xref: /openbmc/linux/kernel/workqueue.c (revision a8fe58ce)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There are two worker pools for each CPU (one for
20  * normal work items and the other for high priority ones) and some extra
21  * pools for workqueues which are not bound to any specific CPU - the
22  * number of these backing pools is dynamic.
23  *
24  * Please read Documentation/workqueue.txt for details.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 
52 #include "workqueue_internal.h"
53 
54 enum {
55 	/*
56 	 * worker_pool flags
57 	 *
58 	 * A bound pool is either associated or disassociated with its CPU.
59 	 * While associated (!DISASSOCIATED), all workers are bound to the
60 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 	 * is in effect.
62 	 *
63 	 * While DISASSOCIATED, the cpu may be offline and all workers have
64 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 	 * be executing on any CPU.  The pool behaves as an unbound one.
66 	 *
67 	 * Note that DISASSOCIATED should be flipped only while holding
68 	 * attach_mutex to avoid changing binding state while
69 	 * worker_attach_to_pool() is in progress.
70 	 */
71 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72 
73 	/* worker flags */
74 	WORKER_DIE		= 1 << 1,	/* die die die */
75 	WORKER_IDLE		= 1 << 2,	/* is idle */
76 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
77 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
80 
81 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
82 				  WORKER_UNBOUND | WORKER_REBOUND,
83 
84 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
85 
86 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
87 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
88 
89 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
90 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
91 
92 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
93 						/* call for help after 10ms
94 						   (min two ticks) */
95 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
96 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
97 
98 	/*
99 	 * Rescue workers are used only on emergencies and shared by
100 	 * all cpus.  Give MIN_NICE.
101 	 */
102 	RESCUER_NICE_LEVEL	= MIN_NICE,
103 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
104 
105 	WQ_NAME_LEN		= 24,
106 };
107 
108 /*
109  * Structure fields follow one of the following exclusion rules.
110  *
111  * I: Modifiable by initialization/destruction paths and read-only for
112  *    everyone else.
113  *
114  * P: Preemption protected.  Disabling preemption is enough and should
115  *    only be modified and accessed from the local cpu.
116  *
117  * L: pool->lock protected.  Access with pool->lock held.
118  *
119  * X: During normal operation, modification requires pool->lock and should
120  *    be done only from local cpu.  Either disabling preemption on local
121  *    cpu or grabbing pool->lock is enough for read access.  If
122  *    POOL_DISASSOCIATED is set, it's identical to L.
123  *
124  * A: pool->attach_mutex protected.
125  *
126  * PL: wq_pool_mutex protected.
127  *
128  * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
129  *
130  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
131  *
132  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
133  *      sched-RCU for reads.
134  *
135  * WQ: wq->mutex protected.
136  *
137  * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
138  *
139  * MD: wq_mayday_lock protected.
140  */
141 
142 /* struct worker is defined in workqueue_internal.h */
143 
144 struct worker_pool {
145 	spinlock_t		lock;		/* the pool lock */
146 	int			cpu;		/* I: the associated cpu */
147 	int			node;		/* I: the associated node ID */
148 	int			id;		/* I: pool ID */
149 	unsigned int		flags;		/* X: flags */
150 
151 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
152 
153 	struct list_head	worklist;	/* L: list of pending works */
154 	int			nr_workers;	/* L: total number of workers */
155 
156 	/* nr_idle includes the ones off idle_list for rebinding */
157 	int			nr_idle;	/* L: currently idle ones */
158 
159 	struct list_head	idle_list;	/* X: list of idle workers */
160 	struct timer_list	idle_timer;	/* L: worker idle timeout */
161 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
162 
163 	/* a workers is either on busy_hash or idle_list, or the manager */
164 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
165 						/* L: hash of busy workers */
166 
167 	/* see manage_workers() for details on the two manager mutexes */
168 	struct mutex		manager_arb;	/* manager arbitration */
169 	struct worker		*manager;	/* L: purely informational */
170 	struct mutex		attach_mutex;	/* attach/detach exclusion */
171 	struct list_head	workers;	/* A: attached workers */
172 	struct completion	*detach_completion; /* all workers detached */
173 
174 	struct ida		worker_ida;	/* worker IDs for task name */
175 
176 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
177 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
178 	int			refcnt;		/* PL: refcnt for unbound pools */
179 
180 	/*
181 	 * The current concurrency level.  As it's likely to be accessed
182 	 * from other CPUs during try_to_wake_up(), put it in a separate
183 	 * cacheline.
184 	 */
185 	atomic_t		nr_running ____cacheline_aligned_in_smp;
186 
187 	/*
188 	 * Destruction of pool is sched-RCU protected to allow dereferences
189 	 * from get_work_pool().
190 	 */
191 	struct rcu_head		rcu;
192 } ____cacheline_aligned_in_smp;
193 
194 /*
195  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
196  * of work_struct->data are used for flags and the remaining high bits
197  * point to the pwq; thus, pwqs need to be aligned at two's power of the
198  * number of flag bits.
199  */
200 struct pool_workqueue {
201 	struct worker_pool	*pool;		/* I: the associated pool */
202 	struct workqueue_struct *wq;		/* I: the owning workqueue */
203 	int			work_color;	/* L: current color */
204 	int			flush_color;	/* L: flushing color */
205 	int			refcnt;		/* L: reference count */
206 	int			nr_in_flight[WORK_NR_COLORS];
207 						/* L: nr of in_flight works */
208 	int			nr_active;	/* L: nr of active works */
209 	int			max_active;	/* L: max active works */
210 	struct list_head	delayed_works;	/* L: delayed works */
211 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
212 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
213 
214 	/*
215 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
216 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
217 	 * itself is also sched-RCU protected so that the first pwq can be
218 	 * determined without grabbing wq->mutex.
219 	 */
220 	struct work_struct	unbound_release_work;
221 	struct rcu_head		rcu;
222 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
223 
224 /*
225  * Structure used to wait for workqueue flush.
226  */
227 struct wq_flusher {
228 	struct list_head	list;		/* WQ: list of flushers */
229 	int			flush_color;	/* WQ: flush color waiting for */
230 	struct completion	done;		/* flush completion */
231 };
232 
233 struct wq_device;
234 
235 /*
236  * The externally visible workqueue.  It relays the issued work items to
237  * the appropriate worker_pool through its pool_workqueues.
238  */
239 struct workqueue_struct {
240 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
241 	struct list_head	list;		/* PR: list of all workqueues */
242 
243 	struct mutex		mutex;		/* protects this wq */
244 	int			work_color;	/* WQ: current work color */
245 	int			flush_color;	/* WQ: current flush color */
246 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
247 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
248 	struct list_head	flusher_queue;	/* WQ: flush waiters */
249 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
250 
251 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
252 	struct worker		*rescuer;	/* I: rescue worker */
253 
254 	int			nr_drainers;	/* WQ: drain in progress */
255 	int			saved_max_active; /* WQ: saved pwq max_active */
256 
257 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
258 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
259 
260 #ifdef CONFIG_SYSFS
261 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
262 #endif
263 #ifdef CONFIG_LOCKDEP
264 	struct lockdep_map	lockdep_map;
265 #endif
266 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
267 
268 	/*
269 	 * Destruction of workqueue_struct is sched-RCU protected to allow
270 	 * walking the workqueues list without grabbing wq_pool_mutex.
271 	 * This is used to dump all workqueues from sysrq.
272 	 */
273 	struct rcu_head		rcu;
274 
275 	/* hot fields used during command issue, aligned to cacheline */
276 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
278 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
279 };
280 
281 static struct kmem_cache *pwq_cache;
282 
283 static cpumask_var_t *wq_numa_possible_cpumask;
284 					/* possible CPUs of each node */
285 
286 static bool wq_disable_numa;
287 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
288 
289 /* see the comment above the definition of WQ_POWER_EFFICIENT */
290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
291 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
292 
293 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
294 
295 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
296 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
297 
298 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
299 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
300 
301 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
302 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
303 
304 static cpumask_var_t wq_unbound_cpumask; /* PL: low level cpumask for all unbound wqs */
305 
306 /* the per-cpu worker pools */
307 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
308 				     cpu_worker_pools);
309 
310 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
311 
312 /* PL: hash of all unbound pools keyed by pool->attrs */
313 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
314 
315 /* I: attributes used when instantiating standard unbound pools on demand */
316 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
317 
318 /* I: attributes used when instantiating ordered pools on demand */
319 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
320 
321 struct workqueue_struct *system_wq __read_mostly;
322 EXPORT_SYMBOL(system_wq);
323 struct workqueue_struct *system_highpri_wq __read_mostly;
324 EXPORT_SYMBOL_GPL(system_highpri_wq);
325 struct workqueue_struct *system_long_wq __read_mostly;
326 EXPORT_SYMBOL_GPL(system_long_wq);
327 struct workqueue_struct *system_unbound_wq __read_mostly;
328 EXPORT_SYMBOL_GPL(system_unbound_wq);
329 struct workqueue_struct *system_freezable_wq __read_mostly;
330 EXPORT_SYMBOL_GPL(system_freezable_wq);
331 struct workqueue_struct *system_power_efficient_wq __read_mostly;
332 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
333 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
334 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
335 
336 static int worker_thread(void *__worker);
337 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
338 
339 #define CREATE_TRACE_POINTS
340 #include <trace/events/workqueue.h>
341 
342 #define assert_rcu_or_pool_mutex()					\
343 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
344 			 !lockdep_is_held(&wq_pool_mutex),		\
345 			 "sched RCU or wq_pool_mutex should be held")
346 
347 #define assert_rcu_or_wq_mutex(wq)					\
348 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
349 			 !lockdep_is_held(&wq->mutex),			\
350 			 "sched RCU or wq->mutex should be held")
351 
352 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
353 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
354 			 !lockdep_is_held(&wq->mutex) &&		\
355 			 !lockdep_is_held(&wq_pool_mutex),		\
356 			 "sched RCU, wq->mutex or wq_pool_mutex should be held")
357 
358 #define for_each_cpu_worker_pool(pool, cpu)				\
359 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
360 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
361 	     (pool)++)
362 
363 /**
364  * for_each_pool - iterate through all worker_pools in the system
365  * @pool: iteration cursor
366  * @pi: integer used for iteration
367  *
368  * This must be called either with wq_pool_mutex held or sched RCU read
369  * locked.  If the pool needs to be used beyond the locking in effect, the
370  * caller is responsible for guaranteeing that the pool stays online.
371  *
372  * The if/else clause exists only for the lockdep assertion and can be
373  * ignored.
374  */
375 #define for_each_pool(pool, pi)						\
376 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
377 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
378 		else
379 
380 /**
381  * for_each_pool_worker - iterate through all workers of a worker_pool
382  * @worker: iteration cursor
383  * @pool: worker_pool to iterate workers of
384  *
385  * This must be called with @pool->attach_mutex.
386  *
387  * The if/else clause exists only for the lockdep assertion and can be
388  * ignored.
389  */
390 #define for_each_pool_worker(worker, pool)				\
391 	list_for_each_entry((worker), &(pool)->workers, node)		\
392 		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
393 		else
394 
395 /**
396  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
397  * @pwq: iteration cursor
398  * @wq: the target workqueue
399  *
400  * This must be called either with wq->mutex held or sched RCU read locked.
401  * If the pwq needs to be used beyond the locking in effect, the caller is
402  * responsible for guaranteeing that the pwq stays online.
403  *
404  * The if/else clause exists only for the lockdep assertion and can be
405  * ignored.
406  */
407 #define for_each_pwq(pwq, wq)						\
408 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
409 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
410 		else
411 
412 #ifdef CONFIG_DEBUG_OBJECTS_WORK
413 
414 static struct debug_obj_descr work_debug_descr;
415 
416 static void *work_debug_hint(void *addr)
417 {
418 	return ((struct work_struct *) addr)->func;
419 }
420 
421 /*
422  * fixup_init is called when:
423  * - an active object is initialized
424  */
425 static int work_fixup_init(void *addr, enum debug_obj_state state)
426 {
427 	struct work_struct *work = addr;
428 
429 	switch (state) {
430 	case ODEBUG_STATE_ACTIVE:
431 		cancel_work_sync(work);
432 		debug_object_init(work, &work_debug_descr);
433 		return 1;
434 	default:
435 		return 0;
436 	}
437 }
438 
439 /*
440  * fixup_activate is called when:
441  * - an active object is activated
442  * - an unknown object is activated (might be a statically initialized object)
443  */
444 static int work_fixup_activate(void *addr, enum debug_obj_state state)
445 {
446 	struct work_struct *work = addr;
447 
448 	switch (state) {
449 
450 	case ODEBUG_STATE_NOTAVAILABLE:
451 		/*
452 		 * This is not really a fixup. The work struct was
453 		 * statically initialized. We just make sure that it
454 		 * is tracked in the object tracker.
455 		 */
456 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
457 			debug_object_init(work, &work_debug_descr);
458 			debug_object_activate(work, &work_debug_descr);
459 			return 0;
460 		}
461 		WARN_ON_ONCE(1);
462 		return 0;
463 
464 	case ODEBUG_STATE_ACTIVE:
465 		WARN_ON(1);
466 
467 	default:
468 		return 0;
469 	}
470 }
471 
472 /*
473  * fixup_free is called when:
474  * - an active object is freed
475  */
476 static int work_fixup_free(void *addr, enum debug_obj_state state)
477 {
478 	struct work_struct *work = addr;
479 
480 	switch (state) {
481 	case ODEBUG_STATE_ACTIVE:
482 		cancel_work_sync(work);
483 		debug_object_free(work, &work_debug_descr);
484 		return 1;
485 	default:
486 		return 0;
487 	}
488 }
489 
490 static struct debug_obj_descr work_debug_descr = {
491 	.name		= "work_struct",
492 	.debug_hint	= work_debug_hint,
493 	.fixup_init	= work_fixup_init,
494 	.fixup_activate	= work_fixup_activate,
495 	.fixup_free	= work_fixup_free,
496 };
497 
498 static inline void debug_work_activate(struct work_struct *work)
499 {
500 	debug_object_activate(work, &work_debug_descr);
501 }
502 
503 static inline void debug_work_deactivate(struct work_struct *work)
504 {
505 	debug_object_deactivate(work, &work_debug_descr);
506 }
507 
508 void __init_work(struct work_struct *work, int onstack)
509 {
510 	if (onstack)
511 		debug_object_init_on_stack(work, &work_debug_descr);
512 	else
513 		debug_object_init(work, &work_debug_descr);
514 }
515 EXPORT_SYMBOL_GPL(__init_work);
516 
517 void destroy_work_on_stack(struct work_struct *work)
518 {
519 	debug_object_free(work, &work_debug_descr);
520 }
521 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
522 
523 void destroy_delayed_work_on_stack(struct delayed_work *work)
524 {
525 	destroy_timer_on_stack(&work->timer);
526 	debug_object_free(&work->work, &work_debug_descr);
527 }
528 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
529 
530 #else
531 static inline void debug_work_activate(struct work_struct *work) { }
532 static inline void debug_work_deactivate(struct work_struct *work) { }
533 #endif
534 
535 /**
536  * worker_pool_assign_id - allocate ID and assing it to @pool
537  * @pool: the pool pointer of interest
538  *
539  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
540  * successfully, -errno on failure.
541  */
542 static int worker_pool_assign_id(struct worker_pool *pool)
543 {
544 	int ret;
545 
546 	lockdep_assert_held(&wq_pool_mutex);
547 
548 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
549 			GFP_KERNEL);
550 	if (ret >= 0) {
551 		pool->id = ret;
552 		return 0;
553 	}
554 	return ret;
555 }
556 
557 /**
558  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
559  * @wq: the target workqueue
560  * @node: the node ID
561  *
562  * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
563  * read locked.
564  * If the pwq needs to be used beyond the locking in effect, the caller is
565  * responsible for guaranteeing that the pwq stays online.
566  *
567  * Return: The unbound pool_workqueue for @node.
568  */
569 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
570 						  int node)
571 {
572 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
573 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
574 }
575 
576 static unsigned int work_color_to_flags(int color)
577 {
578 	return color << WORK_STRUCT_COLOR_SHIFT;
579 }
580 
581 static int get_work_color(struct work_struct *work)
582 {
583 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
584 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
585 }
586 
587 static int work_next_color(int color)
588 {
589 	return (color + 1) % WORK_NR_COLORS;
590 }
591 
592 /*
593  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
594  * contain the pointer to the queued pwq.  Once execution starts, the flag
595  * is cleared and the high bits contain OFFQ flags and pool ID.
596  *
597  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
598  * and clear_work_data() can be used to set the pwq, pool or clear
599  * work->data.  These functions should only be called while the work is
600  * owned - ie. while the PENDING bit is set.
601  *
602  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
603  * corresponding to a work.  Pool is available once the work has been
604  * queued anywhere after initialization until it is sync canceled.  pwq is
605  * available only while the work item is queued.
606  *
607  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
608  * canceled.  While being canceled, a work item may have its PENDING set
609  * but stay off timer and worklist for arbitrarily long and nobody should
610  * try to steal the PENDING bit.
611  */
612 static inline void set_work_data(struct work_struct *work, unsigned long data,
613 				 unsigned long flags)
614 {
615 	WARN_ON_ONCE(!work_pending(work));
616 	atomic_long_set(&work->data, data | flags | work_static(work));
617 }
618 
619 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
620 			 unsigned long extra_flags)
621 {
622 	set_work_data(work, (unsigned long)pwq,
623 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
624 }
625 
626 static void set_work_pool_and_keep_pending(struct work_struct *work,
627 					   int pool_id)
628 {
629 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
630 		      WORK_STRUCT_PENDING);
631 }
632 
633 static void set_work_pool_and_clear_pending(struct work_struct *work,
634 					    int pool_id)
635 {
636 	/*
637 	 * The following wmb is paired with the implied mb in
638 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
639 	 * here are visible to and precede any updates by the next PENDING
640 	 * owner.
641 	 */
642 	smp_wmb();
643 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
644 }
645 
646 static void clear_work_data(struct work_struct *work)
647 {
648 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
649 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
650 }
651 
652 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
653 {
654 	unsigned long data = atomic_long_read(&work->data);
655 
656 	if (data & WORK_STRUCT_PWQ)
657 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
658 	else
659 		return NULL;
660 }
661 
662 /**
663  * get_work_pool - return the worker_pool a given work was associated with
664  * @work: the work item of interest
665  *
666  * Pools are created and destroyed under wq_pool_mutex, and allows read
667  * access under sched-RCU read lock.  As such, this function should be
668  * called under wq_pool_mutex or with preemption disabled.
669  *
670  * All fields of the returned pool are accessible as long as the above
671  * mentioned locking is in effect.  If the returned pool needs to be used
672  * beyond the critical section, the caller is responsible for ensuring the
673  * returned pool is and stays online.
674  *
675  * Return: The worker_pool @work was last associated with.  %NULL if none.
676  */
677 static struct worker_pool *get_work_pool(struct work_struct *work)
678 {
679 	unsigned long data = atomic_long_read(&work->data);
680 	int pool_id;
681 
682 	assert_rcu_or_pool_mutex();
683 
684 	if (data & WORK_STRUCT_PWQ)
685 		return ((struct pool_workqueue *)
686 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
687 
688 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
689 	if (pool_id == WORK_OFFQ_POOL_NONE)
690 		return NULL;
691 
692 	return idr_find(&worker_pool_idr, pool_id);
693 }
694 
695 /**
696  * get_work_pool_id - return the worker pool ID a given work is associated with
697  * @work: the work item of interest
698  *
699  * Return: The worker_pool ID @work was last associated with.
700  * %WORK_OFFQ_POOL_NONE if none.
701  */
702 static int get_work_pool_id(struct work_struct *work)
703 {
704 	unsigned long data = atomic_long_read(&work->data);
705 
706 	if (data & WORK_STRUCT_PWQ)
707 		return ((struct pool_workqueue *)
708 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
709 
710 	return data >> WORK_OFFQ_POOL_SHIFT;
711 }
712 
713 static void mark_work_canceling(struct work_struct *work)
714 {
715 	unsigned long pool_id = get_work_pool_id(work);
716 
717 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
718 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
719 }
720 
721 static bool work_is_canceling(struct work_struct *work)
722 {
723 	unsigned long data = atomic_long_read(&work->data);
724 
725 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
726 }
727 
728 /*
729  * Policy functions.  These define the policies on how the global worker
730  * pools are managed.  Unless noted otherwise, these functions assume that
731  * they're being called with pool->lock held.
732  */
733 
734 static bool __need_more_worker(struct worker_pool *pool)
735 {
736 	return !atomic_read(&pool->nr_running);
737 }
738 
739 /*
740  * Need to wake up a worker?  Called from anything but currently
741  * running workers.
742  *
743  * Note that, because unbound workers never contribute to nr_running, this
744  * function will always return %true for unbound pools as long as the
745  * worklist isn't empty.
746  */
747 static bool need_more_worker(struct worker_pool *pool)
748 {
749 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
750 }
751 
752 /* Can I start working?  Called from busy but !running workers. */
753 static bool may_start_working(struct worker_pool *pool)
754 {
755 	return pool->nr_idle;
756 }
757 
758 /* Do I need to keep working?  Called from currently running workers. */
759 static bool keep_working(struct worker_pool *pool)
760 {
761 	return !list_empty(&pool->worklist) &&
762 		atomic_read(&pool->nr_running) <= 1;
763 }
764 
765 /* Do we need a new worker?  Called from manager. */
766 static bool need_to_create_worker(struct worker_pool *pool)
767 {
768 	return need_more_worker(pool) && !may_start_working(pool);
769 }
770 
771 /* Do we have too many workers and should some go away? */
772 static bool too_many_workers(struct worker_pool *pool)
773 {
774 	bool managing = mutex_is_locked(&pool->manager_arb);
775 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
776 	int nr_busy = pool->nr_workers - nr_idle;
777 
778 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
779 }
780 
781 /*
782  * Wake up functions.
