xref: /openbmc/linux/kernel/workqueue.c (revision a2fb4d78)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There are two worker pools for each CPU (one for
20  * normal work items and the other for high priority ones) and some extra
21  * pools for workqueues which are not bound to any specific CPU - the
22  * number of these backing pools is dynamic.
23  *
24  * Please read Documentation/workqueue.txt for details.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 
52 #include "workqueue_internal.h"
53 
54 enum {
55 	/*
56 	 * worker_pool flags
57 	 *
58 	 * A bound pool is either associated or disassociated with its CPU.
59 	 * While associated (!DISASSOCIATED), all workers are bound to the
60 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 	 * is in effect.
62 	 *
63 	 * While DISASSOCIATED, the cpu may be offline and all workers have
64 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 	 * be executing on any CPU.  The pool behaves as an unbound one.
66 	 *
67 	 * Note that DISASSOCIATED should be flipped only while holding
68 	 * manager_mutex to avoid changing binding state while
69 	 * create_worker() is in progress.
70 	 */
71 	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
72 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
73 	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
74 
75 	/* worker flags */
76 	WORKER_STARTED		= 1 << 0,	/* started */
77 	WORKER_DIE		= 1 << 1,	/* die die die */
78 	WORKER_IDLE		= 1 << 2,	/* is idle */
79 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
80 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
81 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
82 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
83 
84 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
85 				  WORKER_UNBOUND | WORKER_REBOUND,
86 
87 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
88 
89 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
90 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
91 
92 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
93 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
94 
95 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
96 						/* call for help after 10ms
97 						   (min two ticks) */
98 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
99 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
100 
101 	/*
102 	 * Rescue workers are used only on emergencies and shared by
103 	 * all cpus.  Give -20.
104 	 */
105 	RESCUER_NICE_LEVEL	= -20,
106 	HIGHPRI_NICE_LEVEL	= -20,
107 
108 	WQ_NAME_LEN		= 24,
109 };
110 
111 /*
112  * Structure fields follow one of the following exclusion rules.
113  *
114  * I: Modifiable by initialization/destruction paths and read-only for
115  *    everyone else.
116  *
117  * P: Preemption protected.  Disabling preemption is enough and should
118  *    only be modified and accessed from the local cpu.
119  *
120  * L: pool->lock protected.  Access with pool->lock held.
121  *
122  * X: During normal operation, modification requires pool->lock and should
123  *    be done only from local cpu.  Either disabling preemption on local
124  *    cpu or grabbing pool->lock is enough for read access.  If
125  *    POOL_DISASSOCIATED is set, it's identical to L.
126  *
127  * MG: pool->manager_mutex and pool->lock protected.  Writes require both
128  *     locks.  Reads can happen under either lock.
129  *
130  * PL: wq_pool_mutex protected.
131  *
132  * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
133  *
134  * WQ: wq->mutex protected.
135  *
136  * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
137  *
138  * MD: wq_mayday_lock protected.
139  */
140 
141 /* struct worker is defined in workqueue_internal.h */
142 
143 struct worker_pool {
144 	spinlock_t		lock;		/* the pool lock */
145 	int			cpu;		/* I: the associated cpu */
146 	int			node;		/* I: the associated node ID */
147 	int			id;		/* I: pool ID */
148 	unsigned int		flags;		/* X: flags */
149 
150 	struct list_head	worklist;	/* L: list of pending works */
151 	int			nr_workers;	/* L: total number of workers */
152 
153 	/* nr_idle includes the ones off idle_list for rebinding */
154 	int			nr_idle;	/* L: currently idle ones */
155 
156 	struct list_head	idle_list;	/* X: list of idle workers */
157 	struct timer_list	idle_timer;	/* L: worker idle timeout */
158 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
159 
160 	/* a workers is either on busy_hash or idle_list, or the manager */
161 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
162 						/* L: hash of busy workers */
163 
164 	/* see manage_workers() for details on the two manager mutexes */
165 	struct mutex		manager_arb;	/* manager arbitration */
166 	struct mutex		manager_mutex;	/* manager exclusion */
167 	struct idr		worker_idr;	/* MG: worker IDs and iteration */
168 
169 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
170 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
171 	int			refcnt;		/* PL: refcnt for unbound pools */
172 
173 	/*
174 	 * The current concurrency level.  As it's likely to be accessed
175 	 * from other CPUs during try_to_wake_up(), put it in a separate
176 	 * cacheline.
177 	 */
178 	atomic_t		nr_running ____cacheline_aligned_in_smp;
179 
180 	/*
181 	 * Destruction of pool is sched-RCU protected to allow dereferences
182 	 * from get_work_pool().
183 	 */
184 	struct rcu_head		rcu;
185 } ____cacheline_aligned_in_smp;
186 
187 /*
188  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
189  * of work_struct->data are used for flags and the remaining high bits
190  * point to the pwq; thus, pwqs need to be aligned at two's power of the
191  * number of flag bits.
192  */
193 struct pool_workqueue {
194 	struct worker_pool	*pool;		/* I: the associated pool */
195 	struct workqueue_struct *wq;		/* I: the owning workqueue */
196 	int			work_color;	/* L: current color */
197 	int			flush_color;	/* L: flushing color */
198 	int			refcnt;		/* L: reference count */
199 	int			nr_in_flight[WORK_NR_COLORS];
200 						/* L: nr of in_flight works */
201 	int			nr_active;	/* L: nr of active works */
202 	int			max_active;	/* L: max active works */
203 	struct list_head	delayed_works;	/* L: delayed works */
204 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
205 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
206 
207 	/*
208 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
209 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
210 	 * itself is also sched-RCU protected so that the first pwq can be
211 	 * determined without grabbing wq->mutex.
212 	 */
213 	struct work_struct	unbound_release_work;
214 	struct rcu_head		rcu;
215 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
216 
217 /*
218  * Structure used to wait for workqueue flush.
219  */
220 struct wq_flusher {
221 	struct list_head	list;		/* WQ: list of flushers */
222 	int			flush_color;	/* WQ: flush color waiting for */
223 	struct completion	done;		/* flush completion */
224 };
225 
226 struct wq_device;
227 
228 /*
229  * The externally visible workqueue.  It relays the issued work items to
230  * the appropriate worker_pool through its pool_workqueues.
231  */
232 struct workqueue_struct {
233 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
234 	struct list_head	list;		/* PL: list of all workqueues */
235 
236 	struct mutex		mutex;		/* protects this wq */
237 	int			work_color;	/* WQ: current work color */
238 	int			flush_color;	/* WQ: current flush color */
239 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
240 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
241 	struct list_head	flusher_queue;	/* WQ: flush waiters */
242 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
243 
244 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
245 	struct worker		*rescuer;	/* I: rescue worker */
246 
247 	int			nr_drainers;	/* WQ: drain in progress */
248 	int			saved_max_active; /* WQ: saved pwq max_active */
249 
250 	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
251 	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
252 
253 #ifdef CONFIG_SYSFS
254 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
255 #endif
256 #ifdef CONFIG_LOCKDEP
257 	struct lockdep_map	lockdep_map;
258 #endif
259 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
260 
261 	/* hot fields used during command issue, aligned to cacheline */
262 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
263 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
264 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
265 };
266 
267 static struct kmem_cache *pwq_cache;
268 
269 static int wq_numa_tbl_len;		/* highest possible NUMA node id + 1 */
270 static cpumask_var_t *wq_numa_possible_cpumask;
271 					/* possible CPUs of each node */
272 
273 static bool wq_disable_numa;
274 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
275 
276 /* see the comment above the definition of WQ_POWER_EFFICIENT */
277 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
278 static bool wq_power_efficient = true;
279 #else
280 static bool wq_power_efficient;
281 #endif
282 
283 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
284 
285 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
286 
287 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
288 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
289 
290 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
291 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
292 
293 static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
294 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
295 
296 /* the per-cpu worker pools */
297 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
298 				     cpu_worker_pools);
299 
300 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
301 
302 /* PL: hash of all unbound pools keyed by pool->attrs */
303 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
304 
305 /* I: attributes used when instantiating standard unbound pools on demand */
306 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
307 
308 /* I: attributes used when instantiating ordered pools on demand */
309 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
310 
311 struct workqueue_struct *system_wq __read_mostly;
312 EXPORT_SYMBOL(system_wq);
313 struct workqueue_struct *system_highpri_wq __read_mostly;
314 EXPORT_SYMBOL_GPL(system_highpri_wq);
315 struct workqueue_struct *system_long_wq __read_mostly;
316 EXPORT_SYMBOL_GPL(system_long_wq);
317 struct workqueue_struct *system_unbound_wq __read_mostly;
318 EXPORT_SYMBOL_GPL(system_unbound_wq);
319 struct workqueue_struct *system_freezable_wq __read_mostly;
320 EXPORT_SYMBOL_GPL(system_freezable_wq);
321 struct workqueue_struct *system_power_efficient_wq __read_mostly;
322 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
323 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
324 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
325 
326 static int worker_thread(void *__worker);
327 static void copy_workqueue_attrs(struct workqueue_attrs *to,
328 				 const struct workqueue_attrs *from);
329 
330 #define CREATE_TRACE_POINTS
331 #include <trace/events/workqueue.h>
332 
333 #define assert_rcu_or_pool_mutex()					\
334 	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
335 			   lockdep_is_held(&wq_pool_mutex),		\
336 			   "sched RCU or wq_pool_mutex should be held")
337 
338 #define assert_rcu_or_wq_mutex(wq)					\
339 	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
340 			   lockdep_is_held(&wq->mutex),			\
341 			   "sched RCU or wq->mutex should be held")
342 
343 #ifdef CONFIG_LOCKDEP
344 #define assert_manager_or_pool_lock(pool)				\
345 	WARN_ONCE(debug_locks &&					\
346 		  !lockdep_is_held(&(pool)->manager_mutex) &&		\
347 		  !lockdep_is_held(&(pool)->lock),			\
348 		  "pool->manager_mutex or ->lock should be held")
349 #else
350 #define assert_manager_or_pool_lock(pool)	do { } while (0)
351 #endif
352 
353 #define for_each_cpu_worker_pool(pool, cpu)				\
354 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
355 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
356 	     (pool)++)
357 
358 /**
359  * for_each_pool - iterate through all worker_pools in the system
360  * @pool: iteration cursor
361  * @pi: integer used for iteration
362  *
363  * This must be called either with wq_pool_mutex held or sched RCU read
364  * locked.  If the pool needs to be used beyond the locking in effect, the
365  * caller is responsible for guaranteeing that the pool stays online.
366  *
367  * The if/else clause exists only for the lockdep assertion and can be
368  * ignored.
369  */
370 #define for_each_pool(pool, pi)						\
371 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
372 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
373 		else
374 
375 /**
376  * for_each_pool_worker - iterate through all workers of a worker_pool
377  * @worker: iteration cursor
378  * @wi: integer used for iteration
379  * @pool: worker_pool to iterate workers of
380  *
381  * This must be called with either @pool->manager_mutex or ->lock held.
382  *
383  * The if/else clause exists only for the lockdep assertion and can be
384  * ignored.
385  */
386 #define for_each_pool_worker(worker, wi, pool)				\
387 	idr_for_each_entry(&(pool)->worker_idr, (worker), (wi))		\
388 		if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
389 		else
390 
391 /**
392  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
393  * @pwq: iteration cursor
394  * @wq: the target workqueue
395  *
396  * This must be called either with wq->mutex held or sched RCU read locked.
397  * If the pwq needs to be used beyond the locking in effect, the caller is
398  * responsible for guaranteeing that the pwq stays online.
399  *
400  * The if/else clause exists only for the lockdep assertion and can be
401  * ignored.
402  */
403 #define for_each_pwq(pwq, wq)						\
404 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
405 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
406 		else
407 
408 #ifdef CONFIG_DEBUG_OBJECTS_WORK
409 
410 static struct debug_obj_descr work_debug_descr;
411 
412 static void *work_debug_hint(void *addr)
413 {
414 	return ((struct work_struct *) addr)->func;
415 }
416 
417 /*
418  * fixup_init is called when:
419  * - an active object is initialized
420  */
421 static int work_fixup_init(void *addr, enum debug_obj_state state)
422 {
423 	struct work_struct *work = addr;
424 
425 	switch (state) {
426 	case ODEBUG_STATE_ACTIVE:
427 		cancel_work_sync(work);
428 		debug_object_init(work, &work_debug_descr);
429 		return 1;
430 	default:
431 		return 0;
432 	}
433 }
434 
435 /*
436  * fixup_activate is called when:
437  * - an active object is activated
438  * - an unknown object is activated (might be a statically initialized object)
439  */
440 static int work_fixup_activate(void *addr, enum debug_obj_state state)
441 {
442 	struct work_struct *work = addr;
443 
444 	switch (state) {
445 
446 	case ODEBUG_STATE_NOTAVAILABLE:
447 		/*
448 		 * This is not really a fixup. The work struct was
449 		 * statically initialized. We just make sure that it
450 		 * is tracked in the object tracker.
451 		 */
452 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
453 			debug_object_init(work, &work_debug_descr);
454 			debug_object_activate(work, &work_debug_descr);
455 			return 0;
456 		}
457 		WARN_ON_ONCE(1);
458 		return 0;
459 
460 	case ODEBUG_STATE_ACTIVE:
461 		WARN_ON(1);
462 
463 	default:
464 		return 0;
465 	}
466 }
467 
468 /*
469  * fixup_free is called when:
470  * - an active object is freed
471  */
472 static int work_fixup_free(void *addr, enum debug_obj_state state)
473 {
474 	struct work_struct *work = addr;
475 
476 	switch (state) {
477 	case ODEBUG_STATE_ACTIVE:
478 		cancel_work_sync(work);
479 		debug_object_free(work, &work_debug_descr);
480 		return 1;
481 	default:
482 		return 0;
483 	}
484 }
485 
486 static struct debug_obj_descr work_debug_descr = {
487 	.name		= "work_struct",
488 	.debug_hint	= work_debug_hint,
489 	.fixup_init	= work_fixup_init,
490 	.fixup_activate	= work_fixup_activate,
491 	.fixup_free	= work_fixup_free,
492 };
493 
494 static inline void debug_work_activate(struct work_struct *work)
495 {
496 	debug_object_activate(work, &work_debug_descr);
497 }
498 
499 static inline void debug_work_deactivate(struct work_struct *work)
500 {
501 	debug_object_deactivate(work, &work_debug_descr);
502 }
503 
504 void __init_work(struct work_struct *work, int onstack)
505 {
506 	if (onstack)
507 		debug_object_init_on_stack(work, &work_debug_descr);
508 	else
509 		debug_object_init(work, &work_debug_descr);
510 }
511 EXPORT_SYMBOL_GPL(__init_work);
512 
513 void destroy_work_on_stack(struct work_struct *work)
514 {
515 	debug_object_free(work, &work_debug_descr);
516 }
517 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
518 
519 #else
520 static inline void debug_work_activate(struct work_struct *work) { }
521 static inline void debug_work_deactivate(struct work_struct *work) { }
522 #endif
523 
524 /**
525  * worker_pool_assign_id - allocate ID and assing it to @pool
526  * @pool: the pool pointer of interest
527  *
528  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
529  * successfully, -errno on failure.
530  */
531 static int worker_pool_assign_id(struct worker_pool *pool)
532 {
533 	int ret;
534 
535 	lockdep_assert_held(&wq_pool_mutex);
536 
537 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
538 			GFP_KERNEL);
539 	if (ret >= 0) {
540 		pool->id = ret;
541 		return 0;
542 	}
543 	return ret;
544 }
545 
546 /**
547  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
548  * @wq: the target workqueue
549  * @node: the node ID
550  *
551  * This must be called either with pwq_lock held or sched RCU read locked.
552  * If the pwq needs to be used beyond the locking in effect, the caller is
553  * responsible for guaranteeing that the pwq stays online.
554  *
555  * Return: The unbound pool_workqueue for @node.
556  */
557 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
558 						  int node)
559 {
560 	assert_rcu_or_wq_mutex(wq);
561 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
562 }
563 
564 static unsigned int work_color_to_flags(int color)
565 {
566 	return color << WORK_STRUCT_COLOR_SHIFT;
567 }
568 
569 static int get_work_color(struct work_struct *work)
570 {
571 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
572 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
573 }
574 
575 static int work_next_color(int color)
576 {
577 	return (color + 1) % WORK_NR_COLORS;
578 }
579 
580 /*
581  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
582  * contain the pointer to the queued pwq.  Once execution starts, the flag
583  * is cleared and the high bits contain OFFQ flags and pool ID.
584  *
585  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
586  * and clear_work_data() can be used to set the pwq, pool or clear
587  * work->data.  These functions should only be called while the work is
588  * owned - ie. while the PENDING bit is set.
589  *
590  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
591  * corresponding to a work.  Pool is available once the work has been
592  * queued anywhere after initialization until it is sync canceled.  pwq is
593  * available only while the work item is queued.
594  *
595  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
596  * canceled.  While being canceled, a work item may have its PENDING set
597  * but stay off timer and worklist for arbitrarily long and nobody should
598  * try to steal the PENDING bit.
599  */
600 static inline void set_work_data(struct work_struct *work, unsigned long data,
601 				 unsigned long flags)
602 {
603 	WARN_ON_ONCE(!work_pending(work));
604 	atomic_long_set(&work->data, data | flags | work_static(work));
605 }
606 
607 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
608 			 unsigned long extra_flags)
609 {
610 	set_work_data(work, (unsigned long)pwq,
611 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
612 }
613 
614 static void set_work_pool_and_keep_pending(struct work_struct *work,
615 					   int pool_id)
616 {
617 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
618 		      WORK_STRUCT_PENDING);
619 }
620 
621 static void set_work_pool_and_clear_pending(struct work_struct *work,
622 					    int pool_id)
623 {
624 	/*
625 	 * The following wmb is paired with the implied mb in
626 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
627 	 * here are visible to and precede any updates by the next PENDING
628 	 * owner.
629 	 */
630 	smp_wmb();
631 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
632 }
633 
634 static void clear_work_data(struct work_struct *work)
635 {
636 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
637 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
638 }
639 
640 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
641 {
642 	unsigned long data = atomic_long_read(&work->data);
643 
644 	if (data & WORK_STRUCT_PWQ)
645 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
646 	else
647 		return NULL;
648 }
649 
650 /**
651  * get_work_pool - return the worker_pool a given work was associated with
652  * @work: the work item of interest
653  *
654  * Pools are created and destroyed under wq_pool_mutex, and allows read
655  * access under sched-RCU read lock.  As such, this function should be
656  * called under wq_pool_mutex or with preemption disabled.
657  *
658  * All fields of the returned pool are accessible as long as the above
659  * mentioned locking is in effect.  If the returned pool needs to be used
660  * beyond the critical section, the caller is responsible for ensuring the
661  * returned pool is and stays online.
662  *
663  * Return: The worker_pool @work was last associated with.  %NULL if none.
664  */
665 static struct worker_pool *get_work_pool(struct work_struct *work)
666 {
667 	unsigned long data = atomic_long_read(&work->data);
668 	int pool_id;
669 
670 	assert_rcu_or_pool_mutex();
671 
672 	if (data & WORK_STRUCT_PWQ)
673 		return ((struct pool_workqueue *)
674 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
675 
676 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
677 	if (pool_id == WORK_OFFQ_POOL_NONE)
678 		return NULL;
679 
680 	return idr_find(&worker_pool_idr, pool_id);
681 }
682 
683 /**
684  * get_work_pool_id - return the worker pool ID a given work is associated with
685  * @work: the work item of interest
686  *
687  * Return: The worker_pool ID @work was last associated with.
688  * %WORK_OFFQ_POOL_NONE if none.
689  */
690 static int get_work_pool_id(struct work_struct *work)
691 {
692 	unsigned long data = atomic_long_read(&work->data);
693 
694 	if (data & WORK_STRUCT_PWQ)
695 		return ((struct pool_workqueue *)
696 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
697 
698 	return data >> WORK_OFFQ_POOL_SHIFT;
699 }
700 
701 static void mark_work_canceling(struct work_struct *work)
702 {
703 	unsigned long pool_id = get_work_pool_id(work);
704 
705 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
706 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
707 }
708 
709 static bool work_is_canceling(struct work_struct *work)
710 {
711 	unsigned long data = atomic_long_read(&work->data);
712 
713 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
714 }
715 
716 /*
717  * Policy functions.  These define the policies on how the global worker
718  * pools are managed.  Unless noted otherwise, these functions assume that
719  * they're being called with pool->lock held.
