xref: /openbmc/linux/kernel/workqueue.c (revision ace2dc7d)
1 /*
2  * linux/kernel/workqueue.c
3  *
4  * Generic mechanism for defining kernel helper threads for running
5  * arbitrary tasks in process context.
6  *
7  * Started by Ingo Molnar, Copyright (C) 2002
8  *
9  * Derived from the taskqueue/keventd code by:
10  *
11  *   David Woodhouse <dwmw2@infradead.org>
12  *   Andrew Morton
13  *   Kai Petzke <wpp@marie.physik.tu-berlin.de>
14  *   Theodore Ts'o <tytso@mit.edu>
15  *
16  * Made to use alloc_percpu by Christoph Lameter.
17  */
18 
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
35 #include <linux/lockdep.h>
36 #include <linux/idr.h>
37 
38 #include "workqueue_sched.h"
39 
40 enum {
41 	/* global_cwq flags */
42 	GCWQ_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
43 	GCWQ_MANAGING_WORKERS	= 1 << 1,	/* managing workers */
44 	GCWQ_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
45 	GCWQ_FREEZING		= 1 << 3,	/* freeze in progress */
46 	GCWQ_HIGHPRI_PENDING	= 1 << 4,	/* highpri works on queue */
47 
48 	/* worker flags */
49 	WORKER_STARTED		= 1 << 0,	/* started */
50 	WORKER_DIE		= 1 << 1,	/* die die die */
51 	WORKER_IDLE		= 1 << 2,	/* is idle */
52 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
53 	WORKER_ROGUE		= 1 << 4,	/* not bound to any cpu */
54 	WORKER_REBIND		= 1 << 5,	/* mom is home, come back */
55 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
56 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
57 
58 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_ROGUE | WORKER_REBIND |
59 				  WORKER_CPU_INTENSIVE | WORKER_UNBOUND,
60 
61 	/* gcwq->trustee_state */
62 	TRUSTEE_START		= 0,		/* start */
63 	TRUSTEE_IN_CHARGE	= 1,		/* trustee in charge of gcwq */
64 	TRUSTEE_BUTCHER		= 2,		/* butcher workers */
65 	TRUSTEE_RELEASE		= 3,		/* release workers */
66 	TRUSTEE_DONE		= 4,		/* trustee is done */
67 
68 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
69 	BUSY_WORKER_HASH_SIZE	= 1 << BUSY_WORKER_HASH_ORDER,
70 	BUSY_WORKER_HASH_MASK	= BUSY_WORKER_HASH_SIZE - 1,
71 
72 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
73 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
74 
75 	MAYDAY_INITIAL_TIMEOUT	= HZ / 100,	/* call for help after 10ms */
76 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
77 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
78 	TRUSTEE_COOLDOWN	= HZ / 10,	/* for trustee draining */
79 
80 	/*
81 	 * Rescue workers are used only on emergencies and shared by
82 	 * all cpus.  Give -20.
83 	 */
84 	RESCUER_NICE_LEVEL	= -20,
85 };
86 
87 /*
88  * Structure fields follow one of the following exclusion rules.
89  *
90  * I: Set during initialization and read-only afterwards.
91  *
92  * P: Preemption protected.  Disabling preemption is enough and should
93  *    only be modified and accessed from the local cpu.
94  *
95  * L: gcwq->lock protected.  Access with gcwq->lock held.
96  *
97  * X: During normal operation, modification requires gcwq->lock and
98  *    should be done only from local cpu.  Either disabling preemption
99  *    on local cpu or grabbing gcwq->lock is enough for read access.
100  *    If GCWQ_DISASSOCIATED is set, it's identical to L.
101  *
102  * F: wq->flush_mutex protected.
103  *
104  * W: workqueue_lock protected.
105  */
106 
107 struct global_cwq;
108 
109 /*
110  * The poor guys doing the actual heavy lifting.  All on-duty workers
111  * are either serving the manager role, on idle list or on busy hash.
112  */
113 struct worker {
114 	/* on idle list while idle, on busy hash table while busy */
115 	union {
116 		struct list_head	entry;	/* L: while idle */
117 		struct hlist_node	hentry;	/* L: while busy */
118 	};
119 
120 	struct work_struct	*current_work;	/* L: work being processed */
121 	struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
122 	struct list_head	scheduled;	/* L: scheduled works */
123 	struct task_struct	*task;		/* I: worker task */
124 	struct global_cwq	*gcwq;		/* I: the associated gcwq */
125 	/* 64 bytes boundary on 64bit, 32 on 32bit */
126 	unsigned long		last_active;	/* L: last active timestamp */
127 	unsigned int		flags;		/* X: flags */
128 	int			id;		/* I: worker id */
129 	struct work_struct	rebind_work;	/* L: rebind worker to cpu */
130 };
131 
132 /*
133  * Global per-cpu workqueue.  There's one and only one for each cpu
134  * and all works are queued and processed here regardless of their
135  * target workqueues.
136  */
137 struct global_cwq {
138 	spinlock_t		lock;		/* the gcwq lock */
139 	struct list_head	worklist;	/* L: list of pending works */
140 	unsigned int		cpu;		/* I: the associated cpu */
141 	unsigned int		flags;		/* L: GCWQ_* flags */
142 
143 	int			nr_workers;	/* L: total number of workers */
144 	int			nr_idle;	/* L: currently idle ones */
145 
146 	/* workers are chained either in the idle_list or busy_hash */
147 	struct list_head	idle_list;	/* X: list of idle workers */
148 	struct hlist_head	busy_hash[BUSY_WORKER_HASH_SIZE];
149 						/* L: hash of busy workers */
150 
151 	struct timer_list	idle_timer;	/* L: worker idle timeout */
152 	struct timer_list	mayday_timer;	/* L: SOS timer for dworkers */
153 
154 	struct ida		worker_ida;	/* L: for worker IDs */
155 
156 	struct task_struct	*trustee;	/* L: for gcwq shutdown */
157 	unsigned int		trustee_state;	/* L: trustee state */
158 	wait_queue_head_t	trustee_wait;	/* trustee wait */
159 	struct worker		*first_idle;	/* L: first idle worker */
160 } ____cacheline_aligned_in_smp;
161 
162 /*
163  * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
164  * work_struct->data are used for flags and thus cwqs need to be
165  * aligned at two's power of the number of flag bits.
166  */
167 struct cpu_workqueue_struct {
168 	struct global_cwq	*gcwq;		/* I: the associated gcwq */
169 	struct workqueue_struct *wq;		/* I: the owning workqueue */
170 	int			work_color;	/* L: current color */
171 	int			flush_color;	/* L: flushing color */
172 	int			nr_in_flight[WORK_NR_COLORS];
173 						/* L: nr of in_flight works */
174 	int			nr_active;	/* L: nr of active works */
175 	int			max_active;	/* L: max active works */
176 	struct list_head	delayed_works;	/* L: delayed works */
177 };
178 
179 /*
180  * Structure used to wait for workqueue flush.
181  */
182 struct wq_flusher {
183 	struct list_head	list;		/* F: list of flushers */
184 	int			flush_color;	/* F: flush color waiting for */
185 	struct completion	done;		/* flush completion */
186 };
187 
188 /*
189  * All cpumasks are assumed to be always set on UP and thus can't be
190  * used to determine whether there's something to be done.
191  */
192 #ifdef CONFIG_SMP
193 typedef cpumask_var_t mayday_mask_t;
194 #define mayday_test_and_set_cpu(cpu, mask)	\
195 	cpumask_test_and_set_cpu((cpu), (mask))
196 #define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
197 #define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
198 #define alloc_mayday_mask(maskp, gfp)		alloc_cpumask_var((maskp), (gfp))
199 #define free_mayday_mask(mask)			free_cpumask_var((mask))
200 #else
201 typedef unsigned long mayday_mask_t;
202 #define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
203 #define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
204 #define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
205 #define alloc_mayday_mask(maskp, gfp)		true
206 #define free_mayday_mask(mask)			do { } while (0)
207 #endif
208 
209 /*
210  * The externally visible workqueue abstraction is an array of
211  * per-CPU workqueues:
212  */
213 struct workqueue_struct {
214 	unsigned int		flags;		/* I: WQ_* flags */
215 	union {
216 		struct cpu_workqueue_struct __percpu	*pcpu;
217 		struct cpu_workqueue_struct		*single;
218 		unsigned long				v;
219 	} cpu_wq;				/* I: cwq's */
220 	struct list_head	list;		/* W: list of all workqueues */
221 
222 	struct mutex		flush_mutex;	/* protects wq flushing */
223 	int			work_color;	/* F: current work color */
224 	int			flush_color;	/* F: current flush color */
225 	atomic_t		nr_cwqs_to_flush; /* flush in progress */
226 	struct wq_flusher	*first_flusher;	/* F: first flusher */
227 	struct list_head	flusher_queue;	/* F: flush waiters */
228 	struct list_head	flusher_overflow; /* F: flush overflow list */
229 
230 	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
231 	struct worker		*rescuer;	/* I: rescue worker */
232 
233 	int			saved_max_active; /* W: saved cwq max_active */
234 	const char		*name;		/* I: workqueue name */
235 #ifdef CONFIG_LOCKDEP
236 	struct lockdep_map	lockdep_map;
237 #endif
238 };
239 
240 struct workqueue_struct *system_wq __read_mostly;
241 struct workqueue_struct *system_long_wq __read_mostly;
242 struct workqueue_struct *system_nrt_wq __read_mostly;
243 struct workqueue_struct *system_unbound_wq __read_mostly;
244 EXPORT_SYMBOL_GPL(system_wq);
245 EXPORT_SYMBOL_GPL(system_long_wq);
246 EXPORT_SYMBOL_GPL(system_nrt_wq);
247 EXPORT_SYMBOL_GPL(system_unbound_wq);
248 
249 #define for_each_busy_worker(worker, i, pos, gcwq)			\
250 	for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)			\
251 		hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
252 
253 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
254 				  unsigned int sw)
255 {
256 	if (cpu < nr_cpu_ids) {
257 		if (sw & 1) {
258 			cpu = cpumask_next(cpu, mask);
259 			if (cpu < nr_cpu_ids)
260 				return cpu;
261 		}
262 		if (sw & 2)
263 			return WORK_CPU_UNBOUND;
264 	}
265 	return WORK_CPU_NONE;
266 }
267 
268 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
269 				struct workqueue_struct *wq)
270 {
271 	return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
272 }
273 
274 /*
275  * CPU iterators
276  *
277  * An extra gcwq is defined for an invalid cpu number
278  * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
279  * specific CPU.  The following iterators are similar to
280  * for_each_*_cpu() iterators but also considers the unbound gcwq.
281  *
282  * for_each_gcwq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
283  * for_each_online_gcwq_cpu()	: online CPUs + WORK_CPU_UNBOUND
284  * for_each_cwq_cpu()		: possible CPUs for bound workqueues,
285  *				  WORK_CPU_UNBOUND for unbound workqueues
286  */
287 #define for_each_gcwq_cpu(cpu)						\
288 	for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3);		\
289 	     (cpu) < WORK_CPU_NONE;					\
290 	     (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
291 
292 #define for_each_online_gcwq_cpu(cpu)					\
293 	for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3);		\
294 	     (cpu) < WORK_CPU_NONE;					\
295 	     (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
296 
297 #define for_each_cwq_cpu(cpu, wq)					\
298 	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq));	\
299 	     (cpu) < WORK_CPU_NONE;					\
300 	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
301 
302 #ifdef CONFIG_LOCKDEP
303 /**
304  * in_workqueue_context() - in context of specified workqueue?
305  * @wq: the workqueue of interest
306  *
307  * Checks lockdep state to see if the current task is executing from
308  * within a workqueue item.  This function exists only if lockdep is
309  * enabled.
310  */
311 int in_workqueue_context(struct workqueue_struct *wq)
312 {
313 	return lock_is_held(&wq->lockdep_map);
314 }
315 #endif
316 
317 #ifdef CONFIG_DEBUG_OBJECTS_WORK
318 
319 static struct debug_obj_descr work_debug_descr;
320 
321 /*
322  * fixup_init is called when:
323  * - an active object is initialized
324  */
325 static int work_fixup_init(void *addr, enum debug_obj_state state)
326 {
327 	struct work_struct *work = addr;
328 
329 	switch (state) {
330 	case ODEBUG_STATE_ACTIVE:
331 		cancel_work_sync(work);
332 		debug_object_init(work, &work_debug_descr);
333 		return 1;
334 	default:
335 		return 0;
336 	}
337 }
338 
339 /*
340  * fixup_activate is called when:
341  * - an active object is activated
342  * - an unknown object is activated (might be a statically initialized object)
343  */
344 static int work_fixup_activate(void *addr, enum debug_obj_state state)
345 {
346 	struct work_struct *work = addr;
347 
348 	switch (state) {
349 
350 	case ODEBUG_STATE_NOTAVAILABLE:
351 		/*
352 		 * This is not really a fixup. The work struct was
353 		 * statically initialized. We just make sure that it
354 		 * is tracked in the object tracker.
355 		 */
356 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
357 			debug_object_init(work, &work_debug_descr);
358 			debug_object_activate(work, &work_debug_descr);
359 			return 0;
360 		}
361 		WARN_ON_ONCE(1);
362 		return 0;
363 
364 	case ODEBUG_STATE_ACTIVE:
365 		WARN_ON(1);
366 
367 	default:
368 		return 0;
369 	}
370 }
371 
372 /*
373  * fixup_free is called when:
374  * - an active object is freed
375  */
376 static int work_fixup_free(void *addr, enum debug_obj_state state)
377 {
378 	struct work_struct *work = addr;
379 
380 	switch (state) {
381 	case ODEBUG_STATE_ACTIVE:
382 		cancel_work_sync(work);
383 		debug_object_free(work, &work_debug_descr);
384 		return 1;
385 	default:
386 		return 0;
387 	}
388 }
389 
390 static struct debug_obj_descr work_debug_descr = {
391 	.name		= "work_struct",
392 	.fixup_init	= work_fixup_init,
393 	.fixup_activate	= work_fixup_activate,
394 	.fixup_free	= work_fixup_free,
395 };
396 
397 static inline void debug_work_activate(struct work_struct *work)
398 {
399 	debug_object_activate(work, &work_debug_descr);
400 }
401 
402 static inline void debug_work_deactivate(struct work_struct *work)
403 {
404 	debug_object_deactivate(work, &work_debug_descr);
405 }
406 
407 void __init_work(struct work_struct *work, int onstack)
408 {
409 	if (onstack)
410 		debug_object_init_on_stack(work, &work_debug_descr);
411 	else
412 		debug_object_init(work, &work_debug_descr);
413 }
414 EXPORT_SYMBOL_GPL(__init_work);
415 
416 void destroy_work_on_stack(struct work_struct *work)
417 {
418 	debug_object_free(work, &work_debug_descr);
419 }
420 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
421 
422 #else
423 static inline void debug_work_activate(struct work_struct *work) { }
424 static inline void debug_work_deactivate(struct work_struct *work) { }
425 #endif
426 
427 /* Serializes the accesses to the list of workqueues. */
428 static DEFINE_SPINLOCK(workqueue_lock);
429 static LIST_HEAD(workqueues);
430 static bool workqueue_freezing;		/* W: have wqs started freezing? */
431 
432 /*
433  * The almighty global cpu workqueues.  nr_running is the only field
434  * which is expected to be used frequently by other cpus via
435  * try_to_wake_up().  Put it in a separate cacheline.
