1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There are two worker pools for each CPU (one for 20 * normal work items and the other for high priority ones) and some extra 21 * pools for workqueues which are not bound to any specific CPU - the 22 * number of these backing pools is dynamic. 23 * 24 * Please read Documentation/workqueue.txt for details. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kernel.h> 29 #include <linux/sched.h> 30 #include <linux/init.h> 31 #include <linux/signal.h> 32 #include <linux/completion.h> 33 #include <linux/workqueue.h> 34 #include <linux/slab.h> 35 #include <linux/cpu.h> 36 #include <linux/notifier.h> 37 #include <linux/kthread.h> 38 #include <linux/hardirq.h> 39 #include <linux/mempolicy.h> 40 #include <linux/freezer.h> 41 #include <linux/kallsyms.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 52 #include "workqueue_internal.h" 53 54 enum { 55 /* 56 * worker_pool flags 57 * 58 * A bound pool is either associated or disassociated with its CPU. 59 * While associated (!DISASSOCIATED), all workers are bound to the 60 * CPU and none has %WORKER_UNBOUND set and concurrency management 61 * is in effect. 62 * 63 * While DISASSOCIATED, the cpu may be offline and all workers have 64 * %WORKER_UNBOUND set and concurrency management disabled, and may 65 * be executing on any CPU. The pool behaves as an unbound one. 66 * 67 * Note that DISASSOCIATED should be flipped only while holding 68 * attach_mutex to avoid changing binding state while 69 * worker_attach_to_pool() is in progress. 70 */ 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 72 73 /* worker flags */ 74 WORKER_DIE = 1 << 1, /* die die die */ 75 WORKER_IDLE = 1 << 2, /* is idle */ 76 WORKER_PREP = 1 << 3, /* preparing to run works */ 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 79 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 80 81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 82 WORKER_UNBOUND | WORKER_REBOUND, 83 84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 85 86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 88 89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 91 92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 93 /* call for help after 10ms 94 (min two ticks) */ 95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 96 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 97 98 /* 99 * Rescue workers are used only on emergencies and shared by 100 * all cpus. Give MIN_NICE. 101 */ 102 RESCUER_NICE_LEVEL = MIN_NICE, 103 HIGHPRI_NICE_LEVEL = MIN_NICE, 104 105 WQ_NAME_LEN = 24, 106 }; 107 108 /* 109 * Structure fields follow one of the following exclusion rules. 110 * 111 * I: Modifiable by initialization/destruction paths and read-only for 112 * everyone else. 113 * 114 * P: Preemption protected. Disabling preemption is enough and should 115 * only be modified and accessed from the local cpu. 116 * 117 * L: pool->lock protected. Access with pool->lock held. 118 * 119 * X: During normal operation, modification requires pool->lock and should 120 * be done only from local cpu. Either disabling preemption on local 121 * cpu or grabbing pool->lock is enough for read access. If 122 * POOL_DISASSOCIATED is set, it's identical to L. 123 * 124 * A: pool->attach_mutex protected. 125 * 126 * PL: wq_pool_mutex protected. 127 * 128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads. 129 * 130 * WQ: wq->mutex protected. 131 * 132 * WR: wq->mutex protected for writes. Sched-RCU protected for reads. 133 * 134 * MD: wq_mayday_lock protected. 135 */ 136 137 /* struct worker is defined in workqueue_internal.h */ 138 139 struct worker_pool { 140 spinlock_t lock; /* the pool lock */ 141 int cpu; /* I: the associated cpu */ 142 int node; /* I: the associated node ID */ 143 int id; /* I: pool ID */ 144 unsigned int flags; /* X: flags */ 145 146 struct list_head worklist; /* L: list of pending works */ 147 int nr_workers; /* L: total number of workers */ 148 149 /* nr_idle includes the ones off idle_list for rebinding */ 150 int nr_idle; /* L: currently idle ones */ 151 152 struct list_head idle_list; /* X: list of idle workers */ 153 struct timer_list idle_timer; /* L: worker idle timeout */ 154 struct timer_list mayday_timer; /* L: SOS timer for workers */ 155 156 /* a workers is either on busy_hash or idle_list, or the manager */ 157 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 158 /* L: hash of busy workers */ 159 160 /* see manage_workers() for details on the two manager mutexes */ 161 struct mutex manager_arb; /* manager arbitration */ 162 struct mutex attach_mutex; /* attach/detach exclusion */ 163 struct list_head workers; /* A: attached workers */ 164 struct completion *detach_completion; /* all workers detached */ 165 166 struct ida worker_ida; /* worker IDs for task name */ 167 168 struct workqueue_attrs *attrs; /* I: worker attributes */ 169 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 170 int refcnt; /* PL: refcnt for unbound pools */ 171 172 /* 173 * The current concurrency level. As it's likely to be accessed 174 * from other CPUs during try_to_wake_up(), put it in a separate 175 * cacheline. 176 */ 177 atomic_t nr_running ____cacheline_aligned_in_smp; 178 179 /* 180 * Destruction of pool is sched-RCU protected to allow dereferences 181 * from get_work_pool(). 182 */ 183 struct rcu_head rcu; 184 } ____cacheline_aligned_in_smp; 185 186 /* 187 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 188 * of work_struct->data are used for flags and the remaining high bits 189 * point to the pwq; thus, pwqs need to be aligned at two's power of the 190 * number of flag bits. 191 */ 192 struct pool_workqueue { 193 struct worker_pool *pool; /* I: the associated pool */ 194 struct workqueue_struct *wq; /* I: the owning workqueue */ 195 int work_color; /* L: current color */ 196 int flush_color; /* L: flushing color */ 197 int refcnt; /* L: reference count */ 198 int nr_in_flight[WORK_NR_COLORS]; 199 /* L: nr of in_flight works */ 200 int nr_active; /* L: nr of active works */ 201 int max_active; /* L: max active works */ 202 struct list_head delayed_works; /* L: delayed works */ 203 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 204 struct list_head mayday_node; /* MD: node on wq->maydays */ 205 206 /* 207 * Release of unbound pwq is punted to system_wq. See put_pwq() 208 * and pwq_unbound_release_workfn() for details. pool_workqueue 209 * itself is also sched-RCU protected so that the first pwq can be 210 * determined without grabbing wq->mutex. 211 */ 212 struct work_struct unbound_release_work; 213 struct rcu_head rcu; 214 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 215 216 /* 217 * Structure used to wait for workqueue flush. 218 */ 219 struct wq_flusher { 220 struct list_head list; /* WQ: list of flushers */ 221 int flush_color; /* WQ: flush color waiting for */ 222 struct completion done; /* flush completion */ 223 }; 224 225 struct wq_device; 226 227 /* 228 * The externally visible workqueue. It relays the issued work items to 229 * the appropriate worker_pool through its pool_workqueues. 230 */ 231 struct workqueue_struct { 232 struct list_head pwqs; /* WR: all pwqs of this wq */ 233 struct list_head list; /* PL: list of all workqueues */ 234 235 struct mutex mutex; /* protects this wq */ 236 int work_color; /* WQ: current work color */ 237 int flush_color; /* WQ: current flush color */ 238 atomic_t nr_pwqs_to_flush; /* flush in progress */ 239 struct wq_flusher *first_flusher; /* WQ: first flusher */ 240 struct list_head flusher_queue; /* WQ: flush waiters */ 241 struct list_head flusher_overflow; /* WQ: flush overflow list */ 242 243 struct list_head maydays; /* MD: pwqs requesting rescue */ 244 struct worker *rescuer; /* I: rescue worker */ 245 246 int nr_drainers; /* WQ: drain in progress */ 247 int saved_max_active; /* WQ: saved pwq max_active */ 248 249 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */ 250 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */ 251 252 #ifdef CONFIG_SYSFS 253 struct wq_device *wq_dev; /* I: for sysfs interface */ 254 #endif 255 #ifdef CONFIG_LOCKDEP 256 struct lockdep_map lockdep_map; 257 #endif 258 char name[WQ_NAME_LEN]; /* I: workqueue name */ 259 260 /* hot fields used during command issue, aligned to cacheline */ 261 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 262 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 263 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */ 264 }; 265 266 static struct kmem_cache *pwq_cache; 267 268 static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */ 269 static cpumask_var_t *wq_numa_possible_cpumask; 270 /* possible CPUs of each node */ 271 272 static bool wq_disable_numa; 273 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 274 275 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 276 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT 277 static bool wq_power_efficient = true; 278 #else 279 static bool wq_power_efficient; 280 #endif 281 282 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 283 284 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 285 286 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 287 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 288 289 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 290 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 291 292 static LIST_HEAD(workqueues); /* PL: list of all workqueues */ 293 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 294 295 /* the per-cpu worker pools */ 296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 297 cpu_worker_pools); 298 299 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 300 301 /* PL: hash of all unbound pools keyed by pool->attrs */ 302 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 303 304 /* I: attributes used when instantiating standard unbound pools on demand */ 305 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 306 307 /* I: attributes used when instantiating ordered pools on demand */ 308 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 309 310 struct workqueue_struct *system_wq __read_mostly; 311 EXPORT_SYMBOL(system_wq); 312 struct workqueue_struct *system_highpri_wq __read_mostly; 313 EXPORT_SYMBOL_GPL(system_highpri_wq); 314 struct workqueue_struct *system_long_wq __read_mostly; 315 EXPORT_SYMBOL_GPL(system_long_wq); 316 struct workqueue_struct *system_unbound_wq __read_mostly; 317 EXPORT_SYMBOL_GPL(system_unbound_wq); 318 struct workqueue_struct *system_freezable_wq __read_mostly; 319 EXPORT_SYMBOL_GPL(system_freezable_wq); 320 struct workqueue_struct *system_power_efficient_wq __read_mostly; 321 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 322 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 323 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 324 325 static int worker_thread(void *__worker); 326 static void copy_workqueue_attrs(struct workqueue_attrs *to, 327 const struct workqueue_attrs *from); 328 329 #define CREATE_TRACE_POINTS 330 #include <trace/events/workqueue.h> 331 332 #define assert_rcu_or_pool_mutex() \ 333 rcu_lockdep_assert(rcu_read_lock_sched_held() || \ 334 lockdep_is_held(&wq_pool_mutex), \ 335 "sched RCU or wq_pool_mutex should be held") 336 337 #define assert_rcu_or_wq_mutex(wq) \ 338 rcu_lockdep_assert(rcu_read_lock_sched_held() || \ 339 lockdep_is_held(&wq->mutex), \ 340 "sched RCU or wq->mutex should be held") 341 342 #define for_each_cpu_worker_pool(pool, cpu) \ 343 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 344 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 345 (pool)++) 346 347 /** 348 * for_each_pool - iterate through all worker_pools in the system 349 * @pool: iteration cursor 350 * @pi: integer used for iteration 351 * 352 * This must be called either with wq_pool_mutex held or sched RCU read 353 * locked. If the pool needs to be used beyond the locking in effect, the 354 * caller is responsible for guaranteeing that the pool stays online. 355 * 356 * The if/else clause exists only for the lockdep assertion and can be 357 * ignored. 358 */ 359 #define for_each_pool(pool, pi) \ 360 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 361 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 362 else 363 364 /** 365 * for_each_pool_worker - iterate through all workers of a worker_pool 366 * @worker: iteration cursor 367 * @pool: worker_pool to iterate workers of 368 * 369 * This must be called with @pool->attach_mutex. 370 * 371 * The if/else clause exists only for the lockdep assertion and can be 372 * ignored. 373 */ 374 #define for_each_pool_worker(worker, pool) \ 375 list_for_each_entry((worker), &(pool)->workers, node) \ 376 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \ 377 else 378 379 /** 380 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 381 * @pwq: iteration cursor 382 * @wq: the target workqueue 383 * 384 * This must be called either with wq->mutex held or sched RCU read locked. 385 * If the pwq needs to be used beyond the locking in effect, the caller is 386 * responsible for guaranteeing that the pwq stays online. 387 * 388 * The if/else clause exists only for the lockdep assertion and can be 389 * ignored. 390 */ 391 #define for_each_pwq(pwq, wq) \ 392 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \ 393 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ 394 else 395 396 #ifdef CONFIG_DEBUG_OBJECTS_WORK 397 398 static struct debug_obj_descr work_debug_descr; 399 400 static void *work_debug_hint(void *addr) 401 { 402 return ((struct work_struct *) addr)->func; 403 } 404 405 /* 406 * fixup_init is called when: 407 * - an active object is initialized 408 */ 409 static int work_fixup_init(void *addr, enum debug_obj_state state) 410 { 411 struct work_struct *work = addr; 412 413 switch (state) { 414 case ODEBUG_STATE_ACTIVE: 415 cancel_work_sync(work); 416 debug_object_init(work, &work_debug_descr); 417 return 1; 418 default: 419 return 0; 420 } 421 } 422 423 /* 424 * fixup_activate is called when: 425 * - an active object is activated 426 * - an unknown object is activated (might be a statically initialized object) 427 */ 428 static int work_fixup_activate(void *addr, enum debug_obj_state state) 429 { 430 struct work_struct *work = addr; 431 432 switch (state) { 433 434 case ODEBUG_STATE_NOTAVAILABLE: 435 /* 436 * This is not really a fixup. The work struct was 437 * statically initialized. We just make sure that it 438 * is tracked in the object tracker. 439 */ 440 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) { 441 debug_object_init(work, &work_debug_descr); 442 debug_object_activate(work, &work_debug_descr); 443 return 0; 444 } 445 WARN_ON_ONCE(1); 446 return 0; 447 448 case ODEBUG_STATE_ACTIVE: 449 WARN_ON(1); 450 451 default: 452 return 0; 453 } 454 } 455 456 /* 457 * fixup_free is called when: 458 * - an active object is freed 459 */ 460 static int work_fixup_free(void *addr, enum debug_obj_state state) 461 { 462 struct work_struct *work = addr; 463 464 switch (state) { 465 case ODEBUG_STATE_ACTIVE: 466 cancel_work_sync(work); 467 debug_object_free(work, &work_debug_descr); 468 return 1; 469 default: 470 return 0; 471 } 472 } 473 474 static struct debug_obj_descr work_debug_descr = { 475 .name = "work_struct", 476 .debug_hint = work_debug_hint, 477 .fixup_init = work_fixup_init, 478 .fixup_activate = work_fixup_activate, 479 .fixup_free = work_fixup_free, 480 }; 481 482 static inline void debug_work_activate(struct work_struct *work) 483 { 484 debug_object_activate(work, &work_debug_descr); 485 } 486 487 static inline void debug_work_deactivate(struct work_struct *work) 488 { 489 debug_object_deactivate(work, &work_debug_descr); 490 } 491 492 void __init_work(struct work_struct *work, int onstack) 493 { 494 if (onstack) 495 debug_object_init_on_stack(work, &work_debug_descr); 496 else 497 debug_object_init(work, &work_debug_descr); 498 } 499 EXPORT_SYMBOL_GPL(__init_work); 500 501 void destroy_work_on_stack(struct work_struct *work) 502 { 503 debug_object_free(work, &work_debug_descr); 504 } 505 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 506 507 void destroy_delayed_work_on_stack(struct delayed_work *work) 508 { 509 destroy_timer_on_stack(&work->timer); 510 debug_object_free(&work->work, &work_debug_descr); 511 } 512 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 513 514 #else 515 static inline void debug_work_activate(struct work_struct *work) { } 516 static inline void debug_work_deactivate(struct work_struct *work) { } 517 #endif 518 519 /** 520 * worker_pool_assign_id - allocate ID and assing it to @pool 521 * @pool: the pool pointer of interest 522 * 523 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 524 * successfully, -errno on failure. 525 */ 526 static int worker_pool_assign_id(struct worker_pool *pool) 527 { 528 int ret; 529 530 lockdep_assert_held(&wq_pool_mutex); 531 532 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 533 GFP_KERNEL); 534 if (ret >= 0) { 535 pool->id = ret; 536 return 0; 537 } 538 return ret; 539 } 540 541 /** 542 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 543 * @wq: the target workqueue 544 * @node: the node ID 545 * 546 * This must be called either with pwq_lock held or sched RCU read locked. 547 * If the pwq needs to be used beyond the locking in effect, the caller is 548 * responsible for guaranteeing that the pwq stays online. 549 * 550 * Return: The unbound pool_workqueue for @node. 551 */ 552 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 553 int node) 554 { 555 assert_rcu_or_wq_mutex(wq); 556 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 557 } 558 559 static unsigned int work_color_to_flags(int color) 560 { 561 return color << WORK_STRUCT_COLOR_SHIFT; 562 } 563 564 static int get_work_color(struct work_struct *work) 565 { 566 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 567 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 568 } 569 570 static int work_next_color(int color) 571 { 572 return (color + 1) % WORK_NR_COLORS; 573 } 574 575 /* 576 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 577 * contain the pointer to the queued pwq. Once execution starts, the flag 578 * is cleared and the high bits contain OFFQ flags and pool ID. 579 * 580 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 581 * and clear_work_data() can be used to set the pwq, pool or clear 582 * work->data. These functions should only be called while the work is 583 * owned - ie. while the PENDING bit is set. 584 * 585 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 586 * corresponding to a work. Pool is available once the work has been 587 * queued anywhere after initialization until it is sync canceled. pwq is 588 * available only while the work item is queued. 