1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 5 * Copyright (C) 2002 Ingo Molnar 6 * 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <dwmw2@infradead.org> 9 * Andrew Morton 10 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 11 * Theodore Ts'o <tytso@mit.edu> 12 * 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 17 * 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 24 * 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 27 28 #include <linux/export.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 32 #include <linux/signal.h> 33 #include <linux/completion.h> 34 #include <linux/workqueue.h> 35 #include <linux/slab.h> 36 #include <linux/cpu.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/hardirq.h> 40 #include <linux/mempolicy.h> 41 #include <linux/freezer.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 #include <linux/sched/isolation.h> 52 #include <linux/nmi.h> 53 #include <linux/kvm_para.h> 54 55 #include "workqueue_internal.h" 56 57 enum { 58 /* 59 * worker_pool flags 60 * 61 * A bound pool is either associated or disassociated with its CPU. 62 * While associated (!DISASSOCIATED), all workers are bound to the 63 * CPU and none has %WORKER_UNBOUND set and concurrency management 64 * is in effect. 65 * 66 * While DISASSOCIATED, the cpu may be offline and all workers have 67 * %WORKER_UNBOUND set and concurrency management disabled, and may 68 * be executing on any CPU. The pool behaves as an unbound one. 69 * 70 * Note that DISASSOCIATED should be flipped only while holding 71 * wq_pool_attach_mutex to avoid changing binding state while 72 * worker_attach_to_pool() is in progress. 73 */ 74 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */ 75 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 76 77 /* worker flags */ 78 WORKER_DIE = 1 << 1, /* die die die */ 79 WORKER_IDLE = 1 << 2, /* is idle */ 80 WORKER_PREP = 1 << 3, /* preparing to run works */ 81 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 82 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 83 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 84 85 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 86 WORKER_UNBOUND | WORKER_REBOUND, 87 88 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 89 90 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 91 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 92 93 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 94 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 95 96 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 97 /* call for help after 10ms 98 (min two ticks) */ 99 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 100 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 101 102 /* 103 * Rescue workers are used only on emergencies and shared by 104 * all cpus. Give MIN_NICE. 105 */ 106 RESCUER_NICE_LEVEL = MIN_NICE, 107 HIGHPRI_NICE_LEVEL = MIN_NICE, 108 109 WQ_NAME_LEN = 24, 110 }; 111 112 /* 113 * Structure fields follow one of the following exclusion rules. 114 * 115 * I: Modifiable by initialization/destruction paths and read-only for 116 * everyone else. 117 * 118 * P: Preemption protected. Disabling preemption is enough and should 119 * only be modified and accessed from the local cpu. 120 * 121 * L: pool->lock protected. Access with pool->lock held. 122 * 123 * X: During normal operation, modification requires pool->lock and should 124 * be done only from local cpu. Either disabling preemption on local 125 * cpu or grabbing pool->lock is enough for read access. If 126 * POOL_DISASSOCIATED is set, it's identical to L. 127 * 128 * A: wq_pool_attach_mutex protected. 129 * 130 * PL: wq_pool_mutex protected. 131 * 132 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 133 * 134 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 135 * 136 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 137 * RCU for reads. 138 * 139 * WQ: wq->mutex protected. 140 * 141 * WR: wq->mutex protected for writes. RCU protected for reads. 142 * 143 * MD: wq_mayday_lock protected. 144 */ 145 146 /* struct worker is defined in workqueue_internal.h */ 147 148 struct worker_pool { 149 raw_spinlock_t lock; /* the pool lock */ 150 int cpu; /* I: the associated cpu */ 151 int node; /* I: the associated node ID */ 152 int id; /* I: pool ID */ 153 unsigned int flags; /* X: flags */ 154 155 unsigned long watchdog_ts; /* L: watchdog timestamp */ 156 157 struct list_head worklist; /* L: list of pending works */ 158 159 int nr_workers; /* L: total number of workers */ 160 int nr_idle; /* L: currently idle workers */ 161 162 struct list_head idle_list; /* X: list of idle workers */ 163 struct timer_list idle_timer; /* L: worker idle timeout */ 164 struct timer_list mayday_timer; /* L: SOS timer for workers */ 165 166 /* a workers is either on busy_hash or idle_list, or the manager */ 167 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 168 /* L: hash of busy workers */ 169 170 struct worker *manager; /* L: purely informational */ 171 struct list_head workers; /* A: attached workers */ 172 struct completion *detach_completion; /* all workers detached */ 173 174 struct ida worker_ida; /* worker IDs for task name */ 175 176 struct workqueue_attrs *attrs; /* I: worker attributes */ 177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 178 int refcnt; /* PL: refcnt for unbound pools */ 179 180 /* 181 * The current concurrency level. As it's likely to be accessed 182 * from other CPUs during try_to_wake_up(), put it in a separate 183 * cacheline. 184 */ 185 atomic_t nr_running ____cacheline_aligned_in_smp; 186 187 /* 188 * Destruction of pool is RCU protected to allow dereferences 189 * from get_work_pool(). 190 */ 191 struct rcu_head rcu; 192 } ____cacheline_aligned_in_smp; 193 194 /* 195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 196 * of work_struct->data are used for flags and the remaining high bits 197 * point to the pwq; thus, pwqs need to be aligned at two's power of the 198 * number of flag bits. 199 */ 200 struct pool_workqueue { 201 struct worker_pool *pool; /* I: the associated pool */ 202 struct workqueue_struct *wq; /* I: the owning workqueue */ 203 int work_color; /* L: current color */ 204 int flush_color; /* L: flushing color */ 205 int refcnt; /* L: reference count */ 206 int nr_in_flight[WORK_NR_COLORS]; 207 /* L: nr of in_flight works */ 208 209 /* 210 * nr_active management and WORK_STRUCT_INACTIVE: 211 * 212 * When pwq->nr_active >= max_active, new work item is queued to 213 * pwq->inactive_works instead of pool->worklist and marked with 214 * WORK_STRUCT_INACTIVE. 215 * 216 * All work items marked with WORK_STRUCT_INACTIVE do not participate 217 * in pwq->nr_active and all work items in pwq->inactive_works are 218 * marked with WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE 219 * work items are in pwq->inactive_works. Some of them are ready to 220 * run in pool->worklist or worker->scheduled. Those work itmes are 221 * only struct wq_barrier which is used for flush_work() and should 222 * not participate in pwq->nr_active. For non-barrier work item, it 223 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works. 224 */ 225 int nr_active; /* L: nr of active works */ 226 int max_active; /* L: max active works */ 227 struct list_head inactive_works; /* L: inactive works */ 228 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 229 struct list_head mayday_node; /* MD: node on wq->maydays */ 230 231 /* 232 * Release of unbound pwq is punted to system_wq. See put_pwq() 233 * and pwq_unbound_release_workfn() for details. pool_workqueue 234 * itself is also RCU protected so that the first pwq can be 235 * determined without grabbing wq->mutex. 236 */ 237 struct work_struct unbound_release_work; 238 struct rcu_head rcu; 239 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 240 241 /* 242 * Structure used to wait for workqueue flush. 243 */ 244 struct wq_flusher { 245 struct list_head list; /* WQ: list of flushers */ 246 int flush_color; /* WQ: flush color waiting for */ 247 struct completion done; /* flush completion */ 248 }; 249 250 struct wq_device; 251 252 /* 253 * The externally visible workqueue. It relays the issued work items to 254 * the appropriate worker_pool through its pool_workqueues. 255 */ 256 struct workqueue_struct { 257 struct list_head pwqs; /* WR: all pwqs of this wq */ 258 struct list_head list; /* PR: list of all workqueues */ 259 260 struct mutex mutex; /* protects this wq */ 261 int work_color; /* WQ: current work color */ 262 int flush_color; /* WQ: current flush color */ 263 atomic_t nr_pwqs_to_flush; /* flush in progress */ 264 struct wq_flusher *first_flusher; /* WQ: first flusher */ 265 struct list_head flusher_queue; /* WQ: flush waiters */ 266 struct list_head flusher_overflow; /* WQ: flush overflow list */ 267 268 struct list_head maydays; /* MD: pwqs requesting rescue */ 269 struct worker *rescuer; /* MD: rescue worker */ 270 271 int nr_drainers; /* WQ: drain in progress */ 272 int saved_max_active; /* WQ: saved pwq max_active */ 273 274 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 275 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 276 277 #ifdef CONFIG_SYSFS 278 struct wq_device *wq_dev; /* I: for sysfs interface */ 279 #endif 280 #ifdef CONFIG_LOCKDEP 281 char *lock_name; 282 struct lock_class_key key; 283 struct lockdep_map lockdep_map; 284 #endif 285 char name[WQ_NAME_LEN]; /* I: workqueue name */ 286 287 /* 288 * Destruction of workqueue_struct is RCU protected to allow walking 289 * the workqueues list without grabbing wq_pool_mutex. 290 * This is used to dump all workqueues from sysrq. 291 */ 292 struct rcu_head rcu; 293 294 /* hot fields used during command issue, aligned to cacheline */ 295 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 296 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 297 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 298 }; 299 300 static struct kmem_cache *pwq_cache; 301 302 static cpumask_var_t *wq_numa_possible_cpumask; 303 /* possible CPUs of each node */ 304 305 static bool wq_disable_numa; 306 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 307 308 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 309 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 310 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 311 312 static bool wq_online; /* can kworkers be created yet? */ 313 314 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 315 316 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 317 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 318 319 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 320 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 321 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 322 /* wait for manager to go away */ 323 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait); 324 325 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 326 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 327 328 /* PL: allowable cpus for unbound wqs and work items */ 329 static cpumask_var_t wq_unbound_cpumask; 330 331 /* CPU where unbound work was last round robin scheduled from this CPU */ 332 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 333 334 /* 335 * Local execution of unbound work items is no longer guaranteed. The 336 * following always forces round-robin CPU selection on unbound work items 337 * to uncover usages which depend on it. 338 */ 339 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 340 static bool wq_debug_force_rr_cpu = true; 341 #else 342 static bool wq_debug_force_rr_cpu = false; 343 #endif 344 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 345 346 /* the per-cpu worker pools */ 347 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 348 349 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 350 351 /* PL: hash of all unbound pools keyed by pool->attrs */ 352 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 353 354 /* I: attributes used when instantiating standard unbound pools on demand */ 355 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 356 357 /* I: attributes used when instantiating ordered pools on demand */ 358 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 359 360 struct workqueue_struct *system_wq __read_mostly; 361 EXPORT_SYMBOL(system_wq); 362 struct workqueue_struct *system_highpri_wq __read_mostly; 363 EXPORT_SYMBOL_GPL(system_highpri_wq); 364 struct workqueue_struct *system_long_wq __read_mostly; 365 EXPORT_SYMBOL_GPL(system_long_wq); 366 struct workqueue_struct *system_unbound_wq __read_mostly; 367 EXPORT_SYMBOL_GPL(system_unbound_wq); 368 struct workqueue_struct *system_freezable_wq __read_mostly; 369 EXPORT_SYMBOL_GPL(system_freezable_wq); 370 struct workqueue_struct *system_power_efficient_wq __read_mostly; 371 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 372 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 373 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 374 375 static int worker_thread(void *__worker); 376 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 377 static void show_pwq(struct pool_workqueue *pwq); 378 379 #define CREATE_TRACE_POINTS 380 #include <trace/events/workqueue.h> 381 382 #define assert_rcu_or_pool_mutex() \ 383 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 384 !lockdep_is_held(&wq_pool_mutex), \ 385 "RCU or wq_pool_mutex should be held") 386 387 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 388 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 389 !lockdep_is_held(&wq->mutex) && \ 390 !lockdep_is_held(&wq_pool_mutex), \ 391 "RCU, wq->mutex or wq_pool_mutex should be held") 392 393 #define for_each_cpu_worker_pool(pool, cpu) \ 394 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 395 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 396 (pool)++) 397 398 /** 399 * for_each_pool - iterate through all worker_pools in the system 400 * @pool: iteration cursor 401 * @pi: integer used for iteration 402 * 403 * This must be called either with wq_pool_mutex held or RCU read 404 * locked. If the pool needs to be used beyond the locking in effect, the 405 * caller is responsible for guaranteeing that the pool stays online. 406 * 407 * The if/else clause exists only for the lockdep assertion and can be 408 * ignored. 409 */ 410 #define for_each_pool(pool, pi) \ 411 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 412 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 413 else 414 415 /** 416 * for_each_pool_worker - iterate through all workers of a worker_pool 417 * @worker: iteration cursor 418 * @pool: worker_pool to iterate workers of 419 * 420 * This must be called with wq_pool_attach_mutex. 421 * 422 * The if/else clause exists only for the lockdep assertion and can be 423 * ignored. 424 */ 425 #define for_each_pool_worker(worker, pool) \ 426 list_for_each_entry((worker), &(pool)->workers, node) \ 427 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 428 else 429 430 /** 431 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 432 * @pwq: iteration cursor 433 * @wq: the target workqueue 434 * 435 * This must be called either with wq->mutex held or RCU read locked. 436 * If the pwq needs to be used beyond the locking in effect, the caller is 437 * responsible for guaranteeing that the pwq stays online. 438 * 439 * The if/else clause exists only for the lockdep assertion and can be 440 * ignored. 441 */ 442 #define for_each_pwq(pwq, wq) \ 443 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ 444 lockdep_is_held(&(wq->mutex))) 445 446 #ifdef CONFIG_DEBUG_OBJECTS_WORK 447 448 static const struct debug_obj_descr work_debug_descr; 449 450 static void *work_debug_hint(void *addr) 451 { 452 return ((struct work_struct *) addr)->func; 453 } 454 455 static bool work_is_static_object(void *addr) 456 { 457 struct work_struct *work = addr; 458 459 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 460 } 461 462 /* 463 * fixup_init is called when: 464 * - an active object is initialized 465 */ 466 static bool work_fixup_init(void *addr, enum debug_obj_state state) 467 { 468 struct work_struct *work = addr; 469 470 switch (state) { 471 case ODEBUG_STATE_ACTIVE: 472 cancel_work_sync(work); 473 debug_object_init(work, &work_debug_descr); 474 return true; 475 default: 476 return false; 477 } 478 } 479 480 /* 481 * fixup_free is called when: 482 * - an active object is freed 483 */ 484 static bool work_fixup_free(void *addr, enum debug_obj_state state) 485 { 486 struct work_struct *work = addr; 487 488 switch (state) { 489 case ODEBUG_STATE_ACTIVE: 490 cancel_work_sync(work); 491 debug_object_free(work, &work_debug_descr); 492 return true; 493 default: 494 return false; 495 } 496 } 497 498 static const struct debug_obj_descr work_debug_descr = { 499 .name = "work_struct", 500 .debug_hint = work_debug_hint, 501 .is_static_object = work_is_static_object, 502 .fixup_init = work_fixup_init, 503 .fixup_free = work_fixup_free, 504 }; 505 506 static inline void debug_work_activate(struct work_struct *work) 507 { 508 debug_object_activate(work, &work_debug_descr); 509 } 510 511 static inline void debug_work_deactivate(struct work_struct *work) 512 { 513 debug_object_deactivate(work, &work_debug_descr); 514 } 515 516 void __init_work(struct work_struct *work, int onstack) 517 { 518 if (onstack) 519 debug_object_init_on_stack(work, &work_debug_descr); 520 else 521 debug_object_init(work, &work_debug_descr); 522 } 523 EXPORT_SYMBOL_GPL(__init_work); 524 525 void destroy_work_on_stack(struct work_struct *work) 526 { 527 debug_object_free(work, &work_debug_descr); 528 } 529 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 530 531 void destroy_delayed_work_on_stack(struct delayed_work *work) 532 { 533 destroy_timer_on_stack(&work->timer); 534 debug_object_free(&work->work, &work_debug_descr); 535 } 536 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 537 538 #else 539 static inline void debug_work_activate(struct work_struct *work) { } 540 static inline void debug_work_deactivate(struct work_struct *work) { } 541 #endif 542 543 /** 544 * worker_pool_assign_id - allocate ID and assign it to @pool 545 * @pool: the pool pointer of interest 546 * 547 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 548 * successfully, -errno on failure. 549 */ 550 static int worker_pool_assign_id(struct worker_pool *pool) 551 { 552 int ret; 553 554 lockdep_assert_held(&wq_pool_mutex); 555 556 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 557 GFP_KERNEL); 558 if (ret >= 0) { 559 pool->id = ret; 560 return 0; 561 } 562 return ret; 563 } 564 565 /** 566 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 567 * @wq: the target workqueue 568 * @node: the node ID 569 * 570 * This must be called with any of wq_pool_mutex, wq->mutex or RCU 571 * read locked. 572 * If the pwq needs to be used beyond the locking in effect, the caller is 573 * responsible for guaranteeing that the pwq stays online. 574 * 575 * Return: The unbound pool_workqueue for @node. 576 */ 577 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 578 int node) 579 { 580 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 581 582 /* 583 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a 584 * delayed item is pending. The plan is to keep CPU -> NODE 585 * mapping valid and stable across CPU on/offlines. Once that 586 * happens, this workaround can be removed. 587 */ 588 if (unlikely(node == NUMA_NO_NODE)) 589 return wq->dfl_pwq; 590 591 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 592 } 593 594 static unsigned int work_color_to_flags(int color) 595 { 596 return color << WORK_STRUCT_COLOR_SHIFT; 597 } 598 599 static int get_work_color(unsigned long work_data) 600 { 601 return (work_data >> WORK_STRUCT_COLOR_SHIFT) & 602 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 603 } 604 605 static int work_next_color(int color) 606 { 607 return (color + 1) % WORK_NR_COLORS; 608 } 609 610 /* 611 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 612 * contain the pointer to the queued pwq. Once execution starts, the flag 613 * is cleared and the high bits contain OFFQ flags and pool ID. 614 * 615 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 616 * and clear_work_data() can be used to set the pwq, pool or clear 617 * work->data. These functions should only be called while the work is 618 * owned - ie. while the PENDING bit is set. 619 * 620 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 621 * corresponding to a work. Pool is available once the work has been 622 * queued anywhere after initialization until it is sync canceled. pwq is 623 * available only while the work item is queued. 624 * 625 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 626 * canceled. While being canceled, a work item may have its PENDING set 627 * but stay off timer and worklist for arbitrarily long and nobody should 628 * try to steal the PENDING bit. 629 */ 630 static inline void set_work_data(struct work_struct *work, unsigned long data, 631 unsigned long flags) 632 { 633 WARN_ON_ONCE(!work_pending(work)); 634 atomic_long_set(&work->data, data | flags | work_static(work)); 635 } 636 637 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 638 unsigned long extra_flags) 639 { 640 set_work_data(work, (unsigned long)pwq, 641 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 642 } 643 644 static void set_work_pool_and_keep_pending(struct work_struct *work, 645 int pool_id) 646 { 647 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 648 WORK_STRUCT_PENDING); 649 } 650 651 static void set_work_pool_and_clear_pending(struct work_struct *work, 652 int pool_id) 653 { 654 /* 655 * The following wmb is paired with the implied mb in 656 * test_and_set_bit(PENDING) and ensures all updates to @work made 657 * here are visible to and precede any updates by the next PENDING 658 * owner. 659 */ 660 smp_wmb(); 661 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 662 /* 663 * The following mb guarantees that previous clear of a PENDING bit 664 * will not be reordered with any speculative LOADS or STORES from 665 * work->current_func, which is executed afterwards. This possible 666 * reordering can lead to a missed execution on attempt to queue 667 * the same @work. E.g. consider this case: 668 * 669 * CPU#0 CPU#1 670 * ---------------------------- -------------------------------- 671 * 672 * 1 STORE event_indicated 673 * 2 queue_work_on() { 674 * 3 test_and_set_bit(PENDING) 675 * 4 } set_..._and_clear_pending() { 676 * 5 set_work_data() # clear bit 677 * 6 smp_mb() 678 * 7 work->current_func() { 679 * 8 LOAD event_indicated 680 * } 681 * 682 * Without an explicit full barrier speculative LOAD on line 8 can 683 * be executed before CPU#0 does STORE on line 1. If that happens, 684 * CPU#0 observes the PENDING bit is still set and new execution of 685 * a @work is not queued in a hope, that CPU#1 will eventually 686 * finish the queued @work. Meanwhile CPU#1 does not see 687 * event_indicated is set, because speculative LOAD was executed 688 * before actual STORE. 