720  */
721 
722 static bool __need_more_worker(struct worker_pool *pool)
723 {
724 	return !atomic_read(&pool->nr_running);
725 }
726 
727 /*
728  * Need to wake up a worker?  Called from anything but currently
729  * running workers.
730  *
731  * Note that, because unbound workers never contribute to nr_running, this
732  * function will always return %true for unbound pools as long as the
733  * worklist isn't empty.
734  */
735 static bool need_more_worker(struct worker_pool *pool)
736 {
737 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
738 }
739 
740 /* Can I start working?  Called from busy but !running workers. */
741 static bool may_start_working(struct worker_pool *pool)
742 {
743 	return pool->nr_idle;
744 }
745 
746 /* Do I need to keep working?  Called from currently running workers. */
747 static bool keep_working(struct worker_pool *pool)
748 {
749 	return !list_empty(&pool->worklist) &&
750 		atomic_read(&pool->nr_running) <= 1;
751 }
752 
753 /* Do we need a new worker?  Called from manager. */
754 static bool need_to_create_worker(struct worker_pool *pool)
755 {
756 	return need_more_worker(pool) && !may_start_working(pool);
757 }
758 
759 /* Do I need to be the manager? */
760 static bool need_to_manage_workers(struct worker_pool *pool)
761 {
762 	return need_to_create_worker(pool) ||
763 		(pool->flags & POOL_MANAGE_WORKERS);
764 }
765 
766 /* Do we have too many workers and should some go away? */
767 static bool too_many_workers(struct worker_pool *pool)
768 {
769 	bool managing = mutex_is_locked(&pool->manager_arb);
770 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
771 	int nr_busy = pool->nr_workers - nr_idle;
772 
773 	/*
774 	 * nr_idle and idle_list may disagree if idle rebinding is in
775 	 * progress.  Never return %true if idle_list is empty.
776 	 */
777 	if (list_empty(&pool->idle_list))
778 		return false;
779 
780 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
781 }
782 
783 /*
784  * Wake up functions.
785  */
786 
787 /* Return the first worker.  Safe with preemption disabled */
788 static struct worker *first_worker(struct worker_pool *pool)
789 {
790 	if (unlikely(list_empty(&pool->idle_list)))
791 		return NULL;
792 
793 	return list_first_entry(&pool->idle_list, struct worker, entry);
794 }
795 
796 /**
797  * wake_up_worker - wake up an idle worker
798  * @pool: worker pool to wake worker from
799  *
800  * Wake up the first idle worker of @pool.
801  *
802  * CONTEXT:
803  * spin_lock_irq(pool->lock).
804  */
805 static void wake_up_worker(struct worker_pool *pool)
806 {
807 	struct worker *worker = first_worker(pool);
808 
809 	if (likely(worker))
810 		wake_up_process(worker->task);
811 }
812 
813 /**
814  * wq_worker_waking_up - a worker is waking up
815  * @task: task waking up
816  * @cpu: CPU @task is waking up to
817  *
818  * This function is called during try_to_wake_up() when a worker is
819  * being awoken.
820  *
821  * CONTEXT:
822  * spin_lock_irq(rq->lock)
823  */
824 void wq_worker_waking_up(struct task_struct *task, int cpu)
825 {
826 	struct worker *worker = kthread_data(task);
827 
828 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
829 		WARN_ON_ONCE(worker->pool->cpu != cpu);
830 		atomic_inc(&worker->pool->nr_running);
831 	}
832 }
833 
834 /**
835  * wq_worker_sleeping - a worker is going to sleep
836  * @task: task going to sleep
837  * @cpu: CPU in question, must be the current CPU number
838  *
839  * This function is called during schedule() when a busy worker is
840  * going to sleep.  Worker on the same cpu can be woken up by
841  * returning pointer to its task.
842  *
843  * CONTEXT:
844  * spin_lock_irq(rq->lock)
845  *
846  * Return:
847  * Worker task on @cpu to wake up, %NULL if none.
848  */
849 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
850 {
851 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
852 	struct worker_pool *pool;
853 
854 	/*
855 	 * Rescuers, which may not have all the fields set up like normal
856 	 * workers, also reach here, let's not access anything before
857 	 * checking NOT_RUNNING.
858 	 */
859 	if (worker->flags & WORKER_NOT_RUNNING)
860 		return NULL;
861 
862 	pool = worker->pool;
863 
864 	/* this can only happen on the local cpu */
865 	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
866 		return NULL;
867 
868 	/*
869 	 * The counterpart of the following dec_and_test, implied mb,
870 	 * worklist not empty test sequence is in insert_work().
871 	 * Please read comment there.
872 	 *
873 	 * NOT_RUNNING is clear.  This means that we're bound to and
874 	 * running on the local cpu w/ rq lock held and preemption
875 	 * disabled, which in turn means that none else could be
876 	 * manipulating idle_list, so dereferencing idle_list without pool
877 	 * lock is safe.
878 	 */
879 	if (atomic_dec_and_test(&pool->nr_running) &&
880 	    !list_empty(&pool->worklist))
881 		to_wakeup = first_worker(pool);
882 	return to_wakeup ? to_wakeup->task : NULL;
883 }
884 
885 /**
886  * worker_set_flags - set worker flags and adjust nr_running accordingly
887  * @worker: self
888  * @flags: flags to set
889  * @wakeup: wakeup an idle worker if necessary
890  *
891  * Set @flags in @worker->flags and adjust nr_running accordingly.  If
892  * nr_running becomes zero and @wakeup is %true, an idle worker is
893  * woken up.
894  *
895  * CONTEXT:
896  * spin_lock_irq(pool->lock)
897  */
898 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
899 				    bool wakeup)
900 {
901 	struct worker_pool *pool = worker->pool;
902 
903 	WARN_ON_ONCE(worker->task != current);
904 
905 	/*
906 	 * If transitioning into NOT_RUNNING, adjust nr_running and
907 	 * wake up an idle worker as necessary if requested by
908 	 * @wakeup.
909 	 */
910 	if ((flags & WORKER_NOT_RUNNING) &&
911 	    !(worker->flags & WORKER_NOT_RUNNING)) {
912 		if (wakeup) {
913 			if (atomic_dec_and_test(&pool->nr_running) &&
914 			    !list_empty(&pool->worklist))
915 				wake_up_worker(pool);
916 		} else
917 			atomic_dec(&pool->nr_running);
918 	}
919 
920 	worker->flags |= flags;
921 }
922 
923 /**
924  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
925  * @worker: self
926  * @flags: flags to clear
927  *
928  * Clear @flags in @worker->flags and adjust nr_running accordingly.
929  *
930  * CONTEXT:
931  * spin_lock_irq(pool->lock)
932  */
933 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
934 {
935 	struct worker_pool *pool = worker->pool;
936 	unsigned int oflags = worker->flags;
937 
938 	WARN_ON_ONCE(worker->task != current);
939 
940 	worker->flags &= ~flags;
941 
942 	/*
943 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
944 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
945 	 * of multiple flags, not a single flag.
946 	 */
947 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
948 		if (!(worker->flags & WORKER_NOT_RUNNING))
949 			atomic_inc(&pool->nr_running);
950 }
951 
952 /**
953  * find_worker_executing_work - find worker which is executing a work
954  * @pool: pool of interest
955  * @work: work to find worker for
956  *
957  * Find a worker which is executing @work on @pool by searching
958  * @pool->busy_hash which is keyed by the address of @work.  For a worker
959  * to match, its current execution should match the address of @work and
960  * its work function.  This is to avoid unwanted dependency between
961  * unrelated work executions through a work item being recycled while still
962  * being executed.
963  *
964  * This is a bit tricky.  A work item may be freed once its execution
965  * starts and nothing prevents the freed area from being recycled for
966  * another work item.  If the same work item address ends up being reused
967  * before the original execution finishes, workqueue will identify the
968  * recycled work item as currently executing and make it wait until the
969  * current execution finishes, introducing an unwanted dependency.
970  *
971  * This function checks the work item address and work function to avoid
972  * false positives.  Note that this isn't complete as one may construct a
973  * work function which can introduce dependency onto itself through a
974  * recycled work item.  Well, if somebody wants to shoot oneself in the
975  * foot that badly, there's only so much we can do, and if such deadlock
976  * actually occurs, it should be easy to locate the culprit work function.
977  *
978  * CONTEXT:
979  * spin_lock_irq(pool->lock).
980  *
981  * Return:
982  * Pointer to worker which is executing @work if found, %NULL
983  * otherwise.
984  */
985 static struct worker *find_worker_executing_work(struct worker_pool *pool,
986 						 struct work_struct *work)
987 {
988 	struct worker *worker;
989 
990 	hash_for_each_possible(pool->busy_hash, worker, hentry,
991 			       (unsigned long)work)
992 		if (worker->current_work == work &&
993 		    worker->current_func == work->func)
994 			return worker;
995 
996 	return NULL;
997 }
998 
999 /**
1000  * move_linked_works - move linked works to a list
1001  * @work: start of series of works to be scheduled
1002  * @head: target list to append @work to
1003  * @nextp: out paramter for nested worklist walking
1004  *
1005  * Schedule linked works starting from @work to @head.  Work series to
1006  * be scheduled starts at @work and includes any consecutive work with
1007  * WORK_STRUCT_LINKED set in its predecessor.
1008  *
1009  * If @nextp is not NULL, it's updated to point to the next work of
1010  * the last scheduled work.  This allows move_linked_works() to be
1011  * nested inside outer list_for_each_entry_safe().
1012  *
1013  * CONTEXT:
1014  * spin_lock_irq(pool->lock).
1015  */
1016 static void move_linked_works(struct work_struct *work, struct list_head *head,
1017 			      struct work_struct **nextp)
1018 {
1019 	struct work_struct *n;
1020 
1021 	/*
1022 	 * Linked worklist will always end before the end of the list,
1023 	 * use NULL for list head.
1024 	 */
1025 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1026 		list_move_tail(&work->entry, head);
1027 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1028 			break;
1029 	}
1030 
1031 	/*
1032 	 * If we're already inside safe list traversal and have moved
1033 	 * multiple works to the scheduled queue, the next position
1034 	 * needs to be updated.
1035 	 */
1036 	if (nextp)
1037 		*nextp = n;
1038 }
1039 
1040 /**
1041  * get_pwq - get an extra reference on the specified pool_workqueue
1042  * @pwq: pool_workqueue to get
1043  *
1044  * Obtain an extra reference on @pwq.  The caller should guarantee that
1045  * @pwq has positive refcnt and be holding the matching pool->lock.
1046  */
1047 static void get_pwq(struct pool_workqueue *pwq)
1048 {
1049 	lockdep_assert_held(&pwq->pool->lock);
1050 	WARN_ON_ONCE(pwq->refcnt <= 0);
1051 	pwq->refcnt++;
1052 }
1053 
1054 /**
1055  * put_pwq - put a pool_workqueue reference
1056  * @pwq: pool_workqueue to put
1057  *
1058  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1059  * destruction.  The caller should be holding the matching pool->lock.
1060  */
1061 static void put_pwq(struct pool_workqueue *pwq)
1062 {
1063 	lockdep_assert_held(&pwq->pool->lock);
1064 	if (likely(--pwq->refcnt))
1065 		return;
1066 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1067 		return;
1068 	/*
1069 	 * @pwq can't be released under pool->lock, bounce to
1070 	 * pwq_unbound_release_workfn().  This never recurses on the same
1071 	 * pool->lock as this path is taken only for unbound workqueues and
1072 	 * the release work item is scheduled on a per-cpu workqueue.  To
1073 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1074 	 * subclass of 1 in get_unbound_pool().
1075 	 */
1076 	schedule_work(&pwq->unbound_release_work);
1077 }
1078 
1079 /**
1080  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1081  * @pwq: pool_workqueue to put (can be %NULL)
1082  *
1083  * put_pwq() with locking.  This function also allows %NULL @pwq.
1084  */
1085 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1086 {
1087 	if (pwq) {
1088 		/*
1089 		 * As both pwqs and pools are sched-RCU protected, the
1090 		 * following lock operations are safe.
1091 		 */
1092 		spin_lock_irq(&pwq->pool->lock);
1093 		put_pwq(pwq);
1094 		spin_unlock_irq(&pwq->pool->lock);
1095 	}
1096 }
1097 
1098 static void pwq_activate_delayed_work(struct work_struct *work)
1099 {
1100 	struct pool_workqueue *pwq = get_work_pwq(work);
1101 
1102 	trace_workqueue_activate_work(work);
1103 	move_linked_works(work, &pwq->pool->worklist, NULL);
1104 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1105 	pwq->nr_active++;
1106 }
1107 
1108 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1109 {
1110 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1111 						    struct work_struct, entry);
1112 
1113 	pwq_activate_delayed_work(work);
1114 }
1115 
1116 /**
1117  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1118  * @pwq: pwq of interest
1119  * @color: color of work which left the queue
1120  *
1121  * A work either has completed or is removed from pending queue,
1122  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1123  *
1124  * CONTEXT:
1125  * spin_lock_irq(pool->lock).
1126  */
1127 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1128 {
1129 	/* uncolored work items don't participate in flushing or nr_active */
1130 	if (color == WORK_NO_COLOR)
1131 		goto out_put;
1132 
1133 	pwq->nr_in_flight[color]--;
1134 
1135 	pwq->nr_active--;
1136 	if (!list_empty(&pwq->delayed_works)) {
1137 		/* one down, submit a delayed one */
1138 		if (pwq->nr_active < pwq->max_active)
1139 			pwq_activate_first_delayed(pwq);
1140 	}
1141 
1142 	/* is flush in progress and are we at the flushing tip? */
1143 	if (likely(pwq->flush_color != color))
1144 		goto out_put;
1145 
1146 	/* are there still in-flight works? */
1147 	if (pwq->nr_in_flight[color])
1148 		goto out_put;
1149 
1150 	/* this pwq is done, clear flush_color */
1151 	pwq->flush_color = -1;
1152 
1153 	/*
1154 	 * If this was the last pwq, wake up the first flusher.  It
1155 	 * will handle the rest.
1156 	 */
1157 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1158 		complete(&pwq->wq->first_flusher->done);
1159 out_put:
1160 	put_pwq(pwq);
1161 }
1162 
1163 /**
1164  * try_to_grab_pending - steal work item from worklist and disable irq
1165  * @work: work item to steal
1166  * @is_dwork: @work is a delayed_work
1167  * @flags: place to store irq state
1168  *
1169  * Try to grab PENDING bit of @work.  This function can handle @work in any
1170  * stable state - idle, on timer or on worklist.
1171  *
1172  * Return:
1173  *  1		if @work was pending and we successfully stole PENDING
1174  *  0		if @work was idle and we claimed PENDING
1175  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1176  *  -ENOENT	if someone else is canceling @work, this state may persist
1177  *		for arbitrarily long
1178  *
1179  * Note:
1180  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1181  * interrupted while holding PENDING and @work off queue, irq must be
1182  * disabled on entry.  This, combined with delayed_work->timer being
1183  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1184  *
1185  * On successful return, >= 0, irq is disabled and the caller is
1186  * responsible for releasing it using local_irq_restore(*@flags).
1187  *
1188  * This function is safe to call from any context including IRQ handler.
1189  */
1190 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1191 			       unsigned long *flags)
1192 {
1193 	struct worker_pool *pool;
1194 	struct pool_workqueue *pwq;
1195 
1196 	local_irq_save(*flags);
1197 
1198 	/* try to steal the timer if it exists */
1199 	if (is_dwork) {
1200 		struct delayed_work *dwork = to_delayed_work(work);
1201 
1202 		/*
1203 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1204 		 * guaranteed that the timer is not queued anywhere and not
1205 		 * running on the local CPU.
1206 		 */
1207 		if (likely(del_timer(&dwork->timer)))
1208 			return 1;
1209 	}
1210 
1211 	/* try to claim PENDING the normal way */
1212 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1213 		return 0;
1214 
1215 	/*
1216 	 * The queueing is in progress, or it is already queued. Try to
1217 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1218 	 */
1219 	pool = get_work_pool(work);
1220 	if (!pool)
1221 		goto fail;
1222 
1223 	spin_lock(&pool->lock);
1224 	/*
1225 	 * work->data is guaranteed to point to pwq only while the work
1226 	 * item is queued on pwq->wq, and both updating work->data to point
1227 	 * to pwq on queueing and to pool on dequeueing are done under
1228 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1229 	 * points to pwq which is associated with a locked pool, the work
1230 	 * item is currently queued on that pool.
1231 	 */
1232 	pwq = get_work_pwq(work);
1233 	if (pwq && pwq->pool == pool) {
1234 		debug_work_deactivate(work);
1235 
1236 		/*
1237 		 * A delayed work item cannot be grabbed directly because
1238 		 * it might have linked NO_COLOR work items which, if left
1239 		 * on the delayed_list, will confuse pwq->nr_active
1240 		 * management later on and cause stall.  Make sure the work
1241 		 * item is activated before grabbing.
1242 		 */
1243 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1244 			pwq_activate_delayed_work(work);
1245 
1246 		list_del_init(&work->entry);
1247 		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1248 
1249 		/* work->data points to pwq iff queued, point to pool */
1250 		set_work_pool_and_keep_pending(work, pool->id);
1251 
1252 		spin_unlock(&pool->lock);
1253 		return 1;
1254 	}
1255 	spin_unlock(&pool->lock);
1256 fail:
1257 	local_irq_restore(*flags);
1258 	if (work_is_canceling(work))
1259 		return -ENOENT;
1260 	cpu_relax();
1261 	return -EAGAIN;
1262 }
1263 
1264 /**
1265  * insert_work - insert a work into a pool
1266  * @pwq: pwq @work belongs to
1267  * @work: work to insert
1268  * @head: insertion point
1269  * @extra_flags: extra WORK_STRUCT_* flags to set
1270  *
1271  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1272  * work_struct flags.
1273  *
1274  * CONTEXT:
1275  * spin_lock_irq(pool->lock).
1276  */
1277 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1278 			struct list_head *head, unsigned int extra_flags)
1279 {
1280 	struct worker_pool *pool = pwq->pool;
1281 
1282 	/* we own @work, set data and link */
1283 	set_work_pwq(work, pwq, extra_flags);
1284 	list_add_tail(&work->entry, head);
1285 	get_pwq(pwq);
1286 
1287 	/*
1288 	 * Ensure either wq_worker_sleeping() sees the above
1289 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1290 	 * around lazily while there are works to be processed.
1291 	 */
1292 	smp_mb();
1293 
1294 	if (__need_more_worker(pool))
1295 		wake_up_worker(pool);
1296 }
1297 
1298 /*
1299  * Test whether @work is being queued from another work executing on the
1300  * same workqueue.
1301  */
1302 static bool is_chained_work(struct workqueue_struct *wq)
1303 {
1304 	struct worker *worker;
1305 
1306 	worker = current_wq_worker();
1307 	/*
1308 	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1309 	 * I'm @worker, it's safe to dereference it without locking.
1310 	 */
1311 	return worker && worker->current_pwq->wq == wq;
1312 }
1313 
1314 static void __queue_work(int cpu, struct workqueue_struct *wq,
1315 			 struct work_struct *work)
1316 {
1317 	struct pool_workqueue *pwq;
1318 	struct worker_pool *last_pool;
1319 	struct list_head *worklist;
1320 	unsigned int work_flags;
1321 	unsigned int req_cpu = cpu;
1322 
1323 	/*
1324 	 * While a work item is PENDING && off queue, a task trying to
1325 	 * steal the PENDING will busy-loop waiting for it to either get
1326 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1327 	 * happen with IRQ disabled.
1328 	 */
1329 	WARN_ON_ONCE(!irqs_disabled());
1330 
1331 	debug_work_activate(work);
1332 
1333 	/* if draining, only works from the same workqueue are allowed */
1334 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1335 	    WARN_ON_ONCE(!is_chained_work(wq)))
1336 		return;
1337 retry:
1338 	if (req_cpu == WORK_CPU_UNBOUND)
1339 		cpu = raw_smp_processor_id();
1340 
1341 	/* pwq which will be used unless @work is executing elsewhere */
1342 	if (!(wq->flags & WQ_UNBOUND))
1343 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1344 	else
1345 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1346 
1347 	/*
1348 	 * If @work was previously on a different pool, it might still be
1349 	 * running there, in which case the work needs to be queued on that
1350 	 * pool to guarantee non-reentrancy.
