1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There are two worker pools for each CPU (one for 20 * normal work items and the other for high priority ones) and some extra 21 * pools for workqueues which are not bound to any specific CPU - the 22 * number of these backing pools is dynamic. 23 * 24 * Please read Documentation/workqueue.txt for details. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kernel.h> 29 #include <linux/sched.h> 30 #include <linux/init.h> 31 #include <linux/signal.h> 32 #include <linux/completion.h> 33 #include <linux/workqueue.h> 34 #include <linux/slab.h> 35 #include <linux/cpu.h> 36 #include <linux/notifier.h> 37 #include <linux/kthread.h> 38 #include <linux/hardirq.h> 39 #include <linux/mempolicy.h> 40 #include <linux/freezer.h> 41 #include <linux/kallsyms.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 52 #include "workqueue_internal.h" 53 54 enum { 55 /* 56 * worker_pool flags 57 * 58 * A bound pool is either associated or disassociated with its CPU. 59 * While associated (!DISASSOCIATED), all workers are bound to the 60 * CPU and none has %WORKER_UNBOUND set and concurrency management 61 * is in effect. 62 * 63 * While DISASSOCIATED, the cpu may be offline and all workers have 64 * %WORKER_UNBOUND set and concurrency management disabled, and may 65 * be executing on any CPU. The pool behaves as an unbound one. 66 * 67 * Note that DISASSOCIATED should be flipped only while holding 68 * manager_mutex to avoid changing binding state while 69 * create_worker() is in progress. 70 */ 71 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */ 72 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 73 POOL_FREEZING = 1 << 3, /* freeze in progress */ 74 75 /* worker flags */ 76 WORKER_STARTED = 1 << 0, /* started */ 77 WORKER_DIE = 1 << 1, /* die die die */ 78 WORKER_IDLE = 1 << 2, /* is idle */ 79 WORKER_PREP = 1 << 3, /* preparing to run works */ 80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 82 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 83 84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 85 WORKER_UNBOUND | WORKER_REBOUND, 86 87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 88 89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 91 92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 94 95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 96 /* call for help after 10ms 97 (min two ticks) */ 98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 99 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 100 101 /* 102 * Rescue workers are used only on emergencies and shared by 103 * all cpus. Give -20. 104 */ 105 RESCUER_NICE_LEVEL = -20, 106 HIGHPRI_NICE_LEVEL = -20, 107 108 WQ_NAME_LEN = 24, 109 }; 110 111 /* 112 * Structure fields follow one of the following exclusion rules. 113 * 114 * I: Modifiable by initialization/destruction paths and read-only for 115 * everyone else. 116 * 117 * P: Preemption protected. Disabling preemption is enough and should 118 * only be modified and accessed from the local cpu. 119 * 120 * L: pool->lock protected. Access with pool->lock held. 121 * 122 * X: During normal operation, modification requires pool->lock and should 123 * be done only from local cpu. Either disabling preemption on local 124 * cpu or grabbing pool->lock is enough for read access. If 125 * POOL_DISASSOCIATED is set, it's identical to L. 126 * 127 * MG: pool->manager_mutex and pool->lock protected. Writes require both 128 * locks. Reads can happen under either lock. 129 * 130 * PL: wq_pool_mutex protected. 131 * 132 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads. 133 * 134 * WQ: wq->mutex protected. 135 * 136 * WR: wq->mutex protected for writes. Sched-RCU protected for reads. 137 * 138 * MD: wq_mayday_lock protected. 139 */ 140 141 /* struct worker is defined in workqueue_internal.h */ 142 143 struct worker_pool { 144 spinlock_t lock; /* the pool lock */ 145 int cpu; /* I: the associated cpu */ 146 int node; /* I: the associated node ID */ 147 int id; /* I: pool ID */ 148 unsigned int flags; /* X: flags */ 149 150 struct list_head worklist; /* L: list of pending works */ 151 int nr_workers; /* L: total number of workers */ 152 153 /* nr_idle includes the ones off idle_list for rebinding */ 154 int nr_idle; /* L: currently idle ones */ 155 156 struct list_head idle_list; /* X: list of idle workers */ 157 struct timer_list idle_timer; /* L: worker idle timeout */ 158 struct timer_list mayday_timer; /* L: SOS timer for workers */ 159 160 /* a workers is either on busy_hash or idle_list, or the manager */ 161 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 162 /* L: hash of busy workers */ 163 164 /* see manage_workers() for details on the two manager mutexes */ 165 struct mutex manager_arb; /* manager arbitration */ 166 struct mutex manager_mutex; /* manager exclusion */ 167 struct idr worker_idr; /* MG: worker IDs and iteration */ 168 169 struct workqueue_attrs *attrs; /* I: worker attributes */ 170 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 171 int refcnt; /* PL: refcnt for unbound pools */ 172 173 /* 174 * The current concurrency level. As it's likely to be accessed 175 * from other CPUs during try_to_wake_up(), put it in a separate 176 * cacheline. 177 */ 178 atomic_t nr_running ____cacheline_aligned_in_smp; 179 180 /* 181 * Destruction of pool is sched-RCU protected to allow dereferences 182 * from get_work_pool(). 183 */ 184 struct rcu_head rcu; 185 } ____cacheline_aligned_in_smp; 186 187 /* 188 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 189 * of work_struct->data are used for flags and the remaining high bits 190 * point to the pwq; thus, pwqs need to be aligned at two's power of the 191 * number of flag bits. 192 */ 193 struct pool_workqueue { 194 struct worker_pool *pool; /* I: the associated pool */ 195 struct workqueue_struct *wq; /* I: the owning workqueue */ 196 int work_color; /* L: current color */ 197 int flush_color; /* L: flushing color */ 198 int refcnt; /* L: reference count */ 199 int nr_in_flight[WORK_NR_COLORS]; 200 /* L: nr of in_flight works */ 201 int nr_active; /* L: nr of active works */ 202 int max_active; /* L: max active works */ 203 struct list_head delayed_works; /* L: delayed works */ 204 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 205 struct list_head mayday_node; /* MD: node on wq->maydays */ 206 207 /* 208 * Release of unbound pwq is punted to system_wq. See put_pwq() 209 * and pwq_unbound_release_workfn() for details. pool_workqueue 210 * itself is also sched-RCU protected so that the first pwq can be 211 * determined without grabbing wq->mutex. 212 */ 213 struct work_struct unbound_release_work; 214 struct rcu_head rcu; 215 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 216 217 /* 218 * Structure used to wait for workqueue flush. 219 */ 220 struct wq_flusher { 221 struct list_head list; /* WQ: list of flushers */ 222 int flush_color; /* WQ: flush color waiting for */ 223 struct completion done; /* flush completion */ 224 }; 225 226 struct wq_device; 227 228 /* 229 * The externally visible workqueue. It relays the issued work items to 230 * the appropriate worker_pool through its pool_workqueues. 231 */ 232 struct workqueue_struct { 233 struct list_head pwqs; /* WR: all pwqs of this wq */ 234 struct list_head list; /* PL: list of all workqueues */ 235 236 struct mutex mutex; /* protects this wq */ 237 int work_color; /* WQ: current work color */ 238 int flush_color; /* WQ: current flush color */ 239 atomic_t nr_pwqs_to_flush; /* flush in progress */ 240 struct wq_flusher *first_flusher; /* WQ: first flusher */ 241 struct list_head flusher_queue; /* WQ: flush waiters */ 242 struct list_head flusher_overflow; /* WQ: flush overflow list */ 243 244 struct list_head maydays; /* MD: pwqs requesting rescue */ 245 struct worker *rescuer; /* I: rescue worker */ 246 247 int nr_drainers; /* WQ: drain in progress */ 248 int saved_max_active; /* WQ: saved pwq max_active */ 249 250 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */ 251 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */ 252 253 #ifdef CONFIG_SYSFS 254 struct wq_device *wq_dev; /* I: for sysfs interface */ 255 #endif 256 #ifdef CONFIG_LOCKDEP 257 struct lockdep_map lockdep_map; 258 #endif 259 char name[WQ_NAME_LEN]; /* I: workqueue name */ 260 261 /* hot fields used during command issue, aligned to cacheline */ 262 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 263 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 264 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */ 265 }; 266 267 static struct kmem_cache *pwq_cache; 268 269 static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */ 270 static cpumask_var_t *wq_numa_possible_cpumask; 271 /* possible CPUs of each node */ 272 273 static bool wq_disable_numa; 274 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 275 276 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 277 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT 278 static bool wq_power_efficient = true; 279 #else 280 static bool wq_power_efficient; 281 #endif 282 283 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 284 285 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 286 287 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 288 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 289 290 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 291 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 292 293 static LIST_HEAD(workqueues); /* PL: list of all workqueues */ 294 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 295 296 /* the per-cpu worker pools */ 297 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 298 cpu_worker_pools); 299 300 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 301 302 /* PL: hash of all unbound pools keyed by pool->attrs */ 303 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 304 305 /* I: attributes used when instantiating standard unbound pools on demand */ 306 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 307 308 /* I: attributes used when instantiating ordered pools on demand */ 309 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 310 311 struct workqueue_struct *system_wq __read_mostly; 312 EXPORT_SYMBOL(system_wq); 313 struct workqueue_struct *system_highpri_wq __read_mostly; 314 EXPORT_SYMBOL_GPL(system_highpri_wq); 315 struct workqueue_struct *system_long_wq __read_mostly; 316 EXPORT_SYMBOL_GPL(system_long_wq); 317 struct workqueue_struct *system_unbound_wq __read_mostly; 318 EXPORT_SYMBOL_GPL(system_unbound_wq); 319 struct workqueue_struct *system_freezable_wq __read_mostly; 320 EXPORT_SYMBOL_GPL(system_freezable_wq); 321 struct workqueue_struct *system_power_efficient_wq __read_mostly; 322 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 323 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 324 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 325 326 static int worker_thread(void *__worker); 327 static void copy_workqueue_attrs(struct workqueue_attrs *to, 328 const struct workqueue_attrs *from); 329 330 #define CREATE_TRACE_POINTS 331 #include <trace/events/workqueue.h> 332 333 #define assert_rcu_or_pool_mutex() \ 334 rcu_lockdep_assert(rcu_read_lock_sched_held() || \ 335 lockdep_is_held(&wq_pool_mutex), \ 336 "sched RCU or wq_pool_mutex should be held") 337 338 #define assert_rcu_or_wq_mutex(wq) \ 339 rcu_lockdep_assert(rcu_read_lock_sched_held() || \ 340 lockdep_is_held(&wq->mutex), \ 341 "sched RCU or wq->mutex should be held") 342 343 #ifdef CONFIG_LOCKDEP 344 #define assert_manager_or_pool_lock(pool) \ 345 WARN_ONCE(debug_locks && \ 346 !lockdep_is_held(&(pool)->manager_mutex) && \ 347 !lockdep_is_held(&(pool)->lock), \ 348 "pool->manager_mutex or ->lock should be held") 349 #else 350 #define assert_manager_or_pool_lock(pool) do { } while (0) 351 #endif 352 353 #define for_each_cpu_worker_pool(pool, cpu) \ 354 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 355 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 356 (pool)++) 357 358 /** 359 * for_each_pool - iterate through all worker_pools in the system 360 * @pool: iteration cursor 361 * @pi: integer used for iteration 362 * 363 * This must be called either with wq_pool_mutex held or sched RCU read 364 * locked. If the pool needs to be used beyond the locking in effect, the 365 * caller is responsible for guaranteeing that the pool stays online. 366 * 367 * The if/else clause exists only for the lockdep assertion and can be 368 * ignored. 369 */ 370 #define for_each_pool(pool, pi) \ 371 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 372 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 373 else 374 375 /** 376 * for_each_pool_worker - iterate through all workers of a worker_pool 377 * @worker: iteration cursor 378 * @wi: integer used for iteration 379 * @pool: worker_pool to iterate workers of 380 * 381 * This must be called with either @pool->manager_mutex or ->lock held. 382 * 383 * The if/else clause exists only for the lockdep assertion and can be 384 * ignored. 385 */ 386 #define for_each_pool_worker(worker, wi, pool) \ 387 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \ 388 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \ 389 else 390 391 /** 392 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 393 * @pwq: iteration cursor 394 * @wq: the target workqueue 395 * 396 * This must be called either with wq->mutex held or sched RCU read locked. 397 * If the pwq needs to be used beyond the locking in effect, the caller is 398 * responsible for guaranteeing that the pwq stays online. 399 * 400 * The if/else clause exists only for the lockdep assertion and can be 401 * ignored. 402 */ 403 #define for_each_pwq(pwq, wq) \ 404 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \ 405 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ 406 else 407 408 #ifdef CONFIG_DEBUG_OBJECTS_WORK 409 410 static struct debug_obj_descr work_debug_descr; 411 412 static void *work_debug_hint(void *addr) 413 { 414 return ((struct work_struct *) addr)->func; 415 } 416 417 /* 418 * fixup_init is called when: 419 * - an active object is initialized 420 */ 421 static int work_fixup_init(void *addr, enum debug_obj_state state) 422 { 423 struct work_struct *work = addr; 424 425 switch (state) { 426 case ODEBUG_STATE_ACTIVE: 427 cancel_work_sync(work); 428 debug_object_init(work, &work_debug_descr); 429 return 1; 430 default: 431 return 0; 432 } 433 } 434 435 /* 436 * fixup_activate is called when: 437 * - an active object is activated 438 * - an unknown object is activated (might be a statically initialized object) 439 */ 440 static int work_fixup_activate(void *addr, enum debug_obj_state state) 441 { 442 struct work_struct *work = addr; 443 444 switch (state) { 445 446 case ODEBUG_STATE_NOTAVAILABLE: 447 /* 448 * This is not really a fixup. The work struct was 449 * statically initialized. We just make sure that it 450 * is tracked in the object tracker. 451 */ 452 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) { 453 debug_object_init(work, &work_debug_descr); 454 debug_object_activate(work, &work_debug_descr); 455 return 0; 456 } 457 WARN_ON_ONCE(1); 458 return 0; 459 460 case ODEBUG_STATE_ACTIVE: 461 WARN_ON(1); 462 463 default: 464 return 0; 465 } 466 } 467 468 /* 469 * fixup_free is called when: 470 * - an active object is freed 471 */ 472 static int work_fixup_free(void *addr, enum debug_obj_state state) 473 { 474 struct work_struct *work = addr; 475 476 switch (state) { 477 case ODEBUG_STATE_ACTIVE: 478 cancel_work_sync(work); 479 debug_object_free(work, &work_debug_descr); 480 return 1; 481 default: 482 return 0; 483 } 484 } 485 486 static struct debug_obj_descr work_debug_descr = { 487 .name = "work_struct", 488 .debug_hint = work_debug_hint, 489 .fixup_init = work_fixup_init, 490 .fixup_activate = work_fixup_activate, 491 .fixup_free = work_fixup_free, 492 }; 493 494 static inline void debug_work_activate(struct work_struct *work) 495 { 496 debug_object_activate(work, &work_debug_descr); 497 } 498 499 static inline void debug_work_deactivate(struct work_struct *work) 500 { 501 debug_object_deactivate(work, &work_debug_descr); 502 } 503 504 void __init_work(struct work_struct *work, int onstack) 505 { 506 if (onstack) 507 debug_object_init_on_stack(work, &work_debug_descr); 508 else 509 debug_object_init(work, &work_debug_descr); 510 } 511 EXPORT_SYMBOL_GPL(__init_work); 512 513 void destroy_work_on_stack(struct work_struct *work) 514 { 515 debug_object_free(work, &work_debug_descr); 516 } 517 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 518 519 #else 520 static inline void debug_work_activate(struct work_struct *work) { } 521 static inline void debug_work_deactivate(struct work_struct *work) { } 522 #endif 523 524 /** 525 * worker_pool_assign_id - allocate ID and assing it to @pool 526 * @pool: the pool pointer of interest 527 * 528 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 529 * successfully, -errno on failure. 530 */ 531 static int worker_pool_assign_id(struct worker_pool *pool) 532 { 533 int ret; 534 535 lockdep_assert_held(&wq_pool_mutex); 536 537 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 538 GFP_KERNEL); 539 if (ret >= 0) { 540 pool->id = ret; 541 return 0; 542 } 543 return ret; 544 } 545 546 /** 547 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 548 * @wq: the target workqueue 549 * @node: the node ID 550 * 551 * This must be called either with pwq_lock held or sched RCU read locked. 552 * If the pwq needs to be used beyond the locking in effect, the caller is 553 * responsible for guaranteeing that the pwq stays online. 554 * 555 * Return: The unbound pool_workqueue for @node. 556 */ 557 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 558 int node) 559 { 560 assert_rcu_or_wq_mutex(wq); 561 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 562 } 563 564 static unsigned int work_color_to_flags(int color) 565 { 566 return color << WORK_STRUCT_COLOR_SHIFT; 567 } 568 569 static int get_work_color(struct work_struct *work) 570 { 571 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 572 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 573 } 574 575 static int work_next_color(int color) 576 { 577 return (color + 1) % WORK_NR_COLORS; 578 } 579 580 /* 581 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 582 * contain the pointer to the queued pwq. Once execution starts, the flag 583 * is cleared and the high bits contain OFFQ flags and pool ID. 584 * 585 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 586 * and clear_work_data() can be used to set the pwq, pool or clear 587 * work->data. These functions should only be called while the work is 588 * owned - ie. while the PENDING bit is set. 589 * 590 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 591 * corresponding to a work. Pool is available once the work has been 592 * queued anywhere after initialization until it is sync canceled. pwq is 593 * available only while the work item is queued. 594 * 595 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 596 * canceled. While being canceled, a work item may have its PENDING set 597 * but stay off timer and worklist for arbitrarily long and nobody should 598 * try to steal the PENDING bit. 599 */ 600 static inline void set_work_data(struct work_struct *work, unsigned long data, 601 unsigned long flags) 602 { 603 WARN_ON_ONCE(!work_pending(work)); 604 atomic_long_set(&work->data, data | flags | work_static(work)); 605 } 606 607 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 608 unsigned long extra_flags) 609 { 610 set_work_data(work, (unsigned long)pwq, 611 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 612 } 613 614 static void set_work_pool_and_keep_pending(struct work_struct *work, 615 int pool_id) 616 { 617 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 618 WORK_STRUCT_PENDING); 619 } 620 621 static void set_work_pool_and_clear_pending(struct work_struct *work, 622 int pool_id) 623 { 624 /* 625 * The following wmb is paired with the implied mb in 626 * test_and_set_bit(PENDING) and ensures all updates to @work made 627 * here are visible to and precede any updates by the next PENDING 628 * owner. 