436  */
437 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
438 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running);
439 
440 /*
441  * Global cpu workqueue and nr_running counter for unbound gcwq.  The
442  * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
443  * workers have WORKER_UNBOUND set.
444  */
445 static struct global_cwq unbound_global_cwq;
446 static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0);	/* always 0 */
447 
448 static int worker_thread(void *__worker);
449 
450 static struct global_cwq *get_gcwq(unsigned int cpu)
451 {
452 	if (cpu != WORK_CPU_UNBOUND)
453 		return &per_cpu(global_cwq, cpu);
454 	else
455 		return &unbound_global_cwq;
456 }
457 
458 static atomic_t *get_gcwq_nr_running(unsigned int cpu)
459 {
460 	if (cpu != WORK_CPU_UNBOUND)
461 		return &per_cpu(gcwq_nr_running, cpu);
462 	else
463 		return &unbound_gcwq_nr_running;
464 }
465 
466 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
467 					    struct workqueue_struct *wq)
468 {
469 	if (!(wq->flags & WQ_UNBOUND)) {
470 		if (likely(cpu < nr_cpu_ids)) {
471 #ifdef CONFIG_SMP
472 			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
473 #else
474 			return wq->cpu_wq.single;
475 #endif
476 		}
477 	} else if (likely(cpu == WORK_CPU_UNBOUND))
478 		return wq->cpu_wq.single;
479 	return NULL;
480 }
481 
482 static unsigned int work_color_to_flags(int color)
483 {
484 	return color << WORK_STRUCT_COLOR_SHIFT;
485 }
486 
487 static int get_work_color(struct work_struct *work)
488 {
489 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
490 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
491 }
492 
493 static int work_next_color(int color)
494 {
495 	return (color + 1) % WORK_NR_COLORS;
496 }
497 
498 /*
499  * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
500  * work is on queue.  Once execution starts, WORK_STRUCT_CWQ is
501  * cleared and the work data contains the cpu number it was last on.
502  *
503  * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
504  * cwq, cpu or clear work->data.  These functions should only be
505  * called while the work is owned - ie. while the PENDING bit is set.
506  *
507  * get_work_[g]cwq() can be used to obtain the gcwq or cwq
508  * corresponding to a work.  gcwq is available once the work has been
509  * queued anywhere after initialization.  cwq is available only from
510  * queueing until execution starts.
511  */
512 static inline void set_work_data(struct work_struct *work, unsigned long data,
513 				 unsigned long flags)
514 {
515 	BUG_ON(!work_pending(work));
516 	atomic_long_set(&work->data, data | flags | work_static(work));
517 }
518 
519 static void set_work_cwq(struct work_struct *work,
520 			 struct cpu_workqueue_struct *cwq,
521 			 unsigned long extra_flags)
522 {
523 	set_work_data(work, (unsigned long)cwq,
524 		      WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
525 }
526 
527 static void set_work_cpu(struct work_struct *work, unsigned int cpu)
528 {
529 	set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
530 }
531 
532 static void clear_work_data(struct work_struct *work)
533 {
534 	set_work_data(work, WORK_STRUCT_NO_CPU, 0);
535 }
536 
537 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
538 {
539 	unsigned long data = atomic_long_read(&work->data);
540 
541 	if (data & WORK_STRUCT_CWQ)
542 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
543 	else
544 		return NULL;
545 }
546 
547 static struct global_cwq *get_work_gcwq(struct work_struct *work)
548 {
549 	unsigned long data = atomic_long_read(&work->data);
550 	unsigned int cpu;
551 
552 	if (data & WORK_STRUCT_CWQ)
553 		return ((struct cpu_workqueue_struct *)
554 			(data & WORK_STRUCT_WQ_DATA_MASK))->gcwq;
555 
556 	cpu = data >> WORK_STRUCT_FLAG_BITS;
557 	if (cpu == WORK_CPU_NONE)
558 		return NULL;
559 
560 	BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
561 	return get_gcwq(cpu);
562 }
563 
564 /*
565  * Policy functions.  These define the policies on how the global
566  * worker pool is managed.  Unless noted otherwise, these functions
567  * assume that they're being called with gcwq->lock held.
568  */
569 
570 static bool __need_more_worker(struct global_cwq *gcwq)
571 {
572 	return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) ||
573 		gcwq->flags & GCWQ_HIGHPRI_PENDING;
574 }
575 
576 /*
577  * Need to wake up a worker?  Called from anything but currently
578  * running workers.
579  */
580 static bool need_more_worker(struct global_cwq *gcwq)
581 {
582 	return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq);
583 }
584 
585 /* Can I start working?  Called from busy but !running workers. */
586 static bool may_start_working(struct global_cwq *gcwq)
587 {
588 	return gcwq->nr_idle;
589 }
590 
591 /* Do I need to keep working?  Called from currently running workers. */
592 static bool keep_working(struct global_cwq *gcwq)
593 {
594 	atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
595 
596 	return !list_empty(&gcwq->worklist) && atomic_read(nr_running) <= 1;
597 }
598 
599 /* Do we need a new worker?  Called from manager. */
600 static bool need_to_create_worker(struct global_cwq *gcwq)
601 {
602 	return need_more_worker(gcwq) && !may_start_working(gcwq);
603 }
604 
605 /* Do I need to be the manager? */
606 static bool need_to_manage_workers(struct global_cwq *gcwq)
607 {
608 	return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS;
609 }
610 
611 /* Do we have too many workers and should some go away? */
612 static bool too_many_workers(struct global_cwq *gcwq)
613 {
614 	bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS;
615 	int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */
616 	int nr_busy = gcwq->nr_workers - nr_idle;
617 
618 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
619 }
620 
621 /*
622  * Wake up functions.
623  */
624 
625 /* Return the first worker.  Safe with preemption disabled */
626 static struct worker *first_worker(struct global_cwq *gcwq)
627 {
628 	if (unlikely(list_empty(&gcwq->idle_list)))
629 		return NULL;
630 
631 	return list_first_entry(&gcwq->idle_list, struct worker, entry);
632 }
633 
634 /**
635  * wake_up_worker - wake up an idle worker
636  * @gcwq: gcwq to wake worker for
637  *
638  * Wake up the first idle worker of @gcwq.
639  *
640  * CONTEXT:
641  * spin_lock_irq(gcwq->lock).
642  */
643 static void wake_up_worker(struct global_cwq *gcwq)
644 {
645 	struct worker *worker = first_worker(gcwq);
646 
647 	if (likely(worker))
648 		wake_up_process(worker->task);
649 }
650 
651 /**
652  * wq_worker_waking_up - a worker is waking up
653  * @task: task waking up
654  * @cpu: CPU @task is waking up to
655  *
656  * This function is called during try_to_wake_up() when a worker is
657  * being awoken.
658  *
659  * CONTEXT:
660  * spin_lock_irq(rq->lock)
661  */
662 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
663 {
664 	struct worker *worker = kthread_data(task);
665 
666 	if (likely(!(worker->flags & WORKER_NOT_RUNNING)))
667 		atomic_inc(get_gcwq_nr_running(cpu));
668 }
669 
670 /**
671  * wq_worker_sleeping - a worker is going to sleep
672  * @task: task going to sleep
673  * @cpu: CPU in question, must be the current CPU number
674  *
675  * This function is called during schedule() when a busy worker is
676  * going to sleep.  Worker on the same cpu can be woken up by
677  * returning pointer to its task.
678  *
679  * CONTEXT:
680  * spin_lock_irq(rq->lock)
681  *
682  * RETURNS:
683  * Worker task on @cpu to wake up, %NULL if none.
684  */
685 struct task_struct *wq_worker_sleeping(struct task_struct *task,
686 				       unsigned int cpu)
687 {
688 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
689 	struct global_cwq *gcwq = get_gcwq(cpu);
690 	atomic_t *nr_running = get_gcwq_nr_running(cpu);
691 
692 	if (unlikely(worker->flags & WORKER_NOT_RUNNING))
693 		return NULL;
694 
695 	/* this can only happen on the local cpu */
696 	BUG_ON(cpu != raw_smp_processor_id());
697 
698 	/*
699 	 * The counterpart of the following dec_and_test, implied mb,
700 	 * worklist not empty test sequence is in insert_work().
701 	 * Please read comment there.
702 	 *
703 	 * NOT_RUNNING is clear.  This means that trustee is not in
704 	 * charge and we're running on the local cpu w/ rq lock held
705 	 * and preemption disabled, which in turn means that none else
706 	 * could be manipulating idle_list, so dereferencing idle_list
707 	 * without gcwq lock is safe.
708 	 */
709 	if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist))
710 		to_wakeup = first_worker(gcwq);
711 	return to_wakeup ? to_wakeup->task : NULL;
712 }
713 
714 /**
715  * worker_set_flags - set worker flags and adjust nr_running accordingly
716  * @worker: self
717  * @flags: flags to set
718  * @wakeup: wakeup an idle worker if necessary
719  *
720  * Set @flags in @worker->flags and adjust nr_running accordingly.  If
721  * nr_running becomes zero and @wakeup is %true, an idle worker is
722  * woken up.
723  *
724  * CONTEXT:
725  * spin_lock_irq(gcwq->lock)
726  */
727 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
728 				    bool wakeup)
729 {
730 	struct global_cwq *gcwq = worker->gcwq;
731 
732 	WARN_ON_ONCE(worker->task != current);
733 
734 	/*
735 	 * If transitioning into NOT_RUNNING, adjust nr_running and
736 	 * wake up an idle worker as necessary if requested by
737 	 * @wakeup.
738 	 */
739 	if ((flags & WORKER_NOT_RUNNING) &&
740 	    !(worker->flags & WORKER_NOT_RUNNING)) {
741 		atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
742 
743 		if (wakeup) {
744 			if (atomic_dec_and_test(nr_running) &&
745 			    !list_empty(&gcwq->worklist))
746 				wake_up_worker(gcwq);
747 		} else
748 			atomic_dec(nr_running);
749 	}
750 
751 	worker->flags |= flags;
752 }
753 
754 /**
755  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
756  * @worker: self
757  * @flags: flags to clear
758  *
759  * Clear @flags in @worker->flags and adjust nr_running accordingly.
760  *
761  * CONTEXT:
762  * spin_lock_irq(gcwq->lock)
763  */
764 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
765 {
766 	struct global_cwq *gcwq = worker->gcwq;
767 	unsigned int oflags = worker->flags;
768 
769 	WARN_ON_ONCE(worker->task != current);
770 
771 	worker->flags &= ~flags;
772 
773 	/* if transitioning out of NOT_RUNNING, increment nr_running */
774 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
775 		if (!(worker->flags & WORKER_NOT_RUNNING))
776 			atomic_inc(get_gcwq_nr_running(gcwq->cpu));
777 }
778 
779 /**
780  * busy_worker_head - return the busy hash head for a work
781  * @gcwq: gcwq of interest
782  * @work: work to be hashed
783  *
784  * Return hash head of @gcwq for @work.
785  *
786  * CONTEXT:
787  * spin_lock_irq(gcwq->lock).
788  *
789  * RETURNS:
790  * Pointer to the hash head.
791  */
792 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
793 					   struct work_struct *work)
794 {
795 	const int base_shift = ilog2(sizeof(struct work_struct));
796 	unsigned long v = (unsigned long)work;
797 
798 	/* simple shift and fold hash, do we need something better? */
799 	v >>= base_shift;
800 	v += v >> BUSY_WORKER_HASH_ORDER;
801 	v &= BUSY_WORKER_HASH_MASK;
802 
803 	return &gcwq->busy_hash[v];
804 }
805 
806 /**
807  * __find_worker_executing_work - find worker which is executing a work
808  * @gcwq: gcwq of interest
809  * @bwh: hash head as returned by busy_worker_head()
810  * @work: work to find worker for
811  *
812  * Find a worker which is executing @work on @gcwq.  @bwh should be
813  * the hash head obtained by calling busy_worker_head() with the same
814  * work.
815  *
816  * CONTEXT:
817  * spin_lock_irq(gcwq->lock).
818  *
819  * RETURNS:
820  * Pointer to worker which is executing @work if found, NULL
821  * otherwise.
822  */
823 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
824 						   struct hlist_head *bwh,
825 						   struct work_struct *work)
826 {
827 	struct worker *worker;
828 	struct hlist_node *tmp;
829 
830 	hlist_for_each_entry(worker, tmp, bwh, hentry)
831 		if (worker->current_work == work)
832 			return worker;
833 	return NULL;
834 }
835 
836 /**
837  * find_worker_executing_work - find worker which is executing a work
838  * @gcwq: gcwq of interest
839  * @work: work to find worker for
840  *
841  * Find a worker which is executing @work on @gcwq.  This function is
842  * identical to __find_worker_executing_work() except that this
843  * function calculates @bwh itself.
844  *
845  * CONTEXT:
846  * spin_lock_irq(gcwq->lock).
847  *
848  * RETURNS:
849  * Pointer to worker which is executing @work if found, NULL
850  * otherwise.
851  */
852 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
853 						 struct work_struct *work)
854 {
855 	return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
856 					    work);
857 }
858 
859 /**
860  * gcwq_determine_ins_pos - find insertion position
861  * @gcwq: gcwq of interest
862  * @cwq: cwq a work is being queued for
863  *
864  * A work for @cwq is about to be queued on @gcwq, determine insertion
865  * position for the work.  If @cwq is for HIGHPRI wq, the work is
866  * queued at the head of the queue but in FIFO order with respect to
867  * other HIGHPRI works; otherwise, at the end of the queue.  This
868  * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that
869  * there are HIGHPRI works pending.
870  *
871  * CONTEXT:
872  * spin_lock_irq(gcwq->lock).
873  *
874  * RETURNS:
875  * Pointer to inserstion position.
876  */
877 static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq,
878 					       struct cpu_workqueue_struct *cwq)
879 {
880 	struct work_struct *twork;
881 
882 	if (likely(!(cwq->wq->flags & WQ_HIGHPRI)))
883 		return &gcwq->worklist;
884 
885 	list_for_each_entry(twork, &gcwq->worklist, entry) {
886 		struct cpu_workqueue_struct *tcwq = get_work_cwq(twork);
887 
888 		if (!(tcwq->wq->flags & WQ_HIGHPRI))
889 			break;
890 	}
891 
892 	gcwq->flags |= GCWQ_HIGHPRI_PENDING;
893 	return &twork->entry;
894 }
895 
896 /**
897  * insert_work - insert a work into gcwq
898  * @cwq: cwq @work belongs to
899  * @work: work to insert
900  * @head: insertion point
901  * @extra_flags: extra WORK_STRUCT_* flags to set
902  *
903  * Insert @work which belongs to @cwq into @gcwq after @head.
904  * @extra_flags is or'd to work_struct flags.
905  *
906  * CONTEXT:
907  * spin_lock_irq(gcwq->lock).
908  */
909 static void insert_work(struct cpu_workqueue_struct *cwq,
910 			struct work_struct *work, struct list_head *head,
911 			unsigned int extra_flags)
912 {
913 	struct global_cwq *gcwq = cwq->gcwq;
914 
915 	/* we own @work, set data and link */
916 	set_work_cwq(work, cwq, extra_flags);
917 
918 	/*
919 	 * Ensure that we get the right work->data if we see the
920 	 * result of list_add() below, see try_to_grab_pending().
921 	 */
922 	smp_wmb();
923 
924 	list_add_tail(&work->entry, head);
925 
926 	/*
927 	 * Ensure either worker_sched_deactivated() sees the above
928 	 * list_add_tail() or we see zero nr_running to avoid workers
929 	 * lying around lazily while there are works to be processed.
