1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 5 * Copyright (C) 2002 Ingo Molnar 6 * 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <dwmw2@infradead.org> 9 * Andrew Morton 10 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 11 * Theodore Ts'o <tytso@mit.edu> 12 * 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 17 * 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 24 * 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 27 28 #include <linux/export.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 32 #include <linux/signal.h> 33 #include <linux/completion.h> 34 #include <linux/workqueue.h> 35 #include <linux/slab.h> 36 #include <linux/cpu.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/hardirq.h> 40 #include <linux/mempolicy.h> 41 #include <linux/freezer.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 #include <linux/sched/isolation.h> 52 #include <linux/sched/debug.h> 53 #include <linux/nmi.h> 54 #include <linux/kvm_para.h> 55 #include <linux/delay.h> 56 57 #include "workqueue_internal.h" 58 59 enum { 60 /* 61 * worker_pool flags 62 * 63 * A bound pool is either associated or disassociated with its CPU. 64 * While associated (!DISASSOCIATED), all workers are bound to the 65 * CPU and none has %WORKER_UNBOUND set and concurrency management 66 * is in effect. 67 * 68 * While DISASSOCIATED, the cpu may be offline and all workers have 69 * %WORKER_UNBOUND set and concurrency management disabled, and may 70 * be executing on any CPU. The pool behaves as an unbound one. 71 * 72 * Note that DISASSOCIATED should be flipped only while holding 73 * wq_pool_attach_mutex to avoid changing binding state while 74 * worker_attach_to_pool() is in progress. 75 */ 76 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */ 77 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 78 79 /* worker flags */ 80 WORKER_DIE = 1 << 1, /* die die die */ 81 WORKER_IDLE = 1 << 2, /* is idle */ 82 WORKER_PREP = 1 << 3, /* preparing to run works */ 83 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 84 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 85 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 86 87 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 88 WORKER_UNBOUND | WORKER_REBOUND, 89 90 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 91 92 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 93 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 94 95 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 96 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 97 98 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 99 /* call for help after 10ms 100 (min two ticks) */ 101 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 102 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 103 104 /* 105 * Rescue workers are used only on emergencies and shared by 106 * all cpus. Give MIN_NICE. 107 */ 108 RESCUER_NICE_LEVEL = MIN_NICE, 109 HIGHPRI_NICE_LEVEL = MIN_NICE, 110 111 WQ_NAME_LEN = 24, 112 }; 113 114 /* 115 * Structure fields follow one of the following exclusion rules. 116 * 117 * I: Modifiable by initialization/destruction paths and read-only for 118 * everyone else. 119 * 120 * P: Preemption protected. Disabling preemption is enough and should 121 * only be modified and accessed from the local cpu. 122 * 123 * L: pool->lock protected. Access with pool->lock held. 124 * 125 * K: Only modified by worker while holding pool->lock. Can be safely read by 126 * self, while holding pool->lock or from IRQ context if %current is the 127 * kworker. 128 * 129 * S: Only modified by worker self. 130 * 131 * A: wq_pool_attach_mutex protected. 132 * 133 * PL: wq_pool_mutex protected. 134 * 135 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 136 * 137 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 138 * 139 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 140 * RCU for reads. 141 * 142 * WQ: wq->mutex protected. 143 * 144 * WR: wq->mutex protected for writes. RCU protected for reads. 145 * 146 * MD: wq_mayday_lock protected. 147 * 148 * WD: Used internally by the watchdog. 149 */ 150 151 /* struct worker is defined in workqueue_internal.h */ 152 153 struct worker_pool { 154 raw_spinlock_t lock; /* the pool lock */ 155 int cpu; /* I: the associated cpu */ 156 int node; /* I: the associated node ID */ 157 int id; /* I: pool ID */ 158 unsigned int flags; /* L: flags */ 159 160 unsigned long watchdog_ts; /* L: watchdog timestamp */ 161 bool cpu_stall; /* WD: stalled cpu bound pool */ 162 163 /* 164 * The counter is incremented in a process context on the associated CPU 165 * w/ preemption disabled, and decremented or reset in the same context 166 * but w/ pool->lock held. The readers grab pool->lock and are 167 * guaranteed to see if the counter reached zero. 168 */ 169 int nr_running; 170 171 struct list_head worklist; /* L: list of pending works */ 172 173 int nr_workers; /* L: total number of workers */ 174 int nr_idle; /* L: currently idle workers */ 175 176 struct list_head idle_list; /* L: list of idle workers */ 177 struct timer_list idle_timer; /* L: worker idle timeout */ 178 struct work_struct idle_cull_work; /* L: worker idle cleanup */ 179 180 struct timer_list mayday_timer; /* L: SOS timer for workers */ 181 182 /* a workers is either on busy_hash or idle_list, or the manager */ 183 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 184 /* L: hash of busy workers */ 185 186 struct worker *manager; /* L: purely informational */ 187 struct list_head workers; /* A: attached workers */ 188 struct list_head dying_workers; /* A: workers about to die */ 189 struct completion *detach_completion; /* all workers detached */ 190 191 struct ida worker_ida; /* worker IDs for task name */ 192 193 struct workqueue_attrs *attrs; /* I: worker attributes */ 194 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 195 int refcnt; /* PL: refcnt for unbound pools */ 196 197 /* 198 * Destruction of pool is RCU protected to allow dereferences 199 * from get_work_pool(). 200 */ 201 struct rcu_head rcu; 202 }; 203 204 /* 205 * Per-pool_workqueue statistics. These can be monitored using 206 * tools/workqueue/wq_monitor.py. 207 */ 208 enum pool_workqueue_stats { 209 PWQ_STAT_STARTED, /* work items started execution */ 210 PWQ_STAT_COMPLETED, /* work items completed execution */ 211 PWQ_STAT_CPU_TIME, /* total CPU time consumed */ 212 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */ 213 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */ 214 PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */ 215 PWQ_STAT_MAYDAY, /* maydays to rescuer */ 216 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */ 217 218 PWQ_NR_STATS, 219 }; 220 221 /* 222 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 223 * of work_struct->data are used for flags and the remaining high bits 224 * point to the pwq; thus, pwqs need to be aligned at two's power of the 225 * number of flag bits. 226 */ 227 struct pool_workqueue { 228 struct worker_pool *pool; /* I: the associated pool */ 229 struct workqueue_struct *wq; /* I: the owning workqueue */ 230 int work_color; /* L: current color */ 231 int flush_color; /* L: flushing color */ 232 int refcnt; /* L: reference count */ 233 int nr_in_flight[WORK_NR_COLORS]; 234 /* L: nr of in_flight works */ 235 236 /* 237 * nr_active management and WORK_STRUCT_INACTIVE: 238 * 239 * When pwq->nr_active >= max_active, new work item is queued to 240 * pwq->inactive_works instead of pool->worklist and marked with 241 * WORK_STRUCT_INACTIVE. 242 * 243 * All work items marked with WORK_STRUCT_INACTIVE do not participate 244 * in pwq->nr_active and all work items in pwq->inactive_works are 245 * marked with WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE 246 * work items are in pwq->inactive_works. Some of them are ready to 247 * run in pool->worklist or worker->scheduled. Those work itmes are 248 * only struct wq_barrier which is used for flush_work() and should 249 * not participate in pwq->nr_active. For non-barrier work item, it 250 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works. 251 */ 252 int nr_active; /* L: nr of active works */ 253 int max_active; /* L: max active works */ 254 struct list_head inactive_works; /* L: inactive works */ 255 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 256 struct list_head mayday_node; /* MD: node on wq->maydays */ 257 258 u64 stats[PWQ_NR_STATS]; 259 260 /* 261 * Release of unbound pwq is punted to a kthread_worker. See put_pwq() 262 * and pwq_release_workfn() for details. pool_workqueue itself is also 263 * RCU protected so that the first pwq can be determined without 264 * grabbing wq->mutex. 265 */ 266 struct kthread_work release_work; 267 struct rcu_head rcu; 268 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 269 270 /* 271 * Structure used to wait for workqueue flush. 272 */ 273 struct wq_flusher { 274 struct list_head list; /* WQ: list of flushers */ 275 int flush_color; /* WQ: flush color waiting for */ 276 struct completion done; /* flush completion */ 277 }; 278 279 struct wq_device; 280 281 /* 282 * The externally visible workqueue. It relays the issued work items to 283 * the appropriate worker_pool through its pool_workqueues. 284 */ 285 struct workqueue_struct { 286 struct list_head pwqs; /* WR: all pwqs of this wq */ 287 struct list_head list; /* PR: list of all workqueues */ 288 289 struct mutex mutex; /* protects this wq */ 290 int work_color; /* WQ: current work color */ 291 int flush_color; /* WQ: current flush color */ 292 atomic_t nr_pwqs_to_flush; /* flush in progress */ 293 struct wq_flusher *first_flusher; /* WQ: first flusher */ 294 struct list_head flusher_queue; /* WQ: flush waiters */ 295 struct list_head flusher_overflow; /* WQ: flush overflow list */ 296 297 struct list_head maydays; /* MD: pwqs requesting rescue */ 298 struct worker *rescuer; /* MD: rescue worker */ 299 300 int nr_drainers; /* WQ: drain in progress */ 301 int saved_max_active; /* WQ: saved pwq max_active */ 302 303 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 304 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 305 306 #ifdef CONFIG_SYSFS 307 struct wq_device *wq_dev; /* I: for sysfs interface */ 308 #endif 309 #ifdef CONFIG_LOCKDEP 310 char *lock_name; 311 struct lock_class_key key; 312 struct lockdep_map lockdep_map; 313 #endif 314 char name[WQ_NAME_LEN]; /* I: workqueue name */ 315 316 /* 317 * Destruction of workqueue_struct is RCU protected to allow walking 318 * the workqueues list without grabbing wq_pool_mutex. 319 * This is used to dump all workqueues from sysrq. 320 */ 321 struct rcu_head rcu; 322 323 /* hot fields used during command issue, aligned to cacheline */ 324 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 325 struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */ 326 }; 327 328 static struct kmem_cache *pwq_cache; 329 330 /* 331 * Each pod type describes how CPUs should be grouped for unbound workqueues. 332 * See the comment above workqueue_attrs->affn_scope. 333 */ 334 struct wq_pod_type { 335 int nr_pods; /* number of pods */ 336 cpumask_var_t *pod_cpus; /* pod -> cpus */ 337 int *pod_node; /* pod -> node */ 338 int *cpu_pod; /* cpu -> pod */ 339 }; 340 341 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES]; 342 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE; 343 344 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = { 345 [WQ_AFFN_DFL] = "default", 346 [WQ_AFFN_CPU] = "cpu", 347 [WQ_AFFN_SMT] = "smt", 348 [WQ_AFFN_CACHE] = "cache", 349 [WQ_AFFN_NUMA] = "numa", 350 [WQ_AFFN_SYSTEM] = "system", 351 }; 352 353 /* 354 * Per-cpu work items which run for longer than the following threshold are 355 * automatically considered CPU intensive and excluded from concurrency 356 * management to prevent them from noticeably delaying other per-cpu work items. 357 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter. 358 * The actual value is initialized in wq_cpu_intensive_thresh_init(). 359 */ 360 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX; 361 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644); 362 363 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 364 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 365 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 366 367 static bool wq_online; /* can kworkers be created yet? */ 368 369 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */ 370 static struct workqueue_attrs *wq_update_pod_attrs_buf; 371 372 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 373 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 374 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 375 /* wait for manager to go away */ 376 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait); 377 378 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 379 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 380 381 /* PL&A: allowable cpus for unbound wqs and work items */ 382 static cpumask_var_t wq_unbound_cpumask; 383 384 /* for further constrain wq_unbound_cpumask by cmdline parameter*/ 385 static struct cpumask wq_cmdline_cpumask __initdata; 386 387 /* CPU where unbound work was last round robin scheduled from this CPU */ 388 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 389 390 /* 391 * Local execution of unbound work items is no longer guaranteed. The 392 * following always forces round-robin CPU selection on unbound work items 393 * to uncover usages which depend on it. 394 */ 395 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 396 static bool wq_debug_force_rr_cpu = true; 397 #else 398 static bool wq_debug_force_rr_cpu = false; 399 #endif 400 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 401 402 /* the per-cpu worker pools */ 403 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 404 405 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 406 407 /* PL: hash of all unbound pools keyed by pool->attrs */ 408 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 409 410 /* I: attributes used when instantiating standard unbound pools on demand */ 411 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 412 413 /* I: attributes used when instantiating ordered pools on demand */ 414 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 415 416 /* 417 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a 418 * process context while holding a pool lock. Bounce to a dedicated kthread 419 * worker to avoid A-A deadlocks. 420 */ 421 static struct kthread_worker *pwq_release_worker; 422 423 struct workqueue_struct *system_wq __read_mostly; 424 EXPORT_SYMBOL(system_wq); 425 struct workqueue_struct *system_highpri_wq __read_mostly; 426 EXPORT_SYMBOL_GPL(system_highpri_wq); 427 struct workqueue_struct *system_long_wq __read_mostly; 428 EXPORT_SYMBOL_GPL(system_long_wq); 429 struct workqueue_struct *system_unbound_wq __read_mostly; 430 EXPORT_SYMBOL_GPL(system_unbound_wq); 431 struct workqueue_struct *system_freezable_wq __read_mostly; 432 EXPORT_SYMBOL_GPL(system_freezable_wq); 433 struct workqueue_struct *system_power_efficient_wq __read_mostly; 434 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 435 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 436 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 437 438 static int worker_thread(void *__worker); 439 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 440 static void show_pwq(struct pool_workqueue *pwq); 441 static void show_one_worker_pool(struct worker_pool *pool); 442 443 #define CREATE_TRACE_POINTS 444 #include <trace/events/workqueue.h> 445 446 #define assert_rcu_or_pool_mutex() \ 447 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 448 !lockdep_is_held(&wq_pool_mutex), \ 449 "RCU or wq_pool_mutex should be held") 450 451 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 452 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 453 !lockdep_is_held(&wq->mutex) && \ 454 !lockdep_is_held(&wq_pool_mutex), \ 455 "RCU, wq->mutex or wq_pool_mutex should be held") 456 457 #define for_each_cpu_worker_pool(pool, cpu) \ 458 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 459 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 460 (pool)++) 461 462 /** 463 * for_each_pool - iterate through all worker_pools in the system 464 * @pool: iteration cursor 465 * @pi: integer used for iteration 466 * 467 * This must be called either with wq_pool_mutex held or RCU read 468 * locked. If the pool needs to be used beyond the locking in effect, the 469 * caller is responsible for guaranteeing that the pool stays online. 470 * 471 * The if/else clause exists only for the lockdep assertion and can be 472 * ignored. 473 */ 474 #define for_each_pool(pool, pi) \ 475 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 476 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 477 else 478 479 /** 480 * for_each_pool_worker - iterate through all workers of a worker_pool 481 * @worker: iteration cursor 482 * @pool: worker_pool to iterate workers of 483 * 484 * This must be called with wq_pool_attach_mutex. 485 * 486 * The if/else clause exists only for the lockdep assertion and can be 487 * ignored. 488 */ 489 #define for_each_pool_worker(worker, pool) \ 490 list_for_each_entry((worker), &(pool)->workers, node) \ 491 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 492 else 493 494 /** 495 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 496 * @pwq: iteration cursor 497 * @wq: the target workqueue 498 * 499 * This must be called either with wq->mutex held or RCU read locked. 500 * If the pwq needs to be used beyond the locking in effect, the caller is 501 * responsible for guaranteeing that the pwq stays online. 502 * 503 * The if/else clause exists only for the lockdep assertion and can be 504 * ignored. 505 */ 506 #define for_each_pwq(pwq, wq) \ 507 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ 508 lockdep_is_held(&(wq->mutex))) 509 510 #ifdef CONFIG_DEBUG_OBJECTS_WORK 511 512 static const struct debug_obj_descr work_debug_descr; 513 514 static void *work_debug_hint(void *addr) 515 { 516 return ((struct work_struct *) addr)->func; 517 } 518 519 static bool work_is_static_object(void *addr) 520 { 521 struct work_struct *work = addr; 522 523 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 524 } 525 526 /* 527 * fixup_init is called when: 528 * - an active object is initialized 529 */ 530 static bool work_fixup_init(void *addr, enum debug_obj_state state) 531 { 532 struct work_struct *work = addr; 533 534 switch (state) { 535 case ODEBUG_STATE_ACTIVE: 536 cancel_work_sync(work); 537 debug_object_init(work, &work_debug_descr); 538 return true; 539 default: 540 return false; 541 } 542 } 543 544 /* 545 * fixup_free is called when: 546 * - an active object is freed 547 */ 548 static bool work_fixup_free(void *addr, enum debug_obj_state state) 549 { 550 struct work_struct *work = addr; 551 552 switch (state) { 553 case ODEBUG_STATE_ACTIVE: 554 cancel_work_sync(work); 555 debug_object_free(work, &work_debug_descr); 556 return true; 557 default: 558 return false; 559 } 560 } 561 562 static const struct debug_obj_descr work_debug_descr = { 563 .name = "work_struct", 564 .debug_hint = work_debug_hint, 565 .is_static_object = work_is_static_object, 566 .fixup_init = work_fixup_init, 567 .fixup_free = work_fixup_free, 568 }; 569 570 static inline void debug_work_activate(struct work_struct *work) 571 { 572 debug_object_activate(work, &work_debug_descr); 573 } 574 575 static inline void debug_work_deactivate(struct work_struct *work) 576 { 577 debug_object_deactivate(work, &work_debug_descr); 578 } 579 580 void __init_work(struct work_struct *work, int onstack) 581 { 582 if (onstack) 583 debug_object_init_on_stack(work, &work_debug_descr); 584 else 585 debug_object_init(work, &work_debug_descr); 586 } 587 EXPORT_SYMBOL_GPL(__init_work); 588 589 void destroy_work_on_stack(struct work_struct *work) 590 { 591 debug_object_free(work, &work_debug_descr); 592 } 593 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 594 595 void destroy_delayed_work_on_stack(struct delayed_work *work) 596 { 597 destroy_timer_on_stack(&work->timer); 598 debug_object_free(&work->work, &work_debug_descr); 599 } 600 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 601 602 #else 603 static inline void debug_work_activate(struct work_struct *work) { } 604 static inline void debug_work_deactivate(struct work_struct *work) { } 605 #endif 606 607 /** 608 * worker_pool_assign_id - allocate ID and assign it to @pool 609 * @pool: the pool pointer of interest 610 * 611 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 612 * successfully, -errno on failure. 613 */ 614 static int worker_pool_assign_id(struct worker_pool *pool) 615 { 616 int ret; 617 618 lockdep_assert_held(&wq_pool_mutex); 619 620 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 621 GFP_KERNEL); 622 if (ret >= 0) { 623 pool->id = ret; 624 return 0; 625 } 626 return ret; 627 } 628 629 static unsigned int work_color_to_flags(int color) 630 { 631 return color << WORK_STRUCT_COLOR_SHIFT; 632 } 633 634 static int get_work_color(unsigned long work_data) 635 { 636 return (work_data >> WORK_STRUCT_COLOR_SHIFT) & 637 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 638 } 639 640 static int work_next_color(int color) 641 { 642 return (color + 1) % WORK_NR_COLORS; 643 } 644 645 /* 646 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 647 * contain the pointer to the queued pwq. Once execution starts, the flag 648 * is cleared and the high bits contain OFFQ flags and pool ID. 649 * 650 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 651 * and clear_work_data() can be used to set the pwq, pool or clear 652 * work->data. These functions should only be called while the work is 653 * owned - ie. while the PENDING bit is set. 654 * 655 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 656 * corresponding to a work. Pool is available once the work has been 657 * queued anywhere after initialization until it is sync canceled. pwq is 658 * available only while the work item is queued. 659 * 660 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 661 * canceled. While being canceled, a work item may have its PENDING set 662 * but stay off timer and worklist for arbitrarily long and nobody should 663 * try to steal the PENDING bit. 664 */ 665 static inline void set_work_data(struct work_struct *work, unsigned long data, 666 unsigned long flags) 667 { 668 WARN_ON_ONCE(!work_pending(work)); 669 atomic_long_set(&work->data, data | flags | work_static(work)); 670 } 671 672 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 673 unsigned long extra_flags) 674 { 675 set_work_data(work, (unsigned long)pwq, 676 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 677 } 678 679 static void set_work_pool_and_keep_pending(struct work_struct *work, 680 int pool_id) 681 { 682 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 683 WORK_STRUCT_PENDING); 684 } 685 686 static void set_work_pool_and_clear_pending(struct work_struct *work, 687 int pool_id) 688 { 689 /* 690 * The following wmb is paired with the implied mb in 691 * test_and_set_bit(PENDING) and ensures all updates to @work made 692 * here are visible to and precede any updates by the next PENDING 693 * owner. 694 */ 695 smp_wmb(); 696 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 697 /* 698 * The following mb guarantees that previous clear of a PENDING bit 699 * will not be reordered with any speculative LOADS or STORES from 700 * work->current_func, which is executed afterwards. This possible 701 * reordering can lead to a missed execution on attempt to queue 702 * the same @work. E.g. consider this case: 703 * 704 * CPU#0 CPU#1 705 * ---------------------------- -------------------------------- 706 * 707 * 1 STORE event_indicated 708 * 2 queue_work_on() { 709 * 3 test_and_set_bit(PENDING) 710 * 4 } set_..._and_clear_pending() { 711 * 5 set_work_data() # clear bit 712 * 6 smp_mb() 713 * 7 work->current_func() { 714 * 8 LOAD event_indicated 715 * } 716 * 717 * Without an explicit full barrier speculative LOAD on line 8 can 718 * be executed before CPU#0 does STORE on line 1. If that happens, 719 * CPU#0 observes the PENDING bit is still set and new execution of 720 * a @work is not queued in a hope, that CPU#1 will eventually 721 * finish the queued @work. Meanwhile CPU#1 does not see 722 * event_indicated is set, because speculative LOAD was executed 723 * before actual STORE. 724 */ 725 smp_mb(); 726 } 727 728 static void clear_work_data(struct work_struct *work) 729 { 730 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 731 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 732 } 733 734 static inline struct pool_workqueue *work_struct_pwq(unsigned long data) 735 { 736 return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK); 737 } 738 739 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 740 { 741 unsigned long data = atomic_long_read(&work->data); 742 743 if (data & WORK_STRUCT_PWQ) 744 return work_struct_pwq(data); 745 else 746 return NULL; 747 } 748 749 /** 750 * get_work_pool - return the worker_pool a given work was associated with 751 * @work: the work item of interest 752 * 753 * Pools are created and destroyed under wq_pool_mutex, and allows read 754 * access under RCU read lock. As such, this function should be 755 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 756 * 757 * All fields of the returned pool are accessible as long as the above 758 * mentioned locking is in effect. If the returned pool needs to be used 759 * beyond the critical section, the caller is responsible for ensuring the 760 * returned pool is and stays online. 