2943 	} else {
2944 		return false;
2945 	}
2946 }
2947 
2948 /**
2949  * flush_work - wait for a work to finish executing the last queueing instance
2950  * @work: the work to flush
2951  *
2952  * Wait until @work has finished execution.  @work is guaranteed to be idle
2953  * on return if it hasn't been requeued since flush started.
2954  *
2955  * Return:
2956  * %true if flush_work() waited for the work to finish execution,
2957  * %false if it was already idle.
2958  */
2959 bool flush_work(struct work_struct *work)
2960 {
2961 	return __flush_work(work, false);
2962 }
2963 EXPORT_SYMBOL_GPL(flush_work);
2964 
2965 struct cwt_wait {
2966 	wait_queue_entry_t		wait;
2967 	struct work_struct	*work;
2968 };
2969 
2970 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2971 {
2972 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2973 
2974 	if (cwait->work != key)
2975 		return 0;
2976 	return autoremove_wake_function(wait, mode, sync, key);
2977 }
2978 
2979 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2980 {
2981 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2982 	unsigned long flags;
2983 	int ret;
2984 
2985 	do {
2986 		ret = try_to_grab_pending(work, is_dwork, &flags);
2987 		/*
2988 		 * If someone else is already canceling, wait for it to
2989 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
2990 		 * because we may get scheduled between @work's completion
2991 		 * and the other canceling task resuming and clearing
2992 		 * CANCELING - flush_work() will return false immediately
2993 		 * as @work is no longer busy, try_to_grab_pending() will
2994 		 * return -ENOENT as @work is still being canceled and the
2995 		 * other canceling task won't be able to clear CANCELING as
2996 		 * we're hogging the CPU.
2997 		 *
2998 		 * Let's wait for completion using a waitqueue.  As this
2999 		 * may lead to the thundering herd problem, use a custom
3000 		 * wake function which matches @work along with exclusive
3001 		 * wait and wakeup.
3002 		 */
3003 		if (unlikely(ret == -ENOENT)) {
3004 			struct cwt_wait cwait;
3005 
3006 			init_wait(&cwait.wait);
3007 			cwait.wait.func = cwt_wakefn;
3008 			cwait.work = work;
3009 
3010 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3011 						  TASK_UNINTERRUPTIBLE);
3012 			if (work_is_canceling(work))
3013 				schedule();
3014 			finish_wait(&cancel_waitq, &cwait.wait);
3015 		}
3016 	} while (unlikely(ret < 0));
3017 
3018 	/* tell other tasks trying to grab @work to back off */
3019 	mark_work_canceling(work);
3020 	local_irq_restore(flags);
3021 
3022 	/*
3023 	 * This allows canceling during early boot.  We know that @work
3024 	 * isn't executing.
3025 	 */
3026 	if (wq_online)
3027 		__flush_work(work, true);
3028 
3029 	clear_work_data(work);
3030 
3031 	/*
3032 	 * Paired with prepare_to_wait() above so that either
3033 	 * waitqueue_active() is visible here or !work_is_canceling() is
3034 	 * visible there.
3035 	 */
3036 	smp_mb();
3037 	if (waitqueue_active(&cancel_waitq))
3038 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3039 
3040 	return ret;
3041 }
3042 
3043 /**
3044  * cancel_work_sync - cancel a work and wait for it to finish
3045  * @work: the work to cancel
3046  *
3047  * Cancel @work and wait for its execution to finish.  This function
3048  * can be used even if the work re-queues itself or migrates to
3049  * another workqueue.  On return from this function, @work is
3050  * guaranteed to be not pending or executing on any CPU.
3051  *
3052  * cancel_work_sync(&delayed_work->work) must not be used for
3053  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3054  *
3055  * The caller must ensure that the workqueue on which @work was last
3056  * queued can't be destroyed before this function returns.
3057  *
3058  * Return:
3059  * %true if @work was pending, %false otherwise.
3060  */
3061 bool cancel_work_sync(struct work_struct *work)
3062 {
3063 	return __cancel_work_timer(work, false);
3064 }
3065 EXPORT_SYMBOL_GPL(cancel_work_sync);
3066 
3067 /**
3068  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3069  * @dwork: the delayed work to flush
3070  *
3071  * Delayed timer is cancelled and the pending work is queued for
3072  * immediate execution.  Like flush_work(), this function only
3073  * considers the last queueing instance of @dwork.
3074  *
3075  * Return:
3076  * %true if flush_work() waited for the work to finish execution,
3077  * %false if it was already idle.
3078  */
3079 bool flush_delayed_work(struct delayed_work *dwork)
3080 {
3081 	local_irq_disable();
3082 	if (del_timer_sync(&dwork->timer))
3083 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3084 	local_irq_enable();
3085 	return flush_work(&dwork->work);
3086 }
3087 EXPORT_SYMBOL(flush_delayed_work);
3088 
3089 /**
3090  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3091  * @rwork: the rcu work to flush
3092  *
3093  * Return:
3094  * %true if flush_rcu_work() waited for the work to finish execution,
3095  * %false if it was already idle.
3096  */
3097 bool flush_rcu_work(struct rcu_work *rwork)
3098 {
3099 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3100 		rcu_barrier();
3101 		flush_work(&rwork->work);
3102 		return true;
3103 	} else {
3104 		return flush_work(&rwork->work);
3105 	}
3106 }
3107 EXPORT_SYMBOL(flush_rcu_work);
3108 
3109 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3110 {
3111 	unsigned long flags;
3112 	int ret;
3113 
3114 	do {
3115 		ret = try_to_grab_pending(work, is_dwork, &flags);
3116 	} while (unlikely(ret == -EAGAIN));
3117 
3118 	if (unlikely(ret < 0))
3119 		return false;
3120 
3121 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3122 	local_irq_restore(flags);
3123 	return ret;
3124 }
3125 
3126 /**
3127  * cancel_delayed_work - cancel a delayed work
3128  * @dwork: delayed_work to cancel
3129  *
3130  * Kill off a pending delayed_work.
3131  *
3132  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3133  * pending.
3134  *
3135  * Note:
3136  * The work callback function may still be running on return, unless
3137  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3138  * use cancel_delayed_work_sync() to wait on it.
3139  *
3140  * This function is safe to call from any context including IRQ handler.
3141  */
3142 bool cancel_delayed_work(struct delayed_work *dwork)
3143 {
3144 	return __cancel_work(&dwork->work, true);
3145 }
3146 EXPORT_SYMBOL(cancel_delayed_work);
3147 
3148 /**
3149  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3150  * @dwork: the delayed work cancel
3151  *
3152  * This is cancel_work_sync() for delayed works.
3153  *
3154  * Return:
3155  * %true if @dwork was pending, %false otherwise.
3156  */
3157 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3158 {
3159 	return __cancel_work_timer(&dwork->work, true);
3160 }
3161 EXPORT_SYMBOL(cancel_delayed_work_sync);
3162 
3163 /**
3164  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3165  * @func: the function to call
3166  *
3167  * schedule_on_each_cpu() executes @func on each online CPU using the
3168  * system workqueue and blocks until all CPUs have completed.
3169  * schedule_on_each_cpu() is very slow.
3170  *
3171  * Return:
3172  * 0 on success, -errno on failure.
3173  */
3174 int schedule_on_each_cpu(work_func_t func)
3175 {
3176 	int cpu;
3177 	struct work_struct __percpu *works;
3178 
3179 	works = alloc_percpu(struct work_struct);
3180 	if (!works)
3181 		return -ENOMEM;
3182 
3183 	get_online_cpus();
3184 
3185 	for_each_online_cpu(cpu) {
3186 		struct work_struct *work = per_cpu_ptr(works, cpu);
3187 
3188 		INIT_WORK(work, func);
3189 		schedule_work_on(cpu, work);
3190 	}
3191 
3192 	for_each_online_cpu(cpu)
3193 		flush_work(per_cpu_ptr(works, cpu));
3194 
3195 	put_online_cpus();
3196 	free_percpu(works);
3197 	return 0;
3198 }
3199 
3200 /**
3201  * execute_in_process_context - reliably execute the routine with user context
3202  * @fn:		the function to execute
3203  * @ew:		guaranteed storage for the execute work structure (must
3204  *		be available when the work executes)
3205  *
3206  * Executes the function immediately if process context is available,
3207  * otherwise schedules the function for delayed execution.
3208  *
3209  * Return:	0 - function was executed
3210  *		1 - function was scheduled for execution
3211  */
3212 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3213 {
3214 	if (!in_interrupt()) {
3215 		fn(&ew->work);
3216 		return 0;
3217 	}
3218 
3219 	INIT_WORK(&ew->work, fn);
3220 	schedule_work(&ew->work);
3221 
3222 	return 1;
3223 }
3224 EXPORT_SYMBOL_GPL(execute_in_process_context);
3225 
3226 /**
3227  * free_workqueue_attrs - free a workqueue_attrs
3228  * @attrs: workqueue_attrs to free
3229  *
3230  * Undo alloc_workqueue_attrs().
3231  */
3232 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3233 {
3234 	if (attrs) {
3235 		free_cpumask_var(attrs->cpumask);
3236 		kfree(attrs);
3237 	}
3238 }
3239 
3240 /**
3241  * alloc_workqueue_attrs - allocate a workqueue_attrs
3242  * @gfp_mask: allocation mask to use
3243  *
3244  * Allocate a new workqueue_attrs, initialize with default settings and
3245  * return it.
3246  *
3247  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3248  */
3249 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3250 {
3251 	struct workqueue_attrs *attrs;
3252 
3253 	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3254 	if (!attrs)
3255 		goto fail;
3256 	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3257 		goto fail;
3258 
3259 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3260 	return attrs;
3261 fail:
3262 	free_workqueue_attrs(attrs);
3263 	return NULL;
3264 }
3265 
3266 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3267 				 const struct workqueue_attrs *from)
3268 {
3269 	to->nice = from->nice;
3270 	cpumask_copy(to->cpumask, from->cpumask);
3271 	/*
3272 	 * Unlike hash and equality test, this function doesn't ignore
3273 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3274 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3275 	 */
3276 	to->no_numa = from->no_numa;
3277 }
3278 
3279 /* hash value of the content of @attr */
3280 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3281 {
3282 	u32 hash = 0;
3283 
3284 	hash = jhash_1word(attrs->nice, hash);
3285 	hash = jhash(cpumask_bits(attrs->cpumask),
3286 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3287 	return hash;
3288 }
3289 
3290 /* content equality test */
3291 static bool wqattrs_equal(const struct workqueue_attrs *a,
3292 			  const struct workqueue_attrs *b)
3293 {
3294 	if (a->nice != b->nice)
3295 		return false;
3296 	if (!cpumask_equal(a->cpumask, b->cpumask))
3297 		return false;
3298 	return true;
3299 }
3300 
3301 /**
3302  * init_worker_pool - initialize a newly zalloc'd worker_pool
3303  * @pool: worker_pool to initialize
3304  *
3305  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3306  *
3307  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3308  * inside @pool proper are initialized and put_unbound_pool() can be called
3309  * on @pool safely to release it.