930 	 */
931 	smp_mb();
932 
933 	if (__need_more_worker(gcwq))
934 		wake_up_worker(gcwq);
935 }
936 
937 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
938 			 struct work_struct *work)
939 {
940 	struct global_cwq *gcwq;
941 	struct cpu_workqueue_struct *cwq;
942 	struct list_head *worklist;
943 	unsigned long flags;
944 
945 	debug_work_activate(work);
946 
947 	/* determine gcwq to use */
948 	if (!(wq->flags & WQ_UNBOUND)) {
949 		struct global_cwq *last_gcwq;
950 
951 		if (unlikely(cpu == WORK_CPU_UNBOUND))
952 			cpu = raw_smp_processor_id();
953 
954 		/*
955 		 * It's multi cpu.  If @wq is non-reentrant and @work
956 		 * was previously on a different cpu, it might still
957 		 * be running there, in which case the work needs to
958 		 * be queued on that cpu to guarantee non-reentrance.
959 		 */
960 		gcwq = get_gcwq(cpu);
961 		if (wq->flags & WQ_NON_REENTRANT &&
962 		    (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
963 			struct worker *worker;
964 
965 			spin_lock_irqsave(&last_gcwq->lock, flags);
966 
967 			worker = find_worker_executing_work(last_gcwq, work);
968 
969 			if (worker && worker->current_cwq->wq == wq)
970 				gcwq = last_gcwq;
971 			else {
972 				/* meh... not running there, queue here */
973 				spin_unlock_irqrestore(&last_gcwq->lock, flags);
974 				spin_lock_irqsave(&gcwq->lock, flags);
975 			}
976 		} else
977 			spin_lock_irqsave(&gcwq->lock, flags);
978 	} else {
979 		gcwq = get_gcwq(WORK_CPU_UNBOUND);
980 		spin_lock_irqsave(&gcwq->lock, flags);
981 	}
982 
983 	/* gcwq determined, get cwq and queue */
984 	cwq = get_cwq(gcwq->cpu, wq);
985 
986 	BUG_ON(!list_empty(&work->entry));
987 
988 	cwq->nr_in_flight[cwq->work_color]++;
989 
990 	if (likely(cwq->nr_active < cwq->max_active)) {
991 		cwq->nr_active++;
992 		worklist = gcwq_determine_ins_pos(gcwq, cwq);
993 	} else
994 		worklist = &cwq->delayed_works;
995 
996 	insert_work(cwq, work, worklist, work_color_to_flags(cwq->work_color));
997 
998 	spin_unlock_irqrestore(&gcwq->lock, flags);
999 }
1000 
1001 /**
1002  * queue_work - queue work on a workqueue
1003  * @wq: workqueue to use
1004  * @work: work to queue
1005  *
1006  * Returns 0 if @work was already on a queue, non-zero otherwise.
1007  *
1008  * We queue the work to the CPU on which it was submitted, but if the CPU dies
1009  * it can be processed by another CPU.
1010  */
1011 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1012 {
1013 	int ret;
1014 
1015 	ret = queue_work_on(get_cpu(), wq, work);
1016 	put_cpu();
1017 
1018 	return ret;
1019 }
1020 EXPORT_SYMBOL_GPL(queue_work);
1021 
1022 /**
1023  * queue_work_on - queue work on specific cpu
1024  * @cpu: CPU number to execute work on
1025  * @wq: workqueue to use
1026  * @work: work to queue
1027  *
1028  * Returns 0 if @work was already on a queue, non-zero otherwise.
1029  *
1030  * We queue the work to a specific CPU, the caller must ensure it
1031  * can't go away.
1032  */
1033 int
1034 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
1035 {
1036 	int ret = 0;
1037 
1038 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1039 		__queue_work(cpu, wq, work);
1040 		ret = 1;
1041 	}
1042 	return ret;
1043 }
1044 EXPORT_SYMBOL_GPL(queue_work_on);
1045 
1046 static void delayed_work_timer_fn(unsigned long __data)
1047 {
1048 	struct delayed_work *dwork = (struct delayed_work *)__data;
1049 	struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1050 
1051 	__queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1052 }
1053 
1054 /**
1055  * queue_delayed_work - queue work on a workqueue after delay
1056  * @wq: workqueue to use
1057  * @dwork: delayable work to queue
1058  * @delay: number of jiffies to wait before queueing
1059  *
1060  * Returns 0 if @work was already on a queue, non-zero otherwise.
1061  */
1062 int queue_delayed_work(struct workqueue_struct *wq,
1063 			struct delayed_work *dwork, unsigned long delay)
1064 {
1065 	if (delay == 0)
1066 		return queue_work(wq, &dwork->work);
1067 
1068 	return queue_delayed_work_on(-1, wq, dwork, delay);
1069 }
1070 EXPORT_SYMBOL_GPL(queue_delayed_work);
1071 
1072 /**
1073  * queue_delayed_work_on - queue work on specific CPU after delay
1074  * @cpu: CPU number to execute work on
1075  * @wq: workqueue to use
1076  * @dwork: work to queue
1077  * @delay: number of jiffies to wait before queueing
1078  *
1079  * Returns 0 if @work was already on a queue, non-zero otherwise.
1080  */
1081 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1082 			struct delayed_work *dwork, unsigned long delay)
1083 {
1084 	int ret = 0;
1085 	struct timer_list *timer = &dwork->timer;
1086 	struct work_struct *work = &dwork->work;
1087 
1088 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1089 		unsigned int lcpu;
1090 
1091 		BUG_ON(timer_pending(timer));
1092 		BUG_ON(!list_empty(&work->entry));
1093 
1094 		timer_stats_timer_set_start_info(&dwork->timer);
1095 
1096 		/*
1097 		 * This stores cwq for the moment, for the timer_fn.
1098 		 * Note that the work's gcwq is preserved to allow
1099 		 * reentrance detection for delayed works.
1100 		 */
1101 		if (!(wq->flags & WQ_UNBOUND)) {
1102 			struct global_cwq *gcwq = get_work_gcwq(work);
1103 
1104 			if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1105 				lcpu = gcwq->cpu;
1106 			else
1107 				lcpu = raw_smp_processor_id();
1108 		} else
1109 			lcpu = WORK_CPU_UNBOUND;
1110 
1111 		set_work_cwq(work, get_cwq(lcpu, wq), 0);
1112 
1113 		timer->expires = jiffies + delay;
1114 		timer->data = (unsigned long)dwork;
1115 		timer->function = delayed_work_timer_fn;
1116 
1117 		if (unlikely(cpu >= 0))
1118 			add_timer_on(timer, cpu);
1119 		else
1120 			add_timer(timer);
1121 		ret = 1;
1122 	}
1123 	return ret;
1124 }
1125 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1126 
1127 /**
1128  * worker_enter_idle - enter idle state
1129  * @worker: worker which is entering idle state
1130  *
1131  * @worker is entering idle state.  Update stats and idle timer if
1132  * necessary.
1133  *
1134  * LOCKING:
1135  * spin_lock_irq(gcwq->lock).
1136  */
1137 static void worker_enter_idle(struct worker *worker)
1138 {
1139 	struct global_cwq *gcwq = worker->gcwq;
1140 
1141 	BUG_ON(worker->flags & WORKER_IDLE);
1142 	BUG_ON(!list_empty(&worker->entry) &&
1143 	       (worker->hentry.next || worker->hentry.pprev));
1144 
1145 	/* can't use worker_set_flags(), also called from start_worker() */
1146 	worker->flags |= WORKER_IDLE;
1147 	gcwq->nr_idle++;
1148 	worker->last_active = jiffies;
1149 
1150 	/* idle_list is LIFO */
1151 	list_add(&worker->entry, &gcwq->idle_list);
1152 
1153 	if (likely(!(worker->flags & WORKER_ROGUE))) {
1154 		if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer))
1155 			mod_timer(&gcwq->idle_timer,
1156 				  jiffies + IDLE_WORKER_TIMEOUT);
1157 	} else
1158 		wake_up_all(&gcwq->trustee_wait);
1159 
1160 	/* sanity check nr_running */
1161 	WARN_ON_ONCE(gcwq->nr_workers == gcwq->nr_idle &&
1162 		     atomic_read(get_gcwq_nr_running(gcwq->cpu)));
1163 }
1164 
1165 /**
1166  * worker_leave_idle - leave idle state
1167  * @worker: worker which is leaving idle state
1168  *
1169  * @worker is leaving idle state.  Update stats.
1170  *
1171  * LOCKING:
1172  * spin_lock_irq(gcwq->lock).
1173  */
1174 static void worker_leave_idle(struct worker *worker)
1175 {
1176 	struct global_cwq *gcwq = worker->gcwq;
1177 
1178 	BUG_ON(!(worker->flags & WORKER_IDLE));
1179 	worker_clr_flags(worker, WORKER_IDLE);
1180 	gcwq->nr_idle--;
1181 	list_del_init(&worker->entry);
1182 }
1183 
1184 /**
1185  * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1186  * @worker: self
1187  *
1188  * Works which are scheduled while the cpu is online must at least be
1189  * scheduled to a worker which is bound to the cpu so that if they are
1190  * flushed from cpu callbacks while cpu is going down, they are
1191  * guaranteed to execute on the cpu.
1192  *
1193  * This function is to be used by rogue workers and rescuers to bind
1194  * themselves to the target cpu and may race with cpu going down or
1195  * coming online.  kthread_bind() can't be used because it may put the
1196  * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1197  * verbatim as it's best effort and blocking and gcwq may be
1198  * [dis]associated in the meantime.
1199  *
1200  * This function tries set_cpus_allowed() and locks gcwq and verifies
1201  * the binding against GCWQ_DISASSOCIATED which is set during
1202  * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters
1203  * idle state or fetches works without dropping lock, it can guarantee
1204  * the scheduling requirement described in the first paragraph.
1205  *
1206  * CONTEXT:
1207  * Might sleep.  Called without any lock but returns with gcwq->lock
1208  * held.
1209  *
1210  * RETURNS:
1211  * %true if the associated gcwq is online (@worker is successfully
1212  * bound), %false if offline.
1213  */
1214 static bool worker_maybe_bind_and_lock(struct worker *worker)
1215 {
1216 	struct global_cwq *gcwq = worker->gcwq;
1217 	struct task_struct *task = worker->task;
1218 
1219 	while (true) {
1220 		/*
1221 		 * The following call may fail, succeed or succeed
1222 		 * without actually migrating the task to the cpu if
1223 		 * it races with cpu hotunplug operation.  Verify
1224 		 * against GCWQ_DISASSOCIATED.
1225 		 */
1226 		if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1227 			set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1228 
1229 		spin_lock_irq(&gcwq->lock);
1230 		if (gcwq->flags & GCWQ_DISASSOCIATED)
1231 			return false;
1232 		if (task_cpu(task) == gcwq->cpu &&
1233 		    cpumask_equal(&current->cpus_allowed,
1234 				  get_cpu_mask(gcwq->cpu)))
1235 			return true;
1236 		spin_unlock_irq(&gcwq->lock);
1237 
1238 		/* CPU has come up inbetween, retry migration */
1239 		cpu_relax();
1240 	}
1241 }
1242 
1243 /*
1244  * Function for worker->rebind_work used to rebind rogue busy workers
1245  * to the associated cpu which is coming back online.  This is
1246  * scheduled by cpu up but can race with other cpu hotplug operations
1247  * and may be executed twice without intervening cpu down.
1248  */
1249 static void worker_rebind_fn(struct work_struct *work)
1250 {
1251 	struct worker *worker = container_of(work, struct worker, rebind_work);
1252 	struct global_cwq *gcwq = worker->gcwq;
1253 
1254 	if (worker_maybe_bind_and_lock(worker))
1255 		worker_clr_flags(worker, WORKER_REBIND);
1256 
1257 	spin_unlock_irq(&gcwq->lock);
1258 }
1259 
1260 static struct worker *alloc_worker(void)
1261 {
1262 	struct worker *worker;
1263 
1264 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1265 	if (worker) {
1266 		INIT_LIST_HEAD(&worker->entry);
1267 		INIT_LIST_HEAD(&worker->scheduled);
1268 		INIT_WORK(&worker->rebind_work, worker_rebind_fn);
1269 		/* on creation a worker is in !idle && prep state */
1270 		worker->flags = WORKER_PREP;
1271 	}
1272 	return worker;
1273 }
1274 
1275 /**
1276  * create_worker - create a new workqueue worker
1277  * @gcwq: gcwq the new worker will belong to
1278  * @bind: whether to set affinity to @cpu or not
1279  *
1280  * Create a new worker which is bound to @gcwq.  The returned worker
1281  * can be started by calling start_worker() or destroyed using
1282  * destroy_worker().
1283  *
1284  * CONTEXT:
1285  * Might sleep.  Does GFP_KERNEL allocations.
1286  *
1287  * RETURNS:
1288  * Pointer to the newly created worker.
1289  */
1290 static struct worker *create_worker(struct global_cwq *gcwq, bool bind)
1291 {
1292 	bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND;
1293 	struct worker *worker = NULL;
1294 	int id = -1;
1295 
1296 	spin_lock_irq(&gcwq->lock);
1297 	while (ida_get_new(&gcwq->worker_ida, &id)) {
1298 		spin_unlock_irq(&gcwq->lock);
1299 		if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL))
1300 			goto fail;
1301 		spin_lock_irq(&gcwq->lock);
1302 	}
1303 	spin_unlock_irq(&gcwq->lock);
1304 
1305 	worker = alloc_worker();
1306 	if (!worker)
1307 		goto fail;
1308 
1309 	worker->gcwq = gcwq;
1310 	worker->id = id;
1311 
1312 	if (!on_unbound_cpu)
1313 		worker->task = kthread_create(worker_thread, worker,
1314 					      "kworker/%u:%d", gcwq->cpu, id);
1315 	else
1316 		worker->task = kthread_create(worker_thread, worker,
1317 					      "kworker/u:%d", id);
1318 	if (IS_ERR(worker->task))
1319 		goto fail;
1320 
1321 	/*
1322 	 * A rogue worker will become a regular one if CPU comes
1323 	 * online later on.  Make sure every worker has
1324 	 * PF_THREAD_BOUND set.
1325 	 */
1326 	if (bind && !on_unbound_cpu)
1327 		kthread_bind(worker->task, gcwq->cpu);
1328 	else {
1329 		worker->task->flags |= PF_THREAD_BOUND;
1330 		if (on_unbound_cpu)
1331 			worker->flags |= WORKER_UNBOUND;
1332 	}
1333 
1334 	return worker;
1335 fail:
1336 	if (id >= 0) {
1337 		spin_lock_irq(&gcwq->lock);
1338 		ida_remove(&gcwq->worker_ida, id);
1339 		spin_unlock_irq(&gcwq->lock);
1340 	}
1341 	kfree(worker);
1342 	return NULL;
1343 }
1344 
1345 /**
1346  * start_worker - start a newly created worker
1347  * @worker: worker to start
1348  *
1349  * Make the gcwq aware of @worker and start it.
1350  *
1351  * CONTEXT:
1352  * spin_lock_irq(gcwq->lock).
1353  */
1354 static void start_worker(struct worker *worker)
1355 {
1356 	worker->flags |= WORKER_STARTED;
1357 	worker->gcwq->nr_workers++;
1358 	worker_enter_idle(worker);
1359 	wake_up_process(worker->task);
1360 }
1361 
1362 /**
1363  * destroy_worker - destroy a workqueue worker
1364  * @worker: worker to be destroyed
1365  *
1366  * Destroy @worker and adjust @gcwq stats accordingly.
