1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 5 * Copyright (C) 2002 Ingo Molnar 6 * 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <dwmw2@infradead.org> 9 * Andrew Morton 10 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 11 * Theodore Ts'o <tytso@mit.edu> 12 * 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 17 * 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 24 * 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 27 28 #include <linux/export.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 32 #include <linux/signal.h> 33 #include <linux/completion.h> 34 #include <linux/workqueue.h> 35 #include <linux/slab.h> 36 #include <linux/cpu.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/hardirq.h> 40 #include <linux/mempolicy.h> 41 #include <linux/freezer.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 #include <linux/sched/isolation.h> 52 #include <linux/nmi.h> 53 54 #include "workqueue_internal.h" 55 56 enum { 57 /* 58 * worker_pool flags 59 * 60 * A bound pool is either associated or disassociated with its CPU. 61 * While associated (!DISASSOCIATED), all workers are bound to the 62 * CPU and none has %WORKER_UNBOUND set and concurrency management 63 * is in effect. 64 * 65 * While DISASSOCIATED, the cpu may be offline and all workers have 66 * %WORKER_UNBOUND set and concurrency management disabled, and may 67 * be executing on any CPU. The pool behaves as an unbound one. 68 * 69 * Note that DISASSOCIATED should be flipped only while holding 70 * wq_pool_attach_mutex to avoid changing binding state while 71 * worker_attach_to_pool() is in progress. 72 */ 73 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */ 74 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 75 76 /* worker flags */ 77 WORKER_DIE = 1 << 1, /* die die die */ 78 WORKER_IDLE = 1 << 2, /* is idle */ 79 WORKER_PREP = 1 << 3, /* preparing to run works */ 80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 82 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 83 84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 85 WORKER_UNBOUND | WORKER_REBOUND, 86 87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 88 89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 91 92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 94 95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 96 /* call for help after 10ms 97 (min two ticks) */ 98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 99 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 100 101 /* 102 * Rescue workers are used only on emergencies and shared by 103 * all cpus. Give MIN_NICE. 104 */ 105 RESCUER_NICE_LEVEL = MIN_NICE, 106 HIGHPRI_NICE_LEVEL = MIN_NICE, 107 108 WQ_NAME_LEN = 24, 109 }; 110 111 /* 112 * Structure fields follow one of the following exclusion rules. 113 * 114 * I: Modifiable by initialization/destruction paths and read-only for 115 * everyone else. 116 * 117 * P: Preemption protected. Disabling preemption is enough and should 118 * only be modified and accessed from the local cpu. 119 * 120 * L: pool->lock protected. Access with pool->lock held. 121 * 122 * X: During normal operation, modification requires pool->lock and should 123 * be done only from local cpu. Either disabling preemption on local 124 * cpu or grabbing pool->lock is enough for read access. If 125 * POOL_DISASSOCIATED is set, it's identical to L. 126 * 127 * A: wq_pool_attach_mutex protected. 128 * 129 * PL: wq_pool_mutex protected. 130 * 131 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 132 * 133 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 134 * 135 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 136 * RCU for reads. 137 * 138 * WQ: wq->mutex protected. 139 * 140 * WR: wq->mutex protected for writes. RCU protected for reads. 141 * 142 * MD: wq_mayday_lock protected. 143 */ 144 145 /* struct worker is defined in workqueue_internal.h */ 146 147 struct worker_pool { 148 spinlock_t lock; /* the pool lock */ 149 int cpu; /* I: the associated cpu */ 150 int node; /* I: the associated node ID */ 151 int id; /* I: pool ID */ 152 unsigned int flags; /* X: flags */ 153 154 unsigned long watchdog_ts; /* L: watchdog timestamp */ 155 156 struct list_head worklist; /* L: list of pending works */ 157 158 int nr_workers; /* L: total number of workers */ 159 int nr_idle; /* L: currently idle workers */ 160 161 struct list_head idle_list; /* X: list of idle workers */ 162 struct timer_list idle_timer; /* L: worker idle timeout */ 163 struct timer_list mayday_timer; /* L: SOS timer for workers */ 164 165 /* a workers is either on busy_hash or idle_list, or the manager */ 166 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 167 /* L: hash of busy workers */ 168 169 struct worker *manager; /* L: purely informational */ 170 struct list_head workers; /* A: attached workers */ 171 struct completion *detach_completion; /* all workers detached */ 172 173 struct ida worker_ida; /* worker IDs for task name */ 174 175 struct workqueue_attrs *attrs; /* I: worker attributes */ 176 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 177 int refcnt; /* PL: refcnt for unbound pools */ 178 179 /* 180 * The current concurrency level. As it's likely to be accessed 181 * from other CPUs during try_to_wake_up(), put it in a separate 182 * cacheline. 183 */ 184 atomic_t nr_running ____cacheline_aligned_in_smp; 185 186 /* 187 * Destruction of pool is RCU protected to allow dereferences 188 * from get_work_pool(). 189 */ 190 struct rcu_head rcu; 191 } ____cacheline_aligned_in_smp; 192 193 /* 194 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 195 * of work_struct->data are used for flags and the remaining high bits 196 * point to the pwq; thus, pwqs need to be aligned at two's power of the 197 * number of flag bits. 198 */ 199 struct pool_workqueue { 200 struct worker_pool *pool; /* I: the associated pool */ 201 struct workqueue_struct *wq; /* I: the owning workqueue */ 202 int work_color; /* L: current color */ 203 int flush_color; /* L: flushing color */ 204 int refcnt; /* L: reference count */ 205 int nr_in_flight[WORK_NR_COLORS]; 206 /* L: nr of in_flight works */ 207 int nr_active; /* L: nr of active works */ 208 int max_active; /* L: max active works */ 209 struct list_head delayed_works; /* L: delayed works */ 210 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 211 struct list_head mayday_node; /* MD: node on wq->maydays */ 212 213 /* 214 * Release of unbound pwq is punted to system_wq. See put_pwq() 215 * and pwq_unbound_release_workfn() for details. pool_workqueue 216 * itself is also RCU protected so that the first pwq can be 217 * determined without grabbing wq->mutex. 218 */ 219 struct work_struct unbound_release_work; 220 struct rcu_head rcu; 221 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 222 223 /* 224 * Structure used to wait for workqueue flush. 225 */ 226 struct wq_flusher { 227 struct list_head list; /* WQ: list of flushers */ 228 int flush_color; /* WQ: flush color waiting for */ 229 struct completion done; /* flush completion */ 230 }; 231 232 struct wq_device; 233 234 /* 235 * The externally visible workqueue. It relays the issued work items to 236 * the appropriate worker_pool through its pool_workqueues. 237 */ 238 struct workqueue_struct { 239 struct list_head pwqs; /* WR: all pwqs of this wq */ 240 struct list_head list; /* PR: list of all workqueues */ 241 242 struct mutex mutex; /* protects this wq */ 243 int work_color; /* WQ: current work color */ 244 int flush_color; /* WQ: current flush color */ 245 atomic_t nr_pwqs_to_flush; /* flush in progress */ 246 struct wq_flusher *first_flusher; /* WQ: first flusher */ 247 struct list_head flusher_queue; /* WQ: flush waiters */ 248 struct list_head flusher_overflow; /* WQ: flush overflow list */ 249 250 struct list_head maydays; /* MD: pwqs requesting rescue */ 251 struct worker *rescuer; /* MD: rescue worker */ 252 253 int nr_drainers; /* WQ: drain in progress */ 254 int saved_max_active; /* WQ: saved pwq max_active */ 255 256 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 257 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 258 259 #ifdef CONFIG_SYSFS 260 struct wq_device *wq_dev; /* I: for sysfs interface */ 261 #endif 262 #ifdef CONFIG_LOCKDEP 263 char *lock_name; 264 struct lock_class_key key; 265 struct lockdep_map lockdep_map; 266 #endif 267 char name[WQ_NAME_LEN]; /* I: workqueue name */ 268 269 /* 270 * Destruction of workqueue_struct is RCU protected to allow walking 271 * the workqueues list without grabbing wq_pool_mutex. 272 * This is used to dump all workqueues from sysrq. 273 */ 274 struct rcu_head rcu; 275 276 /* hot fields used during command issue, aligned to cacheline */ 277 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 278 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 279 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 280 }; 281 282 static struct kmem_cache *pwq_cache; 283 284 static cpumask_var_t *wq_numa_possible_cpumask; 285 /* possible CPUs of each node */ 286 287 static bool wq_disable_numa; 288 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 289 290 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 291 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 292 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 293 294 static bool wq_online; /* can kworkers be created yet? */ 295 296 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 297 298 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 299 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 300 301 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 302 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 303 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 304 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */ 305 306 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 307 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 308 309 /* PL: allowable cpus for unbound wqs and work items */ 310 static cpumask_var_t wq_unbound_cpumask; 311 312 /* CPU where unbound work was last round robin scheduled from this CPU */ 313 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 314 315 /* 316 * Local execution of unbound work items is no longer guaranteed. The 317 * following always forces round-robin CPU selection on unbound work items 318 * to uncover usages which depend on it. 319 */ 320 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 321 static bool wq_debug_force_rr_cpu = true; 322 #else 323 static bool wq_debug_force_rr_cpu = false; 324 #endif 325 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 326 327 /* the per-cpu worker pools */ 328 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 329 330 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 331 332 /* PL: hash of all unbound pools keyed by pool->attrs */ 333 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 334 335 /* I: attributes used when instantiating standard unbound pools on demand */ 336 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 337 338 /* I: attributes used when instantiating ordered pools on demand */ 339 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 340 341 struct workqueue_struct *system_wq __read_mostly; 342 EXPORT_SYMBOL(system_wq); 343 struct workqueue_struct *system_highpri_wq __read_mostly; 344 EXPORT_SYMBOL_GPL(system_highpri_wq); 345 struct workqueue_struct *system_long_wq __read_mostly; 346 EXPORT_SYMBOL_GPL(system_long_wq); 347 struct workqueue_struct *system_unbound_wq __read_mostly; 348 EXPORT_SYMBOL_GPL(system_unbound_wq); 349 struct workqueue_struct *system_freezable_wq __read_mostly; 350 EXPORT_SYMBOL_GPL(system_freezable_wq); 351 struct workqueue_struct *system_power_efficient_wq __read_mostly; 352 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 353 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 354 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 355 356 static int worker_thread(void *__worker); 357 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 358 static void show_pwq(struct pool_workqueue *pwq); 359 360 #define CREATE_TRACE_POINTS 361 #include <trace/events/workqueue.h> 362 363 #define assert_rcu_or_pool_mutex() \ 364 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 365 !lockdep_is_held(&wq_pool_mutex), \ 366 "RCU or wq_pool_mutex should be held") 367 368 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 369 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 370 !lockdep_is_held(&wq->mutex) && \ 371 !lockdep_is_held(&wq_pool_mutex), \ 372 "RCU, wq->mutex or wq_pool_mutex should be held") 373 374 #define for_each_cpu_worker_pool(pool, cpu) \ 375 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 376 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 377 (pool)++) 378 379 /** 380 * for_each_pool - iterate through all worker_pools in the system 381 * @pool: iteration cursor 382 * @pi: integer used for iteration 383 * 384 * This must be called either with wq_pool_mutex held or RCU read 385 * locked. If the pool needs to be used beyond the locking in effect, the 386 * caller is responsible for guaranteeing that the pool stays online. 387 * 388 * The if/else clause exists only for the lockdep assertion and can be 389 * ignored. 390 */ 391 #define for_each_pool(pool, pi) \ 392 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 393 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 394 else 395 396 /** 397 * for_each_pool_worker - iterate through all workers of a worker_pool 398 * @worker: iteration cursor 399 * @pool: worker_pool to iterate workers of 400 * 401 * This must be called with wq_pool_attach_mutex. 402 * 403 * The if/else clause exists only for the lockdep assertion and can be 404 * ignored. 405 */ 406 #define for_each_pool_worker(worker, pool) \ 407 list_for_each_entry((worker), &(pool)->workers, node) \ 408 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 409 else 410 411 /** 412 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 413 * @pwq: iteration cursor 414 * @wq: the target workqueue 415 * 416 * This must be called either with wq->mutex held or RCU read locked. 417 * If the pwq needs to be used beyond the locking in effect, the caller is 418 * responsible for guaranteeing that the pwq stays online. 419 * 420 * The if/else clause exists only for the lockdep assertion and can be 421 * ignored. 422 */ 423 #define for_each_pwq(pwq, wq) \ 424 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ 425 lockdep_is_held(&(wq->mutex))) 426 427 #ifdef CONFIG_DEBUG_OBJECTS_WORK 428 429 static struct debug_obj_descr work_debug_descr; 430 431 static void *work_debug_hint(void *addr) 432 { 433 return ((struct work_struct *) addr)->func; 434 } 435 436 static bool work_is_static_object(void *addr) 437 { 438 struct work_struct *work = addr; 439 440 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 441 } 442 443 /* 444 * fixup_init is called when: 445 * - an active object is initialized 446 */ 447 static bool work_fixup_init(void *addr, enum debug_obj_state state) 448 { 449 struct work_struct *work = addr; 450 451 switch (state) { 452 case ODEBUG_STATE_ACTIVE: 453 cancel_work_sync(work); 454 debug_object_init(work, &work_debug_descr); 455 return true; 456 default: 457 return false; 458 } 459 } 460 461 /* 462 * fixup_free is called when: 463 * - an active object is freed 464 */ 465 static bool work_fixup_free(void *addr, enum debug_obj_state state) 466 { 467 struct work_struct *work = addr; 468 469 switch (state) { 470 case ODEBUG_STATE_ACTIVE: 471 cancel_work_sync(work); 472 debug_object_free(work, &work_debug_descr); 473 return true; 474 default: 475 return false; 476 } 477 } 478 479 static struct debug_obj_descr work_debug_descr = { 480 .name = "work_struct", 481 .debug_hint = work_debug_hint, 482 .is_static_object = work_is_static_object, 483 .fixup_init = work_fixup_init, 484 .fixup_free = work_fixup_free, 485 }; 486 487 static inline void debug_work_activate(struct work_struct *work) 488 { 489 debug_object_activate(work, &work_debug_descr); 490 } 491 492 static inline void debug_work_deactivate(struct work_struct *work) 493 { 494 debug_object_deactivate(work, &work_debug_descr); 495 } 496 497 void __init_work(struct work_struct *work, int onstack) 498 { 499 if (onstack) 500 debug_object_init_on_stack(work, &work_debug_descr); 501 else 502 debug_object_init(work, &work_debug_descr); 503 } 504 EXPORT_SYMBOL_GPL(__init_work); 505 506 void destroy_work_on_stack(struct work_struct *work) 507 { 508 debug_object_free(work, &work_debug_descr); 509 } 510 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 511 512 void destroy_delayed_work_on_stack(struct delayed_work *work) 513 { 514 destroy_timer_on_stack(&work->timer); 515 debug_object_free(&work->work, &work_debug_descr); 516 } 517 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 518 519 #else 520 static inline void debug_work_activate(struct work_struct *work) { } 521 static inline void debug_work_deactivate(struct work_struct *work) { } 522 #endif 523 524 /** 525 * worker_pool_assign_id - allocate ID and assing it to @pool 526 * @pool: the pool pointer of interest 527 * 528 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 529 * successfully, -errno on failure. 530 */ 531 static int worker_pool_assign_id(struct worker_pool *pool) 532 { 533 int ret; 534 535 lockdep_assert_held(&wq_pool_mutex); 536 537 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 538 GFP_KERNEL); 539 if (ret >= 0) { 540 pool->id = ret; 541 return 0; 542 } 543 return ret; 544 } 545 546 /** 547 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 548 * @wq: the target workqueue 549 * @node: the node ID 550 * 551 * This must be called with any of wq_pool_mutex, wq->mutex or RCU 552 * read locked. 553 * If the pwq needs to be used beyond the locking in effect, the caller is 554 * responsible for guaranteeing that the pwq stays online. 555 * 556 * Return: The unbound pool_workqueue for @node. 557 */ 558 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 559 int node) 560 { 561 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 562 563 /* 564 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a 565 * delayed item is pending. The plan is to keep CPU -> NODE 566 * mapping valid and stable across CPU on/offlines. Once that 567 * happens, this workaround can be removed. 568 */ 569 if (unlikely(node == NUMA_NO_NODE)) 570 return wq->dfl_pwq; 571 572 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 573 } 574 575 static unsigned int work_color_to_flags(int color) 576 { 577 return color << WORK_STRUCT_COLOR_SHIFT; 578 } 579 580 static int get_work_color(struct work_struct *work) 581 { 582 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 583 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 584 } 585 586 static int work_next_color(int color) 587 { 588 return (color + 1) % WORK_NR_COLORS; 589 } 590 591 /* 592 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 593 * contain the pointer to the queued pwq. Once execution starts, the flag 594 * is cleared and the high bits contain OFFQ flags and pool ID. 595 * 596 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 597 * and clear_work_data() can be used to set the pwq, pool or clear 598 * work->data. These functions should only be called while the work is 599 * owned - ie. while the PENDING bit is set. 600 * 601 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 602 * corresponding to a work. Pool is available once the work has been 603 * queued anywhere after initialization until it is sync canceled. pwq is 604 * available only while the work item is queued. 605 * 606 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 607 * canceled. While being canceled, a work item may have its PENDING set 608 * but stay off timer and worklist for arbitrarily long and nobody should 609 * try to steal the PENDING bit. 610 */ 611 static inline void set_work_data(struct work_struct *work, unsigned long data, 612 unsigned long flags) 613 { 614 WARN_ON_ONCE(!work_pending(work)); 615 atomic_long_set(&work->data, data | flags | work_static(work)); 616 } 617 618 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 619 unsigned long extra_flags) 620 { 621 set_work_data(work, (unsigned long)pwq, 622 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 623 } 624 625 static void set_work_pool_and_keep_pending(struct work_struct *work, 626 int pool_id) 627 { 628 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 629 WORK_STRUCT_PENDING); 630 } 631 632 static void set_work_pool_and_clear_pending(struct work_struct *work, 633 int pool_id) 634 { 635 /* 636 * The following wmb is paired with the implied mb in 637 * test_and_set_bit(PENDING) and ensures all updates to @work made 638 * here are visible to and precede any updates by the next PENDING 639 * owner. 640 */ 641 smp_wmb(); 642 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 643 /* 644 * The following mb guarantees that previous clear of a PENDING bit 645 * will not be reordered with any speculative LOADS or STORES from 646 * work->current_func, which is executed afterwards. This possible 647 * reordering can lead to a missed execution on attempt to queue 648 * the same @work. E.g. consider this case: 649 * 650 * CPU#0 CPU#1 651 * ---------------------------- -------------------------------- 652 * 653 * 1 STORE event_indicated 654 * 2 queue_work_on() { 655 * 3 test_and_set_bit(PENDING) 656 * 4 } set_..._and_clear_pending() { 657 * 5 set_work_data() # clear bit 658 * 6 smp_mb() 659 * 7 work->current_func() { 660 * 8 LOAD event_indicated 661 * } 662 * 663 * Without an explicit full barrier speculative LOAD on line 8 can 664 * be executed before CPU#0 does STORE on line 1. If that happens, 665 * CPU#0 observes the PENDING bit is still set and new execution of 666 * a @work is not queued in a hope, that CPU#1 will eventually 667 * finish the queued @work. Meanwhile CPU#1 does not see 668 * event_indicated is set, because speculative LOAD was executed 669 * before actual STORE. 670 */ 671 smp_mb(); 672 } 673 674 static void clear_work_data(struct work_struct *work) 675 { 676 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 677 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 678 } 679 680 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 681 { 682 unsigned long data = atomic_long_read(&work->data); 683 684 if (data & WORK_STRUCT_PWQ) 685 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 686 else 687 return NULL; 688 } 689 690 /** 691 * get_work_pool - return the worker_pool a given work was associated with 692 * @work: the work item of interest 693 * 694 * Pools are created and destroyed under wq_pool_mutex, and allows read 695 * access under RCU read lock. As such, this function should be 696 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 697 * 698 * All fields of the returned pool are accessible as long as the above 699 * mentioned locking is in effect. If the returned pool needs to be used 700 * beyond the critical section, the caller is responsible for ensuring the 701 * returned pool is and stays online. 