1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 5 * Copyright (C) 2002 Ingo Molnar 6 * 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <dwmw2@infradead.org> 9 * Andrew Morton 10 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 11 * Theodore Ts'o <tytso@mit.edu> 12 * 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 17 * 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 24 * 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 27 28 #include <linux/export.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 32 #include <linux/signal.h> 33 #include <linux/completion.h> 34 #include <linux/workqueue.h> 35 #include <linux/slab.h> 36 #include <linux/cpu.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/hardirq.h> 40 #include <linux/mempolicy.h> 41 #include <linux/freezer.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 #include <linux/sched/isolation.h> 52 #include <linux/nmi.h> 53 #include <linux/kvm_para.h> 54 55 #include "workqueue_internal.h" 56 57 enum { 58 /* 59 * worker_pool flags 60 * 61 * A bound pool is either associated or disassociated with its CPU. 62 * While associated (!DISASSOCIATED), all workers are bound to the 63 * CPU and none has %WORKER_UNBOUND set and concurrency management 64 * is in effect. 65 * 66 * While DISASSOCIATED, the cpu may be offline and all workers have 67 * %WORKER_UNBOUND set and concurrency management disabled, and may 68 * be executing on any CPU. The pool behaves as an unbound one. 69 * 70 * Note that DISASSOCIATED should be flipped only while holding 71 * wq_pool_attach_mutex to avoid changing binding state while 72 * worker_attach_to_pool() is in progress. 73 */ 74 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */ 75 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 76 77 /* worker flags */ 78 WORKER_DIE = 1 << 1, /* die die die */ 79 WORKER_IDLE = 1 << 2, /* is idle */ 80 WORKER_PREP = 1 << 3, /* preparing to run works */ 81 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 82 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 83 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 84 85 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 86 WORKER_UNBOUND | WORKER_REBOUND, 87 88 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 89 90 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 91 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 92 93 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 94 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 95 96 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 97 /* call for help after 10ms 98 (min two ticks) */ 99 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 100 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 101 102 /* 103 * Rescue workers are used only on emergencies and shared by 104 * all cpus. Give MIN_NICE. 105 */ 106 RESCUER_NICE_LEVEL = MIN_NICE, 107 HIGHPRI_NICE_LEVEL = MIN_NICE, 108 109 WQ_NAME_LEN = 24, 110 }; 111 112 /* 113 * Structure fields follow one of the following exclusion rules. 114 * 115 * I: Modifiable by initialization/destruction paths and read-only for 116 * everyone else. 117 * 118 * P: Preemption protected. Disabling preemption is enough and should 119 * only be modified and accessed from the local cpu. 120 * 121 * L: pool->lock protected. Access with pool->lock held. 122 * 123 * X: During normal operation, modification requires pool->lock and should 124 * be done only from local cpu. Either disabling preemption on local 125 * cpu or grabbing pool->lock is enough for read access. If 126 * POOL_DISASSOCIATED is set, it's identical to L. 127 * 128 * A: wq_pool_attach_mutex protected. 129 * 130 * PL: wq_pool_mutex protected. 131 * 132 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 133 * 134 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 135 * 136 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 137 * RCU for reads. 138 * 139 * WQ: wq->mutex protected. 140 * 141 * WR: wq->mutex protected for writes. RCU protected for reads. 142 * 143 * MD: wq_mayday_lock protected. 144 */ 145 146 /* struct worker is defined in workqueue_internal.h */ 147 148 struct worker_pool { 149 raw_spinlock_t lock; /* the pool lock */ 150 int cpu; /* I: the associated cpu */ 151 int node; /* I: the associated node ID */ 152 int id; /* I: pool ID */ 153 unsigned int flags; /* X: flags */ 154 155 unsigned long watchdog_ts; /* L: watchdog timestamp */ 156 157 /* The current concurrency level. */ 158 atomic_t nr_running; 159 160 struct list_head worklist; /* L: list of pending works */ 161 162 int nr_workers; /* L: total number of workers */ 163 int nr_idle; /* L: currently idle workers */ 164 165 struct list_head idle_list; /* X: list of idle workers */ 166 struct timer_list idle_timer; /* L: worker idle timeout */ 167 struct timer_list mayday_timer; /* L: SOS timer for workers */ 168 169 /* a workers is either on busy_hash or idle_list, or the manager */ 170 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 171 /* L: hash of busy workers */ 172 173 struct worker *manager; /* L: purely informational */ 174 struct list_head workers; /* A: attached workers */ 175 struct completion *detach_completion; /* all workers detached */ 176 177 struct ida worker_ida; /* worker IDs for task name */ 178 179 struct workqueue_attrs *attrs; /* I: worker attributes */ 180 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 181 int refcnt; /* PL: refcnt for unbound pools */ 182 183 /* 184 * Destruction of pool is RCU protected to allow dereferences 185 * from get_work_pool(). 186 */ 187 struct rcu_head rcu; 188 }; 189 190 /* 191 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 192 * of work_struct->data are used for flags and the remaining high bits 193 * point to the pwq; thus, pwqs need to be aligned at two's power of the 194 * number of flag bits. 195 */ 196 struct pool_workqueue { 197 struct worker_pool *pool; /* I: the associated pool */ 198 struct workqueue_struct *wq; /* I: the owning workqueue */ 199 int work_color; /* L: current color */ 200 int flush_color; /* L: flushing color */ 201 int refcnt; /* L: reference count */ 202 int nr_in_flight[WORK_NR_COLORS]; 203 /* L: nr of in_flight works */ 204 205 /* 206 * nr_active management and WORK_STRUCT_INACTIVE: 207 * 208 * When pwq->nr_active >= max_active, new work item is queued to 209 * pwq->inactive_works instead of pool->worklist and marked with 210 * WORK_STRUCT_INACTIVE. 211 * 212 * All work items marked with WORK_STRUCT_INACTIVE do not participate 213 * in pwq->nr_active and all work items in pwq->inactive_works are 214 * marked with WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE 215 * work items are in pwq->inactive_works. Some of them are ready to 216 * run in pool->worklist or worker->scheduled. Those work itmes are 217 * only struct wq_barrier which is used for flush_work() and should 218 * not participate in pwq->nr_active. For non-barrier work item, it 219 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works. 220 */ 221 int nr_active; /* L: nr of active works */ 222 int max_active; /* L: max active works */ 223 struct list_head inactive_works; /* L: inactive works */ 224 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 225 struct list_head mayday_node; /* MD: node on wq->maydays */ 226 227 /* 228 * Release of unbound pwq is punted to system_wq. See put_pwq() 229 * and pwq_unbound_release_workfn() for details. pool_workqueue 230 * itself is also RCU protected so that the first pwq can be 231 * determined without grabbing wq->mutex. 232 */ 233 struct work_struct unbound_release_work; 234 struct rcu_head rcu; 235 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 236 237 /* 238 * Structure used to wait for workqueue flush. 239 */ 240 struct wq_flusher { 241 struct list_head list; /* WQ: list of flushers */ 242 int flush_color; /* WQ: flush color waiting for */ 243 struct completion done; /* flush completion */ 244 }; 245 246 struct wq_device; 247 248 /* 249 * The externally visible workqueue. It relays the issued work items to 250 * the appropriate worker_pool through its pool_workqueues. 251 */ 252 struct workqueue_struct { 253 struct list_head pwqs; /* WR: all pwqs of this wq */ 254 struct list_head list; /* PR: list of all workqueues */ 255 256 struct mutex mutex; /* protects this wq */ 257 int work_color; /* WQ: current work color */ 258 int flush_color; /* WQ: current flush color */ 259 atomic_t nr_pwqs_to_flush; /* flush in progress */ 260 struct wq_flusher *first_flusher; /* WQ: first flusher */ 261 struct list_head flusher_queue; /* WQ: flush waiters */ 262 struct list_head flusher_overflow; /* WQ: flush overflow list */ 263 264 struct list_head maydays; /* MD: pwqs requesting rescue */ 265 struct worker *rescuer; /* MD: rescue worker */ 266 267 int nr_drainers; /* WQ: drain in progress */ 268 int saved_max_active; /* WQ: saved pwq max_active */ 269 270 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 271 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 272 273 #ifdef CONFIG_SYSFS 274 struct wq_device *wq_dev; /* I: for sysfs interface */ 275 #endif 276 #ifdef CONFIG_LOCKDEP 277 char *lock_name; 278 struct lock_class_key key; 279 struct lockdep_map lockdep_map; 280 #endif 281 char name[WQ_NAME_LEN]; /* I: workqueue name */ 282 283 /* 284 * Destruction of workqueue_struct is RCU protected to allow walking 285 * the workqueues list without grabbing wq_pool_mutex. 286 * This is used to dump all workqueues from sysrq. 287 */ 288 struct rcu_head rcu; 289 290 /* hot fields used during command issue, aligned to cacheline */ 291 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 292 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 293 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 294 }; 295 296 static struct kmem_cache *pwq_cache; 297 298 static cpumask_var_t *wq_numa_possible_cpumask; 299 /* possible CPUs of each node */ 300 301 static bool wq_disable_numa; 302 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 303 304 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 305 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 306 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 307 308 static bool wq_online; /* can kworkers be created yet? */ 309 310 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 311 312 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 313 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 314 315 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 316 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 317 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 318 /* wait for manager to go away */ 319 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait); 320 321 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 322 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 323 324 /* PL: allowable cpus for unbound wqs and work items */ 325 static cpumask_var_t wq_unbound_cpumask; 326 327 /* CPU where unbound work was last round robin scheduled from this CPU */ 328 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 329 330 /* 331 * Local execution of unbound work items is no longer guaranteed. The 332 * following always forces round-robin CPU selection on unbound work items 333 * to uncover usages which depend on it. 334 */ 335 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 336 static bool wq_debug_force_rr_cpu = true; 337 #else 338 static bool wq_debug_force_rr_cpu = false; 339 #endif 340 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 341 342 /* the per-cpu worker pools */ 343 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 344 345 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 346 347 /* PL: hash of all unbound pools keyed by pool->attrs */ 348 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 349 350 /* I: attributes used when instantiating standard unbound pools on demand */ 351 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 352 353 /* I: attributes used when instantiating ordered pools on demand */ 354 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 355 356 struct workqueue_struct *system_wq __read_mostly; 357 EXPORT_SYMBOL(system_wq); 358 struct workqueue_struct *system_highpri_wq __read_mostly; 359 EXPORT_SYMBOL_GPL(system_highpri_wq); 360 struct workqueue_struct *system_long_wq __read_mostly; 361 EXPORT_SYMBOL_GPL(system_long_wq); 362 struct workqueue_struct *system_unbound_wq __read_mostly; 363 EXPORT_SYMBOL_GPL(system_unbound_wq); 364 struct workqueue_struct *system_freezable_wq __read_mostly; 365 EXPORT_SYMBOL_GPL(system_freezable_wq); 366 struct workqueue_struct *system_power_efficient_wq __read_mostly; 367 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 368 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 369 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 370 371 static int worker_thread(void *__worker); 372 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 373 static void show_pwq(struct pool_workqueue *pwq); 374 static void show_one_worker_pool(struct worker_pool *pool); 375 376 #define CREATE_TRACE_POINTS 377 #include <trace/events/workqueue.h> 378 379 #define assert_rcu_or_pool_mutex() \ 380 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 381 !lockdep_is_held(&wq_pool_mutex), \ 382 "RCU or wq_pool_mutex should be held") 383 384 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 385 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 386 !lockdep_is_held(&wq->mutex) && \ 387 !lockdep_is_held(&wq_pool_mutex), \ 388 "RCU, wq->mutex or wq_pool_mutex should be held") 389 390 #define for_each_cpu_worker_pool(pool, cpu) \ 391 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 392 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 393 (pool)++) 394 395 /** 396 * for_each_pool - iterate through all worker_pools in the system 397 * @pool: iteration cursor 398 * @pi: integer used for iteration 399 * 400 * This must be called either with wq_pool_mutex held or RCU read 401 * locked. If the pool needs to be used beyond the locking in effect, the 402 * caller is responsible for guaranteeing that the pool stays online. 403 * 404 * The if/else clause exists only for the lockdep assertion and can be 405 * ignored. 406 */ 407 #define for_each_pool(pool, pi) \ 408 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 409 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 410 else 411 412 /** 413 * for_each_pool_worker - iterate through all workers of a worker_pool 414 * @worker: iteration cursor 415 * @pool: worker_pool to iterate workers of 416 * 417 * This must be called with wq_pool_attach_mutex. 418 * 419 * The if/else clause exists only for the lockdep assertion and can be 420 * ignored. 421 */ 422 #define for_each_pool_worker(worker, pool) \ 423 list_for_each_entry((worker), &(pool)->workers, node) \ 424 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 425 else 426 427 /** 428 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 429 * @pwq: iteration cursor 430 * @wq: the target workqueue 431 * 432 * This must be called either with wq->mutex held or RCU read locked. 433 * If the pwq needs to be used beyond the locking in effect, the caller is 434 * responsible for guaranteeing that the pwq stays online. 435 * 436 * The if/else clause exists only for the lockdep assertion and can be 437 * ignored. 