xref: /openbmc/linux/kernel/workqueue.c (revision c819e2cf)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There are two worker pools for each CPU (one for
20  * normal work items and the other for high priority ones) and some extra
21  * pools for workqueues which are not bound to any specific CPU - the
22  * number of these backing pools is dynamic.
23  *
24  * Please read Documentation/workqueue.txt for details.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 
52 #include "workqueue_internal.h"
53 
54 enum {
55 	/*
56 	 * worker_pool flags
57 	 *
58 	 * A bound pool is either associated or disassociated with its CPU.
59 	 * While associated (!DISASSOCIATED), all workers are bound to the
60 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 	 * is in effect.
62 	 *
63 	 * While DISASSOCIATED, the cpu may be offline and all workers have
64 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 	 * be executing on any CPU.  The pool behaves as an unbound one.
66 	 *
67 	 * Note that DISASSOCIATED should be flipped only while holding
68 	 * attach_mutex to avoid changing binding state while
69 	 * worker_attach_to_pool() is in progress.
70 	 */
71 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72 
73 	/* worker flags */
74 	WORKER_DIE		= 1 << 1,	/* die die die */
75 	WORKER_IDLE		= 1 << 2,	/* is idle */
76 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
77 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
80 
81 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
82 				  WORKER_UNBOUND | WORKER_REBOUND,
83 
84 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
85 
86 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
87 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
88 
89 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
90 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
91 
92 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
93 						/* call for help after 10ms
94 						   (min two ticks) */
95 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
96 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
97 
98 	/*
99 	 * Rescue workers are used only on emergencies and shared by
100 	 * all cpus.  Give MIN_NICE.
101 	 */
102 	RESCUER_NICE_LEVEL	= MIN_NICE,
103 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
104 
105 	WQ_NAME_LEN		= 24,
106 };
107 
108 /*
109  * Structure fields follow one of the following exclusion rules.
110  *
111  * I: Modifiable by initialization/destruction paths and read-only for
112  *    everyone else.
113  *
114  * P: Preemption protected.  Disabling preemption is enough and should
115  *    only be modified and accessed from the local cpu.
116  *
117  * L: pool->lock protected.  Access with pool->lock held.
118  *
119  * X: During normal operation, modification requires pool->lock and should
120  *    be done only from local cpu.  Either disabling preemption on local
121  *    cpu or grabbing pool->lock is enough for read access.  If
122  *    POOL_DISASSOCIATED is set, it's identical to L.
123  *
124  * A: pool->attach_mutex protected.
125  *
126  * PL: wq_pool_mutex protected.
127  *
128  * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
129  *
130  * WQ: wq->mutex protected.
131  *
132  * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
133  *
134  * MD: wq_mayday_lock protected.
135  */
136 
137 /* struct worker is defined in workqueue_internal.h */
138 
139 struct worker_pool {
140 	spinlock_t		lock;		/* the pool lock */
141 	int			cpu;		/* I: the associated cpu */
142 	int			node;		/* I: the associated node ID */
143 	int			id;		/* I: pool ID */
144 	unsigned int		flags;		/* X: flags */
145 
146 	struct list_head	worklist;	/* L: list of pending works */
147 	int			nr_workers;	/* L: total number of workers */
148 
149 	/* nr_idle includes the ones off idle_list for rebinding */
150 	int			nr_idle;	/* L: currently idle ones */
151 
152 	struct list_head	idle_list;	/* X: list of idle workers */
153 	struct timer_list	idle_timer;	/* L: worker idle timeout */
154 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
155 
156 	/* a workers is either on busy_hash or idle_list, or the manager */
157 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
158 						/* L: hash of busy workers */
159 
160 	/* see manage_workers() for details on the two manager mutexes */
161 	struct mutex		manager_arb;	/* manager arbitration */
162 	struct mutex		attach_mutex;	/* attach/detach exclusion */
163 	struct list_head	workers;	/* A: attached workers */
164 	struct completion	*detach_completion; /* all workers detached */
165 
166 	struct ida		worker_ida;	/* worker IDs for task name */
167 
168 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
169 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
170 	int			refcnt;		/* PL: refcnt for unbound pools */
171 
172 	/*
173 	 * The current concurrency level.  As it's likely to be accessed
174 	 * from other CPUs during try_to_wake_up(), put it in a separate
175 	 * cacheline.
176 	 */
177 	atomic_t		nr_running ____cacheline_aligned_in_smp;
178 
179 	/*
180 	 * Destruction of pool is sched-RCU protected to allow dereferences
181 	 * from get_work_pool().
182 	 */
183 	struct rcu_head		rcu;
184 } ____cacheline_aligned_in_smp;
185 
186 /*
187  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
188  * of work_struct->data are used for flags and the remaining high bits
189  * point to the pwq; thus, pwqs need to be aligned at two's power of the
190  * number of flag bits.
191  */
192 struct pool_workqueue {
193 	struct worker_pool	*pool;		/* I: the associated pool */
194 	struct workqueue_struct *wq;		/* I: the owning workqueue */
195 	int			work_color;	/* L: current color */
196 	int			flush_color;	/* L: flushing color */
197 	int			refcnt;		/* L: reference count */
198 	int			nr_in_flight[WORK_NR_COLORS];
199 						/* L: nr of in_flight works */
200 	int			nr_active;	/* L: nr of active works */
201 	int			max_active;	/* L: max active works */
202 	struct list_head	delayed_works;	/* L: delayed works */
203 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
204 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
205 
206 	/*
207 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
208 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
209 	 * itself is also sched-RCU protected so that the first pwq can be
210 	 * determined without grabbing wq->mutex.
211 	 */
212 	struct work_struct	unbound_release_work;
213 	struct rcu_head		rcu;
214 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
215 
216 /*
217  * Structure used to wait for workqueue flush.
218  */
219 struct wq_flusher {
220 	struct list_head	list;		/* WQ: list of flushers */
221 	int			flush_color;	/* WQ: flush color waiting for */
222 	struct completion	done;		/* flush completion */
223 };
224 
225 struct wq_device;
226 
227 /*
228  * The externally visible workqueue.  It relays the issued work items to
229  * the appropriate worker_pool through its pool_workqueues.
230  */
231 struct workqueue_struct {
232 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
233 	struct list_head	list;		/* PL: list of all workqueues */
234 
235 	struct mutex		mutex;		/* protects this wq */
236 	int			work_color;	/* WQ: current work color */
237 	int			flush_color;	/* WQ: current flush color */
238 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
239 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
240 	struct list_head	flusher_queue;	/* WQ: flush waiters */
241 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
242 
243 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
244 	struct worker		*rescuer;	/* I: rescue worker */
245 
246 	int			nr_drainers;	/* WQ: drain in progress */
247 	int			saved_max_active; /* WQ: saved pwq max_active */
248 
249 	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
250 	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
251 
252 #ifdef CONFIG_SYSFS
253 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
254 #endif
255 #ifdef CONFIG_LOCKDEP
256 	struct lockdep_map	lockdep_map;
257 #endif
258 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
259 
260 	/* hot fields used during command issue, aligned to cacheline */
261 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
262 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
263 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
264 };
265 
266 static struct kmem_cache *pwq_cache;
267 
268 static cpumask_var_t *wq_numa_possible_cpumask;
269 					/* possible CPUs of each node */
270 
271 static bool wq_disable_numa;
272 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
273 
274 /* see the comment above the definition of WQ_POWER_EFFICIENT */
275 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
276 static bool wq_power_efficient = true;
277 #else
278 static bool wq_power_efficient;
279 #endif
280 
281 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
282 
283 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
284 
285 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
286 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
287 
288 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
289 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
290 
291 static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
292 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
293 
294 /* the per-cpu worker pools */
295 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
296 				     cpu_worker_pools);
297 
298 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
299 
300 /* PL: hash of all unbound pools keyed by pool->attrs */
301 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
302 
303 /* I: attributes used when instantiating standard unbound pools on demand */
304 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
305 
306 /* I: attributes used when instantiating ordered pools on demand */
307 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
308 
309 struct workqueue_struct *system_wq __read_mostly;
310 EXPORT_SYMBOL(system_wq);
311 struct workqueue_struct *system_highpri_wq __read_mostly;
312 EXPORT_SYMBOL_GPL(system_highpri_wq);
313 struct workqueue_struct *system_long_wq __read_mostly;
314 EXPORT_SYMBOL_GPL(system_long_wq);
315 struct workqueue_struct *system_unbound_wq __read_mostly;
316 EXPORT_SYMBOL_GPL(system_unbound_wq);
317 struct workqueue_struct *system_freezable_wq __read_mostly;
318 EXPORT_SYMBOL_GPL(system_freezable_wq);
319 struct workqueue_struct *system_power_efficient_wq __read_mostly;
320 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
321 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
322 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
323 
324 static int worker_thread(void *__worker);
325 static void copy_workqueue_attrs(struct workqueue_attrs *to,
326 				 const struct workqueue_attrs *from);
327 
328 #define CREATE_TRACE_POINTS
329 #include <trace/events/workqueue.h>
330 
331 #define assert_rcu_or_pool_mutex()					\
332 	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
333 			   lockdep_is_held(&wq_pool_mutex),		\
334 			   "sched RCU or wq_pool_mutex should be held")
335 
336 #define assert_rcu_or_wq_mutex(wq)					\
337 	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
338 			   lockdep_is_held(&wq->mutex),			\
339 			   "sched RCU or wq->mutex should be held")
340 
341 #define for_each_cpu_worker_pool(pool, cpu)				\
342 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
343 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
344 	     (pool)++)
345 
346 /**
347  * for_each_pool - iterate through all worker_pools in the system
348  * @pool: iteration cursor
349  * @pi: integer used for iteration
350  *
351  * This must be called either with wq_pool_mutex held or sched RCU read
352  * locked.  If the pool needs to be used beyond the locking in effect, the
353  * caller is responsible for guaranteeing that the pool stays online.
354  *
355  * The if/else clause exists only for the lockdep assertion and can be
356  * ignored.
357  */
358 #define for_each_pool(pool, pi)						\
359 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
360 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
361 		else
362 
363 /**
364  * for_each_pool_worker - iterate through all workers of a worker_pool
365  * @worker: iteration cursor
366  * @pool: worker_pool to iterate workers of
367  *
368  * This must be called with @pool->attach_mutex.
369  *
370  * The if/else clause exists only for the lockdep assertion and can be
371  * ignored.
372  */
373 #define for_each_pool_worker(worker, pool)				\
374 	list_for_each_entry((worker), &(pool)->workers, node)		\
375 		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
376 		else
377 
378 /**
379  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
380  * @pwq: iteration cursor
381  * @wq: the target workqueue
382  *
383  * This must be called either with wq->mutex held or sched RCU read locked.
384  * If the pwq needs to be used beyond the locking in effect, the caller is
385  * responsible for guaranteeing that the pwq stays online.
386  *
387  * The if/else clause exists only for the lockdep assertion and can be
388  * ignored.
389  */
390 #define for_each_pwq(pwq, wq)						\
391 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
392 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
393 		else
394 
395 #ifdef CONFIG_DEBUG_OBJECTS_WORK
396 
397 static struct debug_obj_descr work_debug_descr;
398 
399 static void *work_debug_hint(void *addr)
400 {
401 	return ((struct work_struct *) addr)->func;
402 }
403 
404 /*
405  * fixup_init is called when:
406  * - an active object is initialized
407  */
408 static int work_fixup_init(void *addr, enum debug_obj_state state)
409 {
410 	struct work_struct *work = addr;
411 
412 	switch (state) {
413 	case ODEBUG_STATE_ACTIVE:
414 		cancel_work_sync(work);
415 		debug_object_init(work, &work_debug_descr);
416 		return 1;
417 	default:
418 		return 0;
419 	}
420 }
421 
422 /*
423  * fixup_activate is called when:
424  * - an active object is activated
425  * - an unknown object is activated (might be a statically initialized object)
426  */
427 static int work_fixup_activate(void *addr, enum debug_obj_state state)
428 {
429 	struct work_struct *work = addr;
430 
431 	switch (state) {
432 
433 	case ODEBUG_STATE_NOTAVAILABLE:
434 		/*
435 		 * This is not really a fixup. The work struct was
436 		 * statically initialized. We just make sure that it
437 		 * is tracked in the object tracker.
438 		 */
439 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
440 			debug_object_init(work, &work_debug_descr);
441 			debug_object_activate(work, &work_debug_descr);
442 			return 0;
443 		}
444 		WARN_ON_ONCE(1);
445 		return 0;
446 
447 	case ODEBUG_STATE_ACTIVE:
448 		WARN_ON(1);
449 
450 	default:
451 		return 0;
452 	}
453 }
454 
455 /*
456  * fixup_free is called when:
457  * - an active object is freed
458  */
459 static int work_fixup_free(void *addr, enum debug_obj_state state)
460 {
461 	struct work_struct *work = addr;
462 
463 	switch (state) {
464 	case ODEBUG_STATE_ACTIVE:
465 		cancel_work_sync(work);
466 		debug_object_free(work, &work_debug_descr);
467 		return 1;
468 	default:
469 		return 0;
470 	}
471 }
472 
473 static struct debug_obj_descr work_debug_descr = {
474 	.name		= "work_struct",
475 	.debug_hint	= work_debug_hint,
476 	.fixup_init	= work_fixup_init,
477 	.fixup_activate	= work_fixup_activate,
478 	.fixup_free	= work_fixup_free,
479 };
480 
481 static inline void debug_work_activate(struct work_struct *work)
482 {
483 	debug_object_activate(work, &work_debug_descr);
484 }
485 
486 static inline void debug_work_deactivate(struct work_struct *work)
487 {
488 	debug_object_deactivate(work, &work_debug_descr);
489 }
490 
491 void __init_work(struct work_struct *work, int onstack)
492 {
493 	if (onstack)
494 		debug_object_init_on_stack(work, &work_debug_descr);
495 	else
496 		debug_object_init(work, &work_debug_descr);
497 }
498 EXPORT_SYMBOL_GPL(__init_work);
499 
500 void destroy_work_on_stack(struct work_struct *work)
501 {
502 	debug_object_free(work, &work_debug_descr);
503 }
504 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
505 
506 void destroy_delayed_work_on_stack(struct delayed_work *work)
507 {
508 	destroy_timer_on_stack(&work->timer);
509 	debug_object_free(&work->work, &work_debug_descr);
510 }
511 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
512 
513 #else
514 static inline void debug_work_activate(struct work_struct *work) { }
515 static inline void debug_work_deactivate(struct work_struct *work) { }
516 #endif
517 
518 /**
519  * worker_pool_assign_id - allocate ID and assing it to @pool
520  * @pool: the pool pointer of interest
521  *
522  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
523  * successfully, -errno on failure.
524  */
525 static int worker_pool_assign_id(struct worker_pool *pool)
526 {
527 	int ret;
528 
529 	lockdep_assert_held(&wq_pool_mutex);
530 
531 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
532 			GFP_KERNEL);
533 	if (ret >= 0) {
534 		pool->id = ret;
535 		return 0;
536 	}
537 	return ret;
538 }
539 
540 /**
541  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
542  * @wq: the target workqueue
543  * @node: the node ID
544  *
545  * This must be called either with pwq_lock held or sched RCU read locked.
546  * If the pwq needs to be used beyond the locking in effect, the caller is
547  * responsible for guaranteeing that the pwq stays online.
548  *
549  * Return: The unbound pool_workqueue for @node.
550  */
551 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
552 						  int node)
553 {
554 	assert_rcu_or_wq_mutex(wq);
555 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
556 }
557 
558 static unsigned int work_color_to_flags(int color)
559 {
560 	return color << WORK_STRUCT_COLOR_SHIFT;
561 }
562 
563 static int get_work_color(struct work_struct *work)
564 {
565 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
566 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
567 }
568 
569 static int work_next_color(int color)
570 {
571 	return (color + 1) % WORK_NR_COLORS;
572 }
573 
574 /*
575  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
576  * contain the pointer to the queued pwq.  Once execution starts, the flag
577  * is cleared and the high bits contain OFFQ flags and pool ID.
578  *
579  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
580  * and clear_work_data() can be used to set the pwq, pool or clear
581  * work->data.  These functions should only be called while the work is
582  * owned - ie. while the PENDING bit is set.
583  *
584  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
585  * corresponding to a work.  Pool is available once the work has been
586  * queued anywhere after initialization until it is sync canceled.  pwq is
587  * available only while the work item is queued.
588  *
589  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
590  * canceled.  While being canceled, a work item may have its PENDING set
591  * but stay off timer and worklist for arbitrarily long and nobody should
592  * try to steal the PENDING bit.
593  */
594 static inline void set_work_data(struct work_struct *work, unsigned long data,
595 				 unsigned long flags)
596 {
597 	WARN_ON_ONCE(!work_pending(work));
598 	atomic_long_set(&work->data, data | flags | work_static(work));
599 }
600 
601 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
602 			 unsigned long extra_flags)
603 {
604 	set_work_data(work, (unsigned long)pwq,
605 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
606 }
607 
608 static void set_work_pool_and_keep_pending(struct work_struct *work,
609 					   int pool_id)
610 {
611 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
612 		      WORK_STRUCT_PENDING);
613 }
614 
615 static void set_work_pool_and_clear_pending(struct work_struct *work,
616 					    int pool_id)
617 {
618 	/*
619 	 * The following wmb is paired with the implied mb in
620 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
621 	 * here are visible to and precede any updates by the next PENDING
622 	 * owner.
623 	 */
624 	smp_wmb();
625 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
626 }
627 
628 static void clear_work_data(struct work_struct *work)
629 {
630 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
631 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
632 }
633 
634 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
635 {
636 	unsigned long data = atomic_long_read(&work->data);
637 
638 	if (data & WORK_STRUCT_PWQ)
639 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
640 	else
641 		return NULL;
642 }
643 
644 /**
645  * get_work_pool - return the worker_pool a given work was associated with
646  * @work: the work item of interest
647  *
648  * Pools are created and destroyed under wq_pool_mutex, and allows read
649  * access under sched-RCU read lock.  As such, this function should be
650  * called under wq_pool_mutex or with preemption disabled.
651  *
652  * All fields of the returned pool are accessible as long as the above
653  * mentioned locking is in effect.  If the returned pool needs to be used
654  * beyond the critical section, the caller is responsible for ensuring the
655  * returned pool is and stays online.
656  *
657  * Return: The worker_pool @work was last associated with.  %NULL if none.
658  */
659 static struct worker_pool *get_work_pool(struct work_struct *work)
660 {
661 	unsigned long data = atomic_long_read(&work->data);
662 	int pool_id;
663 
664 	assert_rcu_or_pool_mutex();
665 
666 	if (data & WORK_STRUCT_PWQ)
667 		return ((struct pool_workqueue *)
668 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
669 
670 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
671 	if (pool_id == WORK_OFFQ_POOL_NONE)
672 		return NULL;
673 
674 	return idr_find(&worker_pool_idr, pool_id);
675 }
676 
677 /**
678  * get_work_pool_id - return the worker pool ID a given work is associated with
679  * @work: the work item of interest
680  *
681  * Return: The worker_pool ID @work was last associated with.
682  * %WORK_OFFQ_POOL_NONE if none.