629 */ 630 smp_wmb(); 631 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 632 } 633 634 static void clear_work_data(struct work_struct *work) 635 { 636 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 637 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 638 } 639 640 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 641 { 642 unsigned long data = atomic_long_read(&work->data); 643 644 if (data & WORK_STRUCT_PWQ) 645 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 646 else 647 return NULL; 648 } 649 650 /** 651 * get_work_pool - return the worker_pool a given work was associated with 652 * @work: the work item of interest 653 * 654 * Pools are created and destroyed under wq_pool_mutex, and allows read 655 * access under sched-RCU read lock. As such, this function should be 656 * called under wq_pool_mutex or with preemption disabled. 657 * 658 * All fields of the returned pool are accessible as long as the above 659 * mentioned locking is in effect. If the returned pool needs to be used 660 * beyond the critical section, the caller is responsible for ensuring the 661 * returned pool is and stays online. 662 * 663 * Return: The worker_pool @work was last associated with. %NULL if none. 664 */ 665 static struct worker_pool *get_work_pool(struct work_struct *work) 666 { 667 unsigned long data = atomic_long_read(&work->data); 668 int pool_id; 669 670 assert_rcu_or_pool_mutex(); 671 672 if (data & WORK_STRUCT_PWQ) 673 return ((struct pool_workqueue *) 674 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 675 676 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 677 if (pool_id == WORK_OFFQ_POOL_NONE) 678 return NULL; 679 680 return idr_find(&worker_pool_idr, pool_id); 681 } 682 683 /** 684 * get_work_pool_id - return the worker pool ID a given work is associated with 685 * @work: the work item of interest 686 * 687 * Return: The worker_pool ID @work was last associated with. 688 * %WORK_OFFQ_POOL_NONE if none. 689 */ 690 static int get_work_pool_id(struct work_struct *work) 691 { 692 unsigned long data = atomic_long_read(&work->data); 693 694 if (data & WORK_STRUCT_PWQ) 695 return ((struct pool_workqueue *) 696 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 697 698 return data >> WORK_OFFQ_POOL_SHIFT; 699 } 700 701 static void mark_work_canceling(struct work_struct *work) 702 { 703 unsigned long pool_id = get_work_pool_id(work); 704 705 pool_id <<= WORK_OFFQ_POOL_SHIFT; 706 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 707 } 708 709 static bool work_is_canceling(struct work_struct *work) 710 { 711 unsigned long data = atomic_long_read(&work->data); 712 713 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 714 } 715 716 /* 717 * Policy functions. These define the policies on how the global worker 718 * pools are managed. Unless noted otherwise, these functions assume that 719 * they're being called with pool->lock held. 720 */ 721 722 static bool __need_more_worker(struct worker_pool *pool) 723 { 724 return !atomic_read(&pool->nr_running); 725 } 726 727 /* 728 * Need to wake up a worker? Called from anything but currently 729 * running workers. 730 * 731 * Note that, because unbound workers never contribute to nr_running, this 732 * function will always return %true for unbound pools as long as the 733 * worklist isn't empty. 734 */ 735 static bool need_more_worker(struct worker_pool *pool) 736 { 737 return !list_empty(&pool->worklist) && __need_more_worker(pool); 738 } 739 740 /* Can I start working? Called from busy but !running workers. */ 741 static bool may_start_working(struct worker_pool *pool) 742 { 743 return pool->nr_idle; 744 } 745 746 /* Do I need to keep working? Called from currently running workers. */ 747 static bool keep_working(struct worker_pool *pool) 748 { 749 return !list_empty(&pool->worklist) && 750 atomic_read(&pool->nr_running) <= 1; 751 } 752 753 /* Do we need a new worker? Called from manager. */ 754 static bool need_to_create_worker(struct worker_pool *pool) 755 { 756 return need_more_worker(pool) && !may_start_working(pool); 757 } 758 759 /* Do I need to be the manager? */ 760 static bool need_to_manage_workers(struct worker_pool *pool) 761 { 762 return need_to_create_worker(pool) || 763 (pool->flags & POOL_MANAGE_WORKERS); 764 } 765 766 /* Do we have too many workers and should some go away? */ 767 static bool too_many_workers(struct worker_pool *pool) 768 { 769 bool managing = mutex_is_locked(&pool->manager_arb); 770 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 771 int nr_busy = pool->nr_workers - nr_idle; 772 773 /* 774 * nr_idle and idle_list may disagree if idle rebinding is in 775 * progress. Never return %true if idle_list is empty. 776 */ 777 if (list_empty(&pool->idle_list)) 778 return false; 779 780 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 781 } 782 783 /* 784 * Wake up functions. 785 */ 786 787 /* Return the first worker. Safe with preemption disabled */ 788 static struct worker *first_worker(struct worker_pool *pool) 789 { 790 if (unlikely(list_empty(&pool->idle_list))) 791 return NULL; 792 793 return list_first_entry(&pool->idle_list, struct worker, entry); 794 } 795 796 /** 797 * wake_up_worker - wake up an idle worker 798 * @pool: worker pool to wake worker from 799 * 800 * Wake up the first idle worker of @pool. 801 * 802 * CONTEXT: 803 * spin_lock_irq(pool->lock). 804 */ 805 static void wake_up_worker(struct worker_pool *pool) 806 { 807 struct worker *worker = first_worker(pool); 808 809 if (likely(worker)) 810 wake_up_process(worker->task); 811 } 812 813 /** 814 * wq_worker_waking_up - a worker is waking up 815 * @task: task waking up 816 * @cpu: CPU @task is waking up to 817 * 818 * This function is called during try_to_wake_up() when a worker is 819 * being awoken. 820 * 821 * CONTEXT: 822 * spin_lock_irq(rq->lock) 823 */ 824 void wq_worker_waking_up(struct task_struct *task, int cpu) 825 { 826 struct worker *worker = kthread_data(task); 827 828 if (!(worker->flags & WORKER_NOT_RUNNING)) { 829 WARN_ON_ONCE(worker->pool->cpu != cpu); 830 atomic_inc(&worker->pool->nr_running); 831 } 832 } 833 834 /** 835 * wq_worker_sleeping - a worker is going to sleep 836 * @task: task going to sleep 837 * @cpu: CPU in question, must be the current CPU number 838 * 839 * This function is called during schedule() when a busy worker is 840 * going to sleep. Worker on the same cpu can be woken up by 841 * returning pointer to its task. 842 * 843 * CONTEXT: 844 * spin_lock_irq(rq->lock) 845 * 846 * Return: 847 * Worker task on @cpu to wake up, %NULL if none. 848 */ 849 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu) 850 { 851 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 852 struct worker_pool *pool; 853 854 /* 855 * Rescuers, which may not have all the fields set up like normal 856 * workers, also reach here, let's not access anything before 857 * checking NOT_RUNNING. 858 */ 859 if (worker->flags & WORKER_NOT_RUNNING) 860 return NULL; 861 862 pool = worker->pool; 863 864 /* this can only happen on the local cpu */ 865 if (WARN_ON_ONCE(cpu != raw_smp_processor_id())) 866 return NULL; 867 868 /* 869 * The counterpart of the following dec_and_test, implied mb, 870 * worklist not empty test sequence is in insert_work(). 871 * Please read comment there. 872 * 873 * NOT_RUNNING is clear. This means that we're bound to and 874 * running on the local cpu w/ rq lock held and preemption 875 * disabled, which in turn means that none else could be 876 * manipulating idle_list, so dereferencing idle_list without pool 877 * lock is safe. 878 */ 879 if (atomic_dec_and_test(&pool->nr_running) && 880 !list_empty(&pool->worklist)) 881 to_wakeup = first_worker(pool); 882 return to_wakeup ? to_wakeup->task : NULL; 883 } 884 885 /** 886 * worker_set_flags - set worker flags and adjust nr_running accordingly 887 * @worker: self 888 * @flags: flags to set 889 * @wakeup: wakeup an idle worker if necessary 890 * 891 * Set @flags in @worker->flags and adjust nr_running accordingly. If 892 * nr_running becomes zero and @wakeup is %true, an idle worker is 893 * woken up. 894 * 895 * CONTEXT: 896 * spin_lock_irq(pool->lock) 897 */ 898 static inline void worker_set_flags(struct worker *worker, unsigned int flags, 899 bool wakeup) 900 { 901 struct worker_pool *pool = worker->pool; 902 903 WARN_ON_ONCE(worker->task != current); 904 905 /* 906 * If transitioning into NOT_RUNNING, adjust nr_running and 907 * wake up an idle worker as necessary if requested by 908 * @wakeup. 909 */ 910 if ((flags & WORKER_NOT_RUNNING) && 911 !(worker->flags & WORKER_NOT_RUNNING)) { 912 if (wakeup) { 913 if (atomic_dec_and_test(&pool->nr_running) && 914 !list_empty(&pool->worklist)) 915 wake_up_worker(pool); 916 } else 917 atomic_dec(&pool->nr_running); 918 } 919 920 worker->flags |= flags; 921 } 922 923 /** 924 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 925 * @worker: self 926 * @flags: flags to clear 927 * 928 * Clear @flags in @worker->flags and adjust nr_running accordingly. 929 * 930 * CONTEXT: 931 * spin_lock_irq(pool->lock) 932 */ 933 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 934 { 935 struct worker_pool *pool = worker->pool; 936 unsigned int oflags = worker->flags; 937 938 WARN_ON_ONCE(worker->task != current); 939 940 worker->flags &= ~flags; 941 942 /* 943 * If transitioning out of NOT_RUNNING, increment nr_running. Note 944 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 945 * of multiple flags, not a single flag. 946 */ 947 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 948 if (!(worker->flags & WORKER_NOT_RUNNING)) 949 atomic_inc(&pool->nr_running); 950 } 951 952 /** 953 * find_worker_executing_work - find worker which is executing a work 954 * @pool: pool of interest 955 * @work: work to find worker for 956 * 957 * Find a worker which is executing @work on @pool by searching 958 * @pool->busy_hash which is keyed by the address of @work. For a worker 959 * to match, its current execution should match the address of @work and 960 * its work function. This is to avoid unwanted dependency between 961 * unrelated work executions through a work item being recycled while still 962 * being executed. 963 * 964 * This is a bit tricky. A work item may be freed once its execution 965 * starts and nothing prevents the freed area from being recycled for 966 * another work item. If the same work item address ends up being reused 967 * before the original execution finishes, workqueue will identify the 968 * recycled work item as currently executing and make it wait until the 969 * current execution finishes, introducing an unwanted dependency. 970 * 971 * This function checks the work item address and work function to avoid 972 * false positives. Note that this isn't complete as one may construct a 973 * work function which can introduce dependency onto itself through a 974 * recycled work item. Well, if somebody wants to shoot oneself in the 975 * foot that badly, there's only so much we can do, and if such deadlock 976 * actually occurs, it should be easy to locate the culprit work function. 977 * 978 * CONTEXT: 979 * spin_lock_irq(pool->lock). 980 * 981 * Return: 982 * Pointer to worker which is executing @work if found, %NULL 983 * otherwise. 984 */ 985 static struct worker *find_worker_executing_work(struct worker_pool *pool, 986 struct work_struct *work) 987 { 988 struct worker *worker; 989 990 hash_for_each_possible(pool->busy_hash, worker, hentry, 991 (unsigned long)work) 992 if (worker->current_work == work && 993 worker->current_func == work->func) 994 return worker; 995 996 return NULL; 997 } 998 999 /** 1000 * move_linked_works - move linked works to a list 1001 * @work: start of series of works to be scheduled 1002 * @head: target list to append @work to 1003 * @nextp: out paramter for nested worklist walking 1004 * 1005 * Schedule linked works starting from @work to @head. Work series to 1006 * be scheduled starts at @work and includes any consecutive work with 1007 * WORK_STRUCT_LINKED set in its predecessor. 1008 * 1009 * If @nextp is not NULL, it's updated to point to the next work of 1010 * the last scheduled work. This allows move_linked_works() to be 1011 * nested inside outer list_for_each_entry_safe(). 1012 * 1013 * CONTEXT: 1014 * spin_lock_irq(pool->lock). 1015 */ 1016 static void move_linked_works(struct work_struct *work, struct list_head *head, 1017 struct work_struct **nextp) 1018 { 1019 struct work_struct *n; 1020 1021 /* 1022 * Linked worklist will always end before the end of the list, 1023 * use NULL for list head. 1024 */ 1025 list_for_each_entry_safe_from(work, n, NULL, entry) { 1026 list_move_tail(&work->entry, head); 1027 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1028 break; 1029 } 1030 1031 /* 1032 * If we're already inside safe list traversal and have moved 1033 * multiple works to the scheduled queue, the next position 1034 * needs to be updated. 1035 */ 1036 if (nextp) 1037 *nextp = n; 1038 } 1039 1040 /** 1041 * get_pwq - get an extra reference on the specified pool_workqueue 1042 * @pwq: pool_workqueue to get 1043 * 1044 * Obtain an extra reference on @pwq. The caller should guarantee that 1045 * @pwq has positive refcnt and be holding the matching pool->lock. 1046 */ 1047 static void get_pwq(struct pool_workqueue *pwq) 1048 { 1049 lockdep_assert_held(&pwq->pool->lock); 1050 WARN_ON_ONCE(pwq->refcnt <= 0); 1051 pwq->refcnt++; 1052 } 1053 1054 /** 1055 * put_pwq - put a pool_workqueue reference 1056 * @pwq: pool_workqueue to put 1057 * 1058 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1059 * destruction. The caller should be holding the matching pool->lock. 1060 */ 1061 static void put_pwq(struct pool_workqueue *pwq) 1062 { 1063 lockdep_assert_held(&pwq->pool->lock); 1064 if (likely(--pwq->refcnt)) 1065 return; 1066 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1067 return; 1068 /* 1069 * @pwq can't be released under pool->lock, bounce to 1070 * pwq_unbound_release_workfn(). This never recurses on the same 1071 * pool->lock as this path is taken only for unbound workqueues and 1072 * the release work item is scheduled on a per-cpu workqueue. To 1073 * avoid lockdep warning, unbound pool->locks are given lockdep 1074 * subclass of 1 in get_unbound_pool(). 1075 */ 1076 schedule_work(&pwq->unbound_release_work); 1077 } 1078 1079 /** 1080 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1081 * @pwq: pool_workqueue to put (can be %NULL) 1082 * 1083 * put_pwq() with locking. This function also allows %NULL @pwq. 1084 */ 1085 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1086 { 1087 if (pwq) { 1088 /* 1089 * As both pwqs and pools are sched-RCU protected, the 1090 * following lock operations are safe. 1091 */ 1092 spin_lock_irq(&pwq->pool->lock); 1093 put_pwq(pwq); 1094 spin_unlock_irq(&pwq->pool->lock); 1095 } 1096 } 1097 1098 static void pwq_activate_delayed_work(struct work_struct *work) 1099 { 1100 struct pool_workqueue *pwq = get_work_pwq(work); 1101 1102 trace_workqueue_activate_work(work); 1103 move_linked_works(work, &pwq->pool->worklist, NULL); 1104 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1105 pwq->nr_active++; 1106 } 1107 1108 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1109 { 1110 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1111 struct work_struct, entry); 1112 1113 pwq_activate_delayed_work(work); 1114 } 1115 1116 /** 1117 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1118 * @pwq: pwq of interest 1119 * @color: color of work which left the queue 1120 * 1121 * A work either has completed or is removed from pending queue, 1122 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1123 * 1124 * CONTEXT: 1125 * spin_lock_irq(pool->lock). 1126 */ 1127 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1128 { 1129 /* uncolored work items don't participate in flushing or nr_active */ 1130 if (color == WORK_NO_COLOR) 1131 goto out_put; 1132 1133 pwq->nr_in_flight[color]--; 1134 1135 pwq->nr_active--; 1136 if (!list_empty(&pwq->delayed_works)) { 1137 /* one down, submit a delayed one */ 1138 if (pwq->nr_active < pwq->max_active) 1139 pwq_activate_first_delayed(pwq); 1140 } 1141 1142 /* is flush in progress and are we at the flushing tip? */ 1143 if (likely(pwq->flush_color != color)) 1144 goto out_put; 1145 1146 /* are there still in-flight works? */ 1147 if (pwq->nr_in_flight[color]) 1148 goto out_put; 1149 1150 /* this pwq is done, clear flush_color */ 1151 pwq->flush_color = -1; 1152 1153 /* 1154 * If this was the last pwq, wake up the first flusher. It 1155 * will handle the rest. 1156 */ 1157 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1158 complete(&pwq->wq->first_flusher->done); 1159 out_put: 1160 put_pwq(pwq); 1161 } 1162 1163 /** 1164 * try_to_grab_pending - steal work item from worklist and disable irq 1165 * @work: work item to steal 1166 * @is_dwork: @work is a delayed_work 1167 * @flags: place to store irq state 1168 * 1169 * Try to grab PENDING bit of @work. This function can handle @work in any 1170 * stable state - idle, on timer or on worklist. 1171 * 1172 * Return: 1173 * 1 if @work was pending and we successfully stole PENDING 1174 * 0 if @work was idle and we claimed PENDING 1175 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1176 * -ENOENT if someone else is canceling @work, this state may persist 1177 * for arbitrarily long 1178 * 1179 * Note: 1180 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1181 * interrupted while holding PENDING and @work off queue, irq must be 1182 * disabled on entry. This, combined with delayed_work->timer being 1183 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1184 * 1185 * On successful return, >= 0, irq is disabled and the caller is 1186 * responsible for releasing it using local_irq_restore(*@flags). 1187 * 1188 * This function is safe to call from any context including IRQ handler. 1189 */ 1190 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1191 unsigned long *flags) 1192 { 1193 struct worker_pool *pool; 1194 struct pool_workqueue *pwq; 1195 1196 local_irq_save(*flags); 1197 1198 /* try to steal the timer if it exists */ 1199 if (is_dwork) { 1200 struct delayed_work *dwork = to_delayed_work(work); 1201 1202 /* 1203 * dwork->timer is irqsafe. If del_timer() fails, it's 1204 * guaranteed that the timer is not queued anywhere and not 1205 * running on the local CPU. 1206 */ 1207 if (likely(del_timer(&dwork->timer))) 1208 return 1; 1209 } 1210 1211 /* try to claim PENDING the normal way */ 1212 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1213 return 0; 1214 1215 /* 1216 * The queueing is in progress, or it is already queued. Try to 1217 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1218 */ 1219 pool = get_work_pool(work); 1220 if (!pool) 1221 goto fail; 1222 1223 spin_lock(&pool->lock); 1224 /* 1225 * work->data is guaranteed to point to pwq only while the work 1226 * item is queued on pwq->wq, and both updating work->data to point 1227 * to pwq on queueing and to pool on dequeueing are done under 1228 * pwq->pool->lock. This in turn guarantees that, if work->data 1229 * points to pwq which is associated with a locked pool, the work 1230 * item is currently queued on that pool. 1231 */ 1232 pwq = get_work_pwq(work); 1233 if (pwq && pwq->pool == pool) { 1234 debug_work_deactivate(work); 1235 1236 /* 1237 * A delayed work item cannot be grabbed directly because 1238 * it might have linked NO_COLOR work items which, if left 1239 * on the delayed_list, will confuse pwq->nr_active 1240 * management later on and cause stall. Make sure the work 1241 * item is activated before grabbing. 