783  */
784 
785 /* Return the first idle worker.  Safe with preemption disabled */
786 static struct worker *first_idle_worker(struct worker_pool *pool)
787 {
788 	if (unlikely(list_empty(&pool->idle_list)))
789 		return NULL;
790 
791 	return list_first_entry(&pool->idle_list, struct worker, entry);
792 }
793 
794 /**
795  * wake_up_worker - wake up an idle worker
796  * @pool: worker pool to wake worker from
797  *
798  * Wake up the first idle worker of @pool.
799  *
800  * CONTEXT:
801  * spin_lock_irq(pool->lock).
802  */
803 static void wake_up_worker(struct worker_pool *pool)
804 {
805 	struct worker *worker = first_idle_worker(pool);
806 
807 	if (likely(worker))
808 		wake_up_process(worker->task);
809 }
810 
811 /**
812  * wq_worker_waking_up - a worker is waking up
813  * @task: task waking up
814  * @cpu: CPU @task is waking up to
815  *
816  * This function is called during try_to_wake_up() when a worker is
817  * being awoken.
818  *
819  * CONTEXT:
820  * spin_lock_irq(rq->lock)
821  */
822 void wq_worker_waking_up(struct task_struct *task, int cpu)
823 {
824 	struct worker *worker = kthread_data(task);
825 
826 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
827 		WARN_ON_ONCE(worker->pool->cpu != cpu);
828 		atomic_inc(&worker->pool->nr_running);
829 	}
830 }
831 
832 /**
833  * wq_worker_sleeping - a worker is going to sleep
834  * @task: task going to sleep
835  * @cpu: CPU in question, must be the current CPU number
836  *
837  * This function is called during schedule() when a busy worker is
838  * going to sleep.  Worker on the same cpu can be woken up by
839  * returning pointer to its task.
840  *
841  * CONTEXT:
842  * spin_lock_irq(rq->lock)
843  *
844  * Return:
845  * Worker task on @cpu to wake up, %NULL if none.
846  */
847 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
848 {
849 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
850 	struct worker_pool *pool;
851 
852 	/*
853 	 * Rescuers, which may not have all the fields set up like normal
854 	 * workers, also reach here, let's not access anything before
855 	 * checking NOT_RUNNING.
856 	 */
857 	if (worker->flags & WORKER_NOT_RUNNING)
858 		return NULL;
859 
860 	pool = worker->pool;
861 
862 	/* this can only happen on the local cpu */
863 	if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
864 		return NULL;
865 
866 	/*
867 	 * The counterpart of the following dec_and_test, implied mb,
868 	 * worklist not empty test sequence is in insert_work().
869 	 * Please read comment there.
870 	 *
871 	 * NOT_RUNNING is clear.  This means that we're bound to and
872 	 * running on the local cpu w/ rq lock held and preemption
873 	 * disabled, which in turn means that none else could be
874 	 * manipulating idle_list, so dereferencing idle_list without pool
875 	 * lock is safe.
876 	 */
877 	if (atomic_dec_and_test(&pool->nr_running) &&
878 	    !list_empty(&pool->worklist))
879 		to_wakeup = first_idle_worker(pool);
880 	return to_wakeup ? to_wakeup->task : NULL;
881 }
882 
883 /**
884  * worker_set_flags - set worker flags and adjust nr_running accordingly
885  * @worker: self
886  * @flags: flags to set
887  *
888  * Set @flags in @worker->flags and adjust nr_running accordingly.
889  *
890  * CONTEXT:
891  * spin_lock_irq(pool->lock)
892  */
893 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
894 {
895 	struct worker_pool *pool = worker->pool;
896 
897 	WARN_ON_ONCE(worker->task != current);
898 
899 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
900 	if ((flags & WORKER_NOT_RUNNING) &&
901 	    !(worker->flags & WORKER_NOT_RUNNING)) {
902 		atomic_dec(&pool->nr_running);
903 	}
904 
905 	worker->flags |= flags;
906 }
907 
908 /**
909  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
910  * @worker: self
911  * @flags: flags to clear
912  *
913  * Clear @flags in @worker->flags and adjust nr_running accordingly.
914  *
915  * CONTEXT:
916  * spin_lock_irq(pool->lock)
917  */
918 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
919 {
920 	struct worker_pool *pool = worker->pool;
921 	unsigned int oflags = worker->flags;
922 
923 	WARN_ON_ONCE(worker->task != current);
924 
925 	worker->flags &= ~flags;
926 
927 	/*
928 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
929 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
930 	 * of multiple flags, not a single flag.
931 	 */
932 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
933 		if (!(worker->flags & WORKER_NOT_RUNNING))
934 			atomic_inc(&pool->nr_running);
935 }
936 
937 /**
938  * find_worker_executing_work - find worker which is executing a work
939  * @pool: pool of interest
940  * @work: work to find worker for
941  *
942  * Find a worker which is executing @work on @pool by searching
943  * @pool->busy_hash which is keyed by the address of @work.  For a worker
944  * to match, its current execution should match the address of @work and
945  * its work function.  This is to avoid unwanted dependency between
946  * unrelated work executions through a work item being recycled while still
947  * being executed.
948  *
949  * This is a bit tricky.  A work item may be freed once its execution
950  * starts and nothing prevents the freed area from being recycled for
951  * another work item.  If the same work item address ends up being reused
952  * before the original execution finishes, workqueue will identify the
953  * recycled work item as currently executing and make it wait until the
954  * current execution finishes, introducing an unwanted dependency.
955  *
956  * This function checks the work item address and work function to avoid
957  * false positives.  Note that this isn't complete as one may construct a
958  * work function which can introduce dependency onto itself through a
959  * recycled work item.  Well, if somebody wants to shoot oneself in the
960  * foot that badly, there's only so much we can do, and if such deadlock
961  * actually occurs, it should be easy to locate the culprit work function.
962  *
963  * CONTEXT:
964  * spin_lock_irq(pool->lock).
965  *
966  * Return:
967  * Pointer to worker which is executing @work if found, %NULL
968  * otherwise.
969  */
970 static struct worker *find_worker_executing_work(struct worker_pool *pool,
971 						 struct work_struct *work)
972 {
973 	struct worker *worker;
974 
975 	hash_for_each_possible(pool->busy_hash, worker, hentry,
976 			       (unsigned long)work)
977 		if (worker->current_work == work &&
978 		    worker->current_func == work->func)
979 			return worker;
980 
981 	return NULL;
982 }
983 
984 /**
985  * move_linked_works - move linked works to a list
986  * @work: start of series of works to be scheduled
987  * @head: target list to append @work to
988  * @nextp: out parameter for nested worklist walking
989  *
990  * Schedule linked works starting from @work to @head.  Work series to
991  * be scheduled starts at @work and includes any consecutive work with
992  * WORK_STRUCT_LINKED set in its predecessor.
993  *
994  * If @nextp is not NULL, it's updated to point to the next work of
995  * the last scheduled work.  This allows move_linked_works() to be
996  * nested inside outer list_for_each_entry_safe().
997  *
998  * CONTEXT:
999  * spin_lock_irq(pool->lock).
1000  */
1001 static void move_linked_works(struct work_struct *work, struct list_head *head,
1002 			      struct work_struct **nextp)
1003 {
1004 	struct work_struct *n;
1005 
1006 	/*
1007 	 * Linked worklist will always end before the end of the list,
1008 	 * use NULL for list head.
1009 	 */
1010 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1011 		list_move_tail(&work->entry, head);
1012 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1013 			break;
1014 	}
1015 
1016 	/*
1017 	 * If we're already inside safe list traversal and have moved
1018 	 * multiple works to the scheduled queue, the next position
1019 	 * needs to be updated.
1020 	 */
1021 	if (nextp)
1022 		*nextp = n;
1023 }
1024 
1025 /**
1026  * get_pwq - get an extra reference on the specified pool_workqueue
1027  * @pwq: pool_workqueue to get
1028  *
1029  * Obtain an extra reference on @pwq.  The caller should guarantee that
1030  * @pwq has positive refcnt and be holding the matching pool->lock.
1031  */
1032 static void get_pwq(struct pool_workqueue *pwq)
1033 {
1034 	lockdep_assert_held(&pwq->pool->lock);
1035 	WARN_ON_ONCE(pwq->refcnt <= 0);
1036 	pwq->refcnt++;
1037 }
1038 
1039 /**
1040  * put_pwq - put a pool_workqueue reference
1041  * @pwq: pool_workqueue to put
1042  *
1043  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1044  * destruction.  The caller should be holding the matching pool->lock.
1045  */
1046 static void put_pwq(struct pool_workqueue *pwq)
1047 {
1048 	lockdep_assert_held(&pwq->pool->lock);
1049 	if (likely(--pwq->refcnt))
1050 		return;
1051 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1052 		return;
1053 	/*
1054 	 * @pwq can't be released under pool->lock, bounce to
1055 	 * pwq_unbound_release_workfn().  This never recurses on the same
1056 	 * pool->lock as this path is taken only for unbound workqueues and
1057 	 * the release work item is scheduled on a per-cpu workqueue.  To
1058 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1059 	 * subclass of 1 in get_unbound_pool().
1060 	 */
1061 	schedule_work(&pwq->unbound_release_work);
1062 }
1063 
1064 /**
1065  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1066  * @pwq: pool_workqueue to put (can be %NULL)
1067  *
1068  * put_pwq() with locking.  This function also allows %NULL @pwq.
1069  */
1070 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1071 {
1072 	if (pwq) {
1073 		/*
1074 		 * As both pwqs and pools are sched-RCU protected, the
1075 		 * following lock operations are safe.
1076 		 */
1077 		spin_lock_irq(&pwq->pool->lock);
1078 		put_pwq(pwq);
1079 		spin_unlock_irq(&pwq->pool->lock);
1080 	}
1081 }
1082 
1083 static void pwq_activate_delayed_work(struct work_struct *work)
1084 {
1085 	struct pool_workqueue *pwq = get_work_pwq(work);
1086 
1087 	trace_workqueue_activate_work(work);
1088 	if (list_empty(&pwq->pool->worklist))
1089 		pwq->pool->watchdog_ts = jiffies;
1090 	move_linked_works(work, &pwq->pool->worklist, NULL);
1091 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1092 	pwq->nr_active++;
1093 }
1094 
1095 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1096 {
1097 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1098 						    struct work_struct, entry);
1099 
1100 	pwq_activate_delayed_work(work);
1101 }
1102 
1103 /**
1104  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1105  * @pwq: pwq of interest
1106  * @color: color of work which left the queue
1107  *
1108  * A work either has completed or is removed from pending queue,
1109  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1110  *
1111  * CONTEXT:
1112  * spin_lock_irq(pool->lock).
1113  */
1114 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1115 {
1116 	/* uncolored work items don't participate in flushing or nr_active */
1117 	if (color == WORK_NO_COLOR)
1118 		goto out_put;
1119 
1120 	pwq->nr_in_flight[color]--;
1121 
1122 	pwq->nr_active--;
1123 	if (!list_empty(&pwq->delayed_works)) {
1124 		/* one down, submit a delayed one */
1125 		if (pwq->nr_active < pwq->max_active)
1126 			pwq_activate_first_delayed(pwq);
1127 	}
1128 
1129 	/* is flush in progress and are we at the flushing tip? */
1130 	if (likely(pwq->flush_color != color))
1131 		goto out_put;
1132 
1133 	/* are there still in-flight works? */
1134 	if (pwq->nr_in_flight[color])
1135 		goto out_put;
1136 
1137 	/* this pwq is done, clear flush_color */
1138 	pwq->flush_color = -1;
1139 
1140 	/*
1141 	 * If this was the last pwq, wake up the first flusher.  It
1142 	 * will handle the rest.
1143 	 */
1144 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1145 		complete(&pwq->wq->first_flusher->done);
1146 out_put:
1147 	put_pwq(pwq);
1148 }
1149 
1150 /**
1151  * try_to_grab_pending - steal work item from worklist and disable irq
1152  * @work: work item to steal
1153  * @is_dwork: @work is a delayed_work
1154  * @flags: place to store irq state
1155  *
1156  * Try to grab PENDING bit of @work.  This function can handle @work in any
1157  * stable state - idle, on timer or on worklist.
1158  *
1159  * Return:
1160  *  1		if @work was pending and we successfully stole PENDING
1161  *  0		if @work was idle and we claimed PENDING
1162  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1163  *  -ENOENT	if someone else is canceling @work, this state may persist
1164  *		for arbitrarily long
1165  *
1166  * Note:
1167  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1168  * interrupted while holding PENDING and @work off queue, irq must be
1169  * disabled on entry.  This, combined with delayed_work->timer being
1170  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1171  *
1172  * On successful return, >= 0, irq is disabled and the caller is
1173  * responsible for releasing it using local_irq_restore(*@flags).
1174  *
1175  * This function is safe to call from any context including IRQ handler.
1176  */
1177 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1178 			       unsigned long *flags)
1179 {
1180 	struct worker_pool *pool;
1181 	struct pool_workqueue *pwq;
1182 
1183 	local_irq_save(*flags);
1184 
1185 	/* try to steal the timer if it exists */
1186 	if (is_dwork) {
1187 		struct delayed_work *dwork = to_delayed_work(work);
1188 
1189 		/*
1190 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1191 		 * guaranteed that the timer is not queued anywhere and not
1192 		 * running on the local CPU.
1193 		 */
1194 		if (likely(del_timer(&dwork->timer)))
1195 			return 1;
1196 	}
1197 
1198 	/* try to claim PENDING the normal way */
1199 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1200 		return 0;
1201 
1202 	/*
1203 	 * The queueing is in progress, or it is already queued. Try to
1204 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1205 	 */
1206 	pool = get_work_pool(work);
1207 	if (!pool)
1208 		goto fail;
1209 
1210 	spin_lock(&pool->lock);
1211 	/*
1212 	 * work->data is guaranteed to point to pwq only while the work
1213 	 * item is queued on pwq->wq, and both updating work->data to point
1214 	 * to pwq on queueing and to pool on dequeueing are done under
1215 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1216 	 * points to pwq which is associated with a locked pool, the work
1217 	 * item is currently queued on that pool.
1218 	 */
1219 	pwq = get_work_pwq(work);
1220 	if (pwq && pwq->pool == pool) {
1221 		debug_work_deactivate(work);
1222 
1223 		/*
1224 		 * A delayed work item cannot be grabbed directly because
1225 		 * it might have linked NO_COLOR work items which, if left
1226 		 * on the delayed_list, will confuse pwq->nr_active
1227 		 * management later on and cause stall.  Make sure the work
1228 		 * item is activated before grabbing.
1229 		 */
1230 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1231 			pwq_activate_delayed_work(work);
1232 
1233 		list_del_init(&work->entry);
1234 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1235 
1236 		/* work->data points to pwq iff queued, point to pool */
1237 		set_work_pool_and_keep_pending(work, pool->id);
1238 
1239 		spin_unlock(&pool->lock);
1240 		return 1;
1241 	}
1242 	spin_unlock(&pool->lock);
1243 fail:
1244 	local_irq_restore(*flags);
1245 	if (work_is_canceling(work))
1246 		return -ENOENT;
1247 	cpu_relax();
1248 	return -EAGAIN;
1249 }
1250 
1251 /**
1252  * insert_work - insert a work into a pool
1253  * @pwq: pwq @work belongs to
1254  * @work: work to insert
1255  * @head: insertion point
1256  * @extra_flags: extra WORK_STRUCT_* flags to set
1257  *
1258  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1259  * work_struct flags.
1260  *
1261  * CONTEXT:
1262  * spin_lock_irq(pool->lock).
1263  */
1264 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1265 			struct list_head *head, unsigned int extra_flags)
1266 {
1267 	struct worker_pool *pool = pwq->pool;
1268 
1269 	/* we own @work, set data and link */
1270 	set_work_pwq(work, pwq, extra_flags);
1271 	list_add_tail(&work->entry, head);
1272 	get_pwq(pwq);
1273 
1274 	/*
1275 	 * Ensure either wq_worker_sleeping() sees the above
1276 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1277 	 * around lazily while there are works to be processed.
1278 	 */
1279 	smp_mb();
1280 
1281 	if (__need_more_worker(pool))
1282 		wake_up_worker(pool);
1283 }
1284 
1285 /*
1286  * Test whether @work is being queued from another work executing on the
1287  * same workqueue.
1288  */
1289 static bool is_chained_work(struct workqueue_struct *wq)
1290 {
1291 	struct worker *worker;
1292 
1293 	worker = current_wq_worker();
1294 	/*
1295 	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1296 	 * I'm @worker, it's safe to dereference it without locking.
1297 	 */
1298 	return worker && worker->current_pwq->wq == wq;
1299 }
1300 
1301 static void __queue_work(int cpu, struct workqueue_struct *wq,
1302 			 struct work_struct *work)
1303 {
1304 	struct pool_workqueue *pwq;
1305 	struct worker_pool *last_pool;
1306 	struct list_head *worklist;
1307 	unsigned int work_flags;
1308 	unsigned int req_cpu = cpu;
1309 
1310 	/*
1311 	 * While a work item is PENDING && off queue, a task trying to
1312 	 * steal the PENDING will busy-loop waiting for it to either get
1313 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1314 	 * happen with IRQ disabled.
1315 	 */
1316 	WARN_ON_ONCE(!irqs_disabled());
1317 
1318 	debug_work_activate(work);
1319 
1320 	/* if draining, only works from the same workqueue are allowed */
1321 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1322 	    WARN_ON_ONCE(!is_chained_work(wq)))
1323 		return;
1324 retry:
1325 	if (req_cpu == WORK_CPU_UNBOUND)
1326 		cpu = raw_smp_processor_id();
1327 
1328 	/* pwq which will be used unless @work is executing elsewhere */
1329 	if (!(wq->flags & WQ_UNBOUND))
1330 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1331 	else
1332 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1333 
1334 	/*
1335 	 * If @work was previously on a different pool, it might still be
1336 	 * running there, in which case the work needs to be queued on that
1337 	 * pool to guarantee non-reentrancy.
1338 	 */
1339 	last_pool = get_work_pool(work);
1340 	if (last_pool && last_pool != pwq->pool) {
1341 		struct worker *worker;
1342 
1343 		spin_lock(&last_pool->lock);
1344 
1345 		worker = find_worker_executing_work(last_pool, work);
1346 
1347 		if (worker && worker->current_pwq->wq == wq) {
1348 			pwq = worker->current_pwq;
1349 		} else {
1350 			/* meh... not running there, queue here */
1351 			spin_unlock(&last_pool->lock);
1352 			spin_lock(&pwq->pool->lock);
1353 		}
1354 	} else {
1355 		spin_lock(&pwq->pool->lock);
1356 	}
1357 
1358 	/*
1359 	 * pwq is determined and locked.  For unbound pools, we could have
1360 	 * raced with pwq release and it could already be dead.  If its
1361 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1362 	 * without another pwq replacing it in the numa_pwq_tbl or while
1363 	 * work items are executing on it, so the retrying is guaranteed to
1364 	 * make forward-progress.
1365 	 */
1366 	if (unlikely(!pwq->refcnt)) {
1367 		if (wq->flags & WQ_UNBOUND) {
1368 			spin_unlock(&pwq->pool->lock);
1369 			cpu_relax();
1370 			goto retry;
1371 		}
1372 		/* oops */
1373 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1374 			  wq->name, cpu);
1375 	}
1376 
1377 	/* pwq determined, queue */
1378 	trace_workqueue_queue_work(req_cpu, pwq, work);
1379 
1380 	if (WARN_ON(!list_empty(&work->entry))) {
1381 		spin_unlock(&pwq->pool->lock);
1382 		return;
1383 	}
1384 
1385 	pwq->nr_in_flight[pwq->work_color]++;
1386 	work_flags = work_color_to_flags(pwq->work_color);
1387 
1388 	if (likely(pwq->nr_active < pwq->max_active)) {
1389 		trace_workqueue_activate_work(work);
1390 		pwq->nr_active++;
1391 		worklist = &pwq->pool->worklist;
1392 		if (list_empty(worklist))
1393 			pwq->pool->watchdog_ts = jiffies;
1394 	} else {
1395 		work_flags |= WORK_STRUCT_DELAYED;
1396 		worklist = &pwq->delayed_works;
1397 	}
1398 
1399 	insert_work(pwq, work, worklist, work_flags);
1400 
1401 	spin_unlock(&pwq->pool->lock);
1402 }
1403 
1404 /**
1405  * queue_work_on - queue work on specific cpu
1406  * @cpu: CPU number to execute work on
1407  * @wq: workqueue to use
1408  * @work: work to queue
1409  *
1410  * We queue the work to a specific CPU, the caller must ensure it
1411  * can't go away.
1412  *
1413  * Return: %false if @work was already on a queue, %true otherwise.
1414  */
1415 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1416 		   struct work_struct *work)
1417 {
1418 	bool ret = false;
1419 	unsigned long flags;
1420 
1421 	local_irq_save(flags);
1422 
1423 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1424 		__queue_work(cpu, wq, work);
1425 		ret = true;
1426 	}
1427 
1428 	local_irq_restore(flags);
1429 	return ret;
1430 }
1431 EXPORT_SYMBOL(queue_work_on);
1432 
1433 void delayed_work_timer_fn(unsigned long __data)
1434 {
1435 	struct delayed_work *dwork = (struct delayed_work *)__data;
1436 
1437 	/* should have been called from irqsafe timer with irq already off */
1438 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1439 }
1440 EXPORT_SYMBOL(delayed_work_timer_fn);
1441 
1442 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1443 				struct delayed_work *dwork, unsigned long delay)
1444 {
1445 	struct timer_list *timer = &dwork->timer;
1446 	struct work_struct *work = &dwork->work;
1447 
1448 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1449 		     timer->data != (unsigned long)dwork);
1450 	WARN_ON_ONCE(timer_pending(timer));
1451 	WARN_ON_ONCE(!list_empty(&work->entry));
1452 
1453 	/*
1454 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1455 	 * both optimization and correctness.  The earliest @timer can
1456 	 * expire is on the closest next tick and delayed_work users depend
1457 	 * on that there's no such delay when @delay is 0.