438 */ 439 #define for_each_pwq(pwq, wq) \ 440 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ 441 lockdep_is_held(&(wq->mutex))) 442 443 #ifdef CONFIG_DEBUG_OBJECTS_WORK 444 445 static const struct debug_obj_descr work_debug_descr; 446 447 static void *work_debug_hint(void *addr) 448 { 449 return ((struct work_struct *) addr)->func; 450 } 451 452 static bool work_is_static_object(void *addr) 453 { 454 struct work_struct *work = addr; 455 456 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 457 } 458 459 /* 460 * fixup_init is called when: 461 * - an active object is initialized 462 */ 463 static bool work_fixup_init(void *addr, enum debug_obj_state state) 464 { 465 struct work_struct *work = addr; 466 467 switch (state) { 468 case ODEBUG_STATE_ACTIVE: 469 cancel_work_sync(work); 470 debug_object_init(work, &work_debug_descr); 471 return true; 472 default: 473 return false; 474 } 475 } 476 477 /* 478 * fixup_free is called when: 479 * - an active object is freed 480 */ 481 static bool work_fixup_free(void *addr, enum debug_obj_state state) 482 { 483 struct work_struct *work = addr; 484 485 switch (state) { 486 case ODEBUG_STATE_ACTIVE: 487 cancel_work_sync(work); 488 debug_object_free(work, &work_debug_descr); 489 return true; 490 default: 491 return false; 492 } 493 } 494 495 static const struct debug_obj_descr work_debug_descr = { 496 .name = "work_struct", 497 .debug_hint = work_debug_hint, 498 .is_static_object = work_is_static_object, 499 .fixup_init = work_fixup_init, 500 .fixup_free = work_fixup_free, 501 }; 502 503 static inline void debug_work_activate(struct work_struct *work) 504 { 505 debug_object_activate(work, &work_debug_descr); 506 } 507 508 static inline void debug_work_deactivate(struct work_struct *work) 509 { 510 debug_object_deactivate(work, &work_debug_descr); 511 } 512 513 void __init_work(struct work_struct *work, int onstack) 514 { 515 if (onstack) 516 debug_object_init_on_stack(work, &work_debug_descr); 517 else 518 debug_object_init(work, &work_debug_descr); 519 } 520 EXPORT_SYMBOL_GPL(__init_work); 521 522 void destroy_work_on_stack(struct work_struct *work) 523 { 524 debug_object_free(work, &work_debug_descr); 525 } 526 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 527 528 void destroy_delayed_work_on_stack(struct delayed_work *work) 529 { 530 destroy_timer_on_stack(&work->timer); 531 debug_object_free(&work->work, &work_debug_descr); 532 } 533 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 534 535 #else 536 static inline void debug_work_activate(struct work_struct *work) { } 537 static inline void debug_work_deactivate(struct work_struct *work) { } 538 #endif 539 540 /** 541 * worker_pool_assign_id - allocate ID and assign it to @pool 542 * @pool: the pool pointer of interest 543 * 544 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 545 * successfully, -errno on failure. 546 */ 547 static int worker_pool_assign_id(struct worker_pool *pool) 548 { 549 int ret; 550 551 lockdep_assert_held(&wq_pool_mutex); 552 553 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 554 GFP_KERNEL); 555 if (ret >= 0) { 556 pool->id = ret; 557 return 0; 558 } 559 return ret; 560 } 561 562 /** 563 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 564 * @wq: the target workqueue 565 * @node: the node ID 566 * 567 * This must be called with any of wq_pool_mutex, wq->mutex or RCU 568 * read locked. 569 * If the pwq needs to be used beyond the locking in effect, the caller is 570 * responsible for guaranteeing that the pwq stays online. 571 * 572 * Return: The unbound pool_workqueue for @node. 573 */ 574 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 575 int node) 576 { 577 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 578 579 /* 580 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a 581 * delayed item is pending. The plan is to keep CPU -> NODE 582 * mapping valid and stable across CPU on/offlines. Once that 583 * happens, this workaround can be removed. 584 */ 585 if (unlikely(node == NUMA_NO_NODE)) 586 return wq->dfl_pwq; 587 588 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 589 } 590 591 static unsigned int work_color_to_flags(int color) 592 { 593 return color << WORK_STRUCT_COLOR_SHIFT; 594 } 595 596 static int get_work_color(unsigned long work_data) 597 { 598 return (work_data >> WORK_STRUCT_COLOR_SHIFT) & 599 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 600 } 601 602 static int work_next_color(int color) 603 { 604 return (color + 1) % WORK_NR_COLORS; 605 } 606 607 /* 608 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 609 * contain the pointer to the queued pwq. Once execution starts, the flag 610 * is cleared and the high bits contain OFFQ flags and pool ID. 611 * 612 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 613 * and clear_work_data() can be used to set the pwq, pool or clear 614 * work->data. These functions should only be called while the work is 615 * owned - ie. while the PENDING bit is set. 616 * 617 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 618 * corresponding to a work. Pool is available once the work has been 619 * queued anywhere after initialization until it is sync canceled. pwq is 620 * available only while the work item is queued. 621 * 622 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 623 * canceled. While being canceled, a work item may have its PENDING set 624 * but stay off timer and worklist for arbitrarily long and nobody should 625 * try to steal the PENDING bit. 626 */ 627 static inline void set_work_data(struct work_struct *work, unsigned long data, 628 unsigned long flags) 629 { 630 WARN_ON_ONCE(!work_pending(work)); 631 atomic_long_set(&work->data, data | flags | work_static(work)); 632 } 633 634 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 635 unsigned long extra_flags) 636 { 637 set_work_data(work, (unsigned long)pwq, 638 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 639 } 640 641 static void set_work_pool_and_keep_pending(struct work_struct *work, 642 int pool_id) 643 { 644 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 645 WORK_STRUCT_PENDING); 646 } 647 648 static void set_work_pool_and_clear_pending(struct work_struct *work, 649 int pool_id) 650 { 651 /* 652 * The following wmb is paired with the implied mb in 653 * test_and_set_bit(PENDING) and ensures all updates to @work made 654 * here are visible to and precede any updates by the next PENDING 655 * owner. 656 */ 657 smp_wmb(); 658 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 659 /* 660 * The following mb guarantees that previous clear of a PENDING bit 661 * will not be reordered with any speculative LOADS or STORES from 662 * work->current_func, which is executed afterwards. This possible 663 * reordering can lead to a missed execution on attempt to queue 664 * the same @work. E.g. consider this case: 665 * 666 * CPU#0 CPU#1 667 * ---------------------------- -------------------------------- 668 * 669 * 1 STORE event_indicated 670 * 2 queue_work_on() { 671 * 3 test_and_set_bit(PENDING) 672 * 4 } set_..._and_clear_pending() { 673 * 5 set_work_data() # clear bit 674 * 6 smp_mb() 675 * 7 work->current_func() { 676 * 8 LOAD event_indicated 677 * } 678 * 679 * Without an explicit full barrier speculative LOAD on line 8 can 680 * be executed before CPU#0 does STORE on line 1. If that happens, 681 * CPU#0 observes the PENDING bit is still set and new execution of 682 * a @work is not queued in a hope, that CPU#1 will eventually 683 * finish the queued @work. Meanwhile CPU#1 does not see 684 * event_indicated is set, because speculative LOAD was executed 685 * before actual STORE. 686 */ 687 smp_mb(); 688 } 689 690 static void clear_work_data(struct work_struct *work) 691 { 692 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 693 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 694 } 695 696 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 697 { 698 unsigned long data = atomic_long_read(&work->data); 699 700 if (data & WORK_STRUCT_PWQ) 701 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 702 else 703 return NULL; 704 } 705 706 /** 707 * get_work_pool - return the worker_pool a given work was associated with 708 * @work: the work item of interest 709 * 710 * Pools are created and destroyed under wq_pool_mutex, and allows read 711 * access under RCU read lock. As such, this function should be 712 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 713 * 714 * All fields of the returned pool are accessible as long as the above 715 * mentioned locking is in effect. If the returned pool needs to be used 716 * beyond the critical section, the caller is responsible for ensuring the 717 * returned pool is and stays online. 718 * 719 * Return: The worker_pool @work was last associated with. %NULL if none. 720 */ 721 static struct worker_pool *get_work_pool(struct work_struct *work) 722 { 723 unsigned long data = atomic_long_read(&work->data); 724 int pool_id; 725 726 assert_rcu_or_pool_mutex(); 727 728 if (data & WORK_STRUCT_PWQ) 729 return ((struct pool_workqueue *) 730 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 731 732 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 733 if (pool_id == WORK_OFFQ_POOL_NONE) 734 return NULL; 735 736 return idr_find(&worker_pool_idr, pool_id); 737 } 738 739 /** 740 * get_work_pool_id - return the worker pool ID a given work is associated with 741 * @work: the work item of interest 742 * 743 * Return: The worker_pool ID @work was last associated with. 744 * %WORK_OFFQ_POOL_NONE if none. 745 */ 746 static int get_work_pool_id(struct work_struct *work) 747 { 748 unsigned long data = atomic_long_read(&work->data); 749 750 if (data & WORK_STRUCT_PWQ) 751 return ((struct pool_workqueue *) 752 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 753 754 return data >> WORK_OFFQ_POOL_SHIFT; 755 } 756 757 static void mark_work_canceling(struct work_struct *work) 758 { 759 unsigned long pool_id = get_work_pool_id(work); 760 761 pool_id <<= WORK_OFFQ_POOL_SHIFT; 762 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 763 } 764 765 static bool work_is_canceling(struct work_struct *work) 766 { 767 unsigned long data = atomic_long_read(&work->data); 768 769 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 770 } 771 772 /* 773 * Policy functions. These define the policies on how the global worker 774 * pools are managed. Unless noted otherwise, these functions assume that 775 * they're being called with pool->lock held. 776 */ 777 778 static bool __need_more_worker(struct worker_pool *pool) 779 { 780 return !atomic_read(&pool->nr_running); 781 } 782 783 /* 784 * Need to wake up a worker? Called from anything but currently 785 * running workers. 786 * 787 * Note that, because unbound workers never contribute to nr_running, this 788 * function will always return %true for unbound pools as long as the 789 * worklist isn't empty. 790 */ 791 static bool need_more_worker(struct worker_pool *pool) 792 { 793 return !list_empty(&pool->worklist) && __need_more_worker(pool); 794 } 795 796 /* Can I start working? Called from busy but !running workers. */ 797 static bool may_start_working(struct worker_pool *pool) 798 { 799 return pool->nr_idle; 800 } 801 802 /* Do I need to keep working? Called from currently running workers. */ 803 static bool keep_working(struct worker_pool *pool) 804 { 805 return !list_empty(&pool->worklist) && 806 atomic_read(&pool->nr_running) <= 1; 807 } 808 809 /* Do we need a new worker? Called from manager. */ 810 static bool need_to_create_worker(struct worker_pool *pool) 811 { 812 return need_more_worker(pool) && !may_start_working(pool); 813 } 814 815 /* Do we have too many workers and should some go away? */ 816 static bool too_many_workers(struct worker_pool *pool) 817 { 818 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 819 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 820 int nr_busy = pool->nr_workers - nr_idle; 821 822 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 823 } 824 825 /* 826 * Wake up functions. 827 */ 828 829 /* Return the first idle worker. Safe with preemption disabled */ 830 static struct worker *first_idle_worker(struct worker_pool *pool) 831 { 832 if (unlikely(list_empty(&pool->idle_list))) 833 return NULL; 834 835 return list_first_entry(&pool->idle_list, struct worker, entry); 836 } 837 838 /** 839 * wake_up_worker - wake up an idle worker 840 * @pool: worker pool to wake worker from 841 * 842 * Wake up the first idle worker of @pool. 843 * 844 * CONTEXT: 845 * raw_spin_lock_irq(pool->lock). 846 */ 847 static void wake_up_worker(struct worker_pool *pool) 848 { 849 struct worker *worker = first_idle_worker(pool); 850 851 if (likely(worker)) 852 wake_up_process(worker->task); 853 } 854 855 /** 856 * wq_worker_running - a worker is running again 857 * @task: task waking up 858 * 859 * This function is called when a worker returns from schedule() 860 */ 861 void wq_worker_running(struct task_struct *task) 862 { 863 struct worker *worker = kthread_data(task); 864 865 if (!worker->sleeping) 866 return; 867 868 /* 869 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check 870 * and the nr_running increment below, we may ruin the nr_running reset 871 * and leave with an unexpected pool->nr_running == 1 on the newly unbound 872 * pool. Protect against such race. 873 */ 874 preempt_disable(); 875 if (!(worker->flags & WORKER_NOT_RUNNING)) 876 atomic_inc(&worker->pool->nr_running); 877 preempt_enable(); 878 worker->sleeping = 0; 879 } 880 881 /** 882 * wq_worker_sleeping - a worker is going to sleep 883 * @task: task going to sleep 884 * 885 * This function is called from schedule() when a busy worker is 886 * going to sleep. 887 */ 888 void wq_worker_sleeping(struct task_struct *task) 889 { 890 struct worker *next, *worker = kthread_data(task); 891 struct worker_pool *pool; 892 893 /* 894 * Rescuers, which may not have all the fields set up like normal 895 * workers, also reach here, let's not access anything before 896 * checking NOT_RUNNING. 897 */ 898 if (worker->flags & WORKER_NOT_RUNNING) 899 return; 900 901 pool = worker->pool; 902 903 /* Return if preempted before wq_worker_running() was reached */ 904 if (worker->sleeping) 905 return; 906 907 worker->sleeping = 1; 908 raw_spin_lock_irq(&pool->lock); 909 910 /* 911 * Recheck in case unbind_workers() preempted us. We don't 912 * want to decrement nr_running after the worker is unbound 913 * and nr_running has been reset. 914 */ 915 if (worker->flags & WORKER_NOT_RUNNING) { 916 raw_spin_unlock_irq(&pool->lock); 917 return; 918 } 919 920 /* 921 * The counterpart of the following dec_and_test, implied mb, 922 * worklist not empty test sequence is in insert_work(). 923 * Please read comment there. 924 * 925 * NOT_RUNNING is clear. This means that we're bound to and 926 * running on the local cpu w/ rq lock held and preemption 927 * disabled, which in turn means that none else could be 928 * manipulating idle_list, so dereferencing idle_list without pool 929 * lock is safe. 930 */ 931 if (atomic_dec_and_test(&pool->nr_running) && 932 !list_empty(&pool->worklist)) { 933 next = first_idle_worker(pool); 934 if (next) 935 wake_up_process(next->task); 936 } 937 raw_spin_unlock_irq(&pool->lock); 938 } 939 940 /** 941 * wq_worker_last_func - retrieve worker's last work function 942 * @task: Task to retrieve last work function of. 943 * 944 * Determine the last function a worker executed. This is called from 945 * the scheduler to get a worker's last known identity. 946 * 947 * CONTEXT: 948 * raw_spin_lock_irq(rq->lock) 949 * 950 * This function is called during schedule() when a kworker is going 951 * to sleep. It's used by psi to identify aggregation workers during 952 * dequeuing, to allow periodic aggregation to shut-off when that 953 * worker is the last task in the system or cgroup to go to sleep. 954 * 955 * As this function doesn't involve any workqueue-related locking, it 956 * only returns stable values when called from inside the scheduler's 957 * queuing and dequeuing paths, when @task, which must be a kworker, 958 * is guaranteed to not be processing any works. 959 * 960 * Return: 961 * The last work function %current executed as a worker, NULL if it 962 * hasn't executed any work yet. 963 */ 964 work_func_t wq_worker_last_func(struct task_struct *task) 965 { 966 struct worker *worker = kthread_data(task); 967 968 return worker->last_func; 969 } 970 971 /** 972 * worker_set_flags - set worker flags and adjust nr_running accordingly 973 * @worker: self 974 * @flags: flags to set 975 * 976 * Set @flags in @worker->flags and adjust nr_running accordingly. 