589 * 590 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 591 * canceled. While being canceled, a work item may have its PENDING set 592 * but stay off timer and worklist for arbitrarily long and nobody should 593 * try to steal the PENDING bit. 594 */ 595 static inline void set_work_data(struct work_struct *work, unsigned long data, 596 unsigned long flags) 597 { 598 WARN_ON_ONCE(!work_pending(work)); 599 atomic_long_set(&work->data, data | flags | work_static(work)); 600 } 601 602 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 603 unsigned long extra_flags) 604 { 605 set_work_data(work, (unsigned long)pwq, 606 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 607 } 608 609 static void set_work_pool_and_keep_pending(struct work_struct *work, 610 int pool_id) 611 { 612 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 613 WORK_STRUCT_PENDING); 614 } 615 616 static void set_work_pool_and_clear_pending(struct work_struct *work, 617 int pool_id) 618 { 619 /* 620 * The following wmb is paired with the implied mb in 621 * test_and_set_bit(PENDING) and ensures all updates to @work made 622 * here are visible to and precede any updates by the next PENDING 623 * owner. 624 */ 625 smp_wmb(); 626 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 627 } 628 629 static void clear_work_data(struct work_struct *work) 630 { 631 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 632 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 633 } 634 635 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 636 { 637 unsigned long data = atomic_long_read(&work->data); 638 639 if (data & WORK_STRUCT_PWQ) 640 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 641 else 642 return NULL; 643 } 644 645 /** 646 * get_work_pool - return the worker_pool a given work was associated with 647 * @work: the work item of interest 648 * 649 * Pools are created and destroyed under wq_pool_mutex, and allows read 650 * access under sched-RCU read lock. As such, this function should be 651 * called under wq_pool_mutex or with preemption disabled. 652 * 653 * All fields of the returned pool are accessible as long as the above 654 * mentioned locking is in effect. If the returned pool needs to be used 655 * beyond the critical section, the caller is responsible for ensuring the 656 * returned pool is and stays online. 657 * 658 * Return: The worker_pool @work was last associated with. %NULL if none. 659 */ 660 static struct worker_pool *get_work_pool(struct work_struct *work) 661 { 662 unsigned long data = atomic_long_read(&work->data); 663 int pool_id; 664 665 assert_rcu_or_pool_mutex(); 666 667 if (data & WORK_STRUCT_PWQ) 668 return ((struct pool_workqueue *) 669 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 670 671 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 672 if (pool_id == WORK_OFFQ_POOL_NONE) 673 return NULL; 674 675 return idr_find(&worker_pool_idr, pool_id); 676 } 677 678 /** 679 * get_work_pool_id - return the worker pool ID a given work is associated with 680 * @work: the work item of interest 681 * 682 * Return: The worker_pool ID @work was last associated with. 683 * %WORK_OFFQ_POOL_NONE if none. 684 */ 685 static int get_work_pool_id(struct work_struct *work) 686 { 687 unsigned long data = atomic_long_read(&work->data); 688 689 if (data & WORK_STRUCT_PWQ) 690 return ((struct pool_workqueue *) 691 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 692 693 return data >> WORK_OFFQ_POOL_SHIFT; 694 } 695 696 static void mark_work_canceling(struct work_struct *work) 697 { 698 unsigned long pool_id = get_work_pool_id(work); 699 700 pool_id <<= WORK_OFFQ_POOL_SHIFT; 701 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 702 } 703 704 static bool work_is_canceling(struct work_struct *work) 705 { 706 unsigned long data = atomic_long_read(&work->data); 707 708 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 709 } 710 711 /* 712 * Policy functions. These define the policies on how the global worker 713 * pools are managed. Unless noted otherwise, these functions assume that 714 * they're being called with pool->lock held. 715 */ 716 717 static bool __need_more_worker(struct worker_pool *pool) 718 { 719 return !atomic_read(&pool->nr_running); 720 } 721 722 /* 723 * Need to wake up a worker? Called from anything but currently 724 * running workers. 725 * 726 * Note that, because unbound workers never contribute to nr_running, this 727 * function will always return %true for unbound pools as long as the 728 * worklist isn't empty. 729 */ 730 static bool need_more_worker(struct worker_pool *pool) 731 { 732 return !list_empty(&pool->worklist) && __need_more_worker(pool); 733 } 734 735 /* Can I start working? Called from busy but !running workers. */ 736 static bool may_start_working(struct worker_pool *pool) 737 { 738 return pool->nr_idle; 739 } 740 741 /* Do I need to keep working? Called from currently running workers. */ 742 static bool keep_working(struct worker_pool *pool) 743 { 744 return !list_empty(&pool->worklist) && 745 atomic_read(&pool->nr_running) <= 1; 746 } 747 748 /* Do we need a new worker? Called from manager. */ 749 static bool need_to_create_worker(struct worker_pool *pool) 750 { 751 return need_more_worker(pool) && !may_start_working(pool); 752 } 753 754 /* Do we have too many workers and should some go away? */ 755 static bool too_many_workers(struct worker_pool *pool) 756 { 757 bool managing = mutex_is_locked(&pool->manager_arb); 758 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 759 int nr_busy = pool->nr_workers - nr_idle; 760 761 /* 762 * nr_idle and idle_list may disagree if idle rebinding is in 763 * progress. Never return %true if idle_list is empty. 764 */ 765 if (list_empty(&pool->idle_list)) 766 return false; 767 768 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 769 } 770 771 /* 772 * Wake up functions. 773 */ 774 775 /* Return the first idle worker. Safe with preemption disabled */ 776 static struct worker *first_idle_worker(struct worker_pool *pool) 777 { 778 if (unlikely(list_empty(&pool->idle_list))) 779 return NULL; 780 781 return list_first_entry(&pool->idle_list, struct worker, entry); 782 } 783 784 /** 785 * wake_up_worker - wake up an idle worker 786 * @pool: worker pool to wake worker from 787 * 788 * Wake up the first idle worker of @pool. 789 * 790 * CONTEXT: 791 * spin_lock_irq(pool->lock). 792 */ 793 static void wake_up_worker(struct worker_pool *pool) 794 { 795 struct worker *worker = first_idle_worker(pool); 796 797 if (likely(worker)) 798 wake_up_process(worker->task); 799 } 800 801 /** 802 * wq_worker_waking_up - a worker is waking up 803 * @task: task waking up 804 * @cpu: CPU @task is waking up to 805 * 806 * This function is called during try_to_wake_up() when a worker is 807 * being awoken. 808 * 809 * CONTEXT: 810 * spin_lock_irq(rq->lock) 811 */ 812 void wq_worker_waking_up(struct task_struct *task, int cpu) 813 { 814 struct worker *worker = kthread_data(task); 815 816 if (!(worker->flags & WORKER_NOT_RUNNING)) { 817 WARN_ON_ONCE(worker->pool->cpu != cpu); 818 atomic_inc(&worker->pool->nr_running); 819 } 820 } 821 822 /** 823 * wq_worker_sleeping - a worker is going to sleep 824 * @task: task going to sleep 825 * @cpu: CPU in question, must be the current CPU number 826 * 827 * This function is called during schedule() when a busy worker is 828 * going to sleep. Worker on the same cpu can be woken up by 829 * returning pointer to its task. 830 * 831 * CONTEXT: 832 * spin_lock_irq(rq->lock) 833 * 834 * Return: 835 * Worker task on @cpu to wake up, %NULL if none. 836 */ 837 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu) 838 { 839 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 840 struct worker_pool *pool; 841 842 /* 843 * Rescuers, which may not have all the fields set up like normal 844 * workers, also reach here, let's not access anything before 845 * checking NOT_RUNNING. 846 */ 847 if (worker->flags & WORKER_NOT_RUNNING) 848 return NULL; 849 850 pool = worker->pool; 851 852 /* this can only happen on the local cpu */ 853 if (WARN_ON_ONCE(cpu != raw_smp_processor_id())) 854 return NULL; 855 856 /* 857 * The counterpart of the following dec_and_test, implied mb, 858 * worklist not empty test sequence is in insert_work(). 859 * Please read comment there. 860 * 861 * NOT_RUNNING is clear. This means that we're bound to and 862 * running on the local cpu w/ rq lock held and preemption 863 * disabled, which in turn means that none else could be 864 * manipulating idle_list, so dereferencing idle_list without pool 865 * lock is safe. 866 */ 867 if (atomic_dec_and_test(&pool->nr_running) && 868 !list_empty(&pool->worklist)) 869 to_wakeup = first_idle_worker(pool); 870 return to_wakeup ? to_wakeup->task : NULL; 871 } 872 873 /** 874 * worker_set_flags - set worker flags and adjust nr_running accordingly 875 * @worker: self 876 * @flags: flags to set 877 * @wakeup: wakeup an idle worker if necessary 878 * 879 * Set @flags in @worker->flags and adjust nr_running accordingly. If 880 * nr_running becomes zero and @wakeup is %true, an idle worker is 881 * woken up. 882 * 883 * CONTEXT: 884 * spin_lock_irq(pool->lock) 885 */ 886 static inline void worker_set_flags(struct worker *worker, unsigned int flags, 887 bool wakeup) 888 { 889 struct worker_pool *pool = worker->pool; 890 891 WARN_ON_ONCE(worker->task != current); 892 893 /* 894 * If transitioning into NOT_RUNNING, adjust nr_running and 895 * wake up an idle worker as necessary if requested by 896 * @wakeup. 897 */ 898 if ((flags & WORKER_NOT_RUNNING) && 899 !(worker->flags & WORKER_NOT_RUNNING)) { 900 if (wakeup) { 901 if (atomic_dec_and_test(&pool->nr_running) && 902 !list_empty(&pool->worklist)) 903 wake_up_worker(pool); 904 } else 905 atomic_dec(&pool->nr_running); 906 } 907 908 worker->flags |= flags; 909 } 910 911 /** 912 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 913 * @worker: self 914 * @flags: flags to clear 915 * 916 * Clear @flags in @worker->flags and adjust nr_running accordingly. 917 * 918 * CONTEXT: 919 * spin_lock_irq(pool->lock) 920 */ 921 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 922 { 923 struct worker_pool *pool = worker->pool; 924 unsigned int oflags = worker->flags; 925 926 WARN_ON_ONCE(worker->task != current); 927 928 worker->flags &= ~flags; 929 930 /* 931 * If transitioning out of NOT_RUNNING, increment nr_running. Note 932 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 933 * of multiple flags, not a single flag. 934 */ 935 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 936 if (!(worker->flags & WORKER_NOT_RUNNING)) 937 atomic_inc(&pool->nr_running); 938 } 939 940 /** 941 * find_worker_executing_work - find worker which is executing a work 942 * @pool: pool of interest 943 * @work: work to find worker for 944 * 945 * Find a worker which is executing @work on @pool by searching 946 * @pool->busy_hash which is keyed by the address of @work. For a worker 947 * to match, its current execution should match the address of @work and 948 * its work function. This is to avoid unwanted dependency between 949 * unrelated work executions through a work item being recycled while still 950 * being executed. 951 * 952 * This is a bit tricky. A work item may be freed once its execution 953 * starts and nothing prevents the freed area from being recycled for 954 * another work item. If the same work item address ends up being reused 955 * before the original execution finishes, workqueue will identify the 956 * recycled work item as currently executing and make it wait until the 957 * current execution finishes, introducing an unwanted dependency. 958 * 959 * This function checks the work item address and work function to avoid 960 * false positives. Note that this isn't complete as one may construct a 961 * work function which can introduce dependency onto itself through a 962 * recycled work item. Well, if somebody wants to shoot oneself in the 963 * foot that badly, there's only so much we can do, and if such deadlock 964 * actually occurs, it should be easy to locate the culprit work function. 965 * 966 * CONTEXT: 967 * spin_lock_irq(pool->lock). 968 * 969 * Return: 970 * Pointer to worker which is executing @work if found, %NULL 971 * otherwise. 972 */ 973 static struct worker *find_worker_executing_work(struct worker_pool *pool, 974 struct work_struct *work) 975 { 976 struct worker *worker; 977 978 hash_for_each_possible(pool->busy_hash, worker, hentry, 979 (unsigned long)work) 980 if (worker->current_work == work && 981 worker->current_func == work->func) 982 return worker; 983 984 return NULL; 985 } 986 987 /** 988 * move_linked_works - move linked works to a list 989 * @work: start of series of works to be scheduled 990 * @head: target list to append @work to 991 * @nextp: out paramter for nested worklist walking 992 * 993 * Schedule linked works starting from @work to @head. Work series to 994 * be scheduled starts at @work and includes any consecutive work with 995 * WORK_STRUCT_LINKED set in its predecessor. 996 * 997 * If @nextp is not NULL, it's updated to point to the next work of 998 * the last scheduled work. This allows move_linked_works() to be 999 * nested inside outer list_for_each_entry_safe(). 1000 * 1001 * CONTEXT: 1002 * spin_lock_irq(pool->lock). 1003 */ 1004 static void move_linked_works(struct work_struct *work, struct list_head *head, 1005 struct work_struct **nextp) 1006 { 1007 struct work_struct *n; 1008 1009 /* 1010 * Linked worklist will always end before the end of the list, 1011 * use NULL for list head. 1012 */ 1013 list_for_each_entry_safe_from(work, n, NULL, entry) { 1014 list_move_tail(&work->entry, head); 1015 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1016 break; 1017 } 1018 1019 /* 1020 * If we're already inside safe list traversal and have moved 1021 * multiple works to the scheduled queue, the next position 1022 * needs to be updated. 1023 */ 1024 if (nextp) 1025 *nextp = n; 1026 } 1027 1028 /** 1029 * get_pwq - get an extra reference on the specified pool_workqueue 1030 * @pwq: pool_workqueue to get 1031 * 1032 * Obtain an extra reference on @pwq. The caller should guarantee that 1033 * @pwq has positive refcnt and be holding the matching pool->lock. 1034 */ 1035 static void get_pwq(struct pool_workqueue *pwq) 1036 { 1037 lockdep_assert_held(&pwq->pool->lock); 1038 WARN_ON_ONCE(pwq->refcnt <= 0); 1039 pwq->refcnt++; 1040 } 1041 1042 /** 1043 * put_pwq - put a pool_workqueue reference 1044 * @pwq: pool_workqueue to put 1045 * 1046 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1047 * destruction. The caller should be holding the matching pool->lock. 1048 */ 1049 static void put_pwq(struct pool_workqueue *pwq) 1050 { 1051 lockdep_assert_held(&pwq->pool->lock); 1052 if (likely(--pwq->refcnt)) 1053 return; 1054 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1055 return; 1056 /* 1057 * @pwq can't be released under pool->lock, bounce to 1058 * pwq_unbound_release_workfn(). This never recurses on the same 1059 * pool->lock as this path is taken only for unbound workqueues and 1060 * the release work item is scheduled on a per-cpu workqueue. To 1061 * avoid lockdep warning, unbound pool->locks are given lockdep 1062 * subclass of 1 in get_unbound_pool(). 1063 */ 1064 schedule_work(&pwq->unbound_release_work); 1065 } 1066 1067 /** 1068 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1069 * @pwq: pool_workqueue to put (can be %NULL) 1070 * 1071 * put_pwq() with locking. This function also allows %NULL @pwq. 1072 */ 1073 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1074 { 1075 if (pwq) { 1076 /* 1077 * As both pwqs and pools are sched-RCU protected, the 1078 * following lock operations are safe. 1079 */ 1080 spin_lock_irq(&pwq->pool->lock); 1081 put_pwq(pwq); 1082 spin_unlock_irq(&pwq->pool->lock); 1083 } 1084 } 1085 1086 static void pwq_activate_delayed_work(struct work_struct *work) 1087 { 1088 struct pool_workqueue *pwq = get_work_pwq(work); 1089 1090 trace_workqueue_activate_work(work); 1091 move_linked_works(work, &pwq->pool->worklist, NULL); 1092 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1093 pwq->nr_active++; 1094 } 1095 1096 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1097 { 1098 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1099 struct work_struct, entry); 1100 1101 pwq_activate_delayed_work(work); 1102 } 1103 1104 /** 1105 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1106 * @pwq: pwq of interest 1107 * @color: color of work which left the queue 1108 * 1109 * A work either has completed or is removed from pending queue, 1110 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1111 * 1112 * CONTEXT: 1113 * spin_lock_irq(pool->lock). 1114 */ 1115 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1116 { 1117 /* uncolored work items don't participate in flushing or nr_active */ 1118 if (color == WORK_NO_COLOR) 1119 goto out_put; 1120 1121 pwq->nr_in_flight[color]--; 1122 1123 pwq->nr_active--; 1124 if (!list_empty(&pwq->delayed_works)) { 1125 /* one down, submit a delayed one */ 1126 if (pwq->nr_active < pwq->max_active) 1127 pwq_activate_first_delayed(pwq); 1128 } 1129 1130 /* is flush in progress and are we at the flushing tip? */ 1131 if (likely(pwq->flush_color != color)) 1132 goto out_put; 1133 1134 /* are there still in-flight works? */ 1135 if (pwq->nr_in_flight[color]) 1136 goto out_put; 1137 1138 /* this pwq is done, clear flush_color */ 1139 pwq->flush_color = -1; 1140 1141 /* 1142 * If this was the last pwq, wake up the first flusher. It 1143 * will handle the rest. 1144 */ 1145 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1146 complete(&pwq->wq->first_flusher->done); 1147 out_put: 1148 put_pwq(pwq); 1149 } 1150 1151 /** 1152 * try_to_grab_pending - steal work item from worklist and disable irq 1153 * @work: work item to steal 1154 * @is_dwork: @work is a delayed_work 1155 * @flags: place to store irq state 1156 * 1157 * Try to grab PENDING bit of @work. This function can handle @work in any 1158 * stable state - idle, on timer or on worklist. 1159 * 1160 * Return: 1161 * 1 if @work was pending and we successfully stole PENDING 1162 * 0 if @work was idle and we claimed PENDING 1163 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1164 * -ENOENT if someone else is canceling @work, this state may persist 1165 * for arbitrarily long 1166 * 1167 * Note: 1168 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1169 * interrupted while holding PENDING and @work off queue, irq must be 1170 * disabled on entry. This, combined with delayed_work->timer being 1171 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1172 * 1173 * On successful return, >= 0, irq is disabled and the caller is 1174 * responsible for releasing it using local_irq_restore(*@flags). 1175 * 1176 * This function is safe to call from any context including IRQ handler. 