1458 	 */
1459 	if (!delay) {
1460 		__queue_work(cpu, wq, &dwork->work);
1461 		return;
1462 	}
1463 
1464 	timer_stats_timer_set_start_info(&dwork->timer);
1465 
1466 	dwork->wq = wq;
1467 	/* timer isn't guaranteed to run in this cpu, record earlier */
1468 	if (cpu == WORK_CPU_UNBOUND)
1469 		cpu = raw_smp_processor_id();
1470 	dwork->cpu = cpu;
1471 	timer->expires = jiffies + delay;
1472 
1473 	add_timer_on(timer, cpu);
1474 }
1475 
1476 /**
1477  * queue_delayed_work_on - queue work on specific CPU after delay
1478  * @cpu: CPU number to execute work on
1479  * @wq: workqueue to use
1480  * @dwork: work to queue
1481  * @delay: number of jiffies to wait before queueing
1482  *
1483  * Return: %false if @work was already on a queue, %true otherwise.  If
1484  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1485  * execution.
1486  */
1487 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1488 			   struct delayed_work *dwork, unsigned long delay)
1489 {
1490 	struct work_struct *work = &dwork->work;
1491 	bool ret = false;
1492 	unsigned long flags;
1493 
1494 	/* read the comment in __queue_work() */
1495 	local_irq_save(flags);
1496 
1497 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1498 		__queue_delayed_work(cpu, wq, dwork, delay);
1499 		ret = true;
1500 	}
1501 
1502 	local_irq_restore(flags);
1503 	return ret;
1504 }
1505 EXPORT_SYMBOL(queue_delayed_work_on);
1506 
1507 /**
1508  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1509  * @cpu: CPU number to execute work on
1510  * @wq: workqueue to use
1511  * @dwork: work to queue
1512  * @delay: number of jiffies to wait before queueing
1513  *
1514  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1515  * modify @dwork's timer so that it expires after @delay.  If @delay is
1516  * zero, @work is guaranteed to be scheduled immediately regardless of its
1517  * current state.
1518  *
1519  * Return: %false if @dwork was idle and queued, %true if @dwork was
1520  * pending and its timer was modified.
1521  *
1522  * This function is safe to call from any context including IRQ handler.
1523  * See try_to_grab_pending() for details.
1524  */
1525 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1526 			 struct delayed_work *dwork, unsigned long delay)
1527 {
1528 	unsigned long flags;
1529 	int ret;
1530 
1531 	do {
1532 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1533 	} while (unlikely(ret == -EAGAIN));
1534 
1535 	if (likely(ret >= 0)) {
1536 		__queue_delayed_work(cpu, wq, dwork, delay);
1537 		local_irq_restore(flags);
1538 	}
1539 
1540 	/* -ENOENT from try_to_grab_pending() becomes %true */
1541 	return ret;
1542 }
1543 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1544 
1545 /**
1546  * worker_enter_idle - enter idle state
1547  * @worker: worker which is entering idle state
1548  *
1549  * @worker is entering idle state.  Update stats and idle timer if
1550  * necessary.
1551  *
1552  * LOCKING:
1553  * spin_lock_irq(pool->lock).
1554  */
1555 static void worker_enter_idle(struct worker *worker)
1556 {
1557 	struct worker_pool *pool = worker->pool;
1558 
1559 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1560 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1561 			 (worker->hentry.next || worker->hentry.pprev)))
1562 		return;
1563 
1564 	/* can't use worker_set_flags(), also called from create_worker() */
1565 	worker->flags |= WORKER_IDLE;
1566 	pool->nr_idle++;
1567 	worker->last_active = jiffies;
1568 
1569 	/* idle_list is LIFO */
1570 	list_add(&worker->entry, &pool->idle_list);
1571 
1572 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1573 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1574 
1575 	/*
1576 	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1577 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1578 	 * nr_running, the warning may trigger spuriously.  Check iff
1579 	 * unbind is not in progress.
1580 	 */
1581 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1582 		     pool->nr_workers == pool->nr_idle &&
1583 		     atomic_read(&pool->nr_running));
1584 }
1585 
1586 /**
1587  * worker_leave_idle - leave idle state
1588  * @worker: worker which is leaving idle state
1589  *
1590  * @worker is leaving idle state.  Update stats.
1591  *
1592  * LOCKING:
1593  * spin_lock_irq(pool->lock).
1594  */
1595 static void worker_leave_idle(struct worker *worker)
1596 {
1597 	struct worker_pool *pool = worker->pool;
1598 
1599 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1600 		return;
1601 	worker_clr_flags(worker, WORKER_IDLE);
1602 	pool->nr_idle--;
1603 	list_del_init(&worker->entry);
1604 }
1605 
1606 static struct worker *alloc_worker(int node)
1607 {
1608 	struct worker *worker;
1609 
1610 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1611 	if (worker) {
1612 		INIT_LIST_HEAD(&worker->entry);
1613 		INIT_LIST_HEAD(&worker->scheduled);
1614 		INIT_LIST_HEAD(&worker->node);
1615 		/* on creation a worker is in !idle && prep state */
1616 		worker->flags = WORKER_PREP;
1617 	}
1618 	return worker;
1619 }
1620 
1621 /**
1622  * worker_attach_to_pool() - attach a worker to a pool
1623  * @worker: worker to be attached
1624  * @pool: the target pool
1625  *
1626  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1627  * cpu-binding of @worker are kept coordinated with the pool across
1628  * cpu-[un]hotplugs.
1629  */
1630 static void worker_attach_to_pool(struct worker *worker,
1631 				   struct worker_pool *pool)
1632 {
1633 	mutex_lock(&pool->attach_mutex);
1634 
1635 	/*
1636 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1637 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1638 	 */
1639 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1640 
1641 	/*
1642 	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1643 	 * stable across this function.  See the comments above the
1644 	 * flag definition for details.
1645 	 */
1646 	if (pool->flags & POOL_DISASSOCIATED)
1647 		worker->flags |= WORKER_UNBOUND;
1648 
1649 	list_add_tail(&worker->node, &pool->workers);
1650 
1651 	mutex_unlock(&pool->attach_mutex);
1652 }
1653 
1654 /**
1655  * worker_detach_from_pool() - detach a worker from its pool
1656  * @worker: worker which is attached to its pool
1657  * @pool: the pool @worker is attached to
1658  *
1659  * Undo the attaching which had been done in worker_attach_to_pool().  The
1660  * caller worker shouldn't access to the pool after detached except it has
1661  * other reference to the pool.
1662  */
1663 static void worker_detach_from_pool(struct worker *worker,
1664 				    struct worker_pool *pool)
1665 {
1666 	struct completion *detach_completion = NULL;
1667 
1668 	mutex_lock(&pool->attach_mutex);
1669 	list_del(&worker->node);
1670 	if (list_empty(&pool->workers))
1671 		detach_completion = pool->detach_completion;
1672 	mutex_unlock(&pool->attach_mutex);
1673 
1674 	/* clear leftover flags without pool->lock after it is detached */
1675 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1676 
1677 	if (detach_completion)
1678 		complete(detach_completion);
1679 }
1680 
1681 /**
1682  * create_worker - create a new workqueue worker
1683  * @pool: pool the new worker will belong to
1684  *
1685  * Create and start a new worker which is attached to @pool.
1686  *
1687  * CONTEXT:
1688  * Might sleep.  Does GFP_KERNEL allocations.
1689  *
1690  * Return:
1691  * Pointer to the newly created worker.
1692  */
1693 static struct worker *create_worker(struct worker_pool *pool)
1694 {
1695 	struct worker *worker = NULL;
1696 	int id = -1;
1697 	char id_buf[16];
1698 
1699 	/* ID is needed to determine kthread name */
1700 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1701 	if (id < 0)
1702 		goto fail;
1703 
1704 	worker = alloc_worker(pool->node);
1705 	if (!worker)
1706 		goto fail;
1707 
1708 	worker->pool = pool;
1709 	worker->id = id;
1710 
1711 	if (pool->cpu >= 0)
1712 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1713 			 pool->attrs->nice < 0  ? "H" : "");
1714 	else
1715 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1716 
1717 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1718 					      "kworker/%s", id_buf);
1719 	if (IS_ERR(worker->task))
1720 		goto fail;
1721 
1722 	set_user_nice(worker->task, pool->attrs->nice);
1723 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1724 
1725 	/* successful, attach the worker to the pool */
1726 	worker_attach_to_pool(worker, pool);
1727 
1728 	/* start the newly created worker */
1729 	spin_lock_irq(&pool->lock);
1730 	worker->pool->nr_workers++;
1731 	worker_enter_idle(worker);
1732 	wake_up_process(worker->task);
1733 	spin_unlock_irq(&pool->lock);
1734 
1735 	return worker;
1736 
1737 fail:
1738 	if (id >= 0)
1739 		ida_simple_remove(&pool->worker_ida, id);
1740 	kfree(worker);
1741 	return NULL;
1742 }
1743 
1744 /**
1745  * destroy_worker - destroy a workqueue worker
1746  * @worker: worker to be destroyed
1747  *
1748  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1749  * be idle.
1750  *
1751  * CONTEXT:
1752  * spin_lock_irq(pool->lock).
1753  */
1754 static void destroy_worker(struct worker *worker)
1755 {
1756 	struct worker_pool *pool = worker->pool;
1757 
1758 	lockdep_assert_held(&pool->lock);
1759 
1760 	/* sanity check frenzy */
1761 	if (WARN_ON(worker->current_work) ||
1762 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1763 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1764 		return;
1765 
1766 	pool->nr_workers--;
1767 	pool->nr_idle--;
1768 
1769 	list_del_init(&worker->entry);
1770 	worker->flags |= WORKER_DIE;
1771 	wake_up_process(worker->task);
1772 }
1773 
1774 static void idle_worker_timeout(unsigned long __pool)
1775 {
1776 	struct worker_pool *pool = (void *)__pool;
1777 
1778 	spin_lock_irq(&pool->lock);
1779 
1780 	while (too_many_workers(pool)) {
1781 		struct worker *worker;
1782 		unsigned long expires;
1783 
1784 		/* idle_list is kept in LIFO order, check the last one */
1785 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1786 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1787 
1788 		if (time_before(jiffies, expires)) {
1789 			mod_timer(&pool->idle_timer, expires);
1790 			break;
1791 		}
1792 
1793 		destroy_worker(worker);
1794 	}
1795 
1796 	spin_unlock_irq(&pool->lock);
1797 }
1798 
1799 static void send_mayday(struct work_struct *work)
1800 {
1801 	struct pool_workqueue *pwq = get_work_pwq(work);
1802 	struct workqueue_struct *wq = pwq->wq;
1803 
1804 	lockdep_assert_held(&wq_mayday_lock);
1805 
1806 	if (!wq->rescuer)
1807 		return;
1808 
1809 	/* mayday mayday mayday */
1810 	if (list_empty(&pwq->mayday_node)) {
1811 		/*
1812 		 * If @pwq is for an unbound wq, its base ref may be put at
1813 		 * any time due to an attribute change.  Pin @pwq until the
1814 		 * rescuer is done with it.
1815 		 */
1816 		get_pwq(pwq);
1817 		list_add_tail(&pwq->mayday_node, &wq->maydays);
1818 		wake_up_process(wq->rescuer->task);
1819 	}
1820 }
1821 
1822 static void pool_mayday_timeout(unsigned long __pool)
1823 {
1824 	struct worker_pool *pool = (void *)__pool;
1825 	struct work_struct *work;
1826 
1827 	spin_lock_irq(&pool->lock);
1828 	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1829 
1830 	if (need_to_create_worker(pool)) {
1831 		/*
1832 		 * We've been trying to create a new worker but
1833 		 * haven't been successful.  We might be hitting an
1834 		 * allocation deadlock.  Send distress signals to
1835 		 * rescuers.
1836 		 */
1837 		list_for_each_entry(work, &pool->worklist, entry)
1838 			send_mayday(work);
1839 	}
1840 
1841 	spin_unlock(&wq_mayday_lock);
1842 	spin_unlock_irq(&pool->lock);
1843 
1844 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1845 }
1846 
1847 /**
1848  * maybe_create_worker - create a new worker if necessary
1849  * @pool: pool to create a new worker for
1850  *
1851  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1852  * have at least one idle worker on return from this function.  If
1853  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1854  * sent to all rescuers with works scheduled on @pool to resolve
1855  * possible allocation deadlock.
1856  *
1857  * On return, need_to_create_worker() is guaranteed to be %false and
1858  * may_start_working() %true.
1859  *
1860  * LOCKING:
1861  * spin_lock_irq(pool->lock) which may be released and regrabbed
1862  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1863  * manager.
1864  */
1865 static void maybe_create_worker(struct worker_pool *pool)
1866 __releases(&pool->lock)
1867 __acquires(&pool->lock)
1868 {
1869 restart:
1870 	spin_unlock_irq(&pool->lock);
1871 
1872 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1873 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1874 
1875 	while (true) {
1876 		if (create_worker(pool) || !need_to_create_worker(pool))
1877 			break;
1878 
1879 		schedule_timeout_interruptible(CREATE_COOLDOWN);
1880 
1881 		if (!need_to_create_worker(pool))
1882 			break;
1883 	}
1884 
1885 	del_timer_sync(&pool->mayday_timer);
1886 	spin_lock_irq(&pool->lock);
1887 	/*
1888 	 * This is necessary even after a new worker was just successfully
1889 	 * created as @pool->lock was dropped and the new worker might have
1890 	 * already become busy.
1891 	 */
1892 	if (need_to_create_worker(pool))
1893 		goto restart;
1894 }
1895 
1896 /**
1897  * manage_workers - manage worker pool
1898  * @worker: self
1899  *
1900  * Assume the manager role and manage the worker pool @worker belongs
1901  * to.  At any given time, there can be only zero or one manager per
1902  * pool.  The exclusion is handled automatically by this function.
1903  *
1904  * The caller can safely start processing works on false return.  On
1905  * true return, it's guaranteed that need_to_create_worker() is false
1906  * and may_start_working() is true.
1907  *
1908  * CONTEXT:
1909  * spin_lock_irq(pool->lock) which may be released and regrabbed
1910  * multiple times.  Does GFP_KERNEL allocations.
1911  *
1912  * Return:
1913  * %false if the pool doesn't need management and the caller can safely
1914  * start processing works, %true if management function was performed and
1915  * the conditions that the caller verified before calling the function may
1916  * no longer be true.
1917  */
1918 static bool manage_workers(struct worker *worker)
1919 {
1920 	struct worker_pool *pool = worker->pool;
1921 
1922 	/*
1923 	 * Anyone who successfully grabs manager_arb wins the arbitration
1924 	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
1925 	 * failure while holding pool->lock reliably indicates that someone
1926 	 * else is managing the pool and the worker which failed trylock
1927 	 * can proceed to executing work items.  This means that anyone
1928 	 * grabbing manager_arb is responsible for actually performing
1929 	 * manager duties.  If manager_arb is grabbed and released without
1930 	 * actual management, the pool may stall indefinitely.
1931 	 */
1932 	if (!mutex_trylock(&pool->manager_arb))
1933 		return false;
1934 	pool->manager = worker;
1935 
1936 	maybe_create_worker(pool);
1937 
1938 	pool->manager = NULL;
1939 	mutex_unlock(&pool->manager_arb);
1940 	return true;
1941 }
1942 
1943 /**
1944  * process_one_work - process single work
1945  * @worker: self
1946  * @work: work to process
1947  *
1948  * Process @work.  This function contains all the logics necessary to
1949  * process a single work including synchronization against and
1950  * interaction with other workers on the same cpu, queueing and
1951  * flushing.  As long as context requirement is met, any worker can
1952  * call this function to process a work.
1953  *
1954  * CONTEXT:
1955  * spin_lock_irq(pool->lock) which is released and regrabbed.
1956  */
1957 static void process_one_work(struct worker *worker, struct work_struct *work)
1958 __releases(&pool->lock)
1959 __acquires(&pool->lock)
1960 {
1961 	struct pool_workqueue *pwq = get_work_pwq(work);
1962 	struct worker_pool *pool = worker->pool;
1963 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
1964 	int work_color;
1965 	struct worker *collision;
1966 #ifdef CONFIG_LOCKDEP
1967 	/*
1968 	 * It is permissible to free the struct work_struct from
1969 	 * inside the function that is called from it, this we need to
1970 	 * take into account for lockdep too.  To avoid bogus "held
1971 	 * lock freed" warnings as well as problems when looking into
1972 	 * work->lockdep_map, make a copy and use that here.
1973 	 */
1974 	struct lockdep_map lockdep_map;
1975 
1976 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
1977 #endif
1978 	/* ensure we're on the correct CPU */
1979 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1980 		     raw_smp_processor_id() != pool->cpu);
1981 
1982 	/*
1983 	 * A single work shouldn't be executed concurrently by
1984 	 * multiple workers on a single cpu.  Check whether anyone is
1985 	 * already processing the work.  If so, defer the work to the
1986 	 * currently executing one.
1987 	 */
1988 	collision = find_worker_executing_work(pool, work);
1989 	if (unlikely(collision)) {
1990 		move_linked_works(work, &collision->scheduled, NULL);
1991 		return;
1992 	}
1993 
1994 	/* claim and dequeue */
1995 	debug_work_deactivate(work);
1996 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
1997 	worker->current_work = work;
1998 	worker->current_func = work->func;
1999 	worker->current_pwq = pwq;
2000 	work_color = get_work_color(work);
2001 
2002 	list_del_init(&work->entry);
2003 
2004 	/*
2005 	 * CPU intensive works don't participate in concurrency management.
2006 	 * They're the scheduler's responsibility.  This takes @worker out
2007 	 * of concurrency management and the next code block will chain
2008 	 * execution of the pending work items.
2009 	 */
2010 	if (unlikely(cpu_intensive))
2011 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2012 
2013 	/*
2014 	 * Wake up another worker if necessary.  The condition is always
2015 	 * false for normal per-cpu workers since nr_running would always
2016 	 * be >= 1 at this point.  This is used to chain execution of the
2017 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2018 	 * UNBOUND and CPU_INTENSIVE ones.
2019 	 */
2020 	if (need_more_worker(pool))
2021 		wake_up_worker(pool);
2022 
2023 	/*
2024 	 * Record the last pool and clear PENDING which should be the last
2025 	 * update to @work.  Also, do this inside @pool->lock so that
2026 	 * PENDING and queued state changes happen together while IRQ is
2027 	 * disabled.
2028 	 */
2029 	set_work_pool_and_clear_pending(work, pool->id);
2030 
2031 	spin_unlock_irq(&pool->lock);
2032 
2033 	lock_map_acquire_read(&pwq->wq->lockdep_map);
2034 	lock_map_acquire(&lockdep_map);
2035 	trace_workqueue_execute_start(work);
2036 	worker->current_func(work);
2037 	/*
2038 	 * While we must be careful to not use "work" after this, the trace
2039 	 * point will only record its address.
2040 	 */
2041 	trace_workqueue_execute_end(work);
2042 	lock_map_release(&lockdep_map);
2043 	lock_map_release(&pwq->wq->lockdep_map);
2044 
2045 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2046 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2047 		       "     last function: %pf\n",
2048 		       current->comm, preempt_count(), task_pid_nr(current),
2049 		       worker->current_func);
2050 		debug_show_held_locks(current);
2051 		dump_stack();
2052 	}
2053 
2054 	/*
2055 	 * The following prevents a kworker from hogging CPU on !PREEMPT
2056 	 * kernels, where a requeueing work item waiting for something to
2057 	 * happen could deadlock with stop_machine as such work item could
2058 	 * indefinitely requeue itself while all other CPUs are trapped in
2059 	 * stop_machine. At the same time, report a quiescent RCU state so
2060 	 * the same condition doesn't freeze RCU.
2061 	 */
2062 	cond_resched_rcu_qs();
2063 
2064 	spin_lock_irq(&pool->lock);
2065 
2066 	/* clear cpu intensive status */
2067 	if (unlikely(cpu_intensive))
2068 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2069 
2070 	/* we're done with it, release */
2071 	hash_del(&worker->hentry);
2072 	worker->current_work = NULL;
2073 	worker->current_func = NULL;
2074 	worker->current_pwq = NULL;
2075 	worker->desc_valid = false;
2076 	pwq_dec_nr_in_flight(pwq, work_color);
2077 }
2078 
2079 /**
2080  * process_scheduled_works - process scheduled works
2081  * @worker: self
2082  *
2083  * Process all scheduled works.  Please note that the scheduled list
2084  * may change while processing a work, so this function repeatedly
2085  * fetches a work from the top and executes it.
2086  *
2087  * CONTEXT:
2088  * spin_lock_irq(pool->lock) which may be released and regrabbed
2089  * multiple times.