977 * 978 * CONTEXT: 979 * raw_spin_lock_irq(pool->lock) 980 */ 981 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 982 { 983 struct worker_pool *pool = worker->pool; 984 985 WARN_ON_ONCE(worker->task != current); 986 987 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 988 if ((flags & WORKER_NOT_RUNNING) && 989 !(worker->flags & WORKER_NOT_RUNNING)) { 990 atomic_dec(&pool->nr_running); 991 } 992 993 worker->flags |= flags; 994 } 995 996 /** 997 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 998 * @worker: self 999 * @flags: flags to clear 1000 * 1001 * Clear @flags in @worker->flags and adjust nr_running accordingly. 1002 * 1003 * CONTEXT: 1004 * raw_spin_lock_irq(pool->lock) 1005 */ 1006 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 1007 { 1008 struct worker_pool *pool = worker->pool; 1009 unsigned int oflags = worker->flags; 1010 1011 WARN_ON_ONCE(worker->task != current); 1012 1013 worker->flags &= ~flags; 1014 1015 /* 1016 * If transitioning out of NOT_RUNNING, increment nr_running. Note 1017 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 1018 * of multiple flags, not a single flag. 1019 */ 1020 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 1021 if (!(worker->flags & WORKER_NOT_RUNNING)) 1022 atomic_inc(&pool->nr_running); 1023 } 1024 1025 /** 1026 * find_worker_executing_work - find worker which is executing a work 1027 * @pool: pool of interest 1028 * @work: work to find worker for 1029 * 1030 * Find a worker which is executing @work on @pool by searching 1031 * @pool->busy_hash which is keyed by the address of @work. For a worker 1032 * to match, its current execution should match the address of @work and 1033 * its work function. This is to avoid unwanted dependency between 1034 * unrelated work executions through a work item being recycled while still 1035 * being executed. 1036 * 1037 * This is a bit tricky. A work item may be freed once its execution 1038 * starts and nothing prevents the freed area from being recycled for 1039 * another work item. If the same work item address ends up being reused 1040 * before the original execution finishes, workqueue will identify the 1041 * recycled work item as currently executing and make it wait until the 1042 * current execution finishes, introducing an unwanted dependency. 1043 * 1044 * This function checks the work item address and work function to avoid 1045 * false positives. Note that this isn't complete as one may construct a 1046 * work function which can introduce dependency onto itself through a 1047 * recycled work item. Well, if somebody wants to shoot oneself in the 1048 * foot that badly, there's only so much we can do, and if such deadlock 1049 * actually occurs, it should be easy to locate the culprit work function. 1050 * 1051 * CONTEXT: 1052 * raw_spin_lock_irq(pool->lock). 1053 * 1054 * Return: 1055 * Pointer to worker which is executing @work if found, %NULL 1056 * otherwise. 1057 */ 1058 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1059 struct work_struct *work) 1060 { 1061 struct worker *worker; 1062 1063 hash_for_each_possible(pool->busy_hash, worker, hentry, 1064 (unsigned long)work) 1065 if (worker->current_work == work && 1066 worker->current_func == work->func) 1067 return worker; 1068 1069 return NULL; 1070 } 1071 1072 /** 1073 * move_linked_works - move linked works to a list 1074 * @work: start of series of works to be scheduled 1075 * @head: target list to append @work to 1076 * @nextp: out parameter for nested worklist walking 1077 * 1078 * Schedule linked works starting from @work to @head. Work series to 1079 * be scheduled starts at @work and includes any consecutive work with 1080 * WORK_STRUCT_LINKED set in its predecessor. 1081 * 1082 * If @nextp is not NULL, it's updated to point to the next work of 1083 * the last scheduled work. This allows move_linked_works() to be 1084 * nested inside outer list_for_each_entry_safe(). 1085 * 1086 * CONTEXT: 1087 * raw_spin_lock_irq(pool->lock). 1088 */ 1089 static void move_linked_works(struct work_struct *work, struct list_head *head, 1090 struct work_struct **nextp) 1091 { 1092 struct work_struct *n; 1093 1094 /* 1095 * Linked worklist will always end before the end of the list, 1096 * use NULL for list head. 1097 */ 1098 list_for_each_entry_safe_from(work, n, NULL, entry) { 1099 list_move_tail(&work->entry, head); 1100 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1101 break; 1102 } 1103 1104 /* 1105 * If we're already inside safe list traversal and have moved 1106 * multiple works to the scheduled queue, the next position 1107 * needs to be updated. 1108 */ 1109 if (nextp) 1110 *nextp = n; 1111 } 1112 1113 /** 1114 * get_pwq - get an extra reference on the specified pool_workqueue 1115 * @pwq: pool_workqueue to get 1116 * 1117 * Obtain an extra reference on @pwq. The caller should guarantee that 1118 * @pwq has positive refcnt and be holding the matching pool->lock. 1119 */ 1120 static void get_pwq(struct pool_workqueue *pwq) 1121 { 1122 lockdep_assert_held(&pwq->pool->lock); 1123 WARN_ON_ONCE(pwq->refcnt <= 0); 1124 pwq->refcnt++; 1125 } 1126 1127 /** 1128 * put_pwq - put a pool_workqueue reference 1129 * @pwq: pool_workqueue to put 1130 * 1131 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1132 * destruction. The caller should be holding the matching pool->lock. 1133 */ 1134 static void put_pwq(struct pool_workqueue *pwq) 1135 { 1136 lockdep_assert_held(&pwq->pool->lock); 1137 if (likely(--pwq->refcnt)) 1138 return; 1139 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1140 return; 1141 /* 1142 * @pwq can't be released under pool->lock, bounce to 1143 * pwq_unbound_release_workfn(). This never recurses on the same 1144 * pool->lock as this path is taken only for unbound workqueues and 1145 * the release work item is scheduled on a per-cpu workqueue. To 1146 * avoid lockdep warning, unbound pool->locks are given lockdep 1147 * subclass of 1 in get_unbound_pool(). 1148 */ 1149 schedule_work(&pwq->unbound_release_work); 1150 } 1151 1152 /** 1153 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1154 * @pwq: pool_workqueue to put (can be %NULL) 1155 * 1156 * put_pwq() with locking. This function also allows %NULL @pwq. 1157 */ 1158 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1159 { 1160 if (pwq) { 1161 /* 1162 * As both pwqs and pools are RCU protected, the 1163 * following lock operations are safe. 1164 */ 1165 raw_spin_lock_irq(&pwq->pool->lock); 1166 put_pwq(pwq); 1167 raw_spin_unlock_irq(&pwq->pool->lock); 1168 } 1169 } 1170 1171 static void pwq_activate_inactive_work(struct work_struct *work) 1172 { 1173 struct pool_workqueue *pwq = get_work_pwq(work); 1174 1175 trace_workqueue_activate_work(work); 1176 if (list_empty(&pwq->pool->worklist)) 1177 pwq->pool->watchdog_ts = jiffies; 1178 move_linked_works(work, &pwq->pool->worklist, NULL); 1179 __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work)); 1180 pwq->nr_active++; 1181 } 1182 1183 static void pwq_activate_first_inactive(struct pool_workqueue *pwq) 1184 { 1185 struct work_struct *work = list_first_entry(&pwq->inactive_works, 1186 struct work_struct, entry); 1187 1188 pwq_activate_inactive_work(work); 1189 } 1190 1191 /** 1192 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1193 * @pwq: pwq of interest 1194 * @work_data: work_data of work which left the queue 1195 * 1196 * A work either has completed or is removed from pending queue, 1197 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1198 * 1199 * CONTEXT: 1200 * raw_spin_lock_irq(pool->lock). 1201 */ 1202 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data) 1203 { 1204 int color = get_work_color(work_data); 1205 1206 if (!(work_data & WORK_STRUCT_INACTIVE)) { 1207 pwq->nr_active--; 1208 if (!list_empty(&pwq->inactive_works)) { 1209 /* one down, submit an inactive one */ 1210 if (pwq->nr_active < pwq->max_active) 1211 pwq_activate_first_inactive(pwq); 1212 } 1213 } 1214 1215 pwq->nr_in_flight[color]--; 1216 1217 /* is flush in progress and are we at the flushing tip? */ 1218 if (likely(pwq->flush_color != color)) 1219 goto out_put; 1220 1221 /* are there still in-flight works? */ 1222 if (pwq->nr_in_flight[color]) 1223 goto out_put; 1224 1225 /* this pwq is done, clear flush_color */ 1226 pwq->flush_color = -1; 1227 1228 /* 1229 * If this was the last pwq, wake up the first flusher. It 1230 * will handle the rest. 1231 */ 1232 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1233 complete(&pwq->wq->first_flusher->done); 1234 out_put: 1235 put_pwq(pwq); 1236 } 1237 1238 /** 1239 * try_to_grab_pending - steal work item from worklist and disable irq 1240 * @work: work item to steal 1241 * @is_dwork: @work is a delayed_work 1242 * @flags: place to store irq state 1243 * 1244 * Try to grab PENDING bit of @work. This function can handle @work in any 1245 * stable state - idle, on timer or on worklist. 1246 * 1247 * Return: 1248 * 1249 * ======== ================================================================ 1250 * 1 if @work was pending and we successfully stole PENDING 1251 * 0 if @work was idle and we claimed PENDING 1252 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1253 * -ENOENT if someone else is canceling @work, this state may persist 1254 * for arbitrarily long 1255 * ======== ================================================================ 1256 * 1257 * Note: 1258 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1259 * interrupted while holding PENDING and @work off queue, irq must be 1260 * disabled on entry. This, combined with delayed_work->timer being 1261 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1262 * 1263 * On successful return, >= 0, irq is disabled and the caller is 1264 * responsible for releasing it using local_irq_restore(*@flags). 1265 * 1266 * This function is safe to call from any context including IRQ handler. 1267 */ 1268 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1269 unsigned long *flags) 1270 { 1271 struct worker_pool *pool; 1272 struct pool_workqueue *pwq; 1273 1274 local_irq_save(*flags); 1275 1276 /* try to steal the timer if it exists */ 1277 if (is_dwork) { 1278 struct delayed_work *dwork = to_delayed_work(work); 1279 1280 /* 1281 * dwork->timer is irqsafe. If del_timer() fails, it's 1282 * guaranteed that the timer is not queued anywhere and not 1283 * running on the local CPU. 1284 */ 1285 if (likely(del_timer(&dwork->timer))) 1286 return 1; 1287 } 1288 1289 /* try to claim PENDING the normal way */ 1290 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1291 return 0; 1292 1293 rcu_read_lock(); 1294 /* 1295 * The queueing is in progress, or it is already queued. Try to 1296 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1297 */ 1298 pool = get_work_pool(work); 1299 if (!pool) 1300 goto fail; 1301 1302 raw_spin_lock(&pool->lock); 1303 /* 1304 * work->data is guaranteed to point to pwq only while the work 1305 * item is queued on pwq->wq, and both updating work->data to point 1306 * to pwq on queueing and to pool on dequeueing are done under 1307 * pwq->pool->lock. This in turn guarantees that, if work->data 1308 * points to pwq which is associated with a locked pool, the work 1309 * item is currently queued on that pool. 1310 */ 1311 pwq = get_work_pwq(work); 1312 if (pwq && pwq->pool == pool) { 1313 debug_work_deactivate(work); 1314 1315 /* 1316 * A cancelable inactive work item must be in the 1317 * pwq->inactive_works since a queued barrier can't be 1318 * canceled (see the comments in insert_wq_barrier()). 1319 * 1320 * An inactive work item cannot be grabbed directly because 1321 * it might have linked barrier work items which, if left 1322 * on the inactive_works list, will confuse pwq->nr_active 1323 * management later on and cause stall. Make sure the work 1324 * item is activated before grabbing. 1325 */ 1326 if (*work_data_bits(work) & WORK_STRUCT_INACTIVE) 1327 pwq_activate_inactive_work(work); 1328 1329 list_del_init(&work->entry); 1330 pwq_dec_nr_in_flight(pwq, *work_data_bits(work)); 1331 1332 /* work->data points to pwq iff queued, point to pool */ 1333 set_work_pool_and_keep_pending(work, pool->id); 1334 1335 raw_spin_unlock(&pool->lock); 1336 rcu_read_unlock(); 1337 return 1; 1338 } 1339 raw_spin_unlock(&pool->lock); 1340 fail: 1341 rcu_read_unlock(); 1342 local_irq_restore(*flags); 1343 if (work_is_canceling(work)) 1344 return -ENOENT; 1345 cpu_relax(); 1346 return -EAGAIN; 1347 } 1348 1349 /** 1350 * insert_work - insert a work into a pool 1351 * @pwq: pwq @work belongs to 1352 * @work: work to insert 1353 * @head: insertion point 1354 * @extra_flags: extra WORK_STRUCT_* flags to set 1355 * 1356 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1357 * work_struct flags. 1358 * 1359 * CONTEXT: 1360 * raw_spin_lock_irq(pool->lock). 1361 */ 1362 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1363 struct list_head *head, unsigned int extra_flags) 1364 { 1365 struct worker_pool *pool = pwq->pool; 1366 1367 /* record the work call stack in order to print it in KASAN reports */ 1368 kasan_record_aux_stack_noalloc(work); 1369 1370 /* we own @work, set data and link */ 1371 set_work_pwq(work, pwq, extra_flags); 1372 list_add_tail(&work->entry, head); 1373 get_pwq(pwq); 1374 1375 /* 1376 * Ensure either wq_worker_sleeping() sees the above 1377 * list_add_tail() or we see zero nr_running to avoid workers lying 1378 * around lazily while there are works to be processed. 1379 */ 1380 smp_mb(); 1381 1382 if (__need_more_worker(pool)) 1383 wake_up_worker(pool); 1384 } 1385 1386 /* 1387 * Test whether @work is being queued from another work executing on the 1388 * same workqueue. 1389 */ 1390 static bool is_chained_work(struct workqueue_struct *wq) 1391 { 1392 struct worker *worker; 1393 1394 worker = current_wq_worker(); 1395 /* 1396 * Return %true iff I'm a worker executing a work item on @wq. If 1397 * I'm @worker, it's safe to dereference it without locking. 1398 */ 1399 return worker && worker->current_pwq->wq == wq; 1400 } 1401 1402 /* 1403 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1404 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1405 * avoid perturbing sensitive tasks. 1406 */ 1407 static int wq_select_unbound_cpu(int cpu) 1408 { 1409 static bool printed_dbg_warning; 1410 int new_cpu; 1411 1412 if (likely(!wq_debug_force_rr_cpu)) { 1413 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1414 return cpu; 1415 } else if (!printed_dbg_warning) { 1416 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1417 printed_dbg_warning = true; 1418 } 1419 1420 if (cpumask_empty(wq_unbound_cpumask)) 1421 return cpu; 1422 1423 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1424 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1425 if (unlikely(new_cpu >= nr_cpu_ids)) { 1426 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1427 if (unlikely(new_cpu >= nr_cpu_ids)) 1428 return cpu; 1429 } 1430 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1431 1432 return new_cpu; 1433 } 1434 1435 static void __queue_work(int cpu, struct workqueue_struct *wq, 1436 struct work_struct *work) 1437 { 1438 struct pool_workqueue *pwq; 1439 struct worker_pool *last_pool; 1440 struct list_head *worklist; 1441 unsigned int work_flags; 1442 unsigned int req_cpu = cpu; 1443 1444 /* 1445 * While a work item is PENDING && off queue, a task trying to 1446 * steal the PENDING will busy-loop waiting for it to either get 1447 * queued or lose PENDING. Grabbing PENDING and queueing should 1448 * happen with IRQ disabled. 1449 */ 1450 lockdep_assert_irqs_disabled(); 1451 1452 1453 /* if draining, only works from the same workqueue are allowed */ 1454 if (unlikely(wq->flags & __WQ_DRAINING) && 1455 WARN_ON_ONCE(!is_chained_work(wq))) 1456 return; 1457 rcu_read_lock(); 1458 retry: 1459 /* pwq which will be used unless @work is executing elsewhere */ 1460 if (wq->flags & WQ_UNBOUND) { 1461 if (req_cpu == WORK_CPU_UNBOUND) 1462 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1463 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1464 } else { 1465 if (req_cpu == WORK_CPU_UNBOUND) 1466 cpu = raw_smp_processor_id(); 1467 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1468 } 1469 1470 /* 1471 * If @work was previously on a different pool, it might still be 1472 * running there, in which case the work needs to be queued on that 1473 * pool to guarantee non-reentrancy. 