1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There are two worker pools for each CPU (one for 20 * normal work items and the other for high priority ones) and some extra 21 * pools for workqueues which are not bound to any specific CPU - the 22 * number of these backing pools is dynamic. 23 * 24 * Please read Documentation/core-api/workqueue.rst for details. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kernel.h> 29 #include <linux/sched.h> 30 #include <linux/init.h> 31 #include <linux/signal.h> 32 #include <linux/completion.h> 33 #include <linux/workqueue.h> 34 #include <linux/slab.h> 35 #include <linux/cpu.h> 36 #include <linux/notifier.h> 37 #include <linux/kthread.h> 38 #include <linux/hardirq.h> 39 #include <linux/mempolicy.h> 40 #include <linux/freezer.h> 41 #include <linux/debug_locks.h> 42 #include <linux/lockdep.h> 43 #include <linux/idr.h> 44 #include <linux/jhash.h> 45 #include <linux/hashtable.h> 46 #include <linux/rculist.h> 47 #include <linux/nodemask.h> 48 #include <linux/moduleparam.h> 49 #include <linux/uaccess.h> 50 #include <linux/sched/isolation.h> 51 #include <linux/nmi.h> 52 53 #include "workqueue_internal.h" 54 55 enum { 56 /* 57 * worker_pool flags 58 * 59 * A bound pool is either associated or disassociated with its CPU. 60 * While associated (!DISASSOCIATED), all workers are bound to the 61 * CPU and none has %WORKER_UNBOUND set and concurrency management 62 * is in effect. 63 * 64 * While DISASSOCIATED, the cpu may be offline and all workers have 65 * %WORKER_UNBOUND set and concurrency management disabled, and may 66 * be executing on any CPU. The pool behaves as an unbound one. 67 * 68 * Note that DISASSOCIATED should be flipped only while holding 69 * wq_pool_attach_mutex to avoid changing binding state while 70 * worker_attach_to_pool() is in progress. 71 */ 72 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */ 73 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 74 75 /* worker flags */ 76 WORKER_DIE = 1 << 1, /* die die die */ 77 WORKER_IDLE = 1 << 2, /* is idle */ 78 WORKER_PREP = 1 << 3, /* preparing to run works */ 79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 81 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 82 83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 84 WORKER_UNBOUND | WORKER_REBOUND, 85 86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 87 88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 90 91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 93 94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 95 /* call for help after 10ms 96 (min two ticks) */ 97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 98 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 99 100 /* 101 * Rescue workers are used only on emergencies and shared by 102 * all cpus. Give MIN_NICE. 103 */ 104 RESCUER_NICE_LEVEL = MIN_NICE, 105 HIGHPRI_NICE_LEVEL = MIN_NICE, 106 107 WQ_NAME_LEN = 24, 108 }; 109 110 /* 111 * Structure fields follow one of the following exclusion rules. 112 * 113 * I: Modifiable by initialization/destruction paths and read-only for 114 * everyone else. 115 * 116 * P: Preemption protected. Disabling preemption is enough and should 117 * only be modified and accessed from the local cpu. 118 * 119 * L: pool->lock protected. Access with pool->lock held. 120 * 121 * X: During normal operation, modification requires pool->lock and should 122 * be done only from local cpu. Either disabling preemption on local 123 * cpu or grabbing pool->lock is enough for read access. If 124 * POOL_DISASSOCIATED is set, it's identical to L. 125 * 126 * A: wq_pool_attach_mutex protected. 127 * 128 * PL: wq_pool_mutex protected. 129 * 130 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads. 131 * 132 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 133 * 134 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 135 * sched-RCU for reads. 136 * 137 * WQ: wq->mutex protected. 138 * 139 * WR: wq->mutex protected for writes. Sched-RCU protected for reads. 140 * 141 * MD: wq_mayday_lock protected. 142 */ 143 144 /* struct worker is defined in workqueue_internal.h */ 145 146 struct worker_pool { 147 spinlock_t lock; /* the pool lock */ 148 int cpu; /* I: the associated cpu */ 149 int node; /* I: the associated node ID */ 150 int id; /* I: pool ID */ 151 unsigned int flags; /* X: flags */ 152 153 unsigned long watchdog_ts; /* L: watchdog timestamp */ 154 155 struct list_head worklist; /* L: list of pending works */ 156 157 int nr_workers; /* L: total number of workers */ 158 int nr_idle; /* L: currently idle workers */ 159 160 struct list_head idle_list; /* X: list of idle workers */ 161 struct timer_list idle_timer; /* L: worker idle timeout */ 162 struct timer_list mayday_timer; /* L: SOS timer for workers */ 163 164 /* a workers is either on busy_hash or idle_list, or the manager */ 165 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 166 /* L: hash of busy workers */ 167 168 struct worker *manager; /* L: purely informational */ 169 struct list_head workers; /* A: attached workers */ 170 struct completion *detach_completion; /* all workers detached */ 171 172 struct ida worker_ida; /* worker IDs for task name */ 173 174 struct workqueue_attrs *attrs; /* I: worker attributes */ 175 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 176 int refcnt; /* PL: refcnt for unbound pools */ 177 178 /* 179 * The current concurrency level. As it's likely to be accessed 180 * from other CPUs during try_to_wake_up(), put it in a separate 181 * cacheline. 182 */ 183 atomic_t nr_running ____cacheline_aligned_in_smp; 184 185 /* 186 * Destruction of pool is sched-RCU protected to allow dereferences 187 * from get_work_pool(). 188 */ 189 struct rcu_head rcu; 190 } ____cacheline_aligned_in_smp; 191 192 /* 193 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 194 * of work_struct->data are used for flags and the remaining high bits 195 * point to the pwq; thus, pwqs need to be aligned at two's power of the 196 * number of flag bits. 197 */ 198 struct pool_workqueue { 199 struct worker_pool *pool; /* I: the associated pool */ 200 struct workqueue_struct *wq; /* I: the owning workqueue */ 201 int work_color; /* L: current color */ 202 int flush_color; /* L: flushing color */ 203 int refcnt; /* L: reference count */ 204 int nr_in_flight[WORK_NR_COLORS]; 205 /* L: nr of in_flight works */ 206 int nr_active; /* L: nr of active works */ 207 int max_active; /* L: max active works */ 208 struct list_head delayed_works; /* L: delayed works */ 209 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 210 struct list_head mayday_node; /* MD: node on wq->maydays */ 211 212 /* 213 * Release of unbound pwq is punted to system_wq. See put_pwq() 214 * and pwq_unbound_release_workfn() for details. pool_workqueue 215 * itself is also sched-RCU protected so that the first pwq can be 216 * determined without grabbing wq->mutex. 217 */ 218 struct work_struct unbound_release_work; 219 struct rcu_head rcu; 220 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 221 222 /* 223 * Structure used to wait for workqueue flush. 224 */ 225 struct wq_flusher { 226 struct list_head list; /* WQ: list of flushers */ 227 int flush_color; /* WQ: flush color waiting for */ 228 struct completion done; /* flush completion */ 229 }; 230 231 struct wq_device; 232 233 /* 234 * The externally visible workqueue. It relays the issued work items to 235 * the appropriate worker_pool through its pool_workqueues. 236 */ 237 struct workqueue_struct { 238 struct list_head pwqs; /* WR: all pwqs of this wq */ 239 struct list_head list; /* PR: list of all workqueues */ 240 241 struct mutex mutex; /* protects this wq */ 242 int work_color; /* WQ: current work color */ 243 int flush_color; /* WQ: current flush color */ 244 atomic_t nr_pwqs_to_flush; /* flush in progress */ 245 struct wq_flusher *first_flusher; /* WQ: first flusher */ 246 struct list_head flusher_queue; /* WQ: flush waiters */ 247 struct list_head flusher_overflow; /* WQ: flush overflow list */ 248 249 struct list_head maydays; /* MD: pwqs requesting rescue */ 250 struct worker *rescuer; /* I: rescue worker */ 251 252 int nr_drainers; /* WQ: drain in progress */ 253 int saved_max_active; /* WQ: saved pwq max_active */ 254 255 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 256 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 257 258 #ifdef CONFIG_SYSFS 259 struct wq_device *wq_dev; /* I: for sysfs interface */ 260 #endif 261 #ifdef CONFIG_LOCKDEP 262 struct lockdep_map lockdep_map; 263 #endif 264 char name[WQ_NAME_LEN]; /* I: workqueue name */ 265 266 /* 267 * Destruction of workqueue_struct is sched-RCU protected to allow 268 * walking the workqueues list without grabbing wq_pool_mutex. 269 * This is used to dump all workqueues from sysrq. 270 */ 271 struct rcu_head rcu; 272 273 /* hot fields used during command issue, aligned to cacheline */ 274 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 275 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 276 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 277 }; 278 279 static struct kmem_cache *pwq_cache; 280 281 static cpumask_var_t *wq_numa_possible_cpumask; 282 /* possible CPUs of each node */ 283 284 static bool wq_disable_numa; 285 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 286 287 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 288 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 289 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 290 291 static bool wq_online; /* can kworkers be created yet? */ 292 293 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 294 295 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 296 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 297 298 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 299 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 300 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 301 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */ 302 303 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 304 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 305 306 /* PL: allowable cpus for unbound wqs and work items */ 307 static cpumask_var_t wq_unbound_cpumask; 308 309 /* CPU where unbound work was last round robin scheduled from this CPU */ 310 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 311 312 /* 313 * Local execution of unbound work items is no longer guaranteed. The 314 * following always forces round-robin CPU selection on unbound work items 315 * to uncover usages which depend on it. 316 */ 317 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 318 static bool wq_debug_force_rr_cpu = true; 319 #else 320 static bool wq_debug_force_rr_cpu = false; 321 #endif 322 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 323 324 /* the per-cpu worker pools */ 325 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 326 327 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 328 329 /* PL: hash of all unbound pools keyed by pool->attrs */ 330 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 331 332 /* I: attributes used when instantiating standard unbound pools on demand */ 333 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 334 335 /* I: attributes used when instantiating ordered pools on demand */ 336 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 337 338 struct workqueue_struct *system_wq __read_mostly; 339 EXPORT_SYMBOL(system_wq); 340 struct workqueue_struct *system_highpri_wq __read_mostly; 341 EXPORT_SYMBOL_GPL(system_highpri_wq); 342 struct workqueue_struct *system_long_wq __read_mostly; 343 EXPORT_SYMBOL_GPL(system_long_wq); 344 struct workqueue_struct *system_unbound_wq __read_mostly; 345 EXPORT_SYMBOL_GPL(system_unbound_wq); 346 struct workqueue_struct *system_freezable_wq __read_mostly; 347 EXPORT_SYMBOL_GPL(system_freezable_wq); 348 struct workqueue_struct *system_power_efficient_wq __read_mostly; 349 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 350 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 351 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 352 353 static int worker_thread(void *__worker); 354 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 355 356 #define CREATE_TRACE_POINTS 357 #include <trace/events/workqueue.h> 358 359 #define assert_rcu_or_pool_mutex() \ 360 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 361 !lockdep_is_held(&wq_pool_mutex), \ 362 "sched RCU or wq_pool_mutex should be held") 363 364 #define assert_rcu_or_wq_mutex(wq) \ 365 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 366 !lockdep_is_held(&wq->mutex), \ 367 "sched RCU or wq->mutex should be held") 368 369 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 370 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 371 !lockdep_is_held(&wq->mutex) && \ 372 !lockdep_is_held(&wq_pool_mutex), \ 373 "sched RCU, wq->mutex or wq_pool_mutex should be held") 374 375 #define for_each_cpu_worker_pool(pool, cpu) \ 376 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 377 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 378 (pool)++) 379 380 /** 381 * for_each_pool - iterate through all worker_pools in the system 382 * @pool: iteration cursor 383 * @pi: integer used for iteration 384 * 385 * This must be called either with wq_pool_mutex held or sched RCU read 386 * locked. If the pool needs to be used beyond the locking in effect, the 387 * caller is responsible for guaranteeing that the pool stays online. 388 * 389 * The if/else clause exists only for the lockdep assertion and can be 390 * ignored. 391 */ 392 #define for_each_pool(pool, pi) \ 393 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 394 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 395 else 396 397 /** 398 * for_each_pool_worker - iterate through all workers of a worker_pool 399 * @worker: iteration cursor 400 * @pool: worker_pool to iterate workers of 401 * 402 * This must be called with wq_pool_attach_mutex. 403 * 404 * The if/else clause exists only for the lockdep assertion and can be 405 * ignored. 406 */ 407 #define for_each_pool_worker(worker, pool) \ 408 list_for_each_entry((worker), &(pool)->workers, node) \ 409 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 410 else 411 412 /** 413 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 414 * @pwq: iteration cursor 415 * @wq: the target workqueue 416 * 417 * This must be called either with wq->mutex held or sched RCU read locked. 418 * If the pwq needs to be used beyond the locking in effect, the caller is 419 * responsible for guaranteeing that the pwq stays online. 420 * 421 * The if/else clause exists only for the lockdep assertion and can be 422 * ignored. 423 */ 424 #define for_each_pwq(pwq, wq) \ 425 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \ 426 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ 427 else 428 429 #ifdef CONFIG_DEBUG_OBJECTS_WORK 430 431 static struct debug_obj_descr work_debug_descr; 432 433 static void *work_debug_hint(void *addr) 434 { 435 return ((struct work_struct *) addr)->func; 436 } 437 438 static bool work_is_static_object(void *addr) 439 { 440 struct work_struct *work = addr; 441 442 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 443 } 444 445 /* 446 * fixup_init is called when: 447 * - an active object is initialized 448 */ 449 static bool work_fixup_init(void *addr, enum debug_obj_state state) 450 { 451 struct work_struct *work = addr; 452 453 switch (state) { 454 case ODEBUG_STATE_ACTIVE: 455 cancel_work_sync(work); 456 debug_object_init(work, &work_debug_descr); 457 return true; 458 default: 459 return false; 460 } 461 } 462 463 /* 464 * fixup_free is called when: 465 * - an active object is freed 466 */ 467 static bool work_fixup_free(void *addr, enum debug_obj_state state) 468 { 469 struct work_struct *work = addr; 470 471 switch (state) { 472 case ODEBUG_STATE_ACTIVE: 473 cancel_work_sync(work); 474 debug_object_free(work, &work_debug_descr); 475 return true; 476 default: 477 return false; 478 } 479 } 480 481 static struct debug_obj_descr work_debug_descr = { 482 .name = "work_struct", 483 .debug_hint = work_debug_hint, 484 .is_static_object = work_is_static_object, 485 .fixup_init = work_fixup_init, 486 .fixup_free = work_fixup_free, 487 }; 488 489 static inline void debug_work_activate(struct work_struct *work) 490 { 491 debug_object_activate(work, &work_debug_descr); 492 } 493 494 static inline void debug_work_deactivate(struct work_struct *work) 495 { 496 debug_object_deactivate(work, &work_debug_descr); 497 } 498 499 void __init_work(struct work_struct *work, int onstack) 500 { 501 if (onstack) 502 debug_object_init_on_stack(work, &work_debug_descr); 503 else 504 debug_object_init(work, &work_debug_descr); 505 } 506 EXPORT_SYMBOL_GPL(__init_work); 507 508 void destroy_work_on_stack(struct work_struct *work) 509 { 510 debug_object_free(work, &work_debug_descr); 511 } 512 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 513 514 void destroy_delayed_work_on_stack(struct delayed_work *work) 515 { 516 destroy_timer_on_stack(&work->timer); 517 debug_object_free(&work->work, &work_debug_descr); 518 } 519 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 520 521 #else 522 static inline void debug_work_activate(struct work_struct *work) { } 523 static inline void debug_work_deactivate(struct work_struct *work) { } 524 #endif 525 526 /** 527 * worker_pool_assign_id - allocate ID and assing it to @pool 528 * @pool: the pool pointer of interest 529 * 530 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 531 * successfully, -errno on failure. 532 */ 533 static int worker_pool_assign_id(struct worker_pool *pool) 534 { 535 int ret; 536 537 lockdep_assert_held(&wq_pool_mutex); 538 539 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 540 GFP_KERNEL); 541 if (ret >= 0) { 542 pool->id = ret; 543 return 0; 544 } 545 return ret; 546 } 547 548 /** 549 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 550 * @wq: the target workqueue 551 * @node: the node ID 552 * 553 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU 554 * read locked. 555 * If the pwq needs to be used beyond the locking in effect, the caller is 556 * responsible for guaranteeing that the pwq stays online. 557 * 558 * Return: The unbound pool_workqueue for @node. 559 */ 560 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 561 int node) 562 { 563 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 564 565 /* 566 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a 567 * delayed item is pending. The plan is to keep CPU -> NODE 568 * mapping valid and stable across CPU on/offlines. Once that 569 * happens, this workaround can be removed. 570 */ 571 if (unlikely(node == NUMA_NO_NODE)) 572 return wq->dfl_pwq; 573 574 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 575 } 576 577 static unsigned int work_color_to_flags(int color) 578 { 579 return color << WORK_STRUCT_COLOR_SHIFT; 580 } 581 582 static int get_work_color(struct work_struct *work) 583 { 584 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 585 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 586 } 587 588 static int work_next_color(int color) 589 { 590 return (color + 1) % WORK_NR_COLORS; 591 } 592 593 /* 594 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 595 * contain the pointer to the queued pwq. Once execution starts, the flag 596 * is cleared and the high bits contain OFFQ flags and pool ID. 597 * 598 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 599 * and clear_work_data() can be used to set the pwq, pool or clear 600 * work->data. These functions should only be called while the work is 601 * owned - ie. while the PENDING bit is set. 602 * 603 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 604 * corresponding to a work. Pool is available once the work has been 605 * queued anywhere after initialization until it is sync canceled. pwq is 606 * available only while the work item is queued. 607 * 608 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 609 * canceled. While being canceled, a work item may have its PENDING set 610 * but stay off timer and worklist for arbitrarily long and nobody should 611 * try to steal the PENDING bit. 612 */ 613 static inline void set_work_data(struct work_struct *work, unsigned long data, 614 unsigned long flags) 615 { 616 WARN_ON_ONCE(!work_pending(work)); 617 atomic_long_set(&work->data, data | flags | work_static(work)); 618 } 619 620 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 621 unsigned long extra_flags) 622 { 623 set_work_data(work, (unsigned long)pwq, 624 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 625 } 626 627 static void set_work_pool_and_keep_pending(struct work_struct *work, 628 int pool_id) 629 { 630 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 631 WORK_STRUCT_PENDING); 632 } 633 634 static void set_work_pool_and_clear_pending(struct work_struct *work, 635 int pool_id) 636 { 637 /* 638 * The following wmb is paired with the implied mb in 639 * test_and_set_bit(PENDING) and ensures all updates to @work made 640 * here are visible to and precede any updates by the next PENDING 641 * owner. 642 */ 643 smp_wmb(); 644 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 645 /* 646 * The following mb guarantees that previous clear of a PENDING bit 647 * will not be reordered with any speculative LOADS or STORES from 648 * work->current_func, which is executed afterwards. This possible 649 * reordering can lead to a missed execution on attempt to qeueue 650 * the same @work. E.g. consider this case: 651 * 652 * CPU#0 CPU#1 653 * ---------------------------- -------------------------------- 654 * 655 * 1 STORE event_indicated 656 * 2 queue_work_on() { 657 * 3 test_and_set_bit(PENDING) 658 * 4 } set_..._and_clear_pending() { 659 * 5 set_work_data() # clear bit 660 * 6 smp_mb() 661 * 7 work->current_func() { 662 * 8 LOAD event_indicated 663 * } 664 * 665 * Without an explicit full barrier speculative LOAD on line 8 can 666 * be executed before CPU#0 does STORE on line 1. If that happens, 667 * CPU#0 observes the PENDING bit is still set and new execution of 668 * a @work is not queued in a hope, that CPU#1 will eventually 669 * finish the queued @work. Meanwhile CPU#1 does not see 670 * event_indicated is set, because speculative LOAD was executed 671 * before actual STORE. 