1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There are two worker pools for each CPU (one for 20 * normal work items and the other for high priority ones) and some extra 21 * pools for workqueues which are not bound to any specific CPU - the 22 * number of these backing pools is dynamic. 23 * 24 * Please read Documentation/core-api/workqueue.rst for details. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kernel.h> 29 #include <linux/sched.h> 30 #include <linux/init.h> 31 #include <linux/signal.h> 32 #include <linux/completion.h> 33 #include <linux/workqueue.h> 34 #include <linux/slab.h> 35 #include <linux/cpu.h> 36 #include <linux/notifier.h> 37 #include <linux/kthread.h> 38 #include <linux/hardirq.h> 39 #include <linux/mempolicy.h> 40 #include <linux/freezer.h> 41 #include <linux/debug_locks.h> 42 #include <linux/lockdep.h> 43 #include <linux/idr.h> 44 #include <linux/jhash.h> 45 #include <linux/hashtable.h> 46 #include <linux/rculist.h> 47 #include <linux/nodemask.h> 48 #include <linux/moduleparam.h> 49 #include <linux/uaccess.h> 50 #include <linux/sched/isolation.h> 51 #include <linux/nmi.h> 52 53 #include "workqueue_internal.h" 54 55 enum { 56 /* 57 * worker_pool flags 58 * 59 * A bound pool is either associated or disassociated with its CPU. 60 * While associated (!DISASSOCIATED), all workers are bound to the 61 * CPU and none has %WORKER_UNBOUND set and concurrency management 62 * is in effect. 63 * 64 * While DISASSOCIATED, the cpu may be offline and all workers have 65 * %WORKER_UNBOUND set and concurrency management disabled, and may 66 * be executing on any CPU. The pool behaves as an unbound one. 67 * 68 * Note that DISASSOCIATED should be flipped only while holding 69 * wq_pool_attach_mutex to avoid changing binding state while 70 * worker_attach_to_pool() is in progress. 71 */ 72 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */ 73 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 74 75 /* worker flags */ 76 WORKER_DIE = 1 << 1, /* die die die */ 77 WORKER_IDLE = 1 << 2, /* is idle */ 78 WORKER_PREP = 1 << 3, /* preparing to run works */ 79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 81 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 82 83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 84 WORKER_UNBOUND | WORKER_REBOUND, 85 86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 87 88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 90 91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 93 94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 95 /* call for help after 10ms 96 (min two ticks) */ 97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 98 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 99 100 /* 101 * Rescue workers are used only on emergencies and shared by 102 * all cpus. Give MIN_NICE. 103 */ 104 RESCUER_NICE_LEVEL = MIN_NICE, 105 HIGHPRI_NICE_LEVEL = MIN_NICE, 106 107 WQ_NAME_LEN = 24, 108 }; 109 110 /* 111 * Structure fields follow one of the following exclusion rules. 112 * 113 * I: Modifiable by initialization/destruction paths and read-only for 114 * everyone else. 115 * 116 * P: Preemption protected. Disabling preemption is enough and should 117 * only be modified and accessed from the local cpu. 118 * 119 * L: pool->lock protected. Access with pool->lock held. 120 * 121 * X: During normal operation, modification requires pool->lock and should 122 * be done only from local cpu. Either disabling preemption on local 123 * cpu or grabbing pool->lock is enough for read access. If 124 * POOL_DISASSOCIATED is set, it's identical to L. 125 * 126 * A: wq_pool_attach_mutex protected. 127 * 128 * PL: wq_pool_mutex protected. 129 * 130 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads. 131 * 132 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 133 * 134 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 135 * sched-RCU for reads. 136 * 137 * WQ: wq->mutex protected. 138 * 139 * WR: wq->mutex protected for writes. Sched-RCU protected for reads. 140 * 141 * MD: wq_mayday_lock protected. 142 */ 143 144 /* struct worker is defined in workqueue_internal.h */ 145 146 struct worker_pool { 147 spinlock_t lock; /* the pool lock */ 148 int cpu; /* I: the associated cpu */ 149 int node; /* I: the associated node ID */ 150 int id; /* I: pool ID */ 151 unsigned int flags; /* X: flags */ 152 153 unsigned long watchdog_ts; /* L: watchdog timestamp */ 154 155 struct list_head worklist; /* L: list of pending works */ 156 157 int nr_workers; /* L: total number of workers */ 158 int nr_idle; /* L: currently idle workers */ 159 160 struct list_head idle_list; /* X: list of idle workers */ 161 struct timer_list idle_timer; /* L: worker idle timeout */ 162 struct timer_list mayday_timer; /* L: SOS timer for workers */ 163 164 /* a workers is either on busy_hash or idle_list, or the manager */ 165 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 166 /* L: hash of busy workers */ 167 168 struct worker *manager; /* L: purely informational */ 169 struct list_head workers; /* A: attached workers */ 170 struct completion *detach_completion; /* all workers detached */ 171 172 struct ida worker_ida; /* worker IDs for task name */ 173 174 struct workqueue_attrs *attrs; /* I: worker attributes */ 175 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 176 int refcnt; /* PL: refcnt for unbound pools */ 177 178 /* 179 * The current concurrency level. As it's likely to be accessed 180 * from other CPUs during try_to_wake_up(), put it in a separate 181 * cacheline. 182 */ 183 atomic_t nr_running ____cacheline_aligned_in_smp; 184 185 /* 186 * Destruction of pool is sched-RCU protected to allow dereferences 187 * from get_work_pool(). 188 */ 189 struct rcu_head rcu; 190 } ____cacheline_aligned_in_smp; 191 192 /* 193 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 194 * of work_struct->data are used for flags and the remaining high bits 195 * point to the pwq; thus, pwqs need to be aligned at two's power of the 196 * number of flag bits. 197 */ 198 struct pool_workqueue { 199 struct worker_pool *pool; /* I: the associated pool */ 200 struct workqueue_struct *wq; /* I: the owning workqueue */ 201 int work_color; /* L: current color */ 202 int flush_color; /* L: flushing color */ 203 int refcnt; /* L: reference count */ 204 int nr_in_flight[WORK_NR_COLORS]; 205 /* L: nr of in_flight works */ 206 int nr_active; /* L: nr of active works */ 207 int max_active; /* L: max active works */ 208 struct list_head delayed_works; /* L: delayed works */ 209 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 210 struct list_head mayday_node; /* MD: node on wq->maydays */ 211 212 /* 213 * Release of unbound pwq is punted to system_wq. See put_pwq() 214 * and pwq_unbound_release_workfn() for details. pool_workqueue 215 * itself is also sched-RCU protected so that the first pwq can be 216 * determined without grabbing wq->mutex. 217 */ 218 struct work_struct unbound_release_work; 219 struct rcu_head rcu; 220 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 221 222 /* 223 * Structure used to wait for workqueue flush. 224 */ 225 struct wq_flusher { 226 struct list_head list; /* WQ: list of flushers */ 227 int flush_color; /* WQ: flush color waiting for */ 228 struct completion done; /* flush completion */ 229 }; 230 231 struct wq_device; 232 233 /* 234 * The externally visible workqueue. It relays the issued work items to 235 * the appropriate worker_pool through its pool_workqueues. 236 */ 237 struct workqueue_struct { 238 struct list_head pwqs; /* WR: all pwqs of this wq */ 239 struct list_head list; /* PR: list of all workqueues */ 240 241 struct mutex mutex; /* protects this wq */ 242 int work_color; /* WQ: current work color */ 243 int flush_color; /* WQ: current flush color */ 244 atomic_t nr_pwqs_to_flush; /* flush in progress */ 245 struct wq_flusher *first_flusher; /* WQ: first flusher */ 246 struct list_head flusher_queue; /* WQ: flush waiters */ 247 struct list_head flusher_overflow; /* WQ: flush overflow list */ 248 249 struct list_head maydays; /* MD: pwqs requesting rescue */ 250 struct worker *rescuer; /* I: rescue worker */ 251 252 int nr_drainers; /* WQ: drain in progress */ 253 int saved_max_active; /* WQ: saved pwq max_active */ 254 255 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 256 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 257 258 #ifdef CONFIG_SYSFS 259 struct wq_device *wq_dev; /* I: for sysfs interface */ 260 #endif 261 #ifdef CONFIG_LOCKDEP 262 struct lockdep_map lockdep_map; 263 #endif 264 char name[WQ_NAME_LEN]; /* I: workqueue name */ 265 266 /* 267 * Destruction of workqueue_struct is sched-RCU protected to allow 268 * walking the workqueues list without grabbing wq_pool_mutex. 269 * This is used to dump all workqueues from sysrq. 270 */ 271 struct rcu_head rcu; 272 273 /* hot fields used during command issue, aligned to cacheline */ 274 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 275 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 276 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 277 }; 278 279 static struct kmem_cache *pwq_cache; 280 281 static cpumask_var_t *wq_numa_possible_cpumask; 282 /* possible CPUs of each node */ 283 284 static bool wq_disable_numa; 285 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 286 287 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 288 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 289 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 290 291 static bool wq_online; /* can kworkers be created yet? */ 292 293 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 294 295 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 296 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 297 298 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 299 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 300 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 301 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */ 302 303 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 304 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 305 306 /* PL: allowable cpus for unbound wqs and work items */ 307 static cpumask_var_t wq_unbound_cpumask; 308 309 /* CPU where unbound work was last round robin scheduled from this CPU */ 310 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 311 312 /* 313 * Local execution of unbound work items is no longer guaranteed. The 314 * following always forces round-robin CPU selection on unbound work items 315 * to uncover usages which depend on it. 316 */ 317 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 318 static bool wq_debug_force_rr_cpu = true; 319 #else 320 static bool wq_debug_force_rr_cpu = false; 321 #endif 322 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 323 324 /* the per-cpu worker pools */ 325 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 326 327 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 328 329 /* PL: hash of all unbound pools keyed by pool->attrs */ 330 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 331 332 /* I: attributes used when instantiating standard unbound pools on demand */ 333 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 334 335 /* I: attributes used when instantiating ordered pools on demand */ 336 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 337 338 struct workqueue_struct *system_wq __read_mostly; 339 EXPORT_SYMBOL(system_wq); 340 struct workqueue_struct *system_highpri_wq __read_mostly; 341 EXPORT_SYMBOL_GPL(system_highpri_wq); 342 struct workqueue_struct *system_long_wq __read_mostly; 343 EXPORT_SYMBOL_GPL(system_long_wq); 344 struct workqueue_struct *system_unbound_wq __read_mostly; 345 EXPORT_SYMBOL_GPL(system_unbound_wq); 346 struct workqueue_struct *system_freezable_wq __read_mostly; 347 EXPORT_SYMBOL_GPL(system_freezable_wq); 348 struct workqueue_struct *system_power_efficient_wq __read_mostly; 349 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 350 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 351 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 352 353 static int worker_thread(void *__worker); 354 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 355 356 #define CREATE_TRACE_POINTS 357 #include <trace/events/workqueue.h> 358 359 #define assert_rcu_or_pool_mutex() \ 360 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 361 !lockdep_is_held(&wq_pool_mutex), \ 362 "sched RCU or wq_pool_mutex should be held") 363 364 #define assert_rcu_or_wq_mutex(wq) \ 365 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 366 !lockdep_is_held(&wq->mutex), \ 367 "sched RCU or wq->mutex should be held") 368 369 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 370 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 371 !lockdep_is_held(&wq->mutex) && \ 372 !lockdep_is_held(&wq_pool_mutex), \ 373 "sched RCU, wq->mutex or wq_pool_mutex should be held") 374 375 #define for_each_cpu_worker_pool(pool, cpu) \ 376 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 377 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 378 (pool)++) 379 380 /** 381 * for_each_pool - iterate through all worker_pools in the system 382 * @pool: iteration cursor 383 * @pi: integer used for iteration 384 * 385 * This must be called either with wq_pool_mutex held or sched RCU read 386 * locked. If the pool needs to be used beyond the locking in effect, the 387 * caller is responsible for guaranteeing that the pool stays online. 388 * 389 * The if/else clause exists only for the lockdep assertion and can be 390 * ignored. 391 */ 392 #define for_each_pool(pool, pi) \ 393 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 394 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 395 else 396 397 /** 398 * for_each_pool_worker - iterate through all workers of a worker_pool 399 * @worker: iteration cursor 400 * @pool: worker_pool to iterate workers of 401 * 402 * This must be called with wq_pool_attach_mutex. 403 * 404 * The if/else clause exists only for the lockdep assertion and can be 405 * ignored. 406 */ 407 #define for_each_pool_worker(worker, pool) \ 408 list_for_each_entry((worker), &(pool)->workers, node) \ 409 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 410 else 411 412 /** 413 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 414 * @pwq: iteration cursor 415 * @wq: the target workqueue 416 * 417 * This must be called either with wq->mutex held or sched RCU read locked. 418 * If the pwq needs to be used beyond the locking in effect, the caller is 419 * responsible for guaranteeing that the pwq stays online. 420 * 421 * The if/else clause exists only for the lockdep assertion and can be 422 * ignored. 423 */ 424 #define for_each_pwq(pwq, wq) \ 425 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \ 426 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ 427 else 428 429 #ifdef CONFIG_DEBUG_OBJECTS_WORK 430 431 static struct debug_obj_descr work_debug_descr; 432 433 static void *work_debug_hint(void *addr) 434 { 435 return ((struct work_struct *) addr)->func; 436 } 437 438 static bool work_is_static_object(void *addr) 439 { 440 struct work_struct *work = addr; 441 442 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 443 } 444 445 /* 446 * fixup_init is called when: 447 * - an active object is initialized 448 */ 449 static bool work_fixup_init(void *addr, enum debug_obj_state state) 450 { 451 struct work_struct *work = addr; 452 453 switch (state) { 454 case ODEBUG_STATE_ACTIVE: 455 cancel_work_sync(work); 456 debug_object_init(work, &work_debug_descr); 457 return true; 458 default: 459 return false; 460 } 461 } 462 463 /* 464 * fixup_free is called when: 465 * - an active object is freed 466 */ 467 static bool work_fixup_free(void *addr, enum debug_obj_state state) 468 { 469 struct work_struct *work = addr; 470 471 switch (state) { 472 case ODEBUG_STATE_ACTIVE: 473 cancel_work_sync(work); 474 debug_object_free(work, &work_debug_descr); 475 return true; 476 default: 477 return false; 478 } 479 } 480 481 static struct debug_obj_descr work_debug_descr = { 482 .name = "work_struct", 483 .debug_hint = work_debug_hint, 484 .is_static_object = work_is_static_object, 485 .fixup_init = work_fixup_init, 486 .fixup_free = work_fixup_free, 487 }; 488 489 static inline void debug_work_activate(struct work_struct *work) 490 { 491 debug_object_activate(work, &work_debug_descr); 492 } 493 494 static inline void debug_work_deactivate(struct work_struct *work) 495 { 496 debug_object_deactivate(work, &work_debug_descr); 497 } 498 499 void __init_work(struct work_struct *work, int onstack) 500 { 501 if (onstack) 502 debug_object_init_on_stack(work, &work_debug_descr); 503 else 504 debug_object_init(work, &work_debug_descr); 505 } 506 EXPORT_SYMBOL_GPL(__init_work); 507 508 void destroy_work_on_stack(struct work_struct *work) 509 { 510 debug_object_free(work, &work_debug_descr); 511 } 512 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 513 514 void destroy_delayed_work_on_stack(struct delayed_work *work) 515 { 516 destroy_timer_on_stack(&work->timer); 517 debug_object_free(&work->work, &work_debug_descr); 518 } 519 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 520 521 #else 522 static inline void debug_work_activate(struct work_struct *work) { } 523 static inline void debug_work_deactivate(struct work_struct *work) { } 524 #endif 525 526 /** 527 * worker_pool_assign_id - allocate ID and assing it to @pool 528 * @pool: the pool pointer of interest 529 * 530 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 531 * successfully, -errno on failure. 532 */ 533 static int worker_pool_assign_id(struct worker_pool *pool) 534 { 535 int ret; 536 537 lockdep_assert_held(&wq_pool_mutex); 538 539 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 540 GFP_KERNEL); 541 if (ret >= 0) { 542 pool->id = ret; 543 return 0; 544 } 545 return ret; 546 } 547 548 /** 549 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 550 * @wq: the target workqueue 551 * @node: the node ID 552 * 553 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU 554 * read locked. 555 * If the pwq needs to be used beyond the locking in effect, the caller is 556 * responsible for guaranteeing that the pwq stays online. 557 * 558 * Return: The unbound pool_workqueue for @node. 559 */ 560 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 561 int node) 562 { 563 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 564 565 /* 566 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a 567 * delayed item is pending. The plan is to keep CPU -> NODE 568 * mapping valid and stable across CPU on/offlines. Once that 569 * happens, this workaround can be removed. 570 */ 571 if (unlikely(node == NUMA_NO_NODE)) 572 return wq->dfl_pwq; 573 574 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 575 } 576 577 static unsigned int work_color_to_flags(int color) 578 { 579 return color << WORK_STRUCT_COLOR_SHIFT; 580 } 581 582 static int get_work_color(struct work_struct *work) 583 { 584 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 585 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 586 } 587 588 static int work_next_color(int color) 589 { 590 return (color + 1) % WORK_NR_COLORS; 591 } 592 593 /* 594 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 595 * contain the pointer to the queued pwq. Once execution starts, the flag 596 * is cleared and the high bits contain OFFQ flags and pool ID. 597 * 598 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 599 * and clear_work_data() can be used to set the pwq, pool or clear 600 * work->data. These functions should only be called while the work is 601 * owned - ie. while the PENDING bit is set. 602 * 603 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 604 * corresponding to a work. Pool is available once the work has been 605 * queued anywhere after initialization until it is sync canceled. pwq is 606 * available only while the work item is queued. 607 * 608 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 609 * canceled. While being canceled, a work item may have its PENDING set 610 * but stay off timer and worklist for arbitrarily long and nobody should 611 * try to steal the PENDING bit. 612 */ 613 static inline void set_work_data(struct work_struct *work, unsigned long data, 614 unsigned long flags) 615 { 616 WARN_ON_ONCE(!work_pending(work)); 617 atomic_long_set(&work->data, data | flags | work_static(work)); 618 } 619 620 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 621 unsigned long extra_flags) 622 { 623 set_work_data(work, (unsigned long)pwq, 624 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 625 } 626 627 static void set_work_pool_and_keep_pending(struct work_struct *work, 628 int pool_id) 629 { 630 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 631 WORK_STRUCT_PENDING); 632 } 633 634 static void set_work_pool_and_clear_pending(struct work_struct *work, 635 int pool_id) 636 { 637 /* 638 * The following wmb is paired with the implied mb in 639 * test_and_set_bit(PENDING) and ensures all updates to @work made 640 * here are visible to and precede any updates by the next PENDING 641 * owner. 642 */ 643 smp_wmb(); 644 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 645 /* 646 * The following mb guarantees that previous clear of a PENDING bit 647 * will not be reordered with any speculative LOADS or STORES from 648 * work->current_func, which is executed afterwards. This possible 649 * reordering can lead to a missed execution on attempt to qeueue 650 * the same @work. E.g. consider this case: 651 * 652 * CPU#0 CPU#1 653 * ---------------------------- -------------------------------- 654 * 655 * 1 STORE event_indicated 656 * 2 queue_work_on() { 657 * 3 test_and_set_bit(PENDING) 658 * 4 } set_..._and_clear_pending() { 659 * 5 set_work_data() # clear bit 660 * 6 smp_mb() 661 * 7 work->current_func() { 662 * 8 LOAD event_indicated 663 * } 664 * 665 * Without an explicit full barrier speculative LOAD on line 8 can 666 * be executed before CPU#0 does STORE on line 1. If that happens, 667 * CPU#0 observes the PENDING bit is still set and new execution of 668 * a @work is not queued in a hope, that CPU#1 will eventually 669 * finish the queued @work. Meanwhile CPU#1 does not see 670 * event_indicated is set, because speculative LOAD was executed 671 * before actual STORE. 