xref: /openbmc/linux/kernel/workqueue.c (revision 9f99d983)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53 #include <linux/kvm_para.h>
54 
55 #include "workqueue_internal.h"
56 
57 enum {
58 	/*
59 	 * worker_pool flags
60 	 *
61 	 * A bound pool is either associated or disassociated with its CPU.
62 	 * While associated (!DISASSOCIATED), all workers are bound to the
63 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
64 	 * is in effect.
65 	 *
66 	 * While DISASSOCIATED, the cpu may be offline and all workers have
67 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
68 	 * be executing on any CPU.  The pool behaves as an unbound one.
69 	 *
70 	 * Note that DISASSOCIATED should be flipped only while holding
71 	 * wq_pool_attach_mutex to avoid changing binding state while
72 	 * worker_attach_to_pool() is in progress.
73 	 */
74 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
75 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
76 
77 	/* worker flags */
78 	WORKER_DIE		= 1 << 1,	/* die die die */
79 	WORKER_IDLE		= 1 << 2,	/* is idle */
80 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
81 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
82 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
83 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
84 
85 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
86 				  WORKER_UNBOUND | WORKER_REBOUND,
87 
88 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
89 
90 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
91 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
92 
93 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
94 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
95 
96 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
97 						/* call for help after 10ms
98 						   (min two ticks) */
99 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
100 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
101 
102 	/*
103 	 * Rescue workers are used only on emergencies and shared by
104 	 * all cpus.  Give MIN_NICE.
105 	 */
106 	RESCUER_NICE_LEVEL	= MIN_NICE,
107 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
108 
109 	WQ_NAME_LEN		= 24,
110 };
111 
112 /*
113  * Structure fields follow one of the following exclusion rules.
114  *
115  * I: Modifiable by initialization/destruction paths and read-only for
116  *    everyone else.
117  *
118  * P: Preemption protected.  Disabling preemption is enough and should
119  *    only be modified and accessed from the local cpu.
120  *
121  * L: pool->lock protected.  Access with pool->lock held.
122  *
123  * X: During normal operation, modification requires pool->lock and should
124  *    be done only from local cpu.  Either disabling preemption on local
125  *    cpu or grabbing pool->lock is enough for read access.  If
126  *    POOL_DISASSOCIATED is set, it's identical to L.
127  *
128  * A: wq_pool_attach_mutex protected.
129  *
130  * PL: wq_pool_mutex protected.
131  *
132  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
133  *
134  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
135  *
136  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
137  *      RCU for reads.
138  *
139  * WQ: wq->mutex protected.
140  *
141  * WR: wq->mutex protected for writes.  RCU protected for reads.
142  *
143  * MD: wq_mayday_lock protected.
144  */
145 
146 /* struct worker is defined in workqueue_internal.h */
147 
148 struct worker_pool {
149 	raw_spinlock_t		lock;		/* the pool lock */
150 	int			cpu;		/* I: the associated cpu */
151 	int			node;		/* I: the associated node ID */
152 	int			id;		/* I: pool ID */
153 	unsigned int		flags;		/* X: flags */
154 
155 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
156 
157 	/* The current concurrency level. */
158 	atomic_t		nr_running;
159 
160 	struct list_head	worklist;	/* L: list of pending works */
161 
162 	int			nr_workers;	/* L: total number of workers */
163 	int			nr_idle;	/* L: currently idle workers */
164 
165 	struct list_head	idle_list;	/* X: list of idle workers */
166 	struct timer_list	idle_timer;	/* L: worker idle timeout */
167 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
168 
169 	/* a workers is either on busy_hash or idle_list, or the manager */
170 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
171 						/* L: hash of busy workers */
172 
173 	struct worker		*manager;	/* L: purely informational */
174 	struct list_head	workers;	/* A: attached workers */
175 	struct completion	*detach_completion; /* all workers detached */
176 
177 	struct ida		worker_ida;	/* worker IDs for task name */
178 
179 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
180 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
181 	int			refcnt;		/* PL: refcnt for unbound pools */
182 
183 	/*
184 	 * Destruction of pool is RCU protected to allow dereferences
185 	 * from get_work_pool().
186 	 */
187 	struct rcu_head		rcu;
188 };
189 
190 /*
191  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
192  * of work_struct->data are used for flags and the remaining high bits
193  * point to the pwq; thus, pwqs need to be aligned at two's power of the
194  * number of flag bits.
195  */
196 struct pool_workqueue {
197 	struct worker_pool	*pool;		/* I: the associated pool */
198 	struct workqueue_struct *wq;		/* I: the owning workqueue */
199 	int			work_color;	/* L: current color */
200 	int			flush_color;	/* L: flushing color */
201 	int			refcnt;		/* L: reference count */
202 	int			nr_in_flight[WORK_NR_COLORS];
203 						/* L: nr of in_flight works */
204 
205 	/*
206 	 * nr_active management and WORK_STRUCT_INACTIVE:
207 	 *
208 	 * When pwq->nr_active >= max_active, new work item is queued to
209 	 * pwq->inactive_works instead of pool->worklist and marked with
210 	 * WORK_STRUCT_INACTIVE.
211 	 *
212 	 * All work items marked with WORK_STRUCT_INACTIVE do not participate
213 	 * in pwq->nr_active and all work items in pwq->inactive_works are
214 	 * marked with WORK_STRUCT_INACTIVE.  But not all WORK_STRUCT_INACTIVE
215 	 * work items are in pwq->inactive_works.  Some of them are ready to
216 	 * run in pool->worklist or worker->scheduled.  Those work itmes are
217 	 * only struct wq_barrier which is used for flush_work() and should
218 	 * not participate in pwq->nr_active.  For non-barrier work item, it
219 	 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
220 	 */
221 	int			nr_active;	/* L: nr of active works */
222 	int			max_active;	/* L: max active works */
223 	struct list_head	inactive_works;	/* L: inactive works */
224 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
225 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
226 
227 	/*
228 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
229 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
230 	 * itself is also RCU protected so that the first pwq can be
231 	 * determined without grabbing wq->mutex.
232 	 */
233 	struct work_struct	unbound_release_work;
234 	struct rcu_head		rcu;
235 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
236 
237 /*
238  * Structure used to wait for workqueue flush.
239  */
240 struct wq_flusher {
241 	struct list_head	list;		/* WQ: list of flushers */
242 	int			flush_color;	/* WQ: flush color waiting for */
243 	struct completion	done;		/* flush completion */
244 };
245 
246 struct wq_device;
247 
248 /*
249  * The externally visible workqueue.  It relays the issued work items to
250  * the appropriate worker_pool through its pool_workqueues.
251  */
252 struct workqueue_struct {
253 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
254 	struct list_head	list;		/* PR: list of all workqueues */
255 
256 	struct mutex		mutex;		/* protects this wq */
257 	int			work_color;	/* WQ: current work color */
258 	int			flush_color;	/* WQ: current flush color */
259 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
260 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
261 	struct list_head	flusher_queue;	/* WQ: flush waiters */
262 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
263 
264 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
265 	struct worker		*rescuer;	/* MD: rescue worker */
266 
267 	int			nr_drainers;	/* WQ: drain in progress */
268 	int			saved_max_active; /* WQ: saved pwq max_active */
269 
270 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
271 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
272 
273 #ifdef CONFIG_SYSFS
274 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
275 #endif
276 #ifdef CONFIG_LOCKDEP
277 	char			*lock_name;
278 	struct lock_class_key	key;
279 	struct lockdep_map	lockdep_map;
280 #endif
281 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
282 
283 	/*
284 	 * Destruction of workqueue_struct is RCU protected to allow walking
285 	 * the workqueues list without grabbing wq_pool_mutex.
286 	 * This is used to dump all workqueues from sysrq.
287 	 */
288 	struct rcu_head		rcu;
289 
290 	/* hot fields used during command issue, aligned to cacheline */
291 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
292 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
293 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
294 };
295 
296 static struct kmem_cache *pwq_cache;
297 
298 static cpumask_var_t *wq_numa_possible_cpumask;
299 					/* possible CPUs of each node */
300 
301 static bool wq_disable_numa;
302 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
303 
304 /* see the comment above the definition of WQ_POWER_EFFICIENT */
305 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
306 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
307 
308 static bool wq_online;			/* can kworkers be created yet? */
309 
310 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
311 
312 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
313 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
314 
315 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
316 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
317 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
318 /* wait for manager to go away */
319 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
320 
321 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
322 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
323 
324 /* PL: allowable cpus for unbound wqs and work items */
325 static cpumask_var_t wq_unbound_cpumask;
326 
327 /* CPU where unbound work was last round robin scheduled from this CPU */
328 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
329 
330 /*
331  * Local execution of unbound work items is no longer guaranteed.  The
332  * following always forces round-robin CPU selection on unbound work items
333  * to uncover usages which depend on it.
334  */
335 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
336 static bool wq_debug_force_rr_cpu = true;
337 #else
338 static bool wq_debug_force_rr_cpu = false;
339 #endif
340 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
341 
342 /* the per-cpu worker pools */
343 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
344 
345 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
346 
347 /* PL: hash of all unbound pools keyed by pool->attrs */
348 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
349 
350 /* I: attributes used when instantiating standard unbound pools on demand */
351 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
352 
353 /* I: attributes used when instantiating ordered pools on demand */
354 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
355 
356 struct workqueue_struct *system_wq __read_mostly;
357 EXPORT_SYMBOL(system_wq);
358 struct workqueue_struct *system_highpri_wq __read_mostly;
359 EXPORT_SYMBOL_GPL(system_highpri_wq);
360 struct workqueue_struct *system_long_wq __read_mostly;
361 EXPORT_SYMBOL_GPL(system_long_wq);
362 struct workqueue_struct *system_unbound_wq __read_mostly;
363 EXPORT_SYMBOL_GPL(system_unbound_wq);
364 struct workqueue_struct *system_freezable_wq __read_mostly;
365 EXPORT_SYMBOL_GPL(system_freezable_wq);
366 struct workqueue_struct *system_power_efficient_wq __read_mostly;
367 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
368 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
369 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
370 
371 static int worker_thread(void *__worker);
372 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
373 static void show_pwq(struct pool_workqueue *pwq);
374 static void show_one_worker_pool(struct worker_pool *pool);
375 
376 #define CREATE_TRACE_POINTS
377 #include <trace/events/workqueue.h>
378 
379 #define assert_rcu_or_pool_mutex()					\
380 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
381 			 !lockdep_is_held(&wq_pool_mutex),		\
382 			 "RCU or wq_pool_mutex should be held")
383 
384 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
385 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
386 			 !lockdep_is_held(&wq->mutex) &&		\
387 			 !lockdep_is_held(&wq_pool_mutex),		\
388 			 "RCU, wq->mutex or wq_pool_mutex should be held")
389 
390 #define for_each_cpu_worker_pool(pool, cpu)				\
391 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
392 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
393 	     (pool)++)
394 
395 /**
396  * for_each_pool - iterate through all worker_pools in the system
397  * @pool: iteration cursor
398  * @pi: integer used for iteration
399  *
400  * This must be called either with wq_pool_mutex held or RCU read
401  * locked.  If the pool needs to be used beyond the locking in effect, the
402  * caller is responsible for guaranteeing that the pool stays online.
403  *
404  * The if/else clause exists only for the lockdep assertion and can be
405  * ignored.
406  */
407 #define for_each_pool(pool, pi)						\
408 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
409 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
410 		else
411 
412 /**
413  * for_each_pool_worker - iterate through all workers of a worker_pool
414  * @worker: iteration cursor
415  * @pool: worker_pool to iterate workers of
416  *
417  * This must be called with wq_pool_attach_mutex.
418  *
419  * The if/else clause exists only for the lockdep assertion and can be
420  * ignored.
421  */
422 #define for_each_pool_worker(worker, pool)				\
423 	list_for_each_entry((worker), &(pool)->workers, node)		\
424 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
425 		else
426 
427 /**
428  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
429  * @pwq: iteration cursor
430  * @wq: the target workqueue
431  *
432  * This must be called either with wq->mutex held or RCU read locked.
433  * If the pwq needs to be used beyond the locking in effect, the caller is
434  * responsible for guaranteeing that the pwq stays online.
435  *
436  * The if/else clause exists only for the lockdep assertion and can be
437  * ignored.
438  */
439 #define for_each_pwq(pwq, wq)						\
440 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
441 				 lockdep_is_held(&(wq->mutex)))
442 
443 #ifdef CONFIG_DEBUG_OBJECTS_WORK
444 
445 static const struct debug_obj_descr work_debug_descr;
446 
447 static void *work_debug_hint(void *addr)
448 {
449 	return ((struct work_struct *) addr)->func;
450 }
451 
452 static bool work_is_static_object(void *addr)
453 {
454 	struct work_struct *work = addr;
455 
456 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
457 }
458 
459 /*
460  * fixup_init is called when:
461  * - an active object is initialized
462  */
463 static bool work_fixup_init(void *addr, enum debug_obj_state state)
464 {
465 	struct work_struct *work = addr;
466 
467 	switch (state) {
468 	case ODEBUG_STATE_ACTIVE:
469 		cancel_work_sync(work);
470 		debug_object_init(work, &work_debug_descr);
471 		return true;
472 	default:
473 		return false;
474 	}
475 }
476 
477 /*
478  * fixup_free is called when:
479  * - an active object is freed
480  */
481 static bool work_fixup_free(void *addr, enum debug_obj_state state)
482 {
483 	struct work_struct *work = addr;
484 
485 	switch (state) {
486 	case ODEBUG_STATE_ACTIVE:
487 		cancel_work_sync(work);
488 		debug_object_free(work, &work_debug_descr);
489 		return true;
490 	default:
491 		return false;
492 	}
493 }
494 
495 static const struct debug_obj_descr work_debug_descr = {
496 	.name		= "work_struct",
497 	.debug_hint	= work_debug_hint,
498 	.is_static_object = work_is_static_object,
499 	.fixup_init	= work_fixup_init,
500 	.fixup_free	= work_fixup_free,
501 };
502 
503 static inline void debug_work_activate(struct work_struct *work)
504 {
505 	debug_object_activate(work, &work_debug_descr);
506 }
507 
508 static inline void debug_work_deactivate(struct work_struct *work)
509 {
510 	debug_object_deactivate(work, &work_debug_descr);
511 }
512 
513 void __init_work(struct work_struct *work, int onstack)
514 {
515 	if (onstack)
516 		debug_object_init_on_stack(work, &work_debug_descr);
517 	else
518 		debug_object_init(work, &work_debug_descr);
519 }
520 EXPORT_SYMBOL_GPL(__init_work);
521 
522 void destroy_work_on_stack(struct work_struct *work)
523 {
524 	debug_object_free(work, &work_debug_descr);
525 }
526 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
527 
528 void destroy_delayed_work_on_stack(struct delayed_work *work)
529 {
530 	destroy_timer_on_stack(&work->timer);
531 	debug_object_free(&work->work, &work_debug_descr);
532 }
533 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
534 
535 #else
536 static inline void debug_work_activate(struct work_struct *work) { }
537 static inline void debug_work_deactivate(struct work_struct *work) { }
538 #endif
539 
540 /**
541  * worker_pool_assign_id - allocate ID and assign it to @pool
542  * @pool: the pool pointer of interest
543  *
544  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
545  * successfully, -errno on failure.
546  */
547 static int worker_pool_assign_id(struct worker_pool *pool)
548 {
549 	int ret;
550 
551 	lockdep_assert_held(&wq_pool_mutex);
552 
553 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
554 			GFP_KERNEL);
555 	if (ret >= 0) {
556 		pool->id = ret;
557 		return 0;
558 	}
559 	return ret;
560 }
561 
562 /**
563  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
564  * @wq: the target workqueue
565  * @node: the node ID
566  *
567  * This must be called with any of wq_pool_mutex, wq->mutex or RCU
568  * read locked.
569  * If the pwq needs to be used beyond the locking in effect, the caller is
570  * responsible for guaranteeing that the pwq stays online.
571  *
572  * Return: The unbound pool_workqueue for @node.
573  */
574 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
575 						  int node)
576 {
577 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
578 
579 	/*
580 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
581 	 * delayed item is pending.  The plan is to keep CPU -> NODE
582 	 * mapping valid and stable across CPU on/offlines.  Once that
583 	 * happens, this workaround can be removed.
584 	 */
585 	if (unlikely(node == NUMA_NO_NODE))
586 		return wq->dfl_pwq;
587 
588 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
589 }
590 
591 static unsigned int work_color_to_flags(int color)
592 {
593 	return color << WORK_STRUCT_COLOR_SHIFT;
594 }
595 
596 static int get_work_color(unsigned long work_data)
597 {
598 	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
599 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
600 }
601 
602 static int work_next_color(int color)
603 {
604 	return (color + 1) % WORK_NR_COLORS;
605 }
606 
607 /*
608  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
609  * contain the pointer to the queued pwq.  Once execution starts, the flag
610  * is cleared and the high bits contain OFFQ flags and pool ID.
611  *
612  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
613  * and clear_work_data() can be used to set the pwq, pool or clear
614  * work->data.  These functions should only be called while the work is
615  * owned - ie. while the PENDING bit is set.
616  *
617  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
618  * corresponding to a work.  Pool is available once the work has been
619  * queued anywhere after initialization until it is sync canceled.  pwq is
620  * available only while the work item is queued.
621  *
622  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
623  * canceled.  While being canceled, a work item may have its PENDING set
624  * but stay off timer and worklist for arbitrarily long and nobody should
625  * try to steal the PENDING bit.
626  */
627 static inline void set_work_data(struct work_struct *work, unsigned long data,
628 				 unsigned long flags)
629 {
630 	WARN_ON_ONCE(!work_pending(work));
631 	atomic_long_set(&work->data, data | flags | work_static(work));
632 }
633 
634 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
635 			 unsigned long extra_flags)
636 {
637 	set_work_data(work, (unsigned long)pwq,
638 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
639 }
640 
641 static void set_work_pool_and_keep_pending(struct work_struct *work,
642 					   int pool_id)
643 {
644 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
645 		      WORK_STRUCT_PENDING);
646 }
647 
648 static void set_work_pool_and_clear_pending(struct work_struct *work,
649 					    int pool_id)
650 {
651 	/*
652 	 * The following wmb is paired with the implied mb in
653 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
654 	 * here are visible to and precede any updates by the next PENDING
655 	 * owner.
656 	 */
657 	smp_wmb();
658 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
659 	/*
660 	 * The following mb guarantees that previous clear of a PENDING bit
661 	 * will not be reordered with any speculative LOADS or STORES from
662 	 * work->current_func, which is executed afterwards.  This possible
663 	 * reordering can lead to a missed execution on attempt to queue
664 	 * the same @work.  E.g. consider this case:
665 	 *
666 	 *   CPU#0                         CPU#1
667 	 *   ----------------------------  --------------------------------
668 	 *
669 	 * 1  STORE event_indicated
670 	 * 2  queue_work_on() {
671 	 * 3    test_and_set_bit(PENDING)
672 	 * 4 }                             set_..._and_clear_pending() {
673 	 * 5                                 set_work_data() # clear bit
674 	 * 6                                 smp_mb()
675 	 * 7                               work->current_func() {
676 	 * 8				      LOAD event_indicated
677 	 *				   }
678 	 *
679 	 * Without an explicit full barrier speculative LOAD on line 8 can
680 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
681 	 * CPU#0 observes the PENDING bit is still set and new execution of
682 	 * a @work is not queued in a hope, that CPU#1 will eventually
683 	 * finish the queued @work.  Meanwhile CPU#1 does not see
684 	 * event_indicated is set, because speculative LOAD was executed
685 	 * before actual STORE.
686 	 */
687 	smp_mb();
688 }
689 
690 static void clear_work_data(struct work_struct *work)
691 {
692 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
693 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
694 }
695 
696 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
697 {
698 	unsigned long data = atomic_long_read(&work->data);
699 
700 	if (data & WORK_STRUCT_PWQ)
701 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
702 	else
703 		return NULL;
704 }
705 
706 /**
707  * get_work_pool - return the worker_pool a given work was associated with
708  * @work: the work item of interest
709  *
710  * Pools are created and destroyed under wq_pool_mutex, and allows read
711  * access under RCU read lock.  As such, this function should be
712  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
713  *
714  * All fields of the returned pool are accessible as long as the above
715  * mentioned locking is in effect.  If the returned pool needs to be used
716  * beyond the critical section, the caller is responsible for ensuring the
717  * returned pool is and stays online.
718  *
719  * Return: The worker_pool @work was last associated with.  %NULL if none.
720  */
721 static struct worker_pool *get_work_pool(struct work_struct *work)
722 {
723 	unsigned long data = atomic_long_read(&work->data);
724 	int pool_id;
725 
726 	assert_rcu_or_pool_mutex();
727 
728 	if (data & WORK_STRUCT_PWQ)
729 		return ((struct pool_workqueue *)
730 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
731 
732 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
733 	if (pool_id == WORK_OFFQ_POOL_NONE)
734 		return NULL;
735 
736 	return idr_find(&worker_pool_idr, pool_id);
737 }
738 
739 /**
740  * get_work_pool_id - return the worker pool ID a given work is associated with
741  * @work: the work item of interest
742  *
743  * Return: The worker_pool ID @work was last associated with.
744  * %WORK_OFFQ_POOL_NONE if none.
745  */
746 static int get_work_pool_id(struct work_struct *work)
747 {
748 	unsigned long data = atomic_long_read(&work->data);
749 
750 	if (data & WORK_STRUCT_PWQ)
751 		return ((struct pool_workqueue *)
752 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
753 
754 	return data >> WORK_OFFQ_POOL_SHIFT;
755 }
756 
757 static void mark_work_canceling(struct work_struct *work)
758 {
759 	unsigned long pool_id = get_work_pool_id(work);
760 
761 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
762 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
763 }
764 
765 static bool work_is_canceling(struct work_struct *work)
766 {
767 	unsigned long data = atomic_long_read(&work->data);
768 
769 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
770 }
771 
772 /*
773  * Policy functions.  These define the policies on how the global worker
774  * pools are managed.  Unless noted otherwise, these functions assume that
775  * they're being called with pool->lock held.
776  */
777 
778 static bool __need_more_worker(struct worker_pool *pool)
779 {
780 	return !atomic_read(&pool->nr_running);
781 }
782 
783 /*
784  * Need to wake up a worker?  Called from anything but currently
785  * running workers.
786  *
787  * Note that, because unbound workers never contribute to nr_running, this
788  * function will always return %true for unbound pools as long as the
789  * worklist isn't empty.
790  */
791 static bool need_more_worker(struct worker_pool *pool)
792 {
793 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
794 }
795 
796 /* Can I start working?  Called from busy but !running workers. */
797 static bool may_start_working(struct worker_pool *pool)
798 {
799 	return pool->nr_idle;
800 }
801 
802 /* Do I need to keep working?  Called from currently running workers. */
803 static bool keep_working(struct worker_pool *pool)
804 {
805 	return !list_empty(&pool->worklist) &&
806 		atomic_read(&pool->nr_running) <= 1;
807 }
808 
809 /* Do we need a new worker?  Called from manager. */
810 static bool need_to_create_worker(struct worker_pool *pool)
811 {
812 	return need_more_worker(pool) && !may_start_working(pool);
813 }
814 
815 /* Do we have too many workers and should some go away? */
816 static bool too_many_workers(struct worker_pool *pool)
817 {
818 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
819 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
820 	int nr_busy = pool->nr_workers - nr_idle;
821 
822 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
823 }
824 
825 /*
826  * Wake up functions.
827  */
828 
829 /* Return the first idle worker.  Safe with preemption disabled */
830 static struct worker *first_idle_worker(struct worker_pool *pool)
831 {
832 	if (unlikely(list_empty(&pool->idle_list)))
833 		return NULL;
834 
835 	return list_first_entry(&pool->idle_list, struct worker, entry);
836 }
837 
838 /**
839  * wake_up_worker - wake up an idle worker
840  * @pool: worker pool to wake worker from
841  *
842  * Wake up the first idle worker of @pool.
843  *
844  * CONTEXT:
845  * raw_spin_lock_irq(pool->lock).
