xref: /openbmc/linux/kernel/workqueue.c (revision bcd684aa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53 
54 #include "workqueue_internal.h"
55 
56 enum {
57 	/*
58 	 * worker_pool flags
59 	 *
60 	 * A bound pool is either associated or disassociated with its CPU.
61 	 * While associated (!DISASSOCIATED), all workers are bound to the
62 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
63 	 * is in effect.
64 	 *
65 	 * While DISASSOCIATED, the cpu may be offline and all workers have
66 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
67 	 * be executing on any CPU.  The pool behaves as an unbound one.
68 	 *
69 	 * Note that DISASSOCIATED should be flipped only while holding
70 	 * wq_pool_attach_mutex to avoid changing binding state while
71 	 * worker_attach_to_pool() is in progress.
72 	 */
73 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
74 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
75 
76 	/* worker flags */
77 	WORKER_DIE		= 1 << 1,	/* die die die */
78 	WORKER_IDLE		= 1 << 2,	/* is idle */
79 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
80 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
81 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
82 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
83 
84 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
85 				  WORKER_UNBOUND | WORKER_REBOUND,
86 
87 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
88 
89 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
90 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
91 
92 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
93 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
94 
95 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
96 						/* call for help after 10ms
97 						   (min two ticks) */
98 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
99 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
100 
101 	/*
102 	 * Rescue workers are used only on emergencies and shared by
103 	 * all cpus.  Give MIN_NICE.
104 	 */
105 	RESCUER_NICE_LEVEL	= MIN_NICE,
106 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
107 
108 	WQ_NAME_LEN		= 24,
109 };
110 
111 /*
112  * Structure fields follow one of the following exclusion rules.
113  *
114  * I: Modifiable by initialization/destruction paths and read-only for
115  *    everyone else.
116  *
117  * P: Preemption protected.  Disabling preemption is enough and should
118  *    only be modified and accessed from the local cpu.
119  *
120  * L: pool->lock protected.  Access with pool->lock held.
121  *
122  * X: During normal operation, modification requires pool->lock and should
123  *    be done only from local cpu.  Either disabling preemption on local
124  *    cpu or grabbing pool->lock is enough for read access.  If
125  *    POOL_DISASSOCIATED is set, it's identical to L.
126  *
127  * A: wq_pool_attach_mutex protected.
128  *
129  * PL: wq_pool_mutex protected.
130  *
131  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
132  *
133  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
134  *
135  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
136  *      RCU for reads.
137  *
138  * WQ: wq->mutex protected.
139  *
140  * WR: wq->mutex protected for writes.  RCU protected for reads.
141  *
142  * MD: wq_mayday_lock protected.
143  */
144 
145 /* struct worker is defined in workqueue_internal.h */
146 
147 struct worker_pool {
148 	raw_spinlock_t		lock;		/* the pool lock */
149 	int			cpu;		/* I: the associated cpu */
150 	int			node;		/* I: the associated node ID */
151 	int			id;		/* I: pool ID */
152 	unsigned int		flags;		/* X: flags */
153 
154 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
155 
156 	struct list_head	worklist;	/* L: list of pending works */
157 
158 	int			nr_workers;	/* L: total number of workers */
159 	int			nr_idle;	/* L: currently idle workers */
160 
161 	struct list_head	idle_list;	/* X: list of idle workers */
162 	struct timer_list	idle_timer;	/* L: worker idle timeout */
163 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
164 
165 	/* a workers is either on busy_hash or idle_list, or the manager */
166 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
167 						/* L: hash of busy workers */
168 
169 	struct worker		*manager;	/* L: purely informational */
170 	struct list_head	workers;	/* A: attached workers */
171 	struct completion	*detach_completion; /* all workers detached */
172 
173 	struct ida		worker_ida;	/* worker IDs for task name */
174 
175 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
176 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
177 	int			refcnt;		/* PL: refcnt for unbound pools */
178 
179 	/*
180 	 * The current concurrency level.  As it's likely to be accessed
181 	 * from other CPUs during try_to_wake_up(), put it in a separate
182 	 * cacheline.
183 	 */
184 	atomic_t		nr_running ____cacheline_aligned_in_smp;
185 
186 	/*
187 	 * Destruction of pool is RCU protected to allow dereferences
188 	 * from get_work_pool().
189 	 */
190 	struct rcu_head		rcu;
191 } ____cacheline_aligned_in_smp;
192 
193 /*
194  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
195  * of work_struct->data are used for flags and the remaining high bits
196  * point to the pwq; thus, pwqs need to be aligned at two's power of the
197  * number of flag bits.
198  */
199 struct pool_workqueue {
200 	struct worker_pool	*pool;		/* I: the associated pool */
201 	struct workqueue_struct *wq;		/* I: the owning workqueue */
202 	int			work_color;	/* L: current color */
203 	int			flush_color;	/* L: flushing color */
204 	int			refcnt;		/* L: reference count */
205 	int			nr_in_flight[WORK_NR_COLORS];
206 						/* L: nr of in_flight works */
207 	int			nr_active;	/* L: nr of active works */
208 	int			max_active;	/* L: max active works */
209 	struct list_head	delayed_works;	/* L: delayed works */
210 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
211 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
212 
213 	/*
214 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
215 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
216 	 * itself is also RCU protected so that the first pwq can be
217 	 * determined without grabbing wq->mutex.
218 	 */
219 	struct work_struct	unbound_release_work;
220 	struct rcu_head		rcu;
221 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
222 
223 /*
224  * Structure used to wait for workqueue flush.
225  */
226 struct wq_flusher {
227 	struct list_head	list;		/* WQ: list of flushers */
228 	int			flush_color;	/* WQ: flush color waiting for */
229 	struct completion	done;		/* flush completion */
230 };
231 
232 struct wq_device;
233 
234 /*
235  * The externally visible workqueue.  It relays the issued work items to
236  * the appropriate worker_pool through its pool_workqueues.
237  */
238 struct workqueue_struct {
239 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
240 	struct list_head	list;		/* PR: list of all workqueues */
241 
242 	struct mutex		mutex;		/* protects this wq */
243 	int			work_color;	/* WQ: current work color */
244 	int			flush_color;	/* WQ: current flush color */
245 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
246 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
247 	struct list_head	flusher_queue;	/* WQ: flush waiters */
248 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
249 
250 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
251 	struct worker		*rescuer;	/* MD: rescue worker */
252 
253 	int			nr_drainers;	/* WQ: drain in progress */
254 	int			saved_max_active; /* WQ: saved pwq max_active */
255 
256 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
257 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
258 
259 #ifdef CONFIG_SYSFS
260 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
261 #endif
262 #ifdef CONFIG_LOCKDEP
263 	char			*lock_name;
264 	struct lock_class_key	key;
265 	struct lockdep_map	lockdep_map;
266 #endif
267 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
268 
269 	/*
270 	 * Destruction of workqueue_struct is RCU protected to allow walking
271 	 * the workqueues list without grabbing wq_pool_mutex.
272 	 * This is used to dump all workqueues from sysrq.
273 	 */
274 	struct rcu_head		rcu;
275 
276 	/* hot fields used during command issue, aligned to cacheline */
277 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
278 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
279 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
280 };
281 
282 static struct kmem_cache *pwq_cache;
283 
284 static cpumask_var_t *wq_numa_possible_cpumask;
285 					/* possible CPUs of each node */
286 
287 static bool wq_disable_numa;
288 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
289 
290 /* see the comment above the definition of WQ_POWER_EFFICIENT */
291 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
292 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
293 
294 static bool wq_online;			/* can kworkers be created yet? */
295 
296 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
297 
298 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
299 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
300 
301 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
302 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
303 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
304 /* wait for manager to go away */
305 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
306 
307 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
308 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
309 
310 /* PL: allowable cpus for unbound wqs and work items */
311 static cpumask_var_t wq_unbound_cpumask;
312 
313 /* CPU where unbound work was last round robin scheduled from this CPU */
314 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
315 
316 /*
317  * Local execution of unbound work items is no longer guaranteed.  The
318  * following always forces round-robin CPU selection on unbound work items
319  * to uncover usages which depend on it.
320  */
321 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
322 static bool wq_debug_force_rr_cpu = true;
323 #else
324 static bool wq_debug_force_rr_cpu = false;
325 #endif
326 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
327 
328 /* the per-cpu worker pools */
329 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
330 
331 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
332 
333 /* PL: hash of all unbound pools keyed by pool->attrs */
334 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
335 
336 /* I: attributes used when instantiating standard unbound pools on demand */
337 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
338 
339 /* I: attributes used when instantiating ordered pools on demand */
340 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
341 
342 struct workqueue_struct *system_wq __read_mostly;
343 EXPORT_SYMBOL(system_wq);
344 struct workqueue_struct *system_highpri_wq __read_mostly;
345 EXPORT_SYMBOL_GPL(system_highpri_wq);
346 struct workqueue_struct *system_long_wq __read_mostly;
347 EXPORT_SYMBOL_GPL(system_long_wq);
348 struct workqueue_struct *system_unbound_wq __read_mostly;
349 EXPORT_SYMBOL_GPL(system_unbound_wq);
350 struct workqueue_struct *system_freezable_wq __read_mostly;
351 EXPORT_SYMBOL_GPL(system_freezable_wq);
352 struct workqueue_struct *system_power_efficient_wq __read_mostly;
353 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
354 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
355 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
356 
357 static int worker_thread(void *__worker);
358 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
359 static void show_pwq(struct pool_workqueue *pwq);
360 
361 #define CREATE_TRACE_POINTS
362 #include <trace/events/workqueue.h>
363 
364 #define assert_rcu_or_pool_mutex()					\
365 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
366 			 !lockdep_is_held(&wq_pool_mutex),		\
367 			 "RCU or wq_pool_mutex should be held")
368 
369 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
370 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
371 			 !lockdep_is_held(&wq->mutex) &&		\
372 			 !lockdep_is_held(&wq_pool_mutex),		\
373 			 "RCU, wq->mutex or wq_pool_mutex should be held")
374 
375 #define for_each_cpu_worker_pool(pool, cpu)				\
376 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
377 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
378 	     (pool)++)
379 
380 /**
381  * for_each_pool - iterate through all worker_pools in the system
382  * @pool: iteration cursor
383  * @pi: integer used for iteration
384  *
385  * This must be called either with wq_pool_mutex held or RCU read
386  * locked.  If the pool needs to be used beyond the locking in effect, the
387  * caller is responsible for guaranteeing that the pool stays online.
388  *
389  * The if/else clause exists only for the lockdep assertion and can be
390  * ignored.
391  */
392 #define for_each_pool(pool, pi)						\
393 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
394 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
395 		else
396 
397 /**
398  * for_each_pool_worker - iterate through all workers of a worker_pool
399  * @worker: iteration cursor
400  * @pool: worker_pool to iterate workers of
401  *
402  * This must be called with wq_pool_attach_mutex.
403  *
404  * The if/else clause exists only for the lockdep assertion and can be
405  * ignored.
406  */
407 #define for_each_pool_worker(worker, pool)				\
408 	list_for_each_entry((worker), &(pool)->workers, node)		\
409 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
410 		else
411 
412 /**
413  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
414  * @pwq: iteration cursor
415  * @wq: the target workqueue
416  *
417  * This must be called either with wq->mutex held or RCU read locked.
418  * If the pwq needs to be used beyond the locking in effect, the caller is
419  * responsible for guaranteeing that the pwq stays online.
420  *
421  * The if/else clause exists only for the lockdep assertion and can be
422  * ignored.
423  */
424 #define for_each_pwq(pwq, wq)						\
425 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
426 				 lockdep_is_held(&(wq->mutex)))
427 
428 #ifdef CONFIG_DEBUG_OBJECTS_WORK
429 
430 static const struct debug_obj_descr work_debug_descr;
431 
432 static void *work_debug_hint(void *addr)
433 {
434 	return ((struct work_struct *) addr)->func;
435 }
436 
437 static bool work_is_static_object(void *addr)
438 {
439 	struct work_struct *work = addr;
440 
441 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
442 }
443 
444 /*
445  * fixup_init is called when:
446  * - an active object is initialized
447  */
448 static bool work_fixup_init(void *addr, enum debug_obj_state state)
449 {
450 	struct work_struct *work = addr;
451 
452 	switch (state) {
453 	case ODEBUG_STATE_ACTIVE:
454 		cancel_work_sync(work);
455 		debug_object_init(work, &work_debug_descr);
456 		return true;
457 	default:
458 		return false;
459 	}
460 }
461 
462 /*
463  * fixup_free is called when:
464  * - an active object is freed
465  */
466 static bool work_fixup_free(void *addr, enum debug_obj_state state)
467 {
468 	struct work_struct *work = addr;
469 
470 	switch (state) {
471 	case ODEBUG_STATE_ACTIVE:
472 		cancel_work_sync(work);
473 		debug_object_free(work, &work_debug_descr);
474 		return true;
475 	default:
476 		return false;
477 	}
478 }
479 
480 static const struct debug_obj_descr work_debug_descr = {
481 	.name		= "work_struct",
482 	.debug_hint	= work_debug_hint,
483 	.is_static_object = work_is_static_object,
484 	.fixup_init	= work_fixup_init,
485 	.fixup_free	= work_fixup_free,
486 };
487 
488 static inline void debug_work_activate(struct work_struct *work)
489 {
490 	debug_object_activate(work, &work_debug_descr);
491 }
492 
493 static inline void debug_work_deactivate(struct work_struct *work)
494 {
495 	debug_object_deactivate(work, &work_debug_descr);
496 }
497 
498 void __init_work(struct work_struct *work, int onstack)
499 {
500 	if (onstack)
501 		debug_object_init_on_stack(work, &work_debug_descr);
502 	else
503 		debug_object_init(work, &work_debug_descr);
504 }
505 EXPORT_SYMBOL_GPL(__init_work);
506 
507 void destroy_work_on_stack(struct work_struct *work)
508 {
509 	debug_object_free(work, &work_debug_descr);
510 }
511 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
512 
513 void destroy_delayed_work_on_stack(struct delayed_work *work)
514 {
515 	destroy_timer_on_stack(&work->timer);
516 	debug_object_free(&work->work, &work_debug_descr);
517 }
518 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
519 
520 #else
521 static inline void debug_work_activate(struct work_struct *work) { }
522 static inline void debug_work_deactivate(struct work_struct *work) { }
523 #endif
524 
525 /**
526  * worker_pool_assign_id - allocate ID and assing it to @pool
527  * @pool: the pool pointer of interest
528  *
529  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
530  * successfully, -errno on failure.
531  */
532 static int worker_pool_assign_id(struct worker_pool *pool)
533 {
534 	int ret;
535 
536 	lockdep_assert_held(&wq_pool_mutex);
537 
538 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
539 			GFP_KERNEL);
540 	if (ret >= 0) {
541 		pool->id = ret;
542 		return 0;
543 	}
544 	return ret;
545 }
546 
547 /**
548  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
549  * @wq: the target workqueue
550  * @node: the node ID
551  *
552  * This must be called with any of wq_pool_mutex, wq->mutex or RCU
553  * read locked.
554  * If the pwq needs to be used beyond the locking in effect, the caller is
555  * responsible for guaranteeing that the pwq stays online.
556  *
557  * Return: The unbound pool_workqueue for @node.
558  */
559 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
560 						  int node)
561 {
562 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
563 
564 	/*
565 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
566 	 * delayed item is pending.  The plan is to keep CPU -> NODE
567 	 * mapping valid and stable across CPU on/offlines.  Once that
568 	 * happens, this workaround can be removed.
569 	 */
570 	if (unlikely(node == NUMA_NO_NODE))
571 		return wq->dfl_pwq;
572 
573 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
574 }
575 
576 static unsigned int work_color_to_flags(int color)
577 {
578 	return color << WORK_STRUCT_COLOR_SHIFT;
579 }
580 
581 static int get_work_color(struct work_struct *work)
582 {
583 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
584 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
585 }
586 
587 static int work_next_color(int color)
588 {
589 	return (color + 1) % WORK_NR_COLORS;
590 }
591 
592 /*
593  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
594  * contain the pointer to the queued pwq.  Once execution starts, the flag
595  * is cleared and the high bits contain OFFQ flags and pool ID.
596  *
597  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
598  * and clear_work_data() can be used to set the pwq, pool or clear
599  * work->data.  These functions should only be called while the work is
600  * owned - ie. while the PENDING bit is set.
601  *
602  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
603  * corresponding to a work.  Pool is available once the work has been
604  * queued anywhere after initialization until it is sync canceled.  pwq is
605  * available only while the work item is queued.
606  *
607  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
608  * canceled.  While being canceled, a work item may have its PENDING set
609  * but stay off timer and worklist for arbitrarily long and nobody should
610  * try to steal the PENDING bit.
611  */
612 static inline void set_work_data(struct work_struct *work, unsigned long data,
613 				 unsigned long flags)
614 {
615 	WARN_ON_ONCE(!work_pending(work));
616 	atomic_long_set(&work->data, data | flags | work_static(work));
617 }
618 
619 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
620 			 unsigned long extra_flags)
621 {
622 	set_work_data(work, (unsigned long)pwq,
623 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
624 }
625 
626 static void set_work_pool_and_keep_pending(struct work_struct *work,
627 					   int pool_id)
628 {
629 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
630 		      WORK_STRUCT_PENDING);
631 }
632 
633 static void set_work_pool_and_clear_pending(struct work_struct *work,
634 					    int pool_id)
635 {
636 	/*
637 	 * The following wmb is paired with the implied mb in
638 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
639 	 * here are visible to and precede any updates by the next PENDING
640 	 * owner.
641 	 */
642 	smp_wmb();
643 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
644 	/*
645 	 * The following mb guarantees that previous clear of a PENDING bit
646 	 * will not be reordered with any speculative LOADS or STORES from
647 	 * work->current_func, which is executed afterwards.  This possible
648 	 * reordering can lead to a missed execution on attempt to queue
649 	 * the same @work.  E.g. consider this case:
650 	 *
651 	 *   CPU#0                         CPU#1
652 	 *   ----------------------------  --------------------------------
653 	 *
654 	 * 1  STORE event_indicated
655 	 * 2  queue_work_on() {
656 	 * 3    test_and_set_bit(PENDING)
657 	 * 4 }                             set_..._and_clear_pending() {
658 	 * 5                                 set_work_data() # clear bit
659 	 * 6                                 smp_mb()
660 	 * 7                               work->current_func() {
661 	 * 8				      LOAD event_indicated
662 	 *				   }
663 	 *
664 	 * Without an explicit full barrier speculative LOAD on line 8 can
665 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
666 	 * CPU#0 observes the PENDING bit is still set and new execution of
667 	 * a @work is not queued in a hope, that CPU#1 will eventually
668 	 * finish the queued @work.  Meanwhile CPU#1 does not see
669 	 * event_indicated is set, because speculative LOAD was executed
670 	 * before actual STORE.
671 	 */
672 	smp_mb();
673 }
674 
675 static void clear_work_data(struct work_struct *work)
676 {
677 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
678 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
679 }
680 
681 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
682 {
683 	unsigned long data = atomic_long_read(&work->data);
684 
685 	if (data & WORK_STRUCT_PWQ)
686 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
687 	else
688 		return NULL;
689 }
690 
691 /**
692  * get_work_pool - return the worker_pool a given work was associated with
693  * @work: the work item of interest
694  *
695  * Pools are created and destroyed under wq_pool_mutex, and allows read
696  * access under RCU read lock.  As such, this function should be
697  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
698  *
699  * All fields of the returned pool are accessible as long as the above
700  * mentioned locking is in effect.  If the returned pool needs to be used
701  * beyond the critical section, the caller is responsible for ensuring the
702  * returned pool is and stays online.
703  *
704  * Return: The worker_pool @work was last associated with.  %NULL if none.
705  */
706 static struct worker_pool *get_work_pool(struct work_struct *work)
707 {
708 	unsigned long data = atomic_long_read(&work->data);
709 	int pool_id;
710 
711 	assert_rcu_or_pool_mutex();
712 
713 	if (data & WORK_STRUCT_PWQ)
714 		return ((struct pool_workqueue *)
715 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
716 
717 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
718 	if (pool_id == WORK_OFFQ_POOL_NONE)
719 		return NULL;
720 
721 	return idr_find(&worker_pool_idr, pool_id);
722 }
723 
724 /**
725  * get_work_pool_id - return the worker pool ID a given work is associated with
726  * @work: the work item of interest
727  *
728  * Return: The worker_pool ID @work was last associated with.
729  * %WORK_OFFQ_POOL_NONE if none.
730  */
731 static int get_work_pool_id(struct work_struct *work)
732 {
733 	unsigned long data = atomic_long_read(&work->data);
734 
735 	if (data & WORK_STRUCT_PWQ)
736 		return ((struct pool_workqueue *)
737 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
738 
739 	return data >> WORK_OFFQ_POOL_SHIFT;
740 }
741 
742 static void mark_work_canceling(struct work_struct *work)
743 {
744 	unsigned long pool_id = get_work_pool_id(work);
745 
746 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
747 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
748 }
749 
750 static bool work_is_canceling(struct work_struct *work)
751 {
752 	unsigned long data = atomic_long_read(&work->data);
753 
754 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
755 }
756 
757 /*
758  * Policy functions.  These define the policies on how the global worker
759  * pools are managed.  Unless noted otherwise, these functions assume that
760  * they're being called with pool->lock held.
761  */
762 
763 static bool __need_more_worker(struct worker_pool *pool)
764 {
765 	return !atomic_read(&pool->nr_running);
766 }
767 
768 /*
769  * Need to wake up a worker?  Called from anything but currently
770  * running workers.
771  *
772  * Note that, because unbound workers never contribute to nr_running, this
773  * function will always return %true for unbound pools as long as the
774  * worklist isn't empty.
775  */
776 static bool need_more_worker(struct worker_pool *pool)
777 {
778 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
779 }
780 
781 /* Can I start working?  Called from busy but !running workers. */
782 static bool may_start_working(struct worker_pool *pool)
783 {
784 	return pool->nr_idle;
785 }
786 
787 /* Do I need to keep working?  Called from currently running workers. */
788 static bool keep_working(struct worker_pool *pool)
789 {
790 	return !list_empty(&pool->worklist) &&
791 		atomic_read(&pool->nr_running) <= 1;
792 }
793 
794 /* Do we need a new worker?  Called from manager. */
795 static bool need_to_create_worker(struct worker_pool *pool)
796 {
797 	return need_more_worker(pool) && !may_start_working(pool);
798 }
799 
800 /* Do we have too many workers and should some go away? */
801 static bool too_many_workers(struct worker_pool *pool)
802 {
803 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
804 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
805 	int nr_busy = pool->nr_workers - nr_idle;
806 
807 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
808 }
809 
810 /*
811  * Wake up functions.
812  */
813 
814 /* Return the first idle worker.  Safe with preemption disabled */
815 static struct worker *first_idle_worker(struct worker_pool *pool)
816 {
817 	if (unlikely(list_empty(&pool->idle_list)))
818 		return NULL;
819 
820 	return list_first_entry(&pool->idle_list, struct worker, entry);
821 }
822 
823 /**
824  * wake_up_worker - wake up an idle worker
825  * @pool: worker pool to wake worker from
826  *
827  * Wake up the first idle worker of @pool.
828  *
829  * CONTEXT:
830  * raw_spin_lock_irq(pool->lock).