683  */
684 static int get_work_pool_id(struct work_struct *work)
685 {
686 	unsigned long data = atomic_long_read(&work->data);
687 
688 	if (data & WORK_STRUCT_PWQ)
689 		return ((struct pool_workqueue *)
690 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
691 
692 	return data >> WORK_OFFQ_POOL_SHIFT;
693 }
694 
695 static void mark_work_canceling(struct work_struct *work)
696 {
697 	unsigned long pool_id = get_work_pool_id(work);
698 
699 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
700 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
701 }
702 
703 static bool work_is_canceling(struct work_struct *work)
704 {
705 	unsigned long data = atomic_long_read(&work->data);
706 
707 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
708 }
709 
710 /*
711  * Policy functions.  These define the policies on how the global worker
712  * pools are managed.  Unless noted otherwise, these functions assume that
713  * they're being called with pool->lock held.
714  */
715 
716 static bool __need_more_worker(struct worker_pool *pool)
717 {
718 	return !atomic_read(&pool->nr_running);
719 }
720 
721 /*
722  * Need to wake up a worker?  Called from anything but currently
723  * running workers.
724  *
725  * Note that, because unbound workers never contribute to nr_running, this
726  * function will always return %true for unbound pools as long as the
727  * worklist isn't empty.
728  */
729 static bool need_more_worker(struct worker_pool *pool)
730 {
731 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
732 }
733 
734 /* Can I start working?  Called from busy but !running workers. */
735 static bool may_start_working(struct worker_pool *pool)
736 {
737 	return pool->nr_idle;
738 }
739 
740 /* Do I need to keep working?  Called from currently running workers. */
741 static bool keep_working(struct worker_pool *pool)
742 {
743 	return !list_empty(&pool->worklist) &&
744 		atomic_read(&pool->nr_running) <= 1;
745 }
746 
747 /* Do we need a new worker?  Called from manager. */
748 static bool need_to_create_worker(struct worker_pool *pool)
749 {
750 	return need_more_worker(pool) && !may_start_working(pool);
751 }
752 
753 /* Do we have too many workers and should some go away? */
754 static bool too_many_workers(struct worker_pool *pool)
755 {
756 	bool managing = mutex_is_locked(&pool->manager_arb);
757 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
758 	int nr_busy = pool->nr_workers - nr_idle;
759 
760 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
761 }
762 
763 /*
764  * Wake up functions.
765  */
766 
767 /* Return the first idle worker.  Safe with preemption disabled */
768 static struct worker *first_idle_worker(struct worker_pool *pool)
769 {
770 	if (unlikely(list_empty(&pool->idle_list)))
771 		return NULL;
772 
773 	return list_first_entry(&pool->idle_list, struct worker, entry);
774 }
775 
776 /**
777  * wake_up_worker - wake up an idle worker
778  * @pool: worker pool to wake worker from
779  *
780  * Wake up the first idle worker of @pool.
781  *
782  * CONTEXT:
783  * spin_lock_irq(pool->lock).
784  */
785 static void wake_up_worker(struct worker_pool *pool)
786 {
787 	struct worker *worker = first_idle_worker(pool);
788 
789 	if (likely(worker))
790 		wake_up_process(worker->task);
791 }
792 
793 /**
794  * wq_worker_waking_up - a worker is waking up
795  * @task: task waking up
796  * @cpu: CPU @task is waking up to
797  *
798  * This function is called during try_to_wake_up() when a worker is
799  * being awoken.
800  *
801  * CONTEXT:
802  * spin_lock_irq(rq->lock)
803  */
804 void wq_worker_waking_up(struct task_struct *task, int cpu)
805 {
806 	struct worker *worker = kthread_data(task);
807 
808 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
809 		WARN_ON_ONCE(worker->pool->cpu != cpu);
810 		atomic_inc(&worker->pool->nr_running);
811 	}
812 }
813 
814 /**
815  * wq_worker_sleeping - a worker is going to sleep
816  * @task: task going to sleep
817  * @cpu: CPU in question, must be the current CPU number
818  *
819  * This function is called during schedule() when a busy worker is
820  * going to sleep.  Worker on the same cpu can be woken up by
821  * returning pointer to its task.
822  *
823  * CONTEXT:
824  * spin_lock_irq(rq->lock)
825  *
826  * Return:
827  * Worker task on @cpu to wake up, %NULL if none.
828  */
829 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
830 {
831 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
832 	struct worker_pool *pool;
833 
834 	/*
835 	 * Rescuers, which may not have all the fields set up like normal
836 	 * workers, also reach here, let's not access anything before
837 	 * checking NOT_RUNNING.
838 	 */
839 	if (worker->flags & WORKER_NOT_RUNNING)
840 		return NULL;
841 
842 	pool = worker->pool;
843 
844 	/* this can only happen on the local cpu */
845 	if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
846 		return NULL;
847 
848 	/*
849 	 * The counterpart of the following dec_and_test, implied mb,
850 	 * worklist not empty test sequence is in insert_work().
851 	 * Please read comment there.
852 	 *
853 	 * NOT_RUNNING is clear.  This means that we're bound to and
854 	 * running on the local cpu w/ rq lock held and preemption
855 	 * disabled, which in turn means that none else could be
856 	 * manipulating idle_list, so dereferencing idle_list without pool
857 	 * lock is safe.
858 	 */
859 	if (atomic_dec_and_test(&pool->nr_running) &&
860 	    !list_empty(&pool->worklist))
861 		to_wakeup = first_idle_worker(pool);
862 	return to_wakeup ? to_wakeup->task : NULL;
863 }
864 
865 /**
866  * worker_set_flags - set worker flags and adjust nr_running accordingly
867  * @worker: self
868  * @flags: flags to set
869  *
870  * Set @flags in @worker->flags and adjust nr_running accordingly.
871  *
872  * CONTEXT:
873  * spin_lock_irq(pool->lock)
874  */
875 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
876 {
877 	struct worker_pool *pool = worker->pool;
878 
879 	WARN_ON_ONCE(worker->task != current);
880 
881 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
882 	if ((flags & WORKER_NOT_RUNNING) &&
883 	    !(worker->flags & WORKER_NOT_RUNNING)) {
884 		atomic_dec(&pool->nr_running);
885 	}
886 
887 	worker->flags |= flags;
888 }
889 
890 /**
891  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
892  * @worker: self
893  * @flags: flags to clear
894  *
895  * Clear @flags in @worker->flags and adjust nr_running accordingly.
896  *
897  * CONTEXT:
898  * spin_lock_irq(pool->lock)
899  */
900 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
901 {
902 	struct worker_pool *pool = worker->pool;
903 	unsigned int oflags = worker->flags;
904 
905 	WARN_ON_ONCE(worker->task != current);
906 
907 	worker->flags &= ~flags;
908 
909 	/*
910 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
911 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
912 	 * of multiple flags, not a single flag.
913 	 */
914 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
915 		if (!(worker->flags & WORKER_NOT_RUNNING))
916 			atomic_inc(&pool->nr_running);
917 }
918 
919 /**
920  * find_worker_executing_work - find worker which is executing a work
921  * @pool: pool of interest
922  * @work: work to find worker for
923  *
924  * Find a worker which is executing @work on @pool by searching
925  * @pool->busy_hash which is keyed by the address of @work.  For a worker
926  * to match, its current execution should match the address of @work and
927  * its work function.  This is to avoid unwanted dependency between
928  * unrelated work executions through a work item being recycled while still
929  * being executed.
930  *
931  * This is a bit tricky.  A work item may be freed once its execution
932  * starts and nothing prevents the freed area from being recycled for
933  * another work item.  If the same work item address ends up being reused
934  * before the original execution finishes, workqueue will identify the
935  * recycled work item as currently executing and make it wait until the
936  * current execution finishes, introducing an unwanted dependency.
937  *
938  * This function checks the work item address and work function to avoid
939  * false positives.  Note that this isn't complete as one may construct a
940  * work function which can introduce dependency onto itself through a
941  * recycled work item.  Well, if somebody wants to shoot oneself in the
942  * foot that badly, there's only so much we can do, and if such deadlock
943  * actually occurs, it should be easy to locate the culprit work function.
944  *
945  * CONTEXT:
946  * spin_lock_irq(pool->lock).
947  *
948  * Return:
949  * Pointer to worker which is executing @work if found, %NULL
950  * otherwise.
951  */
952 static struct worker *find_worker_executing_work(struct worker_pool *pool,
953 						 struct work_struct *work)
954 {
955 	struct worker *worker;
956 
957 	hash_for_each_possible(pool->busy_hash, worker, hentry,
958 			       (unsigned long)work)
959 		if (worker->current_work == work &&
960 		    worker->current_func == work->func)
961 			return worker;
962 
963 	return NULL;
964 }
965 
966 /**
967  * move_linked_works - move linked works to a list
968  * @work: start of series of works to be scheduled
969  * @head: target list to append @work to
970  * @nextp: out paramter for nested worklist walking
971  *
972  * Schedule linked works starting from @work to @head.  Work series to
973  * be scheduled starts at @work and includes any consecutive work with
974  * WORK_STRUCT_LINKED set in its predecessor.
975  *
976  * If @nextp is not NULL, it's updated to point to the next work of
977  * the last scheduled work.  This allows move_linked_works() to be
978  * nested inside outer list_for_each_entry_safe().
979  *
980  * CONTEXT:
981  * spin_lock_irq(pool->lock).
982  */
983 static void move_linked_works(struct work_struct *work, struct list_head *head,
984 			      struct work_struct **nextp)
985 {
986 	struct work_struct *n;
987 
988 	/*
989 	 * Linked worklist will always end before the end of the list,
990 	 * use NULL for list head.
991 	 */
992 	list_for_each_entry_safe_from(work, n, NULL, entry) {
993 		list_move_tail(&work->entry, head);
994 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
995 			break;
996 	}
997 
998 	/*
999 	 * If we're already inside safe list traversal and have moved
1000 	 * multiple works to the scheduled queue, the next position
1001 	 * needs to be updated.
1002 	 */
1003 	if (nextp)
1004 		*nextp = n;
1005 }
1006 
1007 /**
1008  * get_pwq - get an extra reference on the specified pool_workqueue
1009  * @pwq: pool_workqueue to get
1010  *
1011  * Obtain an extra reference on @pwq.  The caller should guarantee that
1012  * @pwq has positive refcnt and be holding the matching pool->lock.
1013  */
1014 static void get_pwq(struct pool_workqueue *pwq)
1015 {
1016 	lockdep_assert_held(&pwq->pool->lock);
1017 	WARN_ON_ONCE(pwq->refcnt <= 0);
1018 	pwq->refcnt++;
1019 }
1020 
1021 /**
1022  * put_pwq - put a pool_workqueue reference
1023  * @pwq: pool_workqueue to put
1024  *
1025  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1026  * destruction.  The caller should be holding the matching pool->lock.
1027  */
1028 static void put_pwq(struct pool_workqueue *pwq)
1029 {
1030 	lockdep_assert_held(&pwq->pool->lock);
1031 	if (likely(--pwq->refcnt))
1032 		return;
1033 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1034 		return;
1035 	/*
1036 	 * @pwq can't be released under pool->lock, bounce to
1037 	 * pwq_unbound_release_workfn().  This never recurses on the same
1038 	 * pool->lock as this path is taken only for unbound workqueues and
1039 	 * the release work item is scheduled on a per-cpu workqueue.  To
1040 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1041 	 * subclass of 1 in get_unbound_pool().
1042 	 */
1043 	schedule_work(&pwq->unbound_release_work);
1044 }
1045 
1046 /**
1047  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1048  * @pwq: pool_workqueue to put (can be %NULL)
1049  *
1050  * put_pwq() with locking.  This function also allows %NULL @pwq.
1051  */
1052 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1053 {
1054 	if (pwq) {
1055 		/*
1056 		 * As both pwqs and pools are sched-RCU protected, the
1057 		 * following lock operations are safe.
1058 		 */
1059 		spin_lock_irq(&pwq->pool->lock);
1060 		put_pwq(pwq);
1061 		spin_unlock_irq(&pwq->pool->lock);
1062 	}
1063 }
1064 
1065 static void pwq_activate_delayed_work(struct work_struct *work)
1066 {
1067 	struct pool_workqueue *pwq = get_work_pwq(work);
1068 
1069 	trace_workqueue_activate_work(work);
1070 	move_linked_works(work, &pwq->pool->worklist, NULL);
1071 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1072 	pwq->nr_active++;
1073 }
1074 
1075 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1076 {
1077 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1078 						    struct work_struct, entry);
1079 
1080 	pwq_activate_delayed_work(work);
1081 }
1082 
1083 /**
1084  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1085  * @pwq: pwq of interest
1086  * @color: color of work which left the queue
1087  *
1088  * A work either has completed or is removed from pending queue,
1089  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1090  *
1091  * CONTEXT:
1092  * spin_lock_irq(pool->lock).
1093  */
1094 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1095 {
1096 	/* uncolored work items don't participate in flushing or nr_active */
1097 	if (color == WORK_NO_COLOR)
1098 		goto out_put;
1099 
1100 	pwq->nr_in_flight[color]--;
1101 
1102 	pwq->nr_active--;
1103 	if (!list_empty(&pwq->delayed_works)) {
1104 		/* one down, submit a delayed one */
1105 		if (pwq->nr_active < pwq->max_active)
1106 			pwq_activate_first_delayed(pwq);
1107 	}
1108 
1109 	/* is flush in progress and are we at the flushing tip? */
1110 	if (likely(pwq->flush_color != color))
1111 		goto out_put;
1112 
1113 	/* are there still in-flight works? */
1114 	if (pwq->nr_in_flight[color])
1115 		goto out_put;
1116 
1117 	/* this pwq is done, clear flush_color */
1118 	pwq->flush_color = -1;
1119 
1120 	/*
1121 	 * If this was the last pwq, wake up the first flusher.  It
1122 	 * will handle the rest.
1123 	 */
1124 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1125 		complete(&pwq->wq->first_flusher->done);
1126 out_put:
1127 	put_pwq(pwq);
1128 }
1129 
1130 /**
1131  * try_to_grab_pending - steal work item from worklist and disable irq
1132  * @work: work item to steal
1133  * @is_dwork: @work is a delayed_work
1134  * @flags: place to store irq state
1135  *
1136  * Try to grab PENDING bit of @work.  This function can handle @work in any
1137  * stable state - idle, on timer or on worklist.
1138  *
1139  * Return:
1140  *  1		if @work was pending and we successfully stole PENDING
1141  *  0		if @work was idle and we claimed PENDING
1142  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1143  *  -ENOENT	if someone else is canceling @work, this state may persist
1144  *		for arbitrarily long
1145  *
1146  * Note:
1147  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1148  * interrupted while holding PENDING and @work off queue, irq must be
1149  * disabled on entry.  This, combined with delayed_work->timer being
1150  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1151  *
1152  * On successful return, >= 0, irq is disabled and the caller is
1153  * responsible for releasing it using local_irq_restore(*@flags).
1154  *
1155  * This function is safe to call from any context including IRQ handler.
1156  */
1157 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1158 			       unsigned long *flags)
1159 {
1160 	struct worker_pool *pool;
1161 	struct pool_workqueue *pwq;
1162 
1163 	local_irq_save(*flags);
1164 
1165 	/* try to steal the timer if it exists */
1166 	if (is_dwork) {
1167 		struct delayed_work *dwork = to_delayed_work(work);
1168 
1169 		/*
1170 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1171 		 * guaranteed that the timer is not queued anywhere and not
1172 		 * running on the local CPU.
1173 		 */
1174 		if (likely(del_timer(&dwork->timer)))
1175 			return 1;
1176 	}
1177 
1178 	/* try to claim PENDING the normal way */
1179 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1180 		return 0;
1181 
1182 	/*
1183 	 * The queueing is in progress, or it is already queued. Try to
1184 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1185 	 */
1186 	pool = get_work_pool(work);
1187 	if (!pool)
1188 		goto fail;
1189 
1190 	spin_lock(&pool->lock);
1191 	/*
1192 	 * work->data is guaranteed to point to pwq only while the work
1193 	 * item is queued on pwq->wq, and both updating work->data to point
1194 	 * to pwq on queueing and to pool on dequeueing are done under
1195 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1196 	 * points to pwq which is associated with a locked pool, the work
1197 	 * item is currently queued on that pool.
1198 	 */
1199 	pwq = get_work_pwq(work);
1200 	if (pwq && pwq->pool == pool) {
1201 		debug_work_deactivate(work);
1202 
1203 		/*
1204 		 * A delayed work item cannot be grabbed directly because
1205 		 * it might have linked NO_COLOR work items which, if left
1206 		 * on the delayed_list, will confuse pwq->nr_active
1207 		 * management later on and cause stall.  Make sure the work
1208 		 * item is activated before grabbing.
1209 		 */
1210 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1211 			pwq_activate_delayed_work(work);
1212 
1213 		list_del_init(&work->entry);
1214 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1215 
1216 		/* work->data points to pwq iff queued, point to pool */
1217 		set_work_pool_and_keep_pending(work, pool->id);
1218 
1219 		spin_unlock(&pool->lock);
1220 		return 1;
1221 	}
1222 	spin_unlock(&pool->lock);
1223 fail:
1224 	local_irq_restore(*flags);
1225 	if (work_is_canceling(work))
1226 		return -ENOENT;
1227 	cpu_relax();
1228 	return -EAGAIN;
1229 }
1230 
1231 /**
1232  * insert_work - insert a work into a pool
1233  * @pwq: pwq @work belongs to
1234  * @work: work to insert
1235  * @head: insertion point
1236  * @extra_flags: extra WORK_STRUCT_* flags to set
1237  *
1238  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1239  * work_struct flags.
1240  *
1241  * CONTEXT:
1242  * spin_lock_irq(pool->lock).
1243  */
1244 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1245 			struct list_head *head, unsigned int extra_flags)
1246 {
1247 	struct worker_pool *pool = pwq->pool;
1248 
1249 	/* we own @work, set data and link */
1250 	set_work_pwq(work, pwq, extra_flags);
1251 	list_add_tail(&work->entry, head);
1252 	get_pwq(pwq);
1253 
1254 	/*
1255 	 * Ensure either wq_worker_sleeping() sees the above
1256 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1257 	 * around lazily while there are works to be processed.
1258 	 */
1259 	smp_mb();
1260 
1261 	if (__need_more_worker(pool))
1262 		wake_up_worker(pool);
1263 }
1264 
1265 /*
1266  * Test whether @work is being queued from another work executing on the
1267  * same workqueue.
1268  */
1269 static bool is_chained_work(struct workqueue_struct *wq)
1270 {
1271 	struct worker *worker;
1272 
1273 	worker = current_wq_worker();
1274 	/*
1275 	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1276 	 * I'm @worker, it's safe to dereference it without locking.
1277 	 */
1278 	return worker && worker->current_pwq->wq == wq;
1279 }
1280 
1281 static void __queue_work(int cpu, struct workqueue_struct *wq,
1282 			 struct work_struct *work)
1283 {
1284 	struct pool_workqueue *pwq;
1285 	struct worker_pool *last_pool;
1286 	struct list_head *worklist;
1287 	unsigned int work_flags;
1288 	unsigned int req_cpu = cpu;
1289 
1290 	/*
1291 	 * While a work item is PENDING && off queue, a task trying to
1292 	 * steal the PENDING will busy-loop waiting for it to either get
1293 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1294 	 * happen with IRQ disabled.
1295 	 */
1296 	WARN_ON_ONCE(!irqs_disabled());
1297 
1298 	debug_work_activate(work);
1299 
1300 	/* if draining, only works from the same workqueue are allowed */
1301 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1302 	    WARN_ON_ONCE(!is_chained_work(wq)))
1303 		return;
1304 retry:
1305 	if (req_cpu == WORK_CPU_UNBOUND)
1306 		cpu = raw_smp_processor_id();
1307 
1308 	/* pwq which will be used unless @work is executing elsewhere */
1309 	if (!(wq->flags & WQ_UNBOUND))
1310 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1311 	else
1312 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1313 
1314 	/*
1315 	 * If @work was previously on a different pool, it might still be
1316 	 * running there, in which case the work needs to be queued on that
1317 	 * pool to guarantee non-reentrancy.