1177 */ 1178 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1179 unsigned long *flags) 1180 { 1181 struct worker_pool *pool; 1182 struct pool_workqueue *pwq; 1183 1184 local_irq_save(*flags); 1185 1186 /* try to steal the timer if it exists */ 1187 if (is_dwork) { 1188 struct delayed_work *dwork = to_delayed_work(work); 1189 1190 /* 1191 * dwork->timer is irqsafe. If del_timer() fails, it's 1192 * guaranteed that the timer is not queued anywhere and not 1193 * running on the local CPU. 1194 */ 1195 if (likely(del_timer(&dwork->timer))) 1196 return 1; 1197 } 1198 1199 /* try to claim PENDING the normal way */ 1200 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1201 return 0; 1202 1203 /* 1204 * The queueing is in progress, or it is already queued. Try to 1205 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1206 */ 1207 pool = get_work_pool(work); 1208 if (!pool) 1209 goto fail; 1210 1211 spin_lock(&pool->lock); 1212 /* 1213 * work->data is guaranteed to point to pwq only while the work 1214 * item is queued on pwq->wq, and both updating work->data to point 1215 * to pwq on queueing and to pool on dequeueing are done under 1216 * pwq->pool->lock. This in turn guarantees that, if work->data 1217 * points to pwq which is associated with a locked pool, the work 1218 * item is currently queued on that pool. 1219 */ 1220 pwq = get_work_pwq(work); 1221 if (pwq && pwq->pool == pool) { 1222 debug_work_deactivate(work); 1223 1224 /* 1225 * A delayed work item cannot be grabbed directly because 1226 * it might have linked NO_COLOR work items which, if left 1227 * on the delayed_list, will confuse pwq->nr_active 1228 * management later on and cause stall. Make sure the work 1229 * item is activated before grabbing. 1230 */ 1231 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1232 pwq_activate_delayed_work(work); 1233 1234 list_del_init(&work->entry); 1235 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work)); 1236 1237 /* work->data points to pwq iff queued, point to pool */ 1238 set_work_pool_and_keep_pending(work, pool->id); 1239 1240 spin_unlock(&pool->lock); 1241 return 1; 1242 } 1243 spin_unlock(&pool->lock); 1244 fail: 1245 local_irq_restore(*flags); 1246 if (work_is_canceling(work)) 1247 return -ENOENT; 1248 cpu_relax(); 1249 return -EAGAIN; 1250 } 1251 1252 /** 1253 * insert_work - insert a work into a pool 1254 * @pwq: pwq @work belongs to 1255 * @work: work to insert 1256 * @head: insertion point 1257 * @extra_flags: extra WORK_STRUCT_* flags to set 1258 * 1259 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1260 * work_struct flags. 1261 * 1262 * CONTEXT: 1263 * spin_lock_irq(pool->lock). 1264 */ 1265 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1266 struct list_head *head, unsigned int extra_flags) 1267 { 1268 struct worker_pool *pool = pwq->pool; 1269 1270 /* we own @work, set data and link */ 1271 set_work_pwq(work, pwq, extra_flags); 1272 list_add_tail(&work->entry, head); 1273 get_pwq(pwq); 1274 1275 /* 1276 * Ensure either wq_worker_sleeping() sees the above 1277 * list_add_tail() or we see zero nr_running to avoid workers lying 1278 * around lazily while there are works to be processed. 1279 */ 1280 smp_mb(); 1281 1282 if (__need_more_worker(pool)) 1283 wake_up_worker(pool); 1284 } 1285 1286 /* 1287 * Test whether @work is being queued from another work executing on the 1288 * same workqueue. 1289 */ 1290 static bool is_chained_work(struct workqueue_struct *wq) 1291 { 1292 struct worker *worker; 1293 1294 worker = current_wq_worker(); 1295 /* 1296 * Return %true iff I'm a worker execuing a work item on @wq. If 1297 * I'm @worker, it's safe to dereference it without locking. 1298 */ 1299 return worker && worker->current_pwq->wq == wq; 1300 } 1301 1302 static void __queue_work(int cpu, struct workqueue_struct *wq, 1303 struct work_struct *work) 1304 { 1305 struct pool_workqueue *pwq; 1306 struct worker_pool *last_pool; 1307 struct list_head *worklist; 1308 unsigned int work_flags; 1309 unsigned int req_cpu = cpu; 1310 1311 /* 1312 * While a work item is PENDING && off queue, a task trying to 1313 * steal the PENDING will busy-loop waiting for it to either get 1314 * queued or lose PENDING. Grabbing PENDING and queueing should 1315 * happen with IRQ disabled. 1316 */ 1317 WARN_ON_ONCE(!irqs_disabled()); 1318 1319 debug_work_activate(work); 1320 1321 /* if draining, only works from the same workqueue are allowed */ 1322 if (unlikely(wq->flags & __WQ_DRAINING) && 1323 WARN_ON_ONCE(!is_chained_work(wq))) 1324 return; 1325 retry: 1326 if (req_cpu == WORK_CPU_UNBOUND) 1327 cpu = raw_smp_processor_id(); 1328 1329 /* pwq which will be used unless @work is executing elsewhere */ 1330 if (!(wq->flags & WQ_UNBOUND)) 1331 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1332 else 1333 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1334 1335 /* 1336 * If @work was previously on a different pool, it might still be 1337 * running there, in which case the work needs to be queued on that 1338 * pool to guarantee non-reentrancy. 1339 */ 1340 last_pool = get_work_pool(work); 1341 if (last_pool && last_pool != pwq->pool) { 1342 struct worker *worker; 1343 1344 spin_lock(&last_pool->lock); 1345 1346 worker = find_worker_executing_work(last_pool, work); 1347 1348 if (worker && worker->current_pwq->wq == wq) { 1349 pwq = worker->current_pwq; 1350 } else { 1351 /* meh... not running there, queue here */ 1352 spin_unlock(&last_pool->lock); 1353 spin_lock(&pwq->pool->lock); 1354 } 1355 } else { 1356 spin_lock(&pwq->pool->lock); 1357 } 1358 1359 /* 1360 * pwq is determined and locked. For unbound pools, we could have 1361 * raced with pwq release and it could already be dead. If its 1362 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1363 * without another pwq replacing it in the numa_pwq_tbl or while 1364 * work items are executing on it, so the retrying is guaranteed to 1365 * make forward-progress. 1366 */ 1367 if (unlikely(!pwq->refcnt)) { 1368 if (wq->flags & WQ_UNBOUND) { 1369 spin_unlock(&pwq->pool->lock); 1370 cpu_relax(); 1371 goto retry; 1372 } 1373 /* oops */ 1374 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1375 wq->name, cpu); 1376 } 1377 1378 /* pwq determined, queue */ 1379 trace_workqueue_queue_work(req_cpu, pwq, work); 1380 1381 if (WARN_ON(!list_empty(&work->entry))) { 1382 spin_unlock(&pwq->pool->lock); 1383 return; 1384 } 1385 1386 pwq->nr_in_flight[pwq->work_color]++; 1387 work_flags = work_color_to_flags(pwq->work_color); 1388 1389 if (likely(pwq->nr_active < pwq->max_active)) { 1390 trace_workqueue_activate_work(work); 1391 pwq->nr_active++; 1392 worklist = &pwq->pool->worklist; 1393 } else { 1394 work_flags |= WORK_STRUCT_DELAYED; 1395 worklist = &pwq->delayed_works; 1396 } 1397 1398 insert_work(pwq, work, worklist, work_flags); 1399 1400 spin_unlock(&pwq->pool->lock); 1401 } 1402 1403 /** 1404 * queue_work_on - queue work on specific cpu 1405 * @cpu: CPU number to execute work on 1406 * @wq: workqueue to use 1407 * @work: work to queue 1408 * 1409 * We queue the work to a specific CPU, the caller must ensure it 1410 * can't go away. 1411 * 1412 * Return: %false if @work was already on a queue, %true otherwise. 1413 */ 1414 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1415 struct work_struct *work) 1416 { 1417 bool ret = false; 1418 unsigned long flags; 1419 1420 local_irq_save(flags); 1421 1422 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1423 __queue_work(cpu, wq, work); 1424 ret = true; 1425 } 1426 1427 local_irq_restore(flags); 1428 return ret; 1429 } 1430 EXPORT_SYMBOL(queue_work_on); 1431 1432 void delayed_work_timer_fn(unsigned long __data) 1433 { 1434 struct delayed_work *dwork = (struct delayed_work *)__data; 1435 1436 /* should have been called from irqsafe timer with irq already off */ 1437 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1438 } 1439 EXPORT_SYMBOL(delayed_work_timer_fn); 1440 1441 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1442 struct delayed_work *dwork, unsigned long delay) 1443 { 1444 struct timer_list *timer = &dwork->timer; 1445 struct work_struct *work = &dwork->work; 1446 1447 WARN_ON_ONCE(timer->function != delayed_work_timer_fn || 1448 timer->data != (unsigned long)dwork); 1449 WARN_ON_ONCE(timer_pending(timer)); 1450 WARN_ON_ONCE(!list_empty(&work->entry)); 1451 1452 /* 1453 * If @delay is 0, queue @dwork->work immediately. This is for 1454 * both optimization and correctness. The earliest @timer can 1455 * expire is on the closest next tick and delayed_work users depend 1456 * on that there's no such delay when @delay is 0. 1457 */ 1458 if (!delay) { 1459 __queue_work(cpu, wq, &dwork->work); 1460 return; 1461 } 1462 1463 timer_stats_timer_set_start_info(&dwork->timer); 1464 1465 dwork->wq = wq; 1466 dwork->cpu = cpu; 1467 timer->expires = jiffies + delay; 1468 1469 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1470 add_timer_on(timer, cpu); 1471 else 1472 add_timer(timer); 1473 } 1474 1475 /** 1476 * queue_delayed_work_on - queue work on specific CPU after delay 1477 * @cpu: CPU number to execute work on 1478 * @wq: workqueue to use 1479 * @dwork: work to queue 1480 * @delay: number of jiffies to wait before queueing 1481 * 1482 * Return: %false if @work was already on a queue, %true otherwise. If 1483 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1484 * execution. 1485 */ 1486 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1487 struct delayed_work *dwork, unsigned long delay) 1488 { 1489 struct work_struct *work = &dwork->work; 1490 bool ret = false; 1491 unsigned long flags; 1492 1493 /* read the comment in __queue_work() */ 1494 local_irq_save(flags); 1495 1496 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1497 __queue_delayed_work(cpu, wq, dwork, delay); 1498 ret = true; 1499 } 1500 1501 local_irq_restore(flags); 1502 return ret; 1503 } 1504 EXPORT_SYMBOL(queue_delayed_work_on); 1505 1506 /** 1507 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1508 * @cpu: CPU number to execute work on 1509 * @wq: workqueue to use 1510 * @dwork: work to queue 1511 * @delay: number of jiffies to wait before queueing 1512 * 1513 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1514 * modify @dwork's timer so that it expires after @delay. If @delay is 1515 * zero, @work is guaranteed to be scheduled immediately regardless of its 1516 * current state. 1517 * 1518 * Return: %false if @dwork was idle and queued, %true if @dwork was 1519 * pending and its timer was modified. 1520 * 1521 * This function is safe to call from any context including IRQ handler. 1522 * See try_to_grab_pending() for details. 1523 */ 1524 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1525 struct delayed_work *dwork, unsigned long delay) 1526 { 1527 unsigned long flags; 1528 int ret; 1529 1530 do { 1531 ret = try_to_grab_pending(&dwork->work, true, &flags); 1532 } while (unlikely(ret == -EAGAIN)); 1533 1534 if (likely(ret >= 0)) { 1535 __queue_delayed_work(cpu, wq, dwork, delay); 1536 local_irq_restore(flags); 1537 } 1538 1539 /* -ENOENT from try_to_grab_pending() becomes %true */ 1540 return ret; 1541 } 1542 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1543 1544 /** 1545 * worker_enter_idle - enter idle state 1546 * @worker: worker which is entering idle state 1547 * 1548 * @worker is entering idle state. Update stats and idle timer if 1549 * necessary. 1550 * 1551 * LOCKING: 1552 * spin_lock_irq(pool->lock). 1553 */ 1554 static void worker_enter_idle(struct worker *worker) 1555 { 1556 struct worker_pool *pool = worker->pool; 1557 1558 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1559 WARN_ON_ONCE(!list_empty(&worker->entry) && 1560 (worker->hentry.next || worker->hentry.pprev))) 1561 return; 1562 1563 /* can't use worker_set_flags(), also called from start_worker() */ 1564 worker->flags |= WORKER_IDLE; 1565 pool->nr_idle++; 1566 worker->last_active = jiffies; 1567 1568 /* idle_list is LIFO */ 1569 list_add(&worker->entry, &pool->idle_list); 1570 1571 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1572 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1573 1574 /* 1575 * Sanity check nr_running. Because wq_unbind_fn() releases 1576 * pool->lock between setting %WORKER_UNBOUND and zapping 1577 * nr_running, the warning may trigger spuriously. Check iff 1578 * unbind is not in progress. 1579 */ 1580 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1581 pool->nr_workers == pool->nr_idle && 1582 atomic_read(&pool->nr_running)); 1583 } 1584 1585 /** 1586 * worker_leave_idle - leave idle state 1587 * @worker: worker which is leaving idle state 1588 * 1589 * @worker is leaving idle state. Update stats. 1590 * 1591 * LOCKING: 1592 * spin_lock_irq(pool->lock). 1593 */ 1594 static void worker_leave_idle(struct worker *worker) 1595 { 1596 struct worker_pool *pool = worker->pool; 1597 1598 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1599 return; 1600 worker_clr_flags(worker, WORKER_IDLE); 1601 pool->nr_idle--; 1602 list_del_init(&worker->entry); 1603 } 1604 1605 static struct worker *alloc_worker(void) 1606 { 1607 struct worker *worker; 1608 1609 worker = kzalloc(sizeof(*worker), GFP_KERNEL); 1610 if (worker) { 1611 INIT_LIST_HEAD(&worker->entry); 1612 INIT_LIST_HEAD(&worker->scheduled); 1613 INIT_LIST_HEAD(&worker->node); 1614 /* on creation a worker is in !idle && prep state */ 1615 worker->flags = WORKER_PREP; 1616 } 1617 return worker; 1618 } 1619 1620 /** 1621 * worker_attach_to_pool() - attach a worker to a pool 1622 * @worker: worker to be attached 1623 * @pool: the target pool 1624 * 1625 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1626 * cpu-binding of @worker are kept coordinated with the pool across 1627 * cpu-[un]hotplugs. 1628 */ 1629 static void worker_attach_to_pool(struct worker *worker, 1630 struct worker_pool *pool) 1631 { 1632 mutex_lock(&pool->attach_mutex); 1633 1634 /* 1635 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1636 * online CPUs. It'll be re-applied when any of the CPUs come up. 1637 */ 1638 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1639 1640 /* 1641 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains 1642 * stable across this function. See the comments above the 1643 * flag definition for details. 1644 */ 1645 if (pool->flags & POOL_DISASSOCIATED) 1646 worker->flags |= WORKER_UNBOUND; 1647 1648 list_add_tail(&worker->node, &pool->workers); 1649 1650 mutex_unlock(&pool->attach_mutex); 1651 } 1652 1653 /** 1654 * worker_detach_from_pool() - detach a worker from its pool 1655 * @worker: worker which is attached to its pool 1656 * @pool: the pool @worker is attached to 1657 * 1658 * Undo the attaching which had been done in worker_attach_to_pool(). The 1659 * caller worker shouldn't access to the pool after detached except it has 1660 * other reference to the pool. 1661 */ 1662 static void worker_detach_from_pool(struct worker *worker, 1663 struct worker_pool *pool) 1664 { 1665 struct completion *detach_completion = NULL; 1666 1667 mutex_lock(&pool->attach_mutex); 1668 list_del(&worker->node); 1669 if (list_empty(&pool->workers)) 1670 detach_completion = pool->detach_completion; 1671 mutex_unlock(&pool->attach_mutex); 1672 1673 if (detach_completion) 1674 complete(detach_completion); 1675 } 1676 1677 /** 1678 * create_worker - create a new workqueue worker 1679 * @pool: pool the new worker will belong to 1680 * 1681 * Create a new worker which is attached to @pool. The new worker must be 1682 * started by start_worker(). 1683 * 1684 * CONTEXT: 1685 * Might sleep. Does GFP_KERNEL allocations. 1686 * 1687 * Return: 1688 * Pointer to the newly created worker. 1689 */ 1690 static struct worker *create_worker(struct worker_pool *pool) 1691 { 1692 struct worker *worker = NULL; 1693 int id = -1; 1694 char id_buf[16]; 1695 1696 /* ID is needed to determine kthread name */ 1697 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL); 1698 if (id < 0) 1699 goto fail; 1700 1701 worker = alloc_worker(); 1702 if (!worker) 1703 goto fail; 1704 1705 worker->pool = pool; 1706 worker->id = id; 1707 1708 if (pool->cpu >= 0) 1709 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1710 pool->attrs->nice < 0 ? "H" : ""); 1711 else 1712 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1713 1714 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1715 "kworker/%s", id_buf); 1716 if (IS_ERR(worker->task)) 1717 goto fail; 1718 1719 set_user_nice(worker->task, pool->attrs->nice); 1720 1721 /* prevent userland from meddling with cpumask of workqueue workers */ 1722 worker->task->flags |= PF_NO_SETAFFINITY; 1723 1724 /* successful, attach the worker to the pool */ 1725 worker_attach_to_pool(worker, pool); 1726 1727 return worker; 1728 1729 fail: 1730 if (id >= 0) 1731 ida_simple_remove(&pool->worker_ida, id); 1732 kfree(worker); 1733 return NULL; 1734 } 1735 1736 /** 1737 * start_worker - start a newly created worker 1738 * @worker: worker to start 1739 * 1740 * Make the pool aware of @worker and start it. 1741 * 1742 * CONTEXT: 1743 * spin_lock_irq(pool->lock). 1744 */ 1745 static void start_worker(struct worker *worker) 1746 { 1747 worker->pool->nr_workers++; 1748 worker_enter_idle(worker); 1749 wake_up_process(worker->task); 1750 } 1751 1752 /** 1753 * create_and_start_worker - create and start a worker for a pool 1754 * @pool: the target pool 1755 * 1756 * Grab the managership of @pool and create and start a new worker for it. 1757 * 1758 * Return: 0 on success. A negative error code otherwise. 1759 */ 1760 static int create_and_start_worker(struct worker_pool *pool) 1761 { 1762 struct worker *worker; 1763 1764 worker = create_worker(pool); 1765 if (worker) { 1766 spin_lock_irq(&pool->lock); 1767 start_worker(worker); 1768 spin_unlock_irq(&pool->lock); 1769 } 1770 1771 return worker ? 0 : -ENOMEM; 1772 } 1773 1774 /** 1775 * destroy_worker - destroy a workqueue worker 1776 * @worker: worker to be destroyed 1777 * 1778 * Destroy @worker and adjust @pool stats accordingly. The worker should 1779 * be idle. 1780 * 1781 * CONTEXT: 1782 * spin_lock_irq(pool->lock). 1783 */ 1784 static void destroy_worker(struct worker *worker) 1785 { 1786 struct worker_pool *pool = worker->pool; 1787 1788 lockdep_assert_held(&pool->lock); 1789 1790 /* sanity check frenzy */ 1791 if (WARN_ON(worker->current_work) || 1792 WARN_ON(!list_empty(&worker->scheduled)) || 1793 WARN_ON(!(worker->flags & WORKER_IDLE))) 1794 return; 1795 1796 pool->nr_workers--; 1797 pool->nr_idle--; 1798 1799 list_del_init(&worker->entry); 1800 worker->flags |= WORKER_DIE; 1801 wake_up_process(worker->task); 1802 } 1803 1804 static void idle_worker_timeout(unsigned long __pool) 1805 { 1806 struct worker_pool *pool = (void *)__pool; 1807 1808 spin_lock_irq(&pool->lock); 1809 1810 while (too_many_workers(pool)) { 1811 struct worker *worker; 1812 unsigned long expires; 1813 1814 /* idle_list is kept in LIFO order, check the last one */ 1815 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1816 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1817 1818 if (time_before(jiffies, expires)) { 1819 mod_timer(&pool->idle_timer, expires); 1820 break; 1821 } 1822 1823 destroy_worker(worker); 1824 } 1825 1826 spin_unlock_irq(&pool->lock); 1827 } 1828 1829 static void send_mayday(struct work_struct *work) 1830 { 1831 struct pool_workqueue *pwq = get_work_pwq(work); 1832 struct workqueue_struct *wq = pwq->wq; 1833 1834 lockdep_assert_held(&wq_mayday_lock); 1835 1836 if (!wq->rescuer) 1837 return; 1838 1839 /* mayday mayday mayday */ 1840 if (list_empty(&pwq->mayday_node)) { 1841 /* 1842 * If @pwq is for an unbound wq, its base ref may be put at 1843 * any time due to an attribute change. Pin @pwq until the 1844 * rescuer is done with it. 1845 */ 1846 get_pwq(pwq); 1847 list_add_tail(&pwq->mayday_node, &wq->maydays); 1848 wake_up_process(wq->rescuer->task); 1849 } 1850 } 1851 1852 static void pool_mayday_timeout(unsigned long __pool) 1853 { 1854 struct worker_pool *pool = (void *)__pool; 1855 struct work_struct *work; 1856 1857 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */ 1858 spin_lock(&pool->lock); 1859 1860 if (need_to_create_worker(pool)) { 1861 /* 1862 * We've been trying to create a new worker but 1863 * haven't been successful. We might be hitting an 1864 * allocation deadlock. Send distress signals to 1865 * rescuers. 