761 * 762 * Return: The worker_pool @work was last associated with. %NULL if none. 763 */ 764 static struct worker_pool *get_work_pool(struct work_struct *work) 765 { 766 unsigned long data = atomic_long_read(&work->data); 767 int pool_id; 768 769 assert_rcu_or_pool_mutex(); 770 771 if (data & WORK_STRUCT_PWQ) 772 return work_struct_pwq(data)->pool; 773 774 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 775 if (pool_id == WORK_OFFQ_POOL_NONE) 776 return NULL; 777 778 return idr_find(&worker_pool_idr, pool_id); 779 } 780 781 /** 782 * get_work_pool_id - return the worker pool ID a given work is associated with 783 * @work: the work item of interest 784 * 785 * Return: The worker_pool ID @work was last associated with. 786 * %WORK_OFFQ_POOL_NONE if none. 787 */ 788 static int get_work_pool_id(struct work_struct *work) 789 { 790 unsigned long data = atomic_long_read(&work->data); 791 792 if (data & WORK_STRUCT_PWQ) 793 return work_struct_pwq(data)->pool->id; 794 795 return data >> WORK_OFFQ_POOL_SHIFT; 796 } 797 798 static void mark_work_canceling(struct work_struct *work) 799 { 800 unsigned long pool_id = get_work_pool_id(work); 801 802 pool_id <<= WORK_OFFQ_POOL_SHIFT; 803 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 804 } 805 806 static bool work_is_canceling(struct work_struct *work) 807 { 808 unsigned long data = atomic_long_read(&work->data); 809 810 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 811 } 812 813 /* 814 * Policy functions. These define the policies on how the global worker 815 * pools are managed. Unless noted otherwise, these functions assume that 816 * they're being called with pool->lock held. 817 */ 818 819 /* 820 * Need to wake up a worker? Called from anything but currently 821 * running workers. 822 * 823 * Note that, because unbound workers never contribute to nr_running, this 824 * function will always return %true for unbound pools as long as the 825 * worklist isn't empty. 826 */ 827 static bool need_more_worker(struct worker_pool *pool) 828 { 829 return !list_empty(&pool->worklist) && !pool->nr_running; 830 } 831 832 /* Can I start working? Called from busy but !running workers. */ 833 static bool may_start_working(struct worker_pool *pool) 834 { 835 return pool->nr_idle; 836 } 837 838 /* Do I need to keep working? Called from currently running workers. */ 839 static bool keep_working(struct worker_pool *pool) 840 { 841 return !list_empty(&pool->worklist) && (pool->nr_running <= 1); 842 } 843 844 /* Do we need a new worker? Called from manager. */ 845 static bool need_to_create_worker(struct worker_pool *pool) 846 { 847 return need_more_worker(pool) && !may_start_working(pool); 848 } 849 850 /* Do we have too many workers and should some go away? */ 851 static bool too_many_workers(struct worker_pool *pool) 852 { 853 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 854 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 855 int nr_busy = pool->nr_workers - nr_idle; 856 857 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 858 } 859 860 /** 861 * worker_set_flags - set worker flags and adjust nr_running accordingly 862 * @worker: self 863 * @flags: flags to set 864 * 865 * Set @flags in @worker->flags and adjust nr_running accordingly. 866 */ 867 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 868 { 869 struct worker_pool *pool = worker->pool; 870 871 lockdep_assert_held(&pool->lock); 872 873 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 874 if ((flags & WORKER_NOT_RUNNING) && 875 !(worker->flags & WORKER_NOT_RUNNING)) { 876 pool->nr_running--; 877 } 878 879 worker->flags |= flags; 880 } 881 882 /** 883 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 884 * @worker: self 885 * @flags: flags to clear 886 * 887 * Clear @flags in @worker->flags and adjust nr_running accordingly. 888 */ 889 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 890 { 891 struct worker_pool *pool = worker->pool; 892 unsigned int oflags = worker->flags; 893 894 lockdep_assert_held(&pool->lock); 895 896 worker->flags &= ~flags; 897 898 /* 899 * If transitioning out of NOT_RUNNING, increment nr_running. Note 900 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 901 * of multiple flags, not a single flag. 902 */ 903 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 904 if (!(worker->flags & WORKER_NOT_RUNNING)) 905 pool->nr_running++; 906 } 907 908 /* Return the first idle worker. Called with pool->lock held. */ 909 static struct worker *first_idle_worker(struct worker_pool *pool) 910 { 911 if (unlikely(list_empty(&pool->idle_list))) 912 return NULL; 913 914 return list_first_entry(&pool->idle_list, struct worker, entry); 915 } 916 917 /** 918 * worker_enter_idle - enter idle state 919 * @worker: worker which is entering idle state 920 * 921 * @worker is entering idle state. Update stats and idle timer if 922 * necessary. 923 * 924 * LOCKING: 925 * raw_spin_lock_irq(pool->lock). 926 */ 927 static void worker_enter_idle(struct worker *worker) 928 { 929 struct worker_pool *pool = worker->pool; 930 931 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 932 WARN_ON_ONCE(!list_empty(&worker->entry) && 933 (worker->hentry.next || worker->hentry.pprev))) 934 return; 935 936 /* can't use worker_set_flags(), also called from create_worker() */ 937 worker->flags |= WORKER_IDLE; 938 pool->nr_idle++; 939 worker->last_active = jiffies; 940 941 /* idle_list is LIFO */ 942 list_add(&worker->entry, &pool->idle_list); 943 944 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 945 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 946 947 /* Sanity check nr_running. */ 948 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running); 949 } 950 951 /** 952 * worker_leave_idle - leave idle state 953 * @worker: worker which is leaving idle state 954 * 955 * @worker is leaving idle state. Update stats. 956 * 957 * LOCKING: 958 * raw_spin_lock_irq(pool->lock). 959 */ 960 static void worker_leave_idle(struct worker *worker) 961 { 962 struct worker_pool *pool = worker->pool; 963 964 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 965 return; 966 worker_clr_flags(worker, WORKER_IDLE); 967 pool->nr_idle--; 968 list_del_init(&worker->entry); 969 } 970 971 /** 972 * find_worker_executing_work - find worker which is executing a work 973 * @pool: pool of interest 974 * @work: work to find worker for 975 * 976 * Find a worker which is executing @work on @pool by searching 977 * @pool->busy_hash which is keyed by the address of @work. For a worker 978 * to match, its current execution should match the address of @work and 979 * its work function. This is to avoid unwanted dependency between 980 * unrelated work executions through a work item being recycled while still 981 * being executed. 982 * 983 * This is a bit tricky. A work item may be freed once its execution 984 * starts and nothing prevents the freed area from being recycled for 985 * another work item. If the same work item address ends up being reused 986 * before the original execution finishes, workqueue will identify the 987 * recycled work item as currently executing and make it wait until the 988 * current execution finishes, introducing an unwanted dependency. 989 * 990 * This function checks the work item address and work function to avoid 991 * false positives. Note that this isn't complete as one may construct a 992 * work function which can introduce dependency onto itself through a 993 * recycled work item. Well, if somebody wants to shoot oneself in the 994 * foot that badly, there's only so much we can do, and if such deadlock 995 * actually occurs, it should be easy to locate the culprit work function. 996 * 997 * CONTEXT: 998 * raw_spin_lock_irq(pool->lock). 999 * 1000 * Return: 1001 * Pointer to worker which is executing @work if found, %NULL 1002 * otherwise. 1003 */ 1004 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1005 struct work_struct *work) 1006 { 1007 struct worker *worker; 1008 1009 hash_for_each_possible(pool->busy_hash, worker, hentry, 1010 (unsigned long)work) 1011 if (worker->current_work == work && 1012 worker->current_func == work->func) 1013 return worker; 1014 1015 return NULL; 1016 } 1017 1018 /** 1019 * move_linked_works - move linked works to a list 1020 * @work: start of series of works to be scheduled 1021 * @head: target list to append @work to 1022 * @nextp: out parameter for nested worklist walking 1023 * 1024 * Schedule linked works starting from @work to @head. Work series to be 1025 * scheduled starts at @work and includes any consecutive work with 1026 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on 1027 * @nextp. 1028 * 1029 * CONTEXT: 1030 * raw_spin_lock_irq(pool->lock). 1031 */ 1032 static void move_linked_works(struct work_struct *work, struct list_head *head, 1033 struct work_struct **nextp) 1034 { 1035 struct work_struct *n; 1036 1037 /* 1038 * Linked worklist will always end before the end of the list, 1039 * use NULL for list head. 1040 */ 1041 list_for_each_entry_safe_from(work, n, NULL, entry) { 1042 list_move_tail(&work->entry, head); 1043 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1044 break; 1045 } 1046 1047 /* 1048 * If we're already inside safe list traversal and have moved 1049 * multiple works to the scheduled queue, the next position 1050 * needs to be updated. 1051 */ 1052 if (nextp) 1053 *nextp = n; 1054 } 1055 1056 /** 1057 * assign_work - assign a work item and its linked work items to a worker 1058 * @work: work to assign 1059 * @worker: worker to assign to 1060 * @nextp: out parameter for nested worklist walking 1061 * 1062 * Assign @work and its linked work items to @worker. If @work is already being 1063 * executed by another worker in the same pool, it'll be punted there. 1064 * 1065 * If @nextp is not NULL, it's updated to point to the next work of the last 1066 * scheduled work. This allows assign_work() to be nested inside 1067 * list_for_each_entry_safe(). 1068 * 1069 * Returns %true if @work was successfully assigned to @worker. %false if @work 1070 * was punted to another worker already executing it. 1071 */ 1072 static bool assign_work(struct work_struct *work, struct worker *worker, 1073 struct work_struct **nextp) 1074 { 1075 struct worker_pool *pool = worker->pool; 1076 struct worker *collision; 1077 1078 lockdep_assert_held(&pool->lock); 1079 1080 /* 1081 * A single work shouldn't be executed concurrently by multiple workers. 1082 * __queue_work() ensures that @work doesn't jump to a different pool 1083 * while still running in the previous pool. Here, we should ensure that 1084 * @work is not executed concurrently by multiple workers from the same 1085 * pool. Check whether anyone is already processing the work. If so, 1086 * defer the work to the currently executing one. 1087 */ 1088 collision = find_worker_executing_work(pool, work); 1089 if (unlikely(collision)) { 1090 move_linked_works(work, &collision->scheduled, nextp); 1091 return false; 1092 } 1093 1094 move_linked_works(work, &worker->scheduled, nextp); 1095 return true; 1096 } 1097 1098 /** 1099 * kick_pool - wake up an idle worker if necessary 1100 * @pool: pool to kick 1101 * 1102 * @pool may have pending work items. Wake up worker if necessary. Returns 1103 * whether a worker was woken up. 1104 */ 1105 static bool kick_pool(struct worker_pool *pool) 1106 { 1107 struct worker *worker = first_idle_worker(pool); 1108 struct task_struct *p; 1109 1110 lockdep_assert_held(&pool->lock); 1111 1112 if (!need_more_worker(pool) || !worker) 1113 return false; 1114 1115 p = worker->task; 1116 1117 #ifdef CONFIG_SMP 1118 /* 1119 * Idle @worker is about to execute @work and waking up provides an 1120 * opportunity to migrate @worker at a lower cost by setting the task's 1121 * wake_cpu field. Let's see if we want to move @worker to improve 1122 * execution locality. 1123 * 1124 * We're waking the worker that went idle the latest and there's some 1125 * chance that @worker is marked idle but hasn't gone off CPU yet. If 1126 * so, setting the wake_cpu won't do anything. As this is a best-effort 1127 * optimization and the race window is narrow, let's leave as-is for 1128 * now. If this becomes pronounced, we can skip over workers which are 1129 * still on cpu when picking an idle worker. 1130 * 1131 * If @pool has non-strict affinity, @worker might have ended up outside 1132 * its affinity scope. Repatriate. 1133 */ 1134 if (!pool->attrs->affn_strict && 1135 !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) { 1136 struct work_struct *work = list_first_entry(&pool->worklist, 1137 struct work_struct, entry); 1138 p->wake_cpu = cpumask_any_distribute(pool->attrs->__pod_cpumask); 1139 get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++; 1140 } 1141 #endif 1142 wake_up_process(p); 1143 return true; 1144 } 1145 1146 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT 1147 1148 /* 1149 * Concurrency-managed per-cpu work items that hog CPU for longer than 1150 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism, 1151 * which prevents them from stalling other concurrency-managed work items. If a 1152 * work function keeps triggering this mechanism, it's likely that the work item 1153 * should be using an unbound workqueue instead. 1154 * 1155 * wq_cpu_intensive_report() tracks work functions which trigger such conditions 1156 * and report them so that they can be examined and converted to use unbound 1157 * workqueues as appropriate. To avoid flooding the console, each violating work 1158 * function is tracked and reported with exponential backoff. 1159 */ 1160 #define WCI_MAX_ENTS 128 1161 1162 struct wci_ent { 1163 work_func_t func; 1164 atomic64_t cnt; 1165 struct hlist_node hash_node; 1166 }; 1167 1168 static struct wci_ent wci_ents[WCI_MAX_ENTS]; 1169 static int wci_nr_ents; 1170 static DEFINE_RAW_SPINLOCK(wci_lock); 1171 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS)); 1172 1173 static struct wci_ent *wci_find_ent(work_func_t func) 1174 { 1175 struct wci_ent *ent; 1176 1177 hash_for_each_possible_rcu(wci_hash, ent, hash_node, 1178 (unsigned long)func) { 1179 if (ent->func == func) 1180 return ent; 1181 } 1182 return NULL; 1183 } 1184 1185 static void wq_cpu_intensive_report(work_func_t func) 1186 { 1187 struct wci_ent *ent; 1188 1189 restart: 1190 ent = wci_find_ent(func); 1191 if (ent) { 1192 u64 cnt; 1193 1194 /* 1195 * Start reporting from the fourth time and back off 1196 * exponentially. 1197 */ 1198 cnt = atomic64_inc_return_relaxed(&ent->cnt); 1199 if (cnt >= 4 && is_power_of_2(cnt)) 1200 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n", 1201 ent->func, wq_cpu_intensive_thresh_us, 1202 atomic64_read(&ent->cnt)); 1203 return; 1204 } 1205 1206 /* 1207 * @func is a new violation. Allocate a new entry for it. If wcn_ents[] 1208 * is exhausted, something went really wrong and we probably made enough 1209 * noise already. 1210 */ 1211 if (wci_nr_ents >= WCI_MAX_ENTS) 1212 return; 1213 1214 raw_spin_lock(&wci_lock); 1215 1216 if (wci_nr_ents >= WCI_MAX_ENTS) { 1217 raw_spin_unlock(&wci_lock); 1218 return; 1219 } 1220 1221 if (wci_find_ent(func)) { 1222 raw_spin_unlock(&wci_lock); 1223 goto restart; 1224 } 1225 1226 ent = &wci_ents[wci_nr_ents++]; 1227 ent->func = func; 1228 atomic64_set(&ent->cnt, 1); 1229 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func); 1230 1231 raw_spin_unlock(&wci_lock); 1232 } 1233 1234 #else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1235 static void wq_cpu_intensive_report(work_func_t func) {} 1236 #endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1237 1238 /** 1239 * wq_worker_running - a worker is running again 1240 * @task: task waking up 1241 * 1242 * This function is called when a worker returns from schedule() 1243 */ 1244 void wq_worker_running(struct task_struct *task) 1245 { 1246 struct worker *worker = kthread_data(task); 1247 1248 if (!READ_ONCE(worker->sleeping)) 1249 return; 1250 1251 /* 1252 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check 1253 * and the nr_running increment below, we may ruin the nr_running reset 1254 * and leave with an unexpected pool->nr_running == 1 on the newly unbound 1255 * pool. Protect against such race. 1256 */ 1257 preempt_disable(); 1258 if (!(worker->flags & WORKER_NOT_RUNNING)) 1259 worker->pool->nr_running++; 1260 preempt_enable(); 1261 1262 /* 1263 * CPU intensive auto-detection cares about how long a work item hogged 1264 * CPU without sleeping. Reset the starting timestamp on wakeup. 1265 */ 1266 worker->current_at = worker->task->se.sum_exec_runtime; 1267 1268 WRITE_ONCE(worker->sleeping, 0); 1269 } 1270 1271 /** 1272 * wq_worker_sleeping - a worker is going to sleep 1273 * @task: task going to sleep 1274 * 1275 * This function is called from schedule() when a busy worker is 1276 * going to sleep. 1277 */ 1278 void wq_worker_sleeping(struct task_struct *task) 1279 { 1280 struct worker *worker = kthread_data(task); 1281 struct worker_pool *pool; 1282 1283 /* 1284 * Rescuers, which may not have all the fields set up like normal 1285 * workers, also reach here, let's not access anything before 1286 * checking NOT_RUNNING. 1287 */ 1288 if (worker->flags & WORKER_NOT_RUNNING) 1289 return; 1290 1291 pool = worker->pool; 1292 1293 /* Return if preempted before wq_worker_running() was reached */ 1294 if (READ_ONCE(worker->sleeping)) 1295 return; 1296 1297 WRITE_ONCE(worker->sleeping, 1); 1298 raw_spin_lock_irq(&pool->lock); 1299 1300 /* 1301 * Recheck in case unbind_workers() preempted us. We don't 1302 * want to decrement nr_running after the worker is unbound 1303 * and nr_running has been reset. 1304 */ 1305 if (worker->flags & WORKER_NOT_RUNNING) { 1306 raw_spin_unlock_irq(&pool->lock); 1307 return; 1308 } 1309 1310 pool->nr_running--; 1311 if (kick_pool(pool)) 1312 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1313 1314 raw_spin_unlock_irq(&pool->lock); 1315 } 1316 1317 /** 1318 * wq_worker_tick - a scheduler tick occurred while a kworker is running 1319 * @task: task currently running 1320 * 1321 * Called from scheduler_tick(). We're in the IRQ context and the current 1322 * worker's fields which follow the 'K' locking rule can be accessed safely. 1323 */ 1324 void wq_worker_tick(struct task_struct *task) 1325 { 1326 struct worker *worker = kthread_data(task); 1327 struct pool_workqueue *pwq = worker->current_pwq; 1328 struct worker_pool *pool = worker->pool; 1329 1330 if (!pwq) 1331 return; 1332 1333 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC; 1334 1335 if (!wq_cpu_intensive_thresh_us) 1336 return; 1337 1338 /* 1339 * If the current worker is concurrency managed and hogged the CPU for 1340 * longer than wq_cpu_intensive_thresh_us, it's automatically marked 1341 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items. 1342 * 1343 * Set @worker->sleeping means that @worker is in the process of 1344 * switching out voluntarily and won't be contributing to 1345 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also 1346 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to 1347 * double decrements. The task is releasing the CPU anyway. Let's skip. 1348 * We probably want to make this prettier in the future. 1349 */ 1350 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) || 1351 worker->task->se.sum_exec_runtime - worker->current_at < 1352 wq_cpu_intensive_thresh_us * NSEC_PER_USEC) 1353 return; 1354 1355 raw_spin_lock(&pool->lock); 1356 1357 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 1358 wq_cpu_intensive_report(worker->current_func); 1359 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++; 1360 1361 if (kick_pool(pool)) 1362 pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1363 1364 raw_spin_unlock(&pool->lock); 1365 } 1366 1367 /** 1368 * wq_worker_last_func - retrieve worker's last work function 1369 * @task: Task to retrieve last work function of. 1370 * 1371 * Determine the last function a worker executed. This is called from 1372 * the scheduler to get a worker's last known identity. 1373 * 1374 * CONTEXT: 1375 * raw_spin_lock_irq(rq->lock) 1376 * 1377 * This function is called during schedule() when a kworker is going 1378 * to sleep. It's used by psi to identify aggregation workers during 1379 * dequeuing, to allow periodic aggregation to shut-off when that 1380 * worker is the last task in the system or cgroup to go to sleep. 1381 * 1382 * As this function doesn't involve any workqueue-related locking, it 1383 * only returns stable values when called from inside the scheduler's 1384 * queuing and dequeuing paths, when @task, which must be a kworker, 1385 * is guaranteed to not be processing any works. 1386 * 1387 * Return: 1388 * The last work function %current executed as a worker, NULL if it 1389 * hasn't executed any work yet. 1390 */ 1391 work_func_t wq_worker_last_func(struct task_struct *task) 1392 { 1393 struct worker *worker = kthread_data(task); 1394 1395 return worker->last_func; 1396 } 1397 1398 /** 1399 * get_pwq - get an extra reference on the specified pool_workqueue 1400 * @pwq: pool_workqueue to get 1401 * 1402 * Obtain an extra reference on @pwq. The caller should guarantee that 1403 * @pwq has positive refcnt and be holding the matching pool->lock. 1404 */ 1405 static void get_pwq(struct pool_workqueue *pwq) 1406 { 1407 lockdep_assert_held(&pwq->pool->lock); 1408 WARN_ON_ONCE(pwq->refcnt <= 0); 1409 pwq->refcnt++; 1410 } 1411 1412 /** 1413 * put_pwq - put a pool_workqueue reference 1414 * @pwq: pool_workqueue to put 1415 * 1416 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1417 * destruction. The caller should be holding the matching pool->lock. 1418 */ 1419 static void put_pwq(struct pool_workqueue *pwq) 1420 { 1421 lockdep_assert_held(&pwq->pool->lock); 1422 if (likely(--pwq->refcnt)) 1423 return; 1424 /* 1425 * @pwq can't be released under pool->lock, bounce to a dedicated 1426 * kthread_worker to avoid A-A deadlocks. 1427 */ 1428 kthread_queue_work(pwq_release_worker, &pwq->release_work); 1429 } 1430 1431 /** 1432 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1433 * @pwq: pool_workqueue to put (can be %NULL) 1434 * 1435 * put_pwq() with locking. This function also allows %NULL @pwq. 1436 */ 1437 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1438 { 1439 if (pwq) { 1440 /* 1441 * As both pwqs and pools are RCU protected, the 1442 * following lock operations are safe. 1443 */ 1444 raw_spin_lock_irq(&pwq->pool->lock); 1445 put_pwq(pwq); 1446 raw_spin_unlock_irq(&pwq->pool->lock); 1447 } 1448 } 1449 1450 static void pwq_activate_inactive_work(struct work_struct *work) 1451 { 1452 struct pool_workqueue *pwq = get_work_pwq(work); 1453 1454 trace_workqueue_activate_work(work); 1455 if (list_empty(&pwq->pool->worklist)) 1456 pwq->pool->watchdog_ts = jiffies; 1457 move_linked_works(work, &pwq->pool->worklist, NULL); 1458 __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work)); 1459 pwq->nr_active++; 1460 } 1461 1462 static void pwq_activate_first_inactive(struct pool_workqueue *pwq) 1463 { 1464 struct work_struct *work = list_first_entry(&pwq->inactive_works, 1465 struct work_struct, entry); 1466 1467 pwq_activate_inactive_work(work); 1468 } 1469 1470 /** 1471 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1472 * @pwq: pwq of interest 1473 * @work_data: work_data of work which left the queue 1474 * 1475 * A work either has completed or is removed from pending queue, 1476 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1477 * 1478 * CONTEXT: 1479 * raw_spin_lock_irq(pool->lock). 1480 */ 1481 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data) 1482 { 1483 int color = get_work_color(work_data); 1484 1485 if (!(work_data & WORK_STRUCT_INACTIVE)) { 1486 pwq->nr_active--; 1487 if (!list_empty(&pwq->inactive_works)) { 1488 /* one down, submit an inactive one */ 1489 if (pwq->nr_active < pwq->max_active) 1490 pwq_activate_first_inactive(pwq); 1491 } 1492 } 1493 1494 pwq->nr_in_flight[color]--; 1495 1496 /* is flush in progress and are we at the flushing tip? */ 1497 if (likely(pwq->flush_color != color)) 1498 goto out_put; 1499 1500 /* are there still in-flight works? */ 1501 if (pwq->nr_in_flight[color]) 1502 goto out_put; 1503 1504 /* this pwq is done, clear flush_color */ 1505 pwq->flush_color = -1; 1506 1507 /* 1508 * If this was the last pwq, wake up the first flusher. It 1509 * will handle the rest. 1510 */ 1511 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1512 complete(&pwq->wq->first_flusher->done); 1513 out_put: 1514 put_pwq(pwq); 1515 } 1516 1517 /** 1518 * try_to_grab_pending - steal work item from worklist and disable irq 1519 * @work: work item to steal 1520 * @is_dwork: @work is a delayed_work 1521 * @flags: place to store irq state 1522 * 1523 * Try to grab PENDING bit of @work. This function can handle @work in any 1524 * stable state - idle, on timer or on worklist. 1525 * 1526 * Return: 1527 * 1528 * ======== ================================================================ 1529 * 1 if @work was pending and we successfully stole PENDING 1530 * 0 if @work was idle and we claimed PENDING 1531 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1532 * -ENOENT if someone else is canceling @work, this state may persist 1533 * for arbitrarily long 1534 * ======== ================================================================ 1535 * 1536 * Note: 1537 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1538 * interrupted while holding PENDING and @work off queue, irq must be 1539 * disabled on entry. This, combined with delayed_work->timer being 1540 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1541 * 1542 * On successful return, >= 0, irq is disabled and the caller is 1543 * responsible for releasing it using local_irq_restore(*@flags). 1544 * 1545 * This function is safe to call from any context including IRQ handler. 1546 */ 1547 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1548 unsigned long *flags) 1549 { 1550 struct worker_pool *pool; 1551 struct pool_workqueue *pwq; 1552 1553 local_irq_save(*flags); 1554 1555 /* try to steal the timer if it exists */ 1556 if (is_dwork) { 1557 struct delayed_work *dwork = to_delayed_work(work); 1558 1559 /* 1560 * dwork->timer is irqsafe. If del_timer() fails, it's 1561 * guaranteed that the timer is not queued anywhere and not 1562 * running on the local CPU. 1563 */ 1564 if (likely(del_timer(&dwork->timer))) 1565 return 1; 1566 } 1567 1568 /* try to claim PENDING the normal way */ 1569 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1570 return 0; 1571 1572 rcu_read_lock(); 1573 /* 1574 * The queueing is in progress, or it is already queued. Try to 1575 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1576 */ 1577 pool = get_work_pool(work); 1578 if (!pool) 1579 goto fail; 1580 1581 raw_spin_lock(&pool->lock); 1582 /* 1583 * work->data is guaranteed to point to pwq only while the work 1584 * item is queued on pwq->wq, and both updating work->data to point 1585 * to pwq on queueing and to pool on dequeueing are done under 1586 * pwq->pool->lock. This in turn guarantees that, if work->data 1587 * points to pwq which is associated with a locked pool, the work 1588 * item is currently queued on that pool. 1589 */ 1590 pwq = get_work_pwq(work); 1591 if (pwq && pwq->pool == pool) { 1592 debug_work_deactivate(work); 1593 1594 /* 1595 * A cancelable inactive work item must be in the 1596 * pwq->inactive_works since a queued barrier can't be 1597 * canceled (see the comments in insert_wq_barrier()). 