xref: /openbmc/linux/kernel/workqueue.c (revision bfb429f3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/sched/debug.h>
53 #include <linux/nmi.h>
54 #include <linux/kvm_para.h>
55 #include <linux/delay.h>
56 
57 #include "workqueue_internal.h"
58 
59 enum {
60 	/*
61 	 * worker_pool flags
62 	 *
63 	 * A bound pool is either associated or disassociated with its CPU.
64 	 * While associated (!DISASSOCIATED), all workers are bound to the
65 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
66 	 * is in effect.
67 	 *
68 	 * While DISASSOCIATED, the cpu may be offline and all workers have
69 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
70 	 * be executing on any CPU.  The pool behaves as an unbound one.
71 	 *
72 	 * Note that DISASSOCIATED should be flipped only while holding
73 	 * wq_pool_attach_mutex to avoid changing binding state while
74 	 * worker_attach_to_pool() is in progress.
75 	 */
76 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
77 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
78 
79 	/* worker flags */
80 	WORKER_DIE		= 1 << 1,	/* die die die */
81 	WORKER_IDLE		= 1 << 2,	/* is idle */
82 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
83 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
84 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
85 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
86 
87 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
88 				  WORKER_UNBOUND | WORKER_REBOUND,
89 
90 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
91 
92 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
93 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
94 
95 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
96 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
97 
98 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
99 						/* call for help after 10ms
100 						   (min two ticks) */
101 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
102 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
103 
104 	/*
105 	 * Rescue workers are used only on emergencies and shared by
106 	 * all cpus.  Give MIN_NICE.
107 	 */
108 	RESCUER_NICE_LEVEL	= MIN_NICE,
109 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
110 
111 	WQ_NAME_LEN		= 32,
112 };
113 
114 /*
115  * Structure fields follow one of the following exclusion rules.
116  *
117  * I: Modifiable by initialization/destruction paths and read-only for
118  *    everyone else.
119  *
120  * P: Preemption protected.  Disabling preemption is enough and should
121  *    only be modified and accessed from the local cpu.
122  *
123  * L: pool->lock protected.  Access with pool->lock held.
124  *
125  * K: Only modified by worker while holding pool->lock. Can be safely read by
126  *    self, while holding pool->lock or from IRQ context if %current is the
127  *    kworker.
128  *
129  * S: Only modified by worker self.
130  *
131  * A: wq_pool_attach_mutex protected.
132  *
133  * PL: wq_pool_mutex protected.
134  *
135  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
136  *
137  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
138  *
139  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
140  *      RCU for reads.
141  *
142  * WQ: wq->mutex protected.
143  *
144  * WR: wq->mutex protected for writes.  RCU protected for reads.
145  *
146  * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
147  *     with READ_ONCE() without locking.
148  *
149  * MD: wq_mayday_lock protected.
150  *
151  * WD: Used internally by the watchdog.
152  */
153 
154 /* struct worker is defined in workqueue_internal.h */
155 
156 struct worker_pool {
157 	raw_spinlock_t		lock;		/* the pool lock */
158 	int			cpu;		/* I: the associated cpu */
159 	int			node;		/* I: the associated node ID */
160 	int			id;		/* I: pool ID */
161 	unsigned int		flags;		/* L: flags */
162 
163 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
164 	bool			cpu_stall;	/* WD: stalled cpu bound pool */
165 
166 	/*
167 	 * The counter is incremented in a process context on the associated CPU
168 	 * w/ preemption disabled, and decremented or reset in the same context
169 	 * but w/ pool->lock held. The readers grab pool->lock and are
170 	 * guaranteed to see if the counter reached zero.
171 	 */
172 	int			nr_running;
173 
174 	struct list_head	worklist;	/* L: list of pending works */
175 
176 	int			nr_workers;	/* L: total number of workers */
177 	int			nr_idle;	/* L: currently idle workers */
178 
179 	struct list_head	idle_list;	/* L: list of idle workers */
180 	struct timer_list	idle_timer;	/* L: worker idle timeout */
181 	struct work_struct      idle_cull_work; /* L: worker idle cleanup */
182 
183 	struct timer_list	mayday_timer;	  /* L: SOS timer for workers */
184 
185 	/* a workers is either on busy_hash or idle_list, or the manager */
186 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
187 						/* L: hash of busy workers */
188 
189 	struct worker		*manager;	/* L: purely informational */
190 	struct list_head	workers;	/* A: attached workers */
191 	struct list_head        dying_workers;  /* A: workers about to die */
192 	struct completion	*detach_completion; /* all workers detached */
193 
194 	struct ida		worker_ida;	/* worker IDs for task name */
195 
196 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
197 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
198 	int			refcnt;		/* PL: refcnt for unbound pools */
199 
200 	/*
201 	 * Destruction of pool is RCU protected to allow dereferences
202 	 * from get_work_pool().
203 	 */
204 	struct rcu_head		rcu;
205 };
206 
207 /*
208  * Per-pool_workqueue statistics. These can be monitored using
209  * tools/workqueue/wq_monitor.py.
210  */
211 enum pool_workqueue_stats {
212 	PWQ_STAT_STARTED,	/* work items started execution */
213 	PWQ_STAT_COMPLETED,	/* work items completed execution */
214 	PWQ_STAT_CPU_TIME,	/* total CPU time consumed */
215 	PWQ_STAT_CPU_INTENSIVE,	/* wq_cpu_intensive_thresh_us violations */
216 	PWQ_STAT_CM_WAKEUP,	/* concurrency-management worker wakeups */
217 	PWQ_STAT_REPATRIATED,	/* unbound workers brought back into scope */
218 	PWQ_STAT_MAYDAY,	/* maydays to rescuer */
219 	PWQ_STAT_RESCUED,	/* linked work items executed by rescuer */
220 
221 	PWQ_NR_STATS,
222 };
223 
224 /*
225  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
226  * of work_struct->data are used for flags and the remaining high bits
227  * point to the pwq; thus, pwqs need to be aligned at two's power of the
228  * number of flag bits.
229  */
230 struct pool_workqueue {
231 	struct worker_pool	*pool;		/* I: the associated pool */
232 	struct workqueue_struct *wq;		/* I: the owning workqueue */
233 	int			work_color;	/* L: current color */
234 	int			flush_color;	/* L: flushing color */
235 	int			refcnt;		/* L: reference count */
236 	int			nr_in_flight[WORK_NR_COLORS];
237 						/* L: nr of in_flight works */
238 
239 	/*
240 	 * nr_active management and WORK_STRUCT_INACTIVE:
241 	 *
242 	 * When pwq->nr_active >= max_active, new work item is queued to
243 	 * pwq->inactive_works instead of pool->worklist and marked with
244 	 * WORK_STRUCT_INACTIVE.
245 	 *
246 	 * All work items marked with WORK_STRUCT_INACTIVE do not participate
247 	 * in pwq->nr_active and all work items in pwq->inactive_works are
248 	 * marked with WORK_STRUCT_INACTIVE.  But not all WORK_STRUCT_INACTIVE
249 	 * work items are in pwq->inactive_works.  Some of them are ready to
250 	 * run in pool->worklist or worker->scheduled.  Those work itmes are
251 	 * only struct wq_barrier which is used for flush_work() and should
252 	 * not participate in pwq->nr_active.  For non-barrier work item, it
253 	 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
254 	 */
255 	int			nr_active;	/* L: nr of active works */
256 	struct list_head	inactive_works;	/* L: inactive works */
257 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
258 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
259 
260 	u64			stats[PWQ_NR_STATS];
261 
262 	/*
263 	 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
264 	 * and pwq_release_workfn() for details. pool_workqueue itself is also
265 	 * RCU protected so that the first pwq can be determined without
266 	 * grabbing wq->mutex.
267 	 */
268 	struct kthread_work	release_work;
269 	struct rcu_head		rcu;
270 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
271 
272 /*
273  * Structure used to wait for workqueue flush.
274  */
275 struct wq_flusher {
276 	struct list_head	list;		/* WQ: list of flushers */
277 	int			flush_color;	/* WQ: flush color waiting for */
278 	struct completion	done;		/* flush completion */
279 };
280 
281 struct wq_device;
282 
283 /*
284  * The externally visible workqueue.  It relays the issued work items to
285  * the appropriate worker_pool through its pool_workqueues.
286  */
287 struct workqueue_struct {
288 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
289 	struct list_head	list;		/* PR: list of all workqueues */
290 
291 	struct mutex		mutex;		/* protects this wq */
292 	int			work_color;	/* WQ: current work color */
293 	int			flush_color;	/* WQ: current flush color */
294 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
295 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
296 	struct list_head	flusher_queue;	/* WQ: flush waiters */
297 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
298 
299 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
300 	struct worker		*rescuer;	/* MD: rescue worker */
301 
302 	int			nr_drainers;	/* WQ: drain in progress */
303 	int			max_active;	/* WO: max active works */
304 	int			saved_max_active; /* WQ: saved max_active */
305 
306 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
307 	struct pool_workqueue __rcu *dfl_pwq;   /* PW: only for unbound wqs */
308 
309 #ifdef CONFIG_SYSFS
310 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
311 #endif
312 #ifdef CONFIG_LOCKDEP
313 	char			*lock_name;
314 	struct lock_class_key	key;
315 	struct lockdep_map	lockdep_map;
316 #endif
317 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
318 
319 	/*
320 	 * Destruction of workqueue_struct is RCU protected to allow walking
321 	 * the workqueues list without grabbing wq_pool_mutex.
322 	 * This is used to dump all workqueues from sysrq.
323 	 */
324 	struct rcu_head		rcu;
325 
326 	/* hot fields used during command issue, aligned to cacheline */
327 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
328 	struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */
329 };
330 
331 static struct kmem_cache *pwq_cache;
332 
333 /*
334  * Each pod type describes how CPUs should be grouped for unbound workqueues.
335  * See the comment above workqueue_attrs->affn_scope.
336  */
337 struct wq_pod_type {
338 	int			nr_pods;	/* number of pods */
339 	cpumask_var_t		*pod_cpus;	/* pod -> cpus */
340 	int			*pod_node;	/* pod -> node */
341 	int			*cpu_pod;	/* cpu -> pod */
342 };
343 
344 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
345 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
346 
347 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
348 	[WQ_AFFN_DFL]			= "default",
349 	[WQ_AFFN_CPU]			= "cpu",
350 	[WQ_AFFN_SMT]			= "smt",
351 	[WQ_AFFN_CACHE]			= "cache",
352 	[WQ_AFFN_NUMA]			= "numa",
353 	[WQ_AFFN_SYSTEM]		= "system",
354 };
355 
356 /*
357  * Per-cpu work items which run for longer than the following threshold are
358  * automatically considered CPU intensive and excluded from concurrency
359  * management to prevent them from noticeably delaying other per-cpu work items.
360  * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
361  * The actual value is initialized in wq_cpu_intensive_thresh_init().
362  */
363 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
364 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
365 
366 /* see the comment above the definition of WQ_POWER_EFFICIENT */
367 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
368 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
369 
370 static bool wq_online;			/* can kworkers be created yet? */
371 
372 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
373 static struct workqueue_attrs *wq_update_pod_attrs_buf;
374 
375 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
376 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
377 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
378 /* wait for manager to go away */
379 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
380 
381 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
382 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
383 
384 /* PL&A: allowable cpus for unbound wqs and work items */
385 static cpumask_var_t wq_unbound_cpumask;
386 
387 /* for further constrain wq_unbound_cpumask by cmdline parameter*/
388 static struct cpumask wq_cmdline_cpumask __initdata;
389 
390 /* CPU where unbound work was last round robin scheduled from this CPU */
391 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
392 
393 /*
394  * Local execution of unbound work items is no longer guaranteed.  The
395  * following always forces round-robin CPU selection on unbound work items
396  * to uncover usages which depend on it.
397  */
398 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
399 static bool wq_debug_force_rr_cpu = true;
400 #else
401 static bool wq_debug_force_rr_cpu = false;
402 #endif
403 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
404 
405 /* the per-cpu worker pools */
406 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
407 
408 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
409 
410 /* PL: hash of all unbound pools keyed by pool->attrs */
411 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
412 
413 /* I: attributes used when instantiating standard unbound pools on demand */
414 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
415 
416 /* I: attributes used when instantiating ordered pools on demand */
417 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
418 
419 /*
420  * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
421  * process context while holding a pool lock. Bounce to a dedicated kthread
422  * worker to avoid A-A deadlocks.
423  */
424 static struct kthread_worker *pwq_release_worker;
425 
426 struct workqueue_struct *system_wq __read_mostly;
427 EXPORT_SYMBOL(system_wq);
428 struct workqueue_struct *system_highpri_wq __read_mostly;
429 EXPORT_SYMBOL_GPL(system_highpri_wq);
430 struct workqueue_struct *system_long_wq __read_mostly;
431 EXPORT_SYMBOL_GPL(system_long_wq);
432 struct workqueue_struct *system_unbound_wq __read_mostly;
433 EXPORT_SYMBOL_GPL(system_unbound_wq);
434 struct workqueue_struct *system_freezable_wq __read_mostly;
435 EXPORT_SYMBOL_GPL(system_freezable_wq);
436 struct workqueue_struct *system_power_efficient_wq __read_mostly;
437 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
438 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
439 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
440 
441 static int worker_thread(void *__worker);
442 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
443 static void show_pwq(struct pool_workqueue *pwq);
444 static void show_one_worker_pool(struct worker_pool *pool);
445 
446 #define CREATE_TRACE_POINTS
447 #include <trace/events/workqueue.h>
448 
449 #define assert_rcu_or_pool_mutex()					\
450 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
451 			 !lockdep_is_held(&wq_pool_mutex),		\
452 			 "RCU or wq_pool_mutex should be held")
453 
454 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
455 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
456 			 !lockdep_is_held(&wq->mutex) &&		\
457 			 !lockdep_is_held(&wq_pool_mutex),		\
458 			 "RCU, wq->mutex or wq_pool_mutex should be held")
459 
460 #define for_each_cpu_worker_pool(pool, cpu)				\
461 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
462 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
463 	     (pool)++)
464 
465 /**
466  * for_each_pool - iterate through all worker_pools in the system
467  * @pool: iteration cursor
468  * @pi: integer used for iteration
469  *
470  * This must be called either with wq_pool_mutex held or RCU read
471  * locked.  If the pool needs to be used beyond the locking in effect, the
472  * caller is responsible for guaranteeing that the pool stays online.
473  *
474  * The if/else clause exists only for the lockdep assertion and can be
475  * ignored.
476  */
477 #define for_each_pool(pool, pi)						\
478 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
479 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
480 		else
481 
482 /**
483  * for_each_pool_worker - iterate through all workers of a worker_pool
484  * @worker: iteration cursor
485  * @pool: worker_pool to iterate workers of
486  *
487  * This must be called with wq_pool_attach_mutex.
488  *
489  * The if/else clause exists only for the lockdep assertion and can be
490  * ignored.
491  */
492 #define for_each_pool_worker(worker, pool)				\
493 	list_for_each_entry((worker), &(pool)->workers, node)		\
494 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
495 		else
496 
497 /**
498  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
499  * @pwq: iteration cursor
500  * @wq: the target workqueue
501  *
502  * This must be called either with wq->mutex held or RCU read locked.
503  * If the pwq needs to be used beyond the locking in effect, the caller is
504  * responsible for guaranteeing that the pwq stays online.
505  *
506  * The if/else clause exists only for the lockdep assertion and can be
507  * ignored.
508  */
509 #define for_each_pwq(pwq, wq)						\
510 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
511 				 lockdep_is_held(&(wq->mutex)))
512 
513 #ifdef CONFIG_DEBUG_OBJECTS_WORK
514 
515 static const struct debug_obj_descr work_debug_descr;
516 
517 static void *work_debug_hint(void *addr)
518 {
519 	return ((struct work_struct *) addr)->func;
520 }
521 
522 static bool work_is_static_object(void *addr)
523 {
524 	struct work_struct *work = addr;
525 
526 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
527 }
528 
529 /*
530  * fixup_init is called when:
531  * - an active object is initialized
532  */
533 static bool work_fixup_init(void *addr, enum debug_obj_state state)
534 {
535 	struct work_struct *work = addr;
536 
537 	switch (state) {
538 	case ODEBUG_STATE_ACTIVE:
539 		cancel_work_sync(work);
540 		debug_object_init(work, &work_debug_descr);
541 		return true;
542 	default:
543 		return false;
544 	}
545 }
546 
547 /*
548  * fixup_free is called when:
549  * - an active object is freed
550  */
551 static bool work_fixup_free(void *addr, enum debug_obj_state state)
552 {
553 	struct work_struct *work = addr;
554 
555 	switch (state) {
556 	case ODEBUG_STATE_ACTIVE:
557 		cancel_work_sync(work);
558 		debug_object_free(work, &work_debug_descr);
559 		return true;
560 	default:
561 		return false;
562 	}
563 }
564 
565 static const struct debug_obj_descr work_debug_descr = {
566 	.name		= "work_struct",
567 	.debug_hint	= work_debug_hint,
568 	.is_static_object = work_is_static_object,
569 	.fixup_init	= work_fixup_init,
570 	.fixup_free	= work_fixup_free,
571 };
572 
573 static inline void debug_work_activate(struct work_struct *work)
574 {
575 	debug_object_activate(work, &work_debug_descr);
576 }
577 
578 static inline void debug_work_deactivate(struct work_struct *work)
579 {
580 	debug_object_deactivate(work, &work_debug_descr);
581 }
582 
583 void __init_work(struct work_struct *work, int onstack)
584 {
585 	if (onstack)
586 		debug_object_init_on_stack(work, &work_debug_descr);
587 	else
588 		debug_object_init(work, &work_debug_descr);
589 }
590 EXPORT_SYMBOL_GPL(__init_work);
591 
592 void destroy_work_on_stack(struct work_struct *work)
593 {
594 	debug_object_free(work, &work_debug_descr);
595 }
596 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
597 
598 void destroy_delayed_work_on_stack(struct delayed_work *work)
599 {
600 	destroy_timer_on_stack(&work->timer);
601 	debug_object_free(&work->work, &work_debug_descr);
602 }
603 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
604 
605 #else
606 static inline void debug_work_activate(struct work_struct *work) { }
607 static inline void debug_work_deactivate(struct work_struct *work) { }
608 #endif
609 
610 /**
611  * worker_pool_assign_id - allocate ID and assign it to @pool
612  * @pool: the pool pointer of interest
613  *
614  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
615  * successfully, -errno on failure.
616  */
617 static int worker_pool_assign_id(struct worker_pool *pool)
618 {
619 	int ret;
620 
621 	lockdep_assert_held(&wq_pool_mutex);
622 
623 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
624 			GFP_KERNEL);
625 	if (ret >= 0) {
626 		pool->id = ret;
627 		return 0;
628 	}
629 	return ret;
630 }
631 
632 static struct pool_workqueue __rcu **
633 unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
634 {
635        if (cpu >= 0)
636                return per_cpu_ptr(wq->cpu_pwq, cpu);
637        else
638                return &wq->dfl_pwq;
639 }
640 
641 /* @cpu < 0 for dfl_pwq */
642 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
643 {
644 	return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
645 				     lockdep_is_held(&wq_pool_mutex) ||
646 				     lockdep_is_held(&wq->mutex));
647 }
648 
649 static unsigned int work_color_to_flags(int color)
650 {
651 	return color << WORK_STRUCT_COLOR_SHIFT;
652 }
653 
654 static int get_work_color(unsigned long work_data)
655 {
656 	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
657 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
658 }
659 
660 static int work_next_color(int color)
661 {
662 	return (color + 1) % WORK_NR_COLORS;
663 }
664 
665 /*
666  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
667  * contain the pointer to the queued pwq.  Once execution starts, the flag
668  * is cleared and the high bits contain OFFQ flags and pool ID.
669  *
670  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
671  * and clear_work_data() can be used to set the pwq, pool or clear
672  * work->data.  These functions should only be called while the work is
673  * owned - ie. while the PENDING bit is set.
674  *
675  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
676  * corresponding to a work.  Pool is available once the work has been
677  * queued anywhere after initialization until it is sync canceled.  pwq is
678  * available only while the work item is queued.
679  *
680  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
681  * canceled.  While being canceled, a work item may have its PENDING set
682  * but stay off timer and worklist for arbitrarily long and nobody should
683  * try to steal the PENDING bit.
684  */
685 static inline void set_work_data(struct work_struct *work, unsigned long data,
686 				 unsigned long flags)
687 {
688 	WARN_ON_ONCE(!work_pending(work));
689 	atomic_long_set(&work->data, data | flags | work_static(work));
690 }
691 
692 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
693 			 unsigned long extra_flags)
694 {
695 	set_work_data(work, (unsigned long)pwq,
696 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
697 }
698 
699 static void set_work_pool_and_keep_pending(struct work_struct *work,
700 					   int pool_id)
701 {
702 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
703 		      WORK_STRUCT_PENDING);
704 }
705 
706 static void set_work_pool_and_clear_pending(struct work_struct *work,
707 					    int pool_id)
708 {
709 	/*
710 	 * The following wmb is paired with the implied mb in
711 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
712 	 * here are visible to and precede any updates by the next PENDING
713 	 * owner.
714 	 */
715 	smp_wmb();
716 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
717 	/*
718 	 * The following mb guarantees that previous clear of a PENDING bit
719 	 * will not be reordered with any speculative LOADS or STORES from
720 	 * work->current_func, which is executed afterwards.  This possible
721 	 * reordering can lead to a missed execution on attempt to queue
722 	 * the same @work.  E.g. consider this case:
723 	 *
724 	 *   CPU#0                         CPU#1
725 	 *   ----------------------------  --------------------------------
726 	 *
727 	 * 1  STORE event_indicated
728 	 * 2  queue_work_on() {
729 	 * 3    test_and_set_bit(PENDING)
730 	 * 4 }                             set_..._and_clear_pending() {
731 	 * 5                                 set_work_data() # clear bit
732 	 * 6                                 smp_mb()
733 	 * 7                               work->current_func() {
734 	 * 8				      LOAD event_indicated
735 	 *				   }
736 	 *
737 	 * Without an explicit full barrier speculative LOAD on line 8 can
738 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
739 	 * CPU#0 observes the PENDING bit is still set and new execution of
740 	 * a @work is not queued in a hope, that CPU#1 will eventually
741 	 * finish the queued @work.  Meanwhile CPU#1 does not see
742 	 * event_indicated is set, because speculative LOAD was executed
743 	 * before actual STORE.
744 	 */
745 	smp_mb();
746 }
747 
748 static void clear_work_data(struct work_struct *work)
749 {
750 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
751 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
752 }
753 
754 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
755 {
756 	return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK);
757 }
758 
759 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
760 {
761 	unsigned long data = atomic_long_read(&work->data);
762 
763 	if (data & WORK_STRUCT_PWQ)
764 		return work_struct_pwq(data);
765 	else
766 		return NULL;
767 }
768 
769 /**
770  * get_work_pool - return the worker_pool a given work was associated with
771  * @work: the work item of interest
772  *
773  * Pools are created and destroyed under wq_pool_mutex, and allows read
774  * access under RCU read lock.  As such, this function should be
775  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
776  *
777  * All fields of the returned pool are accessible as long as the above
778  * mentioned locking is in effect.  If the returned pool needs to be used
779  * beyond the critical section, the caller is responsible for ensuring the
780  * returned pool is and stays online.
781  *
782  * Return: The worker_pool @work was last associated with.  %NULL if none.
783  */
784 static struct worker_pool *get_work_pool(struct work_struct *work)
785 {
786 	unsigned long data = atomic_long_read(&work->data);
787 	int pool_id;
788 
789 	assert_rcu_or_pool_mutex();
790 
791 	if (data & WORK_STRUCT_PWQ)
792 		return work_struct_pwq(data)->pool;
793 
794 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
795 	if (pool_id == WORK_OFFQ_POOL_NONE)
796 		return NULL;
797 
798 	return idr_find(&worker_pool_idr, pool_id);
799 }
800 
801 /**
802  * get_work_pool_id - return the worker pool ID a given work is associated with
803  * @work: the work item of interest
804  *
805  * Return: The worker_pool ID @work was last associated with.
806  * %WORK_OFFQ_POOL_NONE if none.
807  */
808 static int get_work_pool_id(struct work_struct *work)
809 {
810 	unsigned long data = atomic_long_read(&work->data);
811 
812 	if (data & WORK_STRUCT_PWQ)
813 		return work_struct_pwq(data)->pool->id;
814 
815 	return data >> WORK_OFFQ_POOL_SHIFT;
816 }
817 
818 static void mark_work_canceling(struct work_struct *work)
819 {
820 	unsigned long pool_id = get_work_pool_id(work);
821 
822 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
823 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
824 }
825 
826 static bool work_is_canceling(struct work_struct *work)
827 {
828 	unsigned long data = atomic_long_read(&work->data);
829 
830 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
831 }
832 
833 /*
834  * Policy functions.  These define the policies on how the global worker
835  * pools are managed.  Unless noted otherwise, these functions assume that
836  * they're being called with pool->lock held.
837  */
838 
839 /*
840  * Need to wake up a worker?  Called from anything but currently
841  * running workers.
842  *
843  * Note that, because unbound workers never contribute to nr_running, this
844  * function will always return %true for unbound pools as long as the
845  * worklist isn't empty.
846  */
847 static bool need_more_worker(struct worker_pool *pool)
848 {
849 	return !list_empty(&pool->worklist) && !pool->nr_running;
850 }
851 
852 /* Can I start working?  Called from busy but !running workers. */
853 static bool may_start_working(struct worker_pool *pool)
854 {
855 	return pool->nr_idle;
856 }
857 
858 /* Do I need to keep working?  Called from currently running workers. */
859 static bool keep_working(struct worker_pool *pool)
860 {
861 	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
862 }
863 
864 /* Do we need a new worker?  Called from manager. */
865 static bool need_to_create_worker(struct worker_pool *pool)
866 {
867 	return need_more_worker(pool) && !may_start_working(pool);
868 }
869 
870 /* Do we have too many workers and should some go away? */
871 static bool too_many_workers(struct worker_pool *pool)
872 {
873 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
874 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
875 	int nr_busy = pool->nr_workers - nr_idle;
876 
877 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
878 }
879 
880 /**
881  * worker_set_flags - set worker flags and adjust nr_running accordingly
882  * @worker: self
883  * @flags: flags to set
884  *
885  * Set @flags in @worker->flags and adjust nr_running accordingly.
886  */
887 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
888 {
889 	struct worker_pool *pool = worker->pool;
890 
891 	lockdep_assert_held(&pool->lock);
892 
893 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
894 	if ((flags & WORKER_NOT_RUNNING) &&
895 	    !(worker->flags & WORKER_NOT_RUNNING)) {
896 		pool->nr_running--;
897 	}
898 
899 	worker->flags |= flags;
900 }
901 
902 /**
903  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
904  * @worker: self
905  * @flags: flags to clear
906  *
907  * Clear @flags in @worker->flags and adjust nr_running accordingly.
908  */
909 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
910 {
911 	struct worker_pool *pool = worker->pool;
912 	unsigned int oflags = worker->flags;
913 
914 	lockdep_assert_held(&pool->lock);
915 
916 	worker->flags &= ~flags;
917 
918 	/*
919 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
920 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
921 	 * of multiple flags, not a single flag.
922 	 */
923 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
924 		if (!(worker->flags & WORKER_NOT_RUNNING))
925 			pool->nr_running++;
926 }
927 
928 /* Return the first idle worker.  Called with pool->lock held. */
929 static struct worker *first_idle_worker(struct worker_pool *pool)
930 {
931 	if (unlikely(list_empty(&pool->idle_list)))
932 		return NULL;
933 
934 	return list_first_entry(&pool->idle_list, struct worker, entry);
935 }
936 
937 /**
938  * worker_enter_idle - enter idle state
939  * @worker: worker which is entering idle state
940  *
941  * @worker is entering idle state.  Update stats and idle timer if
942  * necessary.
943  *
944  * LOCKING:
945  * raw_spin_lock_irq(pool->lock).