1318 	 */
1319 	last_pool = get_work_pool(work);
1320 	if (last_pool && last_pool != pwq->pool) {
1321 		struct worker *worker;
1322 
1323 		spin_lock(&last_pool->lock);
1324 
1325 		worker = find_worker_executing_work(last_pool, work);
1326 
1327 		if (worker && worker->current_pwq->wq == wq) {
1328 			pwq = worker->current_pwq;
1329 		} else {
1330 			/* meh... not running there, queue here */
1331 			spin_unlock(&last_pool->lock);
1332 			spin_lock(&pwq->pool->lock);
1333 		}
1334 	} else {
1335 		spin_lock(&pwq->pool->lock);
1336 	}
1337 
1338 	/*
1339 	 * pwq is determined and locked.  For unbound pools, we could have
1340 	 * raced with pwq release and it could already be dead.  If its
1341 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1342 	 * without another pwq replacing it in the numa_pwq_tbl or while
1343 	 * work items are executing on it, so the retrying is guaranteed to
1344 	 * make forward-progress.
1345 	 */
1346 	if (unlikely(!pwq->refcnt)) {
1347 		if (wq->flags & WQ_UNBOUND) {
1348 			spin_unlock(&pwq->pool->lock);
1349 			cpu_relax();
1350 			goto retry;
1351 		}
1352 		/* oops */
1353 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1354 			  wq->name, cpu);
1355 	}
1356 
1357 	/* pwq determined, queue */
1358 	trace_workqueue_queue_work(req_cpu, pwq, work);
1359 
1360 	if (WARN_ON(!list_empty(&work->entry))) {
1361 		spin_unlock(&pwq->pool->lock);
1362 		return;
1363 	}
1364 
1365 	pwq->nr_in_flight[pwq->work_color]++;
1366 	work_flags = work_color_to_flags(pwq->work_color);
1367 
1368 	if (likely(pwq->nr_active < pwq->max_active)) {
1369 		trace_workqueue_activate_work(work);
1370 		pwq->nr_active++;
1371 		worklist = &pwq->pool->worklist;
1372 	} else {
1373 		work_flags |= WORK_STRUCT_DELAYED;
1374 		worklist = &pwq->delayed_works;
1375 	}
1376 
1377 	insert_work(pwq, work, worklist, work_flags);
1378 
1379 	spin_unlock(&pwq->pool->lock);
1380 }
1381 
1382 /**
1383  * queue_work_on - queue work on specific cpu
1384  * @cpu: CPU number to execute work on
1385  * @wq: workqueue to use
1386  * @work: work to queue
1387  *
1388  * We queue the work to a specific CPU, the caller must ensure it
1389  * can't go away.
1390  *
1391  * Return: %false if @work was already on a queue, %true otherwise.
1392  */
1393 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1394 		   struct work_struct *work)
1395 {
1396 	bool ret = false;
1397 	unsigned long flags;
1398 
1399 	local_irq_save(flags);
1400 
1401 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1402 		__queue_work(cpu, wq, work);
1403 		ret = true;
1404 	}
1405 
1406 	local_irq_restore(flags);
1407 	return ret;
1408 }
1409 EXPORT_SYMBOL(queue_work_on);
1410 
1411 void delayed_work_timer_fn(unsigned long __data)
1412 {
1413 	struct delayed_work *dwork = (struct delayed_work *)__data;
1414 
1415 	/* should have been called from irqsafe timer with irq already off */
1416 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1417 }
1418 EXPORT_SYMBOL(delayed_work_timer_fn);
1419 
1420 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1421 				struct delayed_work *dwork, unsigned long delay)
1422 {
1423 	struct timer_list *timer = &dwork->timer;
1424 	struct work_struct *work = &dwork->work;
1425 
1426 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1427 		     timer->data != (unsigned long)dwork);
1428 	WARN_ON_ONCE(timer_pending(timer));
1429 	WARN_ON_ONCE(!list_empty(&work->entry));
1430 
1431 	/*
1432 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1433 	 * both optimization and correctness.  The earliest @timer can
1434 	 * expire is on the closest next tick and delayed_work users depend
1435 	 * on that there's no such delay when @delay is 0.
1436 	 */
1437 	if (!delay) {
1438 		__queue_work(cpu, wq, &dwork->work);
1439 		return;
1440 	}
1441 
1442 	timer_stats_timer_set_start_info(&dwork->timer);
1443 
1444 	dwork->wq = wq;
1445 	dwork->cpu = cpu;
1446 	timer->expires = jiffies + delay;
1447 
1448 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1449 		add_timer_on(timer, cpu);
1450 	else
1451 		add_timer(timer);
1452 }
1453 
1454 /**
1455  * queue_delayed_work_on - queue work on specific CPU after delay
1456  * @cpu: CPU number to execute work on
1457  * @wq: workqueue to use
1458  * @dwork: work to queue
1459  * @delay: number of jiffies to wait before queueing
1460  *
1461  * Return: %false if @work was already on a queue, %true otherwise.  If
1462  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1463  * execution.
1464  */
1465 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1466 			   struct delayed_work *dwork, unsigned long delay)
1467 {
1468 	struct work_struct *work = &dwork->work;
1469 	bool ret = false;
1470 	unsigned long flags;
1471 
1472 	/* read the comment in __queue_work() */
1473 	local_irq_save(flags);
1474 
1475 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1476 		__queue_delayed_work(cpu, wq, dwork, delay);
1477 		ret = true;
1478 	}
1479 
1480 	local_irq_restore(flags);
1481 	return ret;
1482 }
1483 EXPORT_SYMBOL(queue_delayed_work_on);
1484 
1485 /**
1486  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1487  * @cpu: CPU number to execute work on
1488  * @wq: workqueue to use
1489  * @dwork: work to queue
1490  * @delay: number of jiffies to wait before queueing
1491  *
1492  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1493  * modify @dwork's timer so that it expires after @delay.  If @delay is
1494  * zero, @work is guaranteed to be scheduled immediately regardless of its
1495  * current state.
1496  *
1497  * Return: %false if @dwork was idle and queued, %true if @dwork was
1498  * pending and its timer was modified.
1499  *
1500  * This function is safe to call from any context including IRQ handler.
1501  * See try_to_grab_pending() for details.
1502  */
1503 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1504 			 struct delayed_work *dwork, unsigned long delay)
1505 {
1506 	unsigned long flags;
1507 	int ret;
1508 
1509 	do {
1510 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1511 	} while (unlikely(ret == -EAGAIN));
1512 
1513 	if (likely(ret >= 0)) {
1514 		__queue_delayed_work(cpu, wq, dwork, delay);
1515 		local_irq_restore(flags);
1516 	}
1517 
1518 	/* -ENOENT from try_to_grab_pending() becomes %true */
1519 	return ret;
1520 }
1521 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1522 
1523 /**
1524  * worker_enter_idle - enter idle state
1525  * @worker: worker which is entering idle state
1526  *
1527  * @worker is entering idle state.  Update stats and idle timer if
1528  * necessary.
1529  *
1530  * LOCKING:
1531  * spin_lock_irq(pool->lock).
1532  */
1533 static void worker_enter_idle(struct worker *worker)
1534 {
1535 	struct worker_pool *pool = worker->pool;
1536 
1537 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1538 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1539 			 (worker->hentry.next || worker->hentry.pprev)))
1540 		return;
1541 
1542 	/* can't use worker_set_flags(), also called from create_worker() */
1543 	worker->flags |= WORKER_IDLE;
1544 	pool->nr_idle++;
1545 	worker->last_active = jiffies;
1546 
1547 	/* idle_list is LIFO */
1548 	list_add(&worker->entry, &pool->idle_list);
1549 
1550 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1551 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1552 
1553 	/*
1554 	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1555 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1556 	 * nr_running, the warning may trigger spuriously.  Check iff
1557 	 * unbind is not in progress.
1558 	 */
1559 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1560 		     pool->nr_workers == pool->nr_idle &&
1561 		     atomic_read(&pool->nr_running));
1562 }
1563 
1564 /**
1565  * worker_leave_idle - leave idle state
1566  * @worker: worker which is leaving idle state
1567  *
1568  * @worker is leaving idle state.  Update stats.
1569  *
1570  * LOCKING:
1571  * spin_lock_irq(pool->lock).
1572  */
1573 static void worker_leave_idle(struct worker *worker)
1574 {
1575 	struct worker_pool *pool = worker->pool;
1576 
1577 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1578 		return;
1579 	worker_clr_flags(worker, WORKER_IDLE);
1580 	pool->nr_idle--;
1581 	list_del_init(&worker->entry);
1582 }
1583 
1584 static struct worker *alloc_worker(int node)
1585 {
1586 	struct worker *worker;
1587 
1588 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1589 	if (worker) {
1590 		INIT_LIST_HEAD(&worker->entry);
1591 		INIT_LIST_HEAD(&worker->scheduled);
1592 		INIT_LIST_HEAD(&worker->node);
1593 		/* on creation a worker is in !idle && prep state */
1594 		worker->flags = WORKER_PREP;
1595 	}
1596 	return worker;
1597 }
1598 
1599 /**
1600  * worker_attach_to_pool() - attach a worker to a pool
1601  * @worker: worker to be attached
1602  * @pool: the target pool
1603  *
1604  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1605  * cpu-binding of @worker are kept coordinated with the pool across
1606  * cpu-[un]hotplugs.
1607  */
1608 static void worker_attach_to_pool(struct worker *worker,
1609 				   struct worker_pool *pool)
1610 {
1611 	mutex_lock(&pool->attach_mutex);
1612 
1613 	/*
1614 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1615 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1616 	 */
1617 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1618 
1619 	/*
1620 	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1621 	 * stable across this function.  See the comments above the
1622 	 * flag definition for details.
1623 	 */
1624 	if (pool->flags & POOL_DISASSOCIATED)
1625 		worker->flags |= WORKER_UNBOUND;
1626 
1627 	list_add_tail(&worker->node, &pool->workers);
1628 
1629 	mutex_unlock(&pool->attach_mutex);
1630 }
1631 
1632 /**
1633  * worker_detach_from_pool() - detach a worker from its pool
1634  * @worker: worker which is attached to its pool
1635  * @pool: the pool @worker is attached to
1636  *
1637  * Undo the attaching which had been done in worker_attach_to_pool().  The
1638  * caller worker shouldn't access to the pool after detached except it has
1639  * other reference to the pool.
1640  */
1641 static void worker_detach_from_pool(struct worker *worker,
1642 				    struct worker_pool *pool)
1643 {
1644 	struct completion *detach_completion = NULL;
1645 
1646 	mutex_lock(&pool->attach_mutex);
1647 	list_del(&worker->node);
1648 	if (list_empty(&pool->workers))
1649 		detach_completion = pool->detach_completion;
1650 	mutex_unlock(&pool->attach_mutex);
1651 
1652 	/* clear leftover flags without pool->lock after it is detached */
1653 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1654 
1655 	if (detach_completion)
1656 		complete(detach_completion);
1657 }
1658 
1659 /**
1660  * create_worker - create a new workqueue worker
1661  * @pool: pool the new worker will belong to
1662  *
1663  * Create and start a new worker which is attached to @pool.
1664  *
1665  * CONTEXT:
1666  * Might sleep.  Does GFP_KERNEL allocations.
1667  *
1668  * Return:
1669  * Pointer to the newly created worker.
1670  */
1671 static struct worker *create_worker(struct worker_pool *pool)
1672 {
1673 	struct worker *worker = NULL;
1674 	int id = -1;
1675 	char id_buf[16];
1676 
1677 	/* ID is needed to determine kthread name */
1678 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1679 	if (id < 0)
1680 		goto fail;
1681 
1682 	worker = alloc_worker(pool->node);
1683 	if (!worker)
1684 		goto fail;
1685 
1686 	worker->pool = pool;
1687 	worker->id = id;
1688 
1689 	if (pool->cpu >= 0)
1690 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1691 			 pool->attrs->nice < 0  ? "H" : "");
1692 	else
1693 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1694 
1695 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1696 					      "kworker/%s", id_buf);
1697 	if (IS_ERR(worker->task))
1698 		goto fail;
1699 
1700 	set_user_nice(worker->task, pool->attrs->nice);
1701 
1702 	/* prevent userland from meddling with cpumask of workqueue workers */
1703 	worker->task->flags |= PF_NO_SETAFFINITY;
1704 
1705 	/* successful, attach the worker to the pool */
1706 	worker_attach_to_pool(worker, pool);
1707 
1708 	/* start the newly created worker */
1709 	spin_lock_irq(&pool->lock);
1710 	worker->pool->nr_workers++;
1711 	worker_enter_idle(worker);
1712 	wake_up_process(worker->task);
1713 	spin_unlock_irq(&pool->lock);
1714 
1715 	return worker;
1716 
1717 fail:
1718 	if (id >= 0)
1719 		ida_simple_remove(&pool->worker_ida, id);
1720 	kfree(worker);
1721 	return NULL;
1722 }
1723 
1724 /**
1725  * destroy_worker - destroy a workqueue worker
1726  * @worker: worker to be destroyed
1727  *
1728  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1729  * be idle.
1730  *
1731  * CONTEXT:
1732  * spin_lock_irq(pool->lock).
1733  */
1734 static void destroy_worker(struct worker *worker)
1735 {
1736 	struct worker_pool *pool = worker->pool;
1737 
1738 	lockdep_assert_held(&pool->lock);
1739 
1740 	/* sanity check frenzy */
1741 	if (WARN_ON(worker->current_work) ||
1742 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1743 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1744 		return;
1745 
1746 	pool->nr_workers--;
1747 	pool->nr_idle--;
1748 
1749 	list_del_init(&worker->entry);
1750 	worker->flags |= WORKER_DIE;
1751 	wake_up_process(worker->task);
1752 }
1753 
1754 static void idle_worker_timeout(unsigned long __pool)
1755 {
1756 	struct worker_pool *pool = (void *)__pool;
1757 
1758 	spin_lock_irq(&pool->lock);
1759 
1760 	while (too_many_workers(pool)) {
1761 		struct worker *worker;
1762 		unsigned long expires;
1763 
1764 		/* idle_list is kept in LIFO order, check the last one */
1765 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1766 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1767 
1768 		if (time_before(jiffies, expires)) {
1769 			mod_timer(&pool->idle_timer, expires);
1770 			break;
1771 		}
1772 
1773 		destroy_worker(worker);
1774 	}
1775 
1776 	spin_unlock_irq(&pool->lock);
1777 }
1778 
1779 static void send_mayday(struct work_struct *work)
1780 {
1781 	struct pool_workqueue *pwq = get_work_pwq(work);
1782 	struct workqueue_struct *wq = pwq->wq;
1783 
1784 	lockdep_assert_held(&wq_mayday_lock);
1785 
1786 	if (!wq->rescuer)
1787 		return;
1788 
1789 	/* mayday mayday mayday */
1790 	if (list_empty(&pwq->mayday_node)) {
1791 		/*
1792 		 * If @pwq is for an unbound wq, its base ref may be put at
1793 		 * any time due to an attribute change.  Pin @pwq until the
1794 		 * rescuer is done with it.
1795 		 */
1796 		get_pwq(pwq);
1797 		list_add_tail(&pwq->mayday_node, &wq->maydays);
1798 		wake_up_process(wq->rescuer->task);
1799 	}
1800 }
1801 
1802 static void pool_mayday_timeout(unsigned long __pool)
1803 {
1804 	struct worker_pool *pool = (void *)__pool;
1805 	struct work_struct *work;
1806 
1807 	spin_lock_irq(&pool->lock);
1808 	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1809 
1810 	if (need_to_create_worker(pool)) {
1811 		/*
1812 		 * We've been trying to create a new worker but
1813 		 * haven't been successful.  We might be hitting an
1814 		 * allocation deadlock.  Send distress signals to
1815 		 * rescuers.
1816 		 */
1817 		list_for_each_entry(work, &pool->worklist, entry)
1818 			send_mayday(work);
1819 	}
1820 
1821 	spin_unlock(&wq_mayday_lock);
1822 	spin_unlock_irq(&pool->lock);
1823 
1824 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1825 }
1826 
1827 /**
1828  * maybe_create_worker - create a new worker if necessary
1829  * @pool: pool to create a new worker for
1830  *
1831  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1832  * have at least one idle worker on return from this function.  If
1833  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1834  * sent to all rescuers with works scheduled on @pool to resolve
1835  * possible allocation deadlock.
1836  *
1837  * On return, need_to_create_worker() is guaranteed to be %false and
1838  * may_start_working() %true.
1839  *
1840  * LOCKING:
1841  * spin_lock_irq(pool->lock) which may be released and regrabbed
1842  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1843  * manager.
1844  */
1845 static void maybe_create_worker(struct worker_pool *pool)
1846 __releases(&pool->lock)
1847 __acquires(&pool->lock)
1848 {
1849 restart:
1850 	spin_unlock_irq(&pool->lock);
1851 
1852 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1853 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1854 
1855 	while (true) {
1856 		if (create_worker(pool) || !need_to_create_worker(pool))
1857 			break;
1858 
1859 		schedule_timeout_interruptible(CREATE_COOLDOWN);
1860 
1861 		if (!need_to_create_worker(pool))
1862 			break;
1863 	}
1864 
1865 	del_timer_sync(&pool->mayday_timer);
1866 	spin_lock_irq(&pool->lock);
1867 	/*
1868 	 * This is necessary even after a new worker was just successfully
1869 	 * created as @pool->lock was dropped and the new worker might have
1870 	 * already become busy.
1871 	 */
1872 	if (need_to_create_worker(pool))
1873 		goto restart;
1874 }
1875 
1876 /**
1877  * manage_workers - manage worker pool
1878  * @worker: self
1879  *
1880  * Assume the manager role and manage the worker pool @worker belongs
1881  * to.  At any given time, there can be only zero or one manager per
1882  * pool.  The exclusion is handled automatically by this function.
1883  *
1884  * The caller can safely start processing works on false return.  On
1885  * true return, it's guaranteed that need_to_create_worker() is false
1886  * and may_start_working() is true.
1887  *
1888  * CONTEXT:
1889  * spin_lock_irq(pool->lock) which may be released and regrabbed
1890  * multiple times.  Does GFP_KERNEL allocations.
1891  *
1892  * Return:
1893  * %false if the pool doesn't need management and the caller can safely
1894  * start processing works, %true if management function was performed and
1895  * the conditions that the caller verified before calling the function may
1896  * no longer be true.
1897  */
1898 static bool manage_workers(struct worker *worker)
1899 {
1900 	struct worker_pool *pool = worker->pool;
1901 
1902 	/*
1903 	 * Anyone who successfully grabs manager_arb wins the arbitration
1904 	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
1905 	 * failure while holding pool->lock reliably indicates that someone
1906 	 * else is managing the pool and the worker which failed trylock
1907 	 * can proceed to executing work items.  This means that anyone
1908 	 * grabbing manager_arb is responsible for actually performing
1909 	 * manager duties.  If manager_arb is grabbed and released without
1910 	 * actual management, the pool may stall indefinitely.