2090  */
2091 static void process_scheduled_works(struct worker *worker)
2092 {
2093 	while (!list_empty(&worker->scheduled)) {
2094 		struct work_struct *work = list_first_entry(&worker->scheduled,
2095 						struct work_struct, entry);
2096 		process_one_work(worker, work);
2097 	}
2098 }
2099 
2100 /**
2101  * worker_thread - the worker thread function
2102  * @__worker: self
2103  *
2104  * The worker thread function.  All workers belong to a worker_pool -
2105  * either a per-cpu one or dynamic unbound one.  These workers process all
2106  * work items regardless of their specific target workqueue.  The only
2107  * exception is work items which belong to workqueues with a rescuer which
2108  * will be explained in rescuer_thread().
2109  *
2110  * Return: 0
2111  */
2112 static int worker_thread(void *__worker)
2113 {
2114 	struct worker *worker = __worker;
2115 	struct worker_pool *pool = worker->pool;
2116 
2117 	/* tell the scheduler that this is a workqueue worker */
2118 	worker->task->flags |= PF_WQ_WORKER;
2119 woke_up:
2120 	spin_lock_irq(&pool->lock);
2121 
2122 	/* am I supposed to die? */
2123 	if (unlikely(worker->flags & WORKER_DIE)) {
2124 		spin_unlock_irq(&pool->lock);
2125 		WARN_ON_ONCE(!list_empty(&worker->entry));
2126 		worker->task->flags &= ~PF_WQ_WORKER;
2127 
2128 		set_task_comm(worker->task, "kworker/dying");
2129 		ida_simple_remove(&pool->worker_ida, worker->id);
2130 		worker_detach_from_pool(worker, pool);
2131 		kfree(worker);
2132 		return 0;
2133 	}
2134 
2135 	worker_leave_idle(worker);
2136 recheck:
2137 	/* no more worker necessary? */
2138 	if (!need_more_worker(pool))
2139 		goto sleep;
2140 
2141 	/* do we need to manage? */
2142 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2143 		goto recheck;
2144 
2145 	/*
2146 	 * ->scheduled list can only be filled while a worker is
2147 	 * preparing to process a work or actually processing it.
2148 	 * Make sure nobody diddled with it while I was sleeping.
2149 	 */
2150 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2151 
2152 	/*
2153 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2154 	 * worker or that someone else has already assumed the manager
2155 	 * role.  This is where @worker starts participating in concurrency
2156 	 * management if applicable and concurrency management is restored
2157 	 * after being rebound.  See rebind_workers() for details.
2158 	 */
2159 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2160 
2161 	do {
2162 		struct work_struct *work =
2163 			list_first_entry(&pool->worklist,
2164 					 struct work_struct, entry);
2165 
2166 		pool->watchdog_ts = jiffies;
2167 
2168 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2169 			/* optimization path, not strictly necessary */
2170 			process_one_work(worker, work);
2171 			if (unlikely(!list_empty(&worker->scheduled)))
2172 				process_scheduled_works(worker);
2173 		} else {
2174 			move_linked_works(work, &worker->scheduled, NULL);
2175 			process_scheduled_works(worker);
2176 		}
2177 	} while (keep_working(pool));
2178 
2179 	worker_set_flags(worker, WORKER_PREP);
2180 sleep:
2181 	/*
2182 	 * pool->lock is held and there's no work to process and no need to
2183 	 * manage, sleep.  Workers are woken up only while holding
2184 	 * pool->lock or from local cpu, so setting the current state
2185 	 * before releasing pool->lock is enough to prevent losing any
2186 	 * event.
2187 	 */
2188 	worker_enter_idle(worker);
2189 	__set_current_state(TASK_INTERRUPTIBLE);
2190 	spin_unlock_irq(&pool->lock);
2191 	schedule();
2192 	goto woke_up;
2193 }
2194 
2195 /**
2196  * rescuer_thread - the rescuer thread function
2197  * @__rescuer: self
2198  *
2199  * Workqueue rescuer thread function.  There's one rescuer for each
2200  * workqueue which has WQ_MEM_RECLAIM set.
2201  *
2202  * Regular work processing on a pool may block trying to create a new
2203  * worker which uses GFP_KERNEL allocation which has slight chance of
2204  * developing into deadlock if some works currently on the same queue
2205  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2206  * the problem rescuer solves.
2207  *
2208  * When such condition is possible, the pool summons rescuers of all
2209  * workqueues which have works queued on the pool and let them process
2210  * those works so that forward progress can be guaranteed.
2211  *
2212  * This should happen rarely.
2213  *
2214  * Return: 0
2215  */
2216 static int rescuer_thread(void *__rescuer)
2217 {
2218 	struct worker *rescuer = __rescuer;
2219 	struct workqueue_struct *wq = rescuer->rescue_wq;
2220 	struct list_head *scheduled = &rescuer->scheduled;
2221 	bool should_stop;
2222 
2223 	set_user_nice(current, RESCUER_NICE_LEVEL);
2224 
2225 	/*
2226 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2227 	 * doesn't participate in concurrency management.
2228 	 */
2229 	rescuer->task->flags |= PF_WQ_WORKER;
2230 repeat:
2231 	set_current_state(TASK_INTERRUPTIBLE);
2232 
2233 	/*
2234 	 * By the time the rescuer is requested to stop, the workqueue
2235 	 * shouldn't have any work pending, but @wq->maydays may still have
2236 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2237 	 * all the work items before the rescuer got to them.  Go through
2238 	 * @wq->maydays processing before acting on should_stop so that the
2239 	 * list is always empty on exit.
2240 	 */
2241 	should_stop = kthread_should_stop();
2242 
2243 	/* see whether any pwq is asking for help */
2244 	spin_lock_irq(&wq_mayday_lock);
2245 
2246 	while (!list_empty(&wq->maydays)) {
2247 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2248 					struct pool_workqueue, mayday_node);
2249 		struct worker_pool *pool = pwq->pool;
2250 		struct work_struct *work, *n;
2251 		bool first = true;
2252 
2253 		__set_current_state(TASK_RUNNING);
2254 		list_del_init(&pwq->mayday_node);
2255 
2256 		spin_unlock_irq(&wq_mayday_lock);
2257 
2258 		worker_attach_to_pool(rescuer, pool);
2259 
2260 		spin_lock_irq(&pool->lock);
2261 		rescuer->pool = pool;
2262 
2263 		/*
2264 		 * Slurp in all works issued via this workqueue and
2265 		 * process'em.
2266 		 */
2267 		WARN_ON_ONCE(!list_empty(scheduled));
2268 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2269 			if (get_work_pwq(work) == pwq) {
2270 				if (first)
2271 					pool->watchdog_ts = jiffies;
2272 				move_linked_works(work, scheduled, &n);
2273 			}
2274 			first = false;
2275 		}
2276 
2277 		if (!list_empty(scheduled)) {
2278 			process_scheduled_works(rescuer);
2279 
2280 			/*
2281 			 * The above execution of rescued work items could
2282 			 * have created more to rescue through
2283 			 * pwq_activate_first_delayed() or chained
2284 			 * queueing.  Let's put @pwq back on mayday list so
2285 			 * that such back-to-back work items, which may be
2286 			 * being used to relieve memory pressure, don't
2287 			 * incur MAYDAY_INTERVAL delay inbetween.
2288 			 */
2289 			if (need_to_create_worker(pool)) {
2290 				spin_lock(&wq_mayday_lock);
2291 				get_pwq(pwq);
2292 				list_move_tail(&pwq->mayday_node, &wq->maydays);
2293 				spin_unlock(&wq_mayday_lock);
2294 			}
2295 		}
2296 
2297 		/*
2298 		 * Put the reference grabbed by send_mayday().  @pool won't
2299 		 * go away while we're still attached to it.
2300 		 */
2301 		put_pwq(pwq);
2302 
2303 		/*
2304 		 * Leave this pool.  If need_more_worker() is %true, notify a
2305 		 * regular worker; otherwise, we end up with 0 concurrency
2306 		 * and stalling the execution.
2307 		 */
2308 		if (need_more_worker(pool))
2309 			wake_up_worker(pool);
2310 
2311 		rescuer->pool = NULL;
2312 		spin_unlock_irq(&pool->lock);
2313 
2314 		worker_detach_from_pool(rescuer, pool);
2315 
2316 		spin_lock_irq(&wq_mayday_lock);
2317 	}
2318 
2319 	spin_unlock_irq(&wq_mayday_lock);
2320 
2321 	if (should_stop) {
2322 		__set_current_state(TASK_RUNNING);
2323 		rescuer->task->flags &= ~PF_WQ_WORKER;
2324 		return 0;
2325 	}
2326 
2327 	/* rescuers should never participate in concurrency management */
2328 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2329 	schedule();
2330 	goto repeat;
2331 }
2332 
2333 /**
2334  * check_flush_dependency - check for flush dependency sanity
2335  * @target_wq: workqueue being flushed
2336  * @target_work: work item being flushed (NULL for workqueue flushes)
2337  *
2338  * %current is trying to flush the whole @target_wq or @target_work on it.
2339  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2340  * reclaiming memory or running on a workqueue which doesn't have
2341  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2342  * a deadlock.
2343  */
2344 static void check_flush_dependency(struct workqueue_struct *target_wq,
2345 				   struct work_struct *target_work)
2346 {
2347 	work_func_t target_func = target_work ? target_work->func : NULL;
2348 	struct worker *worker;
2349 
2350 	if (target_wq->flags & WQ_MEM_RECLAIM)
2351 		return;
2352 
2353 	worker = current_wq_worker();
2354 
2355 	WARN_ONCE(current->flags & PF_MEMALLOC,
2356 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2357 		  current->pid, current->comm, target_wq->name, target_func);
2358 	WARN_ONCE(worker && (worker->current_pwq->wq->flags & WQ_MEM_RECLAIM),
2359 		  "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2360 		  worker->current_pwq->wq->name, worker->current_func,
2361 		  target_wq->name, target_func);
2362 }
2363 
2364 struct wq_barrier {
2365 	struct work_struct	work;
2366 	struct completion	done;
2367 	struct task_struct	*task;	/* purely informational */
2368 };
2369 
2370 static void wq_barrier_func(struct work_struct *work)
2371 {
2372 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2373 	complete(&barr->done);
2374 }
2375 
2376 /**
2377  * insert_wq_barrier - insert a barrier work
2378  * @pwq: pwq to insert barrier into
2379  * @barr: wq_barrier to insert
2380  * @target: target work to attach @barr to
2381  * @worker: worker currently executing @target, NULL if @target is not executing
2382  *
2383  * @barr is linked to @target such that @barr is completed only after
2384  * @target finishes execution.  Please note that the ordering
2385  * guarantee is observed only with respect to @target and on the local
2386  * cpu.
2387  *
2388  * Currently, a queued barrier can't be canceled.  This is because
2389  * try_to_grab_pending() can't determine whether the work to be
2390  * grabbed is at the head of the queue and thus can't clear LINKED
2391  * flag of the previous work while there must be a valid next work
2392  * after a work with LINKED flag set.
2393  *
2394  * Note that when @worker is non-NULL, @target may be modified
2395  * underneath us, so we can't reliably determine pwq from @target.
2396  *
2397  * CONTEXT:
2398  * spin_lock_irq(pool->lock).
2399  */
2400 static void insert_wq_barrier(struct pool_workqueue *pwq,
2401 			      struct wq_barrier *barr,
2402 			      struct work_struct *target, struct worker *worker)
2403 {
2404 	struct list_head *head;
2405 	unsigned int linked = 0;
2406 
2407 	/*
2408 	 * debugobject calls are safe here even with pool->lock locked
2409 	 * as we know for sure that this will not trigger any of the
2410 	 * checks and call back into the fixup functions where we
2411 	 * might deadlock.
2412 	 */
2413 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2414 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2415 	init_completion(&barr->done);
2416 	barr->task = current;
2417 
2418 	/*
2419 	 * If @target is currently being executed, schedule the
2420 	 * barrier to the worker; otherwise, put it after @target.
2421 	 */
2422 	if (worker)
2423 		head = worker->scheduled.next;
2424 	else {
2425 		unsigned long *bits = work_data_bits(target);
2426 
2427 		head = target->entry.next;
2428 		/* there can already be other linked works, inherit and set */
2429 		linked = *bits & WORK_STRUCT_LINKED;
2430 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2431 	}
2432 
2433 	debug_work_activate(&barr->work);
2434 	insert_work(pwq, &barr->work, head,
2435 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2436 }
2437 
2438 /**
2439  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2440  * @wq: workqueue being flushed
2441  * @flush_color: new flush color, < 0 for no-op
2442  * @work_color: new work color, < 0 for no-op
2443  *
2444  * Prepare pwqs for workqueue flushing.
2445  *
2446  * If @flush_color is non-negative, flush_color on all pwqs should be
2447  * -1.  If no pwq has in-flight commands at the specified color, all
2448  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2449  * has in flight commands, its pwq->flush_color is set to
2450  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2451  * wakeup logic is armed and %true is returned.
2452  *
2453  * The caller should have initialized @wq->first_flusher prior to
2454  * calling this function with non-negative @flush_color.  If
2455  * @flush_color is negative, no flush color update is done and %false
2456  * is returned.
2457  *
2458  * If @work_color is non-negative, all pwqs should have the same
2459  * work_color which is previous to @work_color and all will be
2460  * advanced to @work_color.
2461  *
2462  * CONTEXT:
2463  * mutex_lock(wq->mutex).
2464  *
2465  * Return:
2466  * %true if @flush_color >= 0 and there's something to flush.  %false
2467  * otherwise.
2468  */
2469 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2470 				      int flush_color, int work_color)
2471 {
2472 	bool wait = false;
2473 	struct pool_workqueue *pwq;
2474 
2475 	if (flush_color >= 0) {
2476 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2477 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2478 	}
2479 
2480 	for_each_pwq(pwq, wq) {
2481 		struct worker_pool *pool = pwq->pool;
2482 
2483 		spin_lock_irq(&pool->lock);
2484 
2485 		if (flush_color >= 0) {
2486 			WARN_ON_ONCE(pwq->flush_color != -1);
2487 
2488 			if (pwq->nr_in_flight[flush_color]) {
2489 				pwq->flush_color = flush_color;
2490 				atomic_inc(&wq->nr_pwqs_to_flush);
2491 				wait = true;
2492 			}
2493 		}
2494 
2495 		if (work_color >= 0) {
2496 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2497 			pwq->work_color = work_color;
2498 		}
2499 
2500 		spin_unlock_irq(&pool->lock);
2501 	}
2502 
2503 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2504 		complete(&wq->first_flusher->done);
2505 
2506 	return wait;
2507 }
2508 
2509 /**
2510  * flush_workqueue - ensure that any scheduled work has run to completion.
2511  * @wq: workqueue to flush
2512  *
2513  * This function sleeps until all work items which were queued on entry
2514  * have finished execution, but it is not livelocked by new incoming ones.
2515  */
2516 void flush_workqueue(struct workqueue_struct *wq)
2517 {
2518 	struct wq_flusher this_flusher = {
2519 		.list = LIST_HEAD_INIT(this_flusher.list),
2520 		.flush_color = -1,
2521 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2522 	};
2523 	int next_color;
2524 
2525 	lock_map_acquire(&wq->lockdep_map);
2526 	lock_map_release(&wq->lockdep_map);
2527 
2528 	mutex_lock(&wq->mutex);
2529 
2530 	/*
2531 	 * Start-to-wait phase
2532 	 */
2533 	next_color = work_next_color(wq->work_color);
2534 
2535 	if (next_color != wq->flush_color) {
2536 		/*
2537 		 * Color space is not full.  The current work_color
2538 		 * becomes our flush_color and work_color is advanced
2539 		 * by one.
2540 		 */
2541 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2542 		this_flusher.flush_color = wq->work_color;
2543 		wq->work_color = next_color;
2544 
2545 		if (!wq->first_flusher) {
2546 			/* no flush in progress, become the first flusher */
2547 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2548 
2549 			wq->first_flusher = &this_flusher;
2550 
2551 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2552 						       wq->work_color)) {
2553 				/* nothing to flush, done */
2554 				wq->flush_color = next_color;
2555 				wq->first_flusher = NULL;
2556 				goto out_unlock;
2557 			}
2558 		} else {
2559 			/* wait in queue */
2560 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2561 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2562 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2563 		}
2564 	} else {
2565 		/*
2566 		 * Oops, color space is full, wait on overflow queue.
2567 		 * The next flush completion will assign us
2568 		 * flush_color and transfer to flusher_queue.
2569 		 */
2570 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2571 	}
2572 
2573 	check_flush_dependency(wq, NULL);
2574 
2575 	mutex_unlock(&wq->mutex);
2576 
2577 	wait_for_completion(&this_flusher.done);
2578 
2579 	/*
2580 	 * Wake-up-and-cascade phase
2581 	 *
2582 	 * First flushers are responsible for cascading flushes and
2583 	 * handling overflow.  Non-first flushers can simply return.
2584 	 */
2585 	if (wq->first_flusher != &this_flusher)
2586 		return;
2587 
2588 	mutex_lock(&wq->mutex);
2589 
2590 	/* we might have raced, check again with mutex held */
2591 	if (wq->first_flusher != &this_flusher)
2592 		goto out_unlock;
2593 
2594 	wq->first_flusher = NULL;
2595 
2596 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2597 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2598 
2599 	while (true) {
2600 		struct wq_flusher *next, *tmp;
2601 
2602 		/* complete all the flushers sharing the current flush color */
2603 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2604 			if (next->flush_color != wq->flush_color)
2605 				break;
2606 			list_del_init(&next->list);
2607 			complete(&next->done);
2608 		}
2609 
2610 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2611 			     wq->flush_color != work_next_color(wq->work_color));
2612 
2613 		/* this flush_color is finished, advance by one */
2614 		wq->flush_color = work_next_color(wq->flush_color);
2615 
2616 		/* one color has been freed, handle overflow queue */
2617 		if (!list_empty(&wq->flusher_overflow)) {
2618 			/*
2619 			 * Assign the same color to all overflowed
2620 			 * flushers, advance work_color and append to
2621 			 * flusher_queue.  This is the start-to-wait
2622 			 * phase for these overflowed flushers.
2623 			 */
2624 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2625 				tmp->flush_color = wq->work_color;
2626 
2627 			wq->work_color = work_next_color(wq->work_color);
2628 
2629 			list_splice_tail_init(&wq->flusher_overflow,
2630 					      &wq->flusher_queue);
2631 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2632 		}
2633 
2634 		if (list_empty(&wq->flusher_queue)) {
2635 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2636 			break;
2637 		}
2638 
2639 		/*
2640 		 * Need to flush more colors.  Make the next flusher
2641 		 * the new first flusher and arm pwqs.
2642 		 */
2643 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2644 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2645 
2646 		list_del_init(&next->list);
2647 		wq->first_flusher = next;
2648 
2649 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2650 			break;
2651 
2652 		/*
2653 		 * Meh... this color is already done, clear first
2654 		 * flusher and repeat cascading.
2655 		 */
2656 		wq->first_flusher = NULL;
2657 	}
2658 
2659 out_unlock:
2660 	mutex_unlock(&wq->mutex);
2661 }
2662 EXPORT_SYMBOL(flush_workqueue);
2663 
2664 /**
2665  * drain_workqueue - drain a workqueue
2666  * @wq: workqueue to drain
2667  *
2668  * Wait until the workqueue becomes empty.  While draining is in progress,
2669  * only chain queueing is allowed.  IOW, only currently pending or running
2670  * work items on @wq can queue further work items on it.  @wq is flushed
2671  * repeatedly until it becomes empty.  The number of flushing is determined
2672  * by the depth of chaining and should be relatively short.  Whine if it
2673  * takes too long.
2674  */
2675 void drain_workqueue(struct workqueue_struct *wq)
2676 {
2677 	unsigned int flush_cnt = 0;
2678 	struct pool_workqueue *pwq;
2679 
2680 	/*
2681 	 * __queue_work() needs to test whether there are drainers, is much
2682 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2683 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2684 	 */
2685 	mutex_lock(&wq->mutex);
2686 	if (!wq->nr_drainers++)
2687 		wq->flags |= __WQ_DRAINING;
2688 	mutex_unlock(&wq->mutex);
2689 reflush:
2690 	flush_workqueue(wq);
2691 
2692 	mutex_lock(&wq->mutex);
2693 
2694 	for_each_pwq(pwq, wq) {
2695 		bool drained;
2696 
2697 		spin_lock_irq(&pwq->pool->lock);
2698 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2699 		spin_unlock_irq(&pwq->pool->lock);
2700 
2701 		if (drained)
2702 			continue;
2703 
2704 		if (++flush_cnt == 10 ||
2705 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2706 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2707 				wq->name, flush_cnt);
2708 
2709 		mutex_unlock(&wq->mutex);
2710 		goto reflush;
2711 	}
2712 
2713 	if (!--wq->nr_drainers)
2714 		wq->flags &= ~__WQ_DRAINING;
2715 	mutex_unlock(&wq->mutex);
2716 }
2717 EXPORT_SYMBOL_GPL(drain_workqueue);
2718 
2719 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2720 {
2721 	struct worker *worker = NULL;
2722 	struct worker_pool *pool;
2723 	struct pool_workqueue *pwq;
2724 
2725 	might_sleep();
2726 
2727 	local_irq_disable();
2728 	pool = get_work_pool(work);
2729 	if (!pool) {
2730 		local_irq_enable();
2731 		return false;
2732 	}
2733 
2734 	spin_lock(&pool->lock);
2735 	/* see the comment in try_to_grab_pending() with the same code */
2736 	pwq = get_work_pwq(work);
2737 	if (pwq) {
2738 		if (unlikely(pwq->pool != pool))
2739 			goto already_gone;
2740 	} else {
2741 		worker = find_worker_executing_work(pool, work);
2742 		if (!worker)
2743 			goto already_gone;
2744 		pwq = worker->current_pwq;
2745 	}
2746 
2747 	check_flush_dependency(pwq->wq, work);
2748 
2749 	insert_wq_barrier(pwq, barr, work, worker);
2750 	spin_unlock_irq(&pool->lock);
2751 
2752 	/*
2753 	 * If @max_active is 1 or rescuer is in use, flushing another work
2754 	 * item on the same workqueue may lead to deadlock.  Make sure the
2755 	 * flusher is not running on the same workqueue by verifying write
2756 	 * access.