702 * 703 * Return: The worker_pool @work was last associated with. %NULL if none. 704 */ 705 static struct worker_pool *get_work_pool(struct work_struct *work) 706 { 707 unsigned long data = atomic_long_read(&work->data); 708 int pool_id; 709 710 assert_rcu_or_pool_mutex(); 711 712 if (data & WORK_STRUCT_PWQ) 713 return ((struct pool_workqueue *) 714 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 715 716 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 717 if (pool_id == WORK_OFFQ_POOL_NONE) 718 return NULL; 719 720 return idr_find(&worker_pool_idr, pool_id); 721 } 722 723 /** 724 * get_work_pool_id - return the worker pool ID a given work is associated with 725 * @work: the work item of interest 726 * 727 * Return: The worker_pool ID @work was last associated with. 728 * %WORK_OFFQ_POOL_NONE if none. 729 */ 730 static int get_work_pool_id(struct work_struct *work) 731 { 732 unsigned long data = atomic_long_read(&work->data); 733 734 if (data & WORK_STRUCT_PWQ) 735 return ((struct pool_workqueue *) 736 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 737 738 return data >> WORK_OFFQ_POOL_SHIFT; 739 } 740 741 static void mark_work_canceling(struct work_struct *work) 742 { 743 unsigned long pool_id = get_work_pool_id(work); 744 745 pool_id <<= WORK_OFFQ_POOL_SHIFT; 746 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 747 } 748 749 static bool work_is_canceling(struct work_struct *work) 750 { 751 unsigned long data = atomic_long_read(&work->data); 752 753 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 754 } 755 756 /* 757 * Policy functions. These define the policies on how the global worker 758 * pools are managed. Unless noted otherwise, these functions assume that 759 * they're being called with pool->lock held. 760 */ 761 762 static bool __need_more_worker(struct worker_pool *pool) 763 { 764 return !atomic_read(&pool->nr_running); 765 } 766 767 /* 768 * Need to wake up a worker? Called from anything but currently 769 * running workers. 770 * 771 * Note that, because unbound workers never contribute to nr_running, this 772 * function will always return %true for unbound pools as long as the 773 * worklist isn't empty. 774 */ 775 static bool need_more_worker(struct worker_pool *pool) 776 { 777 return !list_empty(&pool->worklist) && __need_more_worker(pool); 778 } 779 780 /* Can I start working? Called from busy but !running workers. */ 781 static bool may_start_working(struct worker_pool *pool) 782 { 783 return pool->nr_idle; 784 } 785 786 /* Do I need to keep working? Called from currently running workers. */ 787 static bool keep_working(struct worker_pool *pool) 788 { 789 return !list_empty(&pool->worklist) && 790 atomic_read(&pool->nr_running) <= 1; 791 } 792 793 /* Do we need a new worker? Called from manager. */ 794 static bool need_to_create_worker(struct worker_pool *pool) 795 { 796 return need_more_worker(pool) && !may_start_working(pool); 797 } 798 799 /* Do we have too many workers and should some go away? */ 800 static bool too_many_workers(struct worker_pool *pool) 801 { 802 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 803 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 804 int nr_busy = pool->nr_workers - nr_idle; 805 806 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 807 } 808 809 /* 810 * Wake up functions. 811 */ 812 813 /* Return the first idle worker. Safe with preemption disabled */ 814 static struct worker *first_idle_worker(struct worker_pool *pool) 815 { 816 if (unlikely(list_empty(&pool->idle_list))) 817 return NULL; 818 819 return list_first_entry(&pool->idle_list, struct worker, entry); 820 } 821 822 /** 823 * wake_up_worker - wake up an idle worker 824 * @pool: worker pool to wake worker from 825 * 826 * Wake up the first idle worker of @pool. 827 * 828 * CONTEXT: 829 * spin_lock_irq(pool->lock). 830 */ 831 static void wake_up_worker(struct worker_pool *pool) 832 { 833 struct worker *worker = first_idle_worker(pool); 834 835 if (likely(worker)) 836 wake_up_process(worker->task); 837 } 838 839 /** 840 * wq_worker_running - a worker is running again 841 * @task: task waking up 842 * 843 * This function is called when a worker returns from schedule() 844 */ 845 void wq_worker_running(struct task_struct *task) 846 { 847 struct worker *worker = kthread_data(task); 848 849 if (!worker->sleeping) 850 return; 851 if (!(worker->flags & WORKER_NOT_RUNNING)) 852 atomic_inc(&worker->pool->nr_running); 853 worker->sleeping = 0; 854 } 855 856 /** 857 * wq_worker_sleeping - a worker is going to sleep 858 * @task: task going to sleep 859 * 860 * This function is called from schedule() when a busy worker is 861 * going to sleep. 862 */ 863 void wq_worker_sleeping(struct task_struct *task) 864 { 865 struct worker *next, *worker = kthread_data(task); 866 struct worker_pool *pool; 867 868 /* 869 * Rescuers, which may not have all the fields set up like normal 870 * workers, also reach here, let's not access anything before 871 * checking NOT_RUNNING. 872 */ 873 if (worker->flags & WORKER_NOT_RUNNING) 874 return; 875 876 pool = worker->pool; 877 878 if (WARN_ON_ONCE(worker->sleeping)) 879 return; 880 881 worker->sleeping = 1; 882 spin_lock_irq(&pool->lock); 883 884 /* 885 * The counterpart of the following dec_and_test, implied mb, 886 * worklist not empty test sequence is in insert_work(). 887 * Please read comment there. 888 * 889 * NOT_RUNNING is clear. This means that we're bound to and 890 * running on the local cpu w/ rq lock held and preemption 891 * disabled, which in turn means that none else could be 892 * manipulating idle_list, so dereferencing idle_list without pool 893 * lock is safe. 894 */ 895 if (atomic_dec_and_test(&pool->nr_running) && 896 !list_empty(&pool->worklist)) { 897 next = first_idle_worker(pool); 898 if (next) 899 wake_up_process(next->task); 900 } 901 spin_unlock_irq(&pool->lock); 902 } 903 904 /** 905 * wq_worker_last_func - retrieve worker's last work function 906 * @task: Task to retrieve last work function of. 907 * 908 * Determine the last function a worker executed. This is called from 909 * the scheduler to get a worker's last known identity. 910 * 911 * CONTEXT: 912 * spin_lock_irq(rq->lock) 913 * 914 * This function is called during schedule() when a kworker is going 915 * to sleep. It's used by psi to identify aggregation workers during 916 * dequeuing, to allow periodic aggregation to shut-off when that 917 * worker is the last task in the system or cgroup to go to sleep. 918 * 919 * As this function doesn't involve any workqueue-related locking, it 920 * only returns stable values when called from inside the scheduler's 921 * queuing and dequeuing paths, when @task, which must be a kworker, 922 * is guaranteed to not be processing any works. 923 * 924 * Return: 925 * The last work function %current executed as a worker, NULL if it 926 * hasn't executed any work yet. 927 */ 928 work_func_t wq_worker_last_func(struct task_struct *task) 929 { 930 struct worker *worker = kthread_data(task); 931 932 return worker->last_func; 933 } 934 935 /** 936 * worker_set_flags - set worker flags and adjust nr_running accordingly 937 * @worker: self 938 * @flags: flags to set 939 * 940 * Set @flags in @worker->flags and adjust nr_running accordingly. 941 * 942 * CONTEXT: 943 * spin_lock_irq(pool->lock) 944 */ 945 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 946 { 947 struct worker_pool *pool = worker->pool; 948 949 WARN_ON_ONCE(worker->task != current); 950 951 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 952 if ((flags & WORKER_NOT_RUNNING) && 953 !(worker->flags & WORKER_NOT_RUNNING)) { 954 atomic_dec(&pool->nr_running); 955 } 956 957 worker->flags |= flags; 958 } 959 960 /** 961 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 962 * @worker: self 963 * @flags: flags to clear 964 * 965 * Clear @flags in @worker->flags and adjust nr_running accordingly. 966 * 967 * CONTEXT: 968 * spin_lock_irq(pool->lock) 969 */ 970 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 971 { 972 struct worker_pool *pool = worker->pool; 973 unsigned int oflags = worker->flags; 974 975 WARN_ON_ONCE(worker->task != current); 976 977 worker->flags &= ~flags; 978 979 /* 980 * If transitioning out of NOT_RUNNING, increment nr_running. Note 981 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 982 * of multiple flags, not a single flag. 983 */ 984 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 985 if (!(worker->flags & WORKER_NOT_RUNNING)) 986 atomic_inc(&pool->nr_running); 987 } 988 989 /** 990 * find_worker_executing_work - find worker which is executing a work 991 * @pool: pool of interest 992 * @work: work to find worker for 993 * 994 * Find a worker which is executing @work on @pool by searching 995 * @pool->busy_hash which is keyed by the address of @work. For a worker 996 * to match, its current execution should match the address of @work and 997 * its work function. This is to avoid unwanted dependency between 998 * unrelated work executions through a work item being recycled while still 999 * being executed. 1000 * 1001 * This is a bit tricky. A work item may be freed once its execution 1002 * starts and nothing prevents the freed area from being recycled for 1003 * another work item. If the same work item address ends up being reused 1004 * before the original execution finishes, workqueue will identify the 1005 * recycled work item as currently executing and make it wait until the 1006 * current execution finishes, introducing an unwanted dependency. 1007 * 1008 * This function checks the work item address and work function to avoid 1009 * false positives. Note that this isn't complete as one may construct a 1010 * work function which can introduce dependency onto itself through a 1011 * recycled work item. Well, if somebody wants to shoot oneself in the 1012 * foot that badly, there's only so much we can do, and if such deadlock 1013 * actually occurs, it should be easy to locate the culprit work function. 1014 * 1015 * CONTEXT: 1016 * spin_lock_irq(pool->lock). 1017 * 1018 * Return: 1019 * Pointer to worker which is executing @work if found, %NULL 1020 * otherwise. 1021 */ 1022 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1023 struct work_struct *work) 1024 { 1025 struct worker *worker; 1026 1027 hash_for_each_possible(pool->busy_hash, worker, hentry, 1028 (unsigned long)work) 1029 if (worker->current_work == work && 1030 worker->current_func == work->func) 1031 return worker; 1032 1033 return NULL; 1034 } 1035 1036 /** 1037 * move_linked_works - move linked works to a list 1038 * @work: start of series of works to be scheduled 1039 * @head: target list to append @work to 1040 * @nextp: out parameter for nested worklist walking 1041 * 1042 * Schedule linked works starting from @work to @head. Work series to 1043 * be scheduled starts at @work and includes any consecutive work with 1044 * WORK_STRUCT_LINKED set in its predecessor. 1045 * 1046 * If @nextp is not NULL, it's updated to point to the next work of 1047 * the last scheduled work. This allows move_linked_works() to be 1048 * nested inside outer list_for_each_entry_safe(). 1049 * 1050 * CONTEXT: 1051 * spin_lock_irq(pool->lock). 1052 */ 1053 static void move_linked_works(struct work_struct *work, struct list_head *head, 1054 struct work_struct **nextp) 1055 { 1056 struct work_struct *n; 1057 1058 /* 1059 * Linked worklist will always end before the end of the list, 1060 * use NULL for list head. 1061 */ 1062 list_for_each_entry_safe_from(work, n, NULL, entry) { 1063 list_move_tail(&work->entry, head); 1064 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1065 break; 1066 } 1067 1068 /* 1069 * If we're already inside safe list traversal and have moved 1070 * multiple works to the scheduled queue, the next position 1071 * needs to be updated. 1072 */ 1073 if (nextp) 1074 *nextp = n; 1075 } 1076 1077 /** 1078 * get_pwq - get an extra reference on the specified pool_workqueue 1079 * @pwq: pool_workqueue to get 1080 * 1081 * Obtain an extra reference on @pwq. The caller should guarantee that 1082 * @pwq has positive refcnt and be holding the matching pool->lock. 1083 */ 1084 static void get_pwq(struct pool_workqueue *pwq) 1085 { 1086 lockdep_assert_held(&pwq->pool->lock); 1087 WARN_ON_ONCE(pwq->refcnt <= 0); 1088 pwq->refcnt++; 1089 } 1090 1091 /** 1092 * put_pwq - put a pool_workqueue reference 1093 * @pwq: pool_workqueue to put 1094 * 1095 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1096 * destruction. The caller should be holding the matching pool->lock. 1097 */ 1098 static void put_pwq(struct pool_workqueue *pwq) 1099 { 1100 lockdep_assert_held(&pwq->pool->lock); 1101 if (likely(--pwq->refcnt)) 1102 return; 1103 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1104 return; 1105 /* 1106 * @pwq can't be released under pool->lock, bounce to 1107 * pwq_unbound_release_workfn(). This never recurses on the same 1108 * pool->lock as this path is taken only for unbound workqueues and 1109 * the release work item is scheduled on a per-cpu workqueue. To 1110 * avoid lockdep warning, unbound pool->locks are given lockdep 1111 * subclass of 1 in get_unbound_pool(). 1112 */ 1113 schedule_work(&pwq->unbound_release_work); 1114 } 1115 1116 /** 1117 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1118 * @pwq: pool_workqueue to put (can be %NULL) 1119 * 1120 * put_pwq() with locking. This function also allows %NULL @pwq. 1121 */ 1122 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1123 { 1124 if (pwq) { 1125 /* 1126 * As both pwqs and pools are RCU protected, the 1127 * following lock operations are safe. 1128 */ 1129 spin_lock_irq(&pwq->pool->lock); 1130 put_pwq(pwq); 1131 spin_unlock_irq(&pwq->pool->lock); 1132 } 1133 } 1134 1135 static void pwq_activate_delayed_work(struct work_struct *work) 1136 { 1137 struct pool_workqueue *pwq = get_work_pwq(work); 1138 1139 trace_workqueue_activate_work(work); 1140 if (list_empty(&pwq->pool->worklist)) 1141 pwq->pool->watchdog_ts = jiffies; 1142 move_linked_works(work, &pwq->pool->worklist, NULL); 1143 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1144 pwq->nr_active++; 1145 } 1146 1147 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1148 { 1149 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1150 struct work_struct, entry); 1151 1152 pwq_activate_delayed_work(work); 1153 } 1154 1155 /** 1156 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1157 * @pwq: pwq of interest 1158 * @color: color of work which left the queue 1159 * 1160 * A work either has completed or is removed from pending queue, 1161 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1162 * 1163 * CONTEXT: 1164 * spin_lock_irq(pool->lock). 1165 */ 1166 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1167 { 1168 /* uncolored work items don't participate in flushing or nr_active */ 1169 if (color == WORK_NO_COLOR) 1170 goto out_put; 1171 1172 pwq->nr_in_flight[color]--; 1173 1174 pwq->nr_active--; 1175 if (!list_empty(&pwq->delayed_works)) { 1176 /* one down, submit a delayed one */ 1177 if (pwq->nr_active < pwq->max_active) 1178 pwq_activate_first_delayed(pwq); 1179 } 1180 1181 /* is flush in progress and are we at the flushing tip? */ 1182 if (likely(pwq->flush_color != color)) 1183 goto out_put; 1184 1185 /* are there still in-flight works? */ 1186 if (pwq->nr_in_flight[color]) 1187 goto out_put; 1188 1189 /* this pwq is done, clear flush_color */ 1190 pwq->flush_color = -1; 1191 1192 /* 1193 * If this was the last pwq, wake up the first flusher. It 1194 * will handle the rest. 1195 */ 1196 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1197 complete(&pwq->wq->first_flusher->done); 1198 out_put: 1199 put_pwq(pwq); 1200 } 1201 1202 /** 1203 * try_to_grab_pending - steal work item from worklist and disable irq 1204 * @work: work item to steal 1205 * @is_dwork: @work is a delayed_work 1206 * @flags: place to store irq state 1207 * 1208 * Try to grab PENDING bit of @work. This function can handle @work in any 1209 * stable state - idle, on timer or on worklist. 1210 * 1211 * Return: 1212 * 1 if @work was pending and we successfully stole PENDING 1213 * 0 if @work was idle and we claimed PENDING 1214 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1215 * -ENOENT if someone else is canceling @work, this state may persist 1216 * for arbitrarily long 1217 * 1218 * Note: 1219 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1220 * interrupted while holding PENDING and @work off queue, irq must be 1221 * disabled on entry. This, combined with delayed_work->timer being 1222 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1223 * 1224 * On successful return, >= 0, irq is disabled and the caller is 1225 * responsible for releasing it using local_irq_restore(*@flags). 1226 * 1227 * This function is safe to call from any context including IRQ handler. 1228 */ 1229 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1230 unsigned long *flags) 1231 { 1232 struct worker_pool *pool; 1233 struct pool_workqueue *pwq; 1234 1235 local_irq_save(*flags); 1236 1237 /* try to steal the timer if it exists */ 1238 if (is_dwork) { 1239 struct delayed_work *dwork = to_delayed_work(work); 1240 1241 /* 1242 * dwork->timer is irqsafe. If del_timer() fails, it's 1243 * guaranteed that the timer is not queued anywhere and not 1244 * running on the local CPU. 1245 */ 1246 if (likely(del_timer(&dwork->timer))) 1247 return 1; 1248 } 1249 1250 /* try to claim PENDING the normal way */ 1251 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1252 return 0; 1253 1254 rcu_read_lock(); 1255 /* 1256 * The queueing is in progress, or it is already queued. Try to 1257 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1258 */ 1259 pool = get_work_pool(work); 1260 if (!pool) 1261 goto fail; 1262 1263 spin_lock(&pool->lock); 1264 /* 1265 * work->data is guaranteed to point to pwq only while the work 1266 * item is queued on pwq->wq, and both updating work->data to point 1267 * to pwq on queueing and to pool on dequeueing are done under 1268 * pwq->pool->lock. This in turn guarantees that, if work->data 1269 * points to pwq which is associated with a locked pool, the work 1270 * item is currently queued on that pool. 1271 */ 1272 pwq = get_work_pwq(work); 1273 if (pwq && pwq->pool == pool) { 1274 debug_work_deactivate(work); 1275 1276 /* 1277 * A delayed work item cannot be grabbed directly because 1278 * it might have linked NO_COLOR work items which, if left 1279 * on the delayed_list, will confuse pwq->nr_active 1280 * management later on and cause stall. Make sure the work 1281 * item is activated before grabbing. 1282 */ 1283 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1284 pwq_activate_delayed_work(work); 1285 1286 list_del_init(&work->entry); 1287 pwq_dec_nr_in_flight(pwq, get_work_color(work)); 1288 1289 /* work->data points to pwq iff queued, point to pool */ 1290 set_work_pool_and_keep_pending(work, pool->id); 1291 1292 spin_unlock(&pool->lock); 1293 rcu_read_unlock(); 1294 return 1; 1295 } 1296 spin_unlock(&pool->lock); 1297 fail: 1298 rcu_read_unlock(); 1299 local_irq_restore(*flags); 1300 if (work_is_canceling(work)) 1301 return -ENOENT; 1302 cpu_relax(); 1303 return -EAGAIN; 1304 } 1305 1306 /** 1307 * insert_work - insert a work into a pool 1308 * @pwq: pwq @work belongs to 1309 * @work: work to insert 1310 * @head: insertion point 1311 * @extra_flags: extra WORK_STRUCT_* flags to set 1312 * 1313 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1314 * work_struct flags. 1315 * 1316 * CONTEXT: 1317 * spin_lock_irq(pool->lock). 1318 */ 1319 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1320 struct list_head *head, unsigned int extra_flags) 1321 { 1322 struct worker_pool *pool = pwq->pool; 1323 1324 /* we own @work, set data and link */ 1325 set_work_pwq(work, pwq, extra_flags); 1326 list_add_tail(&work->entry, head); 1327 get_pwq(pwq); 1328 1329 /* 1330 * Ensure either wq_worker_sleeping() sees the above 1331 * list_add_tail() or we see zero nr_running to avoid workers lying 1332 * around lazily while there are works to be processed. 1333 */ 1334 smp_mb(); 1335 1336 if (__need_more_worker(pool)) 1337 wake_up_worker(pool); 1338 } 1339 1340 /* 1341 * Test whether @work is being queued from another work executing on the 1342 * same workqueue. 1343 */ 1344 static bool is_chained_work(struct workqueue_struct *wq) 1345 { 1346 struct worker *worker; 1347 1348 worker = current_wq_worker(); 1349 /* 1350 * Return %true iff I'm a worker executing a work item on @wq. If 1351 * I'm @worker, it's safe to dereference it without locking. 1352 */ 1353 return worker && worker->current_pwq->wq == wq; 1354 } 1355 1356 /* 1357 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1358 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1359 * avoid perturbing sensitive tasks. 1360 */ 1361 static int wq_select_unbound_cpu(int cpu) 1362 { 1363 static bool printed_dbg_warning; 1364 int new_cpu; 1365 1366 if (likely(!wq_debug_force_rr_cpu)) { 1367 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1368 return cpu; 1369 } else if (!printed_dbg_warning) { 1370 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1371 printed_dbg_warning = true; 1372 } 1373 1374 if (cpumask_empty(wq_unbound_cpumask)) 1375 return cpu; 1376 1377 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1378 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1379 if (unlikely(new_cpu >= nr_cpu_ids)) { 1380 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1381 if (unlikely(new_cpu >= nr_cpu_ids)) 1382 return cpu; 1383 } 1384 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1385 1386 return new_cpu; 1387 } 1388 1389 static void __queue_work(int cpu, struct workqueue_struct *wq, 1390 struct work_struct *work) 1391 { 1392 struct pool_workqueue *pwq; 1393 struct worker_pool *last_pool; 1394 struct list_head *worklist; 1395 unsigned int work_flags; 1396 unsigned int req_cpu = cpu; 1397 1398 /* 1399 * While a work item is PENDING && off queue, a task trying to 1400 * steal the PENDING will busy-loop waiting for it to either get 1401 * queued or lose PENDING. Grabbing PENDING and queueing should 1402 * happen with IRQ disabled. 1403 */ 1404 lockdep_assert_irqs_disabled(); 1405 1406 debug_work_activate(work); 1407 1408 /* if draining, only works from the same workqueue are allowed */ 1409 if (unlikely(wq->flags & __WQ_DRAINING) && 1410 WARN_ON_ONCE(!is_chained_work(wq))) 1411 return; 1412 rcu_read_lock(); 1413 retry: 1414 if (req_cpu == WORK_CPU_UNBOUND) 1415 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1416 1417 /* pwq which will be used unless @work is executing elsewhere */ 1418 if (!(wq->flags & WQ_UNBOUND)) 1419 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1420 else 1421 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1422 1423 /* 1424 * If @work was previously on a different pool, it might still be 1425 * running there, in which case the work needs to be queued on that 1426 * pool to guarantee non-reentrancy. 