xref: /openbmc/linux/kernel/workqueue.c (revision c88773dc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53 
54 #include "workqueue_internal.h"
55 
56 enum {
57 	/*
58 	 * worker_pool flags
59 	 *
60 	 * A bound pool is either associated or disassociated with its CPU.
61 	 * While associated (!DISASSOCIATED), all workers are bound to the
62 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
63 	 * is in effect.
64 	 *
65 	 * While DISASSOCIATED, the cpu may be offline and all workers have
66 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
67 	 * be executing on any CPU.  The pool behaves as an unbound one.
68 	 *
69 	 * Note that DISASSOCIATED should be flipped only while holding
70 	 * wq_pool_attach_mutex to avoid changing binding state while
71 	 * worker_attach_to_pool() is in progress.
72 	 */
73 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
74 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
75 
76 	/* worker flags */
77 	WORKER_DIE		= 1 << 1,	/* die die die */
78 	WORKER_IDLE		= 1 << 2,	/* is idle */
79 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
80 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
81 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
82 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
83 
84 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
85 				  WORKER_UNBOUND | WORKER_REBOUND,
86 
87 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
88 
89 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
90 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
91 
92 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
93 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
94 
95 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
96 						/* call for help after 10ms
97 						   (min two ticks) */
98 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
99 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
100 
101 	/*
102 	 * Rescue workers are used only on emergencies and shared by
103 	 * all cpus.  Give MIN_NICE.
104 	 */
105 	RESCUER_NICE_LEVEL	= MIN_NICE,
106 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
107 
108 	WQ_NAME_LEN		= 24,
109 };
110 
111 /*
112  * Structure fields follow one of the following exclusion rules.
113  *
114  * I: Modifiable by initialization/destruction paths and read-only for
115  *    everyone else.
116  *
117  * P: Preemption protected.  Disabling preemption is enough and should
118  *    only be modified and accessed from the local cpu.
119  *
120  * L: pool->lock protected.  Access with pool->lock held.
121  *
122  * X: During normal operation, modification requires pool->lock and should
123  *    be done only from local cpu.  Either disabling preemption on local
124  *    cpu or grabbing pool->lock is enough for read access.  If
125  *    POOL_DISASSOCIATED is set, it's identical to L.
126  *
127  * A: wq_pool_attach_mutex protected.
128  *
129  * PL: wq_pool_mutex protected.
130  *
131  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
132  *
133  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
134  *
135  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
136  *      RCU for reads.
137  *
138  * WQ: wq->mutex protected.
139  *
140  * WR: wq->mutex protected for writes.  RCU protected for reads.
141  *
142  * MD: wq_mayday_lock protected.
143  */
144 
145 /* struct worker is defined in workqueue_internal.h */
146 
147 struct worker_pool {
148 	raw_spinlock_t		lock;		/* the pool lock */
149 	int			cpu;		/* I: the associated cpu */
150 	int			node;		/* I: the associated node ID */
151 	int			id;		/* I: pool ID */
152 	unsigned int		flags;		/* X: flags */
153 
154 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
155 
156 	struct list_head	worklist;	/* L: list of pending works */
157 
158 	int			nr_workers;	/* L: total number of workers */
159 	int			nr_idle;	/* L: currently idle workers */
160 
161 	struct list_head	idle_list;	/* X: list of idle workers */
162 	struct timer_list	idle_timer;	/* L: worker idle timeout */
163 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
164 
165 	/* a workers is either on busy_hash or idle_list, or the manager */
166 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
167 						/* L: hash of busy workers */
168 
169 	struct worker		*manager;	/* L: purely informational */
170 	struct list_head	workers;	/* A: attached workers */
171 	struct completion	*detach_completion; /* all workers detached */
172 
173 	struct ida		worker_ida;	/* worker IDs for task name */
174 
175 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
176 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
177 	int			refcnt;		/* PL: refcnt for unbound pools */
178 
179 	/*
180 	 * The current concurrency level.  As it's likely to be accessed
181 	 * from other CPUs during try_to_wake_up(), put it in a separate
182 	 * cacheline.
183 	 */
184 	atomic_t		nr_running ____cacheline_aligned_in_smp;
185 
186 	/*
187 	 * Destruction of pool is RCU protected to allow dereferences
188 	 * from get_work_pool().
189 	 */
190 	struct rcu_head		rcu;
191 } ____cacheline_aligned_in_smp;
192 
193 /*
194  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
195  * of work_struct->data are used for flags and the remaining high bits
196  * point to the pwq; thus, pwqs need to be aligned at two's power of the
197  * number of flag bits.
198  */
199 struct pool_workqueue {
200 	struct worker_pool	*pool;		/* I: the associated pool */
201 	struct workqueue_struct *wq;		/* I: the owning workqueue */
202 	int			work_color;	/* L: current color */
203 	int			flush_color;	/* L: flushing color */
204 	int			refcnt;		/* L: reference count */
205 	int			nr_in_flight[WORK_NR_COLORS];
206 						/* L: nr of in_flight works */
207 	int			nr_active;	/* L: nr of active works */
208 	int			max_active;	/* L: max active works */
209 	struct list_head	delayed_works;	/* L: delayed works */
210 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
211 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
212 
213 	/*
214 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
215 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
216 	 * itself is also RCU protected so that the first pwq can be
217 	 * determined without grabbing wq->mutex.
218 	 */
219 	struct work_struct	unbound_release_work;
220 	struct rcu_head		rcu;
221 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
222 
223 /*
224  * Structure used to wait for workqueue flush.
225  */
226 struct wq_flusher {
227 	struct list_head	list;		/* WQ: list of flushers */
228 	int			flush_color;	/* WQ: flush color waiting for */
229 	struct completion	done;		/* flush completion */
230 };
231 
232 struct wq_device;
233 
234 /*
235  * The externally visible workqueue.  It relays the issued work items to
236  * the appropriate worker_pool through its pool_workqueues.
237  */
238 struct workqueue_struct {
239 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
240 	struct list_head	list;		/* PR: list of all workqueues */
241 
242 	struct mutex		mutex;		/* protects this wq */
243 	int			work_color;	/* WQ: current work color */
244 	int			flush_color;	/* WQ: current flush color */
245 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
246 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
247 	struct list_head	flusher_queue;	/* WQ: flush waiters */
248 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
249 
250 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
251 	struct worker		*rescuer;	/* MD: rescue worker */
252 
253 	int			nr_drainers;	/* WQ: drain in progress */
254 	int			saved_max_active; /* WQ: saved pwq max_active */
255 
256 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
257 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
258 
259 #ifdef CONFIG_SYSFS
260 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
261 #endif
262 #ifdef CONFIG_LOCKDEP
263 	char			*lock_name;
264 	struct lock_class_key	key;
265 	struct lockdep_map	lockdep_map;
266 #endif
267 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
268 
269 	/*
270 	 * Destruction of workqueue_struct is RCU protected to allow walking
271 	 * the workqueues list without grabbing wq_pool_mutex.
272 	 * This is used to dump all workqueues from sysrq.
273 	 */
274 	struct rcu_head		rcu;
275 
276 	/* hot fields used during command issue, aligned to cacheline */
277 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
278 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
279 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
280 };
281 
282 static struct kmem_cache *pwq_cache;
283 
284 static cpumask_var_t *wq_numa_possible_cpumask;
285 					/* possible CPUs of each node */
286 
287 static bool wq_disable_numa;
288 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
289 
290 /* see the comment above the definition of WQ_POWER_EFFICIENT */
291 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
292 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
293 
294 static bool wq_online;			/* can kworkers be created yet? */
295 
296 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
297 
298 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
299 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
300 
301 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
302 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
303 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
304 /* wait for manager to go away */
305 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
306 
307 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
308 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
309 
310 /* PL: allowable cpus for unbound wqs and work items */
311 static cpumask_var_t wq_unbound_cpumask;
312 
313 /* CPU where unbound work was last round robin scheduled from this CPU */
314 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
315 
316 /*
317  * Local execution of unbound work items is no longer guaranteed.  The
318  * following always forces round-robin CPU selection on unbound work items
319  * to uncover usages which depend on it.
320  */
321 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
322 static bool wq_debug_force_rr_cpu = true;
323 #else
324 static bool wq_debug_force_rr_cpu = false;
325 #endif
326 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
327 
328 /* the per-cpu worker pools */
329 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
330 
331 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
332 
333 /* PL: hash of all unbound pools keyed by pool->attrs */
334 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
335 
336 /* I: attributes used when instantiating standard unbound pools on demand */
337 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
338 
339 /* I: attributes used when instantiating ordered pools on demand */
340 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
341 
342 struct workqueue_struct *system_wq __read_mostly;
343 EXPORT_SYMBOL(system_wq);
344 struct workqueue_struct *system_highpri_wq __read_mostly;
345 EXPORT_SYMBOL_GPL(system_highpri_wq);
346 struct workqueue_struct *system_long_wq __read_mostly;
347 EXPORT_SYMBOL_GPL(system_long_wq);
348 struct workqueue_struct *system_unbound_wq __read_mostly;
349 EXPORT_SYMBOL_GPL(system_unbound_wq);
350 struct workqueue_struct *system_freezable_wq __read_mostly;
351 EXPORT_SYMBOL_GPL(system_freezable_wq);
352 struct workqueue_struct *system_power_efficient_wq __read_mostly;
353 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
354 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
355 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
356 
357 static int worker_thread(void *__worker);
358 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
359 static void show_pwq(struct pool_workqueue *pwq);
360 
361 #define CREATE_TRACE_POINTS
362 #include <trace/events/workqueue.h>
363 
364 #define assert_rcu_or_pool_mutex()					\
365 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
366 			 !lockdep_is_held(&wq_pool_mutex),		\
367 			 "RCU or wq_pool_mutex should be held")
368 
369 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
370 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
371 			 !lockdep_is_held(&wq->mutex) &&		\
372 			 !lockdep_is_held(&wq_pool_mutex),		\
373 			 "RCU, wq->mutex or wq_pool_mutex should be held")
374 
375 #define for_each_cpu_worker_pool(pool, cpu)				\
376 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
377 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
378 	     (pool)++)
379 
380 /**
381  * for_each_pool - iterate through all worker_pools in the system
382  * @pool: iteration cursor
383  * @pi: integer used for iteration
384  *
385  * This must be called either with wq_pool_mutex held or RCU read
386  * locked.  If the pool needs to be used beyond the locking in effect, the
387  * caller is responsible for guaranteeing that the pool stays online.
388  *
389  * The if/else clause exists only for the lockdep assertion and can be
390  * ignored.
391  */
392 #define for_each_pool(pool, pi)						\
393 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
394 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
395 		else
396 
397 /**
398  * for_each_pool_worker - iterate through all workers of a worker_pool
399  * @worker: iteration cursor
400  * @pool: worker_pool to iterate workers of
401  *
402  * This must be called with wq_pool_attach_mutex.
403  *
404  * The if/else clause exists only for the lockdep assertion and can be
405  * ignored.
406  */
407 #define for_each_pool_worker(worker, pool)				\
408 	list_for_each_entry((worker), &(pool)->workers, node)		\
409 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
410 		else
411 
412 /**
413  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
414  * @pwq: iteration cursor
415  * @wq: the target workqueue
416  *
417  * This must be called either with wq->mutex held or RCU read locked.
418  * If the pwq needs to be used beyond the locking in effect, the caller is
419  * responsible for guaranteeing that the pwq stays online.
420  *
421  * The if/else clause exists only for the lockdep assertion and can be
422  * ignored.
423  */
424 #define for_each_pwq(pwq, wq)						\
425 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
426 				 lockdep_is_held(&(wq->mutex)))
427 
428 #ifdef CONFIG_DEBUG_OBJECTS_WORK
429 
430 static const struct debug_obj_descr work_debug_descr;
431 
432 static void *work_debug_hint(void *addr)
433 {
434 	return ((struct work_struct *) addr)->func;
435 }
436 
437 static bool work_is_static_object(void *addr)
438 {
439 	struct work_struct *work = addr;
440 
441 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
442 }
443 
444 /*
445  * fixup_init is called when:
446  * - an active object is initialized
447  */
448 static bool work_fixup_init(void *addr, enum debug_obj_state state)
449 {
450 	struct work_struct *work = addr;
451 
452 	switch (state) {
453 	case ODEBUG_STATE_ACTIVE:
454 		cancel_work_sync(work);
455 		debug_object_init(work, &work_debug_descr);
456 		return true;
457 	default:
458 		return false;
459 	}
460 }
461 
462 /*
463  * fixup_free is called when:
464  * - an active object is freed
465  */
466 static bool work_fixup_free(void *addr, enum debug_obj_state state)
467 {
468 	struct work_struct *work = addr;
469 
470 	switch (state) {
471 	case ODEBUG_STATE_ACTIVE:
472 		cancel_work_sync(work);
473 		debug_object_free(work, &work_debug_descr);
474 		return true;
475 	default:
476 		return false;
477 	}
478 }
479 
480 static const struct debug_obj_descr work_debug_descr = {
481 	.name		= "work_struct",
482 	.debug_hint	= work_debug_hint,
483 	.is_static_object = work_is_static_object,
484 	.fixup_init	= work_fixup_init,
485 	.fixup_free	= work_fixup_free,
486 };
487 
488 static inline void debug_work_activate(struct work_struct *work)
489 {
490 	debug_object_activate(work, &work_debug_descr);
491 }
492 
493 static inline void debug_work_deactivate(struct work_struct *work)
494 {
495 	debug_object_deactivate(work, &work_debug_descr);
496 }
497 
498 void __init_work(struct work_struct *work, int onstack)
499 {
500 	if (onstack)
501 		debug_object_init_on_stack(work, &work_debug_descr);
502 	else
503 		debug_object_init(work, &work_debug_descr);
504 }
505 EXPORT_SYMBOL_GPL(__init_work);
506 
507 void destroy_work_on_stack(struct work_struct *work)
508 {
509 	debug_object_free(work, &work_debug_descr);
510 }
511 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
512 
513 void destroy_delayed_work_on_stack(struct delayed_work *work)
514 {
515 	destroy_timer_on_stack(&work->timer);
516 	debug_object_free(&work->work, &work_debug_descr);
517 }
518 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
519 
520 #else
521 static inline void debug_work_activate(struct work_struct *work) { }
522 static inline void debug_work_deactivate(struct work_struct *work) { }
523 #endif
524 
525 /**
526  * worker_pool_assign_id - allocate ID and assing it to @pool
527  * @pool: the pool pointer of interest
528  *
529  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
530  * successfully, -errno on failure.
531  */
532 static int worker_pool_assign_id(struct worker_pool *pool)
533 {
534 	int ret;
535 
536 	lockdep_assert_held(&wq_pool_mutex);
537 
538 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
539 			GFP_KERNEL);
540 	if (ret >= 0) {
541 		pool->id = ret;
542 		return 0;
543 	}
544 	return ret;
545 }
546 
547 /**
548  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
549  * @wq: the target workqueue
550  * @node: the node ID
551  *
552  * This must be called with any of wq_pool_mutex, wq->mutex or RCU
553  * read locked.
554  * If the pwq needs to be used beyond the locking in effect, the caller is
555  * responsible for guaranteeing that the pwq stays online.
556  *
557  * Return: The unbound pool_workqueue for @node.
558  */
559 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
560 						  int node)
561 {
562 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
563 
564 	/*
565 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
566 	 * delayed item is pending.  The plan is to keep CPU -> NODE
567 	 * mapping valid and stable across CPU on/offlines.  Once that
568 	 * happens, this workaround can be removed.
569 	 */
570 	if (unlikely(node == NUMA_NO_NODE))
571 		return wq->dfl_pwq;
572 
573 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
574 }
575 
576 static unsigned int work_color_to_flags(int color)
577 {
578 	return color << WORK_STRUCT_COLOR_SHIFT;
579 }
580 
581 static int get_work_color(struct work_struct *work)
582 {
583 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
584 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
585 }
586 
587 static int work_next_color(int color)
588 {
589 	return (color + 1) % WORK_NR_COLORS;
590 }
591 
592 /*
593  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
594  * contain the pointer to the queued pwq.  Once execution starts, the flag
595  * is cleared and the high bits contain OFFQ flags and pool ID.
596  *
597  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
598  * and clear_work_data() can be used to set the pwq, pool or clear
599  * work->data.  These functions should only be called while the work is
600  * owned - ie. while the PENDING bit is set.
601  *
602  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
603  * corresponding to a work.  Pool is available once the work has been
604  * queued anywhere after initialization until it is sync canceled.  pwq is
605  * available only while the work item is queued.
606  *
607  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
608  * canceled.  While being canceled, a work item may have its PENDING set
609  * but stay off timer and worklist for arbitrarily long and nobody should
610  * try to steal the PENDING bit.
611  */
612 static inline void set_work_data(struct work_struct *work, unsigned long data,
613 				 unsigned long flags)
614 {
615 	WARN_ON_ONCE(!work_pending(work));
616 	atomic_long_set(&work->data, data | flags | work_static(work));
617 }
618 
619 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
620 			 unsigned long extra_flags)
621 {
622 	set_work_data(work, (unsigned long)pwq,
623 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
624 }
625 
626 static void set_work_pool_and_keep_pending(struct work_struct *work,
627 					   int pool_id)
628 {
629 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
630 		      WORK_STRUCT_PENDING);
631 }
632 
633 static void set_work_pool_and_clear_pending(struct work_struct *work,
634 					    int pool_id)
635 {
636 	/*
637 	 * The following wmb is paired with the implied mb in
638 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
639 	 * here are visible to and precede any updates by the next PENDING
640 	 * owner.
641 	 */
642 	smp_wmb();
643 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
644 	/*
645 	 * The following mb guarantees that previous clear of a PENDING bit
646 	 * will not be reordered with any speculative LOADS or STORES from
647 	 * work->current_func, which is executed afterwards.  This possible
648 	 * reordering can lead to a missed execution on attempt to queue
649 	 * the same @work.  E.g. consider this case:
650 	 *
651 	 *   CPU#0                         CPU#1
652 	 *   ----------------------------  --------------------------------
653 	 *
654 	 * 1  STORE event_indicated
655 	 * 2  queue_work_on() {
656 	 * 3    test_and_set_bit(PENDING)
657 	 * 4 }                             set_..._and_clear_pending() {
658 	 * 5                                 set_work_data() # clear bit
659 	 * 6                                 smp_mb()
660 	 * 7                               work->current_func() {
661 	 * 8				      LOAD event_indicated
662 	 *				   }
663 	 *
664 	 * Without an explicit full barrier speculative LOAD on line 8 can
665 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
666 	 * CPU#0 observes the PENDING bit is still set and new execution of
667 	 * a @work is not queued in a hope, that CPU#1 will eventually
668 	 * finish the queued @work.  Meanwhile CPU#1 does not see
669 	 * event_indicated is set, because speculative LOAD was executed
670 	 * before actual STORE.
671 	 */
672 	smp_mb();
673 }
674 
675 static void clear_work_data(struct work_struct *work)
676 {
677 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
678 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
679 }
680 
681 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
682 {
683 	unsigned long data = atomic_long_read(&work->data);
684 
685 	if (data & WORK_STRUCT_PWQ)
686 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
687 	else
688 		return NULL;
689 }
690 
691 /**
692  * get_work_pool - return the worker_pool a given work was associated with
693  * @work: the work item of interest
694  *
695  * Pools are created and destroyed under wq_pool_mutex, and allows read
696  * access under RCU read lock.  As such, this function should be
697  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
698  *
699  * All fields of the returned pool are accessible as long as the above
700  * mentioned locking is in effect.  If the returned pool needs to be used
701  * beyond the critical section, the caller is responsible for ensuring the
702  * returned pool is and stays online.
703  *
704  * Return: The worker_pool @work was last associated with.  %NULL if none.
705  */
706 static struct worker_pool *get_work_pool(struct work_struct *work)
707 {
708 	unsigned long data = atomic_long_read(&work->data);
709 	int pool_id;
710 
711 	assert_rcu_or_pool_mutex();
712 
713 	if (data & WORK_STRUCT_PWQ)
714 		return ((struct pool_workqueue *)
715 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
716 
717 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
718 	if (pool_id == WORK_OFFQ_POOL_NONE)
719 		return NULL;
720 
721 	return idr_find(&worker_pool_idr, pool_id);
722 }
723 
724 /**
725  * get_work_pool_id - return the worker pool ID a given work is associated with
726  * @work: the work item of interest
727  *
728  * Return: The worker_pool ID @work was last associated with.
729  * %WORK_OFFQ_POOL_NONE if none.
730  */
731 static int get_work_pool_id(struct work_struct *work)
732 {
733 	unsigned long data = atomic_long_read(&work->data);
734 
735 	if (data & WORK_STRUCT_PWQ)
736 		return ((struct pool_workqueue *)
737 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
738 
739 	return data >> WORK_OFFQ_POOL_SHIFT;
740 }
741 
742 static void mark_work_canceling(struct work_struct *work)
743 {
744 	unsigned long pool_id = get_work_pool_id(work);
745 
746 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
747 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
748 }
749 
750 static bool work_is_canceling(struct work_struct *work)
751 {
752 	unsigned long data = atomic_long_read(&work->data);
753 
754 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
755 }
756 
757 /*
758  * Policy functions.  These define the policies on how the global worker
759  * pools are managed.  Unless noted otherwise, these functions assume that
760  * they're being called with pool->lock held.
761  */
762 
763 static bool __need_more_worker(struct worker_pool *pool)
764 {
765 	return !atomic_read(&pool->nr_running);
766 }
767 
768 /*
769  * Need to wake up a worker?  Called from anything but currently
770  * running workers.
771  *
772  * Note that, because unbound workers never contribute to nr_running, this
773  * function will always return %true for unbound pools as long as the
774  * worklist isn't empty.
775  */
776 static bool need_more_worker(struct worker_pool *pool)
777 {
778 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
779 }
780 
781 /* Can I start working?  Called from busy but !running workers. */
782 static bool may_start_working(struct worker_pool *pool)
783 {
784 	return pool->nr_idle;
785 }
786 
787 /* Do I need to keep working?  Called from currently running workers. */
788 static bool keep_working(struct worker_pool *pool)
789 {
790 	return !list_empty(&pool->worklist) &&
791 		atomic_read(&pool->nr_running) <= 1;
792 }
793 
794 /* Do we need a new worker?  Called from manager. */
795 static bool need_to_create_worker(struct worker_pool *pool)
796 {
797 	return need_more_worker(pool) && !may_start_working(pool);
798 }
799 
800 /* Do we have too many workers and should some go away? */
801 static bool too_many_workers(struct worker_pool *pool)
802 {
803 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
804 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
805 	int nr_busy = pool->nr_workers - nr_idle;
806 
807 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
808 }
809 
810 /*
811  * Wake up functions.
812  */
813 
814 /* Return the first idle worker.  Safe with preemption disabled */
815 static struct worker *first_idle_worker(struct worker_pool *pool)
816 {
817 	if (unlikely(list_empty(&pool->idle_list)))
818 		return NULL;
819 
820 	return list_first_entry(&pool->idle_list, struct worker, entry);
821 }
822 
823 /**
824  * wake_up_worker - wake up an idle worker
825  * @pool: worker pool to wake worker from
826  *
827  * Wake up the first idle worker of @pool.
828  *
829  * CONTEXT:
830  * raw_spin_lock_irq(pool->lock).