1474 */ 1475 last_pool = get_work_pool(work); 1476 if (last_pool && last_pool != pwq->pool) { 1477 struct worker *worker; 1478 1479 raw_spin_lock(&last_pool->lock); 1480 1481 worker = find_worker_executing_work(last_pool, work); 1482 1483 if (worker && worker->current_pwq->wq == wq) { 1484 pwq = worker->current_pwq; 1485 } else { 1486 /* meh... not running there, queue here */ 1487 raw_spin_unlock(&last_pool->lock); 1488 raw_spin_lock(&pwq->pool->lock); 1489 } 1490 } else { 1491 raw_spin_lock(&pwq->pool->lock); 1492 } 1493 1494 /* 1495 * pwq is determined and locked. For unbound pools, we could have 1496 * raced with pwq release and it could already be dead. If its 1497 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1498 * without another pwq replacing it in the numa_pwq_tbl or while 1499 * work items are executing on it, so the retrying is guaranteed to 1500 * make forward-progress. 1501 */ 1502 if (unlikely(!pwq->refcnt)) { 1503 if (wq->flags & WQ_UNBOUND) { 1504 raw_spin_unlock(&pwq->pool->lock); 1505 cpu_relax(); 1506 goto retry; 1507 } 1508 /* oops */ 1509 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1510 wq->name, cpu); 1511 } 1512 1513 /* pwq determined, queue */ 1514 trace_workqueue_queue_work(req_cpu, pwq, work); 1515 1516 if (WARN_ON(!list_empty(&work->entry))) 1517 goto out; 1518 1519 pwq->nr_in_flight[pwq->work_color]++; 1520 work_flags = work_color_to_flags(pwq->work_color); 1521 1522 if (likely(pwq->nr_active < pwq->max_active)) { 1523 trace_workqueue_activate_work(work); 1524 pwq->nr_active++; 1525 worklist = &pwq->pool->worklist; 1526 if (list_empty(worklist)) 1527 pwq->pool->watchdog_ts = jiffies; 1528 } else { 1529 work_flags |= WORK_STRUCT_INACTIVE; 1530 worklist = &pwq->inactive_works; 1531 } 1532 1533 debug_work_activate(work); 1534 insert_work(pwq, work, worklist, work_flags); 1535 1536 out: 1537 raw_spin_unlock(&pwq->pool->lock); 1538 rcu_read_unlock(); 1539 } 1540 1541 /** 1542 * queue_work_on - queue work on specific cpu 1543 * @cpu: CPU number to execute work on 1544 * @wq: workqueue to use 1545 * @work: work to queue 1546 * 1547 * We queue the work to a specific CPU, the caller must ensure it 1548 * can't go away. Callers that fail to ensure that the specified 1549 * CPU cannot go away will execute on a randomly chosen CPU. 1550 * 1551 * Return: %false if @work was already on a queue, %true otherwise. 1552 */ 1553 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1554 struct work_struct *work) 1555 { 1556 bool ret = false; 1557 unsigned long flags; 1558 1559 local_irq_save(flags); 1560 1561 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1562 __queue_work(cpu, wq, work); 1563 ret = true; 1564 } 1565 1566 local_irq_restore(flags); 1567 return ret; 1568 } 1569 EXPORT_SYMBOL(queue_work_on); 1570 1571 /** 1572 * workqueue_select_cpu_near - Select a CPU based on NUMA node 1573 * @node: NUMA node ID that we want to select a CPU from 1574 * 1575 * This function will attempt to find a "random" cpu available on a given 1576 * node. If there are no CPUs available on the given node it will return 1577 * WORK_CPU_UNBOUND indicating that we should just schedule to any 1578 * available CPU if we need to schedule this work. 1579 */ 1580 static int workqueue_select_cpu_near(int node) 1581 { 1582 int cpu; 1583 1584 /* No point in doing this if NUMA isn't enabled for workqueues */ 1585 if (!wq_numa_enabled) 1586 return WORK_CPU_UNBOUND; 1587 1588 /* Delay binding to CPU if node is not valid or online */ 1589 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 1590 return WORK_CPU_UNBOUND; 1591 1592 /* Use local node/cpu if we are already there */ 1593 cpu = raw_smp_processor_id(); 1594 if (node == cpu_to_node(cpu)) 1595 return cpu; 1596 1597 /* Use "random" otherwise know as "first" online CPU of node */ 1598 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 1599 1600 /* If CPU is valid return that, otherwise just defer */ 1601 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 1602 } 1603 1604 /** 1605 * queue_work_node - queue work on a "random" cpu for a given NUMA node 1606 * @node: NUMA node that we are targeting the work for 1607 * @wq: workqueue to use 1608 * @work: work to queue 1609 * 1610 * We queue the work to a "random" CPU within a given NUMA node. The basic 1611 * idea here is to provide a way to somehow associate work with a given 1612 * NUMA node. 1613 * 1614 * This function will only make a best effort attempt at getting this onto 1615 * the right NUMA node. If no node is requested or the requested node is 1616 * offline then we just fall back to standard queue_work behavior. 1617 * 1618 * Currently the "random" CPU ends up being the first available CPU in the 1619 * intersection of cpu_online_mask and the cpumask of the node, unless we 1620 * are running on the node. In that case we just use the current CPU. 1621 * 1622 * Return: %false if @work was already on a queue, %true otherwise. 1623 */ 1624 bool queue_work_node(int node, struct workqueue_struct *wq, 1625 struct work_struct *work) 1626 { 1627 unsigned long flags; 1628 bool ret = false; 1629 1630 /* 1631 * This current implementation is specific to unbound workqueues. 1632 * Specifically we only return the first available CPU for a given 1633 * node instead of cycling through individual CPUs within the node. 1634 * 1635 * If this is used with a per-cpu workqueue then the logic in 1636 * workqueue_select_cpu_near would need to be updated to allow for 1637 * some round robin type logic. 1638 */ 1639 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 1640 1641 local_irq_save(flags); 1642 1643 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1644 int cpu = workqueue_select_cpu_near(node); 1645 1646 __queue_work(cpu, wq, work); 1647 ret = true; 1648 } 1649 1650 local_irq_restore(flags); 1651 return ret; 1652 } 1653 EXPORT_SYMBOL_GPL(queue_work_node); 1654 1655 void delayed_work_timer_fn(struct timer_list *t) 1656 { 1657 struct delayed_work *dwork = from_timer(dwork, t, timer); 1658 1659 /* should have been called from irqsafe timer with irq already off */ 1660 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1661 } 1662 EXPORT_SYMBOL(delayed_work_timer_fn); 1663 1664 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1665 struct delayed_work *dwork, unsigned long delay) 1666 { 1667 struct timer_list *timer = &dwork->timer; 1668 struct work_struct *work = &dwork->work; 1669 1670 WARN_ON_ONCE(!wq); 1671 WARN_ON_FUNCTION_MISMATCH(timer->function, delayed_work_timer_fn); 1672 WARN_ON_ONCE(timer_pending(timer)); 1673 WARN_ON_ONCE(!list_empty(&work->entry)); 1674 1675 /* 1676 * If @delay is 0, queue @dwork->work immediately. This is for 1677 * both optimization and correctness. The earliest @timer can 1678 * expire is on the closest next tick and delayed_work users depend 1679 * on that there's no such delay when @delay is 0. 1680 */ 1681 if (!delay) { 1682 __queue_work(cpu, wq, &dwork->work); 1683 return; 1684 } 1685 1686 dwork->wq = wq; 1687 dwork->cpu = cpu; 1688 timer->expires = jiffies + delay; 1689 1690 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1691 add_timer_on(timer, cpu); 1692 else 1693 add_timer(timer); 1694 } 1695 1696 /** 1697 * queue_delayed_work_on - queue work on specific CPU after delay 1698 * @cpu: CPU number to execute work on 1699 * @wq: workqueue to use 1700 * @dwork: work to queue 1701 * @delay: number of jiffies to wait before queueing 1702 * 1703 * Return: %false if @work was already on a queue, %true otherwise. If 1704 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1705 * execution. 1706 */ 1707 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1708 struct delayed_work *dwork, unsigned long delay) 1709 { 1710 struct work_struct *work = &dwork->work; 1711 bool ret = false; 1712 unsigned long flags; 1713 1714 /* read the comment in __queue_work() */ 1715 local_irq_save(flags); 1716 1717 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1718 __queue_delayed_work(cpu, wq, dwork, delay); 1719 ret = true; 1720 } 1721 1722 local_irq_restore(flags); 1723 return ret; 1724 } 1725 EXPORT_SYMBOL(queue_delayed_work_on); 1726 1727 /** 1728 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1729 * @cpu: CPU number to execute work on 1730 * @wq: workqueue to use 1731 * @dwork: work to queue 1732 * @delay: number of jiffies to wait before queueing 1733 * 1734 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1735 * modify @dwork's timer so that it expires after @delay. If @delay is 1736 * zero, @work is guaranteed to be scheduled immediately regardless of its 1737 * current state. 1738 * 1739 * Return: %false if @dwork was idle and queued, %true if @dwork was 1740 * pending and its timer was modified. 1741 * 1742 * This function is safe to call from any context including IRQ handler. 1743 * See try_to_grab_pending() for details. 1744 */ 1745 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1746 struct delayed_work *dwork, unsigned long delay) 1747 { 1748 unsigned long flags; 1749 int ret; 1750 1751 do { 1752 ret = try_to_grab_pending(&dwork->work, true, &flags); 1753 } while (unlikely(ret == -EAGAIN)); 1754 1755 if (likely(ret >= 0)) { 1756 __queue_delayed_work(cpu, wq, dwork, delay); 1757 local_irq_restore(flags); 1758 } 1759 1760 /* -ENOENT from try_to_grab_pending() becomes %true */ 1761 return ret; 1762 } 1763 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1764 1765 static void rcu_work_rcufn(struct rcu_head *rcu) 1766 { 1767 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 1768 1769 /* read the comment in __queue_work() */ 1770 local_irq_disable(); 1771 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 1772 local_irq_enable(); 1773 } 1774 1775 /** 1776 * queue_rcu_work - queue work after a RCU grace period 1777 * @wq: workqueue to use 1778 * @rwork: work to queue 1779 * 1780 * Return: %false if @rwork was already pending, %true otherwise. Note 1781 * that a full RCU grace period is guaranteed only after a %true return. 1782 * While @rwork is guaranteed to be executed after a %false return, the 1783 * execution may happen before a full RCU grace period has passed. 1784 */ 1785 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 1786 { 1787 struct work_struct *work = &rwork->work; 1788 1789 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1790 rwork->wq = wq; 1791 call_rcu(&rwork->rcu, rcu_work_rcufn); 1792 return true; 1793 } 1794 1795 return false; 1796 } 1797 EXPORT_SYMBOL(queue_rcu_work); 1798 1799 /** 1800 * worker_enter_idle - enter idle state 1801 * @worker: worker which is entering idle state 1802 * 1803 * @worker is entering idle state. Update stats and idle timer if 1804 * necessary. 1805 * 1806 * LOCKING: 1807 * raw_spin_lock_irq(pool->lock). 1808 */ 1809 static void worker_enter_idle(struct worker *worker) 1810 { 1811 struct worker_pool *pool = worker->pool; 1812 1813 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1814 WARN_ON_ONCE(!list_empty(&worker->entry) && 1815 (worker->hentry.next || worker->hentry.pprev))) 1816 return; 1817 1818 /* can't use worker_set_flags(), also called from create_worker() */ 1819 worker->flags |= WORKER_IDLE; 1820 pool->nr_idle++; 1821 worker->last_active = jiffies; 1822 1823 /* idle_list is LIFO */ 1824 list_add(&worker->entry, &pool->idle_list); 1825 1826 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1827 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1828 1829 /* Sanity check nr_running. */ 1830 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && 1831 atomic_read(&pool->nr_running)); 1832 } 1833 1834 /** 1835 * worker_leave_idle - leave idle state 1836 * @worker: worker which is leaving idle state 1837 * 1838 * @worker is leaving idle state. Update stats. 1839 * 1840 * LOCKING: 1841 * raw_spin_lock_irq(pool->lock). 1842 */ 1843 static void worker_leave_idle(struct worker *worker) 1844 { 1845 struct worker_pool *pool = worker->pool; 1846 1847 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1848 return; 1849 worker_clr_flags(worker, WORKER_IDLE); 1850 pool->nr_idle--; 1851 list_del_init(&worker->entry); 1852 } 1853 1854 static struct worker *alloc_worker(int node) 1855 { 1856 struct worker *worker; 1857 1858 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1859 if (worker) { 1860 INIT_LIST_HEAD(&worker->entry); 1861 INIT_LIST_HEAD(&worker->scheduled); 1862 INIT_LIST_HEAD(&worker->node); 1863 /* on creation a worker is in !idle && prep state */ 1864 worker->flags = WORKER_PREP; 1865 } 1866 return worker; 1867 } 1868 1869 /** 1870 * worker_attach_to_pool() - attach a worker to a pool 1871 * @worker: worker to be attached 1872 * @pool: the target pool 1873 * 1874 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1875 * cpu-binding of @worker are kept coordinated with the pool across 1876 * cpu-[un]hotplugs. 1877 */ 1878 static void worker_attach_to_pool(struct worker *worker, 1879 struct worker_pool *pool) 1880 { 1881 mutex_lock(&wq_pool_attach_mutex); 1882 1883 /* 1884 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains 1885 * stable across this function. See the comments above the flag 1886 * definition for details. 1887 */ 1888 if (pool->flags & POOL_DISASSOCIATED) 1889 worker->flags |= WORKER_UNBOUND; 1890 else 1891 kthread_set_per_cpu(worker->task, pool->cpu); 1892 1893 if (worker->rescue_wq) 1894 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1895 1896 list_add_tail(&worker->node, &pool->workers); 1897 worker->pool = pool; 1898 1899 mutex_unlock(&wq_pool_attach_mutex); 1900 } 1901 1902 /** 1903 * worker_detach_from_pool() - detach a worker from its pool 1904 * @worker: worker which is attached to its pool 1905 * 1906 * Undo the attaching which had been done in worker_attach_to_pool(). The 1907 * caller worker shouldn't access to the pool after detached except it has 1908 * other reference to the pool. 1909 */ 1910 static void worker_detach_from_pool(struct worker *worker) 1911 { 1912 struct worker_pool *pool = worker->pool; 1913 struct completion *detach_completion = NULL; 1914 1915 mutex_lock(&wq_pool_attach_mutex); 1916 1917 kthread_set_per_cpu(worker->task, -1); 1918 list_del(&worker->node); 1919 worker->pool = NULL; 1920 1921 if (list_empty(&pool->workers)) 1922 detach_completion = pool->detach_completion; 1923 mutex_unlock(&wq_pool_attach_mutex); 1924 1925 /* clear leftover flags without pool->lock after it is detached */ 1926 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1927 1928 if (detach_completion) 1929 complete(detach_completion); 1930 } 1931 1932 /** 1933 * create_worker - create a new workqueue worker 1934 * @pool: pool the new worker will belong to 1935 * 1936 * Create and start a new worker which is attached to @pool. 1937 * 1938 * CONTEXT: 1939 * Might sleep. Does GFP_KERNEL allocations. 1940 * 1941 * Return: 1942 * Pointer to the newly created worker. 1943 */ 1944 static struct worker *create_worker(struct worker_pool *pool) 1945 { 1946 struct worker *worker; 1947 int id; 1948 char id_buf[16]; 1949 1950 /* ID is needed to determine kthread name */ 1951 id = ida_alloc(&pool->worker_ida, GFP_KERNEL); 1952 if (id < 0) 1953 return NULL; 1954 1955 worker = alloc_worker(pool->node); 1956 if (!worker) 1957 goto fail; 1958 1959 worker->id = id; 1960 1961 if (pool->cpu >= 0) 1962 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1963 pool->attrs->nice < 0 ? "H" : ""); 1964 else 1965 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1966 1967 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1968 "kworker/%s", id_buf); 1969 if (IS_ERR(worker->task)) 1970 goto fail; 1971 1972 set_user_nice(worker->task, pool->attrs->nice); 1973 kthread_bind_mask(worker->task, pool->attrs->cpumask); 1974 1975 /* successful, attach the worker to the pool */ 1976 worker_attach_to_pool(worker, pool); 1977 1978 /* start the newly created worker */ 1979 raw_spin_lock_irq(&pool->lock); 1980 worker->pool->nr_workers++; 1981 worker_enter_idle(worker); 1982 wake_up_process(worker->task); 1983 raw_spin_unlock_irq(&pool->lock); 1984 1985 return worker; 1986 1987 fail: 1988 ida_free(&pool->worker_ida, id); 1989 kfree(worker); 1990 return NULL; 1991 } 1992 1993 /** 1994 * destroy_worker - destroy a workqueue worker 1995 * @worker: worker to be destroyed 1996 * 1997 * Destroy @worker and adjust @pool stats accordingly. The worker should 1998 * be idle. 1999 * 2000 * CONTEXT: 2001 * raw_spin_lock_irq(pool->lock). 