1367  *
1368  * CONTEXT:
1369  * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1370  */
1371 static void destroy_worker(struct worker *worker)
1372 {
1373 	struct global_cwq *gcwq = worker->gcwq;
1374 	int id = worker->id;
1375 
1376 	/* sanity check frenzy */
1377 	BUG_ON(worker->current_work);
1378 	BUG_ON(!list_empty(&worker->scheduled));
1379 
1380 	if (worker->flags & WORKER_STARTED)
1381 		gcwq->nr_workers--;
1382 	if (worker->flags & WORKER_IDLE)
1383 		gcwq->nr_idle--;
1384 
1385 	list_del_init(&worker->entry);
1386 	worker->flags |= WORKER_DIE;
1387 
1388 	spin_unlock_irq(&gcwq->lock);
1389 
1390 	kthread_stop(worker->task);
1391 	kfree(worker);
1392 
1393 	spin_lock_irq(&gcwq->lock);
1394 	ida_remove(&gcwq->worker_ida, id);
1395 }
1396 
1397 static void idle_worker_timeout(unsigned long __gcwq)
1398 {
1399 	struct global_cwq *gcwq = (void *)__gcwq;
1400 
1401 	spin_lock_irq(&gcwq->lock);
1402 
1403 	if (too_many_workers(gcwq)) {
1404 		struct worker *worker;
1405 		unsigned long expires;
1406 
1407 		/* idle_list is kept in LIFO order, check the last one */
1408 		worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1409 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1410 
1411 		if (time_before(jiffies, expires))
1412 			mod_timer(&gcwq->idle_timer, expires);
1413 		else {
1414 			/* it's been idle for too long, wake up manager */
1415 			gcwq->flags |= GCWQ_MANAGE_WORKERS;
1416 			wake_up_worker(gcwq);
1417 		}
1418 	}
1419 
1420 	spin_unlock_irq(&gcwq->lock);
1421 }
1422 
1423 static bool send_mayday(struct work_struct *work)
1424 {
1425 	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1426 	struct workqueue_struct *wq = cwq->wq;
1427 	unsigned int cpu;
1428 
1429 	if (!(wq->flags & WQ_RESCUER))
1430 		return false;
1431 
1432 	/* mayday mayday mayday */
1433 	cpu = cwq->gcwq->cpu;
1434 	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1435 	if (cpu == WORK_CPU_UNBOUND)
1436 		cpu = 0;
1437 	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1438 		wake_up_process(wq->rescuer->task);
1439 	return true;
1440 }
1441 
1442 static void gcwq_mayday_timeout(unsigned long __gcwq)
1443 {
1444 	struct global_cwq *gcwq = (void *)__gcwq;
1445 	struct work_struct *work;
1446 
1447 	spin_lock_irq(&gcwq->lock);
1448 
1449 	if (need_to_create_worker(gcwq)) {
1450 		/*
1451 		 * We've been trying to create a new worker but
1452 		 * haven't been successful.  We might be hitting an
1453 		 * allocation deadlock.  Send distress signals to
1454 		 * rescuers.
1455 		 */
1456 		list_for_each_entry(work, &gcwq->worklist, entry)
1457 			send_mayday(work);
1458 	}
1459 
1460 	spin_unlock_irq(&gcwq->lock);
1461 
1462 	mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL);
1463 }
1464 
1465 /**
1466  * maybe_create_worker - create a new worker if necessary
1467  * @gcwq: gcwq to create a new worker for
1468  *
1469  * Create a new worker for @gcwq if necessary.  @gcwq is guaranteed to
1470  * have at least one idle worker on return from this function.  If
1471  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1472  * sent to all rescuers with works scheduled on @gcwq to resolve
1473  * possible allocation deadlock.
1474  *
1475  * On return, need_to_create_worker() is guaranteed to be false and
1476  * may_start_working() true.
1477  *
1478  * LOCKING:
1479  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1480  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1481  * manager.
1482  *
1483  * RETURNS:
1484  * false if no action was taken and gcwq->lock stayed locked, true
1485  * otherwise.
1486  */
1487 static bool maybe_create_worker(struct global_cwq *gcwq)
1488 {
1489 	if (!need_to_create_worker(gcwq))
1490 		return false;
1491 restart:
1492 	spin_unlock_irq(&gcwq->lock);
1493 
1494 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1495 	mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1496 
1497 	while (true) {
1498 		struct worker *worker;
1499 
1500 		worker = create_worker(gcwq, true);
1501 		if (worker) {
1502 			del_timer_sync(&gcwq->mayday_timer);
1503 			spin_lock_irq(&gcwq->lock);
1504 			start_worker(worker);
1505 			BUG_ON(need_to_create_worker(gcwq));
1506 			return true;
1507 		}
1508 
1509 		if (!need_to_create_worker(gcwq))
1510 			break;
1511 
1512 		__set_current_state(TASK_INTERRUPTIBLE);
1513 		schedule_timeout(CREATE_COOLDOWN);
1514 
1515 		if (!need_to_create_worker(gcwq))
1516 			break;
1517 	}
1518 
1519 	del_timer_sync(&gcwq->mayday_timer);
1520 	spin_lock_irq(&gcwq->lock);
1521 	if (need_to_create_worker(gcwq))
1522 		goto restart;
1523 	return true;
1524 }
1525 
1526 /**
1527  * maybe_destroy_worker - destroy workers which have been idle for a while
1528  * @gcwq: gcwq to destroy workers for
1529  *
1530  * Destroy @gcwq workers which have been idle for longer than
1531  * IDLE_WORKER_TIMEOUT.
1532  *
1533  * LOCKING:
1534  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1535  * multiple times.  Called only from manager.
1536  *
1537  * RETURNS:
1538  * false if no action was taken and gcwq->lock stayed locked, true
1539  * otherwise.
1540  */
1541 static bool maybe_destroy_workers(struct global_cwq *gcwq)
1542 {
1543 	bool ret = false;
1544 
1545 	while (too_many_workers(gcwq)) {
1546 		struct worker *worker;
1547 		unsigned long expires;
1548 
1549 		worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1550 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1551 
1552 		if (time_before(jiffies, expires)) {
1553 			mod_timer(&gcwq->idle_timer, expires);
1554 			break;
1555 		}
1556 
1557 		destroy_worker(worker);
1558 		ret = true;
1559 	}
1560 
1561 	return ret;
1562 }
1563 
1564 /**
1565  * manage_workers - manage worker pool
1566  * @worker: self
1567  *
1568  * Assume the manager role and manage gcwq worker pool @worker belongs
1569  * to.  At any given time, there can be only zero or one manager per
1570  * gcwq.  The exclusion is handled automatically by this function.
1571  *
1572  * The caller can safely start processing works on false return.  On
1573  * true return, it's guaranteed that need_to_create_worker() is false
1574  * and may_start_working() is true.
1575  *
1576  * CONTEXT:
1577  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1578  * multiple times.  Does GFP_KERNEL allocations.
1579  *
1580  * RETURNS:
1581  * false if no action was taken and gcwq->lock stayed locked, true if
1582  * some action was taken.
1583  */
1584 static bool manage_workers(struct worker *worker)
1585 {
1586 	struct global_cwq *gcwq = worker->gcwq;
1587 	bool ret = false;
1588 
1589 	if (gcwq->flags & GCWQ_MANAGING_WORKERS)
1590 		return ret;
1591 
1592 	gcwq->flags &= ~GCWQ_MANAGE_WORKERS;
1593 	gcwq->flags |= GCWQ_MANAGING_WORKERS;
1594 
1595 	/*
1596 	 * Destroy and then create so that may_start_working() is true
1597 	 * on return.
1598 	 */
1599 	ret |= maybe_destroy_workers(gcwq);
1600 	ret |= maybe_create_worker(gcwq);
1601 
1602 	gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
1603 
1604 	/*
1605 	 * The trustee might be waiting to take over the manager
1606 	 * position, tell it we're done.
1607 	 */
1608 	if (unlikely(gcwq->trustee))
1609 		wake_up_all(&gcwq->trustee_wait);
1610 
1611 	return ret;
1612 }
1613 
1614 /**
1615  * move_linked_works - move linked works to a list
1616  * @work: start of series of works to be scheduled
1617  * @head: target list to append @work to
1618  * @nextp: out paramter for nested worklist walking
1619  *
1620  * Schedule linked works starting from @work to @head.  Work series to
1621  * be scheduled starts at @work and includes any consecutive work with
1622  * WORK_STRUCT_LINKED set in its predecessor.
1623  *
1624  * If @nextp is not NULL, it's updated to point to the next work of
1625  * the last scheduled work.  This allows move_linked_works() to be
1626  * nested inside outer list_for_each_entry_safe().
1627  *
1628  * CONTEXT:
1629  * spin_lock_irq(gcwq->lock).
1630  */
1631 static void move_linked_works(struct work_struct *work, struct list_head *head,
1632 			      struct work_struct **nextp)
1633 {
1634 	struct work_struct *n;
1635 
1636 	/*
1637 	 * Linked worklist will always end before the end of the list,
1638 	 * use NULL for list head.
1639 	 */
1640 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1641 		list_move_tail(&work->entry, head);
1642 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1643 			break;
1644 	}
1645 
1646 	/*
1647 	 * If we're already inside safe list traversal and have moved
1648 	 * multiple works to the scheduled queue, the next position
1649 	 * needs to be updated.
1650 	 */
1651 	if (nextp)
1652 		*nextp = n;
1653 }
1654 
1655 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1656 {
1657 	struct work_struct *work = list_first_entry(&cwq->delayed_works,
1658 						    struct work_struct, entry);
1659 	struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq);
1660 
1661 	move_linked_works(work, pos, NULL);
1662 	cwq->nr_active++;
1663 }
1664 
1665 /**
1666  * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1667  * @cwq: cwq of interest
1668  * @color: color of work which left the queue
1669  *
1670  * A work either has completed or is removed from pending queue,
1671  * decrement nr_in_flight of its cwq and handle workqueue flushing.
1672  *
1673  * CONTEXT:
1674  * spin_lock_irq(gcwq->lock).
1675  */
1676 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
1677 {
1678 	/* ignore uncolored works */
1679 	if (color == WORK_NO_COLOR)
1680 		return;
1681 
1682 	cwq->nr_in_flight[color]--;
1683 	cwq->nr_active--;
1684 
1685 	if (!list_empty(&cwq->delayed_works)) {
1686 		/* one down, submit a delayed one */
1687 		if (cwq->nr_active < cwq->max_active)
1688 			cwq_activate_first_delayed(cwq);
1689 	}
1690 
1691 	/* is flush in progress and are we at the flushing tip? */
1692 	if (likely(cwq->flush_color != color))
1693 		return;
1694 
1695 	/* are there still in-flight works? */
1696 	if (cwq->nr_in_flight[color])
1697 		return;
1698 
1699 	/* this cwq is done, clear flush_color */
1700 	cwq->flush_color = -1;
1701 
1702 	/*
1703 	 * If this was the last cwq, wake up the first flusher.  It
1704 	 * will handle the rest.
1705 	 */
1706 	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1707 		complete(&cwq->wq->first_flusher->done);
1708 }
1709 
1710 /**
1711  * process_one_work - process single work
1712  * @worker: self
1713  * @work: work to process
1714  *
1715  * Process @work.  This function contains all the logics necessary to
1716  * process a single work including synchronization against and
1717  * interaction with other workers on the same cpu, queueing and
1718  * flushing.  As long as context requirement is met, any worker can
1719  * call this function to process a work.
1720  *
1721  * CONTEXT:
1722  * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1723  */
1724 static void process_one_work(struct worker *worker, struct work_struct *work)
1725 {
1726 	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1727 	struct global_cwq *gcwq = cwq->gcwq;
1728 	struct hlist_head *bwh = busy_worker_head(gcwq, work);
1729 	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
1730 	work_func_t f = work->func;
1731 	int work_color;
1732 	struct worker *collision;
1733 #ifdef CONFIG_LOCKDEP
1734 	/*
1735 	 * It is permissible to free the struct work_struct from
1736 	 * inside the function that is called from it, this we need to
1737 	 * take into account for lockdep too.  To avoid bogus "held
1738 	 * lock freed" warnings as well as problems when looking into
1739 	 * work->lockdep_map, make a copy and use that here.
1740 	 */
1741 	struct lockdep_map lockdep_map = work->lockdep_map;
1742 #endif
1743 	/*
1744 	 * A single work shouldn't be executed concurrently by
1745 	 * multiple workers on a single cpu.  Check whether anyone is
1746 	 * already processing the work.  If so, defer the work to the
1747 	 * currently executing one.
1748 	 */
1749 	collision = __find_worker_executing_work(gcwq, bwh, work);
1750 	if (unlikely(collision)) {
1751 		move_linked_works(work, &collision->scheduled, NULL);
1752 		return;
1753 	}
1754 
1755 	/* claim and process */
1756 	debug_work_deactivate(work);
1757 	hlist_add_head(&worker->hentry, bwh);
1758 	worker->current_work = work;
1759 	worker->current_cwq = cwq;
1760 	work_color = get_work_color(work);
1761 
1762 	/* record the current cpu number in the work data and dequeue */
1763 	set_work_cpu(work, gcwq->cpu);
1764 	list_del_init(&work->entry);
1765 
1766 	/*
1767 	 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI,
1768 	 * wake up another worker; otherwise, clear HIGHPRI_PENDING.
1769 	 */
1770 	if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) {
1771 		struct work_struct *nwork = list_first_entry(&gcwq->worklist,
1772 						struct work_struct, entry);
1773 
1774 		if (!list_empty(&gcwq->worklist) &&
1775 		    get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI)
1776 			wake_up_worker(gcwq);
1777 		else
1778 			gcwq->flags &= ~GCWQ_HIGHPRI_PENDING;
1779 	}
1780 
1781 	/*
1782 	 * CPU intensive works don't participate in concurrency
1783 	 * management.  They're the scheduler's responsibility.
1784 	 */
1785 	if (unlikely(cpu_intensive))
1786 		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
1787 
1788 	spin_unlock_irq(&gcwq->lock);
1789 
1790 	work_clear_pending(work);
1791 	lock_map_acquire(&cwq->wq->lockdep_map);
1792 	lock_map_acquire(&lockdep_map);
1793 	f(work);
1794 	lock_map_release(&lockdep_map);
1795 	lock_map_release(&cwq->wq->lockdep_map);
1796 
1797 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
1798 		printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
1799 		       "%s/0x%08x/%d\n",
1800 		       current->comm, preempt_count(), task_pid_nr(current));
1801 		printk(KERN_ERR "    last function: ");
1802 		print_symbol("%s\n", (unsigned long)f);
1803 		debug_show_held_locks(current);
1804 		dump_stack();
1805 	}
1806 
1807 	spin_lock_irq(&gcwq->lock);
1808 
1809 	/* clear cpu intensive status */
1810 	if (unlikely(cpu_intensive))
1811 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
1812 
1813 	/* we're done with it, release */
1814 	hlist_del_init(&worker->hentry);
1815 	worker->current_work = NULL;
1816 	worker->current_cwq = NULL;
1817 	cwq_dec_nr_in_flight(cwq, work_color);
1818 }
1819 
1820 /**
1821  * process_scheduled_works - process scheduled works
1822  * @worker: self
1823  *
1824  * Process all scheduled works.  Please note that the scheduled list
1825  * may change while processing a work, so this function repeatedly
1826  * fetches a work from the top and executes it.
1827  *
1828  * CONTEXT:
1829  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1830  * multiple times.