846  */
847 static void wake_up_worker(struct worker_pool *pool)
848 {
849 	struct worker *worker = first_idle_worker(pool);
850 
851 	if (likely(worker))
852 		wake_up_process(worker->task);
853 }
854 
855 /**
856  * wq_worker_running - a worker is running again
857  * @task: task waking up
858  *
859  * This function is called when a worker returns from schedule()
860  */
861 void wq_worker_running(struct task_struct *task)
862 {
863 	struct worker *worker = kthread_data(task);
864 
865 	if (!worker->sleeping)
866 		return;
867 
868 	/*
869 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
870 	 * and the nr_running increment below, we may ruin the nr_running reset
871 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
872 	 * pool. Protect against such race.
873 	 */
874 	preempt_disable();
875 	if (!(worker->flags & WORKER_NOT_RUNNING))
876 		atomic_inc(&worker->pool->nr_running);
877 	preempt_enable();
878 	worker->sleeping = 0;
879 }
880 
881 /**
882  * wq_worker_sleeping - a worker is going to sleep
883  * @task: task going to sleep
884  *
885  * This function is called from schedule() when a busy worker is
886  * going to sleep.
887  */
888 void wq_worker_sleeping(struct task_struct *task)
889 {
890 	struct worker *next, *worker = kthread_data(task);
891 	struct worker_pool *pool;
892 
893 	/*
894 	 * Rescuers, which may not have all the fields set up like normal
895 	 * workers, also reach here, let's not access anything before
896 	 * checking NOT_RUNNING.
897 	 */
898 	if (worker->flags & WORKER_NOT_RUNNING)
899 		return;
900 
901 	pool = worker->pool;
902 
903 	/* Return if preempted before wq_worker_running() was reached */
904 	if (worker->sleeping)
905 		return;
906 
907 	worker->sleeping = 1;
908 	raw_spin_lock_irq(&pool->lock);
909 
910 	/*
911 	 * Recheck in case unbind_workers() preempted us. We don't
912 	 * want to decrement nr_running after the worker is unbound
913 	 * and nr_running has been reset.
914 	 */
915 	if (worker->flags & WORKER_NOT_RUNNING) {
916 		raw_spin_unlock_irq(&pool->lock);
917 		return;
918 	}
919 
920 	/*
921 	 * The counterpart of the following dec_and_test, implied mb,
922 	 * worklist not empty test sequence is in insert_work().
923 	 * Please read comment there.
924 	 *
925 	 * NOT_RUNNING is clear.  This means that we're bound to and
926 	 * running on the local cpu w/ rq lock held and preemption
927 	 * disabled, which in turn means that none else could be
928 	 * manipulating idle_list, so dereferencing idle_list without pool
929 	 * lock is safe.
930 	 */
931 	if (atomic_dec_and_test(&pool->nr_running) &&
932 	    !list_empty(&pool->worklist)) {
933 		next = first_idle_worker(pool);
934 		if (next)
935 			wake_up_process(next->task);
936 	}
937 	raw_spin_unlock_irq(&pool->lock);
938 }
939 
940 /**
941  * wq_worker_last_func - retrieve worker's last work function
942  * @task: Task to retrieve last work function of.
943  *
944  * Determine the last function a worker executed. This is called from
945  * the scheduler to get a worker's last known identity.
946  *
947  * CONTEXT:
948  * raw_spin_lock_irq(rq->lock)
949  *
950  * This function is called during schedule() when a kworker is going
951  * to sleep. It's used by psi to identify aggregation workers during
952  * dequeuing, to allow periodic aggregation to shut-off when that
953  * worker is the last task in the system or cgroup to go to sleep.
954  *
955  * As this function doesn't involve any workqueue-related locking, it
956  * only returns stable values when called from inside the scheduler's
957  * queuing and dequeuing paths, when @task, which must be a kworker,
958  * is guaranteed to not be processing any works.
959  *
960  * Return:
961  * The last work function %current executed as a worker, NULL if it
962  * hasn't executed any work yet.
963  */
964 work_func_t wq_worker_last_func(struct task_struct *task)
965 {
966 	struct worker *worker = kthread_data(task);
967 
968 	return worker->last_func;
969 }
970 
971 /**
972  * worker_set_flags - set worker flags and adjust nr_running accordingly
973  * @worker: self
974  * @flags: flags to set
975  *
976  * Set @flags in @worker->flags and adjust nr_running accordingly.
977  *
978  * CONTEXT:
979  * raw_spin_lock_irq(pool->lock)
980  */
981 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
982 {
983 	struct worker_pool *pool = worker->pool;
984 
985 	WARN_ON_ONCE(worker->task != current);
986 
987 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
988 	if ((flags & WORKER_NOT_RUNNING) &&
989 	    !(worker->flags & WORKER_NOT_RUNNING)) {
990 		atomic_dec(&pool->nr_running);
991 	}
992 
993 	worker->flags |= flags;
994 }
995 
996 /**
997  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
998  * @worker: self
999  * @flags: flags to clear
1000  *
1001  * Clear @flags in @worker->flags and adjust nr_running accordingly.
1002  *
1003  * CONTEXT:
1004  * raw_spin_lock_irq(pool->lock)
1005  */
1006 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
1007 {
1008 	struct worker_pool *pool = worker->pool;
1009 	unsigned int oflags = worker->flags;
1010 
1011 	WARN_ON_ONCE(worker->task != current);
1012 
1013 	worker->flags &= ~flags;
1014 
1015 	/*
1016 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1017 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1018 	 * of multiple flags, not a single flag.
1019 	 */
1020 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1021 		if (!(worker->flags & WORKER_NOT_RUNNING))
1022 			atomic_inc(&pool->nr_running);
1023 }
1024 
1025 /**
1026  * find_worker_executing_work - find worker which is executing a work
1027  * @pool: pool of interest
1028  * @work: work to find worker for
1029  *
1030  * Find a worker which is executing @work on @pool by searching
1031  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1032  * to match, its current execution should match the address of @work and
1033  * its work function.  This is to avoid unwanted dependency between
1034  * unrelated work executions through a work item being recycled while still
1035  * being executed.
1036  *
1037  * This is a bit tricky.  A work item may be freed once its execution
1038  * starts and nothing prevents the freed area from being recycled for
1039  * another work item.  If the same work item address ends up being reused
1040  * before the original execution finishes, workqueue will identify the
1041  * recycled work item as currently executing and make it wait until the
1042  * current execution finishes, introducing an unwanted dependency.
1043  *
1044  * This function checks the work item address and work function to avoid
1045  * false positives.  Note that this isn't complete as one may construct a
1046  * work function which can introduce dependency onto itself through a
1047  * recycled work item.  Well, if somebody wants to shoot oneself in the
1048  * foot that badly, there's only so much we can do, and if such deadlock
1049  * actually occurs, it should be easy to locate the culprit work function.
1050  *
1051  * CONTEXT:
1052  * raw_spin_lock_irq(pool->lock).
1053  *
1054  * Return:
1055  * Pointer to worker which is executing @work if found, %NULL
1056  * otherwise.
1057  */
1058 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1059 						 struct work_struct *work)
1060 {
1061 	struct worker *worker;
1062 
1063 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1064 			       (unsigned long)work)
1065 		if (worker->current_work == work &&
1066 		    worker->current_func == work->func)
1067 			return worker;
1068 
1069 	return NULL;
1070 }
1071 
1072 /**
1073  * move_linked_works - move linked works to a list
1074  * @work: start of series of works to be scheduled
1075  * @head: target list to append @work to
1076  * @nextp: out parameter for nested worklist walking
1077  *
1078  * Schedule linked works starting from @work to @head.  Work series to
1079  * be scheduled starts at @work and includes any consecutive work with
1080  * WORK_STRUCT_LINKED set in its predecessor.
1081  *
1082  * If @nextp is not NULL, it's updated to point to the next work of
1083  * the last scheduled work.  This allows move_linked_works() to be
1084  * nested inside outer list_for_each_entry_safe().
1085  *
1086  * CONTEXT:
1087  * raw_spin_lock_irq(pool->lock).
1088  */
1089 static void move_linked_works(struct work_struct *work, struct list_head *head,
1090 			      struct work_struct **nextp)
1091 {
1092 	struct work_struct *n;
1093 
1094 	/*
1095 	 * Linked worklist will always end before the end of the list,
1096 	 * use NULL for list head.
1097 	 */
1098 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1099 		list_move_tail(&work->entry, head);
1100 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1101 			break;
1102 	}
1103 
1104 	/*
1105 	 * If we're already inside safe list traversal and have moved
1106 	 * multiple works to the scheduled queue, the next position
1107 	 * needs to be updated.
1108 	 */
1109 	if (nextp)
1110 		*nextp = n;
1111 }
1112 
1113 /**
1114  * get_pwq - get an extra reference on the specified pool_workqueue
1115  * @pwq: pool_workqueue to get
1116  *
1117  * Obtain an extra reference on @pwq.  The caller should guarantee that
1118  * @pwq has positive refcnt and be holding the matching pool->lock.
1119  */
1120 static void get_pwq(struct pool_workqueue *pwq)
1121 {
1122 	lockdep_assert_held(&pwq->pool->lock);
1123 	WARN_ON_ONCE(pwq->refcnt <= 0);
1124 	pwq->refcnt++;
1125 }
1126 
1127 /**
1128  * put_pwq - put a pool_workqueue reference
1129  * @pwq: pool_workqueue to put
1130  *
1131  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1132  * destruction.  The caller should be holding the matching pool->lock.
1133  */
1134 static void put_pwq(struct pool_workqueue *pwq)
1135 {
1136 	lockdep_assert_held(&pwq->pool->lock);
1137 	if (likely(--pwq->refcnt))
1138 		return;
1139 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1140 		return;
1141 	/*
1142 	 * @pwq can't be released under pool->lock, bounce to
1143 	 * pwq_unbound_release_workfn().  This never recurses on the same
1144 	 * pool->lock as this path is taken only for unbound workqueues and
1145 	 * the release work item is scheduled on a per-cpu workqueue.  To
1146 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1147 	 * subclass of 1 in get_unbound_pool().
1148 	 */
1149 	schedule_work(&pwq->unbound_release_work);
1150 }
1151 
1152 /**
1153  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1154  * @pwq: pool_workqueue to put (can be %NULL)
1155  *
1156  * put_pwq() with locking.  This function also allows %NULL @pwq.
1157  */
1158 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1159 {
1160 	if (pwq) {
1161 		/*
1162 		 * As both pwqs and pools are RCU protected, the
1163 		 * following lock operations are safe.
1164 		 */
1165 		raw_spin_lock_irq(&pwq->pool->lock);
1166 		put_pwq(pwq);
1167 		raw_spin_unlock_irq(&pwq->pool->lock);
1168 	}
1169 }
1170 
1171 static void pwq_activate_inactive_work(struct work_struct *work)
1172 {
1173 	struct pool_workqueue *pwq = get_work_pwq(work);
1174 
1175 	trace_workqueue_activate_work(work);
1176 	if (list_empty(&pwq->pool->worklist))
1177 		pwq->pool->watchdog_ts = jiffies;
1178 	move_linked_works(work, &pwq->pool->worklist, NULL);
1179 	__clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
1180 	pwq->nr_active++;
1181 }
1182 
1183 static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
1184 {
1185 	struct work_struct *work = list_first_entry(&pwq->inactive_works,
1186 						    struct work_struct, entry);
1187 
1188 	pwq_activate_inactive_work(work);
1189 }
1190 
1191 /**
1192  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1193  * @pwq: pwq of interest
1194  * @work_data: work_data of work which left the queue
1195  *
1196  * A work either has completed or is removed from pending queue,
1197  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1198  *
1199  * CONTEXT:
1200  * raw_spin_lock_irq(pool->lock).
1201  */
1202 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1203 {
1204 	int color = get_work_color(work_data);
1205 
1206 	if (!(work_data & WORK_STRUCT_INACTIVE)) {
1207 		pwq->nr_active--;
1208 		if (!list_empty(&pwq->inactive_works)) {
1209 			/* one down, submit an inactive one */
1210 			if (pwq->nr_active < pwq->max_active)
1211 				pwq_activate_first_inactive(pwq);
1212 		}
1213 	}
1214 
1215 	pwq->nr_in_flight[color]--;
1216 
1217 	/* is flush in progress and are we at the flushing tip? */
1218 	if (likely(pwq->flush_color != color))
1219 		goto out_put;
1220 
1221 	/* are there still in-flight works? */
1222 	if (pwq->nr_in_flight[color])
1223 		goto out_put;
1224 
1225 	/* this pwq is done, clear flush_color */
1226 	pwq->flush_color = -1;
1227 
1228 	/*
1229 	 * If this was the last pwq, wake up the first flusher.  It
1230 	 * will handle the rest.
1231 	 */
1232 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1233 		complete(&pwq->wq->first_flusher->done);
1234 out_put:
1235 	put_pwq(pwq);
1236 }
1237 
1238 /**
1239  * try_to_grab_pending - steal work item from worklist and disable irq
1240  * @work: work item to steal
1241  * @is_dwork: @work is a delayed_work
1242  * @flags: place to store irq state
1243  *
1244  * Try to grab PENDING bit of @work.  This function can handle @work in any
1245  * stable state - idle, on timer or on worklist.
1246  *
1247  * Return:
1248  *
1249  *  ========	================================================================
1250  *  1		if @work was pending and we successfully stole PENDING
1251  *  0		if @work was idle and we claimed PENDING
1252  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1253  *  -ENOENT	if someone else is canceling @work, this state may persist
1254  *		for arbitrarily long
1255  *  ========	================================================================
1256  *
1257  * Note:
1258  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1259  * interrupted while holding PENDING and @work off queue, irq must be
1260  * disabled on entry.  This, combined with delayed_work->timer being
1261  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1262  *
1263  * On successful return, >= 0, irq is disabled and the caller is
1264  * responsible for releasing it using local_irq_restore(*@flags).
1265  *
1266  * This function is safe to call from any context including IRQ handler.
1267  */
1268 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1269 			       unsigned long *flags)
1270 {
1271 	struct worker_pool *pool;
1272 	struct pool_workqueue *pwq;
1273 
1274 	local_irq_save(*flags);
1275 
1276 	/* try to steal the timer if it exists */
1277 	if (is_dwork) {
1278 		struct delayed_work *dwork = to_delayed_work(work);
1279 
1280 		/*
1281 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1282 		 * guaranteed that the timer is not queued anywhere and not
1283 		 * running on the local CPU.
1284 		 */
1285 		if (likely(del_timer(&dwork->timer)))
1286 			return 1;
1287 	}
1288 
1289 	/* try to claim PENDING the normal way */
1290 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1291 		return 0;
1292 
1293 	rcu_read_lock();
1294 	/*
1295 	 * The queueing is in progress, or it is already queued. Try to
1296 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1297 	 */
1298 	pool = get_work_pool(work);
1299 	if (!pool)
1300 		goto fail;
1301 
1302 	raw_spin_lock(&pool->lock);
1303 	/*
1304 	 * work->data is guaranteed to point to pwq only while the work
1305 	 * item is queued on pwq->wq, and both updating work->data to point
1306 	 * to pwq on queueing and to pool on dequeueing are done under
1307 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1308 	 * points to pwq which is associated with a locked pool, the work
1309 	 * item is currently queued on that pool.
1310 	 */
1311 	pwq = get_work_pwq(work);
1312 	if (pwq && pwq->pool == pool) {
1313 		debug_work_deactivate(work);
1314 
1315 		/*
1316 		 * A cancelable inactive work item must be in the
1317 		 * pwq->inactive_works since a queued barrier can't be
1318 		 * canceled (see the comments in insert_wq_barrier()).
1319 		 *
1320 		 * An inactive work item cannot be grabbed directly because
1321 		 * it might have linked barrier work items which, if left
1322 		 * on the inactive_works list, will confuse pwq->nr_active
1323 		 * management later on and cause stall.  Make sure the work
1324 		 * item is activated before grabbing.
1325 		 */
1326 		if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1327 			pwq_activate_inactive_work(work);
1328 
1329 		list_del_init(&work->entry);
1330 		pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
1331 
1332 		/* work->data points to pwq iff queued, point to pool */
1333 		set_work_pool_and_keep_pending(work, pool->id);
1334 
1335 		raw_spin_unlock(&pool->lock);
1336 		rcu_read_unlock();
1337 		return 1;
1338 	}
1339 	raw_spin_unlock(&pool->lock);
1340 fail:
1341 	rcu_read_unlock();
1342 	local_irq_restore(*flags);
1343 	if (work_is_canceling(work))
1344 		return -ENOENT;
1345 	cpu_relax();
1346 	return -EAGAIN;
1347 }
1348 
1349 /**
1350  * insert_work - insert a work into a pool
1351  * @pwq: pwq @work belongs to
1352  * @work: work to insert
1353  * @head: insertion point
1354  * @extra_flags: extra WORK_STRUCT_* flags to set
1355  *
1356  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1357  * work_struct flags.
1358  *
1359  * CONTEXT:
1360  * raw_spin_lock_irq(pool->lock).
1361  */
1362 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1363 			struct list_head *head, unsigned int extra_flags)
1364 {
1365 	struct worker_pool *pool = pwq->pool;
1366 
1367 	/* record the work call stack in order to print it in KASAN reports */
1368 	kasan_record_aux_stack_noalloc(work);
1369 
1370 	/* we own @work, set data and link */
1371 	set_work_pwq(work, pwq, extra_flags);
1372 	list_add_tail(&work->entry, head);
1373 	get_pwq(pwq);
1374 
1375 	/*
1376 	 * Ensure either wq_worker_sleeping() sees the above
1377 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1378 	 * around lazily while there are works to be processed.
1379 	 */
1380 	smp_mb();
1381 
1382 	if (__need_more_worker(pool))
1383 		wake_up_worker(pool);
1384 }
1385 
1386 /*
1387  * Test whether @work is being queued from another work executing on the
1388  * same workqueue.
1389  */
1390 static bool is_chained_work(struct workqueue_struct *wq)
1391 {
1392 	struct worker *worker;
1393 
1394 	worker = current_wq_worker();
1395 	/*
1396 	 * Return %true iff I'm a worker executing a work item on @wq.  If
1397 	 * I'm @worker, it's safe to dereference it without locking.
1398 	 */
1399 	return worker && worker->current_pwq->wq == wq;
1400 }
1401 
1402 /*
1403  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1404  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1405  * avoid perturbing sensitive tasks.
1406  */
1407 static int wq_select_unbound_cpu(int cpu)
1408 {
1409 	static bool printed_dbg_warning;
1410 	int new_cpu;
1411 
1412 	if (likely(!wq_debug_force_rr_cpu)) {
1413 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1414 			return cpu;
1415 	} else if (!printed_dbg_warning) {
1416 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1417 		printed_dbg_warning = true;
1418 	}
1419 
1420 	if (cpumask_empty(wq_unbound_cpumask))
1421 		return cpu;
1422 
1423 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1424 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1425 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1426 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1427 		if (unlikely(new_cpu >= nr_cpu_ids))
1428 			return cpu;
1429 	}
1430 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1431 
1432 	return new_cpu;
1433 }
1434 
1435 static void __queue_work(int cpu, struct workqueue_struct *wq,
1436 			 struct work_struct *work)
1437 {
1438 	struct pool_workqueue *pwq;
1439 	struct worker_pool *last_pool;
1440 	struct list_head *worklist;
1441 	unsigned int work_flags;
1442 	unsigned int req_cpu = cpu;
1443 
1444 	/*
1445 	 * While a work item is PENDING && off queue, a task trying to
1446 	 * steal the PENDING will busy-loop waiting for it to either get
1447 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1448 	 * happen with IRQ disabled.
1449 	 */
1450 	lockdep_assert_irqs_disabled();
1451 
1452 
1453 	/* if draining, only works from the same workqueue are allowed */
1454 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1455 	    WARN_ON_ONCE(!is_chained_work(wq)))
1456 		return;
1457 	rcu_read_lock();
1458 retry:
1459 	/* pwq which will be used unless @work is executing elsewhere */
1460 	if (wq->flags & WQ_UNBOUND) {
1461 		if (req_cpu == WORK_CPU_UNBOUND)
1462 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1463 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1464 	} else {
1465 		if (req_cpu == WORK_CPU_UNBOUND)
1466 			cpu = raw_smp_processor_id();
1467 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1468 	}
1469 
1470 	/*
1471 	 * If @work was previously on a different pool, it might still be
1472 	 * running there, in which case the work needs to be queued on that
1473 	 * pool to guarantee non-reentrancy.
1474 	 */
1475 	last_pool = get_work_pool(work);
1476 	if (last_pool && last_pool != pwq->pool) {
1477 		struct worker *worker;
1478 
1479 		raw_spin_lock(&last_pool->lock);
1480 
1481 		worker = find_worker_executing_work(last_pool, work);
1482 
1483 		if (worker && worker->current_pwq->wq == wq) {
1484 			pwq = worker->current_pwq;
1485 		} else {
1486 			/* meh... not running there, queue here */
1487 			raw_spin_unlock(&last_pool->lock);
1488 			raw_spin_lock(&pwq->pool->lock);
1489 		}
1490 	} else {
1491 		raw_spin_lock(&pwq->pool->lock);
1492 	}
1493 
1494 	/*
1495 	 * pwq is determined and locked.  For unbound pools, we could have
1496 	 * raced with pwq release and it could already be dead.  If its
1497 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1498 	 * without another pwq replacing it in the numa_pwq_tbl or while
1499 	 * work items are executing on it, so the retrying is guaranteed to
1500 	 * make forward-progress.
1501 	 */
1502 	if (unlikely(!pwq->refcnt)) {
1503 		if (wq->flags & WQ_UNBOUND) {
1504 			raw_spin_unlock(&pwq->pool->lock);
1505 			cpu_relax();
1506 			goto retry;
1507 		}
1508 		/* oops */
1509 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1510 			  wq->name, cpu);
1511 	}
1512 
1513 	/* pwq determined, queue */
1514 	trace_workqueue_queue_work(req_cpu, pwq, work);
1515 
1516 	if (WARN_ON(!list_empty(&work->entry)))
1517 		goto out;
1518 
1519 	pwq->nr_in_flight[pwq->work_color]++;
1520 	work_flags = work_color_to_flags(pwq->work_color);
1521 
1522 	if (likely(pwq->nr_active < pwq->max_active)) {
1523 		trace_workqueue_activate_work(work);
1524 		pwq->nr_active++;
1525 		worklist = &pwq->pool->worklist;
1526 		if (list_empty(worklist))
1527 			pwq->pool->watchdog_ts = jiffies;
1528 	} else {
1529 		work_flags |= WORK_STRUCT_INACTIVE;
1530 		worklist = &pwq->inactive_works;
1531 	}
1532 
1533 	debug_work_activate(work);
1534 	insert_work(pwq, work, worklist, work_flags);
1535 
1536 out:
1537 	raw_spin_unlock(&pwq->pool->lock);
1538 	rcu_read_unlock();
1539 }
1540 
1541 /**
1542  * queue_work_on - queue work on specific cpu
1543  * @cpu: CPU number to execute work on
1544  * @wq: workqueue to use
1545  * @work: work to queue
1546  *
1547  * We queue the work to a specific CPU, the caller must ensure it
1548  * can't go away.  Callers that fail to ensure that the specified
1549  * CPU cannot go away will execute on a randomly chosen CPU.
1550  *
1551  * Return: %false if @work was already on a queue, %true otherwise.
1552  */
1553 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1554 		   struct work_struct *work)
1555 {
1556 	bool ret = false;
1557 	unsigned long flags;
1558 
1559 	local_irq_save(flags);
1560 
1561 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1562 		__queue_work(cpu, wq, work);
1563 		ret = true;
1564 	}
1565 
1566 	local_irq_restore(flags);
1567 	return ret;
1568 }
1569 EXPORT_SYMBOL(queue_work_on);
1570 
1571 /**
1572  * workqueue_select_cpu_near - Select a CPU based on NUMA node
1573  * @node: NUMA node ID that we want to select a CPU from
1574  *
1575  * This function will attempt to find a "random" cpu available on a given
1576  * node. If there are no CPUs available on the given node it will return
1577  * WORK_CPU_UNBOUND indicating that we should just schedule to any
1578  * available CPU if we need to schedule this work.