831  */
832 static void wake_up_worker(struct worker_pool *pool)
833 {
834 	struct worker *worker = first_idle_worker(pool);
835 
836 	if (likely(worker))
837 		wake_up_process(worker->task);
838 }
839 
840 /**
841  * wq_worker_running - a worker is running again
842  * @task: task waking up
843  *
844  * This function is called when a worker returns from schedule()
845  */
846 void wq_worker_running(struct task_struct *task)
847 {
848 	struct worker *worker = kthread_data(task);
849 
850 	if (!worker->sleeping)
851 		return;
852 	if (!(worker->flags & WORKER_NOT_RUNNING))
853 		atomic_inc(&worker->pool->nr_running);
854 	worker->sleeping = 0;
855 }
856 
857 /**
858  * wq_worker_sleeping - a worker is going to sleep
859  * @task: task going to sleep
860  *
861  * This function is called from schedule() when a busy worker is
862  * going to sleep. Preemption needs to be disabled to protect ->sleeping
863  * assignment.
864  */
865 void wq_worker_sleeping(struct task_struct *task)
866 {
867 	struct worker *next, *worker = kthread_data(task);
868 	struct worker_pool *pool;
869 
870 	/*
871 	 * Rescuers, which may not have all the fields set up like normal
872 	 * workers, also reach here, let's not access anything before
873 	 * checking NOT_RUNNING.
874 	 */
875 	if (worker->flags & WORKER_NOT_RUNNING)
876 		return;
877 
878 	pool = worker->pool;
879 
880 	/* Return if preempted before wq_worker_running() was reached */
881 	if (worker->sleeping)
882 		return;
883 
884 	worker->sleeping = 1;
885 	raw_spin_lock_irq(&pool->lock);
886 
887 	/*
888 	 * The counterpart of the following dec_and_test, implied mb,
889 	 * worklist not empty test sequence is in insert_work().
890 	 * Please read comment there.
891 	 *
892 	 * NOT_RUNNING is clear.  This means that we're bound to and
893 	 * running on the local cpu w/ rq lock held and preemption
894 	 * disabled, which in turn means that none else could be
895 	 * manipulating idle_list, so dereferencing idle_list without pool
896 	 * lock is safe.
897 	 */
898 	if (atomic_dec_and_test(&pool->nr_running) &&
899 	    !list_empty(&pool->worklist)) {
900 		next = first_idle_worker(pool);
901 		if (next)
902 			wake_up_process(next->task);
903 	}
904 	raw_spin_unlock_irq(&pool->lock);
905 }
906 
907 /**
908  * wq_worker_last_func - retrieve worker's last work function
909  * @task: Task to retrieve last work function of.
910  *
911  * Determine the last function a worker executed. This is called from
912  * the scheduler to get a worker's last known identity.
913  *
914  * CONTEXT:
915  * raw_spin_lock_irq(rq->lock)
916  *
917  * This function is called during schedule() when a kworker is going
918  * to sleep. It's used by psi to identify aggregation workers during
919  * dequeuing, to allow periodic aggregation to shut-off when that
920  * worker is the last task in the system or cgroup to go to sleep.
921  *
922  * As this function doesn't involve any workqueue-related locking, it
923  * only returns stable values when called from inside the scheduler's
924  * queuing and dequeuing paths, when @task, which must be a kworker,
925  * is guaranteed to not be processing any works.
926  *
927  * Return:
928  * The last work function %current executed as a worker, NULL if it
929  * hasn't executed any work yet.
930  */
931 work_func_t wq_worker_last_func(struct task_struct *task)
932 {
933 	struct worker *worker = kthread_data(task);
934 
935 	return worker->last_func;
936 }
937 
938 /**
939  * worker_set_flags - set worker flags and adjust nr_running accordingly
940  * @worker: self
941  * @flags: flags to set
942  *
943  * Set @flags in @worker->flags and adjust nr_running accordingly.
944  *
945  * CONTEXT:
946  * raw_spin_lock_irq(pool->lock)
947  */
948 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
949 {
950 	struct worker_pool *pool = worker->pool;
951 
952 	WARN_ON_ONCE(worker->task != current);
953 
954 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
955 	if ((flags & WORKER_NOT_RUNNING) &&
956 	    !(worker->flags & WORKER_NOT_RUNNING)) {
957 		atomic_dec(&pool->nr_running);
958 	}
959 
960 	worker->flags |= flags;
961 }
962 
963 /**
964  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
965  * @worker: self
966  * @flags: flags to clear
967  *
968  * Clear @flags in @worker->flags and adjust nr_running accordingly.
969  *
970  * CONTEXT:
971  * raw_spin_lock_irq(pool->lock)
972  */
973 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
974 {
975 	struct worker_pool *pool = worker->pool;
976 	unsigned int oflags = worker->flags;
977 
978 	WARN_ON_ONCE(worker->task != current);
979 
980 	worker->flags &= ~flags;
981 
982 	/*
983 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
984 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
985 	 * of multiple flags, not a single flag.
986 	 */
987 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
988 		if (!(worker->flags & WORKER_NOT_RUNNING))
989 			atomic_inc(&pool->nr_running);
990 }
991 
992 /**
993  * find_worker_executing_work - find worker which is executing a work
994  * @pool: pool of interest
995  * @work: work to find worker for
996  *
997  * Find a worker which is executing @work on @pool by searching
998  * @pool->busy_hash which is keyed by the address of @work.  For a worker
999  * to match, its current execution should match the address of @work and
1000  * its work function.  This is to avoid unwanted dependency between
1001  * unrelated work executions through a work item being recycled while still
1002  * being executed.
1003  *
1004  * This is a bit tricky.  A work item may be freed once its execution
1005  * starts and nothing prevents the freed area from being recycled for
1006  * another work item.  If the same work item address ends up being reused
1007  * before the original execution finishes, workqueue will identify the
1008  * recycled work item as currently executing and make it wait until the
1009  * current execution finishes, introducing an unwanted dependency.
1010  *
1011  * This function checks the work item address and work function to avoid
1012  * false positives.  Note that this isn't complete as one may construct a
1013  * work function which can introduce dependency onto itself through a
1014  * recycled work item.  Well, if somebody wants to shoot oneself in the
1015  * foot that badly, there's only so much we can do, and if such deadlock
1016  * actually occurs, it should be easy to locate the culprit work function.
1017  *
1018  * CONTEXT:
1019  * raw_spin_lock_irq(pool->lock).
1020  *
1021  * Return:
1022  * Pointer to worker which is executing @work if found, %NULL
1023  * otherwise.
1024  */
1025 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1026 						 struct work_struct *work)
1027 {
1028 	struct worker *worker;
1029 
1030 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1031 			       (unsigned long)work)
1032 		if (worker->current_work == work &&
1033 		    worker->current_func == work->func)
1034 			return worker;
1035 
1036 	return NULL;
1037 }
1038 
1039 /**
1040  * move_linked_works - move linked works to a list
1041  * @work: start of series of works to be scheduled
1042  * @head: target list to append @work to
1043  * @nextp: out parameter for nested worklist walking
1044  *
1045  * Schedule linked works starting from @work to @head.  Work series to
1046  * be scheduled starts at @work and includes any consecutive work with
1047  * WORK_STRUCT_LINKED set in its predecessor.
1048  *
1049  * If @nextp is not NULL, it's updated to point to the next work of
1050  * the last scheduled work.  This allows move_linked_works() to be
1051  * nested inside outer list_for_each_entry_safe().
1052  *
1053  * CONTEXT:
1054  * raw_spin_lock_irq(pool->lock).
1055  */
1056 static void move_linked_works(struct work_struct *work, struct list_head *head,
1057 			      struct work_struct **nextp)
1058 {
1059 	struct work_struct *n;
1060 
1061 	/*
1062 	 * Linked worklist will always end before the end of the list,
1063 	 * use NULL for list head.
1064 	 */
1065 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1066 		list_move_tail(&work->entry, head);
1067 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1068 			break;
1069 	}
1070 
1071 	/*
1072 	 * If we're already inside safe list traversal and have moved
1073 	 * multiple works to the scheduled queue, the next position
1074 	 * needs to be updated.
1075 	 */
1076 	if (nextp)
1077 		*nextp = n;
1078 }
1079 
1080 /**
1081  * get_pwq - get an extra reference on the specified pool_workqueue
1082  * @pwq: pool_workqueue to get
1083  *
1084  * Obtain an extra reference on @pwq.  The caller should guarantee that
1085  * @pwq has positive refcnt and be holding the matching pool->lock.
1086  */
1087 static void get_pwq(struct pool_workqueue *pwq)
1088 {
1089 	lockdep_assert_held(&pwq->pool->lock);
1090 	WARN_ON_ONCE(pwq->refcnt <= 0);
1091 	pwq->refcnt++;
1092 }
1093 
1094 /**
1095  * put_pwq - put a pool_workqueue reference
1096  * @pwq: pool_workqueue to put
1097  *
1098  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1099  * destruction.  The caller should be holding the matching pool->lock.
1100  */
1101 static void put_pwq(struct pool_workqueue *pwq)
1102 {
1103 	lockdep_assert_held(&pwq->pool->lock);
1104 	if (likely(--pwq->refcnt))
1105 		return;
1106 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1107 		return;
1108 	/*
1109 	 * @pwq can't be released under pool->lock, bounce to
1110 	 * pwq_unbound_release_workfn().  This never recurses on the same
1111 	 * pool->lock as this path is taken only for unbound workqueues and
1112 	 * the release work item is scheduled on a per-cpu workqueue.  To
1113 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1114 	 * subclass of 1 in get_unbound_pool().
1115 	 */
1116 	schedule_work(&pwq->unbound_release_work);
1117 }
1118 
1119 /**
1120  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1121  * @pwq: pool_workqueue to put (can be %NULL)
1122  *
1123  * put_pwq() with locking.  This function also allows %NULL @pwq.
1124  */
1125 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1126 {
1127 	if (pwq) {
1128 		/*
1129 		 * As both pwqs and pools are RCU protected, the
1130 		 * following lock operations are safe.
1131 		 */
1132 		raw_spin_lock_irq(&pwq->pool->lock);
1133 		put_pwq(pwq);
1134 		raw_spin_unlock_irq(&pwq->pool->lock);
1135 	}
1136 }
1137 
1138 static void pwq_activate_delayed_work(struct work_struct *work)
1139 {
1140 	struct pool_workqueue *pwq = get_work_pwq(work);
1141 
1142 	trace_workqueue_activate_work(work);
1143 	if (list_empty(&pwq->pool->worklist))
1144 		pwq->pool->watchdog_ts = jiffies;
1145 	move_linked_works(work, &pwq->pool->worklist, NULL);
1146 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1147 	pwq->nr_active++;
1148 }
1149 
1150 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1151 {
1152 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1153 						    struct work_struct, entry);
1154 
1155 	pwq_activate_delayed_work(work);
1156 }
1157 
1158 /**
1159  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1160  * @pwq: pwq of interest
1161  * @color: color of work which left the queue
1162  *
1163  * A work either has completed or is removed from pending queue,
1164  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1165  *
1166  * CONTEXT:
1167  * raw_spin_lock_irq(pool->lock).
1168  */
1169 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1170 {
1171 	/* uncolored work items don't participate in flushing or nr_active */
1172 	if (color == WORK_NO_COLOR)
1173 		goto out_put;
1174 
1175 	pwq->nr_in_flight[color]--;
1176 
1177 	pwq->nr_active--;
1178 	if (!list_empty(&pwq->delayed_works)) {
1179 		/* one down, submit a delayed one */
1180 		if (pwq->nr_active < pwq->max_active)
1181 			pwq_activate_first_delayed(pwq);
1182 	}
1183 
1184 	/* is flush in progress and are we at the flushing tip? */
1185 	if (likely(pwq->flush_color != color))
1186 		goto out_put;
1187 
1188 	/* are there still in-flight works? */
1189 	if (pwq->nr_in_flight[color])
1190 		goto out_put;
1191 
1192 	/* this pwq is done, clear flush_color */
1193 	pwq->flush_color = -1;
1194 
1195 	/*
1196 	 * If this was the last pwq, wake up the first flusher.  It
1197 	 * will handle the rest.
1198 	 */
1199 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1200 		complete(&pwq->wq->first_flusher->done);
1201 out_put:
1202 	put_pwq(pwq);
1203 }
1204 
1205 /**
1206  * try_to_grab_pending - steal work item from worklist and disable irq
1207  * @work: work item to steal
1208  * @is_dwork: @work is a delayed_work
1209  * @flags: place to store irq state
1210  *
1211  * Try to grab PENDING bit of @work.  This function can handle @work in any
1212  * stable state - idle, on timer or on worklist.
1213  *
1214  * Return:
1215  *  1		if @work was pending and we successfully stole PENDING
1216  *  0		if @work was idle and we claimed PENDING
1217  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1218  *  -ENOENT	if someone else is canceling @work, this state may persist
1219  *		for arbitrarily long
1220  *
1221  * Note:
1222  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1223  * interrupted while holding PENDING and @work off queue, irq must be
1224  * disabled on entry.  This, combined with delayed_work->timer being
1225  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1226  *
1227  * On successful return, >= 0, irq is disabled and the caller is
1228  * responsible for releasing it using local_irq_restore(*@flags).
1229  *
1230  * This function is safe to call from any context including IRQ handler.
1231  */
1232 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1233 			       unsigned long *flags)
1234 {
1235 	struct worker_pool *pool;
1236 	struct pool_workqueue *pwq;
1237 
1238 	local_irq_save(*flags);
1239 
1240 	/* try to steal the timer if it exists */
1241 	if (is_dwork) {
1242 		struct delayed_work *dwork = to_delayed_work(work);
1243 
1244 		/*
1245 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1246 		 * guaranteed that the timer is not queued anywhere and not
1247 		 * running on the local CPU.
1248 		 */
1249 		if (likely(del_timer(&dwork->timer)))
1250 			return 1;
1251 	}
1252 
1253 	/* try to claim PENDING the normal way */
1254 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1255 		return 0;
1256 
1257 	rcu_read_lock();
1258 	/*
1259 	 * The queueing is in progress, or it is already queued. Try to
1260 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1261 	 */
1262 	pool = get_work_pool(work);
1263 	if (!pool)
1264 		goto fail;
1265 
1266 	raw_spin_lock(&pool->lock);
1267 	/*
1268 	 * work->data is guaranteed to point to pwq only while the work
1269 	 * item is queued on pwq->wq, and both updating work->data to point
1270 	 * to pwq on queueing and to pool on dequeueing are done under
1271 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1272 	 * points to pwq which is associated with a locked pool, the work
1273 	 * item is currently queued on that pool.
1274 	 */
1275 	pwq = get_work_pwq(work);
1276 	if (pwq && pwq->pool == pool) {
1277 		debug_work_deactivate(work);
1278 
1279 		/*
1280 		 * A delayed work item cannot be grabbed directly because
1281 		 * it might have linked NO_COLOR work items which, if left
1282 		 * on the delayed_list, will confuse pwq->nr_active
1283 		 * management later on and cause stall.  Make sure the work
1284 		 * item is activated before grabbing.
1285 		 */
1286 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1287 			pwq_activate_delayed_work(work);
1288 
1289 		list_del_init(&work->entry);
1290 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1291 
1292 		/* work->data points to pwq iff queued, point to pool */
1293 		set_work_pool_and_keep_pending(work, pool->id);
1294 
1295 		raw_spin_unlock(&pool->lock);
1296 		rcu_read_unlock();
1297 		return 1;
1298 	}
1299 	raw_spin_unlock(&pool->lock);
1300 fail:
1301 	rcu_read_unlock();
1302 	local_irq_restore(*flags);
1303 	if (work_is_canceling(work))
1304 		return -ENOENT;
1305 	cpu_relax();
1306 	return -EAGAIN;
1307 }
1308 
1309 /**
1310  * insert_work - insert a work into a pool
1311  * @pwq: pwq @work belongs to
1312  * @work: work to insert
1313  * @head: insertion point
1314  * @extra_flags: extra WORK_STRUCT_* flags to set
1315  *
1316  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1317  * work_struct flags.
1318  *
1319  * CONTEXT:
1320  * raw_spin_lock_irq(pool->lock).
1321  */
1322 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1323 			struct list_head *head, unsigned int extra_flags)
1324 {
1325 	struct worker_pool *pool = pwq->pool;
1326 
1327 	/* we own @work, set data and link */
1328 	set_work_pwq(work, pwq, extra_flags);
1329 	list_add_tail(&work->entry, head);
1330 	get_pwq(pwq);
1331 
1332 	/*
1333 	 * Ensure either wq_worker_sleeping() sees the above
1334 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1335 	 * around lazily while there are works to be processed.
1336 	 */
1337 	smp_mb();
1338 
1339 	if (__need_more_worker(pool))
1340 		wake_up_worker(pool);
1341 }
1342 
1343 /*
1344  * Test whether @work is being queued from another work executing on the
1345  * same workqueue.
1346  */
1347 static bool is_chained_work(struct workqueue_struct *wq)
1348 {
1349 	struct worker *worker;
1350 
1351 	worker = current_wq_worker();
1352 	/*
1353 	 * Return %true iff I'm a worker executing a work item on @wq.  If
1354 	 * I'm @worker, it's safe to dereference it without locking.
1355 	 */
1356 	return worker && worker->current_pwq->wq == wq;
1357 }
1358 
1359 /*
1360  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1361  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1362  * avoid perturbing sensitive tasks.
1363  */
1364 static int wq_select_unbound_cpu(int cpu)
1365 {
1366 	static bool printed_dbg_warning;
1367 	int new_cpu;
1368 
1369 	if (likely(!wq_debug_force_rr_cpu)) {
1370 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1371 			return cpu;
1372 	} else if (!printed_dbg_warning) {
1373 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1374 		printed_dbg_warning = true;
1375 	}
1376 
1377 	if (cpumask_empty(wq_unbound_cpumask))
1378 		return cpu;
1379 
1380 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1381 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1382 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1383 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1384 		if (unlikely(new_cpu >= nr_cpu_ids))
1385 			return cpu;
1386 	}
1387 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1388 
1389 	return new_cpu;
1390 }
1391 
1392 static void __queue_work(int cpu, struct workqueue_struct *wq,
1393 			 struct work_struct *work)
1394 {
1395 	struct pool_workqueue *pwq;
1396 	struct worker_pool *last_pool;
1397 	struct list_head *worklist;
1398 	unsigned int work_flags;
1399 	unsigned int req_cpu = cpu;
1400 
1401 	/*
1402 	 * While a work item is PENDING && off queue, a task trying to
1403 	 * steal the PENDING will busy-loop waiting for it to either get
1404 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1405 	 * happen with IRQ disabled.
1406 	 */
1407 	lockdep_assert_irqs_disabled();
1408 
1409 	debug_work_activate(work);
1410 
1411 	/* if draining, only works from the same workqueue are allowed */
1412 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1413 	    WARN_ON_ONCE(!is_chained_work(wq)))
1414 		return;
1415 	rcu_read_lock();
1416 retry:
1417 	/* pwq which will be used unless @work is executing elsewhere */
1418 	if (wq->flags & WQ_UNBOUND) {
1419 		if (req_cpu == WORK_CPU_UNBOUND)
1420 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1421 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1422 	} else {
1423 		if (req_cpu == WORK_CPU_UNBOUND)
1424 			cpu = raw_smp_processor_id();
1425 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1426 	}
1427 
1428 	/*
1429 	 * If @work was previously on a different pool, it might still be
1430 	 * running there, in which case the work needs to be queued on that
1431 	 * pool to guarantee non-reentrancy.
1432 	 */
1433 	last_pool = get_work_pool(work);
1434 	if (last_pool && last_pool != pwq->pool) {
1435 		struct worker *worker;
1436 
1437 		raw_spin_lock(&last_pool->lock);
1438 
1439 		worker = find_worker_executing_work(last_pool, work);
1440 
1441 		if (worker && worker->current_pwq->wq == wq) {
1442 			pwq = worker->current_pwq;
1443 		} else {
1444 			/* meh... not running there, queue here */
1445 			raw_spin_unlock(&last_pool->lock);
1446 			raw_spin_lock(&pwq->pool->lock);
1447 		}
1448 	} else {
1449 		raw_spin_lock(&pwq->pool->lock);
1450 	}
1451 
1452 	/*
1453 	 * pwq is determined and locked.  For unbound pools, we could have
1454 	 * raced with pwq release and it could already be dead.  If its
1455 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1456 	 * without another pwq replacing it in the numa_pwq_tbl or while
1457 	 * work items are executing on it, so the retrying is guaranteed to
1458 	 * make forward-progress.
1459 	 */
1460 	if (unlikely(!pwq->refcnt)) {
1461 		if (wq->flags & WQ_UNBOUND) {
1462 			raw_spin_unlock(&pwq->pool->lock);
1463 			cpu_relax();
1464 			goto retry;
1465 		}
1466 		/* oops */
1467 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1468 			  wq->name, cpu);
1469 	}
1470 
1471 	/* pwq determined, queue */
1472 	trace_workqueue_queue_work(req_cpu, pwq, work);
1473 
1474 	if (WARN_ON(!list_empty(&work->entry)))
1475 		goto out;
1476 
1477 	pwq->nr_in_flight[pwq->work_color]++;
1478 	work_flags = work_color_to_flags(pwq->work_color);
1479 
1480 	if (likely(pwq->nr_active < pwq->max_active)) {
1481 		trace_workqueue_activate_work(work);
1482 		pwq->nr_active++;
1483 		worklist = &pwq->pool->worklist;
1484 		if (list_empty(worklist))
1485 			pwq->pool->watchdog_ts = jiffies;
1486 	} else {
1487 		work_flags |= WORK_STRUCT_DELAYED;
1488 		worklist = &pwq->delayed_works;
1489 	}
1490 
1491 	insert_work(pwq, work, worklist, work_flags);
1492 
1493 out:
1494 	raw_spin_unlock(&pwq->pool->lock);
1495 	rcu_read_unlock();
1496 }
1497 
1498 /**
1499  * queue_work_on - queue work on specific cpu
1500  * @cpu: CPU number to execute work on
1501  * @wq: workqueue to use
1502  * @work: work to queue
1503  *
1504  * We queue the work to a specific CPU, the caller must ensure it
1505  * can't go away.
1506  *
1507  * Return: %false if @work was already on a queue, %true otherwise.
1508  */
1509 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1510 		   struct work_struct *work)
1511 {
1512 	bool ret = false;
1513 	unsigned long flags;
1514 
1515 	local_irq_save(flags);
1516 
1517 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1518 		__queue_work(cpu, wq, work);
1519 		ret = true;
1520 	}
1521 
1522 	local_irq_restore(flags);
1523 	return ret;
1524 }
1525 EXPORT_SYMBOL(queue_work_on);
1526 
1527 /**
1528  * workqueue_select_cpu_near - Select a CPU based on NUMA node
1529  * @node: NUMA node ID that we want to select a CPU from
1530  *
1531  * This function will attempt to find a "random" cpu available on a given
1532  * node. If there are no CPUs available on the given node it will return
1533  * WORK_CPU_UNBOUND indicating that we should just schedule to any
1534  * available CPU if we need to schedule this work.
1535  */
1536 static int workqueue_select_cpu_near(int node)
1537 {
1538 	int cpu;
1539 
1540 	/* No point in doing this if NUMA isn't enabled for workqueues */
1541 	if (!wq_numa_enabled)
1542 		return WORK_CPU_UNBOUND;
1543 
1544 	/* Delay binding to CPU if node is not valid or online */
1545 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1546 		return WORK_CPU_UNBOUND;
1547 
1548 	/* Use local node/cpu if we are already there */
1549 	cpu = raw_smp_processor_id();
1550 	if (node == cpu_to_node(cpu))
1551 		return cpu;
1552 
1553 	/* Use "random" otherwise know as "first" online CPU of node */
1554 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1555 
1556 	/* If CPU is valid return that, otherwise just defer */
1557 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1558 }
1559 
1560 /**
1561  * queue_work_node - queue work on a "random" cpu for a given NUMA node
1562  * @node: NUMA node that we are targeting the work for
1563  * @wq: workqueue to use
1564  * @work: work to queue
1565  *
1566  * We queue the work to a "random" CPU within a given NUMA node. The basic
1567  * idea here is to provide a way to somehow associate work with a given
1568  * NUMA node.