3310  */
3311 static int init_worker_pool(struct worker_pool *pool)
3312 {
3313 	spin_lock_init(&pool->lock);
3314 	pool->id = -1;
3315 	pool->cpu = -1;
3316 	pool->node = NUMA_NO_NODE;
3317 	pool->flags |= POOL_DISASSOCIATED;
3318 	pool->watchdog_ts = jiffies;
3319 	INIT_LIST_HEAD(&pool->worklist);
3320 	INIT_LIST_HEAD(&pool->idle_list);
3321 	hash_init(pool->busy_hash);
3322 
3323 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3324 
3325 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3326 
3327 	INIT_LIST_HEAD(&pool->workers);
3328 
3329 	ida_init(&pool->worker_ida);
3330 	INIT_HLIST_NODE(&pool->hash_node);
3331 	pool->refcnt = 1;
3332 
3333 	/* shouldn't fail above this point */
3334 	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3335 	if (!pool->attrs)
3336 		return -ENOMEM;
3337 	return 0;
3338 }
3339 
3340 static void rcu_free_wq(struct rcu_head *rcu)
3341 {
3342 	struct workqueue_struct *wq =
3343 		container_of(rcu, struct workqueue_struct, rcu);
3344 
3345 	if (!(wq->flags & WQ_UNBOUND))
3346 		free_percpu(wq->cpu_pwqs);
3347 	else
3348 		free_workqueue_attrs(wq->unbound_attrs);
3349 
3350 	kfree(wq->rescuer);
3351 	kfree(wq);
3352 }
3353 
3354 static void rcu_free_pool(struct rcu_head *rcu)
3355 {
3356 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3357 
3358 	ida_destroy(&pool->worker_ida);
3359 	free_workqueue_attrs(pool->attrs);
3360 	kfree(pool);
3361 }
3362 
3363 /**
3364  * put_unbound_pool - put a worker_pool
3365  * @pool: worker_pool to put
3366  *
3367  * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3368  * safe manner.  get_unbound_pool() calls this function on its failure path
3369  * and this function should be able to release pools which went through,
3370  * successfully or not, init_worker_pool().
3371  *
3372  * Should be called with wq_pool_mutex held.
3373  */
3374 static void put_unbound_pool(struct worker_pool *pool)
3375 {
3376 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3377 	struct worker *worker;
3378 
3379 	lockdep_assert_held(&wq_pool_mutex);
3380 
3381 	if (--pool->refcnt)
3382 		return;
3383 
3384 	/* sanity checks */
3385 	if (WARN_ON(!(pool->cpu < 0)) ||
3386 	    WARN_ON(!list_empty(&pool->worklist)))
3387 		return;
3388 
3389 	/* release id and unhash */
3390 	if (pool->id >= 0)
3391 		idr_remove(&worker_pool_idr, pool->id);
3392 	hash_del(&pool->hash_node);
3393 
3394 	/*
3395 	 * Become the manager and destroy all workers.  This prevents
3396 	 * @pool's workers from blocking on attach_mutex.  We're the last
3397 	 * manager and @pool gets freed with the flag set.
3398 	 */
3399 	spin_lock_irq(&pool->lock);
3400 	wait_event_lock_irq(wq_manager_wait,
3401 			    !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3402 	pool->flags |= POOL_MANAGER_ACTIVE;
3403 
3404 	while ((worker = first_idle_worker(pool)))
3405 		destroy_worker(worker);
3406 	WARN_ON(pool->nr_workers || pool->nr_idle);
3407 	spin_unlock_irq(&pool->lock);
3408 
3409 	mutex_lock(&wq_pool_attach_mutex);
3410 	if (!list_empty(&pool->workers))
3411 		pool->detach_completion = &detach_completion;
3412 	mutex_unlock(&wq_pool_attach_mutex);
3413 
3414 	if (pool->detach_completion)
3415 		wait_for_completion(pool->detach_completion);
3416 
3417 	/* shut down the timers */
3418 	del_timer_sync(&pool->idle_timer);
3419 	del_timer_sync(&pool->mayday_timer);
3420 
3421 	/* sched-RCU protected to allow dereferences from get_work_pool() */
3422 	call_rcu(&pool->rcu, rcu_free_pool);
3423 }
3424 
3425 /**
3426  * get_unbound_pool - get a worker_pool with the specified attributes
3427  * @attrs: the attributes of the worker_pool to get
3428  *
3429  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3430  * reference count and return it.  If there already is a matching
3431  * worker_pool, it will be used; otherwise, this function attempts to
3432  * create a new one.
3433  *
3434  * Should be called with wq_pool_mutex held.
3435  *
3436  * Return: On success, a worker_pool with the same attributes as @attrs.
3437  * On failure, %NULL.
3438  */
3439 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3440 {
3441 	u32 hash = wqattrs_hash(attrs);
3442 	struct worker_pool *pool;
3443 	int node;
3444 	int target_node = NUMA_NO_NODE;
3445 
3446 	lockdep_assert_held(&wq_pool_mutex);
3447 
3448 	/* do we already have a matching pool? */
3449 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3450 		if (wqattrs_equal(pool->attrs, attrs)) {
3451 			pool->refcnt++;
3452 			return pool;
3453 		}
3454 	}
3455 
3456 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3457 	if (wq_numa_enabled) {
3458 		for_each_node(node) {
3459 			if (cpumask_subset(attrs->cpumask,
3460 					   wq_numa_possible_cpumask[node])) {
3461 				target_node = node;
3462 				break;
3463 			}
3464 		}
3465 	}
3466 
3467 	/* nope, create a new one */
3468 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3469 	if (!pool || init_worker_pool(pool) < 0)
3470 		goto fail;
3471 
3472 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3473 	copy_workqueue_attrs(pool->attrs, attrs);
3474 	pool->node = target_node;
3475 
3476 	/*
3477 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3478 	 * 'struct workqueue_attrs' comments for detail.
3479 	 */
3480 	pool->attrs->no_numa = false;
3481 
3482 	if (worker_pool_assign_id(pool) < 0)
3483 		goto fail;
3484 
3485 	/* create and start the initial worker */
3486 	if (wq_online && !create_worker(pool))
3487 		goto fail;
3488 
3489 	/* install */
3490 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3491 
3492 	return pool;
3493 fail:
3494 	if (pool)
3495 		put_unbound_pool(pool);
3496 	return NULL;
3497 }
3498 
3499 static void rcu_free_pwq(struct rcu_head *rcu)
3500 {
3501 	kmem_cache_free(pwq_cache,
3502 			container_of(rcu, struct pool_workqueue, rcu));
3503 }
3504 
3505 /*
3506  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3507  * and needs to be destroyed.
3508  */
3509 static void pwq_unbound_release_workfn(struct work_struct *work)
3510 {
3511 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3512 						  unbound_release_work);
3513 	struct workqueue_struct *wq = pwq->wq;
3514 	struct worker_pool *pool = pwq->pool;
3515 	bool is_last;
3516 
3517 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3518 		return;
3519 
3520 	mutex_lock(&wq->mutex);
3521 	list_del_rcu(&pwq->pwqs_node);
3522 	is_last = list_empty(&wq->pwqs);
3523 	mutex_unlock(&wq->mutex);
3524 
3525 	mutex_lock(&wq_pool_mutex);
3526 	put_unbound_pool(pool);
3527 	mutex_unlock(&wq_pool_mutex);
3528 
3529 	call_rcu(&pwq->rcu, rcu_free_pwq);
3530 
3531 	/*
3532 	 * If we're the last pwq going away, @wq is already dead and no one
3533 	 * is gonna access it anymore.  Schedule RCU free.
3534 	 */
3535 	if (is_last)
3536 		call_rcu(&wq->rcu, rcu_free_wq);
3537 }
3538 
3539 /**
3540  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3541  * @pwq: target pool_workqueue
3542  *
3543  * If @pwq isn't freezing, set @pwq->max_active to the associated
3544  * workqueue's saved_max_active and activate delayed work items
3545  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3546  */
3547 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3548 {
3549 	struct workqueue_struct *wq = pwq->wq;
3550 	bool freezable = wq->flags & WQ_FREEZABLE;
3551 	unsigned long flags;
3552 
3553 	/* for @wq->saved_max_active */
3554 	lockdep_assert_held(&wq->mutex);
3555 
3556 	/* fast exit for non-freezable wqs */
3557 	if (!freezable && pwq->max_active == wq->saved_max_active)
3558 		return;
3559 
3560 	/* this function can be called during early boot w/ irq disabled */
3561 	spin_lock_irqsave(&pwq->pool->lock, flags);
3562 
3563 	/*
3564 	 * During [un]freezing, the caller is responsible for ensuring that
3565 	 * this function is called at least once after @workqueue_freezing
3566 	 * is updated and visible.
3567 	 */
3568 	if (!freezable || !workqueue_freezing) {
3569 		pwq->max_active = wq->saved_max_active;
3570 
3571 		while (!list_empty(&pwq->delayed_works) &&
3572 		       pwq->nr_active < pwq->max_active)
3573 			pwq_activate_first_delayed(pwq);
3574 
3575 		/*
3576 		 * Need to kick a worker after thawed or an unbound wq's
3577 		 * max_active is bumped.  It's a slow path.  Do it always.
3578 		 */
3579 		wake_up_worker(pwq->pool);
3580 	} else {
3581 		pwq->max_active = 0;
3582 	}
3583 
3584 	spin_unlock_irqrestore(&pwq->pool->lock, flags);
3585 }
3586 
3587 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3588 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3589 		     struct worker_pool *pool)
3590 {
3591 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3592 
3593 	memset(pwq, 0, sizeof(*pwq));
3594 
3595 	pwq->pool = pool;
3596 	pwq->wq = wq;
3597 	pwq->flush_color = -1;
3598 	pwq->refcnt = 1;
3599 	INIT_LIST_HEAD(&pwq->delayed_works);
3600 	INIT_LIST_HEAD(&pwq->pwqs_node);
3601 	INIT_LIST_HEAD(&pwq->mayday_node);
3602 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3603 }
3604 
3605 /* sync @pwq with the current state of its associated wq and link it */
3606 static void link_pwq(struct pool_workqueue *pwq)
3607 {
3608 	struct workqueue_struct *wq = pwq->wq;
3609 
3610 	lockdep_assert_held(&wq->mutex);
3611 
3612 	/* may be called multiple times, ignore if already linked */
3613 	if (!list_empty(&pwq->pwqs_node))
3614 		return;
3615 
3616 	/* set the matching work_color */
3617 	pwq->work_color = wq->work_color;
3618 
3619 	/* sync max_active to the current setting */
3620 	pwq_adjust_max_active(pwq);
3621 
3622 	/* link in @pwq */
3623 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3624 }
3625 
3626 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3627 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3628 					const struct workqueue_attrs *attrs)
3629 {
3630 	struct worker_pool *pool;
3631 	struct pool_workqueue *pwq;
3632 
3633 	lockdep_assert_held(&wq_pool_mutex);
3634 
3635 	pool = get_unbound_pool(attrs);
3636 	if (!pool)
3637 		return NULL;
3638 
3639 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3640 	if (!pwq) {
3641 		put_unbound_pool(pool);
3642 		return NULL;
3643 	}
3644 
3645 	init_pwq(pwq, wq, pool);
3646 	return pwq;
3647 }
3648 
3649 /**
3650  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3651  * @attrs: the wq_attrs of the default pwq of the target workqueue
3652  * @node: the target NUMA node
3653  * @cpu_going_down: if >= 0, the CPU to consider as offline
3654  * @cpumask: outarg, the resulting cpumask
3655  *
3656  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3657  * @cpu_going_down is >= 0, that cpu is considered offline during
3658  * calculation.  The result is stored in @cpumask.
3659  *
3660  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3661  * enabled and @node has online CPUs requested by @attrs, the returned
3662  * cpumask is the intersection of the possible CPUs of @node and
3663  * @attrs->cpumask.