1866 */ 1867 list_for_each_entry(work, &pool->worklist, entry) 1868 send_mayday(work); 1869 } 1870 1871 spin_unlock(&pool->lock); 1872 spin_unlock_irq(&wq_mayday_lock); 1873 1874 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 1875 } 1876 1877 /** 1878 * maybe_create_worker - create a new worker if necessary 1879 * @pool: pool to create a new worker for 1880 * 1881 * Create a new worker for @pool if necessary. @pool is guaranteed to 1882 * have at least one idle worker on return from this function. If 1883 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1884 * sent to all rescuers with works scheduled on @pool to resolve 1885 * possible allocation deadlock. 1886 * 1887 * On return, need_to_create_worker() is guaranteed to be %false and 1888 * may_start_working() %true. 1889 * 1890 * LOCKING: 1891 * spin_lock_irq(pool->lock) which may be released and regrabbed 1892 * multiple times. Does GFP_KERNEL allocations. Called only from 1893 * manager. 1894 * 1895 * Return: 1896 * %false if no action was taken and pool->lock stayed locked, %true 1897 * otherwise. 1898 */ 1899 static bool maybe_create_worker(struct worker_pool *pool) 1900 __releases(&pool->lock) 1901 __acquires(&pool->lock) 1902 { 1903 if (!need_to_create_worker(pool)) 1904 return false; 1905 restart: 1906 spin_unlock_irq(&pool->lock); 1907 1908 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1909 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1910 1911 while (true) { 1912 struct worker *worker; 1913 1914 worker = create_worker(pool); 1915 if (worker) { 1916 del_timer_sync(&pool->mayday_timer); 1917 spin_lock_irq(&pool->lock); 1918 start_worker(worker); 1919 if (WARN_ON_ONCE(need_to_create_worker(pool))) 1920 goto restart; 1921 return true; 1922 } 1923 1924 if (!need_to_create_worker(pool)) 1925 break; 1926 1927 __set_current_state(TASK_INTERRUPTIBLE); 1928 schedule_timeout(CREATE_COOLDOWN); 1929 1930 if (!need_to_create_worker(pool)) 1931 break; 1932 } 1933 1934 del_timer_sync(&pool->mayday_timer); 1935 spin_lock_irq(&pool->lock); 1936 if (need_to_create_worker(pool)) 1937 goto restart; 1938 return true; 1939 } 1940 1941 /** 1942 * manage_workers - manage worker pool 1943 * @worker: self 1944 * 1945 * Assume the manager role and manage the worker pool @worker belongs 1946 * to. At any given time, there can be only zero or one manager per 1947 * pool. The exclusion is handled automatically by this function. 1948 * 1949 * The caller can safely start processing works on false return. On 1950 * true return, it's guaranteed that need_to_create_worker() is false 1951 * and may_start_working() is true. 1952 * 1953 * CONTEXT: 1954 * spin_lock_irq(pool->lock) which may be released and regrabbed 1955 * multiple times. Does GFP_KERNEL allocations. 1956 * 1957 * Return: 1958 * %false if the pool don't need management and the caller can safely start 1959 * processing works, %true indicates that the function released pool->lock 1960 * and reacquired it to perform some management function and that the 1961 * conditions that the caller verified while holding the lock before 1962 * calling the function might no longer be true. 1963 */ 1964 static bool manage_workers(struct worker *worker) 1965 { 1966 struct worker_pool *pool = worker->pool; 1967 bool ret = false; 1968 1969 /* 1970 * Anyone who successfully grabs manager_arb wins the arbitration 1971 * and becomes the manager. mutex_trylock() on pool->manager_arb 1972 * failure while holding pool->lock reliably indicates that someone 1973 * else is managing the pool and the worker which failed trylock 1974 * can proceed to executing work items. This means that anyone 1975 * grabbing manager_arb is responsible for actually performing 1976 * manager duties. If manager_arb is grabbed and released without 1977 * actual management, the pool may stall indefinitely. 1978 */ 1979 if (!mutex_trylock(&pool->manager_arb)) 1980 return ret; 1981 1982 ret |= maybe_create_worker(pool); 1983 1984 mutex_unlock(&pool->manager_arb); 1985 return ret; 1986 } 1987 1988 /** 1989 * process_one_work - process single work 1990 * @worker: self 1991 * @work: work to process 1992 * 1993 * Process @work. This function contains all the logics necessary to 1994 * process a single work including synchronization against and 1995 * interaction with other workers on the same cpu, queueing and 1996 * flushing. As long as context requirement is met, any worker can 1997 * call this function to process a work. 1998 * 1999 * CONTEXT: 2000 * spin_lock_irq(pool->lock) which is released and regrabbed. 2001 */ 2002 static void process_one_work(struct worker *worker, struct work_struct *work) 2003 __releases(&pool->lock) 2004 __acquires(&pool->lock) 2005 { 2006 struct pool_workqueue *pwq = get_work_pwq(work); 2007 struct worker_pool *pool = worker->pool; 2008 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2009 int work_color; 2010 struct worker *collision; 2011 #ifdef CONFIG_LOCKDEP 2012 /* 2013 * It is permissible to free the struct work_struct from 2014 * inside the function that is called from it, this we need to 2015 * take into account for lockdep too. To avoid bogus "held 2016 * lock freed" warnings as well as problems when looking into 2017 * work->lockdep_map, make a copy and use that here. 2018 */ 2019 struct lockdep_map lockdep_map; 2020 2021 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2022 #endif 2023 /* 2024 * Ensure we're on the correct CPU. DISASSOCIATED test is 2025 * necessary to avoid spurious warnings from rescuers servicing the 2026 * unbound or a disassociated pool. 2027 */ 2028 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) && 2029 !(pool->flags & POOL_DISASSOCIATED) && 2030 raw_smp_processor_id() != pool->cpu); 2031 2032 /* 2033 * A single work shouldn't be executed concurrently by 2034 * multiple workers on a single cpu. Check whether anyone is 2035 * already processing the work. If so, defer the work to the 2036 * currently executing one. 2037 */ 2038 collision = find_worker_executing_work(pool, work); 2039 if (unlikely(collision)) { 2040 move_linked_works(work, &collision->scheduled, NULL); 2041 return; 2042 } 2043 2044 /* claim and dequeue */ 2045 debug_work_deactivate(work); 2046 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2047 worker->current_work = work; 2048 worker->current_func = work->func; 2049 worker->current_pwq = pwq; 2050 work_color = get_work_color(work); 2051 2052 list_del_init(&work->entry); 2053 2054 /* 2055 * CPU intensive works don't participate in concurrency 2056 * management. They're the scheduler's responsibility. 2057 */ 2058 if (unlikely(cpu_intensive)) 2059 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true); 2060 2061 /* 2062 * Unbound pool isn't concurrency managed and work items should be 2063 * executed ASAP. Wake up another worker if necessary. 2064 */ 2065 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool)) 2066 wake_up_worker(pool); 2067 2068 /* 2069 * Record the last pool and clear PENDING which should be the last 2070 * update to @work. Also, do this inside @pool->lock so that 2071 * PENDING and queued state changes happen together while IRQ is 2072 * disabled. 2073 */ 2074 set_work_pool_and_clear_pending(work, pool->id); 2075 2076 spin_unlock_irq(&pool->lock); 2077 2078 lock_map_acquire_read(&pwq->wq->lockdep_map); 2079 lock_map_acquire(&lockdep_map); 2080 trace_workqueue_execute_start(work); 2081 worker->current_func(work); 2082 /* 2083 * While we must be careful to not use "work" after this, the trace 2084 * point will only record its address. 2085 */ 2086 trace_workqueue_execute_end(work); 2087 lock_map_release(&lockdep_map); 2088 lock_map_release(&pwq->wq->lockdep_map); 2089 2090 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2091 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2092 " last function: %pf\n", 2093 current->comm, preempt_count(), task_pid_nr(current), 2094 worker->current_func); 2095 debug_show_held_locks(current); 2096 dump_stack(); 2097 } 2098 2099 /* 2100 * The following prevents a kworker from hogging CPU on !PREEMPT 2101 * kernels, where a requeueing work item waiting for something to 2102 * happen could deadlock with stop_machine as such work item could 2103 * indefinitely requeue itself while all other CPUs are trapped in 2104 * stop_machine. 2105 */ 2106 cond_resched(); 2107 2108 spin_lock_irq(&pool->lock); 2109 2110 /* clear cpu intensive status */ 2111 if (unlikely(cpu_intensive)) 2112 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2113 2114 /* we're done with it, release */ 2115 hash_del(&worker->hentry); 2116 worker->current_work = NULL; 2117 worker->current_func = NULL; 2118 worker->current_pwq = NULL; 2119 worker->desc_valid = false; 2120 pwq_dec_nr_in_flight(pwq, work_color); 2121 } 2122 2123 /** 2124 * process_scheduled_works - process scheduled works 2125 * @worker: self 2126 * 2127 * Process all scheduled works. Please note that the scheduled list 2128 * may change while processing a work, so this function repeatedly 2129 * fetches a work from the top and executes it. 2130 * 2131 * CONTEXT: 2132 * spin_lock_irq(pool->lock) which may be released and regrabbed 2133 * multiple times. 2134 */ 2135 static void process_scheduled_works(struct worker *worker) 2136 { 2137 while (!list_empty(&worker->scheduled)) { 2138 struct work_struct *work = list_first_entry(&worker->scheduled, 2139 struct work_struct, entry); 2140 process_one_work(worker, work); 2141 } 2142 } 2143 2144 /** 2145 * worker_thread - the worker thread function 2146 * @__worker: self 2147 * 2148 * The worker thread function. All workers belong to a worker_pool - 2149 * either a per-cpu one or dynamic unbound one. These workers process all 2150 * work items regardless of their specific target workqueue. The only 2151 * exception is work items which belong to workqueues with a rescuer which 2152 * will be explained in rescuer_thread(). 2153 * 2154 * Return: 0 2155 */ 2156 static int worker_thread(void *__worker) 2157 { 2158 struct worker *worker = __worker; 2159 struct worker_pool *pool = worker->pool; 2160 2161 /* tell the scheduler that this is a workqueue worker */ 2162 worker->task->flags |= PF_WQ_WORKER; 2163 woke_up: 2164 spin_lock_irq(&pool->lock); 2165 2166 /* am I supposed to die? */ 2167 if (unlikely(worker->flags & WORKER_DIE)) { 2168 spin_unlock_irq(&pool->lock); 2169 WARN_ON_ONCE(!list_empty(&worker->entry)); 2170 worker->task->flags &= ~PF_WQ_WORKER; 2171 2172 set_task_comm(worker->task, "kworker/dying"); 2173 ida_simple_remove(&pool->worker_ida, worker->id); 2174 worker_detach_from_pool(worker, pool); 2175 kfree(worker); 2176 return 0; 2177 } 2178 2179 worker_leave_idle(worker); 2180 recheck: 2181 /* no more worker necessary? */ 2182 if (!need_more_worker(pool)) 2183 goto sleep; 2184 2185 /* do we need to manage? */ 2186 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2187 goto recheck; 2188 2189 /* 2190 * ->scheduled list can only be filled while a worker is 2191 * preparing to process a work or actually processing it. 2192 * Make sure nobody diddled with it while I was sleeping. 2193 */ 2194 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2195 2196 /* 2197 * Finish PREP stage. We're guaranteed to have at least one idle 2198 * worker or that someone else has already assumed the manager 2199 * role. This is where @worker starts participating in concurrency 2200 * management if applicable and concurrency management is restored 2201 * after being rebound. See rebind_workers() for details. 2202 */ 2203 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2204 2205 do { 2206 struct work_struct *work = 2207 list_first_entry(&pool->worklist, 2208 struct work_struct, entry); 2209 2210 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2211 /* optimization path, not strictly necessary */ 2212 process_one_work(worker, work); 2213 if (unlikely(!list_empty(&worker->scheduled))) 2214 process_scheduled_works(worker); 2215 } else { 2216 move_linked_works(work, &worker->scheduled, NULL); 2217 process_scheduled_works(worker); 2218 } 2219 } while (keep_working(pool)); 2220 2221 worker_set_flags(worker, WORKER_PREP, false); 2222 sleep: 2223 /* 2224 * pool->lock is held and there's no work to process and no need to 2225 * manage, sleep. Workers are woken up only while holding 2226 * pool->lock or from local cpu, so setting the current state 2227 * before releasing pool->lock is enough to prevent losing any 2228 * event. 2229 */ 2230 worker_enter_idle(worker); 2231 __set_current_state(TASK_INTERRUPTIBLE); 2232 spin_unlock_irq(&pool->lock); 2233 schedule(); 2234 goto woke_up; 2235 } 2236 2237 /** 2238 * rescuer_thread - the rescuer thread function 2239 * @__rescuer: self 2240 * 2241 * Workqueue rescuer thread function. There's one rescuer for each 2242 * workqueue which has WQ_MEM_RECLAIM set. 2243 * 2244 * Regular work processing on a pool may block trying to create a new 2245 * worker which uses GFP_KERNEL allocation which has slight chance of 2246 * developing into deadlock if some works currently on the same queue 2247 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2248 * the problem rescuer solves. 2249 * 2250 * When such condition is possible, the pool summons rescuers of all 2251 * workqueues which have works queued on the pool and let them process 2252 * those works so that forward progress can be guaranteed. 2253 * 2254 * This should happen rarely. 2255 * 2256 * Return: 0 2257 */ 2258 static int rescuer_thread(void *__rescuer) 2259 { 2260 struct worker *rescuer = __rescuer; 2261 struct workqueue_struct *wq = rescuer->rescue_wq; 2262 struct list_head *scheduled = &rescuer->scheduled; 2263 bool should_stop; 2264 2265 set_user_nice(current, RESCUER_NICE_LEVEL); 2266 2267 /* 2268 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2269 * doesn't participate in concurrency management. 2270 */ 2271 rescuer->task->flags |= PF_WQ_WORKER; 2272 repeat: 2273 set_current_state(TASK_INTERRUPTIBLE); 2274 2275 /* 2276 * By the time the rescuer is requested to stop, the workqueue 2277 * shouldn't have any work pending, but @wq->maydays may still have 2278 * pwq(s) queued. This can happen by non-rescuer workers consuming 2279 * all the work items before the rescuer got to them. Go through 2280 * @wq->maydays processing before acting on should_stop so that the 2281 * list is always empty on exit. 2282 */ 2283 should_stop = kthread_should_stop(); 2284 2285 /* see whether any pwq is asking for help */ 2286 spin_lock_irq(&wq_mayday_lock); 2287 2288 while (!list_empty(&wq->maydays)) { 2289 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2290 struct pool_workqueue, mayday_node); 2291 struct worker_pool *pool = pwq->pool; 2292 struct work_struct *work, *n; 2293 2294 __set_current_state(TASK_RUNNING); 2295 list_del_init(&pwq->mayday_node); 2296 2297 spin_unlock_irq(&wq_mayday_lock); 2298 2299 worker_attach_to_pool(rescuer, pool); 2300 2301 spin_lock_irq(&pool->lock); 2302 rescuer->pool = pool; 2303 2304 /* 2305 * Slurp in all works issued via this workqueue and 2306 * process'em. 2307 */ 2308 WARN_ON_ONCE(!list_empty(&rescuer->scheduled)); 2309 list_for_each_entry_safe(work, n, &pool->worklist, entry) 2310 if (get_work_pwq(work) == pwq) 2311 move_linked_works(work, scheduled, &n); 2312 2313 process_scheduled_works(rescuer); 2314 spin_unlock_irq(&pool->lock); 2315 2316 worker_detach_from_pool(rescuer, pool); 2317 2318 spin_lock_irq(&pool->lock); 2319 2320 /* 2321 * Put the reference grabbed by send_mayday(). @pool won't 2322 * go away while we're holding its lock. 2323 */ 2324 put_pwq(pwq); 2325 2326 /* 2327 * Leave this pool. If keep_working() is %true, notify a 2328 * regular worker; otherwise, we end up with 0 concurrency 2329 * and stalling the execution. 2330 */ 2331 if (keep_working(pool)) 2332 wake_up_worker(pool); 2333 2334 rescuer->pool = NULL; 2335 spin_unlock(&pool->lock); 2336 spin_lock(&wq_mayday_lock); 2337 } 2338 2339 spin_unlock_irq(&wq_mayday_lock); 2340 2341 if (should_stop) { 2342 __set_current_state(TASK_RUNNING); 2343 rescuer->task->flags &= ~PF_WQ_WORKER; 2344 return 0; 2345 } 2346 2347 /* rescuers should never participate in concurrency management */ 2348 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2349 schedule(); 2350 goto repeat; 2351 } 2352 2353 struct wq_barrier { 2354 struct work_struct work; 2355 struct completion done; 2356 }; 2357 2358 static void wq_barrier_func(struct work_struct *work) 2359 { 2360 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2361 complete(&barr->done); 2362 } 2363 2364 /** 2365 * insert_wq_barrier - insert a barrier work 2366 * @pwq: pwq to insert barrier into 2367 * @barr: wq_barrier to insert 2368 * @target: target work to attach @barr to 2369 * @worker: worker currently executing @target, NULL if @target is not executing 2370 * 2371 * @barr is linked to @target such that @barr is completed only after 2372 * @target finishes execution. Please note that the ordering 2373 * guarantee is observed only with respect to @target and on the local 2374 * cpu. 2375 * 2376 * Currently, a queued barrier can't be canceled. This is because 2377 * try_to_grab_pending() can't determine whether the work to be 2378 * grabbed is at the head of the queue and thus can't clear LINKED 2379 * flag of the previous work while there must be a valid next work 2380 * after a work with LINKED flag set. 2381 * 2382 * Note that when @worker is non-NULL, @target may be modified 2383 * underneath us, so we can't reliably determine pwq from @target. 2384 * 2385 * CONTEXT: 2386 * spin_lock_irq(pool->lock). 2387 */ 2388 static void insert_wq_barrier(struct pool_workqueue *pwq, 2389 struct wq_barrier *barr, 2390 struct work_struct *target, struct worker *worker) 2391 { 2392 struct list_head *head; 2393 unsigned int linked = 0; 2394 2395 /* 2396 * debugobject calls are safe here even with pool->lock locked 2397 * as we know for sure that this will not trigger any of the 2398 * checks and call back into the fixup functions where we 2399 * might deadlock. 2400 */ 2401 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2402 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2403 init_completion(&barr->done); 2404 2405 /* 2406 * If @target is currently being executed, schedule the 2407 * barrier to the worker; otherwise, put it after @target. 