1569  *
1570  * This function will only make a best effort attempt at getting this onto
1571  * the right NUMA node. If no node is requested or the requested node is
1572  * offline then we just fall back to standard queue_work behavior.
1573  *
1574  * Currently the "random" CPU ends up being the first available CPU in the
1575  * intersection of cpu_online_mask and the cpumask of the node, unless we
1576  * are running on the node. In that case we just use the current CPU.
1577  *
1578  * Return: %false if @work was already on a queue, %true otherwise.
1579  */
1580 bool queue_work_node(int node, struct workqueue_struct *wq,
1581 		     struct work_struct *work)
1582 {
1583 	unsigned long flags;
1584 	bool ret = false;
1585 
1586 	/*
1587 	 * This current implementation is specific to unbound workqueues.
1588 	 * Specifically we only return the first available CPU for a given
1589 	 * node instead of cycling through individual CPUs within the node.
1590 	 *
1591 	 * If this is used with a per-cpu workqueue then the logic in
1592 	 * workqueue_select_cpu_near would need to be updated to allow for
1593 	 * some round robin type logic.
1594 	 */
1595 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1596 
1597 	local_irq_save(flags);
1598 
1599 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1600 		int cpu = workqueue_select_cpu_near(node);
1601 
1602 		__queue_work(cpu, wq, work);
1603 		ret = true;
1604 	}
1605 
1606 	local_irq_restore(flags);
1607 	return ret;
1608 }
1609 EXPORT_SYMBOL_GPL(queue_work_node);
1610 
1611 void delayed_work_timer_fn(struct timer_list *t)
1612 {
1613 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1614 
1615 	/* should have been called from irqsafe timer with irq already off */
1616 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1617 }
1618 EXPORT_SYMBOL(delayed_work_timer_fn);
1619 
1620 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1621 				struct delayed_work *dwork, unsigned long delay)
1622 {
1623 	struct timer_list *timer = &dwork->timer;
1624 	struct work_struct *work = &dwork->work;
1625 
1626 	WARN_ON_ONCE(!wq);
1627 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1628 	WARN_ON_ONCE(timer_pending(timer));
1629 	WARN_ON_ONCE(!list_empty(&work->entry));
1630 
1631 	/*
1632 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1633 	 * both optimization and correctness.  The earliest @timer can
1634 	 * expire is on the closest next tick and delayed_work users depend
1635 	 * on that there's no such delay when @delay is 0.
1636 	 */
1637 	if (!delay) {
1638 		__queue_work(cpu, wq, &dwork->work);
1639 		return;
1640 	}
1641 
1642 	dwork->wq = wq;
1643 	dwork->cpu = cpu;
1644 	timer->expires = jiffies + delay;
1645 
1646 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1647 		add_timer_on(timer, cpu);
1648 	else
1649 		add_timer(timer);
1650 }
1651 
1652 /**
1653  * queue_delayed_work_on - queue work on specific CPU after delay
1654  * @cpu: CPU number to execute work on
1655  * @wq: workqueue to use
1656  * @dwork: work to queue
1657  * @delay: number of jiffies to wait before queueing
1658  *
1659  * Return: %false if @work was already on a queue, %true otherwise.  If
1660  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1661  * execution.
1662  */
1663 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1664 			   struct delayed_work *dwork, unsigned long delay)
1665 {
1666 	struct work_struct *work = &dwork->work;
1667 	bool ret = false;
1668 	unsigned long flags;
1669 
1670 	/* read the comment in __queue_work() */
1671 	local_irq_save(flags);
1672 
1673 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1674 		__queue_delayed_work(cpu, wq, dwork, delay);
1675 		ret = true;
1676 	}
1677 
1678 	local_irq_restore(flags);
1679 	return ret;
1680 }
1681 EXPORT_SYMBOL(queue_delayed_work_on);
1682 
1683 /**
1684  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1685  * @cpu: CPU number to execute work on
1686  * @wq: workqueue to use
1687  * @dwork: work to queue
1688  * @delay: number of jiffies to wait before queueing
1689  *
1690  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1691  * modify @dwork's timer so that it expires after @delay.  If @delay is
1692  * zero, @work is guaranteed to be scheduled immediately regardless of its
1693  * current state.
1694  *
1695  * Return: %false if @dwork was idle and queued, %true if @dwork was
1696  * pending and its timer was modified.
1697  *
1698  * This function is safe to call from any context including IRQ handler.
1699  * See try_to_grab_pending() for details.
1700  */
1701 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1702 			 struct delayed_work *dwork, unsigned long delay)
1703 {
1704 	unsigned long flags;
1705 	int ret;
1706 
1707 	do {
1708 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1709 	} while (unlikely(ret == -EAGAIN));
1710 
1711 	if (likely(ret >= 0)) {
1712 		__queue_delayed_work(cpu, wq, dwork, delay);
1713 		local_irq_restore(flags);
1714 	}
1715 
1716 	/* -ENOENT from try_to_grab_pending() becomes %true */
1717 	return ret;
1718 }
1719 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1720 
1721 static void rcu_work_rcufn(struct rcu_head *rcu)
1722 {
1723 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1724 
1725 	/* read the comment in __queue_work() */
1726 	local_irq_disable();
1727 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1728 	local_irq_enable();
1729 }
1730 
1731 /**
1732  * queue_rcu_work - queue work after a RCU grace period
1733  * @wq: workqueue to use
1734  * @rwork: work to queue
1735  *
1736  * Return: %false if @rwork was already pending, %true otherwise.  Note
1737  * that a full RCU grace period is guaranteed only after a %true return.
1738  * While @rwork is guaranteed to be executed after a %false return, the
1739  * execution may happen before a full RCU grace period has passed.
1740  */
1741 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1742 {
1743 	struct work_struct *work = &rwork->work;
1744 
1745 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1746 		rwork->wq = wq;
1747 		call_rcu(&rwork->rcu, rcu_work_rcufn);
1748 		return true;
1749 	}
1750 
1751 	return false;
1752 }
1753 EXPORT_SYMBOL(queue_rcu_work);
1754 
1755 /**
1756  * worker_enter_idle - enter idle state
1757  * @worker: worker which is entering idle state
1758  *
1759  * @worker is entering idle state.  Update stats and idle timer if
1760  * necessary.
1761  *
1762  * LOCKING:
1763  * raw_spin_lock_irq(pool->lock).
1764  */
1765 static void worker_enter_idle(struct worker *worker)
1766 {
1767 	struct worker_pool *pool = worker->pool;
1768 
1769 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1770 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1771 			 (worker->hentry.next || worker->hentry.pprev)))
1772 		return;
1773 
1774 	/* can't use worker_set_flags(), also called from create_worker() */
1775 	worker->flags |= WORKER_IDLE;
1776 	pool->nr_idle++;
1777 	worker->last_active = jiffies;
1778 
1779 	/* idle_list is LIFO */
1780 	list_add(&worker->entry, &pool->idle_list);
1781 
1782 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1783 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1784 
1785 	/*
1786 	 * Sanity check nr_running.  Because unbind_workers() releases
1787 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1788 	 * nr_running, the warning may trigger spuriously.  Check iff
1789 	 * unbind is not in progress.
1790 	 */
1791 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1792 		     pool->nr_workers == pool->nr_idle &&
1793 		     atomic_read(&pool->nr_running));
1794 }
1795 
1796 /**
1797  * worker_leave_idle - leave idle state
1798  * @worker: worker which is leaving idle state
1799  *
1800  * @worker is leaving idle state.  Update stats.
1801  *
1802  * LOCKING:
1803  * raw_spin_lock_irq(pool->lock).
1804  */
1805 static void worker_leave_idle(struct worker *worker)
1806 {
1807 	struct worker_pool *pool = worker->pool;
1808 
1809 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1810 		return;
1811 	worker_clr_flags(worker, WORKER_IDLE);
1812 	pool->nr_idle--;
1813 	list_del_init(&worker->entry);
1814 }
1815 
1816 static struct worker *alloc_worker(int node)
1817 {
1818 	struct worker *worker;
1819 
1820 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1821 	if (worker) {
1822 		INIT_LIST_HEAD(&worker->entry);
1823 		INIT_LIST_HEAD(&worker->scheduled);
1824 		INIT_LIST_HEAD(&worker->node);
1825 		/* on creation a worker is in !idle && prep state */
1826 		worker->flags = WORKER_PREP;
1827 	}
1828 	return worker;
1829 }
1830 
1831 /**
1832  * worker_attach_to_pool() - attach a worker to a pool
1833  * @worker: worker to be attached
1834  * @pool: the target pool
1835  *
1836  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1837  * cpu-binding of @worker are kept coordinated with the pool across
1838  * cpu-[un]hotplugs.
1839  */
1840 static void worker_attach_to_pool(struct worker *worker,
1841 				   struct worker_pool *pool)
1842 {
1843 	mutex_lock(&wq_pool_attach_mutex);
1844 
1845 	/*
1846 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1847 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1848 	 */
1849 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1850 
1851 	/*
1852 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1853 	 * stable across this function.  See the comments above the flag
1854 	 * definition for details.
1855 	 */
1856 	if (pool->flags & POOL_DISASSOCIATED)
1857 		worker->flags |= WORKER_UNBOUND;
1858 
1859 	list_add_tail(&worker->node, &pool->workers);
1860 	worker->pool = pool;
1861 
1862 	mutex_unlock(&wq_pool_attach_mutex);
1863 }
1864 
1865 /**
1866  * worker_detach_from_pool() - detach a worker from its pool
1867  * @worker: worker which is attached to its pool
1868  *
1869  * Undo the attaching which had been done in worker_attach_to_pool().  The
1870  * caller worker shouldn't access to the pool after detached except it has
1871  * other reference to the pool.
1872  */
1873 static void worker_detach_from_pool(struct worker *worker)
1874 {
1875 	struct worker_pool *pool = worker->pool;
1876 	struct completion *detach_completion = NULL;
1877 
1878 	mutex_lock(&wq_pool_attach_mutex);
1879 
1880 	list_del(&worker->node);
1881 	worker->pool = NULL;
1882 
1883 	if (list_empty(&pool->workers))
1884 		detach_completion = pool->detach_completion;
1885 	mutex_unlock(&wq_pool_attach_mutex);
1886 
1887 	/* clear leftover flags without pool->lock after it is detached */
1888 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1889 
1890 	if (detach_completion)
1891 		complete(detach_completion);
1892 }
1893 
1894 /**
1895  * create_worker - create a new workqueue worker
1896  * @pool: pool the new worker will belong to
1897  *
1898  * Create and start a new worker which is attached to @pool.
1899  *
1900  * CONTEXT:
1901  * Might sleep.  Does GFP_KERNEL allocations.
1902  *
1903  * Return:
1904  * Pointer to the newly created worker.
1905  */
1906 static struct worker *create_worker(struct worker_pool *pool)
1907 {
1908 	struct worker *worker = NULL;
1909 	int id = -1;
1910 	char id_buf[16];
1911 
1912 	/* ID is needed to determine kthread name */
1913 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1914 	if (id < 0)
1915 		goto fail;
1916 
1917 	worker = alloc_worker(pool->node);
1918 	if (!worker)
1919 		goto fail;
1920 
1921 	worker->id = id;
1922 
1923 	if (pool->cpu >= 0)
1924 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1925 			 pool->attrs->nice < 0  ? "H" : "");
1926 	else
1927 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1928 
1929 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1930 					      "kworker/%s", id_buf);
1931 	if (IS_ERR(worker->task))
1932 		goto fail;
1933 
1934 	set_user_nice(worker->task, pool->attrs->nice);
1935 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1936 
1937 	/* successful, attach the worker to the pool */
1938 	worker_attach_to_pool(worker, pool);
1939 
1940 	/* start the newly created worker */
1941 	raw_spin_lock_irq(&pool->lock);
1942 	worker->pool->nr_workers++;
1943 	worker_enter_idle(worker);
1944 	wake_up_process(worker->task);
1945 	raw_spin_unlock_irq(&pool->lock);
1946 
1947 	return worker;
1948 
1949 fail:
1950 	if (id >= 0)
1951 		ida_simple_remove(&pool->worker_ida, id);
1952 	kfree(worker);
1953 	return NULL;
1954 }
1955 
1956 /**
1957  * destroy_worker - destroy a workqueue worker
1958  * @worker: worker to be destroyed
1959  *
1960  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1961  * be idle.
1962  *
1963  * CONTEXT:
1964  * raw_spin_lock_irq(pool->lock).
1965  */
1966 static void destroy_worker(struct worker *worker)
1967 {
1968 	struct worker_pool *pool = worker->pool;
1969 
1970 	lockdep_assert_held(&pool->lock);
1971 
1972 	/* sanity check frenzy */
1973 	if (WARN_ON(worker->current_work) ||
1974 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1975 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1976 		return;
1977 
1978 	pool->nr_workers--;
1979 	pool->nr_idle--;
1980 
1981 	list_del_init(&worker->entry);
1982 	worker->flags |= WORKER_DIE;
1983 	wake_up_process(worker->task);
1984 }
1985 
1986 static void idle_worker_timeout(struct timer_list *t)
1987 {
1988 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
1989 
1990 	raw_spin_lock_irq(&pool->lock);
1991 
1992 	while (too_many_workers(pool)) {
1993 		struct worker *worker;
1994 		unsigned long expires;
1995 
1996 		/* idle_list is kept in LIFO order, check the last one */
1997 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1998 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1999 
2000 		if (time_before(jiffies, expires)) {
2001 			mod_timer(&pool->idle_timer, expires);
2002 			break;
2003 		}
2004 
2005 		destroy_worker(worker);
2006 	}
2007 
2008 	raw_spin_unlock_irq(&pool->lock);
2009 }
2010 
2011 static void send_mayday(struct work_struct *work)
2012 {
2013 	struct pool_workqueue *pwq = get_work_pwq(work);
2014 	struct workqueue_struct *wq = pwq->wq;
2015 
2016 	lockdep_assert_held(&wq_mayday_lock);
2017 
2018 	if (!wq->rescuer)
2019 		return;
2020 
2021 	/* mayday mayday mayday */
2022 	if (list_empty(&pwq->mayday_node)) {
2023 		/*
2024 		 * If @pwq is for an unbound wq, its base ref may be put at
2025 		 * any time due to an attribute change.  Pin @pwq until the
2026 		 * rescuer is done with it.
2027 		 */
2028 		get_pwq(pwq);
2029 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2030 		wake_up_process(wq->rescuer->task);
2031 	}
2032 }
2033 
2034 static void pool_mayday_timeout(struct timer_list *t)
2035 {
2036 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2037 	struct work_struct *work;
2038 
2039 	raw_spin_lock_irq(&pool->lock);
2040 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2041 
2042 	if (need_to_create_worker(pool)) {
2043 		/*
2044 		 * We've been trying to create a new worker but
2045 		 * haven't been successful.  We might be hitting an
2046 		 * allocation deadlock.  Send distress signals to
2047 		 * rescuers.
2048 		 */
2049 		list_for_each_entry(work, &pool->worklist, entry)
2050 			send_mayday(work);
2051 	}
2052 
2053 	raw_spin_unlock(&wq_mayday_lock);
2054 	raw_spin_unlock_irq(&pool->lock);
2055 
2056 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2057 }
2058 
2059 /**
2060  * maybe_create_worker - create a new worker if necessary
2061  * @pool: pool to create a new worker for
2062  *
2063  * Create a new worker for @pool if necessary.  @pool is guaranteed to
2064  * have at least one idle worker on return from this function.  If
2065  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2066  * sent to all rescuers with works scheduled on @pool to resolve
2067  * possible allocation deadlock.
2068  *
2069  * On return, need_to_create_worker() is guaranteed to be %false and
2070  * may_start_working() %true.
2071  *
2072  * LOCKING:
2073  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2074  * multiple times.  Does GFP_KERNEL allocations.  Called only from
2075  * manager.
2076  */
2077 static void maybe_create_worker(struct worker_pool *pool)
2078 __releases(&pool->lock)
2079 __acquires(&pool->lock)
2080 {
2081 restart:
2082 	raw_spin_unlock_irq(&pool->lock);
2083 
2084 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2085 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2086 
2087 	while (true) {
2088 		if (create_worker(pool) || !need_to_create_worker(pool))
2089 			break;
2090 
2091 		schedule_timeout_interruptible(CREATE_COOLDOWN);
2092 
2093 		if (!need_to_create_worker(pool))
2094 			break;
2095 	}
2096 
2097 	del_timer_sync(&pool->mayday_timer);
2098 	raw_spin_lock_irq(&pool->lock);
2099 	/*
2100 	 * This is necessary even after a new worker was just successfully
2101 	 * created as @pool->lock was dropped and the new worker might have
2102 	 * already become busy.
2103 	 */
2104 	if (need_to_create_worker(pool))
2105 		goto restart;
2106 }
2107 
2108 /**
2109  * manage_workers - manage worker pool
2110  * @worker: self
2111  *
2112  * Assume the manager role and manage the worker pool @worker belongs
2113  * to.  At any given time, there can be only zero or one manager per
2114  * pool.  The exclusion is handled automatically by this function.
2115  *
2116  * The caller can safely start processing works on false return.  On
2117  * true return, it's guaranteed that need_to_create_worker() is false
2118  * and may_start_working() is true.
2119  *
2120  * CONTEXT:
2121  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2122  * multiple times.  Does GFP_KERNEL allocations.
2123  *
2124  * Return:
2125  * %false if the pool doesn't need management and the caller can safely
2126  * start processing works, %true if management function was performed and
2127  * the conditions that the caller verified before calling the function may
2128  * no longer be true.
2129  */
2130 static bool manage_workers(struct worker *worker)
2131 {
2132 	struct worker_pool *pool = worker->pool;
2133 
2134 	if (pool->flags & POOL_MANAGER_ACTIVE)
2135 		return false;
2136 
2137 	pool->flags |= POOL_MANAGER_ACTIVE;
2138 	pool->manager = worker;
2139 
2140 	maybe_create_worker(pool);
2141 
2142 	pool->manager = NULL;
2143 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2144 	rcuwait_wake_up(&manager_wait);
2145 	return true;
2146 }
2147 
2148 /**
2149  * process_one_work - process single work
2150  * @worker: self
2151  * @work: work to process
2152  *
2153  * Process @work.  This function contains all the logics necessary to
2154  * process a single work including synchronization against and
2155  * interaction with other workers on the same cpu, queueing and
2156  * flushing.  As long as context requirement is met, any worker can
2157  * call this function to process a work.
2158  *
2159  * CONTEXT:
2160  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2161  */
2162 static void process_one_work(struct worker *worker, struct work_struct *work)
2163 __releases(&pool->lock)
2164 __acquires(&pool->lock)
2165 {
2166 	struct pool_workqueue *pwq = get_work_pwq(work);
2167 	struct worker_pool *pool = worker->pool;
2168 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2169 	int work_color;
2170 	struct worker *collision;
2171 #ifdef CONFIG_LOCKDEP
2172 	/*
2173 	 * It is permissible to free the struct work_struct from
2174 	 * inside the function that is called from it, this we need to
2175 	 * take into account for lockdep too.  To avoid bogus "held
2176 	 * lock freed" warnings as well as problems when looking into
2177 	 * work->lockdep_map, make a copy and use that here.
2178 	 */
2179 	struct lockdep_map lockdep_map;
2180 
2181 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2182 #endif
2183 	/* ensure we're on the correct CPU */
2184 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2185 		     raw_smp_processor_id() != pool->cpu);
2186 
2187 	/*
2188 	 * A single work shouldn't be executed concurrently by
2189 	 * multiple workers on a single cpu.  Check whether anyone is
2190 	 * already processing the work.  If so, defer the work to the
2191 	 * currently executing one.
2192 	 */
2193 	collision = find_worker_executing_work(pool, work);
2194 	if (unlikely(collision)) {
2195 		move_linked_works(work, &collision->scheduled, NULL);
2196 		return;
2197 	}
2198 
2199 	/* claim and dequeue */
2200 	debug_work_deactivate(work);
2201 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2202 	worker->current_work = work;
2203 	worker->current_func = work->func;
2204 	worker->current_pwq = pwq;
2205 	work_color = get_work_color(work);
2206 
2207 	/*
2208 	 * Record wq name for cmdline and debug reporting, may get
2209 	 * overridden through set_worker_desc().
2210 	 */
2211 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2212 
2213 	list_del_init(&work->entry);
2214 
2215 	/*
2216 	 * CPU intensive works don't participate in concurrency management.
2217 	 * They're the scheduler's responsibility.  This takes @worker out
2218 	 * of concurrency management and the next code block will chain
2219 	 * execution of the pending work items.
2220 	 */
2221 	if (unlikely(cpu_intensive))
2222 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2223 
2224 	/*
2225 	 * Wake up another worker if necessary.  The condition is always
2226 	 * false for normal per-cpu workers since nr_running would always
2227 	 * be >= 1 at this point.  This is used to chain execution of the
2228 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2229 	 * UNBOUND and CPU_INTENSIVE ones.
2230 	 */
2231 	if (need_more_worker(pool))
2232 		wake_up_worker(pool);
2233 
2234 	/*
2235 	 * Record the last pool and clear PENDING which should be the last
2236 	 * update to @work.  Also, do this inside @pool->lock so that
2237 	 * PENDING and queued state changes happen together while IRQ is
2238 	 * disabled.
2239 	 */
2240 	set_work_pool_and_clear_pending(work, pool->id);
2241 
2242 	raw_spin_unlock_irq(&pool->lock);
2243 
2244 	lock_map_acquire(&pwq->wq->lockdep_map);
2245 	lock_map_acquire(&lockdep_map);
2246 	/*
2247 	 * Strictly speaking we should mark the invariant state without holding
2248 	 * any locks, that is, before these two lock_map_acquire()'s.
2249 	 *
2250 	 * However, that would result in:
2251 	 *
2252 	 *   A(W1)
2253 	 *   WFC(C)
2254 	 *		A(W1)
2255 	 *		C(C)
2256 	 *
2257 	 * Which would create W1->C->W1 dependencies, even though there is no
2258 	 * actual deadlock possible. There are two solutions, using a
2259 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2260 	 * hit the lockdep limitation on recursive locks, or simply discard
2261 	 * these locks.
2262 	 *
2263 	 * AFAICT there is no possible deadlock scenario between the
2264 	 * flush_work() and complete() primitives (except for single-threaded
2265 	 * workqueues), so hiding them isn't a problem.
2266 	 */
2267 	lockdep_invariant_state(true);
2268 	trace_workqueue_execute_start(work);
2269 	worker->current_func(work);
2270 	/*
2271 	 * While we must be careful to not use "work" after this, the trace
2272 	 * point will only record its address.
2273 	 */
2274 	trace_workqueue_execute_end(work, worker->current_func);
2275 	lock_map_release(&lockdep_map);
2276 	lock_map_release(&pwq->wq->lockdep_map);
2277 
2278 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2279 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2280 		       "     last function: %ps\n",
2281 		       current->comm, preempt_count(), task_pid_nr(current),
2282 		       worker->current_func);
2283 		debug_show_held_locks(current);
2284 		dump_stack();
2285 	}
2286 
2287 	/*
2288 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
2289 	 * kernels, where a requeueing work item waiting for something to
2290 	 * happen could deadlock with stop_machine as such work item could
2291 	 * indefinitely requeue itself while all other CPUs are trapped in
2292 	 * stop_machine. At the same time, report a quiescent RCU state so
2293 	 * the same condition doesn't freeze RCU.