1831  */
1832 static void process_scheduled_works(struct worker *worker)
1833 {
1834 	while (!list_empty(&worker->scheduled)) {
1835 		struct work_struct *work = list_first_entry(&worker->scheduled,
1836 						struct work_struct, entry);
1837 		process_one_work(worker, work);
1838 	}
1839 }
1840 
1841 /**
1842  * worker_thread - the worker thread function
1843  * @__worker: self
1844  *
1845  * The gcwq worker thread function.  There's a single dynamic pool of
1846  * these per each cpu.  These workers process all works regardless of
1847  * their specific target workqueue.  The only exception is works which
1848  * belong to workqueues with a rescuer which will be explained in
1849  * rescuer_thread().
1850  */
1851 static int worker_thread(void *__worker)
1852 {
1853 	struct worker *worker = __worker;
1854 	struct global_cwq *gcwq = worker->gcwq;
1855 
1856 	/* tell the scheduler that this is a workqueue worker */
1857 	worker->task->flags |= PF_WQ_WORKER;
1858 woke_up:
1859 	spin_lock_irq(&gcwq->lock);
1860 
1861 	/* DIE can be set only while we're idle, checking here is enough */
1862 	if (worker->flags & WORKER_DIE) {
1863 		spin_unlock_irq(&gcwq->lock);
1864 		worker->task->flags &= ~PF_WQ_WORKER;
1865 		return 0;
1866 	}
1867 
1868 	worker_leave_idle(worker);
1869 recheck:
1870 	/* no more worker necessary? */
1871 	if (!need_more_worker(gcwq))
1872 		goto sleep;
1873 
1874 	/* do we need to manage? */
1875 	if (unlikely(!may_start_working(gcwq)) && manage_workers(worker))
1876 		goto recheck;
1877 
1878 	/*
1879 	 * ->scheduled list can only be filled while a worker is
1880 	 * preparing to process a work or actually processing it.
1881 	 * Make sure nobody diddled with it while I was sleeping.
1882 	 */
1883 	BUG_ON(!list_empty(&worker->scheduled));
1884 
1885 	/*
1886 	 * When control reaches this point, we're guaranteed to have
1887 	 * at least one idle worker or that someone else has already
1888 	 * assumed the manager role.
1889 	 */
1890 	worker_clr_flags(worker, WORKER_PREP);
1891 
1892 	do {
1893 		struct work_struct *work =
1894 			list_first_entry(&gcwq->worklist,
1895 					 struct work_struct, entry);
1896 
1897 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
1898 			/* optimization path, not strictly necessary */
1899 			process_one_work(worker, work);
1900 			if (unlikely(!list_empty(&worker->scheduled)))
1901 				process_scheduled_works(worker);
1902 		} else {
1903 			move_linked_works(work, &worker->scheduled, NULL);
1904 			process_scheduled_works(worker);
1905 		}
1906 	} while (keep_working(gcwq));
1907 
1908 	worker_set_flags(worker, WORKER_PREP, false);
1909 sleep:
1910 	if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker))
1911 		goto recheck;
1912 
1913 	/*
1914 	 * gcwq->lock is held and there's no work to process and no
1915 	 * need to manage, sleep.  Workers are woken up only while
1916 	 * holding gcwq->lock or from local cpu, so setting the
1917 	 * current state before releasing gcwq->lock is enough to
1918 	 * prevent losing any event.
1919 	 */
1920 	worker_enter_idle(worker);
1921 	__set_current_state(TASK_INTERRUPTIBLE);
1922 	spin_unlock_irq(&gcwq->lock);
1923 	schedule();
1924 	goto woke_up;
1925 }
1926 
1927 /**
1928  * rescuer_thread - the rescuer thread function
1929  * @__wq: the associated workqueue
1930  *
1931  * Workqueue rescuer thread function.  There's one rescuer for each
1932  * workqueue which has WQ_RESCUER set.
1933  *
1934  * Regular work processing on a gcwq may block trying to create a new
1935  * worker which uses GFP_KERNEL allocation which has slight chance of
1936  * developing into deadlock if some works currently on the same queue
1937  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
1938  * the problem rescuer solves.
1939  *
1940  * When such condition is possible, the gcwq summons rescuers of all
1941  * workqueues which have works queued on the gcwq and let them process
1942  * those works so that forward progress can be guaranteed.
1943  *
1944  * This should happen rarely.
1945  */
1946 static int rescuer_thread(void *__wq)
1947 {
1948 	struct workqueue_struct *wq = __wq;
1949 	struct worker *rescuer = wq->rescuer;
1950 	struct list_head *scheduled = &rescuer->scheduled;
1951 	bool is_unbound = wq->flags & WQ_UNBOUND;
1952 	unsigned int cpu;
1953 
1954 	set_user_nice(current, RESCUER_NICE_LEVEL);
1955 repeat:
1956 	set_current_state(TASK_INTERRUPTIBLE);
1957 
1958 	if (kthread_should_stop())
1959 		return 0;
1960 
1961 	/*
1962 	 * See whether any cpu is asking for help.  Unbounded
1963 	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
1964 	 */
1965 	for_each_mayday_cpu(cpu, wq->mayday_mask) {
1966 		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
1967 		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
1968 		struct global_cwq *gcwq = cwq->gcwq;
1969 		struct work_struct *work, *n;
1970 
1971 		__set_current_state(TASK_RUNNING);
1972 		mayday_clear_cpu(cpu, wq->mayday_mask);
1973 
1974 		/* migrate to the target cpu if possible */
1975 		rescuer->gcwq = gcwq;
1976 		worker_maybe_bind_and_lock(rescuer);
1977 
1978 		/*
1979 		 * Slurp in all works issued via this workqueue and
1980 		 * process'em.
1981 		 */
1982 		BUG_ON(!list_empty(&rescuer->scheduled));
1983 		list_for_each_entry_safe(work, n, &gcwq->worklist, entry)
1984 			if (get_work_cwq(work) == cwq)
1985 				move_linked_works(work, scheduled, &n);
1986 
1987 		process_scheduled_works(rescuer);
1988 		spin_unlock_irq(&gcwq->lock);
1989 	}
1990 
1991 	schedule();
1992 	goto repeat;
1993 }
1994 
1995 struct wq_barrier {
1996 	struct work_struct	work;
1997 	struct completion	done;
1998 };
1999 
2000 static void wq_barrier_func(struct work_struct *work)
2001 {
2002 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2003 	complete(&barr->done);
2004 }
2005 
2006 /**
2007  * insert_wq_barrier - insert a barrier work
2008  * @cwq: cwq to insert barrier into
2009  * @barr: wq_barrier to insert
2010  * @target: target work to attach @barr to
2011  * @worker: worker currently executing @target, NULL if @target is not executing
2012  *
2013  * @barr is linked to @target such that @barr is completed only after
2014  * @target finishes execution.  Please note that the ordering
2015  * guarantee is observed only with respect to @target and on the local
2016  * cpu.
2017  *
2018  * Currently, a queued barrier can't be canceled.  This is because
2019  * try_to_grab_pending() can't determine whether the work to be
2020  * grabbed is at the head of the queue and thus can't clear LINKED
2021  * flag of the previous work while there must be a valid next work
2022  * after a work with LINKED flag set.
2023  *
2024  * Note that when @worker is non-NULL, @target may be modified
2025  * underneath us, so we can't reliably determine cwq from @target.
2026  *
2027  * CONTEXT:
2028  * spin_lock_irq(gcwq->lock).
2029  */
2030 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2031 			      struct wq_barrier *barr,
2032 			      struct work_struct *target, struct worker *worker)
2033 {
2034 	struct list_head *head;
2035 	unsigned int linked = 0;
2036 
2037 	/*
2038 	 * debugobject calls are safe here even with gcwq->lock locked
2039 	 * as we know for sure that this will not trigger any of the
2040 	 * checks and call back into the fixup functions where we
2041 	 * might deadlock.
2042 	 */
2043 	INIT_WORK_ON_STACK(&barr->work, wq_barrier_func);
2044 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2045 	init_completion(&barr->done);
2046 
2047 	/*
2048 	 * If @target is currently being executed, schedule the
2049 	 * barrier to the worker; otherwise, put it after @target.
2050 	 */
2051 	if (worker)
2052 		head = worker->scheduled.next;
2053 	else {
2054 		unsigned long *bits = work_data_bits(target);
2055 
2056 		head = target->entry.next;
2057 		/* there can already be other linked works, inherit and set */
2058 		linked = *bits & WORK_STRUCT_LINKED;
2059 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2060 	}
2061 
2062 	debug_work_activate(&barr->work);
2063 	insert_work(cwq, &barr->work, head,
2064 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2065 }
2066 
2067 /**
2068  * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2069  * @wq: workqueue being flushed
2070  * @flush_color: new flush color, < 0 for no-op
2071  * @work_color: new work color, < 0 for no-op
2072  *
2073  * Prepare cwqs for workqueue flushing.
2074  *
2075  * If @flush_color is non-negative, flush_color on all cwqs should be
2076  * -1.  If no cwq has in-flight commands at the specified color, all
2077  * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
2078  * has in flight commands, its cwq->flush_color is set to
2079  * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2080  * wakeup logic is armed and %true is returned.
2081  *
2082  * The caller should have initialized @wq->first_flusher prior to
2083  * calling this function with non-negative @flush_color.  If
2084  * @flush_color is negative, no flush color update is done and %false
2085  * is returned.
2086  *
2087  * If @work_color is non-negative, all cwqs should have the same
2088  * work_color which is previous to @work_color and all will be
2089  * advanced to @work_color.
2090  *
2091  * CONTEXT:
2092  * mutex_lock(wq->flush_mutex).
2093  *
2094  * RETURNS:
2095  * %true if @flush_color >= 0 and there's something to flush.  %false
2096  * otherwise.
2097  */
2098 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2099 				      int flush_color, int work_color)
2100 {
2101 	bool wait = false;
2102 	unsigned int cpu;
2103 
2104 	if (flush_color >= 0) {
2105 		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2106 		atomic_set(&wq->nr_cwqs_to_flush, 1);
2107 	}
2108 
2109 	for_each_cwq_cpu(cpu, wq) {
2110 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2111 		struct global_cwq *gcwq = cwq->gcwq;
2112 
2113 		spin_lock_irq(&gcwq->lock);
2114 
2115 		if (flush_color >= 0) {
2116 			BUG_ON(cwq->flush_color != -1);
2117 
2118 			if (cwq->nr_in_flight[flush_color]) {
2119 				cwq->flush_color = flush_color;
2120 				atomic_inc(&wq->nr_cwqs_to_flush);
2121 				wait = true;
2122 			}
2123 		}
2124 
2125 		if (work_color >= 0) {
2126 			BUG_ON(work_color != work_next_color(cwq->work_color));
2127 			cwq->work_color = work_color;
2128 		}
2129 
2130 		spin_unlock_irq(&gcwq->lock);
2131 	}
2132 
2133 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2134 		complete(&wq->first_flusher->done);
2135 
2136 	return wait;
2137 }
2138 
2139 /**
2140  * flush_workqueue - ensure that any scheduled work has run to completion.
2141  * @wq: workqueue to flush
2142  *
2143  * Forces execution of the workqueue and blocks until its completion.
2144  * This is typically used in driver shutdown handlers.
2145  *
2146  * We sleep until all works which were queued on entry have been handled,
2147  * but we are not livelocked by new incoming ones.
2148  */
2149 void flush_workqueue(struct workqueue_struct *wq)
2150 {
2151 	struct wq_flusher this_flusher = {
2152 		.list = LIST_HEAD_INIT(this_flusher.list),
2153 		.flush_color = -1,
2154 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2155 	};
2156 	int next_color;
2157 
2158 	lock_map_acquire(&wq->lockdep_map);
2159 	lock_map_release(&wq->lockdep_map);
2160 
2161 	mutex_lock(&wq->flush_mutex);
2162 
2163 	/*
2164 	 * Start-to-wait phase
2165 	 */
2166 	next_color = work_next_color(wq->work_color);
2167 
2168 	if (next_color != wq->flush_color) {
2169 		/*
2170 		 * Color space is not full.  The current work_color
2171 		 * becomes our flush_color and work_color is advanced
2172 		 * by one.
2173 		 */
2174 		BUG_ON(!list_empty(&wq->flusher_overflow));
2175 		this_flusher.flush_color = wq->work_color;
2176 		wq->work_color = next_color;
2177 
2178 		if (!wq->first_flusher) {
2179 			/* no flush in progress, become the first flusher */
2180 			BUG_ON(wq->flush_color != this_flusher.flush_color);
2181 
2182 			wq->first_flusher = &this_flusher;
2183 
2184 			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2185 						       wq->work_color)) {
2186 				/* nothing to flush, done */
2187 				wq->flush_color = next_color;
2188 				wq->first_flusher = NULL;
2189 				goto out_unlock;
2190 			}
2191 		} else {
2192 			/* wait in queue */
2193 			BUG_ON(wq->flush_color == this_flusher.flush_color);
2194 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2195 			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2196 		}
2197 	} else {
2198 		/*
2199 		 * Oops, color space is full, wait on overflow queue.
2200 		 * The next flush completion will assign us
2201 		 * flush_color and transfer to flusher_queue.
2202 		 */
2203 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2204 	}
2205 
2206 	mutex_unlock(&wq->flush_mutex);
2207 
2208 	wait_for_completion(&this_flusher.done);
2209 
2210 	/*
2211 	 * Wake-up-and-cascade phase
2212 	 *
2213 	 * First flushers are responsible for cascading flushes and
2214 	 * handling overflow.  Non-first flushers can simply return.
2215 	 */
2216 	if (wq->first_flusher != &this_flusher)
2217 		return;
2218 
2219 	mutex_lock(&wq->flush_mutex);
2220 
2221 	/* we might have raced, check again with mutex held */
2222 	if (wq->first_flusher != &this_flusher)
2223 		goto out_unlock;
2224 
2225 	wq->first_flusher = NULL;
2226 
2227 	BUG_ON(!list_empty(&this_flusher.list));
2228 	BUG_ON(wq->flush_color != this_flusher.flush_color);
2229 
2230 	while (true) {
2231 		struct wq_flusher *next, *tmp;
2232 
2233 		/* complete all the flushers sharing the current flush color */
2234 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2235 			if (next->flush_color != wq->flush_color)
2236 				break;
2237 			list_del_init(&next->list);
2238 			complete(&next->done);
2239 		}
2240 
2241 		BUG_ON(!list_empty(&wq->flusher_overflow) &&
2242 		       wq->flush_color != work_next_color(wq->work_color));
2243 
2244 		/* this flush_color is finished, advance by one */
2245 		wq->flush_color = work_next_color(wq->flush_color);
2246 
2247 		/* one color has been freed, handle overflow queue */
2248 		if (!list_empty(&wq->flusher_overflow)) {
2249 			/*
2250 			 * Assign the same color to all overflowed
2251 			 * flushers, advance work_color and append to
2252 			 * flusher_queue.  This is the start-to-wait
2253 			 * phase for these overflowed flushers.
2254 			 */
2255 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2256 				tmp->flush_color = wq->work_color;
2257 
2258 			wq->work_color = work_next_color(wq->work_color);
2259 
2260 			list_splice_tail_init(&wq->flusher_overflow,
2261 					      &wq->flusher_queue);
2262 			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2263 		}
2264 
2265 		if (list_empty(&wq->flusher_queue)) {
2266 			BUG_ON(wq->flush_color != wq->work_color);
2267 			break;
2268 		}
2269 
2270 		/*
2271 		 * Need to flush more colors.  Make the next flusher
2272 		 * the new first flusher and arm cwqs.