2408 */ 2409 if (worker) 2410 head = worker->scheduled.next; 2411 else { 2412 unsigned long *bits = work_data_bits(target); 2413 2414 head = target->entry.next; 2415 /* there can already be other linked works, inherit and set */ 2416 linked = *bits & WORK_STRUCT_LINKED; 2417 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2418 } 2419 2420 debug_work_activate(&barr->work); 2421 insert_work(pwq, &barr->work, head, 2422 work_color_to_flags(WORK_NO_COLOR) | linked); 2423 } 2424 2425 /** 2426 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2427 * @wq: workqueue being flushed 2428 * @flush_color: new flush color, < 0 for no-op 2429 * @work_color: new work color, < 0 for no-op 2430 * 2431 * Prepare pwqs for workqueue flushing. 2432 * 2433 * If @flush_color is non-negative, flush_color on all pwqs should be 2434 * -1. If no pwq has in-flight commands at the specified color, all 2435 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2436 * has in flight commands, its pwq->flush_color is set to 2437 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2438 * wakeup logic is armed and %true is returned. 2439 * 2440 * The caller should have initialized @wq->first_flusher prior to 2441 * calling this function with non-negative @flush_color. If 2442 * @flush_color is negative, no flush color update is done and %false 2443 * is returned. 2444 * 2445 * If @work_color is non-negative, all pwqs should have the same 2446 * work_color which is previous to @work_color and all will be 2447 * advanced to @work_color. 2448 * 2449 * CONTEXT: 2450 * mutex_lock(wq->mutex). 2451 * 2452 * Return: 2453 * %true if @flush_color >= 0 and there's something to flush. %false 2454 * otherwise. 2455 */ 2456 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2457 int flush_color, int work_color) 2458 { 2459 bool wait = false; 2460 struct pool_workqueue *pwq; 2461 2462 if (flush_color >= 0) { 2463 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2464 atomic_set(&wq->nr_pwqs_to_flush, 1); 2465 } 2466 2467 for_each_pwq(pwq, wq) { 2468 struct worker_pool *pool = pwq->pool; 2469 2470 spin_lock_irq(&pool->lock); 2471 2472 if (flush_color >= 0) { 2473 WARN_ON_ONCE(pwq->flush_color != -1); 2474 2475 if (pwq->nr_in_flight[flush_color]) { 2476 pwq->flush_color = flush_color; 2477 atomic_inc(&wq->nr_pwqs_to_flush); 2478 wait = true; 2479 } 2480 } 2481 2482 if (work_color >= 0) { 2483 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2484 pwq->work_color = work_color; 2485 } 2486 2487 spin_unlock_irq(&pool->lock); 2488 } 2489 2490 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2491 complete(&wq->first_flusher->done); 2492 2493 return wait; 2494 } 2495 2496 /** 2497 * flush_workqueue - ensure that any scheduled work has run to completion. 2498 * @wq: workqueue to flush 2499 * 2500 * This function sleeps until all work items which were queued on entry 2501 * have finished execution, but it is not livelocked by new incoming ones. 2502 */ 2503 void flush_workqueue(struct workqueue_struct *wq) 2504 { 2505 struct wq_flusher this_flusher = { 2506 .list = LIST_HEAD_INIT(this_flusher.list), 2507 .flush_color = -1, 2508 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2509 }; 2510 int next_color; 2511 2512 lock_map_acquire(&wq->lockdep_map); 2513 lock_map_release(&wq->lockdep_map); 2514 2515 mutex_lock(&wq->mutex); 2516 2517 /* 2518 * Start-to-wait phase 2519 */ 2520 next_color = work_next_color(wq->work_color); 2521 2522 if (next_color != wq->flush_color) { 2523 /* 2524 * Color space is not full. The current work_color 2525 * becomes our flush_color and work_color is advanced 2526 * by one. 2527 */ 2528 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2529 this_flusher.flush_color = wq->work_color; 2530 wq->work_color = next_color; 2531 2532 if (!wq->first_flusher) { 2533 /* no flush in progress, become the first flusher */ 2534 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2535 2536 wq->first_flusher = &this_flusher; 2537 2538 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2539 wq->work_color)) { 2540 /* nothing to flush, done */ 2541 wq->flush_color = next_color; 2542 wq->first_flusher = NULL; 2543 goto out_unlock; 2544 } 2545 } else { 2546 /* wait in queue */ 2547 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2548 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2549 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2550 } 2551 } else { 2552 /* 2553 * Oops, color space is full, wait on overflow queue. 2554 * The next flush completion will assign us 2555 * flush_color and transfer to flusher_queue. 2556 */ 2557 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2558 } 2559 2560 mutex_unlock(&wq->mutex); 2561 2562 wait_for_completion(&this_flusher.done); 2563 2564 /* 2565 * Wake-up-and-cascade phase 2566 * 2567 * First flushers are responsible for cascading flushes and 2568 * handling overflow. Non-first flushers can simply return. 2569 */ 2570 if (wq->first_flusher != &this_flusher) 2571 return; 2572 2573 mutex_lock(&wq->mutex); 2574 2575 /* we might have raced, check again with mutex held */ 2576 if (wq->first_flusher != &this_flusher) 2577 goto out_unlock; 2578 2579 wq->first_flusher = NULL; 2580 2581 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2582 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2583 2584 while (true) { 2585 struct wq_flusher *next, *tmp; 2586 2587 /* complete all the flushers sharing the current flush color */ 2588 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2589 if (next->flush_color != wq->flush_color) 2590 break; 2591 list_del_init(&next->list); 2592 complete(&next->done); 2593 } 2594 2595 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2596 wq->flush_color != work_next_color(wq->work_color)); 2597 2598 /* this flush_color is finished, advance by one */ 2599 wq->flush_color = work_next_color(wq->flush_color); 2600 2601 /* one color has been freed, handle overflow queue */ 2602 if (!list_empty(&wq->flusher_overflow)) { 2603 /* 2604 * Assign the same color to all overflowed 2605 * flushers, advance work_color and append to 2606 * flusher_queue. This is the start-to-wait 2607 * phase for these overflowed flushers. 2608 */ 2609 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2610 tmp->flush_color = wq->work_color; 2611 2612 wq->work_color = work_next_color(wq->work_color); 2613 2614 list_splice_tail_init(&wq->flusher_overflow, 2615 &wq->flusher_queue); 2616 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2617 } 2618 2619 if (list_empty(&wq->flusher_queue)) { 2620 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2621 break; 2622 } 2623 2624 /* 2625 * Need to flush more colors. Make the next flusher 2626 * the new first flusher and arm pwqs. 2627 */ 2628 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2629 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2630 2631 list_del_init(&next->list); 2632 wq->first_flusher = next; 2633 2634 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2635 break; 2636 2637 /* 2638 * Meh... this color is already done, clear first 2639 * flusher and repeat cascading. 2640 */ 2641 wq->first_flusher = NULL; 2642 } 2643 2644 out_unlock: 2645 mutex_unlock(&wq->mutex); 2646 } 2647 EXPORT_SYMBOL_GPL(flush_workqueue); 2648 2649 /** 2650 * drain_workqueue - drain a workqueue 2651 * @wq: workqueue to drain 2652 * 2653 * Wait until the workqueue becomes empty. While draining is in progress, 2654 * only chain queueing is allowed. IOW, only currently pending or running 2655 * work items on @wq can queue further work items on it. @wq is flushed 2656 * repeatedly until it becomes empty. The number of flushing is detemined 2657 * by the depth of chaining and should be relatively short. Whine if it 2658 * takes too long. 2659 */ 2660 void drain_workqueue(struct workqueue_struct *wq) 2661 { 2662 unsigned int flush_cnt = 0; 2663 struct pool_workqueue *pwq; 2664 2665 /* 2666 * __queue_work() needs to test whether there are drainers, is much 2667 * hotter than drain_workqueue() and already looks at @wq->flags. 2668 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2669 */ 2670 mutex_lock(&wq->mutex); 2671 if (!wq->nr_drainers++) 2672 wq->flags |= __WQ_DRAINING; 2673 mutex_unlock(&wq->mutex); 2674 reflush: 2675 flush_workqueue(wq); 2676 2677 mutex_lock(&wq->mutex); 2678 2679 for_each_pwq(pwq, wq) { 2680 bool drained; 2681 2682 spin_lock_irq(&pwq->pool->lock); 2683 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2684 spin_unlock_irq(&pwq->pool->lock); 2685 2686 if (drained) 2687 continue; 2688 2689 if (++flush_cnt == 10 || 2690 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2691 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2692 wq->name, flush_cnt); 2693 2694 mutex_unlock(&wq->mutex); 2695 goto reflush; 2696 } 2697 2698 if (!--wq->nr_drainers) 2699 wq->flags &= ~__WQ_DRAINING; 2700 mutex_unlock(&wq->mutex); 2701 } 2702 EXPORT_SYMBOL_GPL(drain_workqueue); 2703 2704 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr) 2705 { 2706 struct worker *worker = NULL; 2707 struct worker_pool *pool; 2708 struct pool_workqueue *pwq; 2709 2710 might_sleep(); 2711 2712 local_irq_disable(); 2713 pool = get_work_pool(work); 2714 if (!pool) { 2715 local_irq_enable(); 2716 return false; 2717 } 2718 2719 spin_lock(&pool->lock); 2720 /* see the comment in try_to_grab_pending() with the same code */ 2721 pwq = get_work_pwq(work); 2722 if (pwq) { 2723 if (unlikely(pwq->pool != pool)) 2724 goto already_gone; 2725 } else { 2726 worker = find_worker_executing_work(pool, work); 2727 if (!worker) 2728 goto already_gone; 2729 pwq = worker->current_pwq; 2730 } 2731 2732 insert_wq_barrier(pwq, barr, work, worker); 2733 spin_unlock_irq(&pool->lock); 2734 2735 /* 2736 * If @max_active is 1 or rescuer is in use, flushing another work 2737 * item on the same workqueue may lead to deadlock. Make sure the 2738 * flusher is not running on the same workqueue by verifying write 2739 * access. 2740 */ 2741 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) 2742 lock_map_acquire(&pwq->wq->lockdep_map); 2743 else 2744 lock_map_acquire_read(&pwq->wq->lockdep_map); 2745 lock_map_release(&pwq->wq->lockdep_map); 2746 2747 return true; 2748 already_gone: 2749 spin_unlock_irq(&pool->lock); 2750 return false; 2751 } 2752 2753 /** 2754 * flush_work - wait for a work to finish executing the last queueing instance 2755 * @work: the work to flush 2756 * 2757 * Wait until @work has finished execution. @work is guaranteed to be idle 2758 * on return if it hasn't been requeued since flush started. 2759 * 2760 * Return: 2761 * %true if flush_work() waited for the work to finish execution, 2762 * %false if it was already idle. 2763 */ 2764 bool flush_work(struct work_struct *work) 2765 { 2766 struct wq_barrier barr; 2767 2768 lock_map_acquire(&work->lockdep_map); 2769 lock_map_release(&work->lockdep_map); 2770 2771 if (start_flush_work(work, &barr)) { 2772 wait_for_completion(&barr.done); 2773 destroy_work_on_stack(&barr.work); 2774 return true; 2775 } else { 2776 return false; 2777 } 2778 } 2779 EXPORT_SYMBOL_GPL(flush_work); 2780 2781 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 2782 { 2783 unsigned long flags; 2784 int ret; 2785 2786 do { 2787 ret = try_to_grab_pending(work, is_dwork, &flags); 2788 /* 2789 * If someone else is canceling, wait for the same event it 2790 * would be waiting for before retrying. 2791 */ 2792 if (unlikely(ret == -ENOENT)) 2793 flush_work(work); 2794 } while (unlikely(ret < 0)); 2795 2796 /* tell other tasks trying to grab @work to back off */ 2797 mark_work_canceling(work); 2798 local_irq_restore(flags); 2799 2800 flush_work(work); 2801 clear_work_data(work); 2802 return ret; 2803 } 2804 2805 /** 2806 * cancel_work_sync - cancel a work and wait for it to finish 2807 * @work: the work to cancel 2808 * 2809 * Cancel @work and wait for its execution to finish. This function 2810 * can be used even if the work re-queues itself or migrates to 2811 * another workqueue. On return from this function, @work is 2812 * guaranteed to be not pending or executing on any CPU. 2813 * 2814 * cancel_work_sync(&delayed_work->work) must not be used for 2815 * delayed_work's. Use cancel_delayed_work_sync() instead. 2816 * 2817 * The caller must ensure that the workqueue on which @work was last 2818 * queued can't be destroyed before this function returns. 2819 * 2820 * Return: 2821 * %true if @work was pending, %false otherwise. 2822 */ 2823 bool cancel_work_sync(struct work_struct *work) 2824 { 2825 return __cancel_work_timer(work, false); 2826 } 2827 EXPORT_SYMBOL_GPL(cancel_work_sync); 2828 2829 /** 2830 * flush_delayed_work - wait for a dwork to finish executing the last queueing 2831 * @dwork: the delayed work to flush 2832 * 2833 * Delayed timer is cancelled and the pending work is queued for 2834 * immediate execution. Like flush_work(), this function only 2835 * considers the last queueing instance of @dwork. 2836 * 2837 * Return: 2838 * %true if flush_work() waited for the work to finish execution, 2839 * %false if it was already idle. 2840 */ 2841 bool flush_delayed_work(struct delayed_work *dwork) 2842 { 2843 local_irq_disable(); 2844 if (del_timer_sync(&dwork->timer)) 2845 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2846 local_irq_enable(); 2847 return flush_work(&dwork->work); 2848 } 2849 EXPORT_SYMBOL(flush_delayed_work); 2850 2851 /** 2852 * cancel_delayed_work - cancel a delayed work 2853 * @dwork: delayed_work to cancel 2854 * 2855 * Kill off a pending delayed_work. 2856 * 2857 * Return: %true if @dwork was pending and canceled; %false if it wasn't 2858 * pending. 2859 * 2860 * Note: 2861 * The work callback function may still be running on return, unless 2862 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 2863 * use cancel_delayed_work_sync() to wait on it. 2864 * 2865 * This function is safe to call from any context including IRQ handler. 2866 */ 2867 bool cancel_delayed_work(struct delayed_work *dwork) 2868 { 2869 unsigned long flags; 2870 int ret; 2871 2872 do { 2873 ret = try_to_grab_pending(&dwork->work, true, &flags); 2874 } while (unlikely(ret == -EAGAIN)); 2875 2876 if (unlikely(ret < 0)) 2877 return false; 2878 2879 set_work_pool_and_clear_pending(&dwork->work, 2880 get_work_pool_id(&dwork->work)); 2881 local_irq_restore(flags); 2882 return ret; 2883 } 2884 EXPORT_SYMBOL(cancel_delayed_work); 2885 2886 /** 2887 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 2888 * @dwork: the delayed work cancel 2889 * 2890 * This is cancel_work_sync() for delayed works. 2891 * 2892 * Return: 2893 * %true if @dwork was pending, %false otherwise. 2894 */ 2895 bool cancel_delayed_work_sync(struct delayed_work *dwork) 2896 { 2897 return __cancel_work_timer(&dwork->work, true); 2898 } 2899 EXPORT_SYMBOL(cancel_delayed_work_sync); 2900 2901 /** 2902 * schedule_on_each_cpu - execute a function synchronously on each online CPU 2903 * @func: the function to call 2904 * 2905 * schedule_on_each_cpu() executes @func on each online CPU using the 2906 * system workqueue and blocks until all CPUs have completed. 2907 * schedule_on_each_cpu() is very slow. 2908 * 2909 * Return: 2910 * 0 on success, -errno on failure. 2911 */ 2912 int schedule_on_each_cpu(work_func_t func) 2913 { 2914 int cpu; 2915 struct work_struct __percpu *works; 2916 2917 works = alloc_percpu(struct work_struct); 2918 if (!works) 2919 return -ENOMEM; 2920 2921 get_online_cpus(); 2922 2923 for_each_online_cpu(cpu) { 2924 struct work_struct *work = per_cpu_ptr(works, cpu); 2925 2926 INIT_WORK(work, func); 2927 schedule_work_on(cpu, work); 2928 } 2929 2930 for_each_online_cpu(cpu) 2931 flush_work(per_cpu_ptr(works, cpu)); 2932 2933 put_online_cpus(); 2934 free_percpu(works); 2935 return 0; 2936 } 2937 2938 /** 2939 * flush_scheduled_work - ensure that any scheduled work has run to completion. 2940 * 2941 * Forces execution of the kernel-global workqueue and blocks until its 2942 * completion. 2943 * 2944 * Think twice before calling this function! It's very easy to get into 2945 * trouble if you don't take great care. Either of the following situations 2946 * will lead to deadlock: 2947 * 2948 * One of the work items currently on the workqueue needs to acquire 2949 * a lock held by your code or its caller. 2950 * 2951 * Your code is running in the context of a work routine. 2952 * 2953 * They will be detected by lockdep when they occur, but the first might not 2954 * occur very often. It depends on what work items are on the workqueue and 2955 * what locks they need, which you have no control over. 2956 * 2957 * In most situations flushing the entire workqueue is overkill; you merely 2958 * need to know that a particular work item isn't queued and isn't running. 2959 * In such cases you should use cancel_delayed_work_sync() or 2960 * cancel_work_sync() instead. 2961 */ 2962 void flush_scheduled_work(void) 2963 { 2964 flush_workqueue(system_wq); 2965 } 2966 EXPORT_SYMBOL(flush_scheduled_work); 2967 2968 /** 2969 * execute_in_process_context - reliably execute the routine with user context 2970 * @fn: the function to execute 2971 * @ew: guaranteed storage for the execute work structure (must 2972 * be available when the work executes) 2973 * 2974 * Executes the function immediately if process context is available, 2975 * otherwise schedules the function for delayed execution. 2976 * 2977 * Return: 0 - function was executed 2978 * 1 - function was scheduled for execution 2979 */ 2980 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 2981 { 2982 if (!in_interrupt()) { 2983 fn(&ew->work); 2984 return 0; 2985 } 2986 2987 INIT_WORK(&ew->work, fn); 2988 schedule_work(&ew->work); 2989 2990 return 1; 2991 } 2992 EXPORT_SYMBOL_GPL(execute_in_process_context); 2993 2994 #ifdef CONFIG_SYSFS 2995 /* 2996 * Workqueues with WQ_SYSFS flag set is visible to userland via 2997 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 2998 * following attributes. 2999 * 3000 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 3001 * max_active RW int : maximum number of in-flight work items 3002 * 3003 * Unbound workqueues have the following extra attributes. 