1351 	 */
1352 	last_pool = get_work_pool(work);
1353 	if (last_pool && last_pool != pwq->pool) {
1354 		struct worker *worker;
1355 
1356 		spin_lock(&last_pool->lock);
1357 
1358 		worker = find_worker_executing_work(last_pool, work);
1359 
1360 		if (worker && worker->current_pwq->wq == wq) {
1361 			pwq = worker->current_pwq;
1362 		} else {
1363 			/* meh... not running there, queue here */
1364 			spin_unlock(&last_pool->lock);
1365 			spin_lock(&pwq->pool->lock);
1366 		}
1367 	} else {
1368 		spin_lock(&pwq->pool->lock);
1369 	}
1370 
1371 	/*
1372 	 * pwq is determined and locked.  For unbound pools, we could have
1373 	 * raced with pwq release and it could already be dead.  If its
1374 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1375 	 * without another pwq replacing it in the numa_pwq_tbl or while
1376 	 * work items are executing on it, so the retrying is guaranteed to
1377 	 * make forward-progress.
1378 	 */
1379 	if (unlikely(!pwq->refcnt)) {
1380 		if (wq->flags & WQ_UNBOUND) {
1381 			spin_unlock(&pwq->pool->lock);
1382 			cpu_relax();
1383 			goto retry;
1384 		}
1385 		/* oops */
1386 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1387 			  wq->name, cpu);
1388 	}
1389 
1390 	/* pwq determined, queue */
1391 	trace_workqueue_queue_work(req_cpu, pwq, work);
1392 
1393 	if (WARN_ON(!list_empty(&work->entry))) {
1394 		spin_unlock(&pwq->pool->lock);
1395 		return;
1396 	}
1397 
1398 	pwq->nr_in_flight[pwq->work_color]++;
1399 	work_flags = work_color_to_flags(pwq->work_color);
1400 
1401 	if (likely(pwq->nr_active < pwq->max_active)) {
1402 		trace_workqueue_activate_work(work);
1403 		pwq->nr_active++;
1404 		worklist = &pwq->pool->worklist;
1405 	} else {
1406 		work_flags |= WORK_STRUCT_DELAYED;
1407 		worklist = &pwq->delayed_works;
1408 	}
1409 
1410 	insert_work(pwq, work, worklist, work_flags);
1411 
1412 	spin_unlock(&pwq->pool->lock);
1413 }
1414 
1415 /**
1416  * queue_work_on - queue work on specific cpu
1417  * @cpu: CPU number to execute work on
1418  * @wq: workqueue to use
1419  * @work: work to queue
1420  *
1421  * We queue the work to a specific CPU, the caller must ensure it
1422  * can't go away.
1423  *
1424  * Return: %false if @work was already on a queue, %true otherwise.
1425  */
1426 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1427 		   struct work_struct *work)
1428 {
1429 	bool ret = false;
1430 	unsigned long flags;
1431 
1432 	local_irq_save(flags);
1433 
1434 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1435 		__queue_work(cpu, wq, work);
1436 		ret = true;
1437 	}
1438 
1439 	local_irq_restore(flags);
1440 	return ret;
1441 }
1442 EXPORT_SYMBOL(queue_work_on);
1443 
1444 void delayed_work_timer_fn(unsigned long __data)
1445 {
1446 	struct delayed_work *dwork = (struct delayed_work *)__data;
1447 
1448 	/* should have been called from irqsafe timer with irq already off */
1449 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1450 }
1451 EXPORT_SYMBOL(delayed_work_timer_fn);
1452 
1453 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1454 				struct delayed_work *dwork, unsigned long delay)
1455 {
1456 	struct timer_list *timer = &dwork->timer;
1457 	struct work_struct *work = &dwork->work;
1458 
1459 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1460 		     timer->data != (unsigned long)dwork);
1461 	WARN_ON_ONCE(timer_pending(timer));
1462 	WARN_ON_ONCE(!list_empty(&work->entry));
1463 
1464 	/*
1465 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1466 	 * both optimization and correctness.  The earliest @timer can
1467 	 * expire is on the closest next tick and delayed_work users depend
1468 	 * on that there's no such delay when @delay is 0.
1469 	 */
1470 	if (!delay) {
1471 		__queue_work(cpu, wq, &dwork->work);
1472 		return;
1473 	}
1474 
1475 	timer_stats_timer_set_start_info(&dwork->timer);
1476 
1477 	dwork->wq = wq;
1478 	dwork->cpu = cpu;
1479 	timer->expires = jiffies + delay;
1480 
1481 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1482 		add_timer_on(timer, cpu);
1483 	else
1484 		add_timer(timer);
1485 }
1486 
1487 /**
1488  * queue_delayed_work_on - queue work on specific CPU after delay
1489  * @cpu: CPU number to execute work on
1490  * @wq: workqueue to use
1491  * @dwork: work to queue
1492  * @delay: number of jiffies to wait before queueing
1493  *
1494  * Return: %false if @work was already on a queue, %true otherwise.  If
1495  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1496  * execution.
1497  */
1498 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1499 			   struct delayed_work *dwork, unsigned long delay)
1500 {
1501 	struct work_struct *work = &dwork->work;
1502 	bool ret = false;
1503 	unsigned long flags;
1504 
1505 	/* read the comment in __queue_work() */
1506 	local_irq_save(flags);
1507 
1508 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1509 		__queue_delayed_work(cpu, wq, dwork, delay);
1510 		ret = true;
1511 	}
1512 
1513 	local_irq_restore(flags);
1514 	return ret;
1515 }
1516 EXPORT_SYMBOL(queue_delayed_work_on);
1517 
1518 /**
1519  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1520  * @cpu: CPU number to execute work on
1521  * @wq: workqueue to use
1522  * @dwork: work to queue
1523  * @delay: number of jiffies to wait before queueing
1524  *
1525  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1526  * modify @dwork's timer so that it expires after @delay.  If @delay is
1527  * zero, @work is guaranteed to be scheduled immediately regardless of its
1528  * current state.
1529  *
1530  * Return: %false if @dwork was idle and queued, %true if @dwork was
1531  * pending and its timer was modified.
1532  *
1533  * This function is safe to call from any context including IRQ handler.
1534  * See try_to_grab_pending() for details.
1535  */
1536 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1537 			 struct delayed_work *dwork, unsigned long delay)
1538 {
1539 	unsigned long flags;
1540 	int ret;
1541 
1542 	do {
1543 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1544 	} while (unlikely(ret == -EAGAIN));
1545 
1546 	if (likely(ret >= 0)) {
1547 		__queue_delayed_work(cpu, wq, dwork, delay);
1548 		local_irq_restore(flags);
1549 	}
1550 
1551 	/* -ENOENT from try_to_grab_pending() becomes %true */
1552 	return ret;
1553 }
1554 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1555 
1556 /**
1557  * worker_enter_idle - enter idle state
1558  * @worker: worker which is entering idle state
1559  *
1560  * @worker is entering idle state.  Update stats and idle timer if
1561  * necessary.
1562  *
1563  * LOCKING:
1564  * spin_lock_irq(pool->lock).
1565  */
1566 static void worker_enter_idle(struct worker *worker)
1567 {
1568 	struct worker_pool *pool = worker->pool;
1569 
1570 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1571 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1572 			 (worker->hentry.next || worker->hentry.pprev)))
1573 		return;
1574 
1575 	/* can't use worker_set_flags(), also called from start_worker() */
1576 	worker->flags |= WORKER_IDLE;
1577 	pool->nr_idle++;
1578 	worker->last_active = jiffies;
1579 
1580 	/* idle_list is LIFO */
1581 	list_add(&worker->entry, &pool->idle_list);
1582 
1583 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1584 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1585 
1586 	/*
1587 	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1588 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1589 	 * nr_running, the warning may trigger spuriously.  Check iff
1590 	 * unbind is not in progress.
1591 	 */
1592 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1593 		     pool->nr_workers == pool->nr_idle &&
1594 		     atomic_read(&pool->nr_running));
1595 }
1596 
1597 /**
1598  * worker_leave_idle - leave idle state
1599  * @worker: worker which is leaving idle state
1600  *
1601  * @worker is leaving idle state.  Update stats.
1602  *
1603  * LOCKING:
1604  * spin_lock_irq(pool->lock).
1605  */
1606 static void worker_leave_idle(struct worker *worker)
1607 {
1608 	struct worker_pool *pool = worker->pool;
1609 
1610 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1611 		return;
1612 	worker_clr_flags(worker, WORKER_IDLE);
1613 	pool->nr_idle--;
1614 	list_del_init(&worker->entry);
1615 }
1616 
1617 /**
1618  * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1619  * @pool: target worker_pool
1620  *
1621  * Bind %current to the cpu of @pool if it is associated and lock @pool.
1622  *
1623  * Works which are scheduled while the cpu is online must at least be
1624  * scheduled to a worker which is bound to the cpu so that if they are
1625  * flushed from cpu callbacks while cpu is going down, they are
1626  * guaranteed to execute on the cpu.
1627  *
1628  * This function is to be used by unbound workers and rescuers to bind
1629  * themselves to the target cpu and may race with cpu going down or
1630  * coming online.  kthread_bind() can't be used because it may put the
1631  * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1632  * verbatim as it's best effort and blocking and pool may be
1633  * [dis]associated in the meantime.
1634  *
1635  * This function tries set_cpus_allowed() and locks pool and verifies the
1636  * binding against %POOL_DISASSOCIATED which is set during
1637  * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1638  * enters idle state or fetches works without dropping lock, it can
1639  * guarantee the scheduling requirement described in the first paragraph.
1640  *
1641  * CONTEXT:
1642  * Might sleep.  Called without any lock but returns with pool->lock
1643  * held.
1644  *
1645  * Return:
1646  * %true if the associated pool is online (@worker is successfully
1647  * bound), %false if offline.
1648  */
1649 static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1650 __acquires(&pool->lock)
1651 {
1652 	while (true) {
1653 		/*
1654 		 * The following call may fail, succeed or succeed
1655 		 * without actually migrating the task to the cpu if
1656 		 * it races with cpu hotunplug operation.  Verify
1657 		 * against POOL_DISASSOCIATED.
1658 		 */
1659 		if (!(pool->flags & POOL_DISASSOCIATED))
1660 			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1661 
1662 		spin_lock_irq(&pool->lock);
1663 		if (pool->flags & POOL_DISASSOCIATED)
1664 			return false;
1665 		if (task_cpu(current) == pool->cpu &&
1666 		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1667 			return true;
1668 		spin_unlock_irq(&pool->lock);
1669 
1670 		/*
1671 		 * We've raced with CPU hot[un]plug.  Give it a breather
1672 		 * and retry migration.  cond_resched() is required here;
1673 		 * otherwise, we might deadlock against cpu_stop trying to
1674 		 * bring down the CPU on non-preemptive kernel.
1675 		 */
1676 		cpu_relax();
1677 		cond_resched();
1678 	}
1679 }
1680 
1681 static struct worker *alloc_worker(void)
1682 {
1683 	struct worker *worker;
1684 
1685 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1686 	if (worker) {
1687 		INIT_LIST_HEAD(&worker->entry);
1688 		INIT_LIST_HEAD(&worker->scheduled);
1689 		/* on creation a worker is in !idle && prep state */
1690 		worker->flags = WORKER_PREP;
1691 	}
1692 	return worker;
1693 }
1694 
1695 /**
1696  * create_worker - create a new workqueue worker
1697  * @pool: pool the new worker will belong to
1698  *
1699  * Create a new worker which is bound to @pool.  The returned worker
1700  * can be started by calling start_worker() or destroyed using
1701  * destroy_worker().
1702  *
1703  * CONTEXT:
1704  * Might sleep.  Does GFP_KERNEL allocations.
1705  *
1706  * Return:
1707  * Pointer to the newly created worker.
1708  */
1709 static struct worker *create_worker(struct worker_pool *pool)
1710 {
1711 	struct worker *worker = NULL;
1712 	int id = -1;
1713 	char id_buf[16];
1714 
1715 	lockdep_assert_held(&pool->manager_mutex);
1716 
1717 	/*
1718 	 * ID is needed to determine kthread name.  Allocate ID first
1719 	 * without installing the pointer.
1720 	 */
1721 	idr_preload(GFP_KERNEL);
1722 	spin_lock_irq(&pool->lock);
1723 
1724 	id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1725 
1726 	spin_unlock_irq(&pool->lock);
1727 	idr_preload_end();
1728 	if (id < 0)
1729 		goto fail;
1730 
1731 	worker = alloc_worker();
1732 	if (!worker)
1733 		goto fail;
1734 
1735 	worker->pool = pool;
1736 	worker->id = id;
1737 
1738 	if (pool->cpu >= 0)
1739 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1740 			 pool->attrs->nice < 0  ? "H" : "");
1741 	else
1742 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1743 
1744 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1745 					      "kworker/%s", id_buf);
1746 	if (IS_ERR(worker->task))
1747 		goto fail;
1748 
1749 	set_user_nice(worker->task, pool->attrs->nice);
1750 
1751 	/* prevent userland from meddling with cpumask of workqueue workers */
1752 	worker->task->flags |= PF_NO_SETAFFINITY;
1753 
1754 	/*
1755 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1756 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1757 	 */
1758 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1759 
1760 	/*
1761 	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1762 	 * remains stable across this function.  See the comments above the
1763 	 * flag definition for details.
1764 	 */
1765 	if (pool->flags & POOL_DISASSOCIATED)
1766 		worker->flags |= WORKER_UNBOUND;
1767 
1768 	/* successful, commit the pointer to idr */
1769 	spin_lock_irq(&pool->lock);
1770 	idr_replace(&pool->worker_idr, worker, worker->id);
1771 	spin_unlock_irq(&pool->lock);
1772 
1773 	return worker;
1774 
1775 fail:
1776 	if (id >= 0) {
1777 		spin_lock_irq(&pool->lock);
1778 		idr_remove(&pool->worker_idr, id);
1779 		spin_unlock_irq(&pool->lock);
1780 	}
1781 	kfree(worker);
1782 	return NULL;
1783 }
1784 
1785 /**
1786  * start_worker - start a newly created worker
1787  * @worker: worker to start
1788  *
1789  * Make the pool aware of @worker and start it.
1790  *
1791  * CONTEXT:
1792  * spin_lock_irq(pool->lock).
1793  */
1794 static void start_worker(struct worker *worker)
1795 {
1796 	worker->flags |= WORKER_STARTED;
1797 	worker->pool->nr_workers++;
1798 	worker_enter_idle(worker);
1799 	wake_up_process(worker->task);
1800 }
1801 
1802 /**
1803  * create_and_start_worker - create and start a worker for a pool
1804  * @pool: the target pool
1805  *
1806  * Grab the managership of @pool and create and start a new worker for it.
1807  *
1808  * Return: 0 on success. A negative error code otherwise.
1809  */
1810 static int create_and_start_worker(struct worker_pool *pool)
1811 {
1812 	struct worker *worker;
1813 
1814 	mutex_lock(&pool->manager_mutex);
1815 
1816 	worker = create_worker(pool);
1817 	if (worker) {
1818 		spin_lock_irq(&pool->lock);
1819 		start_worker(worker);
1820 		spin_unlock_irq(&pool->lock);
1821 	}
1822 
1823 	mutex_unlock(&pool->manager_mutex);
1824 
1825 	return worker ? 0 : -ENOMEM;
1826 }
1827 
1828 /**
1829  * destroy_worker - destroy a workqueue worker
1830  * @worker: worker to be destroyed
1831  *
1832  * Destroy @worker and adjust @pool stats accordingly.
1833  *
1834  * CONTEXT:
1835  * spin_lock_irq(pool->lock) which is released and regrabbed.
1836  */
1837 static void destroy_worker(struct worker *worker)
1838 {
1839 	struct worker_pool *pool = worker->pool;
1840 
1841 	lockdep_assert_held(&pool->manager_mutex);
1842 	lockdep_assert_held(&pool->lock);
1843 
1844 	/* sanity check frenzy */
1845 	if (WARN_ON(worker->current_work) ||
1846 	    WARN_ON(!list_empty(&worker->scheduled)))
1847 		return;
1848 
1849 	if (worker->flags & WORKER_STARTED)
1850 		pool->nr_workers--;
1851 	if (worker->flags & WORKER_IDLE)
1852 		pool->nr_idle--;
1853 
1854 	/*
1855 	 * Once WORKER_DIE is set, the kworker may destroy itself at any
1856 	 * point.  Pin to ensure the task stays until we're done with it.
1857 	 */
1858 	get_task_struct(worker->task);
1859 
1860 	list_del_init(&worker->entry);
1861 	worker->flags |= WORKER_DIE;
1862 
1863 	idr_remove(&pool->worker_idr, worker->id);
1864 
1865 	spin_unlock_irq(&pool->lock);
1866 
1867 	kthread_stop(worker->task);
1868 	put_task_struct(worker->task);
1869 	kfree(worker);
1870 
1871 	spin_lock_irq(&pool->lock);
1872 }
1873 
1874 static void idle_worker_timeout(unsigned long __pool)
1875 {
1876 	struct worker_pool *pool = (void *)__pool;
1877 
1878 	spin_lock_irq(&pool->lock);
1879 
1880 	if (too_many_workers(pool)) {
1881 		struct worker *worker;
1882 		unsigned long expires;
1883 
1884 		/* idle_list is kept in LIFO order, check the last one */
1885 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1886 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1887 
1888 		if (time_before(jiffies, expires))
1889 			mod_timer(&pool->idle_timer, expires);
1890 		else {
1891 			/* it's been idle for too long, wake up manager */
1892 			pool->flags |= POOL_MANAGE_WORKERS;
1893 			wake_up_worker(pool);
1894 		}
1895 	}
1896 
1897 	spin_unlock_irq(&pool->lock);
1898 }
1899 
1900 static void send_mayday(struct work_struct *work)
1901 {
1902 	struct pool_workqueue *pwq = get_work_pwq(work);
1903 	struct workqueue_struct *wq = pwq->wq;
1904 
1905 	lockdep_assert_held(&wq_mayday_lock);
1906 
1907 	if (!wq->rescuer)
1908 		return;
1909 
1910 	/* mayday mayday mayday */
1911 	if (list_empty(&pwq->mayday_node)) {
1912 		list_add_tail(&pwq->mayday_node, &wq->maydays);
1913 		wake_up_process(wq->rescuer->task);
1914 	}
1915 }
1916 
1917 static void pool_mayday_timeout(unsigned long __pool)
1918 {
1919 	struct worker_pool *pool = (void *)__pool;
1920 	struct work_struct *work;
1921 
1922 	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1923 	spin_lock(&pool->lock);
1924 
1925 	if (need_to_create_worker(pool)) {
1926 		/*
1927 		 * We've been trying to create a new worker but
1928 		 * haven't been successful.  We might be hitting an
1929 		 * allocation deadlock.  Send distress signals to
1930 		 * rescuers.
1931 		 */
1932 		list_for_each_entry(work, &pool->worklist, entry)
1933 			send_mayday(work);
1934 	}
1935 
1936 	spin_unlock(&pool->lock);
1937 	spin_unlock_irq(&wq_mayday_lock);
1938 
1939 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1940 }
1941 
1942 /**
1943  * maybe_create_worker - create a new worker if necessary
1944  * @pool: pool to create a new worker for
1945  *
1946  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1947  * have at least one idle worker on return from this function.  If
1948  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1949  * sent to all rescuers with works scheduled on @pool to resolve
1950  * possible allocation deadlock.
1951  *
1952  * On return, need_to_create_worker() is guaranteed to be %false and
1953  * may_start_working() %true.
1954  *
1955  * LOCKING:
1956  * spin_lock_irq(pool->lock) which may be released and regrabbed
1957  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1958  * manager.
1959  *
1960  * Return:
1961  * %false if no action was taken and pool->lock stayed locked, %true
1962  * otherwise.