2294 	 */
2295 	cond_resched();
2296 
2297 	raw_spin_lock_irq(&pool->lock);
2298 
2299 	/* clear cpu intensive status */
2300 	if (unlikely(cpu_intensive))
2301 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2302 
2303 	/* tag the worker for identification in schedule() */
2304 	worker->last_func = worker->current_func;
2305 
2306 	/* we're done with it, release */
2307 	hash_del(&worker->hentry);
2308 	worker->current_work = NULL;
2309 	worker->current_func = NULL;
2310 	worker->current_pwq = NULL;
2311 	pwq_dec_nr_in_flight(pwq, work_color);
2312 }
2313 
2314 /**
2315  * process_scheduled_works - process scheduled works
2316  * @worker: self
2317  *
2318  * Process all scheduled works.  Please note that the scheduled list
2319  * may change while processing a work, so this function repeatedly
2320  * fetches a work from the top and executes it.
2321  *
2322  * CONTEXT:
2323  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2324  * multiple times.
2325  */
2326 static void process_scheduled_works(struct worker *worker)
2327 {
2328 	while (!list_empty(&worker->scheduled)) {
2329 		struct work_struct *work = list_first_entry(&worker->scheduled,
2330 						struct work_struct, entry);
2331 		process_one_work(worker, work);
2332 	}
2333 }
2334 
2335 static void set_pf_worker(bool val)
2336 {
2337 	mutex_lock(&wq_pool_attach_mutex);
2338 	if (val)
2339 		current->flags |= PF_WQ_WORKER;
2340 	else
2341 		current->flags &= ~PF_WQ_WORKER;
2342 	mutex_unlock(&wq_pool_attach_mutex);
2343 }
2344 
2345 /**
2346  * worker_thread - the worker thread function
2347  * @__worker: self
2348  *
2349  * The worker thread function.  All workers belong to a worker_pool -
2350  * either a per-cpu one or dynamic unbound one.  These workers process all
2351  * work items regardless of their specific target workqueue.  The only
2352  * exception is work items which belong to workqueues with a rescuer which
2353  * will be explained in rescuer_thread().
2354  *
2355  * Return: 0
2356  */
2357 static int worker_thread(void *__worker)
2358 {
2359 	struct worker *worker = __worker;
2360 	struct worker_pool *pool = worker->pool;
2361 
2362 	/* tell the scheduler that this is a workqueue worker */
2363 	set_pf_worker(true);
2364 woke_up:
2365 	raw_spin_lock_irq(&pool->lock);
2366 
2367 	/* am I supposed to die? */
2368 	if (unlikely(worker->flags & WORKER_DIE)) {
2369 		raw_spin_unlock_irq(&pool->lock);
2370 		WARN_ON_ONCE(!list_empty(&worker->entry));
2371 		set_pf_worker(false);
2372 
2373 		set_task_comm(worker->task, "kworker/dying");
2374 		ida_simple_remove(&pool->worker_ida, worker->id);
2375 		worker_detach_from_pool(worker);
2376 		kfree(worker);
2377 		return 0;
2378 	}
2379 
2380 	worker_leave_idle(worker);
2381 recheck:
2382 	/* no more worker necessary? */
2383 	if (!need_more_worker(pool))
2384 		goto sleep;
2385 
2386 	/* do we need to manage? */
2387 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2388 		goto recheck;
2389 
2390 	/*
2391 	 * ->scheduled list can only be filled while a worker is
2392 	 * preparing to process a work or actually processing it.
2393 	 * Make sure nobody diddled with it while I was sleeping.
2394 	 */
2395 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2396 
2397 	/*
2398 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2399 	 * worker or that someone else has already assumed the manager
2400 	 * role.  This is where @worker starts participating in concurrency
2401 	 * management if applicable and concurrency management is restored
2402 	 * after being rebound.  See rebind_workers() for details.
2403 	 */
2404 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2405 
2406 	do {
2407 		struct work_struct *work =
2408 			list_first_entry(&pool->worklist,
2409 					 struct work_struct, entry);
2410 
2411 		pool->watchdog_ts = jiffies;
2412 
2413 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2414 			/* optimization path, not strictly necessary */
2415 			process_one_work(worker, work);
2416 			if (unlikely(!list_empty(&worker->scheduled)))
2417 				process_scheduled_works(worker);
2418 		} else {
2419 			move_linked_works(work, &worker->scheduled, NULL);
2420 			process_scheduled_works(worker);
2421 		}
2422 	} while (keep_working(pool));
2423 
2424 	worker_set_flags(worker, WORKER_PREP);
2425 sleep:
2426 	/*
2427 	 * pool->lock is held and there's no work to process and no need to
2428 	 * manage, sleep.  Workers are woken up only while holding
2429 	 * pool->lock or from local cpu, so setting the current state
2430 	 * before releasing pool->lock is enough to prevent losing any
2431 	 * event.
2432 	 */
2433 	worker_enter_idle(worker);
2434 	__set_current_state(TASK_IDLE);
2435 	raw_spin_unlock_irq(&pool->lock);
2436 	schedule();
2437 	goto woke_up;
2438 }
2439 
2440 /**
2441  * rescuer_thread - the rescuer thread function
2442  * @__rescuer: self
2443  *
2444  * Workqueue rescuer thread function.  There's one rescuer for each
2445  * workqueue which has WQ_MEM_RECLAIM set.
2446  *
2447  * Regular work processing on a pool may block trying to create a new
2448  * worker which uses GFP_KERNEL allocation which has slight chance of
2449  * developing into deadlock if some works currently on the same queue
2450  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2451  * the problem rescuer solves.
2452  *
2453  * When such condition is possible, the pool summons rescuers of all
2454  * workqueues which have works queued on the pool and let them process
2455  * those works so that forward progress can be guaranteed.
2456  *
2457  * This should happen rarely.
2458  *
2459  * Return: 0
2460  */
2461 static int rescuer_thread(void *__rescuer)
2462 {
2463 	struct worker *rescuer = __rescuer;
2464 	struct workqueue_struct *wq = rescuer->rescue_wq;
2465 	struct list_head *scheduled = &rescuer->scheduled;
2466 	bool should_stop;
2467 
2468 	set_user_nice(current, RESCUER_NICE_LEVEL);
2469 
2470 	/*
2471 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2472 	 * doesn't participate in concurrency management.
2473 	 */
2474 	set_pf_worker(true);
2475 repeat:
2476 	set_current_state(TASK_IDLE);
2477 
2478 	/*
2479 	 * By the time the rescuer is requested to stop, the workqueue
2480 	 * shouldn't have any work pending, but @wq->maydays may still have
2481 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2482 	 * all the work items before the rescuer got to them.  Go through
2483 	 * @wq->maydays processing before acting on should_stop so that the
2484 	 * list is always empty on exit.
2485 	 */
2486 	should_stop = kthread_should_stop();
2487 
2488 	/* see whether any pwq is asking for help */
2489 	raw_spin_lock_irq(&wq_mayday_lock);
2490 
2491 	while (!list_empty(&wq->maydays)) {
2492 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2493 					struct pool_workqueue, mayday_node);
2494 		struct worker_pool *pool = pwq->pool;
2495 		struct work_struct *work, *n;
2496 		bool first = true;
2497 
2498 		__set_current_state(TASK_RUNNING);
2499 		list_del_init(&pwq->mayday_node);
2500 
2501 		raw_spin_unlock_irq(&wq_mayday_lock);
2502 
2503 		worker_attach_to_pool(rescuer, pool);
2504 
2505 		raw_spin_lock_irq(&pool->lock);
2506 
2507 		/*
2508 		 * Slurp in all works issued via this workqueue and
2509 		 * process'em.
2510 		 */
2511 		WARN_ON_ONCE(!list_empty(scheduled));
2512 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2513 			if (get_work_pwq(work) == pwq) {
2514 				if (first)
2515 					pool->watchdog_ts = jiffies;
2516 				move_linked_works(work, scheduled, &n);
2517 			}
2518 			first = false;
2519 		}
2520 
2521 		if (!list_empty(scheduled)) {
2522 			process_scheduled_works(rescuer);
2523 
2524 			/*
2525 			 * The above execution of rescued work items could
2526 			 * have created more to rescue through
2527 			 * pwq_activate_first_delayed() or chained
2528 			 * queueing.  Let's put @pwq back on mayday list so
2529 			 * that such back-to-back work items, which may be
2530 			 * being used to relieve memory pressure, don't
2531 			 * incur MAYDAY_INTERVAL delay inbetween.
2532 			 */
2533 			if (pwq->nr_active && need_to_create_worker(pool)) {
2534 				raw_spin_lock(&wq_mayday_lock);
2535 				/*
2536 				 * Queue iff we aren't racing destruction
2537 				 * and somebody else hasn't queued it already.
2538 				 */
2539 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2540 					get_pwq(pwq);
2541 					list_add_tail(&pwq->mayday_node, &wq->maydays);
2542 				}
2543 				raw_spin_unlock(&wq_mayday_lock);
2544 			}
2545 		}
2546 
2547 		/*
2548 		 * Put the reference grabbed by send_mayday().  @pool won't
2549 		 * go away while we're still attached to it.
2550 		 */
2551 		put_pwq(pwq);
2552 
2553 		/*
2554 		 * Leave this pool.  If need_more_worker() is %true, notify a
2555 		 * regular worker; otherwise, we end up with 0 concurrency
2556 		 * and stalling the execution.
2557 		 */
2558 		if (need_more_worker(pool))
2559 			wake_up_worker(pool);
2560 
2561 		raw_spin_unlock_irq(&pool->lock);
2562 
2563 		worker_detach_from_pool(rescuer);
2564 
2565 		raw_spin_lock_irq(&wq_mayday_lock);
2566 	}
2567 
2568 	raw_spin_unlock_irq(&wq_mayday_lock);
2569 
2570 	if (should_stop) {
2571 		__set_current_state(TASK_RUNNING);
2572 		set_pf_worker(false);
2573 		return 0;
2574 	}
2575 
2576 	/* rescuers should never participate in concurrency management */
2577 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2578 	schedule();
2579 	goto repeat;
2580 }
2581 
2582 /**
2583  * check_flush_dependency - check for flush dependency sanity
2584  * @target_wq: workqueue being flushed
2585  * @target_work: work item being flushed (NULL for workqueue flushes)
2586  *
2587  * %current is trying to flush the whole @target_wq or @target_work on it.
2588  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2589  * reclaiming memory or running on a workqueue which doesn't have
2590  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2591  * a deadlock.
2592  */
2593 static void check_flush_dependency(struct workqueue_struct *target_wq,
2594 				   struct work_struct *target_work)
2595 {
2596 	work_func_t target_func = target_work ? target_work->func : NULL;
2597 	struct worker *worker;
2598 
2599 	if (target_wq->flags & WQ_MEM_RECLAIM)
2600 		return;
2601 
2602 	worker = current_wq_worker();
2603 
2604 	WARN_ONCE(current->flags & PF_MEMALLOC,
2605 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2606 		  current->pid, current->comm, target_wq->name, target_func);
2607 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2608 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2609 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2610 		  worker->current_pwq->wq->name, worker->current_func,
2611 		  target_wq->name, target_func);
2612 }
2613 
2614 struct wq_barrier {
2615 	struct work_struct	work;
2616 	struct completion	done;
2617 	struct task_struct	*task;	/* purely informational */
2618 };
2619 
2620 static void wq_barrier_func(struct work_struct *work)
2621 {
2622 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2623 	complete(&barr->done);
2624 }
2625 
2626 /**
2627  * insert_wq_barrier - insert a barrier work
2628  * @pwq: pwq to insert barrier into
2629  * @barr: wq_barrier to insert
2630  * @target: target work to attach @barr to
2631  * @worker: worker currently executing @target, NULL if @target is not executing
2632  *
2633  * @barr is linked to @target such that @barr is completed only after
2634  * @target finishes execution.  Please note that the ordering
2635  * guarantee is observed only with respect to @target and on the local
2636  * cpu.
2637  *
2638  * Currently, a queued barrier can't be canceled.  This is because
2639  * try_to_grab_pending() can't determine whether the work to be
2640  * grabbed is at the head of the queue and thus can't clear LINKED
2641  * flag of the previous work while there must be a valid next work
2642  * after a work with LINKED flag set.
2643  *
2644  * Note that when @worker is non-NULL, @target may be modified
2645  * underneath us, so we can't reliably determine pwq from @target.
2646  *
2647  * CONTEXT:
2648  * raw_spin_lock_irq(pool->lock).
2649  */
2650 static void insert_wq_barrier(struct pool_workqueue *pwq,
2651 			      struct wq_barrier *barr,
2652 			      struct work_struct *target, struct worker *worker)
2653 {
2654 	struct list_head *head;
2655 	unsigned int linked = 0;
2656 
2657 	/*
2658 	 * debugobject calls are safe here even with pool->lock locked
2659 	 * as we know for sure that this will not trigger any of the
2660 	 * checks and call back into the fixup functions where we
2661 	 * might deadlock.
2662 	 */
2663 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2664 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2665 
2666 	init_completion_map(&barr->done, &target->lockdep_map);
2667 
2668 	barr->task = current;
2669 
2670 	/*
2671 	 * If @target is currently being executed, schedule the
2672 	 * barrier to the worker; otherwise, put it after @target.
2673 	 */
2674 	if (worker)
2675 		head = worker->scheduled.next;
2676 	else {
2677 		unsigned long *bits = work_data_bits(target);
2678 
2679 		head = target->entry.next;
2680 		/* there can already be other linked works, inherit and set */
2681 		linked = *bits & WORK_STRUCT_LINKED;
2682 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2683 	}
2684 
2685 	debug_work_activate(&barr->work);
2686 	insert_work(pwq, &barr->work, head,
2687 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2688 }
2689 
2690 /**
2691  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2692  * @wq: workqueue being flushed
2693  * @flush_color: new flush color, < 0 for no-op
2694  * @work_color: new work color, < 0 for no-op
2695  *
2696  * Prepare pwqs for workqueue flushing.
2697  *
2698  * If @flush_color is non-negative, flush_color on all pwqs should be
2699  * -1.  If no pwq has in-flight commands at the specified color, all
2700  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2701  * has in flight commands, its pwq->flush_color is set to
2702  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2703  * wakeup logic is armed and %true is returned.
2704  *
2705  * The caller should have initialized @wq->first_flusher prior to
2706  * calling this function with non-negative @flush_color.  If
2707  * @flush_color is negative, no flush color update is done and %false
2708  * is returned.
2709  *
2710  * If @work_color is non-negative, all pwqs should have the same
2711  * work_color which is previous to @work_color and all will be
2712  * advanced to @work_color.
2713  *
2714  * CONTEXT:
2715  * mutex_lock(wq->mutex).
2716  *
2717  * Return:
2718  * %true if @flush_color >= 0 and there's something to flush.  %false
2719  * otherwise.
2720  */
2721 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2722 				      int flush_color, int work_color)
2723 {
2724 	bool wait = false;
2725 	struct pool_workqueue *pwq;
2726 
2727 	if (flush_color >= 0) {
2728 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2729 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2730 	}
2731 
2732 	for_each_pwq(pwq, wq) {
2733 		struct worker_pool *pool = pwq->pool;
2734 
2735 		raw_spin_lock_irq(&pool->lock);
2736 
2737 		if (flush_color >= 0) {
2738 			WARN_ON_ONCE(pwq->flush_color != -1);
2739 
2740 			if (pwq->nr_in_flight[flush_color]) {
2741 				pwq->flush_color = flush_color;
2742 				atomic_inc(&wq->nr_pwqs_to_flush);
2743 				wait = true;
2744 			}
2745 		}
2746 
2747 		if (work_color >= 0) {
2748 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2749 			pwq->work_color = work_color;
2750 		}
2751 
2752 		raw_spin_unlock_irq(&pool->lock);
2753 	}
2754 
2755 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2756 		complete(&wq->first_flusher->done);
2757 
2758 	return wait;
2759 }
2760 
2761 /**
2762  * flush_workqueue - ensure that any scheduled work has run to completion.
2763  * @wq: workqueue to flush
2764  *
2765  * This function sleeps until all work items which were queued on entry
2766  * have finished execution, but it is not livelocked by new incoming ones.
2767  */
2768 void flush_workqueue(struct workqueue_struct *wq)
2769 {
2770 	struct wq_flusher this_flusher = {
2771 		.list = LIST_HEAD_INIT(this_flusher.list),
2772 		.flush_color = -1,
2773 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2774 	};
2775 	int next_color;
2776 
2777 	if (WARN_ON(!wq_online))
2778 		return;
2779 
2780 	lock_map_acquire(&wq->lockdep_map);
2781 	lock_map_release(&wq->lockdep_map);
2782 
2783 	mutex_lock(&wq->mutex);
2784 
2785 	/*
2786 	 * Start-to-wait phase
2787 	 */
2788 	next_color = work_next_color(wq->work_color);
2789 
2790 	if (next_color != wq->flush_color) {
2791 		/*
2792 		 * Color space is not full.  The current work_color
2793 		 * becomes our flush_color and work_color is advanced
2794 		 * by one.
2795 		 */
2796 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2797 		this_flusher.flush_color = wq->work_color;
2798 		wq->work_color = next_color;
2799 
2800 		if (!wq->first_flusher) {
2801 			/* no flush in progress, become the first flusher */
2802 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2803 
2804 			wq->first_flusher = &this_flusher;
2805 
2806 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2807 						       wq->work_color)) {
2808 				/* nothing to flush, done */
2809 				wq->flush_color = next_color;
2810 				wq->first_flusher = NULL;
2811 				goto out_unlock;
2812 			}
2813 		} else {
2814 			/* wait in queue */
2815 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2816 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2817 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2818 		}
2819 	} else {
2820 		/*
2821 		 * Oops, color space is full, wait on overflow queue.
2822 		 * The next flush completion will assign us
2823 		 * flush_color and transfer to flusher_queue.
2824 		 */
2825 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2826 	}
2827 
2828 	check_flush_dependency(wq, NULL);
2829 
2830 	mutex_unlock(&wq->mutex);
2831 
2832 	wait_for_completion(&this_flusher.done);
2833 
2834 	/*
2835 	 * Wake-up-and-cascade phase
2836 	 *
2837 	 * First flushers are responsible for cascading flushes and
2838 	 * handling overflow.  Non-first flushers can simply return.
2839 	 */
2840 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
2841 		return;
2842 
2843 	mutex_lock(&wq->mutex);
2844 
2845 	/* we might have raced, check again with mutex held */
2846 	if (wq->first_flusher != &this_flusher)
2847 		goto out_unlock;
2848 
2849 	WRITE_ONCE(wq->first_flusher, NULL);
2850 
2851 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2852 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2853 
2854 	while (true) {
2855 		struct wq_flusher *next, *tmp;
2856 
2857 		/* complete all the flushers sharing the current flush color */
2858 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2859 			if (next->flush_color != wq->flush_color)
2860 				break;
2861 			list_del_init(&next->list);
2862 			complete(&next->done);
2863 		}
2864 
2865 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2866 			     wq->flush_color != work_next_color(wq->work_color));
2867 
2868 		/* this flush_color is finished, advance by one */
2869 		wq->flush_color = work_next_color(wq->flush_color);
2870 
2871 		/* one color has been freed, handle overflow queue */
2872 		if (!list_empty(&wq->flusher_overflow)) {
2873 			/*
2874 			 * Assign the same color to all overflowed
2875 			 * flushers, advance work_color and append to
2876 			 * flusher_queue.  This is the start-to-wait
2877 			 * phase for these overflowed flushers.
2878 			 */
2879 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2880 				tmp->flush_color = wq->work_color;
2881 
2882 			wq->work_color = work_next_color(wq->work_color);
2883 
2884 			list_splice_tail_init(&wq->flusher_overflow,
2885 					      &wq->flusher_queue);
2886 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2887 		}
2888 
2889 		if (list_empty(&wq->flusher_queue)) {
2890 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2891 			break;
2892 		}
2893 
2894 		/*
2895 		 * Need to flush more colors.  Make the next flusher
2896 		 * the new first flusher and arm pwqs.
2897 		 */
2898 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2899 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2900 
2901 		list_del_init(&next->list);
2902 		wq->first_flusher = next;
2903 
2904 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2905 			break;
2906 
2907 		/*
2908 		 * Meh... this color is already done, clear first
2909 		 * flusher and repeat cascading.
2910 		 */
2911 		wq->first_flusher = NULL;
2912 	}
2913 
2914 out_unlock:
2915 	mutex_unlock(&wq->mutex);
2916 }
2917 EXPORT_SYMBOL(flush_workqueue);
2918 
2919 /**
2920  * drain_workqueue - drain a workqueue
2921  * @wq: workqueue to drain
2922  *
2923  * Wait until the workqueue becomes empty.  While draining is in progress,
2924  * only chain queueing is allowed.  IOW, only currently pending or running
2925  * work items on @wq can queue further work items on it.  @wq is flushed
2926  * repeatedly until it becomes empty.  The number of flushing is determined
2927  * by the depth of chaining and should be relatively short.  Whine if it
2928  * takes too long.
2929  */
2930 void drain_workqueue(struct workqueue_struct *wq)
2931 {
2932 	unsigned int flush_cnt = 0;
2933 	struct pool_workqueue *pwq;
2934 
2935 	/*
2936 	 * __queue_work() needs to test whether there are drainers, is much
2937 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2938 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2939 	 */
2940 	mutex_lock(&wq->mutex);
2941 	if (!wq->nr_drainers++)
2942 		wq->flags |= __WQ_DRAINING;
2943 	mutex_unlock(&wq->mutex);
2944 reflush:
2945 	flush_workqueue(wq);
2946 
2947 	mutex_lock(&wq->mutex);
2948 
2949 	for_each_pwq(pwq, wq) {
2950 		bool drained;
2951 
2952 		raw_spin_lock_irq(&pwq->pool->lock);
2953 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2954 		raw_spin_unlock_irq(&pwq->pool->lock);
2955 
2956 		if (drained)
2957 			continue;
2958 
2959 		if (++flush_cnt == 10 ||
2960 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2961 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2962 				wq->name, flush_cnt);
2963 
2964 		mutex_unlock(&wq->mutex);
2965 		goto reflush;
2966 	}
2967 
2968 	if (!--wq->nr_drainers)
2969 		wq->flags &= ~__WQ_DRAINING;
2970 	mutex_unlock(&wq->mutex);
2971 }
2972 EXPORT_SYMBOL_GPL(drain_workqueue);
2973 
2974 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2975 			     bool from_cancel)
2976 {
2977 	struct worker *worker = NULL;
2978 	struct worker_pool *pool;
2979 	struct pool_workqueue *pwq;
2980 
2981 	might_sleep();
2982 
2983 	rcu_read_lock();
2984 	pool = get_work_pool(work);
2985 	if (!pool) {
2986 		rcu_read_unlock();
2987 		return false;
2988 	}
2989 
2990 	raw_spin_lock_irq(&pool->lock);
2991 	/* see the comment in try_to_grab_pending() with the same code */
2992 	pwq = get_work_pwq(work);
2993 	if (pwq) {
2994 		if (unlikely(pwq->pool != pool))
2995 			goto already_gone;
2996 	} else {
2997 		worker = find_worker_executing_work(pool, work);
2998 		if (!worker)
2999 			goto already_gone;
3000 		pwq = worker->current_pwq;
3001 	}
3002 
3003 	check_flush_dependency(pwq->wq, work);
3004 
3005 	insert_wq_barrier(pwq, barr, work, worker);
3006 	raw_spin_unlock_irq(&pool->lock);
3007 
3008 	/*
3009 	 * Force a lock recursion deadlock when using flush_work() inside a
3010 	 * single-threaded or rescuer equipped workqueue.
3011 	 *
3012 	 * For single threaded workqueues the deadlock happens when the work
3013 	 * is after the work issuing the flush_work(). For rescuer equipped
3014 	 * workqueues the deadlock happens when the rescuer stalls, blocking
3015 	 * forward progress.
