xref: /openbmc/linux/kernel/workqueue.c (revision b04b4f78)
1 /*
2  * linux/kernel/workqueue.c
3  *
4  * Generic mechanism for defining kernel helper threads for running
5  * arbitrary tasks in process context.
6  *
7  * Started by Ingo Molnar, Copyright (C) 2002
8  *
9  * Derived from the taskqueue/keventd code by:
10  *
11  *   David Woodhouse <dwmw2@infradead.org>
12  *   Andrew Morton
13  *   Kai Petzke <wpp@marie.physik.tu-berlin.de>
14  *   Theodore Ts'o <tytso@mit.edu>
15  *
16  * Made to use alloc_percpu by Christoph Lameter.
17  */
18 
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
35 #include <linux/lockdep.h>
36 #include <trace/workqueue.h>
37 
38 /*
39  * The per-CPU workqueue (if single thread, we always use the first
40  * possible cpu).
41  */
42 struct cpu_workqueue_struct {
43 
44 	spinlock_t lock;
45 
46 	struct list_head worklist;
47 	wait_queue_head_t more_work;
48 	struct work_struct *current_work;
49 
50 	struct workqueue_struct *wq;
51 	struct task_struct *thread;
52 } ____cacheline_aligned;
53 
54 /*
55  * The externally visible workqueue abstraction is an array of
56  * per-CPU workqueues:
57  */
58 struct workqueue_struct {
59 	struct cpu_workqueue_struct *cpu_wq;
60 	struct list_head list;
61 	const char *name;
62 	int singlethread;
63 	int freezeable;		/* Freeze threads during suspend */
64 	int rt;
65 #ifdef CONFIG_LOCKDEP
66 	struct lockdep_map lockdep_map;
67 #endif
68 };
69 
70 /* Serializes the accesses to the list of workqueues. */
71 static DEFINE_SPINLOCK(workqueue_lock);
72 static LIST_HEAD(workqueues);
73 
74 static int singlethread_cpu __read_mostly;
75 static const struct cpumask *cpu_singlethread_map __read_mostly;
76 /*
77  * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD
78  * flushes cwq->worklist. This means that flush_workqueue/wait_on_work
79  * which comes in between can't use for_each_online_cpu(). We could
80  * use cpu_possible_map, the cpumask below is more a documentation
81  * than optimization.
82  */
83 static cpumask_var_t cpu_populated_map __read_mostly;
84 
85 /* If it's single threaded, it isn't in the list of workqueues. */
86 static inline int is_wq_single_threaded(struct workqueue_struct *wq)
87 {
88 	return wq->singlethread;
89 }
90 
91 static const struct cpumask *wq_cpu_map(struct workqueue_struct *wq)
92 {
93 	return is_wq_single_threaded(wq)
94 		? cpu_singlethread_map : cpu_populated_map;
95 }
96 
97 static
98 struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu)
99 {
100 	if (unlikely(is_wq_single_threaded(wq)))
101 		cpu = singlethread_cpu;
102 	return per_cpu_ptr(wq->cpu_wq, cpu);
103 }
104 
105 /*
106  * Set the workqueue on which a work item is to be run
107  * - Must *only* be called if the pending flag is set
108  */
109 static inline void set_wq_data(struct work_struct *work,
110 				struct cpu_workqueue_struct *cwq)
111 {
112 	unsigned long new;
113 
114 	BUG_ON(!work_pending(work));
115 
116 	new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING);
117 	new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
118 	atomic_long_set(&work->data, new);
119 }
120 
121 static inline
122 struct cpu_workqueue_struct *get_wq_data(struct work_struct *work)
123 {
124 	return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
125 }
126 
127 DEFINE_TRACE(workqueue_insertion);
128 
129 static void insert_work(struct cpu_workqueue_struct *cwq,
130 			struct work_struct *work, struct list_head *head)
131 {
132 	trace_workqueue_insertion(cwq->thread, work);
133 
134 	set_wq_data(work, cwq);
135 	/*
136 	 * Ensure that we get the right work->data if we see the
137 	 * result of list_add() below, see try_to_grab_pending().
