1 /* 2 * linux/kernel/workqueue.c 3 * 4 * Generic mechanism for defining kernel helper threads for running 5 * arbitrary tasks in process context. 6 * 7 * Started by Ingo Molnar, Copyright (C) 2002 8 * 9 * Derived from the taskqueue/keventd code by: 10 * 11 * David Woodhouse <dwmw2@infradead.org> 12 * Andrew Morton 13 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 14 * Theodore Ts'o <tytso@mit.edu> 15 * 16 * Made to use alloc_percpu by Christoph Lameter. 17 */ 18 19 #include <linux/module.h> 20 #include <linux/kernel.h> 21 #include <linux/sched.h> 22 #include <linux/init.h> 23 #include <linux/signal.h> 24 #include <linux/completion.h> 25 #include <linux/workqueue.h> 26 #include <linux/slab.h> 27 #include <linux/cpu.h> 28 #include <linux/notifier.h> 29 #include <linux/kthread.h> 30 #include <linux/hardirq.h> 31 #include <linux/mempolicy.h> 32 #include <linux/freezer.h> 33 #include <linux/kallsyms.h> 34 #include <linux/debug_locks.h> 35 #include <linux/lockdep.h> 36 #include <trace/workqueue.h> 37 38 /* 39 * The per-CPU workqueue (if single thread, we always use the first 40 * possible cpu). 41 */ 42 struct cpu_workqueue_struct { 43 44 spinlock_t lock; 45 46 struct list_head worklist; 47 wait_queue_head_t more_work; 48 struct work_struct *current_work; 49 50 struct workqueue_struct *wq; 51 struct task_struct *thread; 52 } ____cacheline_aligned; 53 54 /* 55 * The externally visible workqueue abstraction is an array of 56 * per-CPU workqueues: 57 */ 58 struct workqueue_struct { 59 struct cpu_workqueue_struct *cpu_wq; 60 struct list_head list; 61 const char *name; 62 int singlethread; 63 int freezeable; /* Freeze threads during suspend */ 64 int rt; 65 #ifdef CONFIG_LOCKDEP 66 struct lockdep_map lockdep_map; 67 #endif 68 }; 69 70 /* Serializes the accesses to the list of workqueues. */ 71 static DEFINE_SPINLOCK(workqueue_lock); 72 static LIST_HEAD(workqueues); 73 74 static int singlethread_cpu __read_mostly; 75 static const struct cpumask *cpu_singlethread_map __read_mostly; 76 /* 77 * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD 78 * flushes cwq->worklist. This means that flush_workqueue/wait_on_work 79 * which comes in between can't use for_each_online_cpu(). We could 80 * use cpu_possible_map, the cpumask below is more a documentation 81 * than optimization. 82 */ 83 static cpumask_var_t cpu_populated_map __read_mostly; 84 85 /* If it's single threaded, it isn't in the list of workqueues. */ 86 static inline int is_wq_single_threaded(struct workqueue_struct *wq) 87 { 88 return wq->singlethread; 89 } 90 91 static const struct cpumask *wq_cpu_map(struct workqueue_struct *wq) 92 { 93 return is_wq_single_threaded(wq) 94 ? cpu_singlethread_map : cpu_populated_map; 95 } 96 97 static 98 struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu) 99 { 100 if (unlikely(is_wq_single_threaded(wq))) 101 cpu = singlethread_cpu; 102 return per_cpu_ptr(wq->cpu_wq, cpu); 103 } 104 105 /* 106 * Set the workqueue on which a work item is to be run 107 * - Must *only* be called if the pending flag is set 108 */ 109 static inline void set_wq_data(struct work_struct *work, 110 struct cpu_workqueue_struct *cwq) 111 { 112 unsigned long new; 113 114 BUG_ON(!work_pending(work)); 115 116 new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING); 117 new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work); 118 atomic_long_set(&work->data, new); 119 } 120 121 static inline 122 struct cpu_workqueue_struct *get_wq_data(struct work_struct *work) 123 { 124 return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK); 125 } 126 127 DEFINE_TRACE(workqueue_insertion); 128 129 static void insert_work(struct cpu_workqueue_struct *cwq, 130 struct work_struct *work, struct list_head *head) 131 { 132 trace_workqueue_insertion(cwq->thread, work); 133 134 set_wq_data(work, cwq); 135 /* 136 * Ensure that we get the right work->data if we see the 137 * result of list_add() below, see try_to_grab_pending(). 