1911 	 */
1912 	if (!mutex_trylock(&pool->manager_arb))
1913 		return false;
1914 
1915 	maybe_create_worker(pool);
1916 
1917 	mutex_unlock(&pool->manager_arb);
1918 	return true;
1919 }
1920 
1921 /**
1922  * process_one_work - process single work
1923  * @worker: self
1924  * @work: work to process
1925  *
1926  * Process @work.  This function contains all the logics necessary to
1927  * process a single work including synchronization against and
1928  * interaction with other workers on the same cpu, queueing and
1929  * flushing.  As long as context requirement is met, any worker can
1930  * call this function to process a work.
1931  *
1932  * CONTEXT:
1933  * spin_lock_irq(pool->lock) which is released and regrabbed.
1934  */
1935 static void process_one_work(struct worker *worker, struct work_struct *work)
1936 __releases(&pool->lock)
1937 __acquires(&pool->lock)
1938 {
1939 	struct pool_workqueue *pwq = get_work_pwq(work);
1940 	struct worker_pool *pool = worker->pool;
1941 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
1942 	int work_color;
1943 	struct worker *collision;
1944 #ifdef CONFIG_LOCKDEP
1945 	/*
1946 	 * It is permissible to free the struct work_struct from
1947 	 * inside the function that is called from it, this we need to
1948 	 * take into account for lockdep too.  To avoid bogus "held
1949 	 * lock freed" warnings as well as problems when looking into
1950 	 * work->lockdep_map, make a copy and use that here.
1951 	 */
1952 	struct lockdep_map lockdep_map;
1953 
1954 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
1955 #endif
1956 	/* ensure we're on the correct CPU */
1957 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1958 		     raw_smp_processor_id() != pool->cpu);
1959 
1960 	/*
1961 	 * A single work shouldn't be executed concurrently by
1962 	 * multiple workers on a single cpu.  Check whether anyone is
1963 	 * already processing the work.  If so, defer the work to the
1964 	 * currently executing one.
1965 	 */
1966 	collision = find_worker_executing_work(pool, work);
1967 	if (unlikely(collision)) {
1968 		move_linked_works(work, &collision->scheduled, NULL);
1969 		return;
1970 	}
1971 
1972 	/* claim and dequeue */
1973 	debug_work_deactivate(work);
1974 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
1975 	worker->current_work = work;
1976 	worker->current_func = work->func;
1977 	worker->current_pwq = pwq;
1978 	work_color = get_work_color(work);
1979 
1980 	list_del_init(&work->entry);
1981 
1982 	/*
1983 	 * CPU intensive works don't participate in concurrency management.
1984 	 * They're the scheduler's responsibility.  This takes @worker out
1985 	 * of concurrency management and the next code block will chain
1986 	 * execution of the pending work items.
1987 	 */
1988 	if (unlikely(cpu_intensive))
1989 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1990 
1991 	/*
1992 	 * Wake up another worker if necessary.  The condition is always
1993 	 * false for normal per-cpu workers since nr_running would always
1994 	 * be >= 1 at this point.  This is used to chain execution of the
1995 	 * pending work items for WORKER_NOT_RUNNING workers such as the
1996 	 * UNBOUND and CPU_INTENSIVE ones.
1997 	 */
1998 	if (need_more_worker(pool))
1999 		wake_up_worker(pool);
2000 
2001 	/*
2002 	 * Record the last pool and clear PENDING which should be the last
2003 	 * update to @work.  Also, do this inside @pool->lock so that
2004 	 * PENDING and queued state changes happen together while IRQ is
2005 	 * disabled.
2006 	 */
2007 	set_work_pool_and_clear_pending(work, pool->id);
2008 
2009 	spin_unlock_irq(&pool->lock);
2010 
2011 	lock_map_acquire_read(&pwq->wq->lockdep_map);
2012 	lock_map_acquire(&lockdep_map);
2013 	trace_workqueue_execute_start(work);
2014 	worker->current_func(work);
2015 	/*
2016 	 * While we must be careful to not use "work" after this, the trace
2017 	 * point will only record its address.
2018 	 */
2019 	trace_workqueue_execute_end(work);
2020 	lock_map_release(&lockdep_map);
2021 	lock_map_release(&pwq->wq->lockdep_map);
2022 
2023 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2024 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2025 		       "     last function: %pf\n",
2026 		       current->comm, preempt_count(), task_pid_nr(current),
2027 		       worker->current_func);
2028 		debug_show_held_locks(current);
2029 		dump_stack();
2030 	}
2031 
2032 	/*
2033 	 * The following prevents a kworker from hogging CPU on !PREEMPT
2034 	 * kernels, where a requeueing work item waiting for something to
2035 	 * happen could deadlock with stop_machine as such work item could
2036 	 * indefinitely requeue itself while all other CPUs are trapped in
2037 	 * stop_machine. At the same time, report a quiescent RCU state so
2038 	 * the same condition doesn't freeze RCU.
2039 	 */
2040 	cond_resched_rcu_qs();
2041 
2042 	spin_lock_irq(&pool->lock);
2043 
2044 	/* clear cpu intensive status */
2045 	if (unlikely(cpu_intensive))
2046 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2047 
2048 	/* we're done with it, release */
2049 	hash_del(&worker->hentry);
2050 	worker->current_work = NULL;
2051 	worker->current_func = NULL;
2052 	worker->current_pwq = NULL;
2053 	worker->desc_valid = false;
2054 	pwq_dec_nr_in_flight(pwq, work_color);
2055 }
2056 
2057 /**
2058  * process_scheduled_works - process scheduled works
2059  * @worker: self
2060  *
2061  * Process all scheduled works.  Please note that the scheduled list
2062  * may change while processing a work, so this function repeatedly
2063  * fetches a work from the top and executes it.
2064  *
2065  * CONTEXT:
2066  * spin_lock_irq(pool->lock) which may be released and regrabbed
2067  * multiple times.
2068  */
2069 static void process_scheduled_works(struct worker *worker)
2070 {
2071 	while (!list_empty(&worker->scheduled)) {
2072 		struct work_struct *work = list_first_entry(&worker->scheduled,
2073 						struct work_struct, entry);
2074 		process_one_work(worker, work);
2075 	}
2076 }
2077 
2078 /**
2079  * worker_thread - the worker thread function
2080  * @__worker: self
2081  *
2082  * The worker thread function.  All workers belong to a worker_pool -
2083  * either a per-cpu one or dynamic unbound one.  These workers process all
2084  * work items regardless of their specific target workqueue.  The only
2085  * exception is work items which belong to workqueues with a rescuer which
2086  * will be explained in rescuer_thread().
2087  *
2088  * Return: 0
2089  */
2090 static int worker_thread(void *__worker)
2091 {
2092 	struct worker *worker = __worker;
2093 	struct worker_pool *pool = worker->pool;
2094 
2095 	/* tell the scheduler that this is a workqueue worker */
2096 	worker->task->flags |= PF_WQ_WORKER;
2097 woke_up:
2098 	spin_lock_irq(&pool->lock);
2099 
2100 	/* am I supposed to die? */
2101 	if (unlikely(worker->flags & WORKER_DIE)) {
2102 		spin_unlock_irq(&pool->lock);
2103 		WARN_ON_ONCE(!list_empty(&worker->entry));
2104 		worker->task->flags &= ~PF_WQ_WORKER;
2105 
2106 		set_task_comm(worker->task, "kworker/dying");
2107 		ida_simple_remove(&pool->worker_ida, worker->id);
2108 		worker_detach_from_pool(worker, pool);
2109 		kfree(worker);
2110 		return 0;
2111 	}
2112 
2113 	worker_leave_idle(worker);
2114 recheck:
2115 	/* no more worker necessary? */
2116 	if (!need_more_worker(pool))
2117 		goto sleep;
2118 
2119 	/* do we need to manage? */
2120 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2121 		goto recheck;
2122 
2123 	/*
2124 	 * ->scheduled list can only be filled while a worker is
2125 	 * preparing to process a work or actually processing it.
2126 	 * Make sure nobody diddled with it while I was sleeping.
2127 	 */
2128 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2129 
2130 	/*
2131 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2132 	 * worker or that someone else has already assumed the manager
2133 	 * role.  This is where @worker starts participating in concurrency
2134 	 * management if applicable and concurrency management is restored
2135 	 * after being rebound.  See rebind_workers() for details.
2136 	 */
2137 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2138 
2139 	do {
2140 		struct work_struct *work =
2141 			list_first_entry(&pool->worklist,
2142 					 struct work_struct, entry);
2143 
2144 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2145 			/* optimization path, not strictly necessary */
2146 			process_one_work(worker, work);
2147 			if (unlikely(!list_empty(&worker->scheduled)))
2148 				process_scheduled_works(worker);
2149 		} else {
2150 			move_linked_works(work, &worker->scheduled, NULL);
2151 			process_scheduled_works(worker);
2152 		}
2153 	} while (keep_working(pool));
2154 
2155 	worker_set_flags(worker, WORKER_PREP);
2156 sleep:
2157 	/*
2158 	 * pool->lock is held and there's no work to process and no need to
2159 	 * manage, sleep.  Workers are woken up only while holding
2160 	 * pool->lock or from local cpu, so setting the current state
2161 	 * before releasing pool->lock is enough to prevent losing any
2162 	 * event.
2163 	 */
2164 	worker_enter_idle(worker);
2165 	__set_current_state(TASK_INTERRUPTIBLE);
2166 	spin_unlock_irq(&pool->lock);
2167 	schedule();
2168 	goto woke_up;
2169 }
2170 
2171 /**
2172  * rescuer_thread - the rescuer thread function
2173  * @__rescuer: self
2174  *
2175  * Workqueue rescuer thread function.  There's one rescuer for each
2176  * workqueue which has WQ_MEM_RECLAIM set.
2177  *
2178  * Regular work processing on a pool may block trying to create a new
2179  * worker which uses GFP_KERNEL allocation which has slight chance of
2180  * developing into deadlock if some works currently on the same queue
2181  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2182  * the problem rescuer solves.
2183  *
2184  * When such condition is possible, the pool summons rescuers of all
2185  * workqueues which have works queued on the pool and let them process
2186  * those works so that forward progress can be guaranteed.
2187  *
2188  * This should happen rarely.
2189  *
2190  * Return: 0
2191  */
2192 static int rescuer_thread(void *__rescuer)
2193 {
2194 	struct worker *rescuer = __rescuer;
2195 	struct workqueue_struct *wq = rescuer->rescue_wq;
2196 	struct list_head *scheduled = &rescuer->scheduled;
2197 	bool should_stop;
2198 
2199 	set_user_nice(current, RESCUER_NICE_LEVEL);
2200 
2201 	/*
2202 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2203 	 * doesn't participate in concurrency management.
2204 	 */
2205 	rescuer->task->flags |= PF_WQ_WORKER;
2206 repeat:
2207 	set_current_state(TASK_INTERRUPTIBLE);
2208 
2209 	/*
2210 	 * By the time the rescuer is requested to stop, the workqueue
2211 	 * shouldn't have any work pending, but @wq->maydays may still have
2212 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2213 	 * all the work items before the rescuer got to them.  Go through
2214 	 * @wq->maydays processing before acting on should_stop so that the
2215 	 * list is always empty on exit.
2216 	 */
2217 	should_stop = kthread_should_stop();
2218 
2219 	/* see whether any pwq is asking for help */
2220 	spin_lock_irq(&wq_mayday_lock);
2221 
2222 	while (!list_empty(&wq->maydays)) {
2223 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2224 					struct pool_workqueue, mayday_node);
2225 		struct worker_pool *pool = pwq->pool;
2226 		struct work_struct *work, *n;
2227 
2228 		__set_current_state(TASK_RUNNING);
2229 		list_del_init(&pwq->mayday_node);
2230 
2231 		spin_unlock_irq(&wq_mayday_lock);
2232 
2233 		worker_attach_to_pool(rescuer, pool);
2234 
2235 		spin_lock_irq(&pool->lock);
2236 		rescuer->pool = pool;
2237 
2238 		/*
2239 		 * Slurp in all works issued via this workqueue and
2240 		 * process'em.
2241 		 */
2242 		WARN_ON_ONCE(!list_empty(scheduled));
2243 		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2244 			if (get_work_pwq(work) == pwq)
2245 				move_linked_works(work, scheduled, &n);
2246 
2247 		if (!list_empty(scheduled)) {
2248 			process_scheduled_works(rescuer);
2249 
2250 			/*
2251 			 * The above execution of rescued work items could
2252 			 * have created more to rescue through
2253 			 * pwq_activate_first_delayed() or chained
2254 			 * queueing.  Let's put @pwq back on mayday list so
2255 			 * that such back-to-back work items, which may be
2256 			 * being used to relieve memory pressure, don't
2257 			 * incur MAYDAY_INTERVAL delay inbetween.
2258 			 */
2259 			if (need_to_create_worker(pool)) {
2260 				spin_lock(&wq_mayday_lock);
2261 				get_pwq(pwq);
2262 				list_move_tail(&pwq->mayday_node, &wq->maydays);
2263 				spin_unlock(&wq_mayday_lock);
2264 			}
2265 		}
2266 
2267 		/*
2268 		 * Put the reference grabbed by send_mayday().  @pool won't
2269 		 * go away while we're still attached to it.
2270 		 */
2271 		put_pwq(pwq);
2272 
2273 		/*
2274 		 * Leave this pool.  If need_more_worker() is %true, notify a
2275 		 * regular worker; otherwise, we end up with 0 concurrency
2276 		 * and stalling the execution.
2277 		 */
2278 		if (need_more_worker(pool))
2279 			wake_up_worker(pool);
2280 
2281 		rescuer->pool = NULL;
2282 		spin_unlock_irq(&pool->lock);
2283 
2284 		worker_detach_from_pool(rescuer, pool);
2285 
2286 		spin_lock_irq(&wq_mayday_lock);
2287 	}
2288 
2289 	spin_unlock_irq(&wq_mayday_lock);
2290 
2291 	if (should_stop) {
2292 		__set_current_state(TASK_RUNNING);
2293 		rescuer->task->flags &= ~PF_WQ_WORKER;
2294 		return 0;
2295 	}
2296 
2297 	/* rescuers should never participate in concurrency management */
2298 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2299 	schedule();
2300 	goto repeat;
2301 }
2302 
2303 struct wq_barrier {
2304 	struct work_struct	work;
2305 	struct completion	done;
2306 };
2307 
2308 static void wq_barrier_func(struct work_struct *work)
2309 {
2310 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2311 	complete(&barr->done);
2312 }
2313 
2314 /**
2315  * insert_wq_barrier - insert a barrier work
2316  * @pwq: pwq to insert barrier into
2317  * @barr: wq_barrier to insert
2318  * @target: target work to attach @barr to
2319  * @worker: worker currently executing @target, NULL if @target is not executing
2320  *
2321  * @barr is linked to @target such that @barr is completed only after
2322  * @target finishes execution.  Please note that the ordering
2323  * guarantee is observed only with respect to @target and on the local
2324  * cpu.
2325  *
2326  * Currently, a queued barrier can't be canceled.  This is because
2327  * try_to_grab_pending() can't determine whether the work to be
2328  * grabbed is at the head of the queue and thus can't clear LINKED
2329  * flag of the previous work while there must be a valid next work
2330  * after a work with LINKED flag set.
2331  *
2332  * Note that when @worker is non-NULL, @target may be modified
2333  * underneath us, so we can't reliably determine pwq from @target.
2334  *
2335  * CONTEXT:
2336  * spin_lock_irq(pool->lock).
2337  */
2338 static void insert_wq_barrier(struct pool_workqueue *pwq,
2339 			      struct wq_barrier *barr,
2340 			      struct work_struct *target, struct worker *worker)
2341 {
2342 	struct list_head *head;
2343 	unsigned int linked = 0;
2344 
2345 	/*
2346 	 * debugobject calls are safe here even with pool->lock locked
2347 	 * as we know for sure that this will not trigger any of the
2348 	 * checks and call back into the fixup functions where we
2349 	 * might deadlock.
2350 	 */
2351 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2352 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2353 	init_completion(&barr->done);
2354 
2355 	/*
2356 	 * If @target is currently being executed, schedule the
2357 	 * barrier to the worker; otherwise, put it after @target.
2358 	 */
2359 	if (worker)
2360 		head = worker->scheduled.next;
2361 	else {
2362 		unsigned long *bits = work_data_bits(target);
2363 
2364 		head = target->entry.next;
2365 		/* there can already be other linked works, inherit and set */
2366 		linked = *bits & WORK_STRUCT_LINKED;
2367 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2368 	}
2369 
2370 	debug_work_activate(&barr->work);
2371 	insert_work(pwq, &barr->work, head,
2372 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2373 }
2374 
2375 /**
2376  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2377  * @wq: workqueue being flushed
2378  * @flush_color: new flush color, < 0 for no-op
2379  * @work_color: new work color, < 0 for no-op
2380  *
2381  * Prepare pwqs for workqueue flushing.
2382  *
2383  * If @flush_color is non-negative, flush_color on all pwqs should be
2384  * -1.  If no pwq has in-flight commands at the specified color, all
2385  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2386  * has in flight commands, its pwq->flush_color is set to
2387  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2388  * wakeup logic is armed and %true is returned.
2389  *
2390  * The caller should have initialized @wq->first_flusher prior to
2391  * calling this function with non-negative @flush_color.  If
2392  * @flush_color is negative, no flush color update is done and %false
2393  * is returned.
2394  *
2395  * If @work_color is non-negative, all pwqs should have the same
2396  * work_color which is previous to @work_color and all will be
2397  * advanced to @work_color.
2398  *
2399  * CONTEXT:
2400  * mutex_lock(wq->mutex).
2401  *
2402  * Return:
2403  * %true if @flush_color >= 0 and there's something to flush.  %false
2404  * otherwise.
2405  */
2406 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2407 				      int flush_color, int work_color)
2408 {
2409 	bool wait = false;
2410 	struct pool_workqueue *pwq;
2411 
2412 	if (flush_color >= 0) {
2413 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2414 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2415 	}
2416 
2417 	for_each_pwq(pwq, wq) {
2418 		struct worker_pool *pool = pwq->pool;
2419 
2420 		spin_lock_irq(&pool->lock);
2421 
2422 		if (flush_color >= 0) {
2423 			WARN_ON_ONCE(pwq->flush_color != -1);
2424 
2425 			if (pwq->nr_in_flight[flush_color]) {
2426 				pwq->flush_color = flush_color;
2427 				atomic_inc(&wq->nr_pwqs_to_flush);
2428 				wait = true;
2429 			}
2430 		}
2431 
2432 		if (work_color >= 0) {
2433 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2434 			pwq->work_color = work_color;
2435 		}
2436 
2437 		spin_unlock_irq(&pool->lock);
2438 	}
2439 
2440 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2441 		complete(&wq->first_flusher->done);
2442 
2443 	return wait;
2444 }
2445 
2446 /**
2447  * flush_workqueue - ensure that any scheduled work has run to completion.
2448  * @wq: workqueue to flush
2449  *
2450  * This function sleeps until all work items which were queued on entry
2451  * have finished execution, but it is not livelocked by new incoming ones.
2452  */
2453 void flush_workqueue(struct workqueue_struct *wq)
2454 {
2455 	struct wq_flusher this_flusher = {
2456 		.list = LIST_HEAD_INIT(this_flusher.list),
2457 		.flush_color = -1,
2458 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2459 	};
2460 	int next_color;
2461 
2462 	lock_map_acquire(&wq->lockdep_map);
2463 	lock_map_release(&wq->lockdep_map);
2464 
2465 	mutex_lock(&wq->mutex);
2466 
2467 	/*
2468 	 * Start-to-wait phase
2469 	 */
2470 	next_color = work_next_color(wq->work_color);
2471 
2472 	if (next_color != wq->flush_color) {
2473 		/*
2474 		 * Color space is not full.  The current work_color
2475 		 * becomes our flush_color and work_color is advanced
2476 		 * by one.