672 */ 673 smp_mb(); 674 } 675 676 static void clear_work_data(struct work_struct *work) 677 { 678 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 679 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 680 } 681 682 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 683 { 684 unsigned long data = atomic_long_read(&work->data); 685 686 if (data & WORK_STRUCT_PWQ) 687 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 688 else 689 return NULL; 690 } 691 692 /** 693 * get_work_pool - return the worker_pool a given work was associated with 694 * @work: the work item of interest 695 * 696 * Pools are created and destroyed under wq_pool_mutex, and allows read 697 * access under sched-RCU read lock. As such, this function should be 698 * called under wq_pool_mutex or with preemption disabled. 699 * 700 * All fields of the returned pool are accessible as long as the above 701 * mentioned locking is in effect. If the returned pool needs to be used 702 * beyond the critical section, the caller is responsible for ensuring the 703 * returned pool is and stays online. 704 * 705 * Return: The worker_pool @work was last associated with. %NULL if none. 706 */ 707 static struct worker_pool *get_work_pool(struct work_struct *work) 708 { 709 unsigned long data = atomic_long_read(&work->data); 710 int pool_id; 711 712 assert_rcu_or_pool_mutex(); 713 714 if (data & WORK_STRUCT_PWQ) 715 return ((struct pool_workqueue *) 716 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 717 718 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 719 if (pool_id == WORK_OFFQ_POOL_NONE) 720 return NULL; 721 722 return idr_find(&worker_pool_idr, pool_id); 723 } 724 725 /** 726 * get_work_pool_id - return the worker pool ID a given work is associated with 727 * @work: the work item of interest 728 * 729 * Return: The worker_pool ID @work was last associated with. 730 * %WORK_OFFQ_POOL_NONE if none. 731 */ 732 static int get_work_pool_id(struct work_struct *work) 733 { 734 unsigned long data = atomic_long_read(&work->data); 735 736 if (data & WORK_STRUCT_PWQ) 737 return ((struct pool_workqueue *) 738 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 739 740 return data >> WORK_OFFQ_POOL_SHIFT; 741 } 742 743 static void mark_work_canceling(struct work_struct *work) 744 { 745 unsigned long pool_id = get_work_pool_id(work); 746 747 pool_id <<= WORK_OFFQ_POOL_SHIFT; 748 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 749 } 750 751 static bool work_is_canceling(struct work_struct *work) 752 { 753 unsigned long data = atomic_long_read(&work->data); 754 755 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 756 } 757 758 /* 759 * Policy functions. These define the policies on how the global worker 760 * pools are managed. Unless noted otherwise, these functions assume that 761 * they're being called with pool->lock held. 762 */ 763 764 static bool __need_more_worker(struct worker_pool *pool) 765 { 766 return !atomic_read(&pool->nr_running); 767 } 768 769 /* 770 * Need to wake up a worker? Called from anything but currently 771 * running workers. 772 * 773 * Note that, because unbound workers never contribute to nr_running, this 774 * function will always return %true for unbound pools as long as the 775 * worklist isn't empty. 776 */ 777 static bool need_more_worker(struct worker_pool *pool) 778 { 779 return !list_empty(&pool->worklist) && __need_more_worker(pool); 780 } 781 782 /* Can I start working? Called from busy but !running workers. */ 783 static bool may_start_working(struct worker_pool *pool) 784 { 785 return pool->nr_idle; 786 } 787 788 /* Do I need to keep working? Called from currently running workers. */ 789 static bool keep_working(struct worker_pool *pool) 790 { 791 return !list_empty(&pool->worklist) && 792 atomic_read(&pool->nr_running) <= 1; 793 } 794 795 /* Do we need a new worker? Called from manager. */ 796 static bool need_to_create_worker(struct worker_pool *pool) 797 { 798 return need_more_worker(pool) && !may_start_working(pool); 799 } 800 801 /* Do we have too many workers and should some go away? */ 802 static bool too_many_workers(struct worker_pool *pool) 803 { 804 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 805 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 806 int nr_busy = pool->nr_workers - nr_idle; 807 808 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 809 } 810 811 /* 812 * Wake up functions. 813 */ 814 815 /* Return the first idle worker. Safe with preemption disabled */ 816 static struct worker *first_idle_worker(struct worker_pool *pool) 817 { 818 if (unlikely(list_empty(&pool->idle_list))) 819 return NULL; 820 821 return list_first_entry(&pool->idle_list, struct worker, entry); 822 } 823 824 /** 825 * wake_up_worker - wake up an idle worker 826 * @pool: worker pool to wake worker from 827 * 828 * Wake up the first idle worker of @pool. 829 * 830 * CONTEXT: 831 * spin_lock_irq(pool->lock). 832 */ 833 static void wake_up_worker(struct worker_pool *pool) 834 { 835 struct worker *worker = first_idle_worker(pool); 836 837 if (likely(worker)) 838 wake_up_process(worker->task); 839 } 840 841 /** 842 * wq_worker_waking_up - a worker is waking up 843 * @task: task waking up 844 * @cpu: CPU @task is waking up to 845 * 846 * This function is called during try_to_wake_up() when a worker is 847 * being awoken. 848 * 849 * CONTEXT: 850 * spin_lock_irq(rq->lock) 851 */ 852 void wq_worker_waking_up(struct task_struct *task, int cpu) 853 { 854 struct worker *worker = kthread_data(task); 855 856 if (!(worker->flags & WORKER_NOT_RUNNING)) { 857 WARN_ON_ONCE(worker->pool->cpu != cpu); 858 atomic_inc(&worker->pool->nr_running); 859 } 860 } 861 862 /** 863 * wq_worker_sleeping - a worker is going to sleep 864 * @task: task going to sleep 865 * 866 * This function is called during schedule() when a busy worker is 867 * going to sleep. Worker on the same cpu can be woken up by 868 * returning pointer to its task. 869 * 870 * CONTEXT: 871 * spin_lock_irq(rq->lock) 872 * 873 * Return: 874 * Worker task on @cpu to wake up, %NULL if none. 875 */ 876 struct task_struct *wq_worker_sleeping(struct task_struct *task) 877 { 878 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 879 struct worker_pool *pool; 880 881 /* 882 * Rescuers, which may not have all the fields set up like normal 883 * workers, also reach here, let's not access anything before 884 * checking NOT_RUNNING. 885 */ 886 if (worker->flags & WORKER_NOT_RUNNING) 887 return NULL; 888 889 pool = worker->pool; 890 891 /* this can only happen on the local cpu */ 892 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id())) 893 return NULL; 894 895 /* 896 * The counterpart of the following dec_and_test, implied mb, 897 * worklist not empty test sequence is in insert_work(). 898 * Please read comment there. 899 * 900 * NOT_RUNNING is clear. This means that we're bound to and 901 * running on the local cpu w/ rq lock held and preemption 902 * disabled, which in turn means that none else could be 903 * manipulating idle_list, so dereferencing idle_list without pool 904 * lock is safe. 905 */ 906 if (atomic_dec_and_test(&pool->nr_running) && 907 !list_empty(&pool->worklist)) 908 to_wakeup = first_idle_worker(pool); 909 return to_wakeup ? to_wakeup->task : NULL; 910 } 911 912 /** 913 * wq_worker_last_func - retrieve worker's last work function 914 * 915 * Determine the last function a worker executed. This is called from 916 * the scheduler to get a worker's last known identity. 917 * 918 * CONTEXT: 919 * spin_lock_irq(rq->lock) 920 * 921 * Return: 922 * The last work function %current executed as a worker, NULL if it 923 * hasn't executed any work yet. 924 */ 925 work_func_t wq_worker_last_func(struct task_struct *task) 926 { 927 struct worker *worker = kthread_data(task); 928 929 return worker->last_func; 930 } 931 932 /** 933 * worker_set_flags - set worker flags and adjust nr_running accordingly 934 * @worker: self 935 * @flags: flags to set 936 * 937 * Set @flags in @worker->flags and adjust nr_running accordingly. 938 * 939 * CONTEXT: 940 * spin_lock_irq(pool->lock) 941 */ 942 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 943 { 944 struct worker_pool *pool = worker->pool; 945 946 WARN_ON_ONCE(worker->task != current); 947 948 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 949 if ((flags & WORKER_NOT_RUNNING) && 950 !(worker->flags & WORKER_NOT_RUNNING)) { 951 atomic_dec(&pool->nr_running); 952 } 953 954 worker->flags |= flags; 955 } 956 957 /** 958 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 959 * @worker: self 960 * @flags: flags to clear 961 * 962 * Clear @flags in @worker->flags and adjust nr_running accordingly. 963 * 964 * CONTEXT: 965 * spin_lock_irq(pool->lock) 966 */ 967 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 968 { 969 struct worker_pool *pool = worker->pool; 970 unsigned int oflags = worker->flags; 971 972 WARN_ON_ONCE(worker->task != current); 973 974 worker->flags &= ~flags; 975 976 /* 977 * If transitioning out of NOT_RUNNING, increment nr_running. Note 978 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 979 * of multiple flags, not a single flag. 980 */ 981 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 982 if (!(worker->flags & WORKER_NOT_RUNNING)) 983 atomic_inc(&pool->nr_running); 984 } 985 986 /** 987 * find_worker_executing_work - find worker which is executing a work 988 * @pool: pool of interest 989 * @work: work to find worker for 990 * 991 * Find a worker which is executing @work on @pool by searching 992 * @pool->busy_hash which is keyed by the address of @work. For a worker 993 * to match, its current execution should match the address of @work and 994 * its work function. This is to avoid unwanted dependency between 995 * unrelated work executions through a work item being recycled while still 996 * being executed. 997 * 998 * This is a bit tricky. A work item may be freed once its execution 999 * starts and nothing prevents the freed area from being recycled for 1000 * another work item. If the same work item address ends up being reused 1001 * before the original execution finishes, workqueue will identify the 1002 * recycled work item as currently executing and make it wait until the 1003 * current execution finishes, introducing an unwanted dependency. 1004 * 1005 * This function checks the work item address and work function to avoid 1006 * false positives. Note that this isn't complete as one may construct a 1007 * work function which can introduce dependency onto itself through a 1008 * recycled work item. Well, if somebody wants to shoot oneself in the 1009 * foot that badly, there's only so much we can do, and if such deadlock 1010 * actually occurs, it should be easy to locate the culprit work function. 1011 * 1012 * CONTEXT: 1013 * spin_lock_irq(pool->lock). 1014 * 1015 * Return: 1016 * Pointer to worker which is executing @work if found, %NULL 1017 * otherwise. 1018 */ 1019 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1020 struct work_struct *work) 1021 { 1022 struct worker *worker; 1023 1024 hash_for_each_possible(pool->busy_hash, worker, hentry, 1025 (unsigned long)work) 1026 if (worker->current_work == work && 1027 worker->current_func == work->func) 1028 return worker; 1029 1030 return NULL; 1031 } 1032 1033 /** 1034 * move_linked_works - move linked works to a list 1035 * @work: start of series of works to be scheduled 1036 * @head: target list to append @work to 1037 * @nextp: out parameter for nested worklist walking 1038 * 1039 * Schedule linked works starting from @work to @head. Work series to 1040 * be scheduled starts at @work and includes any consecutive work with 1041 * WORK_STRUCT_LINKED set in its predecessor. 1042 * 1043 * If @nextp is not NULL, it's updated to point to the next work of 1044 * the last scheduled work. This allows move_linked_works() to be 1045 * nested inside outer list_for_each_entry_safe(). 1046 * 1047 * CONTEXT: 1048 * spin_lock_irq(pool->lock). 1049 */ 1050 static void move_linked_works(struct work_struct *work, struct list_head *head, 1051 struct work_struct **nextp) 1052 { 1053 struct work_struct *n; 1054 1055 /* 1056 * Linked worklist will always end before the end of the list, 1057 * use NULL for list head. 1058 */ 1059 list_for_each_entry_safe_from(work, n, NULL, entry) { 1060 list_move_tail(&work->entry, head); 1061 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1062 break; 1063 } 1064 1065 /* 1066 * If we're already inside safe list traversal and have moved 1067 * multiple works to the scheduled queue, the next position 1068 * needs to be updated. 1069 */ 1070 if (nextp) 1071 *nextp = n; 1072 } 1073 1074 /** 1075 * get_pwq - get an extra reference on the specified pool_workqueue 1076 * @pwq: pool_workqueue to get 1077 * 1078 * Obtain an extra reference on @pwq. The caller should guarantee that 1079 * @pwq has positive refcnt and be holding the matching pool->lock. 1080 */ 1081 static void get_pwq(struct pool_workqueue *pwq) 1082 { 1083 lockdep_assert_held(&pwq->pool->lock); 1084 WARN_ON_ONCE(pwq->refcnt <= 0); 1085 pwq->refcnt++; 1086 } 1087 1088 /** 1089 * put_pwq - put a pool_workqueue reference 1090 * @pwq: pool_workqueue to put 1091 * 1092 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1093 * destruction. The caller should be holding the matching pool->lock. 1094 */ 1095 static void put_pwq(struct pool_workqueue *pwq) 1096 { 1097 lockdep_assert_held(&pwq->pool->lock); 1098 if (likely(--pwq->refcnt)) 1099 return; 1100 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1101 return; 1102 /* 1103 * @pwq can't be released under pool->lock, bounce to 1104 * pwq_unbound_release_workfn(). This never recurses on the same 1105 * pool->lock as this path is taken only for unbound workqueues and 1106 * the release work item is scheduled on a per-cpu workqueue. To 1107 * avoid lockdep warning, unbound pool->locks are given lockdep 1108 * subclass of 1 in get_unbound_pool(). 1109 */ 1110 schedule_work(&pwq->unbound_release_work); 1111 } 1112 1113 /** 1114 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1115 * @pwq: pool_workqueue to put (can be %NULL) 1116 * 1117 * put_pwq() with locking. This function also allows %NULL @pwq. 1118 */ 1119 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1120 { 1121 if (pwq) { 1122 /* 1123 * As both pwqs and pools are sched-RCU protected, the 1124 * following lock operations are safe. 1125 */ 1126 spin_lock_irq(&pwq->pool->lock); 1127 put_pwq(pwq); 1128 spin_unlock_irq(&pwq->pool->lock); 1129 } 1130 } 1131 1132 static void pwq_activate_delayed_work(struct work_struct *work) 1133 { 1134 struct pool_workqueue *pwq = get_work_pwq(work); 1135 1136 trace_workqueue_activate_work(work); 1137 if (list_empty(&pwq->pool->worklist)) 1138 pwq->pool->watchdog_ts = jiffies; 1139 move_linked_works(work, &pwq->pool->worklist, NULL); 1140 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1141 pwq->nr_active++; 1142 } 1143 1144 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1145 { 1146 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1147 struct work_struct, entry); 1148 1149 pwq_activate_delayed_work(work); 1150 } 1151 1152 /** 1153 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1154 * @pwq: pwq of interest 1155 * @color: color of work which left the queue 1156 * 1157 * A work either has completed or is removed from pending queue, 1158 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1159 * 1160 * CONTEXT: 1161 * spin_lock_irq(pool->lock). 1162 */ 1163 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1164 { 1165 /* uncolored work items don't participate in flushing or nr_active */ 1166 if (color == WORK_NO_COLOR) 1167 goto out_put; 1168 1169 pwq->nr_in_flight[color]--; 1170 1171 pwq->nr_active--; 1172 if (!list_empty(&pwq->delayed_works)) { 1173 /* one down, submit a delayed one */ 1174 if (pwq->nr_active < pwq->max_active) 1175 pwq_activate_first_delayed(pwq); 1176 } 1177 1178 /* is flush in progress and are we at the flushing tip? */ 1179 if (likely(pwq->flush_color != color)) 1180 goto out_put; 1181 1182 /* are there still in-flight works? */ 1183 if (pwq->nr_in_flight[color]) 1184 goto out_put; 1185 1186 /* this pwq is done, clear flush_color */ 1187 pwq->flush_color = -1; 1188 1189 /* 1190 * If this was the last pwq, wake up the first flusher. It 1191 * will handle the rest. 1192 */ 1193 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1194 complete(&pwq->wq->first_flusher->done); 1195 out_put: 1196 put_pwq(pwq); 1197 } 1198 1199 /** 1200 * try_to_grab_pending - steal work item from worklist and disable irq 1201 * @work: work item to steal 1202 * @is_dwork: @work is a delayed_work 1203 * @flags: place to store irq state 1204 * 1205 * Try to grab PENDING bit of @work. This function can handle @work in any 1206 * stable state - idle, on timer or on worklist. 1207 * 1208 * Return: 1209 * 1 if @work was pending and we successfully stole PENDING 1210 * 0 if @work was idle and we claimed PENDING 1211 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1212 * -ENOENT if someone else is canceling @work, this state may persist 1213 * for arbitrarily long 1214 * 1215 * Note: 1216 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1217 * interrupted while holding PENDING and @work off queue, irq must be 1218 * disabled on entry. This, combined with delayed_work->timer being 1219 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1220 * 1221 * On successful return, >= 0, irq is disabled and the caller is 1222 * responsible for releasing it using local_irq_restore(*@flags). 1223 * 1224 * This function is safe to call from any context including IRQ handler. 1225 */ 1226 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1227 unsigned long *flags) 1228 { 1229 struct worker_pool *pool; 1230 struct pool_workqueue *pwq; 1231 1232 local_irq_save(*flags); 1233 1234 /* try to steal the timer if it exists */ 1235 if (is_dwork) { 1236 struct delayed_work *dwork = to_delayed_work(work); 1237 1238 /* 1239 * dwork->timer is irqsafe. If del_timer() fails, it's 1240 * guaranteed that the timer is not queued anywhere and not 1241 * running on the local CPU. 1242 */ 1243 if (likely(del_timer(&dwork->timer))) 1244 return 1; 1245 } 1246 1247 /* try to claim PENDING the normal way */ 1248 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1249 return 0; 1250 1251 /* 1252 * The queueing is in progress, or it is already queued. Try to 1253 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1254 */ 1255 pool = get_work_pool(work); 1256 if (!pool) 1257 goto fail; 1258 1259 spin_lock(&pool->lock); 1260 /* 1261 * work->data is guaranteed to point to pwq only while the work 1262 * item is queued on pwq->wq, and both updating work->data to point 1263 * to pwq on queueing and to pool on dequeueing are done under 1264 * pwq->pool->lock. This in turn guarantees that, if work->data 1265 * points to pwq which is associated with a locked pool, the work 1266 * item is currently queued on that pool. 1267 */ 1268 pwq = get_work_pwq(work); 1269 if (pwq && pwq->pool == pool) { 1270 debug_work_deactivate(work); 1271 1272 /* 1273 * A delayed work item cannot be grabbed directly because 1274 * it might have linked NO_COLOR work items which, if left 1275 * on the delayed_list, will confuse pwq->nr_active 1276 * management later on and cause stall. Make sure the work 1277 * item is activated before grabbing. 1278 */ 1279 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1280 pwq_activate_delayed_work(work); 1281 1282 list_del_init(&work->entry); 1283 pwq_dec_nr_in_flight(pwq, get_work_color(work)); 1284 1285 /* work->data points to pwq iff queued, point to pool */ 1286 set_work_pool_and_keep_pending(work, pool->id); 1287 1288 spin_unlock(&pool->lock); 1289 return 1; 1290 } 1291 spin_unlock(&pool->lock); 1292 fail: 1293 local_irq_restore(*flags); 1294 if (work_is_canceling(work)) 1295 return -ENOENT; 1296 cpu_relax(); 1297 return -EAGAIN; 1298 } 1299 1300 /** 1301 * insert_work - insert a work into a pool 1302 * @pwq: pwq @work belongs to 1303 * @work: work to insert 1304 * @head: insertion point 1305 * @extra_flags: extra WORK_STRUCT_* flags to set 1306 * 1307 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1308 * work_struct flags. 1309 * 1310 * CONTEXT: 1311 * spin_lock_irq(pool->lock). 1312 */ 1313 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1314 struct list_head *head, unsigned int extra_flags) 1315 { 1316 struct worker_pool *pool = pwq->pool; 1317 1318 /* we own @work, set data and link */ 1319 set_work_pwq(work, pwq, extra_flags); 1320 list_add_tail(&work->entry, head); 1321 get_pwq(pwq); 1322 1323 /* 1324 * Ensure either wq_worker_sleeping() sees the above 1325 * list_add_tail() or we see zero nr_running to avoid workers lying 1326 * around lazily while there are works to be processed. 1327 */ 1328 smp_mb(); 1329 1330 if (__need_more_worker(pool)) 1331 wake_up_worker(pool); 1332 } 1333 1334 /* 1335 * Test whether @work is being queued from another work executing on the 1336 * same workqueue. 1337 */ 1338 static bool is_chained_work(struct workqueue_struct *wq) 1339 { 1340 struct worker *worker; 1341 1342 worker = current_wq_worker(); 1343 /* 1344 * Return %true iff I'm a worker execuing a work item on @wq. If 1345 * I'm @worker, it's safe to dereference it without locking. 1346 */ 1347 return worker && worker->current_pwq->wq == wq; 1348 } 1349 1350 /* 1351 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1352 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1353 * avoid perturbing sensitive tasks. 1354 */ 1355 static int wq_select_unbound_cpu(int cpu) 1356 { 1357 static bool printed_dbg_warning; 1358 int new_cpu; 1359 1360 if (likely(!wq_debug_force_rr_cpu)) { 1361 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1362 return cpu; 1363 } else if (!printed_dbg_warning) { 1364 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1365 printed_dbg_warning = true; 1366 } 1367 1368 if (cpumask_empty(wq_unbound_cpumask)) 1369 return cpu; 1370 1371 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1372 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1373 if (unlikely(new_cpu >= nr_cpu_ids)) { 1374 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1375 if (unlikely(new_cpu >= nr_cpu_ids)) 1376 return cpu; 1377 } 1378 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1379 1380 return new_cpu; 1381 } 1382 1383 static void __queue_work(int cpu, struct workqueue_struct *wq, 1384 struct work_struct *work) 1385 { 1386 struct pool_workqueue *pwq; 1387 struct worker_pool *last_pool; 1388 struct list_head *worklist; 1389 unsigned int work_flags; 1390 unsigned int req_cpu = cpu; 1391 1392 /* 1393 * While a work item is PENDING && off queue, a task trying to 1394 * steal the PENDING will busy-loop waiting for it to either get 1395 * queued or lose PENDING. Grabbing PENDING and queueing should 1396 * happen with IRQ disabled. 