xref: /openbmc/linux/kernel/workqueue.c (revision b68e31d0)
1 /*
2  * linux/kernel/workqueue.c
3  *
4  * Generic mechanism for defining kernel helper threads for running
5  * arbitrary tasks in process context.
6  *
7  * Started by Ingo Molnar, Copyright (C) 2002
8  *
9  * Derived from the taskqueue/keventd code by:
10  *
11  *   David Woodhouse <dwmw2@infradead.org>
12  *   Andrew Morton <andrewm@uow.edu.au>
13  *   Kai Petzke <wpp@marie.physik.tu-berlin.de>
14  *   Theodore Ts'o <tytso@mit.edu>
15  *
16  * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
17  */
18 
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 
32 /*
33  * The per-CPU workqueue (if single thread, we always use the first
34  * possible cpu).
35  *
36  * The sequence counters are for flush_scheduled_work().  It wants to wait
37  * until until all currently-scheduled works are completed, but it doesn't
38  * want to be livelocked by new, incoming ones.  So it waits until
39  * remove_sequence is >= the insert_sequence which pertained when
40  * flush_scheduled_work() was called.
41  */
42 struct cpu_workqueue_struct {
43 
44 	spinlock_t lock;
45 
46 	long remove_sequence;	/* Least-recently added (next to run) */
47 	long insert_sequence;	/* Next to add */
48 
49 	struct list_head worklist;
50 	wait_queue_head_t more_work;
51 	wait_queue_head_t work_done;
52 
53 	struct workqueue_struct *wq;
54 	struct task_struct *thread;
55 
56 	int run_depth;		/* Detect run_workqueue() recursion depth */
57 } ____cacheline_aligned;
58 
59 /*
60  * The externally visible workqueue abstraction is an array of
61  * per-CPU workqueues:
62  */
63 struct workqueue_struct {
64 	struct cpu_workqueue_struct *cpu_wq;
65 	const char *name;
66 	struct list_head list; 	/* Empty if single thread */
67 };
68 
69 /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
70    threads to each one as cpus come/go. */
71 static DEFINE_MUTEX(workqueue_mutex);
72 static LIST_HEAD(workqueues);
73 
74 static int singlethread_cpu;
75 
76 /* If it's single threaded, it isn't in the list of workqueues. */
77 static inline int is_single_threaded(struct workqueue_struct *wq)
78 {
79 	return list_empty(&wq->list);
80 }
81 
82 /* Preempt must be disabled. */
83 static void __queue_work(struct cpu_workqueue_struct *cwq,
84 			 struct work_struct *work)
85 {
86 	unsigned long flags;
87 
88 	spin_lock_irqsave(&cwq->lock, flags);
89 	work->wq_data = cwq;
90 	list_add_tail(&work->entry, &cwq->worklist);
91 	cwq->insert_sequence++;
92 	wake_up(&cwq->more_work);
93 	spin_unlock_irqrestore(&cwq->lock, flags);
94 }
95 
96 /**
97  * queue_work - queue work on a workqueue
98  * @wq: workqueue to use
99  * @work: work to queue
100  *
101  * Returns non-zero if it was successfully added.
102  *
103  * We queue the work to the CPU it was submitted, but there is no
104  * guarantee that it will be processed by that CPU.
105  */
106 int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
107 {
108 	int ret = 0, cpu = get_cpu();
109 
110 	if (!test_and_set_bit(0, &work->pending)) {
111 		if (unlikely(is_single_threaded(wq)))
112 			cpu = singlethread_cpu;
113 		BUG_ON(!list_empty(&work->entry));
114 		__queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
115 		ret = 1;
116 	}
117 	put_cpu();
118 	return ret;
119 }
120 EXPORT_SYMBOL_GPL(queue_work);
121 
122 static void delayed_work_timer_fn(unsigned long __data)
123 {
124 	struct work_struct *work = (struct work_struct *)__data;
125 	struct workqueue_struct *wq = work->wq_data;
126 	int cpu = smp_processor_id();
127 
128 	if (unlikely(is_single_threaded(wq)))
129 		cpu = singlethread_cpu;
130 
131 	__queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
132 }
133 
134 /**
135  * queue_delayed_work - queue work on a workqueue after delay
136  * @wq: workqueue to use
137  * @work: work to queue
138  * @delay: number of jiffies to wait before queueing
139  *
140  * Returns non-zero if it was successfully added.