1242 */ 1243 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1244 pwq_activate_delayed_work(work); 1245 1246 list_del_init(&work->entry); 1247 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work)); 1248 1249 /* work->data points to pwq iff queued, point to pool */ 1250 set_work_pool_and_keep_pending(work, pool->id); 1251 1252 spin_unlock(&pool->lock); 1253 return 1; 1254 } 1255 spin_unlock(&pool->lock); 1256 fail: 1257 local_irq_restore(*flags); 1258 if (work_is_canceling(work)) 1259 return -ENOENT; 1260 cpu_relax(); 1261 return -EAGAIN; 1262 } 1263 1264 /** 1265 * insert_work - insert a work into a pool 1266 * @pwq: pwq @work belongs to 1267 * @work: work to insert 1268 * @head: insertion point 1269 * @extra_flags: extra WORK_STRUCT_* flags to set 1270 * 1271 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1272 * work_struct flags. 1273 * 1274 * CONTEXT: 1275 * spin_lock_irq(pool->lock). 1276 */ 1277 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1278 struct list_head *head, unsigned int extra_flags) 1279 { 1280 struct worker_pool *pool = pwq->pool; 1281 1282 /* we own @work, set data and link */ 1283 set_work_pwq(work, pwq, extra_flags); 1284 list_add_tail(&work->entry, head); 1285 get_pwq(pwq); 1286 1287 /* 1288 * Ensure either wq_worker_sleeping() sees the above 1289 * list_add_tail() or we see zero nr_running to avoid workers lying 1290 * around lazily while there are works to be processed. 1291 */ 1292 smp_mb(); 1293 1294 if (__need_more_worker(pool)) 1295 wake_up_worker(pool); 1296 } 1297 1298 /* 1299 * Test whether @work is being queued from another work executing on the 1300 * same workqueue. 1301 */ 1302 static bool is_chained_work(struct workqueue_struct *wq) 1303 { 1304 struct worker *worker; 1305 1306 worker = current_wq_worker(); 1307 /* 1308 * Return %true iff I'm a worker execuing a work item on @wq. If 1309 * I'm @worker, it's safe to dereference it without locking. 1310 */ 1311 return worker && worker->current_pwq->wq == wq; 1312 } 1313 1314 static void __queue_work(int cpu, struct workqueue_struct *wq, 1315 struct work_struct *work) 1316 { 1317 struct pool_workqueue *pwq; 1318 struct worker_pool *last_pool; 1319 struct list_head *worklist; 1320 unsigned int work_flags; 1321 unsigned int req_cpu = cpu; 1322 1323 /* 1324 * While a work item is PENDING && off queue, a task trying to 1325 * steal the PENDING will busy-loop waiting for it to either get 1326 * queued or lose PENDING. Grabbing PENDING and queueing should 1327 * happen with IRQ disabled. 1328 */ 1329 WARN_ON_ONCE(!irqs_disabled()); 1330 1331 debug_work_activate(work); 1332 1333 /* if draining, only works from the same workqueue are allowed */ 1334 if (unlikely(wq->flags & __WQ_DRAINING) && 1335 WARN_ON_ONCE(!is_chained_work(wq))) 1336 return; 1337 retry: 1338 if (req_cpu == WORK_CPU_UNBOUND) 1339 cpu = raw_smp_processor_id(); 1340 1341 /* pwq which will be used unless @work is executing elsewhere */ 1342 if (!(wq->flags & WQ_UNBOUND)) 1343 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1344 else 1345 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1346 1347 /* 1348 * If @work was previously on a different pool, it might still be 1349 * running there, in which case the work needs to be queued on that 1350 * pool to guarantee non-reentrancy. 1351 */ 1352 last_pool = get_work_pool(work); 1353 if (last_pool && last_pool != pwq->pool) { 1354 struct worker *worker; 1355 1356 spin_lock(&last_pool->lock); 1357 1358 worker = find_worker_executing_work(last_pool, work); 1359 1360 if (worker && worker->current_pwq->wq == wq) { 1361 pwq = worker->current_pwq; 1362 } else { 1363 /* meh... not running there, queue here */ 1364 spin_unlock(&last_pool->lock); 1365 spin_lock(&pwq->pool->lock); 1366 } 1367 } else { 1368 spin_lock(&pwq->pool->lock); 1369 } 1370 1371 /* 1372 * pwq is determined and locked. For unbound pools, we could have 1373 * raced with pwq release and it could already be dead. If its 1374 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1375 * without another pwq replacing it in the numa_pwq_tbl or while 1376 * work items are executing on it, so the retrying is guaranteed to 1377 * make forward-progress. 1378 */ 1379 if (unlikely(!pwq->refcnt)) { 1380 if (wq->flags & WQ_UNBOUND) { 1381 spin_unlock(&pwq->pool->lock); 1382 cpu_relax(); 1383 goto retry; 1384 } 1385 /* oops */ 1386 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1387 wq->name, cpu); 1388 } 1389 1390 /* pwq determined, queue */ 1391 trace_workqueue_queue_work(req_cpu, pwq, work); 1392 1393 if (WARN_ON(!list_empty(&work->entry))) { 1394 spin_unlock(&pwq->pool->lock); 1395 return; 1396 } 1397 1398 pwq->nr_in_flight[pwq->work_color]++; 1399 work_flags = work_color_to_flags(pwq->work_color); 1400 1401 if (likely(pwq->nr_active < pwq->max_active)) { 1402 trace_workqueue_activate_work(work); 1403 pwq->nr_active++; 1404 worklist = &pwq->pool->worklist; 1405 } else { 1406 work_flags |= WORK_STRUCT_DELAYED; 1407 worklist = &pwq->delayed_works; 1408 } 1409 1410 insert_work(pwq, work, worklist, work_flags); 1411 1412 spin_unlock(&pwq->pool->lock); 1413 } 1414 1415 /** 1416 * queue_work_on - queue work on specific cpu 1417 * @cpu: CPU number to execute work on 1418 * @wq: workqueue to use 1419 * @work: work to queue 1420 * 1421 * We queue the work to a specific CPU, the caller must ensure it 1422 * can't go away. 1423 * 1424 * Return: %false if @work was already on a queue, %true otherwise. 1425 */ 1426 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1427 struct work_struct *work) 1428 { 1429 bool ret = false; 1430 unsigned long flags; 1431 1432 local_irq_save(flags); 1433 1434 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1435 __queue_work(cpu, wq, work); 1436 ret = true; 1437 } 1438 1439 local_irq_restore(flags); 1440 return ret; 1441 } 1442 EXPORT_SYMBOL(queue_work_on); 1443 1444 void delayed_work_timer_fn(unsigned long __data) 1445 { 1446 struct delayed_work *dwork = (struct delayed_work *)__data; 1447 1448 /* should have been called from irqsafe timer with irq already off */ 1449 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1450 } 1451 EXPORT_SYMBOL(delayed_work_timer_fn); 1452 1453 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1454 struct delayed_work *dwork, unsigned long delay) 1455 { 1456 struct timer_list *timer = &dwork->timer; 1457 struct work_struct *work = &dwork->work; 1458 1459 WARN_ON_ONCE(timer->function != delayed_work_timer_fn || 1460 timer->data != (unsigned long)dwork); 1461 WARN_ON_ONCE(timer_pending(timer)); 1462 WARN_ON_ONCE(!list_empty(&work->entry)); 1463 1464 /* 1465 * If @delay is 0, queue @dwork->work immediately. This is for 1466 * both optimization and correctness. The earliest @timer can 1467 * expire is on the closest next tick and delayed_work users depend 1468 * on that there's no such delay when @delay is 0. 1469 */ 1470 if (!delay) { 1471 __queue_work(cpu, wq, &dwork->work); 1472 return; 1473 } 1474 1475 timer_stats_timer_set_start_info(&dwork->timer); 1476 1477 dwork->wq = wq; 1478 dwork->cpu = cpu; 1479 timer->expires = jiffies + delay; 1480 1481 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1482 add_timer_on(timer, cpu); 1483 else 1484 add_timer(timer); 1485 } 1486 1487 /** 1488 * queue_delayed_work_on - queue work on specific CPU after delay 1489 * @cpu: CPU number to execute work on 1490 * @wq: workqueue to use 1491 * @dwork: work to queue 1492 * @delay: number of jiffies to wait before queueing 1493 * 1494 * Return: %false if @work was already on a queue, %true otherwise. If 1495 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1496 * execution. 1497 */ 1498 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1499 struct delayed_work *dwork, unsigned long delay) 1500 { 1501 struct work_struct *work = &dwork->work; 1502 bool ret = false; 1503 unsigned long flags; 1504 1505 /* read the comment in __queue_work() */ 1506 local_irq_save(flags); 1507 1508 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1509 __queue_delayed_work(cpu, wq, dwork, delay); 1510 ret = true; 1511 } 1512 1513 local_irq_restore(flags); 1514 return ret; 1515 } 1516 EXPORT_SYMBOL(queue_delayed_work_on); 1517 1518 /** 1519 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1520 * @cpu: CPU number to execute work on 1521 * @wq: workqueue to use 1522 * @dwork: work to queue 1523 * @delay: number of jiffies to wait before queueing 1524 * 1525 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1526 * modify @dwork's timer so that it expires after @delay. If @delay is 1527 * zero, @work is guaranteed to be scheduled immediately regardless of its 1528 * current state. 1529 * 1530 * Return: %false if @dwork was idle and queued, %true if @dwork was 1531 * pending and its timer was modified. 1532 * 1533 * This function is safe to call from any context including IRQ handler. 1534 * See try_to_grab_pending() for details. 1535 */ 1536 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1537 struct delayed_work *dwork, unsigned long delay) 1538 { 1539 unsigned long flags; 1540 int ret; 1541 1542 do { 1543 ret = try_to_grab_pending(&dwork->work, true, &flags); 1544 } while (unlikely(ret == -EAGAIN)); 1545 1546 if (likely(ret >= 0)) { 1547 __queue_delayed_work(cpu, wq, dwork, delay); 1548 local_irq_restore(flags); 1549 } 1550 1551 /* -ENOENT from try_to_grab_pending() becomes %true */ 1552 return ret; 1553 } 1554 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1555 1556 /** 1557 * worker_enter_idle - enter idle state 1558 * @worker: worker which is entering idle state 1559 * 1560 * @worker is entering idle state. Update stats and idle timer if 1561 * necessary. 1562 * 1563 * LOCKING: 1564 * spin_lock_irq(pool->lock). 1565 */ 1566 static void worker_enter_idle(struct worker *worker) 1567 { 1568 struct worker_pool *pool = worker->pool; 1569 1570 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1571 WARN_ON_ONCE(!list_empty(&worker->entry) && 1572 (worker->hentry.next || worker->hentry.pprev))) 1573 return; 1574 1575 /* can't use worker_set_flags(), also called from start_worker() */ 1576 worker->flags |= WORKER_IDLE; 1577 pool->nr_idle++; 1578 worker->last_active = jiffies; 1579 1580 /* idle_list is LIFO */ 1581 list_add(&worker->entry, &pool->idle_list); 1582 1583 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1584 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1585 1586 /* 1587 * Sanity check nr_running. Because wq_unbind_fn() releases 1588 * pool->lock between setting %WORKER_UNBOUND and zapping 1589 * nr_running, the warning may trigger spuriously. Check iff 1590 * unbind is not in progress. 1591 */ 1592 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1593 pool->nr_workers == pool->nr_idle && 1594 atomic_read(&pool->nr_running)); 1595 } 1596 1597 /** 1598 * worker_leave_idle - leave idle state 1599 * @worker: worker which is leaving idle state 1600 * 1601 * @worker is leaving idle state. Update stats. 1602 * 1603 * LOCKING: 1604 * spin_lock_irq(pool->lock). 1605 */ 1606 static void worker_leave_idle(struct worker *worker) 1607 { 1608 struct worker_pool *pool = worker->pool; 1609 1610 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1611 return; 1612 worker_clr_flags(worker, WORKER_IDLE); 1613 pool->nr_idle--; 1614 list_del_init(&worker->entry); 1615 } 1616 1617 /** 1618 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it 1619 * @pool: target worker_pool 1620 * 1621 * Bind %current to the cpu of @pool if it is associated and lock @pool. 1622 * 1623 * Works which are scheduled while the cpu is online must at least be 1624 * scheduled to a worker which is bound to the cpu so that if they are 1625 * flushed from cpu callbacks while cpu is going down, they are 1626 * guaranteed to execute on the cpu. 1627 * 1628 * This function is to be used by unbound workers and rescuers to bind 1629 * themselves to the target cpu and may race with cpu going down or 1630 * coming online. kthread_bind() can't be used because it may put the 1631 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used 1632 * verbatim as it's best effort and blocking and pool may be 1633 * [dis]associated in the meantime. 1634 * 1635 * This function tries set_cpus_allowed() and locks pool and verifies the 1636 * binding against %POOL_DISASSOCIATED which is set during 1637 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker 1638 * enters idle state or fetches works without dropping lock, it can 1639 * guarantee the scheduling requirement described in the first paragraph. 1640 * 1641 * CONTEXT: 1642 * Might sleep. Called without any lock but returns with pool->lock 1643 * held. 1644 * 1645 * Return: 1646 * %true if the associated pool is online (@worker is successfully 1647 * bound), %false if offline. 1648 */ 1649 static bool worker_maybe_bind_and_lock(struct worker_pool *pool) 1650 __acquires(&pool->lock) 1651 { 1652 while (true) { 1653 /* 1654 * The following call may fail, succeed or succeed 1655 * without actually migrating the task to the cpu if 1656 * it races with cpu hotunplug operation. Verify 1657 * against POOL_DISASSOCIATED. 1658 */ 1659 if (!(pool->flags & POOL_DISASSOCIATED)) 1660 set_cpus_allowed_ptr(current, pool->attrs->cpumask); 1661 1662 spin_lock_irq(&pool->lock); 1663 if (pool->flags & POOL_DISASSOCIATED) 1664 return false; 1665 if (task_cpu(current) == pool->cpu && 1666 cpumask_equal(¤t->cpus_allowed, pool->attrs->cpumask)) 1667 return true; 1668 spin_unlock_irq(&pool->lock); 1669 1670 /* 1671 * We've raced with CPU hot[un]plug. Give it a breather 1672 * and retry migration. cond_resched() is required here; 1673 * otherwise, we might deadlock against cpu_stop trying to 1674 * bring down the CPU on non-preemptive kernel. 1675 */ 1676 cpu_relax(); 1677 cond_resched(); 1678 } 1679 } 1680 1681 static struct worker *alloc_worker(void) 1682 { 1683 struct worker *worker; 1684 1685 worker = kzalloc(sizeof(*worker), GFP_KERNEL); 1686 if (worker) { 1687 INIT_LIST_HEAD(&worker->entry); 1688 INIT_LIST_HEAD(&worker->scheduled); 1689 /* on creation a worker is in !idle && prep state */ 1690 worker->flags = WORKER_PREP; 1691 } 1692 return worker; 1693 } 1694 1695 /** 1696 * create_worker - create a new workqueue worker 1697 * @pool: pool the new worker will belong to 1698 * 1699 * Create a new worker which is bound to @pool. The returned worker 1700 * can be started by calling start_worker() or destroyed using 1701 * destroy_worker(). 1702 * 1703 * CONTEXT: 1704 * Might sleep. Does GFP_KERNEL allocations. 1705 * 1706 * Return: 1707 * Pointer to the newly created worker. 1708 */ 1709 static struct worker *create_worker(struct worker_pool *pool) 1710 { 1711 struct worker *worker = NULL; 1712 int id = -1; 1713 char id_buf[16]; 1714 1715 lockdep_assert_held(&pool->manager_mutex); 1716 1717 /* 1718 * ID is needed to determine kthread name. Allocate ID first 1719 * without installing the pointer. 1720 */ 1721 idr_preload(GFP_KERNEL); 1722 spin_lock_irq(&pool->lock); 1723 1724 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT); 1725 1726 spin_unlock_irq(&pool->lock); 1727 idr_preload_end(); 1728 if (id < 0) 1729 goto fail; 1730 1731 worker = alloc_worker(); 1732 if (!worker) 1733 goto fail; 1734 1735 worker->pool = pool; 1736 worker->id = id; 1737 1738 if (pool->cpu >= 0) 1739 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1740 pool->attrs->nice < 0 ? "H" : ""); 1741 else 1742 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1743 1744 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1745 "kworker/%s", id_buf); 1746 if (IS_ERR(worker->task)) 1747 goto fail; 1748 1749 set_user_nice(worker->task, pool->attrs->nice); 1750 1751 /* prevent userland from meddling with cpumask of workqueue workers */ 1752 worker->task->flags |= PF_NO_SETAFFINITY; 1753 1754 /* 1755 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1756 * online CPUs. It'll be re-applied when any of the CPUs come up. 1757 */ 1758 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1759 1760 /* 1761 * The caller is responsible for ensuring %POOL_DISASSOCIATED 1762 * remains stable across this function. See the comments above the 1763 * flag definition for details. 1764 */ 1765 if (pool->flags & POOL_DISASSOCIATED) 1766 worker->flags |= WORKER_UNBOUND; 1767 1768 /* successful, commit the pointer to idr */ 1769 spin_lock_irq(&pool->lock); 1770 idr_replace(&pool->worker_idr, worker, worker->id); 1771 spin_unlock_irq(&pool->lock); 1772 1773 return worker; 1774 1775 fail: 1776 if (id >= 0) { 1777 spin_lock_irq(&pool->lock); 1778 idr_remove(&pool->worker_idr, id); 1779 spin_unlock_irq(&pool->lock); 1780 } 1781 kfree(worker); 1782 return NULL; 1783 } 1784 1785 /** 1786 * start_worker - start a newly created worker 1787 * @worker: worker to start 1788 * 1789 * Make the pool aware of @worker and start it. 1790 * 1791 * CONTEXT: 1792 * spin_lock_irq(pool->lock). 1793 */ 1794 static void start_worker(struct worker *worker) 1795 { 1796 worker->flags |= WORKER_STARTED; 1797 worker->pool->nr_workers++; 1798 worker_enter_idle(worker); 1799 wake_up_process(worker->task); 1800 } 1801 1802 /** 1803 * create_and_start_worker - create and start a worker for a pool 1804 * @pool: the target pool 1805 * 1806 * Grab the managership of @pool and create and start a new worker for it. 1807 * 1808 * Return: 0 on success. A negative error code otherwise. 1809 */ 1810 static int create_and_start_worker(struct worker_pool *pool) 1811 { 1812 struct worker *worker; 1813 1814 mutex_lock(&pool->manager_mutex); 1815 1816 worker = create_worker(pool); 1817 if (worker) { 1818 spin_lock_irq(&pool->lock); 1819 start_worker(worker); 1820 spin_unlock_irq(&pool->lock); 1821 } 1822 1823 mutex_unlock(&pool->manager_mutex); 1824 1825 return worker ? 0 : -ENOMEM; 1826 } 1827 1828 /** 1829 * destroy_worker - destroy a workqueue worker 1830 * @worker: worker to be destroyed 1831 * 1832 * Destroy @worker and adjust @pool stats accordingly. 1833 * 1834 * CONTEXT: 1835 * spin_lock_irq(pool->lock) which is released and regrabbed. 