1598 * 1599 * An inactive work item cannot be grabbed directly because 1600 * it might have linked barrier work items which, if left 1601 * on the inactive_works list, will confuse pwq->nr_active 1602 * management later on and cause stall. Make sure the work 1603 * item is activated before grabbing. 1604 */ 1605 if (*work_data_bits(work) & WORK_STRUCT_INACTIVE) 1606 pwq_activate_inactive_work(work); 1607 1608 list_del_init(&work->entry); 1609 pwq_dec_nr_in_flight(pwq, *work_data_bits(work)); 1610 1611 /* work->data points to pwq iff queued, point to pool */ 1612 set_work_pool_and_keep_pending(work, pool->id); 1613 1614 raw_spin_unlock(&pool->lock); 1615 rcu_read_unlock(); 1616 return 1; 1617 } 1618 raw_spin_unlock(&pool->lock); 1619 fail: 1620 rcu_read_unlock(); 1621 local_irq_restore(*flags); 1622 if (work_is_canceling(work)) 1623 return -ENOENT; 1624 cpu_relax(); 1625 return -EAGAIN; 1626 } 1627 1628 /** 1629 * insert_work - insert a work into a pool 1630 * @pwq: pwq @work belongs to 1631 * @work: work to insert 1632 * @head: insertion point 1633 * @extra_flags: extra WORK_STRUCT_* flags to set 1634 * 1635 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1636 * work_struct flags. 1637 * 1638 * CONTEXT: 1639 * raw_spin_lock_irq(pool->lock). 1640 */ 1641 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1642 struct list_head *head, unsigned int extra_flags) 1643 { 1644 debug_work_activate(work); 1645 1646 /* record the work call stack in order to print it in KASAN reports */ 1647 kasan_record_aux_stack_noalloc(work); 1648 1649 /* we own @work, set data and link */ 1650 set_work_pwq(work, pwq, extra_flags); 1651 list_add_tail(&work->entry, head); 1652 get_pwq(pwq); 1653 } 1654 1655 /* 1656 * Test whether @work is being queued from another work executing on the 1657 * same workqueue. 1658 */ 1659 static bool is_chained_work(struct workqueue_struct *wq) 1660 { 1661 struct worker *worker; 1662 1663 worker = current_wq_worker(); 1664 /* 1665 * Return %true iff I'm a worker executing a work item on @wq. If 1666 * I'm @worker, it's safe to dereference it without locking. 1667 */ 1668 return worker && worker->current_pwq->wq == wq; 1669 } 1670 1671 /* 1672 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1673 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1674 * avoid perturbing sensitive tasks. 1675 */ 1676 static int wq_select_unbound_cpu(int cpu) 1677 { 1678 int new_cpu; 1679 1680 if (likely(!wq_debug_force_rr_cpu)) { 1681 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1682 return cpu; 1683 } else { 1684 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1685 } 1686 1687 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1688 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1689 if (unlikely(new_cpu >= nr_cpu_ids)) { 1690 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1691 if (unlikely(new_cpu >= nr_cpu_ids)) 1692 return cpu; 1693 } 1694 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1695 1696 return new_cpu; 1697 } 1698 1699 static void __queue_work(int cpu, struct workqueue_struct *wq, 1700 struct work_struct *work) 1701 { 1702 struct pool_workqueue *pwq; 1703 struct worker_pool *last_pool, *pool; 1704 unsigned int work_flags; 1705 unsigned int req_cpu = cpu; 1706 1707 /* 1708 * While a work item is PENDING && off queue, a task trying to 1709 * steal the PENDING will busy-loop waiting for it to either get 1710 * queued or lose PENDING. Grabbing PENDING and queueing should 1711 * happen with IRQ disabled. 1712 */ 1713 lockdep_assert_irqs_disabled(); 1714 1715 1716 /* 1717 * For a draining wq, only works from the same workqueue are 1718 * allowed. The __WQ_DESTROYING helps to spot the issue that 1719 * queues a new work item to a wq after destroy_workqueue(wq). 1720 */ 1721 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) && 1722 WARN_ON_ONCE(!is_chained_work(wq)))) 1723 return; 1724 rcu_read_lock(); 1725 retry: 1726 /* pwq which will be used unless @work is executing elsewhere */ 1727 if (req_cpu == WORK_CPU_UNBOUND) { 1728 if (wq->flags & WQ_UNBOUND) 1729 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1730 else 1731 cpu = raw_smp_processor_id(); 1732 } 1733 1734 pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu)); 1735 pool = pwq->pool; 1736 1737 /* 1738 * If @work was previously on a different pool, it might still be 1739 * running there, in which case the work needs to be queued on that 1740 * pool to guarantee non-reentrancy. 1741 */ 1742 last_pool = get_work_pool(work); 1743 if (last_pool && last_pool != pool) { 1744 struct worker *worker; 1745 1746 raw_spin_lock(&last_pool->lock); 1747 1748 worker = find_worker_executing_work(last_pool, work); 1749 1750 if (worker && worker->current_pwq->wq == wq) { 1751 pwq = worker->current_pwq; 1752 pool = pwq->pool; 1753 WARN_ON_ONCE(pool != last_pool); 1754 } else { 1755 /* meh... not running there, queue here */ 1756 raw_spin_unlock(&last_pool->lock); 1757 raw_spin_lock(&pool->lock); 1758 } 1759 } else { 1760 raw_spin_lock(&pool->lock); 1761 } 1762 1763 /* 1764 * pwq is determined and locked. For unbound pools, we could have raced 1765 * with pwq release and it could already be dead. If its refcnt is zero, 1766 * repeat pwq selection. Note that unbound pwqs never die without 1767 * another pwq replacing it in cpu_pwq or while work items are executing 1768 * on it, so the retrying is guaranteed to make forward-progress. 1769 */ 1770 if (unlikely(!pwq->refcnt)) { 1771 if (wq->flags & WQ_UNBOUND) { 1772 raw_spin_unlock(&pool->lock); 1773 cpu_relax(); 1774 goto retry; 1775 } 1776 /* oops */ 1777 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1778 wq->name, cpu); 1779 } 1780 1781 /* pwq determined, queue */ 1782 trace_workqueue_queue_work(req_cpu, pwq, work); 1783 1784 if (WARN_ON(!list_empty(&work->entry))) 1785 goto out; 1786 1787 pwq->nr_in_flight[pwq->work_color]++; 1788 work_flags = work_color_to_flags(pwq->work_color); 1789 1790 if (likely(pwq->nr_active < pwq->max_active)) { 1791 if (list_empty(&pool->worklist)) 1792 pool->watchdog_ts = jiffies; 1793 1794 trace_workqueue_activate_work(work); 1795 pwq->nr_active++; 1796 insert_work(pwq, work, &pool->worklist, work_flags); 1797 kick_pool(pool); 1798 } else { 1799 work_flags |= WORK_STRUCT_INACTIVE; 1800 insert_work(pwq, work, &pwq->inactive_works, work_flags); 1801 } 1802 1803 out: 1804 raw_spin_unlock(&pool->lock); 1805 rcu_read_unlock(); 1806 } 1807 1808 /** 1809 * queue_work_on - queue work on specific cpu 1810 * @cpu: CPU number to execute work on 1811 * @wq: workqueue to use 1812 * @work: work to queue 1813 * 1814 * We queue the work to a specific CPU, the caller must ensure it 1815 * can't go away. Callers that fail to ensure that the specified 1816 * CPU cannot go away will execute on a randomly chosen CPU. 1817 * But note well that callers specifying a CPU that never has been 1818 * online will get a splat. 1819 * 1820 * Return: %false if @work was already on a queue, %true otherwise. 1821 */ 1822 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1823 struct work_struct *work) 1824 { 1825 bool ret = false; 1826 unsigned long flags; 1827 1828 local_irq_save(flags); 1829 1830 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1831 __queue_work(cpu, wq, work); 1832 ret = true; 1833 } 1834 1835 local_irq_restore(flags); 1836 return ret; 1837 } 1838 EXPORT_SYMBOL(queue_work_on); 1839 1840 /** 1841 * select_numa_node_cpu - Select a CPU based on NUMA node 1842 * @node: NUMA node ID that we want to select a CPU from 1843 * 1844 * This function will attempt to find a "random" cpu available on a given 1845 * node. If there are no CPUs available on the given node it will return 1846 * WORK_CPU_UNBOUND indicating that we should just schedule to any 1847 * available CPU if we need to schedule this work. 1848 */ 1849 static int select_numa_node_cpu(int node) 1850 { 1851 int cpu; 1852 1853 /* Delay binding to CPU if node is not valid or online */ 1854 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 1855 return WORK_CPU_UNBOUND; 1856 1857 /* Use local node/cpu if we are already there */ 1858 cpu = raw_smp_processor_id(); 1859 if (node == cpu_to_node(cpu)) 1860 return cpu; 1861 1862 /* Use "random" otherwise know as "first" online CPU of node */ 1863 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 1864 1865 /* If CPU is valid return that, otherwise just defer */ 1866 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 1867 } 1868 1869 /** 1870 * queue_work_node - queue work on a "random" cpu for a given NUMA node 1871 * @node: NUMA node that we are targeting the work for 1872 * @wq: workqueue to use 1873 * @work: work to queue 1874 * 1875 * We queue the work to a "random" CPU within a given NUMA node. The basic 1876 * idea here is to provide a way to somehow associate work with a given 1877 * NUMA node. 1878 * 1879 * This function will only make a best effort attempt at getting this onto 1880 * the right NUMA node. If no node is requested or the requested node is 1881 * offline then we just fall back to standard queue_work behavior. 1882 * 1883 * Currently the "random" CPU ends up being the first available CPU in the 1884 * intersection of cpu_online_mask and the cpumask of the node, unless we 1885 * are running on the node. In that case we just use the current CPU. 1886 * 1887 * Return: %false if @work was already on a queue, %true otherwise. 1888 */ 1889 bool queue_work_node(int node, struct workqueue_struct *wq, 1890 struct work_struct *work) 1891 { 1892 unsigned long flags; 1893 bool ret = false; 1894 1895 /* 1896 * This current implementation is specific to unbound workqueues. 1897 * Specifically we only return the first available CPU for a given 1898 * node instead of cycling through individual CPUs within the node. 1899 * 1900 * If this is used with a per-cpu workqueue then the logic in 1901 * workqueue_select_cpu_near would need to be updated to allow for 1902 * some round robin type logic. 1903 */ 1904 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 1905 1906 local_irq_save(flags); 1907 1908 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1909 int cpu = select_numa_node_cpu(node); 1910 1911 __queue_work(cpu, wq, work); 1912 ret = true; 1913 } 1914 1915 local_irq_restore(flags); 1916 return ret; 1917 } 1918 EXPORT_SYMBOL_GPL(queue_work_node); 1919 1920 void delayed_work_timer_fn(struct timer_list *t) 1921 { 1922 struct delayed_work *dwork = from_timer(dwork, t, timer); 1923 1924 /* should have been called from irqsafe timer with irq already off */ 1925 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1926 } 1927 EXPORT_SYMBOL(delayed_work_timer_fn); 1928 1929 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1930 struct delayed_work *dwork, unsigned long delay) 1931 { 1932 struct timer_list *timer = &dwork->timer; 1933 struct work_struct *work = &dwork->work; 1934 1935 WARN_ON_ONCE(!wq); 1936 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 1937 WARN_ON_ONCE(timer_pending(timer)); 1938 WARN_ON_ONCE(!list_empty(&work->entry)); 1939 1940 /* 1941 * If @delay is 0, queue @dwork->work immediately. This is for 1942 * both optimization and correctness. The earliest @timer can 1943 * expire is on the closest next tick and delayed_work users depend 1944 * on that there's no such delay when @delay is 0. 1945 */ 1946 if (!delay) { 1947 __queue_work(cpu, wq, &dwork->work); 1948 return; 1949 } 1950 1951 dwork->wq = wq; 1952 dwork->cpu = cpu; 1953 timer->expires = jiffies + delay; 1954 1955 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1956 add_timer_on(timer, cpu); 1957 else 1958 add_timer(timer); 1959 } 1960 1961 /** 1962 * queue_delayed_work_on - queue work on specific CPU after delay 1963 * @cpu: CPU number to execute work on 1964 * @wq: workqueue to use 1965 * @dwork: work to queue 1966 * @delay: number of jiffies to wait before queueing 1967 * 1968 * Return: %false if @work was already on a queue, %true otherwise. If 1969 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1970 * execution. 1971 */ 1972 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1973 struct delayed_work *dwork, unsigned long delay) 1974 { 1975 struct work_struct *work = &dwork->work; 1976 bool ret = false; 1977 unsigned long flags; 1978 1979 /* read the comment in __queue_work() */ 1980 local_irq_save(flags); 1981 1982 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1983 __queue_delayed_work(cpu, wq, dwork, delay); 1984 ret = true; 1985 } 1986 1987 local_irq_restore(flags); 1988 return ret; 1989 } 1990 EXPORT_SYMBOL(queue_delayed_work_on); 1991 1992 /** 1993 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1994 * @cpu: CPU number to execute work on 1995 * @wq: workqueue to use 1996 * @dwork: work to queue 1997 * @delay: number of jiffies to wait before queueing 1998 * 1999 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 2000 * modify @dwork's timer so that it expires after @delay. If @delay is 2001 * zero, @work is guaranteed to be scheduled immediately regardless of its 2002 * current state. 2003 * 2004 * Return: %false if @dwork was idle and queued, %true if @dwork was 2005 * pending and its timer was modified. 2006 * 2007 * This function is safe to call from any context including IRQ handler. 2008 * See try_to_grab_pending() for details. 2009 */ 2010 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 2011 struct delayed_work *dwork, unsigned long delay) 2012 { 2013 unsigned long flags; 2014 int ret; 2015 2016 do { 2017 ret = try_to_grab_pending(&dwork->work, true, &flags); 2018 } while (unlikely(ret == -EAGAIN)); 2019 2020 if (likely(ret >= 0)) { 2021 __queue_delayed_work(cpu, wq, dwork, delay); 2022 local_irq_restore(flags); 2023 } 2024 2025 /* -ENOENT from try_to_grab_pending() becomes %true */ 2026 return ret; 2027 } 2028 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 2029 2030 static void rcu_work_rcufn(struct rcu_head *rcu) 2031 { 2032 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 2033 2034 /* read the comment in __queue_work() */ 2035 local_irq_disable(); 2036 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 2037 local_irq_enable(); 2038 } 2039 2040 /** 2041 * queue_rcu_work - queue work after a RCU grace period 2042 * @wq: workqueue to use 2043 * @rwork: work to queue 2044 * 2045 * Return: %false if @rwork was already pending, %true otherwise. Note 2046 * that a full RCU grace period is guaranteed only after a %true return. 2047 * While @rwork is guaranteed to be executed after a %false return, the 2048 * execution may happen before a full RCU grace period has passed. 2049 */ 2050 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 2051 { 2052 struct work_struct *work = &rwork->work; 2053 2054 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 2055 rwork->wq = wq; 2056 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn); 2057 return true; 2058 } 2059 2060 return false; 2061 } 2062 EXPORT_SYMBOL(queue_rcu_work); 2063 2064 static struct worker *alloc_worker(int node) 2065 { 2066 struct worker *worker; 2067 2068 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 2069 if (worker) { 2070 INIT_LIST_HEAD(&worker->entry); 2071 INIT_LIST_HEAD(&worker->scheduled); 2072 INIT_LIST_HEAD(&worker->node); 2073 /* on creation a worker is in !idle && prep state */ 2074 worker->flags = WORKER_PREP; 2075 } 2076 return worker; 2077 } 2078 2079 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool) 2080 { 2081 if (pool->cpu < 0 && pool->attrs->affn_strict) 2082 return pool->attrs->__pod_cpumask; 2083 else 2084 return pool->attrs->cpumask; 2085 } 2086 2087 /** 2088 * worker_attach_to_pool() - attach a worker to a pool 2089 * @worker: worker to be attached 2090 * @pool: the target pool 2091 * 2092 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 2093 * cpu-binding of @worker are kept coordinated with the pool across 2094 * cpu-[un]hotplugs. 2095 */ 2096 static void worker_attach_to_pool(struct worker *worker, 2097 struct worker_pool *pool) 2098 { 2099 mutex_lock(&wq_pool_attach_mutex); 2100 2101 /* 2102 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains 2103 * stable across this function. See the comments above the flag 2104 * definition for details. 2105 */ 2106 if (pool->flags & POOL_DISASSOCIATED) 2107 worker->flags |= WORKER_UNBOUND; 2108 else 2109 kthread_set_per_cpu(worker->task, pool->cpu); 2110 2111 if (worker->rescue_wq) 2112 set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool)); 2113 2114 list_add_tail(&worker->node, &pool->workers); 2115 worker->pool = pool; 2116 2117 mutex_unlock(&wq_pool_attach_mutex); 2118 } 2119 2120 /** 2121 * worker_detach_from_pool() - detach a worker from its pool 2122 * @worker: worker which is attached to its pool 2123 * 2124 * Undo the attaching which had been done in worker_attach_to_pool(). The 2125 * caller worker shouldn't access to the pool after detached except it has 2126 * other reference to the pool. 2127 */ 2128 static void worker_detach_from_pool(struct worker *worker) 2129 { 2130 struct worker_pool *pool = worker->pool; 2131 struct completion *detach_completion = NULL; 2132 2133 mutex_lock(&wq_pool_attach_mutex); 2134 2135 kthread_set_per_cpu(worker->task, -1); 2136 list_del(&worker->node); 2137 worker->pool = NULL; 2138 2139 if (list_empty(&pool->workers) && list_empty(&pool->dying_workers)) 2140 detach_completion = pool->detach_completion; 2141 mutex_unlock(&wq_pool_attach_mutex); 2142 2143 /* clear leftover flags without pool->lock after it is detached */ 2144 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 2145 2146 if (detach_completion) 2147 complete(detach_completion); 2148 } 2149 2150 /** 2151 * create_worker - create a new workqueue worker 2152 * @pool: pool the new worker will belong to 2153 * 2154 * Create and start a new worker which is attached to @pool. 2155 * 2156 * CONTEXT: 2157 * Might sleep. Does GFP_KERNEL allocations. 2158 * 2159 * Return: 2160 * Pointer to the newly created worker. 2161 */ 2162 static struct worker *create_worker(struct worker_pool *pool) 2163 { 2164 struct worker *worker; 2165 int id; 2166 char id_buf[23]; 2167 2168 /* ID is needed to determine kthread name */ 2169 id = ida_alloc(&pool->worker_ida, GFP_KERNEL); 2170 if (id < 0) { 2171 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n", 2172 ERR_PTR(id)); 2173 return NULL; 2174 } 2175 2176 worker = alloc_worker(pool->node); 2177 if (!worker) { 2178 pr_err_once("workqueue: Failed to allocate a worker\n"); 2179 goto fail; 2180 } 2181 2182 worker->id = id; 2183 2184 if (pool->cpu >= 0) 2185 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 2186 pool->attrs->nice < 0 ? "H" : ""); 2187 else 2188 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 2189 2190 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 2191 "kworker/%s", id_buf); 2192 if (IS_ERR(worker->task)) { 2193 if (PTR_ERR(worker->task) == -EINTR) { 2194 pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n", 2195 id_buf); 2196 } else { 2197 pr_err_once("workqueue: Failed to create a worker thread: %pe", 2198 worker->task); 2199 } 2200 goto fail; 2201 } 2202 2203 set_user_nice(worker->task, pool->attrs->nice); 2204 kthread_bind_mask(worker->task, pool_allowed_cpus(pool)); 2205 2206 /* successful, attach the worker to the pool */ 2207 worker_attach_to_pool(worker, pool); 2208 2209 /* start the newly created worker */ 2210 raw_spin_lock_irq(&pool->lock); 2211 2212 worker->pool->nr_workers++; 2213 worker_enter_idle(worker); 2214 kick_pool(pool); 2215 2216 /* 2217 * @worker is waiting on a completion in kthread() and will trigger hung 2218 * check if not woken up soon. As kick_pool() might not have waken it 2219 * up, wake it up explicitly once more. 2220 */ 2221 wake_up_process(worker->task); 2222 2223 raw_spin_unlock_irq(&pool->lock); 2224 2225 return worker; 2226 2227 fail: 2228 ida_free(&pool->worker_ida, id); 2229 kfree(worker); 2230 return NULL; 2231 } 2232 2233 static void unbind_worker(struct worker *worker) 2234 { 2235 lockdep_assert_held(&wq_pool_attach_mutex); 2236 2237 kthread_set_per_cpu(worker->task, -1); 2238 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask)) 2239 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0); 2240 else 2241 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0); 2242 } 2243 2244 static void wake_dying_workers(struct list_head *cull_list) 2245 { 2246 struct worker *worker, *tmp; 2247 2248 list_for_each_entry_safe(worker, tmp, cull_list, entry) { 2249 list_del_init(&worker->entry); 2250 unbind_worker(worker); 2251 /* 2252 * If the worker was somehow already running, then it had to be 2253 * in pool->idle_list when set_worker_dying() happened or we 2254 * wouldn't have gotten here. 2255 * 2256 * Thus, the worker must either have observed the WORKER_DIE 2257 * flag, or have set its state to TASK_IDLE. Either way, the 2258 * below will be observed by the worker and is safe to do 2259 * outside of pool->lock. 2260 */ 2261 wake_up_process(worker->task); 2262 } 2263 } 2264 2265 /** 2266 * set_worker_dying - Tag a worker for destruction 2267 * @worker: worker to be destroyed 2268 * @list: transfer worker away from its pool->idle_list and into list 2269 * 2270 * Tag @worker for destruction and adjust @pool stats accordingly. The worker 2271 * should be idle. 2272 * 2273 * CONTEXT: 2274 * raw_spin_lock_irq(pool->lock). 2275 */ 2276 static void set_worker_dying(struct worker *worker, struct list_head *list) 2277 { 2278 struct worker_pool *pool = worker->pool; 2279 2280 lockdep_assert_held(&pool->lock); 2281 lockdep_assert_held(&wq_pool_attach_mutex); 2282 2283 /* sanity check frenzy */ 2284 if (WARN_ON(worker->current_work) || 2285 WARN_ON(!list_empty(&worker->scheduled)) || 2286 WARN_ON(!(worker->flags & WORKER_IDLE))) 2287 return; 2288 2289 pool->nr_workers--; 2290 pool->nr_idle--; 2291 2292 worker->flags |= WORKER_DIE; 2293 2294 list_move(&worker->entry, list); 2295 list_move(&worker->node, &pool->dying_workers); 2296 } 2297 2298 /** 2299 * idle_worker_timeout - check if some idle workers can now be deleted. 2300 * @t: The pool's idle_timer that just expired 2301 * 2302 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in 2303 * worker_leave_idle(), as a worker flicking between idle and active while its 2304 * pool is at the too_many_workers() tipping point would cause too much timer 2305 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let 2306 * it expire and re-evaluate things from there. 2307 */ 2308 static void idle_worker_timeout(struct timer_list *t) 2309 { 2310 struct worker_pool *pool = from_timer(pool, t, idle_timer); 2311 bool do_cull = false; 2312 2313 if (work_pending(&pool->idle_cull_work)) 2314 return; 2315 2316 raw_spin_lock_irq(&pool->lock); 2317 2318 if (too_many_workers(pool)) { 2319 struct worker *worker; 2320 unsigned long expires; 2321 2322 /* idle_list is kept in LIFO order, check the last one */ 2323 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2324 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2325 do_cull = !time_before(jiffies, expires); 2326 2327 if (!do_cull) 2328 mod_timer(&pool->idle_timer, expires); 2329 } 2330 raw_spin_unlock_irq(&pool->lock); 2331 2332 if (do_cull) 2333 queue_work(system_unbound_wq, &pool->idle_cull_work); 2334 } 2335 2336 /** 2337 * idle_cull_fn - cull workers that have been idle for too long. 2338 * @work: the pool's work for handling these idle workers 2339 * 2340 * This goes through a pool's idle workers and gets rid of those that have been 2341 * idle for at least IDLE_WORKER_TIMEOUT seconds. 2342 * 2343 * We don't want to disturb isolated CPUs because of a pcpu kworker being 2344 * culled, so this also resets worker affinity. This requires a sleepable 2345 * context, hence the split between timer callback and work item. 2346 */ 2347 static void idle_cull_fn(struct work_struct *work) 2348 { 2349 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work); 2350 LIST_HEAD(cull_list); 2351 2352 /* 2353 * Grabbing wq_pool_attach_mutex here ensures an already-running worker 2354 * cannot proceed beyong worker_detach_from_pool() in its self-destruct 2355 * path. This is required as a previously-preempted worker could run after 2356 * set_worker_dying() has happened but before wake_dying_workers() did. 2357 */ 2358 mutex_lock(&wq_pool_attach_mutex); 2359 raw_spin_lock_irq(&pool->lock); 2360 2361 while (too_many_workers(pool)) { 2362 struct worker *worker; 2363 unsigned long expires; 2364 2365 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2366 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2367 2368 if (time_before(jiffies, expires)) { 2369 mod_timer(&pool->idle_timer, expires); 2370 break; 2371 } 2372 2373 set_worker_dying(worker, &cull_list); 2374 } 2375 2376 raw_spin_unlock_irq(&pool->lock); 2377 wake_dying_workers(&cull_list); 2378 mutex_unlock(&wq_pool_attach_mutex); 2379 } 2380 2381 static void send_mayday(struct work_struct *work) 2382 { 2383 struct pool_workqueue *pwq = get_work_pwq(work); 2384 struct workqueue_struct *wq = pwq->wq; 2385 2386 lockdep_assert_held(&wq_mayday_lock); 2387 2388 if (!wq->rescuer) 2389 return; 2390 2391 /* mayday mayday mayday */ 2392 if (list_empty(&pwq->mayday_node)) { 2393 /* 2394 * If @pwq is for an unbound wq, its base ref may be put at 2395 * any time due to an attribute change. Pin @pwq until the 2396 * rescuer is done with it. 2397 */ 2398 get_pwq(pwq); 2399 list_add_tail(&pwq->mayday_node, &wq->maydays); 2400 wake_up_process(wq->rescuer->task); 2401 pwq->stats[PWQ_STAT_MAYDAY]++; 2402 } 2403 } 2404 2405 static void pool_mayday_timeout(struct timer_list *t) 2406 { 2407 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 2408 struct work_struct *work; 2409 2410 raw_spin_lock_irq(&pool->lock); 2411 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */ 2412 2413 if (need_to_create_worker(pool)) { 2414 /* 2415 * We've been trying to create a new worker but 2416 * haven't been successful. We might be hitting an 2417 * allocation deadlock. Send distress signals to 2418 * rescuers. 2419 */ 2420 list_for_each_entry(work, &pool->worklist, entry) 2421 send_mayday(work); 2422 } 2423 2424 raw_spin_unlock(&wq_mayday_lock); 2425 raw_spin_unlock_irq(&pool->lock); 2426 2427 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 2428 } 2429 2430 /** 2431 * maybe_create_worker - create a new worker if necessary 2432 * @pool: pool to create a new worker for 2433 * 2434 * Create a new worker for @pool if necessary. @pool is guaranteed to 2435 * have at least one idle worker on return from this function. If 2436 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 2437 * sent to all rescuers with works scheduled on @pool to resolve 2438 * possible allocation deadlock. 