3016 	 */
3017 	if (!from_cancel &&
3018 	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3019 		lock_map_acquire(&pwq->wq->lockdep_map);
3020 		lock_map_release(&pwq->wq->lockdep_map);
3021 	}
3022 	rcu_read_unlock();
3023 	return true;
3024 already_gone:
3025 	raw_spin_unlock_irq(&pool->lock);
3026 	rcu_read_unlock();
3027 	return false;
3028 }
3029 
3030 static bool __flush_work(struct work_struct *work, bool from_cancel)
3031 {
3032 	struct wq_barrier barr;
3033 
3034 	if (WARN_ON(!wq_online))
3035 		return false;
3036 
3037 	if (WARN_ON(!work->func))
3038 		return false;
3039 
3040 	if (!from_cancel) {
3041 		lock_map_acquire(&work->lockdep_map);
3042 		lock_map_release(&work->lockdep_map);
3043 	}
3044 
3045 	if (start_flush_work(work, &barr, from_cancel)) {
3046 		wait_for_completion(&barr.done);
3047 		destroy_work_on_stack(&barr.work);
3048 		return true;
3049 	} else {
3050 		return false;
3051 	}
3052 }
3053 
3054 /**
3055  * flush_work - wait for a work to finish executing the last queueing instance
3056  * @work: the work to flush
3057  *
3058  * Wait until @work has finished execution.  @work is guaranteed to be idle
3059  * on return if it hasn't been requeued since flush started.
3060  *
3061  * Return:
3062  * %true if flush_work() waited for the work to finish execution,
3063  * %false if it was already idle.
3064  */
3065 bool flush_work(struct work_struct *work)
3066 {
3067 	return __flush_work(work, false);
3068 }
3069 EXPORT_SYMBOL_GPL(flush_work);
3070 
3071 struct cwt_wait {
3072 	wait_queue_entry_t		wait;
3073 	struct work_struct	*work;
3074 };
3075 
3076 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3077 {
3078 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3079 
3080 	if (cwait->work != key)
3081 		return 0;
3082 	return autoremove_wake_function(wait, mode, sync, key);
3083 }
3084 
3085 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3086 {
3087 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3088 	unsigned long flags;
3089 	int ret;
3090 
3091 	do {
3092 		ret = try_to_grab_pending(work, is_dwork, &flags);
3093 		/*
3094 		 * If someone else is already canceling, wait for it to
3095 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3096 		 * because we may get scheduled between @work's completion
3097 		 * and the other canceling task resuming and clearing
3098 		 * CANCELING - flush_work() will return false immediately
3099 		 * as @work is no longer busy, try_to_grab_pending() will
3100 		 * return -ENOENT as @work is still being canceled and the
3101 		 * other canceling task won't be able to clear CANCELING as
3102 		 * we're hogging the CPU.
3103 		 *
3104 		 * Let's wait for completion using a waitqueue.  As this
3105 		 * may lead to the thundering herd problem, use a custom
3106 		 * wake function which matches @work along with exclusive
3107 		 * wait and wakeup.
3108 		 */
3109 		if (unlikely(ret == -ENOENT)) {
3110 			struct cwt_wait cwait;
3111 
3112 			init_wait(&cwait.wait);
3113 			cwait.wait.func = cwt_wakefn;
3114 			cwait.work = work;
3115 
3116 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3117 						  TASK_UNINTERRUPTIBLE);
3118 			if (work_is_canceling(work))
3119 				schedule();
3120 			finish_wait(&cancel_waitq, &cwait.wait);
3121 		}
3122 	} while (unlikely(ret < 0));
3123 
3124 	/* tell other tasks trying to grab @work to back off */
3125 	mark_work_canceling(work);
3126 	local_irq_restore(flags);
3127 
3128 	/*
3129 	 * This allows canceling during early boot.  We know that @work
3130 	 * isn't executing.
3131 	 */
3132 	if (wq_online)
3133 		__flush_work(work, true);
3134 
3135 	clear_work_data(work);
3136 
3137 	/*
3138 	 * Paired with prepare_to_wait() above so that either
3139 	 * waitqueue_active() is visible here or !work_is_canceling() is
3140 	 * visible there.
3141 	 */
3142 	smp_mb();
3143 	if (waitqueue_active(&cancel_waitq))
3144 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3145 
3146 	return ret;
3147 }
3148 
3149 /**
3150  * cancel_work_sync - cancel a work and wait for it to finish
3151  * @work: the work to cancel
3152  *
3153  * Cancel @work and wait for its execution to finish.  This function
3154  * can be used even if the work re-queues itself or migrates to
3155  * another workqueue.  On return from this function, @work is
3156  * guaranteed to be not pending or executing on any CPU.
3157  *
3158  * cancel_work_sync(&delayed_work->work) must not be used for
3159  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3160  *
3161  * The caller must ensure that the workqueue on which @work was last
3162  * queued can't be destroyed before this function returns.
3163  *
3164  * Return:
3165  * %true if @work was pending, %false otherwise.
3166  */
3167 bool cancel_work_sync(struct work_struct *work)
3168 {
3169 	return __cancel_work_timer(work, false);
3170 }
3171 EXPORT_SYMBOL_GPL(cancel_work_sync);
3172 
3173 /**
3174  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3175  * @dwork: the delayed work to flush
3176  *
3177  * Delayed timer is cancelled and the pending work is queued for
3178  * immediate execution.  Like flush_work(), this function only
3179  * considers the last queueing instance of @dwork.
3180  *
3181  * Return:
3182  * %true if flush_work() waited for the work to finish execution,
3183  * %false if it was already idle.
3184  */
3185 bool flush_delayed_work(struct delayed_work *dwork)
3186 {
3187 	local_irq_disable();
3188 	if (del_timer_sync(&dwork->timer))
3189 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3190 	local_irq_enable();
3191 	return flush_work(&dwork->work);
3192 }
3193 EXPORT_SYMBOL(flush_delayed_work);
3194 
3195 /**
3196  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3197  * @rwork: the rcu work to flush
3198  *
3199  * Return:
3200  * %true if flush_rcu_work() waited for the work to finish execution,
3201  * %false if it was already idle.
3202  */
3203 bool flush_rcu_work(struct rcu_work *rwork)
3204 {
3205 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3206 		rcu_barrier();
3207 		flush_work(&rwork->work);
3208 		return true;
3209 	} else {
3210 		return flush_work(&rwork->work);
3211 	}
3212 }
3213 EXPORT_SYMBOL(flush_rcu_work);
3214 
3215 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3216 {
3217 	unsigned long flags;
3218 	int ret;
3219 
3220 	do {
3221 		ret = try_to_grab_pending(work, is_dwork, &flags);
3222 	} while (unlikely(ret == -EAGAIN));
3223 
3224 	if (unlikely(ret < 0))
3225 		return false;
3226 
3227 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3228 	local_irq_restore(flags);
3229 	return ret;
3230 }
3231 
3232 /**
3233  * cancel_delayed_work - cancel a delayed work
3234  * @dwork: delayed_work to cancel
3235  *
3236  * Kill off a pending delayed_work.
3237  *
3238  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3239  * pending.
3240  *
3241  * Note:
3242  * The work callback function may still be running on return, unless
3243  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3244  * use cancel_delayed_work_sync() to wait on it.
3245  *
3246  * This function is safe to call from any context including IRQ handler.
3247  */
3248 bool cancel_delayed_work(struct delayed_work *dwork)
3249 {
3250 	return __cancel_work(&dwork->work, true);
3251 }
3252 EXPORT_SYMBOL(cancel_delayed_work);
3253 
3254 /**
3255  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3256  * @dwork: the delayed work cancel
3257  *
3258  * This is cancel_work_sync() for delayed works.
3259  *
3260  * Return:
3261  * %true if @dwork was pending, %false otherwise.
3262  */
3263 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3264 {
3265 	return __cancel_work_timer(&dwork->work, true);
3266 }
3267 EXPORT_SYMBOL(cancel_delayed_work_sync);
3268 
3269 /**
3270  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3271  * @func: the function to call
3272  *
3273  * schedule_on_each_cpu() executes @func on each online CPU using the
3274  * system workqueue and blocks until all CPUs have completed.
3275  * schedule_on_each_cpu() is very slow.
3276  *
3277  * Return:
3278  * 0 on success, -errno on failure.
3279  */
3280 int schedule_on_each_cpu(work_func_t func)
3281 {
3282 	int cpu;
3283 	struct work_struct __percpu *works;
3284 
3285 	works = alloc_percpu(struct work_struct);
3286 	if (!works)
3287 		return -ENOMEM;
3288 
3289 	get_online_cpus();
3290 
3291 	for_each_online_cpu(cpu) {
3292 		struct work_struct *work = per_cpu_ptr(works, cpu);
3293 
3294 		INIT_WORK(work, func);
3295 		schedule_work_on(cpu, work);
3296 	}
3297 
3298 	for_each_online_cpu(cpu)
3299 		flush_work(per_cpu_ptr(works, cpu));
3300 
3301 	put_online_cpus();
3302 	free_percpu(works);
3303 	return 0;
3304 }
3305 
3306 /**
3307  * execute_in_process_context - reliably execute the routine with user context
3308  * @fn:		the function to execute
3309  * @ew:		guaranteed storage for the execute work structure (must
3310  *		be available when the work executes)
3311  *
3312  * Executes the function immediately if process context is available,
3313  * otherwise schedules the function for delayed execution.
3314  *
3315  * Return:	0 - function was executed
3316  *		1 - function was scheduled for execution
3317  */
3318 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3319 {
3320 	if (!in_interrupt()) {
3321 		fn(&ew->work);
3322 		return 0;
3323 	}
3324 
3325 	INIT_WORK(&ew->work, fn);
3326 	schedule_work(&ew->work);
3327 
3328 	return 1;
3329 }
3330 EXPORT_SYMBOL_GPL(execute_in_process_context);
3331 
3332 /**
3333  * free_workqueue_attrs - free a workqueue_attrs
3334  * @attrs: workqueue_attrs to free
3335  *
3336  * Undo alloc_workqueue_attrs().
3337  */
3338 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3339 {
3340 	if (attrs) {
3341 		free_cpumask_var(attrs->cpumask);
3342 		kfree(attrs);
3343 	}
3344 }
3345 
3346 /**
3347  * alloc_workqueue_attrs - allocate a workqueue_attrs
3348  *
3349  * Allocate a new workqueue_attrs, initialize with default settings and
3350  * return it.
3351  *
3352  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3353  */
3354 struct workqueue_attrs *alloc_workqueue_attrs(void)
3355 {
3356 	struct workqueue_attrs *attrs;
3357 
3358 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3359 	if (!attrs)
3360 		goto fail;
3361 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3362 		goto fail;
3363 
3364 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3365 	return attrs;
3366 fail:
3367 	free_workqueue_attrs(attrs);
3368 	return NULL;
3369 }
3370 
3371 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3372 				 const struct workqueue_attrs *from)
3373 {
3374 	to->nice = from->nice;
3375 	cpumask_copy(to->cpumask, from->cpumask);
3376 	/*
3377 	 * Unlike hash and equality test, this function doesn't ignore
3378 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3379 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3380 	 */
3381 	to->no_numa = from->no_numa;
3382 }
3383 
3384 /* hash value of the content of @attr */
3385 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3386 {
3387 	u32 hash = 0;
3388 
3389 	hash = jhash_1word(attrs->nice, hash);
3390 	hash = jhash(cpumask_bits(attrs->cpumask),
3391 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3392 	return hash;
3393 }
3394 
3395 /* content equality test */
3396 static bool wqattrs_equal(const struct workqueue_attrs *a,
3397 			  const struct workqueue_attrs *b)
3398 {
3399 	if (a->nice != b->nice)
3400 		return false;
3401 	if (!cpumask_equal(a->cpumask, b->cpumask))
3402 		return false;
3403 	return true;
3404 }
3405 
3406 /**
3407  * init_worker_pool - initialize a newly zalloc'd worker_pool
3408  * @pool: worker_pool to initialize
3409  *
3410  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3411  *
3412  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3413  * inside @pool proper are initialized and put_unbound_pool() can be called
3414  * on @pool safely to release it.
3415  */
3416 static int init_worker_pool(struct worker_pool *pool)
3417 {
3418 	raw_spin_lock_init(&pool->lock);
3419 	pool->id = -1;
3420 	pool->cpu = -1;
3421 	pool->node = NUMA_NO_NODE;
3422 	pool->flags |= POOL_DISASSOCIATED;
3423 	pool->watchdog_ts = jiffies;
3424 	INIT_LIST_HEAD(&pool->worklist);
3425 	INIT_LIST_HEAD(&pool->idle_list);
3426 	hash_init(pool->busy_hash);
3427 
3428 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3429 
3430 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3431 
3432 	INIT_LIST_HEAD(&pool->workers);
3433 
3434 	ida_init(&pool->worker_ida);
3435 	INIT_HLIST_NODE(&pool->hash_node);
3436 	pool->refcnt = 1;
3437 
3438 	/* shouldn't fail above this point */
3439 	pool->attrs = alloc_workqueue_attrs();
3440 	if (!pool->attrs)
3441 		return -ENOMEM;
3442 	return 0;
3443 }
3444 
3445 #ifdef CONFIG_LOCKDEP
3446 static void wq_init_lockdep(struct workqueue_struct *wq)
3447 {
3448 	char *lock_name;
3449 
3450 	lockdep_register_key(&wq->key);
3451 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3452 	if (!lock_name)
3453 		lock_name = wq->name;
3454 
3455 	wq->lock_name = lock_name;
3456 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3457 }
3458 
3459 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3460 {
3461 	lockdep_unregister_key(&wq->key);
3462 }
3463 
3464 static void wq_free_lockdep(struct workqueue_struct *wq)
3465 {
3466 	if (wq->lock_name != wq->name)
3467 		kfree(wq->lock_name);
3468 }
3469 #else
3470 static void wq_init_lockdep(struct workqueue_struct *wq)
3471 {
3472 }
3473 
3474 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3475 {
3476 }
3477 
3478 static void wq_free_lockdep(struct workqueue_struct *wq)
3479 {
3480 }
3481 #endif
3482 
3483 static void rcu_free_wq(struct rcu_head *rcu)
3484 {
3485 	struct workqueue_struct *wq =
3486 		container_of(rcu, struct workqueue_struct, rcu);
3487 
3488 	wq_free_lockdep(wq);
3489 
3490 	if (!(wq->flags & WQ_UNBOUND))
3491 		free_percpu(wq->cpu_pwqs);
3492 	else
3493 		free_workqueue_attrs(wq->unbound_attrs);
3494 
3495 	kfree(wq);
3496 }
3497 
3498 static void rcu_free_pool(struct rcu_head *rcu)
3499 {
3500 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3501 
3502 	ida_destroy(&pool->worker_ida);
3503 	free_workqueue_attrs(pool->attrs);
3504 	kfree(pool);
3505 }
3506 
3507 /* This returns with the lock held on success (pool manager is inactive). */
3508 static bool wq_manager_inactive(struct worker_pool *pool)
3509 {
3510 	raw_spin_lock_irq(&pool->lock);
3511 
3512 	if (pool->flags & POOL_MANAGER_ACTIVE) {
3513 		raw_spin_unlock_irq(&pool->lock);
3514 		return false;
3515 	}
3516 	return true;
3517 }
3518 
3519 /**
3520  * put_unbound_pool - put a worker_pool
3521  * @pool: worker_pool to put
3522  *
3523  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3524  * safe manner.  get_unbound_pool() calls this function on its failure path
3525  * and this function should be able to release pools which went through,
3526  * successfully or not, init_worker_pool().
3527  *
3528  * Should be called with wq_pool_mutex held.
3529  */
3530 static void put_unbound_pool(struct worker_pool *pool)
3531 {
3532 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3533 	struct worker *worker;
3534 
3535 	lockdep_assert_held(&wq_pool_mutex);
3536 
3537 	if (--pool->refcnt)
3538 		return;
3539 
3540 	/* sanity checks */
3541 	if (WARN_ON(!(pool->cpu < 0)) ||
3542 	    WARN_ON(!list_empty(&pool->worklist)))
3543 		return;
3544 
3545 	/* release id and unhash */
3546 	if (pool->id >= 0)
3547 		idr_remove(&worker_pool_idr, pool->id);
3548 	hash_del(&pool->hash_node);
3549 
3550 	/*
3551 	 * Become the manager and destroy all workers.  This prevents
3552 	 * @pool's workers from blocking on attach_mutex.  We're the last
3553 	 * manager and @pool gets freed with the flag set.
3554 	 * Because of how wq_manager_inactive() works, we will hold the
3555 	 * spinlock after a successful wait.
3556 	 */
3557 	rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3558 			   TASK_UNINTERRUPTIBLE);
3559 	pool->flags |= POOL_MANAGER_ACTIVE;
3560 
3561 	while ((worker = first_idle_worker(pool)))
3562 		destroy_worker(worker);
3563 	WARN_ON(pool->nr_workers || pool->nr_idle);
3564 	raw_spin_unlock_irq(&pool->lock);
3565 
3566 	mutex_lock(&wq_pool_attach_mutex);
3567 	if (!list_empty(&pool->workers))
3568 		pool->detach_completion = &detach_completion;
3569 	mutex_unlock(&wq_pool_attach_mutex);
3570 
3571 	if (pool->detach_completion)
3572 		wait_for_completion(pool->detach_completion);
3573 
3574 	/* shut down the timers */
3575 	del_timer_sync(&pool->idle_timer);
3576 	del_timer_sync(&pool->mayday_timer);
3577 
3578 	/* RCU protected to allow dereferences from get_work_pool() */
3579 	call_rcu(&pool->rcu, rcu_free_pool);
3580 }
3581 
3582 /**
3583  * get_unbound_pool - get a worker_pool with the specified attributes
3584  * @attrs: the attributes of the worker_pool to get
3585  *
3586  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3587  * reference count and return it.  If there already is a matching
3588  * worker_pool, it will be used; otherwise, this function attempts to
3589  * create a new one.
3590  *
3591  * Should be called with wq_pool_mutex held.
3592  *
3593  * Return: On success, a worker_pool with the same attributes as @attrs.
3594  * On failure, %NULL.
3595  */
3596 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3597 {
3598 	u32 hash = wqattrs_hash(attrs);
3599 	struct worker_pool *pool;
3600 	int node;
3601 	int target_node = NUMA_NO_NODE;
3602 
3603 	lockdep_assert_held(&wq_pool_mutex);
3604 
3605 	/* do we already have a matching pool? */
3606 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3607 		if (wqattrs_equal(pool->attrs, attrs)) {
3608 			pool->refcnt++;
3609 			return pool;
3610 		}
3611 	}
3612 
3613 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3614 	if (wq_numa_enabled) {
3615 		for_each_node(node) {
3616 			if (cpumask_subset(attrs->cpumask,
3617 					   wq_numa_possible_cpumask[node])) {
3618 				target_node = node;
3619 				break;
3620 			}
3621 		}
3622 	}
3623 
3624 	/* nope, create a new one */
3625 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3626 	if (!pool || init_worker_pool(pool) < 0)
3627 		goto fail;
3628 
3629 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3630 	copy_workqueue_attrs(pool->attrs, attrs);
3631 	pool->node = target_node;
3632 
3633 	/*
3634 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3635 	 * 'struct workqueue_attrs' comments for detail.
3636 	 */
3637 	pool->attrs->no_numa = false;
3638 
3639 	if (worker_pool_assign_id(pool) < 0)
3640 		goto fail;
3641 
3642 	/* create and start the initial worker */
3643 	if (wq_online && !create_worker(pool))
3644 		goto fail;
3645 
3646 	/* install */
3647 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3648 
3649 	return pool;
3650 fail:
3651 	if (pool)
3652 		put_unbound_pool(pool);
3653 	return NULL;
3654 }
3655 
3656 static void rcu_free_pwq(struct rcu_head *rcu)
3657 {
3658 	kmem_cache_free(pwq_cache,
3659 			container_of(rcu, struct pool_workqueue, rcu));
3660 }
3661 
3662 /*
3663  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3664  * and needs to be destroyed.
3665  */
3666 static void pwq_unbound_release_workfn(struct work_struct *work)
3667 {
3668 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3669 						  unbound_release_work);
3670 	struct workqueue_struct *wq = pwq->wq;
3671 	struct worker_pool *pool = pwq->pool;
3672 	bool is_last;
3673 
3674 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3675 		return;
3676 
3677 	mutex_lock(&wq->mutex);
3678 	list_del_rcu(&pwq->pwqs_node);
3679 	is_last = list_empty(&wq->pwqs);
3680 	mutex_unlock(&wq->mutex);
3681 
3682 	mutex_lock(&wq_pool_mutex);
3683 	put_unbound_pool(pool);
3684 	mutex_unlock(&wq_pool_mutex);
3685 
3686 	call_rcu(&pwq->rcu, rcu_free_pwq);
3687 
3688 	/*
3689 	 * If we're the last pwq going away, @wq is already dead and no one
3690 	 * is gonna access it anymore.  Schedule RCU free.
3691 	 */
3692 	if (is_last) {
3693 		wq_unregister_lockdep(wq);
3694 		call_rcu(&wq->rcu, rcu_free_wq);
3695 	}
3696 }
3697 
3698 /**
3699  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3700  * @pwq: target pool_workqueue
3701  *
3702  * If @pwq isn't freezing, set @pwq->max_active to the associated
3703  * workqueue's saved_max_active and activate delayed work items
3704  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3705  */
3706 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3707 {
3708 	struct workqueue_struct *wq = pwq->wq;
3709 	bool freezable = wq->flags & WQ_FREEZABLE;
3710 	unsigned long flags;
3711 
3712 	/* for @wq->saved_max_active */
3713 	lockdep_assert_held(&wq->mutex);
3714 
3715 	/* fast exit for non-freezable wqs */
3716 	if (!freezable && pwq->max_active == wq->saved_max_active)
3717 		return;
3718 
3719 	/* this function can be called during early boot w/ irq disabled */
3720 	raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3721 
3722 	/*
3723 	 * During [un]freezing, the caller is responsible for ensuring that
3724 	 * this function is called at least once after @workqueue_freezing
3725 	 * is updated and visible.
3726 	 */
3727 	if (!freezable || !workqueue_freezing) {
3728 		pwq->max_active = wq->saved_max_active;
3729 
3730 		while (!list_empty(&pwq->delayed_works) &&
3731 		       pwq->nr_active < pwq->max_active)
3732 			pwq_activate_first_delayed(pwq);
3733 
3734 		/*
3735 		 * Need to kick a worker after thawed or an unbound wq's
3736 		 * max_active is bumped.  It's a slow path.  Do it always.
3737 		 */
3738 		wake_up_worker(pwq->pool);
3739 	} else {
3740 		pwq->max_active = 0;
3741 	}
3742 
3743 	raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3744 }
3745 
3746 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3747 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3748 		     struct worker_pool *pool)
3749 {
3750 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3751 
3752 	memset(pwq, 0, sizeof(*pwq));
3753 
3754 	pwq->pool = pool;
3755 	pwq->wq = wq;
3756 	pwq->flush_color = -1;
3757 	pwq->refcnt = 1;
3758 	INIT_LIST_HEAD(&pwq->delayed_works);
3759 	INIT_LIST_HEAD(&pwq->pwqs_node);
3760 	INIT_LIST_HEAD(&pwq->mayday_node);
3761 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3762 }
3763 
3764 /* sync @pwq with the current state of its associated wq and link it */
3765 static void link_pwq(struct pool_workqueue *pwq)
3766 {
3767 	struct workqueue_struct *wq = pwq->wq;
3768 
3769 	lockdep_assert_held(&wq->mutex);
3770 
3771 	/* may be called multiple times, ignore if already linked */
3772 	if (!list_empty(&pwq->pwqs_node))
3773 		return;
3774 
3775 	/* set the matching work_color */
3776 	pwq->work_color = wq->work_color;
3777 
3778 	/* sync max_active to the current setting */
3779 	pwq_adjust_max_active(pwq);
3780 
3781 	/* link in @pwq */
3782 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3783 }
3784 
3785 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3786 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3787 					const struct workqueue_attrs *attrs)
3788 {
3789 	struct worker_pool *pool;
3790 	struct pool_workqueue *pwq;
3791 
3792 	lockdep_assert_held(&wq_pool_mutex);
3793 
3794 	pool = get_unbound_pool(attrs);
3795 	if (!pool)
3796 		return NULL;
3797 
3798 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3799 	if (!pwq) {
3800 		put_unbound_pool(pool);
3801 		return NULL;
3802 	}
3803 
3804 	init_pwq(pwq, wq, pool);
3805 	return pwq;
3806 }
3807 
3808 /**
3809  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3810  * @attrs: the wq_attrs of the default pwq of the target workqueue
3811  * @node: the target NUMA node
3812  * @cpu_going_down: if >= 0, the CPU to consider as offline
3813  * @cpumask: outarg, the resulting cpumask
3814  *
3815  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3816  * @cpu_going_down is >= 0, that cpu is considered offline during
3817  * calculation.  The result is stored in @cpumask.