2273 		 */
2274 		BUG_ON(wq->flush_color == wq->work_color);
2275 		BUG_ON(wq->flush_color != next->flush_color);
2276 
2277 		list_del_init(&next->list);
2278 		wq->first_flusher = next;
2279 
2280 		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2281 			break;
2282 
2283 		/*
2284 		 * Meh... this color is already done, clear first
2285 		 * flusher and repeat cascading.
2286 		 */
2287 		wq->first_flusher = NULL;
2288 	}
2289 
2290 out_unlock:
2291 	mutex_unlock(&wq->flush_mutex);
2292 }
2293 EXPORT_SYMBOL_GPL(flush_workqueue);
2294 
2295 /**
2296  * flush_work - block until a work_struct's callback has terminated
2297  * @work: the work which is to be flushed
2298  *
2299  * Returns false if @work has already terminated.
2300  *
2301  * It is expected that, prior to calling flush_work(), the caller has
2302  * arranged for the work to not be requeued, otherwise it doesn't make
2303  * sense to use this function.
2304  */
2305 int flush_work(struct work_struct *work)
2306 {
2307 	struct worker *worker = NULL;
2308 	struct global_cwq *gcwq;
2309 	struct cpu_workqueue_struct *cwq;
2310 	struct wq_barrier barr;
2311 
2312 	might_sleep();
2313 	gcwq = get_work_gcwq(work);
2314 	if (!gcwq)
2315 		return 0;
2316 
2317 	spin_lock_irq(&gcwq->lock);
2318 	if (!list_empty(&work->entry)) {
2319 		/*
2320 		 * See the comment near try_to_grab_pending()->smp_rmb().
2321 		 * If it was re-queued to a different gcwq under us, we
2322 		 * are not going to wait.
2323 		 */
2324 		smp_rmb();
2325 		cwq = get_work_cwq(work);
2326 		if (unlikely(!cwq || gcwq != cwq->gcwq))
2327 			goto already_gone;
2328 	} else {
2329 		worker = find_worker_executing_work(gcwq, work);
2330 		if (!worker)
2331 			goto already_gone;
2332 		cwq = worker->current_cwq;
2333 	}
2334 
2335 	insert_wq_barrier(cwq, &barr, work, worker);
2336 	spin_unlock_irq(&gcwq->lock);
2337 
2338 	lock_map_acquire(&cwq->wq->lockdep_map);
2339 	lock_map_release(&cwq->wq->lockdep_map);
2340 
2341 	wait_for_completion(&barr.done);
2342 	destroy_work_on_stack(&barr.work);
2343 	return 1;
2344 already_gone:
2345 	spin_unlock_irq(&gcwq->lock);
2346 	return 0;
2347 }
2348 EXPORT_SYMBOL_GPL(flush_work);
2349 
2350 /*
2351  * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
2352  * so this work can't be re-armed in any way.
2353  */
2354 static int try_to_grab_pending(struct work_struct *work)
2355 {
2356 	struct global_cwq *gcwq;
2357 	int ret = -1;
2358 
2359 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2360 		return 0;
2361 
2362 	/*
2363 	 * The queueing is in progress, or it is already queued. Try to
2364 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2365 	 */
2366 	gcwq = get_work_gcwq(work);
2367 	if (!gcwq)
2368 		return ret;
2369 
2370 	spin_lock_irq(&gcwq->lock);
2371 	if (!list_empty(&work->entry)) {
2372 		/*
2373 		 * This work is queued, but perhaps we locked the wrong gcwq.
2374 		 * In that case we must see the new value after rmb(), see
2375 		 * insert_work()->wmb().
2376 		 */
2377 		smp_rmb();
2378 		if (gcwq == get_work_gcwq(work)) {
2379 			debug_work_deactivate(work);
2380 			list_del_init(&work->entry);
2381 			cwq_dec_nr_in_flight(get_work_cwq(work),
2382 					     get_work_color(work));
2383 			ret = 1;
2384 		}
2385 	}
2386 	spin_unlock_irq(&gcwq->lock);
2387 
2388 	return ret;
2389 }
2390 
2391 static void wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2392 {
2393 	struct wq_barrier barr;
2394 	struct worker *worker;
2395 
2396 	spin_lock_irq(&gcwq->lock);
2397 
2398 	worker = find_worker_executing_work(gcwq, work);
2399 	if (unlikely(worker))
2400 		insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2401 
2402 	spin_unlock_irq(&gcwq->lock);
2403 
2404 	if (unlikely(worker)) {
2405 		wait_for_completion(&barr.done);
2406 		destroy_work_on_stack(&barr.work);
2407 	}
2408 }
2409 
2410 static void wait_on_work(struct work_struct *work)
2411 {
2412 	int cpu;
2413 
2414 	might_sleep();
2415 
2416 	lock_map_acquire(&work->lockdep_map);
2417 	lock_map_release(&work->lockdep_map);
2418 
2419 	for_each_gcwq_cpu(cpu)
2420 		wait_on_cpu_work(get_gcwq(cpu), work);
2421 }
2422 
2423 static int __cancel_work_timer(struct work_struct *work,
2424 				struct timer_list* timer)
2425 {
2426 	int ret;
2427 
2428 	do {
2429 		ret = (timer && likely(del_timer(timer)));
2430 		if (!ret)
2431 			ret = try_to_grab_pending(work);
2432 		wait_on_work(work);
2433 	} while (unlikely(ret < 0));
2434 
2435 	clear_work_data(work);
2436 	return ret;
2437 }
2438 
2439 /**
2440  * cancel_work_sync - block until a work_struct's callback has terminated
2441  * @work: the work which is to be flushed
2442  *
2443  * Returns true if @work was pending.
2444  *
2445  * cancel_work_sync() will cancel the work if it is queued. If the work's
2446  * callback appears to be running, cancel_work_sync() will block until it
2447  * has completed.
2448  *
2449  * It is possible to use this function if the work re-queues itself. It can
2450  * cancel the work even if it migrates to another workqueue, however in that
2451  * case it only guarantees that work->func() has completed on the last queued
2452  * workqueue.
2453  *
2454  * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
2455  * pending, otherwise it goes into a busy-wait loop until the timer expires.
2456  *
2457  * The caller must ensure that workqueue_struct on which this work was last
2458  * queued can't be destroyed before this function returns.
2459  */
2460 int cancel_work_sync(struct work_struct *work)
2461 {
2462 	return __cancel_work_timer(work, NULL);
2463 }
2464 EXPORT_SYMBOL_GPL(cancel_work_sync);
2465 
2466 /**
2467  * cancel_delayed_work_sync - reliably kill off a delayed work.
2468  * @dwork: the delayed work struct
2469  *
2470  * Returns true if @dwork was pending.
2471  *
2472  * It is possible to use this function if @dwork rearms itself via queue_work()
2473  * or queue_delayed_work(). See also the comment for cancel_work_sync().
2474  */
2475 int cancel_delayed_work_sync(struct delayed_work *dwork)
2476 {
2477 	return __cancel_work_timer(&dwork->work, &dwork->timer);
2478 }
2479 EXPORT_SYMBOL(cancel_delayed_work_sync);
2480 
2481 /**
2482  * schedule_work - put work task in global workqueue
2483  * @work: job to be done
2484  *
2485  * Returns zero if @work was already on the kernel-global workqueue and
2486  * non-zero otherwise.
2487  *
2488  * This puts a job in the kernel-global workqueue if it was not already
2489  * queued and leaves it in the same position on the kernel-global
2490  * workqueue otherwise.
2491  */
2492 int schedule_work(struct work_struct *work)
2493 {
2494 	return queue_work(system_wq, work);
2495 }
2496 EXPORT_SYMBOL(schedule_work);
2497 
2498 /*
2499  * schedule_work_on - put work task on a specific cpu
2500  * @cpu: cpu to put the work task on
2501  * @work: job to be done
2502  *
2503  * This puts a job on a specific cpu
2504  */
2505 int schedule_work_on(int cpu, struct work_struct *work)
2506 {
2507 	return queue_work_on(cpu, system_wq, work);
2508 }
2509 EXPORT_SYMBOL(schedule_work_on);
2510 
2511 /**
2512  * schedule_delayed_work - put work task in global workqueue after delay
2513  * @dwork: job to be done
2514  * @delay: number of jiffies to wait or 0 for immediate execution
2515  *
2516  * After waiting for a given time this puts a job in the kernel-global
2517  * workqueue.
2518  */
2519 int schedule_delayed_work(struct delayed_work *dwork,
2520 					unsigned long delay)
2521 {
2522 	return queue_delayed_work(system_wq, dwork, delay);
2523 }
2524 EXPORT_SYMBOL(schedule_delayed_work);
2525 
2526 /**
2527  * flush_delayed_work - block until a dwork_struct's callback has terminated
2528  * @dwork: the delayed work which is to be flushed
2529  *
2530  * Any timeout is cancelled, and any pending work is run immediately.
2531  */
2532 void flush_delayed_work(struct delayed_work *dwork)
2533 {
2534 	if (del_timer_sync(&dwork->timer)) {
2535 		__queue_work(get_cpu(), get_work_cwq(&dwork->work)->wq,
2536 			     &dwork->work);
2537 		put_cpu();
2538 	}
2539 	flush_work(&dwork->work);
2540 }
2541 EXPORT_SYMBOL(flush_delayed_work);
2542 
2543 /**
2544  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2545  * @cpu: cpu to use
2546  * @dwork: job to be done
2547  * @delay: number of jiffies to wait
2548  *
2549  * After waiting for a given time this puts a job in the kernel-global
2550  * workqueue on the specified CPU.
2551  */
2552 int schedule_delayed_work_on(int cpu,
2553 			struct delayed_work *dwork, unsigned long delay)
2554 {
2555 	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2556 }
2557 EXPORT_SYMBOL(schedule_delayed_work_on);
2558 
2559 /**
2560  * schedule_on_each_cpu - call a function on each online CPU from keventd
2561  * @func: the function to call
2562  *
2563  * Returns zero on success.
2564  * Returns -ve errno on failure.
2565  *
2566  * schedule_on_each_cpu() is very slow.
2567  */
2568 int schedule_on_each_cpu(work_func_t func)
2569 {
2570 	int cpu;
2571 	struct work_struct __percpu *works;
2572 
2573 	works = alloc_percpu(struct work_struct);
2574 	if (!works)
2575 		return -ENOMEM;
2576 
2577 	get_online_cpus();
2578 
2579 	for_each_online_cpu(cpu) {
2580 		struct work_struct *work = per_cpu_ptr(works, cpu);
2581 
2582 		INIT_WORK(work, func);
2583 		schedule_work_on(cpu, work);
2584 	}
2585 
2586 	for_each_online_cpu(cpu)
2587 		flush_work(per_cpu_ptr(works, cpu));
2588 
2589 	put_online_cpus();
2590 	free_percpu(works);
2591 	return 0;
2592 }
2593 
2594 /**
2595  * flush_scheduled_work - ensure that any scheduled work has run to completion.
2596  *
2597  * Forces execution of the kernel-global workqueue and blocks until its
2598  * completion.
2599  *
2600  * Think twice before calling this function!  It's very easy to get into
2601  * trouble if you don't take great care.  Either of the following situations
2602  * will lead to deadlock:
2603  *
2604  *	One of the work items currently on the workqueue needs to acquire
2605  *	a lock held by your code or its caller.
2606  *
2607  *	Your code is running in the context of a work routine.
2608  *
2609  * They will be detected by lockdep when they occur, but the first might not
2610  * occur very often.  It depends on what work items are on the workqueue and
2611  * what locks they need, which you have no control over.
2612  *
2613  * In most situations flushing the entire workqueue is overkill; you merely
2614  * need to know that a particular work item isn't queued and isn't running.
2615  * In such cases you should use cancel_delayed_work_sync() or
2616  * cancel_work_sync() instead.
2617  */
2618 void flush_scheduled_work(void)
2619 {
2620 	flush_workqueue(system_wq);
2621 }
2622 EXPORT_SYMBOL(flush_scheduled_work);
2623 
2624 /**
2625  * execute_in_process_context - reliably execute the routine with user context
2626  * @fn:		the function to execute
2627  * @ew:		guaranteed storage for the execute work structure (must
2628  *		be available when the work executes)
2629  *
2630  * Executes the function immediately if process context is available,
2631  * otherwise schedules the function for delayed execution.
2632  *
2633  * Returns:	0 - function was executed
2634  *		1 - function was scheduled for execution
2635  */
2636 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2637 {
2638 	if (!in_interrupt()) {
2639 		fn(&ew->work);
2640 		return 0;
2641 	}
2642 
2643 	INIT_WORK(&ew->work, fn);
2644 	schedule_work(&ew->work);
2645 
2646 	return 1;
2647 }
2648 EXPORT_SYMBOL_GPL(execute_in_process_context);
2649 
2650 int keventd_up(void)
2651 {
2652 	return system_wq != NULL;
2653 }
2654 
2655 static int alloc_cwqs(struct workqueue_struct *wq)
2656 {
2657 	/*
2658 	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
2659 	 * Make sure that the alignment isn't lower than that of
2660 	 * unsigned long long.
2661 	 */
2662 	const size_t size = sizeof(struct cpu_workqueue_struct);
2663 	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
2664 				   __alignof__(unsigned long long));
2665 #ifdef CONFIG_SMP
2666 	bool percpu = !(wq->flags & WQ_UNBOUND);
2667 #else
2668 	bool percpu = false;
2669 #endif
2670 
2671 	if (percpu)
2672 		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
2673 	else {
2674 		void *ptr;
2675 
2676 		/*
2677 		 * Allocate enough room to align cwq and put an extra
2678 		 * pointer at the end pointing back to the originally
2679 		 * allocated pointer which will be used for free.
2680 		 */
2681 		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
2682 		if (ptr) {
2683 			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
2684 			*(void **)(wq->cpu_wq.single + 1) = ptr;
2685 		}
2686 	}
2687 
2688 	/* just in case, make sure it's actually aligned */
2689 	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
2690 	return wq->cpu_wq.v ? 0 : -ENOMEM;
2691 }
2692 
2693 static void free_cwqs(struct workqueue_struct *wq)
2694 {
2695 #ifdef CONFIG_SMP
2696 	bool percpu = !(wq->flags & WQ_UNBOUND);
2697 #else
2698 	bool percpu = false;
2699 #endif
2700 
2701 	if (percpu)
2702 		free_percpu(wq->cpu_wq.pcpu);
2703 	else if (wq->cpu_wq.single) {
2704 		/* the pointer to free is stored right after the cwq */
2705 		kfree(*(void **)(wq->cpu_wq.single + 1));
2706 	}
2707 }
2708 
2709 static int wq_clamp_max_active(int max_active, unsigned int flags,
2710 			       const char *name)
2711 {
2712 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
2713 
2714 	if (max_active < 1 || max_active > lim)
2715 		printk(KERN_WARNING "workqueue: max_active %d requested for %s "
2716 		       "is out of range, clamping between %d and %d\n",
2717 		       max_active, name, 1, lim);
2718 
2719 	return clamp_val(max_active, 1, lim);
2720 }
2721 
2722 struct workqueue_struct *__alloc_workqueue_key(const char *name,
2723 					       unsigned int flags,
2724 					       int max_active,
2725 					       struct lock_class_key *key,
2726 					       const char *lock_name)
2727 {
2728 	struct workqueue_struct *wq;
2729 	unsigned int cpu;
2730 
2731 	/*
2732 	 * Unbound workqueues aren't concurrency managed and should be
2733 	 * dispatched to workers immediately.