672 */ 673 smp_mb(); 674 } 675 676 static void clear_work_data(struct work_struct *work) 677 { 678 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 679 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 680 } 681 682 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 683 { 684 unsigned long data = atomic_long_read(&work->data); 685 686 if (data & WORK_STRUCT_PWQ) 687 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 688 else 689 return NULL; 690 } 691 692 /** 693 * get_work_pool - return the worker_pool a given work was associated with 694 * @work: the work item of interest 695 * 696 * Pools are created and destroyed under wq_pool_mutex, and allows read 697 * access under sched-RCU read lock. As such, this function should be 698 * called under wq_pool_mutex or with preemption disabled. 699 * 700 * All fields of the returned pool are accessible as long as the above 701 * mentioned locking is in effect. If the returned pool needs to be used 702 * beyond the critical section, the caller is responsible for ensuring the 703 * returned pool is and stays online. 704 * 705 * Return: The worker_pool @work was last associated with. %NULL if none. 706 */ 707 static struct worker_pool *get_work_pool(struct work_struct *work) 708 { 709 unsigned long data = atomic_long_read(&work->data); 710 int pool_id; 711 712 assert_rcu_or_pool_mutex(); 713 714 if (data & WORK_STRUCT_PWQ) 715 return ((struct pool_workqueue *) 716 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 717 718 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 719 if (pool_id == WORK_OFFQ_POOL_NONE) 720 return NULL; 721 722 return idr_find(&worker_pool_idr, pool_id); 723 } 724 725 /** 726 * get_work_pool_id - return the worker pool ID a given work is associated with 727 * @work: the work item of interest 728 * 729 * Return: The worker_pool ID @work was last associated with. 730 * %WORK_OFFQ_POOL_NONE if none. 731 */ 732 static int get_work_pool_id(struct work_struct *work) 733 { 734 unsigned long data = atomic_long_read(&work->data); 735 736 if (data & WORK_STRUCT_PWQ) 737 return ((struct pool_workqueue *) 738 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 739 740 return data >> WORK_OFFQ_POOL_SHIFT; 741 } 742 743 static void mark_work_canceling(struct work_struct *work) 744 { 745 unsigned long pool_id = get_work_pool_id(work); 746 747 pool_id <<= WORK_OFFQ_POOL_SHIFT; 748 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 749 } 750 751 static bool work_is_canceling(struct work_struct *work) 752 { 753 unsigned long data = atomic_long_read(&work->data); 754 755 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 756 } 757 758 /* 759 * Policy functions. These define the policies on how the global worker 760 * pools are managed. Unless noted otherwise, these functions assume that 761 * they're being called with pool->lock held. 762 */ 763 764 static bool __need_more_worker(struct worker_pool *pool) 765 { 766 return !atomic_read(&pool->nr_running); 767 } 768 769 /* 770 * Need to wake up a worker? Called from anything but currently 771 * running workers. 772 * 773 * Note that, because unbound workers never contribute to nr_running, this 774 * function will always return %true for unbound pools as long as the 775 * worklist isn't empty. 776 */ 777 static bool need_more_worker(struct worker_pool *pool) 778 { 779 return !list_empty(&pool->worklist) && __need_more_worker(pool); 780 } 781 782 /* Can I start working? Called from busy but !running workers. */ 783 static bool may_start_working(struct worker_pool *pool) 784 { 785 return pool->nr_idle; 786 } 787 788 /* Do I need to keep working? Called from currently running workers. */ 789 static bool keep_working(struct worker_pool *pool) 790 { 791 return !list_empty(&pool->worklist) && 792 atomic_read(&pool->nr_running) <= 1; 793 } 794 795 /* Do we need a new worker? Called from manager. */ 796 static bool need_to_create_worker(struct worker_pool *pool) 797 { 798 return need_more_worker(pool) && !may_start_working(pool); 799 } 800 801 /* Do we have too many workers and should some go away? */ 802 static bool too_many_workers(struct worker_pool *pool) 803 { 804 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 805 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 806 int nr_busy = pool->nr_workers - nr_idle; 807 808 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 809 } 810 811 /* 812 * Wake up functions. 813 */ 814 815 /* Return the first idle worker. Safe with preemption disabled */ 816 static struct worker *first_idle_worker(struct worker_pool *pool) 817 { 818 if (unlikely(list_empty(&pool->idle_list))) 819 return NULL; 820 821 return list_first_entry(&pool->idle_list, struct worker, entry); 822 } 823 824 /** 825 * wake_up_worker - wake up an idle worker 826 * @pool: worker pool to wake worker from 827 * 828 * Wake up the first idle worker of @pool. 829 * 830 * CONTEXT: 831 * spin_lock_irq(pool->lock). 832 */ 833 static void wake_up_worker(struct worker_pool *pool) 834 { 835 struct worker *worker = first_idle_worker(pool); 836 837 if (likely(worker)) 838 wake_up_process(worker->task); 839 } 840 841 /** 842 * wq_worker_waking_up - a worker is waking up 843 * @task: task waking up 844 * @cpu: CPU @task is waking up to 845 * 846 * This function is called during try_to_wake_up() when a worker is 847 * being awoken. 848 * 849 * CONTEXT: 850 * spin_lock_irq(rq->lock) 851 */ 852 void wq_worker_waking_up(struct task_struct *task, int cpu) 853 { 854 struct worker *worker = kthread_data(task); 855 856 if (!(worker->flags & WORKER_NOT_RUNNING)) { 857 WARN_ON_ONCE(worker->pool->cpu != cpu); 858 atomic_inc(&worker->pool->nr_running); 859 } 860 } 861 862 /** 863 * wq_worker_sleeping - a worker is going to sleep 864 * @task: task going to sleep 865 * 866 * This function is called during schedule() when a busy worker is 867 * going to sleep. Worker on the same cpu can be woken up by 868 * returning pointer to its task. 869 * 870 * CONTEXT: 871 * spin_lock_irq(rq->lock) 872 * 873 * Return: 874 * Worker task on @cpu to wake up, %NULL if none. 875 */ 876 struct task_struct *wq_worker_sleeping(struct task_struct *task) 877 { 878 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 879 struct worker_pool *pool; 880 881 /* 882 * Rescuers, which may not have all the fields set up like normal 883 * workers, also reach here, let's not access anything before 884 * checking NOT_RUNNING. 885 */ 886 if (worker->flags & WORKER_NOT_RUNNING) 887 return NULL; 888 889 pool = worker->pool; 890 891 /* this can only happen on the local cpu */ 892 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id())) 893 return NULL; 894 895 /* 896 * The counterpart of the following dec_and_test, implied mb, 897 * worklist not empty test sequence is in insert_work(). 898 * Please read comment there. 899 * 900 * NOT_RUNNING is clear. This means that we're bound to and 901 * running on the local cpu w/ rq lock held and preemption 902 * disabled, which in turn means that none else could be 903 * manipulating idle_list, so dereferencing idle_list without pool 904 * lock is safe. 905 */ 906 if (atomic_dec_and_test(&pool->nr_running) && 907 !list_empty(&pool->worklist)) 908 to_wakeup = first_idle_worker(pool); 909 return to_wakeup ? to_wakeup->task : NULL; 910 } 911 912 /** 913 * worker_set_flags - set worker flags and adjust nr_running accordingly 914 * @worker: self 915 * @flags: flags to set 916 * 917 * Set @flags in @worker->flags and adjust nr_running accordingly. 918 * 919 * CONTEXT: 920 * spin_lock_irq(pool->lock) 921 */ 922 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 923 { 924 struct worker_pool *pool = worker->pool; 925 926 WARN_ON_ONCE(worker->task != current); 927 928 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 929 if ((flags & WORKER_NOT_RUNNING) && 930 !(worker->flags & WORKER_NOT_RUNNING)) { 931 atomic_dec(&pool->nr_running); 932 } 933 934 worker->flags |= flags; 935 } 936 937 /** 938 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 939 * @worker: self 940 * @flags: flags to clear 941 * 942 * Clear @flags in @worker->flags and adjust nr_running accordingly. 943 * 944 * CONTEXT: 945 * spin_lock_irq(pool->lock) 946 */ 947 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 948 { 949 struct worker_pool *pool = worker->pool; 950 unsigned int oflags = worker->flags; 951 952 WARN_ON_ONCE(worker->task != current); 953 954 worker->flags &= ~flags; 955 956 /* 957 * If transitioning out of NOT_RUNNING, increment nr_running. Note 958 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 959 * of multiple flags, not a single flag. 960 */ 961 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 962 if (!(worker->flags & WORKER_NOT_RUNNING)) 963 atomic_inc(&pool->nr_running); 964 } 965 966 /** 967 * find_worker_executing_work - find worker which is executing a work 968 * @pool: pool of interest 969 * @work: work to find worker for 970 * 971 * Find a worker which is executing @work on @pool by searching 972 * @pool->busy_hash which is keyed by the address of @work. For a worker 973 * to match, its current execution should match the address of @work and 974 * its work function. This is to avoid unwanted dependency between 975 * unrelated work executions through a work item being recycled while still 976 * being executed. 977 * 978 * This is a bit tricky. A work item may be freed once its execution 979 * starts and nothing prevents the freed area from being recycled for 980 * another work item. If the same work item address ends up being reused 981 * before the original execution finishes, workqueue will identify the 982 * recycled work item as currently executing and make it wait until the 983 * current execution finishes, introducing an unwanted dependency. 984 * 985 * This function checks the work item address and work function to avoid 986 * false positives. Note that this isn't complete as one may construct a 987 * work function which can introduce dependency onto itself through a 988 * recycled work item. Well, if somebody wants to shoot oneself in the 989 * foot that badly, there's only so much we can do, and if such deadlock 990 * actually occurs, it should be easy to locate the culprit work function. 991 * 992 * CONTEXT: 993 * spin_lock_irq(pool->lock). 994 * 995 * Return: 996 * Pointer to worker which is executing @work if found, %NULL 997 * otherwise. 998 */ 999 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1000 struct work_struct *work) 1001 { 1002 struct worker *worker; 1003 1004 hash_for_each_possible(pool->busy_hash, worker, hentry, 1005 (unsigned long)work) 1006 if (worker->current_work == work && 1007 worker->current_func == work->func) 1008 return worker; 1009 1010 return NULL; 1011 } 1012 1013 /** 1014 * move_linked_works - move linked works to a list 1015 * @work: start of series of works to be scheduled 1016 * @head: target list to append @work to 1017 * @nextp: out parameter for nested worklist walking 1018 * 1019 * Schedule linked works starting from @work to @head. Work series to 1020 * be scheduled starts at @work and includes any consecutive work with 1021 * WORK_STRUCT_LINKED set in its predecessor. 1022 * 1023 * If @nextp is not NULL, it's updated to point to the next work of 1024 * the last scheduled work. This allows move_linked_works() to be 1025 * nested inside outer list_for_each_entry_safe(). 1026 * 1027 * CONTEXT: 1028 * spin_lock_irq(pool->lock). 1029 */ 1030 static void move_linked_works(struct work_struct *work, struct list_head *head, 1031 struct work_struct **nextp) 1032 { 1033 struct work_struct *n; 1034 1035 /* 1036 * Linked worklist will always end before the end of the list, 1037 * use NULL for list head. 1038 */ 1039 list_for_each_entry_safe_from(work, n, NULL, entry) { 1040 list_move_tail(&work->entry, head); 1041 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1042 break; 1043 } 1044 1045 /* 1046 * If we're already inside safe list traversal and have moved 1047 * multiple works to the scheduled queue, the next position 1048 * needs to be updated. 1049 */ 1050 if (nextp) 1051 *nextp = n; 1052 } 1053 1054 /** 1055 * get_pwq - get an extra reference on the specified pool_workqueue 1056 * @pwq: pool_workqueue to get 1057 * 1058 * Obtain an extra reference on @pwq. The caller should guarantee that 1059 * @pwq has positive refcnt and be holding the matching pool->lock. 1060 */ 1061 static void get_pwq(struct pool_workqueue *pwq) 1062 { 1063 lockdep_assert_held(&pwq->pool->lock); 1064 WARN_ON_ONCE(pwq->refcnt <= 0); 1065 pwq->refcnt++; 1066 } 1067 1068 /** 1069 * put_pwq - put a pool_workqueue reference 1070 * @pwq: pool_workqueue to put 1071 * 1072 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1073 * destruction. The caller should be holding the matching pool->lock. 1074 */ 1075 static void put_pwq(struct pool_workqueue *pwq) 1076 { 1077 lockdep_assert_held(&pwq->pool->lock); 1078 if (likely(--pwq->refcnt)) 1079 return; 1080 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1081 return; 1082 /* 1083 * @pwq can't be released under pool->lock, bounce to 1084 * pwq_unbound_release_workfn(). This never recurses on the same 1085 * pool->lock as this path is taken only for unbound workqueues and 1086 * the release work item is scheduled on a per-cpu workqueue. To 1087 * avoid lockdep warning, unbound pool->locks are given lockdep 1088 * subclass of 1 in get_unbound_pool(). 1089 */ 1090 schedule_work(&pwq->unbound_release_work); 1091 } 1092 1093 /** 1094 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1095 * @pwq: pool_workqueue to put (can be %NULL) 1096 * 1097 * put_pwq() with locking. This function also allows %NULL @pwq. 1098 */ 1099 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1100 { 1101 if (pwq) { 1102 /* 1103 * As both pwqs and pools are sched-RCU protected, the 1104 * following lock operations are safe. 1105 */ 1106 spin_lock_irq(&pwq->pool->lock); 1107 put_pwq(pwq); 1108 spin_unlock_irq(&pwq->pool->lock); 1109 } 1110 } 1111 1112 static void pwq_activate_delayed_work(struct work_struct *work) 1113 { 1114 struct pool_workqueue *pwq = get_work_pwq(work); 1115 1116 trace_workqueue_activate_work(work); 1117 if (list_empty(&pwq->pool->worklist)) 1118 pwq->pool->watchdog_ts = jiffies; 1119 move_linked_works(work, &pwq->pool->worklist, NULL); 1120 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1121 pwq->nr_active++; 1122 } 1123 1124 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1125 { 1126 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1127 struct work_struct, entry); 1128 1129 pwq_activate_delayed_work(work); 1130 } 1131 1132 /** 1133 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1134 * @pwq: pwq of interest 1135 * @color: color of work which left the queue 1136 * 1137 * A work either has completed or is removed from pending queue, 1138 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1139 * 1140 * CONTEXT: 1141 * spin_lock_irq(pool->lock). 1142 */ 1143 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1144 { 1145 /* uncolored work items don't participate in flushing or nr_active */ 1146 if (color == WORK_NO_COLOR) 1147 goto out_put; 1148 1149 pwq->nr_in_flight[color]--; 1150 1151 pwq->nr_active--; 1152 if (!list_empty(&pwq->delayed_works)) { 1153 /* one down, submit a delayed one */ 1154 if (pwq->nr_active < pwq->max_active) 1155 pwq_activate_first_delayed(pwq); 1156 } 1157 1158 /* is flush in progress and are we at the flushing tip? */ 1159 if (likely(pwq->flush_color != color)) 1160 goto out_put; 1161 1162 /* are there still in-flight works? */ 1163 if (pwq->nr_in_flight[color]) 1164 goto out_put; 1165 1166 /* this pwq is done, clear flush_color */ 1167 pwq->flush_color = -1; 1168 1169 /* 1170 * If this was the last pwq, wake up the first flusher. It 1171 * will handle the rest. 1172 */ 1173 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1174 complete(&pwq->wq->first_flusher->done); 1175 out_put: 1176 put_pwq(pwq); 1177 } 1178 1179 /** 1180 * try_to_grab_pending - steal work item from worklist and disable irq 1181 * @work: work item to steal 1182 * @is_dwork: @work is a delayed_work 1183 * @flags: place to store irq state 1184 * 1185 * Try to grab PENDING bit of @work. This function can handle @work in any 1186 * stable state - idle, on timer or on worklist. 1187 * 1188 * Return: 1189 * 1 if @work was pending and we successfully stole PENDING 1190 * 0 if @work was idle and we claimed PENDING 1191 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1192 * -ENOENT if someone else is canceling @work, this state may persist 1193 * for arbitrarily long 1194 * 1195 * Note: 1196 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1197 * interrupted while holding PENDING and @work off queue, irq must be 1198 * disabled on entry. This, combined with delayed_work->timer being 1199 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1200 * 1201 * On successful return, >= 0, irq is disabled and the caller is 1202 * responsible for releasing it using local_irq_restore(*@flags). 1203 * 1204 * This function is safe to call from any context including IRQ handler. 1205 */ 1206 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1207 unsigned long *flags) 1208 { 1209 struct worker_pool *pool; 1210 struct pool_workqueue *pwq; 1211 1212 local_irq_save(*flags); 1213 1214 /* try to steal the timer if it exists */ 1215 if (is_dwork) { 1216 struct delayed_work *dwork = to_delayed_work(work); 1217 1218 /* 1219 * dwork->timer is irqsafe. If del_timer() fails, it's 1220 * guaranteed that the timer is not queued anywhere and not 1221 * running on the local CPU. 1222 */ 1223 if (likely(del_timer(&dwork->timer))) 1224 return 1; 1225 } 1226 1227 /* try to claim PENDING the normal way */ 1228 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1229 return 0; 1230 1231 /* 1232 * The queueing is in progress, or it is already queued. Try to 1233 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1234 */ 1235 pool = get_work_pool(work); 1236 if (!pool) 1237 goto fail; 1238 1239 spin_lock(&pool->lock); 1240 /* 1241 * work->data is guaranteed to point to pwq only while the work 1242 * item is queued on pwq->wq, and both updating work->data to point 1243 * to pwq on queueing and to pool on dequeueing are done under 1244 * pwq->pool->lock. This in turn guarantees that, if work->data 1245 * points to pwq which is associated with a locked pool, the work 1246 * item is currently queued on that pool. 1247 */ 1248 pwq = get_work_pwq(work); 1249 if (pwq && pwq->pool == pool) { 1250 debug_work_deactivate(work); 1251 1252 /* 1253 * A delayed work item cannot be grabbed directly because 1254 * it might have linked NO_COLOR work items which, if left 1255 * on the delayed_list, will confuse pwq->nr_active 1256 * management later on and cause stall. Make sure the work 1257 * item is activated before grabbing. 1258 */ 1259 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1260 pwq_activate_delayed_work(work); 1261 1262 list_del_init(&work->entry); 1263 pwq_dec_nr_in_flight(pwq, get_work_color(work)); 1264 1265 /* work->data points to pwq iff queued, point to pool */ 1266 set_work_pool_and_keep_pending(work, pool->id); 1267 1268 spin_unlock(&pool->lock); 1269 return 1; 1270 } 1271 spin_unlock(&pool->lock); 1272 fail: 1273 local_irq_restore(*flags); 1274 if (work_is_canceling(work)) 1275 return -ENOENT; 1276 cpu_relax(); 1277 return -EAGAIN; 1278 } 1279 1280 /** 1281 * insert_work - insert a work into a pool 1282 * @pwq: pwq @work belongs to 1283 * @work: work to insert 1284 * @head: insertion point 1285 * @extra_flags: extra WORK_STRUCT_* flags to set 1286 * 1287 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1288 * work_struct flags. 1289 * 1290 * CONTEXT: 1291 * spin_lock_irq(pool->lock). 1292 */ 1293 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1294 struct list_head *head, unsigned int extra_flags) 1295 { 1296 struct worker_pool *pool = pwq->pool; 1297 1298 /* we own @work, set data and link */ 1299 set_work_pwq(work, pwq, extra_flags); 1300 list_add_tail(&work->entry, head); 1301 get_pwq(pwq); 1302 1303 /* 1304 * Ensure either wq_worker_sleeping() sees the above 1305 * list_add_tail() or we see zero nr_running to avoid workers lying 1306 * around lazily while there are works to be processed. 1307 */ 1308 smp_mb(); 1309 1310 if (__need_more_worker(pool)) 1311 wake_up_worker(pool); 1312 } 1313 1314 /* 1315 * Test whether @work is being queued from another work executing on the 1316 * same workqueue. 1317 */ 1318 static bool is_chained_work(struct workqueue_struct *wq) 1319 { 1320 struct worker *worker; 1321 1322 worker = current_wq_worker(); 1323 /* 1324 * Return %true iff I'm a worker execuing a work item on @wq. If 1325 * I'm @worker, it's safe to dereference it without locking. 1326 */ 1327 return worker && worker->current_pwq->wq == wq; 1328 } 1329 1330 /* 1331 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1332 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1333 * avoid perturbing sensitive tasks. 1334 */ 1335 static int wq_select_unbound_cpu(int cpu) 1336 { 1337 static bool printed_dbg_warning; 1338 int new_cpu; 1339 1340 if (likely(!wq_debug_force_rr_cpu)) { 1341 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1342 return cpu; 1343 } else if (!printed_dbg_warning) { 1344 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1345 printed_dbg_warning = true; 1346 } 1347 1348 if (cpumask_empty(wq_unbound_cpumask)) 1349 return cpu; 1350 1351 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1352 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1353 if (unlikely(new_cpu >= nr_cpu_ids)) { 1354 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1355 if (unlikely(new_cpu >= nr_cpu_ids)) 1356 return cpu; 1357 } 1358 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1359 1360 return new_cpu; 1361 } 1362 1363 static void __queue_work(int cpu, struct workqueue_struct *wq, 1364 struct work_struct *work) 1365 { 1366 struct pool_workqueue *pwq; 1367 struct worker_pool *last_pool; 1368 struct list_head *worklist; 1369 unsigned int work_flags; 1370 unsigned int req_cpu = cpu; 1371 1372 /* 1373 * While a work item is PENDING && off queue, a task trying to 1374 * steal the PENDING will busy-loop waiting for it to either get 1375 * queued or lose PENDING. Grabbing PENDING and queueing should 1376 * happen with IRQ disabled. 