138 	 */
139 	smp_wmb();
140 	list_add_tail(&work->entry, head);
141 	wake_up(&cwq->more_work);
142 }
143 
144 static void __queue_work(struct cpu_workqueue_struct *cwq,
145 			 struct work_struct *work)
146 {
147 	unsigned long flags;
148 
149 	spin_lock_irqsave(&cwq->lock, flags);
150 	insert_work(cwq, work, &cwq->worklist);
151 	spin_unlock_irqrestore(&cwq->lock, flags);
152 }
153 
154 /**
155  * queue_work - queue work on a workqueue
156  * @wq: workqueue to use
157  * @work: work to queue
158  *
159  * Returns 0 if @work was already on a queue, non-zero otherwise.
160  *
161  * We queue the work to the CPU on which it was submitted, but if the CPU dies
162  * it can be processed by another CPU.
163  */
164 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
165 {
166 	int ret;
167 
168 	ret = queue_work_on(get_cpu(), wq, work);
169 	put_cpu();
170 
171 	return ret;
172 }
173 EXPORT_SYMBOL_GPL(queue_work);
174 
175 /**
176  * queue_work_on - queue work on specific cpu
177  * @cpu: CPU number to execute work on
178  * @wq: workqueue to use
179  * @work: work to queue
180  *
181  * Returns 0 if @work was already on a queue, non-zero otherwise.
182  *
183  * We queue the work to a specific CPU, the caller must ensure it
184  * can't go away.
185  */
186 int
187 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
188 {
189 	int ret = 0;
190 
191 	if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
192 		BUG_ON(!list_empty(&work->entry));
193 		__queue_work(wq_per_cpu(wq, cpu), work);
194 		ret = 1;
195 	}
196 	return ret;
197 }
198 EXPORT_SYMBOL_GPL(queue_work_on);
199 
200 static void delayed_work_timer_fn(unsigned long __data)
201 {
202 	struct delayed_work *dwork = (struct delayed_work *)__data;
203 	struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
204 	struct workqueue_struct *wq = cwq->wq;
205 
206 	__queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work);
207 }
208 
209 /**
210  * queue_delayed_work - queue work on a workqueue after delay
211  * @wq: workqueue to use
212  * @dwork: delayable work to queue
213  * @delay: number of jiffies to wait before queueing
214  *
215  * Returns 0 if @work was already on a queue, non-zero otherwise.
216  */
217 int queue_delayed_work(struct workqueue_struct *wq,
218 			struct delayed_work *dwork, unsigned long delay)
219 {
220 	if (delay == 0)
221 		return queue_work(wq, &dwork->work);
222 
223 	return queue_delayed_work_on(-1, wq, dwork, delay);
224 }
225 EXPORT_SYMBOL_GPL(queue_delayed_work);
226 
227 /**
228  * queue_delayed_work_on - queue work on specific CPU after delay
229  * @cpu: CPU number to execute work on
230  * @wq: workqueue to use
231  * @dwork: work to queue
232  * @delay: number of jiffies to wait before queueing
233  *
234  * Returns 0 if @work was already on a queue, non-zero otherwise.
235  */
236 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
237 			struct delayed_work *dwork, unsigned long delay)
238 {
239 	int ret = 0;
240 	struct timer_list *timer = &dwork->timer;
241 	struct work_struct *work = &dwork->work;
242 
243 	if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
244 		BUG_ON(timer_pending(timer));
245 		BUG_ON(!list_empty(&work->entry));
246 
247 		timer_stats_timer_set_start_info(&dwork->timer);
248 
249 		/* This stores cwq for the moment, for the timer_fn */
250 		set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id()));
251 		timer->expires = jiffies + delay;
252 		timer->data = (unsigned long)dwork;
253 		timer->function = delayed_work_timer_fn;
254 
255 		if (unlikely(cpu >= 0))
256 			add_timer_on(timer, cpu);
257 		else
258 			add_timer(timer);
259 		ret = 1;
260 	}
261 	return ret;
262 }
263 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
264 
265 DEFINE_TRACE(workqueue_execution);
266 
267 static void run_workqueue(struct cpu_workqueue_struct *cwq)
268 {
269 	spin_lock_irq(&cwq->lock);
270 	while (!list_empty(&cwq->worklist)) {
271 		struct work_struct *work = list_entry(cwq->worklist.next,
272 						struct work_struct, entry);
273 		work_func_t f = work->func;
274 #ifdef CONFIG_LOCKDEP
275 		/*
276 		 * It is permissible to free the struct work_struct
277 		 * from inside the function that is called from it,
278 		 * this we need to take into account for lockdep too.