1397 */ 1398 lockdep_assert_irqs_disabled(); 1399 1400 debug_work_activate(work); 1401 1402 /* if draining, only works from the same workqueue are allowed */ 1403 if (unlikely(wq->flags & __WQ_DRAINING) && 1404 WARN_ON_ONCE(!is_chained_work(wq))) 1405 return; 1406 retry: 1407 if (req_cpu == WORK_CPU_UNBOUND) 1408 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1409 1410 /* pwq which will be used unless @work is executing elsewhere */ 1411 if (!(wq->flags & WQ_UNBOUND)) 1412 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1413 else 1414 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1415 1416 /* 1417 * If @work was previously on a different pool, it might still be 1418 * running there, in which case the work needs to be queued on that 1419 * pool to guarantee non-reentrancy. 1420 */ 1421 last_pool = get_work_pool(work); 1422 if (last_pool && last_pool != pwq->pool) { 1423 struct worker *worker; 1424 1425 spin_lock(&last_pool->lock); 1426 1427 worker = find_worker_executing_work(last_pool, work); 1428 1429 if (worker && worker->current_pwq->wq == wq) { 1430 pwq = worker->current_pwq; 1431 } else { 1432 /* meh... not running there, queue here */ 1433 spin_unlock(&last_pool->lock); 1434 spin_lock(&pwq->pool->lock); 1435 } 1436 } else { 1437 spin_lock(&pwq->pool->lock); 1438 } 1439 1440 /* 1441 * pwq is determined and locked. For unbound pools, we could have 1442 * raced with pwq release and it could already be dead. If its 1443 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1444 * without another pwq replacing it in the numa_pwq_tbl or while 1445 * work items are executing on it, so the retrying is guaranteed to 1446 * make forward-progress. 1447 */ 1448 if (unlikely(!pwq->refcnt)) { 1449 if (wq->flags & WQ_UNBOUND) { 1450 spin_unlock(&pwq->pool->lock); 1451 cpu_relax(); 1452 goto retry; 1453 } 1454 /* oops */ 1455 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1456 wq->name, cpu); 1457 } 1458 1459 /* pwq determined, queue */ 1460 trace_workqueue_queue_work(req_cpu, pwq, work); 1461 1462 if (WARN_ON(!list_empty(&work->entry))) { 1463 spin_unlock(&pwq->pool->lock); 1464 return; 1465 } 1466 1467 pwq->nr_in_flight[pwq->work_color]++; 1468 work_flags = work_color_to_flags(pwq->work_color); 1469 1470 if (likely(pwq->nr_active < pwq->max_active)) { 1471 trace_workqueue_activate_work(work); 1472 pwq->nr_active++; 1473 worklist = &pwq->pool->worklist; 1474 if (list_empty(worklist)) 1475 pwq->pool->watchdog_ts = jiffies; 1476 } else { 1477 work_flags |= WORK_STRUCT_DELAYED; 1478 worklist = &pwq->delayed_works; 1479 } 1480 1481 insert_work(pwq, work, worklist, work_flags); 1482 1483 spin_unlock(&pwq->pool->lock); 1484 } 1485 1486 /** 1487 * queue_work_on - queue work on specific cpu 1488 * @cpu: CPU number to execute work on 1489 * @wq: workqueue to use 1490 * @work: work to queue 1491 * 1492 * We queue the work to a specific CPU, the caller must ensure it 1493 * can't go away. 1494 * 1495 * Return: %false if @work was already on a queue, %true otherwise. 1496 */ 1497 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1498 struct work_struct *work) 1499 { 1500 bool ret = false; 1501 unsigned long flags; 1502 1503 local_irq_save(flags); 1504 1505 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1506 __queue_work(cpu, wq, work); 1507 ret = true; 1508 } 1509 1510 local_irq_restore(flags); 1511 return ret; 1512 } 1513 EXPORT_SYMBOL(queue_work_on); 1514 1515 void delayed_work_timer_fn(struct timer_list *t) 1516 { 1517 struct delayed_work *dwork = from_timer(dwork, t, timer); 1518 1519 /* should have been called from irqsafe timer with irq already off */ 1520 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1521 } 1522 EXPORT_SYMBOL(delayed_work_timer_fn); 1523 1524 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1525 struct delayed_work *dwork, unsigned long delay) 1526 { 1527 struct timer_list *timer = &dwork->timer; 1528 struct work_struct *work = &dwork->work; 1529 1530 WARN_ON_ONCE(!wq); 1531 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 1532 WARN_ON_ONCE(timer_pending(timer)); 1533 WARN_ON_ONCE(!list_empty(&work->entry)); 1534 1535 /* 1536 * If @delay is 0, queue @dwork->work immediately. This is for 1537 * both optimization and correctness. The earliest @timer can 1538 * expire is on the closest next tick and delayed_work users depend 1539 * on that there's no such delay when @delay is 0. 1540 */ 1541 if (!delay) { 1542 __queue_work(cpu, wq, &dwork->work); 1543 return; 1544 } 1545 1546 dwork->wq = wq; 1547 dwork->cpu = cpu; 1548 timer->expires = jiffies + delay; 1549 1550 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1551 add_timer_on(timer, cpu); 1552 else 1553 add_timer(timer); 1554 } 1555 1556 /** 1557 * queue_delayed_work_on - queue work on specific CPU after delay 1558 * @cpu: CPU number to execute work on 1559 * @wq: workqueue to use 1560 * @dwork: work to queue 1561 * @delay: number of jiffies to wait before queueing 1562 * 1563 * Return: %false if @work was already on a queue, %true otherwise. If 1564 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1565 * execution. 1566 */ 1567 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1568 struct delayed_work *dwork, unsigned long delay) 1569 { 1570 struct work_struct *work = &dwork->work; 1571 bool ret = false; 1572 unsigned long flags; 1573 1574 /* read the comment in __queue_work() */ 1575 local_irq_save(flags); 1576 1577 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1578 __queue_delayed_work(cpu, wq, dwork, delay); 1579 ret = true; 1580 } 1581 1582 local_irq_restore(flags); 1583 return ret; 1584 } 1585 EXPORT_SYMBOL(queue_delayed_work_on); 1586 1587 /** 1588 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1589 * @cpu: CPU number to execute work on 1590 * @wq: workqueue to use 1591 * @dwork: work to queue 1592 * @delay: number of jiffies to wait before queueing 1593 * 1594 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1595 * modify @dwork's timer so that it expires after @delay. If @delay is 1596 * zero, @work is guaranteed to be scheduled immediately regardless of its 1597 * current state. 1598 * 1599 * Return: %false if @dwork was idle and queued, %true if @dwork was 1600 * pending and its timer was modified. 1601 * 1602 * This function is safe to call from any context including IRQ handler. 1603 * See try_to_grab_pending() for details. 1604 */ 1605 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1606 struct delayed_work *dwork, unsigned long delay) 1607 { 1608 unsigned long flags; 1609 int ret; 1610 1611 do { 1612 ret = try_to_grab_pending(&dwork->work, true, &flags); 1613 } while (unlikely(ret == -EAGAIN)); 1614 1615 if (likely(ret >= 0)) { 1616 __queue_delayed_work(cpu, wq, dwork, delay); 1617 local_irq_restore(flags); 1618 } 1619 1620 /* -ENOENT from try_to_grab_pending() becomes %true */ 1621 return ret; 1622 } 1623 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1624 1625 static void rcu_work_rcufn(struct rcu_head *rcu) 1626 { 1627 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 1628 1629 /* read the comment in __queue_work() */ 1630 local_irq_disable(); 1631 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 1632 local_irq_enable(); 1633 } 1634 1635 /** 1636 * queue_rcu_work - queue work after a RCU grace period 1637 * @wq: workqueue to use 1638 * @rwork: work to queue 1639 * 1640 * Return: %false if @rwork was already pending, %true otherwise. Note 1641 * that a full RCU grace period is guaranteed only after a %true return. 1642 * While @rwork is guarnateed to be executed after a %false return, the 1643 * execution may happen before a full RCU grace period has passed. 1644 */ 1645 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 1646 { 1647 struct work_struct *work = &rwork->work; 1648 1649 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1650 rwork->wq = wq; 1651 call_rcu(&rwork->rcu, rcu_work_rcufn); 1652 return true; 1653 } 1654 1655 return false; 1656 } 1657 EXPORT_SYMBOL(queue_rcu_work); 1658 1659 /** 1660 * worker_enter_idle - enter idle state 1661 * @worker: worker which is entering idle state 1662 * 1663 * @worker is entering idle state. Update stats and idle timer if 1664 * necessary. 1665 * 1666 * LOCKING: 1667 * spin_lock_irq(pool->lock). 1668 */ 1669 static void worker_enter_idle(struct worker *worker) 1670 { 1671 struct worker_pool *pool = worker->pool; 1672 1673 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1674 WARN_ON_ONCE(!list_empty(&worker->entry) && 1675 (worker->hentry.next || worker->hentry.pprev))) 1676 return; 1677 1678 /* can't use worker_set_flags(), also called from create_worker() */ 1679 worker->flags |= WORKER_IDLE; 1680 pool->nr_idle++; 1681 worker->last_active = jiffies; 1682 1683 /* idle_list is LIFO */ 1684 list_add(&worker->entry, &pool->idle_list); 1685 1686 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1687 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1688 1689 /* 1690 * Sanity check nr_running. Because unbind_workers() releases 1691 * pool->lock between setting %WORKER_UNBOUND and zapping 1692 * nr_running, the warning may trigger spuriously. Check iff 1693 * unbind is not in progress. 1694 */ 1695 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1696 pool->nr_workers == pool->nr_idle && 1697 atomic_read(&pool->nr_running)); 1698 } 1699 1700 /** 1701 * worker_leave_idle - leave idle state 1702 * @worker: worker which is leaving idle state 1703 * 1704 * @worker is leaving idle state. Update stats. 1705 * 1706 * LOCKING: 1707 * spin_lock_irq(pool->lock). 1708 */ 1709 static void worker_leave_idle(struct worker *worker) 1710 { 1711 struct worker_pool *pool = worker->pool; 1712 1713 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1714 return; 1715 worker_clr_flags(worker, WORKER_IDLE); 1716 pool->nr_idle--; 1717 list_del_init(&worker->entry); 1718 } 1719 1720 static struct worker *alloc_worker(int node) 1721 { 1722 struct worker *worker; 1723 1724 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1725 if (worker) { 1726 INIT_LIST_HEAD(&worker->entry); 1727 INIT_LIST_HEAD(&worker->scheduled); 1728 INIT_LIST_HEAD(&worker->node); 1729 /* on creation a worker is in !idle && prep state */ 1730 worker->flags = WORKER_PREP; 1731 } 1732 return worker; 1733 } 1734 1735 /** 1736 * worker_attach_to_pool() - attach a worker to a pool 1737 * @worker: worker to be attached 1738 * @pool: the target pool 1739 * 1740 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1741 * cpu-binding of @worker are kept coordinated with the pool across 1742 * cpu-[un]hotplugs. 1743 */ 1744 static void worker_attach_to_pool(struct worker *worker, 1745 struct worker_pool *pool) 1746 { 1747 mutex_lock(&wq_pool_attach_mutex); 1748 1749 /* 1750 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1751 * online CPUs. It'll be re-applied when any of the CPUs come up. 1752 */ 1753 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1754 1755 /* 1756 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains 1757 * stable across this function. See the comments above the flag 1758 * definition for details. 1759 */ 1760 if (pool->flags & POOL_DISASSOCIATED) 1761 worker->flags |= WORKER_UNBOUND; 1762 1763 list_add_tail(&worker->node, &pool->workers); 1764 worker->pool = pool; 1765 1766 mutex_unlock(&wq_pool_attach_mutex); 1767 } 1768 1769 /** 1770 * worker_detach_from_pool() - detach a worker from its pool 1771 * @worker: worker which is attached to its pool 1772 * 1773 * Undo the attaching which had been done in worker_attach_to_pool(). The 1774 * caller worker shouldn't access to the pool after detached except it has 1775 * other reference to the pool. 1776 */ 1777 static void worker_detach_from_pool(struct worker *worker) 1778 { 1779 struct worker_pool *pool = worker->pool; 1780 struct completion *detach_completion = NULL; 1781 1782 mutex_lock(&wq_pool_attach_mutex); 1783 1784 list_del(&worker->node); 1785 worker->pool = NULL; 1786 1787 if (list_empty(&pool->workers)) 1788 detach_completion = pool->detach_completion; 1789 mutex_unlock(&wq_pool_attach_mutex); 1790 1791 /* clear leftover flags without pool->lock after it is detached */ 1792 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1793 1794 if (detach_completion) 1795 complete(detach_completion); 1796 } 1797 1798 /** 1799 * create_worker - create a new workqueue worker 1800 * @pool: pool the new worker will belong to 1801 * 1802 * Create and start a new worker which is attached to @pool. 1803 * 1804 * CONTEXT: 1805 * Might sleep. Does GFP_KERNEL allocations. 1806 * 1807 * Return: 1808 * Pointer to the newly created worker. 1809 */ 1810 static struct worker *create_worker(struct worker_pool *pool) 1811 { 1812 struct worker *worker = NULL; 1813 int id = -1; 1814 char id_buf[16]; 1815 1816 /* ID is needed to determine kthread name */ 1817 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL); 1818 if (id < 0) 1819 goto fail; 1820 1821 worker = alloc_worker(pool->node); 1822 if (!worker) 1823 goto fail; 1824 1825 worker->id = id; 1826 1827 if (pool->cpu >= 0) 1828 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1829 pool->attrs->nice < 0 ? "H" : ""); 1830 else 1831 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1832 1833 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1834 "kworker/%s", id_buf); 1835 if (IS_ERR(worker->task)) 1836 goto fail; 1837 1838 set_user_nice(worker->task, pool->attrs->nice); 1839 kthread_bind_mask(worker->task, pool->attrs->cpumask); 1840 1841 /* successful, attach the worker to the pool */ 1842 worker_attach_to_pool(worker, pool); 1843 1844 /* start the newly created worker */ 1845 spin_lock_irq(&pool->lock); 1846 worker->pool->nr_workers++; 1847 worker_enter_idle(worker); 1848 wake_up_process(worker->task); 1849 spin_unlock_irq(&pool->lock); 1850 1851 return worker; 1852 1853 fail: 1854 if (id >= 0) 1855 ida_simple_remove(&pool->worker_ida, id); 1856 kfree(worker); 1857 return NULL; 1858 } 1859 1860 /** 1861 * destroy_worker - destroy a workqueue worker 1862 * @worker: worker to be destroyed 1863 * 1864 * Destroy @worker and adjust @pool stats accordingly. The worker should 1865 * be idle. 1866 * 1867 * CONTEXT: 1868 * spin_lock_irq(pool->lock). 1869 */ 1870 static void destroy_worker(struct worker *worker) 1871 { 1872 struct worker_pool *pool = worker->pool; 1873 1874 lockdep_assert_held(&pool->lock); 1875 1876 /* sanity check frenzy */ 1877 if (WARN_ON(worker->current_work) || 1878 WARN_ON(!list_empty(&worker->scheduled)) || 1879 WARN_ON(!(worker->flags & WORKER_IDLE))) 1880 return; 1881 1882 pool->nr_workers--; 1883 pool->nr_idle--; 1884 1885 list_del_init(&worker->entry); 1886 worker->flags |= WORKER_DIE; 1887 wake_up_process(worker->task); 1888 } 1889 1890 static void idle_worker_timeout(struct timer_list *t) 1891 { 1892 struct worker_pool *pool = from_timer(pool, t, idle_timer); 1893 1894 spin_lock_irq(&pool->lock); 1895 1896 while (too_many_workers(pool)) { 1897 struct worker *worker; 1898 unsigned long expires; 1899 1900 /* idle_list is kept in LIFO order, check the last one */ 1901 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1902 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1903 1904 if (time_before(jiffies, expires)) { 1905 mod_timer(&pool->idle_timer, expires); 1906 break; 1907 } 1908 1909 destroy_worker(worker); 1910 } 1911 1912 spin_unlock_irq(&pool->lock); 1913 } 1914 1915 static void send_mayday(struct work_struct *work) 1916 { 1917 struct pool_workqueue *pwq = get_work_pwq(work); 1918 struct workqueue_struct *wq = pwq->wq; 1919 1920 lockdep_assert_held(&wq_mayday_lock); 1921 1922 if (!wq->rescuer) 1923 return; 1924 1925 /* mayday mayday mayday */ 1926 if (list_empty(&pwq->mayday_node)) { 1927 /* 1928 * If @pwq is for an unbound wq, its base ref may be put at 1929 * any time due to an attribute change. Pin @pwq until the 1930 * rescuer is done with it. 1931 */ 1932 get_pwq(pwq); 1933 list_add_tail(&pwq->mayday_node, &wq->maydays); 1934 wake_up_process(wq->rescuer->task); 1935 } 1936 } 1937 1938 static void pool_mayday_timeout(struct timer_list *t) 1939 { 1940 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 1941 struct work_struct *work; 1942 1943 spin_lock_irq(&pool->lock); 1944 spin_lock(&wq_mayday_lock); /* for wq->maydays */ 1945 1946 if (need_to_create_worker(pool)) { 1947 /* 1948 * We've been trying to create a new worker but 1949 * haven't been successful. We might be hitting an 1950 * allocation deadlock. Send distress signals to 1951 * rescuers. 1952 */ 1953 list_for_each_entry(work, &pool->worklist, entry) 1954 send_mayday(work); 1955 } 1956 1957 spin_unlock(&wq_mayday_lock); 1958 spin_unlock_irq(&pool->lock); 1959 1960 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 1961 } 1962 1963 /** 1964 * maybe_create_worker - create a new worker if necessary 1965 * @pool: pool to create a new worker for 1966 * 1967 * Create a new worker for @pool if necessary. @pool is guaranteed to 1968 * have at least one idle worker on return from this function. If 1969 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1970 * sent to all rescuers with works scheduled on @pool to resolve 1971 * possible allocation deadlock. 1972 * 1973 * On return, need_to_create_worker() is guaranteed to be %false and 1974 * may_start_working() %true. 1975 * 1976 * LOCKING: 1977 * spin_lock_irq(pool->lock) which may be released and regrabbed 1978 * multiple times. Does GFP_KERNEL allocations. Called only from 1979 * manager. 1980 */ 1981 static void maybe_create_worker(struct worker_pool *pool) 1982 __releases(&pool->lock) 1983 __acquires(&pool->lock) 1984 { 1985 restart: 1986 spin_unlock_irq(&pool->lock); 1987 1988 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1989 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1990 1991 while (true) { 1992 if (create_worker(pool) || !need_to_create_worker(pool)) 1993 break; 1994 1995 schedule_timeout_interruptible(CREATE_COOLDOWN); 1996 1997 if (!need_to_create_worker(pool)) 1998 break; 1999 } 2000 2001 del_timer_sync(&pool->mayday_timer); 2002 spin_lock_irq(&pool->lock); 2003 /* 2004 * This is necessary even after a new worker was just successfully 2005 * created as @pool->lock was dropped and the new worker might have 2006 * already become busy. 2007 */ 2008 if (need_to_create_worker(pool)) 2009 goto restart; 2010 } 2011 2012 /** 2013 * manage_workers - manage worker pool 2014 * @worker: self 2015 * 2016 * Assume the manager role and manage the worker pool @worker belongs 2017 * to. At any given time, there can be only zero or one manager per 2018 * pool. The exclusion is handled automatically by this function. 2019 * 2020 * The caller can safely start processing works on false return. On 2021 * true return, it's guaranteed that need_to_create_worker() is false 2022 * and may_start_working() is true. 2023 * 2024 * CONTEXT: 2025 * spin_lock_irq(pool->lock) which may be released and regrabbed 2026 * multiple times. Does GFP_KERNEL allocations. 2027 * 2028 * Return: 2029 * %false if the pool doesn't need management and the caller can safely 2030 * start processing works, %true if management function was performed and 2031 * the conditions that the caller verified before calling the function may 2032 * no longer be true. 2033 */ 2034 static bool manage_workers(struct worker *worker) 2035 { 2036 struct worker_pool *pool = worker->pool; 2037 2038 if (pool->flags & POOL_MANAGER_ACTIVE) 2039 return false; 2040 2041 pool->flags |= POOL_MANAGER_ACTIVE; 2042 pool->manager = worker; 2043 2044 maybe_create_worker(pool); 2045 2046 pool->manager = NULL; 2047 pool->flags &= ~POOL_MANAGER_ACTIVE; 2048 wake_up(&wq_manager_wait); 2049 return true; 2050 } 2051 2052 /** 2053 * process_one_work - process single work 2054 * @worker: self 2055 * @work: work to process 2056 * 2057 * Process @work. This function contains all the logics necessary to 2058 * process a single work including synchronization against and 2059 * interaction with other workers on the same cpu, queueing and 2060 * flushing. As long as context requirement is met, any worker can 2061 * call this function to process a work. 2062 * 2063 * CONTEXT: 2064 * spin_lock_irq(pool->lock) which is released and regrabbed. 2065 */ 2066 static void process_one_work(struct worker *worker, struct work_struct *work) 2067 __releases(&pool->lock) 2068 __acquires(&pool->lock) 2069 { 2070 struct pool_workqueue *pwq = get_work_pwq(work); 2071 struct worker_pool *pool = worker->pool; 2072 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2073 int work_color; 2074 struct worker *collision; 2075 #ifdef CONFIG_LOCKDEP 2076 /* 2077 * It is permissible to free the struct work_struct from 2078 * inside the function that is called from it, this we need to 2079 * take into account for lockdep too. To avoid bogus "held 2080 * lock freed" warnings as well as problems when looking into 2081 * work->lockdep_map, make a copy and use that here. 2082 */ 2083 struct lockdep_map lockdep_map; 2084 2085 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2086 #endif 2087 /* ensure we're on the correct CPU */ 2088 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2089 raw_smp_processor_id() != pool->cpu); 2090 2091 /* 2092 * A single work shouldn't be executed concurrently by 2093 * multiple workers on a single cpu. Check whether anyone is 2094 * already processing the work. If so, defer the work to the 2095 * currently executing one. 2096 */ 2097 collision = find_worker_executing_work(pool, work); 2098 if (unlikely(collision)) { 2099 move_linked_works(work, &collision->scheduled, NULL); 2100 return; 2101 } 2102 2103 /* claim and dequeue */ 2104 debug_work_deactivate(work); 2105 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2106 worker->current_work = work; 2107 worker->current_func = work->func; 2108 worker->current_pwq = pwq; 2109 work_color = get_work_color(work); 2110 2111 /* 2112 * Record wq name for cmdline and debug reporting, may get 2113 * overridden through set_worker_desc(). 