831  */
832 static void wake_up_worker(struct worker_pool *pool)
833 {
834 	struct worker *worker = first_idle_worker(pool);
835 
836 	if (likely(worker))
837 		wake_up_process(worker->task);
838 }
839 
840 /**
841  * wq_worker_running - a worker is running again
842  * @task: task waking up
843  *
844  * This function is called when a worker returns from schedule()
845  */
846 void wq_worker_running(struct task_struct *task)
847 {
848 	struct worker *worker = kthread_data(task);
849 
850 	if (!worker->sleeping)
851 		return;
852 	if (!(worker->flags & WORKER_NOT_RUNNING))
853 		atomic_inc(&worker->pool->nr_running);
854 	worker->sleeping = 0;
855 }
856 
857 /**
858  * wq_worker_sleeping - a worker is going to sleep
859  * @task: task going to sleep
860  *
861  * This function is called from schedule() when a busy worker is
862  * going to sleep. Preemption needs to be disabled to protect ->sleeping
863  * assignment.
864  */
865 void wq_worker_sleeping(struct task_struct *task)
866 {
867 	struct worker *next, *worker = kthread_data(task);
868 	struct worker_pool *pool;
869 
870 	/*
871 	 * Rescuers, which may not have all the fields set up like normal
872 	 * workers, also reach here, let's not access anything before
873 	 * checking NOT_RUNNING.
874 	 */
875 	if (worker->flags & WORKER_NOT_RUNNING)
876 		return;
877 
878 	pool = worker->pool;
879 
880 	/* Return if preempted before wq_worker_running() was reached */
881 	if (worker->sleeping)
882 		return;
883 
884 	worker->sleeping = 1;
885 	raw_spin_lock_irq(&pool->lock);
886 
887 	/*
888 	 * The counterpart of the following dec_and_test, implied mb,
889 	 * worklist not empty test sequence is in insert_work().
890 	 * Please read comment there.
891 	 *
892 	 * NOT_RUNNING is clear.  This means that we're bound to and
893 	 * running on the local cpu w/ rq lock held and preemption
894 	 * disabled, which in turn means that none else could be
895 	 * manipulating idle_list, so dereferencing idle_list without pool
896 	 * lock is safe.
897 	 */
898 	if (atomic_dec_and_test(&pool->nr_running) &&
899 	    !list_empty(&pool->worklist)) {
900 		next = first_idle_worker(pool);
901 		if (next)
902 			wake_up_process(next->task);
903 	}
904 	raw_spin_unlock_irq(&pool->lock);
905 }
906 
907 /**
908  * wq_worker_last_func - retrieve worker's last work function
909  * @task: Task to retrieve last work function of.
910  *
911  * Determine the last function a worker executed. This is called from
912  * the scheduler to get a worker's last known identity.
913  *
914  * CONTEXT:
915  * raw_spin_lock_irq(rq->lock)
916  *
917  * This function is called during schedule() when a kworker is going
918  * to sleep. It's used by psi to identify aggregation workers during
919  * dequeuing, to allow periodic aggregation to shut-off when that
920  * worker is the last task in the system or cgroup to go to sleep.
921  *
922  * As this function doesn't involve any workqueue-related locking, it
923  * only returns stable values when called from inside the scheduler's
924  * queuing and dequeuing paths, when @task, which must be a kworker,
925  * is guaranteed to not be processing any works.
926  *
927  * Return:
928  * The last work function %current executed as a worker, NULL if it
929  * hasn't executed any work yet.
930  */
931 work_func_t wq_worker_last_func(struct task_struct *task)
932 {
933 	struct worker *worker = kthread_data(task);
934 
935 	return worker->last_func;
936 }
937 
938 /**
939  * worker_set_flags - set worker flags and adjust nr_running accordingly
940  * @worker: self
941  * @flags: flags to set
942  *
943  * Set @flags in @worker->flags and adjust nr_running accordingly.
944  *
945  * CONTEXT:
946  * raw_spin_lock_irq(pool->lock)
947  */
948 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
949 {
950 	struct worker_pool *pool = worker->pool;
951 
952 	WARN_ON_ONCE(worker->task != current);
953 
954 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
955 	if ((flags & WORKER_NOT_RUNNING) &&
956 	    !(worker->flags & WORKER_NOT_RUNNING)) {
957 		atomic_dec(&pool->nr_running);
958 	}
959 
960 	worker->flags |= flags;
961 }
962 
963 /**
964  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
965  * @worker: self
966  * @flags: flags to clear
967  *
968  * Clear @flags in @worker->flags and adjust nr_running accordingly.
969  *
970  * CONTEXT:
971  * raw_spin_lock_irq(pool->lock)
972  */
973 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
974 {
975 	struct worker_pool *pool = worker->pool;
976 	unsigned int oflags = worker->flags;
977 
978 	WARN_ON_ONCE(worker->task != current);
979 
980 	worker->flags &= ~flags;
981 
982 	/*
983 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
984 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
985 	 * of multiple flags, not a single flag.
986 	 */
987 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
988 		if (!(worker->flags & WORKER_NOT_RUNNING))
989 			atomic_inc(&pool->nr_running);
990 }
991 
992 /**
993  * find_worker_executing_work - find worker which is executing a work
994  * @pool: pool of interest
995  * @work: work to find worker for
996  *
997  * Find a worker which is executing @work on @pool by searching
998  * @pool->busy_hash which is keyed by the address of @work.  For a worker
999  * to match, its current execution should match the address of @work and
1000  * its work function.  This is to avoid unwanted dependency between
1001  * unrelated work executions through a work item being recycled while still
1002  * being executed.
1003  *
1004  * This is a bit tricky.  A work item may be freed once its execution
1005  * starts and nothing prevents the freed area from being recycled for
1006  * another work item.  If the same work item address ends up being reused
1007  * before the original execution finishes, workqueue will identify the
1008  * recycled work item as currently executing and make it wait until the
1009  * current execution finishes, introducing an unwanted dependency.
1010  *
1011  * This function checks the work item address and work function to avoid
1012  * false positives.  Note that this isn't complete as one may construct a
1013  * work function which can introduce dependency onto itself through a
1014  * recycled work item.  Well, if somebody wants to shoot oneself in the
1015  * foot that badly, there's only so much we can do, and if such deadlock
1016  * actually occurs, it should be easy to locate the culprit work function.
1017  *
1018  * CONTEXT:
1019  * raw_spin_lock_irq(pool->lock).
1020  *
1021  * Return:
1022  * Pointer to worker which is executing @work if found, %NULL
1023  * otherwise.
1024  */
1025 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1026 						 struct work_struct *work)
1027 {
1028 	struct worker *worker;
1029 
1030 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1031 			       (unsigned long)work)
1032 		if (worker->current_work == work &&
1033 		    worker->current_func == work->func)
1034 			return worker;
1035 
1036 	return NULL;
1037 }
1038 
1039 /**
1040  * move_linked_works - move linked works to a list
1041  * @work: start of series of works to be scheduled
1042  * @head: target list to append @work to
1043  * @nextp: out parameter for nested worklist walking
1044  *
1045  * Schedule linked works starting from @work to @head.  Work series to
1046  * be scheduled starts at @work and includes any consecutive work with
1047  * WORK_STRUCT_LINKED set in its predecessor.
1048  *
1049  * If @nextp is not NULL, it's updated to point to the next work of
1050  * the last scheduled work.  This allows move_linked_works() to be
1051  * nested inside outer list_for_each_entry_safe().
1052  *
1053  * CONTEXT:
1054  * raw_spin_lock_irq(pool->lock).
1055  */
1056 static void move_linked_works(struct work_struct *work, struct list_head *head,
1057 			      struct work_struct **nextp)
1058 {
1059 	struct work_struct *n;
1060 
1061 	/*
1062 	 * Linked worklist will always end before the end of the list,
1063 	 * use NULL for list head.
1064 	 */
1065 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1066 		list_move_tail(&work->entry, head);
1067 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1068 			break;
1069 	}
1070 
1071 	/*
1072 	 * If we're already inside safe list traversal and have moved
1073 	 * multiple works to the scheduled queue, the next position
1074 	 * needs to be updated.
1075 	 */
1076 	if (nextp)
1077 		*nextp = n;
1078 }
1079 
1080 /**
1081  * get_pwq - get an extra reference on the specified pool_workqueue
1082  * @pwq: pool_workqueue to get
1083  *
1084  * Obtain an extra reference on @pwq.  The caller should guarantee that
1085  * @pwq has positive refcnt and be holding the matching pool->lock.
1086  */
1087 static void get_pwq(struct pool_workqueue *pwq)
1088 {
1089 	lockdep_assert_held(&pwq->pool->lock);
1090 	WARN_ON_ONCE(pwq->refcnt <= 0);
1091 	pwq->refcnt++;
1092 }
1093 
1094 /**
1095  * put_pwq - put a pool_workqueue reference
1096  * @pwq: pool_workqueue to put
1097  *
1098  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1099  * destruction.  The caller should be holding the matching pool->lock.
1100  */
1101 static void put_pwq(struct pool_workqueue *pwq)
1102 {
1103 	lockdep_assert_held(&pwq->pool->lock);
1104 	if (likely(--pwq->refcnt))
1105 		return;
1106 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1107 		return;
1108 	/*
1109 	 * @pwq can't be released under pool->lock, bounce to
1110 	 * pwq_unbound_release_workfn().  This never recurses on the same
1111 	 * pool->lock as this path is taken only for unbound workqueues and
1112 	 * the release work item is scheduled on a per-cpu workqueue.  To
1113 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1114 	 * subclass of 1 in get_unbound_pool().
1115 	 */
1116 	schedule_work(&pwq->unbound_release_work);
1117 }
1118 
1119 /**
1120  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1121  * @pwq: pool_workqueue to put (can be %NULL)
1122  *
1123  * put_pwq() with locking.  This function also allows %NULL @pwq.
1124  */
1125 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1126 {
1127 	if (pwq) {
1128 		/*
1129 		 * As both pwqs and pools are RCU protected, the
1130 		 * following lock operations are safe.
1131 		 */
1132 		raw_spin_lock_irq(&pwq->pool->lock);
1133 		put_pwq(pwq);
1134 		raw_spin_unlock_irq(&pwq->pool->lock);
1135 	}
1136 }
1137 
1138 static void pwq_activate_delayed_work(struct work_struct *work)
1139 {
1140 	struct pool_workqueue *pwq = get_work_pwq(work);
1141 
1142 	trace_workqueue_activate_work(work);
1143 	if (list_empty(&pwq->pool->worklist))
1144 		pwq->pool->watchdog_ts = jiffies;
1145 	move_linked_works(work, &pwq->pool->worklist, NULL);
1146 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1147 	pwq->nr_active++;
1148 }
1149 
1150 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1151 {
1152 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1153 						    struct work_struct, entry);
1154 
1155 	pwq_activate_delayed_work(work);
1156 }
1157 
1158 /**
1159  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1160  * @pwq: pwq of interest
1161  * @color: color of work which left the queue
1162  *
1163  * A work either has completed or is removed from pending queue,
1164  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1165  *
1166  * CONTEXT:
1167  * raw_spin_lock_irq(pool->lock).
1168  */
1169 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1170 {
1171 	/* uncolored work items don't participate in flushing or nr_active */
1172 	if (color == WORK_NO_COLOR)
1173 		goto out_put;
1174 
1175 	pwq->nr_in_flight[color]--;
1176 
1177 	pwq->nr_active--;
1178 	if (!list_empty(&pwq->delayed_works)) {
1179 		/* one down, submit a delayed one */
1180 		if (pwq->nr_active < pwq->max_active)
1181 			pwq_activate_first_delayed(pwq);
1182 	}
1183 
1184 	/* is flush in progress and are we at the flushing tip? */
1185 	if (likely(pwq->flush_color != color))
1186 		goto out_put;
1187 
1188 	/* are there still in-flight works? */
1189 	if (pwq->nr_in_flight[color])
1190 		goto out_put;
1191 
1192 	/* this pwq is done, clear flush_color */
1193 	pwq->flush_color = -1;
1194 
1195 	/*
1196 	 * If this was the last pwq, wake up the first flusher.  It
1197 	 * will handle the rest.
1198 	 */
1199 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1200 		complete(&pwq->wq->first_flusher->done);
1201 out_put:
1202 	put_pwq(pwq);
1203 }
1204 
1205 /**
1206  * try_to_grab_pending - steal work item from worklist and disable irq
1207  * @work: work item to steal
1208  * @is_dwork: @work is a delayed_work
1209  * @flags: place to store irq state
1210  *
1211  * Try to grab PENDING bit of @work.  This function can handle @work in any
1212  * stable state - idle, on timer or on worklist.
1213  *
1214  * Return:
1215  *
1216  *  ========	================================================================
1217  *  1		if @work was pending and we successfully stole PENDING
1218  *  0		if @work was idle and we claimed PENDING
1219  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1220  *  -ENOENT	if someone else is canceling @work, this state may persist
1221  *		for arbitrarily long
1222  *  ========	================================================================
1223  *
1224  * Note:
1225  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1226  * interrupted while holding PENDING and @work off queue, irq must be
1227  * disabled on entry.  This, combined with delayed_work->timer being
1228  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1229  *
1230  * On successful return, >= 0, irq is disabled and the caller is
1231  * responsible for releasing it using local_irq_restore(*@flags).
1232  *
1233  * This function is safe to call from any context including IRQ handler.
1234  */
1235 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1236 			       unsigned long *flags)
1237 {
1238 	struct worker_pool *pool;
1239 	struct pool_workqueue *pwq;
1240 
1241 	local_irq_save(*flags);
1242 
1243 	/* try to steal the timer if it exists */
1244 	if (is_dwork) {
1245 		struct delayed_work *dwork = to_delayed_work(work);
1246 
1247 		/*
1248 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1249 		 * guaranteed that the timer is not queued anywhere and not
1250 		 * running on the local CPU.
1251 		 */
1252 		if (likely(del_timer(&dwork->timer)))
1253 			return 1;
1254 	}
1255 
1256 	/* try to claim PENDING the normal way */
1257 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1258 		return 0;
1259 
1260 	rcu_read_lock();
1261 	/*
1262 	 * The queueing is in progress, or it is already queued. Try to
1263 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1264 	 */
1265 	pool = get_work_pool(work);
1266 	if (!pool)
1267 		goto fail;
1268 
1269 	raw_spin_lock(&pool->lock);
1270 	/*
1271 	 * work->data is guaranteed to point to pwq only while the work
1272 	 * item is queued on pwq->wq, and both updating work->data to point
1273 	 * to pwq on queueing and to pool on dequeueing are done under
1274 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1275 	 * points to pwq which is associated with a locked pool, the work
1276 	 * item is currently queued on that pool.
1277 	 */
1278 	pwq = get_work_pwq(work);
1279 	if (pwq && pwq->pool == pool) {
1280 		debug_work_deactivate(work);
1281 
1282 		/*
1283 		 * A delayed work item cannot be grabbed directly because
1284 		 * it might have linked NO_COLOR work items which, if left
1285 		 * on the delayed_list, will confuse pwq->nr_active
1286 		 * management later on and cause stall.  Make sure the work
1287 		 * item is activated before grabbing.
1288 		 */
1289 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1290 			pwq_activate_delayed_work(work);
1291 
1292 		list_del_init(&work->entry);
1293 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1294 
1295 		/* work->data points to pwq iff queued, point to pool */
1296 		set_work_pool_and_keep_pending(work, pool->id);
1297 
1298 		raw_spin_unlock(&pool->lock);
1299 		rcu_read_unlock();
1300 		return 1;
1301 	}
1302 	raw_spin_unlock(&pool->lock);
1303 fail:
1304 	rcu_read_unlock();
1305 	local_irq_restore(*flags);
1306 	if (work_is_canceling(work))
1307 		return -ENOENT;
1308 	cpu_relax();
1309 	return -EAGAIN;
1310 }
1311 
1312 /**
1313  * insert_work - insert a work into a pool
1314  * @pwq: pwq @work belongs to
1315  * @work: work to insert
1316  * @head: insertion point
1317  * @extra_flags: extra WORK_STRUCT_* flags to set
1318  *
1319  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1320  * work_struct flags.
1321  *
1322  * CONTEXT:
1323  * raw_spin_lock_irq(pool->lock).
1324  */
1325 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1326 			struct list_head *head, unsigned int extra_flags)
1327 {
1328 	struct worker_pool *pool = pwq->pool;
1329 
1330 	/* we own @work, set data and link */
1331 	set_work_pwq(work, pwq, extra_flags);
1332 	list_add_tail(&work->entry, head);
1333 	get_pwq(pwq);
1334 
1335 	/*
1336 	 * Ensure either wq_worker_sleeping() sees the above
1337 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1338 	 * around lazily while there are works to be processed.
1339 	 */
1340 	smp_mb();
1341 
1342 	if (__need_more_worker(pool))
1343 		wake_up_worker(pool);
1344 }
1345 
1346 /*
1347  * Test whether @work is being queued from another work executing on the
1348  * same workqueue.
1349  */
1350 static bool is_chained_work(struct workqueue_struct *wq)
1351 {
1352 	struct worker *worker;
1353 
1354 	worker = current_wq_worker();
1355 	/*
1356 	 * Return %true iff I'm a worker executing a work item on @wq.  If
1357 	 * I'm @worker, it's safe to dereference it without locking.
1358 	 */
1359 	return worker && worker->current_pwq->wq == wq;
1360 }
1361 
1362 /*
1363  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1364  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1365  * avoid perturbing sensitive tasks.
1366  */
1367 static int wq_select_unbound_cpu(int cpu)
1368 {
1369 	static bool printed_dbg_warning;
1370 	int new_cpu;
1371 
1372 	if (likely(!wq_debug_force_rr_cpu)) {
1373 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1374 			return cpu;
1375 	} else if (!printed_dbg_warning) {
1376 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1377 		printed_dbg_warning = true;
1378 	}
1379 
1380 	if (cpumask_empty(wq_unbound_cpumask))
1381 		return cpu;
1382 
1383 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1384 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1385 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1386 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1387 		if (unlikely(new_cpu >= nr_cpu_ids))
1388 			return cpu;
1389 	}
1390 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1391 
1392 	return new_cpu;
1393 }
1394 
1395 static void __queue_work(int cpu, struct workqueue_struct *wq,
1396 			 struct work_struct *work)
1397 {
1398 	struct pool_workqueue *pwq;
1399 	struct worker_pool *last_pool;
1400 	struct list_head *worklist;
1401 	unsigned int work_flags;
1402 	unsigned int req_cpu = cpu;
1403 
1404 	/*
1405 	 * While a work item is PENDING && off queue, a task trying to
1406 	 * steal the PENDING will busy-loop waiting for it to either get
1407 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1408 	 * happen with IRQ disabled.
1409 	 */
1410 	lockdep_assert_irqs_disabled();
1411 
1412 	debug_work_activate(work);
1413 
1414 	/* if draining, only works from the same workqueue are allowed */
1415 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1416 	    WARN_ON_ONCE(!is_chained_work(wq)))
1417 		return;
1418 	rcu_read_lock();
1419 retry:
1420 	/* pwq which will be used unless @work is executing elsewhere */
1421 	if (wq->flags & WQ_UNBOUND) {
1422 		if (req_cpu == WORK_CPU_UNBOUND)
1423 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1424 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1425 	} else {
1426 		if (req_cpu == WORK_CPU_UNBOUND)
1427 			cpu = raw_smp_processor_id();
1428 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1429 	}
1430 
1431 	/*
1432 	 * If @work was previously on a different pool, it might still be
1433 	 * running there, in which case the work needs to be queued on that
1434 	 * pool to guarantee non-reentrancy.
1435 	 */
1436 	last_pool = get_work_pool(work);
1437 	if (last_pool && last_pool != pwq->pool) {
1438 		struct worker *worker;
1439 
1440 		raw_spin_lock(&last_pool->lock);
1441 
1442 		worker = find_worker_executing_work(last_pool, work);
1443 
1444 		if (worker && worker->current_pwq->wq == wq) {
1445 			pwq = worker->current_pwq;
1446 		} else {
1447 			/* meh... not running there, queue here */
1448 			raw_spin_unlock(&last_pool->lock);
1449 			raw_spin_lock(&pwq->pool->lock);
1450 		}
1451 	} else {
1452 		raw_spin_lock(&pwq->pool->lock);
1453 	}
1454 
1455 	/*
1456 	 * pwq is determined and locked.  For unbound pools, we could have
1457 	 * raced with pwq release and it could already be dead.  If its
1458 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1459 	 * without another pwq replacing it in the numa_pwq_tbl or while
1460 	 * work items are executing on it, so the retrying is guaranteed to
1461 	 * make forward-progress.
1462 	 */
1463 	if (unlikely(!pwq->refcnt)) {
1464 		if (wq->flags & WQ_UNBOUND) {
1465 			raw_spin_unlock(&pwq->pool->lock);
1466 			cpu_relax();
1467 			goto retry;
1468 		}
1469 		/* oops */
1470 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1471 			  wq->name, cpu);
1472 	}
1473 
1474 	/* pwq determined, queue */
1475 	trace_workqueue_queue_work(req_cpu, pwq, work);
1476 
1477 	if (WARN_ON(!list_empty(&work->entry)))
1478 		goto out;
1479 
1480 	pwq->nr_in_flight[pwq->work_color]++;
1481 	work_flags = work_color_to_flags(pwq->work_color);
1482 
1483 	if (likely(pwq->nr_active < pwq->max_active)) {
1484 		trace_workqueue_activate_work(work);
1485 		pwq->nr_active++;
1486 		worklist = &pwq->pool->worklist;
1487 		if (list_empty(worklist))
1488 			pwq->pool->watchdog_ts = jiffies;
1489 	} else {
1490 		work_flags |= WORK_STRUCT_DELAYED;
1491 		worklist = &pwq->delayed_works;
1492 	}
1493 
1494 	insert_work(pwq, work, worklist, work_flags);
1495 
1496 out:
1497 	raw_spin_unlock(&pwq->pool->lock);
1498 	rcu_read_unlock();
1499 }
1500 
1501 /**
1502  * queue_work_on - queue work on specific cpu
1503  * @cpu: CPU number to execute work on
1504  * @wq: workqueue to use
1505  * @work: work to queue
1506  *
1507  * We queue the work to a specific CPU, the caller must ensure it
1508  * can't go away.
1509  *
1510  * Return: %false if @work was already on a queue, %true otherwise.
1511  */
1512 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1513 		   struct work_struct *work)
1514 {
1515 	bool ret = false;
1516 	unsigned long flags;
1517 
1518 	local_irq_save(flags);
1519 
1520 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1521 		__queue_work(cpu, wq, work);
1522 		ret = true;
1523 	}
1524 
1525 	local_irq_restore(flags);
1526 	return ret;
1527 }
1528 EXPORT_SYMBOL(queue_work_on);
1529 
1530 /**
1531  * workqueue_select_cpu_near - Select a CPU based on NUMA node
1532  * @node: NUMA node ID that we want to select a CPU from
1533  *
1534  * This function will attempt to find a "random" cpu available on a given
1535  * node. If there are no CPUs available on the given node it will return
1536  * WORK_CPU_UNBOUND indicating that we should just schedule to any
1537  * available CPU if we need to schedule this work.
1538  */
1539 static int workqueue_select_cpu_near(int node)
1540 {
1541 	int cpu;
1542 
1543 	/* No point in doing this if NUMA isn't enabled for workqueues */
1544 	if (!wq_numa_enabled)
1545 		return WORK_CPU_UNBOUND;
1546 
1547 	/* Delay binding to CPU if node is not valid or online */
1548 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1549 		return WORK_CPU_UNBOUND;
1550 
1551 	/* Use local node/cpu if we are already there */
1552 	cpu = raw_smp_processor_id();
1553 	if (node == cpu_to_node(cpu))
1554 		return cpu;
1555 
1556 	/* Use "random" otherwise know as "first" online CPU of node */
1557 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1558 
1559 	/* If CPU is valid return that, otherwise just defer */
1560 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1561 }
1562 
1563 /**
1564  * queue_work_node - queue work on a "random" cpu for a given NUMA node
1565  * @node: NUMA node that we are targeting the work for
1566  * @wq: workqueue to use
1567  * @work: work to queue
1568  *
1569  * We queue the work to a "random" CPU within a given NUMA node. The basic
1570  * idea here is to provide a way to somehow associate work with a given
1571  * NUMA node.