2002 */ 2003 static void destroy_worker(struct worker *worker) 2004 { 2005 struct worker_pool *pool = worker->pool; 2006 2007 lockdep_assert_held(&pool->lock); 2008 2009 /* sanity check frenzy */ 2010 if (WARN_ON(worker->current_work) || 2011 WARN_ON(!list_empty(&worker->scheduled)) || 2012 WARN_ON(!(worker->flags & WORKER_IDLE))) 2013 return; 2014 2015 pool->nr_workers--; 2016 pool->nr_idle--; 2017 2018 list_del_init(&worker->entry); 2019 worker->flags |= WORKER_DIE; 2020 wake_up_process(worker->task); 2021 } 2022 2023 static void idle_worker_timeout(struct timer_list *t) 2024 { 2025 struct worker_pool *pool = from_timer(pool, t, idle_timer); 2026 2027 raw_spin_lock_irq(&pool->lock); 2028 2029 while (too_many_workers(pool)) { 2030 struct worker *worker; 2031 unsigned long expires; 2032 2033 /* idle_list is kept in LIFO order, check the last one */ 2034 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2035 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2036 2037 if (time_before(jiffies, expires)) { 2038 mod_timer(&pool->idle_timer, expires); 2039 break; 2040 } 2041 2042 destroy_worker(worker); 2043 } 2044 2045 raw_spin_unlock_irq(&pool->lock); 2046 } 2047 2048 static void send_mayday(struct work_struct *work) 2049 { 2050 struct pool_workqueue *pwq = get_work_pwq(work); 2051 struct workqueue_struct *wq = pwq->wq; 2052 2053 lockdep_assert_held(&wq_mayday_lock); 2054 2055 if (!wq->rescuer) 2056 return; 2057 2058 /* mayday mayday mayday */ 2059 if (list_empty(&pwq->mayday_node)) { 2060 /* 2061 * If @pwq is for an unbound wq, its base ref may be put at 2062 * any time due to an attribute change. Pin @pwq until the 2063 * rescuer is done with it. 2064 */ 2065 get_pwq(pwq); 2066 list_add_tail(&pwq->mayday_node, &wq->maydays); 2067 wake_up_process(wq->rescuer->task); 2068 } 2069 } 2070 2071 static void pool_mayday_timeout(struct timer_list *t) 2072 { 2073 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 2074 struct work_struct *work; 2075 2076 raw_spin_lock_irq(&pool->lock); 2077 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */ 2078 2079 if (need_to_create_worker(pool)) { 2080 /* 2081 * We've been trying to create a new worker but 2082 * haven't been successful. We might be hitting an 2083 * allocation deadlock. Send distress signals to 2084 * rescuers. 2085 */ 2086 list_for_each_entry(work, &pool->worklist, entry) 2087 send_mayday(work); 2088 } 2089 2090 raw_spin_unlock(&wq_mayday_lock); 2091 raw_spin_unlock_irq(&pool->lock); 2092 2093 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 2094 } 2095 2096 /** 2097 * maybe_create_worker - create a new worker if necessary 2098 * @pool: pool to create a new worker for 2099 * 2100 * Create a new worker for @pool if necessary. @pool is guaranteed to 2101 * have at least one idle worker on return from this function. If 2102 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 2103 * sent to all rescuers with works scheduled on @pool to resolve 2104 * possible allocation deadlock. 2105 * 2106 * On return, need_to_create_worker() is guaranteed to be %false and 2107 * may_start_working() %true. 2108 * 2109 * LOCKING: 2110 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2111 * multiple times. Does GFP_KERNEL allocations. Called only from 2112 * manager. 2113 */ 2114 static void maybe_create_worker(struct worker_pool *pool) 2115 __releases(&pool->lock) 2116 __acquires(&pool->lock) 2117 { 2118 restart: 2119 raw_spin_unlock_irq(&pool->lock); 2120 2121 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 2122 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 2123 2124 while (true) { 2125 if (create_worker(pool) || !need_to_create_worker(pool)) 2126 break; 2127 2128 schedule_timeout_interruptible(CREATE_COOLDOWN); 2129 2130 if (!need_to_create_worker(pool)) 2131 break; 2132 } 2133 2134 del_timer_sync(&pool->mayday_timer); 2135 raw_spin_lock_irq(&pool->lock); 2136 /* 2137 * This is necessary even after a new worker was just successfully 2138 * created as @pool->lock was dropped and the new worker might have 2139 * already become busy. 2140 */ 2141 if (need_to_create_worker(pool)) 2142 goto restart; 2143 } 2144 2145 /** 2146 * manage_workers - manage worker pool 2147 * @worker: self 2148 * 2149 * Assume the manager role and manage the worker pool @worker belongs 2150 * to. At any given time, there can be only zero or one manager per 2151 * pool. The exclusion is handled automatically by this function. 2152 * 2153 * The caller can safely start processing works on false return. On 2154 * true return, it's guaranteed that need_to_create_worker() is false 2155 * and may_start_working() is true. 2156 * 2157 * CONTEXT: 2158 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2159 * multiple times. Does GFP_KERNEL allocations. 2160 * 2161 * Return: 2162 * %false if the pool doesn't need management and the caller can safely 2163 * start processing works, %true if management function was performed and 2164 * the conditions that the caller verified before calling the function may 2165 * no longer be true. 2166 */ 2167 static bool manage_workers(struct worker *worker) 2168 { 2169 struct worker_pool *pool = worker->pool; 2170 2171 if (pool->flags & POOL_MANAGER_ACTIVE) 2172 return false; 2173 2174 pool->flags |= POOL_MANAGER_ACTIVE; 2175 pool->manager = worker; 2176 2177 maybe_create_worker(pool); 2178 2179 pool->manager = NULL; 2180 pool->flags &= ~POOL_MANAGER_ACTIVE; 2181 rcuwait_wake_up(&manager_wait); 2182 return true; 2183 } 2184 2185 /** 2186 * process_one_work - process single work 2187 * @worker: self 2188 * @work: work to process 2189 * 2190 * Process @work. This function contains all the logics necessary to 2191 * process a single work including synchronization against and 2192 * interaction with other workers on the same cpu, queueing and 2193 * flushing. As long as context requirement is met, any worker can 2194 * call this function to process a work. 2195 * 2196 * CONTEXT: 2197 * raw_spin_lock_irq(pool->lock) which is released and regrabbed. 2198 */ 2199 static void process_one_work(struct worker *worker, struct work_struct *work) 2200 __releases(&pool->lock) 2201 __acquires(&pool->lock) 2202 { 2203 struct pool_workqueue *pwq = get_work_pwq(work); 2204 struct worker_pool *pool = worker->pool; 2205 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2206 unsigned long work_data; 2207 struct worker *collision; 2208 #ifdef CONFIG_LOCKDEP 2209 /* 2210 * It is permissible to free the struct work_struct from 2211 * inside the function that is called from it, this we need to 2212 * take into account for lockdep too. To avoid bogus "held 2213 * lock freed" warnings as well as problems when looking into 2214 * work->lockdep_map, make a copy and use that here. 2215 */ 2216 struct lockdep_map lockdep_map; 2217 2218 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2219 #endif 2220 /* ensure we're on the correct CPU */ 2221 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2222 raw_smp_processor_id() != pool->cpu); 2223 2224 /* 2225 * A single work shouldn't be executed concurrently by 2226 * multiple workers on a single cpu. Check whether anyone is 2227 * already processing the work. If so, defer the work to the 2228 * currently executing one. 2229 */ 2230 collision = find_worker_executing_work(pool, work); 2231 if (unlikely(collision)) { 2232 move_linked_works(work, &collision->scheduled, NULL); 2233 return; 2234 } 2235 2236 /* claim and dequeue */ 2237 debug_work_deactivate(work); 2238 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2239 worker->current_work = work; 2240 worker->current_func = work->func; 2241 worker->current_pwq = pwq; 2242 work_data = *work_data_bits(work); 2243 worker->current_color = get_work_color(work_data); 2244 2245 /* 2246 * Record wq name for cmdline and debug reporting, may get 2247 * overridden through set_worker_desc(). 2248 */ 2249 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 2250 2251 list_del_init(&work->entry); 2252 2253 /* 2254 * CPU intensive works don't participate in concurrency management. 2255 * They're the scheduler's responsibility. This takes @worker out 2256 * of concurrency management and the next code block will chain 2257 * execution of the pending work items. 2258 */ 2259 if (unlikely(cpu_intensive)) 2260 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2261 2262 /* 2263 * Wake up another worker if necessary. The condition is always 2264 * false for normal per-cpu workers since nr_running would always 2265 * be >= 1 at this point. This is used to chain execution of the 2266 * pending work items for WORKER_NOT_RUNNING workers such as the 2267 * UNBOUND and CPU_INTENSIVE ones. 2268 */ 2269 if (need_more_worker(pool)) 2270 wake_up_worker(pool); 2271 2272 /* 2273 * Record the last pool and clear PENDING which should be the last 2274 * update to @work. Also, do this inside @pool->lock so that 2275 * PENDING and queued state changes happen together while IRQ is 2276 * disabled. 2277 */ 2278 set_work_pool_and_clear_pending(work, pool->id); 2279 2280 raw_spin_unlock_irq(&pool->lock); 2281 2282 lock_map_acquire(&pwq->wq->lockdep_map); 2283 lock_map_acquire(&lockdep_map); 2284 /* 2285 * Strictly speaking we should mark the invariant state without holding 2286 * any locks, that is, before these two lock_map_acquire()'s. 2287 * 2288 * However, that would result in: 2289 * 2290 * A(W1) 2291 * WFC(C) 2292 * A(W1) 2293 * C(C) 2294 * 2295 * Which would create W1->C->W1 dependencies, even though there is no 2296 * actual deadlock possible. There are two solutions, using a 2297 * read-recursive acquire on the work(queue) 'locks', but this will then 2298 * hit the lockdep limitation on recursive locks, or simply discard 2299 * these locks. 2300 * 2301 * AFAICT there is no possible deadlock scenario between the 2302 * flush_work() and complete() primitives (except for single-threaded 2303 * workqueues), so hiding them isn't a problem. 2304 */ 2305 lockdep_invariant_state(true); 2306 trace_workqueue_execute_start(work); 2307 worker->current_func(work); 2308 /* 2309 * While we must be careful to not use "work" after this, the trace 2310 * point will only record its address. 2311 */ 2312 trace_workqueue_execute_end(work, worker->current_func); 2313 lock_map_release(&lockdep_map); 2314 lock_map_release(&pwq->wq->lockdep_map); 2315 2316 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2317 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2318 " last function: %ps\n", 2319 current->comm, preempt_count(), task_pid_nr(current), 2320 worker->current_func); 2321 debug_show_held_locks(current); 2322 dump_stack(); 2323 } 2324 2325 /* 2326 * The following prevents a kworker from hogging CPU on !PREEMPTION 2327 * kernels, where a requeueing work item waiting for something to 2328 * happen could deadlock with stop_machine as such work item could 2329 * indefinitely requeue itself while all other CPUs are trapped in 2330 * stop_machine. At the same time, report a quiescent RCU state so 2331 * the same condition doesn't freeze RCU. 2332 */ 2333 cond_resched(); 2334 2335 raw_spin_lock_irq(&pool->lock); 2336 2337 /* clear cpu intensive status */ 2338 if (unlikely(cpu_intensive)) 2339 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2340 2341 /* tag the worker for identification in schedule() */ 2342 worker->last_func = worker->current_func; 2343 2344 /* we're done with it, release */ 2345 hash_del(&worker->hentry); 2346 worker->current_work = NULL; 2347 worker->current_func = NULL; 2348 worker->current_pwq = NULL; 2349 worker->current_color = INT_MAX; 2350 pwq_dec_nr_in_flight(pwq, work_data); 2351 } 2352 2353 /** 2354 * process_scheduled_works - process scheduled works 2355 * @worker: self 2356 * 2357 * Process all scheduled works. Please note that the scheduled list 2358 * may change while processing a work, so this function repeatedly 2359 * fetches a work from the top and executes it. 2360 * 2361 * CONTEXT: 2362 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2363 * multiple times. 2364 */ 2365 static void process_scheduled_works(struct worker *worker) 2366 { 2367 while (!list_empty(&worker->scheduled)) { 2368 struct work_struct *work = list_first_entry(&worker->scheduled, 2369 struct work_struct, entry); 2370 process_one_work(worker, work); 2371 } 2372 } 2373 2374 static void set_pf_worker(bool val) 2375 { 2376 mutex_lock(&wq_pool_attach_mutex); 2377 if (val) 2378 current->flags |= PF_WQ_WORKER; 2379 else 2380 current->flags &= ~PF_WQ_WORKER; 2381 mutex_unlock(&wq_pool_attach_mutex); 2382 } 2383 2384 /** 2385 * worker_thread - the worker thread function 2386 * @__worker: self 2387 * 2388 * The worker thread function. All workers belong to a worker_pool - 2389 * either a per-cpu one or dynamic unbound one. These workers process all 2390 * work items regardless of their specific target workqueue. The only 2391 * exception is work items which belong to workqueues with a rescuer which 2392 * will be explained in rescuer_thread(). 2393 * 2394 * Return: 0 2395 */ 2396 static int worker_thread(void *__worker) 2397 { 2398 struct worker *worker = __worker; 2399 struct worker_pool *pool = worker->pool; 2400 2401 /* tell the scheduler that this is a workqueue worker */ 2402 set_pf_worker(true); 2403 woke_up: 2404 raw_spin_lock_irq(&pool->lock); 2405 2406 /* am I supposed to die? */ 2407 if (unlikely(worker->flags & WORKER_DIE)) { 2408 raw_spin_unlock_irq(&pool->lock); 2409 WARN_ON_ONCE(!list_empty(&worker->entry)); 2410 set_pf_worker(false); 2411 2412 set_task_comm(worker->task, "kworker/dying"); 2413 ida_free(&pool->worker_ida, worker->id); 2414 worker_detach_from_pool(worker); 2415 kfree(worker); 2416 return 0; 2417 } 2418 2419 worker_leave_idle(worker); 2420 recheck: 2421 /* no more worker necessary? */ 2422 if (!need_more_worker(pool)) 2423 goto sleep; 2424 2425 /* do we need to manage? */ 2426 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2427 goto recheck; 2428 2429 /* 2430 * ->scheduled list can only be filled while a worker is 2431 * preparing to process a work or actually processing it. 2432 * Make sure nobody diddled with it while I was sleeping. 2433 */ 2434 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2435 2436 /* 2437 * Finish PREP stage. We're guaranteed to have at least one idle 2438 * worker or that someone else has already assumed the manager 2439 * role. This is where @worker starts participating in concurrency 2440 * management if applicable and concurrency management is restored 2441 * after being rebound. See rebind_workers() for details. 2442 */ 2443 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2444 2445 do { 2446 struct work_struct *work = 2447 list_first_entry(&pool->worklist, 2448 struct work_struct, entry); 2449 2450 pool->watchdog_ts = jiffies; 2451 2452 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2453 /* optimization path, not strictly necessary */ 2454 process_one_work(worker, work); 2455 if (unlikely(!list_empty(&worker->scheduled))) 2456 process_scheduled_works(worker); 2457 } else { 2458 move_linked_works(work, &worker->scheduled, NULL); 2459 process_scheduled_works(worker); 2460 } 2461 } while (keep_working(pool)); 2462 2463 worker_set_flags(worker, WORKER_PREP); 2464 sleep: 2465 /* 2466 * pool->lock is held and there's no work to process and no need to 2467 * manage, sleep. Workers are woken up only while holding 2468 * pool->lock or from local cpu, so setting the current state 2469 * before releasing pool->lock is enough to prevent losing any 2470 * event. 