2114 */ 2115 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 2116 2117 list_del_init(&work->entry); 2118 2119 /* 2120 * CPU intensive works don't participate in concurrency management. 2121 * They're the scheduler's responsibility. This takes @worker out 2122 * of concurrency management and the next code block will chain 2123 * execution of the pending work items. 2124 */ 2125 if (unlikely(cpu_intensive)) 2126 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2127 2128 /* 2129 * Wake up another worker if necessary. The condition is always 2130 * false for normal per-cpu workers since nr_running would always 2131 * be >= 1 at this point. This is used to chain execution of the 2132 * pending work items for WORKER_NOT_RUNNING workers such as the 2133 * UNBOUND and CPU_INTENSIVE ones. 2134 */ 2135 if (need_more_worker(pool)) 2136 wake_up_worker(pool); 2137 2138 /* 2139 * Record the last pool and clear PENDING which should be the last 2140 * update to @work. Also, do this inside @pool->lock so that 2141 * PENDING and queued state changes happen together while IRQ is 2142 * disabled. 2143 */ 2144 set_work_pool_and_clear_pending(work, pool->id); 2145 2146 spin_unlock_irq(&pool->lock); 2147 2148 lock_map_acquire(&pwq->wq->lockdep_map); 2149 lock_map_acquire(&lockdep_map); 2150 /* 2151 * Strictly speaking we should mark the invariant state without holding 2152 * any locks, that is, before these two lock_map_acquire()'s. 2153 * 2154 * However, that would result in: 2155 * 2156 * A(W1) 2157 * WFC(C) 2158 * A(W1) 2159 * C(C) 2160 * 2161 * Which would create W1->C->W1 dependencies, even though there is no 2162 * actual deadlock possible. There are two solutions, using a 2163 * read-recursive acquire on the work(queue) 'locks', but this will then 2164 * hit the lockdep limitation on recursive locks, or simply discard 2165 * these locks. 2166 * 2167 * AFAICT there is no possible deadlock scenario between the 2168 * flush_work() and complete() primitives (except for single-threaded 2169 * workqueues), so hiding them isn't a problem. 2170 */ 2171 lockdep_invariant_state(true); 2172 trace_workqueue_execute_start(work); 2173 worker->current_func(work); 2174 /* 2175 * While we must be careful to not use "work" after this, the trace 2176 * point will only record its address. 2177 */ 2178 trace_workqueue_execute_end(work); 2179 lock_map_release(&lockdep_map); 2180 lock_map_release(&pwq->wq->lockdep_map); 2181 2182 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2183 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2184 " last function: %pf\n", 2185 current->comm, preempt_count(), task_pid_nr(current), 2186 worker->current_func); 2187 debug_show_held_locks(current); 2188 dump_stack(); 2189 } 2190 2191 /* 2192 * The following prevents a kworker from hogging CPU on !PREEMPT 2193 * kernels, where a requeueing work item waiting for something to 2194 * happen could deadlock with stop_machine as such work item could 2195 * indefinitely requeue itself while all other CPUs are trapped in 2196 * stop_machine. At the same time, report a quiescent RCU state so 2197 * the same condition doesn't freeze RCU. 2198 */ 2199 cond_resched(); 2200 2201 spin_lock_irq(&pool->lock); 2202 2203 /* clear cpu intensive status */ 2204 if (unlikely(cpu_intensive)) 2205 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2206 2207 /* tag the worker for identification in schedule() */ 2208 worker->last_func = worker->current_func; 2209 2210 /* we're done with it, release */ 2211 hash_del(&worker->hentry); 2212 worker->current_work = NULL; 2213 worker->current_func = NULL; 2214 worker->current_pwq = NULL; 2215 pwq_dec_nr_in_flight(pwq, work_color); 2216 } 2217 2218 /** 2219 * process_scheduled_works - process scheduled works 2220 * @worker: self 2221 * 2222 * Process all scheduled works. Please note that the scheduled list 2223 * may change while processing a work, so this function repeatedly 2224 * fetches a work from the top and executes it. 2225 * 2226 * CONTEXT: 2227 * spin_lock_irq(pool->lock) which may be released and regrabbed 2228 * multiple times. 2229 */ 2230 static void process_scheduled_works(struct worker *worker) 2231 { 2232 while (!list_empty(&worker->scheduled)) { 2233 struct work_struct *work = list_first_entry(&worker->scheduled, 2234 struct work_struct, entry); 2235 process_one_work(worker, work); 2236 } 2237 } 2238 2239 static void set_pf_worker(bool val) 2240 { 2241 mutex_lock(&wq_pool_attach_mutex); 2242 if (val) 2243 current->flags |= PF_WQ_WORKER; 2244 else 2245 current->flags &= ~PF_WQ_WORKER; 2246 mutex_unlock(&wq_pool_attach_mutex); 2247 } 2248 2249 /** 2250 * worker_thread - the worker thread function 2251 * @__worker: self 2252 * 2253 * The worker thread function. All workers belong to a worker_pool - 2254 * either a per-cpu one or dynamic unbound one. These workers process all 2255 * work items regardless of their specific target workqueue. The only 2256 * exception is work items which belong to workqueues with a rescuer which 2257 * will be explained in rescuer_thread(). 2258 * 2259 * Return: 0 2260 */ 2261 static int worker_thread(void *__worker) 2262 { 2263 struct worker *worker = __worker; 2264 struct worker_pool *pool = worker->pool; 2265 2266 /* tell the scheduler that this is a workqueue worker */ 2267 set_pf_worker(true); 2268 woke_up: 2269 spin_lock_irq(&pool->lock); 2270 2271 /* am I supposed to die? */ 2272 if (unlikely(worker->flags & WORKER_DIE)) { 2273 spin_unlock_irq(&pool->lock); 2274 WARN_ON_ONCE(!list_empty(&worker->entry)); 2275 set_pf_worker(false); 2276 2277 set_task_comm(worker->task, "kworker/dying"); 2278 ida_simple_remove(&pool->worker_ida, worker->id); 2279 worker_detach_from_pool(worker); 2280 kfree(worker); 2281 return 0; 2282 } 2283 2284 worker_leave_idle(worker); 2285 recheck: 2286 /* no more worker necessary? */ 2287 if (!need_more_worker(pool)) 2288 goto sleep; 2289 2290 /* do we need to manage? */ 2291 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2292 goto recheck; 2293 2294 /* 2295 * ->scheduled list can only be filled while a worker is 2296 * preparing to process a work or actually processing it. 2297 * Make sure nobody diddled with it while I was sleeping. 2298 */ 2299 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2300 2301 /* 2302 * Finish PREP stage. We're guaranteed to have at least one idle 2303 * worker or that someone else has already assumed the manager 2304 * role. This is where @worker starts participating in concurrency 2305 * management if applicable and concurrency management is restored 2306 * after being rebound. See rebind_workers() for details. 2307 */ 2308 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2309 2310 do { 2311 struct work_struct *work = 2312 list_first_entry(&pool->worklist, 2313 struct work_struct, entry); 2314 2315 pool->watchdog_ts = jiffies; 2316 2317 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2318 /* optimization path, not strictly necessary */ 2319 process_one_work(worker, work); 2320 if (unlikely(!list_empty(&worker->scheduled))) 2321 process_scheduled_works(worker); 2322 } else { 2323 move_linked_works(work, &worker->scheduled, NULL); 2324 process_scheduled_works(worker); 2325 } 2326 } while (keep_working(pool)); 2327 2328 worker_set_flags(worker, WORKER_PREP); 2329 sleep: 2330 /* 2331 * pool->lock is held and there's no work to process and no need to 2332 * manage, sleep. Workers are woken up only while holding 2333 * pool->lock or from local cpu, so setting the current state 2334 * before releasing pool->lock is enough to prevent losing any 2335 * event. 2336 */ 2337 worker_enter_idle(worker); 2338 __set_current_state(TASK_IDLE); 2339 spin_unlock_irq(&pool->lock); 2340 schedule(); 2341 goto woke_up; 2342 } 2343 2344 /** 2345 * rescuer_thread - the rescuer thread function 2346 * @__rescuer: self 2347 * 2348 * Workqueue rescuer thread function. There's one rescuer for each 2349 * workqueue which has WQ_MEM_RECLAIM set. 2350 * 2351 * Regular work processing on a pool may block trying to create a new 2352 * worker which uses GFP_KERNEL allocation which has slight chance of 2353 * developing into deadlock if some works currently on the same queue 2354 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2355 * the problem rescuer solves. 2356 * 2357 * When such condition is possible, the pool summons rescuers of all 2358 * workqueues which have works queued on the pool and let them process 2359 * those works so that forward progress can be guaranteed. 2360 * 2361 * This should happen rarely. 2362 * 2363 * Return: 0 2364 */ 2365 static int rescuer_thread(void *__rescuer) 2366 { 2367 struct worker *rescuer = __rescuer; 2368 struct workqueue_struct *wq = rescuer->rescue_wq; 2369 struct list_head *scheduled = &rescuer->scheduled; 2370 bool should_stop; 2371 2372 set_user_nice(current, RESCUER_NICE_LEVEL); 2373 2374 /* 2375 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2376 * doesn't participate in concurrency management. 2377 */ 2378 set_pf_worker(true); 2379 repeat: 2380 set_current_state(TASK_IDLE); 2381 2382 /* 2383 * By the time the rescuer is requested to stop, the workqueue 2384 * shouldn't have any work pending, but @wq->maydays may still have 2385 * pwq(s) queued. This can happen by non-rescuer workers consuming 2386 * all the work items before the rescuer got to them. Go through 2387 * @wq->maydays processing before acting on should_stop so that the 2388 * list is always empty on exit. 2389 */ 2390 should_stop = kthread_should_stop(); 2391 2392 /* see whether any pwq is asking for help */ 2393 spin_lock_irq(&wq_mayday_lock); 2394 2395 while (!list_empty(&wq->maydays)) { 2396 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2397 struct pool_workqueue, mayday_node); 2398 struct worker_pool *pool = pwq->pool; 2399 struct work_struct *work, *n; 2400 bool first = true; 2401 2402 __set_current_state(TASK_RUNNING); 2403 list_del_init(&pwq->mayday_node); 2404 2405 spin_unlock_irq(&wq_mayday_lock); 2406 2407 worker_attach_to_pool(rescuer, pool); 2408 2409 spin_lock_irq(&pool->lock); 2410 2411 /* 2412 * Slurp in all works issued via this workqueue and 2413 * process'em. 2414 */ 2415 WARN_ON_ONCE(!list_empty(scheduled)); 2416 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2417 if (get_work_pwq(work) == pwq) { 2418 if (first) 2419 pool->watchdog_ts = jiffies; 2420 move_linked_works(work, scheduled, &n); 2421 } 2422 first = false; 2423 } 2424 2425 if (!list_empty(scheduled)) { 2426 process_scheduled_works(rescuer); 2427 2428 /* 2429 * The above execution of rescued work items could 2430 * have created more to rescue through 2431 * pwq_activate_first_delayed() or chained 2432 * queueing. Let's put @pwq back on mayday list so 2433 * that such back-to-back work items, which may be 2434 * being used to relieve memory pressure, don't 2435 * incur MAYDAY_INTERVAL delay inbetween. 2436 */ 2437 if (need_to_create_worker(pool)) { 2438 spin_lock(&wq_mayday_lock); 2439 get_pwq(pwq); 2440 list_move_tail(&pwq->mayday_node, &wq->maydays); 2441 spin_unlock(&wq_mayday_lock); 2442 } 2443 } 2444 2445 /* 2446 * Put the reference grabbed by send_mayday(). @pool won't 2447 * go away while we're still attached to it. 2448 */ 2449 put_pwq(pwq); 2450 2451 /* 2452 * Leave this pool. If need_more_worker() is %true, notify a 2453 * regular worker; otherwise, we end up with 0 concurrency 2454 * and stalling the execution. 2455 */ 2456 if (need_more_worker(pool)) 2457 wake_up_worker(pool); 2458 2459 spin_unlock_irq(&pool->lock); 2460 2461 worker_detach_from_pool(rescuer); 2462 2463 spin_lock_irq(&wq_mayday_lock); 2464 } 2465 2466 spin_unlock_irq(&wq_mayday_lock); 2467 2468 if (should_stop) { 2469 __set_current_state(TASK_RUNNING); 2470 set_pf_worker(false); 2471 return 0; 2472 } 2473 2474 /* rescuers should never participate in concurrency management */ 2475 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2476 schedule(); 2477 goto repeat; 2478 } 2479 2480 /** 2481 * check_flush_dependency - check for flush dependency sanity 2482 * @target_wq: workqueue being flushed 2483 * @target_work: work item being flushed (NULL for workqueue flushes) 2484 * 2485 * %current is trying to flush the whole @target_wq or @target_work on it. 2486 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2487 * reclaiming memory or running on a workqueue which doesn't have 2488 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2489 * a deadlock. 2490 */ 2491 static void check_flush_dependency(struct workqueue_struct *target_wq, 2492 struct work_struct *target_work) 2493 { 2494 work_func_t target_func = target_work ? target_work->func : NULL; 2495 struct worker *worker; 2496 2497 if (target_wq->flags & WQ_MEM_RECLAIM) 2498 return; 2499 2500 worker = current_wq_worker(); 2501 2502 WARN_ONCE(current->flags & PF_MEMALLOC, 2503 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf", 2504 current->pid, current->comm, target_wq->name, target_func); 2505 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2506 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2507 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf", 2508 worker->current_pwq->wq->name, worker->current_func, 2509 target_wq->name, target_func); 2510 } 2511 2512 struct wq_barrier { 2513 struct work_struct work; 2514 struct completion done; 2515 struct task_struct *task; /* purely informational */ 2516 }; 2517 2518 static void wq_barrier_func(struct work_struct *work) 2519 { 2520 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2521 complete(&barr->done); 2522 } 2523 2524 /** 2525 * insert_wq_barrier - insert a barrier work 2526 * @pwq: pwq to insert barrier into 2527 * @barr: wq_barrier to insert 2528 * @target: target work to attach @barr to 2529 * @worker: worker currently executing @target, NULL if @target is not executing 2530 * 2531 * @barr is linked to @target such that @barr is completed only after 2532 * @target finishes execution. Please note that the ordering 2533 * guarantee is observed only with respect to @target and on the local 2534 * cpu. 2535 * 2536 * Currently, a queued barrier can't be canceled. This is because 2537 * try_to_grab_pending() can't determine whether the work to be 2538 * grabbed is at the head of the queue and thus can't clear LINKED 2539 * flag of the previous work while there must be a valid next work 2540 * after a work with LINKED flag set. 2541 * 2542 * Note that when @worker is non-NULL, @target may be modified 2543 * underneath us, so we can't reliably determine pwq from @target. 2544 * 2545 * CONTEXT: 2546 * spin_lock_irq(pool->lock). 2547 */ 2548 static void insert_wq_barrier(struct pool_workqueue *pwq, 2549 struct wq_barrier *barr, 2550 struct work_struct *target, struct worker *worker) 2551 { 2552 struct list_head *head; 2553 unsigned int linked = 0; 2554 2555 /* 2556 * debugobject calls are safe here even with pool->lock locked 2557 * as we know for sure that this will not trigger any of the 2558 * checks and call back into the fixup functions where we 2559 * might deadlock. 2560 */ 2561 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2562 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2563 2564 init_completion_map(&barr->done, &target->lockdep_map); 2565 2566 barr->task = current; 2567 2568 /* 2569 * If @target is currently being executed, schedule the 2570 * barrier to the worker; otherwise, put it after @target. 2571 */ 2572 if (worker) 2573 head = worker->scheduled.next; 2574 else { 2575 unsigned long *bits = work_data_bits(target); 2576 2577 head = target->entry.next; 2578 /* there can already be other linked works, inherit and set */ 2579 linked = *bits & WORK_STRUCT_LINKED; 2580 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2581 } 2582 2583 debug_work_activate(&barr->work); 2584 insert_work(pwq, &barr->work, head, 2585 work_color_to_flags(WORK_NO_COLOR) | linked); 2586 } 2587 2588 /** 2589 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2590 * @wq: workqueue being flushed 2591 * @flush_color: new flush color, < 0 for no-op 2592 * @work_color: new work color, < 0 for no-op 2593 * 2594 * Prepare pwqs for workqueue flushing. 2595 * 2596 * If @flush_color is non-negative, flush_color on all pwqs should be 2597 * -1. If no pwq has in-flight commands at the specified color, all 2598 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2599 * has in flight commands, its pwq->flush_color is set to 2600 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2601 * wakeup logic is armed and %true is returned. 2602 * 2603 * The caller should have initialized @wq->first_flusher prior to 2604 * calling this function with non-negative @flush_color. If 2605 * @flush_color is negative, no flush color update is done and %false 2606 * is returned. 2607 * 2608 * If @work_color is non-negative, all pwqs should have the same 2609 * work_color which is previous to @work_color and all will be 2610 * advanced to @work_color. 2611 * 2612 * CONTEXT: 2613 * mutex_lock(wq->mutex). 2614 * 2615 * Return: 2616 * %true if @flush_color >= 0 and there's something to flush. %false 2617 * otherwise. 2618 */ 2619 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2620 int flush_color, int work_color) 2621 { 2622 bool wait = false; 2623 struct pool_workqueue *pwq; 2624 2625 if (flush_color >= 0) { 2626 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2627 atomic_set(&wq->nr_pwqs_to_flush, 1); 2628 } 2629 2630 for_each_pwq(pwq, wq) { 2631 struct worker_pool *pool = pwq->pool; 2632 2633 spin_lock_irq(&pool->lock); 2634 2635 if (flush_color >= 0) { 2636 WARN_ON_ONCE(pwq->flush_color != -1); 2637 2638 if (pwq->nr_in_flight[flush_color]) { 2639 pwq->flush_color = flush_color; 2640 atomic_inc(&wq->nr_pwqs_to_flush); 2641 wait = true; 2642 } 2643 } 2644 2645 if (work_color >= 0) { 2646 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2647 pwq->work_color = work_color; 2648 } 2649 2650 spin_unlock_irq(&pool->lock); 2651 } 2652 2653 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2654 complete(&wq->first_flusher->done); 2655 2656 return wait; 2657 } 2658 2659 /** 2660 * flush_workqueue - ensure that any scheduled work has run to completion. 2661 * @wq: workqueue to flush 2662 * 2663 * This function sleeps until all work items which were queued on entry 2664 * have finished execution, but it is not livelocked by new incoming ones. 2665 */ 2666 void flush_workqueue(struct workqueue_struct *wq) 2667 { 2668 struct wq_flusher this_flusher = { 2669 .list = LIST_HEAD_INIT(this_flusher.list), 2670 .flush_color = -1, 2671 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 2672 }; 2673 int next_color; 2674 2675 if (WARN_ON(!wq_online)) 2676 return; 2677 2678 lock_map_acquire(&wq->lockdep_map); 2679 lock_map_release(&wq->lockdep_map); 2680 2681 mutex_lock(&wq->mutex); 2682 2683 /* 2684 * Start-to-wait phase 2685 */ 2686 next_color = work_next_color(wq->work_color); 2687 2688 if (next_color != wq->flush_color) { 2689 /* 2690 * Color space is not full. The current work_color 2691 * becomes our flush_color and work_color is advanced 2692 * by one. 2693 */ 2694 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2695 this_flusher.flush_color = wq->work_color; 2696 wq->work_color = next_color; 2697 2698 if (!wq->first_flusher) { 2699 /* no flush in progress, become the first flusher */ 2700 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2701 2702 wq->first_flusher = &this_flusher; 2703 2704 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2705 wq->work_color)) { 2706 /* nothing to flush, done */ 2707 wq->flush_color = next_color; 2708 wq->first_flusher = NULL; 2709 goto out_unlock; 2710 } 2711 } else { 2712 /* wait in queue */ 2713 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2714 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2715 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2716 } 2717 } else { 2718 /* 2719 * Oops, color space is full, wait on overflow queue. 2720 * The next flush completion will assign us 2721 * flush_color and transfer to flusher_queue. 2722 */ 2723 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2724 } 2725 2726 check_flush_dependency(wq, NULL); 2727 2728 mutex_unlock(&wq->mutex); 2729 2730 wait_for_completion(&this_flusher.done); 2731 2732 /* 2733 * Wake-up-and-cascade phase 2734 * 2735 * First flushers are responsible for cascading flushes and 2736 * handling overflow. Non-first flushers can simply return. 2737 */ 2738 if (wq->first_flusher != &this_flusher) 2739 return; 2740 2741 mutex_lock(&wq->mutex); 2742 2743 /* we might have raced, check again with mutex held */ 2744 if (wq->first_flusher != &this_flusher) 2745 goto out_unlock; 2746 2747 wq->first_flusher = NULL; 2748 2749 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2750 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2751 2752 while (true) { 2753 struct wq_flusher *next, *tmp; 2754 2755 /* complete all the flushers sharing the current flush color */ 2756 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2757 if (next->flush_color != wq->flush_color) 2758 break; 2759 list_del_init(&next->list); 2760 complete(&next->done); 2761 } 2762 2763 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2764 wq->flush_color != work_next_color(wq->work_color)); 2765 2766 /* this flush_color is finished, advance by one */ 2767 wq->flush_color = work_next_color(wq->flush_color); 2768 2769 /* one color has been freed, handle overflow queue */ 2770 if (!list_empty(&wq->flusher_overflow)) { 2771 /* 2772 * Assign the same color to all overflowed 2773 * flushers, advance work_color and append to 2774 * flusher_queue. This is the start-to-wait 2775 * phase for these overflowed flushers. 