2439 * 2440 * On return, need_to_create_worker() is guaranteed to be %false and 2441 * may_start_working() %true. 2442 * 2443 * LOCKING: 2444 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2445 * multiple times. Does GFP_KERNEL allocations. Called only from 2446 * manager. 2447 */ 2448 static void maybe_create_worker(struct worker_pool *pool) 2449 __releases(&pool->lock) 2450 __acquires(&pool->lock) 2451 { 2452 restart: 2453 raw_spin_unlock_irq(&pool->lock); 2454 2455 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 2456 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 2457 2458 while (true) { 2459 if (create_worker(pool) || !need_to_create_worker(pool)) 2460 break; 2461 2462 schedule_timeout_interruptible(CREATE_COOLDOWN); 2463 2464 if (!need_to_create_worker(pool)) 2465 break; 2466 } 2467 2468 del_timer_sync(&pool->mayday_timer); 2469 raw_spin_lock_irq(&pool->lock); 2470 /* 2471 * This is necessary even after a new worker was just successfully 2472 * created as @pool->lock was dropped and the new worker might have 2473 * already become busy. 2474 */ 2475 if (need_to_create_worker(pool)) 2476 goto restart; 2477 } 2478 2479 /** 2480 * manage_workers - manage worker pool 2481 * @worker: self 2482 * 2483 * Assume the manager role and manage the worker pool @worker belongs 2484 * to. At any given time, there can be only zero or one manager per 2485 * pool. The exclusion is handled automatically by this function. 2486 * 2487 * The caller can safely start processing works on false return. On 2488 * true return, it's guaranteed that need_to_create_worker() is false 2489 * and may_start_working() is true. 2490 * 2491 * CONTEXT: 2492 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2493 * multiple times. Does GFP_KERNEL allocations. 2494 * 2495 * Return: 2496 * %false if the pool doesn't need management and the caller can safely 2497 * start processing works, %true if management function was performed and 2498 * the conditions that the caller verified before calling the function may 2499 * no longer be true. 2500 */ 2501 static bool manage_workers(struct worker *worker) 2502 { 2503 struct worker_pool *pool = worker->pool; 2504 2505 if (pool->flags & POOL_MANAGER_ACTIVE) 2506 return false; 2507 2508 pool->flags |= POOL_MANAGER_ACTIVE; 2509 pool->manager = worker; 2510 2511 maybe_create_worker(pool); 2512 2513 pool->manager = NULL; 2514 pool->flags &= ~POOL_MANAGER_ACTIVE; 2515 rcuwait_wake_up(&manager_wait); 2516 return true; 2517 } 2518 2519 /** 2520 * process_one_work - process single work 2521 * @worker: self 2522 * @work: work to process 2523 * 2524 * Process @work. This function contains all the logics necessary to 2525 * process a single work including synchronization against and 2526 * interaction with other workers on the same cpu, queueing and 2527 * flushing. As long as context requirement is met, any worker can 2528 * call this function to process a work. 2529 * 2530 * CONTEXT: 2531 * raw_spin_lock_irq(pool->lock) which is released and regrabbed. 2532 */ 2533 static void process_one_work(struct worker *worker, struct work_struct *work) 2534 __releases(&pool->lock) 2535 __acquires(&pool->lock) 2536 { 2537 struct pool_workqueue *pwq = get_work_pwq(work); 2538 struct worker_pool *pool = worker->pool; 2539 unsigned long work_data; 2540 #ifdef CONFIG_LOCKDEP 2541 /* 2542 * It is permissible to free the struct work_struct from 2543 * inside the function that is called from it, this we need to 2544 * take into account for lockdep too. To avoid bogus "held 2545 * lock freed" warnings as well as problems when looking into 2546 * work->lockdep_map, make a copy and use that here. 2547 */ 2548 struct lockdep_map lockdep_map; 2549 2550 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2551 #endif 2552 /* ensure we're on the correct CPU */ 2553 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2554 raw_smp_processor_id() != pool->cpu); 2555 2556 /* claim and dequeue */ 2557 debug_work_deactivate(work); 2558 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2559 worker->current_work = work; 2560 worker->current_func = work->func; 2561 worker->current_pwq = pwq; 2562 worker->current_at = worker->task->se.sum_exec_runtime; 2563 work_data = *work_data_bits(work); 2564 worker->current_color = get_work_color(work_data); 2565 2566 /* 2567 * Record wq name for cmdline and debug reporting, may get 2568 * overridden through set_worker_desc(). 2569 */ 2570 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 2571 2572 list_del_init(&work->entry); 2573 2574 /* 2575 * CPU intensive works don't participate in concurrency management. 2576 * They're the scheduler's responsibility. This takes @worker out 2577 * of concurrency management and the next code block will chain 2578 * execution of the pending work items. 2579 */ 2580 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE)) 2581 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2582 2583 /* 2584 * Kick @pool if necessary. It's always noop for per-cpu worker pools 2585 * since nr_running would always be >= 1 at this point. This is used to 2586 * chain execution of the pending work items for WORKER_NOT_RUNNING 2587 * workers such as the UNBOUND and CPU_INTENSIVE ones. 2588 */ 2589 kick_pool(pool); 2590 2591 /* 2592 * Record the last pool and clear PENDING which should be the last 2593 * update to @work. Also, do this inside @pool->lock so that 2594 * PENDING and queued state changes happen together while IRQ is 2595 * disabled. 2596 */ 2597 set_work_pool_and_clear_pending(work, pool->id); 2598 2599 pwq->stats[PWQ_STAT_STARTED]++; 2600 raw_spin_unlock_irq(&pool->lock); 2601 2602 lock_map_acquire(&pwq->wq->lockdep_map); 2603 lock_map_acquire(&lockdep_map); 2604 /* 2605 * Strictly speaking we should mark the invariant state without holding 2606 * any locks, that is, before these two lock_map_acquire()'s. 2607 * 2608 * However, that would result in: 2609 * 2610 * A(W1) 2611 * WFC(C) 2612 * A(W1) 2613 * C(C) 2614 * 2615 * Which would create W1->C->W1 dependencies, even though there is no 2616 * actual deadlock possible. There are two solutions, using a 2617 * read-recursive acquire on the work(queue) 'locks', but this will then 2618 * hit the lockdep limitation on recursive locks, or simply discard 2619 * these locks. 2620 * 2621 * AFAICT there is no possible deadlock scenario between the 2622 * flush_work() and complete() primitives (except for single-threaded 2623 * workqueues), so hiding them isn't a problem. 2624 */ 2625 lockdep_invariant_state(true); 2626 trace_workqueue_execute_start(work); 2627 worker->current_func(work); 2628 /* 2629 * While we must be careful to not use "work" after this, the trace 2630 * point will only record its address. 2631 */ 2632 trace_workqueue_execute_end(work, worker->current_func); 2633 pwq->stats[PWQ_STAT_COMPLETED]++; 2634 lock_map_release(&lockdep_map); 2635 lock_map_release(&pwq->wq->lockdep_map); 2636 2637 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2638 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2639 " last function: %ps\n", 2640 current->comm, preempt_count(), task_pid_nr(current), 2641 worker->current_func); 2642 debug_show_held_locks(current); 2643 dump_stack(); 2644 } 2645 2646 /* 2647 * The following prevents a kworker from hogging CPU on !PREEMPTION 2648 * kernels, where a requeueing work item waiting for something to 2649 * happen could deadlock with stop_machine as such work item could 2650 * indefinitely requeue itself while all other CPUs are trapped in 2651 * stop_machine. At the same time, report a quiescent RCU state so 2652 * the same condition doesn't freeze RCU. 2653 */ 2654 cond_resched(); 2655 2656 raw_spin_lock_irq(&pool->lock); 2657 2658 /* 2659 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked 2660 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than 2661 * wq_cpu_intensive_thresh_us. Clear it. 2662 */ 2663 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2664 2665 /* tag the worker for identification in schedule() */ 2666 worker->last_func = worker->current_func; 2667 2668 /* we're done with it, release */ 2669 hash_del(&worker->hentry); 2670 worker->current_work = NULL; 2671 worker->current_func = NULL; 2672 worker->current_pwq = NULL; 2673 worker->current_color = INT_MAX; 2674 pwq_dec_nr_in_flight(pwq, work_data); 2675 } 2676 2677 /** 2678 * process_scheduled_works - process scheduled works 2679 * @worker: self 2680 * 2681 * Process all scheduled works. Please note that the scheduled list 2682 * may change while processing a work, so this function repeatedly 2683 * fetches a work from the top and executes it. 2684 * 2685 * CONTEXT: 2686 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2687 * multiple times. 2688 */ 2689 static void process_scheduled_works(struct worker *worker) 2690 { 2691 struct work_struct *work; 2692 bool first = true; 2693 2694 while ((work = list_first_entry_or_null(&worker->scheduled, 2695 struct work_struct, entry))) { 2696 if (first) { 2697 worker->pool->watchdog_ts = jiffies; 2698 first = false; 2699 } 2700 process_one_work(worker, work); 2701 } 2702 } 2703 2704 static void set_pf_worker(bool val) 2705 { 2706 mutex_lock(&wq_pool_attach_mutex); 2707 if (val) 2708 current->flags |= PF_WQ_WORKER; 2709 else 2710 current->flags &= ~PF_WQ_WORKER; 2711 mutex_unlock(&wq_pool_attach_mutex); 2712 } 2713 2714 /** 2715 * worker_thread - the worker thread function 2716 * @__worker: self 2717 * 2718 * The worker thread function. All workers belong to a worker_pool - 2719 * either a per-cpu one or dynamic unbound one. These workers process all 2720 * work items regardless of their specific target workqueue. The only 2721 * exception is work items which belong to workqueues with a rescuer which 2722 * will be explained in rescuer_thread(). 2723 * 2724 * Return: 0 2725 */ 2726 static int worker_thread(void *__worker) 2727 { 2728 struct worker *worker = __worker; 2729 struct worker_pool *pool = worker->pool; 2730 2731 /* tell the scheduler that this is a workqueue worker */ 2732 set_pf_worker(true); 2733 woke_up: 2734 raw_spin_lock_irq(&pool->lock); 2735 2736 /* am I supposed to die? */ 2737 if (unlikely(worker->flags & WORKER_DIE)) { 2738 raw_spin_unlock_irq(&pool->lock); 2739 set_pf_worker(false); 2740 2741 set_task_comm(worker->task, "kworker/dying"); 2742 ida_free(&pool->worker_ida, worker->id); 2743 worker_detach_from_pool(worker); 2744 WARN_ON_ONCE(!list_empty(&worker->entry)); 2745 kfree(worker); 2746 return 0; 2747 } 2748 2749 worker_leave_idle(worker); 2750 recheck: 2751 /* no more worker necessary? */ 2752 if (!need_more_worker(pool)) 2753 goto sleep; 2754 2755 /* do we need to manage? */ 2756 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2757 goto recheck; 2758 2759 /* 2760 * ->scheduled list can only be filled while a worker is 2761 * preparing to process a work or actually processing it. 2762 * Make sure nobody diddled with it while I was sleeping. 2763 */ 2764 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2765 2766 /* 2767 * Finish PREP stage. We're guaranteed to have at least one idle 2768 * worker or that someone else has already assumed the manager 2769 * role. This is where @worker starts participating in concurrency 2770 * management if applicable and concurrency management is restored 2771 * after being rebound. See rebind_workers() for details. 2772 */ 2773 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2774 2775 do { 2776 struct work_struct *work = 2777 list_first_entry(&pool->worklist, 2778 struct work_struct, entry); 2779 2780 if (assign_work(work, worker, NULL)) 2781 process_scheduled_works(worker); 2782 } while (keep_working(pool)); 2783 2784 worker_set_flags(worker, WORKER_PREP); 2785 sleep: 2786 /* 2787 * pool->lock is held and there's no work to process and no need to 2788 * manage, sleep. Workers are woken up only while holding 2789 * pool->lock or from local cpu, so setting the current state 2790 * before releasing pool->lock is enough to prevent losing any 2791 * event. 2792 */ 2793 worker_enter_idle(worker); 2794 __set_current_state(TASK_IDLE); 2795 raw_spin_unlock_irq(&pool->lock); 2796 schedule(); 2797 goto woke_up; 2798 } 2799 2800 /** 2801 * rescuer_thread - the rescuer thread function 2802 * @__rescuer: self 2803 * 2804 * Workqueue rescuer thread function. There's one rescuer for each 2805 * workqueue which has WQ_MEM_RECLAIM set. 2806 * 2807 * Regular work processing on a pool may block trying to create a new 2808 * worker which uses GFP_KERNEL allocation which has slight chance of 2809 * developing into deadlock if some works currently on the same queue 2810 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2811 * the problem rescuer solves. 2812 * 2813 * When such condition is possible, the pool summons rescuers of all 2814 * workqueues which have works queued on the pool and let them process 2815 * those works so that forward progress can be guaranteed. 2816 * 2817 * This should happen rarely. 2818 * 2819 * Return: 0 2820 */ 2821 static int rescuer_thread(void *__rescuer) 2822 { 2823 struct worker *rescuer = __rescuer; 2824 struct workqueue_struct *wq = rescuer->rescue_wq; 2825 bool should_stop; 2826 2827 set_user_nice(current, RESCUER_NICE_LEVEL); 2828 2829 /* 2830 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2831 * doesn't participate in concurrency management. 2832 */ 2833 set_pf_worker(true); 2834 repeat: 2835 set_current_state(TASK_IDLE); 2836 2837 /* 2838 * By the time the rescuer is requested to stop, the workqueue 2839 * shouldn't have any work pending, but @wq->maydays may still have 2840 * pwq(s) queued. This can happen by non-rescuer workers consuming 2841 * all the work items before the rescuer got to them. Go through 2842 * @wq->maydays processing before acting on should_stop so that the 2843 * list is always empty on exit. 2844 */ 2845 should_stop = kthread_should_stop(); 2846 2847 /* see whether any pwq is asking for help */ 2848 raw_spin_lock_irq(&wq_mayday_lock); 2849 2850 while (!list_empty(&wq->maydays)) { 2851 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2852 struct pool_workqueue, mayday_node); 2853 struct worker_pool *pool = pwq->pool; 2854 struct work_struct *work, *n; 2855 2856 __set_current_state(TASK_RUNNING); 2857 list_del_init(&pwq->mayday_node); 2858 2859 raw_spin_unlock_irq(&wq_mayday_lock); 2860 2861 worker_attach_to_pool(rescuer, pool); 2862 2863 raw_spin_lock_irq(&pool->lock); 2864 2865 /* 2866 * Slurp in all works issued via this workqueue and 2867 * process'em. 2868 */ 2869 WARN_ON_ONCE(!list_empty(&rescuer->scheduled)); 2870 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2871 if (get_work_pwq(work) == pwq && 2872 assign_work(work, rescuer, &n)) 2873 pwq->stats[PWQ_STAT_RESCUED]++; 2874 } 2875 2876 if (!list_empty(&rescuer->scheduled)) { 2877 process_scheduled_works(rescuer); 2878 2879 /* 2880 * The above execution of rescued work items could 2881 * have created more to rescue through 2882 * pwq_activate_first_inactive() or chained 2883 * queueing. Let's put @pwq back on mayday list so 2884 * that such back-to-back work items, which may be 2885 * being used to relieve memory pressure, don't 2886 * incur MAYDAY_INTERVAL delay inbetween. 2887 */ 2888 if (pwq->nr_active && need_to_create_worker(pool)) { 2889 raw_spin_lock(&wq_mayday_lock); 2890 /* 2891 * Queue iff we aren't racing destruction 2892 * and somebody else hasn't queued it already. 2893 */ 2894 if (wq->rescuer && list_empty(&pwq->mayday_node)) { 2895 get_pwq(pwq); 2896 list_add_tail(&pwq->mayday_node, &wq->maydays); 2897 } 2898 raw_spin_unlock(&wq_mayday_lock); 2899 } 2900 } 2901 2902 /* 2903 * Put the reference grabbed by send_mayday(). @pool won't 2904 * go away while we're still attached to it. 2905 */ 2906 put_pwq(pwq); 2907 2908 /* 2909 * Leave this pool. Notify regular workers; otherwise, we end up 2910 * with 0 concurrency and stalling the execution. 2911 */ 2912 kick_pool(pool); 2913 2914 raw_spin_unlock_irq(&pool->lock); 2915 2916 worker_detach_from_pool(rescuer); 2917 2918 raw_spin_lock_irq(&wq_mayday_lock); 2919 } 2920 2921 raw_spin_unlock_irq(&wq_mayday_lock); 2922 2923 if (should_stop) { 2924 __set_current_state(TASK_RUNNING); 2925 set_pf_worker(false); 2926 return 0; 2927 } 2928 2929 /* rescuers should never participate in concurrency management */ 2930 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2931 schedule(); 2932 goto repeat; 2933 } 2934 2935 /** 2936 * check_flush_dependency - check for flush dependency sanity 2937 * @target_wq: workqueue being flushed 2938 * @target_work: work item being flushed (NULL for workqueue flushes) 2939 * 2940 * %current is trying to flush the whole @target_wq or @target_work on it. 2941 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2942 * reclaiming memory or running on a workqueue which doesn't have 2943 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2944 * a deadlock. 2945 */ 2946 static void check_flush_dependency(struct workqueue_struct *target_wq, 2947 struct work_struct *target_work) 2948 { 2949 work_func_t target_func = target_work ? target_work->func : NULL; 2950 struct worker *worker; 2951 2952 if (target_wq->flags & WQ_MEM_RECLAIM) 2953 return; 2954 2955 worker = current_wq_worker(); 2956 2957 WARN_ONCE(current->flags & PF_MEMALLOC, 2958 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 2959 current->pid, current->comm, target_wq->name, target_func); 2960 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2961 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2962 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 2963 worker->current_pwq->wq->name, worker->current_func, 2964 target_wq->name, target_func); 2965 } 2966 2967 struct wq_barrier { 2968 struct work_struct work; 2969 struct completion done; 2970 struct task_struct *task; /* purely informational */ 2971 }; 2972 2973 static void wq_barrier_func(struct work_struct *work) 2974 { 2975 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2976 complete(&barr->done); 2977 } 2978 2979 /** 2980 * insert_wq_barrier - insert a barrier work 2981 * @pwq: pwq to insert barrier into 2982 * @barr: wq_barrier to insert 2983 * @target: target work to attach @barr to 2984 * @worker: worker currently executing @target, NULL if @target is not executing 2985 * 2986 * @barr is linked to @target such that @barr is completed only after 2987 * @target finishes execution. Please note that the ordering 2988 * guarantee is observed only with respect to @target and on the local 2989 * cpu. 2990 * 2991 * Currently, a queued barrier can't be canceled. This is because 2992 * try_to_grab_pending() can't determine whether the work to be 2993 * grabbed is at the head of the queue and thus can't clear LINKED 2994 * flag of the previous work while there must be a valid next work 2995 * after a work with LINKED flag set. 2996 * 2997 * Note that when @worker is non-NULL, @target may be modified 2998 * underneath us, so we can't reliably determine pwq from @target. 2999 * 3000 * CONTEXT: 3001 * raw_spin_lock_irq(pool->lock). 3002 */ 3003 static void insert_wq_barrier(struct pool_workqueue *pwq, 3004 struct wq_barrier *barr, 3005 struct work_struct *target, struct worker *worker) 3006 { 3007 unsigned int work_flags = 0; 3008 unsigned int work_color; 3009 struct list_head *head; 3010 3011 /* 3012 * debugobject calls are safe here even with pool->lock locked 3013 * as we know for sure that this will not trigger any of the 3014 * checks and call back into the fixup functions where we 3015 * might deadlock. 3016 */ 3017 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 3018 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 3019 3020 init_completion_map(&barr->done, &target->lockdep_map); 3021 3022 barr->task = current; 3023 3024 /* The barrier work item does not participate in pwq->nr_active. */ 3025 work_flags |= WORK_STRUCT_INACTIVE; 3026 3027 /* 3028 * If @target is currently being executed, schedule the 3029 * barrier to the worker; otherwise, put it after @target. 3030 */ 3031 if (worker) { 3032 head = worker->scheduled.next; 3033 work_color = worker->current_color; 3034 } else { 3035 unsigned long *bits = work_data_bits(target); 3036 3037 head = target->entry.next; 3038 /* there can already be other linked works, inherit and set */ 3039 work_flags |= *bits & WORK_STRUCT_LINKED; 3040 work_color = get_work_color(*bits); 3041 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 3042 } 3043 3044 pwq->nr_in_flight[work_color]++; 3045 work_flags |= work_color_to_flags(work_color); 3046 3047 insert_work(pwq, &barr->work, head, work_flags); 3048 } 3049 3050 /** 3051 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 3052 * @wq: workqueue being flushed 3053 * @flush_color: new flush color, < 0 for no-op 3054 * @work_color: new work color, < 0 for no-op 3055 * 3056 * Prepare pwqs for workqueue flushing. 3057 * 3058 * If @flush_color is non-negative, flush_color on all pwqs should be 3059 * -1. If no pwq has in-flight commands at the specified color, all 3060 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 3061 * has in flight commands, its pwq->flush_color is set to 3062 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 3063 * wakeup logic is armed and %true is returned. 3064 * 3065 * The caller should have initialized @wq->first_flusher prior to 3066 * calling this function with non-negative @flush_color. If 3067 * @flush_color is negative, no flush color update is done and %false 3068 * is returned. 3069 * 3070 * If @work_color is non-negative, all pwqs should have the same 3071 * work_color which is previous to @work_color and all will be 3072 * advanced to @work_color. 3073 * 3074 * CONTEXT: 3075 * mutex_lock(wq->mutex). 3076 * 3077 * Return: 3078 * %true if @flush_color >= 0 and there's something to flush. %false 3079 * otherwise. 3080 */ 3081 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 3082 int flush_color, int work_color) 3083 { 3084 bool wait = false; 3085 struct pool_workqueue *pwq; 3086 3087 if (flush_color >= 0) { 3088 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 3089 atomic_set(&wq->nr_pwqs_to_flush, 1); 3090 } 3091 3092 for_each_pwq(pwq, wq) { 3093 struct worker_pool *pool = pwq->pool; 3094 3095 raw_spin_lock_irq(&pool->lock); 3096 3097 if (flush_color >= 0) { 3098 WARN_ON_ONCE(pwq->flush_color != -1); 3099 3100 if (pwq->nr_in_flight[flush_color]) { 3101 pwq->flush_color = flush_color; 3102 atomic_inc(&wq->nr_pwqs_to_flush); 3103 wait = true; 3104 } 3105 } 3106 3107 if (work_color >= 0) { 3108 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 3109 pwq->work_color = work_color; 3110 } 3111 3112 raw_spin_unlock_irq(&pool->lock); 3113 } 3114 3115 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 3116 complete(&wq->first_flusher->done); 3117 3118 return wait; 3119 } 3120 3121 /** 3122 * __flush_workqueue - ensure that any scheduled work has run to completion. 3123 * @wq: workqueue to flush 3124 * 3125 * This function sleeps until all work items which were queued on entry 3126 * have finished execution, but it is not livelocked by new incoming ones. 3127 */ 3128 void __flush_workqueue(struct workqueue_struct *wq) 3129 { 3130 struct wq_flusher this_flusher = { 3131 .list = LIST_HEAD_INIT(this_flusher.list), 3132 .flush_color = -1, 3133 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 3134 }; 3135 int next_color; 3136 3137 if (WARN_ON(!wq_online)) 3138 return; 3139 3140 lock_map_acquire(&wq->lockdep_map); 3141 lock_map_release(&wq->lockdep_map); 3142 3143 mutex_lock(&wq->mutex); 3144 3145 /* 3146 * Start-to-wait phase 3147 */ 3148 next_color = work_next_color(wq->work_color); 3149 3150 if (next_color != wq->flush_color) { 3151 /* 3152 * Color space is not full. The current work_color 3153 * becomes our flush_color and work_color is advanced 3154 * by one. 3155 */ 3156 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 3157 this_flusher.flush_color = wq->work_color; 3158 wq->work_color = next_color; 3159 3160 if (!wq->first_flusher) { 3161 /* no flush in progress, become the first flusher */ 3162 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3163 3164 wq->first_flusher = &this_flusher; 3165 3166 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 3167 wq->work_color)) { 3168 /* nothing to flush, done */ 3169 wq->flush_color = next_color; 3170 wq->first_flusher = NULL; 3171 goto out_unlock; 3172 } 3173 } else { 3174 /* wait in queue */ 3175 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 3176 list_add_tail(&this_flusher.list, &wq->flusher_queue); 3177 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 3178 } 3179 } else { 3180 /* 3181 * Oops, color space is full, wait on overflow queue. 3182 * The next flush completion will assign us 3183 * flush_color and transfer to flusher_queue. 3184 */ 3185 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 3186 } 3187 3188 check_flush_dependency(wq, NULL); 3189 3190 mutex_unlock(&wq->mutex); 3191 3192 wait_for_completion(&this_flusher.done); 3193 3194 /* 3195 * Wake-up-and-cascade phase 3196 * 3197 * First flushers are responsible for cascading flushes and 3198 * handling overflow. Non-first flushers can simply return. 3199 */ 3200 if (READ_ONCE(wq->first_flusher) != &this_flusher) 3201 return; 3202 3203 mutex_lock(&wq->mutex); 3204 3205 /* we might have raced, check again with mutex held */ 3206 if (wq->first_flusher != &this_flusher) 3207 goto out_unlock; 3208 3209 WRITE_ONCE(wq->first_flusher, NULL); 3210 3211 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 3212 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3213 3214 while (true) { 3215 struct wq_flusher *next, *tmp; 3216 3217 /* complete all the flushers sharing the current flush color */ 3218 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 3219 if (next->flush_color != wq->flush_color) 3220 break; 3221 list_del_init(&next->list); 3222 complete(&next->done); 3223 } 3224 3225 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 3226 wq->flush_color != work_next_color(wq->work_color)); 3227 3228 /* this flush_color is finished, advance by one */ 3229 wq->flush_color = work_next_color(wq->flush_color); 3230 3231 /* one color has been freed, handle overflow queue */ 3232 if (!list_empty(&wq->flusher_overflow)) { 3233 /* 3234 * Assign the same color to all overflowed 3235 * flushers, advance work_color and append to 3236 * flusher_queue. This is the start-to-wait 3237 * phase for these overflowed flushers. 