1579  */
1580 static int workqueue_select_cpu_near(int node)
1581 {
1582 	int cpu;
1583 
1584 	/* No point in doing this if NUMA isn't enabled for workqueues */
1585 	if (!wq_numa_enabled)
1586 		return WORK_CPU_UNBOUND;
1587 
1588 	/* Delay binding to CPU if node is not valid or online */
1589 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1590 		return WORK_CPU_UNBOUND;
1591 
1592 	/* Use local node/cpu if we are already there */
1593 	cpu = raw_smp_processor_id();
1594 	if (node == cpu_to_node(cpu))
1595 		return cpu;
1596 
1597 	/* Use "random" otherwise know as "first" online CPU of node */
1598 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1599 
1600 	/* If CPU is valid return that, otherwise just defer */
1601 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1602 }
1603 
1604 /**
1605  * queue_work_node - queue work on a "random" cpu for a given NUMA node
1606  * @node: NUMA node that we are targeting the work for
1607  * @wq: workqueue to use
1608  * @work: work to queue
1609  *
1610  * We queue the work to a "random" CPU within a given NUMA node. The basic
1611  * idea here is to provide a way to somehow associate work with a given
1612  * NUMA node.
1613  *
1614  * This function will only make a best effort attempt at getting this onto
1615  * the right NUMA node. If no node is requested or the requested node is
1616  * offline then we just fall back to standard queue_work behavior.
1617  *
1618  * Currently the "random" CPU ends up being the first available CPU in the
1619  * intersection of cpu_online_mask and the cpumask of the node, unless we
1620  * are running on the node. In that case we just use the current CPU.
1621  *
1622  * Return: %false if @work was already on a queue, %true otherwise.
1623  */
1624 bool queue_work_node(int node, struct workqueue_struct *wq,
1625 		     struct work_struct *work)
1626 {
1627 	unsigned long flags;
1628 	bool ret = false;
1629 
1630 	/*
1631 	 * This current implementation is specific to unbound workqueues.
1632 	 * Specifically we only return the first available CPU for a given
1633 	 * node instead of cycling through individual CPUs within the node.
1634 	 *
1635 	 * If this is used with a per-cpu workqueue then the logic in
1636 	 * workqueue_select_cpu_near would need to be updated to allow for
1637 	 * some round robin type logic.
1638 	 */
1639 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1640 
1641 	local_irq_save(flags);
1642 
1643 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1644 		int cpu = workqueue_select_cpu_near(node);
1645 
1646 		__queue_work(cpu, wq, work);
1647 		ret = true;
1648 	}
1649 
1650 	local_irq_restore(flags);
1651 	return ret;
1652 }
1653 EXPORT_SYMBOL_GPL(queue_work_node);
1654 
1655 void delayed_work_timer_fn(struct timer_list *t)
1656 {
1657 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1658 
1659 	/* should have been called from irqsafe timer with irq already off */
1660 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1661 }
1662 EXPORT_SYMBOL(delayed_work_timer_fn);
1663 
1664 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1665 				struct delayed_work *dwork, unsigned long delay)
1666 {
1667 	struct timer_list *timer = &dwork->timer;
1668 	struct work_struct *work = &dwork->work;
1669 
1670 	WARN_ON_ONCE(!wq);
1671 	WARN_ON_FUNCTION_MISMATCH(timer->function, delayed_work_timer_fn);
1672 	WARN_ON_ONCE(timer_pending(timer));
1673 	WARN_ON_ONCE(!list_empty(&work->entry));
1674 
1675 	/*
1676 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1677 	 * both optimization and correctness.  The earliest @timer can
1678 	 * expire is on the closest next tick and delayed_work users depend
1679 	 * on that there's no such delay when @delay is 0.
1680 	 */
1681 	if (!delay) {
1682 		__queue_work(cpu, wq, &dwork->work);
1683 		return;
1684 	}
1685 
1686 	dwork->wq = wq;
1687 	dwork->cpu = cpu;
1688 	timer->expires = jiffies + delay;
1689 
1690 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1691 		add_timer_on(timer, cpu);
1692 	else
1693 		add_timer(timer);
1694 }
1695 
1696 /**
1697  * queue_delayed_work_on - queue work on specific CPU after delay
1698  * @cpu: CPU number to execute work on
1699  * @wq: workqueue to use
1700  * @dwork: work to queue
1701  * @delay: number of jiffies to wait before queueing
1702  *
1703  * Return: %false if @work was already on a queue, %true otherwise.  If
1704  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1705  * execution.
1706  */
1707 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1708 			   struct delayed_work *dwork, unsigned long delay)
1709 {
1710 	struct work_struct *work = &dwork->work;
1711 	bool ret = false;
1712 	unsigned long flags;
1713 
1714 	/* read the comment in __queue_work() */
1715 	local_irq_save(flags);
1716 
1717 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1718 		__queue_delayed_work(cpu, wq, dwork, delay);
1719 		ret = true;
1720 	}
1721 
1722 	local_irq_restore(flags);
1723 	return ret;
1724 }
1725 EXPORT_SYMBOL(queue_delayed_work_on);
1726 
1727 /**
1728  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1729  * @cpu: CPU number to execute work on
1730  * @wq: workqueue to use
1731  * @dwork: work to queue
1732  * @delay: number of jiffies to wait before queueing
1733  *
1734  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1735  * modify @dwork's timer so that it expires after @delay.  If @delay is
1736  * zero, @work is guaranteed to be scheduled immediately regardless of its
1737  * current state.
1738  *
1739  * Return: %false if @dwork was idle and queued, %true if @dwork was
1740  * pending and its timer was modified.
1741  *
1742  * This function is safe to call from any context including IRQ handler.
1743  * See try_to_grab_pending() for details.
1744  */
1745 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1746 			 struct delayed_work *dwork, unsigned long delay)
1747 {
1748 	unsigned long flags;
1749 	int ret;
1750 
1751 	do {
1752 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1753 	} while (unlikely(ret == -EAGAIN));
1754 
1755 	if (likely(ret >= 0)) {
1756 		__queue_delayed_work(cpu, wq, dwork, delay);
1757 		local_irq_restore(flags);
1758 	}
1759 
1760 	/* -ENOENT from try_to_grab_pending() becomes %true */
1761 	return ret;
1762 }
1763 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1764 
1765 static void rcu_work_rcufn(struct rcu_head *rcu)
1766 {
1767 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1768 
1769 	/* read the comment in __queue_work() */
1770 	local_irq_disable();
1771 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1772 	local_irq_enable();
1773 }
1774 
1775 /**
1776  * queue_rcu_work - queue work after a RCU grace period
1777  * @wq: workqueue to use
1778  * @rwork: work to queue
1779  *
1780  * Return: %false if @rwork was already pending, %true otherwise.  Note
1781  * that a full RCU grace period is guaranteed only after a %true return.
1782  * While @rwork is guaranteed to be executed after a %false return, the
1783  * execution may happen before a full RCU grace period has passed.
1784  */
1785 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1786 {
1787 	struct work_struct *work = &rwork->work;
1788 
1789 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1790 		rwork->wq = wq;
1791 		call_rcu(&rwork->rcu, rcu_work_rcufn);
1792 		return true;
1793 	}
1794 
1795 	return false;
1796 }
1797 EXPORT_SYMBOL(queue_rcu_work);
1798 
1799 /**
1800  * worker_enter_idle - enter idle state
1801  * @worker: worker which is entering idle state
1802  *
1803  * @worker is entering idle state.  Update stats and idle timer if
1804  * necessary.
1805  *
1806  * LOCKING:
1807  * raw_spin_lock_irq(pool->lock).
1808  */
1809 static void worker_enter_idle(struct worker *worker)
1810 {
1811 	struct worker_pool *pool = worker->pool;
1812 
1813 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1814 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1815 			 (worker->hentry.next || worker->hentry.pprev)))
1816 		return;
1817 
1818 	/* can't use worker_set_flags(), also called from create_worker() */
1819 	worker->flags |= WORKER_IDLE;
1820 	pool->nr_idle++;
1821 	worker->last_active = jiffies;
1822 
1823 	/* idle_list is LIFO */
1824 	list_add(&worker->entry, &pool->idle_list);
1825 
1826 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1827 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1828 
1829 	/* Sanity check nr_running. */
1830 	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle &&
1831 		     atomic_read(&pool->nr_running));
1832 }
1833 
1834 /**
1835  * worker_leave_idle - leave idle state
1836  * @worker: worker which is leaving idle state
1837  *
1838  * @worker is leaving idle state.  Update stats.
1839  *
1840  * LOCKING:
1841  * raw_spin_lock_irq(pool->lock).
1842  */
1843 static void worker_leave_idle(struct worker *worker)
1844 {
1845 	struct worker_pool *pool = worker->pool;
1846 
1847 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1848 		return;
1849 	worker_clr_flags(worker, WORKER_IDLE);
1850 	pool->nr_idle--;
1851 	list_del_init(&worker->entry);
1852 }
1853 
1854 static struct worker *alloc_worker(int node)
1855 {
1856 	struct worker *worker;
1857 
1858 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1859 	if (worker) {
1860 		INIT_LIST_HEAD(&worker->entry);
1861 		INIT_LIST_HEAD(&worker->scheduled);
1862 		INIT_LIST_HEAD(&worker->node);
1863 		/* on creation a worker is in !idle && prep state */
1864 		worker->flags = WORKER_PREP;
1865 	}
1866 	return worker;
1867 }
1868 
1869 /**
1870  * worker_attach_to_pool() - attach a worker to a pool
1871  * @worker: worker to be attached
1872  * @pool: the target pool
1873  *
1874  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1875  * cpu-binding of @worker are kept coordinated with the pool across
1876  * cpu-[un]hotplugs.
1877  */
1878 static void worker_attach_to_pool(struct worker *worker,
1879 				   struct worker_pool *pool)
1880 {
1881 	mutex_lock(&wq_pool_attach_mutex);
1882 
1883 	/*
1884 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1885 	 * stable across this function.  See the comments above the flag
1886 	 * definition for details.
1887 	 */
1888 	if (pool->flags & POOL_DISASSOCIATED)
1889 		worker->flags |= WORKER_UNBOUND;
1890 	else
1891 		kthread_set_per_cpu(worker->task, pool->cpu);
1892 
1893 	if (worker->rescue_wq)
1894 		set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1895 
1896 	list_add_tail(&worker->node, &pool->workers);
1897 	worker->pool = pool;
1898 
1899 	mutex_unlock(&wq_pool_attach_mutex);
1900 }
1901 
1902 /**
1903  * worker_detach_from_pool() - detach a worker from its pool
1904  * @worker: worker which is attached to its pool
1905  *
1906  * Undo the attaching which had been done in worker_attach_to_pool().  The
1907  * caller worker shouldn't access to the pool after detached except it has
1908  * other reference to the pool.
1909  */
1910 static void worker_detach_from_pool(struct worker *worker)
1911 {
1912 	struct worker_pool *pool = worker->pool;
1913 	struct completion *detach_completion = NULL;
1914 
1915 	mutex_lock(&wq_pool_attach_mutex);
1916 
1917 	kthread_set_per_cpu(worker->task, -1);
1918 	list_del(&worker->node);
1919 	worker->pool = NULL;
1920 
1921 	if (list_empty(&pool->workers))
1922 		detach_completion = pool->detach_completion;
1923 	mutex_unlock(&wq_pool_attach_mutex);
1924 
1925 	/* clear leftover flags without pool->lock after it is detached */
1926 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1927 
1928 	if (detach_completion)
1929 		complete(detach_completion);
1930 }
1931 
1932 /**
1933  * create_worker - create a new workqueue worker
1934  * @pool: pool the new worker will belong to
1935  *
1936  * Create and start a new worker which is attached to @pool.
1937  *
1938  * CONTEXT:
1939  * Might sleep.  Does GFP_KERNEL allocations.
1940  *
1941  * Return:
1942  * Pointer to the newly created worker.
1943  */
1944 static struct worker *create_worker(struct worker_pool *pool)
1945 {
1946 	struct worker *worker;
1947 	int id;
1948 	char id_buf[16];
1949 
1950 	/* ID is needed to determine kthread name */
1951 	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
1952 	if (id < 0)
1953 		return NULL;
1954 
1955 	worker = alloc_worker(pool->node);
1956 	if (!worker)
1957 		goto fail;
1958 
1959 	worker->id = id;
1960 
1961 	if (pool->cpu >= 0)
1962 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1963 			 pool->attrs->nice < 0  ? "H" : "");
1964 	else
1965 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1966 
1967 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1968 					      "kworker/%s", id_buf);
1969 	if (IS_ERR(worker->task))
1970 		goto fail;
1971 
1972 	set_user_nice(worker->task, pool->attrs->nice);
1973 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1974 
1975 	/* successful, attach the worker to the pool */
1976 	worker_attach_to_pool(worker, pool);
1977 
1978 	/* start the newly created worker */
1979 	raw_spin_lock_irq(&pool->lock);
1980 	worker->pool->nr_workers++;
1981 	worker_enter_idle(worker);
1982 	wake_up_process(worker->task);
1983 	raw_spin_unlock_irq(&pool->lock);
1984 
1985 	return worker;
1986 
1987 fail:
1988 	ida_free(&pool->worker_ida, id);
1989 	kfree(worker);
1990 	return NULL;
1991 }
1992 
1993 /**
1994  * destroy_worker - destroy a workqueue worker
1995  * @worker: worker to be destroyed
1996  *
1997  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1998  * be idle.
1999  *
2000  * CONTEXT:
2001  * raw_spin_lock_irq(pool->lock).
2002  */
2003 static void destroy_worker(struct worker *worker)
2004 {
2005 	struct worker_pool *pool = worker->pool;
2006 
2007 	lockdep_assert_held(&pool->lock);
2008 
2009 	/* sanity check frenzy */
2010 	if (WARN_ON(worker->current_work) ||
2011 	    WARN_ON(!list_empty(&worker->scheduled)) ||
2012 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2013 		return;
2014 
2015 	pool->nr_workers--;
2016 	pool->nr_idle--;
2017 
2018 	list_del_init(&worker->entry);
2019 	worker->flags |= WORKER_DIE;
2020 	wake_up_process(worker->task);
2021 }
2022 
2023 static void idle_worker_timeout(struct timer_list *t)
2024 {
2025 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2026 
2027 	raw_spin_lock_irq(&pool->lock);
2028 
2029 	while (too_many_workers(pool)) {
2030 		struct worker *worker;
2031 		unsigned long expires;
2032 
2033 		/* idle_list is kept in LIFO order, check the last one */
2034 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2035 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2036 
2037 		if (time_before(jiffies, expires)) {
2038 			mod_timer(&pool->idle_timer, expires);
2039 			break;
2040 		}
2041 
2042 		destroy_worker(worker);
2043 	}
2044 
2045 	raw_spin_unlock_irq(&pool->lock);
2046 }
2047 
2048 static void send_mayday(struct work_struct *work)
2049 {
2050 	struct pool_workqueue *pwq = get_work_pwq(work);
2051 	struct workqueue_struct *wq = pwq->wq;
2052 
2053 	lockdep_assert_held(&wq_mayday_lock);
2054 
2055 	if (!wq->rescuer)
2056 		return;
2057 
2058 	/* mayday mayday mayday */
2059 	if (list_empty(&pwq->mayday_node)) {
2060 		/*
2061 		 * If @pwq is for an unbound wq, its base ref may be put at
2062 		 * any time due to an attribute change.  Pin @pwq until the
2063 		 * rescuer is done with it.
2064 		 */
2065 		get_pwq(pwq);
2066 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2067 		wake_up_process(wq->rescuer->task);
2068 	}
2069 }
2070 
2071 static void pool_mayday_timeout(struct timer_list *t)
2072 {
2073 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2074 	struct work_struct *work;
2075 
2076 	raw_spin_lock_irq(&pool->lock);
2077 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2078 
2079 	if (need_to_create_worker(pool)) {
2080 		/*
2081 		 * We've been trying to create a new worker but
2082 		 * haven't been successful.  We might be hitting an
2083 		 * allocation deadlock.  Send distress signals to
2084 		 * rescuers.
2085 		 */
2086 		list_for_each_entry(work, &pool->worklist, entry)
2087 			send_mayday(work);
2088 	}
2089 
2090 	raw_spin_unlock(&wq_mayday_lock);
2091 	raw_spin_unlock_irq(&pool->lock);
2092 
2093 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2094 }
2095 
2096 /**
2097  * maybe_create_worker - create a new worker if necessary
2098  * @pool: pool to create a new worker for
2099  *
2100  * Create a new worker for @pool if necessary.  @pool is guaranteed to
2101  * have at least one idle worker on return from this function.  If
2102  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2103  * sent to all rescuers with works scheduled on @pool to resolve
2104  * possible allocation deadlock.
2105  *
2106  * On return, need_to_create_worker() is guaranteed to be %false and
2107  * may_start_working() %true.
2108  *
2109  * LOCKING:
2110  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2111  * multiple times.  Does GFP_KERNEL allocations.  Called only from
2112  * manager.
2113  */
2114 static void maybe_create_worker(struct worker_pool *pool)
2115 __releases(&pool->lock)
2116 __acquires(&pool->lock)
2117 {
2118 restart:
2119 	raw_spin_unlock_irq(&pool->lock);
2120 
2121 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2122 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2123 
2124 	while (true) {
2125 		if (create_worker(pool) || !need_to_create_worker(pool))
2126 			break;
2127 
2128 		schedule_timeout_interruptible(CREATE_COOLDOWN);
2129 
2130 		if (!need_to_create_worker(pool))
2131 			break;
2132 	}
2133 
2134 	del_timer_sync(&pool->mayday_timer);
2135 	raw_spin_lock_irq(&pool->lock);
2136 	/*
2137 	 * This is necessary even after a new worker was just successfully
2138 	 * created as @pool->lock was dropped and the new worker might have
2139 	 * already become busy.
2140 	 */
2141 	if (need_to_create_worker(pool))
2142 		goto restart;
2143 }
2144 
2145 /**
2146  * manage_workers - manage worker pool
2147  * @worker: self
2148  *
2149  * Assume the manager role and manage the worker pool @worker belongs
2150  * to.  At any given time, there can be only zero or one manager per
2151  * pool.  The exclusion is handled automatically by this function.
2152  *
2153  * The caller can safely start processing works on false return.  On
2154  * true return, it's guaranteed that need_to_create_worker() is false
2155  * and may_start_working() is true.
2156  *
2157  * CONTEXT:
2158  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2159  * multiple times.  Does GFP_KERNEL allocations.
2160  *
2161  * Return:
2162  * %false if the pool doesn't need management and the caller can safely
2163  * start processing works, %true if management function was performed and
2164  * the conditions that the caller verified before calling the function may
2165  * no longer be true.
2166  */
2167 static bool manage_workers(struct worker *worker)
2168 {
2169 	struct worker_pool *pool = worker->pool;
2170 
2171 	if (pool->flags & POOL_MANAGER_ACTIVE)
2172 		return false;
2173 
2174 	pool->flags |= POOL_MANAGER_ACTIVE;
2175 	pool->manager = worker;
2176 
2177 	maybe_create_worker(pool);
2178 
2179 	pool->manager = NULL;
2180 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2181 	rcuwait_wake_up(&manager_wait);
2182 	return true;
2183 }
2184 
2185 /**
2186  * process_one_work - process single work
2187  * @worker: self
2188  * @work: work to process
2189  *
2190  * Process @work.  This function contains all the logics necessary to
2191  * process a single work including synchronization against and
2192  * interaction with other workers on the same cpu, queueing and
2193  * flushing.  As long as context requirement is met, any worker can
2194  * call this function to process a work.
2195  *
2196  * CONTEXT:
2197  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2198  */
2199 static void process_one_work(struct worker *worker, struct work_struct *work)
2200 __releases(&pool->lock)
2201 __acquires(&pool->lock)
2202 {
2203 	struct pool_workqueue *pwq = get_work_pwq(work);
2204 	struct worker_pool *pool = worker->pool;
2205 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2206 	unsigned long work_data;
2207 	struct worker *collision;
2208 #ifdef CONFIG_LOCKDEP
2209 	/*
2210 	 * It is permissible to free the struct work_struct from
2211 	 * inside the function that is called from it, this we need to
2212 	 * take into account for lockdep too.  To avoid bogus "held
2213 	 * lock freed" warnings as well as problems when looking into
2214 	 * work->lockdep_map, make a copy and use that here.
2215 	 */
2216 	struct lockdep_map lockdep_map;
2217 
2218 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2219 #endif
2220 	/* ensure we're on the correct CPU */
2221 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2222 		     raw_smp_processor_id() != pool->cpu);
2223 
2224 	/*
2225 	 * A single work shouldn't be executed concurrently by
2226 	 * multiple workers on a single cpu.  Check whether anyone is
2227 	 * already processing the work.  If so, defer the work to the
2228 	 * currently executing one.
2229 	 */
2230 	collision = find_worker_executing_work(pool, work);
2231 	if (unlikely(collision)) {
2232 		move_linked_works(work, &collision->scheduled, NULL);
2233 		return;
2234 	}
2235 
2236 	/* claim and dequeue */
2237 	debug_work_deactivate(work);
2238 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2239 	worker->current_work = work;
2240 	worker->current_func = work->func;
2241 	worker->current_pwq = pwq;
2242 	work_data = *work_data_bits(work);
2243 	worker->current_color = get_work_color(work_data);
2244 
2245 	/*
2246 	 * Record wq name for cmdline and debug reporting, may get
2247 	 * overridden through set_worker_desc().
2248 	 */
2249 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2250 
2251 	list_del_init(&work->entry);
2252 
2253 	/*
2254 	 * CPU intensive works don't participate in concurrency management.
2255 	 * They're the scheduler's responsibility.  This takes @worker out
2256 	 * of concurrency management and the next code block will chain
2257 	 * execution of the pending work items.
2258 	 */
2259 	if (unlikely(cpu_intensive))
2260 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2261 
2262 	/*
2263 	 * Wake up another worker if necessary.  The condition is always
2264 	 * false for normal per-cpu workers since nr_running would always
2265 	 * be >= 1 at this point.  This is used to chain execution of the
2266 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2267 	 * UNBOUND and CPU_INTENSIVE ones.
2268 	 */
2269 	if (need_more_worker(pool))
2270 		wake_up_worker(pool);
2271 
2272 	/*
2273 	 * Record the last pool and clear PENDING which should be the last
2274 	 * update to @work.  Also, do this inside @pool->lock so that
2275 	 * PENDING and queued state changes happen together while IRQ is
2276 	 * disabled.
2277 	 */
2278 	set_work_pool_and_clear_pending(work, pool->id);
2279 
2280 	raw_spin_unlock_irq(&pool->lock);
2281 
2282 	lock_map_acquire(&pwq->wq->lockdep_map);
2283 	lock_map_acquire(&lockdep_map);
2284 	/*
2285 	 * Strictly speaking we should mark the invariant state without holding
2286 	 * any locks, that is, before these two lock_map_acquire()'s.
2287 	 *
2288 	 * However, that would result in:
2289 	 *
2290 	 *   A(W1)
2291 	 *   WFC(C)
2292 	 *		A(W1)
2293 	 *		C(C)
2294 	 *
2295 	 * Which would create W1->C->W1 dependencies, even though there is no
2296 	 * actual deadlock possible. There are two solutions, using a
2297 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2298 	 * hit the lockdep limitation on recursive locks, or simply discard
2299 	 * these locks.
2300 	 *
2301 	 * AFAICT there is no possible deadlock scenario between the
2302 	 * flush_work() and complete() primitives (except for single-threaded
2303 	 * workqueues), so hiding them isn't a problem.
2304 	 */
2305 	lockdep_invariant_state(true);
2306 	trace_workqueue_execute_start(work);
2307 	worker->current_func(work);
2308 	/*
2309 	 * While we must be careful to not use "work" after this, the trace
2310 	 * point will only record its address.
2311 	 */
2312 	trace_workqueue_execute_end(work, worker->current_func);
2313 	lock_map_release(&lockdep_map);
2314 	lock_map_release(&pwq->wq->lockdep_map);
2315 
2316 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2317 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2318 		       "     last function: %ps\n",
2319 		       current->comm, preempt_count(), task_pid_nr(current),
2320 		       worker->current_func);
2321 		debug_show_held_locks(current);
2322 		dump_stack();
2323 	}
2324 
2325 	/*
2326 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
2327 	 * kernels, where a requeueing work item waiting for something to
2328 	 * happen could deadlock with stop_machine as such work item could
2329 	 * indefinitely requeue itself while all other CPUs are trapped in
2330 	 * stop_machine. At the same time, report a quiescent RCU state so
2331 	 * the same condition doesn't freeze RCU.