138 */ 139 smp_wmb(); 140 list_add_tail(&work->entry, head); 141 wake_up(&cwq->more_work); 142 } 143 144 static void __queue_work(struct cpu_workqueue_struct *cwq, 145 struct work_struct *work) 146 { 147 unsigned long flags; 148 149 spin_lock_irqsave(&cwq->lock, flags); 150 insert_work(cwq, work, &cwq->worklist); 151 spin_unlock_irqrestore(&cwq->lock, flags); 152 } 153 154 /** 155 * queue_work - queue work on a workqueue 156 * @wq: workqueue to use 157 * @work: work to queue 158 * 159 * Returns 0 if @work was already on a queue, non-zero otherwise. 160 * 161 * We queue the work to the CPU on which it was submitted, but if the CPU dies 162 * it can be processed by another CPU. 163 */ 164 int queue_work(struct workqueue_struct *wq, struct work_struct *work) 165 { 166 int ret; 167 168 ret = queue_work_on(get_cpu(), wq, work); 169 put_cpu(); 170 171 return ret; 172 } 173 EXPORT_SYMBOL_GPL(queue_work); 174 175 /** 176 * queue_work_on - queue work on specific cpu 177 * @cpu: CPU number to execute work on 178 * @wq: workqueue to use 179 * @work: work to queue 180 * 181 * Returns 0 if @work was already on a queue, non-zero otherwise. 182 * 183 * We queue the work to a specific CPU, the caller must ensure it 184 * can't go away. 185 */ 186 int 187 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work) 188 { 189 int ret = 0; 190 191 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) { 192 BUG_ON(!list_empty(&work->entry)); 193 __queue_work(wq_per_cpu(wq, cpu), work); 194 ret = 1; 195 } 196 return ret; 197 } 198 EXPORT_SYMBOL_GPL(queue_work_on); 199 200 static void delayed_work_timer_fn(unsigned long __data) 201 { 202 struct delayed_work *dwork = (struct delayed_work *)__data; 203 struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work); 204 struct workqueue_struct *wq = cwq->wq; 205 206 __queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work); 207 } 208 209 /** 210 * queue_delayed_work - queue work on a workqueue after delay 211 * @wq: workqueue to use 212 * @dwork: delayable work to queue 213 * @delay: number of jiffies to wait before queueing 214 * 215 * Returns 0 if @work was already on a queue, non-zero otherwise. 216 */ 217 int queue_delayed_work(struct workqueue_struct *wq, 218 struct delayed_work *dwork, unsigned long delay) 219 { 220 if (delay == 0) 221 return queue_work(wq, &dwork->work); 222 223 return queue_delayed_work_on(-1, wq, dwork, delay); 224 } 225 EXPORT_SYMBOL_GPL(queue_delayed_work); 226 227 /** 228 * queue_delayed_work_on - queue work on specific CPU after delay 229 * @cpu: CPU number to execute work on 230 * @wq: workqueue to use 231 * @dwork: work to queue 232 * @delay: number of jiffies to wait before queueing 233 * 234 * Returns 0 if @work was already on a queue, non-zero otherwise. 