3818  *
3819  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3820  * enabled and @node has online CPUs requested by @attrs, the returned
3821  * cpumask is the intersection of the possible CPUs of @node and
3822  * @attrs->cpumask.
3823  *
3824  * The caller is responsible for ensuring that the cpumask of @node stays
3825  * stable.
3826  *
3827  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3828  * %false if equal.
3829  */
3830 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3831 				 int cpu_going_down, cpumask_t *cpumask)
3832 {
3833 	if (!wq_numa_enabled || attrs->no_numa)
3834 		goto use_dfl;
3835 
3836 	/* does @node have any online CPUs @attrs wants? */
3837 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3838 	if (cpu_going_down >= 0)
3839 		cpumask_clear_cpu(cpu_going_down, cpumask);
3840 
3841 	if (cpumask_empty(cpumask))
3842 		goto use_dfl;
3843 
3844 	/* yeap, return possible CPUs in @node that @attrs wants */
3845 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3846 
3847 	if (cpumask_empty(cpumask)) {
3848 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3849 				"possible intersect\n");
3850 		return false;
3851 	}
3852 
3853 	return !cpumask_equal(cpumask, attrs->cpumask);
3854 
3855 use_dfl:
3856 	cpumask_copy(cpumask, attrs->cpumask);
3857 	return false;
3858 }
3859 
3860 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3861 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3862 						   int node,
3863 						   struct pool_workqueue *pwq)
3864 {
3865 	struct pool_workqueue *old_pwq;
3866 
3867 	lockdep_assert_held(&wq_pool_mutex);
3868 	lockdep_assert_held(&wq->mutex);
3869 
3870 	/* link_pwq() can handle duplicate calls */
3871 	link_pwq(pwq);
3872 
3873 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3874 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3875 	return old_pwq;
3876 }
3877 
3878 /* context to store the prepared attrs & pwqs before applying */
3879 struct apply_wqattrs_ctx {
3880 	struct workqueue_struct	*wq;		/* target workqueue */
3881 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3882 	struct list_head	list;		/* queued for batching commit */
3883 	struct pool_workqueue	*dfl_pwq;
3884 	struct pool_workqueue	*pwq_tbl[];
3885 };
3886 
3887 /* free the resources after success or abort */
3888 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3889 {
3890 	if (ctx) {
3891 		int node;
3892 
3893 		for_each_node(node)
3894 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3895 		put_pwq_unlocked(ctx->dfl_pwq);
3896 
3897 		free_workqueue_attrs(ctx->attrs);
3898 
3899 		kfree(ctx);
3900 	}
3901 }
3902 
3903 /* allocate the attrs and pwqs for later installation */
3904 static struct apply_wqattrs_ctx *
3905 apply_wqattrs_prepare(struct workqueue_struct *wq,
3906 		      const struct workqueue_attrs *attrs)
3907 {
3908 	struct apply_wqattrs_ctx *ctx;
3909 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3910 	int node;
3911 
3912 	lockdep_assert_held(&wq_pool_mutex);
3913 
3914 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3915 
3916 	new_attrs = alloc_workqueue_attrs();
3917 	tmp_attrs = alloc_workqueue_attrs();
3918 	if (!ctx || !new_attrs || !tmp_attrs)
3919 		goto out_free;
3920 
3921 	/*
3922 	 * Calculate the attrs of the default pwq.
3923 	 * If the user configured cpumask doesn't overlap with the
3924 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3925 	 */
3926 	copy_workqueue_attrs(new_attrs, attrs);
3927 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3928 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3929 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3930 
3931 	/*
3932 	 * We may create multiple pwqs with differing cpumasks.  Make a
3933 	 * copy of @new_attrs which will be modified and used to obtain
3934 	 * pools.
3935 	 */
3936 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3937 
3938 	/*
3939 	 * If something goes wrong during CPU up/down, we'll fall back to
3940 	 * the default pwq covering whole @attrs->cpumask.  Always create
3941 	 * it even if we don't use it immediately.
3942 	 */
3943 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3944 	if (!ctx->dfl_pwq)
3945 		goto out_free;
3946 
3947 	for_each_node(node) {
3948 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3949 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3950 			if (!ctx->pwq_tbl[node])
3951 				goto out_free;
3952 		} else {
3953 			ctx->dfl_pwq->refcnt++;
3954 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3955 		}
3956 	}
3957 
3958 	/* save the user configured attrs and sanitize it. */
3959 	copy_workqueue_attrs(new_attrs, attrs);
3960 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3961 	ctx->attrs = new_attrs;
3962 
3963 	ctx->wq = wq;
3964 	free_workqueue_attrs(tmp_attrs);
3965 	return ctx;
3966 
3967 out_free:
3968 	free_workqueue_attrs(tmp_attrs);
3969 	free_workqueue_attrs(new_attrs);
3970 	apply_wqattrs_cleanup(ctx);
3971 	return NULL;
3972 }
3973 
3974 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3975 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3976 {
3977 	int node;
3978 
3979 	/* all pwqs have been created successfully, let's install'em */
3980 	mutex_lock(&ctx->wq->mutex);
3981 
3982 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3983 
3984 	/* save the previous pwq and install the new one */
3985 	for_each_node(node)
3986 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3987 							  ctx->pwq_tbl[node]);
3988 
3989 	/* @dfl_pwq might not have been used, ensure it's linked */
3990 	link_pwq(ctx->dfl_pwq);
3991 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3992 
3993 	mutex_unlock(&ctx->wq->mutex);
3994 }
3995 
3996 static void apply_wqattrs_lock(void)
3997 {
3998 	/* CPUs should stay stable across pwq creations and installations */
3999 	get_online_cpus();
4000 	mutex_lock(&wq_pool_mutex);
4001 }
4002 
4003 static void apply_wqattrs_unlock(void)
4004 {
4005 	mutex_unlock(&wq_pool_mutex);
4006 	put_online_cpus();
4007 }
4008 
4009 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4010 					const struct workqueue_attrs *attrs)
4011 {
4012 	struct apply_wqattrs_ctx *ctx;
4013 
4014 	/* only unbound workqueues can change attributes */
4015 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4016 		return -EINVAL;
4017 
4018 	/* creating multiple pwqs breaks ordering guarantee */
4019 	if (!list_empty(&wq->pwqs)) {
4020 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4021 			return -EINVAL;
4022 
4023 		wq->flags &= ~__WQ_ORDERED;
4024 	}
4025 
4026 	ctx = apply_wqattrs_prepare(wq, attrs);
4027 	if (!ctx)
4028 		return -ENOMEM;
4029 
4030 	/* the ctx has been prepared successfully, let's commit it */
4031 	apply_wqattrs_commit(ctx);
4032 	apply_wqattrs_cleanup(ctx);
4033 
4034 	return 0;
4035 }
4036 
4037 /**
4038  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4039  * @wq: the target workqueue
4040  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4041  *
4042  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
4043  * machines, this function maps a separate pwq to each NUMA node with
4044  * possibles CPUs in @attrs->cpumask so that work items are affine to the
4045  * NUMA node it was issued on.  Older pwqs are released as in-flight work
4046  * items finish.  Note that a work item which repeatedly requeues itself
4047  * back-to-back will stay on its current pwq.
4048  *
4049  * Performs GFP_KERNEL allocations.
4050  *
4051  * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4052  *
4053  * Return: 0 on success and -errno on failure.
4054  */
4055 int apply_workqueue_attrs(struct workqueue_struct *wq,
4056 			  const struct workqueue_attrs *attrs)
4057 {
4058 	int ret;
4059 
4060 	lockdep_assert_cpus_held();
4061 
4062 	mutex_lock(&wq_pool_mutex);
4063 	ret = apply_workqueue_attrs_locked(wq, attrs);
4064 	mutex_unlock(&wq_pool_mutex);
4065 
4066 	return ret;
4067 }
4068 
4069 /**
4070  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4071  * @wq: the target workqueue
4072  * @cpu: the CPU coming up or going down
4073  * @online: whether @cpu is coming up or going down
4074  *
4075  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4076  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4077  * @wq accordingly.
4078  *
4079  * If NUMA affinity can't be adjusted due to memory allocation failure, it
4080  * falls back to @wq->dfl_pwq which may not be optimal but is always
4081  * correct.
4082  *
4083  * Note that when the last allowed CPU of a NUMA node goes offline for a
4084  * workqueue with a cpumask spanning multiple nodes, the workers which were
4085  * already executing the work items for the workqueue will lose their CPU
4086  * affinity and may execute on any CPU.  This is similar to how per-cpu
4087  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4088  * affinity, it's the user's responsibility to flush the work item from
4089  * CPU_DOWN_PREPARE.
4090  */
4091 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4092 				   bool online)
4093 {
4094 	int node = cpu_to_node(cpu);
4095 	int cpu_off = online ? -1 : cpu;
4096 	struct pool_workqueue *old_pwq = NULL, *pwq;
4097 	struct workqueue_attrs *target_attrs;
4098 	cpumask_t *cpumask;
4099 
4100 	lockdep_assert_held(&wq_pool_mutex);
4101 
4102 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4103 	    wq->unbound_attrs->no_numa)
4104 		return;
4105 
4106 	/*
4107 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4108 	 * Let's use a preallocated one.  The following buf is protected by
4109 	 * CPU hotplug exclusion.
4110 	 */
4111 	target_attrs = wq_update_unbound_numa_attrs_buf;
4112 	cpumask = target_attrs->cpumask;
4113 
4114 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4115 	pwq = unbound_pwq_by_node(wq, node);
4116 
4117 	/*
4118 	 * Let's determine what needs to be done.  If the target cpumask is
4119 	 * different from the default pwq's, we need to compare it to @pwq's
4120 	 * and create a new one if they don't match.  If the target cpumask
4121 	 * equals the default pwq's, the default pwq should be used.
4122 	 */
4123 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4124 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4125 			return;
4126 	} else {
4127 		goto use_dfl_pwq;
4128 	}
4129 
4130 	/* create a new pwq */
4131 	pwq = alloc_unbound_pwq(wq, target_attrs);
4132 	if (!pwq) {
4133 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4134 			wq->name);
4135 		goto use_dfl_pwq;
4136 	}
4137 
4138 	/* Install the new pwq. */
4139 	mutex_lock(&wq->mutex);
4140 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4141 	goto out_unlock;
4142 
4143 use_dfl_pwq:
4144 	mutex_lock(&wq->mutex);
4145 	raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4146 	get_pwq(wq->dfl_pwq);
4147 	raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4148 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4149 out_unlock:
4150 	mutex_unlock(&wq->mutex);
4151 	put_pwq_unlocked(old_pwq);
4152 }
4153 
4154 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4155 {
4156 	bool highpri = wq->flags & WQ_HIGHPRI;
4157 	int cpu, ret;
4158 
4159 	if (!(wq->flags & WQ_UNBOUND)) {
4160 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4161 		if (!wq->cpu_pwqs)
4162 			return -ENOMEM;
4163 
4164 		for_each_possible_cpu(cpu) {
4165 			struct pool_workqueue *pwq =
4166 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4167 			struct worker_pool *cpu_pools =
4168 				per_cpu(cpu_worker_pools, cpu);
4169 
4170 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4171 
4172 			mutex_lock(&wq->mutex);
4173 			link_pwq(pwq);
4174 			mutex_unlock(&wq->mutex);
4175 		}
4176 		return 0;
4177 	}
4178 
4179 	get_online_cpus();
4180 	if (wq->flags & __WQ_ORDERED) {
4181 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4182 		/* there should only be single pwq for ordering guarantee */
4183 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4184 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4185 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4186 	} else {
4187 		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4188 	}
4189 	put_online_cpus();
4190 
4191 	return ret;
4192 }
4193 
4194 static int wq_clamp_max_active(int max_active, unsigned int flags,
4195 			       const char *name)
4196 {
4197 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4198 
4199 	if (max_active < 1 || max_active > lim)
4200 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4201 			max_active, name, 1, lim);
4202 
4203 	return clamp_val(max_active, 1, lim);
4204 }
4205 
4206 /*
4207  * Workqueues which may be used during memory reclaim should have a rescuer
4208  * to guarantee forward progress.
4209  */
4210 static int init_rescuer(struct workqueue_struct *wq)
4211 {
4212 	struct worker *rescuer;
4213 	int ret;
4214 
4215 	if (!(wq->flags & WQ_MEM_RECLAIM))
4216 		return 0;
4217 
4218 	rescuer = alloc_worker(NUMA_NO_NODE);
4219 	if (!rescuer)
4220 		return -ENOMEM;
4221 
4222 	rescuer->rescue_wq = wq;
4223 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4224 	if (IS_ERR(rescuer->task)) {
4225 		ret = PTR_ERR(rescuer->task);
4226 		kfree(rescuer);
4227 		return ret;
4228 	}
4229 
4230 	wq->rescuer = rescuer;
4231 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4232 	wake_up_process(rescuer->task);
4233 
4234 	return 0;
4235 }
4236 
4237 __printf(1, 4)
4238 struct workqueue_struct *alloc_workqueue(const char *fmt,
4239 					 unsigned int flags,
4240 					 int max_active, ...)
4241 {
4242 	size_t tbl_size = 0;
4243 	va_list args;
4244 	struct workqueue_struct *wq;
4245 	struct pool_workqueue *pwq;
4246 
4247 	/*
4248 	 * Unbound && max_active == 1 used to imply ordered, which is no
4249 	 * longer the case on NUMA machines due to per-node pools.  While
4250 	 * alloc_ordered_workqueue() is the right way to create an ordered
4251 	 * workqueue, keep the previous behavior to avoid subtle breakages
4252 	 * on NUMA.
4253 	 */
4254 	if ((flags & WQ_UNBOUND) && max_active == 1)
4255 		flags |= __WQ_ORDERED;
4256 
4257 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4258 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4259 		flags |= WQ_UNBOUND;
4260 
4261 	/* allocate wq and format name */
4262 	if (flags & WQ_UNBOUND)
4263 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4264 
4265 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4266 	if (!wq)
4267 		return NULL;
4268 
4269 	if (flags & WQ_UNBOUND) {
4270 		wq->unbound_attrs = alloc_workqueue_attrs();
4271 		if (!wq->unbound_attrs)
4272 			goto err_free_wq;
4273 	}
4274 
4275 	va_start(args, max_active);
4276 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4277 	va_end(args);
4278 
4279 	max_active = max_active ?: WQ_DFL_ACTIVE;
4280 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4281 
4282 	/* init wq */
4283 	wq->flags = flags;
4284 	wq->saved_max_active = max_active;
4285 	mutex_init(&wq->mutex);
4286 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4287 	INIT_LIST_HEAD(&wq->pwqs);
4288 	INIT_LIST_HEAD(&wq->flusher_queue);
4289 	INIT_LIST_HEAD(&wq->flusher_overflow);
4290 	INIT_LIST_HEAD(&wq->maydays);
4291 
4292 	wq_init_lockdep(wq);
4293 	INIT_LIST_HEAD(&wq->list);
4294 
4295 	if (alloc_and_link_pwqs(wq) < 0)
4296 		goto err_unreg_lockdep;
4297 
4298 	if (wq_online && init_rescuer(wq) < 0)
4299 		goto err_destroy;
4300 
4301 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4302 		goto err_destroy;
4303 
4304 	/*
4305 	 * wq_pool_mutex protects global freeze state and workqueues list.
4306 	 * Grab it, adjust max_active and add the new @wq to workqueues
4307 	 * list.
4308 	 */
4309 	mutex_lock(&wq_pool_mutex);
4310 
4311 	mutex_lock(&wq->mutex);
4312 	for_each_pwq(pwq, wq)
4313 		pwq_adjust_max_active(pwq);
4314 	mutex_unlock(&wq->mutex);
4315 
4316 	list_add_tail_rcu(&wq->list, &workqueues);
4317 
4318 	mutex_unlock(&wq_pool_mutex);
4319 
4320 	return wq;
4321 
4322 err_unreg_lockdep:
4323 	wq_unregister_lockdep(wq);
4324 	wq_free_lockdep(wq);
4325 err_free_wq:
4326 	free_workqueue_attrs(wq->unbound_attrs);
4327 	kfree(wq);
4328 	return NULL;
4329 err_destroy:
4330 	destroy_workqueue(wq);
4331 	return NULL;
4332 }
4333 EXPORT_SYMBOL_GPL(alloc_workqueue);
4334 
4335 static bool pwq_busy(struct pool_workqueue *pwq)
4336 {
4337 	int i;
4338 
4339 	for (i = 0; i < WORK_NR_COLORS; i++)
4340 		if (pwq->nr_in_flight[i])
4341 			return true;
4342 
4343 	if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4344 		return true;
4345 	if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4346 		return true;
4347 
4348 	return false;
4349 }
4350 
4351 /**
4352  * destroy_workqueue - safely terminate a workqueue
4353  * @wq: target workqueue
4354  *
4355  * Safely destroy a workqueue. All work currently pending will be done first.
4356  */
4357 void destroy_workqueue(struct workqueue_struct *wq)
4358 {
4359 	struct pool_workqueue *pwq;
4360 	int node;
4361 
4362 	/*
4363 	 * Remove it from sysfs first so that sanity check failure doesn't
4364 	 * lead to sysfs name conflicts.
4365 	 */
4366 	workqueue_sysfs_unregister(wq);
4367 
4368 	/* drain it before proceeding with destruction */
4369 	drain_workqueue(wq);
4370 
4371 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4372 	if (wq->rescuer) {
4373 		struct worker *rescuer = wq->rescuer;
4374 
4375 		/* this prevents new queueing */
4376 		raw_spin_lock_irq(&wq_mayday_lock);
4377 		wq->rescuer = NULL;
4378 		raw_spin_unlock_irq(&wq_mayday_lock);
4379 
4380 		/* rescuer will empty maydays list before exiting */
4381 		kthread_stop(rescuer->task);
4382 		kfree(rescuer);
4383 	}
4384 
4385 	/*
4386 	 * Sanity checks - grab all the locks so that we wait for all
4387 	 * in-flight operations which may do put_pwq().
4388 	 */
4389 	mutex_lock(&wq_pool_mutex);
4390 	mutex_lock(&wq->mutex);
4391 	for_each_pwq(pwq, wq) {
4392 		raw_spin_lock_irq(&pwq->pool->lock);
4393 		if (WARN_ON(pwq_busy(pwq))) {
4394 			pr_warn("%s: %s has the following busy pwq\n",
4395 				__func__, wq->name);
4396 			show_pwq(pwq);
4397 			raw_spin_unlock_irq(&pwq->pool->lock);
4398 			mutex_unlock(&wq->mutex);
4399 			mutex_unlock(&wq_pool_mutex);
4400 			show_workqueue_state();
4401 			return;
4402 		}
4403 		raw_spin_unlock_irq(&pwq->pool->lock);
4404 	}
4405 	mutex_unlock(&wq->mutex);
4406 
4407 	/*
4408 	 * wq list is used to freeze wq, remove from list after
4409 	 * flushing is complete in case freeze races us.
4410 	 */
4411 	list_del_rcu(&wq->list);
4412 	mutex_unlock(&wq_pool_mutex);
4413 
4414 	if (!(wq->flags & WQ_UNBOUND)) {
4415 		wq_unregister_lockdep(wq);
4416 		/*
4417 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4418 		 * schedule RCU free.
4419 		 */
4420 		call_rcu(&wq->rcu, rcu_free_wq);
4421 	} else {
4422 		/*
4423 		 * We're the sole accessor of @wq at this point.  Directly
4424 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4425 		 * @wq will be freed when the last pwq is released.
4426 		 */
4427 		for_each_node(node) {
4428 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4429 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4430 			put_pwq_unlocked(pwq);
4431 		}
4432 
4433 		/*
4434 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4435 		 * put.  Don't access it afterwards.
4436 		 */
4437 		pwq = wq->dfl_pwq;
4438 		wq->dfl_pwq = NULL;
4439 		put_pwq_unlocked(pwq);
4440 	}
4441 }
4442 EXPORT_SYMBOL_GPL(destroy_workqueue);
4443 
4444 /**
4445  * workqueue_set_max_active - adjust max_active of a workqueue
4446  * @wq: target workqueue
4447  * @max_active: new max_active value.
4448  *
4449  * Set max_active of @wq to @max_active.
4450  *
4451  * CONTEXT:
4452  * Don't call from IRQ context.
4453  */
4454 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4455 {
4456 	struct pool_workqueue *pwq;
4457 
4458 	/* disallow meddling with max_active for ordered workqueues */
4459 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4460 		return;
4461 
4462 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4463 
4464 	mutex_lock(&wq->mutex);
4465 
4466 	wq->flags &= ~__WQ_ORDERED;
4467 	wq->saved_max_active = max_active;
4468 
4469 	for_each_pwq(pwq, wq)
4470 		pwq_adjust_max_active(pwq);
4471 
4472 	mutex_unlock(&wq->mutex);
4473 }
4474 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4475 
4476 /**
4477  * current_work - retrieve %current task's work struct
4478  *
4479  * Determine if %current task is a workqueue worker and what it's working on.
4480  * Useful to find out the context that the %current task is running in.
4481  *
4482  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4483  */
4484 struct work_struct *current_work(void)
4485 {
4486 	struct worker *worker = current_wq_worker();
4487 
4488 	return worker ? worker->current_work : NULL;
4489 }
4490 EXPORT_SYMBOL(current_work);
4491 
4492 /**
4493  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4494  *
4495  * Determine whether %current is a workqueue rescuer.  Can be used from
4496  * work functions to determine whether it's being run off the rescuer task.
4497  *
4498  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4499  */
4500 bool current_is_workqueue_rescuer(void)
4501 {
4502 	struct worker *worker = current_wq_worker();
4503 
4504 	return worker && worker->rescue_wq;
4505 }
4506 
4507 /**
4508  * workqueue_congested - test whether a workqueue is congested
4509  * @cpu: CPU in question
4510  * @wq: target workqueue
4511  *
4512  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4513  * no synchronization around this function and the test result is
4514  * unreliable and only useful as advisory hints or for debugging.
4515  *
4516  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4517  * Note that both per-cpu and unbound workqueues may be associated with
4518  * multiple pool_workqueues which have separate congested states.  A
4519  * workqueue being congested on one CPU doesn't mean the workqueue is also
4520  * contested on other CPUs / NUMA nodes.
4521  *
4522  * Return:
4523  * %true if congested, %false otherwise.