2332 	 */
2333 	cond_resched();
2334 
2335 	raw_spin_lock_irq(&pool->lock);
2336 
2337 	/* clear cpu intensive status */
2338 	if (unlikely(cpu_intensive))
2339 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2340 
2341 	/* tag the worker for identification in schedule() */
2342 	worker->last_func = worker->current_func;
2343 
2344 	/* we're done with it, release */
2345 	hash_del(&worker->hentry);
2346 	worker->current_work = NULL;
2347 	worker->current_func = NULL;
2348 	worker->current_pwq = NULL;
2349 	worker->current_color = INT_MAX;
2350 	pwq_dec_nr_in_flight(pwq, work_data);
2351 }
2352 
2353 /**
2354  * process_scheduled_works - process scheduled works
2355  * @worker: self
2356  *
2357  * Process all scheduled works.  Please note that the scheduled list
2358  * may change while processing a work, so this function repeatedly
2359  * fetches a work from the top and executes it.
2360  *
2361  * CONTEXT:
2362  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2363  * multiple times.
2364  */
2365 static void process_scheduled_works(struct worker *worker)
2366 {
2367 	while (!list_empty(&worker->scheduled)) {
2368 		struct work_struct *work = list_first_entry(&worker->scheduled,
2369 						struct work_struct, entry);
2370 		process_one_work(worker, work);
2371 	}
2372 }
2373 
2374 static void set_pf_worker(bool val)
2375 {
2376 	mutex_lock(&wq_pool_attach_mutex);
2377 	if (val)
2378 		current->flags |= PF_WQ_WORKER;
2379 	else
2380 		current->flags &= ~PF_WQ_WORKER;
2381 	mutex_unlock(&wq_pool_attach_mutex);
2382 }
2383 
2384 /**
2385  * worker_thread - the worker thread function
2386  * @__worker: self
2387  *
2388  * The worker thread function.  All workers belong to a worker_pool -
2389  * either a per-cpu one or dynamic unbound one.  These workers process all
2390  * work items regardless of their specific target workqueue.  The only
2391  * exception is work items which belong to workqueues with a rescuer which
2392  * will be explained in rescuer_thread().
2393  *
2394  * Return: 0
2395  */
2396 static int worker_thread(void *__worker)
2397 {
2398 	struct worker *worker = __worker;
2399 	struct worker_pool *pool = worker->pool;
2400 
2401 	/* tell the scheduler that this is a workqueue worker */
2402 	set_pf_worker(true);
2403 woke_up:
2404 	raw_spin_lock_irq(&pool->lock);
2405 
2406 	/* am I supposed to die? */
2407 	if (unlikely(worker->flags & WORKER_DIE)) {
2408 		raw_spin_unlock_irq(&pool->lock);
2409 		WARN_ON_ONCE(!list_empty(&worker->entry));
2410 		set_pf_worker(false);
2411 
2412 		set_task_comm(worker->task, "kworker/dying");
2413 		ida_free(&pool->worker_ida, worker->id);
2414 		worker_detach_from_pool(worker);
2415 		kfree(worker);
2416 		return 0;
2417 	}
2418 
2419 	worker_leave_idle(worker);
2420 recheck:
2421 	/* no more worker necessary? */
2422 	if (!need_more_worker(pool))
2423 		goto sleep;
2424 
2425 	/* do we need to manage? */
2426 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2427 		goto recheck;
2428 
2429 	/*
2430 	 * ->scheduled list can only be filled while a worker is
2431 	 * preparing to process a work or actually processing it.
2432 	 * Make sure nobody diddled with it while I was sleeping.
2433 	 */
2434 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2435 
2436 	/*
2437 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2438 	 * worker or that someone else has already assumed the manager
2439 	 * role.  This is where @worker starts participating in concurrency
2440 	 * management if applicable and concurrency management is restored
2441 	 * after being rebound.  See rebind_workers() for details.
2442 	 */
2443 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2444 
2445 	do {
2446 		struct work_struct *work =
2447 			list_first_entry(&pool->worklist,
2448 					 struct work_struct, entry);
2449 
2450 		pool->watchdog_ts = jiffies;
2451 
2452 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2453 			/* optimization path, not strictly necessary */
2454 			process_one_work(worker, work);
2455 			if (unlikely(!list_empty(&worker->scheduled)))
2456 				process_scheduled_works(worker);
2457 		} else {
2458 			move_linked_works(work, &worker->scheduled, NULL);
2459 			process_scheduled_works(worker);
2460 		}
2461 	} while (keep_working(pool));
2462 
2463 	worker_set_flags(worker, WORKER_PREP);
2464 sleep:
2465 	/*
2466 	 * pool->lock is held and there's no work to process and no need to
2467 	 * manage, sleep.  Workers are woken up only while holding
2468 	 * pool->lock or from local cpu, so setting the current state
2469 	 * before releasing pool->lock is enough to prevent losing any
2470 	 * event.
2471 	 */
2472 	worker_enter_idle(worker);
2473 	__set_current_state(TASK_IDLE);
2474 	raw_spin_unlock_irq(&pool->lock);
2475 	schedule();
2476 	goto woke_up;
2477 }
2478 
2479 /**
2480  * rescuer_thread - the rescuer thread function
2481  * @__rescuer: self
2482  *
2483  * Workqueue rescuer thread function.  There's one rescuer for each
2484  * workqueue which has WQ_MEM_RECLAIM set.
2485  *
2486  * Regular work processing on a pool may block trying to create a new
2487  * worker which uses GFP_KERNEL allocation which has slight chance of
2488  * developing into deadlock if some works currently on the same queue
2489  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2490  * the problem rescuer solves.
2491  *
2492  * When such condition is possible, the pool summons rescuers of all
2493  * workqueues which have works queued on the pool and let them process
2494  * those works so that forward progress can be guaranteed.
2495  *
2496  * This should happen rarely.
2497  *
2498  * Return: 0
2499  */
2500 static int rescuer_thread(void *__rescuer)
2501 {
2502 	struct worker *rescuer = __rescuer;
2503 	struct workqueue_struct *wq = rescuer->rescue_wq;
2504 	struct list_head *scheduled = &rescuer->scheduled;
2505 	bool should_stop;
2506 
2507 	set_user_nice(current, RESCUER_NICE_LEVEL);
2508 
2509 	/*
2510 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2511 	 * doesn't participate in concurrency management.
2512 	 */
2513 	set_pf_worker(true);
2514 repeat:
2515 	set_current_state(TASK_IDLE);
2516 
2517 	/*
2518 	 * By the time the rescuer is requested to stop, the workqueue
2519 	 * shouldn't have any work pending, but @wq->maydays may still have
2520 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2521 	 * all the work items before the rescuer got to them.  Go through
2522 	 * @wq->maydays processing before acting on should_stop so that the
2523 	 * list is always empty on exit.
2524 	 */
2525 	should_stop = kthread_should_stop();
2526 
2527 	/* see whether any pwq is asking for help */
2528 	raw_spin_lock_irq(&wq_mayday_lock);
2529 
2530 	while (!list_empty(&wq->maydays)) {
2531 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2532 					struct pool_workqueue, mayday_node);
2533 		struct worker_pool *pool = pwq->pool;
2534 		struct work_struct *work, *n;
2535 		bool first = true;
2536 
2537 		__set_current_state(TASK_RUNNING);
2538 		list_del_init(&pwq->mayday_node);
2539 
2540 		raw_spin_unlock_irq(&wq_mayday_lock);
2541 
2542 		worker_attach_to_pool(rescuer, pool);
2543 
2544 		raw_spin_lock_irq(&pool->lock);
2545 
2546 		/*
2547 		 * Slurp in all works issued via this workqueue and
2548 		 * process'em.
2549 		 */
2550 		WARN_ON_ONCE(!list_empty(scheduled));
2551 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2552 			if (get_work_pwq(work) == pwq) {
2553 				if (first)
2554 					pool->watchdog_ts = jiffies;
2555 				move_linked_works(work, scheduled, &n);
2556 			}
2557 			first = false;
2558 		}
2559 
2560 		if (!list_empty(scheduled)) {
2561 			process_scheduled_works(rescuer);
2562 
2563 			/*
2564 			 * The above execution of rescued work items could
2565 			 * have created more to rescue through
2566 			 * pwq_activate_first_inactive() or chained
2567 			 * queueing.  Let's put @pwq back on mayday list so
2568 			 * that such back-to-back work items, which may be
2569 			 * being used to relieve memory pressure, don't
2570 			 * incur MAYDAY_INTERVAL delay inbetween.
2571 			 */
2572 			if (pwq->nr_active && need_to_create_worker(pool)) {
2573 				raw_spin_lock(&wq_mayday_lock);
2574 				/*
2575 				 * Queue iff we aren't racing destruction
2576 				 * and somebody else hasn't queued it already.
2577 				 */
2578 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2579 					get_pwq(pwq);
2580 					list_add_tail(&pwq->mayday_node, &wq->maydays);
2581 				}
2582 				raw_spin_unlock(&wq_mayday_lock);
2583 			}
2584 		}
2585 
2586 		/*
2587 		 * Put the reference grabbed by send_mayday().  @pool won't
2588 		 * go away while we're still attached to it.
2589 		 */
2590 		put_pwq(pwq);
2591 
2592 		/*
2593 		 * Leave this pool.  If need_more_worker() is %true, notify a
2594 		 * regular worker; otherwise, we end up with 0 concurrency
2595 		 * and stalling the execution.
2596 		 */
2597 		if (need_more_worker(pool))
2598 			wake_up_worker(pool);
2599 
2600 		raw_spin_unlock_irq(&pool->lock);
2601 
2602 		worker_detach_from_pool(rescuer);
2603 
2604 		raw_spin_lock_irq(&wq_mayday_lock);
2605 	}
2606 
2607 	raw_spin_unlock_irq(&wq_mayday_lock);
2608 
2609 	if (should_stop) {
2610 		__set_current_state(TASK_RUNNING);
2611 		set_pf_worker(false);
2612 		return 0;
2613 	}
2614 
2615 	/* rescuers should never participate in concurrency management */
2616 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2617 	schedule();
2618 	goto repeat;
2619 }
2620 
2621 /**
2622  * check_flush_dependency - check for flush dependency sanity
2623  * @target_wq: workqueue being flushed
2624  * @target_work: work item being flushed (NULL for workqueue flushes)
2625  *
2626  * %current is trying to flush the whole @target_wq or @target_work on it.
2627  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2628  * reclaiming memory or running on a workqueue which doesn't have
2629  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2630  * a deadlock.
2631  */
2632 static void check_flush_dependency(struct workqueue_struct *target_wq,
2633 				   struct work_struct *target_work)
2634 {
2635 	work_func_t target_func = target_work ? target_work->func : NULL;
2636 	struct worker *worker;
2637 
2638 	if (target_wq->flags & WQ_MEM_RECLAIM)
2639 		return;
2640 
2641 	worker = current_wq_worker();
2642 
2643 	WARN_ONCE(current->flags & PF_MEMALLOC,
2644 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2645 		  current->pid, current->comm, target_wq->name, target_func);
2646 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2647 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2648 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2649 		  worker->current_pwq->wq->name, worker->current_func,
2650 		  target_wq->name, target_func);
2651 }
2652 
2653 struct wq_barrier {
2654 	struct work_struct	work;
2655 	struct completion	done;
2656 	struct task_struct	*task;	/* purely informational */
2657 };
2658 
2659 static void wq_barrier_func(struct work_struct *work)
2660 {
2661 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2662 	complete(&barr->done);
2663 }
2664 
2665 /**
2666  * insert_wq_barrier - insert a barrier work
2667  * @pwq: pwq to insert barrier into
2668  * @barr: wq_barrier to insert
2669  * @target: target work to attach @barr to
2670  * @worker: worker currently executing @target, NULL if @target is not executing
2671  *
2672  * @barr is linked to @target such that @barr is completed only after
2673  * @target finishes execution.  Please note that the ordering
2674  * guarantee is observed only with respect to @target and on the local
2675  * cpu.
2676  *
2677  * Currently, a queued barrier can't be canceled.  This is because
2678  * try_to_grab_pending() can't determine whether the work to be
2679  * grabbed is at the head of the queue and thus can't clear LINKED
2680  * flag of the previous work while there must be a valid next work
2681  * after a work with LINKED flag set.
2682  *
2683  * Note that when @worker is non-NULL, @target may be modified
2684  * underneath us, so we can't reliably determine pwq from @target.
2685  *
2686  * CONTEXT:
2687  * raw_spin_lock_irq(pool->lock).
2688  */
2689 static void insert_wq_barrier(struct pool_workqueue *pwq,
2690 			      struct wq_barrier *barr,
2691 			      struct work_struct *target, struct worker *worker)
2692 {
2693 	unsigned int work_flags = 0;
2694 	unsigned int work_color;
2695 	struct list_head *head;
2696 
2697 	/*
2698 	 * debugobject calls are safe here even with pool->lock locked
2699 	 * as we know for sure that this will not trigger any of the
2700 	 * checks and call back into the fixup functions where we
2701 	 * might deadlock.
2702 	 */
2703 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2704 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2705 
2706 	init_completion_map(&barr->done, &target->lockdep_map);
2707 
2708 	barr->task = current;
2709 
2710 	/* The barrier work item does not participate in pwq->nr_active. */
2711 	work_flags |= WORK_STRUCT_INACTIVE;
2712 
2713 	/*
2714 	 * If @target is currently being executed, schedule the
2715 	 * barrier to the worker; otherwise, put it after @target.
2716 	 */
2717 	if (worker) {
2718 		head = worker->scheduled.next;
2719 		work_color = worker->current_color;
2720 	} else {
2721 		unsigned long *bits = work_data_bits(target);
2722 
2723 		head = target->entry.next;
2724 		/* there can already be other linked works, inherit and set */
2725 		work_flags |= *bits & WORK_STRUCT_LINKED;
2726 		work_color = get_work_color(*bits);
2727 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2728 	}
2729 
2730 	pwq->nr_in_flight[work_color]++;
2731 	work_flags |= work_color_to_flags(work_color);
2732 
2733 	debug_work_activate(&barr->work);
2734 	insert_work(pwq, &barr->work, head, work_flags);
2735 }
2736 
2737 /**
2738  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2739  * @wq: workqueue being flushed
2740  * @flush_color: new flush color, < 0 for no-op
2741  * @work_color: new work color, < 0 for no-op
2742  *
2743  * Prepare pwqs for workqueue flushing.
2744  *
2745  * If @flush_color is non-negative, flush_color on all pwqs should be
2746  * -1.  If no pwq has in-flight commands at the specified color, all
2747  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2748  * has in flight commands, its pwq->flush_color is set to
2749  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2750  * wakeup logic is armed and %true is returned.
2751  *
2752  * The caller should have initialized @wq->first_flusher prior to
2753  * calling this function with non-negative @flush_color.  If
2754  * @flush_color is negative, no flush color update is done and %false
2755  * is returned.
2756  *
2757  * If @work_color is non-negative, all pwqs should have the same
2758  * work_color which is previous to @work_color and all will be
2759  * advanced to @work_color.
2760  *
2761  * CONTEXT:
2762  * mutex_lock(wq->mutex).
2763  *
2764  * Return:
2765  * %true if @flush_color >= 0 and there's something to flush.  %false
2766  * otherwise.
2767  */
2768 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2769 				      int flush_color, int work_color)
2770 {
2771 	bool wait = false;
2772 	struct pool_workqueue *pwq;
2773 
2774 	if (flush_color >= 0) {
2775 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2776 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2777 	}
2778 
2779 	for_each_pwq(pwq, wq) {
2780 		struct worker_pool *pool = pwq->pool;
2781 
2782 		raw_spin_lock_irq(&pool->lock);
2783 
2784 		if (flush_color >= 0) {
2785 			WARN_ON_ONCE(pwq->flush_color != -1);
2786 
2787 			if (pwq->nr_in_flight[flush_color]) {
2788 				pwq->flush_color = flush_color;
2789 				atomic_inc(&wq->nr_pwqs_to_flush);
2790 				wait = true;
2791 			}
2792 		}
2793 
2794 		if (work_color >= 0) {
2795 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2796 			pwq->work_color = work_color;
2797 		}
2798 
2799 		raw_spin_unlock_irq(&pool->lock);
2800 	}
2801 
2802 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2803 		complete(&wq->first_flusher->done);
2804 
2805 	return wait;
2806 }
2807 
2808 /**
2809  * flush_workqueue - ensure that any scheduled work has run to completion.
2810  * @wq: workqueue to flush
2811  *
2812  * This function sleeps until all work items which were queued on entry
2813  * have finished execution, but it is not livelocked by new incoming ones.
2814  */
2815 void flush_workqueue(struct workqueue_struct *wq)
2816 {
2817 	struct wq_flusher this_flusher = {
2818 		.list = LIST_HEAD_INIT(this_flusher.list),
2819 		.flush_color = -1,
2820 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2821 	};
2822 	int next_color;
2823 
2824 	if (WARN_ON(!wq_online))
2825 		return;
2826 
2827 	lock_map_acquire(&wq->lockdep_map);
2828 	lock_map_release(&wq->lockdep_map);
2829 
2830 	mutex_lock(&wq->mutex);
2831 
2832 	/*
2833 	 * Start-to-wait phase
2834 	 */
2835 	next_color = work_next_color(wq->work_color);
2836 
2837 	if (next_color != wq->flush_color) {
2838 		/*
2839 		 * Color space is not full.  The current work_color
2840 		 * becomes our flush_color and work_color is advanced
2841 		 * by one.
2842 		 */
2843 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2844 		this_flusher.flush_color = wq->work_color;
2845 		wq->work_color = next_color;
2846 
2847 		if (!wq->first_flusher) {
2848 			/* no flush in progress, become the first flusher */
2849 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2850 
2851 			wq->first_flusher = &this_flusher;
2852 
2853 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2854 						       wq->work_color)) {
2855 				/* nothing to flush, done */
2856 				wq->flush_color = next_color;
2857 				wq->first_flusher = NULL;
2858 				goto out_unlock;
2859 			}
2860 		} else {
2861 			/* wait in queue */
2862 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2863 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2864 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2865 		}
2866 	} else {
2867 		/*
2868 		 * Oops, color space is full, wait on overflow queue.
2869 		 * The next flush completion will assign us
2870 		 * flush_color and transfer to flusher_queue.
2871 		 */
2872 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2873 	}
2874 
2875 	check_flush_dependency(wq, NULL);
2876 
2877 	mutex_unlock(&wq->mutex);
2878 
2879 	wait_for_completion(&this_flusher.done);
2880 
2881 	/*
2882 	 * Wake-up-and-cascade phase
2883 	 *
2884 	 * First flushers are responsible for cascading flushes and
2885 	 * handling overflow.  Non-first flushers can simply return.
2886 	 */
2887 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
2888 		return;
2889 
2890 	mutex_lock(&wq->mutex);
2891 
2892 	/* we might have raced, check again with mutex held */
2893 	if (wq->first_flusher != &this_flusher)
2894 		goto out_unlock;
2895 
2896 	WRITE_ONCE(wq->first_flusher, NULL);
2897 
2898 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2899 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2900 
2901 	while (true) {
2902 		struct wq_flusher *next, *tmp;
2903 
2904 		/* complete all the flushers sharing the current flush color */
2905 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2906 			if (next->flush_color != wq->flush_color)
2907 				break;
2908 			list_del_init(&next->list);
2909 			complete(&next->done);
2910 		}
2911 
2912 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2913 			     wq->flush_color != work_next_color(wq->work_color));
2914 
2915 		/* this flush_color is finished, advance by one */
2916 		wq->flush_color = work_next_color(wq->flush_color);
2917 
2918 		/* one color has been freed, handle overflow queue */
2919 		if (!list_empty(&wq->flusher_overflow)) {
2920 			/*
2921 			 * Assign the same color to all overflowed
2922 			 * flushers, advance work_color and append to
2923 			 * flusher_queue.  This is the start-to-wait
2924 			 * phase for these overflowed flushers.
2925 			 */
2926 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2927 				tmp->flush_color = wq->work_color;
2928 
2929 			wq->work_color = work_next_color(wq->work_color);
2930 
2931 			list_splice_tail_init(&wq->flusher_overflow,
2932 					      &wq->flusher_queue);
2933 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2934 		}
2935 
2936 		if (list_empty(&wq->flusher_queue)) {
2937 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2938 			break;
2939 		}
2940 
2941 		/*
2942 		 * Need to flush more colors.  Make the next flusher
2943 		 * the new first flusher and arm pwqs.
2944 		 */
2945 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2946 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2947 
2948 		list_del_init(&next->list);
2949 		wq->first_flusher = next;
2950 
2951 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2952 			break;
2953 
2954 		/*
2955 		 * Meh... this color is already done, clear first
2956 		 * flusher and repeat cascading.
2957 		 */
2958 		wq->first_flusher = NULL;
2959 	}
2960 
2961 out_unlock:
2962 	mutex_unlock(&wq->mutex);
2963 }
2964 EXPORT_SYMBOL(flush_workqueue);
2965 
2966 /**
2967  * drain_workqueue - drain a workqueue
2968  * @wq: workqueue to drain
2969  *
2970  * Wait until the workqueue becomes empty.  While draining is in progress,
2971  * only chain queueing is allowed.  IOW, only currently pending or running
2972  * work items on @wq can queue further work items on it.  @wq is flushed
2973  * repeatedly until it becomes empty.  The number of flushing is determined
2974  * by the depth of chaining and should be relatively short.  Whine if it
2975  * takes too long.
2976  */
2977 void drain_workqueue(struct workqueue_struct *wq)
2978 {
2979 	unsigned int flush_cnt = 0;
2980 	struct pool_workqueue *pwq;
2981 
2982 	/*
2983 	 * __queue_work() needs to test whether there are drainers, is much
2984 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2985 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2986 	 */
2987 	mutex_lock(&wq->mutex);
2988 	if (!wq->nr_drainers++)
2989 		wq->flags |= __WQ_DRAINING;
2990 	mutex_unlock(&wq->mutex);
2991 reflush:
2992 	flush_workqueue(wq);
2993 
2994 	mutex_lock(&wq->mutex);
2995 
2996 	for_each_pwq(pwq, wq) {
2997 		bool drained;
2998 
2999 		raw_spin_lock_irq(&pwq->pool->lock);
3000 		drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
3001 		raw_spin_unlock_irq(&pwq->pool->lock);
3002 
3003 		if (drained)
3004 			continue;
3005 
3006 		if (++flush_cnt == 10 ||
3007 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
3008 			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3009 				wq->name, __func__, flush_cnt);
3010 
3011 		mutex_unlock(&wq->mutex);
3012 		goto reflush;
3013 	}
3014 
3015 	if (!--wq->nr_drainers)
3016 		wq->flags &= ~__WQ_DRAINING;
3017 	mutex_unlock(&wq->mutex);
3018 }
3019 EXPORT_SYMBOL_GPL(drain_workqueue);
3020 
3021 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3022 			     bool from_cancel)
3023 {
3024 	struct worker *worker = NULL;
3025 	struct worker_pool *pool;
3026 	struct pool_workqueue *pwq;
3027 
3028 	might_sleep();
3029 
3030 	rcu_read_lock();
3031 	pool = get_work_pool(work);
3032 	if (!pool) {
3033 		rcu_read_unlock();
3034 		return false;
3035 	}
3036 
3037 	raw_spin_lock_irq(&pool->lock);
3038 	/* see the comment in try_to_grab_pending() with the same code */
3039 	pwq = get_work_pwq(work);
3040 	if (pwq) {
3041 		if (unlikely(pwq->pool != pool))
3042 			goto already_gone;
3043 	} else {
3044 		worker = find_worker_executing_work(pool, work);
3045 		if (!worker)
3046 			goto already_gone;
3047 		pwq = worker->current_pwq;
3048 	}
3049 
3050 	check_flush_dependency(pwq->wq, work);
3051 
3052 	insert_wq_barrier(pwq, barr, work, worker);
3053 	raw_spin_unlock_irq(&pool->lock);
3054 
3055 	/*
3056 	 * Force a lock recursion deadlock when using flush_work() inside a
3057 	 * single-threaded or rescuer equipped workqueue.