279 		 * To avoid bogus "held lock freed" warnings as well
280 		 * as problems when looking into work->lockdep_map,
281 		 * make a copy and use that here.
282 		 */
283 		struct lockdep_map lockdep_map = work->lockdep_map;
284 #endif
285 		trace_workqueue_execution(cwq->thread, work);
286 		cwq->current_work = work;
287 		list_del_init(cwq->worklist.next);
288 		spin_unlock_irq(&cwq->lock);
289 
290 		BUG_ON(get_wq_data(work) != cwq);
291 		work_clear_pending(work);
292 		lock_map_acquire(&cwq->wq->lockdep_map);
293 		lock_map_acquire(&lockdep_map);
294 		f(work);
295 		lock_map_release(&lockdep_map);
296 		lock_map_release(&cwq->wq->lockdep_map);
297 
298 		if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
299 			printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
300 					"%s/0x%08x/%d\n",
301 					current->comm, preempt_count(),
302 				       	task_pid_nr(current));
303 			printk(KERN_ERR "    last function: ");
304 			print_symbol("%s\n", (unsigned long)f);
305 			debug_show_held_locks(current);
306 			dump_stack();
307 		}
308 
309 		spin_lock_irq(&cwq->lock);
310 		cwq->current_work = NULL;
311 	}
312 	spin_unlock_irq(&cwq->lock);
313 }
314 
315 static int worker_thread(void *__cwq)
316 {
317 	struct cpu_workqueue_struct *cwq = __cwq;
318 	DEFINE_WAIT(wait);
319 
320 	if (cwq->wq->freezeable)
321 		set_freezable();
322 
323 	set_user_nice(current, -5);
324 
325 	for (;;) {
326 		prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
327 		if (!freezing(current) &&
328 		    !kthread_should_stop() &&
329 		    list_empty(&cwq->worklist))
330 			schedule();
331 		finish_wait(&cwq->more_work, &wait);
332 
333 		try_to_freeze();
334 
335 		if (kthread_should_stop())
336 			break;
337 
338 		run_workqueue(cwq);
339 	}
340 
341 	return 0;
342 }
343 
344 struct wq_barrier {
345 	struct work_struct	work;
346 	struct completion	done;
347 };
348 
349 static void wq_barrier_func(struct work_struct *work)
350 {
351 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
352 	complete(&barr->done);
353 }
354 
355 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
356 			struct wq_barrier *barr, struct list_head *head)
357 {
358 	INIT_WORK(&barr->work, wq_barrier_func);
359 	__set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
360 
361 	init_completion(&barr->done);
362 
363 	insert_work(cwq, &barr->work, head);
364 }
365 
366 static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
367 {
368 	int active = 0;
369 	struct wq_barrier barr;
370 
371 	WARN_ON(cwq->thread == current);
372 
373 	spin_lock_irq(&cwq->lock);
374 	if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) {
375 		insert_wq_barrier(cwq, &barr, &cwq->worklist);
376 		active = 1;
377 	}
378 	spin_unlock_irq(&cwq->lock);
379 
380 	if (active)
381 		wait_for_completion(&barr.done);
382 
383 	return active;
384 }
385 
386 /**
387  * flush_workqueue - ensure that any scheduled work has run to completion.
388  * @wq: workqueue to flush
389  *
390  * Forces execution of the workqueue and blocks until its completion.
391  * This is typically used in driver shutdown handlers.
392  *
393  * We sleep until all works which were queued on entry have been handled,
394  * but we are not livelocked by new incoming ones.
395  *
396  * This function used to run the workqueues itself.  Now we just wait for the
397  * helper threads to do it.