1572  *
1573  * This function will only make a best effort attempt at getting this onto
1574  * the right NUMA node. If no node is requested or the requested node is
1575  * offline then we just fall back to standard queue_work behavior.
1576  *
1577  * Currently the "random" CPU ends up being the first available CPU in the
1578  * intersection of cpu_online_mask and the cpumask of the node, unless we
1579  * are running on the node. In that case we just use the current CPU.
1580  *
1581  * Return: %false if @work was already on a queue, %true otherwise.
1582  */
1583 bool queue_work_node(int node, struct workqueue_struct *wq,
1584 		     struct work_struct *work)
1585 {
1586 	unsigned long flags;
1587 	bool ret = false;
1588 
1589 	/*
1590 	 * This current implementation is specific to unbound workqueues.
1591 	 * Specifically we only return the first available CPU for a given
1592 	 * node instead of cycling through individual CPUs within the node.
1593 	 *
1594 	 * If this is used with a per-cpu workqueue then the logic in
1595 	 * workqueue_select_cpu_near would need to be updated to allow for
1596 	 * some round robin type logic.
1597 	 */
1598 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1599 
1600 	local_irq_save(flags);
1601 
1602 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1603 		int cpu = workqueue_select_cpu_near(node);
1604 
1605 		__queue_work(cpu, wq, work);
1606 		ret = true;
1607 	}
1608 
1609 	local_irq_restore(flags);
1610 	return ret;
1611 }
1612 EXPORT_SYMBOL_GPL(queue_work_node);
1613 
1614 void delayed_work_timer_fn(struct timer_list *t)
1615 {
1616 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1617 
1618 	/* should have been called from irqsafe timer with irq already off */
1619 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1620 }
1621 EXPORT_SYMBOL(delayed_work_timer_fn);
1622 
1623 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1624 				struct delayed_work *dwork, unsigned long delay)
1625 {
1626 	struct timer_list *timer = &dwork->timer;
1627 	struct work_struct *work = &dwork->work;
1628 
1629 	WARN_ON_ONCE(!wq);
1630 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1631 	WARN_ON_ONCE(timer_pending(timer));
1632 	WARN_ON_ONCE(!list_empty(&work->entry));
1633 
1634 	/*
1635 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1636 	 * both optimization and correctness.  The earliest @timer can
1637 	 * expire is on the closest next tick and delayed_work users depend
1638 	 * on that there's no such delay when @delay is 0.
1639 	 */
1640 	if (!delay) {
1641 		__queue_work(cpu, wq, &dwork->work);
1642 		return;
1643 	}
1644 
1645 	dwork->wq = wq;
1646 	dwork->cpu = cpu;
1647 	timer->expires = jiffies + delay;
1648 
1649 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1650 		add_timer_on(timer, cpu);
1651 	else
1652 		add_timer(timer);
1653 }
1654 
1655 /**
1656  * queue_delayed_work_on - queue work on specific CPU after delay
1657  * @cpu: CPU number to execute work on
1658  * @wq: workqueue to use
1659  * @dwork: work to queue
1660  * @delay: number of jiffies to wait before queueing
1661  *
1662  * Return: %false if @work was already on a queue, %true otherwise.  If
1663  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1664  * execution.
1665  */
1666 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1667 			   struct delayed_work *dwork, unsigned long delay)
1668 {
1669 	struct work_struct *work = &dwork->work;
1670 	bool ret = false;
1671 	unsigned long flags;
1672 
1673 	/* read the comment in __queue_work() */
1674 	local_irq_save(flags);
1675 
1676 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1677 		__queue_delayed_work(cpu, wq, dwork, delay);
1678 		ret = true;
1679 	}
1680 
1681 	local_irq_restore(flags);
1682 	return ret;
1683 }
1684 EXPORT_SYMBOL(queue_delayed_work_on);
1685 
1686 /**
1687  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1688  * @cpu: CPU number to execute work on
1689  * @wq: workqueue to use
1690  * @dwork: work to queue
1691  * @delay: number of jiffies to wait before queueing
1692  *
1693  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1694  * modify @dwork's timer so that it expires after @delay.  If @delay is
1695  * zero, @work is guaranteed to be scheduled immediately regardless of its
1696  * current state.
1697  *
1698  * Return: %false if @dwork was idle and queued, %true if @dwork was
1699  * pending and its timer was modified.
1700  *
1701  * This function is safe to call from any context including IRQ handler.
1702  * See try_to_grab_pending() for details.
1703  */
1704 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1705 			 struct delayed_work *dwork, unsigned long delay)
1706 {
1707 	unsigned long flags;
1708 	int ret;
1709 
1710 	do {
1711 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1712 	} while (unlikely(ret == -EAGAIN));
1713 
1714 	if (likely(ret >= 0)) {
1715 		__queue_delayed_work(cpu, wq, dwork, delay);
1716 		local_irq_restore(flags);
1717 	}
1718 
1719 	/* -ENOENT from try_to_grab_pending() becomes %true */
1720 	return ret;
1721 }
1722 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1723 
1724 static void rcu_work_rcufn(struct rcu_head *rcu)
1725 {
1726 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1727 
1728 	/* read the comment in __queue_work() */
1729 	local_irq_disable();
1730 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1731 	local_irq_enable();
1732 }
1733 
1734 /**
1735  * queue_rcu_work - queue work after a RCU grace period
1736  * @wq: workqueue to use
1737  * @rwork: work to queue
1738  *
1739  * Return: %false if @rwork was already pending, %true otherwise.  Note
1740  * that a full RCU grace period is guaranteed only after a %true return.
1741  * While @rwork is guaranteed to be executed after a %false return, the
1742  * execution may happen before a full RCU grace period has passed.
1743  */
1744 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1745 {
1746 	struct work_struct *work = &rwork->work;
1747 
1748 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1749 		rwork->wq = wq;
1750 		call_rcu(&rwork->rcu, rcu_work_rcufn);
1751 		return true;
1752 	}
1753 
1754 	return false;
1755 }
1756 EXPORT_SYMBOL(queue_rcu_work);
1757 
1758 /**
1759  * worker_enter_idle - enter idle state
1760  * @worker: worker which is entering idle state
1761  *
1762  * @worker is entering idle state.  Update stats and idle timer if
1763  * necessary.
1764  *
1765  * LOCKING:
1766  * raw_spin_lock_irq(pool->lock).
1767  */
1768 static void worker_enter_idle(struct worker *worker)
1769 {
1770 	struct worker_pool *pool = worker->pool;
1771 
1772 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1773 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1774 			 (worker->hentry.next || worker->hentry.pprev)))
1775 		return;
1776 
1777 	/* can't use worker_set_flags(), also called from create_worker() */
1778 	worker->flags |= WORKER_IDLE;
1779 	pool->nr_idle++;
1780 	worker->last_active = jiffies;
1781 
1782 	/* idle_list is LIFO */
1783 	list_add(&worker->entry, &pool->idle_list);
1784 
1785 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1786 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1787 
1788 	/*
1789 	 * Sanity check nr_running.  Because unbind_workers() releases
1790 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1791 	 * nr_running, the warning may trigger spuriously.  Check iff
1792 	 * unbind is not in progress.
1793 	 */
1794 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1795 		     pool->nr_workers == pool->nr_idle &&
1796 		     atomic_read(&pool->nr_running));
1797 }
1798 
1799 /**
1800  * worker_leave_idle - leave idle state
1801  * @worker: worker which is leaving idle state
1802  *
1803  * @worker is leaving idle state.  Update stats.
1804  *
1805  * LOCKING:
1806  * raw_spin_lock_irq(pool->lock).
1807  */
1808 static void worker_leave_idle(struct worker *worker)
1809 {
1810 	struct worker_pool *pool = worker->pool;
1811 
1812 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1813 		return;
1814 	worker_clr_flags(worker, WORKER_IDLE);
1815 	pool->nr_idle--;
1816 	list_del_init(&worker->entry);
1817 }
1818 
1819 static struct worker *alloc_worker(int node)
1820 {
1821 	struct worker *worker;
1822 
1823 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1824 	if (worker) {
1825 		INIT_LIST_HEAD(&worker->entry);
1826 		INIT_LIST_HEAD(&worker->scheduled);
1827 		INIT_LIST_HEAD(&worker->node);
1828 		/* on creation a worker is in !idle && prep state */
1829 		worker->flags = WORKER_PREP;
1830 	}
1831 	return worker;
1832 }
1833 
1834 /**
1835  * worker_attach_to_pool() - attach a worker to a pool
1836  * @worker: worker to be attached
1837  * @pool: the target pool
1838  *
1839  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1840  * cpu-binding of @worker are kept coordinated with the pool across
1841  * cpu-[un]hotplugs.
1842  */
1843 static void worker_attach_to_pool(struct worker *worker,
1844 				   struct worker_pool *pool)
1845 {
1846 	mutex_lock(&wq_pool_attach_mutex);
1847 
1848 	/*
1849 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1850 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1851 	 */
1852 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1853 
1854 	/*
1855 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1856 	 * stable across this function.  See the comments above the flag
1857 	 * definition for details.
1858 	 */
1859 	if (pool->flags & POOL_DISASSOCIATED)
1860 		worker->flags |= WORKER_UNBOUND;
1861 
1862 	list_add_tail(&worker->node, &pool->workers);
1863 	worker->pool = pool;
1864 
1865 	mutex_unlock(&wq_pool_attach_mutex);
1866 }
1867 
1868 /**
1869  * worker_detach_from_pool() - detach a worker from its pool
1870  * @worker: worker which is attached to its pool
1871  *
1872  * Undo the attaching which had been done in worker_attach_to_pool().  The
1873  * caller worker shouldn't access to the pool after detached except it has
1874  * other reference to the pool.
1875  */
1876 static void worker_detach_from_pool(struct worker *worker)
1877 {
1878 	struct worker_pool *pool = worker->pool;
1879 	struct completion *detach_completion = NULL;
1880 
1881 	mutex_lock(&wq_pool_attach_mutex);
1882 
1883 	list_del(&worker->node);
1884 	worker->pool = NULL;
1885 
1886 	if (list_empty(&pool->workers))
1887 		detach_completion = pool->detach_completion;
1888 	mutex_unlock(&wq_pool_attach_mutex);
1889 
1890 	/* clear leftover flags without pool->lock after it is detached */
1891 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1892 
1893 	if (detach_completion)
1894 		complete(detach_completion);
1895 }
1896 
1897 /**
1898  * create_worker - create a new workqueue worker
1899  * @pool: pool the new worker will belong to
1900  *
1901  * Create and start a new worker which is attached to @pool.
1902  *
1903  * CONTEXT:
1904  * Might sleep.  Does GFP_KERNEL allocations.
1905  *
1906  * Return:
1907  * Pointer to the newly created worker.
1908  */
1909 static struct worker *create_worker(struct worker_pool *pool)
1910 {
1911 	struct worker *worker = NULL;
1912 	int id = -1;
1913 	char id_buf[16];
1914 
1915 	/* ID is needed to determine kthread name */
1916 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1917 	if (id < 0)
1918 		goto fail;
1919 
1920 	worker = alloc_worker(pool->node);
1921 	if (!worker)
1922 		goto fail;
1923 
1924 	worker->id = id;
1925 
1926 	if (pool->cpu >= 0)
1927 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1928 			 pool->attrs->nice < 0  ? "H" : "");
1929 	else
1930 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1931 
1932 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1933 					      "kworker/%s", id_buf);
1934 	if (IS_ERR(worker->task))
1935 		goto fail;
1936 
1937 	set_user_nice(worker->task, pool->attrs->nice);
1938 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1939 
1940 	/* successful, attach the worker to the pool */
1941 	worker_attach_to_pool(worker, pool);
1942 
1943 	/* start the newly created worker */
1944 	raw_spin_lock_irq(&pool->lock);
1945 	worker->pool->nr_workers++;
1946 	worker_enter_idle(worker);
1947 	wake_up_process(worker->task);
1948 	raw_spin_unlock_irq(&pool->lock);
1949 
1950 	return worker;
1951 
1952 fail:
1953 	if (id >= 0)
1954 		ida_simple_remove(&pool->worker_ida, id);
1955 	kfree(worker);
1956 	return NULL;
1957 }
1958 
1959 /**
1960  * destroy_worker - destroy a workqueue worker
1961  * @worker: worker to be destroyed
1962  *
1963  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1964  * be idle.
1965  *
1966  * CONTEXT:
1967  * raw_spin_lock_irq(pool->lock).
1968  */
1969 static void destroy_worker(struct worker *worker)
1970 {
1971 	struct worker_pool *pool = worker->pool;
1972 
1973 	lockdep_assert_held(&pool->lock);
1974 
1975 	/* sanity check frenzy */
1976 	if (WARN_ON(worker->current_work) ||
1977 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1978 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1979 		return;
1980 
1981 	pool->nr_workers--;
1982 	pool->nr_idle--;
1983 
1984 	list_del_init(&worker->entry);
1985 	worker->flags |= WORKER_DIE;
1986 	wake_up_process(worker->task);
1987 }
1988 
1989 static void idle_worker_timeout(struct timer_list *t)
1990 {
1991 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
1992 
1993 	raw_spin_lock_irq(&pool->lock);
1994 
1995 	while (too_many_workers(pool)) {
1996 		struct worker *worker;
1997 		unsigned long expires;
1998 
1999 		/* idle_list is kept in LIFO order, check the last one */
2000 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2001 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2002 
2003 		if (time_before(jiffies, expires)) {
2004 			mod_timer(&pool->idle_timer, expires);
2005 			break;
2006 		}
2007 
2008 		destroy_worker(worker);
2009 	}
2010 
2011 	raw_spin_unlock_irq(&pool->lock);
2012 }
2013 
2014 static void send_mayday(struct work_struct *work)
2015 {
2016 	struct pool_workqueue *pwq = get_work_pwq(work);
2017 	struct workqueue_struct *wq = pwq->wq;
2018 
2019 	lockdep_assert_held(&wq_mayday_lock);
2020 
2021 	if (!wq->rescuer)
2022 		return;
2023 
2024 	/* mayday mayday mayday */
2025 	if (list_empty(&pwq->mayday_node)) {
2026 		/*
2027 		 * If @pwq is for an unbound wq, its base ref may be put at
2028 		 * any time due to an attribute change.  Pin @pwq until the
2029 		 * rescuer is done with it.
2030 		 */
2031 		get_pwq(pwq);
2032 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2033 		wake_up_process(wq->rescuer->task);
2034 	}
2035 }
2036 
2037 static void pool_mayday_timeout(struct timer_list *t)
2038 {
2039 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2040 	struct work_struct *work;
2041 
2042 	raw_spin_lock_irq(&pool->lock);
2043 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2044 
2045 	if (need_to_create_worker(pool)) {
2046 		/*
2047 		 * We've been trying to create a new worker but
2048 		 * haven't been successful.  We might be hitting an
2049 		 * allocation deadlock.  Send distress signals to
2050 		 * rescuers.
2051 		 */
2052 		list_for_each_entry(work, &pool->worklist, entry)
2053 			send_mayday(work);
2054 	}
2055 
2056 	raw_spin_unlock(&wq_mayday_lock);
2057 	raw_spin_unlock_irq(&pool->lock);
2058 
2059 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2060 }
2061 
2062 /**
2063  * maybe_create_worker - create a new worker if necessary
2064  * @pool: pool to create a new worker for
2065  *
2066  * Create a new worker for @pool if necessary.  @pool is guaranteed to
2067  * have at least one idle worker on return from this function.  If
2068  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2069  * sent to all rescuers with works scheduled on @pool to resolve
2070  * possible allocation deadlock.
2071  *
2072  * On return, need_to_create_worker() is guaranteed to be %false and
2073  * may_start_working() %true.
2074  *
2075  * LOCKING:
2076  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2077  * multiple times.  Does GFP_KERNEL allocations.  Called only from
2078  * manager.
2079  */
2080 static void maybe_create_worker(struct worker_pool *pool)
2081 __releases(&pool->lock)
2082 __acquires(&pool->lock)
2083 {
2084 restart:
2085 	raw_spin_unlock_irq(&pool->lock);
2086 
2087 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2088 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2089 
2090 	while (true) {
2091 		if (create_worker(pool) || !need_to_create_worker(pool))
2092 			break;
2093 
2094 		schedule_timeout_interruptible(CREATE_COOLDOWN);
2095 
2096 		if (!need_to_create_worker(pool))
2097 			break;
2098 	}
2099 
2100 	del_timer_sync(&pool->mayday_timer);
2101 	raw_spin_lock_irq(&pool->lock);
2102 	/*
2103 	 * This is necessary even after a new worker was just successfully
2104 	 * created as @pool->lock was dropped and the new worker might have
2105 	 * already become busy.
2106 	 */
2107 	if (need_to_create_worker(pool))
2108 		goto restart;
2109 }
2110 
2111 /**
2112  * manage_workers - manage worker pool
2113  * @worker: self
2114  *
2115  * Assume the manager role and manage the worker pool @worker belongs
2116  * to.  At any given time, there can be only zero or one manager per
2117  * pool.  The exclusion is handled automatically by this function.
2118  *
2119  * The caller can safely start processing works on false return.  On
2120  * true return, it's guaranteed that need_to_create_worker() is false
2121  * and may_start_working() is true.
2122  *
2123  * CONTEXT:
2124  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2125  * multiple times.  Does GFP_KERNEL allocations.
2126  *
2127  * Return:
2128  * %false if the pool doesn't need management and the caller can safely
2129  * start processing works, %true if management function was performed and
2130  * the conditions that the caller verified before calling the function may
2131  * no longer be true.
2132  */
2133 static bool manage_workers(struct worker *worker)
2134 {
2135 	struct worker_pool *pool = worker->pool;
2136 
2137 	if (pool->flags & POOL_MANAGER_ACTIVE)
2138 		return false;
2139 
2140 	pool->flags |= POOL_MANAGER_ACTIVE;
2141 	pool->manager = worker;
2142 
2143 	maybe_create_worker(pool);
2144 
2145 	pool->manager = NULL;
2146 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2147 	rcuwait_wake_up(&manager_wait);
2148 	return true;
2149 }
2150 
2151 /**
2152  * process_one_work - process single work
2153  * @worker: self
2154  * @work: work to process
2155  *
2156  * Process @work.  This function contains all the logics necessary to
2157  * process a single work including synchronization against and
2158  * interaction with other workers on the same cpu, queueing and
2159  * flushing.  As long as context requirement is met, any worker can
2160  * call this function to process a work.
2161  *
2162  * CONTEXT:
2163  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2164  */
2165 static void process_one_work(struct worker *worker, struct work_struct *work)
2166 __releases(&pool->lock)
2167 __acquires(&pool->lock)
2168 {
2169 	struct pool_workqueue *pwq = get_work_pwq(work);
2170 	struct worker_pool *pool = worker->pool;
2171 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2172 	int work_color;
2173 	struct worker *collision;
2174 #ifdef CONFIG_LOCKDEP
2175 	/*
2176 	 * It is permissible to free the struct work_struct from
2177 	 * inside the function that is called from it, this we need to
2178 	 * take into account for lockdep too.  To avoid bogus "held
2179 	 * lock freed" warnings as well as problems when looking into
2180 	 * work->lockdep_map, make a copy and use that here.
2181 	 */
2182 	struct lockdep_map lockdep_map;
2183 
2184 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2185 #endif
2186 	/* ensure we're on the correct CPU */
2187 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2188 		     raw_smp_processor_id() != pool->cpu);
2189 
2190 	/*
2191 	 * A single work shouldn't be executed concurrently by
2192 	 * multiple workers on a single cpu.  Check whether anyone is
2193 	 * already processing the work.  If so, defer the work to the
2194 	 * currently executing one.
2195 	 */
2196 	collision = find_worker_executing_work(pool, work);
2197 	if (unlikely(collision)) {
2198 		move_linked_works(work, &collision->scheduled, NULL);
2199 		return;
2200 	}
2201 
2202 	/* claim and dequeue */
2203 	debug_work_deactivate(work);
2204 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2205 	worker->current_work = work;
2206 	worker->current_func = work->func;
2207 	worker->current_pwq = pwq;
2208 	work_color = get_work_color(work);
2209 
2210 	/*
2211 	 * Record wq name for cmdline and debug reporting, may get
2212 	 * overridden through set_worker_desc().
2213 	 */
2214 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2215 
2216 	list_del_init(&work->entry);
2217 
2218 	/*
2219 	 * CPU intensive works don't participate in concurrency management.
2220 	 * They're the scheduler's responsibility.  This takes @worker out
2221 	 * of concurrency management and the next code block will chain
2222 	 * execution of the pending work items.
2223 	 */
2224 	if (unlikely(cpu_intensive))
2225 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2226 
2227 	/*
2228 	 * Wake up another worker if necessary.  The condition is always
2229 	 * false for normal per-cpu workers since nr_running would always
2230 	 * be >= 1 at this point.  This is used to chain execution of the
2231 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2232 	 * UNBOUND and CPU_INTENSIVE ones.
2233 	 */
2234 	if (need_more_worker(pool))
2235 		wake_up_worker(pool);
2236 
2237 	/*
2238 	 * Record the last pool and clear PENDING which should be the last
2239 	 * update to @work.  Also, do this inside @pool->lock so that
2240 	 * PENDING and queued state changes happen together while IRQ is
2241 	 * disabled.
2242 	 */
2243 	set_work_pool_and_clear_pending(work, pool->id);
2244 
2245 	raw_spin_unlock_irq(&pool->lock);
2246 
2247 	lock_map_acquire(&pwq->wq->lockdep_map);
2248 	lock_map_acquire(&lockdep_map);
2249 	/*
2250 	 * Strictly speaking we should mark the invariant state without holding
2251 	 * any locks, that is, before these two lock_map_acquire()'s.
2252 	 *
2253 	 * However, that would result in:
2254 	 *
2255 	 *   A(W1)
2256 	 *   WFC(C)
2257 	 *		A(W1)
2258 	 *		C(C)
2259 	 *
2260 	 * Which would create W1->C->W1 dependencies, even though there is no
2261 	 * actual deadlock possible. There are two solutions, using a
2262 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2263 	 * hit the lockdep limitation on recursive locks, or simply discard
2264 	 * these locks.
2265 	 *
2266 	 * AFAICT there is no possible deadlock scenario between the
2267 	 * flush_work() and complete() primitives (except for single-threaded
2268 	 * workqueues), so hiding them isn't a problem.
2269 	 */
2270 	lockdep_invariant_state(true);
2271 	trace_workqueue_execute_start(work);
2272 	worker->current_func(work);
2273 	/*
2274 	 * While we must be careful to not use "work" after this, the trace
2275 	 * point will only record its address.
2276 	 */
2277 	trace_workqueue_execute_end(work, worker->current_func);
2278 	lock_map_release(&lockdep_map);
2279 	lock_map_release(&pwq->wq->lockdep_map);
2280 
2281 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2282 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2283 		       "     last function: %ps\n",
2284 		       current->comm, preempt_count(), task_pid_nr(current),
2285 		       worker->current_func);
2286 		debug_show_held_locks(current);
2287 		dump_stack();
2288 	}
2289 
2290 	/*
2291 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
2292 	 * kernels, where a requeueing work item waiting for something to
2293 	 * happen could deadlock with stop_machine as such work item could
2294 	 * indefinitely requeue itself while all other CPUs are trapped in
2295 	 * stop_machine. At the same time, report a quiescent RCU state so
2296 	 * the same condition doesn't freeze RCU.