689 */ 690 smp_mb(); 691 } 692 693 static void clear_work_data(struct work_struct *work) 694 { 695 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 696 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 697 } 698 699 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 700 { 701 unsigned long data = atomic_long_read(&work->data); 702 703 if (data & WORK_STRUCT_PWQ) 704 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 705 else 706 return NULL; 707 } 708 709 /** 710 * get_work_pool - return the worker_pool a given work was associated with 711 * @work: the work item of interest 712 * 713 * Pools are created and destroyed under wq_pool_mutex, and allows read 714 * access under RCU read lock. As such, this function should be 715 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 716 * 717 * All fields of the returned pool are accessible as long as the above 718 * mentioned locking is in effect. If the returned pool needs to be used 719 * beyond the critical section, the caller is responsible for ensuring the 720 * returned pool is and stays online. 721 * 722 * Return: The worker_pool @work was last associated with. %NULL if none. 723 */ 724 static struct worker_pool *get_work_pool(struct work_struct *work) 725 { 726 unsigned long data = atomic_long_read(&work->data); 727 int pool_id; 728 729 assert_rcu_or_pool_mutex(); 730 731 if (data & WORK_STRUCT_PWQ) 732 return ((struct pool_workqueue *) 733 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 734 735 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 736 if (pool_id == WORK_OFFQ_POOL_NONE) 737 return NULL; 738 739 return idr_find(&worker_pool_idr, pool_id); 740 } 741 742 /** 743 * get_work_pool_id - return the worker pool ID a given work is associated with 744 * @work: the work item of interest 745 * 746 * Return: The worker_pool ID @work was last associated with. 747 * %WORK_OFFQ_POOL_NONE if none. 748 */ 749 static int get_work_pool_id(struct work_struct *work) 750 { 751 unsigned long data = atomic_long_read(&work->data); 752 753 if (data & WORK_STRUCT_PWQ) 754 return ((struct pool_workqueue *) 755 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 756 757 return data >> WORK_OFFQ_POOL_SHIFT; 758 } 759 760 static void mark_work_canceling(struct work_struct *work) 761 { 762 unsigned long pool_id = get_work_pool_id(work); 763 764 pool_id <<= WORK_OFFQ_POOL_SHIFT; 765 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 766 } 767 768 static bool work_is_canceling(struct work_struct *work) 769 { 770 unsigned long data = atomic_long_read(&work->data); 771 772 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 773 } 774 775 /* 776 * Policy functions. These define the policies on how the global worker 777 * pools are managed. Unless noted otherwise, these functions assume that 778 * they're being called with pool->lock held. 779 */ 780 781 static bool __need_more_worker(struct worker_pool *pool) 782 { 783 return !atomic_read(&pool->nr_running); 784 } 785 786 /* 787 * Need to wake up a worker? Called from anything but currently 788 * running workers. 789 * 790 * Note that, because unbound workers never contribute to nr_running, this 791 * function will always return %true for unbound pools as long as the 792 * worklist isn't empty. 793 */ 794 static bool need_more_worker(struct worker_pool *pool) 795 { 796 return !list_empty(&pool->worklist) && __need_more_worker(pool); 797 } 798 799 /* Can I start working? Called from busy but !running workers. */ 800 static bool may_start_working(struct worker_pool *pool) 801 { 802 return pool->nr_idle; 803 } 804 805 /* Do I need to keep working? Called from currently running workers. */ 806 static bool keep_working(struct worker_pool *pool) 807 { 808 return !list_empty(&pool->worklist) && 809 atomic_read(&pool->nr_running) <= 1; 810 } 811 812 /* Do we need a new worker? Called from manager. */ 813 static bool need_to_create_worker(struct worker_pool *pool) 814 { 815 return need_more_worker(pool) && !may_start_working(pool); 816 } 817 818 /* Do we have too many workers and should some go away? */ 819 static bool too_many_workers(struct worker_pool *pool) 820 { 821 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 822 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 823 int nr_busy = pool->nr_workers - nr_idle; 824 825 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 826 } 827 828 /* 829 * Wake up functions. 830 */ 831 832 /* Return the first idle worker. Safe with preemption disabled */ 833 static struct worker *first_idle_worker(struct worker_pool *pool) 834 { 835 if (unlikely(list_empty(&pool->idle_list))) 836 return NULL; 837 838 return list_first_entry(&pool->idle_list, struct worker, entry); 839 } 840 841 /** 842 * wake_up_worker - wake up an idle worker 843 * @pool: worker pool to wake worker from 844 * 845 * Wake up the first idle worker of @pool. 846 * 847 * CONTEXT: 848 * raw_spin_lock_irq(pool->lock). 849 */ 850 static void wake_up_worker(struct worker_pool *pool) 851 { 852 struct worker *worker = first_idle_worker(pool); 853 854 if (likely(worker)) 855 wake_up_process(worker->task); 856 } 857 858 /** 859 * wq_worker_running - a worker is running again 860 * @task: task waking up 861 * 862 * This function is called when a worker returns from schedule() 863 */ 864 void wq_worker_running(struct task_struct *task) 865 { 866 struct worker *worker = kthread_data(task); 867 868 if (!worker->sleeping) 869 return; 870 if (!(worker->flags & WORKER_NOT_RUNNING)) 871 atomic_inc(&worker->pool->nr_running); 872 worker->sleeping = 0; 873 } 874 875 /** 876 * wq_worker_sleeping - a worker is going to sleep 877 * @task: task going to sleep 878 * 879 * This function is called from schedule() when a busy worker is 880 * going to sleep. Preemption needs to be disabled to protect ->sleeping 881 * assignment. 882 */ 883 void wq_worker_sleeping(struct task_struct *task) 884 { 885 struct worker *next, *worker = kthread_data(task); 886 struct worker_pool *pool; 887 888 /* 889 * Rescuers, which may not have all the fields set up like normal 890 * workers, also reach here, let's not access anything before 891 * checking NOT_RUNNING. 892 */ 893 if (worker->flags & WORKER_NOT_RUNNING) 894 return; 895 896 pool = worker->pool; 897 898 /* Return if preempted before wq_worker_running() was reached */ 899 if (worker->sleeping) 900 return; 901 902 worker->sleeping = 1; 903 raw_spin_lock_irq(&pool->lock); 904 905 /* 906 * The counterpart of the following dec_and_test, implied mb, 907 * worklist not empty test sequence is in insert_work(). 908 * Please read comment there. 909 * 910 * NOT_RUNNING is clear. This means that we're bound to and 911 * running on the local cpu w/ rq lock held and preemption 912 * disabled, which in turn means that none else could be 913 * manipulating idle_list, so dereferencing idle_list without pool 914 * lock is safe. 915 */ 916 if (atomic_dec_and_test(&pool->nr_running) && 917 !list_empty(&pool->worklist)) { 918 next = first_idle_worker(pool); 919 if (next) 920 wake_up_process(next->task); 921 } 922 raw_spin_unlock_irq(&pool->lock); 923 } 924 925 /** 926 * wq_worker_last_func - retrieve worker's last work function 927 * @task: Task to retrieve last work function of. 928 * 929 * Determine the last function a worker executed. This is called from 930 * the scheduler to get a worker's last known identity. 931 * 932 * CONTEXT: 933 * raw_spin_lock_irq(rq->lock) 934 * 935 * This function is called during schedule() when a kworker is going 936 * to sleep. It's used by psi to identify aggregation workers during 937 * dequeuing, to allow periodic aggregation to shut-off when that 938 * worker is the last task in the system or cgroup to go to sleep. 939 * 940 * As this function doesn't involve any workqueue-related locking, it 941 * only returns stable values when called from inside the scheduler's 942 * queuing and dequeuing paths, when @task, which must be a kworker, 943 * is guaranteed to not be processing any works. 944 * 945 * Return: 946 * The last work function %current executed as a worker, NULL if it 947 * hasn't executed any work yet. 948 */ 949 work_func_t wq_worker_last_func(struct task_struct *task) 950 { 951 struct worker *worker = kthread_data(task); 952 953 return worker->last_func; 954 } 955 956 /** 957 * worker_set_flags - set worker flags and adjust nr_running accordingly 958 * @worker: self 959 * @flags: flags to set 960 * 961 * Set @flags in @worker->flags and adjust nr_running accordingly. 962 * 963 * CONTEXT: 964 * raw_spin_lock_irq(pool->lock) 965 */ 966 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 967 { 968 struct worker_pool *pool = worker->pool; 969 970 WARN_ON_ONCE(worker->task != current); 971 972 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 973 if ((flags & WORKER_NOT_RUNNING) && 974 !(worker->flags & WORKER_NOT_RUNNING)) { 975 atomic_dec(&pool->nr_running); 976 } 977 978 worker->flags |= flags; 979 } 980 981 /** 982 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 983 * @worker: self 984 * @flags: flags to clear 985 * 986 * Clear @flags in @worker->flags and adjust nr_running accordingly. 987 * 988 * CONTEXT: 989 * raw_spin_lock_irq(pool->lock) 990 */ 991 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 992 { 993 struct worker_pool *pool = worker->pool; 994 unsigned int oflags = worker->flags; 995 996 WARN_ON_ONCE(worker->task != current); 997 998 worker->flags &= ~flags; 999 1000 /* 1001 * If transitioning out of NOT_RUNNING, increment nr_running. Note 1002 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 1003 * of multiple flags, not a single flag. 1004 */ 1005 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 1006 if (!(worker->flags & WORKER_NOT_RUNNING)) 1007 atomic_inc(&pool->nr_running); 1008 } 1009 1010 /** 1011 * find_worker_executing_work - find worker which is executing a work 1012 * @pool: pool of interest 1013 * @work: work to find worker for 1014 * 1015 * Find a worker which is executing @work on @pool by searching 1016 * @pool->busy_hash which is keyed by the address of @work. For a worker 1017 * to match, its current execution should match the address of @work and 1018 * its work function. This is to avoid unwanted dependency between 1019 * unrelated work executions through a work item being recycled while still 1020 * being executed. 1021 * 1022 * This is a bit tricky. A work item may be freed once its execution 1023 * starts and nothing prevents the freed area from being recycled for 1024 * another work item. If the same work item address ends up being reused 1025 * before the original execution finishes, workqueue will identify the 1026 * recycled work item as currently executing and make it wait until the 1027 * current execution finishes, introducing an unwanted dependency. 1028 * 1029 * This function checks the work item address and work function to avoid 1030 * false positives. Note that this isn't complete as one may construct a 1031 * work function which can introduce dependency onto itself through a 1032 * recycled work item. Well, if somebody wants to shoot oneself in the 1033 * foot that badly, there's only so much we can do, and if such deadlock 1034 * actually occurs, it should be easy to locate the culprit work function. 1035 * 1036 * CONTEXT: 1037 * raw_spin_lock_irq(pool->lock). 1038 * 1039 * Return: 1040 * Pointer to worker which is executing @work if found, %NULL 1041 * otherwise. 1042 */ 1043 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1044 struct work_struct *work) 1045 { 1046 struct worker *worker; 1047 1048 hash_for_each_possible(pool->busy_hash, worker, hentry, 1049 (unsigned long)work) 1050 if (worker->current_work == work && 1051 worker->current_func == work->func) 1052 return worker; 1053 1054 return NULL; 1055 } 1056 1057 /** 1058 * move_linked_works - move linked works to a list 1059 * @work: start of series of works to be scheduled 1060 * @head: target list to append @work to 1061 * @nextp: out parameter for nested worklist walking 1062 * 1063 * Schedule linked works starting from @work to @head. Work series to 1064 * be scheduled starts at @work and includes any consecutive work with 1065 * WORK_STRUCT_LINKED set in its predecessor. 1066 * 1067 * If @nextp is not NULL, it's updated to point to the next work of 1068 * the last scheduled work. This allows move_linked_works() to be 1069 * nested inside outer list_for_each_entry_safe(). 1070 * 1071 * CONTEXT: 1072 * raw_spin_lock_irq(pool->lock). 1073 */ 1074 static void move_linked_works(struct work_struct *work, struct list_head *head, 1075 struct work_struct **nextp) 1076 { 1077 struct work_struct *n; 1078 1079 /* 1080 * Linked worklist will always end before the end of the list, 1081 * use NULL for list head. 1082 */ 1083 list_for_each_entry_safe_from(work, n, NULL, entry) { 1084 list_move_tail(&work->entry, head); 1085 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1086 break; 1087 } 1088 1089 /* 1090 * If we're already inside safe list traversal and have moved 1091 * multiple works to the scheduled queue, the next position 1092 * needs to be updated. 1093 */ 1094 if (nextp) 1095 *nextp = n; 1096 } 1097 1098 /** 1099 * get_pwq - get an extra reference on the specified pool_workqueue 1100 * @pwq: pool_workqueue to get 1101 * 1102 * Obtain an extra reference on @pwq. The caller should guarantee that 1103 * @pwq has positive refcnt and be holding the matching pool->lock. 1104 */ 1105 static void get_pwq(struct pool_workqueue *pwq) 1106 { 1107 lockdep_assert_held(&pwq->pool->lock); 1108 WARN_ON_ONCE(pwq->refcnt <= 0); 1109 pwq->refcnt++; 1110 } 1111 1112 /** 1113 * put_pwq - put a pool_workqueue reference 1114 * @pwq: pool_workqueue to put 1115 * 1116 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1117 * destruction. The caller should be holding the matching pool->lock. 1118 */ 1119 static void put_pwq(struct pool_workqueue *pwq) 1120 { 1121 lockdep_assert_held(&pwq->pool->lock); 1122 if (likely(--pwq->refcnt)) 1123 return; 1124 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1125 return; 1126 /* 1127 * @pwq can't be released under pool->lock, bounce to 1128 * pwq_unbound_release_workfn(). This never recurses on the same 1129 * pool->lock as this path is taken only for unbound workqueues and 1130 * the release work item is scheduled on a per-cpu workqueue. To 1131 * avoid lockdep warning, unbound pool->locks are given lockdep 1132 * subclass of 1 in get_unbound_pool(). 1133 */ 1134 schedule_work(&pwq->unbound_release_work); 1135 } 1136 1137 /** 1138 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1139 * @pwq: pool_workqueue to put (can be %NULL) 1140 * 1141 * put_pwq() with locking. This function also allows %NULL @pwq. 1142 */ 1143 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1144 { 1145 if (pwq) { 1146 /* 1147 * As both pwqs and pools are RCU protected, the 1148 * following lock operations are safe. 1149 */ 1150 raw_spin_lock_irq(&pwq->pool->lock); 1151 put_pwq(pwq); 1152 raw_spin_unlock_irq(&pwq->pool->lock); 1153 } 1154 } 1155 1156 static void pwq_activate_inactive_work(struct work_struct *work) 1157 { 1158 struct pool_workqueue *pwq = get_work_pwq(work); 1159 1160 trace_workqueue_activate_work(work); 1161 if (list_empty(&pwq->pool->worklist)) 1162 pwq->pool->watchdog_ts = jiffies; 1163 move_linked_works(work, &pwq->pool->worklist, NULL); 1164 __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work)); 1165 pwq->nr_active++; 1166 } 1167 1168 static void pwq_activate_first_inactive(struct pool_workqueue *pwq) 1169 { 1170 struct work_struct *work = list_first_entry(&pwq->inactive_works, 1171 struct work_struct, entry); 1172 1173 pwq_activate_inactive_work(work); 1174 } 1175 1176 /** 1177 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1178 * @pwq: pwq of interest 1179 * @work_data: work_data of work which left the queue 1180 * 1181 * A work either has completed or is removed from pending queue, 1182 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1183 * 1184 * CONTEXT: 1185 * raw_spin_lock_irq(pool->lock). 1186 */ 1187 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data) 1188 { 1189 int color = get_work_color(work_data); 1190 1191 if (!(work_data & WORK_STRUCT_INACTIVE)) { 1192 pwq->nr_active--; 1193 if (!list_empty(&pwq->inactive_works)) { 1194 /* one down, submit an inactive one */ 1195 if (pwq->nr_active < pwq->max_active) 1196 pwq_activate_first_inactive(pwq); 1197 } 1198 } 1199 1200 pwq->nr_in_flight[color]--; 1201 1202 /* is flush in progress and are we at the flushing tip? */ 1203 if (likely(pwq->flush_color != color)) 1204 goto out_put; 1205 1206 /* are there still in-flight works? */ 1207 if (pwq->nr_in_flight[color]) 1208 goto out_put; 1209 1210 /* this pwq is done, clear flush_color */ 1211 pwq->flush_color = -1; 1212 1213 /* 1214 * If this was the last pwq, wake up the first flusher. It 1215 * will handle the rest. 1216 */ 1217 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1218 complete(&pwq->wq->first_flusher->done); 1219 out_put: 1220 put_pwq(pwq); 1221 } 1222 1223 /** 1224 * try_to_grab_pending - steal work item from worklist and disable irq 1225 * @work: work item to steal 1226 * @is_dwork: @work is a delayed_work 1227 * @flags: place to store irq state 1228 * 1229 * Try to grab PENDING bit of @work. This function can handle @work in any 1230 * stable state - idle, on timer or on worklist. 1231 * 1232 * Return: 1233 * 1234 * ======== ================================================================ 1235 * 1 if @work was pending and we successfully stole PENDING 1236 * 0 if @work was idle and we claimed PENDING 1237 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1238 * -ENOENT if someone else is canceling @work, this state may persist 1239 * for arbitrarily long 1240 * ======== ================================================================ 1241 * 1242 * Note: 1243 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1244 * interrupted while holding PENDING and @work off queue, irq must be 1245 * disabled on entry. This, combined with delayed_work->timer being 1246 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1247 * 1248 * On successful return, >= 0, irq is disabled and the caller is 1249 * responsible for releasing it using local_irq_restore(*@flags). 1250 * 1251 * This function is safe to call from any context including IRQ handler. 1252 */ 1253 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1254 unsigned long *flags) 1255 { 1256 struct worker_pool *pool; 1257 struct pool_workqueue *pwq; 1258 1259 local_irq_save(*flags); 1260 1261 /* try to steal the timer if it exists */ 1262 if (is_dwork) { 1263 struct delayed_work *dwork = to_delayed_work(work); 1264 1265 /* 1266 * dwork->timer is irqsafe. If del_timer() fails, it's 1267 * guaranteed that the timer is not queued anywhere and not 1268 * running on the local CPU. 1269 */ 1270 if (likely(del_timer(&dwork->timer))) 1271 return 1; 1272 } 1273 1274 /* try to claim PENDING the normal way */ 1275 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1276 return 0; 1277 1278 rcu_read_lock(); 1279 /* 1280 * The queueing is in progress, or it is already queued. Try to 1281 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1282 */ 1283 pool = get_work_pool(work); 1284 if (!pool) 1285 goto fail; 1286 1287 raw_spin_lock(&pool->lock); 1288 /* 1289 * work->data is guaranteed to point to pwq only while the work 1290 * item is queued on pwq->wq, and both updating work->data to point 1291 * to pwq on queueing and to pool on dequeueing are done under 1292 * pwq->pool->lock. This in turn guarantees that, if work->data 1293 * points to pwq which is associated with a locked pool, the work 1294 * item is currently queued on that pool. 1295 */ 1296 pwq = get_work_pwq(work); 1297 if (pwq && pwq->pool == pool) { 1298 debug_work_deactivate(work); 1299 1300 /* 1301 * A cancelable inactive work item must be in the 1302 * pwq->inactive_works since a queued barrier can't be 1303 * canceled (see the comments in insert_wq_barrier()). 1304 * 1305 * An inactive work item cannot be grabbed directly because 1306 * it might have linked barrier work items which, if left 1307 * on the inactive_works list, will confuse pwq->nr_active 1308 * management later on and cause stall. Make sure the work 1309 * item is activated before grabbing. 1310 */ 1311 if (*work_data_bits(work) & WORK_STRUCT_INACTIVE) 1312 pwq_activate_inactive_work(work); 1313 1314 list_del_init(&work->entry); 1315 pwq_dec_nr_in_flight(pwq, *work_data_bits(work)); 1316 1317 /* work->data points to pwq iff queued, point to pool */ 1318 set_work_pool_and_keep_pending(work, pool->id); 1319 1320 raw_spin_unlock(&pool->lock); 1321 rcu_read_unlock(); 1322 return 1; 1323 } 1324 raw_spin_unlock(&pool->lock); 1325 fail: 1326 rcu_read_unlock(); 1327 local_irq_restore(*flags); 1328 if (work_is_canceling(work)) 1329 return -ENOENT; 1330 cpu_relax(); 1331 return -EAGAIN; 1332 } 1333 1334 /** 1335 * insert_work - insert a work into a pool 1336 * @pwq: pwq @work belongs to 1337 * @work: work to insert 1338 * @head: insertion point 1339 * @extra_flags: extra WORK_STRUCT_* flags to set 1340 * 1341 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1342 * work_struct flags. 1343 * 1344 * CONTEXT: 1345 * raw_spin_lock_irq(pool->lock). 1346 */ 1347 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1348 struct list_head *head, unsigned int extra_flags) 1349 { 1350 struct worker_pool *pool = pwq->pool; 1351 1352 /* record the work call stack in order to print it in KASAN reports */ 1353 kasan_record_aux_stack(work); 1354 1355 /* we own @work, set data and link */ 1356 set_work_pwq(work, pwq, extra_flags); 1357 list_add_tail(&work->entry, head); 1358 get_pwq(pwq); 1359 1360 /* 1361 * Ensure either wq_worker_sleeping() sees the above 1362 * list_add_tail() or we see zero nr_running to avoid workers lying 1363 * around lazily while there are works to be processed. 1364 */ 1365 smp_mb(); 1366 1367 if (__need_more_worker(pool)) 1368 wake_up_worker(pool); 1369 } 1370 1371 /* 1372 * Test whether @work is being queued from another work executing on the 1373 * same workqueue. 1374 */ 1375 static bool is_chained_work(struct workqueue_struct *wq) 1376 { 1377 struct worker *worker; 1378 1379 worker = current_wq_worker(); 1380 /* 1381 * Return %true iff I'm a worker executing a work item on @wq. If 1382 * I'm @worker, it's safe to dereference it without locking. 1383 */ 1384 return worker && worker->current_pwq->wq == wq; 1385 } 1386 1387 /* 1388 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1389 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1390 * avoid perturbing sensitive tasks. 1391 */ 1392 static int wq_select_unbound_cpu(int cpu) 1393 { 1394 static bool printed_dbg_warning; 1395 int new_cpu; 1396 1397 if (likely(!wq_debug_force_rr_cpu)) { 1398 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1399 return cpu; 1400 } else if (!printed_dbg_warning) { 1401 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1402 printed_dbg_warning = true; 1403 } 1404 1405 if (cpumask_empty(wq_unbound_cpumask)) 1406 return cpu; 1407 1408 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1409 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1410 if (unlikely(new_cpu >= nr_cpu_ids)) { 1411 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1412 if (unlikely(new_cpu >= nr_cpu_ids)) 1413 return cpu; 1414 } 1415 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1416 1417 return new_cpu; 1418 } 1419 1420 static void __queue_work(int cpu, struct workqueue_struct *wq, 1421 struct work_struct *work) 1422 { 1423 struct pool_workqueue *pwq; 1424 struct worker_pool *last_pool; 1425 struct list_head *worklist; 1426 unsigned int work_flags; 1427 unsigned int req_cpu = cpu; 1428 1429 /* 1430 * While a work item is PENDING && off queue, a task trying to 1431 * steal the PENDING will busy-loop waiting for it to either get 1432 * queued or lose PENDING. Grabbing PENDING and queueing should 1433 * happen with IRQ disabled. 