141  */
142 int fastcall queue_delayed_work(struct workqueue_struct *wq,
143 			struct work_struct *work, unsigned long delay)
144 {
145 	int ret = 0;
146 	struct timer_list *timer = &work->timer;
147 
148 	if (!test_and_set_bit(0, &work->pending)) {
149 		BUG_ON(timer_pending(timer));
150 		BUG_ON(!list_empty(&work->entry));
151 
152 		/* This stores wq for the moment, for the timer_fn */
153 		work->wq_data = wq;
154 		timer->expires = jiffies + delay;
155 		timer->data = (unsigned long)work;
156 		timer->function = delayed_work_timer_fn;
157 		add_timer(timer);
158 		ret = 1;
159 	}
160 	return ret;
161 }
162 EXPORT_SYMBOL_GPL(queue_delayed_work);
163 
164 /**
165  * queue_delayed_work_on - queue work on specific CPU after delay
166  * @cpu: CPU number to execute work on
167  * @wq: workqueue to use
168  * @work: work to queue
169  * @delay: number of jiffies to wait before queueing
170  *
171  * Returns non-zero if it was successfully added.
172  */
173 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
174 			struct work_struct *work, unsigned long delay)
175 {
176 	int ret = 0;
177 	struct timer_list *timer = &work->timer;
178 
179 	if (!test_and_set_bit(0, &work->pending)) {
180 		BUG_ON(timer_pending(timer));
181 		BUG_ON(!list_empty(&work->entry));
182 
183 		/* This stores wq for the moment, for the timer_fn */
184 		work->wq_data = wq;
185 		timer->expires = jiffies + delay;
186 		timer->data = (unsigned long)work;
187 		timer->function = delayed_work_timer_fn;
188 		add_timer_on(timer, cpu);
189 		ret = 1;
190 	}
191 	return ret;
192 }
193 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
194 
195 static void run_workqueue(struct cpu_workqueue_struct *cwq)
196 {
197 	unsigned long flags;
198 
199 	/*
200 	 * Keep taking off work from the queue until
201 	 * done.
202 	 */
203 	spin_lock_irqsave(&cwq->lock, flags);
204 	cwq->run_depth++;
205 	if (cwq->run_depth > 3) {
206 		/* morton gets to eat his hat */
207 		printk("%s: recursion depth exceeded: %d\n",
208 			__FUNCTION__, cwq->run_depth);
209 		dump_stack();
210 	}
211 	while (!list_empty(&cwq->worklist)) {
212 		struct work_struct *work = list_entry(cwq->worklist.next,
213 						struct work_struct, entry);
214 		void (*f) (void *) = work->func;
215 		void *data = work->data;
216 
217 		list_del_init(cwq->worklist.next);
218 		spin_unlock_irqrestore(&cwq->lock, flags);
219 
220 		BUG_ON(work->wq_data != cwq);
221 		clear_bit(0, &work->pending);
222 		f(data);
223 
224 		spin_lock_irqsave(&cwq->lock, flags);
225 		cwq->remove_sequence++;
226 		wake_up(&cwq->work_done);
227 	}
228 	cwq->run_depth--;
229 	spin_unlock_irqrestore(&cwq->lock, flags);
230 }
231 
232 static int worker_thread(void *__cwq)
233 {
234 	struct cpu_workqueue_struct *cwq = __cwq;
235 	DECLARE_WAITQUEUE(wait, current);
236 	struct k_sigaction sa;
237 	sigset_t blocked;
238 
239 	current->flags |= PF_NOFREEZE;
240 
241 	set_user_nice(current, -5);
242 
243 	/* Block and flush all signals */
244 	sigfillset(&blocked);
245 	sigprocmask(SIG_BLOCK, &blocked, NULL);
246 	flush_signals(current);
247 
248 	/* SIG_IGN makes children autoreap: see do_notify_parent(). */