2776 */ 2777 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2778 tmp->flush_color = wq->work_color; 2779 2780 wq->work_color = work_next_color(wq->work_color); 2781 2782 list_splice_tail_init(&wq->flusher_overflow, 2783 &wq->flusher_queue); 2784 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2785 } 2786 2787 if (list_empty(&wq->flusher_queue)) { 2788 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2789 break; 2790 } 2791 2792 /* 2793 * Need to flush more colors. Make the next flusher 2794 * the new first flusher and arm pwqs. 2795 */ 2796 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2797 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2798 2799 list_del_init(&next->list); 2800 wq->first_flusher = next; 2801 2802 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2803 break; 2804 2805 /* 2806 * Meh... this color is already done, clear first 2807 * flusher and repeat cascading. 2808 */ 2809 wq->first_flusher = NULL; 2810 } 2811 2812 out_unlock: 2813 mutex_unlock(&wq->mutex); 2814 } 2815 EXPORT_SYMBOL(flush_workqueue); 2816 2817 /** 2818 * drain_workqueue - drain a workqueue 2819 * @wq: workqueue to drain 2820 * 2821 * Wait until the workqueue becomes empty. While draining is in progress, 2822 * only chain queueing is allowed. IOW, only currently pending or running 2823 * work items on @wq can queue further work items on it. @wq is flushed 2824 * repeatedly until it becomes empty. The number of flushing is determined 2825 * by the depth of chaining and should be relatively short. Whine if it 2826 * takes too long. 2827 */ 2828 void drain_workqueue(struct workqueue_struct *wq) 2829 { 2830 unsigned int flush_cnt = 0; 2831 struct pool_workqueue *pwq; 2832 2833 /* 2834 * __queue_work() needs to test whether there are drainers, is much 2835 * hotter than drain_workqueue() and already looks at @wq->flags. 2836 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2837 */ 2838 mutex_lock(&wq->mutex); 2839 if (!wq->nr_drainers++) 2840 wq->flags |= __WQ_DRAINING; 2841 mutex_unlock(&wq->mutex); 2842 reflush: 2843 flush_workqueue(wq); 2844 2845 mutex_lock(&wq->mutex); 2846 2847 for_each_pwq(pwq, wq) { 2848 bool drained; 2849 2850 spin_lock_irq(&pwq->pool->lock); 2851 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2852 spin_unlock_irq(&pwq->pool->lock); 2853 2854 if (drained) 2855 continue; 2856 2857 if (++flush_cnt == 10 || 2858 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2859 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2860 wq->name, flush_cnt); 2861 2862 mutex_unlock(&wq->mutex); 2863 goto reflush; 2864 } 2865 2866 if (!--wq->nr_drainers) 2867 wq->flags &= ~__WQ_DRAINING; 2868 mutex_unlock(&wq->mutex); 2869 } 2870 EXPORT_SYMBOL_GPL(drain_workqueue); 2871 2872 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 2873 bool from_cancel) 2874 { 2875 struct worker *worker = NULL; 2876 struct worker_pool *pool; 2877 struct pool_workqueue *pwq; 2878 2879 might_sleep(); 2880 2881 local_irq_disable(); 2882 pool = get_work_pool(work); 2883 if (!pool) { 2884 local_irq_enable(); 2885 return false; 2886 } 2887 2888 spin_lock(&pool->lock); 2889 /* see the comment in try_to_grab_pending() with the same code */ 2890 pwq = get_work_pwq(work); 2891 if (pwq) { 2892 if (unlikely(pwq->pool != pool)) 2893 goto already_gone; 2894 } else { 2895 worker = find_worker_executing_work(pool, work); 2896 if (!worker) 2897 goto already_gone; 2898 pwq = worker->current_pwq; 2899 } 2900 2901 check_flush_dependency(pwq->wq, work); 2902 2903 insert_wq_barrier(pwq, barr, work, worker); 2904 spin_unlock_irq(&pool->lock); 2905 2906 /* 2907 * Force a lock recursion deadlock when using flush_work() inside a 2908 * single-threaded or rescuer equipped workqueue. 2909 * 2910 * For single threaded workqueues the deadlock happens when the work 2911 * is after the work issuing the flush_work(). For rescuer equipped 2912 * workqueues the deadlock happens when the rescuer stalls, blocking 2913 * forward progress. 2914 */ 2915 if (!from_cancel && 2916 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) { 2917 lock_map_acquire(&pwq->wq->lockdep_map); 2918 lock_map_release(&pwq->wq->lockdep_map); 2919 } 2920 2921 return true; 2922 already_gone: 2923 spin_unlock_irq(&pool->lock); 2924 return false; 2925 } 2926 2927 static bool __flush_work(struct work_struct *work, bool from_cancel) 2928 { 2929 struct wq_barrier barr; 2930 2931 if (WARN_ON(!wq_online)) 2932 return false; 2933 2934 if (!from_cancel) { 2935 lock_map_acquire(&work->lockdep_map); 2936 lock_map_release(&work->lockdep_map); 2937 } 2938 2939 if (start_flush_work(work, &barr, from_cancel)) { 2940 wait_for_completion(&barr.done); 2941 destroy_work_on_stack(&barr.work); 2942 return true; 2943 } else { 2944 return false; 2945 } 2946 } 2947 2948 /** 2949 * flush_work - wait for a work to finish executing the last queueing instance 2950 * @work: the work to flush 2951 * 2952 * Wait until @work has finished execution. @work is guaranteed to be idle 2953 * on return if it hasn't been requeued since flush started. 2954 * 2955 * Return: 2956 * %true if flush_work() waited for the work to finish execution, 2957 * %false if it was already idle. 2958 */ 2959 bool flush_work(struct work_struct *work) 2960 { 2961 return __flush_work(work, false); 2962 } 2963 EXPORT_SYMBOL_GPL(flush_work); 2964 2965 struct cwt_wait { 2966 wait_queue_entry_t wait; 2967 struct work_struct *work; 2968 }; 2969 2970 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2971 { 2972 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 2973 2974 if (cwait->work != key) 2975 return 0; 2976 return autoremove_wake_function(wait, mode, sync, key); 2977 } 2978 2979 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 2980 { 2981 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 2982 unsigned long flags; 2983 int ret; 2984 2985 do { 2986 ret = try_to_grab_pending(work, is_dwork, &flags); 2987 /* 2988 * If someone else is already canceling, wait for it to 2989 * finish. flush_work() doesn't work for PREEMPT_NONE 2990 * because we may get scheduled between @work's completion 2991 * and the other canceling task resuming and clearing 2992 * CANCELING - flush_work() will return false immediately 2993 * as @work is no longer busy, try_to_grab_pending() will 2994 * return -ENOENT as @work is still being canceled and the 2995 * other canceling task won't be able to clear CANCELING as 2996 * we're hogging the CPU. 2997 * 2998 * Let's wait for completion using a waitqueue. As this 2999 * may lead to the thundering herd problem, use a custom 3000 * wake function which matches @work along with exclusive 3001 * wait and wakeup. 3002 */ 3003 if (unlikely(ret == -ENOENT)) { 3004 struct cwt_wait cwait; 3005 3006 init_wait(&cwait.wait); 3007 cwait.wait.func = cwt_wakefn; 3008 cwait.work = work; 3009 3010 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 3011 TASK_UNINTERRUPTIBLE); 3012 if (work_is_canceling(work)) 3013 schedule(); 3014 finish_wait(&cancel_waitq, &cwait.wait); 3015 } 3016 } while (unlikely(ret < 0)); 3017 3018 /* tell other tasks trying to grab @work to back off */ 3019 mark_work_canceling(work); 3020 local_irq_restore(flags); 3021 3022 /* 3023 * This allows canceling during early boot. We know that @work 3024 * isn't executing. 3025 */ 3026 if (wq_online) 3027 __flush_work(work, true); 3028 3029 clear_work_data(work); 3030 3031 /* 3032 * Paired with prepare_to_wait() above so that either 3033 * waitqueue_active() is visible here or !work_is_canceling() is 3034 * visible there. 3035 */ 3036 smp_mb(); 3037 if (waitqueue_active(&cancel_waitq)) 3038 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 3039 3040 return ret; 3041 } 3042 3043 /** 3044 * cancel_work_sync - cancel a work and wait for it to finish 3045 * @work: the work to cancel 3046 * 3047 * Cancel @work and wait for its execution to finish. This function 3048 * can be used even if the work re-queues itself or migrates to 3049 * another workqueue. On return from this function, @work is 3050 * guaranteed to be not pending or executing on any CPU. 3051 * 3052 * cancel_work_sync(&delayed_work->work) must not be used for 3053 * delayed_work's. Use cancel_delayed_work_sync() instead. 3054 * 3055 * The caller must ensure that the workqueue on which @work was last 3056 * queued can't be destroyed before this function returns. 3057 * 3058 * Return: 3059 * %true if @work was pending, %false otherwise. 3060 */ 3061 bool cancel_work_sync(struct work_struct *work) 3062 { 3063 return __cancel_work_timer(work, false); 3064 } 3065 EXPORT_SYMBOL_GPL(cancel_work_sync); 3066 3067 /** 3068 * flush_delayed_work - wait for a dwork to finish executing the last queueing 3069 * @dwork: the delayed work to flush 3070 * 3071 * Delayed timer is cancelled and the pending work is queued for 3072 * immediate execution. Like flush_work(), this function only 3073 * considers the last queueing instance of @dwork. 3074 * 3075 * Return: 3076 * %true if flush_work() waited for the work to finish execution, 3077 * %false if it was already idle. 3078 */ 3079 bool flush_delayed_work(struct delayed_work *dwork) 3080 { 3081 local_irq_disable(); 3082 if (del_timer_sync(&dwork->timer)) 3083 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 3084 local_irq_enable(); 3085 return flush_work(&dwork->work); 3086 } 3087 EXPORT_SYMBOL(flush_delayed_work); 3088 3089 /** 3090 * flush_rcu_work - wait for a rwork to finish executing the last queueing 3091 * @rwork: the rcu work to flush 3092 * 3093 * Return: 3094 * %true if flush_rcu_work() waited for the work to finish execution, 3095 * %false if it was already idle. 3096 */ 3097 bool flush_rcu_work(struct rcu_work *rwork) 3098 { 3099 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 3100 rcu_barrier(); 3101 flush_work(&rwork->work); 3102 return true; 3103 } else { 3104 return flush_work(&rwork->work); 3105 } 3106 } 3107 EXPORT_SYMBOL(flush_rcu_work); 3108 3109 static bool __cancel_work(struct work_struct *work, bool is_dwork) 3110 { 3111 unsigned long flags; 3112 int ret; 3113 3114 do { 3115 ret = try_to_grab_pending(work, is_dwork, &flags); 3116 } while (unlikely(ret == -EAGAIN)); 3117 3118 if (unlikely(ret < 0)) 3119 return false; 3120 3121 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 3122 local_irq_restore(flags); 3123 return ret; 3124 } 3125 3126 /** 3127 * cancel_delayed_work - cancel a delayed work 3128 * @dwork: delayed_work to cancel 3129 * 3130 * Kill off a pending delayed_work. 3131 * 3132 * Return: %true if @dwork was pending and canceled; %false if it wasn't 3133 * pending. 3134 * 3135 * Note: 3136 * The work callback function may still be running on return, unless 3137 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 3138 * use cancel_delayed_work_sync() to wait on it. 3139 * 3140 * This function is safe to call from any context including IRQ handler. 3141 */ 3142 bool cancel_delayed_work(struct delayed_work *dwork) 3143 { 3144 return __cancel_work(&dwork->work, true); 3145 } 3146 EXPORT_SYMBOL(cancel_delayed_work); 3147 3148 /** 3149 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3150 * @dwork: the delayed work cancel 3151 * 3152 * This is cancel_work_sync() for delayed works. 3153 * 3154 * Return: 3155 * %true if @dwork was pending, %false otherwise. 3156 */ 3157 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3158 { 3159 return __cancel_work_timer(&dwork->work, true); 3160 } 3161 EXPORT_SYMBOL(cancel_delayed_work_sync); 3162 3163 /** 3164 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3165 * @func: the function to call 3166 * 3167 * schedule_on_each_cpu() executes @func on each online CPU using the 3168 * system workqueue and blocks until all CPUs have completed. 3169 * schedule_on_each_cpu() is very slow. 3170 * 3171 * Return: 3172 * 0 on success, -errno on failure. 3173 */ 3174 int schedule_on_each_cpu(work_func_t func) 3175 { 3176 int cpu; 3177 struct work_struct __percpu *works; 3178 3179 works = alloc_percpu(struct work_struct); 3180 if (!works) 3181 return -ENOMEM; 3182 3183 get_online_cpus(); 3184 3185 for_each_online_cpu(cpu) { 3186 struct work_struct *work = per_cpu_ptr(works, cpu); 3187 3188 INIT_WORK(work, func); 3189 schedule_work_on(cpu, work); 3190 } 3191 3192 for_each_online_cpu(cpu) 3193 flush_work(per_cpu_ptr(works, cpu)); 3194 3195 put_online_cpus(); 3196 free_percpu(works); 3197 return 0; 3198 } 3199 3200 /** 3201 * execute_in_process_context - reliably execute the routine with user context 3202 * @fn: the function to execute 3203 * @ew: guaranteed storage for the execute work structure (must 3204 * be available when the work executes) 3205 * 3206 * Executes the function immediately if process context is available, 3207 * otherwise schedules the function for delayed execution. 3208 * 3209 * Return: 0 - function was executed 3210 * 1 - function was scheduled for execution 3211 */ 3212 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3213 { 3214 if (!in_interrupt()) { 3215 fn(&ew->work); 3216 return 0; 3217 } 3218 3219 INIT_WORK(&ew->work, fn); 3220 schedule_work(&ew->work); 3221 3222 return 1; 3223 } 3224 EXPORT_SYMBOL_GPL(execute_in_process_context); 3225 3226 /** 3227 * free_workqueue_attrs - free a workqueue_attrs 3228 * @attrs: workqueue_attrs to free 3229 * 3230 * Undo alloc_workqueue_attrs(). 3231 */ 3232 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3233 { 3234 if (attrs) { 3235 free_cpumask_var(attrs->cpumask); 3236 kfree(attrs); 3237 } 3238 } 3239 3240 /** 3241 * alloc_workqueue_attrs - allocate a workqueue_attrs 3242 * @gfp_mask: allocation mask to use 3243 * 3244 * Allocate a new workqueue_attrs, initialize with default settings and 3245 * return it. 3246 * 3247 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3248 */ 3249 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask) 3250 { 3251 struct workqueue_attrs *attrs; 3252 3253 attrs = kzalloc(sizeof(*attrs), gfp_mask); 3254 if (!attrs) 3255 goto fail; 3256 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask)) 3257 goto fail; 3258 3259 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3260 return attrs; 3261 fail: 3262 free_workqueue_attrs(attrs); 3263 return NULL; 3264 } 3265 3266 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3267 const struct workqueue_attrs *from) 3268 { 3269 to->nice = from->nice; 3270 cpumask_copy(to->cpumask, from->cpumask); 3271 /* 3272 * Unlike hash and equality test, this function doesn't ignore 3273 * ->no_numa as it is used for both pool and wq attrs. Instead, 3274 * get_unbound_pool() explicitly clears ->no_numa after copying. 3275 */ 3276 to->no_numa = from->no_numa; 3277 } 3278 3279 /* hash value of the content of @attr */ 3280 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3281 { 3282 u32 hash = 0; 3283 3284 hash = jhash_1word(attrs->nice, hash); 3285 hash = jhash(cpumask_bits(attrs->cpumask), 3286 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3287 return hash; 3288 } 3289 3290 /* content equality test */ 3291 static bool wqattrs_equal(const struct workqueue_attrs *a, 3292 const struct workqueue_attrs *b) 3293 { 3294 if (a->nice != b->nice) 3295 return false; 3296 if (!cpumask_equal(a->cpumask, b->cpumask)) 3297 return false; 3298 return true; 3299 } 3300 3301 /** 3302 * init_worker_pool - initialize a newly zalloc'd worker_pool 3303 * @pool: worker_pool to initialize 3304 * 3305 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3306 * 3307 * Return: 0 on success, -errno on failure. Even on failure, all fields 3308 * inside @pool proper are initialized and put_unbound_pool() can be called 3309 * on @pool safely to release it. 3310 */ 3311 static int init_worker_pool(struct worker_pool *pool) 3312 { 3313 spin_lock_init(&pool->lock); 3314 pool->id = -1; 3315 pool->cpu = -1; 3316 pool->node = NUMA_NO_NODE; 3317 pool->flags |= POOL_DISASSOCIATED; 3318 pool->watchdog_ts = jiffies; 3319 INIT_LIST_HEAD(&pool->worklist); 3320 INIT_LIST_HEAD(&pool->idle_list); 3321 hash_init(pool->busy_hash); 3322 3323 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 3324 3325 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 3326 3327 INIT_LIST_HEAD(&pool->workers); 3328 3329 ida_init(&pool->worker_ida); 3330 INIT_HLIST_NODE(&pool->hash_node); 3331 pool->refcnt = 1; 3332 3333 /* shouldn't fail above this point */ 3334 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL); 3335 if (!pool->attrs) 3336 return -ENOMEM; 3337 return 0; 3338 } 3339 3340 static void rcu_free_wq(struct rcu_head *rcu) 3341 { 3342 struct workqueue_struct *wq = 3343 container_of(rcu, struct workqueue_struct, rcu); 3344 3345 if (!(wq->flags & WQ_UNBOUND)) 3346 free_percpu(wq->cpu_pwqs); 3347 else 3348 free_workqueue_attrs(wq->unbound_attrs); 3349 3350 kfree(wq->rescuer); 3351 kfree(wq); 3352 } 3353 3354 static void rcu_free_pool(struct rcu_head *rcu) 3355 { 3356 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3357 3358 ida_destroy(&pool->worker_ida); 3359 free_workqueue_attrs(pool->attrs); 3360 kfree(pool); 3361 } 3362 3363 /** 3364 * put_unbound_pool - put a worker_pool 3365 * @pool: worker_pool to put 3366 * 3367 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU 3368 * safe manner. get_unbound_pool() calls this function on its failure path 3369 * and this function should be able to release pools which went through, 3370 * successfully or not, init_worker_pool(). 3371 * 3372 * Should be called with wq_pool_mutex held. 3373 */ 3374 static void put_unbound_pool(struct worker_pool *pool) 3375 { 3376 DECLARE_COMPLETION_ONSTACK(detach_completion); 3377 struct worker *worker; 3378 3379 lockdep_assert_held(&wq_pool_mutex); 3380 3381 if (--pool->refcnt) 3382 return; 3383 3384 /* sanity checks */ 3385 if (WARN_ON(!(pool->cpu < 0)) || 3386 WARN_ON(!list_empty(&pool->worklist))) 3387 return; 3388 3389 /* release id and unhash */ 3390 if (pool->id >= 0) 3391 idr_remove(&worker_pool_idr, pool->id); 3392 hash_del(&pool->hash_node); 3393 3394 /* 3395 * Become the manager and destroy all workers. This prevents 3396 * @pool's workers from blocking on attach_mutex. We're the last 3397 * manager and @pool gets freed with the flag set. 3398 */ 3399 spin_lock_irq(&pool->lock); 3400 wait_event_lock_irq(wq_manager_wait, 3401 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock); 3402 pool->flags |= POOL_MANAGER_ACTIVE; 3403 3404 while ((worker = first_idle_worker(pool))) 3405 destroy_worker(worker); 3406 WARN_ON(pool->nr_workers || pool->nr_idle); 3407 spin_unlock_irq(&pool->lock); 3408 3409 mutex_lock(&wq_pool_attach_mutex); 3410 if (!list_empty(&pool->workers)) 3411 pool->detach_completion = &detach_completion; 3412 mutex_unlock(&wq_pool_attach_mutex); 3413 3414 if (pool->detach_completion) 3415 wait_for_completion(pool->detach_completion); 3416 3417 /* shut down the timers */ 3418 del_timer_sync(&pool->idle_timer); 3419 del_timer_sync(&pool->mayday_timer); 3420 3421 /* sched-RCU protected to allow dereferences from get_work_pool() */ 3422 call_rcu(&pool->rcu, rcu_free_pool); 3423 } 3424 3425 /** 3426 * get_unbound_pool - get a worker_pool with the specified attributes 3427 * @attrs: the attributes of the worker_pool to get 3428 * 3429 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3430 * reference count and return it. If there already is a matching 3431 * worker_pool, it will be used; otherwise, this function attempts to 3432 * create a new one. 3433 * 3434 * Should be called with wq_pool_mutex held. 3435 * 3436 * Return: On success, a worker_pool with the same attributes as @attrs. 3437 * On failure, %NULL. 3438 */ 3439 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3440 { 3441 u32 hash = wqattrs_hash(attrs); 3442 struct worker_pool *pool; 3443 int node; 3444 int target_node = NUMA_NO_NODE; 3445 3446 lockdep_assert_held(&wq_pool_mutex); 3447 3448 /* do we already have a matching pool? */ 3449 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3450 if (wqattrs_equal(pool->attrs, attrs)) { 3451 pool->refcnt++; 3452 return pool; 3453 } 3454 } 3455 3456 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3457 if (wq_numa_enabled) { 3458 for_each_node(node) { 3459 if (cpumask_subset(attrs->cpumask, 3460 wq_numa_possible_cpumask[node])) { 3461 target_node = node; 3462 break; 3463 } 3464 } 3465 } 3466 3467 /* nope, create a new one */ 3468 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3469 if (!pool || init_worker_pool(pool) < 0) 3470 goto fail; 3471 3472 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3473 copy_workqueue_attrs(pool->attrs, attrs); 3474 pool->node = target_node; 3475 3476 /* 3477 * no_numa isn't a worker_pool attribute, always clear it. See 3478 * 'struct workqueue_attrs' comments for detail. 3479 */ 3480 pool->attrs->no_numa = false; 3481 3482 if (worker_pool_assign_id(pool) < 0) 3483 goto fail; 3484 3485 /* create and start the initial worker */ 3486 if (wq_online && !create_worker(pool)) 3487 goto fail; 3488 3489 /* install */ 3490 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3491 3492 return pool; 3493 fail: 3494 if (pool) 3495 put_unbound_pool(pool); 3496 return NULL; 3497 } 3498 3499 static void rcu_free_pwq(struct rcu_head *rcu) 3500 { 3501 kmem_cache_free(pwq_cache, 3502 container_of(rcu, struct pool_workqueue, rcu)); 3503 } 3504 3505 /* 3506 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3507 * and needs to be destroyed. 3508 */ 3509 static void pwq_unbound_release_workfn(struct work_struct *work) 3510 { 3511 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3512 unbound_release_work); 3513 struct workqueue_struct *wq = pwq->wq; 3514 struct worker_pool *pool = pwq->pool; 3515 bool is_last; 3516 3517 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3518 return; 3519 3520 mutex_lock(&wq->mutex); 3521 list_del_rcu(&pwq->pwqs_node); 3522 is_last = list_empty(&wq->pwqs); 3523 mutex_unlock(&wq->mutex); 3524 3525 mutex_lock(&wq_pool_mutex); 3526 put_unbound_pool(pool); 3527 mutex_unlock(&wq_pool_mutex); 3528 3529 call_rcu(&pwq->rcu, rcu_free_pwq); 3530 3531 /* 3532 * If we're the last pwq going away, @wq is already dead and no one 3533 * is gonna access it anymore. Schedule RCU free. 3534 */ 3535 if (is_last) 3536 call_rcu(&wq->rcu, rcu_free_wq); 3537 } 3538 3539 /** 3540 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3541 * @pwq: target pool_workqueue 3542 * 3543 * If @pwq isn't freezing, set @pwq->max_active to the associated 3544 * workqueue's saved_max_active and activate delayed work items 3545 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3546 */ 3547 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3548 { 3549 struct workqueue_struct *wq = pwq->wq; 3550 bool freezable = wq->flags & WQ_FREEZABLE; 3551 unsigned long flags; 3552 3553 /* for @wq->saved_max_active */ 3554 lockdep_assert_held(&wq->mutex); 3555 3556 /* fast exit for non-freezable wqs */ 3557 if (!freezable && pwq->max_active == wq->saved_max_active) 3558 return; 3559 3560 /* this function can be called during early boot w/ irq disabled */ 3561 spin_lock_irqsave(&pwq->pool->lock, flags); 3562 3563 /* 3564 * During [un]freezing, the caller is responsible for ensuring that 3565 * this function is called at least once after @workqueue_freezing 3566 * is updated and visible. 