1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There are two worker pools for each CPU (one for 20 * normal work items and the other for high priority ones) and some extra 21 * pools for workqueues which are not bound to any specific CPU - the 22 * number of these backing pools is dynamic. 23 * 24 * Please read Documentation/workqueue.txt for details. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kernel.h> 29 #include <linux/sched.h> 30 #include <linux/init.h> 31 #include <linux/signal.h> 32 #include <linux/completion.h> 33 #include <linux/workqueue.h> 34 #include <linux/slab.h> 35 #include <linux/cpu.h> 36 #include <linux/notifier.h> 37 #include <linux/kthread.h> 38 #include <linux/hardirq.h> 39 #include <linux/mempolicy.h> 40 #include <linux/freezer.h> 41 #include <linux/kallsyms.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 52 #include "workqueue_internal.h" 53 54 enum { 55 /* 56 * worker_pool flags 57 * 58 * A bound pool is either associated or disassociated with its CPU. 59 * While associated (!DISASSOCIATED), all workers are bound to the 60 * CPU and none has %WORKER_UNBOUND set and concurrency management 61 * is in effect. 62 * 63 * While DISASSOCIATED, the cpu may be offline and all workers have 64 * %WORKER_UNBOUND set and concurrency management disabled, and may 65 * be executing on any CPU. The pool behaves as an unbound one. 66 * 67 * Note that DISASSOCIATED should be flipped only while holding 68 * attach_mutex to avoid changing binding state while 69 * worker_attach_to_pool() is in progress. 70 */ 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 72 73 /* worker flags */ 74 WORKER_DIE = 1 << 1, /* die die die */ 75 WORKER_IDLE = 1 << 2, /* is idle */ 76 WORKER_PREP = 1 << 3, /* preparing to run works */ 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 79 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 80 81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 82 WORKER_UNBOUND | WORKER_REBOUND, 83 84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 85 86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 88 89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 91 92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 93 /* call for help after 10ms 94 (min two ticks) */ 95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 96 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 97 98 /* 99 * Rescue workers are used only on emergencies and shared by 100 * all cpus. Give MIN_NICE. 101 */ 102 RESCUER_NICE_LEVEL = MIN_NICE, 103 HIGHPRI_NICE_LEVEL = MIN_NICE, 104 105 WQ_NAME_LEN = 24, 106 }; 107 108 /* 109 * Structure fields follow one of the following exclusion rules. 110 * 111 * I: Modifiable by initialization/destruction paths and read-only for 112 * everyone else. 113 * 114 * P: Preemption protected. Disabling preemption is enough and should 115 * only be modified and accessed from the local cpu. 116 * 117 * L: pool->lock protected. Access with pool->lock held. 118 * 119 * X: During normal operation, modification requires pool->lock and should 120 * be done only from local cpu. Either disabling preemption on local 121 * cpu or grabbing pool->lock is enough for read access. If 122 * POOL_DISASSOCIATED is set, it's identical to L. 123 * 124 * A: pool->attach_mutex protected. 125 * 126 * PL: wq_pool_mutex protected. 127 * 128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads. 129 * 130 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 131 * 132 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 133 * sched-RCU for reads. 134 * 135 * WQ: wq->mutex protected. 136 * 137 * WR: wq->mutex protected for writes. Sched-RCU protected for reads. 138 * 139 * MD: wq_mayday_lock protected. 140 */ 141 142 /* struct worker is defined in workqueue_internal.h */ 143 144 struct worker_pool { 145 spinlock_t lock; /* the pool lock */ 146 int cpu; /* I: the associated cpu */ 147 int node; /* I: the associated node ID */ 148 int id; /* I: pool ID */ 149 unsigned int flags; /* X: flags */ 150 151 unsigned long watchdog_ts; /* L: watchdog timestamp */ 152 153 struct list_head worklist; /* L: list of pending works */ 154 int nr_workers; /* L: total number of workers */ 155 156 /* nr_idle includes the ones off idle_list for rebinding */ 157 int nr_idle; /* L: currently idle ones */ 158 159 struct list_head idle_list; /* X: list of idle workers */ 160 struct timer_list idle_timer; /* L: worker idle timeout */ 161 struct timer_list mayday_timer; /* L: SOS timer for workers */ 162 163 /* a workers is either on busy_hash or idle_list, or the manager */ 164 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 165 /* L: hash of busy workers */ 166 167 /* see manage_workers() for details on the two manager mutexes */ 168 struct mutex manager_arb; /* manager arbitration */ 169 struct worker *manager; /* L: purely informational */ 170 struct mutex attach_mutex; /* attach/detach exclusion */ 171 struct list_head workers; /* A: attached workers */ 172 struct completion *detach_completion; /* all workers detached */ 173 174 struct ida worker_ida; /* worker IDs for task name */ 175 176 struct workqueue_attrs *attrs; /* I: worker attributes */ 177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 178 int refcnt; /* PL: refcnt for unbound pools */ 179 180 /* 181 * The current concurrency level. As it's likely to be accessed 182 * from other CPUs during try_to_wake_up(), put it in a separate 183 * cacheline. 184 */ 185 atomic_t nr_running ____cacheline_aligned_in_smp; 186 187 /* 188 * Destruction of pool is sched-RCU protected to allow dereferences 189 * from get_work_pool(). 190 */ 191 struct rcu_head rcu; 192 } ____cacheline_aligned_in_smp; 193 194 /* 195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 196 * of work_struct->data are used for flags and the remaining high bits 197 * point to the pwq; thus, pwqs need to be aligned at two's power of the 198 * number of flag bits. 199 */ 200 struct pool_workqueue { 201 struct worker_pool *pool; /* I: the associated pool */ 202 struct workqueue_struct *wq; /* I: the owning workqueue */ 203 int work_color; /* L: current color */ 204 int flush_color; /* L: flushing color */ 205 int refcnt; /* L: reference count */ 206 int nr_in_flight[WORK_NR_COLORS]; 207 /* L: nr of in_flight works */ 208 int nr_active; /* L: nr of active works */ 209 int max_active; /* L: max active works */ 210 struct list_head delayed_works; /* L: delayed works */ 211 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 212 struct list_head mayday_node; /* MD: node on wq->maydays */ 213 214 /* 215 * Release of unbound pwq is punted to system_wq. See put_pwq() 216 * and pwq_unbound_release_workfn() for details. pool_workqueue 217 * itself is also sched-RCU protected so that the first pwq can be 218 * determined without grabbing wq->mutex. 219 */ 220 struct work_struct unbound_release_work; 221 struct rcu_head rcu; 222 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 223 224 /* 225 * Structure used to wait for workqueue flush. 226 */ 227 struct wq_flusher { 228 struct list_head list; /* WQ: list of flushers */ 229 int flush_color; /* WQ: flush color waiting for */ 230 struct completion done; /* flush completion */ 231 }; 232 233 struct wq_device; 234 235 /* 236 * The externally visible workqueue. It relays the issued work items to 237 * the appropriate worker_pool through its pool_workqueues. 238 */ 239 struct workqueue_struct { 240 struct list_head pwqs; /* WR: all pwqs of this wq */ 241 struct list_head list; /* PR: list of all workqueues */ 242 243 struct mutex mutex; /* protects this wq */ 244 int work_color; /* WQ: current work color */ 245 int flush_color; /* WQ: current flush color */ 246 atomic_t nr_pwqs_to_flush; /* flush in progress */ 247 struct wq_flusher *first_flusher; /* WQ: first flusher */ 248 struct list_head flusher_queue; /* WQ: flush waiters */ 249 struct list_head flusher_overflow; /* WQ: flush overflow list */ 250 251 struct list_head maydays; /* MD: pwqs requesting rescue */ 252 struct worker *rescuer; /* I: rescue worker */ 253 254 int nr_drainers; /* WQ: drain in progress */ 255 int saved_max_active; /* WQ: saved pwq max_active */ 256 257 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 258 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 259 260 #ifdef CONFIG_SYSFS 261 struct wq_device *wq_dev; /* I: for sysfs interface */ 262 #endif 263 #ifdef CONFIG_LOCKDEP 264 struct lockdep_map lockdep_map; 265 #endif 266 char name[WQ_NAME_LEN]; /* I: workqueue name */ 267 268 /* 269 * Destruction of workqueue_struct is sched-RCU protected to allow 270 * walking the workqueues list without grabbing wq_pool_mutex. 271 * This is used to dump all workqueues from sysrq. 272 */ 273 struct rcu_head rcu; 274 275 /* hot fields used during command issue, aligned to cacheline */ 276 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 277 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 278 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 279 }; 280 281 static struct kmem_cache *pwq_cache; 282 283 static cpumask_var_t *wq_numa_possible_cpumask; 284 /* possible CPUs of each node */ 285 286 static bool wq_disable_numa; 287 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 288 289 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 291 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 292 293 static bool wq_online; /* can kworkers be created yet? */ 294 295 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 296 297 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 298 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 299 300 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 301 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 302 303 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 304 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 305 306 /* PL: allowable cpus for unbound wqs and work items */ 307 static cpumask_var_t wq_unbound_cpumask; 308 309 /* CPU where unbound work was last round robin scheduled from this CPU */ 310 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 311 312 /* 313 * Local execution of unbound work items is no longer guaranteed. The 314 * following always forces round-robin CPU selection on unbound work items 315 * to uncover usages which depend on it. 316 */ 317 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 318 static bool wq_debug_force_rr_cpu = true; 319 #else 320 static bool wq_debug_force_rr_cpu = false; 321 #endif 322 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 323 324 /* the per-cpu worker pools */ 325 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 326 327 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 328 329 /* PL: hash of all unbound pools keyed by pool->attrs */ 330 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 331 332 /* I: attributes used when instantiating standard unbound pools on demand */ 333 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 334 335 /* I: attributes used when instantiating ordered pools on demand */ 336 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 337 338 struct workqueue_struct *system_wq __read_mostly; 339 EXPORT_SYMBOL(system_wq); 340 struct workqueue_struct *system_highpri_wq __read_mostly; 341 EXPORT_SYMBOL_GPL(system_highpri_wq); 342 struct workqueue_struct *system_long_wq __read_mostly; 343 EXPORT_SYMBOL_GPL(system_long_wq); 344 struct workqueue_struct *system_unbound_wq __read_mostly; 345 EXPORT_SYMBOL_GPL(system_unbound_wq); 346 struct workqueue_struct *system_freezable_wq __read_mostly; 347 EXPORT_SYMBOL_GPL(system_freezable_wq); 348 struct workqueue_struct *system_power_efficient_wq __read_mostly; 349 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 350 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 351 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 352 353 static int worker_thread(void *__worker); 354 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 355 356 #define CREATE_TRACE_POINTS 357 #include <trace/events/workqueue.h> 358 359 #define assert_rcu_or_pool_mutex() \ 360 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 361 !lockdep_is_held(&wq_pool_mutex), \ 362 "sched RCU or wq_pool_mutex should be held") 363 364 #define assert_rcu_or_wq_mutex(wq) \ 365 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 366 !lockdep_is_held(&wq->mutex), \ 367 "sched RCU or wq->mutex should be held") 368 369 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 370 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 371 !lockdep_is_held(&wq->mutex) && \ 372 !lockdep_is_held(&wq_pool_mutex), \ 373 "sched RCU, wq->mutex or wq_pool_mutex should be held") 374 375 #define for_each_cpu_worker_pool(pool, cpu) \ 376 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 377 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 378 (pool)++) 379 380 /** 381 * for_each_pool - iterate through all worker_pools in the system 382 * @pool: iteration cursor 383 * @pi: integer used for iteration 384 * 385 * This must be called either with wq_pool_mutex held or sched RCU read 386 * locked. If the pool needs to be used beyond the locking in effect, the 387 * caller is responsible for guaranteeing that the pool stays online. 388 * 389 * The if/else clause exists only for the lockdep assertion and can be 390 * ignored. 391 */ 392 #define for_each_pool(pool, pi) \ 393 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 394 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 395 else 396 397 /** 398 * for_each_pool_worker - iterate through all workers of a worker_pool 399 * @worker: iteration cursor 400 * @pool: worker_pool to iterate workers of 401 * 402 * This must be called with @pool->attach_mutex. 403 * 404 * The if/else clause exists only for the lockdep assertion and can be 405 * ignored. 406 */ 407 #define for_each_pool_worker(worker, pool) \ 408 list_for_each_entry((worker), &(pool)->workers, node) \ 409 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \ 410 else 411 412 /** 413 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 414 * @pwq: iteration cursor 415 * @wq: the target workqueue 416 * 417 * This must be called either with wq->mutex held or sched RCU read locked. 418 * If the pwq needs to be used beyond the locking in effect, the caller is 419 * responsible for guaranteeing that the pwq stays online. 420 * 421 * The if/else clause exists only for the lockdep assertion and can be 422 * ignored. 423 */ 424 #define for_each_pwq(pwq, wq) \ 425 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \ 426 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ 427 else 428 429 #ifdef CONFIG_DEBUG_OBJECTS_WORK 430 431 static struct debug_obj_descr work_debug_descr; 432 433 static void *work_debug_hint(void *addr) 434 { 435 return ((struct work_struct *) addr)->func; 436 } 437 438 static bool work_is_static_object(void *addr) 439 { 440 struct work_struct *work = addr; 441 442 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 443 } 444 445 /* 446 * fixup_init is called when: 447 * - an active object is initialized 448 */ 449 static bool work_fixup_init(void *addr, enum debug_obj_state state) 450 { 451 struct work_struct *work = addr; 452 453 switch (state) { 454 case ODEBUG_STATE_ACTIVE: 455 cancel_work_sync(work); 456 debug_object_init(work, &work_debug_descr); 457 return true; 458 default: 459 return false; 460 } 461 } 462 463 /* 464 * fixup_free is called when: 465 * - an active object is freed 466 */ 467 static bool work_fixup_free(void *addr, enum debug_obj_state state) 468 { 469 struct work_struct *work = addr; 470 471 switch (state) { 472 case ODEBUG_STATE_ACTIVE: 473 cancel_work_sync(work); 474 debug_object_free(work, &work_debug_descr); 475 return true; 476 default: 477 return false; 478 } 479 } 480 481 static struct debug_obj_descr work_debug_descr = { 482 .name = "work_struct", 483 .debug_hint = work_debug_hint, 484 .is_static_object = work_is_static_object, 485 .fixup_init = work_fixup_init, 486 .fixup_free = work_fixup_free, 487 }; 488 489 static inline void debug_work_activate(struct work_struct *work) 490 { 491 debug_object_activate(work, &work_debug_descr); 492 } 493 494 static inline void debug_work_deactivate(struct work_struct *work) 495 { 496 debug_object_deactivate(work, &work_debug_descr); 497 } 498 499 void __init_work(struct work_struct *work, int onstack) 500 { 501 if (onstack) 502 debug_object_init_on_stack(work, &work_debug_descr); 503 else 504 debug_object_init(work, &work_debug_descr); 505 } 506 EXPORT_SYMBOL_GPL(__init_work); 507 508 void destroy_work_on_stack(struct work_struct *work) 509 { 510 debug_object_free(work, &work_debug_descr); 511 } 512 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 513 514 void destroy_delayed_work_on_stack(struct delayed_work *work) 515 { 516 destroy_timer_on_stack(&work->timer); 517 debug_object_free(&work->work, &work_debug_descr); 518 } 519 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 520 521 #else 522 static inline void debug_work_activate(struct work_struct *work) { } 523 static inline void debug_work_deactivate(struct work_struct *work) { } 524 #endif 525 526 /** 527 * worker_pool_assign_id - allocate ID and assing it to @pool 528 * @pool: the pool pointer of interest 529 * 530 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 531 * successfully, -errno on failure. 532 */ 533 static int worker_pool_assign_id(struct worker_pool *pool) 534 { 535 int ret; 536 537 lockdep_assert_held(&wq_pool_mutex); 538 539 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 540 GFP_KERNEL); 541 if (ret >= 0) { 542 pool->id = ret; 543 return 0; 544 } 545 return ret; 546 } 547 548 /** 549 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 550 * @wq: the target workqueue 551 * @node: the node ID 552 * 553 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU 554 * read locked. 555 * If the pwq needs to be used beyond the locking in effect, the caller is 556 * responsible for guaranteeing that the pwq stays online. 557 * 558 * Return: The unbound pool_workqueue for @node. 559 */ 560 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 561 int node) 562 { 563 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 564 565 /* 566 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a 567 * delayed item is pending. The plan is to keep CPU -> NODE 568 * mapping valid and stable across CPU on/offlines. Once that 569 * happens, this workaround can be removed. 570 */ 571 if (unlikely(node == NUMA_NO_NODE)) 572 return wq->dfl_pwq; 573 574 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 575 } 576 577 static unsigned int work_color_to_flags(int color) 578 { 579 return color << WORK_STRUCT_COLOR_SHIFT; 580 } 581 582 static int get_work_color(struct work_struct *work) 583 { 584 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 585 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 586 } 587 588 static int work_next_color(int color) 589 { 590 return (color + 1) % WORK_NR_COLORS; 591 } 592 593 /* 594 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 595 * contain the pointer to the queued pwq. Once execution starts, the flag 596 * is cleared and the high bits contain OFFQ flags and pool ID. 597 * 598 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 599 * and clear_work_data() can be used to set the pwq, pool or clear 600 * work->data. These functions should only be called while the work is 601 * owned - ie. while the PENDING bit is set. 602 * 603 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 604 * corresponding to a work. Pool is available once the work has been 605 * queued anywhere after initialization until it is sync canceled. pwq is 606 * available only while the work item is queued. 607 * 608 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 609 * canceled. While being canceled, a work item may have its PENDING set 610 * but stay off timer and worklist for arbitrarily long and nobody should 611 * try to steal the PENDING bit. 612 */ 613 static inline void set_work_data(struct work_struct *work, unsigned long data, 614 unsigned long flags) 615 { 616 WARN_ON_ONCE(!work_pending(work)); 617 atomic_long_set(&work->data, data | flags | work_static(work)); 618 } 619 620 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 621 unsigned long extra_flags) 622 { 623 set_work_data(work, (unsigned long)pwq, 624 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 625 } 626 627 static void set_work_pool_and_keep_pending(struct work_struct *work, 628 int pool_id) 629 { 630 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 631 WORK_STRUCT_PENDING); 632 } 633 634 static void set_work_pool_and_clear_pending(struct work_struct *work, 635 int pool_id) 636 { 637 /* 638 * The following wmb is paired with the implied mb in 639 * test_and_set_bit(PENDING) and ensures all updates to @work made 640 * here are visible to and precede any updates by the next PENDING 641 * owner. 642 */ 643 smp_wmb(); 644 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 645 /* 646 * The following mb guarantees that previous clear of a PENDING bit 647 * will not be reordered with any speculative LOADS or STORES from 648 * work->current_func, which is executed afterwards. This possible 649 * reordering can lead to a missed execution on attempt to qeueue 650 * the same @work. E.g. consider this case: 651 * 652 * CPU#0 CPU#1 653 * ---------------------------- -------------------------------- 654 * 655 * 1 STORE event_indicated 656 * 2 queue_work_on() { 657 * 3 test_and_set_bit(PENDING) 658 * 4 } set_..._and_clear_pending() { 659 * 5 set_work_data() # clear bit 660 * 6 smp_mb() 661 * 7 work->current_func() { 662 * 8 LOAD event_indicated 663 * } 664 * 665 * Without an explicit full barrier speculative LOAD on line 8 can 666 * be executed before CPU#0 does STORE on line 1. If that happens, 667 * CPU#0 observes the PENDING bit is still set and new execution of 668 * a @work is not queued in a hope, that CPU#1 will eventually 669 * finish the queued @work. Meanwhile CPU#1 does not see 670 * event_indicated is set, because speculative LOAD was executed 671 * before actual STORE. 