398  */
399 void flush_workqueue(struct workqueue_struct *wq)
400 {
401 	const struct cpumask *cpu_map = wq_cpu_map(wq);
402 	int cpu;
403 
404 	might_sleep();
405 	lock_map_acquire(&wq->lockdep_map);
406 	lock_map_release(&wq->lockdep_map);
407 	for_each_cpu(cpu, cpu_map)
408 		flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
409 }
410 EXPORT_SYMBOL_GPL(flush_workqueue);
411 
412 /**
413  * flush_work - block until a work_struct's callback has terminated
414  * @work: the work which is to be flushed
415  *
416  * Returns false if @work has already terminated.
417  *
418  * It is expected that, prior to calling flush_work(), the caller has
419  * arranged for the work to not be requeued, otherwise it doesn't make
420  * sense to use this function.
421  */
422 int flush_work(struct work_struct *work)
423 {
424 	struct cpu_workqueue_struct *cwq;
425 	struct list_head *prev;
426 	struct wq_barrier barr;
427 
428 	might_sleep();
429 	cwq = get_wq_data(work);
430 	if (!cwq)
431 		return 0;
432 
433 	lock_map_acquire(&cwq->wq->lockdep_map);
434 	lock_map_release(&cwq->wq->lockdep_map);
435 
436 	prev = NULL;
437 	spin_lock_irq(&cwq->lock);
438 	if (!list_empty(&work->entry)) {
439 		/*
440 		 * See the comment near try_to_grab_pending()->smp_rmb().
441 		 * If it was re-queued under us we are not going to wait.
442 		 */
443 		smp_rmb();
444 		if (unlikely(cwq != get_wq_data(work)))
445 			goto out;
446 		prev = &work->entry;
447 	} else {
448 		if (cwq->current_work != work)
449 			goto out;
450 		prev = &cwq->worklist;
451 	}
452 	insert_wq_barrier(cwq, &barr, prev->next);
453 out:
454 	spin_unlock_irq(&cwq->lock);
455 	if (!prev)
456 		return 0;
457 
458 	wait_for_completion(&barr.done);
459 	return 1;
460 }
461 EXPORT_SYMBOL_GPL(flush_work);
462 
463 /*
464  * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
465  * so this work can't be re-armed in any way.
466  */
467 static int try_to_grab_pending(struct work_struct *work)
468 {
469 	struct cpu_workqueue_struct *cwq;
470 	int ret = -1;
471 
472 	if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work)))
473 		return 0;
474 
475 	/*
476 	 * The queueing is in progress, or it is already queued. Try to
477 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
478 	 */
479 
480 	cwq = get_wq_data(work);
481 	if (!cwq)
482 		return ret;
483 
484 	spin_lock_irq(&cwq->lock);
485 	if (!list_empty(&work->entry)) {
486 		/*
487 		 * This work is queued, but perhaps we locked the wrong cwq.
488 		 * In that case we must see the new value after rmb(), see
489 		 * insert_work()->wmb().
490 		 */
491 		smp_rmb();
492 		if (cwq == get_wq_data(work)) {
493 			list_del_init(&work->entry);
494 			ret = 1;
495 		}
496 	}
497 	spin_unlock_irq(&cwq->lock);
498 
499 	return ret;
500 }
501 
502 static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq,
503 				struct work_struct *work)
504 {
505 	struct wq_barrier barr;
506 	int running = 0;
507 
508 	spin_lock_irq(&cwq->lock);
509 	if (unlikely(cwq->current_work == work)) {
510 		insert_wq_barrier(cwq, &barr, cwq->worklist.next);
511 		running = 1;
512 	}
513 	spin_unlock_irq(&cwq->lock);
514 
515 	if (unlikely(running))
516 		wait_for_completion(&barr.done);
517 }
518 
519 static void wait_on_work(struct work_struct *work)
520 {
521 	struct cpu_workqueue_struct *cwq;
522 	struct workqueue_struct *wq;
523 	const struct cpumask *cpu_map;
524 	int cpu;
525 
526 	might_sleep();
527 
528 	lock_map_acquire(&work->lockdep_map);
529 	lock_map_release(&work->lockdep_map);
530 
531 	cwq = get_wq_data(work);
532 	if (!cwq)
533 		return;
534 
535 	wq = cwq->wq;
536 	cpu_map = wq_cpu_map(wq);
537 
538 	for_each_cpu(cpu, cpu_map)
539 		wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
540 }
541 
542 static int __cancel_work_timer(struct work_struct *work,
543 				struct timer_list* timer)
544 {
545 	int ret;
546 
547 	do {
548 		ret = (timer && likely(del_timer(timer)));
549 		if (!ret)
550 			ret = try_to_grab_pending(work);
551 		wait_on_work(work);
552 	} while (unlikely(ret < 0));
553 
554 	work_clear_pending(work);
555 	return ret;
556 }
557 
558 /**
559  * cancel_work_sync - block until a work_struct's callback has terminated
560  * @work: the work which is to be flushed
561  *
562  * Returns true if @work was pending.