2757 	 */
2758 	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2759 		lock_map_acquire(&pwq->wq->lockdep_map);
2760 	else
2761 		lock_map_acquire_read(&pwq->wq->lockdep_map);
2762 	lock_map_release(&pwq->wq->lockdep_map);
2763 
2764 	return true;
2765 already_gone:
2766 	spin_unlock_irq(&pool->lock);
2767 	return false;
2768 }
2769 
2770 /**
2771  * flush_work - wait for a work to finish executing the last queueing instance
2772  * @work: the work to flush
2773  *
2774  * Wait until @work has finished execution.  @work is guaranteed to be idle
2775  * on return if it hasn't been requeued since flush started.
2776  *
2777  * Return:
2778  * %true if flush_work() waited for the work to finish execution,
2779  * %false if it was already idle.
2780  */
2781 bool flush_work(struct work_struct *work)
2782 {
2783 	struct wq_barrier barr;
2784 
2785 	lock_map_acquire(&work->lockdep_map);
2786 	lock_map_release(&work->lockdep_map);
2787 
2788 	if (start_flush_work(work, &barr)) {
2789 		wait_for_completion(&barr.done);
2790 		destroy_work_on_stack(&barr.work);
2791 		return true;
2792 	} else {
2793 		return false;
2794 	}
2795 }
2796 EXPORT_SYMBOL_GPL(flush_work);
2797 
2798 struct cwt_wait {
2799 	wait_queue_t		wait;
2800 	struct work_struct	*work;
2801 };
2802 
2803 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2804 {
2805 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2806 
2807 	if (cwait->work != key)
2808 		return 0;
2809 	return autoremove_wake_function(wait, mode, sync, key);
2810 }
2811 
2812 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2813 {
2814 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2815 	unsigned long flags;
2816 	int ret;
2817 
2818 	do {
2819 		ret = try_to_grab_pending(work, is_dwork, &flags);
2820 		/*
2821 		 * If someone else is already canceling, wait for it to
2822 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
2823 		 * because we may get scheduled between @work's completion
2824 		 * and the other canceling task resuming and clearing
2825 		 * CANCELING - flush_work() will return false immediately
2826 		 * as @work is no longer busy, try_to_grab_pending() will
2827 		 * return -ENOENT as @work is still being canceled and the
2828 		 * other canceling task won't be able to clear CANCELING as
2829 		 * we're hogging the CPU.
2830 		 *
2831 		 * Let's wait for completion using a waitqueue.  As this
2832 		 * may lead to the thundering herd problem, use a custom
2833 		 * wake function which matches @work along with exclusive
2834 		 * wait and wakeup.
2835 		 */
2836 		if (unlikely(ret == -ENOENT)) {
2837 			struct cwt_wait cwait;
2838 
2839 			init_wait(&cwait.wait);
2840 			cwait.wait.func = cwt_wakefn;
2841 			cwait.work = work;
2842 
2843 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2844 						  TASK_UNINTERRUPTIBLE);
2845 			if (work_is_canceling(work))
2846 				schedule();
2847 			finish_wait(&cancel_waitq, &cwait.wait);
2848 		}
2849 	} while (unlikely(ret < 0));
2850 
2851 	/* tell other tasks trying to grab @work to back off */
2852 	mark_work_canceling(work);
2853 	local_irq_restore(flags);
2854 
2855 	flush_work(work);
2856 	clear_work_data(work);
2857 
2858 	/*
2859 	 * Paired with prepare_to_wait() above so that either
2860 	 * waitqueue_active() is visible here or !work_is_canceling() is
2861 	 * visible there.
2862 	 */
2863 	smp_mb();
2864 	if (waitqueue_active(&cancel_waitq))
2865 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2866 
2867 	return ret;
2868 }
2869 
2870 /**
2871  * cancel_work_sync - cancel a work and wait for it to finish
2872  * @work: the work to cancel
2873  *
2874  * Cancel @work and wait for its execution to finish.  This function
2875  * can be used even if the work re-queues itself or migrates to
2876  * another workqueue.  On return from this function, @work is
2877  * guaranteed to be not pending or executing on any CPU.
2878  *
2879  * cancel_work_sync(&delayed_work->work) must not be used for
2880  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2881  *
2882  * The caller must ensure that the workqueue on which @work was last
2883  * queued can't be destroyed before this function returns.
2884  *
2885  * Return:
2886  * %true if @work was pending, %false otherwise.
2887  */
2888 bool cancel_work_sync(struct work_struct *work)
2889 {
2890 	return __cancel_work_timer(work, false);
2891 }
2892 EXPORT_SYMBOL_GPL(cancel_work_sync);
2893 
2894 /**
2895  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2896  * @dwork: the delayed work to flush
2897  *
2898  * Delayed timer is cancelled and the pending work is queued for
2899  * immediate execution.  Like flush_work(), this function only
2900  * considers the last queueing instance of @dwork.
2901  *
2902  * Return:
2903  * %true if flush_work() waited for the work to finish execution,
2904  * %false if it was already idle.
2905  */
2906 bool flush_delayed_work(struct delayed_work *dwork)
2907 {
2908 	local_irq_disable();
2909 	if (del_timer_sync(&dwork->timer))
2910 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2911 	local_irq_enable();
2912 	return flush_work(&dwork->work);
2913 }
2914 EXPORT_SYMBOL(flush_delayed_work);
2915 
2916 /**
2917  * cancel_delayed_work - cancel a delayed work
2918  * @dwork: delayed_work to cancel
2919  *
2920  * Kill off a pending delayed_work.
2921  *
2922  * Return: %true if @dwork was pending and canceled; %false if it wasn't
2923  * pending.
2924  *
2925  * Note:
2926  * The work callback function may still be running on return, unless
2927  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
2928  * use cancel_delayed_work_sync() to wait on it.
2929  *
2930  * This function is safe to call from any context including IRQ handler.
2931  */
2932 bool cancel_delayed_work(struct delayed_work *dwork)
2933 {
2934 	unsigned long flags;
2935 	int ret;
2936 
2937 	do {
2938 		ret = try_to_grab_pending(&dwork->work, true, &flags);
2939 	} while (unlikely(ret == -EAGAIN));
2940 
2941 	if (unlikely(ret < 0))
2942 		return false;
2943 
2944 	set_work_pool_and_clear_pending(&dwork->work,
2945 					get_work_pool_id(&dwork->work));
2946 	local_irq_restore(flags);
2947 	return ret;
2948 }
2949 EXPORT_SYMBOL(cancel_delayed_work);
2950 
2951 /**
2952  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2953  * @dwork: the delayed work cancel
2954  *
2955  * This is cancel_work_sync() for delayed works.
2956  *
2957  * Return:
2958  * %true if @dwork was pending, %false otherwise.
2959  */
2960 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2961 {
2962 	return __cancel_work_timer(&dwork->work, true);
2963 }
2964 EXPORT_SYMBOL(cancel_delayed_work_sync);
2965 
2966 /**
2967  * schedule_on_each_cpu - execute a function synchronously on each online CPU
2968  * @func: the function to call
2969  *
2970  * schedule_on_each_cpu() executes @func on each online CPU using the
2971  * system workqueue and blocks until all CPUs have completed.
2972  * schedule_on_each_cpu() is very slow.
2973  *
2974  * Return:
2975  * 0 on success, -errno on failure.
2976  */
2977 int schedule_on_each_cpu(work_func_t func)
2978 {
2979 	int cpu;
2980 	struct work_struct __percpu *works;
2981 
2982 	works = alloc_percpu(struct work_struct);
2983 	if (!works)
2984 		return -ENOMEM;
2985 
2986 	get_online_cpus();
2987 
2988 	for_each_online_cpu(cpu) {
2989 		struct work_struct *work = per_cpu_ptr(works, cpu);
2990 
2991 		INIT_WORK(work, func);
2992 		schedule_work_on(cpu, work);
2993 	}
2994 
2995 	for_each_online_cpu(cpu)
2996 		flush_work(per_cpu_ptr(works, cpu));
2997 
2998 	put_online_cpus();
2999 	free_percpu(works);
3000 	return 0;
3001 }
3002 
3003 /**
3004  * execute_in_process_context - reliably execute the routine with user context
3005  * @fn:		the function to execute
3006  * @ew:		guaranteed storage for the execute work structure (must
3007  *		be available when the work executes)
3008  *
3009  * Executes the function immediately if process context is available,
3010  * otherwise schedules the function for delayed execution.
3011  *
3012  * Return:	0 - function was executed
3013  *		1 - function was scheduled for execution
3014  */
3015 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3016 {
3017 	if (!in_interrupt()) {
3018 		fn(&ew->work);
3019 		return 0;
3020 	}
3021 
3022 	INIT_WORK(&ew->work, fn);
3023 	schedule_work(&ew->work);
3024 
3025 	return 1;
3026 }
3027 EXPORT_SYMBOL_GPL(execute_in_process_context);
3028 
3029 /**
3030  * free_workqueue_attrs - free a workqueue_attrs
3031  * @attrs: workqueue_attrs to free
3032  *
3033  * Undo alloc_workqueue_attrs().
3034  */
3035 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3036 {
3037 	if (attrs) {
3038 		free_cpumask_var(attrs->cpumask);
3039 		kfree(attrs);
3040 	}
3041 }
3042 
3043 /**
3044  * alloc_workqueue_attrs - allocate a workqueue_attrs
3045  * @gfp_mask: allocation mask to use
3046  *
3047  * Allocate a new workqueue_attrs, initialize with default settings and
3048  * return it.
3049  *
3050  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3051  */
3052 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3053 {
3054 	struct workqueue_attrs *attrs;
3055 
3056 	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3057 	if (!attrs)
3058 		goto fail;
3059 	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3060 		goto fail;
3061 
3062 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3063 	return attrs;
3064 fail:
3065 	free_workqueue_attrs(attrs);
3066 	return NULL;
3067 }
3068 
3069 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3070 				 const struct workqueue_attrs *from)
3071 {
3072 	to->nice = from->nice;
3073 	cpumask_copy(to->cpumask, from->cpumask);
3074 	/*
3075 	 * Unlike hash and equality test, this function doesn't ignore
3076 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3077 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3078 	 */
3079 	to->no_numa = from->no_numa;
3080 }
3081 
3082 /* hash value of the content of @attr */
3083 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3084 {
3085 	u32 hash = 0;
3086 
3087 	hash = jhash_1word(attrs->nice, hash);
3088 	hash = jhash(cpumask_bits(attrs->cpumask),
3089 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3090 	return hash;
3091 }
3092 
3093 /* content equality test */
3094 static bool wqattrs_equal(const struct workqueue_attrs *a,
3095 			  const struct workqueue_attrs *b)
3096 {
3097 	if (a->nice != b->nice)
3098 		return false;
3099 	if (!cpumask_equal(a->cpumask, b->cpumask))
3100 		return false;
3101 	return true;
3102 }
3103 
3104 /**
3105  * init_worker_pool - initialize a newly zalloc'd worker_pool
3106  * @pool: worker_pool to initialize
3107  *
3108  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3109  *
3110  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3111  * inside @pool proper are initialized and put_unbound_pool() can be called
3112  * on @pool safely to release it.
3113  */
3114 static int init_worker_pool(struct worker_pool *pool)
3115 {
3116 	spin_lock_init(&pool->lock);
3117 	pool->id = -1;
3118 	pool->cpu = -1;
3119 	pool->node = NUMA_NO_NODE;
3120 	pool->flags |= POOL_DISASSOCIATED;
3121 	pool->watchdog_ts = jiffies;
3122 	INIT_LIST_HEAD(&pool->worklist);
3123 	INIT_LIST_HEAD(&pool->idle_list);
3124 	hash_init(pool->busy_hash);
3125 
3126 	init_timer_deferrable(&pool->idle_timer);
3127 	pool->idle_timer.function = idle_worker_timeout;
3128 	pool->idle_timer.data = (unsigned long)pool;
3129 
3130 	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3131 		    (unsigned long)pool);
3132 
3133 	mutex_init(&pool->manager_arb);
3134 	mutex_init(&pool->attach_mutex);
3135 	INIT_LIST_HEAD(&pool->workers);
3136 
3137 	ida_init(&pool->worker_ida);
3138 	INIT_HLIST_NODE(&pool->hash_node);
3139 	pool->refcnt = 1;
3140 
3141 	/* shouldn't fail above this point */
3142 	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3143 	if (!pool->attrs)
3144 		return -ENOMEM;
3145 	return 0;
3146 }
3147 
3148 static void rcu_free_wq(struct rcu_head *rcu)
3149 {
3150 	struct workqueue_struct *wq =
3151 		container_of(rcu, struct workqueue_struct, rcu);
3152 
3153 	if (!(wq->flags & WQ_UNBOUND))
3154 		free_percpu(wq->cpu_pwqs);
3155 	else
3156 		free_workqueue_attrs(wq->unbound_attrs);
3157 
3158 	kfree(wq->rescuer);
3159 	kfree(wq);
3160 }
3161 
3162 static void rcu_free_pool(struct rcu_head *rcu)
3163 {
3164 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3165 
3166 	ida_destroy(&pool->worker_ida);
3167 	free_workqueue_attrs(pool->attrs);
3168 	kfree(pool);
3169 }
3170 
3171 /**
3172  * put_unbound_pool - put a worker_pool
3173  * @pool: worker_pool to put
3174  *
3175  * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3176  * safe manner.  get_unbound_pool() calls this function on its failure path
3177  * and this function should be able to release pools which went through,
3178  * successfully or not, init_worker_pool().
3179  *
3180  * Should be called with wq_pool_mutex held.
3181  */
3182 static void put_unbound_pool(struct worker_pool *pool)
3183 {
3184 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3185 	struct worker *worker;
3186 
3187 	lockdep_assert_held(&wq_pool_mutex);
3188 
3189 	if (--pool->refcnt)
3190 		return;
3191 
3192 	/* sanity checks */
3193 	if (WARN_ON(!(pool->cpu < 0)) ||
3194 	    WARN_ON(!list_empty(&pool->worklist)))
3195 		return;
3196 
3197 	/* release id and unhash */
3198 	if (pool->id >= 0)
3199 		idr_remove(&worker_pool_idr, pool->id);
3200 	hash_del(&pool->hash_node);
3201 
3202 	/*
3203 	 * Become the manager and destroy all workers.  Grabbing
3204 	 * manager_arb prevents @pool's workers from blocking on
3205 	 * attach_mutex.
3206 	 */
3207 	mutex_lock(&pool->manager_arb);
3208 
3209 	spin_lock_irq(&pool->lock);
3210 	while ((worker = first_idle_worker(pool)))
3211 		destroy_worker(worker);
3212 	WARN_ON(pool->nr_workers || pool->nr_idle);
3213 	spin_unlock_irq(&pool->lock);
3214 
3215 	mutex_lock(&pool->attach_mutex);
3216 	if (!list_empty(&pool->workers))
3217 		pool->detach_completion = &detach_completion;
3218 	mutex_unlock(&pool->attach_mutex);
3219 
3220 	if (pool->detach_completion)
3221 		wait_for_completion(pool->detach_completion);
3222 
3223 	mutex_unlock(&pool->manager_arb);
3224 
3225 	/* shut down the timers */
3226 	del_timer_sync(&pool->idle_timer);
3227 	del_timer_sync(&pool->mayday_timer);
3228 
3229 	/* sched-RCU protected to allow dereferences from get_work_pool() */
3230 	call_rcu_sched(&pool->rcu, rcu_free_pool);
3231 }
3232 
3233 /**
3234  * get_unbound_pool - get a worker_pool with the specified attributes
3235  * @attrs: the attributes of the worker_pool to get
3236  *
3237  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3238  * reference count and return it.  If there already is a matching
3239  * worker_pool, it will be used; otherwise, this function attempts to
3240  * create a new one.
3241  *
3242  * Should be called with wq_pool_mutex held.
3243  *
3244  * Return: On success, a worker_pool with the same attributes as @attrs.
3245  * On failure, %NULL.
3246  */
3247 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3248 {
3249 	u32 hash = wqattrs_hash(attrs);
3250 	struct worker_pool *pool;
3251 	int node;
3252 	int target_node = NUMA_NO_NODE;
3253 
3254 	lockdep_assert_held(&wq_pool_mutex);
3255 
3256 	/* do we already have a matching pool? */
3257 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3258 		if (wqattrs_equal(pool->attrs, attrs)) {
3259 			pool->refcnt++;
3260 			return pool;
3261 		}
3262 	}
3263 
3264 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3265 	if (wq_numa_enabled) {
3266 		for_each_node(node) {
3267 			if (cpumask_subset(attrs->cpumask,
3268 					   wq_numa_possible_cpumask[node])) {
3269 				target_node = node;
3270 				break;
3271 			}
3272 		}
3273 	}
3274 
3275 	/* nope, create a new one */
3276 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3277 	if (!pool || init_worker_pool(pool) < 0)
3278 		goto fail;
3279 
3280 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3281 	copy_workqueue_attrs(pool->attrs, attrs);
3282 	pool->node = target_node;
3283 
3284 	/*
3285 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3286 	 * 'struct workqueue_attrs' comments for detail.
3287 	 */
3288 	pool->attrs->no_numa = false;
3289 
3290 	if (worker_pool_assign_id(pool) < 0)
3291 		goto fail;
3292 
3293 	/* create and start the initial worker */
3294 	if (!create_worker(pool))
3295 		goto fail;
3296 
3297 	/* install */
3298 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3299 
3300 	return pool;
3301 fail:
3302 	if (pool)
3303 		put_unbound_pool(pool);
3304 	return NULL;
3305 }
3306 
3307 static void rcu_free_pwq(struct rcu_head *rcu)
3308 {
3309 	kmem_cache_free(pwq_cache,
3310 			container_of(rcu, struct pool_workqueue, rcu));
3311 }
3312 
3313 /*
3314  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3315  * and needs to be destroyed.
3316  */
3317 static void pwq_unbound_release_workfn(struct work_struct *work)
3318 {
3319 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3320 						  unbound_release_work);
3321 	struct workqueue_struct *wq = pwq->wq;
3322 	struct worker_pool *pool = pwq->pool;
3323 	bool is_last;
3324 
3325 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3326 		return;
3327 
3328 	mutex_lock(&wq->mutex);
3329 	list_del_rcu(&pwq->pwqs_node);
3330 	is_last = list_empty(&wq->pwqs);
3331 	mutex_unlock(&wq->mutex);
3332 
3333 	mutex_lock(&wq_pool_mutex);
3334 	put_unbound_pool(pool);
3335 	mutex_unlock(&wq_pool_mutex);
3336 
3337 	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3338 
3339 	/*
3340 	 * If we're the last pwq going away, @wq is already dead and no one
3341 	 * is gonna access it anymore.  Schedule RCU free.
3342 	 */
3343 	if (is_last)
3344 		call_rcu_sched(&wq->rcu, rcu_free_wq);
3345 }
3346 
3347 /**
3348  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3349  * @pwq: target pool_workqueue
3350  *
3351  * If @pwq isn't freezing, set @pwq->max_active to the associated
3352  * workqueue's saved_max_active and activate delayed work items
3353  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3354  */
3355 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3356 {
3357 	struct workqueue_struct *wq = pwq->wq;
3358 	bool freezable = wq->flags & WQ_FREEZABLE;
3359 
3360 	/* for @wq->saved_max_active */
3361 	lockdep_assert_held(&wq->mutex);
3362 
3363 	/* fast exit for non-freezable wqs */
3364 	if (!freezable && pwq->max_active == wq->saved_max_active)
3365 		return;
3366 
3367 	spin_lock_irq(&pwq->pool->lock);
3368 
3369 	/*
3370 	 * During [un]freezing, the caller is responsible for ensuring that
3371 	 * this function is called at least once after @workqueue_freezing
3372 	 * is updated and visible.
3373 	 */
3374 	if (!freezable || !workqueue_freezing) {
3375 		pwq->max_active = wq->saved_max_active;
3376 
3377 		while (!list_empty(&pwq->delayed_works) &&
3378 		       pwq->nr_active < pwq->max_active)
3379 			pwq_activate_first_delayed(pwq);
3380 
3381 		/*
3382 		 * Need to kick a worker after thawed or an unbound wq's
3383 		 * max_active is bumped.  It's a slow path.  Do it always.