1963  */
1964 static bool maybe_create_worker(struct worker_pool *pool)
1965 __releases(&pool->lock)
1966 __acquires(&pool->lock)
1967 {
1968 	if (!need_to_create_worker(pool))
1969 		return false;
1970 restart:
1971 	spin_unlock_irq(&pool->lock);
1972 
1973 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1974 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1975 
1976 	while (true) {
1977 		struct worker *worker;
1978 
1979 		worker = create_worker(pool);
1980 		if (worker) {
1981 			del_timer_sync(&pool->mayday_timer);
1982 			spin_lock_irq(&pool->lock);
1983 			start_worker(worker);
1984 			if (WARN_ON_ONCE(need_to_create_worker(pool)))
1985 				goto restart;
1986 			return true;
1987 		}
1988 
1989 		if (!need_to_create_worker(pool))
1990 			break;
1991 
1992 		__set_current_state(TASK_INTERRUPTIBLE);
1993 		schedule_timeout(CREATE_COOLDOWN);
1994 
1995 		if (!need_to_create_worker(pool))
1996 			break;
1997 	}
1998 
1999 	del_timer_sync(&pool->mayday_timer);
2000 	spin_lock_irq(&pool->lock);
2001 	if (need_to_create_worker(pool))
2002 		goto restart;
2003 	return true;
2004 }
2005 
2006 /**
2007  * maybe_destroy_worker - destroy workers which have been idle for a while
2008  * @pool: pool to destroy workers for
2009  *
2010  * Destroy @pool workers which have been idle for longer than
2011  * IDLE_WORKER_TIMEOUT.
2012  *
2013  * LOCKING:
2014  * spin_lock_irq(pool->lock) which may be released and regrabbed
2015  * multiple times.  Called only from manager.
2016  *
2017  * Return:
2018  * %false if no action was taken and pool->lock stayed locked, %true
2019  * otherwise.
2020  */
2021 static bool maybe_destroy_workers(struct worker_pool *pool)
2022 {
2023 	bool ret = false;
2024 
2025 	while (too_many_workers(pool)) {
2026 		struct worker *worker;
2027 		unsigned long expires;
2028 
2029 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2030 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2031 
2032 		if (time_before(jiffies, expires)) {
2033 			mod_timer(&pool->idle_timer, expires);
2034 			break;
2035 		}
2036 
2037 		destroy_worker(worker);
2038 		ret = true;
2039 	}
2040 
2041 	return ret;
2042 }
2043 
2044 /**
2045  * manage_workers - manage worker pool
2046  * @worker: self
2047  *
2048  * Assume the manager role and manage the worker pool @worker belongs
2049  * to.  At any given time, there can be only zero or one manager per
2050  * pool.  The exclusion is handled automatically by this function.
2051  *
2052  * The caller can safely start processing works on false return.  On
2053  * true return, it's guaranteed that need_to_create_worker() is false
2054  * and may_start_working() is true.
2055  *
2056  * CONTEXT:
2057  * spin_lock_irq(pool->lock) which may be released and regrabbed
2058  * multiple times.  Does GFP_KERNEL allocations.
2059  *
2060  * Return:
2061  * %false if the pool don't need management and the caller can safely start
2062  * processing works, %true indicates that the function released pool->lock
2063  * and reacquired it to perform some management function and that the
2064  * conditions that the caller verified while holding the lock before
2065  * calling the function might no longer be true.
2066  */
2067 static bool manage_workers(struct worker *worker)
2068 {
2069 	struct worker_pool *pool = worker->pool;
2070 	bool ret = false;
2071 
2072 	/*
2073 	 * Managership is governed by two mutexes - manager_arb and
2074 	 * manager_mutex.  manager_arb handles arbitration of manager role.
2075 	 * Anyone who successfully grabs manager_arb wins the arbitration
2076 	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
2077 	 * failure while holding pool->lock reliably indicates that someone
2078 	 * else is managing the pool and the worker which failed trylock
2079 	 * can proceed to executing work items.  This means that anyone
2080 	 * grabbing manager_arb is responsible for actually performing
2081 	 * manager duties.  If manager_arb is grabbed and released without
2082 	 * actual management, the pool may stall indefinitely.
2083 	 *
2084 	 * manager_mutex is used for exclusion of actual management
2085 	 * operations.  The holder of manager_mutex can be sure that none
2086 	 * of management operations, including creation and destruction of
2087 	 * workers, won't take place until the mutex is released.  Because
2088 	 * manager_mutex doesn't interfere with manager role arbitration,
2089 	 * it is guaranteed that the pool's management, while may be
2090 	 * delayed, won't be disturbed by someone else grabbing
2091 	 * manager_mutex.
2092 	 */
2093 	if (!mutex_trylock(&pool->manager_arb))
2094 		return ret;
2095 
2096 	/*
2097 	 * With manager arbitration won, manager_mutex would be free in
2098 	 * most cases.  trylock first without dropping @pool->lock.
2099 	 */
2100 	if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2101 		spin_unlock_irq(&pool->lock);
2102 		mutex_lock(&pool->manager_mutex);
2103 		spin_lock_irq(&pool->lock);
2104 		ret = true;
2105 	}
2106 
2107 	pool->flags &= ~POOL_MANAGE_WORKERS;
2108 
2109 	/*
2110 	 * Destroy and then create so that may_start_working() is true
2111 	 * on return.
2112 	 */
2113 	ret |= maybe_destroy_workers(pool);
2114 	ret |= maybe_create_worker(pool);
2115 
2116 	mutex_unlock(&pool->manager_mutex);
2117 	mutex_unlock(&pool->manager_arb);
2118 	return ret;
2119 }
2120 
2121 /**
2122  * process_one_work - process single work
2123  * @worker: self
2124  * @work: work to process
2125  *
2126  * Process @work.  This function contains all the logics necessary to
2127  * process a single work including synchronization against and
2128  * interaction with other workers on the same cpu, queueing and
2129  * flushing.  As long as context requirement is met, any worker can
2130  * call this function to process a work.
2131  *
2132  * CONTEXT:
2133  * spin_lock_irq(pool->lock) which is released and regrabbed.
2134  */
2135 static void process_one_work(struct worker *worker, struct work_struct *work)
2136 __releases(&pool->lock)
2137 __acquires(&pool->lock)
2138 {
2139 	struct pool_workqueue *pwq = get_work_pwq(work);
2140 	struct worker_pool *pool = worker->pool;
2141 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2142 	int work_color;
2143 	struct worker *collision;
2144 #ifdef CONFIG_LOCKDEP
2145 	/*
2146 	 * It is permissible to free the struct work_struct from
2147 	 * inside the function that is called from it, this we need to
2148 	 * take into account for lockdep too.  To avoid bogus "held
2149 	 * lock freed" warnings as well as problems when looking into
2150 	 * work->lockdep_map, make a copy and use that here.
2151 	 */
2152 	struct lockdep_map lockdep_map;
2153 
2154 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2155 #endif
2156 	/*
2157 	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
2158 	 * necessary to avoid spurious warnings from rescuers servicing the
2159 	 * unbound or a disassociated pool.
2160 	 */
2161 	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2162 		     !(pool->flags & POOL_DISASSOCIATED) &&
2163 		     raw_smp_processor_id() != pool->cpu);
2164 
2165 	/*
2166 	 * A single work shouldn't be executed concurrently by
2167 	 * multiple workers on a single cpu.  Check whether anyone is
2168 	 * already processing the work.  If so, defer the work to the
2169 	 * currently executing one.
2170 	 */
2171 	collision = find_worker_executing_work(pool, work);
2172 	if (unlikely(collision)) {
2173 		move_linked_works(work, &collision->scheduled, NULL);
2174 		return;
2175 	}
2176 
2177 	/* claim and dequeue */
2178 	debug_work_deactivate(work);
2179 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2180 	worker->current_work = work;
2181 	worker->current_func = work->func;
2182 	worker->current_pwq = pwq;
2183 	work_color = get_work_color(work);
2184 
2185 	list_del_init(&work->entry);
2186 
2187 	/*
2188 	 * CPU intensive works don't participate in concurrency
2189 	 * management.  They're the scheduler's responsibility.
2190 	 */
2191 	if (unlikely(cpu_intensive))
2192 		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2193 
2194 	/*
2195 	 * Unbound pool isn't concurrency managed and work items should be
2196 	 * executed ASAP.  Wake up another worker if necessary.
2197 	 */
2198 	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2199 		wake_up_worker(pool);
2200 
2201 	/*
2202 	 * Record the last pool and clear PENDING which should be the last
2203 	 * update to @work.  Also, do this inside @pool->lock so that
2204 	 * PENDING and queued state changes happen together while IRQ is
2205 	 * disabled.
2206 	 */
2207 	set_work_pool_and_clear_pending(work, pool->id);
2208 
2209 	spin_unlock_irq(&pool->lock);
2210 
2211 	lock_map_acquire_read(&pwq->wq->lockdep_map);
2212 	lock_map_acquire(&lockdep_map);
2213 	trace_workqueue_execute_start(work);
2214 	worker->current_func(work);
2215 	/*
2216 	 * While we must be careful to not use "work" after this, the trace
2217 	 * point will only record its address.
2218 	 */
2219 	trace_workqueue_execute_end(work);
2220 	lock_map_release(&lockdep_map);
2221 	lock_map_release(&pwq->wq->lockdep_map);
2222 
2223 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2224 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2225 		       "     last function: %pf\n",
2226 		       current->comm, preempt_count(), task_pid_nr(current),
2227 		       worker->current_func);
2228 		debug_show_held_locks(current);
2229 		dump_stack();
2230 	}
2231 
2232 	/*
2233 	 * The following prevents a kworker from hogging CPU on !PREEMPT
2234 	 * kernels, where a requeueing work item waiting for something to
2235 	 * happen could deadlock with stop_machine as such work item could
2236 	 * indefinitely requeue itself while all other CPUs are trapped in
2237 	 * stop_machine.
2238 	 */
2239 	cond_resched();
2240 
2241 	spin_lock_irq(&pool->lock);
2242 
2243 	/* clear cpu intensive status */
2244 	if (unlikely(cpu_intensive))
2245 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2246 
2247 	/* we're done with it, release */
2248 	hash_del(&worker->hentry);
2249 	worker->current_work = NULL;
2250 	worker->current_func = NULL;
2251 	worker->current_pwq = NULL;
2252 	worker->desc_valid = false;
2253 	pwq_dec_nr_in_flight(pwq, work_color);
2254 }
2255 
2256 /**
2257  * process_scheduled_works - process scheduled works
2258  * @worker: self
2259  *
2260  * Process all scheduled works.  Please note that the scheduled list
2261  * may change while processing a work, so this function repeatedly
2262  * fetches a work from the top and executes it.
2263  *
2264  * CONTEXT:
2265  * spin_lock_irq(pool->lock) which may be released and regrabbed
2266  * multiple times.
2267  */
2268 static void process_scheduled_works(struct worker *worker)
2269 {
2270 	while (!list_empty(&worker->scheduled)) {
2271 		struct work_struct *work = list_first_entry(&worker->scheduled,
2272 						struct work_struct, entry);
2273 		process_one_work(worker, work);
2274 	}
2275 }
2276 
2277 /**
2278  * worker_thread - the worker thread function
2279  * @__worker: self
2280  *
2281  * The worker thread function.  All workers belong to a worker_pool -
2282  * either a per-cpu one or dynamic unbound one.  These workers process all
2283  * work items regardless of their specific target workqueue.  The only
2284  * exception is work items which belong to workqueues with a rescuer which
2285  * will be explained in rescuer_thread().
2286  *
2287  * Return: 0
2288  */
2289 static int worker_thread(void *__worker)
2290 {
2291 	struct worker *worker = __worker;
2292 	struct worker_pool *pool = worker->pool;
2293 
2294 	/* tell the scheduler that this is a workqueue worker */
2295 	worker->task->flags |= PF_WQ_WORKER;
2296 woke_up:
2297 	spin_lock_irq(&pool->lock);
2298 
2299 	/* am I supposed to die? */
2300 	if (unlikely(worker->flags & WORKER_DIE)) {
2301 		spin_unlock_irq(&pool->lock);
2302 		WARN_ON_ONCE(!list_empty(&worker->entry));
2303 		worker->task->flags &= ~PF_WQ_WORKER;
2304 		return 0;
2305 	}
2306 
2307 	worker_leave_idle(worker);
2308 recheck:
2309 	/* no more worker necessary? */
2310 	if (!need_more_worker(pool))
2311 		goto sleep;
2312 
2313 	/* do we need to manage? */
2314 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2315 		goto recheck;
2316 
2317 	/*
2318 	 * ->scheduled list can only be filled while a worker is
2319 	 * preparing to process a work or actually processing it.
2320 	 * Make sure nobody diddled with it while I was sleeping.
2321 	 */
2322 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2323 
2324 	/*
2325 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2326 	 * worker or that someone else has already assumed the manager
2327 	 * role.  This is where @worker starts participating in concurrency
2328 	 * management if applicable and concurrency management is restored
2329 	 * after being rebound.  See rebind_workers() for details.
2330 	 */
2331 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2332 
2333 	do {
2334 		struct work_struct *work =
2335 			list_first_entry(&pool->worklist,
2336 					 struct work_struct, entry);
2337 
2338 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2339 			/* optimization path, not strictly necessary */
2340 			process_one_work(worker, work);
2341 			if (unlikely(!list_empty(&worker->scheduled)))
2342 				process_scheduled_works(worker);
2343 		} else {
2344 			move_linked_works(work, &worker->scheduled, NULL);
2345 			process_scheduled_works(worker);
2346 		}
2347 	} while (keep_working(pool));
2348 
2349 	worker_set_flags(worker, WORKER_PREP, false);
2350 sleep:
2351 	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2352 		goto recheck;
2353 
2354 	/*
2355 	 * pool->lock is held and there's no work to process and no need to
2356 	 * manage, sleep.  Workers are woken up only while holding
2357 	 * pool->lock or from local cpu, so setting the current state
2358 	 * before releasing pool->lock is enough to prevent losing any
2359 	 * event.
2360 	 */
2361 	worker_enter_idle(worker);
2362 	__set_current_state(TASK_INTERRUPTIBLE);
2363 	spin_unlock_irq(&pool->lock);
2364 	schedule();
2365 	goto woke_up;
2366 }
2367 
2368 /**
2369  * rescuer_thread - the rescuer thread function
2370  * @__rescuer: self
2371  *
2372  * Workqueue rescuer thread function.  There's one rescuer for each
2373  * workqueue which has WQ_MEM_RECLAIM set.
2374  *
2375  * Regular work processing on a pool may block trying to create a new
2376  * worker which uses GFP_KERNEL allocation which has slight chance of
2377  * developing into deadlock if some works currently on the same queue
2378  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2379  * the problem rescuer solves.
2380  *
2381  * When such condition is possible, the pool summons rescuers of all
2382  * workqueues which have works queued on the pool and let them process
2383  * those works so that forward progress can be guaranteed.
2384  *
2385  * This should happen rarely.
2386  *
2387  * Return: 0
2388  */
2389 static int rescuer_thread(void *__rescuer)
2390 {
2391 	struct worker *rescuer = __rescuer;
2392 	struct workqueue_struct *wq = rescuer->rescue_wq;
2393 	struct list_head *scheduled = &rescuer->scheduled;
2394 
2395 	set_user_nice(current, RESCUER_NICE_LEVEL);
2396 
2397 	/*
2398 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2399 	 * doesn't participate in concurrency management.
2400 	 */
2401 	rescuer->task->flags |= PF_WQ_WORKER;
2402 repeat:
2403 	set_current_state(TASK_INTERRUPTIBLE);
2404 
2405 	if (kthread_should_stop()) {
2406 		__set_current_state(TASK_RUNNING);
2407 		rescuer->task->flags &= ~PF_WQ_WORKER;
2408 		return 0;
2409 	}
2410 
2411 	/* see whether any pwq is asking for help */
2412 	spin_lock_irq(&wq_mayday_lock);
2413 
2414 	while (!list_empty(&wq->maydays)) {
2415 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2416 					struct pool_workqueue, mayday_node);
2417 		struct worker_pool *pool = pwq->pool;
2418 		struct work_struct *work, *n;
2419 
2420 		__set_current_state(TASK_RUNNING);
2421 		list_del_init(&pwq->mayday_node);
2422 
2423 		spin_unlock_irq(&wq_mayday_lock);
2424 
2425 		/* migrate to the target cpu if possible */
2426 		worker_maybe_bind_and_lock(pool);
2427 		rescuer->pool = pool;
2428 
2429 		/*
2430 		 * Slurp in all works issued via this workqueue and
2431 		 * process'em.
2432 		 */
2433 		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2434 		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2435 			if (get_work_pwq(work) == pwq)
2436 				move_linked_works(work, scheduled, &n);
2437 
2438 		process_scheduled_works(rescuer);
2439 
2440 		/*
2441 		 * Leave this pool.  If keep_working() is %true, notify a
2442 		 * regular worker; otherwise, we end up with 0 concurrency
2443 		 * and stalling the execution.
2444 		 */
2445 		if (keep_working(pool))
2446 			wake_up_worker(pool);
2447 
2448 		rescuer->pool = NULL;
2449 		spin_unlock(&pool->lock);
2450 		spin_lock(&wq_mayday_lock);
2451 	}
2452 
2453 	spin_unlock_irq(&wq_mayday_lock);
2454 
2455 	/* rescuers should never participate in concurrency management */
2456 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2457 	schedule();
2458 	goto repeat;
2459 }
2460 
2461 struct wq_barrier {
2462 	struct work_struct	work;
2463 	struct completion	done;
2464 };
2465 
2466 static void wq_barrier_func(struct work_struct *work)
2467 {
2468 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2469 	complete(&barr->done);
2470 }
2471 
2472 /**
2473  * insert_wq_barrier - insert a barrier work
2474  * @pwq: pwq to insert barrier into
2475  * @barr: wq_barrier to insert
2476  * @target: target work to attach @barr to
2477  * @worker: worker currently executing @target, NULL if @target is not executing
2478  *
2479  * @barr is linked to @target such that @barr is completed only after
2480  * @target finishes execution.  Please note that the ordering
2481  * guarantee is observed only with respect to @target and on the local
2482  * cpu.
2483  *
2484  * Currently, a queued barrier can't be canceled.  This is because
2485  * try_to_grab_pending() can't determine whether the work to be
2486  * grabbed is at the head of the queue and thus can't clear LINKED
2487  * flag of the previous work while there must be a valid next work
2488  * after a work with LINKED flag set.
2489  *
2490  * Note that when @worker is non-NULL, @target may be modified
2491  * underneath us, so we can't reliably determine pwq from @target.
2492  *
2493  * CONTEXT:
2494  * spin_lock_irq(pool->lock).
2495  */
2496 static void insert_wq_barrier(struct pool_workqueue *pwq,
2497 			      struct wq_barrier *barr,
2498 			      struct work_struct *target, struct worker *worker)
2499 {
2500 	struct list_head *head;
2501 	unsigned int linked = 0;
2502 
2503 	/*
2504 	 * debugobject calls are safe here even with pool->lock locked
2505 	 * as we know for sure that this will not trigger any of the
2506 	 * checks and call back into the fixup functions where we
2507 	 * might deadlock.
2508 	 */
2509 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2510 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2511 	init_completion(&barr->done);
2512 
2513 	/*
2514 	 * If @target is currently being executed, schedule the
2515 	 * barrier to the worker; otherwise, put it after @target.
2516 	 */
2517 	if (worker)
2518 		head = worker->scheduled.next;
2519 	else {
2520 		unsigned long *bits = work_data_bits(target);
2521 
2522 		head = target->entry.next;
2523 		/* there can already be other linked works, inherit and set */
2524 		linked = *bits & WORK_STRUCT_LINKED;
2525 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2526 	}
2527 
2528 	debug_work_activate(&barr->work);
2529 	insert_work(pwq, &barr->work, head,
2530 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2531 }
2532 
2533 /**
2534  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2535  * @wq: workqueue being flushed
2536  * @flush_color: new flush color, < 0 for no-op
2537  * @work_color: new work color, < 0 for no-op
2538  *
2539  * Prepare pwqs for workqueue flushing.
2540  *
2541  * If @flush_color is non-negative, flush_color on all pwqs should be
2542  * -1.  If no pwq has in-flight commands at the specified color, all
2543  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2544  * has in flight commands, its pwq->flush_color is set to
2545  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2546  * wakeup logic is armed and %true is returned.