1434 */ 1435 lockdep_assert_irqs_disabled(); 1436 1437 1438 /* if draining, only works from the same workqueue are allowed */ 1439 if (unlikely(wq->flags & __WQ_DRAINING) && 1440 WARN_ON_ONCE(!is_chained_work(wq))) 1441 return; 1442 rcu_read_lock(); 1443 retry: 1444 /* pwq which will be used unless @work is executing elsewhere */ 1445 if (wq->flags & WQ_UNBOUND) { 1446 if (req_cpu == WORK_CPU_UNBOUND) 1447 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1448 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1449 } else { 1450 if (req_cpu == WORK_CPU_UNBOUND) 1451 cpu = raw_smp_processor_id(); 1452 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1453 } 1454 1455 /* 1456 * If @work was previously on a different pool, it might still be 1457 * running there, in which case the work needs to be queued on that 1458 * pool to guarantee non-reentrancy. 1459 */ 1460 last_pool = get_work_pool(work); 1461 if (last_pool && last_pool != pwq->pool) { 1462 struct worker *worker; 1463 1464 raw_spin_lock(&last_pool->lock); 1465 1466 worker = find_worker_executing_work(last_pool, work); 1467 1468 if (worker && worker->current_pwq->wq == wq) { 1469 pwq = worker->current_pwq; 1470 } else { 1471 /* meh... not running there, queue here */ 1472 raw_spin_unlock(&last_pool->lock); 1473 raw_spin_lock(&pwq->pool->lock); 1474 } 1475 } else { 1476 raw_spin_lock(&pwq->pool->lock); 1477 } 1478 1479 /* 1480 * pwq is determined and locked. For unbound pools, we could have 1481 * raced with pwq release and it could already be dead. If its 1482 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1483 * without another pwq replacing it in the numa_pwq_tbl or while 1484 * work items are executing on it, so the retrying is guaranteed to 1485 * make forward-progress. 1486 */ 1487 if (unlikely(!pwq->refcnt)) { 1488 if (wq->flags & WQ_UNBOUND) { 1489 raw_spin_unlock(&pwq->pool->lock); 1490 cpu_relax(); 1491 goto retry; 1492 } 1493 /* oops */ 1494 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1495 wq->name, cpu); 1496 } 1497 1498 /* pwq determined, queue */ 1499 trace_workqueue_queue_work(req_cpu, pwq, work); 1500 1501 if (WARN_ON(!list_empty(&work->entry))) 1502 goto out; 1503 1504 pwq->nr_in_flight[pwq->work_color]++; 1505 work_flags = work_color_to_flags(pwq->work_color); 1506 1507 if (likely(pwq->nr_active < pwq->max_active)) { 1508 trace_workqueue_activate_work(work); 1509 pwq->nr_active++; 1510 worklist = &pwq->pool->worklist; 1511 if (list_empty(worklist)) 1512 pwq->pool->watchdog_ts = jiffies; 1513 } else { 1514 work_flags |= WORK_STRUCT_INACTIVE; 1515 worklist = &pwq->inactive_works; 1516 } 1517 1518 debug_work_activate(work); 1519 insert_work(pwq, work, worklist, work_flags); 1520 1521 out: 1522 raw_spin_unlock(&pwq->pool->lock); 1523 rcu_read_unlock(); 1524 } 1525 1526 /** 1527 * queue_work_on - queue work on specific cpu 1528 * @cpu: CPU number to execute work on 1529 * @wq: workqueue to use 1530 * @work: work to queue 1531 * 1532 * We queue the work to a specific CPU, the caller must ensure it 1533 * can't go away. 1534 * 1535 * Return: %false if @work was already on a queue, %true otherwise. 1536 */ 1537 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1538 struct work_struct *work) 1539 { 1540 bool ret = false; 1541 unsigned long flags; 1542 1543 local_irq_save(flags); 1544 1545 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1546 __queue_work(cpu, wq, work); 1547 ret = true; 1548 } 1549 1550 local_irq_restore(flags); 1551 return ret; 1552 } 1553 EXPORT_SYMBOL(queue_work_on); 1554 1555 /** 1556 * workqueue_select_cpu_near - Select a CPU based on NUMA node 1557 * @node: NUMA node ID that we want to select a CPU from 1558 * 1559 * This function will attempt to find a "random" cpu available on a given 1560 * node. If there are no CPUs available on the given node it will return 1561 * WORK_CPU_UNBOUND indicating that we should just schedule to any 1562 * available CPU if we need to schedule this work. 1563 */ 1564 static int workqueue_select_cpu_near(int node) 1565 { 1566 int cpu; 1567 1568 /* No point in doing this if NUMA isn't enabled for workqueues */ 1569 if (!wq_numa_enabled) 1570 return WORK_CPU_UNBOUND; 1571 1572 /* Delay binding to CPU if node is not valid or online */ 1573 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 1574 return WORK_CPU_UNBOUND; 1575 1576 /* Use local node/cpu if we are already there */ 1577 cpu = raw_smp_processor_id(); 1578 if (node == cpu_to_node(cpu)) 1579 return cpu; 1580 1581 /* Use "random" otherwise know as "first" online CPU of node */ 1582 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 1583 1584 /* If CPU is valid return that, otherwise just defer */ 1585 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 1586 } 1587 1588 /** 1589 * queue_work_node - queue work on a "random" cpu for a given NUMA node 1590 * @node: NUMA node that we are targeting the work for 1591 * @wq: workqueue to use 1592 * @work: work to queue 1593 * 1594 * We queue the work to a "random" CPU within a given NUMA node. The basic 1595 * idea here is to provide a way to somehow associate work with a given 1596 * NUMA node. 1597 * 1598 * This function will only make a best effort attempt at getting this onto 1599 * the right NUMA node. If no node is requested or the requested node is 1600 * offline then we just fall back to standard queue_work behavior. 1601 * 1602 * Currently the "random" CPU ends up being the first available CPU in the 1603 * intersection of cpu_online_mask and the cpumask of the node, unless we 1604 * are running on the node. In that case we just use the current CPU. 1605 * 1606 * Return: %false if @work was already on a queue, %true otherwise. 1607 */ 1608 bool queue_work_node(int node, struct workqueue_struct *wq, 1609 struct work_struct *work) 1610 { 1611 unsigned long flags; 1612 bool ret = false; 1613 1614 /* 1615 * This current implementation is specific to unbound workqueues. 1616 * Specifically we only return the first available CPU for a given 1617 * node instead of cycling through individual CPUs within the node. 1618 * 1619 * If this is used with a per-cpu workqueue then the logic in 1620 * workqueue_select_cpu_near would need to be updated to allow for 1621 * some round robin type logic. 1622 */ 1623 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 1624 1625 local_irq_save(flags); 1626 1627 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1628 int cpu = workqueue_select_cpu_near(node); 1629 1630 __queue_work(cpu, wq, work); 1631 ret = true; 1632 } 1633 1634 local_irq_restore(flags); 1635 return ret; 1636 } 1637 EXPORT_SYMBOL_GPL(queue_work_node); 1638 1639 void delayed_work_timer_fn(struct timer_list *t) 1640 { 1641 struct delayed_work *dwork = from_timer(dwork, t, timer); 1642 1643 /* should have been called from irqsafe timer with irq already off */ 1644 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1645 } 1646 EXPORT_SYMBOL(delayed_work_timer_fn); 1647 1648 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1649 struct delayed_work *dwork, unsigned long delay) 1650 { 1651 struct timer_list *timer = &dwork->timer; 1652 struct work_struct *work = &dwork->work; 1653 1654 WARN_ON_ONCE(!wq); 1655 WARN_ON_FUNCTION_MISMATCH(timer->function, delayed_work_timer_fn); 1656 WARN_ON_ONCE(timer_pending(timer)); 1657 WARN_ON_ONCE(!list_empty(&work->entry)); 1658 1659 /* 1660 * If @delay is 0, queue @dwork->work immediately. This is for 1661 * both optimization and correctness. The earliest @timer can 1662 * expire is on the closest next tick and delayed_work users depend 1663 * on that there's no such delay when @delay is 0. 1664 */ 1665 if (!delay) { 1666 __queue_work(cpu, wq, &dwork->work); 1667 return; 1668 } 1669 1670 dwork->wq = wq; 1671 dwork->cpu = cpu; 1672 timer->expires = jiffies + delay; 1673 1674 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1675 add_timer_on(timer, cpu); 1676 else 1677 add_timer(timer); 1678 } 1679 1680 /** 1681 * queue_delayed_work_on - queue work on specific CPU after delay 1682 * @cpu: CPU number to execute work on 1683 * @wq: workqueue to use 1684 * @dwork: work to queue 1685 * @delay: number of jiffies to wait before queueing 1686 * 1687 * Return: %false if @work was already on a queue, %true otherwise. If 1688 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1689 * execution. 1690 */ 1691 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1692 struct delayed_work *dwork, unsigned long delay) 1693 { 1694 struct work_struct *work = &dwork->work; 1695 bool ret = false; 1696 unsigned long flags; 1697 1698 /* read the comment in __queue_work() */ 1699 local_irq_save(flags); 1700 1701 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1702 __queue_delayed_work(cpu, wq, dwork, delay); 1703 ret = true; 1704 } 1705 1706 local_irq_restore(flags); 1707 return ret; 1708 } 1709 EXPORT_SYMBOL(queue_delayed_work_on); 1710 1711 /** 1712 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1713 * @cpu: CPU number to execute work on 1714 * @wq: workqueue to use 1715 * @dwork: work to queue 1716 * @delay: number of jiffies to wait before queueing 1717 * 1718 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1719 * modify @dwork's timer so that it expires after @delay. If @delay is 1720 * zero, @work is guaranteed to be scheduled immediately regardless of its 1721 * current state. 1722 * 1723 * Return: %false if @dwork was idle and queued, %true if @dwork was 1724 * pending and its timer was modified. 1725 * 1726 * This function is safe to call from any context including IRQ handler. 1727 * See try_to_grab_pending() for details. 1728 */ 1729 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1730 struct delayed_work *dwork, unsigned long delay) 1731 { 1732 unsigned long flags; 1733 int ret; 1734 1735 do { 1736 ret = try_to_grab_pending(&dwork->work, true, &flags); 1737 } while (unlikely(ret == -EAGAIN)); 1738 1739 if (likely(ret >= 0)) { 1740 __queue_delayed_work(cpu, wq, dwork, delay); 1741 local_irq_restore(flags); 1742 } 1743 1744 /* -ENOENT from try_to_grab_pending() becomes %true */ 1745 return ret; 1746 } 1747 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1748 1749 static void rcu_work_rcufn(struct rcu_head *rcu) 1750 { 1751 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 1752 1753 /* read the comment in __queue_work() */ 1754 local_irq_disable(); 1755 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 1756 local_irq_enable(); 1757 } 1758 1759 /** 1760 * queue_rcu_work - queue work after a RCU grace period 1761 * @wq: workqueue to use 1762 * @rwork: work to queue 1763 * 1764 * Return: %false if @rwork was already pending, %true otherwise. Note 1765 * that a full RCU grace period is guaranteed only after a %true return. 1766 * While @rwork is guaranteed to be executed after a %false return, the 1767 * execution may happen before a full RCU grace period has passed. 1768 */ 1769 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 1770 { 1771 struct work_struct *work = &rwork->work; 1772 1773 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1774 rwork->wq = wq; 1775 call_rcu(&rwork->rcu, rcu_work_rcufn); 1776 return true; 1777 } 1778 1779 return false; 1780 } 1781 EXPORT_SYMBOL(queue_rcu_work); 1782 1783 /** 1784 * worker_enter_idle - enter idle state 1785 * @worker: worker which is entering idle state 1786 * 1787 * @worker is entering idle state. Update stats and idle timer if 1788 * necessary. 1789 * 1790 * LOCKING: 1791 * raw_spin_lock_irq(pool->lock). 1792 */ 1793 static void worker_enter_idle(struct worker *worker) 1794 { 1795 struct worker_pool *pool = worker->pool; 1796 1797 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1798 WARN_ON_ONCE(!list_empty(&worker->entry) && 1799 (worker->hentry.next || worker->hentry.pprev))) 1800 return; 1801 1802 /* can't use worker_set_flags(), also called from create_worker() */ 1803 worker->flags |= WORKER_IDLE; 1804 pool->nr_idle++; 1805 worker->last_active = jiffies; 1806 1807 /* idle_list is LIFO */ 1808 list_add(&worker->entry, &pool->idle_list); 1809 1810 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1811 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1812 1813 /* 1814 * Sanity check nr_running. Because unbind_workers() releases 1815 * pool->lock between setting %WORKER_UNBOUND and zapping 1816 * nr_running, the warning may trigger spuriously. Check iff 1817 * unbind is not in progress. 1818 */ 1819 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1820 pool->nr_workers == pool->nr_idle && 1821 atomic_read(&pool->nr_running)); 1822 } 1823 1824 /** 1825 * worker_leave_idle - leave idle state 1826 * @worker: worker which is leaving idle state 1827 * 1828 * @worker is leaving idle state. Update stats. 1829 * 1830 * LOCKING: 1831 * raw_spin_lock_irq(pool->lock). 1832 */ 1833 static void worker_leave_idle(struct worker *worker) 1834 { 1835 struct worker_pool *pool = worker->pool; 1836 1837 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1838 return; 1839 worker_clr_flags(worker, WORKER_IDLE); 1840 pool->nr_idle--; 1841 list_del_init(&worker->entry); 1842 } 1843 1844 static struct worker *alloc_worker(int node) 1845 { 1846 struct worker *worker; 1847 1848 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1849 if (worker) { 1850 INIT_LIST_HEAD(&worker->entry); 1851 INIT_LIST_HEAD(&worker->scheduled); 1852 INIT_LIST_HEAD(&worker->node); 1853 /* on creation a worker is in !idle && prep state */ 1854 worker->flags = WORKER_PREP; 1855 } 1856 return worker; 1857 } 1858 1859 /** 1860 * worker_attach_to_pool() - attach a worker to a pool 1861 * @worker: worker to be attached 1862 * @pool: the target pool 1863 * 1864 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1865 * cpu-binding of @worker are kept coordinated with the pool across 1866 * cpu-[un]hotplugs. 1867 */ 1868 static void worker_attach_to_pool(struct worker *worker, 1869 struct worker_pool *pool) 1870 { 1871 mutex_lock(&wq_pool_attach_mutex); 1872 1873 /* 1874 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains 1875 * stable across this function. See the comments above the flag 1876 * definition for details. 1877 */ 1878 if (pool->flags & POOL_DISASSOCIATED) 1879 worker->flags |= WORKER_UNBOUND; 1880 else 1881 kthread_set_per_cpu(worker->task, pool->cpu); 1882 1883 if (worker->rescue_wq) 1884 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1885 1886 list_add_tail(&worker->node, &pool->workers); 1887 worker->pool = pool; 1888 1889 mutex_unlock(&wq_pool_attach_mutex); 1890 } 1891 1892 /** 1893 * worker_detach_from_pool() - detach a worker from its pool 1894 * @worker: worker which is attached to its pool 1895 * 1896 * Undo the attaching which had been done in worker_attach_to_pool(). The 1897 * caller worker shouldn't access to the pool after detached except it has 1898 * other reference to the pool. 1899 */ 1900 static void worker_detach_from_pool(struct worker *worker) 1901 { 1902 struct worker_pool *pool = worker->pool; 1903 struct completion *detach_completion = NULL; 1904 1905 mutex_lock(&wq_pool_attach_mutex); 1906 1907 kthread_set_per_cpu(worker->task, -1); 1908 list_del(&worker->node); 1909 worker->pool = NULL; 1910 1911 if (list_empty(&pool->workers)) 1912 detach_completion = pool->detach_completion; 1913 mutex_unlock(&wq_pool_attach_mutex); 1914 1915 /* clear leftover flags without pool->lock after it is detached */ 1916 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1917 1918 if (detach_completion) 1919 complete(detach_completion); 1920 } 1921 1922 /** 1923 * create_worker - create a new workqueue worker 1924 * @pool: pool the new worker will belong to 1925 * 1926 * Create and start a new worker which is attached to @pool. 1927 * 1928 * CONTEXT: 1929 * Might sleep. Does GFP_KERNEL allocations. 1930 * 1931 * Return: 1932 * Pointer to the newly created worker. 1933 */ 1934 static struct worker *create_worker(struct worker_pool *pool) 1935 { 1936 struct worker *worker; 1937 int id; 1938 char id_buf[16]; 1939 1940 /* ID is needed to determine kthread name */ 1941 id = ida_alloc(&pool->worker_ida, GFP_KERNEL); 1942 if (id < 0) 1943 return NULL; 1944 1945 worker = alloc_worker(pool->node); 1946 if (!worker) 1947 goto fail; 1948 1949 worker->id = id; 1950 1951 if (pool->cpu >= 0) 1952 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1953 pool->attrs->nice < 0 ? "H" : ""); 1954 else 1955 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1956 1957 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1958 "kworker/%s", id_buf); 1959 if (IS_ERR(worker->task)) 1960 goto fail; 1961 1962 set_user_nice(worker->task, pool->attrs->nice); 1963 kthread_bind_mask(worker->task, pool->attrs->cpumask); 1964 1965 /* successful, attach the worker to the pool */ 1966 worker_attach_to_pool(worker, pool); 1967 1968 /* start the newly created worker */ 1969 raw_spin_lock_irq(&pool->lock); 1970 worker->pool->nr_workers++; 1971 worker_enter_idle(worker); 1972 wake_up_process(worker->task); 1973 raw_spin_unlock_irq(&pool->lock); 1974 1975 return worker; 1976 1977 fail: 1978 ida_free(&pool->worker_ida, id); 1979 kfree(worker); 1980 return NULL; 1981 } 1982 1983 /** 1984 * destroy_worker - destroy a workqueue worker 1985 * @worker: worker to be destroyed 1986 * 1987 * Destroy @worker and adjust @pool stats accordingly. The worker should 1988 * be idle. 1989 * 1990 * CONTEXT: 1991 * raw_spin_lock_irq(pool->lock). 1992 */ 1993 static void destroy_worker(struct worker *worker) 1994 { 1995 struct worker_pool *pool = worker->pool; 1996 1997 lockdep_assert_held(&pool->lock); 1998 1999 /* sanity check frenzy */ 2000 if (WARN_ON(worker->current_work) || 2001 WARN_ON(!list_empty(&worker->scheduled)) || 2002 WARN_ON(!(worker->flags & WORKER_IDLE))) 2003 return; 2004 2005 pool->nr_workers--; 2006 pool->nr_idle--; 2007 2008 list_del_init(&worker->entry); 2009 worker->flags |= WORKER_DIE; 2010 wake_up_process(worker->task); 2011 } 2012 2013 static void idle_worker_timeout(struct timer_list *t) 2014 { 2015 struct worker_pool *pool = from_timer(pool, t, idle_timer); 2016 2017 raw_spin_lock_irq(&pool->lock); 2018 2019 while (too_many_workers(pool)) { 2020 struct worker *worker; 2021 unsigned long expires; 2022 2023 /* idle_list is kept in LIFO order, check the last one */ 2024 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2025 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2026 2027 if (time_before(jiffies, expires)) { 2028 mod_timer(&pool->idle_timer, expires); 2029 break; 2030 } 2031 2032 destroy_worker(worker); 2033 } 2034 2035 raw_spin_unlock_irq(&pool->lock); 2036 } 2037 2038 static void send_mayday(struct work_struct *work) 2039 { 2040 struct pool_workqueue *pwq = get_work_pwq(work); 2041 struct workqueue_struct *wq = pwq->wq; 2042 2043 lockdep_assert_held(&wq_mayday_lock); 2044 2045 if (!wq->rescuer) 2046 return; 2047 2048 /* mayday mayday mayday */ 2049 if (list_empty(&pwq->mayday_node)) { 2050 /* 2051 * If @pwq is for an unbound wq, its base ref may be put at 2052 * any time due to an attribute change. Pin @pwq until the 2053 * rescuer is done with it. 2054 */ 2055 get_pwq(pwq); 2056 list_add_tail(&pwq->mayday_node, &wq->maydays); 2057 wake_up_process(wq->rescuer->task); 2058 } 2059 } 2060 2061 static void pool_mayday_timeout(struct timer_list *t) 2062 { 2063 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 2064 struct work_struct *work; 2065 2066 raw_spin_lock_irq(&pool->lock); 2067 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */ 2068 2069 if (need_to_create_worker(pool)) { 2070 /* 2071 * We've been trying to create a new worker but 2072 * haven't been successful. We might be hitting an 2073 * allocation deadlock. Send distress signals to 2074 * rescuers. 2075 */ 2076 list_for_each_entry(work, &pool->worklist, entry) 2077 send_mayday(work); 2078 } 2079 2080 raw_spin_unlock(&wq_mayday_lock); 2081 raw_spin_unlock_irq(&pool->lock); 2082 2083 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 2084 } 2085 2086 /** 2087 * maybe_create_worker - create a new worker if necessary 2088 * @pool: pool to create a new worker for 2089 * 2090 * Create a new worker for @pool if necessary. @pool is guaranteed to 2091 * have at least one idle worker on return from this function. If 2092 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 2093 * sent to all rescuers with works scheduled on @pool to resolve 2094 * possible allocation deadlock. 2095 * 2096 * On return, need_to_create_worker() is guaranteed to be %false and 2097 * may_start_working() %true. 2098 * 2099 * LOCKING: 2100 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2101 * multiple times. Does GFP_KERNEL allocations. Called only from 2102 * manager. 2103 */ 2104 static void maybe_create_worker(struct worker_pool *pool) 2105 __releases(&pool->lock) 2106 __acquires(&pool->lock) 2107 { 2108 restart: 2109 raw_spin_unlock_irq(&pool->lock); 2110 2111 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 2112 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 2113 2114 while (true) { 2115 if (create_worker(pool) || !need_to_create_worker(pool)) 2116 break; 2117 2118 schedule_timeout_interruptible(CREATE_COOLDOWN); 2119 2120 if (!need_to_create_worker(pool)) 2121 break; 2122 } 2123 2124 del_timer_sync(&pool->mayday_timer); 2125 raw_spin_lock_irq(&pool->lock); 2126 /* 2127 * This is necessary even after a new worker was just successfully 2128 * created as @pool->lock was dropped and the new worker might have 2129 * already become busy. 2130 */ 2131 if (need_to_create_worker(pool)) 2132 goto restart; 2133 } 2134 2135 /** 2136 * manage_workers - manage worker pool 2137 * @worker: self 2138 * 2139 * Assume the manager role and manage the worker pool @worker belongs 2140 * to. At any given time, there can be only zero or one manager per 2141 * pool. The exclusion is handled automatically by this function. 2142 * 2143 * The caller can safely start processing works on false return. On 2144 * true return, it's guaranteed that need_to_create_worker() is false 2145 * and may_start_working() is true. 2146 * 2147 * CONTEXT: 2148 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2149 * multiple times. Does GFP_KERNEL allocations. 2150 * 2151 * Return: 2152 * %false if the pool doesn't need management and the caller can safely 2153 * start processing works, %true if management function was performed and 2154 * the conditions that the caller verified before calling the function may 2155 * no longer be true. 2156 */ 2157 static bool manage_workers(struct worker *worker) 2158 { 2159 struct worker_pool *pool = worker->pool; 2160 2161 if (pool->flags & POOL_MANAGER_ACTIVE) 2162 return false; 2163 2164 pool->flags |= POOL_MANAGER_ACTIVE; 2165 pool->manager = worker; 2166 2167 maybe_create_worker(pool); 2168 2169 pool->manager = NULL; 2170 pool->flags &= ~POOL_MANAGER_ACTIVE; 2171 rcuwait_wake_up(&manager_wait); 2172 return true; 2173 } 2174 2175 /** 2176 * process_one_work - process single work 2177 * @worker: self 2178 * @work: work to process 2179 * 2180 * Process @work. This function contains all the logics necessary to 2181 * process a single work including synchronization against and 2182 * interaction with other workers on the same cpu, queueing and 2183 * flushing. As long as context requirement is met, any worker can 2184 * call this function to process a work. 2185 * 2186 * CONTEXT: 2187 * raw_spin_lock_irq(pool->lock) which is released and regrabbed. 