3238 */ 3239 list_for_each_entry(tmp, &wq->flusher_overflow, list) 3240 tmp->flush_color = wq->work_color; 3241 3242 wq->work_color = work_next_color(wq->work_color); 3243 3244 list_splice_tail_init(&wq->flusher_overflow, 3245 &wq->flusher_queue); 3246 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 3247 } 3248 3249 if (list_empty(&wq->flusher_queue)) { 3250 WARN_ON_ONCE(wq->flush_color != wq->work_color); 3251 break; 3252 } 3253 3254 /* 3255 * Need to flush more colors. Make the next flusher 3256 * the new first flusher and arm pwqs. 3257 */ 3258 WARN_ON_ONCE(wq->flush_color == wq->work_color); 3259 WARN_ON_ONCE(wq->flush_color != next->flush_color); 3260 3261 list_del_init(&next->list); 3262 wq->first_flusher = next; 3263 3264 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 3265 break; 3266 3267 /* 3268 * Meh... this color is already done, clear first 3269 * flusher and repeat cascading. 3270 */ 3271 wq->first_flusher = NULL; 3272 } 3273 3274 out_unlock: 3275 mutex_unlock(&wq->mutex); 3276 } 3277 EXPORT_SYMBOL(__flush_workqueue); 3278 3279 /** 3280 * drain_workqueue - drain a workqueue 3281 * @wq: workqueue to drain 3282 * 3283 * Wait until the workqueue becomes empty. While draining is in progress, 3284 * only chain queueing is allowed. IOW, only currently pending or running 3285 * work items on @wq can queue further work items on it. @wq is flushed 3286 * repeatedly until it becomes empty. The number of flushing is determined 3287 * by the depth of chaining and should be relatively short. Whine if it 3288 * takes too long. 3289 */ 3290 void drain_workqueue(struct workqueue_struct *wq) 3291 { 3292 unsigned int flush_cnt = 0; 3293 struct pool_workqueue *pwq; 3294 3295 /* 3296 * __queue_work() needs to test whether there are drainers, is much 3297 * hotter than drain_workqueue() and already looks at @wq->flags. 3298 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 3299 */ 3300 mutex_lock(&wq->mutex); 3301 if (!wq->nr_drainers++) 3302 wq->flags |= __WQ_DRAINING; 3303 mutex_unlock(&wq->mutex); 3304 reflush: 3305 __flush_workqueue(wq); 3306 3307 mutex_lock(&wq->mutex); 3308 3309 for_each_pwq(pwq, wq) { 3310 bool drained; 3311 3312 raw_spin_lock_irq(&pwq->pool->lock); 3313 drained = !pwq->nr_active && list_empty(&pwq->inactive_works); 3314 raw_spin_unlock_irq(&pwq->pool->lock); 3315 3316 if (drained) 3317 continue; 3318 3319 if (++flush_cnt == 10 || 3320 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 3321 pr_warn("workqueue %s: %s() isn't complete after %u tries\n", 3322 wq->name, __func__, flush_cnt); 3323 3324 mutex_unlock(&wq->mutex); 3325 goto reflush; 3326 } 3327 3328 if (!--wq->nr_drainers) 3329 wq->flags &= ~__WQ_DRAINING; 3330 mutex_unlock(&wq->mutex); 3331 } 3332 EXPORT_SYMBOL_GPL(drain_workqueue); 3333 3334 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 3335 bool from_cancel) 3336 { 3337 struct worker *worker = NULL; 3338 struct worker_pool *pool; 3339 struct pool_workqueue *pwq; 3340 3341 might_sleep(); 3342 3343 rcu_read_lock(); 3344 pool = get_work_pool(work); 3345 if (!pool) { 3346 rcu_read_unlock(); 3347 return false; 3348 } 3349 3350 raw_spin_lock_irq(&pool->lock); 3351 /* see the comment in try_to_grab_pending() with the same code */ 3352 pwq = get_work_pwq(work); 3353 if (pwq) { 3354 if (unlikely(pwq->pool != pool)) 3355 goto already_gone; 3356 } else { 3357 worker = find_worker_executing_work(pool, work); 3358 if (!worker) 3359 goto already_gone; 3360 pwq = worker->current_pwq; 3361 } 3362 3363 check_flush_dependency(pwq->wq, work); 3364 3365 insert_wq_barrier(pwq, barr, work, worker); 3366 raw_spin_unlock_irq(&pool->lock); 3367 3368 /* 3369 * Force a lock recursion deadlock when using flush_work() inside a 3370 * single-threaded or rescuer equipped workqueue. 3371 * 3372 * For single threaded workqueues the deadlock happens when the work 3373 * is after the work issuing the flush_work(). For rescuer equipped 3374 * workqueues the deadlock happens when the rescuer stalls, blocking 3375 * forward progress. 3376 */ 3377 if (!from_cancel && 3378 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) { 3379 lock_map_acquire(&pwq->wq->lockdep_map); 3380 lock_map_release(&pwq->wq->lockdep_map); 3381 } 3382 rcu_read_unlock(); 3383 return true; 3384 already_gone: 3385 raw_spin_unlock_irq(&pool->lock); 3386 rcu_read_unlock(); 3387 return false; 3388 } 3389 3390 static bool __flush_work(struct work_struct *work, bool from_cancel) 3391 { 3392 struct wq_barrier barr; 3393 3394 if (WARN_ON(!wq_online)) 3395 return false; 3396 3397 if (WARN_ON(!work->func)) 3398 return false; 3399 3400 lock_map_acquire(&work->lockdep_map); 3401 lock_map_release(&work->lockdep_map); 3402 3403 if (start_flush_work(work, &barr, from_cancel)) { 3404 wait_for_completion(&barr.done); 3405 destroy_work_on_stack(&barr.work); 3406 return true; 3407 } else { 3408 return false; 3409 } 3410 } 3411 3412 /** 3413 * flush_work - wait for a work to finish executing the last queueing instance 3414 * @work: the work to flush 3415 * 3416 * Wait until @work has finished execution. @work is guaranteed to be idle 3417 * on return if it hasn't been requeued since flush started. 3418 * 3419 * Return: 3420 * %true if flush_work() waited for the work to finish execution, 3421 * %false if it was already idle. 3422 */ 3423 bool flush_work(struct work_struct *work) 3424 { 3425 return __flush_work(work, false); 3426 } 3427 EXPORT_SYMBOL_GPL(flush_work); 3428 3429 struct cwt_wait { 3430 wait_queue_entry_t wait; 3431 struct work_struct *work; 3432 }; 3433 3434 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 3435 { 3436 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 3437 3438 if (cwait->work != key) 3439 return 0; 3440 return autoremove_wake_function(wait, mode, sync, key); 3441 } 3442 3443 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 3444 { 3445 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 3446 unsigned long flags; 3447 int ret; 3448 3449 do { 3450 ret = try_to_grab_pending(work, is_dwork, &flags); 3451 /* 3452 * If someone else is already canceling, wait for it to 3453 * finish. flush_work() doesn't work for PREEMPT_NONE 3454 * because we may get scheduled between @work's completion 3455 * and the other canceling task resuming and clearing 3456 * CANCELING - flush_work() will return false immediately 3457 * as @work is no longer busy, try_to_grab_pending() will 3458 * return -ENOENT as @work is still being canceled and the 3459 * other canceling task won't be able to clear CANCELING as 3460 * we're hogging the CPU. 3461 * 3462 * Let's wait for completion using a waitqueue. As this 3463 * may lead to the thundering herd problem, use a custom 3464 * wake function which matches @work along with exclusive 3465 * wait and wakeup. 3466 */ 3467 if (unlikely(ret == -ENOENT)) { 3468 struct cwt_wait cwait; 3469 3470 init_wait(&cwait.wait); 3471 cwait.wait.func = cwt_wakefn; 3472 cwait.work = work; 3473 3474 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 3475 TASK_UNINTERRUPTIBLE); 3476 if (work_is_canceling(work)) 3477 schedule(); 3478 finish_wait(&cancel_waitq, &cwait.wait); 3479 } 3480 } while (unlikely(ret < 0)); 3481 3482 /* tell other tasks trying to grab @work to back off */ 3483 mark_work_canceling(work); 3484 local_irq_restore(flags); 3485 3486 /* 3487 * This allows canceling during early boot. We know that @work 3488 * isn't executing. 3489 */ 3490 if (wq_online) 3491 __flush_work(work, true); 3492 3493 clear_work_data(work); 3494 3495 /* 3496 * Paired with prepare_to_wait() above so that either 3497 * waitqueue_active() is visible here or !work_is_canceling() is 3498 * visible there. 3499 */ 3500 smp_mb(); 3501 if (waitqueue_active(&cancel_waitq)) 3502 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 3503 3504 return ret; 3505 } 3506 3507 /** 3508 * cancel_work_sync - cancel a work and wait for it to finish 3509 * @work: the work to cancel 3510 * 3511 * Cancel @work and wait for its execution to finish. This function 3512 * can be used even if the work re-queues itself or migrates to 3513 * another workqueue. On return from this function, @work is 3514 * guaranteed to be not pending or executing on any CPU. 3515 * 3516 * cancel_work_sync(&delayed_work->work) must not be used for 3517 * delayed_work's. Use cancel_delayed_work_sync() instead. 3518 * 3519 * The caller must ensure that the workqueue on which @work was last 3520 * queued can't be destroyed before this function returns. 3521 * 3522 * Return: 3523 * %true if @work was pending, %false otherwise. 3524 */ 3525 bool cancel_work_sync(struct work_struct *work) 3526 { 3527 return __cancel_work_timer(work, false); 3528 } 3529 EXPORT_SYMBOL_GPL(cancel_work_sync); 3530 3531 /** 3532 * flush_delayed_work - wait for a dwork to finish executing the last queueing 3533 * @dwork: the delayed work to flush 3534 * 3535 * Delayed timer is cancelled and the pending work is queued for 3536 * immediate execution. Like flush_work(), this function only 3537 * considers the last queueing instance of @dwork. 3538 * 3539 * Return: 3540 * %true if flush_work() waited for the work to finish execution, 3541 * %false if it was already idle. 3542 */ 3543 bool flush_delayed_work(struct delayed_work *dwork) 3544 { 3545 local_irq_disable(); 3546 if (del_timer_sync(&dwork->timer)) 3547 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 3548 local_irq_enable(); 3549 return flush_work(&dwork->work); 3550 } 3551 EXPORT_SYMBOL(flush_delayed_work); 3552 3553 /** 3554 * flush_rcu_work - wait for a rwork to finish executing the last queueing 3555 * @rwork: the rcu work to flush 3556 * 3557 * Return: 3558 * %true if flush_rcu_work() waited for the work to finish execution, 3559 * %false if it was already idle. 3560 */ 3561 bool flush_rcu_work(struct rcu_work *rwork) 3562 { 3563 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 3564 rcu_barrier(); 3565 flush_work(&rwork->work); 3566 return true; 3567 } else { 3568 return flush_work(&rwork->work); 3569 } 3570 } 3571 EXPORT_SYMBOL(flush_rcu_work); 3572 3573 static bool __cancel_work(struct work_struct *work, bool is_dwork) 3574 { 3575 unsigned long flags; 3576 int ret; 3577 3578 do { 3579 ret = try_to_grab_pending(work, is_dwork, &flags); 3580 } while (unlikely(ret == -EAGAIN)); 3581 3582 if (unlikely(ret < 0)) 3583 return false; 3584 3585 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 3586 local_irq_restore(flags); 3587 return ret; 3588 } 3589 3590 /* 3591 * See cancel_delayed_work() 3592 */ 3593 bool cancel_work(struct work_struct *work) 3594 { 3595 return __cancel_work(work, false); 3596 } 3597 EXPORT_SYMBOL(cancel_work); 3598 3599 /** 3600 * cancel_delayed_work - cancel a delayed work 3601 * @dwork: delayed_work to cancel 3602 * 3603 * Kill off a pending delayed_work. 3604 * 3605 * Return: %true if @dwork was pending and canceled; %false if it wasn't 3606 * pending. 3607 * 3608 * Note: 3609 * The work callback function may still be running on return, unless 3610 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 3611 * use cancel_delayed_work_sync() to wait on it. 3612 * 3613 * This function is safe to call from any context including IRQ handler. 3614 */ 3615 bool cancel_delayed_work(struct delayed_work *dwork) 3616 { 3617 return __cancel_work(&dwork->work, true); 3618 } 3619 EXPORT_SYMBOL(cancel_delayed_work); 3620 3621 /** 3622 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3623 * @dwork: the delayed work cancel 3624 * 3625 * This is cancel_work_sync() for delayed works. 3626 * 3627 * Return: 3628 * %true if @dwork was pending, %false otherwise. 3629 */ 3630 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3631 { 3632 return __cancel_work_timer(&dwork->work, true); 3633 } 3634 EXPORT_SYMBOL(cancel_delayed_work_sync); 3635 3636 /** 3637 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3638 * @func: the function to call 3639 * 3640 * schedule_on_each_cpu() executes @func on each online CPU using the 3641 * system workqueue and blocks until all CPUs have completed. 3642 * schedule_on_each_cpu() is very slow. 3643 * 3644 * Return: 3645 * 0 on success, -errno on failure. 3646 */ 3647 int schedule_on_each_cpu(work_func_t func) 3648 { 3649 int cpu; 3650 struct work_struct __percpu *works; 3651 3652 works = alloc_percpu(struct work_struct); 3653 if (!works) 3654 return -ENOMEM; 3655 3656 cpus_read_lock(); 3657 3658 for_each_online_cpu(cpu) { 3659 struct work_struct *work = per_cpu_ptr(works, cpu); 3660 3661 INIT_WORK(work, func); 3662 schedule_work_on(cpu, work); 3663 } 3664 3665 for_each_online_cpu(cpu) 3666 flush_work(per_cpu_ptr(works, cpu)); 3667 3668 cpus_read_unlock(); 3669 free_percpu(works); 3670 return 0; 3671 } 3672 3673 /** 3674 * execute_in_process_context - reliably execute the routine with user context 3675 * @fn: the function to execute 3676 * @ew: guaranteed storage for the execute work structure (must 3677 * be available when the work executes) 3678 * 3679 * Executes the function immediately if process context is available, 3680 * otherwise schedules the function for delayed execution. 3681 * 3682 * Return: 0 - function was executed 3683 * 1 - function was scheduled for execution 3684 */ 3685 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3686 { 3687 if (!in_interrupt()) { 3688 fn(&ew->work); 3689 return 0; 3690 } 3691 3692 INIT_WORK(&ew->work, fn); 3693 schedule_work(&ew->work); 3694 3695 return 1; 3696 } 3697 EXPORT_SYMBOL_GPL(execute_in_process_context); 3698 3699 /** 3700 * free_workqueue_attrs - free a workqueue_attrs 3701 * @attrs: workqueue_attrs to free 3702 * 3703 * Undo alloc_workqueue_attrs(). 3704 */ 3705 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3706 { 3707 if (attrs) { 3708 free_cpumask_var(attrs->cpumask); 3709 free_cpumask_var(attrs->__pod_cpumask); 3710 kfree(attrs); 3711 } 3712 } 3713 3714 /** 3715 * alloc_workqueue_attrs - allocate a workqueue_attrs 3716 * 3717 * Allocate a new workqueue_attrs, initialize with default settings and 3718 * return it. 3719 * 3720 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3721 */ 3722 struct workqueue_attrs *alloc_workqueue_attrs(void) 3723 { 3724 struct workqueue_attrs *attrs; 3725 3726 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); 3727 if (!attrs) 3728 goto fail; 3729 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) 3730 goto fail; 3731 if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL)) 3732 goto fail; 3733 3734 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3735 attrs->affn_scope = WQ_AFFN_DFL; 3736 return attrs; 3737 fail: 3738 free_workqueue_attrs(attrs); 3739 return NULL; 3740 } 3741 3742 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3743 const struct workqueue_attrs *from) 3744 { 3745 to->nice = from->nice; 3746 cpumask_copy(to->cpumask, from->cpumask); 3747 cpumask_copy(to->__pod_cpumask, from->__pod_cpumask); 3748 to->affn_strict = from->affn_strict; 3749 3750 /* 3751 * Unlike hash and equality test, copying shouldn't ignore wq-only 3752 * fields as copying is used for both pool and wq attrs. Instead, 3753 * get_unbound_pool() explicitly clears the fields. 3754 */ 3755 to->affn_scope = from->affn_scope; 3756 to->ordered = from->ordered; 3757 } 3758 3759 /* 3760 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the 3761 * comments in 'struct workqueue_attrs' definition. 3762 */ 3763 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs) 3764 { 3765 attrs->affn_scope = WQ_AFFN_NR_TYPES; 3766 attrs->ordered = false; 3767 } 3768 3769 /* hash value of the content of @attr */ 3770 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3771 { 3772 u32 hash = 0; 3773 3774 hash = jhash_1word(attrs->nice, hash); 3775 hash = jhash(cpumask_bits(attrs->cpumask), 3776 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3777 hash = jhash(cpumask_bits(attrs->__pod_cpumask), 3778 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3779 hash = jhash_1word(attrs->affn_strict, hash); 3780 return hash; 3781 } 3782 3783 /* content equality test */ 3784 static bool wqattrs_equal(const struct workqueue_attrs *a, 3785 const struct workqueue_attrs *b) 3786 { 3787 if (a->nice != b->nice) 3788 return false; 3789 if (!cpumask_equal(a->cpumask, b->cpumask)) 3790 return false; 3791 if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask)) 3792 return false; 3793 if (a->affn_strict != b->affn_strict) 3794 return false; 3795 return true; 3796 } 3797 3798 /* Update @attrs with actually available CPUs */ 3799 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs, 3800 const cpumask_t *unbound_cpumask) 3801 { 3802 /* 3803 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If 3804 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to 3805 * @unbound_cpumask. 3806 */ 3807 cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask); 3808 if (unlikely(cpumask_empty(attrs->cpumask))) 3809 cpumask_copy(attrs->cpumask, unbound_cpumask); 3810 } 3811 3812 /* find wq_pod_type to use for @attrs */ 3813 static const struct wq_pod_type * 3814 wqattrs_pod_type(const struct workqueue_attrs *attrs) 3815 { 3816 enum wq_affn_scope scope; 3817 struct wq_pod_type *pt; 3818 3819 /* to synchronize access to wq_affn_dfl */ 3820 lockdep_assert_held(&wq_pool_mutex); 3821 3822 if (attrs->affn_scope == WQ_AFFN_DFL) 3823 scope = wq_affn_dfl; 3824 else 3825 scope = attrs->affn_scope; 3826 3827 pt = &wq_pod_types[scope]; 3828 3829 if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) && 3830 likely(pt->nr_pods)) 3831 return pt; 3832 3833 /* 3834 * Before workqueue_init_topology(), only SYSTEM is available which is 3835 * initialized in workqueue_init_early(). 3836 */ 3837 pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 3838 BUG_ON(!pt->nr_pods); 3839 return pt; 3840 } 3841 3842 /** 3843 * init_worker_pool - initialize a newly zalloc'd worker_pool 3844 * @pool: worker_pool to initialize 3845 * 3846 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3847 * 3848 * Return: 0 on success, -errno on failure. Even on failure, all fields 3849 * inside @pool proper are initialized and put_unbound_pool() can be called 3850 * on @pool safely to release it. 3851 */ 3852 static int init_worker_pool(struct worker_pool *pool) 3853 { 3854 raw_spin_lock_init(&pool->lock); 3855 pool->id = -1; 3856 pool->cpu = -1; 3857 pool->node = NUMA_NO_NODE; 3858 pool->flags |= POOL_DISASSOCIATED; 3859 pool->watchdog_ts = jiffies; 3860 INIT_LIST_HEAD(&pool->worklist); 3861 INIT_LIST_HEAD(&pool->idle_list); 3862 hash_init(pool->busy_hash); 3863 3864 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 3865 INIT_WORK(&pool->idle_cull_work, idle_cull_fn); 3866 3867 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 3868 3869 INIT_LIST_HEAD(&pool->workers); 3870 INIT_LIST_HEAD(&pool->dying_workers); 3871 3872 ida_init(&pool->worker_ida); 3873 INIT_HLIST_NODE(&pool->hash_node); 3874 pool->refcnt = 1; 3875 3876 /* shouldn't fail above this point */ 3877 pool->attrs = alloc_workqueue_attrs(); 3878 if (!pool->attrs) 3879 return -ENOMEM; 3880 3881 wqattrs_clear_for_pool(pool->attrs); 3882 3883 return 0; 3884 } 3885 3886 #ifdef CONFIG_LOCKDEP 3887 static void wq_init_lockdep(struct workqueue_struct *wq) 3888 { 3889 char *lock_name; 3890 3891 lockdep_register_key(&wq->key); 3892 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 3893 if (!lock_name) 3894 lock_name = wq->name; 3895 3896 wq->lock_name = lock_name; 3897 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); 3898 } 3899 3900 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3901 { 3902 lockdep_unregister_key(&wq->key); 3903 } 3904 3905 static void wq_free_lockdep(struct workqueue_struct *wq) 3906 { 3907 if (wq->lock_name != wq->name) 3908 kfree(wq->lock_name); 3909 } 3910 #else 3911 static void wq_init_lockdep(struct workqueue_struct *wq) 3912 { 3913 } 3914 3915 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3916 { 3917 } 3918 3919 static void wq_free_lockdep(struct workqueue_struct *wq) 3920 { 3921 } 3922 #endif 3923 3924 static void rcu_free_wq(struct rcu_head *rcu) 3925 { 3926 struct workqueue_struct *wq = 3927 container_of(rcu, struct workqueue_struct, rcu); 3928 3929 wq_free_lockdep(wq); 3930 free_percpu(wq->cpu_pwq); 3931 free_workqueue_attrs(wq->unbound_attrs); 3932 kfree(wq); 3933 } 3934 3935 static void rcu_free_pool(struct rcu_head *rcu) 3936 { 3937 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3938 3939 ida_destroy(&pool->worker_ida); 3940 free_workqueue_attrs(pool->attrs); 3941 kfree(pool); 3942 } 3943 3944 /** 3945 * put_unbound_pool - put a worker_pool 3946 * @pool: worker_pool to put 3947 * 3948 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 3949 * safe manner. get_unbound_pool() calls this function on its failure path 3950 * and this function should be able to release pools which went through, 3951 * successfully or not, init_worker_pool(). 3952 * 3953 * Should be called with wq_pool_mutex held. 3954 */ 3955 static void put_unbound_pool(struct worker_pool *pool) 3956 { 3957 DECLARE_COMPLETION_ONSTACK(detach_completion); 3958 struct worker *worker; 3959 LIST_HEAD(cull_list); 3960 3961 lockdep_assert_held(&wq_pool_mutex); 3962 3963 if (--pool->refcnt) 3964 return; 3965 3966 /* sanity checks */ 3967 if (WARN_ON(!(pool->cpu < 0)) || 3968 WARN_ON(!list_empty(&pool->worklist))) 3969 return; 3970 3971 /* release id and unhash */ 3972 if (pool->id >= 0) 3973 idr_remove(&worker_pool_idr, pool->id); 3974 hash_del(&pool->hash_node); 3975 3976 /* 3977 * Become the manager and destroy all workers. This prevents 3978 * @pool's workers from blocking on attach_mutex. We're the last 3979 * manager and @pool gets freed with the flag set. 3980 * 3981 * Having a concurrent manager is quite unlikely to happen as we can 3982 * only get here with 3983 * pwq->refcnt == pool->refcnt == 0 3984 * which implies no work queued to the pool, which implies no worker can 3985 * become the manager. However a worker could have taken the role of 3986 * manager before the refcnts dropped to 0, since maybe_create_worker() 3987 * drops pool->lock 3988 */ 3989 while (true) { 3990 rcuwait_wait_event(&manager_wait, 3991 !(pool->flags & POOL_MANAGER_ACTIVE), 3992 TASK_UNINTERRUPTIBLE); 3993 3994 mutex_lock(&wq_pool_attach_mutex); 3995 raw_spin_lock_irq(&pool->lock); 3996 if (!(pool->flags & POOL_MANAGER_ACTIVE)) { 3997 pool->flags |= POOL_MANAGER_ACTIVE; 3998 break; 3999 } 4000 raw_spin_unlock_irq(&pool->lock); 4001 mutex_unlock(&wq_pool_attach_mutex); 4002 } 4003 4004 while ((worker = first_idle_worker(pool))) 4005 set_worker_dying(worker, &cull_list); 4006 WARN_ON(pool->nr_workers || pool->nr_idle); 4007 raw_spin_unlock_irq(&pool->lock); 4008 4009 wake_dying_workers(&cull_list); 4010 4011 if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers)) 4012 pool->detach_completion = &detach_completion; 4013 mutex_unlock(&wq_pool_attach_mutex); 4014 4015 if (pool->detach_completion) 4016 wait_for_completion(pool->detach_completion); 4017 4018 /* shut down the timers */ 4019 del_timer_sync(&pool->idle_timer); 4020 cancel_work_sync(&pool->idle_cull_work); 4021 del_timer_sync(&pool->mayday_timer); 4022 4023 /* RCU protected to allow dereferences from get_work_pool() */ 4024 call_rcu(&pool->rcu, rcu_free_pool); 4025 } 4026 4027 /** 4028 * get_unbound_pool - get a worker_pool with the specified attributes 4029 * @attrs: the attributes of the worker_pool to get 4030 * 4031 * Obtain a worker_pool which has the same attributes as @attrs, bump the 4032 * reference count and return it. If there already is a matching 4033 * worker_pool, it will be used; otherwise, this function attempts to 4034 * create a new one. 4035 * 4036 * Should be called with wq_pool_mutex held. 4037 * 4038 * Return: On success, a worker_pool with the same attributes as @attrs. 4039 * On failure, %NULL. 4040 */ 4041 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 4042 { 4043 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA]; 4044 u32 hash = wqattrs_hash(attrs); 4045 struct worker_pool *pool; 4046 int pod, node = NUMA_NO_NODE; 4047 4048 lockdep_assert_held(&wq_pool_mutex); 4049 4050 /* do we already have a matching pool? */ 4051 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 4052 if (wqattrs_equal(pool->attrs, attrs)) { 4053 pool->refcnt++; 4054 return pool; 4055 } 4056 } 4057 4058 /* If __pod_cpumask is contained inside a NUMA pod, that's our node */ 4059 for (pod = 0; pod < pt->nr_pods; pod++) { 4060 if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) { 4061 node = pt->pod_node[pod]; 4062 break; 4063 } 4064 } 4065 4066 /* nope, create a new one */ 4067 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node); 4068 if (!pool || init_worker_pool(pool) < 0) 4069 goto fail; 4070 4071 pool->node = node; 4072 copy_workqueue_attrs(pool->attrs, attrs); 4073 wqattrs_clear_for_pool(pool->attrs); 4074 4075 if (worker_pool_assign_id(pool) < 0) 4076 goto fail; 4077 4078 /* create and start the initial worker */ 4079 if (wq_online && !create_worker(pool)) 4080 goto fail; 4081 4082 /* install */ 4083 hash_add(unbound_pool_hash, &pool->hash_node, hash); 4084 4085 return pool; 4086 fail: 4087 if (pool) 4088 put_unbound_pool(pool); 4089 return NULL; 4090 } 4091 4092 static void rcu_free_pwq(struct rcu_head *rcu) 4093 { 4094 kmem_cache_free(pwq_cache, 4095 container_of(rcu, struct pool_workqueue, rcu)); 4096 } 4097 4098 /* 4099 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero 4100 * refcnt and needs to be destroyed. 4101 */ 4102 static void pwq_release_workfn(struct kthread_work *work) 4103 { 4104 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 4105 release_work); 4106 struct workqueue_struct *wq = pwq->wq; 4107 struct worker_pool *pool = pwq->pool; 4108 bool is_last = false; 4109 4110 /* 4111 * When @pwq is not linked, it doesn't hold any reference to the 4112 * @wq, and @wq is invalid to access. 