2547  *
2548  * The caller should have initialized @wq->first_flusher prior to
2549  * calling this function with non-negative @flush_color.  If
2550  * @flush_color is negative, no flush color update is done and %false
2551  * is returned.
2552  *
2553  * If @work_color is non-negative, all pwqs should have the same
2554  * work_color which is previous to @work_color and all will be
2555  * advanced to @work_color.
2556  *
2557  * CONTEXT:
2558  * mutex_lock(wq->mutex).
2559  *
2560  * Return:
2561  * %true if @flush_color >= 0 and there's something to flush.  %false
2562  * otherwise.
2563  */
2564 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2565 				      int flush_color, int work_color)
2566 {
2567 	bool wait = false;
2568 	struct pool_workqueue *pwq;
2569 
2570 	if (flush_color >= 0) {
2571 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2572 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2573 	}
2574 
2575 	for_each_pwq(pwq, wq) {
2576 		struct worker_pool *pool = pwq->pool;
2577 
2578 		spin_lock_irq(&pool->lock);
2579 
2580 		if (flush_color >= 0) {
2581 			WARN_ON_ONCE(pwq->flush_color != -1);
2582 
2583 			if (pwq->nr_in_flight[flush_color]) {
2584 				pwq->flush_color = flush_color;
2585 				atomic_inc(&wq->nr_pwqs_to_flush);
2586 				wait = true;
2587 			}
2588 		}
2589 
2590 		if (work_color >= 0) {
2591 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2592 			pwq->work_color = work_color;
2593 		}
2594 
2595 		spin_unlock_irq(&pool->lock);
2596 	}
2597 
2598 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2599 		complete(&wq->first_flusher->done);
2600 
2601 	return wait;
2602 }
2603 
2604 /**
2605  * flush_workqueue - ensure that any scheduled work has run to completion.
2606  * @wq: workqueue to flush
2607  *
2608  * This function sleeps until all work items which were queued on entry
2609  * have finished execution, but it is not livelocked by new incoming ones.
2610  */
2611 void flush_workqueue(struct workqueue_struct *wq)
2612 {
2613 	struct wq_flusher this_flusher = {
2614 		.list = LIST_HEAD_INIT(this_flusher.list),
2615 		.flush_color = -1,
2616 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2617 	};
2618 	int next_color;
2619 
2620 	lock_map_acquire(&wq->lockdep_map);
2621 	lock_map_release(&wq->lockdep_map);
2622 
2623 	mutex_lock(&wq->mutex);
2624 
2625 	/*
2626 	 * Start-to-wait phase
2627 	 */
2628 	next_color = work_next_color(wq->work_color);
2629 
2630 	if (next_color != wq->flush_color) {
2631 		/*
2632 		 * Color space is not full.  The current work_color
2633 		 * becomes our flush_color and work_color is advanced
2634 		 * by one.
2635 		 */
2636 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2637 		this_flusher.flush_color = wq->work_color;
2638 		wq->work_color = next_color;
2639 
2640 		if (!wq->first_flusher) {
2641 			/* no flush in progress, become the first flusher */
2642 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2643 
2644 			wq->first_flusher = &this_flusher;
2645 
2646 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2647 						       wq->work_color)) {
2648 				/* nothing to flush, done */
2649 				wq->flush_color = next_color;
2650 				wq->first_flusher = NULL;
2651 				goto out_unlock;
2652 			}
2653 		} else {
2654 			/* wait in queue */
2655 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2656 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2657 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2658 		}
2659 	} else {
2660 		/*
2661 		 * Oops, color space is full, wait on overflow queue.
2662 		 * The next flush completion will assign us
2663 		 * flush_color and transfer to flusher_queue.
2664 		 */
2665 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2666 	}
2667 
2668 	mutex_unlock(&wq->mutex);
2669 
2670 	wait_for_completion(&this_flusher.done);
2671 
2672 	/*
2673 	 * Wake-up-and-cascade phase
2674 	 *
2675 	 * First flushers are responsible for cascading flushes and
2676 	 * handling overflow.  Non-first flushers can simply return.
2677 	 */
2678 	if (wq->first_flusher != &this_flusher)
2679 		return;
2680 
2681 	mutex_lock(&wq->mutex);
2682 
2683 	/* we might have raced, check again with mutex held */
2684 	if (wq->first_flusher != &this_flusher)
2685 		goto out_unlock;
2686 
2687 	wq->first_flusher = NULL;
2688 
2689 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2690 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2691 
2692 	while (true) {
2693 		struct wq_flusher *next, *tmp;
2694 
2695 		/* complete all the flushers sharing the current flush color */
2696 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2697 			if (next->flush_color != wq->flush_color)
2698 				break;
2699 			list_del_init(&next->list);
2700 			complete(&next->done);
2701 		}
2702 
2703 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2704 			     wq->flush_color != work_next_color(wq->work_color));
2705 
2706 		/* this flush_color is finished, advance by one */
2707 		wq->flush_color = work_next_color(wq->flush_color);
2708 
2709 		/* one color has been freed, handle overflow queue */
2710 		if (!list_empty(&wq->flusher_overflow)) {
2711 			/*
2712 			 * Assign the same color to all overflowed
2713 			 * flushers, advance work_color and append to
2714 			 * flusher_queue.  This is the start-to-wait
2715 			 * phase for these overflowed flushers.
2716 			 */
2717 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2718 				tmp->flush_color = wq->work_color;
2719 
2720 			wq->work_color = work_next_color(wq->work_color);
2721 
2722 			list_splice_tail_init(&wq->flusher_overflow,
2723 					      &wq->flusher_queue);
2724 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2725 		}
2726 
2727 		if (list_empty(&wq->flusher_queue)) {
2728 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2729 			break;
2730 		}
2731 
2732 		/*
2733 		 * Need to flush more colors.  Make the next flusher
2734 		 * the new first flusher and arm pwqs.
2735 		 */
2736 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2737 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2738 
2739 		list_del_init(&next->list);
2740 		wq->first_flusher = next;
2741 
2742 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2743 			break;
2744 
2745 		/*
2746 		 * Meh... this color is already done, clear first
2747 		 * flusher and repeat cascading.
2748 		 */
2749 		wq->first_flusher = NULL;
2750 	}
2751 
2752 out_unlock:
2753 	mutex_unlock(&wq->mutex);
2754 }
2755 EXPORT_SYMBOL_GPL(flush_workqueue);
2756 
2757 /**
2758  * drain_workqueue - drain a workqueue
2759  * @wq: workqueue to drain
2760  *
2761  * Wait until the workqueue becomes empty.  While draining is in progress,
2762  * only chain queueing is allowed.  IOW, only currently pending or running
2763  * work items on @wq can queue further work items on it.  @wq is flushed
2764  * repeatedly until it becomes empty.  The number of flushing is detemined
2765  * by the depth of chaining and should be relatively short.  Whine if it
2766  * takes too long.
2767  */
2768 void drain_workqueue(struct workqueue_struct *wq)
2769 {
2770 	unsigned int flush_cnt = 0;
2771 	struct pool_workqueue *pwq;
2772 
2773 	/*
2774 	 * __queue_work() needs to test whether there are drainers, is much
2775 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2776 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2777 	 */
2778 	mutex_lock(&wq->mutex);
2779 	if (!wq->nr_drainers++)
2780 		wq->flags |= __WQ_DRAINING;
2781 	mutex_unlock(&wq->mutex);
2782 reflush:
2783 	flush_workqueue(wq);
2784 
2785 	mutex_lock(&wq->mutex);
2786 
2787 	for_each_pwq(pwq, wq) {
2788 		bool drained;
2789 
2790 		spin_lock_irq(&pwq->pool->lock);
2791 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2792 		spin_unlock_irq(&pwq->pool->lock);
2793 
2794 		if (drained)
2795 			continue;
2796 
2797 		if (++flush_cnt == 10 ||
2798 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2799 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2800 				wq->name, flush_cnt);
2801 
2802 		mutex_unlock(&wq->mutex);
2803 		goto reflush;
2804 	}
2805 
2806 	if (!--wq->nr_drainers)
2807 		wq->flags &= ~__WQ_DRAINING;
2808 	mutex_unlock(&wq->mutex);
2809 }
2810 EXPORT_SYMBOL_GPL(drain_workqueue);
2811 
2812 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2813 {
2814 	struct worker *worker = NULL;
2815 	struct worker_pool *pool;
2816 	struct pool_workqueue *pwq;
2817 
2818 	might_sleep();
2819 
2820 	local_irq_disable();
2821 	pool = get_work_pool(work);
2822 	if (!pool) {
2823 		local_irq_enable();
2824 		return false;
2825 	}
2826 
2827 	spin_lock(&pool->lock);
2828 	/* see the comment in try_to_grab_pending() with the same code */
2829 	pwq = get_work_pwq(work);
2830 	if (pwq) {
2831 		if (unlikely(pwq->pool != pool))
2832 			goto already_gone;
2833 	} else {
2834 		worker = find_worker_executing_work(pool, work);
2835 		if (!worker)
2836 			goto already_gone;
2837 		pwq = worker->current_pwq;
2838 	}
2839 
2840 	insert_wq_barrier(pwq, barr, work, worker);
2841 	spin_unlock_irq(&pool->lock);
2842 
2843 	/*
2844 	 * If @max_active is 1 or rescuer is in use, flushing another work
2845 	 * item on the same workqueue may lead to deadlock.  Make sure the
2846 	 * flusher is not running on the same workqueue by verifying write
2847 	 * access.
2848 	 */
2849 	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2850 		lock_map_acquire(&pwq->wq->lockdep_map);
2851 	else
2852 		lock_map_acquire_read(&pwq->wq->lockdep_map);
2853 	lock_map_release(&pwq->wq->lockdep_map);
2854 
2855 	return true;
2856 already_gone:
2857 	spin_unlock_irq(&pool->lock);
2858 	return false;
2859 }
2860 
2861 /**
2862  * flush_work - wait for a work to finish executing the last queueing instance
2863  * @work: the work to flush
2864  *
2865  * Wait until @work has finished execution.  @work is guaranteed to be idle
2866  * on return if it hasn't been requeued since flush started.
2867  *
2868  * Return:
2869  * %true if flush_work() waited for the work to finish execution,
2870  * %false if it was already idle.
2871  */
2872 bool flush_work(struct work_struct *work)
2873 {
2874 	struct wq_barrier barr;
2875 
2876 	lock_map_acquire(&work->lockdep_map);
2877 	lock_map_release(&work->lockdep_map);
2878 
2879 	if (start_flush_work(work, &barr)) {
2880 		wait_for_completion(&barr.done);
2881 		destroy_work_on_stack(&barr.work);
2882 		return true;
2883 	} else {
2884 		return false;
2885 	}
2886 }
2887 EXPORT_SYMBOL_GPL(flush_work);
2888 
2889 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2890 {
2891 	unsigned long flags;
2892 	int ret;
2893 
2894 	do {
2895 		ret = try_to_grab_pending(work, is_dwork, &flags);
2896 		/*
2897 		 * If someone else is canceling, wait for the same event it
2898 		 * would be waiting for before retrying.
2899 		 */
2900 		if (unlikely(ret == -ENOENT))
2901 			flush_work(work);
2902 	} while (unlikely(ret < 0));
2903 
2904 	/* tell other tasks trying to grab @work to back off */
2905 	mark_work_canceling(work);
2906 	local_irq_restore(flags);
2907 
2908 	flush_work(work);
2909 	clear_work_data(work);
2910 	return ret;
2911 }
2912 
2913 /**
2914  * cancel_work_sync - cancel a work and wait for it to finish
2915  * @work: the work to cancel
2916  *
2917  * Cancel @work and wait for its execution to finish.  This function
2918  * can be used even if the work re-queues itself or migrates to
2919  * another workqueue.  On return from this function, @work is
2920  * guaranteed to be not pending or executing on any CPU.
2921  *
2922  * cancel_work_sync(&delayed_work->work) must not be used for
2923  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2924  *
2925  * The caller must ensure that the workqueue on which @work was last
2926  * queued can't be destroyed before this function returns.
2927  *
2928  * Return:
2929  * %true if @work was pending, %false otherwise.
2930  */
2931 bool cancel_work_sync(struct work_struct *work)
2932 {
2933 	return __cancel_work_timer(work, false);
2934 }
2935 EXPORT_SYMBOL_GPL(cancel_work_sync);
2936 
2937 /**
2938  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2939  * @dwork: the delayed work to flush
2940  *
2941  * Delayed timer is cancelled and the pending work is queued for
2942  * immediate execution.  Like flush_work(), this function only
2943  * considers the last queueing instance of @dwork.
2944  *
2945  * Return:
2946  * %true if flush_work() waited for the work to finish execution,
2947  * %false if it was already idle.
2948  */
2949 bool flush_delayed_work(struct delayed_work *dwork)
2950 {
2951 	local_irq_disable();
2952 	if (del_timer_sync(&dwork->timer))
2953 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2954 	local_irq_enable();
2955 	return flush_work(&dwork->work);
2956 }
2957 EXPORT_SYMBOL(flush_delayed_work);
2958 
2959 /**
2960  * cancel_delayed_work - cancel a delayed work
2961  * @dwork: delayed_work to cancel
2962  *
2963  * Kill off a pending delayed_work.
2964  *
2965  * Return: %true if @dwork was pending and canceled; %false if it wasn't
2966  * pending.
2967  *
2968  * Note:
2969  * The work callback function may still be running on return, unless
2970  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
2971  * use cancel_delayed_work_sync() to wait on it.
2972  *
2973  * This function is safe to call from any context including IRQ handler.
2974  */
2975 bool cancel_delayed_work(struct delayed_work *dwork)
2976 {
2977 	unsigned long flags;
2978 	int ret;
2979 
2980 	do {
2981 		ret = try_to_grab_pending(&dwork->work, true, &flags);
2982 	} while (unlikely(ret == -EAGAIN));
2983 
2984 	if (unlikely(ret < 0))
2985 		return false;
2986 
2987 	set_work_pool_and_clear_pending(&dwork->work,
2988 					get_work_pool_id(&dwork->work));
2989 	local_irq_restore(flags);
2990 	return ret;
2991 }
2992 EXPORT_SYMBOL(cancel_delayed_work);
2993 
2994 /**
2995  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2996  * @dwork: the delayed work cancel
2997  *
2998  * This is cancel_work_sync() for delayed works.
2999  *
3000  * Return:
3001  * %true if @dwork was pending, %false otherwise.
3002  */
3003 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3004 {
3005 	return __cancel_work_timer(&dwork->work, true);
3006 }
3007 EXPORT_SYMBOL(cancel_delayed_work_sync);
3008 
3009 /**
3010  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3011  * @func: the function to call
3012  *
3013  * schedule_on_each_cpu() executes @func on each online CPU using the
3014  * system workqueue and blocks until all CPUs have completed.
3015  * schedule_on_each_cpu() is very slow.
3016  *
3017  * Return:
3018  * 0 on success, -errno on failure.
3019  */
3020 int schedule_on_each_cpu(work_func_t func)
3021 {
3022 	int cpu;
3023 	struct work_struct __percpu *works;
3024 
3025 	works = alloc_percpu(struct work_struct);
3026 	if (!works)
3027 		return -ENOMEM;
3028 
3029 	get_online_cpus();
3030 
3031 	for_each_online_cpu(cpu) {
3032 		struct work_struct *work = per_cpu_ptr(works, cpu);
3033 
3034 		INIT_WORK(work, func);
3035 		schedule_work_on(cpu, work);
3036 	}
3037 
3038 	for_each_online_cpu(cpu)
3039 		flush_work(per_cpu_ptr(works, cpu));
3040 
3041 	put_online_cpus();
3042 	free_percpu(works);
3043 	return 0;
3044 }
3045 
3046 /**
3047  * flush_scheduled_work - ensure that any scheduled work has run to completion.
3048  *
3049  * Forces execution of the kernel-global workqueue and blocks until its
3050  * completion.
3051  *
3052  * Think twice before calling this function!  It's very easy to get into
3053  * trouble if you don't take great care.  Either of the following situations
3054  * will lead to deadlock:
3055  *
3056  *	One of the work items currently on the workqueue needs to acquire
3057  *	a lock held by your code or its caller.
3058  *
3059  *	Your code is running in the context of a work routine.
3060  *
3061  * They will be detected by lockdep when they occur, but the first might not
3062  * occur very often.  It depends on what work items are on the workqueue and
3063  * what locks they need, which you have no control over.
3064  *
3065  * In most situations flushing the entire workqueue is overkill; you merely
3066  * need to know that a particular work item isn't queued and isn't running.
3067  * In such cases you should use cancel_delayed_work_sync() or
3068  * cancel_work_sync() instead.
3069  */
3070 void flush_scheduled_work(void)
3071 {
3072 	flush_workqueue(system_wq);
3073 }
3074 EXPORT_SYMBOL(flush_scheduled_work);
3075 
3076 /**
3077  * execute_in_process_context - reliably execute the routine with user context
3078  * @fn:		the function to execute
3079  * @ew:		guaranteed storage for the execute work structure (must
3080  *		be available when the work executes)
3081  *
3082  * Executes the function immediately if process context is available,
3083  * otherwise schedules the function for delayed execution.
3084  *
3085  * Return:	0 - function was executed
3086  *		1 - function was scheduled for execution
3087  */
3088 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3089 {
3090 	if (!in_interrupt()) {
3091 		fn(&ew->work);
3092 		return 0;
3093 	}
3094 
3095 	INIT_WORK(&ew->work, fn);
3096 	schedule_work(&ew->work);
3097 
3098 	return 1;
3099 }
3100 EXPORT_SYMBOL_GPL(execute_in_process_context);
3101 
3102 #ifdef CONFIG_SYSFS
3103 /*
3104  * Workqueues with WQ_SYSFS flag set is visible to userland via
3105  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
3106  * following attributes.
3107  *
3108  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
3109  *  max_active	RW int	: maximum number of in-flight work items
3110  *
3111  * Unbound workqueues have the following extra attributes.