1377 */ 1378 lockdep_assert_irqs_disabled(); 1379 1380 debug_work_activate(work); 1381 1382 /* if draining, only works from the same workqueue are allowed */ 1383 if (unlikely(wq->flags & __WQ_DRAINING) && 1384 WARN_ON_ONCE(!is_chained_work(wq))) 1385 return; 1386 retry: 1387 if (req_cpu == WORK_CPU_UNBOUND) 1388 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1389 1390 /* pwq which will be used unless @work is executing elsewhere */ 1391 if (!(wq->flags & WQ_UNBOUND)) 1392 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1393 else 1394 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1395 1396 /* 1397 * If @work was previously on a different pool, it might still be 1398 * running there, in which case the work needs to be queued on that 1399 * pool to guarantee non-reentrancy. 1400 */ 1401 last_pool = get_work_pool(work); 1402 if (last_pool && last_pool != pwq->pool) { 1403 struct worker *worker; 1404 1405 spin_lock(&last_pool->lock); 1406 1407 worker = find_worker_executing_work(last_pool, work); 1408 1409 if (worker && worker->current_pwq->wq == wq) { 1410 pwq = worker->current_pwq; 1411 } else { 1412 /* meh... not running there, queue here */ 1413 spin_unlock(&last_pool->lock); 1414 spin_lock(&pwq->pool->lock); 1415 } 1416 } else { 1417 spin_lock(&pwq->pool->lock); 1418 } 1419 1420 /* 1421 * pwq is determined and locked. For unbound pools, we could have 1422 * raced with pwq release and it could already be dead. If its 1423 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1424 * without another pwq replacing it in the numa_pwq_tbl or while 1425 * work items are executing on it, so the retrying is guaranteed to 1426 * make forward-progress. 1427 */ 1428 if (unlikely(!pwq->refcnt)) { 1429 if (wq->flags & WQ_UNBOUND) { 1430 spin_unlock(&pwq->pool->lock); 1431 cpu_relax(); 1432 goto retry; 1433 } 1434 /* oops */ 1435 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1436 wq->name, cpu); 1437 } 1438 1439 /* pwq determined, queue */ 1440 trace_workqueue_queue_work(req_cpu, pwq, work); 1441 1442 if (WARN_ON(!list_empty(&work->entry))) { 1443 spin_unlock(&pwq->pool->lock); 1444 return; 1445 } 1446 1447 pwq->nr_in_flight[pwq->work_color]++; 1448 work_flags = work_color_to_flags(pwq->work_color); 1449 1450 if (likely(pwq->nr_active < pwq->max_active)) { 1451 trace_workqueue_activate_work(work); 1452 pwq->nr_active++; 1453 worklist = &pwq->pool->worklist; 1454 if (list_empty(worklist)) 1455 pwq->pool->watchdog_ts = jiffies; 1456 } else { 1457 work_flags |= WORK_STRUCT_DELAYED; 1458 worklist = &pwq->delayed_works; 1459 } 1460 1461 insert_work(pwq, work, worklist, work_flags); 1462 1463 spin_unlock(&pwq->pool->lock); 1464 } 1465 1466 /** 1467 * queue_work_on - queue work on specific cpu 1468 * @cpu: CPU number to execute work on 1469 * @wq: workqueue to use 1470 * @work: work to queue 1471 * 1472 * We queue the work to a specific CPU, the caller must ensure it 1473 * can't go away. 1474 * 1475 * Return: %false if @work was already on a queue, %true otherwise. 1476 */ 1477 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1478 struct work_struct *work) 1479 { 1480 bool ret = false; 1481 unsigned long flags; 1482 1483 local_irq_save(flags); 1484 1485 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1486 __queue_work(cpu, wq, work); 1487 ret = true; 1488 } 1489 1490 local_irq_restore(flags); 1491 return ret; 1492 } 1493 EXPORT_SYMBOL(queue_work_on); 1494 1495 void delayed_work_timer_fn(struct timer_list *t) 1496 { 1497 struct delayed_work *dwork = from_timer(dwork, t, timer); 1498 1499 /* should have been called from irqsafe timer with irq already off */ 1500 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1501 } 1502 EXPORT_SYMBOL(delayed_work_timer_fn); 1503 1504 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1505 struct delayed_work *dwork, unsigned long delay) 1506 { 1507 struct timer_list *timer = &dwork->timer; 1508 struct work_struct *work = &dwork->work; 1509 1510 WARN_ON_ONCE(!wq); 1511 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 1512 WARN_ON_ONCE(timer_pending(timer)); 1513 WARN_ON_ONCE(!list_empty(&work->entry)); 1514 1515 /* 1516 * If @delay is 0, queue @dwork->work immediately. This is for 1517 * both optimization and correctness. The earliest @timer can 1518 * expire is on the closest next tick and delayed_work users depend 1519 * on that there's no such delay when @delay is 0. 1520 */ 1521 if (!delay) { 1522 __queue_work(cpu, wq, &dwork->work); 1523 return; 1524 } 1525 1526 dwork->wq = wq; 1527 dwork->cpu = cpu; 1528 timer->expires = jiffies + delay; 1529 1530 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1531 add_timer_on(timer, cpu); 1532 else 1533 add_timer(timer); 1534 } 1535 1536 /** 1537 * queue_delayed_work_on - queue work on specific CPU after delay 1538 * @cpu: CPU number to execute work on 1539 * @wq: workqueue to use 1540 * @dwork: work to queue 1541 * @delay: number of jiffies to wait before queueing 1542 * 1543 * Return: %false if @work was already on a queue, %true otherwise. If 1544 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1545 * execution. 1546 */ 1547 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1548 struct delayed_work *dwork, unsigned long delay) 1549 { 1550 struct work_struct *work = &dwork->work; 1551 bool ret = false; 1552 unsigned long flags; 1553 1554 /* read the comment in __queue_work() */ 1555 local_irq_save(flags); 1556 1557 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1558 __queue_delayed_work(cpu, wq, dwork, delay); 1559 ret = true; 1560 } 1561 1562 local_irq_restore(flags); 1563 return ret; 1564 } 1565 EXPORT_SYMBOL(queue_delayed_work_on); 1566 1567 /** 1568 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1569 * @cpu: CPU number to execute work on 1570 * @wq: workqueue to use 1571 * @dwork: work to queue 1572 * @delay: number of jiffies to wait before queueing 1573 * 1574 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1575 * modify @dwork's timer so that it expires after @delay. If @delay is 1576 * zero, @work is guaranteed to be scheduled immediately regardless of its 1577 * current state. 1578 * 1579 * Return: %false if @dwork was idle and queued, %true if @dwork was 1580 * pending and its timer was modified. 1581 * 1582 * This function is safe to call from any context including IRQ handler. 1583 * See try_to_grab_pending() for details. 1584 */ 1585 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1586 struct delayed_work *dwork, unsigned long delay) 1587 { 1588 unsigned long flags; 1589 int ret; 1590 1591 do { 1592 ret = try_to_grab_pending(&dwork->work, true, &flags); 1593 } while (unlikely(ret == -EAGAIN)); 1594 1595 if (likely(ret >= 0)) { 1596 __queue_delayed_work(cpu, wq, dwork, delay); 1597 local_irq_restore(flags); 1598 } 1599 1600 /* -ENOENT from try_to_grab_pending() becomes %true */ 1601 return ret; 1602 } 1603 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1604 1605 static void rcu_work_rcufn(struct rcu_head *rcu) 1606 { 1607 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 1608 1609 /* read the comment in __queue_work() */ 1610 local_irq_disable(); 1611 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 1612 local_irq_enable(); 1613 } 1614 1615 /** 1616 * queue_rcu_work - queue work after a RCU grace period 1617 * @wq: workqueue to use 1618 * @rwork: work to queue 1619 * 1620 * Return: %false if @rwork was already pending, %true otherwise. Note 1621 * that a full RCU grace period is guaranteed only after a %true return. 1622 * While @rwork is guarnateed to be executed after a %false return, the 1623 * execution may happen before a full RCU grace period has passed. 1624 */ 1625 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 1626 { 1627 struct work_struct *work = &rwork->work; 1628 1629 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1630 rwork->wq = wq; 1631 call_rcu(&rwork->rcu, rcu_work_rcufn); 1632 return true; 1633 } 1634 1635 return false; 1636 } 1637 EXPORT_SYMBOL(queue_rcu_work); 1638 1639 /** 1640 * worker_enter_idle - enter idle state 1641 * @worker: worker which is entering idle state 1642 * 1643 * @worker is entering idle state. Update stats and idle timer if 1644 * necessary. 1645 * 1646 * LOCKING: 1647 * spin_lock_irq(pool->lock). 1648 */ 1649 static void worker_enter_idle(struct worker *worker) 1650 { 1651 struct worker_pool *pool = worker->pool; 1652 1653 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1654 WARN_ON_ONCE(!list_empty(&worker->entry) && 1655 (worker->hentry.next || worker->hentry.pprev))) 1656 return; 1657 1658 /* can't use worker_set_flags(), also called from create_worker() */ 1659 worker->flags |= WORKER_IDLE; 1660 pool->nr_idle++; 1661 worker->last_active = jiffies; 1662 1663 /* idle_list is LIFO */ 1664 list_add(&worker->entry, &pool->idle_list); 1665 1666 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1667 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1668 1669 /* 1670 * Sanity check nr_running. Because unbind_workers() releases 1671 * pool->lock between setting %WORKER_UNBOUND and zapping 1672 * nr_running, the warning may trigger spuriously. Check iff 1673 * unbind is not in progress. 1674 */ 1675 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1676 pool->nr_workers == pool->nr_idle && 1677 atomic_read(&pool->nr_running)); 1678 } 1679 1680 /** 1681 * worker_leave_idle - leave idle state 1682 * @worker: worker which is leaving idle state 1683 * 1684 * @worker is leaving idle state. Update stats. 1685 * 1686 * LOCKING: 1687 * spin_lock_irq(pool->lock). 1688 */ 1689 static void worker_leave_idle(struct worker *worker) 1690 { 1691 struct worker_pool *pool = worker->pool; 1692 1693 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1694 return; 1695 worker_clr_flags(worker, WORKER_IDLE); 1696 pool->nr_idle--; 1697 list_del_init(&worker->entry); 1698 } 1699 1700 static struct worker *alloc_worker(int node) 1701 { 1702 struct worker *worker; 1703 1704 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1705 if (worker) { 1706 INIT_LIST_HEAD(&worker->entry); 1707 INIT_LIST_HEAD(&worker->scheduled); 1708 INIT_LIST_HEAD(&worker->node); 1709 /* on creation a worker is in !idle && prep state */ 1710 worker->flags = WORKER_PREP; 1711 } 1712 return worker; 1713 } 1714 1715 /** 1716 * worker_attach_to_pool() - attach a worker to a pool 1717 * @worker: worker to be attached 1718 * @pool: the target pool 1719 * 1720 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1721 * cpu-binding of @worker are kept coordinated with the pool across 1722 * cpu-[un]hotplugs. 1723 */ 1724 static void worker_attach_to_pool(struct worker *worker, 1725 struct worker_pool *pool) 1726 { 1727 mutex_lock(&wq_pool_attach_mutex); 1728 1729 /* 1730 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1731 * online CPUs. It'll be re-applied when any of the CPUs come up. 1732 */ 1733 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1734 1735 /* 1736 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains 1737 * stable across this function. See the comments above the flag 1738 * definition for details. 1739 */ 1740 if (pool->flags & POOL_DISASSOCIATED) 1741 worker->flags |= WORKER_UNBOUND; 1742 1743 list_add_tail(&worker->node, &pool->workers); 1744 worker->pool = pool; 1745 1746 mutex_unlock(&wq_pool_attach_mutex); 1747 } 1748 1749 /** 1750 * worker_detach_from_pool() - detach a worker from its pool 1751 * @worker: worker which is attached to its pool 1752 * 1753 * Undo the attaching which had been done in worker_attach_to_pool(). The 1754 * caller worker shouldn't access to the pool after detached except it has 1755 * other reference to the pool. 1756 */ 1757 static void worker_detach_from_pool(struct worker *worker) 1758 { 1759 struct worker_pool *pool = worker->pool; 1760 struct completion *detach_completion = NULL; 1761 1762 mutex_lock(&wq_pool_attach_mutex); 1763 1764 list_del(&worker->node); 1765 worker->pool = NULL; 1766 1767 if (list_empty(&pool->workers)) 1768 detach_completion = pool->detach_completion; 1769 mutex_unlock(&wq_pool_attach_mutex); 1770 1771 /* clear leftover flags without pool->lock after it is detached */ 1772 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1773 1774 if (detach_completion) 1775 complete(detach_completion); 1776 } 1777 1778 /** 1779 * create_worker - create a new workqueue worker 1780 * @pool: pool the new worker will belong to 1781 * 1782 * Create and start a new worker which is attached to @pool. 1783 * 1784 * CONTEXT: 1785 * Might sleep. Does GFP_KERNEL allocations. 1786 * 1787 * Return: 1788 * Pointer to the newly created worker. 1789 */ 1790 static struct worker *create_worker(struct worker_pool *pool) 1791 { 1792 struct worker *worker = NULL; 1793 int id = -1; 1794 char id_buf[16]; 1795 1796 /* ID is needed to determine kthread name */ 1797 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL); 1798 if (id < 0) 1799 goto fail; 1800 1801 worker = alloc_worker(pool->node); 1802 if (!worker) 1803 goto fail; 1804 1805 worker->id = id; 1806 1807 if (pool->cpu >= 0) 1808 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1809 pool->attrs->nice < 0 ? "H" : ""); 1810 else 1811 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1812 1813 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1814 "kworker/%s", id_buf); 1815 if (IS_ERR(worker->task)) 1816 goto fail; 1817 1818 set_user_nice(worker->task, pool->attrs->nice); 1819 kthread_bind_mask(worker->task, pool->attrs->cpumask); 1820 1821 /* successful, attach the worker to the pool */ 1822 worker_attach_to_pool(worker, pool); 1823 1824 /* start the newly created worker */ 1825 spin_lock_irq(&pool->lock); 1826 worker->pool->nr_workers++; 1827 worker_enter_idle(worker); 1828 wake_up_process(worker->task); 1829 spin_unlock_irq(&pool->lock); 1830 1831 return worker; 1832 1833 fail: 1834 if (id >= 0) 1835 ida_simple_remove(&pool->worker_ida, id); 1836 kfree(worker); 1837 return NULL; 1838 } 1839 1840 /** 1841 * destroy_worker - destroy a workqueue worker 1842 * @worker: worker to be destroyed 1843 * 1844 * Destroy @worker and adjust @pool stats accordingly. The worker should 1845 * be idle. 1846 * 1847 * CONTEXT: 1848 * spin_lock_irq(pool->lock). 1849 */ 1850 static void destroy_worker(struct worker *worker) 1851 { 1852 struct worker_pool *pool = worker->pool; 1853 1854 lockdep_assert_held(&pool->lock); 1855 1856 /* sanity check frenzy */ 1857 if (WARN_ON(worker->current_work) || 1858 WARN_ON(!list_empty(&worker->scheduled)) || 1859 WARN_ON(!(worker->flags & WORKER_IDLE))) 1860 return; 1861 1862 pool->nr_workers--; 1863 pool->nr_idle--; 1864 1865 list_del_init(&worker->entry); 1866 worker->flags |= WORKER_DIE; 1867 wake_up_process(worker->task); 1868 } 1869 1870 static void idle_worker_timeout(struct timer_list *t) 1871 { 1872 struct worker_pool *pool = from_timer(pool, t, idle_timer); 1873 1874 spin_lock_irq(&pool->lock); 1875 1876 while (too_many_workers(pool)) { 1877 struct worker *worker; 1878 unsigned long expires; 1879 1880 /* idle_list is kept in LIFO order, check the last one */ 1881 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1882 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1883 1884 if (time_before(jiffies, expires)) { 1885 mod_timer(&pool->idle_timer, expires); 1886 break; 1887 } 1888 1889 destroy_worker(worker); 1890 } 1891 1892 spin_unlock_irq(&pool->lock); 1893 } 1894 1895 static void send_mayday(struct work_struct *work) 1896 { 1897 struct pool_workqueue *pwq = get_work_pwq(work); 1898 struct workqueue_struct *wq = pwq->wq; 1899 1900 lockdep_assert_held(&wq_mayday_lock); 1901 1902 if (!wq->rescuer) 1903 return; 1904 1905 /* mayday mayday mayday */ 1906 if (list_empty(&pwq->mayday_node)) { 1907 /* 1908 * If @pwq is for an unbound wq, its base ref may be put at 1909 * any time due to an attribute change. Pin @pwq until the 1910 * rescuer is done with it. 1911 */ 1912 get_pwq(pwq); 1913 list_add_tail(&pwq->mayday_node, &wq->maydays); 1914 wake_up_process(wq->rescuer->task); 1915 } 1916 } 1917 1918 static void pool_mayday_timeout(struct timer_list *t) 1919 { 1920 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 1921 struct work_struct *work; 1922 1923 spin_lock_irq(&pool->lock); 1924 spin_lock(&wq_mayday_lock); /* for wq->maydays */ 1925 1926 if (need_to_create_worker(pool)) { 1927 /* 1928 * We've been trying to create a new worker but 1929 * haven't been successful. We might be hitting an 1930 * allocation deadlock. Send distress signals to 1931 * rescuers. 1932 */ 1933 list_for_each_entry(work, &pool->worklist, entry) 1934 send_mayday(work); 1935 } 1936 1937 spin_unlock(&wq_mayday_lock); 1938 spin_unlock_irq(&pool->lock); 1939 1940 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 1941 } 1942 1943 /** 1944 * maybe_create_worker - create a new worker if necessary 1945 * @pool: pool to create a new worker for 1946 * 1947 * Create a new worker for @pool if necessary. @pool is guaranteed to 1948 * have at least one idle worker on return from this function. If 1949 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1950 * sent to all rescuers with works scheduled on @pool to resolve 1951 * possible allocation deadlock. 1952 * 1953 * On return, need_to_create_worker() is guaranteed to be %false and 1954 * may_start_working() %true. 1955 * 1956 * LOCKING: 1957 * spin_lock_irq(pool->lock) which may be released and regrabbed 1958 * multiple times. Does GFP_KERNEL allocations. Called only from 1959 * manager. 1960 */ 1961 static void maybe_create_worker(struct worker_pool *pool) 1962 __releases(&pool->lock) 1963 __acquires(&pool->lock) 1964 { 1965 restart: 1966 spin_unlock_irq(&pool->lock); 1967 1968 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1969 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1970 1971 while (true) { 1972 if (create_worker(pool) || !need_to_create_worker(pool)) 1973 break; 1974 1975 schedule_timeout_interruptible(CREATE_COOLDOWN); 1976 1977 if (!need_to_create_worker(pool)) 1978 break; 1979 } 1980 1981 del_timer_sync(&pool->mayday_timer); 1982 spin_lock_irq(&pool->lock); 1983 /* 1984 * This is necessary even after a new worker was just successfully 1985 * created as @pool->lock was dropped and the new worker might have 1986 * already become busy. 1987 */ 1988 if (need_to_create_worker(pool)) 1989 goto restart; 1990 } 1991 1992 /** 1993 * manage_workers - manage worker pool 1994 * @worker: self 1995 * 1996 * Assume the manager role and manage the worker pool @worker belongs 1997 * to. At any given time, there can be only zero or one manager per 1998 * pool. The exclusion is handled automatically by this function. 1999 * 2000 * The caller can safely start processing works on false return. On 2001 * true return, it's guaranteed that need_to_create_worker() is false 2002 * and may_start_working() is true. 2003 * 2004 * CONTEXT: 2005 * spin_lock_irq(pool->lock) which may be released and regrabbed 2006 * multiple times. Does GFP_KERNEL allocations. 2007 * 2008 * Return: 2009 * %false if the pool doesn't need management and the caller can safely 2010 * start processing works, %true if management function was performed and 2011 * the conditions that the caller verified before calling the function may 2012 * no longer be true. 2013 */ 2014 static bool manage_workers(struct worker *worker) 2015 { 2016 struct worker_pool *pool = worker->pool; 2017 2018 if (pool->flags & POOL_MANAGER_ACTIVE) 2019 return false; 2020 2021 pool->flags |= POOL_MANAGER_ACTIVE; 2022 pool->manager = worker; 2023 2024 maybe_create_worker(pool); 2025 2026 pool->manager = NULL; 2027 pool->flags &= ~POOL_MANAGER_ACTIVE; 2028 wake_up(&wq_manager_wait); 2029 return true; 2030 } 2031 2032 /** 2033 * process_one_work - process single work 2034 * @worker: self 2035 * @work: work to process 2036 * 2037 * Process @work. This function contains all the logics necessary to 2038 * process a single work including synchronization against and 2039 * interaction with other workers on the same cpu, queueing and 2040 * flushing. As long as context requirement is met, any worker can 2041 * call this function to process a work. 2042 * 2043 * CONTEXT: 2044 * spin_lock_irq(pool->lock) which is released and regrabbed. 2045 */ 2046 static void process_one_work(struct worker *worker, struct work_struct *work) 2047 __releases(&pool->lock) 2048 __acquires(&pool->lock) 2049 { 2050 struct pool_workqueue *pwq = get_work_pwq(work); 2051 struct worker_pool *pool = worker->pool; 2052 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2053 int work_color; 2054 struct worker *collision; 2055 #ifdef CONFIG_LOCKDEP 2056 /* 2057 * It is permissible to free the struct work_struct from 2058 * inside the function that is called from it, this we need to 2059 * take into account for lockdep too. To avoid bogus "held 2060 * lock freed" warnings as well as problems when looking into 2061 * work->lockdep_map, make a copy and use that here. 2062 */ 2063 struct lockdep_map lockdep_map; 2064 2065 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2066 #endif 2067 /* ensure we're on the correct CPU */ 2068 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2069 raw_smp_processor_id() != pool->cpu); 2070 2071 /* 2072 * A single work shouldn't be executed concurrently by 2073 * multiple workers on a single cpu. Check whether anyone is 2074 * already processing the work. If so, defer the work to the 2075 * currently executing one. 2076 */ 2077 collision = find_worker_executing_work(pool, work); 2078 if (unlikely(collision)) { 2079 move_linked_works(work, &collision->scheduled, NULL); 2080 return; 2081 } 2082 2083 /* claim and dequeue */ 2084 debug_work_deactivate(work); 2085 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2086 worker->current_work = work; 2087 worker->current_func = work->func; 2088 worker->current_pwq = pwq; 2089 work_color = get_work_color(work); 2090 2091 /* 2092 * Record wq name for cmdline and debug reporting, may get 2093 * overridden through set_worker_desc(). 