2188 */ 2189 static void process_one_work(struct worker *worker, struct work_struct *work) 2190 __releases(&pool->lock) 2191 __acquires(&pool->lock) 2192 { 2193 struct pool_workqueue *pwq = get_work_pwq(work); 2194 struct worker_pool *pool = worker->pool; 2195 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2196 unsigned long work_data; 2197 struct worker *collision; 2198 #ifdef CONFIG_LOCKDEP 2199 /* 2200 * It is permissible to free the struct work_struct from 2201 * inside the function that is called from it, this we need to 2202 * take into account for lockdep too. To avoid bogus "held 2203 * lock freed" warnings as well as problems when looking into 2204 * work->lockdep_map, make a copy and use that here. 2205 */ 2206 struct lockdep_map lockdep_map; 2207 2208 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2209 #endif 2210 /* ensure we're on the correct CPU */ 2211 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2212 raw_smp_processor_id() != pool->cpu); 2213 2214 /* 2215 * A single work shouldn't be executed concurrently by 2216 * multiple workers on a single cpu. Check whether anyone is 2217 * already processing the work. If so, defer the work to the 2218 * currently executing one. 2219 */ 2220 collision = find_worker_executing_work(pool, work); 2221 if (unlikely(collision)) { 2222 move_linked_works(work, &collision->scheduled, NULL); 2223 return; 2224 } 2225 2226 /* claim and dequeue */ 2227 debug_work_deactivate(work); 2228 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2229 worker->current_work = work; 2230 worker->current_func = work->func; 2231 worker->current_pwq = pwq; 2232 work_data = *work_data_bits(work); 2233 worker->current_color = get_work_color(work_data); 2234 2235 /* 2236 * Record wq name for cmdline and debug reporting, may get 2237 * overridden through set_worker_desc(). 2238 */ 2239 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 2240 2241 list_del_init(&work->entry); 2242 2243 /* 2244 * CPU intensive works don't participate in concurrency management. 2245 * They're the scheduler's responsibility. This takes @worker out 2246 * of concurrency management and the next code block will chain 2247 * execution of the pending work items. 2248 */ 2249 if (unlikely(cpu_intensive)) 2250 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2251 2252 /* 2253 * Wake up another worker if necessary. The condition is always 2254 * false for normal per-cpu workers since nr_running would always 2255 * be >= 1 at this point. This is used to chain execution of the 2256 * pending work items for WORKER_NOT_RUNNING workers such as the 2257 * UNBOUND and CPU_INTENSIVE ones. 2258 */ 2259 if (need_more_worker(pool)) 2260 wake_up_worker(pool); 2261 2262 /* 2263 * Record the last pool and clear PENDING which should be the last 2264 * update to @work. Also, do this inside @pool->lock so that 2265 * PENDING and queued state changes happen together while IRQ is 2266 * disabled. 2267 */ 2268 set_work_pool_and_clear_pending(work, pool->id); 2269 2270 raw_spin_unlock_irq(&pool->lock); 2271 2272 lock_map_acquire(&pwq->wq->lockdep_map); 2273 lock_map_acquire(&lockdep_map); 2274 /* 2275 * Strictly speaking we should mark the invariant state without holding 2276 * any locks, that is, before these two lock_map_acquire()'s. 2277 * 2278 * However, that would result in: 2279 * 2280 * A(W1) 2281 * WFC(C) 2282 * A(W1) 2283 * C(C) 2284 * 2285 * Which would create W1->C->W1 dependencies, even though there is no 2286 * actual deadlock possible. There are two solutions, using a 2287 * read-recursive acquire on the work(queue) 'locks', but this will then 2288 * hit the lockdep limitation on recursive locks, or simply discard 2289 * these locks. 2290 * 2291 * AFAICT there is no possible deadlock scenario between the 2292 * flush_work() and complete() primitives (except for single-threaded 2293 * workqueues), so hiding them isn't a problem. 2294 */ 2295 lockdep_invariant_state(true); 2296 trace_workqueue_execute_start(work); 2297 worker->current_func(work); 2298 /* 2299 * While we must be careful to not use "work" after this, the trace 2300 * point will only record its address. 2301 */ 2302 trace_workqueue_execute_end(work, worker->current_func); 2303 lock_map_release(&lockdep_map); 2304 lock_map_release(&pwq->wq->lockdep_map); 2305 2306 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2307 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2308 " last function: %ps\n", 2309 current->comm, preempt_count(), task_pid_nr(current), 2310 worker->current_func); 2311 debug_show_held_locks(current); 2312 dump_stack(); 2313 } 2314 2315 /* 2316 * The following prevents a kworker from hogging CPU on !PREEMPTION 2317 * kernels, where a requeueing work item waiting for something to 2318 * happen could deadlock with stop_machine as such work item could 2319 * indefinitely requeue itself while all other CPUs are trapped in 2320 * stop_machine. At the same time, report a quiescent RCU state so 2321 * the same condition doesn't freeze RCU. 2322 */ 2323 cond_resched(); 2324 2325 raw_spin_lock_irq(&pool->lock); 2326 2327 /* clear cpu intensive status */ 2328 if (unlikely(cpu_intensive)) 2329 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2330 2331 /* tag the worker for identification in schedule() */ 2332 worker->last_func = worker->current_func; 2333 2334 /* we're done with it, release */ 2335 hash_del(&worker->hentry); 2336 worker->current_work = NULL; 2337 worker->current_func = NULL; 2338 worker->current_pwq = NULL; 2339 worker->current_color = INT_MAX; 2340 pwq_dec_nr_in_flight(pwq, work_data); 2341 } 2342 2343 /** 2344 * process_scheduled_works - process scheduled works 2345 * @worker: self 2346 * 2347 * Process all scheduled works. Please note that the scheduled list 2348 * may change while processing a work, so this function repeatedly 2349 * fetches a work from the top and executes it. 2350 * 2351 * CONTEXT: 2352 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2353 * multiple times. 2354 */ 2355 static void process_scheduled_works(struct worker *worker) 2356 { 2357 while (!list_empty(&worker->scheduled)) { 2358 struct work_struct *work = list_first_entry(&worker->scheduled, 2359 struct work_struct, entry); 2360 process_one_work(worker, work); 2361 } 2362 } 2363 2364 static void set_pf_worker(bool val) 2365 { 2366 mutex_lock(&wq_pool_attach_mutex); 2367 if (val) 2368 current->flags |= PF_WQ_WORKER; 2369 else 2370 current->flags &= ~PF_WQ_WORKER; 2371 mutex_unlock(&wq_pool_attach_mutex); 2372 } 2373 2374 /** 2375 * worker_thread - the worker thread function 2376 * @__worker: self 2377 * 2378 * The worker thread function. All workers belong to a worker_pool - 2379 * either a per-cpu one or dynamic unbound one. These workers process all 2380 * work items regardless of their specific target workqueue. The only 2381 * exception is work items which belong to workqueues with a rescuer which 2382 * will be explained in rescuer_thread(). 2383 * 2384 * Return: 0 2385 */ 2386 static int worker_thread(void *__worker) 2387 { 2388 struct worker *worker = __worker; 2389 struct worker_pool *pool = worker->pool; 2390 2391 /* tell the scheduler that this is a workqueue worker */ 2392 set_pf_worker(true); 2393 woke_up: 2394 raw_spin_lock_irq(&pool->lock); 2395 2396 /* am I supposed to die? */ 2397 if (unlikely(worker->flags & WORKER_DIE)) { 2398 raw_spin_unlock_irq(&pool->lock); 2399 WARN_ON_ONCE(!list_empty(&worker->entry)); 2400 set_pf_worker(false); 2401 2402 set_task_comm(worker->task, "kworker/dying"); 2403 ida_free(&pool->worker_ida, worker->id); 2404 worker_detach_from_pool(worker); 2405 kfree(worker); 2406 return 0; 2407 } 2408 2409 worker_leave_idle(worker); 2410 recheck: 2411 /* no more worker necessary? */ 2412 if (!need_more_worker(pool)) 2413 goto sleep; 2414 2415 /* do we need to manage? */ 2416 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2417 goto recheck; 2418 2419 /* 2420 * ->scheduled list can only be filled while a worker is 2421 * preparing to process a work or actually processing it. 2422 * Make sure nobody diddled with it while I was sleeping. 2423 */ 2424 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2425 2426 /* 2427 * Finish PREP stage. We're guaranteed to have at least one idle 2428 * worker or that someone else has already assumed the manager 2429 * role. This is where @worker starts participating in concurrency 2430 * management if applicable and concurrency management is restored 2431 * after being rebound. See rebind_workers() for details. 2432 */ 2433 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2434 2435 do { 2436 struct work_struct *work = 2437 list_first_entry(&pool->worklist, 2438 struct work_struct, entry); 2439 2440 pool->watchdog_ts = jiffies; 2441 2442 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2443 /* optimization path, not strictly necessary */ 2444 process_one_work(worker, work); 2445 if (unlikely(!list_empty(&worker->scheduled))) 2446 process_scheduled_works(worker); 2447 } else { 2448 move_linked_works(work, &worker->scheduled, NULL); 2449 process_scheduled_works(worker); 2450 } 2451 } while (keep_working(pool)); 2452 2453 worker_set_flags(worker, WORKER_PREP); 2454 sleep: 2455 /* 2456 * pool->lock is held and there's no work to process and no need to 2457 * manage, sleep. Workers are woken up only while holding 2458 * pool->lock or from local cpu, so setting the current state 2459 * before releasing pool->lock is enough to prevent losing any 2460 * event. 2461 */ 2462 worker_enter_idle(worker); 2463 __set_current_state(TASK_IDLE); 2464 raw_spin_unlock_irq(&pool->lock); 2465 schedule(); 2466 goto woke_up; 2467 } 2468 2469 /** 2470 * rescuer_thread - the rescuer thread function 2471 * @__rescuer: self 2472 * 2473 * Workqueue rescuer thread function. There's one rescuer for each 2474 * workqueue which has WQ_MEM_RECLAIM set. 2475 * 2476 * Regular work processing on a pool may block trying to create a new 2477 * worker which uses GFP_KERNEL allocation which has slight chance of 2478 * developing into deadlock if some works currently on the same queue 2479 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2480 * the problem rescuer solves. 2481 * 2482 * When such condition is possible, the pool summons rescuers of all 2483 * workqueues which have works queued on the pool and let them process 2484 * those works so that forward progress can be guaranteed. 2485 * 2486 * This should happen rarely. 2487 * 2488 * Return: 0 2489 */ 2490 static int rescuer_thread(void *__rescuer) 2491 { 2492 struct worker *rescuer = __rescuer; 2493 struct workqueue_struct *wq = rescuer->rescue_wq; 2494 struct list_head *scheduled = &rescuer->scheduled; 2495 bool should_stop; 2496 2497 set_user_nice(current, RESCUER_NICE_LEVEL); 2498 2499 /* 2500 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2501 * doesn't participate in concurrency management. 2502 */ 2503 set_pf_worker(true); 2504 repeat: 2505 set_current_state(TASK_IDLE); 2506 2507 /* 2508 * By the time the rescuer is requested to stop, the workqueue 2509 * shouldn't have any work pending, but @wq->maydays may still have 2510 * pwq(s) queued. This can happen by non-rescuer workers consuming 2511 * all the work items before the rescuer got to them. Go through 2512 * @wq->maydays processing before acting on should_stop so that the 2513 * list is always empty on exit. 2514 */ 2515 should_stop = kthread_should_stop(); 2516 2517 /* see whether any pwq is asking for help */ 2518 raw_spin_lock_irq(&wq_mayday_lock); 2519 2520 while (!list_empty(&wq->maydays)) { 2521 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2522 struct pool_workqueue, mayday_node); 2523 struct worker_pool *pool = pwq->pool; 2524 struct work_struct *work, *n; 2525 bool first = true; 2526 2527 __set_current_state(TASK_RUNNING); 2528 list_del_init(&pwq->mayday_node); 2529 2530 raw_spin_unlock_irq(&wq_mayday_lock); 2531 2532 worker_attach_to_pool(rescuer, pool); 2533 2534 raw_spin_lock_irq(&pool->lock); 2535 2536 /* 2537 * Slurp in all works issued via this workqueue and 2538 * process'em. 2539 */ 2540 WARN_ON_ONCE(!list_empty(scheduled)); 2541 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2542 if (get_work_pwq(work) == pwq) { 2543 if (first) 2544 pool->watchdog_ts = jiffies; 2545 move_linked_works(work, scheduled, &n); 2546 } 2547 first = false; 2548 } 2549 2550 if (!list_empty(scheduled)) { 2551 process_scheduled_works(rescuer); 2552 2553 /* 2554 * The above execution of rescued work items could 2555 * have created more to rescue through 2556 * pwq_activate_first_inactive() or chained 2557 * queueing. Let's put @pwq back on mayday list so 2558 * that such back-to-back work items, which may be 2559 * being used to relieve memory pressure, don't 2560 * incur MAYDAY_INTERVAL delay inbetween. 2561 */ 2562 if (pwq->nr_active && need_to_create_worker(pool)) { 2563 raw_spin_lock(&wq_mayday_lock); 2564 /* 2565 * Queue iff we aren't racing destruction 2566 * and somebody else hasn't queued it already. 2567 */ 2568 if (wq->rescuer && list_empty(&pwq->mayday_node)) { 2569 get_pwq(pwq); 2570 list_add_tail(&pwq->mayday_node, &wq->maydays); 2571 } 2572 raw_spin_unlock(&wq_mayday_lock); 2573 } 2574 } 2575 2576 /* 2577 * Put the reference grabbed by send_mayday(). @pool won't 2578 * go away while we're still attached to it. 2579 */ 2580 put_pwq(pwq); 2581 2582 /* 2583 * Leave this pool. If need_more_worker() is %true, notify a 2584 * regular worker; otherwise, we end up with 0 concurrency 2585 * and stalling the execution. 2586 */ 2587 if (need_more_worker(pool)) 2588 wake_up_worker(pool); 2589 2590 raw_spin_unlock_irq(&pool->lock); 2591 2592 worker_detach_from_pool(rescuer); 2593 2594 raw_spin_lock_irq(&wq_mayday_lock); 2595 } 2596 2597 raw_spin_unlock_irq(&wq_mayday_lock); 2598 2599 if (should_stop) { 2600 __set_current_state(TASK_RUNNING); 2601 set_pf_worker(false); 2602 return 0; 2603 } 2604 2605 /* rescuers should never participate in concurrency management */ 2606 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2607 schedule(); 2608 goto repeat; 2609 } 2610 2611 /** 2612 * check_flush_dependency - check for flush dependency sanity 2613 * @target_wq: workqueue being flushed 2614 * @target_work: work item being flushed (NULL for workqueue flushes) 2615 * 2616 * %current is trying to flush the whole @target_wq or @target_work on it. 2617 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2618 * reclaiming memory or running on a workqueue which doesn't have 2619 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2620 * a deadlock. 2621 */ 2622 static void check_flush_dependency(struct workqueue_struct *target_wq, 2623 struct work_struct *target_work) 2624 { 2625 work_func_t target_func = target_work ? target_work->func : NULL; 2626 struct worker *worker; 2627 2628 if (target_wq->flags & WQ_MEM_RECLAIM) 2629 return; 2630 2631 worker = current_wq_worker(); 2632 2633 WARN_ONCE(current->flags & PF_MEMALLOC, 2634 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 2635 current->pid, current->comm, target_wq->name, target_func); 2636 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2637 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2638 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 2639 worker->current_pwq->wq->name, worker->current_func, 2640 target_wq->name, target_func); 2641 } 2642 2643 struct wq_barrier { 2644 struct work_struct work; 2645 struct completion done; 2646 struct task_struct *task; /* purely informational */ 2647 }; 2648 2649 static void wq_barrier_func(struct work_struct *work) 2650 { 2651 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2652 complete(&barr->done); 2653 } 2654 2655 /** 2656 * insert_wq_barrier - insert a barrier work 2657 * @pwq: pwq to insert barrier into 2658 * @barr: wq_barrier to insert 2659 * @target: target work to attach @barr to 2660 * @worker: worker currently executing @target, NULL if @target is not executing 2661 * 2662 * @barr is linked to @target such that @barr is completed only after 2663 * @target finishes execution. Please note that the ordering 2664 * guarantee is observed only with respect to @target and on the local 2665 * cpu. 2666 * 2667 * Currently, a queued barrier can't be canceled. This is because 2668 * try_to_grab_pending() can't determine whether the work to be 2669 * grabbed is at the head of the queue and thus can't clear LINKED 2670 * flag of the previous work while there must be a valid next work 2671 * after a work with LINKED flag set. 2672 * 2673 * Note that when @worker is non-NULL, @target may be modified 2674 * underneath us, so we can't reliably determine pwq from @target. 2675 * 2676 * CONTEXT: 2677 * raw_spin_lock_irq(pool->lock). 2678 */ 2679 static void insert_wq_barrier(struct pool_workqueue *pwq, 2680 struct wq_barrier *barr, 2681 struct work_struct *target, struct worker *worker) 2682 { 2683 unsigned int work_flags = 0; 2684 unsigned int work_color; 2685 struct list_head *head; 2686 2687 /* 2688 * debugobject calls are safe here even with pool->lock locked 2689 * as we know for sure that this will not trigger any of the 2690 * checks and call back into the fixup functions where we 2691 * might deadlock. 2692 */ 2693 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2694 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2695 2696 init_completion_map(&barr->done, &target->lockdep_map); 2697 2698 barr->task = current; 2699 2700 /* The barrier work item does not participate in pwq->nr_active. */ 2701 work_flags |= WORK_STRUCT_INACTIVE; 2702 2703 /* 2704 * If @target is currently being executed, schedule the 2705 * barrier to the worker; otherwise, put it after @target. 2706 */ 2707 if (worker) { 2708 head = worker->scheduled.next; 2709 work_color = worker->current_color; 2710 } else { 2711 unsigned long *bits = work_data_bits(target); 2712 2713 head = target->entry.next; 2714 /* there can already be other linked works, inherit and set */ 2715 work_flags |= *bits & WORK_STRUCT_LINKED; 2716 work_color = get_work_color(*bits); 2717 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2718 } 2719 2720 pwq->nr_in_flight[work_color]++; 2721 work_flags |= work_color_to_flags(work_color); 2722 2723 debug_work_activate(&barr->work); 2724 insert_work(pwq, &barr->work, head, work_flags); 2725 } 2726 2727 /** 2728 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2729 * @wq: workqueue being flushed 2730 * @flush_color: new flush color, < 0 for no-op 2731 * @work_color: new work color, < 0 for no-op 2732 * 2733 * Prepare pwqs for workqueue flushing. 2734 * 2735 * If @flush_color is non-negative, flush_color on all pwqs should be 2736 * -1. If no pwq has in-flight commands at the specified color, all 2737 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2738 * has in flight commands, its pwq->flush_color is set to 2739 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2740 * wakeup logic is armed and %true is returned. 2741 * 2742 * The caller should have initialized @wq->first_flusher prior to 2743 * calling this function with non-negative @flush_color. If 2744 * @flush_color is negative, no flush color update is done and %false 2745 * is returned. 2746 * 2747 * If @work_color is non-negative, all pwqs should have the same 2748 * work_color which is previous to @work_color and all will be 2749 * advanced to @work_color. 2750 * 2751 * CONTEXT: 2752 * mutex_lock(wq->mutex). 2753 * 2754 * Return: 2755 * %true if @flush_color >= 0 and there's something to flush. %false 2756 * otherwise. 2757 */ 2758 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2759 int flush_color, int work_color) 2760 { 2761 bool wait = false; 2762 struct pool_workqueue *pwq; 2763 2764 if (flush_color >= 0) { 2765 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2766 atomic_set(&wq->nr_pwqs_to_flush, 1); 2767 } 2768 2769 for_each_pwq(pwq, wq) { 2770 struct worker_pool *pool = pwq->pool; 2771 2772 raw_spin_lock_irq(&pool->lock); 2773 2774 if (flush_color >= 0) { 2775 WARN_ON_ONCE(pwq->flush_color != -1); 2776 2777 if (pwq->nr_in_flight[flush_color]) { 2778 pwq->flush_color = flush_color; 2779 atomic_inc(&wq->nr_pwqs_to_flush); 2780 wait = true; 2781 } 2782 } 2783 2784 if (work_color >= 0) { 2785 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2786 pwq->work_color = work_color; 2787 } 2788 2789 raw_spin_unlock_irq(&pool->lock); 2790 } 2791 2792 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2793 complete(&wq->first_flusher->done); 2794 2795 return wait; 2796 } 2797 2798 /** 2799 * flush_workqueue - ensure that any scheduled work has run to completion. 2800 * @wq: workqueue to flush 2801 * 2802 * This function sleeps until all work items which were queued on entry 2803 * have finished execution, but it is not livelocked by new incoming ones. 2804 */ 2805 void flush_workqueue(struct workqueue_struct *wq) 2806 { 2807 struct wq_flusher this_flusher = { 2808 .list = LIST_HEAD_INIT(this_flusher.list), 2809 .flush_color = -1, 2810 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 2811 }; 2812 int next_color; 2813 2814 if (WARN_ON(!wq_online)) 2815 return; 2816 2817 lock_map_acquire(&wq->lockdep_map); 2818 lock_map_release(&wq->lockdep_map); 2819 2820 mutex_lock(&wq->mutex); 2821 2822 /* 2823 * Start-to-wait phase 2824 */ 2825 next_color = work_next_color(wq->work_color); 2826 2827 if (next_color != wq->flush_color) { 2828 /* 2829 * Color space is not full. The current work_color 2830 * becomes our flush_color and work_color is advanced 2831 * by one. 2832 */ 2833 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2834 this_flusher.flush_color = wq->work_color; 2835 wq->work_color = next_color; 2836 2837 if (!wq->first_flusher) { 2838 /* no flush in progress, become the first flusher */ 2839 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2840 2841 wq->first_flusher = &this_flusher; 2842 2843 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2844 wq->work_color)) { 2845 /* nothing to flush, done */ 2846 wq->flush_color = next_color; 2847 wq->first_flusher = NULL; 2848 goto out_unlock; 2849 } 2850 } else { 2851 /* wait in queue */ 2852 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2853 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2854 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2855 } 2856 } else { 2857 /* 2858 * Oops, color space is full, wait on overflow queue. 2859 * The next flush completion will assign us 2860 * flush_color and transfer to flusher_queue. 2861 */ 2862 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2863 } 2864 2865 check_flush_dependency(wq, NULL); 2866 2867 mutex_unlock(&wq->mutex); 2868 2869 wait_for_completion(&this_flusher.done); 2870 2871 /* 2872 * Wake-up-and-cascade phase 2873 * 2874 * First flushers are responsible for cascading flushes and 2875 * handling overflow. Non-first flushers can simply return. 