1836 */ 1837 static void destroy_worker(struct worker *worker) 1838 { 1839 struct worker_pool *pool = worker->pool; 1840 1841 lockdep_assert_held(&pool->manager_mutex); 1842 lockdep_assert_held(&pool->lock); 1843 1844 /* sanity check frenzy */ 1845 if (WARN_ON(worker->current_work) || 1846 WARN_ON(!list_empty(&worker->scheduled))) 1847 return; 1848 1849 if (worker->flags & WORKER_STARTED) 1850 pool->nr_workers--; 1851 if (worker->flags & WORKER_IDLE) 1852 pool->nr_idle--; 1853 1854 /* 1855 * Once WORKER_DIE is set, the kworker may destroy itself at any 1856 * point. Pin to ensure the task stays until we're done with it. 1857 */ 1858 get_task_struct(worker->task); 1859 1860 list_del_init(&worker->entry); 1861 worker->flags |= WORKER_DIE; 1862 1863 idr_remove(&pool->worker_idr, worker->id); 1864 1865 spin_unlock_irq(&pool->lock); 1866 1867 kthread_stop(worker->task); 1868 put_task_struct(worker->task); 1869 kfree(worker); 1870 1871 spin_lock_irq(&pool->lock); 1872 } 1873 1874 static void idle_worker_timeout(unsigned long __pool) 1875 { 1876 struct worker_pool *pool = (void *)__pool; 1877 1878 spin_lock_irq(&pool->lock); 1879 1880 if (too_many_workers(pool)) { 1881 struct worker *worker; 1882 unsigned long expires; 1883 1884 /* idle_list is kept in LIFO order, check the last one */ 1885 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1886 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1887 1888 if (time_before(jiffies, expires)) 1889 mod_timer(&pool->idle_timer, expires); 1890 else { 1891 /* it's been idle for too long, wake up manager */ 1892 pool->flags |= POOL_MANAGE_WORKERS; 1893 wake_up_worker(pool); 1894 } 1895 } 1896 1897 spin_unlock_irq(&pool->lock); 1898 } 1899 1900 static void send_mayday(struct work_struct *work) 1901 { 1902 struct pool_workqueue *pwq = get_work_pwq(work); 1903 struct workqueue_struct *wq = pwq->wq; 1904 1905 lockdep_assert_held(&wq_mayday_lock); 1906 1907 if (!wq->rescuer) 1908 return; 1909 1910 /* mayday mayday mayday */ 1911 if (list_empty(&pwq->mayday_node)) { 1912 list_add_tail(&pwq->mayday_node, &wq->maydays); 1913 wake_up_process(wq->rescuer->task); 1914 } 1915 } 1916 1917 static void pool_mayday_timeout(unsigned long __pool) 1918 { 1919 struct worker_pool *pool = (void *)__pool; 1920 struct work_struct *work; 1921 1922 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */ 1923 spin_lock(&pool->lock); 1924 1925 if (need_to_create_worker(pool)) { 1926 /* 1927 * We've been trying to create a new worker but 1928 * haven't been successful. We might be hitting an 1929 * allocation deadlock. Send distress signals to 1930 * rescuers. 1931 */ 1932 list_for_each_entry(work, &pool->worklist, entry) 1933 send_mayday(work); 1934 } 1935 1936 spin_unlock(&pool->lock); 1937 spin_unlock_irq(&wq_mayday_lock); 1938 1939 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 1940 } 1941 1942 /** 1943 * maybe_create_worker - create a new worker if necessary 1944 * @pool: pool to create a new worker for 1945 * 1946 * Create a new worker for @pool if necessary. @pool is guaranteed to 1947 * have at least one idle worker on return from this function. If 1948 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1949 * sent to all rescuers with works scheduled on @pool to resolve 1950 * possible allocation deadlock. 1951 * 1952 * On return, need_to_create_worker() is guaranteed to be %false and 1953 * may_start_working() %true. 1954 * 1955 * LOCKING: 1956 * spin_lock_irq(pool->lock) which may be released and regrabbed 1957 * multiple times. Does GFP_KERNEL allocations. Called only from 1958 * manager. 1959 * 1960 * Return: 1961 * %false if no action was taken and pool->lock stayed locked, %true 1962 * otherwise. 1963 */ 1964 static bool maybe_create_worker(struct worker_pool *pool) 1965 __releases(&pool->lock) 1966 __acquires(&pool->lock) 1967 { 1968 if (!need_to_create_worker(pool)) 1969 return false; 1970 restart: 1971 spin_unlock_irq(&pool->lock); 1972 1973 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1974 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1975 1976 while (true) { 1977 struct worker *worker; 1978 1979 worker = create_worker(pool); 1980 if (worker) { 1981 del_timer_sync(&pool->mayday_timer); 1982 spin_lock_irq(&pool->lock); 1983 start_worker(worker); 1984 if (WARN_ON_ONCE(need_to_create_worker(pool))) 1985 goto restart; 1986 return true; 1987 } 1988 1989 if (!need_to_create_worker(pool)) 1990 break; 1991 1992 __set_current_state(TASK_INTERRUPTIBLE); 1993 schedule_timeout(CREATE_COOLDOWN); 1994 1995 if (!need_to_create_worker(pool)) 1996 break; 1997 } 1998 1999 del_timer_sync(&pool->mayday_timer); 2000 spin_lock_irq(&pool->lock); 2001 if (need_to_create_worker(pool)) 2002 goto restart; 2003 return true; 2004 } 2005 2006 /** 2007 * maybe_destroy_worker - destroy workers which have been idle for a while 2008 * @pool: pool to destroy workers for 2009 * 2010 * Destroy @pool workers which have been idle for longer than 2011 * IDLE_WORKER_TIMEOUT. 2012 * 2013 * LOCKING: 2014 * spin_lock_irq(pool->lock) which may be released and regrabbed 2015 * multiple times. Called only from manager. 2016 * 2017 * Return: 2018 * %false if no action was taken and pool->lock stayed locked, %true 2019 * otherwise. 2020 */ 2021 static bool maybe_destroy_workers(struct worker_pool *pool) 2022 { 2023 bool ret = false; 2024 2025 while (too_many_workers(pool)) { 2026 struct worker *worker; 2027 unsigned long expires; 2028 2029 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2030 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2031 2032 if (time_before(jiffies, expires)) { 2033 mod_timer(&pool->idle_timer, expires); 2034 break; 2035 } 2036 2037 destroy_worker(worker); 2038 ret = true; 2039 } 2040 2041 return ret; 2042 } 2043 2044 /** 2045 * manage_workers - manage worker pool 2046 * @worker: self 2047 * 2048 * Assume the manager role and manage the worker pool @worker belongs 2049 * to. At any given time, there can be only zero or one manager per 2050 * pool. The exclusion is handled automatically by this function. 2051 * 2052 * The caller can safely start processing works on false return. On 2053 * true return, it's guaranteed that need_to_create_worker() is false 2054 * and may_start_working() is true. 2055 * 2056 * CONTEXT: 2057 * spin_lock_irq(pool->lock) which may be released and regrabbed 2058 * multiple times. Does GFP_KERNEL allocations. 2059 * 2060 * Return: 2061 * %false if the pool don't need management and the caller can safely start 2062 * processing works, %true indicates that the function released pool->lock 2063 * and reacquired it to perform some management function and that the 2064 * conditions that the caller verified while holding the lock before 2065 * calling the function might no longer be true. 2066 */ 2067 static bool manage_workers(struct worker *worker) 2068 { 2069 struct worker_pool *pool = worker->pool; 2070 bool ret = false; 2071 2072 /* 2073 * Managership is governed by two mutexes - manager_arb and 2074 * manager_mutex. manager_arb handles arbitration of manager role. 2075 * Anyone who successfully grabs manager_arb wins the arbitration 2076 * and becomes the manager. mutex_trylock() on pool->manager_arb 2077 * failure while holding pool->lock reliably indicates that someone 2078 * else is managing the pool and the worker which failed trylock 2079 * can proceed to executing work items. This means that anyone 2080 * grabbing manager_arb is responsible for actually performing 2081 * manager duties. If manager_arb is grabbed and released without 2082 * actual management, the pool may stall indefinitely. 2083 * 2084 * manager_mutex is used for exclusion of actual management 2085 * operations. The holder of manager_mutex can be sure that none 2086 * of management operations, including creation and destruction of 2087 * workers, won't take place until the mutex is released. Because 2088 * manager_mutex doesn't interfere with manager role arbitration, 2089 * it is guaranteed that the pool's management, while may be 2090 * delayed, won't be disturbed by someone else grabbing 2091 * manager_mutex. 2092 */ 2093 if (!mutex_trylock(&pool->manager_arb)) 2094 return ret; 2095 2096 /* 2097 * With manager arbitration won, manager_mutex would be free in 2098 * most cases. trylock first without dropping @pool->lock. 2099 */ 2100 if (unlikely(!mutex_trylock(&pool->manager_mutex))) { 2101 spin_unlock_irq(&pool->lock); 2102 mutex_lock(&pool->manager_mutex); 2103 spin_lock_irq(&pool->lock); 2104 ret = true; 2105 } 2106 2107 pool->flags &= ~POOL_MANAGE_WORKERS; 2108 2109 /* 2110 * Destroy and then create so that may_start_working() is true 2111 * on return. 2112 */ 2113 ret |= maybe_destroy_workers(pool); 2114 ret |= maybe_create_worker(pool); 2115 2116 mutex_unlock(&pool->manager_mutex); 2117 mutex_unlock(&pool->manager_arb); 2118 return ret; 2119 } 2120 2121 /** 2122 * process_one_work - process single work 2123 * @worker: self 2124 * @work: work to process 2125 * 2126 * Process @work. This function contains all the logics necessary to 2127 * process a single work including synchronization against and 2128 * interaction with other workers on the same cpu, queueing and 2129 * flushing. As long as context requirement is met, any worker can 2130 * call this function to process a work. 2131 * 2132 * CONTEXT: 2133 * spin_lock_irq(pool->lock) which is released and regrabbed. 2134 */ 2135 static void process_one_work(struct worker *worker, struct work_struct *work) 2136 __releases(&pool->lock) 2137 __acquires(&pool->lock) 2138 { 2139 struct pool_workqueue *pwq = get_work_pwq(work); 2140 struct worker_pool *pool = worker->pool; 2141 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2142 int work_color; 2143 struct worker *collision; 2144 #ifdef CONFIG_LOCKDEP 2145 /* 2146 * It is permissible to free the struct work_struct from 2147 * inside the function that is called from it, this we need to 2148 * take into account for lockdep too. To avoid bogus "held 2149 * lock freed" warnings as well as problems when looking into 2150 * work->lockdep_map, make a copy and use that here. 2151 */ 2152 struct lockdep_map lockdep_map; 2153 2154 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2155 #endif 2156 /* 2157 * Ensure we're on the correct CPU. DISASSOCIATED test is 2158 * necessary to avoid spurious warnings from rescuers servicing the 2159 * unbound or a disassociated pool. 2160 */ 2161 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) && 2162 !(pool->flags & POOL_DISASSOCIATED) && 2163 raw_smp_processor_id() != pool->cpu); 2164 2165 /* 2166 * A single work shouldn't be executed concurrently by 2167 * multiple workers on a single cpu. Check whether anyone is 2168 * already processing the work. If so, defer the work to the 2169 * currently executing one. 2170 */ 2171 collision = find_worker_executing_work(pool, work); 2172 if (unlikely(collision)) { 2173 move_linked_works(work, &collision->scheduled, NULL); 2174 return; 2175 } 2176 2177 /* claim and dequeue */ 2178 debug_work_deactivate(work); 2179 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2180 worker->current_work = work; 2181 worker->current_func = work->func; 2182 worker->current_pwq = pwq; 2183 work_color = get_work_color(work); 2184 2185 list_del_init(&work->entry); 2186 2187 /* 2188 * CPU intensive works don't participate in concurrency 2189 * management. They're the scheduler's responsibility. 2190 */ 2191 if (unlikely(cpu_intensive)) 2192 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true); 2193 2194 /* 2195 * Unbound pool isn't concurrency managed and work items should be 2196 * executed ASAP. Wake up another worker if necessary. 2197 */ 2198 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool)) 2199 wake_up_worker(pool); 2200 2201 /* 2202 * Record the last pool and clear PENDING which should be the last 2203 * update to @work. Also, do this inside @pool->lock so that 2204 * PENDING and queued state changes happen together while IRQ is 2205 * disabled. 2206 */ 2207 set_work_pool_and_clear_pending(work, pool->id); 2208 2209 spin_unlock_irq(&pool->lock); 2210 2211 lock_map_acquire_read(&pwq->wq->lockdep_map); 2212 lock_map_acquire(&lockdep_map); 2213 trace_workqueue_execute_start(work); 2214 worker->current_func(work); 2215 /* 2216 * While we must be careful to not use "work" after this, the trace 2217 * point will only record its address. 2218 */ 2219 trace_workqueue_execute_end(work); 2220 lock_map_release(&lockdep_map); 2221 lock_map_release(&pwq->wq->lockdep_map); 2222 2223 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2224 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2225 " last function: %pf\n", 2226 current->comm, preempt_count(), task_pid_nr(current), 2227 worker->current_func); 2228 debug_show_held_locks(current); 2229 dump_stack(); 2230 } 2231 2232 /* 2233 * The following prevents a kworker from hogging CPU on !PREEMPT 2234 * kernels, where a requeueing work item waiting for something to 2235 * happen could deadlock with stop_machine as such work item could 2236 * indefinitely requeue itself while all other CPUs are trapped in 2237 * stop_machine. 2238 */ 2239 cond_resched(); 2240 2241 spin_lock_irq(&pool->lock); 2242 2243 /* clear cpu intensive status */ 2244 if (unlikely(cpu_intensive)) 2245 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2246 2247 /* we're done with it, release */ 2248 hash_del(&worker->hentry); 2249 worker->current_work = NULL; 2250 worker->current_func = NULL; 2251 worker->current_pwq = NULL; 2252 worker->desc_valid = false; 2253 pwq_dec_nr_in_flight(pwq, work_color); 2254 } 2255 2256 /** 2257 * process_scheduled_works - process scheduled works 2258 * @worker: self 2259 * 2260 * Process all scheduled works. Please note that the scheduled list 2261 * may change while processing a work, so this function repeatedly 2262 * fetches a work from the top and executes it. 2263 * 2264 * CONTEXT: 2265 * spin_lock_irq(pool->lock) which may be released and regrabbed 2266 * multiple times. 2267 */ 2268 static void process_scheduled_works(struct worker *worker) 2269 { 2270 while (!list_empty(&worker->scheduled)) { 2271 struct work_struct *work = list_first_entry(&worker->scheduled, 2272 struct work_struct, entry); 2273 process_one_work(worker, work); 2274 } 2275 } 2276 2277 /** 2278 * worker_thread - the worker thread function 2279 * @__worker: self 2280 * 2281 * The worker thread function. All workers belong to a worker_pool - 2282 * either a per-cpu one or dynamic unbound one. These workers process all 2283 * work items regardless of their specific target workqueue. The only 2284 * exception is work items which belong to workqueues with a rescuer which 2285 * will be explained in rescuer_thread(). 2286 * 2287 * Return: 0 2288 */ 2289 static int worker_thread(void *__worker) 2290 { 2291 struct worker *worker = __worker; 2292 struct worker_pool *pool = worker->pool; 2293 2294 /* tell the scheduler that this is a workqueue worker */ 2295 worker->task->flags |= PF_WQ_WORKER; 2296 woke_up: 2297 spin_lock_irq(&pool->lock); 2298 2299 /* am I supposed to die? */ 2300 if (unlikely(worker->flags & WORKER_DIE)) { 2301 spin_unlock_irq(&pool->lock); 2302 WARN_ON_ONCE(!list_empty(&worker->entry)); 2303 worker->task->flags &= ~PF_WQ_WORKER; 2304 return 0; 2305 } 2306 2307 worker_leave_idle(worker); 2308 recheck: 2309 /* no more worker necessary? */ 2310 if (!need_more_worker(pool)) 2311 goto sleep; 2312 2313 /* do we need to manage? */ 2314 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2315 goto recheck; 2316 2317 /* 2318 * ->scheduled list can only be filled while a worker is 2319 * preparing to process a work or actually processing it. 2320 * Make sure nobody diddled with it while I was sleeping. 2321 */ 2322 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2323 2324 /* 2325 * Finish PREP stage. We're guaranteed to have at least one idle 2326 * worker or that someone else has already assumed the manager 2327 * role. This is where @worker starts participating in concurrency 2328 * management if applicable and concurrency management is restored 2329 * after being rebound. See rebind_workers() for details. 2330 */ 2331 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2332 2333 do { 2334 struct work_struct *work = 2335 list_first_entry(&pool->worklist, 2336 struct work_struct, entry); 2337 2338 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2339 /* optimization path, not strictly necessary */ 2340 process_one_work(worker, work); 2341 if (unlikely(!list_empty(&worker->scheduled))) 2342 process_scheduled_works(worker); 2343 } else { 2344 move_linked_works(work, &worker->scheduled, NULL); 2345 process_scheduled_works(worker); 2346 } 2347 } while (keep_working(pool)); 2348 2349 worker_set_flags(worker, WORKER_PREP, false); 2350 sleep: 2351 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker)) 2352 goto recheck; 2353 2354 /* 2355 * pool->lock is held and there's no work to process and no need to 2356 * manage, sleep. Workers are woken up only while holding 2357 * pool->lock or from local cpu, so setting the current state 2358 * before releasing pool->lock is enough to prevent losing any 2359 * event. 2360 */ 2361 worker_enter_idle(worker); 2362 __set_current_state(TASK_INTERRUPTIBLE); 2363 spin_unlock_irq(&pool->lock); 2364 schedule(); 2365 goto woke_up; 2366 } 2367 2368 /** 2369 * rescuer_thread - the rescuer thread function 2370 * @__rescuer: self 2371 * 2372 * Workqueue rescuer thread function. There's one rescuer for each 2373 * workqueue which has WQ_MEM_RECLAIM set. 2374 * 2375 * Regular work processing on a pool may block trying to create a new 2376 * worker which uses GFP_KERNEL allocation which has slight chance of 2377 * developing into deadlock if some works currently on the same queue 2378 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2379 * the problem rescuer solves. 2380 * 2381 * When such condition is possible, the pool summons rescuers of all 2382 * workqueues which have works queued on the pool and let them process 2383 * those works so that forward progress can be guaranteed. 2384 * 2385 * This should happen rarely. 2386 * 2387 * Return: 0 2388 */ 2389 static int rescuer_thread(void *__rescuer) 2390 { 2391 struct worker *rescuer = __rescuer; 2392 struct workqueue_struct *wq = rescuer->rescue_wq; 2393 struct list_head *scheduled = &rescuer->scheduled; 2394 2395 set_user_nice(current, RESCUER_NICE_LEVEL); 2396 2397 /* 2398 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2399 * doesn't participate in concurrency management. 2400 */ 2401 rescuer->task->flags |= PF_WQ_WORKER; 2402 repeat: 2403 set_current_state(TASK_INTERRUPTIBLE); 2404 2405 if (kthread_should_stop()) { 2406 __set_current_state(TASK_RUNNING); 2407 rescuer->task->flags &= ~PF_WQ_WORKER; 2408 return 0; 2409 } 2410 2411 /* see whether any pwq is asking for help */ 2412 spin_lock_irq(&wq_mayday_lock); 2413 2414 while (!list_empty(&wq->maydays)) { 2415 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2416 struct pool_workqueue, mayday_node); 2417 struct worker_pool *pool = pwq->pool; 2418 struct work_struct *work, *n; 2419 2420 __set_current_state(TASK_RUNNING); 2421 list_del_init(&pwq->mayday_node); 2422 2423 spin_unlock_irq(&wq_mayday_lock); 2424 2425 /* migrate to the target cpu if possible */ 2426 worker_maybe_bind_and_lock(pool); 2427 rescuer->pool = pool; 2428 2429 /* 2430 * Slurp in all works issued via this workqueue and 2431 * process'em. 2432 */ 2433 WARN_ON_ONCE(!list_empty(&rescuer->scheduled)); 2434 list_for_each_entry_safe(work, n, &pool->worklist, entry) 2435 if (get_work_pwq(work) == pwq) 2436 move_linked_works(work, scheduled, &n); 2437 2438 process_scheduled_works(rescuer); 2439 2440 /* 2441 * Leave this pool. If keep_working() is %true, notify a 2442 * regular worker; otherwise, we end up with 0 concurrency 2443 * and stalling the execution. 2444 */ 2445 if (keep_working(pool)) 2446 wake_up_worker(pool); 2447 2448 rescuer->pool = NULL; 2449 spin_unlock(&pool->lock); 2450 spin_lock(&wq_mayday_lock); 2451 } 2452 2453 spin_unlock_irq(&wq_mayday_lock); 2454 2455 /* rescuers should never participate in concurrency management */ 2456 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2457 schedule(); 2458 goto repeat; 2459 } 2460 2461 struct wq_barrier { 2462 struct work_struct work; 2463 struct completion done; 2464 }; 2465 2466 static void wq_barrier_func(struct work_struct *work) 2467 { 2468 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2469 complete(&barr->done); 2470 } 2471 2472 /** 2473 * insert_wq_barrier - insert a barrier work 2474 * @pwq: pwq to insert barrier into 2475 * @barr: wq_barrier to insert 2476 * @target: target work to attach @barr to 2477 * @worker: worker currently executing @target, NULL if @target is not executing 2478 * 2479 * @barr is linked to @target such that @barr is completed only after 2480 * @target finishes execution. Please note that the ordering 2481 * guarantee is observed only with respect to @target and on the local 2482 * cpu. 2483 * 2484 * Currently, a queued barrier can't be canceled. This is because 2485 * try_to_grab_pending() can't determine whether the work to be 2486 * grabbed is at the head of the queue and thus can't clear LINKED 2487 * flag of the previous work while there must be a valid next work 2488 * after a work with LINKED flag set. 2489 * 2490 * Note that when @worker is non-NULL, @target may be modified 2491 * underneath us, so we can't reliably determine pwq from @target. 