946  */
947 static void worker_enter_idle(struct worker *worker)
948 {
949 	struct worker_pool *pool = worker->pool;
950 
951 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
952 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
953 			 (worker->hentry.next || worker->hentry.pprev)))
954 		return;
955 
956 	/* can't use worker_set_flags(), also called from create_worker() */
957 	worker->flags |= WORKER_IDLE;
958 	pool->nr_idle++;
959 	worker->last_active = jiffies;
960 
961 	/* idle_list is LIFO */
962 	list_add(&worker->entry, &pool->idle_list);
963 
964 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
965 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
966 
967 	/* Sanity check nr_running. */
968 	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
969 }
970 
971 /**
972  * worker_leave_idle - leave idle state
973  * @worker: worker which is leaving idle state
974  *
975  * @worker is leaving idle state.  Update stats.
976  *
977  * LOCKING:
978  * raw_spin_lock_irq(pool->lock).
979  */
980 static void worker_leave_idle(struct worker *worker)
981 {
982 	struct worker_pool *pool = worker->pool;
983 
984 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
985 		return;
986 	worker_clr_flags(worker, WORKER_IDLE);
987 	pool->nr_idle--;
988 	list_del_init(&worker->entry);
989 }
990 
991 /**
992  * find_worker_executing_work - find worker which is executing a work
993  * @pool: pool of interest
994  * @work: work to find worker for
995  *
996  * Find a worker which is executing @work on @pool by searching
997  * @pool->busy_hash which is keyed by the address of @work.  For a worker
998  * to match, its current execution should match the address of @work and
999  * its work function.  This is to avoid unwanted dependency between
1000  * unrelated work executions through a work item being recycled while still
1001  * being executed.
1002  *
1003  * This is a bit tricky.  A work item may be freed once its execution
1004  * starts and nothing prevents the freed area from being recycled for
1005  * another work item.  If the same work item address ends up being reused
1006  * before the original execution finishes, workqueue will identify the
1007  * recycled work item as currently executing and make it wait until the
1008  * current execution finishes, introducing an unwanted dependency.
1009  *
1010  * This function checks the work item address and work function to avoid
1011  * false positives.  Note that this isn't complete as one may construct a
1012  * work function which can introduce dependency onto itself through a
1013  * recycled work item.  Well, if somebody wants to shoot oneself in the
1014  * foot that badly, there's only so much we can do, and if such deadlock
1015  * actually occurs, it should be easy to locate the culprit work function.
1016  *
1017  * CONTEXT:
1018  * raw_spin_lock_irq(pool->lock).
1019  *
1020  * Return:
1021  * Pointer to worker which is executing @work if found, %NULL
1022  * otherwise.
1023  */
1024 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1025 						 struct work_struct *work)
1026 {
1027 	struct worker *worker;
1028 
1029 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1030 			       (unsigned long)work)
1031 		if (worker->current_work == work &&
1032 		    worker->current_func == work->func)
1033 			return worker;
1034 
1035 	return NULL;
1036 }
1037 
1038 /**
1039  * move_linked_works - move linked works to a list
1040  * @work: start of series of works to be scheduled
1041  * @head: target list to append @work to
1042  * @nextp: out parameter for nested worklist walking
1043  *
1044  * Schedule linked works starting from @work to @head. Work series to be
1045  * scheduled starts at @work and includes any consecutive work with
1046  * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1047  * @nextp.
1048  *
1049  * CONTEXT:
1050  * raw_spin_lock_irq(pool->lock).
1051  */
1052 static void move_linked_works(struct work_struct *work, struct list_head *head,
1053 			      struct work_struct **nextp)
1054 {
1055 	struct work_struct *n;
1056 
1057 	/*
1058 	 * Linked worklist will always end before the end of the list,
1059 	 * use NULL for list head.
1060 	 */
1061 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1062 		list_move_tail(&work->entry, head);
1063 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1064 			break;
1065 	}
1066 
1067 	/*
1068 	 * If we're already inside safe list traversal and have moved
1069 	 * multiple works to the scheduled queue, the next position
1070 	 * needs to be updated.
1071 	 */
1072 	if (nextp)
1073 		*nextp = n;
1074 }
1075 
1076 /**
1077  * assign_work - assign a work item and its linked work items to a worker
1078  * @work: work to assign
1079  * @worker: worker to assign to
1080  * @nextp: out parameter for nested worklist walking
1081  *
1082  * Assign @work and its linked work items to @worker. If @work is already being
1083  * executed by another worker in the same pool, it'll be punted there.
1084  *
1085  * If @nextp is not NULL, it's updated to point to the next work of the last
1086  * scheduled work. This allows assign_work() to be nested inside
1087  * list_for_each_entry_safe().
1088  *
1089  * Returns %true if @work was successfully assigned to @worker. %false if @work
1090  * was punted to another worker already executing it.
1091  */
1092 static bool assign_work(struct work_struct *work, struct worker *worker,
1093 			struct work_struct **nextp)
1094 {
1095 	struct worker_pool *pool = worker->pool;
1096 	struct worker *collision;
1097 
1098 	lockdep_assert_held(&pool->lock);
1099 
1100 	/*
1101 	 * A single work shouldn't be executed concurrently by multiple workers.
1102 	 * __queue_work() ensures that @work doesn't jump to a different pool
1103 	 * while still running in the previous pool. Here, we should ensure that
1104 	 * @work is not executed concurrently by multiple workers from the same
1105 	 * pool. Check whether anyone is already processing the work. If so,
1106 	 * defer the work to the currently executing one.
1107 	 */
1108 	collision = find_worker_executing_work(pool, work);
1109 	if (unlikely(collision)) {
1110 		move_linked_works(work, &collision->scheduled, nextp);
1111 		return false;
1112 	}
1113 
1114 	move_linked_works(work, &worker->scheduled, nextp);
1115 	return true;
1116 }
1117 
1118 /**
1119  * kick_pool - wake up an idle worker if necessary
1120  * @pool: pool to kick
1121  *
1122  * @pool may have pending work items. Wake up worker if necessary. Returns
1123  * whether a worker was woken up.
1124  */
1125 static bool kick_pool(struct worker_pool *pool)
1126 {
1127 	struct worker *worker = first_idle_worker(pool);
1128 	struct task_struct *p;
1129 
1130 	lockdep_assert_held(&pool->lock);
1131 
1132 	if (!need_more_worker(pool) || !worker)
1133 		return false;
1134 
1135 	p = worker->task;
1136 
1137 #ifdef CONFIG_SMP
1138 	/*
1139 	 * Idle @worker is about to execute @work and waking up provides an
1140 	 * opportunity to migrate @worker at a lower cost by setting the task's
1141 	 * wake_cpu field. Let's see if we want to move @worker to improve
1142 	 * execution locality.
1143 	 *
1144 	 * We're waking the worker that went idle the latest and there's some
1145 	 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1146 	 * so, setting the wake_cpu won't do anything. As this is a best-effort
1147 	 * optimization and the race window is narrow, let's leave as-is for
1148 	 * now. If this becomes pronounced, we can skip over workers which are
1149 	 * still on cpu when picking an idle worker.
1150 	 *
1151 	 * If @pool has non-strict affinity, @worker might have ended up outside
1152 	 * its affinity scope. Repatriate.
1153 	 */
1154 	if (!pool->attrs->affn_strict &&
1155 	    !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1156 		struct work_struct *work = list_first_entry(&pool->worklist,
1157 						struct work_struct, entry);
1158 		p->wake_cpu = cpumask_any_distribute(pool->attrs->__pod_cpumask);
1159 		get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1160 	}
1161 #endif
1162 	wake_up_process(p);
1163 	return true;
1164 }
1165 
1166 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1167 
1168 /*
1169  * Concurrency-managed per-cpu work items that hog CPU for longer than
1170  * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1171  * which prevents them from stalling other concurrency-managed work items. If a
1172  * work function keeps triggering this mechanism, it's likely that the work item
1173  * should be using an unbound workqueue instead.
1174  *
1175  * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1176  * and report them so that they can be examined and converted to use unbound
1177  * workqueues as appropriate. To avoid flooding the console, each violating work
1178  * function is tracked and reported with exponential backoff.
1179  */
1180 #define WCI_MAX_ENTS 128
1181 
1182 struct wci_ent {
1183 	work_func_t		func;
1184 	atomic64_t		cnt;
1185 	struct hlist_node	hash_node;
1186 };
1187 
1188 static struct wci_ent wci_ents[WCI_MAX_ENTS];
1189 static int wci_nr_ents;
1190 static DEFINE_RAW_SPINLOCK(wci_lock);
1191 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1192 
1193 static struct wci_ent *wci_find_ent(work_func_t func)
1194 {
1195 	struct wci_ent *ent;
1196 
1197 	hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1198 				   (unsigned long)func) {
1199 		if (ent->func == func)
1200 			return ent;
1201 	}
1202 	return NULL;
1203 }
1204 
1205 static void wq_cpu_intensive_report(work_func_t func)
1206 {
1207 	struct wci_ent *ent;
1208 
1209 restart:
1210 	ent = wci_find_ent(func);
1211 	if (ent) {
1212 		u64 cnt;
1213 
1214 		/*
1215 		 * Start reporting from the fourth time and back off
1216 		 * exponentially.
1217 		 */
1218 		cnt = atomic64_inc_return_relaxed(&ent->cnt);
1219 		if (cnt >= 4 && is_power_of_2(cnt))
1220 			printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1221 					ent->func, wq_cpu_intensive_thresh_us,
1222 					atomic64_read(&ent->cnt));
1223 		return;
1224 	}
1225 
1226 	/*
1227 	 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1228 	 * is exhausted, something went really wrong and we probably made enough
1229 	 * noise already.
1230 	 */
1231 	if (wci_nr_ents >= WCI_MAX_ENTS)
1232 		return;
1233 
1234 	raw_spin_lock(&wci_lock);
1235 
1236 	if (wci_nr_ents >= WCI_MAX_ENTS) {
1237 		raw_spin_unlock(&wci_lock);
1238 		return;
1239 	}
1240 
1241 	if (wci_find_ent(func)) {
1242 		raw_spin_unlock(&wci_lock);
1243 		goto restart;
1244 	}
1245 
1246 	ent = &wci_ents[wci_nr_ents++];
1247 	ent->func = func;
1248 	atomic64_set(&ent->cnt, 1);
1249 	hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1250 
1251 	raw_spin_unlock(&wci_lock);
1252 }
1253 
1254 #else	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1255 static void wq_cpu_intensive_report(work_func_t func) {}
1256 #endif	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1257 
1258 /**
1259  * wq_worker_running - a worker is running again
1260  * @task: task waking up
1261  *
1262  * This function is called when a worker returns from schedule()
1263  */
1264 void wq_worker_running(struct task_struct *task)
1265 {
1266 	struct worker *worker = kthread_data(task);
1267 
1268 	if (!READ_ONCE(worker->sleeping))
1269 		return;
1270 
1271 	/*
1272 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1273 	 * and the nr_running increment below, we may ruin the nr_running reset
1274 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1275 	 * pool. Protect against such race.
1276 	 */
1277 	preempt_disable();
1278 	if (!(worker->flags & WORKER_NOT_RUNNING))
1279 		worker->pool->nr_running++;
1280 	preempt_enable();
1281 
1282 	/*
1283 	 * CPU intensive auto-detection cares about how long a work item hogged
1284 	 * CPU without sleeping. Reset the starting timestamp on wakeup.
1285 	 */
1286 	worker->current_at = worker->task->se.sum_exec_runtime;
1287 
1288 	WRITE_ONCE(worker->sleeping, 0);
1289 }
1290 
1291 /**
1292  * wq_worker_sleeping - a worker is going to sleep
1293  * @task: task going to sleep
1294  *
1295  * This function is called from schedule() when a busy worker is
1296  * going to sleep.
1297  */
1298 void wq_worker_sleeping(struct task_struct *task)
1299 {
1300 	struct worker *worker = kthread_data(task);
1301 	struct worker_pool *pool;
1302 
1303 	/*
1304 	 * Rescuers, which may not have all the fields set up like normal
1305 	 * workers, also reach here, let's not access anything before
1306 	 * checking NOT_RUNNING.
1307 	 */
1308 	if (worker->flags & WORKER_NOT_RUNNING)
1309 		return;
1310 
1311 	pool = worker->pool;
1312 
1313 	/* Return if preempted before wq_worker_running() was reached */
1314 	if (READ_ONCE(worker->sleeping))
1315 		return;
1316 
1317 	WRITE_ONCE(worker->sleeping, 1);
1318 	raw_spin_lock_irq(&pool->lock);
1319 
1320 	/*
1321 	 * Recheck in case unbind_workers() preempted us. We don't
1322 	 * want to decrement nr_running after the worker is unbound
1323 	 * and nr_running has been reset.
1324 	 */
1325 	if (worker->flags & WORKER_NOT_RUNNING) {
1326 		raw_spin_unlock_irq(&pool->lock);
1327 		return;
1328 	}
1329 
1330 	pool->nr_running--;
1331 	if (kick_pool(pool))
1332 		worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1333 
1334 	raw_spin_unlock_irq(&pool->lock);
1335 }
1336 
1337 /**
1338  * wq_worker_tick - a scheduler tick occurred while a kworker is running
1339  * @task: task currently running
1340  *
1341  * Called from scheduler_tick(). We're in the IRQ context and the current
1342  * worker's fields which follow the 'K' locking rule can be accessed safely.
1343  */
1344 void wq_worker_tick(struct task_struct *task)
1345 {
1346 	struct worker *worker = kthread_data(task);
1347 	struct pool_workqueue *pwq = worker->current_pwq;
1348 	struct worker_pool *pool = worker->pool;
1349 
1350 	if (!pwq)
1351 		return;
1352 
1353 	pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1354 
1355 	if (!wq_cpu_intensive_thresh_us)
1356 		return;
1357 
1358 	/*
1359 	 * If the current worker is concurrency managed and hogged the CPU for
1360 	 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1361 	 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1362 	 *
1363 	 * Set @worker->sleeping means that @worker is in the process of
1364 	 * switching out voluntarily and won't be contributing to
1365 	 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1366 	 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1367 	 * double decrements. The task is releasing the CPU anyway. Let's skip.
1368 	 * We probably want to make this prettier in the future.
1369 	 */
1370 	if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1371 	    worker->task->se.sum_exec_runtime - worker->current_at <
1372 	    wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1373 		return;
1374 
1375 	raw_spin_lock(&pool->lock);
1376 
1377 	worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1378 	wq_cpu_intensive_report(worker->current_func);
1379 	pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1380 
1381 	if (kick_pool(pool))
1382 		pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1383 
1384 	raw_spin_unlock(&pool->lock);
1385 }
1386 
1387 /**
1388  * wq_worker_last_func - retrieve worker's last work function
1389  * @task: Task to retrieve last work function of.
1390  *
1391  * Determine the last function a worker executed. This is called from
1392  * the scheduler to get a worker's last known identity.
1393  *
1394  * CONTEXT:
1395  * raw_spin_lock_irq(rq->lock)
1396  *
1397  * This function is called during schedule() when a kworker is going
1398  * to sleep. It's used by psi to identify aggregation workers during
1399  * dequeuing, to allow periodic aggregation to shut-off when that
1400  * worker is the last task in the system or cgroup to go to sleep.
1401  *
1402  * As this function doesn't involve any workqueue-related locking, it
1403  * only returns stable values when called from inside the scheduler's
1404  * queuing and dequeuing paths, when @task, which must be a kworker,
1405  * is guaranteed to not be processing any works.
1406  *
1407  * Return:
1408  * The last work function %current executed as a worker, NULL if it
1409  * hasn't executed any work yet.
1410  */
1411 work_func_t wq_worker_last_func(struct task_struct *task)
1412 {
1413 	struct worker *worker = kthread_data(task);
1414 
1415 	return worker->last_func;
1416 }
1417 
1418 /**
1419  * get_pwq - get an extra reference on the specified pool_workqueue
1420  * @pwq: pool_workqueue to get
1421  *
1422  * Obtain an extra reference on @pwq.  The caller should guarantee that
1423  * @pwq has positive refcnt and be holding the matching pool->lock.
1424  */
1425 static void get_pwq(struct pool_workqueue *pwq)
1426 {
1427 	lockdep_assert_held(&pwq->pool->lock);
1428 	WARN_ON_ONCE(pwq->refcnt <= 0);
1429 	pwq->refcnt++;
1430 }
1431 
1432 /**
1433  * put_pwq - put a pool_workqueue reference
1434  * @pwq: pool_workqueue to put
1435  *
1436  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1437  * destruction.  The caller should be holding the matching pool->lock.
1438  */
1439 static void put_pwq(struct pool_workqueue *pwq)
1440 {
1441 	lockdep_assert_held(&pwq->pool->lock);
1442 	if (likely(--pwq->refcnt))
1443 		return;
1444 	/*
1445 	 * @pwq can't be released under pool->lock, bounce to a dedicated
1446 	 * kthread_worker to avoid A-A deadlocks.
1447 	 */
1448 	kthread_queue_work(pwq_release_worker, &pwq->release_work);
1449 }
1450 
1451 /**
1452  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1453  * @pwq: pool_workqueue to put (can be %NULL)
1454  *
1455  * put_pwq() with locking.  This function also allows %NULL @pwq.
1456  */
1457 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1458 {
1459 	if (pwq) {
1460 		/*
1461 		 * As both pwqs and pools are RCU protected, the
1462 		 * following lock operations are safe.
1463 		 */
1464 		raw_spin_lock_irq(&pwq->pool->lock);
1465 		put_pwq(pwq);
1466 		raw_spin_unlock_irq(&pwq->pool->lock);
1467 	}
1468 }
1469 
1470 static bool pwq_is_empty(struct pool_workqueue *pwq)
1471 {
1472 	return !pwq->nr_active && list_empty(&pwq->inactive_works);
1473 }
1474 
1475 static void __pwq_activate_work(struct pool_workqueue *pwq,
1476 				struct work_struct *work)
1477 {
1478 	unsigned long *wdb = work_data_bits(work);
1479 
1480 	WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
1481 	trace_workqueue_activate_work(work);
1482 	if (list_empty(&pwq->pool->worklist))
1483 		pwq->pool->watchdog_ts = jiffies;
1484 	move_linked_works(work, &pwq->pool->worklist, NULL);
1485 	__clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
1486 }
1487 
1488 /**
1489  * pwq_activate_work - Activate a work item if inactive
1490  * @pwq: pool_workqueue @work belongs to
1491  * @work: work item to activate
1492  *
1493  * Returns %true if activated. %false if already active.
1494  */
1495 static bool pwq_activate_work(struct pool_workqueue *pwq,
1496 			      struct work_struct *work)
1497 {
1498 	struct worker_pool *pool = pwq->pool;
1499 
1500 	lockdep_assert_held(&pool->lock);
1501 
1502 	if (!(*work_data_bits(work) & WORK_STRUCT_INACTIVE))
1503 		return false;
1504 
1505 	pwq->nr_active++;
1506 	__pwq_activate_work(pwq, work);
1507 	return true;
1508 }
1509 
1510 /**
1511  * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1512  * @pwq: pool_workqueue of interest
1513  *
1514  * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1515  * successfully obtained. %false otherwise.
1516  */
1517 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq)
1518 {
1519 	struct workqueue_struct *wq = pwq->wq;
1520 	struct worker_pool *pool = pwq->pool;
1521 	bool obtained;
1522 
1523 	lockdep_assert_held(&pool->lock);
1524 
1525 	obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1526 
1527 	if (obtained)
1528 		pwq->nr_active++;
1529 	return obtained;
1530 }
1531 
1532 /**
1533  * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1534  * @pwq: pool_workqueue of interest
1535  *
1536  * Activate the first inactive work item of @pwq if available and allowed by
1537  * max_active limit.
1538  *
1539  * Returns %true if an inactive work item has been activated. %false if no
1540  * inactive work item is found or max_active limit is reached.
1541  */
1542 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq)
1543 {
1544 	struct work_struct *work =
1545 		list_first_entry_or_null(&pwq->inactive_works,
1546 					 struct work_struct, entry);
1547 
1548 	if (work && pwq_tryinc_nr_active(pwq)) {
1549 		__pwq_activate_work(pwq, work);
1550 		return true;
1551 	} else {
1552 		return false;
1553 	}
1554 }
1555 
1556 /**
1557  * pwq_dec_nr_active - Retire an active count
1558  * @pwq: pool_workqueue of interest
1559  *
1560  * Decrement @pwq's nr_active and try to activate the first inactive work item.
1561  */
1562 static void pwq_dec_nr_active(struct pool_workqueue *pwq)
1563 {
1564 	struct worker_pool *pool = pwq->pool;
1565 
1566 	lockdep_assert_held(&pool->lock);
1567 
1568 	pwq->nr_active--;
1569 	pwq_activate_first_inactive(pwq);
1570 }
1571 
1572 /**
1573  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1574  * @pwq: pwq of interest
1575  * @work_data: work_data of work which left the queue
1576  *
1577  * A work either has completed or is removed from pending queue,
1578  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1579  *
1580  * CONTEXT:
1581  * raw_spin_lock_irq(pool->lock).
1582  */
1583 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1584 {
1585 	int color = get_work_color(work_data);
1586 
1587 	if (!(work_data & WORK_STRUCT_INACTIVE))
1588 		pwq_dec_nr_active(pwq);
1589 
1590 	pwq->nr_in_flight[color]--;
1591 
1592 	/* is flush in progress and are we at the flushing tip? */
1593 	if (likely(pwq->flush_color != color))
1594 		goto out_put;
1595 
1596 	/* are there still in-flight works? */
1597 	if (pwq->nr_in_flight[color])
1598 		goto out_put;
1599 
1600 	/* this pwq is done, clear flush_color */
1601 	pwq->flush_color = -1;
1602 
1603 	/*
1604 	 * If this was the last pwq, wake up the first flusher.  It
1605 	 * will handle the rest.
1606 	 */
1607 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1608 		complete(&pwq->wq->first_flusher->done);
1609 out_put:
1610 	put_pwq(pwq);
1611 }
1612 
1613 /**
1614  * try_to_grab_pending - steal work item from worklist and disable irq
1615  * @work: work item to steal
1616  * @is_dwork: @work is a delayed_work
1617  * @flags: place to store irq state
1618  *
1619  * Try to grab PENDING bit of @work.  This function can handle @work in any
1620  * stable state - idle, on timer or on worklist.
1621  *
1622  * Return:
1623  *
1624  *  ========	================================================================
1625  *  1		if @work was pending and we successfully stole PENDING
1626  *  0		if @work was idle and we claimed PENDING
1627  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1628  *  -ENOENT	if someone else is canceling @work, this state may persist
1629  *		for arbitrarily long
1630  *  ========	================================================================
1631  *
1632  * Note:
1633  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1634  * interrupted while holding PENDING and @work off queue, irq must be
1635  * disabled on entry.  This, combined with delayed_work->timer being
1636  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1637  *
1638  * On successful return, >= 0, irq is disabled and the caller is
1639  * responsible for releasing it using local_irq_restore(*@flags).
1640  *
1641  * This function is safe to call from any context including IRQ handler.
1642  */
1643 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1644 			       unsigned long *flags)
1645 {
1646 	struct worker_pool *pool;
1647 	struct pool_workqueue *pwq;
1648 
1649 	local_irq_save(*flags);
1650 
1651 	/* try to steal the timer if it exists */
1652 	if (is_dwork) {
1653 		struct delayed_work *dwork = to_delayed_work(work);
1654 
1655 		/*
1656 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1657 		 * guaranteed that the timer is not queued anywhere and not
1658 		 * running on the local CPU.
1659 		 */
1660 		if (likely(del_timer(&dwork->timer)))
1661 			return 1;
1662 	}
1663 
1664 	/* try to claim PENDING the normal way */
1665 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1666 		return 0;
1667 
1668 	rcu_read_lock();
1669 	/*
1670 	 * The queueing is in progress, or it is already queued. Try to
1671 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1672 	 */
1673 	pool = get_work_pool(work);
1674 	if (!pool)
1675 		goto fail;
1676 
1677 	raw_spin_lock(&pool->lock);
1678 	/*
1679 	 * work->data is guaranteed to point to pwq only while the work
1680 	 * item is queued on pwq->wq, and both updating work->data to point
1681 	 * to pwq on queueing and to pool on dequeueing are done under
1682 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1683 	 * points to pwq which is associated with a locked pool, the work
1684 	 * item is currently queued on that pool.
1685 	 */
1686 	pwq = get_work_pwq(work);
1687 	if (pwq && pwq->pool == pool) {
1688 		debug_work_deactivate(work);
1689 
1690 		/*
1691 		 * A cancelable inactive work item must be in the
1692 		 * pwq->inactive_works since a queued barrier can't be
1693 		 * canceled (see the comments in insert_wq_barrier()).
1694 		 *
1695 		 * An inactive work item cannot be grabbed directly because
1696 		 * it might have linked barrier work items which, if left
1697 		 * on the inactive_works list, will confuse pwq->nr_active
1698 		 * management later on and cause stall.  Make sure the work
1699 		 * item is activated before grabbing.
1700 		 */
1701 		pwq_activate_work(pwq, work);
1702 
1703 		list_del_init(&work->entry);
1704 		pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
1705 
1706 		/* work->data points to pwq iff queued, point to pool */
1707 		set_work_pool_and_keep_pending(work, pool->id);
1708 
1709 		raw_spin_unlock(&pool->lock);
1710 		rcu_read_unlock();
1711 		return 1;
1712 	}
1713 	raw_spin_unlock(&pool->lock);
1714 fail:
1715 	rcu_read_unlock();
1716 	local_irq_restore(*flags);
1717 	if (work_is_canceling(work))
1718 		return -ENOENT;
1719 	cpu_relax();
1720 	return -EAGAIN;
1721 }
1722 
1723 /**
1724  * insert_work - insert a work into a pool
1725  * @pwq: pwq @work belongs to
1726  * @work: work to insert
1727  * @head: insertion point
1728  * @extra_flags: extra WORK_STRUCT_* flags to set
1729  *
1730  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1731  * work_struct flags.
1732  *
1733  * CONTEXT:
1734  * raw_spin_lock_irq(pool->lock).
1735  */
1736 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1737 			struct list_head *head, unsigned int extra_flags)
1738 {
1739 	debug_work_activate(work);
1740 
1741 	/* record the work call stack in order to print it in KASAN reports */
1742 	kasan_record_aux_stack_noalloc(work);
1743 
1744 	/* we own @work, set data and link */
1745 	set_work_pwq(work, pwq, extra_flags);
1746 	list_add_tail(&work->entry, head);
1747 	get_pwq(pwq);
1748 }
1749 
1750 /*
1751  * Test whether @work is being queued from another work executing on the
1752  * same workqueue.
1753  */
1754 static bool is_chained_work(struct workqueue_struct *wq)
1755 {
1756 	struct worker *worker;
1757 
1758 	worker = current_wq_worker();
1759 	/*
1760 	 * Return %true iff I'm a worker executing a work item on @wq.  If
1761 	 * I'm @worker, it's safe to dereference it without locking.
1762 	 */
1763 	return worker && worker->current_pwq->wq == wq;
1764 }
1765 
1766 /*
1767  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1768  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1769  * avoid perturbing sensitive tasks.
1770  */
1771 static int wq_select_unbound_cpu(int cpu)
1772 {
1773 	int new_cpu;
1774 
1775 	if (likely(!wq_debug_force_rr_cpu)) {
1776 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1777 			return cpu;
1778 	} else {
1779 		pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
1780 	}
1781 
1782 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1783 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1784 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1785 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1786 		if (unlikely(new_cpu >= nr_cpu_ids))
1787 			return cpu;
1788 	}
1789 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1790 
1791 	return new_cpu;
1792 }
1793 
1794 static void __queue_work(int cpu, struct workqueue_struct *wq,
1795 			 struct work_struct *work)
1796 {
1797 	struct pool_workqueue *pwq;
1798 	struct worker_pool *last_pool, *pool;
1799 	unsigned int work_flags;
1800 	unsigned int req_cpu = cpu;
1801 
1802 	/*
1803 	 * While a work item is PENDING && off queue, a task trying to
1804 	 * steal the PENDING will busy-loop waiting for it to either get
1805 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1806 	 * happen with IRQ disabled.