2876 */ 2877 if (READ_ONCE(wq->first_flusher) != &this_flusher) 2878 return; 2879 2880 mutex_lock(&wq->mutex); 2881 2882 /* we might have raced, check again with mutex held */ 2883 if (wq->first_flusher != &this_flusher) 2884 goto out_unlock; 2885 2886 WRITE_ONCE(wq->first_flusher, NULL); 2887 2888 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2889 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2890 2891 while (true) { 2892 struct wq_flusher *next, *tmp; 2893 2894 /* complete all the flushers sharing the current flush color */ 2895 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2896 if (next->flush_color != wq->flush_color) 2897 break; 2898 list_del_init(&next->list); 2899 complete(&next->done); 2900 } 2901 2902 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2903 wq->flush_color != work_next_color(wq->work_color)); 2904 2905 /* this flush_color is finished, advance by one */ 2906 wq->flush_color = work_next_color(wq->flush_color); 2907 2908 /* one color has been freed, handle overflow queue */ 2909 if (!list_empty(&wq->flusher_overflow)) { 2910 /* 2911 * Assign the same color to all overflowed 2912 * flushers, advance work_color and append to 2913 * flusher_queue. This is the start-to-wait 2914 * phase for these overflowed flushers. 2915 */ 2916 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2917 tmp->flush_color = wq->work_color; 2918 2919 wq->work_color = work_next_color(wq->work_color); 2920 2921 list_splice_tail_init(&wq->flusher_overflow, 2922 &wq->flusher_queue); 2923 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2924 } 2925 2926 if (list_empty(&wq->flusher_queue)) { 2927 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2928 break; 2929 } 2930 2931 /* 2932 * Need to flush more colors. Make the next flusher 2933 * the new first flusher and arm pwqs. 2934 */ 2935 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2936 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2937 2938 list_del_init(&next->list); 2939 wq->first_flusher = next; 2940 2941 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2942 break; 2943 2944 /* 2945 * Meh... this color is already done, clear first 2946 * flusher and repeat cascading. 2947 */ 2948 wq->first_flusher = NULL; 2949 } 2950 2951 out_unlock: 2952 mutex_unlock(&wq->mutex); 2953 } 2954 EXPORT_SYMBOL(flush_workqueue); 2955 2956 /** 2957 * drain_workqueue - drain a workqueue 2958 * @wq: workqueue to drain 2959 * 2960 * Wait until the workqueue becomes empty. While draining is in progress, 2961 * only chain queueing is allowed. IOW, only currently pending or running 2962 * work items on @wq can queue further work items on it. @wq is flushed 2963 * repeatedly until it becomes empty. The number of flushing is determined 2964 * by the depth of chaining and should be relatively short. Whine if it 2965 * takes too long. 2966 */ 2967 void drain_workqueue(struct workqueue_struct *wq) 2968 { 2969 unsigned int flush_cnt = 0; 2970 struct pool_workqueue *pwq; 2971 2972 /* 2973 * __queue_work() needs to test whether there are drainers, is much 2974 * hotter than drain_workqueue() and already looks at @wq->flags. 2975 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2976 */ 2977 mutex_lock(&wq->mutex); 2978 if (!wq->nr_drainers++) 2979 wq->flags |= __WQ_DRAINING; 2980 mutex_unlock(&wq->mutex); 2981 reflush: 2982 flush_workqueue(wq); 2983 2984 mutex_lock(&wq->mutex); 2985 2986 for_each_pwq(pwq, wq) { 2987 bool drained; 2988 2989 raw_spin_lock_irq(&pwq->pool->lock); 2990 drained = !pwq->nr_active && list_empty(&pwq->inactive_works); 2991 raw_spin_unlock_irq(&pwq->pool->lock); 2992 2993 if (drained) 2994 continue; 2995 2996 if (++flush_cnt == 10 || 2997 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2998 pr_warn("workqueue %s: %s() isn't complete after %u tries\n", 2999 wq->name, __func__, flush_cnt); 3000 3001 mutex_unlock(&wq->mutex); 3002 goto reflush; 3003 } 3004 3005 if (!--wq->nr_drainers) 3006 wq->flags &= ~__WQ_DRAINING; 3007 mutex_unlock(&wq->mutex); 3008 } 3009 EXPORT_SYMBOL_GPL(drain_workqueue); 3010 3011 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 3012 bool from_cancel) 3013 { 3014 struct worker *worker = NULL; 3015 struct worker_pool *pool; 3016 struct pool_workqueue *pwq; 3017 3018 might_sleep(); 3019 3020 rcu_read_lock(); 3021 pool = get_work_pool(work); 3022 if (!pool) { 3023 rcu_read_unlock(); 3024 return false; 3025 } 3026 3027 raw_spin_lock_irq(&pool->lock); 3028 /* see the comment in try_to_grab_pending() with the same code */ 3029 pwq = get_work_pwq(work); 3030 if (pwq) { 3031 if (unlikely(pwq->pool != pool)) 3032 goto already_gone; 3033 } else { 3034 worker = find_worker_executing_work(pool, work); 3035 if (!worker) 3036 goto already_gone; 3037 pwq = worker->current_pwq; 3038 } 3039 3040 check_flush_dependency(pwq->wq, work); 3041 3042 insert_wq_barrier(pwq, barr, work, worker); 3043 raw_spin_unlock_irq(&pool->lock); 3044 3045 /* 3046 * Force a lock recursion deadlock when using flush_work() inside a 3047 * single-threaded or rescuer equipped workqueue. 3048 * 3049 * For single threaded workqueues the deadlock happens when the work 3050 * is after the work issuing the flush_work(). For rescuer equipped 3051 * workqueues the deadlock happens when the rescuer stalls, blocking 3052 * forward progress. 3053 */ 3054 if (!from_cancel && 3055 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) { 3056 lock_map_acquire(&pwq->wq->lockdep_map); 3057 lock_map_release(&pwq->wq->lockdep_map); 3058 } 3059 rcu_read_unlock(); 3060 return true; 3061 already_gone: 3062 raw_spin_unlock_irq(&pool->lock); 3063 rcu_read_unlock(); 3064 return false; 3065 } 3066 3067 static bool __flush_work(struct work_struct *work, bool from_cancel) 3068 { 3069 struct wq_barrier barr; 3070 3071 if (WARN_ON(!wq_online)) 3072 return false; 3073 3074 if (WARN_ON(!work->func)) 3075 return false; 3076 3077 if (!from_cancel) { 3078 lock_map_acquire(&work->lockdep_map); 3079 lock_map_release(&work->lockdep_map); 3080 } 3081 3082 if (start_flush_work(work, &barr, from_cancel)) { 3083 wait_for_completion(&barr.done); 3084 destroy_work_on_stack(&barr.work); 3085 return true; 3086 } else { 3087 return false; 3088 } 3089 } 3090 3091 /** 3092 * flush_work - wait for a work to finish executing the last queueing instance 3093 * @work: the work to flush 3094 * 3095 * Wait until @work has finished execution. @work is guaranteed to be idle 3096 * on return if it hasn't been requeued since flush started. 3097 * 3098 * Return: 3099 * %true if flush_work() waited for the work to finish execution, 3100 * %false if it was already idle. 3101 */ 3102 bool flush_work(struct work_struct *work) 3103 { 3104 return __flush_work(work, false); 3105 } 3106 EXPORT_SYMBOL_GPL(flush_work); 3107 3108 struct cwt_wait { 3109 wait_queue_entry_t wait; 3110 struct work_struct *work; 3111 }; 3112 3113 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 3114 { 3115 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 3116 3117 if (cwait->work != key) 3118 return 0; 3119 return autoremove_wake_function(wait, mode, sync, key); 3120 } 3121 3122 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 3123 { 3124 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 3125 unsigned long flags; 3126 int ret; 3127 3128 do { 3129 ret = try_to_grab_pending(work, is_dwork, &flags); 3130 /* 3131 * If someone else is already canceling, wait for it to 3132 * finish. flush_work() doesn't work for PREEMPT_NONE 3133 * because we may get scheduled between @work's completion 3134 * and the other canceling task resuming and clearing 3135 * CANCELING - flush_work() will return false immediately 3136 * as @work is no longer busy, try_to_grab_pending() will 3137 * return -ENOENT as @work is still being canceled and the 3138 * other canceling task won't be able to clear CANCELING as 3139 * we're hogging the CPU. 3140 * 3141 * Let's wait for completion using a waitqueue. As this 3142 * may lead to the thundering herd problem, use a custom 3143 * wake function which matches @work along with exclusive 3144 * wait and wakeup. 3145 */ 3146 if (unlikely(ret == -ENOENT)) { 3147 struct cwt_wait cwait; 3148 3149 init_wait(&cwait.wait); 3150 cwait.wait.func = cwt_wakefn; 3151 cwait.work = work; 3152 3153 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 3154 TASK_UNINTERRUPTIBLE); 3155 if (work_is_canceling(work)) 3156 schedule(); 3157 finish_wait(&cancel_waitq, &cwait.wait); 3158 } 3159 } while (unlikely(ret < 0)); 3160 3161 /* tell other tasks trying to grab @work to back off */ 3162 mark_work_canceling(work); 3163 local_irq_restore(flags); 3164 3165 /* 3166 * This allows canceling during early boot. We know that @work 3167 * isn't executing. 3168 */ 3169 if (wq_online) 3170 __flush_work(work, true); 3171 3172 clear_work_data(work); 3173 3174 /* 3175 * Paired with prepare_to_wait() above so that either 3176 * waitqueue_active() is visible here or !work_is_canceling() is 3177 * visible there. 3178 */ 3179 smp_mb(); 3180 if (waitqueue_active(&cancel_waitq)) 3181 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 3182 3183 return ret; 3184 } 3185 3186 /** 3187 * cancel_work_sync - cancel a work and wait for it to finish 3188 * @work: the work to cancel 3189 * 3190 * Cancel @work and wait for its execution to finish. This function 3191 * can be used even if the work re-queues itself or migrates to 3192 * another workqueue. On return from this function, @work is 3193 * guaranteed to be not pending or executing on any CPU. 3194 * 3195 * cancel_work_sync(&delayed_work->work) must not be used for 3196 * delayed_work's. Use cancel_delayed_work_sync() instead. 3197 * 3198 * The caller must ensure that the workqueue on which @work was last 3199 * queued can't be destroyed before this function returns. 3200 * 3201 * Return: 3202 * %true if @work was pending, %false otherwise. 3203 */ 3204 bool cancel_work_sync(struct work_struct *work) 3205 { 3206 return __cancel_work_timer(work, false); 3207 } 3208 EXPORT_SYMBOL_GPL(cancel_work_sync); 3209 3210 /** 3211 * flush_delayed_work - wait for a dwork to finish executing the last queueing 3212 * @dwork: the delayed work to flush 3213 * 3214 * Delayed timer is cancelled and the pending work is queued for 3215 * immediate execution. Like flush_work(), this function only 3216 * considers the last queueing instance of @dwork. 3217 * 3218 * Return: 3219 * %true if flush_work() waited for the work to finish execution, 3220 * %false if it was already idle. 3221 */ 3222 bool flush_delayed_work(struct delayed_work *dwork) 3223 { 3224 local_irq_disable(); 3225 if (del_timer_sync(&dwork->timer)) 3226 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 3227 local_irq_enable(); 3228 return flush_work(&dwork->work); 3229 } 3230 EXPORT_SYMBOL(flush_delayed_work); 3231 3232 /** 3233 * flush_rcu_work - wait for a rwork to finish executing the last queueing 3234 * @rwork: the rcu work to flush 3235 * 3236 * Return: 3237 * %true if flush_rcu_work() waited for the work to finish execution, 3238 * %false if it was already idle. 3239 */ 3240 bool flush_rcu_work(struct rcu_work *rwork) 3241 { 3242 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 3243 rcu_barrier(); 3244 flush_work(&rwork->work); 3245 return true; 3246 } else { 3247 return flush_work(&rwork->work); 3248 } 3249 } 3250 EXPORT_SYMBOL(flush_rcu_work); 3251 3252 static bool __cancel_work(struct work_struct *work, bool is_dwork) 3253 { 3254 unsigned long flags; 3255 int ret; 3256 3257 do { 3258 ret = try_to_grab_pending(work, is_dwork, &flags); 3259 } while (unlikely(ret == -EAGAIN)); 3260 3261 if (unlikely(ret < 0)) 3262 return false; 3263 3264 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 3265 local_irq_restore(flags); 3266 return ret; 3267 } 3268 3269 /** 3270 * cancel_delayed_work - cancel a delayed work 3271 * @dwork: delayed_work to cancel 3272 * 3273 * Kill off a pending delayed_work. 3274 * 3275 * Return: %true if @dwork was pending and canceled; %false if it wasn't 3276 * pending. 3277 * 3278 * Note: 3279 * The work callback function may still be running on return, unless 3280 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 3281 * use cancel_delayed_work_sync() to wait on it. 3282 * 3283 * This function is safe to call from any context including IRQ handler. 3284 */ 3285 bool cancel_delayed_work(struct delayed_work *dwork) 3286 { 3287 return __cancel_work(&dwork->work, true); 3288 } 3289 EXPORT_SYMBOL(cancel_delayed_work); 3290 3291 /** 3292 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3293 * @dwork: the delayed work cancel 3294 * 3295 * This is cancel_work_sync() for delayed works. 3296 * 3297 * Return: 3298 * %true if @dwork was pending, %false otherwise. 3299 */ 3300 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3301 { 3302 return __cancel_work_timer(&dwork->work, true); 3303 } 3304 EXPORT_SYMBOL(cancel_delayed_work_sync); 3305 3306 /** 3307 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3308 * @func: the function to call 3309 * 3310 * schedule_on_each_cpu() executes @func on each online CPU using the 3311 * system workqueue and blocks until all CPUs have completed. 3312 * schedule_on_each_cpu() is very slow. 3313 * 3314 * Return: 3315 * 0 on success, -errno on failure. 3316 */ 3317 int schedule_on_each_cpu(work_func_t func) 3318 { 3319 int cpu; 3320 struct work_struct __percpu *works; 3321 3322 works = alloc_percpu(struct work_struct); 3323 if (!works) 3324 return -ENOMEM; 3325 3326 cpus_read_lock(); 3327 3328 for_each_online_cpu(cpu) { 3329 struct work_struct *work = per_cpu_ptr(works, cpu); 3330 3331 INIT_WORK(work, func); 3332 schedule_work_on(cpu, work); 3333 } 3334 3335 for_each_online_cpu(cpu) 3336 flush_work(per_cpu_ptr(works, cpu)); 3337 3338 cpus_read_unlock(); 3339 free_percpu(works); 3340 return 0; 3341 } 3342 3343 /** 3344 * execute_in_process_context - reliably execute the routine with user context 3345 * @fn: the function to execute 3346 * @ew: guaranteed storage for the execute work structure (must 3347 * be available when the work executes) 3348 * 3349 * Executes the function immediately if process context is available, 3350 * otherwise schedules the function for delayed execution. 3351 * 3352 * Return: 0 - function was executed 3353 * 1 - function was scheduled for execution 3354 */ 3355 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3356 { 3357 if (!in_interrupt()) { 3358 fn(&ew->work); 3359 return 0; 3360 } 3361 3362 INIT_WORK(&ew->work, fn); 3363 schedule_work(&ew->work); 3364 3365 return 1; 3366 } 3367 EXPORT_SYMBOL_GPL(execute_in_process_context); 3368 3369 /** 3370 * free_workqueue_attrs - free a workqueue_attrs 3371 * @attrs: workqueue_attrs to free 3372 * 3373 * Undo alloc_workqueue_attrs(). 3374 */ 3375 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3376 { 3377 if (attrs) { 3378 free_cpumask_var(attrs->cpumask); 3379 kfree(attrs); 3380 } 3381 } 3382 3383 /** 3384 * alloc_workqueue_attrs - allocate a workqueue_attrs 3385 * 3386 * Allocate a new workqueue_attrs, initialize with default settings and 3387 * return it. 3388 * 3389 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3390 */ 3391 struct workqueue_attrs *alloc_workqueue_attrs(void) 3392 { 3393 struct workqueue_attrs *attrs; 3394 3395 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); 3396 if (!attrs) 3397 goto fail; 3398 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) 3399 goto fail; 3400 3401 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3402 return attrs; 3403 fail: 3404 free_workqueue_attrs(attrs); 3405 return NULL; 3406 } 3407 3408 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3409 const struct workqueue_attrs *from) 3410 { 3411 to->nice = from->nice; 3412 cpumask_copy(to->cpumask, from->cpumask); 3413 /* 3414 * Unlike hash and equality test, this function doesn't ignore 3415 * ->no_numa as it is used for both pool and wq attrs. Instead, 3416 * get_unbound_pool() explicitly clears ->no_numa after copying. 3417 */ 3418 to->no_numa = from->no_numa; 3419 } 3420 3421 /* hash value of the content of @attr */ 3422 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3423 { 3424 u32 hash = 0; 3425 3426 hash = jhash_1word(attrs->nice, hash); 3427 hash = jhash(cpumask_bits(attrs->cpumask), 3428 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3429 return hash; 3430 } 3431 3432 /* content equality test */ 3433 static bool wqattrs_equal(const struct workqueue_attrs *a, 3434 const struct workqueue_attrs *b) 3435 { 3436 if (a->nice != b->nice) 3437 return false; 3438 if (!cpumask_equal(a->cpumask, b->cpumask)) 3439 return false; 3440 return true; 3441 } 3442 3443 /** 3444 * init_worker_pool - initialize a newly zalloc'd worker_pool 3445 * @pool: worker_pool to initialize 3446 * 3447 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3448 * 3449 * Return: 0 on success, -errno on failure. Even on failure, all fields 3450 * inside @pool proper are initialized and put_unbound_pool() can be called 3451 * on @pool safely to release it. 3452 */ 3453 static int init_worker_pool(struct worker_pool *pool) 3454 { 3455 raw_spin_lock_init(&pool->lock); 3456 pool->id = -1; 3457 pool->cpu = -1; 3458 pool->node = NUMA_NO_NODE; 3459 pool->flags |= POOL_DISASSOCIATED; 3460 pool->watchdog_ts = jiffies; 3461 INIT_LIST_HEAD(&pool->worklist); 3462 INIT_LIST_HEAD(&pool->idle_list); 3463 hash_init(pool->busy_hash); 3464 3465 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 3466 3467 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 3468 3469 INIT_LIST_HEAD(&pool->workers); 3470 3471 ida_init(&pool->worker_ida); 3472 INIT_HLIST_NODE(&pool->hash_node); 3473 pool->refcnt = 1; 3474 3475 /* shouldn't fail above this point */ 3476 pool->attrs = alloc_workqueue_attrs(); 3477 if (!pool->attrs) 3478 return -ENOMEM; 3479 return 0; 3480 } 3481 3482 #ifdef CONFIG_LOCKDEP 3483 static void wq_init_lockdep(struct workqueue_struct *wq) 3484 { 3485 char *lock_name; 3486 3487 lockdep_register_key(&wq->key); 3488 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 3489 if (!lock_name) 3490 lock_name = wq->name; 3491 3492 wq->lock_name = lock_name; 3493 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); 3494 } 3495 3496 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3497 { 3498 lockdep_unregister_key(&wq->key); 3499 } 3500 3501 static void wq_free_lockdep(struct workqueue_struct *wq) 3502 { 3503 if (wq->lock_name != wq->name) 3504 kfree(wq->lock_name); 3505 } 3506 #else 3507 static void wq_init_lockdep(struct workqueue_struct *wq) 3508 { 3509 } 3510 3511 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3512 { 3513 } 3514 3515 static void wq_free_lockdep(struct workqueue_struct *wq) 3516 { 3517 } 3518 #endif 3519 3520 static void rcu_free_wq(struct rcu_head *rcu) 3521 { 3522 struct workqueue_struct *wq = 3523 container_of(rcu, struct workqueue_struct, rcu); 3524 3525 wq_free_lockdep(wq); 3526 3527 if (!(wq->flags & WQ_UNBOUND)) 3528 free_percpu(wq->cpu_pwqs); 3529 else 3530 free_workqueue_attrs(wq->unbound_attrs); 3531 3532 kfree(wq); 3533 } 3534 3535 static void rcu_free_pool(struct rcu_head *rcu) 3536 { 3537 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3538 3539 ida_destroy(&pool->worker_ida); 3540 free_workqueue_attrs(pool->attrs); 3541 kfree(pool); 3542 } 3543 3544 /* This returns with the lock held on success (pool manager is inactive). */ 3545 static bool wq_manager_inactive(struct worker_pool *pool) 3546 { 3547 raw_spin_lock_irq(&pool->lock); 3548 3549 if (pool->flags & POOL_MANAGER_ACTIVE) { 3550 raw_spin_unlock_irq(&pool->lock); 3551 return false; 3552 } 3553 return true; 3554 } 3555 3556 /** 3557 * put_unbound_pool - put a worker_pool 3558 * @pool: worker_pool to put 3559 * 3560 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 3561 * safe manner. get_unbound_pool() calls this function on its failure path 3562 * and this function should be able to release pools which went through, 3563 * successfully or not, init_worker_pool(). 3564 * 3565 * Should be called with wq_pool_mutex held. 3566 */ 3567 static void put_unbound_pool(struct worker_pool *pool) 3568 { 3569 DECLARE_COMPLETION_ONSTACK(detach_completion); 3570 struct worker *worker; 3571 3572 lockdep_assert_held(&wq_pool_mutex); 3573 3574 if (--pool->refcnt) 3575 return; 3576 3577 /* sanity checks */ 3578 if (WARN_ON(!(pool->cpu < 0)) || 3579 WARN_ON(!list_empty(&pool->worklist))) 3580 return; 3581 3582 /* release id and unhash */ 3583 if (pool->id >= 0) 3584 idr_remove(&worker_pool_idr, pool->id); 3585 hash_del(&pool->hash_node); 3586 3587 /* 3588 * Become the manager and destroy all workers. This prevents 3589 * @pool's workers from blocking on attach_mutex. We're the last 3590 * manager and @pool gets freed with the flag set. 3591 * Because of how wq_manager_inactive() works, we will hold the 3592 * spinlock after a successful wait. 3593 */ 3594 rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool), 3595 TASK_UNINTERRUPTIBLE); 3596 pool->flags |= POOL_MANAGER_ACTIVE; 3597 3598 while ((worker = first_idle_worker(pool))) 3599 destroy_worker(worker); 3600 WARN_ON(pool->nr_workers || pool->nr_idle); 3601 raw_spin_unlock_irq(&pool->lock); 3602 3603 mutex_lock(&wq_pool_attach_mutex); 3604 if (!list_empty(&pool->workers)) 3605 pool->detach_completion = &detach_completion; 3606 mutex_unlock(&wq_pool_attach_mutex); 3607 3608 if (pool->detach_completion) 3609 wait_for_completion(pool->detach_completion); 3610 3611 /* shut down the timers */ 3612 del_timer_sync(&pool->idle_timer); 3613 del_timer_sync(&pool->mayday_timer); 3614 3615 /* RCU protected to allow dereferences from get_work_pool() */ 3616 call_rcu(&pool->rcu, rcu_free_pool); 3617 } 3618 3619 /** 3620 * get_unbound_pool - get a worker_pool with the specified attributes 3621 * @attrs: the attributes of the worker_pool to get 3622 * 3623 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3624 * reference count and return it. If there already is a matching 3625 * worker_pool, it will be used; otherwise, this function attempts to 3626 * create a new one. 3627 * 3628 * Should be called with wq_pool_mutex held. 3629 * 3630 * Return: On success, a worker_pool with the same attributes as @attrs. 3631 * On failure, %NULL. 3632 */ 3633 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3634 { 3635 u32 hash = wqattrs_hash(attrs); 3636 struct worker_pool *pool; 3637 int node; 3638 int target_node = NUMA_NO_NODE; 3639 3640 lockdep_assert_held(&wq_pool_mutex); 3641 3642 /* do we already have a matching pool? */ 3643 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3644 if (wqattrs_equal(pool->attrs, attrs)) { 3645 pool->refcnt++; 3646 return pool; 3647 } 3648 } 3649 3650 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3651 if (wq_numa_enabled) { 3652 for_each_node(node) { 3653 if (cpumask_subset(attrs->cpumask, 3654 wq_numa_possible_cpumask[node])) { 3655 target_node = node; 3656 break; 3657 } 3658 } 3659 } 3660 3661 /* nope, create a new one */ 3662 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3663 if (!pool || init_worker_pool(pool) < 0) 3664 goto fail; 3665 3666 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3667 copy_workqueue_attrs(pool->attrs, attrs); 3668 pool->node = target_node; 3669 3670 /* 3671 * no_numa isn't a worker_pool attribute, always clear it. See 3672 * 'struct workqueue_attrs' comments for detail. 3673 */ 3674 pool->attrs->no_numa = false; 3675 3676 if (worker_pool_assign_id(pool) < 0) 3677 goto fail; 3678 3679 /* create and start the initial worker */ 3680 if (wq_online && !create_worker(pool)) 3681 goto fail; 3682 3683 /* install */ 3684 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3685 3686 return pool; 3687 fail: 3688 if (pool) 3689 put_unbound_pool(pool); 3690 return NULL; 3691 } 3692 3693 static void rcu_free_pwq(struct rcu_head *rcu) 3694 { 3695 kmem_cache_free(pwq_cache, 3696 container_of(rcu, struct pool_workqueue, rcu)); 3697 } 3698 3699 /* 3700 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3701 * and needs to be destroyed. 