3664  *
3665  * The caller is responsible for ensuring that the cpumask of @node stays
3666  * stable.
3667  *
3668  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3669  * %false if equal.
3670  */
3671 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3672 				 int cpu_going_down, cpumask_t *cpumask)
3673 {
3674 	if (!wq_numa_enabled || attrs->no_numa)
3675 		goto use_dfl;
3676 
3677 	/* does @node have any online CPUs @attrs wants? */
3678 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3679 	if (cpu_going_down >= 0)
3680 		cpumask_clear_cpu(cpu_going_down, cpumask);
3681 
3682 	if (cpumask_empty(cpumask))
3683 		goto use_dfl;
3684 
3685 	/* yeap, return possible CPUs in @node that @attrs wants */
3686 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3687 
3688 	if (cpumask_empty(cpumask)) {
3689 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3690 				"possible intersect\n");
3691 		return false;
3692 	}
3693 
3694 	return !cpumask_equal(cpumask, attrs->cpumask);
3695 
3696 use_dfl:
3697 	cpumask_copy(cpumask, attrs->cpumask);
3698 	return false;
3699 }
3700 
3701 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3702 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3703 						   int node,
3704 						   struct pool_workqueue *pwq)
3705 {
3706 	struct pool_workqueue *old_pwq;
3707 
3708 	lockdep_assert_held(&wq_pool_mutex);
3709 	lockdep_assert_held(&wq->mutex);
3710 
3711 	/* link_pwq() can handle duplicate calls */
3712 	link_pwq(pwq);
3713 
3714 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3715 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3716 	return old_pwq;
3717 }
3718 
3719 /* context to store the prepared attrs & pwqs before applying */
3720 struct apply_wqattrs_ctx {
3721 	struct workqueue_struct	*wq;		/* target workqueue */
3722 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3723 	struct list_head	list;		/* queued for batching commit */
3724 	struct pool_workqueue	*dfl_pwq;
3725 	struct pool_workqueue	*pwq_tbl[];
3726 };
3727 
3728 /* free the resources after success or abort */
3729 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3730 {
3731 	if (ctx) {
3732 		int node;
3733 
3734 		for_each_node(node)
3735 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3736 		put_pwq_unlocked(ctx->dfl_pwq);
3737 
3738 		free_workqueue_attrs(ctx->attrs);
3739 
3740 		kfree(ctx);
3741 	}
3742 }
3743 
3744 /* allocate the attrs and pwqs for later installation */
3745 static struct apply_wqattrs_ctx *
3746 apply_wqattrs_prepare(struct workqueue_struct *wq,
3747 		      const struct workqueue_attrs *attrs)
3748 {
3749 	struct apply_wqattrs_ctx *ctx;
3750 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3751 	int node;
3752 
3753 	lockdep_assert_held(&wq_pool_mutex);
3754 
3755 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3756 
3757 	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3758 	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3759 	if (!ctx || !new_attrs || !tmp_attrs)
3760 		goto out_free;
3761 
3762 	/*
3763 	 * Calculate the attrs of the default pwq.
3764 	 * If the user configured cpumask doesn't overlap with the
3765 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3766 	 */
3767 	copy_workqueue_attrs(new_attrs, attrs);
3768 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3769 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3770 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3771 
3772 	/*
3773 	 * We may create multiple pwqs with differing cpumasks.  Make a
3774 	 * copy of @new_attrs which will be modified and used to obtain
3775 	 * pools.
3776 	 */
3777 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3778 
3779 	/*
3780 	 * If something goes wrong during CPU up/down, we'll fall back to
3781 	 * the default pwq covering whole @attrs->cpumask.  Always create
3782 	 * it even if we don't use it immediately.
3783 	 */
3784 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3785 	if (!ctx->dfl_pwq)
3786 		goto out_free;
3787 
3788 	for_each_node(node) {
3789 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3790 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3791 			if (!ctx->pwq_tbl[node])
3792 				goto out_free;
3793 		} else {
3794 			ctx->dfl_pwq->refcnt++;
3795 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3796 		}
3797 	}
3798 
3799 	/* save the user configured attrs and sanitize it. */
3800 	copy_workqueue_attrs(new_attrs, attrs);
3801 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3802 	ctx->attrs = new_attrs;
3803 
3804 	ctx->wq = wq;
3805 	free_workqueue_attrs(tmp_attrs);
3806 	return ctx;
3807 
3808 out_free:
3809 	free_workqueue_attrs(tmp_attrs);
3810 	free_workqueue_attrs(new_attrs);
3811 	apply_wqattrs_cleanup(ctx);
3812 	return NULL;
3813 }
3814 
3815 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3816 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3817 {
3818 	int node;
3819 
3820 	/* all pwqs have been created successfully, let's install'em */
3821 	mutex_lock(&ctx->wq->mutex);
3822 
3823 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3824 
3825 	/* save the previous pwq and install the new one */
3826 	for_each_node(node)
3827 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3828 							  ctx->pwq_tbl[node]);
3829 
3830 	/* @dfl_pwq might not have been used, ensure it's linked */
3831 	link_pwq(ctx->dfl_pwq);
3832 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3833 
3834 	mutex_unlock(&ctx->wq->mutex);
3835 }
3836 
3837 static void apply_wqattrs_lock(void)
3838 {
3839 	/* CPUs should stay stable across pwq creations and installations */
3840 	get_online_cpus();
3841 	mutex_lock(&wq_pool_mutex);
3842 }
3843 
3844 static void apply_wqattrs_unlock(void)
3845 {
3846 	mutex_unlock(&wq_pool_mutex);
3847 	put_online_cpus();
3848 }
3849 
3850 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3851 					const struct workqueue_attrs *attrs)
3852 {
3853 	struct apply_wqattrs_ctx *ctx;
3854 
3855 	/* only unbound workqueues can change attributes */
3856 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3857 		return -EINVAL;
3858 
3859 	/* creating multiple pwqs breaks ordering guarantee */
3860 	if (!list_empty(&wq->pwqs)) {
3861 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3862 			return -EINVAL;
3863 
3864 		wq->flags &= ~__WQ_ORDERED;
3865 	}
3866 
3867 	ctx = apply_wqattrs_prepare(wq, attrs);
3868 	if (!ctx)
3869 		return -ENOMEM;
3870 
3871 	/* the ctx has been prepared successfully, let's commit it */
3872 	apply_wqattrs_commit(ctx);
3873 	apply_wqattrs_cleanup(ctx);
3874 
3875 	return 0;
3876 }
3877 
3878 /**
3879  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3880  * @wq: the target workqueue
3881  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3882  *
3883  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3884  * machines, this function maps a separate pwq to each NUMA node with
3885  * possibles CPUs in @attrs->cpumask so that work items are affine to the
3886  * NUMA node it was issued on.  Older pwqs are released as in-flight work
3887  * items finish.  Note that a work item which repeatedly requeues itself
3888  * back-to-back will stay on its current pwq.
3889  *
3890  * Performs GFP_KERNEL allocations.
3891  *
3892  * Return: 0 on success and -errno on failure.
3893  */
3894 int apply_workqueue_attrs(struct workqueue_struct *wq,
3895 			  const struct workqueue_attrs *attrs)
3896 {
3897 	int ret;
3898 
3899 	apply_wqattrs_lock();
3900 	ret = apply_workqueue_attrs_locked(wq, attrs);
3901 	apply_wqattrs_unlock();
3902 
3903 	return ret;
3904 }
3905 EXPORT_SYMBOL_GPL(apply_workqueue_attrs);
3906 
3907 /**
3908  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3909  * @wq: the target workqueue
3910  * @cpu: the CPU coming up or going down
3911  * @online: whether @cpu is coming up or going down
3912  *
3913  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3914  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3915  * @wq accordingly.
3916  *
3917  * If NUMA affinity can't be adjusted due to memory allocation failure, it
3918  * falls back to @wq->dfl_pwq which may not be optimal but is always
3919  * correct.
3920  *
3921  * Note that when the last allowed CPU of a NUMA node goes offline for a
3922  * workqueue with a cpumask spanning multiple nodes, the workers which were
3923  * already executing the work items for the workqueue will lose their CPU
3924  * affinity and may execute on any CPU.  This is similar to how per-cpu
3925  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3926  * affinity, it's the user's responsibility to flush the work item from
3927  * CPU_DOWN_PREPARE.
3928  */
3929 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3930 				   bool online)
3931 {
3932 	int node = cpu_to_node(cpu);
3933 	int cpu_off = online ? -1 : cpu;
3934 	struct pool_workqueue *old_pwq = NULL, *pwq;
3935 	struct workqueue_attrs *target_attrs;
3936 	cpumask_t *cpumask;
3937 
3938 	lockdep_assert_held(&wq_pool_mutex);
3939 
3940 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3941 	    wq->unbound_attrs->no_numa)
3942 		return;
3943 
3944 	/*
3945 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3946 	 * Let's use a preallocated one.  The following buf is protected by
3947 	 * CPU hotplug exclusion.
3948 	 */
3949 	target_attrs = wq_update_unbound_numa_attrs_buf;
3950 	cpumask = target_attrs->cpumask;
3951 
3952 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3953 	pwq = unbound_pwq_by_node(wq, node);
3954 
3955 	/*
3956 	 * Let's determine what needs to be done.  If the target cpumask is
3957 	 * different from the default pwq's, we need to compare it to @pwq's
3958 	 * and create a new one if they don't match.  If the target cpumask
3959 	 * equals the default pwq's, the default pwq should be used.
3960 	 */
3961 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3962 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3963 			return;
3964 	} else {
3965 		goto use_dfl_pwq;
3966 	}
3967 
3968 	/* create a new pwq */
3969 	pwq = alloc_unbound_pwq(wq, target_attrs);
3970 	if (!pwq) {
3971 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3972 			wq->name);
3973 		goto use_dfl_pwq;
3974 	}
3975 
3976 	/* Install the new pwq. */
3977 	mutex_lock(&wq->mutex);
3978 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3979 	goto out_unlock;
3980 
3981 use_dfl_pwq:
3982 	mutex_lock(&wq->mutex);
3983 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
3984 	get_pwq(wq->dfl_pwq);
3985 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3986 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3987 out_unlock:
3988 	mutex_unlock(&wq->mutex);
3989 	put_pwq_unlocked(old_pwq);
3990 }
3991 
3992 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3993 {
3994 	bool highpri = wq->flags & WQ_HIGHPRI;
3995 	int cpu, ret;
3996 
3997 	if (!(wq->flags & WQ_UNBOUND)) {
3998 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3999 		if (!wq->cpu_pwqs)
4000 			return -ENOMEM;
4001 
4002 		for_each_possible_cpu(cpu) {
4003 			struct pool_workqueue *pwq =
4004 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4005 			struct worker_pool *cpu_pools =
4006 				per_cpu(cpu_worker_pools, cpu);
4007 
4008 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4009 
4010 			mutex_lock(&wq->mutex);
4011 			link_pwq(pwq);
4012 			mutex_unlock(&wq->mutex);
4013 		}
4014 		return 0;
4015 	} else if (wq->flags & __WQ_ORDERED) {
4016 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4017 		/* there should only be single pwq for ordering guarantee */
4018 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4019 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4020 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4021 		return ret;
4022 	} else {
4023 		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4024 	}
4025 }
4026 
4027 static int wq_clamp_max_active(int max_active, unsigned int flags,
4028 			       const char *name)
4029 {
4030 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4031 
4032 	if (max_active < 1 || max_active > lim)
4033 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4034 			max_active, name, 1, lim);
4035 
4036 	return clamp_val(max_active, 1, lim);
4037 }
4038 
4039 /*
4040  * Workqueues which may be used during memory reclaim should have a rescuer
4041  * to guarantee forward progress.