249 	sa.sa.sa_handler = SIG_IGN;
250 	sa.sa.sa_flags = 0;
251 	siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD));
252 	do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0);
253 
254 	set_current_state(TASK_INTERRUPTIBLE);
255 	while (!kthread_should_stop()) {
256 		add_wait_queue(&cwq->more_work, &wait);
257 		if (list_empty(&cwq->worklist))
258 			schedule();
259 		else
260 			__set_current_state(TASK_RUNNING);
261 		remove_wait_queue(&cwq->more_work, &wait);
262 
263 		if (!list_empty(&cwq->worklist))
264 			run_workqueue(cwq);
265 		set_current_state(TASK_INTERRUPTIBLE);
266 	}
267 	__set_current_state(TASK_RUNNING);
268 	return 0;
269 }
270 
271 static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
272 {
273 	if (cwq->thread == current) {
274 		/*
275 		 * Probably keventd trying to flush its own queue. So simply run
276 		 * it by hand rather than deadlocking.
277 		 */
278 		run_workqueue(cwq);
279 	} else {
280 		DEFINE_WAIT(wait);
281 		long sequence_needed;
282 
283 		spin_lock_irq(&cwq->lock);
284 		sequence_needed = cwq->insert_sequence;
285 
286 		while (sequence_needed - cwq->remove_sequence > 0) {
287 			prepare_to_wait(&cwq->work_done, &wait,
288 					TASK_UNINTERRUPTIBLE);
289 			spin_unlock_irq(&cwq->lock);
290 			schedule();
291 			spin_lock_irq(&cwq->lock);
292 		}
293 		finish_wait(&cwq->work_done, &wait);
294 		spin_unlock_irq(&cwq->lock);
295 	}
296 }
297 
298 /**
299  * flush_workqueue - ensure that any scheduled work has run to completion.
300  * @wq: workqueue to flush
301  *
302  * Forces execution of the workqueue and blocks until its completion.
303  * This is typically used in driver shutdown handlers.
304  *
305  * This function will sample each workqueue's current insert_sequence number and
306  * will sleep until the head sequence is greater than or equal to that.  This
307  * means that we sleep until all works which were queued on entry have been
308  * handled, but we are not livelocked by new incoming ones.
309  *
310  * This function used to run the workqueues itself.  Now we just wait for the
311  * helper threads to do it.
312  */
313 void fastcall flush_workqueue(struct workqueue_struct *wq)
314 {
315 	might_sleep();
316 
317 	if (is_single_threaded(wq)) {
318 		/* Always use first cpu's area. */
319 		flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, singlethread_cpu));
320 	} else {
321 		int cpu;
322 
323 		mutex_lock(&workqueue_mutex);
324 		for_each_online_cpu(cpu)
325 			flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
326 		mutex_unlock(&workqueue_mutex);
327 	}
328 }
329 EXPORT_SYMBOL_GPL(flush_workqueue);
330 
331 static struct task_struct *create_workqueue_thread(struct workqueue_struct *wq,
332 						   int cpu)
333 {
334 	struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
335 	struct task_struct *p;
336 
337 	spin_lock_init(&cwq->lock);
338 	cwq->wq = wq;
339 	cwq->thread = NULL;
340 	cwq->insert_sequence = 0;
341 	cwq->remove_sequence = 0;
342 	INIT_LIST_HEAD(&cwq->worklist);
343 	init_waitqueue_head(&cwq->more_work);
344 	init_waitqueue_head(&cwq->work_done);
345 
346 	if (is_single_threaded(wq))