2297 	 */
2298 	cond_resched();
2299 
2300 	raw_spin_lock_irq(&pool->lock);
2301 
2302 	/* clear cpu intensive status */
2303 	if (unlikely(cpu_intensive))
2304 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2305 
2306 	/* tag the worker for identification in schedule() */
2307 	worker->last_func = worker->current_func;
2308 
2309 	/* we're done with it, release */
2310 	hash_del(&worker->hentry);
2311 	worker->current_work = NULL;
2312 	worker->current_func = NULL;
2313 	worker->current_pwq = NULL;
2314 	pwq_dec_nr_in_flight(pwq, work_color);
2315 }
2316 
2317 /**
2318  * process_scheduled_works - process scheduled works
2319  * @worker: self
2320  *
2321  * Process all scheduled works.  Please note that the scheduled list
2322  * may change while processing a work, so this function repeatedly
2323  * fetches a work from the top and executes it.
2324  *
2325  * CONTEXT:
2326  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2327  * multiple times.
2328  */
2329 static void process_scheduled_works(struct worker *worker)
2330 {
2331 	while (!list_empty(&worker->scheduled)) {
2332 		struct work_struct *work = list_first_entry(&worker->scheduled,
2333 						struct work_struct, entry);
2334 		process_one_work(worker, work);
2335 	}
2336 }
2337 
2338 static void set_pf_worker(bool val)
2339 {
2340 	mutex_lock(&wq_pool_attach_mutex);
2341 	if (val)
2342 		current->flags |= PF_WQ_WORKER;
2343 	else
2344 		current->flags &= ~PF_WQ_WORKER;
2345 	mutex_unlock(&wq_pool_attach_mutex);
2346 }
2347 
2348 /**
2349  * worker_thread - the worker thread function
2350  * @__worker: self
2351  *
2352  * The worker thread function.  All workers belong to a worker_pool -
2353  * either a per-cpu one or dynamic unbound one.  These workers process all
2354  * work items regardless of their specific target workqueue.  The only
2355  * exception is work items which belong to workqueues with a rescuer which
2356  * will be explained in rescuer_thread().
2357  *
2358  * Return: 0
2359  */
2360 static int worker_thread(void *__worker)
2361 {
2362 	struct worker *worker = __worker;
2363 	struct worker_pool *pool = worker->pool;
2364 
2365 	/* tell the scheduler that this is a workqueue worker */
2366 	set_pf_worker(true);
2367 woke_up:
2368 	raw_spin_lock_irq(&pool->lock);
2369 
2370 	/* am I supposed to die? */
2371 	if (unlikely(worker->flags & WORKER_DIE)) {
2372 		raw_spin_unlock_irq(&pool->lock);
2373 		WARN_ON_ONCE(!list_empty(&worker->entry));
2374 		set_pf_worker(false);
2375 
2376 		set_task_comm(worker->task, "kworker/dying");
2377 		ida_simple_remove(&pool->worker_ida, worker->id);
2378 		worker_detach_from_pool(worker);
2379 		kfree(worker);
2380 		return 0;
2381 	}
2382 
2383 	worker_leave_idle(worker);
2384 recheck:
2385 	/* no more worker necessary? */
2386 	if (!need_more_worker(pool))
2387 		goto sleep;
2388 
2389 	/* do we need to manage? */
2390 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2391 		goto recheck;
2392 
2393 	/*
2394 	 * ->scheduled list can only be filled while a worker is
2395 	 * preparing to process a work or actually processing it.
2396 	 * Make sure nobody diddled with it while I was sleeping.
2397 	 */
2398 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2399 
2400 	/*
2401 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2402 	 * worker or that someone else has already assumed the manager
2403 	 * role.  This is where @worker starts participating in concurrency
2404 	 * management if applicable and concurrency management is restored
2405 	 * after being rebound.  See rebind_workers() for details.
2406 	 */
2407 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2408 
2409 	do {
2410 		struct work_struct *work =
2411 			list_first_entry(&pool->worklist,
2412 					 struct work_struct, entry);
2413 
2414 		pool->watchdog_ts = jiffies;
2415 
2416 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2417 			/* optimization path, not strictly necessary */
2418 			process_one_work(worker, work);
2419 			if (unlikely(!list_empty(&worker->scheduled)))
2420 				process_scheduled_works(worker);
2421 		} else {
2422 			move_linked_works(work, &worker->scheduled, NULL);
2423 			process_scheduled_works(worker);
2424 		}
2425 	} while (keep_working(pool));
2426 
2427 	worker_set_flags(worker, WORKER_PREP);
2428 sleep:
2429 	/*
2430 	 * pool->lock is held and there's no work to process and no need to
2431 	 * manage, sleep.  Workers are woken up only while holding
2432 	 * pool->lock or from local cpu, so setting the current state
2433 	 * before releasing pool->lock is enough to prevent losing any
2434 	 * event.
2435 	 */
2436 	worker_enter_idle(worker);
2437 	__set_current_state(TASK_IDLE);
2438 	raw_spin_unlock_irq(&pool->lock);
2439 	schedule();
2440 	goto woke_up;
2441 }
2442 
2443 /**
2444  * rescuer_thread - the rescuer thread function
2445  * @__rescuer: self
2446  *
2447  * Workqueue rescuer thread function.  There's one rescuer for each
2448  * workqueue which has WQ_MEM_RECLAIM set.
2449  *
2450  * Regular work processing on a pool may block trying to create a new
2451  * worker which uses GFP_KERNEL allocation which has slight chance of
2452  * developing into deadlock if some works currently on the same queue
2453  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2454  * the problem rescuer solves.
2455  *
2456  * When such condition is possible, the pool summons rescuers of all
2457  * workqueues which have works queued on the pool and let them process
2458  * those works so that forward progress can be guaranteed.
2459  *
2460  * This should happen rarely.
2461  *
2462  * Return: 0
2463  */
2464 static int rescuer_thread(void *__rescuer)
2465 {
2466 	struct worker *rescuer = __rescuer;
2467 	struct workqueue_struct *wq = rescuer->rescue_wq;
2468 	struct list_head *scheduled = &rescuer->scheduled;
2469 	bool should_stop;
2470 
2471 	set_user_nice(current, RESCUER_NICE_LEVEL);
2472 
2473 	/*
2474 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2475 	 * doesn't participate in concurrency management.
2476 	 */
2477 	set_pf_worker(true);
2478 repeat:
2479 	set_current_state(TASK_IDLE);
2480 
2481 	/*
2482 	 * By the time the rescuer is requested to stop, the workqueue
2483 	 * shouldn't have any work pending, but @wq->maydays may still have
2484 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2485 	 * all the work items before the rescuer got to them.  Go through
2486 	 * @wq->maydays processing before acting on should_stop so that the
2487 	 * list is always empty on exit.
2488 	 */
2489 	should_stop = kthread_should_stop();
2490 
2491 	/* see whether any pwq is asking for help */
2492 	raw_spin_lock_irq(&wq_mayday_lock);
2493 
2494 	while (!list_empty(&wq->maydays)) {
2495 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2496 					struct pool_workqueue, mayday_node);
2497 		struct worker_pool *pool = pwq->pool;
2498 		struct work_struct *work, *n;
2499 		bool first = true;
2500 
2501 		__set_current_state(TASK_RUNNING);
2502 		list_del_init(&pwq->mayday_node);
2503 
2504 		raw_spin_unlock_irq(&wq_mayday_lock);
2505 
2506 		worker_attach_to_pool(rescuer, pool);
2507 
2508 		raw_spin_lock_irq(&pool->lock);
2509 
2510 		/*
2511 		 * Slurp in all works issued via this workqueue and
2512 		 * process'em.
2513 		 */
2514 		WARN_ON_ONCE(!list_empty(scheduled));
2515 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2516 			if (get_work_pwq(work) == pwq) {
2517 				if (first)
2518 					pool->watchdog_ts = jiffies;
2519 				move_linked_works(work, scheduled, &n);
2520 			}
2521 			first = false;
2522 		}
2523 
2524 		if (!list_empty(scheduled)) {
2525 			process_scheduled_works(rescuer);
2526 
2527 			/*
2528 			 * The above execution of rescued work items could
2529 			 * have created more to rescue through
2530 			 * pwq_activate_first_delayed() or chained
2531 			 * queueing.  Let's put @pwq back on mayday list so
2532 			 * that such back-to-back work items, which may be
2533 			 * being used to relieve memory pressure, don't
2534 			 * incur MAYDAY_INTERVAL delay inbetween.
2535 			 */
2536 			if (pwq->nr_active && need_to_create_worker(pool)) {
2537 				raw_spin_lock(&wq_mayday_lock);
2538 				/*
2539 				 * Queue iff we aren't racing destruction
2540 				 * and somebody else hasn't queued it already.
2541 				 */
2542 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2543 					get_pwq(pwq);
2544 					list_add_tail(&pwq->mayday_node, &wq->maydays);
2545 				}
2546 				raw_spin_unlock(&wq_mayday_lock);
2547 			}
2548 		}
2549 
2550 		/*
2551 		 * Put the reference grabbed by send_mayday().  @pool won't
2552 		 * go away while we're still attached to it.
2553 		 */
2554 		put_pwq(pwq);
2555 
2556 		/*
2557 		 * Leave this pool.  If need_more_worker() is %true, notify a
2558 		 * regular worker; otherwise, we end up with 0 concurrency
2559 		 * and stalling the execution.
2560 		 */
2561 		if (need_more_worker(pool))
2562 			wake_up_worker(pool);
2563 
2564 		raw_spin_unlock_irq(&pool->lock);
2565 
2566 		worker_detach_from_pool(rescuer);
2567 
2568 		raw_spin_lock_irq(&wq_mayday_lock);
2569 	}
2570 
2571 	raw_spin_unlock_irq(&wq_mayday_lock);
2572 
2573 	if (should_stop) {
2574 		__set_current_state(TASK_RUNNING);
2575 		set_pf_worker(false);
2576 		return 0;
2577 	}
2578 
2579 	/* rescuers should never participate in concurrency management */
2580 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2581 	schedule();
2582 	goto repeat;
2583 }
2584 
2585 /**
2586  * check_flush_dependency - check for flush dependency sanity
2587  * @target_wq: workqueue being flushed
2588  * @target_work: work item being flushed (NULL for workqueue flushes)
2589  *
2590  * %current is trying to flush the whole @target_wq or @target_work on it.
2591  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2592  * reclaiming memory or running on a workqueue which doesn't have
2593  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2594  * a deadlock.
2595  */
2596 static void check_flush_dependency(struct workqueue_struct *target_wq,
2597 				   struct work_struct *target_work)
2598 {
2599 	work_func_t target_func = target_work ? target_work->func : NULL;
2600 	struct worker *worker;
2601 
2602 	if (target_wq->flags & WQ_MEM_RECLAIM)
2603 		return;
2604 
2605 	worker = current_wq_worker();
2606 
2607 	WARN_ONCE(current->flags & PF_MEMALLOC,
2608 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2609 		  current->pid, current->comm, target_wq->name, target_func);
2610 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2611 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2612 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2613 		  worker->current_pwq->wq->name, worker->current_func,
2614 		  target_wq->name, target_func);
2615 }
2616 
2617 struct wq_barrier {
2618 	struct work_struct	work;
2619 	struct completion	done;
2620 	struct task_struct	*task;	/* purely informational */
2621 };
2622 
2623 static void wq_barrier_func(struct work_struct *work)
2624 {
2625 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2626 	complete(&barr->done);
2627 }
2628 
2629 /**
2630  * insert_wq_barrier - insert a barrier work
2631  * @pwq: pwq to insert barrier into
2632  * @barr: wq_barrier to insert
2633  * @target: target work to attach @barr to
2634  * @worker: worker currently executing @target, NULL if @target is not executing
2635  *
2636  * @barr is linked to @target such that @barr is completed only after
2637  * @target finishes execution.  Please note that the ordering
2638  * guarantee is observed only with respect to @target and on the local
2639  * cpu.
2640  *
2641  * Currently, a queued barrier can't be canceled.  This is because
2642  * try_to_grab_pending() can't determine whether the work to be
2643  * grabbed is at the head of the queue and thus can't clear LINKED
2644  * flag of the previous work while there must be a valid next work
2645  * after a work with LINKED flag set.
2646  *
2647  * Note that when @worker is non-NULL, @target may be modified
2648  * underneath us, so we can't reliably determine pwq from @target.
2649  *
2650  * CONTEXT:
2651  * raw_spin_lock_irq(pool->lock).
2652  */
2653 static void insert_wq_barrier(struct pool_workqueue *pwq,
2654 			      struct wq_barrier *barr,
2655 			      struct work_struct *target, struct worker *worker)
2656 {
2657 	struct list_head *head;
2658 	unsigned int linked = 0;
2659 
2660 	/*
2661 	 * debugobject calls are safe here even with pool->lock locked
2662 	 * as we know for sure that this will not trigger any of the
2663 	 * checks and call back into the fixup functions where we
2664 	 * might deadlock.
2665 	 */
2666 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2667 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2668 
2669 	init_completion_map(&barr->done, &target->lockdep_map);
2670 
2671 	barr->task = current;
2672 
2673 	/*
2674 	 * If @target is currently being executed, schedule the
2675 	 * barrier to the worker; otherwise, put it after @target.
2676 	 */
2677 	if (worker)
2678 		head = worker->scheduled.next;
2679 	else {
2680 		unsigned long *bits = work_data_bits(target);
2681 
2682 		head = target->entry.next;
2683 		/* there can already be other linked works, inherit and set */
2684 		linked = *bits & WORK_STRUCT_LINKED;
2685 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2686 	}
2687 
2688 	debug_work_activate(&barr->work);
2689 	insert_work(pwq, &barr->work, head,
2690 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2691 }
2692 
2693 /**
2694  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2695  * @wq: workqueue being flushed
2696  * @flush_color: new flush color, < 0 for no-op
2697  * @work_color: new work color, < 0 for no-op
2698  *
2699  * Prepare pwqs for workqueue flushing.
2700  *
2701  * If @flush_color is non-negative, flush_color on all pwqs should be
2702  * -1.  If no pwq has in-flight commands at the specified color, all
2703  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2704  * has in flight commands, its pwq->flush_color is set to
2705  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2706  * wakeup logic is armed and %true is returned.
2707  *
2708  * The caller should have initialized @wq->first_flusher prior to
2709  * calling this function with non-negative @flush_color.  If
2710  * @flush_color is negative, no flush color update is done and %false
2711  * is returned.
2712  *
2713  * If @work_color is non-negative, all pwqs should have the same
2714  * work_color which is previous to @work_color and all will be
2715  * advanced to @work_color.
2716  *
2717  * CONTEXT:
2718  * mutex_lock(wq->mutex).
2719  *
2720  * Return:
2721  * %true if @flush_color >= 0 and there's something to flush.  %false
2722  * otherwise.
2723  */
2724 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2725 				      int flush_color, int work_color)
2726 {
2727 	bool wait = false;
2728 	struct pool_workqueue *pwq;
2729 
2730 	if (flush_color >= 0) {
2731 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2732 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2733 	}
2734 
2735 	for_each_pwq(pwq, wq) {
2736 		struct worker_pool *pool = pwq->pool;
2737 
2738 		raw_spin_lock_irq(&pool->lock);
2739 
2740 		if (flush_color >= 0) {
2741 			WARN_ON_ONCE(pwq->flush_color != -1);
2742 
2743 			if (pwq->nr_in_flight[flush_color]) {
2744 				pwq->flush_color = flush_color;
2745 				atomic_inc(&wq->nr_pwqs_to_flush);
2746 				wait = true;
2747 			}
2748 		}
2749 
2750 		if (work_color >= 0) {
2751 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2752 			pwq->work_color = work_color;
2753 		}
2754 
2755 		raw_spin_unlock_irq(&pool->lock);
2756 	}
2757 
2758 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2759 		complete(&wq->first_flusher->done);
2760 
2761 	return wait;
2762 }
2763 
2764 /**
2765  * flush_workqueue - ensure that any scheduled work has run to completion.
2766  * @wq: workqueue to flush
2767  *
2768  * This function sleeps until all work items which were queued on entry
2769  * have finished execution, but it is not livelocked by new incoming ones.
2770  */
2771 void flush_workqueue(struct workqueue_struct *wq)
2772 {
2773 	struct wq_flusher this_flusher = {
2774 		.list = LIST_HEAD_INIT(this_flusher.list),
2775 		.flush_color = -1,
2776 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2777 	};
2778 	int next_color;
2779 
2780 	if (WARN_ON(!wq_online))
2781 		return;
2782 
2783 	lock_map_acquire(&wq->lockdep_map);
2784 	lock_map_release(&wq->lockdep_map);
2785 
2786 	mutex_lock(&wq->mutex);
2787 
2788 	/*
2789 	 * Start-to-wait phase
2790 	 */
2791 	next_color = work_next_color(wq->work_color);
2792 
2793 	if (next_color != wq->flush_color) {
2794 		/*
2795 		 * Color space is not full.  The current work_color
2796 		 * becomes our flush_color and work_color is advanced
2797 		 * by one.
2798 		 */
2799 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2800 		this_flusher.flush_color = wq->work_color;
2801 		wq->work_color = next_color;
2802 
2803 		if (!wq->first_flusher) {
2804 			/* no flush in progress, become the first flusher */
2805 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2806 
2807 			wq->first_flusher = &this_flusher;
2808 
2809 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2810 						       wq->work_color)) {
2811 				/* nothing to flush, done */
2812 				wq->flush_color = next_color;
2813 				wq->first_flusher = NULL;
2814 				goto out_unlock;
2815 			}
2816 		} else {
2817 			/* wait in queue */
2818 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2819 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2820 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2821 		}
2822 	} else {
2823 		/*
2824 		 * Oops, color space is full, wait on overflow queue.
2825 		 * The next flush completion will assign us
2826 		 * flush_color and transfer to flusher_queue.
2827 		 */
2828 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2829 	}
2830 
2831 	check_flush_dependency(wq, NULL);
2832 
2833 	mutex_unlock(&wq->mutex);
2834 
2835 	wait_for_completion(&this_flusher.done);
2836 
2837 	/*
2838 	 * Wake-up-and-cascade phase
2839 	 *
2840 	 * First flushers are responsible for cascading flushes and
2841 	 * handling overflow.  Non-first flushers can simply return.
2842 	 */
2843 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
2844 		return;
2845 
2846 	mutex_lock(&wq->mutex);
2847 
2848 	/* we might have raced, check again with mutex held */
2849 	if (wq->first_flusher != &this_flusher)
2850 		goto out_unlock;
2851 
2852 	WRITE_ONCE(wq->first_flusher, NULL);
2853 
2854 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2855 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2856 
2857 	while (true) {
2858 		struct wq_flusher *next, *tmp;
2859 
2860 		/* complete all the flushers sharing the current flush color */
2861 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2862 			if (next->flush_color != wq->flush_color)
2863 				break;
2864 			list_del_init(&next->list);
2865 			complete(&next->done);
2866 		}
2867 
2868 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2869 			     wq->flush_color != work_next_color(wq->work_color));
2870 
2871 		/* this flush_color is finished, advance by one */
2872 		wq->flush_color = work_next_color(wq->flush_color);
2873 
2874 		/* one color has been freed, handle overflow queue */
2875 		if (!list_empty(&wq->flusher_overflow)) {
2876 			/*
2877 			 * Assign the same color to all overflowed
2878 			 * flushers, advance work_color and append to
2879 			 * flusher_queue.  This is the start-to-wait
2880 			 * phase for these overflowed flushers.
2881 			 */
2882 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2883 				tmp->flush_color = wq->work_color;
2884 
2885 			wq->work_color = work_next_color(wq->work_color);
2886 
2887 			list_splice_tail_init(&wq->flusher_overflow,
2888 					      &wq->flusher_queue);
2889 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2890 		}
2891 
2892 		if (list_empty(&wq->flusher_queue)) {
2893 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2894 			break;
2895 		}
2896 
2897 		/*
2898 		 * Need to flush more colors.  Make the next flusher
2899 		 * the new first flusher and arm pwqs.
2900 		 */
2901 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2902 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2903 
2904 		list_del_init(&next->list);
2905 		wq->first_flusher = next;
2906 
2907 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2908 			break;
2909 
2910 		/*
2911 		 * Meh... this color is already done, clear first
2912 		 * flusher and repeat cascading.
2913 		 */
2914 		wq->first_flusher = NULL;
2915 	}
2916 
2917 out_unlock:
2918 	mutex_unlock(&wq->mutex);
2919 }
2920 EXPORT_SYMBOL(flush_workqueue);
2921 
2922 /**
2923  * drain_workqueue - drain a workqueue
2924  * @wq: workqueue to drain
2925  *
2926  * Wait until the workqueue becomes empty.  While draining is in progress,
2927  * only chain queueing is allowed.  IOW, only currently pending or running
2928  * work items on @wq can queue further work items on it.  @wq is flushed
2929  * repeatedly until it becomes empty.  The number of flushing is determined
2930  * by the depth of chaining and should be relatively short.  Whine if it
2931  * takes too long.
2932  */
2933 void drain_workqueue(struct workqueue_struct *wq)
2934 {
2935 	unsigned int flush_cnt = 0;
2936 	struct pool_workqueue *pwq;
2937 
2938 	/*
2939 	 * __queue_work() needs to test whether there are drainers, is much
2940 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2941 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2942 	 */
2943 	mutex_lock(&wq->mutex);
2944 	if (!wq->nr_drainers++)
2945 		wq->flags |= __WQ_DRAINING;
2946 	mutex_unlock(&wq->mutex);
2947 reflush:
2948 	flush_workqueue(wq);
2949 
2950 	mutex_lock(&wq->mutex);
2951 
2952 	for_each_pwq(pwq, wq) {
2953 		bool drained;
2954 
2955 		raw_spin_lock_irq(&pwq->pool->lock);
2956 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2957 		raw_spin_unlock_irq(&pwq->pool->lock);
2958 
2959 		if (drained)
2960 			continue;
2961 
2962 		if (++flush_cnt == 10 ||
2963 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2964 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2965 				wq->name, flush_cnt);
2966 
2967 		mutex_unlock(&wq->mutex);
2968 		goto reflush;
2969 	}
2970 
2971 	if (!--wq->nr_drainers)
2972 		wq->flags &= ~__WQ_DRAINING;
2973 	mutex_unlock(&wq->mutex);
2974 }
2975 EXPORT_SYMBOL_GPL(drain_workqueue);
2976 
2977 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2978 			     bool from_cancel)
2979 {
2980 	struct worker *worker = NULL;
2981 	struct worker_pool *pool;
2982 	struct pool_workqueue *pwq;
2983 
2984 	might_sleep();
2985 
2986 	rcu_read_lock();
2987 	pool = get_work_pool(work);
2988 	if (!pool) {
2989 		rcu_read_unlock();
2990 		return false;
2991 	}
2992 
2993 	raw_spin_lock_irq(&pool->lock);
2994 	/* see the comment in try_to_grab_pending() with the same code */
2995 	pwq = get_work_pwq(work);
2996 	if (pwq) {
2997 		if (unlikely(pwq->pool != pool))
2998 			goto already_gone;
2999 	} else {
3000 		worker = find_worker_executing_work(pool, work);
3001 		if (!worker)
3002 			goto already_gone;
3003 		pwq = worker->current_pwq;
3004 	}
3005 
3006 	check_flush_dependency(pwq->wq, work);
3007 
3008 	insert_wq_barrier(pwq, barr, work, worker);
3009 	raw_spin_unlock_irq(&pool->lock);
3010 
3011 	/*
3012 	 * Force a lock recursion deadlock when using flush_work() inside a
3013 	 * single-threaded or rescuer equipped workqueue.
3014 	 *
3015 	 * For single threaded workqueues the deadlock happens when the work
3016 	 * is after the work issuing the flush_work(). For rescuer equipped
3017 	 * workqueues the deadlock happens when the rescuer stalls, blocking
3018 	 * forward progress.