2734 	 */
2735 	if (flags & WQ_UNBOUND)
2736 		flags |= WQ_HIGHPRI;
2737 
2738 	max_active = max_active ?: WQ_DFL_ACTIVE;
2739 	max_active = wq_clamp_max_active(max_active, flags, name);
2740 
2741 	wq = kzalloc(sizeof(*wq), GFP_KERNEL);
2742 	if (!wq)
2743 		goto err;
2744 
2745 	wq->flags = flags;
2746 	wq->saved_max_active = max_active;
2747 	mutex_init(&wq->flush_mutex);
2748 	atomic_set(&wq->nr_cwqs_to_flush, 0);
2749 	INIT_LIST_HEAD(&wq->flusher_queue);
2750 	INIT_LIST_HEAD(&wq->flusher_overflow);
2751 
2752 	wq->name = name;
2753 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
2754 	INIT_LIST_HEAD(&wq->list);
2755 
2756 	if (alloc_cwqs(wq) < 0)
2757 		goto err;
2758 
2759 	for_each_cwq_cpu(cpu, wq) {
2760 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2761 		struct global_cwq *gcwq = get_gcwq(cpu);
2762 
2763 		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
2764 		cwq->gcwq = gcwq;
2765 		cwq->wq = wq;
2766 		cwq->flush_color = -1;
2767 		cwq->max_active = max_active;
2768 		INIT_LIST_HEAD(&cwq->delayed_works);
2769 	}
2770 
2771 	if (flags & WQ_RESCUER) {
2772 		struct worker *rescuer;
2773 
2774 		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
2775 			goto err;
2776 
2777 		wq->rescuer = rescuer = alloc_worker();
2778 		if (!rescuer)
2779 			goto err;
2780 
2781 		rescuer->task = kthread_create(rescuer_thread, wq, "%s", name);
2782 		if (IS_ERR(rescuer->task))
2783 			goto err;
2784 
2785 		wq->rescuer = rescuer;
2786 		rescuer->task->flags |= PF_THREAD_BOUND;
2787 		wake_up_process(rescuer->task);
2788 	}
2789 
2790 	/*
2791 	 * workqueue_lock protects global freeze state and workqueues
2792 	 * list.  Grab it, set max_active accordingly and add the new
2793 	 * workqueue to workqueues list.
2794 	 */
2795 	spin_lock(&workqueue_lock);
2796 
2797 	if (workqueue_freezing && wq->flags & WQ_FREEZEABLE)
2798 		for_each_cwq_cpu(cpu, wq)
2799 			get_cwq(cpu, wq)->max_active = 0;
2800 
2801 	list_add(&wq->list, &workqueues);
2802 
2803 	spin_unlock(&workqueue_lock);
2804 
2805 	return wq;
2806 err:
2807 	if (wq) {
2808 		free_cwqs(wq);
2809 		free_mayday_mask(wq->mayday_mask);
2810 		kfree(wq->rescuer);
2811 		kfree(wq);
2812 	}
2813 	return NULL;
2814 }
2815 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
2816 
2817 /**
2818  * destroy_workqueue - safely terminate a workqueue
2819  * @wq: target workqueue
2820  *
2821  * Safely destroy a workqueue. All work currently pending will be done first.
2822  */
2823 void destroy_workqueue(struct workqueue_struct *wq)
2824 {
2825 	unsigned int cpu;
2826 
2827 	flush_workqueue(wq);
2828 
2829 	/*
2830 	 * wq list is used to freeze wq, remove from list after
2831 	 * flushing is complete in case freeze races us.
2832 	 */
2833 	spin_lock(&workqueue_lock);
2834 	list_del(&wq->list);
2835 	spin_unlock(&workqueue_lock);
2836 
2837 	/* sanity check */
2838 	for_each_cwq_cpu(cpu, wq) {
2839 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2840 		int i;
2841 
2842 		for (i = 0; i < WORK_NR_COLORS; i++)
2843 			BUG_ON(cwq->nr_in_flight[i]);
2844 		BUG_ON(cwq->nr_active);
2845 		BUG_ON(!list_empty(&cwq->delayed_works));
2846 	}
2847 
2848 	if (wq->flags & WQ_RESCUER) {
2849 		kthread_stop(wq->rescuer->task);
2850 		free_mayday_mask(wq->mayday_mask);
2851 	}
2852 
2853 	free_cwqs(wq);
2854 	kfree(wq);
2855 }
2856 EXPORT_SYMBOL_GPL(destroy_workqueue);
2857 
2858 /**
2859  * workqueue_set_max_active - adjust max_active of a workqueue
2860  * @wq: target workqueue
2861  * @max_active: new max_active value.
2862  *
2863  * Set max_active of @wq to @max_active.
2864  *
2865  * CONTEXT:
2866  * Don't call from IRQ context.
2867  */
2868 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
2869 {
2870 	unsigned int cpu;
2871 
2872 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
2873 
2874 	spin_lock(&workqueue_lock);
2875 
2876 	wq->saved_max_active = max_active;
2877 
2878 	for_each_cwq_cpu(cpu, wq) {
2879 		struct global_cwq *gcwq = get_gcwq(cpu);
2880 
2881 		spin_lock_irq(&gcwq->lock);
2882 
2883 		if (!(wq->flags & WQ_FREEZEABLE) ||
2884 		    !(gcwq->flags & GCWQ_FREEZING))
2885 			get_cwq(gcwq->cpu, wq)->max_active = max_active;
2886 
2887 		spin_unlock_irq(&gcwq->lock);
2888 	}
2889 
2890 	spin_unlock(&workqueue_lock);
2891 }
2892 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
2893 
2894 /**
2895  * workqueue_congested - test whether a workqueue is congested
2896  * @cpu: CPU in question
2897  * @wq: target workqueue
2898  *
2899  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
2900  * no synchronization around this function and the test result is
2901  * unreliable and only useful as advisory hints or for debugging.
2902  *
2903  * RETURNS:
2904  * %true if congested, %false otherwise.
2905  */
2906 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
2907 {
2908 	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2909 
2910 	return !list_empty(&cwq->delayed_works);
2911 }
2912 EXPORT_SYMBOL_GPL(workqueue_congested);
2913 
2914 /**
2915  * work_cpu - return the last known associated cpu for @work
2916  * @work: the work of interest
2917  *
2918  * RETURNS:
2919  * CPU number if @work was ever queued.  WORK_CPU_NONE otherwise.
2920  */
2921 unsigned int work_cpu(struct work_struct *work)
2922 {
2923 	struct global_cwq *gcwq = get_work_gcwq(work);
2924 
2925 	return gcwq ? gcwq->cpu : WORK_CPU_NONE;
2926 }
2927 EXPORT_SYMBOL_GPL(work_cpu);
2928 
2929 /**
2930  * work_busy - test whether a work is currently pending or running
2931  * @work: the work to be tested
2932  *
2933  * Test whether @work is currently pending or running.  There is no
2934  * synchronization around this function and the test result is
2935  * unreliable and only useful as advisory hints or for debugging.
2936  * Especially for reentrant wqs, the pending state might hide the
2937  * running state.
2938  *
2939  * RETURNS:
2940  * OR'd bitmask of WORK_BUSY_* bits.
2941  */
2942 unsigned int work_busy(struct work_struct *work)
2943 {
2944 	struct global_cwq *gcwq = get_work_gcwq(work);
2945 	unsigned long flags;
2946 	unsigned int ret = 0;
2947 
2948 	if (!gcwq)
2949 		return false;
2950 
2951 	spin_lock_irqsave(&gcwq->lock, flags);
2952 
2953 	if (work_pending(work))
2954 		ret |= WORK_BUSY_PENDING;
2955 	if (find_worker_executing_work(gcwq, work))
2956 		ret |= WORK_BUSY_RUNNING;
2957 
2958 	spin_unlock_irqrestore(&gcwq->lock, flags);
2959 
2960 	return ret;
2961 }
2962 EXPORT_SYMBOL_GPL(work_busy);
2963 
2964 /*
2965  * CPU hotplug.
2966  *
2967  * There are two challenges in supporting CPU hotplug.  Firstly, there
2968  * are a lot of assumptions on strong associations among work, cwq and
2969  * gcwq which make migrating pending and scheduled works very
2970  * difficult to implement without impacting hot paths.  Secondly,
2971  * gcwqs serve mix of short, long and very long running works making
2972  * blocked draining impractical.
2973  *
2974  * This is solved by allowing a gcwq to be detached from CPU, running
2975  * it with unbound (rogue) workers and allowing it to be reattached
2976  * later if the cpu comes back online.  A separate thread is created
2977  * to govern a gcwq in such state and is called the trustee of the
2978  * gcwq.
2979  *
2980  * Trustee states and their descriptions.
2981  *
2982  * START	Command state used on startup.  On CPU_DOWN_PREPARE, a
2983  *		new trustee is started with this state.
2984  *
2985  * IN_CHARGE	Once started, trustee will enter this state after
2986  *		assuming the manager role and making all existing
2987  *		workers rogue.  DOWN_PREPARE waits for trustee to
2988  *		enter this state.  After reaching IN_CHARGE, trustee
2989  *		tries to execute the pending worklist until it's empty
2990  *		and the state is set to BUTCHER, or the state is set
2991  *		to RELEASE.
2992  *
2993  * BUTCHER	Command state which is set by the cpu callback after
2994  *		the cpu has went down.  Once this state is set trustee
2995  *		knows that there will be no new works on the worklist
2996  *		and once the worklist is empty it can proceed to
2997  *		killing idle workers.
2998  *
2999  * RELEASE	Command state which is set by the cpu callback if the
3000  *		cpu down has been canceled or it has come online
3001  *		again.  After recognizing this state, trustee stops
3002  *		trying to drain or butcher and clears ROGUE, rebinds
3003  *		all remaining workers back to the cpu and releases
3004  *		manager role.
3005  *
3006  * DONE		Trustee will enter this state after BUTCHER or RELEASE
3007  *		is complete.
3008  *
3009  *          trustee                 CPU                draining
3010  *         took over                down               complete
3011  * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
3012  *                        |                     |                  ^
3013  *                        | CPU is back online  v   return workers |
3014  *                         ----------------> RELEASE --------------
3015  */
3016 
3017 /**
3018  * trustee_wait_event_timeout - timed event wait for trustee
3019  * @cond: condition to wait for
3020  * @timeout: timeout in jiffies
3021  *
3022  * wait_event_timeout() for trustee to use.  Handles locking and
3023  * checks for RELEASE request.
3024  *
3025  * CONTEXT:
3026  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3027  * multiple times.  To be used by trustee.
3028  *
3029  * RETURNS:
3030  * Positive indicating left time if @cond is satisfied, 0 if timed
3031  * out, -1 if canceled.
3032  */
3033 #define trustee_wait_event_timeout(cond, timeout) ({			\
3034 	long __ret = (timeout);						\
3035 	while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) &&	\
3036 	       __ret) {							\
3037 		spin_unlock_irq(&gcwq->lock);				\
3038 		__wait_event_timeout(gcwq->trustee_wait, (cond) ||	\
3039 			(gcwq->trustee_state == TRUSTEE_RELEASE),	\
3040 			__ret);						\
3041 		spin_lock_irq(&gcwq->lock);				\
3042 	}								\
3043 	gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret);		\
3044 })
3045 
3046 /**
3047  * trustee_wait_event - event wait for trustee
3048  * @cond: condition to wait for
3049  *
3050  * wait_event() for trustee to use.  Automatically handles locking and
3051  * checks for CANCEL request.
3052  *
3053  * CONTEXT:
3054  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3055  * multiple times.  To be used by trustee.
3056  *
3057  * RETURNS:
3058  * 0 if @cond is satisfied, -1 if canceled.
3059  */
3060 #define trustee_wait_event(cond) ({					\
3061 	long __ret1;							\
3062 	__ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
3063 	__ret1 < 0 ? -1 : 0;						\
3064 })
3065 
3066 static int __cpuinit trustee_thread(void *__gcwq)
3067 {
3068 	struct global_cwq *gcwq = __gcwq;
3069 	struct worker *worker;
3070 	struct work_struct *work;
3071 	struct hlist_node *pos;
3072 	long rc;
3073 	int i;
3074 
3075 	BUG_ON(gcwq->cpu != smp_processor_id());
3076 
3077 	spin_lock_irq(&gcwq->lock);
3078 	/*
3079 	 * Claim the manager position and make all workers rogue.
3080 	 * Trustee must be bound to the target cpu and can't be
3081 	 * cancelled.
3082 	 */
3083 	BUG_ON(gcwq->cpu != smp_processor_id());
3084 	rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS));
3085 	BUG_ON(rc < 0);
3086 
3087 	gcwq->flags |= GCWQ_MANAGING_WORKERS;
3088 
3089 	list_for_each_entry(worker, &gcwq->idle_list, entry)
3090 		worker->flags |= WORKER_ROGUE;
3091 
3092 	for_each_busy_worker(worker, i, pos, gcwq)
3093 		worker->flags |= WORKER_ROGUE;
3094 
3095 	/*
3096 	 * Call schedule() so that we cross rq->lock and thus can
3097 	 * guarantee sched callbacks see the rogue flag.  This is
3098 	 * necessary as scheduler callbacks may be invoked from other
3099 	 * cpus.
3100 	 */
3101 	spin_unlock_irq(&gcwq->lock);
3102 	schedule();
3103 	spin_lock_irq(&gcwq->lock);
3104 
3105 	/*
3106 	 * Sched callbacks are disabled now.  Zap nr_running.  After
3107 	 * this, nr_running stays zero and need_more_worker() and
3108 	 * keep_working() are always true as long as the worklist is
3109 	 * not empty.
3110 	 */
3111 	atomic_set(get_gcwq_nr_running(gcwq->cpu), 0);
3112 
3113 	spin_unlock_irq(&gcwq->lock);
3114 	del_timer_sync(&gcwq->idle_timer);
3115 	spin_lock_irq(&gcwq->lock);
3116 
3117 	/*
3118 	 * We're now in charge.  Notify and proceed to drain.  We need
3119 	 * to keep the gcwq running during the whole CPU down
3120 	 * procedure as other cpu hotunplug callbacks may need to
3121 	 * flush currently running tasks.
3122 	 */
3123 	gcwq->trustee_state = TRUSTEE_IN_CHARGE;
3124 	wake_up_all(&gcwq->trustee_wait);
3125 
3126 	/*
3127 	 * The original cpu is in the process of dying and may go away
3128 	 * anytime now.  When that happens, we and all workers would
3129 	 * be migrated to other cpus.  Try draining any left work.  We
3130 	 * want to get it over with ASAP - spam rescuers, wake up as
3131 	 * many idlers as necessary and create new ones till the
3132 	 * worklist is empty.  Note that if the gcwq is frozen, there
3133 	 * may be frozen works in freezeable cwqs.  Don't declare
3134 	 * completion while frozen.