1807 	 */
1808 	lockdep_assert_irqs_disabled();
1809 
1810 
1811 	/*
1812 	 * For a draining wq, only works from the same workqueue are
1813 	 * allowed. The __WQ_DESTROYING helps to spot the issue that
1814 	 * queues a new work item to a wq after destroy_workqueue(wq).
1815 	 */
1816 	if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
1817 		     WARN_ON_ONCE(!is_chained_work(wq))))
1818 		return;
1819 	rcu_read_lock();
1820 retry:
1821 	/* pwq which will be used unless @work is executing elsewhere */
1822 	if (req_cpu == WORK_CPU_UNBOUND) {
1823 		if (wq->flags & WQ_UNBOUND)
1824 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1825 		else
1826 			cpu = raw_smp_processor_id();
1827 	}
1828 
1829 	pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
1830 	pool = pwq->pool;
1831 
1832 	/*
1833 	 * If @work was previously on a different pool, it might still be
1834 	 * running there, in which case the work needs to be queued on that
1835 	 * pool to guarantee non-reentrancy.
1836 	 */
1837 	last_pool = get_work_pool(work);
1838 	if (last_pool && last_pool != pool) {
1839 		struct worker *worker;
1840 
1841 		raw_spin_lock(&last_pool->lock);
1842 
1843 		worker = find_worker_executing_work(last_pool, work);
1844 
1845 		if (worker && worker->current_pwq->wq == wq) {
1846 			pwq = worker->current_pwq;
1847 			pool = pwq->pool;
1848 			WARN_ON_ONCE(pool != last_pool);
1849 		} else {
1850 			/* meh... not running there, queue here */
1851 			raw_spin_unlock(&last_pool->lock);
1852 			raw_spin_lock(&pool->lock);
1853 		}
1854 	} else {
1855 		raw_spin_lock(&pool->lock);
1856 	}
1857 
1858 	/*
1859 	 * pwq is determined and locked. For unbound pools, we could have raced
1860 	 * with pwq release and it could already be dead. If its refcnt is zero,
1861 	 * repeat pwq selection. Note that unbound pwqs never die without
1862 	 * another pwq replacing it in cpu_pwq or while work items are executing
1863 	 * on it, so the retrying is guaranteed to make forward-progress.
1864 	 */
1865 	if (unlikely(!pwq->refcnt)) {
1866 		if (wq->flags & WQ_UNBOUND) {
1867 			raw_spin_unlock(&pool->lock);
1868 			cpu_relax();
1869 			goto retry;
1870 		}
1871 		/* oops */
1872 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1873 			  wq->name, cpu);
1874 	}
1875 
1876 	/* pwq determined, queue */
1877 	trace_workqueue_queue_work(req_cpu, pwq, work);
1878 
1879 	if (WARN_ON(!list_empty(&work->entry)))
1880 		goto out;
1881 
1882 	pwq->nr_in_flight[pwq->work_color]++;
1883 	work_flags = work_color_to_flags(pwq->work_color);
1884 
1885 	/*
1886 	 * Limit the number of concurrently active work items to max_active.
1887 	 * @work must also queue behind existing inactive work items to maintain
1888 	 * ordering when max_active changes. See wq_adjust_max_active().
1889 	 */
1890 	if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq)) {
1891 		if (list_empty(&pool->worklist))
1892 			pool->watchdog_ts = jiffies;
1893 
1894 		trace_workqueue_activate_work(work);
1895 		insert_work(pwq, work, &pool->worklist, work_flags);
1896 		kick_pool(pool);
1897 	} else {
1898 		work_flags |= WORK_STRUCT_INACTIVE;
1899 		insert_work(pwq, work, &pwq->inactive_works, work_flags);
1900 	}
1901 
1902 out:
1903 	raw_spin_unlock(&pool->lock);
1904 	rcu_read_unlock();
1905 }
1906 
1907 /**
1908  * queue_work_on - queue work on specific cpu
1909  * @cpu: CPU number to execute work on
1910  * @wq: workqueue to use
1911  * @work: work to queue
1912  *
1913  * We queue the work to a specific CPU, the caller must ensure it
1914  * can't go away.  Callers that fail to ensure that the specified
1915  * CPU cannot go away will execute on a randomly chosen CPU.
1916  * But note well that callers specifying a CPU that never has been
1917  * online will get a splat.
1918  *
1919  * Return: %false if @work was already on a queue, %true otherwise.
1920  */
1921 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1922 		   struct work_struct *work)
1923 {
1924 	bool ret = false;
1925 	unsigned long flags;
1926 
1927 	local_irq_save(flags);
1928 
1929 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1930 		__queue_work(cpu, wq, work);
1931 		ret = true;
1932 	}
1933 
1934 	local_irq_restore(flags);
1935 	return ret;
1936 }
1937 EXPORT_SYMBOL(queue_work_on);
1938 
1939 /**
1940  * select_numa_node_cpu - Select a CPU based on NUMA node
1941  * @node: NUMA node ID that we want to select a CPU from
1942  *
1943  * This function will attempt to find a "random" cpu available on a given
1944  * node. If there are no CPUs available on the given node it will return
1945  * WORK_CPU_UNBOUND indicating that we should just schedule to any
1946  * available CPU if we need to schedule this work.
1947  */
1948 static int select_numa_node_cpu(int node)
1949 {
1950 	int cpu;
1951 
1952 	/* Delay binding to CPU if node is not valid or online */
1953 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1954 		return WORK_CPU_UNBOUND;
1955 
1956 	/* Use local node/cpu if we are already there */
1957 	cpu = raw_smp_processor_id();
1958 	if (node == cpu_to_node(cpu))
1959 		return cpu;
1960 
1961 	/* Use "random" otherwise know as "first" online CPU of node */
1962 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1963 
1964 	/* If CPU is valid return that, otherwise just defer */
1965 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1966 }
1967 
1968 /**
1969  * queue_work_node - queue work on a "random" cpu for a given NUMA node
1970  * @node: NUMA node that we are targeting the work for
1971  * @wq: workqueue to use
1972  * @work: work to queue
1973  *
1974  * We queue the work to a "random" CPU within a given NUMA node. The basic
1975  * idea here is to provide a way to somehow associate work with a given
1976  * NUMA node.
1977  *
1978  * This function will only make a best effort attempt at getting this onto
1979  * the right NUMA node. If no node is requested or the requested node is
1980  * offline then we just fall back to standard queue_work behavior.
1981  *
1982  * Currently the "random" CPU ends up being the first available CPU in the
1983  * intersection of cpu_online_mask and the cpumask of the node, unless we
1984  * are running on the node. In that case we just use the current CPU.
1985  *
1986  * Return: %false if @work was already on a queue, %true otherwise.
1987  */
1988 bool queue_work_node(int node, struct workqueue_struct *wq,
1989 		     struct work_struct *work)
1990 {
1991 	unsigned long flags;
1992 	bool ret = false;
1993 
1994 	/*
1995 	 * This current implementation is specific to unbound workqueues.
1996 	 * Specifically we only return the first available CPU for a given
1997 	 * node instead of cycling through individual CPUs within the node.
1998 	 *
1999 	 * If this is used with a per-cpu workqueue then the logic in
2000 	 * workqueue_select_cpu_near would need to be updated to allow for
2001 	 * some round robin type logic.
2002 	 */
2003 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2004 
2005 	local_irq_save(flags);
2006 
2007 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2008 		int cpu = select_numa_node_cpu(node);
2009 
2010 		__queue_work(cpu, wq, work);
2011 		ret = true;
2012 	}
2013 
2014 	local_irq_restore(flags);
2015 	return ret;
2016 }
2017 EXPORT_SYMBOL_GPL(queue_work_node);
2018 
2019 void delayed_work_timer_fn(struct timer_list *t)
2020 {
2021 	struct delayed_work *dwork = from_timer(dwork, t, timer);
2022 
2023 	/* should have been called from irqsafe timer with irq already off */
2024 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2025 }
2026 EXPORT_SYMBOL(delayed_work_timer_fn);
2027 
2028 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2029 				struct delayed_work *dwork, unsigned long delay)
2030 {
2031 	struct timer_list *timer = &dwork->timer;
2032 	struct work_struct *work = &dwork->work;
2033 
2034 	WARN_ON_ONCE(!wq);
2035 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
2036 	WARN_ON_ONCE(timer_pending(timer));
2037 	WARN_ON_ONCE(!list_empty(&work->entry));
2038 
2039 	/*
2040 	 * If @delay is 0, queue @dwork->work immediately.  This is for
2041 	 * both optimization and correctness.  The earliest @timer can
2042 	 * expire is on the closest next tick and delayed_work users depend
2043 	 * on that there's no such delay when @delay is 0.
2044 	 */
2045 	if (!delay) {
2046 		__queue_work(cpu, wq, &dwork->work);
2047 		return;
2048 	}
2049 
2050 	dwork->wq = wq;
2051 	dwork->cpu = cpu;
2052 	timer->expires = jiffies + delay;
2053 
2054 	if (unlikely(cpu != WORK_CPU_UNBOUND))
2055 		add_timer_on(timer, cpu);
2056 	else
2057 		add_timer(timer);
2058 }
2059 
2060 /**
2061  * queue_delayed_work_on - queue work on specific CPU after delay
2062  * @cpu: CPU number to execute work on
2063  * @wq: workqueue to use
2064  * @dwork: work to queue
2065  * @delay: number of jiffies to wait before queueing
2066  *
2067  * Return: %false if @work was already on a queue, %true otherwise.  If
2068  * @delay is zero and @dwork is idle, it will be scheduled for immediate
2069  * execution.
2070  */
2071 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2072 			   struct delayed_work *dwork, unsigned long delay)
2073 {
2074 	struct work_struct *work = &dwork->work;
2075 	bool ret = false;
2076 	unsigned long flags;
2077 
2078 	/* read the comment in __queue_work() */
2079 	local_irq_save(flags);
2080 
2081 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2082 		__queue_delayed_work(cpu, wq, dwork, delay);
2083 		ret = true;
2084 	}
2085 
2086 	local_irq_restore(flags);
2087 	return ret;
2088 }
2089 EXPORT_SYMBOL(queue_delayed_work_on);
2090 
2091 /**
2092  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2093  * @cpu: CPU number to execute work on
2094  * @wq: workqueue to use
2095  * @dwork: work to queue
2096  * @delay: number of jiffies to wait before queueing
2097  *
2098  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2099  * modify @dwork's timer so that it expires after @delay.  If @delay is
2100  * zero, @work is guaranteed to be scheduled immediately regardless of its
2101  * current state.
2102  *
2103  * Return: %false if @dwork was idle and queued, %true if @dwork was
2104  * pending and its timer was modified.
2105  *
2106  * This function is safe to call from any context including IRQ handler.
2107  * See try_to_grab_pending() for details.
2108  */
2109 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2110 			 struct delayed_work *dwork, unsigned long delay)
2111 {
2112 	unsigned long flags;
2113 	int ret;
2114 
2115 	do {
2116 		ret = try_to_grab_pending(&dwork->work, true, &flags);
2117 	} while (unlikely(ret == -EAGAIN));
2118 
2119 	if (likely(ret >= 0)) {
2120 		__queue_delayed_work(cpu, wq, dwork, delay);
2121 		local_irq_restore(flags);
2122 	}
2123 
2124 	/* -ENOENT from try_to_grab_pending() becomes %true */
2125 	return ret;
2126 }
2127 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2128 
2129 static void rcu_work_rcufn(struct rcu_head *rcu)
2130 {
2131 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2132 
2133 	/* read the comment in __queue_work() */
2134 	local_irq_disable();
2135 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2136 	local_irq_enable();
2137 }
2138 
2139 /**
2140  * queue_rcu_work - queue work after a RCU grace period
2141  * @wq: workqueue to use
2142  * @rwork: work to queue
2143  *
2144  * Return: %false if @rwork was already pending, %true otherwise.  Note
2145  * that a full RCU grace period is guaranteed only after a %true return.
2146  * While @rwork is guaranteed to be executed after a %false return, the
2147  * execution may happen before a full RCU grace period has passed.
2148  */
2149 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2150 {
2151 	struct work_struct *work = &rwork->work;
2152 
2153 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2154 		rwork->wq = wq;
2155 		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2156 		return true;
2157 	}
2158 
2159 	return false;
2160 }
2161 EXPORT_SYMBOL(queue_rcu_work);
2162 
2163 static struct worker *alloc_worker(int node)
2164 {
2165 	struct worker *worker;
2166 
2167 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2168 	if (worker) {
2169 		INIT_LIST_HEAD(&worker->entry);
2170 		INIT_LIST_HEAD(&worker->scheduled);
2171 		INIT_LIST_HEAD(&worker->node);
2172 		/* on creation a worker is in !idle && prep state */
2173 		worker->flags = WORKER_PREP;
2174 	}
2175 	return worker;
2176 }
2177 
2178 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2179 {
2180 	if (pool->cpu < 0 && pool->attrs->affn_strict)
2181 		return pool->attrs->__pod_cpumask;
2182 	else
2183 		return pool->attrs->cpumask;
2184 }
2185 
2186 /**
2187  * worker_attach_to_pool() - attach a worker to a pool
2188  * @worker: worker to be attached
2189  * @pool: the target pool
2190  *
2191  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
2192  * cpu-binding of @worker are kept coordinated with the pool across
2193  * cpu-[un]hotplugs.
2194  */
2195 static void worker_attach_to_pool(struct worker *worker,
2196 				   struct worker_pool *pool)
2197 {
2198 	mutex_lock(&wq_pool_attach_mutex);
2199 
2200 	/*
2201 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
2202 	 * stable across this function.  See the comments above the flag
2203 	 * definition for details.
2204 	 */
2205 	if (pool->flags & POOL_DISASSOCIATED)
2206 		worker->flags |= WORKER_UNBOUND;
2207 	else
2208 		kthread_set_per_cpu(worker->task, pool->cpu);
2209 
2210 	if (worker->rescue_wq)
2211 		set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2212 
2213 	list_add_tail(&worker->node, &pool->workers);
2214 	worker->pool = pool;
2215 
2216 	mutex_unlock(&wq_pool_attach_mutex);
2217 }
2218 
2219 /**
2220  * worker_detach_from_pool() - detach a worker from its pool
2221  * @worker: worker which is attached to its pool
2222  *
2223  * Undo the attaching which had been done in worker_attach_to_pool().  The
2224  * caller worker shouldn't access to the pool after detached except it has
2225  * other reference to the pool.
2226  */
2227 static void worker_detach_from_pool(struct worker *worker)
2228 {
2229 	struct worker_pool *pool = worker->pool;
2230 	struct completion *detach_completion = NULL;
2231 
2232 	mutex_lock(&wq_pool_attach_mutex);
2233 
2234 	kthread_set_per_cpu(worker->task, -1);
2235 	list_del(&worker->node);
2236 	worker->pool = NULL;
2237 
2238 	if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
2239 		detach_completion = pool->detach_completion;
2240 	mutex_unlock(&wq_pool_attach_mutex);
2241 
2242 	/* clear leftover flags without pool->lock after it is detached */
2243 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2244 
2245 	if (detach_completion)
2246 		complete(detach_completion);
2247 }
2248 
2249 /**
2250  * create_worker - create a new workqueue worker
2251  * @pool: pool the new worker will belong to
2252  *
2253  * Create and start a new worker which is attached to @pool.
2254  *
2255  * CONTEXT:
2256  * Might sleep.  Does GFP_KERNEL allocations.
2257  *
2258  * Return:
2259  * Pointer to the newly created worker.
2260  */
2261 static struct worker *create_worker(struct worker_pool *pool)
2262 {
2263 	struct worker *worker;
2264 	int id;
2265 	char id_buf[23];
2266 
2267 	/* ID is needed to determine kthread name */
2268 	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2269 	if (id < 0) {
2270 		pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2271 			    ERR_PTR(id));
2272 		return NULL;
2273 	}
2274 
2275 	worker = alloc_worker(pool->node);
2276 	if (!worker) {
2277 		pr_err_once("workqueue: Failed to allocate a worker\n");
2278 		goto fail;
2279 	}
2280 
2281 	worker->id = id;
2282 
2283 	if (pool->cpu >= 0)
2284 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
2285 			 pool->attrs->nice < 0  ? "H" : "");
2286 	else
2287 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
2288 
2289 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
2290 					      "kworker/%s", id_buf);
2291 	if (IS_ERR(worker->task)) {
2292 		if (PTR_ERR(worker->task) == -EINTR) {
2293 			pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
2294 			       id_buf);
2295 		} else {
2296 			pr_err_once("workqueue: Failed to create a worker thread: %pe",
2297 				    worker->task);
2298 		}
2299 		goto fail;
2300 	}
2301 
2302 	set_user_nice(worker->task, pool->attrs->nice);
2303 	kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2304 
2305 	/* successful, attach the worker to the pool */
2306 	worker_attach_to_pool(worker, pool);
2307 
2308 	/* start the newly created worker */
2309 	raw_spin_lock_irq(&pool->lock);
2310 
2311 	worker->pool->nr_workers++;
2312 	worker_enter_idle(worker);
2313 	kick_pool(pool);
2314 
2315 	/*
2316 	 * @worker is waiting on a completion in kthread() and will trigger hung
2317 	 * check if not woken up soon. As kick_pool() might not have waken it
2318 	 * up, wake it up explicitly once more.
2319 	 */
2320 	wake_up_process(worker->task);
2321 
2322 	raw_spin_unlock_irq(&pool->lock);
2323 
2324 	return worker;
2325 
2326 fail:
2327 	ida_free(&pool->worker_ida, id);
2328 	kfree(worker);
2329 	return NULL;
2330 }
2331 
2332 static void unbind_worker(struct worker *worker)
2333 {
2334 	lockdep_assert_held(&wq_pool_attach_mutex);
2335 
2336 	kthread_set_per_cpu(worker->task, -1);
2337 	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2338 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2339 	else
2340 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2341 }
2342 
2343 static void wake_dying_workers(struct list_head *cull_list)
2344 {
2345 	struct worker *worker, *tmp;
2346 
2347 	list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2348 		list_del_init(&worker->entry);
2349 		unbind_worker(worker);
2350 		/*
2351 		 * If the worker was somehow already running, then it had to be
2352 		 * in pool->idle_list when set_worker_dying() happened or we
2353 		 * wouldn't have gotten here.
2354 		 *
2355 		 * Thus, the worker must either have observed the WORKER_DIE
2356 		 * flag, or have set its state to TASK_IDLE. Either way, the
2357 		 * below will be observed by the worker and is safe to do
2358 		 * outside of pool->lock.
2359 		 */
2360 		wake_up_process(worker->task);
2361 	}
2362 }
2363 
2364 /**
2365  * set_worker_dying - Tag a worker for destruction
2366  * @worker: worker to be destroyed
2367  * @list: transfer worker away from its pool->idle_list and into list
2368  *
2369  * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
2370  * should be idle.
2371  *
2372  * CONTEXT:
2373  * raw_spin_lock_irq(pool->lock).
2374  */
2375 static void set_worker_dying(struct worker *worker, struct list_head *list)
2376 {
2377 	struct worker_pool *pool = worker->pool;
2378 
2379 	lockdep_assert_held(&pool->lock);
2380 	lockdep_assert_held(&wq_pool_attach_mutex);
2381 
2382 	/* sanity check frenzy */
2383 	if (WARN_ON(worker->current_work) ||
2384 	    WARN_ON(!list_empty(&worker->scheduled)) ||
2385 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2386 		return;
2387 
2388 	pool->nr_workers--;
2389 	pool->nr_idle--;
2390 
2391 	worker->flags |= WORKER_DIE;
2392 
2393 	list_move(&worker->entry, list);
2394 	list_move(&worker->node, &pool->dying_workers);
2395 }
2396 
2397 /**
2398  * idle_worker_timeout - check if some idle workers can now be deleted.
2399  * @t: The pool's idle_timer that just expired
2400  *
2401  * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2402  * worker_leave_idle(), as a worker flicking between idle and active while its
2403  * pool is at the too_many_workers() tipping point would cause too much timer
2404  * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2405  * it expire and re-evaluate things from there.
2406  */
2407 static void idle_worker_timeout(struct timer_list *t)
2408 {
2409 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2410 	bool do_cull = false;
2411 
2412 	if (work_pending(&pool->idle_cull_work))
2413 		return;
2414 
2415 	raw_spin_lock_irq(&pool->lock);
2416 
2417 	if (too_many_workers(pool)) {
2418 		struct worker *worker;
2419 		unsigned long expires;
2420 
2421 		/* idle_list is kept in LIFO order, check the last one */
2422 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2423 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2424 		do_cull = !time_before(jiffies, expires);
2425 
2426 		if (!do_cull)
2427 			mod_timer(&pool->idle_timer, expires);
2428 	}
2429 	raw_spin_unlock_irq(&pool->lock);
2430 
2431 	if (do_cull)
2432 		queue_work(system_unbound_wq, &pool->idle_cull_work);
2433 }
2434 
2435 /**
2436  * idle_cull_fn - cull workers that have been idle for too long.
2437  * @work: the pool's work for handling these idle workers
2438  *
2439  * This goes through a pool's idle workers and gets rid of those that have been
2440  * idle for at least IDLE_WORKER_TIMEOUT seconds.
2441  *
2442  * We don't want to disturb isolated CPUs because of a pcpu kworker being
2443  * culled, so this also resets worker affinity. This requires a sleepable
2444  * context, hence the split between timer callback and work item.
2445  */
2446 static void idle_cull_fn(struct work_struct *work)
2447 {
2448 	struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2449 	LIST_HEAD(cull_list);
2450 
2451 	/*
2452 	 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2453 	 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
2454 	 * path. This is required as a previously-preempted worker could run after
2455 	 * set_worker_dying() has happened but before wake_dying_workers() did.
2456 	 */
2457 	mutex_lock(&wq_pool_attach_mutex);
2458 	raw_spin_lock_irq(&pool->lock);
2459 
2460 	while (too_many_workers(pool)) {
2461 		struct worker *worker;
2462 		unsigned long expires;
2463 
2464 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2465 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2466 
2467 		if (time_before(jiffies, expires)) {
2468 			mod_timer(&pool->idle_timer, expires);
2469 			break;
2470 		}
2471 
2472 		set_worker_dying(worker, &cull_list);
2473 	}
2474 
2475 	raw_spin_unlock_irq(&pool->lock);
2476 	wake_dying_workers(&cull_list);
2477 	mutex_unlock(&wq_pool_attach_mutex);
2478 }
2479 
2480 static void send_mayday(struct work_struct *work)
2481 {
2482 	struct pool_workqueue *pwq = get_work_pwq(work);
2483 	struct workqueue_struct *wq = pwq->wq;
2484 
2485 	lockdep_assert_held(&wq_mayday_lock);
2486 
2487 	if (!wq->rescuer)
2488 		return;
2489 
2490 	/* mayday mayday mayday */
2491 	if (list_empty(&pwq->mayday_node)) {
2492 		/*
2493 		 * If @pwq is for an unbound wq, its base ref may be put at
2494 		 * any time due to an attribute change.  Pin @pwq until the
2495 		 * rescuer is done with it.
2496 		 */
2497 		get_pwq(pwq);
2498 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2499 		wake_up_process(wq->rescuer->task);
2500 		pwq->stats[PWQ_STAT_MAYDAY]++;
2501 	}
2502 }
2503 
2504 static void pool_mayday_timeout(struct timer_list *t)
2505 {
2506 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2507 	struct work_struct *work;
2508 
2509 	raw_spin_lock_irq(&pool->lock);
2510 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2511 
2512 	if (need_to_create_worker(pool)) {
2513 		/*
2514 		 * We've been trying to create a new worker but
2515 		 * haven't been successful.  We might be hitting an
2516 		 * allocation deadlock.  Send distress signals to
2517 		 * rescuers.
2518 		 */
2519 		list_for_each_entry(work, &pool->worklist, entry)
2520 			send_mayday(work);
2521 	}
2522 
2523 	raw_spin_unlock(&wq_mayday_lock);
2524 	raw_spin_unlock_irq(&pool->lock);
2525 
2526 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2527 }
2528 
2529 /**
2530  * maybe_create_worker - create a new worker if necessary
2531  * @pool: pool to create a new worker for
2532  *
2533  * Create a new worker for @pool if necessary.  @pool is guaranteed to
2534  * have at least one idle worker on return from this function.  If
2535  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2536  * sent to all rescuers with works scheduled on @pool to resolve
2537  * possible allocation deadlock.
2538  *
2539  * On return, need_to_create_worker() is guaranteed to be %false and
2540  * may_start_working() %true.
2541  *
2542  * LOCKING:
2543  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2544  * multiple times.  Does GFP_KERNEL allocations.  Called only from
2545  * manager.
2546  */
2547 static void maybe_create_worker(struct worker_pool *pool)
2548 __releases(&pool->lock)
2549 __acquires(&pool->lock)
2550 {
2551 restart:
2552 	raw_spin_unlock_irq(&pool->lock);
2553 
2554 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2555 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2556 
2557 	while (true) {
2558 		if (create_worker(pool) || !need_to_create_worker(pool))
2559 			break;
2560 
2561 		schedule_timeout_interruptible(CREATE_COOLDOWN);
2562 
2563 		if (!need_to_create_worker(pool))
2564 			break;
2565 	}
2566 
2567 	del_timer_sync(&pool->mayday_timer);
2568 	raw_spin_lock_irq(&pool->lock);
2569 	/*
2570 	 * This is necessary even after a new worker was just successfully
2571 	 * created as @pool->lock was dropped and the new worker might have
2572 	 * already become busy.
2573 	 */
2574 	if (need_to_create_worker(pool))
2575 		goto restart;
2576 }
2577 
2578 /**
2579  * manage_workers - manage worker pool
2580  * @worker: self
2581  *
2582  * Assume the manager role and manage the worker pool @worker belongs
2583  * to.  At any given time, there can be only zero or one manager per
2584  * pool.  The exclusion is handled automatically by this function.
2585  *
2586  * The caller can safely start processing works on false return.  On
2587  * true return, it's guaranteed that need_to_create_worker() is false
2588  * and may_start_working() is true.
2589  *
2590  * CONTEXT:
2591  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2592  * multiple times.  Does GFP_KERNEL allocations.
2593  *
2594  * Return:
2595  * %false if the pool doesn't need management and the caller can safely
2596  * start processing works, %true if management function was performed and
2597  * the conditions that the caller verified before calling the function may
2598  * no longer be true.
2599  */
2600 static bool manage_workers(struct worker *worker)
2601 {
2602 	struct worker_pool *pool = worker->pool;
2603 
2604 	if (pool->flags & POOL_MANAGER_ACTIVE)
2605 		return false;
2606 
2607 	pool->flags |= POOL_MANAGER_ACTIVE;
2608 	pool->manager = worker;
2609 
2610 	maybe_create_worker(pool);
2611 
2612 	pool->manager = NULL;
2613 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2614 	rcuwait_wake_up(&manager_wait);
2615 	return true;
2616 }
2617 
2618 /**
2619  * process_one_work - process single work
2620  * @worker: self
2621  * @work: work to process
2622  *
2623  * Process @work.  This function contains all the logics necessary to
2624  * process a single work including synchronization against and
2625  * interaction with other workers on the same cpu, queueing and
2626  * flushing.  As long as context requirement is met, any worker can
2627  * call this function to process a work.
2628  *
2629  * CONTEXT:
2630  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2631  */
2632 static void process_one_work(struct worker *worker, struct work_struct *work)
2633 __releases(&pool->lock)
2634 __acquires(&pool->lock)
2635 {
2636 	struct pool_workqueue *pwq = get_work_pwq(work);
2637 	struct worker_pool *pool = worker->pool;
2638 	unsigned long work_data;
2639 #ifdef CONFIG_LOCKDEP
2640 	/*
2641 	 * It is permissible to free the struct work_struct from
2642 	 * inside the function that is called from it, this we need to
2643 	 * take into account for lockdep too.  To avoid bogus "held
2644 	 * lock freed" warnings as well as problems when looking into
2645 	 * work->lockdep_map, make a copy and use that here.