563  *
564  * cancel_work_sync() will cancel the work if it is queued. If the work's
565  * callback appears to be running, cancel_work_sync() will block until it
566  * has completed.
567  *
568  * It is possible to use this function if the work re-queues itself. It can
569  * cancel the work even if it migrates to another workqueue, however in that
570  * case it only guarantees that work->func() has completed on the last queued
571  * workqueue.
572  *
573  * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
574  * pending, otherwise it goes into a busy-wait loop until the timer expires.
575  *
576  * The caller must ensure that workqueue_struct on which this work was last
577  * queued can't be destroyed before this function returns.
578  */
579 int cancel_work_sync(struct work_struct *work)
580 {
581 	return __cancel_work_timer(work, NULL);
582 }
583 EXPORT_SYMBOL_GPL(cancel_work_sync);
584 
585 /**
586  * cancel_delayed_work_sync - reliably kill off a delayed work.
587  * @dwork: the delayed work struct
588  *
589  * Returns true if @dwork was pending.
590  *
591  * It is possible to use this function if @dwork rearms itself via queue_work()
592  * or queue_delayed_work(). See also the comment for cancel_work_sync().
593  */
594 int cancel_delayed_work_sync(struct delayed_work *dwork)
595 {
596 	return __cancel_work_timer(&dwork->work, &dwork->timer);
597 }
598 EXPORT_SYMBOL(cancel_delayed_work_sync);
599 
600 static struct workqueue_struct *keventd_wq __read_mostly;
601 
602 /**
603  * schedule_work - put work task in global workqueue
604  * @work: job to be done
605  *
606  * This puts a job in the kernel-global workqueue.
607  */
608 int schedule_work(struct work_struct *work)
609 {
610 	return queue_work(keventd_wq, work);
611 }
612 EXPORT_SYMBOL(schedule_work);
613 
614 /*
615  * schedule_work_on - put work task on a specific cpu
616  * @cpu: cpu to put the work task on
617  * @work: job to be done
618  *
619  * This puts a job on a specific cpu
620  */
621 int schedule_work_on(int cpu, struct work_struct *work)
622 {
623 	return queue_work_on(cpu, keventd_wq, work);
624 }
625 EXPORT_SYMBOL(schedule_work_on);
626 
627 /**
628  * schedule_delayed_work - put work task in global workqueue after delay
629  * @dwork: job to be done
630  * @delay: number of jiffies to wait or 0 for immediate execution
631  *
632  * After waiting for a given time this puts a job in the kernel-global
633  * workqueue.
634  */
635 int schedule_delayed_work(struct delayed_work *dwork,
636 					unsigned long delay)
637 {
638 	return queue_delayed_work(keventd_wq, dwork, delay);
639 }
640 EXPORT_SYMBOL(schedule_delayed_work);
641 
642 /**
643  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
644  * @cpu: cpu to use
645  * @dwork: job to be done
646  * @delay: number of jiffies to wait
647  *
648  * After waiting for a given time this puts a job in the kernel-global
649  * workqueue on the specified CPU.
650  */
651 int schedule_delayed_work_on(int cpu,
652 			struct delayed_work *dwork, unsigned long delay)
653 {
654 	return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
655 }
656 EXPORT_SYMBOL(schedule_delayed_work_on);
657 
658 /**
659  * schedule_on_each_cpu - call a function on each online CPU from keventd
660  * @func: the function to call
661  *
662  * Returns zero on success.