235 */ 236 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 237 struct delayed_work *dwork, unsigned long delay) 238 { 239 int ret = 0; 240 struct timer_list *timer = &dwork->timer; 241 struct work_struct *work = &dwork->work; 242 243 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) { 244 BUG_ON(timer_pending(timer)); 245 BUG_ON(!list_empty(&work->entry)); 246 247 timer_stats_timer_set_start_info(&dwork->timer); 248 249 /* This stores cwq for the moment, for the timer_fn */ 250 set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id())); 251 timer->expires = jiffies + delay; 252 timer->data = (unsigned long)dwork; 253 timer->function = delayed_work_timer_fn; 254 255 if (unlikely(cpu >= 0)) 256 add_timer_on(timer, cpu); 257 else 258 add_timer(timer); 259 ret = 1; 260 } 261 return ret; 262 } 263 EXPORT_SYMBOL_GPL(queue_delayed_work_on); 264 265 DEFINE_TRACE(workqueue_execution); 266 267 static void run_workqueue(struct cpu_workqueue_struct *cwq) 268 { 269 spin_lock_irq(&cwq->lock); 270 while (!list_empty(&cwq->worklist)) { 271 struct work_struct *work = list_entry(cwq->worklist.next, 272 struct work_struct, entry); 273 work_func_t f = work->func; 274 #ifdef CONFIG_LOCKDEP 275 /* 276 * It is permissible to free the struct work_struct 277 * from inside the function that is called from it, 278 * this we need to take into account for lockdep too. 279 * To avoid bogus "held lock freed" warnings as well 280 * as problems when looking into work->lockdep_map, 281 * make a copy and use that here. 282 */ 283 struct lockdep_map lockdep_map = work->lockdep_map; 284 #endif 285 trace_workqueue_execution(cwq->thread, work); 286 cwq->current_work = work; 287 list_del_init(cwq->worklist.next); 288 spin_unlock_irq(&cwq->lock); 289 290 BUG_ON(get_wq_data(work) != cwq); 291 work_clear_pending(work); 292 lock_map_acquire(&cwq->wq->lockdep_map); 293 lock_map_acquire(&lockdep_map); 294 f(work); 295 lock_map_release(&lockdep_map); 296 lock_map_release(&cwq->wq->lockdep_map); 297 298 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 299 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: " 300 "%s/0x%08x/%d\n", 301 current->comm, preempt_count(), 302 task_pid_nr(current)); 303 printk(KERN_ERR " last function: "); 304 print_symbol("%s\n", (unsigned long)f); 305 debug_show_held_locks(current); 306 dump_stack(); 307 } 308 309 spin_lock_irq(&cwq->lock); 310 cwq->current_work = NULL; 311 } 312 spin_unlock_irq(&cwq->lock); 313 } 314 315 static int worker_thread(void *__cwq) 316 { 317 struct cpu_workqueue_struct *cwq = __cwq; 318 DEFINE_WAIT(wait); 319 320 if (cwq->wq->freezeable) 321 set_freezable(); 322 323 set_user_nice(current, -5); 324 325 for (;;) { 326 prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE); 327 if (!freezing(current) && 328 !kthread_should_stop() && 329 list_empty(&cwq->worklist)) 330 schedule(); 331 finish_wait(&cwq->more_work, &wait); 332 333 try_to_freeze(); 334 335 if (kthread_should_stop()) 336 break; 337 338 run_workqueue(cwq); 339 } 340 341 return 0; 342 } 343 344 struct wq_barrier { 345 struct work_struct work; 346 struct completion done; 347 }; 348 349 static void wq_barrier_func(struct work_struct *work) 350 { 351 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 352 complete(&barr->done); 353 } 354 355 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq, 356 struct wq_barrier *barr, struct list_head *head) 357 { 358 INIT_WORK(&barr->work, wq_barrier_func); 359 __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work)); 360 361 init_completion(&barr->done); 362 363 insert_work(cwq, &barr->work, head); 364 } 365 366 static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq) 367 { 368 int active = 0; 369 struct wq_barrier barr; 370 371 WARN_ON(cwq->thread == current); 372 373 spin_lock_irq(&cwq->lock); 374 if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) { 375 insert_wq_barrier(cwq, &barr, &cwq->worklist); 376 active = 1; 377 } 378 spin_unlock_irq(&cwq->lock); 379 380 if (active) 381 wait_for_completion(&barr.done); 382 383 return active; 384 } 385 386 /** 387 * flush_workqueue - ensure that any scheduled work has run to completion. 