3058 	 *
3059 	 * For single threaded workqueues the deadlock happens when the work
3060 	 * is after the work issuing the flush_work(). For rescuer equipped
3061 	 * workqueues the deadlock happens when the rescuer stalls, blocking
3062 	 * forward progress.
3063 	 */
3064 	if (!from_cancel &&
3065 	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3066 		lock_map_acquire(&pwq->wq->lockdep_map);
3067 		lock_map_release(&pwq->wq->lockdep_map);
3068 	}
3069 	rcu_read_unlock();
3070 	return true;
3071 already_gone:
3072 	raw_spin_unlock_irq(&pool->lock);
3073 	rcu_read_unlock();
3074 	return false;
3075 }
3076 
3077 static bool __flush_work(struct work_struct *work, bool from_cancel)
3078 {
3079 	struct wq_barrier barr;
3080 
3081 	if (WARN_ON(!wq_online))
3082 		return false;
3083 
3084 	if (WARN_ON(!work->func))
3085 		return false;
3086 
3087 	if (!from_cancel) {
3088 		lock_map_acquire(&work->lockdep_map);
3089 		lock_map_release(&work->lockdep_map);
3090 	}
3091 
3092 	if (start_flush_work(work, &barr, from_cancel)) {
3093 		wait_for_completion(&barr.done);
3094 		destroy_work_on_stack(&barr.work);
3095 		return true;
3096 	} else {
3097 		return false;
3098 	}
3099 }
3100 
3101 /**
3102  * flush_work - wait for a work to finish executing the last queueing instance
3103  * @work: the work to flush
3104  *
3105  * Wait until @work has finished execution.  @work is guaranteed to be idle
3106  * on return if it hasn't been requeued since flush started.
3107  *
3108  * Return:
3109  * %true if flush_work() waited for the work to finish execution,
3110  * %false if it was already idle.
3111  */
3112 bool flush_work(struct work_struct *work)
3113 {
3114 	return __flush_work(work, false);
3115 }
3116 EXPORT_SYMBOL_GPL(flush_work);
3117 
3118 struct cwt_wait {
3119 	wait_queue_entry_t		wait;
3120 	struct work_struct	*work;
3121 };
3122 
3123 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3124 {
3125 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3126 
3127 	if (cwait->work != key)
3128 		return 0;
3129 	return autoremove_wake_function(wait, mode, sync, key);
3130 }
3131 
3132 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3133 {
3134 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3135 	unsigned long flags;
3136 	int ret;
3137 
3138 	do {
3139 		ret = try_to_grab_pending(work, is_dwork, &flags);
3140 		/*
3141 		 * If someone else is already canceling, wait for it to
3142 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3143 		 * because we may get scheduled between @work's completion
3144 		 * and the other canceling task resuming and clearing
3145 		 * CANCELING - flush_work() will return false immediately
3146 		 * as @work is no longer busy, try_to_grab_pending() will
3147 		 * return -ENOENT as @work is still being canceled and the
3148 		 * other canceling task won't be able to clear CANCELING as
3149 		 * we're hogging the CPU.
3150 		 *
3151 		 * Let's wait for completion using a waitqueue.  As this
3152 		 * may lead to the thundering herd problem, use a custom
3153 		 * wake function which matches @work along with exclusive
3154 		 * wait and wakeup.
3155 		 */
3156 		if (unlikely(ret == -ENOENT)) {
3157 			struct cwt_wait cwait;
3158 
3159 			init_wait(&cwait.wait);
3160 			cwait.wait.func = cwt_wakefn;
3161 			cwait.work = work;
3162 
3163 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3164 						  TASK_UNINTERRUPTIBLE);
3165 			if (work_is_canceling(work))
3166 				schedule();
3167 			finish_wait(&cancel_waitq, &cwait.wait);
3168 		}
3169 	} while (unlikely(ret < 0));
3170 
3171 	/* tell other tasks trying to grab @work to back off */
3172 	mark_work_canceling(work);
3173 	local_irq_restore(flags);
3174 
3175 	/*
3176 	 * This allows canceling during early boot.  We know that @work
3177 	 * isn't executing.
3178 	 */
3179 	if (wq_online)
3180 		__flush_work(work, true);
3181 
3182 	clear_work_data(work);
3183 
3184 	/*
3185 	 * Paired with prepare_to_wait() above so that either
3186 	 * waitqueue_active() is visible here or !work_is_canceling() is
3187 	 * visible there.
3188 	 */
3189 	smp_mb();
3190 	if (waitqueue_active(&cancel_waitq))
3191 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3192 
3193 	return ret;
3194 }
3195 
3196 /**
3197  * cancel_work_sync - cancel a work and wait for it to finish
3198  * @work: the work to cancel
3199  *
3200  * Cancel @work and wait for its execution to finish.  This function
3201  * can be used even if the work re-queues itself or migrates to
3202  * another workqueue.  On return from this function, @work is
3203  * guaranteed to be not pending or executing on any CPU.
3204  *
3205  * cancel_work_sync(&delayed_work->work) must not be used for
3206  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3207  *
3208  * The caller must ensure that the workqueue on which @work was last
3209  * queued can't be destroyed before this function returns.
3210  *
3211  * Return:
3212  * %true if @work was pending, %false otherwise.
3213  */
3214 bool cancel_work_sync(struct work_struct *work)
3215 {
3216 	return __cancel_work_timer(work, false);
3217 }
3218 EXPORT_SYMBOL_GPL(cancel_work_sync);
3219 
3220 /**
3221  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3222  * @dwork: the delayed work to flush
3223  *
3224  * Delayed timer is cancelled and the pending work is queued for
3225  * immediate execution.  Like flush_work(), this function only
3226  * considers the last queueing instance of @dwork.
3227  *
3228  * Return:
3229  * %true if flush_work() waited for the work to finish execution,
3230  * %false if it was already idle.
3231  */
3232 bool flush_delayed_work(struct delayed_work *dwork)
3233 {
3234 	local_irq_disable();
3235 	if (del_timer_sync(&dwork->timer))
3236 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3237 	local_irq_enable();
3238 	return flush_work(&dwork->work);
3239 }
3240 EXPORT_SYMBOL(flush_delayed_work);
3241 
3242 /**
3243  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3244  * @rwork: the rcu work to flush
3245  *
3246  * Return:
3247  * %true if flush_rcu_work() waited for the work to finish execution,
3248  * %false if it was already idle.
3249  */
3250 bool flush_rcu_work(struct rcu_work *rwork)
3251 {
3252 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3253 		rcu_barrier();
3254 		flush_work(&rwork->work);
3255 		return true;
3256 	} else {
3257 		return flush_work(&rwork->work);
3258 	}
3259 }
3260 EXPORT_SYMBOL(flush_rcu_work);
3261 
3262 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3263 {
3264 	unsigned long flags;
3265 	int ret;
3266 
3267 	do {
3268 		ret = try_to_grab_pending(work, is_dwork, &flags);
3269 	} while (unlikely(ret == -EAGAIN));
3270 
3271 	if (unlikely(ret < 0))
3272 		return false;
3273 
3274 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3275 	local_irq_restore(flags);
3276 	return ret;
3277 }
3278 
3279 /**
3280  * cancel_delayed_work - cancel a delayed work
3281  * @dwork: delayed_work to cancel
3282  *
3283  * Kill off a pending delayed_work.
3284  *
3285  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3286  * pending.
3287  *
3288  * Note:
3289  * The work callback function may still be running on return, unless
3290  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3291  * use cancel_delayed_work_sync() to wait on it.
3292  *
3293  * This function is safe to call from any context including IRQ handler.
3294  */
3295 bool cancel_delayed_work(struct delayed_work *dwork)
3296 {
3297 	return __cancel_work(&dwork->work, true);
3298 }
3299 EXPORT_SYMBOL(cancel_delayed_work);
3300 
3301 /**
3302  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3303  * @dwork: the delayed work cancel
3304  *
3305  * This is cancel_work_sync() for delayed works.
3306  *
3307  * Return:
3308  * %true if @dwork was pending, %false otherwise.
3309  */
3310 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3311 {
3312 	return __cancel_work_timer(&dwork->work, true);
3313 }
3314 EXPORT_SYMBOL(cancel_delayed_work_sync);
3315 
3316 /**
3317  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3318  * @func: the function to call
3319  *
3320  * schedule_on_each_cpu() executes @func on each online CPU using the
3321  * system workqueue and blocks until all CPUs have completed.
3322  * schedule_on_each_cpu() is very slow.
3323  *
3324  * Return:
3325  * 0 on success, -errno on failure.
3326  */
3327 int schedule_on_each_cpu(work_func_t func)
3328 {
3329 	int cpu;
3330 	struct work_struct __percpu *works;
3331 
3332 	works = alloc_percpu(struct work_struct);
3333 	if (!works)
3334 		return -ENOMEM;
3335 
3336 	cpus_read_lock();
3337 
3338 	for_each_online_cpu(cpu) {
3339 		struct work_struct *work = per_cpu_ptr(works, cpu);
3340 
3341 		INIT_WORK(work, func);
3342 		schedule_work_on(cpu, work);
3343 	}
3344 
3345 	for_each_online_cpu(cpu)
3346 		flush_work(per_cpu_ptr(works, cpu));
3347 
3348 	cpus_read_unlock();
3349 	free_percpu(works);
3350 	return 0;
3351 }
3352 
3353 /**
3354  * execute_in_process_context - reliably execute the routine with user context
3355  * @fn:		the function to execute
3356  * @ew:		guaranteed storage for the execute work structure (must
3357  *		be available when the work executes)
3358  *
3359  * Executes the function immediately if process context is available,
3360  * otherwise schedules the function for delayed execution.
3361  *
3362  * Return:	0 - function was executed
3363  *		1 - function was scheduled for execution
3364  */
3365 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3366 {
3367 	if (!in_interrupt()) {
3368 		fn(&ew->work);
3369 		return 0;
3370 	}
3371 
3372 	INIT_WORK(&ew->work, fn);
3373 	schedule_work(&ew->work);
3374 
3375 	return 1;
3376 }
3377 EXPORT_SYMBOL_GPL(execute_in_process_context);
3378 
3379 /**
3380  * free_workqueue_attrs - free a workqueue_attrs
3381  * @attrs: workqueue_attrs to free
3382  *
3383  * Undo alloc_workqueue_attrs().
3384  */
3385 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3386 {
3387 	if (attrs) {
3388 		free_cpumask_var(attrs->cpumask);
3389 		kfree(attrs);
3390 	}
3391 }
3392 
3393 /**
3394  * alloc_workqueue_attrs - allocate a workqueue_attrs
3395  *
3396  * Allocate a new workqueue_attrs, initialize with default settings and
3397  * return it.
3398  *
3399  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3400  */
3401 struct workqueue_attrs *alloc_workqueue_attrs(void)
3402 {
3403 	struct workqueue_attrs *attrs;
3404 
3405 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3406 	if (!attrs)
3407 		goto fail;
3408 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3409 		goto fail;
3410 
3411 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3412 	return attrs;
3413 fail:
3414 	free_workqueue_attrs(attrs);
3415 	return NULL;
3416 }
3417 
3418 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3419 				 const struct workqueue_attrs *from)
3420 {
3421 	to->nice = from->nice;
3422 	cpumask_copy(to->cpumask, from->cpumask);
3423 	/*
3424 	 * Unlike hash and equality test, this function doesn't ignore
3425 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3426 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3427 	 */
3428 	to->no_numa = from->no_numa;
3429 }
3430 
3431 /* hash value of the content of @attr */
3432 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3433 {
3434 	u32 hash = 0;
3435 
3436 	hash = jhash_1word(attrs->nice, hash);
3437 	hash = jhash(cpumask_bits(attrs->cpumask),
3438 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3439 	return hash;
3440 }
3441 
3442 /* content equality test */
3443 static bool wqattrs_equal(const struct workqueue_attrs *a,
3444 			  const struct workqueue_attrs *b)
3445 {
3446 	if (a->nice != b->nice)
3447 		return false;
3448 	if (!cpumask_equal(a->cpumask, b->cpumask))
3449 		return false;
3450 	return true;
3451 }
3452 
3453 /**
3454  * init_worker_pool - initialize a newly zalloc'd worker_pool
3455  * @pool: worker_pool to initialize
3456  *
3457  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3458  *
3459  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3460  * inside @pool proper are initialized and put_unbound_pool() can be called
3461  * on @pool safely to release it.
3462  */
3463 static int init_worker_pool(struct worker_pool *pool)
3464 {
3465 	raw_spin_lock_init(&pool->lock);
3466 	pool->id = -1;
3467 	pool->cpu = -1;
3468 	pool->node = NUMA_NO_NODE;
3469 	pool->flags |= POOL_DISASSOCIATED;
3470 	pool->watchdog_ts = jiffies;
3471 	INIT_LIST_HEAD(&pool->worklist);
3472 	INIT_LIST_HEAD(&pool->idle_list);
3473 	hash_init(pool->busy_hash);
3474 
3475 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3476 
3477 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3478 
3479 	INIT_LIST_HEAD(&pool->workers);
3480 
3481 	ida_init(&pool->worker_ida);
3482 	INIT_HLIST_NODE(&pool->hash_node);
3483 	pool->refcnt = 1;
3484 
3485 	/* shouldn't fail above this point */
3486 	pool->attrs = alloc_workqueue_attrs();
3487 	if (!pool->attrs)
3488 		return -ENOMEM;
3489 	return 0;
3490 }
3491 
3492 #ifdef CONFIG_LOCKDEP
3493 static void wq_init_lockdep(struct workqueue_struct *wq)
3494 {
3495 	char *lock_name;
3496 
3497 	lockdep_register_key(&wq->key);
3498 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3499 	if (!lock_name)
3500 		lock_name = wq->name;
3501 
3502 	wq->lock_name = lock_name;
3503 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3504 }
3505 
3506 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3507 {
3508 	lockdep_unregister_key(&wq->key);
3509 }
3510 
3511 static void wq_free_lockdep(struct workqueue_struct *wq)
3512 {
3513 	if (wq->lock_name != wq->name)
3514 		kfree(wq->lock_name);
3515 }
3516 #else
3517 static void wq_init_lockdep(struct workqueue_struct *wq)
3518 {
3519 }
3520 
3521 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3522 {
3523 }
3524 
3525 static void wq_free_lockdep(struct workqueue_struct *wq)
3526 {
3527 }
3528 #endif
3529 
3530 static void rcu_free_wq(struct rcu_head *rcu)
3531 {
3532 	struct workqueue_struct *wq =
3533 		container_of(rcu, struct workqueue_struct, rcu);
3534 
3535 	wq_free_lockdep(wq);
3536 
3537 	if (!(wq->flags & WQ_UNBOUND))
3538 		free_percpu(wq->cpu_pwqs);
3539 	else
3540 		free_workqueue_attrs(wq->unbound_attrs);
3541 
3542 	kfree(wq);
3543 }
3544 
3545 static void rcu_free_pool(struct rcu_head *rcu)
3546 {
3547 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3548 
3549 	ida_destroy(&pool->worker_ida);
3550 	free_workqueue_attrs(pool->attrs);
3551 	kfree(pool);
3552 }
3553 
3554 /* This returns with the lock held on success (pool manager is inactive). */
3555 static bool wq_manager_inactive(struct worker_pool *pool)
3556 {
3557 	raw_spin_lock_irq(&pool->lock);
3558 
3559 	if (pool->flags & POOL_MANAGER_ACTIVE) {
3560 		raw_spin_unlock_irq(&pool->lock);
3561 		return false;
3562 	}
3563 	return true;
3564 }
3565 
3566 /**
3567  * put_unbound_pool - put a worker_pool
3568  * @pool: worker_pool to put
3569  *
3570  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3571  * safe manner.  get_unbound_pool() calls this function on its failure path
3572  * and this function should be able to release pools which went through,
3573  * successfully or not, init_worker_pool().
3574  *
3575  * Should be called with wq_pool_mutex held.
3576  */
3577 static void put_unbound_pool(struct worker_pool *pool)
3578 {
3579 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3580 	struct worker *worker;
3581 
3582 	lockdep_assert_held(&wq_pool_mutex);
3583 
3584 	if (--pool->refcnt)
3585 		return;
3586 
3587 	/* sanity checks */
3588 	if (WARN_ON(!(pool->cpu < 0)) ||
3589 	    WARN_ON(!list_empty(&pool->worklist)))
3590 		return;
3591 
3592 	/* release id and unhash */
3593 	if (pool->id >= 0)
3594 		idr_remove(&worker_pool_idr, pool->id);
3595 	hash_del(&pool->hash_node);
3596 
3597 	/*
3598 	 * Become the manager and destroy all workers.  This prevents
3599 	 * @pool's workers from blocking on attach_mutex.  We're the last
3600 	 * manager and @pool gets freed with the flag set.
3601 	 * Because of how wq_manager_inactive() works, we will hold the
3602 	 * spinlock after a successful wait.
3603 	 */
3604 	rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3605 			   TASK_UNINTERRUPTIBLE);
3606 	pool->flags |= POOL_MANAGER_ACTIVE;
3607 
3608 	while ((worker = first_idle_worker(pool)))
3609 		destroy_worker(worker);
3610 	WARN_ON(pool->nr_workers || pool->nr_idle);
3611 	raw_spin_unlock_irq(&pool->lock);
3612 
3613 	mutex_lock(&wq_pool_attach_mutex);
3614 	if (!list_empty(&pool->workers))
3615 		pool->detach_completion = &detach_completion;
3616 	mutex_unlock(&wq_pool_attach_mutex);
3617 
3618 	if (pool->detach_completion)
3619 		wait_for_completion(pool->detach_completion);
3620 
3621 	/* shut down the timers */
3622 	del_timer_sync(&pool->idle_timer);
3623 	del_timer_sync(&pool->mayday_timer);
3624 
3625 	/* RCU protected to allow dereferences from get_work_pool() */
3626 	call_rcu(&pool->rcu, rcu_free_pool);
3627 }
3628 
3629 /**
3630  * get_unbound_pool - get a worker_pool with the specified attributes
3631  * @attrs: the attributes of the worker_pool to get
3632  *
3633  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3634  * reference count and return it.  If there already is a matching
3635  * worker_pool, it will be used; otherwise, this function attempts to
3636  * create a new one.
3637  *
3638  * Should be called with wq_pool_mutex held.
3639  *
3640  * Return: On success, a worker_pool with the same attributes as @attrs.
3641  * On failure, %NULL.
3642  */
3643 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3644 {
3645 	u32 hash = wqattrs_hash(attrs);
3646 	struct worker_pool *pool;
3647 	int node;
3648 	int target_node = NUMA_NO_NODE;
3649 
3650 	lockdep_assert_held(&wq_pool_mutex);
3651 
3652 	/* do we already have a matching pool? */
3653 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3654 		if (wqattrs_equal(pool->attrs, attrs)) {
3655 			pool->refcnt++;
3656 			return pool;
3657 		}
3658 	}
3659 
3660 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3661 	if (wq_numa_enabled) {
3662 		for_each_node(node) {
3663 			if (cpumask_subset(attrs->cpumask,
3664 					   wq_numa_possible_cpumask[node])) {
3665 				target_node = node;
3666 				break;
3667 			}
3668 		}
3669 	}
3670 
3671 	/* nope, create a new one */
3672 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3673 	if (!pool || init_worker_pool(pool) < 0)
3674 		goto fail;
3675 
3676 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3677 	copy_workqueue_attrs(pool->attrs, attrs);
3678 	pool->node = target_node;
3679 
3680 	/*
3681 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3682 	 * 'struct workqueue_attrs' comments for detail.
3683 	 */
3684 	pool->attrs->no_numa = false;
3685 
3686 	if (worker_pool_assign_id(pool) < 0)
3687 		goto fail;
3688 
3689 	/* create and start the initial worker */
3690 	if (wq_online && !create_worker(pool))
3691 		goto fail;
3692 
3693 	/* install */
3694 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3695 
3696 	return pool;
3697 fail:
3698 	if (pool)
3699 		put_unbound_pool(pool);
3700 	return NULL;
3701 }
3702 
3703 static void rcu_free_pwq(struct rcu_head *rcu)
3704 {
3705 	kmem_cache_free(pwq_cache,
3706 			container_of(rcu, struct pool_workqueue, rcu));
3707 }
3708 
3709 /*
3710  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3711  * and needs to be destroyed.
3712  */
3713 static void pwq_unbound_release_workfn(struct work_struct *work)
3714 {
3715 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3716 						  unbound_release_work);
3717 	struct workqueue_struct *wq = pwq->wq;
3718 	struct worker_pool *pool = pwq->pool;
3719 	bool is_last = false;
3720 
3721 	/*
3722 	 * when @pwq is not linked, it doesn't hold any reference to the
3723 	 * @wq, and @wq is invalid to access.
3724 	 */
3725 	if (!list_empty(&pwq->pwqs_node)) {
3726 		if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3727 			return;
3728 
3729 		mutex_lock(&wq->mutex);
3730 		list_del_rcu(&pwq->pwqs_node);
3731 		is_last = list_empty(&wq->pwqs);
3732 		mutex_unlock(&wq->mutex);
3733 	}
3734 
3735 	mutex_lock(&wq_pool_mutex);
3736 	put_unbound_pool(pool);
3737 	mutex_unlock(&wq_pool_mutex);
3738 
3739 	call_rcu(&pwq->rcu, rcu_free_pwq);
3740 
3741 	/*
3742 	 * If we're the last pwq going away, @wq is already dead and no one
3743 	 * is gonna access it anymore.  Schedule RCU free.
3744 	 */
3745 	if (is_last) {
3746 		wq_unregister_lockdep(wq);
3747 		call_rcu(&wq->rcu, rcu_free_wq);
3748 	}
3749 }
3750 
3751 /**
3752  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3753  * @pwq: target pool_workqueue
3754  *
3755  * If @pwq isn't freezing, set @pwq->max_active to the associated
3756  * workqueue's saved_max_active and activate inactive work items
3757  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3758  */
3759 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3760 {
3761 	struct workqueue_struct *wq = pwq->wq;
3762 	bool freezable = wq->flags & WQ_FREEZABLE;
3763 	unsigned long flags;
3764 
3765 	/* for @wq->saved_max_active */
3766 	lockdep_assert_held(&wq->mutex);
3767 
3768 	/* fast exit for non-freezable wqs */
3769 	if (!freezable && pwq->max_active == wq->saved_max_active)
3770 		return;
3771 
3772 	/* this function can be called during early boot w/ irq disabled */
3773 	raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3774 
3775 	/*
3776 	 * During [un]freezing, the caller is responsible for ensuring that
3777 	 * this function is called at least once after @workqueue_freezing
3778 	 * is updated and visible.
3779 	 */
3780 	if (!freezable || !workqueue_freezing) {
3781 		bool kick = false;
3782 
3783 		pwq->max_active = wq->saved_max_active;
3784 
3785 		while (!list_empty(&pwq->inactive_works) &&
3786 		       pwq->nr_active < pwq->max_active) {
3787 			pwq_activate_first_inactive(pwq);
3788 			kick = true;
3789 		}
3790 
3791 		/*
3792 		 * Need to kick a worker after thawed or an unbound wq's
3793 		 * max_active is bumped. In realtime scenarios, always kicking a
3794 		 * worker will cause interference on the isolated cpu cores, so
3795 		 * let's kick iff work items were activated.