1427 */ 1428 last_pool = get_work_pool(work); 1429 if (last_pool && last_pool != pwq->pool) { 1430 struct worker *worker; 1431 1432 spin_lock(&last_pool->lock); 1433 1434 worker = find_worker_executing_work(last_pool, work); 1435 1436 if (worker && worker->current_pwq->wq == wq) { 1437 pwq = worker->current_pwq; 1438 } else { 1439 /* meh... not running there, queue here */ 1440 spin_unlock(&last_pool->lock); 1441 spin_lock(&pwq->pool->lock); 1442 } 1443 } else { 1444 spin_lock(&pwq->pool->lock); 1445 } 1446 1447 /* 1448 * pwq is determined and locked. For unbound pools, we could have 1449 * raced with pwq release and it could already be dead. If its 1450 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1451 * without another pwq replacing it in the numa_pwq_tbl or while 1452 * work items are executing on it, so the retrying is guaranteed to 1453 * make forward-progress. 1454 */ 1455 if (unlikely(!pwq->refcnt)) { 1456 if (wq->flags & WQ_UNBOUND) { 1457 spin_unlock(&pwq->pool->lock); 1458 cpu_relax(); 1459 goto retry; 1460 } 1461 /* oops */ 1462 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1463 wq->name, cpu); 1464 } 1465 1466 /* pwq determined, queue */ 1467 trace_workqueue_queue_work(req_cpu, pwq, work); 1468 1469 if (WARN_ON(!list_empty(&work->entry))) 1470 goto out; 1471 1472 pwq->nr_in_flight[pwq->work_color]++; 1473 work_flags = work_color_to_flags(pwq->work_color); 1474 1475 if (likely(pwq->nr_active < pwq->max_active)) { 1476 trace_workqueue_activate_work(work); 1477 pwq->nr_active++; 1478 worklist = &pwq->pool->worklist; 1479 if (list_empty(worklist)) 1480 pwq->pool->watchdog_ts = jiffies; 1481 } else { 1482 work_flags |= WORK_STRUCT_DELAYED; 1483 worklist = &pwq->delayed_works; 1484 } 1485 1486 insert_work(pwq, work, worklist, work_flags); 1487 1488 out: 1489 spin_unlock(&pwq->pool->lock); 1490 rcu_read_unlock(); 1491 } 1492 1493 /** 1494 * queue_work_on - queue work on specific cpu 1495 * @cpu: CPU number to execute work on 1496 * @wq: workqueue to use 1497 * @work: work to queue 1498 * 1499 * We queue the work to a specific CPU, the caller must ensure it 1500 * can't go away. 1501 * 1502 * Return: %false if @work was already on a queue, %true otherwise. 1503 */ 1504 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1505 struct work_struct *work) 1506 { 1507 bool ret = false; 1508 unsigned long flags; 1509 1510 local_irq_save(flags); 1511 1512 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1513 __queue_work(cpu, wq, work); 1514 ret = true; 1515 } 1516 1517 local_irq_restore(flags); 1518 return ret; 1519 } 1520 EXPORT_SYMBOL(queue_work_on); 1521 1522 /** 1523 * workqueue_select_cpu_near - Select a CPU based on NUMA node 1524 * @node: NUMA node ID that we want to select a CPU from 1525 * 1526 * This function will attempt to find a "random" cpu available on a given 1527 * node. If there are no CPUs available on the given node it will return 1528 * WORK_CPU_UNBOUND indicating that we should just schedule to any 1529 * available CPU if we need to schedule this work. 1530 */ 1531 static int workqueue_select_cpu_near(int node) 1532 { 1533 int cpu; 1534 1535 /* No point in doing this if NUMA isn't enabled for workqueues */ 1536 if (!wq_numa_enabled) 1537 return WORK_CPU_UNBOUND; 1538 1539 /* Delay binding to CPU if node is not valid or online */ 1540 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 1541 return WORK_CPU_UNBOUND; 1542 1543 /* Use local node/cpu if we are already there */ 1544 cpu = raw_smp_processor_id(); 1545 if (node == cpu_to_node(cpu)) 1546 return cpu; 1547 1548 /* Use "random" otherwise know as "first" online CPU of node */ 1549 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 1550 1551 /* If CPU is valid return that, otherwise just defer */ 1552 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 1553 } 1554 1555 /** 1556 * queue_work_node - queue work on a "random" cpu for a given NUMA node 1557 * @node: NUMA node that we are targeting the work for 1558 * @wq: workqueue to use 1559 * @work: work to queue 1560 * 1561 * We queue the work to a "random" CPU within a given NUMA node. The basic 1562 * idea here is to provide a way to somehow associate work with a given 1563 * NUMA node. 1564 * 1565 * This function will only make a best effort attempt at getting this onto 1566 * the right NUMA node. If no node is requested or the requested node is 1567 * offline then we just fall back to standard queue_work behavior. 1568 * 1569 * Currently the "random" CPU ends up being the first available CPU in the 1570 * intersection of cpu_online_mask and the cpumask of the node, unless we 1571 * are running on the node. In that case we just use the current CPU. 1572 * 1573 * Return: %false if @work was already on a queue, %true otherwise. 1574 */ 1575 bool queue_work_node(int node, struct workqueue_struct *wq, 1576 struct work_struct *work) 1577 { 1578 unsigned long flags; 1579 bool ret = false; 1580 1581 /* 1582 * This current implementation is specific to unbound workqueues. 1583 * Specifically we only return the first available CPU for a given 1584 * node instead of cycling through individual CPUs within the node. 1585 * 1586 * If this is used with a per-cpu workqueue then the logic in 1587 * workqueue_select_cpu_near would need to be updated to allow for 1588 * some round robin type logic. 1589 */ 1590 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 1591 1592 local_irq_save(flags); 1593 1594 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1595 int cpu = workqueue_select_cpu_near(node); 1596 1597 __queue_work(cpu, wq, work); 1598 ret = true; 1599 } 1600 1601 local_irq_restore(flags); 1602 return ret; 1603 } 1604 EXPORT_SYMBOL_GPL(queue_work_node); 1605 1606 void delayed_work_timer_fn(struct timer_list *t) 1607 { 1608 struct delayed_work *dwork = from_timer(dwork, t, timer); 1609 1610 /* should have been called from irqsafe timer with irq already off */ 1611 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1612 } 1613 EXPORT_SYMBOL(delayed_work_timer_fn); 1614 1615 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1616 struct delayed_work *dwork, unsigned long delay) 1617 { 1618 struct timer_list *timer = &dwork->timer; 1619 struct work_struct *work = &dwork->work; 1620 1621 WARN_ON_ONCE(!wq); 1622 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 1623 WARN_ON_ONCE(timer_pending(timer)); 1624 WARN_ON_ONCE(!list_empty(&work->entry)); 1625 1626 /* 1627 * If @delay is 0, queue @dwork->work immediately. This is for 1628 * both optimization and correctness. The earliest @timer can 1629 * expire is on the closest next tick and delayed_work users depend 1630 * on that there's no such delay when @delay is 0. 1631 */ 1632 if (!delay) { 1633 __queue_work(cpu, wq, &dwork->work); 1634 return; 1635 } 1636 1637 dwork->wq = wq; 1638 dwork->cpu = cpu; 1639 timer->expires = jiffies + delay; 1640 1641 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1642 add_timer_on(timer, cpu); 1643 else 1644 add_timer(timer); 1645 } 1646 1647 /** 1648 * queue_delayed_work_on - queue work on specific CPU after delay 1649 * @cpu: CPU number to execute work on 1650 * @wq: workqueue to use 1651 * @dwork: work to queue 1652 * @delay: number of jiffies to wait before queueing 1653 * 1654 * Return: %false if @work was already on a queue, %true otherwise. If 1655 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1656 * execution. 1657 */ 1658 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1659 struct delayed_work *dwork, unsigned long delay) 1660 { 1661 struct work_struct *work = &dwork->work; 1662 bool ret = false; 1663 unsigned long flags; 1664 1665 /* read the comment in __queue_work() */ 1666 local_irq_save(flags); 1667 1668 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1669 __queue_delayed_work(cpu, wq, dwork, delay); 1670 ret = true; 1671 } 1672 1673 local_irq_restore(flags); 1674 return ret; 1675 } 1676 EXPORT_SYMBOL(queue_delayed_work_on); 1677 1678 /** 1679 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1680 * @cpu: CPU number to execute work on 1681 * @wq: workqueue to use 1682 * @dwork: work to queue 1683 * @delay: number of jiffies to wait before queueing 1684 * 1685 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1686 * modify @dwork's timer so that it expires after @delay. If @delay is 1687 * zero, @work is guaranteed to be scheduled immediately regardless of its 1688 * current state. 1689 * 1690 * Return: %false if @dwork was idle and queued, %true if @dwork was 1691 * pending and its timer was modified. 1692 * 1693 * This function is safe to call from any context including IRQ handler. 1694 * See try_to_grab_pending() for details. 1695 */ 1696 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1697 struct delayed_work *dwork, unsigned long delay) 1698 { 1699 unsigned long flags; 1700 int ret; 1701 1702 do { 1703 ret = try_to_grab_pending(&dwork->work, true, &flags); 1704 } while (unlikely(ret == -EAGAIN)); 1705 1706 if (likely(ret >= 0)) { 1707 __queue_delayed_work(cpu, wq, dwork, delay); 1708 local_irq_restore(flags); 1709 } 1710 1711 /* -ENOENT from try_to_grab_pending() becomes %true */ 1712 return ret; 1713 } 1714 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1715 1716 static void rcu_work_rcufn(struct rcu_head *rcu) 1717 { 1718 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 1719 1720 /* read the comment in __queue_work() */ 1721 local_irq_disable(); 1722 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 1723 local_irq_enable(); 1724 } 1725 1726 /** 1727 * queue_rcu_work - queue work after a RCU grace period 1728 * @wq: workqueue to use 1729 * @rwork: work to queue 1730 * 1731 * Return: %false if @rwork was already pending, %true otherwise. Note 1732 * that a full RCU grace period is guaranteed only after a %true return. 1733 * While @rwork is guaranteed to be executed after a %false return, the 1734 * execution may happen before a full RCU grace period has passed. 1735 */ 1736 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 1737 { 1738 struct work_struct *work = &rwork->work; 1739 1740 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1741 rwork->wq = wq; 1742 call_rcu(&rwork->rcu, rcu_work_rcufn); 1743 return true; 1744 } 1745 1746 return false; 1747 } 1748 EXPORT_SYMBOL(queue_rcu_work); 1749 1750 /** 1751 * worker_enter_idle - enter idle state 1752 * @worker: worker which is entering idle state 1753 * 1754 * @worker is entering idle state. Update stats and idle timer if 1755 * necessary. 1756 * 1757 * LOCKING: 1758 * spin_lock_irq(pool->lock). 1759 */ 1760 static void worker_enter_idle(struct worker *worker) 1761 { 1762 struct worker_pool *pool = worker->pool; 1763 1764 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1765 WARN_ON_ONCE(!list_empty(&worker->entry) && 1766 (worker->hentry.next || worker->hentry.pprev))) 1767 return; 1768 1769 /* can't use worker_set_flags(), also called from create_worker() */ 1770 worker->flags |= WORKER_IDLE; 1771 pool->nr_idle++; 1772 worker->last_active = jiffies; 1773 1774 /* idle_list is LIFO */ 1775 list_add(&worker->entry, &pool->idle_list); 1776 1777 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1778 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1779 1780 /* 1781 * Sanity check nr_running. Because unbind_workers() releases 1782 * pool->lock between setting %WORKER_UNBOUND and zapping 1783 * nr_running, the warning may trigger spuriously. Check iff 1784 * unbind is not in progress. 1785 */ 1786 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1787 pool->nr_workers == pool->nr_idle && 1788 atomic_read(&pool->nr_running)); 1789 } 1790 1791 /** 1792 * worker_leave_idle - leave idle state 1793 * @worker: worker which is leaving idle state 1794 * 1795 * @worker is leaving idle state. Update stats. 1796 * 1797 * LOCKING: 1798 * spin_lock_irq(pool->lock). 1799 */ 1800 static void worker_leave_idle(struct worker *worker) 1801 { 1802 struct worker_pool *pool = worker->pool; 1803 1804 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1805 return; 1806 worker_clr_flags(worker, WORKER_IDLE); 1807 pool->nr_idle--; 1808 list_del_init(&worker->entry); 1809 } 1810 1811 static struct worker *alloc_worker(int node) 1812 { 1813 struct worker *worker; 1814 1815 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1816 if (worker) { 1817 INIT_LIST_HEAD(&worker->entry); 1818 INIT_LIST_HEAD(&worker->scheduled); 1819 INIT_LIST_HEAD(&worker->node); 1820 /* on creation a worker is in !idle && prep state */ 1821 worker->flags = WORKER_PREP; 1822 } 1823 return worker; 1824 } 1825 1826 /** 1827 * worker_attach_to_pool() - attach a worker to a pool 1828 * @worker: worker to be attached 1829 * @pool: the target pool 1830 * 1831 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1832 * cpu-binding of @worker are kept coordinated with the pool across 1833 * cpu-[un]hotplugs. 1834 */ 1835 static void worker_attach_to_pool(struct worker *worker, 1836 struct worker_pool *pool) 1837 { 1838 mutex_lock(&wq_pool_attach_mutex); 1839 1840 /* 1841 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1842 * online CPUs. It'll be re-applied when any of the CPUs come up. 1843 */ 1844 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1845 1846 /* 1847 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains 1848 * stable across this function. See the comments above the flag 1849 * definition for details. 1850 */ 1851 if (pool->flags & POOL_DISASSOCIATED) 1852 worker->flags |= WORKER_UNBOUND; 1853 1854 list_add_tail(&worker->node, &pool->workers); 1855 worker->pool = pool; 1856 1857 mutex_unlock(&wq_pool_attach_mutex); 1858 } 1859 1860 /** 1861 * worker_detach_from_pool() - detach a worker from its pool 1862 * @worker: worker which is attached to its pool 1863 * 1864 * Undo the attaching which had been done in worker_attach_to_pool(). The 1865 * caller worker shouldn't access to the pool after detached except it has 1866 * other reference to the pool. 1867 */ 1868 static void worker_detach_from_pool(struct worker *worker) 1869 { 1870 struct worker_pool *pool = worker->pool; 1871 struct completion *detach_completion = NULL; 1872 1873 mutex_lock(&wq_pool_attach_mutex); 1874 1875 list_del(&worker->node); 1876 worker->pool = NULL; 1877 1878 if (list_empty(&pool->workers)) 1879 detach_completion = pool->detach_completion; 1880 mutex_unlock(&wq_pool_attach_mutex); 1881 1882 /* clear leftover flags without pool->lock after it is detached */ 1883 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1884 1885 if (detach_completion) 1886 complete(detach_completion); 1887 } 1888 1889 /** 1890 * create_worker - create a new workqueue worker 1891 * @pool: pool the new worker will belong to 1892 * 1893 * Create and start a new worker which is attached to @pool. 1894 * 1895 * CONTEXT: 1896 * Might sleep. Does GFP_KERNEL allocations. 1897 * 1898 * Return: 1899 * Pointer to the newly created worker. 1900 */ 1901 static struct worker *create_worker(struct worker_pool *pool) 1902 { 1903 struct worker *worker = NULL; 1904 int id = -1; 1905 char id_buf[16]; 1906 1907 /* ID is needed to determine kthread name */ 1908 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL); 1909 if (id < 0) 1910 goto fail; 1911 1912 worker = alloc_worker(pool->node); 1913 if (!worker) 1914 goto fail; 1915 1916 worker->id = id; 1917 1918 if (pool->cpu >= 0) 1919 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1920 pool->attrs->nice < 0 ? "H" : ""); 1921 else 1922 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1923 1924 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1925 "kworker/%s", id_buf); 1926 if (IS_ERR(worker->task)) 1927 goto fail; 1928 1929 set_user_nice(worker->task, pool->attrs->nice); 1930 kthread_bind_mask(worker->task, pool->attrs->cpumask); 1931 1932 /* successful, attach the worker to the pool */ 1933 worker_attach_to_pool(worker, pool); 1934 1935 /* start the newly created worker */ 1936 spin_lock_irq(&pool->lock); 1937 worker->pool->nr_workers++; 1938 worker_enter_idle(worker); 1939 wake_up_process(worker->task); 1940 spin_unlock_irq(&pool->lock); 1941 1942 return worker; 1943 1944 fail: 1945 if (id >= 0) 1946 ida_simple_remove(&pool->worker_ida, id); 1947 kfree(worker); 1948 return NULL; 1949 } 1950 1951 /** 1952 * destroy_worker - destroy a workqueue worker 1953 * @worker: worker to be destroyed 1954 * 1955 * Destroy @worker and adjust @pool stats accordingly. The worker should 1956 * be idle. 1957 * 1958 * CONTEXT: 1959 * spin_lock_irq(pool->lock). 1960 */ 1961 static void destroy_worker(struct worker *worker) 1962 { 1963 struct worker_pool *pool = worker->pool; 1964 1965 lockdep_assert_held(&pool->lock); 1966 1967 /* sanity check frenzy */ 1968 if (WARN_ON(worker->current_work) || 1969 WARN_ON(!list_empty(&worker->scheduled)) || 1970 WARN_ON(!(worker->flags & WORKER_IDLE))) 1971 return; 1972 1973 pool->nr_workers--; 1974 pool->nr_idle--; 1975 1976 list_del_init(&worker->entry); 1977 worker->flags |= WORKER_DIE; 1978 wake_up_process(worker->task); 1979 } 1980 1981 static void idle_worker_timeout(struct timer_list *t) 1982 { 1983 struct worker_pool *pool = from_timer(pool, t, idle_timer); 1984 1985 spin_lock_irq(&pool->lock); 1986 1987 while (too_many_workers(pool)) { 1988 struct worker *worker; 1989 unsigned long expires; 1990 1991 /* idle_list is kept in LIFO order, check the last one */ 1992 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1993 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1994 1995 if (time_before(jiffies, expires)) { 1996 mod_timer(&pool->idle_timer, expires); 1997 break; 1998 } 1999 2000 destroy_worker(worker); 2001 } 2002 2003 spin_unlock_irq(&pool->lock); 2004 } 2005 2006 static void send_mayday(struct work_struct *work) 2007 { 2008 struct pool_workqueue *pwq = get_work_pwq(work); 2009 struct workqueue_struct *wq = pwq->wq; 2010 2011 lockdep_assert_held(&wq_mayday_lock); 2012 2013 if (!wq->rescuer) 2014 return; 2015 2016 /* mayday mayday mayday */ 2017 if (list_empty(&pwq->mayday_node)) { 2018 /* 2019 * If @pwq is for an unbound wq, its base ref may be put at 2020 * any time due to an attribute change. Pin @pwq until the 2021 * rescuer is done with it. 2022 */ 2023 get_pwq(pwq); 2024 list_add_tail(&pwq->mayday_node, &wq->maydays); 2025 wake_up_process(wq->rescuer->task); 2026 } 2027 } 2028 2029 static void pool_mayday_timeout(struct timer_list *t) 2030 { 2031 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 2032 struct work_struct *work; 2033 2034 spin_lock_irq(&pool->lock); 2035 spin_lock(&wq_mayday_lock); /* for wq->maydays */ 2036 2037 if (need_to_create_worker(pool)) { 2038 /* 2039 * We've been trying to create a new worker but 2040 * haven't been successful. We might be hitting an 2041 * allocation deadlock. Send distress signals to 2042 * rescuers. 2043 */ 2044 list_for_each_entry(work, &pool->worklist, entry) 2045 send_mayday(work); 2046 } 2047 2048 spin_unlock(&wq_mayday_lock); 2049 spin_unlock_irq(&pool->lock); 2050 2051 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 2052 } 2053 2054 /** 2055 * maybe_create_worker - create a new worker if necessary 2056 * @pool: pool to create a new worker for 2057 * 2058 * Create a new worker for @pool if necessary. @pool is guaranteed to 2059 * have at least one idle worker on return from this function. If 2060 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 2061 * sent to all rescuers with works scheduled on @pool to resolve 2062 * possible allocation deadlock. 2063 * 2064 * On return, need_to_create_worker() is guaranteed to be %false and 2065 * may_start_working() %true. 2066 * 2067 * LOCKING: 2068 * spin_lock_irq(pool->lock) which may be released and regrabbed 2069 * multiple times. Does GFP_KERNEL allocations. Called only from 2070 * manager. 2071 */ 2072 static void maybe_create_worker(struct worker_pool *pool) 2073 __releases(&pool->lock) 2074 __acquires(&pool->lock) 2075 { 2076 restart: 2077 spin_unlock_irq(&pool->lock); 2078 2079 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 2080 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 2081 2082 while (true) { 2083 if (create_worker(pool) || !need_to_create_worker(pool)) 2084 break; 2085 2086 schedule_timeout_interruptible(CREATE_COOLDOWN); 2087 2088 if (!need_to_create_worker(pool)) 2089 break; 2090 } 2091 2092 del_timer_sync(&pool->mayday_timer); 2093 spin_lock_irq(&pool->lock); 2094 /* 2095 * This is necessary even after a new worker was just successfully 2096 * created as @pool->lock was dropped and the new worker might have 2097 * already become busy. 2098 */ 2099 if (need_to_create_worker(pool)) 2100 goto restart; 2101 } 2102 2103 /** 2104 * manage_workers - manage worker pool 2105 * @worker: self 2106 * 2107 * Assume the manager role and manage the worker pool @worker belongs 2108 * to. At any given time, there can be only zero or one manager per 2109 * pool. The exclusion is handled automatically by this function. 2110 * 2111 * The caller can safely start processing works on false return. On 2112 * true return, it's guaranteed that need_to_create_worker() is false 2113 * and may_start_working() is true. 2114 * 2115 * CONTEXT: 2116 * spin_lock_irq(pool->lock) which may be released and regrabbed 2117 * multiple times. Does GFP_KERNEL allocations. 2118 * 2119 * Return: 2120 * %false if the pool doesn't need management and the caller can safely 2121 * start processing works, %true if management function was performed and 2122 * the conditions that the caller verified before calling the function may 2123 * no longer be true. 2124 */ 2125 static bool manage_workers(struct worker *worker) 2126 { 2127 struct worker_pool *pool = worker->pool; 2128 2129 if (pool->flags & POOL_MANAGER_ACTIVE) 2130 return false; 2131 2132 pool->flags |= POOL_MANAGER_ACTIVE; 2133 pool->manager = worker; 2134 2135 maybe_create_worker(pool); 2136 2137 pool->manager = NULL; 2138 pool->flags &= ~POOL_MANAGER_ACTIVE; 2139 wake_up(&wq_manager_wait); 2140 return true; 2141 } 2142 2143 /** 2144 * process_one_work - process single work 2145 * @worker: self 2146 * @work: work to process 2147 * 2148 * Process @work. This function contains all the logics necessary to 2149 * process a single work including synchronization against and 2150 * interaction with other workers on the same cpu, queueing and 2151 * flushing. As long as context requirement is met, any worker can 2152 * call this function to process a work. 2153 * 2154 * CONTEXT: 2155 * spin_lock_irq(pool->lock) which is released and regrabbed. 