4113 */ 4114 if (!list_empty(&pwq->pwqs_node)) { 4115 mutex_lock(&wq->mutex); 4116 list_del_rcu(&pwq->pwqs_node); 4117 is_last = list_empty(&wq->pwqs); 4118 mutex_unlock(&wq->mutex); 4119 } 4120 4121 if (wq->flags & WQ_UNBOUND) { 4122 mutex_lock(&wq_pool_mutex); 4123 put_unbound_pool(pool); 4124 mutex_unlock(&wq_pool_mutex); 4125 } 4126 4127 call_rcu(&pwq->rcu, rcu_free_pwq); 4128 4129 /* 4130 * If we're the last pwq going away, @wq is already dead and no one 4131 * is gonna access it anymore. Schedule RCU free. 4132 */ 4133 if (is_last) { 4134 wq_unregister_lockdep(wq); 4135 call_rcu(&wq->rcu, rcu_free_wq); 4136 } 4137 } 4138 4139 /** 4140 * pwq_adjust_max_active - update a pwq's max_active to the current setting 4141 * @pwq: target pool_workqueue 4142 * 4143 * If @pwq isn't freezing, set @pwq->max_active to the associated 4144 * workqueue's saved_max_active and activate inactive work items 4145 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 4146 */ 4147 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 4148 { 4149 struct workqueue_struct *wq = pwq->wq; 4150 bool freezable = wq->flags & WQ_FREEZABLE; 4151 unsigned long flags; 4152 4153 /* for @wq->saved_max_active */ 4154 lockdep_assert_held(&wq->mutex); 4155 4156 /* fast exit for non-freezable wqs */ 4157 if (!freezable && pwq->max_active == wq->saved_max_active) 4158 return; 4159 4160 /* this function can be called during early boot w/ irq disabled */ 4161 raw_spin_lock_irqsave(&pwq->pool->lock, flags); 4162 4163 /* 4164 * During [un]freezing, the caller is responsible for ensuring that 4165 * this function is called at least once after @workqueue_freezing 4166 * is updated and visible. 4167 */ 4168 if (!freezable || !workqueue_freezing) { 4169 pwq->max_active = wq->saved_max_active; 4170 4171 while (!list_empty(&pwq->inactive_works) && 4172 pwq->nr_active < pwq->max_active) 4173 pwq_activate_first_inactive(pwq); 4174 4175 kick_pool(pwq->pool); 4176 } else { 4177 pwq->max_active = 0; 4178 } 4179 4180 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); 4181 } 4182 4183 /* initialize newly allocated @pwq which is associated with @wq and @pool */ 4184 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 4185 struct worker_pool *pool) 4186 { 4187 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 4188 4189 memset(pwq, 0, sizeof(*pwq)); 4190 4191 pwq->pool = pool; 4192 pwq->wq = wq; 4193 pwq->flush_color = -1; 4194 pwq->refcnt = 1; 4195 INIT_LIST_HEAD(&pwq->inactive_works); 4196 INIT_LIST_HEAD(&pwq->pwqs_node); 4197 INIT_LIST_HEAD(&pwq->mayday_node); 4198 kthread_init_work(&pwq->release_work, pwq_release_workfn); 4199 } 4200 4201 /* sync @pwq with the current state of its associated wq and link it */ 4202 static void link_pwq(struct pool_workqueue *pwq) 4203 { 4204 struct workqueue_struct *wq = pwq->wq; 4205 4206 lockdep_assert_held(&wq->mutex); 4207 4208 /* may be called multiple times, ignore if already linked */ 4209 if (!list_empty(&pwq->pwqs_node)) 4210 return; 4211 4212 /* set the matching work_color */ 4213 pwq->work_color = wq->work_color; 4214 4215 /* sync max_active to the current setting */ 4216 pwq_adjust_max_active(pwq); 4217 4218 /* link in @pwq */ 4219 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 4220 } 4221 4222 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 4223 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 4224 const struct workqueue_attrs *attrs) 4225 { 4226 struct worker_pool *pool; 4227 struct pool_workqueue *pwq; 4228 4229 lockdep_assert_held(&wq_pool_mutex); 4230 4231 pool = get_unbound_pool(attrs); 4232 if (!pool) 4233 return NULL; 4234 4235 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 4236 if (!pwq) { 4237 put_unbound_pool(pool); 4238 return NULL; 4239 } 4240 4241 init_pwq(pwq, wq, pool); 4242 return pwq; 4243 } 4244 4245 /** 4246 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod 4247 * @attrs: the wq_attrs of the default pwq of the target workqueue 4248 * @cpu: the target CPU 4249 * @cpu_going_down: if >= 0, the CPU to consider as offline 4250 * 4251 * Calculate the cpumask a workqueue with @attrs should use on @pod. If 4252 * @cpu_going_down is >= 0, that cpu is considered offline during calculation. 4253 * The result is stored in @attrs->__pod_cpumask. 4254 * 4255 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled 4256 * and @pod has online CPUs requested by @attrs, the returned cpumask is the 4257 * intersection of the possible CPUs of @pod and @attrs->cpumask. 4258 * 4259 * The caller is responsible for ensuring that the cpumask of @pod stays stable. 4260 */ 4261 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu, 4262 int cpu_going_down) 4263 { 4264 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 4265 int pod = pt->cpu_pod[cpu]; 4266 4267 /* does @pod have any online CPUs @attrs wants? */ 4268 cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask); 4269 cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask); 4270 if (cpu_going_down >= 0) 4271 cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask); 4272 4273 if (cpumask_empty(attrs->__pod_cpumask)) { 4274 cpumask_copy(attrs->__pod_cpumask, attrs->cpumask); 4275 return; 4276 } 4277 4278 /* yeap, return possible CPUs in @pod that @attrs wants */ 4279 cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]); 4280 4281 if (cpumask_empty(attrs->__pod_cpumask)) 4282 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 4283 "possible intersect\n"); 4284 } 4285 4286 /* install @pwq into @wq's cpu_pwq and return the old pwq */ 4287 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq, 4288 int cpu, struct pool_workqueue *pwq) 4289 { 4290 struct pool_workqueue *old_pwq; 4291 4292 lockdep_assert_held(&wq_pool_mutex); 4293 lockdep_assert_held(&wq->mutex); 4294 4295 /* link_pwq() can handle duplicate calls */ 4296 link_pwq(pwq); 4297 4298 old_pwq = rcu_access_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu)); 4299 rcu_assign_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu), pwq); 4300 return old_pwq; 4301 } 4302 4303 /* context to store the prepared attrs & pwqs before applying */ 4304 struct apply_wqattrs_ctx { 4305 struct workqueue_struct *wq; /* target workqueue */ 4306 struct workqueue_attrs *attrs; /* attrs to apply */ 4307 struct list_head list; /* queued for batching commit */ 4308 struct pool_workqueue *dfl_pwq; 4309 struct pool_workqueue *pwq_tbl[]; 4310 }; 4311 4312 /* free the resources after success or abort */ 4313 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 4314 { 4315 if (ctx) { 4316 int cpu; 4317 4318 for_each_possible_cpu(cpu) 4319 put_pwq_unlocked(ctx->pwq_tbl[cpu]); 4320 put_pwq_unlocked(ctx->dfl_pwq); 4321 4322 free_workqueue_attrs(ctx->attrs); 4323 4324 kfree(ctx); 4325 } 4326 } 4327 4328 /* allocate the attrs and pwqs for later installation */ 4329 static struct apply_wqattrs_ctx * 4330 apply_wqattrs_prepare(struct workqueue_struct *wq, 4331 const struct workqueue_attrs *attrs, 4332 const cpumask_var_t unbound_cpumask) 4333 { 4334 struct apply_wqattrs_ctx *ctx; 4335 struct workqueue_attrs *new_attrs; 4336 int cpu; 4337 4338 lockdep_assert_held(&wq_pool_mutex); 4339 4340 if (WARN_ON(attrs->affn_scope < 0 || 4341 attrs->affn_scope >= WQ_AFFN_NR_TYPES)) 4342 return ERR_PTR(-EINVAL); 4343 4344 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL); 4345 4346 new_attrs = alloc_workqueue_attrs(); 4347 if (!ctx || !new_attrs) 4348 goto out_free; 4349 4350 /* 4351 * If something goes wrong during CPU up/down, we'll fall back to 4352 * the default pwq covering whole @attrs->cpumask. Always create 4353 * it even if we don't use it immediately. 4354 */ 4355 copy_workqueue_attrs(new_attrs, attrs); 4356 wqattrs_actualize_cpumask(new_attrs, unbound_cpumask); 4357 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 4358 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 4359 if (!ctx->dfl_pwq) 4360 goto out_free; 4361 4362 for_each_possible_cpu(cpu) { 4363 if (new_attrs->ordered) { 4364 ctx->dfl_pwq->refcnt++; 4365 ctx->pwq_tbl[cpu] = ctx->dfl_pwq; 4366 } else { 4367 wq_calc_pod_cpumask(new_attrs, cpu, -1); 4368 ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs); 4369 if (!ctx->pwq_tbl[cpu]) 4370 goto out_free; 4371 } 4372 } 4373 4374 /* save the user configured attrs and sanitize it. */ 4375 copy_workqueue_attrs(new_attrs, attrs); 4376 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 4377 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 4378 ctx->attrs = new_attrs; 4379 4380 ctx->wq = wq; 4381 return ctx; 4382 4383 out_free: 4384 free_workqueue_attrs(new_attrs); 4385 apply_wqattrs_cleanup(ctx); 4386 return ERR_PTR(-ENOMEM); 4387 } 4388 4389 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 4390 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 4391 { 4392 int cpu; 4393 4394 /* all pwqs have been created successfully, let's install'em */ 4395 mutex_lock(&ctx->wq->mutex); 4396 4397 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 4398 4399 /* save the previous pwq and install the new one */ 4400 for_each_possible_cpu(cpu) 4401 ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu, 4402 ctx->pwq_tbl[cpu]); 4403 4404 /* @dfl_pwq might not have been used, ensure it's linked */ 4405 link_pwq(ctx->dfl_pwq); 4406 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 4407 4408 mutex_unlock(&ctx->wq->mutex); 4409 } 4410 4411 static void apply_wqattrs_lock(void) 4412 { 4413 /* CPUs should stay stable across pwq creations and installations */ 4414 cpus_read_lock(); 4415 mutex_lock(&wq_pool_mutex); 4416 } 4417 4418 static void apply_wqattrs_unlock(void) 4419 { 4420 mutex_unlock(&wq_pool_mutex); 4421 cpus_read_unlock(); 4422 } 4423 4424 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 4425 const struct workqueue_attrs *attrs) 4426 { 4427 struct apply_wqattrs_ctx *ctx; 4428 4429 /* only unbound workqueues can change attributes */ 4430 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 4431 return -EINVAL; 4432 4433 /* creating multiple pwqs breaks ordering guarantee */ 4434 if (!list_empty(&wq->pwqs)) { 4435 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4436 return -EINVAL; 4437 4438 wq->flags &= ~__WQ_ORDERED; 4439 } 4440 4441 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask); 4442 if (IS_ERR(ctx)) 4443 return PTR_ERR(ctx); 4444 4445 /* the ctx has been prepared successfully, let's commit it */ 4446 apply_wqattrs_commit(ctx); 4447 apply_wqattrs_cleanup(ctx); 4448 4449 return 0; 4450 } 4451 4452 /** 4453 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 4454 * @wq: the target workqueue 4455 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 4456 * 4457 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps 4458 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that 4459 * work items are affine to the pod it was issued on. Older pwqs are released as 4460 * in-flight work items finish. Note that a work item which repeatedly requeues 4461 * itself back-to-back will stay on its current pwq. 4462 * 4463 * Performs GFP_KERNEL allocations. 4464 * 4465 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock(). 4466 * 4467 * Return: 0 on success and -errno on failure. 4468 */ 4469 int apply_workqueue_attrs(struct workqueue_struct *wq, 4470 const struct workqueue_attrs *attrs) 4471 { 4472 int ret; 4473 4474 lockdep_assert_cpus_held(); 4475 4476 mutex_lock(&wq_pool_mutex); 4477 ret = apply_workqueue_attrs_locked(wq, attrs); 4478 mutex_unlock(&wq_pool_mutex); 4479 4480 return ret; 4481 } 4482 4483 /** 4484 * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug 4485 * @wq: the target workqueue 4486 * @cpu: the CPU to update pool association for 4487 * @hotplug_cpu: the CPU coming up or going down 4488 * @online: whether @cpu is coming up or going down 4489 * 4490 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 4491 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update pod affinity of 4492 * @wq accordingly. 4493 * 4494 * 4495 * If pod affinity can't be adjusted due to memory allocation failure, it falls 4496 * back to @wq->dfl_pwq which may not be optimal but is always correct. 4497 * 4498 * Note that when the last allowed CPU of a pod goes offline for a workqueue 4499 * with a cpumask spanning multiple pods, the workers which were already 4500 * executing the work items for the workqueue will lose their CPU affinity and 4501 * may execute on any CPU. This is similar to how per-cpu workqueues behave on 4502 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's 4503 * responsibility to flush the work item from CPU_DOWN_PREPARE. 4504 */ 4505 static void wq_update_pod(struct workqueue_struct *wq, int cpu, 4506 int hotplug_cpu, bool online) 4507 { 4508 int off_cpu = online ? -1 : hotplug_cpu; 4509 struct pool_workqueue *old_pwq = NULL, *pwq; 4510 struct workqueue_attrs *target_attrs; 4511 4512 lockdep_assert_held(&wq_pool_mutex); 4513 4514 if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered) 4515 return; 4516 4517 /* 4518 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 4519 * Let's use a preallocated one. The following buf is protected by 4520 * CPU hotplug exclusion. 4521 */ 4522 target_attrs = wq_update_pod_attrs_buf; 4523 4524 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 4525 wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask); 4526 4527 /* nothing to do if the target cpumask matches the current pwq */ 4528 wq_calc_pod_cpumask(target_attrs, cpu, off_cpu); 4529 pwq = rcu_dereference_protected(*per_cpu_ptr(wq->cpu_pwq, cpu), 4530 lockdep_is_held(&wq_pool_mutex)); 4531 if (wqattrs_equal(target_attrs, pwq->pool->attrs)) 4532 return; 4533 4534 /* create a new pwq */ 4535 pwq = alloc_unbound_pwq(wq, target_attrs); 4536 if (!pwq) { 4537 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n", 4538 wq->name); 4539 goto use_dfl_pwq; 4540 } 4541 4542 /* Install the new pwq. */ 4543 mutex_lock(&wq->mutex); 4544 old_pwq = install_unbound_pwq(wq, cpu, pwq); 4545 goto out_unlock; 4546 4547 use_dfl_pwq: 4548 mutex_lock(&wq->mutex); 4549 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock); 4550 get_pwq(wq->dfl_pwq); 4551 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock); 4552 old_pwq = install_unbound_pwq(wq, cpu, wq->dfl_pwq); 4553 out_unlock: 4554 mutex_unlock(&wq->mutex); 4555 put_pwq_unlocked(old_pwq); 4556 } 4557 4558 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4559 { 4560 bool highpri = wq->flags & WQ_HIGHPRI; 4561 int cpu, ret; 4562 4563 wq->cpu_pwq = alloc_percpu(struct pool_workqueue *); 4564 if (!wq->cpu_pwq) 4565 goto enomem; 4566 4567 if (!(wq->flags & WQ_UNBOUND)) { 4568 for_each_possible_cpu(cpu) { 4569 struct pool_workqueue **pwq_p = 4570 per_cpu_ptr(wq->cpu_pwq, cpu); 4571 struct worker_pool *pool = 4572 &(per_cpu_ptr(cpu_worker_pools, cpu)[highpri]); 4573 4574 *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, 4575 pool->node); 4576 if (!*pwq_p) 4577 goto enomem; 4578 4579 init_pwq(*pwq_p, wq, pool); 4580 4581 mutex_lock(&wq->mutex); 4582 link_pwq(*pwq_p); 4583 mutex_unlock(&wq->mutex); 4584 } 4585 return 0; 4586 } 4587 4588 cpus_read_lock(); 4589 if (wq->flags & __WQ_ORDERED) { 4590 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 4591 /* there should only be single pwq for ordering guarantee */ 4592 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 4593 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 4594 "ordering guarantee broken for workqueue %s\n", wq->name); 4595 } else { 4596 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4597 } 4598 cpus_read_unlock(); 4599 4600 /* for unbound pwq, flush the pwq_release_worker ensures that the 4601 * pwq_release_workfn() completes before calling kfree(wq). 4602 */ 4603 if (ret) 4604 kthread_flush_worker(pwq_release_worker); 4605 4606 return ret; 4607 4608 enomem: 4609 if (wq->cpu_pwq) { 4610 for_each_possible_cpu(cpu) { 4611 struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 4612 4613 if (pwq) 4614 kmem_cache_free(pwq_cache, pwq); 4615 } 4616 free_percpu(wq->cpu_pwq); 4617 wq->cpu_pwq = NULL; 4618 } 4619 return -ENOMEM; 4620 } 4621 4622 static int wq_clamp_max_active(int max_active, unsigned int flags, 4623 const char *name) 4624 { 4625 if (max_active < 1 || max_active > WQ_MAX_ACTIVE) 4626 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4627 max_active, name, 1, WQ_MAX_ACTIVE); 4628 4629 return clamp_val(max_active, 1, WQ_MAX_ACTIVE); 4630 } 4631 4632 /* 4633 * Workqueues which may be used during memory reclaim should have a rescuer 4634 * to guarantee forward progress. 4635 */ 4636 static int init_rescuer(struct workqueue_struct *wq) 4637 { 4638 struct worker *rescuer; 4639 int ret; 4640 4641 if (!(wq->flags & WQ_MEM_RECLAIM)) 4642 return 0; 4643 4644 rescuer = alloc_worker(NUMA_NO_NODE); 4645 if (!rescuer) { 4646 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n", 4647 wq->name); 4648 return -ENOMEM; 4649 } 4650 4651 rescuer->rescue_wq = wq; 4652 rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name); 4653 if (IS_ERR(rescuer->task)) { 4654 ret = PTR_ERR(rescuer->task); 4655 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe", 4656 wq->name, ERR_PTR(ret)); 4657 kfree(rescuer); 4658 return ret; 4659 } 4660 4661 wq->rescuer = rescuer; 4662 kthread_bind_mask(rescuer->task, cpu_possible_mask); 4663 wake_up_process(rescuer->task); 4664 4665 return 0; 4666 } 4667 4668 __printf(1, 4) 4669 struct workqueue_struct *alloc_workqueue(const char *fmt, 4670 unsigned int flags, 4671 int max_active, ...) 4672 { 4673 va_list args; 4674 struct workqueue_struct *wq; 4675 struct pool_workqueue *pwq; 4676 4677 /* 4678 * Unbound && max_active == 1 used to imply ordered, which is no longer 4679 * the case on many machines due to per-pod pools. While 4680 * alloc_ordered_workqueue() is the right way to create an ordered 4681 * workqueue, keep the previous behavior to avoid subtle breakages. 4682 */ 4683 if ((flags & WQ_UNBOUND) && max_active == 1) 4684 flags |= __WQ_ORDERED; 4685 4686 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4687 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4688 flags |= WQ_UNBOUND; 4689 4690 /* allocate wq and format name */ 4691 wq = kzalloc(sizeof(*wq), GFP_KERNEL); 4692 if (!wq) 4693 return NULL; 4694 4695 if (flags & WQ_UNBOUND) { 4696 wq->unbound_attrs = alloc_workqueue_attrs(); 4697 if (!wq->unbound_attrs) 4698 goto err_free_wq; 4699 } 4700 4701 va_start(args, max_active); 4702 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4703 va_end(args); 4704 4705 max_active = max_active ?: WQ_DFL_ACTIVE; 4706 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4707 4708 /* init wq */ 4709 wq->flags = flags; 4710 wq->saved_max_active = max_active; 4711 mutex_init(&wq->mutex); 4712 atomic_set(&wq->nr_pwqs_to_flush, 0); 4713 INIT_LIST_HEAD(&wq->pwqs); 4714 INIT_LIST_HEAD(&wq->flusher_queue); 4715 INIT_LIST_HEAD(&wq->flusher_overflow); 4716 INIT_LIST_HEAD(&wq->maydays); 4717 4718 wq_init_lockdep(wq); 4719 INIT_LIST_HEAD(&wq->list); 4720 4721 if (alloc_and_link_pwqs(wq) < 0) 4722 goto err_unreg_lockdep; 4723 4724 if (wq_online && init_rescuer(wq) < 0) 4725 goto err_destroy; 4726 4727 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4728 goto err_destroy; 4729 4730 /* 4731 * wq_pool_mutex protects global freeze state and workqueues list. 4732 * Grab it, adjust max_active and add the new @wq to workqueues 4733 * list. 4734 */ 4735 mutex_lock(&wq_pool_mutex); 4736 4737 mutex_lock(&wq->mutex); 4738 for_each_pwq(pwq, wq) 4739 pwq_adjust_max_active(pwq); 4740 mutex_unlock(&wq->mutex); 4741 4742 list_add_tail_rcu(&wq->list, &workqueues); 4743 4744 mutex_unlock(&wq_pool_mutex); 4745 4746 return wq; 4747 4748 err_unreg_lockdep: 4749 wq_unregister_lockdep(wq); 4750 wq_free_lockdep(wq); 4751 err_free_wq: 4752 free_workqueue_attrs(wq->unbound_attrs); 4753 kfree(wq); 4754 return NULL; 4755 err_destroy: 4756 destroy_workqueue(wq); 4757 return NULL; 4758 } 4759 EXPORT_SYMBOL_GPL(alloc_workqueue); 4760 4761 static bool pwq_busy(struct pool_workqueue *pwq) 4762 { 4763 int i; 4764 4765 for (i = 0; i < WORK_NR_COLORS; i++) 4766 if (pwq->nr_in_flight[i]) 4767 return true; 4768 4769 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1)) 4770 return true; 4771 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) 4772 return true; 4773 4774 return false; 4775 } 4776 4777 /** 4778 * destroy_workqueue - safely terminate a workqueue 4779 * @wq: target workqueue 4780 * 4781 * Safely destroy a workqueue. All work currently pending will be done first. 4782 */ 4783 void destroy_workqueue(struct workqueue_struct *wq) 4784 { 4785 struct pool_workqueue *pwq; 4786 int cpu; 4787 4788 /* 4789 * Remove it from sysfs first so that sanity check failure doesn't 4790 * lead to sysfs name conflicts. 4791 */ 4792 workqueue_sysfs_unregister(wq); 4793 4794 /* mark the workqueue destruction is in progress */ 4795 mutex_lock(&wq->mutex); 4796 wq->flags |= __WQ_DESTROYING; 4797 mutex_unlock(&wq->mutex); 4798 4799 /* drain it before proceeding with destruction */ 4800 drain_workqueue(wq); 4801 4802 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ 4803 if (wq->rescuer) { 4804 struct worker *rescuer = wq->rescuer; 4805 4806 /* this prevents new queueing */ 4807 raw_spin_lock_irq(&wq_mayday_lock); 4808 wq->rescuer = NULL; 4809 raw_spin_unlock_irq(&wq_mayday_lock); 4810 4811 /* rescuer will empty maydays list before exiting */ 4812 kthread_stop(rescuer->task); 4813 kfree(rescuer); 4814 } 4815 4816 /* 4817 * Sanity checks - grab all the locks so that we wait for all 4818 * in-flight operations which may do put_pwq(). 4819 */ 4820 mutex_lock(&wq_pool_mutex); 4821 mutex_lock(&wq->mutex); 4822 for_each_pwq(pwq, wq) { 4823 raw_spin_lock_irq(&pwq->pool->lock); 4824 if (WARN_ON(pwq_busy(pwq))) { 4825 pr_warn("%s: %s has the following busy pwq\n", 4826 __func__, wq->name); 4827 show_pwq(pwq); 4828 raw_spin_unlock_irq(&pwq->pool->lock); 4829 mutex_unlock(&wq->mutex); 4830 mutex_unlock(&wq_pool_mutex); 4831 show_one_workqueue(wq); 4832 return; 4833 } 4834 raw_spin_unlock_irq(&pwq->pool->lock); 4835 } 4836 mutex_unlock(&wq->mutex); 4837 4838 /* 4839 * wq list is used to freeze wq, remove from list after 4840 * flushing is complete in case freeze races us. 4841 */ 4842 list_del_rcu(&wq->list); 4843 mutex_unlock(&wq_pool_mutex); 4844 4845 /* 4846 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq 4847 * to put the base refs. @wq will be auto-destroyed from the last 4848 * pwq_put. RCU read lock prevents @wq from going away from under us. 4849 */ 4850 rcu_read_lock(); 4851 4852 for_each_possible_cpu(cpu) { 4853 pwq = rcu_access_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu)); 4854 RCU_INIT_POINTER(*per_cpu_ptr(wq->cpu_pwq, cpu), NULL); 4855 put_pwq_unlocked(pwq); 4856 } 4857 4858 put_pwq_unlocked(wq->dfl_pwq); 4859 wq->dfl_pwq = NULL; 4860 4861 rcu_read_unlock(); 4862 } 4863 EXPORT_SYMBOL_GPL(destroy_workqueue); 4864 4865 /** 4866 * workqueue_set_max_active - adjust max_active of a workqueue 4867 * @wq: target workqueue 4868 * @max_active: new max_active value. 4869 * 4870 * Set max_active of @wq to @max_active. 4871 * 4872 * CONTEXT: 4873 * Don't call from IRQ context. 4874 */ 4875 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4876 { 4877 struct pool_workqueue *pwq; 4878 4879 /* disallow meddling with max_active for ordered workqueues */ 4880 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4881 return; 4882 4883 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4884 4885 mutex_lock(&wq->mutex); 4886 4887 wq->flags &= ~__WQ_ORDERED; 4888 wq->saved_max_active = max_active; 4889 4890 for_each_pwq(pwq, wq) 4891 pwq_adjust_max_active(pwq); 4892 4893 mutex_unlock(&wq->mutex); 4894 } 4895 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4896 4897 /** 4898 * current_work - retrieve %current task's work struct 4899 * 4900 * Determine if %current task is a workqueue worker and what it's working on. 4901 * Useful to find out the context that the %current task is running in. 4902 * 4903 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 4904 */ 4905 struct work_struct *current_work(void) 4906 { 4907 struct worker *worker = current_wq_worker(); 4908 4909 return worker ? worker->current_work : NULL; 4910 } 4911 EXPORT_SYMBOL(current_work); 4912 4913 /** 4914 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4915 * 4916 * Determine whether %current is a workqueue rescuer. Can be used from 4917 * work functions to determine whether it's being run off the rescuer task. 4918 * 4919 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4920 */ 4921 bool current_is_workqueue_rescuer(void) 4922 { 4923 struct worker *worker = current_wq_worker(); 4924 4925 return worker && worker->rescue_wq; 4926 } 4927 4928 /** 4929 * workqueue_congested - test whether a workqueue is congested 4930 * @cpu: CPU in question 4931 * @wq: target workqueue 4932 * 4933 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4934 * no synchronization around this function and the test result is 4935 * unreliable and only useful as advisory hints or for debugging. 4936 * 4937 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4938 * 4939 * With the exception of ordered workqueues, all workqueues have per-cpu 4940 * pool_workqueues, each with its own congested state. A workqueue being 4941 * congested on one CPU doesn't mean that the workqueue is contested on any 4942 * other CPUs. 4943 * 4944 * Return: 4945 * %true if congested, %false otherwise. 4946 */ 4947 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4948 { 4949 struct pool_workqueue *pwq; 4950 bool ret; 4951 4952 rcu_read_lock(); 4953 preempt_disable(); 4954 4955 if (cpu == WORK_CPU_UNBOUND) 4956 cpu = smp_processor_id(); 4957 4958 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 4959 ret = !list_empty(&pwq->inactive_works); 4960 4961 preempt_enable(); 4962 rcu_read_unlock(); 4963 4964 return ret; 4965 } 4966 EXPORT_SYMBOL_GPL(workqueue_congested); 4967 4968 /** 4969 * work_busy - test whether a work is currently pending or running 4970 * @work: the work to be tested 4971 * 4972 * Test whether @work is currently pending or running. There is no 4973 * synchronization around this function and the test result is 4974 * unreliable and only useful as advisory hints or for debugging. 4975 * 4976 * Return: 4977 * OR'd bitmask of WORK_BUSY_* bits. 4978 */ 4979 unsigned int work_busy(struct work_struct *work) 4980 { 4981 struct worker_pool *pool; 4982 unsigned long flags; 4983 unsigned int ret = 0; 4984 4985 if (work_pending(work)) 4986 ret |= WORK_BUSY_PENDING; 4987 4988 rcu_read_lock(); 4989 pool = get_work_pool(work); 4990 if (pool) { 4991 raw_spin_lock_irqsave(&pool->lock, flags); 4992 if (find_worker_executing_work(pool, work)) 4993 ret |= WORK_BUSY_RUNNING; 4994 raw_spin_unlock_irqrestore(&pool->lock, flags); 4995 } 4996 rcu_read_unlock(); 4997 4998 return ret; 4999 } 5000 EXPORT_SYMBOL_GPL(work_busy); 5001 5002 /** 5003 * set_worker_desc - set description for the current work item 5004 * @fmt: printf-style format string 5005 * @...: arguments for the format string 5006 * 5007 * This function can be called by a running work function to describe what 5008 * the work item is about. If the worker task gets dumped, this 5009 * information will be printed out together to help debugging. The 5010 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 5011 */ 5012 void set_worker_desc(const char *fmt, ...) 