3004 * 3005 * id RO int : the associated pool ID 3006 * nice RW int : nice value of the workers 3007 * cpumask RW mask : bitmask of allowed CPUs for the workers 3008 */ 3009 struct wq_device { 3010 struct workqueue_struct *wq; 3011 struct device dev; 3012 }; 3013 3014 static struct workqueue_struct *dev_to_wq(struct device *dev) 3015 { 3016 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 3017 3018 return wq_dev->wq; 3019 } 3020 3021 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 3022 char *buf) 3023 { 3024 struct workqueue_struct *wq = dev_to_wq(dev); 3025 3026 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 3027 } 3028 static DEVICE_ATTR_RO(per_cpu); 3029 3030 static ssize_t max_active_show(struct device *dev, 3031 struct device_attribute *attr, char *buf) 3032 { 3033 struct workqueue_struct *wq = dev_to_wq(dev); 3034 3035 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 3036 } 3037 3038 static ssize_t max_active_store(struct device *dev, 3039 struct device_attribute *attr, const char *buf, 3040 size_t count) 3041 { 3042 struct workqueue_struct *wq = dev_to_wq(dev); 3043 int val; 3044 3045 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 3046 return -EINVAL; 3047 3048 workqueue_set_max_active(wq, val); 3049 return count; 3050 } 3051 static DEVICE_ATTR_RW(max_active); 3052 3053 static struct attribute *wq_sysfs_attrs[] = { 3054 &dev_attr_per_cpu.attr, 3055 &dev_attr_max_active.attr, 3056 NULL, 3057 }; 3058 ATTRIBUTE_GROUPS(wq_sysfs); 3059 3060 static ssize_t wq_pool_ids_show(struct device *dev, 3061 struct device_attribute *attr, char *buf) 3062 { 3063 struct workqueue_struct *wq = dev_to_wq(dev); 3064 const char *delim = ""; 3065 int node, written = 0; 3066 3067 rcu_read_lock_sched(); 3068 for_each_node(node) { 3069 written += scnprintf(buf + written, PAGE_SIZE - written, 3070 "%s%d:%d", delim, node, 3071 unbound_pwq_by_node(wq, node)->pool->id); 3072 delim = " "; 3073 } 3074 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 3075 rcu_read_unlock_sched(); 3076 3077 return written; 3078 } 3079 3080 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 3081 char *buf) 3082 { 3083 struct workqueue_struct *wq = dev_to_wq(dev); 3084 int written; 3085 3086 mutex_lock(&wq->mutex); 3087 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 3088 mutex_unlock(&wq->mutex); 3089 3090 return written; 3091 } 3092 3093 /* prepare workqueue_attrs for sysfs store operations */ 3094 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 3095 { 3096 struct workqueue_attrs *attrs; 3097 3098 attrs = alloc_workqueue_attrs(GFP_KERNEL); 3099 if (!attrs) 3100 return NULL; 3101 3102 mutex_lock(&wq->mutex); 3103 copy_workqueue_attrs(attrs, wq->unbound_attrs); 3104 mutex_unlock(&wq->mutex); 3105 return attrs; 3106 } 3107 3108 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 3109 const char *buf, size_t count) 3110 { 3111 struct workqueue_struct *wq = dev_to_wq(dev); 3112 struct workqueue_attrs *attrs; 3113 int ret; 3114 3115 attrs = wq_sysfs_prep_attrs(wq); 3116 if (!attrs) 3117 return -ENOMEM; 3118 3119 if (sscanf(buf, "%d", &attrs->nice) == 1 && 3120 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 3121 ret = apply_workqueue_attrs(wq, attrs); 3122 else 3123 ret = -EINVAL; 3124 3125 free_workqueue_attrs(attrs); 3126 return ret ?: count; 3127 } 3128 3129 static ssize_t wq_cpumask_show(struct device *dev, 3130 struct device_attribute *attr, char *buf) 3131 { 3132 struct workqueue_struct *wq = dev_to_wq(dev); 3133 int written; 3134 3135 mutex_lock(&wq->mutex); 3136 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask); 3137 mutex_unlock(&wq->mutex); 3138 3139 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 3140 return written; 3141 } 3142 3143 static ssize_t wq_cpumask_store(struct device *dev, 3144 struct device_attribute *attr, 3145 const char *buf, size_t count) 3146 { 3147 struct workqueue_struct *wq = dev_to_wq(dev); 3148 struct workqueue_attrs *attrs; 3149 int ret; 3150 3151 attrs = wq_sysfs_prep_attrs(wq); 3152 if (!attrs) 3153 return -ENOMEM; 3154 3155 ret = cpumask_parse(buf, attrs->cpumask); 3156 if (!ret) 3157 ret = apply_workqueue_attrs(wq, attrs); 3158 3159 free_workqueue_attrs(attrs); 3160 return ret ?: count; 3161 } 3162 3163 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 3164 char *buf) 3165 { 3166 struct workqueue_struct *wq = dev_to_wq(dev); 3167 int written; 3168 3169 mutex_lock(&wq->mutex); 3170 written = scnprintf(buf, PAGE_SIZE, "%d\n", 3171 !wq->unbound_attrs->no_numa); 3172 mutex_unlock(&wq->mutex); 3173 3174 return written; 3175 } 3176 3177 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 3178 const char *buf, size_t count) 3179 { 3180 struct workqueue_struct *wq = dev_to_wq(dev); 3181 struct workqueue_attrs *attrs; 3182 int v, ret; 3183 3184 attrs = wq_sysfs_prep_attrs(wq); 3185 if (!attrs) 3186 return -ENOMEM; 3187 3188 ret = -EINVAL; 3189 if (sscanf(buf, "%d", &v) == 1) { 3190 attrs->no_numa = !v; 3191 ret = apply_workqueue_attrs(wq, attrs); 3192 } 3193 3194 free_workqueue_attrs(attrs); 3195 return ret ?: count; 3196 } 3197 3198 static struct device_attribute wq_sysfs_unbound_attrs[] = { 3199 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 3200 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 3201 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 3202 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 3203 __ATTR_NULL, 3204 }; 3205 3206 static struct bus_type wq_subsys = { 3207 .name = "workqueue", 3208 .dev_groups = wq_sysfs_groups, 3209 }; 3210 3211 static int __init wq_sysfs_init(void) 3212 { 3213 return subsys_virtual_register(&wq_subsys, NULL); 3214 } 3215 core_initcall(wq_sysfs_init); 3216 3217 static void wq_device_release(struct device *dev) 3218 { 3219 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 3220 3221 kfree(wq_dev); 3222 } 3223 3224 /** 3225 * workqueue_sysfs_register - make a workqueue visible in sysfs 3226 * @wq: the workqueue to register 3227 * 3228 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 3229 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 3230 * which is the preferred method. 3231 * 3232 * Workqueue user should use this function directly iff it wants to apply 3233 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 3234 * apply_workqueue_attrs() may race against userland updating the 3235 * attributes. 3236 * 3237 * Return: 0 on success, -errno on failure. 3238 */ 3239 int workqueue_sysfs_register(struct workqueue_struct *wq) 3240 { 3241 struct wq_device *wq_dev; 3242 int ret; 3243 3244 /* 3245 * Adjusting max_active or creating new pwqs by applyting 3246 * attributes breaks ordering guarantee. Disallow exposing ordered 3247 * workqueues. 3248 */ 3249 if (WARN_ON(wq->flags & __WQ_ORDERED)) 3250 return -EINVAL; 3251 3252 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 3253 if (!wq_dev) 3254 return -ENOMEM; 3255 3256 wq_dev->wq = wq; 3257 wq_dev->dev.bus = &wq_subsys; 3258 wq_dev->dev.init_name = wq->name; 3259 wq_dev->dev.release = wq_device_release; 3260 3261 /* 3262 * unbound_attrs are created separately. Suppress uevent until 3263 * everything is ready. 3264 */ 3265 dev_set_uevent_suppress(&wq_dev->dev, true); 3266 3267 ret = device_register(&wq_dev->dev); 3268 if (ret) { 3269 kfree(wq_dev); 3270 wq->wq_dev = NULL; 3271 return ret; 3272 } 3273 3274 if (wq->flags & WQ_UNBOUND) { 3275 struct device_attribute *attr; 3276 3277 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 3278 ret = device_create_file(&wq_dev->dev, attr); 3279 if (ret) { 3280 device_unregister(&wq_dev->dev); 3281 wq->wq_dev = NULL; 3282 return ret; 3283 } 3284 } 3285 } 3286 3287 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 3288 return 0; 3289 } 3290 3291 /** 3292 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 3293 * @wq: the workqueue to unregister 3294 * 3295 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 3296 */ 3297 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 3298 { 3299 struct wq_device *wq_dev = wq->wq_dev; 3300 3301 if (!wq->wq_dev) 3302 return; 3303 3304 wq->wq_dev = NULL; 3305 device_unregister(&wq_dev->dev); 3306 } 3307 #else /* CONFIG_SYSFS */ 3308 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 3309 #endif /* CONFIG_SYSFS */ 3310 3311 /** 3312 * free_workqueue_attrs - free a workqueue_attrs 3313 * @attrs: workqueue_attrs to free 3314 * 3315 * Undo alloc_workqueue_attrs(). 3316 */ 3317 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3318 { 3319 if (attrs) { 3320 free_cpumask_var(attrs->cpumask); 3321 kfree(attrs); 3322 } 3323 } 3324 3325 /** 3326 * alloc_workqueue_attrs - allocate a workqueue_attrs 3327 * @gfp_mask: allocation mask to use 3328 * 3329 * Allocate a new workqueue_attrs, initialize with default settings and 3330 * return it. 3331 * 3332 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3333 */ 3334 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask) 3335 { 3336 struct workqueue_attrs *attrs; 3337 3338 attrs = kzalloc(sizeof(*attrs), gfp_mask); 3339 if (!attrs) 3340 goto fail; 3341 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask)) 3342 goto fail; 3343 3344 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3345 return attrs; 3346 fail: 3347 free_workqueue_attrs(attrs); 3348 return NULL; 3349 } 3350 3351 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3352 const struct workqueue_attrs *from) 3353 { 3354 to->nice = from->nice; 3355 cpumask_copy(to->cpumask, from->cpumask); 3356 /* 3357 * Unlike hash and equality test, this function doesn't ignore 3358 * ->no_numa as it is used for both pool and wq attrs. Instead, 3359 * get_unbound_pool() explicitly clears ->no_numa after copying. 3360 */ 3361 to->no_numa = from->no_numa; 3362 } 3363 3364 /* hash value of the content of @attr */ 3365 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3366 { 3367 u32 hash = 0; 3368 3369 hash = jhash_1word(attrs->nice, hash); 3370 hash = jhash(cpumask_bits(attrs->cpumask), 3371 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3372 return hash; 3373 } 3374 3375 /* content equality test */ 3376 static bool wqattrs_equal(const struct workqueue_attrs *a, 3377 const struct workqueue_attrs *b) 3378 { 3379 if (a->nice != b->nice) 3380 return false; 3381 if (!cpumask_equal(a->cpumask, b->cpumask)) 3382 return false; 3383 return true; 3384 } 3385 3386 /** 3387 * init_worker_pool - initialize a newly zalloc'd worker_pool 3388 * @pool: worker_pool to initialize 3389 * 3390 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs. 3391 * 3392 * Return: 0 on success, -errno on failure. Even on failure, all fields 3393 * inside @pool proper are initialized and put_unbound_pool() can be called 3394 * on @pool safely to release it. 3395 */ 3396 static int init_worker_pool(struct worker_pool *pool) 3397 { 3398 spin_lock_init(&pool->lock); 3399 pool->id = -1; 3400 pool->cpu = -1; 3401 pool->node = NUMA_NO_NODE; 3402 pool->flags |= POOL_DISASSOCIATED; 3403 INIT_LIST_HEAD(&pool->worklist); 3404 INIT_LIST_HEAD(&pool->idle_list); 3405 hash_init(pool->busy_hash); 3406 3407 init_timer_deferrable(&pool->idle_timer); 3408 pool->idle_timer.function = idle_worker_timeout; 3409 pool->idle_timer.data = (unsigned long)pool; 3410 3411 setup_timer(&pool->mayday_timer, pool_mayday_timeout, 3412 (unsigned long)pool); 3413 3414 mutex_init(&pool->manager_arb); 3415 mutex_init(&pool->attach_mutex); 3416 INIT_LIST_HEAD(&pool->workers); 3417 3418 ida_init(&pool->worker_ida); 3419 INIT_HLIST_NODE(&pool->hash_node); 3420 pool->refcnt = 1; 3421 3422 /* shouldn't fail above this point */ 3423 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL); 3424 if (!pool->attrs) 3425 return -ENOMEM; 3426 return 0; 3427 } 3428 3429 static void rcu_free_pool(struct rcu_head *rcu) 3430 { 3431 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3432 3433 ida_destroy(&pool->worker_ida); 3434 free_workqueue_attrs(pool->attrs); 3435 kfree(pool); 3436 } 3437 3438 /** 3439 * put_unbound_pool - put a worker_pool 3440 * @pool: worker_pool to put 3441 * 3442 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU 3443 * safe manner. get_unbound_pool() calls this function on its failure path 3444 * and this function should be able to release pools which went through, 3445 * successfully or not, init_worker_pool(). 3446 * 3447 * Should be called with wq_pool_mutex held. 3448 */ 3449 static void put_unbound_pool(struct worker_pool *pool) 3450 { 3451 DECLARE_COMPLETION_ONSTACK(detach_completion); 3452 struct worker *worker; 3453 3454 lockdep_assert_held(&wq_pool_mutex); 3455 3456 if (--pool->refcnt) 3457 return; 3458 3459 /* sanity checks */ 3460 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) || 3461 WARN_ON(!list_empty(&pool->worklist))) 3462 return; 3463 3464 /* release id and unhash */ 3465 if (pool->id >= 0) 3466 idr_remove(&worker_pool_idr, pool->id); 3467 hash_del(&pool->hash_node); 3468 3469 /* 3470 * Become the manager and destroy all workers. Grabbing 3471 * manager_arb prevents @pool's workers from blocking on 3472 * attach_mutex. 3473 */ 3474 mutex_lock(&pool->manager_arb); 3475 3476 spin_lock_irq(&pool->lock); 3477 while ((worker = first_idle_worker(pool))) 3478 destroy_worker(worker); 3479 WARN_ON(pool->nr_workers || pool->nr_idle); 3480 spin_unlock_irq(&pool->lock); 3481 3482 mutex_lock(&pool->attach_mutex); 3483 if (!list_empty(&pool->workers)) 3484 pool->detach_completion = &detach_completion; 3485 mutex_unlock(&pool->attach_mutex); 3486 3487 if (pool->detach_completion) 3488 wait_for_completion(pool->detach_completion); 3489 3490 mutex_unlock(&pool->manager_arb); 3491 3492 /* shut down the timers */ 3493 del_timer_sync(&pool->idle_timer); 3494 del_timer_sync(&pool->mayday_timer); 3495 3496 /* sched-RCU protected to allow dereferences from get_work_pool() */ 3497 call_rcu_sched(&pool->rcu, rcu_free_pool); 3498 } 3499 3500 /** 3501 * get_unbound_pool - get a worker_pool with the specified attributes 3502 * @attrs: the attributes of the worker_pool to get 3503 * 3504 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3505 * reference count and return it. If there already is a matching 3506 * worker_pool, it will be used; otherwise, this function attempts to 3507 * create a new one. 3508 * 3509 * Should be called with wq_pool_mutex held. 3510 * 3511 * Return: On success, a worker_pool with the same attributes as @attrs. 3512 * On failure, %NULL. 3513 */ 3514 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3515 { 3516 u32 hash = wqattrs_hash(attrs); 3517 struct worker_pool *pool; 3518 int node; 3519 3520 lockdep_assert_held(&wq_pool_mutex); 3521 3522 /* do we already have a matching pool? */ 3523 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3524 if (wqattrs_equal(pool->attrs, attrs)) { 3525 pool->refcnt++; 3526 goto out_unlock; 3527 } 3528 } 3529 3530 /* nope, create a new one */ 3531 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 3532 if (!pool || init_worker_pool(pool) < 0) 3533 goto fail; 3534 3535 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3536 copy_workqueue_attrs(pool->attrs, attrs); 3537 3538 /* 3539 * no_numa isn't a worker_pool attribute, always clear it. See 3540 * 'struct workqueue_attrs' comments for detail. 3541 */ 3542 pool->attrs->no_numa = false; 3543 3544 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3545 if (wq_numa_enabled) { 3546 for_each_node(node) { 3547 if (cpumask_subset(pool->attrs->cpumask, 3548 wq_numa_possible_cpumask[node])) { 3549 pool->node = node; 3550 break; 3551 } 3552 } 3553 } 3554 3555 if (worker_pool_assign_id(pool) < 0) 3556 goto fail; 3557 3558 /* create and start the initial worker */ 3559 if (create_and_start_worker(pool) < 0) 3560 goto fail; 3561 3562 /* install */ 3563 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3564 out_unlock: 3565 return pool; 3566 fail: 3567 if (pool) 3568 put_unbound_pool(pool); 3569 return NULL; 3570 } 3571 3572 static void rcu_free_pwq(struct rcu_head *rcu) 3573 { 3574 kmem_cache_free(pwq_cache, 3575 container_of(rcu, struct pool_workqueue, rcu)); 3576 } 3577 3578 /* 3579 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3580 * and needs to be destroyed. 3581 */ 3582 static void pwq_unbound_release_workfn(struct work_struct *work) 3583 { 3584 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3585 unbound_release_work); 3586 struct workqueue_struct *wq = pwq->wq; 3587 struct worker_pool *pool = pwq->pool; 3588 bool is_last; 3589 3590 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3591 return; 3592 3593 /* 3594 * Unlink @pwq. Synchronization against wq->mutex isn't strictly 3595 * necessary on release but do it anyway. It's easier to verify 3596 * and consistent with the linking path. 3597 */ 3598 mutex_lock(&wq->mutex); 3599 list_del_rcu(&pwq->pwqs_node); 3600 is_last = list_empty(&wq->pwqs); 3601 mutex_unlock(&wq->mutex); 3602 3603 mutex_lock(&wq_pool_mutex); 3604 put_unbound_pool(pool); 3605 mutex_unlock(&wq_pool_mutex); 3606 3607 call_rcu_sched(&pwq->rcu, rcu_free_pwq); 3608 3609 /* 3610 * If we're the last pwq going away, @wq is already dead and no one 3611 * is gonna access it anymore. Free it. 3612 */ 3613 if (is_last) { 3614 free_workqueue_attrs(wq->unbound_attrs); 3615 kfree(wq); 3616 } 3617 } 3618 3619 /** 3620 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3621 * @pwq: target pool_workqueue 3622 * 3623 * If @pwq isn't freezing, set @pwq->max_active to the associated 3624 * workqueue's saved_max_active and activate delayed work items 3625 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3626 */ 3627 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3628 { 3629 struct workqueue_struct *wq = pwq->wq; 3630 bool freezable = wq->flags & WQ_FREEZABLE; 3631 3632 /* for @wq->saved_max_active */ 3633 lockdep_assert_held(&wq->mutex); 3634 3635 /* fast exit for non-freezable wqs */ 3636 if (!freezable && pwq->max_active == wq->saved_max_active) 3637 return; 3638 3639 spin_lock_irq(&pwq->pool->lock); 3640 3641 /* 3642 * During [un]freezing, the caller is responsible for ensuring that 3643 * this function is called at least once after @workqueue_freezing 3644 * is updated and visible. 3645 */ 3646 if (!freezable || !workqueue_freezing) { 3647 pwq->max_active = wq->saved_max_active; 3648 3649 while (!list_empty(&pwq->delayed_works) && 3650 pwq->nr_active < pwq->max_active) 3651 pwq_activate_first_delayed(pwq); 3652 3653 /* 3654 * Need to kick a worker after thawed or an unbound wq's 3655 * max_active is bumped. It's a slow path. Do it always. 3656 */ 3657 wake_up_worker(pwq->pool); 3658 } else { 3659 pwq->max_active = 0; 3660 } 3661 3662 spin_unlock_irq(&pwq->pool->lock); 3663 } 3664 3665 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3666 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3667 struct worker_pool *pool) 3668 { 3669 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3670 3671 memset(pwq, 0, sizeof(*pwq)); 3672 3673 pwq->pool = pool; 3674 pwq->wq = wq; 3675 pwq->flush_color = -1; 3676 pwq->refcnt = 1; 3677 INIT_LIST_HEAD(&pwq->delayed_works); 3678 INIT_LIST_HEAD(&pwq->pwqs_node); 3679 INIT_LIST_HEAD(&pwq->mayday_node); 3680 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3681 } 3682 3683 /* sync @pwq with the current state of its associated wq and link it */ 3684 static void link_pwq(struct pool_workqueue *pwq) 3685 { 3686 struct workqueue_struct *wq = pwq->wq; 3687 3688 lockdep_assert_held(&wq->mutex); 3689 3690 /* may be called multiple times, ignore if already linked */ 3691 if (!list_empty(&pwq->pwqs_node)) 3692 return; 3693 3694 /* 3695 * Set the matching work_color. This is synchronized with 3696 * wq->mutex to avoid confusing flush_workqueue(). 3697 */ 3698 pwq->work_color = wq->work_color; 3699 3700 /* sync max_active to the current setting */ 3701 pwq_adjust_max_active(pwq); 3702 3703 /* link in @pwq */ 3704 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3705 } 3706 3707 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3708 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3709 const struct workqueue_attrs *attrs) 3710 { 3711 struct worker_pool *pool; 3712 struct pool_workqueue *pwq; 3713 3714 lockdep_assert_held(&wq_pool_mutex); 3715 3716 pool = get_unbound_pool(attrs); 3717 if (!pool) 3718 return NULL; 3719 3720 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3721 if (!pwq) { 3722 put_unbound_pool(pool); 3723 return NULL; 3724 } 3725 3726 init_pwq(pwq, wq, pool); 3727 return pwq; 3728 } 3729 3730 /* undo alloc_unbound_pwq(), used only in the error path */ 3731 static void free_unbound_pwq(struct pool_workqueue *pwq) 3732 { 3733 lockdep_assert_held(&wq_pool_mutex); 3734 3735 if (pwq) { 3736 put_unbound_pool(pwq->pool); 3737 kmem_cache_free(pwq_cache, pwq); 3738 } 3739 } 3740 3741 /** 3742 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node 3743 * @attrs: the wq_attrs of interest 3744 * @node: the target NUMA node 3745 * @cpu_going_down: if >= 0, the CPU to consider as offline 3746 * @cpumask: outarg, the resulting cpumask 3747 * 3748 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3749 * @cpu_going_down is >= 0, that cpu is considered offline during 3750 * calculation. The result is stored in @cpumask. 