3019 	 */
3020 	if (!from_cancel &&
3021 	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3022 		lock_map_acquire(&pwq->wq->lockdep_map);
3023 		lock_map_release(&pwq->wq->lockdep_map);
3024 	}
3025 	rcu_read_unlock();
3026 	return true;
3027 already_gone:
3028 	raw_spin_unlock_irq(&pool->lock);
3029 	rcu_read_unlock();
3030 	return false;
3031 }
3032 
3033 static bool __flush_work(struct work_struct *work, bool from_cancel)
3034 {
3035 	struct wq_barrier barr;
3036 
3037 	if (WARN_ON(!wq_online))
3038 		return false;
3039 
3040 	if (WARN_ON(!work->func))
3041 		return false;
3042 
3043 	if (!from_cancel) {
3044 		lock_map_acquire(&work->lockdep_map);
3045 		lock_map_release(&work->lockdep_map);
3046 	}
3047 
3048 	if (start_flush_work(work, &barr, from_cancel)) {
3049 		wait_for_completion(&barr.done);
3050 		destroy_work_on_stack(&barr.work);
3051 		return true;
3052 	} else {
3053 		return false;
3054 	}
3055 }
3056 
3057 /**
3058  * flush_work - wait for a work to finish executing the last queueing instance
3059  * @work: the work to flush
3060  *
3061  * Wait until @work has finished execution.  @work is guaranteed to be idle
3062  * on return if it hasn't been requeued since flush started.
3063  *
3064  * Return:
3065  * %true if flush_work() waited for the work to finish execution,
3066  * %false if it was already idle.
3067  */
3068 bool flush_work(struct work_struct *work)
3069 {
3070 	return __flush_work(work, false);
3071 }
3072 EXPORT_SYMBOL_GPL(flush_work);
3073 
3074 struct cwt_wait {
3075 	wait_queue_entry_t		wait;
3076 	struct work_struct	*work;
3077 };
3078 
3079 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3080 {
3081 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3082 
3083 	if (cwait->work != key)
3084 		return 0;
3085 	return autoremove_wake_function(wait, mode, sync, key);
3086 }
3087 
3088 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3089 {
3090 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3091 	unsigned long flags;
3092 	int ret;
3093 
3094 	do {
3095 		ret = try_to_grab_pending(work, is_dwork, &flags);
3096 		/*
3097 		 * If someone else is already canceling, wait for it to
3098 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3099 		 * because we may get scheduled between @work's completion
3100 		 * and the other canceling task resuming and clearing
3101 		 * CANCELING - flush_work() will return false immediately
3102 		 * as @work is no longer busy, try_to_grab_pending() will
3103 		 * return -ENOENT as @work is still being canceled and the
3104 		 * other canceling task won't be able to clear CANCELING as
3105 		 * we're hogging the CPU.
3106 		 *
3107 		 * Let's wait for completion using a waitqueue.  As this
3108 		 * may lead to the thundering herd problem, use a custom
3109 		 * wake function which matches @work along with exclusive
3110 		 * wait and wakeup.
3111 		 */
3112 		if (unlikely(ret == -ENOENT)) {
3113 			struct cwt_wait cwait;
3114 
3115 			init_wait(&cwait.wait);
3116 			cwait.wait.func = cwt_wakefn;
3117 			cwait.work = work;
3118 
3119 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3120 						  TASK_UNINTERRUPTIBLE);
3121 			if (work_is_canceling(work))
3122 				schedule();
3123 			finish_wait(&cancel_waitq, &cwait.wait);
3124 		}
3125 	} while (unlikely(ret < 0));
3126 
3127 	/* tell other tasks trying to grab @work to back off */
3128 	mark_work_canceling(work);
3129 	local_irq_restore(flags);
3130 
3131 	/*
3132 	 * This allows canceling during early boot.  We know that @work
3133 	 * isn't executing.
3134 	 */
3135 	if (wq_online)
3136 		__flush_work(work, true);
3137 
3138 	clear_work_data(work);
3139 
3140 	/*
3141 	 * Paired with prepare_to_wait() above so that either
3142 	 * waitqueue_active() is visible here or !work_is_canceling() is
3143 	 * visible there.
3144 	 */
3145 	smp_mb();
3146 	if (waitqueue_active(&cancel_waitq))
3147 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3148 
3149 	return ret;
3150 }
3151 
3152 /**
3153  * cancel_work_sync - cancel a work and wait for it to finish
3154  * @work: the work to cancel
3155  *
3156  * Cancel @work and wait for its execution to finish.  This function
3157  * can be used even if the work re-queues itself or migrates to
3158  * another workqueue.  On return from this function, @work is
3159  * guaranteed to be not pending or executing on any CPU.
3160  *
3161  * cancel_work_sync(&delayed_work->work) must not be used for
3162  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3163  *
3164  * The caller must ensure that the workqueue on which @work was last
3165  * queued can't be destroyed before this function returns.
3166  *
3167  * Return:
3168  * %true if @work was pending, %false otherwise.
3169  */
3170 bool cancel_work_sync(struct work_struct *work)
3171 {
3172 	return __cancel_work_timer(work, false);
3173 }
3174 EXPORT_SYMBOL_GPL(cancel_work_sync);
3175 
3176 /**
3177  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3178  * @dwork: the delayed work to flush
3179  *
3180  * Delayed timer is cancelled and the pending work is queued for
3181  * immediate execution.  Like flush_work(), this function only
3182  * considers the last queueing instance of @dwork.
3183  *
3184  * Return:
3185  * %true if flush_work() waited for the work to finish execution,
3186  * %false if it was already idle.
3187  */
3188 bool flush_delayed_work(struct delayed_work *dwork)
3189 {
3190 	local_irq_disable();
3191 	if (del_timer_sync(&dwork->timer))
3192 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3193 	local_irq_enable();
3194 	return flush_work(&dwork->work);
3195 }
3196 EXPORT_SYMBOL(flush_delayed_work);
3197 
3198 /**
3199  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3200  * @rwork: the rcu work to flush
3201  *
3202  * Return:
3203  * %true if flush_rcu_work() waited for the work to finish execution,
3204  * %false if it was already idle.
3205  */
3206 bool flush_rcu_work(struct rcu_work *rwork)
3207 {
3208 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3209 		rcu_barrier();
3210 		flush_work(&rwork->work);
3211 		return true;
3212 	} else {
3213 		return flush_work(&rwork->work);
3214 	}
3215 }
3216 EXPORT_SYMBOL(flush_rcu_work);
3217 
3218 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3219 {
3220 	unsigned long flags;
3221 	int ret;
3222 
3223 	do {
3224 		ret = try_to_grab_pending(work, is_dwork, &flags);
3225 	} while (unlikely(ret == -EAGAIN));
3226 
3227 	if (unlikely(ret < 0))
3228 		return false;
3229 
3230 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3231 	local_irq_restore(flags);
3232 	return ret;
3233 }
3234 
3235 /**
3236  * cancel_delayed_work - cancel a delayed work
3237  * @dwork: delayed_work to cancel
3238  *
3239  * Kill off a pending delayed_work.
3240  *
3241  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3242  * pending.
3243  *
3244  * Note:
3245  * The work callback function may still be running on return, unless
3246  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3247  * use cancel_delayed_work_sync() to wait on it.
3248  *
3249  * This function is safe to call from any context including IRQ handler.
3250  */
3251 bool cancel_delayed_work(struct delayed_work *dwork)
3252 {
3253 	return __cancel_work(&dwork->work, true);
3254 }
3255 EXPORT_SYMBOL(cancel_delayed_work);
3256 
3257 /**
3258  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3259  * @dwork: the delayed work cancel
3260  *
3261  * This is cancel_work_sync() for delayed works.
3262  *
3263  * Return:
3264  * %true if @dwork was pending, %false otherwise.
3265  */
3266 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3267 {
3268 	return __cancel_work_timer(&dwork->work, true);
3269 }
3270 EXPORT_SYMBOL(cancel_delayed_work_sync);
3271 
3272 /**
3273  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3274  * @func: the function to call
3275  *
3276  * schedule_on_each_cpu() executes @func on each online CPU using the
3277  * system workqueue and blocks until all CPUs have completed.
3278  * schedule_on_each_cpu() is very slow.
3279  *
3280  * Return:
3281  * 0 on success, -errno on failure.
3282  */
3283 int schedule_on_each_cpu(work_func_t func)
3284 {
3285 	int cpu;
3286 	struct work_struct __percpu *works;
3287 
3288 	works = alloc_percpu(struct work_struct);
3289 	if (!works)
3290 		return -ENOMEM;
3291 
3292 	get_online_cpus();
3293 
3294 	for_each_online_cpu(cpu) {
3295 		struct work_struct *work = per_cpu_ptr(works, cpu);
3296 
3297 		INIT_WORK(work, func);
3298 		schedule_work_on(cpu, work);
3299 	}
3300 
3301 	for_each_online_cpu(cpu)
3302 		flush_work(per_cpu_ptr(works, cpu));
3303 
3304 	put_online_cpus();
3305 	free_percpu(works);
3306 	return 0;
3307 }
3308 
3309 /**
3310  * execute_in_process_context - reliably execute the routine with user context
3311  * @fn:		the function to execute
3312  * @ew:		guaranteed storage for the execute work structure (must
3313  *		be available when the work executes)
3314  *
3315  * Executes the function immediately if process context is available,
3316  * otherwise schedules the function for delayed execution.
3317  *
3318  * Return:	0 - function was executed
3319  *		1 - function was scheduled for execution
3320  */
3321 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3322 {
3323 	if (!in_interrupt()) {
3324 		fn(&ew->work);
3325 		return 0;
3326 	}
3327 
3328 	INIT_WORK(&ew->work, fn);
3329 	schedule_work(&ew->work);
3330 
3331 	return 1;
3332 }
3333 EXPORT_SYMBOL_GPL(execute_in_process_context);
3334 
3335 /**
3336  * free_workqueue_attrs - free a workqueue_attrs
3337  * @attrs: workqueue_attrs to free
3338  *
3339  * Undo alloc_workqueue_attrs().
3340  */
3341 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3342 {
3343 	if (attrs) {
3344 		free_cpumask_var(attrs->cpumask);
3345 		kfree(attrs);
3346 	}
3347 }
3348 
3349 /**
3350  * alloc_workqueue_attrs - allocate a workqueue_attrs
3351  *
3352  * Allocate a new workqueue_attrs, initialize with default settings and
3353  * return it.
3354  *
3355  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3356  */
3357 struct workqueue_attrs *alloc_workqueue_attrs(void)
3358 {
3359 	struct workqueue_attrs *attrs;
3360 
3361 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3362 	if (!attrs)
3363 		goto fail;
3364 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3365 		goto fail;
3366 
3367 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3368 	return attrs;
3369 fail:
3370 	free_workqueue_attrs(attrs);
3371 	return NULL;
3372 }
3373 
3374 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3375 				 const struct workqueue_attrs *from)
3376 {
3377 	to->nice = from->nice;
3378 	cpumask_copy(to->cpumask, from->cpumask);
3379 	/*
3380 	 * Unlike hash and equality test, this function doesn't ignore
3381 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3382 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3383 	 */
3384 	to->no_numa = from->no_numa;
3385 }
3386 
3387 /* hash value of the content of @attr */
3388 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3389 {
3390 	u32 hash = 0;
3391 
3392 	hash = jhash_1word(attrs->nice, hash);
3393 	hash = jhash(cpumask_bits(attrs->cpumask),
3394 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3395 	return hash;
3396 }
3397 
3398 /* content equality test */
3399 static bool wqattrs_equal(const struct workqueue_attrs *a,
3400 			  const struct workqueue_attrs *b)
3401 {
3402 	if (a->nice != b->nice)
3403 		return false;
3404 	if (!cpumask_equal(a->cpumask, b->cpumask))
3405 		return false;
3406 	return true;
3407 }
3408 
3409 /**
3410  * init_worker_pool - initialize a newly zalloc'd worker_pool
3411  * @pool: worker_pool to initialize
3412  *
3413  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3414  *
3415  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3416  * inside @pool proper are initialized and put_unbound_pool() can be called
3417  * on @pool safely to release it.
3418  */
3419 static int init_worker_pool(struct worker_pool *pool)
3420 {
3421 	raw_spin_lock_init(&pool->lock);
3422 	pool->id = -1;
3423 	pool->cpu = -1;
3424 	pool->node = NUMA_NO_NODE;
3425 	pool->flags |= POOL_DISASSOCIATED;
3426 	pool->watchdog_ts = jiffies;
3427 	INIT_LIST_HEAD(&pool->worklist);
3428 	INIT_LIST_HEAD(&pool->idle_list);
3429 	hash_init(pool->busy_hash);
3430 
3431 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3432 
3433 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3434 
3435 	INIT_LIST_HEAD(&pool->workers);
3436 
3437 	ida_init(&pool->worker_ida);
3438 	INIT_HLIST_NODE(&pool->hash_node);
3439 	pool->refcnt = 1;
3440 
3441 	/* shouldn't fail above this point */
3442 	pool->attrs = alloc_workqueue_attrs();
3443 	if (!pool->attrs)
3444 		return -ENOMEM;
3445 	return 0;
3446 }
3447 
3448 #ifdef CONFIG_LOCKDEP
3449 static void wq_init_lockdep(struct workqueue_struct *wq)
3450 {
3451 	char *lock_name;
3452 
3453 	lockdep_register_key(&wq->key);
3454 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3455 	if (!lock_name)
3456 		lock_name = wq->name;
3457 
3458 	wq->lock_name = lock_name;
3459 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3460 }
3461 
3462 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3463 {
3464 	lockdep_unregister_key(&wq->key);
3465 }
3466 
3467 static void wq_free_lockdep(struct workqueue_struct *wq)
3468 {
3469 	if (wq->lock_name != wq->name)
3470 		kfree(wq->lock_name);
3471 }
3472 #else
3473 static void wq_init_lockdep(struct workqueue_struct *wq)
3474 {
3475 }
3476 
3477 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3478 {
3479 }
3480 
3481 static void wq_free_lockdep(struct workqueue_struct *wq)
3482 {
3483 }
3484 #endif
3485 
3486 static void rcu_free_wq(struct rcu_head *rcu)
3487 {
3488 	struct workqueue_struct *wq =
3489 		container_of(rcu, struct workqueue_struct, rcu);
3490 
3491 	wq_free_lockdep(wq);
3492 
3493 	if (!(wq->flags & WQ_UNBOUND))
3494 		free_percpu(wq->cpu_pwqs);
3495 	else
3496 		free_workqueue_attrs(wq->unbound_attrs);
3497 
3498 	kfree(wq);
3499 }
3500 
3501 static void rcu_free_pool(struct rcu_head *rcu)
3502 {
3503 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3504 
3505 	ida_destroy(&pool->worker_ida);
3506 	free_workqueue_attrs(pool->attrs);
3507 	kfree(pool);
3508 }
3509 
3510 /* This returns with the lock held on success (pool manager is inactive). */
3511 static bool wq_manager_inactive(struct worker_pool *pool)
3512 {
3513 	raw_spin_lock_irq(&pool->lock);
3514 
3515 	if (pool->flags & POOL_MANAGER_ACTIVE) {
3516 		raw_spin_unlock_irq(&pool->lock);
3517 		return false;
3518 	}
3519 	return true;
3520 }
3521 
3522 /**
3523  * put_unbound_pool - put a worker_pool
3524  * @pool: worker_pool to put
3525  *
3526  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3527  * safe manner.  get_unbound_pool() calls this function on its failure path
3528  * and this function should be able to release pools which went through,
3529  * successfully or not, init_worker_pool().
3530  *
3531  * Should be called with wq_pool_mutex held.
3532  */
3533 static void put_unbound_pool(struct worker_pool *pool)
3534 {
3535 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3536 	struct worker *worker;
3537 
3538 	lockdep_assert_held(&wq_pool_mutex);
3539 
3540 	if (--pool->refcnt)
3541 		return;
3542 
3543 	/* sanity checks */
3544 	if (WARN_ON(!(pool->cpu < 0)) ||
3545 	    WARN_ON(!list_empty(&pool->worklist)))
3546 		return;
3547 
3548 	/* release id and unhash */
3549 	if (pool->id >= 0)
3550 		idr_remove(&worker_pool_idr, pool->id);
3551 	hash_del(&pool->hash_node);
3552 
3553 	/*
3554 	 * Become the manager and destroy all workers.  This prevents
3555 	 * @pool's workers from blocking on attach_mutex.  We're the last
3556 	 * manager and @pool gets freed with the flag set.
3557 	 * Because of how wq_manager_inactive() works, we will hold the
3558 	 * spinlock after a successful wait.
3559 	 */
3560 	rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3561 			   TASK_UNINTERRUPTIBLE);
3562 	pool->flags |= POOL_MANAGER_ACTIVE;
3563 
3564 	while ((worker = first_idle_worker(pool)))
3565 		destroy_worker(worker);
3566 	WARN_ON(pool->nr_workers || pool->nr_idle);
3567 	raw_spin_unlock_irq(&pool->lock);
3568 
3569 	mutex_lock(&wq_pool_attach_mutex);
3570 	if (!list_empty(&pool->workers))
3571 		pool->detach_completion = &detach_completion;
3572 	mutex_unlock(&wq_pool_attach_mutex);
3573 
3574 	if (pool->detach_completion)
3575 		wait_for_completion(pool->detach_completion);
3576 
3577 	/* shut down the timers */
3578 	del_timer_sync(&pool->idle_timer);
3579 	del_timer_sync(&pool->mayday_timer);
3580 
3581 	/* RCU protected to allow dereferences from get_work_pool() */
3582 	call_rcu(&pool->rcu, rcu_free_pool);
3583 }
3584 
3585 /**
3586  * get_unbound_pool - get a worker_pool with the specified attributes
3587  * @attrs: the attributes of the worker_pool to get
3588  *
3589  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3590  * reference count and return it.  If there already is a matching
3591  * worker_pool, it will be used; otherwise, this function attempts to
3592  * create a new one.
3593  *
3594  * Should be called with wq_pool_mutex held.
3595  *
3596  * Return: On success, a worker_pool with the same attributes as @attrs.
3597  * On failure, %NULL.
3598  */
3599 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3600 {
3601 	u32 hash = wqattrs_hash(attrs);
3602 	struct worker_pool *pool;
3603 	int node;
3604 	int target_node = NUMA_NO_NODE;
3605 
3606 	lockdep_assert_held(&wq_pool_mutex);
3607 
3608 	/* do we already have a matching pool? */
3609 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3610 		if (wqattrs_equal(pool->attrs, attrs)) {
3611 			pool->refcnt++;
3612 			return pool;
3613 		}
3614 	}
3615 
3616 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3617 	if (wq_numa_enabled) {
3618 		for_each_node(node) {
3619 			if (cpumask_subset(attrs->cpumask,
3620 					   wq_numa_possible_cpumask[node])) {
3621 				target_node = node;
3622 				break;
3623 			}
3624 		}
3625 	}
3626 
3627 	/* nope, create a new one */
3628 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3629 	if (!pool || init_worker_pool(pool) < 0)
3630 		goto fail;
3631 
3632 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3633 	copy_workqueue_attrs(pool->attrs, attrs);
3634 	pool->node = target_node;
3635 
3636 	/*
3637 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3638 	 * 'struct workqueue_attrs' comments for detail.
3639 	 */
3640 	pool->attrs->no_numa = false;
3641 
3642 	if (worker_pool_assign_id(pool) < 0)
3643 		goto fail;
3644 
3645 	/* create and start the initial worker */
3646 	if (wq_online && !create_worker(pool))
3647 		goto fail;
3648 
3649 	/* install */
3650 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3651 
3652 	return pool;
3653 fail:
3654 	if (pool)
3655 		put_unbound_pool(pool);
3656 	return NULL;
3657 }
3658 
3659 static void rcu_free_pwq(struct rcu_head *rcu)
3660 {
3661 	kmem_cache_free(pwq_cache,
3662 			container_of(rcu, struct pool_workqueue, rcu));
3663 }
3664 
3665 /*
3666  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3667  * and needs to be destroyed.
3668  */
3669 static void pwq_unbound_release_workfn(struct work_struct *work)
3670 {
3671 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3672 						  unbound_release_work);
3673 	struct workqueue_struct *wq = pwq->wq;
3674 	struct worker_pool *pool = pwq->pool;
3675 	bool is_last;
3676 
3677 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3678 		return;
3679 
3680 	mutex_lock(&wq->mutex);
3681 	list_del_rcu(&pwq->pwqs_node);
3682 	is_last = list_empty(&wq->pwqs);
3683 	mutex_unlock(&wq->mutex);
3684 
3685 	mutex_lock(&wq_pool_mutex);
3686 	put_unbound_pool(pool);
3687 	mutex_unlock(&wq_pool_mutex);
3688 
3689 	call_rcu(&pwq->rcu, rcu_free_pwq);
3690 
3691 	/*
3692 	 * If we're the last pwq going away, @wq is already dead and no one
3693 	 * is gonna access it anymore.  Schedule RCU free.
3694 	 */
3695 	if (is_last) {
3696 		wq_unregister_lockdep(wq);
3697 		call_rcu(&wq->rcu, rcu_free_wq);
3698 	}
3699 }
3700 
3701 /**
3702  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3703  * @pwq: target pool_workqueue
3704  *
3705  * If @pwq isn't freezing, set @pwq->max_active to the associated
3706  * workqueue's saved_max_active and activate delayed work items
3707  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3708  */
3709 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3710 {
3711 	struct workqueue_struct *wq = pwq->wq;
3712 	bool freezable = wq->flags & WQ_FREEZABLE;
3713 	unsigned long flags;
3714 
3715 	/* for @wq->saved_max_active */
3716 	lockdep_assert_held(&wq->mutex);
3717 
3718 	/* fast exit for non-freezable wqs */
3719 	if (!freezable && pwq->max_active == wq->saved_max_active)
3720 		return;
3721 
3722 	/* this function can be called during early boot w/ irq disabled */
3723 	raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3724 
3725 	/*
3726 	 * During [un]freezing, the caller is responsible for ensuring that
3727 	 * this function is called at least once after @workqueue_freezing
3728 	 * is updated and visible.
3729 	 */
3730 	if (!freezable || !workqueue_freezing) {
3731 		pwq->max_active = wq->saved_max_active;
3732 
3733 		while (!list_empty(&pwq->delayed_works) &&
3734 		       pwq->nr_active < pwq->max_active)
3735 			pwq_activate_first_delayed(pwq);
3736 
3737 		/*
3738 		 * Need to kick a worker after thawed or an unbound wq's
3739 		 * max_active is bumped.  It's a slow path.  Do it always.
3740 		 */
3741 		wake_up_worker(pwq->pool);
3742 	} else {
3743 		pwq->max_active = 0;
3744 	}
3745 
3746 	raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3747 }
3748 
3749 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3750 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3751 		     struct worker_pool *pool)
3752 {
3753 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3754 
3755 	memset(pwq, 0, sizeof(*pwq));
3756 
3757 	pwq->pool = pool;
3758 	pwq->wq = wq;
3759 	pwq->flush_color = -1;
3760 	pwq->refcnt = 1;
3761 	INIT_LIST_HEAD(&pwq->delayed_works);
3762 	INIT_LIST_HEAD(&pwq->pwqs_node);
3763 	INIT_LIST_HEAD(&pwq->mayday_node);
3764 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3765 }
3766 
3767 /* sync @pwq with the current state of its associated wq and link it */
3768 static void link_pwq(struct pool_workqueue *pwq)
3769 {
3770 	struct workqueue_struct *wq = pwq->wq;
3771 
3772 	lockdep_assert_held(&wq->mutex);
3773 
3774 	/* may be called multiple times, ignore if already linked */
3775 	if (!list_empty(&pwq->pwqs_node))
3776 		return;
3777 
3778 	/* set the matching work_color */
3779 	pwq->work_color = wq->work_color;
3780 
3781 	/* sync max_active to the current setting */
3782 	pwq_adjust_max_active(pwq);
3783 
3784 	/* link in @pwq */
3785 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3786 }
3787 
3788 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3789 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3790 					const struct workqueue_attrs *attrs)
3791 {
3792 	struct worker_pool *pool;
3793 	struct pool_workqueue *pwq;
3794 
3795 	lockdep_assert_held(&wq_pool_mutex);
3796 
3797 	pool = get_unbound_pool(attrs);
3798 	if (!pool)
3799 		return NULL;
3800 
3801 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3802 	if (!pwq) {
3803 		put_unbound_pool(pool);
3804 		return NULL;
3805 	}
3806 
3807 	init_pwq(pwq, wq, pool);
3808 	return pwq;
3809 }
3810 
3811 /**
3812  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3813  * @attrs: the wq_attrs of the default pwq of the target workqueue
3814  * @node: the target NUMA node
3815  * @cpu_going_down: if >= 0, the CPU to consider as offline
3816  * @cpumask: outarg, the resulting cpumask
3817  *
3818  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3819  * @cpu_going_down is >= 0, that cpu is considered offline during
3820  * calculation.  The result is stored in @cpumask.