5013 { 5014 struct worker *worker = current_wq_worker(); 5015 va_list args; 5016 5017 if (worker) { 5018 va_start(args, fmt); 5019 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 5020 va_end(args); 5021 } 5022 } 5023 EXPORT_SYMBOL_GPL(set_worker_desc); 5024 5025 /** 5026 * print_worker_info - print out worker information and description 5027 * @log_lvl: the log level to use when printing 5028 * @task: target task 5029 * 5030 * If @task is a worker and currently executing a work item, print out the 5031 * name of the workqueue being serviced and worker description set with 5032 * set_worker_desc() by the currently executing work item. 5033 * 5034 * This function can be safely called on any task as long as the 5035 * task_struct itself is accessible. While safe, this function isn't 5036 * synchronized and may print out mixups or garbages of limited length. 5037 */ 5038 void print_worker_info(const char *log_lvl, struct task_struct *task) 5039 { 5040 work_func_t *fn = NULL; 5041 char name[WQ_NAME_LEN] = { }; 5042 char desc[WORKER_DESC_LEN] = { }; 5043 struct pool_workqueue *pwq = NULL; 5044 struct workqueue_struct *wq = NULL; 5045 struct worker *worker; 5046 5047 if (!(task->flags & PF_WQ_WORKER)) 5048 return; 5049 5050 /* 5051 * This function is called without any synchronization and @task 5052 * could be in any state. Be careful with dereferences. 5053 */ 5054 worker = kthread_probe_data(task); 5055 5056 /* 5057 * Carefully copy the associated workqueue's workfn, name and desc. 5058 * Keep the original last '\0' in case the original is garbage. 5059 */ 5060 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn)); 5061 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq)); 5062 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq)); 5063 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1); 5064 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1); 5065 5066 if (fn || name[0] || desc[0]) { 5067 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 5068 if (strcmp(name, desc)) 5069 pr_cont(" (%s)", desc); 5070 pr_cont("\n"); 5071 } 5072 } 5073 5074 static void pr_cont_pool_info(struct worker_pool *pool) 5075 { 5076 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 5077 if (pool->node != NUMA_NO_NODE) 5078 pr_cont(" node=%d", pool->node); 5079 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 5080 } 5081 5082 struct pr_cont_work_struct { 5083 bool comma; 5084 work_func_t func; 5085 long ctr; 5086 }; 5087 5088 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp) 5089 { 5090 if (!pcwsp->ctr) 5091 goto out_record; 5092 if (func == pcwsp->func) { 5093 pcwsp->ctr++; 5094 return; 5095 } 5096 if (pcwsp->ctr == 1) 5097 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func); 5098 else 5099 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func); 5100 pcwsp->ctr = 0; 5101 out_record: 5102 if ((long)func == -1L) 5103 return; 5104 pcwsp->comma = comma; 5105 pcwsp->func = func; 5106 pcwsp->ctr = 1; 5107 } 5108 5109 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp) 5110 { 5111 if (work->func == wq_barrier_func) { 5112 struct wq_barrier *barr; 5113 5114 barr = container_of(work, struct wq_barrier, work); 5115 5116 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 5117 pr_cont("%s BAR(%d)", comma ? "," : "", 5118 task_pid_nr(barr->task)); 5119 } else { 5120 if (!comma) 5121 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 5122 pr_cont_work_flush(comma, work->func, pcwsp); 5123 } 5124 } 5125 5126 static void show_pwq(struct pool_workqueue *pwq) 5127 { 5128 struct pr_cont_work_struct pcws = { .ctr = 0, }; 5129 struct worker_pool *pool = pwq->pool; 5130 struct work_struct *work; 5131 struct worker *worker; 5132 bool has_in_flight = false, has_pending = false; 5133 int bkt; 5134 5135 pr_info(" pwq %d:", pool->id); 5136 pr_cont_pool_info(pool); 5137 5138 pr_cont(" active=%d/%d refcnt=%d%s\n", 5139 pwq->nr_active, pwq->max_active, pwq->refcnt, 5140 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 5141 5142 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 5143 if (worker->current_pwq == pwq) { 5144 has_in_flight = true; 5145 break; 5146 } 5147 } 5148 if (has_in_flight) { 5149 bool comma = false; 5150 5151 pr_info(" in-flight:"); 5152 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 5153 if (worker->current_pwq != pwq) 5154 continue; 5155 5156 pr_cont("%s %d%s:%ps", comma ? "," : "", 5157 task_pid_nr(worker->task), 5158 worker->rescue_wq ? "(RESCUER)" : "", 5159 worker->current_func); 5160 list_for_each_entry(work, &worker->scheduled, entry) 5161 pr_cont_work(false, work, &pcws); 5162 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 5163 comma = true; 5164 } 5165 pr_cont("\n"); 5166 } 5167 5168 list_for_each_entry(work, &pool->worklist, entry) { 5169 if (get_work_pwq(work) == pwq) { 5170 has_pending = true; 5171 break; 5172 } 5173 } 5174 if (has_pending) { 5175 bool comma = false; 5176 5177 pr_info(" pending:"); 5178 list_for_each_entry(work, &pool->worklist, entry) { 5179 if (get_work_pwq(work) != pwq) 5180 continue; 5181 5182 pr_cont_work(comma, work, &pcws); 5183 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 5184 } 5185 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 5186 pr_cont("\n"); 5187 } 5188 5189 if (!list_empty(&pwq->inactive_works)) { 5190 bool comma = false; 5191 5192 pr_info(" inactive:"); 5193 list_for_each_entry(work, &pwq->inactive_works, entry) { 5194 pr_cont_work(comma, work, &pcws); 5195 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 5196 } 5197 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 5198 pr_cont("\n"); 5199 } 5200 } 5201 5202 /** 5203 * show_one_workqueue - dump state of specified workqueue 5204 * @wq: workqueue whose state will be printed 5205 */ 5206 void show_one_workqueue(struct workqueue_struct *wq) 5207 { 5208 struct pool_workqueue *pwq; 5209 bool idle = true; 5210 unsigned long flags; 5211 5212 for_each_pwq(pwq, wq) { 5213 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) { 5214 idle = false; 5215 break; 5216 } 5217 } 5218 if (idle) /* Nothing to print for idle workqueue */ 5219 return; 5220 5221 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 5222 5223 for_each_pwq(pwq, wq) { 5224 raw_spin_lock_irqsave(&pwq->pool->lock, flags); 5225 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) { 5226 /* 5227 * Defer printing to avoid deadlocks in console 5228 * drivers that queue work while holding locks 5229 * also taken in their write paths. 5230 */ 5231 printk_deferred_enter(); 5232 show_pwq(pwq); 5233 printk_deferred_exit(); 5234 } 5235 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); 5236 /* 5237 * We could be printing a lot from atomic context, e.g. 5238 * sysrq-t -> show_all_workqueues(). Avoid triggering 5239 * hard lockup. 5240 */ 5241 touch_nmi_watchdog(); 5242 } 5243 5244 } 5245 5246 /** 5247 * show_one_worker_pool - dump state of specified worker pool 5248 * @pool: worker pool whose state will be printed 5249 */ 5250 static void show_one_worker_pool(struct worker_pool *pool) 5251 { 5252 struct worker *worker; 5253 bool first = true; 5254 unsigned long flags; 5255 unsigned long hung = 0; 5256 5257 raw_spin_lock_irqsave(&pool->lock, flags); 5258 if (pool->nr_workers == pool->nr_idle) 5259 goto next_pool; 5260 5261 /* How long the first pending work is waiting for a worker. */ 5262 if (!list_empty(&pool->worklist)) 5263 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000; 5264 5265 /* 5266 * Defer printing to avoid deadlocks in console drivers that 5267 * queue work while holding locks also taken in their write 5268 * paths. 5269 */ 5270 printk_deferred_enter(); 5271 pr_info("pool %d:", pool->id); 5272 pr_cont_pool_info(pool); 5273 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers); 5274 if (pool->manager) 5275 pr_cont(" manager: %d", 5276 task_pid_nr(pool->manager->task)); 5277 list_for_each_entry(worker, &pool->idle_list, entry) { 5278 pr_cont(" %s%d", first ? "idle: " : "", 5279 task_pid_nr(worker->task)); 5280 first = false; 5281 } 5282 pr_cont("\n"); 5283 printk_deferred_exit(); 5284 next_pool: 5285 raw_spin_unlock_irqrestore(&pool->lock, flags); 5286 /* 5287 * We could be printing a lot from atomic context, e.g. 5288 * sysrq-t -> show_all_workqueues(). Avoid triggering 5289 * hard lockup. 5290 */ 5291 touch_nmi_watchdog(); 5292 5293 } 5294 5295 /** 5296 * show_all_workqueues - dump workqueue state 5297 * 5298 * Called from a sysrq handler and prints out all busy workqueues and pools. 5299 */ 5300 void show_all_workqueues(void) 5301 { 5302 struct workqueue_struct *wq; 5303 struct worker_pool *pool; 5304 int pi; 5305 5306 rcu_read_lock(); 5307 5308 pr_info("Showing busy workqueues and worker pools:\n"); 5309 5310 list_for_each_entry_rcu(wq, &workqueues, list) 5311 show_one_workqueue(wq); 5312 5313 for_each_pool(pool, pi) 5314 show_one_worker_pool(pool); 5315 5316 rcu_read_unlock(); 5317 } 5318 5319 /** 5320 * show_freezable_workqueues - dump freezable workqueue state 5321 * 5322 * Called from try_to_freeze_tasks() and prints out all freezable workqueues 5323 * still busy. 5324 */ 5325 void show_freezable_workqueues(void) 5326 { 5327 struct workqueue_struct *wq; 5328 5329 rcu_read_lock(); 5330 5331 pr_info("Showing freezable workqueues that are still busy:\n"); 5332 5333 list_for_each_entry_rcu(wq, &workqueues, list) { 5334 if (!(wq->flags & WQ_FREEZABLE)) 5335 continue; 5336 show_one_workqueue(wq); 5337 } 5338 5339 rcu_read_unlock(); 5340 } 5341 5342 /* used to show worker information through /proc/PID/{comm,stat,status} */ 5343 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 5344 { 5345 int off; 5346 5347 /* always show the actual comm */ 5348 off = strscpy(buf, task->comm, size); 5349 if (off < 0) 5350 return; 5351 5352 /* stabilize PF_WQ_WORKER and worker pool association */ 5353 mutex_lock(&wq_pool_attach_mutex); 5354 5355 if (task->flags & PF_WQ_WORKER) { 5356 struct worker *worker = kthread_data(task); 5357 struct worker_pool *pool = worker->pool; 5358 5359 if (pool) { 5360 raw_spin_lock_irq(&pool->lock); 5361 /* 5362 * ->desc tracks information (wq name or 5363 * set_worker_desc()) for the latest execution. If 5364 * current, prepend '+', otherwise '-'. 5365 */ 5366 if (worker->desc[0] != '\0') { 5367 if (worker->current_work) 5368 scnprintf(buf + off, size - off, "+%s", 5369 worker->desc); 5370 else 5371 scnprintf(buf + off, size - off, "-%s", 5372 worker->desc); 5373 } 5374 raw_spin_unlock_irq(&pool->lock); 5375 } 5376 } 5377 5378 mutex_unlock(&wq_pool_attach_mutex); 5379 } 5380 5381 #ifdef CONFIG_SMP 5382 5383 /* 5384 * CPU hotplug. 5385 * 5386 * There are two challenges in supporting CPU hotplug. Firstly, there 5387 * are a lot of assumptions on strong associations among work, pwq and 5388 * pool which make migrating pending and scheduled works very 5389 * difficult to implement without impacting hot paths. Secondly, 5390 * worker pools serve mix of short, long and very long running works making 5391 * blocked draining impractical. 5392 * 5393 * This is solved by allowing the pools to be disassociated from the CPU 5394 * running as an unbound one and allowing it to be reattached later if the 5395 * cpu comes back online. 5396 */ 5397 5398 static void unbind_workers(int cpu) 5399 { 5400 struct worker_pool *pool; 5401 struct worker *worker; 5402 5403 for_each_cpu_worker_pool(pool, cpu) { 5404 mutex_lock(&wq_pool_attach_mutex); 5405 raw_spin_lock_irq(&pool->lock); 5406 5407 /* 5408 * We've blocked all attach/detach operations. Make all workers 5409 * unbound and set DISASSOCIATED. Before this, all workers 5410 * must be on the cpu. After this, they may become diasporas. 5411 * And the preemption disabled section in their sched callbacks 5412 * are guaranteed to see WORKER_UNBOUND since the code here 5413 * is on the same cpu. 5414 */ 5415 for_each_pool_worker(worker, pool) 5416 worker->flags |= WORKER_UNBOUND; 5417 5418 pool->flags |= POOL_DISASSOCIATED; 5419 5420 /* 5421 * The handling of nr_running in sched callbacks are disabled 5422 * now. Zap nr_running. After this, nr_running stays zero and 5423 * need_more_worker() and keep_working() are always true as 5424 * long as the worklist is not empty. This pool now behaves as 5425 * an unbound (in terms of concurrency management) pool which 5426 * are served by workers tied to the pool. 5427 */ 5428 pool->nr_running = 0; 5429 5430 /* 5431 * With concurrency management just turned off, a busy 5432 * worker blocking could lead to lengthy stalls. Kick off 5433 * unbound chain execution of currently pending work items. 5434 */ 5435 kick_pool(pool); 5436 5437 raw_spin_unlock_irq(&pool->lock); 5438 5439 for_each_pool_worker(worker, pool) 5440 unbind_worker(worker); 5441 5442 mutex_unlock(&wq_pool_attach_mutex); 5443 } 5444 } 5445 5446 /** 5447 * rebind_workers - rebind all workers of a pool to the associated CPU 5448 * @pool: pool of interest 5449 * 5450 * @pool->cpu is coming online. Rebind all workers to the CPU. 5451 */ 5452 static void rebind_workers(struct worker_pool *pool) 5453 { 5454 struct worker *worker; 5455 5456 lockdep_assert_held(&wq_pool_attach_mutex); 5457 5458 /* 5459 * Restore CPU affinity of all workers. As all idle workers should 5460 * be on the run-queue of the associated CPU before any local 5461 * wake-ups for concurrency management happen, restore CPU affinity 5462 * of all workers first and then clear UNBOUND. As we're called 5463 * from CPU_ONLINE, the following shouldn't fail. 5464 */ 5465 for_each_pool_worker(worker, pool) { 5466 kthread_set_per_cpu(worker->task, pool->cpu); 5467 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 5468 pool_allowed_cpus(pool)) < 0); 5469 } 5470 5471 raw_spin_lock_irq(&pool->lock); 5472 5473 pool->flags &= ~POOL_DISASSOCIATED; 5474 5475 for_each_pool_worker(worker, pool) { 5476 unsigned int worker_flags = worker->flags; 5477 5478 /* 5479 * We want to clear UNBOUND but can't directly call 5480 * worker_clr_flags() or adjust nr_running. Atomically 5481 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 5482 * @worker will clear REBOUND using worker_clr_flags() when 5483 * it initiates the next execution cycle thus restoring 5484 * concurrency management. Note that when or whether 5485 * @worker clears REBOUND doesn't affect correctness. 5486 * 5487 * WRITE_ONCE() is necessary because @worker->flags may be 5488 * tested without holding any lock in 5489 * wq_worker_running(). Without it, NOT_RUNNING test may 5490 * fail incorrectly leading to premature concurrency 5491 * management operations. 5492 */ 5493 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 5494 worker_flags |= WORKER_REBOUND; 5495 worker_flags &= ~WORKER_UNBOUND; 5496 WRITE_ONCE(worker->flags, worker_flags); 5497 } 5498 5499 raw_spin_unlock_irq(&pool->lock); 5500 } 5501 5502 /** 5503 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 5504 * @pool: unbound pool of interest 5505 * @cpu: the CPU which is coming up 5506 * 5507 * An unbound pool may end up with a cpumask which doesn't have any online 5508 * CPUs. When a worker of such pool get scheduled, the scheduler resets 5509 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 5510 * online CPU before, cpus_allowed of all its workers should be restored. 5511 */ 5512 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 5513 { 5514 static cpumask_t cpumask; 5515 struct worker *worker; 5516 5517 lockdep_assert_held(&wq_pool_attach_mutex); 5518 5519 /* is @cpu allowed for @pool? */ 5520 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 5521 return; 5522 5523 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 5524 5525 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 5526 for_each_pool_worker(worker, pool) 5527 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 5528 } 5529 5530 int workqueue_prepare_cpu(unsigned int cpu) 5531 { 5532 struct worker_pool *pool; 5533 5534 for_each_cpu_worker_pool(pool, cpu) { 5535 if (pool->nr_workers) 5536 continue; 5537 if (!create_worker(pool)) 5538 return -ENOMEM; 5539 } 5540 return 0; 5541 } 5542 5543 int workqueue_online_cpu(unsigned int cpu) 5544 { 5545 struct worker_pool *pool; 5546 struct workqueue_struct *wq; 5547 int pi; 5548 5549 mutex_lock(&wq_pool_mutex); 5550 5551 for_each_pool(pool, pi) { 5552 mutex_lock(&wq_pool_attach_mutex); 5553 5554 if (pool->cpu == cpu) 5555 rebind_workers(pool); 5556 else if (pool->cpu < 0) 5557 restore_unbound_workers_cpumask(pool, cpu); 5558 5559 mutex_unlock(&wq_pool_attach_mutex); 5560 } 5561 5562 /* update pod affinity of unbound workqueues */ 5563 list_for_each_entry(wq, &workqueues, list) { 5564 struct workqueue_attrs *attrs = wq->unbound_attrs; 5565 5566 if (attrs) { 5567 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 5568 int tcpu; 5569 5570 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 5571 wq_update_pod(wq, tcpu, cpu, true); 5572 } 5573 } 5574 5575 mutex_unlock(&wq_pool_mutex); 5576 return 0; 5577 } 5578 5579 int workqueue_offline_cpu(unsigned int cpu) 5580 { 5581 struct workqueue_struct *wq; 5582 5583 /* unbinding per-cpu workers should happen on the local CPU */ 5584 if (WARN_ON(cpu != smp_processor_id())) 5585 return -1; 5586 5587 unbind_workers(cpu); 5588 5589 /* update pod affinity of unbound workqueues */ 5590 mutex_lock(&wq_pool_mutex); 5591 list_for_each_entry(wq, &workqueues, list) { 5592 struct workqueue_attrs *attrs = wq->unbound_attrs; 5593 5594 if (attrs) { 5595 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 5596 int tcpu; 5597 5598 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 5599 wq_update_pod(wq, tcpu, cpu, false); 5600 } 5601 } 5602 mutex_unlock(&wq_pool_mutex); 5603 5604 return 0; 5605 } 5606 5607 struct work_for_cpu { 5608 struct work_struct work; 5609 long (*fn)(void *); 5610 void *arg; 5611 long ret; 5612 }; 5613 5614 static void work_for_cpu_fn(struct work_struct *work) 5615 { 5616 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 5617 5618 wfc->ret = wfc->fn(wfc->arg); 5619 } 5620 5621 /** 5622 * work_on_cpu_key - run a function in thread context on a particular cpu 5623 * @cpu: the cpu to run on 5624 * @fn: the function to run 5625 * @arg: the function arg 5626 * @key: The lock class key for lock debugging purposes 5627 * 5628 * It is up to the caller to ensure that the cpu doesn't go offline. 5629 * The caller must not hold any locks which would prevent @fn from completing. 5630 * 5631 * Return: The value @fn returns. 5632 */ 5633 long work_on_cpu_key(int cpu, long (*fn)(void *), 5634 void *arg, struct lock_class_key *key) 5635 { 5636 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 5637 5638 INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key); 5639 schedule_work_on(cpu, &wfc.work); 5640 flush_work(&wfc.work); 5641 destroy_work_on_stack(&wfc.work); 5642 return wfc.ret; 5643 } 5644 EXPORT_SYMBOL_GPL(work_on_cpu_key); 5645 5646 /** 5647 * work_on_cpu_safe_key - run a function in thread context on a particular cpu 5648 * @cpu: the cpu to run on 5649 * @fn: the function to run 5650 * @arg: the function argument 5651 * @key: The lock class key for lock debugging purposes 5652 * 5653 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 5654 * any locks which would prevent @fn from completing. 5655 * 5656 * Return: The value @fn returns. 5657 */ 5658 long work_on_cpu_safe_key(int cpu, long (*fn)(void *), 5659 void *arg, struct lock_class_key *key) 5660 { 5661 long ret = -ENODEV; 5662 5663 cpus_read_lock(); 5664 if (cpu_online(cpu)) 5665 ret = work_on_cpu_key(cpu, fn, arg, key); 5666 cpus_read_unlock(); 5667 return ret; 5668 } 5669 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key); 5670 #endif /* CONFIG_SMP */ 5671 5672 #ifdef CONFIG_FREEZER 5673 5674 /** 5675 * freeze_workqueues_begin - begin freezing workqueues 5676 * 5677 * Start freezing workqueues. After this function returns, all freezable 5678 * workqueues will queue new works to their inactive_works list instead of 5679 * pool->worklist. 5680 * 5681 * CONTEXT: 5682 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5683 */ 5684 void freeze_workqueues_begin(void) 5685 { 5686 struct workqueue_struct *wq; 5687 struct pool_workqueue *pwq; 5688 5689 mutex_lock(&wq_pool_mutex); 5690 5691 WARN_ON_ONCE(workqueue_freezing); 5692 workqueue_freezing = true; 5693 5694 list_for_each_entry(wq, &workqueues, list) { 5695 mutex_lock(&wq->mutex); 5696 for_each_pwq(pwq, wq) 5697 pwq_adjust_max_active(pwq); 5698 mutex_unlock(&wq->mutex); 5699 } 5700 5701 mutex_unlock(&wq_pool_mutex); 5702 } 5703 5704 /** 5705 * freeze_workqueues_busy - are freezable workqueues still busy? 5706 * 5707 * Check whether freezing is complete. This function must be called 5708 * between freeze_workqueues_begin() and thaw_workqueues(). 5709 * 5710 * CONTEXT: 5711 * Grabs and releases wq_pool_mutex. 5712 * 5713 * Return: 5714 * %true if some freezable workqueues are still busy. %false if freezing 5715 * is complete. 5716 */ 5717 bool freeze_workqueues_busy(void) 5718 { 5719 bool busy = false; 5720 struct workqueue_struct *wq; 5721 struct pool_workqueue *pwq; 5722 5723 mutex_lock(&wq_pool_mutex); 5724 5725 WARN_ON_ONCE(!workqueue_freezing); 5726 5727 list_for_each_entry(wq, &workqueues, list) { 5728 if (!(wq->flags & WQ_FREEZABLE)) 5729 continue; 5730 /* 5731 * nr_active is monotonically decreasing. It's safe 5732 * to peek without lock. 5733 */ 5734 rcu_read_lock(); 5735 for_each_pwq(pwq, wq) { 5736 WARN_ON_ONCE(pwq->nr_active < 0); 5737 if (pwq->nr_active) { 5738 busy = true; 5739 rcu_read_unlock(); 5740 goto out_unlock; 5741 } 5742 } 5743 rcu_read_unlock(); 5744 } 5745 out_unlock: 5746 mutex_unlock(&wq_pool_mutex); 5747 return busy; 5748 } 5749 5750 /** 5751 * thaw_workqueues - thaw workqueues 5752 * 5753 * Thaw workqueues. Normal queueing is restored and all collected 5754 * frozen works are transferred to their respective pool worklists. 5755 * 5756 * CONTEXT: 5757 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5758 */ 5759 void thaw_workqueues(void) 5760 { 5761 struct workqueue_struct *wq; 5762 struct pool_workqueue *pwq; 5763 5764 mutex_lock(&wq_pool_mutex); 5765 5766 if (!workqueue_freezing) 5767 goto out_unlock; 5768 5769 workqueue_freezing = false; 5770 5771 /* restore max_active and repopulate worklist */ 5772 list_for_each_entry(wq, &workqueues, list) { 5773 mutex_lock(&wq->mutex); 5774 for_each_pwq(pwq, wq) 5775 pwq_adjust_max_active(pwq); 5776 mutex_unlock(&wq->mutex); 5777 } 5778 5779 out_unlock: 5780 mutex_unlock(&wq_pool_mutex); 5781 } 5782 #endif /* CONFIG_FREEZER */ 5783 5784 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask) 5785 { 5786 LIST_HEAD(ctxs); 5787 int ret = 0; 5788 struct workqueue_struct *wq; 5789 struct apply_wqattrs_ctx *ctx, *n; 5790 5791 lockdep_assert_held(&wq_pool_mutex); 5792 5793 list_for_each_entry(wq, &workqueues, list) { 5794 if (!(wq->flags & WQ_UNBOUND)) 5795 continue; 5796 /* creating multiple pwqs breaks ordering guarantee */ 5797 if (wq->flags & __WQ_ORDERED) 5798 continue; 5799 5800 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask); 5801 if (IS_ERR(ctx)) { 5802 ret = PTR_ERR(ctx); 5803 break; 5804 } 5805 5806 list_add_tail(&ctx->list, &ctxs); 5807 } 5808 5809 list_for_each_entry_safe(ctx, n, &ctxs, list) { 5810 if (!ret) 5811 apply_wqattrs_commit(ctx); 5812 apply_wqattrs_cleanup(ctx); 5813 } 5814 5815 if (!ret) { 5816 mutex_lock(&wq_pool_attach_mutex); 5817 cpumask_copy(wq_unbound_cpumask, unbound_cpumask); 5818 mutex_unlock(&wq_pool_attach_mutex); 5819 } 5820 return ret; 5821 } 5822 5823 /** 5824 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 5825 * @cpumask: the cpumask to set 5826 * 5827 * The low-level workqueues cpumask is a global cpumask that limits 5828 * the affinity of all unbound workqueues. This function check the @cpumask 5829 * and apply it to all unbound workqueues and updates all pwqs of them. 5830 * 5831 * Return: 0 - Success 5832 * -EINVAL - Invalid @cpumask 5833 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 5834 */ 5835 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 5836 { 5837 int ret = -EINVAL; 5838 5839 /* 5840 * Not excluding isolated cpus on purpose. 5841 * If the user wishes to include them, we allow that. 5842 */ 5843 cpumask_and(cpumask, cpumask, cpu_possible_mask); 5844 if (!cpumask_empty(cpumask)) { 5845 apply_wqattrs_lock(); 5846 if (cpumask_equal(cpumask, wq_unbound_cpumask)) { 5847 ret = 0; 5848 goto out_unlock; 5849 } 5850 5851 ret = workqueue_apply_unbound_cpumask(cpumask); 5852 5853 out_unlock: 5854 apply_wqattrs_unlock(); 5855 } 5856 5857 return ret; 5858 } 5859 5860 static int parse_affn_scope(const char *val) 5861 { 5862 int i; 5863 5864 for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) { 5865 if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i]))) 5866 return i; 5867 } 5868 return -EINVAL; 5869 } 5870 5871 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp) 5872 { 5873 struct workqueue_struct *wq; 5874 int affn, cpu; 5875 5876 affn = parse_affn_scope(val); 5877 if (affn < 0) 5878 return affn; 5879 if (affn == WQ_AFFN_DFL) 5880 return -EINVAL; 5881 5882 cpus_read_lock(); 5883 mutex_lock(&wq_pool_mutex); 5884 5885 wq_affn_dfl = affn; 5886 5887 list_for_each_entry(wq, &workqueues, list) { 5888 for_each_online_cpu(cpu) { 5889 wq_update_pod(wq, cpu, cpu, true); 5890 } 5891 } 5892 5893 mutex_unlock(&wq_pool_mutex); 5894 cpus_read_unlock(); 5895 5896 return 0; 5897 } 5898 5899 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp) 5900 { 5901 return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]); 5902 } 5903 5904 static const struct kernel_param_ops wq_affn_dfl_ops = { 5905 .set = wq_affn_dfl_set, 5906 .get = wq_affn_dfl_get, 5907 }; 5908 5909 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644); 5910 5911 #ifdef CONFIG_SYSFS 5912 /* 5913 * Workqueues with WQ_SYSFS flag set is visible to userland via 5914 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 5915 * following attributes. 5916 * 5917 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 5918 * max_active RW int : maximum number of in-flight work items 5919 * 5920 * Unbound workqueues have the following extra attributes. 