3567 */ 3568 if (!freezable || !workqueue_freezing) { 3569 pwq->max_active = wq->saved_max_active; 3570 3571 while (!list_empty(&pwq->delayed_works) && 3572 pwq->nr_active < pwq->max_active) 3573 pwq_activate_first_delayed(pwq); 3574 3575 /* 3576 * Need to kick a worker after thawed or an unbound wq's 3577 * max_active is bumped. It's a slow path. Do it always. 3578 */ 3579 wake_up_worker(pwq->pool); 3580 } else { 3581 pwq->max_active = 0; 3582 } 3583 3584 spin_unlock_irqrestore(&pwq->pool->lock, flags); 3585 } 3586 3587 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3588 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3589 struct worker_pool *pool) 3590 { 3591 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3592 3593 memset(pwq, 0, sizeof(*pwq)); 3594 3595 pwq->pool = pool; 3596 pwq->wq = wq; 3597 pwq->flush_color = -1; 3598 pwq->refcnt = 1; 3599 INIT_LIST_HEAD(&pwq->delayed_works); 3600 INIT_LIST_HEAD(&pwq->pwqs_node); 3601 INIT_LIST_HEAD(&pwq->mayday_node); 3602 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3603 } 3604 3605 /* sync @pwq with the current state of its associated wq and link it */ 3606 static void link_pwq(struct pool_workqueue *pwq) 3607 { 3608 struct workqueue_struct *wq = pwq->wq; 3609 3610 lockdep_assert_held(&wq->mutex); 3611 3612 /* may be called multiple times, ignore if already linked */ 3613 if (!list_empty(&pwq->pwqs_node)) 3614 return; 3615 3616 /* set the matching work_color */ 3617 pwq->work_color = wq->work_color; 3618 3619 /* sync max_active to the current setting */ 3620 pwq_adjust_max_active(pwq); 3621 3622 /* link in @pwq */ 3623 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3624 } 3625 3626 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3627 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3628 const struct workqueue_attrs *attrs) 3629 { 3630 struct worker_pool *pool; 3631 struct pool_workqueue *pwq; 3632 3633 lockdep_assert_held(&wq_pool_mutex); 3634 3635 pool = get_unbound_pool(attrs); 3636 if (!pool) 3637 return NULL; 3638 3639 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3640 if (!pwq) { 3641 put_unbound_pool(pool); 3642 return NULL; 3643 } 3644 3645 init_pwq(pwq, wq, pool); 3646 return pwq; 3647 } 3648 3649 /** 3650 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3651 * @attrs: the wq_attrs of the default pwq of the target workqueue 3652 * @node: the target NUMA node 3653 * @cpu_going_down: if >= 0, the CPU to consider as offline 3654 * @cpumask: outarg, the resulting cpumask 3655 * 3656 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3657 * @cpu_going_down is >= 0, that cpu is considered offline during 3658 * calculation. The result is stored in @cpumask. 3659 * 3660 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3661 * enabled and @node has online CPUs requested by @attrs, the returned 3662 * cpumask is the intersection of the possible CPUs of @node and 3663 * @attrs->cpumask. 3664 * 3665 * The caller is responsible for ensuring that the cpumask of @node stays 3666 * stable. 3667 * 3668 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3669 * %false if equal. 3670 */ 3671 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3672 int cpu_going_down, cpumask_t *cpumask) 3673 { 3674 if (!wq_numa_enabled || attrs->no_numa) 3675 goto use_dfl; 3676 3677 /* does @node have any online CPUs @attrs wants? */ 3678 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3679 if (cpu_going_down >= 0) 3680 cpumask_clear_cpu(cpu_going_down, cpumask); 3681 3682 if (cpumask_empty(cpumask)) 3683 goto use_dfl; 3684 3685 /* yeap, return possible CPUs in @node that @attrs wants */ 3686 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3687 3688 if (cpumask_empty(cpumask)) { 3689 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 3690 "possible intersect\n"); 3691 return false; 3692 } 3693 3694 return !cpumask_equal(cpumask, attrs->cpumask); 3695 3696 use_dfl: 3697 cpumask_copy(cpumask, attrs->cpumask); 3698 return false; 3699 } 3700 3701 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3702 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3703 int node, 3704 struct pool_workqueue *pwq) 3705 { 3706 struct pool_workqueue *old_pwq; 3707 3708 lockdep_assert_held(&wq_pool_mutex); 3709 lockdep_assert_held(&wq->mutex); 3710 3711 /* link_pwq() can handle duplicate calls */ 3712 link_pwq(pwq); 3713 3714 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3715 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3716 return old_pwq; 3717 } 3718 3719 /* context to store the prepared attrs & pwqs before applying */ 3720 struct apply_wqattrs_ctx { 3721 struct workqueue_struct *wq; /* target workqueue */ 3722 struct workqueue_attrs *attrs; /* attrs to apply */ 3723 struct list_head list; /* queued for batching commit */ 3724 struct pool_workqueue *dfl_pwq; 3725 struct pool_workqueue *pwq_tbl[]; 3726 }; 3727 3728 /* free the resources after success or abort */ 3729 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 3730 { 3731 if (ctx) { 3732 int node; 3733 3734 for_each_node(node) 3735 put_pwq_unlocked(ctx->pwq_tbl[node]); 3736 put_pwq_unlocked(ctx->dfl_pwq); 3737 3738 free_workqueue_attrs(ctx->attrs); 3739 3740 kfree(ctx); 3741 } 3742 } 3743 3744 /* allocate the attrs and pwqs for later installation */ 3745 static struct apply_wqattrs_ctx * 3746 apply_wqattrs_prepare(struct workqueue_struct *wq, 3747 const struct workqueue_attrs *attrs) 3748 { 3749 struct apply_wqattrs_ctx *ctx; 3750 struct workqueue_attrs *new_attrs, *tmp_attrs; 3751 int node; 3752 3753 lockdep_assert_held(&wq_pool_mutex); 3754 3755 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL); 3756 3757 new_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3758 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3759 if (!ctx || !new_attrs || !tmp_attrs) 3760 goto out_free; 3761 3762 /* 3763 * Calculate the attrs of the default pwq. 3764 * If the user configured cpumask doesn't overlap with the 3765 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 3766 */ 3767 copy_workqueue_attrs(new_attrs, attrs); 3768 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask); 3769 if (unlikely(cpumask_empty(new_attrs->cpumask))) 3770 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask); 3771 3772 /* 3773 * We may create multiple pwqs with differing cpumasks. Make a 3774 * copy of @new_attrs which will be modified and used to obtain 3775 * pools. 3776 */ 3777 copy_workqueue_attrs(tmp_attrs, new_attrs); 3778 3779 /* 3780 * If something goes wrong during CPU up/down, we'll fall back to 3781 * the default pwq covering whole @attrs->cpumask. Always create 3782 * it even if we don't use it immediately. 3783 */ 3784 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3785 if (!ctx->dfl_pwq) 3786 goto out_free; 3787 3788 for_each_node(node) { 3789 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 3790 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3791 if (!ctx->pwq_tbl[node]) 3792 goto out_free; 3793 } else { 3794 ctx->dfl_pwq->refcnt++; 3795 ctx->pwq_tbl[node] = ctx->dfl_pwq; 3796 } 3797 } 3798 3799 /* save the user configured attrs and sanitize it. */ 3800 copy_workqueue_attrs(new_attrs, attrs); 3801 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3802 ctx->attrs = new_attrs; 3803 3804 ctx->wq = wq; 3805 free_workqueue_attrs(tmp_attrs); 3806 return ctx; 3807 3808 out_free: 3809 free_workqueue_attrs(tmp_attrs); 3810 free_workqueue_attrs(new_attrs); 3811 apply_wqattrs_cleanup(ctx); 3812 return NULL; 3813 } 3814 3815 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 3816 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 3817 { 3818 int node; 3819 3820 /* all pwqs have been created successfully, let's install'em */ 3821 mutex_lock(&ctx->wq->mutex); 3822 3823 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 3824 3825 /* save the previous pwq and install the new one */ 3826 for_each_node(node) 3827 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 3828 ctx->pwq_tbl[node]); 3829 3830 /* @dfl_pwq might not have been used, ensure it's linked */ 3831 link_pwq(ctx->dfl_pwq); 3832 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 3833 3834 mutex_unlock(&ctx->wq->mutex); 3835 } 3836 3837 static void apply_wqattrs_lock(void) 3838 { 3839 /* CPUs should stay stable across pwq creations and installations */ 3840 get_online_cpus(); 3841 mutex_lock(&wq_pool_mutex); 3842 } 3843 3844 static void apply_wqattrs_unlock(void) 3845 { 3846 mutex_unlock(&wq_pool_mutex); 3847 put_online_cpus(); 3848 } 3849 3850 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 3851 const struct workqueue_attrs *attrs) 3852 { 3853 struct apply_wqattrs_ctx *ctx; 3854 3855 /* only unbound workqueues can change attributes */ 3856 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 3857 return -EINVAL; 3858 3859 /* creating multiple pwqs breaks ordering guarantee */ 3860 if (!list_empty(&wq->pwqs)) { 3861 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 3862 return -EINVAL; 3863 3864 wq->flags &= ~__WQ_ORDERED; 3865 } 3866 3867 ctx = apply_wqattrs_prepare(wq, attrs); 3868 if (!ctx) 3869 return -ENOMEM; 3870 3871 /* the ctx has been prepared successfully, let's commit it */ 3872 apply_wqattrs_commit(ctx); 3873 apply_wqattrs_cleanup(ctx); 3874 3875 return 0; 3876 } 3877 3878 /** 3879 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 3880 * @wq: the target workqueue 3881 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 3882 * 3883 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 3884 * machines, this function maps a separate pwq to each NUMA node with 3885 * possibles CPUs in @attrs->cpumask so that work items are affine to the 3886 * NUMA node it was issued on. Older pwqs are released as in-flight work 3887 * items finish. Note that a work item which repeatedly requeues itself 3888 * back-to-back will stay on its current pwq. 3889 * 3890 * Performs GFP_KERNEL allocations. 3891 * 3892 * Return: 0 on success and -errno on failure. 3893 */ 3894 int apply_workqueue_attrs(struct workqueue_struct *wq, 3895 const struct workqueue_attrs *attrs) 3896 { 3897 int ret; 3898 3899 apply_wqattrs_lock(); 3900 ret = apply_workqueue_attrs_locked(wq, attrs); 3901 apply_wqattrs_unlock(); 3902 3903 return ret; 3904 } 3905 EXPORT_SYMBOL_GPL(apply_workqueue_attrs); 3906 3907 /** 3908 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 3909 * @wq: the target workqueue 3910 * @cpu: the CPU coming up or going down 3911 * @online: whether @cpu is coming up or going down 3912 * 3913 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 3914 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 3915 * @wq accordingly. 3916 * 3917 * If NUMA affinity can't be adjusted due to memory allocation failure, it 3918 * falls back to @wq->dfl_pwq which may not be optimal but is always 3919 * correct. 3920 * 3921 * Note that when the last allowed CPU of a NUMA node goes offline for a 3922 * workqueue with a cpumask spanning multiple nodes, the workers which were 3923 * already executing the work items for the workqueue will lose their CPU 3924 * affinity and may execute on any CPU. This is similar to how per-cpu 3925 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 3926 * affinity, it's the user's responsibility to flush the work item from 3927 * CPU_DOWN_PREPARE. 3928 */ 3929 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 3930 bool online) 3931 { 3932 int node = cpu_to_node(cpu); 3933 int cpu_off = online ? -1 : cpu; 3934 struct pool_workqueue *old_pwq = NULL, *pwq; 3935 struct workqueue_attrs *target_attrs; 3936 cpumask_t *cpumask; 3937 3938 lockdep_assert_held(&wq_pool_mutex); 3939 3940 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 3941 wq->unbound_attrs->no_numa) 3942 return; 3943 3944 /* 3945 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 3946 * Let's use a preallocated one. The following buf is protected by 3947 * CPU hotplug exclusion. 3948 */ 3949 target_attrs = wq_update_unbound_numa_attrs_buf; 3950 cpumask = target_attrs->cpumask; 3951 3952 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 3953 pwq = unbound_pwq_by_node(wq, node); 3954 3955 /* 3956 * Let's determine what needs to be done. If the target cpumask is 3957 * different from the default pwq's, we need to compare it to @pwq's 3958 * and create a new one if they don't match. If the target cpumask 3959 * equals the default pwq's, the default pwq should be used. 3960 */ 3961 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 3962 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 3963 return; 3964 } else { 3965 goto use_dfl_pwq; 3966 } 3967 3968 /* create a new pwq */ 3969 pwq = alloc_unbound_pwq(wq, target_attrs); 3970 if (!pwq) { 3971 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 3972 wq->name); 3973 goto use_dfl_pwq; 3974 } 3975 3976 /* Install the new pwq. */ 3977 mutex_lock(&wq->mutex); 3978 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 3979 goto out_unlock; 3980 3981 use_dfl_pwq: 3982 mutex_lock(&wq->mutex); 3983 spin_lock_irq(&wq->dfl_pwq->pool->lock); 3984 get_pwq(wq->dfl_pwq); 3985 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 3986 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 3987 out_unlock: 3988 mutex_unlock(&wq->mutex); 3989 put_pwq_unlocked(old_pwq); 3990 } 3991 3992 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 3993 { 3994 bool highpri = wq->flags & WQ_HIGHPRI; 3995 int cpu, ret; 3996 3997 if (!(wq->flags & WQ_UNBOUND)) { 3998 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 3999 if (!wq->cpu_pwqs) 4000 return -ENOMEM; 4001 4002 for_each_possible_cpu(cpu) { 4003 struct pool_workqueue *pwq = 4004 per_cpu_ptr(wq->cpu_pwqs, cpu); 4005 struct worker_pool *cpu_pools = 4006 per_cpu(cpu_worker_pools, cpu); 4007 4008 init_pwq(pwq, wq, &cpu_pools[highpri]); 4009 4010 mutex_lock(&wq->mutex); 4011 link_pwq(pwq); 4012 mutex_unlock(&wq->mutex); 4013 } 4014 return 0; 4015 } else if (wq->flags & __WQ_ORDERED) { 4016 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 4017 /* there should only be single pwq for ordering guarantee */ 4018 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 4019 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 4020 "ordering guarantee broken for workqueue %s\n", wq->name); 4021 return ret; 4022 } else { 4023 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4024 } 4025 } 4026 4027 static int wq_clamp_max_active(int max_active, unsigned int flags, 4028 const char *name) 4029 { 4030 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 4031 4032 if (max_active < 1 || max_active > lim) 4033 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4034 max_active, name, 1, lim); 4035 4036 return clamp_val(max_active, 1, lim); 4037 } 4038 4039 /* 4040 * Workqueues which may be used during memory reclaim should have a rescuer 4041 * to guarantee forward progress. 4042 */ 4043 static int init_rescuer(struct workqueue_struct *wq) 4044 { 4045 struct worker *rescuer; 4046 int ret; 4047 4048 if (!(wq->flags & WQ_MEM_RECLAIM)) 4049 return 0; 4050 4051 rescuer = alloc_worker(NUMA_NO_NODE); 4052 if (!rescuer) 4053 return -ENOMEM; 4054 4055 rescuer->rescue_wq = wq; 4056 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name); 4057 ret = PTR_ERR_OR_ZERO(rescuer->task); 4058 if (ret) { 4059 kfree(rescuer); 4060 return ret; 4061 } 4062 4063 wq->rescuer = rescuer; 4064 kthread_bind_mask(rescuer->task, cpu_possible_mask); 4065 wake_up_process(rescuer->task); 4066 4067 return 0; 4068 } 4069 4070 struct workqueue_struct *__alloc_workqueue_key(const char *fmt, 4071 unsigned int flags, 4072 int max_active, 4073 struct lock_class_key *key, 4074 const char *lock_name, ...) 4075 { 4076 size_t tbl_size = 0; 4077 va_list args; 4078 struct workqueue_struct *wq; 4079 struct pool_workqueue *pwq; 4080 4081 /* 4082 * Unbound && max_active == 1 used to imply ordered, which is no 4083 * longer the case on NUMA machines due to per-node pools. While 4084 * alloc_ordered_workqueue() is the right way to create an ordered 4085 * workqueue, keep the previous behavior to avoid subtle breakages 4086 * on NUMA. 4087 */ 4088 if ((flags & WQ_UNBOUND) && max_active == 1) 4089 flags |= __WQ_ORDERED; 4090 4091 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4092 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4093 flags |= WQ_UNBOUND; 4094 4095 /* allocate wq and format name */ 4096 if (flags & WQ_UNBOUND) 4097 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 4098 4099 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4100 if (!wq) 4101 return NULL; 4102 4103 if (flags & WQ_UNBOUND) { 4104 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL); 4105 if (!wq->unbound_attrs) 4106 goto err_free_wq; 4107 } 4108 4109 va_start(args, lock_name); 4110 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4111 va_end(args); 4112 4113 max_active = max_active ?: WQ_DFL_ACTIVE; 4114 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4115 4116 /* init wq */ 4117 wq->flags = flags; 4118 wq->saved_max_active = max_active; 4119 mutex_init(&wq->mutex); 4120 atomic_set(&wq->nr_pwqs_to_flush, 0); 4121 INIT_LIST_HEAD(&wq->pwqs); 4122 INIT_LIST_HEAD(&wq->flusher_queue); 4123 INIT_LIST_HEAD(&wq->flusher_overflow); 4124 INIT_LIST_HEAD(&wq->maydays); 4125 4126 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 4127 INIT_LIST_HEAD(&wq->list); 4128 4129 if (alloc_and_link_pwqs(wq) < 0) 4130 goto err_free_wq; 4131 4132 if (wq_online && init_rescuer(wq) < 0) 4133 goto err_destroy; 4134 4135 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4136 goto err_destroy; 4137 4138 /* 4139 * wq_pool_mutex protects global freeze state and workqueues list. 4140 * Grab it, adjust max_active and add the new @wq to workqueues 4141 * list. 4142 */ 4143 mutex_lock(&wq_pool_mutex); 4144 4145 mutex_lock(&wq->mutex); 4146 for_each_pwq(pwq, wq) 4147 pwq_adjust_max_active(pwq); 4148 mutex_unlock(&wq->mutex); 4149 4150 list_add_tail_rcu(&wq->list, &workqueues); 4151 4152 mutex_unlock(&wq_pool_mutex); 4153 4154 return wq; 4155 4156 err_free_wq: 4157 free_workqueue_attrs(wq->unbound_attrs); 4158 kfree(wq); 4159 return NULL; 4160 err_destroy: 4161 destroy_workqueue(wq); 4162 return NULL; 4163 } 4164 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 4165 4166 /** 4167 * destroy_workqueue - safely terminate a workqueue 4168 * @wq: target workqueue 4169 * 4170 * Safely destroy a workqueue. All work currently pending will be done first. 4171 */ 4172 void destroy_workqueue(struct workqueue_struct *wq) 4173 { 4174 struct pool_workqueue *pwq; 4175 int node; 4176 4177 /* drain it before proceeding with destruction */ 4178 drain_workqueue(wq); 4179 4180 /* sanity checks */ 4181 mutex_lock(&wq->mutex); 4182 for_each_pwq(pwq, wq) { 4183 int i; 4184 4185 for (i = 0; i < WORK_NR_COLORS; i++) { 4186 if (WARN_ON(pwq->nr_in_flight[i])) { 4187 mutex_unlock(&wq->mutex); 4188 show_workqueue_state(); 4189 return; 4190 } 4191 } 4192 4193 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) || 4194 WARN_ON(pwq->nr_active) || 4195 WARN_ON(!list_empty(&pwq->delayed_works))) { 4196 mutex_unlock(&wq->mutex); 4197 show_workqueue_state(); 4198 return; 4199 } 4200 } 4201 mutex_unlock(&wq->mutex); 4202 4203 /* 4204 * wq list is used to freeze wq, remove from list after 4205 * flushing is complete in case freeze races us. 4206 */ 4207 mutex_lock(&wq_pool_mutex); 4208 list_del_rcu(&wq->list); 4209 mutex_unlock(&wq_pool_mutex); 4210 4211 workqueue_sysfs_unregister(wq); 4212 4213 if (wq->rescuer) 4214 kthread_stop(wq->rescuer->task); 4215 4216 if (!(wq->flags & WQ_UNBOUND)) { 4217 /* 4218 * The base ref is never dropped on per-cpu pwqs. Directly 4219 * schedule RCU free. 4220 */ 4221 call_rcu(&wq->rcu, rcu_free_wq); 4222 } else { 4223 /* 4224 * We're the sole accessor of @wq at this point. Directly 4225 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4226 * @wq will be freed when the last pwq is released. 4227 */ 4228 for_each_node(node) { 4229 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4230 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4231 put_pwq_unlocked(pwq); 4232 } 4233 4234 /* 4235 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4236 * put. Don't access it afterwards. 4237 */ 4238 pwq = wq->dfl_pwq; 4239 wq->dfl_pwq = NULL; 4240 put_pwq_unlocked(pwq); 4241 } 4242 } 4243 EXPORT_SYMBOL_GPL(destroy_workqueue); 4244 4245 /** 4246 * workqueue_set_max_active - adjust max_active of a workqueue 4247 * @wq: target workqueue 4248 * @max_active: new max_active value. 4249 * 4250 * Set max_active of @wq to @max_active. 4251 * 4252 * CONTEXT: 4253 * Don't call from IRQ context. 4254 */ 4255 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4256 { 4257 struct pool_workqueue *pwq; 4258 4259 /* disallow meddling with max_active for ordered workqueues */ 4260 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4261 return; 4262 4263 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4264 4265 mutex_lock(&wq->mutex); 4266 4267 wq->flags &= ~__WQ_ORDERED; 4268 wq->saved_max_active = max_active; 4269 4270 for_each_pwq(pwq, wq) 4271 pwq_adjust_max_active(pwq); 4272 4273 mutex_unlock(&wq->mutex); 4274 } 4275 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4276 4277 /** 4278 * current_work - retrieve %current task's work struct 4279 * 4280 * Determine if %current task is a workqueue worker and what it's working on. 4281 * Useful to find out the context that the %current task is running in. 4282 * 4283 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 4284 */ 4285 struct work_struct *current_work(void) 4286 { 4287 struct worker *worker = current_wq_worker(); 4288 4289 return worker ? worker->current_work : NULL; 4290 } 4291 EXPORT_SYMBOL(current_work); 4292 4293 /** 4294 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4295 * 4296 * Determine whether %current is a workqueue rescuer. Can be used from 4297 * work functions to determine whether it's being run off the rescuer task. 4298 * 4299 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4300 */ 4301 bool current_is_workqueue_rescuer(void) 4302 { 4303 struct worker *worker = current_wq_worker(); 4304 4305 return worker && worker->rescue_wq; 4306 } 4307 4308 /** 4309 * workqueue_congested - test whether a workqueue is congested 4310 * @cpu: CPU in question 4311 * @wq: target workqueue 4312 * 4313 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4314 * no synchronization around this function and the test result is 4315 * unreliable and only useful as advisory hints or for debugging. 