672 */ 673 smp_mb(); 674 } 675 676 static void clear_work_data(struct work_struct *work) 677 { 678 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 679 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 680 } 681 682 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 683 { 684 unsigned long data = atomic_long_read(&work->data); 685 686 if (data & WORK_STRUCT_PWQ) 687 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 688 else 689 return NULL; 690 } 691 692 /** 693 * get_work_pool - return the worker_pool a given work was associated with 694 * @work: the work item of interest 695 * 696 * Pools are created and destroyed under wq_pool_mutex, and allows read 697 * access under sched-RCU read lock. As such, this function should be 698 * called under wq_pool_mutex or with preemption disabled. 699 * 700 * All fields of the returned pool are accessible as long as the above 701 * mentioned locking is in effect. If the returned pool needs to be used 702 * beyond the critical section, the caller is responsible for ensuring the 703 * returned pool is and stays online. 704 * 705 * Return: The worker_pool @work was last associated with. %NULL if none. 706 */ 707 static struct worker_pool *get_work_pool(struct work_struct *work) 708 { 709 unsigned long data = atomic_long_read(&work->data); 710 int pool_id; 711 712 assert_rcu_or_pool_mutex(); 713 714 if (data & WORK_STRUCT_PWQ) 715 return ((struct pool_workqueue *) 716 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 717 718 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 719 if (pool_id == WORK_OFFQ_POOL_NONE) 720 return NULL; 721 722 return idr_find(&worker_pool_idr, pool_id); 723 } 724 725 /** 726 * get_work_pool_id - return the worker pool ID a given work is associated with 727 * @work: the work item of interest 728 * 729 * Return: The worker_pool ID @work was last associated with. 730 * %WORK_OFFQ_POOL_NONE if none. 731 */ 732 static int get_work_pool_id(struct work_struct *work) 733 { 734 unsigned long data = atomic_long_read(&work->data); 735 736 if (data & WORK_STRUCT_PWQ) 737 return ((struct pool_workqueue *) 738 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 739 740 return data >> WORK_OFFQ_POOL_SHIFT; 741 } 742 743 static void mark_work_canceling(struct work_struct *work) 744 { 745 unsigned long pool_id = get_work_pool_id(work); 746 747 pool_id <<= WORK_OFFQ_POOL_SHIFT; 748 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 749 } 750 751 static bool work_is_canceling(struct work_struct *work) 752 { 753 unsigned long data = atomic_long_read(&work->data); 754 755 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 756 } 757 758 /* 759 * Policy functions. These define the policies on how the global worker 760 * pools are managed. Unless noted otherwise, these functions assume that 761 * they're being called with pool->lock held. 762 */ 763 764 static bool __need_more_worker(struct worker_pool *pool) 765 { 766 return !atomic_read(&pool->nr_running); 767 } 768 769 /* 770 * Need to wake up a worker? Called from anything but currently 771 * running workers. 772 * 773 * Note that, because unbound workers never contribute to nr_running, this 774 * function will always return %true for unbound pools as long as the 775 * worklist isn't empty. 776 */ 777 static bool need_more_worker(struct worker_pool *pool) 778 { 779 return !list_empty(&pool->worklist) && __need_more_worker(pool); 780 } 781 782 /* Can I start working? Called from busy but !running workers. */ 783 static bool may_start_working(struct worker_pool *pool) 784 { 785 return pool->nr_idle; 786 } 787 788 /* Do I need to keep working? Called from currently running workers. */ 789 static bool keep_working(struct worker_pool *pool) 790 { 791 return !list_empty(&pool->worklist) && 792 atomic_read(&pool->nr_running) <= 1; 793 } 794 795 /* Do we need a new worker? Called from manager. */ 796 static bool need_to_create_worker(struct worker_pool *pool) 797 { 798 return need_more_worker(pool) && !may_start_working(pool); 799 } 800 801 /* Do we have too many workers and should some go away? */ 802 static bool too_many_workers(struct worker_pool *pool) 803 { 804 bool managing = mutex_is_locked(&pool->manager_arb); 805 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 806 int nr_busy = pool->nr_workers - nr_idle; 807 808 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 809 } 810 811 /* 812 * Wake up functions. 813 */ 814 815 /* Return the first idle worker. Safe with preemption disabled */ 816 static struct worker *first_idle_worker(struct worker_pool *pool) 817 { 818 if (unlikely(list_empty(&pool->idle_list))) 819 return NULL; 820 821 return list_first_entry(&pool->idle_list, struct worker, entry); 822 } 823 824 /** 825 * wake_up_worker - wake up an idle worker 826 * @pool: worker pool to wake worker from 827 * 828 * Wake up the first idle worker of @pool. 829 * 830 * CONTEXT: 831 * spin_lock_irq(pool->lock). 832 */ 833 static void wake_up_worker(struct worker_pool *pool) 834 { 835 struct worker *worker = first_idle_worker(pool); 836 837 if (likely(worker)) 838 wake_up_process(worker->task); 839 } 840 841 /** 842 * wq_worker_waking_up - a worker is waking up 843 * @task: task waking up 844 * @cpu: CPU @task is waking up to 845 * 846 * This function is called during try_to_wake_up() when a worker is 847 * being awoken. 848 * 849 * CONTEXT: 850 * spin_lock_irq(rq->lock) 851 */ 852 void wq_worker_waking_up(struct task_struct *task, int cpu) 853 { 854 struct worker *worker = kthread_data(task); 855 856 if (!(worker->flags & WORKER_NOT_RUNNING)) { 857 WARN_ON_ONCE(worker->pool->cpu != cpu); 858 atomic_inc(&worker->pool->nr_running); 859 } 860 } 861 862 /** 863 * wq_worker_sleeping - a worker is going to sleep 864 * @task: task going to sleep 865 * 866 * This function is called during schedule() when a busy worker is 867 * going to sleep. Worker on the same cpu can be woken up by 868 * returning pointer to its task. 869 * 870 * CONTEXT: 871 * spin_lock_irq(rq->lock) 872 * 873 * Return: 874 * Worker task on @cpu to wake up, %NULL if none. 875 */ 876 struct task_struct *wq_worker_sleeping(struct task_struct *task) 877 { 878 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 879 struct worker_pool *pool; 880 881 /* 882 * Rescuers, which may not have all the fields set up like normal 883 * workers, also reach here, let's not access anything before 884 * checking NOT_RUNNING. 885 */ 886 if (worker->flags & WORKER_NOT_RUNNING) 887 return NULL; 888 889 pool = worker->pool; 890 891 /* this can only happen on the local cpu */ 892 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id())) 893 return NULL; 894 895 /* 896 * The counterpart of the following dec_and_test, implied mb, 897 * worklist not empty test sequence is in insert_work(). 898 * Please read comment there. 899 * 900 * NOT_RUNNING is clear. This means that we're bound to and 901 * running on the local cpu w/ rq lock held and preemption 902 * disabled, which in turn means that none else could be 903 * manipulating idle_list, so dereferencing idle_list without pool 904 * lock is safe. 905 */ 906 if (atomic_dec_and_test(&pool->nr_running) && 907 !list_empty(&pool->worklist)) 908 to_wakeup = first_idle_worker(pool); 909 return to_wakeup ? to_wakeup->task : NULL; 910 } 911 912 /** 913 * worker_set_flags - set worker flags and adjust nr_running accordingly 914 * @worker: self 915 * @flags: flags to set 916 * 917 * Set @flags in @worker->flags and adjust nr_running accordingly. 918 * 919 * CONTEXT: 920 * spin_lock_irq(pool->lock) 921 */ 922 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 923 { 924 struct worker_pool *pool = worker->pool; 925 926 WARN_ON_ONCE(worker->task != current); 927 928 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 929 if ((flags & WORKER_NOT_RUNNING) && 930 !(worker->flags & WORKER_NOT_RUNNING)) { 931 atomic_dec(&pool->nr_running); 932 } 933 934 worker->flags |= flags; 935 } 936 937 /** 938 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 939 * @worker: self 940 * @flags: flags to clear 941 * 942 * Clear @flags in @worker->flags and adjust nr_running accordingly. 943 * 944 * CONTEXT: 945 * spin_lock_irq(pool->lock) 946 */ 947 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 948 { 949 struct worker_pool *pool = worker->pool; 950 unsigned int oflags = worker->flags; 951 952 WARN_ON_ONCE(worker->task != current); 953 954 worker->flags &= ~flags; 955 956 /* 957 * If transitioning out of NOT_RUNNING, increment nr_running. Note 958 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 959 * of multiple flags, not a single flag. 960 */ 961 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 962 if (!(worker->flags & WORKER_NOT_RUNNING)) 963 atomic_inc(&pool->nr_running); 964 } 965 966 /** 967 * find_worker_executing_work - find worker which is executing a work 968 * @pool: pool of interest 969 * @work: work to find worker for 970 * 971 * Find a worker which is executing @work on @pool by searching 972 * @pool->busy_hash which is keyed by the address of @work. For a worker 973 * to match, its current execution should match the address of @work and 974 * its work function. This is to avoid unwanted dependency between 975 * unrelated work executions through a work item being recycled while still 976 * being executed. 977 * 978 * This is a bit tricky. A work item may be freed once its execution 979 * starts and nothing prevents the freed area from being recycled for 980 * another work item. If the same work item address ends up being reused 981 * before the original execution finishes, workqueue will identify the 982 * recycled work item as currently executing and make it wait until the 983 * current execution finishes, introducing an unwanted dependency. 984 * 985 * This function checks the work item address and work function to avoid 986 * false positives. Note that this isn't complete as one may construct a 987 * work function which can introduce dependency onto itself through a 988 * recycled work item. Well, if somebody wants to shoot oneself in the 989 * foot that badly, there's only so much we can do, and if such deadlock 990 * actually occurs, it should be easy to locate the culprit work function. 991 * 992 * CONTEXT: 993 * spin_lock_irq(pool->lock). 994 * 995 * Return: 996 * Pointer to worker which is executing @work if found, %NULL 997 * otherwise. 998 */ 999 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1000 struct work_struct *work) 1001 { 1002 struct worker *worker; 1003 1004 hash_for_each_possible(pool->busy_hash, worker, hentry, 1005 (unsigned long)work) 1006 if (worker->current_work == work && 1007 worker->current_func == work->func) 1008 return worker; 1009 1010 return NULL; 1011 } 1012 1013 /** 1014 * move_linked_works - move linked works to a list 1015 * @work: start of series of works to be scheduled 1016 * @head: target list to append @work to 1017 * @nextp: out parameter for nested worklist walking 1018 * 1019 * Schedule linked works starting from @work to @head. Work series to 1020 * be scheduled starts at @work and includes any consecutive work with 1021 * WORK_STRUCT_LINKED set in its predecessor. 1022 * 1023 * If @nextp is not NULL, it's updated to point to the next work of 1024 * the last scheduled work. This allows move_linked_works() to be 1025 * nested inside outer list_for_each_entry_safe(). 1026 * 1027 * CONTEXT: 1028 * spin_lock_irq(pool->lock). 1029 */ 1030 static void move_linked_works(struct work_struct *work, struct list_head *head, 1031 struct work_struct **nextp) 1032 { 1033 struct work_struct *n; 1034 1035 /* 1036 * Linked worklist will always end before the end of the list, 1037 * use NULL for list head. 1038 */ 1039 list_for_each_entry_safe_from(work, n, NULL, entry) { 1040 list_move_tail(&work->entry, head); 1041 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1042 break; 1043 } 1044 1045 /* 1046 * If we're already inside safe list traversal and have moved 1047 * multiple works to the scheduled queue, the next position 1048 * needs to be updated. 1049 */ 1050 if (nextp) 1051 *nextp = n; 1052 } 1053 1054 /** 1055 * get_pwq - get an extra reference on the specified pool_workqueue 1056 * @pwq: pool_workqueue to get 1057 * 1058 * Obtain an extra reference on @pwq. The caller should guarantee that 1059 * @pwq has positive refcnt and be holding the matching pool->lock. 1060 */ 1061 static void get_pwq(struct pool_workqueue *pwq) 1062 { 1063 lockdep_assert_held(&pwq->pool->lock); 1064 WARN_ON_ONCE(pwq->refcnt <= 0); 1065 pwq->refcnt++; 1066 } 1067 1068 /** 1069 * put_pwq - put a pool_workqueue reference 1070 * @pwq: pool_workqueue to put 1071 * 1072 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1073 * destruction. The caller should be holding the matching pool->lock. 1074 */ 1075 static void put_pwq(struct pool_workqueue *pwq) 1076 { 1077 lockdep_assert_held(&pwq->pool->lock); 1078 if (likely(--pwq->refcnt)) 1079 return; 1080 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1081 return; 1082 /* 1083 * @pwq can't be released under pool->lock, bounce to 1084 * pwq_unbound_release_workfn(). This never recurses on the same 1085 * pool->lock as this path is taken only for unbound workqueues and 1086 * the release work item is scheduled on a per-cpu workqueue. To 1087 * avoid lockdep warning, unbound pool->locks are given lockdep 1088 * subclass of 1 in get_unbound_pool(). 1089 */ 1090 schedule_work(&pwq->unbound_release_work); 1091 } 1092 1093 /** 1094 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1095 * @pwq: pool_workqueue to put (can be %NULL) 1096 * 1097 * put_pwq() with locking. This function also allows %NULL @pwq. 1098 */ 1099 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1100 { 1101 if (pwq) { 1102 /* 1103 * As both pwqs and pools are sched-RCU protected, the 1104 * following lock operations are safe. 1105 */ 1106 spin_lock_irq(&pwq->pool->lock); 1107 put_pwq(pwq); 1108 spin_unlock_irq(&pwq->pool->lock); 1109 } 1110 } 1111 1112 static void pwq_activate_delayed_work(struct work_struct *work) 1113 { 1114 struct pool_workqueue *pwq = get_work_pwq(work); 1115 1116 trace_workqueue_activate_work(work); 1117 if (list_empty(&pwq->pool->worklist)) 1118 pwq->pool->watchdog_ts = jiffies; 1119 move_linked_works(work, &pwq->pool->worklist, NULL); 1120 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1121 pwq->nr_active++; 1122 } 1123 1124 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1125 { 1126 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1127 struct work_struct, entry); 1128 1129 pwq_activate_delayed_work(work); 1130 } 1131 1132 /** 1133 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1134 * @pwq: pwq of interest 1135 * @color: color of work which left the queue 1136 * 1137 * A work either has completed or is removed from pending queue, 1138 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1139 * 1140 * CONTEXT: 1141 * spin_lock_irq(pool->lock). 1142 */ 1143 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1144 { 1145 /* uncolored work items don't participate in flushing or nr_active */ 1146 if (color == WORK_NO_COLOR) 1147 goto out_put; 1148 1149 pwq->nr_in_flight[color]--; 1150 1151 pwq->nr_active--; 1152 if (!list_empty(&pwq->delayed_works)) { 1153 /* one down, submit a delayed one */ 1154 if (pwq->nr_active < pwq->max_active) 1155 pwq_activate_first_delayed(pwq); 1156 } 1157 1158 /* is flush in progress and are we at the flushing tip? */ 1159 if (likely(pwq->flush_color != color)) 1160 goto out_put; 1161 1162 /* are there still in-flight works? */ 1163 if (pwq->nr_in_flight[color]) 1164 goto out_put; 1165 1166 /* this pwq is done, clear flush_color */ 1167 pwq->flush_color = -1; 1168 1169 /* 1170 * If this was the last pwq, wake up the first flusher. It 1171 * will handle the rest. 1172 */ 1173 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1174 complete(&pwq->wq->first_flusher->done); 1175 out_put: 1176 put_pwq(pwq); 1177 } 1178 1179 /** 1180 * try_to_grab_pending - steal work item from worklist and disable irq 1181 * @work: work item to steal 1182 * @is_dwork: @work is a delayed_work 1183 * @flags: place to store irq state 1184 * 1185 * Try to grab PENDING bit of @work. This function can handle @work in any 1186 * stable state - idle, on timer or on worklist. 1187 * 1188 * Return: 1189 * 1 if @work was pending and we successfully stole PENDING 1190 * 0 if @work was idle and we claimed PENDING 1191 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1192 * -ENOENT if someone else is canceling @work, this state may persist 1193 * for arbitrarily long 1194 * 1195 * Note: 1196 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1197 * interrupted while holding PENDING and @work off queue, irq must be 1198 * disabled on entry. This, combined with delayed_work->timer being 1199 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1200 * 1201 * On successful return, >= 0, irq is disabled and the caller is 1202 * responsible for releasing it using local_irq_restore(*@flags). 1203 * 1204 * This function is safe to call from any context including IRQ handler. 1205 */ 1206 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1207 unsigned long *flags) 1208 { 1209 struct worker_pool *pool; 1210 struct pool_workqueue *pwq; 1211 1212 local_irq_save(*flags); 1213 1214 /* try to steal the timer if it exists */ 1215 if (is_dwork) { 1216 struct delayed_work *dwork = to_delayed_work(work); 1217 1218 /* 1219 * dwork->timer is irqsafe. If del_timer() fails, it's 1220 * guaranteed that the timer is not queued anywhere and not 1221 * running on the local CPU. 1222 */ 1223 if (likely(del_timer(&dwork->timer))) 1224 return 1; 1225 } 1226 1227 /* try to claim PENDING the normal way */ 1228 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1229 return 0; 1230 1231 /* 1232 * The queueing is in progress, or it is already queued. Try to 1233 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1234 */ 1235 pool = get_work_pool(work); 1236 if (!pool) 1237 goto fail; 1238 1239 spin_lock(&pool->lock); 1240 /* 1241 * work->data is guaranteed to point to pwq only while the work 1242 * item is queued on pwq->wq, and both updating work->data to point 1243 * to pwq on queueing and to pool on dequeueing are done under 1244 * pwq->pool->lock. This in turn guarantees that, if work->data 1245 * points to pwq which is associated with a locked pool, the work 1246 * item is currently queued on that pool. 1247 */ 1248 pwq = get_work_pwq(work); 1249 if (pwq && pwq->pool == pool) { 1250 debug_work_deactivate(work); 1251 1252 /* 1253 * A delayed work item cannot be grabbed directly because 1254 * it might have linked NO_COLOR work items which, if left 1255 * on the delayed_list, will confuse pwq->nr_active 1256 * management later on and cause stall. Make sure the work 1257 * item is activated before grabbing. 1258 */ 1259 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1260 pwq_activate_delayed_work(work); 1261 1262 list_del_init(&work->entry); 1263 pwq_dec_nr_in_flight(pwq, get_work_color(work)); 1264 1265 /* work->data points to pwq iff queued, point to pool */ 1266 set_work_pool_and_keep_pending(work, pool->id); 1267 1268 spin_unlock(&pool->lock); 1269 return 1; 1270 } 1271 spin_unlock(&pool->lock); 1272 fail: 1273 local_irq_restore(*flags); 1274 if (work_is_canceling(work)) 1275 return -ENOENT; 1276 cpu_relax(); 1277 return -EAGAIN; 1278 } 1279 1280 /** 1281 * insert_work - insert a work into a pool 1282 * @pwq: pwq @work belongs to 1283 * @work: work to insert 1284 * @head: insertion point 1285 * @extra_flags: extra WORK_STRUCT_* flags to set 1286 * 1287 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1288 * work_struct flags. 1289 * 1290 * CONTEXT: 1291 * spin_lock_irq(pool->lock). 1292 */ 1293 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1294 struct list_head *head, unsigned int extra_flags) 1295 { 1296 struct worker_pool *pool = pwq->pool; 1297 1298 /* we own @work, set data and link */ 1299 set_work_pwq(work, pwq, extra_flags); 1300 list_add_tail(&work->entry, head); 1301 get_pwq(pwq); 1302 1303 /* 1304 * Ensure either wq_worker_sleeping() sees the above 1305 * list_add_tail() or we see zero nr_running to avoid workers lying 1306 * around lazily while there are works to be processed. 1307 */ 1308 smp_mb(); 1309 1310 if (__need_more_worker(pool)) 1311 wake_up_worker(pool); 1312 } 1313 1314 /* 1315 * Test whether @work is being queued from another work executing on the 1316 * same workqueue. 1317 */ 1318 static bool is_chained_work(struct workqueue_struct *wq) 1319 { 1320 struct worker *worker; 1321 1322 worker = current_wq_worker(); 1323 /* 1324 * Return %true iff I'm a worker execuing a work item on @wq. If 1325 * I'm @worker, it's safe to dereference it without locking. 1326 */ 1327 return worker && worker->current_pwq->wq == wq; 1328 } 1329 1330 /* 1331 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1332 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1333 * avoid perturbing sensitive tasks. 