3751 * 3752 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3753 * enabled and @node has online CPUs requested by @attrs, the returned 3754 * cpumask is the intersection of the possible CPUs of @node and 3755 * @attrs->cpumask. 3756 * 3757 * The caller is responsible for ensuring that the cpumask of @node stays 3758 * stable. 3759 * 3760 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3761 * %false if equal. 3762 */ 3763 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3764 int cpu_going_down, cpumask_t *cpumask) 3765 { 3766 if (!wq_numa_enabled || attrs->no_numa) 3767 goto use_dfl; 3768 3769 /* does @node have any online CPUs @attrs wants? */ 3770 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3771 if (cpu_going_down >= 0) 3772 cpumask_clear_cpu(cpu_going_down, cpumask); 3773 3774 if (cpumask_empty(cpumask)) 3775 goto use_dfl; 3776 3777 /* yeap, return possible CPUs in @node that @attrs wants */ 3778 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3779 return !cpumask_equal(cpumask, attrs->cpumask); 3780 3781 use_dfl: 3782 cpumask_copy(cpumask, attrs->cpumask); 3783 return false; 3784 } 3785 3786 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3787 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3788 int node, 3789 struct pool_workqueue *pwq) 3790 { 3791 struct pool_workqueue *old_pwq; 3792 3793 lockdep_assert_held(&wq->mutex); 3794 3795 /* link_pwq() can handle duplicate calls */ 3796 link_pwq(pwq); 3797 3798 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3799 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3800 return old_pwq; 3801 } 3802 3803 /** 3804 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 3805 * @wq: the target workqueue 3806 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 3807 * 3808 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 3809 * machines, this function maps a separate pwq to each NUMA node with 3810 * possibles CPUs in @attrs->cpumask so that work items are affine to the 3811 * NUMA node it was issued on. Older pwqs are released as in-flight work 3812 * items finish. Note that a work item which repeatedly requeues itself 3813 * back-to-back will stay on its current pwq. 3814 * 3815 * Performs GFP_KERNEL allocations. 3816 * 3817 * Return: 0 on success and -errno on failure. 3818 */ 3819 int apply_workqueue_attrs(struct workqueue_struct *wq, 3820 const struct workqueue_attrs *attrs) 3821 { 3822 struct workqueue_attrs *new_attrs, *tmp_attrs; 3823 struct pool_workqueue **pwq_tbl, *dfl_pwq; 3824 int node, ret; 3825 3826 /* only unbound workqueues can change attributes */ 3827 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 3828 return -EINVAL; 3829 3830 /* creating multiple pwqs breaks ordering guarantee */ 3831 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))) 3832 return -EINVAL; 3833 3834 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL); 3835 new_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3836 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3837 if (!pwq_tbl || !new_attrs || !tmp_attrs) 3838 goto enomem; 3839 3840 /* make a copy of @attrs and sanitize it */ 3841 copy_workqueue_attrs(new_attrs, attrs); 3842 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3843 3844 /* 3845 * We may create multiple pwqs with differing cpumasks. Make a 3846 * copy of @new_attrs which will be modified and used to obtain 3847 * pools. 3848 */ 3849 copy_workqueue_attrs(tmp_attrs, new_attrs); 3850 3851 /* 3852 * CPUs should stay stable across pwq creations and installations. 3853 * Pin CPUs, determine the target cpumask for each node and create 3854 * pwqs accordingly. 3855 */ 3856 get_online_cpus(); 3857 3858 mutex_lock(&wq_pool_mutex); 3859 3860 /* 3861 * If something goes wrong during CPU up/down, we'll fall back to 3862 * the default pwq covering whole @attrs->cpumask. Always create 3863 * it even if we don't use it immediately. 3864 */ 3865 dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3866 if (!dfl_pwq) 3867 goto enomem_pwq; 3868 3869 for_each_node(node) { 3870 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) { 3871 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3872 if (!pwq_tbl[node]) 3873 goto enomem_pwq; 3874 } else { 3875 dfl_pwq->refcnt++; 3876 pwq_tbl[node] = dfl_pwq; 3877 } 3878 } 3879 3880 mutex_unlock(&wq_pool_mutex); 3881 3882 /* all pwqs have been created successfully, let's install'em */ 3883 mutex_lock(&wq->mutex); 3884 3885 copy_workqueue_attrs(wq->unbound_attrs, new_attrs); 3886 3887 /* save the previous pwq and install the new one */ 3888 for_each_node(node) 3889 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]); 3890 3891 /* @dfl_pwq might not have been used, ensure it's linked */ 3892 link_pwq(dfl_pwq); 3893 swap(wq->dfl_pwq, dfl_pwq); 3894 3895 mutex_unlock(&wq->mutex); 3896 3897 /* put the old pwqs */ 3898 for_each_node(node) 3899 put_pwq_unlocked(pwq_tbl[node]); 3900 put_pwq_unlocked(dfl_pwq); 3901 3902 put_online_cpus(); 3903 ret = 0; 3904 /* fall through */ 3905 out_free: 3906 free_workqueue_attrs(tmp_attrs); 3907 free_workqueue_attrs(new_attrs); 3908 kfree(pwq_tbl); 3909 return ret; 3910 3911 enomem_pwq: 3912 free_unbound_pwq(dfl_pwq); 3913 for_each_node(node) 3914 if (pwq_tbl && pwq_tbl[node] != dfl_pwq) 3915 free_unbound_pwq(pwq_tbl[node]); 3916 mutex_unlock(&wq_pool_mutex); 3917 put_online_cpus(); 3918 enomem: 3919 ret = -ENOMEM; 3920 goto out_free; 3921 } 3922 3923 /** 3924 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 3925 * @wq: the target workqueue 3926 * @cpu: the CPU coming up or going down 3927 * @online: whether @cpu is coming up or going down 3928 * 3929 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 3930 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 3931 * @wq accordingly. 3932 * 3933 * If NUMA affinity can't be adjusted due to memory allocation failure, it 3934 * falls back to @wq->dfl_pwq which may not be optimal but is always 3935 * correct. 3936 * 3937 * Note that when the last allowed CPU of a NUMA node goes offline for a 3938 * workqueue with a cpumask spanning multiple nodes, the workers which were 3939 * already executing the work items for the workqueue will lose their CPU 3940 * affinity and may execute on any CPU. This is similar to how per-cpu 3941 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 3942 * affinity, it's the user's responsibility to flush the work item from 3943 * CPU_DOWN_PREPARE. 3944 */ 3945 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 3946 bool online) 3947 { 3948 int node = cpu_to_node(cpu); 3949 int cpu_off = online ? -1 : cpu; 3950 struct pool_workqueue *old_pwq = NULL, *pwq; 3951 struct workqueue_attrs *target_attrs; 3952 cpumask_t *cpumask; 3953 3954 lockdep_assert_held(&wq_pool_mutex); 3955 3956 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND)) 3957 return; 3958 3959 /* 3960 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 3961 * Let's use a preallocated one. The following buf is protected by 3962 * CPU hotplug exclusion. 3963 */ 3964 target_attrs = wq_update_unbound_numa_attrs_buf; 3965 cpumask = target_attrs->cpumask; 3966 3967 mutex_lock(&wq->mutex); 3968 if (wq->unbound_attrs->no_numa) 3969 goto out_unlock; 3970 3971 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 3972 pwq = unbound_pwq_by_node(wq, node); 3973 3974 /* 3975 * Let's determine what needs to be done. If the target cpumask is 3976 * different from wq's, we need to compare it to @pwq's and create 3977 * a new one if they don't match. If the target cpumask equals 3978 * wq's, the default pwq should be used. 3979 */ 3980 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) { 3981 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 3982 goto out_unlock; 3983 } else { 3984 goto use_dfl_pwq; 3985 } 3986 3987 mutex_unlock(&wq->mutex); 3988 3989 /* create a new pwq */ 3990 pwq = alloc_unbound_pwq(wq, target_attrs); 3991 if (!pwq) { 3992 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 3993 wq->name); 3994 mutex_lock(&wq->mutex); 3995 goto use_dfl_pwq; 3996 } 3997 3998 /* 3999 * Install the new pwq. As this function is called only from CPU 4000 * hotplug callbacks and applying a new attrs is wrapped with 4001 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed 4002 * inbetween. 4003 */ 4004 mutex_lock(&wq->mutex); 4005 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 4006 goto out_unlock; 4007 4008 use_dfl_pwq: 4009 spin_lock_irq(&wq->dfl_pwq->pool->lock); 4010 get_pwq(wq->dfl_pwq); 4011 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 4012 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 4013 out_unlock: 4014 mutex_unlock(&wq->mutex); 4015 put_pwq_unlocked(old_pwq); 4016 } 4017 4018 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4019 { 4020 bool highpri = wq->flags & WQ_HIGHPRI; 4021 int cpu, ret; 4022 4023 if (!(wq->flags & WQ_UNBOUND)) { 4024 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 4025 if (!wq->cpu_pwqs) 4026 return -ENOMEM; 4027 4028 for_each_possible_cpu(cpu) { 4029 struct pool_workqueue *pwq = 4030 per_cpu_ptr(wq->cpu_pwqs, cpu); 4031 struct worker_pool *cpu_pools = 4032 per_cpu(cpu_worker_pools, cpu); 4033 4034 init_pwq(pwq, wq, &cpu_pools[highpri]); 4035 4036 mutex_lock(&wq->mutex); 4037 link_pwq(pwq); 4038 mutex_unlock(&wq->mutex); 4039 } 4040 return 0; 4041 } else if (wq->flags & __WQ_ORDERED) { 4042 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 4043 /* there should only be single pwq for ordering guarantee */ 4044 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 4045 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 4046 "ordering guarantee broken for workqueue %s\n", wq->name); 4047 return ret; 4048 } else { 4049 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4050 } 4051 } 4052 4053 static int wq_clamp_max_active(int max_active, unsigned int flags, 4054 const char *name) 4055 { 4056 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 4057 4058 if (max_active < 1 || max_active > lim) 4059 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4060 max_active, name, 1, lim); 4061 4062 return clamp_val(max_active, 1, lim); 4063 } 4064 4065 struct workqueue_struct *__alloc_workqueue_key(const char *fmt, 4066 unsigned int flags, 4067 int max_active, 4068 struct lock_class_key *key, 4069 const char *lock_name, ...) 4070 { 4071 size_t tbl_size = 0; 4072 va_list args; 4073 struct workqueue_struct *wq; 4074 struct pool_workqueue *pwq; 4075 4076 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4077 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4078 flags |= WQ_UNBOUND; 4079 4080 /* allocate wq and format name */ 4081 if (flags & WQ_UNBOUND) 4082 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]); 4083 4084 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4085 if (!wq) 4086 return NULL; 4087 4088 if (flags & WQ_UNBOUND) { 4089 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL); 4090 if (!wq->unbound_attrs) 4091 goto err_free_wq; 4092 } 4093 4094 va_start(args, lock_name); 4095 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4096 va_end(args); 4097 4098 max_active = max_active ?: WQ_DFL_ACTIVE; 4099 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4100 4101 /* init wq */ 4102 wq->flags = flags; 4103 wq->saved_max_active = max_active; 4104 mutex_init(&wq->mutex); 4105 atomic_set(&wq->nr_pwqs_to_flush, 0); 4106 INIT_LIST_HEAD(&wq->pwqs); 4107 INIT_LIST_HEAD(&wq->flusher_queue); 4108 INIT_LIST_HEAD(&wq->flusher_overflow); 4109 INIT_LIST_HEAD(&wq->maydays); 4110 4111 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 4112 INIT_LIST_HEAD(&wq->list); 4113 4114 if (alloc_and_link_pwqs(wq) < 0) 4115 goto err_free_wq; 4116 4117 /* 4118 * Workqueues which may be used during memory reclaim should 4119 * have a rescuer to guarantee forward progress. 4120 */ 4121 if (flags & WQ_MEM_RECLAIM) { 4122 struct worker *rescuer; 4123 4124 rescuer = alloc_worker(); 4125 if (!rescuer) 4126 goto err_destroy; 4127 4128 rescuer->rescue_wq = wq; 4129 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", 4130 wq->name); 4131 if (IS_ERR(rescuer->task)) { 4132 kfree(rescuer); 4133 goto err_destroy; 4134 } 4135 4136 wq->rescuer = rescuer; 4137 rescuer->task->flags |= PF_NO_SETAFFINITY; 4138 wake_up_process(rescuer->task); 4139 } 4140 4141 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4142 goto err_destroy; 4143 4144 /* 4145 * wq_pool_mutex protects global freeze state and workqueues list. 4146 * Grab it, adjust max_active and add the new @wq to workqueues 4147 * list. 4148 */ 4149 mutex_lock(&wq_pool_mutex); 4150 4151 mutex_lock(&wq->mutex); 4152 for_each_pwq(pwq, wq) 4153 pwq_adjust_max_active(pwq); 4154 mutex_unlock(&wq->mutex); 4155 4156 list_add(&wq->list, &workqueues); 4157 4158 mutex_unlock(&wq_pool_mutex); 4159 4160 return wq; 4161 4162 err_free_wq: 4163 free_workqueue_attrs(wq->unbound_attrs); 4164 kfree(wq); 4165 return NULL; 4166 err_destroy: 4167 destroy_workqueue(wq); 4168 return NULL; 4169 } 4170 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 4171 4172 /** 4173 * destroy_workqueue - safely terminate a workqueue 4174 * @wq: target workqueue 4175 * 4176 * Safely destroy a workqueue. All work currently pending will be done first. 4177 */ 4178 void destroy_workqueue(struct workqueue_struct *wq) 4179 { 4180 struct pool_workqueue *pwq; 4181 int node; 4182 4183 /* drain it before proceeding with destruction */ 4184 drain_workqueue(wq); 4185 4186 /* sanity checks */ 4187 mutex_lock(&wq->mutex); 4188 for_each_pwq(pwq, wq) { 4189 int i; 4190 4191 for (i = 0; i < WORK_NR_COLORS; i++) { 4192 if (WARN_ON(pwq->nr_in_flight[i])) { 4193 mutex_unlock(&wq->mutex); 4194 return; 4195 } 4196 } 4197 4198 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) || 4199 WARN_ON(pwq->nr_active) || 4200 WARN_ON(!list_empty(&pwq->delayed_works))) { 4201 mutex_unlock(&wq->mutex); 4202 return; 4203 } 4204 } 4205 mutex_unlock(&wq->mutex); 4206 4207 /* 4208 * wq list is used to freeze wq, remove from list after 4209 * flushing is complete in case freeze races us. 4210 */ 4211 mutex_lock(&wq_pool_mutex); 4212 list_del_init(&wq->list); 4213 mutex_unlock(&wq_pool_mutex); 4214 4215 workqueue_sysfs_unregister(wq); 4216 4217 if (wq->rescuer) { 4218 kthread_stop(wq->rescuer->task); 4219 kfree(wq->rescuer); 4220 wq->rescuer = NULL; 4221 } 4222 4223 if (!(wq->flags & WQ_UNBOUND)) { 4224 /* 4225 * The base ref is never dropped on per-cpu pwqs. Directly 4226 * free the pwqs and wq. 4227 */ 4228 free_percpu(wq->cpu_pwqs); 4229 kfree(wq); 4230 } else { 4231 /* 4232 * We're the sole accessor of @wq at this point. Directly 4233 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4234 * @wq will be freed when the last pwq is released. 4235 */ 4236 for_each_node(node) { 4237 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4238 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4239 put_pwq_unlocked(pwq); 4240 } 4241 4242 /* 4243 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4244 * put. Don't access it afterwards. 4245 */ 4246 pwq = wq->dfl_pwq; 4247 wq->dfl_pwq = NULL; 4248 put_pwq_unlocked(pwq); 4249 } 4250 } 4251 EXPORT_SYMBOL_GPL(destroy_workqueue); 4252 4253 /** 4254 * workqueue_set_max_active - adjust max_active of a workqueue 4255 * @wq: target workqueue 4256 * @max_active: new max_active value. 4257 * 4258 * Set max_active of @wq to @max_active. 4259 * 4260 * CONTEXT: 4261 * Don't call from IRQ context. 4262 */ 4263 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4264 { 4265 struct pool_workqueue *pwq; 4266 4267 /* disallow meddling with max_active for ordered workqueues */ 4268 if (WARN_ON(wq->flags & __WQ_ORDERED)) 4269 return; 4270 4271 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4272 4273 mutex_lock(&wq->mutex); 4274 4275 wq->saved_max_active = max_active; 4276 4277 for_each_pwq(pwq, wq) 4278 pwq_adjust_max_active(pwq); 4279 4280 mutex_unlock(&wq->mutex); 4281 } 4282 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4283 4284 /** 4285 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4286 * 4287 * Determine whether %current is a workqueue rescuer. Can be used from 4288 * work functions to determine whether it's being run off the rescuer task. 4289 * 4290 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4291 */ 4292 bool current_is_workqueue_rescuer(void) 4293 { 4294 struct worker *worker = current_wq_worker(); 4295 4296 return worker && worker->rescue_wq; 4297 } 4298 4299 /** 4300 * workqueue_congested - test whether a workqueue is congested 4301 * @cpu: CPU in question 4302 * @wq: target workqueue 4303 * 4304 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4305 * no synchronization around this function and the test result is 4306 * unreliable and only useful as advisory hints or for debugging. 4307 * 4308 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4309 * Note that both per-cpu and unbound workqueues may be associated with 4310 * multiple pool_workqueues which have separate congested states. A 4311 * workqueue being congested on one CPU doesn't mean the workqueue is also 4312 * contested on other CPUs / NUMA nodes. 4313 * 4314 * Return: 4315 * %true if congested, %false otherwise. 4316 */ 4317 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4318 { 4319 struct pool_workqueue *pwq; 4320 bool ret; 4321 4322 rcu_read_lock_sched(); 4323 4324 if (cpu == WORK_CPU_UNBOUND) 4325 cpu = smp_processor_id(); 4326 4327 if (!(wq->flags & WQ_UNBOUND)) 4328 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4329 else 4330 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4331 4332 ret = !list_empty(&pwq->delayed_works); 4333 rcu_read_unlock_sched(); 4334 4335 return ret; 4336 } 4337 EXPORT_SYMBOL_GPL(workqueue_congested); 4338 4339 /** 4340 * work_busy - test whether a work is currently pending or running 4341 * @work: the work to be tested 4342 * 4343 * Test whether @work is currently pending or running. There is no 4344 * synchronization around this function and the test result is 4345 * unreliable and only useful as advisory hints or for debugging. 