2492 * 2493 * CONTEXT: 2494 * spin_lock_irq(pool->lock). 2495 */ 2496 static void insert_wq_barrier(struct pool_workqueue *pwq, 2497 struct wq_barrier *barr, 2498 struct work_struct *target, struct worker *worker) 2499 { 2500 struct list_head *head; 2501 unsigned int linked = 0; 2502 2503 /* 2504 * debugobject calls are safe here even with pool->lock locked 2505 * as we know for sure that this will not trigger any of the 2506 * checks and call back into the fixup functions where we 2507 * might deadlock. 2508 */ 2509 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2510 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2511 init_completion(&barr->done); 2512 2513 /* 2514 * If @target is currently being executed, schedule the 2515 * barrier to the worker; otherwise, put it after @target. 2516 */ 2517 if (worker) 2518 head = worker->scheduled.next; 2519 else { 2520 unsigned long *bits = work_data_bits(target); 2521 2522 head = target->entry.next; 2523 /* there can already be other linked works, inherit and set */ 2524 linked = *bits & WORK_STRUCT_LINKED; 2525 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2526 } 2527 2528 debug_work_activate(&barr->work); 2529 insert_work(pwq, &barr->work, head, 2530 work_color_to_flags(WORK_NO_COLOR) | linked); 2531 } 2532 2533 /** 2534 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2535 * @wq: workqueue being flushed 2536 * @flush_color: new flush color, < 0 for no-op 2537 * @work_color: new work color, < 0 for no-op 2538 * 2539 * Prepare pwqs for workqueue flushing. 2540 * 2541 * If @flush_color is non-negative, flush_color on all pwqs should be 2542 * -1. If no pwq has in-flight commands at the specified color, all 2543 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2544 * has in flight commands, its pwq->flush_color is set to 2545 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2546 * wakeup logic is armed and %true is returned. 2547 * 2548 * The caller should have initialized @wq->first_flusher prior to 2549 * calling this function with non-negative @flush_color. If 2550 * @flush_color is negative, no flush color update is done and %false 2551 * is returned. 2552 * 2553 * If @work_color is non-negative, all pwqs should have the same 2554 * work_color which is previous to @work_color and all will be 2555 * advanced to @work_color. 2556 * 2557 * CONTEXT: 2558 * mutex_lock(wq->mutex). 2559 * 2560 * Return: 2561 * %true if @flush_color >= 0 and there's something to flush. %false 2562 * otherwise. 2563 */ 2564 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2565 int flush_color, int work_color) 2566 { 2567 bool wait = false; 2568 struct pool_workqueue *pwq; 2569 2570 if (flush_color >= 0) { 2571 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2572 atomic_set(&wq->nr_pwqs_to_flush, 1); 2573 } 2574 2575 for_each_pwq(pwq, wq) { 2576 struct worker_pool *pool = pwq->pool; 2577 2578 spin_lock_irq(&pool->lock); 2579 2580 if (flush_color >= 0) { 2581 WARN_ON_ONCE(pwq->flush_color != -1); 2582 2583 if (pwq->nr_in_flight[flush_color]) { 2584 pwq->flush_color = flush_color; 2585 atomic_inc(&wq->nr_pwqs_to_flush); 2586 wait = true; 2587 } 2588 } 2589 2590 if (work_color >= 0) { 2591 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2592 pwq->work_color = work_color; 2593 } 2594 2595 spin_unlock_irq(&pool->lock); 2596 } 2597 2598 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2599 complete(&wq->first_flusher->done); 2600 2601 return wait; 2602 } 2603 2604 /** 2605 * flush_workqueue - ensure that any scheduled work has run to completion. 2606 * @wq: workqueue to flush 2607 * 2608 * This function sleeps until all work items which were queued on entry 2609 * have finished execution, but it is not livelocked by new incoming ones. 2610 */ 2611 void flush_workqueue(struct workqueue_struct *wq) 2612 { 2613 struct wq_flusher this_flusher = { 2614 .list = LIST_HEAD_INIT(this_flusher.list), 2615 .flush_color = -1, 2616 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2617 }; 2618 int next_color; 2619 2620 lock_map_acquire(&wq->lockdep_map); 2621 lock_map_release(&wq->lockdep_map); 2622 2623 mutex_lock(&wq->mutex); 2624 2625 /* 2626 * Start-to-wait phase 2627 */ 2628 next_color = work_next_color(wq->work_color); 2629 2630 if (next_color != wq->flush_color) { 2631 /* 2632 * Color space is not full. The current work_color 2633 * becomes our flush_color and work_color is advanced 2634 * by one. 2635 */ 2636 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2637 this_flusher.flush_color = wq->work_color; 2638 wq->work_color = next_color; 2639 2640 if (!wq->first_flusher) { 2641 /* no flush in progress, become the first flusher */ 2642 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2643 2644 wq->first_flusher = &this_flusher; 2645 2646 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2647 wq->work_color)) { 2648 /* nothing to flush, done */ 2649 wq->flush_color = next_color; 2650 wq->first_flusher = NULL; 2651 goto out_unlock; 2652 } 2653 } else { 2654 /* wait in queue */ 2655 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2656 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2657 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2658 } 2659 } else { 2660 /* 2661 * Oops, color space is full, wait on overflow queue. 2662 * The next flush completion will assign us 2663 * flush_color and transfer to flusher_queue. 2664 */ 2665 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2666 } 2667 2668 mutex_unlock(&wq->mutex); 2669 2670 wait_for_completion(&this_flusher.done); 2671 2672 /* 2673 * Wake-up-and-cascade phase 2674 * 2675 * First flushers are responsible for cascading flushes and 2676 * handling overflow. Non-first flushers can simply return. 2677 */ 2678 if (wq->first_flusher != &this_flusher) 2679 return; 2680 2681 mutex_lock(&wq->mutex); 2682 2683 /* we might have raced, check again with mutex held */ 2684 if (wq->first_flusher != &this_flusher) 2685 goto out_unlock; 2686 2687 wq->first_flusher = NULL; 2688 2689 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2690 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2691 2692 while (true) { 2693 struct wq_flusher *next, *tmp; 2694 2695 /* complete all the flushers sharing the current flush color */ 2696 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2697 if (next->flush_color != wq->flush_color) 2698 break; 2699 list_del_init(&next->list); 2700 complete(&next->done); 2701 } 2702 2703 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2704 wq->flush_color != work_next_color(wq->work_color)); 2705 2706 /* this flush_color is finished, advance by one */ 2707 wq->flush_color = work_next_color(wq->flush_color); 2708 2709 /* one color has been freed, handle overflow queue */ 2710 if (!list_empty(&wq->flusher_overflow)) { 2711 /* 2712 * Assign the same color to all overflowed 2713 * flushers, advance work_color and append to 2714 * flusher_queue. This is the start-to-wait 2715 * phase for these overflowed flushers. 2716 */ 2717 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2718 tmp->flush_color = wq->work_color; 2719 2720 wq->work_color = work_next_color(wq->work_color); 2721 2722 list_splice_tail_init(&wq->flusher_overflow, 2723 &wq->flusher_queue); 2724 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2725 } 2726 2727 if (list_empty(&wq->flusher_queue)) { 2728 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2729 break; 2730 } 2731 2732 /* 2733 * Need to flush more colors. Make the next flusher 2734 * the new first flusher and arm pwqs. 2735 */ 2736 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2737 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2738 2739 list_del_init(&next->list); 2740 wq->first_flusher = next; 2741 2742 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2743 break; 2744 2745 /* 2746 * Meh... this color is already done, clear first 2747 * flusher and repeat cascading. 2748 */ 2749 wq->first_flusher = NULL; 2750 } 2751 2752 out_unlock: 2753 mutex_unlock(&wq->mutex); 2754 } 2755 EXPORT_SYMBOL_GPL(flush_workqueue); 2756 2757 /** 2758 * drain_workqueue - drain a workqueue 2759 * @wq: workqueue to drain 2760 * 2761 * Wait until the workqueue becomes empty. While draining is in progress, 2762 * only chain queueing is allowed. IOW, only currently pending or running 2763 * work items on @wq can queue further work items on it. @wq is flushed 2764 * repeatedly until it becomes empty. The number of flushing is detemined 2765 * by the depth of chaining and should be relatively short. Whine if it 2766 * takes too long. 2767 */ 2768 void drain_workqueue(struct workqueue_struct *wq) 2769 { 2770 unsigned int flush_cnt = 0; 2771 struct pool_workqueue *pwq; 2772 2773 /* 2774 * __queue_work() needs to test whether there are drainers, is much 2775 * hotter than drain_workqueue() and already looks at @wq->flags. 2776 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2777 */ 2778 mutex_lock(&wq->mutex); 2779 if (!wq->nr_drainers++) 2780 wq->flags |= __WQ_DRAINING; 2781 mutex_unlock(&wq->mutex); 2782 reflush: 2783 flush_workqueue(wq); 2784 2785 mutex_lock(&wq->mutex); 2786 2787 for_each_pwq(pwq, wq) { 2788 bool drained; 2789 2790 spin_lock_irq(&pwq->pool->lock); 2791 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2792 spin_unlock_irq(&pwq->pool->lock); 2793 2794 if (drained) 2795 continue; 2796 2797 if (++flush_cnt == 10 || 2798 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2799 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2800 wq->name, flush_cnt); 2801 2802 mutex_unlock(&wq->mutex); 2803 goto reflush; 2804 } 2805 2806 if (!--wq->nr_drainers) 2807 wq->flags &= ~__WQ_DRAINING; 2808 mutex_unlock(&wq->mutex); 2809 } 2810 EXPORT_SYMBOL_GPL(drain_workqueue); 2811 2812 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr) 2813 { 2814 struct worker *worker = NULL; 2815 struct worker_pool *pool; 2816 struct pool_workqueue *pwq; 2817 2818 might_sleep(); 2819 2820 local_irq_disable(); 2821 pool = get_work_pool(work); 2822 if (!pool) { 2823 local_irq_enable(); 2824 return false; 2825 } 2826 2827 spin_lock(&pool->lock); 2828 /* see the comment in try_to_grab_pending() with the same code */ 2829 pwq = get_work_pwq(work); 2830 if (pwq) { 2831 if (unlikely(pwq->pool != pool)) 2832 goto already_gone; 2833 } else { 2834 worker = find_worker_executing_work(pool, work); 2835 if (!worker) 2836 goto already_gone; 2837 pwq = worker->current_pwq; 2838 } 2839 2840 insert_wq_barrier(pwq, barr, work, worker); 2841 spin_unlock_irq(&pool->lock); 2842 2843 /* 2844 * If @max_active is 1 or rescuer is in use, flushing another work 2845 * item on the same workqueue may lead to deadlock. Make sure the 2846 * flusher is not running on the same workqueue by verifying write 2847 * access. 2848 */ 2849 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) 2850 lock_map_acquire(&pwq->wq->lockdep_map); 2851 else 2852 lock_map_acquire_read(&pwq->wq->lockdep_map); 2853 lock_map_release(&pwq->wq->lockdep_map); 2854 2855 return true; 2856 already_gone: 2857 spin_unlock_irq(&pool->lock); 2858 return false; 2859 } 2860 2861 /** 2862 * flush_work - wait for a work to finish executing the last queueing instance 2863 * @work: the work to flush 2864 * 2865 * Wait until @work has finished execution. @work is guaranteed to be idle 2866 * on return if it hasn't been requeued since flush started. 2867 * 2868 * Return: 2869 * %true if flush_work() waited for the work to finish execution, 2870 * %false if it was already idle. 2871 */ 2872 bool flush_work(struct work_struct *work) 2873 { 2874 struct wq_barrier barr; 2875 2876 lock_map_acquire(&work->lockdep_map); 2877 lock_map_release(&work->lockdep_map); 2878 2879 if (start_flush_work(work, &barr)) { 2880 wait_for_completion(&barr.done); 2881 destroy_work_on_stack(&barr.work); 2882 return true; 2883 } else { 2884 return false; 2885 } 2886 } 2887 EXPORT_SYMBOL_GPL(flush_work); 2888 2889 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 2890 { 2891 unsigned long flags; 2892 int ret; 2893 2894 do { 2895 ret = try_to_grab_pending(work, is_dwork, &flags); 2896 /* 2897 * If someone else is canceling, wait for the same event it 2898 * would be waiting for before retrying. 2899 */ 2900 if (unlikely(ret == -ENOENT)) 2901 flush_work(work); 2902 } while (unlikely(ret < 0)); 2903 2904 /* tell other tasks trying to grab @work to back off */ 2905 mark_work_canceling(work); 2906 local_irq_restore(flags); 2907 2908 flush_work(work); 2909 clear_work_data(work); 2910 return ret; 2911 } 2912 2913 /** 2914 * cancel_work_sync - cancel a work and wait for it to finish 2915 * @work: the work to cancel 2916 * 2917 * Cancel @work and wait for its execution to finish. This function 2918 * can be used even if the work re-queues itself or migrates to 2919 * another workqueue. On return from this function, @work is 2920 * guaranteed to be not pending or executing on any CPU. 2921 * 2922 * cancel_work_sync(&delayed_work->work) must not be used for 2923 * delayed_work's. Use cancel_delayed_work_sync() instead. 2924 * 2925 * The caller must ensure that the workqueue on which @work was last 2926 * queued can't be destroyed before this function returns. 2927 * 2928 * Return: 2929 * %true if @work was pending, %false otherwise. 2930 */ 2931 bool cancel_work_sync(struct work_struct *work) 2932 { 2933 return __cancel_work_timer(work, false); 2934 } 2935 EXPORT_SYMBOL_GPL(cancel_work_sync); 2936 2937 /** 2938 * flush_delayed_work - wait for a dwork to finish executing the last queueing 2939 * @dwork: the delayed work to flush 2940 * 2941 * Delayed timer is cancelled and the pending work is queued for 2942 * immediate execution. Like flush_work(), this function only 2943 * considers the last queueing instance of @dwork. 2944 * 2945 * Return: 2946 * %true if flush_work() waited for the work to finish execution, 2947 * %false if it was already idle. 2948 */ 2949 bool flush_delayed_work(struct delayed_work *dwork) 2950 { 2951 local_irq_disable(); 2952 if (del_timer_sync(&dwork->timer)) 2953 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2954 local_irq_enable(); 2955 return flush_work(&dwork->work); 2956 } 2957 EXPORT_SYMBOL(flush_delayed_work); 2958 2959 /** 2960 * cancel_delayed_work - cancel a delayed work 2961 * @dwork: delayed_work to cancel 2962 * 2963 * Kill off a pending delayed_work. 2964 * 2965 * Return: %true if @dwork was pending and canceled; %false if it wasn't 2966 * pending. 2967 * 2968 * Note: 2969 * The work callback function may still be running on return, unless 2970 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 2971 * use cancel_delayed_work_sync() to wait on it. 2972 * 2973 * This function is safe to call from any context including IRQ handler. 2974 */ 2975 bool cancel_delayed_work(struct delayed_work *dwork) 2976 { 2977 unsigned long flags; 2978 int ret; 2979 2980 do { 2981 ret = try_to_grab_pending(&dwork->work, true, &flags); 2982 } while (unlikely(ret == -EAGAIN)); 2983 2984 if (unlikely(ret < 0)) 2985 return false; 2986 2987 set_work_pool_and_clear_pending(&dwork->work, 2988 get_work_pool_id(&dwork->work)); 2989 local_irq_restore(flags); 2990 return ret; 2991 } 2992 EXPORT_SYMBOL(cancel_delayed_work); 2993 2994 /** 2995 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 2996 * @dwork: the delayed work cancel 2997 * 2998 * This is cancel_work_sync() for delayed works. 2999 * 3000 * Return: 3001 * %true if @dwork was pending, %false otherwise. 3002 */ 3003 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3004 { 3005 return __cancel_work_timer(&dwork->work, true); 3006 } 3007 EXPORT_SYMBOL(cancel_delayed_work_sync); 3008 3009 /** 3010 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3011 * @func: the function to call 3012 * 3013 * schedule_on_each_cpu() executes @func on each online CPU using the 3014 * system workqueue and blocks until all CPUs have completed. 3015 * schedule_on_each_cpu() is very slow. 3016 * 3017 * Return: 3018 * 0 on success, -errno on failure. 3019 */ 3020 int schedule_on_each_cpu(work_func_t func) 3021 { 3022 int cpu; 3023 struct work_struct __percpu *works; 3024 3025 works = alloc_percpu(struct work_struct); 3026 if (!works) 3027 return -ENOMEM; 3028 3029 get_online_cpus(); 3030 3031 for_each_online_cpu(cpu) { 3032 struct work_struct *work = per_cpu_ptr(works, cpu); 3033 3034 INIT_WORK(work, func); 3035 schedule_work_on(cpu, work); 3036 } 3037 3038 for_each_online_cpu(cpu) 3039 flush_work(per_cpu_ptr(works, cpu)); 3040 3041 put_online_cpus(); 3042 free_percpu(works); 3043 return 0; 3044 } 3045 3046 /** 3047 * flush_scheduled_work - ensure that any scheduled work has run to completion. 3048 * 3049 * Forces execution of the kernel-global workqueue and blocks until its 3050 * completion. 3051 * 3052 * Think twice before calling this function! It's very easy to get into 3053 * trouble if you don't take great care. Either of the following situations 3054 * will lead to deadlock: 3055 * 3056 * One of the work items currently on the workqueue needs to acquire 3057 * a lock held by your code or its caller. 3058 * 3059 * Your code is running in the context of a work routine. 3060 * 3061 * They will be detected by lockdep when they occur, but the first might not 3062 * occur very often. It depends on what work items are on the workqueue and 3063 * what locks they need, which you have no control over. 3064 * 3065 * In most situations flushing the entire workqueue is overkill; you merely 3066 * need to know that a particular work item isn't queued and isn't running. 3067 * In such cases you should use cancel_delayed_work_sync() or 3068 * cancel_work_sync() instead. 3069 */ 3070 void flush_scheduled_work(void) 3071 { 3072 flush_workqueue(system_wq); 3073 } 3074 EXPORT_SYMBOL(flush_scheduled_work); 3075 3076 /** 3077 * execute_in_process_context - reliably execute the routine with user context 3078 * @fn: the function to execute 3079 * @ew: guaranteed storage for the execute work structure (must 3080 * be available when the work executes) 3081 * 3082 * Executes the function immediately if process context is available, 3083 * otherwise schedules the function for delayed execution. 3084 * 3085 * Return: 0 - function was executed 3086 * 1 - function was scheduled for execution 3087 */ 3088 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3089 { 3090 if (!in_interrupt()) { 3091 fn(&ew->work); 3092 return 0; 3093 } 3094 3095 INIT_WORK(&ew->work, fn); 3096 schedule_work(&ew->work); 3097 3098 return 1; 3099 } 3100 EXPORT_SYMBOL_GPL(execute_in_process_context); 3101 3102 #ifdef CONFIG_SYSFS 3103 /* 3104 * Workqueues with WQ_SYSFS flag set is visible to userland via 3105 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 3106 * following attributes. 3107 * 3108 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 3109 * max_active RW int : maximum number of in-flight work items 3110 * 3111 * Unbound workqueues have the following extra attributes. 