1334 */ 1335 static int wq_select_unbound_cpu(int cpu) 1336 { 1337 static bool printed_dbg_warning; 1338 int new_cpu; 1339 1340 if (likely(!wq_debug_force_rr_cpu)) { 1341 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1342 return cpu; 1343 } else if (!printed_dbg_warning) { 1344 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1345 printed_dbg_warning = true; 1346 } 1347 1348 if (cpumask_empty(wq_unbound_cpumask)) 1349 return cpu; 1350 1351 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1352 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1353 if (unlikely(new_cpu >= nr_cpu_ids)) { 1354 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1355 if (unlikely(new_cpu >= nr_cpu_ids)) 1356 return cpu; 1357 } 1358 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1359 1360 return new_cpu; 1361 } 1362 1363 static void __queue_work(int cpu, struct workqueue_struct *wq, 1364 struct work_struct *work) 1365 { 1366 struct pool_workqueue *pwq; 1367 struct worker_pool *last_pool; 1368 struct list_head *worklist; 1369 unsigned int work_flags; 1370 unsigned int req_cpu = cpu; 1371 1372 /* 1373 * While a work item is PENDING && off queue, a task trying to 1374 * steal the PENDING will busy-loop waiting for it to either get 1375 * queued or lose PENDING. Grabbing PENDING and queueing should 1376 * happen with IRQ disabled. 1377 */ 1378 WARN_ON_ONCE(!irqs_disabled()); 1379 1380 debug_work_activate(work); 1381 1382 /* if draining, only works from the same workqueue are allowed */ 1383 if (unlikely(wq->flags & __WQ_DRAINING) && 1384 WARN_ON_ONCE(!is_chained_work(wq))) 1385 return; 1386 retry: 1387 if (req_cpu == WORK_CPU_UNBOUND) 1388 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1389 1390 /* pwq which will be used unless @work is executing elsewhere */ 1391 if (!(wq->flags & WQ_UNBOUND)) 1392 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1393 else 1394 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1395 1396 /* 1397 * If @work was previously on a different pool, it might still be 1398 * running there, in which case the work needs to be queued on that 1399 * pool to guarantee non-reentrancy. 1400 */ 1401 last_pool = get_work_pool(work); 1402 if (last_pool && last_pool != pwq->pool) { 1403 struct worker *worker; 1404 1405 spin_lock(&last_pool->lock); 1406 1407 worker = find_worker_executing_work(last_pool, work); 1408 1409 if (worker && worker->current_pwq->wq == wq) { 1410 pwq = worker->current_pwq; 1411 } else { 1412 /* meh... not running there, queue here */ 1413 spin_unlock(&last_pool->lock); 1414 spin_lock(&pwq->pool->lock); 1415 } 1416 } else { 1417 spin_lock(&pwq->pool->lock); 1418 } 1419 1420 /* 1421 * pwq is determined and locked. For unbound pools, we could have 1422 * raced with pwq release and it could already be dead. If its 1423 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1424 * without another pwq replacing it in the numa_pwq_tbl or while 1425 * work items are executing on it, so the retrying is guaranteed to 1426 * make forward-progress. 1427 */ 1428 if (unlikely(!pwq->refcnt)) { 1429 if (wq->flags & WQ_UNBOUND) { 1430 spin_unlock(&pwq->pool->lock); 1431 cpu_relax(); 1432 goto retry; 1433 } 1434 /* oops */ 1435 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1436 wq->name, cpu); 1437 } 1438 1439 /* pwq determined, queue */ 1440 trace_workqueue_queue_work(req_cpu, pwq, work); 1441 1442 if (WARN_ON(!list_empty(&work->entry))) { 1443 spin_unlock(&pwq->pool->lock); 1444 return; 1445 } 1446 1447 pwq->nr_in_flight[pwq->work_color]++; 1448 work_flags = work_color_to_flags(pwq->work_color); 1449 1450 if (likely(pwq->nr_active < pwq->max_active)) { 1451 trace_workqueue_activate_work(work); 1452 pwq->nr_active++; 1453 worklist = &pwq->pool->worklist; 1454 if (list_empty(worklist)) 1455 pwq->pool->watchdog_ts = jiffies; 1456 } else { 1457 work_flags |= WORK_STRUCT_DELAYED; 1458 worklist = &pwq->delayed_works; 1459 } 1460 1461 insert_work(pwq, work, worklist, work_flags); 1462 1463 spin_unlock(&pwq->pool->lock); 1464 } 1465 1466 /** 1467 * queue_work_on - queue work on specific cpu 1468 * @cpu: CPU number to execute work on 1469 * @wq: workqueue to use 1470 * @work: work to queue 1471 * 1472 * We queue the work to a specific CPU, the caller must ensure it 1473 * can't go away. 1474 * 1475 * Return: %false if @work was already on a queue, %true otherwise. 1476 */ 1477 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1478 struct work_struct *work) 1479 { 1480 bool ret = false; 1481 unsigned long flags; 1482 1483 local_irq_save(flags); 1484 1485 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1486 __queue_work(cpu, wq, work); 1487 ret = true; 1488 } 1489 1490 local_irq_restore(flags); 1491 return ret; 1492 } 1493 EXPORT_SYMBOL(queue_work_on); 1494 1495 void delayed_work_timer_fn(unsigned long __data) 1496 { 1497 struct delayed_work *dwork = (struct delayed_work *)__data; 1498 1499 /* should have been called from irqsafe timer with irq already off */ 1500 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1501 } 1502 EXPORT_SYMBOL(delayed_work_timer_fn); 1503 1504 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1505 struct delayed_work *dwork, unsigned long delay) 1506 { 1507 struct timer_list *timer = &dwork->timer; 1508 struct work_struct *work = &dwork->work; 1509 1510 WARN_ON_ONCE(!wq); 1511 WARN_ON_ONCE(timer->function != delayed_work_timer_fn || 1512 timer->data != (unsigned long)dwork); 1513 WARN_ON_ONCE(timer_pending(timer)); 1514 WARN_ON_ONCE(!list_empty(&work->entry)); 1515 1516 /* 1517 * If @delay is 0, queue @dwork->work immediately. This is for 1518 * both optimization and correctness. The earliest @timer can 1519 * expire is on the closest next tick and delayed_work users depend 1520 * on that there's no such delay when @delay is 0. 1521 */ 1522 if (!delay) { 1523 __queue_work(cpu, wq, &dwork->work); 1524 return; 1525 } 1526 1527 dwork->wq = wq; 1528 dwork->cpu = cpu; 1529 timer->expires = jiffies + delay; 1530 1531 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1532 add_timer_on(timer, cpu); 1533 else 1534 add_timer(timer); 1535 } 1536 1537 /** 1538 * queue_delayed_work_on - queue work on specific CPU after delay 1539 * @cpu: CPU number to execute work on 1540 * @wq: workqueue to use 1541 * @dwork: work to queue 1542 * @delay: number of jiffies to wait before queueing 1543 * 1544 * Return: %false if @work was already on a queue, %true otherwise. If 1545 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1546 * execution. 1547 */ 1548 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1549 struct delayed_work *dwork, unsigned long delay) 1550 { 1551 struct work_struct *work = &dwork->work; 1552 bool ret = false; 1553 unsigned long flags; 1554 1555 /* read the comment in __queue_work() */ 1556 local_irq_save(flags); 1557 1558 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1559 __queue_delayed_work(cpu, wq, dwork, delay); 1560 ret = true; 1561 } 1562 1563 local_irq_restore(flags); 1564 return ret; 1565 } 1566 EXPORT_SYMBOL(queue_delayed_work_on); 1567 1568 /** 1569 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1570 * @cpu: CPU number to execute work on 1571 * @wq: workqueue to use 1572 * @dwork: work to queue 1573 * @delay: number of jiffies to wait before queueing 1574 * 1575 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1576 * modify @dwork's timer so that it expires after @delay. If @delay is 1577 * zero, @work is guaranteed to be scheduled immediately regardless of its 1578 * current state. 1579 * 1580 * Return: %false if @dwork was idle and queued, %true if @dwork was 1581 * pending and its timer was modified. 1582 * 1583 * This function is safe to call from any context including IRQ handler. 1584 * See try_to_grab_pending() for details. 1585 */ 1586 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1587 struct delayed_work *dwork, unsigned long delay) 1588 { 1589 unsigned long flags; 1590 int ret; 1591 1592 do { 1593 ret = try_to_grab_pending(&dwork->work, true, &flags); 1594 } while (unlikely(ret == -EAGAIN)); 1595 1596 if (likely(ret >= 0)) { 1597 __queue_delayed_work(cpu, wq, dwork, delay); 1598 local_irq_restore(flags); 1599 } 1600 1601 /* -ENOENT from try_to_grab_pending() becomes %true */ 1602 return ret; 1603 } 1604 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1605 1606 /** 1607 * worker_enter_idle - enter idle state 1608 * @worker: worker which is entering idle state 1609 * 1610 * @worker is entering idle state. Update stats and idle timer if 1611 * necessary. 1612 * 1613 * LOCKING: 1614 * spin_lock_irq(pool->lock). 1615 */ 1616 static void worker_enter_idle(struct worker *worker) 1617 { 1618 struct worker_pool *pool = worker->pool; 1619 1620 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1621 WARN_ON_ONCE(!list_empty(&worker->entry) && 1622 (worker->hentry.next || worker->hentry.pprev))) 1623 return; 1624 1625 /* can't use worker_set_flags(), also called from create_worker() */ 1626 worker->flags |= WORKER_IDLE; 1627 pool->nr_idle++; 1628 worker->last_active = jiffies; 1629 1630 /* idle_list is LIFO */ 1631 list_add(&worker->entry, &pool->idle_list); 1632 1633 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1634 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1635 1636 /* 1637 * Sanity check nr_running. Because wq_unbind_fn() releases 1638 * pool->lock between setting %WORKER_UNBOUND and zapping 1639 * nr_running, the warning may trigger spuriously. Check iff 1640 * unbind is not in progress. 1641 */ 1642 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1643 pool->nr_workers == pool->nr_idle && 1644 atomic_read(&pool->nr_running)); 1645 } 1646 1647 /** 1648 * worker_leave_idle - leave idle state 1649 * @worker: worker which is leaving idle state 1650 * 1651 * @worker is leaving idle state. Update stats. 1652 * 1653 * LOCKING: 1654 * spin_lock_irq(pool->lock). 1655 */ 1656 static void worker_leave_idle(struct worker *worker) 1657 { 1658 struct worker_pool *pool = worker->pool; 1659 1660 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1661 return; 1662 worker_clr_flags(worker, WORKER_IDLE); 1663 pool->nr_idle--; 1664 list_del_init(&worker->entry); 1665 } 1666 1667 static struct worker *alloc_worker(int node) 1668 { 1669 struct worker *worker; 1670 1671 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1672 if (worker) { 1673 INIT_LIST_HEAD(&worker->entry); 1674 INIT_LIST_HEAD(&worker->scheduled); 1675 INIT_LIST_HEAD(&worker->node); 1676 /* on creation a worker is in !idle && prep state */ 1677 worker->flags = WORKER_PREP; 1678 } 1679 return worker; 1680 } 1681 1682 /** 1683 * worker_attach_to_pool() - attach a worker to a pool 1684 * @worker: worker to be attached 1685 * @pool: the target pool 1686 * 1687 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1688 * cpu-binding of @worker are kept coordinated with the pool across 1689 * cpu-[un]hotplugs. 1690 */ 1691 static void worker_attach_to_pool(struct worker *worker, 1692 struct worker_pool *pool) 1693 { 1694 mutex_lock(&pool->attach_mutex); 1695 1696 /* 1697 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1698 * online CPUs. It'll be re-applied when any of the CPUs come up. 1699 */ 1700 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1701 1702 /* 1703 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains 1704 * stable across this function. See the comments above the 1705 * flag definition for details. 1706 */ 1707 if (pool->flags & POOL_DISASSOCIATED) 1708 worker->flags |= WORKER_UNBOUND; 1709 1710 list_add_tail(&worker->node, &pool->workers); 1711 1712 mutex_unlock(&pool->attach_mutex); 1713 } 1714 1715 /** 1716 * worker_detach_from_pool() - detach a worker from its pool 1717 * @worker: worker which is attached to its pool 1718 * @pool: the pool @worker is attached to 1719 * 1720 * Undo the attaching which had been done in worker_attach_to_pool(). The 1721 * caller worker shouldn't access to the pool after detached except it has 1722 * other reference to the pool. 1723 */ 1724 static void worker_detach_from_pool(struct worker *worker, 1725 struct worker_pool *pool) 1726 { 1727 struct completion *detach_completion = NULL; 1728 1729 mutex_lock(&pool->attach_mutex); 1730 list_del(&worker->node); 1731 if (list_empty(&pool->workers)) 1732 detach_completion = pool->detach_completion; 1733 mutex_unlock(&pool->attach_mutex); 1734 1735 /* clear leftover flags without pool->lock after it is detached */ 1736 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1737 1738 if (detach_completion) 1739 complete(detach_completion); 1740 } 1741 1742 /** 1743 * create_worker - create a new workqueue worker 1744 * @pool: pool the new worker will belong to 1745 * 1746 * Create and start a new worker which is attached to @pool. 1747 * 1748 * CONTEXT: 1749 * Might sleep. Does GFP_KERNEL allocations. 1750 * 1751 * Return: 1752 * Pointer to the newly created worker. 1753 */ 1754 static struct worker *create_worker(struct worker_pool *pool) 1755 { 1756 struct worker *worker = NULL; 1757 int id = -1; 1758 char id_buf[16]; 1759 1760 /* ID is needed to determine kthread name */ 1761 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL); 1762 if (id < 0) 1763 goto fail; 1764 1765 worker = alloc_worker(pool->node); 1766 if (!worker) 1767 goto fail; 1768 1769 worker->pool = pool; 1770 worker->id = id; 1771 1772 if (pool->cpu >= 0) 1773 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1774 pool->attrs->nice < 0 ? "H" : ""); 1775 else 1776 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1777 1778 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1779 "kworker/%s", id_buf); 1780 if (IS_ERR(worker->task)) 1781 goto fail; 1782 1783 set_user_nice(worker->task, pool->attrs->nice); 1784 kthread_bind_mask(worker->task, pool->attrs->cpumask); 1785 1786 /* successful, attach the worker to the pool */ 1787 worker_attach_to_pool(worker, pool); 1788 1789 /* start the newly created worker */ 1790 spin_lock_irq(&pool->lock); 1791 worker->pool->nr_workers++; 1792 worker_enter_idle(worker); 1793 wake_up_process(worker->task); 1794 spin_unlock_irq(&pool->lock); 1795 1796 return worker; 1797 1798 fail: 1799 if (id >= 0) 1800 ida_simple_remove(&pool->worker_ida, id); 1801 kfree(worker); 1802 return NULL; 1803 } 1804 1805 /** 1806 * destroy_worker - destroy a workqueue worker 1807 * @worker: worker to be destroyed 1808 * 1809 * Destroy @worker and adjust @pool stats accordingly. The worker should 1810 * be idle. 1811 * 1812 * CONTEXT: 1813 * spin_lock_irq(pool->lock). 1814 */ 1815 static void destroy_worker(struct worker *worker) 1816 { 1817 struct worker_pool *pool = worker->pool; 1818 1819 lockdep_assert_held(&pool->lock); 1820 1821 /* sanity check frenzy */ 1822 if (WARN_ON(worker->current_work) || 1823 WARN_ON(!list_empty(&worker->scheduled)) || 1824 WARN_ON(!(worker->flags & WORKER_IDLE))) 1825 return; 1826 1827 pool->nr_workers--; 1828 pool->nr_idle--; 1829 1830 list_del_init(&worker->entry); 1831 worker->flags |= WORKER_DIE; 1832 wake_up_process(worker->task); 1833 } 1834 1835 static void idle_worker_timeout(unsigned long __pool) 1836 { 1837 struct worker_pool *pool = (void *)__pool; 1838 1839 spin_lock_irq(&pool->lock); 1840 1841 while (too_many_workers(pool)) { 1842 struct worker *worker; 1843 unsigned long expires; 1844 1845 /* idle_list is kept in LIFO order, check the last one */ 1846 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1847 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1848 1849 if (time_before(jiffies, expires)) { 1850 mod_timer(&pool->idle_timer, expires); 1851 break; 1852 } 1853 1854 destroy_worker(worker); 1855 } 1856 1857 spin_unlock_irq(&pool->lock); 1858 } 1859 1860 static void send_mayday(struct work_struct *work) 1861 { 1862 struct pool_workqueue *pwq = get_work_pwq(work); 1863 struct workqueue_struct *wq = pwq->wq; 1864 1865 lockdep_assert_held(&wq_mayday_lock); 1866 1867 if (!wq->rescuer) 1868 return; 1869 1870 /* mayday mayday mayday */ 1871 if (list_empty(&pwq->mayday_node)) { 1872 /* 1873 * If @pwq is for an unbound wq, its base ref may be put at 1874 * any time due to an attribute change. Pin @pwq until the 1875 * rescuer is done with it. 1876 */ 1877 get_pwq(pwq); 1878 list_add_tail(&pwq->mayday_node, &wq->maydays); 1879 wake_up_process(wq->rescuer->task); 1880 } 1881 } 1882 1883 static void pool_mayday_timeout(unsigned long __pool) 1884 { 1885 struct worker_pool *pool = (void *)__pool; 1886 struct work_struct *work; 1887 1888 spin_lock_irq(&pool->lock); 1889 spin_lock(&wq_mayday_lock); /* for wq->maydays */ 1890 1891 if (need_to_create_worker(pool)) { 1892 /* 1893 * We've been trying to create a new worker but 1894 * haven't been successful. We might be hitting an 1895 * allocation deadlock. Send distress signals to 1896 * rescuers. 1897 */ 1898 list_for_each_entry(work, &pool->worklist, entry) 1899 send_mayday(work); 1900 } 1901 1902 spin_unlock(&wq_mayday_lock); 1903 spin_unlock_irq(&pool->lock); 1904 1905 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 1906 } 1907 1908 /** 1909 * maybe_create_worker - create a new worker if necessary 1910 * @pool: pool to create a new worker for 1911 * 1912 * Create a new worker for @pool if necessary. @pool is guaranteed to 1913 * have at least one idle worker on return from this function. If 1914 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1915 * sent to all rescuers with works scheduled on @pool to resolve 1916 * possible allocation deadlock. 1917 * 1918 * On return, need_to_create_worker() is guaranteed to be %false and 1919 * may_start_working() %true. 1920 * 1921 * LOCKING: 1922 * spin_lock_irq(pool->lock) which may be released and regrabbed 1923 * multiple times. Does GFP_KERNEL allocations. Called only from 1924 * manager. 1925 */ 1926 static void maybe_create_worker(struct worker_pool *pool) 1927 __releases(&pool->lock) 1928 __acquires(&pool->lock) 1929 { 1930 restart: 1931 spin_unlock_irq(&pool->lock); 1932 1933 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1934 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1935 1936 while (true) { 1937 if (create_worker(pool) || !need_to_create_worker(pool)) 1938 break; 1939 1940 schedule_timeout_interruptible(CREATE_COOLDOWN); 1941 1942 if (!need_to_create_worker(pool)) 1943 break; 1944 } 1945 1946 del_timer_sync(&pool->mayday_timer); 1947 spin_lock_irq(&pool->lock); 1948 /* 1949 * This is necessary even after a new worker was just successfully 1950 * created as @pool->lock was dropped and the new worker might have 1951 * already become busy. 1952 */ 1953 if (need_to_create_worker(pool)) 1954 goto restart; 1955 } 1956 1957 /** 1958 * manage_workers - manage worker pool 1959 * @worker: self 1960 * 1961 * Assume the manager role and manage the worker pool @worker belongs 1962 * to. At any given time, there can be only zero or one manager per 1963 * pool. The exclusion is handled automatically by this function. 1964 * 1965 * The caller can safely start processing works on false return. On 1966 * true return, it's guaranteed that need_to_create_worker() is false 1967 * and may_start_working() is true. 1968 * 1969 * CONTEXT: 1970 * spin_lock_irq(pool->lock) which may be released and regrabbed 1971 * multiple times. Does GFP_KERNEL allocations. 1972 * 1973 * Return: 1974 * %false if the pool doesn't need management and the caller can safely 1975 * start processing works, %true if management function was performed and 1976 * the conditions that the caller verified before calling the function may 1977 * no longer be true. 1978 */ 1979 static bool manage_workers(struct worker *worker) 1980 { 1981 struct worker_pool *pool = worker->pool; 1982 1983 /* 1984 * Anyone who successfully grabs manager_arb wins the arbitration 1985 * and becomes the manager. mutex_trylock() on pool->manager_arb 1986 * failure while holding pool->lock reliably indicates that someone 1987 * else is managing the pool and the worker which failed trylock 1988 * can proceed to executing work items. This means that anyone 1989 * grabbing manager_arb is responsible for actually performing 1990 * manager duties. If manager_arb is grabbed and released without 1991 * actual management, the pool may stall indefinitely. 1992 */ 1993 if (!mutex_trylock(&pool->manager_arb)) 1994 return false; 1995 pool->manager = worker; 1996 1997 maybe_create_worker(pool); 1998 1999 pool->manager = NULL; 2000 mutex_unlock(&pool->manager_arb); 2001 return true; 2002 } 2003 2004 /** 2005 * process_one_work - process single work 2006 * @worker: self 2007 * @work: work to process 2008 * 2009 * Process @work. This function contains all the logics necessary to 2010 * process a single work including synchronization against and 2011 * interaction with other workers on the same cpu, queueing and 2012 * flushing. As long as context requirement is met, any worker can 2013 * call this function to process a work. 2014 * 2015 * CONTEXT: 2016 * spin_lock_irq(pool->lock) which is released and regrabbed. 