3821  *
3822  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3823  * enabled and @node has online CPUs requested by @attrs, the returned
3824  * cpumask is the intersection of the possible CPUs of @node and
3825  * @attrs->cpumask.
3826  *
3827  * The caller is responsible for ensuring that the cpumask of @node stays
3828  * stable.
3829  *
3830  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3831  * %false if equal.
3832  */
3833 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3834 				 int cpu_going_down, cpumask_t *cpumask)
3835 {
3836 	if (!wq_numa_enabled || attrs->no_numa)
3837 		goto use_dfl;
3838 
3839 	/* does @node have any online CPUs @attrs wants? */
3840 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3841 	if (cpu_going_down >= 0)
3842 		cpumask_clear_cpu(cpu_going_down, cpumask);
3843 
3844 	if (cpumask_empty(cpumask))
3845 		goto use_dfl;
3846 
3847 	/* yeap, return possible CPUs in @node that @attrs wants */
3848 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3849 
3850 	if (cpumask_empty(cpumask)) {
3851 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3852 				"possible intersect\n");
3853 		return false;
3854 	}
3855 
3856 	return !cpumask_equal(cpumask, attrs->cpumask);
3857 
3858 use_dfl:
3859 	cpumask_copy(cpumask, attrs->cpumask);
3860 	return false;
3861 }
3862 
3863 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3864 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3865 						   int node,
3866 						   struct pool_workqueue *pwq)
3867 {
3868 	struct pool_workqueue *old_pwq;
3869 
3870 	lockdep_assert_held(&wq_pool_mutex);
3871 	lockdep_assert_held(&wq->mutex);
3872 
3873 	/* link_pwq() can handle duplicate calls */
3874 	link_pwq(pwq);
3875 
3876 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3877 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3878 	return old_pwq;
3879 }
3880 
3881 /* context to store the prepared attrs & pwqs before applying */
3882 struct apply_wqattrs_ctx {
3883 	struct workqueue_struct	*wq;		/* target workqueue */
3884 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3885 	struct list_head	list;		/* queued for batching commit */
3886 	struct pool_workqueue	*dfl_pwq;
3887 	struct pool_workqueue	*pwq_tbl[];
3888 };
3889 
3890 /* free the resources after success or abort */
3891 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3892 {
3893 	if (ctx) {
3894 		int node;
3895 
3896 		for_each_node(node)
3897 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3898 		put_pwq_unlocked(ctx->dfl_pwq);
3899 
3900 		free_workqueue_attrs(ctx->attrs);
3901 
3902 		kfree(ctx);
3903 	}
3904 }
3905 
3906 /* allocate the attrs and pwqs for later installation */
3907 static struct apply_wqattrs_ctx *
3908 apply_wqattrs_prepare(struct workqueue_struct *wq,
3909 		      const struct workqueue_attrs *attrs)
3910 {
3911 	struct apply_wqattrs_ctx *ctx;
3912 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3913 	int node;
3914 
3915 	lockdep_assert_held(&wq_pool_mutex);
3916 
3917 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3918 
3919 	new_attrs = alloc_workqueue_attrs();
3920 	tmp_attrs = alloc_workqueue_attrs();
3921 	if (!ctx || !new_attrs || !tmp_attrs)
3922 		goto out_free;
3923 
3924 	/*
3925 	 * Calculate the attrs of the default pwq.
3926 	 * If the user configured cpumask doesn't overlap with the
3927 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3928 	 */
3929 	copy_workqueue_attrs(new_attrs, attrs);
3930 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3931 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3932 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3933 
3934 	/*
3935 	 * We may create multiple pwqs with differing cpumasks.  Make a
3936 	 * copy of @new_attrs which will be modified and used to obtain
3937 	 * pools.
3938 	 */
3939 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3940 
3941 	/*
3942 	 * If something goes wrong during CPU up/down, we'll fall back to
3943 	 * the default pwq covering whole @attrs->cpumask.  Always create
3944 	 * it even if we don't use it immediately.
3945 	 */
3946 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3947 	if (!ctx->dfl_pwq)
3948 		goto out_free;
3949 
3950 	for_each_node(node) {
3951 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3952 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3953 			if (!ctx->pwq_tbl[node])
3954 				goto out_free;
3955 		} else {
3956 			ctx->dfl_pwq->refcnt++;
3957 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3958 		}
3959 	}
3960 
3961 	/* save the user configured attrs and sanitize it. */
3962 	copy_workqueue_attrs(new_attrs, attrs);
3963 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3964 	ctx->attrs = new_attrs;
3965 
3966 	ctx->wq = wq;
3967 	free_workqueue_attrs(tmp_attrs);
3968 	return ctx;
3969 
3970 out_free:
3971 	free_workqueue_attrs(tmp_attrs);
3972 	free_workqueue_attrs(new_attrs);
3973 	apply_wqattrs_cleanup(ctx);
3974 	return NULL;
3975 }
3976 
3977 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3978 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3979 {
3980 	int node;
3981 
3982 	/* all pwqs have been created successfully, let's install'em */
3983 	mutex_lock(&ctx->wq->mutex);
3984 
3985 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3986 
3987 	/* save the previous pwq and install the new one */
3988 	for_each_node(node)
3989 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3990 							  ctx->pwq_tbl[node]);
3991 
3992 	/* @dfl_pwq might not have been used, ensure it's linked */
3993 	link_pwq(ctx->dfl_pwq);
3994 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3995 
3996 	mutex_unlock(&ctx->wq->mutex);
3997 }
3998 
3999 static void apply_wqattrs_lock(void)
4000 {
4001 	/* CPUs should stay stable across pwq creations and installations */
4002 	get_online_cpus();
4003 	mutex_lock(&wq_pool_mutex);
4004 }
4005 
4006 static void apply_wqattrs_unlock(void)
4007 {
4008 	mutex_unlock(&wq_pool_mutex);
4009 	put_online_cpus();
4010 }
4011 
4012 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4013 					const struct workqueue_attrs *attrs)
4014 {
4015 	struct apply_wqattrs_ctx *ctx;
4016 
4017 	/* only unbound workqueues can change attributes */
4018 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4019 		return -EINVAL;
4020 
4021 	/* creating multiple pwqs breaks ordering guarantee */
4022 	if (!list_empty(&wq->pwqs)) {
4023 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4024 			return -EINVAL;
4025 
4026 		wq->flags &= ~__WQ_ORDERED;
4027 	}
4028 
4029 	ctx = apply_wqattrs_prepare(wq, attrs);
4030 	if (!ctx)
4031 		return -ENOMEM;
4032 
4033 	/* the ctx has been prepared successfully, let's commit it */
4034 	apply_wqattrs_commit(ctx);
4035 	apply_wqattrs_cleanup(ctx);
4036 
4037 	return 0;
4038 }
4039 
4040 /**
4041  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4042  * @wq: the target workqueue
4043  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4044  *
4045  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
4046  * machines, this function maps a separate pwq to each NUMA node with
4047  * possibles CPUs in @attrs->cpumask so that work items are affine to the
4048  * NUMA node it was issued on.  Older pwqs are released as in-flight work
4049  * items finish.  Note that a work item which repeatedly requeues itself
4050  * back-to-back will stay on its current pwq.
4051  *
4052  * Performs GFP_KERNEL allocations.
4053  *
4054  * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4055  *
4056  * Return: 0 on success and -errno on failure.
4057  */
4058 int apply_workqueue_attrs(struct workqueue_struct *wq,
4059 			  const struct workqueue_attrs *attrs)
4060 {
4061 	int ret;
4062 
4063 	lockdep_assert_cpus_held();
4064 
4065 	mutex_lock(&wq_pool_mutex);
4066 	ret = apply_workqueue_attrs_locked(wq, attrs);
4067 	mutex_unlock(&wq_pool_mutex);
4068 
4069 	return ret;
4070 }
4071 
4072 /**
4073  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4074  * @wq: the target workqueue
4075  * @cpu: the CPU coming up or going down
4076  * @online: whether @cpu is coming up or going down
4077  *
4078  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4079  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4080  * @wq accordingly.
4081  *
4082  * If NUMA affinity can't be adjusted due to memory allocation failure, it
4083  * falls back to @wq->dfl_pwq which may not be optimal but is always
4084  * correct.
4085  *
4086  * Note that when the last allowed CPU of a NUMA node goes offline for a
4087  * workqueue with a cpumask spanning multiple nodes, the workers which were
4088  * already executing the work items for the workqueue will lose their CPU
4089  * affinity and may execute on any CPU.  This is similar to how per-cpu
4090  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4091  * affinity, it's the user's responsibility to flush the work item from
4092  * CPU_DOWN_PREPARE.
4093  */
4094 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4095 				   bool online)
4096 {
4097 	int node = cpu_to_node(cpu);
4098 	int cpu_off = online ? -1 : cpu;
4099 	struct pool_workqueue *old_pwq = NULL, *pwq;
4100 	struct workqueue_attrs *target_attrs;
4101 	cpumask_t *cpumask;
4102 
4103 	lockdep_assert_held(&wq_pool_mutex);
4104 
4105 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4106 	    wq->unbound_attrs->no_numa)
4107 		return;
4108 
4109 	/*
4110 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4111 	 * Let's use a preallocated one.  The following buf is protected by
4112 	 * CPU hotplug exclusion.
4113 	 */
4114 	target_attrs = wq_update_unbound_numa_attrs_buf;
4115 	cpumask = target_attrs->cpumask;
4116 
4117 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4118 	pwq = unbound_pwq_by_node(wq, node);
4119 
4120 	/*
4121 	 * Let's determine what needs to be done.  If the target cpumask is
4122 	 * different from the default pwq's, we need to compare it to @pwq's
4123 	 * and create a new one if they don't match.  If the target cpumask
4124 	 * equals the default pwq's, the default pwq should be used.
4125 	 */
4126 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4127 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4128 			return;
4129 	} else {
4130 		goto use_dfl_pwq;
4131 	}
4132 
4133 	/* create a new pwq */
4134 	pwq = alloc_unbound_pwq(wq, target_attrs);
4135 	if (!pwq) {
4136 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4137 			wq->name);
4138 		goto use_dfl_pwq;
4139 	}
4140 
4141 	/* Install the new pwq. */
4142 	mutex_lock(&wq->mutex);
4143 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4144 	goto out_unlock;
4145 
4146 use_dfl_pwq:
4147 	mutex_lock(&wq->mutex);
4148 	raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4149 	get_pwq(wq->dfl_pwq);
4150 	raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4151 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4152 out_unlock:
4153 	mutex_unlock(&wq->mutex);
4154 	put_pwq_unlocked(old_pwq);
4155 }
4156 
4157 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4158 {
4159 	bool highpri = wq->flags & WQ_HIGHPRI;
4160 	int cpu, ret;
4161 
4162 	if (!(wq->flags & WQ_UNBOUND)) {
4163 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4164 		if (!wq->cpu_pwqs)
4165 			return -ENOMEM;
4166 
4167 		for_each_possible_cpu(cpu) {
4168 			struct pool_workqueue *pwq =
4169 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4170 			struct worker_pool *cpu_pools =
4171 				per_cpu(cpu_worker_pools, cpu);
4172 
4173 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4174 
4175 			mutex_lock(&wq->mutex);
4176 			link_pwq(pwq);
4177 			mutex_unlock(&wq->mutex);
4178 		}
4179 		return 0;
4180 	}
4181 
4182 	get_online_cpus();
4183 	if (wq->flags & __WQ_ORDERED) {
4184 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4185 		/* there should only be single pwq for ordering guarantee */
4186 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4187 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4188 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4189 	} else {
4190 		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4191 	}
4192 	put_online_cpus();
4193 
4194 	return ret;
4195 }
4196 
4197 static int wq_clamp_max_active(int max_active, unsigned int flags,
4198 			       const char *name)
4199 {
4200 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4201 
4202 	if (max_active < 1 || max_active > lim)
4203 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4204 			max_active, name, 1, lim);
4205 
4206 	return clamp_val(max_active, 1, lim);
4207 }
4208 
4209 /*
4210  * Workqueues which may be used during memory reclaim should have a rescuer
4211  * to guarantee forward progress.
4212  */
4213 static int init_rescuer(struct workqueue_struct *wq)
4214 {
4215 	struct worker *rescuer;
4216 	int ret;
4217 
4218 	if (!(wq->flags & WQ_MEM_RECLAIM))
4219 		return 0;
4220 
4221 	rescuer = alloc_worker(NUMA_NO_NODE);
4222 	if (!rescuer)
4223 		return -ENOMEM;
4224 
4225 	rescuer->rescue_wq = wq;
4226 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4227 	if (IS_ERR(rescuer->task)) {
4228 		ret = PTR_ERR(rescuer->task);
4229 		kfree(rescuer);
4230 		return ret;
4231 	}
4232 
4233 	wq->rescuer = rescuer;
4234 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4235 	wake_up_process(rescuer->task);
4236 
4237 	return 0;
4238 }
4239 
4240 __printf(1, 4)
4241 struct workqueue_struct *alloc_workqueue(const char *fmt,
4242 					 unsigned int flags,
4243 					 int max_active, ...)
4244 {
4245 	size_t tbl_size = 0;
4246 	va_list args;
4247 	struct workqueue_struct *wq;
4248 	struct pool_workqueue *pwq;
4249 
4250 	/*
4251 	 * Unbound && max_active == 1 used to imply ordered, which is no
4252 	 * longer the case on NUMA machines due to per-node pools.  While
4253 	 * alloc_ordered_workqueue() is the right way to create an ordered
4254 	 * workqueue, keep the previous behavior to avoid subtle breakages
4255 	 * on NUMA.
4256 	 */
4257 	if ((flags & WQ_UNBOUND) && max_active == 1)
4258 		flags |= __WQ_ORDERED;
4259 
4260 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4261 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4262 		flags |= WQ_UNBOUND;
4263 
4264 	/* allocate wq and format name */
4265 	if (flags & WQ_UNBOUND)
4266 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4267 
4268 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4269 	if (!wq)
4270 		return NULL;
4271 
4272 	if (flags & WQ_UNBOUND) {
4273 		wq->unbound_attrs = alloc_workqueue_attrs();
4274 		if (!wq->unbound_attrs)
4275 			goto err_free_wq;
4276 	}
4277 
4278 	va_start(args, max_active);
4279 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4280 	va_end(args);
4281 
4282 	max_active = max_active ?: WQ_DFL_ACTIVE;
4283 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4284 
4285 	/* init wq */
4286 	wq->flags = flags;
4287 	wq->saved_max_active = max_active;
4288 	mutex_init(&wq->mutex);
4289 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4290 	INIT_LIST_HEAD(&wq->pwqs);
4291 	INIT_LIST_HEAD(&wq->flusher_queue);
4292 	INIT_LIST_HEAD(&wq->flusher_overflow);
4293 	INIT_LIST_HEAD(&wq->maydays);
4294 
4295 	wq_init_lockdep(wq);
4296 	INIT_LIST_HEAD(&wq->list);
4297 
4298 	if (alloc_and_link_pwqs(wq) < 0)
4299 		goto err_unreg_lockdep;
4300 
4301 	if (wq_online && init_rescuer(wq) < 0)
4302 		goto err_destroy;
4303 
4304 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4305 		goto err_destroy;
4306 
4307 	/*
4308 	 * wq_pool_mutex protects global freeze state and workqueues list.
4309 	 * Grab it, adjust max_active and add the new @wq to workqueues
4310 	 * list.
4311 	 */
4312 	mutex_lock(&wq_pool_mutex);
4313 
4314 	mutex_lock(&wq->mutex);
4315 	for_each_pwq(pwq, wq)
4316 		pwq_adjust_max_active(pwq);
4317 	mutex_unlock(&wq->mutex);
4318 
4319 	list_add_tail_rcu(&wq->list, &workqueues);
4320 
4321 	mutex_unlock(&wq_pool_mutex);
4322 
4323 	return wq;
4324 
4325 err_unreg_lockdep:
4326 	wq_unregister_lockdep(wq);
4327 	wq_free_lockdep(wq);
4328 err_free_wq:
4329 	free_workqueue_attrs(wq->unbound_attrs);
4330 	kfree(wq);
4331 	return NULL;
4332 err_destroy:
4333 	destroy_workqueue(wq);
4334 	return NULL;
4335 }
4336 EXPORT_SYMBOL_GPL(alloc_workqueue);
4337 
4338 static bool pwq_busy(struct pool_workqueue *pwq)
4339 {
4340 	int i;
4341 
4342 	for (i = 0; i < WORK_NR_COLORS; i++)
4343 		if (pwq->nr_in_flight[i])
4344 			return true;
4345 
4346 	if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4347 		return true;
4348 	if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4349 		return true;
4350 
4351 	return false;
4352 }
4353 
4354 /**
4355  * destroy_workqueue - safely terminate a workqueue
4356  * @wq: target workqueue
4357  *
4358  * Safely destroy a workqueue. All work currently pending will be done first.
4359  */
4360 void destroy_workqueue(struct workqueue_struct *wq)
4361 {
4362 	struct pool_workqueue *pwq;
4363 	int node;
4364 
4365 	/*
4366 	 * Remove it from sysfs first so that sanity check failure doesn't
4367 	 * lead to sysfs name conflicts.
4368 	 */
4369 	workqueue_sysfs_unregister(wq);
4370 
4371 	/* drain it before proceeding with destruction */
4372 	drain_workqueue(wq);
4373 
4374 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4375 	if (wq->rescuer) {
4376 		struct worker *rescuer = wq->rescuer;
4377 
4378 		/* this prevents new queueing */
4379 		raw_spin_lock_irq(&wq_mayday_lock);
4380 		wq->rescuer = NULL;
4381 		raw_spin_unlock_irq(&wq_mayday_lock);
4382 
4383 		/* rescuer will empty maydays list before exiting */
4384 		kthread_stop(rescuer->task);
4385 		kfree(rescuer);
4386 	}
4387 
4388 	/*
4389 	 * Sanity checks - grab all the locks so that we wait for all
4390 	 * in-flight operations which may do put_pwq().
4391 	 */
4392 	mutex_lock(&wq_pool_mutex);
4393 	mutex_lock(&wq->mutex);
4394 	for_each_pwq(pwq, wq) {
4395 		raw_spin_lock_irq(&pwq->pool->lock);
4396 		if (WARN_ON(pwq_busy(pwq))) {
4397 			pr_warn("%s: %s has the following busy pwq\n",
4398 				__func__, wq->name);
4399 			show_pwq(pwq);
4400 			raw_spin_unlock_irq(&pwq->pool->lock);
4401 			mutex_unlock(&wq->mutex);
4402 			mutex_unlock(&wq_pool_mutex);
4403 			show_workqueue_state();
4404 			return;
4405 		}
4406 		raw_spin_unlock_irq(&pwq->pool->lock);
4407 	}
4408 	mutex_unlock(&wq->mutex);
4409 
4410 	/*
4411 	 * wq list is used to freeze wq, remove from list after
4412 	 * flushing is complete in case freeze races us.
4413 	 */
4414 	list_del_rcu(&wq->list);
4415 	mutex_unlock(&wq_pool_mutex);
4416 
4417 	if (!(wq->flags & WQ_UNBOUND)) {
4418 		wq_unregister_lockdep(wq);
4419 		/*
4420 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4421 		 * schedule RCU free.
4422 		 */
4423 		call_rcu(&wq->rcu, rcu_free_wq);
4424 	} else {
4425 		/*
4426 		 * We're the sole accessor of @wq at this point.  Directly
4427 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4428 		 * @wq will be freed when the last pwq is released.
4429 		 */
4430 		for_each_node(node) {
4431 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4432 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4433 			put_pwq_unlocked(pwq);
4434 		}
4435 
4436 		/*
4437 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4438 		 * put.  Don't access it afterwards.
4439 		 */
4440 		pwq = wq->dfl_pwq;
4441 		wq->dfl_pwq = NULL;
4442 		put_pwq_unlocked(pwq);
4443 	}
4444 }
4445 EXPORT_SYMBOL_GPL(destroy_workqueue);
4446 
4447 /**
4448  * workqueue_set_max_active - adjust max_active of a workqueue
4449  * @wq: target workqueue
4450  * @max_active: new max_active value.
4451  *
4452  * Set max_active of @wq to @max_active.
4453  *
4454  * CONTEXT:
4455  * Don't call from IRQ context.
4456  */
4457 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4458 {
4459 	struct pool_workqueue *pwq;
4460 
4461 	/* disallow meddling with max_active for ordered workqueues */
4462 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4463 		return;
4464 
4465 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4466 
4467 	mutex_lock(&wq->mutex);
4468 
4469 	wq->flags &= ~__WQ_ORDERED;
4470 	wq->saved_max_active = max_active;
4471 
4472 	for_each_pwq(pwq, wq)
4473 		pwq_adjust_max_active(pwq);
4474 
4475 	mutex_unlock(&wq->mutex);
4476 }
4477 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4478 
4479 /**
4480  * current_work - retrieve %current task's work struct
4481  *
4482  * Determine if %current task is a workqueue worker and what it's working on.
4483  * Useful to find out the context that the %current task is running in.
4484  *
4485  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4486  */
4487 struct work_struct *current_work(void)
4488 {
4489 	struct worker *worker = current_wq_worker();
4490 
4491 	return worker ? worker->current_work : NULL;
4492 }
4493 EXPORT_SYMBOL(current_work);
4494 
4495 /**
4496  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4497  *
4498  * Determine whether %current is a workqueue rescuer.  Can be used from
4499  * work functions to determine whether it's being run off the rescuer task.
4500  *
4501  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4502  */
4503 bool current_is_workqueue_rescuer(void)
4504 {
4505 	struct worker *worker = current_wq_worker();
4506 
4507 	return worker && worker->rescue_wq;
4508 }
4509 
4510 /**
4511  * workqueue_congested - test whether a workqueue is congested
4512  * @cpu: CPU in question
4513  * @wq: target workqueue
4514  *
4515  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4516  * no synchronization around this function and the test result is
4517  * unreliable and only useful as advisory hints or for debugging.
4518  *
4519  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4520  * Note that both per-cpu and unbound workqueues may be associated with
4521  * multiple pool_workqueues which have separate congested states.  A
4522  * workqueue being congested on one CPU doesn't mean the workqueue is also
4523  * contested on other CPUs / NUMA nodes.
4524  *
4525  * Return:
4526  * %true if congested, %false otherwise.