3112 * 3113 * id RO int : the associated pool ID 3114 * nice RW int : nice value of the workers 3115 * cpumask RW mask : bitmask of allowed CPUs for the workers 3116 */ 3117 struct wq_device { 3118 struct workqueue_struct *wq; 3119 struct device dev; 3120 }; 3121 3122 static struct workqueue_struct *dev_to_wq(struct device *dev) 3123 { 3124 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 3125 3126 return wq_dev->wq; 3127 } 3128 3129 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 3130 char *buf) 3131 { 3132 struct workqueue_struct *wq = dev_to_wq(dev); 3133 3134 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 3135 } 3136 static DEVICE_ATTR_RO(per_cpu); 3137 3138 static ssize_t max_active_show(struct device *dev, 3139 struct device_attribute *attr, char *buf) 3140 { 3141 struct workqueue_struct *wq = dev_to_wq(dev); 3142 3143 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 3144 } 3145 3146 static ssize_t max_active_store(struct device *dev, 3147 struct device_attribute *attr, const char *buf, 3148 size_t count) 3149 { 3150 struct workqueue_struct *wq = dev_to_wq(dev); 3151 int val; 3152 3153 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 3154 return -EINVAL; 3155 3156 workqueue_set_max_active(wq, val); 3157 return count; 3158 } 3159 static DEVICE_ATTR_RW(max_active); 3160 3161 static struct attribute *wq_sysfs_attrs[] = { 3162 &dev_attr_per_cpu.attr, 3163 &dev_attr_max_active.attr, 3164 NULL, 3165 }; 3166 ATTRIBUTE_GROUPS(wq_sysfs); 3167 3168 static ssize_t wq_pool_ids_show(struct device *dev, 3169 struct device_attribute *attr, char *buf) 3170 { 3171 struct workqueue_struct *wq = dev_to_wq(dev); 3172 const char *delim = ""; 3173 int node, written = 0; 3174 3175 rcu_read_lock_sched(); 3176 for_each_node(node) { 3177 written += scnprintf(buf + written, PAGE_SIZE - written, 3178 "%s%d:%d", delim, node, 3179 unbound_pwq_by_node(wq, node)->pool->id); 3180 delim = " "; 3181 } 3182 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 3183 rcu_read_unlock_sched(); 3184 3185 return written; 3186 } 3187 3188 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 3189 char *buf) 3190 { 3191 struct workqueue_struct *wq = dev_to_wq(dev); 3192 int written; 3193 3194 mutex_lock(&wq->mutex); 3195 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 3196 mutex_unlock(&wq->mutex); 3197 3198 return written; 3199 } 3200 3201 /* prepare workqueue_attrs for sysfs store operations */ 3202 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 3203 { 3204 struct workqueue_attrs *attrs; 3205 3206 attrs = alloc_workqueue_attrs(GFP_KERNEL); 3207 if (!attrs) 3208 return NULL; 3209 3210 mutex_lock(&wq->mutex); 3211 copy_workqueue_attrs(attrs, wq->unbound_attrs); 3212 mutex_unlock(&wq->mutex); 3213 return attrs; 3214 } 3215 3216 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 3217 const char *buf, size_t count) 3218 { 3219 struct workqueue_struct *wq = dev_to_wq(dev); 3220 struct workqueue_attrs *attrs; 3221 int ret; 3222 3223 attrs = wq_sysfs_prep_attrs(wq); 3224 if (!attrs) 3225 return -ENOMEM; 3226 3227 if (sscanf(buf, "%d", &attrs->nice) == 1 && 3228 attrs->nice >= -20 && attrs->nice <= 19) 3229 ret = apply_workqueue_attrs(wq, attrs); 3230 else 3231 ret = -EINVAL; 3232 3233 free_workqueue_attrs(attrs); 3234 return ret ?: count; 3235 } 3236 3237 static ssize_t wq_cpumask_show(struct device *dev, 3238 struct device_attribute *attr, char *buf) 3239 { 3240 struct workqueue_struct *wq = dev_to_wq(dev); 3241 int written; 3242 3243 mutex_lock(&wq->mutex); 3244 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask); 3245 mutex_unlock(&wq->mutex); 3246 3247 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 3248 return written; 3249 } 3250 3251 static ssize_t wq_cpumask_store(struct device *dev, 3252 struct device_attribute *attr, 3253 const char *buf, size_t count) 3254 { 3255 struct workqueue_struct *wq = dev_to_wq(dev); 3256 struct workqueue_attrs *attrs; 3257 int ret; 3258 3259 attrs = wq_sysfs_prep_attrs(wq); 3260 if (!attrs) 3261 return -ENOMEM; 3262 3263 ret = cpumask_parse(buf, attrs->cpumask); 3264 if (!ret) 3265 ret = apply_workqueue_attrs(wq, attrs); 3266 3267 free_workqueue_attrs(attrs); 3268 return ret ?: count; 3269 } 3270 3271 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 3272 char *buf) 3273 { 3274 struct workqueue_struct *wq = dev_to_wq(dev); 3275 int written; 3276 3277 mutex_lock(&wq->mutex); 3278 written = scnprintf(buf, PAGE_SIZE, "%d\n", 3279 !wq->unbound_attrs->no_numa); 3280 mutex_unlock(&wq->mutex); 3281 3282 return written; 3283 } 3284 3285 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 3286 const char *buf, size_t count) 3287 { 3288 struct workqueue_struct *wq = dev_to_wq(dev); 3289 struct workqueue_attrs *attrs; 3290 int v, ret; 3291 3292 attrs = wq_sysfs_prep_attrs(wq); 3293 if (!attrs) 3294 return -ENOMEM; 3295 3296 ret = -EINVAL; 3297 if (sscanf(buf, "%d", &v) == 1) { 3298 attrs->no_numa = !v; 3299 ret = apply_workqueue_attrs(wq, attrs); 3300 } 3301 3302 free_workqueue_attrs(attrs); 3303 return ret ?: count; 3304 } 3305 3306 static struct device_attribute wq_sysfs_unbound_attrs[] = { 3307 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 3308 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 3309 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 3310 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 3311 __ATTR_NULL, 3312 }; 3313 3314 static struct bus_type wq_subsys = { 3315 .name = "workqueue", 3316 .dev_groups = wq_sysfs_groups, 3317 }; 3318 3319 static int __init wq_sysfs_init(void) 3320 { 3321 return subsys_virtual_register(&wq_subsys, NULL); 3322 } 3323 core_initcall(wq_sysfs_init); 3324 3325 static void wq_device_release(struct device *dev) 3326 { 3327 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 3328 3329 kfree(wq_dev); 3330 } 3331 3332 /** 3333 * workqueue_sysfs_register - make a workqueue visible in sysfs 3334 * @wq: the workqueue to register 3335 * 3336 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 3337 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 3338 * which is the preferred method. 3339 * 3340 * Workqueue user should use this function directly iff it wants to apply 3341 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 3342 * apply_workqueue_attrs() may race against userland updating the 3343 * attributes. 3344 * 3345 * Return: 0 on success, -errno on failure. 3346 */ 3347 int workqueue_sysfs_register(struct workqueue_struct *wq) 3348 { 3349 struct wq_device *wq_dev; 3350 int ret; 3351 3352 /* 3353 * Adjusting max_active or creating new pwqs by applyting 3354 * attributes breaks ordering guarantee. Disallow exposing ordered 3355 * workqueues. 3356 */ 3357 if (WARN_ON(wq->flags & __WQ_ORDERED)) 3358 return -EINVAL; 3359 3360 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 3361 if (!wq_dev) 3362 return -ENOMEM; 3363 3364 wq_dev->wq = wq; 3365 wq_dev->dev.bus = &wq_subsys; 3366 wq_dev->dev.init_name = wq->name; 3367 wq_dev->dev.release = wq_device_release; 3368 3369 /* 3370 * unbound_attrs are created separately. Suppress uevent until 3371 * everything is ready. 3372 */ 3373 dev_set_uevent_suppress(&wq_dev->dev, true); 3374 3375 ret = device_register(&wq_dev->dev); 3376 if (ret) { 3377 kfree(wq_dev); 3378 wq->wq_dev = NULL; 3379 return ret; 3380 } 3381 3382 if (wq->flags & WQ_UNBOUND) { 3383 struct device_attribute *attr; 3384 3385 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 3386 ret = device_create_file(&wq_dev->dev, attr); 3387 if (ret) { 3388 device_unregister(&wq_dev->dev); 3389 wq->wq_dev = NULL; 3390 return ret; 3391 } 3392 } 3393 } 3394 3395 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 3396 return 0; 3397 } 3398 3399 /** 3400 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 3401 * @wq: the workqueue to unregister 3402 * 3403 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 3404 */ 3405 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 3406 { 3407 struct wq_device *wq_dev = wq->wq_dev; 3408 3409 if (!wq->wq_dev) 3410 return; 3411 3412 wq->wq_dev = NULL; 3413 device_unregister(&wq_dev->dev); 3414 } 3415 #else /* CONFIG_SYSFS */ 3416 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 3417 #endif /* CONFIG_SYSFS */ 3418 3419 /** 3420 * free_workqueue_attrs - free a workqueue_attrs 3421 * @attrs: workqueue_attrs to free 3422 * 3423 * Undo alloc_workqueue_attrs(). 3424 */ 3425 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3426 { 3427 if (attrs) { 3428 free_cpumask_var(attrs->cpumask); 3429 kfree(attrs); 3430 } 3431 } 3432 3433 /** 3434 * alloc_workqueue_attrs - allocate a workqueue_attrs 3435 * @gfp_mask: allocation mask to use 3436 * 3437 * Allocate a new workqueue_attrs, initialize with default settings and 3438 * return it. 3439 * 3440 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3441 */ 3442 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask) 3443 { 3444 struct workqueue_attrs *attrs; 3445 3446 attrs = kzalloc(sizeof(*attrs), gfp_mask); 3447 if (!attrs) 3448 goto fail; 3449 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask)) 3450 goto fail; 3451 3452 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3453 return attrs; 3454 fail: 3455 free_workqueue_attrs(attrs); 3456 return NULL; 3457 } 3458 3459 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3460 const struct workqueue_attrs *from) 3461 { 3462 to->nice = from->nice; 3463 cpumask_copy(to->cpumask, from->cpumask); 3464 /* 3465 * Unlike hash and equality test, this function doesn't ignore 3466 * ->no_numa as it is used for both pool and wq attrs. Instead, 3467 * get_unbound_pool() explicitly clears ->no_numa after copying. 3468 */ 3469 to->no_numa = from->no_numa; 3470 } 3471 3472 /* hash value of the content of @attr */ 3473 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3474 { 3475 u32 hash = 0; 3476 3477 hash = jhash_1word(attrs->nice, hash); 3478 hash = jhash(cpumask_bits(attrs->cpumask), 3479 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3480 return hash; 3481 } 3482 3483 /* content equality test */ 3484 static bool wqattrs_equal(const struct workqueue_attrs *a, 3485 const struct workqueue_attrs *b) 3486 { 3487 if (a->nice != b->nice) 3488 return false; 3489 if (!cpumask_equal(a->cpumask, b->cpumask)) 3490 return false; 3491 return true; 3492 } 3493 3494 /** 3495 * init_worker_pool - initialize a newly zalloc'd worker_pool 3496 * @pool: worker_pool to initialize 3497 * 3498 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs. 3499 * 3500 * Return: 0 on success, -errno on failure. Even on failure, all fields 3501 * inside @pool proper are initialized and put_unbound_pool() can be called 3502 * on @pool safely to release it. 3503 */ 3504 static int init_worker_pool(struct worker_pool *pool) 3505 { 3506 spin_lock_init(&pool->lock); 3507 pool->id = -1; 3508 pool->cpu = -1; 3509 pool->node = NUMA_NO_NODE; 3510 pool->flags |= POOL_DISASSOCIATED; 3511 INIT_LIST_HEAD(&pool->worklist); 3512 INIT_LIST_HEAD(&pool->idle_list); 3513 hash_init(pool->busy_hash); 3514 3515 init_timer_deferrable(&pool->idle_timer); 3516 pool->idle_timer.function = idle_worker_timeout; 3517 pool->idle_timer.data = (unsigned long)pool; 3518 3519 setup_timer(&pool->mayday_timer, pool_mayday_timeout, 3520 (unsigned long)pool); 3521 3522 mutex_init(&pool->manager_arb); 3523 mutex_init(&pool->manager_mutex); 3524 idr_init(&pool->worker_idr); 3525 3526 INIT_HLIST_NODE(&pool->hash_node); 3527 pool->refcnt = 1; 3528 3529 /* shouldn't fail above this point */ 3530 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL); 3531 if (!pool->attrs) 3532 return -ENOMEM; 3533 return 0; 3534 } 3535 3536 static void rcu_free_pool(struct rcu_head *rcu) 3537 { 3538 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3539 3540 idr_destroy(&pool->worker_idr); 3541 free_workqueue_attrs(pool->attrs); 3542 kfree(pool); 3543 } 3544 3545 /** 3546 * put_unbound_pool - put a worker_pool 3547 * @pool: worker_pool to put 3548 * 3549 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU 3550 * safe manner. get_unbound_pool() calls this function on its failure path 3551 * and this function should be able to release pools which went through, 3552 * successfully or not, init_worker_pool(). 3553 * 3554 * Should be called with wq_pool_mutex held. 3555 */ 3556 static void put_unbound_pool(struct worker_pool *pool) 3557 { 3558 struct worker *worker; 3559 3560 lockdep_assert_held(&wq_pool_mutex); 3561 3562 if (--pool->refcnt) 3563 return; 3564 3565 /* sanity checks */ 3566 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) || 3567 WARN_ON(!list_empty(&pool->worklist))) 3568 return; 3569 3570 /* release id and unhash */ 3571 if (pool->id >= 0) 3572 idr_remove(&worker_pool_idr, pool->id); 3573 hash_del(&pool->hash_node); 3574 3575 /* 3576 * Become the manager and destroy all workers. Grabbing 3577 * manager_arb prevents @pool's workers from blocking on 3578 * manager_mutex. 3579 */ 3580 mutex_lock(&pool->manager_arb); 3581 mutex_lock(&pool->manager_mutex); 3582 spin_lock_irq(&pool->lock); 3583 3584 while ((worker = first_worker(pool))) 3585 destroy_worker(worker); 3586 WARN_ON(pool->nr_workers || pool->nr_idle); 3587 3588 spin_unlock_irq(&pool->lock); 3589 mutex_unlock(&pool->manager_mutex); 3590 mutex_unlock(&pool->manager_arb); 3591 3592 /* shut down the timers */ 3593 del_timer_sync(&pool->idle_timer); 3594 del_timer_sync(&pool->mayday_timer); 3595 3596 /* sched-RCU protected to allow dereferences from get_work_pool() */ 3597 call_rcu_sched(&pool->rcu, rcu_free_pool); 3598 } 3599 3600 /** 3601 * get_unbound_pool - get a worker_pool with the specified attributes 3602 * @attrs: the attributes of the worker_pool to get 3603 * 3604 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3605 * reference count and return it. If there already is a matching 3606 * worker_pool, it will be used; otherwise, this function attempts to 3607 * create a new one. 3608 * 3609 * Should be called with wq_pool_mutex held. 3610 * 3611 * Return: On success, a worker_pool with the same attributes as @attrs. 3612 * On failure, %NULL. 3613 */ 3614 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3615 { 3616 u32 hash = wqattrs_hash(attrs); 3617 struct worker_pool *pool; 3618 int node; 3619 3620 lockdep_assert_held(&wq_pool_mutex); 3621 3622 /* do we already have a matching pool? */ 3623 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3624 if (wqattrs_equal(pool->attrs, attrs)) { 3625 pool->refcnt++; 3626 goto out_unlock; 3627 } 3628 } 3629 3630 /* nope, create a new one */ 3631 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 3632 if (!pool || init_worker_pool(pool) < 0) 3633 goto fail; 3634 3635 if (workqueue_freezing) 3636 pool->flags |= POOL_FREEZING; 3637 3638 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3639 copy_workqueue_attrs(pool->attrs, attrs); 3640 3641 /* 3642 * no_numa isn't a worker_pool attribute, always clear it. See 3643 * 'struct workqueue_attrs' comments for detail. 3644 */ 3645 pool->attrs->no_numa = false; 3646 3647 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3648 if (wq_numa_enabled) { 3649 for_each_node(node) { 3650 if (cpumask_subset(pool->attrs->cpumask, 3651 wq_numa_possible_cpumask[node])) { 3652 pool->node = node; 3653 break; 3654 } 3655 } 3656 } 3657 3658 if (worker_pool_assign_id(pool) < 0) 3659 goto fail; 3660 3661 /* create and start the initial worker */ 3662 if (create_and_start_worker(pool) < 0) 3663 goto fail; 3664 3665 /* install */ 3666 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3667 out_unlock: 3668 return pool; 3669 fail: 3670 if (pool) 3671 put_unbound_pool(pool); 3672 return NULL; 3673 } 3674 3675 static void rcu_free_pwq(struct rcu_head *rcu) 3676 { 3677 kmem_cache_free(pwq_cache, 3678 container_of(rcu, struct pool_workqueue, rcu)); 3679 } 3680 3681 /* 3682 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3683 * and needs to be destroyed. 3684 */ 3685 static void pwq_unbound_release_workfn(struct work_struct *work) 3686 { 3687 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3688 unbound_release_work); 3689 struct workqueue_struct *wq = pwq->wq; 3690 struct worker_pool *pool = pwq->pool; 3691 bool is_last; 3692 3693 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3694 return; 3695 3696 /* 3697 * Unlink @pwq. Synchronization against wq->mutex isn't strictly 3698 * necessary on release but do it anyway. It's easier to verify 3699 * and consistent with the linking path. 3700 */ 3701 mutex_lock(&wq->mutex); 3702 list_del_rcu(&pwq->pwqs_node); 3703 is_last = list_empty(&wq->pwqs); 3704 mutex_unlock(&wq->mutex); 3705 3706 mutex_lock(&wq_pool_mutex); 3707 put_unbound_pool(pool); 3708 mutex_unlock(&wq_pool_mutex); 3709 3710 call_rcu_sched(&pwq->rcu, rcu_free_pwq); 3711 3712 /* 3713 * If we're the last pwq going away, @wq is already dead and no one 3714 * is gonna access it anymore. Free it. 3715 */ 3716 if (is_last) { 3717 free_workqueue_attrs(wq->unbound_attrs); 3718 kfree(wq); 3719 } 3720 } 3721 3722 /** 3723 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3724 * @pwq: target pool_workqueue 3725 * 3726 * If @pwq isn't freezing, set @pwq->max_active to the associated 3727 * workqueue's saved_max_active and activate delayed work items 3728 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3729 */ 3730 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3731 { 3732 struct workqueue_struct *wq = pwq->wq; 3733 bool freezable = wq->flags & WQ_FREEZABLE; 3734 3735 /* for @wq->saved_max_active */ 3736 lockdep_assert_held(&wq->mutex); 3737 3738 /* fast exit for non-freezable wqs */ 3739 if (!freezable && pwq->max_active == wq->saved_max_active) 3740 return; 3741 3742 spin_lock_irq(&pwq->pool->lock); 3743 3744 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) { 3745 pwq->max_active = wq->saved_max_active; 3746 3747 while (!list_empty(&pwq->delayed_works) && 3748 pwq->nr_active < pwq->max_active) 3749 pwq_activate_first_delayed(pwq); 3750 3751 /* 3752 * Need to kick a worker after thawed or an unbound wq's 3753 * max_active is bumped. It's a slow path. Do it always. 3754 */ 3755 wake_up_worker(pwq->pool); 3756 } else { 3757 pwq->max_active = 0; 3758 } 3759 3760 spin_unlock_irq(&pwq->pool->lock); 3761 } 3762 3763 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3764 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3765 struct worker_pool *pool) 3766 { 3767 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3768 3769 memset(pwq, 0, sizeof(*pwq)); 3770 3771 pwq->pool = pool; 3772 pwq->wq = wq; 3773 pwq->flush_color = -1; 3774 pwq->refcnt = 1; 3775 INIT_LIST_HEAD(&pwq->delayed_works); 3776 INIT_LIST_HEAD(&pwq->pwqs_node); 3777 INIT_LIST_HEAD(&pwq->mayday_node); 3778 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3779 } 3780 3781 /* sync @pwq with the current state of its associated wq and link it */ 3782 static void link_pwq(struct pool_workqueue *pwq) 3783 { 3784 struct workqueue_struct *wq = pwq->wq; 3785 3786 lockdep_assert_held(&wq->mutex); 3787 3788 /* may be called multiple times, ignore if already linked */ 3789 if (!list_empty(&pwq->pwqs_node)) 3790 return; 3791 3792 /* 3793 * Set the matching work_color. This is synchronized with 3794 * wq->mutex to avoid confusing flush_workqueue(). 