663  * Returns -ve errno on failure.
664  *
665  * schedule_on_each_cpu() is very slow.
666  */
667 int schedule_on_each_cpu(work_func_t func)
668 {
669 	int cpu;
670 	struct work_struct *works;
671 
672 	works = alloc_percpu(struct work_struct);
673 	if (!works)
674 		return -ENOMEM;
675 
676 	get_online_cpus();
677 	for_each_online_cpu(cpu) {
678 		struct work_struct *work = per_cpu_ptr(works, cpu);
679 
680 		INIT_WORK(work, func);
681 		schedule_work_on(cpu, work);
682 	}
683 	for_each_online_cpu(cpu)
684 		flush_work(per_cpu_ptr(works, cpu));
685 	put_online_cpus();
686 	free_percpu(works);
687 	return 0;
688 }
689 
690 void flush_scheduled_work(void)
691 {
692 	flush_workqueue(keventd_wq);
693 }
694 EXPORT_SYMBOL(flush_scheduled_work);
695 
696 /**
697  * execute_in_process_context - reliably execute the routine with user context
698  * @fn:		the function to execute
699  * @ew:		guaranteed storage for the execute work structure (must
700  *		be available when the work executes)
701  *
702  * Executes the function immediately if process context is available,
703  * otherwise schedules the function for delayed execution.
704  *
705  * Returns:	0 - function was executed
706  *		1 - function was scheduled for execution
707  */
708 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
709 {
710 	if (!in_interrupt()) {
711 		fn(&ew->work);
712 		return 0;
713 	}
714 
715 	INIT_WORK(&ew->work, fn);
716 	schedule_work(&ew->work);
717 
718 	return 1;
719 }
720 EXPORT_SYMBOL_GPL(execute_in_process_context);
721 
722 int keventd_up(void)
723 {
724 	return keventd_wq != NULL;
725 }
726 
727 int current_is_keventd(void)
728 {
729 	struct cpu_workqueue_struct *cwq;
730 	int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */
731 	int ret = 0;
732 
733 	BUG_ON(!keventd_wq);
734 
735 	cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
736 	if (current == cwq->thread)
737 		ret = 1;
738 
739 	return ret;
740 
741 }
742 
743 static struct cpu_workqueue_struct *
744 init_cpu_workqueue(struct workqueue_struct *wq, int cpu)
745 {
746 	struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
747 
748 	cwq->wq = wq;
749 	spin_lock_init(&cwq->lock);
750 	INIT_LIST_HEAD(&cwq->worklist);
751 	init_waitqueue_head(&cwq->more_work);
752 
753 	return cwq;
754 }
755 
756 DEFINE_TRACE(workqueue_creation);
757 
758 static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
759 {
760 	struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
761 	struct workqueue_struct *wq = cwq->wq;
762 	const char *fmt = is_wq_single_threaded(wq) ? "%s" : "%s/%d";
763 	struct task_struct *p;
764 
765 	p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);
766 	/*
767 	 * Nobody can add the work_struct to this cwq,
768 	 *	if (caller is __create_workqueue)
769 	 *		nobody should see this wq
770 	 *	else // caller is CPU_UP_PREPARE
771 	 *		cpu is not on cpu_online_map
772 	 * so we can abort safely.