2646 	 */
2647 	struct lockdep_map lockdep_map;
2648 
2649 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2650 #endif
2651 	/* ensure we're on the correct CPU */
2652 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2653 		     raw_smp_processor_id() != pool->cpu);
2654 
2655 	/* claim and dequeue */
2656 	debug_work_deactivate(work);
2657 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2658 	worker->current_work = work;
2659 	worker->current_func = work->func;
2660 	worker->current_pwq = pwq;
2661 	worker->current_at = worker->task->se.sum_exec_runtime;
2662 	work_data = *work_data_bits(work);
2663 	worker->current_color = get_work_color(work_data);
2664 
2665 	/*
2666 	 * Record wq name for cmdline and debug reporting, may get
2667 	 * overridden through set_worker_desc().
2668 	 */
2669 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2670 
2671 	list_del_init(&work->entry);
2672 
2673 	/*
2674 	 * CPU intensive works don't participate in concurrency management.
2675 	 * They're the scheduler's responsibility.  This takes @worker out
2676 	 * of concurrency management and the next code block will chain
2677 	 * execution of the pending work items.
2678 	 */
2679 	if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
2680 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2681 
2682 	/*
2683 	 * Kick @pool if necessary. It's always noop for per-cpu worker pools
2684 	 * since nr_running would always be >= 1 at this point. This is used to
2685 	 * chain execution of the pending work items for WORKER_NOT_RUNNING
2686 	 * workers such as the UNBOUND and CPU_INTENSIVE ones.
2687 	 */
2688 	kick_pool(pool);
2689 
2690 	/*
2691 	 * Record the last pool and clear PENDING which should be the last
2692 	 * update to @work.  Also, do this inside @pool->lock so that
2693 	 * PENDING and queued state changes happen together while IRQ is
2694 	 * disabled.
2695 	 */
2696 	set_work_pool_and_clear_pending(work, pool->id);
2697 
2698 	pwq->stats[PWQ_STAT_STARTED]++;
2699 	raw_spin_unlock_irq(&pool->lock);
2700 
2701 	lock_map_acquire(&pwq->wq->lockdep_map);
2702 	lock_map_acquire(&lockdep_map);
2703 	/*
2704 	 * Strictly speaking we should mark the invariant state without holding
2705 	 * any locks, that is, before these two lock_map_acquire()'s.
2706 	 *
2707 	 * However, that would result in:
2708 	 *
2709 	 *   A(W1)
2710 	 *   WFC(C)
2711 	 *		A(W1)
2712 	 *		C(C)
2713 	 *
2714 	 * Which would create W1->C->W1 dependencies, even though there is no
2715 	 * actual deadlock possible. There are two solutions, using a
2716 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2717 	 * hit the lockdep limitation on recursive locks, or simply discard
2718 	 * these locks.
2719 	 *
2720 	 * AFAICT there is no possible deadlock scenario between the
2721 	 * flush_work() and complete() primitives (except for single-threaded
2722 	 * workqueues), so hiding them isn't a problem.
2723 	 */
2724 	lockdep_invariant_state(true);
2725 	trace_workqueue_execute_start(work);
2726 	worker->current_func(work);
2727 	/*
2728 	 * While we must be careful to not use "work" after this, the trace
2729 	 * point will only record its address.
2730 	 */
2731 	trace_workqueue_execute_end(work, worker->current_func);
2732 	pwq->stats[PWQ_STAT_COMPLETED]++;
2733 	lock_map_release(&lockdep_map);
2734 	lock_map_release(&pwq->wq->lockdep_map);
2735 
2736 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2737 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2738 		       "     last function: %ps\n",
2739 		       current->comm, preempt_count(), task_pid_nr(current),
2740 		       worker->current_func);
2741 		debug_show_held_locks(current);
2742 		dump_stack();
2743 	}
2744 
2745 	/*
2746 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
2747 	 * kernels, where a requeueing work item waiting for something to
2748 	 * happen could deadlock with stop_machine as such work item could
2749 	 * indefinitely requeue itself while all other CPUs are trapped in
2750 	 * stop_machine. At the same time, report a quiescent RCU state so
2751 	 * the same condition doesn't freeze RCU.
2752 	 */
2753 	cond_resched();
2754 
2755 	raw_spin_lock_irq(&pool->lock);
2756 
2757 	/*
2758 	 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
2759 	 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
2760 	 * wq_cpu_intensive_thresh_us. Clear it.
2761 	 */
2762 	worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2763 
2764 	/* tag the worker for identification in schedule() */
2765 	worker->last_func = worker->current_func;
2766 
2767 	/* we're done with it, release */
2768 	hash_del(&worker->hentry);
2769 	worker->current_work = NULL;
2770 	worker->current_func = NULL;
2771 	worker->current_pwq = NULL;
2772 	worker->current_color = INT_MAX;
2773 	pwq_dec_nr_in_flight(pwq, work_data);
2774 }
2775 
2776 /**
2777  * process_scheduled_works - process scheduled works
2778  * @worker: self
2779  *
2780  * Process all scheduled works.  Please note that the scheduled list
2781  * may change while processing a work, so this function repeatedly
2782  * fetches a work from the top and executes it.
2783  *
2784  * CONTEXT:
2785  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2786  * multiple times.
2787  */
2788 static void process_scheduled_works(struct worker *worker)
2789 {
2790 	struct work_struct *work;
2791 	bool first = true;
2792 
2793 	while ((work = list_first_entry_or_null(&worker->scheduled,
2794 						struct work_struct, entry))) {
2795 		if (first) {
2796 			worker->pool->watchdog_ts = jiffies;
2797 			first = false;
2798 		}
2799 		process_one_work(worker, work);
2800 	}
2801 }
2802 
2803 static void set_pf_worker(bool val)
2804 {
2805 	mutex_lock(&wq_pool_attach_mutex);
2806 	if (val)
2807 		current->flags |= PF_WQ_WORKER;
2808 	else
2809 		current->flags &= ~PF_WQ_WORKER;
2810 	mutex_unlock(&wq_pool_attach_mutex);
2811 }
2812 
2813 /**
2814  * worker_thread - the worker thread function
2815  * @__worker: self
2816  *
2817  * The worker thread function.  All workers belong to a worker_pool -
2818  * either a per-cpu one or dynamic unbound one.  These workers process all
2819  * work items regardless of their specific target workqueue.  The only
2820  * exception is work items which belong to workqueues with a rescuer which
2821  * will be explained in rescuer_thread().
2822  *
2823  * Return: 0
2824  */
2825 static int worker_thread(void *__worker)
2826 {
2827 	struct worker *worker = __worker;
2828 	struct worker_pool *pool = worker->pool;
2829 
2830 	/* tell the scheduler that this is a workqueue worker */
2831 	set_pf_worker(true);
2832 woke_up:
2833 	raw_spin_lock_irq(&pool->lock);
2834 
2835 	/* am I supposed to die? */
2836 	if (unlikely(worker->flags & WORKER_DIE)) {
2837 		raw_spin_unlock_irq(&pool->lock);
2838 		set_pf_worker(false);
2839 
2840 		set_task_comm(worker->task, "kworker/dying");
2841 		ida_free(&pool->worker_ida, worker->id);
2842 		worker_detach_from_pool(worker);
2843 		WARN_ON_ONCE(!list_empty(&worker->entry));
2844 		kfree(worker);
2845 		return 0;
2846 	}
2847 
2848 	worker_leave_idle(worker);
2849 recheck:
2850 	/* no more worker necessary? */
2851 	if (!need_more_worker(pool))
2852 		goto sleep;
2853 
2854 	/* do we need to manage? */
2855 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2856 		goto recheck;
2857 
2858 	/*
2859 	 * ->scheduled list can only be filled while a worker is
2860 	 * preparing to process a work or actually processing it.
2861 	 * Make sure nobody diddled with it while I was sleeping.
2862 	 */
2863 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2864 
2865 	/*
2866 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2867 	 * worker or that someone else has already assumed the manager
2868 	 * role.  This is where @worker starts participating in concurrency
2869 	 * management if applicable and concurrency management is restored
2870 	 * after being rebound.  See rebind_workers() for details.
2871 	 */
2872 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2873 
2874 	do {
2875 		struct work_struct *work =
2876 			list_first_entry(&pool->worklist,
2877 					 struct work_struct, entry);
2878 
2879 		if (assign_work(work, worker, NULL))
2880 			process_scheduled_works(worker);
2881 	} while (keep_working(pool));
2882 
2883 	worker_set_flags(worker, WORKER_PREP);
2884 sleep:
2885 	/*
2886 	 * pool->lock is held and there's no work to process and no need to
2887 	 * manage, sleep.  Workers are woken up only while holding
2888 	 * pool->lock or from local cpu, so setting the current state
2889 	 * before releasing pool->lock is enough to prevent losing any
2890 	 * event.
2891 	 */
2892 	worker_enter_idle(worker);
2893 	__set_current_state(TASK_IDLE);
2894 	raw_spin_unlock_irq(&pool->lock);
2895 	schedule();
2896 	goto woke_up;
2897 }
2898 
2899 /**
2900  * rescuer_thread - the rescuer thread function
2901  * @__rescuer: self
2902  *
2903  * Workqueue rescuer thread function.  There's one rescuer for each
2904  * workqueue which has WQ_MEM_RECLAIM set.
2905  *
2906  * Regular work processing on a pool may block trying to create a new
2907  * worker which uses GFP_KERNEL allocation which has slight chance of
2908  * developing into deadlock if some works currently on the same queue
2909  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2910  * the problem rescuer solves.
2911  *
2912  * When such condition is possible, the pool summons rescuers of all
2913  * workqueues which have works queued on the pool and let them process
2914  * those works so that forward progress can be guaranteed.
2915  *
2916  * This should happen rarely.
2917  *
2918  * Return: 0
2919  */
2920 static int rescuer_thread(void *__rescuer)
2921 {
2922 	struct worker *rescuer = __rescuer;
2923 	struct workqueue_struct *wq = rescuer->rescue_wq;
2924 	bool should_stop;
2925 
2926 	set_user_nice(current, RESCUER_NICE_LEVEL);
2927 
2928 	/*
2929 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2930 	 * doesn't participate in concurrency management.
2931 	 */
2932 	set_pf_worker(true);
2933 repeat:
2934 	set_current_state(TASK_IDLE);
2935 
2936 	/*
2937 	 * By the time the rescuer is requested to stop, the workqueue
2938 	 * shouldn't have any work pending, but @wq->maydays may still have
2939 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2940 	 * all the work items before the rescuer got to them.  Go through
2941 	 * @wq->maydays processing before acting on should_stop so that the
2942 	 * list is always empty on exit.
2943 	 */
2944 	should_stop = kthread_should_stop();
2945 
2946 	/* see whether any pwq is asking for help */
2947 	raw_spin_lock_irq(&wq_mayday_lock);
2948 
2949 	while (!list_empty(&wq->maydays)) {
2950 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2951 					struct pool_workqueue, mayday_node);
2952 		struct worker_pool *pool = pwq->pool;
2953 		struct work_struct *work, *n;
2954 
2955 		__set_current_state(TASK_RUNNING);
2956 		list_del_init(&pwq->mayday_node);
2957 
2958 		raw_spin_unlock_irq(&wq_mayday_lock);
2959 
2960 		worker_attach_to_pool(rescuer, pool);
2961 
2962 		raw_spin_lock_irq(&pool->lock);
2963 
2964 		/*
2965 		 * Slurp in all works issued via this workqueue and
2966 		 * process'em.
2967 		 */
2968 		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2969 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2970 			if (get_work_pwq(work) == pwq &&
2971 			    assign_work(work, rescuer, &n))
2972 				pwq->stats[PWQ_STAT_RESCUED]++;
2973 		}
2974 
2975 		if (!list_empty(&rescuer->scheduled)) {
2976 			process_scheduled_works(rescuer);
2977 
2978 			/*
2979 			 * The above execution of rescued work items could
2980 			 * have created more to rescue through
2981 			 * pwq_activate_first_inactive() or chained
2982 			 * queueing.  Let's put @pwq back on mayday list so
2983 			 * that such back-to-back work items, which may be
2984 			 * being used to relieve memory pressure, don't
2985 			 * incur MAYDAY_INTERVAL delay inbetween.
2986 			 */
2987 			if (pwq->nr_active && need_to_create_worker(pool)) {
2988 				raw_spin_lock(&wq_mayday_lock);
2989 				/*
2990 				 * Queue iff we aren't racing destruction
2991 				 * and somebody else hasn't queued it already.
2992 				 */
2993 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2994 					get_pwq(pwq);
2995 					list_add_tail(&pwq->mayday_node, &wq->maydays);
2996 				}
2997 				raw_spin_unlock(&wq_mayday_lock);
2998 			}
2999 		}
3000 
3001 		/*
3002 		 * Put the reference grabbed by send_mayday().  @pool won't
3003 		 * go away while we're still attached to it.
3004 		 */
3005 		put_pwq(pwq);
3006 
3007 		/*
3008 		 * Leave this pool. Notify regular workers; otherwise, we end up
3009 		 * with 0 concurrency and stalling the execution.
3010 		 */
3011 		kick_pool(pool);
3012 
3013 		raw_spin_unlock_irq(&pool->lock);
3014 
3015 		worker_detach_from_pool(rescuer);
3016 
3017 		raw_spin_lock_irq(&wq_mayday_lock);
3018 	}
3019 
3020 	raw_spin_unlock_irq(&wq_mayday_lock);
3021 
3022 	if (should_stop) {
3023 		__set_current_state(TASK_RUNNING);
3024 		set_pf_worker(false);
3025 		return 0;
3026 	}
3027 
3028 	/* rescuers should never participate in concurrency management */
3029 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
3030 	schedule();
3031 	goto repeat;
3032 }
3033 
3034 /**
3035  * check_flush_dependency - check for flush dependency sanity
3036  * @target_wq: workqueue being flushed
3037  * @target_work: work item being flushed (NULL for workqueue flushes)
3038  *
3039  * %current is trying to flush the whole @target_wq or @target_work on it.
3040  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
3041  * reclaiming memory or running on a workqueue which doesn't have
3042  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
3043  * a deadlock.
3044  */
3045 static void check_flush_dependency(struct workqueue_struct *target_wq,
3046 				   struct work_struct *target_work)
3047 {
3048 	work_func_t target_func = target_work ? target_work->func : NULL;
3049 	struct worker *worker;
3050 
3051 	if (target_wq->flags & WQ_MEM_RECLAIM)
3052 		return;
3053 
3054 	worker = current_wq_worker();
3055 
3056 	WARN_ONCE(current->flags & PF_MEMALLOC,
3057 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
3058 		  current->pid, current->comm, target_wq->name, target_func);
3059 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3060 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
3061 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
3062 		  worker->current_pwq->wq->name, worker->current_func,
3063 		  target_wq->name, target_func);
3064 }
3065 
3066 struct wq_barrier {
3067 	struct work_struct	work;
3068 	struct completion	done;
3069 	struct task_struct	*task;	/* purely informational */
3070 };
3071 
3072 static void wq_barrier_func(struct work_struct *work)
3073 {
3074 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3075 	complete(&barr->done);
3076 }
3077 
3078 /**
3079  * insert_wq_barrier - insert a barrier work
3080  * @pwq: pwq to insert barrier into
3081  * @barr: wq_barrier to insert
3082  * @target: target work to attach @barr to
3083  * @worker: worker currently executing @target, NULL if @target is not executing
3084  *
3085  * @barr is linked to @target such that @barr is completed only after
3086  * @target finishes execution.  Please note that the ordering
3087  * guarantee is observed only with respect to @target and on the local
3088  * cpu.
3089  *
3090  * Currently, a queued barrier can't be canceled.  This is because
3091  * try_to_grab_pending() can't determine whether the work to be
3092  * grabbed is at the head of the queue and thus can't clear LINKED
3093  * flag of the previous work while there must be a valid next work
3094  * after a work with LINKED flag set.
3095  *
3096  * Note that when @worker is non-NULL, @target may be modified
3097  * underneath us, so we can't reliably determine pwq from @target.
3098  *
3099  * CONTEXT:
3100  * raw_spin_lock_irq(pool->lock).
3101  */
3102 static void insert_wq_barrier(struct pool_workqueue *pwq,
3103 			      struct wq_barrier *barr,
3104 			      struct work_struct *target, struct worker *worker)
3105 {
3106 	unsigned int work_flags = 0;
3107 	unsigned int work_color;
3108 	struct list_head *head;
3109 
3110 	/*
3111 	 * debugobject calls are safe here even with pool->lock locked
3112 	 * as we know for sure that this will not trigger any of the
3113 	 * checks and call back into the fixup functions where we
3114 	 * might deadlock.
3115 	 */
3116 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
3117 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3118 
3119 	init_completion_map(&barr->done, &target->lockdep_map);
3120 
3121 	barr->task = current;
3122 
3123 	/* The barrier work item does not participate in pwq->nr_active. */
3124 	work_flags |= WORK_STRUCT_INACTIVE;
3125 
3126 	/*
3127 	 * If @target is currently being executed, schedule the
3128 	 * barrier to the worker; otherwise, put it after @target.
3129 	 */
3130 	if (worker) {
3131 		head = worker->scheduled.next;
3132 		work_color = worker->current_color;
3133 	} else {
3134 		unsigned long *bits = work_data_bits(target);
3135 
3136 		head = target->entry.next;
3137 		/* there can already be other linked works, inherit and set */
3138 		work_flags |= *bits & WORK_STRUCT_LINKED;
3139 		work_color = get_work_color(*bits);
3140 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
3141 	}
3142 
3143 	pwq->nr_in_flight[work_color]++;
3144 	work_flags |= work_color_to_flags(work_color);
3145 
3146 	insert_work(pwq, &barr->work, head, work_flags);
3147 }
3148 
3149 /**
3150  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3151  * @wq: workqueue being flushed
3152  * @flush_color: new flush color, < 0 for no-op
3153  * @work_color: new work color, < 0 for no-op
3154  *
3155  * Prepare pwqs for workqueue flushing.
3156  *
3157  * If @flush_color is non-negative, flush_color on all pwqs should be
3158  * -1.  If no pwq has in-flight commands at the specified color, all
3159  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
3160  * has in flight commands, its pwq->flush_color is set to
3161  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3162  * wakeup logic is armed and %true is returned.
3163  *
3164  * The caller should have initialized @wq->first_flusher prior to
3165  * calling this function with non-negative @flush_color.  If
3166  * @flush_color is negative, no flush color update is done and %false
3167  * is returned.
3168  *
3169  * If @work_color is non-negative, all pwqs should have the same
3170  * work_color which is previous to @work_color and all will be
3171  * advanced to @work_color.
3172  *
3173  * CONTEXT:
3174  * mutex_lock(wq->mutex).
3175  *
3176  * Return:
3177  * %true if @flush_color >= 0 and there's something to flush.  %false
3178  * otherwise.
3179  */
3180 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3181 				      int flush_color, int work_color)
3182 {
3183 	bool wait = false;
3184 	struct pool_workqueue *pwq;
3185 
3186 	if (flush_color >= 0) {
3187 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3188 		atomic_set(&wq->nr_pwqs_to_flush, 1);
3189 	}
3190 
3191 	for_each_pwq(pwq, wq) {
3192 		struct worker_pool *pool = pwq->pool;
3193 
3194 		raw_spin_lock_irq(&pool->lock);
3195 
3196 		if (flush_color >= 0) {
3197 			WARN_ON_ONCE(pwq->flush_color != -1);
3198 
3199 			if (pwq->nr_in_flight[flush_color]) {
3200 				pwq->flush_color = flush_color;
3201 				atomic_inc(&wq->nr_pwqs_to_flush);
3202 				wait = true;
3203 			}
3204 		}
3205 
3206 		if (work_color >= 0) {
3207 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3208 			pwq->work_color = work_color;
3209 		}
3210 
3211 		raw_spin_unlock_irq(&pool->lock);
3212 	}
3213 
3214 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3215 		complete(&wq->first_flusher->done);
3216 
3217 	return wait;
3218 }
3219 
3220 /**
3221  * __flush_workqueue - ensure that any scheduled work has run to completion.
3222  * @wq: workqueue to flush
3223  *
3224  * This function sleeps until all work items which were queued on entry
3225  * have finished execution, but it is not livelocked by new incoming ones.
3226  */
3227 void __flush_workqueue(struct workqueue_struct *wq)
3228 {
3229 	struct wq_flusher this_flusher = {
3230 		.list = LIST_HEAD_INIT(this_flusher.list),
3231 		.flush_color = -1,
3232 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
3233 	};
3234 	int next_color;
3235 
3236 	if (WARN_ON(!wq_online))
3237 		return;
3238 
3239 	lock_map_acquire(&wq->lockdep_map);
3240 	lock_map_release(&wq->lockdep_map);
3241 
3242 	mutex_lock(&wq->mutex);
3243 
3244 	/*
3245 	 * Start-to-wait phase
3246 	 */
3247 	next_color = work_next_color(wq->work_color);
3248 
3249 	if (next_color != wq->flush_color) {
3250 		/*
3251 		 * Color space is not full.  The current work_color
3252 		 * becomes our flush_color and work_color is advanced
3253 		 * by one.
3254 		 */
3255 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3256 		this_flusher.flush_color = wq->work_color;
3257 		wq->work_color = next_color;
3258 
3259 		if (!wq->first_flusher) {
3260 			/* no flush in progress, become the first flusher */
3261 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3262 
3263 			wq->first_flusher = &this_flusher;
3264 
3265 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3266 						       wq->work_color)) {
3267 				/* nothing to flush, done */
3268 				wq->flush_color = next_color;
3269 				wq->first_flusher = NULL;
3270 				goto out_unlock;
3271 			}
3272 		} else {
3273 			/* wait in queue */
3274 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3275 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
3276 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3277 		}
3278 	} else {
3279 		/*
3280 		 * Oops, color space is full, wait on overflow queue.
3281 		 * The next flush completion will assign us
3282 		 * flush_color and transfer to flusher_queue.
3283 		 */
3284 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3285 	}
3286 
3287 	check_flush_dependency(wq, NULL);
3288 
3289 	mutex_unlock(&wq->mutex);
3290 
3291 	wait_for_completion(&this_flusher.done);
3292 
3293 	/*
3294 	 * Wake-up-and-cascade phase
3295 	 *
3296 	 * First flushers are responsible for cascading flushes and
3297 	 * handling overflow.  Non-first flushers can simply return.
3298 	 */
3299 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
3300 		return;
3301 
3302 	mutex_lock(&wq->mutex);
3303 
3304 	/* we might have raced, check again with mutex held */
3305 	if (wq->first_flusher != &this_flusher)
3306 		goto out_unlock;
3307 
3308 	WRITE_ONCE(wq->first_flusher, NULL);
3309 
3310 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
3311 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3312 
3313 	while (true) {
3314 		struct wq_flusher *next, *tmp;
3315 
3316 		/* complete all the flushers sharing the current flush color */
3317 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
3318 			if (next->flush_color != wq->flush_color)
3319 				break;
3320 			list_del_init(&next->list);
3321 			complete(&next->done);
3322 		}
3323 
3324 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
3325 			     wq->flush_color != work_next_color(wq->work_color));
3326 
3327 		/* this flush_color is finished, advance by one */
3328 		wq->flush_color = work_next_color(wq->flush_color);
3329 
3330 		/* one color has been freed, handle overflow queue */
3331 		if (!list_empty(&wq->flusher_overflow)) {
3332 			/*
3333 			 * Assign the same color to all overflowed
3334 			 * flushers, advance work_color and append to
3335 			 * flusher_queue.  This is the start-to-wait
3336 			 * phase for these overflowed flushers.
3337 			 */
3338 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
3339 				tmp->flush_color = wq->work_color;
3340 
3341 			wq->work_color = work_next_color(wq->work_color);
3342 
3343 			list_splice_tail_init(&wq->flusher_overflow,
3344 					      &wq->flusher_queue);
3345 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3346 		}
3347 
3348 		if (list_empty(&wq->flusher_queue)) {
3349 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
3350 			break;
3351 		}
3352 
3353 		/*
3354 		 * Need to flush more colors.  Make the next flusher
3355 		 * the new first flusher and arm pwqs.
3356 		 */
3357 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
3358 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
3359 
3360 		list_del_init(&next->list);
3361 		wq->first_flusher = next;
3362 
3363 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
3364 			break;
3365 
3366 		/*
3367 		 * Meh... this color is already done, clear first
3368 		 * flusher and repeat cascading.
3369 		 */
3370 		wq->first_flusher = NULL;
3371 	}
3372 
3373 out_unlock:
3374 	mutex_unlock(&wq->mutex);
3375 }
3376 EXPORT_SYMBOL(__flush_workqueue);
3377 
3378 /**
3379  * drain_workqueue - drain a workqueue
3380  * @wq: workqueue to drain
3381  *
3382  * Wait until the workqueue becomes empty.  While draining is in progress,
3383  * only chain queueing is allowed.  IOW, only currently pending or running
3384  * work items on @wq can queue further work items on it.  @wq is flushed
3385  * repeatedly until it becomes empty.  The number of flushing is determined
3386  * by the depth of chaining and should be relatively short.  Whine if it
3387  * takes too long.
3388  */
3389 void drain_workqueue(struct workqueue_struct *wq)
3390 {
3391 	unsigned int flush_cnt = 0;
3392 	struct pool_workqueue *pwq;
3393 
3394 	/*
3395 	 * __queue_work() needs to test whether there are drainers, is much
3396 	 * hotter than drain_workqueue() and already looks at @wq->flags.
3397 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
3398 	 */
3399 	mutex_lock(&wq->mutex);
3400 	if (!wq->nr_drainers++)
3401 		wq->flags |= __WQ_DRAINING;
3402 	mutex_unlock(&wq->mutex);
3403 reflush:
3404 	__flush_workqueue(wq);
3405 
3406 	mutex_lock(&wq->mutex);
3407 
3408 	for_each_pwq(pwq, wq) {
3409 		bool drained;
3410 
3411 		raw_spin_lock_irq(&pwq->pool->lock);
3412 		drained = pwq_is_empty(pwq);
3413 		raw_spin_unlock_irq(&pwq->pool->lock);
3414 
3415 		if (drained)
3416 			continue;
3417 
3418 		if (++flush_cnt == 10 ||
3419 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
3420 			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3421 				wq->name, __func__, flush_cnt);
3422 
3423 		mutex_unlock(&wq->mutex);
3424 		goto reflush;
3425 	}
3426 
3427 	if (!--wq->nr_drainers)
3428 		wq->flags &= ~__WQ_DRAINING;
3429 	mutex_unlock(&wq->mutex);
3430 }
3431 EXPORT_SYMBOL_GPL(drain_workqueue);
3432 
3433 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3434 			     bool from_cancel)
3435 {
3436 	struct worker *worker = NULL;
3437 	struct worker_pool *pool;
3438 	struct pool_workqueue *pwq;
3439 
3440 	might_sleep();
3441 
3442 	rcu_read_lock();
3443 	pool = get_work_pool(work);
3444 	if (!pool) {
3445 		rcu_read_unlock();
3446 		return false;
3447 	}
3448 
3449 	raw_spin_lock_irq(&pool->lock);
3450 	/* see the comment in try_to_grab_pending() with the same code */
3451 	pwq = get_work_pwq(work);
3452 	if (pwq) {
3453 		if (unlikely(pwq->pool != pool))
3454 			goto already_gone;
3455 	} else {
3456 		worker = find_worker_executing_work(pool, work);
3457 		if (!worker)
3458 			goto already_gone;
3459 		pwq = worker->current_pwq;
3460 	}
3461 
3462 	check_flush_dependency(pwq->wq, work);
3463 
3464 	insert_wq_barrier(pwq, barr, work, worker);
3465 	raw_spin_unlock_irq(&pool->lock);
3466 
3467 	/*
3468 	 * Force a lock recursion deadlock when using flush_work() inside a
3469 	 * single-threaded or rescuer equipped workqueue.