3384 		 */
3385 		wake_up_worker(pwq->pool);
3386 	} else {
3387 		pwq->max_active = 0;
3388 	}
3389 
3390 	spin_unlock_irq(&pwq->pool->lock);
3391 }
3392 
3393 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3394 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3395 		     struct worker_pool *pool)
3396 {
3397 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3398 
3399 	memset(pwq, 0, sizeof(*pwq));
3400 
3401 	pwq->pool = pool;
3402 	pwq->wq = wq;
3403 	pwq->flush_color = -1;
3404 	pwq->refcnt = 1;
3405 	INIT_LIST_HEAD(&pwq->delayed_works);
3406 	INIT_LIST_HEAD(&pwq->pwqs_node);
3407 	INIT_LIST_HEAD(&pwq->mayday_node);
3408 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3409 }
3410 
3411 /* sync @pwq with the current state of its associated wq and link it */
3412 static void link_pwq(struct pool_workqueue *pwq)
3413 {
3414 	struct workqueue_struct *wq = pwq->wq;
3415 
3416 	lockdep_assert_held(&wq->mutex);
3417 
3418 	/* may be called multiple times, ignore if already linked */
3419 	if (!list_empty(&pwq->pwqs_node))
3420 		return;
3421 
3422 	/* set the matching work_color */
3423 	pwq->work_color = wq->work_color;
3424 
3425 	/* sync max_active to the current setting */
3426 	pwq_adjust_max_active(pwq);
3427 
3428 	/* link in @pwq */
3429 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3430 }
3431 
3432 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3433 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3434 					const struct workqueue_attrs *attrs)
3435 {
3436 	struct worker_pool *pool;
3437 	struct pool_workqueue *pwq;
3438 
3439 	lockdep_assert_held(&wq_pool_mutex);
3440 
3441 	pool = get_unbound_pool(attrs);
3442 	if (!pool)
3443 		return NULL;
3444 
3445 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3446 	if (!pwq) {
3447 		put_unbound_pool(pool);
3448 		return NULL;
3449 	}
3450 
3451 	init_pwq(pwq, wq, pool);
3452 	return pwq;
3453 }
3454 
3455 /**
3456  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3457  * @attrs: the wq_attrs of the default pwq of the target workqueue
3458  * @node: the target NUMA node
3459  * @cpu_going_down: if >= 0, the CPU to consider as offline
3460  * @cpumask: outarg, the resulting cpumask
3461  *
3462  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3463  * @cpu_going_down is >= 0, that cpu is considered offline during
3464  * calculation.  The result is stored in @cpumask.
3465  *
3466  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3467  * enabled and @node has online CPUs requested by @attrs, the returned
3468  * cpumask is the intersection of the possible CPUs of @node and
3469  * @attrs->cpumask.
3470  *
3471  * The caller is responsible for ensuring that the cpumask of @node stays
3472  * stable.
3473  *
3474  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3475  * %false if equal.
3476  */
3477 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3478 				 int cpu_going_down, cpumask_t *cpumask)
3479 {
3480 	if (!wq_numa_enabled || attrs->no_numa)
3481 		goto use_dfl;
3482 
3483 	/* does @node have any online CPUs @attrs wants? */
3484 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3485 	if (cpu_going_down >= 0)
3486 		cpumask_clear_cpu(cpu_going_down, cpumask);
3487 
3488 	if (cpumask_empty(cpumask))
3489 		goto use_dfl;
3490 
3491 	/* yeap, return possible CPUs in @node that @attrs wants */
3492 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3493 	return !cpumask_equal(cpumask, attrs->cpumask);
3494 
3495 use_dfl:
3496 	cpumask_copy(cpumask, attrs->cpumask);
3497 	return false;
3498 }
3499 
3500 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3501 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3502 						   int node,
3503 						   struct pool_workqueue *pwq)
3504 {
3505 	struct pool_workqueue *old_pwq;
3506 
3507 	lockdep_assert_held(&wq_pool_mutex);
3508 	lockdep_assert_held(&wq->mutex);
3509 
3510 	/* link_pwq() can handle duplicate calls */
3511 	link_pwq(pwq);
3512 
3513 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3514 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3515 	return old_pwq;
3516 }
3517 
3518 /* context to store the prepared attrs & pwqs before applying */
3519 struct apply_wqattrs_ctx {
3520 	struct workqueue_struct	*wq;		/* target workqueue */
3521 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3522 	struct list_head	list;		/* queued for batching commit */
3523 	struct pool_workqueue	*dfl_pwq;
3524 	struct pool_workqueue	*pwq_tbl[];
3525 };
3526 
3527 /* free the resources after success or abort */
3528 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3529 {
3530 	if (ctx) {
3531 		int node;
3532 
3533 		for_each_node(node)
3534 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3535 		put_pwq_unlocked(ctx->dfl_pwq);
3536 
3537 		free_workqueue_attrs(ctx->attrs);
3538 
3539 		kfree(ctx);
3540 	}
3541 }
3542 
3543 /* allocate the attrs and pwqs for later installation */
3544 static struct apply_wqattrs_ctx *
3545 apply_wqattrs_prepare(struct workqueue_struct *wq,
3546 		      const struct workqueue_attrs *attrs)
3547 {
3548 	struct apply_wqattrs_ctx *ctx;
3549 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3550 	int node;
3551 
3552 	lockdep_assert_held(&wq_pool_mutex);
3553 
3554 	ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3555 		      GFP_KERNEL);
3556 
3557 	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3558 	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3559 	if (!ctx || !new_attrs || !tmp_attrs)
3560 		goto out_free;
3561 
3562 	/*
3563 	 * Calculate the attrs of the default pwq.
3564 	 * If the user configured cpumask doesn't overlap with the
3565 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3566 	 */
3567 	copy_workqueue_attrs(new_attrs, attrs);
3568 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3569 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3570 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3571 
3572 	/*
3573 	 * We may create multiple pwqs with differing cpumasks.  Make a
3574 	 * copy of @new_attrs which will be modified and used to obtain
3575 	 * pools.
3576 	 */
3577 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3578 
3579 	/*
3580 	 * If something goes wrong during CPU up/down, we'll fall back to
3581 	 * the default pwq covering whole @attrs->cpumask.  Always create
3582 	 * it even if we don't use it immediately.
3583 	 */
3584 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3585 	if (!ctx->dfl_pwq)
3586 		goto out_free;
3587 
3588 	for_each_node(node) {
3589 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3590 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3591 			if (!ctx->pwq_tbl[node])
3592 				goto out_free;
3593 		} else {
3594 			ctx->dfl_pwq->refcnt++;
3595 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3596 		}
3597 	}
3598 
3599 	/* save the user configured attrs and sanitize it. */
3600 	copy_workqueue_attrs(new_attrs, attrs);
3601 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3602 	ctx->attrs = new_attrs;
3603 
3604 	ctx->wq = wq;
3605 	free_workqueue_attrs(tmp_attrs);
3606 	return ctx;
3607 
3608 out_free:
3609 	free_workqueue_attrs(tmp_attrs);
3610 	free_workqueue_attrs(new_attrs);
3611 	apply_wqattrs_cleanup(ctx);
3612 	return NULL;
3613 }
3614 
3615 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3616 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3617 {
3618 	int node;
3619 
3620 	/* all pwqs have been created successfully, let's install'em */
3621 	mutex_lock(&ctx->wq->mutex);
3622 
3623 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3624 
3625 	/* save the previous pwq and install the new one */
3626 	for_each_node(node)
3627 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3628 							  ctx->pwq_tbl[node]);
3629 
3630 	/* @dfl_pwq might not have been used, ensure it's linked */
3631 	link_pwq(ctx->dfl_pwq);
3632 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3633 
3634 	mutex_unlock(&ctx->wq->mutex);
3635 }
3636 
3637 static void apply_wqattrs_lock(void)
3638 {
3639 	/* CPUs should stay stable across pwq creations and installations */
3640 	get_online_cpus();
3641 	mutex_lock(&wq_pool_mutex);
3642 }
3643 
3644 static void apply_wqattrs_unlock(void)
3645 {
3646 	mutex_unlock(&wq_pool_mutex);
3647 	put_online_cpus();
3648 }
3649 
3650 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3651 					const struct workqueue_attrs *attrs)
3652 {
3653 	struct apply_wqattrs_ctx *ctx;
3654 
3655 	/* only unbound workqueues can change attributes */
3656 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3657 		return -EINVAL;
3658 
3659 	/* creating multiple pwqs breaks ordering guarantee */
3660 	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3661 		return -EINVAL;
3662 
3663 	ctx = apply_wqattrs_prepare(wq, attrs);
3664 	if (!ctx)
3665 		return -ENOMEM;
3666 
3667 	/* the ctx has been prepared successfully, let's commit it */
3668 	apply_wqattrs_commit(ctx);
3669 	apply_wqattrs_cleanup(ctx);
3670 
3671 	return 0;
3672 }
3673 
3674 /**
3675  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3676  * @wq: the target workqueue
3677  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3678  *
3679  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3680  * machines, this function maps a separate pwq to each NUMA node with
3681  * possibles CPUs in @attrs->cpumask so that work items are affine to the
3682  * NUMA node it was issued on.  Older pwqs are released as in-flight work
3683  * items finish.  Note that a work item which repeatedly requeues itself
3684  * back-to-back will stay on its current pwq.
3685  *
3686  * Performs GFP_KERNEL allocations.
3687  *
3688  * Return: 0 on success and -errno on failure.
3689  */
3690 int apply_workqueue_attrs(struct workqueue_struct *wq,
3691 			  const struct workqueue_attrs *attrs)
3692 {
3693 	int ret;
3694 
3695 	apply_wqattrs_lock();
3696 	ret = apply_workqueue_attrs_locked(wq, attrs);
3697 	apply_wqattrs_unlock();
3698 
3699 	return ret;
3700 }
3701 
3702 /**
3703  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3704  * @wq: the target workqueue
3705  * @cpu: the CPU coming up or going down
3706  * @online: whether @cpu is coming up or going down
3707  *
3708  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3709  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3710  * @wq accordingly.
3711  *
3712  * If NUMA affinity can't be adjusted due to memory allocation failure, it
3713  * falls back to @wq->dfl_pwq which may not be optimal but is always
3714  * correct.
3715  *
3716  * Note that when the last allowed CPU of a NUMA node goes offline for a
3717  * workqueue with a cpumask spanning multiple nodes, the workers which were
3718  * already executing the work items for the workqueue will lose their CPU
3719  * affinity and may execute on any CPU.  This is similar to how per-cpu
3720  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3721  * affinity, it's the user's responsibility to flush the work item from
3722  * CPU_DOWN_PREPARE.
3723  */
3724 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3725 				   bool online)
3726 {
3727 	int node = cpu_to_node(cpu);
3728 	int cpu_off = online ? -1 : cpu;
3729 	struct pool_workqueue *old_pwq = NULL, *pwq;
3730 	struct workqueue_attrs *target_attrs;
3731 	cpumask_t *cpumask;
3732 
3733 	lockdep_assert_held(&wq_pool_mutex);
3734 
3735 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3736 	    wq->unbound_attrs->no_numa)
3737 		return;
3738 
3739 	/*
3740 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3741 	 * Let's use a preallocated one.  The following buf is protected by
3742 	 * CPU hotplug exclusion.
3743 	 */
3744 	target_attrs = wq_update_unbound_numa_attrs_buf;
3745 	cpumask = target_attrs->cpumask;
3746 
3747 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3748 	pwq = unbound_pwq_by_node(wq, node);
3749 
3750 	/*
3751 	 * Let's determine what needs to be done.  If the target cpumask is
3752 	 * different from the default pwq's, we need to compare it to @pwq's
3753 	 * and create a new one if they don't match.  If the target cpumask
3754 	 * equals the default pwq's, the default pwq should be used.
3755 	 */
3756 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3757 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3758 			return;
3759 	} else {
3760 		goto use_dfl_pwq;
3761 	}
3762 
3763 	/* create a new pwq */
3764 	pwq = alloc_unbound_pwq(wq, target_attrs);
3765 	if (!pwq) {
3766 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3767 			wq->name);
3768 		goto use_dfl_pwq;
3769 	}
3770 
3771 	/* Install the new pwq. */
3772 	mutex_lock(&wq->mutex);
3773 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3774 	goto out_unlock;
3775 
3776 use_dfl_pwq:
3777 	mutex_lock(&wq->mutex);
3778 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
3779 	get_pwq(wq->dfl_pwq);
3780 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3781 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3782 out_unlock:
3783 	mutex_unlock(&wq->mutex);
3784 	put_pwq_unlocked(old_pwq);
3785 }
3786 
3787 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3788 {
3789 	bool highpri = wq->flags & WQ_HIGHPRI;
3790 	int cpu, ret;
3791 
3792 	if (!(wq->flags & WQ_UNBOUND)) {
3793 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3794 		if (!wq->cpu_pwqs)
3795 			return -ENOMEM;
3796 
3797 		for_each_possible_cpu(cpu) {
3798 			struct pool_workqueue *pwq =
3799 				per_cpu_ptr(wq->cpu_pwqs, cpu);
3800 			struct worker_pool *cpu_pools =
3801 				per_cpu(cpu_worker_pools, cpu);
3802 
3803 			init_pwq(pwq, wq, &cpu_pools[highpri]);
3804 
3805 			mutex_lock(&wq->mutex);
3806 			link_pwq(pwq);
3807 			mutex_unlock(&wq->mutex);
3808 		}
3809 		return 0;
3810 	} else if (wq->flags & __WQ_ORDERED) {
3811 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3812 		/* there should only be single pwq for ordering guarantee */
3813 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3814 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3815 		     "ordering guarantee broken for workqueue %s\n", wq->name);
3816 		return ret;
3817 	} else {
3818 		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3819 	}
3820 }
3821 
3822 static int wq_clamp_max_active(int max_active, unsigned int flags,
3823 			       const char *name)
3824 {
3825 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3826 
3827 	if (max_active < 1 || max_active > lim)
3828 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3829 			max_active, name, 1, lim);
3830 
3831 	return clamp_val(max_active, 1, lim);
3832 }
3833 
3834 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3835 					       unsigned int flags,
3836 					       int max_active,
3837 					       struct lock_class_key *key,
3838 					       const char *lock_name, ...)
3839 {
3840 	size_t tbl_size = 0;
3841 	va_list args;
3842 	struct workqueue_struct *wq;
3843 	struct pool_workqueue *pwq;
3844 
3845 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
3846 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3847 		flags |= WQ_UNBOUND;
3848 
3849 	/* allocate wq and format name */
3850 	if (flags & WQ_UNBOUND)
3851 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3852 
3853 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3854 	if (!wq)
3855 		return NULL;
3856 
3857 	if (flags & WQ_UNBOUND) {
3858 		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3859 		if (!wq->unbound_attrs)
3860 			goto err_free_wq;
3861 	}
3862 
3863 	va_start(args, lock_name);
3864 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3865 	va_end(args);
3866 
3867 	max_active = max_active ?: WQ_DFL_ACTIVE;
3868 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3869 
3870 	/* init wq */
3871 	wq->flags = flags;
3872 	wq->saved_max_active = max_active;
3873 	mutex_init(&wq->mutex);
3874 	atomic_set(&wq->nr_pwqs_to_flush, 0);
3875 	INIT_LIST_HEAD(&wq->pwqs);
3876 	INIT_LIST_HEAD(&wq->flusher_queue);
3877 	INIT_LIST_HEAD(&wq->flusher_overflow);
3878 	INIT_LIST_HEAD(&wq->maydays);
3879 
3880 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3881 	INIT_LIST_HEAD(&wq->list);
3882 
3883 	if (alloc_and_link_pwqs(wq) < 0)
3884 		goto err_free_wq;
3885 
3886 	/*
3887 	 * Workqueues which may be used during memory reclaim should
3888 	 * have a rescuer to guarantee forward progress.
3889 	 */
3890 	if (flags & WQ_MEM_RECLAIM) {
3891 		struct worker *rescuer;
3892 
3893 		rescuer = alloc_worker(NUMA_NO_NODE);
3894 		if (!rescuer)
3895 			goto err_destroy;
3896 
3897 		rescuer->rescue_wq = wq;
3898 		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3899 					       wq->name);
3900 		if (IS_ERR(rescuer->task)) {
3901 			kfree(rescuer);
3902 			goto err_destroy;
3903 		}
3904 
3905 		wq->rescuer = rescuer;
3906 		kthread_bind_mask(rescuer->task, cpu_possible_mask);
3907 		wake_up_process(rescuer->task);
3908 	}
3909 
3910 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3911 		goto err_destroy;
3912 
3913 	/*
3914 	 * wq_pool_mutex protects global freeze state and workqueues list.
3915 	 * Grab it, adjust max_active and add the new @wq to workqueues
3916 	 * list.
3917 	 */
3918 	mutex_lock(&wq_pool_mutex);
3919 
3920 	mutex_lock(&wq->mutex);
3921 	for_each_pwq(pwq, wq)
3922 		pwq_adjust_max_active(pwq);
3923 	mutex_unlock(&wq->mutex);
3924 
3925 	list_add_tail_rcu(&wq->list, &workqueues);
3926 
3927 	mutex_unlock(&wq_pool_mutex);
3928 
3929 	return wq;
3930 
3931 err_free_wq:
3932 	free_workqueue_attrs(wq->unbound_attrs);
3933 	kfree(wq);
3934 	return NULL;
3935 err_destroy:
3936 	destroy_workqueue(wq);
3937 	return NULL;
3938 }
3939 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3940 
3941 /**
3942  * destroy_workqueue - safely terminate a workqueue
3943  * @wq: target workqueue
3944  *
3945  * Safely destroy a workqueue. All work currently pending will be done first.
3946  */
3947 void destroy_workqueue(struct workqueue_struct *wq)
3948 {
3949 	struct pool_workqueue *pwq;
3950 	int node;
3951 
3952 	/* drain it before proceeding with destruction */
3953 	drain_workqueue(wq);
3954 
3955 	/* sanity checks */
3956 	mutex_lock(&wq->mutex);
3957 	for_each_pwq(pwq, wq) {
3958 		int i;
3959 
3960 		for (i = 0; i < WORK_NR_COLORS; i++) {
3961 			if (WARN_ON(pwq->nr_in_flight[i])) {
3962 				mutex_unlock(&wq->mutex);
3963 				return;
3964 			}
3965 		}
3966 
3967 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
3968 		    WARN_ON(pwq->nr_active) ||
3969 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
3970 			mutex_unlock(&wq->mutex);
3971 			return;
3972 		}
3973 	}
3974 	mutex_unlock(&wq->mutex);
3975 
3976 	/*
3977 	 * wq list is used to freeze wq, remove from list after
3978 	 * flushing is complete in case freeze races us.
3979 	 */
3980 	mutex_lock(&wq_pool_mutex);
3981 	list_del_rcu(&wq->list);
3982 	mutex_unlock(&wq_pool_mutex);
3983 
3984 	workqueue_sysfs_unregister(wq);
3985 
3986 	if (wq->rescuer)
3987 		kthread_stop(wq->rescuer->task);
3988 
3989 	if (!(wq->flags & WQ_UNBOUND)) {
3990 		/*
3991 		 * The base ref is never dropped on per-cpu pwqs.  Directly
3992 		 * schedule RCU free.
3993 		 */
3994 		call_rcu_sched(&wq->rcu, rcu_free_wq);
3995 	} else {
3996 		/*
3997 		 * We're the sole accessor of @wq at this point.  Directly
3998 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
3999 		 * @wq will be freed when the last pwq is released.
4000 		 */
4001 		for_each_node(node) {
4002 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4003 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4004 			put_pwq_unlocked(pwq);
4005 		}
4006 
4007 		/*
4008 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4009 		 * put.  Don't access it afterwards.
4010 		 */
4011 		pwq = wq->dfl_pwq;
4012 		wq->dfl_pwq = NULL;
4013 		put_pwq_unlocked(pwq);
4014 	}
4015 }
4016 EXPORT_SYMBOL_GPL(destroy_workqueue);
4017 
4018 /**
4019  * workqueue_set_max_active - adjust max_active of a workqueue
4020  * @wq: target workqueue
4021  * @max_active: new max_active value.
4022  *
4023  * Set max_active of @wq to @max_active.
4024  *
4025  * CONTEXT:
4026  * Don't call from IRQ context.
4027  */
4028 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4029 {
4030 	struct pool_workqueue *pwq;
4031 
4032 	/* disallow meddling with max_active for ordered workqueues */
4033 	if (WARN_ON(wq->flags & __WQ_ORDERED))
4034 		return;
4035 
4036 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4037 
4038 	mutex_lock(&wq->mutex);
4039 
4040 	wq->saved_max_active = max_active;
4041 
4042 	for_each_pwq(pwq, wq)
4043 		pwq_adjust_max_active(pwq);
4044 
4045 	mutex_unlock(&wq->mutex);
4046 }
4047 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4048 
4049 /**
4050  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4051  *
4052  * Determine whether %current is a workqueue rescuer.  Can be used from
4053  * work functions to determine whether it's being run off the rescuer task.
4054  *
4055  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4056  */
4057 bool current_is_workqueue_rescuer(void)
4058 {
4059 	struct worker *worker = current_wq_worker();
4060 
4061 	return worker && worker->rescue_wq;
4062 }
4063 
4064 /**
4065  * workqueue_congested - test whether a workqueue is congested
4066  * @cpu: CPU in question
4067  * @wq: target workqueue
4068  *
4069  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4070  * no synchronization around this function and the test result is
4071  * unreliable and only useful as advisory hints or for debugging.
4072  *
4073  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4074  * Note that both per-cpu and unbound workqueues may be associated with
4075  * multiple pool_workqueues which have separate congested states.  A
4076  * workqueue being congested on one CPU doesn't mean the workqueue is also
4077  * contested on other CPUs / NUMA nodes.
4078  *
4079  * Return:
4080  * %true if congested, %false otherwise.
4081  */
4082 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4083 {
4084 	struct pool_workqueue *pwq;
4085 	bool ret;
4086 
4087 	rcu_read_lock_sched();
4088 
4089 	if (cpu == WORK_CPU_UNBOUND)
4090 		cpu = smp_processor_id();
4091 
4092 	if (!(wq->flags & WQ_UNBOUND))
4093 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4094 	else
4095 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4096 
4097 	ret = !list_empty(&pwq->delayed_works);
4098 	rcu_read_unlock_sched();
4099 
4100 	return ret;
4101 }
4102 EXPORT_SYMBOL_GPL(workqueue_congested);
4103 
4104 /**
4105  * work_busy - test whether a work is currently pending or running
4106  * @work: the work to be tested
4107  *
4108  * Test whether @work is currently pending or running.  There is no
4109  * synchronization around this function and the test result is
4110  * unreliable and only useful as advisory hints or for debugging.