773 	 */
774 	if (IS_ERR(p))
775 		return PTR_ERR(p);
776 	if (cwq->wq->rt)
777 		sched_setscheduler_nocheck(p, SCHED_FIFO, &param);
778 	cwq->thread = p;
779 
780 	trace_workqueue_creation(cwq->thread, cpu);
781 
782 	return 0;
783 }
784 
785 static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
786 {
787 	struct task_struct *p = cwq->thread;
788 
789 	if (p != NULL) {
790 		if (cpu >= 0)
791 			kthread_bind(p, cpu);
792 		wake_up_process(p);
793 	}
794 }
795 
796 struct workqueue_struct *__create_workqueue_key(const char *name,
797 						int singlethread,
798 						int freezeable,
799 						int rt,
800 						struct lock_class_key *key,
801 						const char *lock_name)
802 {
803 	struct workqueue_struct *wq;
804 	struct cpu_workqueue_struct *cwq;
805 	int err = 0, cpu;
806 
807 	wq = kzalloc(sizeof(*wq), GFP_KERNEL);
808 	if (!wq)
809 		return NULL;
810 
811 	wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
812 	if (!wq->cpu_wq) {
813 		kfree(wq);
814 		return NULL;
815 	}
816 
817 	wq->name = name;
818 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
819 	wq->singlethread = singlethread;
820 	wq->freezeable = freezeable;
821 	wq->rt = rt;
822 	INIT_LIST_HEAD(&wq->list);
823 
824 	if (singlethread) {
825 		cwq = init_cpu_workqueue(wq, singlethread_cpu);
826 		err = create_workqueue_thread(cwq, singlethread_cpu);
827 		start_workqueue_thread(cwq, -1);
828 	} else {
829 		cpu_maps_update_begin();
830 		/*
831 		 * We must place this wq on list even if the code below fails.
832 		 * cpu_down(cpu) can remove cpu from cpu_populated_map before
833 		 * destroy_workqueue() takes the lock, in that case we leak
834 		 * cwq[cpu]->thread.
835 		 */
836 		spin_lock(&workqueue_lock);
837 		list_add(&wq->list, &workqueues);
838 		spin_unlock(&workqueue_lock);
839 		/*
840 		 * We must initialize cwqs for each possible cpu even if we
841 		 * are going to call destroy_workqueue() finally. Otherwise
842 		 * cpu_up() can hit the uninitialized cwq once we drop the
843 		 * lock.
844 		 */
845 		for_each_possible_cpu(cpu) {
846 			cwq = init_cpu_workqueue(wq, cpu);
847 			if (err || !cpu_online(cpu))
848 				continue;
849 			err = create_workqueue_thread(cwq, cpu);
850 			start_workqueue_thread(cwq, cpu);
851 		}
852 		cpu_maps_update_done();
853 	}
854 
855 	if (err) {
856 		destroy_workqueue(wq);
857 		wq = NULL;
858 	}
859 	return wq;
860 }
861 EXPORT_SYMBOL_GPL(__create_workqueue_key);
862 
863 DEFINE_TRACE(workqueue_destruction);
864 
865 static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq)
866 {
867 	/*
868 	 * Our caller is either destroy_workqueue() or CPU_POST_DEAD,
869 	 * cpu_add_remove_lock protects cwq->thread.
870 	 */
871 	if (cwq->thread == NULL)
872 		return;
873 
874 	lock_map_acquire(&cwq->wq->lockdep_map);
875 	lock_map_release(&cwq->wq->lockdep_map);
876 
877 	flush_cpu_workqueue(cwq);
878 	/*
879 	 * If the caller is CPU_POST_DEAD and cwq->worklist was not empty,
880 	 * a concurrent flush_workqueue() can insert a barrier after us.
881 	 * However, in that case run_workqueue() won't return and check
882 	 * kthread_should_stop() until it flushes all work_struct's.
883 	 * When ->worklist becomes empty it is safe to exit because no
884 	 * more work_structs can be queued on this cwq: flush_workqueue
885 	 * checks list_empty(), and a "normal" queue_work() can't use
886 	 * a dead CPU.
887 	 */
888 	trace_workqueue_destruction(cwq->thread);
889 	kthread_stop(cwq->thread);
890 	cwq->thread = NULL;
891 }
892 
893 /**
894  * destroy_workqueue - safely terminate a workqueue
895  * @wq: target workqueue
896  *
897  * Safely destroy a workqueue. All work currently pending will be done first.