2477 		 */
2478 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2479 		this_flusher.flush_color = wq->work_color;
2480 		wq->work_color = next_color;
2481 
2482 		if (!wq->first_flusher) {
2483 			/* no flush in progress, become the first flusher */
2484 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2485 
2486 			wq->first_flusher = &this_flusher;
2487 
2488 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2489 						       wq->work_color)) {
2490 				/* nothing to flush, done */
2491 				wq->flush_color = next_color;
2492 				wq->first_flusher = NULL;
2493 				goto out_unlock;
2494 			}
2495 		} else {
2496 			/* wait in queue */
2497 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2498 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2499 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2500 		}
2501 	} else {
2502 		/*
2503 		 * Oops, color space is full, wait on overflow queue.
2504 		 * The next flush completion will assign us
2505 		 * flush_color and transfer to flusher_queue.
2506 		 */
2507 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2508 	}
2509 
2510 	mutex_unlock(&wq->mutex);
2511 
2512 	wait_for_completion(&this_flusher.done);
2513 
2514 	/*
2515 	 * Wake-up-and-cascade phase
2516 	 *
2517 	 * First flushers are responsible for cascading flushes and
2518 	 * handling overflow.  Non-first flushers can simply return.
2519 	 */
2520 	if (wq->first_flusher != &this_flusher)
2521 		return;
2522 
2523 	mutex_lock(&wq->mutex);
2524 
2525 	/* we might have raced, check again with mutex held */
2526 	if (wq->first_flusher != &this_flusher)
2527 		goto out_unlock;
2528 
2529 	wq->first_flusher = NULL;
2530 
2531 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2532 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2533 
2534 	while (true) {
2535 		struct wq_flusher *next, *tmp;
2536 
2537 		/* complete all the flushers sharing the current flush color */
2538 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2539 			if (next->flush_color != wq->flush_color)
2540 				break;
2541 			list_del_init(&next->list);
2542 			complete(&next->done);
2543 		}
2544 
2545 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2546 			     wq->flush_color != work_next_color(wq->work_color));
2547 
2548 		/* this flush_color is finished, advance by one */
2549 		wq->flush_color = work_next_color(wq->flush_color);
2550 
2551 		/* one color has been freed, handle overflow queue */
2552 		if (!list_empty(&wq->flusher_overflow)) {
2553 			/*
2554 			 * Assign the same color to all overflowed
2555 			 * flushers, advance work_color and append to
2556 			 * flusher_queue.  This is the start-to-wait
2557 			 * phase for these overflowed flushers.
2558 			 */
2559 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2560 				tmp->flush_color = wq->work_color;
2561 
2562 			wq->work_color = work_next_color(wq->work_color);
2563 
2564 			list_splice_tail_init(&wq->flusher_overflow,
2565 					      &wq->flusher_queue);
2566 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2567 		}
2568 
2569 		if (list_empty(&wq->flusher_queue)) {
2570 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2571 			break;
2572 		}
2573 
2574 		/*
2575 		 * Need to flush more colors.  Make the next flusher
2576 		 * the new first flusher and arm pwqs.
2577 		 */
2578 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2579 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2580 
2581 		list_del_init(&next->list);
2582 		wq->first_flusher = next;
2583 
2584 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2585 			break;
2586 
2587 		/*
2588 		 * Meh... this color is already done, clear first
2589 		 * flusher and repeat cascading.
2590 		 */
2591 		wq->first_flusher = NULL;
2592 	}
2593 
2594 out_unlock:
2595 	mutex_unlock(&wq->mutex);
2596 }
2597 EXPORT_SYMBOL_GPL(flush_workqueue);
2598 
2599 /**
2600  * drain_workqueue - drain a workqueue
2601  * @wq: workqueue to drain
2602  *
2603  * Wait until the workqueue becomes empty.  While draining is in progress,
2604  * only chain queueing is allowed.  IOW, only currently pending or running
2605  * work items on @wq can queue further work items on it.  @wq is flushed
2606  * repeatedly until it becomes empty.  The number of flushing is detemined
2607  * by the depth of chaining and should be relatively short.  Whine if it
2608  * takes too long.
2609  */
2610 void drain_workqueue(struct workqueue_struct *wq)
2611 {
2612 	unsigned int flush_cnt = 0;
2613 	struct pool_workqueue *pwq;
2614 
2615 	/*
2616 	 * __queue_work() needs to test whether there are drainers, is much
2617 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2618 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2619 	 */
2620 	mutex_lock(&wq->mutex);
2621 	if (!wq->nr_drainers++)
2622 		wq->flags |= __WQ_DRAINING;
2623 	mutex_unlock(&wq->mutex);
2624 reflush:
2625 	flush_workqueue(wq);
2626 
2627 	mutex_lock(&wq->mutex);
2628 
2629 	for_each_pwq(pwq, wq) {
2630 		bool drained;
2631 
2632 		spin_lock_irq(&pwq->pool->lock);
2633 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2634 		spin_unlock_irq(&pwq->pool->lock);
2635 
2636 		if (drained)
2637 			continue;
2638 
2639 		if (++flush_cnt == 10 ||
2640 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2641 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2642 				wq->name, flush_cnt);
2643 
2644 		mutex_unlock(&wq->mutex);
2645 		goto reflush;
2646 	}
2647 
2648 	if (!--wq->nr_drainers)
2649 		wq->flags &= ~__WQ_DRAINING;
2650 	mutex_unlock(&wq->mutex);
2651 }
2652 EXPORT_SYMBOL_GPL(drain_workqueue);
2653 
2654 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2655 {
2656 	struct worker *worker = NULL;
2657 	struct worker_pool *pool;
2658 	struct pool_workqueue *pwq;
2659 
2660 	might_sleep();
2661 
2662 	local_irq_disable();
2663 	pool = get_work_pool(work);
2664 	if (!pool) {
2665 		local_irq_enable();
2666 		return false;
2667 	}
2668 
2669 	spin_lock(&pool->lock);
2670 	/* see the comment in try_to_grab_pending() with the same code */
2671 	pwq = get_work_pwq(work);
2672 	if (pwq) {
2673 		if (unlikely(pwq->pool != pool))
2674 			goto already_gone;
2675 	} else {
2676 		worker = find_worker_executing_work(pool, work);
2677 		if (!worker)
2678 			goto already_gone;
2679 		pwq = worker->current_pwq;
2680 	}
2681 
2682 	insert_wq_barrier(pwq, barr, work, worker);
2683 	spin_unlock_irq(&pool->lock);
2684 
2685 	/*
2686 	 * If @max_active is 1 or rescuer is in use, flushing another work
2687 	 * item on the same workqueue may lead to deadlock.  Make sure the
2688 	 * flusher is not running on the same workqueue by verifying write
2689 	 * access.
2690 	 */
2691 	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2692 		lock_map_acquire(&pwq->wq->lockdep_map);
2693 	else
2694 		lock_map_acquire_read(&pwq->wq->lockdep_map);
2695 	lock_map_release(&pwq->wq->lockdep_map);
2696 
2697 	return true;
2698 already_gone:
2699 	spin_unlock_irq(&pool->lock);
2700 	return false;
2701 }
2702 
2703 /**
2704  * flush_work - wait for a work to finish executing the last queueing instance
2705  * @work: the work to flush
2706  *
2707  * Wait until @work has finished execution.  @work is guaranteed to be idle
2708  * on return if it hasn't been requeued since flush started.
2709  *
2710  * Return:
2711  * %true if flush_work() waited for the work to finish execution,
2712  * %false if it was already idle.
2713  */
2714 bool flush_work(struct work_struct *work)
2715 {
2716 	struct wq_barrier barr;
2717 
2718 	lock_map_acquire(&work->lockdep_map);
2719 	lock_map_release(&work->lockdep_map);
2720 
2721 	if (start_flush_work(work, &barr)) {
2722 		wait_for_completion(&barr.done);
2723 		destroy_work_on_stack(&barr.work);
2724 		return true;
2725 	} else {
2726 		return false;
2727 	}
2728 }
2729 EXPORT_SYMBOL_GPL(flush_work);
2730 
2731 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2732 {
2733 	unsigned long flags;
2734 	int ret;
2735 
2736 	do {
2737 		ret = try_to_grab_pending(work, is_dwork, &flags);
2738 		/*
2739 		 * If someone else is canceling, wait for the same event it
2740 		 * would be waiting for before retrying.
2741 		 */
2742 		if (unlikely(ret == -ENOENT))
2743 			flush_work(work);
2744 	} while (unlikely(ret < 0));
2745 
2746 	/* tell other tasks trying to grab @work to back off */
2747 	mark_work_canceling(work);
2748 	local_irq_restore(flags);
2749 
2750 	flush_work(work);
2751 	clear_work_data(work);
2752 	return ret;
2753 }
2754 
2755 /**
2756  * cancel_work_sync - cancel a work and wait for it to finish
2757  * @work: the work to cancel
2758  *
2759  * Cancel @work and wait for its execution to finish.  This function
2760  * can be used even if the work re-queues itself or migrates to
2761  * another workqueue.  On return from this function, @work is
2762  * guaranteed to be not pending or executing on any CPU.
2763  *
2764  * cancel_work_sync(&delayed_work->work) must not be used for
2765  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2766  *
2767  * The caller must ensure that the workqueue on which @work was last
2768  * queued can't be destroyed before this function returns.
2769  *
2770  * Return:
2771  * %true if @work was pending, %false otherwise.
2772  */
2773 bool cancel_work_sync(struct work_struct *work)
2774 {
2775 	return __cancel_work_timer(work, false);
2776 }
2777 EXPORT_SYMBOL_GPL(cancel_work_sync);
2778 
2779 /**
2780  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2781  * @dwork: the delayed work to flush
2782  *
2783  * Delayed timer is cancelled and the pending work is queued for
2784  * immediate execution.  Like flush_work(), this function only
2785  * considers the last queueing instance of @dwork.
2786  *
2787  * Return:
2788  * %true if flush_work() waited for the work to finish execution,
2789  * %false if it was already idle.
2790  */
2791 bool flush_delayed_work(struct delayed_work *dwork)
2792 {
2793 	local_irq_disable();
2794 	if (del_timer_sync(&dwork->timer))
2795 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2796 	local_irq_enable();
2797 	return flush_work(&dwork->work);
2798 }
2799 EXPORT_SYMBOL(flush_delayed_work);
2800 
2801 /**
2802  * cancel_delayed_work - cancel a delayed work
2803  * @dwork: delayed_work to cancel
2804  *
2805  * Kill off a pending delayed_work.
2806  *
2807  * Return: %true if @dwork was pending and canceled; %false if it wasn't
2808  * pending.
2809  *
2810  * Note:
2811  * The work callback function may still be running on return, unless
2812  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
2813  * use cancel_delayed_work_sync() to wait on it.
2814  *
2815  * This function is safe to call from any context including IRQ handler.
2816  */
2817 bool cancel_delayed_work(struct delayed_work *dwork)
2818 {
2819 	unsigned long flags;
2820 	int ret;
2821 
2822 	do {
2823 		ret = try_to_grab_pending(&dwork->work, true, &flags);
2824 	} while (unlikely(ret == -EAGAIN));
2825 
2826 	if (unlikely(ret < 0))
2827 		return false;
2828 
2829 	set_work_pool_and_clear_pending(&dwork->work,
2830 					get_work_pool_id(&dwork->work));
2831 	local_irq_restore(flags);
2832 	return ret;
2833 }
2834 EXPORT_SYMBOL(cancel_delayed_work);
2835 
2836 /**
2837  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2838  * @dwork: the delayed work cancel
2839  *
2840  * This is cancel_work_sync() for delayed works.
2841  *
2842  * Return:
2843  * %true if @dwork was pending, %false otherwise.
2844  */
2845 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2846 {
2847 	return __cancel_work_timer(&dwork->work, true);
2848 }
2849 EXPORT_SYMBOL(cancel_delayed_work_sync);
2850 
2851 /**
2852  * schedule_on_each_cpu - execute a function synchronously on each online CPU
2853  * @func: the function to call
2854  *
2855  * schedule_on_each_cpu() executes @func on each online CPU using the
2856  * system workqueue and blocks until all CPUs have completed.
2857  * schedule_on_each_cpu() is very slow.
2858  *
2859  * Return:
2860  * 0 on success, -errno on failure.
2861  */
2862 int schedule_on_each_cpu(work_func_t func)
2863 {
2864 	int cpu;
2865 	struct work_struct __percpu *works;
2866 
2867 	works = alloc_percpu(struct work_struct);
2868 	if (!works)
2869 		return -ENOMEM;
2870 
2871 	get_online_cpus();
2872 
2873 	for_each_online_cpu(cpu) {
2874 		struct work_struct *work = per_cpu_ptr(works, cpu);
2875 
2876 		INIT_WORK(work, func);
2877 		schedule_work_on(cpu, work);
2878 	}
2879 
2880 	for_each_online_cpu(cpu)
2881 		flush_work(per_cpu_ptr(works, cpu));
2882 
2883 	put_online_cpus();
2884 	free_percpu(works);
2885 	return 0;
2886 }
2887 
2888 /**
2889  * flush_scheduled_work - ensure that any scheduled work has run to completion.
2890  *
2891  * Forces execution of the kernel-global workqueue and blocks until its
2892  * completion.
2893  *
2894  * Think twice before calling this function!  It's very easy to get into
2895  * trouble if you don't take great care.  Either of the following situations
2896  * will lead to deadlock:
2897  *
2898  *	One of the work items currently on the workqueue needs to acquire
2899  *	a lock held by your code or its caller.
2900  *
2901  *	Your code is running in the context of a work routine.
2902  *
2903  * They will be detected by lockdep when they occur, but the first might not
2904  * occur very often.  It depends on what work items are on the workqueue and
2905  * what locks they need, which you have no control over.
2906  *
2907  * In most situations flushing the entire workqueue is overkill; you merely
2908  * need to know that a particular work item isn't queued and isn't running.
2909  * In such cases you should use cancel_delayed_work_sync() or
2910  * cancel_work_sync() instead.
2911  */
2912 void flush_scheduled_work(void)
2913 {
2914 	flush_workqueue(system_wq);
2915 }
2916 EXPORT_SYMBOL(flush_scheduled_work);
2917 
2918 /**
2919  * execute_in_process_context - reliably execute the routine with user context
2920  * @fn:		the function to execute
2921  * @ew:		guaranteed storage for the execute work structure (must
2922  *		be available when the work executes)
2923  *
2924  * Executes the function immediately if process context is available,
2925  * otherwise schedules the function for delayed execution.
2926  *
2927  * Return:	0 - function was executed
2928  *		1 - function was scheduled for execution
2929  */
2930 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2931 {
2932 	if (!in_interrupt()) {
2933 		fn(&ew->work);
2934 		return 0;
2935 	}
2936 
2937 	INIT_WORK(&ew->work, fn);
2938 	schedule_work(&ew->work);
2939 
2940 	return 1;
2941 }
2942 EXPORT_SYMBOL_GPL(execute_in_process_context);
2943 
2944 #ifdef CONFIG_SYSFS
2945 /*
2946  * Workqueues with WQ_SYSFS flag set is visible to userland via
2947  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
2948  * following attributes.
2949  *
2950  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
2951  *  max_active	RW int	: maximum number of in-flight work items
2952  *
2953  * Unbound workqueues have the following extra attributes.
2954  *
2955  *  id		RO int	: the associated pool ID
2956  *  nice	RW int	: nice value of the workers
2957  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
2958  */
2959 struct wq_device {
2960 	struct workqueue_struct		*wq;
2961 	struct device			dev;
2962 };
2963 
2964 static struct workqueue_struct *dev_to_wq(struct device *dev)
2965 {
2966 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
2967 
2968 	return wq_dev->wq;
2969 }
2970 
2971 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
2972 			    char *buf)
2973 {
2974 	struct workqueue_struct *wq = dev_to_wq(dev);
2975 
2976 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
2977 }
2978 static DEVICE_ATTR_RO(per_cpu);
2979 
2980 static ssize_t max_active_show(struct device *dev,
2981 			       struct device_attribute *attr, char *buf)
2982 {
2983 	struct workqueue_struct *wq = dev_to_wq(dev);
2984 
2985 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
2986 }
2987 
2988 static ssize_t max_active_store(struct device *dev,
2989 				struct device_attribute *attr, const char *buf,
2990 				size_t count)
2991 {
2992 	struct workqueue_struct *wq = dev_to_wq(dev);
2993 	int val;
2994 
2995 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
2996 		return -EINVAL;
2997 
2998 	workqueue_set_max_active(wq, val);
2999 	return count;
3000 }
3001 static DEVICE_ATTR_RW(max_active);
3002 
3003 static struct attribute *wq_sysfs_attrs[] = {
3004 	&dev_attr_per_cpu.attr,
3005 	&dev_attr_max_active.attr,
3006 	NULL,
3007 };
3008 ATTRIBUTE_GROUPS(wq_sysfs);
3009 
3010 static ssize_t wq_pool_ids_show(struct device *dev,
3011 				struct device_attribute *attr, char *buf)
3012 {
3013 	struct workqueue_struct *wq = dev_to_wq(dev);
3014 	const char *delim = "";
3015 	int node, written = 0;
3016 
3017 	rcu_read_lock_sched();
3018 	for_each_node(node) {
3019 		written += scnprintf(buf + written, PAGE_SIZE - written,
3020 				     "%s%d:%d", delim, node,
3021 				     unbound_pwq_by_node(wq, node)->pool->id);
3022 		delim = " ";
3023 	}
3024 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3025 	rcu_read_unlock_sched();
3026 
3027 	return written;
3028 }
3029 
3030 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3031 			    char *buf)
3032 {
3033 	struct workqueue_struct *wq = dev_to_wq(dev);
3034 	int written;
3035 
3036 	mutex_lock(&wq->mutex);
3037 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3038 	mutex_unlock(&wq->mutex);
3039 
3040 	return written;
3041 }
3042 
3043 /* prepare workqueue_attrs for sysfs store operations */
3044 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3045 {
3046 	struct workqueue_attrs *attrs;
3047 
3048 	attrs = alloc_workqueue_attrs(GFP_KERNEL);
3049 	if (!attrs)
3050 		return NULL;
3051 
3052 	mutex_lock(&wq->mutex);
3053 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
3054 	mutex_unlock(&wq->mutex);
3055 	return attrs;
3056 }
3057 
3058 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3059 			     const char *buf, size_t count)
3060 {
3061 	struct workqueue_struct *wq = dev_to_wq(dev);
3062 	struct workqueue_attrs *attrs;
3063 	int ret;
3064 
3065 	attrs = wq_sysfs_prep_attrs(wq);
3066 	if (!attrs)
3067 		return -ENOMEM;
3068 
3069 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3070 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
3071 		ret = apply_workqueue_attrs(wq, attrs);
3072 	else
3073 		ret = -EINVAL;
3074 
3075 	free_workqueue_attrs(attrs);
3076 	return ret ?: count;
3077 }
3078 
3079 static ssize_t wq_cpumask_show(struct device *dev,
3080 			       struct device_attribute *attr, char *buf)
3081 {
3082 	struct workqueue_struct *wq = dev_to_wq(dev);
3083 	int written;
3084 
3085 	mutex_lock(&wq->mutex);
3086 	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3087 	mutex_unlock(&wq->mutex);
3088 
3089 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3090 	return written;
3091 }
3092 
3093 static ssize_t wq_cpumask_store(struct device *dev,
3094 				struct device_attribute *attr,
3095 				const char *buf, size_t count)
3096 {
3097 	struct workqueue_struct *wq = dev_to_wq(dev);
3098 	struct workqueue_attrs *attrs;
3099 	int ret;
3100 
3101 	attrs = wq_sysfs_prep_attrs(wq);
3102 	if (!attrs)
3103 		return -ENOMEM;
3104 
3105 	ret = cpumask_parse(buf, attrs->cpumask);
3106 	if (!ret)
3107 		ret = apply_workqueue_attrs(wq, attrs);
3108 
3109 	free_workqueue_attrs(attrs);
3110 	return ret ?: count;
3111 }
3112 
3113 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3114 			    char *buf)
3115 {
3116 	struct workqueue_struct *wq = dev_to_wq(dev);
3117 	int written;
3118 
3119 	mutex_lock(&wq->mutex);
3120 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
3121 			    !wq->unbound_attrs->no_numa);
3122 	mutex_unlock(&wq->mutex);
3123 
3124 	return written;
3125 }
3126 
3127 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3128 			     const char *buf, size_t count)
3129 {
3130 	struct workqueue_struct *wq = dev_to_wq(dev);
3131 	struct workqueue_attrs *attrs;
3132 	int v, ret;
3133 
3134 	attrs = wq_sysfs_prep_attrs(wq);
3135 	if (!attrs)
3136 		return -ENOMEM;
3137 
3138 	ret = -EINVAL;
3139 	if (sscanf(buf, "%d", &v) == 1) {
3140 		attrs->no_numa = !v;
3141 		ret = apply_workqueue_attrs(wq, attrs);
3142 	}
3143 
3144 	free_workqueue_attrs(attrs);
3145 	return ret ?: count;
3146 }
3147 
3148 static struct device_attribute wq_sysfs_unbound_attrs[] = {
3149 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3150 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3151 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3152 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3153 	__ATTR_NULL,
3154 };
3155 
3156 static struct bus_type wq_subsys = {
3157 	.name				= "workqueue",
3158 	.dev_groups			= wq_sysfs_groups,
3159 };
3160 
3161 static int __init wq_sysfs_init(void)
3162 {
3163 	return subsys_virtual_register(&wq_subsys, NULL);
3164 }
3165 core_initcall(wq_sysfs_init);
3166 
3167 static void wq_device_release(struct device *dev)
3168 {
3169 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3170 
3171 	kfree(wq_dev);
3172 }
3173 
3174 /**
3175  * workqueue_sysfs_register - make a workqueue visible in sysfs
3176  * @wq: the workqueue to register
3177  *
3178  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3179  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3180  * which is the preferred method.