3702 */ 3703 static void pwq_unbound_release_workfn(struct work_struct *work) 3704 { 3705 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3706 unbound_release_work); 3707 struct workqueue_struct *wq = pwq->wq; 3708 struct worker_pool *pool = pwq->pool; 3709 bool is_last = false; 3710 3711 /* 3712 * when @pwq is not linked, it doesn't hold any reference to the 3713 * @wq, and @wq is invalid to access. 3714 */ 3715 if (!list_empty(&pwq->pwqs_node)) { 3716 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3717 return; 3718 3719 mutex_lock(&wq->mutex); 3720 list_del_rcu(&pwq->pwqs_node); 3721 is_last = list_empty(&wq->pwqs); 3722 mutex_unlock(&wq->mutex); 3723 } 3724 3725 mutex_lock(&wq_pool_mutex); 3726 put_unbound_pool(pool); 3727 mutex_unlock(&wq_pool_mutex); 3728 3729 call_rcu(&pwq->rcu, rcu_free_pwq); 3730 3731 /* 3732 * If we're the last pwq going away, @wq is already dead and no one 3733 * is gonna access it anymore. Schedule RCU free. 3734 */ 3735 if (is_last) { 3736 wq_unregister_lockdep(wq); 3737 call_rcu(&wq->rcu, rcu_free_wq); 3738 } 3739 } 3740 3741 /** 3742 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3743 * @pwq: target pool_workqueue 3744 * 3745 * If @pwq isn't freezing, set @pwq->max_active to the associated 3746 * workqueue's saved_max_active and activate inactive work items 3747 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3748 */ 3749 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3750 { 3751 struct workqueue_struct *wq = pwq->wq; 3752 bool freezable = wq->flags & WQ_FREEZABLE; 3753 unsigned long flags; 3754 3755 /* for @wq->saved_max_active */ 3756 lockdep_assert_held(&wq->mutex); 3757 3758 /* fast exit for non-freezable wqs */ 3759 if (!freezable && pwq->max_active == wq->saved_max_active) 3760 return; 3761 3762 /* this function can be called during early boot w/ irq disabled */ 3763 raw_spin_lock_irqsave(&pwq->pool->lock, flags); 3764 3765 /* 3766 * During [un]freezing, the caller is responsible for ensuring that 3767 * this function is called at least once after @workqueue_freezing 3768 * is updated and visible. 3769 */ 3770 if (!freezable || !workqueue_freezing) { 3771 bool kick = false; 3772 3773 pwq->max_active = wq->saved_max_active; 3774 3775 while (!list_empty(&pwq->inactive_works) && 3776 pwq->nr_active < pwq->max_active) { 3777 pwq_activate_first_inactive(pwq); 3778 kick = true; 3779 } 3780 3781 /* 3782 * Need to kick a worker after thawed or an unbound wq's 3783 * max_active is bumped. In realtime scenarios, always kicking a 3784 * worker will cause interference on the isolated cpu cores, so 3785 * let's kick iff work items were activated. 3786 */ 3787 if (kick) 3788 wake_up_worker(pwq->pool); 3789 } else { 3790 pwq->max_active = 0; 3791 } 3792 3793 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); 3794 } 3795 3796 /* initialize newly allocated @pwq which is associated with @wq and @pool */ 3797 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3798 struct worker_pool *pool) 3799 { 3800 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3801 3802 memset(pwq, 0, sizeof(*pwq)); 3803 3804 pwq->pool = pool; 3805 pwq->wq = wq; 3806 pwq->flush_color = -1; 3807 pwq->refcnt = 1; 3808 INIT_LIST_HEAD(&pwq->inactive_works); 3809 INIT_LIST_HEAD(&pwq->pwqs_node); 3810 INIT_LIST_HEAD(&pwq->mayday_node); 3811 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3812 } 3813 3814 /* sync @pwq with the current state of its associated wq and link it */ 3815 static void link_pwq(struct pool_workqueue *pwq) 3816 { 3817 struct workqueue_struct *wq = pwq->wq; 3818 3819 lockdep_assert_held(&wq->mutex); 3820 3821 /* may be called multiple times, ignore if already linked */ 3822 if (!list_empty(&pwq->pwqs_node)) 3823 return; 3824 3825 /* set the matching work_color */ 3826 pwq->work_color = wq->work_color; 3827 3828 /* sync max_active to the current setting */ 3829 pwq_adjust_max_active(pwq); 3830 3831 /* link in @pwq */ 3832 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3833 } 3834 3835 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3836 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3837 const struct workqueue_attrs *attrs) 3838 { 3839 struct worker_pool *pool; 3840 struct pool_workqueue *pwq; 3841 3842 lockdep_assert_held(&wq_pool_mutex); 3843 3844 pool = get_unbound_pool(attrs); 3845 if (!pool) 3846 return NULL; 3847 3848 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3849 if (!pwq) { 3850 put_unbound_pool(pool); 3851 return NULL; 3852 } 3853 3854 init_pwq(pwq, wq, pool); 3855 return pwq; 3856 } 3857 3858 /** 3859 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3860 * @attrs: the wq_attrs of the default pwq of the target workqueue 3861 * @node: the target NUMA node 3862 * @cpu_going_down: if >= 0, the CPU to consider as offline 3863 * @cpumask: outarg, the resulting cpumask 3864 * 3865 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3866 * @cpu_going_down is >= 0, that cpu is considered offline during 3867 * calculation. The result is stored in @cpumask. 3868 * 3869 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3870 * enabled and @node has online CPUs requested by @attrs, the returned 3871 * cpumask is the intersection of the possible CPUs of @node and 3872 * @attrs->cpumask. 3873 * 3874 * The caller is responsible for ensuring that the cpumask of @node stays 3875 * stable. 3876 * 3877 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3878 * %false if equal. 3879 */ 3880 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3881 int cpu_going_down, cpumask_t *cpumask) 3882 { 3883 if (!wq_numa_enabled || attrs->no_numa) 3884 goto use_dfl; 3885 3886 /* does @node have any online CPUs @attrs wants? */ 3887 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3888 if (cpu_going_down >= 0) 3889 cpumask_clear_cpu(cpu_going_down, cpumask); 3890 3891 if (cpumask_empty(cpumask)) 3892 goto use_dfl; 3893 3894 /* yeap, return possible CPUs in @node that @attrs wants */ 3895 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3896 3897 if (cpumask_empty(cpumask)) { 3898 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 3899 "possible intersect\n"); 3900 return false; 3901 } 3902 3903 return !cpumask_equal(cpumask, attrs->cpumask); 3904 3905 use_dfl: 3906 cpumask_copy(cpumask, attrs->cpumask); 3907 return false; 3908 } 3909 3910 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3911 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3912 int node, 3913 struct pool_workqueue *pwq) 3914 { 3915 struct pool_workqueue *old_pwq; 3916 3917 lockdep_assert_held(&wq_pool_mutex); 3918 lockdep_assert_held(&wq->mutex); 3919 3920 /* link_pwq() can handle duplicate calls */ 3921 link_pwq(pwq); 3922 3923 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3924 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3925 return old_pwq; 3926 } 3927 3928 /* context to store the prepared attrs & pwqs before applying */ 3929 struct apply_wqattrs_ctx { 3930 struct workqueue_struct *wq; /* target workqueue */ 3931 struct workqueue_attrs *attrs; /* attrs to apply */ 3932 struct list_head list; /* queued for batching commit */ 3933 struct pool_workqueue *dfl_pwq; 3934 struct pool_workqueue *pwq_tbl[]; 3935 }; 3936 3937 /* free the resources after success or abort */ 3938 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 3939 { 3940 if (ctx) { 3941 int node; 3942 3943 for_each_node(node) 3944 put_pwq_unlocked(ctx->pwq_tbl[node]); 3945 put_pwq_unlocked(ctx->dfl_pwq); 3946 3947 free_workqueue_attrs(ctx->attrs); 3948 3949 kfree(ctx); 3950 } 3951 } 3952 3953 /* allocate the attrs and pwqs for later installation */ 3954 static struct apply_wqattrs_ctx * 3955 apply_wqattrs_prepare(struct workqueue_struct *wq, 3956 const struct workqueue_attrs *attrs) 3957 { 3958 struct apply_wqattrs_ctx *ctx; 3959 struct workqueue_attrs *new_attrs, *tmp_attrs; 3960 int node; 3961 3962 lockdep_assert_held(&wq_pool_mutex); 3963 3964 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL); 3965 3966 new_attrs = alloc_workqueue_attrs(); 3967 tmp_attrs = alloc_workqueue_attrs(); 3968 if (!ctx || !new_attrs || !tmp_attrs) 3969 goto out_free; 3970 3971 /* 3972 * Calculate the attrs of the default pwq. 3973 * If the user configured cpumask doesn't overlap with the 3974 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 3975 */ 3976 copy_workqueue_attrs(new_attrs, attrs); 3977 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask); 3978 if (unlikely(cpumask_empty(new_attrs->cpumask))) 3979 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask); 3980 3981 /* 3982 * We may create multiple pwqs with differing cpumasks. Make a 3983 * copy of @new_attrs which will be modified and used to obtain 3984 * pools. 3985 */ 3986 copy_workqueue_attrs(tmp_attrs, new_attrs); 3987 3988 /* 3989 * If something goes wrong during CPU up/down, we'll fall back to 3990 * the default pwq covering whole @attrs->cpumask. Always create 3991 * it even if we don't use it immediately. 3992 */ 3993 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3994 if (!ctx->dfl_pwq) 3995 goto out_free; 3996 3997 for_each_node(node) { 3998 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 3999 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 4000 if (!ctx->pwq_tbl[node]) 4001 goto out_free; 4002 } else { 4003 ctx->dfl_pwq->refcnt++; 4004 ctx->pwq_tbl[node] = ctx->dfl_pwq; 4005 } 4006 } 4007 4008 /* save the user configured attrs and sanitize it. */ 4009 copy_workqueue_attrs(new_attrs, attrs); 4010 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 4011 ctx->attrs = new_attrs; 4012 4013 ctx->wq = wq; 4014 free_workqueue_attrs(tmp_attrs); 4015 return ctx; 4016 4017 out_free: 4018 free_workqueue_attrs(tmp_attrs); 4019 free_workqueue_attrs(new_attrs); 4020 apply_wqattrs_cleanup(ctx); 4021 return NULL; 4022 } 4023 4024 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 4025 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 4026 { 4027 int node; 4028 4029 /* all pwqs have been created successfully, let's install'em */ 4030 mutex_lock(&ctx->wq->mutex); 4031 4032 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 4033 4034 /* save the previous pwq and install the new one */ 4035 for_each_node(node) 4036 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 4037 ctx->pwq_tbl[node]); 4038 4039 /* @dfl_pwq might not have been used, ensure it's linked */ 4040 link_pwq(ctx->dfl_pwq); 4041 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 4042 4043 mutex_unlock(&ctx->wq->mutex); 4044 } 4045 4046 static void apply_wqattrs_lock(void) 4047 { 4048 /* CPUs should stay stable across pwq creations and installations */ 4049 cpus_read_lock(); 4050 mutex_lock(&wq_pool_mutex); 4051 } 4052 4053 static void apply_wqattrs_unlock(void) 4054 { 4055 mutex_unlock(&wq_pool_mutex); 4056 cpus_read_unlock(); 4057 } 4058 4059 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 4060 const struct workqueue_attrs *attrs) 4061 { 4062 struct apply_wqattrs_ctx *ctx; 4063 4064 /* only unbound workqueues can change attributes */ 4065 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 4066 return -EINVAL; 4067 4068 /* creating multiple pwqs breaks ordering guarantee */ 4069 if (!list_empty(&wq->pwqs)) { 4070 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4071 return -EINVAL; 4072 4073 wq->flags &= ~__WQ_ORDERED; 4074 } 4075 4076 ctx = apply_wqattrs_prepare(wq, attrs); 4077 if (!ctx) 4078 return -ENOMEM; 4079 4080 /* the ctx has been prepared successfully, let's commit it */ 4081 apply_wqattrs_commit(ctx); 4082 apply_wqattrs_cleanup(ctx); 4083 4084 return 0; 4085 } 4086 4087 /** 4088 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 4089 * @wq: the target workqueue 4090 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 4091 * 4092 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 4093 * machines, this function maps a separate pwq to each NUMA node with 4094 * possibles CPUs in @attrs->cpumask so that work items are affine to the 4095 * NUMA node it was issued on. Older pwqs are released as in-flight work 4096 * items finish. Note that a work item which repeatedly requeues itself 4097 * back-to-back will stay on its current pwq. 4098 * 4099 * Performs GFP_KERNEL allocations. 4100 * 4101 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock(). 4102 * 4103 * Return: 0 on success and -errno on failure. 4104 */ 4105 int apply_workqueue_attrs(struct workqueue_struct *wq, 4106 const struct workqueue_attrs *attrs) 4107 { 4108 int ret; 4109 4110 lockdep_assert_cpus_held(); 4111 4112 mutex_lock(&wq_pool_mutex); 4113 ret = apply_workqueue_attrs_locked(wq, attrs); 4114 mutex_unlock(&wq_pool_mutex); 4115 4116 return ret; 4117 } 4118 4119 /** 4120 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 4121 * @wq: the target workqueue 4122 * @cpu: the CPU coming up or going down 4123 * @online: whether @cpu is coming up or going down 4124 * 4125 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 4126 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 4127 * @wq accordingly. 4128 * 4129 * If NUMA affinity can't be adjusted due to memory allocation failure, it 4130 * falls back to @wq->dfl_pwq which may not be optimal but is always 4131 * correct. 4132 * 4133 * Note that when the last allowed CPU of a NUMA node goes offline for a 4134 * workqueue with a cpumask spanning multiple nodes, the workers which were 4135 * already executing the work items for the workqueue will lose their CPU 4136 * affinity and may execute on any CPU. This is similar to how per-cpu 4137 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 4138 * affinity, it's the user's responsibility to flush the work item from 4139 * CPU_DOWN_PREPARE. 4140 */ 4141 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 4142 bool online) 4143 { 4144 int node = cpu_to_node(cpu); 4145 int cpu_off = online ? -1 : cpu; 4146 struct pool_workqueue *old_pwq = NULL, *pwq; 4147 struct workqueue_attrs *target_attrs; 4148 cpumask_t *cpumask; 4149 4150 lockdep_assert_held(&wq_pool_mutex); 4151 4152 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 4153 wq->unbound_attrs->no_numa) 4154 return; 4155 4156 /* 4157 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 4158 * Let's use a preallocated one. The following buf is protected by 4159 * CPU hotplug exclusion. 4160 */ 4161 target_attrs = wq_update_unbound_numa_attrs_buf; 4162 cpumask = target_attrs->cpumask; 4163 4164 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 4165 pwq = unbound_pwq_by_node(wq, node); 4166 4167 /* 4168 * Let's determine what needs to be done. If the target cpumask is 4169 * different from the default pwq's, we need to compare it to @pwq's 4170 * and create a new one if they don't match. If the target cpumask 4171 * equals the default pwq's, the default pwq should be used. 4172 */ 4173 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 4174 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 4175 return; 4176 } else { 4177 goto use_dfl_pwq; 4178 } 4179 4180 /* create a new pwq */ 4181 pwq = alloc_unbound_pwq(wq, target_attrs); 4182 if (!pwq) { 4183 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 4184 wq->name); 4185 goto use_dfl_pwq; 4186 } 4187 4188 /* Install the new pwq. */ 4189 mutex_lock(&wq->mutex); 4190 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 4191 goto out_unlock; 4192 4193 use_dfl_pwq: 4194 mutex_lock(&wq->mutex); 4195 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock); 4196 get_pwq(wq->dfl_pwq); 4197 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock); 4198 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 4199 out_unlock: 4200 mutex_unlock(&wq->mutex); 4201 put_pwq_unlocked(old_pwq); 4202 } 4203 4204 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4205 { 4206 bool highpri = wq->flags & WQ_HIGHPRI; 4207 int cpu, ret; 4208 4209 if (!(wq->flags & WQ_UNBOUND)) { 4210 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 4211 if (!wq->cpu_pwqs) 4212 return -ENOMEM; 4213 4214 for_each_possible_cpu(cpu) { 4215 struct pool_workqueue *pwq = 4216 per_cpu_ptr(wq->cpu_pwqs, cpu); 4217 struct worker_pool *cpu_pools = 4218 per_cpu(cpu_worker_pools, cpu); 4219 4220 init_pwq(pwq, wq, &cpu_pools[highpri]); 4221 4222 mutex_lock(&wq->mutex); 4223 link_pwq(pwq); 4224 mutex_unlock(&wq->mutex); 4225 } 4226 return 0; 4227 } 4228 4229 cpus_read_lock(); 4230 if (wq->flags & __WQ_ORDERED) { 4231 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 4232 /* there should only be single pwq for ordering guarantee */ 4233 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 4234 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 4235 "ordering guarantee broken for workqueue %s\n", wq->name); 4236 } else { 4237 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4238 } 4239 cpus_read_unlock(); 4240 4241 return ret; 4242 } 4243 4244 static int wq_clamp_max_active(int max_active, unsigned int flags, 4245 const char *name) 4246 { 4247 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 4248 4249 if (max_active < 1 || max_active > lim) 4250 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4251 max_active, name, 1, lim); 4252 4253 return clamp_val(max_active, 1, lim); 4254 } 4255 4256 /* 4257 * Workqueues which may be used during memory reclaim should have a rescuer 4258 * to guarantee forward progress. 4259 */ 4260 static int init_rescuer(struct workqueue_struct *wq) 4261 { 4262 struct worker *rescuer; 4263 int ret; 4264 4265 if (!(wq->flags & WQ_MEM_RECLAIM)) 4266 return 0; 4267 4268 rescuer = alloc_worker(NUMA_NO_NODE); 4269 if (!rescuer) 4270 return -ENOMEM; 4271 4272 rescuer->rescue_wq = wq; 4273 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name); 4274 if (IS_ERR(rescuer->task)) { 4275 ret = PTR_ERR(rescuer->task); 4276 kfree(rescuer); 4277 return ret; 4278 } 4279 4280 wq->rescuer = rescuer; 4281 kthread_bind_mask(rescuer->task, cpu_possible_mask); 4282 wake_up_process(rescuer->task); 4283 4284 return 0; 4285 } 4286 4287 __printf(1, 4) 4288 struct workqueue_struct *alloc_workqueue(const char *fmt, 4289 unsigned int flags, 4290 int max_active, ...) 4291 { 4292 size_t tbl_size = 0; 4293 va_list args; 4294 struct workqueue_struct *wq; 4295 struct pool_workqueue *pwq; 4296 4297 /* 4298 * Unbound && max_active == 1 used to imply ordered, which is no 4299 * longer the case on NUMA machines due to per-node pools. While 4300 * alloc_ordered_workqueue() is the right way to create an ordered 4301 * workqueue, keep the previous behavior to avoid subtle breakages 4302 * on NUMA. 4303 */ 4304 if ((flags & WQ_UNBOUND) && max_active == 1) 4305 flags |= __WQ_ORDERED; 4306 4307 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4308 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4309 flags |= WQ_UNBOUND; 4310 4311 /* allocate wq and format name */ 4312 if (flags & WQ_UNBOUND) 4313 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 4314 4315 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4316 if (!wq) 4317 return NULL; 4318 4319 if (flags & WQ_UNBOUND) { 4320 wq->unbound_attrs = alloc_workqueue_attrs(); 4321 if (!wq->unbound_attrs) 4322 goto err_free_wq; 4323 } 4324 4325 va_start(args, max_active); 4326 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4327 va_end(args); 4328 4329 max_active = max_active ?: WQ_DFL_ACTIVE; 4330 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4331 4332 /* init wq */ 4333 wq->flags = flags; 4334 wq->saved_max_active = max_active; 4335 mutex_init(&wq->mutex); 4336 atomic_set(&wq->nr_pwqs_to_flush, 0); 4337 INIT_LIST_HEAD(&wq->pwqs); 4338 INIT_LIST_HEAD(&wq->flusher_queue); 4339 INIT_LIST_HEAD(&wq->flusher_overflow); 4340 INIT_LIST_HEAD(&wq->maydays); 4341 4342 wq_init_lockdep(wq); 4343 INIT_LIST_HEAD(&wq->list); 4344 4345 if (alloc_and_link_pwqs(wq) < 0) 4346 goto err_unreg_lockdep; 4347 4348 if (wq_online && init_rescuer(wq) < 0) 4349 goto err_destroy; 4350 4351 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4352 goto err_destroy; 4353 4354 /* 4355 * wq_pool_mutex protects global freeze state and workqueues list. 4356 * Grab it, adjust max_active and add the new @wq to workqueues 4357 * list. 4358 */ 4359 mutex_lock(&wq_pool_mutex); 4360 4361 mutex_lock(&wq->mutex); 4362 for_each_pwq(pwq, wq) 4363 pwq_adjust_max_active(pwq); 4364 mutex_unlock(&wq->mutex); 4365 4366 list_add_tail_rcu(&wq->list, &workqueues); 4367 4368 mutex_unlock(&wq_pool_mutex); 4369 4370 return wq; 4371 4372 err_unreg_lockdep: 4373 wq_unregister_lockdep(wq); 4374 wq_free_lockdep(wq); 4375 err_free_wq: 4376 free_workqueue_attrs(wq->unbound_attrs); 4377 kfree(wq); 4378 return NULL; 4379 err_destroy: 4380 destroy_workqueue(wq); 4381 return NULL; 4382 } 4383 EXPORT_SYMBOL_GPL(alloc_workqueue); 4384 4385 static bool pwq_busy(struct pool_workqueue *pwq) 4386 { 4387 int i; 4388 4389 for (i = 0; i < WORK_NR_COLORS; i++) 4390 if (pwq->nr_in_flight[i]) 4391 return true; 4392 4393 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1)) 4394 return true; 4395 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) 4396 return true; 4397 4398 return false; 4399 } 4400 4401 /** 4402 * destroy_workqueue - safely terminate a workqueue 4403 * @wq: target workqueue 4404 * 4405 * Safely destroy a workqueue. All work currently pending will be done first. 4406 */ 4407 void destroy_workqueue(struct workqueue_struct *wq) 4408 { 4409 struct pool_workqueue *pwq; 4410 int node; 4411 4412 /* 4413 * Remove it from sysfs first so that sanity check failure doesn't 4414 * lead to sysfs name conflicts. 4415 */ 4416 workqueue_sysfs_unregister(wq); 4417 4418 /* drain it before proceeding with destruction */ 4419 drain_workqueue(wq); 4420 4421 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ 4422 if (wq->rescuer) { 4423 struct worker *rescuer = wq->rescuer; 4424 4425 /* this prevents new queueing */ 4426 raw_spin_lock_irq(&wq_mayday_lock); 4427 wq->rescuer = NULL; 4428 raw_spin_unlock_irq(&wq_mayday_lock); 4429 4430 /* rescuer will empty maydays list before exiting */ 4431 kthread_stop(rescuer->task); 4432 kfree(rescuer); 4433 } 4434 4435 /* 4436 * Sanity checks - grab all the locks so that we wait for all 4437 * in-flight operations which may do put_pwq(). 4438 */ 4439 mutex_lock(&wq_pool_mutex); 4440 mutex_lock(&wq->mutex); 4441 for_each_pwq(pwq, wq) { 4442 raw_spin_lock_irq(&pwq->pool->lock); 4443 if (WARN_ON(pwq_busy(pwq))) { 4444 pr_warn("%s: %s has the following busy pwq\n", 4445 __func__, wq->name); 4446 show_pwq(pwq); 4447 raw_spin_unlock_irq(&pwq->pool->lock); 4448 mutex_unlock(&wq->mutex); 4449 mutex_unlock(&wq_pool_mutex); 4450 show_workqueue_state(); 4451 return; 4452 } 4453 raw_spin_unlock_irq(&pwq->pool->lock); 4454 } 4455 mutex_unlock(&wq->mutex); 4456 4457 /* 4458 * wq list is used to freeze wq, remove from list after 4459 * flushing is complete in case freeze races us. 4460 */ 4461 list_del_rcu(&wq->list); 4462 mutex_unlock(&wq_pool_mutex); 4463 4464 if (!(wq->flags & WQ_UNBOUND)) { 4465 wq_unregister_lockdep(wq); 4466 /* 4467 * The base ref is never dropped on per-cpu pwqs. Directly 4468 * schedule RCU free. 4469 */ 4470 call_rcu(&wq->rcu, rcu_free_wq); 4471 } else { 4472 /* 4473 * We're the sole accessor of @wq at this point. Directly 4474 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4475 * @wq will be freed when the last pwq is released. 4476 */ 4477 for_each_node(node) { 4478 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4479 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4480 put_pwq_unlocked(pwq); 4481 } 4482 4483 /* 4484 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4485 * put. Don't access it afterwards. 