388 * @wq: workqueue to flush 389 * 390 * Forces execution of the workqueue and blocks until its completion. 391 * This is typically used in driver shutdown handlers. 392 * 393 * We sleep until all works which were queued on entry have been handled, 394 * but we are not livelocked by new incoming ones. 395 * 396 * This function used to run the workqueues itself. Now we just wait for the 397 * helper threads to do it. 398 */ 399 void flush_workqueue(struct workqueue_struct *wq) 400 { 401 const struct cpumask *cpu_map = wq_cpu_map(wq); 402 int cpu; 403 404 might_sleep(); 405 lock_map_acquire(&wq->lockdep_map); 406 lock_map_release(&wq->lockdep_map); 407 for_each_cpu(cpu, cpu_map) 408 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu)); 409 } 410 EXPORT_SYMBOL_GPL(flush_workqueue); 411 412 /** 413 * flush_work - block until a work_struct's callback has terminated 414 * @work: the work which is to be flushed 415 * 416 * Returns false if @work has already terminated. 417 * 418 * It is expected that, prior to calling flush_work(), the caller has 419 * arranged for the work to not be requeued, otherwise it doesn't make 420 * sense to use this function. 421 */ 422 int flush_work(struct work_struct *work) 423 { 424 struct cpu_workqueue_struct *cwq; 425 struct list_head *prev; 426 struct wq_barrier barr; 427 428 might_sleep(); 429 cwq = get_wq_data(work); 430 if (!cwq) 431 return 0; 432 433 lock_map_acquire(&cwq->wq->lockdep_map); 434 lock_map_release(&cwq->wq->lockdep_map); 435 436 prev = NULL; 437 spin_lock_irq(&cwq->lock); 438 if (!list_empty(&work->entry)) { 439 /* 440 * See the comment near try_to_grab_pending()->smp_rmb(). 441 * If it was re-queued under us we are not going to wait. 442 */ 443 smp_rmb(); 444 if (unlikely(cwq != get_wq_data(work))) 445 goto out; 446 prev = &work->entry; 447 } else { 448 if (cwq->current_work != work) 449 goto out; 450 prev = &cwq->worklist; 451 } 452 insert_wq_barrier(cwq, &barr, prev->next); 453 out: 454 spin_unlock_irq(&cwq->lock); 455 if (!prev) 456 return 0; 457 458 wait_for_completion(&barr.done); 459 return 1; 460 } 461 EXPORT_SYMBOL_GPL(flush_work); 462 463 /* 464 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit, 465 * so this work can't be re-armed in any way. 466 */ 467 static int try_to_grab_pending(struct work_struct *work) 468 { 469 struct cpu_workqueue_struct *cwq; 470 int ret = -1; 471 472 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) 473 return 0; 474 475 /* 476 * The queueing is in progress, or it is already queued. Try to 477 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 478 */ 479 480 cwq = get_wq_data(work); 481 if (!cwq) 482 return ret; 483 484 spin_lock_irq(&cwq->lock); 485 if (!list_empty(&work->entry)) { 486 /* 487 * This work is queued, but perhaps we locked the wrong cwq. 488 * In that case we must see the new value after rmb(), see 489 * insert_work()->wmb(). 