2471 */ 2472 worker_enter_idle(worker); 2473 __set_current_state(TASK_IDLE); 2474 raw_spin_unlock_irq(&pool->lock); 2475 schedule(); 2476 goto woke_up; 2477 } 2478 2479 /** 2480 * rescuer_thread - the rescuer thread function 2481 * @__rescuer: self 2482 * 2483 * Workqueue rescuer thread function. There's one rescuer for each 2484 * workqueue which has WQ_MEM_RECLAIM set. 2485 * 2486 * Regular work processing on a pool may block trying to create a new 2487 * worker which uses GFP_KERNEL allocation which has slight chance of 2488 * developing into deadlock if some works currently on the same queue 2489 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2490 * the problem rescuer solves. 2491 * 2492 * When such condition is possible, the pool summons rescuers of all 2493 * workqueues which have works queued on the pool and let them process 2494 * those works so that forward progress can be guaranteed. 2495 * 2496 * This should happen rarely. 2497 * 2498 * Return: 0 2499 */ 2500 static int rescuer_thread(void *__rescuer) 2501 { 2502 struct worker *rescuer = __rescuer; 2503 struct workqueue_struct *wq = rescuer->rescue_wq; 2504 struct list_head *scheduled = &rescuer->scheduled; 2505 bool should_stop; 2506 2507 set_user_nice(current, RESCUER_NICE_LEVEL); 2508 2509 /* 2510 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2511 * doesn't participate in concurrency management. 2512 */ 2513 set_pf_worker(true); 2514 repeat: 2515 set_current_state(TASK_IDLE); 2516 2517 /* 2518 * By the time the rescuer is requested to stop, the workqueue 2519 * shouldn't have any work pending, but @wq->maydays may still have 2520 * pwq(s) queued. This can happen by non-rescuer workers consuming 2521 * all the work items before the rescuer got to them. Go through 2522 * @wq->maydays processing before acting on should_stop so that the 2523 * list is always empty on exit. 2524 */ 2525 should_stop = kthread_should_stop(); 2526 2527 /* see whether any pwq is asking for help */ 2528 raw_spin_lock_irq(&wq_mayday_lock); 2529 2530 while (!list_empty(&wq->maydays)) { 2531 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2532 struct pool_workqueue, mayday_node); 2533 struct worker_pool *pool = pwq->pool; 2534 struct work_struct *work, *n; 2535 bool first = true; 2536 2537 __set_current_state(TASK_RUNNING); 2538 list_del_init(&pwq->mayday_node); 2539 2540 raw_spin_unlock_irq(&wq_mayday_lock); 2541 2542 worker_attach_to_pool(rescuer, pool); 2543 2544 raw_spin_lock_irq(&pool->lock); 2545 2546 /* 2547 * Slurp in all works issued via this workqueue and 2548 * process'em. 2549 */ 2550 WARN_ON_ONCE(!list_empty(scheduled)); 2551 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2552 if (get_work_pwq(work) == pwq) { 2553 if (first) 2554 pool->watchdog_ts = jiffies; 2555 move_linked_works(work, scheduled, &n); 2556 } 2557 first = false; 2558 } 2559 2560 if (!list_empty(scheduled)) { 2561 process_scheduled_works(rescuer); 2562 2563 /* 2564 * The above execution of rescued work items could 2565 * have created more to rescue through 2566 * pwq_activate_first_inactive() or chained 2567 * queueing. Let's put @pwq back on mayday list so 2568 * that such back-to-back work items, which may be 2569 * being used to relieve memory pressure, don't 2570 * incur MAYDAY_INTERVAL delay inbetween. 2571 */ 2572 if (pwq->nr_active && need_to_create_worker(pool)) { 2573 raw_spin_lock(&wq_mayday_lock); 2574 /* 2575 * Queue iff we aren't racing destruction 2576 * and somebody else hasn't queued it already. 2577 */ 2578 if (wq->rescuer && list_empty(&pwq->mayday_node)) { 2579 get_pwq(pwq); 2580 list_add_tail(&pwq->mayday_node, &wq->maydays); 2581 } 2582 raw_spin_unlock(&wq_mayday_lock); 2583 } 2584 } 2585 2586 /* 2587 * Put the reference grabbed by send_mayday(). @pool won't 2588 * go away while we're still attached to it. 2589 */ 2590 put_pwq(pwq); 2591 2592 /* 2593 * Leave this pool. If need_more_worker() is %true, notify a 2594 * regular worker; otherwise, we end up with 0 concurrency 2595 * and stalling the execution. 2596 */ 2597 if (need_more_worker(pool)) 2598 wake_up_worker(pool); 2599 2600 raw_spin_unlock_irq(&pool->lock); 2601 2602 worker_detach_from_pool(rescuer); 2603 2604 raw_spin_lock_irq(&wq_mayday_lock); 2605 } 2606 2607 raw_spin_unlock_irq(&wq_mayday_lock); 2608 2609 if (should_stop) { 2610 __set_current_state(TASK_RUNNING); 2611 set_pf_worker(false); 2612 return 0; 2613 } 2614 2615 /* rescuers should never participate in concurrency management */ 2616 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2617 schedule(); 2618 goto repeat; 2619 } 2620 2621 /** 2622 * check_flush_dependency - check for flush dependency sanity 2623 * @target_wq: workqueue being flushed 2624 * @target_work: work item being flushed (NULL for workqueue flushes) 2625 * 2626 * %current is trying to flush the whole @target_wq or @target_work on it. 2627 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2628 * reclaiming memory or running on a workqueue which doesn't have 2629 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2630 * a deadlock. 2631 */ 2632 static void check_flush_dependency(struct workqueue_struct *target_wq, 2633 struct work_struct *target_work) 2634 { 2635 work_func_t target_func = target_work ? target_work->func : NULL; 2636 struct worker *worker; 2637 2638 if (target_wq->flags & WQ_MEM_RECLAIM) 2639 return; 2640 2641 worker = current_wq_worker(); 2642 2643 WARN_ONCE(current->flags & PF_MEMALLOC, 2644 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 2645 current->pid, current->comm, target_wq->name, target_func); 2646 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2647 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2648 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 2649 worker->current_pwq->wq->name, worker->current_func, 2650 target_wq->name, target_func); 2651 } 2652 2653 struct wq_barrier { 2654 struct work_struct work; 2655 struct completion done; 2656 struct task_struct *task; /* purely informational */ 2657 }; 2658 2659 static void wq_barrier_func(struct work_struct *work) 2660 { 2661 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2662 complete(&barr->done); 2663 } 2664 2665 /** 2666 * insert_wq_barrier - insert a barrier work 2667 * @pwq: pwq to insert barrier into 2668 * @barr: wq_barrier to insert 2669 * @target: target work to attach @barr to 2670 * @worker: worker currently executing @target, NULL if @target is not executing 2671 * 2672 * @barr is linked to @target such that @barr is completed only after 2673 * @target finishes execution. Please note that the ordering 2674 * guarantee is observed only with respect to @target and on the local 2675 * cpu. 2676 * 2677 * Currently, a queued barrier can't be canceled. This is because 2678 * try_to_grab_pending() can't determine whether the work to be 2679 * grabbed is at the head of the queue and thus can't clear LINKED 2680 * flag of the previous work while there must be a valid next work 2681 * after a work with LINKED flag set. 2682 * 2683 * Note that when @worker is non-NULL, @target may be modified 2684 * underneath us, so we can't reliably determine pwq from @target. 2685 * 2686 * CONTEXT: 2687 * raw_spin_lock_irq(pool->lock). 2688 */ 2689 static void insert_wq_barrier(struct pool_workqueue *pwq, 2690 struct wq_barrier *barr, 2691 struct work_struct *target, struct worker *worker) 2692 { 2693 unsigned int work_flags = 0; 2694 unsigned int work_color; 2695 struct list_head *head; 2696 2697 /* 2698 * debugobject calls are safe here even with pool->lock locked 2699 * as we know for sure that this will not trigger any of the 2700 * checks and call back into the fixup functions where we 2701 * might deadlock. 2702 */ 2703 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2704 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2705 2706 init_completion_map(&barr->done, &target->lockdep_map); 2707 2708 barr->task = current; 2709 2710 /* The barrier work item does not participate in pwq->nr_active. */ 2711 work_flags |= WORK_STRUCT_INACTIVE; 2712 2713 /* 2714 * If @target is currently being executed, schedule the 2715 * barrier to the worker; otherwise, put it after @target. 2716 */ 2717 if (worker) { 2718 head = worker->scheduled.next; 2719 work_color = worker->current_color; 2720 } else { 2721 unsigned long *bits = work_data_bits(target); 2722 2723 head = target->entry.next; 2724 /* there can already be other linked works, inherit and set */ 2725 work_flags |= *bits & WORK_STRUCT_LINKED; 2726 work_color = get_work_color(*bits); 2727 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2728 } 2729 2730 pwq->nr_in_flight[work_color]++; 2731 work_flags |= work_color_to_flags(work_color); 2732 2733 debug_work_activate(&barr->work); 2734 insert_work(pwq, &barr->work, head, work_flags); 2735 } 2736 2737 /** 2738 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2739 * @wq: workqueue being flushed 2740 * @flush_color: new flush color, < 0 for no-op 2741 * @work_color: new work color, < 0 for no-op 2742 * 2743 * Prepare pwqs for workqueue flushing. 2744 * 2745 * If @flush_color is non-negative, flush_color on all pwqs should be 2746 * -1. If no pwq has in-flight commands at the specified color, all 2747 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2748 * has in flight commands, its pwq->flush_color is set to 2749 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2750 * wakeup logic is armed and %true is returned. 2751 * 2752 * The caller should have initialized @wq->first_flusher prior to 2753 * calling this function with non-negative @flush_color. If 2754 * @flush_color is negative, no flush color update is done and %false 2755 * is returned. 2756 * 2757 * If @work_color is non-negative, all pwqs should have the same 2758 * work_color which is previous to @work_color and all will be 2759 * advanced to @work_color. 2760 * 2761 * CONTEXT: 2762 * mutex_lock(wq->mutex). 2763 * 2764 * Return: 2765 * %true if @flush_color >= 0 and there's something to flush. %false 2766 * otherwise. 2767 */ 2768 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2769 int flush_color, int work_color) 2770 { 2771 bool wait = false; 2772 struct pool_workqueue *pwq; 2773 2774 if (flush_color >= 0) { 2775 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2776 atomic_set(&wq->nr_pwqs_to_flush, 1); 2777 } 2778 2779 for_each_pwq(pwq, wq) { 2780 struct worker_pool *pool = pwq->pool; 2781 2782 raw_spin_lock_irq(&pool->lock); 2783 2784 if (flush_color >= 0) { 2785 WARN_ON_ONCE(pwq->flush_color != -1); 2786 2787 if (pwq->nr_in_flight[flush_color]) { 2788 pwq->flush_color = flush_color; 2789 atomic_inc(&wq->nr_pwqs_to_flush); 2790 wait = true; 2791 } 2792 } 2793 2794 if (work_color >= 0) { 2795 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2796 pwq->work_color = work_color; 2797 } 2798 2799 raw_spin_unlock_irq(&pool->lock); 2800 } 2801 2802 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2803 complete(&wq->first_flusher->done); 2804 2805 return wait; 2806 } 2807 2808 /** 2809 * flush_workqueue - ensure that any scheduled work has run to completion. 2810 * @wq: workqueue to flush 2811 * 2812 * This function sleeps until all work items which were queued on entry 2813 * have finished execution, but it is not livelocked by new incoming ones. 2814 */ 2815 void flush_workqueue(struct workqueue_struct *wq) 2816 { 2817 struct wq_flusher this_flusher = { 2818 .list = LIST_HEAD_INIT(this_flusher.list), 2819 .flush_color = -1, 2820 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 2821 }; 2822 int next_color; 2823 2824 if (WARN_ON(!wq_online)) 2825 return; 2826 2827 lock_map_acquire(&wq->lockdep_map); 2828 lock_map_release(&wq->lockdep_map); 2829 2830 mutex_lock(&wq->mutex); 2831 2832 /* 2833 * Start-to-wait phase 2834 */ 2835 next_color = work_next_color(wq->work_color); 2836 2837 if (next_color != wq->flush_color) { 2838 /* 2839 * Color space is not full. The current work_color 2840 * becomes our flush_color and work_color is advanced 2841 * by one. 2842 */ 2843 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2844 this_flusher.flush_color = wq->work_color; 2845 wq->work_color = next_color; 2846 2847 if (!wq->first_flusher) { 2848 /* no flush in progress, become the first flusher */ 2849 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2850 2851 wq->first_flusher = &this_flusher; 2852 2853 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2854 wq->work_color)) { 2855 /* nothing to flush, done */ 2856 wq->flush_color = next_color; 2857 wq->first_flusher = NULL; 2858 goto out_unlock; 2859 } 2860 } else { 2861 /* wait in queue */ 2862 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2863 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2864 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2865 } 2866 } else { 2867 /* 2868 * Oops, color space is full, wait on overflow queue. 2869 * The next flush completion will assign us 2870 * flush_color and transfer to flusher_queue. 2871 */ 2872 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2873 } 2874 2875 check_flush_dependency(wq, NULL); 2876 2877 mutex_unlock(&wq->mutex); 2878 2879 wait_for_completion(&this_flusher.done); 2880 2881 /* 2882 * Wake-up-and-cascade phase 2883 * 2884 * First flushers are responsible for cascading flushes and 2885 * handling overflow. Non-first flushers can simply return. 2886 */ 2887 if (READ_ONCE(wq->first_flusher) != &this_flusher) 2888 return; 2889 2890 mutex_lock(&wq->mutex); 2891 2892 /* we might have raced, check again with mutex held */ 2893 if (wq->first_flusher != &this_flusher) 2894 goto out_unlock; 2895 2896 WRITE_ONCE(wq->first_flusher, NULL); 2897 2898 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2899 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2900 2901 while (true) { 2902 struct wq_flusher *next, *tmp; 2903 2904 /* complete all the flushers sharing the current flush color */ 2905 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2906 if (next->flush_color != wq->flush_color) 2907 break; 2908 list_del_init(&next->list); 2909 complete(&next->done); 2910 } 2911 2912 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2913 wq->flush_color != work_next_color(wq->work_color)); 2914 2915 /* this flush_color is finished, advance by one */ 2916 wq->flush_color = work_next_color(wq->flush_color); 2917 2918 /* one color has been freed, handle overflow queue */ 2919 if (!list_empty(&wq->flusher_overflow)) { 2920 /* 2921 * Assign the same color to all overflowed 2922 * flushers, advance work_color and append to 2923 * flusher_queue. This is the start-to-wait 2924 * phase for these overflowed flushers. 2925 */ 2926 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2927 tmp->flush_color = wq->work_color; 2928 2929 wq->work_color = work_next_color(wq->work_color); 2930 2931 list_splice_tail_init(&wq->flusher_overflow, 2932 &wq->flusher_queue); 2933 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2934 } 2935 2936 if (list_empty(&wq->flusher_queue)) { 2937 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2938 break; 2939 } 2940 2941 /* 2942 * Need to flush more colors. Make the next flusher 2943 * the new first flusher and arm pwqs. 2944 */ 2945 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2946 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2947 2948 list_del_init(&next->list); 2949 wq->first_flusher = next; 2950 2951 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2952 break; 2953 2954 /* 2955 * Meh... this color is already done, clear first 2956 * flusher and repeat cascading. 