4486 */ 4487 pwq = wq->dfl_pwq; 4488 wq->dfl_pwq = NULL; 4489 put_pwq_unlocked(pwq); 4490 } 4491 } 4492 EXPORT_SYMBOL_GPL(destroy_workqueue); 4493 4494 /** 4495 * workqueue_set_max_active - adjust max_active of a workqueue 4496 * @wq: target workqueue 4497 * @max_active: new max_active value. 4498 * 4499 * Set max_active of @wq to @max_active. 4500 * 4501 * CONTEXT: 4502 * Don't call from IRQ context. 4503 */ 4504 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4505 { 4506 struct pool_workqueue *pwq; 4507 4508 /* disallow meddling with max_active for ordered workqueues */ 4509 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4510 return; 4511 4512 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4513 4514 mutex_lock(&wq->mutex); 4515 4516 wq->flags &= ~__WQ_ORDERED; 4517 wq->saved_max_active = max_active; 4518 4519 for_each_pwq(pwq, wq) 4520 pwq_adjust_max_active(pwq); 4521 4522 mutex_unlock(&wq->mutex); 4523 } 4524 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4525 4526 /** 4527 * current_work - retrieve %current task's work struct 4528 * 4529 * Determine if %current task is a workqueue worker and what it's working on. 4530 * Useful to find out the context that the %current task is running in. 4531 * 4532 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 4533 */ 4534 struct work_struct *current_work(void) 4535 { 4536 struct worker *worker = current_wq_worker(); 4537 4538 return worker ? worker->current_work : NULL; 4539 } 4540 EXPORT_SYMBOL(current_work); 4541 4542 /** 4543 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4544 * 4545 * Determine whether %current is a workqueue rescuer. Can be used from 4546 * work functions to determine whether it's being run off the rescuer task. 4547 * 4548 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4549 */ 4550 bool current_is_workqueue_rescuer(void) 4551 { 4552 struct worker *worker = current_wq_worker(); 4553 4554 return worker && worker->rescue_wq; 4555 } 4556 4557 /** 4558 * workqueue_congested - test whether a workqueue is congested 4559 * @cpu: CPU in question 4560 * @wq: target workqueue 4561 * 4562 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4563 * no synchronization around this function and the test result is 4564 * unreliable and only useful as advisory hints or for debugging. 4565 * 4566 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4567 * Note that both per-cpu and unbound workqueues may be associated with 4568 * multiple pool_workqueues which have separate congested states. A 4569 * workqueue being congested on one CPU doesn't mean the workqueue is also 4570 * contested on other CPUs / NUMA nodes. 4571 * 4572 * Return: 4573 * %true if congested, %false otherwise. 4574 */ 4575 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4576 { 4577 struct pool_workqueue *pwq; 4578 bool ret; 4579 4580 rcu_read_lock(); 4581 preempt_disable(); 4582 4583 if (cpu == WORK_CPU_UNBOUND) 4584 cpu = smp_processor_id(); 4585 4586 if (!(wq->flags & WQ_UNBOUND)) 4587 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4588 else 4589 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4590 4591 ret = !list_empty(&pwq->inactive_works); 4592 preempt_enable(); 4593 rcu_read_unlock(); 4594 4595 return ret; 4596 } 4597 EXPORT_SYMBOL_GPL(workqueue_congested); 4598 4599 /** 4600 * work_busy - test whether a work is currently pending or running 4601 * @work: the work to be tested 4602 * 4603 * Test whether @work is currently pending or running. There is no 4604 * synchronization around this function and the test result is 4605 * unreliable and only useful as advisory hints or for debugging. 4606 * 4607 * Return: 4608 * OR'd bitmask of WORK_BUSY_* bits. 4609 */ 4610 unsigned int work_busy(struct work_struct *work) 4611 { 4612 struct worker_pool *pool; 4613 unsigned long flags; 4614 unsigned int ret = 0; 4615 4616 if (work_pending(work)) 4617 ret |= WORK_BUSY_PENDING; 4618 4619 rcu_read_lock(); 4620 pool = get_work_pool(work); 4621 if (pool) { 4622 raw_spin_lock_irqsave(&pool->lock, flags); 4623 if (find_worker_executing_work(pool, work)) 4624 ret |= WORK_BUSY_RUNNING; 4625 raw_spin_unlock_irqrestore(&pool->lock, flags); 4626 } 4627 rcu_read_unlock(); 4628 4629 return ret; 4630 } 4631 EXPORT_SYMBOL_GPL(work_busy); 4632 4633 /** 4634 * set_worker_desc - set description for the current work item 4635 * @fmt: printf-style format string 4636 * @...: arguments for the format string 4637 * 4638 * This function can be called by a running work function to describe what 4639 * the work item is about. If the worker task gets dumped, this 4640 * information will be printed out together to help debugging. The 4641 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4642 */ 4643 void set_worker_desc(const char *fmt, ...) 4644 { 4645 struct worker *worker = current_wq_worker(); 4646 va_list args; 4647 4648 if (worker) { 4649 va_start(args, fmt); 4650 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4651 va_end(args); 4652 } 4653 } 4654 EXPORT_SYMBOL_GPL(set_worker_desc); 4655 4656 /** 4657 * print_worker_info - print out worker information and description 4658 * @log_lvl: the log level to use when printing 4659 * @task: target task 4660 * 4661 * If @task is a worker and currently executing a work item, print out the 4662 * name of the workqueue being serviced and worker description set with 4663 * set_worker_desc() by the currently executing work item. 4664 * 4665 * This function can be safely called on any task as long as the 4666 * task_struct itself is accessible. While safe, this function isn't 4667 * synchronized and may print out mixups or garbages of limited length. 4668 */ 4669 void print_worker_info(const char *log_lvl, struct task_struct *task) 4670 { 4671 work_func_t *fn = NULL; 4672 char name[WQ_NAME_LEN] = { }; 4673 char desc[WORKER_DESC_LEN] = { }; 4674 struct pool_workqueue *pwq = NULL; 4675 struct workqueue_struct *wq = NULL; 4676 struct worker *worker; 4677 4678 if (!(task->flags & PF_WQ_WORKER)) 4679 return; 4680 4681 /* 4682 * This function is called without any synchronization and @task 4683 * could be in any state. Be careful with dereferences. 4684 */ 4685 worker = kthread_probe_data(task); 4686 4687 /* 4688 * Carefully copy the associated workqueue's workfn, name and desc. 4689 * Keep the original last '\0' in case the original is garbage. 4690 */ 4691 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn)); 4692 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq)); 4693 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq)); 4694 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1); 4695 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1); 4696 4697 if (fn || name[0] || desc[0]) { 4698 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 4699 if (strcmp(name, desc)) 4700 pr_cont(" (%s)", desc); 4701 pr_cont("\n"); 4702 } 4703 } 4704 4705 static void pr_cont_pool_info(struct worker_pool *pool) 4706 { 4707 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4708 if (pool->node != NUMA_NO_NODE) 4709 pr_cont(" node=%d", pool->node); 4710 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4711 } 4712 4713 static void pr_cont_work(bool comma, struct work_struct *work) 4714 { 4715 if (work->func == wq_barrier_func) { 4716 struct wq_barrier *barr; 4717 4718 barr = container_of(work, struct wq_barrier, work); 4719 4720 pr_cont("%s BAR(%d)", comma ? "," : "", 4721 task_pid_nr(barr->task)); 4722 } else { 4723 pr_cont("%s %ps", comma ? "," : "", work->func); 4724 } 4725 } 4726 4727 static void show_pwq(struct pool_workqueue *pwq) 4728 { 4729 struct worker_pool *pool = pwq->pool; 4730 struct work_struct *work; 4731 struct worker *worker; 4732 bool has_in_flight = false, has_pending = false; 4733 int bkt; 4734 4735 pr_info(" pwq %d:", pool->id); 4736 pr_cont_pool_info(pool); 4737 4738 pr_cont(" active=%d/%d refcnt=%d%s\n", 4739 pwq->nr_active, pwq->max_active, pwq->refcnt, 4740 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4741 4742 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4743 if (worker->current_pwq == pwq) { 4744 has_in_flight = true; 4745 break; 4746 } 4747 } 4748 if (has_in_flight) { 4749 bool comma = false; 4750 4751 pr_info(" in-flight:"); 4752 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4753 if (worker->current_pwq != pwq) 4754 continue; 4755 4756 pr_cont("%s %d%s:%ps", comma ? "," : "", 4757 task_pid_nr(worker->task), 4758 worker->rescue_wq ? "(RESCUER)" : "", 4759 worker->current_func); 4760 list_for_each_entry(work, &worker->scheduled, entry) 4761 pr_cont_work(false, work); 4762 comma = true; 4763 } 4764 pr_cont("\n"); 4765 } 4766 4767 list_for_each_entry(work, &pool->worklist, entry) { 4768 if (get_work_pwq(work) == pwq) { 4769 has_pending = true; 4770 break; 4771 } 4772 } 4773 if (has_pending) { 4774 bool comma = false; 4775 4776 pr_info(" pending:"); 4777 list_for_each_entry(work, &pool->worklist, entry) { 4778 if (get_work_pwq(work) != pwq) 4779 continue; 4780 4781 pr_cont_work(comma, work); 4782 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4783 } 4784 pr_cont("\n"); 4785 } 4786 4787 if (!list_empty(&pwq->inactive_works)) { 4788 bool comma = false; 4789 4790 pr_info(" inactive:"); 4791 list_for_each_entry(work, &pwq->inactive_works, entry) { 4792 pr_cont_work(comma, work); 4793 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4794 } 4795 pr_cont("\n"); 4796 } 4797 } 4798 4799 /** 4800 * show_workqueue_state - dump workqueue state 4801 * 4802 * Called from a sysrq handler or try_to_freeze_tasks() and prints out 4803 * all busy workqueues and pools. 4804 */ 4805 void show_workqueue_state(void) 4806 { 4807 struct workqueue_struct *wq; 4808 struct worker_pool *pool; 4809 unsigned long flags; 4810 int pi; 4811 4812 rcu_read_lock(); 4813 4814 pr_info("Showing busy workqueues and worker pools:\n"); 4815 4816 list_for_each_entry_rcu(wq, &workqueues, list) { 4817 struct pool_workqueue *pwq; 4818 bool idle = true; 4819 4820 for_each_pwq(pwq, wq) { 4821 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) { 4822 idle = false; 4823 break; 4824 } 4825 } 4826 if (idle) 4827 continue; 4828 4829 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4830 4831 for_each_pwq(pwq, wq) { 4832 raw_spin_lock_irqsave(&pwq->pool->lock, flags); 4833 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) 4834 show_pwq(pwq); 4835 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); 4836 /* 4837 * We could be printing a lot from atomic context, e.g. 4838 * sysrq-t -> show_workqueue_state(). Avoid triggering 4839 * hard lockup. 4840 */ 4841 touch_nmi_watchdog(); 4842 } 4843 } 4844 4845 for_each_pool(pool, pi) { 4846 struct worker *worker; 4847 bool first = true; 4848 4849 raw_spin_lock_irqsave(&pool->lock, flags); 4850 if (pool->nr_workers == pool->nr_idle) 4851 goto next_pool; 4852 4853 pr_info("pool %d:", pool->id); 4854 pr_cont_pool_info(pool); 4855 pr_cont(" hung=%us workers=%d", 4856 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000, 4857 pool->nr_workers); 4858 if (pool->manager) 4859 pr_cont(" manager: %d", 4860 task_pid_nr(pool->manager->task)); 4861 list_for_each_entry(worker, &pool->idle_list, entry) { 4862 pr_cont(" %s%d", first ? "idle: " : "", 4863 task_pid_nr(worker->task)); 4864 first = false; 4865 } 4866 pr_cont("\n"); 4867 next_pool: 4868 raw_spin_unlock_irqrestore(&pool->lock, flags); 4869 /* 4870 * We could be printing a lot from atomic context, e.g. 4871 * sysrq-t -> show_workqueue_state(). Avoid triggering 4872 * hard lockup. 4873 */ 4874 touch_nmi_watchdog(); 4875 } 4876 4877 rcu_read_unlock(); 4878 } 4879 4880 /* used to show worker information through /proc/PID/{comm,stat,status} */ 4881 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 4882 { 4883 int off; 4884 4885 /* always show the actual comm */ 4886 off = strscpy(buf, task->comm, size); 4887 if (off < 0) 4888 return; 4889 4890 /* stabilize PF_WQ_WORKER and worker pool association */ 4891 mutex_lock(&wq_pool_attach_mutex); 4892 4893 if (task->flags & PF_WQ_WORKER) { 4894 struct worker *worker = kthread_data(task); 4895 struct worker_pool *pool = worker->pool; 4896 4897 if (pool) { 4898 raw_spin_lock_irq(&pool->lock); 4899 /* 4900 * ->desc tracks information (wq name or 4901 * set_worker_desc()) for the latest execution. If 4902 * current, prepend '+', otherwise '-'. 4903 */ 4904 if (worker->desc[0] != '\0') { 4905 if (worker->current_work) 4906 scnprintf(buf + off, size - off, "+%s", 4907 worker->desc); 4908 else 4909 scnprintf(buf + off, size - off, "-%s", 4910 worker->desc); 4911 } 4912 raw_spin_unlock_irq(&pool->lock); 4913 } 4914 } 4915 4916 mutex_unlock(&wq_pool_attach_mutex); 4917 } 4918 4919 #ifdef CONFIG_SMP 4920 4921 /* 4922 * CPU hotplug. 4923 * 4924 * There are two challenges in supporting CPU hotplug. Firstly, there 4925 * are a lot of assumptions on strong associations among work, pwq and 4926 * pool which make migrating pending and scheduled works very 4927 * difficult to implement without impacting hot paths. Secondly, 4928 * worker pools serve mix of short, long and very long running works making 4929 * blocked draining impractical. 4930 * 4931 * This is solved by allowing the pools to be disassociated from the CPU 4932 * running as an unbound one and allowing it to be reattached later if the 4933 * cpu comes back online. 4934 */ 4935 4936 static void unbind_workers(int cpu) 4937 { 4938 struct worker_pool *pool; 4939 struct worker *worker; 4940 4941 for_each_cpu_worker_pool(pool, cpu) { 4942 mutex_lock(&wq_pool_attach_mutex); 4943 raw_spin_lock_irq(&pool->lock); 4944 4945 /* 4946 * We've blocked all attach/detach operations. Make all workers 4947 * unbound and set DISASSOCIATED. Before this, all workers 4948 * except for the ones which are still executing works from 4949 * before the last CPU down must be on the cpu. After 4950 * this, they may become diasporas. 4951 */ 4952 for_each_pool_worker(worker, pool) 4953 worker->flags |= WORKER_UNBOUND; 4954 4955 pool->flags |= POOL_DISASSOCIATED; 4956 4957 raw_spin_unlock_irq(&pool->lock); 4958 4959 for_each_pool_worker(worker, pool) { 4960 kthread_set_per_cpu(worker->task, -1); 4961 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0); 4962 } 4963 4964 mutex_unlock(&wq_pool_attach_mutex); 4965 4966 /* 4967 * Call schedule() so that we cross rq->lock and thus can 4968 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4969 * This is necessary as scheduler callbacks may be invoked 4970 * from other cpus. 4971 */ 4972 schedule(); 4973 4974 /* 4975 * Sched callbacks are disabled now. Zap nr_running. 4976 * After this, nr_running stays zero and need_more_worker() 4977 * and keep_working() are always true as long as the 4978 * worklist is not empty. This pool now behaves as an 4979 * unbound (in terms of concurrency management) pool which 4980 * are served by workers tied to the pool. 4981 */ 4982 atomic_set(&pool->nr_running, 0); 4983 4984 /* 4985 * With concurrency management just turned off, a busy 4986 * worker blocking could lead to lengthy stalls. Kick off 4987 * unbound chain execution of currently pending work items. 4988 */ 4989 raw_spin_lock_irq(&pool->lock); 4990 wake_up_worker(pool); 4991 raw_spin_unlock_irq(&pool->lock); 4992 } 4993 } 4994 4995 /** 4996 * rebind_workers - rebind all workers of a pool to the associated CPU 4997 * @pool: pool of interest 4998 * 4999 * @pool->cpu is coming online. Rebind all workers to the CPU. 5000 */ 5001 static void rebind_workers(struct worker_pool *pool) 5002 { 5003 struct worker *worker; 5004 5005 lockdep_assert_held(&wq_pool_attach_mutex); 5006 5007 /* 5008 * Restore CPU affinity of all workers. As all idle workers should 5009 * be on the run-queue of the associated CPU before any local 5010 * wake-ups for concurrency management happen, restore CPU affinity 5011 * of all workers first and then clear UNBOUND. As we're called 5012 * from CPU_ONLINE, the following shouldn't fail. 5013 */ 5014 for_each_pool_worker(worker, pool) { 5015 kthread_set_per_cpu(worker->task, pool->cpu); 5016 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 5017 pool->attrs->cpumask) < 0); 5018 } 5019 5020 raw_spin_lock_irq(&pool->lock); 5021 5022 pool->flags &= ~POOL_DISASSOCIATED; 5023 5024 for_each_pool_worker(worker, pool) { 5025 unsigned int worker_flags = worker->flags; 5026 5027 /* 5028 * A bound idle worker should actually be on the runqueue 5029 * of the associated CPU for local wake-ups targeting it to 5030 * work. Kick all idle workers so that they migrate to the 5031 * associated CPU. Doing this in the same loop as 5032 * replacing UNBOUND with REBOUND is safe as no worker will 5033 * be bound before @pool->lock is released. 5034 */ 5035 if (worker_flags & WORKER_IDLE) 5036 wake_up_process(worker->task); 5037 5038 /* 5039 * We want to clear UNBOUND but can't directly call 5040 * worker_clr_flags() or adjust nr_running. Atomically 5041 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 5042 * @worker will clear REBOUND using worker_clr_flags() when 5043 * it initiates the next execution cycle thus restoring 5044 * concurrency management. Note that when or whether 5045 * @worker clears REBOUND doesn't affect correctness. 5046 * 5047 * WRITE_ONCE() is necessary because @worker->flags may be 5048 * tested without holding any lock in 5049 * wq_worker_running(). Without it, NOT_RUNNING test may 5050 * fail incorrectly leading to premature concurrency 5051 * management operations. 5052 */ 5053 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 5054 worker_flags |= WORKER_REBOUND; 5055 worker_flags &= ~WORKER_UNBOUND; 5056 WRITE_ONCE(worker->flags, worker_flags); 5057 } 5058 5059 raw_spin_unlock_irq(&pool->lock); 5060 } 5061 5062 /** 5063 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 5064 * @pool: unbound pool of interest 5065 * @cpu: the CPU which is coming up 5066 * 5067 * An unbound pool may end up with a cpumask which doesn't have any online 5068 * CPUs. When a worker of such pool get scheduled, the scheduler resets 5069 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 5070 * online CPU before, cpus_allowed of all its workers should be restored. 5071 */ 5072 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 5073 { 5074 static cpumask_t cpumask; 5075 struct worker *worker; 5076 5077 lockdep_assert_held(&wq_pool_attach_mutex); 5078 5079 /* is @cpu allowed for @pool? */ 5080 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 5081 return; 5082 5083 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 5084 5085 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 5086 for_each_pool_worker(worker, pool) 5087 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 5088 } 5089 5090 int workqueue_prepare_cpu(unsigned int cpu) 5091 { 5092 struct worker_pool *pool; 5093 5094 for_each_cpu_worker_pool(pool, cpu) { 5095 if (pool->nr_workers) 5096 continue; 5097 if (!create_worker(pool)) 5098 return -ENOMEM; 5099 } 5100 return 0; 5101 } 5102 5103 int workqueue_online_cpu(unsigned int cpu) 5104 { 5105 struct worker_pool *pool; 5106 struct workqueue_struct *wq; 5107 int pi; 5108 5109 mutex_lock(&wq_pool_mutex); 5110 5111 for_each_pool(pool, pi) { 5112 mutex_lock(&wq_pool_attach_mutex); 5113 5114 if (pool->cpu == cpu) 5115 rebind_workers(pool); 5116 else if (pool->cpu < 0) 5117 restore_unbound_workers_cpumask(pool, cpu); 5118 5119 mutex_unlock(&wq_pool_attach_mutex); 5120 } 5121 5122 /* update NUMA affinity of unbound workqueues */ 5123 list_for_each_entry(wq, &workqueues, list) 5124 wq_update_unbound_numa(wq, cpu, true); 5125 5126 mutex_unlock(&wq_pool_mutex); 5127 return 0; 5128 } 5129 5130 int workqueue_offline_cpu(unsigned int cpu) 5131 { 5132 struct workqueue_struct *wq; 5133 5134 /* unbinding per-cpu workers should happen on the local CPU */ 5135 if (WARN_ON(cpu != smp_processor_id())) 5136 return -1; 5137 5138 unbind_workers(cpu); 5139 5140 /* update NUMA affinity of unbound workqueues */ 5141 mutex_lock(&wq_pool_mutex); 5142 list_for_each_entry(wq, &workqueues, list) 5143 wq_update_unbound_numa(wq, cpu, false); 5144 mutex_unlock(&wq_pool_mutex); 5145 5146 return 0; 5147 } 5148 5149 struct work_for_cpu { 5150 struct work_struct work; 5151 long (*fn)(void *); 5152 void *arg; 5153 long ret; 5154 }; 5155 5156 static void work_for_cpu_fn(struct work_struct *work) 5157 { 5158 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 5159 5160 wfc->ret = wfc->fn(wfc->arg); 5161 } 5162 5163 /** 5164 * work_on_cpu - run a function in thread context on a particular cpu 5165 * @cpu: the cpu to run on 5166 * @fn: the function to run 5167 * @arg: the function arg 5168 * 5169 * It is up to the caller to ensure that the cpu doesn't go offline. 5170 * The caller must not hold any locks which would prevent @fn from completing. 5171 * 5172 * Return: The value @fn returns. 5173 */ 5174 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 5175 { 5176 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 5177 5178 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 5179 schedule_work_on(cpu, &wfc.work); 5180 flush_work(&wfc.work); 5181 destroy_work_on_stack(&wfc.work); 5182 return wfc.ret; 5183 } 5184 EXPORT_SYMBOL_GPL(work_on_cpu); 5185 5186 /** 5187 * work_on_cpu_safe - run a function in thread context on a particular cpu 5188 * @cpu: the cpu to run on 5189 * @fn: the function to run 5190 * @arg: the function argument 5191 * 5192 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 5193 * any locks which would prevent @fn from completing. 5194 * 5195 * Return: The value @fn returns. 5196 */ 5197 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) 5198 { 5199 long ret = -ENODEV; 5200 5201 cpus_read_lock(); 5202 if (cpu_online(cpu)) 5203 ret = work_on_cpu(cpu, fn, arg); 5204 cpus_read_unlock(); 5205 return ret; 5206 } 5207 EXPORT_SYMBOL_GPL(work_on_cpu_safe); 5208 #endif /* CONFIG_SMP */ 5209 5210 #ifdef CONFIG_FREEZER 5211 5212 /** 5213 * freeze_workqueues_begin - begin freezing workqueues 5214 * 5215 * Start freezing workqueues. After this function returns, all freezable 5216 * workqueues will queue new works to their inactive_works list instead of 5217 * pool->worklist. 5218 * 5219 * CONTEXT: 5220 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5221 */ 5222 void freeze_workqueues_begin(void) 5223 { 5224 struct workqueue_struct *wq; 5225 struct pool_workqueue *pwq; 5226 5227 mutex_lock(&wq_pool_mutex); 5228 5229 WARN_ON_ONCE(workqueue_freezing); 5230 workqueue_freezing = true; 5231 5232 list_for_each_entry(wq, &workqueues, list) { 5233 mutex_lock(&wq->mutex); 5234 for_each_pwq(pwq, wq) 5235 pwq_adjust_max_active(pwq); 5236 mutex_unlock(&wq->mutex); 5237 } 5238 5239 mutex_unlock(&wq_pool_mutex); 5240 } 5241 5242 /** 5243 * freeze_workqueues_busy - are freezable workqueues still busy? 5244 * 5245 * Check whether freezing is complete. This function must be called 5246 * between freeze_workqueues_begin() and thaw_workqueues(). 5247 * 5248 * CONTEXT: 5249 * Grabs and releases wq_pool_mutex. 5250 * 5251 * Return: 5252 * %true if some freezable workqueues are still busy. %false if freezing 5253 * is complete. 5254 */ 5255 bool freeze_workqueues_busy(void) 5256 { 5257 bool busy = false; 5258 struct workqueue_struct *wq; 5259 struct pool_workqueue *pwq; 5260 5261 mutex_lock(&wq_pool_mutex); 5262 5263 WARN_ON_ONCE(!workqueue_freezing); 5264 5265 list_for_each_entry(wq, &workqueues, list) { 5266 if (!