490 */ 491 smp_rmb(); 492 if (cwq == get_wq_data(work)) { 493 list_del_init(&work->entry); 494 ret = 1; 495 } 496 } 497 spin_unlock_irq(&cwq->lock); 498 499 return ret; 500 } 501 502 static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq, 503 struct work_struct *work) 504 { 505 struct wq_barrier barr; 506 int running = 0; 507 508 spin_lock_irq(&cwq->lock); 509 if (unlikely(cwq->current_work == work)) { 510 insert_wq_barrier(cwq, &barr, cwq->worklist.next); 511 running = 1; 512 } 513 spin_unlock_irq(&cwq->lock); 514 515 if (unlikely(running)) 516 wait_for_completion(&barr.done); 517 } 518 519 static void wait_on_work(struct work_struct *work) 520 { 521 struct cpu_workqueue_struct *cwq; 522 struct workqueue_struct *wq; 523 const struct cpumask *cpu_map; 524 int cpu; 525 526 might_sleep(); 527 528 lock_map_acquire(&work->lockdep_map); 529 lock_map_release(&work->lockdep_map); 530 531 cwq = get_wq_data(work); 532 if (!cwq) 533 return; 534 535 wq = cwq->wq; 536 cpu_map = wq_cpu_map(wq); 537 538 for_each_cpu(cpu, cpu_map) 539 wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work); 540 } 541 542 static int __cancel_work_timer(struct work_struct *work, 543 struct timer_list* timer) 544 { 545 int ret; 546 547 do { 548 ret = (timer && likely(del_timer(timer))); 549 if (!ret) 550 ret = try_to_grab_pending(work); 551 wait_on_work(work); 552 } while (unlikely(ret < 0)); 553 554 work_clear_pending(work); 555 return ret; 556 } 557 558 /** 559 * cancel_work_sync - block until a work_struct's callback has terminated 560 * @work: the work which is to be flushed 561 * 562 * Returns true if @work was pending. 563 * 564 * cancel_work_sync() will cancel the work if it is queued. If the work's 565 * callback appears to be running, cancel_work_sync() will block until it 566 * has completed. 567 * 568 * It is possible to use this function if the work re-queues itself. It can 569 * cancel the work even if it migrates to another workqueue, however in that 570 * case it only guarantees that work->func() has completed on the last queued 571 * workqueue. 572 * 573 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not 574 * pending, otherwise it goes into a busy-wait loop until the timer expires. 575 * 576 * The caller must ensure that workqueue_struct on which this work was last 577 * queued can't be destroyed before this function returns. 578 */ 579 int cancel_work_sync(struct work_struct *work) 580 { 581 return __cancel_work_timer(work, NULL); 582 } 583 EXPORT_SYMBOL_GPL(cancel_work_sync); 584 585 /** 586 * cancel_delayed_work_sync - reliably kill off a delayed work. 587 * @dwork: the delayed work struct 588 * 589 * Returns true if @dwork was pending. 590 * 591 * It is possible to use this function if @dwork rearms itself via queue_work() 592 * or queue_delayed_work(). See also the comment for cancel_work_sync(). 593 */ 594 int cancel_delayed_work_sync(struct delayed_work *dwork) 595 { 596 return __cancel_work_timer(&dwork->work, &dwork->timer); 597 } 598 EXPORT_SYMBOL(cancel_delayed_work_sync); 599 600 static struct workqueue_struct *keventd_wq __read_mostly; 601 602 /** 603 * schedule_work - put work task in global workqueue 604 * @work: job to be done 605 * 606 * This puts a job in the kernel-global workqueue. 607 */ 608 int schedule_work(struct work_struct *work) 609 { 610 return queue_work(keventd_wq, work); 611 } 612 EXPORT_SYMBOL(schedule_work); 613 614 /* 615 * schedule_work_on - put work task on a specific cpu 616 * @cpu: cpu to put the work task on 617 * @work: job to be done 618 * 619 * This puts a job on a specific cpu 620 */ 621 int schedule_work_on(int cpu, struct work_struct *work) 622 { 623 return queue_work_on(cpu, keventd_wq, work); 624 } 625 EXPORT_SYMBOL(schedule_work_on); 626 627 /** 628 * schedule_delayed_work - put work task in global workqueue after delay 629 * @dwork: job to be done 630 * @delay: number of jiffies to wait or 0 for immediate execution 631 * 632 * After waiting for a given time this puts a job in the kernel-global 633 * workqueue. 