347 		p = kthread_create(worker_thread, cwq, "%s", wq->name);
348 	else
349 		p = kthread_create(worker_thread, cwq, "%s/%d", wq->name, cpu);
350 	if (IS_ERR(p))
351 		return NULL;
352 	cwq->thread = p;
353 	return p;
354 }
355 
356 struct workqueue_struct *__create_workqueue(const char *name,
357 					    int singlethread)
358 {
359 	int cpu, destroy = 0;
360 	struct workqueue_struct *wq;
361 	struct task_struct *p;
362 
363 	wq = kzalloc(sizeof(*wq), GFP_KERNEL);
364 	if (!wq)
365 		return NULL;
366 
367 	wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
368 	if (!wq->cpu_wq) {
369 		kfree(wq);
370 		return NULL;
371 	}
372 
373 	wq->name = name;
374 	mutex_lock(&workqueue_mutex);
375 	if (singlethread) {
376 		INIT_LIST_HEAD(&wq->list);
377 		p = create_workqueue_thread(wq, singlethread_cpu);
378 		if (!p)
379 			destroy = 1;
380 		else
381 			wake_up_process(p);
382 	} else {
383 		list_add(&wq->list, &workqueues);
384 		for_each_online_cpu(cpu) {
385 			p = create_workqueue_thread(wq, cpu);
386 			if (p) {
387 				kthread_bind(p, cpu);
388 				wake_up_process(p);
389 			} else
390 				destroy = 1;
391 		}
392 	}
393 	mutex_unlock(&workqueue_mutex);
394 
395 	/*
396 	 * Was there any error during startup? If yes then clean up:
397 	 */
398 	if (destroy) {
399 		destroy_workqueue(wq);
400 		wq = NULL;
401 	}
402 	return wq;
403 }
404 EXPORT_SYMBOL_GPL(__create_workqueue);
405 
406 static void cleanup_workqueue_thread(struct workqueue_struct *wq, int cpu)
407 {
408 	struct cpu_workqueue_struct *cwq;
409 	unsigned long flags;
410 	struct task_struct *p;
411 
412 	cwq = per_cpu_ptr(wq->cpu_wq, cpu);
413 	spin_lock_irqsave(&cwq->lock, flags);
414 	p = cwq->thread;
415 	cwq->thread = NULL;
416 	spin_unlock_irqrestore(&cwq->lock, flags);
417 	if (p)
418 		kthread_stop(p);
419 }
420 
421 /**
422  * destroy_workqueue - safely terminate a workqueue
423  * @wq: target workqueue
424  *
425  * Safely destroy a workqueue. All work currently pending will be done first.
426  */
427 void destroy_workqueue(struct workqueue_struct *wq)
428 {
429 	int cpu;
430 
431 	flush_workqueue(wq);
432 
433 	/* We don't need the distraction of CPUs appearing and vanishing. */
434 	mutex_lock(&workqueue_mutex);
435 	if (is_single_threaded(wq))
436 		cleanup_workqueue_thread(wq, singlethread_cpu);
437 	else {
438 		for_each_online_cpu(cpu)
439 			cleanup_workqueue_thread(wq, cpu);
440 		list_del(&wq->list);
441 	}
442 	mutex_unlock(&workqueue_mutex);
443 	free_percpu(wq->cpu_wq);
444 	kfree(wq);
445 }
446 EXPORT_SYMBOL_GPL(destroy_workqueue);
447 
448 static struct workqueue_struct *keventd_wq;
449 
450 /**
451  * schedule_work - put work task in global workqueue
452  * @work: job to be done
453  *
454  * This puts a job in the kernel-global workqueue.
455  */
456 int fastcall schedule_work(struct work_struct *work)
457 {
458 	return queue_work(keventd_wq, work);
459 }
460 EXPORT_SYMBOL(schedule_work);
461 
462 /**
463  * schedule_delayed_work - put work task in global workqueue after delay
464  * @work: job to be done
465  * @delay: number of jiffies to wait
466  *
467  * After waiting for a given time this puts a job in the kernel-global
468  * workqueue.