2017 */ 2018 static void process_one_work(struct worker *worker, struct work_struct *work) 2019 __releases(&pool->lock) 2020 __acquires(&pool->lock) 2021 { 2022 struct pool_workqueue *pwq = get_work_pwq(work); 2023 struct worker_pool *pool = worker->pool; 2024 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2025 int work_color; 2026 struct worker *collision; 2027 #ifdef CONFIG_LOCKDEP 2028 /* 2029 * It is permissible to free the struct work_struct from 2030 * inside the function that is called from it, this we need to 2031 * take into account for lockdep too. To avoid bogus "held 2032 * lock freed" warnings as well as problems when looking into 2033 * work->lockdep_map, make a copy and use that here. 2034 */ 2035 struct lockdep_map lockdep_map; 2036 2037 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2038 #endif 2039 /* ensure we're on the correct CPU */ 2040 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2041 raw_smp_processor_id() != pool->cpu); 2042 2043 /* 2044 * A single work shouldn't be executed concurrently by 2045 * multiple workers on a single cpu. Check whether anyone is 2046 * already processing the work. If so, defer the work to the 2047 * currently executing one. 2048 */ 2049 collision = find_worker_executing_work(pool, work); 2050 if (unlikely(collision)) { 2051 move_linked_works(work, &collision->scheduled, NULL); 2052 return; 2053 } 2054 2055 /* claim and dequeue */ 2056 debug_work_deactivate(work); 2057 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2058 worker->current_work = work; 2059 worker->current_func = work->func; 2060 worker->current_pwq = pwq; 2061 work_color = get_work_color(work); 2062 2063 list_del_init(&work->entry); 2064 2065 /* 2066 * CPU intensive works don't participate in concurrency management. 2067 * They're the scheduler's responsibility. This takes @worker out 2068 * of concurrency management and the next code block will chain 2069 * execution of the pending work items. 2070 */ 2071 if (unlikely(cpu_intensive)) 2072 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2073 2074 /* 2075 * Wake up another worker if necessary. The condition is always 2076 * false for normal per-cpu workers since nr_running would always 2077 * be >= 1 at this point. This is used to chain execution of the 2078 * pending work items for WORKER_NOT_RUNNING workers such as the 2079 * UNBOUND and CPU_INTENSIVE ones. 2080 */ 2081 if (need_more_worker(pool)) 2082 wake_up_worker(pool); 2083 2084 /* 2085 * Record the last pool and clear PENDING which should be the last 2086 * update to @work. Also, do this inside @pool->lock so that 2087 * PENDING and queued state changes happen together while IRQ is 2088 * disabled. 2089 */ 2090 set_work_pool_and_clear_pending(work, pool->id); 2091 2092 spin_unlock_irq(&pool->lock); 2093 2094 lock_map_acquire_read(&pwq->wq->lockdep_map); 2095 lock_map_acquire(&lockdep_map); 2096 trace_workqueue_execute_start(work); 2097 worker->current_func(work); 2098 /* 2099 * While we must be careful to not use "work" after this, the trace 2100 * point will only record its address. 2101 */ 2102 trace_workqueue_execute_end(work); 2103 lock_map_release(&lockdep_map); 2104 lock_map_release(&pwq->wq->lockdep_map); 2105 2106 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2107 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2108 " last function: %pf\n", 2109 current->comm, preempt_count(), task_pid_nr(current), 2110 worker->current_func); 2111 debug_show_held_locks(current); 2112 dump_stack(); 2113 } 2114 2115 /* 2116 * The following prevents a kworker from hogging CPU on !PREEMPT 2117 * kernels, where a requeueing work item waiting for something to 2118 * happen could deadlock with stop_machine as such work item could 2119 * indefinitely requeue itself while all other CPUs are trapped in 2120 * stop_machine. At the same time, report a quiescent RCU state so 2121 * the same condition doesn't freeze RCU. 2122 */ 2123 cond_resched_rcu_qs(); 2124 2125 spin_lock_irq(&pool->lock); 2126 2127 /* clear cpu intensive status */ 2128 if (unlikely(cpu_intensive)) 2129 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2130 2131 /* we're done with it, release */ 2132 hash_del(&worker->hentry); 2133 worker->current_work = NULL; 2134 worker->current_func = NULL; 2135 worker->current_pwq = NULL; 2136 worker->desc_valid = false; 2137 pwq_dec_nr_in_flight(pwq, work_color); 2138 } 2139 2140 /** 2141 * process_scheduled_works - process scheduled works 2142 * @worker: self 2143 * 2144 * Process all scheduled works. Please note that the scheduled list 2145 * may change while processing a work, so this function repeatedly 2146 * fetches a work from the top and executes it. 2147 * 2148 * CONTEXT: 2149 * spin_lock_irq(pool->lock) which may be released and regrabbed 2150 * multiple times. 2151 */ 2152 static void process_scheduled_works(struct worker *worker) 2153 { 2154 while (!list_empty(&worker->scheduled)) { 2155 struct work_struct *work = list_first_entry(&worker->scheduled, 2156 struct work_struct, entry); 2157 process_one_work(worker, work); 2158 } 2159 } 2160 2161 /** 2162 * worker_thread - the worker thread function 2163 * @__worker: self 2164 * 2165 * The worker thread function. All workers belong to a worker_pool - 2166 * either a per-cpu one or dynamic unbound one. These workers process all 2167 * work items regardless of their specific target workqueue. The only 2168 * exception is work items which belong to workqueues with a rescuer which 2169 * will be explained in rescuer_thread(). 2170 * 2171 * Return: 0 2172 */ 2173 static int worker_thread(void *__worker) 2174 { 2175 struct worker *worker = __worker; 2176 struct worker_pool *pool = worker->pool; 2177 2178 /* tell the scheduler that this is a workqueue worker */ 2179 worker->task->flags |= PF_WQ_WORKER; 2180 woke_up: 2181 spin_lock_irq(&pool->lock); 2182 2183 /* am I supposed to die? */ 2184 if (unlikely(worker->flags & WORKER_DIE)) { 2185 spin_unlock_irq(&pool->lock); 2186 WARN_ON_ONCE(!list_empty(&worker->entry)); 2187 worker->task->flags &= ~PF_WQ_WORKER; 2188 2189 set_task_comm(worker->task, "kworker/dying"); 2190 ida_simple_remove(&pool->worker_ida, worker->id); 2191 worker_detach_from_pool(worker, pool); 2192 kfree(worker); 2193 return 0; 2194 } 2195 2196 worker_leave_idle(worker); 2197 recheck: 2198 /* no more worker necessary? */ 2199 if (!need_more_worker(pool)) 2200 goto sleep; 2201 2202 /* do we need to manage? */ 2203 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2204 goto recheck; 2205 2206 /* 2207 * ->scheduled list can only be filled while a worker is 2208 * preparing to process a work or actually processing it. 2209 * Make sure nobody diddled with it while I was sleeping. 2210 */ 2211 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2212 2213 /* 2214 * Finish PREP stage. We're guaranteed to have at least one idle 2215 * worker or that someone else has already assumed the manager 2216 * role. This is where @worker starts participating in concurrency 2217 * management if applicable and concurrency management is restored 2218 * after being rebound. See rebind_workers() for details. 2219 */ 2220 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2221 2222 do { 2223 struct work_struct *work = 2224 list_first_entry(&pool->worklist, 2225 struct work_struct, entry); 2226 2227 pool->watchdog_ts = jiffies; 2228 2229 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2230 /* optimization path, not strictly necessary */ 2231 process_one_work(worker, work); 2232 if (unlikely(!list_empty(&worker->scheduled))) 2233 process_scheduled_works(worker); 2234 } else { 2235 move_linked_works(work, &worker->scheduled, NULL); 2236 process_scheduled_works(worker); 2237 } 2238 } while (keep_working(pool)); 2239 2240 worker_set_flags(worker, WORKER_PREP); 2241 sleep: 2242 /* 2243 * pool->lock is held and there's no work to process and no need to 2244 * manage, sleep. Workers are woken up only while holding 2245 * pool->lock or from local cpu, so setting the current state 2246 * before releasing pool->lock is enough to prevent losing any 2247 * event. 2248 */ 2249 worker_enter_idle(worker); 2250 __set_current_state(TASK_INTERRUPTIBLE); 2251 spin_unlock_irq(&pool->lock); 2252 schedule(); 2253 goto woke_up; 2254 } 2255 2256 /** 2257 * rescuer_thread - the rescuer thread function 2258 * @__rescuer: self 2259 * 2260 * Workqueue rescuer thread function. There's one rescuer for each 2261 * workqueue which has WQ_MEM_RECLAIM set. 2262 * 2263 * Regular work processing on a pool may block trying to create a new 2264 * worker which uses GFP_KERNEL allocation which has slight chance of 2265 * developing into deadlock if some works currently on the same queue 2266 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2267 * the problem rescuer solves. 2268 * 2269 * When such condition is possible, the pool summons rescuers of all 2270 * workqueues which have works queued on the pool and let them process 2271 * those works so that forward progress can be guaranteed. 2272 * 2273 * This should happen rarely. 2274 * 2275 * Return: 0 2276 */ 2277 static int rescuer_thread(void *__rescuer) 2278 { 2279 struct worker *rescuer = __rescuer; 2280 struct workqueue_struct *wq = rescuer->rescue_wq; 2281 struct list_head *scheduled = &rescuer->scheduled; 2282 bool should_stop; 2283 2284 set_user_nice(current, RESCUER_NICE_LEVEL); 2285 2286 /* 2287 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2288 * doesn't participate in concurrency management. 2289 */ 2290 rescuer->task->flags |= PF_WQ_WORKER; 2291 repeat: 2292 set_current_state(TASK_INTERRUPTIBLE); 2293 2294 /* 2295 * By the time the rescuer is requested to stop, the workqueue 2296 * shouldn't have any work pending, but @wq->maydays may still have 2297 * pwq(s) queued. This can happen by non-rescuer workers consuming 2298 * all the work items before the rescuer got to them. Go through 2299 * @wq->maydays processing before acting on should_stop so that the 2300 * list is always empty on exit. 2301 */ 2302 should_stop = kthread_should_stop(); 2303 2304 /* see whether any pwq is asking for help */ 2305 spin_lock_irq(&wq_mayday_lock); 2306 2307 while (!list_empty(&wq->maydays)) { 2308 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2309 struct pool_workqueue, mayday_node); 2310 struct worker_pool *pool = pwq->pool; 2311 struct work_struct *work, *n; 2312 bool first = true; 2313 2314 __set_current_state(TASK_RUNNING); 2315 list_del_init(&pwq->mayday_node); 2316 2317 spin_unlock_irq(&wq_mayday_lock); 2318 2319 worker_attach_to_pool(rescuer, pool); 2320 2321 spin_lock_irq(&pool->lock); 2322 rescuer->pool = pool; 2323 2324 /* 2325 * Slurp in all works issued via this workqueue and 2326 * process'em. 2327 */ 2328 WARN_ON_ONCE(!list_empty(scheduled)); 2329 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2330 if (get_work_pwq(work) == pwq) { 2331 if (first) 2332 pool->watchdog_ts = jiffies; 2333 move_linked_works(work, scheduled, &n); 2334 } 2335 first = false; 2336 } 2337 2338 if (!list_empty(scheduled)) { 2339 process_scheduled_works(rescuer); 2340 2341 /* 2342 * The above execution of rescued work items could 2343 * have created more to rescue through 2344 * pwq_activate_first_delayed() or chained 2345 * queueing. Let's put @pwq back on mayday list so 2346 * that such back-to-back work items, which may be 2347 * being used to relieve memory pressure, don't 2348 * incur MAYDAY_INTERVAL delay inbetween. 2349 */ 2350 if (need_to_create_worker(pool)) { 2351 spin_lock(&wq_mayday_lock); 2352 get_pwq(pwq); 2353 list_move_tail(&pwq->mayday_node, &wq->maydays); 2354 spin_unlock(&wq_mayday_lock); 2355 } 2356 } 2357 2358 /* 2359 * Put the reference grabbed by send_mayday(). @pool won't 2360 * go away while we're still attached to it. 2361 */ 2362 put_pwq(pwq); 2363 2364 /* 2365 * Leave this pool. If need_more_worker() is %true, notify a 2366 * regular worker; otherwise, we end up with 0 concurrency 2367 * and stalling the execution. 2368 */ 2369 if (need_more_worker(pool)) 2370 wake_up_worker(pool); 2371 2372 rescuer->pool = NULL; 2373 spin_unlock_irq(&pool->lock); 2374 2375 worker_detach_from_pool(rescuer, pool); 2376 2377 spin_lock_irq(&wq_mayday_lock); 2378 } 2379 2380 spin_unlock_irq(&wq_mayday_lock); 2381 2382 if (should_stop) { 2383 __set_current_state(TASK_RUNNING); 2384 rescuer->task->flags &= ~PF_WQ_WORKER; 2385 return 0; 2386 } 2387 2388 /* rescuers should never participate in concurrency management */ 2389 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2390 schedule(); 2391 goto repeat; 2392 } 2393 2394 /** 2395 * check_flush_dependency - check for flush dependency sanity 2396 * @target_wq: workqueue being flushed 2397 * @target_work: work item being flushed (NULL for workqueue flushes) 2398 * 2399 * %current is trying to flush the whole @target_wq or @target_work on it. 2400 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2401 * reclaiming memory or running on a workqueue which doesn't have 2402 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2403 * a deadlock. 2404 */ 2405 static void check_flush_dependency(struct workqueue_struct *target_wq, 2406 struct work_struct *target_work) 2407 { 2408 work_func_t target_func = target_work ? target_work->func : NULL; 2409 struct worker *worker; 2410 2411 if (target_wq->flags & WQ_MEM_RECLAIM) 2412 return; 2413 2414 worker = current_wq_worker(); 2415 2416 WARN_ONCE(current->flags & PF_MEMALLOC, 2417 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf", 2418 current->pid, current->comm, target_wq->name, target_func); 2419 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2420 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2421 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf", 2422 worker->current_pwq->wq->name, worker->current_func, 2423 target_wq->name, target_func); 2424 } 2425 2426 struct wq_barrier { 2427 struct work_struct work; 2428 struct completion done; 2429 struct task_struct *task; /* purely informational */ 2430 }; 2431 2432 static void wq_barrier_func(struct work_struct *work) 2433 { 2434 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2435 complete(&barr->done); 2436 } 2437 2438 /** 2439 * insert_wq_barrier - insert a barrier work 2440 * @pwq: pwq to insert barrier into 2441 * @barr: wq_barrier to insert 2442 * @target: target work to attach @barr to 2443 * @worker: worker currently executing @target, NULL if @target is not executing 2444 * 2445 * @barr is linked to @target such that @barr is completed only after 2446 * @target finishes execution. Please note that the ordering 2447 * guarantee is observed only with respect to @target and on the local 2448 * cpu. 2449 * 2450 * Currently, a queued barrier can't be canceled. This is because 2451 * try_to_grab_pending() can't determine whether the work to be 2452 * grabbed is at the head of the queue and thus can't clear LINKED 2453 * flag of the previous work while there must be a valid next work 2454 * after a work with LINKED flag set. 2455 * 2456 * Note that when @worker is non-NULL, @target may be modified 2457 * underneath us, so we can't reliably determine pwq from @target. 2458 * 2459 * CONTEXT: 2460 * spin_lock_irq(pool->lock). 2461 */ 2462 static void insert_wq_barrier(struct pool_workqueue *pwq, 2463 struct wq_barrier *barr, 2464 struct work_struct *target, struct worker *worker) 2465 { 2466 struct list_head *head; 2467 unsigned int linked = 0; 2468 2469 /* 2470 * debugobject calls are safe here even with pool->lock locked 2471 * as we know for sure that this will not trigger any of the 2472 * checks and call back into the fixup functions where we 2473 * might deadlock. 2474 */ 2475 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2476 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2477 init_completion(&barr->done); 2478 barr->task = current; 2479 2480 /* 2481 * If @target is currently being executed, schedule the 2482 * barrier to the worker; otherwise, put it after @target. 2483 */ 2484 if (worker) 2485 head = worker->scheduled.next; 2486 else { 2487 unsigned long *bits = work_data_bits(target); 2488 2489 head = target->entry.next; 2490 /* there can already be other linked works, inherit and set */ 2491 linked = *bits & WORK_STRUCT_LINKED; 2492 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2493 } 2494 2495 debug_work_activate(&barr->work); 2496 insert_work(pwq, &barr->work, head, 2497 work_color_to_flags(WORK_NO_COLOR) | linked); 2498 } 2499 2500 /** 2501 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2502 * @wq: workqueue being flushed 2503 * @flush_color: new flush color, < 0 for no-op 2504 * @work_color: new work color, < 0 for no-op 2505 * 2506 * Prepare pwqs for workqueue flushing. 2507 * 2508 * If @flush_color is non-negative, flush_color on all pwqs should be 2509 * -1. If no pwq has in-flight commands at the specified color, all 2510 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2511 * has in flight commands, its pwq->flush_color is set to 2512 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2513 * wakeup logic is armed and %true is returned. 2514 * 2515 * The caller should have initialized @wq->first_flusher prior to 2516 * calling this function with non-negative @flush_color. If 2517 * @flush_color is negative, no flush color update is done and %false 2518 * is returned. 2519 * 2520 * If @work_color is non-negative, all pwqs should have the same 2521 * work_color which is previous to @work_color and all will be 2522 * advanced to @work_color. 2523 * 2524 * CONTEXT: 2525 * mutex_lock(wq->mutex). 2526 * 2527 * Return: 2528 * %true if @flush_color >= 0 and there's something to flush. %false 2529 * otherwise. 2530 */ 2531 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2532 int flush_color, int work_color) 2533 { 2534 bool wait = false; 2535 struct pool_workqueue *pwq; 2536 2537 if (flush_color >= 0) { 2538 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2539 atomic_set(&wq->nr_pwqs_to_flush, 1); 2540 } 2541 2542 for_each_pwq(pwq, wq) { 2543 struct worker_pool *pool = pwq->pool; 2544 2545 spin_lock_irq(&pool->lock); 2546 2547 if (flush_color >= 0) { 2548 WARN_ON_ONCE(pwq->flush_color != -1); 2549 2550 if (pwq->nr_in_flight[flush_color]) { 2551 pwq->flush_color = flush_color; 2552 atomic_inc(&wq->nr_pwqs_to_flush); 2553 wait = true; 2554 } 2555 } 2556 2557 if (work_color >= 0) { 2558 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2559 pwq->work_color = work_color; 2560 } 2561 2562 spin_unlock_irq(&pool->lock); 2563 } 2564 2565 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2566 complete(&wq->first_flusher->done); 2567 2568 return wait; 2569 } 2570 2571 /** 2572 * flush_workqueue - ensure that any scheduled work has run to completion. 2573 * @wq: workqueue to flush 2574 * 2575 * This function sleeps until all work items which were queued on entry 2576 * have finished execution, but it is not livelocked by new incoming ones. 2577 */ 2578 void flush_workqueue(struct workqueue_struct *wq) 2579 { 2580 struct wq_flusher this_flusher = { 2581 .list = LIST_HEAD_INIT(this_flusher.list), 2582 .flush_color = -1, 2583 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2584 }; 2585 int next_color; 2586 2587 if (WARN_ON(!wq_online)) 2588 return; 2589 2590 lock_map_acquire(&wq->lockdep_map); 2591 lock_map_release(&wq->lockdep_map); 2592 2593 mutex_lock(&wq->mutex); 2594 2595 /* 2596 * Start-to-wait phase 2597 */ 2598 next_color = work_next_color(wq->work_color); 2599 2600 if (next_color != wq->flush_color) { 2601 /* 2602 * Color space is not full. The current work_color 2603 * becomes our flush_color and work_color is advanced 2604 * by one. 2605 */ 2606 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2607 this_flusher.flush_color = wq->work_color; 2608 wq->work_color = next_color; 2609 2610 if (!wq->first_flusher) { 2611 /* no flush in progress, become the first flusher */ 2612 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2613 2614 wq->first_flusher = &this_flusher; 2615 2616 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2617 wq->work_color)) { 2618 /* nothing to flush, done */ 2619 wq->flush_color = next_color; 2620 wq->first_flusher = NULL; 2621 goto out_unlock; 2622 } 2623 } else { 2624 /* wait in queue */ 2625 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2626 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2627 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2628 } 2629 } else { 2630 /* 2631 * Oops, color space is full, wait on overflow queue. 2632 * The next flush completion will assign us 2633 * flush_color and transfer to flusher_queue. 2634 */ 2635 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2636 } 2637 2638 check_flush_dependency(wq, NULL); 2639 2640 mutex_unlock(&wq->mutex); 2641 2642 wait_for_completion(&this_flusher.done); 2643 2644 /* 2645 * Wake-up-and-cascade phase 2646 * 2647 * First flushers are responsible for cascading flushes and 2648 * handling overflow. Non-first flushers can simply return. 2649 */ 2650 if (wq->first_flusher != &this_flusher) 2651 return; 2652 2653 mutex_lock(&wq->mutex); 2654 2655 /* we might have raced, check again with mutex held */ 2656 if (wq->first_flusher != &this_flusher) 2657 goto out_unlock; 2658 2659 wq->first_flusher = NULL; 2660 2661 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2662 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2663 2664 while (true) { 2665 struct wq_flusher *next, *tmp; 2666 2667 /* complete all the flushers sharing the current flush color */ 2668 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2669 if (next->flush_color != wq->flush_color) 2670 break; 2671 list_del_init(&next->list); 2672 complete(&next->done); 2673 } 2674 2675 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2676 wq->flush_color != work_next_color(wq->work_color)); 2677 2678 /* this flush_color is finished, advance by one */ 2679 wq->flush_color = work_next_color(wq->flush_color); 2680 2681 /* one color has been freed, handle overflow queue */ 2682 if (!list_empty(&wq->flusher_overflow)) { 2683 /* 2684 * Assign the same color to all overflowed 2685 * flushers, advance work_color and append to 2686 * flusher_queue. This is the start-to-wait 2687 * phase for these overflowed flushers. 