2156 */ 2157 static void process_one_work(struct worker *worker, struct work_struct *work) 2158 __releases(&pool->lock) 2159 __acquires(&pool->lock) 2160 { 2161 struct pool_workqueue *pwq = get_work_pwq(work); 2162 struct worker_pool *pool = worker->pool; 2163 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2164 int work_color; 2165 struct worker *collision; 2166 #ifdef CONFIG_LOCKDEP 2167 /* 2168 * It is permissible to free the struct work_struct from 2169 * inside the function that is called from it, this we need to 2170 * take into account for lockdep too. To avoid bogus "held 2171 * lock freed" warnings as well as problems when looking into 2172 * work->lockdep_map, make a copy and use that here. 2173 */ 2174 struct lockdep_map lockdep_map; 2175 2176 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2177 #endif 2178 /* ensure we're on the correct CPU */ 2179 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2180 raw_smp_processor_id() != pool->cpu); 2181 2182 /* 2183 * A single work shouldn't be executed concurrently by 2184 * multiple workers on a single cpu. Check whether anyone is 2185 * already processing the work. If so, defer the work to the 2186 * currently executing one. 2187 */ 2188 collision = find_worker_executing_work(pool, work); 2189 if (unlikely(collision)) { 2190 move_linked_works(work, &collision->scheduled, NULL); 2191 return; 2192 } 2193 2194 /* claim and dequeue */ 2195 debug_work_deactivate(work); 2196 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2197 worker->current_work = work; 2198 worker->current_func = work->func; 2199 worker->current_pwq = pwq; 2200 work_color = get_work_color(work); 2201 2202 /* 2203 * Record wq name for cmdline and debug reporting, may get 2204 * overridden through set_worker_desc(). 2205 */ 2206 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 2207 2208 list_del_init(&work->entry); 2209 2210 /* 2211 * CPU intensive works don't participate in concurrency management. 2212 * They're the scheduler's responsibility. This takes @worker out 2213 * of concurrency management and the next code block will chain 2214 * execution of the pending work items. 2215 */ 2216 if (unlikely(cpu_intensive)) 2217 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2218 2219 /* 2220 * Wake up another worker if necessary. The condition is always 2221 * false for normal per-cpu workers since nr_running would always 2222 * be >= 1 at this point. This is used to chain execution of the 2223 * pending work items for WORKER_NOT_RUNNING workers such as the 2224 * UNBOUND and CPU_INTENSIVE ones. 2225 */ 2226 if (need_more_worker(pool)) 2227 wake_up_worker(pool); 2228 2229 /* 2230 * Record the last pool and clear PENDING which should be the last 2231 * update to @work. Also, do this inside @pool->lock so that 2232 * PENDING and queued state changes happen together while IRQ is 2233 * disabled. 2234 */ 2235 set_work_pool_and_clear_pending(work, pool->id); 2236 2237 spin_unlock_irq(&pool->lock); 2238 2239 lock_map_acquire(&pwq->wq->lockdep_map); 2240 lock_map_acquire(&lockdep_map); 2241 /* 2242 * Strictly speaking we should mark the invariant state without holding 2243 * any locks, that is, before these two lock_map_acquire()'s. 2244 * 2245 * However, that would result in: 2246 * 2247 * A(W1) 2248 * WFC(C) 2249 * A(W1) 2250 * C(C) 2251 * 2252 * Which would create W1->C->W1 dependencies, even though there is no 2253 * actual deadlock possible. There are two solutions, using a 2254 * read-recursive acquire on the work(queue) 'locks', but this will then 2255 * hit the lockdep limitation on recursive locks, or simply discard 2256 * these locks. 2257 * 2258 * AFAICT there is no possible deadlock scenario between the 2259 * flush_work() and complete() primitives (except for single-threaded 2260 * workqueues), so hiding them isn't a problem. 2261 */ 2262 lockdep_invariant_state(true); 2263 trace_workqueue_execute_start(work); 2264 worker->current_func(work); 2265 /* 2266 * While we must be careful to not use "work" after this, the trace 2267 * point will only record its address. 2268 */ 2269 trace_workqueue_execute_end(work); 2270 lock_map_release(&lockdep_map); 2271 lock_map_release(&pwq->wq->lockdep_map); 2272 2273 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2274 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2275 " last function: %ps\n", 2276 current->comm, preempt_count(), task_pid_nr(current), 2277 worker->current_func); 2278 debug_show_held_locks(current); 2279 dump_stack(); 2280 } 2281 2282 /* 2283 * The following prevents a kworker from hogging CPU on !PREEMPT 2284 * kernels, where a requeueing work item waiting for something to 2285 * happen could deadlock with stop_machine as such work item could 2286 * indefinitely requeue itself while all other CPUs are trapped in 2287 * stop_machine. At the same time, report a quiescent RCU state so 2288 * the same condition doesn't freeze RCU. 2289 */ 2290 cond_resched(); 2291 2292 spin_lock_irq(&pool->lock); 2293 2294 /* clear cpu intensive status */ 2295 if (unlikely(cpu_intensive)) 2296 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2297 2298 /* tag the worker for identification in schedule() */ 2299 worker->last_func = worker->current_func; 2300 2301 /* we're done with it, release */ 2302 hash_del(&worker->hentry); 2303 worker->current_work = NULL; 2304 worker->current_func = NULL; 2305 worker->current_pwq = NULL; 2306 pwq_dec_nr_in_flight(pwq, work_color); 2307 } 2308 2309 /** 2310 * process_scheduled_works - process scheduled works 2311 * @worker: self 2312 * 2313 * Process all scheduled works. Please note that the scheduled list 2314 * may change while processing a work, so this function repeatedly 2315 * fetches a work from the top and executes it. 2316 * 2317 * CONTEXT: 2318 * spin_lock_irq(pool->lock) which may be released and regrabbed 2319 * multiple times. 2320 */ 2321 static void process_scheduled_works(struct worker *worker) 2322 { 2323 while (!list_empty(&worker->scheduled)) { 2324 struct work_struct *work = list_first_entry(&worker->scheduled, 2325 struct work_struct, entry); 2326 process_one_work(worker, work); 2327 } 2328 } 2329 2330 static void set_pf_worker(bool val) 2331 { 2332 mutex_lock(&wq_pool_attach_mutex); 2333 if (val) 2334 current->flags |= PF_WQ_WORKER; 2335 else 2336 current->flags &= ~PF_WQ_WORKER; 2337 mutex_unlock(&wq_pool_attach_mutex); 2338 } 2339 2340 /** 2341 * worker_thread - the worker thread function 2342 * @__worker: self 2343 * 2344 * The worker thread function. All workers belong to a worker_pool - 2345 * either a per-cpu one or dynamic unbound one. These workers process all 2346 * work items regardless of their specific target workqueue. The only 2347 * exception is work items which belong to workqueues with a rescuer which 2348 * will be explained in rescuer_thread(). 2349 * 2350 * Return: 0 2351 */ 2352 static int worker_thread(void *__worker) 2353 { 2354 struct worker *worker = __worker; 2355 struct worker_pool *pool = worker->pool; 2356 2357 /* tell the scheduler that this is a workqueue worker */ 2358 set_pf_worker(true); 2359 woke_up: 2360 spin_lock_irq(&pool->lock); 2361 2362 /* am I supposed to die? */ 2363 if (unlikely(worker->flags & WORKER_DIE)) { 2364 spin_unlock_irq(&pool->lock); 2365 WARN_ON_ONCE(!list_empty(&worker->entry)); 2366 set_pf_worker(false); 2367 2368 set_task_comm(worker->task, "kworker/dying"); 2369 ida_simple_remove(&pool->worker_ida, worker->id); 2370 worker_detach_from_pool(worker); 2371 kfree(worker); 2372 return 0; 2373 } 2374 2375 worker_leave_idle(worker); 2376 recheck: 2377 /* no more worker necessary? */ 2378 if (!need_more_worker(pool)) 2379 goto sleep; 2380 2381 /* do we need to manage? */ 2382 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2383 goto recheck; 2384 2385 /* 2386 * ->scheduled list can only be filled while a worker is 2387 * preparing to process a work or actually processing it. 2388 * Make sure nobody diddled with it while I was sleeping. 2389 */ 2390 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2391 2392 /* 2393 * Finish PREP stage. We're guaranteed to have at least one idle 2394 * worker or that someone else has already assumed the manager 2395 * role. This is where @worker starts participating in concurrency 2396 * management if applicable and concurrency management is restored 2397 * after being rebound. See rebind_workers() for details. 2398 */ 2399 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2400 2401 do { 2402 struct work_struct *work = 2403 list_first_entry(&pool->worklist, 2404 struct work_struct, entry); 2405 2406 pool->watchdog_ts = jiffies; 2407 2408 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2409 /* optimization path, not strictly necessary */ 2410 process_one_work(worker, work); 2411 if (unlikely(!list_empty(&worker->scheduled))) 2412 process_scheduled_works(worker); 2413 } else { 2414 move_linked_works(work, &worker->scheduled, NULL); 2415 process_scheduled_works(worker); 2416 } 2417 } while (keep_working(pool)); 2418 2419 worker_set_flags(worker, WORKER_PREP); 2420 sleep: 2421 /* 2422 * pool->lock is held and there's no work to process and no need to 2423 * manage, sleep. Workers are woken up only while holding 2424 * pool->lock or from local cpu, so setting the current state 2425 * before releasing pool->lock is enough to prevent losing any 2426 * event. 2427 */ 2428 worker_enter_idle(worker); 2429 __set_current_state(TASK_IDLE); 2430 spin_unlock_irq(&pool->lock); 2431 schedule(); 2432 goto woke_up; 2433 } 2434 2435 /** 2436 * rescuer_thread - the rescuer thread function 2437 * @__rescuer: self 2438 * 2439 * Workqueue rescuer thread function. There's one rescuer for each 2440 * workqueue which has WQ_MEM_RECLAIM set. 2441 * 2442 * Regular work processing on a pool may block trying to create a new 2443 * worker which uses GFP_KERNEL allocation which has slight chance of 2444 * developing into deadlock if some works currently on the same queue 2445 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2446 * the problem rescuer solves. 2447 * 2448 * When such condition is possible, the pool summons rescuers of all 2449 * workqueues which have works queued on the pool and let them process 2450 * those works so that forward progress can be guaranteed. 2451 * 2452 * This should happen rarely. 2453 * 2454 * Return: 0 2455 */ 2456 static int rescuer_thread(void *__rescuer) 2457 { 2458 struct worker *rescuer = __rescuer; 2459 struct workqueue_struct *wq = rescuer->rescue_wq; 2460 struct list_head *scheduled = &rescuer->scheduled; 2461 bool should_stop; 2462 2463 set_user_nice(current, RESCUER_NICE_LEVEL); 2464 2465 /* 2466 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2467 * doesn't participate in concurrency management. 2468 */ 2469 set_pf_worker(true); 2470 repeat: 2471 set_current_state(TASK_IDLE); 2472 2473 /* 2474 * By the time the rescuer is requested to stop, the workqueue 2475 * shouldn't have any work pending, but @wq->maydays may still have 2476 * pwq(s) queued. This can happen by non-rescuer workers consuming 2477 * all the work items before the rescuer got to them. Go through 2478 * @wq->maydays processing before acting on should_stop so that the 2479 * list is always empty on exit. 2480 */ 2481 should_stop = kthread_should_stop(); 2482 2483 /* see whether any pwq is asking for help */ 2484 spin_lock_irq(&wq_mayday_lock); 2485 2486 while (!list_empty(&wq->maydays)) { 2487 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2488 struct pool_workqueue, mayday_node); 2489 struct worker_pool *pool = pwq->pool; 2490 struct work_struct *work, *n; 2491 bool first = true; 2492 2493 __set_current_state(TASK_RUNNING); 2494 list_del_init(&pwq->mayday_node); 2495 2496 spin_unlock_irq(&wq_mayday_lock); 2497 2498 worker_attach_to_pool(rescuer, pool); 2499 2500 spin_lock_irq(&pool->lock); 2501 2502 /* 2503 * Slurp in all works issued via this workqueue and 2504 * process'em. 2505 */ 2506 WARN_ON_ONCE(!list_empty(scheduled)); 2507 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2508 if (get_work_pwq(work) == pwq) { 2509 if (first) 2510 pool->watchdog_ts = jiffies; 2511 move_linked_works(work, scheduled, &n); 2512 } 2513 first = false; 2514 } 2515 2516 if (!list_empty(scheduled)) { 2517 process_scheduled_works(rescuer); 2518 2519 /* 2520 * The above execution of rescued work items could 2521 * have created more to rescue through 2522 * pwq_activate_first_delayed() or chained 2523 * queueing. Let's put @pwq back on mayday list so 2524 * that such back-to-back work items, which may be 2525 * being used to relieve memory pressure, don't 2526 * incur MAYDAY_INTERVAL delay inbetween. 2527 */ 2528 if (need_to_create_worker(pool)) { 2529 spin_lock(&wq_mayday_lock); 2530 /* 2531 * Queue iff we aren't racing destruction 2532 * and somebody else hasn't queued it already. 2533 */ 2534 if (wq->rescuer && list_empty(&pwq->mayday_node)) { 2535 get_pwq(pwq); 2536 list_add_tail(&pwq->mayday_node, &wq->maydays); 2537 } 2538 spin_unlock(&wq_mayday_lock); 2539 } 2540 } 2541 2542 /* 2543 * Put the reference grabbed by send_mayday(). @pool won't 2544 * go away while we're still attached to it. 2545 */ 2546 put_pwq(pwq); 2547 2548 /* 2549 * Leave this pool. If need_more_worker() is %true, notify a 2550 * regular worker; otherwise, we end up with 0 concurrency 2551 * and stalling the execution. 2552 */ 2553 if (need_more_worker(pool)) 2554 wake_up_worker(pool); 2555 2556 spin_unlock_irq(&pool->lock); 2557 2558 worker_detach_from_pool(rescuer); 2559 2560 spin_lock_irq(&wq_mayday_lock); 2561 } 2562 2563 spin_unlock_irq(&wq_mayday_lock); 2564 2565 if (should_stop) { 2566 __set_current_state(TASK_RUNNING); 2567 set_pf_worker(false); 2568 return 0; 2569 } 2570 2571 /* rescuers should never participate in concurrency management */ 2572 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2573 schedule(); 2574 goto repeat; 2575 } 2576 2577 /** 2578 * check_flush_dependency - check for flush dependency sanity 2579 * @target_wq: workqueue being flushed 2580 * @target_work: work item being flushed (NULL for workqueue flushes) 2581 * 2582 * %current is trying to flush the whole @target_wq or @target_work on it. 2583 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2584 * reclaiming memory or running on a workqueue which doesn't have 2585 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2586 * a deadlock. 2587 */ 2588 static void check_flush_dependency(struct workqueue_struct *target_wq, 2589 struct work_struct *target_work) 2590 { 2591 work_func_t target_func = target_work ? target_work->func : NULL; 2592 struct worker *worker; 2593 2594 if (target_wq->flags & WQ_MEM_RECLAIM) 2595 return; 2596 2597 worker = current_wq_worker(); 2598 2599 WARN_ONCE(current->flags & PF_MEMALLOC, 2600 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 2601 current->pid, current->comm, target_wq->name, target_func); 2602 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2603 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2604 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 2605 worker->current_pwq->wq->name, worker->current_func, 2606 target_wq->name, target_func); 2607 } 2608 2609 struct wq_barrier { 2610 struct work_struct work; 2611 struct completion done; 2612 struct task_struct *task; /* purely informational */ 2613 }; 2614 2615 static void wq_barrier_func(struct work_struct *work) 2616 { 2617 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2618 complete(&barr->done); 2619 } 2620 2621 /** 2622 * insert_wq_barrier - insert a barrier work 2623 * @pwq: pwq to insert barrier into 2624 * @barr: wq_barrier to insert 2625 * @target: target work to attach @barr to 2626 * @worker: worker currently executing @target, NULL if @target is not executing 2627 * 2628 * @barr is linked to @target such that @barr is completed only after 2629 * @target finishes execution. Please note that the ordering 2630 * guarantee is observed only with respect to @target and on the local 2631 * cpu. 2632 * 2633 * Currently, a queued barrier can't be canceled. This is because 2634 * try_to_grab_pending() can't determine whether the work to be 2635 * grabbed is at the head of the queue and thus can't clear LINKED 2636 * flag of the previous work while there must be a valid next work 2637 * after a work with LINKED flag set. 2638 * 2639 * Note that when @worker is non-NULL, @target may be modified 2640 * underneath us, so we can't reliably determine pwq from @target. 2641 * 2642 * CONTEXT: 2643 * spin_lock_irq(pool->lock). 2644 */ 2645 static void insert_wq_barrier(struct pool_workqueue *pwq, 2646 struct wq_barrier *barr, 2647 struct work_struct *target, struct worker *worker) 2648 { 2649 struct list_head *head; 2650 unsigned int linked = 0; 2651 2652 /* 2653 * debugobject calls are safe here even with pool->lock locked 2654 * as we know for sure that this will not trigger any of the 2655 * checks and call back into the fixup functions where we 2656 * might deadlock. 2657 */ 2658 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2659 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2660 2661 init_completion_map(&barr->done, &target->lockdep_map); 2662 2663 barr->task = current; 2664 2665 /* 2666 * If @target is currently being executed, schedule the 2667 * barrier to the worker; otherwise, put it after @target. 2668 */ 2669 if (worker) 2670 head = worker->scheduled.next; 2671 else { 2672 unsigned long *bits = work_data_bits(target); 2673 2674 head = target->entry.next; 2675 /* there can already be other linked works, inherit and set */ 2676 linked = *bits & WORK_STRUCT_LINKED; 2677 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2678 } 2679 2680 debug_work_activate(&barr->work); 2681 insert_work(pwq, &barr->work, head, 2682 work_color_to_flags(WORK_NO_COLOR) | linked); 2683 } 2684 2685 /** 2686 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2687 * @wq: workqueue being flushed 2688 * @flush_color: new flush color, < 0 for no-op 2689 * @work_color: new work color, < 0 for no-op 2690 * 2691 * Prepare pwqs for workqueue flushing. 2692 * 2693 * If @flush_color is non-negative, flush_color on all pwqs should be 2694 * -1. If no pwq has in-flight commands at the specified color, all 2695 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2696 * has in flight commands, its pwq->flush_color is set to 2697 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2698 * wakeup logic is armed and %true is returned. 2699 * 2700 * The caller should have initialized @wq->first_flusher prior to 2701 * calling this function with non-negative @flush_color. If 2702 * @flush_color is negative, no flush color update is done and %false 2703 * is returned. 2704 * 2705 * If @work_color is non-negative, all pwqs should have the same 2706 * work_color which is previous to @work_color and all will be 2707 * advanced to @work_color. 2708 * 2709 * CONTEXT: 2710 * mutex_lock(wq->mutex). 2711 * 2712 * Return: 2713 * %true if @flush_color >= 0 and there's something to flush. %false 2714 * otherwise. 2715 */ 2716 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2717 int flush_color, int work_color) 2718 { 2719 bool wait = false; 2720 struct pool_workqueue *pwq; 2721 2722 if (flush_color >= 0) { 2723 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2724 atomic_set(&wq->nr_pwqs_to_flush, 1); 2725 } 2726 2727 for_each_pwq(pwq, wq) { 2728 struct worker_pool *pool = pwq->pool; 2729 2730 spin_lock_irq(&pool->lock); 2731 2732 if (flush_color >= 0) { 2733 WARN_ON_ONCE(pwq->flush_color != -1); 2734 2735 if (pwq->nr_in_flight[flush_color]) { 2736 pwq->flush_color = flush_color; 2737 atomic_inc(&wq->nr_pwqs_to_flush); 2738 wait = true; 2739 } 2740 } 2741 2742 if (work_color >= 0) { 2743 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2744 pwq->work_color = work_color; 2745 } 2746 2747 spin_unlock_irq(&pool->lock); 2748 } 2749 2750 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2751 complete(&wq->first_flusher->done); 2752 2753 return wait; 2754 } 2755 2756 /** 2757 * flush_workqueue - ensure that any scheduled work has run to completion. 2758 * @wq: workqueue to flush 2759 * 2760 * This function sleeps until all work items which were queued on entry 2761 * have finished execution, but it is not livelocked by new incoming ones. 2762 */ 2763 void flush_workqueue(struct workqueue_struct *wq) 2764 { 2765 struct wq_flusher this_flusher = { 2766 .list = LIST_HEAD_INIT(this_flusher.list), 2767 .flush_color = -1, 2768 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 2769 }; 2770 int next_color; 2771 2772 if (WARN_ON(!wq_online)) 2773 return; 2774 2775 lock_map_acquire(&wq->lockdep_map); 2776 lock_map_release(&wq->lockdep_map); 2777 2778 mutex_lock(&wq->mutex); 2779 2780 /* 2781 * Start-to-wait phase 2782 */ 2783 next_color = work_next_color(wq->work_color); 2784 2785 if (next_color != wq->flush_color) { 2786 /* 2787 * Color space is not full. The current work_color 2788 * becomes our flush_color and work_color is advanced 2789 * by one. 2790 */ 2791 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2792 this_flusher.flush_color = wq->work_color; 2793 wq->work_color = next_color; 2794 2795 if (!wq->first_flusher) { 2796 /* no flush in progress, become the first flusher */ 2797 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2798 2799 wq->first_flusher = &this_flusher; 2800 2801 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2802 wq->work_color)) { 2803 /* nothing to flush, done */ 2804 wq->flush_color = next_color; 2805 wq->first_flusher = NULL; 2806 goto out_unlock; 2807 } 2808 } else { 2809 /* wait in queue */ 2810 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2811 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2812 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2813 } 2814 } else { 2815 /* 2816 * Oops, color space is full, wait on overflow queue. 2817 * The next flush completion will assign us 2818 * flush_color and transfer to flusher_queue. 2819 */ 2820 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2821 } 2822 2823 check_flush_dependency(wq, NULL); 2824 2825 mutex_unlock(&wq->mutex); 2826 2827 wait_for_completion(&this_flusher.done); 2828 2829 /* 2830 * Wake-up-and-cascade phase 2831 * 2832 * First flushers are responsible for cascading flushes and 2833 * handling overflow. Non-first flushers can simply return. 2834 */ 2835 if (wq->first_flusher != &this_flusher) 2836 return; 2837 2838 mutex_lock(&wq->mutex); 2839 2840 /* we might have raced, check again with mutex held */ 2841 if (wq->first_flusher != &this_flusher) 2842 goto out_unlock; 2843 2844 wq->first_flusher = NULL; 2845 2846 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2847 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2848 2849 while (true) { 2850 struct wq_flusher *next, *tmp; 2851 2852 /* complete all the flushers sharing the current flush color */ 2853 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2854 if (next->flush_color != wq->flush_color) 2855 break; 2856 list_del_init(&next->list); 2857 complete(&next->done); 2858 } 2859 2860 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2861 wq->flush_color != work_next_color(wq->work_color)); 2862 2863 /* this flush_color is finished, advance by one */ 2864 wq->flush_color = work_next_color(wq->flush_color); 2865 2866 /* one color has been freed, handle overflow queue */ 2867 if (!list_empty(&wq->flusher_overflow)) { 2868 /* 2869 * Assign the same color to all overflowed 2870 * flushers, advance work_color and append to 2871 * flusher_queue. This is the start-to-wait 2872 * phase for these overflowed flushers. 