3112  *
3113  *  id		RO int	: the associated pool ID
3114  *  nice	RW int	: nice value of the workers
3115  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
3116  */
3117 struct wq_device {
3118 	struct workqueue_struct		*wq;
3119 	struct device			dev;
3120 };
3121 
3122 static struct workqueue_struct *dev_to_wq(struct device *dev)
3123 {
3124 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3125 
3126 	return wq_dev->wq;
3127 }
3128 
3129 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
3130 			    char *buf)
3131 {
3132 	struct workqueue_struct *wq = dev_to_wq(dev);
3133 
3134 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3135 }
3136 static DEVICE_ATTR_RO(per_cpu);
3137 
3138 static ssize_t max_active_show(struct device *dev,
3139 			       struct device_attribute *attr, char *buf)
3140 {
3141 	struct workqueue_struct *wq = dev_to_wq(dev);
3142 
3143 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3144 }
3145 
3146 static ssize_t max_active_store(struct device *dev,
3147 				struct device_attribute *attr, const char *buf,
3148 				size_t count)
3149 {
3150 	struct workqueue_struct *wq = dev_to_wq(dev);
3151 	int val;
3152 
3153 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3154 		return -EINVAL;
3155 
3156 	workqueue_set_max_active(wq, val);
3157 	return count;
3158 }
3159 static DEVICE_ATTR_RW(max_active);
3160 
3161 static struct attribute *wq_sysfs_attrs[] = {
3162 	&dev_attr_per_cpu.attr,
3163 	&dev_attr_max_active.attr,
3164 	NULL,
3165 };
3166 ATTRIBUTE_GROUPS(wq_sysfs);
3167 
3168 static ssize_t wq_pool_ids_show(struct device *dev,
3169 				struct device_attribute *attr, char *buf)
3170 {
3171 	struct workqueue_struct *wq = dev_to_wq(dev);
3172 	const char *delim = "";
3173 	int node, written = 0;
3174 
3175 	rcu_read_lock_sched();
3176 	for_each_node(node) {
3177 		written += scnprintf(buf + written, PAGE_SIZE - written,
3178 				     "%s%d:%d", delim, node,
3179 				     unbound_pwq_by_node(wq, node)->pool->id);
3180 		delim = " ";
3181 	}
3182 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3183 	rcu_read_unlock_sched();
3184 
3185 	return written;
3186 }
3187 
3188 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3189 			    char *buf)
3190 {
3191 	struct workqueue_struct *wq = dev_to_wq(dev);
3192 	int written;
3193 
3194 	mutex_lock(&wq->mutex);
3195 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3196 	mutex_unlock(&wq->mutex);
3197 
3198 	return written;
3199 }
3200 
3201 /* prepare workqueue_attrs for sysfs store operations */
3202 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3203 {
3204 	struct workqueue_attrs *attrs;
3205 
3206 	attrs = alloc_workqueue_attrs(GFP_KERNEL);
3207 	if (!attrs)
3208 		return NULL;
3209 
3210 	mutex_lock(&wq->mutex);
3211 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
3212 	mutex_unlock(&wq->mutex);
3213 	return attrs;
3214 }
3215 
3216 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3217 			     const char *buf, size_t count)
3218 {
3219 	struct workqueue_struct *wq = dev_to_wq(dev);
3220 	struct workqueue_attrs *attrs;
3221 	int ret;
3222 
3223 	attrs = wq_sysfs_prep_attrs(wq);
3224 	if (!attrs)
3225 		return -ENOMEM;
3226 
3227 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3228 	    attrs->nice >= -20 && attrs->nice <= 19)
3229 		ret = apply_workqueue_attrs(wq, attrs);
3230 	else
3231 		ret = -EINVAL;
3232 
3233 	free_workqueue_attrs(attrs);
3234 	return ret ?: count;
3235 }
3236 
3237 static ssize_t wq_cpumask_show(struct device *dev,
3238 			       struct device_attribute *attr, char *buf)
3239 {
3240 	struct workqueue_struct *wq = dev_to_wq(dev);
3241 	int written;
3242 
3243 	mutex_lock(&wq->mutex);
3244 	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3245 	mutex_unlock(&wq->mutex);
3246 
3247 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3248 	return written;
3249 }
3250 
3251 static ssize_t wq_cpumask_store(struct device *dev,
3252 				struct device_attribute *attr,
3253 				const char *buf, size_t count)
3254 {
3255 	struct workqueue_struct *wq = dev_to_wq(dev);
3256 	struct workqueue_attrs *attrs;
3257 	int ret;
3258 
3259 	attrs = wq_sysfs_prep_attrs(wq);
3260 	if (!attrs)
3261 		return -ENOMEM;
3262 
3263 	ret = cpumask_parse(buf, attrs->cpumask);
3264 	if (!ret)
3265 		ret = apply_workqueue_attrs(wq, attrs);
3266 
3267 	free_workqueue_attrs(attrs);
3268 	return ret ?: count;
3269 }
3270 
3271 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3272 			    char *buf)
3273 {
3274 	struct workqueue_struct *wq = dev_to_wq(dev);
3275 	int written;
3276 
3277 	mutex_lock(&wq->mutex);
3278 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
3279 			    !wq->unbound_attrs->no_numa);
3280 	mutex_unlock(&wq->mutex);
3281 
3282 	return written;
3283 }
3284 
3285 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3286 			     const char *buf, size_t count)
3287 {
3288 	struct workqueue_struct *wq = dev_to_wq(dev);
3289 	struct workqueue_attrs *attrs;
3290 	int v, ret;
3291 
3292 	attrs = wq_sysfs_prep_attrs(wq);
3293 	if (!attrs)
3294 		return -ENOMEM;
3295 
3296 	ret = -EINVAL;
3297 	if (sscanf(buf, "%d", &v) == 1) {
3298 		attrs->no_numa = !v;
3299 		ret = apply_workqueue_attrs(wq, attrs);
3300 	}
3301 
3302 	free_workqueue_attrs(attrs);
3303 	return ret ?: count;
3304 }
3305 
3306 static struct device_attribute wq_sysfs_unbound_attrs[] = {
3307 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3308 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3309 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3310 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3311 	__ATTR_NULL,
3312 };
3313 
3314 static struct bus_type wq_subsys = {
3315 	.name				= "workqueue",
3316 	.dev_groups			= wq_sysfs_groups,
3317 };
3318 
3319 static int __init wq_sysfs_init(void)
3320 {
3321 	return subsys_virtual_register(&wq_subsys, NULL);
3322 }
3323 core_initcall(wq_sysfs_init);
3324 
3325 static void wq_device_release(struct device *dev)
3326 {
3327 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3328 
3329 	kfree(wq_dev);
3330 }
3331 
3332 /**
3333  * workqueue_sysfs_register - make a workqueue visible in sysfs
3334  * @wq: the workqueue to register
3335  *
3336  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3337  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3338  * which is the preferred method.
3339  *
3340  * Workqueue user should use this function directly iff it wants to apply
3341  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3342  * apply_workqueue_attrs() may race against userland updating the
3343  * attributes.
3344  *
3345  * Return: 0 on success, -errno on failure.
3346  */
3347 int workqueue_sysfs_register(struct workqueue_struct *wq)
3348 {
3349 	struct wq_device *wq_dev;
3350 	int ret;
3351 
3352 	/*
3353 	 * Adjusting max_active or creating new pwqs by applyting
3354 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
3355 	 * workqueues.
3356 	 */
3357 	if (WARN_ON(wq->flags & __WQ_ORDERED))
3358 		return -EINVAL;
3359 
3360 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3361 	if (!wq_dev)
3362 		return -ENOMEM;
3363 
3364 	wq_dev->wq = wq;
3365 	wq_dev->dev.bus = &wq_subsys;
3366 	wq_dev->dev.init_name = wq->name;
3367 	wq_dev->dev.release = wq_device_release;
3368 
3369 	/*
3370 	 * unbound_attrs are created separately.  Suppress uevent until
3371 	 * everything is ready.
3372 	 */
3373 	dev_set_uevent_suppress(&wq_dev->dev, true);
3374 
3375 	ret = device_register(&wq_dev->dev);
3376 	if (ret) {
3377 		kfree(wq_dev);
3378 		wq->wq_dev = NULL;
3379 		return ret;
3380 	}
3381 
3382 	if (wq->flags & WQ_UNBOUND) {
3383 		struct device_attribute *attr;
3384 
3385 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3386 			ret = device_create_file(&wq_dev->dev, attr);
3387 			if (ret) {
3388 				device_unregister(&wq_dev->dev);
3389 				wq->wq_dev = NULL;
3390 				return ret;
3391 			}
3392 		}
3393 	}
3394 
3395 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3396 	return 0;
3397 }
3398 
3399 /**
3400  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3401  * @wq: the workqueue to unregister
3402  *
3403  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3404  */
3405 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3406 {
3407 	struct wq_device *wq_dev = wq->wq_dev;
3408 
3409 	if (!wq->wq_dev)
3410 		return;
3411 
3412 	wq->wq_dev = NULL;
3413 	device_unregister(&wq_dev->dev);
3414 }
3415 #else	/* CONFIG_SYSFS */
3416 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
3417 #endif	/* CONFIG_SYSFS */
3418 
3419 /**
3420  * free_workqueue_attrs - free a workqueue_attrs
3421  * @attrs: workqueue_attrs to free
3422  *
3423  * Undo alloc_workqueue_attrs().
3424  */
3425 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3426 {
3427 	if (attrs) {
3428 		free_cpumask_var(attrs->cpumask);
3429 		kfree(attrs);
3430 	}
3431 }
3432 
3433 /**
3434  * alloc_workqueue_attrs - allocate a workqueue_attrs
3435  * @gfp_mask: allocation mask to use
3436  *
3437  * Allocate a new workqueue_attrs, initialize with default settings and
3438  * return it.
3439  *
3440  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3441  */
3442 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3443 {
3444 	struct workqueue_attrs *attrs;
3445 
3446 	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3447 	if (!attrs)
3448 		goto fail;
3449 	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3450 		goto fail;
3451 
3452 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3453 	return attrs;
3454 fail:
3455 	free_workqueue_attrs(attrs);
3456 	return NULL;
3457 }
3458 
3459 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3460 				 const struct workqueue_attrs *from)
3461 {
3462 	to->nice = from->nice;
3463 	cpumask_copy(to->cpumask, from->cpumask);
3464 	/*
3465 	 * Unlike hash and equality test, this function doesn't ignore
3466 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3467 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3468 	 */
3469 	to->no_numa = from->no_numa;
3470 }
3471 
3472 /* hash value of the content of @attr */
3473 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3474 {
3475 	u32 hash = 0;
3476 
3477 	hash = jhash_1word(attrs->nice, hash);
3478 	hash = jhash(cpumask_bits(attrs->cpumask),
3479 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3480 	return hash;
3481 }
3482 
3483 /* content equality test */
3484 static bool wqattrs_equal(const struct workqueue_attrs *a,
3485 			  const struct workqueue_attrs *b)
3486 {
3487 	if (a->nice != b->nice)
3488 		return false;
3489 	if (!cpumask_equal(a->cpumask, b->cpumask))
3490 		return false;
3491 	return true;
3492 }
3493 
3494 /**
3495  * init_worker_pool - initialize a newly zalloc'd worker_pool
3496  * @pool: worker_pool to initialize
3497  *
3498  * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3499  *
3500  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3501  * inside @pool proper are initialized and put_unbound_pool() can be called
3502  * on @pool safely to release it.
3503  */
3504 static int init_worker_pool(struct worker_pool *pool)
3505 {
3506 	spin_lock_init(&pool->lock);
3507 	pool->id = -1;
3508 	pool->cpu = -1;
3509 	pool->node = NUMA_NO_NODE;
3510 	pool->flags |= POOL_DISASSOCIATED;
3511 	INIT_LIST_HEAD(&pool->worklist);
3512 	INIT_LIST_HEAD(&pool->idle_list);
3513 	hash_init(pool->busy_hash);
3514 
3515 	init_timer_deferrable(&pool->idle_timer);
3516 	pool->idle_timer.function = idle_worker_timeout;
3517 	pool->idle_timer.data = (unsigned long)pool;
3518 
3519 	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3520 		    (unsigned long)pool);
3521 
3522 	mutex_init(&pool->manager_arb);
3523 	mutex_init(&pool->manager_mutex);
3524 	idr_init(&pool->worker_idr);
3525 
3526 	INIT_HLIST_NODE(&pool->hash_node);
3527 	pool->refcnt = 1;
3528 
3529 	/* shouldn't fail above this point */
3530 	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3531 	if (!pool->attrs)
3532 		return -ENOMEM;
3533 	return 0;
3534 }
3535 
3536 static void rcu_free_pool(struct rcu_head *rcu)
3537 {
3538 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3539 
3540 	idr_destroy(&pool->worker_idr);
3541 	free_workqueue_attrs(pool->attrs);
3542 	kfree(pool);
3543 }
3544 
3545 /**
3546  * put_unbound_pool - put a worker_pool
3547  * @pool: worker_pool to put
3548  *
3549  * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3550  * safe manner.  get_unbound_pool() calls this function on its failure path
3551  * and this function should be able to release pools which went through,
3552  * successfully or not, init_worker_pool().
3553  *
3554  * Should be called with wq_pool_mutex held.
3555  */
3556 static void put_unbound_pool(struct worker_pool *pool)
3557 {
3558 	struct worker *worker;
3559 
3560 	lockdep_assert_held(&wq_pool_mutex);
3561 
3562 	if (--pool->refcnt)
3563 		return;
3564 
3565 	/* sanity checks */
3566 	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3567 	    WARN_ON(!list_empty(&pool->worklist)))
3568 		return;
3569 
3570 	/* release id and unhash */
3571 	if (pool->id >= 0)
3572 		idr_remove(&worker_pool_idr, pool->id);
3573 	hash_del(&pool->hash_node);
3574 
3575 	/*
3576 	 * Become the manager and destroy all workers.  Grabbing
3577 	 * manager_arb prevents @pool's workers from blocking on
3578 	 * manager_mutex.
3579 	 */
3580 	mutex_lock(&pool->manager_arb);
3581 	mutex_lock(&pool->manager_mutex);
3582 	spin_lock_irq(&pool->lock);
3583 
3584 	while ((worker = first_worker(pool)))
3585 		destroy_worker(worker);
3586 	WARN_ON(pool->nr_workers || pool->nr_idle);
3587 
3588 	spin_unlock_irq(&pool->lock);
3589 	mutex_unlock(&pool->manager_mutex);
3590 	mutex_unlock(&pool->manager_arb);
3591 
3592 	/* shut down the timers */
3593 	del_timer_sync(&pool->idle_timer);
3594 	del_timer_sync(&pool->mayday_timer);
3595 
3596 	/* sched-RCU protected to allow dereferences from get_work_pool() */
3597 	call_rcu_sched(&pool->rcu, rcu_free_pool);
3598 }
3599 
3600 /**
3601  * get_unbound_pool - get a worker_pool with the specified attributes
3602  * @attrs: the attributes of the worker_pool to get
3603  *
3604  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3605  * reference count and return it.  If there already is a matching
3606  * worker_pool, it will be used; otherwise, this function attempts to
3607  * create a new one.
3608  *
3609  * Should be called with wq_pool_mutex held.
3610  *
3611  * Return: On success, a worker_pool with the same attributes as @attrs.
3612  * On failure, %NULL.
3613  */
3614 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3615 {
3616 	u32 hash = wqattrs_hash(attrs);
3617 	struct worker_pool *pool;
3618 	int node;
3619 
3620 	lockdep_assert_held(&wq_pool_mutex);
3621 
3622 	/* do we already have a matching pool? */
3623 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3624 		if (wqattrs_equal(pool->attrs, attrs)) {
3625 			pool->refcnt++;
3626 			goto out_unlock;
3627 		}
3628 	}
3629 
3630 	/* nope, create a new one */
3631 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3632 	if (!pool || init_worker_pool(pool) < 0)
3633 		goto fail;
3634 
3635 	if (workqueue_freezing)
3636 		pool->flags |= POOL_FREEZING;
3637 
3638 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3639 	copy_workqueue_attrs(pool->attrs, attrs);
3640 
3641 	/*
3642 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3643 	 * 'struct workqueue_attrs' comments for detail.
3644 	 */
3645 	pool->attrs->no_numa = false;
3646 
3647 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3648 	if (wq_numa_enabled) {
3649 		for_each_node(node) {
3650 			if (cpumask_subset(pool->attrs->cpumask,
3651 					   wq_numa_possible_cpumask[node])) {
3652 				pool->node = node;
3653 				break;
3654 			}
3655 		}
3656 	}
3657 
3658 	if (worker_pool_assign_id(pool) < 0)
3659 		goto fail;
3660 
3661 	/* create and start the initial worker */
3662 	if (create_and_start_worker(pool) < 0)
3663 		goto fail;
3664 
3665 	/* install */
3666 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3667 out_unlock:
3668 	return pool;
3669 fail:
3670 	if (pool)
3671 		put_unbound_pool(pool);
3672 	return NULL;
3673 }
3674 
3675 static void rcu_free_pwq(struct rcu_head *rcu)
3676 {
3677 	kmem_cache_free(pwq_cache,
3678 			container_of(rcu, struct pool_workqueue, rcu));
3679 }
3680 
3681 /*
3682  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3683  * and needs to be destroyed.
3684  */
3685 static void pwq_unbound_release_workfn(struct work_struct *work)
3686 {
3687 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3688 						  unbound_release_work);
3689 	struct workqueue_struct *wq = pwq->wq;
3690 	struct worker_pool *pool = pwq->pool;
3691 	bool is_last;
3692 
3693 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3694 		return;
3695 
3696 	/*
3697 	 * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3698 	 * necessary on release but do it anyway.  It's easier to verify
3699 	 * and consistent with the linking path.
3700 	 */
3701 	mutex_lock(&wq->mutex);
3702 	list_del_rcu(&pwq->pwqs_node);
3703 	is_last = list_empty(&wq->pwqs);
3704 	mutex_unlock(&wq->mutex);
3705 
3706 	mutex_lock(&wq_pool_mutex);
3707 	put_unbound_pool(pool);
3708 	mutex_unlock(&wq_pool_mutex);
3709 
3710 	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3711 
3712 	/*
3713 	 * If we're the last pwq going away, @wq is already dead and no one
3714 	 * is gonna access it anymore.  Free it.
3715 	 */
3716 	if (is_last) {
3717 		free_workqueue_attrs(wq->unbound_attrs);
3718 		kfree(wq);
3719 	}
3720 }
3721 
3722 /**
3723  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3724  * @pwq: target pool_workqueue
3725  *
3726  * If @pwq isn't freezing, set @pwq->max_active to the associated
3727  * workqueue's saved_max_active and activate delayed work items
3728  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3729  */
3730 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3731 {
3732 	struct workqueue_struct *wq = pwq->wq;
3733 	bool freezable = wq->flags & WQ_FREEZABLE;
3734 
3735 	/* for @wq->saved_max_active */
3736 	lockdep_assert_held(&wq->mutex);
3737 
3738 	/* fast exit for non-freezable wqs */
3739 	if (!freezable && pwq->max_active == wq->saved_max_active)
3740 		return;
3741 
3742 	spin_lock_irq(&pwq->pool->lock);
3743 
3744 	if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3745 		pwq->max_active = wq->saved_max_active;
3746 
3747 		while (!list_empty(&pwq->delayed_works) &&
3748 		       pwq->nr_active < pwq->max_active)
3749 			pwq_activate_first_delayed(pwq);
3750 
3751 		/*
3752 		 * Need to kick a worker after thawed or an unbound wq's
3753 		 * max_active is bumped.  It's a slow path.  Do it always.
3754 		 */
3755 		wake_up_worker(pwq->pool);
3756 	} else {
3757 		pwq->max_active = 0;
3758 	}
3759 
3760 	spin_unlock_irq(&pwq->pool->lock);
3761 }
3762 
3763 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3764 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3765 		     struct worker_pool *pool)
3766 {
3767 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3768 
3769 	memset(pwq, 0, sizeof(*pwq));
3770 
3771 	pwq->pool = pool;
3772 	pwq->wq = wq;
3773 	pwq->flush_color = -1;
3774 	pwq->refcnt = 1;
3775 	INIT_LIST_HEAD(&pwq->delayed_works);
3776 	INIT_LIST_HEAD(&pwq->pwqs_node);
3777 	INIT_LIST_HEAD(&pwq->mayday_node);
3778 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3779 }
3780 
3781 /* sync @pwq with the current state of its associated wq and link it */
3782 static void link_pwq(struct pool_workqueue *pwq)
3783 {
3784 	struct workqueue_struct *wq = pwq->wq;
3785 
3786 	lockdep_assert_held(&wq->mutex);
3787 
3788 	/* may be called multiple times, ignore if already linked */
3789 	if (!list_empty(&pwq->pwqs_node))
3790 		return;
3791 
3792 	/*
3793 	 * Set the matching work_color.  This is synchronized with
3794 	 * wq->mutex to avoid confusing flush_workqueue().
3795 	 */
3796 	pwq->work_color = wq->work_color;
3797 
3798 	/* sync max_active to the current setting */
3799 	pwq_adjust_max_active(pwq);
3800 
3801 	/* link in @pwq */
3802 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3803 }
3804 
3805 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3806 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3807 					const struct workqueue_attrs *attrs)
3808 {
3809 	struct worker_pool *pool;
3810 	struct pool_workqueue *pwq;
3811 
3812 	lockdep_assert_held(&wq_pool_mutex);
3813 
3814 	pool = get_unbound_pool(attrs);
3815 	if (!pool)
3816 		return NULL;
3817 
3818 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3819 	if (!pwq) {
3820 		put_unbound_pool(pool);
3821 		return NULL;
3822 	}
3823 
3824 	init_pwq(pwq, wq, pool);
3825 	return pwq;
3826 }
3827 
3828 /* undo alloc_unbound_pwq(), used only in the error path */
3829 static void free_unbound_pwq(struct pool_workqueue *pwq)
3830 {
3831 	lockdep_assert_held(&wq_pool_mutex);
3832 
3833 	if (pwq) {
3834 		put_unbound_pool(pwq->pool);
3835 		kmem_cache_free(pwq_cache, pwq);
3836 	}
3837 }
3838 
3839 /**
3840  * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3841  * @attrs: the wq_attrs of interest
3842  * @node: the target NUMA node
3843  * @cpu_going_down: if >= 0, the CPU to consider as offline
3844  * @cpumask: outarg, the resulting cpumask
3845  *
3846  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3847  * @cpu_going_down is >= 0, that cpu is considered offline during
3848  * calculation.  The result is stored in @cpumask.