4042  */
4043 static int init_rescuer(struct workqueue_struct *wq)
4044 {
4045 	struct worker *rescuer;
4046 	int ret;
4047 
4048 	if (!(wq->flags & WQ_MEM_RECLAIM))
4049 		return 0;
4050 
4051 	rescuer = alloc_worker(NUMA_NO_NODE);
4052 	if (!rescuer)
4053 		return -ENOMEM;
4054 
4055 	rescuer->rescue_wq = wq;
4056 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4057 	ret = PTR_ERR_OR_ZERO(rescuer->task);
4058 	if (ret) {
4059 		kfree(rescuer);
4060 		return ret;
4061 	}
4062 
4063 	wq->rescuer = rescuer;
4064 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4065 	wake_up_process(rescuer->task);
4066 
4067 	return 0;
4068 }
4069 
4070 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4071 					       unsigned int flags,
4072 					       int max_active,
4073 					       struct lock_class_key *key,
4074 					       const char *lock_name, ...)
4075 {
4076 	size_t tbl_size = 0;
4077 	va_list args;
4078 	struct workqueue_struct *wq;
4079 	struct pool_workqueue *pwq;
4080 
4081 	/*
4082 	 * Unbound && max_active == 1 used to imply ordered, which is no
4083 	 * longer the case on NUMA machines due to per-node pools.  While
4084 	 * alloc_ordered_workqueue() is the right way to create an ordered
4085 	 * workqueue, keep the previous behavior to avoid subtle breakages
4086 	 * on NUMA.
4087 	 */
4088 	if ((flags & WQ_UNBOUND) && max_active == 1)
4089 		flags |= __WQ_ORDERED;
4090 
4091 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4092 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4093 		flags |= WQ_UNBOUND;
4094 
4095 	/* allocate wq and format name */
4096 	if (flags & WQ_UNBOUND)
4097 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4098 
4099 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4100 	if (!wq)
4101 		return NULL;
4102 
4103 	if (flags & WQ_UNBOUND) {
4104 		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4105 		if (!wq->unbound_attrs)
4106 			goto err_free_wq;
4107 	}
4108 
4109 	va_start(args, lock_name);
4110 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4111 	va_end(args);
4112 
4113 	max_active = max_active ?: WQ_DFL_ACTIVE;
4114 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4115 
4116 	/* init wq */
4117 	wq->flags = flags;
4118 	wq->saved_max_active = max_active;
4119 	mutex_init(&wq->mutex);
4120 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4121 	INIT_LIST_HEAD(&wq->pwqs);
4122 	INIT_LIST_HEAD(&wq->flusher_queue);
4123 	INIT_LIST_HEAD(&wq->flusher_overflow);
4124 	INIT_LIST_HEAD(&wq->maydays);
4125 
4126 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4127 	INIT_LIST_HEAD(&wq->list);
4128 
4129 	if (alloc_and_link_pwqs(wq) < 0)
4130 		goto err_free_wq;
4131 
4132 	if (wq_online && init_rescuer(wq) < 0)
4133 		goto err_destroy;
4134 
4135 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4136 		goto err_destroy;
4137 
4138 	/*
4139 	 * wq_pool_mutex protects global freeze state and workqueues list.
4140 	 * Grab it, adjust max_active and add the new @wq to workqueues
4141 	 * list.
4142 	 */
4143 	mutex_lock(&wq_pool_mutex);
4144 
4145 	mutex_lock(&wq->mutex);
4146 	for_each_pwq(pwq, wq)
4147 		pwq_adjust_max_active(pwq);
4148 	mutex_unlock(&wq->mutex);
4149 
4150 	list_add_tail_rcu(&wq->list, &workqueues);
4151 
4152 	mutex_unlock(&wq_pool_mutex);
4153 
4154 	return wq;
4155 
4156 err_free_wq:
4157 	free_workqueue_attrs(wq->unbound_attrs);
4158 	kfree(wq);
4159 	return NULL;
4160 err_destroy:
4161 	destroy_workqueue(wq);
4162 	return NULL;
4163 }
4164 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4165 
4166 /**
4167  * destroy_workqueue - safely terminate a workqueue
4168  * @wq: target workqueue
4169  *
4170  * Safely destroy a workqueue. All work currently pending will be done first.
4171  */
4172 void destroy_workqueue(struct workqueue_struct *wq)
4173 {
4174 	struct pool_workqueue *pwq;
4175 	int node;
4176 
4177 	/* drain it before proceeding with destruction */
4178 	drain_workqueue(wq);
4179 
4180 	/* sanity checks */
4181 	mutex_lock(&wq->mutex);
4182 	for_each_pwq(pwq, wq) {
4183 		int i;
4184 
4185 		for (i = 0; i < WORK_NR_COLORS; i++) {
4186 			if (WARN_ON(pwq->nr_in_flight[i])) {
4187 				mutex_unlock(&wq->mutex);
4188 				show_workqueue_state();
4189 				return;
4190 			}
4191 		}
4192 
4193 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4194 		    WARN_ON(pwq->nr_active) ||
4195 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4196 			mutex_unlock(&wq->mutex);
4197 			show_workqueue_state();
4198 			return;
4199 		}
4200 	}
4201 	mutex_unlock(&wq->mutex);
4202 
4203 	/*
4204 	 * wq list is used to freeze wq, remove from list after
4205 	 * flushing is complete in case freeze races us.
4206 	 */
4207 	mutex_lock(&wq_pool_mutex);
4208 	list_del_rcu(&wq->list);
4209 	mutex_unlock(&wq_pool_mutex);
4210 
4211 	workqueue_sysfs_unregister(wq);
4212 
4213 	if (wq->rescuer)
4214 		kthread_stop(wq->rescuer->task);
4215 
4216 	if (!(wq->flags & WQ_UNBOUND)) {
4217 		/*
4218 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4219 		 * schedule RCU free.
4220 		 */
4221 		call_rcu(&wq->rcu, rcu_free_wq);
4222 	} else {
4223 		/*
4224 		 * We're the sole accessor of @wq at this point.  Directly
4225 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4226 		 * @wq will be freed when the last pwq is released.
4227 		 */
4228 		for_each_node(node) {
4229 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4230 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4231 			put_pwq_unlocked(pwq);
4232 		}
4233 
4234 		/*
4235 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4236 		 * put.  Don't access it afterwards.
4237 		 */
4238 		pwq = wq->dfl_pwq;
4239 		wq->dfl_pwq = NULL;
4240 		put_pwq_unlocked(pwq);
4241 	}
4242 }
4243 EXPORT_SYMBOL_GPL(destroy_workqueue);
4244 
4245 /**
4246  * workqueue_set_max_active - adjust max_active of a workqueue
4247  * @wq: target workqueue
4248  * @max_active: new max_active value.
4249  *
4250  * Set max_active of @wq to @max_active.
4251  *
4252  * CONTEXT:
4253  * Don't call from IRQ context.
4254  */
4255 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4256 {
4257 	struct pool_workqueue *pwq;
4258 
4259 	/* disallow meddling with max_active for ordered workqueues */
4260 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4261 		return;
4262 
4263 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4264 
4265 	mutex_lock(&wq->mutex);
4266 
4267 	wq->flags &= ~__WQ_ORDERED;
4268 	wq->saved_max_active = max_active;
4269 
4270 	for_each_pwq(pwq, wq)
4271 		pwq_adjust_max_active(pwq);
4272 
4273 	mutex_unlock(&wq->mutex);
4274 }
4275 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4276 
4277 /**
4278  * current_work - retrieve %current task's work struct
4279  *
4280  * Determine if %current task is a workqueue worker and what it's working on.
4281  * Useful to find out the context that the %current task is running in.
4282  *
4283  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4284  */
4285 struct work_struct *current_work(void)
4286 {
4287 	struct worker *worker = current_wq_worker();
4288 
4289 	return worker ? worker->current_work : NULL;
4290 }
4291 EXPORT_SYMBOL(current_work);
4292 
4293 /**
4294  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4295  *
4296  * Determine whether %current is a workqueue rescuer.  Can be used from
4297  * work functions to determine whether it's being run off the rescuer task.
4298  *
4299  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4300  */
4301 bool current_is_workqueue_rescuer(void)
4302 {
4303 	struct worker *worker = current_wq_worker();
4304 
4305 	return worker && worker->rescue_wq;
4306 }
4307 
4308 /**
4309  * workqueue_congested - test whether a workqueue is congested
4310  * @cpu: CPU in question
4311  * @wq: target workqueue
4312  *
4313  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4314  * no synchronization around this function and the test result is
4315  * unreliable and only useful as advisory hints or for debugging.
4316  *
4317  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4318  * Note that both per-cpu and unbound workqueues may be associated with
4319  * multiple pool_workqueues which have separate congested states.  A
4320  * workqueue being congested on one CPU doesn't mean the workqueue is also
4321  * contested on other CPUs / NUMA nodes.
4322  *
4323  * Return:
4324  * %true if congested, %false otherwise.
4325  */
4326 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4327 {
4328 	struct pool_workqueue *pwq;
4329 	bool ret;
4330 
4331 	rcu_read_lock_sched();
4332 
4333 	if (cpu == WORK_CPU_UNBOUND)
4334 		cpu = smp_processor_id();
4335 
4336 	if (!(wq->flags & WQ_UNBOUND))
4337 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4338 	else
4339 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4340 
4341 	ret = !list_empty(&pwq->delayed_works);
4342 	rcu_read_unlock_sched();
4343 
4344 	return ret;
4345 }
4346 EXPORT_SYMBOL_GPL(workqueue_congested);
4347 
4348 /**
4349  * work_busy - test whether a work is currently pending or running
4350  * @work: the work to be tested
4351  *
4352  * Test whether @work is currently pending or running.  There is no
4353  * synchronization around this function and the test result is
4354  * unreliable and only useful as advisory hints or for debugging.
4355  *
4356  * Return:
4357  * OR'd bitmask of WORK_BUSY_* bits.
4358  */
4359 unsigned int work_busy(struct work_struct *work)
4360 {
4361 	struct worker_pool *pool;
4362 	unsigned long flags;
4363 	unsigned int ret = 0;
4364 
4365 	if (work_pending(work))
4366 		ret |= WORK_BUSY_PENDING;
4367 
4368 	local_irq_save(flags);
4369 	pool = get_work_pool(work);
4370 	if (pool) {
4371 		spin_lock(&pool->lock);
4372 		if (find_worker_executing_work(pool, work))
4373 			ret |= WORK_BUSY_RUNNING;
4374 		spin_unlock(&pool->lock);
4375 	}
4376 	local_irq_restore(flags);
4377 
4378 	return ret;
4379 }
4380 EXPORT_SYMBOL_GPL(work_busy);
4381 
4382 /**
4383  * set_worker_desc - set description for the current work item
4384  * @fmt: printf-style format string
4385  * @...: arguments for the format string
4386  *
4387  * This function can be called by a running work function to describe what
4388  * the work item is about.  If the worker task gets dumped, this
4389  * information will be printed out together to help debugging.  The
4390  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4391  */
4392 void set_worker_desc(const char *fmt, ...)