4527  */
4528 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4529 {
4530 	struct pool_workqueue *pwq;
4531 	bool ret;
4532 
4533 	rcu_read_lock();
4534 	preempt_disable();
4535 
4536 	if (cpu == WORK_CPU_UNBOUND)
4537 		cpu = smp_processor_id();
4538 
4539 	if (!(wq->flags & WQ_UNBOUND))
4540 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4541 	else
4542 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4543 
4544 	ret = !list_empty(&pwq->delayed_works);
4545 	preempt_enable();
4546 	rcu_read_unlock();
4547 
4548 	return ret;
4549 }
4550 EXPORT_SYMBOL_GPL(workqueue_congested);
4551 
4552 /**
4553  * work_busy - test whether a work is currently pending or running
4554  * @work: the work to be tested
4555  *
4556  * Test whether @work is currently pending or running.  There is no
4557  * synchronization around this function and the test result is
4558  * unreliable and only useful as advisory hints or for debugging.
4559  *
4560  * Return:
4561  * OR'd bitmask of WORK_BUSY_* bits.
4562  */
4563 unsigned int work_busy(struct work_struct *work)
4564 {
4565 	struct worker_pool *pool;
4566 	unsigned long flags;
4567 	unsigned int ret = 0;
4568 
4569 	if (work_pending(work))
4570 		ret |= WORK_BUSY_PENDING;
4571 
4572 	rcu_read_lock();
4573 	pool = get_work_pool(work);
4574 	if (pool) {
4575 		raw_spin_lock_irqsave(&pool->lock, flags);
4576 		if (find_worker_executing_work(pool, work))
4577 			ret |= WORK_BUSY_RUNNING;
4578 		raw_spin_unlock_irqrestore(&pool->lock, flags);
4579 	}
4580 	rcu_read_unlock();
4581 
4582 	return ret;
4583 }
4584 EXPORT_SYMBOL_GPL(work_busy);
4585 
4586 /**
4587  * set_worker_desc - set description for the current work item
4588  * @fmt: printf-style format string
4589  * @...: arguments for the format string
4590  *
4591  * This function can be called by a running work function to describe what
4592  * the work item is about.  If the worker task gets dumped, this
4593  * information will be printed out together to help debugging.  The
4594  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4595  */
4596 void set_worker_desc(const char *fmt, ...)
4597 {
4598 	struct worker *worker = current_wq_worker();
4599 	va_list args;
4600 
4601 	if (worker) {
4602 		va_start(args, fmt);
4603 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4604 		va_end(args);
4605 	}
4606 }
4607 EXPORT_SYMBOL_GPL(set_worker_desc);
4608 
4609 /**
4610  * print_worker_info - print out worker information and description
4611  * @log_lvl: the log level to use when printing
4612  * @task: target task
4613  *
4614  * If @task is a worker and currently executing a work item, print out the
4615  * name of the workqueue being serviced and worker description set with
4616  * set_worker_desc() by the currently executing work item.
4617  *
4618  * This function can be safely called on any task as long as the
4619  * task_struct itself is accessible.  While safe, this function isn't
4620  * synchronized and may print out mixups or garbages of limited length.
4621  */
4622 void print_worker_info(const char *log_lvl, struct task_struct *task)
4623 {
4624 	work_func_t *fn = NULL;
4625 	char name[WQ_NAME_LEN] = { };
4626 	char desc[WORKER_DESC_LEN] = { };
4627 	struct pool_workqueue *pwq = NULL;
4628 	struct workqueue_struct *wq = NULL;
4629 	struct worker *worker;
4630 
4631 	if (!(task->flags & PF_WQ_WORKER))
4632 		return;
4633 
4634 	/*
4635 	 * This function is called without any synchronization and @task
4636 	 * could be in any state.  Be careful with dereferences.
4637 	 */
4638 	worker = kthread_probe_data(task);
4639 
4640 	/*
4641 	 * Carefully copy the associated workqueue's workfn, name and desc.
4642 	 * Keep the original last '\0' in case the original is garbage.
4643 	 */
4644 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4645 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4646 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4647 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4648 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4649 
4650 	if (fn || name[0] || desc[0]) {
4651 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4652 		if (strcmp(name, desc))
4653 			pr_cont(" (%s)", desc);
4654 		pr_cont("\n");
4655 	}
4656 }
4657 
4658 static void pr_cont_pool_info(struct worker_pool *pool)
4659 {
4660 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4661 	if (pool->node != NUMA_NO_NODE)
4662 		pr_cont(" node=%d", pool->node);
4663 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4664 }
4665 
4666 static void pr_cont_work(bool comma, struct work_struct *work)
4667 {
4668 	if (work->func == wq_barrier_func) {
4669 		struct wq_barrier *barr;
4670 
4671 		barr = container_of(work, struct wq_barrier, work);
4672 
4673 		pr_cont("%s BAR(%d)", comma ? "," : "",
4674 			task_pid_nr(barr->task));
4675 	} else {
4676 		pr_cont("%s %ps", comma ? "," : "", work->func);
4677 	}
4678 }
4679 
4680 static void show_pwq(struct pool_workqueue *pwq)
4681 {
4682 	struct worker_pool *pool = pwq->pool;
4683 	struct work_struct *work;
4684 	struct worker *worker;
4685 	bool has_in_flight = false, has_pending = false;
4686 	int bkt;
4687 
4688 	pr_info("  pwq %d:", pool->id);
4689 	pr_cont_pool_info(pool);
4690 
4691 	pr_cont(" active=%d/%d refcnt=%d%s\n",
4692 		pwq->nr_active, pwq->max_active, pwq->refcnt,
4693 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4694 
4695 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4696 		if (worker->current_pwq == pwq) {
4697 			has_in_flight = true;
4698 			break;
4699 		}
4700 	}
4701 	if (has_in_flight) {
4702 		bool comma = false;
4703 
4704 		pr_info("    in-flight:");
4705 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4706 			if (worker->current_pwq != pwq)
4707 				continue;
4708 
4709 			pr_cont("%s %d%s:%ps", comma ? "," : "",
4710 				task_pid_nr(worker->task),
4711 				worker->rescue_wq ? "(RESCUER)" : "",
4712 				worker->current_func);
4713 			list_for_each_entry(work, &worker->scheduled, entry)
4714 				pr_cont_work(false, work);
4715 			comma = true;
4716 		}
4717 		pr_cont("\n");
4718 	}
4719 
4720 	list_for_each_entry(work, &pool->worklist, entry) {
4721 		if (get_work_pwq(work) == pwq) {
4722 			has_pending = true;
4723 			break;
4724 		}
4725 	}
4726 	if (has_pending) {
4727 		bool comma = false;
4728 
4729 		pr_info("    pending:");
4730 		list_for_each_entry(work, &pool->worklist, entry) {
4731 			if (get_work_pwq(work) != pwq)
4732 				continue;
4733 
4734 			pr_cont_work(comma, work);
4735 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4736 		}
4737 		pr_cont("\n");
4738 	}
4739 
4740 	if (!list_empty(&pwq->delayed_works)) {
4741 		bool comma = false;
4742 
4743 		pr_info("    delayed:");
4744 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4745 			pr_cont_work(comma, work);
4746 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4747 		}
4748 		pr_cont("\n");
4749 	}
4750 }
4751 
4752 /**
4753  * show_workqueue_state - dump workqueue state
4754  *
4755  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4756  * all busy workqueues and pools.
4757  */
4758 void show_workqueue_state(void)
4759 {
4760 	struct workqueue_struct *wq;
4761 	struct worker_pool *pool;
4762 	unsigned long flags;
4763 	int pi;
4764 
4765 	rcu_read_lock();
4766 
4767 	pr_info("Showing busy workqueues and worker pools:\n");
4768 
4769 	list_for_each_entry_rcu(wq, &workqueues, list) {
4770 		struct pool_workqueue *pwq;
4771 		bool idle = true;
4772 
4773 		for_each_pwq(pwq, wq) {
4774 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4775 				idle = false;
4776 				break;
4777 			}
4778 		}
4779 		if (idle)
4780 			continue;
4781 
4782 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4783 
4784 		for_each_pwq(pwq, wq) {
4785 			raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4786 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4787 				show_pwq(pwq);
4788 			raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4789 			/*
4790 			 * We could be printing a lot from atomic context, e.g.
4791 			 * sysrq-t -> show_workqueue_state(). Avoid triggering
4792 			 * hard lockup.
4793 			 */
4794 			touch_nmi_watchdog();
4795 		}
4796 	}
4797 
4798 	for_each_pool(pool, pi) {
4799 		struct worker *worker;
4800 		bool first = true;
4801 
4802 		raw_spin_lock_irqsave(&pool->lock, flags);
4803 		if (pool->nr_workers == pool->nr_idle)
4804 			goto next_pool;
4805 
4806 		pr_info("pool %d:", pool->id);
4807 		pr_cont_pool_info(pool);
4808 		pr_cont(" hung=%us workers=%d",
4809 			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4810 			pool->nr_workers);
4811 		if (pool->manager)
4812 			pr_cont(" manager: %d",
4813 				task_pid_nr(pool->manager->task));
4814 		list_for_each_entry(worker, &pool->idle_list, entry) {
4815 			pr_cont(" %s%d", first ? "idle: " : "",
4816 				task_pid_nr(worker->task));
4817 			first = false;
4818 		}
4819 		pr_cont("\n");
4820 	next_pool:
4821 		raw_spin_unlock_irqrestore(&pool->lock, flags);
4822 		/*
4823 		 * We could be printing a lot from atomic context, e.g.
4824 		 * sysrq-t -> show_workqueue_state(). Avoid triggering
4825 		 * hard lockup.
4826 		 */
4827 		touch_nmi_watchdog();
4828 	}
4829 
4830 	rcu_read_unlock();
4831 }
4832 
4833 /* used to show worker information through /proc/PID/{comm,stat,status} */
4834 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4835 {
4836 	int off;
4837 
4838 	/* always show the actual comm */
4839 	off = strscpy(buf, task->comm, size);
4840 	if (off < 0)
4841 		return;
4842 
4843 	/* stabilize PF_WQ_WORKER and worker pool association */
4844 	mutex_lock(&wq_pool_attach_mutex);
4845 
4846 	if (task->flags & PF_WQ_WORKER) {
4847 		struct worker *worker = kthread_data(task);
4848 		struct worker_pool *pool = worker->pool;
4849 
4850 		if (pool) {
4851 			raw_spin_lock_irq(&pool->lock);
4852 			/*
4853 			 * ->desc tracks information (wq name or
4854 			 * set_worker_desc()) for the latest execution.  If
4855 			 * current, prepend '+', otherwise '-'.
4856 			 */
4857 			if (worker->desc[0] != '\0') {
4858 				if (worker->current_work)
4859 					scnprintf(buf + off, size - off, "+%s",
4860 						  worker->desc);
4861 				else
4862 					scnprintf(buf + off, size - off, "-%s",
4863 						  worker->desc);
4864 			}
4865 			raw_spin_unlock_irq(&pool->lock);
4866 		}
4867 	}
4868 
4869 	mutex_unlock(&wq_pool_attach_mutex);
4870 }
4871 
4872 #ifdef CONFIG_SMP
4873 
4874 /*
4875  * CPU hotplug.
4876  *
4877  * There are two challenges in supporting CPU hotplug.  Firstly, there
4878  * are a lot of assumptions on strong associations among work, pwq and
4879  * pool which make migrating pending and scheduled works very
4880  * difficult to implement without impacting hot paths.  Secondly,
4881  * worker pools serve mix of short, long and very long running works making
4882  * blocked draining impractical.
4883  *
4884  * This is solved by allowing the pools to be disassociated from the CPU
4885  * running as an unbound one and allowing it to be reattached later if the
4886  * cpu comes back online.
4887  */
4888 
4889 static void unbind_workers(int cpu)
4890 {
4891 	struct worker_pool *pool;
4892 	struct worker *worker;
4893 
4894 	for_each_cpu_worker_pool(pool, cpu) {
4895 		mutex_lock(&wq_pool_attach_mutex);
4896 		raw_spin_lock_irq(&pool->lock);
4897 
4898 		/*
4899 		 * We've blocked all attach/detach operations. Make all workers
4900 		 * unbound and set DISASSOCIATED.  Before this, all workers
4901 		 * except for the ones which are still executing works from
4902 		 * before the last CPU down must be on the cpu.  After
4903 		 * this, they may become diasporas.
4904 		 */
4905 		for_each_pool_worker(worker, pool)
4906 			worker->flags |= WORKER_UNBOUND;
4907 
4908 		pool->flags |= POOL_DISASSOCIATED;
4909 
4910 		raw_spin_unlock_irq(&pool->lock);
4911 		mutex_unlock(&wq_pool_attach_mutex);
4912 
4913 		/*
4914 		 * Call schedule() so that we cross rq->lock and thus can
4915 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4916 		 * This is necessary as scheduler callbacks may be invoked
4917 		 * from other cpus.
4918 		 */
4919 		schedule();
4920 
4921 		/*
4922 		 * Sched callbacks are disabled now.  Zap nr_running.
4923 		 * After this, nr_running stays zero and need_more_worker()
4924 		 * and keep_working() are always true as long as the
4925 		 * worklist is not empty.  This pool now behaves as an
4926 		 * unbound (in terms of concurrency management) pool which
4927 		 * are served by workers tied to the pool.
4928 		 */
4929 		atomic_set(&pool->nr_running, 0);
4930 
4931 		/*
4932 		 * With concurrency management just turned off, a busy
4933 		 * worker blocking could lead to lengthy stalls.  Kick off
4934 		 * unbound chain execution of currently pending work items.
4935 		 */
4936 		raw_spin_lock_irq(&pool->lock);
4937 		wake_up_worker(pool);
4938 		raw_spin_unlock_irq(&pool->lock);
4939 	}
4940 }
4941 
4942 /**
4943  * rebind_workers - rebind all workers of a pool to the associated CPU
4944  * @pool: pool of interest
4945  *
4946  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4947  */
4948 static void rebind_workers(struct worker_pool *pool)
4949 {
4950 	struct worker *worker;
4951 
4952 	lockdep_assert_held(&wq_pool_attach_mutex);
4953 
4954 	/*
4955 	 * Restore CPU affinity of all workers.  As all idle workers should
4956 	 * be on the run-queue of the associated CPU before any local
4957 	 * wake-ups for concurrency management happen, restore CPU affinity
4958 	 * of all workers first and then clear UNBOUND.  As we're called
4959 	 * from CPU_ONLINE, the following shouldn't fail.
4960 	 */
4961 	for_each_pool_worker(worker, pool)
4962 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4963 						  pool->attrs->cpumask) < 0);
4964 
4965 	raw_spin_lock_irq(&pool->lock);
4966 
4967 	pool->flags &= ~POOL_DISASSOCIATED;
4968 
4969 	for_each_pool_worker(worker, pool) {
4970 		unsigned int worker_flags = worker->flags;
4971 
4972 		/*
4973 		 * A bound idle worker should actually be on the runqueue
4974 		 * of the associated CPU for local wake-ups targeting it to
4975 		 * work.  Kick all idle workers so that they migrate to the
4976 		 * associated CPU.  Doing this in the same loop as
4977 		 * replacing UNBOUND with REBOUND is safe as no worker will
4978 		 * be bound before @pool->lock is released.
4979 		 */
4980 		if (worker_flags & WORKER_IDLE)
4981 			wake_up_process(worker->task);
4982 
4983 		/*
4984 		 * We want to clear UNBOUND but can't directly call
4985 		 * worker_clr_flags() or adjust nr_running.  Atomically
4986 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4987 		 * @worker will clear REBOUND using worker_clr_flags() when
4988 		 * it initiates the next execution cycle thus restoring
4989 		 * concurrency management.  Note that when or whether
4990 		 * @worker clears REBOUND doesn't affect correctness.
4991 		 *
4992 		 * WRITE_ONCE() is necessary because @worker->flags may be
4993 		 * tested without holding any lock in
4994 		 * wq_worker_running().  Without it, NOT_RUNNING test may
4995 		 * fail incorrectly leading to premature concurrency
4996 		 * management operations.
4997 		 */
4998 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4999 		worker_flags |= WORKER_REBOUND;
5000 		worker_flags &= ~WORKER_UNBOUND;
5001 		WRITE_ONCE(worker->flags, worker_flags);
5002 	}
5003 
5004 	raw_spin_unlock_irq(&pool->lock);
5005 }
5006 
5007 /**
5008  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5009  * @pool: unbound pool of interest
5010  * @cpu: the CPU which is coming up
5011  *
5012  * An unbound pool may end up with a cpumask which doesn't have any online
5013  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
5014  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
5015  * online CPU before, cpus_allowed of all its workers should be restored.
5016  */
5017 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5018 {
5019 	static cpumask_t cpumask;
5020 	struct worker *worker;
5021 
5022 	lockdep_assert_held(&wq_pool_attach_mutex);
5023 
5024 	/* is @cpu allowed for @pool? */
5025 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5026 		return;
5027 
5028 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5029 
5030 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
5031 	for_each_pool_worker(worker, pool)
5032 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5033 }
5034 
5035 int workqueue_prepare_cpu(unsigned int cpu)
5036 {
5037 	struct worker_pool *pool;
5038 
5039 	for_each_cpu_worker_pool(pool, cpu) {
5040 		if (pool->nr_workers)
5041 			continue;
5042 		if (!create_worker(pool))
5043 			return -ENOMEM;
5044 	}
5045 	return 0;
5046 }
5047 
5048 int workqueue_online_cpu(unsigned int cpu)
5049 {
5050 	struct worker_pool *pool;
5051 	struct workqueue_struct *wq;
5052 	int pi;
5053 
5054 	mutex_lock(&wq_pool_mutex);
5055 
5056 	for_each_pool(pool, pi) {
5057 		mutex_lock(&wq_pool_attach_mutex);
5058 
5059 		if (pool->cpu == cpu)
5060 			rebind_workers(pool);
5061 		else if (pool->cpu < 0)
5062 			restore_unbound_workers_cpumask(pool, cpu);
5063 
5064 		mutex_unlock(&wq_pool_attach_mutex);
5065 	}
5066 
5067 	/* update NUMA affinity of unbound workqueues */
5068 	list_for_each_entry(wq, &workqueues, list)
5069 		wq_update_unbound_numa(wq, cpu, true);
5070 
5071 	mutex_unlock(&wq_pool_mutex);
5072 	return 0;
5073 }
5074 
5075 int workqueue_offline_cpu(unsigned int cpu)
5076 {
5077 	struct workqueue_struct *wq;
5078 
5079 	/* unbinding per-cpu workers should happen on the local CPU */
5080 	if (WARN_ON(cpu != smp_processor_id()))
5081 		return -1;
5082 
5083 	unbind_workers(cpu);
5084 
5085 	/* update NUMA affinity of unbound workqueues */
5086 	mutex_lock(&wq_pool_mutex);
5087 	list_for_each_entry(wq, &workqueues, list)
5088 		wq_update_unbound_numa(wq, cpu, false);
5089 	mutex_unlock(&wq_pool_mutex);
5090 
5091 	return 0;
5092 }
5093 
5094 struct work_for_cpu {
5095 	struct work_struct work;
5096 	long (*fn)(void *);
5097 	void *arg;
5098 	long ret;
5099 };
5100 
5101 static void work_for_cpu_fn(struct work_struct *work)
5102 {
5103 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5104 
5105 	wfc->ret = wfc->fn(wfc->arg);
5106 }
5107 
5108 /**
5109  * work_on_cpu - run a function in thread context on a particular cpu
5110  * @cpu: the cpu to run on
5111  * @fn: the function to run
5112  * @arg: the function arg
5113  *
5114  * It is up to the caller to ensure that the cpu doesn't go offline.
5115  * The caller must not hold any locks which would prevent @fn from completing.
5116  *
5117  * Return: The value @fn returns.
5118  */
5119 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5120 {
5121 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5122 
5123 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5124 	schedule_work_on(cpu, &wfc.work);
5125 	flush_work(&wfc.work);
5126 	destroy_work_on_stack(&wfc.work);
5127 	return wfc.ret;
5128 }
5129 EXPORT_SYMBOL_GPL(work_on_cpu);
5130 
5131 /**
5132  * work_on_cpu_safe - run a function in thread context on a particular cpu
5133  * @cpu: the cpu to run on
5134  * @fn:  the function to run
5135  * @arg: the function argument
5136  *
5137  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5138  * any locks which would prevent @fn from completing.
5139  *
5140  * Return: The value @fn returns.
5141  */
5142 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5143 {
5144 	long ret = -ENODEV;
5145 
5146 	get_online_cpus();
5147 	if (cpu_online(cpu))
5148 		ret = work_on_cpu(cpu, fn, arg);
5149 	put_online_cpus();
5150 	return ret;
5151 }
5152 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5153 #endif /* CONFIG_SMP */
5154 
5155 #ifdef CONFIG_FREEZER
5156 
5157 /**
5158  * freeze_workqueues_begin - begin freezing workqueues
5159  *
5160  * Start freezing workqueues.  After this function returns, all freezable
5161  * workqueues will queue new works to their delayed_works list instead of
5162  * pool->worklist.
5163  *
5164  * CONTEXT:
5165  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5166  */
5167 void freeze_workqueues_begin(void)
5168 {
5169 	struct workqueue_struct *wq;
5170 	struct pool_workqueue *pwq;
5171 
5172 	mutex_lock(&wq_pool_mutex);
5173 
5174 	WARN_ON_ONCE(workqueue_freezing);
5175 	workqueue_freezing = true;
5176 
5177 	list_for_each_entry(wq, &workqueues, list) {
5178 		mutex_lock(&wq->mutex);
5179 		for_each_pwq(pwq, wq)
5180 			pwq_adjust_max_active(pwq);
5181 		mutex_unlock(&wq->mutex);
5182 	}
5183 
5184 	mutex_unlock(&wq_pool_mutex);
5185 }
5186 
5187 /**
5188  * freeze_workqueues_busy - are freezable workqueues still busy?
5189  *
5190  * Check whether freezing is complete.  This function must be called
5191  * between freeze_workqueues_begin() and thaw_workqueues().
5192  *
5193  * CONTEXT:
5194  * Grabs and releases wq_pool_mutex.
5195  *
5196  * Return:
5197  * %true if some freezable workqueues are still busy.  %false if freezing
5198  * is complete.
5199  */
5200 bool freeze_workqueues_busy(void)
5201 {
5202 	bool busy = false;
5203 	struct workqueue_struct *wq;
5204 	struct pool_workqueue *pwq;
5205 
5206 	mutex_lock(&wq_pool_mutex);
5207 
5208 	WARN_ON_ONCE(!workqueue_freezing);
5209 
5210 	list_for_each_entry(wq, &workqueues, list) {
5211 		if (!(wq->flags & WQ_FREEZABLE))
5212 			continue;
5213 		/*
5214 		 * nr_active is monotonically decreasing.  It's safe
5215 		 * to peek without lock.
5216 		 */
5217 		rcu_read_lock();
5218 		for_each_pwq(pwq, wq) {
5219 			WARN_ON_ONCE(pwq->nr_active < 0);
5220 			if (pwq->nr_active) {
5221 				busy = true;
5222 				rcu_read_unlock();
5223 				goto out_unlock;
5224 			}
5225 		}
5226 		rcu_read_unlock();
5227 	}
5228 out_unlock:
5229 	mutex_unlock(&wq_pool_mutex);
5230 	return busy;
5231 }
5232 
5233 /**
5234  * thaw_workqueues - thaw workqueues
5235  *
5236  * Thaw workqueues.  Normal queueing is restored and all collected
5237  * frozen works are transferred to their respective pool worklists.