469  */
470 int fastcall schedule_delayed_work(struct work_struct *work, unsigned long delay)
471 {
472 	return queue_delayed_work(keventd_wq, work, delay);
473 }
474 EXPORT_SYMBOL(schedule_delayed_work);
475 
476 /**
477  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
478  * @cpu: cpu to use
479  * @work: job to be done
480  * @delay: number of jiffies to wait
481  *
482  * After waiting for a given time this puts a job in the kernel-global
483  * workqueue on the specified CPU.
484  */
485 int schedule_delayed_work_on(int cpu,
486 			struct work_struct *work, unsigned long delay)
487 {
488 	return queue_delayed_work_on(cpu, keventd_wq, work, delay);
489 }
490 EXPORT_SYMBOL(schedule_delayed_work_on);
491 
492 /**
493  * schedule_on_each_cpu - call a function on each online CPU from keventd
494  * @func: the function to call
495  * @info: a pointer to pass to func()
496  *
497  * Returns zero on success.
498  * Returns -ve errno on failure.
499  *
500  * Appears to be racy against CPU hotplug.
501  *
502  * schedule_on_each_cpu() is very slow.
503  */
504 int schedule_on_each_cpu(void (*func)(void *info), void *info)
505 {
506 	int cpu;
507 	struct work_struct *works;
508 
509 	works = alloc_percpu(struct work_struct);
510 	if (!works)
511 		return -ENOMEM;
512 
513 	mutex_lock(&workqueue_mutex);
514 	for_each_online_cpu(cpu) {
515 		INIT_WORK(per_cpu_ptr(works, cpu), func, info);
516 		__queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu),
517 				per_cpu_ptr(works, cpu));
518 	}
519 	mutex_unlock(&workqueue_mutex);
520 	flush_workqueue(keventd_wq);
521 	free_percpu(works);
522 	return 0;
523 }
524 
525 void flush_scheduled_work(void)
526 {
527 	flush_workqueue(keventd_wq);
528 }
529 EXPORT_SYMBOL(flush_scheduled_work);
530 
531 /**
532  * cancel_rearming_delayed_workqueue - reliably kill off a delayed
533  *			work whose handler rearms the delayed work.
534  * @wq:   the controlling workqueue structure
535  * @work: the delayed work struct
536  */
537 void cancel_rearming_delayed_workqueue(struct workqueue_struct *wq,
538 				       struct work_struct *work)
539 {
540 	while (!cancel_delayed_work(work))
541 		flush_workqueue(wq);
542 }
543 EXPORT_SYMBOL(cancel_rearming_delayed_workqueue);
544 
545 /**
546  * cancel_rearming_delayed_work - reliably kill off a delayed keventd
547  *			work whose handler rearms the delayed work.
548  * @work: the delayed work struct
549  */
550 void cancel_rearming_delayed_work(struct work_struct *work)
551 {
552 	cancel_rearming_delayed_workqueue(keventd_wq, work);
553 }
554 EXPORT_SYMBOL(cancel_rearming_delayed_work);
555 
556 /**
557  * execute_in_process_context - reliably execute the routine with user context
558  * @fn:		the function to execute
559  * @data:	data to pass to the function
560  * @ew:		guaranteed storage for the execute work structure (must
561  *		be available when the work executes)
562  *
563  * Executes the function immediately if process context is available,
564  * otherwise schedules the function for delayed execution.