3796 		 */
3797 		if (kick)
3798 			wake_up_worker(pwq->pool);
3799 	} else {
3800 		pwq->max_active = 0;
3801 	}
3802 
3803 	raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3804 }
3805 
3806 /* initialize newly allocated @pwq which is associated with @wq and @pool */
3807 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3808 		     struct worker_pool *pool)
3809 {
3810 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3811 
3812 	memset(pwq, 0, sizeof(*pwq));
3813 
3814 	pwq->pool = pool;
3815 	pwq->wq = wq;
3816 	pwq->flush_color = -1;
3817 	pwq->refcnt = 1;
3818 	INIT_LIST_HEAD(&pwq->inactive_works);
3819 	INIT_LIST_HEAD(&pwq->pwqs_node);
3820 	INIT_LIST_HEAD(&pwq->mayday_node);
3821 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3822 }
3823 
3824 /* sync @pwq with the current state of its associated wq and link it */
3825 static void link_pwq(struct pool_workqueue *pwq)
3826 {
3827 	struct workqueue_struct *wq = pwq->wq;
3828 
3829 	lockdep_assert_held(&wq->mutex);
3830 
3831 	/* may be called multiple times, ignore if already linked */
3832 	if (!list_empty(&pwq->pwqs_node))
3833 		return;
3834 
3835 	/* set the matching work_color */
3836 	pwq->work_color = wq->work_color;
3837 
3838 	/* sync max_active to the current setting */
3839 	pwq_adjust_max_active(pwq);
3840 
3841 	/* link in @pwq */
3842 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3843 }
3844 
3845 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3846 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3847 					const struct workqueue_attrs *attrs)
3848 {
3849 	struct worker_pool *pool;
3850 	struct pool_workqueue *pwq;
3851 
3852 	lockdep_assert_held(&wq_pool_mutex);
3853 
3854 	pool = get_unbound_pool(attrs);
3855 	if (!pool)
3856 		return NULL;
3857 
3858 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3859 	if (!pwq) {
3860 		put_unbound_pool(pool);
3861 		return NULL;
3862 	}
3863 
3864 	init_pwq(pwq, wq, pool);
3865 	return pwq;
3866 }
3867 
3868 /**
3869  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3870  * @attrs: the wq_attrs of the default pwq of the target workqueue
3871  * @node: the target NUMA node
3872  * @cpu_going_down: if >= 0, the CPU to consider as offline
3873  * @cpumask: outarg, the resulting cpumask
3874  *
3875  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3876  * @cpu_going_down is >= 0, that cpu is considered offline during
3877  * calculation.  The result is stored in @cpumask.
3878  *
3879  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3880  * enabled and @node has online CPUs requested by @attrs, the returned
3881  * cpumask is the intersection of the possible CPUs of @node and
3882  * @attrs->cpumask.
3883  *
3884  * The caller is responsible for ensuring that the cpumask of @node stays
3885  * stable.
3886  *
3887  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3888  * %false if equal.
3889  */
3890 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3891 				 int cpu_going_down, cpumask_t *cpumask)
3892 {
3893 	if (!wq_numa_enabled || attrs->no_numa)
3894 		goto use_dfl;
3895 
3896 	/* does @node have any online CPUs @attrs wants? */
3897 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3898 	if (cpu_going_down >= 0)
3899 		cpumask_clear_cpu(cpu_going_down, cpumask);
3900 
3901 	if (cpumask_empty(cpumask))
3902 		goto use_dfl;
3903 
3904 	/* yeap, return possible CPUs in @node that @attrs wants */
3905 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3906 
3907 	if (cpumask_empty(cpumask)) {
3908 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3909 				"possible intersect\n");
3910 		return false;
3911 	}
3912 
3913 	return !cpumask_equal(cpumask, attrs->cpumask);
3914 
3915 use_dfl:
3916 	cpumask_copy(cpumask, attrs->cpumask);
3917 	return false;
3918 }
3919 
3920 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3921 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3922 						   int node,
3923 						   struct pool_workqueue *pwq)
3924 {
3925 	struct pool_workqueue *old_pwq;
3926 
3927 	lockdep_assert_held(&wq_pool_mutex);
3928 	lockdep_assert_held(&wq->mutex);
3929 
3930 	/* link_pwq() can handle duplicate calls */
3931 	link_pwq(pwq);
3932 
3933 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3934 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3935 	return old_pwq;
3936 }
3937 
3938 /* context to store the prepared attrs & pwqs before applying */
3939 struct apply_wqattrs_ctx {
3940 	struct workqueue_struct	*wq;		/* target workqueue */
3941 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3942 	struct list_head	list;		/* queued for batching commit */
3943 	struct pool_workqueue	*dfl_pwq;
3944 	struct pool_workqueue	*pwq_tbl[];
3945 };
3946 
3947 /* free the resources after success or abort */
3948 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3949 {
3950 	if (ctx) {
3951 		int node;
3952 
3953 		for_each_node(node)
3954 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3955 		put_pwq_unlocked(ctx->dfl_pwq);
3956 
3957 		free_workqueue_attrs(ctx->attrs);
3958 
3959 		kfree(ctx);
3960 	}
3961 }
3962 
3963 /* allocate the attrs and pwqs for later installation */
3964 static struct apply_wqattrs_ctx *
3965 apply_wqattrs_prepare(struct workqueue_struct *wq,
3966 		      const struct workqueue_attrs *attrs)
3967 {
3968 	struct apply_wqattrs_ctx *ctx;
3969 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3970 	int node;
3971 
3972 	lockdep_assert_held(&wq_pool_mutex);
3973 
3974 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3975 
3976 	new_attrs = alloc_workqueue_attrs();
3977 	tmp_attrs = alloc_workqueue_attrs();
3978 	if (!ctx || !new_attrs || !tmp_attrs)
3979 		goto out_free;
3980 
3981 	/*
3982 	 * Calculate the attrs of the default pwq.
3983 	 * If the user configured cpumask doesn't overlap with the
3984 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3985 	 */
3986 	copy_workqueue_attrs(new_attrs, attrs);
3987 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3988 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3989 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3990 
3991 	/*
3992 	 * We may create multiple pwqs with differing cpumasks.  Make a
3993 	 * copy of @new_attrs which will be modified and used to obtain
3994 	 * pools.
3995 	 */
3996 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3997 
3998 	/*
3999 	 * If something goes wrong during CPU up/down, we'll fall back to
4000 	 * the default pwq covering whole @attrs->cpumask.  Always create
4001 	 * it even if we don't use it immediately.
4002 	 */
4003 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4004 	if (!ctx->dfl_pwq)
4005 		goto out_free;
4006 
4007 	for_each_node(node) {
4008 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
4009 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
4010 			if (!ctx->pwq_tbl[node])
4011 				goto out_free;
4012 		} else {
4013 			ctx->dfl_pwq->refcnt++;
4014 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
4015 		}
4016 	}
4017 
4018 	/* save the user configured attrs and sanitize it. */
4019 	copy_workqueue_attrs(new_attrs, attrs);
4020 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4021 	ctx->attrs = new_attrs;
4022 
4023 	ctx->wq = wq;
4024 	free_workqueue_attrs(tmp_attrs);
4025 	return ctx;
4026 
4027 out_free:
4028 	free_workqueue_attrs(tmp_attrs);
4029 	free_workqueue_attrs(new_attrs);
4030 	apply_wqattrs_cleanup(ctx);
4031 	return NULL;
4032 }
4033 
4034 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
4035 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4036 {
4037 	int node;
4038 
4039 	/* all pwqs have been created successfully, let's install'em */
4040 	mutex_lock(&ctx->wq->mutex);
4041 
4042 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4043 
4044 	/* save the previous pwq and install the new one */
4045 	for_each_node(node)
4046 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4047 							  ctx->pwq_tbl[node]);
4048 
4049 	/* @dfl_pwq might not have been used, ensure it's linked */
4050 	link_pwq(ctx->dfl_pwq);
4051 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4052 
4053 	mutex_unlock(&ctx->wq->mutex);
4054 }
4055 
4056 static void apply_wqattrs_lock(void)
4057 {
4058 	/* CPUs should stay stable across pwq creations and installations */
4059 	cpus_read_lock();
4060 	mutex_lock(&wq_pool_mutex);
4061 }
4062 
4063 static void apply_wqattrs_unlock(void)
4064 {
4065 	mutex_unlock(&wq_pool_mutex);
4066 	cpus_read_unlock();
4067 }
4068 
4069 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4070 					const struct workqueue_attrs *attrs)
4071 {
4072 	struct apply_wqattrs_ctx *ctx;
4073 
4074 	/* only unbound workqueues can change attributes */
4075 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4076 		return -EINVAL;
4077 
4078 	/* creating multiple pwqs breaks ordering guarantee */
4079 	if (!list_empty(&wq->pwqs)) {
4080 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4081 			return -EINVAL;
4082 
4083 		wq->flags &= ~__WQ_ORDERED;
4084 	}
4085 
4086 	ctx = apply_wqattrs_prepare(wq, attrs);
4087 	if (!ctx)
4088 		return -ENOMEM;
4089 
4090 	/* the ctx has been prepared successfully, let's commit it */
4091 	apply_wqattrs_commit(ctx);
4092 	apply_wqattrs_cleanup(ctx);
4093 
4094 	return 0;
4095 }
4096 
4097 /**
4098  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4099  * @wq: the target workqueue
4100  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4101  *
4102  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
4103  * machines, this function maps a separate pwq to each NUMA node with
4104  * possibles CPUs in @attrs->cpumask so that work items are affine to the
4105  * NUMA node it was issued on.  Older pwqs are released as in-flight work
4106  * items finish.  Note that a work item which repeatedly requeues itself
4107  * back-to-back will stay on its current pwq.
4108  *
4109  * Performs GFP_KERNEL allocations.
4110  *
4111  * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
4112  *
4113  * Return: 0 on success and -errno on failure.
4114  */
4115 int apply_workqueue_attrs(struct workqueue_struct *wq,
4116 			  const struct workqueue_attrs *attrs)
4117 {
4118 	int ret;
4119 
4120 	lockdep_assert_cpus_held();
4121 
4122 	mutex_lock(&wq_pool_mutex);
4123 	ret = apply_workqueue_attrs_locked(wq, attrs);
4124 	mutex_unlock(&wq_pool_mutex);
4125 
4126 	return ret;
4127 }
4128 
4129 /**
4130  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4131  * @wq: the target workqueue
4132  * @cpu: the CPU coming up or going down
4133  * @online: whether @cpu is coming up or going down
4134  *
4135  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4136  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4137  * @wq accordingly.
4138  *
4139  * If NUMA affinity can't be adjusted due to memory allocation failure, it
4140  * falls back to @wq->dfl_pwq which may not be optimal but is always
4141  * correct.
4142  *
4143  * Note that when the last allowed CPU of a NUMA node goes offline for a
4144  * workqueue with a cpumask spanning multiple nodes, the workers which were
4145  * already executing the work items for the workqueue will lose their CPU
4146  * affinity and may execute on any CPU.  This is similar to how per-cpu
4147  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4148  * affinity, it's the user's responsibility to flush the work item from
4149  * CPU_DOWN_PREPARE.
4150  */
4151 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4152 				   bool online)
4153 {
4154 	int node = cpu_to_node(cpu);
4155 	int cpu_off = online ? -1 : cpu;
4156 	struct pool_workqueue *old_pwq = NULL, *pwq;
4157 	struct workqueue_attrs *target_attrs;
4158 	cpumask_t *cpumask;
4159 
4160 	lockdep_assert_held(&wq_pool_mutex);
4161 
4162 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4163 	    wq->unbound_attrs->no_numa)
4164 		return;
4165 
4166 	/*
4167 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4168 	 * Let's use a preallocated one.  The following buf is protected by
4169 	 * CPU hotplug exclusion.
4170 	 */
4171 	target_attrs = wq_update_unbound_numa_attrs_buf;
4172 	cpumask = target_attrs->cpumask;
4173 
4174 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4175 	pwq = unbound_pwq_by_node(wq, node);
4176 
4177 	/*
4178 	 * Let's determine what needs to be done.  If the target cpumask is
4179 	 * different from the default pwq's, we need to compare it to @pwq's
4180 	 * and create a new one if they don't match.  If the target cpumask
4181 	 * equals the default pwq's, the default pwq should be used.
4182 	 */
4183 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4184 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4185 			return;
4186 	} else {
4187 		goto use_dfl_pwq;
4188 	}
4189 
4190 	/* create a new pwq */
4191 	pwq = alloc_unbound_pwq(wq, target_attrs);
4192 	if (!pwq) {
4193 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4194 			wq->name);
4195 		goto use_dfl_pwq;
4196 	}
4197 
4198 	/* Install the new pwq. */
4199 	mutex_lock(&wq->mutex);
4200 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4201 	goto out_unlock;
4202 
4203 use_dfl_pwq:
4204 	mutex_lock(&wq->mutex);
4205 	raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4206 	get_pwq(wq->dfl_pwq);
4207 	raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4208 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4209 out_unlock:
4210 	mutex_unlock(&wq->mutex);
4211 	put_pwq_unlocked(old_pwq);
4212 }
4213 
4214 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4215 {
4216 	bool highpri = wq->flags & WQ_HIGHPRI;
4217 	int cpu, ret;
4218 
4219 	if (!(wq->flags & WQ_UNBOUND)) {
4220 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4221 		if (!wq->cpu_pwqs)
4222 			return -ENOMEM;
4223 
4224 		for_each_possible_cpu(cpu) {
4225 			struct pool_workqueue *pwq =
4226 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4227 			struct worker_pool *cpu_pools =
4228 				per_cpu(cpu_worker_pools, cpu);
4229 
4230 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4231 
4232 			mutex_lock(&wq->mutex);
4233 			link_pwq(pwq);
4234 			mutex_unlock(&wq->mutex);
4235 		}
4236 		return 0;
4237 	}
4238 
4239 	cpus_read_lock();
4240 	if (wq->flags & __WQ_ORDERED) {
4241 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4242 		/* there should only be single pwq for ordering guarantee */
4243 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4244 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4245 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4246 	} else {
4247 		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4248 	}
4249 	cpus_read_unlock();
4250 
4251 	return ret;
4252 }
4253 
4254 static int wq_clamp_max_active(int max_active, unsigned int flags,
4255 			       const char *name)
4256 {
4257 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4258 
4259 	if (max_active < 1 || max_active > lim)
4260 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4261 			max_active, name, 1, lim);
4262 
4263 	return clamp_val(max_active, 1, lim);
4264 }
4265 
4266 /*
4267  * Workqueues which may be used during memory reclaim should have a rescuer
4268  * to guarantee forward progress.
4269  */
4270 static int init_rescuer(struct workqueue_struct *wq)
4271 {
4272 	struct worker *rescuer;
4273 	int ret;
4274 
4275 	if (!(wq->flags & WQ_MEM_RECLAIM))
4276 		return 0;
4277 
4278 	rescuer = alloc_worker(NUMA_NO_NODE);
4279 	if (!rescuer)
4280 		return -ENOMEM;
4281 
4282 	rescuer->rescue_wq = wq;
4283 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4284 	if (IS_ERR(rescuer->task)) {
4285 		ret = PTR_ERR(rescuer->task);
4286 		kfree(rescuer);
4287 		return ret;
4288 	}
4289 
4290 	wq->rescuer = rescuer;
4291 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4292 	wake_up_process(rescuer->task);
4293 
4294 	return 0;
4295 }
4296 
4297 __printf(1, 4)
4298 struct workqueue_struct *alloc_workqueue(const char *fmt,
4299 					 unsigned int flags,
4300 					 int max_active, ...)
4301 {
4302 	size_t tbl_size = 0;
4303 	va_list args;
4304 	struct workqueue_struct *wq;
4305 	struct pool_workqueue *pwq;
4306 
4307 	/*
4308 	 * Unbound && max_active == 1 used to imply ordered, which is no
4309 	 * longer the case on NUMA machines due to per-node pools.  While
4310 	 * alloc_ordered_workqueue() is the right way to create an ordered
4311 	 * workqueue, keep the previous behavior to avoid subtle breakages
4312 	 * on NUMA.
4313 	 */
4314 	if ((flags & WQ_UNBOUND) && max_active == 1)
4315 		flags |= __WQ_ORDERED;
4316 
4317 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4318 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4319 		flags |= WQ_UNBOUND;
4320 
4321 	/* allocate wq and format name */
4322 	if (flags & WQ_UNBOUND)
4323 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4324 
4325 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4326 	if (!wq)
4327 		return NULL;
4328 
4329 	if (flags & WQ_UNBOUND) {
4330 		wq->unbound_attrs = alloc_workqueue_attrs();
4331 		if (!wq->unbound_attrs)
4332 			goto err_free_wq;
4333 	}
4334 
4335 	va_start(args, max_active);
4336 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4337 	va_end(args);
4338 
4339 	max_active = max_active ?: WQ_DFL_ACTIVE;
4340 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4341 
4342 	/* init wq */
4343 	wq->flags = flags;
4344 	wq->saved_max_active = max_active;
4345 	mutex_init(&wq->mutex);
4346 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4347 	INIT_LIST_HEAD(&wq->pwqs);
4348 	INIT_LIST_HEAD(&wq->flusher_queue);
4349 	INIT_LIST_HEAD(&wq->flusher_overflow);
4350 	INIT_LIST_HEAD(&wq->maydays);
4351 
4352 	wq_init_lockdep(wq);
4353 	INIT_LIST_HEAD(&wq->list);
4354 
4355 	if (alloc_and_link_pwqs(wq) < 0)
4356 		goto err_unreg_lockdep;
4357 
4358 	if (wq_online && init_rescuer(wq) < 0)
4359 		goto err_destroy;
4360 
4361 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4362 		goto err_destroy;
4363 
4364 	/*
4365 	 * wq_pool_mutex protects global freeze state and workqueues list.
4366 	 * Grab it, adjust max_active and add the new @wq to workqueues
4367 	 * list.
4368 	 */
4369 	mutex_lock(&wq_pool_mutex);
4370 
4371 	mutex_lock(&wq->mutex);
4372 	for_each_pwq(pwq, wq)
4373 		pwq_adjust_max_active(pwq);
4374 	mutex_unlock(&wq->mutex);
4375 
4376 	list_add_tail_rcu(&wq->list, &workqueues);
4377 
4378 	mutex_unlock(&wq_pool_mutex);
4379 
4380 	return wq;
4381 
4382 err_unreg_lockdep:
4383 	wq_unregister_lockdep(wq);
4384 	wq_free_lockdep(wq);
4385 err_free_wq:
4386 	free_workqueue_attrs(wq->unbound_attrs);
4387 	kfree(wq);
4388 	return NULL;
4389 err_destroy:
4390 	destroy_workqueue(wq);
4391 	return NULL;
4392 }
4393 EXPORT_SYMBOL_GPL(alloc_workqueue);
4394 
4395 static bool pwq_busy(struct pool_workqueue *pwq)
4396 {
4397 	int i;
4398 
4399 	for (i = 0; i < WORK_NR_COLORS; i++)
4400 		if (pwq->nr_in_flight[i])
4401 			return true;
4402 
4403 	if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4404 		return true;
4405 	if (pwq->nr_active || !list_empty(&pwq->inactive_works))
4406 		return true;
4407 
4408 	return false;
4409 }
4410 
4411 /**
4412  * destroy_workqueue - safely terminate a workqueue
4413  * @wq: target workqueue
4414  *
4415  * Safely destroy a workqueue. All work currently pending will be done first.
4416  */
4417 void destroy_workqueue(struct workqueue_struct *wq)
4418 {
4419 	struct pool_workqueue *pwq;
4420 	int node;
4421 
4422 	/*
4423 	 * Remove it from sysfs first so that sanity check failure doesn't
4424 	 * lead to sysfs name conflicts.
4425 	 */
4426 	workqueue_sysfs_unregister(wq);
4427 
4428 	/* drain it before proceeding with destruction */
4429 	drain_workqueue(wq);
4430 
4431 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4432 	if (wq->rescuer) {
4433 		struct worker *rescuer = wq->rescuer;
4434 
4435 		/* this prevents new queueing */
4436 		raw_spin_lock_irq(&wq_mayday_lock);
4437 		wq->rescuer = NULL;
4438 		raw_spin_unlock_irq(&wq_mayday_lock);
4439 
4440 		/* rescuer will empty maydays list before exiting */
4441 		kthread_stop(rescuer->task);
4442 		kfree(rescuer);
4443 	}
4444 
4445 	/*
4446 	 * Sanity checks - grab all the locks so that we wait for all
4447 	 * in-flight operations which may do put_pwq().
4448 	 */
4449 	mutex_lock(&wq_pool_mutex);
4450 	mutex_lock(&wq->mutex);
4451 	for_each_pwq(pwq, wq) {
4452 		raw_spin_lock_irq(&pwq->pool->lock);
4453 		if (WARN_ON(pwq_busy(pwq))) {
4454 			pr_warn("%s: %s has the following busy pwq\n",
4455 				__func__, wq->name);
4456 			show_pwq(pwq);
4457 			raw_spin_unlock_irq(&pwq->pool->lock);
4458 			mutex_unlock(&wq->mutex);
4459 			mutex_unlock(&wq_pool_mutex);
4460 			show_one_workqueue(wq);
4461 			return;
4462 		}
4463 		raw_spin_unlock_irq(&pwq->pool->lock);
4464 	}
4465 	mutex_unlock(&wq->mutex);
4466 
4467 	/*
4468 	 * wq list is used to freeze wq, remove from list after
4469 	 * flushing is complete in case freeze races us.
4470 	 */
4471 	list_del_rcu(&wq->list);
4472 	mutex_unlock(&wq_pool_mutex);
4473 
4474 	if (!(wq->flags & WQ_UNBOUND)) {
4475 		wq_unregister_lockdep(wq);
4476 		/*
4477 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4478 		 * schedule RCU free.
4479 		 */
4480 		call_rcu(&wq->rcu, rcu_free_wq);
4481 	} else {
4482 		/*
4483 		 * We're the sole accessor of @wq at this point.  Directly
4484 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4485 		 * @wq will be freed when the last pwq is released.
4486 		 */
4487 		for_each_node(node) {
4488 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4489 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4490 			put_pwq_unlocked(pwq);
4491 		}
4492 
4493 		/*
4494 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4495 		 * put.  Don't access it afterwards.
4496 		 */
4497 		pwq = wq->dfl_pwq;
4498 		wq->dfl_pwq = NULL;
4499 		put_pwq_unlocked(pwq);
4500 	}
4501 }
4502 EXPORT_SYMBOL_GPL(destroy_workqueue);
4503 
4504 /**
4505  * workqueue_set_max_active - adjust max_active of a workqueue
4506  * @wq: target workqueue
4507  * @max_active: new max_active value.
4508  *
4509  * Set max_active of @wq to @max_active.
4510  *
4511  * CONTEXT:
4512  * Don't call from IRQ context.
4513  */
4514 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4515 {
4516 	struct pool_workqueue *pwq;
4517 
4518 	/* disallow meddling with max_active for ordered workqueues */
4519 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4520 		return;
4521 
4522 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4523 
4524 	mutex_lock(&wq->mutex);
4525 
4526 	wq->flags &= ~__WQ_ORDERED;
4527 	wq->saved_max_active = max_active;
4528 
4529 	for_each_pwq(pwq, wq)
4530 		pwq_adjust_max_active(pwq);
4531 
4532 	mutex_unlock(&wq->mutex);
4533 }
4534 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4535 
4536 /**
4537  * current_work - retrieve %current task's work struct
4538  *
4539  * Determine if %current task is a workqueue worker and what it's working on.
4540  * Useful to find out the context that the %current task is running in.
4541  *
4542  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4543  */
4544 struct work_struct *current_work(void)
4545 {
4546 	struct worker *worker = current_wq_worker();
4547 
4548 	return worker ? worker->current_work : NULL;
4549 }
4550 EXPORT_SYMBOL(current_work);
4551 
4552 /**
4553  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4554  *
4555  * Determine whether %current is a workqueue rescuer.  Can be used from
4556  * work functions to determine whether it's being run off the rescuer task.
4557  *
4558  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4559  */
4560 bool current_is_workqueue_rescuer(void)
4561 {
4562 	struct worker *worker = current_wq_worker();
4563 
4564 	return worker && worker->rescue_wq;
4565 }
4566 
4567 /**
4568  * workqueue_congested - test whether a workqueue is congested
4569  * @cpu: CPU in question
4570  * @wq: target workqueue
4571  *
4572  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4573  * no synchronization around this function and the test result is
4574  * unreliable and only useful as advisory hints or for debugging.
4575  *
4576  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4577  * Note that both per-cpu and unbound workqueues may be associated with
4578  * multiple pool_workqueues which have separate congested states.  A
4579  * workqueue being congested on one CPU doesn't mean the workqueue is also
4580  * contested on other CPUs / NUMA nodes.
4581  *
4582  * Return:
4583  * %true if congested, %false otherwise.