3795 */ 3796 pwq->work_color = wq->work_color; 3797 3798 /* sync max_active to the current setting */ 3799 pwq_adjust_max_active(pwq); 3800 3801 /* link in @pwq */ 3802 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3803 } 3804 3805 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3806 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3807 const struct workqueue_attrs *attrs) 3808 { 3809 struct worker_pool *pool; 3810 struct pool_workqueue *pwq; 3811 3812 lockdep_assert_held(&wq_pool_mutex); 3813 3814 pool = get_unbound_pool(attrs); 3815 if (!pool) 3816 return NULL; 3817 3818 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3819 if (!pwq) { 3820 put_unbound_pool(pool); 3821 return NULL; 3822 } 3823 3824 init_pwq(pwq, wq, pool); 3825 return pwq; 3826 } 3827 3828 /* undo alloc_unbound_pwq(), used only in the error path */ 3829 static void free_unbound_pwq(struct pool_workqueue *pwq) 3830 { 3831 lockdep_assert_held(&wq_pool_mutex); 3832 3833 if (pwq) { 3834 put_unbound_pool(pwq->pool); 3835 kmem_cache_free(pwq_cache, pwq); 3836 } 3837 } 3838 3839 /** 3840 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node 3841 * @attrs: the wq_attrs of interest 3842 * @node: the target NUMA node 3843 * @cpu_going_down: if >= 0, the CPU to consider as offline 3844 * @cpumask: outarg, the resulting cpumask 3845 * 3846 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3847 * @cpu_going_down is >= 0, that cpu is considered offline during 3848 * calculation. The result is stored in @cpumask. 3849 * 3850 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3851 * enabled and @node has online CPUs requested by @attrs, the returned 3852 * cpumask is the intersection of the possible CPUs of @node and 3853 * @attrs->cpumask. 3854 * 3855 * The caller is responsible for ensuring that the cpumask of @node stays 3856 * stable. 3857 * 3858 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3859 * %false if equal. 3860 */ 3861 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3862 int cpu_going_down, cpumask_t *cpumask) 3863 { 3864 if (!wq_numa_enabled || attrs->no_numa) 3865 goto use_dfl; 3866 3867 /* does @node have any online CPUs @attrs wants? */ 3868 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3869 if (cpu_going_down >= 0) 3870 cpumask_clear_cpu(cpu_going_down, cpumask); 3871 3872 if (cpumask_empty(cpumask)) 3873 goto use_dfl; 3874 3875 /* yeap, return possible CPUs in @node that @attrs wants */ 3876 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3877 return !cpumask_equal(cpumask, attrs->cpumask); 3878 3879 use_dfl: 3880 cpumask_copy(cpumask, attrs->cpumask); 3881 return false; 3882 } 3883 3884 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3885 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3886 int node, 3887 struct pool_workqueue *pwq) 3888 { 3889 struct pool_workqueue *old_pwq; 3890 3891 lockdep_assert_held(&wq->mutex); 3892 3893 /* link_pwq() can handle duplicate calls */ 3894 link_pwq(pwq); 3895 3896 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3897 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3898 return old_pwq; 3899 } 3900 3901 /** 3902 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 3903 * @wq: the target workqueue 3904 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 3905 * 3906 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 3907 * machines, this function maps a separate pwq to each NUMA node with 3908 * possibles CPUs in @attrs->cpumask so that work items are affine to the 3909 * NUMA node it was issued on. Older pwqs are released as in-flight work 3910 * items finish. Note that a work item which repeatedly requeues itself 3911 * back-to-back will stay on its current pwq. 3912 * 3913 * Performs GFP_KERNEL allocations. 3914 * 3915 * Return: 0 on success and -errno on failure. 3916 */ 3917 int apply_workqueue_attrs(struct workqueue_struct *wq, 3918 const struct workqueue_attrs *attrs) 3919 { 3920 struct workqueue_attrs *new_attrs, *tmp_attrs; 3921 struct pool_workqueue **pwq_tbl, *dfl_pwq; 3922 int node, ret; 3923 3924 /* only unbound workqueues can change attributes */ 3925 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 3926 return -EINVAL; 3927 3928 /* creating multiple pwqs breaks ordering guarantee */ 3929 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))) 3930 return -EINVAL; 3931 3932 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL); 3933 new_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3934 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3935 if (!pwq_tbl || !new_attrs || !tmp_attrs) 3936 goto enomem; 3937 3938 /* make a copy of @attrs and sanitize it */ 3939 copy_workqueue_attrs(new_attrs, attrs); 3940 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3941 3942 /* 3943 * We may create multiple pwqs with differing cpumasks. Make a 3944 * copy of @new_attrs which will be modified and used to obtain 3945 * pools. 3946 */ 3947 copy_workqueue_attrs(tmp_attrs, new_attrs); 3948 3949 /* 3950 * CPUs should stay stable across pwq creations and installations. 3951 * Pin CPUs, determine the target cpumask for each node and create 3952 * pwqs accordingly. 3953 */ 3954 get_online_cpus(); 3955 3956 mutex_lock(&wq_pool_mutex); 3957 3958 /* 3959 * If something goes wrong during CPU up/down, we'll fall back to 3960 * the default pwq covering whole @attrs->cpumask. Always create 3961 * it even if we don't use it immediately. 3962 */ 3963 dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3964 if (!dfl_pwq) 3965 goto enomem_pwq; 3966 3967 for_each_node(node) { 3968 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) { 3969 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3970 if (!pwq_tbl[node]) 3971 goto enomem_pwq; 3972 } else { 3973 dfl_pwq->refcnt++; 3974 pwq_tbl[node] = dfl_pwq; 3975 } 3976 } 3977 3978 mutex_unlock(&wq_pool_mutex); 3979 3980 /* all pwqs have been created successfully, let's install'em */ 3981 mutex_lock(&wq->mutex); 3982 3983 copy_workqueue_attrs(wq->unbound_attrs, new_attrs); 3984 3985 /* save the previous pwq and install the new one */ 3986 for_each_node(node) 3987 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]); 3988 3989 /* @dfl_pwq might not have been used, ensure it's linked */ 3990 link_pwq(dfl_pwq); 3991 swap(wq->dfl_pwq, dfl_pwq); 3992 3993 mutex_unlock(&wq->mutex); 3994 3995 /* put the old pwqs */ 3996 for_each_node(node) 3997 put_pwq_unlocked(pwq_tbl[node]); 3998 put_pwq_unlocked(dfl_pwq); 3999 4000 put_online_cpus(); 4001 ret = 0; 4002 /* fall through */ 4003 out_free: 4004 free_workqueue_attrs(tmp_attrs); 4005 free_workqueue_attrs(new_attrs); 4006 kfree(pwq_tbl); 4007 return ret; 4008 4009 enomem_pwq: 4010 free_unbound_pwq(dfl_pwq); 4011 for_each_node(node) 4012 if (pwq_tbl && pwq_tbl[node] != dfl_pwq) 4013 free_unbound_pwq(pwq_tbl[node]); 4014 mutex_unlock(&wq_pool_mutex); 4015 put_online_cpus(); 4016 enomem: 4017 ret = -ENOMEM; 4018 goto out_free; 4019 } 4020 4021 /** 4022 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 4023 * @wq: the target workqueue 4024 * @cpu: the CPU coming up or going down 4025 * @online: whether @cpu is coming up or going down 4026 * 4027 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 4028 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 4029 * @wq accordingly. 4030 * 4031 * If NUMA affinity can't be adjusted due to memory allocation failure, it 4032 * falls back to @wq->dfl_pwq which may not be optimal but is always 4033 * correct. 4034 * 4035 * Note that when the last allowed CPU of a NUMA node goes offline for a 4036 * workqueue with a cpumask spanning multiple nodes, the workers which were 4037 * already executing the work items for the workqueue will lose their CPU 4038 * affinity and may execute on any CPU. This is similar to how per-cpu 4039 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 4040 * affinity, it's the user's responsibility to flush the work item from 4041 * CPU_DOWN_PREPARE. 4042 */ 4043 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 4044 bool online) 4045 { 4046 int node = cpu_to_node(cpu); 4047 int cpu_off = online ? -1 : cpu; 4048 struct pool_workqueue *old_pwq = NULL, *pwq; 4049 struct workqueue_attrs *target_attrs; 4050 cpumask_t *cpumask; 4051 4052 lockdep_assert_held(&wq_pool_mutex); 4053 4054 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND)) 4055 return; 4056 4057 /* 4058 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 4059 * Let's use a preallocated one. The following buf is protected by 4060 * CPU hotplug exclusion. 4061 */ 4062 target_attrs = wq_update_unbound_numa_attrs_buf; 4063 cpumask = target_attrs->cpumask; 4064 4065 mutex_lock(&wq->mutex); 4066 if (wq->unbound_attrs->no_numa) 4067 goto out_unlock; 4068 4069 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 4070 pwq = unbound_pwq_by_node(wq, node); 4071 4072 /* 4073 * Let's determine what needs to be done. If the target cpumask is 4074 * different from wq's, we need to compare it to @pwq's and create 4075 * a new one if they don't match. If the target cpumask equals 4076 * wq's, the default pwq should be used. If @pwq is already the 4077 * default one, nothing to do; otherwise, install the default one. 4078 */ 4079 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) { 4080 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 4081 goto out_unlock; 4082 } else { 4083 if (pwq == wq->dfl_pwq) 4084 goto out_unlock; 4085 else 4086 goto use_dfl_pwq; 4087 } 4088 4089 mutex_unlock(&wq->mutex); 4090 4091 /* create a new pwq */ 4092 pwq = alloc_unbound_pwq(wq, target_attrs); 4093 if (!pwq) { 4094 pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 4095 wq->name); 4096 goto out_unlock; 4097 } 4098 4099 /* 4100 * Install the new pwq. As this function is called only from CPU 4101 * hotplug callbacks and applying a new attrs is wrapped with 4102 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed 4103 * inbetween. 4104 */ 4105 mutex_lock(&wq->mutex); 4106 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 4107 goto out_unlock; 4108 4109 use_dfl_pwq: 4110 spin_lock_irq(&wq->dfl_pwq->pool->lock); 4111 get_pwq(wq->dfl_pwq); 4112 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 4113 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 4114 out_unlock: 4115 mutex_unlock(&wq->mutex); 4116 put_pwq_unlocked(old_pwq); 4117 } 4118 4119 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4120 { 4121 bool highpri = wq->flags & WQ_HIGHPRI; 4122 int cpu, ret; 4123 4124 if (!(wq->flags & WQ_UNBOUND)) { 4125 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 4126 if (!wq->cpu_pwqs) 4127 return -ENOMEM; 4128 4129 for_each_possible_cpu(cpu) { 4130 struct pool_workqueue *pwq = 4131 per_cpu_ptr(wq->cpu_pwqs, cpu); 4132 struct worker_pool *cpu_pools = 4133 per_cpu(cpu_worker_pools, cpu); 4134 4135 init_pwq(pwq, wq, &cpu_pools[highpri]); 4136 4137 mutex_lock(&wq->mutex); 4138 link_pwq(pwq); 4139 mutex_unlock(&wq->mutex); 4140 } 4141 return 0; 4142 } else if (wq->flags & __WQ_ORDERED) { 4143 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 4144 /* there should only be single pwq for ordering guarantee */ 4145 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 4146 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 4147 "ordering guarantee broken for workqueue %s\n", wq->name); 4148 return ret; 4149 } else { 4150 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4151 } 4152 } 4153 4154 static int wq_clamp_max_active(int max_active, unsigned int flags, 4155 const char *name) 4156 { 4157 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 4158 4159 if (max_active < 1 || max_active > lim) 4160 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4161 max_active, name, 1, lim); 4162 4163 return clamp_val(max_active, 1, lim); 4164 } 4165 4166 struct workqueue_struct *__alloc_workqueue_key(const char *fmt, 4167 unsigned int flags, 4168 int max_active, 4169 struct lock_class_key *key, 4170 const char *lock_name, ...) 4171 { 4172 size_t tbl_size = 0; 4173 va_list args; 4174 struct workqueue_struct *wq; 4175 struct pool_workqueue *pwq; 4176 4177 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4178 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4179 flags |= WQ_UNBOUND; 4180 4181 /* allocate wq and format name */ 4182 if (flags & WQ_UNBOUND) 4183 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]); 4184 4185 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4186 if (!wq) 4187 return NULL; 4188 4189 if (flags & WQ_UNBOUND) { 4190 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL); 4191 if (!wq->unbound_attrs) 4192 goto err_free_wq; 4193 } 4194 4195 va_start(args, lock_name); 4196 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4197 va_end(args); 4198 4199 max_active = max_active ?: WQ_DFL_ACTIVE; 4200 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4201 4202 /* init wq */ 4203 wq->flags = flags; 4204 wq->saved_max_active = max_active; 4205 mutex_init(&wq->mutex); 4206 atomic_set(&wq->nr_pwqs_to_flush, 0); 4207 INIT_LIST_HEAD(&wq->pwqs); 4208 INIT_LIST_HEAD(&wq->flusher_queue); 4209 INIT_LIST_HEAD(&wq->flusher_overflow); 4210 INIT_LIST_HEAD(&wq->maydays); 4211 4212 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 4213 INIT_LIST_HEAD(&wq->list); 4214 4215 if (alloc_and_link_pwqs(wq) < 0) 4216 goto err_free_wq; 4217 4218 /* 4219 * Workqueues which may be used during memory reclaim should 4220 * have a rescuer to guarantee forward progress. 4221 */ 4222 if (flags & WQ_MEM_RECLAIM) { 4223 struct worker *rescuer; 4224 4225 rescuer = alloc_worker(); 4226 if (!rescuer) 4227 goto err_destroy; 4228 4229 rescuer->rescue_wq = wq; 4230 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", 4231 wq->name); 4232 if (IS_ERR(rescuer->task)) { 4233 kfree(rescuer); 4234 goto err_destroy; 4235 } 4236 4237 wq->rescuer = rescuer; 4238 rescuer->task->flags |= PF_NO_SETAFFINITY; 4239 wake_up_process(rescuer->task); 4240 } 4241 4242 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4243 goto err_destroy; 4244 4245 /* 4246 * wq_pool_mutex protects global freeze state and workqueues list. 4247 * Grab it, adjust max_active and add the new @wq to workqueues 4248 * list. 4249 */ 4250 mutex_lock(&wq_pool_mutex); 4251 4252 mutex_lock(&wq->mutex); 4253 for_each_pwq(pwq, wq) 4254 pwq_adjust_max_active(pwq); 4255 mutex_unlock(&wq->mutex); 4256 4257 list_add(&wq->list, &workqueues); 4258 4259 mutex_unlock(&wq_pool_mutex); 4260 4261 return wq; 4262 4263 err_free_wq: 4264 free_workqueue_attrs(wq->unbound_attrs); 4265 kfree(wq); 4266 return NULL; 4267 err_destroy: 4268 destroy_workqueue(wq); 4269 return NULL; 4270 } 4271 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 4272 4273 /** 4274 * destroy_workqueue - safely terminate a workqueue 4275 * @wq: target workqueue 4276 * 4277 * Safely destroy a workqueue. All work currently pending will be done first. 4278 */ 4279 void destroy_workqueue(struct workqueue_struct *wq) 4280 { 4281 struct pool_workqueue *pwq; 4282 int node; 4283 4284 /* drain it before proceeding with destruction */ 4285 drain_workqueue(wq); 4286 4287 /* sanity checks */ 4288 mutex_lock(&wq->mutex); 4289 for_each_pwq(pwq, wq) { 4290 int i; 4291 4292 for (i = 0; i < WORK_NR_COLORS; i++) { 4293 if (WARN_ON(pwq->nr_in_flight[i])) { 4294 mutex_unlock(&wq->mutex); 4295 return; 4296 } 4297 } 4298 4299 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) || 4300 WARN_ON(pwq->nr_active) || 4301 WARN_ON(!list_empty(&pwq->delayed_works))) { 4302 mutex_unlock(&wq->mutex); 4303 return; 4304 } 4305 } 4306 mutex_unlock(&wq->mutex); 4307 4308 /* 4309 * wq list is used to freeze wq, remove from list after 4310 * flushing is complete in case freeze races us. 4311 */ 4312 mutex_lock(&wq_pool_mutex); 4313 list_del_init(&wq->list); 4314 mutex_unlock(&wq_pool_mutex); 4315 4316 workqueue_sysfs_unregister(wq); 4317 4318 if (wq->rescuer) { 4319 kthread_stop(wq->rescuer->task); 4320 kfree(wq->rescuer); 4321 wq->rescuer = NULL; 4322 } 4323 4324 if (!(wq->flags & WQ_UNBOUND)) { 4325 /* 4326 * The base ref is never dropped on per-cpu pwqs. Directly 4327 * free the pwqs and wq. 4328 */ 4329 free_percpu(wq->cpu_pwqs); 4330 kfree(wq); 4331 } else { 4332 /* 4333 * We're the sole accessor of @wq at this point. Directly 4334 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4335 * @wq will be freed when the last pwq is released. 4336 */ 4337 for_each_node(node) { 4338 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4339 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4340 put_pwq_unlocked(pwq); 4341 } 4342 4343 /* 4344 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4345 * put. Don't access it afterwards. 4346 */ 4347 pwq = wq->dfl_pwq; 4348 wq->dfl_pwq = NULL; 4349 put_pwq_unlocked(pwq); 4350 } 4351 } 4352 EXPORT_SYMBOL_GPL(destroy_workqueue); 4353 4354 /** 4355 * workqueue_set_max_active - adjust max_active of a workqueue 4356 * @wq: target workqueue 4357 * @max_active: new max_active value. 4358 * 4359 * Set max_active of @wq to @max_active. 4360 * 4361 * CONTEXT: 4362 * Don't call from IRQ context. 4363 */ 4364 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4365 { 4366 struct pool_workqueue *pwq; 4367 4368 /* disallow meddling with max_active for ordered workqueues */ 4369 if (WARN_ON(wq->flags & __WQ_ORDERED)) 4370 return; 4371 4372 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4373 4374 mutex_lock(&wq->mutex); 4375 4376 wq->saved_max_active = max_active; 4377 4378 for_each_pwq(pwq, wq) 4379 pwq_adjust_max_active(pwq); 4380 4381 mutex_unlock(&wq->mutex); 4382 } 4383 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4384 4385 /** 4386 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4387 * 4388 * Determine whether %current is a workqueue rescuer. Can be used from 4389 * work functions to determine whether it's being run off the rescuer task. 4390 * 4391 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4392 */ 4393 bool current_is_workqueue_rescuer(void) 4394 { 4395 struct worker *worker = current_wq_worker(); 4396 4397 return worker && worker->rescue_wq; 4398 } 4399 4400 /** 4401 * workqueue_congested - test whether a workqueue is congested 4402 * @cpu: CPU in question 4403 * @wq: target workqueue 4404 * 4405 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4406 * no synchronization around this function and the test result is 4407 * unreliable and only useful as advisory hints or for debugging. 4408 * 4409 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4410 * Note that both per-cpu and unbound workqueues may be associated with 4411 * multiple pool_workqueues which have separate congested states. A 4412 * workqueue being congested on one CPU doesn't mean the workqueue is also 4413 * contested on other CPUs / NUMA nodes. 4414 * 4415 * Return: 4416 * %true if congested, %false otherwise. 4417 */ 4418 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4419 { 4420 struct pool_workqueue *pwq; 4421 bool ret; 4422 4423 rcu_read_lock_sched(); 4424 4425 if (cpu == WORK_CPU_UNBOUND) 4426 cpu = smp_processor_id(); 4427 4428 if (!(wq->flags & WQ_UNBOUND)) 4429 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4430 else 4431 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4432 4433 ret = !list_empty(&pwq->delayed_works); 4434 rcu_read_unlock_sched(); 4435 4436 return ret; 4437 } 4438 EXPORT_SYMBOL_GPL(workqueue_congested); 4439 4440 /** 4441 * work_busy - test whether a work is currently pending or running 4442 * @work: the work to be tested 4443 * 4444 * Test whether @work is currently pending or running. There is no 4445 * synchronization around this function and the test result is 4446 * unreliable and only useful as advisory hints or for debugging. 