3181  *
3182  * Workqueue user should use this function directly iff it wants to apply
3183  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3184  * apply_workqueue_attrs() may race against userland updating the
3185  * attributes.
3186  *
3187  * Return: 0 on success, -errno on failure.
3188  */
3189 int workqueue_sysfs_register(struct workqueue_struct *wq)
3190 {
3191 	struct wq_device *wq_dev;
3192 	int ret;
3193 
3194 	/*
3195 	 * Adjusting max_active or creating new pwqs by applyting
3196 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
3197 	 * workqueues.
3198 	 */
3199 	if (WARN_ON(wq->flags & __WQ_ORDERED))
3200 		return -EINVAL;
3201 
3202 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3203 	if (!wq_dev)
3204 		return -ENOMEM;
3205 
3206 	wq_dev->wq = wq;
3207 	wq_dev->dev.bus = &wq_subsys;
3208 	wq_dev->dev.init_name = wq->name;
3209 	wq_dev->dev.release = wq_device_release;
3210 
3211 	/*
3212 	 * unbound_attrs are created separately.  Suppress uevent until
3213 	 * everything is ready.
3214 	 */
3215 	dev_set_uevent_suppress(&wq_dev->dev, true);
3216 
3217 	ret = device_register(&wq_dev->dev);
3218 	if (ret) {
3219 		kfree(wq_dev);
3220 		wq->wq_dev = NULL;
3221 		return ret;
3222 	}
3223 
3224 	if (wq->flags & WQ_UNBOUND) {
3225 		struct device_attribute *attr;
3226 
3227 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3228 			ret = device_create_file(&wq_dev->dev, attr);
3229 			if (ret) {
3230 				device_unregister(&wq_dev->dev);
3231 				wq->wq_dev = NULL;
3232 				return ret;
3233 			}
3234 		}
3235 	}
3236 
3237 	dev_set_uevent_suppress(&wq_dev->dev, false);
3238 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3239 	return 0;
3240 }
3241 
3242 /**
3243  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3244  * @wq: the workqueue to unregister
3245  *
3246  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3247  */
3248 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3249 {
3250 	struct wq_device *wq_dev = wq->wq_dev;
3251 
3252 	if (!wq->wq_dev)
3253 		return;
3254 
3255 	wq->wq_dev = NULL;
3256 	device_unregister(&wq_dev->dev);
3257 }
3258 #else	/* CONFIG_SYSFS */
3259 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
3260 #endif	/* CONFIG_SYSFS */
3261 
3262 /**
3263  * free_workqueue_attrs - free a workqueue_attrs
3264  * @attrs: workqueue_attrs to free
3265  *
3266  * Undo alloc_workqueue_attrs().
3267  */
3268 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3269 {
3270 	if (attrs) {
3271 		free_cpumask_var(attrs->cpumask);
3272 		kfree(attrs);
3273 	}
3274 }
3275 
3276 /**
3277  * alloc_workqueue_attrs - allocate a workqueue_attrs
3278  * @gfp_mask: allocation mask to use
3279  *
3280  * Allocate a new workqueue_attrs, initialize with default settings and
3281  * return it.
3282  *
3283  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3284  */
3285 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3286 {
3287 	struct workqueue_attrs *attrs;
3288 
3289 	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3290 	if (!attrs)
3291 		goto fail;
3292 	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3293 		goto fail;
3294 
3295 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3296 	return attrs;
3297 fail:
3298 	free_workqueue_attrs(attrs);
3299 	return NULL;
3300 }
3301 
3302 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3303 				 const struct workqueue_attrs *from)
3304 {
3305 	to->nice = from->nice;
3306 	cpumask_copy(to->cpumask, from->cpumask);
3307 	/*
3308 	 * Unlike hash and equality test, this function doesn't ignore
3309 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3310 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3311 	 */
3312 	to->no_numa = from->no_numa;
3313 }
3314 
3315 /* hash value of the content of @attr */
3316 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3317 {
3318 	u32 hash = 0;
3319 
3320 	hash = jhash_1word(attrs->nice, hash);
3321 	hash = jhash(cpumask_bits(attrs->cpumask),
3322 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3323 	return hash;
3324 }
3325 
3326 /* content equality test */
3327 static bool wqattrs_equal(const struct workqueue_attrs *a,
3328 			  const struct workqueue_attrs *b)
3329 {
3330 	if (a->nice != b->nice)
3331 		return false;
3332 	if (!cpumask_equal(a->cpumask, b->cpumask))
3333 		return false;
3334 	return true;
3335 }
3336 
3337 /**
3338  * init_worker_pool - initialize a newly zalloc'd worker_pool
3339  * @pool: worker_pool to initialize
3340  *
3341  * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3342  *
3343  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3344  * inside @pool proper are initialized and put_unbound_pool() can be called
3345  * on @pool safely to release it.
3346  */
3347 static int init_worker_pool(struct worker_pool *pool)
3348 {
3349 	spin_lock_init(&pool->lock);
3350 	pool->id = -1;
3351 	pool->cpu = -1;
3352 	pool->node = NUMA_NO_NODE;
3353 	pool->flags |= POOL_DISASSOCIATED;
3354 	INIT_LIST_HEAD(&pool->worklist);
3355 	INIT_LIST_HEAD(&pool->idle_list);
3356 	hash_init(pool->busy_hash);
3357 
3358 	init_timer_deferrable(&pool->idle_timer);
3359 	pool->idle_timer.function = idle_worker_timeout;
3360 	pool->idle_timer.data = (unsigned long)pool;
3361 
3362 	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3363 		    (unsigned long)pool);
3364 
3365 	mutex_init(&pool->manager_arb);
3366 	mutex_init(&pool->attach_mutex);
3367 	INIT_LIST_HEAD(&pool->workers);
3368 
3369 	ida_init(&pool->worker_ida);
3370 	INIT_HLIST_NODE(&pool->hash_node);
3371 	pool->refcnt = 1;
3372 
3373 	/* shouldn't fail above this point */
3374 	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3375 	if (!pool->attrs)
3376 		return -ENOMEM;
3377 	return 0;
3378 }
3379 
3380 static void rcu_free_pool(struct rcu_head *rcu)
3381 {
3382 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3383 
3384 	ida_destroy(&pool->worker_ida);
3385 	free_workqueue_attrs(pool->attrs);
3386 	kfree(pool);
3387 }
3388 
3389 /**
3390  * put_unbound_pool - put a worker_pool
3391  * @pool: worker_pool to put
3392  *
3393  * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3394  * safe manner.  get_unbound_pool() calls this function on its failure path
3395  * and this function should be able to release pools which went through,
3396  * successfully or not, init_worker_pool().
3397  *
3398  * Should be called with wq_pool_mutex held.
3399  */
3400 static void put_unbound_pool(struct worker_pool *pool)
3401 {
3402 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3403 	struct worker *worker;
3404 
3405 	lockdep_assert_held(&wq_pool_mutex);
3406 
3407 	if (--pool->refcnt)
3408 		return;
3409 
3410 	/* sanity checks */
3411 	if (WARN_ON(!(pool->cpu < 0)) ||
3412 	    WARN_ON(!list_empty(&pool->worklist)))
3413 		return;
3414 
3415 	/* release id and unhash */
3416 	if (pool->id >= 0)
3417 		idr_remove(&worker_pool_idr, pool->id);
3418 	hash_del(&pool->hash_node);
3419 
3420 	/*
3421 	 * Become the manager and destroy all workers.  Grabbing
3422 	 * manager_arb prevents @pool's workers from blocking on
3423 	 * attach_mutex.
3424 	 */
3425 	mutex_lock(&pool->manager_arb);
3426 
3427 	spin_lock_irq(&pool->lock);
3428 	while ((worker = first_idle_worker(pool)))
3429 		destroy_worker(worker);
3430 	WARN_ON(pool->nr_workers || pool->nr_idle);
3431 	spin_unlock_irq(&pool->lock);
3432 
3433 	mutex_lock(&pool->attach_mutex);
3434 	if (!list_empty(&pool->workers))
3435 		pool->detach_completion = &detach_completion;
3436 	mutex_unlock(&pool->attach_mutex);
3437 
3438 	if (pool->detach_completion)
3439 		wait_for_completion(pool->detach_completion);
3440 
3441 	mutex_unlock(&pool->manager_arb);
3442 
3443 	/* shut down the timers */
3444 	del_timer_sync(&pool->idle_timer);
3445 	del_timer_sync(&pool->mayday_timer);
3446 
3447 	/* sched-RCU protected to allow dereferences from get_work_pool() */
3448 	call_rcu_sched(&pool->rcu, rcu_free_pool);
3449 }
3450 
3451 /**
3452  * get_unbound_pool - get a worker_pool with the specified attributes
3453  * @attrs: the attributes of the worker_pool to get
3454  *
3455  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3456  * reference count and return it.  If there already is a matching
3457  * worker_pool, it will be used; otherwise, this function attempts to
3458  * create a new one.
3459  *
3460  * Should be called with wq_pool_mutex held.
3461  *
3462  * Return: On success, a worker_pool with the same attributes as @attrs.
3463  * On failure, %NULL.
3464  */
3465 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3466 {
3467 	u32 hash = wqattrs_hash(attrs);
3468 	struct worker_pool *pool;
3469 	int node;
3470 
3471 	lockdep_assert_held(&wq_pool_mutex);
3472 
3473 	/* do we already have a matching pool? */
3474 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3475 		if (wqattrs_equal(pool->attrs, attrs)) {
3476 			pool->refcnt++;
3477 			return pool;
3478 		}
3479 	}
3480 
3481 	/* nope, create a new one */
3482 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3483 	if (!pool || init_worker_pool(pool) < 0)
3484 		goto fail;
3485 
3486 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3487 	copy_workqueue_attrs(pool->attrs, attrs);
3488 
3489 	/*
3490 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3491 	 * 'struct workqueue_attrs' comments for detail.
3492 	 */
3493 	pool->attrs->no_numa = false;
3494 
3495 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3496 	if (wq_numa_enabled) {
3497 		for_each_node(node) {
3498 			if (cpumask_subset(pool->attrs->cpumask,
3499 					   wq_numa_possible_cpumask[node])) {
3500 				pool->node = node;
3501 				break;
3502 			}
3503 		}
3504 	}
3505 
3506 	if (worker_pool_assign_id(pool) < 0)
3507 		goto fail;
3508 
3509 	/* create and start the initial worker */
3510 	if (!create_worker(pool))
3511 		goto fail;
3512 
3513 	/* install */
3514 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3515 
3516 	return pool;
3517 fail:
3518 	if (pool)
3519 		put_unbound_pool(pool);
3520 	return NULL;
3521 }
3522 
3523 static void rcu_free_pwq(struct rcu_head *rcu)
3524 {
3525 	kmem_cache_free(pwq_cache,
3526 			container_of(rcu, struct pool_workqueue, rcu));
3527 }
3528 
3529 /*
3530  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3531  * and needs to be destroyed.
3532  */
3533 static void pwq_unbound_release_workfn(struct work_struct *work)
3534 {
3535 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3536 						  unbound_release_work);
3537 	struct workqueue_struct *wq = pwq->wq;
3538 	struct worker_pool *pool = pwq->pool;
3539 	bool is_last;
3540 
3541 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3542 		return;
3543 
3544 	mutex_lock(&wq->mutex);
3545 	list_del_rcu(&pwq->pwqs_node);
3546 	is_last = list_empty(&wq->pwqs);
3547 	mutex_unlock(&wq->mutex);
3548 
3549 	mutex_lock(&wq_pool_mutex);
3550 	put_unbound_pool(pool);
3551 	mutex_unlock(&wq_pool_mutex);
3552 
3553 	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3554 
3555 	/*
3556 	 * If we're the last pwq going away, @wq is already dead and no one
3557 	 * is gonna access it anymore.  Free it.
3558 	 */
3559 	if (is_last) {
3560 		free_workqueue_attrs(wq->unbound_attrs);
3561 		kfree(wq);
3562 	}
3563 }
3564 
3565 /**
3566  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3567  * @pwq: target pool_workqueue
3568  *
3569  * If @pwq isn't freezing, set @pwq->max_active to the associated
3570  * workqueue's saved_max_active and activate delayed work items
3571  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3572  */
3573 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3574 {
3575 	struct workqueue_struct *wq = pwq->wq;
3576 	bool freezable = wq->flags & WQ_FREEZABLE;
3577 
3578 	/* for @wq->saved_max_active */
3579 	lockdep_assert_held(&wq->mutex);
3580 
3581 	/* fast exit for non-freezable wqs */
3582 	if (!freezable && pwq->max_active == wq->saved_max_active)
3583 		return;
3584 
3585 	spin_lock_irq(&pwq->pool->lock);
3586 
3587 	/*
3588 	 * During [un]freezing, the caller is responsible for ensuring that
3589 	 * this function is called at least once after @workqueue_freezing
3590 	 * is updated and visible.
3591 	 */
3592 	if (!freezable || !workqueue_freezing) {
3593 		pwq->max_active = wq->saved_max_active;
3594 
3595 		while (!list_empty(&pwq->delayed_works) &&
3596 		       pwq->nr_active < pwq->max_active)
3597 			pwq_activate_first_delayed(pwq);
3598 
3599 		/*
3600 		 * Need to kick a worker after thawed or an unbound wq's
3601 		 * max_active is bumped.  It's a slow path.  Do it always.
3602 		 */
3603 		wake_up_worker(pwq->pool);
3604 	} else {
3605 		pwq->max_active = 0;
3606 	}
3607 
3608 	spin_unlock_irq(&pwq->pool->lock);
3609 }
3610 
3611 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3612 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3613 		     struct worker_pool *pool)
3614 {
3615 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3616 
3617 	memset(pwq, 0, sizeof(*pwq));
3618 
3619 	pwq->pool = pool;
3620 	pwq->wq = wq;
3621 	pwq->flush_color = -1;
3622 	pwq->refcnt = 1;
3623 	INIT_LIST_HEAD(&pwq->delayed_works);
3624 	INIT_LIST_HEAD(&pwq->pwqs_node);
3625 	INIT_LIST_HEAD(&pwq->mayday_node);
3626 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3627 }
3628 
3629 /* sync @pwq with the current state of its associated wq and link it */
3630 static void link_pwq(struct pool_workqueue *pwq)
3631 {
3632 	struct workqueue_struct *wq = pwq->wq;
3633 
3634 	lockdep_assert_held(&wq->mutex);
3635 
3636 	/* may be called multiple times, ignore if already linked */
3637 	if (!list_empty(&pwq->pwqs_node))
3638 		return;
3639 
3640 	/* set the matching work_color */
3641 	pwq->work_color = wq->work_color;
3642 
3643 	/* sync max_active to the current setting */
3644 	pwq_adjust_max_active(pwq);
3645 
3646 	/* link in @pwq */
3647 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3648 }
3649 
3650 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3651 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3652 					const struct workqueue_attrs *attrs)
3653 {
3654 	struct worker_pool *pool;
3655 	struct pool_workqueue *pwq;
3656 
3657 	lockdep_assert_held(&wq_pool_mutex);
3658 
3659 	pool = get_unbound_pool(attrs);
3660 	if (!pool)
3661 		return NULL;
3662 
3663 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3664 	if (!pwq) {
3665 		put_unbound_pool(pool);
3666 		return NULL;
3667 	}
3668 
3669 	init_pwq(pwq, wq, pool);
3670 	return pwq;
3671 }
3672 
3673 /* undo alloc_unbound_pwq(), used only in the error path */
3674 static void free_unbound_pwq(struct pool_workqueue *pwq)
3675 {
3676 	lockdep_assert_held(&wq_pool_mutex);
3677 
3678 	if (pwq) {
3679 		put_unbound_pool(pwq->pool);
3680 		kmem_cache_free(pwq_cache, pwq);
3681 	}
3682 }
3683 
3684 /**
3685  * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3686  * @attrs: the wq_attrs of interest
3687  * @node: the target NUMA node
3688  * @cpu_going_down: if >= 0, the CPU to consider as offline
3689  * @cpumask: outarg, the resulting cpumask
3690  *
3691  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3692  * @cpu_going_down is >= 0, that cpu is considered offline during
3693  * calculation.  The result is stored in @cpumask.
3694  *
3695  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3696  * enabled and @node has online CPUs requested by @attrs, the returned
3697  * cpumask is the intersection of the possible CPUs of @node and
3698  * @attrs->cpumask.
3699  *
3700  * The caller is responsible for ensuring that the cpumask of @node stays
3701  * stable.
3702  *
3703  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3704  * %false if equal.