2688 */ 2689 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2690 tmp->flush_color = wq->work_color; 2691 2692 wq->work_color = work_next_color(wq->work_color); 2693 2694 list_splice_tail_init(&wq->flusher_overflow, 2695 &wq->flusher_queue); 2696 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2697 } 2698 2699 if (list_empty(&wq->flusher_queue)) { 2700 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2701 break; 2702 } 2703 2704 /* 2705 * Need to flush more colors. Make the next flusher 2706 * the new first flusher and arm pwqs. 2707 */ 2708 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2709 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2710 2711 list_del_init(&next->list); 2712 wq->first_flusher = next; 2713 2714 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2715 break; 2716 2717 /* 2718 * Meh... this color is already done, clear first 2719 * flusher and repeat cascading. 2720 */ 2721 wq->first_flusher = NULL; 2722 } 2723 2724 out_unlock: 2725 mutex_unlock(&wq->mutex); 2726 } 2727 EXPORT_SYMBOL(flush_workqueue); 2728 2729 /** 2730 * drain_workqueue - drain a workqueue 2731 * @wq: workqueue to drain 2732 * 2733 * Wait until the workqueue becomes empty. While draining is in progress, 2734 * only chain queueing is allowed. IOW, only currently pending or running 2735 * work items on @wq can queue further work items on it. @wq is flushed 2736 * repeatedly until it becomes empty. The number of flushing is determined 2737 * by the depth of chaining and should be relatively short. Whine if it 2738 * takes too long. 2739 */ 2740 void drain_workqueue(struct workqueue_struct *wq) 2741 { 2742 unsigned int flush_cnt = 0; 2743 struct pool_workqueue *pwq; 2744 2745 /* 2746 * __queue_work() needs to test whether there are drainers, is much 2747 * hotter than drain_workqueue() and already looks at @wq->flags. 2748 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2749 */ 2750 mutex_lock(&wq->mutex); 2751 if (!wq->nr_drainers++) 2752 wq->flags |= __WQ_DRAINING; 2753 mutex_unlock(&wq->mutex); 2754 reflush: 2755 flush_workqueue(wq); 2756 2757 mutex_lock(&wq->mutex); 2758 2759 for_each_pwq(pwq, wq) { 2760 bool drained; 2761 2762 spin_lock_irq(&pwq->pool->lock); 2763 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2764 spin_unlock_irq(&pwq->pool->lock); 2765 2766 if (drained) 2767 continue; 2768 2769 if (++flush_cnt == 10 || 2770 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2771 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2772 wq->name, flush_cnt); 2773 2774 mutex_unlock(&wq->mutex); 2775 goto reflush; 2776 } 2777 2778 if (!--wq->nr_drainers) 2779 wq->flags &= ~__WQ_DRAINING; 2780 mutex_unlock(&wq->mutex); 2781 } 2782 EXPORT_SYMBOL_GPL(drain_workqueue); 2783 2784 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr) 2785 { 2786 struct worker *worker = NULL; 2787 struct worker_pool *pool; 2788 struct pool_workqueue *pwq; 2789 2790 might_sleep(); 2791 2792 local_irq_disable(); 2793 pool = get_work_pool(work); 2794 if (!pool) { 2795 local_irq_enable(); 2796 return false; 2797 } 2798 2799 spin_lock(&pool->lock); 2800 /* see the comment in try_to_grab_pending() with the same code */ 2801 pwq = get_work_pwq(work); 2802 if (pwq) { 2803 if (unlikely(pwq->pool != pool)) 2804 goto already_gone; 2805 } else { 2806 worker = find_worker_executing_work(pool, work); 2807 if (!worker) 2808 goto already_gone; 2809 pwq = worker->current_pwq; 2810 } 2811 2812 check_flush_dependency(pwq->wq, work); 2813 2814 insert_wq_barrier(pwq, barr, work, worker); 2815 spin_unlock_irq(&pool->lock); 2816 2817 /* 2818 * If @max_active is 1 or rescuer is in use, flushing another work 2819 * item on the same workqueue may lead to deadlock. Make sure the 2820 * flusher is not running on the same workqueue by verifying write 2821 * access. 2822 */ 2823 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) 2824 lock_map_acquire(&pwq->wq->lockdep_map); 2825 else 2826 lock_map_acquire_read(&pwq->wq->lockdep_map); 2827 lock_map_release(&pwq->wq->lockdep_map); 2828 2829 return true; 2830 already_gone: 2831 spin_unlock_irq(&pool->lock); 2832 return false; 2833 } 2834 2835 /** 2836 * flush_work - wait for a work to finish executing the last queueing instance 2837 * @work: the work to flush 2838 * 2839 * Wait until @work has finished execution. @work is guaranteed to be idle 2840 * on return if it hasn't been requeued since flush started. 2841 * 2842 * Return: 2843 * %true if flush_work() waited for the work to finish execution, 2844 * %false if it was already idle. 2845 */ 2846 bool flush_work(struct work_struct *work) 2847 { 2848 struct wq_barrier barr; 2849 2850 if (WARN_ON(!wq_online)) 2851 return false; 2852 2853 lock_map_acquire(&work->lockdep_map); 2854 lock_map_release(&work->lockdep_map); 2855 2856 if (start_flush_work(work, &barr)) { 2857 wait_for_completion(&barr.done); 2858 destroy_work_on_stack(&barr.work); 2859 return true; 2860 } else { 2861 return false; 2862 } 2863 } 2864 EXPORT_SYMBOL_GPL(flush_work); 2865 2866 struct cwt_wait { 2867 wait_queue_t wait; 2868 struct work_struct *work; 2869 }; 2870 2871 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key) 2872 { 2873 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 2874 2875 if (cwait->work != key) 2876 return 0; 2877 return autoremove_wake_function(wait, mode, sync, key); 2878 } 2879 2880 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 2881 { 2882 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 2883 unsigned long flags; 2884 int ret; 2885 2886 do { 2887 ret = try_to_grab_pending(work, is_dwork, &flags); 2888 /* 2889 * If someone else is already canceling, wait for it to 2890 * finish. flush_work() doesn't work for PREEMPT_NONE 2891 * because we may get scheduled between @work's completion 2892 * and the other canceling task resuming and clearing 2893 * CANCELING - flush_work() will return false immediately 2894 * as @work is no longer busy, try_to_grab_pending() will 2895 * return -ENOENT as @work is still being canceled and the 2896 * other canceling task won't be able to clear CANCELING as 2897 * we're hogging the CPU. 2898 * 2899 * Let's wait for completion using a waitqueue. As this 2900 * may lead to the thundering herd problem, use a custom 2901 * wake function which matches @work along with exclusive 2902 * wait and wakeup. 2903 */ 2904 if (unlikely(ret == -ENOENT)) { 2905 struct cwt_wait cwait; 2906 2907 init_wait(&cwait.wait); 2908 cwait.wait.func = cwt_wakefn; 2909 cwait.work = work; 2910 2911 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 2912 TASK_UNINTERRUPTIBLE); 2913 if (work_is_canceling(work)) 2914 schedule(); 2915 finish_wait(&cancel_waitq, &cwait.wait); 2916 } 2917 } while (unlikely(ret < 0)); 2918 2919 /* tell other tasks trying to grab @work to back off */ 2920 mark_work_canceling(work); 2921 local_irq_restore(flags); 2922 2923 /* 2924 * This allows canceling during early boot. We know that @work 2925 * isn't executing. 2926 */ 2927 if (wq_online) 2928 flush_work(work); 2929 2930 clear_work_data(work); 2931 2932 /* 2933 * Paired with prepare_to_wait() above so that either 2934 * waitqueue_active() is visible here or !work_is_canceling() is 2935 * visible there. 2936 */ 2937 smp_mb(); 2938 if (waitqueue_active(&cancel_waitq)) 2939 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 2940 2941 return ret; 2942 } 2943 2944 /** 2945 * cancel_work_sync - cancel a work and wait for it to finish 2946 * @work: the work to cancel 2947 * 2948 * Cancel @work and wait for its execution to finish. This function 2949 * can be used even if the work re-queues itself or migrates to 2950 * another workqueue. On return from this function, @work is 2951 * guaranteed to be not pending or executing on any CPU. 2952 * 2953 * cancel_work_sync(&delayed_work->work) must not be used for 2954 * delayed_work's. Use cancel_delayed_work_sync() instead. 2955 * 2956 * The caller must ensure that the workqueue on which @work was last 2957 * queued can't be destroyed before this function returns. 2958 * 2959 * Return: 2960 * %true if @work was pending, %false otherwise. 2961 */ 2962 bool cancel_work_sync(struct work_struct *work) 2963 { 2964 return __cancel_work_timer(work, false); 2965 } 2966 EXPORT_SYMBOL_GPL(cancel_work_sync); 2967 2968 /** 2969 * flush_delayed_work - wait for a dwork to finish executing the last queueing 2970 * @dwork: the delayed work to flush 2971 * 2972 * Delayed timer is cancelled and the pending work is queued for 2973 * immediate execution. Like flush_work(), this function only 2974 * considers the last queueing instance of @dwork. 2975 * 2976 * Return: 2977 * %true if flush_work() waited for the work to finish execution, 2978 * %false if it was already idle. 2979 */ 2980 bool flush_delayed_work(struct delayed_work *dwork) 2981 { 2982 local_irq_disable(); 2983 if (del_timer_sync(&dwork->timer)) 2984 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2985 local_irq_enable(); 2986 return flush_work(&dwork->work); 2987 } 2988 EXPORT_SYMBOL(flush_delayed_work); 2989 2990 static bool __cancel_work(struct work_struct *work, bool is_dwork) 2991 { 2992 unsigned long flags; 2993 int ret; 2994 2995 do { 2996 ret = try_to_grab_pending(work, is_dwork, &flags); 2997 } while (unlikely(ret == -EAGAIN)); 2998 2999 if (unlikely(ret < 0)) 3000 return false; 3001 3002 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 3003 local_irq_restore(flags); 3004 return ret; 3005 } 3006 3007 /* 3008 * See cancel_delayed_work() 3009 */ 3010 bool cancel_work(struct work_struct *work) 3011 { 3012 return __cancel_work(work, false); 3013 } 3014 3015 /** 3016 * cancel_delayed_work - cancel a delayed work 3017 * @dwork: delayed_work to cancel 3018 * 3019 * Kill off a pending delayed_work. 3020 * 3021 * Return: %true if @dwork was pending and canceled; %false if it wasn't 3022 * pending. 3023 * 3024 * Note: 3025 * The work callback function may still be running on return, unless 3026 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 3027 * use cancel_delayed_work_sync() to wait on it. 3028 * 3029 * This function is safe to call from any context including IRQ handler. 3030 */ 3031 bool cancel_delayed_work(struct delayed_work *dwork) 3032 { 3033 return __cancel_work(&dwork->work, true); 3034 } 3035 EXPORT_SYMBOL(cancel_delayed_work); 3036 3037 /** 3038 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3039 * @dwork: the delayed work cancel 3040 * 3041 * This is cancel_work_sync() for delayed works. 3042 * 3043 * Return: 3044 * %true if @dwork was pending, %false otherwise. 3045 */ 3046 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3047 { 3048 return __cancel_work_timer(&dwork->work, true); 3049 } 3050 EXPORT_SYMBOL(cancel_delayed_work_sync); 3051 3052 /** 3053 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3054 * @func: the function to call 3055 * 3056 * schedule_on_each_cpu() executes @func on each online CPU using the 3057 * system workqueue and blocks until all CPUs have completed. 3058 * schedule_on_each_cpu() is very slow. 3059 * 3060 * Return: 3061 * 0 on success, -errno on failure. 3062 */ 3063 int schedule_on_each_cpu(work_func_t func) 3064 { 3065 int cpu; 3066 struct work_struct __percpu *works; 3067 3068 works = alloc_percpu(struct work_struct); 3069 if (!works) 3070 return -ENOMEM; 3071 3072 get_online_cpus(); 3073 3074 for_each_online_cpu(cpu) { 3075 struct work_struct *work = per_cpu_ptr(works, cpu); 3076 3077 INIT_WORK(work, func); 3078 schedule_work_on(cpu, work); 3079 } 3080 3081 for_each_online_cpu(cpu) 3082 flush_work(per_cpu_ptr(works, cpu)); 3083 3084 put_online_cpus(); 3085 free_percpu(works); 3086 return 0; 3087 } 3088 3089 /** 3090 * execute_in_process_context - reliably execute the routine with user context 3091 * @fn: the function to execute 3092 * @ew: guaranteed storage for the execute work structure (must 3093 * be available when the work executes) 3094 * 3095 * Executes the function immediately if process context is available, 3096 * otherwise schedules the function for delayed execution. 3097 * 3098 * Return: 0 - function was executed 3099 * 1 - function was scheduled for execution 3100 */ 3101 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3102 { 3103 if (!in_interrupt()) { 3104 fn(&ew->work); 3105 return 0; 3106 } 3107 3108 INIT_WORK(&ew->work, fn); 3109 schedule_work(&ew->work); 3110 3111 return 1; 3112 } 3113 EXPORT_SYMBOL_GPL(execute_in_process_context); 3114 3115 /** 3116 * free_workqueue_attrs - free a workqueue_attrs 3117 * @attrs: workqueue_attrs to free 3118 * 3119 * Undo alloc_workqueue_attrs(). 3120 */ 3121 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3122 { 3123 if (attrs) { 3124 free_cpumask_var(attrs->cpumask); 3125 kfree(attrs); 3126 } 3127 } 3128 3129 /** 3130 * alloc_workqueue_attrs - allocate a workqueue_attrs 3131 * @gfp_mask: allocation mask to use 3132 * 3133 * Allocate a new workqueue_attrs, initialize with default settings and 3134 * return it. 3135 * 3136 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3137 */ 3138 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask) 3139 { 3140 struct workqueue_attrs *attrs; 3141 3142 attrs = kzalloc(sizeof(*attrs), gfp_mask); 3143 if (!attrs) 3144 goto fail; 3145 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask)) 3146 goto fail; 3147 3148 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3149 return attrs; 3150 fail: 3151 free_workqueue_attrs(attrs); 3152 return NULL; 3153 } 3154 3155 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3156 const struct workqueue_attrs *from) 3157 { 3158 to->nice = from->nice; 3159 cpumask_copy(to->cpumask, from->cpumask); 3160 /* 3161 * Unlike hash and equality test, this function doesn't ignore 3162 * ->no_numa as it is used for both pool and wq attrs. Instead, 3163 * get_unbound_pool() explicitly clears ->no_numa after copying. 3164 */ 3165 to->no_numa = from->no_numa; 3166 } 3167 3168 /* hash value of the content of @attr */ 3169 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3170 { 3171 u32 hash = 0; 3172 3173 hash = jhash_1word(attrs->nice, hash); 3174 hash = jhash(cpumask_bits(attrs->cpumask), 3175 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3176 return hash; 3177 } 3178 3179 /* content equality test */ 3180 static bool wqattrs_equal(const struct workqueue_attrs *a, 3181 const struct workqueue_attrs *b) 3182 { 3183 if (a->nice != b->nice) 3184 return false; 3185 if (!cpumask_equal(a->cpumask, b->cpumask)) 3186 return false; 3187 return true; 3188 } 3189 3190 /** 3191 * init_worker_pool - initialize a newly zalloc'd worker_pool 3192 * @pool: worker_pool to initialize 3193 * 3194 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3195 * 3196 * Return: 0 on success, -errno on failure. Even on failure, all fields 3197 * inside @pool proper are initialized and put_unbound_pool() can be called 3198 * on @pool safely to release it. 3199 */ 3200 static int init_worker_pool(struct worker_pool *pool) 3201 { 3202 spin_lock_init(&pool->lock); 3203 pool->id = -1; 3204 pool->cpu = -1; 3205 pool->node = NUMA_NO_NODE; 3206 pool->flags |= POOL_DISASSOCIATED; 3207 pool->watchdog_ts = jiffies; 3208 INIT_LIST_HEAD(&pool->worklist); 3209 INIT_LIST_HEAD(&pool->idle_list); 3210 hash_init(pool->busy_hash); 3211 3212 setup_deferrable_timer(&pool->idle_timer, idle_worker_timeout, 3213 (unsigned long)pool); 3214 3215 setup_timer(&pool->mayday_timer, pool_mayday_timeout, 3216 (unsigned long)pool); 3217 3218 mutex_init(&pool->manager_arb); 3219 mutex_init(&pool->attach_mutex); 3220 INIT_LIST_HEAD(&pool->workers); 3221 3222 ida_init(&pool->worker_ida); 3223 INIT_HLIST_NODE(&pool->hash_node); 3224 pool->refcnt = 1; 3225 3226 /* shouldn't fail above this point */ 3227 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL); 3228 if (!pool->attrs) 3229 return -ENOMEM; 3230 return 0; 3231 } 3232 3233 static void rcu_free_wq(struct rcu_head *rcu) 3234 { 3235 struct workqueue_struct *wq = 3236 container_of(rcu, struct workqueue_struct, rcu); 3237 3238 if (!(wq->flags & WQ_UNBOUND)) 3239 free_percpu(wq->cpu_pwqs); 3240 else 3241 free_workqueue_attrs(wq->unbound_attrs); 3242 3243 kfree(wq->rescuer); 3244 kfree(wq); 3245 } 3246 3247 static void rcu_free_pool(struct rcu_head *rcu) 3248 { 3249 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3250 3251 ida_destroy(&pool->worker_ida); 3252 free_workqueue_attrs(pool->attrs); 3253 kfree(pool); 3254 } 3255 3256 /** 3257 * put_unbound_pool - put a worker_pool 3258 * @pool: worker_pool to put 3259 * 3260 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU 3261 * safe manner. get_unbound_pool() calls this function on its failure path 3262 * and this function should be able to release pools which went through, 3263 * successfully or not, init_worker_pool(). 3264 * 3265 * Should be called with wq_pool_mutex held. 3266 */ 3267 static void put_unbound_pool(struct worker_pool *pool) 3268 { 3269 DECLARE_COMPLETION_ONSTACK(detach_completion); 3270 struct worker *worker; 3271 3272 lockdep_assert_held(&wq_pool_mutex); 3273 3274 if (--pool->refcnt) 3275 return; 3276 3277 /* sanity checks */ 3278 if (WARN_ON(!(pool->cpu < 0)) || 3279 WARN_ON(!list_empty(&pool->worklist))) 3280 return; 3281 3282 /* release id and unhash */ 3283 if (pool->id >= 0) 3284 idr_remove(&worker_pool_idr, pool->id); 3285 hash_del(&pool->hash_node); 3286 3287 /* 3288 * Become the manager and destroy all workers. Grabbing 3289 * manager_arb prevents @pool's workers from blocking on 3290 * attach_mutex. 3291 */ 3292 mutex_lock(&pool->manager_arb); 3293 3294 spin_lock_irq(&pool->lock); 3295 while ((worker = first_idle_worker(pool))) 3296 destroy_worker(worker); 3297 WARN_ON(pool->nr_workers || pool->nr_idle); 3298 spin_unlock_irq(&pool->lock); 3299 3300 mutex_lock(&pool->attach_mutex); 3301 if (!list_empty(&pool->workers)) 3302 pool->detach_completion = &detach_completion; 3303 mutex_unlock(&pool->attach_mutex); 3304 3305 if (pool->detach_completion) 3306 wait_for_completion(pool->detach_completion); 3307 3308 mutex_unlock(&pool->manager_arb); 3309 3310 /* shut down the timers */ 3311 del_timer_sync(&pool->idle_timer); 3312 del_timer_sync(&pool->mayday_timer); 3313 3314 /* sched-RCU protected to allow dereferences from get_work_pool() */ 3315 call_rcu_sched(&pool->rcu, rcu_free_pool); 3316 } 3317 3318 /** 3319 * get_unbound_pool - get a worker_pool with the specified attributes 3320 * @attrs: the attributes of the worker_pool to get 3321 * 3322 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3323 * reference count and return it. If there already is a matching 3324 * worker_pool, it will be used; otherwise, this function attempts to 3325 * create a new one. 3326 * 3327 * Should be called with wq_pool_mutex held. 3328 * 3329 * Return: On success, a worker_pool with the same attributes as @attrs. 3330 * On failure, %NULL. 3331 */ 3332 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3333 { 3334 u32 hash = wqattrs_hash(attrs); 3335 struct worker_pool *pool; 3336 int node; 3337 int target_node = NUMA_NO_NODE; 3338 3339 lockdep_assert_held(&wq_pool_mutex); 3340 3341 /* do we already have a matching pool? */ 3342 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3343 if (wqattrs_equal(pool->attrs, attrs)) { 3344 pool->refcnt++; 3345 return pool; 3346 } 3347 } 3348 3349 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3350 if (wq_numa_enabled) { 3351 for_each_node(node) { 3352 if (cpumask_subset(attrs->cpumask, 3353 wq_numa_possible_cpumask[node])) { 3354 target_node = node; 3355 break; 3356 } 3357 } 3358 } 3359 3360 /* nope, create a new one */ 3361 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3362 if (!pool || init_worker_pool(pool) < 0) 3363 goto fail; 3364 3365 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3366 copy_workqueue_attrs(pool->attrs, attrs); 3367 pool->node = target_node; 3368 3369 /* 3370 * no_numa isn't a worker_pool attribute, always clear it. See 3371 * 'struct workqueue_attrs' comments for detail. 3372 */ 3373 pool->attrs->no_numa = false; 3374 3375 if (worker_pool_assign_id(pool) < 0) 3376 goto fail; 3377 3378 /* create and start the initial worker */ 3379 if (wq_online && !create_worker(pool)) 3380 goto fail; 3381 3382 /* install */ 3383 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3384 3385 return pool; 3386 fail: 3387 if (pool) 3388 put_unbound_pool(pool); 3389 return NULL; 3390 } 3391 3392 static void rcu_free_pwq(struct rcu_head *rcu) 3393 { 3394 kmem_cache_free(pwq_cache, 3395 container_of(rcu, struct pool_workqueue, rcu)); 3396 } 3397 3398 /* 3399 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3400 * and needs to be destroyed. 3401 */ 3402 static void pwq_unbound_release_workfn(struct work_struct *work) 3403 { 3404 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3405 unbound_release_work); 3406 struct workqueue_struct *wq = pwq->wq; 3407 struct worker_pool *pool = pwq->pool; 3408 bool is_last; 3409 3410 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3411 return; 3412 3413 mutex_lock(&wq->mutex); 3414 list_del_rcu(&pwq->pwqs_node); 3415 is_last = list_empty(&wq->pwqs); 3416 mutex_unlock(&wq->mutex); 3417 3418 mutex_lock(&wq_pool_mutex); 3419 put_unbound_pool(pool); 3420 mutex_unlock(&wq_pool_mutex); 3421 3422 call_rcu_sched(&pwq->rcu, rcu_free_pwq); 3423 3424 /* 3425 * If we're the last pwq going away, @wq is already dead and no one 3426 * is gonna access it anymore. Schedule RCU free. 3427 */ 3428 if (is_last) 3429 call_rcu_sched(&wq->rcu, rcu_free_wq); 3430 } 3431 3432 /** 3433 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3434 * @pwq: target pool_workqueue 3435 * 3436 * If @pwq isn't freezing, set @pwq->max_active to the associated 3437 * workqueue's saved_max_active and activate delayed work items 3438 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3439 */ 3440 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3441 { 3442 struct workqueue_struct *wq = pwq->wq; 3443 bool freezable = wq->flags & WQ_FREEZABLE; 3444 unsigned long flags; 3445 3446 /* for @wq->saved_max_active */ 3447 lockdep_assert_held(&wq->mutex); 3448 3449 /* fast exit for non-freezable wqs */ 3450 if (!freezable && pwq->max_active == wq->saved_max_active) 3451 return; 3452 3453 /* this function can be called during early boot w/ irq disabled */ 3454 spin_lock_irqsave(&pwq->pool->lock, flags); 3455 3456 /* 3457 * During [un]freezing, the caller is responsible for ensuring that 3458 * this function is called at least once after @workqueue_freezing 3459 * is updated and visible. 