3470 	 *
3471 	 * For single threaded workqueues the deadlock happens when the work
3472 	 * is after the work issuing the flush_work(). For rescuer equipped
3473 	 * workqueues the deadlock happens when the rescuer stalls, blocking
3474 	 * forward progress.
3475 	 */
3476 	if (!from_cancel &&
3477 	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3478 		lock_map_acquire(&pwq->wq->lockdep_map);
3479 		lock_map_release(&pwq->wq->lockdep_map);
3480 	}
3481 	rcu_read_unlock();
3482 	return true;
3483 already_gone:
3484 	raw_spin_unlock_irq(&pool->lock);
3485 	rcu_read_unlock();
3486 	return false;
3487 }
3488 
3489 static bool __flush_work(struct work_struct *work, bool from_cancel)
3490 {
3491 	struct wq_barrier barr;
3492 
3493 	if (WARN_ON(!wq_online))
3494 		return false;
3495 
3496 	if (WARN_ON(!work->func))
3497 		return false;
3498 
3499 	lock_map_acquire(&work->lockdep_map);
3500 	lock_map_release(&work->lockdep_map);
3501 
3502 	if (start_flush_work(work, &barr, from_cancel)) {
3503 		wait_for_completion(&barr.done);
3504 		destroy_work_on_stack(&barr.work);
3505 		return true;
3506 	} else {
3507 		return false;
3508 	}
3509 }
3510 
3511 /**
3512  * flush_work - wait for a work to finish executing the last queueing instance
3513  * @work: the work to flush
3514  *
3515  * Wait until @work has finished execution.  @work is guaranteed to be idle
3516  * on return if it hasn't been requeued since flush started.
3517  *
3518  * Return:
3519  * %true if flush_work() waited for the work to finish execution,
3520  * %false if it was already idle.
3521  */
3522 bool flush_work(struct work_struct *work)
3523 {
3524 	return __flush_work(work, false);
3525 }
3526 EXPORT_SYMBOL_GPL(flush_work);
3527 
3528 struct cwt_wait {
3529 	wait_queue_entry_t		wait;
3530 	struct work_struct	*work;
3531 };
3532 
3533 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3534 {
3535 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3536 
3537 	if (cwait->work != key)
3538 		return 0;
3539 	return autoremove_wake_function(wait, mode, sync, key);
3540 }
3541 
3542 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3543 {
3544 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3545 	unsigned long flags;
3546 	int ret;
3547 
3548 	do {
3549 		ret = try_to_grab_pending(work, is_dwork, &flags);
3550 		/*
3551 		 * If someone else is already canceling, wait for it to
3552 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3553 		 * because we may get scheduled between @work's completion
3554 		 * and the other canceling task resuming and clearing
3555 		 * CANCELING - flush_work() will return false immediately
3556 		 * as @work is no longer busy, try_to_grab_pending() will
3557 		 * return -ENOENT as @work is still being canceled and the
3558 		 * other canceling task won't be able to clear CANCELING as
3559 		 * we're hogging the CPU.
3560 		 *
3561 		 * Let's wait for completion using a waitqueue.  As this
3562 		 * may lead to the thundering herd problem, use a custom
3563 		 * wake function which matches @work along with exclusive
3564 		 * wait and wakeup.
3565 		 */
3566 		if (unlikely(ret == -ENOENT)) {
3567 			struct cwt_wait cwait;
3568 
3569 			init_wait(&cwait.wait);
3570 			cwait.wait.func = cwt_wakefn;
3571 			cwait.work = work;
3572 
3573 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3574 						  TASK_UNINTERRUPTIBLE);
3575 			if (work_is_canceling(work))
3576 				schedule();
3577 			finish_wait(&cancel_waitq, &cwait.wait);
3578 		}
3579 	} while (unlikely(ret < 0));
3580 
3581 	/* tell other tasks trying to grab @work to back off */
3582 	mark_work_canceling(work);
3583 	local_irq_restore(flags);
3584 
3585 	/*
3586 	 * This allows canceling during early boot.  We know that @work
3587 	 * isn't executing.
3588 	 */
3589 	if (wq_online)
3590 		__flush_work(work, true);
3591 
3592 	clear_work_data(work);
3593 
3594 	/*
3595 	 * Paired with prepare_to_wait() above so that either
3596 	 * waitqueue_active() is visible here or !work_is_canceling() is
3597 	 * visible there.
3598 	 */
3599 	smp_mb();
3600 	if (waitqueue_active(&cancel_waitq))
3601 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3602 
3603 	return ret;
3604 }
3605 
3606 /**
3607  * cancel_work_sync - cancel a work and wait for it to finish
3608  * @work: the work to cancel
3609  *
3610  * Cancel @work and wait for its execution to finish.  This function
3611  * can be used even if the work re-queues itself or migrates to
3612  * another workqueue.  On return from this function, @work is
3613  * guaranteed to be not pending or executing on any CPU.
3614  *
3615  * cancel_work_sync(&delayed_work->work) must not be used for
3616  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3617  *
3618  * The caller must ensure that the workqueue on which @work was last
3619  * queued can't be destroyed before this function returns.
3620  *
3621  * Return:
3622  * %true if @work was pending, %false otherwise.
3623  */
3624 bool cancel_work_sync(struct work_struct *work)
3625 {
3626 	return __cancel_work_timer(work, false);
3627 }
3628 EXPORT_SYMBOL_GPL(cancel_work_sync);
3629 
3630 /**
3631  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3632  * @dwork: the delayed work to flush
3633  *
3634  * Delayed timer is cancelled and the pending work is queued for
3635  * immediate execution.  Like flush_work(), this function only
3636  * considers the last queueing instance of @dwork.
3637  *
3638  * Return:
3639  * %true if flush_work() waited for the work to finish execution,
3640  * %false if it was already idle.
3641  */
3642 bool flush_delayed_work(struct delayed_work *dwork)
3643 {
3644 	local_irq_disable();
3645 	if (del_timer_sync(&dwork->timer))
3646 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3647 	local_irq_enable();
3648 	return flush_work(&dwork->work);
3649 }
3650 EXPORT_SYMBOL(flush_delayed_work);
3651 
3652 /**
3653  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3654  * @rwork: the rcu work to flush
3655  *
3656  * Return:
3657  * %true if flush_rcu_work() waited for the work to finish execution,
3658  * %false if it was already idle.
3659  */
3660 bool flush_rcu_work(struct rcu_work *rwork)
3661 {
3662 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3663 		rcu_barrier();
3664 		flush_work(&rwork->work);
3665 		return true;
3666 	} else {
3667 		return flush_work(&rwork->work);
3668 	}
3669 }
3670 EXPORT_SYMBOL(flush_rcu_work);
3671 
3672 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3673 {
3674 	unsigned long flags;
3675 	int ret;
3676 
3677 	do {
3678 		ret = try_to_grab_pending(work, is_dwork, &flags);
3679 	} while (unlikely(ret == -EAGAIN));
3680 
3681 	if (unlikely(ret < 0))
3682 		return false;
3683 
3684 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3685 	local_irq_restore(flags);
3686 	return ret;
3687 }
3688 
3689 /*
3690  * See cancel_delayed_work()
3691  */
3692 bool cancel_work(struct work_struct *work)
3693 {
3694 	return __cancel_work(work, false);
3695 }
3696 EXPORT_SYMBOL(cancel_work);
3697 
3698 /**
3699  * cancel_delayed_work - cancel a delayed work
3700  * @dwork: delayed_work to cancel
3701  *
3702  * Kill off a pending delayed_work.
3703  *
3704  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3705  * pending.
3706  *
3707  * Note:
3708  * The work callback function may still be running on return, unless
3709  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3710  * use cancel_delayed_work_sync() to wait on it.
3711  *
3712  * This function is safe to call from any context including IRQ handler.
3713  */
3714 bool cancel_delayed_work(struct delayed_work *dwork)
3715 {
3716 	return __cancel_work(&dwork->work, true);
3717 }
3718 EXPORT_SYMBOL(cancel_delayed_work);
3719 
3720 /**
3721  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3722  * @dwork: the delayed work cancel
3723  *
3724  * This is cancel_work_sync() for delayed works.
3725  *
3726  * Return:
3727  * %true if @dwork was pending, %false otherwise.
3728  */
3729 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3730 {
3731 	return __cancel_work_timer(&dwork->work, true);
3732 }
3733 EXPORT_SYMBOL(cancel_delayed_work_sync);
3734 
3735 /**
3736  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3737  * @func: the function to call
3738  *
3739  * schedule_on_each_cpu() executes @func on each online CPU using the
3740  * system workqueue and blocks until all CPUs have completed.
3741  * schedule_on_each_cpu() is very slow.
3742  *
3743  * Return:
3744  * 0 on success, -errno on failure.
3745  */
3746 int schedule_on_each_cpu(work_func_t func)
3747 {
3748 	int cpu;
3749 	struct work_struct __percpu *works;
3750 
3751 	works = alloc_percpu(struct work_struct);
3752 	if (!works)
3753 		return -ENOMEM;
3754 
3755 	cpus_read_lock();
3756 
3757 	for_each_online_cpu(cpu) {
3758 		struct work_struct *work = per_cpu_ptr(works, cpu);
3759 
3760 		INIT_WORK(work, func);
3761 		schedule_work_on(cpu, work);
3762 	}
3763 
3764 	for_each_online_cpu(cpu)
3765 		flush_work(per_cpu_ptr(works, cpu));
3766 
3767 	cpus_read_unlock();
3768 	free_percpu(works);
3769 	return 0;
3770 }
3771 
3772 /**
3773  * execute_in_process_context - reliably execute the routine with user context
3774  * @fn:		the function to execute
3775  * @ew:		guaranteed storage for the execute work structure (must
3776  *		be available when the work executes)
3777  *
3778  * Executes the function immediately if process context is available,
3779  * otherwise schedules the function for delayed execution.
3780  *
3781  * Return:	0 - function was executed
3782  *		1 - function was scheduled for execution
3783  */
3784 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3785 {
3786 	if (!in_interrupt()) {
3787 		fn(&ew->work);
3788 		return 0;
3789 	}
3790 
3791 	INIT_WORK(&ew->work, fn);
3792 	schedule_work(&ew->work);
3793 
3794 	return 1;
3795 }
3796 EXPORT_SYMBOL_GPL(execute_in_process_context);
3797 
3798 /**
3799  * free_workqueue_attrs - free a workqueue_attrs
3800  * @attrs: workqueue_attrs to free
3801  *
3802  * Undo alloc_workqueue_attrs().
3803  */
3804 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3805 {
3806 	if (attrs) {
3807 		free_cpumask_var(attrs->cpumask);
3808 		free_cpumask_var(attrs->__pod_cpumask);
3809 		kfree(attrs);
3810 	}
3811 }
3812 
3813 /**
3814  * alloc_workqueue_attrs - allocate a workqueue_attrs
3815  *
3816  * Allocate a new workqueue_attrs, initialize with default settings and
3817  * return it.
3818  *
3819  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3820  */
3821 struct workqueue_attrs *alloc_workqueue_attrs(void)
3822 {
3823 	struct workqueue_attrs *attrs;
3824 
3825 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3826 	if (!attrs)
3827 		goto fail;
3828 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3829 		goto fail;
3830 	if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
3831 		goto fail;
3832 
3833 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3834 	attrs->affn_scope = WQ_AFFN_DFL;
3835 	return attrs;
3836 fail:
3837 	free_workqueue_attrs(attrs);
3838 	return NULL;
3839 }
3840 
3841 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3842 				 const struct workqueue_attrs *from)
3843 {
3844 	to->nice = from->nice;
3845 	cpumask_copy(to->cpumask, from->cpumask);
3846 	cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
3847 	to->affn_strict = from->affn_strict;
3848 
3849 	/*
3850 	 * Unlike hash and equality test, copying shouldn't ignore wq-only
3851 	 * fields as copying is used for both pool and wq attrs. Instead,
3852 	 * get_unbound_pool() explicitly clears the fields.
3853 	 */
3854 	to->affn_scope = from->affn_scope;
3855 	to->ordered = from->ordered;
3856 }
3857 
3858 /*
3859  * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
3860  * comments in 'struct workqueue_attrs' definition.
3861  */
3862 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
3863 {
3864 	attrs->affn_scope = WQ_AFFN_NR_TYPES;
3865 	attrs->ordered = false;
3866 }
3867 
3868 /* hash value of the content of @attr */
3869 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3870 {
3871 	u32 hash = 0;
3872 
3873 	hash = jhash_1word(attrs->nice, hash);
3874 	hash = jhash(cpumask_bits(attrs->cpumask),
3875 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3876 	hash = jhash(cpumask_bits(attrs->__pod_cpumask),
3877 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3878 	hash = jhash_1word(attrs->affn_strict, hash);
3879 	return hash;
3880 }
3881 
3882 /* content equality test */
3883 static bool wqattrs_equal(const struct workqueue_attrs *a,
3884 			  const struct workqueue_attrs *b)
3885 {
3886 	if (a->nice != b->nice)
3887 		return false;
3888 	if (!cpumask_equal(a->cpumask, b->cpumask))
3889 		return false;
3890 	if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
3891 		return false;
3892 	if (a->affn_strict != b->affn_strict)
3893 		return false;
3894 	return true;
3895 }
3896 
3897 /* Update @attrs with actually available CPUs */
3898 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
3899 				      const cpumask_t *unbound_cpumask)
3900 {
3901 	/*
3902 	 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
3903 	 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
3904 	 * @unbound_cpumask.
3905 	 */
3906 	cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
3907 	if (unlikely(cpumask_empty(attrs->cpumask)))
3908 		cpumask_copy(attrs->cpumask, unbound_cpumask);
3909 }
3910 
3911 /* find wq_pod_type to use for @attrs */
3912 static const struct wq_pod_type *
3913 wqattrs_pod_type(const struct workqueue_attrs *attrs)
3914 {
3915 	enum wq_affn_scope scope;
3916 	struct wq_pod_type *pt;
3917 
3918 	/* to synchronize access to wq_affn_dfl */
3919 	lockdep_assert_held(&wq_pool_mutex);
3920 
3921 	if (attrs->affn_scope == WQ_AFFN_DFL)
3922 		scope = wq_affn_dfl;
3923 	else
3924 		scope = attrs->affn_scope;
3925 
3926 	pt = &wq_pod_types[scope];
3927 
3928 	if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
3929 	    likely(pt->nr_pods))
3930 		return pt;
3931 
3932 	/*
3933 	 * Before workqueue_init_topology(), only SYSTEM is available which is
3934 	 * initialized in workqueue_init_early().
3935 	 */
3936 	pt = &wq_pod_types[WQ_AFFN_SYSTEM];
3937 	BUG_ON(!pt->nr_pods);
3938 	return pt;
3939 }
3940 
3941 /**
3942  * init_worker_pool - initialize a newly zalloc'd worker_pool
3943  * @pool: worker_pool to initialize
3944  *
3945  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3946  *
3947  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3948  * inside @pool proper are initialized and put_unbound_pool() can be called
3949  * on @pool safely to release it.
3950  */
3951 static int init_worker_pool(struct worker_pool *pool)
3952 {
3953 	raw_spin_lock_init(&pool->lock);
3954 	pool->id = -1;
3955 	pool->cpu = -1;
3956 	pool->node = NUMA_NO_NODE;
3957 	pool->flags |= POOL_DISASSOCIATED;
3958 	pool->watchdog_ts = jiffies;
3959 	INIT_LIST_HEAD(&pool->worklist);
3960 	INIT_LIST_HEAD(&pool->idle_list);
3961 	hash_init(pool->busy_hash);
3962 
3963 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3964 	INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
3965 
3966 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3967 
3968 	INIT_LIST_HEAD(&pool->workers);
3969 	INIT_LIST_HEAD(&pool->dying_workers);
3970 
3971 	ida_init(&pool->worker_ida);
3972 	INIT_HLIST_NODE(&pool->hash_node);
3973 	pool->refcnt = 1;
3974 
3975 	/* shouldn't fail above this point */
3976 	pool->attrs = alloc_workqueue_attrs();
3977 	if (!pool->attrs)
3978 		return -ENOMEM;
3979 
3980 	wqattrs_clear_for_pool(pool->attrs);
3981 
3982 	return 0;
3983 }
3984 
3985 #ifdef CONFIG_LOCKDEP
3986 static void wq_init_lockdep(struct workqueue_struct *wq)
3987 {
3988 	char *lock_name;
3989 
3990 	lockdep_register_key(&wq->key);
3991 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3992 	if (!lock_name)
3993 		lock_name = wq->name;
3994 
3995 	wq->lock_name = lock_name;
3996 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3997 }
3998 
3999 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4000 {
4001 	lockdep_unregister_key(&wq->key);
4002 }
4003 
4004 static void wq_free_lockdep(struct workqueue_struct *wq)
4005 {
4006 	if (wq->lock_name != wq->name)
4007 		kfree(wq->lock_name);
4008 }
4009 #else
4010 static void wq_init_lockdep(struct workqueue_struct *wq)
4011 {
4012 }
4013 
4014 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4015 {
4016 }
4017 
4018 static void wq_free_lockdep(struct workqueue_struct *wq)
4019 {
4020 }
4021 #endif
4022 
4023 static void rcu_free_wq(struct rcu_head *rcu)
4024 {
4025 	struct workqueue_struct *wq =
4026 		container_of(rcu, struct workqueue_struct, rcu);
4027 
4028 	wq_free_lockdep(wq);
4029 	free_percpu(wq->cpu_pwq);
4030 	free_workqueue_attrs(wq->unbound_attrs);
4031 	kfree(wq);
4032 }
4033 
4034 static void rcu_free_pool(struct rcu_head *rcu)
4035 {
4036 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
4037 
4038 	ida_destroy(&pool->worker_ida);
4039 	free_workqueue_attrs(pool->attrs);
4040 	kfree(pool);
4041 }
4042 
4043 /**
4044  * put_unbound_pool - put a worker_pool
4045  * @pool: worker_pool to put
4046  *
4047  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
4048  * safe manner.  get_unbound_pool() calls this function on its failure path
4049  * and this function should be able to release pools which went through,
4050  * successfully or not, init_worker_pool().
4051  *
4052  * Should be called with wq_pool_mutex held.
4053  */
4054 static void put_unbound_pool(struct worker_pool *pool)
4055 {
4056 	DECLARE_COMPLETION_ONSTACK(detach_completion);
4057 	struct worker *worker;
4058 	LIST_HEAD(cull_list);
4059 
4060 	lockdep_assert_held(&wq_pool_mutex);
4061 
4062 	if (--pool->refcnt)
4063 		return;
4064 
4065 	/* sanity checks */
4066 	if (WARN_ON(!(pool->cpu < 0)) ||
4067 	    WARN_ON(!list_empty(&pool->worklist)))
4068 		return;
4069 
4070 	/* release id and unhash */
4071 	if (pool->id >= 0)
4072 		idr_remove(&worker_pool_idr, pool->id);
4073 	hash_del(&pool->hash_node);
4074 
4075 	/*
4076 	 * Become the manager and destroy all workers.  This prevents
4077 	 * @pool's workers from blocking on attach_mutex.  We're the last
4078 	 * manager and @pool gets freed with the flag set.
4079 	 *
4080 	 * Having a concurrent manager is quite unlikely to happen as we can
4081 	 * only get here with
4082 	 *   pwq->refcnt == pool->refcnt == 0
4083 	 * which implies no work queued to the pool, which implies no worker can
4084 	 * become the manager. However a worker could have taken the role of
4085 	 * manager before the refcnts dropped to 0, since maybe_create_worker()
4086 	 * drops pool->lock
4087 	 */
4088 	while (true) {
4089 		rcuwait_wait_event(&manager_wait,
4090 				   !(pool->flags & POOL_MANAGER_ACTIVE),
4091 				   TASK_UNINTERRUPTIBLE);
4092 
4093 		mutex_lock(&wq_pool_attach_mutex);
4094 		raw_spin_lock_irq(&pool->lock);
4095 		if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4096 			pool->flags |= POOL_MANAGER_ACTIVE;
4097 			break;
4098 		}
4099 		raw_spin_unlock_irq(&pool->lock);
4100 		mutex_unlock(&wq_pool_attach_mutex);
4101 	}
4102 
4103 	while ((worker = first_idle_worker(pool)))
4104 		set_worker_dying(worker, &cull_list);
4105 	WARN_ON(pool->nr_workers || pool->nr_idle);
4106 	raw_spin_unlock_irq(&pool->lock);
4107 
4108 	wake_dying_workers(&cull_list);
4109 
4110 	if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
4111 		pool->detach_completion = &detach_completion;
4112 	mutex_unlock(&wq_pool_attach_mutex);
4113 
4114 	if (pool->detach_completion)
4115 		wait_for_completion(pool->detach_completion);
4116 
4117 	/* shut down the timers */
4118 	del_timer_sync(&pool->idle_timer);
4119 	cancel_work_sync(&pool->idle_cull_work);
4120 	del_timer_sync(&pool->mayday_timer);
4121 
4122 	/* RCU protected to allow dereferences from get_work_pool() */
4123 	call_rcu(&pool->rcu, rcu_free_pool);
4124 }
4125 
4126 /**
4127  * get_unbound_pool - get a worker_pool with the specified attributes
4128  * @attrs: the attributes of the worker_pool to get
4129  *
4130  * Obtain a worker_pool which has the same attributes as @attrs, bump the
4131  * reference count and return it.  If there already is a matching
4132  * worker_pool, it will be used; otherwise, this function attempts to
4133  * create a new one.
4134  *
4135  * Should be called with wq_pool_mutex held.
4136  *
4137  * Return: On success, a worker_pool with the same attributes as @attrs.
4138  * On failure, %NULL.
4139  */
4140 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
4141 {
4142 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
4143 	u32 hash = wqattrs_hash(attrs);
4144 	struct worker_pool *pool;
4145 	int pod, node = NUMA_NO_NODE;
4146 
4147 	lockdep_assert_held(&wq_pool_mutex);
4148 
4149 	/* do we already have a matching pool? */
4150 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
4151 		if (wqattrs_equal(pool->attrs, attrs)) {
4152 			pool->refcnt++;
4153 			return pool;
4154 		}
4155 	}
4156 
4157 	/* If __pod_cpumask is contained inside a NUMA pod, that's our node */
4158 	for (pod = 0; pod < pt->nr_pods; pod++) {
4159 		if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
4160 			node = pt->pod_node[pod];
4161 			break;
4162 		}
4163 	}
4164 
4165 	/* nope, create a new one */
4166 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
4167 	if (!pool || init_worker_pool(pool) < 0)
4168 		goto fail;
4169 
4170 	pool->node = node;
4171 	copy_workqueue_attrs(pool->attrs, attrs);
4172 	wqattrs_clear_for_pool(pool->attrs);
4173 
4174 	if (worker_pool_assign_id(pool) < 0)
4175 		goto fail;
4176 
4177 	/* create and start the initial worker */
4178 	if (wq_online && !create_worker(pool))
4179 		goto fail;
4180 
4181 	/* install */
4182 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
4183 
4184 	return pool;
4185 fail:
4186 	if (pool)
4187 		put_unbound_pool(pool);
4188 	return NULL;
4189 }
4190 
4191 static void rcu_free_pwq(struct rcu_head *rcu)
4192 {
4193 	kmem_cache_free(pwq_cache,
4194 			container_of(rcu, struct pool_workqueue, rcu));
4195 }
4196 
4197 /*
4198  * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
4199  * refcnt and needs to be destroyed.
4200  */
4201 static void pwq_release_workfn(struct kthread_work *work)
4202 {
4203 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
4204 						  release_work);
4205 	struct workqueue_struct *wq = pwq->wq;
4206 	struct worker_pool *pool = pwq->pool;
4207 	bool is_last = false;
4208 
4209 	/*
4210 	 * When @pwq is not linked, it doesn't hold any reference to the
4211 	 * @wq, and @wq is invalid to access.
4212 	 */
4213 	if (!list_empty(&pwq->pwqs_node)) {
4214 		mutex_lock(&wq->mutex);
4215 		list_del_rcu(&pwq->pwqs_node);
4216 		is_last = list_empty(&wq->pwqs);
4217 		mutex_unlock(&wq->mutex);
4218 	}
4219 
4220 	if (wq->flags & WQ_UNBOUND) {
4221 		mutex_lock(&wq_pool_mutex);
4222 		put_unbound_pool(pool);
4223 		mutex_unlock(&wq_pool_mutex);
4224 	}
4225 
4226 	call_rcu(&pwq->rcu, rcu_free_pwq);
4227 
4228 	/*
4229 	 * If we're the last pwq going away, @wq is already dead and no one
4230 	 * is gonna access it anymore.  Schedule RCU free.
4231 	 */
4232 	if (is_last) {
4233 		wq_unregister_lockdep(wq);
4234 		call_rcu(&wq->rcu, rcu_free_wq);
4235 	}
4236 }
4237 
4238 /* initialize newly allocated @pwq which is associated with @wq and @pool */
4239 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
4240 		     struct worker_pool *pool)
4241 {
4242 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
4243 
4244 	memset(pwq, 0, sizeof(*pwq));
4245 
4246 	pwq->pool = pool;
4247 	pwq->wq = wq;
4248 	pwq->flush_color = -1;
4249 	pwq->refcnt = 1;
4250 	INIT_LIST_HEAD(&pwq->inactive_works);
4251 	INIT_LIST_HEAD(&pwq->pwqs_node);
4252 	INIT_LIST_HEAD(&pwq->mayday_node);
4253 	kthread_init_work(&pwq->release_work, pwq_release_workfn);
4254 }
4255 
4256 /* sync @pwq with the current state of its associated wq and link it */
4257 static void link_pwq(struct pool_workqueue *pwq)
4258 {
4259 	struct workqueue_struct *wq = pwq->wq;
4260 
4261 	lockdep_assert_held(&wq->mutex);
4262 
4263 	/* may be called multiple times, ignore if already linked */
4264 	if (!list_empty(&pwq->pwqs_node))
4265 		return;
4266 
4267 	/* set the matching work_color */
4268 	pwq->work_color = wq->work_color;
4269 
4270 	/* link in @pwq */
4271 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
4272 }
4273 
4274 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
4275 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
4276 					const struct workqueue_attrs *attrs)
4277 {
4278 	struct worker_pool *pool;
4279 	struct pool_workqueue *pwq;
4280 
4281 	lockdep_assert_held(&wq_pool_mutex);
4282 
4283 	pool = get_unbound_pool(attrs);
4284 	if (!pool)
4285 		return NULL;
4286 
4287 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
4288 	if (!pwq) {
4289 		put_unbound_pool(pool);
4290 		return NULL;
4291 	}
4292 
4293 	init_pwq(pwq, wq, pool);
4294 	return pwq;
4295 }
4296 
4297 /**
4298  * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
4299  * @attrs: the wq_attrs of the default pwq of the target workqueue
4300  * @cpu: the target CPU
4301  * @cpu_going_down: if >= 0, the CPU to consider as offline
4302  *
4303  * Calculate the cpumask a workqueue with @attrs should use on @pod. If
4304  * @cpu_going_down is >= 0, that cpu is considered offline during calculation.
4305  * The result is stored in @attrs->__pod_cpumask.
4306  *
4307  * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
4308  * and @pod has online CPUs requested by @attrs, the returned cpumask is the
4309  * intersection of the possible CPUs of @pod and @attrs->cpumask.
4310  *
4311  * The caller is responsible for ensuring that the cpumask of @pod stays stable.