2957 */ 2958 wq->first_flusher = NULL; 2959 } 2960 2961 out_unlock: 2962 mutex_unlock(&wq->mutex); 2963 } 2964 EXPORT_SYMBOL(flush_workqueue); 2965 2966 /** 2967 * drain_workqueue - drain a workqueue 2968 * @wq: workqueue to drain 2969 * 2970 * Wait until the workqueue becomes empty. While draining is in progress, 2971 * only chain queueing is allowed. IOW, only currently pending or running 2972 * work items on @wq can queue further work items on it. @wq is flushed 2973 * repeatedly until it becomes empty. The number of flushing is determined 2974 * by the depth of chaining and should be relatively short. Whine if it 2975 * takes too long. 2976 */ 2977 void drain_workqueue(struct workqueue_struct *wq) 2978 { 2979 unsigned int flush_cnt = 0; 2980 struct pool_workqueue *pwq; 2981 2982 /* 2983 * __queue_work() needs to test whether there are drainers, is much 2984 * hotter than drain_workqueue() and already looks at @wq->flags. 2985 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2986 */ 2987 mutex_lock(&wq->mutex); 2988 if (!wq->nr_drainers++) 2989 wq->flags |= __WQ_DRAINING; 2990 mutex_unlock(&wq->mutex); 2991 reflush: 2992 flush_workqueue(wq); 2993 2994 mutex_lock(&wq->mutex); 2995 2996 for_each_pwq(pwq, wq) { 2997 bool drained; 2998 2999 raw_spin_lock_irq(&pwq->pool->lock); 3000 drained = !pwq->nr_active && list_empty(&pwq->inactive_works); 3001 raw_spin_unlock_irq(&pwq->pool->lock); 3002 3003 if (drained) 3004 continue; 3005 3006 if (++flush_cnt == 10 || 3007 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 3008 pr_warn("workqueue %s: %s() isn't complete after %u tries\n", 3009 wq->name, __func__, flush_cnt); 3010 3011 mutex_unlock(&wq->mutex); 3012 goto reflush; 3013 } 3014 3015 if (!--wq->nr_drainers) 3016 wq->flags &= ~__WQ_DRAINING; 3017 mutex_unlock(&wq->mutex); 3018 } 3019 EXPORT_SYMBOL_GPL(drain_workqueue); 3020 3021 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 3022 bool from_cancel) 3023 { 3024 struct worker *worker = NULL; 3025 struct worker_pool *pool; 3026 struct pool_workqueue *pwq; 3027 3028 might_sleep(); 3029 3030 rcu_read_lock(); 3031 pool = get_work_pool(work); 3032 if (!pool) { 3033 rcu_read_unlock(); 3034 return false; 3035 } 3036 3037 raw_spin_lock_irq(&pool->lock); 3038 /* see the comment in try_to_grab_pending() with the same code */ 3039 pwq = get_work_pwq(work); 3040 if (pwq) { 3041 if (unlikely(pwq->pool != pool)) 3042 goto already_gone; 3043 } else { 3044 worker = find_worker_executing_work(pool, work); 3045 if (!worker) 3046 goto already_gone; 3047 pwq = worker->current_pwq; 3048 } 3049 3050 check_flush_dependency(pwq->wq, work); 3051 3052 insert_wq_barrier(pwq, barr, work, worker); 3053 raw_spin_unlock_irq(&pool->lock); 3054 3055 /* 3056 * Force a lock recursion deadlock when using flush_work() inside a 3057 * single-threaded or rescuer equipped workqueue. 3058 * 3059 * For single threaded workqueues the deadlock happens when the work 3060 * is after the work issuing the flush_work(). For rescuer equipped 3061 * workqueues the deadlock happens when the rescuer stalls, blocking 3062 * forward progress. 3063 */ 3064 if (!from_cancel && 3065 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) { 3066 lock_map_acquire(&pwq->wq->lockdep_map); 3067 lock_map_release(&pwq->wq->lockdep_map); 3068 } 3069 rcu_read_unlock(); 3070 return true; 3071 already_gone: 3072 raw_spin_unlock_irq(&pool->lock); 3073 rcu_read_unlock(); 3074 return false; 3075 } 3076 3077 static bool __flush_work(struct work_struct *work, bool from_cancel) 3078 { 3079 struct wq_barrier barr; 3080 3081 if (WARN_ON(!wq_online)) 3082 return false; 3083 3084 if (WARN_ON(!work->func)) 3085 return false; 3086 3087 if (!from_cancel) { 3088 lock_map_acquire(&work->lockdep_map); 3089 lock_map_release(&work->lockdep_map); 3090 } 3091 3092 if (start_flush_work(work, &barr, from_cancel)) { 3093 wait_for_completion(&barr.done); 3094 destroy_work_on_stack(&barr.work); 3095 return true; 3096 } else { 3097 return false; 3098 } 3099 } 3100 3101 /** 3102 * flush_work - wait for a work to finish executing the last queueing instance 3103 * @work: the work to flush 3104 * 3105 * Wait until @work has finished execution. @work is guaranteed to be idle 3106 * on return if it hasn't been requeued since flush started. 3107 * 3108 * Return: 3109 * %true if flush_work() waited for the work to finish execution, 3110 * %false if it was already idle. 3111 */ 3112 bool flush_work(struct work_struct *work) 3113 { 3114 return __flush_work(work, false); 3115 } 3116 EXPORT_SYMBOL_GPL(flush_work); 3117 3118 struct cwt_wait { 3119 wait_queue_entry_t wait; 3120 struct work_struct *work; 3121 }; 3122 3123 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 3124 { 3125 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 3126 3127 if (cwait->work != key) 3128 return 0; 3129 return autoremove_wake_function(wait, mode, sync, key); 3130 } 3131 3132 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 3133 { 3134 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 3135 unsigned long flags; 3136 int ret; 3137 3138 do { 3139 ret = try_to_grab_pending(work, is_dwork, &flags); 3140 /* 3141 * If someone else is already canceling, wait for it to 3142 * finish. flush_work() doesn't work for PREEMPT_NONE 3143 * because we may get scheduled between @work's completion 3144 * and the other canceling task resuming and clearing 3145 * CANCELING - flush_work() will return false immediately 3146 * as @work is no longer busy, try_to_grab_pending() will 3147 * return -ENOENT as @work is still being canceled and the 3148 * other canceling task won't be able to clear CANCELING as 3149 * we're hogging the CPU. 3150 * 3151 * Let's wait for completion using a waitqueue. As this 3152 * may lead to the thundering herd problem, use a custom 3153 * wake function which matches @work along with exclusive 3154 * wait and wakeup. 3155 */ 3156 if (unlikely(ret == -ENOENT)) { 3157 struct cwt_wait cwait; 3158 3159 init_wait(&cwait.wait); 3160 cwait.wait.func = cwt_wakefn; 3161 cwait.work = work; 3162 3163 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 3164 TASK_UNINTERRUPTIBLE); 3165 if (work_is_canceling(work)) 3166 schedule(); 3167 finish_wait(&cancel_waitq, &cwait.wait); 3168 } 3169 } while (unlikely(ret < 0)); 3170 3171 /* tell other tasks trying to grab @work to back off */ 3172 mark_work_canceling(work); 3173 local_irq_restore(flags); 3174 3175 /* 3176 * This allows canceling during early boot. We know that @work 3177 * isn't executing. 3178 */ 3179 if (wq_online) 3180 __flush_work(work, true); 3181 3182 clear_work_data(work); 3183 3184 /* 3185 * Paired with prepare_to_wait() above so that either 3186 * waitqueue_active() is visible here or !work_is_canceling() is 3187 * visible there. 3188 */ 3189 smp_mb(); 3190 if (waitqueue_active(&cancel_waitq)) 3191 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 3192 3193 return ret; 3194 } 3195 3196 /** 3197 * cancel_work_sync - cancel a work and wait for it to finish 3198 * @work: the work to cancel 3199 * 3200 * Cancel @work and wait for its execution to finish. This function 3201 * can be used even if the work re-queues itself or migrates to 3202 * another workqueue. On return from this function, @work is 3203 * guaranteed to be not pending or executing on any CPU. 3204 * 3205 * cancel_work_sync(&delayed_work->work) must not be used for 3206 * delayed_work's. Use cancel_delayed_work_sync() instead. 3207 * 3208 * The caller must ensure that the workqueue on which @work was last 3209 * queued can't be destroyed before this function returns. 3210 * 3211 * Return: 3212 * %true if @work was pending, %false otherwise. 3213 */ 3214 bool cancel_work_sync(struct work_struct *work) 3215 { 3216 return __cancel_work_timer(work, false); 3217 } 3218 EXPORT_SYMBOL_GPL(cancel_work_sync); 3219 3220 /** 3221 * flush_delayed_work - wait for a dwork to finish executing the last queueing 3222 * @dwork: the delayed work to flush 3223 * 3224 * Delayed timer is cancelled and the pending work is queued for 3225 * immediate execution. Like flush_work(), this function only 3226 * considers the last queueing instance of @dwork. 3227 * 3228 * Return: 3229 * %true if flush_work() waited for the work to finish execution, 3230 * %false if it was already idle. 3231 */ 3232 bool flush_delayed_work(struct delayed_work *dwork) 3233 { 3234 local_irq_disable(); 3235 if (del_timer_sync(&dwork->timer)) 3236 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 3237 local_irq_enable(); 3238 return flush_work(&dwork->work); 3239 } 3240 EXPORT_SYMBOL(flush_delayed_work); 3241 3242 /** 3243 * flush_rcu_work - wait for a rwork to finish executing the last queueing 3244 * @rwork: the rcu work to flush 3245 * 3246 * Return: 3247 * %true if flush_rcu_work() waited for the work to finish execution, 3248 * %false if it was already idle. 3249 */ 3250 bool flush_rcu_work(struct rcu_work *rwork) 3251 { 3252 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 3253 rcu_barrier(); 3254 flush_work(&rwork->work); 3255 return true; 3256 } else { 3257 return flush_work(&rwork->work); 3258 } 3259 } 3260 EXPORT_SYMBOL(flush_rcu_work); 3261 3262 static bool __cancel_work(struct work_struct *work, bool is_dwork) 3263 { 3264 unsigned long flags; 3265 int ret; 3266 3267 do { 3268 ret = try_to_grab_pending(work, is_dwork, &flags); 3269 } while (unlikely(ret == -EAGAIN)); 3270 3271 if (unlikely(ret < 0)) 3272 return false; 3273 3274 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 3275 local_irq_restore(flags); 3276 return ret; 3277 } 3278 3279 /** 3280 * cancel_delayed_work - cancel a delayed work 3281 * @dwork: delayed_work to cancel 3282 * 3283 * Kill off a pending delayed_work. 3284 * 3285 * Return: %true if @dwork was pending and canceled; %false if it wasn't 3286 * pending. 3287 * 3288 * Note: 3289 * The work callback function may still be running on return, unless 3290 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 3291 * use cancel_delayed_work_sync() to wait on it. 3292 * 3293 * This function is safe to call from any context including IRQ handler. 3294 */ 3295 bool cancel_delayed_work(struct delayed_work *dwork) 3296 { 3297 return __cancel_work(&dwork->work, true); 3298 } 3299 EXPORT_SYMBOL(cancel_delayed_work); 3300 3301 /** 3302 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3303 * @dwork: the delayed work cancel 3304 * 3305 * This is cancel_work_sync() for delayed works. 3306 * 3307 * Return: 3308 * %true if @dwork was pending, %false otherwise. 3309 */ 3310 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3311 { 3312 return __cancel_work_timer(&dwork->work, true); 3313 } 3314 EXPORT_SYMBOL(cancel_delayed_work_sync); 3315 3316 /** 3317 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3318 * @func: the function to call 3319 * 3320 * schedule_on_each_cpu() executes @func on each online CPU using the 3321 * system workqueue and blocks until all CPUs have completed. 3322 * schedule_on_each_cpu() is very slow. 3323 * 3324 * Return: 3325 * 0 on success, -errno on failure. 3326 */ 3327 int schedule_on_each_cpu(work_func_t func) 3328 { 3329 int cpu; 3330 struct work_struct __percpu *works; 3331 3332 works = alloc_percpu(struct work_struct); 3333 if (!works) 3334 return -ENOMEM; 3335 3336 cpus_read_lock(); 3337 3338 for_each_online_cpu(cpu) { 3339 struct work_struct *work = per_cpu_ptr(works, cpu); 3340 3341 INIT_WORK(work, func); 3342 schedule_work_on(cpu, work); 3343 } 3344 3345 for_each_online_cpu(cpu) 3346 flush_work(per_cpu_ptr(works, cpu)); 3347 3348 cpus_read_unlock(); 3349 free_percpu(works); 3350 return 0; 3351 } 3352 3353 /** 3354 * execute_in_process_context - reliably execute the routine with user context 3355 * @fn: the function to execute 3356 * @ew: guaranteed storage for the execute work structure (must 3357 * be available when the work executes) 3358 * 3359 * Executes the function immediately if process context is available, 3360 * otherwise schedules the function for delayed execution. 3361 * 3362 * Return: 0 - function was executed 3363 * 1 - function was scheduled for execution 3364 */ 3365 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3366 { 3367 if (!in_interrupt()) { 3368 fn(&ew->work); 3369 return 0; 3370 } 3371 3372 INIT_WORK(&ew->work, fn); 3373 schedule_work(&ew->work); 3374 3375 return 1; 3376 } 3377 EXPORT_SYMBOL_GPL(execute_in_process_context); 3378 3379 /** 3380 * free_workqueue_attrs - free a workqueue_attrs 3381 * @attrs: workqueue_attrs to free 3382 * 3383 * Undo alloc_workqueue_attrs(). 3384 */ 3385 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3386 { 3387 if (attrs) { 3388 free_cpumask_var(attrs->cpumask); 3389 kfree(attrs); 3390 } 3391 } 3392 3393 /** 3394 * alloc_workqueue_attrs - allocate a workqueue_attrs 3395 * 3396 * Allocate a new workqueue_attrs, initialize with default settings and 3397 * return it. 3398 * 3399 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3400 */ 3401 struct workqueue_attrs *alloc_workqueue_attrs(void) 3402 { 3403 struct workqueue_attrs *attrs; 3404 3405 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); 3406 if (!attrs) 3407 goto fail; 3408 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) 3409 goto fail; 3410 3411 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3412 return attrs; 3413 fail: 3414 free_workqueue_attrs(attrs); 3415 return NULL; 3416 } 3417 3418 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3419 const struct workqueue_attrs *from) 3420 { 3421 to->nice = from->nice; 3422 cpumask_copy(to->cpumask, from->cpumask); 3423 /* 3424 * Unlike hash and equality test, this function doesn't ignore 3425 * ->no_numa as it is used for both pool and wq attrs. Instead, 3426 * get_unbound_pool() explicitly clears ->no_numa after copying. 3427 */ 3428 to->no_numa = from->no_numa; 3429 } 3430 3431 /* hash value of the content of @attr */ 3432 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3433 { 3434 u32 hash = 0; 3435 3436 hash = jhash_1word(attrs->nice, hash); 3437 hash = jhash(cpumask_bits(attrs->cpumask), 3438 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3439 return hash; 3440 } 3441 3442 /* content equality test */ 3443 static bool wqattrs_equal(const struct workqueue_attrs *a, 3444 const struct workqueue_attrs *b) 3445 { 3446 if (a->nice != b->nice) 3447 return false; 3448 if (!cpumask_equal(a->cpumask, b->cpumask)) 3449 return false; 3450 return true; 3451 } 3452 3453 /** 3454 * init_worker_pool - initialize a newly zalloc'd worker_pool 3455 * @pool: worker_pool to initialize 3456 * 3457 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3458 * 3459 * Return: 0 on success, -errno on failure. Even on failure, all fields 3460 * inside @pool proper are initialized and put_unbound_pool() can be called 3461 * on @pool safely to release it. 3462 */ 3463 static int init_worker_pool(struct worker_pool *pool) 3464 { 3465 raw_spin_lock_init(&pool->lock); 3466 pool->id = -1; 3467 pool->cpu = -1; 3468 pool->node = NUMA_NO_NODE; 3469 pool->flags |= POOL_DISASSOCIATED; 3470 pool->watchdog_ts = jiffies; 3471 INIT_LIST_HEAD(&pool->worklist); 3472 INIT_LIST_HEAD(&pool->idle_list); 3473 hash_init(pool->busy_hash); 3474 3475 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 3476 3477 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 3478 3479 INIT_LIST_HEAD(&pool->workers); 3480 3481 ida_init(&pool->worker_ida); 3482 INIT_HLIST_NODE(&pool->hash_node); 3483 pool->refcnt = 1; 3484 3485 /* shouldn't fail above this point */ 3486 pool->attrs = alloc_workqueue_attrs(); 3487 if (!pool->attrs) 3488 return -ENOMEM; 3489 return 0; 3490 } 3491 3492 #ifdef CONFIG_LOCKDEP 3493 static void wq_init_lockdep(struct workqueue_struct *wq) 3494 { 3495 char *lock_name; 3496 3497 lockdep_register_key(&wq->key); 3498 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 3499 if (!lock_name) 3500 lock_name = wq->name; 3501 3502 wq->lock_name = lock_name; 3503 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); 3504 } 3505 3506 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3507 { 3508 lockdep_unregister_key(&wq->key); 3509 } 3510 3511 static void wq_free_lockdep(struct workqueue_struct *wq) 3512 { 3513 if (wq->lock_name != wq->name) 3514 kfree(wq->lock_name); 3515 } 3516 #else 3517 static void wq_init_lockdep(struct workqueue_struct *wq) 3518 { 3519 } 3520 3521 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3522 { 3523 } 3524 3525 static void wq_free_lockdep(struct workqueue_struct *wq) 3526 { 3527 } 3528 #endif 3529 3530 static void rcu_free_wq(struct rcu_head *rcu) 3531 { 3532 struct workqueue_struct *wq = 3533 container_of(rcu, struct workqueue_struct, rcu); 3534 3535 wq_free_lockdep(wq); 3536 3537 if (!