3460 */ 3461 if (!freezable || !workqueue_freezing) { 3462 pwq->max_active = wq->saved_max_active; 3463 3464 while (!list_empty(&pwq->delayed_works) && 3465 pwq->nr_active < pwq->max_active) 3466 pwq_activate_first_delayed(pwq); 3467 3468 /* 3469 * Need to kick a worker after thawed or an unbound wq's 3470 * max_active is bumped. It's a slow path. Do it always. 3471 */ 3472 wake_up_worker(pwq->pool); 3473 } else { 3474 pwq->max_active = 0; 3475 } 3476 3477 spin_unlock_irqrestore(&pwq->pool->lock, flags); 3478 } 3479 3480 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3481 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3482 struct worker_pool *pool) 3483 { 3484 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3485 3486 memset(pwq, 0, sizeof(*pwq)); 3487 3488 pwq->pool = pool; 3489 pwq->wq = wq; 3490 pwq->flush_color = -1; 3491 pwq->refcnt = 1; 3492 INIT_LIST_HEAD(&pwq->delayed_works); 3493 INIT_LIST_HEAD(&pwq->pwqs_node); 3494 INIT_LIST_HEAD(&pwq->mayday_node); 3495 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3496 } 3497 3498 /* sync @pwq with the current state of its associated wq and link it */ 3499 static void link_pwq(struct pool_workqueue *pwq) 3500 { 3501 struct workqueue_struct *wq = pwq->wq; 3502 3503 lockdep_assert_held(&wq->mutex); 3504 3505 /* may be called multiple times, ignore if already linked */ 3506 if (!list_empty(&pwq->pwqs_node)) 3507 return; 3508 3509 /* set the matching work_color */ 3510 pwq->work_color = wq->work_color; 3511 3512 /* sync max_active to the current setting */ 3513 pwq_adjust_max_active(pwq); 3514 3515 /* link in @pwq */ 3516 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3517 } 3518 3519 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3520 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3521 const struct workqueue_attrs *attrs) 3522 { 3523 struct worker_pool *pool; 3524 struct pool_workqueue *pwq; 3525 3526 lockdep_assert_held(&wq_pool_mutex); 3527 3528 pool = get_unbound_pool(attrs); 3529 if (!pool) 3530 return NULL; 3531 3532 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3533 if (!pwq) { 3534 put_unbound_pool(pool); 3535 return NULL; 3536 } 3537 3538 init_pwq(pwq, wq, pool); 3539 return pwq; 3540 } 3541 3542 /** 3543 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3544 * @attrs: the wq_attrs of the default pwq of the target workqueue 3545 * @node: the target NUMA node 3546 * @cpu_going_down: if >= 0, the CPU to consider as offline 3547 * @cpumask: outarg, the resulting cpumask 3548 * 3549 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3550 * @cpu_going_down is >= 0, that cpu is considered offline during 3551 * calculation. The result is stored in @cpumask. 3552 * 3553 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3554 * enabled and @node has online CPUs requested by @attrs, the returned 3555 * cpumask is the intersection of the possible CPUs of @node and 3556 * @attrs->cpumask. 3557 * 3558 * The caller is responsible for ensuring that the cpumask of @node stays 3559 * stable. 3560 * 3561 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3562 * %false if equal. 3563 */ 3564 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3565 int cpu_going_down, cpumask_t *cpumask) 3566 { 3567 if (!wq_numa_enabled || attrs->no_numa) 3568 goto use_dfl; 3569 3570 /* does @node have any online CPUs @attrs wants? */ 3571 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3572 if (cpu_going_down >= 0) 3573 cpumask_clear_cpu(cpu_going_down, cpumask); 3574 3575 if (cpumask_empty(cpumask)) 3576 goto use_dfl; 3577 3578 /* yeap, return possible CPUs in @node that @attrs wants */ 3579 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3580 return !cpumask_equal(cpumask, attrs->cpumask); 3581 3582 use_dfl: 3583 cpumask_copy(cpumask, attrs->cpumask); 3584 return false; 3585 } 3586 3587 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3588 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3589 int node, 3590 struct pool_workqueue *pwq) 3591 { 3592 struct pool_workqueue *old_pwq; 3593 3594 lockdep_assert_held(&wq_pool_mutex); 3595 lockdep_assert_held(&wq->mutex); 3596 3597 /* link_pwq() can handle duplicate calls */ 3598 link_pwq(pwq); 3599 3600 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3601 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3602 return old_pwq; 3603 } 3604 3605 /* context to store the prepared attrs & pwqs before applying */ 3606 struct apply_wqattrs_ctx { 3607 struct workqueue_struct *wq; /* target workqueue */ 3608 struct workqueue_attrs *attrs; /* attrs to apply */ 3609 struct list_head list; /* queued for batching commit */ 3610 struct pool_workqueue *dfl_pwq; 3611 struct pool_workqueue *pwq_tbl[]; 3612 }; 3613 3614 /* free the resources after success or abort */ 3615 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 3616 { 3617 if (ctx) { 3618 int node; 3619 3620 for_each_node(node) 3621 put_pwq_unlocked(ctx->pwq_tbl[node]); 3622 put_pwq_unlocked(ctx->dfl_pwq); 3623 3624 free_workqueue_attrs(ctx->attrs); 3625 3626 kfree(ctx); 3627 } 3628 } 3629 3630 /* allocate the attrs and pwqs for later installation */ 3631 static struct apply_wqattrs_ctx * 3632 apply_wqattrs_prepare(struct workqueue_struct *wq, 3633 const struct workqueue_attrs *attrs) 3634 { 3635 struct apply_wqattrs_ctx *ctx; 3636 struct workqueue_attrs *new_attrs, *tmp_attrs; 3637 int node; 3638 3639 lockdep_assert_held(&wq_pool_mutex); 3640 3641 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]), 3642 GFP_KERNEL); 3643 3644 new_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3645 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3646 if (!ctx || !new_attrs || !tmp_attrs) 3647 goto out_free; 3648 3649 /* 3650 * Calculate the attrs of the default pwq. 3651 * If the user configured cpumask doesn't overlap with the 3652 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 3653 */ 3654 copy_workqueue_attrs(new_attrs, attrs); 3655 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask); 3656 if (unlikely(cpumask_empty(new_attrs->cpumask))) 3657 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask); 3658 3659 /* 3660 * We may create multiple pwqs with differing cpumasks. Make a 3661 * copy of @new_attrs which will be modified and used to obtain 3662 * pools. 3663 */ 3664 copy_workqueue_attrs(tmp_attrs, new_attrs); 3665 3666 /* 3667 * If something goes wrong during CPU up/down, we'll fall back to 3668 * the default pwq covering whole @attrs->cpumask. Always create 3669 * it even if we don't use it immediately. 3670 */ 3671 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3672 if (!ctx->dfl_pwq) 3673 goto out_free; 3674 3675 for_each_node(node) { 3676 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 3677 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3678 if (!ctx->pwq_tbl[node]) 3679 goto out_free; 3680 } else { 3681 ctx->dfl_pwq->refcnt++; 3682 ctx->pwq_tbl[node] = ctx->dfl_pwq; 3683 } 3684 } 3685 3686 /* save the user configured attrs and sanitize it. */ 3687 copy_workqueue_attrs(new_attrs, attrs); 3688 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3689 ctx->attrs = new_attrs; 3690 3691 ctx->wq = wq; 3692 free_workqueue_attrs(tmp_attrs); 3693 return ctx; 3694 3695 out_free: 3696 free_workqueue_attrs(tmp_attrs); 3697 free_workqueue_attrs(new_attrs); 3698 apply_wqattrs_cleanup(ctx); 3699 return NULL; 3700 } 3701 3702 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 3703 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 3704 { 3705 int node; 3706 3707 /* all pwqs have been created successfully, let's install'em */ 3708 mutex_lock(&ctx->wq->mutex); 3709 3710 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 3711 3712 /* save the previous pwq and install the new one */ 3713 for_each_node(node) 3714 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 3715 ctx->pwq_tbl[node]); 3716 3717 /* @dfl_pwq might not have been used, ensure it's linked */ 3718 link_pwq(ctx->dfl_pwq); 3719 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 3720 3721 mutex_unlock(&ctx->wq->mutex); 3722 } 3723 3724 static void apply_wqattrs_lock(void) 3725 { 3726 /* CPUs should stay stable across pwq creations and installations */ 3727 get_online_cpus(); 3728 mutex_lock(&wq_pool_mutex); 3729 } 3730 3731 static void apply_wqattrs_unlock(void) 3732 { 3733 mutex_unlock(&wq_pool_mutex); 3734 put_online_cpus(); 3735 } 3736 3737 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 3738 const struct workqueue_attrs *attrs) 3739 { 3740 struct apply_wqattrs_ctx *ctx; 3741 3742 /* only unbound workqueues can change attributes */ 3743 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 3744 return -EINVAL; 3745 3746 /* creating multiple pwqs breaks ordering guarantee */ 3747 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))) 3748 return -EINVAL; 3749 3750 ctx = apply_wqattrs_prepare(wq, attrs); 3751 if (!ctx) 3752 return -ENOMEM; 3753 3754 /* the ctx has been prepared successfully, let's commit it */ 3755 apply_wqattrs_commit(ctx); 3756 apply_wqattrs_cleanup(ctx); 3757 3758 return 0; 3759 } 3760 3761 /** 3762 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 3763 * @wq: the target workqueue 3764 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 3765 * 3766 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 3767 * machines, this function maps a separate pwq to each NUMA node with 3768 * possibles CPUs in @attrs->cpumask so that work items are affine to the 3769 * NUMA node it was issued on. Older pwqs are released as in-flight work 3770 * items finish. Note that a work item which repeatedly requeues itself 3771 * back-to-back will stay on its current pwq. 3772 * 3773 * Performs GFP_KERNEL allocations. 3774 * 3775 * Return: 0 on success and -errno on failure. 3776 */ 3777 int apply_workqueue_attrs(struct workqueue_struct *wq, 3778 const struct workqueue_attrs *attrs) 3779 { 3780 int ret; 3781 3782 apply_wqattrs_lock(); 3783 ret = apply_workqueue_attrs_locked(wq, attrs); 3784 apply_wqattrs_unlock(); 3785 3786 return ret; 3787 } 3788 3789 /** 3790 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 3791 * @wq: the target workqueue 3792 * @cpu: the CPU coming up or going down 3793 * @online: whether @cpu is coming up or going down 3794 * 3795 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 3796 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 3797 * @wq accordingly. 3798 * 3799 * If NUMA affinity can't be adjusted due to memory allocation failure, it 3800 * falls back to @wq->dfl_pwq which may not be optimal but is always 3801 * correct. 3802 * 3803 * Note that when the last allowed CPU of a NUMA node goes offline for a 3804 * workqueue with a cpumask spanning multiple nodes, the workers which were 3805 * already executing the work items for the workqueue will lose their CPU 3806 * affinity and may execute on any CPU. This is similar to how per-cpu 3807 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 3808 * affinity, it's the user's responsibility to flush the work item from 3809 * CPU_DOWN_PREPARE. 3810 */ 3811 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 3812 bool online) 3813 { 3814 int node = cpu_to_node(cpu); 3815 int cpu_off = online ? -1 : cpu; 3816 struct pool_workqueue *old_pwq = NULL, *pwq; 3817 struct workqueue_attrs *target_attrs; 3818 cpumask_t *cpumask; 3819 3820 lockdep_assert_held(&wq_pool_mutex); 3821 3822 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 3823 wq->unbound_attrs->no_numa) 3824 return; 3825 3826 /* 3827 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 3828 * Let's use a preallocated one. The following buf is protected by 3829 * CPU hotplug exclusion. 3830 */ 3831 target_attrs = wq_update_unbound_numa_attrs_buf; 3832 cpumask = target_attrs->cpumask; 3833 3834 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 3835 pwq = unbound_pwq_by_node(wq, node); 3836 3837 /* 3838 * Let's determine what needs to be done. If the target cpumask is 3839 * different from the default pwq's, we need to compare it to @pwq's 3840 * and create a new one if they don't match. If the target cpumask 3841 * equals the default pwq's, the default pwq should be used. 3842 */ 3843 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 3844 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 3845 return; 3846 } else { 3847 goto use_dfl_pwq; 3848 } 3849 3850 /* create a new pwq */ 3851 pwq = alloc_unbound_pwq(wq, target_attrs); 3852 if (!pwq) { 3853 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 3854 wq->name); 3855 goto use_dfl_pwq; 3856 } 3857 3858 /* Install the new pwq. */ 3859 mutex_lock(&wq->mutex); 3860 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 3861 goto out_unlock; 3862 3863 use_dfl_pwq: 3864 mutex_lock(&wq->mutex); 3865 spin_lock_irq(&wq->dfl_pwq->pool->lock); 3866 get_pwq(wq->dfl_pwq); 3867 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 3868 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 3869 out_unlock: 3870 mutex_unlock(&wq->mutex); 3871 put_pwq_unlocked(old_pwq); 3872 } 3873 3874 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 3875 { 3876 bool highpri = wq->flags & WQ_HIGHPRI; 3877 int cpu, ret; 3878 3879 if (!(wq->flags & WQ_UNBOUND)) { 3880 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 3881 if (!wq->cpu_pwqs) 3882 return -ENOMEM; 3883 3884 for_each_possible_cpu(cpu) { 3885 struct pool_workqueue *pwq = 3886 per_cpu_ptr(wq->cpu_pwqs, cpu); 3887 struct worker_pool *cpu_pools = 3888 per_cpu(cpu_worker_pools, cpu); 3889 3890 init_pwq(pwq, wq, &cpu_pools[highpri]); 3891 3892 mutex_lock(&wq->mutex); 3893 link_pwq(pwq); 3894 mutex_unlock(&wq->mutex); 3895 } 3896 return 0; 3897 } else if (wq->flags & __WQ_ORDERED) { 3898 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 3899 /* there should only be single pwq for ordering guarantee */ 3900 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 3901 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 3902 "ordering guarantee broken for workqueue %s\n", wq->name); 3903 return ret; 3904 } else { 3905 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 3906 } 3907 } 3908 3909 static int wq_clamp_max_active(int max_active, unsigned int flags, 3910 const char *name) 3911 { 3912 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 3913 3914 if (max_active < 1 || max_active > lim) 3915 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 3916 max_active, name, 1, lim); 3917 3918 return clamp_val(max_active, 1, lim); 3919 } 3920 3921 struct workqueue_struct *__alloc_workqueue_key(const char *fmt, 3922 unsigned int flags, 3923 int max_active, 3924 struct lock_class_key *key, 3925 const char *lock_name, ...) 3926 { 3927 size_t tbl_size = 0; 3928 va_list args; 3929 struct workqueue_struct *wq; 3930 struct pool_workqueue *pwq; 3931 3932 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 3933 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 3934 flags |= WQ_UNBOUND; 3935 3936 /* allocate wq and format name */ 3937 if (flags & WQ_UNBOUND) 3938 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 3939 3940 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 3941 if (!wq) 3942 return NULL; 3943 3944 if (flags & WQ_UNBOUND) { 3945 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3946 if (!wq->unbound_attrs) 3947 goto err_free_wq; 3948 } 3949 3950 va_start(args, lock_name); 3951 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 3952 va_end(args); 3953 3954 max_active = max_active ?: WQ_DFL_ACTIVE; 3955 max_active = wq_clamp_max_active(max_active, flags, wq->name); 3956 3957 /* init wq */ 3958 wq->flags = flags; 3959 wq->saved_max_active = max_active; 3960 mutex_init(&wq->mutex); 3961 atomic_set(&wq->nr_pwqs_to_flush, 0); 3962 INIT_LIST_HEAD(&wq->pwqs); 3963 INIT_LIST_HEAD(&wq->flusher_queue); 3964 INIT_LIST_HEAD(&wq->flusher_overflow); 3965 INIT_LIST_HEAD(&wq->maydays); 3966 3967 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 3968 INIT_LIST_HEAD(&wq->list); 3969 3970 if (alloc_and_link_pwqs(wq) < 0) 3971 goto err_free_wq; 3972 3973 /* 3974 * Workqueues which may be used during memory reclaim should 3975 * have a rescuer to guarantee forward progress. 3976 */ 3977 if (flags & WQ_MEM_RECLAIM) { 3978 struct worker *rescuer; 3979 3980 rescuer = alloc_worker(NUMA_NO_NODE); 3981 if (!rescuer) 3982 goto err_destroy; 3983 3984 rescuer->rescue_wq = wq; 3985 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", 3986 wq->name); 3987 if (IS_ERR(rescuer->task)) { 3988 kfree(rescuer); 3989 goto err_destroy; 3990 } 3991 3992 wq->rescuer = rescuer; 3993 kthread_bind_mask(rescuer->task, cpu_possible_mask); 3994 wake_up_process(rescuer->task); 3995 } 3996 3997 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 3998 goto err_destroy; 3999 4000 /* 4001 * wq_pool_mutex protects global freeze state and workqueues list. 4002 * Grab it, adjust max_active and add the new @wq to workqueues 4003 * list. 4004 */ 4005 mutex_lock(&wq_pool_mutex); 4006 4007 mutex_lock(&wq->mutex); 4008 for_each_pwq(pwq, wq) 4009 pwq_adjust_max_active(pwq); 4010 mutex_unlock(&wq->mutex); 4011 4012 list_add_tail_rcu(&wq->list, &workqueues); 4013 4014 mutex_unlock(&wq_pool_mutex); 4015 4016 return wq; 4017 4018 err_free_wq: 4019 free_workqueue_attrs(wq->unbound_attrs); 4020 kfree(wq); 4021 return NULL; 4022 err_destroy: 4023 destroy_workqueue(wq); 4024 return NULL; 4025 } 4026 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 4027 4028 /** 4029 * destroy_workqueue - safely terminate a workqueue 4030 * @wq: target workqueue 4031 * 4032 * Safely destroy a workqueue. All work currently pending will be done first. 4033 */ 4034 void destroy_workqueue(struct workqueue_struct *wq) 4035 { 4036 struct pool_workqueue *pwq; 4037 int node; 4038 4039 /* drain it before proceeding with destruction */ 4040 drain_workqueue(wq); 4041 4042 /* sanity checks */ 4043 mutex_lock(&wq->mutex); 4044 for_each_pwq(pwq, wq) { 4045 int i; 4046 4047 for (i = 0; i < WORK_NR_COLORS; i++) { 4048 if (WARN_ON(pwq->nr_in_flight[i])) { 4049 mutex_unlock(&wq->mutex); 4050 show_workqueue_state(); 4051 return; 4052 } 4053 } 4054 4055 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) || 4056 WARN_ON(pwq->nr_active) || 4057 WARN_ON(!list_empty(&pwq->delayed_works))) { 4058 mutex_unlock(&wq->mutex); 4059 show_workqueue_state(); 4060 return; 4061 } 4062 } 4063 mutex_unlock(&wq->mutex); 4064 4065 /* 4066 * wq list is used to freeze wq, remove from list after 4067 * flushing is complete in case freeze races us. 4068 */ 4069 mutex_lock(&wq_pool_mutex); 4070 list_del_rcu(&wq->list); 4071 mutex_unlock(&wq_pool_mutex); 4072 4073 workqueue_sysfs_unregister(wq); 4074 4075 if (wq->rescuer) 4076 kthread_stop(wq->rescuer->task); 4077 4078 if (!(wq->flags & WQ_UNBOUND)) { 4079 /* 4080 * The base ref is never dropped on per-cpu pwqs. Directly 4081 * schedule RCU free. 4082 */ 4083 call_rcu_sched(&wq->rcu, rcu_free_wq); 4084 } else { 4085 /* 4086 * We're the sole accessor of @wq at this point. Directly 4087 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4088 * @wq will be freed when the last pwq is released. 4089 */ 4090 for_each_node(node) { 4091 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4092 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4093 put_pwq_unlocked(pwq); 4094 } 4095 4096 /* 4097 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4098 * put. Don't access it afterwards. 4099 */ 4100 pwq = wq->dfl_pwq; 4101 wq->dfl_pwq = NULL; 4102 put_pwq_unlocked(pwq); 4103 } 4104 } 4105 EXPORT_SYMBOL_GPL(destroy_workqueue); 4106 4107 /** 4108 * workqueue_set_max_active - adjust max_active of a workqueue 4109 * @wq: target workqueue 4110 * @max_active: new max_active value. 4111 * 4112 * Set max_active of @wq to @max_active. 4113 * 4114 * CONTEXT: 4115 * Don't call from IRQ context. 4116 */ 4117 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4118 { 4119 struct pool_workqueue *pwq; 4120 4121 /* disallow meddling with max_active for ordered workqueues */ 4122 if (WARN_ON(wq->flags & __WQ_ORDERED)) 4123 return; 4124 4125 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4126 4127 mutex_lock(&wq->mutex); 4128 4129 wq->saved_max_active = max_active; 4130 4131 for_each_pwq(pwq, wq) 4132 pwq_adjust_max_active(pwq); 4133 4134 mutex_unlock(&wq->mutex); 4135 } 4136 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4137 4138 /** 4139 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4140 * 4141 * Determine whether %current is a workqueue rescuer. Can be used from 4142 * work functions to determine whether it's being run off the rescuer task. 4143 * 4144 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4145 */ 4146 bool current_is_workqueue_rescuer(void) 4147 { 4148 struct worker *worker = current_wq_worker(); 4149 4150 return worker && worker->rescue_wq; 4151 } 4152 4153 /** 4154 * workqueue_congested - test whether a workqueue is congested 4155 * @cpu: CPU in question 4156 * @wq: target workqueue 4157 * 4158 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4159 * no synchronization around this function and the test result is 4160 * unreliable and only useful as advisory hints or for debugging. 