4312  */
4313 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu,
4314 				int cpu_going_down)
4315 {
4316 	const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
4317 	int pod = pt->cpu_pod[cpu];
4318 
4319 	/* does @pod have any online CPUs @attrs wants? */
4320 	cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
4321 	cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask);
4322 	if (cpu_going_down >= 0)
4323 		cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask);
4324 
4325 	if (cpumask_empty(attrs->__pod_cpumask)) {
4326 		cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
4327 		return;
4328 	}
4329 
4330 	/* yeap, return possible CPUs in @pod that @attrs wants */
4331 	cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]);
4332 
4333 	if (cpumask_empty(attrs->__pod_cpumask))
4334 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
4335 				"possible intersect\n");
4336 }
4337 
4338 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
4339 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
4340 					int cpu, struct pool_workqueue *pwq)
4341 {
4342 	struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
4343 	struct pool_workqueue *old_pwq;
4344 
4345 	lockdep_assert_held(&wq_pool_mutex);
4346 	lockdep_assert_held(&wq->mutex);
4347 
4348 	/* link_pwq() can handle duplicate calls */
4349 	link_pwq(pwq);
4350 
4351 	old_pwq = rcu_access_pointer(*slot);
4352 	rcu_assign_pointer(*slot, pwq);
4353 	return old_pwq;
4354 }
4355 
4356 /* context to store the prepared attrs & pwqs before applying */
4357 struct apply_wqattrs_ctx {
4358 	struct workqueue_struct	*wq;		/* target workqueue */
4359 	struct workqueue_attrs	*attrs;		/* attrs to apply */
4360 	struct list_head	list;		/* queued for batching commit */
4361 	struct pool_workqueue	*dfl_pwq;
4362 	struct pool_workqueue	*pwq_tbl[];
4363 };
4364 
4365 /* free the resources after success or abort */
4366 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
4367 {
4368 	if (ctx) {
4369 		int cpu;
4370 
4371 		for_each_possible_cpu(cpu)
4372 			put_pwq_unlocked(ctx->pwq_tbl[cpu]);
4373 		put_pwq_unlocked(ctx->dfl_pwq);
4374 
4375 		free_workqueue_attrs(ctx->attrs);
4376 
4377 		kfree(ctx);
4378 	}
4379 }
4380 
4381 /* allocate the attrs and pwqs for later installation */
4382 static struct apply_wqattrs_ctx *
4383 apply_wqattrs_prepare(struct workqueue_struct *wq,
4384 		      const struct workqueue_attrs *attrs,
4385 		      const cpumask_var_t unbound_cpumask)
4386 {
4387 	struct apply_wqattrs_ctx *ctx;
4388 	struct workqueue_attrs *new_attrs;
4389 	int cpu;
4390 
4391 	lockdep_assert_held(&wq_pool_mutex);
4392 
4393 	if (WARN_ON(attrs->affn_scope < 0 ||
4394 		    attrs->affn_scope >= WQ_AFFN_NR_TYPES))
4395 		return ERR_PTR(-EINVAL);
4396 
4397 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
4398 
4399 	new_attrs = alloc_workqueue_attrs();
4400 	if (!ctx || !new_attrs)
4401 		goto out_free;
4402 
4403 	/*
4404 	 * If something goes wrong during CPU up/down, we'll fall back to
4405 	 * the default pwq covering whole @attrs->cpumask.  Always create
4406 	 * it even if we don't use it immediately.
4407 	 */
4408 	copy_workqueue_attrs(new_attrs, attrs);
4409 	wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
4410 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
4411 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4412 	if (!ctx->dfl_pwq)
4413 		goto out_free;
4414 
4415 	for_each_possible_cpu(cpu) {
4416 		if (new_attrs->ordered) {
4417 			ctx->dfl_pwq->refcnt++;
4418 			ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
4419 		} else {
4420 			wq_calc_pod_cpumask(new_attrs, cpu, -1);
4421 			ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
4422 			if (!ctx->pwq_tbl[cpu])
4423 				goto out_free;
4424 		}
4425 	}
4426 
4427 	/* save the user configured attrs and sanitize it. */
4428 	copy_workqueue_attrs(new_attrs, attrs);
4429 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4430 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
4431 	ctx->attrs = new_attrs;
4432 
4433 	ctx->wq = wq;
4434 	return ctx;
4435 
4436 out_free:
4437 	free_workqueue_attrs(new_attrs);
4438 	apply_wqattrs_cleanup(ctx);
4439 	return ERR_PTR(-ENOMEM);
4440 }
4441 
4442 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
4443 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4444 {
4445 	int cpu;
4446 
4447 	/* all pwqs have been created successfully, let's install'em */
4448 	mutex_lock(&ctx->wq->mutex);
4449 
4450 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4451 
4452 	/* save the previous pwqs and install the new ones */
4453 	for_each_possible_cpu(cpu)
4454 		ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
4455 							ctx->pwq_tbl[cpu]);
4456 	ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
4457 
4458 	mutex_unlock(&ctx->wq->mutex);
4459 }
4460 
4461 static void apply_wqattrs_lock(void)
4462 {
4463 	/* CPUs should stay stable across pwq creations and installations */
4464 	cpus_read_lock();
4465 	mutex_lock(&wq_pool_mutex);
4466 }
4467 
4468 static void apply_wqattrs_unlock(void)
4469 {
4470 	mutex_unlock(&wq_pool_mutex);
4471 	cpus_read_unlock();
4472 }
4473 
4474 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4475 					const struct workqueue_attrs *attrs)
4476 {
4477 	struct apply_wqattrs_ctx *ctx;
4478 
4479 	/* only unbound workqueues can change attributes */
4480 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4481 		return -EINVAL;
4482 
4483 	/* creating multiple pwqs breaks ordering guarantee */
4484 	if (!list_empty(&wq->pwqs)) {
4485 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4486 			return -EINVAL;
4487 
4488 		wq->flags &= ~__WQ_ORDERED;
4489 	}
4490 
4491 	ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
4492 	if (IS_ERR(ctx))
4493 		return PTR_ERR(ctx);
4494 
4495 	/* the ctx has been prepared successfully, let's commit it */
4496 	apply_wqattrs_commit(ctx);
4497 	apply_wqattrs_cleanup(ctx);
4498 
4499 	return 0;
4500 }
4501 
4502 /**
4503  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4504  * @wq: the target workqueue
4505  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4506  *
4507  * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
4508  * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
4509  * work items are affine to the pod it was issued on. Older pwqs are released as
4510  * in-flight work items finish. Note that a work item which repeatedly requeues
4511  * itself back-to-back will stay on its current pwq.
4512  *
4513  * Performs GFP_KERNEL allocations.
4514  *
4515  * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
4516  *
4517  * Return: 0 on success and -errno on failure.
4518  */
4519 int apply_workqueue_attrs(struct workqueue_struct *wq,
4520 			  const struct workqueue_attrs *attrs)
4521 {
4522 	int ret;
4523 
4524 	lockdep_assert_cpus_held();
4525 
4526 	mutex_lock(&wq_pool_mutex);
4527 	ret = apply_workqueue_attrs_locked(wq, attrs);
4528 	mutex_unlock(&wq_pool_mutex);
4529 
4530 	return ret;
4531 }
4532 
4533 /**
4534  * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug
4535  * @wq: the target workqueue
4536  * @cpu: the CPU to update pool association for
4537  * @hotplug_cpu: the CPU coming up or going down
4538  * @online: whether @cpu is coming up or going down
4539  *
4540  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4541  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update pod affinity of
4542  * @wq accordingly.
4543  *
4544  *
4545  * If pod affinity can't be adjusted due to memory allocation failure, it falls
4546  * back to @wq->dfl_pwq which may not be optimal but is always correct.
4547  *
4548  * Note that when the last allowed CPU of a pod goes offline for a workqueue
4549  * with a cpumask spanning multiple pods, the workers which were already
4550  * executing the work items for the workqueue will lose their CPU affinity and
4551  * may execute on any CPU. This is similar to how per-cpu workqueues behave on
4552  * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
4553  * responsibility to flush the work item from CPU_DOWN_PREPARE.
4554  */
4555 static void wq_update_pod(struct workqueue_struct *wq, int cpu,
4556 			  int hotplug_cpu, bool online)
4557 {
4558 	int off_cpu = online ? -1 : hotplug_cpu;
4559 	struct pool_workqueue *old_pwq = NULL, *pwq;
4560 	struct workqueue_attrs *target_attrs;
4561 
4562 	lockdep_assert_held(&wq_pool_mutex);
4563 
4564 	if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
4565 		return;
4566 
4567 	/*
4568 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4569 	 * Let's use a preallocated one.  The following buf is protected by
4570 	 * CPU hotplug exclusion.
4571 	 */
4572 	target_attrs = wq_update_pod_attrs_buf;
4573 
4574 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4575 	wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
4576 
4577 	/* nothing to do if the target cpumask matches the current pwq */
4578 	wq_calc_pod_cpumask(target_attrs, cpu, off_cpu);
4579 	if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
4580 		return;
4581 
4582 	/* create a new pwq */
4583 	pwq = alloc_unbound_pwq(wq, target_attrs);
4584 	if (!pwq) {
4585 		pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
4586 			wq->name);
4587 		goto use_dfl_pwq;
4588 	}
4589 
4590 	/* Install the new pwq. */
4591 	mutex_lock(&wq->mutex);
4592 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
4593 	goto out_unlock;
4594 
4595 use_dfl_pwq:
4596 	mutex_lock(&wq->mutex);
4597 	pwq = unbound_pwq(wq, -1);
4598 	raw_spin_lock_irq(&pwq->pool->lock);
4599 	get_pwq(pwq);
4600 	raw_spin_unlock_irq(&pwq->pool->lock);
4601 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
4602 out_unlock:
4603 	mutex_unlock(&wq->mutex);
4604 	put_pwq_unlocked(old_pwq);
4605 }
4606 
4607 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4608 {
4609 	bool highpri = wq->flags & WQ_HIGHPRI;
4610 	int cpu, ret;
4611 
4612 	wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
4613 	if (!wq->cpu_pwq)
4614 		goto enomem;
4615 
4616 	if (!(wq->flags & WQ_UNBOUND)) {
4617 		for_each_possible_cpu(cpu) {
4618 			struct pool_workqueue **pwq_p =
4619 				per_cpu_ptr(wq->cpu_pwq, cpu);
4620 			struct worker_pool *pool =
4621 				&(per_cpu_ptr(cpu_worker_pools, cpu)[highpri]);
4622 
4623 			*pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
4624 						       pool->node);
4625 			if (!*pwq_p)
4626 				goto enomem;
4627 
4628 			init_pwq(*pwq_p, wq, pool);
4629 
4630 			mutex_lock(&wq->mutex);
4631 			link_pwq(*pwq_p);
4632 			mutex_unlock(&wq->mutex);
4633 		}
4634 		return 0;
4635 	}
4636 
4637 	cpus_read_lock();
4638 	if (wq->flags & __WQ_ORDERED) {
4639 		struct pool_workqueue *dfl_pwq;
4640 
4641 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4642 		/* there should only be single pwq for ordering guarantee */
4643 		dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
4644 		WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
4645 			      wq->pwqs.prev != &dfl_pwq->pwqs_node),
4646 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4647 	} else {
4648 		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4649 	}
4650 	cpus_read_unlock();
4651 
4652 	/* for unbound pwq, flush the pwq_release_worker ensures that the
4653 	 * pwq_release_workfn() completes before calling kfree(wq).
4654 	 */
4655 	if (ret)
4656 		kthread_flush_worker(pwq_release_worker);
4657 
4658 	return ret;
4659 
4660 enomem:
4661 	if (wq->cpu_pwq) {
4662 		for_each_possible_cpu(cpu) {
4663 			struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
4664 
4665 			if (pwq)
4666 				kmem_cache_free(pwq_cache, pwq);
4667 		}
4668 		free_percpu(wq->cpu_pwq);
4669 		wq->cpu_pwq = NULL;
4670 	}
4671 	return -ENOMEM;
4672 }
4673 
4674 static int wq_clamp_max_active(int max_active, unsigned int flags,
4675 			       const char *name)
4676 {
4677 	if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
4678 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4679 			max_active, name, 1, WQ_MAX_ACTIVE);
4680 
4681 	return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
4682 }
4683 
4684 /*
4685  * Workqueues which may be used during memory reclaim should have a rescuer
4686  * to guarantee forward progress.
4687  */
4688 static int init_rescuer(struct workqueue_struct *wq)
4689 {
4690 	struct worker *rescuer;
4691 	int ret;
4692 
4693 	if (!(wq->flags & WQ_MEM_RECLAIM))
4694 		return 0;
4695 
4696 	rescuer = alloc_worker(NUMA_NO_NODE);
4697 	if (!rescuer) {
4698 		pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
4699 		       wq->name);
4700 		return -ENOMEM;
4701 	}
4702 
4703 	rescuer->rescue_wq = wq;
4704 	rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name);
4705 	if (IS_ERR(rescuer->task)) {
4706 		ret = PTR_ERR(rescuer->task);
4707 		pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
4708 		       wq->name, ERR_PTR(ret));
4709 		kfree(rescuer);
4710 		return ret;
4711 	}
4712 
4713 	wq->rescuer = rescuer;
4714 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4715 	wake_up_process(rescuer->task);
4716 
4717 	return 0;
4718 }
4719 
4720 /**
4721  * wq_adjust_max_active - update a wq's max_active to the current setting
4722  * @wq: target workqueue
4723  *
4724  * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
4725  * activate inactive work items accordingly. If @wq is freezing, clear
4726  * @wq->max_active to zero.
4727  */
4728 static void wq_adjust_max_active(struct workqueue_struct *wq)
4729 {
4730 	bool activated;
4731 
4732 	lockdep_assert_held(&wq->mutex);
4733 
4734 	if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
4735 		WRITE_ONCE(wq->max_active, 0);
4736 		return;
4737 	}
4738 
4739 	if (wq->max_active == wq->saved_max_active)
4740 		return;
4741 
4742 	/*
4743 	 * Update @wq->max_active and then kick inactive work items if more
4744 	 * active work items are allowed. This doesn't break work item ordering
4745 	 * because new work items are always queued behind existing inactive
4746 	 * work items if there are any.
4747 	 */
4748 	WRITE_ONCE(wq->max_active, wq->saved_max_active);
4749 
4750 	/*
4751 	 * Round-robin through pwq's activating the first inactive work item
4752 	 * until max_active is filled.
4753 	 */
4754 	do {
4755 		struct pool_workqueue *pwq;
4756 
4757 		activated = false;
4758 		for_each_pwq(pwq, wq) {
4759 			unsigned long flags;
4760 
4761 			/* can be called during early boot w/ irq disabled */
4762 			raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4763 			if (pwq_activate_first_inactive(pwq)) {
4764 				activated = true;
4765 				kick_pool(pwq->pool);
4766 			}
4767 			raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4768 		}
4769 	} while (activated);
4770 }
4771 
4772 __printf(1, 4)
4773 struct workqueue_struct *alloc_workqueue(const char *fmt,
4774 					 unsigned int flags,
4775 					 int max_active, ...)
4776 {
4777 	va_list args;
4778 	struct workqueue_struct *wq;
4779 	int len;
4780 
4781 	/*
4782 	 * Unbound && max_active == 1 used to imply ordered, which is no longer
4783 	 * the case on many machines due to per-pod pools. While
4784 	 * alloc_ordered_workqueue() is the right way to create an ordered
4785 	 * workqueue, keep the previous behavior to avoid subtle breakages.
4786 	 */
4787 	if ((flags & WQ_UNBOUND) && max_active == 1)
4788 		flags |= __WQ_ORDERED;
4789 
4790 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4791 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4792 		flags |= WQ_UNBOUND;
4793 
4794 	/* allocate wq and format name */
4795 	wq = kzalloc(sizeof(*wq), GFP_KERNEL);
4796 	if (!wq)
4797 		return NULL;
4798 
4799 	if (flags & WQ_UNBOUND) {
4800 		wq->unbound_attrs = alloc_workqueue_attrs();
4801 		if (!wq->unbound_attrs)
4802 			goto err_free_wq;
4803 	}
4804 
4805 	va_start(args, max_active);
4806 	len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4807 	va_end(args);
4808 
4809 	if (len >= WQ_NAME_LEN)
4810 		pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n", wq->name);
4811 
4812 	max_active = max_active ?: WQ_DFL_ACTIVE;
4813 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4814 
4815 	/* init wq */
4816 	wq->flags = flags;
4817 	wq->max_active = max_active;
4818 	wq->saved_max_active = max_active;
4819 	mutex_init(&wq->mutex);
4820 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4821 	INIT_LIST_HEAD(&wq->pwqs);
4822 	INIT_LIST_HEAD(&wq->flusher_queue);
4823 	INIT_LIST_HEAD(&wq->flusher_overflow);
4824 	INIT_LIST_HEAD(&wq->maydays);
4825 
4826 	wq_init_lockdep(wq);
4827 	INIT_LIST_HEAD(&wq->list);
4828 
4829 	if (alloc_and_link_pwqs(wq) < 0)
4830 		goto err_unreg_lockdep;
4831 
4832 	if (wq_online && init_rescuer(wq) < 0)
4833 		goto err_destroy;
4834 
4835 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4836 		goto err_destroy;
4837 
4838 	/*
4839 	 * wq_pool_mutex protects global freeze state and workqueues list.
4840 	 * Grab it, adjust max_active and add the new @wq to workqueues
4841 	 * list.
4842 	 */
4843 	mutex_lock(&wq_pool_mutex);
4844 
4845 	mutex_lock(&wq->mutex);
4846 	wq_adjust_max_active(wq);
4847 	mutex_unlock(&wq->mutex);
4848 
4849 	list_add_tail_rcu(&wq->list, &workqueues);
4850 
4851 	mutex_unlock(&wq_pool_mutex);
4852 
4853 	return wq;
4854 
4855 err_unreg_lockdep:
4856 	wq_unregister_lockdep(wq);
4857 	wq_free_lockdep(wq);
4858 err_free_wq:
4859 	free_workqueue_attrs(wq->unbound_attrs);
4860 	kfree(wq);
4861 	return NULL;
4862 err_destroy:
4863 	destroy_workqueue(wq);
4864 	return NULL;
4865 }
4866 EXPORT_SYMBOL_GPL(alloc_workqueue);
4867 
4868 static bool pwq_busy(struct pool_workqueue *pwq)
4869 {
4870 	int i;
4871 
4872 	for (i = 0; i < WORK_NR_COLORS; i++)
4873 		if (pwq->nr_in_flight[i])
4874 			return true;
4875 
4876 	if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
4877 		return true;
4878 	if (!pwq_is_empty(pwq))
4879 		return true;
4880 
4881 	return false;
4882 }
4883 
4884 /**
4885  * destroy_workqueue - safely terminate a workqueue
4886  * @wq: target workqueue
4887  *
4888  * Safely destroy a workqueue. All work currently pending will be done first.
4889  */
4890 void destroy_workqueue(struct workqueue_struct *wq)
4891 {
4892 	struct pool_workqueue *pwq;
4893 	int cpu;
4894 
4895 	/*
4896 	 * Remove it from sysfs first so that sanity check failure doesn't
4897 	 * lead to sysfs name conflicts.
4898 	 */
4899 	workqueue_sysfs_unregister(wq);
4900 
4901 	/* mark the workqueue destruction is in progress */
4902 	mutex_lock(&wq->mutex);
4903 	wq->flags |= __WQ_DESTROYING;
4904 	mutex_unlock(&wq->mutex);
4905 
4906 	/* drain it before proceeding with destruction */
4907 	drain_workqueue(wq);
4908 
4909 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4910 	if (wq->rescuer) {
4911 		struct worker *rescuer = wq->rescuer;
4912 
4913 		/* this prevents new queueing */
4914 		raw_spin_lock_irq(&wq_mayday_lock);
4915 		wq->rescuer = NULL;
4916 		raw_spin_unlock_irq(&wq_mayday_lock);
4917 
4918 		/* rescuer will empty maydays list before exiting */
4919 		kthread_stop(rescuer->task);
4920 		kfree(rescuer);
4921 	}
4922 
4923 	/*
4924 	 * Sanity checks - grab all the locks so that we wait for all
4925 	 * in-flight operations which may do put_pwq().
4926 	 */
4927 	mutex_lock(&wq_pool_mutex);
4928 	mutex_lock(&wq->mutex);
4929 	for_each_pwq(pwq, wq) {
4930 		raw_spin_lock_irq(&pwq->pool->lock);
4931 		if (WARN_ON(pwq_busy(pwq))) {
4932 			pr_warn("%s: %s has the following busy pwq\n",
4933 				__func__, wq->name);
4934 			show_pwq(pwq);
4935 			raw_spin_unlock_irq(&pwq->pool->lock);
4936 			mutex_unlock(&wq->mutex);
4937 			mutex_unlock(&wq_pool_mutex);
4938 			show_one_workqueue(wq);
4939 			return;
4940 		}
4941 		raw_spin_unlock_irq(&pwq->pool->lock);
4942 	}
4943 	mutex_unlock(&wq->mutex);
4944 
4945 	/*
4946 	 * wq list is used to freeze wq, remove from list after
4947 	 * flushing is complete in case freeze races us.
4948 	 */
4949 	list_del_rcu(&wq->list);
4950 	mutex_unlock(&wq_pool_mutex);
4951 
4952 	/*
4953 	 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
4954 	 * to put the base refs. @wq will be auto-destroyed from the last
4955 	 * pwq_put. RCU read lock prevents @wq from going away from under us.
4956 	 */
4957 	rcu_read_lock();
4958 
4959 	for_each_possible_cpu(cpu) {
4960 		put_pwq_unlocked(unbound_pwq(wq, cpu));
4961 		RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
4962 	}
4963 
4964 	put_pwq_unlocked(unbound_pwq(wq, -1));
4965 	RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
4966 
4967 	rcu_read_unlock();
4968 }
4969 EXPORT_SYMBOL_GPL(destroy_workqueue);
4970 
4971 /**
4972  * workqueue_set_max_active - adjust max_active of a workqueue
4973  * @wq: target workqueue
4974  * @max_active: new max_active value.
4975  *
4976  * Set max_active of @wq to @max_active.
4977  *
4978  * CONTEXT:
4979  * Don't call from IRQ context.
4980  */
4981 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4982 {
4983 	/* disallow meddling with max_active for ordered workqueues */
4984 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4985 		return;
4986 
4987 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4988 
4989 	mutex_lock(&wq->mutex);
4990 
4991 	wq->flags &= ~__WQ_ORDERED;
4992 	wq->saved_max_active = max_active;
4993 	wq_adjust_max_active(wq);
4994 
4995 	mutex_unlock(&wq->mutex);
4996 }
4997 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4998 
4999 /**
5000  * current_work - retrieve %current task's work struct
5001  *
5002  * Determine if %current task is a workqueue worker and what it's working on.
5003  * Useful to find out the context that the %current task is running in.
5004  *
5005  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
5006  */
5007 struct work_struct *current_work(void)
5008 {
5009 	struct worker *worker = current_wq_worker();
5010 
5011 	return worker ? worker->current_work : NULL;
5012 }
5013 EXPORT_SYMBOL(current_work);
5014 
5015 /**
5016  * current_is_workqueue_rescuer - is %current workqueue rescuer?
5017  *
5018  * Determine whether %current is a workqueue rescuer.  Can be used from
5019  * work functions to determine whether it's being run off the rescuer task.
5020  *
5021  * Return: %true if %current is a workqueue rescuer. %false otherwise.
5022  */
5023 bool current_is_workqueue_rescuer(void)
5024 {
5025 	struct worker *worker = current_wq_worker();
5026 
5027 	return worker && worker->rescue_wq;
5028 }
5029 
5030 /**
5031  * workqueue_congested - test whether a workqueue is congested
5032  * @cpu: CPU in question
5033  * @wq: target workqueue
5034  *
5035  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
5036  * no synchronization around this function and the test result is
5037  * unreliable and only useful as advisory hints or for debugging.
5038  *
5039  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
5040  *
5041  * With the exception of ordered workqueues, all workqueues have per-cpu
5042  * pool_workqueues, each with its own congested state. A workqueue being
5043  * congested on one CPU doesn't mean that the workqueue is contested on any
5044  * other CPUs.
5045  *
5046  * Return:
5047  * %true if congested, %false otherwise.
5048  */
5049 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
5050 {
5051 	struct pool_workqueue *pwq;
5052 	bool ret;
5053 
5054 	rcu_read_lock();
5055 	preempt_disable();
5056 
5057 	if (cpu == WORK_CPU_UNBOUND)
5058 		cpu = smp_processor_id();
5059 
5060 	pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5061 	ret = !list_empty(&pwq->inactive_works);
5062 
5063 	preempt_enable();
5064 	rcu_read_unlock();
5065 
5066 	return ret;
5067 }
5068 EXPORT_SYMBOL_GPL(workqueue_congested);
5069 
5070 /**
5071  * work_busy - test whether a work is currently pending or running
5072  * @work: the work to be tested
5073  *
5074  * Test whether @work is currently pending or running.  There is no
5075  * synchronization around this function and the test result is
5076  * unreliable and only useful as advisory hints or for debugging.
5077  *
5078  * Return:
5079  * OR'd bitmask of WORK_BUSY_* bits.
5080  */
5081 unsigned int work_busy(struct work_struct *work)
5082 {
5083 	struct worker_pool *pool;
5084 	unsigned long flags;
5085 	unsigned int ret = 0;
5086 
5087 	if (work_pending(work))
5088 		ret |= WORK_BUSY_PENDING;
5089 
5090 	rcu_read_lock();
5091 	pool = get_work_pool(work);
5092 	if (pool) {
5093 		raw_spin_lock_irqsave(&pool->lock, flags);
5094 		if (find_worker_executing_work(pool, work))
5095 			ret |= WORK_BUSY_RUNNING;
5096 		raw_spin_unlock_irqrestore(&pool->lock, flags);
5097 	}
5098 	rcu_read_unlock();
5099 
5100 	return ret;
5101 }
5102 EXPORT_SYMBOL_GPL(work_busy);
5103 
5104 /**
5105  * set_worker_desc - set description for the current work item
5106  * @fmt: printf-style format string
5107  * @...: arguments for the format string
5108  *
5109  * This function can be called by a running work function to describe what
5110  * the work item is about.  If the worker task gets dumped, this
5111  * information will be printed out together to help debugging.  The
5112  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
5113  */
5114 void set_worker_desc(const char *fmt, ...)
5115 {
5116 	struct worker *worker = current_wq_worker();
5117 	va_list args;
5118 
5119 	if (worker) {
5120 		va_start(args, fmt);
5121 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
5122 		va_end(args);
5123 	}
5124 }
5125 EXPORT_SYMBOL_GPL(set_worker_desc);
5126 
5127 /**
5128  * print_worker_info - print out worker information and description
5129  * @log_lvl: the log level to use when printing
5130  * @task: target task
5131  *
5132  * If @task is a worker and currently executing a work item, print out the
5133  * name of the workqueue being serviced and worker description set with
5134  * set_worker_desc() by the currently executing work item.
5135  *
5136  * This function can be safely called on any task as long as the
5137  * task_struct itself is accessible.  While safe, this function isn't
5138  * synchronized and may print out mixups or garbages of limited length.
5139  */
5140 void print_worker_info(const char *log_lvl, struct task_struct *task)
5141 {
5142 	work_func_t *fn = NULL;
5143 	char name[WQ_NAME_LEN] = { };
5144 	char desc[WORKER_DESC_LEN] = { };
5145 	struct pool_workqueue *pwq = NULL;
5146 	struct workqueue_struct *wq = NULL;
5147 	struct worker *worker;
5148 
5149 	if (!(task->flags & PF_WQ_WORKER))
5150 		return;
5151 
5152 	/*
5153 	 * This function is called without any synchronization and @task
5154 	 * could be in any state.  Be careful with dereferences.
5155 	 */
5156 	worker = kthread_probe_data(task);
5157 
5158 	/*
5159 	 * Carefully copy the associated workqueue's workfn, name and desc.
5160 	 * Keep the original last '\0' in case the original is garbage.