4316 * 4317 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4318 * Note that both per-cpu and unbound workqueues may be associated with 4319 * multiple pool_workqueues which have separate congested states. A 4320 * workqueue being congested on one CPU doesn't mean the workqueue is also 4321 * contested on other CPUs / NUMA nodes. 4322 * 4323 * Return: 4324 * %true if congested, %false otherwise. 4325 */ 4326 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4327 { 4328 struct pool_workqueue *pwq; 4329 bool ret; 4330 4331 rcu_read_lock_sched(); 4332 4333 if (cpu == WORK_CPU_UNBOUND) 4334 cpu = smp_processor_id(); 4335 4336 if (!(wq->flags & WQ_UNBOUND)) 4337 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4338 else 4339 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4340 4341 ret = !list_empty(&pwq->delayed_works); 4342 rcu_read_unlock_sched(); 4343 4344 return ret; 4345 } 4346 EXPORT_SYMBOL_GPL(workqueue_congested); 4347 4348 /** 4349 * work_busy - test whether a work is currently pending or running 4350 * @work: the work to be tested 4351 * 4352 * Test whether @work is currently pending or running. There is no 4353 * synchronization around this function and the test result is 4354 * unreliable and only useful as advisory hints or for debugging. 4355 * 4356 * Return: 4357 * OR'd bitmask of WORK_BUSY_* bits. 4358 */ 4359 unsigned int work_busy(struct work_struct *work) 4360 { 4361 struct worker_pool *pool; 4362 unsigned long flags; 4363 unsigned int ret = 0; 4364 4365 if (work_pending(work)) 4366 ret |= WORK_BUSY_PENDING; 4367 4368 local_irq_save(flags); 4369 pool = get_work_pool(work); 4370 if (pool) { 4371 spin_lock(&pool->lock); 4372 if (find_worker_executing_work(pool, work)) 4373 ret |= WORK_BUSY_RUNNING; 4374 spin_unlock(&pool->lock); 4375 } 4376 local_irq_restore(flags); 4377 4378 return ret; 4379 } 4380 EXPORT_SYMBOL_GPL(work_busy); 4381 4382 /** 4383 * set_worker_desc - set description for the current work item 4384 * @fmt: printf-style format string 4385 * @...: arguments for the format string 4386 * 4387 * This function can be called by a running work function to describe what 4388 * the work item is about. If the worker task gets dumped, this 4389 * information will be printed out together to help debugging. The 4390 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4391 */ 4392 void set_worker_desc(const char *fmt, ...) 4393 { 4394 struct worker *worker = current_wq_worker(); 4395 va_list args; 4396 4397 if (worker) { 4398 va_start(args, fmt); 4399 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4400 va_end(args); 4401 } 4402 } 4403 EXPORT_SYMBOL_GPL(set_worker_desc); 4404 4405 /** 4406 * print_worker_info - print out worker information and description 4407 * @log_lvl: the log level to use when printing 4408 * @task: target task 4409 * 4410 * If @task is a worker and currently executing a work item, print out the 4411 * name of the workqueue being serviced and worker description set with 4412 * set_worker_desc() by the currently executing work item. 4413 * 4414 * This function can be safely called on any task as long as the 4415 * task_struct itself is accessible. While safe, this function isn't 4416 * synchronized and may print out mixups or garbages of limited length. 4417 */ 4418 void print_worker_info(const char *log_lvl, struct task_struct *task) 4419 { 4420 work_func_t *fn = NULL; 4421 char name[WQ_NAME_LEN] = { }; 4422 char desc[WORKER_DESC_LEN] = { }; 4423 struct pool_workqueue *pwq = NULL; 4424 struct workqueue_struct *wq = NULL; 4425 struct worker *worker; 4426 4427 if (!(task->flags & PF_WQ_WORKER)) 4428 return; 4429 4430 /* 4431 * This function is called without any synchronization and @task 4432 * could be in any state. Be careful with dereferences. 4433 */ 4434 worker = kthread_probe_data(task); 4435 4436 /* 4437 * Carefully copy the associated workqueue's workfn, name and desc. 4438 * Keep the original last '\0' in case the original is garbage. 4439 */ 4440 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4441 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4442 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4443 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4444 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4445 4446 if (fn || name[0] || desc[0]) { 4447 printk("%sWorkqueue: %s %pf", log_lvl, name, fn); 4448 if (strcmp(name, desc)) 4449 pr_cont(" (%s)", desc); 4450 pr_cont("\n"); 4451 } 4452 } 4453 4454 static void pr_cont_pool_info(struct worker_pool *pool) 4455 { 4456 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4457 if (pool->node != NUMA_NO_NODE) 4458 pr_cont(" node=%d", pool->node); 4459 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4460 } 4461 4462 static void pr_cont_work(bool comma, struct work_struct *work) 4463 { 4464 if (work->func == wq_barrier_func) { 4465 struct wq_barrier *barr; 4466 4467 barr = container_of(work, struct wq_barrier, work); 4468 4469 pr_cont("%s BAR(%d)", comma ? "," : "", 4470 task_pid_nr(barr->task)); 4471 } else { 4472 pr_cont("%s %pf", comma ? "," : "", work->func); 4473 } 4474 } 4475 4476 static void show_pwq(struct pool_workqueue *pwq) 4477 { 4478 struct worker_pool *pool = pwq->pool; 4479 struct work_struct *work; 4480 struct worker *worker; 4481 bool has_in_flight = false, has_pending = false; 4482 int bkt; 4483 4484 pr_info(" pwq %d:", pool->id); 4485 pr_cont_pool_info(pool); 4486 4487 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active, 4488 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4489 4490 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4491 if (worker->current_pwq == pwq) { 4492 has_in_flight = true; 4493 break; 4494 } 4495 } 4496 if (has_in_flight) { 4497 bool comma = false; 4498 4499 pr_info(" in-flight:"); 4500 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4501 if (worker->current_pwq != pwq) 4502 continue; 4503 4504 pr_cont("%s %d%s:%pf", comma ? "," : "", 4505 task_pid_nr(worker->task), 4506 worker == pwq->wq->rescuer ? "(RESCUER)" : "", 4507 worker->current_func); 4508 list_for_each_entry(work, &worker->scheduled, entry) 4509 pr_cont_work(false, work); 4510 comma = true; 4511 } 4512 pr_cont("\n"); 4513 } 4514 4515 list_for_each_entry(work, &pool->worklist, entry) { 4516 if (get_work_pwq(work) == pwq) { 4517 has_pending = true; 4518 break; 4519 } 4520 } 4521 if (has_pending) { 4522 bool comma = false; 4523 4524 pr_info(" pending:"); 4525 list_for_each_entry(work, &pool->worklist, entry) { 4526 if (get_work_pwq(work) != pwq) 4527 continue; 4528 4529 pr_cont_work(comma, work); 4530 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4531 } 4532 pr_cont("\n"); 4533 } 4534 4535 if (!list_empty(&pwq->delayed_works)) { 4536 bool comma = false; 4537 4538 pr_info(" delayed:"); 4539 list_for_each_entry(work, &pwq->delayed_works, entry) { 4540 pr_cont_work(comma, work); 4541 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4542 } 4543 pr_cont("\n"); 4544 } 4545 } 4546 4547 /** 4548 * show_workqueue_state - dump workqueue state 4549 * 4550 * Called from a sysrq handler or try_to_freeze_tasks() and prints out 4551 * all busy workqueues and pools. 4552 */ 4553 void show_workqueue_state(void) 4554 { 4555 struct workqueue_struct *wq; 4556 struct worker_pool *pool; 4557 unsigned long flags; 4558 int pi; 4559 4560 rcu_read_lock_sched(); 4561 4562 pr_info("Showing busy workqueues and worker pools:\n"); 4563 4564 list_for_each_entry_rcu(wq, &workqueues, list) { 4565 struct pool_workqueue *pwq; 4566 bool idle = true; 4567 4568 for_each_pwq(pwq, wq) { 4569 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) { 4570 idle = false; 4571 break; 4572 } 4573 } 4574 if (idle) 4575 continue; 4576 4577 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4578 4579 for_each_pwq(pwq, wq) { 4580 spin_lock_irqsave(&pwq->pool->lock, flags); 4581 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4582 show_pwq(pwq); 4583 spin_unlock_irqrestore(&pwq->pool->lock, flags); 4584 /* 4585 * We could be printing a lot from atomic context, e.g. 4586 * sysrq-t -> show_workqueue_state(). Avoid triggering 4587 * hard lockup. 4588 */ 4589 touch_nmi_watchdog(); 4590 } 4591 } 4592 4593 for_each_pool(pool, pi) { 4594 struct worker *worker; 4595 bool first = true; 4596 4597 spin_lock_irqsave(&pool->lock, flags); 4598 if (pool->nr_workers == pool->nr_idle) 4599 goto next_pool; 4600 4601 pr_info("pool %d:", pool->id); 4602 pr_cont_pool_info(pool); 4603 pr_cont(" hung=%us workers=%d", 4604 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000, 4605 pool->nr_workers); 4606 if (pool->manager) 4607 pr_cont(" manager: %d", 4608 task_pid_nr(pool->manager->task)); 4609 list_for_each_entry(worker, &pool->idle_list, entry) { 4610 pr_cont(" %s%d", first ? "idle: " : "", 4611 task_pid_nr(worker->task)); 4612 first = false; 4613 } 4614 pr_cont("\n"); 4615 next_pool: 4616 spin_unlock_irqrestore(&pool->lock, flags); 4617 /* 4618 * We could be printing a lot from atomic context, e.g. 4619 * sysrq-t -> show_workqueue_state(). Avoid triggering 4620 * hard lockup. 4621 */ 4622 touch_nmi_watchdog(); 4623 } 4624 4625 rcu_read_unlock_sched(); 4626 } 4627 4628 /* used to show worker information through /proc/PID/{comm,stat,status} */ 4629 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 4630 { 4631 int off; 4632 4633 /* always show the actual comm */ 4634 off = strscpy(buf, task->comm, size); 4635 if (off < 0) 4636 return; 4637 4638 /* stabilize PF_WQ_WORKER and worker pool association */ 4639 mutex_lock(&wq_pool_attach_mutex); 4640 4641 if (task->flags & PF_WQ_WORKER) { 4642 struct worker *worker = kthread_data(task); 4643 struct worker_pool *pool = worker->pool; 4644 4645 if (pool) { 4646 spin_lock_irq(&pool->lock); 4647 /* 4648 * ->desc tracks information (wq name or 4649 * set_worker_desc()) for the latest execution. If 4650 * current, prepend '+', otherwise '-'. 4651 */ 4652 if (worker->desc[0] != '\0') { 4653 if (worker->current_work) 4654 scnprintf(buf + off, size - off, "+%s", 4655 worker->desc); 4656 else 4657 scnprintf(buf + off, size - off, "-%s", 4658 worker->desc); 4659 } 4660 spin_unlock_irq(&pool->lock); 4661 } 4662 } 4663 4664 mutex_unlock(&wq_pool_attach_mutex); 4665 } 4666 4667 #ifdef CONFIG_SMP 4668 4669 /* 4670 * CPU hotplug. 4671 * 4672 * There are two challenges in supporting CPU hotplug. Firstly, there 4673 * are a lot of assumptions on strong associations among work, pwq and 4674 * pool which make migrating pending and scheduled works very 4675 * difficult to implement without impacting hot paths. Secondly, 4676 * worker pools serve mix of short, long and very long running works making 4677 * blocked draining impractical. 4678 * 4679 * This is solved by allowing the pools to be disassociated from the CPU 4680 * running as an unbound one and allowing it to be reattached later if the 4681 * cpu comes back online. 4682 */ 4683 4684 static void unbind_workers(int cpu) 4685 { 4686 struct worker_pool *pool; 4687 struct worker *worker; 4688 4689 for_each_cpu_worker_pool(pool, cpu) { 4690 mutex_lock(&wq_pool_attach_mutex); 4691 spin_lock_irq(&pool->lock); 4692 4693 /* 4694 * We've blocked all attach/detach operations. Make all workers 4695 * unbound and set DISASSOCIATED. Before this, all workers 4696 * except for the ones which are still executing works from 4697 * before the last CPU down must be on the cpu. After 4698 * this, they may become diasporas. 4699 */ 4700 for_each_pool_worker(worker, pool) 4701 worker->flags |= WORKER_UNBOUND; 4702 4703 pool->flags |= POOL_DISASSOCIATED; 4704 4705 spin_unlock_irq(&pool->lock); 4706 mutex_unlock(&wq_pool_attach_mutex); 4707 4708 /* 4709 * Call schedule() so that we cross rq->lock and thus can 4710 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4711 * This is necessary as scheduler callbacks may be invoked 4712 * from other cpus. 4713 */ 4714 schedule(); 4715 4716 /* 4717 * Sched callbacks are disabled now. Zap nr_running. 4718 * After this, nr_running stays zero and need_more_worker() 4719 * and keep_working() are always true as long as the 4720 * worklist is not empty. This pool now behaves as an 4721 * unbound (in terms of concurrency management) pool which 4722 * are served by workers tied to the pool. 4723 */ 4724 atomic_set(&pool->nr_running, 0); 4725 4726 /* 4727 * With concurrency management just turned off, a busy 4728 * worker blocking could lead to lengthy stalls. Kick off 4729 * unbound chain execution of currently pending work items. 4730 */ 4731 spin_lock_irq(&pool->lock); 4732 wake_up_worker(pool); 4733 spin_unlock_irq(&pool->lock); 4734 } 4735 } 4736 4737 /** 4738 * rebind_workers - rebind all workers of a pool to the associated CPU 4739 * @pool: pool of interest 4740 * 4741 * @pool->cpu is coming online. Rebind all workers to the CPU. 4742 */ 4743 static void rebind_workers(struct worker_pool *pool) 4744 { 4745 struct worker *worker; 4746 4747 lockdep_assert_held(&wq_pool_attach_mutex); 4748 4749 /* 4750 * Restore CPU affinity of all workers. As all idle workers should 4751 * be on the run-queue of the associated CPU before any local 4752 * wake-ups for concurrency management happen, restore CPU affinity 4753 * of all workers first and then clear UNBOUND. As we're called 4754 * from CPU_ONLINE, the following shouldn't fail. 4755 */ 4756 for_each_pool_worker(worker, pool) 4757 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4758 pool->attrs->cpumask) < 0); 4759 4760 spin_lock_irq(&pool->lock); 4761 4762 pool->flags &= ~POOL_DISASSOCIATED; 4763 4764 for_each_pool_worker(worker, pool) { 4765 unsigned int worker_flags = worker->flags; 4766 4767 /* 4768 * A bound idle worker should actually be on the runqueue 4769 * of the associated CPU for local wake-ups targeting it to 4770 * work. Kick all idle workers so that they migrate to the 4771 * associated CPU. Doing this in the same loop as 4772 * replacing UNBOUND with REBOUND is safe as no worker will 4773 * be bound before @pool->lock is released. 4774 */ 4775 if (worker_flags & WORKER_IDLE) 4776 wake_up_process(worker->task); 4777 4778 /* 4779 * We want to clear UNBOUND but can't directly call 4780 * worker_clr_flags() or adjust nr_running. Atomically 4781 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4782 * @worker will clear REBOUND using worker_clr_flags() when 4783 * it initiates the next execution cycle thus restoring 4784 * concurrency management. Note that when or whether 4785 * @worker clears REBOUND doesn't affect correctness. 4786 * 4787 * WRITE_ONCE() is necessary because @worker->flags may be 4788 * tested without holding any lock in 4789 * wq_worker_waking_up(). Without it, NOT_RUNNING test may 4790 * fail incorrectly leading to premature concurrency 4791 * management operations. 4792 */ 4793 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4794 worker_flags |= WORKER_REBOUND; 4795 worker_flags &= ~WORKER_UNBOUND; 4796 WRITE_ONCE(worker->flags, worker_flags); 4797 } 4798 4799 spin_unlock_irq(&pool->lock); 4800 } 4801 4802 /** 4803 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4804 * @pool: unbound pool of interest 4805 * @cpu: the CPU which is coming up 4806 * 4807 * An unbound pool may end up with a cpumask which doesn't have any online 4808 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4809 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4810 * online CPU before, cpus_allowed of all its workers should be restored. 4811 */ 4812 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 4813 { 4814 static cpumask_t cpumask; 4815 struct worker *worker; 4816 4817 lockdep_assert_held(&wq_pool_attach_mutex); 4818 4819 /* is @cpu allowed for @pool? */ 4820 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 4821 return; 4822 4823 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 4824 4825 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 4826 for_each_pool_worker(worker, pool) 4827 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 4828 } 4829 4830 int workqueue_prepare_cpu(unsigned int cpu) 4831 { 4832 struct worker_pool *pool; 4833 4834 for_each_cpu_worker_pool(pool, cpu) { 4835 if (pool->nr_workers) 4836 continue; 4837 if (!create_worker(pool)) 4838 return -ENOMEM; 4839 } 4840 return 0; 4841 } 4842 4843 int workqueue_online_cpu(unsigned int cpu) 4844 { 4845 struct worker_pool *pool; 4846 struct workqueue_struct *wq; 4847 int pi; 4848 4849 mutex_lock(&wq_pool_mutex); 4850 4851 for_each_pool(pool, pi) { 4852 mutex_lock(&wq_pool_attach_mutex); 4853 4854 if (pool->cpu == cpu) 4855 rebind_workers(pool); 4856 else if (pool->cpu < 0) 4857 restore_unbound_workers_cpumask(pool, cpu); 4858 4859 mutex_unlock(&wq_pool_attach_mutex); 4860 } 4861 4862 /* update NUMA affinity of unbound workqueues */ 4863 list_for_each_entry(wq, &workqueues, list) 4864 wq_update_unbound_numa(wq, cpu, true); 4865 4866 mutex_unlock(&wq_pool_mutex); 4867 return 0; 4868 } 4869 4870 int workqueue_offline_cpu(unsigned int cpu) 4871 { 4872 struct workqueue_struct *wq; 4873 4874 /* unbinding per-cpu workers should happen on the local CPU */ 4875 if (WARN_ON(cpu != smp_processor_id())) 4876 return -1; 4877 4878 unbind_workers(cpu); 4879 4880 /* update NUMA affinity of unbound workqueues */ 4881 mutex_lock(&wq_pool_mutex); 4882 list_for_each_entry(wq, &workqueues, list) 4883 wq_update_unbound_numa(wq, cpu, false); 4884 mutex_unlock(&wq_pool_mutex); 4885 4886 return 0; 4887 } 4888 4889 struct work_for_cpu { 4890 struct work_struct work; 4891 long (*fn)(void *); 4892 void *arg; 4893 long ret; 4894 }; 4895 4896 static void work_for_cpu_fn(struct work_struct *work) 4897 { 4898 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 4899 4900 wfc->ret = wfc->fn(wfc->arg); 4901 } 4902 4903 /** 4904 * work_on_cpu - run a function in thread context on a particular cpu 4905 * @cpu: the cpu to run on 4906 * @fn: the function to run 4907 * @arg: the function arg 4908 * 4909 * It is up to the caller to ensure that the cpu doesn't go offline. 4910 * The caller must not hold any locks which would prevent @fn from completing. 4911 * 4912 * Return: The value @fn returns. 4913 */ 4914 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 4915 { 4916 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 4917 4918 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 4919 schedule_work_on(cpu, &wfc.work); 4920 flush_work(&wfc.work); 4921 destroy_work_on_stack(&wfc.work); 4922 return wfc.ret; 4923 } 4924 EXPORT_SYMBOL_GPL(work_on_cpu); 4925 4926 /** 4927 * work_on_cpu_safe - run a function in thread context on a particular cpu 4928 * @cpu: the cpu to run on 4929 * @fn: the function to run 4930 * @arg: the function argument 4931 * 4932 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 4933 * any locks which would prevent @fn from completing. 4934 * 4935 * Return: The value @fn returns. 4936 */ 4937 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) 4938 { 4939 long ret = -ENODEV; 4940 4941 get_online_cpus(); 4942 if (cpu_online(cpu)) 4943 ret = work_on_cpu(cpu, fn, arg); 4944 put_online_cpus(); 4945 return ret; 4946 } 4947 EXPORT_SYMBOL_GPL(work_on_cpu_safe); 4948 #endif /* CONFIG_SMP */ 4949 4950 #ifdef CONFIG_FREEZER 4951 4952 /** 4953 * freeze_workqueues_begin - begin freezing workqueues 4954 * 4955 * Start freezing workqueues. After this function returns, all freezable 4956 * workqueues will queue new works to their delayed_works list instead of 4957 * pool->worklist. 4958 * 4959 * CONTEXT: 4960 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4961 */ 4962 void freeze_workqueues_begin(void) 4963 { 4964 struct workqueue_struct *wq; 4965 struct pool_workqueue *pwq; 4966 4967 mutex_lock(&wq_pool_mutex); 4968 4969 WARN_ON_ONCE(workqueue_freezing); 4970 workqueue_freezing = true; 4971 4972 list_for_each_entry(wq, &workqueues, list) { 4973 mutex_lock(&wq->mutex); 4974 for_each_pwq(pwq, wq) 4975 pwq_adjust_max_active(pwq); 4976 mutex_unlock(&wq->mutex); 4977 } 4978 4979 mutex_unlock(&wq_pool_mutex); 4980 } 4981 4982 /** 4983 * freeze_workqueues_busy - are freezable workqueues still busy? 4984 * 4985 * Check whether freezing is complete. This function must be called 4986 * between freeze_workqueues_begin() and thaw_workqueues(). 4987 * 4988 * CONTEXT: 4989 * Grabs and releases wq_pool_mutex. 4990 * 4991 * Return: 4992 * %true if some freezable workqueues are still busy. %false if freezing 4993 * is complete. 4994 */ 4995 bool freeze_workqueues_busy(void) 4996 { 4997 bool busy = false; 4998 struct workqueue_struct *wq; 4999 struct pool_workqueue *pwq; 5000 5001 mutex_lock(&wq_pool_mutex); 5002 5003 WARN_ON_ONCE(!workqueue_freezing); 5004 5005 list_for_each_entry(wq, &workqueues, list) { 5006 if (!(wq->flags & WQ_FREEZABLE)) 5007 continue; 5008 /* 5009 * nr_active is monotonically decreasing. It's safe 5010 * to peek without lock. 5011 */ 5012 rcu_read_lock_sched(); 5013 for_each_pwq(pwq, wq) { 5014 WARN_ON_ONCE(pwq->nr_active < 0); 5015 if (pwq->nr_active) { 5016 busy = true; 5017 rcu_read_unlock_sched(); 5018 goto out_unlock; 5019 } 5020 } 5021 rcu_read_unlock_sched(); 5022 } 5023 out_unlock: 5024 mutex_unlock(&wq_pool_mutex); 5025 return busy; 5026 } 5027 5028 /** 5029 * thaw_workqueues - thaw workqueues 5030 * 5031 * Thaw workqueues. Normal queueing is restored and all collected 5032 * frozen works are transferred to their respective pool worklists. 5033 * 5034 * CONTEXT: 5035 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5036 */ 5037 void thaw_workqueues(void) 5038 { 5039 struct workqueue_struct *wq; 5040 struct pool_workqueue *pwq; 5041 5042 mutex_lock(&wq_pool_mutex); 5043 5044 if (!workqueue_freezing) 5045 goto out_unlock; 5046 5047 workqueue_freezing = false; 5048 5049 /* restore max_active and repopulate worklist */ 5050 list_for_each_entry(wq, &workqueues, list) { 5051 mutex_lock(&wq->mutex); 5052 for_each_pwq(pwq, wq) 5053 pwq_adjust_max_active(pwq); 5054 mutex_unlock(&wq->mutex); 5055 } 5056 5057 out_unlock: 5058 mutex_unlock(&wq_pool_mutex); 5059 } 5060 #endif /* CONFIG_FREEZER */ 5061 5062 static int workqueue_apply_unbound_cpumask(void) 5063 { 5064 LIST_HEAD(ctxs); 5065 int ret = 0; 5066 struct workqueue_struct *wq; 5067 struct apply_wqattrs_ctx *ctx, *n; 5068 5069 lockdep_assert_held(&wq_pool_mutex); 5070 5071 list_for_each_entry(wq, &workqueues, list) { 5072 if (!