2094 */ 2095 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 2096 2097 list_del_init(&work->entry); 2098 2099 /* 2100 * CPU intensive works don't participate in concurrency management. 2101 * They're the scheduler's responsibility. This takes @worker out 2102 * of concurrency management and the next code block will chain 2103 * execution of the pending work items. 2104 */ 2105 if (unlikely(cpu_intensive)) 2106 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2107 2108 /* 2109 * Wake up another worker if necessary. The condition is always 2110 * false for normal per-cpu workers since nr_running would always 2111 * be >= 1 at this point. This is used to chain execution of the 2112 * pending work items for WORKER_NOT_RUNNING workers such as the 2113 * UNBOUND and CPU_INTENSIVE ones. 2114 */ 2115 if (need_more_worker(pool)) 2116 wake_up_worker(pool); 2117 2118 /* 2119 * Record the last pool and clear PENDING which should be the last 2120 * update to @work. Also, do this inside @pool->lock so that 2121 * PENDING and queued state changes happen together while IRQ is 2122 * disabled. 2123 */ 2124 set_work_pool_and_clear_pending(work, pool->id); 2125 2126 spin_unlock_irq(&pool->lock); 2127 2128 lock_map_acquire(&pwq->wq->lockdep_map); 2129 lock_map_acquire(&lockdep_map); 2130 /* 2131 * Strictly speaking we should mark the invariant state without holding 2132 * any locks, that is, before these two lock_map_acquire()'s. 2133 * 2134 * However, that would result in: 2135 * 2136 * A(W1) 2137 * WFC(C) 2138 * A(W1) 2139 * C(C) 2140 * 2141 * Which would create W1->C->W1 dependencies, even though there is no 2142 * actual deadlock possible. There are two solutions, using a 2143 * read-recursive acquire on the work(queue) 'locks', but this will then 2144 * hit the lockdep limitation on recursive locks, or simply discard 2145 * these locks. 2146 * 2147 * AFAICT there is no possible deadlock scenario between the 2148 * flush_work() and complete() primitives (except for single-threaded 2149 * workqueues), so hiding them isn't a problem. 2150 */ 2151 lockdep_invariant_state(true); 2152 trace_workqueue_execute_start(work); 2153 worker->current_func(work); 2154 /* 2155 * While we must be careful to not use "work" after this, the trace 2156 * point will only record its address. 2157 */ 2158 trace_workqueue_execute_end(work); 2159 lock_map_release(&lockdep_map); 2160 lock_map_release(&pwq->wq->lockdep_map); 2161 2162 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2163 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2164 " last function: %pf\n", 2165 current->comm, preempt_count(), task_pid_nr(current), 2166 worker->current_func); 2167 debug_show_held_locks(current); 2168 dump_stack(); 2169 } 2170 2171 /* 2172 * The following prevents a kworker from hogging CPU on !PREEMPT 2173 * kernels, where a requeueing work item waiting for something to 2174 * happen could deadlock with stop_machine as such work item could 2175 * indefinitely requeue itself while all other CPUs are trapped in 2176 * stop_machine. At the same time, report a quiescent RCU state so 2177 * the same condition doesn't freeze RCU. 2178 */ 2179 cond_resched(); 2180 2181 spin_lock_irq(&pool->lock); 2182 2183 /* clear cpu intensive status */ 2184 if (unlikely(cpu_intensive)) 2185 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2186 2187 /* we're done with it, release */ 2188 hash_del(&worker->hentry); 2189 worker->current_work = NULL; 2190 worker->current_func = NULL; 2191 worker->current_pwq = NULL; 2192 pwq_dec_nr_in_flight(pwq, work_color); 2193 } 2194 2195 /** 2196 * process_scheduled_works - process scheduled works 2197 * @worker: self 2198 * 2199 * Process all scheduled works. Please note that the scheduled list 2200 * may change while processing a work, so this function repeatedly 2201 * fetches a work from the top and executes it. 2202 * 2203 * CONTEXT: 2204 * spin_lock_irq(pool->lock) which may be released and regrabbed 2205 * multiple times. 2206 */ 2207 static void process_scheduled_works(struct worker *worker) 2208 { 2209 while (!list_empty(&worker->scheduled)) { 2210 struct work_struct *work = list_first_entry(&worker->scheduled, 2211 struct work_struct, entry); 2212 process_one_work(worker, work); 2213 } 2214 } 2215 2216 static void set_pf_worker(bool val) 2217 { 2218 mutex_lock(&wq_pool_attach_mutex); 2219 if (val) 2220 current->flags |= PF_WQ_WORKER; 2221 else 2222 current->flags &= ~PF_WQ_WORKER; 2223 mutex_unlock(&wq_pool_attach_mutex); 2224 } 2225 2226 /** 2227 * worker_thread - the worker thread function 2228 * @__worker: self 2229 * 2230 * The worker thread function. All workers belong to a worker_pool - 2231 * either a per-cpu one or dynamic unbound one. These workers process all 2232 * work items regardless of their specific target workqueue. The only 2233 * exception is work items which belong to workqueues with a rescuer which 2234 * will be explained in rescuer_thread(). 2235 * 2236 * Return: 0 2237 */ 2238 static int worker_thread(void *__worker) 2239 { 2240 struct worker *worker = __worker; 2241 struct worker_pool *pool = worker->pool; 2242 2243 /* tell the scheduler that this is a workqueue worker */ 2244 set_pf_worker(true); 2245 woke_up: 2246 spin_lock_irq(&pool->lock); 2247 2248 /* am I supposed to die? */ 2249 if (unlikely(worker->flags & WORKER_DIE)) { 2250 spin_unlock_irq(&pool->lock); 2251 WARN_ON_ONCE(!list_empty(&worker->entry)); 2252 set_pf_worker(false); 2253 2254 set_task_comm(worker->task, "kworker/dying"); 2255 ida_simple_remove(&pool->worker_ida, worker->id); 2256 worker_detach_from_pool(worker); 2257 kfree(worker); 2258 return 0; 2259 } 2260 2261 worker_leave_idle(worker); 2262 recheck: 2263 /* no more worker necessary? */ 2264 if (!need_more_worker(pool)) 2265 goto sleep; 2266 2267 /* do we need to manage? */ 2268 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2269 goto recheck; 2270 2271 /* 2272 * ->scheduled list can only be filled while a worker is 2273 * preparing to process a work or actually processing it. 2274 * Make sure nobody diddled with it while I was sleeping. 2275 */ 2276 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2277 2278 /* 2279 * Finish PREP stage. We're guaranteed to have at least one idle 2280 * worker or that someone else has already assumed the manager 2281 * role. This is where @worker starts participating in concurrency 2282 * management if applicable and concurrency management is restored 2283 * after being rebound. See rebind_workers() for details. 2284 */ 2285 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2286 2287 do { 2288 struct work_struct *work = 2289 list_first_entry(&pool->worklist, 2290 struct work_struct, entry); 2291 2292 pool->watchdog_ts = jiffies; 2293 2294 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2295 /* optimization path, not strictly necessary */ 2296 process_one_work(worker, work); 2297 if (unlikely(!list_empty(&worker->scheduled))) 2298 process_scheduled_works(worker); 2299 } else { 2300 move_linked_works(work, &worker->scheduled, NULL); 2301 process_scheduled_works(worker); 2302 } 2303 } while (keep_working(pool)); 2304 2305 worker_set_flags(worker, WORKER_PREP); 2306 sleep: 2307 /* 2308 * pool->lock is held and there's no work to process and no need to 2309 * manage, sleep. Workers are woken up only while holding 2310 * pool->lock or from local cpu, so setting the current state 2311 * before releasing pool->lock is enough to prevent losing any 2312 * event. 2313 */ 2314 worker_enter_idle(worker); 2315 __set_current_state(TASK_IDLE); 2316 spin_unlock_irq(&pool->lock); 2317 schedule(); 2318 goto woke_up; 2319 } 2320 2321 /** 2322 * rescuer_thread - the rescuer thread function 2323 * @__rescuer: self 2324 * 2325 * Workqueue rescuer thread function. There's one rescuer for each 2326 * workqueue which has WQ_MEM_RECLAIM set. 2327 * 2328 * Regular work processing on a pool may block trying to create a new 2329 * worker which uses GFP_KERNEL allocation which has slight chance of 2330 * developing into deadlock if some works currently on the same queue 2331 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2332 * the problem rescuer solves. 2333 * 2334 * When such condition is possible, the pool summons rescuers of all 2335 * workqueues which have works queued on the pool and let them process 2336 * those works so that forward progress can be guaranteed. 2337 * 2338 * This should happen rarely. 2339 * 2340 * Return: 0 2341 */ 2342 static int rescuer_thread(void *__rescuer) 2343 { 2344 struct worker *rescuer = __rescuer; 2345 struct workqueue_struct *wq = rescuer->rescue_wq; 2346 struct list_head *scheduled = &rescuer->scheduled; 2347 bool should_stop; 2348 2349 set_user_nice(current, RESCUER_NICE_LEVEL); 2350 2351 /* 2352 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2353 * doesn't participate in concurrency management. 2354 */ 2355 set_pf_worker(true); 2356 repeat: 2357 set_current_state(TASK_IDLE); 2358 2359 /* 2360 * By the time the rescuer is requested to stop, the workqueue 2361 * shouldn't have any work pending, but @wq->maydays may still have 2362 * pwq(s) queued. This can happen by non-rescuer workers consuming 2363 * all the work items before the rescuer got to them. Go through 2364 * @wq->maydays processing before acting on should_stop so that the 2365 * list is always empty on exit. 2366 */ 2367 should_stop = kthread_should_stop(); 2368 2369 /* see whether any pwq is asking for help */ 2370 spin_lock_irq(&wq_mayday_lock); 2371 2372 while (!list_empty(&wq->maydays)) { 2373 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2374 struct pool_workqueue, mayday_node); 2375 struct worker_pool *pool = pwq->pool; 2376 struct work_struct *work, *n; 2377 bool first = true; 2378 2379 __set_current_state(TASK_RUNNING); 2380 list_del_init(&pwq->mayday_node); 2381 2382 spin_unlock_irq(&wq_mayday_lock); 2383 2384 worker_attach_to_pool(rescuer, pool); 2385 2386 spin_lock_irq(&pool->lock); 2387 2388 /* 2389 * Slurp in all works issued via this workqueue and 2390 * process'em. 2391 */ 2392 WARN_ON_ONCE(!list_empty(scheduled)); 2393 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2394 if (get_work_pwq(work) == pwq) { 2395 if (first) 2396 pool->watchdog_ts = jiffies; 2397 move_linked_works(work, scheduled, &n); 2398 } 2399 first = false; 2400 } 2401 2402 if (!list_empty(scheduled)) { 2403 process_scheduled_works(rescuer); 2404 2405 /* 2406 * The above execution of rescued work items could 2407 * have created more to rescue through 2408 * pwq_activate_first_delayed() or chained 2409 * queueing. Let's put @pwq back on mayday list so 2410 * that such back-to-back work items, which may be 2411 * being used to relieve memory pressure, don't 2412 * incur MAYDAY_INTERVAL delay inbetween. 2413 */ 2414 if (need_to_create_worker(pool)) { 2415 spin_lock(&wq_mayday_lock); 2416 get_pwq(pwq); 2417 list_move_tail(&pwq->mayday_node, &wq->maydays); 2418 spin_unlock(&wq_mayday_lock); 2419 } 2420 } 2421 2422 /* 2423 * Put the reference grabbed by send_mayday(). @pool won't 2424 * go away while we're still attached to it. 2425 */ 2426 put_pwq(pwq); 2427 2428 /* 2429 * Leave this pool. If need_more_worker() is %true, notify a 2430 * regular worker; otherwise, we end up with 0 concurrency 2431 * and stalling the execution. 2432 */ 2433 if (need_more_worker(pool)) 2434 wake_up_worker(pool); 2435 2436 spin_unlock_irq(&pool->lock); 2437 2438 worker_detach_from_pool(rescuer); 2439 2440 spin_lock_irq(&wq_mayday_lock); 2441 } 2442 2443 spin_unlock_irq(&wq_mayday_lock); 2444 2445 if (should_stop) { 2446 __set_current_state(TASK_RUNNING); 2447 set_pf_worker(false); 2448 return 0; 2449 } 2450 2451 /* rescuers should never participate in concurrency management */ 2452 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2453 schedule(); 2454 goto repeat; 2455 } 2456 2457 /** 2458 * check_flush_dependency - check for flush dependency sanity 2459 * @target_wq: workqueue being flushed 2460 * @target_work: work item being flushed (NULL for workqueue flushes) 2461 * 2462 * %current is trying to flush the whole @target_wq or @target_work on it. 2463 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2464 * reclaiming memory or running on a workqueue which doesn't have 2465 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2466 * a deadlock. 2467 */ 2468 static void check_flush_dependency(struct workqueue_struct *target_wq, 2469 struct work_struct *target_work) 2470 { 2471 work_func_t target_func = target_work ? target_work->func : NULL; 2472 struct worker *worker; 2473 2474 if (target_wq->flags & WQ_MEM_RECLAIM) 2475 return; 2476 2477 worker = current_wq_worker(); 2478 2479 WARN_ONCE(current->flags & PF_MEMALLOC, 2480 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf", 2481 current->pid, current->comm, target_wq->name, target_func); 2482 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2483 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2484 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf", 2485 worker->current_pwq->wq->name, worker->current_func, 2486 target_wq->name, target_func); 2487 } 2488 2489 struct wq_barrier { 2490 struct work_struct work; 2491 struct completion done; 2492 struct task_struct *task; /* purely informational */ 2493 }; 2494 2495 static void wq_barrier_func(struct work_struct *work) 2496 { 2497 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2498 complete(&barr->done); 2499 } 2500 2501 /** 2502 * insert_wq_barrier - insert a barrier work 2503 * @pwq: pwq to insert barrier into 2504 * @barr: wq_barrier to insert 2505 * @target: target work to attach @barr to 2506 * @worker: worker currently executing @target, NULL if @target is not executing 2507 * 2508 * @barr is linked to @target such that @barr is completed only after 2509 * @target finishes execution. Please note that the ordering 2510 * guarantee is observed only with respect to @target and on the local 2511 * cpu. 2512 * 2513 * Currently, a queued barrier can't be canceled. This is because 2514 * try_to_grab_pending() can't determine whether the work to be 2515 * grabbed is at the head of the queue and thus can't clear LINKED 2516 * flag of the previous work while there must be a valid next work 2517 * after a work with LINKED flag set. 2518 * 2519 * Note that when @worker is non-NULL, @target may be modified 2520 * underneath us, so we can't reliably determine pwq from @target. 2521 * 2522 * CONTEXT: 2523 * spin_lock_irq(pool->lock). 2524 */ 2525 static void insert_wq_barrier(struct pool_workqueue *pwq, 2526 struct wq_barrier *barr, 2527 struct work_struct *target, struct worker *worker) 2528 { 2529 struct list_head *head; 2530 unsigned int linked = 0; 2531 2532 /* 2533 * debugobject calls are safe here even with pool->lock locked 2534 * as we know for sure that this will not trigger any of the 2535 * checks and call back into the fixup functions where we 2536 * might deadlock. 2537 */ 2538 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2539 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2540 2541 init_completion_map(&barr->done, &target->lockdep_map); 2542 2543 barr->task = current; 2544 2545 /* 2546 * If @target is currently being executed, schedule the 2547 * barrier to the worker; otherwise, put it after @target. 2548 */ 2549 if (worker) 2550 head = worker->scheduled.next; 2551 else { 2552 unsigned long *bits = work_data_bits(target); 2553 2554 head = target->entry.next; 2555 /* there can already be other linked works, inherit and set */ 2556 linked = *bits & WORK_STRUCT_LINKED; 2557 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2558 } 2559 2560 debug_work_activate(&barr->work); 2561 insert_work(pwq, &barr->work, head, 2562 work_color_to_flags(WORK_NO_COLOR) | linked); 2563 } 2564 2565 /** 2566 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2567 * @wq: workqueue being flushed 2568 * @flush_color: new flush color, < 0 for no-op 2569 * @work_color: new work color, < 0 for no-op 2570 * 2571 * Prepare pwqs for workqueue flushing. 2572 * 2573 * If @flush_color is non-negative, flush_color on all pwqs should be 2574 * -1. If no pwq has in-flight commands at the specified color, all 2575 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2576 * has in flight commands, its pwq->flush_color is set to 2577 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2578 * wakeup logic is armed and %true is returned. 2579 * 2580 * The caller should have initialized @wq->first_flusher prior to 2581 * calling this function with non-negative @flush_color. If 2582 * @flush_color is negative, no flush color update is done and %false 2583 * is returned. 2584 * 2585 * If @work_color is non-negative, all pwqs should have the same 2586 * work_color which is previous to @work_color and all will be 2587 * advanced to @work_color. 2588 * 2589 * CONTEXT: 2590 * mutex_lock(wq->mutex). 2591 * 2592 * Return: 2593 * %true if @flush_color >= 0 and there's something to flush. %false 2594 * otherwise. 2595 */ 2596 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2597 int flush_color, int work_color) 2598 { 2599 bool wait = false; 2600 struct pool_workqueue *pwq; 2601 2602 if (flush_color >= 0) { 2603 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2604 atomic_set(&wq->nr_pwqs_to_flush, 1); 2605 } 2606 2607 for_each_pwq(pwq, wq) { 2608 struct worker_pool *pool = pwq->pool; 2609 2610 spin_lock_irq(&pool->lock); 2611 2612 if (flush_color >= 0) { 2613 WARN_ON_ONCE(pwq->flush_color != -1); 2614 2615 if (pwq->nr_in_flight[flush_color]) { 2616 pwq->flush_color = flush_color; 2617 atomic_inc(&wq->nr_pwqs_to_flush); 2618 wait = true; 2619 } 2620 } 2621 2622 if (work_color >= 0) { 2623 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2624 pwq->work_color = work_color; 2625 } 2626 2627 spin_unlock_irq(&pool->lock); 2628 } 2629 2630 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2631 complete(&wq->first_flusher->done); 2632 2633 return wait; 2634 } 2635 2636 /** 2637 * flush_workqueue - ensure that any scheduled work has run to completion. 2638 * @wq: workqueue to flush 2639 * 2640 * This function sleeps until all work items which were queued on entry 2641 * have finished execution, but it is not livelocked by new incoming ones. 2642 */ 2643 void flush_workqueue(struct workqueue_struct *wq) 2644 { 2645 struct wq_flusher this_flusher = { 2646 .list = LIST_HEAD_INIT(this_flusher.list), 2647 .flush_color = -1, 2648 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 2649 }; 2650 int next_color; 2651 2652 if (WARN_ON(!wq_online)) 2653 return; 2654 2655 mutex_lock(&wq->mutex); 2656 2657 /* 2658 * Start-to-wait phase 2659 */ 2660 next_color = work_next_color(wq->work_color); 2661 2662 if (next_color != wq->flush_color) { 2663 /* 2664 * Color space is not full. The current work_color 2665 * becomes our flush_color and work_color is advanced 2666 * by one. 2667 */ 2668 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2669 this_flusher.flush_color = wq->work_color; 2670 wq->work_color = next_color; 2671 2672 if (!wq->first_flusher) { 2673 /* no flush in progress, become the first flusher */ 2674 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2675 2676 wq->first_flusher = &this_flusher; 2677 2678 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2679 wq->work_color)) { 2680 /* nothing to flush, done */ 2681 wq->flush_color = next_color; 2682 wq->first_flusher = NULL; 2683 goto out_unlock; 2684 } 2685 } else { 2686 /* wait in queue */ 2687 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2688 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2689 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2690 } 2691 } else { 2692 /* 2693 * Oops, color space is full, wait on overflow queue. 2694 * The next flush completion will assign us 2695 * flush_color and transfer to flusher_queue. 2696 */ 2697 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2698 } 2699 2700 check_flush_dependency(wq, NULL); 2701 2702 mutex_unlock(&wq->mutex); 2703 2704 wait_for_completion(&this_flusher.done); 2705 2706 /* 2707 * Wake-up-and-cascade phase 2708 * 2709 * First flushers are responsible for cascading flushes and 2710 * handling overflow. Non-first flushers can simply return. 2711 */ 2712 if (wq->first_flusher != &this_flusher) 2713 return; 2714 2715 mutex_lock(&wq->mutex); 2716 2717 /* we might have raced, check again with mutex held */ 2718 if (wq->first_flusher != &this_flusher) 2719 goto out_unlock; 2720 2721 wq->first_flusher = NULL; 2722 2723 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2724 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2725 2726 while (true) { 2727 struct wq_flusher *next, *tmp; 2728 2729 /* complete all the flushers sharing the current flush color */ 2730 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2731 if (next->flush_color != wq->flush_color) 2732 break; 2733 list_del_init(&next->list); 2734 complete(&next->done); 2735 } 2736 2737 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2738 wq->flush_color != work_next_color(wq->work_color)); 2739 2740 /* this flush_color is finished, advance by one */ 2741 wq->flush_color = work_next_color(wq->flush_color); 2742 2743 /* one color has been freed, handle overflow queue */ 2744 if (!list_empty(&wq->flusher_overflow)) { 2745 /* 2746 * Assign the same color to all overflowed 2747 * flushers, advance work_color and append to 2748 * flusher_queue. This is the start-to-wait 2749 * phase for these overflowed flushers. 2750 */ 2751 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2752 tmp->flush_color = wq->work_color; 2753 2754 wq->work_color = work_next_color(wq->work_color); 2755 2756 list_splice_tail_init(&wq->flusher_overflow, 2757 &wq->flusher_queue); 2758 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2759 } 2760 2761 if (list_empty(&wq->flusher_queue)) { 2762 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2763 break; 2764 } 2765 2766 /* 2767 * Need to flush more colors. Make the next flusher 2768 * the new first flusher and arm pwqs. 2769 */ 2770 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2771 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2772 2773 list_del_init(&next->list); 2774 wq->first_flusher = next; 2775 2776 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2777 break; 2778 2779 /* 2780 * Meh... this color is already done, clear first 2781 * flusher and repeat cascading. 