3849  *
3850  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3851  * enabled and @node has online CPUs requested by @attrs, the returned
3852  * cpumask is the intersection of the possible CPUs of @node and
3853  * @attrs->cpumask.
3854  *
3855  * The caller is responsible for ensuring that the cpumask of @node stays
3856  * stable.
3857  *
3858  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3859  * %false if equal.
3860  */
3861 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3862 				 int cpu_going_down, cpumask_t *cpumask)
3863 {
3864 	if (!wq_numa_enabled || attrs->no_numa)
3865 		goto use_dfl;
3866 
3867 	/* does @node have any online CPUs @attrs wants? */
3868 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3869 	if (cpu_going_down >= 0)
3870 		cpumask_clear_cpu(cpu_going_down, cpumask);
3871 
3872 	if (cpumask_empty(cpumask))
3873 		goto use_dfl;
3874 
3875 	/* yeap, return possible CPUs in @node that @attrs wants */
3876 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3877 	return !cpumask_equal(cpumask, attrs->cpumask);
3878 
3879 use_dfl:
3880 	cpumask_copy(cpumask, attrs->cpumask);
3881 	return false;
3882 }
3883 
3884 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3885 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3886 						   int node,
3887 						   struct pool_workqueue *pwq)
3888 {
3889 	struct pool_workqueue *old_pwq;
3890 
3891 	lockdep_assert_held(&wq->mutex);
3892 
3893 	/* link_pwq() can handle duplicate calls */
3894 	link_pwq(pwq);
3895 
3896 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3897 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3898 	return old_pwq;
3899 }
3900 
3901 /**
3902  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3903  * @wq: the target workqueue
3904  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3905  *
3906  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3907  * machines, this function maps a separate pwq to each NUMA node with
3908  * possibles CPUs in @attrs->cpumask so that work items are affine to the
3909  * NUMA node it was issued on.  Older pwqs are released as in-flight work
3910  * items finish.  Note that a work item which repeatedly requeues itself
3911  * back-to-back will stay on its current pwq.
3912  *
3913  * Performs GFP_KERNEL allocations.
3914  *
3915  * Return: 0 on success and -errno on failure.
3916  */
3917 int apply_workqueue_attrs(struct workqueue_struct *wq,
3918 			  const struct workqueue_attrs *attrs)
3919 {
3920 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3921 	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3922 	int node, ret;
3923 
3924 	/* only unbound workqueues can change attributes */
3925 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3926 		return -EINVAL;
3927 
3928 	/* creating multiple pwqs breaks ordering guarantee */
3929 	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3930 		return -EINVAL;
3931 
3932 	pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3933 	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3934 	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3935 	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3936 		goto enomem;
3937 
3938 	/* make a copy of @attrs and sanitize it */
3939 	copy_workqueue_attrs(new_attrs, attrs);
3940 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3941 
3942 	/*
3943 	 * We may create multiple pwqs with differing cpumasks.  Make a
3944 	 * copy of @new_attrs which will be modified and used to obtain
3945 	 * pools.
3946 	 */
3947 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3948 
3949 	/*
3950 	 * CPUs should stay stable across pwq creations and installations.
3951 	 * Pin CPUs, determine the target cpumask for each node and create
3952 	 * pwqs accordingly.
3953 	 */
3954 	get_online_cpus();
3955 
3956 	mutex_lock(&wq_pool_mutex);
3957 
3958 	/*
3959 	 * If something goes wrong during CPU up/down, we'll fall back to
3960 	 * the default pwq covering whole @attrs->cpumask.  Always create
3961 	 * it even if we don't use it immediately.
3962 	 */
3963 	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3964 	if (!dfl_pwq)
3965 		goto enomem_pwq;
3966 
3967 	for_each_node(node) {
3968 		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3969 			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3970 			if (!pwq_tbl[node])
3971 				goto enomem_pwq;
3972 		} else {
3973 			dfl_pwq->refcnt++;
3974 			pwq_tbl[node] = dfl_pwq;
3975 		}
3976 	}
3977 
3978 	mutex_unlock(&wq_pool_mutex);
3979 
3980 	/* all pwqs have been created successfully, let's install'em */
3981 	mutex_lock(&wq->mutex);
3982 
3983 	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3984 
3985 	/* save the previous pwq and install the new one */
3986 	for_each_node(node)
3987 		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3988 
3989 	/* @dfl_pwq might not have been used, ensure it's linked */
3990 	link_pwq(dfl_pwq);
3991 	swap(wq->dfl_pwq, dfl_pwq);
3992 
3993 	mutex_unlock(&wq->mutex);
3994 
3995 	/* put the old pwqs */
3996 	for_each_node(node)
3997 		put_pwq_unlocked(pwq_tbl[node]);
3998 	put_pwq_unlocked(dfl_pwq);
3999 
4000 	put_online_cpus();
4001 	ret = 0;
4002 	/* fall through */
4003 out_free:
4004 	free_workqueue_attrs(tmp_attrs);
4005 	free_workqueue_attrs(new_attrs);
4006 	kfree(pwq_tbl);
4007 	return ret;
4008 
4009 enomem_pwq:
4010 	free_unbound_pwq(dfl_pwq);
4011 	for_each_node(node)
4012 		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
4013 			free_unbound_pwq(pwq_tbl[node]);
4014 	mutex_unlock(&wq_pool_mutex);
4015 	put_online_cpus();
4016 enomem:
4017 	ret = -ENOMEM;
4018 	goto out_free;
4019 }
4020 
4021 /**
4022  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4023  * @wq: the target workqueue
4024  * @cpu: the CPU coming up or going down
4025  * @online: whether @cpu is coming up or going down
4026  *
4027  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4028  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4029  * @wq accordingly.
4030  *
4031  * If NUMA affinity can't be adjusted due to memory allocation failure, it
4032  * falls back to @wq->dfl_pwq which may not be optimal but is always
4033  * correct.
4034  *
4035  * Note that when the last allowed CPU of a NUMA node goes offline for a
4036  * workqueue with a cpumask spanning multiple nodes, the workers which were
4037  * already executing the work items for the workqueue will lose their CPU
4038  * affinity and may execute on any CPU.  This is similar to how per-cpu
4039  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4040  * affinity, it's the user's responsibility to flush the work item from
4041  * CPU_DOWN_PREPARE.
4042  */
4043 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4044 				   bool online)
4045 {
4046 	int node = cpu_to_node(cpu);
4047 	int cpu_off = online ? -1 : cpu;
4048 	struct pool_workqueue *old_pwq = NULL, *pwq;
4049 	struct workqueue_attrs *target_attrs;
4050 	cpumask_t *cpumask;
4051 
4052 	lockdep_assert_held(&wq_pool_mutex);
4053 
4054 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
4055 		return;
4056 
4057 	/*
4058 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4059 	 * Let's use a preallocated one.  The following buf is protected by
4060 	 * CPU hotplug exclusion.
4061 	 */
4062 	target_attrs = wq_update_unbound_numa_attrs_buf;
4063 	cpumask = target_attrs->cpumask;
4064 
4065 	mutex_lock(&wq->mutex);
4066 	if (wq->unbound_attrs->no_numa)
4067 		goto out_unlock;
4068 
4069 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4070 	pwq = unbound_pwq_by_node(wq, node);
4071 
4072 	/*
4073 	 * Let's determine what needs to be done.  If the target cpumask is
4074 	 * different from wq's, we need to compare it to @pwq's and create
4075 	 * a new one if they don't match.  If the target cpumask equals
4076 	 * wq's, the default pwq should be used.  If @pwq is already the
4077 	 * default one, nothing to do; otherwise, install the default one.
4078 	 */
4079 	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4080 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4081 			goto out_unlock;
4082 	} else {
4083 		if (pwq == wq->dfl_pwq)
4084 			goto out_unlock;
4085 		else
4086 			goto use_dfl_pwq;
4087 	}
4088 
4089 	mutex_unlock(&wq->mutex);
4090 
4091 	/* create a new pwq */
4092 	pwq = alloc_unbound_pwq(wq, target_attrs);
4093 	if (!pwq) {
4094 		pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4095 			   wq->name);
4096 		goto out_unlock;
4097 	}
4098 
4099 	/*
4100 	 * Install the new pwq.  As this function is called only from CPU
4101 	 * hotplug callbacks and applying a new attrs is wrapped with
4102 	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4103 	 * inbetween.
4104 	 */
4105 	mutex_lock(&wq->mutex);
4106 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4107 	goto out_unlock;
4108 
4109 use_dfl_pwq:
4110 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
4111 	get_pwq(wq->dfl_pwq);
4112 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4113 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4114 out_unlock:
4115 	mutex_unlock(&wq->mutex);
4116 	put_pwq_unlocked(old_pwq);
4117 }
4118 
4119 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4120 {
4121 	bool highpri = wq->flags & WQ_HIGHPRI;
4122 	int cpu, ret;
4123 
4124 	if (!(wq->flags & WQ_UNBOUND)) {
4125 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4126 		if (!wq->cpu_pwqs)
4127 			return -ENOMEM;
4128 
4129 		for_each_possible_cpu(cpu) {
4130 			struct pool_workqueue *pwq =
4131 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4132 			struct worker_pool *cpu_pools =
4133 				per_cpu(cpu_worker_pools, cpu);
4134 
4135 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4136 
4137 			mutex_lock(&wq->mutex);
4138 			link_pwq(pwq);
4139 			mutex_unlock(&wq->mutex);
4140 		}
4141 		return 0;
4142 	} else if (wq->flags & __WQ_ORDERED) {
4143 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4144 		/* there should only be single pwq for ordering guarantee */
4145 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4146 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4147 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4148 		return ret;
4149 	} else {
4150 		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4151 	}
4152 }
4153 
4154 static int wq_clamp_max_active(int max_active, unsigned int flags,
4155 			       const char *name)
4156 {
4157 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4158 
4159 	if (max_active < 1 || max_active > lim)
4160 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4161 			max_active, name, 1, lim);
4162 
4163 	return clamp_val(max_active, 1, lim);
4164 }
4165 
4166 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4167 					       unsigned int flags,
4168 					       int max_active,
4169 					       struct lock_class_key *key,
4170 					       const char *lock_name, ...)
4171 {
4172 	size_t tbl_size = 0;
4173 	va_list args;
4174 	struct workqueue_struct *wq;
4175 	struct pool_workqueue *pwq;
4176 
4177 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4178 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4179 		flags |= WQ_UNBOUND;
4180 
4181 	/* allocate wq and format name */
4182 	if (flags & WQ_UNBOUND)
4183 		tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4184 
4185 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4186 	if (!wq)
4187 		return NULL;
4188 
4189 	if (flags & WQ_UNBOUND) {
4190 		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4191 		if (!wq->unbound_attrs)
4192 			goto err_free_wq;
4193 	}
4194 
4195 	va_start(args, lock_name);
4196 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4197 	va_end(args);
4198 
4199 	max_active = max_active ?: WQ_DFL_ACTIVE;
4200 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4201 
4202 	/* init wq */
4203 	wq->flags = flags;
4204 	wq->saved_max_active = max_active;
4205 	mutex_init(&wq->mutex);
4206 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4207 	INIT_LIST_HEAD(&wq->pwqs);
4208 	INIT_LIST_HEAD(&wq->flusher_queue);
4209 	INIT_LIST_HEAD(&wq->flusher_overflow);
4210 	INIT_LIST_HEAD(&wq->maydays);
4211 
4212 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4213 	INIT_LIST_HEAD(&wq->list);
4214 
4215 	if (alloc_and_link_pwqs(wq) < 0)
4216 		goto err_free_wq;
4217 
4218 	/*
4219 	 * Workqueues which may be used during memory reclaim should
4220 	 * have a rescuer to guarantee forward progress.
4221 	 */
4222 	if (flags & WQ_MEM_RECLAIM) {
4223 		struct worker *rescuer;
4224 
4225 		rescuer = alloc_worker();
4226 		if (!rescuer)
4227 			goto err_destroy;
4228 
4229 		rescuer->rescue_wq = wq;
4230 		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4231 					       wq->name);
4232 		if (IS_ERR(rescuer->task)) {
4233 			kfree(rescuer);
4234 			goto err_destroy;
4235 		}
4236 
4237 		wq->rescuer = rescuer;
4238 		rescuer->task->flags |= PF_NO_SETAFFINITY;
4239 		wake_up_process(rescuer->task);
4240 	}
4241 
4242 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4243 		goto err_destroy;
4244 
4245 	/*
4246 	 * wq_pool_mutex protects global freeze state and workqueues list.
4247 	 * Grab it, adjust max_active and add the new @wq to workqueues
4248 	 * list.
4249 	 */
4250 	mutex_lock(&wq_pool_mutex);
4251 
4252 	mutex_lock(&wq->mutex);
4253 	for_each_pwq(pwq, wq)
4254 		pwq_adjust_max_active(pwq);
4255 	mutex_unlock(&wq->mutex);
4256 
4257 	list_add(&wq->list, &workqueues);
4258 
4259 	mutex_unlock(&wq_pool_mutex);
4260 
4261 	return wq;
4262 
4263 err_free_wq:
4264 	free_workqueue_attrs(wq->unbound_attrs);
4265 	kfree(wq);
4266 	return NULL;
4267 err_destroy:
4268 	destroy_workqueue(wq);
4269 	return NULL;
4270 }
4271 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4272 
4273 /**
4274  * destroy_workqueue - safely terminate a workqueue
4275  * @wq: target workqueue
4276  *
4277  * Safely destroy a workqueue. All work currently pending will be done first.
4278  */
4279 void destroy_workqueue(struct workqueue_struct *wq)
4280 {
4281 	struct pool_workqueue *pwq;
4282 	int node;
4283 
4284 	/* drain it before proceeding with destruction */
4285 	drain_workqueue(wq);
4286 
4287 	/* sanity checks */
4288 	mutex_lock(&wq->mutex);
4289 	for_each_pwq(pwq, wq) {
4290 		int i;
4291 
4292 		for (i = 0; i < WORK_NR_COLORS; i++) {
4293 			if (WARN_ON(pwq->nr_in_flight[i])) {
4294 				mutex_unlock(&wq->mutex);
4295 				return;
4296 			}
4297 		}
4298 
4299 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4300 		    WARN_ON(pwq->nr_active) ||
4301 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4302 			mutex_unlock(&wq->mutex);
4303 			return;
4304 		}
4305 	}
4306 	mutex_unlock(&wq->mutex);
4307 
4308 	/*
4309 	 * wq list is used to freeze wq, remove from list after
4310 	 * flushing is complete in case freeze races us.
4311 	 */
4312 	mutex_lock(&wq_pool_mutex);
4313 	list_del_init(&wq->list);
4314 	mutex_unlock(&wq_pool_mutex);
4315 
4316 	workqueue_sysfs_unregister(wq);
4317 
4318 	if (wq->rescuer) {
4319 		kthread_stop(wq->rescuer->task);
4320 		kfree(wq->rescuer);
4321 		wq->rescuer = NULL;
4322 	}
4323 
4324 	if (!(wq->flags & WQ_UNBOUND)) {
4325 		/*
4326 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4327 		 * free the pwqs and wq.
4328 		 */
4329 		free_percpu(wq->cpu_pwqs);
4330 		kfree(wq);
4331 	} else {
4332 		/*
4333 		 * We're the sole accessor of @wq at this point.  Directly
4334 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4335 		 * @wq will be freed when the last pwq is released.
4336 		 */
4337 		for_each_node(node) {
4338 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4339 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4340 			put_pwq_unlocked(pwq);
4341 		}
4342 
4343 		/*
4344 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4345 		 * put.  Don't access it afterwards.
4346 		 */
4347 		pwq = wq->dfl_pwq;
4348 		wq->dfl_pwq = NULL;
4349 		put_pwq_unlocked(pwq);
4350 	}
4351 }
4352 EXPORT_SYMBOL_GPL(destroy_workqueue);
4353 
4354 /**
4355  * workqueue_set_max_active - adjust max_active of a workqueue
4356  * @wq: target workqueue
4357  * @max_active: new max_active value.
4358  *
4359  * Set max_active of @wq to @max_active.
4360  *
4361  * CONTEXT:
4362  * Don't call from IRQ context.
4363  */
4364 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4365 {
4366 	struct pool_workqueue *pwq;
4367 
4368 	/* disallow meddling with max_active for ordered workqueues */
4369 	if (WARN_ON(wq->flags & __WQ_ORDERED))
4370 		return;
4371 
4372 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4373 
4374 	mutex_lock(&wq->mutex);
4375 
4376 	wq->saved_max_active = max_active;
4377 
4378 	for_each_pwq(pwq, wq)
4379 		pwq_adjust_max_active(pwq);
4380 
4381 	mutex_unlock(&wq->mutex);
4382 }
4383 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4384 
4385 /**
4386  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4387  *
4388  * Determine whether %current is a workqueue rescuer.  Can be used from
4389  * work functions to determine whether it's being run off the rescuer task.
4390  *
4391  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4392  */
4393 bool current_is_workqueue_rescuer(void)
4394 {
4395 	struct worker *worker = current_wq_worker();
4396 
4397 	return worker && worker->rescue_wq;
4398 }
4399 
4400 /**
4401  * workqueue_congested - test whether a workqueue is congested
4402  * @cpu: CPU in question
4403  * @wq: target workqueue
4404  *
4405  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4406  * no synchronization around this function and the test result is
4407  * unreliable and only useful as advisory hints or for debugging.
4408  *
4409  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4410  * Note that both per-cpu and unbound workqueues may be associated with
4411  * multiple pool_workqueues which have separate congested states.  A
4412  * workqueue being congested on one CPU doesn't mean the workqueue is also
4413  * contested on other CPUs / NUMA nodes.
4414  *
4415  * Return:
4416  * %true if congested, %false otherwise.
4417  */
4418 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4419 {
4420 	struct pool_workqueue *pwq;
4421 	bool ret;
4422 
4423 	rcu_read_lock_sched();
4424 
4425 	if (cpu == WORK_CPU_UNBOUND)
4426 		cpu = smp_processor_id();
4427 
4428 	if (!(wq->flags & WQ_UNBOUND))
4429 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4430 	else
4431 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4432 
4433 	ret = !list_empty(&pwq->delayed_works);
4434 	rcu_read_unlock_sched();
4435 
4436 	return ret;
4437 }
4438 EXPORT_SYMBOL_GPL(workqueue_congested);
4439 
4440 /**
4441  * work_busy - test whether a work is currently pending or running
4442  * @work: the work to be tested
4443  *
4444  * Test whether @work is currently pending or running.  There is no
4445  * synchronization around this function and the test result is
4446  * unreliable and only useful as advisory hints or for debugging.
4447  *
4448  * Return:
4449  * OR'd bitmask of WORK_BUSY_* bits.
4450  */
4451 unsigned int work_busy(struct work_struct *work)
4452 {
4453 	struct worker_pool *pool;
4454 	unsigned long flags;
4455 	unsigned int ret = 0;
4456 
4457 	if (work_pending(work))
4458 		ret |= WORK_BUSY_PENDING;
4459 
4460 	local_irq_save(flags);
4461 	pool = get_work_pool(work);
4462 	if (pool) {
4463 		spin_lock(&pool->lock);
4464 		if (find_worker_executing_work(pool, work))
4465 			ret |= WORK_BUSY_RUNNING;
4466 		spin_unlock(&pool->lock);
4467 	}
4468 	local_irq_restore(flags);
4469 
4470 	return ret;
4471 }
4472 EXPORT_SYMBOL_GPL(work_busy);
4473 
4474 /**
4475  * set_worker_desc - set description for the current work item
4476  * @fmt: printf-style format string
4477  * @...: arguments for the format string
4478  *
4479  * This function can be called by a running work function to describe what
4480  * the work item is about.  If the worker task gets dumped, this
4481  * information will be printed out together to help debugging.  The
4482  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4483  */
4484 void set_worker_desc(const char *fmt, ...)
4485 {
4486 	struct worker *worker = current_wq_worker();
4487 	va_list args;
4488 
4489 	if (worker) {
4490 		va_start(args, fmt);
4491 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4492 		va_end(args);
4493 		worker->desc_valid = true;
4494 	}
4495 }
4496 
4497 /**
4498  * print_worker_info - print out worker information and description
4499  * @log_lvl: the log level to use when printing
4500  * @task: target task
4501  *
4502  * If @task is a worker and currently executing a work item, print out the
4503  * name of the workqueue being serviced and worker description set with
4504  * set_worker_desc() by the currently executing work item.