5238  *
5239  * CONTEXT:
5240  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5241  */
5242 void thaw_workqueues(void)
5243 {
5244 	struct workqueue_struct *wq;
5245 	struct pool_workqueue *pwq;
5246 
5247 	mutex_lock(&wq_pool_mutex);
5248 
5249 	if (!workqueue_freezing)
5250 		goto out_unlock;
5251 
5252 	workqueue_freezing = false;
5253 
5254 	/* restore max_active and repopulate worklist */
5255 	list_for_each_entry(wq, &workqueues, list) {
5256 		mutex_lock(&wq->mutex);
5257 		for_each_pwq(pwq, wq)
5258 			pwq_adjust_max_active(pwq);
5259 		mutex_unlock(&wq->mutex);
5260 	}
5261 
5262 out_unlock:
5263 	mutex_unlock(&wq_pool_mutex);
5264 }
5265 #endif /* CONFIG_FREEZER */
5266 
5267 static int workqueue_apply_unbound_cpumask(void)
5268 {
5269 	LIST_HEAD(ctxs);
5270 	int ret = 0;
5271 	struct workqueue_struct *wq;
5272 	struct apply_wqattrs_ctx *ctx, *n;
5273 
5274 	lockdep_assert_held(&wq_pool_mutex);
5275 
5276 	list_for_each_entry(wq, &workqueues, list) {
5277 		if (!(wq->flags & WQ_UNBOUND))
5278 			continue;
5279 		/* creating multiple pwqs breaks ordering guarantee */
5280 		if (wq->flags & __WQ_ORDERED)
5281 			continue;
5282 
5283 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5284 		if (!ctx) {
5285 			ret = -ENOMEM;
5286 			break;
5287 		}
5288 
5289 		list_add_tail(&ctx->list, &ctxs);
5290 	}
5291 
5292 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5293 		if (!ret)
5294 			apply_wqattrs_commit(ctx);
5295 		apply_wqattrs_cleanup(ctx);
5296 	}
5297 
5298 	return ret;
5299 }
5300 
5301 /**
5302  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5303  *  @cpumask: the cpumask to set
5304  *
5305  *  The low-level workqueues cpumask is a global cpumask that limits
5306  *  the affinity of all unbound workqueues.  This function check the @cpumask
5307  *  and apply it to all unbound workqueues and updates all pwqs of them.
5308  *
5309  *  Retun:	0	- Success
5310  *  		-EINVAL	- Invalid @cpumask
5311  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5312  */
5313 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5314 {
5315 	int ret = -EINVAL;
5316 	cpumask_var_t saved_cpumask;
5317 
5318 	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5319 		return -ENOMEM;
5320 
5321 	/*
5322 	 * Not excluding isolated cpus on purpose.
5323 	 * If the user wishes to include them, we allow that.
5324 	 */
5325 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5326 	if (!cpumask_empty(cpumask)) {
5327 		apply_wqattrs_lock();
5328 
5329 		/* save the old wq_unbound_cpumask. */
5330 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5331 
5332 		/* update wq_unbound_cpumask at first and apply it to wqs. */
5333 		cpumask_copy(wq_unbound_cpumask, cpumask);
5334 		ret = workqueue_apply_unbound_cpumask();
5335 
5336 		/* restore the wq_unbound_cpumask when failed. */
5337 		if (ret < 0)
5338 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5339 
5340 		apply_wqattrs_unlock();
5341 	}
5342 
5343 	free_cpumask_var(saved_cpumask);
5344 	return ret;
5345 }
5346 
5347 #ifdef CONFIG_SYSFS
5348 /*
5349  * Workqueues with WQ_SYSFS flag set is visible to userland via
5350  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5351  * following attributes.
5352  *
5353  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5354  *  max_active	RW int	: maximum number of in-flight work items
5355  *
5356  * Unbound workqueues have the following extra attributes.
5357  *
5358  *  pool_ids	RO int	: the associated pool IDs for each node
5359  *  nice	RW int	: nice value of the workers
5360  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5361  *  numa	RW bool	: whether enable NUMA affinity
5362  */
5363 struct wq_device {
5364 	struct workqueue_struct		*wq;
5365 	struct device			dev;
5366 };
5367 
5368 static struct workqueue_struct *dev_to_wq(struct device *dev)
5369 {
5370 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5371 
5372 	return wq_dev->wq;
5373 }
5374 
5375 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5376 			    char *buf)
5377 {
5378 	struct workqueue_struct *wq = dev_to_wq(dev);
5379 
5380 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5381 }
5382 static DEVICE_ATTR_RO(per_cpu);
5383 
5384 static ssize_t max_active_show(struct device *dev,
5385 			       struct device_attribute *attr, char *buf)
5386 {
5387 	struct workqueue_struct *wq = dev_to_wq(dev);
5388 
5389 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5390 }
5391 
5392 static ssize_t max_active_store(struct device *dev,
5393 				struct device_attribute *attr, const char *buf,
5394 				size_t count)
5395 {
5396 	struct workqueue_struct *wq = dev_to_wq(dev);
5397 	int val;
5398 
5399 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5400 		return -EINVAL;
5401 
5402 	workqueue_set_max_active(wq, val);
5403 	return count;
5404 }
5405 static DEVICE_ATTR_RW(max_active);
5406 
5407 static struct attribute *wq_sysfs_attrs[] = {
5408 	&dev_attr_per_cpu.attr,
5409 	&dev_attr_max_active.attr,
5410 	NULL,
5411 };
5412 ATTRIBUTE_GROUPS(wq_sysfs);
5413 
5414 static ssize_t wq_pool_ids_show(struct device *dev,
5415 				struct device_attribute *attr, char *buf)
5416 {
5417 	struct workqueue_struct *wq = dev_to_wq(dev);
5418 	const char *delim = "";
5419 	int node, written = 0;
5420 
5421 	get_online_cpus();
5422 	rcu_read_lock();
5423 	for_each_node(node) {
5424 		written += scnprintf(buf + written, PAGE_SIZE - written,
5425 				     "%s%d:%d", delim, node,
5426 				     unbound_pwq_by_node(wq, node)->pool->id);
5427 		delim = " ";
5428 	}
5429 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5430 	rcu_read_unlock();
5431 	put_online_cpus();
5432 
5433 	return written;
5434 }
5435 
5436 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5437 			    char *buf)
5438 {
5439 	struct workqueue_struct *wq = dev_to_wq(dev);
5440 	int written;
5441 
5442 	mutex_lock(&wq->mutex);
5443 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5444 	mutex_unlock(&wq->mutex);
5445 
5446 	return written;
5447 }
5448 
5449 /* prepare workqueue_attrs for sysfs store operations */
5450 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5451 {
5452 	struct workqueue_attrs *attrs;
5453 
5454 	lockdep_assert_held(&wq_pool_mutex);
5455 
5456 	attrs = alloc_workqueue_attrs();
5457 	if (!attrs)
5458 		return NULL;
5459 
5460 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5461 	return attrs;
5462 }
5463 
5464 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5465 			     const char *buf, size_t count)
5466 {
5467 	struct workqueue_struct *wq = dev_to_wq(dev);
5468 	struct workqueue_attrs *attrs;
5469 	int ret = -ENOMEM;
5470 
5471 	apply_wqattrs_lock();
5472 
5473 	attrs = wq_sysfs_prep_attrs(wq);
5474 	if (!attrs)
5475 		goto out_unlock;
5476 
5477 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5478 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5479 		ret = apply_workqueue_attrs_locked(wq, attrs);
5480 	else
5481 		ret = -EINVAL;
5482 
5483 out_unlock:
5484 	apply_wqattrs_unlock();
5485 	free_workqueue_attrs(attrs);
5486 	return ret ?: count;
5487 }
5488 
5489 static ssize_t wq_cpumask_show(struct device *dev,
5490 			       struct device_attribute *attr, char *buf)
5491 {
5492 	struct workqueue_struct *wq = dev_to_wq(dev);
5493 	int written;
5494 
5495 	mutex_lock(&wq->mutex);
5496 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5497 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5498 	mutex_unlock(&wq->mutex);
5499 	return written;
5500 }
5501 
5502 static ssize_t wq_cpumask_store(struct device *dev,
5503 				struct device_attribute *attr,
5504 				const char *buf, size_t count)
5505 {
5506 	struct workqueue_struct *wq = dev_to_wq(dev);
5507 	struct workqueue_attrs *attrs;
5508 	int ret = -ENOMEM;
5509 
5510 	apply_wqattrs_lock();
5511 
5512 	attrs = wq_sysfs_prep_attrs(wq);
5513 	if (!attrs)
5514 		goto out_unlock;
5515 
5516 	ret = cpumask_parse(buf, attrs->cpumask);
5517 	if (!ret)
5518 		ret = apply_workqueue_attrs_locked(wq, attrs);
5519 
5520 out_unlock:
5521 	apply_wqattrs_unlock();
5522 	free_workqueue_attrs(attrs);
5523 	return ret ?: count;
5524 }
5525 
5526 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5527 			    char *buf)
5528 {
5529 	struct workqueue_struct *wq = dev_to_wq(dev);
5530 	int written;
5531 
5532 	mutex_lock(&wq->mutex);
5533 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5534 			    !wq->unbound_attrs->no_numa);
5535 	mutex_unlock(&wq->mutex);
5536 
5537 	return written;
5538 }
5539 
5540 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5541 			     const char *buf, size_t count)
5542 {
5543 	struct workqueue_struct *wq = dev_to_wq(dev);
5544 	struct workqueue_attrs *attrs;
5545 	int v, ret = -ENOMEM;
5546 
5547 	apply_wqattrs_lock();
5548 
5549 	attrs = wq_sysfs_prep_attrs(wq);
5550 	if (!attrs)
5551 		goto out_unlock;
5552 
5553 	ret = -EINVAL;
5554 	if (sscanf(buf, "%d", &v) == 1) {
5555 		attrs->no_numa = !v;
5556 		ret = apply_workqueue_attrs_locked(wq, attrs);
5557 	}
5558 
5559 out_unlock:
5560 	apply_wqattrs_unlock();
5561 	free_workqueue_attrs(attrs);
5562 	return ret ?: count;
5563 }
5564 
5565 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5566 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5567 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5568 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5569 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5570 	__ATTR_NULL,
5571 };
5572 
5573 static struct bus_type wq_subsys = {
5574 	.name				= "workqueue",
5575 	.dev_groups			= wq_sysfs_groups,
5576 };
5577 
5578 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5579 		struct device_attribute *attr, char *buf)
5580 {
5581 	int written;
5582 
5583 	mutex_lock(&wq_pool_mutex);
5584 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5585 			    cpumask_pr_args(wq_unbound_cpumask));
5586 	mutex_unlock(&wq_pool_mutex);
5587 
5588 	return written;
5589 }
5590 
5591 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5592 		struct device_attribute *attr, const char *buf, size_t count)
5593 {
5594 	cpumask_var_t cpumask;
5595 	int ret;
5596 
5597 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5598 		return -ENOMEM;
5599 
5600 	ret = cpumask_parse(buf, cpumask);
5601 	if (!ret)
5602 		ret = workqueue_set_unbound_cpumask(cpumask);
5603 
5604 	free_cpumask_var(cpumask);
5605 	return ret ? ret : count;
5606 }
5607 
5608 static struct device_attribute wq_sysfs_cpumask_attr =
5609 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5610 	       wq_unbound_cpumask_store);
5611 
5612 static int __init wq_sysfs_init(void)
5613 {
5614 	int err;
5615 
5616 	err = subsys_virtual_register(&wq_subsys, NULL);
5617 	if (err)
5618 		return err;
5619 
5620 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5621 }
5622 core_initcall(wq_sysfs_init);
5623 
5624 static void wq_device_release(struct device *dev)
5625 {
5626 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5627 
5628 	kfree(wq_dev);
5629 }
5630 
5631 /**
5632  * workqueue_sysfs_register - make a workqueue visible in sysfs
5633  * @wq: the workqueue to register
5634  *
5635  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5636  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5637  * which is the preferred method.
5638  *
5639  * Workqueue user should use this function directly iff it wants to apply
5640  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5641  * apply_workqueue_attrs() may race against userland updating the
5642  * attributes.
5643  *
5644  * Return: 0 on success, -errno on failure.
5645  */
5646 int workqueue_sysfs_register(struct workqueue_struct *wq)
5647 {
5648 	struct wq_device *wq_dev;
5649 	int ret;
5650 
5651 	/*
5652 	 * Adjusting max_active or creating new pwqs by applying
5653 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5654 	 * workqueues.
5655 	 */
5656 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5657 		return -EINVAL;
5658 
5659 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5660 	if (!wq_dev)
5661 		return -ENOMEM;
5662 
5663 	wq_dev->wq = wq;
5664 	wq_dev->dev.bus = &wq_subsys;
5665 	wq_dev->dev.release = wq_device_release;
5666 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5667 
5668 	/*
5669 	 * unbound_attrs are created separately.  Suppress uevent until
5670 	 * everything is ready.
5671 	 */
5672 	dev_set_uevent_suppress(&wq_dev->dev, true);
5673 
5674 	ret = device_register(&wq_dev->dev);
5675 	if (ret) {
5676 		put_device(&wq_dev->dev);
5677 		wq->wq_dev = NULL;
5678 		return ret;
5679 	}
5680 
5681 	if (wq->flags & WQ_UNBOUND) {
5682 		struct device_attribute *attr;
5683 
5684 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5685 			ret = device_create_file(&wq_dev->dev, attr);
5686 			if (ret) {
5687 				device_unregister(&wq_dev->dev);
5688 				wq->wq_dev = NULL;
5689 				return ret;
5690 			}
5691 		}
5692 	}
5693 
5694 	dev_set_uevent_suppress(&wq_dev->dev, false);
5695 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5696 	return 0;
5697 }
5698 
5699 /**
5700  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5701  * @wq: the workqueue to unregister
5702  *
5703  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5704  */
5705 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5706 {
5707 	struct wq_device *wq_dev = wq->wq_dev;
5708 
5709 	if (!wq->wq_dev)
5710 		return;
5711 
5712 	wq->wq_dev = NULL;
5713 	device_unregister(&wq_dev->dev);
5714 }
5715 #else	/* CONFIG_SYSFS */
5716 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5717 #endif	/* CONFIG_SYSFS */
5718 
5719 /*
5720  * Workqueue watchdog.
5721  *
5722  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5723  * flush dependency, a concurrency managed work item which stays RUNNING
5724  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5725  * usual warning mechanisms don't trigger and internal workqueue state is
5726  * largely opaque.
5727  *
5728  * Workqueue watchdog monitors all worker pools periodically and dumps
5729  * state if some pools failed to make forward progress for a while where
5730  * forward progress is defined as the first item on ->worklist changing.
5731  *
5732  * This mechanism is controlled through the kernel parameter
5733  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5734  * corresponding sysfs parameter file.
5735  */
5736 #ifdef CONFIG_WQ_WATCHDOG
5737 
5738 static unsigned long wq_watchdog_thresh = 30;
5739 static struct timer_list wq_watchdog_timer;
5740 
5741 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5742 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5743 
5744 static void wq_watchdog_reset_touched(void)
5745 {
5746 	int cpu;
5747 
5748 	wq_watchdog_touched = jiffies;
5749 	for_each_possible_cpu(cpu)
5750 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5751 }
5752 
5753 static void wq_watchdog_timer_fn(struct timer_list *unused)
5754 {
5755 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5756 	bool lockup_detected = false;
5757 	struct worker_pool *pool;
5758 	int pi;
5759 
5760 	if (!thresh)
5761 		return;
5762 
5763 	rcu_read_lock();
5764 
5765 	for_each_pool(pool, pi) {
5766 		unsigned long pool_ts, touched, ts;
5767 
5768 		if (list_empty(&pool->worklist))
5769 			continue;
5770 
5771 		/* get the latest of pool and touched timestamps */
5772 		pool_ts = READ_ONCE(pool->watchdog_ts);
5773 		touched = READ_ONCE(wq_watchdog_touched);
5774 
5775 		if (time_after(pool_ts, touched))
5776 			ts = pool_ts;
5777 		else
5778 			ts = touched;
5779 
5780 		if (pool->cpu >= 0) {
5781 			unsigned long cpu_touched =
5782 				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5783 						  pool->cpu));
5784 			if (time_after(cpu_touched, ts))
5785 				ts = cpu_touched;
5786 		}
5787 
5788 		/* did we stall? */
5789 		if (time_after(jiffies, ts + thresh)) {
5790 			lockup_detected = true;
5791 			pr_emerg("BUG: workqueue lockup - pool");
5792 			pr_cont_pool_info(pool);
5793 			pr_cont(" stuck for %us!\n",
5794 				jiffies_to_msecs(jiffies - pool_ts) / 1000);
5795 		}
5796 	}
5797 
5798 	rcu_read_unlock();
5799 
5800 	if (lockup_detected)
5801 		show_workqueue_state();
5802 
5803 	wq_watchdog_reset_touched();
5804 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5805 }
5806 
5807 notrace void wq_watchdog_touch(int cpu)
5808 {
5809 	if (cpu >= 0)
5810 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5811 	else
5812 		wq_watchdog_touched = jiffies;
5813 }
5814 
5815 static void wq_watchdog_set_thresh(unsigned long thresh)
5816 {
5817 	wq_watchdog_thresh = 0;
5818 	del_timer_sync(&wq_watchdog_timer);
5819 
5820 	if (thresh) {
5821 		wq_watchdog_thresh = thresh;
5822 		wq_watchdog_reset_touched();
5823 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5824 	}
5825 }
5826 
5827 static int wq_watchdog_param_set_thresh(const char *val,
5828 					const struct kernel_param *kp)
5829 {
5830 	unsigned long thresh;
5831 	int ret;
5832 
5833 	ret = kstrtoul(val, 0, &thresh);
5834 	if (ret)
5835 		return ret;
5836 
5837 	if (system_wq)
5838 		wq_watchdog_set_thresh(thresh);
5839 	else
5840 		wq_watchdog_thresh = thresh;
5841 
5842 	return 0;
5843 }
5844 
5845 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5846 	.set	= wq_watchdog_param_set_thresh,
5847 	.get	= param_get_ulong,
5848 };
5849 
5850 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5851 		0644);
5852 
5853 static void wq_watchdog_init(void)
5854 {
5855 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5856 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5857 }
5858 
5859 #else	/* CONFIG_WQ_WATCHDOG */
5860 
5861 static inline void wq_watchdog_init(void) { }
5862 
5863 #endif	/* CONFIG_WQ_WATCHDOG */
5864 
5865 static void __init wq_numa_init(void)
5866 {
5867 	cpumask_var_t *tbl;
5868 	int node, cpu;
5869 
5870 	if (num_possible_nodes() <= 1)
5871 		return;
5872 
5873 	if (wq_disable_numa) {
5874 		pr_info("workqueue: NUMA affinity support disabled\n");
5875 		return;
5876 	}
5877 
5878 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5879 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5880 
5881 	/*
5882 	 * We want masks of possible CPUs of each node which isn't readily
5883 	 * available.  Build one from cpu_to_node() which should have been
5884 	 * fully initialized by now.
5885 	 */
5886 	tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5887 	BUG_ON(!tbl);
5888 
5889 	for_each_node(node)
5890 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5891 				node_online(node) ? node : NUMA_NO_NODE));
5892 
5893 	for_each_possible_cpu(cpu) {
5894 		node = cpu_to_node(cpu);
5895 		if (WARN_ON(node == NUMA_NO_NODE)) {
5896 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5897 			/* happens iff arch is bonkers, let's just proceed */
5898 			return;
5899 		}
5900 		cpumask_set_cpu(cpu, tbl[node]);
5901 	}
5902 
5903 	wq_numa_possible_cpumask = tbl;
5904 	wq_numa_enabled = true;
5905 }
5906 
5907 /**
5908  * workqueue_init_early - early init for workqueue subsystem
5909  *
5910  * This is the first half of two-staged workqueue subsystem initialization
5911  * and invoked as soon as the bare basics - memory allocation, cpumasks and
5912  * idr are up.  It sets up all the data structures and system workqueues
5913  * and allows early boot code to create workqueues and queue/cancel work
5914  * items.  Actual work item execution starts only after kthreads can be
5915  * created and scheduled right before early initcalls.
5916  */
5917 void __init workqueue_init_early(void)
5918 {
5919 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5920 	int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5921 	int i, cpu;
5922 
5923 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5924 
5925 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5926 	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5927 
5928 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5929 
5930 	/* initialize CPU pools */
5931 	for_each_possible_cpu(cpu) {
5932 		struct worker_pool *pool;
5933 
5934 		i = 0;
5935 		for_each_cpu_worker_pool(pool, cpu) {
5936 			BUG_ON(init_worker_pool(pool));
5937 			pool->cpu = cpu;
5938 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5939 			pool->attrs->nice = std_nice[i++];
5940 			pool->node = cpu_to_node(cpu);
5941 
5942 			/* alloc pool ID */
5943 			mutex_lock(&wq_pool_mutex);
5944 			BUG_ON(worker_pool_assign_id(pool));
5945 			mutex_unlock(&wq_pool_mutex);
5946 		}
5947 	}
5948 
5949 	/* create default unbound and ordered wq attrs */
5950 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5951 		struct workqueue_attrs *attrs;
5952 
5953 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
5954 		attrs->nice = std_nice[i];
5955 		unbound_std_wq_attrs[i] = attrs;
5956 
5957 		/*
5958 		 * An ordered wq should have only one pwq as ordering is
5959 		 * guaranteed by max_active which is enforced by pwqs.
5960 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5961 		 */
5962 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
5963 		attrs->nice = std_nice[i];
5964 		attrs->no_numa = true;
5965 		ordered_wq_attrs[i] = attrs;
5966 	}
5967 
5968 	system_wq = alloc_workqueue("events", 0, 0);
5969 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5970 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5971 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5972 					    WQ_UNBOUND_MAX_ACTIVE);
5973 	system_freezable_wq = alloc_workqueue("events_freezable",
5974 					      WQ_FREEZABLE, 0);
5975 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5976 					      WQ_POWER_EFFICIENT, 0);
5977 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5978 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5979 					      0);
5980 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5981 	       !system_unbound_wq || !system_freezable_wq ||
5982 	       !system_power_efficient_wq ||
5983 	       !system_freezable_power_efficient_wq);
5984 }
5985 
5986 /**
5987  * workqueue_init - bring workqueue subsystem fully online
5988  *
5989  * This is the latter half of two-staged workqueue subsystem initialization
5990  * and invoked as soon as kthreads can be created and scheduled.
5991  * Workqueues have been created and work items queued on them, but there
5992  * are no kworkers executing the work items yet.  Populate the worker pools
5993  * with the initial workers and enable future kworker creations.
5994  */
5995 void __init workqueue_init(void)
5996 {
5997 	struct workqueue_struct *wq;
5998 	struct worker_pool *pool;
5999 	int cpu, bkt;
6000 
6001 	/*
6002 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6003 	 * CPU to node mapping may not be available that early on some
6004 	 * archs such as power and arm64.  As per-cpu pools created
6005 	 * previously could be missing node hint and unbound pools NUMA
6006 	 * affinity, fix them up.
6007 	 *
6008 	 * Also, while iterating workqueues, create rescuers if requested.
6009 	 */
6010 	wq_numa_init();
6011 
6012 	mutex_lock(&wq_pool_mutex);
6013 
6014 	for_each_possible_cpu(cpu) {
6015 		for_each_cpu_worker_pool(pool, cpu) {
6016 			pool->node = cpu_to_node(cpu);
6017 		}
6018 	}
6019 
6020 	list_for_each_entry(wq, &workqueues, list) {
6021 		wq_update_unbound_numa(wq, smp_processor_id(), true);
6022 		WARN(init_rescuer(wq),
6023 		     "workqueue: failed to create early rescuer for %s",
6024 		     wq->name);
6025 	}
6026 
6027 	mutex_unlock(&wq_pool_mutex);
6028 
6029 	/* create the initial workers */
6030 	for_each_online_cpu(cpu) {
6031 		for_each_cpu_worker_pool(pool, cpu) {
6032 			pool->flags &= ~POOL_DISASSOCIATED;
6033 			BUG_ON(!create_worker(pool));
6034 		}
6035 	}
6036 
6037 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6038 		BUG_ON(!create_worker(pool));
6039 
6040 	wq_online = true;
6041 	wq_watchdog_init();
6042 }
6043