2782 */ 2783 wq->first_flusher = NULL; 2784 } 2785 2786 out_unlock: 2787 mutex_unlock(&wq->mutex); 2788 } 2789 EXPORT_SYMBOL(flush_workqueue); 2790 2791 /** 2792 * drain_workqueue - drain a workqueue 2793 * @wq: workqueue to drain 2794 * 2795 * Wait until the workqueue becomes empty. While draining is in progress, 2796 * only chain queueing is allowed. IOW, only currently pending or running 2797 * work items on @wq can queue further work items on it. @wq is flushed 2798 * repeatedly until it becomes empty. The number of flushing is determined 2799 * by the depth of chaining and should be relatively short. Whine if it 2800 * takes too long. 2801 */ 2802 void drain_workqueue(struct workqueue_struct *wq) 2803 { 2804 unsigned int flush_cnt = 0; 2805 struct pool_workqueue *pwq; 2806 2807 /* 2808 * __queue_work() needs to test whether there are drainers, is much 2809 * hotter than drain_workqueue() and already looks at @wq->flags. 2810 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2811 */ 2812 mutex_lock(&wq->mutex); 2813 if (!wq->nr_drainers++) 2814 wq->flags |= __WQ_DRAINING; 2815 mutex_unlock(&wq->mutex); 2816 reflush: 2817 flush_workqueue(wq); 2818 2819 mutex_lock(&wq->mutex); 2820 2821 for_each_pwq(pwq, wq) { 2822 bool drained; 2823 2824 spin_lock_irq(&pwq->pool->lock); 2825 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2826 spin_unlock_irq(&pwq->pool->lock); 2827 2828 if (drained) 2829 continue; 2830 2831 if (++flush_cnt == 10 || 2832 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2833 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2834 wq->name, flush_cnt); 2835 2836 mutex_unlock(&wq->mutex); 2837 goto reflush; 2838 } 2839 2840 if (!--wq->nr_drainers) 2841 wq->flags &= ~__WQ_DRAINING; 2842 mutex_unlock(&wq->mutex); 2843 } 2844 EXPORT_SYMBOL_GPL(drain_workqueue); 2845 2846 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr) 2847 { 2848 struct worker *worker = NULL; 2849 struct worker_pool *pool; 2850 struct pool_workqueue *pwq; 2851 2852 might_sleep(); 2853 2854 local_irq_disable(); 2855 pool = get_work_pool(work); 2856 if (!pool) { 2857 local_irq_enable(); 2858 return false; 2859 } 2860 2861 spin_lock(&pool->lock); 2862 /* see the comment in try_to_grab_pending() with the same code */ 2863 pwq = get_work_pwq(work); 2864 if (pwq) { 2865 if (unlikely(pwq->pool != pool)) 2866 goto already_gone; 2867 } else { 2868 worker = find_worker_executing_work(pool, work); 2869 if (!worker) 2870 goto already_gone; 2871 pwq = worker->current_pwq; 2872 } 2873 2874 check_flush_dependency(pwq->wq, work); 2875 2876 insert_wq_barrier(pwq, barr, work, worker); 2877 spin_unlock_irq(&pool->lock); 2878 2879 /* 2880 * Force a lock recursion deadlock when using flush_work() inside a 2881 * single-threaded or rescuer equipped workqueue. 2882 * 2883 * For single threaded workqueues the deadlock happens when the work 2884 * is after the work issuing the flush_work(). For rescuer equipped 2885 * workqueues the deadlock happens when the rescuer stalls, blocking 2886 * forward progress. 2887 */ 2888 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) { 2889 lock_map_acquire(&pwq->wq->lockdep_map); 2890 lock_map_release(&pwq->wq->lockdep_map); 2891 } 2892 2893 return true; 2894 already_gone: 2895 spin_unlock_irq(&pool->lock); 2896 return false; 2897 } 2898 2899 /** 2900 * flush_work - wait for a work to finish executing the last queueing instance 2901 * @work: the work to flush 2902 * 2903 * Wait until @work has finished execution. @work is guaranteed to be idle 2904 * on return if it hasn't been requeued since flush started. 2905 * 2906 * Return: 2907 * %true if flush_work() waited for the work to finish execution, 2908 * %false if it was already idle. 2909 */ 2910 bool flush_work(struct work_struct *work) 2911 { 2912 struct wq_barrier barr; 2913 2914 if (WARN_ON(!wq_online)) 2915 return false; 2916 2917 if (start_flush_work(work, &barr)) { 2918 wait_for_completion(&barr.done); 2919 destroy_work_on_stack(&barr.work); 2920 return true; 2921 } else { 2922 return false; 2923 } 2924 } 2925 EXPORT_SYMBOL_GPL(flush_work); 2926 2927 struct cwt_wait { 2928 wait_queue_entry_t wait; 2929 struct work_struct *work; 2930 }; 2931 2932 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2933 { 2934 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 2935 2936 if (cwait->work != key) 2937 return 0; 2938 return autoremove_wake_function(wait, mode, sync, key); 2939 } 2940 2941 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 2942 { 2943 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 2944 unsigned long flags; 2945 int ret; 2946 2947 do { 2948 ret = try_to_grab_pending(work, is_dwork, &flags); 2949 /* 2950 * If someone else is already canceling, wait for it to 2951 * finish. flush_work() doesn't work for PREEMPT_NONE 2952 * because we may get scheduled between @work's completion 2953 * and the other canceling task resuming and clearing 2954 * CANCELING - flush_work() will return false immediately 2955 * as @work is no longer busy, try_to_grab_pending() will 2956 * return -ENOENT as @work is still being canceled and the 2957 * other canceling task won't be able to clear CANCELING as 2958 * we're hogging the CPU. 2959 * 2960 * Let's wait for completion using a waitqueue. As this 2961 * may lead to the thundering herd problem, use a custom 2962 * wake function which matches @work along with exclusive 2963 * wait and wakeup. 2964 */ 2965 if (unlikely(ret == -ENOENT)) { 2966 struct cwt_wait cwait; 2967 2968 init_wait(&cwait.wait); 2969 cwait.wait.func = cwt_wakefn; 2970 cwait.work = work; 2971 2972 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 2973 TASK_UNINTERRUPTIBLE); 2974 if (work_is_canceling(work)) 2975 schedule(); 2976 finish_wait(&cancel_waitq, &cwait.wait); 2977 } 2978 } while (unlikely(ret < 0)); 2979 2980 /* tell other tasks trying to grab @work to back off */ 2981 mark_work_canceling(work); 2982 local_irq_restore(flags); 2983 2984 /* 2985 * This allows canceling during early boot. We know that @work 2986 * isn't executing. 2987 */ 2988 if (wq_online) 2989 flush_work(work); 2990 2991 clear_work_data(work); 2992 2993 /* 2994 * Paired with prepare_to_wait() above so that either 2995 * waitqueue_active() is visible here or !work_is_canceling() is 2996 * visible there. 2997 */ 2998 smp_mb(); 2999 if (waitqueue_active(&cancel_waitq)) 3000 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 3001 3002 return ret; 3003 } 3004 3005 /** 3006 * cancel_work_sync - cancel a work and wait for it to finish 3007 * @work: the work to cancel 3008 * 3009 * Cancel @work and wait for its execution to finish. This function 3010 * can be used even if the work re-queues itself or migrates to 3011 * another workqueue. On return from this function, @work is 3012 * guaranteed to be not pending or executing on any CPU. 3013 * 3014 * cancel_work_sync(&delayed_work->work) must not be used for 3015 * delayed_work's. Use cancel_delayed_work_sync() instead. 3016 * 3017 * The caller must ensure that the workqueue on which @work was last 3018 * queued can't be destroyed before this function returns. 3019 * 3020 * Return: 3021 * %true if @work was pending, %false otherwise. 3022 */ 3023 bool cancel_work_sync(struct work_struct *work) 3024 { 3025 return __cancel_work_timer(work, false); 3026 } 3027 EXPORT_SYMBOL_GPL(cancel_work_sync); 3028 3029 /** 3030 * flush_delayed_work - wait for a dwork to finish executing the last queueing 3031 * @dwork: the delayed work to flush 3032 * 3033 * Delayed timer is cancelled and the pending work is queued for 3034 * immediate execution. Like flush_work(), this function only 3035 * considers the last queueing instance of @dwork. 3036 * 3037 * Return: 3038 * %true if flush_work() waited for the work to finish execution, 3039 * %false if it was already idle. 3040 */ 3041 bool flush_delayed_work(struct delayed_work *dwork) 3042 { 3043 local_irq_disable(); 3044 if (del_timer_sync(&dwork->timer)) 3045 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 3046 local_irq_enable(); 3047 return flush_work(&dwork->work); 3048 } 3049 EXPORT_SYMBOL(flush_delayed_work); 3050 3051 /** 3052 * flush_rcu_work - wait for a rwork to finish executing the last queueing 3053 * @rwork: the rcu work to flush 3054 * 3055 * Return: 3056 * %true if flush_rcu_work() waited for the work to finish execution, 3057 * %false if it was already idle. 3058 */ 3059 bool flush_rcu_work(struct rcu_work *rwork) 3060 { 3061 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 3062 rcu_barrier(); 3063 flush_work(&rwork->work); 3064 return true; 3065 } else { 3066 return flush_work(&rwork->work); 3067 } 3068 } 3069 EXPORT_SYMBOL(flush_rcu_work); 3070 3071 static bool __cancel_work(struct work_struct *work, bool is_dwork) 3072 { 3073 unsigned long flags; 3074 int ret; 3075 3076 do { 3077 ret = try_to_grab_pending(work, is_dwork, &flags); 3078 } while (unlikely(ret == -EAGAIN)); 3079 3080 if (unlikely(ret < 0)) 3081 return false; 3082 3083 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 3084 local_irq_restore(flags); 3085 return ret; 3086 } 3087 3088 /** 3089 * cancel_delayed_work - cancel a delayed work 3090 * @dwork: delayed_work to cancel 3091 * 3092 * Kill off a pending delayed_work. 3093 * 3094 * Return: %true if @dwork was pending and canceled; %false if it wasn't 3095 * pending. 3096 * 3097 * Note: 3098 * The work callback function may still be running on return, unless 3099 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 3100 * use cancel_delayed_work_sync() to wait on it. 3101 * 3102 * This function is safe to call from any context including IRQ handler. 3103 */ 3104 bool cancel_delayed_work(struct delayed_work *dwork) 3105 { 3106 return __cancel_work(&dwork->work, true); 3107 } 3108 EXPORT_SYMBOL(cancel_delayed_work); 3109 3110 /** 3111 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3112 * @dwork: the delayed work cancel 3113 * 3114 * This is cancel_work_sync() for delayed works. 3115 * 3116 * Return: 3117 * %true if @dwork was pending, %false otherwise. 3118 */ 3119 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3120 { 3121 return __cancel_work_timer(&dwork->work, true); 3122 } 3123 EXPORT_SYMBOL(cancel_delayed_work_sync); 3124 3125 /** 3126 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3127 * @func: the function to call 3128 * 3129 * schedule_on_each_cpu() executes @func on each online CPU using the 3130 * system workqueue and blocks until all CPUs have completed. 3131 * schedule_on_each_cpu() is very slow. 3132 * 3133 * Return: 3134 * 0 on success, -errno on failure. 3135 */ 3136 int schedule_on_each_cpu(work_func_t func) 3137 { 3138 int cpu; 3139 struct work_struct __percpu *works; 3140 3141 works = alloc_percpu(struct work_struct); 3142 if (!works) 3143 return -ENOMEM; 3144 3145 get_online_cpus(); 3146 3147 for_each_online_cpu(cpu) { 3148 struct work_struct *work = per_cpu_ptr(works, cpu); 3149 3150 INIT_WORK(work, func); 3151 schedule_work_on(cpu, work); 3152 } 3153 3154 for_each_online_cpu(cpu) 3155 flush_work(per_cpu_ptr(works, cpu)); 3156 3157 put_online_cpus(); 3158 free_percpu(works); 3159 return 0; 3160 } 3161 3162 /** 3163 * execute_in_process_context - reliably execute the routine with user context 3164 * @fn: the function to execute 3165 * @ew: guaranteed storage for the execute work structure (must 3166 * be available when the work executes) 3167 * 3168 * Executes the function immediately if process context is available, 3169 * otherwise schedules the function for delayed execution. 3170 * 3171 * Return: 0 - function was executed 3172 * 1 - function was scheduled for execution 3173 */ 3174 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3175 { 3176 if (!in_interrupt()) { 3177 fn(&ew->work); 3178 return 0; 3179 } 3180 3181 INIT_WORK(&ew->work, fn); 3182 schedule_work(&ew->work); 3183 3184 return 1; 3185 } 3186 EXPORT_SYMBOL_GPL(execute_in_process_context); 3187 3188 /** 3189 * free_workqueue_attrs - free a workqueue_attrs 3190 * @attrs: workqueue_attrs to free 3191 * 3192 * Undo alloc_workqueue_attrs(). 3193 */ 3194 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3195 { 3196 if (attrs) { 3197 free_cpumask_var(attrs->cpumask); 3198 kfree(attrs); 3199 } 3200 } 3201 3202 /** 3203 * alloc_workqueue_attrs - allocate a workqueue_attrs 3204 * @gfp_mask: allocation mask to use 3205 * 3206 * Allocate a new workqueue_attrs, initialize with default settings and 3207 * return it. 3208 * 3209 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3210 */ 3211 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask) 3212 { 3213 struct workqueue_attrs *attrs; 3214 3215 attrs = kzalloc(sizeof(*attrs), gfp_mask); 3216 if (!attrs) 3217 goto fail; 3218 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask)) 3219 goto fail; 3220 3221 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3222 return attrs; 3223 fail: 3224 free_workqueue_attrs(attrs); 3225 return NULL; 3226 } 3227 3228 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3229 const struct workqueue_attrs *from) 3230 { 3231 to->nice = from->nice; 3232 cpumask_copy(to->cpumask, from->cpumask); 3233 /* 3234 * Unlike hash and equality test, this function doesn't ignore 3235 * ->no_numa as it is used for both pool and wq attrs. Instead, 3236 * get_unbound_pool() explicitly clears ->no_numa after copying. 3237 */ 3238 to->no_numa = from->no_numa; 3239 } 3240 3241 /* hash value of the content of @attr */ 3242 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3243 { 3244 u32 hash = 0; 3245 3246 hash = jhash_1word(attrs->nice, hash); 3247 hash = jhash(cpumask_bits(attrs->cpumask), 3248 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3249 return hash; 3250 } 3251 3252 /* content equality test */ 3253 static bool wqattrs_equal(const struct workqueue_attrs *a, 3254 const struct workqueue_attrs *b) 3255 { 3256 if (a->nice != b->nice) 3257 return false; 3258 if (!cpumask_equal(a->cpumask, b->cpumask)) 3259 return false; 3260 return true; 3261 } 3262 3263 /** 3264 * init_worker_pool - initialize a newly zalloc'd worker_pool 3265 * @pool: worker_pool to initialize 3266 * 3267 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3268 * 3269 * Return: 0 on success, -errno on failure. Even on failure, all fields 3270 * inside @pool proper are initialized and put_unbound_pool() can be called 3271 * on @pool safely to release it. 3272 */ 3273 static int init_worker_pool(struct worker_pool *pool) 3274 { 3275 spin_lock_init(&pool->lock); 3276 pool->id = -1; 3277 pool->cpu = -1; 3278 pool->node = NUMA_NO_NODE; 3279 pool->flags |= POOL_DISASSOCIATED; 3280 pool->watchdog_ts = jiffies; 3281 INIT_LIST_HEAD(&pool->worklist); 3282 INIT_LIST_HEAD(&pool->idle_list); 3283 hash_init(pool->busy_hash); 3284 3285 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 3286 3287 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 3288 3289 INIT_LIST_HEAD(&pool->workers); 3290 3291 ida_init(&pool->worker_ida); 3292 INIT_HLIST_NODE(&pool->hash_node); 3293 pool->refcnt = 1; 3294 3295 /* shouldn't fail above this point */ 3296 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL); 3297 if (!pool->attrs) 3298 return -ENOMEM; 3299 return 0; 3300 } 3301 3302 static void rcu_free_wq(struct rcu_head *rcu) 3303 { 3304 struct workqueue_struct *wq = 3305 container_of(rcu, struct workqueue_struct, rcu); 3306 3307 if (!(wq->flags & WQ_UNBOUND)) 3308 free_percpu(wq->cpu_pwqs); 3309 else 3310 free_workqueue_attrs(wq->unbound_attrs); 3311 3312 kfree(wq->rescuer); 3313 kfree(wq); 3314 } 3315 3316 static void rcu_free_pool(struct rcu_head *rcu) 3317 { 3318 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3319 3320 ida_destroy(&pool->worker_ida); 3321 free_workqueue_attrs(pool->attrs); 3322 kfree(pool); 3323 } 3324 3325 /** 3326 * put_unbound_pool - put a worker_pool 3327 * @pool: worker_pool to put 3328 * 3329 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU 3330 * safe manner. get_unbound_pool() calls this function on its failure path 3331 * and this function should be able to release pools which went through, 3332 * successfully or not, init_worker_pool(). 3333 * 3334 * Should be called with wq_pool_mutex held. 3335 */ 3336 static void put_unbound_pool(struct worker_pool *pool) 3337 { 3338 DECLARE_COMPLETION_ONSTACK(detach_completion); 3339 struct worker *worker; 3340 3341 lockdep_assert_held(&wq_pool_mutex); 3342 3343 if (--pool->refcnt) 3344 return; 3345 3346 /* sanity checks */ 3347 if (WARN_ON(!(pool->cpu < 0)) || 3348 WARN_ON(!list_empty(&pool->worklist))) 3349 return; 3350 3351 /* release id and unhash */ 3352 if (pool->id >= 0) 3353 idr_remove(&worker_pool_idr, pool->id); 3354 hash_del(&pool->hash_node); 3355 3356 /* 3357 * Become the manager and destroy all workers. This prevents 3358 * @pool's workers from blocking on attach_mutex. We're the last 3359 * manager and @pool gets freed with the flag set. 3360 */ 3361 spin_lock_irq(&pool->lock); 3362 wait_event_lock_irq(wq_manager_wait, 3363 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock); 3364 pool->flags |= POOL_MANAGER_ACTIVE; 3365 3366 while ((worker = first_idle_worker(pool))) 3367 destroy_worker(worker); 3368 WARN_ON(pool->nr_workers || pool->nr_idle); 3369 spin_unlock_irq(&pool->lock); 3370 3371 mutex_lock(&wq_pool_attach_mutex); 3372 if (!list_empty(&pool->workers)) 3373 pool->detach_completion = &detach_completion; 3374 mutex_unlock(&wq_pool_attach_mutex); 3375 3376 if (pool->detach_completion) 3377 wait_for_completion(pool->detach_completion); 3378 3379 /* shut down the timers */ 3380 del_timer_sync(&pool->idle_timer); 3381 del_timer_sync(&pool->mayday_timer); 3382 3383 /* sched-RCU protected to allow dereferences from get_work_pool() */ 3384 call_rcu_sched(&pool->rcu, rcu_free_pool); 3385 } 3386 3387 /** 3388 * get_unbound_pool - get a worker_pool with the specified attributes 3389 * @attrs: the attributes of the worker_pool to get 3390 * 3391 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3392 * reference count and return it. If there already is a matching 3393 * worker_pool, it will be used; otherwise, this function attempts to 3394 * create a new one. 3395 * 3396 * Should be called with wq_pool_mutex held. 3397 * 3398 * Return: On success, a worker_pool with the same attributes as @attrs. 3399 * On failure, %NULL. 3400 */ 3401 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3402 { 3403 u32 hash = wqattrs_hash(attrs); 3404 struct worker_pool *pool; 3405 int node; 3406 int target_node = NUMA_NO_NODE; 3407 3408 lockdep_assert_held(&wq_pool_mutex); 3409 3410 /* do we already have a matching pool? */ 3411 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3412 if (wqattrs_equal(pool->attrs, attrs)) { 3413 pool->refcnt++; 3414 return pool; 3415 } 3416 } 3417 3418 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3419 if (wq_numa_enabled) { 3420 for_each_node(node) { 3421 if (cpumask_subset(attrs->cpumask, 3422 wq_numa_possible_cpumask[node])) { 3423 target_node = node; 3424 break; 3425 } 3426 } 3427 } 3428 3429 /* nope, create a new one */ 3430 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3431 if (!pool || init_worker_pool(pool) < 0) 3432 goto fail; 3433 3434 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3435 copy_workqueue_attrs(pool->attrs, attrs); 3436 pool->node = target_node; 3437 3438 /* 3439 * no_numa isn't a worker_pool attribute, always clear it. See 3440 * 'struct workqueue_attrs' comments for detail. 3441 */ 3442 pool->attrs->no_numa = false; 3443 3444 if (worker_pool_assign_id(pool) < 0) 3445 goto fail; 3446 3447 /* create and start the initial worker */ 3448 if (wq_online && !create_worker(pool)) 3449 goto fail; 3450 3451 /* install */ 3452 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3453 3454 return pool; 3455 fail: 3456 if (pool) 3457 put_unbound_pool(pool); 3458 return NULL; 3459 } 3460 3461 static void rcu_free_pwq(struct rcu_head *rcu) 3462 { 3463 kmem_cache_free(pwq_cache, 3464 container_of(rcu, struct pool_workqueue, rcu)); 3465 } 3466 3467 /* 3468 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3469 * and needs to be destroyed. 3470 */ 3471 static void pwq_unbound_release_workfn(struct work_struct *work) 3472 { 3473 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3474 unbound_release_work); 3475 struct workqueue_struct *wq = pwq->wq; 3476 struct worker_pool *pool = pwq->pool; 3477 bool is_last; 3478 3479 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3480 return; 3481 3482 mutex_lock(&wq->mutex); 3483 list_del_rcu(&pwq->pwqs_node); 3484 is_last = list_empty(&wq->pwqs); 3485 mutex_unlock(&wq->mutex); 3486 3487 mutex_lock(&wq_pool_mutex); 3488 put_unbound_pool(pool); 3489 mutex_unlock(&wq_pool_mutex); 3490 3491 call_rcu_sched(&pwq->rcu, rcu_free_pwq); 3492 3493 /* 3494 * If we're the last pwq going away, @wq is already dead and no one 3495 * is gonna access it anymore. Schedule RCU free. 3496 */ 3497 if (is_last) 3498 call_rcu_sched(&wq->rcu, rcu_free_wq); 3499 } 3500 3501 /** 3502 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3503 * @pwq: target pool_workqueue 3504 * 3505 * If @pwq isn't freezing, set @pwq->max_active to the associated 3506 * workqueue's saved_max_active and activate delayed work items 3507 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3508 */ 3509 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3510 { 3511 struct workqueue_struct *wq = pwq->wq; 3512 bool freezable = wq->flags & WQ_FREEZABLE; 3513 unsigned long flags; 3514 3515 /* for @wq->saved_max_active */ 3516 lockdep_assert_held(&wq->mutex); 3517 3518 /* fast exit for non-freezable wqs */ 3519 if (!freezable && pwq->max_active == wq->saved_max_active) 3520 return; 3521 3522 /* this function can be called during early boot w/ irq disabled */ 3523 spin_lock_irqsave(&pwq->pool->lock, flags); 3524 3525 /* 3526 * During [un]freezing, the caller is responsible for ensuring that 3527 * this function is called at least once after @workqueue_freezing 3528 * is updated and visible. 