5161 	 */
5162 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
5163 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
5164 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
5165 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
5166 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
5167 
5168 	if (fn || name[0] || desc[0]) {
5169 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
5170 		if (strcmp(name, desc))
5171 			pr_cont(" (%s)", desc);
5172 		pr_cont("\n");
5173 	}
5174 }
5175 
5176 static void pr_cont_pool_info(struct worker_pool *pool)
5177 {
5178 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
5179 	if (pool->node != NUMA_NO_NODE)
5180 		pr_cont(" node=%d", pool->node);
5181 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
5182 }
5183 
5184 struct pr_cont_work_struct {
5185 	bool comma;
5186 	work_func_t func;
5187 	long ctr;
5188 };
5189 
5190 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
5191 {
5192 	if (!pcwsp->ctr)
5193 		goto out_record;
5194 	if (func == pcwsp->func) {
5195 		pcwsp->ctr++;
5196 		return;
5197 	}
5198 	if (pcwsp->ctr == 1)
5199 		pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
5200 	else
5201 		pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
5202 	pcwsp->ctr = 0;
5203 out_record:
5204 	if ((long)func == -1L)
5205 		return;
5206 	pcwsp->comma = comma;
5207 	pcwsp->func = func;
5208 	pcwsp->ctr = 1;
5209 }
5210 
5211 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
5212 {
5213 	if (work->func == wq_barrier_func) {
5214 		struct wq_barrier *barr;
5215 
5216 		barr = container_of(work, struct wq_barrier, work);
5217 
5218 		pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
5219 		pr_cont("%s BAR(%d)", comma ? "," : "",
5220 			task_pid_nr(barr->task));
5221 	} else {
5222 		if (!comma)
5223 			pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
5224 		pr_cont_work_flush(comma, work->func, pcwsp);
5225 	}
5226 }
5227 
5228 static void show_pwq(struct pool_workqueue *pwq)
5229 {
5230 	struct pr_cont_work_struct pcws = { .ctr = 0, };
5231 	struct worker_pool *pool = pwq->pool;
5232 	struct work_struct *work;
5233 	struct worker *worker;
5234 	bool has_in_flight = false, has_pending = false;
5235 	int bkt;
5236 
5237 	pr_info("  pwq %d:", pool->id);
5238 	pr_cont_pool_info(pool);
5239 
5240 	pr_cont(" active=%d refcnt=%d%s\n",
5241 		pwq->nr_active, pwq->refcnt,
5242 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
5243 
5244 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5245 		if (worker->current_pwq == pwq) {
5246 			has_in_flight = true;
5247 			break;
5248 		}
5249 	}
5250 	if (has_in_flight) {
5251 		bool comma = false;
5252 
5253 		pr_info("    in-flight:");
5254 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5255 			if (worker->current_pwq != pwq)
5256 				continue;
5257 
5258 			pr_cont("%s %d%s:%ps", comma ? "," : "",
5259 				task_pid_nr(worker->task),
5260 				worker->rescue_wq ? "(RESCUER)" : "",
5261 				worker->current_func);
5262 			list_for_each_entry(work, &worker->scheduled, entry)
5263 				pr_cont_work(false, work, &pcws);
5264 			pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5265 			comma = true;
5266 		}
5267 		pr_cont("\n");
5268 	}
5269 
5270 	list_for_each_entry(work, &pool->worklist, entry) {
5271 		if (get_work_pwq(work) == pwq) {
5272 			has_pending = true;
5273 			break;
5274 		}
5275 	}
5276 	if (has_pending) {
5277 		bool comma = false;
5278 
5279 		pr_info("    pending:");
5280 		list_for_each_entry(work, &pool->worklist, entry) {
5281 			if (get_work_pwq(work) != pwq)
5282 				continue;
5283 
5284 			pr_cont_work(comma, work, &pcws);
5285 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5286 		}
5287 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5288 		pr_cont("\n");
5289 	}
5290 
5291 	if (!list_empty(&pwq->inactive_works)) {
5292 		bool comma = false;
5293 
5294 		pr_info("    inactive:");
5295 		list_for_each_entry(work, &pwq->inactive_works, entry) {
5296 			pr_cont_work(comma, work, &pcws);
5297 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5298 		}
5299 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5300 		pr_cont("\n");
5301 	}
5302 }
5303 
5304 /**
5305  * show_one_workqueue - dump state of specified workqueue
5306  * @wq: workqueue whose state will be printed
5307  */
5308 void show_one_workqueue(struct workqueue_struct *wq)
5309 {
5310 	struct pool_workqueue *pwq;
5311 	bool idle = true;
5312 	unsigned long flags;
5313 
5314 	for_each_pwq(pwq, wq) {
5315 		if (!pwq_is_empty(pwq)) {
5316 			idle = false;
5317 			break;
5318 		}
5319 	}
5320 	if (idle) /* Nothing to print for idle workqueue */
5321 		return;
5322 
5323 	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
5324 
5325 	for_each_pwq(pwq, wq) {
5326 		raw_spin_lock_irqsave(&pwq->pool->lock, flags);
5327 		if (!pwq_is_empty(pwq)) {
5328 			/*
5329 			 * Defer printing to avoid deadlocks in console
5330 			 * drivers that queue work while holding locks
5331 			 * also taken in their write paths.
5332 			 */
5333 			printk_deferred_enter();
5334 			show_pwq(pwq);
5335 			printk_deferred_exit();
5336 		}
5337 		raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
5338 		/*
5339 		 * We could be printing a lot from atomic context, e.g.
5340 		 * sysrq-t -> show_all_workqueues(). Avoid triggering
5341 		 * hard lockup.
5342 		 */
5343 		touch_nmi_watchdog();
5344 	}
5345 
5346 }
5347 
5348 /**
5349  * show_one_worker_pool - dump state of specified worker pool
5350  * @pool: worker pool whose state will be printed
5351  */
5352 static void show_one_worker_pool(struct worker_pool *pool)
5353 {
5354 	struct worker *worker;
5355 	bool first = true;
5356 	unsigned long flags;
5357 	unsigned long hung = 0;
5358 
5359 	raw_spin_lock_irqsave(&pool->lock, flags);
5360 	if (pool->nr_workers == pool->nr_idle)
5361 		goto next_pool;
5362 
5363 	/* How long the first pending work is waiting for a worker. */
5364 	if (!list_empty(&pool->worklist))
5365 		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
5366 
5367 	/*
5368 	 * Defer printing to avoid deadlocks in console drivers that
5369 	 * queue work while holding locks also taken in their write
5370 	 * paths.
5371 	 */
5372 	printk_deferred_enter();
5373 	pr_info("pool %d:", pool->id);
5374 	pr_cont_pool_info(pool);
5375 	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
5376 	if (pool->manager)
5377 		pr_cont(" manager: %d",
5378 			task_pid_nr(pool->manager->task));
5379 	list_for_each_entry(worker, &pool->idle_list, entry) {
5380 		pr_cont(" %s%d", first ? "idle: " : "",
5381 			task_pid_nr(worker->task));
5382 		first = false;
5383 	}
5384 	pr_cont("\n");
5385 	printk_deferred_exit();
5386 next_pool:
5387 	raw_spin_unlock_irqrestore(&pool->lock, flags);
5388 	/*
5389 	 * We could be printing a lot from atomic context, e.g.
5390 	 * sysrq-t -> show_all_workqueues(). Avoid triggering
5391 	 * hard lockup.
5392 	 */
5393 	touch_nmi_watchdog();
5394 
5395 }
5396 
5397 /**
5398  * show_all_workqueues - dump workqueue state
5399  *
5400  * Called from a sysrq handler and prints out all busy workqueues and pools.
5401  */
5402 void show_all_workqueues(void)
5403 {
5404 	struct workqueue_struct *wq;
5405 	struct worker_pool *pool;
5406 	int pi;
5407 
5408 	rcu_read_lock();
5409 
5410 	pr_info("Showing busy workqueues and worker pools:\n");
5411 
5412 	list_for_each_entry_rcu(wq, &workqueues, list)
5413 		show_one_workqueue(wq);
5414 
5415 	for_each_pool(pool, pi)
5416 		show_one_worker_pool(pool);
5417 
5418 	rcu_read_unlock();
5419 }
5420 
5421 /**
5422  * show_freezable_workqueues - dump freezable workqueue state
5423  *
5424  * Called from try_to_freeze_tasks() and prints out all freezable workqueues
5425  * still busy.
5426  */
5427 void show_freezable_workqueues(void)
5428 {
5429 	struct workqueue_struct *wq;
5430 
5431 	rcu_read_lock();
5432 
5433 	pr_info("Showing freezable workqueues that are still busy:\n");
5434 
5435 	list_for_each_entry_rcu(wq, &workqueues, list) {
5436 		if (!(wq->flags & WQ_FREEZABLE))
5437 			continue;
5438 		show_one_workqueue(wq);
5439 	}
5440 
5441 	rcu_read_unlock();
5442 }
5443 
5444 /* used to show worker information through /proc/PID/{comm,stat,status} */
5445 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
5446 {
5447 	int off;
5448 
5449 	/* always show the actual comm */
5450 	off = strscpy(buf, task->comm, size);
5451 	if (off < 0)
5452 		return;
5453 
5454 	/* stabilize PF_WQ_WORKER and worker pool association */
5455 	mutex_lock(&wq_pool_attach_mutex);
5456 
5457 	if (task->flags & PF_WQ_WORKER) {
5458 		struct worker *worker = kthread_data(task);
5459 		struct worker_pool *pool = worker->pool;
5460 
5461 		if (pool) {
5462 			raw_spin_lock_irq(&pool->lock);
5463 			/*
5464 			 * ->desc tracks information (wq name or
5465 			 * set_worker_desc()) for the latest execution.  If
5466 			 * current, prepend '+', otherwise '-'.
5467 			 */
5468 			if (worker->desc[0] != '\0') {
5469 				if (worker->current_work)
5470 					scnprintf(buf + off, size - off, "+%s",
5471 						  worker->desc);
5472 				else
5473 					scnprintf(buf + off, size - off, "-%s",
5474 						  worker->desc);
5475 			}
5476 			raw_spin_unlock_irq(&pool->lock);
5477 		}
5478 	}
5479 
5480 	mutex_unlock(&wq_pool_attach_mutex);
5481 }
5482 
5483 #ifdef CONFIG_SMP
5484 
5485 /*
5486  * CPU hotplug.
5487  *
5488  * There are two challenges in supporting CPU hotplug.  Firstly, there
5489  * are a lot of assumptions on strong associations among work, pwq and
5490  * pool which make migrating pending and scheduled works very
5491  * difficult to implement without impacting hot paths.  Secondly,
5492  * worker pools serve mix of short, long and very long running works making
5493  * blocked draining impractical.
5494  *
5495  * This is solved by allowing the pools to be disassociated from the CPU
5496  * running as an unbound one and allowing it to be reattached later if the
5497  * cpu comes back online.
5498  */
5499 
5500 static void unbind_workers(int cpu)
5501 {
5502 	struct worker_pool *pool;
5503 	struct worker *worker;
5504 
5505 	for_each_cpu_worker_pool(pool, cpu) {
5506 		mutex_lock(&wq_pool_attach_mutex);
5507 		raw_spin_lock_irq(&pool->lock);
5508 
5509 		/*
5510 		 * We've blocked all attach/detach operations. Make all workers
5511 		 * unbound and set DISASSOCIATED.  Before this, all workers
5512 		 * must be on the cpu.  After this, they may become diasporas.
5513 		 * And the preemption disabled section in their sched callbacks
5514 		 * are guaranteed to see WORKER_UNBOUND since the code here
5515 		 * is on the same cpu.
5516 		 */
5517 		for_each_pool_worker(worker, pool)
5518 			worker->flags |= WORKER_UNBOUND;
5519 
5520 		pool->flags |= POOL_DISASSOCIATED;
5521 
5522 		/*
5523 		 * The handling of nr_running in sched callbacks are disabled
5524 		 * now.  Zap nr_running.  After this, nr_running stays zero and
5525 		 * need_more_worker() and keep_working() are always true as
5526 		 * long as the worklist is not empty.  This pool now behaves as
5527 		 * an unbound (in terms of concurrency management) pool which
5528 		 * are served by workers tied to the pool.
5529 		 */
5530 		pool->nr_running = 0;
5531 
5532 		/*
5533 		 * With concurrency management just turned off, a busy
5534 		 * worker blocking could lead to lengthy stalls.  Kick off
5535 		 * unbound chain execution of currently pending work items.
5536 		 */
5537 		kick_pool(pool);
5538 
5539 		raw_spin_unlock_irq(&pool->lock);
5540 
5541 		for_each_pool_worker(worker, pool)
5542 			unbind_worker(worker);
5543 
5544 		mutex_unlock(&wq_pool_attach_mutex);
5545 	}
5546 }
5547 
5548 /**
5549  * rebind_workers - rebind all workers of a pool to the associated CPU
5550  * @pool: pool of interest
5551  *
5552  * @pool->cpu is coming online.  Rebind all workers to the CPU.
5553  */
5554 static void rebind_workers(struct worker_pool *pool)
5555 {
5556 	struct worker *worker;
5557 
5558 	lockdep_assert_held(&wq_pool_attach_mutex);
5559 
5560 	/*
5561 	 * Restore CPU affinity of all workers.  As all idle workers should
5562 	 * be on the run-queue of the associated CPU before any local
5563 	 * wake-ups for concurrency management happen, restore CPU affinity
5564 	 * of all workers first and then clear UNBOUND.  As we're called
5565 	 * from CPU_ONLINE, the following shouldn't fail.
5566 	 */
5567 	for_each_pool_worker(worker, pool) {
5568 		kthread_set_per_cpu(worker->task, pool->cpu);
5569 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5570 						  pool_allowed_cpus(pool)) < 0);
5571 	}
5572 
5573 	raw_spin_lock_irq(&pool->lock);
5574 
5575 	pool->flags &= ~POOL_DISASSOCIATED;
5576 
5577 	for_each_pool_worker(worker, pool) {
5578 		unsigned int worker_flags = worker->flags;
5579 
5580 		/*
5581 		 * We want to clear UNBOUND but can't directly call
5582 		 * worker_clr_flags() or adjust nr_running.  Atomically
5583 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5584 		 * @worker will clear REBOUND using worker_clr_flags() when
5585 		 * it initiates the next execution cycle thus restoring
5586 		 * concurrency management.  Note that when or whether
5587 		 * @worker clears REBOUND doesn't affect correctness.
5588 		 *
5589 		 * WRITE_ONCE() is necessary because @worker->flags may be
5590 		 * tested without holding any lock in
5591 		 * wq_worker_running().  Without it, NOT_RUNNING test may
5592 		 * fail incorrectly leading to premature concurrency
5593 		 * management operations.
5594 		 */
5595 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5596 		worker_flags |= WORKER_REBOUND;
5597 		worker_flags &= ~WORKER_UNBOUND;
5598 		WRITE_ONCE(worker->flags, worker_flags);
5599 	}
5600 
5601 	raw_spin_unlock_irq(&pool->lock);
5602 }
5603 
5604 /**
5605  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5606  * @pool: unbound pool of interest
5607  * @cpu: the CPU which is coming up
5608  *
5609  * An unbound pool may end up with a cpumask which doesn't have any online
5610  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
5611  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
5612  * online CPU before, cpus_allowed of all its workers should be restored.
5613  */
5614 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5615 {
5616 	static cpumask_t cpumask;
5617 	struct worker *worker;
5618 
5619 	lockdep_assert_held(&wq_pool_attach_mutex);
5620 
5621 	/* is @cpu allowed for @pool? */
5622 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5623 		return;
5624 
5625 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5626 
5627 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
5628 	for_each_pool_worker(worker, pool)
5629 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5630 }
5631 
5632 int workqueue_prepare_cpu(unsigned int cpu)
5633 {
5634 	struct worker_pool *pool;
5635 
5636 	for_each_cpu_worker_pool(pool, cpu) {
5637 		if (pool->nr_workers)
5638 			continue;
5639 		if (!create_worker(pool))
5640 			return -ENOMEM;
5641 	}
5642 	return 0;
5643 }
5644 
5645 int workqueue_online_cpu(unsigned int cpu)
5646 {
5647 	struct worker_pool *pool;
5648 	struct workqueue_struct *wq;
5649 	int pi;
5650 
5651 	mutex_lock(&wq_pool_mutex);
5652 
5653 	for_each_pool(pool, pi) {
5654 		mutex_lock(&wq_pool_attach_mutex);
5655 
5656 		if (pool->cpu == cpu)
5657 			rebind_workers(pool);
5658 		else if (pool->cpu < 0)
5659 			restore_unbound_workers_cpumask(pool, cpu);
5660 
5661 		mutex_unlock(&wq_pool_attach_mutex);
5662 	}
5663 
5664 	/* update pod affinity of unbound workqueues */
5665 	list_for_each_entry(wq, &workqueues, list) {
5666 		struct workqueue_attrs *attrs = wq->unbound_attrs;
5667 
5668 		if (attrs) {
5669 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5670 			int tcpu;
5671 
5672 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
5673 				wq_update_pod(wq, tcpu, cpu, true);
5674 		}
5675 	}
5676 
5677 	mutex_unlock(&wq_pool_mutex);
5678 	return 0;
5679 }
5680 
5681 int workqueue_offline_cpu(unsigned int cpu)
5682 {
5683 	struct workqueue_struct *wq;
5684 
5685 	/* unbinding per-cpu workers should happen on the local CPU */
5686 	if (WARN_ON(cpu != smp_processor_id()))
5687 		return -1;
5688 
5689 	unbind_workers(cpu);
5690 
5691 	/* update pod affinity of unbound workqueues */
5692 	mutex_lock(&wq_pool_mutex);
5693 	list_for_each_entry(wq, &workqueues, list) {
5694 		struct workqueue_attrs *attrs = wq->unbound_attrs;
5695 
5696 		if (attrs) {
5697 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5698 			int tcpu;
5699 
5700 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
5701 				wq_update_pod(wq, tcpu, cpu, false);
5702 		}
5703 	}
5704 	mutex_unlock(&wq_pool_mutex);
5705 
5706 	return 0;
5707 }
5708 
5709 struct work_for_cpu {
5710 	struct work_struct work;
5711 	long (*fn)(void *);
5712 	void *arg;
5713 	long ret;
5714 };
5715 
5716 static void work_for_cpu_fn(struct work_struct *work)
5717 {
5718 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5719 
5720 	wfc->ret = wfc->fn(wfc->arg);
5721 }
5722 
5723 /**
5724  * work_on_cpu_key - run a function in thread context on a particular cpu
5725  * @cpu: the cpu to run on
5726  * @fn: the function to run
5727  * @arg: the function arg
5728  * @key: The lock class key for lock debugging purposes
5729  *
5730  * It is up to the caller to ensure that the cpu doesn't go offline.
5731  * The caller must not hold any locks which would prevent @fn from completing.
5732  *
5733  * Return: The value @fn returns.
5734  */
5735 long work_on_cpu_key(int cpu, long (*fn)(void *),
5736 		     void *arg, struct lock_class_key *key)
5737 {
5738 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5739 
5740 	INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
5741 	schedule_work_on(cpu, &wfc.work);
5742 	flush_work(&wfc.work);
5743 	destroy_work_on_stack(&wfc.work);
5744 	return wfc.ret;
5745 }
5746 EXPORT_SYMBOL_GPL(work_on_cpu_key);
5747 
5748 /**
5749  * work_on_cpu_safe_key - run a function in thread context on a particular cpu
5750  * @cpu: the cpu to run on
5751  * @fn:  the function to run
5752  * @arg: the function argument
5753  * @key: The lock class key for lock debugging purposes
5754  *
5755  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5756  * any locks which would prevent @fn from completing.
5757  *
5758  * Return: The value @fn returns.
5759  */
5760 long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
5761 			  void *arg, struct lock_class_key *key)
5762 {
5763 	long ret = -ENODEV;
5764 
5765 	cpus_read_lock();
5766 	if (cpu_online(cpu))
5767 		ret = work_on_cpu_key(cpu, fn, arg, key);
5768 	cpus_read_unlock();
5769 	return ret;
5770 }
5771 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
5772 #endif /* CONFIG_SMP */
5773 
5774 #ifdef CONFIG_FREEZER
5775 
5776 /**
5777  * freeze_workqueues_begin - begin freezing workqueues
5778  *
5779  * Start freezing workqueues.  After this function returns, all freezable
5780  * workqueues will queue new works to their inactive_works list instead of
5781  * pool->worklist.
5782  *
5783  * CONTEXT:
5784  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5785  */
5786 void freeze_workqueues_begin(void)
5787 {
5788 	struct workqueue_struct *wq;
5789 
5790 	mutex_lock(&wq_pool_mutex);
5791 
5792 	WARN_ON_ONCE(workqueue_freezing);
5793 	workqueue_freezing = true;
5794 
5795 	list_for_each_entry(wq, &workqueues, list) {
5796 		mutex_lock(&wq->mutex);
5797 		wq_adjust_max_active(wq);
5798 		mutex_unlock(&wq->mutex);
5799 	}
5800 
5801 	mutex_unlock(&wq_pool_mutex);
5802 }
5803 
5804 /**
5805  * freeze_workqueues_busy - are freezable workqueues still busy?
5806  *
5807  * Check whether freezing is complete.  This function must be called
5808  * between freeze_workqueues_begin() and thaw_workqueues().
5809  *
5810  * CONTEXT:
5811  * Grabs and releases wq_pool_mutex.
5812  *
5813  * Return:
5814  * %true if some freezable workqueues are still busy.  %false if freezing
5815  * is complete.
5816  */
5817 bool freeze_workqueues_busy(void)
5818 {
5819 	bool busy = false;
5820 	struct workqueue_struct *wq;
5821 	struct pool_workqueue *pwq;
5822 
5823 	mutex_lock(&wq_pool_mutex);
5824 
5825 	WARN_ON_ONCE(!workqueue_freezing);
5826 
5827 	list_for_each_entry(wq, &workqueues, list) {
5828 		if (!(wq->flags & WQ_FREEZABLE))
5829 			continue;
5830 		/*
5831 		 * nr_active is monotonically decreasing.  It's safe
5832 		 * to peek without lock.
5833 		 */
5834 		rcu_read_lock();
5835 		for_each_pwq(pwq, wq) {
5836 			WARN_ON_ONCE(pwq->nr_active < 0);
5837 			if (pwq->nr_active) {
5838 				busy = true;
5839 				rcu_read_unlock();
5840 				goto out_unlock;
5841 			}
5842 		}
5843 		rcu_read_unlock();
5844 	}
5845 out_unlock:
5846 	mutex_unlock(&wq_pool_mutex);
5847 	return busy;
5848 }
5849 
5850 /**
5851  * thaw_workqueues - thaw workqueues
5852  *
5853  * Thaw workqueues.  Normal queueing is restored and all collected
5854  * frozen works are transferred to their respective pool worklists.
5855  *
5856  * CONTEXT:
5857  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5858  */
5859 void thaw_workqueues(void)
5860 {
5861 	struct workqueue_struct *wq;
5862 
5863 	mutex_lock(&wq_pool_mutex);
5864 
5865 	if (!workqueue_freezing)
5866 		goto out_unlock;
5867 
5868 	workqueue_freezing = false;
5869 
5870 	/* restore max_active and repopulate worklist */
5871 	list_for_each_entry(wq, &workqueues, list) {
5872 		mutex_lock(&wq->mutex);
5873 		wq_adjust_max_active(wq);
5874 		mutex_unlock(&wq->mutex);
5875 	}
5876 
5877 out_unlock:
5878 	mutex_unlock(&wq_pool_mutex);
5879 }
5880 #endif /* CONFIG_FREEZER */
5881 
5882 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
5883 {
5884 	LIST_HEAD(ctxs);
5885 	int ret = 0;
5886 	struct workqueue_struct *wq;
5887 	struct apply_wqattrs_ctx *ctx, *n;
5888 
5889 	lockdep_assert_held(&wq_pool_mutex);
5890 
5891 	list_for_each_entry(wq, &workqueues, list) {
5892 		if (!(wq->flags & WQ_UNBOUND))
5893 			continue;
5894 		/* creating multiple pwqs breaks ordering guarantee */
5895 		if (wq->flags & __WQ_ORDERED)
5896 			continue;
5897 
5898 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
5899 		if (IS_ERR(ctx)) {
5900 			ret = PTR_ERR(ctx);
5901 			break;
5902 		}
5903 
5904 		list_add_tail(&ctx->list, &ctxs);
5905 	}
5906 
5907 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5908 		if (!ret)
5909 			apply_wqattrs_commit(ctx);
5910 		apply_wqattrs_cleanup(ctx);
5911 	}
5912 
5913 	if (!ret) {
5914 		mutex_lock(&wq_pool_attach_mutex);
5915 		cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
5916 		mutex_unlock(&wq_pool_attach_mutex);
5917 	}
5918 	return ret;
5919 }
5920 
5921 /**
5922  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5923  *  @cpumask: the cpumask to set
5924  *
5925  *  The low-level workqueues cpumask is a global cpumask that limits
5926  *  the affinity of all unbound workqueues.  This function check the @cpumask
5927  *  and apply it to all unbound workqueues and updates all pwqs of them.
5928  *
5929  *  Return:	0	- Success
5930  *  		-EINVAL	- Invalid @cpumask
5931  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5932  */
5933 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5934 {
5935 	int ret = -EINVAL;
5936 
5937 	/*
5938 	 * Not excluding isolated cpus on purpose.
5939 	 * If the user wishes to include them, we allow that.
5940 	 */
5941 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5942 	if (!cpumask_empty(cpumask)) {
5943 		apply_wqattrs_lock();
5944 		if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5945 			ret = 0;
5946 			goto out_unlock;
5947 		}
5948 
5949 		ret = workqueue_apply_unbound_cpumask(cpumask);
5950 
5951 out_unlock:
5952 		apply_wqattrs_unlock();
5953 	}
5954 
5955 	return ret;
5956 }
5957 
5958 static int parse_affn_scope(const char *val)
5959 {
5960 	int i;
5961 
5962 	for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
5963 		if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
5964 			return i;
5965 	}
5966 	return -EINVAL;
5967 }
5968 
5969 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
5970 {
5971 	struct workqueue_struct *wq;
5972 	int affn, cpu;
5973 
5974 	affn = parse_affn_scope(val);
5975 	if (affn < 0)
5976 		return affn;
5977 	if (affn == WQ_AFFN_DFL)
5978 		return -EINVAL;
5979 
5980 	cpus_read_lock();
5981 	mutex_lock(&wq_pool_mutex);
5982 
5983 	wq_affn_dfl = affn;
5984 
5985 	list_for_each_entry(wq, &workqueues, list) {
5986 		for_each_online_cpu(cpu) {
5987 			wq_update_pod(wq, cpu, cpu, true);
5988 		}
5989 	}
5990 
5991 	mutex_unlock(&wq_pool_mutex);
5992 	cpus_read_unlock();
5993 
5994 	return 0;
5995 }
5996 
5997 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
5998 {
5999 	return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
6000 }
6001 
6002 static const struct kernel_param_ops wq_affn_dfl_ops = {
6003 	.set	= wq_affn_dfl_set,
6004 	.get	= wq_affn_dfl_get,
6005 };
6006 
6007 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
6008 
6009 #ifdef CONFIG_SYSFS
6010 /*
6011  * Workqueues with WQ_SYSFS flag set is visible to userland via
6012  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
6013  * following attributes.
6014  *
6015  *  per_cpu		RO bool	: whether the workqueue is per-cpu or unbound
6016  *  max_active		RW int	: maximum number of in-flight work items
6017  *
6018  * Unbound workqueues have the following extra attributes.