4505  *
4506  * This function can be safely called on any task as long as the
4507  * task_struct itself is accessible.  While safe, this function isn't
4508  * synchronized and may print out mixups or garbages of limited length.
4509  */
4510 void print_worker_info(const char *log_lvl, struct task_struct *task)
4511 {
4512 	work_func_t *fn = NULL;
4513 	char name[WQ_NAME_LEN] = { };
4514 	char desc[WORKER_DESC_LEN] = { };
4515 	struct pool_workqueue *pwq = NULL;
4516 	struct workqueue_struct *wq = NULL;
4517 	bool desc_valid = false;
4518 	struct worker *worker;
4519 
4520 	if (!(task->flags & PF_WQ_WORKER))
4521 		return;
4522 
4523 	/*
4524 	 * This function is called without any synchronization and @task
4525 	 * could be in any state.  Be careful with dereferences.
4526 	 */
4527 	worker = probe_kthread_data(task);
4528 
4529 	/*
4530 	 * Carefully copy the associated workqueue's workfn and name.  Keep
4531 	 * the original last '\0' in case the original contains garbage.
4532 	 */
4533 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4534 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4535 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4536 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4537 
4538 	/* copy worker description */
4539 	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4540 	if (desc_valid)
4541 		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4542 
4543 	if (fn || name[0] || desc[0]) {
4544 		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4545 		if (desc[0])
4546 			pr_cont(" (%s)", desc);
4547 		pr_cont("\n");
4548 	}
4549 }
4550 
4551 /*
4552  * CPU hotplug.
4553  *
4554  * There are two challenges in supporting CPU hotplug.  Firstly, there
4555  * are a lot of assumptions on strong associations among work, pwq and
4556  * pool which make migrating pending and scheduled works very
4557  * difficult to implement without impacting hot paths.  Secondly,
4558  * worker pools serve mix of short, long and very long running works making
4559  * blocked draining impractical.
4560  *
4561  * This is solved by allowing the pools to be disassociated from the CPU
4562  * running as an unbound one and allowing it to be reattached later if the
4563  * cpu comes back online.
4564  */
4565 
4566 static void wq_unbind_fn(struct work_struct *work)
4567 {
4568 	int cpu = smp_processor_id();
4569 	struct worker_pool *pool;
4570 	struct worker *worker;
4571 	int wi;
4572 
4573 	for_each_cpu_worker_pool(pool, cpu) {
4574 		WARN_ON_ONCE(cpu != smp_processor_id());
4575 
4576 		mutex_lock(&pool->manager_mutex);
4577 		spin_lock_irq(&pool->lock);
4578 
4579 		/*
4580 		 * We've blocked all manager operations.  Make all workers
4581 		 * unbound and set DISASSOCIATED.  Before this, all workers
4582 		 * except for the ones which are still executing works from
4583 		 * before the last CPU down must be on the cpu.  After
4584 		 * this, they may become diasporas.
4585 		 */
4586 		for_each_pool_worker(worker, wi, pool)
4587 			worker->flags |= WORKER_UNBOUND;
4588 
4589 		pool->flags |= POOL_DISASSOCIATED;
4590 
4591 		spin_unlock_irq(&pool->lock);
4592 		mutex_unlock(&pool->manager_mutex);
4593 
4594 		/*
4595 		 * Call schedule() so that we cross rq->lock and thus can
4596 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4597 		 * This is necessary as scheduler callbacks may be invoked
4598 		 * from other cpus.
4599 		 */
4600 		schedule();
4601 
4602 		/*
4603 		 * Sched callbacks are disabled now.  Zap nr_running.
4604 		 * After this, nr_running stays zero and need_more_worker()
4605 		 * and keep_working() are always true as long as the
4606 		 * worklist is not empty.  This pool now behaves as an
4607 		 * unbound (in terms of concurrency management) pool which
4608 		 * are served by workers tied to the pool.
4609 		 */
4610 		atomic_set(&pool->nr_running, 0);
4611 
4612 		/*
4613 		 * With concurrency management just turned off, a busy
4614 		 * worker blocking could lead to lengthy stalls.  Kick off
4615 		 * unbound chain execution of currently pending work items.
4616 		 */
4617 		spin_lock_irq(&pool->lock);
4618 		wake_up_worker(pool);
4619 		spin_unlock_irq(&pool->lock);
4620 	}
4621 }
4622 
4623 /**
4624  * rebind_workers - rebind all workers of a pool to the associated CPU
4625  * @pool: pool of interest
4626  *
4627  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4628  */
4629 static void rebind_workers(struct worker_pool *pool)
4630 {
4631 	struct worker *worker;
4632 	int wi;
4633 
4634 	lockdep_assert_held(&pool->manager_mutex);
4635 
4636 	/*
4637 	 * Restore CPU affinity of all workers.  As all idle workers should
4638 	 * be on the run-queue of the associated CPU before any local
4639 	 * wake-ups for concurrency management happen, restore CPU affinty
4640 	 * of all workers first and then clear UNBOUND.  As we're called
4641 	 * from CPU_ONLINE, the following shouldn't fail.
4642 	 */
4643 	for_each_pool_worker(worker, wi, pool)
4644 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4645 						  pool->attrs->cpumask) < 0);
4646 
4647 	spin_lock_irq(&pool->lock);
4648 
4649 	for_each_pool_worker(worker, wi, pool) {
4650 		unsigned int worker_flags = worker->flags;
4651 
4652 		/*
4653 		 * A bound idle worker should actually be on the runqueue
4654 		 * of the associated CPU for local wake-ups targeting it to
4655 		 * work.  Kick all idle workers so that they migrate to the
4656 		 * associated CPU.  Doing this in the same loop as
4657 		 * replacing UNBOUND with REBOUND is safe as no worker will
4658 		 * be bound before @pool->lock is released.
4659 		 */
4660 		if (worker_flags & WORKER_IDLE)
4661 			wake_up_process(worker->task);
4662 
4663 		/*
4664 		 * We want to clear UNBOUND but can't directly call
4665 		 * worker_clr_flags() or adjust nr_running.  Atomically
4666 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4667 		 * @worker will clear REBOUND using worker_clr_flags() when
4668 		 * it initiates the next execution cycle thus restoring
4669 		 * concurrency management.  Note that when or whether
4670 		 * @worker clears REBOUND doesn't affect correctness.
4671 		 *
4672 		 * ACCESS_ONCE() is necessary because @worker->flags may be
4673 		 * tested without holding any lock in
4674 		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4675 		 * fail incorrectly leading to premature concurrency
4676 		 * management operations.
4677 		 */
4678 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4679 		worker_flags |= WORKER_REBOUND;
4680 		worker_flags &= ~WORKER_UNBOUND;
4681 		ACCESS_ONCE(worker->flags) = worker_flags;
4682 	}
4683 
4684 	spin_unlock_irq(&pool->lock);
4685 }
4686 
4687 /**
4688  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4689  * @pool: unbound pool of interest
4690  * @cpu: the CPU which is coming up
4691  *
4692  * An unbound pool may end up with a cpumask which doesn't have any online
4693  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4694  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4695  * online CPU before, cpus_allowed of all its workers should be restored.
4696  */
4697 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4698 {
4699 	static cpumask_t cpumask;
4700 	struct worker *worker;
4701 	int wi;
4702 
4703 	lockdep_assert_held(&pool->manager_mutex);
4704 
4705 	/* is @cpu allowed for @pool? */
4706 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4707 		return;
4708 
4709 	/* is @cpu the only online CPU? */
4710 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4711 	if (cpumask_weight(&cpumask) != 1)
4712 		return;
4713 
4714 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4715 	for_each_pool_worker(worker, wi, pool)
4716 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4717 						  pool->attrs->cpumask) < 0);
4718 }
4719 
4720 /*
4721  * Workqueues should be brought up before normal priority CPU notifiers.
4722  * This will be registered high priority CPU notifier.
4723  */
4724 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4725 					       unsigned long action,
4726 					       void *hcpu)
4727 {
4728 	int cpu = (unsigned long)hcpu;
4729 	struct worker_pool *pool;
4730 	struct workqueue_struct *wq;
4731 	int pi;
4732 
4733 	switch (action & ~CPU_TASKS_FROZEN) {
4734 	case CPU_UP_PREPARE:
4735 		for_each_cpu_worker_pool(pool, cpu) {
4736 			if (pool->nr_workers)
4737 				continue;
4738 			if (create_and_start_worker(pool) < 0)
4739 				return NOTIFY_BAD;
4740 		}
4741 		break;
4742 
4743 	case CPU_DOWN_FAILED:
4744 	case CPU_ONLINE:
4745 		mutex_lock(&wq_pool_mutex);
4746 
4747 		for_each_pool(pool, pi) {
4748 			mutex_lock(&pool->manager_mutex);
4749 
4750 			if (pool->cpu == cpu) {
4751 				spin_lock_irq(&pool->lock);
4752 				pool->flags &= ~POOL_DISASSOCIATED;
4753 				spin_unlock_irq(&pool->lock);
4754 
4755 				rebind_workers(pool);
4756 			} else if (pool->cpu < 0) {
4757 				restore_unbound_workers_cpumask(pool, cpu);
4758 			}
4759 
4760 			mutex_unlock(&pool->manager_mutex);
4761 		}
4762 
4763 		/* update NUMA affinity of unbound workqueues */
4764 		list_for_each_entry(wq, &workqueues, list)
4765 			wq_update_unbound_numa(wq, cpu, true);
4766 
4767 		mutex_unlock(&wq_pool_mutex);
4768 		break;
4769 	}
4770 	return NOTIFY_OK;
4771 }
4772 
4773 /*
4774  * Workqueues should be brought down after normal priority CPU notifiers.
4775  * This will be registered as low priority CPU notifier.
4776  */
4777 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4778 						 unsigned long action,
4779 						 void *hcpu)
4780 {
4781 	int cpu = (unsigned long)hcpu;
4782 	struct work_struct unbind_work;
4783 	struct workqueue_struct *wq;
4784 
4785 	switch (action & ~CPU_TASKS_FROZEN) {
4786 	case CPU_DOWN_PREPARE:
4787 		/* unbinding per-cpu workers should happen on the local CPU */
4788 		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4789 		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4790 
4791 		/* update NUMA affinity of unbound workqueues */
4792 		mutex_lock(&wq_pool_mutex);
4793 		list_for_each_entry(wq, &workqueues, list)
4794 			wq_update_unbound_numa(wq, cpu, false);
4795 		mutex_unlock(&wq_pool_mutex);
4796 
4797 		/* wait for per-cpu unbinding to finish */
4798 		flush_work(&unbind_work);
4799 		destroy_work_on_stack(&unbind_work);
4800 		break;
4801 	}
4802 	return NOTIFY_OK;
4803 }
4804 
4805 #ifdef CONFIG_SMP
4806 
4807 struct work_for_cpu {
4808 	struct work_struct work;
4809 	long (*fn)(void *);
4810 	void *arg;
4811 	long ret;
4812 };
4813 
4814 static void work_for_cpu_fn(struct work_struct *work)
4815 {
4816 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4817 
4818 	wfc->ret = wfc->fn(wfc->arg);
4819 }
4820 
4821 /**
4822  * work_on_cpu - run a function in user context on a particular cpu
4823  * @cpu: the cpu to run on
4824  * @fn: the function to run
4825  * @arg: the function arg
4826  *
4827  * It is up to the caller to ensure that the cpu doesn't go offline.
4828  * The caller must not hold any locks which would prevent @fn from completing.
4829  *
4830  * Return: The value @fn returns.
4831  */
4832 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4833 {
4834 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4835 
4836 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4837 	schedule_work_on(cpu, &wfc.work);
4838 	flush_work(&wfc.work);
4839 	destroy_work_on_stack(&wfc.work);
4840 	return wfc.ret;
4841 }
4842 EXPORT_SYMBOL_GPL(work_on_cpu);
4843 #endif /* CONFIG_SMP */
4844 
4845 #ifdef CONFIG_FREEZER
4846 
4847 /**
4848  * freeze_workqueues_begin - begin freezing workqueues
4849  *
4850  * Start freezing workqueues.  After this function returns, all freezable
4851  * workqueues will queue new works to their delayed_works list instead of
4852  * pool->worklist.
4853  *
4854  * CONTEXT:
4855  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4856  */
4857 void freeze_workqueues_begin(void)
4858 {
4859 	struct worker_pool *pool;
4860 	struct workqueue_struct *wq;
4861 	struct pool_workqueue *pwq;
4862 	int pi;
4863 
4864 	mutex_lock(&wq_pool_mutex);
4865 
4866 	WARN_ON_ONCE(workqueue_freezing);
4867 	workqueue_freezing = true;
4868 
4869 	/* set FREEZING */
4870 	for_each_pool(pool, pi) {
4871 		spin_lock_irq(&pool->lock);
4872 		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4873 		pool->flags |= POOL_FREEZING;
4874 		spin_unlock_irq(&pool->lock);
4875 	}
4876 
4877 	list_for_each_entry(wq, &workqueues, list) {
4878 		mutex_lock(&wq->mutex);
4879 		for_each_pwq(pwq, wq)
4880 			pwq_adjust_max_active(pwq);
4881 		mutex_unlock(&wq->mutex);
4882 	}
4883 
4884 	mutex_unlock(&wq_pool_mutex);
4885 }
4886 
4887 /**
4888  * freeze_workqueues_busy - are freezable workqueues still busy?
4889  *
4890  * Check whether freezing is complete.  This function must be called
4891  * between freeze_workqueues_begin() and thaw_workqueues().
4892  *
4893  * CONTEXT:
4894  * Grabs and releases wq_pool_mutex.
4895  *
4896  * Return:
4897  * %true if some freezable workqueues are still busy.  %false if freezing
4898  * is complete.
4899  */
4900 bool freeze_workqueues_busy(void)
4901 {
4902 	bool busy = false;
4903 	struct workqueue_struct *wq;
4904 	struct pool_workqueue *pwq;
4905 
4906 	mutex_lock(&wq_pool_mutex);
4907 
4908 	WARN_ON_ONCE(!workqueue_freezing);
4909 
4910 	list_for_each_entry(wq, &workqueues, list) {
4911 		if (!(wq->flags & WQ_FREEZABLE))
4912 			continue;
4913 		/*
4914 		 * nr_active is monotonically decreasing.  It's safe
4915 		 * to peek without lock.
4916 		 */
4917 		rcu_read_lock_sched();
4918 		for_each_pwq(pwq, wq) {
4919 			WARN_ON_ONCE(pwq->nr_active < 0);
4920 			if (pwq->nr_active) {
4921 				busy = true;
4922 				rcu_read_unlock_sched();
4923 				goto out_unlock;
4924 			}
4925 		}
4926 		rcu_read_unlock_sched();
4927 	}
4928 out_unlock:
4929 	mutex_unlock(&wq_pool_mutex);
4930 	return busy;
4931 }
4932 
4933 /**
4934  * thaw_workqueues - thaw workqueues
4935  *
4936  * Thaw workqueues.  Normal queueing is restored and all collected
4937  * frozen works are transferred to their respective pool worklists.
4938  *
4939  * CONTEXT:
4940  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4941  */
4942 void thaw_workqueues(void)
4943 {
4944 	struct workqueue_struct *wq;
4945 	struct pool_workqueue *pwq;
4946 	struct worker_pool *pool;
4947 	int pi;
4948 
4949 	mutex_lock(&wq_pool_mutex);
4950 
4951 	if (!workqueue_freezing)
4952 		goto out_unlock;
4953 
4954 	/* clear FREEZING */
4955 	for_each_pool(pool, pi) {
4956 		spin_lock_irq(&pool->lock);
4957 		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4958 		pool->flags &= ~POOL_FREEZING;
4959 		spin_unlock_irq(&pool->lock);
4960 	}
4961 
4962 	/* restore max_active and repopulate worklist */
4963 	list_for_each_entry(wq, &workqueues, list) {
4964 		mutex_lock(&wq->mutex);
4965 		for_each_pwq(pwq, wq)
4966 			pwq_adjust_max_active(pwq);
4967 		mutex_unlock(&wq->mutex);
4968 	}
4969 
4970 	workqueue_freezing = false;
4971 out_unlock:
4972 	mutex_unlock(&wq_pool_mutex);
4973 }
4974 #endif /* CONFIG_FREEZER */
4975 
4976 static void __init wq_numa_init(void)
4977 {
4978 	cpumask_var_t *tbl;
4979 	int node, cpu;
4980 
4981 	/* determine NUMA pwq table len - highest node id + 1 */
4982 	for_each_node(node)
4983 		wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4984 
4985 	if (num_possible_nodes() <= 1)
4986 		return;
4987 
4988 	if (wq_disable_numa) {
4989 		pr_info("workqueue: NUMA affinity support disabled\n");
4990 		return;
4991 	}
4992 
4993 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4994 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
4995 
4996 	/*
4997 	 * We want masks of possible CPUs of each node which isn't readily
4998 	 * available.  Build one from cpu_to_node() which should have been
4999 	 * fully initialized by now.
5000 	 */
5001 	tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
5002 	BUG_ON(!tbl);
5003 
5004 	for_each_node(node)
5005 		BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5006 				node_online(node) ? node : NUMA_NO_NODE));
5007 
5008 	for_each_possible_cpu(cpu) {
5009 		node = cpu_to_node(cpu);
5010 		if (WARN_ON(node == NUMA_NO_NODE)) {
5011 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5012 			/* happens iff arch is bonkers, let's just proceed */
5013 			return;
5014 		}
5015 		cpumask_set_cpu(cpu, tbl[node]);
5016 	}
5017 
5018 	wq_numa_possible_cpumask = tbl;
5019 	wq_numa_enabled = true;
5020 }
5021 
5022 static int __init init_workqueues(void)
5023 {
5024 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5025 	int i, cpu;
5026 
5027 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5028 
5029 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5030 
5031 	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5032 	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5033 
5034 	wq_numa_init();
5035 
5036 	/* initialize CPU pools */
5037 	for_each_possible_cpu(cpu) {
5038 		struct worker_pool *pool;
5039 
5040 		i = 0;
5041 		for_each_cpu_worker_pool(pool, cpu) {
5042 			BUG_ON(init_worker_pool(pool));
5043 			pool->cpu = cpu;
5044 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5045 			pool->attrs->nice = std_nice[i++];
5046 			pool->node = cpu_to_node(cpu);
5047 
5048 			/* alloc pool ID */
5049 			mutex_lock(&wq_pool_mutex);
5050 			BUG_ON(worker_pool_assign_id(pool));
5051 			mutex_unlock(&wq_pool_mutex);
5052 		}
5053 	}
5054 
5055 	/* create the initial worker */
5056 	for_each_online_cpu(cpu) {
5057 		struct worker_pool *pool;
5058 
5059 		for_each_cpu_worker_pool(pool, cpu) {
5060 			pool->flags &= ~POOL_DISASSOCIATED;
5061 			BUG_ON(create_and_start_worker(pool) < 0);
5062 		}
5063 	}
5064 
5065 	/* create default unbound and ordered wq attrs */
5066 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5067 		struct workqueue_attrs *attrs;
5068 
5069 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5070 		attrs->nice = std_nice[i];
5071 		unbound_std_wq_attrs[i] = attrs;
5072 
5073 		/*
5074 		 * An ordered wq should have only one pwq as ordering is
5075 		 * guaranteed by max_active which is enforced by pwqs.
5076 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5077 		 */
5078 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5079 		attrs->nice = std_nice[i];
5080 		attrs->no_numa = true;
5081 		ordered_wq_attrs[i] = attrs;
5082 	}
5083 
5084 	system_wq = alloc_workqueue("events", 0, 0);
5085 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5086 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5087 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5088 					    WQ_UNBOUND_MAX_ACTIVE);
5089 	system_freezable_wq = alloc_workqueue("events_freezable",
5090 					      WQ_FREEZABLE, 0);
5091 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5092 					      WQ_POWER_EFFICIENT, 0);
5093 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5094 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5095 					      0);
5096 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5097 	       !system_unbound_wq || !system_freezable_wq ||
5098 	       !system_power_efficient_wq ||
5099 	       !system_freezable_power_efficient_wq);
5100 	return 0;
5101 }
5102 early_initcall(init_workqueues);
5103