4584  */
4585 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4586 {
4587 	struct pool_workqueue *pwq;
4588 	bool ret;
4589 
4590 	rcu_read_lock();
4591 	preempt_disable();
4592 
4593 	if (cpu == WORK_CPU_UNBOUND)
4594 		cpu = smp_processor_id();
4595 
4596 	if (!(wq->flags & WQ_UNBOUND))
4597 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4598 	else
4599 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4600 
4601 	ret = !list_empty(&pwq->inactive_works);
4602 	preempt_enable();
4603 	rcu_read_unlock();
4604 
4605 	return ret;
4606 }
4607 EXPORT_SYMBOL_GPL(workqueue_congested);
4608 
4609 /**
4610  * work_busy - test whether a work is currently pending or running
4611  * @work: the work to be tested
4612  *
4613  * Test whether @work is currently pending or running.  There is no
4614  * synchronization around this function and the test result is
4615  * unreliable and only useful as advisory hints or for debugging.
4616  *
4617  * Return:
4618  * OR'd bitmask of WORK_BUSY_* bits.
4619  */
4620 unsigned int work_busy(struct work_struct *work)
4621 {
4622 	struct worker_pool *pool;
4623 	unsigned long flags;
4624 	unsigned int ret = 0;
4625 
4626 	if (work_pending(work))
4627 		ret |= WORK_BUSY_PENDING;
4628 
4629 	rcu_read_lock();
4630 	pool = get_work_pool(work);
4631 	if (pool) {
4632 		raw_spin_lock_irqsave(&pool->lock, flags);
4633 		if (find_worker_executing_work(pool, work))
4634 			ret |= WORK_BUSY_RUNNING;
4635 		raw_spin_unlock_irqrestore(&pool->lock, flags);
4636 	}
4637 	rcu_read_unlock();
4638 
4639 	return ret;
4640 }
4641 EXPORT_SYMBOL_GPL(work_busy);
4642 
4643 /**
4644  * set_worker_desc - set description for the current work item
4645  * @fmt: printf-style format string
4646  * @...: arguments for the format string
4647  *
4648  * This function can be called by a running work function to describe what
4649  * the work item is about.  If the worker task gets dumped, this
4650  * information will be printed out together to help debugging.  The
4651  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4652  */
4653 void set_worker_desc(const char *fmt, ...)
4654 {
4655 	struct worker *worker = current_wq_worker();
4656 	va_list args;
4657 
4658 	if (worker) {
4659 		va_start(args, fmt);
4660 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4661 		va_end(args);
4662 	}
4663 }
4664 EXPORT_SYMBOL_GPL(set_worker_desc);
4665 
4666 /**
4667  * print_worker_info - print out worker information and description
4668  * @log_lvl: the log level to use when printing
4669  * @task: target task
4670  *
4671  * If @task is a worker and currently executing a work item, print out the
4672  * name of the workqueue being serviced and worker description set with
4673  * set_worker_desc() by the currently executing work item.
4674  *
4675  * This function can be safely called on any task as long as the
4676  * task_struct itself is accessible.  While safe, this function isn't
4677  * synchronized and may print out mixups or garbages of limited length.
4678  */
4679 void print_worker_info(const char *log_lvl, struct task_struct *task)
4680 {
4681 	work_func_t *fn = NULL;
4682 	char name[WQ_NAME_LEN] = { };
4683 	char desc[WORKER_DESC_LEN] = { };
4684 	struct pool_workqueue *pwq = NULL;
4685 	struct workqueue_struct *wq = NULL;
4686 	struct worker *worker;
4687 
4688 	if (!(task->flags & PF_WQ_WORKER))
4689 		return;
4690 
4691 	/*
4692 	 * This function is called without any synchronization and @task
4693 	 * could be in any state.  Be careful with dereferences.
4694 	 */
4695 	worker = kthread_probe_data(task);
4696 
4697 	/*
4698 	 * Carefully copy the associated workqueue's workfn, name and desc.
4699 	 * Keep the original last '\0' in case the original is garbage.
4700 	 */
4701 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4702 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4703 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4704 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4705 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4706 
4707 	if (fn || name[0] || desc[0]) {
4708 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4709 		if (strcmp(name, desc))
4710 			pr_cont(" (%s)", desc);
4711 		pr_cont("\n");
4712 	}
4713 }
4714 
4715 static void pr_cont_pool_info(struct worker_pool *pool)
4716 {
4717 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4718 	if (pool->node != NUMA_NO_NODE)
4719 		pr_cont(" node=%d", pool->node);
4720 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4721 }
4722 
4723 static void pr_cont_work(bool comma, struct work_struct *work)
4724 {
4725 	if (work->func == wq_barrier_func) {
4726 		struct wq_barrier *barr;
4727 
4728 		barr = container_of(work, struct wq_barrier, work);
4729 
4730 		pr_cont("%s BAR(%d)", comma ? "," : "",
4731 			task_pid_nr(barr->task));
4732 	} else {
4733 		pr_cont("%s %ps", comma ? "," : "", work->func);
4734 	}
4735 }
4736 
4737 static void show_pwq(struct pool_workqueue *pwq)
4738 {
4739 	struct worker_pool *pool = pwq->pool;
4740 	struct work_struct *work;
4741 	struct worker *worker;
4742 	bool has_in_flight = false, has_pending = false;
4743 	int bkt;
4744 
4745 	pr_info("  pwq %d:", pool->id);
4746 	pr_cont_pool_info(pool);
4747 
4748 	pr_cont(" active=%d/%d refcnt=%d%s\n",
4749 		pwq->nr_active, pwq->max_active, pwq->refcnt,
4750 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4751 
4752 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4753 		if (worker->current_pwq == pwq) {
4754 			has_in_flight = true;
4755 			break;
4756 		}
4757 	}
4758 	if (has_in_flight) {
4759 		bool comma = false;
4760 
4761 		pr_info("    in-flight:");
4762 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4763 			if (worker->current_pwq != pwq)
4764 				continue;
4765 
4766 			pr_cont("%s %d%s:%ps", comma ? "," : "",
4767 				task_pid_nr(worker->task),
4768 				worker->rescue_wq ? "(RESCUER)" : "",
4769 				worker->current_func);
4770 			list_for_each_entry(work, &worker->scheduled, entry)
4771 				pr_cont_work(false, work);
4772 			comma = true;
4773 		}
4774 		pr_cont("\n");
4775 	}
4776 
4777 	list_for_each_entry(work, &pool->worklist, entry) {
4778 		if (get_work_pwq(work) == pwq) {
4779 			has_pending = true;
4780 			break;
4781 		}
4782 	}
4783 	if (has_pending) {
4784 		bool comma = false;
4785 
4786 		pr_info("    pending:");
4787 		list_for_each_entry(work, &pool->worklist, entry) {
4788 			if (get_work_pwq(work) != pwq)
4789 				continue;
4790 
4791 			pr_cont_work(comma, work);
4792 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4793 		}
4794 		pr_cont("\n");
4795 	}
4796 
4797 	if (!list_empty(&pwq->inactive_works)) {
4798 		bool comma = false;
4799 
4800 		pr_info("    inactive:");
4801 		list_for_each_entry(work, &pwq->inactive_works, entry) {
4802 			pr_cont_work(comma, work);
4803 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4804 		}
4805 		pr_cont("\n");
4806 	}
4807 }
4808 
4809 /**
4810  * show_one_workqueue - dump state of specified workqueue
4811  * @wq: workqueue whose state will be printed
4812  */
4813 void show_one_workqueue(struct workqueue_struct *wq)
4814 {
4815 	struct pool_workqueue *pwq;
4816 	bool idle = true;
4817 	unsigned long flags;
4818 
4819 	for_each_pwq(pwq, wq) {
4820 		if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4821 			idle = false;
4822 			break;
4823 		}
4824 	}
4825 	if (idle) /* Nothing to print for idle workqueue */
4826 		return;
4827 
4828 	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4829 
4830 	for_each_pwq(pwq, wq) {
4831 		raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4832 		if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4833 			/*
4834 			 * Defer printing to avoid deadlocks in console
4835 			 * drivers that queue work while holding locks
4836 			 * also taken in their write paths.
4837 			 */
4838 			printk_deferred_enter();
4839 			show_pwq(pwq);
4840 			printk_deferred_exit();
4841 		}
4842 		raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4843 		/*
4844 		 * We could be printing a lot from atomic context, e.g.
4845 		 * sysrq-t -> show_all_workqueues(). Avoid triggering
4846 		 * hard lockup.
4847 		 */
4848 		touch_nmi_watchdog();
4849 	}
4850 
4851 }
4852 
4853 /**
4854  * show_one_worker_pool - dump state of specified worker pool
4855  * @pool: worker pool whose state will be printed
4856  */
4857 static void show_one_worker_pool(struct worker_pool *pool)
4858 {
4859 	struct worker *worker;
4860 	bool first = true;
4861 	unsigned long flags;
4862 
4863 	raw_spin_lock_irqsave(&pool->lock, flags);
4864 	if (pool->nr_workers == pool->nr_idle)
4865 		goto next_pool;
4866 	/*
4867 	 * Defer printing to avoid deadlocks in console drivers that
4868 	 * queue work while holding locks also taken in their write
4869 	 * paths.
4870 	 */
4871 	printk_deferred_enter();
4872 	pr_info("pool %d:", pool->id);
4873 	pr_cont_pool_info(pool);
4874 	pr_cont(" hung=%us workers=%d",
4875 		jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4876 		pool->nr_workers);
4877 	if (pool->manager)
4878 		pr_cont(" manager: %d",
4879 			task_pid_nr(pool->manager->task));
4880 	list_for_each_entry(worker, &pool->idle_list, entry) {
4881 		pr_cont(" %s%d", first ? "idle: " : "",
4882 			task_pid_nr(worker->task));
4883 		first = false;
4884 	}
4885 	pr_cont("\n");
4886 	printk_deferred_exit();
4887 next_pool:
4888 	raw_spin_unlock_irqrestore(&pool->lock, flags);
4889 	/*
4890 	 * We could be printing a lot from atomic context, e.g.
4891 	 * sysrq-t -> show_all_workqueues(). Avoid triggering
4892 	 * hard lockup.
4893 	 */
4894 	touch_nmi_watchdog();
4895 
4896 }
4897 
4898 /**
4899  * show_all_workqueues - dump workqueue state
4900  *
4901  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4902  * all busy workqueues and pools.
4903  */
4904 void show_all_workqueues(void)
4905 {
4906 	struct workqueue_struct *wq;
4907 	struct worker_pool *pool;
4908 	int pi;
4909 
4910 	rcu_read_lock();
4911 
4912 	pr_info("Showing busy workqueues and worker pools:\n");
4913 
4914 	list_for_each_entry_rcu(wq, &workqueues, list)
4915 		show_one_workqueue(wq);
4916 
4917 	for_each_pool(pool, pi)
4918 		show_one_worker_pool(pool);
4919 
4920 	rcu_read_unlock();
4921 }
4922 
4923 /* used to show worker information through /proc/PID/{comm,stat,status} */
4924 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4925 {
4926 	int off;
4927 
4928 	/* always show the actual comm */
4929 	off = strscpy(buf, task->comm, size);
4930 	if (off < 0)
4931 		return;
4932 
4933 	/* stabilize PF_WQ_WORKER and worker pool association */
4934 	mutex_lock(&wq_pool_attach_mutex);
4935 
4936 	if (task->flags & PF_WQ_WORKER) {
4937 		struct worker *worker = kthread_data(task);
4938 		struct worker_pool *pool = worker->pool;
4939 
4940 		if (pool) {
4941 			raw_spin_lock_irq(&pool->lock);
4942 			/*
4943 			 * ->desc tracks information (wq name or
4944 			 * set_worker_desc()) for the latest execution.  If
4945 			 * current, prepend '+', otherwise '-'.
4946 			 */
4947 			if (worker->desc[0] != '\0') {
4948 				if (worker->current_work)
4949 					scnprintf(buf + off, size - off, "+%s",
4950 						  worker->desc);
4951 				else
4952 					scnprintf(buf + off, size - off, "-%s",
4953 						  worker->desc);
4954 			}
4955 			raw_spin_unlock_irq(&pool->lock);
4956 		}
4957 	}
4958 
4959 	mutex_unlock(&wq_pool_attach_mutex);
4960 }
4961 
4962 #ifdef CONFIG_SMP
4963 
4964 /*
4965  * CPU hotplug.
4966  *
4967  * There are two challenges in supporting CPU hotplug.  Firstly, there
4968  * are a lot of assumptions on strong associations among work, pwq and
4969  * pool which make migrating pending and scheduled works very
4970  * difficult to implement without impacting hot paths.  Secondly,
4971  * worker pools serve mix of short, long and very long running works making
4972  * blocked draining impractical.
4973  *
4974  * This is solved by allowing the pools to be disassociated from the CPU
4975  * running as an unbound one and allowing it to be reattached later if the
4976  * cpu comes back online.
4977  */
4978 
4979 static void unbind_workers(int cpu)
4980 {
4981 	struct worker_pool *pool;
4982 	struct worker *worker;
4983 
4984 	for_each_cpu_worker_pool(pool, cpu) {
4985 		mutex_lock(&wq_pool_attach_mutex);
4986 		raw_spin_lock_irq(&pool->lock);
4987 
4988 		/*
4989 		 * We've blocked all attach/detach operations. Make all workers
4990 		 * unbound and set DISASSOCIATED.  Before this, all workers
4991 		 * must be on the cpu.  After this, they may become diasporas.
4992 		 * And the preemption disabled section in their sched callbacks
4993 		 * are guaranteed to see WORKER_UNBOUND since the code here
4994 		 * is on the same cpu.
4995 		 */
4996 		for_each_pool_worker(worker, pool)
4997 			worker->flags |= WORKER_UNBOUND;
4998 
4999 		pool->flags |= POOL_DISASSOCIATED;
5000 
5001 		/*
5002 		 * The handling of nr_running in sched callbacks are disabled
5003 		 * now.  Zap nr_running.  After this, nr_running stays zero and
5004 		 * need_more_worker() and keep_working() are always true as
5005 		 * long as the worklist is not empty.  This pool now behaves as
5006 		 * an unbound (in terms of concurrency management) pool which
5007 		 * are served by workers tied to the pool.
5008 		 */
5009 		atomic_set(&pool->nr_running, 0);
5010 
5011 		/*
5012 		 * With concurrency management just turned off, a busy
5013 		 * worker blocking could lead to lengthy stalls.  Kick off
5014 		 * unbound chain execution of currently pending work items.
5015 		 */
5016 		wake_up_worker(pool);
5017 
5018 		raw_spin_unlock_irq(&pool->lock);
5019 
5020 		for_each_pool_worker(worker, pool) {
5021 			kthread_set_per_cpu(worker->task, -1);
5022 			WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
5023 		}
5024 
5025 		mutex_unlock(&wq_pool_attach_mutex);
5026 	}
5027 }
5028 
5029 /**
5030  * rebind_workers - rebind all workers of a pool to the associated CPU
5031  * @pool: pool of interest
5032  *
5033  * @pool->cpu is coming online.  Rebind all workers to the CPU.
5034  */
5035 static void rebind_workers(struct worker_pool *pool)
5036 {
5037 	struct worker *worker;
5038 
5039 	lockdep_assert_held(&wq_pool_attach_mutex);
5040 
5041 	/*
5042 	 * Restore CPU affinity of all workers.  As all idle workers should
5043 	 * be on the run-queue of the associated CPU before any local
5044 	 * wake-ups for concurrency management happen, restore CPU affinity
5045 	 * of all workers first and then clear UNBOUND.  As we're called
5046 	 * from CPU_ONLINE, the following shouldn't fail.
5047 	 */
5048 	for_each_pool_worker(worker, pool) {
5049 		kthread_set_per_cpu(worker->task, pool->cpu);
5050 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5051 						  pool->attrs->cpumask) < 0);
5052 	}
5053 
5054 	raw_spin_lock_irq(&pool->lock);
5055 
5056 	pool->flags &= ~POOL_DISASSOCIATED;
5057 
5058 	for_each_pool_worker(worker, pool) {
5059 		unsigned int worker_flags = worker->flags;
5060 
5061 		/*
5062 		 * We want to clear UNBOUND but can't directly call
5063 		 * worker_clr_flags() or adjust nr_running.  Atomically
5064 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5065 		 * @worker will clear REBOUND using worker_clr_flags() when
5066 		 * it initiates the next execution cycle thus restoring
5067 		 * concurrency management.  Note that when or whether
5068 		 * @worker clears REBOUND doesn't affect correctness.
5069 		 *
5070 		 * WRITE_ONCE() is necessary because @worker->flags may be
5071 		 * tested without holding any lock in
5072 		 * wq_worker_running().  Without it, NOT_RUNNING test may
5073 		 * fail incorrectly leading to premature concurrency
5074 		 * management operations.
5075 		 */
5076 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5077 		worker_flags |= WORKER_REBOUND;
5078 		worker_flags &= ~WORKER_UNBOUND;
5079 		WRITE_ONCE(worker->flags, worker_flags);
5080 	}
5081 
5082 	raw_spin_unlock_irq(&pool->lock);
5083 }
5084 
5085 /**
5086  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5087  * @pool: unbound pool of interest
5088  * @cpu: the CPU which is coming up
5089  *
5090  * An unbound pool may end up with a cpumask which doesn't have any online
5091  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
5092  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
5093  * online CPU before, cpus_allowed of all its workers should be restored.
5094  */
5095 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5096 {
5097 	static cpumask_t cpumask;
5098 	struct worker *worker;
5099 
5100 	lockdep_assert_held(&wq_pool_attach_mutex);
5101 
5102 	/* is @cpu allowed for @pool? */
5103 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5104 		return;
5105 
5106 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5107 
5108 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
5109 	for_each_pool_worker(worker, pool)
5110 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5111 }
5112 
5113 int workqueue_prepare_cpu(unsigned int cpu)
5114 {
5115 	struct worker_pool *pool;
5116 
5117 	for_each_cpu_worker_pool(pool, cpu) {
5118 		if (pool->nr_workers)
5119 			continue;
5120 		if (!create_worker(pool))
5121 			return -ENOMEM;
5122 	}
5123 	return 0;
5124 }
5125 
5126 int workqueue_online_cpu(unsigned int cpu)
5127 {
5128 	struct worker_pool *pool;
5129 	struct workqueue_struct *wq;
5130 	int pi;
5131 
5132 	mutex_lock(&wq_pool_mutex);
5133 
5134 	for_each_pool(pool, pi) {
5135 		mutex_lock(&wq_pool_attach_mutex);
5136 
5137 		if (pool->cpu == cpu)
5138 			rebind_workers(pool);
5139 		else if (pool->cpu < 0)
5140 			restore_unbound_workers_cpumask(pool, cpu);
5141 
5142 		mutex_unlock(&wq_pool_attach_mutex);
5143 	}
5144 
5145 	/* update NUMA affinity of unbound workqueues */
5146 	list_for_each_entry(wq, &workqueues, list)
5147 		wq_update_unbound_numa(wq, cpu, true);
5148 
5149 	mutex_unlock(&wq_pool_mutex);
5150 	return 0;
5151 }
5152 
5153 int workqueue_offline_cpu(unsigned int cpu)
5154 {
5155 	struct workqueue_struct *wq;
5156 
5157 	/* unbinding per-cpu workers should happen on the local CPU */
5158 	if (WARN_ON(cpu != smp_processor_id()))
5159 		return -1;
5160 
5161 	unbind_workers(cpu);
5162 
5163 	/* update NUMA affinity of unbound workqueues */
5164 	mutex_lock(&wq_pool_mutex);
5165 	list_for_each_entry(wq, &workqueues, list)
5166 		wq_update_unbound_numa(wq, cpu, false);
5167 	mutex_unlock(&wq_pool_mutex);
5168 
5169 	return 0;
5170 }
5171 
5172 struct work_for_cpu {
5173 	struct work_struct work;
5174 	long (*fn)(void *);
5175 	void *arg;
5176 	long ret;
5177 };
5178 
5179 static void work_for_cpu_fn(struct work_struct *work)
5180 {
5181 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5182 
5183 	wfc->ret = wfc->fn(wfc->arg);
5184 }
5185 
5186 /**
5187  * work_on_cpu - run a function in thread context on a particular cpu
5188  * @cpu: the cpu to run on
5189  * @fn: the function to run
5190  * @arg: the function arg
5191  *
5192  * It is up to the caller to ensure that the cpu doesn't go offline.
5193  * The caller must not hold any locks which would prevent @fn from completing.
5194  *
5195  * Return: The value @fn returns.
5196  */
5197 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5198 {
5199 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5200 
5201 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5202 	schedule_work_on(cpu, &wfc.work);
5203 	flush_work(&wfc.work);
5204 	destroy_work_on_stack(&wfc.work);
5205 	return wfc.ret;
5206 }
5207 EXPORT_SYMBOL_GPL(work_on_cpu);
5208 
5209 /**
5210  * work_on_cpu_safe - run a function in thread context on a particular cpu
5211  * @cpu: the cpu to run on
5212  * @fn:  the function to run
5213  * @arg: the function argument
5214  *
5215  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5216  * any locks which would prevent @fn from completing.
5217  *
5218  * Return: The value @fn returns.
5219  */
5220 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5221 {
5222 	long ret = -ENODEV;
5223 
5224 	cpus_read_lock();
5225 	if (cpu_online(cpu))
5226 		ret = work_on_cpu(cpu, fn, arg);
5227 	cpus_read_unlock();
5228 	return ret;
5229 }
5230 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5231 #endif /* CONFIG_SMP */
5232 
5233 #ifdef CONFIG_FREEZER
5234 
5235 /**
5236  * freeze_workqueues_begin - begin freezing workqueues
5237  *
5238  * Start freezing workqueues.  After this function returns, all freezable
5239  * workqueues will queue new works to their inactive_works list instead of
5240  * pool->worklist.
5241  *
5242  * CONTEXT:
5243  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5244  */
5245 void freeze_workqueues_begin(void)
5246 {
5247 	struct workqueue_struct *wq;
5248 	struct pool_workqueue *pwq;
5249 
5250 	mutex_lock(&wq_pool_mutex);
5251 
5252 	WARN_ON_ONCE(workqueue_freezing);
5253 	workqueue_freezing = true;
5254 
5255 	list_for_each_entry(wq, &workqueues, list) {
5256 		mutex_lock(&wq->mutex);
5257 		for_each_pwq(pwq, wq)
5258 			pwq_adjust_max_active(pwq);
5259 		mutex_unlock(&wq->mutex);
5260 	}
5261 
5262 	mutex_unlock(&wq_pool_mutex);
5263 }
5264 
5265 /**
5266  * freeze_workqueues_busy - are freezable workqueues still busy?
5267  *
5268  * Check whether freezing is complete.  This function must be called
5269  * between freeze_workqueues_begin() and thaw_workqueues().
5270  *
5271  * CONTEXT:
5272  * Grabs and releases wq_pool_mutex.
5273  *
5274  * Return:
5275  * %true if some freezable workqueues are still busy.  %false if freezing
5276  * is complete.
5277  */
5278 bool freeze_workqueues_busy(void)
5279 {
5280 	bool busy = false;
5281 	struct workqueue_struct *wq;
5282 	struct pool_workqueue *pwq;
5283 
5284 	mutex_lock(&wq_pool_mutex);
5285 
5286 	WARN_ON_ONCE(!workqueue_freezing);
5287 
5288 	list_for_each_entry(wq, &workqueues, list) {
5289 		if (!(wq->flags & WQ_FREEZABLE))
5290 			continue;
5291 		/*
5292 		 * nr_active is monotonically decreasing.  It's safe
5293 		 * to peek without lock.
5294 		 */
5295 		rcu_read_lock();
5296 		for_each_pwq(pwq, wq) {
5297 			WARN_ON_ONCE(pwq->nr_active < 0);
5298 			if (pwq->nr_active) {
5299 				busy = true;
5300 				rcu_read_unlock();
5301 				goto out_unlock;
5302 			}
5303 		}
5304 		rcu_read_unlock();
5305 	}
5306 out_unlock:
5307 	mutex_unlock(&wq_pool_mutex);
5308 	return busy;
5309 }
5310 
5311 /**
5312  * thaw_workqueues - thaw workqueues
5313  *
5314  * Thaw workqueues.  Normal queueing is restored and all collected
5315  * frozen works are transferred to their respective pool worklists.