6019  *
6020  *  nice		RW int	: nice value of the workers
6021  *  cpumask		RW mask	: bitmask of allowed CPUs for the workers
6022  *  affinity_scope	RW str  : worker CPU affinity scope (cache, numa, none)
6023  *  affinity_strict	RW bool : worker CPU affinity is strict
6024  */
6025 struct wq_device {
6026 	struct workqueue_struct		*wq;
6027 	struct device			dev;
6028 };
6029 
6030 static struct workqueue_struct *dev_to_wq(struct device *dev)
6031 {
6032 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6033 
6034 	return wq_dev->wq;
6035 }
6036 
6037 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
6038 			    char *buf)
6039 {
6040 	struct workqueue_struct *wq = dev_to_wq(dev);
6041 
6042 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
6043 }
6044 static DEVICE_ATTR_RO(per_cpu);
6045 
6046 static ssize_t max_active_show(struct device *dev,
6047 			       struct device_attribute *attr, char *buf)
6048 {
6049 	struct workqueue_struct *wq = dev_to_wq(dev);
6050 
6051 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
6052 }
6053 
6054 static ssize_t max_active_store(struct device *dev,
6055 				struct device_attribute *attr, const char *buf,
6056 				size_t count)
6057 {
6058 	struct workqueue_struct *wq = dev_to_wq(dev);
6059 	int val;
6060 
6061 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
6062 		return -EINVAL;
6063 
6064 	workqueue_set_max_active(wq, val);
6065 	return count;
6066 }
6067 static DEVICE_ATTR_RW(max_active);
6068 
6069 static struct attribute *wq_sysfs_attrs[] = {
6070 	&dev_attr_per_cpu.attr,
6071 	&dev_attr_max_active.attr,
6072 	NULL,
6073 };
6074 ATTRIBUTE_GROUPS(wq_sysfs);
6075 
6076 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
6077 			    char *buf)
6078 {
6079 	struct workqueue_struct *wq = dev_to_wq(dev);
6080 	int written;
6081 
6082 	mutex_lock(&wq->mutex);
6083 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
6084 	mutex_unlock(&wq->mutex);
6085 
6086 	return written;
6087 }
6088 
6089 /* prepare workqueue_attrs for sysfs store operations */
6090 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
6091 {
6092 	struct workqueue_attrs *attrs;
6093 
6094 	lockdep_assert_held(&wq_pool_mutex);
6095 
6096 	attrs = alloc_workqueue_attrs();
6097 	if (!attrs)
6098 		return NULL;
6099 
6100 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
6101 	return attrs;
6102 }
6103 
6104 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
6105 			     const char *buf, size_t count)
6106 {
6107 	struct workqueue_struct *wq = dev_to_wq(dev);
6108 	struct workqueue_attrs *attrs;
6109 	int ret = -ENOMEM;
6110 
6111 	apply_wqattrs_lock();
6112 
6113 	attrs = wq_sysfs_prep_attrs(wq);
6114 	if (!attrs)
6115 		goto out_unlock;
6116 
6117 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
6118 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
6119 		ret = apply_workqueue_attrs_locked(wq, attrs);
6120 	else
6121 		ret = -EINVAL;
6122 
6123 out_unlock:
6124 	apply_wqattrs_unlock();
6125 	free_workqueue_attrs(attrs);
6126 	return ret ?: count;
6127 }
6128 
6129 static ssize_t wq_cpumask_show(struct device *dev,
6130 			       struct device_attribute *attr, char *buf)
6131 {
6132 	struct workqueue_struct *wq = dev_to_wq(dev);
6133 	int written;
6134 
6135 	mutex_lock(&wq->mutex);
6136 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
6137 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
6138 	mutex_unlock(&wq->mutex);
6139 	return written;
6140 }
6141 
6142 static ssize_t wq_cpumask_store(struct device *dev,
6143 				struct device_attribute *attr,
6144 				const char *buf, size_t count)
6145 {
6146 	struct workqueue_struct *wq = dev_to_wq(dev);
6147 	struct workqueue_attrs *attrs;
6148 	int ret = -ENOMEM;
6149 
6150 	apply_wqattrs_lock();
6151 
6152 	attrs = wq_sysfs_prep_attrs(wq);
6153 	if (!attrs)
6154 		goto out_unlock;
6155 
6156 	ret = cpumask_parse(buf, attrs->cpumask);
6157 	if (!ret)
6158 		ret = apply_workqueue_attrs_locked(wq, attrs);
6159 
6160 out_unlock:
6161 	apply_wqattrs_unlock();
6162 	free_workqueue_attrs(attrs);
6163 	return ret ?: count;
6164 }
6165 
6166 static ssize_t wq_affn_scope_show(struct device *dev,
6167 				  struct device_attribute *attr, char *buf)
6168 {
6169 	struct workqueue_struct *wq = dev_to_wq(dev);
6170 	int written;
6171 
6172 	mutex_lock(&wq->mutex);
6173 	if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
6174 		written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
6175 				    wq_affn_names[WQ_AFFN_DFL],
6176 				    wq_affn_names[wq_affn_dfl]);
6177 	else
6178 		written = scnprintf(buf, PAGE_SIZE, "%s\n",
6179 				    wq_affn_names[wq->unbound_attrs->affn_scope]);
6180 	mutex_unlock(&wq->mutex);
6181 
6182 	return written;
6183 }
6184 
6185 static ssize_t wq_affn_scope_store(struct device *dev,
6186 				   struct device_attribute *attr,
6187 				   const char *buf, size_t count)
6188 {
6189 	struct workqueue_struct *wq = dev_to_wq(dev);
6190 	struct workqueue_attrs *attrs;
6191 	int affn, ret = -ENOMEM;
6192 
6193 	affn = parse_affn_scope(buf);
6194 	if (affn < 0)
6195 		return affn;
6196 
6197 	apply_wqattrs_lock();
6198 	attrs = wq_sysfs_prep_attrs(wq);
6199 	if (attrs) {
6200 		attrs->affn_scope = affn;
6201 		ret = apply_workqueue_attrs_locked(wq, attrs);
6202 	}
6203 	apply_wqattrs_unlock();
6204 	free_workqueue_attrs(attrs);
6205 	return ret ?: count;
6206 }
6207 
6208 static ssize_t wq_affinity_strict_show(struct device *dev,
6209 				       struct device_attribute *attr, char *buf)
6210 {
6211 	struct workqueue_struct *wq = dev_to_wq(dev);
6212 
6213 	return scnprintf(buf, PAGE_SIZE, "%d\n",
6214 			 wq->unbound_attrs->affn_strict);
6215 }
6216 
6217 static ssize_t wq_affinity_strict_store(struct device *dev,
6218 					struct device_attribute *attr,
6219 					const char *buf, size_t count)
6220 {
6221 	struct workqueue_struct *wq = dev_to_wq(dev);
6222 	struct workqueue_attrs *attrs;
6223 	int v, ret = -ENOMEM;
6224 
6225 	if (sscanf(buf, "%d", &v) != 1)
6226 		return -EINVAL;
6227 
6228 	apply_wqattrs_lock();
6229 	attrs = wq_sysfs_prep_attrs(wq);
6230 	if (attrs) {
6231 		attrs->affn_strict = (bool)v;
6232 		ret = apply_workqueue_attrs_locked(wq, attrs);
6233 	}
6234 	apply_wqattrs_unlock();
6235 	free_workqueue_attrs(attrs);
6236 	return ret ?: count;
6237 }
6238 
6239 static struct device_attribute wq_sysfs_unbound_attrs[] = {
6240 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
6241 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
6242 	__ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
6243 	__ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
6244 	__ATTR_NULL,
6245 };
6246 
6247 static struct bus_type wq_subsys = {
6248 	.name				= "workqueue",
6249 	.dev_groups			= wq_sysfs_groups,
6250 };
6251 
6252 static ssize_t wq_unbound_cpumask_show(struct device *dev,
6253 		struct device_attribute *attr, char *buf)
6254 {
6255 	int written;
6256 
6257 	mutex_lock(&wq_pool_mutex);
6258 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
6259 			    cpumask_pr_args(wq_unbound_cpumask));
6260 	mutex_unlock(&wq_pool_mutex);
6261 
6262 	return written;
6263 }
6264 
6265 static ssize_t wq_unbound_cpumask_store(struct device *dev,
6266 		struct device_attribute *attr, const char *buf, size_t count)
6267 {
6268 	cpumask_var_t cpumask;
6269 	int ret;
6270 
6271 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6272 		return -ENOMEM;
6273 
6274 	ret = cpumask_parse(buf, cpumask);
6275 	if (!ret)
6276 		ret = workqueue_set_unbound_cpumask(cpumask);
6277 
6278 	free_cpumask_var(cpumask);
6279 	return ret ? ret : count;
6280 }
6281 
6282 static struct device_attribute wq_sysfs_cpumask_attr =
6283 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
6284 	       wq_unbound_cpumask_store);
6285 
6286 static int __init wq_sysfs_init(void)
6287 {
6288 	struct device *dev_root;
6289 	int err;
6290 
6291 	err = subsys_virtual_register(&wq_subsys, NULL);
6292 	if (err)
6293 		return err;
6294 
6295 	dev_root = bus_get_dev_root(&wq_subsys);
6296 	if (dev_root) {
6297 		err = device_create_file(dev_root, &wq_sysfs_cpumask_attr);
6298 		put_device(dev_root);
6299 	}
6300 	return err;
6301 }
6302 core_initcall(wq_sysfs_init);
6303 
6304 static void wq_device_release(struct device *dev)
6305 {
6306 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6307 
6308 	kfree(wq_dev);
6309 }
6310 
6311 /**
6312  * workqueue_sysfs_register - make a workqueue visible in sysfs
6313  * @wq: the workqueue to register
6314  *
6315  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
6316  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
6317  * which is the preferred method.
6318  *
6319  * Workqueue user should use this function directly iff it wants to apply
6320  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
6321  * apply_workqueue_attrs() may race against userland updating the
6322  * attributes.
6323  *
6324  * Return: 0 on success, -errno on failure.
6325  */
6326 int workqueue_sysfs_register(struct workqueue_struct *wq)
6327 {
6328 	struct wq_device *wq_dev;
6329 	int ret;
6330 
6331 	/*
6332 	 * Adjusting max_active or creating new pwqs by applying
6333 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
6334 	 * workqueues.
6335 	 */
6336 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6337 		return -EINVAL;
6338 
6339 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
6340 	if (!wq_dev)
6341 		return -ENOMEM;
6342 
6343 	wq_dev->wq = wq;
6344 	wq_dev->dev.bus = &wq_subsys;
6345 	wq_dev->dev.release = wq_device_release;
6346 	dev_set_name(&wq_dev->dev, "%s", wq->name);
6347 
6348 	/*
6349 	 * unbound_attrs are created separately.  Suppress uevent until
6350 	 * everything is ready.
6351 	 */
6352 	dev_set_uevent_suppress(&wq_dev->dev, true);
6353 
6354 	ret = device_register(&wq_dev->dev);
6355 	if (ret) {
6356 		put_device(&wq_dev->dev);
6357 		wq->wq_dev = NULL;
6358 		return ret;
6359 	}
6360 
6361 	if (wq->flags & WQ_UNBOUND) {
6362 		struct device_attribute *attr;
6363 
6364 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
6365 			ret = device_create_file(&wq_dev->dev, attr);
6366 			if (ret) {
6367 				device_unregister(&wq_dev->dev);
6368 				wq->wq_dev = NULL;
6369 				return ret;
6370 			}
6371 		}
6372 	}
6373 
6374 	dev_set_uevent_suppress(&wq_dev->dev, false);
6375 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
6376 	return 0;
6377 }
6378 
6379 /**
6380  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
6381  * @wq: the workqueue to unregister
6382  *
6383  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
6384  */
6385 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
6386 {
6387 	struct wq_device *wq_dev = wq->wq_dev;
6388 
6389 	if (!wq->wq_dev)
6390 		return;
6391 
6392 	wq->wq_dev = NULL;
6393 	device_unregister(&wq_dev->dev);
6394 }
6395 #else	/* CONFIG_SYSFS */
6396 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
6397 #endif	/* CONFIG_SYSFS */
6398 
6399 /*
6400  * Workqueue watchdog.
6401  *
6402  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
6403  * flush dependency, a concurrency managed work item which stays RUNNING
6404  * indefinitely.  Workqueue stalls can be very difficult to debug as the
6405  * usual warning mechanisms don't trigger and internal workqueue state is
6406  * largely opaque.
6407  *
6408  * Workqueue watchdog monitors all worker pools periodically and dumps
6409  * state if some pools failed to make forward progress for a while where
6410  * forward progress is defined as the first item on ->worklist changing.
6411  *
6412  * This mechanism is controlled through the kernel parameter
6413  * "workqueue.watchdog_thresh" which can be updated at runtime through the
6414  * corresponding sysfs parameter file.
6415  */
6416 #ifdef CONFIG_WQ_WATCHDOG
6417 
6418 static unsigned long wq_watchdog_thresh = 30;
6419 static struct timer_list wq_watchdog_timer;
6420 
6421 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
6422 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
6423 
6424 /*
6425  * Show workers that might prevent the processing of pending work items.
6426  * The only candidates are CPU-bound workers in the running state.
6427  * Pending work items should be handled by another idle worker
6428  * in all other situations.
6429  */
6430 static void show_cpu_pool_hog(struct worker_pool *pool)
6431 {
6432 	struct worker *worker;
6433 	unsigned long flags;
6434 	int bkt;
6435 
6436 	raw_spin_lock_irqsave(&pool->lock, flags);
6437 
6438 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6439 		if (task_is_running(worker->task)) {
6440 			/*
6441 			 * Defer printing to avoid deadlocks in console
6442 			 * drivers that queue work while holding locks
6443 			 * also taken in their write paths.
6444 			 */
6445 			printk_deferred_enter();
6446 
6447 			pr_info("pool %d:\n", pool->id);
6448 			sched_show_task(worker->task);
6449 
6450 			printk_deferred_exit();
6451 		}
6452 	}
6453 
6454 	raw_spin_unlock_irqrestore(&pool->lock, flags);
6455 }
6456 
6457 static void show_cpu_pools_hogs(void)
6458 {
6459 	struct worker_pool *pool;
6460 	int pi;
6461 
6462 	pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
6463 
6464 	rcu_read_lock();
6465 
6466 	for_each_pool(pool, pi) {
6467 		if (pool->cpu_stall)
6468 			show_cpu_pool_hog(pool);
6469 
6470 	}
6471 
6472 	rcu_read_unlock();
6473 }
6474 
6475 static void wq_watchdog_reset_touched(void)
6476 {
6477 	int cpu;
6478 
6479 	wq_watchdog_touched = jiffies;
6480 	for_each_possible_cpu(cpu)
6481 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
6482 }
6483 
6484 static void wq_watchdog_timer_fn(struct timer_list *unused)
6485 {
6486 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
6487 	bool lockup_detected = false;
6488 	bool cpu_pool_stall = false;
6489 	unsigned long now = jiffies;
6490 	struct worker_pool *pool;
6491 	int pi;
6492 
6493 	if (!thresh)
6494 		return;
6495 
6496 	rcu_read_lock();
6497 
6498 	for_each_pool(pool, pi) {
6499 		unsigned long pool_ts, touched, ts;
6500 
6501 		pool->cpu_stall = false;
6502 		if (list_empty(&pool->worklist))
6503 			continue;
6504 
6505 		/*
6506 		 * If a virtual machine is stopped by the host it can look to
6507 		 * the watchdog like a stall.
6508 		 */
6509 		kvm_check_and_clear_guest_paused();
6510 
6511 		/* get the latest of pool and touched timestamps */
6512 		if (pool->cpu >= 0)
6513 			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
6514 		else
6515 			touched = READ_ONCE(wq_watchdog_touched);
6516 		pool_ts = READ_ONCE(pool->watchdog_ts);
6517 
6518 		if (time_after(pool_ts, touched))
6519 			ts = pool_ts;
6520 		else
6521 			ts = touched;
6522 
6523 		/* did we stall? */
6524 		if (time_after(now, ts + thresh)) {
6525 			lockup_detected = true;
6526 			if (pool->cpu >= 0) {
6527 				pool->cpu_stall = true;
6528 				cpu_pool_stall = true;
6529 			}
6530 			pr_emerg("BUG: workqueue lockup - pool");
6531 			pr_cont_pool_info(pool);
6532 			pr_cont(" stuck for %us!\n",
6533 				jiffies_to_msecs(now - pool_ts) / 1000);
6534 		}
6535 
6536 
6537 	}
6538 
6539 	rcu_read_unlock();
6540 
6541 	if (lockup_detected)
6542 		show_all_workqueues();
6543 
6544 	if (cpu_pool_stall)
6545 		show_cpu_pools_hogs();
6546 
6547 	wq_watchdog_reset_touched();
6548 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
6549 }
6550 
6551 notrace void wq_watchdog_touch(int cpu)
6552 {
6553 	if (cpu >= 0)
6554 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
6555 
6556 	wq_watchdog_touched = jiffies;
6557 }
6558 
6559 static void wq_watchdog_set_thresh(unsigned long thresh)
6560 {
6561 	wq_watchdog_thresh = 0;
6562 	del_timer_sync(&wq_watchdog_timer);
6563 
6564 	if (thresh) {
6565 		wq_watchdog_thresh = thresh;
6566 		wq_watchdog_reset_touched();
6567 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
6568 	}
6569 }
6570 
6571 static int wq_watchdog_param_set_thresh(const char *val,
6572 					const struct kernel_param *kp)
6573 {
6574 	unsigned long thresh;
6575 	int ret;
6576 
6577 	ret = kstrtoul(val, 0, &thresh);
6578 	if (ret)
6579 		return ret;
6580 
6581 	if (system_wq)
6582 		wq_watchdog_set_thresh(thresh);
6583 	else
6584 		wq_watchdog_thresh = thresh;
6585 
6586 	return 0;
6587 }
6588 
6589 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
6590 	.set	= wq_watchdog_param_set_thresh,
6591 	.get	= param_get_ulong,
6592 };
6593 
6594 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
6595 		0644);
6596 
6597 static void wq_watchdog_init(void)
6598 {
6599 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
6600 	wq_watchdog_set_thresh(wq_watchdog_thresh);
6601 }
6602 
6603 #else	/* CONFIG_WQ_WATCHDOG */
6604 
6605 static inline void wq_watchdog_init(void) { }
6606 
6607 #endif	/* CONFIG_WQ_WATCHDOG */
6608 
6609 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
6610 {
6611 	if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
6612 		pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
6613 			cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
6614 		return;
6615 	}
6616 
6617 	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
6618 }
6619 
6620 /**
6621  * workqueue_init_early - early init for workqueue subsystem
6622  *
6623  * This is the first step of three-staged workqueue subsystem initialization and
6624  * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
6625  * up. It sets up all the data structures and system workqueues and allows early
6626  * boot code to create workqueues and queue/cancel work items. Actual work item
6627  * execution starts only after kthreads can be created and scheduled right
6628  * before early initcalls.
6629  */
6630 void __init workqueue_init_early(void)
6631 {
6632 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
6633 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
6634 	int i, cpu;
6635 
6636 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
6637 
6638 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
6639 	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
6640 	restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
6641 	restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
6642 	if (!cpumask_empty(&wq_cmdline_cpumask))
6643 		restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
6644 
6645 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
6646 
6647 	wq_update_pod_attrs_buf = alloc_workqueue_attrs();
6648 	BUG_ON(!wq_update_pod_attrs_buf);
6649 
6650 	/* initialize WQ_AFFN_SYSTEM pods */
6651 	pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
6652 	pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
6653 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
6654 	BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
6655 
6656 	BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
6657 
6658 	pt->nr_pods = 1;
6659 	cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
6660 	pt->pod_node[0] = NUMA_NO_NODE;
6661 	pt->cpu_pod[0] = 0;
6662 
6663 	/* initialize CPU pools */
6664 	for_each_possible_cpu(cpu) {
6665 		struct worker_pool *pool;
6666 
6667 		i = 0;
6668 		for_each_cpu_worker_pool(pool, cpu) {
6669 			BUG_ON(init_worker_pool(pool));
6670 			pool->cpu = cpu;
6671 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
6672 			cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
6673 			pool->attrs->nice = std_nice[i++];
6674 			pool->attrs->affn_strict = true;
6675 			pool->node = cpu_to_node(cpu);
6676 
6677 			/* alloc pool ID */
6678 			mutex_lock(&wq_pool_mutex);
6679 			BUG_ON(worker_pool_assign_id(pool));
6680 			mutex_unlock(&wq_pool_mutex);
6681 		}
6682 	}
6683 
6684 	/* create default unbound and ordered wq attrs */
6685 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6686 		struct workqueue_attrs *attrs;
6687 
6688 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6689 		attrs->nice = std_nice[i];
6690 		unbound_std_wq_attrs[i] = attrs;
6691 
6692 		/*
6693 		 * An ordered wq should have only one pwq as ordering is
6694 		 * guaranteed by max_active which is enforced by pwqs.
6695 		 */
6696 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6697 		attrs->nice = std_nice[i];
6698 		attrs->ordered = true;
6699 		ordered_wq_attrs[i] = attrs;
6700 	}
6701 
6702 	system_wq = alloc_workqueue("events", 0, 0);
6703 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6704 	system_long_wq = alloc_workqueue("events_long", 0, 0);
6705 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6706 					    WQ_MAX_ACTIVE);
6707 	system_freezable_wq = alloc_workqueue("events_freezable",
6708 					      WQ_FREEZABLE, 0);
6709 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6710 					      WQ_POWER_EFFICIENT, 0);
6711 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6712 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6713 					      0);
6714 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6715 	       !system_unbound_wq || !system_freezable_wq ||
6716 	       !system_power_efficient_wq ||
6717 	       !system_freezable_power_efficient_wq);
6718 }
6719 
6720 static void __init wq_cpu_intensive_thresh_init(void)
6721 {
6722 	unsigned long thresh;
6723 	unsigned long bogo;
6724 
6725 	pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
6726 	BUG_ON(IS_ERR(pwq_release_worker));
6727 
6728 	/* if the user set it to a specific value, keep it */
6729 	if (wq_cpu_intensive_thresh_us != ULONG_MAX)
6730 		return;
6731 
6732 	/*
6733 	 * The default of 10ms is derived from the fact that most modern (as of
6734 	 * 2023) processors can do a lot in 10ms and that it's just below what
6735 	 * most consider human-perceivable. However, the kernel also runs on a
6736 	 * lot slower CPUs including microcontrollers where the threshold is way
6737 	 * too low.
6738 	 *
6739 	 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
6740 	 * This is by no means accurate but it doesn't have to be. The mechanism
6741 	 * is still useful even when the threshold is fully scaled up. Also, as
6742 	 * the reports would usually be applicable to everyone, some machines
6743 	 * operating on longer thresholds won't significantly diminish their
6744 	 * usefulness.
6745 	 */
6746 	thresh = 10 * USEC_PER_MSEC;
6747 
6748 	/* see init/calibrate.c for lpj -> BogoMIPS calculation */
6749 	bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
6750 	if (bogo < 4000)
6751 		thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
6752 
6753 	pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
6754 		 loops_per_jiffy, bogo, thresh);
6755 
6756 	wq_cpu_intensive_thresh_us = thresh;
6757 }
6758 
6759 /**
6760  * workqueue_init - bring workqueue subsystem fully online
6761  *
6762  * This is the second step of three-staged workqueue subsystem initialization
6763  * and invoked as soon as kthreads can be created and scheduled. Workqueues have
6764  * been created and work items queued on them, but there are no kworkers
6765  * executing the work items yet. Populate the worker pools with the initial
6766  * workers and enable future kworker creations.
6767  */
6768 void __init workqueue_init(void)
6769 {
6770 	struct workqueue_struct *wq;
6771 	struct worker_pool *pool;
6772 	int cpu, bkt;
6773 
6774 	wq_cpu_intensive_thresh_init();
6775 
6776 	mutex_lock(&wq_pool_mutex);
6777 
6778 	/*
6779 	 * Per-cpu pools created earlier could be missing node hint. Fix them
6780 	 * up. Also, create a rescuer for workqueues that requested it.
6781 	 */
6782 	for_each_possible_cpu(cpu) {
6783 		for_each_cpu_worker_pool(pool, cpu) {
6784 			pool->node = cpu_to_node(cpu);
6785 		}
6786 	}
6787 
6788 	list_for_each_entry(wq, &workqueues, list) {
6789 		WARN(init_rescuer(wq),
6790 		     "workqueue: failed to create early rescuer for %s",
6791 		     wq->name);
6792 	}
6793 
6794 	mutex_unlock(&wq_pool_mutex);
6795 
6796 	/* create the initial workers */
6797 	for_each_online_cpu(cpu) {
6798 		for_each_cpu_worker_pool(pool, cpu) {
6799 			pool->flags &= ~POOL_DISASSOCIATED;
6800 			BUG_ON(!create_worker(pool));
6801 		}
6802 	}
6803 
6804 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6805 		BUG_ON(!create_worker(pool));
6806 
6807 	wq_online = true;
6808 	wq_watchdog_init();
6809 }
6810 
6811 /*
6812  * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
6813  * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
6814  * and consecutive pod ID. The rest of @pt is initialized accordingly.
6815  */
6816 static void __init init_pod_type(struct wq_pod_type *pt,
6817 				 bool (*cpus_share_pod)(int, int))
6818 {
6819 	int cur, pre, cpu, pod;
6820 
6821 	pt->nr_pods = 0;
6822 
6823 	/* init @pt->cpu_pod[] according to @cpus_share_pod() */
6824 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
6825 	BUG_ON(!pt->cpu_pod);
6826 
6827 	for_each_possible_cpu(cur) {
6828 		for_each_possible_cpu(pre) {
6829 			if (pre >= cur) {
6830 				pt->cpu_pod[cur] = pt->nr_pods++;
6831 				break;
6832 			}
6833 			if (cpus_share_pod(cur, pre)) {
6834 				pt->cpu_pod[cur] = pt->cpu_pod[pre];
6835 				break;
6836 			}
6837 		}
6838 	}
6839 
6840 	/* init the rest to match @pt->cpu_pod[] */
6841 	pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
6842 	pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
6843 	BUG_ON(!pt->pod_cpus || !pt->pod_node);
6844 
6845 	for (pod = 0; pod < pt->nr_pods; pod++)
6846 		BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
6847 
6848 	for_each_possible_cpu(cpu) {
6849 		cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
6850 		pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
6851 	}
6852 }
6853 
6854 static bool __init cpus_dont_share(int cpu0, int cpu1)
6855 {
6856 	return false;
6857 }
6858 
6859 static bool __init cpus_share_smt(int cpu0, int cpu1)
6860 {
6861 #ifdef CONFIG_SCHED_SMT
6862 	return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
6863 #else
6864 	return false;
6865 #endif
6866 }
6867 
6868 static bool __init cpus_share_numa(int cpu0, int cpu1)
6869 {
6870 	return cpu_to_node(cpu0) == cpu_to_node(cpu1);
6871 }
6872 
6873 /**
6874  * workqueue_init_topology - initialize CPU pods for unbound workqueues
6875  *
6876  * This is the third step of there-staged workqueue subsystem initialization and
6877  * invoked after SMP and topology information are fully initialized. It
6878  * initializes the unbound CPU pods accordingly.
6879  */
6880 void __init workqueue_init_topology(void)
6881 {
6882 	struct workqueue_struct *wq;
6883 	int cpu;
6884 
6885 	init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
6886 	init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
6887 	init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
6888 	init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
6889 
6890 	mutex_lock(&wq_pool_mutex);
6891 
6892 	/*
6893 	 * Workqueues allocated earlier would have all CPUs sharing the default
6894 	 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU
6895 	 * combinations to apply per-pod sharing.
6896 	 */
6897 	list_for_each_entry(wq, &workqueues, list) {
6898 		for_each_online_cpu(cpu) {
6899 			wq_update_pod(wq, cpu, cpu, true);
6900 		}
6901 	}
6902 
6903 	mutex_unlock(&wq_pool_mutex);
6904 }
6905 
6906 void __warn_flushing_systemwide_wq(void)
6907 {
6908 	pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
6909 	dump_stack();
6910 }
6911 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
6912 
6913 static int __init workqueue_unbound_cpus_setup(char *str)
6914 {
6915 	if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
6916 		cpumask_clear(&wq_cmdline_cpumask);
6917 		pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
6918 	}
6919 
6920 	return 1;
6921 }
6922 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
6923