898  */
899 void destroy_workqueue(struct workqueue_struct *wq)
900 {
901 	const struct cpumask *cpu_map = wq_cpu_map(wq);
902 	int cpu;
903 
904 	cpu_maps_update_begin();
905 	spin_lock(&workqueue_lock);
906 	list_del(&wq->list);
907 	spin_unlock(&workqueue_lock);
908 
909 	for_each_cpu(cpu, cpu_map)
910 		cleanup_workqueue_thread(per_cpu_ptr(wq->cpu_wq, cpu));
911  	cpu_maps_update_done();
912 
913 	free_percpu(wq->cpu_wq);
914 	kfree(wq);
915 }
916 EXPORT_SYMBOL_GPL(destroy_workqueue);
917 
918 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
919 						unsigned long action,
920 						void *hcpu)
921 {
922 	unsigned int cpu = (unsigned long)hcpu;
923 	struct cpu_workqueue_struct *cwq;
924 	struct workqueue_struct *wq;
925 	int ret = NOTIFY_OK;
926 
927 	action &= ~CPU_TASKS_FROZEN;
928 
929 	switch (action) {
930 	case CPU_UP_PREPARE:
931 		cpumask_set_cpu(cpu, cpu_populated_map);
932 	}
933 undo:
934 	list_for_each_entry(wq, &workqueues, list) {
935 		cwq = per_cpu_ptr(wq->cpu_wq, cpu);
936 
937 		switch (action) {
938 		case CPU_UP_PREPARE:
939 			if (!create_workqueue_thread(cwq, cpu))
940 				break;
941 			printk(KERN_ERR "workqueue [%s] for %i failed\n",
942 				wq->name, cpu);
943 			action = CPU_UP_CANCELED;
944 			ret = NOTIFY_BAD;
945 			goto undo;
946 
947 		case CPU_ONLINE:
948 			start_workqueue_thread(cwq, cpu);
949 			break;
950 
951 		case CPU_UP_CANCELED:
952 			start_workqueue_thread(cwq, -1);
953 		case CPU_POST_DEAD:
954 			cleanup_workqueue_thread(cwq);
955 			break;
956 		}
957 	}
958 
959 	switch (action) {
960 	case CPU_UP_CANCELED:
961 	case CPU_POST_DEAD:
962 		cpumask_clear_cpu(cpu, cpu_populated_map);
963 	}
964 
965 	return ret;
966 }
967 
968 #ifdef CONFIG_SMP
969 
970 struct work_for_cpu {
971 	struct completion completion;
972 	long (*fn)(void *);
973 	void *arg;
974 	long ret;
975 };
976 
977 static int do_work_for_cpu(void *_wfc)
978 {
979 	struct work_for_cpu *wfc = _wfc;
980 	wfc->ret = wfc->fn(wfc->arg);
981 	complete(&wfc->completion);
982 	return 0;
983 }
984 
985 /**
986  * work_on_cpu - run a function in user context on a particular cpu
987  * @cpu: the cpu to run on
988  * @fn: the function to run
989  * @arg: the function arg
990  *
991  * This will return the value @fn returns.
992  * It is up to the caller to ensure that the cpu doesn't go offline.
993  * The caller must not hold any locks which would prevent @fn from completing.
994  */
995 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
996 {
997 	struct task_struct *sub_thread;
998 	struct work_for_cpu wfc = {
999 		.completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
1000 		.fn = fn,
1001 		.arg = arg,
1002 	};
1003 
1004 	sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
1005 	if (IS_ERR(sub_thread))
1006 		return PTR_ERR(sub_thread);
1007 	kthread_bind(sub_thread, cpu);
1008 	wake_up_process(sub_thread);
1009 	wait_for_completion(&wfc.completion);
1010 	return wfc.ret;
1011 }
1012 EXPORT_SYMBOL_GPL(work_on_cpu);
1013 #endif /* CONFIG_SMP */
1014 
1015 void __init init_workqueues(void)
1016 {
1017 	alloc_cpumask_var(&cpu_populated_map, GFP_KERNEL);
1018 
1019 	cpumask_copy(cpu_populated_map, cpu_online_mask);
1020 	singlethread_cpu = cpumask_first(cpu_possible_mask);
1021 	cpu_singlethread_map = cpumask_of(singlethread_cpu);
1022 	hotcpu_notifier(workqueue_cpu_callback, 0);
1023 	keventd_wq = create_workqueue("events");
1024 	BUG_ON(!keventd_wq);
1025 }
1026