565  *
566  * Returns:	0 - function was executed
567  *		1 - function was scheduled for execution
568  */
569 int execute_in_process_context(void (*fn)(void *data), void *data,
570 			       struct execute_work *ew)
571 {
572 	if (!in_interrupt()) {
573 		fn(data);
574 		return 0;
575 	}
576 
577 	INIT_WORK(&ew->work, fn, data);
578 	schedule_work(&ew->work);
579 
580 	return 1;
581 }
582 EXPORT_SYMBOL_GPL(execute_in_process_context);
583 
584 int keventd_up(void)
585 {
586 	return keventd_wq != NULL;
587 }
588 
589 int current_is_keventd(void)
590 {
591 	struct cpu_workqueue_struct *cwq;
592 	int cpu = smp_processor_id();	/* preempt-safe: keventd is per-cpu */
593 	int ret = 0;
594 
595 	BUG_ON(!keventd_wq);
596 
597 	cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
598 	if (current == cwq->thread)
599 		ret = 1;
600 
601 	return ret;
602 
603 }
604 
605 #ifdef CONFIG_HOTPLUG_CPU
606 /* Take the work from this (downed) CPU. */
607 static void take_over_work(struct workqueue_struct *wq, unsigned int cpu)
608 {
609 	struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
610 	struct list_head list;
611 	struct work_struct *work;
612 
613 	spin_lock_irq(&cwq->lock);
614 	list_replace_init(&cwq->worklist, &list);
615 
616 	while (!list_empty(&list)) {
617 		printk("Taking work for %s\n", wq->name);
618 		work = list_entry(list.next,struct work_struct,entry);
619 		list_del(&work->entry);
620 		__queue_work(per_cpu_ptr(wq->cpu_wq, smp_processor_id()), work);
621 	}
622 	spin_unlock_irq(&cwq->lock);
623 }
624 
625 /* We're holding the cpucontrol mutex here */
626 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
627 				  unsigned long action,
628 				  void *hcpu)
629 {
630 	unsigned int hotcpu = (unsigned long)hcpu;
631 	struct workqueue_struct *wq;
632 
633 	switch (action) {
634 	case CPU_UP_PREPARE:
635 		mutex_lock(&workqueue_mutex);
636 		/* Create a new workqueue thread for it. */
637 		list_for_each_entry(wq, &workqueues, list) {
638 			if (!create_workqueue_thread(wq, hotcpu)) {
639 				printk("workqueue for %i failed\n", hotcpu);
640 				return NOTIFY_BAD;
641 			}
642 		}
643 		break;
644 
645 	case CPU_ONLINE:
646 		/* Kick off worker threads. */
647 		list_for_each_entry(wq, &workqueues, list) {
648 			struct cpu_workqueue_struct *cwq;
649 
650 			cwq = per_cpu_ptr(wq->cpu_wq, hotcpu);
651 			kthread_bind(cwq->thread, hotcpu);
652 			wake_up_process(cwq->thread);
653 		}
654 		mutex_unlock(&workqueue_mutex);
655 		break;
656 
657 	case CPU_UP_CANCELED:
658 		list_for_each_entry(wq, &workqueues, list) {
659 			if (!per_cpu_ptr(wq->cpu_wq, hotcpu)->thread)
660 				continue;
661 			/* Unbind so it can run. */
662 			kthread_bind(per_cpu_ptr(wq->cpu_wq, hotcpu)->thread,
663 				     any_online_cpu(cpu_online_map));
664 			cleanup_workqueue_thread(wq, hotcpu);
665 		}
666 		mutex_unlock(&workqueue_mutex);
667 		break;
668 
669 	case CPU_DOWN_PREPARE:
670 		mutex_lock(&workqueue_mutex);
671 		break;
672 
673 	case CPU_DOWN_FAILED:
674 		mutex_unlock(&workqueue_mutex);
675 		break;
676 
677 	case CPU_DEAD:
678 		list_for_each_entry(wq, &workqueues, list)
679 			cleanup_workqueue_thread(wq, hotcpu);
680 		list_for_each_entry(wq, &workqueues, list)
681 			take_over_work(wq, hotcpu);
682 		mutex_unlock(&workqueue_mutex);
683 		break;
684 	}
685 
686 	return NOTIFY_OK;
687 }
688 #endif
689 
690 void init_workqueues(void)
691 {
692 	singlethread_cpu = first_cpu(cpu_possible_map);
693 	hotcpu_notifier(workqueue_cpu_callback, 0);
694 	keventd_wq = create_workqueue("events");
695 	BUG_ON(!keventd_wq);
696 }
697 
698