2873 */ 2874 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2875 tmp->flush_color = wq->work_color; 2876 2877 wq->work_color = work_next_color(wq->work_color); 2878 2879 list_splice_tail_init(&wq->flusher_overflow, 2880 &wq->flusher_queue); 2881 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2882 } 2883 2884 if (list_empty(&wq->flusher_queue)) { 2885 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2886 break; 2887 } 2888 2889 /* 2890 * Need to flush more colors. Make the next flusher 2891 * the new first flusher and arm pwqs. 2892 */ 2893 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2894 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2895 2896 list_del_init(&next->list); 2897 wq->first_flusher = next; 2898 2899 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2900 break; 2901 2902 /* 2903 * Meh... this color is already done, clear first 2904 * flusher and repeat cascading. 2905 */ 2906 wq->first_flusher = NULL; 2907 } 2908 2909 out_unlock: 2910 mutex_unlock(&wq->mutex); 2911 } 2912 EXPORT_SYMBOL(flush_workqueue); 2913 2914 /** 2915 * drain_workqueue - drain a workqueue 2916 * @wq: workqueue to drain 2917 * 2918 * Wait until the workqueue becomes empty. While draining is in progress, 2919 * only chain queueing is allowed. IOW, only currently pending or running 2920 * work items on @wq can queue further work items on it. @wq is flushed 2921 * repeatedly until it becomes empty. The number of flushing is determined 2922 * by the depth of chaining and should be relatively short. Whine if it 2923 * takes too long. 2924 */ 2925 void drain_workqueue(struct workqueue_struct *wq) 2926 { 2927 unsigned int flush_cnt = 0; 2928 struct pool_workqueue *pwq; 2929 2930 /* 2931 * __queue_work() needs to test whether there are drainers, is much 2932 * hotter than drain_workqueue() and already looks at @wq->flags. 2933 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2934 */ 2935 mutex_lock(&wq->mutex); 2936 if (!wq->nr_drainers++) 2937 wq->flags |= __WQ_DRAINING; 2938 mutex_unlock(&wq->mutex); 2939 reflush: 2940 flush_workqueue(wq); 2941 2942 mutex_lock(&wq->mutex); 2943 2944 for_each_pwq(pwq, wq) { 2945 bool drained; 2946 2947 spin_lock_irq(&pwq->pool->lock); 2948 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2949 spin_unlock_irq(&pwq->pool->lock); 2950 2951 if (drained) 2952 continue; 2953 2954 if (++flush_cnt == 10 || 2955 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2956 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2957 wq->name, flush_cnt); 2958 2959 mutex_unlock(&wq->mutex); 2960 goto reflush; 2961 } 2962 2963 if (!--wq->nr_drainers) 2964 wq->flags &= ~__WQ_DRAINING; 2965 mutex_unlock(&wq->mutex); 2966 } 2967 EXPORT_SYMBOL_GPL(drain_workqueue); 2968 2969 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 2970 bool from_cancel) 2971 { 2972 struct worker *worker = NULL; 2973 struct worker_pool *pool; 2974 struct pool_workqueue *pwq; 2975 2976 might_sleep(); 2977 2978 rcu_read_lock(); 2979 pool = get_work_pool(work); 2980 if (!pool) { 2981 rcu_read_unlock(); 2982 return false; 2983 } 2984 2985 spin_lock_irq(&pool->lock); 2986 /* see the comment in try_to_grab_pending() with the same code */ 2987 pwq = get_work_pwq(work); 2988 if (pwq) { 2989 if (unlikely(pwq->pool != pool)) 2990 goto already_gone; 2991 } else { 2992 worker = find_worker_executing_work(pool, work); 2993 if (!worker) 2994 goto already_gone; 2995 pwq = worker->current_pwq; 2996 } 2997 2998 check_flush_dependency(pwq->wq, work); 2999 3000 insert_wq_barrier(pwq, barr, work, worker); 3001 spin_unlock_irq(&pool->lock); 3002 3003 /* 3004 * Force a lock recursion deadlock when using flush_work() inside a 3005 * single-threaded or rescuer equipped workqueue. 3006 * 3007 * For single threaded workqueues the deadlock happens when the work 3008 * is after the work issuing the flush_work(). For rescuer equipped 3009 * workqueues the deadlock happens when the rescuer stalls, blocking 3010 * forward progress. 3011 */ 3012 if (!from_cancel && 3013 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) { 3014 lock_map_acquire(&pwq->wq->lockdep_map); 3015 lock_map_release(&pwq->wq->lockdep_map); 3016 } 3017 rcu_read_unlock(); 3018 return true; 3019 already_gone: 3020 spin_unlock_irq(&pool->lock); 3021 rcu_read_unlock(); 3022 return false; 3023 } 3024 3025 static bool __flush_work(struct work_struct *work, bool from_cancel) 3026 { 3027 struct wq_barrier barr; 3028 3029 if (WARN_ON(!wq_online)) 3030 return false; 3031 3032 if (WARN_ON(!work->func)) 3033 return false; 3034 3035 if (!from_cancel) { 3036 lock_map_acquire(&work->lockdep_map); 3037 lock_map_release(&work->lockdep_map); 3038 } 3039 3040 if (start_flush_work(work, &barr, from_cancel)) { 3041 wait_for_completion(&barr.done); 3042 destroy_work_on_stack(&barr.work); 3043 return true; 3044 } else { 3045 return false; 3046 } 3047 } 3048 3049 /** 3050 * flush_work - wait for a work to finish executing the last queueing instance 3051 * @work: the work to flush 3052 * 3053 * Wait until @work has finished execution. @work is guaranteed to be idle 3054 * on return if it hasn't been requeued since flush started. 3055 * 3056 * Return: 3057 * %true if flush_work() waited for the work to finish execution, 3058 * %false if it was already idle. 3059 */ 3060 bool flush_work(struct work_struct *work) 3061 { 3062 return __flush_work(work, false); 3063 } 3064 EXPORT_SYMBOL_GPL(flush_work); 3065 3066 struct cwt_wait { 3067 wait_queue_entry_t wait; 3068 struct work_struct *work; 3069 }; 3070 3071 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 3072 { 3073 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 3074 3075 if (cwait->work != key) 3076 return 0; 3077 return autoremove_wake_function(wait, mode, sync, key); 3078 } 3079 3080 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 3081 { 3082 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 3083 unsigned long flags; 3084 int ret; 3085 3086 do { 3087 ret = try_to_grab_pending(work, is_dwork, &flags); 3088 /* 3089 * If someone else is already canceling, wait for it to 3090 * finish. flush_work() doesn't work for PREEMPT_NONE 3091 * because we may get scheduled between @work's completion 3092 * and the other canceling task resuming and clearing 3093 * CANCELING - flush_work() will return false immediately 3094 * as @work is no longer busy, try_to_grab_pending() will 3095 * return -ENOENT as @work is still being canceled and the 3096 * other canceling task won't be able to clear CANCELING as 3097 * we're hogging the CPU. 3098 * 3099 * Let's wait for completion using a waitqueue. As this 3100 * may lead to the thundering herd problem, use a custom 3101 * wake function which matches @work along with exclusive 3102 * wait and wakeup. 3103 */ 3104 if (unlikely(ret == -ENOENT)) { 3105 struct cwt_wait cwait; 3106 3107 init_wait(&cwait.wait); 3108 cwait.wait.func = cwt_wakefn; 3109 cwait.work = work; 3110 3111 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 3112 TASK_UNINTERRUPTIBLE); 3113 if (work_is_canceling(work)) 3114 schedule(); 3115 finish_wait(&cancel_waitq, &cwait.wait); 3116 } 3117 } while (unlikely(ret < 0)); 3118 3119 /* tell other tasks trying to grab @work to back off */ 3120 mark_work_canceling(work); 3121 local_irq_restore(flags); 3122 3123 /* 3124 * This allows canceling during early boot. We know that @work 3125 * isn't executing. 3126 */ 3127 if (wq_online) 3128 __flush_work(work, true); 3129 3130 clear_work_data(work); 3131 3132 /* 3133 * Paired with prepare_to_wait() above so that either 3134 * waitqueue_active() is visible here or !work_is_canceling() is 3135 * visible there. 3136 */ 3137 smp_mb(); 3138 if (waitqueue_active(&cancel_waitq)) 3139 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 3140 3141 return ret; 3142 } 3143 3144 /** 3145 * cancel_work_sync - cancel a work and wait for it to finish 3146 * @work: the work to cancel 3147 * 3148 * Cancel @work and wait for its execution to finish. This function 3149 * can be used even if the work re-queues itself or migrates to 3150 * another workqueue. On return from this function, @work is 3151 * guaranteed to be not pending or executing on any CPU. 3152 * 3153 * cancel_work_sync(&delayed_work->work) must not be used for 3154 * delayed_work's. Use cancel_delayed_work_sync() instead. 3155 * 3156 * The caller must ensure that the workqueue on which @work was last 3157 * queued can't be destroyed before this function returns. 3158 * 3159 * Return: 3160 * %true if @work was pending, %false otherwise. 3161 */ 3162 bool cancel_work_sync(struct work_struct *work) 3163 { 3164 return __cancel_work_timer(work, false); 3165 } 3166 EXPORT_SYMBOL_GPL(cancel_work_sync); 3167 3168 /** 3169 * flush_delayed_work - wait for a dwork to finish executing the last queueing 3170 * @dwork: the delayed work to flush 3171 * 3172 * Delayed timer is cancelled and the pending work is queued for 3173 * immediate execution. Like flush_work(), this function only 3174 * considers the last queueing instance of @dwork. 3175 * 3176 * Return: 3177 * %true if flush_work() waited for the work to finish execution, 3178 * %false if it was already idle. 3179 */ 3180 bool flush_delayed_work(struct delayed_work *dwork) 3181 { 3182 local_irq_disable(); 3183 if (del_timer_sync(&dwork->timer)) 3184 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 3185 local_irq_enable(); 3186 return flush_work(&dwork->work); 3187 } 3188 EXPORT_SYMBOL(flush_delayed_work); 3189 3190 /** 3191 * flush_rcu_work - wait for a rwork to finish executing the last queueing 3192 * @rwork: the rcu work to flush 3193 * 3194 * Return: 3195 * %true if flush_rcu_work() waited for the work to finish execution, 3196 * %false if it was already idle. 3197 */ 3198 bool flush_rcu_work(struct rcu_work *rwork) 3199 { 3200 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 3201 rcu_barrier(); 3202 flush_work(&rwork->work); 3203 return true; 3204 } else { 3205 return flush_work(&rwork->work); 3206 } 3207 } 3208 EXPORT_SYMBOL(flush_rcu_work); 3209 3210 static bool __cancel_work(struct work_struct *work, bool is_dwork) 3211 { 3212 unsigned long flags; 3213 int ret; 3214 3215 do { 3216 ret = try_to_grab_pending(work, is_dwork, &flags); 3217 } while (unlikely(ret == -EAGAIN)); 3218 3219 if (unlikely(ret < 0)) 3220 return false; 3221 3222 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 3223 local_irq_restore(flags); 3224 return ret; 3225 } 3226 3227 /** 3228 * cancel_delayed_work - cancel a delayed work 3229 * @dwork: delayed_work to cancel 3230 * 3231 * Kill off a pending delayed_work. 3232 * 3233 * Return: %true if @dwork was pending and canceled; %false if it wasn't 3234 * pending. 3235 * 3236 * Note: 3237 * The work callback function may still be running on return, unless 3238 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 3239 * use cancel_delayed_work_sync() to wait on it. 3240 * 3241 * This function is safe to call from any context including IRQ handler. 3242 */ 3243 bool cancel_delayed_work(struct delayed_work *dwork) 3244 { 3245 return __cancel_work(&dwork->work, true); 3246 } 3247 EXPORT_SYMBOL(cancel_delayed_work); 3248 3249 /** 3250 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3251 * @dwork: the delayed work cancel 3252 * 3253 * This is cancel_work_sync() for delayed works. 3254 * 3255 * Return: 3256 * %true if @dwork was pending, %false otherwise. 3257 */ 3258 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3259 { 3260 return __cancel_work_timer(&dwork->work, true); 3261 } 3262 EXPORT_SYMBOL(cancel_delayed_work_sync); 3263 3264 /** 3265 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3266 * @func: the function to call 3267 * 3268 * schedule_on_each_cpu() executes @func on each online CPU using the 3269 * system workqueue and blocks until all CPUs have completed. 3270 * schedule_on_each_cpu() is very slow. 3271 * 3272 * Return: 3273 * 0 on success, -errno on failure. 3274 */ 3275 int schedule_on_each_cpu(work_func_t func) 3276 { 3277 int cpu; 3278 struct work_struct __percpu *works; 3279 3280 works = alloc_percpu(struct work_struct); 3281 if (!works) 3282 return -ENOMEM; 3283 3284 get_online_cpus(); 3285 3286 for_each_online_cpu(cpu) { 3287 struct work_struct *work = per_cpu_ptr(works, cpu); 3288 3289 INIT_WORK(work, func); 3290 schedule_work_on(cpu, work); 3291 } 3292 3293 for_each_online_cpu(cpu) 3294 flush_work(per_cpu_ptr(works, cpu)); 3295 3296 put_online_cpus(); 3297 free_percpu(works); 3298 return 0; 3299 } 3300 3301 /** 3302 * execute_in_process_context - reliably execute the routine with user context 3303 * @fn: the function to execute 3304 * @ew: guaranteed storage for the execute work structure (must 3305 * be available when the work executes) 3306 * 3307 * Executes the function immediately if process context is available, 3308 * otherwise schedules the function for delayed execution. 3309 * 3310 * Return: 0 - function was executed 3311 * 1 - function was scheduled for execution 3312 */ 3313 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3314 { 3315 if (!in_interrupt()) { 3316 fn(&ew->work); 3317 return 0; 3318 } 3319 3320 INIT_WORK(&ew->work, fn); 3321 schedule_work(&ew->work); 3322 3323 return 1; 3324 } 3325 EXPORT_SYMBOL_GPL(execute_in_process_context); 3326 3327 /** 3328 * free_workqueue_attrs - free a workqueue_attrs 3329 * @attrs: workqueue_attrs to free 3330 * 3331 * Undo alloc_workqueue_attrs(). 3332 */ 3333 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3334 { 3335 if (attrs) { 3336 free_cpumask_var(attrs->cpumask); 3337 kfree(attrs); 3338 } 3339 } 3340 3341 /** 3342 * alloc_workqueue_attrs - allocate a workqueue_attrs 3343 * 3344 * Allocate a new workqueue_attrs, initialize with default settings and 3345 * return it. 3346 * 3347 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3348 */ 3349 struct workqueue_attrs *alloc_workqueue_attrs(void) 3350 { 3351 struct workqueue_attrs *attrs; 3352 3353 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); 3354 if (!attrs) 3355 goto fail; 3356 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) 3357 goto fail; 3358 3359 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3360 return attrs; 3361 fail: 3362 free_workqueue_attrs(attrs); 3363 return NULL; 3364 } 3365 3366 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3367 const struct workqueue_attrs *from) 3368 { 3369 to->nice = from->nice; 3370 cpumask_copy(to->cpumask, from->cpumask); 3371 /* 3372 * Unlike hash and equality test, this function doesn't ignore 3373 * ->no_numa as it is used for both pool and wq attrs. Instead, 3374 * get_unbound_pool() explicitly clears ->no_numa after copying. 3375 */ 3376 to->no_numa = from->no_numa; 3377 } 3378 3379 /* hash value of the content of @attr */ 3380 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3381 { 3382 u32 hash = 0; 3383 3384 hash = jhash_1word(attrs->nice, hash); 3385 hash = jhash(cpumask_bits(attrs->cpumask), 3386 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3387 return hash; 3388 } 3389 3390 /* content equality test */ 3391 static bool wqattrs_equal(const struct workqueue_attrs *a, 3392 const struct workqueue_attrs *b) 3393 { 3394 if (a->nice != b->nice) 3395 return false; 3396 if (!cpumask_equal(a->cpumask, b->cpumask)) 3397 return false; 3398 return true; 3399 } 3400 3401 /** 3402 * init_worker_pool - initialize a newly zalloc'd worker_pool 3403 * @pool: worker_pool to initialize 3404 * 3405 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3406 * 3407 * Return: 0 on success, -errno on failure. Even on failure, all fields 3408 * inside @pool proper are initialized and put_unbound_pool() can be called 3409 * on @pool safely to release it. 3410 */ 3411 static int init_worker_pool(struct worker_pool *pool) 3412 { 3413 spin_lock_init(&pool->lock); 3414 pool->id = -1; 3415 pool->cpu = -1; 3416 pool->node = NUMA_NO_NODE; 3417 pool->flags |= POOL_DISASSOCIATED; 3418 pool->watchdog_ts = jiffies; 3419 INIT_LIST_HEAD(&pool->worklist); 3420 INIT_LIST_HEAD(&pool->idle_list); 3421 hash_init(pool->busy_hash); 3422 3423 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 3424 3425 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 3426 3427 INIT_LIST_HEAD(&pool->workers); 3428 3429 ida_init(&pool->worker_ida); 3430 INIT_HLIST_NODE(&pool->hash_node); 3431 pool->refcnt = 1; 3432 3433 /* shouldn't fail above this point */ 3434 pool->attrs = alloc_workqueue_attrs(); 3435 if (!pool->attrs) 3436 return -ENOMEM; 3437 return 0; 3438 } 3439 3440 #ifdef CONFIG_LOCKDEP 3441 static void wq_init_lockdep(struct workqueue_struct *wq) 3442 { 3443 char *lock_name; 3444 3445 lockdep_register_key(&wq->key); 3446 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 3447 if (!lock_name) 3448 lock_name = wq->name; 3449 3450 wq->lock_name = lock_name; 3451 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); 3452 } 3453 3454 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3455 { 3456 lockdep_unregister_key(&wq->key); 3457 } 3458 3459 static void wq_free_lockdep(struct workqueue_struct *wq) 3460 { 3461 if (wq->lock_name != wq->name) 3462 kfree(wq->lock_name); 3463 } 3464 #else 3465 static void wq_init_lockdep(struct workqueue_struct *wq) 3466 { 3467 } 3468 3469 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3470 { 3471 } 3472 3473 static void wq_free_lockdep(struct workqueue_struct *wq) 3474 { 3475 } 3476 #endif 3477 3478 static void rcu_free_wq(struct rcu_head *rcu) 3479 { 3480 struct workqueue_struct *wq = 3481 container_of(rcu, struct workqueue_struct, rcu); 3482 3483 wq_free_lockdep(wq); 3484 3485 if (!(wq->flags & WQ_UNBOUND)) 3486 free_percpu(wq->cpu_pwqs); 3487 else 3488 free_workqueue_attrs(wq->unbound_attrs); 3489 3490 kfree(wq->rescuer); 3491 kfree(wq); 3492 } 3493 3494 static void rcu_free_pool(struct rcu_head *rcu) 3495 { 3496 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3497 3498 ida_destroy(&pool->worker_ida); 3499 free_workqueue_attrs(pool->attrs); 3500 kfree(pool); 3501 } 3502 3503 /** 3504 * put_unbound_pool - put a worker_pool 3505 * @pool: worker_pool to put 3506 * 3507 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 3508 * safe manner. get_unbound_pool() calls this function on its failure path 3509 * and this function should be able to release pools which went through, 3510 * successfully or not, init_worker_pool(). 3511 * 3512 * Should be called with wq_pool_mutex held. 3513 */ 3514 static void put_unbound_pool(struct worker_pool *pool) 3515 { 3516 DECLARE_COMPLETION_ONSTACK(detach_completion); 3517 struct worker *worker; 3518 3519 lockdep_assert_held(&wq_pool_mutex); 3520 3521 if (--pool->refcnt) 3522 return; 3523 3524 /* sanity checks */ 3525 if (WARN_ON(!(pool->cpu < 0)) || 3526 WARN_ON(!list_empty(&pool->worklist))) 3527 return; 3528 3529 /* release id and unhash */ 3530 if (pool->id >= 0) 3531 idr_remove(&worker_pool_idr, pool->id); 3532 hash_del(&pool->hash_node); 3533 3534 /* 3535 * Become the manager and destroy all workers. This prevents 3536 * @pool's workers from blocking on attach_mutex. We're the last 3537 * manager and @pool gets freed with the flag set. 3538 */ 3539 spin_lock_irq(&pool->lock); 3540 wait_event_lock_irq(wq_manager_wait, 3541 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock); 3542 pool->flags |= POOL_MANAGER_ACTIVE; 3543 3544 while ((worker = first_idle_worker(pool))) 3545 destroy_worker(worker); 3546 WARN_ON(pool->nr_workers || pool->nr_idle); 3547 spin_unlock_irq(&pool->lock); 3548 3549 mutex_lock(&wq_pool_attach_mutex); 3550 if (!list_empty(&pool->workers)) 3551 pool->detach_completion = &detach_completion; 3552 mutex_unlock(&wq_pool_attach_mutex); 3553 3554 if (pool->detach_completion) 3555 wait_for_completion(pool->detach_completion); 3556 3557 /* shut down the timers */ 3558 del_timer_sync(&pool->idle_timer); 3559 del_timer_sync(&pool->mayday_timer); 3560 3561 /* RCU protected to allow dereferences from get_work_pool() */ 3562 call_rcu(&pool->rcu, rcu_free_pool); 3563 } 3564 3565 /** 3566 * get_unbound_pool - get a worker_pool with the specified attributes 3567 * @attrs: the attributes of the worker_pool to get 3568 * 3569 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3570 * reference count and return it. If there already is a matching 3571 * worker_pool, it will be used; otherwise, this function attempts to 3572 * create a new one. 3573 * 3574 * Should be called with wq_pool_mutex held. 3575 * 3576 * Return: On success, a worker_pool with the same attributes as @attrs. 3577 * On failure, %NULL. 3578 */ 3579 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3580 { 3581 u32 hash = wqattrs_hash(attrs); 3582 struct worker_pool *pool; 3583 int node; 3584 int target_node = NUMA_NO_NODE; 3585 3586 lockdep_assert_held(&wq_pool_mutex); 3587 3588 /* do we already have a matching pool? */ 3589 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3590 if (wqattrs_equal(pool->attrs, attrs)) { 3591 pool->refcnt++; 3592 return pool; 3593 } 3594 } 3595 3596 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3597 if (wq_numa_enabled) { 3598 for_each_node(node) { 3599 if (cpumask_subset(attrs->cpumask, 3600 wq_numa_possible_cpumask[node])) { 3601 target_node = node; 3602 break; 3603 } 3604 } 3605 } 3606 3607 /* nope, create a new one */ 3608 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3609 if (!pool || init_worker_pool(pool) < 0) 3610 goto fail; 3611 3612 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3613 copy_workqueue_attrs(pool->attrs, attrs); 3614 pool->node = target_node; 3615 3616 /* 3617 * no_numa isn't a worker_pool attribute, always clear it. See 3618 * 'struct workqueue_attrs' comments for detail. 3619 */ 3620 pool->attrs->no_numa = false; 3621 3622 if (worker_pool_assign_id(pool) < 0) 3623 goto fail; 3624 3625 /* create and start the initial worker */ 3626 if (wq_online && !create_worker(pool)) 3627 goto fail; 3628 3629 /* install */ 3630 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3631 3632 return pool; 3633 fail: 3634 if (pool) 3635 put_unbound_pool(pool); 3636 return NULL; 3637 } 3638 3639 static void rcu_free_pwq(struct rcu_head *rcu) 3640 { 3641 kmem_cache_free(pwq_cache, 3642 container_of(rcu, struct pool_workqueue, rcu)); 3643 } 3644 3645 /* 3646 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3647 * and needs to be destroyed. 