634 */ 635 int schedule_delayed_work(struct delayed_work *dwork, 636 unsigned long delay) 637 { 638 return queue_delayed_work(keventd_wq, dwork, delay); 639 } 640 EXPORT_SYMBOL(schedule_delayed_work); 641 642 /** 643 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay 644 * @cpu: cpu to use 645 * @dwork: job to be done 646 * @delay: number of jiffies to wait 647 * 648 * After waiting for a given time this puts a job in the kernel-global 649 * workqueue on the specified CPU. 650 */ 651 int schedule_delayed_work_on(int cpu, 652 struct delayed_work *dwork, unsigned long delay) 653 { 654 return queue_delayed_work_on(cpu, keventd_wq, dwork, delay); 655 } 656 EXPORT_SYMBOL(schedule_delayed_work_on); 657 658 /** 659 * schedule_on_each_cpu - call a function on each online CPU from keventd 660 * @func: the function to call 661 * 662 * Returns zero on success. 663 * Returns -ve errno on failure. 664 * 665 * schedule_on_each_cpu() is very slow. 666 */ 667 int schedule_on_each_cpu(work_func_t func) 668 { 669 int cpu; 670 struct work_struct *works; 671 672 works = alloc_percpu(struct work_struct); 673 if (!works) 674 return -ENOMEM; 675 676 get_online_cpus(); 677 for_each_online_cpu(cpu) { 678 struct work_struct *work = per_cpu_ptr(works, cpu); 679 680 INIT_WORK(work, func); 681 schedule_work_on(cpu, work); 682 } 683 for_each_online_cpu(cpu) 684 flush_work(per_cpu_ptr(works, cpu)); 685 put_online_cpus(); 686 free_percpu(works); 687 return 0; 688 } 689 690 void flush_scheduled_work(void) 691 { 692 flush_workqueue(keventd_wq); 693 } 694 EXPORT_SYMBOL(flush_scheduled_work); 695 696 /** 697 * execute_in_process_context - reliably execute the routine with user context 698 * @fn: the function to execute 699 * @ew: guaranteed storage for the execute work structure (must 700 * be available when the work executes) 701 * 702 * Executes the function immediately if process context is available, 703 * otherwise schedules the function for delayed execution. 704 * 705 * Returns: 0 - function was executed 706 * 1 - function was scheduled for execution 707 */ 708 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 709 { 710 if (!in_interrupt()) { 711 fn(&ew->work); 712 return 0; 713 } 714 715 INIT_WORK(&ew->work, fn); 716 schedule_work(&ew->work); 717 718 return 1; 719 } 720 EXPORT_SYMBOL_GPL(execute_in_process_context); 721 722 int keventd_up(void) 723 { 724 return keventd_wq != NULL; 725 } 726 727 int current_is_keventd(void) 728 { 729 struct cpu_workqueue_struct *cwq; 730 int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */ 731 int ret = 0; 732 733 BUG_ON(!keventd_wq); 734 735 cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu); 736 if (current == cwq->thread) 737 ret = 1; 738 739 return ret; 740 741 } 742 743 static struct cpu_workqueue_struct * 744 init_cpu_workqueue(struct workqueue_struct *wq, int cpu) 745 { 746 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu); 747 748 cwq->wq = wq; 749 spin_lock_init(&cwq->lock); 750 INIT_LIST_HEAD(&cwq->worklist); 751 init_waitqueue_head(&cwq->more_work); 752 753 return cwq; 754 } 755 756 DEFINE_TRACE(workqueue_creation); 757 758 static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu) 759 { 760 struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 }; 761 struct workqueue_struct *wq = cwq->wq; 762 const char *fmt = is_wq_single_threaded(wq) ? "%s" : "%s/%d"; 763 struct task_struct *p; 764 765 p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu); 766 /* 767 * Nobody can add the work_struct to this cwq, 768 * if (caller is __create_workqueue) 769 * nobody should see this wq 770 * else // caller is CPU_UP_PREPARE 771 * cpu is not on cpu_online_map 772 * so we can abort safely. 