4393 {
4394 	struct worker *worker = current_wq_worker();
4395 	va_list args;
4396 
4397 	if (worker) {
4398 		va_start(args, fmt);
4399 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4400 		va_end(args);
4401 	}
4402 }
4403 EXPORT_SYMBOL_GPL(set_worker_desc);
4404 
4405 /**
4406  * print_worker_info - print out worker information and description
4407  * @log_lvl: the log level to use when printing
4408  * @task: target task
4409  *
4410  * If @task is a worker and currently executing a work item, print out the
4411  * name of the workqueue being serviced and worker description set with
4412  * set_worker_desc() by the currently executing work item.
4413  *
4414  * This function can be safely called on any task as long as the
4415  * task_struct itself is accessible.  While safe, this function isn't
4416  * synchronized and may print out mixups or garbages of limited length.
4417  */
4418 void print_worker_info(const char *log_lvl, struct task_struct *task)
4419 {
4420 	work_func_t *fn = NULL;
4421 	char name[WQ_NAME_LEN] = { };
4422 	char desc[WORKER_DESC_LEN] = { };
4423 	struct pool_workqueue *pwq = NULL;
4424 	struct workqueue_struct *wq = NULL;
4425 	struct worker *worker;
4426 
4427 	if (!(task->flags & PF_WQ_WORKER))
4428 		return;
4429 
4430 	/*
4431 	 * This function is called without any synchronization and @task
4432 	 * could be in any state.  Be careful with dereferences.
4433 	 */
4434 	worker = kthread_probe_data(task);
4435 
4436 	/*
4437 	 * Carefully copy the associated workqueue's workfn, name and desc.
4438 	 * Keep the original last '\0' in case the original is garbage.
4439 	 */
4440 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4441 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4442 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4443 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4444 	probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4445 
4446 	if (fn || name[0] || desc[0]) {
4447 		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4448 		if (strcmp(name, desc))
4449 			pr_cont(" (%s)", desc);
4450 		pr_cont("\n");
4451 	}
4452 }
4453 
4454 static void pr_cont_pool_info(struct worker_pool *pool)
4455 {
4456 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4457 	if (pool->node != NUMA_NO_NODE)
4458 		pr_cont(" node=%d", pool->node);
4459 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4460 }
4461 
4462 static void pr_cont_work(bool comma, struct work_struct *work)
4463 {
4464 	if (work->func == wq_barrier_func) {
4465 		struct wq_barrier *barr;
4466 
4467 		barr = container_of(work, struct wq_barrier, work);
4468 
4469 		pr_cont("%s BAR(%d)", comma ? "," : "",
4470 			task_pid_nr(barr->task));
4471 	} else {
4472 		pr_cont("%s %pf", comma ? "," : "", work->func);
4473 	}
4474 }
4475 
4476 static void show_pwq(struct pool_workqueue *pwq)
4477 {
4478 	struct worker_pool *pool = pwq->pool;
4479 	struct work_struct *work;
4480 	struct worker *worker;
4481 	bool has_in_flight = false, has_pending = false;
4482 	int bkt;
4483 
4484 	pr_info("  pwq %d:", pool->id);
4485 	pr_cont_pool_info(pool);
4486 
4487 	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4488 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4489 
4490 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4491 		if (worker->current_pwq == pwq) {
4492 			has_in_flight = true;
4493 			break;
4494 		}
4495 	}
4496 	if (has_in_flight) {
4497 		bool comma = false;
4498 
4499 		pr_info("    in-flight:");
4500 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4501 			if (worker->current_pwq != pwq)
4502 				continue;
4503 
4504 			pr_cont("%s %d%s:%pf", comma ? "," : "",
4505 				task_pid_nr(worker->task),
4506 				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4507 				worker->current_func);
4508 			list_for_each_entry(work, &worker->scheduled, entry)
4509 				pr_cont_work(false, work);
4510 			comma = true;
4511 		}
4512 		pr_cont("\n");
4513 	}
4514 
4515 	list_for_each_entry(work, &pool->worklist, entry) {
4516 		if (get_work_pwq(work) == pwq) {
4517 			has_pending = true;
4518 			break;
4519 		}
4520 	}
4521 	if (has_pending) {
4522 		bool comma = false;
4523 
4524 		pr_info("    pending:");
4525 		list_for_each_entry(work, &pool->worklist, entry) {
4526 			if (get_work_pwq(work) != pwq)
4527 				continue;
4528 
4529 			pr_cont_work(comma, work);
4530 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4531 		}
4532 		pr_cont("\n");
4533 	}
4534 
4535 	if (!list_empty(&pwq->delayed_works)) {
4536 		bool comma = false;
4537 
4538 		pr_info("    delayed:");
4539 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4540 			pr_cont_work(comma, work);
4541 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4542 		}
4543 		pr_cont("\n");
4544 	}
4545 }
4546 
4547 /**
4548  * show_workqueue_state - dump workqueue state
4549  *
4550  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4551  * all busy workqueues and pools.
4552  */
4553 void show_workqueue_state(void)
4554 {
4555 	struct workqueue_struct *wq;
4556 	struct worker_pool *pool;
4557 	unsigned long flags;
4558 	int pi;
4559 
4560 	rcu_read_lock_sched();
4561 
4562 	pr_info("Showing busy workqueues and worker pools:\n");
4563 
4564 	list_for_each_entry_rcu(wq, &workqueues, list) {
4565 		struct pool_workqueue *pwq;
4566 		bool idle = true;
4567 
4568 		for_each_pwq(pwq, wq) {
4569 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4570 				idle = false;
4571 				break;
4572 			}
4573 		}
4574 		if (idle)
4575 			continue;
4576 
4577 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4578 
4579 		for_each_pwq(pwq, wq) {
4580 			spin_lock_irqsave(&pwq->pool->lock, flags);
4581 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4582 				show_pwq(pwq);
4583 			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4584 			/*
4585 			 * We could be printing a lot from atomic context, e.g.
4586 			 * sysrq-t -> show_workqueue_state(). Avoid triggering
4587 			 * hard lockup.
4588 			 */
4589 			touch_nmi_watchdog();
4590 		}
4591 	}
4592 
4593 	for_each_pool(pool, pi) {
4594 		struct worker *worker;
4595 		bool first = true;
4596 
4597 		spin_lock_irqsave(&pool->lock, flags);
4598 		if (pool->nr_workers == pool->nr_idle)
4599 			goto next_pool;
4600 
4601 		pr_info("pool %d:", pool->id);
4602 		pr_cont_pool_info(pool);
4603 		pr_cont(" hung=%us workers=%d",
4604 			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4605 			pool->nr_workers);
4606 		if (pool->manager)
4607 			pr_cont(" manager: %d",
4608 				task_pid_nr(pool->manager->task));
4609 		list_for_each_entry(worker, &pool->idle_list, entry) {
4610 			pr_cont(" %s%d", first ? "idle: " : "",
4611 				task_pid_nr(worker->task));
4612 			first = false;
4613 		}
4614 		pr_cont("\n");
4615 	next_pool:
4616 		spin_unlock_irqrestore(&pool->lock, flags);
4617 		/*
4618 		 * We could be printing a lot from atomic context, e.g.
4619 		 * sysrq-t -> show_workqueue_state(). Avoid triggering
4620 		 * hard lockup.
4621 		 */
4622 		touch_nmi_watchdog();
4623 	}
4624 
4625 	rcu_read_unlock_sched();
4626 }
4627 
4628 /* used to show worker information through /proc/PID/{comm,stat,status} */
4629 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4630 {
4631 	int off;
4632 
4633 	/* always show the actual comm */
4634 	off = strscpy(buf, task->comm, size);
4635 	if (off < 0)
4636 		return;
4637 
4638 	/* stabilize PF_WQ_WORKER and worker pool association */
4639 	mutex_lock(&wq_pool_attach_mutex);
4640 
4641 	if (task->flags & PF_WQ_WORKER) {
4642 		struct worker *worker = kthread_data(task);
4643 		struct worker_pool *pool = worker->pool;
4644 
4645 		if (pool) {
4646 			spin_lock_irq(&pool->lock);
4647 			/*
4648 			 * ->desc tracks information (wq name or
4649 			 * set_worker_desc()) for the latest execution.  If
4650 			 * current, prepend '+', otherwise '-'.
4651 			 */
4652 			if (worker->desc[0] != '\0') {
4653 				if (worker->current_work)
4654 					scnprintf(buf + off, size - off, "+%s",
4655 						  worker->desc);
4656 				else
4657 					scnprintf(buf + off, size - off, "-%s",
4658 						  worker->desc);
4659 			}
4660 			spin_unlock_irq(&pool->lock);
4661 		}
4662 	}
4663 
4664 	mutex_unlock(&wq_pool_attach_mutex);
4665 }
4666 
4667 #ifdef CONFIG_SMP
4668 
4669 /*
4670  * CPU hotplug.
4671  *
4672  * There are two challenges in supporting CPU hotplug.  Firstly, there
4673  * are a lot of assumptions on strong associations among work, pwq and
4674  * pool which make migrating pending and scheduled works very
4675  * difficult to implement without impacting hot paths.  Secondly,
4676  * worker pools serve mix of short, long and very long running works making
4677  * blocked draining impractical.
4678  *
4679  * This is solved by allowing the pools to be disassociated from the CPU
4680  * running as an unbound one and allowing it to be reattached later if the
4681  * cpu comes back online.
4682  */
4683 
4684 static void unbind_workers(int cpu)
4685 {
4686 	struct worker_pool *pool;
4687 	struct worker *worker;
4688 
4689 	for_each_cpu_worker_pool(pool, cpu) {
4690 		mutex_lock(&wq_pool_attach_mutex);
4691 		spin_lock_irq(&pool->lock);
4692 
4693 		/*
4694 		 * We've blocked all attach/detach operations. Make all workers
4695 		 * unbound and set DISASSOCIATED.  Before this, all workers
4696 		 * except for the ones which are still executing works from
4697 		 * before the last CPU down must be on the cpu.  After
4698 		 * this, they may become diasporas.
4699 		 */
4700 		for_each_pool_worker(worker, pool)
4701 			worker->flags |= WORKER_UNBOUND;
4702 
4703 		pool->flags |= POOL_DISASSOCIATED;
4704 
4705 		spin_unlock_irq(&pool->lock);
4706 		mutex_unlock(&wq_pool_attach_mutex);
4707 
4708 		/*
4709 		 * Call schedule() so that we cross rq->lock and thus can
4710 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4711 		 * This is necessary as scheduler callbacks may be invoked
4712 		 * from other cpus.
4713 		 */
4714 		schedule();
4715 
4716 		/*
4717 		 * Sched callbacks are disabled now.  Zap nr_running.
4718 		 * After this, nr_running stays zero and need_more_worker()
4719 		 * and keep_working() are always true as long as the
4720 		 * worklist is not empty.  This pool now behaves as an
4721 		 * unbound (in terms of concurrency management) pool which
4722 		 * are served by workers tied to the pool.
4723 		 */
4724 		atomic_set(&pool->nr_running, 0);
4725 
4726 		/*
4727 		 * With concurrency management just turned off, a busy
4728 		 * worker blocking could lead to lengthy stalls.  Kick off
4729 		 * unbound chain execution of currently pending work items.