3529 */ 3530 if (!freezable || !workqueue_freezing) { 3531 pwq->max_active = wq->saved_max_active; 3532 3533 while (!list_empty(&pwq->delayed_works) && 3534 pwq->nr_active < pwq->max_active) 3535 pwq_activate_first_delayed(pwq); 3536 3537 /* 3538 * Need to kick a worker after thawed or an unbound wq's 3539 * max_active is bumped. It's a slow path. Do it always. 3540 */ 3541 wake_up_worker(pwq->pool); 3542 } else { 3543 pwq->max_active = 0; 3544 } 3545 3546 spin_unlock_irqrestore(&pwq->pool->lock, flags); 3547 } 3548 3549 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3550 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3551 struct worker_pool *pool) 3552 { 3553 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3554 3555 memset(pwq, 0, sizeof(*pwq)); 3556 3557 pwq->pool = pool; 3558 pwq->wq = wq; 3559 pwq->flush_color = -1; 3560 pwq->refcnt = 1; 3561 INIT_LIST_HEAD(&pwq->delayed_works); 3562 INIT_LIST_HEAD(&pwq->pwqs_node); 3563 INIT_LIST_HEAD(&pwq->mayday_node); 3564 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3565 } 3566 3567 /* sync @pwq with the current state of its associated wq and link it */ 3568 static void link_pwq(struct pool_workqueue *pwq) 3569 { 3570 struct workqueue_struct *wq = pwq->wq; 3571 3572 lockdep_assert_held(&wq->mutex); 3573 3574 /* may be called multiple times, ignore if already linked */ 3575 if (!list_empty(&pwq->pwqs_node)) 3576 return; 3577 3578 /* set the matching work_color */ 3579 pwq->work_color = wq->work_color; 3580 3581 /* sync max_active to the current setting */ 3582 pwq_adjust_max_active(pwq); 3583 3584 /* link in @pwq */ 3585 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3586 } 3587 3588 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3589 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3590 const struct workqueue_attrs *attrs) 3591 { 3592 struct worker_pool *pool; 3593 struct pool_workqueue *pwq; 3594 3595 lockdep_assert_held(&wq_pool_mutex); 3596 3597 pool = get_unbound_pool(attrs); 3598 if (!pool) 3599 return NULL; 3600 3601 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3602 if (!pwq) { 3603 put_unbound_pool(pool); 3604 return NULL; 3605 } 3606 3607 init_pwq(pwq, wq, pool); 3608 return pwq; 3609 } 3610 3611 /** 3612 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3613 * @attrs: the wq_attrs of the default pwq of the target workqueue 3614 * @node: the target NUMA node 3615 * @cpu_going_down: if >= 0, the CPU to consider as offline 3616 * @cpumask: outarg, the resulting cpumask 3617 * 3618 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3619 * @cpu_going_down is >= 0, that cpu is considered offline during 3620 * calculation. The result is stored in @cpumask. 3621 * 3622 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3623 * enabled and @node has online CPUs requested by @attrs, the returned 3624 * cpumask is the intersection of the possible CPUs of @node and 3625 * @attrs->cpumask. 3626 * 3627 * The caller is responsible for ensuring that the cpumask of @node stays 3628 * stable. 3629 * 3630 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3631 * %false if equal. 3632 */ 3633 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3634 int cpu_going_down, cpumask_t *cpumask) 3635 { 3636 if (!wq_numa_enabled || attrs->no_numa) 3637 goto use_dfl; 3638 3639 /* does @node have any online CPUs @attrs wants? */ 3640 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3641 if (cpu_going_down >= 0) 3642 cpumask_clear_cpu(cpu_going_down, cpumask); 3643 3644 if (cpumask_empty(cpumask)) 3645 goto use_dfl; 3646 3647 /* yeap, return possible CPUs in @node that @attrs wants */ 3648 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3649 3650 if (cpumask_empty(cpumask)) { 3651 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 3652 "possible intersect\n"); 3653 return false; 3654 } 3655 3656 return !cpumask_equal(cpumask, attrs->cpumask); 3657 3658 use_dfl: 3659 cpumask_copy(cpumask, attrs->cpumask); 3660 return false; 3661 } 3662 3663 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3664 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3665 int node, 3666 struct pool_workqueue *pwq) 3667 { 3668 struct pool_workqueue *old_pwq; 3669 3670 lockdep_assert_held(&wq_pool_mutex); 3671 lockdep_assert_held(&wq->mutex); 3672 3673 /* link_pwq() can handle duplicate calls */ 3674 link_pwq(pwq); 3675 3676 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3677 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3678 return old_pwq; 3679 } 3680 3681 /* context to store the prepared attrs & pwqs before applying */ 3682 struct apply_wqattrs_ctx { 3683 struct workqueue_struct *wq; /* target workqueue */ 3684 struct workqueue_attrs *attrs; /* attrs to apply */ 3685 struct list_head list; /* queued for batching commit */ 3686 struct pool_workqueue *dfl_pwq; 3687 struct pool_workqueue *pwq_tbl[]; 3688 }; 3689 3690 /* free the resources after success or abort */ 3691 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 3692 { 3693 if (ctx) { 3694 int node; 3695 3696 for_each_node(node) 3697 put_pwq_unlocked(ctx->pwq_tbl[node]); 3698 put_pwq_unlocked(ctx->dfl_pwq); 3699 3700 free_workqueue_attrs(ctx->attrs); 3701 3702 kfree(ctx); 3703 } 3704 } 3705 3706 /* allocate the attrs and pwqs for later installation */ 3707 static struct apply_wqattrs_ctx * 3708 apply_wqattrs_prepare(struct workqueue_struct *wq, 3709 const struct workqueue_attrs *attrs) 3710 { 3711 struct apply_wqattrs_ctx *ctx; 3712 struct workqueue_attrs *new_attrs, *tmp_attrs; 3713 int node; 3714 3715 lockdep_assert_held(&wq_pool_mutex); 3716 3717 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL); 3718 3719 new_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3720 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3721 if (!ctx || !new_attrs || !tmp_attrs) 3722 goto out_free; 3723 3724 /* 3725 * Calculate the attrs of the default pwq. 3726 * If the user configured cpumask doesn't overlap with the 3727 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 3728 */ 3729 copy_workqueue_attrs(new_attrs, attrs); 3730 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask); 3731 if (unlikely(cpumask_empty(new_attrs->cpumask))) 3732 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask); 3733 3734 /* 3735 * We may create multiple pwqs with differing cpumasks. Make a 3736 * copy of @new_attrs which will be modified and used to obtain 3737 * pools. 3738 */ 3739 copy_workqueue_attrs(tmp_attrs, new_attrs); 3740 3741 /* 3742 * If something goes wrong during CPU up/down, we'll fall back to 3743 * the default pwq covering whole @attrs->cpumask. Always create 3744 * it even if we don't use it immediately. 3745 */ 3746 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3747 if (!ctx->dfl_pwq) 3748 goto out_free; 3749 3750 for_each_node(node) { 3751 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 3752 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3753 if (!ctx->pwq_tbl[node]) 3754 goto out_free; 3755 } else { 3756 ctx->dfl_pwq->refcnt++; 3757 ctx->pwq_tbl[node] = ctx->dfl_pwq; 3758 } 3759 } 3760 3761 /* save the user configured attrs and sanitize it. */ 3762 copy_workqueue_attrs(new_attrs, attrs); 3763 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3764 ctx->attrs = new_attrs; 3765 3766 ctx->wq = wq; 3767 free_workqueue_attrs(tmp_attrs); 3768 return ctx; 3769 3770 out_free: 3771 free_workqueue_attrs(tmp_attrs); 3772 free_workqueue_attrs(new_attrs); 3773 apply_wqattrs_cleanup(ctx); 3774 return NULL; 3775 } 3776 3777 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 3778 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 3779 { 3780 int node; 3781 3782 /* all pwqs have been created successfully, let's install'em */ 3783 mutex_lock(&ctx->wq->mutex); 3784 3785 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 3786 3787 /* save the previous pwq and install the new one */ 3788 for_each_node(node) 3789 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 3790 ctx->pwq_tbl[node]); 3791 3792 /* @dfl_pwq might not have been used, ensure it's linked */ 3793 link_pwq(ctx->dfl_pwq); 3794 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 3795 3796 mutex_unlock(&ctx->wq->mutex); 3797 } 3798 3799 static void apply_wqattrs_lock(void) 3800 { 3801 /* CPUs should stay stable across pwq creations and installations */ 3802 get_online_cpus(); 3803 mutex_lock(&wq_pool_mutex); 3804 } 3805 3806 static void apply_wqattrs_unlock(void) 3807 { 3808 mutex_unlock(&wq_pool_mutex); 3809 put_online_cpus(); 3810 } 3811 3812 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 3813 const struct workqueue_attrs *attrs) 3814 { 3815 struct apply_wqattrs_ctx *ctx; 3816 3817 /* only unbound workqueues can change attributes */ 3818 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 3819 return -EINVAL; 3820 3821 /* creating multiple pwqs breaks ordering guarantee */ 3822 if (!list_empty(&wq->pwqs)) { 3823 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 3824 return -EINVAL; 3825 3826 wq->flags &= ~__WQ_ORDERED; 3827 } 3828 3829 ctx = apply_wqattrs_prepare(wq, attrs); 3830 if (!ctx) 3831 return -ENOMEM; 3832 3833 /* the ctx has been prepared successfully, let's commit it */ 3834 apply_wqattrs_commit(ctx); 3835 apply_wqattrs_cleanup(ctx); 3836 3837 return 0; 3838 } 3839 3840 /** 3841 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 3842 * @wq: the target workqueue 3843 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 3844 * 3845 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 3846 * machines, this function maps a separate pwq to each NUMA node with 3847 * possibles CPUs in @attrs->cpumask so that work items are affine to the 3848 * NUMA node it was issued on. Older pwqs are released as in-flight work 3849 * items finish. Note that a work item which repeatedly requeues itself 3850 * back-to-back will stay on its current pwq. 3851 * 3852 * Performs GFP_KERNEL allocations. 3853 * 3854 * Return: 0 on success and -errno on failure. 3855 */ 3856 int apply_workqueue_attrs(struct workqueue_struct *wq, 3857 const struct workqueue_attrs *attrs) 3858 { 3859 int ret; 3860 3861 apply_wqattrs_lock(); 3862 ret = apply_workqueue_attrs_locked(wq, attrs); 3863 apply_wqattrs_unlock(); 3864 3865 return ret; 3866 } 3867 EXPORT_SYMBOL_GPL(apply_workqueue_attrs); 3868 3869 /** 3870 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 3871 * @wq: the target workqueue 3872 * @cpu: the CPU coming up or going down 3873 * @online: whether @cpu is coming up or going down 3874 * 3875 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 3876 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 3877 * @wq accordingly. 3878 * 3879 * If NUMA affinity can't be adjusted due to memory allocation failure, it 3880 * falls back to @wq->dfl_pwq which may not be optimal but is always 3881 * correct. 3882 * 3883 * Note that when the last allowed CPU of a NUMA node goes offline for a 3884 * workqueue with a cpumask spanning multiple nodes, the workers which were 3885 * already executing the work items for the workqueue will lose their CPU 3886 * affinity and may execute on any CPU. This is similar to how per-cpu 3887 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 3888 * affinity, it's the user's responsibility to flush the work item from 3889 * CPU_DOWN_PREPARE. 3890 */ 3891 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 3892 bool online) 3893 { 3894 int node = cpu_to_node(cpu); 3895 int cpu_off = online ? -1 : cpu; 3896 struct pool_workqueue *old_pwq = NULL, *pwq; 3897 struct workqueue_attrs *target_attrs; 3898 cpumask_t *cpumask; 3899 3900 lockdep_assert_held(&wq_pool_mutex); 3901 3902 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 3903 wq->unbound_attrs->no_numa) 3904 return; 3905 3906 /* 3907 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 3908 * Let's use a preallocated one. The following buf is protected by 3909 * CPU hotplug exclusion. 3910 */ 3911 target_attrs = wq_update_unbound_numa_attrs_buf; 3912 cpumask = target_attrs->cpumask; 3913 3914 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 3915 pwq = unbound_pwq_by_node(wq, node); 3916 3917 /* 3918 * Let's determine what needs to be done. If the target cpumask is 3919 * different from the default pwq's, we need to compare it to @pwq's 3920 * and create a new one if they don't match. If the target cpumask 3921 * equals the default pwq's, the default pwq should be used. 3922 */ 3923 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 3924 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 3925 return; 3926 } else { 3927 goto use_dfl_pwq; 3928 } 3929 3930 /* create a new pwq */ 3931 pwq = alloc_unbound_pwq(wq, target_attrs); 3932 if (!pwq) { 3933 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 3934 wq->name); 3935 goto use_dfl_pwq; 3936 } 3937 3938 /* Install the new pwq. */ 3939 mutex_lock(&wq->mutex); 3940 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 3941 goto out_unlock; 3942 3943 use_dfl_pwq: 3944 mutex_lock(&wq->mutex); 3945 spin_lock_irq(&wq->dfl_pwq->pool->lock); 3946 get_pwq(wq->dfl_pwq); 3947 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 3948 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 3949 out_unlock: 3950 mutex_unlock(&wq->mutex); 3951 put_pwq_unlocked(old_pwq); 3952 } 3953 3954 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 3955 { 3956 bool highpri = wq->flags & WQ_HIGHPRI; 3957 int cpu, ret; 3958 3959 if (!(wq->flags & WQ_UNBOUND)) { 3960 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 3961 if (!wq->cpu_pwqs) 3962 return -ENOMEM; 3963 3964 for_each_possible_cpu(cpu) { 3965 struct pool_workqueue *pwq = 3966 per_cpu_ptr(wq->cpu_pwqs, cpu); 3967 struct worker_pool *cpu_pools = 3968 per_cpu(cpu_worker_pools, cpu); 3969 3970 init_pwq(pwq, wq, &cpu_pools[highpri]); 3971 3972 mutex_lock(&wq->mutex); 3973 link_pwq(pwq); 3974 mutex_unlock(&wq->mutex); 3975 } 3976 return 0; 3977 } else if (wq->flags & __WQ_ORDERED) { 3978 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 3979 /* there should only be single pwq for ordering guarantee */ 3980 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 3981 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 3982 "ordering guarantee broken for workqueue %s\n", wq->name); 3983 return ret; 3984 } else { 3985 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 3986 } 3987 } 3988 3989 static int wq_clamp_max_active(int max_active, unsigned int flags, 3990 const char *name) 3991 { 3992 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 3993 3994 if (max_active < 1 || max_active > lim) 3995 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 3996 max_active, name, 1, lim); 3997 3998 return clamp_val(max_active, 1, lim); 3999 } 4000 4001 /* 4002 * Workqueues which may be used during memory reclaim should have a rescuer 4003 * to guarantee forward progress. 4004 */ 4005 static int init_rescuer(struct workqueue_struct *wq) 4006 { 4007 struct worker *rescuer; 4008 int ret; 4009 4010 if (!(wq->flags & WQ_MEM_RECLAIM)) 4011 return 0; 4012 4013 rescuer = alloc_worker(NUMA_NO_NODE); 4014 if (!rescuer) 4015 return -ENOMEM; 4016 4017 rescuer->rescue_wq = wq; 4018 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name); 4019 ret = PTR_ERR_OR_ZERO(rescuer->task); 4020 if (ret) { 4021 kfree(rescuer); 4022 return ret; 4023 } 4024 4025 wq->rescuer = rescuer; 4026 kthread_bind_mask(rescuer->task, cpu_possible_mask); 4027 wake_up_process(rescuer->task); 4028 4029 return 0; 4030 } 4031 4032 struct workqueue_struct *__alloc_workqueue_key(const char *fmt, 4033 unsigned int flags, 4034 int max_active, 4035 struct lock_class_key *key, 4036 const char *lock_name, ...) 4037 { 4038 size_t tbl_size = 0; 4039 va_list args; 4040 struct workqueue_struct *wq; 4041 struct pool_workqueue *pwq; 4042 4043 /* 4044 * Unbound && max_active == 1 used to imply ordered, which is no 4045 * longer the case on NUMA machines due to per-node pools. While 4046 * alloc_ordered_workqueue() is the right way to create an ordered 4047 * workqueue, keep the previous behavior to avoid subtle breakages 4048 * on NUMA. 4049 */ 4050 if ((flags & WQ_UNBOUND) && max_active == 1) 4051 flags |= __WQ_ORDERED; 4052 4053 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4054 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4055 flags |= WQ_UNBOUND; 4056 4057 /* allocate wq and format name */ 4058 if (flags & WQ_UNBOUND) 4059 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 4060 4061 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4062 if (!wq) 4063 return NULL; 4064 4065 if (flags & WQ_UNBOUND) { 4066 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL); 4067 if (!wq->unbound_attrs) 4068 goto err_free_wq; 4069 } 4070 4071 va_start(args, lock_name); 4072 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4073 va_end(args); 4074 4075 max_active = max_active ?: WQ_DFL_ACTIVE; 4076 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4077 4078 /* init wq */ 4079 wq->flags = flags; 4080 wq->saved_max_active = max_active; 4081 mutex_init(&wq->mutex); 4082 atomic_set(&wq->nr_pwqs_to_flush, 0); 4083 INIT_LIST_HEAD(&wq->pwqs); 4084 INIT_LIST_HEAD(&wq->flusher_queue); 4085 INIT_LIST_HEAD(&wq->flusher_overflow); 4086 INIT_LIST_HEAD(&wq->maydays); 4087 4088 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 4089 INIT_LIST_HEAD(&wq->list); 4090 4091 if (alloc_and_link_pwqs(wq) < 0) 4092 goto err_free_wq; 4093 4094 if (wq_online && init_rescuer(wq) < 0) 4095 goto err_destroy; 4096 4097 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4098 goto err_destroy; 4099 4100 /* 4101 * wq_pool_mutex protects global freeze state and workqueues list. 4102 * Grab it, adjust max_active and add the new @wq to workqueues 4103 * list. 4104 */ 4105 mutex_lock(&wq_pool_mutex); 4106 4107 mutex_lock(&wq->mutex); 4108 for_each_pwq(pwq, wq) 4109 pwq_adjust_max_active(pwq); 4110 mutex_unlock(&wq->mutex); 4111 4112 list_add_tail_rcu(&wq->list, &workqueues); 4113 4114 mutex_unlock(&wq_pool_mutex); 4115 4116 return wq; 4117 4118 err_free_wq: 4119 free_workqueue_attrs(wq->unbound_attrs); 4120 kfree(wq); 4121 return NULL; 4122 err_destroy: 4123 destroy_workqueue(wq); 4124 return NULL; 4125 } 4126 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 4127 4128 /** 4129 * destroy_workqueue - safely terminate a workqueue 4130 * @wq: target workqueue 4131 * 4132 * Safely destroy a workqueue. All work currently pending will be done first. 4133 */ 4134 void destroy_workqueue(struct workqueue_struct *wq) 4135 { 4136 struct pool_workqueue *pwq; 4137 int node; 4138 4139 /* drain it before proceeding with destruction */ 4140 drain_workqueue(wq); 4141 4142 /* sanity checks */ 4143 mutex_lock(&wq->mutex); 4144 for_each_pwq(pwq, wq) { 4145 int i; 4146 4147 for (i = 0; i < WORK_NR_COLORS; i++) { 4148 if (WARN_ON(pwq->nr_in_flight[i])) { 4149 mutex_unlock(&wq->mutex); 4150 show_workqueue_state(); 4151 return; 4152 } 4153 } 4154 4155 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) || 4156 WARN_ON(pwq->nr_active) || 4157 WARN_ON(!list_empty(&pwq->delayed_works))) { 4158 mutex_unlock(&wq->mutex); 4159 show_workqueue_state(); 4160 return; 4161 } 4162 } 4163 mutex_unlock(&wq->mutex); 4164 4165 /* 4166 * wq list is used to freeze wq, remove from list after 4167 * flushing is complete in case freeze races us. 4168 */ 4169 mutex_lock(&wq_pool_mutex); 4170 list_del_rcu(&wq->list); 4171 mutex_unlock(&wq_pool_mutex); 4172 4173 workqueue_sysfs_unregister(wq); 4174 4175 if (wq->rescuer) 4176 kthread_stop(wq->rescuer->task); 4177 4178 if (!(wq->flags & WQ_UNBOUND)) { 4179 /* 4180 * The base ref is never dropped on per-cpu pwqs. Directly 4181 * schedule RCU free. 4182 */ 4183 call_rcu_sched(&wq->rcu, rcu_free_wq); 4184 } else { 4185 /* 4186 * We're the sole accessor of @wq at this point. Directly 4187 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4188 * @wq will be freed when the last pwq is released. 4189 */ 4190 for_each_node(node) { 4191 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4192 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4193 put_pwq_unlocked(pwq); 4194 } 4195 4196 /* 4197 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4198 * put. Don't access it afterwards. 4199 */ 4200 pwq = wq->dfl_pwq; 4201 wq->dfl_pwq = NULL; 4202 put_pwq_unlocked(pwq); 4203 } 4204 } 4205 EXPORT_SYMBOL_GPL(destroy_workqueue); 4206 4207 /** 4208 * workqueue_set_max_active - adjust max_active of a workqueue 4209 * @wq: target workqueue 4210 * @max_active: new max_active value. 4211 * 4212 * Set max_active of @wq to @max_active. 4213 * 4214 * CONTEXT: 4215 * Don't call from IRQ context. 4216 */ 4217 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4218 { 4219 struct pool_workqueue *pwq; 4220 4221 /* disallow meddling with max_active for ordered workqueues */ 4222 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4223 return; 4224 4225 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4226 4227 mutex_lock(&wq->mutex); 4228 4229 wq->flags &= ~__WQ_ORDERED; 4230 wq->saved_max_active = max_active; 4231 4232 for_each_pwq(pwq, wq) 4233 pwq_adjust_max_active(pwq); 4234 4235 mutex_unlock(&wq->mutex); 4236 } 4237 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4238 4239 /** 4240 * current_work - retrieve %current task's work struct 4241 * 4242 * Determine if %current task is a workqueue worker and what it's working on. 4243 * Useful to find out the context that the %current task is running in. 4244 * 4245 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 4246 */ 4247 struct work_struct *current_work(void) 4248 { 4249 struct worker *worker = current_wq_worker(); 4250 4251 return worker ? worker->current_work : NULL; 4252 } 4253 EXPORT_SYMBOL(current_work); 4254 4255 /** 4256 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4257 * 4258 * Determine whether %current is a workqueue rescuer. Can be used from 4259 * work functions to determine whether it's being run off the rescuer task. 4260 * 4261 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4262 */ 4263 bool current_is_workqueue_rescuer(void) 4264 { 4265 struct worker *worker = current_wq_worker(); 4266 4267 return worker && worker->rescue_wq; 4268 } 4269 4270 /** 4271 * workqueue_congested - test whether a workqueue is congested 4272 * @cpu: CPU in question 4273 * @wq: target workqueue 4274 * 4275 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4276 * no synchronization around this function and the test result is 4277 * unreliable and only useful as advisory hints or for debugging. 