3648 */ 3649 static void pwq_unbound_release_workfn(struct work_struct *work) 3650 { 3651 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3652 unbound_release_work); 3653 struct workqueue_struct *wq = pwq->wq; 3654 struct worker_pool *pool = pwq->pool; 3655 bool is_last; 3656 3657 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3658 return; 3659 3660 mutex_lock(&wq->mutex); 3661 list_del_rcu(&pwq->pwqs_node); 3662 is_last = list_empty(&wq->pwqs); 3663 mutex_unlock(&wq->mutex); 3664 3665 mutex_lock(&wq_pool_mutex); 3666 put_unbound_pool(pool); 3667 mutex_unlock(&wq_pool_mutex); 3668 3669 call_rcu(&pwq->rcu, rcu_free_pwq); 3670 3671 /* 3672 * If we're the last pwq going away, @wq is already dead and no one 3673 * is gonna access it anymore. Schedule RCU free. 3674 */ 3675 if (is_last) { 3676 wq_unregister_lockdep(wq); 3677 call_rcu(&wq->rcu, rcu_free_wq); 3678 } 3679 } 3680 3681 /** 3682 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3683 * @pwq: target pool_workqueue 3684 * 3685 * If @pwq isn't freezing, set @pwq->max_active to the associated 3686 * workqueue's saved_max_active and activate delayed work items 3687 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3688 */ 3689 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3690 { 3691 struct workqueue_struct *wq = pwq->wq; 3692 bool freezable = wq->flags & WQ_FREEZABLE; 3693 unsigned long flags; 3694 3695 /* for @wq->saved_max_active */ 3696 lockdep_assert_held(&wq->mutex); 3697 3698 /* fast exit for non-freezable wqs */ 3699 if (!freezable && pwq->max_active == wq->saved_max_active) 3700 return; 3701 3702 /* this function can be called during early boot w/ irq disabled */ 3703 spin_lock_irqsave(&pwq->pool->lock, flags); 3704 3705 /* 3706 * During [un]freezing, the caller is responsible for ensuring that 3707 * this function is called at least once after @workqueue_freezing 3708 * is updated and visible. 3709 */ 3710 if (!freezable || !workqueue_freezing) { 3711 pwq->max_active = wq->saved_max_active; 3712 3713 while (!list_empty(&pwq->delayed_works) && 3714 pwq->nr_active < pwq->max_active) 3715 pwq_activate_first_delayed(pwq); 3716 3717 /* 3718 * Need to kick a worker after thawed or an unbound wq's 3719 * max_active is bumped. It's a slow path. Do it always. 3720 */ 3721 wake_up_worker(pwq->pool); 3722 } else { 3723 pwq->max_active = 0; 3724 } 3725 3726 spin_unlock_irqrestore(&pwq->pool->lock, flags); 3727 } 3728 3729 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3730 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3731 struct worker_pool *pool) 3732 { 3733 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3734 3735 memset(pwq, 0, sizeof(*pwq)); 3736 3737 pwq->pool = pool; 3738 pwq->wq = wq; 3739 pwq->flush_color = -1; 3740 pwq->refcnt = 1; 3741 INIT_LIST_HEAD(&pwq->delayed_works); 3742 INIT_LIST_HEAD(&pwq->pwqs_node); 3743 INIT_LIST_HEAD(&pwq->mayday_node); 3744 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3745 } 3746 3747 /* sync @pwq with the current state of its associated wq and link it */ 3748 static void link_pwq(struct pool_workqueue *pwq) 3749 { 3750 struct workqueue_struct *wq = pwq->wq; 3751 3752 lockdep_assert_held(&wq->mutex); 3753 3754 /* may be called multiple times, ignore if already linked */ 3755 if (!list_empty(&pwq->pwqs_node)) 3756 return; 3757 3758 /* set the matching work_color */ 3759 pwq->work_color = wq->work_color; 3760 3761 /* sync max_active to the current setting */ 3762 pwq_adjust_max_active(pwq); 3763 3764 /* link in @pwq */ 3765 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3766 } 3767 3768 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3769 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3770 const struct workqueue_attrs *attrs) 3771 { 3772 struct worker_pool *pool; 3773 struct pool_workqueue *pwq; 3774 3775 lockdep_assert_held(&wq_pool_mutex); 3776 3777 pool = get_unbound_pool(attrs); 3778 if (!pool) 3779 return NULL; 3780 3781 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3782 if (!pwq) { 3783 put_unbound_pool(pool); 3784 return NULL; 3785 } 3786 3787 init_pwq(pwq, wq, pool); 3788 return pwq; 3789 } 3790 3791 /** 3792 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3793 * @attrs: the wq_attrs of the default pwq of the target workqueue 3794 * @node: the target NUMA node 3795 * @cpu_going_down: if >= 0, the CPU to consider as offline 3796 * @cpumask: outarg, the resulting cpumask 3797 * 3798 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3799 * @cpu_going_down is >= 0, that cpu is considered offline during 3800 * calculation. The result is stored in @cpumask. 3801 * 3802 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3803 * enabled and @node has online CPUs requested by @attrs, the returned 3804 * cpumask is the intersection of the possible CPUs of @node and 3805 * @attrs->cpumask. 3806 * 3807 * The caller is responsible for ensuring that the cpumask of @node stays 3808 * stable. 3809 * 3810 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3811 * %false if equal. 3812 */ 3813 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3814 int cpu_going_down, cpumask_t *cpumask) 3815 { 3816 if (!wq_numa_enabled || attrs->no_numa) 3817 goto use_dfl; 3818 3819 /* does @node have any online CPUs @attrs wants? */ 3820 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3821 if (cpu_going_down >= 0) 3822 cpumask_clear_cpu(cpu_going_down, cpumask); 3823 3824 if (cpumask_empty(cpumask)) 3825 goto use_dfl; 3826 3827 /* yeap, return possible CPUs in @node that @attrs wants */ 3828 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3829 3830 if (cpumask_empty(cpumask)) { 3831 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 3832 "possible intersect\n"); 3833 return false; 3834 } 3835 3836 return !cpumask_equal(cpumask, attrs->cpumask); 3837 3838 use_dfl: 3839 cpumask_copy(cpumask, attrs->cpumask); 3840 return false; 3841 } 3842 3843 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3844 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3845 int node, 3846 struct pool_workqueue *pwq) 3847 { 3848 struct pool_workqueue *old_pwq; 3849 3850 lockdep_assert_held(&wq_pool_mutex); 3851 lockdep_assert_held(&wq->mutex); 3852 3853 /* link_pwq() can handle duplicate calls */ 3854 link_pwq(pwq); 3855 3856 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3857 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3858 return old_pwq; 3859 } 3860 3861 /* context to store the prepared attrs & pwqs before applying */ 3862 struct apply_wqattrs_ctx { 3863 struct workqueue_struct *wq; /* target workqueue */ 3864 struct workqueue_attrs *attrs; /* attrs to apply */ 3865 struct list_head list; /* queued for batching commit */ 3866 struct pool_workqueue *dfl_pwq; 3867 struct pool_workqueue *pwq_tbl[]; 3868 }; 3869 3870 /* free the resources after success or abort */ 3871 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 3872 { 3873 if (ctx) { 3874 int node; 3875 3876 for_each_node(node) 3877 put_pwq_unlocked(ctx->pwq_tbl[node]); 3878 put_pwq_unlocked(ctx->dfl_pwq); 3879 3880 free_workqueue_attrs(ctx->attrs); 3881 3882 kfree(ctx); 3883 } 3884 } 3885 3886 /* allocate the attrs and pwqs for later installation */ 3887 static struct apply_wqattrs_ctx * 3888 apply_wqattrs_prepare(struct workqueue_struct *wq, 3889 const struct workqueue_attrs *attrs) 3890 { 3891 struct apply_wqattrs_ctx *ctx; 3892 struct workqueue_attrs *new_attrs, *tmp_attrs; 3893 int node; 3894 3895 lockdep_assert_held(&wq_pool_mutex); 3896 3897 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL); 3898 3899 new_attrs = alloc_workqueue_attrs(); 3900 tmp_attrs = alloc_workqueue_attrs(); 3901 if (!ctx || !new_attrs || !tmp_attrs) 3902 goto out_free; 3903 3904 /* 3905 * Calculate the attrs of the default pwq. 3906 * If the user configured cpumask doesn't overlap with the 3907 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 3908 */ 3909 copy_workqueue_attrs(new_attrs, attrs); 3910 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask); 3911 if (unlikely(cpumask_empty(new_attrs->cpumask))) 3912 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask); 3913 3914 /* 3915 * We may create multiple pwqs with differing cpumasks. Make a 3916 * copy of @new_attrs which will be modified and used to obtain 3917 * pools. 3918 */ 3919 copy_workqueue_attrs(tmp_attrs, new_attrs); 3920 3921 /* 3922 * If something goes wrong during CPU up/down, we'll fall back to 3923 * the default pwq covering whole @attrs->cpumask. Always create 3924 * it even if we don't use it immediately. 3925 */ 3926 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3927 if (!ctx->dfl_pwq) 3928 goto out_free; 3929 3930 for_each_node(node) { 3931 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 3932 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3933 if (!ctx->pwq_tbl[node]) 3934 goto out_free; 3935 } else { 3936 ctx->dfl_pwq->refcnt++; 3937 ctx->pwq_tbl[node] = ctx->dfl_pwq; 3938 } 3939 } 3940 3941 /* save the user configured attrs and sanitize it. */ 3942 copy_workqueue_attrs(new_attrs, attrs); 3943 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3944 ctx->attrs = new_attrs; 3945 3946 ctx->wq = wq; 3947 free_workqueue_attrs(tmp_attrs); 3948 return ctx; 3949 3950 out_free: 3951 free_workqueue_attrs(tmp_attrs); 3952 free_workqueue_attrs(new_attrs); 3953 apply_wqattrs_cleanup(ctx); 3954 return NULL; 3955 } 3956 3957 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 3958 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 3959 { 3960 int node; 3961 3962 /* all pwqs have been created successfully, let's install'em */ 3963 mutex_lock(&ctx->wq->mutex); 3964 3965 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 3966 3967 /* save the previous pwq and install the new one */ 3968 for_each_node(node) 3969 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 3970 ctx->pwq_tbl[node]); 3971 3972 /* @dfl_pwq might not have been used, ensure it's linked */ 3973 link_pwq(ctx->dfl_pwq); 3974 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 3975 3976 mutex_unlock(&ctx->wq->mutex); 3977 } 3978 3979 static void apply_wqattrs_lock(void) 3980 { 3981 /* CPUs should stay stable across pwq creations and installations */ 3982 get_online_cpus(); 3983 mutex_lock(&wq_pool_mutex); 3984 } 3985 3986 static void apply_wqattrs_unlock(void) 3987 { 3988 mutex_unlock(&wq_pool_mutex); 3989 put_online_cpus(); 3990 } 3991 3992 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 3993 const struct workqueue_attrs *attrs) 3994 { 3995 struct apply_wqattrs_ctx *ctx; 3996 3997 /* only unbound workqueues can change attributes */ 3998 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 3999 return -EINVAL; 4000 4001 /* creating multiple pwqs breaks ordering guarantee */ 4002 if (!list_empty(&wq->pwqs)) { 4003 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4004 return -EINVAL; 4005 4006 wq->flags &= ~__WQ_ORDERED; 4007 } 4008 4009 ctx = apply_wqattrs_prepare(wq, attrs); 4010 if (!ctx) 4011 return -ENOMEM; 4012 4013 /* the ctx has been prepared successfully, let's commit it */ 4014 apply_wqattrs_commit(ctx); 4015 apply_wqattrs_cleanup(ctx); 4016 4017 return 0; 4018 } 4019 4020 /** 4021 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 4022 * @wq: the target workqueue 4023 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 4024 * 4025 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 4026 * machines, this function maps a separate pwq to each NUMA node with 4027 * possibles CPUs in @attrs->cpumask so that work items are affine to the 4028 * NUMA node it was issued on. Older pwqs are released as in-flight work 4029 * items finish. Note that a work item which repeatedly requeues itself 4030 * back-to-back will stay on its current pwq. 4031 * 4032 * Performs GFP_KERNEL allocations. 4033 * 4034 * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus(). 4035 * 4036 * Return: 0 on success and -errno on failure. 4037 */ 4038 int apply_workqueue_attrs(struct workqueue_struct *wq, 4039 const struct workqueue_attrs *attrs) 4040 { 4041 int ret; 4042 4043 lockdep_assert_cpus_held(); 4044 4045 mutex_lock(&wq_pool_mutex); 4046 ret = apply_workqueue_attrs_locked(wq, attrs); 4047 mutex_unlock(&wq_pool_mutex); 4048 4049 return ret; 4050 } 4051 4052 /** 4053 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 4054 * @wq: the target workqueue 4055 * @cpu: the CPU coming up or going down 4056 * @online: whether @cpu is coming up or going down 4057 * 4058 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 4059 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 4060 * @wq accordingly. 4061 * 4062 * If NUMA affinity can't be adjusted due to memory allocation failure, it 4063 * falls back to @wq->dfl_pwq which may not be optimal but is always 4064 * correct. 4065 * 4066 * Note that when the last allowed CPU of a NUMA node goes offline for a 4067 * workqueue with a cpumask spanning multiple nodes, the workers which were 4068 * already executing the work items for the workqueue will lose their CPU 4069 * affinity and may execute on any CPU. This is similar to how per-cpu 4070 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 4071 * affinity, it's the user's responsibility to flush the work item from 4072 * CPU_DOWN_PREPARE. 4073 */ 4074 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 4075 bool online) 4076 { 4077 int node = cpu_to_node(cpu); 4078 int cpu_off = online ? -1 : cpu; 4079 struct pool_workqueue *old_pwq = NULL, *pwq; 4080 struct workqueue_attrs *target_attrs; 4081 cpumask_t *cpumask; 4082 4083 lockdep_assert_held(&wq_pool_mutex); 4084 4085 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 4086 wq->unbound_attrs->no_numa) 4087 return; 4088 4089 /* 4090 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 4091 * Let's use a preallocated one. The following buf is protected by 4092 * CPU hotplug exclusion. 4093 */ 4094 target_attrs = wq_update_unbound_numa_attrs_buf; 4095 cpumask = target_attrs->cpumask; 4096 4097 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 4098 pwq = unbound_pwq_by_node(wq, node); 4099 4100 /* 4101 * Let's determine what needs to be done. If the target cpumask is 4102 * different from the default pwq's, we need to compare it to @pwq's 4103 * and create a new one if they don't match. If the target cpumask 4104 * equals the default pwq's, the default pwq should be used. 4105 */ 4106 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 4107 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 4108 return; 4109 } else { 4110 goto use_dfl_pwq; 4111 } 4112 4113 /* create a new pwq */ 4114 pwq = alloc_unbound_pwq(wq, target_attrs); 4115 if (!pwq) { 4116 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 4117 wq->name); 4118 goto use_dfl_pwq; 4119 } 4120 4121 /* Install the new pwq. */ 4122 mutex_lock(&wq->mutex); 4123 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 4124 goto out_unlock; 4125 4126 use_dfl_pwq: 4127 mutex_lock(&wq->mutex); 4128 spin_lock_irq(&wq->dfl_pwq->pool->lock); 4129 get_pwq(wq->dfl_pwq); 4130 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 4131 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 4132 out_unlock: 4133 mutex_unlock(&wq->mutex); 4134 put_pwq_unlocked(old_pwq); 4135 } 4136 4137 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4138 { 4139 bool highpri = wq->flags & WQ_HIGHPRI; 4140 int cpu, ret; 4141 4142 if (!(wq->flags & WQ_UNBOUND)) { 4143 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 4144 if (!wq->cpu_pwqs) 4145 return -ENOMEM; 4146 4147 for_each_possible_cpu(cpu) { 4148 struct pool_workqueue *pwq = 4149 per_cpu_ptr(wq->cpu_pwqs, cpu); 4150 struct worker_pool *cpu_pools = 4151 per_cpu(cpu_worker_pools, cpu); 4152 4153 init_pwq(pwq, wq, &cpu_pools[highpri]); 4154 4155 mutex_lock(&wq->mutex); 4156 link_pwq(pwq); 4157 mutex_unlock(&wq->mutex); 4158 } 4159 return 0; 4160 } 4161 4162 get_online_cpus(); 4163 if (wq->flags & __WQ_ORDERED) { 4164 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 4165 /* there should only be single pwq for ordering guarantee */ 4166 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 4167 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 4168 "ordering guarantee broken for workqueue %s\n", wq->name); 4169 } else { 4170 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4171 } 4172 put_online_cpus(); 4173 4174 return ret; 4175 } 4176 4177 static int wq_clamp_max_active(int max_active, unsigned int flags, 4178 const char *name) 4179 { 4180 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 4181 4182 if (max_active < 1 || max_active > lim) 4183 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4184 max_active, name, 1, lim); 4185 4186 return clamp_val(max_active, 1, lim); 4187 } 4188 4189 /* 4190 * Workqueues which may be used during memory reclaim should have a rescuer 4191 * to guarantee forward progress. 4192 */ 4193 static int init_rescuer(struct workqueue_struct *wq) 4194 { 4195 struct worker *rescuer; 4196 int ret; 4197 4198 if (!(wq->flags & WQ_MEM_RECLAIM)) 4199 return 0; 4200 4201 rescuer = alloc_worker(NUMA_NO_NODE); 4202 if (!rescuer) 4203 return -ENOMEM; 4204 4205 rescuer->rescue_wq = wq; 4206 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name); 4207 ret = PTR_ERR_OR_ZERO(rescuer->task); 4208 if (ret) { 4209 kfree(rescuer); 4210 return ret; 4211 } 4212 4213 wq->rescuer = rescuer; 4214 kthread_bind_mask(rescuer->task, cpu_possible_mask); 4215 wake_up_process(rescuer->task); 4216 4217 return 0; 4218 } 4219 4220 __printf(1, 4) 4221 struct workqueue_struct *alloc_workqueue(const char *fmt, 4222 unsigned int flags, 4223 int max_active, ...) 4224 { 4225 size_t tbl_size = 0; 4226 va_list args; 4227 struct workqueue_struct *wq; 4228 struct pool_workqueue *pwq; 4229 4230 /* 4231 * Unbound && max_active == 1 used to imply ordered, which is no 4232 * longer the case on NUMA machines due to per-node pools. While 4233 * alloc_ordered_workqueue() is the right way to create an ordered 4234 * workqueue, keep the previous behavior to avoid subtle breakages 4235 * on NUMA. 4236 */ 4237 if ((flags & WQ_UNBOUND) && max_active == 1) 4238 flags |= __WQ_ORDERED; 4239 4240 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4241 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4242 flags |= WQ_UNBOUND; 4243 4244 /* allocate wq and format name */ 4245 if (flags & WQ_UNBOUND) 4246 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 4247 4248 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4249 if (!wq) 4250 return NULL; 4251 4252 if (flags & WQ_UNBOUND) { 4253 wq->unbound_attrs = alloc_workqueue_attrs(); 4254 if (!wq->unbound_attrs) 4255 goto err_free_wq; 4256 } 4257 4258 va_start(args, max_active); 4259 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4260 va_end(args); 4261 4262 max_active = max_active ?: WQ_DFL_ACTIVE; 4263 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4264 4265 /* init wq */ 4266 wq->flags = flags; 4267 wq->saved_max_active = max_active; 4268 mutex_init(&wq->mutex); 4269 atomic_set(&wq->nr_pwqs_to_flush, 0); 4270 INIT_LIST_HEAD(&wq->pwqs); 4271 INIT_LIST_HEAD(&wq->flusher_queue); 4272 INIT_LIST_HEAD(&wq->flusher_overflow); 4273 INIT_LIST_HEAD(&wq->maydays); 4274 4275 wq_init_lockdep(wq); 4276 INIT_LIST_HEAD(&wq->list); 4277 4278 if (alloc_and_link_pwqs(wq) < 0) 4279 goto err_unreg_lockdep; 4280 4281 if (wq_online && init_rescuer(wq) < 0) 4282 goto err_destroy; 4283 4284 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4285 goto err_destroy; 4286 4287 /* 4288 * wq_pool_mutex protects global freeze state and workqueues list. 4289 * Grab it, adjust max_active and add the new @wq to workqueues 4290 * list. 4291 */ 4292 mutex_lock(&wq_pool_mutex); 4293 4294 mutex_lock(&wq->mutex); 4295 for_each_pwq(pwq, wq) 4296 pwq_adjust_max_active(pwq); 4297 mutex_unlock(&wq->mutex); 4298 4299 list_add_tail_rcu(&wq->list, &workqueues); 4300 4301 mutex_unlock(&wq_pool_mutex); 4302 4303 return wq; 4304 4305 err_unreg_lockdep: 4306 wq_unregister_lockdep(wq); 4307 wq_free_lockdep(wq); 4308 err_free_wq: 4309 free_workqueue_attrs(wq->unbound_attrs); 4310 kfree(wq); 4311 return NULL; 4312 err_destroy: 4313 destroy_workqueue(wq); 4314 return NULL; 4315 } 4316 EXPORT_SYMBOL_GPL(alloc_workqueue); 4317 4318 static bool pwq_busy(struct pool_workqueue *pwq) 4319 { 4320 int i; 4321 4322 for (i = 0; i < WORK_NR_COLORS; i++) 4323 if (pwq->nr_in_flight[i]) 4324 return true; 4325 4326 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1)) 4327 return true; 4328 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4329 return true; 4330 4331 return false; 4332 } 4333 4334 /** 4335 * destroy_workqueue - safely terminate a workqueue 4336 * @wq: target workqueue 4337 * 4338 * Safely destroy a workqueue. All work currently pending will be done first. 4339 */ 4340 void destroy_workqueue(struct workqueue_struct *wq) 4341 { 4342 struct pool_workqueue *pwq; 4343 int node; 4344 4345 /* 4346 * Remove it from sysfs first so that sanity check failure doesn't 4347 * lead to sysfs name conflicts. 4348 */ 4349 workqueue_sysfs_unregister(wq); 4350 4351 /* drain it before proceeding with destruction */ 4352 drain_workqueue(wq); 4353 4354 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ 4355 if (wq->rescuer) { 4356 struct worker *rescuer = wq->rescuer; 4357 4358 /* this prevents new queueing */ 4359 spin_lock_irq(&wq_mayday_lock); 4360 wq->rescuer = NULL; 4361 spin_unlock_irq(&wq_mayday_lock); 4362 4363 /* rescuer will empty maydays list before exiting */ 4364 kthread_stop(rescuer->task); 4365 kfree(rescuer); 4366 } 4367 4368 /* 4369 * Sanity checks - grab all the locks so that we wait for all 4370 * in-flight operations which may do put_pwq(). 4371 */ 4372 mutex_lock(&wq_pool_mutex); 4373 mutex_lock(&wq->mutex); 4374 for_each_pwq(pwq, wq) { 4375 spin_lock_irq(&pwq->pool->lock); 4376 if (WARN_ON(pwq_busy(pwq))) { 4377 pr_warning("%s: %s has the following busy pwq\n", 4378 __func__, wq->name); 4379 show_pwq(pwq); 4380 spin_unlock_irq(&pwq->pool->lock); 4381 mutex_unlock(&wq->mutex); 4382 mutex_unlock(&wq_pool_mutex); 4383 show_workqueue_state(); 4384 return; 4385 } 4386 spin_unlock_irq(&pwq->pool->lock); 4387 } 4388 mutex_unlock(&wq->mutex); 4389 mutex_unlock(&wq_pool_mutex); 4390 4391 /* 4392 * wq list is used to freeze wq, remove from list after 4393 * flushing is complete in case freeze races us. 4394 */ 4395 mutex_lock(&wq_pool_mutex); 4396 list_del_rcu(&wq->list); 4397 mutex_unlock(&wq_pool_mutex); 4398 4399 if (!(wq->flags & WQ_UNBOUND)) { 4400 wq_unregister_lockdep(wq); 4401 /* 4402 * The base ref is never dropped on per-cpu pwqs. Directly 4403 * schedule RCU free. 4404 */ 4405 call_rcu(&wq->rcu, rcu_free_wq); 4406 } else { 4407 /* 4408 * We're the sole accessor of @wq at this point. Directly 4409 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4410 * @wq will be freed when the last pwq is released. 4411 */ 4412 for_each_node(node) { 4413 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4414 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4415 put_pwq_unlocked(pwq); 4416 } 4417 4418 /* 4419 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4420 * put. Don't access it afterwards. 4421 */ 4422 pwq = wq->dfl_pwq; 4423 wq->dfl_pwq = NULL; 4424 put_pwq_unlocked(pwq); 4425 } 4426 } 4427 EXPORT_SYMBOL_GPL(destroy_workqueue); 4428 4429 /** 4430 * workqueue_set_max_active - adjust max_active of a workqueue 4431 * @wq: target workqueue 4432 * @max_active: new max_active value. 4433 * 4434 * Set max_active of @wq to @max_active. 4435 * 4436 * CONTEXT: 4437 * Don't call from IRQ context. 