4447 * 4448 * Return: 4449 * OR'd bitmask of WORK_BUSY_* bits. 4450 */ 4451 unsigned int work_busy(struct work_struct *work) 4452 { 4453 struct worker_pool *pool; 4454 unsigned long flags; 4455 unsigned int ret = 0; 4456 4457 if (work_pending(work)) 4458 ret |= WORK_BUSY_PENDING; 4459 4460 local_irq_save(flags); 4461 pool = get_work_pool(work); 4462 if (pool) { 4463 spin_lock(&pool->lock); 4464 if (find_worker_executing_work(pool, work)) 4465 ret |= WORK_BUSY_RUNNING; 4466 spin_unlock(&pool->lock); 4467 } 4468 local_irq_restore(flags); 4469 4470 return ret; 4471 } 4472 EXPORT_SYMBOL_GPL(work_busy); 4473 4474 /** 4475 * set_worker_desc - set description for the current work item 4476 * @fmt: printf-style format string 4477 * @...: arguments for the format string 4478 * 4479 * This function can be called by a running work function to describe what 4480 * the work item is about. If the worker task gets dumped, this 4481 * information will be printed out together to help debugging. The 4482 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4483 */ 4484 void set_worker_desc(const char *fmt, ...) 4485 { 4486 struct worker *worker = current_wq_worker(); 4487 va_list args; 4488 4489 if (worker) { 4490 va_start(args, fmt); 4491 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4492 va_end(args); 4493 worker->desc_valid = true; 4494 } 4495 } 4496 4497 /** 4498 * print_worker_info - print out worker information and description 4499 * @log_lvl: the log level to use when printing 4500 * @task: target task 4501 * 4502 * If @task is a worker and currently executing a work item, print out the 4503 * name of the workqueue being serviced and worker description set with 4504 * set_worker_desc() by the currently executing work item. 4505 * 4506 * This function can be safely called on any task as long as the 4507 * task_struct itself is accessible. While safe, this function isn't 4508 * synchronized and may print out mixups or garbages of limited length. 4509 */ 4510 void print_worker_info(const char *log_lvl, struct task_struct *task) 4511 { 4512 work_func_t *fn = NULL; 4513 char name[WQ_NAME_LEN] = { }; 4514 char desc[WORKER_DESC_LEN] = { }; 4515 struct pool_workqueue *pwq = NULL; 4516 struct workqueue_struct *wq = NULL; 4517 bool desc_valid = false; 4518 struct worker *worker; 4519 4520 if (!(task->flags & PF_WQ_WORKER)) 4521 return; 4522 4523 /* 4524 * This function is called without any synchronization and @task 4525 * could be in any state. Be careful with dereferences. 4526 */ 4527 worker = probe_kthread_data(task); 4528 4529 /* 4530 * Carefully copy the associated workqueue's workfn and name. Keep 4531 * the original last '\0' in case the original contains garbage. 4532 */ 4533 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4534 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4535 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4536 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4537 4538 /* copy worker description */ 4539 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid)); 4540 if (desc_valid) 4541 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4542 4543 if (fn || name[0] || desc[0]) { 4544 printk("%sWorkqueue: %s %pf", log_lvl, name, fn); 4545 if (desc[0]) 4546 pr_cont(" (%s)", desc); 4547 pr_cont("\n"); 4548 } 4549 } 4550 4551 /* 4552 * CPU hotplug. 4553 * 4554 * There are two challenges in supporting CPU hotplug. Firstly, there 4555 * are a lot of assumptions on strong associations among work, pwq and 4556 * pool which make migrating pending and scheduled works very 4557 * difficult to implement without impacting hot paths. Secondly, 4558 * worker pools serve mix of short, long and very long running works making 4559 * blocked draining impractical. 4560 * 4561 * This is solved by allowing the pools to be disassociated from the CPU 4562 * running as an unbound one and allowing it to be reattached later if the 4563 * cpu comes back online. 4564 */ 4565 4566 static void wq_unbind_fn(struct work_struct *work) 4567 { 4568 int cpu = smp_processor_id(); 4569 struct worker_pool *pool; 4570 struct worker *worker; 4571 int wi; 4572 4573 for_each_cpu_worker_pool(pool, cpu) { 4574 WARN_ON_ONCE(cpu != smp_processor_id()); 4575 4576 mutex_lock(&pool->manager_mutex); 4577 spin_lock_irq(&pool->lock); 4578 4579 /* 4580 * We've blocked all manager operations. Make all workers 4581 * unbound and set DISASSOCIATED. Before this, all workers 4582 * except for the ones which are still executing works from 4583 * before the last CPU down must be on the cpu. After 4584 * this, they may become diasporas. 4585 */ 4586 for_each_pool_worker(worker, wi, pool) 4587 worker->flags |= WORKER_UNBOUND; 4588 4589 pool->flags |= POOL_DISASSOCIATED; 4590 4591 spin_unlock_irq(&pool->lock); 4592 mutex_unlock(&pool->manager_mutex); 4593 4594 /* 4595 * Call schedule() so that we cross rq->lock and thus can 4596 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4597 * This is necessary as scheduler callbacks may be invoked 4598 * from other cpus. 4599 */ 4600 schedule(); 4601 4602 /* 4603 * Sched callbacks are disabled now. Zap nr_running. 4604 * After this, nr_running stays zero and need_more_worker() 4605 * and keep_working() are always true as long as the 4606 * worklist is not empty. This pool now behaves as an 4607 * unbound (in terms of concurrency management) pool which 4608 * are served by workers tied to the pool. 4609 */ 4610 atomic_set(&pool->nr_running, 0); 4611 4612 /* 4613 * With concurrency management just turned off, a busy 4614 * worker blocking could lead to lengthy stalls. Kick off 4615 * unbound chain execution of currently pending work items. 4616 */ 4617 spin_lock_irq(&pool->lock); 4618 wake_up_worker(pool); 4619 spin_unlock_irq(&pool->lock); 4620 } 4621 } 4622 4623 /** 4624 * rebind_workers - rebind all workers of a pool to the associated CPU 4625 * @pool: pool of interest 4626 * 4627 * @pool->cpu is coming online. Rebind all workers to the CPU. 4628 */ 4629 static void rebind_workers(struct worker_pool *pool) 4630 { 4631 struct worker *worker; 4632 int wi; 4633 4634 lockdep_assert_held(&pool->manager_mutex); 4635 4636 /* 4637 * Restore CPU affinity of all workers. As all idle workers should 4638 * be on the run-queue of the associated CPU before any local 4639 * wake-ups for concurrency management happen, restore CPU affinty 4640 * of all workers first and then clear UNBOUND. As we're called 4641 * from CPU_ONLINE, the following shouldn't fail. 4642 */ 4643 for_each_pool_worker(worker, wi, pool) 4644 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4645 pool->attrs->cpumask) < 0); 4646 4647 spin_lock_irq(&pool->lock); 4648 4649 for_each_pool_worker(worker, wi, pool) { 4650 unsigned int worker_flags = worker->flags; 4651 4652 /* 4653 * A bound idle worker should actually be on the runqueue 4654 * of the associated CPU for local wake-ups targeting it to 4655 * work. Kick all idle workers so that they migrate to the 4656 * associated CPU. Doing this in the same loop as 4657 * replacing UNBOUND with REBOUND is safe as no worker will 4658 * be bound before @pool->lock is released. 4659 */ 4660 if (worker_flags & WORKER_IDLE) 4661 wake_up_process(worker->task); 4662 4663 /* 4664 * We want to clear UNBOUND but can't directly call 4665 * worker_clr_flags() or adjust nr_running. Atomically 4666 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4667 * @worker will clear REBOUND using worker_clr_flags() when 4668 * it initiates the next execution cycle thus restoring 4669 * concurrency management. Note that when or whether 4670 * @worker clears REBOUND doesn't affect correctness. 4671 * 4672 * ACCESS_ONCE() is necessary because @worker->flags may be 4673 * tested without holding any lock in 4674 * wq_worker_waking_up(). Without it, NOT_RUNNING test may 4675 * fail incorrectly leading to premature concurrency 4676 * management operations. 4677 */ 4678 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4679 worker_flags |= WORKER_REBOUND; 4680 worker_flags &= ~WORKER_UNBOUND; 4681 ACCESS_ONCE(worker->flags) = worker_flags; 4682 } 4683 4684 spin_unlock_irq(&pool->lock); 4685 } 4686 4687 /** 4688 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4689 * @pool: unbound pool of interest 4690 * @cpu: the CPU which is coming up 4691 * 4692 * An unbound pool may end up with a cpumask which doesn't have any online 4693 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4694 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4695 * online CPU before, cpus_allowed of all its workers should be restored. 4696 */ 4697 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 4698 { 4699 static cpumask_t cpumask; 4700 struct worker *worker; 4701 int wi; 4702 4703 lockdep_assert_held(&pool->manager_mutex); 4704 4705 /* is @cpu allowed for @pool? */ 4706 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 4707 return; 4708 4709 /* is @cpu the only online CPU? */ 4710 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 4711 if (cpumask_weight(&cpumask) != 1) 4712 return; 4713 4714 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 4715 for_each_pool_worker(worker, wi, pool) 4716 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4717 pool->attrs->cpumask) < 0); 4718 } 4719 4720 /* 4721 * Workqueues should be brought up before normal priority CPU notifiers. 4722 * This will be registered high priority CPU notifier. 4723 */ 4724 static int workqueue_cpu_up_callback(struct notifier_block *nfb, 4725 unsigned long action, 4726 void *hcpu) 4727 { 4728 int cpu = (unsigned long)hcpu; 4729 struct worker_pool *pool; 4730 struct workqueue_struct *wq; 4731 int pi; 4732 4733 switch (action & ~CPU_TASKS_FROZEN) { 4734 case CPU_UP_PREPARE: 4735 for_each_cpu_worker_pool(pool, cpu) { 4736 if (pool->nr_workers) 4737 continue; 4738 if (create_and_start_worker(pool) < 0) 4739 return NOTIFY_BAD; 4740 } 4741 break; 4742 4743 case CPU_DOWN_FAILED: 4744 case CPU_ONLINE: 4745 mutex_lock(&wq_pool_mutex); 4746 4747 for_each_pool(pool, pi) { 4748 mutex_lock(&pool->manager_mutex); 4749 4750 if (pool->cpu == cpu) { 4751 spin_lock_irq(&pool->lock); 4752 pool->flags &= ~POOL_DISASSOCIATED; 4753 spin_unlock_irq(&pool->lock); 4754 4755 rebind_workers(pool); 4756 } else if (pool->cpu < 0) { 4757 restore_unbound_workers_cpumask(pool, cpu); 4758 } 4759 4760 mutex_unlock(&pool->manager_mutex); 4761 } 4762 4763 /* update NUMA affinity of unbound workqueues */ 4764 list_for_each_entry(wq, &workqueues, list) 4765 wq_update_unbound_numa(wq, cpu, true); 4766 4767 mutex_unlock(&wq_pool_mutex); 4768 break; 4769 } 4770 return NOTIFY_OK; 4771 } 4772 4773 /* 4774 * Workqueues should be brought down after normal priority CPU notifiers. 4775 * This will be registered as low priority CPU notifier. 4776 */ 4777 static int workqueue_cpu_down_callback(struct notifier_block *nfb, 4778 unsigned long action, 4779 void *hcpu) 4780 { 4781 int cpu = (unsigned long)hcpu; 4782 struct work_struct unbind_work; 4783 struct workqueue_struct *wq; 4784 4785 switch (action & ~CPU_TASKS_FROZEN) { 4786 case CPU_DOWN_PREPARE: 4787 /* unbinding per-cpu workers should happen on the local CPU */ 4788 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn); 4789 queue_work_on(cpu, system_highpri_wq, &unbind_work); 4790 4791 /* update NUMA affinity of unbound workqueues */ 4792 mutex_lock(&wq_pool_mutex); 4793 list_for_each_entry(wq, &workqueues, list) 4794 wq_update_unbound_numa(wq, cpu, false); 4795 mutex_unlock(&wq_pool_mutex); 4796 4797 /* wait for per-cpu unbinding to finish */ 4798 flush_work(&unbind_work); 4799 destroy_work_on_stack(&unbind_work); 4800 break; 4801 } 4802 return NOTIFY_OK; 4803 } 4804 4805 #ifdef CONFIG_SMP 4806 4807 struct work_for_cpu { 4808 struct work_struct work; 4809 long (*fn)(void *); 4810 void *arg; 4811 long ret; 4812 }; 4813 4814 static void work_for_cpu_fn(struct work_struct *work) 4815 { 4816 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 4817 4818 wfc->ret = wfc->fn(wfc->arg); 4819 } 4820 4821 /** 4822 * work_on_cpu - run a function in user context on a particular cpu 4823 * @cpu: the cpu to run on 4824 * @fn: the function to run 4825 * @arg: the function arg 4826 * 4827 * It is up to the caller to ensure that the cpu doesn't go offline. 4828 * The caller must not hold any locks which would prevent @fn from completing. 4829 * 4830 * Return: The value @fn returns. 4831 */ 4832 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 4833 { 4834 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 4835 4836 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 4837 schedule_work_on(cpu, &wfc.work); 4838 flush_work(&wfc.work); 4839 destroy_work_on_stack(&wfc.work); 4840 return wfc.ret; 4841 } 4842 EXPORT_SYMBOL_GPL(work_on_cpu); 4843 #endif /* CONFIG_SMP */ 4844 4845 #ifdef CONFIG_FREEZER 4846 4847 /** 4848 * freeze_workqueues_begin - begin freezing workqueues 4849 * 4850 * Start freezing workqueues. After this function returns, all freezable 4851 * workqueues will queue new works to their delayed_works list instead of 4852 * pool->worklist. 4853 * 4854 * CONTEXT: 4855 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4856 */ 4857 void freeze_workqueues_begin(void) 4858 { 4859 struct worker_pool *pool; 4860 struct workqueue_struct *wq; 4861 struct pool_workqueue *pwq; 4862 int pi; 4863 4864 mutex_lock(&wq_pool_mutex); 4865 4866 WARN_ON_ONCE(workqueue_freezing); 4867 workqueue_freezing = true; 4868 4869 /* set FREEZING */ 4870 for_each_pool(pool, pi) { 4871 spin_lock_irq(&pool->lock); 4872 WARN_ON_ONCE(pool->flags & POOL_FREEZING); 4873 pool->flags |= POOL_FREEZING; 4874 spin_unlock_irq(&pool->lock); 4875 } 4876 4877 list_for_each_entry(wq, &workqueues, list) { 4878 mutex_lock(&wq->mutex); 4879 for_each_pwq(pwq, wq) 4880 pwq_adjust_max_active(pwq); 4881 mutex_unlock(&wq->mutex); 4882 } 4883 4884 mutex_unlock(&wq_pool_mutex); 4885 } 4886 4887 /** 4888 * freeze_workqueues_busy - are freezable workqueues still busy? 4889 * 4890 * Check whether freezing is complete. This function must be called 4891 * between freeze_workqueues_begin() and thaw_workqueues(). 4892 * 4893 * CONTEXT: 4894 * Grabs and releases wq_pool_mutex. 4895 * 4896 * Return: 4897 * %true if some freezable workqueues are still busy. %false if freezing 4898 * is complete. 4899 */ 4900 bool freeze_workqueues_busy(void) 4901 { 4902 bool busy = false; 4903 struct workqueue_struct *wq; 4904 struct pool_workqueue *pwq; 4905 4906 mutex_lock(&wq_pool_mutex); 4907 4908 WARN_ON_ONCE(!workqueue_freezing); 4909 4910 list_for_each_entry(wq, &workqueues, list) { 4911 if (!(wq->flags & WQ_FREEZABLE)) 4912 continue; 4913 /* 4914 * nr_active is monotonically decreasing. It's safe 4915 * to peek without lock. 4916 */ 4917 rcu_read_lock_sched(); 4918 for_each_pwq(pwq, wq) { 4919 WARN_ON_ONCE(pwq->nr_active < 0); 4920 if (pwq->nr_active) { 4921 busy = true; 4922 rcu_read_unlock_sched(); 4923 goto out_unlock; 4924 } 4925 } 4926 rcu_read_unlock_sched(); 4927 } 4928 out_unlock: 4929 mutex_unlock(&wq_pool_mutex); 4930 return busy; 4931 } 4932 4933 /** 4934 * thaw_workqueues - thaw workqueues 4935 * 4936 * Thaw workqueues. Normal queueing is restored and all collected 4937 * frozen works are transferred to their respective pool worklists. 4938 * 4939 * CONTEXT: 4940 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4941 */ 4942 void thaw_workqueues(void) 4943 { 4944 struct workqueue_struct *wq; 4945 struct pool_workqueue *pwq; 4946 struct worker_pool *pool; 4947 int pi; 4948 4949 mutex_lock(&wq_pool_mutex); 4950 4951 if (!workqueue_freezing) 4952 goto out_unlock; 4953 4954 /* clear FREEZING */ 4955 for_each_pool(pool, pi) { 4956 spin_lock_irq(&pool->lock); 4957 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING)); 4958 pool->flags &= ~POOL_FREEZING; 4959 spin_unlock_irq(&pool->lock); 4960 } 4961 4962 /* restore max_active and repopulate worklist */ 4963 list_for_each_entry(wq, &workqueues, list) { 4964 mutex_lock(&wq->mutex); 4965 for_each_pwq(pwq, wq) 4966 pwq_adjust_max_active(pwq); 4967 mutex_unlock(&wq->mutex); 4968 } 4969 4970 workqueue_freezing = false; 4971 out_unlock: 4972 mutex_unlock(&wq_pool_mutex); 4973 } 4974 #endif /* CONFIG_FREEZER */ 4975 4976 static void __init wq_numa_init(void) 4977 { 4978 cpumask_var_t *tbl; 4979 int node, cpu; 4980 4981 /* determine NUMA pwq table len - highest node id + 1 */ 4982 for_each_node(node) 4983 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1); 4984 4985 if (num_possible_nodes() <= 1) 4986 return; 4987 4988 if (wq_disable_numa) { 4989 pr_info("workqueue: NUMA affinity support disabled\n"); 4990 return; 4991 } 4992 4993 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL); 4994 BUG_ON(!wq_update_unbound_numa_attrs_buf); 4995 4996 /* 4997 * We want masks of possible CPUs of each node which isn't readily 4998 * available. Build one from cpu_to_node() which should have been 4999 * fully initialized by now. 5000 */ 5001 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL); 5002 BUG_ON(!tbl); 5003 5004 for_each_node(node) 5005 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5006 node_online(node) ? node : NUMA_NO_NODE)); 5007 5008 for_each_possible_cpu(cpu) { 5009 node = cpu_to_node(cpu); 5010 if (WARN_ON(node == NUMA_NO_NODE)) { 5011 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5012 /* happens iff arch is bonkers, let's just proceed */ 5013 return; 5014 } 5015 cpumask_set_cpu(cpu, tbl[node]); 5016 } 5017 5018 wq_numa_possible_cpumask = tbl; 5019 wq_numa_enabled = true; 5020 } 5021 5022 static int __init init_workqueues(void) 5023 { 5024 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5025 int i, cpu; 5026 5027 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5028 5029 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5030 5031 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP); 5032 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN); 5033 5034 wq_numa_init(); 5035 5036 /* initialize CPU pools */ 5037 for_each_possible_cpu(cpu) { 5038 struct worker_pool *pool; 5039 5040 i = 0; 5041 for_each_cpu_worker_pool(pool, cpu) { 5042 BUG_ON(init_worker_pool(pool)); 5043 pool->cpu = cpu; 5044 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5045 pool->attrs->nice = std_nice[i++]; 5046 pool->node = cpu_to_node(cpu); 5047 5048 /* alloc pool ID */ 5049 mutex_lock(&wq_pool_mutex); 5050 BUG_ON(worker_pool_assign_id(pool)); 5051 mutex_unlock(&wq_pool_mutex); 5052 } 5053 } 5054 5055 /* create the initial worker */ 5056 for_each_online_cpu(cpu) { 5057 struct worker_pool *pool; 5058 5059 for_each_cpu_worker_pool(pool, cpu) { 5060 pool->flags &= ~POOL_DISASSOCIATED; 5061 BUG_ON(create_and_start_worker(pool) < 0); 5062 } 5063 } 5064 5065 /* create default unbound and ordered wq attrs */ 5066 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5067 struct workqueue_attrs *attrs; 5068 5069 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5070 attrs->nice = std_nice[i]; 5071 unbound_std_wq_attrs[i] = attrs; 5072 5073 /* 5074 * An ordered wq should have only one pwq as ordering is 5075 * guaranteed by max_active which is enforced by pwqs. 5076 * Turn off NUMA so that dfl_pwq is used for all nodes. 5077 */ 5078 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5079 attrs->nice = std_nice[i]; 5080 attrs->no_numa = true; 5081 ordered_wq_attrs[i] = attrs; 5082 } 5083 5084 system_wq = alloc_workqueue("events", 0, 0); 5085 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5086 system_long_wq = alloc_workqueue("events_long", 0, 0); 5087 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5088 WQ_UNBOUND_MAX_ACTIVE); 5089 system_freezable_wq = alloc_workqueue("events_freezable", 5090 WQ_FREEZABLE, 0); 5091 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5092 WQ_POWER_EFFICIENT, 0); 5093 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5094 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5095 0); 5096 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5097 !system_unbound_wq || !system_freezable_wq || 5098 !system_power_efficient_wq || 5099 !system_freezable_power_efficient_wq); 5100 return 0; 5101 } 5102 early_initcall(init_workqueues); 5103