4278 * 4279 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4280 * Note that both per-cpu and unbound workqueues may be associated with 4281 * multiple pool_workqueues which have separate congested states. A 4282 * workqueue being congested on one CPU doesn't mean the workqueue is also 4283 * contested on other CPUs / NUMA nodes. 4284 * 4285 * Return: 4286 * %true if congested, %false otherwise. 4287 */ 4288 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4289 { 4290 struct pool_workqueue *pwq; 4291 bool ret; 4292 4293 rcu_read_lock_sched(); 4294 4295 if (cpu == WORK_CPU_UNBOUND) 4296 cpu = smp_processor_id(); 4297 4298 if (!(wq->flags & WQ_UNBOUND)) 4299 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4300 else 4301 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4302 4303 ret = !list_empty(&pwq->delayed_works); 4304 rcu_read_unlock_sched(); 4305 4306 return ret; 4307 } 4308 EXPORT_SYMBOL_GPL(workqueue_congested); 4309 4310 /** 4311 * work_busy - test whether a work is currently pending or running 4312 * @work: the work to be tested 4313 * 4314 * Test whether @work is currently pending or running. There is no 4315 * synchronization around this function and the test result is 4316 * unreliable and only useful as advisory hints or for debugging. 4317 * 4318 * Return: 4319 * OR'd bitmask of WORK_BUSY_* bits. 4320 */ 4321 unsigned int work_busy(struct work_struct *work) 4322 { 4323 struct worker_pool *pool; 4324 unsigned long flags; 4325 unsigned int ret = 0; 4326 4327 if (work_pending(work)) 4328 ret |= WORK_BUSY_PENDING; 4329 4330 local_irq_save(flags); 4331 pool = get_work_pool(work); 4332 if (pool) { 4333 spin_lock(&pool->lock); 4334 if (find_worker_executing_work(pool, work)) 4335 ret |= WORK_BUSY_RUNNING; 4336 spin_unlock(&pool->lock); 4337 } 4338 local_irq_restore(flags); 4339 4340 return ret; 4341 } 4342 EXPORT_SYMBOL_GPL(work_busy); 4343 4344 /** 4345 * set_worker_desc - set description for the current work item 4346 * @fmt: printf-style format string 4347 * @...: arguments for the format string 4348 * 4349 * This function can be called by a running work function to describe what 4350 * the work item is about. If the worker task gets dumped, this 4351 * information will be printed out together to help debugging. The 4352 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4353 */ 4354 void set_worker_desc(const char *fmt, ...) 4355 { 4356 struct worker *worker = current_wq_worker(); 4357 va_list args; 4358 4359 if (worker) { 4360 va_start(args, fmt); 4361 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4362 va_end(args); 4363 } 4364 } 4365 EXPORT_SYMBOL_GPL(set_worker_desc); 4366 4367 /** 4368 * print_worker_info - print out worker information and description 4369 * @log_lvl: the log level to use when printing 4370 * @task: target task 4371 * 4372 * If @task is a worker and currently executing a work item, print out the 4373 * name of the workqueue being serviced and worker description set with 4374 * set_worker_desc() by the currently executing work item. 4375 * 4376 * This function can be safely called on any task as long as the 4377 * task_struct itself is accessible. While safe, this function isn't 4378 * synchronized and may print out mixups or garbages of limited length. 4379 */ 4380 void print_worker_info(const char *log_lvl, struct task_struct *task) 4381 { 4382 work_func_t *fn = NULL; 4383 char name[WQ_NAME_LEN] = { }; 4384 char desc[WORKER_DESC_LEN] = { }; 4385 struct pool_workqueue *pwq = NULL; 4386 struct workqueue_struct *wq = NULL; 4387 struct worker *worker; 4388 4389 if (!(task->flags & PF_WQ_WORKER)) 4390 return; 4391 4392 /* 4393 * This function is called without any synchronization and @task 4394 * could be in any state. Be careful with dereferences. 4395 */ 4396 worker = kthread_probe_data(task); 4397 4398 /* 4399 * Carefully copy the associated workqueue's workfn, name and desc. 4400 * Keep the original last '\0' in case the original is garbage. 4401 */ 4402 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4403 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4404 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4405 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4406 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4407 4408 if (fn || name[0] || desc[0]) { 4409 printk("%sWorkqueue: %s %pf", log_lvl, name, fn); 4410 if (strcmp(name, desc)) 4411 pr_cont(" (%s)", desc); 4412 pr_cont("\n"); 4413 } 4414 } 4415 4416 static void pr_cont_pool_info(struct worker_pool *pool) 4417 { 4418 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4419 if (pool->node != NUMA_NO_NODE) 4420 pr_cont(" node=%d", pool->node); 4421 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4422 } 4423 4424 static void pr_cont_work(bool comma, struct work_struct *work) 4425 { 4426 if (work->func == wq_barrier_func) { 4427 struct wq_barrier *barr; 4428 4429 barr = container_of(work, struct wq_barrier, work); 4430 4431 pr_cont("%s BAR(%d)", comma ? "," : "", 4432 task_pid_nr(barr->task)); 4433 } else { 4434 pr_cont("%s %pf", comma ? "," : "", work->func); 4435 } 4436 } 4437 4438 static void show_pwq(struct pool_workqueue *pwq) 4439 { 4440 struct worker_pool *pool = pwq->pool; 4441 struct work_struct *work; 4442 struct worker *worker; 4443 bool has_in_flight = false, has_pending = false; 4444 int bkt; 4445 4446 pr_info(" pwq %d:", pool->id); 4447 pr_cont_pool_info(pool); 4448 4449 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active, 4450 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4451 4452 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4453 if (worker->current_pwq == pwq) { 4454 has_in_flight = true; 4455 break; 4456 } 4457 } 4458 if (has_in_flight) { 4459 bool comma = false; 4460 4461 pr_info(" in-flight:"); 4462 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4463 if (worker->current_pwq != pwq) 4464 continue; 4465 4466 pr_cont("%s %d%s:%pf", comma ? "," : "", 4467 task_pid_nr(worker->task), 4468 worker == pwq->wq->rescuer ? "(RESCUER)" : "", 4469 worker->current_func); 4470 list_for_each_entry(work, &worker->scheduled, entry) 4471 pr_cont_work(false, work); 4472 comma = true; 4473 } 4474 pr_cont("\n"); 4475 } 4476 4477 list_for_each_entry(work, &pool->worklist, entry) { 4478 if (get_work_pwq(work) == pwq) { 4479 has_pending = true; 4480 break; 4481 } 4482 } 4483 if (has_pending) { 4484 bool comma = false; 4485 4486 pr_info(" pending:"); 4487 list_for_each_entry(work, &pool->worklist, entry) { 4488 if (get_work_pwq(work) != pwq) 4489 continue; 4490 4491 pr_cont_work(comma, work); 4492 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4493 } 4494 pr_cont("\n"); 4495 } 4496 4497 if (!list_empty(&pwq->delayed_works)) { 4498 bool comma = false; 4499 4500 pr_info(" delayed:"); 4501 list_for_each_entry(work, &pwq->delayed_works, entry) { 4502 pr_cont_work(comma, work); 4503 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4504 } 4505 pr_cont("\n"); 4506 } 4507 } 4508 4509 /** 4510 * show_workqueue_state - dump workqueue state 4511 * 4512 * Called from a sysrq handler or try_to_freeze_tasks() and prints out 4513 * all busy workqueues and pools. 4514 */ 4515 void show_workqueue_state(void) 4516 { 4517 struct workqueue_struct *wq; 4518 struct worker_pool *pool; 4519 unsigned long flags; 4520 int pi; 4521 4522 rcu_read_lock_sched(); 4523 4524 pr_info("Showing busy workqueues and worker pools:\n"); 4525 4526 list_for_each_entry_rcu(wq, &workqueues, list) { 4527 struct pool_workqueue *pwq; 4528 bool idle = true; 4529 4530 for_each_pwq(pwq, wq) { 4531 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) { 4532 idle = false; 4533 break; 4534 } 4535 } 4536 if (idle) 4537 continue; 4538 4539 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4540 4541 for_each_pwq(pwq, wq) { 4542 spin_lock_irqsave(&pwq->pool->lock, flags); 4543 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4544 show_pwq(pwq); 4545 spin_unlock_irqrestore(&pwq->pool->lock, flags); 4546 /* 4547 * We could be printing a lot from atomic context, e.g. 4548 * sysrq-t -> show_workqueue_state(). Avoid triggering 4549 * hard lockup. 4550 */ 4551 touch_nmi_watchdog(); 4552 } 4553 } 4554 4555 for_each_pool(pool, pi) { 4556 struct worker *worker; 4557 bool first = true; 4558 4559 spin_lock_irqsave(&pool->lock, flags); 4560 if (pool->nr_workers == pool->nr_idle) 4561 goto next_pool; 4562 4563 pr_info("pool %d:", pool->id); 4564 pr_cont_pool_info(pool); 4565 pr_cont(" hung=%us workers=%d", 4566 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000, 4567 pool->nr_workers); 4568 if (pool->manager) 4569 pr_cont(" manager: %d", 4570 task_pid_nr(pool->manager->task)); 4571 list_for_each_entry(worker, &pool->idle_list, entry) { 4572 pr_cont(" %s%d", first ? "idle: " : "", 4573 task_pid_nr(worker->task)); 4574 first = false; 4575 } 4576 pr_cont("\n"); 4577 next_pool: 4578 spin_unlock_irqrestore(&pool->lock, flags); 4579 /* 4580 * We could be printing a lot from atomic context, e.g. 4581 * sysrq-t -> show_workqueue_state(). Avoid triggering 4582 * hard lockup. 4583 */ 4584 touch_nmi_watchdog(); 4585 } 4586 4587 rcu_read_unlock_sched(); 4588 } 4589 4590 /* used to show worker information through /proc/PID/{comm,stat,status} */ 4591 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 4592 { 4593 int off; 4594 4595 /* always show the actual comm */ 4596 off = strscpy(buf, task->comm, size); 4597 if (off < 0) 4598 return; 4599 4600 /* stabilize PF_WQ_WORKER and worker pool association */ 4601 mutex_lock(&wq_pool_attach_mutex); 4602 4603 if (task->flags & PF_WQ_WORKER) { 4604 struct worker *worker = kthread_data(task); 4605 struct worker_pool *pool = worker->pool; 4606 4607 if (pool) { 4608 spin_lock_irq(&pool->lock); 4609 /* 4610 * ->desc tracks information (wq name or 4611 * set_worker_desc()) for the latest execution. If 4612 * current, prepend '+', otherwise '-'. 4613 */ 4614 if (worker->desc[0] != '\0') { 4615 if (worker->current_work) 4616 scnprintf(buf + off, size - off, "+%s", 4617 worker->desc); 4618 else 4619 scnprintf(buf + off, size - off, "-%s", 4620 worker->desc); 4621 } 4622 spin_unlock_irq(&pool->lock); 4623 } 4624 } 4625 4626 mutex_unlock(&wq_pool_attach_mutex); 4627 } 4628 4629 #ifdef CONFIG_SMP 4630 4631 /* 4632 * CPU hotplug. 4633 * 4634 * There are two challenges in supporting CPU hotplug. Firstly, there 4635 * are a lot of assumptions on strong associations among work, pwq and 4636 * pool which make migrating pending and scheduled works very 4637 * difficult to implement without impacting hot paths. Secondly, 4638 * worker pools serve mix of short, long and very long running works making 4639 * blocked draining impractical. 4640 * 4641 * This is solved by allowing the pools to be disassociated from the CPU 4642 * running as an unbound one and allowing it to be reattached later if the 4643 * cpu comes back online. 4644 */ 4645 4646 static void unbind_workers(int cpu) 4647 { 4648 struct worker_pool *pool; 4649 struct worker *worker; 4650 4651 for_each_cpu_worker_pool(pool, cpu) { 4652 mutex_lock(&wq_pool_attach_mutex); 4653 spin_lock_irq(&pool->lock); 4654 4655 /* 4656 * We've blocked all attach/detach operations. Make all workers 4657 * unbound and set DISASSOCIATED. Before this, all workers 4658 * except for the ones which are still executing works from 4659 * before the last CPU down must be on the cpu. After 4660 * this, they may become diasporas. 4661 */ 4662 for_each_pool_worker(worker, pool) 4663 worker->flags |= WORKER_UNBOUND; 4664 4665 pool->flags |= POOL_DISASSOCIATED; 4666 4667 spin_unlock_irq(&pool->lock); 4668 mutex_unlock(&wq_pool_attach_mutex); 4669 4670 /* 4671 * Call schedule() so that we cross rq->lock and thus can 4672 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4673 * This is necessary as scheduler callbacks may be invoked 4674 * from other cpus. 4675 */ 4676 schedule(); 4677 4678 /* 4679 * Sched callbacks are disabled now. Zap nr_running. 4680 * After this, nr_running stays zero and need_more_worker() 4681 * and keep_working() are always true as long as the 4682 * worklist is not empty. This pool now behaves as an 4683 * unbound (in terms of concurrency management) pool which 4684 * are served by workers tied to the pool. 4685 */ 4686 atomic_set(&pool->nr_running, 0); 4687 4688 /* 4689 * With concurrency management just turned off, a busy 4690 * worker blocking could lead to lengthy stalls. Kick off 4691 * unbound chain execution of currently pending work items. 4692 */ 4693 spin_lock_irq(&pool->lock); 4694 wake_up_worker(pool); 4695 spin_unlock_irq(&pool->lock); 4696 } 4697 } 4698 4699 /** 4700 * rebind_workers - rebind all workers of a pool to the associated CPU 4701 * @pool: pool of interest 4702 * 4703 * @pool->cpu is coming online. Rebind all workers to the CPU. 4704 */ 4705 static void rebind_workers(struct worker_pool *pool) 4706 { 4707 struct worker *worker; 4708 4709 lockdep_assert_held(&wq_pool_attach_mutex); 4710 4711 /* 4712 * Restore CPU affinity of all workers. As all idle workers should 4713 * be on the run-queue of the associated CPU before any local 4714 * wake-ups for concurrency management happen, restore CPU affinity 4715 * of all workers first and then clear UNBOUND. As we're called 4716 * from CPU_ONLINE, the following shouldn't fail. 4717 */ 4718 for_each_pool_worker(worker, pool) 4719 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4720 pool->attrs->cpumask) < 0); 4721 4722 spin_lock_irq(&pool->lock); 4723 4724 pool->flags &= ~POOL_DISASSOCIATED; 4725 4726 for_each_pool_worker(worker, pool) { 4727 unsigned int worker_flags = worker->flags; 4728 4729 /* 4730 * A bound idle worker should actually be on the runqueue 4731 * of the associated CPU for local wake-ups targeting it to 4732 * work. Kick all idle workers so that they migrate to the 4733 * associated CPU. Doing this in the same loop as 4734 * replacing UNBOUND with REBOUND is safe as no worker will 4735 * be bound before @pool->lock is released. 4736 */ 4737 if (worker_flags & WORKER_IDLE) 4738 wake_up_process(worker->task); 4739 4740 /* 4741 * We want to clear UNBOUND but can't directly call 4742 * worker_clr_flags() or adjust nr_running. Atomically 4743 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4744 * @worker will clear REBOUND using worker_clr_flags() when 4745 * it initiates the next execution cycle thus restoring 4746 * concurrency management. Note that when or whether 4747 * @worker clears REBOUND doesn't affect correctness. 4748 * 4749 * WRITE_ONCE() is necessary because @worker->flags may be 4750 * tested without holding any lock in 4751 * wq_worker_waking_up(). Without it, NOT_RUNNING test may 4752 * fail incorrectly leading to premature concurrency 4753 * management operations. 4754 */ 4755 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4756 worker_flags |= WORKER_REBOUND; 4757 worker_flags &= ~WORKER_UNBOUND; 4758 WRITE_ONCE(worker->flags, worker_flags); 4759 } 4760 4761 spin_unlock_irq(&pool->lock); 4762 } 4763 4764 /** 4765 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4766 * @pool: unbound pool of interest 4767 * @cpu: the CPU which is coming up 4768 * 4769 * An unbound pool may end up with a cpumask which doesn't have any online 4770 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4771 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4772 * online CPU before, cpus_allowed of all its workers should be restored. 4773 */ 4774 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 4775 { 4776 static cpumask_t cpumask; 4777 struct worker *worker; 4778 4779 lockdep_assert_held(&wq_pool_attach_mutex); 4780 4781 /* is @cpu allowed for @pool? */ 4782 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 4783 return; 4784 4785 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 4786 4787 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 4788 for_each_pool_worker(worker, pool) 4789 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 4790 } 4791 4792 int workqueue_prepare_cpu(unsigned int cpu) 4793 { 4794 struct worker_pool *pool; 4795 4796 for_each_cpu_worker_pool(pool, cpu) { 4797 if (pool->nr_workers) 4798 continue; 4799 if (!create_worker(pool)) 4800 return -ENOMEM; 4801 } 4802 return 0; 4803 } 4804 4805 int workqueue_online_cpu(unsigned int cpu) 4806 { 4807 struct worker_pool *pool; 4808 struct workqueue_struct *wq; 4809 int pi; 4810 4811 mutex_lock(&wq_pool_mutex); 4812 4813 for_each_pool(pool, pi) { 4814 mutex_lock(&wq_pool_attach_mutex); 4815 4816 if (pool->cpu == cpu) 4817 rebind_workers(pool); 4818 else if (pool->cpu < 0) 4819 restore_unbound_workers_cpumask(pool, cpu); 4820 4821 mutex_unlock(&wq_pool_attach_mutex); 4822 } 4823 4824 /* update NUMA affinity of unbound workqueues */ 4825 list_for_each_entry(wq, &workqueues, list) 4826 wq_update_unbound_numa(wq, cpu, true); 4827 4828 mutex_unlock(&wq_pool_mutex); 4829 return 0; 4830 } 4831 4832 int workqueue_offline_cpu(unsigned int cpu) 4833 { 4834 struct workqueue_struct *wq; 4835 4836 /* unbinding per-cpu workers should happen on the local CPU */ 4837 if (WARN_ON(cpu != smp_processor_id())) 4838 return -1; 4839 4840 unbind_workers(cpu); 4841 4842 /* update NUMA affinity of unbound workqueues */ 4843 mutex_lock(&wq_pool_mutex); 4844 list_for_each_entry(wq, &workqueues, list) 4845 wq_update_unbound_numa(wq, cpu, false); 4846 mutex_unlock(&wq_pool_mutex); 4847 4848 return 0; 4849 } 4850 4851 struct work_for_cpu { 4852 struct work_struct work; 4853 long (*fn)(void *); 4854 void *arg; 4855 long ret; 4856 }; 4857 4858 static void work_for_cpu_fn(struct work_struct *work) 4859 { 4860 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 4861 4862 wfc->ret = wfc->fn(wfc->arg); 4863 } 4864 4865 /** 4866 * work_on_cpu - run a function in thread context on a particular cpu 4867 * @cpu: the cpu to run on 4868 * @fn: the function to run 4869 * @arg: the function arg 4870 * 4871 * It is up to the caller to ensure that the cpu doesn't go offline. 4872 * The caller must not hold any locks which would prevent @fn from completing. 4873 * 4874 * Return: The value @fn returns. 4875 */ 4876 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 4877 { 4878 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 4879 4880 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 4881 schedule_work_on(cpu, &wfc.work); 4882 flush_work(&wfc.work); 4883 destroy_work_on_stack(&wfc.work); 4884 return wfc.ret; 4885 } 4886 EXPORT_SYMBOL_GPL(work_on_cpu); 4887 4888 /** 4889 * work_on_cpu_safe - run a function in thread context on a particular cpu 4890 * @cpu: the cpu to run on 4891 * @fn: the function to run 4892 * @arg: the function argument 4893 * 4894 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 4895 * any locks which would prevent @fn from completing. 4896 * 4897 * Return: The value @fn returns. 4898 */ 4899 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) 4900 { 4901 long ret = -ENODEV; 4902 4903 get_online_cpus(); 4904 if (cpu_online(cpu)) 4905 ret = work_on_cpu(cpu, fn, arg); 4906 put_online_cpus(); 4907 return ret; 4908 } 4909 EXPORT_SYMBOL_GPL(work_on_cpu_safe); 4910 #endif /* CONFIG_SMP */ 4911 4912 #ifdef CONFIG_FREEZER 4913 4914 /** 4915 * freeze_workqueues_begin - begin freezing workqueues 4916 * 4917 * Start freezing workqueues. After this function returns, all freezable 4918 * workqueues will queue new works to their delayed_works list instead of 4919 * pool->worklist. 4920 * 4921 * CONTEXT: 4922 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4923 */ 4924 void freeze_workqueues_begin(void) 4925 { 4926 struct workqueue_struct *wq; 4927 struct pool_workqueue *pwq; 4928 4929 mutex_lock(&wq_pool_mutex); 4930 4931 WARN_ON_ONCE(workqueue_freezing); 4932 workqueue_freezing = true; 4933 4934 list_for_each_entry(wq, &workqueues, list) { 4935 mutex_lock(&wq->mutex); 4936 for_each_pwq(pwq, wq) 4937 pwq_adjust_max_active(pwq); 4938 mutex_unlock(&wq->mutex); 4939 } 4940 4941 mutex_unlock(&wq_pool_mutex); 4942 } 4943 4944 /** 4945 * freeze_workqueues_busy - are freezable workqueues still busy? 4946 * 4947 * Check whether freezing is complete. This function must be called 4948 * between freeze_workqueues_begin() and thaw_workqueues(). 4949 * 4950 * CONTEXT: 4951 * Grabs and releases wq_pool_mutex. 4952 * 4953 * Return: 4954 * %true if some freezable workqueues are still busy. %false if freezing 4955 * is complete. 4956 */ 4957 bool freeze_workqueues_busy(void) 4958 { 4959 bool busy = false; 4960 struct workqueue_struct *wq; 4961 struct pool_workqueue *pwq; 4962 4963 mutex_lock(&wq_pool_mutex); 4964 4965 WARN_ON_ONCE(!workqueue_freezing); 4966 4967 list_for_each_entry(wq, &workqueues, list) { 4968 if (!(wq->flags & WQ_FREEZABLE)) 4969 continue; 4970 /* 4971 * nr_active is monotonically decreasing. It's safe 4972 * to peek without lock. 4973 */ 4974 rcu_read_lock_sched(); 4975 for_each_pwq(pwq, wq) { 4976 WARN_ON_ONCE(pwq->nr_active < 0); 4977 if (pwq->nr_active) { 4978 busy = true; 4979 rcu_read_unlock_sched(); 4980 goto out_unlock; 4981 } 4982 } 4983 rcu_read_unlock_sched(); 4984 } 4985 out_unlock: 4986 mutex_unlock(&wq_pool_mutex); 4987 return busy; 4988 } 4989 4990 /** 4991 * thaw_workqueues - thaw workqueues 4992 * 4993 * Thaw workqueues. Normal queueing is restored and all collected 4994 * frozen works are transferred to their respective pool worklists. 4995 * 4996 * CONTEXT: 4997 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4998 */ 4999 void thaw_workqueues(void) 5000 { 5001 struct workqueue_struct *wq; 5002 struct pool_workqueue *pwq; 5003 5004 mutex_lock(&wq_pool_mutex); 5005 5006 if (!workqueue_freezing) 5007 goto out_unlock; 5008 5009 workqueue_freezing = false; 5010 5011 /* restore max_active and repopulate worklist */ 5012 list_for_each_entry(wq, &workqueues, list) { 5013 mutex_lock(&wq->mutex); 5014 for_each_pwq(pwq, wq) 5015 pwq_adjust_max_active(pwq); 5016 mutex_unlock(&wq->mutex); 5017 } 5018 5019 out_unlock: 5020 mutex_unlock(&wq_pool_mutex); 5021 } 5022 #endif /* CONFIG_FREEZER */ 5023 5024 static int workqueue_apply_unbound_cpumask(void) 5025 { 5026 LIST_HEAD(ctxs); 5027 int ret = 0; 5028 struct workqueue_struct *wq; 5029 struct apply_wqattrs_ctx *ctx, *n; 5030 5031 lockdep_assert_held(&wq_pool_mutex); 5032 5033 list_for_each_entry(wq, &workqueues, list) { 5034 if (!