5921 * 5922 * nice RW int : nice value of the workers 5923 * cpumask RW mask : bitmask of allowed CPUs for the workers 5924 * affinity_scope RW str : worker CPU affinity scope (cache, numa, none) 5925 * affinity_strict RW bool : worker CPU affinity is strict 5926 */ 5927 struct wq_device { 5928 struct workqueue_struct *wq; 5929 struct device dev; 5930 }; 5931 5932 static struct workqueue_struct *dev_to_wq(struct device *dev) 5933 { 5934 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5935 5936 return wq_dev->wq; 5937 } 5938 5939 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 5940 char *buf) 5941 { 5942 struct workqueue_struct *wq = dev_to_wq(dev); 5943 5944 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 5945 } 5946 static DEVICE_ATTR_RO(per_cpu); 5947 5948 static ssize_t max_active_show(struct device *dev, 5949 struct device_attribute *attr, char *buf) 5950 { 5951 struct workqueue_struct *wq = dev_to_wq(dev); 5952 5953 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 5954 } 5955 5956 static ssize_t max_active_store(struct device *dev, 5957 struct device_attribute *attr, const char *buf, 5958 size_t count) 5959 { 5960 struct workqueue_struct *wq = dev_to_wq(dev); 5961 int val; 5962 5963 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 5964 return -EINVAL; 5965 5966 workqueue_set_max_active(wq, val); 5967 return count; 5968 } 5969 static DEVICE_ATTR_RW(max_active); 5970 5971 static struct attribute *wq_sysfs_attrs[] = { 5972 &dev_attr_per_cpu.attr, 5973 &dev_attr_max_active.attr, 5974 NULL, 5975 }; 5976 ATTRIBUTE_GROUPS(wq_sysfs); 5977 5978 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 5979 char *buf) 5980 { 5981 struct workqueue_struct *wq = dev_to_wq(dev); 5982 int written; 5983 5984 mutex_lock(&wq->mutex); 5985 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 5986 mutex_unlock(&wq->mutex); 5987 5988 return written; 5989 } 5990 5991 /* prepare workqueue_attrs for sysfs store operations */ 5992 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5993 { 5994 struct workqueue_attrs *attrs; 5995 5996 lockdep_assert_held(&wq_pool_mutex); 5997 5998 attrs = alloc_workqueue_attrs(); 5999 if (!attrs) 6000 return NULL; 6001 6002 copy_workqueue_attrs(attrs, wq->unbound_attrs); 6003 return attrs; 6004 } 6005 6006 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 6007 const char *buf, size_t count) 6008 { 6009 struct workqueue_struct *wq = dev_to_wq(dev); 6010 struct workqueue_attrs *attrs; 6011 int ret = -ENOMEM; 6012 6013 apply_wqattrs_lock(); 6014 6015 attrs = wq_sysfs_prep_attrs(wq); 6016 if (!attrs) 6017 goto out_unlock; 6018 6019 if (sscanf(buf, "%d", &attrs->nice) == 1 && 6020 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 6021 ret = apply_workqueue_attrs_locked(wq, attrs); 6022 else 6023 ret = -EINVAL; 6024 6025 out_unlock: 6026 apply_wqattrs_unlock(); 6027 free_workqueue_attrs(attrs); 6028 return ret ?: count; 6029 } 6030 6031 static ssize_t wq_cpumask_show(struct device *dev, 6032 struct device_attribute *attr, char *buf) 6033 { 6034 struct workqueue_struct *wq = dev_to_wq(dev); 6035 int written; 6036 6037 mutex_lock(&wq->mutex); 6038 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 6039 cpumask_pr_args(wq->unbound_attrs->cpumask)); 6040 mutex_unlock(&wq->mutex); 6041 return written; 6042 } 6043 6044 static ssize_t wq_cpumask_store(struct device *dev, 6045 struct device_attribute *attr, 6046 const char *buf, size_t count) 6047 { 6048 struct workqueue_struct *wq = dev_to_wq(dev); 6049 struct workqueue_attrs *attrs; 6050 int ret = -ENOMEM; 6051 6052 apply_wqattrs_lock(); 6053 6054 attrs = wq_sysfs_prep_attrs(wq); 6055 if (!attrs) 6056 goto out_unlock; 6057 6058 ret = cpumask_parse(buf, attrs->cpumask); 6059 if (!ret) 6060 ret = apply_workqueue_attrs_locked(wq, attrs); 6061 6062 out_unlock: 6063 apply_wqattrs_unlock(); 6064 free_workqueue_attrs(attrs); 6065 return ret ?: count; 6066 } 6067 6068 static ssize_t wq_affn_scope_show(struct device *dev, 6069 struct device_attribute *attr, char *buf) 6070 { 6071 struct workqueue_struct *wq = dev_to_wq(dev); 6072 int written; 6073 6074 mutex_lock(&wq->mutex); 6075 if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL) 6076 written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n", 6077 wq_affn_names[WQ_AFFN_DFL], 6078 wq_affn_names[wq_affn_dfl]); 6079 else 6080 written = scnprintf(buf, PAGE_SIZE, "%s\n", 6081 wq_affn_names[wq->unbound_attrs->affn_scope]); 6082 mutex_unlock(&wq->mutex); 6083 6084 return written; 6085 } 6086 6087 static ssize_t wq_affn_scope_store(struct device *dev, 6088 struct device_attribute *attr, 6089 const char *buf, size_t count) 6090 { 6091 struct workqueue_struct *wq = dev_to_wq(dev); 6092 struct workqueue_attrs *attrs; 6093 int affn, ret = -ENOMEM; 6094 6095 affn = parse_affn_scope(buf); 6096 if (affn < 0) 6097 return affn; 6098 6099 apply_wqattrs_lock(); 6100 attrs = wq_sysfs_prep_attrs(wq); 6101 if (attrs) { 6102 attrs->affn_scope = affn; 6103 ret = apply_workqueue_attrs_locked(wq, attrs); 6104 } 6105 apply_wqattrs_unlock(); 6106 free_workqueue_attrs(attrs); 6107 return ret ?: count; 6108 } 6109 6110 static ssize_t wq_affinity_strict_show(struct device *dev, 6111 struct device_attribute *attr, char *buf) 6112 { 6113 struct workqueue_struct *wq = dev_to_wq(dev); 6114 6115 return scnprintf(buf, PAGE_SIZE, "%d\n", 6116 wq->unbound_attrs->affn_strict); 6117 } 6118 6119 static ssize_t wq_affinity_strict_store(struct device *dev, 6120 struct device_attribute *attr, 6121 const char *buf, size_t count) 6122 { 6123 struct workqueue_struct *wq = dev_to_wq(dev); 6124 struct workqueue_attrs *attrs; 6125 int v, ret = -ENOMEM; 6126 6127 if (sscanf(buf, "%d", &v) != 1) 6128 return -EINVAL; 6129 6130 apply_wqattrs_lock(); 6131 attrs = wq_sysfs_prep_attrs(wq); 6132 if (attrs) { 6133 attrs->affn_strict = (bool)v; 6134 ret = apply_workqueue_attrs_locked(wq, attrs); 6135 } 6136 apply_wqattrs_unlock(); 6137 free_workqueue_attrs(attrs); 6138 return ret ?: count; 6139 } 6140 6141 static struct device_attribute wq_sysfs_unbound_attrs[] = { 6142 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 6143 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 6144 __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store), 6145 __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store), 6146 __ATTR_NULL, 6147 }; 6148 6149 static struct bus_type wq_subsys = { 6150 .name = "workqueue", 6151 .dev_groups = wq_sysfs_groups, 6152 }; 6153 6154 static ssize_t wq_unbound_cpumask_show(struct device *dev, 6155 struct device_attribute *attr, char *buf) 6156 { 6157 int written; 6158 6159 mutex_lock(&wq_pool_mutex); 6160 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 6161 cpumask_pr_args(wq_unbound_cpumask)); 6162 mutex_unlock(&wq_pool_mutex); 6163 6164 return written; 6165 } 6166 6167 static ssize_t wq_unbound_cpumask_store(struct device *dev, 6168 struct device_attribute *attr, const char *buf, size_t count) 6169 { 6170 cpumask_var_t cpumask; 6171 int ret; 6172 6173 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 6174 return -ENOMEM; 6175 6176 ret = cpumask_parse(buf, cpumask); 6177 if (!ret) 6178 ret = workqueue_set_unbound_cpumask(cpumask); 6179 6180 free_cpumask_var(cpumask); 6181 return ret ? ret : count; 6182 } 6183 6184 static struct device_attribute wq_sysfs_cpumask_attr = 6185 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 6186 wq_unbound_cpumask_store); 6187 6188 static int __init wq_sysfs_init(void) 6189 { 6190 struct device *dev_root; 6191 int err; 6192 6193 err = subsys_virtual_register(&wq_subsys, NULL); 6194 if (err) 6195 return err; 6196 6197 dev_root = bus_get_dev_root(&wq_subsys); 6198 if (dev_root) { 6199 err = device_create_file(dev_root, &wq_sysfs_cpumask_attr); 6200 put_device(dev_root); 6201 } 6202 return err; 6203 } 6204 core_initcall(wq_sysfs_init); 6205 6206 static void wq_device_release(struct device *dev) 6207 { 6208 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 6209 6210 kfree(wq_dev); 6211 } 6212 6213 /** 6214 * workqueue_sysfs_register - make a workqueue visible in sysfs 6215 * @wq: the workqueue to register 6216 * 6217 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 6218 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 6219 * which is the preferred method. 6220 * 6221 * Workqueue user should use this function directly iff it wants to apply 6222 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 6223 * apply_workqueue_attrs() may race against userland updating the 6224 * attributes. 6225 * 6226 * Return: 0 on success, -errno on failure. 6227 */ 6228 int workqueue_sysfs_register(struct workqueue_struct *wq) 6229 { 6230 struct wq_device *wq_dev; 6231 int ret; 6232 6233 /* 6234 * Adjusting max_active or creating new pwqs by applying 6235 * attributes breaks ordering guarantee. Disallow exposing ordered 6236 * workqueues. 6237 */ 6238 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 6239 return -EINVAL; 6240 6241 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 6242 if (!wq_dev) 6243 return -ENOMEM; 6244 6245 wq_dev->wq = wq; 6246 wq_dev->dev.bus = &wq_subsys; 6247 wq_dev->dev.release = wq_device_release; 6248 dev_set_name(&wq_dev->dev, "%s", wq->name); 6249 6250 /* 6251 * unbound_attrs are created separately. Suppress uevent until 6252 * everything is ready. 6253 */ 6254 dev_set_uevent_suppress(&wq_dev->dev, true); 6255 6256 ret = device_register(&wq_dev->dev); 6257 if (ret) { 6258 put_device(&wq_dev->dev); 6259 wq->wq_dev = NULL; 6260 return ret; 6261 } 6262 6263 if (wq->flags & WQ_UNBOUND) { 6264 struct device_attribute *attr; 6265 6266 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 6267 ret = device_create_file(&wq_dev->dev, attr); 6268 if (ret) { 6269 device_unregister(&wq_dev->dev); 6270 wq->wq_dev = NULL; 6271 return ret; 6272 } 6273 } 6274 } 6275 6276 dev_set_uevent_suppress(&wq_dev->dev, false); 6277 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 6278 return 0; 6279 } 6280 6281 /** 6282 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 6283 * @wq: the workqueue to unregister 6284 * 6285 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 6286 */ 6287 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 6288 { 6289 struct wq_device *wq_dev = wq->wq_dev; 6290 6291 if (!wq->wq_dev) 6292 return; 6293 6294 wq->wq_dev = NULL; 6295 device_unregister(&wq_dev->dev); 6296 } 6297 #else /* CONFIG_SYSFS */ 6298 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 6299 #endif /* CONFIG_SYSFS */ 6300 6301 /* 6302 * Workqueue watchdog. 6303 * 6304 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 6305 * flush dependency, a concurrency managed work item which stays RUNNING 6306 * indefinitely. Workqueue stalls can be very difficult to debug as the 6307 * usual warning mechanisms don't trigger and internal workqueue state is 6308 * largely opaque. 6309 * 6310 * Workqueue watchdog monitors all worker pools periodically and dumps 6311 * state if some pools failed to make forward progress for a while where 6312 * forward progress is defined as the first item on ->worklist changing. 6313 * 6314 * This mechanism is controlled through the kernel parameter 6315 * "workqueue.watchdog_thresh" which can be updated at runtime through the 6316 * corresponding sysfs parameter file. 6317 */ 6318 #ifdef CONFIG_WQ_WATCHDOG 6319 6320 static unsigned long wq_watchdog_thresh = 30; 6321 static struct timer_list wq_watchdog_timer; 6322 6323 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 6324 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 6325 6326 /* 6327 * Show workers that might prevent the processing of pending work items. 6328 * The only candidates are CPU-bound workers in the running state. 6329 * Pending work items should be handled by another idle worker 6330 * in all other situations. 6331 */ 6332 static void show_cpu_pool_hog(struct worker_pool *pool) 6333 { 6334 struct worker *worker; 6335 unsigned long flags; 6336 int bkt; 6337 6338 raw_spin_lock_irqsave(&pool->lock, flags); 6339 6340 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 6341 if (task_is_running(worker->task)) { 6342 /* 6343 * Defer printing to avoid deadlocks in console 6344 * drivers that queue work while holding locks 6345 * also taken in their write paths. 6346 */ 6347 printk_deferred_enter(); 6348 6349 pr_info("pool %d:\n", pool->id); 6350 sched_show_task(worker->task); 6351 6352 printk_deferred_exit(); 6353 } 6354 } 6355 6356 raw_spin_unlock_irqrestore(&pool->lock, flags); 6357 } 6358 6359 static void show_cpu_pools_hogs(void) 6360 { 6361 struct worker_pool *pool; 6362 int pi; 6363 6364 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n"); 6365 6366 rcu_read_lock(); 6367 6368 for_each_pool(pool, pi) { 6369 if (pool->cpu_stall) 6370 show_cpu_pool_hog(pool); 6371 6372 } 6373 6374 rcu_read_unlock(); 6375 } 6376 6377 static void wq_watchdog_reset_touched(void) 6378 { 6379 int cpu; 6380 6381 wq_watchdog_touched = jiffies; 6382 for_each_possible_cpu(cpu) 6383 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 6384 } 6385 6386 static void wq_watchdog_timer_fn(struct timer_list *unused) 6387 { 6388 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 6389 bool lockup_detected = false; 6390 bool cpu_pool_stall = false; 6391 unsigned long now = jiffies; 6392 struct worker_pool *pool; 6393 int pi; 6394 6395 if (!thresh) 6396 return; 6397 6398 rcu_read_lock(); 6399 6400 for_each_pool(pool, pi) { 6401 unsigned long pool_ts, touched, ts; 6402 6403 pool->cpu_stall = false; 6404 if (list_empty(&pool->worklist)) 6405 continue; 6406 6407 /* 6408 * If a virtual machine is stopped by the host it can look to 6409 * the watchdog like a stall. 6410 */ 6411 kvm_check_and_clear_guest_paused(); 6412 6413 /* get the latest of pool and touched timestamps */ 6414 if (pool->cpu >= 0) 6415 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu)); 6416 else 6417 touched = READ_ONCE(wq_watchdog_touched); 6418 pool_ts = READ_ONCE(pool->watchdog_ts); 6419 6420 if (time_after(pool_ts, touched)) 6421 ts = pool_ts; 6422 else 6423 ts = touched; 6424 6425 /* did we stall? */ 6426 if (time_after(now, ts + thresh)) { 6427 lockup_detected = true; 6428 if (pool->cpu >= 0) { 6429 pool->cpu_stall = true; 6430 cpu_pool_stall = true; 6431 } 6432 pr_emerg("BUG: workqueue lockup - pool"); 6433 pr_cont_pool_info(pool); 6434 pr_cont(" stuck for %us!\n", 6435 jiffies_to_msecs(now - pool_ts) / 1000); 6436 } 6437 6438 6439 } 6440 6441 rcu_read_unlock(); 6442 6443 if (lockup_detected) 6444 show_all_workqueues(); 6445 6446 if (cpu_pool_stall) 6447 show_cpu_pools_hogs(); 6448 6449 wq_watchdog_reset_touched(); 6450 mod_timer(&wq_watchdog_timer, jiffies + thresh); 6451 } 6452 6453 notrace void wq_watchdog_touch(int cpu) 6454 { 6455 if (cpu >= 0) 6456 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 6457 6458 wq_watchdog_touched = jiffies; 6459 } 6460 6461 static void wq_watchdog_set_thresh(unsigned long thresh) 6462 { 6463 wq_watchdog_thresh = 0; 6464 del_timer_sync(&wq_watchdog_timer); 6465 6466 if (thresh) { 6467 wq_watchdog_thresh = thresh; 6468 wq_watchdog_reset_touched(); 6469 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 6470 } 6471 } 6472 6473 static int wq_watchdog_param_set_thresh(const char *val, 6474 const struct kernel_param *kp) 6475 { 6476 unsigned long thresh; 6477 int ret; 6478 6479 ret = kstrtoul(val, 0, &thresh); 6480 if (ret) 6481 return ret; 6482 6483 if (system_wq) 6484 wq_watchdog_set_thresh(thresh); 6485 else 6486 wq_watchdog_thresh = thresh; 6487 6488 return 0; 6489 } 6490 6491 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 6492 .set = wq_watchdog_param_set_thresh, 6493 .get = param_get_ulong, 6494 }; 6495 6496 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 6497 0644); 6498 6499 static void wq_watchdog_init(void) 6500 { 6501 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 6502 wq_watchdog_set_thresh(wq_watchdog_thresh); 6503 } 6504 6505 #else /* CONFIG_WQ_WATCHDOG */ 6506 6507 static inline void wq_watchdog_init(void) { } 6508 6509 #endif /* CONFIG_WQ_WATCHDOG */ 6510 6511 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask) 6512 { 6513 if (!cpumask_intersects(wq_unbound_cpumask, mask)) { 6514 pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n", 6515 cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask)); 6516 return; 6517 } 6518 6519 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask); 6520 } 6521 6522 /** 6523 * workqueue_init_early - early init for workqueue subsystem 6524 * 6525 * This is the first step of three-staged workqueue subsystem initialization and 6526 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are 6527 * up. It sets up all the data structures and system workqueues and allows early 6528 * boot code to create workqueues and queue/cancel work items. Actual work item 6529 * execution starts only after kthreads can be created and scheduled right 6530 * before early initcalls. 6531 */ 6532 void __init workqueue_init_early(void) 6533 { 6534 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 6535 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 6536 int i, cpu; 6537 6538 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 6539 6540 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 6541 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask); 6542 restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ)); 6543 restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN)); 6544 if (!cpumask_empty(&wq_cmdline_cpumask)) 6545 restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask); 6546 6547 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 6548 6549 wq_update_pod_attrs_buf = alloc_workqueue_attrs(); 6550 BUG_ON(!wq_update_pod_attrs_buf); 6551 6552 /* initialize WQ_AFFN_SYSTEM pods */ 6553 pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 6554 pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL); 6555 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 6556 BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod); 6557 6558 BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE)); 6559 6560 pt->nr_pods = 1; 6561 cpumask_copy(pt->pod_cpus[0], cpu_possible_mask); 6562 pt->pod_node[0] = NUMA_NO_NODE; 6563 pt->cpu_pod[0] = 0; 6564 6565 /* initialize CPU pools */ 6566 for_each_possible_cpu(cpu) { 6567 struct worker_pool *pool; 6568 6569 i = 0; 6570 for_each_cpu_worker_pool(pool, cpu) { 6571 BUG_ON(init_worker_pool(pool)); 6572 pool->cpu = cpu; 6573 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 6574 cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu)); 6575 pool->attrs->nice = std_nice[i++]; 6576 pool->attrs->affn_strict = true; 6577 pool->node = cpu_to_node(cpu); 6578 6579 /* alloc pool ID */ 6580 mutex_lock(&wq_pool_mutex); 6581 BUG_ON(worker_pool_assign_id(pool)); 6582 mutex_unlock(&wq_pool_mutex); 6583 } 6584 } 6585 6586 /* create default unbound and ordered wq attrs */ 6587 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 6588 struct workqueue_attrs *attrs; 6589 6590 BUG_ON(!(attrs = alloc_workqueue_attrs())); 6591 attrs->nice = std_nice[i]; 6592 unbound_std_wq_attrs[i] = attrs; 6593 6594 /* 6595 * An ordered wq should have only one pwq as ordering is 6596 * guaranteed by max_active which is enforced by pwqs. 6597 */ 6598 BUG_ON(!(attrs = alloc_workqueue_attrs())); 6599 attrs->nice = std_nice[i]; 6600 attrs->ordered = true; 6601 ordered_wq_attrs[i] = attrs; 6602 } 6603 6604 system_wq = alloc_workqueue("events", 0, 0); 6605 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 6606 system_long_wq = alloc_workqueue("events_long", 0, 0); 6607 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 6608 WQ_MAX_ACTIVE); 6609 system_freezable_wq = alloc_workqueue("events_freezable", 6610 WQ_FREEZABLE, 0); 6611 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 6612 WQ_POWER_EFFICIENT, 0); 6613 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 6614 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 6615 0); 6616 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 6617 !system_unbound_wq || !system_freezable_wq || 6618 !system_power_efficient_wq || 6619 !system_freezable_power_efficient_wq); 6620 } 6621 6622 static void __init wq_cpu_intensive_thresh_init(void) 6623 { 6624 unsigned long thresh; 6625 unsigned long bogo; 6626 6627 pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release"); 6628 BUG_ON(IS_ERR(pwq_release_worker)); 6629 6630 /* if the user set it to a specific value, keep it */ 6631 if (wq_cpu_intensive_thresh_us != ULONG_MAX) 6632 return; 6633 6634 /* 6635 * The default of 10ms is derived from the fact that most modern (as of 6636 * 2023) processors can do a lot in 10ms and that it's just below what 6637 * most consider human-perceivable. However, the kernel also runs on a 6638 * lot slower CPUs including microcontrollers where the threshold is way 6639 * too low. 6640 * 6641 * Let's scale up the threshold upto 1 second if BogoMips is below 4000. 6642 * This is by no means accurate but it doesn't have to be. The mechanism 6643 * is still useful even when the threshold is fully scaled up. Also, as 6644 * the reports would usually be applicable to everyone, some machines 6645 * operating on longer thresholds won't significantly diminish their 6646 * usefulness. 6647 */ 6648 thresh = 10 * USEC_PER_MSEC; 6649 6650 /* see init/calibrate.c for lpj -> BogoMIPS calculation */ 6651 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1); 6652 if (bogo < 4000) 6653 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC); 6654 6655 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n", 6656 loops_per_jiffy, bogo, thresh); 6657 6658 wq_cpu_intensive_thresh_us = thresh; 6659 } 6660 6661 /** 6662 * workqueue_init - bring workqueue subsystem fully online 6663 * 6664 * This is the second step of three-staged workqueue subsystem initialization 6665 * and invoked as soon as kthreads can be created and scheduled. Workqueues have 6666 * been created and work items queued on them, but there are no kworkers 6667 * executing the work items yet. Populate the worker pools with the initial 6668 * workers and enable future kworker creations. 6669 */ 6670 void __init workqueue_init(void) 6671 { 6672 struct workqueue_struct *wq; 6673 struct worker_pool *pool; 6674 int cpu, bkt; 6675 6676 wq_cpu_intensive_thresh_init(); 6677 6678 mutex_lock(&wq_pool_mutex); 6679 6680 /* 6681 * Per-cpu pools created earlier could be missing node hint. Fix them 6682 * up. Also, create a rescuer for workqueues that requested it. 6683 */ 6684 for_each_possible_cpu(cpu) { 6685 for_each_cpu_worker_pool(pool, cpu) { 6686 pool->node = cpu_to_node(cpu); 6687 } 6688 } 6689 6690 list_for_each_entry(wq, &workqueues, list) { 6691 WARN(init_rescuer(wq), 6692 "workqueue: failed to create early rescuer for %s", 6693 wq->name); 6694 } 6695 6696 mutex_unlock(&wq_pool_mutex); 6697 6698 /* create the initial workers */ 6699 for_each_online_cpu(cpu) { 6700 for_each_cpu_worker_pool(pool, cpu) { 6701 pool->flags &= ~POOL_DISASSOCIATED; 6702 BUG_ON(!create_worker(pool)); 6703 } 6704 } 6705 6706 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 6707 BUG_ON(!create_worker(pool)); 6708 6709 wq_online = true; 6710 wq_watchdog_init(); 6711 } 6712 6713 /* 6714 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to 6715 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique 6716 * and consecutive pod ID. The rest of @pt is initialized accordingly. 6717 */ 6718 static void __init init_pod_type(struct wq_pod_type *pt, 6719 bool (*cpus_share_pod)(int, int)) 6720 { 6721 int cur, pre, cpu, pod; 6722 6723 pt->nr_pods = 0; 6724 6725 /* init @pt->cpu_pod[] according to @cpus_share_pod() */ 6726 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 6727 BUG_ON(!pt->cpu_pod); 6728 6729 for_each_possible_cpu(cur) { 6730 for_each_possible_cpu(pre) { 6731 if (pre >= cur) { 6732 pt->cpu_pod[cur] = pt->nr_pods++; 6733 break; 6734 } 6735 if (cpus_share_pod(cur, pre)) { 6736 pt->cpu_pod[cur] = pt->cpu_pod[pre]; 6737 break; 6738 } 6739 } 6740 } 6741 6742 /* init the rest to match @pt->cpu_pod[] */ 6743 pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 6744 pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL); 6745 BUG_ON(!pt->pod_cpus || !pt->pod_node); 6746 6747 for (pod = 0; pod < pt->nr_pods; pod++) 6748 BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL)); 6749 6750 for_each_possible_cpu(cpu) { 6751 cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]); 6752 pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu); 6753 } 6754 } 6755 6756 static bool __init cpus_dont_share(int cpu0, int cpu1) 6757 { 6758 return false; 6759 } 6760 6761 static bool __init cpus_share_smt(int cpu0, int cpu1) 6762 { 6763 #ifdef CONFIG_SCHED_SMT 6764 return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1)); 6765 #else 6766 return false; 6767 #endif 6768 } 6769 6770 static bool __init cpus_share_numa(int cpu0, int cpu1) 6771 { 6772 return cpu_to_node(cpu0) == cpu_to_node(cpu1); 6773 } 6774 6775 /** 6776 * workqueue_init_topology - initialize CPU pods for unbound workqueues 6777 * 6778 * This is the third step of there-staged workqueue subsystem initialization and 6779 * invoked after SMP and topology information are fully initialized. It 6780 * initializes the unbound CPU pods accordingly. 6781 */ 6782 void __init workqueue_init_topology(void) 6783 { 6784 struct workqueue_struct *wq; 6785 int cpu; 6786 6787 init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share); 6788 init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt); 6789 init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache); 6790 init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa); 6791 6792 mutex_lock(&wq_pool_mutex); 6793 6794 /* 6795 * Workqueues allocated earlier would have all CPUs sharing the default 6796 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU 6797 * combinations to apply per-pod sharing. 6798 */ 6799 list_for_each_entry(wq, &workqueues, list) { 6800 for_each_online_cpu(cpu) { 6801 wq_update_pod(wq, cpu, cpu, true); 6802 } 6803 } 6804 6805 mutex_unlock(&wq_pool_mutex); 6806 } 6807 6808 void __warn_flushing_systemwide_wq(void) 6809 { 6810 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n"); 6811 dump_stack(); 6812 } 6813 EXPORT_SYMBOL(__warn_flushing_systemwide_wq); 6814 6815 static int __init workqueue_unbound_cpus_setup(char *str) 6816 { 6817 if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) { 6818 cpumask_clear(&wq_cmdline_cpumask); 6819 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n"); 6820 } 6821 6822 return 1; 6823 } 6824 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup); 6825