3705  */
3706 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3707 				 int cpu_going_down, cpumask_t *cpumask)
3708 {
3709 	if (!wq_numa_enabled || attrs->no_numa)
3710 		goto use_dfl;
3711 
3712 	/* does @node have any online CPUs @attrs wants? */
3713 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3714 	if (cpu_going_down >= 0)
3715 		cpumask_clear_cpu(cpu_going_down, cpumask);
3716 
3717 	if (cpumask_empty(cpumask))
3718 		goto use_dfl;
3719 
3720 	/* yeap, return possible CPUs in @node that @attrs wants */
3721 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3722 	return !cpumask_equal(cpumask, attrs->cpumask);
3723 
3724 use_dfl:
3725 	cpumask_copy(cpumask, attrs->cpumask);
3726 	return false;
3727 }
3728 
3729 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3730 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3731 						   int node,
3732 						   struct pool_workqueue *pwq)
3733 {
3734 	struct pool_workqueue *old_pwq;
3735 
3736 	lockdep_assert_held(&wq->mutex);
3737 
3738 	/* link_pwq() can handle duplicate calls */
3739 	link_pwq(pwq);
3740 
3741 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3742 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3743 	return old_pwq;
3744 }
3745 
3746 /**
3747  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3748  * @wq: the target workqueue
3749  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3750  *
3751  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3752  * machines, this function maps a separate pwq to each NUMA node with
3753  * possibles CPUs in @attrs->cpumask so that work items are affine to the
3754  * NUMA node it was issued on.  Older pwqs are released as in-flight work
3755  * items finish.  Note that a work item which repeatedly requeues itself
3756  * back-to-back will stay on its current pwq.
3757  *
3758  * Performs GFP_KERNEL allocations.
3759  *
3760  * Return: 0 on success and -errno on failure.
3761  */
3762 int apply_workqueue_attrs(struct workqueue_struct *wq,
3763 			  const struct workqueue_attrs *attrs)
3764 {
3765 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3766 	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3767 	int node, ret;
3768 
3769 	/* only unbound workqueues can change attributes */
3770 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3771 		return -EINVAL;
3772 
3773 	/* creating multiple pwqs breaks ordering guarantee */
3774 	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3775 		return -EINVAL;
3776 
3777 	pwq_tbl = kzalloc(nr_node_ids * sizeof(pwq_tbl[0]), GFP_KERNEL);
3778 	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3779 	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3780 	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3781 		goto enomem;
3782 
3783 	/* make a copy of @attrs and sanitize it */
3784 	copy_workqueue_attrs(new_attrs, attrs);
3785 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3786 
3787 	/*
3788 	 * We may create multiple pwqs with differing cpumasks.  Make a
3789 	 * copy of @new_attrs which will be modified and used to obtain
3790 	 * pools.
3791 	 */
3792 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3793 
3794 	/*
3795 	 * CPUs should stay stable across pwq creations and installations.
3796 	 * Pin CPUs, determine the target cpumask for each node and create
3797 	 * pwqs accordingly.
3798 	 */
3799 	get_online_cpus();
3800 
3801 	mutex_lock(&wq_pool_mutex);
3802 
3803 	/*
3804 	 * If something goes wrong during CPU up/down, we'll fall back to
3805 	 * the default pwq covering whole @attrs->cpumask.  Always create
3806 	 * it even if we don't use it immediately.
3807 	 */
3808 	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3809 	if (!dfl_pwq)
3810 		goto enomem_pwq;
3811 
3812 	for_each_node(node) {
3813 		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3814 			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3815 			if (!pwq_tbl[node])
3816 				goto enomem_pwq;
3817 		} else {
3818 			dfl_pwq->refcnt++;
3819 			pwq_tbl[node] = dfl_pwq;
3820 		}
3821 	}
3822 
3823 	mutex_unlock(&wq_pool_mutex);
3824 
3825 	/* all pwqs have been created successfully, let's install'em */
3826 	mutex_lock(&wq->mutex);
3827 
3828 	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3829 
3830 	/* save the previous pwq and install the new one */
3831 	for_each_node(node)
3832 		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3833 
3834 	/* @dfl_pwq might not have been used, ensure it's linked */
3835 	link_pwq(dfl_pwq);
3836 	swap(wq->dfl_pwq, dfl_pwq);
3837 
3838 	mutex_unlock(&wq->mutex);
3839 
3840 	/* put the old pwqs */
3841 	for_each_node(node)
3842 		put_pwq_unlocked(pwq_tbl[node]);
3843 	put_pwq_unlocked(dfl_pwq);
3844 
3845 	put_online_cpus();
3846 	ret = 0;
3847 	/* fall through */
3848 out_free:
3849 	free_workqueue_attrs(tmp_attrs);
3850 	free_workqueue_attrs(new_attrs);
3851 	kfree(pwq_tbl);
3852 	return ret;
3853 
3854 enomem_pwq:
3855 	free_unbound_pwq(dfl_pwq);
3856 	for_each_node(node)
3857 		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
3858 			free_unbound_pwq(pwq_tbl[node]);
3859 	mutex_unlock(&wq_pool_mutex);
3860 	put_online_cpus();
3861 enomem:
3862 	ret = -ENOMEM;
3863 	goto out_free;
3864 }
3865 
3866 /**
3867  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3868  * @wq: the target workqueue
3869  * @cpu: the CPU coming up or going down
3870  * @online: whether @cpu is coming up or going down
3871  *
3872  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3873  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3874  * @wq accordingly.
3875  *
3876  * If NUMA affinity can't be adjusted due to memory allocation failure, it
3877  * falls back to @wq->dfl_pwq which may not be optimal but is always
3878  * correct.
3879  *
3880  * Note that when the last allowed CPU of a NUMA node goes offline for a
3881  * workqueue with a cpumask spanning multiple nodes, the workers which were
3882  * already executing the work items for the workqueue will lose their CPU
3883  * affinity and may execute on any CPU.  This is similar to how per-cpu
3884  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3885  * affinity, it's the user's responsibility to flush the work item from
3886  * CPU_DOWN_PREPARE.
3887  */
3888 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3889 				   bool online)
3890 {
3891 	int node = cpu_to_node(cpu);
3892 	int cpu_off = online ? -1 : cpu;
3893 	struct pool_workqueue *old_pwq = NULL, *pwq;
3894 	struct workqueue_attrs *target_attrs;
3895 	cpumask_t *cpumask;
3896 
3897 	lockdep_assert_held(&wq_pool_mutex);
3898 
3899 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
3900 		return;
3901 
3902 	/*
3903 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3904 	 * Let's use a preallocated one.  The following buf is protected by
3905 	 * CPU hotplug exclusion.
3906 	 */
3907 	target_attrs = wq_update_unbound_numa_attrs_buf;
3908 	cpumask = target_attrs->cpumask;
3909 
3910 	mutex_lock(&wq->mutex);
3911 	if (wq->unbound_attrs->no_numa)
3912 		goto out_unlock;
3913 
3914 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3915 	pwq = unbound_pwq_by_node(wq, node);
3916 
3917 	/*
3918 	 * Let's determine what needs to be done.  If the target cpumask is
3919 	 * different from wq's, we need to compare it to @pwq's and create
3920 	 * a new one if they don't match.  If the target cpumask equals
3921 	 * wq's, the default pwq should be used.
3922 	 */
3923 	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
3924 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3925 			goto out_unlock;
3926 	} else {
3927 		goto use_dfl_pwq;
3928 	}
3929 
3930 	mutex_unlock(&wq->mutex);
3931 
3932 	/* create a new pwq */
3933 	pwq = alloc_unbound_pwq(wq, target_attrs);
3934 	if (!pwq) {
3935 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3936 			wq->name);
3937 		mutex_lock(&wq->mutex);
3938 		goto use_dfl_pwq;
3939 	}
3940 
3941 	/*
3942 	 * Install the new pwq.  As this function is called only from CPU
3943 	 * hotplug callbacks and applying a new attrs is wrapped with
3944 	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
3945 	 * inbetween.
3946 	 */
3947 	mutex_lock(&wq->mutex);
3948 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3949 	goto out_unlock;
3950 
3951 use_dfl_pwq:
3952 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
3953 	get_pwq(wq->dfl_pwq);
3954 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3955 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3956 out_unlock:
3957 	mutex_unlock(&wq->mutex);
3958 	put_pwq_unlocked(old_pwq);
3959 }
3960 
3961 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3962 {
3963 	bool highpri = wq->flags & WQ_HIGHPRI;
3964 	int cpu, ret;
3965 
3966 	if (!(wq->flags & WQ_UNBOUND)) {
3967 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3968 		if (!wq->cpu_pwqs)
3969 			return -ENOMEM;
3970 
3971 		for_each_possible_cpu(cpu) {
3972 			struct pool_workqueue *pwq =
3973 				per_cpu_ptr(wq->cpu_pwqs, cpu);
3974 			struct worker_pool *cpu_pools =
3975 				per_cpu(cpu_worker_pools, cpu);
3976 
3977 			init_pwq(pwq, wq, &cpu_pools[highpri]);
3978 
3979 			mutex_lock(&wq->mutex);
3980 			link_pwq(pwq);
3981 			mutex_unlock(&wq->mutex);
3982 		}
3983 		return 0;
3984 	} else if (wq->flags & __WQ_ORDERED) {
3985 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3986 		/* there should only be single pwq for ordering guarantee */
3987 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3988 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3989 		     "ordering guarantee broken for workqueue %s\n", wq->name);
3990 		return ret;
3991 	} else {
3992 		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3993 	}
3994 }
3995 
3996 static int wq_clamp_max_active(int max_active, unsigned int flags,
3997 			       const char *name)
3998 {
3999 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4000 
4001 	if (max_active < 1 || max_active > lim)
4002 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4003 			max_active, name, 1, lim);
4004 
4005 	return clamp_val(max_active, 1, lim);
4006 }
4007 
4008 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4009 					       unsigned int flags,
4010 					       int max_active,
4011 					       struct lock_class_key *key,
4012 					       const char *lock_name, ...)
4013 {
4014 	size_t tbl_size = 0;
4015 	va_list args;
4016 	struct workqueue_struct *wq;
4017 	struct pool_workqueue *pwq;
4018 
4019 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4020 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4021 		flags |= WQ_UNBOUND;
4022 
4023 	/* allocate wq and format name */
4024 	if (flags & WQ_UNBOUND)
4025 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4026 
4027 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4028 	if (!wq)
4029 		return NULL;
4030 
4031 	if (flags & WQ_UNBOUND) {
4032 		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4033 		if (!wq->unbound_attrs)
4034 			goto err_free_wq;
4035 	}
4036 
4037 	va_start(args, lock_name);
4038 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4039 	va_end(args);
4040 
4041 	max_active = max_active ?: WQ_DFL_ACTIVE;
4042 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4043 
4044 	/* init wq */
4045 	wq->flags = flags;
4046 	wq->saved_max_active = max_active;
4047 	mutex_init(&wq->mutex);
4048 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4049 	INIT_LIST_HEAD(&wq->pwqs);
4050 	INIT_LIST_HEAD(&wq->flusher_queue);
4051 	INIT_LIST_HEAD(&wq->flusher_overflow);
4052 	INIT_LIST_HEAD(&wq->maydays);
4053 
4054 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4055 	INIT_LIST_HEAD(&wq->list);
4056 
4057 	if (alloc_and_link_pwqs(wq) < 0)
4058 		goto err_free_wq;
4059 
4060 	/*
4061 	 * Workqueues which may be used during memory reclaim should
4062 	 * have a rescuer to guarantee forward progress.
4063 	 */
4064 	if (flags & WQ_MEM_RECLAIM) {
4065 		struct worker *rescuer;
4066 
4067 		rescuer = alloc_worker(NUMA_NO_NODE);
4068 		if (!rescuer)
4069 			goto err_destroy;
4070 
4071 		rescuer->rescue_wq = wq;
4072 		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4073 					       wq->name);
4074 		if (IS_ERR(rescuer->task)) {
4075 			kfree(rescuer);
4076 			goto err_destroy;
4077 		}
4078 
4079 		wq->rescuer = rescuer;
4080 		rescuer->task->flags |= PF_NO_SETAFFINITY;
4081 		wake_up_process(rescuer->task);
4082 	}
4083 
4084 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4085 		goto err_destroy;
4086 
4087 	/*
4088 	 * wq_pool_mutex protects global freeze state and workqueues list.
4089 	 * Grab it, adjust max_active and add the new @wq to workqueues
4090 	 * list.
4091 	 */
4092 	mutex_lock(&wq_pool_mutex);
4093 
4094 	mutex_lock(&wq->mutex);
4095 	for_each_pwq(pwq, wq)
4096 		pwq_adjust_max_active(pwq);
4097 	mutex_unlock(&wq->mutex);
4098 
4099 	list_add(&wq->list, &workqueues);
4100 
4101 	mutex_unlock(&wq_pool_mutex);
4102 
4103 	return wq;
4104 
4105 err_free_wq:
4106 	free_workqueue_attrs(wq->unbound_attrs);
4107 	kfree(wq);
4108 	return NULL;
4109 err_destroy:
4110 	destroy_workqueue(wq);
4111 	return NULL;
4112 }
4113 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4114 
4115 /**
4116  * destroy_workqueue - safely terminate a workqueue
4117  * @wq: target workqueue
4118  *
4119  * Safely destroy a workqueue. All work currently pending will be done first.
4120  */
4121 void destroy_workqueue(struct workqueue_struct *wq)
4122 {
4123 	struct pool_workqueue *pwq;
4124 	int node;
4125 
4126 	/* drain it before proceeding with destruction */
4127 	drain_workqueue(wq);
4128 
4129 	/* sanity checks */
4130 	mutex_lock(&wq->mutex);
4131 	for_each_pwq(pwq, wq) {
4132 		int i;
4133 
4134 		for (i = 0; i < WORK_NR_COLORS; i++) {
4135 			if (WARN_ON(pwq->nr_in_flight[i])) {
4136 				mutex_unlock(&wq->mutex);
4137 				return;
4138 			}
4139 		}
4140 
4141 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4142 		    WARN_ON(pwq->nr_active) ||
4143 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4144 			mutex_unlock(&wq->mutex);
4145 			return;
4146 		}
4147 	}
4148 	mutex_unlock(&wq->mutex);
4149 
4150 	/*
4151 	 * wq list is used to freeze wq, remove from list after
4152 	 * flushing is complete in case freeze races us.
4153 	 */
4154 	mutex_lock(&wq_pool_mutex);
4155 	list_del_init(&wq->list);
4156 	mutex_unlock(&wq_pool_mutex);
4157 
4158 	workqueue_sysfs_unregister(wq);
4159 
4160 	if (wq->rescuer) {
4161 		kthread_stop(wq->rescuer->task);
4162 		kfree(wq->rescuer);
4163 		wq->rescuer = NULL;
4164 	}
4165 
4166 	if (!(wq->flags & WQ_UNBOUND)) {
4167 		/*
4168 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4169 		 * free the pwqs and wq.
4170 		 */
4171 		free_percpu(wq->cpu_pwqs);
4172 		kfree(wq);
4173 	} else {
4174 		/*
4175 		 * We're the sole accessor of @wq at this point.  Directly
4176 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4177 		 * @wq will be freed when the last pwq is released.
4178 		 */
4179 		for_each_node(node) {
4180 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4181 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4182 			put_pwq_unlocked(pwq);
4183 		}
4184 
4185 		/*
4186 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4187 		 * put.  Don't access it afterwards.
4188 		 */
4189 		pwq = wq->dfl_pwq;
4190 		wq->dfl_pwq = NULL;
4191 		put_pwq_unlocked(pwq);
4192 	}
4193 }
4194 EXPORT_SYMBOL_GPL(destroy_workqueue);
4195 
4196 /**
4197  * workqueue_set_max_active - adjust max_active of a workqueue
4198  * @wq: target workqueue
4199  * @max_active: new max_active value.
4200  *
4201  * Set max_active of @wq to @max_active.
4202  *
4203  * CONTEXT:
4204  * Don't call from IRQ context.
4205  */
4206 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4207 {
4208 	struct pool_workqueue *pwq;
4209 
4210 	/* disallow meddling with max_active for ordered workqueues */
4211 	if (WARN_ON(wq->flags & __WQ_ORDERED))
4212 		return;
4213 
4214 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4215 
4216 	mutex_lock(&wq->mutex);
4217 
4218 	wq->saved_max_active = max_active;
4219 
4220 	for_each_pwq(pwq, wq)
4221 		pwq_adjust_max_active(pwq);
4222 
4223 	mutex_unlock(&wq->mutex);
4224 }
4225 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4226 
4227 /**
4228  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4229  *
4230  * Determine whether %current is a workqueue rescuer.  Can be used from
4231  * work functions to determine whether it's being run off the rescuer task.
4232  *
4233  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4234  */
4235 bool current_is_workqueue_rescuer(void)
4236 {
4237 	struct worker *worker = current_wq_worker();
4238 
4239 	return worker && worker->rescue_wq;
4240 }
4241 
4242 /**
4243  * workqueue_congested - test whether a workqueue is congested
4244  * @cpu: CPU in question
4245  * @wq: target workqueue
4246  *
4247  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4248  * no synchronization around this function and the test result is
4249  * unreliable and only useful as advisory hints or for debugging.
4250  *
4251  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4252  * Note that both per-cpu and unbound workqueues may be associated with
4253  * multiple pool_workqueues which have separate congested states.  A
4254  * workqueue being congested on one CPU doesn't mean the workqueue is also
4255  * contested on other CPUs / NUMA nodes.
4256  *
4257  * Return:
4258  * %true if congested, %false otherwise.
4259  */
4260 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4261 {
4262 	struct pool_workqueue *pwq;
4263 	bool ret;
4264 
4265 	rcu_read_lock_sched();
4266 
4267 	if (cpu == WORK_CPU_UNBOUND)
4268 		cpu = smp_processor_id();
4269 
4270 	if (!(wq->flags & WQ_UNBOUND))
4271 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4272 	else
4273 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4274 
4275 	ret = !list_empty(&pwq->delayed_works);
4276 	rcu_read_unlock_sched();
4277 
4278 	return ret;
4279 }
4280 EXPORT_SYMBOL_GPL(workqueue_congested);
4281 
4282 /**
4283  * work_busy - test whether a work is currently pending or running
4284  * @work: the work to be tested
4285  *
4286  * Test whether @work is currently pending or running.  There is no
4287  * synchronization around this function and the test result is
4288  * unreliable and only useful as advisory hints or for debugging.
4289  *
4290  * Return:
4291  * OR'd bitmask of WORK_BUSY_* bits.
4292  */
4293 unsigned int work_busy(struct work_struct *work)
4294 {
4295 	struct worker_pool *pool;
4296 	unsigned long flags;
4297 	unsigned int ret = 0;
4298 
4299 	if (work_pending(work))
4300 		ret |= WORK_BUSY_PENDING;
4301 
4302 	local_irq_save(flags);
4303 	pool = get_work_pool(work);
4304 	if (pool) {
4305 		spin_lock(&pool->lock);
4306 		if (find_worker_executing_work(pool, work))
4307 			ret |= WORK_BUSY_RUNNING;
4308 		spin_unlock(&pool->lock);
4309 	}
4310 	local_irq_restore(flags);
4311 
4312 	return ret;
4313 }
4314 EXPORT_SYMBOL_GPL(work_busy);
4315 
4316 /**
4317  * set_worker_desc - set description for the current work item
4318  * @fmt: printf-style format string
4319  * @...: arguments for the format string
4320  *
4321  * This function can be called by a running work function to describe what
4322  * the work item is about.  If the worker task gets dumped, this
4323  * information will be printed out together to help debugging.  The
4324  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4325  */
4326 void set_worker_desc(const char *fmt, ...)