(wq->flags & WQ_UNBOUND)) 5035 continue; 5036 /* creating multiple pwqs breaks ordering guarantee */ 5037 if (wq->flags & __WQ_ORDERED) 5038 continue; 5039 5040 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs); 5041 if (!ctx) { 5042 ret = -ENOMEM; 5043 break; 5044 } 5045 5046 list_add_tail(&ctx->list, &ctxs); 5047 } 5048 5049 list_for_each_entry_safe(ctx, n, &ctxs, list) { 5050 if (!ret) 5051 apply_wqattrs_commit(ctx); 5052 apply_wqattrs_cleanup(ctx); 5053 } 5054 5055 return ret; 5056 } 5057 5058 /** 5059 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 5060 * @cpumask: the cpumask to set 5061 * 5062 * The low-level workqueues cpumask is a global cpumask that limits 5063 * the affinity of all unbound workqueues. This function check the @cpumask 5064 * and apply it to all unbound workqueues and updates all pwqs of them. 5065 * 5066 * Retun: 0 - Success 5067 * -EINVAL - Invalid @cpumask 5068 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 5069 */ 5070 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 5071 { 5072 int ret = -EINVAL; 5073 cpumask_var_t saved_cpumask; 5074 5075 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) 5076 return -ENOMEM; 5077 5078 /* 5079 * Not excluding isolated cpus on purpose. 5080 * If the user wishes to include them, we allow that. 5081 */ 5082 cpumask_and(cpumask, cpumask, cpu_possible_mask); 5083 if (!cpumask_empty(cpumask)) { 5084 apply_wqattrs_lock(); 5085 5086 /* save the old wq_unbound_cpumask. */ 5087 cpumask_copy(saved_cpumask, wq_unbound_cpumask); 5088 5089 /* update wq_unbound_cpumask at first and apply it to wqs. */ 5090 cpumask_copy(wq_unbound_cpumask, cpumask); 5091 ret = workqueue_apply_unbound_cpumask(); 5092 5093 /* restore the wq_unbound_cpumask when failed. */ 5094 if (ret < 0) 5095 cpumask_copy(wq_unbound_cpumask, saved_cpumask); 5096 5097 apply_wqattrs_unlock(); 5098 } 5099 5100 free_cpumask_var(saved_cpumask); 5101 return ret; 5102 } 5103 5104 #ifdef CONFIG_SYSFS 5105 /* 5106 * Workqueues with WQ_SYSFS flag set is visible to userland via 5107 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 5108 * following attributes. 5109 * 5110 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 5111 * max_active RW int : maximum number of in-flight work items 5112 * 5113 * Unbound workqueues have the following extra attributes. 5114 * 5115 * pool_ids RO int : the associated pool IDs for each node 5116 * nice RW int : nice value of the workers 5117 * cpumask RW mask : bitmask of allowed CPUs for the workers 5118 * numa RW bool : whether enable NUMA affinity 5119 */ 5120 struct wq_device { 5121 struct workqueue_struct *wq; 5122 struct device dev; 5123 }; 5124 5125 static struct workqueue_struct *dev_to_wq(struct device *dev) 5126 { 5127 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5128 5129 return wq_dev->wq; 5130 } 5131 5132 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 5133 char *buf) 5134 { 5135 struct workqueue_struct *wq = dev_to_wq(dev); 5136 5137 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 5138 } 5139 static DEVICE_ATTR_RO(per_cpu); 5140 5141 static ssize_t max_active_show(struct device *dev, 5142 struct device_attribute *attr, char *buf) 5143 { 5144 struct workqueue_struct *wq = dev_to_wq(dev); 5145 5146 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 5147 } 5148 5149 static ssize_t max_active_store(struct device *dev, 5150 struct device_attribute *attr, const char *buf, 5151 size_t count) 5152 { 5153 struct workqueue_struct *wq = dev_to_wq(dev); 5154 int val; 5155 5156 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 5157 return -EINVAL; 5158 5159 workqueue_set_max_active(wq, val); 5160 return count; 5161 } 5162 static DEVICE_ATTR_RW(max_active); 5163 5164 static struct attribute *wq_sysfs_attrs[] = { 5165 &dev_attr_per_cpu.attr, 5166 &dev_attr_max_active.attr, 5167 NULL, 5168 }; 5169 ATTRIBUTE_GROUPS(wq_sysfs); 5170 5171 static ssize_t wq_pool_ids_show(struct device *dev, 5172 struct device_attribute *attr, char *buf) 5173 { 5174 struct workqueue_struct *wq = dev_to_wq(dev); 5175 const char *delim = ""; 5176 int node, written = 0; 5177 5178 rcu_read_lock_sched(); 5179 for_each_node(node) { 5180 written += scnprintf(buf + written, PAGE_SIZE - written, 5181 "%s%d:%d", delim, node, 5182 unbound_pwq_by_node(wq, node)->pool->id); 5183 delim = " "; 5184 } 5185 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 5186 rcu_read_unlock_sched(); 5187 5188 return written; 5189 } 5190 5191 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 5192 char *buf) 5193 { 5194 struct workqueue_struct *wq = dev_to_wq(dev); 5195 int written; 5196 5197 mutex_lock(&wq->mutex); 5198 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 5199 mutex_unlock(&wq->mutex); 5200 5201 return written; 5202 } 5203 5204 /* prepare workqueue_attrs for sysfs store operations */ 5205 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5206 { 5207 struct workqueue_attrs *attrs; 5208 5209 lockdep_assert_held(&wq_pool_mutex); 5210 5211 attrs = alloc_workqueue_attrs(GFP_KERNEL); 5212 if (!attrs) 5213 return NULL; 5214 5215 copy_workqueue_attrs(attrs, wq->unbound_attrs); 5216 return attrs; 5217 } 5218 5219 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 5220 const char *buf, size_t count) 5221 { 5222 struct workqueue_struct *wq = dev_to_wq(dev); 5223 struct workqueue_attrs *attrs; 5224 int ret = -ENOMEM; 5225 5226 apply_wqattrs_lock(); 5227 5228 attrs = wq_sysfs_prep_attrs(wq); 5229 if (!attrs) 5230 goto out_unlock; 5231 5232 if (sscanf(buf, "%d", &attrs->nice) == 1 && 5233 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 5234 ret = apply_workqueue_attrs_locked(wq, attrs); 5235 else 5236 ret = -EINVAL; 5237 5238 out_unlock: 5239 apply_wqattrs_unlock(); 5240 free_workqueue_attrs(attrs); 5241 return ret ?: count; 5242 } 5243 5244 static ssize_t wq_cpumask_show(struct device *dev, 5245 struct device_attribute *attr, char *buf) 5246 { 5247 struct workqueue_struct *wq = dev_to_wq(dev); 5248 int written; 5249 5250 mutex_lock(&wq->mutex); 5251 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5252 cpumask_pr_args(wq->unbound_attrs->cpumask)); 5253 mutex_unlock(&wq->mutex); 5254 return written; 5255 } 5256 5257 static ssize_t wq_cpumask_store(struct device *dev, 5258 struct device_attribute *attr, 5259 const char *buf, size_t count) 5260 { 5261 struct workqueue_struct *wq = dev_to_wq(dev); 5262 struct workqueue_attrs *attrs; 5263 int ret = -ENOMEM; 5264 5265 apply_wqattrs_lock(); 5266 5267 attrs = wq_sysfs_prep_attrs(wq); 5268 if (!attrs) 5269 goto out_unlock; 5270 5271 ret = cpumask_parse(buf, attrs->cpumask); 5272 if (!ret) 5273 ret = apply_workqueue_attrs_locked(wq, attrs); 5274 5275 out_unlock: 5276 apply_wqattrs_unlock(); 5277 free_workqueue_attrs(attrs); 5278 return ret ?: count; 5279 } 5280 5281 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5282 char *buf) 5283 { 5284 struct workqueue_struct *wq = dev_to_wq(dev); 5285 int written; 5286 5287 mutex_lock(&wq->mutex); 5288 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5289 !wq->unbound_attrs->no_numa); 5290 mutex_unlock(&wq->mutex); 5291 5292 return written; 5293 } 5294 5295 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 5296 const char *buf, size_t count) 5297 { 5298 struct workqueue_struct *wq = dev_to_wq(dev); 5299 struct workqueue_attrs *attrs; 5300 int v, ret = -ENOMEM; 5301 5302 apply_wqattrs_lock(); 5303 5304 attrs = wq_sysfs_prep_attrs(wq); 5305 if (!attrs) 5306 goto out_unlock; 5307 5308 ret = -EINVAL; 5309 if (sscanf(buf, "%d", &v) == 1) { 5310 attrs->no_numa = !v; 5311 ret = apply_workqueue_attrs_locked(wq, attrs); 5312 } 5313 5314 out_unlock: 5315 apply_wqattrs_unlock(); 5316 free_workqueue_attrs(attrs); 5317 return ret ?: count; 5318 } 5319 5320 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5321 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5322 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5323 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5324 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5325 __ATTR_NULL, 5326 }; 5327 5328 static struct bus_type wq_subsys = { 5329 .name = "workqueue", 5330 .dev_groups = wq_sysfs_groups, 5331 }; 5332 5333 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5334 struct device_attribute *attr, char *buf) 5335 { 5336 int written; 5337 5338 mutex_lock(&wq_pool_mutex); 5339 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5340 cpumask_pr_args(wq_unbound_cpumask)); 5341 mutex_unlock(&wq_pool_mutex); 5342 5343 return written; 5344 } 5345 5346 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5347 struct device_attribute *attr, const char *buf, size_t count) 5348 { 5349 cpumask_var_t cpumask; 5350 int ret; 5351 5352 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5353 return -ENOMEM; 5354 5355 ret = cpumask_parse(buf, cpumask); 5356 if (!ret) 5357 ret = workqueue_set_unbound_cpumask(cpumask); 5358 5359 free_cpumask_var(cpumask); 5360 return ret ? ret : count; 5361 } 5362 5363 static struct device_attribute wq_sysfs_cpumask_attr = 5364 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5365 wq_unbound_cpumask_store); 5366 5367 static int __init wq_sysfs_init(void) 5368 { 5369 int err; 5370 5371 err = subsys_virtual_register(&wq_subsys, NULL); 5372 if (err) 5373 return err; 5374 5375 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr); 5376 } 5377 core_initcall(wq_sysfs_init); 5378 5379 static void wq_device_release(struct device *dev) 5380 { 5381 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5382 5383 kfree(wq_dev); 5384 } 5385 5386 /** 5387 * workqueue_sysfs_register - make a workqueue visible in sysfs 5388 * @wq: the workqueue to register 5389 * 5390 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5391 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5392 * which is the preferred method. 5393 * 5394 * Workqueue user should use this function directly iff it wants to apply 5395 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5396 * apply_workqueue_attrs() may race against userland updating the 5397 * attributes. 5398 * 5399 * Return: 0 on success, -errno on failure. 5400 */ 5401 int workqueue_sysfs_register(struct workqueue_struct *wq) 5402 { 5403 struct wq_device *wq_dev; 5404 int ret; 5405 5406 /* 5407 * Adjusting max_active or creating new pwqs by applying 5408 * attributes breaks ordering guarantee. Disallow exposing ordered 5409 * workqueues. 5410 */ 5411 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 5412 return -EINVAL; 5413 5414 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5415 if (!wq_dev) 5416 return -ENOMEM; 5417 5418 wq_dev->wq = wq; 5419 wq_dev->dev.bus = &wq_subsys; 5420 wq_dev->dev.release = wq_device_release; 5421 dev_set_name(&wq_dev->dev, "%s", wq->name); 5422 5423 /* 5424 * unbound_attrs are created separately. Suppress uevent until 5425 * everything is ready. 5426 */ 5427 dev_set_uevent_suppress(&wq_dev->dev, true); 5428 5429 ret = device_register(&wq_dev->dev); 5430 if (ret) { 5431 put_device(&wq_dev->dev); 5432 wq->wq_dev = NULL; 5433 return ret; 5434 } 5435 5436 if (wq->flags & WQ_UNBOUND) { 5437 struct device_attribute *attr; 5438 5439 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5440 ret = device_create_file(&wq_dev->dev, attr); 5441 if (ret) { 5442 device_unregister(&wq_dev->dev); 5443 wq->wq_dev = NULL; 5444 return ret; 5445 } 5446 } 5447 } 5448 5449 dev_set_uevent_suppress(&wq_dev->dev, false); 5450 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5451 return 0; 5452 } 5453 5454 /** 5455 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5456 * @wq: the workqueue to unregister 5457 * 5458 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5459 */ 5460 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5461 { 5462 struct wq_device *wq_dev = wq->wq_dev; 5463 5464 if (!wq->wq_dev) 5465 return; 5466 5467 wq->wq_dev = NULL; 5468 device_unregister(&wq_dev->dev); 5469 } 5470 #else /* CONFIG_SYSFS */ 5471 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5472 #endif /* CONFIG_SYSFS */ 5473 5474 /* 5475 * Workqueue watchdog. 5476 * 5477 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 5478 * flush dependency, a concurrency managed work item which stays RUNNING 5479 * indefinitely. Workqueue stalls can be very difficult to debug as the 5480 * usual warning mechanisms don't trigger and internal workqueue state is 5481 * largely opaque. 5482 * 5483 * Workqueue watchdog monitors all worker pools periodically and dumps 5484 * state if some pools failed to make forward progress for a while where 5485 * forward progress is defined as the first item on ->worklist changing. 5486 * 5487 * This mechanism is controlled through the kernel parameter 5488 * "workqueue.watchdog_thresh" which can be updated at runtime through the 5489 * corresponding sysfs parameter file. 5490 */ 5491 #ifdef CONFIG_WQ_WATCHDOG 5492 5493 static unsigned long wq_watchdog_thresh = 30; 5494 static struct timer_list wq_watchdog_timer; 5495 5496 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 5497 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 5498 5499 static void wq_watchdog_reset_touched(void) 5500 { 5501 int cpu; 5502 5503 wq_watchdog_touched = jiffies; 5504 for_each_possible_cpu(cpu) 5505 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5506 } 5507 5508 static void wq_watchdog_timer_fn(struct timer_list *unused) 5509 { 5510 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 5511 bool lockup_detected = false; 5512 struct worker_pool *pool; 5513 int pi; 5514 5515 if (!thresh) 5516 return; 5517 5518 rcu_read_lock(); 5519 5520 for_each_pool(pool, pi) { 5521 unsigned long pool_ts, touched, ts; 5522 5523 if (list_empty(&pool->worklist)) 5524 continue; 5525 5526 /* get the latest of pool and touched timestamps */ 5527 pool_ts = READ_ONCE(pool->watchdog_ts); 5528 touched = READ_ONCE(wq_watchdog_touched); 5529 5530 if (time_after(pool_ts, touched)) 5531 ts = pool_ts; 5532 else 5533 ts = touched; 5534 5535 if (pool->cpu >= 0) { 5536 unsigned long cpu_touched = 5537 READ_ONCE(per_cpu(wq_watchdog_touched_cpu, 5538 pool->cpu)); 5539 if (time_after(cpu_touched, ts)) 5540 ts = cpu_touched; 5541 } 5542 5543 /* did we stall? */ 5544 if (time_after(jiffies, ts + thresh)) { 5545 lockup_detected = true; 5546 pr_emerg("BUG: workqueue lockup - pool"); 5547 pr_cont_pool_info(pool); 5548 pr_cont(" stuck for %us!\n", 5549 jiffies_to_msecs(jiffies - pool_ts) / 1000); 5550 } 5551 } 5552 5553 rcu_read_unlock(); 5554 5555 if (lockup_detected) 5556 show_workqueue_state(); 5557 5558 wq_watchdog_reset_touched(); 5559 mod_timer(&wq_watchdog_timer, jiffies + thresh); 5560 } 5561 5562 void wq_watchdog_touch(int cpu) 5563 { 5564 if (cpu >= 0) 5565 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5566 else 5567 wq_watchdog_touched = jiffies; 5568 } 5569 5570 static void wq_watchdog_set_thresh(unsigned long thresh) 5571 { 5572 wq_watchdog_thresh = 0; 5573 del_timer_sync(&wq_watchdog_timer); 5574 5575 if (thresh) { 5576 wq_watchdog_thresh = thresh; 5577 wq_watchdog_reset_touched(); 5578 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 5579 } 5580 } 5581 5582 static int wq_watchdog_param_set_thresh(const char *val, 5583 const struct kernel_param *kp) 5584 { 5585 unsigned long thresh; 5586 int ret; 5587 5588 ret = kstrtoul(val, 0, &thresh); 5589 if (ret) 5590 return ret; 5591 5592 if (system_wq) 5593 wq_watchdog_set_thresh(thresh); 5594 else 5595 wq_watchdog_thresh = thresh; 5596 5597 return 0; 5598 } 5599 5600 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 5601 .set = wq_watchdog_param_set_thresh, 5602 .get = param_get_ulong, 5603 }; 5604 5605 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 5606 0644); 5607 5608 static void wq_watchdog_init(void) 5609 { 5610 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 5611 wq_watchdog_set_thresh(wq_watchdog_thresh); 5612 } 5613 5614 #else /* CONFIG_WQ_WATCHDOG */ 5615 5616 static inline void wq_watchdog_init(void) { } 5617 5618 #endif /* CONFIG_WQ_WATCHDOG */ 5619 5620 static void __init wq_numa_init(void) 5621 { 5622 cpumask_var_t *tbl; 5623 int node, cpu; 5624 5625 if (num_possible_nodes() <= 1) 5626 return; 5627 5628 if (wq_disable_numa) { 5629 pr_info("workqueue: NUMA affinity support disabled\n"); 5630 return; 5631 } 5632 5633 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL); 5634 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5635 5636 /* 5637 * We want masks of possible CPUs of each node which isn't readily 5638 * available. Build one from cpu_to_node() which should have been 5639 * fully initialized by now. 5640 */ 5641 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL); 5642 BUG_ON(!tbl); 5643 5644 for_each_node(node) 5645 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5646 node_online(node) ? node : NUMA_NO_NODE)); 5647 5648 for_each_possible_cpu(cpu) { 5649 node = cpu_to_node(cpu); 5650 if (WARN_ON(node == NUMA_NO_NODE)) { 5651 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5652 /* happens iff arch is bonkers, let's just proceed */ 5653 return; 5654 } 5655 cpumask_set_cpu(cpu, tbl[node]); 5656 } 5657 5658 wq_numa_possible_cpumask = tbl; 5659 wq_numa_enabled = true; 5660 } 5661 5662 /** 5663 * workqueue_init_early - early init for workqueue subsystem 5664 * 5665 * This is the first half of two-staged workqueue subsystem initialization 5666 * and invoked as soon as the bare basics - memory allocation, cpumasks and 5667 * idr are up. It sets up all the data structures and system workqueues 5668 * and allows early boot code to create workqueues and queue/cancel work 5669 * items. Actual work item execution starts only after kthreads can be 5670 * created and scheduled right before early initcalls. 5671 */ 5672 int __init workqueue_init_early(void) 5673 { 5674 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5675 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ; 5676 int i, cpu; 5677 5678 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5679 5680 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 5681 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags)); 5682 5683 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5684 5685 /* initialize CPU pools */ 5686 for_each_possible_cpu(cpu) { 5687 struct worker_pool *pool; 5688 5689 i = 0; 5690 for_each_cpu_worker_pool(pool, cpu) { 5691 BUG_ON(init_worker_pool(pool)); 5692 pool->cpu = cpu; 5693 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5694 pool->attrs->nice = std_nice[i++]; 5695 pool->node = cpu_to_node(cpu); 5696 5697 /* alloc pool ID */ 5698 mutex_lock(&wq_pool_mutex); 5699 BUG_ON(worker_pool_assign_id(pool)); 5700 mutex_unlock(&wq_pool_mutex); 5701 } 5702 } 5703 5704 /* create default unbound and ordered wq attrs */ 5705 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5706 struct workqueue_attrs *attrs; 5707 5708 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5709 attrs->nice = std_nice[i]; 5710 unbound_std_wq_attrs[i] = attrs; 5711 5712 /* 5713 * An ordered wq should have only one pwq as ordering is 5714 * guaranteed by max_active which is enforced by pwqs. 5715 * Turn off NUMA so that dfl_pwq is used for all nodes. 5716 */ 5717 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5718 attrs->nice = std_nice[i]; 5719 attrs->no_numa = true; 5720 ordered_wq_attrs[i] = attrs; 5721 } 5722 5723 system_wq = alloc_workqueue("events", 0, 0); 5724 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5725 system_long_wq = alloc_workqueue("events_long", 0, 0); 5726 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5727 WQ_UNBOUND_MAX_ACTIVE); 5728 system_freezable_wq = alloc_workqueue("events_freezable", 5729 WQ_FREEZABLE, 0); 5730 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5731 WQ_POWER_EFFICIENT, 0); 5732 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5733 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5734 0); 5735 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5736 !system_unbound_wq || !system_freezable_wq || 5737 !system_power_efficient_wq || 5738 !system_freezable_power_efficient_wq); 5739 5740 return 0; 5741 } 5742 5743 /** 5744 * workqueue_init - bring workqueue subsystem fully online 5745 * 5746 * This is the latter half of two-staged workqueue subsystem initialization 5747 * and invoked as soon as kthreads can be created and scheduled. 5748 * Workqueues have been created and work items queued on them, but there 5749 * are no kworkers executing the work items yet. Populate the worker pools 5750 * with the initial workers and enable future kworker creations. 5751 */ 5752 int __init workqueue_init(void) 5753 { 5754 struct workqueue_struct *wq; 5755 struct worker_pool *pool; 5756 int cpu, bkt; 5757 5758 /* 5759 * It'd be simpler to initialize NUMA in workqueue_init_early() but 5760 * CPU to node mapping may not be available that early on some 5761 * archs such as power and arm64. As per-cpu pools created 5762 * previously could be missing node hint and unbound pools NUMA 5763 * affinity, fix them up. 5764 * 5765 * Also, while iterating workqueues, create rescuers if requested. 5766 */ 5767 wq_numa_init(); 5768 5769 mutex_lock(&wq_pool_mutex); 5770 5771 for_each_possible_cpu(cpu) { 5772 for_each_cpu_worker_pool(pool, cpu) { 5773 pool->node = cpu_to_node(cpu); 5774 } 5775 } 5776 5777 list_for_each_entry(wq, &workqueues, list) { 5778 wq_update_unbound_numa(wq, smp_processor_id(), true); 5779 WARN(init_rescuer(wq), 5780 "workqueue: failed to create early rescuer for %s", 5781 wq->name); 5782 } 5783 5784 mutex_unlock(&wq_pool_mutex); 5785 5786 /* create the initial workers */ 5787 for_each_online_cpu(cpu) { 5788 for_each_cpu_worker_pool(pool, cpu) { 5789 pool->flags &= ~POOL_DISASSOCIATED; 5790 BUG_ON(!create_worker(pool)); 5791 } 5792 } 5793 5794 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 5795 BUG_ON(!create_worker(pool)); 5796 5797 wq_online = true; 5798 wq_watchdog_init(); 5799 5800 return 0; 5801 } 5802