4111  *
4112  * Return:
4113  * OR'd bitmask of WORK_BUSY_* bits.
4114  */
4115 unsigned int work_busy(struct work_struct *work)
4116 {
4117 	struct worker_pool *pool;
4118 	unsigned long flags;
4119 	unsigned int ret = 0;
4120 
4121 	if (work_pending(work))
4122 		ret |= WORK_BUSY_PENDING;
4123 
4124 	local_irq_save(flags);
4125 	pool = get_work_pool(work);
4126 	if (pool) {
4127 		spin_lock(&pool->lock);
4128 		if (find_worker_executing_work(pool, work))
4129 			ret |= WORK_BUSY_RUNNING;
4130 		spin_unlock(&pool->lock);
4131 	}
4132 	local_irq_restore(flags);
4133 
4134 	return ret;
4135 }
4136 EXPORT_SYMBOL_GPL(work_busy);
4137 
4138 /**
4139  * set_worker_desc - set description for the current work item
4140  * @fmt: printf-style format string
4141  * @...: arguments for the format string
4142  *
4143  * This function can be called by a running work function to describe what
4144  * the work item is about.  If the worker task gets dumped, this
4145  * information will be printed out together to help debugging.  The
4146  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4147  */
4148 void set_worker_desc(const char *fmt, ...)
4149 {
4150 	struct worker *worker = current_wq_worker();
4151 	va_list args;
4152 
4153 	if (worker) {
4154 		va_start(args, fmt);
4155 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4156 		va_end(args);
4157 		worker->desc_valid = true;
4158 	}
4159 }
4160 
4161 /**
4162  * print_worker_info - print out worker information and description
4163  * @log_lvl: the log level to use when printing
4164  * @task: target task
4165  *
4166  * If @task is a worker and currently executing a work item, print out the
4167  * name of the workqueue being serviced and worker description set with
4168  * set_worker_desc() by the currently executing work item.
4169  *
4170  * This function can be safely called on any task as long as the
4171  * task_struct itself is accessible.  While safe, this function isn't
4172  * synchronized and may print out mixups or garbages of limited length.
4173  */
4174 void print_worker_info(const char *log_lvl, struct task_struct *task)
4175 {
4176 	work_func_t *fn = NULL;
4177 	char name[WQ_NAME_LEN] = { };
4178 	char desc[WORKER_DESC_LEN] = { };
4179 	struct pool_workqueue *pwq = NULL;
4180 	struct workqueue_struct *wq = NULL;
4181 	bool desc_valid = false;
4182 	struct worker *worker;
4183 
4184 	if (!(task->flags & PF_WQ_WORKER))
4185 		return;
4186 
4187 	/*
4188 	 * This function is called without any synchronization and @task
4189 	 * could be in any state.  Be careful with dereferences.
4190 	 */
4191 	worker = probe_kthread_data(task);
4192 
4193 	/*
4194 	 * Carefully copy the associated workqueue's workfn and name.  Keep
4195 	 * the original last '\0' in case the original contains garbage.
4196 	 */
4197 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4198 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4199 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4200 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4201 
4202 	/* copy worker description */
4203 	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4204 	if (desc_valid)
4205 		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4206 
4207 	if (fn || name[0] || desc[0]) {
4208 		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4209 		if (desc[0])
4210 			pr_cont(" (%s)", desc);
4211 		pr_cont("\n");
4212 	}
4213 }
4214 
4215 static void pr_cont_pool_info(struct worker_pool *pool)
4216 {
4217 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4218 	if (pool->node != NUMA_NO_NODE)
4219 		pr_cont(" node=%d", pool->node);
4220 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4221 }
4222 
4223 static void pr_cont_work(bool comma, struct work_struct *work)
4224 {
4225 	if (work->func == wq_barrier_func) {
4226 		struct wq_barrier *barr;
4227 
4228 		barr = container_of(work, struct wq_barrier, work);
4229 
4230 		pr_cont("%s BAR(%d)", comma ? "," : "",
4231 			task_pid_nr(barr->task));
4232 	} else {
4233 		pr_cont("%s %pf", comma ? "," : "", work->func);
4234 	}
4235 }
4236 
4237 static void show_pwq(struct pool_workqueue *pwq)
4238 {
4239 	struct worker_pool *pool = pwq->pool;
4240 	struct work_struct *work;
4241 	struct worker *worker;
4242 	bool has_in_flight = false, has_pending = false;
4243 	int bkt;
4244 
4245 	pr_info("  pwq %d:", pool->id);
4246 	pr_cont_pool_info(pool);
4247 
4248 	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4249 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4250 
4251 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4252 		if (worker->current_pwq == pwq) {
4253 			has_in_flight = true;
4254 			break;
4255 		}
4256 	}
4257 	if (has_in_flight) {
4258 		bool comma = false;
4259 
4260 		pr_info("    in-flight:");
4261 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4262 			if (worker->current_pwq != pwq)
4263 				continue;
4264 
4265 			pr_cont("%s %d%s:%pf", comma ? "," : "",
4266 				task_pid_nr(worker->task),
4267 				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4268 				worker->current_func);
4269 			list_for_each_entry(work, &worker->scheduled, entry)
4270 				pr_cont_work(false, work);
4271 			comma = true;
4272 		}
4273 		pr_cont("\n");
4274 	}
4275 
4276 	list_for_each_entry(work, &pool->worklist, entry) {
4277 		if (get_work_pwq(work) == pwq) {
4278 			has_pending = true;
4279 			break;
4280 		}
4281 	}
4282 	if (has_pending) {
4283 		bool comma = false;
4284 
4285 		pr_info("    pending:");
4286 		list_for_each_entry(work, &pool->worklist, entry) {
4287 			if (get_work_pwq(work) != pwq)
4288 				continue;
4289 
4290 			pr_cont_work(comma, work);
4291 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4292 		}
4293 		pr_cont("\n");
4294 	}
4295 
4296 	if (!list_empty(&pwq->delayed_works)) {
4297 		bool comma = false;
4298 
4299 		pr_info("    delayed:");
4300 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4301 			pr_cont_work(comma, work);
4302 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4303 		}
4304 		pr_cont("\n");
4305 	}
4306 }
4307 
4308 /**
4309  * show_workqueue_state - dump workqueue state
4310  *
4311  * Called from a sysrq handler and prints out all busy workqueues and
4312  * pools.
4313  */
4314 void show_workqueue_state(void)
4315 {
4316 	struct workqueue_struct *wq;
4317 	struct worker_pool *pool;
4318 	unsigned long flags;
4319 	int pi;
4320 
4321 	rcu_read_lock_sched();
4322 
4323 	pr_info("Showing busy workqueues and worker pools:\n");
4324 
4325 	list_for_each_entry_rcu(wq, &workqueues, list) {
4326 		struct pool_workqueue *pwq;
4327 		bool idle = true;
4328 
4329 		for_each_pwq(pwq, wq) {
4330 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4331 				idle = false;
4332 				break;
4333 			}
4334 		}
4335 		if (idle)
4336 			continue;
4337 
4338 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4339 
4340 		for_each_pwq(pwq, wq) {
4341 			spin_lock_irqsave(&pwq->pool->lock, flags);
4342 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4343 				show_pwq(pwq);
4344 			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4345 		}
4346 	}
4347 
4348 	for_each_pool(pool, pi) {
4349 		struct worker *worker;
4350 		bool first = true;
4351 
4352 		spin_lock_irqsave(&pool->lock, flags);
4353 		if (pool->nr_workers == pool->nr_idle)
4354 			goto next_pool;
4355 
4356 		pr_info("pool %d:", pool->id);
4357 		pr_cont_pool_info(pool);
4358 		pr_cont(" hung=%us workers=%d",
4359 			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4360 			pool->nr_workers);
4361 		if (pool->manager)
4362 			pr_cont(" manager: %d",
4363 				task_pid_nr(pool->manager->task));
4364 		list_for_each_entry(worker, &pool->idle_list, entry) {
4365 			pr_cont(" %s%d", first ? "idle: " : "",
4366 				task_pid_nr(worker->task));
4367 			first = false;
4368 		}
4369 		pr_cont("\n");
4370 	next_pool:
4371 		spin_unlock_irqrestore(&pool->lock, flags);
4372 	}
4373 
4374 	rcu_read_unlock_sched();
4375 }
4376 
4377 /*
4378  * CPU hotplug.
4379  *
4380  * There are two challenges in supporting CPU hotplug.  Firstly, there
4381  * are a lot of assumptions on strong associations among work, pwq and
4382  * pool which make migrating pending and scheduled works very
4383  * difficult to implement without impacting hot paths.  Secondly,
4384  * worker pools serve mix of short, long and very long running works making
4385  * blocked draining impractical.
4386  *
4387  * This is solved by allowing the pools to be disassociated from the CPU
4388  * running as an unbound one and allowing it to be reattached later if the
4389  * cpu comes back online.
4390  */
4391 
4392 static void wq_unbind_fn(struct work_struct *work)
4393 {
4394 	int cpu = smp_processor_id();
4395 	struct worker_pool *pool;
4396 	struct worker *worker;
4397 
4398 	for_each_cpu_worker_pool(pool, cpu) {
4399 		mutex_lock(&pool->attach_mutex);
4400 		spin_lock_irq(&pool->lock);
4401 
4402 		/*
4403 		 * We've blocked all attach/detach operations. Make all workers
4404 		 * unbound and set DISASSOCIATED.  Before this, all workers
4405 		 * except for the ones which are still executing works from
4406 		 * before the last CPU down must be on the cpu.  After
4407 		 * this, they may become diasporas.
4408 		 */
4409 		for_each_pool_worker(worker, pool)
4410 			worker->flags |= WORKER_UNBOUND;
4411 
4412 		pool->flags |= POOL_DISASSOCIATED;
4413 
4414 		spin_unlock_irq(&pool->lock);
4415 		mutex_unlock(&pool->attach_mutex);
4416 
4417 		/*
4418 		 * Call schedule() so that we cross rq->lock and thus can
4419 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4420 		 * This is necessary as scheduler callbacks may be invoked
4421 		 * from other cpus.
4422 		 */
4423 		schedule();
4424 
4425 		/*
4426 		 * Sched callbacks are disabled now.  Zap nr_running.
4427 		 * After this, nr_running stays zero and need_more_worker()
4428 		 * and keep_working() are always true as long as the
4429 		 * worklist is not empty.  This pool now behaves as an
4430 		 * unbound (in terms of concurrency management) pool which
4431 		 * are served by workers tied to the pool.
4432 		 */
4433 		atomic_set(&pool->nr_running, 0);
4434 
4435 		/*
4436 		 * With concurrency management just turned off, a busy
4437 		 * worker blocking could lead to lengthy stalls.  Kick off
4438 		 * unbound chain execution of currently pending work items.
4439 		 */
4440 		spin_lock_irq(&pool->lock);
4441 		wake_up_worker(pool);
4442 		spin_unlock_irq(&pool->lock);
4443 	}
4444 }
4445 
4446 /**
4447  * rebind_workers - rebind all workers of a pool to the associated CPU
4448  * @pool: pool of interest
4449  *
4450  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4451  */
4452 static void rebind_workers(struct worker_pool *pool)
4453 {
4454 	struct worker *worker;
4455 
4456 	lockdep_assert_held(&pool->attach_mutex);
4457 
4458 	/*
4459 	 * Restore CPU affinity of all workers.  As all idle workers should
4460 	 * be on the run-queue of the associated CPU before any local
4461 	 * wake-ups for concurrency management happen, restore CPU affinity
4462 	 * of all workers first and then clear UNBOUND.  As we're called
4463 	 * from CPU_ONLINE, the following shouldn't fail.
4464 	 */
4465 	for_each_pool_worker(worker, pool)
4466 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4467 						  pool->attrs->cpumask) < 0);
4468 
4469 	spin_lock_irq(&pool->lock);
4470 	pool->flags &= ~POOL_DISASSOCIATED;
4471 
4472 	for_each_pool_worker(worker, pool) {
4473 		unsigned int worker_flags = worker->flags;
4474 
4475 		/*
4476 		 * A bound idle worker should actually be on the runqueue
4477 		 * of the associated CPU for local wake-ups targeting it to
4478 		 * work.  Kick all idle workers so that they migrate to the
4479 		 * associated CPU.  Doing this in the same loop as
4480 		 * replacing UNBOUND with REBOUND is safe as no worker will
4481 		 * be bound before @pool->lock is released.
4482 		 */
4483 		if (worker_flags & WORKER_IDLE)
4484 			wake_up_process(worker->task);
4485 
4486 		/*
4487 		 * We want to clear UNBOUND but can't directly call
4488 		 * worker_clr_flags() or adjust nr_running.  Atomically
4489 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4490 		 * @worker will clear REBOUND using worker_clr_flags() when
4491 		 * it initiates the next execution cycle thus restoring
4492 		 * concurrency management.  Note that when or whether
4493 		 * @worker clears REBOUND doesn't affect correctness.
4494 		 *
4495 		 * ACCESS_ONCE() is necessary because @worker->flags may be
4496 		 * tested without holding any lock in
4497 		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4498 		 * fail incorrectly leading to premature concurrency
4499 		 * management operations.
4500 		 */
4501 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4502 		worker_flags |= WORKER_REBOUND;
4503 		worker_flags &= ~WORKER_UNBOUND;
4504 		ACCESS_ONCE(worker->flags) = worker_flags;
4505 	}
4506 
4507 	spin_unlock_irq(&pool->lock);
4508 }
4509 
4510 /**
4511  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4512  * @pool: unbound pool of interest
4513  * @cpu: the CPU which is coming up
4514  *
4515  * An unbound pool may end up with a cpumask which doesn't have any online
4516  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4517  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4518  * online CPU before, cpus_allowed of all its workers should be restored.
4519  */
4520 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4521 {
4522 	static cpumask_t cpumask;
4523 	struct worker *worker;
4524 
4525 	lockdep_assert_held(&pool->attach_mutex);
4526 
4527 	/* is @cpu allowed for @pool? */
4528 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4529 		return;
4530 
4531 	/* is @cpu the only online CPU? */
4532 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4533 	if (cpumask_weight(&cpumask) != 1)
4534 		return;
4535 
4536 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4537 	for_each_pool_worker(worker, pool)
4538 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4539 						  pool->attrs->cpumask) < 0);
4540 }
4541 
4542 /*
4543  * Workqueues should be brought up before normal priority CPU notifiers.
4544  * This will be registered high priority CPU notifier.
4545  */
4546 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4547 					       unsigned long action,
4548 					       void *hcpu)
4549 {
4550 	int cpu = (unsigned long)hcpu;
4551 	struct worker_pool *pool;
4552 	struct workqueue_struct *wq;
4553 	int pi;
4554 
4555 	switch (action & ~CPU_TASKS_FROZEN) {
4556 	case CPU_UP_PREPARE:
4557 		for_each_cpu_worker_pool(pool, cpu) {
4558 			if (pool->nr_workers)
4559 				continue;
4560 			if (!create_worker(pool))
4561 				return NOTIFY_BAD;
4562 		}
4563 		break;
4564 
4565 	case CPU_DOWN_FAILED:
4566 	case CPU_ONLINE:
4567 		mutex_lock(&wq_pool_mutex);
4568 
4569 		for_each_pool(pool, pi) {
4570 			mutex_lock(&pool->attach_mutex);
4571 
4572 			if (pool->cpu == cpu)
4573 				rebind_workers(pool);
4574 			else if (pool->cpu < 0)
4575 				restore_unbound_workers_cpumask(pool, cpu);
4576 
4577 			mutex_unlock(&pool->attach_mutex);
4578 		}
4579 
4580 		/* update NUMA affinity of unbound workqueues */
4581 		list_for_each_entry(wq, &workqueues, list)
4582 			wq_update_unbound_numa(wq, cpu, true);
4583 
4584 		mutex_unlock(&wq_pool_mutex);
4585 		break;
4586 	}
4587 	return NOTIFY_OK;
4588 }
4589 
4590 /*
4591  * Workqueues should be brought down after normal priority CPU notifiers.
4592  * This will be registered as low priority CPU notifier.
4593  */
4594 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4595 						 unsigned long action,
4596 						 void *hcpu)
4597 {
4598 	int cpu = (unsigned long)hcpu;
4599 	struct work_struct unbind_work;
4600 	struct workqueue_struct *wq;
4601 
4602 	switch (action & ~CPU_TASKS_FROZEN) {
4603 	case CPU_DOWN_PREPARE:
4604 		/* unbinding per-cpu workers should happen on the local CPU */
4605 		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4606 		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4607 
4608 		/* update NUMA affinity of unbound workqueues */
4609 		mutex_lock(&wq_pool_mutex);
4610 		list_for_each_entry(wq, &workqueues, list)
4611 			wq_update_unbound_numa(wq, cpu, false);
4612 		mutex_unlock(&wq_pool_mutex);
4613 
4614 		/* wait for per-cpu unbinding to finish */
4615 		flush_work(&unbind_work);
4616 		destroy_work_on_stack(&unbind_work);
4617 		break;
4618 	}
4619 	return NOTIFY_OK;
4620 }
4621 
4622 #ifdef CONFIG_SMP
4623 
4624 struct work_for_cpu {
4625 	struct work_struct work;
4626 	long (*fn)(void *);
4627 	void *arg;
4628 	long ret;
4629 };
4630 
4631 static void work_for_cpu_fn(struct work_struct *work)
4632 {
4633 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4634 
4635 	wfc->ret = wfc->fn(wfc->arg);
4636 }
4637 
4638 /**
4639  * work_on_cpu - run a function in user context on a particular cpu
4640  * @cpu: the cpu to run on
4641  * @fn: the function to run
4642  * @arg: the function arg
4643  *
4644  * It is up to the caller to ensure that the cpu doesn't go offline.
4645  * The caller must not hold any locks which would prevent @fn from completing.
4646  *
4647  * Return: The value @fn returns.
4648  */
4649 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4650 {
4651 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4652 
4653 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4654 	schedule_work_on(cpu, &wfc.work);
4655 	flush_work(&wfc.work);
4656 	destroy_work_on_stack(&wfc.work);
4657 	return wfc.ret;
4658 }
4659 EXPORT_SYMBOL_GPL(work_on_cpu);
4660 #endif /* CONFIG_SMP */
4661 
4662 #ifdef CONFIG_FREEZER
4663 
4664 /**
4665  * freeze_workqueues_begin - begin freezing workqueues
4666  *
4667  * Start freezing workqueues.  After this function returns, all freezable
4668  * workqueues will queue new works to their delayed_works list instead of
4669  * pool->worklist.
4670  *
4671  * CONTEXT:
4672  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4673  */
4674 void freeze_workqueues_begin(void)
4675 {
4676 	struct workqueue_struct *wq;
4677 	struct pool_workqueue *pwq;
4678 
4679 	mutex_lock(&wq_pool_mutex);
4680 
4681 	WARN_ON_ONCE(workqueue_freezing);
4682 	workqueue_freezing = true;
4683 
4684 	list_for_each_entry(wq, &workqueues, list) {
4685 		mutex_lock(&wq->mutex);
4686 		for_each_pwq(pwq, wq)
4687 			pwq_adjust_max_active(pwq);
4688 		mutex_unlock(&wq->mutex);
4689 	}
4690 
4691 	mutex_unlock(&wq_pool_mutex);
4692 }
4693 
4694 /**
4695  * freeze_workqueues_busy - are freezable workqueues still busy?
4696  *
4697  * Check whether freezing is complete.  This function must be called
4698  * between freeze_workqueues_begin() and thaw_workqueues().
4699  *
4700  * CONTEXT:
4701  * Grabs and releases wq_pool_mutex.
4702  *
4703  * Return:
4704  * %true if some freezable workqueues are still busy.  %false if freezing
4705  * is complete.
4706  */
4707 bool freeze_workqueues_busy(void)
4708 {
4709 	bool busy = false;
4710 	struct workqueue_struct *wq;
4711 	struct pool_workqueue *pwq;
4712 
4713 	mutex_lock(&wq_pool_mutex);
4714 
4715 	WARN_ON_ONCE(!workqueue_freezing);
4716 
4717 	list_for_each_entry(wq, &workqueues, list) {
4718 		if (!(wq->flags & WQ_FREEZABLE))
4719 			continue;
4720 		/*
4721 		 * nr_active is monotonically decreasing.  It's safe
4722 		 * to peek without lock.
4723 		 */
4724 		rcu_read_lock_sched();
4725 		for_each_pwq(pwq, wq) {
4726 			WARN_ON_ONCE(pwq->nr_active < 0);
4727 			if (pwq->nr_active) {
4728 				busy = true;
4729 				rcu_read_unlock_sched();
4730 				goto out_unlock;
4731 			}
4732 		}
4733 		rcu_read_unlock_sched();
4734 	}
4735 out_unlock:
4736 	mutex_unlock(&wq_pool_mutex);
4737 	return busy;
4738 }
4739 
4740 /**
4741  * thaw_workqueues - thaw workqueues
4742  *
4743  * Thaw workqueues.  Normal queueing is restored and all collected
4744  * frozen works are transferred to their respective pool worklists.