773 */ 774 if (IS_ERR(p)) 775 return PTR_ERR(p); 776 if (cwq->wq->rt) 777 sched_setscheduler_nocheck(p, SCHED_FIFO, ¶m); 778 cwq->thread = p; 779 780 trace_workqueue_creation(cwq->thread, cpu); 781 782 return 0; 783 } 784 785 static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu) 786 { 787 struct task_struct *p = cwq->thread; 788 789 if (p != NULL) { 790 if (cpu >= 0) 791 kthread_bind(p, cpu); 792 wake_up_process(p); 793 } 794 } 795 796 struct workqueue_struct *__create_workqueue_key(const char *name, 797 int singlethread, 798 int freezeable, 799 int rt, 800 struct lock_class_key *key, 801 const char *lock_name) 802 { 803 struct workqueue_struct *wq; 804 struct cpu_workqueue_struct *cwq; 805 int err = 0, cpu; 806 807 wq = kzalloc(sizeof(*wq), GFP_KERNEL); 808 if (!wq) 809 return NULL; 810 811 wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct); 812 if (!wq->cpu_wq) { 813 kfree(wq); 814 return NULL; 815 } 816 817 wq->name = name; 818 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 819 wq->singlethread = singlethread; 820 wq->freezeable = freezeable; 821 wq->rt = rt; 822 INIT_LIST_HEAD(&wq->list); 823 824 if (singlethread) { 825 cwq = init_cpu_workqueue(wq, singlethread_cpu); 826 err = create_workqueue_thread(cwq, singlethread_cpu); 827 start_workqueue_thread(cwq, -1); 828 } else { 829 cpu_maps_update_begin(); 830 /* 831 * We must place this wq on list even if the code below fails. 832 * cpu_down(cpu) can remove cpu from cpu_populated_map before 833 * destroy_workqueue() takes the lock, in that case we leak 834 * cwq[cpu]->thread. 835 */ 836 spin_lock(&workqueue_lock); 837 list_add(&wq->list, &workqueues); 838 spin_unlock(&workqueue_lock); 839 /* 840 * We must initialize cwqs for each possible cpu even if we 841 * are going to call destroy_workqueue() finally. Otherwise 842 * cpu_up() can hit the uninitialized cwq once we drop the 843 * lock. 844 */ 845 for_each_possible_cpu(cpu) { 846 cwq = init_cpu_workqueue(wq, cpu); 847 if (err || !cpu_online(cpu)) 848 continue; 849 err = create_workqueue_thread(cwq, cpu); 850 start_workqueue_thread(cwq, cpu); 851 } 852 cpu_maps_update_done(); 853 } 854 855 if (err) { 856 destroy_workqueue(wq); 857 wq = NULL; 858 } 859 return wq; 860 } 861 EXPORT_SYMBOL_GPL(__create_workqueue_key); 862 863 DEFINE_TRACE(workqueue_destruction); 864 865 static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq) 866 { 867 /* 868 * Our caller is either destroy_workqueue() or CPU_POST_DEAD, 869 * cpu_add_remove_lock protects cwq->thread. 870 */ 871 if (cwq->thread == NULL) 872 return; 873 874 lock_map_acquire(&cwq->wq->lockdep_map); 875 lock_map_release(&cwq->wq->lockdep_map); 876 877 flush_cpu_workqueue(cwq); 878 /* 879 * If the caller is CPU_POST_DEAD and cwq->worklist was not empty, 880 * a concurrent flush_workqueue() can insert a barrier after us. 881 * However, in that case run_workqueue() won't return and check 882 * kthread_should_stop() until it flushes all work_struct's. 883 * When ->worklist becomes empty it is safe to exit because no 884 * more work_structs can be queued on this cwq: flush_workqueue 885 * checks list_empty(), and a "normal" queue_work() can't use 886 * a dead CPU. 887 */ 888 trace_workqueue_destruction(cwq->thread); 889 kthread_stop(cwq->thread); 890 cwq->thread = NULL; 891 } 892 893 /** 894 * destroy_workqueue - safely terminate a workqueue 895 * @wq: target workqueue 896 * 897 * Safely destroy a workqueue. All work currently pending will be done first. 