4524  */
4525 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4526 {
4527 	struct pool_workqueue *pwq;
4528 	bool ret;
4529 
4530 	rcu_read_lock();
4531 	preempt_disable();
4532 
4533 	if (cpu == WORK_CPU_UNBOUND)
4534 		cpu = smp_processor_id();
4535 
4536 	if (!(wq->flags & WQ_UNBOUND))
4537 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4538 	else
4539 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4540 
4541 	ret = !list_empty(&pwq->delayed_works);
4542 	preempt_enable();
4543 	rcu_read_unlock();
4544 
4545 	return ret;
4546 }
4547 EXPORT_SYMBOL_GPL(workqueue_congested);
4548 
4549 /**
4550  * work_busy - test whether a work is currently pending or running
4551  * @work: the work to be tested
4552  *
4553  * Test whether @work is currently pending or running.  There is no
4554  * synchronization around this function and the test result is
4555  * unreliable and only useful as advisory hints or for debugging.
4556  *
4557  * Return:
4558  * OR'd bitmask of WORK_BUSY_* bits.
4559  */
4560 unsigned int work_busy(struct work_struct *work)
4561 {
4562 	struct worker_pool *pool;
4563 	unsigned long flags;
4564 	unsigned int ret = 0;
4565 
4566 	if (work_pending(work))
4567 		ret |= WORK_BUSY_PENDING;
4568 
4569 	rcu_read_lock();
4570 	pool = get_work_pool(work);
4571 	if (pool) {
4572 		raw_spin_lock_irqsave(&pool->lock, flags);
4573 		if (find_worker_executing_work(pool, work))
4574 			ret |= WORK_BUSY_RUNNING;
4575 		raw_spin_unlock_irqrestore(&pool->lock, flags);
4576 	}
4577 	rcu_read_unlock();
4578 
4579 	return ret;
4580 }
4581 EXPORT_SYMBOL_GPL(work_busy);
4582 
4583 /**
4584  * set_worker_desc - set description for the current work item
4585  * @fmt: printf-style format string
4586  * @...: arguments for the format string
4587  *
4588  * This function can be called by a running work function to describe what
4589  * the work item is about.  If the worker task gets dumped, this
4590  * information will be printed out together to help debugging.  The
4591  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4592  */
4593 void set_worker_desc(const char *fmt, ...)
4594 {
4595 	struct worker *worker = current_wq_worker();
4596 	va_list args;
4597 
4598 	if (worker) {
4599 		va_start(args, fmt);
4600 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4601 		va_end(args);
4602 	}
4603 }
4604 EXPORT_SYMBOL_GPL(set_worker_desc);
4605 
4606 /**
4607  * print_worker_info - print out worker information and description
4608  * @log_lvl: the log level to use when printing
4609  * @task: target task
4610  *
4611  * If @task is a worker and currently executing a work item, print out the
4612  * name of the workqueue being serviced and worker description set with
4613  * set_worker_desc() by the currently executing work item.
4614  *
4615  * This function can be safely called on any task as long as the
4616  * task_struct itself is accessible.  While safe, this function isn't
4617  * synchronized and may print out mixups or garbages of limited length.
4618  */
4619 void print_worker_info(const char *log_lvl, struct task_struct *task)
4620 {
4621 	work_func_t *fn = NULL;
4622 	char name[WQ_NAME_LEN] = { };
4623 	char desc[WORKER_DESC_LEN] = { };
4624 	struct pool_workqueue *pwq = NULL;
4625 	struct workqueue_struct *wq = NULL;
4626 	struct worker *worker;
4627 
4628 	if (!(task->flags & PF_WQ_WORKER))
4629 		return;
4630 
4631 	/*
4632 	 * This function is called without any synchronization and @task
4633 	 * could be in any state.  Be careful with dereferences.
4634 	 */
4635 	worker = kthread_probe_data(task);
4636 
4637 	/*
4638 	 * Carefully copy the associated workqueue's workfn, name and desc.
4639 	 * Keep the original last '\0' in case the original is garbage.
4640 	 */
4641 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4642 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4643 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4644 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4645 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4646 
4647 	if (fn || name[0] || desc[0]) {
4648 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4649 		if (strcmp(name, desc))
4650 			pr_cont(" (%s)", desc);
4651 		pr_cont("\n");
4652 	}
4653 }
4654 
4655 static void pr_cont_pool_info(struct worker_pool *pool)
4656 {
4657 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4658 	if (pool->node != NUMA_NO_NODE)
4659 		pr_cont(" node=%d", pool->node);
4660 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4661 }
4662 
4663 static void pr_cont_work(bool comma, struct work_struct *work)
4664 {
4665 	if (work->func == wq_barrier_func) {
4666 		struct wq_barrier *barr;
4667 
4668 		barr = container_of(work, struct wq_barrier, work);
4669 
4670 		pr_cont("%s BAR(%d)", comma ? "," : "",
4671 			task_pid_nr(barr->task));
4672 	} else {
4673 		pr_cont("%s %ps", comma ? "," : "", work->func);
4674 	}
4675 }
4676 
4677 static void show_pwq(struct pool_workqueue *pwq)
4678 {
4679 	struct worker_pool *pool = pwq->pool;
4680 	struct work_struct *work;
4681 	struct worker *worker;
4682 	bool has_in_flight = false, has_pending = false;
4683 	int bkt;
4684 
4685 	pr_info("  pwq %d:", pool->id);
4686 	pr_cont_pool_info(pool);
4687 
4688 	pr_cont(" active=%d/%d refcnt=%d%s\n",
4689 		pwq->nr_active, pwq->max_active, pwq->refcnt,
4690 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4691 
4692 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4693 		if (worker->current_pwq == pwq) {
4694 			has_in_flight = true;
4695 			break;
4696 		}
4697 	}
4698 	if (has_in_flight) {
4699 		bool comma = false;
4700 
4701 		pr_info("    in-flight:");
4702 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4703 			if (worker->current_pwq != pwq)
4704 				continue;
4705 
4706 			pr_cont("%s %d%s:%ps", comma ? "," : "",
4707 				task_pid_nr(worker->task),
4708 				worker->rescue_wq ? "(RESCUER)" : "",
4709 				worker->current_func);
4710 			list_for_each_entry(work, &worker->scheduled, entry)
4711 				pr_cont_work(false, work);
4712 			comma = true;
4713 		}
4714 		pr_cont("\n");
4715 	}
4716 
4717 	list_for_each_entry(work, &pool->worklist, entry) {
4718 		if (get_work_pwq(work) == pwq) {
4719 			has_pending = true;
4720 			break;
4721 		}
4722 	}
4723 	if (has_pending) {
4724 		bool comma = false;
4725 
4726 		pr_info("    pending:");
4727 		list_for_each_entry(work, &pool->worklist, entry) {
4728 			if (get_work_pwq(work) != pwq)
4729 				continue;
4730 
4731 			pr_cont_work(comma, work);
4732 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4733 		}
4734 		pr_cont("\n");
4735 	}
4736 
4737 	if (!list_empty(&pwq->delayed_works)) {
4738 		bool comma = false;
4739 
4740 		pr_info("    delayed:");
4741 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4742 			pr_cont_work(comma, work);
4743 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4744 		}
4745 		pr_cont("\n");
4746 	}
4747 }
4748 
4749 /**
4750  * show_workqueue_state - dump workqueue state
4751  *
4752  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4753  * all busy workqueues and pools.
4754  */
4755 void show_workqueue_state(void)
4756 {
4757 	struct workqueue_struct *wq;
4758 	struct worker_pool *pool;
4759 	unsigned long flags;
4760 	int pi;
4761 
4762 	rcu_read_lock();
4763 
4764 	pr_info("Showing busy workqueues and worker pools:\n");
4765 
4766 	list_for_each_entry_rcu(wq, &workqueues, list) {
4767 		struct pool_workqueue *pwq;
4768 		bool idle = true;
4769 
4770 		for_each_pwq(pwq, wq) {
4771 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4772 				idle = false;
4773 				break;
4774 			}
4775 		}
4776 		if (idle)
4777 			continue;
4778 
4779 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4780 
4781 		for_each_pwq(pwq, wq) {
4782 			raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4783 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4784 				show_pwq(pwq);
4785 			raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4786 			/*
4787 			 * We could be printing a lot from atomic context, e.g.
4788 			 * sysrq-t -> show_workqueue_state(). Avoid triggering
4789 			 * hard lockup.
4790 			 */
4791 			touch_nmi_watchdog();
4792 		}
4793 	}
4794 
4795 	for_each_pool(pool, pi) {
4796 		struct worker *worker;
4797 		bool first = true;
4798 
4799 		raw_spin_lock_irqsave(&pool->lock, flags);
4800 		if (pool->nr_workers == pool->nr_idle)
4801 			goto next_pool;
4802 
4803 		pr_info("pool %d:", pool->id);
4804 		pr_cont_pool_info(pool);
4805 		pr_cont(" hung=%us workers=%d",
4806 			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4807 			pool->nr_workers);
4808 		if (pool->manager)
4809 			pr_cont(" manager: %d",
4810 				task_pid_nr(pool->manager->task));
4811 		list_for_each_entry(worker, &pool->idle_list, entry) {
4812 			pr_cont(" %s%d", first ? "idle: " : "",
4813 				task_pid_nr(worker->task));
4814 			first = false;
4815 		}
4816 		pr_cont("\n");
4817 	next_pool:
4818 		raw_spin_unlock_irqrestore(&pool->lock, flags);
4819 		/*
4820 		 * We could be printing a lot from atomic context, e.g.
4821 		 * sysrq-t -> show_workqueue_state(). Avoid triggering
4822 		 * hard lockup.
4823 		 */
4824 		touch_nmi_watchdog();
4825 	}
4826 
4827 	rcu_read_unlock();
4828 }
4829 
4830 /* used to show worker information through /proc/PID/{comm,stat,status} */
4831 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4832 {
4833 	int off;
4834 
4835 	/* always show the actual comm */
4836 	off = strscpy(buf, task->comm, size);
4837 	if (off < 0)
4838 		return;
4839 
4840 	/* stabilize PF_WQ_WORKER and worker pool association */
4841 	mutex_lock(&wq_pool_attach_mutex);
4842 
4843 	if (task->flags & PF_WQ_WORKER) {
4844 		struct worker *worker = kthread_data(task);
4845 		struct worker_pool *pool = worker->pool;
4846 
4847 		if (pool) {
4848 			raw_spin_lock_irq(&pool->lock);
4849 			/*
4850 			 * ->desc tracks information (wq name or
4851 			 * set_worker_desc()) for the latest execution.  If
4852 			 * current, prepend '+', otherwise '-'.
4853 			 */
4854 			if (worker->desc[0] != '\0') {
4855 				if (worker->current_work)
4856 					scnprintf(buf + off, size - off, "+%s",
4857 						  worker->desc);
4858 				else
4859 					scnprintf(buf + off, size - off, "-%s",
4860 						  worker->desc);
4861 			}
4862 			raw_spin_unlock_irq(&pool->lock);
4863 		}
4864 	}
4865 
4866 	mutex_unlock(&wq_pool_attach_mutex);
4867 }
4868 
4869 #ifdef CONFIG_SMP
4870 
4871 /*
4872  * CPU hotplug.
4873  *
4874  * There are two challenges in supporting CPU hotplug.  Firstly, there
4875  * are a lot of assumptions on strong associations among work, pwq and
4876  * pool which make migrating pending and scheduled works very
4877  * difficult to implement without impacting hot paths.  Secondly,
4878  * worker pools serve mix of short, long and very long running works making
4879  * blocked draining impractical.
4880  *
4881  * This is solved by allowing the pools to be disassociated from the CPU
4882  * running as an unbound one and allowing it to be reattached later if the
4883  * cpu comes back online.
4884  */
4885 
4886 static void unbind_workers(int cpu)
4887 {
4888 	struct worker_pool *pool;
4889 	struct worker *worker;
4890 
4891 	for_each_cpu_worker_pool(pool, cpu) {
4892 		mutex_lock(&wq_pool_attach_mutex);
4893 		raw_spin_lock_irq(&pool->lock);
4894 
4895 		/*
4896 		 * We've blocked all attach/detach operations. Make all workers
4897 		 * unbound and set DISASSOCIATED.  Before this, all workers
4898 		 * except for the ones which are still executing works from
4899 		 * before the last CPU down must be on the cpu.  After
4900 		 * this, they may become diasporas.
4901 		 */
4902 		for_each_pool_worker(worker, pool)
4903 			worker->flags |= WORKER_UNBOUND;
4904 
4905 		pool->flags |= POOL_DISASSOCIATED;
4906 
4907 		raw_spin_unlock_irq(&pool->lock);
4908 		mutex_unlock(&wq_pool_attach_mutex);
4909 
4910 		/*
4911 		 * Call schedule() so that we cross rq->lock and thus can
4912 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4913 		 * This is necessary as scheduler callbacks may be invoked
4914 		 * from other cpus.
4915 		 */
4916 		schedule();
4917 
4918 		/*
4919 		 * Sched callbacks are disabled now.  Zap nr_running.
4920 		 * After this, nr_running stays zero and need_more_worker()
4921 		 * and keep_working() are always true as long as the
4922 		 * worklist is not empty.  This pool now behaves as an
4923 		 * unbound (in terms of concurrency management) pool which
4924 		 * are served by workers tied to the pool.
4925 		 */
4926 		atomic_set(&pool->nr_running, 0);
4927 
4928 		/*
4929 		 * With concurrency management just turned off, a busy
4930 		 * worker blocking could lead to lengthy stalls.  Kick off
4931 		 * unbound chain execution of currently pending work items.
4932 		 */
4933 		raw_spin_lock_irq(&pool->lock);
4934 		wake_up_worker(pool);
4935 		raw_spin_unlock_irq(&pool->lock);
4936 	}
4937 }
4938 
4939 /**
4940  * rebind_workers - rebind all workers of a pool to the associated CPU
4941  * @pool: pool of interest
4942  *
4943  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4944  */
4945 static void rebind_workers(struct worker_pool *pool)
4946 {
4947 	struct worker *worker;
4948 
4949 	lockdep_assert_held(&wq_pool_attach_mutex);
4950 
4951 	/*
4952 	 * Restore CPU affinity of all workers.  As all idle workers should
4953 	 * be on the run-queue of the associated CPU before any local
4954 	 * wake-ups for concurrency management happen, restore CPU affinity
4955 	 * of all workers first and then clear UNBOUND.  As we're called
4956 	 * from CPU_ONLINE, the following shouldn't fail.
4957 	 */
4958 	for_each_pool_worker(worker, pool)
4959 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4960 						  pool->attrs->cpumask) < 0);
4961 
4962 	raw_spin_lock_irq(&pool->lock);
4963 
4964 	pool->flags &= ~POOL_DISASSOCIATED;
4965 
4966 	for_each_pool_worker(worker, pool) {
4967 		unsigned int worker_flags = worker->flags;
4968 
4969 		/*
4970 		 * A bound idle worker should actually be on the runqueue
4971 		 * of the associated CPU for local wake-ups targeting it to
4972 		 * work.  Kick all idle workers so that they migrate to the
4973 		 * associated CPU.  Doing this in the same loop as
4974 		 * replacing UNBOUND with REBOUND is safe as no worker will
4975 		 * be bound before @pool->lock is released.
4976 		 */
4977 		if (worker_flags & WORKER_IDLE)
4978 			wake_up_process(worker->task);
4979 
4980 		/*
4981 		 * We want to clear UNBOUND but can't directly call
4982 		 * worker_clr_flags() or adjust nr_running.  Atomically
4983 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4984 		 * @worker will clear REBOUND using worker_clr_flags() when
4985 		 * it initiates the next execution cycle thus restoring
4986 		 * concurrency management.  Note that when or whether
4987 		 * @worker clears REBOUND doesn't affect correctness.
4988 		 *
4989 		 * WRITE_ONCE() is necessary because @worker->flags may be
4990 		 * tested without holding any lock in
4991 		 * wq_worker_running().  Without it, NOT_RUNNING test may
4992 		 * fail incorrectly leading to premature concurrency
4993 		 * management operations.
4994 		 */
4995 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4996 		worker_flags |= WORKER_REBOUND;
4997 		worker_flags &= ~WORKER_UNBOUND;
4998 		WRITE_ONCE(worker->flags, worker_flags);
4999 	}
5000 
5001 	raw_spin_unlock_irq(&pool->lock);
5002 }
5003 
5004 /**
5005  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5006  * @pool: unbound pool of interest
5007  * @cpu: the CPU which is coming up
5008  *
5009  * An unbound pool may end up with a cpumask which doesn't have any online
5010  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
5011  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
5012  * online CPU before, cpus_allowed of all its workers should be restored.
5013  */
5014 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5015 {
5016 	static cpumask_t cpumask;
5017 	struct worker *worker;
5018 
5019 	lockdep_assert_held(&wq_pool_attach_mutex);
5020 
5021 	/* is @cpu allowed for @pool? */
5022 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5023 		return;
5024 
5025 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5026 
5027 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
5028 	for_each_pool_worker(worker, pool)
5029 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5030 }
5031 
5032 int workqueue_prepare_cpu(unsigned int cpu)
5033 {
5034 	struct worker_pool *pool;
5035 
5036 	for_each_cpu_worker_pool(pool, cpu) {
5037 		if (pool->nr_workers)
5038 			continue;
5039 		if (!create_worker(pool))
5040 			return -ENOMEM;
5041 	}
5042 	return 0;
5043 }
5044 
5045 int workqueue_online_cpu(unsigned int cpu)
5046 {
5047 	struct worker_pool *pool;
5048 	struct workqueue_struct *wq;
5049 	int pi;
5050 
5051 	mutex_lock(&wq_pool_mutex);
5052 
5053 	for_each_pool(pool, pi) {
5054 		mutex_lock(&wq_pool_attach_mutex);
5055 
5056 		if (pool->cpu == cpu)
5057 			rebind_workers(pool);
5058 		else if (pool->cpu < 0)
5059 			restore_unbound_workers_cpumask(pool, cpu);
5060 
5061 		mutex_unlock(&wq_pool_attach_mutex);
5062 	}
5063 
5064 	/* update NUMA affinity of unbound workqueues */
5065 	list_for_each_entry(wq, &workqueues, list)
5066 		wq_update_unbound_numa(wq, cpu, true);
5067 
5068 	mutex_unlock(&wq_pool_mutex);
5069 	return 0;
5070 }
5071 
5072 int workqueue_offline_cpu(unsigned int cpu)
5073 {
5074 	struct workqueue_struct *wq;
5075 
5076 	/* unbinding per-cpu workers should happen on the local CPU */
5077 	if (WARN_ON(cpu != smp_processor_id()))
5078 		return -1;
5079 
5080 	unbind_workers(cpu);
5081 
5082 	/* update NUMA affinity of unbound workqueues */
5083 	mutex_lock(&wq_pool_mutex);
5084 	list_for_each_entry(wq, &workqueues, list)
5085 		wq_update_unbound_numa(wq, cpu, false);
5086 	mutex_unlock(&wq_pool_mutex);
5087 
5088 	return 0;
5089 }
5090 
5091 struct work_for_cpu {
5092 	struct work_struct work;
5093 	long (*fn)(void *);
5094 	void *arg;
5095 	long ret;
5096 };
5097 
5098 static void work_for_cpu_fn(struct work_struct *work)
5099 {
5100 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5101 
5102 	wfc->ret = wfc->fn(wfc->arg);
5103 }
5104 
5105 /**
5106  * work_on_cpu - run a function in thread context on a particular cpu
5107  * @cpu: the cpu to run on
5108  * @fn: the function to run
5109  * @arg: the function arg
5110  *
5111  * It is up to the caller to ensure that the cpu doesn't go offline.
5112  * The caller must not hold any locks which would prevent @fn from completing.
5113  *
5114  * Return: The value @fn returns.
5115  */
5116 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5117 {
5118 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5119 
5120 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5121 	schedule_work_on(cpu, &wfc.work);
5122 	flush_work(&wfc.work);
5123 	destroy_work_on_stack(&wfc.work);
5124 	return wfc.ret;
5125 }
5126 EXPORT_SYMBOL_GPL(work_on_cpu);
5127 
5128 /**
5129  * work_on_cpu_safe - run a function in thread context on a particular cpu
5130  * @cpu: the cpu to run on
5131  * @fn:  the function to run
5132  * @arg: the function argument
5133  *
5134  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5135  * any locks which would prevent @fn from completing.
5136  *
5137  * Return: The value @fn returns.
5138  */
5139 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5140 {
5141 	long ret = -ENODEV;
5142 
5143 	get_online_cpus();
5144 	if (cpu_online(cpu))
5145 		ret = work_on_cpu(cpu, fn, arg);
5146 	put_online_cpus();
5147 	return ret;
5148 }
5149 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5150 #endif /* CONFIG_SMP */
5151 
5152 #ifdef CONFIG_FREEZER
5153 
5154 /**
5155  * freeze_workqueues_begin - begin freezing workqueues
5156  *
5157  * Start freezing workqueues.  After this function returns, all freezable
5158  * workqueues will queue new works to their delayed_works list instead of
5159  * pool->worklist.
5160  *
5161  * CONTEXT:
5162  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5163  */
5164 void freeze_workqueues_begin(void)
5165 {
5166 	struct workqueue_struct *wq;
5167 	struct pool_workqueue *pwq;
5168 
5169 	mutex_lock(&wq_pool_mutex);
5170 
5171 	WARN_ON_ONCE(workqueue_freezing);
5172 	workqueue_freezing = true;
5173 
5174 	list_for_each_entry(wq, &workqueues, list) {
5175 		mutex_lock(&wq->mutex);
5176 		for_each_pwq(pwq, wq)
5177 			pwq_adjust_max_active(pwq);
5178 		mutex_unlock(&wq->mutex);
5179 	}
5180 
5181 	mutex_unlock(&wq_pool_mutex);
5182 }
5183 
5184 /**
5185  * freeze_workqueues_busy - are freezable workqueues still busy?
5186  *
5187  * Check whether freezing is complete.  This function must be called
5188  * between freeze_workqueues_begin() and thaw_workqueues().
5189  *
5190  * CONTEXT:
5191  * Grabs and releases wq_pool_mutex.
5192  *
5193  * Return:
5194  * %true if some freezable workqueues are still busy.  %false if freezing
5195  * is complete.
5196  */
5197 bool freeze_workqueues_busy(void)
5198 {
5199 	bool busy = false;
5200 	struct workqueue_struct *wq;
5201 	struct pool_workqueue *pwq;
5202 
5203 	mutex_lock(&wq_pool_mutex);
5204 
5205 	WARN_ON_ONCE(!workqueue_freezing);
5206 
5207 	list_for_each_entry(wq, &workqueues, list) {
5208 		if (!(wq->flags & WQ_FREEZABLE))
5209 			continue;
5210 		/*
5211 		 * nr_active is monotonically decreasing.  It's safe
5212 		 * to peek without lock.
5213 		 */
5214 		rcu_read_lock();
5215 		for_each_pwq(pwq, wq) {
5216 			WARN_ON_ONCE(pwq->nr_active < 0);
5217 			if (pwq->nr_active) {
5218 				busy = true;
5219 				rcu_read_unlock();
5220 				goto out_unlock;
5221 			}
5222 		}
5223 		rcu_read_unlock();
5224 	}
5225 out_unlock:
5226 	mutex_unlock(&wq_pool_mutex);
5227 	return busy;
5228 }
5229 
5230 /**
5231  * thaw_workqueues - thaw workqueues
5232  *
5233  * Thaw workqueues.  Normal queueing is restored and all collected
5234  * frozen works are transferred to their respective pool worklists.