4730 		 */
4731 		spin_lock_irq(&pool->lock);
4732 		wake_up_worker(pool);
4733 		spin_unlock_irq(&pool->lock);
4734 	}
4735 }
4736 
4737 /**
4738  * rebind_workers - rebind all workers of a pool to the associated CPU
4739  * @pool: pool of interest
4740  *
4741  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4742  */
4743 static void rebind_workers(struct worker_pool *pool)
4744 {
4745 	struct worker *worker;
4746 
4747 	lockdep_assert_held(&wq_pool_attach_mutex);
4748 
4749 	/*
4750 	 * Restore CPU affinity of all workers.  As all idle workers should
4751 	 * be on the run-queue of the associated CPU before any local
4752 	 * wake-ups for concurrency management happen, restore CPU affinity
4753 	 * of all workers first and then clear UNBOUND.  As we're called
4754 	 * from CPU_ONLINE, the following shouldn't fail.
4755 	 */
4756 	for_each_pool_worker(worker, pool)
4757 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4758 						  pool->attrs->cpumask) < 0);
4759 
4760 	spin_lock_irq(&pool->lock);
4761 
4762 	pool->flags &= ~POOL_DISASSOCIATED;
4763 
4764 	for_each_pool_worker(worker, pool) {
4765 		unsigned int worker_flags = worker->flags;
4766 
4767 		/*
4768 		 * A bound idle worker should actually be on the runqueue
4769 		 * of the associated CPU for local wake-ups targeting it to
4770 		 * work.  Kick all idle workers so that they migrate to the
4771 		 * associated CPU.  Doing this in the same loop as
4772 		 * replacing UNBOUND with REBOUND is safe as no worker will
4773 		 * be bound before @pool->lock is released.
4774 		 */
4775 		if (worker_flags & WORKER_IDLE)
4776 			wake_up_process(worker->task);
4777 
4778 		/*
4779 		 * We want to clear UNBOUND but can't directly call
4780 		 * worker_clr_flags() or adjust nr_running.  Atomically
4781 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4782 		 * @worker will clear REBOUND using worker_clr_flags() when
4783 		 * it initiates the next execution cycle thus restoring
4784 		 * concurrency management.  Note that when or whether
4785 		 * @worker clears REBOUND doesn't affect correctness.
4786 		 *
4787 		 * WRITE_ONCE() is necessary because @worker->flags may be
4788 		 * tested without holding any lock in
4789 		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4790 		 * fail incorrectly leading to premature concurrency
4791 		 * management operations.
4792 		 */
4793 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4794 		worker_flags |= WORKER_REBOUND;
4795 		worker_flags &= ~WORKER_UNBOUND;
4796 		WRITE_ONCE(worker->flags, worker_flags);
4797 	}
4798 
4799 	spin_unlock_irq(&pool->lock);
4800 }
4801 
4802 /**
4803  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4804  * @pool: unbound pool of interest
4805  * @cpu: the CPU which is coming up
4806  *
4807  * An unbound pool may end up with a cpumask which doesn't have any online
4808  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4809  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4810  * online CPU before, cpus_allowed of all its workers should be restored.
4811  */
4812 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4813 {
4814 	static cpumask_t cpumask;
4815 	struct worker *worker;
4816 
4817 	lockdep_assert_held(&wq_pool_attach_mutex);
4818 
4819 	/* is @cpu allowed for @pool? */
4820 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4821 		return;
4822 
4823 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4824 
4825 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4826 	for_each_pool_worker(worker, pool)
4827 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4828 }
4829 
4830 int workqueue_prepare_cpu(unsigned int cpu)
4831 {
4832 	struct worker_pool *pool;
4833 
4834 	for_each_cpu_worker_pool(pool, cpu) {
4835 		if (pool->nr_workers)
4836 			continue;
4837 		if (!create_worker(pool))
4838 			return -ENOMEM;
4839 	}
4840 	return 0;
4841 }
4842 
4843 int workqueue_online_cpu(unsigned int cpu)
4844 {
4845 	struct worker_pool *pool;
4846 	struct workqueue_struct *wq;
4847 	int pi;
4848 
4849 	mutex_lock(&wq_pool_mutex);
4850 
4851 	for_each_pool(pool, pi) {
4852 		mutex_lock(&wq_pool_attach_mutex);
4853 
4854 		if (pool->cpu == cpu)
4855 			rebind_workers(pool);
4856 		else if (pool->cpu < 0)
4857 			restore_unbound_workers_cpumask(pool, cpu);
4858 
4859 		mutex_unlock(&wq_pool_attach_mutex);
4860 	}
4861 
4862 	/* update NUMA affinity of unbound workqueues */
4863 	list_for_each_entry(wq, &workqueues, list)
4864 		wq_update_unbound_numa(wq, cpu, true);
4865 
4866 	mutex_unlock(&wq_pool_mutex);
4867 	return 0;
4868 }
4869 
4870 int workqueue_offline_cpu(unsigned int cpu)
4871 {
4872 	struct workqueue_struct *wq;
4873 
4874 	/* unbinding per-cpu workers should happen on the local CPU */
4875 	if (WARN_ON(cpu != smp_processor_id()))
4876 		return -1;
4877 
4878 	unbind_workers(cpu);
4879 
4880 	/* update NUMA affinity of unbound workqueues */
4881 	mutex_lock(&wq_pool_mutex);
4882 	list_for_each_entry(wq, &workqueues, list)
4883 		wq_update_unbound_numa(wq, cpu, false);
4884 	mutex_unlock(&wq_pool_mutex);
4885 
4886 	return 0;
4887 }
4888 
4889 struct work_for_cpu {
4890 	struct work_struct work;
4891 	long (*fn)(void *);
4892 	void *arg;
4893 	long ret;
4894 };
4895 
4896 static void work_for_cpu_fn(struct work_struct *work)
4897 {
4898 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4899 
4900 	wfc->ret = wfc->fn(wfc->arg);
4901 }
4902 
4903 /**
4904  * work_on_cpu - run a function in thread context on a particular cpu
4905  * @cpu: the cpu to run on
4906  * @fn: the function to run
4907  * @arg: the function arg
4908  *
4909  * It is up to the caller to ensure that the cpu doesn't go offline.
4910  * The caller must not hold any locks which would prevent @fn from completing.
4911  *
4912  * Return: The value @fn returns.
4913  */
4914 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4915 {
4916 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4917 
4918 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4919 	schedule_work_on(cpu, &wfc.work);
4920 	flush_work(&wfc.work);
4921 	destroy_work_on_stack(&wfc.work);
4922 	return wfc.ret;
4923 }
4924 EXPORT_SYMBOL_GPL(work_on_cpu);
4925 
4926 /**
4927  * work_on_cpu_safe - run a function in thread context on a particular cpu
4928  * @cpu: the cpu to run on
4929  * @fn:  the function to run
4930  * @arg: the function argument
4931  *
4932  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
4933  * any locks which would prevent @fn from completing.
4934  *
4935  * Return: The value @fn returns.
4936  */
4937 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
4938 {
4939 	long ret = -ENODEV;
4940 
4941 	get_online_cpus();
4942 	if (cpu_online(cpu))
4943 		ret = work_on_cpu(cpu, fn, arg);
4944 	put_online_cpus();
4945 	return ret;
4946 }
4947 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
4948 #endif /* CONFIG_SMP */
4949 
4950 #ifdef CONFIG_FREEZER
4951 
4952 /**
4953  * freeze_workqueues_begin - begin freezing workqueues
4954  *
4955  * Start freezing workqueues.  After this function returns, all freezable
4956  * workqueues will queue new works to their delayed_works list instead of
4957  * pool->worklist.
4958  *
4959  * CONTEXT:
4960  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4961  */
4962 void freeze_workqueues_begin(void)
4963 {
4964 	struct workqueue_struct *wq;
4965 	struct pool_workqueue *pwq;
4966 
4967 	mutex_lock(&wq_pool_mutex);
4968 
4969 	WARN_ON_ONCE(workqueue_freezing);
4970 	workqueue_freezing = true;
4971 
4972 	list_for_each_entry(wq, &workqueues, list) {
4973 		mutex_lock(&wq->mutex);
4974 		for_each_pwq(pwq, wq)
4975 			pwq_adjust_max_active(pwq);
4976 		mutex_unlock(&wq->mutex);
4977 	}
4978 
4979 	mutex_unlock(&wq_pool_mutex);
4980 }
4981 
4982 /**
4983  * freeze_workqueues_busy - are freezable workqueues still busy?
4984  *
4985  * Check whether freezing is complete.  This function must be called
4986  * between freeze_workqueues_begin() and thaw_workqueues().
4987  *
4988  * CONTEXT:
4989  * Grabs and releases wq_pool_mutex.
4990  *
4991  * Return:
4992  * %true if some freezable workqueues are still busy.  %false if freezing
4993  * is complete.
4994  */
4995 bool freeze_workqueues_busy(void)
4996 {
4997 	bool busy = false;
4998 	struct workqueue_struct *wq;
4999 	struct pool_workqueue *pwq;
5000 
5001 	mutex_lock(&wq_pool_mutex);
5002 
5003 	WARN_ON_ONCE(!workqueue_freezing);
5004 
5005 	list_for_each_entry(wq, &workqueues, list) {
5006 		if (!(wq->flags & WQ_FREEZABLE))
5007 			continue;
5008 		/*
5009 		 * nr_active is monotonically decreasing.  It's safe
5010 		 * to peek without lock.
5011 		 */
5012 		rcu_read_lock_sched();
5013 		for_each_pwq(pwq, wq) {
5014 			WARN_ON_ONCE(pwq->nr_active < 0);
5015 			if (pwq->nr_active) {
5016 				busy = true;
5017 				rcu_read_unlock_sched();
5018 				goto out_unlock;
5019 			}
5020 		}
5021 		rcu_read_unlock_sched();
5022 	}
5023 out_unlock:
5024 	mutex_unlock(&wq_pool_mutex);
5025 	return busy;
5026 }
5027 
5028 /**
5029  * thaw_workqueues - thaw workqueues
5030  *
5031  * Thaw workqueues.  Normal queueing is restored and all collected
5032  * frozen works are transferred to their respective pool worklists.
5033  *
5034  * CONTEXT:
5035  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5036  */
5037 void thaw_workqueues(void)
5038 {
5039 	struct workqueue_struct *wq;
5040 	struct pool_workqueue *pwq;
5041 
5042 	mutex_lock(&wq_pool_mutex);
5043 
5044 	if (!workqueue_freezing)
5045 		goto out_unlock;
5046 
5047 	workqueue_freezing = false;
5048 
5049 	/* restore max_active and repopulate worklist */
5050 	list_for_each_entry(wq, &workqueues, list) {
5051 		mutex_lock(&wq->mutex);
5052 		for_each_pwq(pwq, wq)
5053 			pwq_adjust_max_active(pwq);
5054 		mutex_unlock(&wq->mutex);
5055 	}
5056 
5057 out_unlock:
5058 	mutex_unlock(&wq_pool_mutex);
5059 }
5060 #endif /* CONFIG_FREEZER */
5061 
5062 static int workqueue_apply_unbound_cpumask(void)
5063 {
5064 	LIST_HEAD(ctxs);
5065 	int ret = 0;
5066 	struct workqueue_struct *wq;
5067 	struct apply_wqattrs_ctx *ctx, *n;
5068 
5069 	lockdep_assert_held(&wq_pool_mutex);
5070 
5071 	list_for_each_entry(wq, &workqueues, list) {
5072 		if (!(wq->flags & WQ_UNBOUND))
5073 			continue;
5074 		/* creating multiple pwqs breaks ordering guarantee */
5075 		if (wq->flags & __WQ_ORDERED)
5076 			continue;
5077 
5078 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5079 		if (!ctx) {
5080 			ret = -ENOMEM;
5081 			break;
5082 		}
5083 
5084 		list_add_tail(&ctx->list, &ctxs);
5085 	}
5086 
5087 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5088 		if (!ret)
5089 			apply_wqattrs_commit(ctx);
5090 		apply_wqattrs_cleanup(ctx);
5091 	}
5092 
5093 	return ret;
5094 }
5095 
5096 /**
5097  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5098  *  @cpumask: the cpumask to set
5099  *
5100  *  The low-level workqueues cpumask is a global cpumask that limits
5101  *  the affinity of all unbound workqueues.  This function check the @cpumask
5102  *  and apply it to all unbound workqueues and updates all pwqs of them.