4161 * 4162 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4163 * Note that both per-cpu and unbound workqueues may be associated with 4164 * multiple pool_workqueues which have separate congested states. A 4165 * workqueue being congested on one CPU doesn't mean the workqueue is also 4166 * contested on other CPUs / NUMA nodes. 4167 * 4168 * Return: 4169 * %true if congested, %false otherwise. 4170 */ 4171 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4172 { 4173 struct pool_workqueue *pwq; 4174 bool ret; 4175 4176 rcu_read_lock_sched(); 4177 4178 if (cpu == WORK_CPU_UNBOUND) 4179 cpu = smp_processor_id(); 4180 4181 if (!(wq->flags & WQ_UNBOUND)) 4182 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4183 else 4184 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4185 4186 ret = !list_empty(&pwq->delayed_works); 4187 rcu_read_unlock_sched(); 4188 4189 return ret; 4190 } 4191 EXPORT_SYMBOL_GPL(workqueue_congested); 4192 4193 /** 4194 * work_busy - test whether a work is currently pending or running 4195 * @work: the work to be tested 4196 * 4197 * Test whether @work is currently pending or running. There is no 4198 * synchronization around this function and the test result is 4199 * unreliable and only useful as advisory hints or for debugging. 4200 * 4201 * Return: 4202 * OR'd bitmask of WORK_BUSY_* bits. 4203 */ 4204 unsigned int work_busy(struct work_struct *work) 4205 { 4206 struct worker_pool *pool; 4207 unsigned long flags; 4208 unsigned int ret = 0; 4209 4210 if (work_pending(work)) 4211 ret |= WORK_BUSY_PENDING; 4212 4213 local_irq_save(flags); 4214 pool = get_work_pool(work); 4215 if (pool) { 4216 spin_lock(&pool->lock); 4217 if (find_worker_executing_work(pool, work)) 4218 ret |= WORK_BUSY_RUNNING; 4219 spin_unlock(&pool->lock); 4220 } 4221 local_irq_restore(flags); 4222 4223 return ret; 4224 } 4225 EXPORT_SYMBOL_GPL(work_busy); 4226 4227 /** 4228 * set_worker_desc - set description for the current work item 4229 * @fmt: printf-style format string 4230 * @...: arguments for the format string 4231 * 4232 * This function can be called by a running work function to describe what 4233 * the work item is about. If the worker task gets dumped, this 4234 * information will be printed out together to help debugging. The 4235 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4236 */ 4237 void set_worker_desc(const char *fmt, ...) 4238 { 4239 struct worker *worker = current_wq_worker(); 4240 va_list args; 4241 4242 if (worker) { 4243 va_start(args, fmt); 4244 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4245 va_end(args); 4246 worker->desc_valid = true; 4247 } 4248 } 4249 4250 /** 4251 * print_worker_info - print out worker information and description 4252 * @log_lvl: the log level to use when printing 4253 * @task: target task 4254 * 4255 * If @task is a worker and currently executing a work item, print out the 4256 * name of the workqueue being serviced and worker description set with 4257 * set_worker_desc() by the currently executing work item. 4258 * 4259 * This function can be safely called on any task as long as the 4260 * task_struct itself is accessible. While safe, this function isn't 4261 * synchronized and may print out mixups or garbages of limited length. 4262 */ 4263 void print_worker_info(const char *log_lvl, struct task_struct *task) 4264 { 4265 work_func_t *fn = NULL; 4266 char name[WQ_NAME_LEN] = { }; 4267 char desc[WORKER_DESC_LEN] = { }; 4268 struct pool_workqueue *pwq = NULL; 4269 struct workqueue_struct *wq = NULL; 4270 bool desc_valid = false; 4271 struct worker *worker; 4272 4273 if (!(task->flags & PF_WQ_WORKER)) 4274 return; 4275 4276 /* 4277 * This function is called without any synchronization and @task 4278 * could be in any state. Be careful with dereferences. 4279 */ 4280 worker = kthread_probe_data(task); 4281 4282 /* 4283 * Carefully copy the associated workqueue's workfn and name. Keep 4284 * the original last '\0' in case the original contains garbage. 4285 */ 4286 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4287 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4288 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4289 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4290 4291 /* copy worker description */ 4292 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid)); 4293 if (desc_valid) 4294 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4295 4296 if (fn || name[0] || desc[0]) { 4297 printk("%sWorkqueue: %s %pf", log_lvl, name, fn); 4298 if (desc[0]) 4299 pr_cont(" (%s)", desc); 4300 pr_cont("\n"); 4301 } 4302 } 4303 4304 static void pr_cont_pool_info(struct worker_pool *pool) 4305 { 4306 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4307 if (pool->node != NUMA_NO_NODE) 4308 pr_cont(" node=%d", pool->node); 4309 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4310 } 4311 4312 static void pr_cont_work(bool comma, struct work_struct *work) 4313 { 4314 if (work->func == wq_barrier_func) { 4315 struct wq_barrier *barr; 4316 4317 barr = container_of(work, struct wq_barrier, work); 4318 4319 pr_cont("%s BAR(%d)", comma ? "," : "", 4320 task_pid_nr(barr->task)); 4321 } else { 4322 pr_cont("%s %pf", comma ? "," : "", work->func); 4323 } 4324 } 4325 4326 static void show_pwq(struct pool_workqueue *pwq) 4327 { 4328 struct worker_pool *pool = pwq->pool; 4329 struct work_struct *work; 4330 struct worker *worker; 4331 bool has_in_flight = false, has_pending = false; 4332 int bkt; 4333 4334 pr_info(" pwq %d:", pool->id); 4335 pr_cont_pool_info(pool); 4336 4337 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active, 4338 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4339 4340 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4341 if (worker->current_pwq == pwq) { 4342 has_in_flight = true; 4343 break; 4344 } 4345 } 4346 if (has_in_flight) { 4347 bool comma = false; 4348 4349 pr_info(" in-flight:"); 4350 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4351 if (worker->current_pwq != pwq) 4352 continue; 4353 4354 pr_cont("%s %d%s:%pf", comma ? "," : "", 4355 task_pid_nr(worker->task), 4356 worker == pwq->wq->rescuer ? "(RESCUER)" : "", 4357 worker->current_func); 4358 list_for_each_entry(work, &worker->scheduled, entry) 4359 pr_cont_work(false, work); 4360 comma = true; 4361 } 4362 pr_cont("\n"); 4363 } 4364 4365 list_for_each_entry(work, &pool->worklist, entry) { 4366 if (get_work_pwq(work) == pwq) { 4367 has_pending = true; 4368 break; 4369 } 4370 } 4371 if (has_pending) { 4372 bool comma = false; 4373 4374 pr_info(" pending:"); 4375 list_for_each_entry(work, &pool->worklist, entry) { 4376 if (get_work_pwq(work) != pwq) 4377 continue; 4378 4379 pr_cont_work(comma, work); 4380 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4381 } 4382 pr_cont("\n"); 4383 } 4384 4385 if (!list_empty(&pwq->delayed_works)) { 4386 bool comma = false; 4387 4388 pr_info(" delayed:"); 4389 list_for_each_entry(work, &pwq->delayed_works, entry) { 4390 pr_cont_work(comma, work); 4391 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4392 } 4393 pr_cont("\n"); 4394 } 4395 } 4396 4397 /** 4398 * show_workqueue_state - dump workqueue state 4399 * 4400 * Called from a sysrq handler or try_to_freeze_tasks() and prints out 4401 * all busy workqueues and pools. 4402 */ 4403 void show_workqueue_state(void) 4404 { 4405 struct workqueue_struct *wq; 4406 struct worker_pool *pool; 4407 unsigned long flags; 4408 int pi; 4409 4410 rcu_read_lock_sched(); 4411 4412 pr_info("Showing busy workqueues and worker pools:\n"); 4413 4414 list_for_each_entry_rcu(wq, &workqueues, list) { 4415 struct pool_workqueue *pwq; 4416 bool idle = true; 4417 4418 for_each_pwq(pwq, wq) { 4419 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) { 4420 idle = false; 4421 break; 4422 } 4423 } 4424 if (idle) 4425 continue; 4426 4427 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4428 4429 for_each_pwq(pwq, wq) { 4430 spin_lock_irqsave(&pwq->pool->lock, flags); 4431 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4432 show_pwq(pwq); 4433 spin_unlock_irqrestore(&pwq->pool->lock, flags); 4434 } 4435 } 4436 4437 for_each_pool(pool, pi) { 4438 struct worker *worker; 4439 bool first = true; 4440 4441 spin_lock_irqsave(&pool->lock, flags); 4442 if (pool->nr_workers == pool->nr_idle) 4443 goto next_pool; 4444 4445 pr_info("pool %d:", pool->id); 4446 pr_cont_pool_info(pool); 4447 pr_cont(" hung=%us workers=%d", 4448 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000, 4449 pool->nr_workers); 4450 if (pool->manager) 4451 pr_cont(" manager: %d", 4452 task_pid_nr(pool->manager->task)); 4453 list_for_each_entry(worker, &pool->idle_list, entry) { 4454 pr_cont(" %s%d", first ? "idle: " : "", 4455 task_pid_nr(worker->task)); 4456 first = false; 4457 } 4458 pr_cont("\n"); 4459 next_pool: 4460 spin_unlock_irqrestore(&pool->lock, flags); 4461 } 4462 4463 rcu_read_unlock_sched(); 4464 } 4465 4466 /* 4467 * CPU hotplug. 4468 * 4469 * There are two challenges in supporting CPU hotplug. Firstly, there 4470 * are a lot of assumptions on strong associations among work, pwq and 4471 * pool which make migrating pending and scheduled works very 4472 * difficult to implement without impacting hot paths. Secondly, 4473 * worker pools serve mix of short, long and very long running works making 4474 * blocked draining impractical. 4475 * 4476 * This is solved by allowing the pools to be disassociated from the CPU 4477 * running as an unbound one and allowing it to be reattached later if the 4478 * cpu comes back online. 4479 */ 4480 4481 static void wq_unbind_fn(struct work_struct *work) 4482 { 4483 int cpu = smp_processor_id(); 4484 struct worker_pool *pool; 4485 struct worker *worker; 4486 4487 for_each_cpu_worker_pool(pool, cpu) { 4488 mutex_lock(&pool->attach_mutex); 4489 spin_lock_irq(&pool->lock); 4490 4491 /* 4492 * We've blocked all attach/detach operations. Make all workers 4493 * unbound and set DISASSOCIATED. Before this, all workers 4494 * except for the ones which are still executing works from 4495 * before the last CPU down must be on the cpu. After 4496 * this, they may become diasporas. 4497 */ 4498 for_each_pool_worker(worker, pool) 4499 worker->flags |= WORKER_UNBOUND; 4500 4501 pool->flags |= POOL_DISASSOCIATED; 4502 4503 spin_unlock_irq(&pool->lock); 4504 mutex_unlock(&pool->attach_mutex); 4505 4506 /* 4507 * Call schedule() so that we cross rq->lock and thus can 4508 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4509 * This is necessary as scheduler callbacks may be invoked 4510 * from other cpus. 4511 */ 4512 schedule(); 4513 4514 /* 4515 * Sched callbacks are disabled now. Zap nr_running. 4516 * After this, nr_running stays zero and need_more_worker() 4517 * and keep_working() are always true as long as the 4518 * worklist is not empty. This pool now behaves as an 4519 * unbound (in terms of concurrency management) pool which 4520 * are served by workers tied to the pool. 4521 */ 4522 atomic_set(&pool->nr_running, 0); 4523 4524 /* 4525 * With concurrency management just turned off, a busy 4526 * worker blocking could lead to lengthy stalls. Kick off 4527 * unbound chain execution of currently pending work items. 4528 */ 4529 spin_lock_irq(&pool->lock); 4530 wake_up_worker(pool); 4531 spin_unlock_irq(&pool->lock); 4532 } 4533 } 4534 4535 /** 4536 * rebind_workers - rebind all workers of a pool to the associated CPU 4537 * @pool: pool of interest 4538 * 4539 * @pool->cpu is coming online. Rebind all workers to the CPU. 4540 */ 4541 static void rebind_workers(struct worker_pool *pool) 4542 { 4543 struct worker *worker; 4544 4545 lockdep_assert_held(&pool->attach_mutex); 4546 4547 /* 4548 * Restore CPU affinity of all workers. As all idle workers should 4549 * be on the run-queue of the associated CPU before any local 4550 * wake-ups for concurrency management happen, restore CPU affinity 4551 * of all workers first and then clear UNBOUND. As we're called 4552 * from CPU_ONLINE, the following shouldn't fail. 4553 */ 4554 for_each_pool_worker(worker, pool) 4555 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4556 pool->attrs->cpumask) < 0); 4557 4558 spin_lock_irq(&pool->lock); 4559 4560 /* 4561 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED 4562 * w/o preceding DOWN_PREPARE. Work around it. CPU hotplug is 4563 * being reworked and this can go away in time. 4564 */ 4565 if (!(pool->flags & POOL_DISASSOCIATED)) { 4566 spin_unlock_irq(&pool->lock); 4567 return; 4568 } 4569 4570 pool->flags &= ~POOL_DISASSOCIATED; 4571 4572 for_each_pool_worker(worker, pool) { 4573 unsigned int worker_flags = worker->flags; 4574 4575 /* 4576 * A bound idle worker should actually be on the runqueue 4577 * of the associated CPU for local wake-ups targeting it to 4578 * work. Kick all idle workers so that they migrate to the 4579 * associated CPU. Doing this in the same loop as 4580 * replacing UNBOUND with REBOUND is safe as no worker will 4581 * be bound before @pool->lock is released. 4582 */ 4583 if (worker_flags & WORKER_IDLE) 4584 wake_up_process(worker->task); 4585 4586 /* 4587 * We want to clear UNBOUND but can't directly call 4588 * worker_clr_flags() or adjust nr_running. Atomically 4589 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4590 * @worker will clear REBOUND using worker_clr_flags() when 4591 * it initiates the next execution cycle thus restoring 4592 * concurrency management. Note that when or whether 4593 * @worker clears REBOUND doesn't affect correctness. 4594 * 4595 * ACCESS_ONCE() is necessary because @worker->flags may be 4596 * tested without holding any lock in 4597 * wq_worker_waking_up(). Without it, NOT_RUNNING test may 4598 * fail incorrectly leading to premature concurrency 4599 * management operations. 4600 */ 4601 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4602 worker_flags |= WORKER_REBOUND; 4603 worker_flags &= ~WORKER_UNBOUND; 4604 ACCESS_ONCE(worker->flags) = worker_flags; 4605 } 4606 4607 spin_unlock_irq(&pool->lock); 4608 } 4609 4610 /** 4611 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4612 * @pool: unbound pool of interest 4613 * @cpu: the CPU which is coming up 4614 * 4615 * An unbound pool may end up with a cpumask which doesn't have any online 4616 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4617 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4618 * online CPU before, cpus_allowed of all its workers should be restored. 4619 */ 4620 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 4621 { 4622 static cpumask_t cpumask; 4623 struct worker *worker; 4624 4625 lockdep_assert_held(&pool->attach_mutex); 4626 4627 /* is @cpu allowed for @pool? */ 4628 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 4629 return; 4630 4631 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 4632 4633 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 4634 for_each_pool_worker(worker, pool) 4635 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 4636 } 4637 4638 int workqueue_prepare_cpu(unsigned int cpu) 4639 { 4640 struct worker_pool *pool; 4641 4642 for_each_cpu_worker_pool(pool, cpu) { 4643 if (pool->nr_workers) 4644 continue; 4645 if (!create_worker(pool)) 4646 return -ENOMEM; 4647 } 4648 return 0; 4649 } 4650 4651 int workqueue_online_cpu(unsigned int cpu) 4652 { 4653 struct worker_pool *pool; 4654 struct workqueue_struct *wq; 4655 int pi; 4656 4657 mutex_lock(&wq_pool_mutex); 4658 4659 for_each_pool(pool, pi) { 4660 mutex_lock(&pool->attach_mutex); 4661 4662 if (pool->cpu == cpu) 4663 rebind_workers(pool); 4664 else if (pool->cpu < 0) 4665 restore_unbound_workers_cpumask(pool, cpu); 4666 4667 mutex_unlock(&pool->attach_mutex); 4668 } 4669 4670 /* update NUMA affinity of unbound workqueues */ 4671 list_for_each_entry(wq, &workqueues, list) 4672 wq_update_unbound_numa(wq, cpu, true); 4673 4674 mutex_unlock(&wq_pool_mutex); 4675 return 0; 4676 } 4677 4678 int workqueue_offline_cpu(unsigned int cpu) 4679 { 4680 struct work_struct unbind_work; 4681 struct workqueue_struct *wq; 4682 4683 /* unbinding per-cpu workers should happen on the local CPU */ 4684 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn); 4685 queue_work_on(cpu, system_highpri_wq, &unbind_work); 4686 4687 /* update NUMA affinity of unbound workqueues */ 4688 mutex_lock(&wq_pool_mutex); 4689 list_for_each_entry(wq, &workqueues, list) 4690 wq_update_unbound_numa(wq, cpu, false); 4691 mutex_unlock(&wq_pool_mutex); 4692 4693 /* wait for per-cpu unbinding to finish */ 4694 flush_work(&unbind_work); 4695 destroy_work_on_stack(&unbind_work); 4696 return 0; 4697 } 4698 4699 #ifdef CONFIG_SMP 4700 4701 struct work_for_cpu { 4702 struct work_struct work; 4703 long (*fn)(void *); 4704 void *arg; 4705 long ret; 4706 }; 4707 4708 static void work_for_cpu_fn(struct work_struct *work) 4709 { 4710 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 4711 4712 wfc->ret = wfc->fn(wfc->arg); 4713 } 4714 4715 /** 4716 * work_on_cpu - run a function in thread context on a particular cpu 4717 * @cpu: the cpu to run on 4718 * @fn: the function to run 4719 * @arg: the function arg 4720 * 4721 * It is up to the caller to ensure that the cpu doesn't go offline. 4722 * The caller must not hold any locks which would prevent @fn from completing. 4723 * 4724 * Return: The value @fn returns. 4725 */ 4726 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 4727 { 4728 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 4729 4730 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 4731 schedule_work_on(cpu, &wfc.work); 4732 flush_work(&wfc.work); 4733 destroy_work_on_stack(&wfc.work); 4734 return wfc.ret; 4735 } 4736 EXPORT_SYMBOL_GPL(work_on_cpu); 4737 4738 /** 4739 * work_on_cpu_safe - run a function in thread context on a particular cpu 4740 * @cpu: the cpu to run on 4741 * @fn: the function to run 4742 * @arg: the function argument 4743 * 4744 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 4745 * any locks which would prevent @fn from completing. 4746 * 4747 * Return: The value @fn returns. 4748 */ 4749 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) 4750 { 4751 long ret = -ENODEV; 4752 4753 get_online_cpus(); 4754 if (cpu_online(cpu)) 4755 ret = work_on_cpu(cpu, fn, arg); 4756 put_online_cpus(); 4757 return ret; 4758 } 4759 EXPORT_SYMBOL_GPL(work_on_cpu_safe); 4760 #endif /* CONFIG_SMP */ 4761 4762 #ifdef CONFIG_FREEZER 4763 4764 /** 4765 * freeze_workqueues_begin - begin freezing workqueues 4766 * 4767 * Start freezing workqueues. After this function returns, all freezable 4768 * workqueues will queue new works to their delayed_works list instead of 4769 * pool->worklist. 4770 * 4771 * CONTEXT: 4772 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4773 */ 4774 void freeze_workqueues_begin(void) 4775 { 4776 struct workqueue_struct *wq; 4777 struct pool_workqueue *pwq; 4778 4779 mutex_lock(&wq_pool_mutex); 4780 4781 WARN_ON_ONCE(workqueue_freezing); 4782 workqueue_freezing = true; 4783 4784 list_for_each_entry(wq, &workqueues, list) { 4785 mutex_lock(&wq->mutex); 4786 for_each_pwq(pwq, wq) 4787 pwq_adjust_max_active(pwq); 4788 mutex_unlock(&wq->mutex); 4789 } 4790 4791 mutex_unlock(&wq_pool_mutex); 4792 } 4793 4794 /** 4795 * freeze_workqueues_busy - are freezable workqueues still busy? 4796 * 4797 * Check whether freezing is complete. This function must be called 4798 * between freeze_workqueues_begin() and thaw_workqueues(). 4799 * 4800 * CONTEXT: 4801 * Grabs and releases wq_pool_mutex. 4802 * 4803 * Return: 4804 * %true if some freezable workqueues are still busy. %false if freezing 4805 * is complete. 4806 */ 4807 bool freeze_workqueues_busy(void) 4808 { 4809 bool busy = false; 4810 struct workqueue_struct *wq; 4811 struct pool_workqueue *pwq; 4812 4813 mutex_lock(&wq_pool_mutex); 4814 4815 WARN_ON_ONCE(!workqueue_freezing); 4816 4817 list_for_each_entry(wq, &workqueues, list) { 4818 if (!(wq->flags & WQ_FREEZABLE)) 4819 continue; 4820 /* 4821 * nr_active is monotonically decreasing. It's safe 4822 * to peek without lock. 4823 */ 4824 rcu_read_lock_sched(); 4825 for_each_pwq(pwq, wq) { 4826 WARN_ON_ONCE(pwq->nr_active < 0); 4827 if (pwq->nr_active) { 4828 busy = true; 4829 rcu_read_unlock_sched(); 4830 goto out_unlock; 4831 } 4832 } 4833 rcu_read_unlock_sched(); 4834 } 4835 out_unlock: 4836 mutex_unlock(&wq_pool_mutex); 4837 return busy; 4838 } 4839 4840 /** 4841 * thaw_workqueues - thaw workqueues 4842 * 4843 * Thaw workqueues. Normal queueing is restored and all collected 4844 * frozen works are transferred to their respective pool worklists. 4845 * 4846 * CONTEXT: 4847 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4848 */ 4849 void thaw_workqueues(void) 4850 { 4851 struct workqueue_struct *wq; 4852 struct pool_workqueue *pwq; 4853 4854 mutex_lock(&wq_pool_mutex); 4855 4856 if (!workqueue_freezing) 4857 goto out_unlock; 4858 4859 workqueue_freezing = false; 4860 4861 /* restore max_active and repopulate worklist */ 4862 list_for_each_entry(wq, &workqueues, list) { 4863 mutex_lock(&wq->mutex); 4864 for_each_pwq(pwq, wq) 4865 pwq_adjust_max_active(pwq); 4866 mutex_unlock(&wq->mutex); 4867 } 4868 4869 out_unlock: 4870 mutex_unlock(&wq_pool_mutex); 4871 } 4872 #endif /* CONFIG_FREEZER */ 4873 4874 static int workqueue_apply_unbound_cpumask(void) 4875 { 4876 LIST_HEAD(ctxs); 4877 int ret = 0; 4878 struct workqueue_struct *wq; 4879 struct apply_wqattrs_ctx *ctx, *n; 4880 4881 lockdep_assert_held(&wq_pool_mutex); 4882 4883 list_for_each_entry(wq, &workqueues, list) { 4884 if (!