5235  *
5236  * CONTEXT:
5237  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5238  */
5239 void thaw_workqueues(void)
5240 {
5241 	struct workqueue_struct *wq;
5242 	struct pool_workqueue *pwq;
5243 
5244 	mutex_lock(&wq_pool_mutex);
5245 
5246 	if (!workqueue_freezing)
5247 		goto out_unlock;
5248 
5249 	workqueue_freezing = false;
5250 
5251 	/* restore max_active and repopulate worklist */
5252 	list_for_each_entry(wq, &workqueues, list) {
5253 		mutex_lock(&wq->mutex);
5254 		for_each_pwq(pwq, wq)
5255 			pwq_adjust_max_active(pwq);
5256 		mutex_unlock(&wq->mutex);
5257 	}
5258 
5259 out_unlock:
5260 	mutex_unlock(&wq_pool_mutex);
5261 }
5262 #endif /* CONFIG_FREEZER */
5263 
5264 static int workqueue_apply_unbound_cpumask(void)
5265 {
5266 	LIST_HEAD(ctxs);
5267 	int ret = 0;
5268 	struct workqueue_struct *wq;
5269 	struct apply_wqattrs_ctx *ctx, *n;
5270 
5271 	lockdep_assert_held(&wq_pool_mutex);
5272 
5273 	list_for_each_entry(wq, &workqueues, list) {
5274 		if (!(wq->flags & WQ_UNBOUND))
5275 			continue;
5276 		/* creating multiple pwqs breaks ordering guarantee */
5277 		if (wq->flags & __WQ_ORDERED)
5278 			continue;
5279 
5280 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5281 		if (!ctx) {
5282 			ret = -ENOMEM;
5283 			break;
5284 		}
5285 
5286 		list_add_tail(&ctx->list, &ctxs);
5287 	}
5288 
5289 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5290 		if (!ret)
5291 			apply_wqattrs_commit(ctx);
5292 		apply_wqattrs_cleanup(ctx);
5293 	}
5294 
5295 	return ret;
5296 }
5297 
5298 /**
5299  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5300  *  @cpumask: the cpumask to set
5301  *
5302  *  The low-level workqueues cpumask is a global cpumask that limits
5303  *  the affinity of all unbound workqueues.  This function check the @cpumask
5304  *  and apply it to all unbound workqueues and updates all pwqs of them.
5305  *
5306  *  Retun:	0	- Success
5307  *  		-EINVAL	- Invalid @cpumask
5308  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5309  */
5310 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5311 {
5312 	int ret = -EINVAL;
5313 	cpumask_var_t saved_cpumask;
5314 
5315 	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5316 		return -ENOMEM;
5317 
5318 	/*
5319 	 * Not excluding isolated cpus on purpose.
5320 	 * If the user wishes to include them, we allow that.
5321 	 */
5322 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5323 	if (!cpumask_empty(cpumask)) {
5324 		apply_wqattrs_lock();
5325 
5326 		/* save the old wq_unbound_cpumask. */
5327 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5328 
5329 		/* update wq_unbound_cpumask at first and apply it to wqs. */
5330 		cpumask_copy(wq_unbound_cpumask, cpumask);
5331 		ret = workqueue_apply_unbound_cpumask();
5332 
5333 		/* restore the wq_unbound_cpumask when failed. */
5334 		if (ret < 0)
5335 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5336 
5337 		apply_wqattrs_unlock();
5338 	}
5339 
5340 	free_cpumask_var(saved_cpumask);
5341 	return ret;
5342 }
5343 
5344 #ifdef CONFIG_SYSFS
5345 /*
5346  * Workqueues with WQ_SYSFS flag set is visible to userland via
5347  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5348  * following attributes.
5349  *
5350  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5351  *  max_active	RW int	: maximum number of in-flight work items
5352  *
5353  * Unbound workqueues have the following extra attributes.
5354  *
5355  *  pool_ids	RO int	: the associated pool IDs for each node
5356  *  nice	RW int	: nice value of the workers
5357  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5358  *  numa	RW bool	: whether enable NUMA affinity
5359  */
5360 struct wq_device {
5361 	struct workqueue_struct		*wq;
5362 	struct device			dev;
5363 };
5364 
5365 static struct workqueue_struct *dev_to_wq(struct device *dev)
5366 {
5367 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5368 
5369 	return wq_dev->wq;
5370 }
5371 
5372 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5373 			    char *buf)
5374 {
5375 	struct workqueue_struct *wq = dev_to_wq(dev);
5376 
5377 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5378 }
5379 static DEVICE_ATTR_RO(per_cpu);
5380 
5381 static ssize_t max_active_show(struct device *dev,
5382 			       struct device_attribute *attr, char *buf)
5383 {
5384 	struct workqueue_struct *wq = dev_to_wq(dev);
5385 
5386 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5387 }
5388 
5389 static ssize_t max_active_store(struct device *dev,
5390 				struct device_attribute *attr, const char *buf,
5391 				size_t count)
5392 {
5393 	struct workqueue_struct *wq = dev_to_wq(dev);
5394 	int val;
5395 
5396 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5397 		return -EINVAL;
5398 
5399 	workqueue_set_max_active(wq, val);
5400 	return count;
5401 }
5402 static DEVICE_ATTR_RW(max_active);
5403 
5404 static struct attribute *wq_sysfs_attrs[] = {
5405 	&dev_attr_per_cpu.attr,
5406 	&dev_attr_max_active.attr,
5407 	NULL,
5408 };
5409 ATTRIBUTE_GROUPS(wq_sysfs);
5410 
5411 static ssize_t wq_pool_ids_show(struct device *dev,
5412 				struct device_attribute *attr, char *buf)
5413 {
5414 	struct workqueue_struct *wq = dev_to_wq(dev);
5415 	const char *delim = "";
5416 	int node, written = 0;
5417 
5418 	get_online_cpus();
5419 	rcu_read_lock();
5420 	for_each_node(node) {
5421 		written += scnprintf(buf + written, PAGE_SIZE - written,
5422 				     "%s%d:%d", delim, node,
5423 				     unbound_pwq_by_node(wq, node)->pool->id);
5424 		delim = " ";
5425 	}
5426 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5427 	rcu_read_unlock();
5428 	put_online_cpus();
5429 
5430 	return written;
5431 }
5432 
5433 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5434 			    char *buf)
5435 {
5436 	struct workqueue_struct *wq = dev_to_wq(dev);
5437 	int written;
5438 
5439 	mutex_lock(&wq->mutex);
5440 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5441 	mutex_unlock(&wq->mutex);
5442 
5443 	return written;
5444 }
5445 
5446 /* prepare workqueue_attrs for sysfs store operations */
5447 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5448 {
5449 	struct workqueue_attrs *attrs;
5450 
5451 	lockdep_assert_held(&wq_pool_mutex);
5452 
5453 	attrs = alloc_workqueue_attrs();
5454 	if (!attrs)
5455 		return NULL;
5456 
5457 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5458 	return attrs;
5459 }
5460 
5461 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5462 			     const char *buf, size_t count)
5463 {
5464 	struct workqueue_struct *wq = dev_to_wq(dev);
5465 	struct workqueue_attrs *attrs;
5466 	int ret = -ENOMEM;
5467 
5468 	apply_wqattrs_lock();
5469 
5470 	attrs = wq_sysfs_prep_attrs(wq);
5471 	if (!attrs)
5472 		goto out_unlock;
5473 
5474 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5475 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5476 		ret = apply_workqueue_attrs_locked(wq, attrs);
5477 	else
5478 		ret = -EINVAL;
5479 
5480 out_unlock:
5481 	apply_wqattrs_unlock();
5482 	free_workqueue_attrs(attrs);
5483 	return ret ?: count;
5484 }
5485 
5486 static ssize_t wq_cpumask_show(struct device *dev,
5487 			       struct device_attribute *attr, char *buf)
5488 {
5489 	struct workqueue_struct *wq = dev_to_wq(dev);
5490 	int written;
5491 
5492 	mutex_lock(&wq->mutex);
5493 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5494 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5495 	mutex_unlock(&wq->mutex);
5496 	return written;
5497 }
5498 
5499 static ssize_t wq_cpumask_store(struct device *dev,
5500 				struct device_attribute *attr,
5501 				const char *buf, size_t count)
5502 {
5503 	struct workqueue_struct *wq = dev_to_wq(dev);
5504 	struct workqueue_attrs *attrs;
5505 	int ret = -ENOMEM;
5506 
5507 	apply_wqattrs_lock();
5508 
5509 	attrs = wq_sysfs_prep_attrs(wq);
5510 	if (!attrs)
5511 		goto out_unlock;
5512 
5513 	ret = cpumask_parse(buf, attrs->cpumask);
5514 	if (!ret)
5515 		ret = apply_workqueue_attrs_locked(wq, attrs);
5516 
5517 out_unlock:
5518 	apply_wqattrs_unlock();
5519 	free_workqueue_attrs(attrs);
5520 	return ret ?: count;
5521 }
5522 
5523 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5524 			    char *buf)
5525 {
5526 	struct workqueue_struct *wq = dev_to_wq(dev);
5527 	int written;
5528 
5529 	mutex_lock(&wq->mutex);
5530 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5531 			    !wq->unbound_attrs->no_numa);
5532 	mutex_unlock(&wq->mutex);
5533 
5534 	return written;
5535 }
5536 
5537 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5538 			     const char *buf, size_t count)
5539 {
5540 	struct workqueue_struct *wq = dev_to_wq(dev);
5541 	struct workqueue_attrs *attrs;
5542 	int v, ret = -ENOMEM;
5543 
5544 	apply_wqattrs_lock();
5545 
5546 	attrs = wq_sysfs_prep_attrs(wq);
5547 	if (!attrs)
5548 		goto out_unlock;
5549 
5550 	ret = -EINVAL;
5551 	if (sscanf(buf, "%d", &v) == 1) {
5552 		attrs->no_numa = !v;
5553 		ret = apply_workqueue_attrs_locked(wq, attrs);
5554 	}
5555 
5556 out_unlock:
5557 	apply_wqattrs_unlock();
5558 	free_workqueue_attrs(attrs);
5559 	return ret ?: count;
5560 }
5561 
5562 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5563 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5564 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5565 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5566 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5567 	__ATTR_NULL,
5568 };
5569 
5570 static struct bus_type wq_subsys = {
5571 	.name				= "workqueue",
5572 	.dev_groups			= wq_sysfs_groups,
5573 };
5574 
5575 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5576 		struct device_attribute *attr, char *buf)
5577 {
5578 	int written;
5579 
5580 	mutex_lock(&wq_pool_mutex);
5581 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5582 			    cpumask_pr_args(wq_unbound_cpumask));
5583 	mutex_unlock(&wq_pool_mutex);
5584 
5585 	return written;
5586 }
5587 
5588 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5589 		struct device_attribute *attr, const char *buf, size_t count)
5590 {
5591 	cpumask_var_t cpumask;
5592 	int ret;
5593 
5594 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5595 		return -ENOMEM;
5596 
5597 	ret = cpumask_parse(buf, cpumask);
5598 	if (!ret)
5599 		ret = workqueue_set_unbound_cpumask(cpumask);
5600 
5601 	free_cpumask_var(cpumask);
5602 	return ret ? ret : count;
5603 }
5604 
5605 static struct device_attribute wq_sysfs_cpumask_attr =
5606 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5607 	       wq_unbound_cpumask_store);
5608 
5609 static int __init wq_sysfs_init(void)
5610 {
5611 	int err;
5612 
5613 	err = subsys_virtual_register(&wq_subsys, NULL);
5614 	if (err)
5615 		return err;
5616 
5617 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5618 }
5619 core_initcall(wq_sysfs_init);
5620 
5621 static void wq_device_release(struct device *dev)
5622 {
5623 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5624 
5625 	kfree(wq_dev);
5626 }
5627 
5628 /**
5629  * workqueue_sysfs_register - make a workqueue visible in sysfs
5630  * @wq: the workqueue to register
5631  *
5632  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5633  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5634  * which is the preferred method.
5635  *
5636  * Workqueue user should use this function directly iff it wants to apply
5637  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5638  * apply_workqueue_attrs() may race against userland updating the
5639  * attributes.
5640  *
5641  * Return: 0 on success, -errno on failure.
5642  */
5643 int workqueue_sysfs_register(struct workqueue_struct *wq)
5644 {
5645 	struct wq_device *wq_dev;
5646 	int ret;
5647 
5648 	/*
5649 	 * Adjusting max_active or creating new pwqs by applying
5650 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5651 	 * workqueues.
5652 	 */
5653 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5654 		return -EINVAL;
5655 
5656 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5657 	if (!wq_dev)
5658 		return -ENOMEM;
5659 
5660 	wq_dev->wq = wq;
5661 	wq_dev->dev.bus = &wq_subsys;
5662 	wq_dev->dev.release = wq_device_release;
5663 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5664 
5665 	/*
5666 	 * unbound_attrs are created separately.  Suppress uevent until
5667 	 * everything is ready.
5668 	 */
5669 	dev_set_uevent_suppress(&wq_dev->dev, true);
5670 
5671 	ret = device_register(&wq_dev->dev);
5672 	if (ret) {
5673 		put_device(&wq_dev->dev);
5674 		wq->wq_dev = NULL;
5675 		return ret;
5676 	}
5677 
5678 	if (wq->flags & WQ_UNBOUND) {
5679 		struct device_attribute *attr;
5680 
5681 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5682 			ret = device_create_file(&wq_dev->dev, attr);
5683 			if (ret) {
5684 				device_unregister(&wq_dev->dev);
5685 				wq->wq_dev = NULL;
5686 				return ret;
5687 			}
5688 		}
5689 	}
5690 
5691 	dev_set_uevent_suppress(&wq_dev->dev, false);
5692 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5693 	return 0;
5694 }
5695 
5696 /**
5697  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5698  * @wq: the workqueue to unregister
5699  *
5700  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5701  */
5702 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5703 {
5704 	struct wq_device *wq_dev = wq->wq_dev;
5705 
5706 	if (!wq->wq_dev)
5707 		return;
5708 
5709 	wq->wq_dev = NULL;
5710 	device_unregister(&wq_dev->dev);
5711 }
5712 #else	/* CONFIG_SYSFS */
5713 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5714 #endif	/* CONFIG_SYSFS */
5715 
5716 /*
5717  * Workqueue watchdog.
5718  *
5719  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5720  * flush dependency, a concurrency managed work item which stays RUNNING
5721  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5722  * usual warning mechanisms don't trigger and internal workqueue state is
5723  * largely opaque.
5724  *
5725  * Workqueue watchdog monitors all worker pools periodically and dumps
5726  * state if some pools failed to make forward progress for a while where
5727  * forward progress is defined as the first item on ->worklist changing.
5728  *
5729  * This mechanism is controlled through the kernel parameter
5730  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5731  * corresponding sysfs parameter file.
5732  */
5733 #ifdef CONFIG_WQ_WATCHDOG
5734 
5735 static unsigned long wq_watchdog_thresh = 30;
5736 static struct timer_list wq_watchdog_timer;
5737 
5738 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5739 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5740 
5741 static void wq_watchdog_reset_touched(void)
5742 {
5743 	int cpu;
5744 
5745 	wq_watchdog_touched = jiffies;
5746 	for_each_possible_cpu(cpu)
5747 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5748 }
5749 
5750 static void wq_watchdog_timer_fn(struct timer_list *unused)
5751 {
5752 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5753 	bool lockup_detected = false;
5754 	struct worker_pool *pool;
5755 	int pi;
5756 
5757 	if (!thresh)
5758 		return;
5759 
5760 	rcu_read_lock();
5761 
5762 	for_each_pool(pool, pi) {
5763 		unsigned long pool_ts, touched, ts;
5764 
5765 		if (list_empty(&pool->worklist))
5766 			continue;
5767 
5768 		/* get the latest of pool and touched timestamps */
5769 		pool_ts = READ_ONCE(pool->watchdog_ts);
5770 		touched = READ_ONCE(wq_watchdog_touched);
5771 
5772 		if (time_after(pool_ts, touched))
5773 			ts = pool_ts;
5774 		else
5775 			ts = touched;
5776 
5777 		if (pool->cpu >= 0) {
5778 			unsigned long cpu_touched =
5779 				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5780 						  pool->cpu));
5781 			if (time_after(cpu_touched, ts))
5782 				ts = cpu_touched;
5783 		}
5784 
5785 		/* did we stall? */
5786 		if (time_after(jiffies, ts + thresh)) {
5787 			lockup_detected = true;
5788 			pr_emerg("BUG: workqueue lockup - pool");
5789 			pr_cont_pool_info(pool);
5790 			pr_cont(" stuck for %us!\n",
5791 				jiffies_to_msecs(jiffies - pool_ts) / 1000);
5792 		}
5793 	}
5794 
5795 	rcu_read_unlock();
5796 
5797 	if (lockup_detected)
5798 		show_workqueue_state();
5799 
5800 	wq_watchdog_reset_touched();
5801 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5802 }
5803 
5804 notrace void wq_watchdog_touch(int cpu)
5805 {
5806 	if (cpu >= 0)
5807 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5808 	else
5809 		wq_watchdog_touched = jiffies;
5810 }
5811 
5812 static void wq_watchdog_set_thresh(unsigned long thresh)
5813 {
5814 	wq_watchdog_thresh = 0;
5815 	del_timer_sync(&wq_watchdog_timer);
5816 
5817 	if (thresh) {
5818 		wq_watchdog_thresh = thresh;
5819 		wq_watchdog_reset_touched();
5820 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5821 	}
5822 }
5823 
5824 static int wq_watchdog_param_set_thresh(const char *val,
5825 					const struct kernel_param *kp)
5826 {
5827 	unsigned long thresh;
5828 	int ret;
5829 
5830 	ret = kstrtoul(val, 0, &thresh);
5831 	if (ret)
5832 		return ret;
5833 
5834 	if (system_wq)
5835 		wq_watchdog_set_thresh(thresh);
5836 	else
5837 		wq_watchdog_thresh = thresh;
5838 
5839 	return 0;
5840 }
5841 
5842 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5843 	.set	= wq_watchdog_param_set_thresh,
5844 	.get	= param_get_ulong,
5845 };
5846 
5847 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5848 		0644);
5849 
5850 static void wq_watchdog_init(void)
5851 {
5852 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5853 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5854 }
5855 
5856 #else	/* CONFIG_WQ_WATCHDOG */
5857 
5858 static inline void wq_watchdog_init(void) { }
5859 
5860 #endif	/* CONFIG_WQ_WATCHDOG */
5861 
5862 static void __init wq_numa_init(void)
5863 {
5864 	cpumask_var_t *tbl;
5865 	int node, cpu;
5866 
5867 	if (num_possible_nodes() <= 1)
5868 		return;
5869 
5870 	if (wq_disable_numa) {
5871 		pr_info("workqueue: NUMA affinity support disabled\n");
5872 		return;
5873 	}
5874 
5875 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5876 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5877 
5878 	/*
5879 	 * We want masks of possible CPUs of each node which isn't readily
5880 	 * available.  Build one from cpu_to_node() which should have been
5881 	 * fully initialized by now.
5882 	 */
5883 	tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5884 	BUG_ON(!tbl);
5885 
5886 	for_each_node(node)
5887 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5888 				node_online(node) ? node : NUMA_NO_NODE));
5889 
5890 	for_each_possible_cpu(cpu) {
5891 		node = cpu_to_node(cpu);
5892 		if (WARN_ON(node == NUMA_NO_NODE)) {
5893 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5894 			/* happens iff arch is bonkers, let's just proceed */
5895 			return;
5896 		}
5897 		cpumask_set_cpu(cpu, tbl[node]);
5898 	}
5899 
5900 	wq_numa_possible_cpumask = tbl;
5901 	wq_numa_enabled = true;
5902 }
5903 
5904 /**
5905  * workqueue_init_early - early init for workqueue subsystem
5906  *
5907  * This is the first half of two-staged workqueue subsystem initialization
5908  * and invoked as soon as the bare basics - memory allocation, cpumasks and
5909  * idr are up.  It sets up all the data structures and system workqueues
5910  * and allows early boot code to create workqueues and queue/cancel work
5911  * items.  Actual work item execution starts only after kthreads can be
5912  * created and scheduled right before early initcalls.
5913  */
5914 void __init workqueue_init_early(void)
5915 {
5916 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5917 	int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5918 	int i, cpu;
5919 
5920 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5921 
5922 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5923 	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5924 
5925 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5926 
5927 	/* initialize CPU pools */
5928 	for_each_possible_cpu(cpu) {
5929 		struct worker_pool *pool;
5930 
5931 		i = 0;
5932 		for_each_cpu_worker_pool(pool, cpu) {
5933 			BUG_ON(init_worker_pool(pool));
5934 			pool->cpu = cpu;
5935 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5936 			pool->attrs->nice = std_nice[i++];
5937 			pool->node = cpu_to_node(cpu);
5938 
5939 			/* alloc pool ID */
5940 			mutex_lock(&wq_pool_mutex);
5941 			BUG_ON(worker_pool_assign_id(pool));
5942 			mutex_unlock(&wq_pool_mutex);
5943 		}
5944 	}
5945 
5946 	/* create default unbound and ordered wq attrs */
5947 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5948 		struct workqueue_attrs *attrs;
5949 
5950 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
5951 		attrs->nice = std_nice[i];
5952 		unbound_std_wq_attrs[i] = attrs;
5953 
5954 		/*
5955 		 * An ordered wq should have only one pwq as ordering is
5956 		 * guaranteed by max_active which is enforced by pwqs.
5957 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5958 		 */
5959 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
5960 		attrs->nice = std_nice[i];
5961 		attrs->no_numa = true;
5962 		ordered_wq_attrs[i] = attrs;
5963 	}
5964 
5965 	system_wq = alloc_workqueue("events", 0, 0);
5966 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5967 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5968 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5969 					    WQ_UNBOUND_MAX_ACTIVE);
5970 	system_freezable_wq = alloc_workqueue("events_freezable",
5971 					      WQ_FREEZABLE, 0);
5972 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5973 					      WQ_POWER_EFFICIENT, 0);
5974 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5975 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5976 					      0);
5977 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5978 	       !system_unbound_wq || !system_freezable_wq ||
5979 	       !system_power_efficient_wq ||
5980 	       !system_freezable_power_efficient_wq);
5981 }
5982 
5983 /**
5984  * workqueue_init - bring workqueue subsystem fully online
5985  *
5986  * This is the latter half of two-staged workqueue subsystem initialization
5987  * and invoked as soon as kthreads can be created and scheduled.
5988  * Workqueues have been created and work items queued on them, but there
5989  * are no kworkers executing the work items yet.  Populate the worker pools
5990  * with the initial workers and enable future kworker creations.
5991  */
5992 void __init workqueue_init(void)
5993 {
5994 	struct workqueue_struct *wq;
5995 	struct worker_pool *pool;
5996 	int cpu, bkt;
5997 
5998 	/*
5999 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6000 	 * CPU to node mapping may not be available that early on some
6001 	 * archs such as power and arm64.  As per-cpu pools created
6002 	 * previously could be missing node hint and unbound pools NUMA
6003 	 * affinity, fix them up.
6004 	 *
6005 	 * Also, while iterating workqueues, create rescuers if requested.
6006 	 */
6007 	wq_numa_init();
6008 
6009 	mutex_lock(&wq_pool_mutex);
6010 
6011 	for_each_possible_cpu(cpu) {
6012 		for_each_cpu_worker_pool(pool, cpu) {
6013 			pool->node = cpu_to_node(cpu);
6014 		}
6015 	}
6016 
6017 	list_for_each_entry(wq, &workqueues, list) {
6018 		wq_update_unbound_numa(wq, smp_processor_id(), true);
6019 		WARN(init_rescuer(wq),
6020 		     "workqueue: failed to create early rescuer for %s",
6021 		     wq->name);
6022 	}
6023 
6024 	mutex_unlock(&wq_pool_mutex);
6025 
6026 	/* create the initial workers */
6027 	for_each_online_cpu(cpu) {
6028 		for_each_cpu_worker_pool(pool, cpu) {
6029 			pool->flags &= ~POOL_DISASSOCIATED;
6030 			BUG_ON(!create_worker(pool));
6031 		}
6032 	}
6033 
6034 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6035 		BUG_ON(!create_worker(pool));
6036 
6037 	wq_online = true;
6038 	wq_watchdog_init();
6039 }
6040