4327 {
4328 	struct worker *worker = current_wq_worker();
4329 	va_list args;
4330 
4331 	if (worker) {
4332 		va_start(args, fmt);
4333 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4334 		va_end(args);
4335 		worker->desc_valid = true;
4336 	}
4337 }
4338 
4339 /**
4340  * print_worker_info - print out worker information and description
4341  * @log_lvl: the log level to use when printing
4342  * @task: target task
4343  *
4344  * If @task is a worker and currently executing a work item, print out the
4345  * name of the workqueue being serviced and worker description set with
4346  * set_worker_desc() by the currently executing work item.
4347  *
4348  * This function can be safely called on any task as long as the
4349  * task_struct itself is accessible.  While safe, this function isn't
4350  * synchronized and may print out mixups or garbages of limited length.
4351  */
4352 void print_worker_info(const char *log_lvl, struct task_struct *task)
4353 {
4354 	work_func_t *fn = NULL;
4355 	char name[WQ_NAME_LEN] = { };
4356 	char desc[WORKER_DESC_LEN] = { };
4357 	struct pool_workqueue *pwq = NULL;
4358 	struct workqueue_struct *wq = NULL;
4359 	bool desc_valid = false;
4360 	struct worker *worker;
4361 
4362 	if (!(task->flags & PF_WQ_WORKER))
4363 		return;
4364 
4365 	/*
4366 	 * This function is called without any synchronization and @task
4367 	 * could be in any state.  Be careful with dereferences.
4368 	 */
4369 	worker = probe_kthread_data(task);
4370 
4371 	/*
4372 	 * Carefully copy the associated workqueue's workfn and name.  Keep
4373 	 * the original last '\0' in case the original contains garbage.
4374 	 */
4375 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4376 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4377 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4378 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4379 
4380 	/* copy worker description */
4381 	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4382 	if (desc_valid)
4383 		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4384 
4385 	if (fn || name[0] || desc[0]) {
4386 		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4387 		if (desc[0])
4388 			pr_cont(" (%s)", desc);
4389 		pr_cont("\n");
4390 	}
4391 }
4392 
4393 /*
4394  * CPU hotplug.
4395  *
4396  * There are two challenges in supporting CPU hotplug.  Firstly, there
4397  * are a lot of assumptions on strong associations among work, pwq and
4398  * pool which make migrating pending and scheduled works very
4399  * difficult to implement without impacting hot paths.  Secondly,
4400  * worker pools serve mix of short, long and very long running works making
4401  * blocked draining impractical.
4402  *
4403  * This is solved by allowing the pools to be disassociated from the CPU
4404  * running as an unbound one and allowing it to be reattached later if the
4405  * cpu comes back online.
4406  */
4407 
4408 static void wq_unbind_fn(struct work_struct *work)
4409 {
4410 	int cpu = smp_processor_id();
4411 	struct worker_pool *pool;
4412 	struct worker *worker;
4413 
4414 	for_each_cpu_worker_pool(pool, cpu) {
4415 		mutex_lock(&pool->attach_mutex);
4416 		spin_lock_irq(&pool->lock);
4417 
4418 		/*
4419 		 * We've blocked all attach/detach operations. Make all workers
4420 		 * unbound and set DISASSOCIATED.  Before this, all workers
4421 		 * except for the ones which are still executing works from
4422 		 * before the last CPU down must be on the cpu.  After
4423 		 * this, they may become diasporas.
4424 		 */
4425 		for_each_pool_worker(worker, pool)
4426 			worker->flags |= WORKER_UNBOUND;
4427 
4428 		pool->flags |= POOL_DISASSOCIATED;
4429 
4430 		spin_unlock_irq(&pool->lock);
4431 		mutex_unlock(&pool->attach_mutex);
4432 
4433 		/*
4434 		 * Call schedule() so that we cross rq->lock and thus can
4435 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4436 		 * This is necessary as scheduler callbacks may be invoked
4437 		 * from other cpus.
4438 		 */
4439 		schedule();
4440 
4441 		/*
4442 		 * Sched callbacks are disabled now.  Zap nr_running.
4443 		 * After this, nr_running stays zero and need_more_worker()
4444 		 * and keep_working() are always true as long as the
4445 		 * worklist is not empty.  This pool now behaves as an
4446 		 * unbound (in terms of concurrency management) pool which
4447 		 * are served by workers tied to the pool.
4448 		 */
4449 		atomic_set(&pool->nr_running, 0);
4450 
4451 		/*
4452 		 * With concurrency management just turned off, a busy
4453 		 * worker blocking could lead to lengthy stalls.  Kick off
4454 		 * unbound chain execution of currently pending work items.
4455 		 */
4456 		spin_lock_irq(&pool->lock);
4457 		wake_up_worker(pool);
4458 		spin_unlock_irq(&pool->lock);
4459 	}
4460 }
4461 
4462 /**
4463  * rebind_workers - rebind all workers of a pool to the associated CPU
4464  * @pool: pool of interest
4465  *
4466  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4467  */
4468 static void rebind_workers(struct worker_pool *pool)
4469 {
4470 	struct worker *worker;
4471 
4472 	lockdep_assert_held(&pool->attach_mutex);
4473 
4474 	/*
4475 	 * Restore CPU affinity of all workers.  As all idle workers should
4476 	 * be on the run-queue of the associated CPU before any local
4477 	 * wake-ups for concurrency management happen, restore CPU affinty
4478 	 * of all workers first and then clear UNBOUND.  As we're called
4479 	 * from CPU_ONLINE, the following shouldn't fail.
4480 	 */
4481 	for_each_pool_worker(worker, pool)
4482 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4483 						  pool->attrs->cpumask) < 0);
4484 
4485 	spin_lock_irq(&pool->lock);
4486 	pool->flags &= ~POOL_DISASSOCIATED;
4487 
4488 	for_each_pool_worker(worker, pool) {
4489 		unsigned int worker_flags = worker->flags;
4490 
4491 		/*
4492 		 * A bound idle worker should actually be on the runqueue
4493 		 * of the associated CPU for local wake-ups targeting it to
4494 		 * work.  Kick all idle workers so that they migrate to the
4495 		 * associated CPU.  Doing this in the same loop as
4496 		 * replacing UNBOUND with REBOUND is safe as no worker will
4497 		 * be bound before @pool->lock is released.
4498 		 */
4499 		if (worker_flags & WORKER_IDLE)
4500 			wake_up_process(worker->task);
4501 
4502 		/*
4503 		 * We want to clear UNBOUND but can't directly call
4504 		 * worker_clr_flags() or adjust nr_running.  Atomically
4505 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4506 		 * @worker will clear REBOUND using worker_clr_flags() when
4507 		 * it initiates the next execution cycle thus restoring
4508 		 * concurrency management.  Note that when or whether
4509 		 * @worker clears REBOUND doesn't affect correctness.
4510 		 *
4511 		 * ACCESS_ONCE() is necessary because @worker->flags may be
4512 		 * tested without holding any lock in
4513 		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4514 		 * fail incorrectly leading to premature concurrency
4515 		 * management operations.
4516 		 */
4517 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4518 		worker_flags |= WORKER_REBOUND;
4519 		worker_flags &= ~WORKER_UNBOUND;
4520 		ACCESS_ONCE(worker->flags) = worker_flags;
4521 	}
4522 
4523 	spin_unlock_irq(&pool->lock);
4524 }
4525 
4526 /**
4527  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4528  * @pool: unbound pool of interest
4529  * @cpu: the CPU which is coming up
4530  *
4531  * An unbound pool may end up with a cpumask which doesn't have any online
4532  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4533  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4534  * online CPU before, cpus_allowed of all its workers should be restored.
4535  */
4536 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4537 {
4538 	static cpumask_t cpumask;
4539 	struct worker *worker;
4540 
4541 	lockdep_assert_held(&pool->attach_mutex);
4542 
4543 	/* is @cpu allowed for @pool? */
4544 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4545 		return;
4546 
4547 	/* is @cpu the only online CPU? */
4548 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4549 	if (cpumask_weight(&cpumask) != 1)
4550 		return;
4551 
4552 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4553 	for_each_pool_worker(worker, pool)
4554 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4555 						  pool->attrs->cpumask) < 0);
4556 }
4557 
4558 /*
4559  * Workqueues should be brought up before normal priority CPU notifiers.
4560  * This will be registered high priority CPU notifier.
4561  */
4562 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4563 					       unsigned long action,
4564 					       void *hcpu)
4565 {
4566 	int cpu = (unsigned long)hcpu;
4567 	struct worker_pool *pool;
4568 	struct workqueue_struct *wq;
4569 	int pi;
4570 
4571 	switch (action & ~CPU_TASKS_FROZEN) {
4572 	case CPU_UP_PREPARE:
4573 		for_each_cpu_worker_pool(pool, cpu) {
4574 			if (pool->nr_workers)
4575 				continue;
4576 			if (!create_worker(pool))
4577 				return NOTIFY_BAD;
4578 		}
4579 		break;
4580 
4581 	case CPU_DOWN_FAILED:
4582 	case CPU_ONLINE:
4583 		mutex_lock(&wq_pool_mutex);
4584 
4585 		for_each_pool(pool, pi) {
4586 			mutex_lock(&pool->attach_mutex);
4587 
4588 			if (pool->cpu == cpu)
4589 				rebind_workers(pool);
4590 			else if (pool->cpu < 0)
4591 				restore_unbound_workers_cpumask(pool, cpu);
4592 
4593 			mutex_unlock(&pool->attach_mutex);
4594 		}
4595 
4596 		/* update NUMA affinity of unbound workqueues */
4597 		list_for_each_entry(wq, &workqueues, list)
4598 			wq_update_unbound_numa(wq, cpu, true);
4599 
4600 		mutex_unlock(&wq_pool_mutex);
4601 		break;
4602 	}
4603 	return NOTIFY_OK;
4604 }
4605 
4606 /*
4607  * Workqueues should be brought down after normal priority CPU notifiers.
4608  * This will be registered as low priority CPU notifier.
4609  */
4610 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4611 						 unsigned long action,
4612 						 void *hcpu)
4613 {
4614 	int cpu = (unsigned long)hcpu;
4615 	struct work_struct unbind_work;
4616 	struct workqueue_struct *wq;
4617 
4618 	switch (action & ~CPU_TASKS_FROZEN) {
4619 	case CPU_DOWN_PREPARE:
4620 		/* unbinding per-cpu workers should happen on the local CPU */
4621 		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4622 		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4623 
4624 		/* update NUMA affinity of unbound workqueues */
4625 		mutex_lock(&wq_pool_mutex);
4626 		list_for_each_entry(wq, &workqueues, list)
4627 			wq_update_unbound_numa(wq, cpu, false);
4628 		mutex_unlock(&wq_pool_mutex);
4629 
4630 		/* wait for per-cpu unbinding to finish */
4631 		flush_work(&unbind_work);
4632 		destroy_work_on_stack(&unbind_work);
4633 		break;
4634 	}
4635 	return NOTIFY_OK;
4636 }
4637 
4638 #ifdef CONFIG_SMP
4639 
4640 struct work_for_cpu {
4641 	struct work_struct work;
4642 	long (*fn)(void *);
4643 	void *arg;
4644 	long ret;
4645 };
4646 
4647 static void work_for_cpu_fn(struct work_struct *work)
4648 {
4649 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4650 
4651 	wfc->ret = wfc->fn(wfc->arg);
4652 }
4653 
4654 /**
4655  * work_on_cpu - run a function in user context on a particular cpu
4656  * @cpu: the cpu to run on
4657  * @fn: the function to run
4658  * @arg: the function arg
4659  *
4660  * It is up to the caller to ensure that the cpu doesn't go offline.
4661  * The caller must not hold any locks which would prevent @fn from completing.
4662  *
4663  * Return: The value @fn returns.
4664  */
4665 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4666 {
4667 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4668 
4669 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4670 	schedule_work_on(cpu, &wfc.work);
4671 	flush_work(&wfc.work);
4672 	destroy_work_on_stack(&wfc.work);
4673 	return wfc.ret;
4674 }
4675 EXPORT_SYMBOL_GPL(work_on_cpu);
4676 #endif /* CONFIG_SMP */
4677 
4678 #ifdef CONFIG_FREEZER
4679 
4680 /**
4681  * freeze_workqueues_begin - begin freezing workqueues
4682  *
4683  * Start freezing workqueues.  After this function returns, all freezable
4684  * workqueues will queue new works to their delayed_works list instead of
4685  * pool->worklist.
4686  *
4687  * CONTEXT:
4688  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4689  */
4690 void freeze_workqueues_begin(void)
4691 {
4692 	struct workqueue_struct *wq;
4693 	struct pool_workqueue *pwq;
4694 
4695 	mutex_lock(&wq_pool_mutex);
4696 
4697 	WARN_ON_ONCE(workqueue_freezing);
4698 	workqueue_freezing = true;
4699 
4700 	list_for_each_entry(wq, &workqueues, list) {
4701 		mutex_lock(&wq->mutex);
4702 		for_each_pwq(pwq, wq)
4703 			pwq_adjust_max_active(pwq);
4704 		mutex_unlock(&wq->mutex);
4705 	}
4706 
4707 	mutex_unlock(&wq_pool_mutex);
4708 }
4709 
4710 /**
4711  * freeze_workqueues_busy - are freezable workqueues still busy?
4712  *
4713  * Check whether freezing is complete.  This function must be called
4714  * between freeze_workqueues_begin() and thaw_workqueues().
4715  *
4716  * CONTEXT:
4717  * Grabs and releases wq_pool_mutex.
4718  *
4719  * Return:
4720  * %true if some freezable workqueues are still busy.  %false if freezing
4721  * is complete.
4722  */
4723 bool freeze_workqueues_busy(void)
4724 {
4725 	bool busy = false;
4726 	struct workqueue_struct *wq;
4727 	struct pool_workqueue *pwq;
4728 
4729 	mutex_lock(&wq_pool_mutex);
4730 
4731 	WARN_ON_ONCE(!workqueue_freezing);
4732 
4733 	list_for_each_entry(wq, &workqueues, list) {
4734 		if (!(wq->flags & WQ_FREEZABLE))
4735 			continue;
4736 		/*
4737 		 * nr_active is monotonically decreasing.  It's safe
4738 		 * to peek without lock.
4739 		 */
4740 		rcu_read_lock_sched();
4741 		for_each_pwq(pwq, wq) {
4742 			WARN_ON_ONCE(pwq->nr_active < 0);
4743 			if (pwq->nr_active) {
4744 				busy = true;
4745 				rcu_read_unlock_sched();
4746 				goto out_unlock;
4747 			}
4748 		}
4749 		rcu_read_unlock_sched();
4750 	}
4751 out_unlock:
4752 	mutex_unlock(&wq_pool_mutex);
4753 	return busy;
4754 }
4755 
4756 /**
4757  * thaw_workqueues - thaw workqueues
4758  *
4759  * Thaw workqueues.  Normal queueing is restored and all collected
4760  * frozen works are transferred to their respective pool worklists.
4761  *
4762  * CONTEXT:
4763  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4764  */
4765 void thaw_workqueues(void)
4766 {
4767 	struct workqueue_struct *wq;
4768 	struct pool_workqueue *pwq;
4769 
4770 	mutex_lock(&wq_pool_mutex);
4771 
4772 	if (!workqueue_freezing)
4773 		goto out_unlock;
4774 
4775 	workqueue_freezing = false;
4776 
4777 	/* restore max_active and repopulate worklist */
4778 	list_for_each_entry(wq, &workqueues, list) {
4779 		mutex_lock(&wq->mutex);
4780 		for_each_pwq(pwq, wq)
4781 			pwq_adjust_max_active(pwq);
4782 		mutex_unlock(&wq->mutex);
4783 	}
4784 
4785 out_unlock:
4786 	mutex_unlock(&wq_pool_mutex);
4787 }
4788 #endif /* CONFIG_FREEZER */
4789 
4790 static void __init wq_numa_init(void)
4791 {
4792 	cpumask_var_t *tbl;
4793 	int node, cpu;
4794 
4795 	if (num_possible_nodes() <= 1)
4796 		return;
4797 
4798 	if (wq_disable_numa) {
4799 		pr_info("workqueue: NUMA affinity support disabled\n");
4800 		return;
4801 	}
4802 
4803 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4804 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
4805 
4806 	/*
4807 	 * We want masks of possible CPUs of each node which isn't readily
4808 	 * available.  Build one from cpu_to_node() which should have been
4809 	 * fully initialized by now.
4810 	 */
4811 	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
4812 	BUG_ON(!tbl);
4813 
4814 	for_each_node(node)
4815 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
4816 				node_online(node) ? node : NUMA_NO_NODE));
4817 
4818 	for_each_possible_cpu(cpu) {
4819 		node = cpu_to_node(cpu);
4820 		if (WARN_ON(node == NUMA_NO_NODE)) {
4821 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
4822 			/* happens iff arch is bonkers, let's just proceed */
4823 			return;
4824 		}
4825 		cpumask_set_cpu(cpu, tbl[node]);
4826 	}
4827 
4828 	wq_numa_possible_cpumask = tbl;
4829 	wq_numa_enabled = true;
4830 }
4831 
4832 static int __init init_workqueues(void)
4833 {
4834 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4835 	int i, cpu;
4836 
4837 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4838 
4839 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4840 
4841 	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4842 	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4843 
4844 	wq_numa_init();
4845 
4846 	/* initialize CPU pools */
4847 	for_each_possible_cpu(cpu) {
4848 		struct worker_pool *pool;
4849 
4850 		i = 0;
4851 		for_each_cpu_worker_pool(pool, cpu) {
4852 			BUG_ON(init_worker_pool(pool));
4853 			pool->cpu = cpu;
4854 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
4855 			pool->attrs->nice = std_nice[i++];
4856 			pool->node = cpu_to_node(cpu);
4857 
4858 			/* alloc pool ID */
4859 			mutex_lock(&wq_pool_mutex);
4860 			BUG_ON(worker_pool_assign_id(pool));
4861 			mutex_unlock(&wq_pool_mutex);
4862 		}
4863 	}
4864 
4865 	/* create the initial worker */
4866 	for_each_online_cpu(cpu) {
4867 		struct worker_pool *pool;
4868 
4869 		for_each_cpu_worker_pool(pool, cpu) {
4870 			pool->flags &= ~POOL_DISASSOCIATED;
4871 			BUG_ON(!create_worker(pool));
4872 		}
4873 	}
4874 
4875 	/* create default unbound and ordered wq attrs */
4876 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4877 		struct workqueue_attrs *attrs;
4878 
4879 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4880 		attrs->nice = std_nice[i];
4881 		unbound_std_wq_attrs[i] = attrs;
4882 
4883 		/*
4884 		 * An ordered wq should have only one pwq as ordering is
4885 		 * guaranteed by max_active which is enforced by pwqs.
4886 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
4887 		 */
4888 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4889 		attrs->nice = std_nice[i];
4890 		attrs->no_numa = true;
4891 		ordered_wq_attrs[i] = attrs;
4892 	}
4893 
4894 	system_wq = alloc_workqueue("events", 0, 0);
4895 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4896 	system_long_wq = alloc_workqueue("events_long", 0, 0);
4897 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4898 					    WQ_UNBOUND_MAX_ACTIVE);
4899 	system_freezable_wq = alloc_workqueue("events_freezable",
4900 					      WQ_FREEZABLE, 0);
4901 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
4902 					      WQ_POWER_EFFICIENT, 0);
4903 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
4904 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
4905 					      0);
4906 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4907 	       !system_unbound_wq || !system_freezable_wq ||
4908 	       !system_power_efficient_wq ||
4909 	       !system_freezable_power_efficient_wq);
4910 	return 0;
4911 }
4912 early_initcall(init_workqueues);
4913