(wq->flags & WQ_UNBOUND)) 4885 continue; 4886 /* creating multiple pwqs breaks ordering guarantee */ 4887 if (wq->flags & __WQ_ORDERED) 4888 continue; 4889 4890 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs); 4891 if (!ctx) { 4892 ret = -ENOMEM; 4893 break; 4894 } 4895 4896 list_add_tail(&ctx->list, &ctxs); 4897 } 4898 4899 list_for_each_entry_safe(ctx, n, &ctxs, list) { 4900 if (!ret) 4901 apply_wqattrs_commit(ctx); 4902 apply_wqattrs_cleanup(ctx); 4903 } 4904 4905 return ret; 4906 } 4907 4908 /** 4909 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 4910 * @cpumask: the cpumask to set 4911 * 4912 * The low-level workqueues cpumask is a global cpumask that limits 4913 * the affinity of all unbound workqueues. This function check the @cpumask 4914 * and apply it to all unbound workqueues and updates all pwqs of them. 4915 * 4916 * Retun: 0 - Success 4917 * -EINVAL - Invalid @cpumask 4918 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 4919 */ 4920 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 4921 { 4922 int ret = -EINVAL; 4923 cpumask_var_t saved_cpumask; 4924 4925 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) 4926 return -ENOMEM; 4927 4928 cpumask_and(cpumask, cpumask, cpu_possible_mask); 4929 if (!cpumask_empty(cpumask)) { 4930 apply_wqattrs_lock(); 4931 4932 /* save the old wq_unbound_cpumask. */ 4933 cpumask_copy(saved_cpumask, wq_unbound_cpumask); 4934 4935 /* update wq_unbound_cpumask at first and apply it to wqs. */ 4936 cpumask_copy(wq_unbound_cpumask, cpumask); 4937 ret = workqueue_apply_unbound_cpumask(); 4938 4939 /* restore the wq_unbound_cpumask when failed. */ 4940 if (ret < 0) 4941 cpumask_copy(wq_unbound_cpumask, saved_cpumask); 4942 4943 apply_wqattrs_unlock(); 4944 } 4945 4946 free_cpumask_var(saved_cpumask); 4947 return ret; 4948 } 4949 4950 #ifdef CONFIG_SYSFS 4951 /* 4952 * Workqueues with WQ_SYSFS flag set is visible to userland via 4953 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 4954 * following attributes. 4955 * 4956 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 4957 * max_active RW int : maximum number of in-flight work items 4958 * 4959 * Unbound workqueues have the following extra attributes. 4960 * 4961 * id RO int : the associated pool ID 4962 * nice RW int : nice value of the workers 4963 * cpumask RW mask : bitmask of allowed CPUs for the workers 4964 */ 4965 struct wq_device { 4966 struct workqueue_struct *wq; 4967 struct device dev; 4968 }; 4969 4970 static struct workqueue_struct *dev_to_wq(struct device *dev) 4971 { 4972 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 4973 4974 return wq_dev->wq; 4975 } 4976 4977 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 4978 char *buf) 4979 { 4980 struct workqueue_struct *wq = dev_to_wq(dev); 4981 4982 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 4983 } 4984 static DEVICE_ATTR_RO(per_cpu); 4985 4986 static ssize_t max_active_show(struct device *dev, 4987 struct device_attribute *attr, char *buf) 4988 { 4989 struct workqueue_struct *wq = dev_to_wq(dev); 4990 4991 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 4992 } 4993 4994 static ssize_t max_active_store(struct device *dev, 4995 struct device_attribute *attr, const char *buf, 4996 size_t count) 4997 { 4998 struct workqueue_struct *wq = dev_to_wq(dev); 4999 int val; 5000 5001 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 5002 return -EINVAL; 5003 5004 workqueue_set_max_active(wq, val); 5005 return count; 5006 } 5007 static DEVICE_ATTR_RW(max_active); 5008 5009 static struct attribute *wq_sysfs_attrs[] = { 5010 &dev_attr_per_cpu.attr, 5011 &dev_attr_max_active.attr, 5012 NULL, 5013 }; 5014 ATTRIBUTE_GROUPS(wq_sysfs); 5015 5016 static ssize_t wq_pool_ids_show(struct device *dev, 5017 struct device_attribute *attr, char *buf) 5018 { 5019 struct workqueue_struct *wq = dev_to_wq(dev); 5020 const char *delim = ""; 5021 int node, written = 0; 5022 5023 rcu_read_lock_sched(); 5024 for_each_node(node) { 5025 written += scnprintf(buf + written, PAGE_SIZE - written, 5026 "%s%d:%d", delim, node, 5027 unbound_pwq_by_node(wq, node)->pool->id); 5028 delim = " "; 5029 } 5030 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 5031 rcu_read_unlock_sched(); 5032 5033 return written; 5034 } 5035 5036 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 5037 char *buf) 5038 { 5039 struct workqueue_struct *wq = dev_to_wq(dev); 5040 int written; 5041 5042 mutex_lock(&wq->mutex); 5043 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 5044 mutex_unlock(&wq->mutex); 5045 5046 return written; 5047 } 5048 5049 /* prepare workqueue_attrs for sysfs store operations */ 5050 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5051 { 5052 struct workqueue_attrs *attrs; 5053 5054 lockdep_assert_held(&wq_pool_mutex); 5055 5056 attrs = alloc_workqueue_attrs(GFP_KERNEL); 5057 if (!attrs) 5058 return NULL; 5059 5060 copy_workqueue_attrs(attrs, wq->unbound_attrs); 5061 return attrs; 5062 } 5063 5064 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 5065 const char *buf, size_t count) 5066 { 5067 struct workqueue_struct *wq = dev_to_wq(dev); 5068 struct workqueue_attrs *attrs; 5069 int ret = -ENOMEM; 5070 5071 apply_wqattrs_lock(); 5072 5073 attrs = wq_sysfs_prep_attrs(wq); 5074 if (!attrs) 5075 goto out_unlock; 5076 5077 if (sscanf(buf, "%d", &attrs->nice) == 1 && 5078 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 5079 ret = apply_workqueue_attrs_locked(wq, attrs); 5080 else 5081 ret = -EINVAL; 5082 5083 out_unlock: 5084 apply_wqattrs_unlock(); 5085 free_workqueue_attrs(attrs); 5086 return ret ?: count; 5087 } 5088 5089 static ssize_t wq_cpumask_show(struct device *dev, 5090 struct device_attribute *attr, char *buf) 5091 { 5092 struct workqueue_struct *wq = dev_to_wq(dev); 5093 int written; 5094 5095 mutex_lock(&wq->mutex); 5096 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5097 cpumask_pr_args(wq->unbound_attrs->cpumask)); 5098 mutex_unlock(&wq->mutex); 5099 return written; 5100 } 5101 5102 static ssize_t wq_cpumask_store(struct device *dev, 5103 struct device_attribute *attr, 5104 const char *buf, size_t count) 5105 { 5106 struct workqueue_struct *wq = dev_to_wq(dev); 5107 struct workqueue_attrs *attrs; 5108 int ret = -ENOMEM; 5109 5110 apply_wqattrs_lock(); 5111 5112 attrs = wq_sysfs_prep_attrs(wq); 5113 if (!attrs) 5114 goto out_unlock; 5115 5116 ret = cpumask_parse(buf, attrs->cpumask); 5117 if (!ret) 5118 ret = apply_workqueue_attrs_locked(wq, attrs); 5119 5120 out_unlock: 5121 apply_wqattrs_unlock(); 5122 free_workqueue_attrs(attrs); 5123 return ret ?: count; 5124 } 5125 5126 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5127 char *buf) 5128 { 5129 struct workqueue_struct *wq = dev_to_wq(dev); 5130 int written; 5131 5132 mutex_lock(&wq->mutex); 5133 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5134 !wq->unbound_attrs->no_numa); 5135 mutex_unlock(&wq->mutex); 5136 5137 return written; 5138 } 5139 5140 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 5141 const char *buf, size_t count) 5142 { 5143 struct workqueue_struct *wq = dev_to_wq(dev); 5144 struct workqueue_attrs *attrs; 5145 int v, ret = -ENOMEM; 5146 5147 apply_wqattrs_lock(); 5148 5149 attrs = wq_sysfs_prep_attrs(wq); 5150 if (!attrs) 5151 goto out_unlock; 5152 5153 ret = -EINVAL; 5154 if (sscanf(buf, "%d", &v) == 1) { 5155 attrs->no_numa = !v; 5156 ret = apply_workqueue_attrs_locked(wq, attrs); 5157 } 5158 5159 out_unlock: 5160 apply_wqattrs_unlock(); 5161 free_workqueue_attrs(attrs); 5162 return ret ?: count; 5163 } 5164 5165 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5166 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5167 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5168 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5169 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5170 __ATTR_NULL, 5171 }; 5172 5173 static struct bus_type wq_subsys = { 5174 .name = "workqueue", 5175 .dev_groups = wq_sysfs_groups, 5176 }; 5177 5178 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5179 struct device_attribute *attr, char *buf) 5180 { 5181 int written; 5182 5183 mutex_lock(&wq_pool_mutex); 5184 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5185 cpumask_pr_args(wq_unbound_cpumask)); 5186 mutex_unlock(&wq_pool_mutex); 5187 5188 return written; 5189 } 5190 5191 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5192 struct device_attribute *attr, const char *buf, size_t count) 5193 { 5194 cpumask_var_t cpumask; 5195 int ret; 5196 5197 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5198 return -ENOMEM; 5199 5200 ret = cpumask_parse(buf, cpumask); 5201 if (!ret) 5202 ret = workqueue_set_unbound_cpumask(cpumask); 5203 5204 free_cpumask_var(cpumask); 5205 return ret ? ret : count; 5206 } 5207 5208 static struct device_attribute wq_sysfs_cpumask_attr = 5209 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5210 wq_unbound_cpumask_store); 5211 5212 static int __init wq_sysfs_init(void) 5213 { 5214 int err; 5215 5216 err = subsys_virtual_register(&wq_subsys, NULL); 5217 if (err) 5218 return err; 5219 5220 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr); 5221 } 5222 core_initcall(wq_sysfs_init); 5223 5224 static void wq_device_release(struct device *dev) 5225 { 5226 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5227 5228 kfree(wq_dev); 5229 } 5230 5231 /** 5232 * workqueue_sysfs_register - make a workqueue visible in sysfs 5233 * @wq: the workqueue to register 5234 * 5235 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5236 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5237 * which is the preferred method. 5238 * 5239 * Workqueue user should use this function directly iff it wants to apply 5240 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5241 * apply_workqueue_attrs() may race against userland updating the 5242 * attributes. 5243 * 5244 * Return: 0 on success, -errno on failure. 5245 */ 5246 int workqueue_sysfs_register(struct workqueue_struct *wq) 5247 { 5248 struct wq_device *wq_dev; 5249 int ret; 5250 5251 /* 5252 * Adjusting max_active or creating new pwqs by applying 5253 * attributes breaks ordering guarantee. Disallow exposing ordered 5254 * workqueues. 5255 */ 5256 if (WARN_ON(wq->flags & __WQ_ORDERED)) 5257 return -EINVAL; 5258 5259 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5260 if (!wq_dev) 5261 return -ENOMEM; 5262 5263 wq_dev->wq = wq; 5264 wq_dev->dev.bus = &wq_subsys; 5265 wq_dev->dev.release = wq_device_release; 5266 dev_set_name(&wq_dev->dev, "%s", wq->name); 5267 5268 /* 5269 * unbound_attrs are created separately. Suppress uevent until 5270 * everything is ready. 5271 */ 5272 dev_set_uevent_suppress(&wq_dev->dev, true); 5273 5274 ret = device_register(&wq_dev->dev); 5275 if (ret) { 5276 kfree(wq_dev); 5277 wq->wq_dev = NULL; 5278 return ret; 5279 } 5280 5281 if (wq->flags & WQ_UNBOUND) { 5282 struct device_attribute *attr; 5283 5284 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5285 ret = device_create_file(&wq_dev->dev, attr); 5286 if (ret) { 5287 device_unregister(&wq_dev->dev); 5288 wq->wq_dev = NULL; 5289 return ret; 5290 } 5291 } 5292 } 5293 5294 dev_set_uevent_suppress(&wq_dev->dev, false); 5295 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5296 return 0; 5297 } 5298 5299 /** 5300 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5301 * @wq: the workqueue to unregister 5302 * 5303 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5304 */ 5305 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5306 { 5307 struct wq_device *wq_dev = wq->wq_dev; 5308 5309 if (!wq->wq_dev) 5310 return; 5311 5312 wq->wq_dev = NULL; 5313 device_unregister(&wq_dev->dev); 5314 } 5315 #else /* CONFIG_SYSFS */ 5316 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5317 #endif /* CONFIG_SYSFS */ 5318 5319 /* 5320 * Workqueue watchdog. 5321 * 5322 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 5323 * flush dependency, a concurrency managed work item which stays RUNNING 5324 * indefinitely. Workqueue stalls can be very difficult to debug as the 5325 * usual warning mechanisms don't trigger and internal workqueue state is 5326 * largely opaque. 5327 * 5328 * Workqueue watchdog monitors all worker pools periodically and dumps 5329 * state if some pools failed to make forward progress for a while where 5330 * forward progress is defined as the first item on ->worklist changing. 5331 * 5332 * This mechanism is controlled through the kernel parameter 5333 * "workqueue.watchdog_thresh" which can be updated at runtime through the 5334 * corresponding sysfs parameter file. 5335 */ 5336 #ifdef CONFIG_WQ_WATCHDOG 5337 5338 static void wq_watchdog_timer_fn(unsigned long data); 5339 5340 static unsigned long wq_watchdog_thresh = 30; 5341 static struct timer_list wq_watchdog_timer = 5342 TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0); 5343 5344 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 5345 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 5346 5347 static void wq_watchdog_reset_touched(void) 5348 { 5349 int cpu; 5350 5351 wq_watchdog_touched = jiffies; 5352 for_each_possible_cpu(cpu) 5353 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5354 } 5355 5356 static void wq_watchdog_timer_fn(unsigned long data) 5357 { 5358 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 5359 bool lockup_detected = false; 5360 struct worker_pool *pool; 5361 int pi; 5362 5363 if (!thresh) 5364 return; 5365 5366 rcu_read_lock(); 5367 5368 for_each_pool(pool, pi) { 5369 unsigned long pool_ts, touched, ts; 5370 5371 if (list_empty(&pool->worklist)) 5372 continue; 5373 5374 /* get the latest of pool and touched timestamps */ 5375 pool_ts = READ_ONCE(pool->watchdog_ts); 5376 touched = READ_ONCE(wq_watchdog_touched); 5377 5378 if (time_after(pool_ts, touched)) 5379 ts = pool_ts; 5380 else 5381 ts = touched; 5382 5383 if (pool->cpu >= 0) { 5384 unsigned long cpu_touched = 5385 READ_ONCE(per_cpu(wq_watchdog_touched_cpu, 5386 pool->cpu)); 5387 if (time_after(cpu_touched, ts)) 5388 ts = cpu_touched; 5389 } 5390 5391 /* did we stall? */ 5392 if (time_after(jiffies, ts + thresh)) { 5393 lockup_detected = true; 5394 pr_emerg("BUG: workqueue lockup - pool"); 5395 pr_cont_pool_info(pool); 5396 pr_cont(" stuck for %us!\n", 5397 jiffies_to_msecs(jiffies - pool_ts) / 1000); 5398 } 5399 } 5400 5401 rcu_read_unlock(); 5402 5403 if (lockup_detected) 5404 show_workqueue_state(); 5405 5406 wq_watchdog_reset_touched(); 5407 mod_timer(&wq_watchdog_timer, jiffies + thresh); 5408 } 5409 5410 void wq_watchdog_touch(int cpu) 5411 { 5412 if (cpu >= 0) 5413 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5414 else 5415 wq_watchdog_touched = jiffies; 5416 } 5417 5418 static void wq_watchdog_set_thresh(unsigned long thresh) 5419 { 5420 wq_watchdog_thresh = 0; 5421 del_timer_sync(&wq_watchdog_timer); 5422 5423 if (thresh) { 5424 wq_watchdog_thresh = thresh; 5425 wq_watchdog_reset_touched(); 5426 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 5427 } 5428 } 5429 5430 static int wq_watchdog_param_set_thresh(const char *val, 5431 const struct kernel_param *kp) 5432 { 5433 unsigned long thresh; 5434 int ret; 5435 5436 ret = kstrtoul(val, 0, &thresh); 5437 if (ret) 5438 return ret; 5439 5440 if (system_wq) 5441 wq_watchdog_set_thresh(thresh); 5442 else 5443 wq_watchdog_thresh = thresh; 5444 5445 return 0; 5446 } 5447 5448 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 5449 .set = wq_watchdog_param_set_thresh, 5450 .get = param_get_ulong, 5451 }; 5452 5453 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 5454 0644); 5455 5456 static void wq_watchdog_init(void) 5457 { 5458 wq_watchdog_set_thresh(wq_watchdog_thresh); 5459 } 5460 5461 #else /* CONFIG_WQ_WATCHDOG */ 5462 5463 static inline void wq_watchdog_init(void) { } 5464 5465 #endif /* CONFIG_WQ_WATCHDOG */ 5466 5467 static void __init wq_numa_init(void) 5468 { 5469 cpumask_var_t *tbl; 5470 int node, cpu; 5471 5472 if (num_possible_nodes() <= 1) 5473 return; 5474 5475 if (wq_disable_numa) { 5476 pr_info("workqueue: NUMA affinity support disabled\n"); 5477 return; 5478 } 5479 5480 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL); 5481 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5482 5483 /* 5484 * We want masks of possible CPUs of each node which isn't readily 5485 * available. Build one from cpu_to_node() which should have been 5486 * fully initialized by now. 5487 */ 5488 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL); 5489 BUG_ON(!tbl); 5490 5491 for_each_node(node) 5492 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5493 node_online(node) ? node : NUMA_NO_NODE)); 5494 5495 for_each_possible_cpu(cpu) { 5496 node = cpu_to_node(cpu); 5497 if (WARN_ON(node == NUMA_NO_NODE)) { 5498 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5499 /* happens iff arch is bonkers, let's just proceed */ 5500 return; 5501 } 5502 cpumask_set_cpu(cpu, tbl[node]); 5503 } 5504 5505 wq_numa_possible_cpumask = tbl; 5506 wq_numa_enabled = true; 5507 } 5508 5509 /** 5510 * workqueue_init_early - early init for workqueue subsystem 5511 * 5512 * This is the first half of two-staged workqueue subsystem initialization 5513 * and invoked as soon as the bare basics - memory allocation, cpumasks and 5514 * idr are up. It sets up all the data structures and system workqueues 5515 * and allows early boot code to create workqueues and queue/cancel work 5516 * items. Actual work item execution starts only after kthreads can be 5517 * created and scheduled right before early initcalls. 5518 */ 5519 int __init workqueue_init_early(void) 5520 { 5521 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5522 int i, cpu; 5523 5524 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5525 5526 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 5527 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask); 5528 5529 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5530 5531 /* initialize CPU pools */ 5532 for_each_possible_cpu(cpu) { 5533 struct worker_pool *pool; 5534 5535 i = 0; 5536 for_each_cpu_worker_pool(pool, cpu) { 5537 BUG_ON(init_worker_pool(pool)); 5538 pool->cpu = cpu; 5539 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5540 pool->attrs->nice = std_nice[i++]; 5541 pool->node = cpu_to_node(cpu); 5542 5543 /* alloc pool ID */ 5544 mutex_lock(&wq_pool_mutex); 5545 BUG_ON(worker_pool_assign_id(pool)); 5546 mutex_unlock(&wq_pool_mutex); 5547 } 5548 } 5549 5550 /* create default unbound and ordered wq attrs */ 5551 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5552 struct workqueue_attrs *attrs; 5553 5554 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5555 attrs->nice = std_nice[i]; 5556 unbound_std_wq_attrs[i] = attrs; 5557 5558 /* 5559 * An ordered wq should have only one pwq as ordering is 5560 * guaranteed by max_active which is enforced by pwqs. 5561 * Turn off NUMA so that dfl_pwq is used for all nodes. 5562 */ 5563 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5564 attrs->nice = std_nice[i]; 5565 attrs->no_numa = true; 5566 ordered_wq_attrs[i] = attrs; 5567 } 5568 5569 system_wq = alloc_workqueue("events", 0, 0); 5570 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5571 system_long_wq = alloc_workqueue("events_long", 0, 0); 5572 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5573 WQ_UNBOUND_MAX_ACTIVE); 5574 system_freezable_wq = alloc_workqueue("events_freezable", 5575 WQ_FREEZABLE, 0); 5576 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5577 WQ_POWER_EFFICIENT, 0); 5578 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5579 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5580 0); 5581 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5582 !system_unbound_wq || !system_freezable_wq || 5583 !system_power_efficient_wq || 5584 !system_freezable_power_efficient_wq); 5585 5586 return 0; 5587 } 5588 5589 /** 5590 * workqueue_init - bring workqueue subsystem fully online 5591 * 5592 * This is the latter half of two-staged workqueue subsystem initialization 5593 * and invoked as soon as kthreads can be created and scheduled. 5594 * Workqueues have been created and work items queued on them, but there 5595 * are no kworkers executing the work items yet. Populate the worker pools 5596 * with the initial workers and enable future kworker creations. 5597 */ 5598 int __init workqueue_init(void) 5599 { 5600 struct workqueue_struct *wq; 5601 struct worker_pool *pool; 5602 int cpu, bkt; 5603 5604 /* 5605 * It'd be simpler to initialize NUMA in workqueue_init_early() but 5606 * CPU to node mapping may not be available that early on some 5607 * archs such as power and arm64. As per-cpu pools created 5608 * previously could be missing node hint and unbound pools NUMA 5609 * affinity, fix them up. 5610 */ 5611 wq_numa_init(); 5612 5613 mutex_lock(&wq_pool_mutex); 5614 5615 for_each_possible_cpu(cpu) { 5616 for_each_cpu_worker_pool(pool, cpu) { 5617 pool->node = cpu_to_node(cpu); 5618 } 5619 } 5620 5621 list_for_each_entry(wq, &workqueues, list) 5622 wq_update_unbound_numa(wq, smp_processor_id(), true); 5623 5624 mutex_unlock(&wq_pool_mutex); 5625 5626 /* create the initial workers */ 5627 for_each_online_cpu(cpu) { 5628 for_each_cpu_worker_pool(pool, cpu) { 5629 pool->flags &= ~POOL_DISASSOCIATED; 5630 BUG_ON(!create_worker(pool)); 5631 } 5632 } 5633 5634 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 5635 BUG_ON(!create_worker(pool)); 5636 5637 wq_online = true; 5638 wq_watchdog_init(); 5639 5640 return 0; 5641 } 5642