3135 	 */
3136 	while (gcwq->nr_workers != gcwq->nr_idle ||
3137 	       gcwq->flags & GCWQ_FREEZING ||
3138 	       gcwq->trustee_state == TRUSTEE_IN_CHARGE) {
3139 		int nr_works = 0;
3140 
3141 		list_for_each_entry(work, &gcwq->worklist, entry) {
3142 			send_mayday(work);
3143 			nr_works++;
3144 		}
3145 
3146 		list_for_each_entry(worker, &gcwq->idle_list, entry) {
3147 			if (!nr_works--)
3148 				break;
3149 			wake_up_process(worker->task);
3150 		}
3151 
3152 		if (need_to_create_worker(gcwq)) {
3153 			spin_unlock_irq(&gcwq->lock);
3154 			worker = create_worker(gcwq, false);
3155 			spin_lock_irq(&gcwq->lock);
3156 			if (worker) {
3157 				worker->flags |= WORKER_ROGUE;
3158 				start_worker(worker);
3159 			}
3160 		}
3161 
3162 		/* give a breather */
3163 		if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
3164 			break;
3165 	}
3166 
3167 	/*
3168 	 * Either all works have been scheduled and cpu is down, or
3169 	 * cpu down has already been canceled.  Wait for and butcher
3170 	 * all workers till we're canceled.
3171 	 */
3172 	do {
3173 		rc = trustee_wait_event(!list_empty(&gcwq->idle_list));
3174 		while (!list_empty(&gcwq->idle_list))
3175 			destroy_worker(list_first_entry(&gcwq->idle_list,
3176 							struct worker, entry));
3177 	} while (gcwq->nr_workers && rc >= 0);
3178 
3179 	/*
3180 	 * At this point, either draining has completed and no worker
3181 	 * is left, or cpu down has been canceled or the cpu is being
3182 	 * brought back up.  There shouldn't be any idle one left.
3183 	 * Tell the remaining busy ones to rebind once it finishes the
3184 	 * currently scheduled works by scheduling the rebind_work.
3185 	 */
3186 	WARN_ON(!list_empty(&gcwq->idle_list));
3187 
3188 	for_each_busy_worker(worker, i, pos, gcwq) {
3189 		struct work_struct *rebind_work = &worker->rebind_work;
3190 
3191 		/*
3192 		 * Rebind_work may race with future cpu hotplug
3193 		 * operations.  Use a separate flag to mark that
3194 		 * rebinding is scheduled.
3195 		 */
3196 		worker->flags |= WORKER_REBIND;
3197 		worker->flags &= ~WORKER_ROGUE;
3198 
3199 		/* queue rebind_work, wq doesn't matter, use the default one */
3200 		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
3201 				     work_data_bits(rebind_work)))
3202 			continue;
3203 
3204 		debug_work_activate(rebind_work);
3205 		insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
3206 			    worker->scheduled.next,
3207 			    work_color_to_flags(WORK_NO_COLOR));
3208 	}
3209 
3210 	/* relinquish manager role */
3211 	gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
3212 
3213 	/* notify completion */
3214 	gcwq->trustee = NULL;
3215 	gcwq->trustee_state = TRUSTEE_DONE;
3216 	wake_up_all(&gcwq->trustee_wait);
3217 	spin_unlock_irq(&gcwq->lock);
3218 	return 0;
3219 }
3220 
3221 /**
3222  * wait_trustee_state - wait for trustee to enter the specified state
3223  * @gcwq: gcwq the trustee of interest belongs to
3224  * @state: target state to wait for
3225  *
3226  * Wait for the trustee to reach @state.  DONE is already matched.
3227  *
3228  * CONTEXT:
3229  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3230  * multiple times.  To be used by cpu_callback.
3231  */
3232 static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
3233 {
3234 	if (!(gcwq->trustee_state == state ||
3235 	      gcwq->trustee_state == TRUSTEE_DONE)) {
3236 		spin_unlock_irq(&gcwq->lock);
3237 		__wait_event(gcwq->trustee_wait,
3238 			     gcwq->trustee_state == state ||
3239 			     gcwq->trustee_state == TRUSTEE_DONE);
3240 		spin_lock_irq(&gcwq->lock);
3241 	}
3242 }
3243 
3244 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
3245 						unsigned long action,
3246 						void *hcpu)
3247 {
3248 	unsigned int cpu = (unsigned long)hcpu;
3249 	struct global_cwq *gcwq = get_gcwq(cpu);
3250 	struct task_struct *new_trustee = NULL;
3251 	struct worker *uninitialized_var(new_worker);
3252 	unsigned long flags;
3253 
3254 	action &= ~CPU_TASKS_FROZEN;
3255 
3256 	switch (action) {
3257 	case CPU_DOWN_PREPARE:
3258 		new_trustee = kthread_create(trustee_thread, gcwq,
3259 					     "workqueue_trustee/%d\n", cpu);
3260 		if (IS_ERR(new_trustee))
3261 			return notifier_from_errno(PTR_ERR(new_trustee));
3262 		kthread_bind(new_trustee, cpu);
3263 		/* fall through */
3264 	case CPU_UP_PREPARE:
3265 		BUG_ON(gcwq->first_idle);
3266 		new_worker = create_worker(gcwq, false);
3267 		if (!new_worker) {
3268 			if (new_trustee)
3269 				kthread_stop(new_trustee);
3270 			return NOTIFY_BAD;
3271 		}
3272 	}
3273 
3274 	/* some are called w/ irq disabled, don't disturb irq status */
3275 	spin_lock_irqsave(&gcwq->lock, flags);
3276 
3277 	switch (action) {
3278 	case CPU_DOWN_PREPARE:
3279 		/* initialize trustee and tell it to acquire the gcwq */
3280 		BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
3281 		gcwq->trustee = new_trustee;
3282 		gcwq->trustee_state = TRUSTEE_START;
3283 		wake_up_process(gcwq->trustee);
3284 		wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
3285 		/* fall through */
3286 	case CPU_UP_PREPARE:
3287 		BUG_ON(gcwq->first_idle);
3288 		gcwq->first_idle = new_worker;
3289 		break;
3290 
3291 	case CPU_DYING:
3292 		/*
3293 		 * Before this, the trustee and all workers except for
3294 		 * the ones which are still executing works from
3295 		 * before the last CPU down must be on the cpu.  After
3296 		 * this, they'll all be diasporas.
3297 		 */
3298 		gcwq->flags |= GCWQ_DISASSOCIATED;
3299 		break;
3300 
3301 	case CPU_POST_DEAD:
3302 		gcwq->trustee_state = TRUSTEE_BUTCHER;
3303 		/* fall through */
3304 	case CPU_UP_CANCELED:
3305 		destroy_worker(gcwq->first_idle);
3306 		gcwq->first_idle = NULL;
3307 		break;
3308 
3309 	case CPU_DOWN_FAILED:
3310 	case CPU_ONLINE:
3311 		gcwq->flags &= ~GCWQ_DISASSOCIATED;
3312 		if (gcwq->trustee_state != TRUSTEE_DONE) {
3313 			gcwq->trustee_state = TRUSTEE_RELEASE;
3314 			wake_up_process(gcwq->trustee);
3315 			wait_trustee_state(gcwq, TRUSTEE_DONE);
3316 		}
3317 
3318 		/*
3319 		 * Trustee is done and there might be no worker left.
3320 		 * Put the first_idle in and request a real manager to
3321 		 * take a look.
3322 		 */
3323 		spin_unlock_irq(&gcwq->lock);
3324 		kthread_bind(gcwq->first_idle->task, cpu);
3325 		spin_lock_irq(&gcwq->lock);
3326 		gcwq->flags |= GCWQ_MANAGE_WORKERS;
3327 		start_worker(gcwq->first_idle);
3328 		gcwq->first_idle = NULL;
3329 		break;
3330 	}
3331 
3332 	spin_unlock_irqrestore(&gcwq->lock, flags);
3333 
3334 	return notifier_from_errno(0);
3335 }
3336 
3337 #ifdef CONFIG_SMP
3338 
3339 struct work_for_cpu {
3340 	struct completion completion;
3341 	long (*fn)(void *);
3342 	void *arg;
3343 	long ret;
3344 };
3345 
3346 static int do_work_for_cpu(void *_wfc)
3347 {
3348 	struct work_for_cpu *wfc = _wfc;
3349 	wfc->ret = wfc->fn(wfc->arg);
3350 	complete(&wfc->completion);
3351 	return 0;
3352 }
3353 
3354 /**
3355  * work_on_cpu - run a function in user context on a particular cpu
3356  * @cpu: the cpu to run on
3357  * @fn: the function to run
3358  * @arg: the function arg
3359  *
3360  * This will return the value @fn returns.
3361  * It is up to the caller to ensure that the cpu doesn't go offline.
3362  * The caller must not hold any locks which would prevent @fn from completing.
3363  */
3364 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3365 {
3366 	struct task_struct *sub_thread;
3367 	struct work_for_cpu wfc = {
3368 		.completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3369 		.fn = fn,
3370 		.arg = arg,
3371 	};
3372 
3373 	sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3374 	if (IS_ERR(sub_thread))
3375 		return PTR_ERR(sub_thread);
3376 	kthread_bind(sub_thread, cpu);
3377 	wake_up_process(sub_thread);
3378 	wait_for_completion(&wfc.completion);
3379 	return wfc.ret;
3380 }
3381 EXPORT_SYMBOL_GPL(work_on_cpu);
3382 #endif /* CONFIG_SMP */
3383 
3384 #ifdef CONFIG_FREEZER
3385 
3386 /**
3387  * freeze_workqueues_begin - begin freezing workqueues
3388  *
3389  * Start freezing workqueues.  After this function returns, all
3390  * freezeable workqueues will queue new works to their frozen_works
3391  * list instead of gcwq->worklist.
3392  *
3393  * CONTEXT:
3394  * Grabs and releases workqueue_lock and gcwq->lock's.
3395  */
3396 void freeze_workqueues_begin(void)
3397 {
3398 	unsigned int cpu;
3399 
3400 	spin_lock(&workqueue_lock);
3401 
3402 	BUG_ON(workqueue_freezing);
3403 	workqueue_freezing = true;
3404 
3405 	for_each_gcwq_cpu(cpu) {
3406 		struct global_cwq *gcwq = get_gcwq(cpu);
3407 		struct workqueue_struct *wq;
3408 
3409 		spin_lock_irq(&gcwq->lock);
3410 
3411 		BUG_ON(gcwq->flags & GCWQ_FREEZING);
3412 		gcwq->flags |= GCWQ_FREEZING;
3413 
3414 		list_for_each_entry(wq, &workqueues, list) {
3415 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3416 
3417 			if (cwq && wq->flags & WQ_FREEZEABLE)
3418 				cwq->max_active = 0;
3419 		}
3420 
3421 		spin_unlock_irq(&gcwq->lock);
3422 	}
3423 
3424 	spin_unlock(&workqueue_lock);
3425 }
3426 
3427 /**
3428  * freeze_workqueues_busy - are freezeable workqueues still busy?
3429  *
3430  * Check whether freezing is complete.  This function must be called
3431  * between freeze_workqueues_begin() and thaw_workqueues().
3432  *
3433  * CONTEXT:
3434  * Grabs and releases workqueue_lock.
3435  *
3436  * RETURNS:
3437  * %true if some freezeable workqueues are still busy.  %false if
3438  * freezing is complete.
3439  */
3440 bool freeze_workqueues_busy(void)
3441 {
3442 	unsigned int cpu;
3443 	bool busy = false;
3444 
3445 	spin_lock(&workqueue_lock);
3446 
3447 	BUG_ON(!workqueue_freezing);
3448 
3449 	for_each_gcwq_cpu(cpu) {
3450 		struct workqueue_struct *wq;
3451 		/*
3452 		 * nr_active is monotonically decreasing.  It's safe
3453 		 * to peek without lock.
3454 		 */
3455 		list_for_each_entry(wq, &workqueues, list) {
3456 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3457 
3458 			if (!cwq || !(wq->flags & WQ_FREEZEABLE))
3459 				continue;
3460 
3461 			BUG_ON(cwq->nr_active < 0);
3462 			if (cwq->nr_active) {
3463 				busy = true;
3464 				goto out_unlock;
3465 			}
3466 		}
3467 	}
3468 out_unlock:
3469 	spin_unlock(&workqueue_lock);
3470 	return busy;
3471 }
3472 
3473 /**
3474  * thaw_workqueues - thaw workqueues
3475  *
3476  * Thaw workqueues.  Normal queueing is restored and all collected
3477  * frozen works are transferred to their respective gcwq worklists.
3478  *
3479  * CONTEXT:
3480  * Grabs and releases workqueue_lock and gcwq->lock's.
3481  */
3482 void thaw_workqueues(void)
3483 {
3484 	unsigned int cpu;
3485 
3486 	spin_lock(&workqueue_lock);
3487 
3488 	if (!workqueue_freezing)
3489 		goto out_unlock;
3490 
3491 	for_each_gcwq_cpu(cpu) {
3492 		struct global_cwq *gcwq = get_gcwq(cpu);
3493 		struct workqueue_struct *wq;
3494 
3495 		spin_lock_irq(&gcwq->lock);
3496 
3497 		BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3498 		gcwq->flags &= ~GCWQ_FREEZING;
3499 
3500 		list_for_each_entry(wq, &workqueues, list) {
3501 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3502 
3503 			if (!cwq || !(wq->flags & WQ_FREEZEABLE))
3504 				continue;
3505 
3506 			/* restore max_active and repopulate worklist */
3507 			cwq->max_active = wq->saved_max_active;
3508 
3509 			while (!list_empty(&cwq->delayed_works) &&
3510 			       cwq->nr_active < cwq->max_active)
3511 				cwq_activate_first_delayed(cwq);
3512 		}
3513 
3514 		wake_up_worker(gcwq);
3515 
3516 		spin_unlock_irq(&gcwq->lock);
3517 	}
3518 
3519 	workqueue_freezing = false;
3520 out_unlock:
3521 	spin_unlock(&workqueue_lock);
3522 }
3523 #endif /* CONFIG_FREEZER */
3524 
3525 static int __init init_workqueues(void)
3526 {
3527 	unsigned int cpu;
3528 	int i;
3529 
3530 	cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE);
3531 
3532 	/* initialize gcwqs */
3533 	for_each_gcwq_cpu(cpu) {
3534 		struct global_cwq *gcwq = get_gcwq(cpu);
3535 
3536 		spin_lock_init(&gcwq->lock);
3537 		INIT_LIST_HEAD(&gcwq->worklist);
3538 		gcwq->cpu = cpu;
3539 		if (cpu == WORK_CPU_UNBOUND)
3540 			gcwq->flags |= GCWQ_DISASSOCIATED;
3541 
3542 		INIT_LIST_HEAD(&gcwq->idle_list);
3543 		for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3544 			INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3545 
3546 		init_timer_deferrable(&gcwq->idle_timer);
3547 		gcwq->idle_timer.function = idle_worker_timeout;
3548 		gcwq->idle_timer.data = (unsigned long)gcwq;
3549 
3550 		setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout,
3551 			    (unsigned long)gcwq);
3552 
3553 		ida_init(&gcwq->worker_ida);
3554 
3555 		gcwq->trustee_state = TRUSTEE_DONE;
3556 		init_waitqueue_head(&gcwq->trustee_wait);
3557 	}
3558 
3559 	/* create the initial worker */
3560 	for_each_online_gcwq_cpu(cpu) {
3561 		struct global_cwq *gcwq = get_gcwq(cpu);
3562 		struct worker *worker;
3563 
3564 		worker = create_worker(gcwq, true);
3565 		BUG_ON(!worker);
3566 		spin_lock_irq(&gcwq->lock);
3567 		start_worker(worker);
3568 		spin_unlock_irq(&gcwq->lock);
3569 	}
3570 
3571 	system_wq = alloc_workqueue("events", 0, 0);
3572 	system_long_wq = alloc_workqueue("events_long", 0, 0);
3573 	system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3574 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3575 					    WQ_UNBOUND_MAX_ACTIVE);
3576 	BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq);
3577 	return 0;
3578 }
3579 early_initcall(init_workqueues);
3580