(wq->flags & WQ_FREEZABLE)) 5267 continue; 5268 /* 5269 * nr_active is monotonically decreasing. It's safe 5270 * to peek without lock. 5271 */ 5272 rcu_read_lock(); 5273 for_each_pwq(pwq, wq) { 5274 WARN_ON_ONCE(pwq->nr_active < 0); 5275 if (pwq->nr_active) { 5276 busy = true; 5277 rcu_read_unlock(); 5278 goto out_unlock; 5279 } 5280 } 5281 rcu_read_unlock(); 5282 } 5283 out_unlock: 5284 mutex_unlock(&wq_pool_mutex); 5285 return busy; 5286 } 5287 5288 /** 5289 * thaw_workqueues - thaw workqueues 5290 * 5291 * Thaw workqueues. Normal queueing is restored and all collected 5292 * frozen works are transferred to their respective pool worklists. 5293 * 5294 * CONTEXT: 5295 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5296 */ 5297 void thaw_workqueues(void) 5298 { 5299 struct workqueue_struct *wq; 5300 struct pool_workqueue *pwq; 5301 5302 mutex_lock(&wq_pool_mutex); 5303 5304 if (!workqueue_freezing) 5305 goto out_unlock; 5306 5307 workqueue_freezing = false; 5308 5309 /* restore max_active and repopulate worklist */ 5310 list_for_each_entry(wq, &workqueues, list) { 5311 mutex_lock(&wq->mutex); 5312 for_each_pwq(pwq, wq) 5313 pwq_adjust_max_active(pwq); 5314 mutex_unlock(&wq->mutex); 5315 } 5316 5317 out_unlock: 5318 mutex_unlock(&wq_pool_mutex); 5319 } 5320 #endif /* CONFIG_FREEZER */ 5321 5322 static int workqueue_apply_unbound_cpumask(void) 5323 { 5324 LIST_HEAD(ctxs); 5325 int ret = 0; 5326 struct workqueue_struct *wq; 5327 struct apply_wqattrs_ctx *ctx, *n; 5328 5329 lockdep_assert_held(&wq_pool_mutex); 5330 5331 list_for_each_entry(wq, &workqueues, list) { 5332 if (!(wq->flags & WQ_UNBOUND)) 5333 continue; 5334 /* creating multiple pwqs breaks ordering guarantee */ 5335 if (wq->flags & __WQ_ORDERED) 5336 continue; 5337 5338 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs); 5339 if (!ctx) { 5340 ret = -ENOMEM; 5341 break; 5342 } 5343 5344 list_add_tail(&ctx->list, &ctxs); 5345 } 5346 5347 list_for_each_entry_safe(ctx, n, &ctxs, list) { 5348 if (!ret) 5349 apply_wqattrs_commit(ctx); 5350 apply_wqattrs_cleanup(ctx); 5351 } 5352 5353 return ret; 5354 } 5355 5356 /** 5357 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 5358 * @cpumask: the cpumask to set 5359 * 5360 * The low-level workqueues cpumask is a global cpumask that limits 5361 * the affinity of all unbound workqueues. This function check the @cpumask 5362 * and apply it to all unbound workqueues and updates all pwqs of them. 5363 * 5364 * Return: 0 - Success 5365 * -EINVAL - Invalid @cpumask 5366 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 5367 */ 5368 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 5369 { 5370 int ret = -EINVAL; 5371 cpumask_var_t saved_cpumask; 5372 5373 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) 5374 return -ENOMEM; 5375 5376 /* 5377 * Not excluding isolated cpus on purpose. 5378 * If the user wishes to include them, we allow that. 5379 */ 5380 cpumask_and(cpumask, cpumask, cpu_possible_mask); 5381 if (!cpumask_empty(cpumask)) { 5382 apply_wqattrs_lock(); 5383 5384 /* save the old wq_unbound_cpumask. */ 5385 cpumask_copy(saved_cpumask, wq_unbound_cpumask); 5386 5387 /* update wq_unbound_cpumask at first and apply it to wqs. */ 5388 cpumask_copy(wq_unbound_cpumask, cpumask); 5389 ret = workqueue_apply_unbound_cpumask(); 5390 5391 /* restore the wq_unbound_cpumask when failed. */ 5392 if (ret < 0) 5393 cpumask_copy(wq_unbound_cpumask, saved_cpumask); 5394 5395 apply_wqattrs_unlock(); 5396 } 5397 5398 free_cpumask_var(saved_cpumask); 5399 return ret; 5400 } 5401 5402 #ifdef CONFIG_SYSFS 5403 /* 5404 * Workqueues with WQ_SYSFS flag set is visible to userland via 5405 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 5406 * following attributes. 5407 * 5408 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 5409 * max_active RW int : maximum number of in-flight work items 5410 * 5411 * Unbound workqueues have the following extra attributes. 5412 * 5413 * pool_ids RO int : the associated pool IDs for each node 5414 * nice RW int : nice value of the workers 5415 * cpumask RW mask : bitmask of allowed CPUs for the workers 5416 * numa RW bool : whether enable NUMA affinity 5417 */ 5418 struct wq_device { 5419 struct workqueue_struct *wq; 5420 struct device dev; 5421 }; 5422 5423 static struct workqueue_struct *dev_to_wq(struct device *dev) 5424 { 5425 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5426 5427 return wq_dev->wq; 5428 } 5429 5430 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 5431 char *buf) 5432 { 5433 struct workqueue_struct *wq = dev_to_wq(dev); 5434 5435 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 5436 } 5437 static DEVICE_ATTR_RO(per_cpu); 5438 5439 static ssize_t max_active_show(struct device *dev, 5440 struct device_attribute *attr, char *buf) 5441 { 5442 struct workqueue_struct *wq = dev_to_wq(dev); 5443 5444 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 5445 } 5446 5447 static ssize_t max_active_store(struct device *dev, 5448 struct device_attribute *attr, const char *buf, 5449 size_t count) 5450 { 5451 struct workqueue_struct *wq = dev_to_wq(dev); 5452 int val; 5453 5454 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 5455 return -EINVAL; 5456 5457 workqueue_set_max_active(wq, val); 5458 return count; 5459 } 5460 static DEVICE_ATTR_RW(max_active); 5461 5462 static struct attribute *wq_sysfs_attrs[] = { 5463 &dev_attr_per_cpu.attr, 5464 &dev_attr_max_active.attr, 5465 NULL, 5466 }; 5467 ATTRIBUTE_GROUPS(wq_sysfs); 5468 5469 static ssize_t wq_pool_ids_show(struct device *dev, 5470 struct device_attribute *attr, char *buf) 5471 { 5472 struct workqueue_struct *wq = dev_to_wq(dev); 5473 const char *delim = ""; 5474 int node, written = 0; 5475 5476 cpus_read_lock(); 5477 rcu_read_lock(); 5478 for_each_node(node) { 5479 written += scnprintf(buf + written, PAGE_SIZE - written, 5480 "%s%d:%d", delim, node, 5481 unbound_pwq_by_node(wq, node)->pool->id); 5482 delim = " "; 5483 } 5484 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 5485 rcu_read_unlock(); 5486 cpus_read_unlock(); 5487 5488 return written; 5489 } 5490 5491 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 5492 char *buf) 5493 { 5494 struct workqueue_struct *wq = dev_to_wq(dev); 5495 int written; 5496 5497 mutex_lock(&wq->mutex); 5498 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 5499 mutex_unlock(&wq->mutex); 5500 5501 return written; 5502 } 5503 5504 /* prepare workqueue_attrs for sysfs store operations */ 5505 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5506 { 5507 struct workqueue_attrs *attrs; 5508 5509 lockdep_assert_held(&wq_pool_mutex); 5510 5511 attrs = alloc_workqueue_attrs(); 5512 if (!attrs) 5513 return NULL; 5514 5515 copy_workqueue_attrs(attrs, wq->unbound_attrs); 5516 return attrs; 5517 } 5518 5519 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 5520 const char *buf, size_t count) 5521 { 5522 struct workqueue_struct *wq = dev_to_wq(dev); 5523 struct workqueue_attrs *attrs; 5524 int ret = -ENOMEM; 5525 5526 apply_wqattrs_lock(); 5527 5528 attrs = wq_sysfs_prep_attrs(wq); 5529 if (!attrs) 5530 goto out_unlock; 5531 5532 if (sscanf(buf, "%d", &attrs->nice) == 1 && 5533 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 5534 ret = apply_workqueue_attrs_locked(wq, attrs); 5535 else 5536 ret = -EINVAL; 5537 5538 out_unlock: 5539 apply_wqattrs_unlock(); 5540 free_workqueue_attrs(attrs); 5541 return ret ?: count; 5542 } 5543 5544 static ssize_t wq_cpumask_show(struct device *dev, 5545 struct device_attribute *attr, char *buf) 5546 { 5547 struct workqueue_struct *wq = dev_to_wq(dev); 5548 int written; 5549 5550 mutex_lock(&wq->mutex); 5551 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5552 cpumask_pr_args(wq->unbound_attrs->cpumask)); 5553 mutex_unlock(&wq->mutex); 5554 return written; 5555 } 5556 5557 static ssize_t wq_cpumask_store(struct device *dev, 5558 struct device_attribute *attr, 5559 const char *buf, size_t count) 5560 { 5561 struct workqueue_struct *wq = dev_to_wq(dev); 5562 struct workqueue_attrs *attrs; 5563 int ret = -ENOMEM; 5564 5565 apply_wqattrs_lock(); 5566 5567 attrs = wq_sysfs_prep_attrs(wq); 5568 if (!attrs) 5569 goto out_unlock; 5570 5571 ret = cpumask_parse(buf, attrs->cpumask); 5572 if (!ret) 5573 ret = apply_workqueue_attrs_locked(wq, attrs); 5574 5575 out_unlock: 5576 apply_wqattrs_unlock(); 5577 free_workqueue_attrs(attrs); 5578 return ret ?: count; 5579 } 5580 5581 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5582 char *buf) 5583 { 5584 struct workqueue_struct *wq = dev_to_wq(dev); 5585 int written; 5586 5587 mutex_lock(&wq->mutex); 5588 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5589 !wq->unbound_attrs->no_numa); 5590 mutex_unlock(&wq->mutex); 5591 5592 return written; 5593 } 5594 5595 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 5596 const char *buf, size_t count) 5597 { 5598 struct workqueue_struct *wq = dev_to_wq(dev); 5599 struct workqueue_attrs *attrs; 5600 int v, ret = -ENOMEM; 5601 5602 apply_wqattrs_lock(); 5603 5604 attrs = wq_sysfs_prep_attrs(wq); 5605 if (!attrs) 5606 goto out_unlock; 5607 5608 ret = -EINVAL; 5609 if (sscanf(buf, "%d", &v) == 1) { 5610 attrs->no_numa = !v; 5611 ret = apply_workqueue_attrs_locked(wq, attrs); 5612 } 5613 5614 out_unlock: 5615 apply_wqattrs_unlock(); 5616 free_workqueue_attrs(attrs); 5617 return ret ?: count; 5618 } 5619 5620 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5621 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5622 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5623 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5624 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5625 __ATTR_NULL, 5626 }; 5627 5628 static struct bus_type wq_subsys = { 5629 .name = "workqueue", 5630 .dev_groups = wq_sysfs_groups, 5631 }; 5632 5633 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5634 struct device_attribute *attr, char *buf) 5635 { 5636 int written; 5637 5638 mutex_lock(&wq_pool_mutex); 5639 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5640 cpumask_pr_args(wq_unbound_cpumask)); 5641 mutex_unlock(&wq_pool_mutex); 5642 5643 return written; 5644 } 5645 5646 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5647 struct device_attribute *attr, const char *buf, size_t count) 5648 { 5649 cpumask_var_t cpumask; 5650 int ret; 5651 5652 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5653 return -ENOMEM; 5654 5655 ret = cpumask_parse(buf, cpumask); 5656 if (!ret) 5657 ret = workqueue_set_unbound_cpumask(cpumask); 5658 5659 free_cpumask_var(cpumask); 5660 return ret ? ret : count; 5661 } 5662 5663 static struct device_attribute wq_sysfs_cpumask_attr = 5664 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5665 wq_unbound_cpumask_store); 5666 5667 static int __init wq_sysfs_init(void) 5668 { 5669 int err; 5670 5671 err = subsys_virtual_register(&wq_subsys, NULL); 5672 if (err) 5673 return err; 5674 5675 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr); 5676 } 5677 core_initcall(wq_sysfs_init); 5678 5679 static void wq_device_release(struct device *dev) 5680 { 5681 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5682 5683 kfree(wq_dev); 5684 } 5685 5686 /** 5687 * workqueue_sysfs_register - make a workqueue visible in sysfs 5688 * @wq: the workqueue to register 5689 * 5690 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5691 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5692 * which is the preferred method. 5693 * 5694 * Workqueue user should use this function directly iff it wants to apply 5695 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5696 * apply_workqueue_attrs() may race against userland updating the 5697 * attributes. 5698 * 5699 * Return: 0 on success, -errno on failure. 5700 */ 5701 int workqueue_sysfs_register(struct workqueue_struct *wq) 5702 { 5703 struct wq_device *wq_dev; 5704 int ret; 5705 5706 /* 5707 * Adjusting max_active or creating new pwqs by applying 5708 * attributes breaks ordering guarantee. Disallow exposing ordered 5709 * workqueues. 5710 */ 5711 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 5712 return -EINVAL; 5713 5714 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5715 if (!wq_dev) 5716 return -ENOMEM; 5717 5718 wq_dev->wq = wq; 5719 wq_dev->dev.bus = &wq_subsys; 5720 wq_dev->dev.release = wq_device_release; 5721 dev_set_name(&wq_dev->dev, "%s", wq->name); 5722 5723 /* 5724 * unbound_attrs are created separately. Suppress uevent until 5725 * everything is ready. 5726 */ 5727 dev_set_uevent_suppress(&wq_dev->dev, true); 5728 5729 ret = device_register(&wq_dev->dev); 5730 if (ret) { 5731 put_device(&wq_dev->dev); 5732 wq->wq_dev = NULL; 5733 return ret; 5734 } 5735 5736 if (wq->flags & WQ_UNBOUND) { 5737 struct device_attribute *attr; 5738 5739 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5740 ret = device_create_file(&wq_dev->dev, attr); 5741 if (ret) { 5742 device_unregister(&wq_dev->dev); 5743 wq->wq_dev = NULL; 5744 return ret; 5745 } 5746 } 5747 } 5748 5749 dev_set_uevent_suppress(&wq_dev->dev, false); 5750 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5751 return 0; 5752 } 5753 5754 /** 5755 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5756 * @wq: the workqueue to unregister 5757 * 5758 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5759 */ 5760 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5761 { 5762 struct wq_device *wq_dev = wq->wq_dev; 5763 5764 if (!wq->wq_dev) 5765 return; 5766 5767 wq->wq_dev = NULL; 5768 device_unregister(&wq_dev->dev); 5769 } 5770 #else /* CONFIG_SYSFS */ 5771 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5772 #endif /* CONFIG_SYSFS */ 5773 5774 /* 5775 * Workqueue watchdog. 5776 * 5777 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 5778 * flush dependency, a concurrency managed work item which stays RUNNING 5779 * indefinitely. Workqueue stalls can be very difficult to debug as the 5780 * usual warning mechanisms don't trigger and internal workqueue state is 5781 * largely opaque. 5782 * 5783 * Workqueue watchdog monitors all worker pools periodically and dumps 5784 * state if some pools failed to make forward progress for a while where 5785 * forward progress is defined as the first item on ->worklist changing. 5786 * 5787 * This mechanism is controlled through the kernel parameter 5788 * "workqueue.watchdog_thresh" which can be updated at runtime through the 5789 * corresponding sysfs parameter file. 5790 */ 5791 #ifdef CONFIG_WQ_WATCHDOG 5792 5793 static unsigned long wq_watchdog_thresh = 30; 5794 static struct timer_list wq_watchdog_timer; 5795 5796 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 5797 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 5798 5799 static void wq_watchdog_reset_touched(void) 5800 { 5801 int cpu; 5802 5803 wq_watchdog_touched = jiffies; 5804 for_each_possible_cpu(cpu) 5805 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5806 } 5807 5808 static void wq_watchdog_timer_fn(struct timer_list *unused) 5809 { 5810 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 5811 bool lockup_detected = false; 5812 unsigned long now = jiffies; 5813 struct worker_pool *pool; 5814 int pi; 5815 5816 if (!thresh) 5817 return; 5818 5819 rcu_read_lock(); 5820 5821 for_each_pool(pool, pi) { 5822 unsigned long pool_ts, touched, ts; 5823 5824 if (list_empty(&pool->worklist)) 5825 continue; 5826 5827 /* 5828 * If a virtual machine is stopped by the host it can look to 5829 * the watchdog like a stall. 5830 */ 5831 kvm_check_and_clear_guest_paused(); 5832 5833 /* get the latest of pool and touched timestamps */ 5834 if (pool->cpu >= 0) 5835 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu)); 5836 else 5837 touched = READ_ONCE(wq_watchdog_touched); 5838 pool_ts = READ_ONCE(pool->watchdog_ts); 5839 5840 if (time_after(pool_ts, touched)) 5841 ts = pool_ts; 5842 else 5843 ts = touched; 5844 5845 /* did we stall? */ 5846 if (time_after(now, ts + thresh)) { 5847 lockup_detected = true; 5848 pr_emerg("BUG: workqueue lockup - pool"); 5849 pr_cont_pool_info(pool); 5850 pr_cont(" stuck for %us!\n", 5851 jiffies_to_msecs(now - pool_ts) / 1000); 5852 } 5853 } 5854 5855 rcu_read_unlock(); 5856 5857 if (lockup_detected) 5858 show_workqueue_state(); 5859 5860 wq_watchdog_reset_touched(); 5861 mod_timer(&wq_watchdog_timer, jiffies + thresh); 5862 } 5863 5864 notrace void wq_watchdog_touch(int cpu) 5865 { 5866 if (cpu >= 0) 5867 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5868 5869 wq_watchdog_touched = jiffies; 5870 } 5871 5872 static void wq_watchdog_set_thresh(unsigned long thresh) 5873 { 5874 wq_watchdog_thresh = 0; 5875 del_timer_sync(&wq_watchdog_timer); 5876 5877 if (thresh) { 5878 wq_watchdog_thresh = thresh; 5879 wq_watchdog_reset_touched(); 5880 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 5881 } 5882 } 5883 5884 static int wq_watchdog_param_set_thresh(const char *val, 5885 const struct kernel_param *kp) 5886 { 5887 unsigned long thresh; 5888 int ret; 5889 5890 ret = kstrtoul(val, 0, &thresh); 5891 if (ret) 5892 return ret; 5893 5894 if (system_wq) 5895 wq_watchdog_set_thresh(thresh); 5896 else 5897 wq_watchdog_thresh = thresh; 5898 5899 return 0; 5900 } 5901 5902 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 5903 .set = wq_watchdog_param_set_thresh, 5904 .get = param_get_ulong, 5905 }; 5906 5907 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 5908 0644); 5909 5910 static void wq_watchdog_init(void) 5911 { 5912 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 5913 wq_watchdog_set_thresh(wq_watchdog_thresh); 5914 } 5915 5916 #else /* CONFIG_WQ_WATCHDOG */ 5917 5918 static inline void wq_watchdog_init(void) { } 5919 5920 #endif /* CONFIG_WQ_WATCHDOG */ 5921 5922 static void __init wq_numa_init(void) 5923 { 5924 cpumask_var_t *tbl; 5925 int node, cpu; 5926 5927 if (num_possible_nodes() <= 1) 5928 return; 5929 5930 if (wq_disable_numa) { 5931 pr_info("workqueue: NUMA affinity support disabled\n"); 5932 return; 5933 } 5934 5935 for_each_possible_cpu(cpu) { 5936 if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) { 5937 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5938 return; 5939 } 5940 } 5941 5942 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(); 5943 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5944 5945 /* 5946 * We want masks of possible CPUs of each node which isn't readily 5947 * available. Build one from cpu_to_node() which should have been 5948 * fully initialized by now. 5949 */ 5950 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL); 5951 BUG_ON(!tbl); 5952 5953 for_each_node(node) 5954 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5955 node_online(node) ? node : NUMA_NO_NODE)); 5956 5957 for_each_possible_cpu(cpu) { 5958 node = cpu_to_node(cpu); 5959 cpumask_set_cpu(cpu, tbl[node]); 5960 } 5961 5962 wq_numa_possible_cpumask = tbl; 5963 wq_numa_enabled = true; 5964 } 5965 5966 /** 5967 * workqueue_init_early - early init for workqueue subsystem 5968 * 5969 * This is the first half of two-staged workqueue subsystem initialization 5970 * and invoked as soon as the bare basics - memory allocation, cpumasks and 5971 * idr are up. It sets up all the data structures and system workqueues 5972 * and allows early boot code to create workqueues and queue/cancel work 5973 * items. Actual work item execution starts only after kthreads can be 5974 * created and scheduled right before early initcalls. 5975 */ 5976 void __init workqueue_init_early(void) 5977 { 5978 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5979 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ; 5980 int i, cpu; 5981 5982 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5983 5984 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 5985 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags)); 5986 5987 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5988 5989 /* initialize CPU pools */ 5990 for_each_possible_cpu(cpu) { 5991 struct worker_pool *pool; 5992 5993 i = 0; 5994 for_each_cpu_worker_pool(pool, cpu) { 5995 BUG_ON(init_worker_pool(pool)); 5996 pool->cpu = cpu; 5997 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5998 pool->attrs->nice = std_nice[i++]; 5999 pool->node = cpu_to_node(cpu); 6000 6001 /* alloc pool ID */ 6002 mutex_lock(&wq_pool_mutex); 6003 BUG_ON(worker_pool_assign_id(pool)); 6004 mutex_unlock(&wq_pool_mutex); 6005 } 6006 } 6007 6008 /* create default unbound and ordered wq attrs */ 6009 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 6010 struct workqueue_attrs *attrs; 6011 6012 BUG_ON(!(attrs = alloc_workqueue_attrs())); 6013 attrs->nice = std_nice[i]; 6014 unbound_std_wq_attrs[i] = attrs; 6015 6016 /* 6017 * An ordered wq should have only one pwq as ordering is 6018 * guaranteed by max_active which is enforced by pwqs. 6019 * Turn off NUMA so that dfl_pwq is used for all nodes. 6020 */ 6021 BUG_ON(!(attrs = alloc_workqueue_attrs())); 6022 attrs->nice = std_nice[i]; 6023 attrs->no_numa = true; 6024 ordered_wq_attrs[i] = attrs; 6025 } 6026 6027 system_wq = alloc_workqueue("events", 0, 0); 6028 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 6029 system_long_wq = alloc_workqueue("events_long", 0, 0); 6030 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 6031 WQ_UNBOUND_MAX_ACTIVE); 6032 system_freezable_wq = alloc_workqueue("events_freezable", 6033 WQ_FREEZABLE, 0); 6034 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 6035 WQ_POWER_EFFICIENT, 0); 6036 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 6037 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 6038 0); 6039 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 6040 !system_unbound_wq || !system_freezable_wq || 6041 !system_power_efficient_wq || 6042 !system_freezable_power_efficient_wq); 6043 } 6044 6045 /** 6046 * workqueue_init - bring workqueue subsystem fully online 6047 * 6048 * This is the latter half of two-staged workqueue subsystem initialization 6049 * and invoked as soon as kthreads can be created and scheduled. 6050 * Workqueues have been created and work items queued on them, but there 6051 * are no kworkers executing the work items yet. Populate the worker pools 6052 * with the initial workers and enable future kworker creations. 6053 */ 6054 void __init workqueue_init(void) 6055 { 6056 struct workqueue_struct *wq; 6057 struct worker_pool *pool; 6058 int cpu, bkt; 6059 6060 /* 6061 * It'd be simpler to initialize NUMA in workqueue_init_early() but 6062 * CPU to node mapping may not be available that early on some 6063 * archs such as power and arm64. As per-cpu pools created 6064 * previously could be missing node hint and unbound pools NUMA 6065 * affinity, fix them up. 6066 * 6067 * Also, while iterating workqueues, create rescuers if requested. 6068 */ 6069 wq_numa_init(); 6070 6071 mutex_lock(&wq_pool_mutex); 6072 6073 for_each_possible_cpu(cpu) { 6074 for_each_cpu_worker_pool(pool, cpu) { 6075 pool->node = cpu_to_node(cpu); 6076 } 6077 } 6078 6079 list_for_each_entry(wq, &workqueues, list) { 6080 wq_update_unbound_numa(wq, smp_processor_id(), true); 6081 WARN(init_rescuer(wq), 6082 "workqueue: failed to create early rescuer for %s", 6083 wq->name); 6084 } 6085 6086 mutex_unlock(&wq_pool_mutex); 6087 6088 /* create the initial workers */ 6089 for_each_online_cpu(cpu) { 6090 for_each_cpu_worker_pool(pool, cpu) { 6091 pool->flags &= ~POOL_DISASSOCIATED; 6092 BUG_ON(!create_worker(pool)); 6093 } 6094 } 6095 6096 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 6097 BUG_ON(!create_worker(pool)); 6098 6099 wq_online = true; 6100 wq_watchdog_init(); 6101 } 6102