5103  *
5104  *  Retun:	0	- Success
5105  *  		-EINVAL	- Invalid @cpumask
5106  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5107  */
5108 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5109 {
5110 	int ret = -EINVAL;
5111 	cpumask_var_t saved_cpumask;
5112 
5113 	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5114 		return -ENOMEM;
5115 
5116 	/*
5117 	 * Not excluding isolated cpus on purpose.
5118 	 * If the user wishes to include them, we allow that.
5119 	 */
5120 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5121 	if (!cpumask_empty(cpumask)) {
5122 		apply_wqattrs_lock();
5123 
5124 		/* save the old wq_unbound_cpumask. */
5125 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5126 
5127 		/* update wq_unbound_cpumask at first and apply it to wqs. */
5128 		cpumask_copy(wq_unbound_cpumask, cpumask);
5129 		ret = workqueue_apply_unbound_cpumask();
5130 
5131 		/* restore the wq_unbound_cpumask when failed. */
5132 		if (ret < 0)
5133 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5134 
5135 		apply_wqattrs_unlock();
5136 	}
5137 
5138 	free_cpumask_var(saved_cpumask);
5139 	return ret;
5140 }
5141 
5142 #ifdef CONFIG_SYSFS
5143 /*
5144  * Workqueues with WQ_SYSFS flag set is visible to userland via
5145  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5146  * following attributes.
5147  *
5148  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5149  *  max_active	RW int	: maximum number of in-flight work items
5150  *
5151  * Unbound workqueues have the following extra attributes.
5152  *
5153  *  pool_ids	RO int	: the associated pool IDs for each node
5154  *  nice	RW int	: nice value of the workers
5155  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5156  *  numa	RW bool	: whether enable NUMA affinity
5157  */
5158 struct wq_device {
5159 	struct workqueue_struct		*wq;
5160 	struct device			dev;
5161 };
5162 
5163 static struct workqueue_struct *dev_to_wq(struct device *dev)
5164 {
5165 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5166 
5167 	return wq_dev->wq;
5168 }
5169 
5170 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5171 			    char *buf)
5172 {
5173 	struct workqueue_struct *wq = dev_to_wq(dev);
5174 
5175 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5176 }
5177 static DEVICE_ATTR_RO(per_cpu);
5178 
5179 static ssize_t max_active_show(struct device *dev,
5180 			       struct device_attribute *attr, char *buf)
5181 {
5182 	struct workqueue_struct *wq = dev_to_wq(dev);
5183 
5184 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5185 }
5186 
5187 static ssize_t max_active_store(struct device *dev,
5188 				struct device_attribute *attr, const char *buf,
5189 				size_t count)
5190 {
5191 	struct workqueue_struct *wq = dev_to_wq(dev);
5192 	int val;
5193 
5194 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5195 		return -EINVAL;
5196 
5197 	workqueue_set_max_active(wq, val);
5198 	return count;
5199 }
5200 static DEVICE_ATTR_RW(max_active);
5201 
5202 static struct attribute *wq_sysfs_attrs[] = {
5203 	&dev_attr_per_cpu.attr,
5204 	&dev_attr_max_active.attr,
5205 	NULL,
5206 };
5207 ATTRIBUTE_GROUPS(wq_sysfs);
5208 
5209 static ssize_t wq_pool_ids_show(struct device *dev,
5210 				struct device_attribute *attr, char *buf)
5211 {
5212 	struct workqueue_struct *wq = dev_to_wq(dev);
5213 	const char *delim = "";
5214 	int node, written = 0;
5215 
5216 	rcu_read_lock_sched();
5217 	for_each_node(node) {
5218 		written += scnprintf(buf + written, PAGE_SIZE - written,
5219 				     "%s%d:%d", delim, node,
5220 				     unbound_pwq_by_node(wq, node)->pool->id);
5221 		delim = " ";
5222 	}
5223 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5224 	rcu_read_unlock_sched();
5225 
5226 	return written;
5227 }
5228 
5229 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5230 			    char *buf)
5231 {
5232 	struct workqueue_struct *wq = dev_to_wq(dev);
5233 	int written;
5234 
5235 	mutex_lock(&wq->mutex);
5236 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5237 	mutex_unlock(&wq->mutex);
5238 
5239 	return written;
5240 }
5241 
5242 /* prepare workqueue_attrs for sysfs store operations */
5243 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5244 {
5245 	struct workqueue_attrs *attrs;
5246 
5247 	lockdep_assert_held(&wq_pool_mutex);
5248 
5249 	attrs = alloc_workqueue_attrs(GFP_KERNEL);
5250 	if (!attrs)
5251 		return NULL;
5252 
5253 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5254 	return attrs;
5255 }
5256 
5257 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5258 			     const char *buf, size_t count)
5259 {
5260 	struct workqueue_struct *wq = dev_to_wq(dev);
5261 	struct workqueue_attrs *attrs;
5262 	int ret = -ENOMEM;
5263 
5264 	apply_wqattrs_lock();
5265 
5266 	attrs = wq_sysfs_prep_attrs(wq);
5267 	if (!attrs)
5268 		goto out_unlock;
5269 
5270 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5271 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5272 		ret = apply_workqueue_attrs_locked(wq, attrs);
5273 	else
5274 		ret = -EINVAL;
5275 
5276 out_unlock:
5277 	apply_wqattrs_unlock();
5278 	free_workqueue_attrs(attrs);
5279 	return ret ?: count;
5280 }
5281 
5282 static ssize_t wq_cpumask_show(struct device *dev,
5283 			       struct device_attribute *attr, char *buf)
5284 {
5285 	struct workqueue_struct *wq = dev_to_wq(dev);
5286 	int written;
5287 
5288 	mutex_lock(&wq->mutex);
5289 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5290 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5291 	mutex_unlock(&wq->mutex);
5292 	return written;
5293 }
5294 
5295 static ssize_t wq_cpumask_store(struct device *dev,
5296 				struct device_attribute *attr,
5297 				const char *buf, size_t count)
5298 {
5299 	struct workqueue_struct *wq = dev_to_wq(dev);
5300 	struct workqueue_attrs *attrs;
5301 	int ret = -ENOMEM;
5302 
5303 	apply_wqattrs_lock();
5304 
5305 	attrs = wq_sysfs_prep_attrs(wq);
5306 	if (!attrs)
5307 		goto out_unlock;
5308 
5309 	ret = cpumask_parse(buf, attrs->cpumask);
5310 	if (!ret)
5311 		ret = apply_workqueue_attrs_locked(wq, attrs);
5312 
5313 out_unlock:
5314 	apply_wqattrs_unlock();
5315 	free_workqueue_attrs(attrs);
5316 	return ret ?: count;
5317 }
5318 
5319 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5320 			    char *buf)
5321 {
5322 	struct workqueue_struct *wq = dev_to_wq(dev);
5323 	int written;
5324 
5325 	mutex_lock(&wq->mutex);
5326 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5327 			    !wq->unbound_attrs->no_numa);
5328 	mutex_unlock(&wq->mutex);
5329 
5330 	return written;
5331 }
5332 
5333 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5334 			     const char *buf, size_t count)
5335 {
5336 	struct workqueue_struct *wq = dev_to_wq(dev);
5337 	struct workqueue_attrs *attrs;
5338 	int v, ret = -ENOMEM;
5339 
5340 	apply_wqattrs_lock();
5341 
5342 	attrs = wq_sysfs_prep_attrs(wq);
5343 	if (!attrs)
5344 		goto out_unlock;
5345 
5346 	ret = -EINVAL;
5347 	if (sscanf(buf, "%d", &v) == 1) {
5348 		attrs->no_numa = !v;
5349 		ret = apply_workqueue_attrs_locked(wq, attrs);
5350 	}
5351 
5352 out_unlock:
5353 	apply_wqattrs_unlock();
5354 	free_workqueue_attrs(attrs);
5355 	return ret ?: count;
5356 }
5357 
5358 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5359 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5360 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5361 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5362 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5363 	__ATTR_NULL,
5364 };
5365 
5366 static struct bus_type wq_subsys = {
5367 	.name				= "workqueue",
5368 	.dev_groups			= wq_sysfs_groups,
5369 };
5370 
5371 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5372 		struct device_attribute *attr, char *buf)
5373 {
5374 	int written;
5375 
5376 	mutex_lock(&wq_pool_mutex);
5377 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5378 			    cpumask_pr_args(wq_unbound_cpumask));
5379 	mutex_unlock(&wq_pool_mutex);
5380 
5381 	return written;
5382 }
5383 
5384 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5385 		struct device_attribute *attr, const char *buf, size_t count)
5386 {
5387 	cpumask_var_t cpumask;
5388 	int ret;
5389 
5390 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5391 		return -ENOMEM;
5392 
5393 	ret = cpumask_parse(buf, cpumask);
5394 	if (!ret)
5395 		ret = workqueue_set_unbound_cpumask(cpumask);
5396 
5397 	free_cpumask_var(cpumask);
5398 	return ret ? ret : count;
5399 }
5400 
5401 static struct device_attribute wq_sysfs_cpumask_attr =
5402 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5403 	       wq_unbound_cpumask_store);
5404 
5405 static int __init wq_sysfs_init(void)
5406 {
5407 	int err;
5408 
5409 	err = subsys_virtual_register(&wq_subsys, NULL);
5410 	if (err)
5411 		return err;
5412 
5413 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5414 }
5415 core_initcall(wq_sysfs_init);
5416 
5417 static void wq_device_release(struct device *dev)
5418 {
5419 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5420 
5421 	kfree(wq_dev);
5422 }
5423 
5424 /**
5425  * workqueue_sysfs_register - make a workqueue visible in sysfs
5426  * @wq: the workqueue to register
5427  *
5428  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5429  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5430  * which is the preferred method.
5431  *
5432  * Workqueue user should use this function directly iff it wants to apply
5433  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5434  * apply_workqueue_attrs() may race against userland updating the
5435  * attributes.
5436  *
5437  * Return: 0 on success, -errno on failure.
5438  */
5439 int workqueue_sysfs_register(struct workqueue_struct *wq)
5440 {
5441 	struct wq_device *wq_dev;
5442 	int ret;
5443 
5444 	/*
5445 	 * Adjusting max_active or creating new pwqs by applying
5446 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5447 	 * workqueues.
5448 	 */
5449 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5450 		return -EINVAL;
5451 
5452 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5453 	if (!wq_dev)
5454 		return -ENOMEM;
5455 
5456 	wq_dev->wq = wq;
5457 	wq_dev->dev.bus = &wq_subsys;
5458 	wq_dev->dev.release = wq_device_release;
5459 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5460 
5461 	/*
5462 	 * unbound_attrs are created separately.  Suppress uevent until
5463 	 * everything is ready.