4438 */ 4439 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4440 { 4441 struct pool_workqueue *pwq; 4442 4443 /* disallow meddling with max_active for ordered workqueues */ 4444 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4445 return; 4446 4447 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4448 4449 mutex_lock(&wq->mutex); 4450 4451 wq->flags &= ~__WQ_ORDERED; 4452 wq->saved_max_active = max_active; 4453 4454 for_each_pwq(pwq, wq) 4455 pwq_adjust_max_active(pwq); 4456 4457 mutex_unlock(&wq->mutex); 4458 } 4459 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4460 4461 /** 4462 * current_work - retrieve %current task's work struct 4463 * 4464 * Determine if %current task is a workqueue worker and what it's working on. 4465 * Useful to find out the context that the %current task is running in. 4466 * 4467 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 4468 */ 4469 struct work_struct *current_work(void) 4470 { 4471 struct worker *worker = current_wq_worker(); 4472 4473 return worker ? worker->current_work : NULL; 4474 } 4475 EXPORT_SYMBOL(current_work); 4476 4477 /** 4478 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4479 * 4480 * Determine whether %current is a workqueue rescuer. Can be used from 4481 * work functions to determine whether it's being run off the rescuer task. 4482 * 4483 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4484 */ 4485 bool current_is_workqueue_rescuer(void) 4486 { 4487 struct worker *worker = current_wq_worker(); 4488 4489 return worker && worker->rescue_wq; 4490 } 4491 4492 /** 4493 * workqueue_congested - test whether a workqueue is congested 4494 * @cpu: CPU in question 4495 * @wq: target workqueue 4496 * 4497 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4498 * no synchronization around this function and the test result is 4499 * unreliable and only useful as advisory hints or for debugging. 4500 * 4501 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4502 * Note that both per-cpu and unbound workqueues may be associated with 4503 * multiple pool_workqueues which have separate congested states. A 4504 * workqueue being congested on one CPU doesn't mean the workqueue is also 4505 * contested on other CPUs / NUMA nodes. 4506 * 4507 * Return: 4508 * %true if congested, %false otherwise. 4509 */ 4510 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4511 { 4512 struct pool_workqueue *pwq; 4513 bool ret; 4514 4515 rcu_read_lock(); 4516 preempt_disable(); 4517 4518 if (cpu == WORK_CPU_UNBOUND) 4519 cpu = smp_processor_id(); 4520 4521 if (!(wq->flags & WQ_UNBOUND)) 4522 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4523 else 4524 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4525 4526 ret = !list_empty(&pwq->delayed_works); 4527 preempt_enable(); 4528 rcu_read_unlock(); 4529 4530 return ret; 4531 } 4532 EXPORT_SYMBOL_GPL(workqueue_congested); 4533 4534 /** 4535 * work_busy - test whether a work is currently pending or running 4536 * @work: the work to be tested 4537 * 4538 * Test whether @work is currently pending or running. There is no 4539 * synchronization around this function and the test result is 4540 * unreliable and only useful as advisory hints or for debugging. 4541 * 4542 * Return: 4543 * OR'd bitmask of WORK_BUSY_* bits. 4544 */ 4545 unsigned int work_busy(struct work_struct *work) 4546 { 4547 struct worker_pool *pool; 4548 unsigned long flags; 4549 unsigned int ret = 0; 4550 4551 if (work_pending(work)) 4552 ret |= WORK_BUSY_PENDING; 4553 4554 rcu_read_lock(); 4555 pool = get_work_pool(work); 4556 if (pool) { 4557 spin_lock_irqsave(&pool->lock, flags); 4558 if (find_worker_executing_work(pool, work)) 4559 ret |= WORK_BUSY_RUNNING; 4560 spin_unlock_irqrestore(&pool->lock, flags); 4561 } 4562 rcu_read_unlock(); 4563 4564 return ret; 4565 } 4566 EXPORT_SYMBOL_GPL(work_busy); 4567 4568 /** 4569 * set_worker_desc - set description for the current work item 4570 * @fmt: printf-style format string 4571 * @...: arguments for the format string 4572 * 4573 * This function can be called by a running work function to describe what 4574 * the work item is about. If the worker task gets dumped, this 4575 * information will be printed out together to help debugging. The 4576 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4577 */ 4578 void set_worker_desc(const char *fmt, ...) 4579 { 4580 struct worker *worker = current_wq_worker(); 4581 va_list args; 4582 4583 if (worker) { 4584 va_start(args, fmt); 4585 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4586 va_end(args); 4587 } 4588 } 4589 EXPORT_SYMBOL_GPL(set_worker_desc); 4590 4591 /** 4592 * print_worker_info - print out worker information and description 4593 * @log_lvl: the log level to use when printing 4594 * @task: target task 4595 * 4596 * If @task is a worker and currently executing a work item, print out the 4597 * name of the workqueue being serviced and worker description set with 4598 * set_worker_desc() by the currently executing work item. 4599 * 4600 * This function can be safely called on any task as long as the 4601 * task_struct itself is accessible. While safe, this function isn't 4602 * synchronized and may print out mixups or garbages of limited length. 4603 */ 4604 void print_worker_info(const char *log_lvl, struct task_struct *task) 4605 { 4606 work_func_t *fn = NULL; 4607 char name[WQ_NAME_LEN] = { }; 4608 char desc[WORKER_DESC_LEN] = { }; 4609 struct pool_workqueue *pwq = NULL; 4610 struct workqueue_struct *wq = NULL; 4611 struct worker *worker; 4612 4613 if (!(task->flags & PF_WQ_WORKER)) 4614 return; 4615 4616 /* 4617 * This function is called without any synchronization and @task 4618 * could be in any state. Be careful with dereferences. 4619 */ 4620 worker = kthread_probe_data(task); 4621 4622 /* 4623 * Carefully copy the associated workqueue's workfn, name and desc. 4624 * Keep the original last '\0' in case the original is garbage. 4625 */ 4626 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4627 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4628 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4629 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4630 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4631 4632 if (fn || name[0] || desc[0]) { 4633 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 4634 if (strcmp(name, desc)) 4635 pr_cont(" (%s)", desc); 4636 pr_cont("\n"); 4637 } 4638 } 4639 4640 static void pr_cont_pool_info(struct worker_pool *pool) 4641 { 4642 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4643 if (pool->node != NUMA_NO_NODE) 4644 pr_cont(" node=%d", pool->node); 4645 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4646 } 4647 4648 static void pr_cont_work(bool comma, struct work_struct *work) 4649 { 4650 if (work->func == wq_barrier_func) { 4651 struct wq_barrier *barr; 4652 4653 barr = container_of(work, struct wq_barrier, work); 4654 4655 pr_cont("%s BAR(%d)", comma ? "," : "", 4656 task_pid_nr(barr->task)); 4657 } else { 4658 pr_cont("%s %ps", comma ? "," : "", work->func); 4659 } 4660 } 4661 4662 static void show_pwq(struct pool_workqueue *pwq) 4663 { 4664 struct worker_pool *pool = pwq->pool; 4665 struct work_struct *work; 4666 struct worker *worker; 4667 bool has_in_flight = false, has_pending = false; 4668 int bkt; 4669 4670 pr_info(" pwq %d:", pool->id); 4671 pr_cont_pool_info(pool); 4672 4673 pr_cont(" active=%d/%d refcnt=%d%s\n", 4674 pwq->nr_active, pwq->max_active, pwq->refcnt, 4675 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4676 4677 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4678 if (worker->current_pwq == pwq) { 4679 has_in_flight = true; 4680 break; 4681 } 4682 } 4683 if (has_in_flight) { 4684 bool comma = false; 4685 4686 pr_info(" in-flight:"); 4687 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4688 if (worker->current_pwq != pwq) 4689 continue; 4690 4691 pr_cont("%s %d%s:%ps", comma ? "," : "", 4692 task_pid_nr(worker->task), 4693 worker->rescue_wq ? "(RESCUER)" : "", 4694 worker->current_func); 4695 list_for_each_entry(work, &worker->scheduled, entry) 4696 pr_cont_work(false, work); 4697 comma = true; 4698 } 4699 pr_cont("\n"); 4700 } 4701 4702 list_for_each_entry(work, &pool->worklist, entry) { 4703 if (get_work_pwq(work) == pwq) { 4704 has_pending = true; 4705 break; 4706 } 4707 } 4708 if (has_pending) { 4709 bool comma = false; 4710 4711 pr_info(" pending:"); 4712 list_for_each_entry(work, &pool->worklist, entry) { 4713 if (get_work_pwq(work) != pwq) 4714 continue; 4715 4716 pr_cont_work(comma, work); 4717 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4718 } 4719 pr_cont("\n"); 4720 } 4721 4722 if (!list_empty(&pwq->delayed_works)) { 4723 bool comma = false; 4724 4725 pr_info(" delayed:"); 4726 list_for_each_entry(work, &pwq->delayed_works, entry) { 4727 pr_cont_work(comma, work); 4728 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4729 } 4730 pr_cont("\n"); 4731 } 4732 } 4733 4734 /** 4735 * show_workqueue_state - dump workqueue state 4736 * 4737 * Called from a sysrq handler or try_to_freeze_tasks() and prints out 4738 * all busy workqueues and pools. 4739 */ 4740 void show_workqueue_state(void) 4741 { 4742 struct workqueue_struct *wq; 4743 struct worker_pool *pool; 4744 unsigned long flags; 4745 int pi; 4746 4747 rcu_read_lock(); 4748 4749 pr_info("Showing busy workqueues and worker pools:\n"); 4750 4751 list_for_each_entry_rcu(wq, &workqueues, list) { 4752 struct pool_workqueue *pwq; 4753 bool idle = true; 4754 4755 for_each_pwq(pwq, wq) { 4756 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) { 4757 idle = false; 4758 break; 4759 } 4760 } 4761 if (idle) 4762 continue; 4763 4764 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4765 4766 for_each_pwq(pwq, wq) { 4767 spin_lock_irqsave(&pwq->pool->lock, flags); 4768 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4769 show_pwq(pwq); 4770 spin_unlock_irqrestore(&pwq->pool->lock, flags); 4771 /* 4772 * We could be printing a lot from atomic context, e.g. 4773 * sysrq-t -> show_workqueue_state(). Avoid triggering 4774 * hard lockup. 4775 */ 4776 touch_nmi_watchdog(); 4777 } 4778 } 4779 4780 for_each_pool(pool, pi) { 4781 struct worker *worker; 4782 bool first = true; 4783 4784 spin_lock_irqsave(&pool->lock, flags); 4785 if (pool->nr_workers == pool->nr_idle) 4786 goto next_pool; 4787 4788 pr_info("pool %d:", pool->id); 4789 pr_cont_pool_info(pool); 4790 pr_cont(" hung=%us workers=%d", 4791 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000, 4792 pool->nr_workers); 4793 if (pool->manager) 4794 pr_cont(" manager: %d", 4795 task_pid_nr(pool->manager->task)); 4796 list_for_each_entry(worker, &pool->idle_list, entry) { 4797 pr_cont(" %s%d", first ? "idle: " : "", 4798 task_pid_nr(worker->task)); 4799 first = false; 4800 } 4801 pr_cont("\n"); 4802 next_pool: 4803 spin_unlock_irqrestore(&pool->lock, flags); 4804 /* 4805 * We could be printing a lot from atomic context, e.g. 4806 * sysrq-t -> show_workqueue_state(). Avoid triggering 4807 * hard lockup. 4808 */ 4809 touch_nmi_watchdog(); 4810 } 4811 4812 rcu_read_unlock(); 4813 } 4814 4815 /* used to show worker information through /proc/PID/{comm,stat,status} */ 4816 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 4817 { 4818 int off; 4819 4820 /* always show the actual comm */ 4821 off = strscpy(buf, task->comm, size); 4822 if (off < 0) 4823 return; 4824 4825 /* stabilize PF_WQ_WORKER and worker pool association */ 4826 mutex_lock(&wq_pool_attach_mutex); 4827 4828 if (task->flags & PF_WQ_WORKER) { 4829 struct worker *worker = kthread_data(task); 4830 struct worker_pool *pool = worker->pool; 4831 4832 if (pool) { 4833 spin_lock_irq(&pool->lock); 4834 /* 4835 * ->desc tracks information (wq name or 4836 * set_worker_desc()) for the latest execution. If 4837 * current, prepend '+', otherwise '-'. 4838 */ 4839 if (worker->desc[0] != '\0') { 4840 if (worker->current_work) 4841 scnprintf(buf + off, size - off, "+%s", 4842 worker->desc); 4843 else 4844 scnprintf(buf + off, size - off, "-%s", 4845 worker->desc); 4846 } 4847 spin_unlock_irq(&pool->lock); 4848 } 4849 } 4850 4851 mutex_unlock(&wq_pool_attach_mutex); 4852 } 4853 4854 #ifdef CONFIG_SMP 4855 4856 /* 4857 * CPU hotplug. 4858 * 4859 * There are two challenges in supporting CPU hotplug. Firstly, there 4860 * are a lot of assumptions on strong associations among work, pwq and 4861 * pool which make migrating pending and scheduled works very 4862 * difficult to implement without impacting hot paths. Secondly, 4863 * worker pools serve mix of short, long and very long running works making 4864 * blocked draining impractical. 4865 * 4866 * This is solved by allowing the pools to be disassociated from the CPU 4867 * running as an unbound one and allowing it to be reattached later if the 4868 * cpu comes back online. 4869 */ 4870 4871 static void unbind_workers(int cpu) 4872 { 4873 struct worker_pool *pool; 4874 struct worker *worker; 4875 4876 for_each_cpu_worker_pool(pool, cpu) { 4877 mutex_lock(&wq_pool_attach_mutex); 4878 spin_lock_irq(&pool->lock); 4879 4880 /* 4881 * We've blocked all attach/detach operations. Make all workers 4882 * unbound and set DISASSOCIATED. Before this, all workers 4883 * except for the ones which are still executing works from 4884 * before the last CPU down must be on the cpu. After 4885 * this, they may become diasporas. 4886 */ 4887 for_each_pool_worker(worker, pool) 4888 worker->flags |= WORKER_UNBOUND; 4889 4890 pool->flags |= POOL_DISASSOCIATED; 4891 4892 spin_unlock_irq(&pool->lock); 4893 mutex_unlock(&wq_pool_attach_mutex); 4894 4895 /* 4896 * Call schedule() so that we cross rq->lock and thus can 4897 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4898 * This is necessary as scheduler callbacks may be invoked 4899 * from other cpus. 4900 */ 4901 schedule(); 4902 4903 /* 4904 * Sched callbacks are disabled now. Zap nr_running. 4905 * After this, nr_running stays zero and need_more_worker() 4906 * and keep_working() are always true as long as the 4907 * worklist is not empty. This pool now behaves as an 4908 * unbound (in terms of concurrency management) pool which 4909 * are served by workers tied to the pool. 4910 */ 4911 atomic_set(&pool->nr_running, 0); 4912 4913 /* 4914 * With concurrency management just turned off, a busy 4915 * worker blocking could lead to lengthy stalls. Kick off 4916 * unbound chain execution of currently pending work items. 4917 */ 4918 spin_lock_irq(&pool->lock); 4919 wake_up_worker(pool); 4920 spin_unlock_irq(&pool->lock); 4921 } 4922 } 4923 4924 /** 4925 * rebind_workers - rebind all workers of a pool to the associated CPU 4926 * @pool: pool of interest 4927 * 4928 * @pool->cpu is coming online. Rebind all workers to the CPU. 4929 */ 4930 static void rebind_workers(struct worker_pool *pool) 4931 { 4932 struct worker *worker; 4933 4934 lockdep_assert_held(&wq_pool_attach_mutex); 4935 4936 /* 4937 * Restore CPU affinity of all workers. As all idle workers should 4938 * be on the run-queue of the associated CPU before any local 4939 * wake-ups for concurrency management happen, restore CPU affinity 4940 * of all workers first and then clear UNBOUND. As we're called 4941 * from CPU_ONLINE, the following shouldn't fail. 4942 */ 4943 for_each_pool_worker(worker, pool) 4944 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4945 pool->attrs->cpumask) < 0); 4946 4947 spin_lock_irq(&pool->lock); 4948 4949 pool->flags &= ~POOL_DISASSOCIATED; 4950 4951 for_each_pool_worker(worker, pool) { 4952 unsigned int worker_flags = worker->flags; 4953 4954 /* 4955 * A bound idle worker should actually be on the runqueue 4956 * of the associated CPU for local wake-ups targeting it to 4957 * work. Kick all idle workers so that they migrate to the 4958 * associated CPU. Doing this in the same loop as 4959 * replacing UNBOUND with REBOUND is safe as no worker will 4960 * be bound before @pool->lock is released. 4961 */ 4962 if (worker_flags & WORKER_IDLE) 4963 wake_up_process(worker->task); 4964 4965 /* 4966 * We want to clear UNBOUND but can't directly call 4967 * worker_clr_flags() or adjust nr_running. Atomically 4968 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4969 * @worker will clear REBOUND using worker_clr_flags() when 4970 * it initiates the next execution cycle thus restoring 4971 * concurrency management. Note that when or whether 4972 * @worker clears REBOUND doesn't affect correctness. 4973 * 4974 * WRITE_ONCE() is necessary because @worker->flags may be 4975 * tested without holding any lock in 4976 * wq_worker_running(). Without it, NOT_RUNNING test may 4977 * fail incorrectly leading to premature concurrency 4978 * management operations. 4979 */ 4980 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4981 worker_flags |= WORKER_REBOUND; 4982 worker_flags &= ~WORKER_UNBOUND; 4983 WRITE_ONCE(worker->flags, worker_flags); 4984 } 4985 4986 spin_unlock_irq(&pool->lock); 4987 } 4988 4989 /** 4990 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4991 * @pool: unbound pool of interest 4992 * @cpu: the CPU which is coming up 4993 * 4994 * An unbound pool may end up with a cpumask which doesn't have any online 4995 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4996 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4997 * online CPU before, cpus_allowed of all its workers should be restored. 4998 */ 4999 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 5000 { 5001 static cpumask_t cpumask; 5002 struct worker *worker; 5003 5004 lockdep_assert_held(&wq_pool_attach_mutex); 5005 5006 /* is @cpu allowed for @pool? */ 5007 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 5008 return; 5009 5010 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 5011 5012 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 5013 for_each_pool_worker(worker, pool) 5014 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 5015 } 5016 5017 int workqueue_prepare_cpu(unsigned int cpu) 5018 { 5019 struct worker_pool *pool; 5020 5021 for_each_cpu_worker_pool(pool, cpu) { 5022 if (pool->nr_workers) 5023 continue; 5024 if (!create_worker(pool)) 5025 return -ENOMEM; 5026 } 5027 return 0; 5028 } 5029 5030 int workqueue_online_cpu(unsigned int cpu) 5031 { 5032 struct worker_pool *pool; 5033 struct workqueue_struct *wq; 5034 int pi; 5035 5036 mutex_lock(&wq_pool_mutex); 5037 5038 for_each_pool(pool, pi) { 5039 mutex_lock(&wq_pool_attach_mutex); 5040 5041 if (pool->cpu == cpu) 5042 rebind_workers(pool); 5043 else if (pool->cpu < 0) 5044 restore_unbound_workers_cpumask(pool, cpu); 5045 5046 mutex_unlock(&wq_pool_attach_mutex); 5047 } 5048 5049 /* update NUMA affinity of unbound workqueues */ 5050 list_for_each_entry(wq, &workqueues, list) 5051 wq_update_unbound_numa(wq, cpu, true); 5052 5053 mutex_unlock(&wq_pool_mutex); 5054 return 0; 5055 } 5056 5057 int workqueue_offline_cpu(unsigned int cpu) 5058 { 5059 struct workqueue_struct *wq; 5060 5061 /* unbinding per-cpu workers should happen on the local CPU */ 5062 if (WARN_ON(cpu != smp_processor_id())) 5063 return -1; 5064 5065 unbind_workers(cpu); 5066 5067 /* update NUMA affinity of unbound workqueues */ 5068 mutex_lock(&wq_pool_mutex); 5069 list_for_each_entry(wq, &workqueues, list) 5070 wq_update_unbound_numa(wq, cpu, false); 5071 mutex_unlock(&wq_pool_mutex); 5072 5073 return 0; 5074 } 5075 5076 struct work_for_cpu { 5077 struct work_struct work; 5078 long (*fn)(void *); 5079 void *arg; 5080 long ret; 5081 }; 5082 5083 static void work_for_cpu_fn(struct work_struct *work) 5084 { 5085 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 5086 5087 wfc->ret = wfc->fn(wfc->arg); 5088 } 5089 5090 /** 5091 * work_on_cpu - run a function in thread context on a particular cpu 5092 * @cpu: the cpu to run on 5093 * @fn: the function to run 5094 * @arg: the function arg 5095 * 5096 * It is up to the caller to ensure that the cpu doesn't go offline. 5097 * The caller must not hold any locks which would prevent @fn from completing. 5098 * 5099 * Return: The value @fn returns. 5100 */ 5101 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 5102 { 5103 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 5104 5105 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 5106 schedule_work_on(cpu, &wfc.work); 5107 flush_work(&wfc.work); 5108 destroy_work_on_stack(&wfc.work); 5109 return wfc.ret; 5110 } 5111 EXPORT_SYMBOL_GPL(work_on_cpu); 5112 5113 /** 5114 * work_on_cpu_safe - run a function in thread context on a particular cpu 5115 * @cpu: the cpu to run on 5116 * @fn: the function to run 5117 * @arg: the function argument 5118 * 5119 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 5120 * any locks which would prevent @fn from completing. 5121 * 5122 * Return: The value @fn returns. 5123 */ 5124 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) 5125 { 5126 long ret = -ENODEV; 5127 5128 get_online_cpus(); 5129 if (cpu_online(cpu)) 5130 ret = work_on_cpu(cpu, fn, arg); 5131 put_online_cpus(); 5132 return ret; 5133 } 5134 EXPORT_SYMBOL_GPL(work_on_cpu_safe); 5135 #endif /* CONFIG_SMP */ 5136 5137 #ifdef CONFIG_FREEZER 5138 5139 /** 5140 * freeze_workqueues_begin - begin freezing workqueues 5141 * 5142 * Start freezing workqueues. After this function returns, all freezable 5143 * workqueues will queue new works to their delayed_works list instead of 5144 * pool->worklist. 5145 * 5146 * CONTEXT: 5147 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5148 */ 5149 void freeze_workqueues_begin(void) 5150 { 5151 struct workqueue_struct *wq; 5152 struct pool_workqueue *pwq; 5153 5154 mutex_lock(&wq_pool_mutex); 5155 5156 WARN_ON_ONCE(workqueue_freezing); 5157 workqueue_freezing = true; 5158 5159 list_for_each_entry(wq, &workqueues, list) { 5160 mutex_lock(&wq->mutex); 5161 for_each_pwq(pwq, wq) 5162 pwq_adjust_max_active(pwq); 5163 mutex_unlock(&wq->mutex); 5164 } 5165 5166 mutex_unlock(&wq_pool_mutex); 5167 } 5168 5169 /** 5170 * freeze_workqueues_busy - are freezable workqueues still busy? 5171 * 5172 * Check whether freezing is complete. This function must be called 5173 * between freeze_workqueues_begin() and thaw_workqueues(). 5174 * 5175 * CONTEXT: 5176 * Grabs and releases wq_pool_mutex. 5177 * 5178 * Return: 5179 * %true if some freezable workqueues are still busy. %false if freezing 5180 * is complete. 5181 */ 5182 bool freeze_workqueues_busy(void) 5183 { 5184 bool busy = false; 5185 struct workqueue_struct *wq; 5186 struct pool_workqueue *pwq; 5187 5188 mutex_lock(&wq_pool_mutex); 5189 5190 WARN_ON_ONCE(!workqueue_freezing); 5191 5192 list_for_each_entry(wq, &workqueues, list) { 5193 if (!(wq->flags & WQ_FREEZABLE)) 5194 continue; 5195 /* 5196 * nr_active is monotonically decreasing. It's safe 5197 * to peek without lock. 5198 */ 5199 rcu_read_lock(); 5200 for_each_pwq(pwq, wq) { 5201 WARN_ON_ONCE(pwq->nr_active < 0); 5202 if (pwq->nr_active) { 5203 busy = true; 5204 rcu_read_unlock(); 5205 goto out_unlock; 5206 } 5207 } 5208 rcu_read_unlock(); 5209 } 5210 out_unlock: 5211 mutex_unlock(&wq_pool_mutex); 5212 return busy; 5213 } 5214 5215 /** 5216 * thaw_workqueues - thaw workqueues 5217 * 5218 * Thaw workqueues. Normal queueing is restored and all collected 5219 * frozen works are transferred to their respective pool worklists. 