4745  *
4746  * CONTEXT:
4747  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4748  */
4749 void thaw_workqueues(void)
4750 {
4751 	struct workqueue_struct *wq;
4752 	struct pool_workqueue *pwq;
4753 
4754 	mutex_lock(&wq_pool_mutex);
4755 
4756 	if (!workqueue_freezing)
4757 		goto out_unlock;
4758 
4759 	workqueue_freezing = false;
4760 
4761 	/* restore max_active and repopulate worklist */
4762 	list_for_each_entry(wq, &workqueues, list) {
4763 		mutex_lock(&wq->mutex);
4764 		for_each_pwq(pwq, wq)
4765 			pwq_adjust_max_active(pwq);
4766 		mutex_unlock(&wq->mutex);
4767 	}
4768 
4769 out_unlock:
4770 	mutex_unlock(&wq_pool_mutex);
4771 }
4772 #endif /* CONFIG_FREEZER */
4773 
4774 static int workqueue_apply_unbound_cpumask(void)
4775 {
4776 	LIST_HEAD(ctxs);
4777 	int ret = 0;
4778 	struct workqueue_struct *wq;
4779 	struct apply_wqattrs_ctx *ctx, *n;
4780 
4781 	lockdep_assert_held(&wq_pool_mutex);
4782 
4783 	list_for_each_entry(wq, &workqueues, list) {
4784 		if (!(wq->flags & WQ_UNBOUND))
4785 			continue;
4786 		/* creating multiple pwqs breaks ordering guarantee */
4787 		if (wq->flags & __WQ_ORDERED)
4788 			continue;
4789 
4790 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4791 		if (!ctx) {
4792 			ret = -ENOMEM;
4793 			break;
4794 		}
4795 
4796 		list_add_tail(&ctx->list, &ctxs);
4797 	}
4798 
4799 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
4800 		if (!ret)
4801 			apply_wqattrs_commit(ctx);
4802 		apply_wqattrs_cleanup(ctx);
4803 	}
4804 
4805 	return ret;
4806 }
4807 
4808 /**
4809  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4810  *  @cpumask: the cpumask to set
4811  *
4812  *  The low-level workqueues cpumask is a global cpumask that limits
4813  *  the affinity of all unbound workqueues.  This function check the @cpumask
4814  *  and apply it to all unbound workqueues and updates all pwqs of them.
4815  *
4816  *  Retun:	0	- Success
4817  *  		-EINVAL	- Invalid @cpumask
4818  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
4819  */
4820 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4821 {
4822 	int ret = -EINVAL;
4823 	cpumask_var_t saved_cpumask;
4824 
4825 	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4826 		return -ENOMEM;
4827 
4828 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
4829 	if (!cpumask_empty(cpumask)) {
4830 		apply_wqattrs_lock();
4831 
4832 		/* save the old wq_unbound_cpumask. */
4833 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4834 
4835 		/* update wq_unbound_cpumask at first and apply it to wqs. */
4836 		cpumask_copy(wq_unbound_cpumask, cpumask);
4837 		ret = workqueue_apply_unbound_cpumask();
4838 
4839 		/* restore the wq_unbound_cpumask when failed. */
4840 		if (ret < 0)
4841 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4842 
4843 		apply_wqattrs_unlock();
4844 	}
4845 
4846 	free_cpumask_var(saved_cpumask);
4847 	return ret;
4848 }
4849 
4850 #ifdef CONFIG_SYSFS
4851 /*
4852  * Workqueues with WQ_SYSFS flag set is visible to userland via
4853  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
4854  * following attributes.
4855  *
4856  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
4857  *  max_active	RW int	: maximum number of in-flight work items
4858  *
4859  * Unbound workqueues have the following extra attributes.
4860  *
4861  *  id		RO int	: the associated pool ID
4862  *  nice	RW int	: nice value of the workers
4863  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
4864  */
4865 struct wq_device {
4866 	struct workqueue_struct		*wq;
4867 	struct device			dev;
4868 };
4869 
4870 static struct workqueue_struct *dev_to_wq(struct device *dev)
4871 {
4872 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4873 
4874 	return wq_dev->wq;
4875 }
4876 
4877 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4878 			    char *buf)
4879 {
4880 	struct workqueue_struct *wq = dev_to_wq(dev);
4881 
4882 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4883 }
4884 static DEVICE_ATTR_RO(per_cpu);
4885 
4886 static ssize_t max_active_show(struct device *dev,
4887 			       struct device_attribute *attr, char *buf)
4888 {
4889 	struct workqueue_struct *wq = dev_to_wq(dev);
4890 
4891 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4892 }
4893 
4894 static ssize_t max_active_store(struct device *dev,
4895 				struct device_attribute *attr, const char *buf,
4896 				size_t count)
4897 {
4898 	struct workqueue_struct *wq = dev_to_wq(dev);
4899 	int val;
4900 
4901 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
4902 		return -EINVAL;
4903 
4904 	workqueue_set_max_active(wq, val);
4905 	return count;
4906 }
4907 static DEVICE_ATTR_RW(max_active);
4908 
4909 static struct attribute *wq_sysfs_attrs[] = {
4910 	&dev_attr_per_cpu.attr,
4911 	&dev_attr_max_active.attr,
4912 	NULL,
4913 };
4914 ATTRIBUTE_GROUPS(wq_sysfs);
4915 
4916 static ssize_t wq_pool_ids_show(struct device *dev,
4917 				struct device_attribute *attr, char *buf)
4918 {
4919 	struct workqueue_struct *wq = dev_to_wq(dev);
4920 	const char *delim = "";
4921 	int node, written = 0;
4922 
4923 	rcu_read_lock_sched();
4924 	for_each_node(node) {
4925 		written += scnprintf(buf + written, PAGE_SIZE - written,
4926 				     "%s%d:%d", delim, node,
4927 				     unbound_pwq_by_node(wq, node)->pool->id);
4928 		delim = " ";
4929 	}
4930 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
4931 	rcu_read_unlock_sched();
4932 
4933 	return written;
4934 }
4935 
4936 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
4937 			    char *buf)
4938 {
4939 	struct workqueue_struct *wq = dev_to_wq(dev);
4940 	int written;
4941 
4942 	mutex_lock(&wq->mutex);
4943 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
4944 	mutex_unlock(&wq->mutex);
4945 
4946 	return written;
4947 }
4948 
4949 /* prepare workqueue_attrs for sysfs store operations */
4950 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
4951 {
4952 	struct workqueue_attrs *attrs;
4953 
4954 	lockdep_assert_held(&wq_pool_mutex);
4955 
4956 	attrs = alloc_workqueue_attrs(GFP_KERNEL);
4957 	if (!attrs)
4958 		return NULL;
4959 
4960 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
4961 	return attrs;
4962 }
4963 
4964 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
4965 			     const char *buf, size_t count)
4966 {
4967 	struct workqueue_struct *wq = dev_to_wq(dev);
4968 	struct workqueue_attrs *attrs;
4969 	int ret = -ENOMEM;
4970 
4971 	apply_wqattrs_lock();
4972 
4973 	attrs = wq_sysfs_prep_attrs(wq);
4974 	if (!attrs)
4975 		goto out_unlock;
4976 
4977 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
4978 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
4979 		ret = apply_workqueue_attrs_locked(wq, attrs);
4980 	else
4981 		ret = -EINVAL;
4982 
4983 out_unlock:
4984 	apply_wqattrs_unlock();
4985 	free_workqueue_attrs(attrs);
4986 	return ret ?: count;
4987 }
4988 
4989 static ssize_t wq_cpumask_show(struct device *dev,
4990 			       struct device_attribute *attr, char *buf)
4991 {
4992 	struct workqueue_struct *wq = dev_to_wq(dev);
4993 	int written;
4994 
4995 	mutex_lock(&wq->mutex);
4996 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
4997 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
4998 	mutex_unlock(&wq->mutex);
4999 	return written;
5000 }
5001 
5002 static ssize_t wq_cpumask_store(struct device *dev,
5003 				struct device_attribute *attr,
5004 				const char *buf, size_t count)
5005 {
5006 	struct workqueue_struct *wq = dev_to_wq(dev);
5007 	struct workqueue_attrs *attrs;
5008 	int ret = -ENOMEM;
5009 
5010 	apply_wqattrs_lock();
5011 
5012 	attrs = wq_sysfs_prep_attrs(wq);
5013 	if (!attrs)
5014 		goto out_unlock;
5015 
5016 	ret = cpumask_parse(buf, attrs->cpumask);
5017 	if (!ret)
5018 		ret = apply_workqueue_attrs_locked(wq, attrs);
5019 
5020 out_unlock:
5021 	apply_wqattrs_unlock();
5022 	free_workqueue_attrs(attrs);
5023 	return ret ?: count;
5024 }
5025 
5026 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5027 			    char *buf)
5028 {
5029 	struct workqueue_struct *wq = dev_to_wq(dev);
5030 	int written;
5031 
5032 	mutex_lock(&wq->mutex);
5033 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5034 			    !wq->unbound_attrs->no_numa);
5035 	mutex_unlock(&wq->mutex);
5036 
5037 	return written;
5038 }
5039 
5040 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5041 			     const char *buf, size_t count)
5042 {
5043 	struct workqueue_struct *wq = dev_to_wq(dev);
5044 	struct workqueue_attrs *attrs;
5045 	int v, ret = -ENOMEM;
5046 
5047 	apply_wqattrs_lock();
5048 
5049 	attrs = wq_sysfs_prep_attrs(wq);
5050 	if (!attrs)
5051 		goto out_unlock;
5052 
5053 	ret = -EINVAL;
5054 	if (sscanf(buf, "%d", &v) == 1) {
5055 		attrs->no_numa = !v;
5056 		ret = apply_workqueue_attrs_locked(wq, attrs);
5057 	}
5058 
5059 out_unlock:
5060 	apply_wqattrs_unlock();
5061 	free_workqueue_attrs(attrs);
5062 	return ret ?: count;
5063 }
5064 
5065 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5066 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5067 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5068 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5069 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5070 	__ATTR_NULL,
5071 };
5072 
5073 static struct bus_type wq_subsys = {
5074 	.name				= "workqueue",
5075 	.dev_groups			= wq_sysfs_groups,
5076 };
5077 
5078 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5079 		struct device_attribute *attr, char *buf)
5080 {
5081 	int written;
5082 
5083 	mutex_lock(&wq_pool_mutex);
5084 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5085 			    cpumask_pr_args(wq_unbound_cpumask));
5086 	mutex_unlock(&wq_pool_mutex);
5087 
5088 	return written;
5089 }
5090 
5091 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5092 		struct device_attribute *attr, const char *buf, size_t count)
5093 {
5094 	cpumask_var_t cpumask;
5095 	int ret;
5096 
5097 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5098 		return -ENOMEM;
5099 
5100 	ret = cpumask_parse(buf, cpumask);
5101 	if (!ret)
5102 		ret = workqueue_set_unbound_cpumask(cpumask);
5103 
5104 	free_cpumask_var(cpumask);
5105 	return ret ? ret : count;
5106 }
5107 
5108 static struct device_attribute wq_sysfs_cpumask_attr =
5109 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5110 	       wq_unbound_cpumask_store);
5111 
5112 static int __init wq_sysfs_init(void)
5113 {
5114 	int err;
5115 
5116 	err = subsys_virtual_register(&wq_subsys, NULL);
5117 	if (err)
5118 		return err;
5119 
5120 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5121 }
5122 core_initcall(wq_sysfs_init);
5123 
5124 static void wq_device_release(struct device *dev)
5125 {
5126 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5127 
5128 	kfree(wq_dev);
5129 }
5130 
5131 /**
5132  * workqueue_sysfs_register - make a workqueue visible in sysfs
5133  * @wq: the workqueue to register
5134  *
5135  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5136  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5137  * which is the preferred method.
5138  *
5139  * Workqueue user should use this function directly iff it wants to apply
5140  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5141  * apply_workqueue_attrs() may race against userland updating the
5142  * attributes.
5143  *
5144  * Return: 0 on success, -errno on failure.
5145  */
5146 int workqueue_sysfs_register(struct workqueue_struct *wq)
5147 {
5148 	struct wq_device *wq_dev;
5149 	int ret;
5150 
5151 	/*
5152 	 * Adjusting max_active or creating new pwqs by applying
5153 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5154 	 * workqueues.
5155 	 */
5156 	if (WARN_ON(wq->flags & __WQ_ORDERED))
5157 		return -EINVAL;
5158 
5159 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5160 	if (!wq_dev)
5161 		return -ENOMEM;
5162 
5163 	wq_dev->wq = wq;
5164 	wq_dev->dev.bus = &wq_subsys;
5165 	wq_dev->dev.init_name = wq->name;
5166 	wq_dev->dev.release = wq_device_release;
5167 
5168 	/*
5169 	 * unbound_attrs are created separately.  Suppress uevent until
5170 	 * everything is ready.
5171 	 */
5172 	dev_set_uevent_suppress(&wq_dev->dev, true);
5173 
5174 	ret = device_register(&wq_dev->dev);
5175 	if (ret) {
5176 		kfree(wq_dev);
5177 		wq->wq_dev = NULL;
5178 		return ret;
5179 	}
5180 
5181 	if (wq->flags & WQ_UNBOUND) {
5182 		struct device_attribute *attr;
5183 
5184 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5185 			ret = device_create_file(&wq_dev->dev, attr);
5186 			if (ret) {
5187 				device_unregister(&wq_dev->dev);
5188 				wq->wq_dev = NULL;
5189 				return ret;
5190 			}
5191 		}
5192 	}
5193 
5194 	dev_set_uevent_suppress(&wq_dev->dev, false);
5195 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5196 	return 0;
5197 }
5198 
5199 /**
5200  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5201  * @wq: the workqueue to unregister
5202  *
5203  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5204  */
5205 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5206 {
5207 	struct wq_device *wq_dev = wq->wq_dev;
5208 
5209 	if (!wq->wq_dev)
5210 		return;
5211 
5212 	wq->wq_dev = NULL;
5213 	device_unregister(&wq_dev->dev);
5214 }
5215 #else	/* CONFIG_SYSFS */
5216 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5217 #endif	/* CONFIG_SYSFS */
5218 
5219 /*
5220  * Workqueue watchdog.
5221  *
5222  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5223  * flush dependency, a concurrency managed work item which stays RUNNING
5224  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5225  * usual warning mechanisms don't trigger and internal workqueue state is
5226  * largely opaque.
5227  *
5228  * Workqueue watchdog monitors all worker pools periodically and dumps
5229  * state if some pools failed to make forward progress for a while where
5230  * forward progress is defined as the first item on ->worklist changing.
5231  *
5232  * This mechanism is controlled through the kernel parameter
5233  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5234  * corresponding sysfs parameter file.
5235  */
5236 #ifdef CONFIG_WQ_WATCHDOG
5237 
5238 static void wq_watchdog_timer_fn(unsigned long data);
5239 
5240 static unsigned long wq_watchdog_thresh = 30;
5241 static struct timer_list wq_watchdog_timer =
5242 	TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5243 
5244 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5245 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5246 
5247 static void wq_watchdog_reset_touched(void)
5248 {
5249 	int cpu;
5250 
5251 	wq_watchdog_touched = jiffies;
5252 	for_each_possible_cpu(cpu)
5253 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5254 }
5255 
5256 static void wq_watchdog_timer_fn(unsigned long data)
5257 {
5258 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5259 	bool lockup_detected = false;
5260 	struct worker_pool *pool;
5261 	int pi;
5262 
5263 	if (!thresh)
5264 		return;
5265 
5266 	rcu_read_lock();
5267 
5268 	for_each_pool(pool, pi) {
5269 		unsigned long pool_ts, touched, ts;
5270 
5271 		if (list_empty(&pool->worklist))
5272 			continue;
5273 
5274 		/* get the latest of pool and touched timestamps */
5275 		pool_ts = READ_ONCE(pool->watchdog_ts);
5276 		touched = READ_ONCE(wq_watchdog_touched);
5277 
5278 		if (time_after(pool_ts, touched))
5279 			ts = pool_ts;
5280 		else
5281 			ts = touched;
5282 
5283 		if (pool->cpu >= 0) {
5284 			unsigned long cpu_touched =
5285 				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5286 						  pool->cpu));
5287 			if (time_after(cpu_touched, ts))
5288 				ts = cpu_touched;
5289 		}
5290 
5291 		/* did we stall? */
5292 		if (time_after(jiffies, ts + thresh)) {
5293 			lockup_detected = true;
5294 			pr_emerg("BUG: workqueue lockup - pool");
5295 			pr_cont_pool_info(pool);
5296 			pr_cont(" stuck for %us!\n",
5297 				jiffies_to_msecs(jiffies - pool_ts) / 1000);
5298 		}
5299 	}
5300 
5301 	rcu_read_unlock();
5302 
5303 	if (lockup_detected)
5304 		show_workqueue_state();
5305 
5306 	wq_watchdog_reset_touched();
5307 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5308 }
5309 
5310 void wq_watchdog_touch(int cpu)
5311 {
5312 	if (cpu >= 0)
5313 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5314 	else
5315 		wq_watchdog_touched = jiffies;
5316 }
5317 
5318 static void wq_watchdog_set_thresh(unsigned long thresh)
5319 {
5320 	wq_watchdog_thresh = 0;
5321 	del_timer_sync(&wq_watchdog_timer);
5322 
5323 	if (thresh) {
5324 		wq_watchdog_thresh = thresh;
5325 		wq_watchdog_reset_touched();
5326 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5327 	}
5328 }
5329 
5330 static int wq_watchdog_param_set_thresh(const char *val,
5331 					const struct kernel_param *kp)
5332 {
5333 	unsigned long thresh;
5334 	int ret;
5335 
5336 	ret = kstrtoul(val, 0, &thresh);
5337 	if (ret)
5338 		return ret;
5339 
5340 	if (system_wq)
5341 		wq_watchdog_set_thresh(thresh);
5342 	else
5343 		wq_watchdog_thresh = thresh;
5344 
5345 	return 0;
5346 }
5347 
5348 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5349 	.set	= wq_watchdog_param_set_thresh,
5350 	.get	= param_get_ulong,
5351 };
5352 
5353 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5354 		0644);
5355 
5356 static void wq_watchdog_init(void)
5357 {
5358 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5359 }
5360 
5361 #else	/* CONFIG_WQ_WATCHDOG */
5362 
5363 static inline void wq_watchdog_init(void) { }
5364 
5365 #endif	/* CONFIG_WQ_WATCHDOG */
5366 
5367 static void __init wq_numa_init(void)
5368 {
5369 	cpumask_var_t *tbl;
5370 	int node, cpu;
5371 
5372 	if (num_possible_nodes() <= 1)
5373 		return;
5374 
5375 	if (wq_disable_numa) {
5376 		pr_info("workqueue: NUMA affinity support disabled\n");
5377 		return;
5378 	}
5379 
5380 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5381 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5382 
5383 	/*
5384 	 * We want masks of possible CPUs of each node which isn't readily
5385 	 * available.  Build one from cpu_to_node() which should have been
5386 	 * fully initialized by now.
5387 	 */
5388 	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5389 	BUG_ON(!tbl);
5390 
5391 	for_each_node(node)
5392 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5393 				node_online(node) ? node : NUMA_NO_NODE));
5394 
5395 	for_each_possible_cpu(cpu) {
5396 		node = cpu_to_node(cpu);
5397 		if (WARN_ON(node == NUMA_NO_NODE)) {
5398 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5399 			/* happens iff arch is bonkers, let's just proceed */
5400 			return;
5401 		}
5402 		cpumask_set_cpu(cpu, tbl[node]);
5403 	}
5404 
5405 	wq_numa_possible_cpumask = tbl;
5406 	wq_numa_enabled = true;
5407 }
5408 
5409 static int __init init_workqueues(void)
5410 {
5411 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5412 	int i, cpu;
5413 
5414 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5415 
5416 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5417 	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5418 
5419 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5420 
5421 	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5422 	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5423 
5424 	wq_numa_init();
5425 
5426 	/* initialize CPU pools */
5427 	for_each_possible_cpu(cpu) {
5428 		struct worker_pool *pool;
5429 
5430 		i = 0;
5431 		for_each_cpu_worker_pool(pool, cpu) {
5432 			BUG_ON(init_worker_pool(pool));
5433 			pool->cpu = cpu;
5434 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5435 			pool->attrs->nice = std_nice[i++];
5436 			pool->node = cpu_to_node(cpu);
5437 
5438 			/* alloc pool ID */
5439 			mutex_lock(&wq_pool_mutex);
5440 			BUG_ON(worker_pool_assign_id(pool));
5441 			mutex_unlock(&wq_pool_mutex);
5442 		}
5443 	}
5444 
5445 	/* create the initial worker */
5446 	for_each_online_cpu(cpu) {
5447 		struct worker_pool *pool;
5448 
5449 		for_each_cpu_worker_pool(pool, cpu) {
5450 			pool->flags &= ~POOL_DISASSOCIATED;
5451 			BUG_ON(!create_worker(pool));
5452 		}
5453 	}
5454 
5455 	/* create default unbound and ordered wq attrs */
5456 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5457 		struct workqueue_attrs *attrs;
5458 
5459 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5460 		attrs->nice = std_nice[i];
5461 		unbound_std_wq_attrs[i] = attrs;
5462 
5463 		/*
5464 		 * An ordered wq should have only one pwq as ordering is
5465 		 * guaranteed by max_active which is enforced by pwqs.
5466 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5467 		 */
5468 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5469 		attrs->nice = std_nice[i];
5470 		attrs->no_numa = true;
5471 		ordered_wq_attrs[i] = attrs;
5472 	}
5473 
5474 	system_wq = alloc_workqueue("events", 0, 0);
5475 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5476 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5477 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5478 					    WQ_UNBOUND_MAX_ACTIVE);
5479 	system_freezable_wq = alloc_workqueue("events_freezable",
5480 					      WQ_FREEZABLE, 0);
5481 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5482 					      WQ_POWER_EFFICIENT, 0);
5483 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5484 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5485 					      0);
5486 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5487 	       !system_unbound_wq || !system_freezable_wq ||
5488 	       !system_power_efficient_wq ||
5489 	       !system_freezable_power_efficient_wq);
5490 
5491 	wq_watchdog_init();
5492 
5493 	return 0;
5494 }
5495 early_initcall(init_workqueues);
5496