4346 * 4347 * Return: 4348 * OR'd bitmask of WORK_BUSY_* bits. 4349 */ 4350 unsigned int work_busy(struct work_struct *work) 4351 { 4352 struct worker_pool *pool; 4353 unsigned long flags; 4354 unsigned int ret = 0; 4355 4356 if (work_pending(work)) 4357 ret |= WORK_BUSY_PENDING; 4358 4359 local_irq_save(flags); 4360 pool = get_work_pool(work); 4361 if (pool) { 4362 spin_lock(&pool->lock); 4363 if (find_worker_executing_work(pool, work)) 4364 ret |= WORK_BUSY_RUNNING; 4365 spin_unlock(&pool->lock); 4366 } 4367 local_irq_restore(flags); 4368 4369 return ret; 4370 } 4371 EXPORT_SYMBOL_GPL(work_busy); 4372 4373 /** 4374 * set_worker_desc - set description for the current work item 4375 * @fmt: printf-style format string 4376 * @...: arguments for the format string 4377 * 4378 * This function can be called by a running work function to describe what 4379 * the work item is about. If the worker task gets dumped, this 4380 * information will be printed out together to help debugging. The 4381 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4382 */ 4383 void set_worker_desc(const char *fmt, ...) 4384 { 4385 struct worker *worker = current_wq_worker(); 4386 va_list args; 4387 4388 if (worker) { 4389 va_start(args, fmt); 4390 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4391 va_end(args); 4392 worker->desc_valid = true; 4393 } 4394 } 4395 4396 /** 4397 * print_worker_info - print out worker information and description 4398 * @log_lvl: the log level to use when printing 4399 * @task: target task 4400 * 4401 * If @task is a worker and currently executing a work item, print out the 4402 * name of the workqueue being serviced and worker description set with 4403 * set_worker_desc() by the currently executing work item. 4404 * 4405 * This function can be safely called on any task as long as the 4406 * task_struct itself is accessible. While safe, this function isn't 4407 * synchronized and may print out mixups or garbages of limited length. 4408 */ 4409 void print_worker_info(const char *log_lvl, struct task_struct *task) 4410 { 4411 work_func_t *fn = NULL; 4412 char name[WQ_NAME_LEN] = { }; 4413 char desc[WORKER_DESC_LEN] = { }; 4414 struct pool_workqueue *pwq = NULL; 4415 struct workqueue_struct *wq = NULL; 4416 bool desc_valid = false; 4417 struct worker *worker; 4418 4419 if (!(task->flags & PF_WQ_WORKER)) 4420 return; 4421 4422 /* 4423 * This function is called without any synchronization and @task 4424 * could be in any state. Be careful with dereferences. 4425 */ 4426 worker = probe_kthread_data(task); 4427 4428 /* 4429 * Carefully copy the associated workqueue's workfn and name. Keep 4430 * the original last '\0' in case the original contains garbage. 4431 */ 4432 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4433 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4434 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4435 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4436 4437 /* copy worker description */ 4438 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid)); 4439 if (desc_valid) 4440 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4441 4442 if (fn || name[0] || desc[0]) { 4443 printk("%sWorkqueue: %s %pf", log_lvl, name, fn); 4444 if (desc[0]) 4445 pr_cont(" (%s)", desc); 4446 pr_cont("\n"); 4447 } 4448 } 4449 4450 /* 4451 * CPU hotplug. 4452 * 4453 * There are two challenges in supporting CPU hotplug. Firstly, there 4454 * are a lot of assumptions on strong associations among work, pwq and 4455 * pool which make migrating pending and scheduled works very 4456 * difficult to implement without impacting hot paths. Secondly, 4457 * worker pools serve mix of short, long and very long running works making 4458 * blocked draining impractical. 4459 * 4460 * This is solved by allowing the pools to be disassociated from the CPU 4461 * running as an unbound one and allowing it to be reattached later if the 4462 * cpu comes back online. 4463 */ 4464 4465 static void wq_unbind_fn(struct work_struct *work) 4466 { 4467 int cpu = smp_processor_id(); 4468 struct worker_pool *pool; 4469 struct worker *worker; 4470 4471 for_each_cpu_worker_pool(pool, cpu) { 4472 WARN_ON_ONCE(cpu != smp_processor_id()); 4473 4474 mutex_lock(&pool->attach_mutex); 4475 spin_lock_irq(&pool->lock); 4476 4477 /* 4478 * We've blocked all attach/detach operations. Make all workers 4479 * unbound and set DISASSOCIATED. Before this, all workers 4480 * except for the ones which are still executing works from 4481 * before the last CPU down must be on the cpu. After 4482 * this, they may become diasporas. 4483 */ 4484 for_each_pool_worker(worker, pool) 4485 worker->flags |= WORKER_UNBOUND; 4486 4487 pool->flags |= POOL_DISASSOCIATED; 4488 4489 spin_unlock_irq(&pool->lock); 4490 mutex_unlock(&pool->attach_mutex); 4491 4492 /* 4493 * Call schedule() so that we cross rq->lock and thus can 4494 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4495 * This is necessary as scheduler callbacks may be invoked 4496 * from other cpus. 4497 */ 4498 schedule(); 4499 4500 /* 4501 * Sched callbacks are disabled now. Zap nr_running. 4502 * After this, nr_running stays zero and need_more_worker() 4503 * and keep_working() are always true as long as the 4504 * worklist is not empty. This pool now behaves as an 4505 * unbound (in terms of concurrency management) pool which 4506 * are served by workers tied to the pool. 4507 */ 4508 atomic_set(&pool->nr_running, 0); 4509 4510 /* 4511 * With concurrency management just turned off, a busy 4512 * worker blocking could lead to lengthy stalls. Kick off 4513 * unbound chain execution of currently pending work items. 4514 */ 4515 spin_lock_irq(&pool->lock); 4516 wake_up_worker(pool); 4517 spin_unlock_irq(&pool->lock); 4518 } 4519 } 4520 4521 /** 4522 * rebind_workers - rebind all workers of a pool to the associated CPU 4523 * @pool: pool of interest 4524 * 4525 * @pool->cpu is coming online. Rebind all workers to the CPU. 4526 */ 4527 static void rebind_workers(struct worker_pool *pool) 4528 { 4529 struct worker *worker; 4530 4531 lockdep_assert_held(&pool->attach_mutex); 4532 4533 /* 4534 * Restore CPU affinity of all workers. As all idle workers should 4535 * be on the run-queue of the associated CPU before any local 4536 * wake-ups for concurrency management happen, restore CPU affinty 4537 * of all workers first and then clear UNBOUND. As we're called 4538 * from CPU_ONLINE, the following shouldn't fail. 4539 */ 4540 for_each_pool_worker(worker, pool) 4541 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4542 pool->attrs->cpumask) < 0); 4543 4544 spin_lock_irq(&pool->lock); 4545 4546 for_each_pool_worker(worker, pool) { 4547 unsigned int worker_flags = worker->flags; 4548 4549 /* 4550 * A bound idle worker should actually be on the runqueue 4551 * of the associated CPU for local wake-ups targeting it to 4552 * work. Kick all idle workers so that they migrate to the 4553 * associated CPU. Doing this in the same loop as 4554 * replacing UNBOUND with REBOUND is safe as no worker will 4555 * be bound before @pool->lock is released. 4556 */ 4557 if (worker_flags & WORKER_IDLE) 4558 wake_up_process(worker->task); 4559 4560 /* 4561 * We want to clear UNBOUND but can't directly call 4562 * worker_clr_flags() or adjust nr_running. Atomically 4563 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4564 * @worker will clear REBOUND using worker_clr_flags() when 4565 * it initiates the next execution cycle thus restoring 4566 * concurrency management. Note that when or whether 4567 * @worker clears REBOUND doesn't affect correctness. 4568 * 4569 * ACCESS_ONCE() is necessary because @worker->flags may be 4570 * tested without holding any lock in 4571 * wq_worker_waking_up(). Without it, NOT_RUNNING test may 4572 * fail incorrectly leading to premature concurrency 4573 * management operations. 4574 */ 4575 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4576 worker_flags |= WORKER_REBOUND; 4577 worker_flags &= ~WORKER_UNBOUND; 4578 ACCESS_ONCE(worker->flags) = worker_flags; 4579 } 4580 4581 spin_unlock_irq(&pool->lock); 4582 } 4583 4584 /** 4585 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4586 * @pool: unbound pool of interest 4587 * @cpu: the CPU which is coming up 4588 * 4589 * An unbound pool may end up with a cpumask which doesn't have any online 4590 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4591 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4592 * online CPU before, cpus_allowed of all its workers should be restored. 4593 */ 4594 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 4595 { 4596 static cpumask_t cpumask; 4597 struct worker *worker; 4598 4599 lockdep_assert_held(&pool->attach_mutex); 4600 4601 /* is @cpu allowed for @pool? */ 4602 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 4603 return; 4604 4605 /* is @cpu the only online CPU? */ 4606 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 4607 if (cpumask_weight(&cpumask) != 1) 4608 return; 4609 4610 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 4611 for_each_pool_worker(worker, pool) 4612 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4613 pool->attrs->cpumask) < 0); 4614 } 4615 4616 /* 4617 * Workqueues should be brought up before normal priority CPU notifiers. 4618 * This will be registered high priority CPU notifier. 4619 */ 4620 static int workqueue_cpu_up_callback(struct notifier_block *nfb, 4621 unsigned long action, 4622 void *hcpu) 4623 { 4624 int cpu = (unsigned long)hcpu; 4625 struct worker_pool *pool; 4626 struct workqueue_struct *wq; 4627 int pi; 4628 4629 switch (action & ~CPU_TASKS_FROZEN) { 4630 case CPU_UP_PREPARE: 4631 for_each_cpu_worker_pool(pool, cpu) { 4632 if (pool->nr_workers) 4633 continue; 4634 if (create_and_start_worker(pool) < 0) 4635 return NOTIFY_BAD; 4636 } 4637 break; 4638 4639 case CPU_DOWN_FAILED: 4640 case CPU_ONLINE: 4641 mutex_lock(&wq_pool_mutex); 4642 4643 for_each_pool(pool, pi) { 4644 mutex_lock(&pool->attach_mutex); 4645 4646 if (pool->cpu == cpu) { 4647 spin_lock_irq(&pool->lock); 4648 pool->flags &= ~POOL_DISASSOCIATED; 4649 spin_unlock_irq(&pool->lock); 4650 4651 rebind_workers(pool); 4652 } else if (pool->cpu < 0) { 4653 restore_unbound_workers_cpumask(pool, cpu); 4654 } 4655 4656 mutex_unlock(&pool->attach_mutex); 4657 } 4658 4659 /* update NUMA affinity of unbound workqueues */ 4660 list_for_each_entry(wq, &workqueues, list) 4661 wq_update_unbound_numa(wq, cpu, true); 4662 4663 mutex_unlock(&wq_pool_mutex); 4664 break; 4665 } 4666 return NOTIFY_OK; 4667 } 4668 4669 /* 4670 * Workqueues should be brought down after normal priority CPU notifiers. 4671 * This will be registered as low priority CPU notifier. 4672 */ 4673 static int workqueue_cpu_down_callback(struct notifier_block *nfb, 4674 unsigned long action, 4675 void *hcpu) 4676 { 4677 int cpu = (unsigned long)hcpu; 4678 struct work_struct unbind_work; 4679 struct workqueue_struct *wq; 4680 4681 switch (action & ~CPU_TASKS_FROZEN) { 4682 case CPU_DOWN_PREPARE: 4683 /* unbinding per-cpu workers should happen on the local CPU */ 4684 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn); 4685 queue_work_on(cpu, system_highpri_wq, &unbind_work); 4686 4687 /* update NUMA affinity of unbound workqueues */ 4688 mutex_lock(&wq_pool_mutex); 4689 list_for_each_entry(wq, &workqueues, list) 4690 wq_update_unbound_numa(wq, cpu, false); 4691 mutex_unlock(&wq_pool_mutex); 4692 4693 /* wait for per-cpu unbinding to finish */ 4694 flush_work(&unbind_work); 4695 destroy_work_on_stack(&unbind_work); 4696 break; 4697 } 4698 return NOTIFY_OK; 4699 } 4700 4701 #ifdef CONFIG_SMP 4702 4703 struct work_for_cpu { 4704 struct work_struct work; 4705 long (*fn)(void *); 4706 void *arg; 4707 long ret; 4708 }; 4709 4710 static void work_for_cpu_fn(struct work_struct *work) 4711 { 4712 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 4713 4714 wfc->ret = wfc->fn(wfc->arg); 4715 } 4716 4717 /** 4718 * work_on_cpu - run a function in user context on a particular cpu 4719 * @cpu: the cpu to run on 4720 * @fn: the function to run 4721 * @arg: the function arg 4722 * 4723 * It is up to the caller to ensure that the cpu doesn't go offline. 4724 * The caller must not hold any locks which would prevent @fn from completing. 4725 * 4726 * Return: The value @fn returns. 4727 */ 4728 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 4729 { 4730 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 4731 4732 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 4733 schedule_work_on(cpu, &wfc.work); 4734 flush_work(&wfc.work); 4735 destroy_work_on_stack(&wfc.work); 4736 return wfc.ret; 4737 } 4738 EXPORT_SYMBOL_GPL(work_on_cpu); 4739 #endif /* CONFIG_SMP */ 4740 4741 #ifdef CONFIG_FREEZER 4742 4743 /** 4744 * freeze_workqueues_begin - begin freezing workqueues 4745 * 4746 * Start freezing workqueues. After this function returns, all freezable 4747 * workqueues will queue new works to their delayed_works list instead of 4748 * pool->worklist. 4749 * 4750 * CONTEXT: 4751 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4752 */ 4753 void freeze_workqueues_begin(void) 4754 { 4755 struct workqueue_struct *wq; 4756 struct pool_workqueue *pwq; 4757 4758 mutex_lock(&wq_pool_mutex); 4759 4760 WARN_ON_ONCE(workqueue_freezing); 4761 workqueue_freezing = true; 4762 4763 list_for_each_entry(wq, &workqueues, list) { 4764 mutex_lock(&wq->mutex); 4765 for_each_pwq(pwq, wq) 4766 pwq_adjust_max_active(pwq); 4767 mutex_unlock(&wq->mutex); 4768 } 4769 4770 mutex_unlock(&wq_pool_mutex); 4771 } 4772 4773 /** 4774 * freeze_workqueues_busy - are freezable workqueues still busy? 4775 * 4776 * Check whether freezing is complete. This function must be called 4777 * between freeze_workqueues_begin() and thaw_workqueues(). 4778 * 4779 * CONTEXT: 4780 * Grabs and releases wq_pool_mutex. 4781 * 4782 * Return: 4783 * %true if some freezable workqueues are still busy. %false if freezing 4784 * is complete. 4785 */ 4786 bool freeze_workqueues_busy(void) 4787 { 4788 bool busy = false; 4789 struct workqueue_struct *wq; 4790 struct pool_workqueue *pwq; 4791 4792 mutex_lock(&wq_pool_mutex); 4793 4794 WARN_ON_ONCE(!workqueue_freezing); 4795 4796 list_for_each_entry(wq, &workqueues, list) { 4797 if (!(wq->flags & WQ_FREEZABLE)) 4798 continue; 4799 /* 4800 * nr_active is monotonically decreasing. It's safe 4801 * to peek without lock. 4802 */ 4803 rcu_read_lock_sched(); 4804 for_each_pwq(pwq, wq) { 4805 WARN_ON_ONCE(pwq->nr_active < 0); 4806 if (pwq->nr_active) { 4807 busy = true; 4808 rcu_read_unlock_sched(); 4809 goto out_unlock; 4810 } 4811 } 4812 rcu_read_unlock_sched(); 4813 } 4814 out_unlock: 4815 mutex_unlock(&wq_pool_mutex); 4816 return busy; 4817 } 4818 4819 /** 4820 * thaw_workqueues - thaw workqueues 4821 * 4822 * Thaw workqueues. Normal queueing is restored and all collected 4823 * frozen works are transferred to their respective pool worklists. 4824 * 4825 * CONTEXT: 4826 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4827 */ 4828 void thaw_workqueues(void) 4829 { 4830 struct workqueue_struct *wq; 4831 struct pool_workqueue *pwq; 4832 4833 mutex_lock(&wq_pool_mutex); 4834 4835 if (!workqueue_freezing) 4836 goto out_unlock; 4837 4838 workqueue_freezing = false; 4839 4840 /* restore max_active and repopulate worklist */ 4841 list_for_each_entry(wq, &workqueues, list) { 4842 mutex_lock(&wq->mutex); 4843 for_each_pwq(pwq, wq) 4844 pwq_adjust_max_active(pwq); 4845 mutex_unlock(&wq->mutex); 4846 } 4847 4848 out_unlock: 4849 mutex_unlock(&wq_pool_mutex); 4850 } 4851 #endif /* CONFIG_FREEZER */ 4852 4853 static void __init wq_numa_init(void) 4854 { 4855 cpumask_var_t *tbl; 4856 int node, cpu; 4857 4858 /* determine NUMA pwq table len - highest node id + 1 */ 4859 for_each_node(node) 4860 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1); 4861 4862 if (num_possible_nodes() <= 1) 4863 return; 4864 4865 if (wq_disable_numa) { 4866 pr_info("workqueue: NUMA affinity support disabled\n"); 4867 return; 4868 } 4869 4870 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL); 4871 BUG_ON(!wq_update_unbound_numa_attrs_buf); 4872 4873 /* 4874 * We want masks of possible CPUs of each node which isn't readily 4875 * available. Build one from cpu_to_node() which should have been 4876 * fully initialized by now. 4877 */ 4878 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL); 4879 BUG_ON(!tbl); 4880 4881 for_each_node(node) 4882 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 4883 node_online(node) ? node : NUMA_NO_NODE)); 4884 4885 for_each_possible_cpu(cpu) { 4886 node = cpu_to_node(cpu); 4887 if (WARN_ON(node == NUMA_NO_NODE)) { 4888 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 4889 /* happens iff arch is bonkers, let's just proceed */ 4890 return; 4891 } 4892 cpumask_set_cpu(cpu, tbl[node]); 4893 } 4894 4895 wq_numa_possible_cpumask = tbl; 4896 wq_numa_enabled = true; 4897 } 4898 4899 static int __init init_workqueues(void) 4900 { 4901 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 4902 int i, cpu; 4903 4904 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 4905 4906 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 4907 4908 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP); 4909 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN); 4910 4911 wq_numa_init(); 4912 4913 /* initialize CPU pools */ 4914 for_each_possible_cpu(cpu) { 4915 struct worker_pool *pool; 4916 4917 i = 0; 4918 for_each_cpu_worker_pool(pool, cpu) { 4919 BUG_ON(init_worker_pool(pool)); 4920 pool->cpu = cpu; 4921 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 4922 pool->attrs->nice = std_nice[i++]; 4923 pool->node = cpu_to_node(cpu); 4924 4925 /* alloc pool ID */ 4926 mutex_lock(&wq_pool_mutex); 4927 BUG_ON(worker_pool_assign_id(pool)); 4928 mutex_unlock(&wq_pool_mutex); 4929 } 4930 } 4931 4932 /* create the initial worker */ 4933 for_each_online_cpu(cpu) { 4934 struct worker_pool *pool; 4935 4936 for_each_cpu_worker_pool(pool, cpu) { 4937 pool->flags &= ~POOL_DISASSOCIATED; 4938 BUG_ON(create_and_start_worker(pool) < 0); 4939 } 4940 } 4941 4942 /* create default unbound and ordered wq attrs */ 4943 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 4944 struct workqueue_attrs *attrs; 4945 4946 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 4947 attrs->nice = std_nice[i]; 4948 unbound_std_wq_attrs[i] = attrs; 4949 4950 /* 4951 * An ordered wq should have only one pwq as ordering is 4952 * guaranteed by max_active which is enforced by pwqs. 4953 * Turn off NUMA so that dfl_pwq is used for all nodes. 4954 */ 4955 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 4956 attrs->nice = std_nice[i]; 4957 attrs->no_numa = true; 4958 ordered_wq_attrs[i] = attrs; 4959 } 4960 4961 system_wq = alloc_workqueue("events", 0, 0); 4962 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 4963 system_long_wq = alloc_workqueue("events_long", 0, 0); 4964 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 4965 WQ_UNBOUND_MAX_ACTIVE); 4966 system_freezable_wq = alloc_workqueue("events_freezable", 4967 WQ_FREEZABLE, 0); 4968 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 4969 WQ_POWER_EFFICIENT, 0); 4970 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 4971 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 4972 0); 4973 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 4974 !system_unbound_wq || !system_freezable_wq || 4975 !system_power_efficient_wq || 4976 !system_freezable_power_efficient_wq); 4977 return 0; 4978 } 4979 early_initcall(init_workqueues); 4980