5464 	 */
5465 	dev_set_uevent_suppress(&wq_dev->dev, true);
5466 
5467 	ret = device_register(&wq_dev->dev);
5468 	if (ret) {
5469 		put_device(&wq_dev->dev);
5470 		wq->wq_dev = NULL;
5471 		return ret;
5472 	}
5473 
5474 	if (wq->flags & WQ_UNBOUND) {
5475 		struct device_attribute *attr;
5476 
5477 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5478 			ret = device_create_file(&wq_dev->dev, attr);
5479 			if (ret) {
5480 				device_unregister(&wq_dev->dev);
5481 				wq->wq_dev = NULL;
5482 				return ret;
5483 			}
5484 		}
5485 	}
5486 
5487 	dev_set_uevent_suppress(&wq_dev->dev, false);
5488 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5489 	return 0;
5490 }
5491 
5492 /**
5493  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5494  * @wq: the workqueue to unregister
5495  *
5496  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5497  */
5498 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5499 {
5500 	struct wq_device *wq_dev = wq->wq_dev;
5501 
5502 	if (!wq->wq_dev)
5503 		return;
5504 
5505 	wq->wq_dev = NULL;
5506 	device_unregister(&wq_dev->dev);
5507 }
5508 #else	/* CONFIG_SYSFS */
5509 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5510 #endif	/* CONFIG_SYSFS */
5511 
5512 /*
5513  * Workqueue watchdog.
5514  *
5515  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5516  * flush dependency, a concurrency managed work item which stays RUNNING
5517  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5518  * usual warning mechanisms don't trigger and internal workqueue state is
5519  * largely opaque.
5520  *
5521  * Workqueue watchdog monitors all worker pools periodically and dumps
5522  * state if some pools failed to make forward progress for a while where
5523  * forward progress is defined as the first item on ->worklist changing.
5524  *
5525  * This mechanism is controlled through the kernel parameter
5526  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5527  * corresponding sysfs parameter file.
5528  */
5529 #ifdef CONFIG_WQ_WATCHDOG
5530 
5531 static unsigned long wq_watchdog_thresh = 30;
5532 static struct timer_list wq_watchdog_timer;
5533 
5534 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5535 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5536 
5537 static void wq_watchdog_reset_touched(void)
5538 {
5539 	int cpu;
5540 
5541 	wq_watchdog_touched = jiffies;
5542 	for_each_possible_cpu(cpu)
5543 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5544 }
5545 
5546 static void wq_watchdog_timer_fn(struct timer_list *unused)
5547 {
5548 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5549 	bool lockup_detected = false;
5550 	struct worker_pool *pool;
5551 	int pi;
5552 
5553 	if (!thresh)
5554 		return;
5555 
5556 	rcu_read_lock();
5557 
5558 	for_each_pool(pool, pi) {
5559 		unsigned long pool_ts, touched, ts;
5560 
5561 		if (list_empty(&pool->worklist))
5562 			continue;
5563 
5564 		/* get the latest of pool and touched timestamps */
5565 		pool_ts = READ_ONCE(pool->watchdog_ts);
5566 		touched = READ_ONCE(wq_watchdog_touched);
5567 
5568 		if (time_after(pool_ts, touched))
5569 			ts = pool_ts;
5570 		else
5571 			ts = touched;
5572 
5573 		if (pool->cpu >= 0) {
5574 			unsigned long cpu_touched =
5575 				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5576 						  pool->cpu));
5577 			if (time_after(cpu_touched, ts))
5578 				ts = cpu_touched;
5579 		}
5580 
5581 		/* did we stall? */
5582 		if (time_after(jiffies, ts + thresh)) {
5583 			lockup_detected = true;
5584 			pr_emerg("BUG: workqueue lockup - pool");
5585 			pr_cont_pool_info(pool);
5586 			pr_cont(" stuck for %us!\n",
5587 				jiffies_to_msecs(jiffies - pool_ts) / 1000);
5588 		}
5589 	}
5590 
5591 	rcu_read_unlock();
5592 
5593 	if (lockup_detected)
5594 		show_workqueue_state();
5595 
5596 	wq_watchdog_reset_touched();
5597 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5598 }
5599 
5600 notrace void wq_watchdog_touch(int cpu)
5601 {
5602 	if (cpu >= 0)
5603 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5604 	else
5605 		wq_watchdog_touched = jiffies;
5606 }
5607 
5608 static void wq_watchdog_set_thresh(unsigned long thresh)
5609 {
5610 	wq_watchdog_thresh = 0;
5611 	del_timer_sync(&wq_watchdog_timer);
5612 
5613 	if (thresh) {
5614 		wq_watchdog_thresh = thresh;
5615 		wq_watchdog_reset_touched();
5616 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5617 	}
5618 }
5619 
5620 static int wq_watchdog_param_set_thresh(const char *val,
5621 					const struct kernel_param *kp)
5622 {
5623 	unsigned long thresh;
5624 	int ret;
5625 
5626 	ret = kstrtoul(val, 0, &thresh);
5627 	if (ret)
5628 		return ret;
5629 
5630 	if (system_wq)
5631 		wq_watchdog_set_thresh(thresh);
5632 	else
5633 		wq_watchdog_thresh = thresh;
5634 
5635 	return 0;
5636 }
5637 
5638 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5639 	.set	= wq_watchdog_param_set_thresh,
5640 	.get	= param_get_ulong,
5641 };
5642 
5643 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5644 		0644);
5645 
5646 static void wq_watchdog_init(void)
5647 {
5648 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5649 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5650 }
5651 
5652 #else	/* CONFIG_WQ_WATCHDOG */
5653 
5654 static inline void wq_watchdog_init(void) { }
5655 
5656 #endif	/* CONFIG_WQ_WATCHDOG */
5657 
5658 static void __init wq_numa_init(void)
5659 {
5660 	cpumask_var_t *tbl;
5661 	int node, cpu;
5662 
5663 	if (num_possible_nodes() <= 1)
5664 		return;
5665 
5666 	if (wq_disable_numa) {
5667 		pr_info("workqueue: NUMA affinity support disabled\n");
5668 		return;
5669 	}
5670 
5671 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5672 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5673 
5674 	/*
5675 	 * We want masks of possible CPUs of each node which isn't readily
5676 	 * available.  Build one from cpu_to_node() which should have been
5677 	 * fully initialized by now.
5678 	 */
5679 	tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5680 	BUG_ON(!tbl);
5681 
5682 	for_each_node(node)
5683 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5684 				node_online(node) ? node : NUMA_NO_NODE));
5685 
5686 	for_each_possible_cpu(cpu) {
5687 		node = cpu_to_node(cpu);
5688 		if (WARN_ON(node == NUMA_NO_NODE)) {
5689 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5690 			/* happens iff arch is bonkers, let's just proceed */
5691 			return;
5692 		}
5693 		cpumask_set_cpu(cpu, tbl[node]);
5694 	}
5695 
5696 	wq_numa_possible_cpumask = tbl;
5697 	wq_numa_enabled = true;
5698 }
5699 
5700 /**
5701  * workqueue_init_early - early init for workqueue subsystem
5702  *
5703  * This is the first half of two-staged workqueue subsystem initialization
5704  * and invoked as soon as the bare basics - memory allocation, cpumasks and
5705  * idr are up.  It sets up all the data structures and system workqueues
5706  * and allows early boot code to create workqueues and queue/cancel work
5707  * items.  Actual work item execution starts only after kthreads can be
5708  * created and scheduled right before early initcalls.
5709  */
5710 int __init workqueue_init_early(void)
5711 {
5712 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5713 	int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5714 	int i, cpu;
5715 
5716 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5717 
5718 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5719 	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5720 
5721 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5722 
5723 	/* initialize CPU pools */
5724 	for_each_possible_cpu(cpu) {
5725 		struct worker_pool *pool;
5726 
5727 		i = 0;
5728 		for_each_cpu_worker_pool(pool, cpu) {
5729 			BUG_ON(init_worker_pool(pool));
5730 			pool->cpu = cpu;
5731 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5732 			pool->attrs->nice = std_nice[i++];
5733 			pool->node = cpu_to_node(cpu);
5734 
5735 			/* alloc pool ID */
5736 			mutex_lock(&wq_pool_mutex);
5737 			BUG_ON(worker_pool_assign_id(pool));
5738 			mutex_unlock(&wq_pool_mutex);
5739 		}
5740 	}
5741 
5742 	/* create default unbound and ordered wq attrs */
5743 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5744 		struct workqueue_attrs *attrs;
5745 
5746 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5747 		attrs->nice = std_nice[i];
5748 		unbound_std_wq_attrs[i] = attrs;
5749 
5750 		/*
5751 		 * An ordered wq should have only one pwq as ordering is
5752 		 * guaranteed by max_active which is enforced by pwqs.
5753 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5754 		 */
5755 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5756 		attrs->nice = std_nice[i];
5757 		attrs->no_numa = true;
5758 		ordered_wq_attrs[i] = attrs;
5759 	}
5760 
5761 	system_wq = alloc_workqueue("events", 0, 0);
5762 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5763 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5764 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5765 					    WQ_UNBOUND_MAX_ACTIVE);
5766 	system_freezable_wq = alloc_workqueue("events_freezable",
5767 					      WQ_FREEZABLE, 0);
5768 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5769 					      WQ_POWER_EFFICIENT, 0);
5770 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5771 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5772 					      0);
5773 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5774 	       !system_unbound_wq || !system_freezable_wq ||
5775 	       !system_power_efficient_wq ||
5776 	       !system_freezable_power_efficient_wq);
5777 
5778 	return 0;
5779 }
5780 
5781 /**
5782  * workqueue_init - bring workqueue subsystem fully online
5783  *
5784  * This is the latter half of two-staged workqueue subsystem initialization
5785  * and invoked as soon as kthreads can be created and scheduled.
5786  * Workqueues have been created and work items queued on them, but there
5787  * are no kworkers executing the work items yet.  Populate the worker pools
5788  * with the initial workers and enable future kworker creations.
5789  */
5790 int __init workqueue_init(void)
5791 {
5792 	struct workqueue_struct *wq;
5793 	struct worker_pool *pool;
5794 	int cpu, bkt;
5795 
5796 	/*
5797 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5798 	 * CPU to node mapping may not be available that early on some
5799 	 * archs such as power and arm64.  As per-cpu pools created
5800 	 * previously could be missing node hint and unbound pools NUMA
5801 	 * affinity, fix them up.
5802 	 *
5803 	 * Also, while iterating workqueues, create rescuers if requested.
5804 	 */
5805 	wq_numa_init();
5806 
5807 	mutex_lock(&wq_pool_mutex);
5808 
5809 	for_each_possible_cpu(cpu) {
5810 		for_each_cpu_worker_pool(pool, cpu) {
5811 			pool->node = cpu_to_node(cpu);
5812 		}
5813 	}
5814 
5815 	list_for_each_entry(wq, &workqueues, list) {
5816 		wq_update_unbound_numa(wq, smp_processor_id(), true);
5817 		WARN(init_rescuer(wq),
5818 		     "workqueue: failed to create early rescuer for %s",
5819 		     wq->name);
5820 	}
5821 
5822 	mutex_unlock(&wq_pool_mutex);
5823 
5824 	/* create the initial workers */
5825 	for_each_online_cpu(cpu) {
5826 		for_each_cpu_worker_pool(pool, cpu) {
5827 			pool->flags &= ~POOL_DISASSOCIATED;
5828 			BUG_ON(!create_worker(pool));
5829 		}
5830 	}
5831 
5832 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5833 		BUG_ON(!create_worker(pool));
5834 
5835 	wq_online = true;
5836 	wq_watchdog_init();
5837 
5838 	return 0;
5839 }
5840