898 */ 899 void destroy_workqueue(struct workqueue_struct *wq) 900 { 901 const struct cpumask *cpu_map = wq_cpu_map(wq); 902 int cpu; 903 904 cpu_maps_update_begin(); 905 spin_lock(&workqueue_lock); 906 list_del(&wq->list); 907 spin_unlock(&workqueue_lock); 908 909 for_each_cpu(cpu, cpu_map) 910 cleanup_workqueue_thread(per_cpu_ptr(wq->cpu_wq, cpu)); 911 cpu_maps_update_done(); 912 913 free_percpu(wq->cpu_wq); 914 kfree(wq); 915 } 916 EXPORT_SYMBOL_GPL(destroy_workqueue); 917 918 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb, 919 unsigned long action, 920 void *hcpu) 921 { 922 unsigned int cpu = (unsigned long)hcpu; 923 struct cpu_workqueue_struct *cwq; 924 struct workqueue_struct *wq; 925 int ret = NOTIFY_OK; 926 927 action &= ~CPU_TASKS_FROZEN; 928 929 switch (action) { 930 case CPU_UP_PREPARE: 931 cpumask_set_cpu(cpu, cpu_populated_map); 932 } 933 undo: 934 list_for_each_entry(wq, &workqueues, list) { 935 cwq = per_cpu_ptr(wq->cpu_wq, cpu); 936 937 switch (action) { 938 case CPU_UP_PREPARE: 939 if (!create_workqueue_thread(cwq, cpu)) 940 break; 941 printk(KERN_ERR "workqueue [%s] for %i failed\n", 942 wq->name, cpu); 943 action = CPU_UP_CANCELED; 944 ret = NOTIFY_BAD; 945 goto undo; 946 947 case CPU_ONLINE: 948 start_workqueue_thread(cwq, cpu); 949 break; 950 951 case CPU_UP_CANCELED: 952 start_workqueue_thread(cwq, -1); 953 case CPU_POST_DEAD: 954 cleanup_workqueue_thread(cwq); 955 break; 956 } 957 } 958 959 switch (action) { 960 case CPU_UP_CANCELED: 961 case CPU_POST_DEAD: 962 cpumask_clear_cpu(cpu, cpu_populated_map); 963 } 964 965 return ret; 966 } 967 968 #ifdef CONFIG_SMP 969 970 struct work_for_cpu { 971 struct completion completion; 972 long (*fn)(void *); 973 void *arg; 974 long ret; 975 }; 976 977 static int do_work_for_cpu(void *_wfc) 978 { 979 struct work_for_cpu *wfc = _wfc; 980 wfc->ret = wfc->fn(wfc->arg); 981 complete(&wfc->completion); 982 return 0; 983 } 984 985 /** 986 * work_on_cpu - run a function in user context on a particular cpu 987 * @cpu: the cpu to run on 988 * @fn: the function to run 989 * @arg: the function arg 990 * 991 * This will return the value @fn returns. 992 * It is up to the caller to ensure that the cpu doesn't go offline. 993 * The caller must not hold any locks which would prevent @fn from completing. 994 */ 995 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg) 996 { 997 struct task_struct *sub_thread; 998 struct work_for_cpu wfc = { 999 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion), 1000 .fn = fn, 1001 .arg = arg, 1002 }; 1003 1004 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu"); 1005 if (IS_ERR(sub_thread)) 1006 return PTR_ERR(sub_thread); 1007 kthread_bind(sub_thread, cpu); 1008 wake_up_process(sub_thread); 1009 wait_for_completion(&wfc.completion); 1010 return wfc.ret; 1011 } 1012 EXPORT_SYMBOL_GPL(work_on_cpu); 1013 #endif /* CONFIG_SMP */ 1014 1015 void __init init_workqueues(void) 1016 { 1017 alloc_cpumask_var(&cpu_populated_map, GFP_KERNEL); 1018 1019 cpumask_copy(cpu_populated_map, cpu_online_mask); 1020 singlethread_cpu = cpumask_first(cpu_possible_mask); 1021 cpu_singlethread_map = cpumask_of(singlethread_cpu); 1022 hotcpu_notifier(workqueue_cpu_callback, 0); 1023 keventd_wq = create_workqueue("events"); 1024 BUG_ON(!keventd_wq); 1025 } 1026