(wq->flags & WQ_UNBOUND)) 5073 continue; 5074 /* creating multiple pwqs breaks ordering guarantee */ 5075 if (wq->flags & __WQ_ORDERED) 5076 continue; 5077 5078 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs); 5079 if (!ctx) { 5080 ret = -ENOMEM; 5081 break; 5082 } 5083 5084 list_add_tail(&ctx->list, &ctxs); 5085 } 5086 5087 list_for_each_entry_safe(ctx, n, &ctxs, list) { 5088 if (!ret) 5089 apply_wqattrs_commit(ctx); 5090 apply_wqattrs_cleanup(ctx); 5091 } 5092 5093 return ret; 5094 } 5095 5096 /** 5097 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 5098 * @cpumask: the cpumask to set 5099 * 5100 * The low-level workqueues cpumask is a global cpumask that limits 5101 * the affinity of all unbound workqueues. This function check the @cpumask 5102 * and apply it to all unbound workqueues and updates all pwqs of them. 5103 * 5104 * Retun: 0 - Success 5105 * -EINVAL - Invalid @cpumask 5106 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 5107 */ 5108 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 5109 { 5110 int ret = -EINVAL; 5111 cpumask_var_t saved_cpumask; 5112 5113 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) 5114 return -ENOMEM; 5115 5116 /* 5117 * Not excluding isolated cpus on purpose. 5118 * If the user wishes to include them, we allow that. 5119 */ 5120 cpumask_and(cpumask, cpumask, cpu_possible_mask); 5121 if (!cpumask_empty(cpumask)) { 5122 apply_wqattrs_lock(); 5123 5124 /* save the old wq_unbound_cpumask. */ 5125 cpumask_copy(saved_cpumask, wq_unbound_cpumask); 5126 5127 /* update wq_unbound_cpumask at first and apply it to wqs. */ 5128 cpumask_copy(wq_unbound_cpumask, cpumask); 5129 ret = workqueue_apply_unbound_cpumask(); 5130 5131 /* restore the wq_unbound_cpumask when failed. */ 5132 if (ret < 0) 5133 cpumask_copy(wq_unbound_cpumask, saved_cpumask); 5134 5135 apply_wqattrs_unlock(); 5136 } 5137 5138 free_cpumask_var(saved_cpumask); 5139 return ret; 5140 } 5141 5142 #ifdef CONFIG_SYSFS 5143 /* 5144 * Workqueues with WQ_SYSFS flag set is visible to userland via 5145 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 5146 * following attributes. 5147 * 5148 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 5149 * max_active RW int : maximum number of in-flight work items 5150 * 5151 * Unbound workqueues have the following extra attributes. 5152 * 5153 * pool_ids RO int : the associated pool IDs for each node 5154 * nice RW int : nice value of the workers 5155 * cpumask RW mask : bitmask of allowed CPUs for the workers 5156 * numa RW bool : whether enable NUMA affinity 5157 */ 5158 struct wq_device { 5159 struct workqueue_struct *wq; 5160 struct device dev; 5161 }; 5162 5163 static struct workqueue_struct *dev_to_wq(struct device *dev) 5164 { 5165 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5166 5167 return wq_dev->wq; 5168 } 5169 5170 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 5171 char *buf) 5172 { 5173 struct workqueue_struct *wq = dev_to_wq(dev); 5174 5175 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 5176 } 5177 static DEVICE_ATTR_RO(per_cpu); 5178 5179 static ssize_t max_active_show(struct device *dev, 5180 struct device_attribute *attr, char *buf) 5181 { 5182 struct workqueue_struct *wq = dev_to_wq(dev); 5183 5184 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 5185 } 5186 5187 static ssize_t max_active_store(struct device *dev, 5188 struct device_attribute *attr, const char *buf, 5189 size_t count) 5190 { 5191 struct workqueue_struct *wq = dev_to_wq(dev); 5192 int val; 5193 5194 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 5195 return -EINVAL; 5196 5197 workqueue_set_max_active(wq, val); 5198 return count; 5199 } 5200 static DEVICE_ATTR_RW(max_active); 5201 5202 static struct attribute *wq_sysfs_attrs[] = { 5203 &dev_attr_per_cpu.attr, 5204 &dev_attr_max_active.attr, 5205 NULL, 5206 }; 5207 ATTRIBUTE_GROUPS(wq_sysfs); 5208 5209 static ssize_t wq_pool_ids_show(struct device *dev, 5210 struct device_attribute *attr, char *buf) 5211 { 5212 struct workqueue_struct *wq = dev_to_wq(dev); 5213 const char *delim = ""; 5214 int node, written = 0; 5215 5216 rcu_read_lock_sched(); 5217 for_each_node(node) { 5218 written += scnprintf(buf + written, PAGE_SIZE - written, 5219 "%s%d:%d", delim, node, 5220 unbound_pwq_by_node(wq, node)->pool->id); 5221 delim = " "; 5222 } 5223 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 5224 rcu_read_unlock_sched(); 5225 5226 return written; 5227 } 5228 5229 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 5230 char *buf) 5231 { 5232 struct workqueue_struct *wq = dev_to_wq(dev); 5233 int written; 5234 5235 mutex_lock(&wq->mutex); 5236 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 5237 mutex_unlock(&wq->mutex); 5238 5239 return written; 5240 } 5241 5242 /* prepare workqueue_attrs for sysfs store operations */ 5243 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5244 { 5245 struct workqueue_attrs *attrs; 5246 5247 lockdep_assert_held(&wq_pool_mutex); 5248 5249 attrs = alloc_workqueue_attrs(GFP_KERNEL); 5250 if (!attrs) 5251 return NULL; 5252 5253 copy_workqueue_attrs(attrs, wq->unbound_attrs); 5254 return attrs; 5255 } 5256 5257 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 5258 const char *buf, size_t count) 5259 { 5260 struct workqueue_struct *wq = dev_to_wq(dev); 5261 struct workqueue_attrs *attrs; 5262 int ret = -ENOMEM; 5263 5264 apply_wqattrs_lock(); 5265 5266 attrs = wq_sysfs_prep_attrs(wq); 5267 if (!attrs) 5268 goto out_unlock; 5269 5270 if (sscanf(buf, "%d", &attrs->nice) == 1 && 5271 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 5272 ret = apply_workqueue_attrs_locked(wq, attrs); 5273 else 5274 ret = -EINVAL; 5275 5276 out_unlock: 5277 apply_wqattrs_unlock(); 5278 free_workqueue_attrs(attrs); 5279 return ret ?: count; 5280 } 5281 5282 static ssize_t wq_cpumask_show(struct device *dev, 5283 struct device_attribute *attr, char *buf) 5284 { 5285 struct workqueue_struct *wq = dev_to_wq(dev); 5286 int written; 5287 5288 mutex_lock(&wq->mutex); 5289 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5290 cpumask_pr_args(wq->unbound_attrs->cpumask)); 5291 mutex_unlock(&wq->mutex); 5292 return written; 5293 } 5294 5295 static ssize_t wq_cpumask_store(struct device *dev, 5296 struct device_attribute *attr, 5297 const char *buf, size_t count) 5298 { 5299 struct workqueue_struct *wq = dev_to_wq(dev); 5300 struct workqueue_attrs *attrs; 5301 int ret = -ENOMEM; 5302 5303 apply_wqattrs_lock(); 5304 5305 attrs = wq_sysfs_prep_attrs(wq); 5306 if (!attrs) 5307 goto out_unlock; 5308 5309 ret = cpumask_parse(buf, attrs->cpumask); 5310 if (!ret) 5311 ret = apply_workqueue_attrs_locked(wq, attrs); 5312 5313 out_unlock: 5314 apply_wqattrs_unlock(); 5315 free_workqueue_attrs(attrs); 5316 return ret ?: count; 5317 } 5318 5319 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5320 char *buf) 5321 { 5322 struct workqueue_struct *wq = dev_to_wq(dev); 5323 int written; 5324 5325 mutex_lock(&wq->mutex); 5326 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5327 !wq->unbound_attrs->no_numa); 5328 mutex_unlock(&wq->mutex); 5329 5330 return written; 5331 } 5332 5333 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 5334 const char *buf, size_t count) 5335 { 5336 struct workqueue_struct *wq = dev_to_wq(dev); 5337 struct workqueue_attrs *attrs; 5338 int v, ret = -ENOMEM; 5339 5340 apply_wqattrs_lock(); 5341 5342 attrs = wq_sysfs_prep_attrs(wq); 5343 if (!attrs) 5344 goto out_unlock; 5345 5346 ret = -EINVAL; 5347 if (sscanf(buf, "%d", &v) == 1) { 5348 attrs->no_numa = !v; 5349 ret = apply_workqueue_attrs_locked(wq, attrs); 5350 } 5351 5352 out_unlock: 5353 apply_wqattrs_unlock(); 5354 free_workqueue_attrs(attrs); 5355 return ret ?: count; 5356 } 5357 5358 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5359 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5360 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5361 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5362 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5363 __ATTR_NULL, 5364 }; 5365 5366 static struct bus_type wq_subsys = { 5367 .name = "workqueue", 5368 .dev_groups = wq_sysfs_groups, 5369 }; 5370 5371 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5372 struct device_attribute *attr, char *buf) 5373 { 5374 int written; 5375 5376 mutex_lock(&wq_pool_mutex); 5377 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5378 cpumask_pr_args(wq_unbound_cpumask)); 5379 mutex_unlock(&wq_pool_mutex); 5380 5381 return written; 5382 } 5383 5384 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5385 struct device_attribute *attr, const char *buf, size_t count) 5386 { 5387 cpumask_var_t cpumask; 5388 int ret; 5389 5390 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5391 return -ENOMEM; 5392 5393 ret = cpumask_parse(buf, cpumask); 5394 if (!ret) 5395 ret = workqueue_set_unbound_cpumask(cpumask); 5396 5397 free_cpumask_var(cpumask); 5398 return ret ? ret : count; 5399 } 5400 5401 static struct device_attribute wq_sysfs_cpumask_attr = 5402 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5403 wq_unbound_cpumask_store); 5404 5405 static int __init wq_sysfs_init(void) 5406 { 5407 int err; 5408 5409 err = subsys_virtual_register(&wq_subsys, NULL); 5410 if (err) 5411 return err; 5412 5413 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr); 5414 } 5415 core_initcall(wq_sysfs_init); 5416 5417 static void wq_device_release(struct device *dev) 5418 { 5419 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5420 5421 kfree(wq_dev); 5422 } 5423 5424 /** 5425 * workqueue_sysfs_register - make a workqueue visible in sysfs 5426 * @wq: the workqueue to register 5427 * 5428 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5429 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5430 * which is the preferred method. 5431 * 5432 * Workqueue user should use this function directly iff it wants to apply 5433 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5434 * apply_workqueue_attrs() may race against userland updating the 5435 * attributes. 5436 * 5437 * Return: 0 on success, -errno on failure. 5438 */ 5439 int workqueue_sysfs_register(struct workqueue_struct *wq) 5440 { 5441 struct wq_device *wq_dev; 5442 int ret; 5443 5444 /* 5445 * Adjusting max_active or creating new pwqs by applying 5446 * attributes breaks ordering guarantee. Disallow exposing ordered 5447 * workqueues. 5448 */ 5449 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 5450 return -EINVAL; 5451 5452 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5453 if (!wq_dev) 5454 return -ENOMEM; 5455 5456 wq_dev->wq = wq; 5457 wq_dev->dev.bus = &wq_subsys; 5458 wq_dev->dev.release = wq_device_release; 5459 dev_set_name(&wq_dev->dev, "%s", wq->name); 5460 5461 /* 5462 * unbound_attrs are created separately. Suppress uevent until 5463 * everything is ready. 5464 */ 5465 dev_set_uevent_suppress(&wq_dev->dev, true); 5466 5467 ret = device_register(&wq_dev->dev); 5468 if (ret) { 5469 put_device(&wq_dev->dev); 5470 wq->wq_dev = NULL; 5471 return ret; 5472 } 5473 5474 if (wq->flags & WQ_UNBOUND) { 5475 struct device_attribute *attr; 5476 5477 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5478 ret = device_create_file(&wq_dev->dev, attr); 5479 if (ret) { 5480 device_unregister(&wq_dev->dev); 5481 wq->wq_dev = NULL; 5482 return ret; 5483 } 5484 } 5485 } 5486 5487 dev_set_uevent_suppress(&wq_dev->dev, false); 5488 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5489 return 0; 5490 } 5491 5492 /** 5493 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5494 * @wq: the workqueue to unregister 5495 * 5496 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5497 */ 5498 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5499 { 5500 struct wq_device *wq_dev = wq->wq_dev; 5501 5502 if (!wq->wq_dev) 5503 return; 5504 5505 wq->wq_dev = NULL; 5506 device_unregister(&wq_dev->dev); 5507 } 5508 #else /* CONFIG_SYSFS */ 5509 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5510 #endif /* CONFIG_SYSFS */ 5511 5512 /* 5513 * Workqueue watchdog. 5514 * 5515 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 5516 * flush dependency, a concurrency managed work item which stays RUNNING 5517 * indefinitely. Workqueue stalls can be very difficult to debug as the 5518 * usual warning mechanisms don't trigger and internal workqueue state is 5519 * largely opaque. 5520 * 5521 * Workqueue watchdog monitors all worker pools periodically and dumps 5522 * state if some pools failed to make forward progress for a while where 5523 * forward progress is defined as the first item on ->worklist changing. 5524 * 5525 * This mechanism is controlled through the kernel parameter 5526 * "workqueue.watchdog_thresh" which can be updated at runtime through the 5527 * corresponding sysfs parameter file. 5528 */ 5529 #ifdef CONFIG_WQ_WATCHDOG 5530 5531 static unsigned long wq_watchdog_thresh = 30; 5532 static struct timer_list wq_watchdog_timer; 5533 5534 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 5535 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 5536 5537 static void wq_watchdog_reset_touched(void) 5538 { 5539 int cpu; 5540 5541 wq_watchdog_touched = jiffies; 5542 for_each_possible_cpu(cpu) 5543 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5544 } 5545 5546 static void wq_watchdog_timer_fn(struct timer_list *unused) 5547 { 5548 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 5549 bool lockup_detected = false; 5550 struct worker_pool *pool; 5551 int pi; 5552 5553 if (!thresh) 5554 return; 5555 5556 rcu_read_lock(); 5557 5558 for_each_pool(pool, pi) { 5559 unsigned long pool_ts, touched, ts; 5560 5561 if (list_empty(&pool->worklist)) 5562 continue; 5563 5564 /* get the latest of pool and touched timestamps */ 5565 pool_ts = READ_ONCE(pool->watchdog_ts); 5566 touched = READ_ONCE(wq_watchdog_touched); 5567 5568 if (time_after(pool_ts, touched)) 5569 ts = pool_ts; 5570 else 5571 ts = touched; 5572 5573 if (pool->cpu >= 0) { 5574 unsigned long cpu_touched = 5575 READ_ONCE(per_cpu(wq_watchdog_touched_cpu, 5576 pool->cpu)); 5577 if (time_after(cpu_touched, ts)) 5578 ts = cpu_touched; 5579 } 5580 5581 /* did we stall? */ 5582 if (time_after(jiffies, ts + thresh)) { 5583 lockup_detected = true; 5584 pr_emerg("BUG: workqueue lockup - pool"); 5585 pr_cont_pool_info(pool); 5586 pr_cont(" stuck for %us!\n", 5587 jiffies_to_msecs(jiffies - pool_ts) / 1000); 5588 } 5589 } 5590 5591 rcu_read_unlock(); 5592 5593 if (lockup_detected) 5594 show_workqueue_state(); 5595 5596 wq_watchdog_reset_touched(); 5597 mod_timer(&wq_watchdog_timer, jiffies + thresh); 5598 } 5599 5600 notrace void wq_watchdog_touch(int cpu) 5601 { 5602 if (cpu >= 0) 5603 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5604 else 5605 wq_watchdog_touched = jiffies; 5606 } 5607 5608 static void wq_watchdog_set_thresh(unsigned long thresh) 5609 { 5610 wq_watchdog_thresh = 0; 5611 del_timer_sync(&wq_watchdog_timer); 5612 5613 if (thresh) { 5614 wq_watchdog_thresh = thresh; 5615 wq_watchdog_reset_touched(); 5616 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 5617 } 5618 } 5619 5620 static int wq_watchdog_param_set_thresh(const char *val, 5621 const struct kernel_param *kp) 5622 { 5623 unsigned long thresh; 5624 int ret; 5625 5626 ret = kstrtoul(val, 0, &thresh); 5627 if (ret) 5628 return ret; 5629 5630 if (system_wq) 5631 wq_watchdog_set_thresh(thresh); 5632 else 5633 wq_watchdog_thresh = thresh; 5634 5635 return 0; 5636 } 5637 5638 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 5639 .set = wq_watchdog_param_set_thresh, 5640 .get = param_get_ulong, 5641 }; 5642 5643 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 5644 0644); 5645 5646 static void wq_watchdog_init(void) 5647 { 5648 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 5649 wq_watchdog_set_thresh(wq_watchdog_thresh); 5650 } 5651 5652 #else /* CONFIG_WQ_WATCHDOG */ 5653 5654 static inline void wq_watchdog_init(void) { } 5655 5656 #endif /* CONFIG_WQ_WATCHDOG */ 5657 5658 static void __init wq_numa_init(void) 5659 { 5660 cpumask_var_t *tbl; 5661 int node, cpu; 5662 5663 if (num_possible_nodes() <= 1) 5664 return; 5665 5666 if (wq_disable_numa) { 5667 pr_info("workqueue: NUMA affinity support disabled\n"); 5668 return; 5669 } 5670 5671 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL); 5672 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5673 5674 /* 5675 * We want masks of possible CPUs of each node which isn't readily 5676 * available. Build one from cpu_to_node() which should have been 5677 * fully initialized by now. 5678 */ 5679 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL); 5680 BUG_ON(!tbl); 5681 5682 for_each_node(node) 5683 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5684 node_online(node) ? node : NUMA_NO_NODE)); 5685 5686 for_each_possible_cpu(cpu) { 5687 node = cpu_to_node(cpu); 5688 if (WARN_ON(node == NUMA_NO_NODE)) { 5689 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5690 /* happens iff arch is bonkers, let's just proceed */ 5691 return; 5692 } 5693 cpumask_set_cpu(cpu, tbl[node]); 5694 } 5695 5696 wq_numa_possible_cpumask = tbl; 5697 wq_numa_enabled = true; 5698 } 5699 5700 /** 5701 * workqueue_init_early - early init for workqueue subsystem 5702 * 5703 * This is the first half of two-staged workqueue subsystem initialization 5704 * and invoked as soon as the bare basics - memory allocation, cpumasks and 5705 * idr are up. It sets up all the data structures and system workqueues 5706 * and allows early boot code to create workqueues and queue/cancel work 5707 * items. Actual work item execution starts only after kthreads can be 5708 * created and scheduled right before early initcalls. 5709 */ 5710 int __init workqueue_init_early(void) 5711 { 5712 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5713 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ; 5714 int i, cpu; 5715 5716 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5717 5718 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 5719 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags)); 5720 5721 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5722 5723 /* initialize CPU pools */ 5724 for_each_possible_cpu(cpu) { 5725 struct worker_pool *pool; 5726 5727 i = 0; 5728 for_each_cpu_worker_pool(pool, cpu) { 5729 BUG_ON(init_worker_pool(pool)); 5730 pool->cpu = cpu; 5731 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5732 pool->attrs->nice = std_nice[i++]; 5733 pool->node = cpu_to_node(cpu); 5734 5735 /* alloc pool ID */ 5736 mutex_lock(&wq_pool_mutex); 5737 BUG_ON(worker_pool_assign_id(pool)); 5738 mutex_unlock(&wq_pool_mutex); 5739 } 5740 } 5741 5742 /* create default unbound and ordered wq attrs */ 5743 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5744 struct workqueue_attrs *attrs; 5745 5746 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5747 attrs->nice = std_nice[i]; 5748 unbound_std_wq_attrs[i] = attrs; 5749 5750 /* 5751 * An ordered wq should have only one pwq as ordering is 5752 * guaranteed by max_active which is enforced by pwqs. 5753 * Turn off NUMA so that dfl_pwq is used for all nodes. 5754 */ 5755 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5756 attrs->nice = std_nice[i]; 5757 attrs->no_numa = true; 5758 ordered_wq_attrs[i] = attrs; 5759 } 5760 5761 system_wq = alloc_workqueue("events", 0, 0); 5762 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5763 system_long_wq = alloc_workqueue("events_long", 0, 0); 5764 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5765 WQ_UNBOUND_MAX_ACTIVE); 5766 system_freezable_wq = alloc_workqueue("events_freezable", 5767 WQ_FREEZABLE, 0); 5768 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5769 WQ_POWER_EFFICIENT, 0); 5770 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5771 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5772 0); 5773 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5774 !system_unbound_wq || !system_freezable_wq || 5775 !system_power_efficient_wq || 5776 !system_freezable_power_efficient_wq); 5777 5778 return 0; 5779 } 5780 5781 /** 5782 * workqueue_init - bring workqueue subsystem fully online 5783 * 5784 * This is the latter half of two-staged workqueue subsystem initialization 5785 * and invoked as soon as kthreads can be created and scheduled. 5786 * Workqueues have been created and work items queued on them, but there 5787 * are no kworkers executing the work items yet. Populate the worker pools 5788 * with the initial workers and enable future kworker creations. 5789 */ 5790 int __init workqueue_init(void) 5791 { 5792 struct workqueue_struct *wq; 5793 struct worker_pool *pool; 5794 int cpu, bkt; 5795 5796 /* 5797 * It'd be simpler to initialize NUMA in workqueue_init_early() but 5798 * CPU to node mapping may not be available that early on some 5799 * archs such as power and arm64. As per-cpu pools created 5800 * previously could be missing node hint and unbound pools NUMA 5801 * affinity, fix them up. 5802 * 5803 * Also, while iterating workqueues, create rescuers if requested. 5804 */ 5805 wq_numa_init(); 5806 5807 mutex_lock(&wq_pool_mutex); 5808 5809 for_each_possible_cpu(cpu) { 5810 for_each_cpu_worker_pool(pool, cpu) { 5811 pool->node = cpu_to_node(cpu); 5812 } 5813 } 5814 5815 list_for_each_entry(wq, &workqueues, list) { 5816 wq_update_unbound_numa(wq, smp_processor_id(), true); 5817 WARN(init_rescuer(wq), 5818 "workqueue: failed to create early rescuer for %s", 5819 wq->name); 5820 } 5821 5822 mutex_unlock(&wq_pool_mutex); 5823 5824 /* create the initial workers */ 5825 for_each_online_cpu(cpu) { 5826 for_each_cpu_worker_pool(pool, cpu) { 5827 pool->flags &= ~POOL_DISASSOCIATED; 5828 BUG_ON(!create_worker(pool)); 5829 } 5830 } 5831 5832 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 5833 BUG_ON(!create_worker(pool)); 5834 5835 wq_online = true; 5836 wq_watchdog_init(); 5837 5838 return 0; 5839 } 5840