5220 * 5221 * CONTEXT: 5222 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5223 */ 5224 void thaw_workqueues(void) 5225 { 5226 struct workqueue_struct *wq; 5227 struct pool_workqueue *pwq; 5228 5229 mutex_lock(&wq_pool_mutex); 5230 5231 if (!workqueue_freezing) 5232 goto out_unlock; 5233 5234 workqueue_freezing = false; 5235 5236 /* restore max_active and repopulate worklist */ 5237 list_for_each_entry(wq, &workqueues, list) { 5238 mutex_lock(&wq->mutex); 5239 for_each_pwq(pwq, wq) 5240 pwq_adjust_max_active(pwq); 5241 mutex_unlock(&wq->mutex); 5242 } 5243 5244 out_unlock: 5245 mutex_unlock(&wq_pool_mutex); 5246 } 5247 #endif /* CONFIG_FREEZER */ 5248 5249 static int workqueue_apply_unbound_cpumask(void) 5250 { 5251 LIST_HEAD(ctxs); 5252 int ret = 0; 5253 struct workqueue_struct *wq; 5254 struct apply_wqattrs_ctx *ctx, *n; 5255 5256 lockdep_assert_held(&wq_pool_mutex); 5257 5258 list_for_each_entry(wq, &workqueues, list) { 5259 if (!(wq->flags & WQ_UNBOUND)) 5260 continue; 5261 /* creating multiple pwqs breaks ordering guarantee */ 5262 if (wq->flags & __WQ_ORDERED) 5263 continue; 5264 5265 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs); 5266 if (!ctx) { 5267 ret = -ENOMEM; 5268 break; 5269 } 5270 5271 list_add_tail(&ctx->list, &ctxs); 5272 } 5273 5274 list_for_each_entry_safe(ctx, n, &ctxs, list) { 5275 if (!ret) 5276 apply_wqattrs_commit(ctx); 5277 apply_wqattrs_cleanup(ctx); 5278 } 5279 5280 return ret; 5281 } 5282 5283 /** 5284 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 5285 * @cpumask: the cpumask to set 5286 * 5287 * The low-level workqueues cpumask is a global cpumask that limits 5288 * the affinity of all unbound workqueues. This function check the @cpumask 5289 * and apply it to all unbound workqueues and updates all pwqs of them. 5290 * 5291 * Retun: 0 - Success 5292 * -EINVAL - Invalid @cpumask 5293 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 5294 */ 5295 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 5296 { 5297 int ret = -EINVAL; 5298 cpumask_var_t saved_cpumask; 5299 5300 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) 5301 return -ENOMEM; 5302 5303 /* 5304 * Not excluding isolated cpus on purpose. 5305 * If the user wishes to include them, we allow that. 5306 */ 5307 cpumask_and(cpumask, cpumask, cpu_possible_mask); 5308 if (!cpumask_empty(cpumask)) { 5309 apply_wqattrs_lock(); 5310 5311 /* save the old wq_unbound_cpumask. */ 5312 cpumask_copy(saved_cpumask, wq_unbound_cpumask); 5313 5314 /* update wq_unbound_cpumask at first and apply it to wqs. */ 5315 cpumask_copy(wq_unbound_cpumask, cpumask); 5316 ret = workqueue_apply_unbound_cpumask(); 5317 5318 /* restore the wq_unbound_cpumask when failed. */ 5319 if (ret < 0) 5320 cpumask_copy(wq_unbound_cpumask, saved_cpumask); 5321 5322 apply_wqattrs_unlock(); 5323 } 5324 5325 free_cpumask_var(saved_cpumask); 5326 return ret; 5327 } 5328 5329 #ifdef CONFIG_SYSFS 5330 /* 5331 * Workqueues with WQ_SYSFS flag set is visible to userland via 5332 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 5333 * following attributes. 5334 * 5335 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 5336 * max_active RW int : maximum number of in-flight work items 5337 * 5338 * Unbound workqueues have the following extra attributes. 5339 * 5340 * pool_ids RO int : the associated pool IDs for each node 5341 * nice RW int : nice value of the workers 5342 * cpumask RW mask : bitmask of allowed CPUs for the workers 5343 * numa RW bool : whether enable NUMA affinity 5344 */ 5345 struct wq_device { 5346 struct workqueue_struct *wq; 5347 struct device dev; 5348 }; 5349 5350 static struct workqueue_struct *dev_to_wq(struct device *dev) 5351 { 5352 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5353 5354 return wq_dev->wq; 5355 } 5356 5357 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 5358 char *buf) 5359 { 5360 struct workqueue_struct *wq = dev_to_wq(dev); 5361 5362 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 5363 } 5364 static DEVICE_ATTR_RO(per_cpu); 5365 5366 static ssize_t max_active_show(struct device *dev, 5367 struct device_attribute *attr, char *buf) 5368 { 5369 struct workqueue_struct *wq = dev_to_wq(dev); 5370 5371 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 5372 } 5373 5374 static ssize_t max_active_store(struct device *dev, 5375 struct device_attribute *attr, const char *buf, 5376 size_t count) 5377 { 5378 struct workqueue_struct *wq = dev_to_wq(dev); 5379 int val; 5380 5381 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 5382 return -EINVAL; 5383 5384 workqueue_set_max_active(wq, val); 5385 return count; 5386 } 5387 static DEVICE_ATTR_RW(max_active); 5388 5389 static struct attribute *wq_sysfs_attrs[] = { 5390 &dev_attr_per_cpu.attr, 5391 &dev_attr_max_active.attr, 5392 NULL, 5393 }; 5394 ATTRIBUTE_GROUPS(wq_sysfs); 5395 5396 static ssize_t wq_pool_ids_show(struct device *dev, 5397 struct device_attribute *attr, char *buf) 5398 { 5399 struct workqueue_struct *wq = dev_to_wq(dev); 5400 const char *delim = ""; 5401 int node, written = 0; 5402 5403 get_online_cpus(); 5404 rcu_read_lock(); 5405 for_each_node(node) { 5406 written += scnprintf(buf + written, PAGE_SIZE - written, 5407 "%s%d:%d", delim, node, 5408 unbound_pwq_by_node(wq, node)->pool->id); 5409 delim = " "; 5410 } 5411 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 5412 rcu_read_unlock(); 5413 put_online_cpus(); 5414 5415 return written; 5416 } 5417 5418 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 5419 char *buf) 5420 { 5421 struct workqueue_struct *wq = dev_to_wq(dev); 5422 int written; 5423 5424 mutex_lock(&wq->mutex); 5425 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 5426 mutex_unlock(&wq->mutex); 5427 5428 return written; 5429 } 5430 5431 /* prepare workqueue_attrs for sysfs store operations */ 5432 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5433 { 5434 struct workqueue_attrs *attrs; 5435 5436 lockdep_assert_held(&wq_pool_mutex); 5437 5438 attrs = alloc_workqueue_attrs(); 5439 if (!attrs) 5440 return NULL; 5441 5442 copy_workqueue_attrs(attrs, wq->unbound_attrs); 5443 return attrs; 5444 } 5445 5446 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 5447 const char *buf, size_t count) 5448 { 5449 struct workqueue_struct *wq = dev_to_wq(dev); 5450 struct workqueue_attrs *attrs; 5451 int ret = -ENOMEM; 5452 5453 apply_wqattrs_lock(); 5454 5455 attrs = wq_sysfs_prep_attrs(wq); 5456 if (!attrs) 5457 goto out_unlock; 5458 5459 if (sscanf(buf, "%d", &attrs->nice) == 1 && 5460 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 5461 ret = apply_workqueue_attrs_locked(wq, attrs); 5462 else 5463 ret = -EINVAL; 5464 5465 out_unlock: 5466 apply_wqattrs_unlock(); 5467 free_workqueue_attrs(attrs); 5468 return ret ?: count; 5469 } 5470 5471 static ssize_t wq_cpumask_show(struct device *dev, 5472 struct device_attribute *attr, char *buf) 5473 { 5474 struct workqueue_struct *wq = dev_to_wq(dev); 5475 int written; 5476 5477 mutex_lock(&wq->mutex); 5478 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5479 cpumask_pr_args(wq->unbound_attrs->cpumask)); 5480 mutex_unlock(&wq->mutex); 5481 return written; 5482 } 5483 5484 static ssize_t wq_cpumask_store(struct device *dev, 5485 struct device_attribute *attr, 5486 const char *buf, size_t count) 5487 { 5488 struct workqueue_struct *wq = dev_to_wq(dev); 5489 struct workqueue_attrs *attrs; 5490 int ret = -ENOMEM; 5491 5492 apply_wqattrs_lock(); 5493 5494 attrs = wq_sysfs_prep_attrs(wq); 5495 if (!attrs) 5496 goto out_unlock; 5497 5498 ret = cpumask_parse(buf, attrs->cpumask); 5499 if (!ret) 5500 ret = apply_workqueue_attrs_locked(wq, attrs); 5501 5502 out_unlock: 5503 apply_wqattrs_unlock(); 5504 free_workqueue_attrs(attrs); 5505 return ret ?: count; 5506 } 5507 5508 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5509 char *buf) 5510 { 5511 struct workqueue_struct *wq = dev_to_wq(dev); 5512 int written; 5513 5514 mutex_lock(&wq->mutex); 5515 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5516 !wq->unbound_attrs->no_numa); 5517 mutex_unlock(&wq->mutex); 5518 5519 return written; 5520 } 5521 5522 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 5523 const char *buf, size_t count) 5524 { 5525 struct workqueue_struct *wq = dev_to_wq(dev); 5526 struct workqueue_attrs *attrs; 5527 int v, ret = -ENOMEM; 5528 5529 apply_wqattrs_lock(); 5530 5531 attrs = wq_sysfs_prep_attrs(wq); 5532 if (!attrs) 5533 goto out_unlock; 5534 5535 ret = -EINVAL; 5536 if (sscanf(buf, "%d", &v) == 1) { 5537 attrs->no_numa = !v; 5538 ret = apply_workqueue_attrs_locked(wq, attrs); 5539 } 5540 5541 out_unlock: 5542 apply_wqattrs_unlock(); 5543 free_workqueue_attrs(attrs); 5544 return ret ?: count; 5545 } 5546 5547 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5548 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5549 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5550 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5551 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5552 __ATTR_NULL, 5553 }; 5554 5555 static struct bus_type wq_subsys = { 5556 .name = "workqueue", 5557 .dev_groups = wq_sysfs_groups, 5558 }; 5559 5560 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5561 struct device_attribute *attr, char *buf) 5562 { 5563 int written; 5564 5565 mutex_lock(&wq_pool_mutex); 5566 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5567 cpumask_pr_args(wq_unbound_cpumask)); 5568 mutex_unlock(&wq_pool_mutex); 5569 5570 return written; 5571 } 5572 5573 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5574 struct device_attribute *attr, const char *buf, size_t count) 5575 { 5576 cpumask_var_t cpumask; 5577 int ret; 5578 5579 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5580 return -ENOMEM; 5581 5582 ret = cpumask_parse(buf, cpumask); 5583 if (!ret) 5584 ret = workqueue_set_unbound_cpumask(cpumask); 5585 5586 free_cpumask_var(cpumask); 5587 return ret ? ret : count; 5588 } 5589 5590 static struct device_attribute wq_sysfs_cpumask_attr = 5591 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5592 wq_unbound_cpumask_store); 5593 5594 static int __init wq_sysfs_init(void) 5595 { 5596 int err; 5597 5598 err = subsys_virtual_register(&wq_subsys, NULL); 5599 if (err) 5600 return err; 5601 5602 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr); 5603 } 5604 core_initcall(wq_sysfs_init); 5605 5606 static void wq_device_release(struct device *dev) 5607 { 5608 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5609 5610 kfree(wq_dev); 5611 } 5612 5613 /** 5614 * workqueue_sysfs_register - make a workqueue visible in sysfs 5615 * @wq: the workqueue to register 5616 * 5617 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5618 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5619 * which is the preferred method. 5620 * 5621 * Workqueue user should use this function directly iff it wants to apply 5622 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5623 * apply_workqueue_attrs() may race against userland updating the 5624 * attributes. 5625 * 5626 * Return: 0 on success, -errno on failure. 5627 */ 5628 int workqueue_sysfs_register(struct workqueue_struct *wq) 5629 { 5630 struct wq_device *wq_dev; 5631 int ret; 5632 5633 /* 5634 * Adjusting max_active or creating new pwqs by applying 5635 * attributes breaks ordering guarantee. Disallow exposing ordered 5636 * workqueues. 5637 */ 5638 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 5639 return -EINVAL; 5640 5641 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5642 if (!wq_dev) 5643 return -ENOMEM; 5644 5645 wq_dev->wq = wq; 5646 wq_dev->dev.bus = &wq_subsys; 5647 wq_dev->dev.release = wq_device_release; 5648 dev_set_name(&wq_dev->dev, "%s", wq->name); 5649 5650 /* 5651 * unbound_attrs are created separately. Suppress uevent until 5652 * everything is ready. 5653 */ 5654 dev_set_uevent_suppress(&wq_dev->dev, true); 5655 5656 ret = device_register(&wq_dev->dev); 5657 if (ret) { 5658 put_device(&wq_dev->dev); 5659 wq->wq_dev = NULL; 5660 return ret; 5661 } 5662 5663 if (wq->flags & WQ_UNBOUND) { 5664 struct device_attribute *attr; 5665 5666 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5667 ret = device_create_file(&wq_dev->dev, attr); 5668 if (ret) { 5669 device_unregister(&wq_dev->dev); 5670 wq->wq_dev = NULL; 5671 return ret; 5672 } 5673 } 5674 } 5675 5676 dev_set_uevent_suppress(&wq_dev->dev, false); 5677 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5678 return 0; 5679 } 5680 5681 /** 5682 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5683 * @wq: the workqueue to unregister 5684 * 5685 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5686 */ 5687 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5688 { 5689 struct wq_device *wq_dev = wq->wq_dev; 5690 5691 if (!wq->wq_dev) 5692 return; 5693 5694 wq->wq_dev = NULL; 5695 device_unregister(&wq_dev->dev); 5696 } 5697 #else /* CONFIG_SYSFS */ 5698 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5699 #endif /* CONFIG_SYSFS */ 5700 5701 /* 5702 * Workqueue watchdog. 5703 * 5704 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 5705 * flush dependency, a concurrency managed work item which stays RUNNING 5706 * indefinitely. Workqueue stalls can be very difficult to debug as the 5707 * usual warning mechanisms don't trigger and internal workqueue state is 5708 * largely opaque. 5709 * 5710 * Workqueue watchdog monitors all worker pools periodically and dumps 5711 * state if some pools failed to make forward progress for a while where 5712 * forward progress is defined as the first item on ->worklist changing. 5713 * 5714 * This mechanism is controlled through the kernel parameter 5715 * "workqueue.watchdog_thresh" which can be updated at runtime through the 5716 * corresponding sysfs parameter file. 5717 */ 5718 #ifdef CONFIG_WQ_WATCHDOG 5719 5720 static unsigned long wq_watchdog_thresh = 30; 5721 static struct timer_list wq_watchdog_timer; 5722 5723 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 5724 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 5725 5726 static void wq_watchdog_reset_touched(void) 5727 { 5728 int cpu; 5729 5730 wq_watchdog_touched = jiffies; 5731 for_each_possible_cpu(cpu) 5732 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5733 } 5734 5735 static void wq_watchdog_timer_fn(struct timer_list *unused) 5736 { 5737 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 5738 bool lockup_detected = false; 5739 struct worker_pool *pool; 5740 int pi; 5741 5742 if (!thresh) 5743 return; 5744 5745 rcu_read_lock(); 5746 5747 for_each_pool(pool, pi) { 5748 unsigned long pool_ts, touched, ts; 5749 5750 if (list_empty(&pool->worklist)) 5751 continue; 5752 5753 /* get the latest of pool and touched timestamps */ 5754 pool_ts = READ_ONCE(pool->watchdog_ts); 5755 touched = READ_ONCE(wq_watchdog_touched); 5756 5757 if (time_after(pool_ts, touched)) 5758 ts = pool_ts; 5759 else 5760 ts = touched; 5761 5762 if (pool->cpu >= 0) { 5763 unsigned long cpu_touched = 5764 READ_ONCE(per_cpu(wq_watchdog_touched_cpu, 5765 pool->cpu)); 5766 if (time_after(cpu_touched, ts)) 5767 ts = cpu_touched; 5768 } 5769 5770 /* did we stall? */ 5771 if (time_after(jiffies, ts + thresh)) { 5772 lockup_detected = true; 5773 pr_emerg("BUG: workqueue lockup - pool"); 5774 pr_cont_pool_info(pool); 5775 pr_cont(" stuck for %us!\n", 5776 jiffies_to_msecs(jiffies - pool_ts) / 1000); 5777 } 5778 } 5779 5780 rcu_read_unlock(); 5781 5782 if (lockup_detected) 5783 show_workqueue_state(); 5784 5785 wq_watchdog_reset_touched(); 5786 mod_timer(&wq_watchdog_timer, jiffies + thresh); 5787 } 5788 5789 notrace void wq_watchdog_touch(int cpu) 5790 { 5791 if (cpu >= 0) 5792 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5793 else 5794 wq_watchdog_touched = jiffies; 5795 } 5796 5797 static void wq_watchdog_set_thresh(unsigned long thresh) 5798 { 5799 wq_watchdog_thresh = 0; 5800 del_timer_sync(&wq_watchdog_timer); 5801 5802 if (thresh) { 5803 wq_watchdog_thresh = thresh; 5804 wq_watchdog_reset_touched(); 5805 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 5806 } 5807 } 5808 5809 static int wq_watchdog_param_set_thresh(const char *val, 5810 const struct kernel_param *kp) 5811 { 5812 unsigned long thresh; 5813 int ret; 5814 5815 ret = kstrtoul(val, 0, &thresh); 5816 if (ret) 5817 return ret; 5818 5819 if (system_wq) 5820 wq_watchdog_set_thresh(thresh); 5821 else 5822 wq_watchdog_thresh = thresh; 5823 5824 return 0; 5825 } 5826 5827 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 5828 .set = wq_watchdog_param_set_thresh, 5829 .get = param_get_ulong, 5830 }; 5831 5832 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 5833 0644); 5834 5835 static void wq_watchdog_init(void) 5836 { 5837 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 5838 wq_watchdog_set_thresh(wq_watchdog_thresh); 5839 } 5840 5841 #else /* CONFIG_WQ_WATCHDOG */ 5842 5843 static inline void wq_watchdog_init(void) { } 5844 5845 #endif /* CONFIG_WQ_WATCHDOG */ 5846 5847 static void __init wq_numa_init(void) 5848 { 5849 cpumask_var_t *tbl; 5850 int node, cpu; 5851 5852 if (num_possible_nodes() <= 1) 5853 return; 5854 5855 if (wq_disable_numa) { 5856 pr_info("workqueue: NUMA affinity support disabled\n"); 5857 return; 5858 } 5859 5860 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(); 5861 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5862 5863 /* 5864 * We want masks of possible CPUs of each node which isn't readily 5865 * available. Build one from cpu_to_node() which should have been 5866 * fully initialized by now. 5867 */ 5868 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL); 5869 BUG_ON(!tbl); 5870 5871 for_each_node(node) 5872 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5873 node_online(node) ? node : NUMA_NO_NODE)); 5874 5875 for_each_possible_cpu(cpu) { 5876 node = cpu_to_node(cpu); 5877 if (WARN_ON(node == NUMA_NO_NODE)) { 5878 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5879 /* happens iff arch is bonkers, let's just proceed */ 5880 return; 5881 } 5882 cpumask_set_cpu(cpu, tbl[node]); 5883 } 5884 5885 wq_numa_possible_cpumask = tbl; 5886 wq_numa_enabled = true; 5887 } 5888 5889 /** 5890 * workqueue_init_early - early init for workqueue subsystem 5891 * 5892 * This is the first half of two-staged workqueue subsystem initialization 5893 * and invoked as soon as the bare basics - memory allocation, cpumasks and 5894 * idr are up. It sets up all the data structures and system workqueues 5895 * and allows early boot code to create workqueues and queue/cancel work 5896 * items. Actual work item execution starts only after kthreads can be 5897 * created and scheduled right before early initcalls. 5898 */ 5899 int __init workqueue_init_early(void) 5900 { 5901 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5902 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ; 5903 int i, cpu; 5904 5905 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5906 5907 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 5908 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags)); 5909 5910 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5911 5912 /* initialize CPU pools */ 5913 for_each_possible_cpu(cpu) { 5914 struct worker_pool *pool; 5915 5916 i = 0; 5917 for_each_cpu_worker_pool(pool, cpu) { 5918 BUG_ON(init_worker_pool(pool)); 5919 pool->cpu = cpu; 5920 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5921 pool->attrs->nice = std_nice[i++]; 5922 pool->node = cpu_to_node(cpu); 5923 5924 /* alloc pool ID */ 5925 mutex_lock(&wq_pool_mutex); 5926 BUG_ON(worker_pool_assign_id(pool)); 5927 mutex_unlock(&wq_pool_mutex); 5928 } 5929 } 5930 5931 /* create default unbound and ordered wq attrs */ 5932 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5933 struct workqueue_attrs *attrs; 5934 5935 BUG_ON(!(attrs = alloc_workqueue_attrs())); 5936 attrs->nice = std_nice[i]; 5937 unbound_std_wq_attrs[i] = attrs; 5938 5939 /* 5940 * An ordered wq should have only one pwq as ordering is 5941 * guaranteed by max_active which is enforced by pwqs. 5942 * Turn off NUMA so that dfl_pwq is used for all nodes. 5943 */ 5944 BUG_ON(!(attrs = alloc_workqueue_attrs())); 5945 attrs->nice = std_nice[i]; 5946 attrs->no_numa = true; 5947 ordered_wq_attrs[i] = attrs; 5948 } 5949 5950 system_wq = alloc_workqueue("events", 0, 0); 5951 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5952 system_long_wq = alloc_workqueue("events_long", 0, 0); 5953 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5954 WQ_UNBOUND_MAX_ACTIVE); 5955 system_freezable_wq = alloc_workqueue("events_freezable", 5956 WQ_FREEZABLE, 0); 5957 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5958 WQ_POWER_EFFICIENT, 0); 5959 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5960 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5961 0); 5962 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5963 !system_unbound_wq || !system_freezable_wq || 5964 !system_power_efficient_wq || 5965 !system_freezable_power_efficient_wq); 5966 5967 return 0; 5968 } 5969 5970 /** 5971 * workqueue_init - bring workqueue subsystem fully online 5972 * 5973 * This is the latter half of two-staged workqueue subsystem initialization 5974 * and invoked as soon as kthreads can be created and scheduled. 5975 * Workqueues have been created and work items queued on them, but there 5976 * are no kworkers executing the work items yet. Populate the worker pools 5977 * with the initial workers and enable future kworker creations. 5978 */ 5979 int __init workqueue_init(void) 5980 { 5981 struct workqueue_struct *wq; 5982 struct worker_pool *pool; 5983 int cpu, bkt; 5984 5985 /* 5986 * It'd be simpler to initialize NUMA in workqueue_init_early() but 5987 * CPU to node mapping may not be available that early on some 5988 * archs such as power and arm64. As per-cpu pools created 5989 * previously could be missing node hint and unbound pools NUMA 5990 * affinity, fix them up. 5991 * 5992 * Also, while iterating workqueues, create rescuers if requested. 5993 */ 5994 wq_numa_init(); 5995 5996 mutex_lock(&wq_pool_mutex); 5997 5998 for_each_possible_cpu(cpu) { 5999 for_each_cpu_worker_pool(pool, cpu) { 6000 pool->node = cpu_to_node(cpu); 6001 } 6002 } 6003 6004 list_for_each_entry(wq, &workqueues, list) { 6005 wq_update_unbound_numa(wq, smp_processor_id(), true); 6006 WARN(init_rescuer(wq), 6007 "workqueue: failed to create early rescuer for %s", 6008 wq->name); 6009 } 6010 6011 mutex_unlock(&wq_pool_mutex); 6012 6013 /* create the initial workers */ 6014 for_each_online_cpu(cpu) { 6015 for_each_cpu_worker_pool(pool, cpu) { 6016 pool->flags &= ~POOL_DISASSOCIATED; 6017 BUG_ON(!create_worker(pool)); 6018 } 6019 } 6020 6021 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 6022 BUG_ON(!create_worker(pool)); 6023 6024 wq_online = true; 6025 wq_watchdog_init(); 6026 6027 return 0; 6028 } 6029