5316  *
5317  * CONTEXT:
5318  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5319  */
5320 void thaw_workqueues(void)
5321 {
5322 	struct workqueue_struct *wq;
5323 	struct pool_workqueue *pwq;
5324 
5325 	mutex_lock(&wq_pool_mutex);
5326 
5327 	if (!workqueue_freezing)
5328 		goto out_unlock;
5329 
5330 	workqueue_freezing = false;
5331 
5332 	/* restore max_active and repopulate worklist */
5333 	list_for_each_entry(wq, &workqueues, list) {
5334 		mutex_lock(&wq->mutex);
5335 		for_each_pwq(pwq, wq)
5336 			pwq_adjust_max_active(pwq);
5337 		mutex_unlock(&wq->mutex);
5338 	}
5339 
5340 out_unlock:
5341 	mutex_unlock(&wq_pool_mutex);
5342 }
5343 #endif /* CONFIG_FREEZER */
5344 
5345 static int workqueue_apply_unbound_cpumask(void)
5346 {
5347 	LIST_HEAD(ctxs);
5348 	int ret = 0;
5349 	struct workqueue_struct *wq;
5350 	struct apply_wqattrs_ctx *ctx, *n;
5351 
5352 	lockdep_assert_held(&wq_pool_mutex);
5353 
5354 	list_for_each_entry(wq, &workqueues, list) {
5355 		if (!(wq->flags & WQ_UNBOUND))
5356 			continue;
5357 		/* creating multiple pwqs breaks ordering guarantee */
5358 		if (wq->flags & __WQ_ORDERED)
5359 			continue;
5360 
5361 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5362 		if (!ctx) {
5363 			ret = -ENOMEM;
5364 			break;
5365 		}
5366 
5367 		list_add_tail(&ctx->list, &ctxs);
5368 	}
5369 
5370 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5371 		if (!ret)
5372 			apply_wqattrs_commit(ctx);
5373 		apply_wqattrs_cleanup(ctx);
5374 	}
5375 
5376 	return ret;
5377 }
5378 
5379 /**
5380  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5381  *  @cpumask: the cpumask to set
5382  *
5383  *  The low-level workqueues cpumask is a global cpumask that limits
5384  *  the affinity of all unbound workqueues.  This function check the @cpumask
5385  *  and apply it to all unbound workqueues and updates all pwqs of them.
5386  *
5387  *  Return:	0	- Success
5388  *  		-EINVAL	- Invalid @cpumask
5389  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5390  */
5391 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5392 {
5393 	int ret = -EINVAL;
5394 	cpumask_var_t saved_cpumask;
5395 
5396 	/*
5397 	 * Not excluding isolated cpus on purpose.
5398 	 * If the user wishes to include them, we allow that.
5399 	 */
5400 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5401 	if (!cpumask_empty(cpumask)) {
5402 		apply_wqattrs_lock();
5403 		if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5404 			ret = 0;
5405 			goto out_unlock;
5406 		}
5407 
5408 		if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) {
5409 			ret = -ENOMEM;
5410 			goto out_unlock;
5411 		}
5412 
5413 		/* save the old wq_unbound_cpumask. */
5414 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5415 
5416 		/* update wq_unbound_cpumask at first and apply it to wqs. */
5417 		cpumask_copy(wq_unbound_cpumask, cpumask);
5418 		ret = workqueue_apply_unbound_cpumask();
5419 
5420 		/* restore the wq_unbound_cpumask when failed. */
5421 		if (ret < 0)
5422 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5423 
5424 		free_cpumask_var(saved_cpumask);
5425 out_unlock:
5426 		apply_wqattrs_unlock();
5427 	}
5428 
5429 	return ret;
5430 }
5431 
5432 #ifdef CONFIG_SYSFS
5433 /*
5434  * Workqueues with WQ_SYSFS flag set is visible to userland via
5435  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5436  * following attributes.
5437  *
5438  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5439  *  max_active	RW int	: maximum number of in-flight work items
5440  *
5441  * Unbound workqueues have the following extra attributes.
5442  *
5443  *  pool_ids	RO int	: the associated pool IDs for each node
5444  *  nice	RW int	: nice value of the workers
5445  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5446  *  numa	RW bool	: whether enable NUMA affinity
5447  */
5448 struct wq_device {
5449 	struct workqueue_struct		*wq;
5450 	struct device			dev;
5451 };
5452 
5453 static struct workqueue_struct *dev_to_wq(struct device *dev)
5454 {
5455 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5456 
5457 	return wq_dev->wq;
5458 }
5459 
5460 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5461 			    char *buf)
5462 {
5463 	struct workqueue_struct *wq = dev_to_wq(dev);
5464 
5465 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5466 }
5467 static DEVICE_ATTR_RO(per_cpu);
5468 
5469 static ssize_t max_active_show(struct device *dev,
5470 			       struct device_attribute *attr, char *buf)
5471 {
5472 	struct workqueue_struct *wq = dev_to_wq(dev);
5473 
5474 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5475 }
5476 
5477 static ssize_t max_active_store(struct device *dev,
5478 				struct device_attribute *attr, const char *buf,
5479 				size_t count)
5480 {
5481 	struct workqueue_struct *wq = dev_to_wq(dev);
5482 	int val;
5483 
5484 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5485 		return -EINVAL;
5486 
5487 	workqueue_set_max_active(wq, val);
5488 	return count;
5489 }
5490 static DEVICE_ATTR_RW(max_active);
5491 
5492 static struct attribute *wq_sysfs_attrs[] = {
5493 	&dev_attr_per_cpu.attr,
5494 	&dev_attr_max_active.attr,
5495 	NULL,
5496 };
5497 ATTRIBUTE_GROUPS(wq_sysfs);
5498 
5499 static ssize_t wq_pool_ids_show(struct device *dev,
5500 				struct device_attribute *attr, char *buf)
5501 {
5502 	struct workqueue_struct *wq = dev_to_wq(dev);
5503 	const char *delim = "";
5504 	int node, written = 0;
5505 
5506 	cpus_read_lock();
5507 	rcu_read_lock();
5508 	for_each_node(node) {
5509 		written += scnprintf(buf + written, PAGE_SIZE - written,
5510 				     "%s%d:%d", delim, node,
5511 				     unbound_pwq_by_node(wq, node)->pool->id);
5512 		delim = " ";
5513 	}
5514 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5515 	rcu_read_unlock();
5516 	cpus_read_unlock();
5517 
5518 	return written;
5519 }
5520 
5521 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5522 			    char *buf)
5523 {
5524 	struct workqueue_struct *wq = dev_to_wq(dev);
5525 	int written;
5526 
5527 	mutex_lock(&wq->mutex);
5528 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5529 	mutex_unlock(&wq->mutex);
5530 
5531 	return written;
5532 }
5533 
5534 /* prepare workqueue_attrs for sysfs store operations */
5535 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5536 {
5537 	struct workqueue_attrs *attrs;
5538 
5539 	lockdep_assert_held(&wq_pool_mutex);
5540 
5541 	attrs = alloc_workqueue_attrs();
5542 	if (!attrs)
5543 		return NULL;
5544 
5545 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5546 	return attrs;
5547 }
5548 
5549 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5550 			     const char *buf, size_t count)
5551 {
5552 	struct workqueue_struct *wq = dev_to_wq(dev);
5553 	struct workqueue_attrs *attrs;
5554 	int ret = -ENOMEM;
5555 
5556 	apply_wqattrs_lock();
5557 
5558 	attrs = wq_sysfs_prep_attrs(wq);
5559 	if (!attrs)
5560 		goto out_unlock;
5561 
5562 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5563 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5564 		ret = apply_workqueue_attrs_locked(wq, attrs);
5565 	else
5566 		ret = -EINVAL;
5567 
5568 out_unlock:
5569 	apply_wqattrs_unlock();
5570 	free_workqueue_attrs(attrs);
5571 	return ret ?: count;
5572 }
5573 
5574 static ssize_t wq_cpumask_show(struct device *dev,
5575 			       struct device_attribute *attr, char *buf)
5576 {
5577 	struct workqueue_struct *wq = dev_to_wq(dev);
5578 	int written;
5579 
5580 	mutex_lock(&wq->mutex);
5581 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5582 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5583 	mutex_unlock(&wq->mutex);
5584 	return written;
5585 }
5586 
5587 static ssize_t wq_cpumask_store(struct device *dev,
5588 				struct device_attribute *attr,
5589 				const char *buf, size_t count)
5590 {
5591 	struct workqueue_struct *wq = dev_to_wq(dev);
5592 	struct workqueue_attrs *attrs;
5593 	int ret = -ENOMEM;
5594 
5595 	apply_wqattrs_lock();
5596 
5597 	attrs = wq_sysfs_prep_attrs(wq);
5598 	if (!attrs)
5599 		goto out_unlock;
5600 
5601 	ret = cpumask_parse(buf, attrs->cpumask);
5602 	if (!ret)
5603 		ret = apply_workqueue_attrs_locked(wq, attrs);
5604 
5605 out_unlock:
5606 	apply_wqattrs_unlock();
5607 	free_workqueue_attrs(attrs);
5608 	return ret ?: count;
5609 }
5610 
5611 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5612 			    char *buf)
5613 {
5614 	struct workqueue_struct *wq = dev_to_wq(dev);
5615 	int written;
5616 
5617 	mutex_lock(&wq->mutex);
5618 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5619 			    !wq->unbound_attrs->no_numa);
5620 	mutex_unlock(&wq->mutex);
5621 
5622 	return written;
5623 }
5624 
5625 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5626 			     const char *buf, size_t count)
5627 {
5628 	struct workqueue_struct *wq = dev_to_wq(dev);
5629 	struct workqueue_attrs *attrs;
5630 	int v, ret = -ENOMEM;
5631 
5632 	apply_wqattrs_lock();
5633 
5634 	attrs = wq_sysfs_prep_attrs(wq);
5635 	if (!attrs)
5636 		goto out_unlock;
5637 
5638 	ret = -EINVAL;
5639 	if (sscanf(buf, "%d", &v) == 1) {
5640 		attrs->no_numa = !v;
5641 		ret = apply_workqueue_attrs_locked(wq, attrs);
5642 	}
5643 
5644 out_unlock:
5645 	apply_wqattrs_unlock();
5646 	free_workqueue_attrs(attrs);
5647 	return ret ?: count;
5648 }
5649 
5650 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5651 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5652 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5653 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5654 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5655 	__ATTR_NULL,
5656 };
5657 
5658 static struct bus_type wq_subsys = {
5659 	.name				= "workqueue",
5660 	.dev_groups			= wq_sysfs_groups,
5661 };
5662 
5663 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5664 		struct device_attribute *attr, char *buf)
5665 {
5666 	int written;
5667 
5668 	mutex_lock(&wq_pool_mutex);
5669 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5670 			    cpumask_pr_args(wq_unbound_cpumask));
5671 	mutex_unlock(&wq_pool_mutex);
5672 
5673 	return written;
5674 }
5675 
5676 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5677 		struct device_attribute *attr, const char *buf, size_t count)
5678 {
5679 	cpumask_var_t cpumask;
5680 	int ret;
5681 
5682 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5683 		return -ENOMEM;
5684 
5685 	ret = cpumask_parse(buf, cpumask);
5686 	if (!ret)
5687 		ret = workqueue_set_unbound_cpumask(cpumask);
5688 
5689 	free_cpumask_var(cpumask);
5690 	return ret ? ret : count;
5691 }
5692 
5693 static struct device_attribute wq_sysfs_cpumask_attr =
5694 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5695 	       wq_unbound_cpumask_store);
5696 
5697 static int __init wq_sysfs_init(void)
5698 {
5699 	int err;
5700 
5701 	err = subsys_virtual_register(&wq_subsys, NULL);
5702 	if (err)
5703 		return err;
5704 
5705 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5706 }
5707 core_initcall(wq_sysfs_init);
5708 
5709 static void wq_device_release(struct device *dev)
5710 {
5711 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5712 
5713 	kfree(wq_dev);
5714 }
5715 
5716 /**
5717  * workqueue_sysfs_register - make a workqueue visible in sysfs
5718  * @wq: the workqueue to register
5719  *
5720  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5721  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5722  * which is the preferred method.
5723  *
5724  * Workqueue user should use this function directly iff it wants to apply
5725  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5726  * apply_workqueue_attrs() may race against userland updating the
5727  * attributes.
5728  *
5729  * Return: 0 on success, -errno on failure.
5730  */
5731 int workqueue_sysfs_register(struct workqueue_struct *wq)
5732 {
5733 	struct wq_device *wq_dev;
5734 	int ret;
5735 
5736 	/*
5737 	 * Adjusting max_active or creating new pwqs by applying
5738 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5739 	 * workqueues.
5740 	 */
5741 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5742 		return -EINVAL;
5743 
5744 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5745 	if (!wq_dev)
5746 		return -ENOMEM;
5747 
5748 	wq_dev->wq = wq;
5749 	wq_dev->dev.bus = &wq_subsys;
5750 	wq_dev->dev.release = wq_device_release;
5751 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5752 
5753 	/*
5754 	 * unbound_attrs are created separately.  Suppress uevent until
5755 	 * everything is ready.
5756 	 */
5757 	dev_set_uevent_suppress(&wq_dev->dev, true);
5758 
5759 	ret = device_register(&wq_dev->dev);
5760 	if (ret) {
5761 		put_device(&wq_dev->dev);
5762 		wq->wq_dev = NULL;
5763 		return ret;
5764 	}
5765 
5766 	if (wq->flags & WQ_UNBOUND) {
5767 		struct device_attribute *attr;
5768 
5769 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5770 			ret = device_create_file(&wq_dev->dev, attr);
5771 			if (ret) {
5772 				device_unregister(&wq_dev->dev);
5773 				wq->wq_dev = NULL;
5774 				return ret;
5775 			}
5776 		}
5777 	}
5778 
5779 	dev_set_uevent_suppress(&wq_dev->dev, false);
5780 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5781 	return 0;
5782 }
5783 
5784 /**
5785  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5786  * @wq: the workqueue to unregister
5787  *
5788  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5789  */
5790 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5791 {
5792 	struct wq_device *wq_dev = wq->wq_dev;
5793 
5794 	if (!wq->wq_dev)
5795 		return;
5796 
5797 	wq->wq_dev = NULL;
5798 	device_unregister(&wq_dev->dev);
5799 }
5800 #else	/* CONFIG_SYSFS */
5801 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5802 #endif	/* CONFIG_SYSFS */
5803 
5804 /*
5805  * Workqueue watchdog.
5806  *
5807  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5808  * flush dependency, a concurrency managed work item which stays RUNNING
5809  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5810  * usual warning mechanisms don't trigger and internal workqueue state is
5811  * largely opaque.
5812  *
5813  * Workqueue watchdog monitors all worker pools periodically and dumps
5814  * state if some pools failed to make forward progress for a while where
5815  * forward progress is defined as the first item on ->worklist changing.
5816  *
5817  * This mechanism is controlled through the kernel parameter
5818  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5819  * corresponding sysfs parameter file.
5820  */
5821 #ifdef CONFIG_WQ_WATCHDOG
5822 
5823 static unsigned long wq_watchdog_thresh = 30;
5824 static struct timer_list wq_watchdog_timer;
5825 
5826 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5827 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5828 
5829 static void wq_watchdog_reset_touched(void)
5830 {
5831 	int cpu;
5832 
5833 	wq_watchdog_touched = jiffies;
5834 	for_each_possible_cpu(cpu)
5835 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5836 }
5837 
5838 static void wq_watchdog_timer_fn(struct timer_list *unused)
5839 {
5840 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5841 	bool lockup_detected = false;
5842 	unsigned long now = jiffies;
5843 	struct worker_pool *pool;
5844 	int pi;
5845 
5846 	if (!thresh)
5847 		return;
5848 
5849 	rcu_read_lock();
5850 
5851 	for_each_pool(pool, pi) {
5852 		unsigned long pool_ts, touched, ts;
5853 
5854 		if (list_empty(&pool->worklist))
5855 			continue;
5856 
5857 		/*
5858 		 * If a virtual machine is stopped by the host it can look to
5859 		 * the watchdog like a stall.
5860 		 */
5861 		kvm_check_and_clear_guest_paused();
5862 
5863 		/* get the latest of pool and touched timestamps */
5864 		if (pool->cpu >= 0)
5865 			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
5866 		else
5867 			touched = READ_ONCE(wq_watchdog_touched);
5868 		pool_ts = READ_ONCE(pool->watchdog_ts);
5869 
5870 		if (time_after(pool_ts, touched))
5871 			ts = pool_ts;
5872 		else
5873 			ts = touched;
5874 
5875 		/* did we stall? */
5876 		if (time_after(now, ts + thresh)) {
5877 			lockup_detected = true;
5878 			pr_emerg("BUG: workqueue lockup - pool");
5879 			pr_cont_pool_info(pool);
5880 			pr_cont(" stuck for %us!\n",
5881 				jiffies_to_msecs(now - pool_ts) / 1000);
5882 		}
5883 	}
5884 
5885 	rcu_read_unlock();
5886 
5887 	if (lockup_detected)
5888 		show_all_workqueues();
5889 
5890 	wq_watchdog_reset_touched();
5891 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5892 }
5893 
5894 notrace void wq_watchdog_touch(int cpu)
5895 {
5896 	if (cpu >= 0)
5897 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5898 
5899 	wq_watchdog_touched = jiffies;
5900 }
5901 
5902 static void wq_watchdog_set_thresh(unsigned long thresh)
5903 {
5904 	wq_watchdog_thresh = 0;
5905 	del_timer_sync(&wq_watchdog_timer);
5906 
5907 	if (thresh) {
5908 		wq_watchdog_thresh = thresh;
5909 		wq_watchdog_reset_touched();
5910 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5911 	}
5912 }
5913 
5914 static int wq_watchdog_param_set_thresh(const char *val,
5915 					const struct kernel_param *kp)
5916 {
5917 	unsigned long thresh;
5918 	int ret;
5919 
5920 	ret = kstrtoul(val, 0, &thresh);
5921 	if (ret)
5922 		return ret;
5923 
5924 	if (system_wq)
5925 		wq_watchdog_set_thresh(thresh);
5926 	else
5927 		wq_watchdog_thresh = thresh;
5928 
5929 	return 0;
5930 }
5931 
5932 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5933 	.set	= wq_watchdog_param_set_thresh,
5934 	.get	= param_get_ulong,
5935 };
5936 
5937 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5938 		0644);
5939 
5940 static void wq_watchdog_init(void)
5941 {
5942 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5943 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5944 }
5945 
5946 #else	/* CONFIG_WQ_WATCHDOG */
5947 
5948 static inline void wq_watchdog_init(void) { }
5949 
5950 #endif	/* CONFIG_WQ_WATCHDOG */
5951 
5952 static void __init wq_numa_init(void)
5953 {
5954 	cpumask_var_t *tbl;
5955 	int node, cpu;
5956 
5957 	if (num_possible_nodes() <= 1)
5958 		return;
5959 
5960 	if (wq_disable_numa) {
5961 		pr_info("workqueue: NUMA affinity support disabled\n");
5962 		return;
5963 	}
5964 
5965 	for_each_possible_cpu(cpu) {
5966 		if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
5967 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5968 			return;
5969 		}
5970 	}
5971 
5972 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5973 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5974 
5975 	/*
5976 	 * We want masks of possible CPUs of each node which isn't readily
5977 	 * available.  Build one from cpu_to_node() which should have been
5978 	 * fully initialized by now.
5979 	 */
5980 	tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5981 	BUG_ON(!tbl);
5982 
5983 	for_each_node(node)
5984 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5985 				node_online(node) ? node : NUMA_NO_NODE));
5986 
5987 	for_each_possible_cpu(cpu) {
5988 		node = cpu_to_node(cpu);
5989 		cpumask_set_cpu(cpu, tbl[node]);
5990 	}
5991 
5992 	wq_numa_possible_cpumask = tbl;
5993 	wq_numa_enabled = true;
5994 }
5995 
5996 /**
5997  * workqueue_init_early - early init for workqueue subsystem
5998  *
5999  * This is the first half of two-staged workqueue subsystem initialization
6000  * and invoked as soon as the bare basics - memory allocation, cpumasks and
6001  * idr are up.  It sets up all the data structures and system workqueues
6002  * and allows early boot code to create workqueues and queue/cancel work
6003  * items.  Actual work item execution starts only after kthreads can be
6004  * created and scheduled right before early initcalls.
6005  */
6006 void __init workqueue_init_early(void)
6007 {
6008 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
6009 	int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
6010 	int i, cpu;
6011 
6012 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
6013 
6014 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
6015 	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
6016 
6017 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
6018 
6019 	/* initialize CPU pools */
6020 	for_each_possible_cpu(cpu) {
6021 		struct worker_pool *pool;
6022 
6023 		i = 0;
6024 		for_each_cpu_worker_pool(pool, cpu) {
6025 			BUG_ON(init_worker_pool(pool));
6026 			pool->cpu = cpu;
6027 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
6028 			pool->attrs->nice = std_nice[i++];
6029 			pool->node = cpu_to_node(cpu);
6030 
6031 			/* alloc pool ID */
6032 			mutex_lock(&wq_pool_mutex);
6033 			BUG_ON(worker_pool_assign_id(pool));
6034 			mutex_unlock(&wq_pool_mutex);
6035 		}
6036 	}
6037 
6038 	/* create default unbound and ordered wq attrs */
6039 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6040 		struct workqueue_attrs *attrs;
6041 
6042 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6043 		attrs->nice = std_nice[i];
6044 		unbound_std_wq_attrs[i] = attrs;
6045 
6046 		/*
6047 		 * An ordered wq should have only one pwq as ordering is
6048 		 * guaranteed by max_active which is enforced by pwqs.
6049 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
6050 		 */
6051 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6052 		attrs->nice = std_nice[i];
6053 		attrs->no_numa = true;
6054 		ordered_wq_attrs[i] = attrs;
6055 	}
6056 
6057 	system_wq = alloc_workqueue("events", 0, 0);
6058 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6059 	system_long_wq = alloc_workqueue("events_long", 0, 0);
6060 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6061 					    WQ_UNBOUND_MAX_ACTIVE);
6062 	system_freezable_wq = alloc_workqueue("events_freezable",
6063 					      WQ_FREEZABLE, 0);
6064 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6065 					      WQ_POWER_EFFICIENT, 0);
6066 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6067 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6068 					      0);
6069 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6070 	       !system_unbound_wq || !system_freezable_wq ||
6071 	       !system_power_efficient_wq ||
6072 	       !system_freezable_power_efficient_wq);
6073 }
6074 
6075 /**
6076  * workqueue_init - bring workqueue subsystem fully online
6077  *
6078  * This is the latter half of two-staged workqueue subsystem initialization
6079  * and invoked as soon as kthreads can be created and scheduled.
6080  * Workqueues have been created and work items queued on them, but there
6081  * are no kworkers executing the work items yet.  Populate the worker pools
6082  * with the initial workers and enable future kworker creations.
6083  */
6084 void __init workqueue_init(void)
6085 {
6086 	struct workqueue_struct *wq;
6087 	struct worker_pool *pool;
6088 	int cpu, bkt;
6089 
6090 	/*
6091 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6092 	 * CPU to node mapping may not be available that early on some
6093 	 * archs such as power and arm64.  As per-cpu pools created
6094 	 * previously could be missing node hint and unbound pools NUMA
6095 	 * affinity, fix them up.
6096 	 *
6097 	 * Also, while iterating workqueues, create rescuers if requested.
6098 	 */
6099 	wq_numa_init();
6100 
6101 	mutex_lock(&wq_pool_mutex);
6102 
6103 	for_each_possible_cpu(cpu) {
6104 		for_each_cpu_worker_pool(pool, cpu) {
6105 			pool->node = cpu_to_node(cpu);
6106 		}
6107 	}
6108 
6109 	list_for_each_entry(wq, &workqueues, list) {
6110 		wq_update_unbound_numa(wq, smp_processor_id(), true);
6111 		WARN(init_rescuer(wq),
6112 		     "workqueue: failed to create early rescuer for %s",
6113 		     wq->name);
6114 	}
6115 
6116 	mutex_unlock(&wq_pool_mutex);
6117 
6118 	/* create the initial workers */
6119 	for_each_online_cpu(cpu) {
6120 		for_each_cpu_worker_pool(pool, cpu) {
6121 			pool->flags &= ~POOL_DISASSOCIATED;
6122 			BUG_ON(!create_worker(pool));
6123 		}
6124 	}
6125 
6126 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6127 		BUG_ON(!create_worker(pool));
6128 
6129 	wq_online = true;
6130 	wq_watchdog_init();
6131 }
6132