(wq->flags & WQ_UNBOUND)) 3538 free_percpu(wq->cpu_pwqs); 3539 else 3540 free_workqueue_attrs(wq->unbound_attrs); 3541 3542 kfree(wq); 3543 } 3544 3545 static void rcu_free_pool(struct rcu_head *rcu) 3546 { 3547 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3548 3549 ida_destroy(&pool->worker_ida); 3550 free_workqueue_attrs(pool->attrs); 3551 kfree(pool); 3552 } 3553 3554 /* This returns with the lock held on success (pool manager is inactive). */ 3555 static bool wq_manager_inactive(struct worker_pool *pool) 3556 { 3557 raw_spin_lock_irq(&pool->lock); 3558 3559 if (pool->flags & POOL_MANAGER_ACTIVE) { 3560 raw_spin_unlock_irq(&pool->lock); 3561 return false; 3562 } 3563 return true; 3564 } 3565 3566 /** 3567 * put_unbound_pool - put a worker_pool 3568 * @pool: worker_pool to put 3569 * 3570 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 3571 * safe manner. get_unbound_pool() calls this function on its failure path 3572 * and this function should be able to release pools which went through, 3573 * successfully or not, init_worker_pool(). 3574 * 3575 * Should be called with wq_pool_mutex held. 3576 */ 3577 static void put_unbound_pool(struct worker_pool *pool) 3578 { 3579 DECLARE_COMPLETION_ONSTACK(detach_completion); 3580 struct worker *worker; 3581 3582 lockdep_assert_held(&wq_pool_mutex); 3583 3584 if (--pool->refcnt) 3585 return; 3586 3587 /* sanity checks */ 3588 if (WARN_ON(!(pool->cpu < 0)) || 3589 WARN_ON(!list_empty(&pool->worklist))) 3590 return; 3591 3592 /* release id and unhash */ 3593 if (pool->id >= 0) 3594 idr_remove(&worker_pool_idr, pool->id); 3595 hash_del(&pool->hash_node); 3596 3597 /* 3598 * Become the manager and destroy all workers. This prevents 3599 * @pool's workers from blocking on attach_mutex. We're the last 3600 * manager and @pool gets freed with the flag set. 3601 * Because of how wq_manager_inactive() works, we will hold the 3602 * spinlock after a successful wait. 3603 */ 3604 rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool), 3605 TASK_UNINTERRUPTIBLE); 3606 pool->flags |= POOL_MANAGER_ACTIVE; 3607 3608 while ((worker = first_idle_worker(pool))) 3609 destroy_worker(worker); 3610 WARN_ON(pool->nr_workers || pool->nr_idle); 3611 raw_spin_unlock_irq(&pool->lock); 3612 3613 mutex_lock(&wq_pool_attach_mutex); 3614 if (!list_empty(&pool->workers)) 3615 pool->detach_completion = &detach_completion; 3616 mutex_unlock(&wq_pool_attach_mutex); 3617 3618 if (pool->detach_completion) 3619 wait_for_completion(pool->detach_completion); 3620 3621 /* shut down the timers */ 3622 del_timer_sync(&pool->idle_timer); 3623 del_timer_sync(&pool->mayday_timer); 3624 3625 /* RCU protected to allow dereferences from get_work_pool() */ 3626 call_rcu(&pool->rcu, rcu_free_pool); 3627 } 3628 3629 /** 3630 * get_unbound_pool - get a worker_pool with the specified attributes 3631 * @attrs: the attributes of the worker_pool to get 3632 * 3633 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3634 * reference count and return it. If there already is a matching 3635 * worker_pool, it will be used; otherwise, this function attempts to 3636 * create a new one. 3637 * 3638 * Should be called with wq_pool_mutex held. 3639 * 3640 * Return: On success, a worker_pool with the same attributes as @attrs. 3641 * On failure, %NULL. 3642 */ 3643 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3644 { 3645 u32 hash = wqattrs_hash(attrs); 3646 struct worker_pool *pool; 3647 int node; 3648 int target_node = NUMA_NO_NODE; 3649 3650 lockdep_assert_held(&wq_pool_mutex); 3651 3652 /* do we already have a matching pool? */ 3653 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3654 if (wqattrs_equal(pool->attrs, attrs)) { 3655 pool->refcnt++; 3656 return pool; 3657 } 3658 } 3659 3660 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3661 if (wq_numa_enabled) { 3662 for_each_node(node) { 3663 if (cpumask_subset(attrs->cpumask, 3664 wq_numa_possible_cpumask[node])) { 3665 target_node = node; 3666 break; 3667 } 3668 } 3669 } 3670 3671 /* nope, create a new one */ 3672 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3673 if (!pool || init_worker_pool(pool) < 0) 3674 goto fail; 3675 3676 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3677 copy_workqueue_attrs(pool->attrs, attrs); 3678 pool->node = target_node; 3679 3680 /* 3681 * no_numa isn't a worker_pool attribute, always clear it. See 3682 * 'struct workqueue_attrs' comments for detail. 3683 */ 3684 pool->attrs->no_numa = false; 3685 3686 if (worker_pool_assign_id(pool) < 0) 3687 goto fail; 3688 3689 /* create and start the initial worker */ 3690 if (wq_online && !create_worker(pool)) 3691 goto fail; 3692 3693 /* install */ 3694 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3695 3696 return pool; 3697 fail: 3698 if (pool) 3699 put_unbound_pool(pool); 3700 return NULL; 3701 } 3702 3703 static void rcu_free_pwq(struct rcu_head *rcu) 3704 { 3705 kmem_cache_free(pwq_cache, 3706 container_of(rcu, struct pool_workqueue, rcu)); 3707 } 3708 3709 /* 3710 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3711 * and needs to be destroyed. 3712 */ 3713 static void pwq_unbound_release_workfn(struct work_struct *work) 3714 { 3715 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3716 unbound_release_work); 3717 struct workqueue_struct *wq = pwq->wq; 3718 struct worker_pool *pool = pwq->pool; 3719 bool is_last = false; 3720 3721 /* 3722 * when @pwq is not linked, it doesn't hold any reference to the 3723 * @wq, and @wq is invalid to access. 3724 */ 3725 if (!list_empty(&pwq->pwqs_node)) { 3726 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3727 return; 3728 3729 mutex_lock(&wq->mutex); 3730 list_del_rcu(&pwq->pwqs_node); 3731 is_last = list_empty(&wq->pwqs); 3732 mutex_unlock(&wq->mutex); 3733 } 3734 3735 mutex_lock(&wq_pool_mutex); 3736 put_unbound_pool(pool); 3737 mutex_unlock(&wq_pool_mutex); 3738 3739 call_rcu(&pwq->rcu, rcu_free_pwq); 3740 3741 /* 3742 * If we're the last pwq going away, @wq is already dead and no one 3743 * is gonna access it anymore. Schedule RCU free. 3744 */ 3745 if (is_last) { 3746 wq_unregister_lockdep(wq); 3747 call_rcu(&wq->rcu, rcu_free_wq); 3748 } 3749 } 3750 3751 /** 3752 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3753 * @pwq: target pool_workqueue 3754 * 3755 * If @pwq isn't freezing, set @pwq->max_active to the associated 3756 * workqueue's saved_max_active and activate inactive work items 3757 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3758 */ 3759 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3760 { 3761 struct workqueue_struct *wq = pwq->wq; 3762 bool freezable = wq->flags & WQ_FREEZABLE; 3763 unsigned long flags; 3764 3765 /* for @wq->saved_max_active */ 3766 lockdep_assert_held(&wq->mutex); 3767 3768 /* fast exit for non-freezable wqs */ 3769 if (!freezable && pwq->max_active == wq->saved_max_active) 3770 return; 3771 3772 /* this function can be called during early boot w/ irq disabled */ 3773 raw_spin_lock_irqsave(&pwq->pool->lock, flags); 3774 3775 /* 3776 * During [un]freezing, the caller is responsible for ensuring that 3777 * this function is called at least once after @workqueue_freezing 3778 * is updated and visible. 3779 */ 3780 if (!freezable || !workqueue_freezing) { 3781 bool kick = false; 3782 3783 pwq->max_active = wq->saved_max_active; 3784 3785 while (!list_empty(&pwq->inactive_works) && 3786 pwq->nr_active < pwq->max_active) { 3787 pwq_activate_first_inactive(pwq); 3788 kick = true; 3789 } 3790 3791 /* 3792 * Need to kick a worker after thawed or an unbound wq's 3793 * max_active is bumped. In realtime scenarios, always kicking a 3794 * worker will cause interference on the isolated cpu cores, so 3795 * let's kick iff work items were activated. 3796 */ 3797 if (kick) 3798 wake_up_worker(pwq->pool); 3799 } else { 3800 pwq->max_active = 0; 3801 } 3802 3803 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); 3804 } 3805 3806 /* initialize newly allocated @pwq which is associated with @wq and @pool */ 3807 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3808 struct worker_pool *pool) 3809 { 3810 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3811 3812 memset(pwq, 0, sizeof(*pwq)); 3813 3814 pwq->pool = pool; 3815 pwq->wq = wq; 3816 pwq->flush_color = -1; 3817 pwq->refcnt = 1; 3818 INIT_LIST_HEAD(&pwq->inactive_works); 3819 INIT_LIST_HEAD(&pwq->pwqs_node); 3820 INIT_LIST_HEAD(&pwq->mayday_node); 3821 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3822 } 3823 3824 /* sync @pwq with the current state of its associated wq and link it */ 3825 static void link_pwq(struct pool_workqueue *pwq) 3826 { 3827 struct workqueue_struct *wq = pwq->wq; 3828 3829 lockdep_assert_held(&wq->mutex); 3830 3831 /* may be called multiple times, ignore if already linked */ 3832 if (!list_empty(&pwq->pwqs_node)) 3833 return; 3834 3835 /* set the matching work_color */ 3836 pwq->work_color = wq->work_color; 3837 3838 /* sync max_active to the current setting */ 3839 pwq_adjust_max_active(pwq); 3840 3841 /* link in @pwq */ 3842 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3843 } 3844 3845 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3846 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3847 const struct workqueue_attrs *attrs) 3848 { 3849 struct worker_pool *pool; 3850 struct pool_workqueue *pwq; 3851 3852 lockdep_assert_held(&wq_pool_mutex); 3853 3854 pool = get_unbound_pool(attrs); 3855 if (!pool) 3856 return NULL; 3857 3858 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3859 if (!pwq) { 3860 put_unbound_pool(pool); 3861 return NULL; 3862 } 3863 3864 init_pwq(pwq, wq, pool); 3865 return pwq; 3866 } 3867 3868 /** 3869 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3870 * @attrs: the wq_attrs of the default pwq of the target workqueue 3871 * @node: the target NUMA node 3872 * @cpu_going_down: if >= 0, the CPU to consider as offline 3873 * @cpumask: outarg, the resulting cpumask 3874 * 3875 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3876 * @cpu_going_down is >= 0, that cpu is considered offline during 3877 * calculation. The result is stored in @cpumask. 3878 * 3879 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3880 * enabled and @node has online CPUs requested by @attrs, the returned 3881 * cpumask is the intersection of the possible CPUs of @node and 3882 * @attrs->cpumask. 3883 * 3884 * The caller is responsible for ensuring that the cpumask of @node stays 3885 * stable. 3886 * 3887 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3888 * %false if equal. 3889 */ 3890 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3891 int cpu_going_down, cpumask_t *cpumask) 3892 { 3893 if (!wq_numa_enabled || attrs->no_numa) 3894 goto use_dfl; 3895 3896 /* does @node have any online CPUs @attrs wants? */ 3897 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3898 if (cpu_going_down >= 0) 3899 cpumask_clear_cpu(cpu_going_down, cpumask); 3900 3901 if (cpumask_empty(cpumask)) 3902 goto use_dfl; 3903 3904 /* yeap, return possible CPUs in @node that @attrs wants */ 3905 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3906 3907 if (cpumask_empty(cpumask)) { 3908 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 3909 "possible intersect\n"); 3910 return false; 3911 } 3912 3913 return !cpumask_equal(cpumask, attrs->cpumask); 3914 3915 use_dfl: 3916 cpumask_copy(cpumask, attrs->cpumask); 3917 return false; 3918 } 3919 3920 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3921 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3922 int node, 3923 struct pool_workqueue *pwq) 3924 { 3925 struct pool_workqueue *old_pwq; 3926 3927 lockdep_assert_held(&wq_pool_mutex); 3928 lockdep_assert_held(&wq->mutex); 3929 3930 /* link_pwq() can handle duplicate calls */ 3931 link_pwq(pwq); 3932 3933 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3934 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3935 return old_pwq; 3936 } 3937 3938 /* context to store the prepared attrs & pwqs before applying */ 3939 struct apply_wqattrs_ctx { 3940 struct workqueue_struct *wq; /* target workqueue */ 3941 struct workqueue_attrs *attrs; /* attrs to apply */ 3942 struct list_head list; /* queued for batching commit */ 3943 struct pool_workqueue *dfl_pwq; 3944 struct pool_workqueue *pwq_tbl[]; 3945 }; 3946 3947 /* free the resources after success or abort */ 3948 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 3949 { 3950 if (ctx) { 3951 int node; 3952 3953 for_each_node(node) 3954 put_pwq_unlocked(ctx->pwq_tbl[node]); 3955 put_pwq_unlocked(ctx->dfl_pwq); 3956 3957 free_workqueue_attrs(ctx->attrs); 3958 3959 kfree(ctx); 3960 } 3961 } 3962 3963 /* allocate the attrs and pwqs for later installation */ 3964 static struct apply_wqattrs_ctx * 3965 apply_wqattrs_prepare(struct workqueue_struct *wq, 3966 const struct workqueue_attrs *attrs) 3967 { 3968 struct apply_wqattrs_ctx *ctx; 3969 struct workqueue_attrs *new_attrs, *tmp_attrs; 3970 int node; 3971 3972 lockdep_assert_held(&wq_pool_mutex); 3973 3974 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL); 3975 3976 new_attrs = alloc_workqueue_attrs(); 3977 tmp_attrs = alloc_workqueue_attrs(); 3978 if (!ctx || !new_attrs || !tmp_attrs) 3979 goto out_free; 3980 3981 /* 3982 * Calculate the attrs of the default pwq. 3983 * If the user configured cpumask doesn't overlap with the 3984 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 3985 */ 3986 copy_workqueue_attrs(new_attrs, attrs); 3987 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask); 3988 if (unlikely(cpumask_empty(new_attrs->cpumask))) 3989 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask); 3990 3991 /* 3992 * We may create multiple pwqs with differing cpumasks. Make a 3993 * copy of @new_attrs which will be modified and used to obtain 3994 * pools. 3995 */ 3996 copy_workqueue_attrs(tmp_attrs, new_attrs); 3997 3998 /* 3999 * If something goes wrong during CPU up/down, we'll fall back to 4000 * the default pwq covering whole @attrs->cpumask. Always create 4001 * it even if we don't use it immediately. 4002 */ 4003 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 4004 if (!ctx->dfl_pwq) 4005 goto out_free; 4006 4007 for_each_node(node) { 4008 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 4009 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 4010 if (!ctx->pwq_tbl[node]) 4011 goto out_free; 4012 } else { 4013 ctx->dfl_pwq->refcnt++; 4014 ctx->pwq_tbl[node] = ctx->dfl_pwq; 4015 } 4016 } 4017 4018 /* save the user configured attrs and sanitize it. */ 4019 copy_workqueue_attrs(new_attrs, attrs); 4020 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 4021 ctx->attrs = new_attrs; 4022 4023 ctx->wq = wq; 4024 free_workqueue_attrs(tmp_attrs); 4025 return ctx; 4026 4027 out_free: 4028 free_workqueue_attrs(tmp_attrs); 4029 free_workqueue_attrs(new_attrs); 4030 apply_wqattrs_cleanup(ctx); 4031 return NULL; 4032 } 4033 4034 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 4035 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 4036 { 4037 int node; 4038 4039 /* all pwqs have been created successfully, let's install'em */ 4040 mutex_lock(&ctx->wq->mutex); 4041 4042 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 4043 4044 /* save the previous pwq and install the new one */ 4045 for_each_node(node) 4046 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 4047 ctx->pwq_tbl[node]); 4048 4049 /* @dfl_pwq might not have been used, ensure it's linked */ 4050 link_pwq(ctx->dfl_pwq); 4051 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 4052 4053 mutex_unlock(&ctx->wq->mutex); 4054 } 4055 4056 static void apply_wqattrs_lock(void) 4057 { 4058 /* CPUs should stay stable across pwq creations and installations */ 4059 cpus_read_lock(); 4060 mutex_lock(&wq_pool_mutex); 4061 } 4062 4063 static void apply_wqattrs_unlock(void) 4064 { 4065 mutex_unlock(&wq_pool_mutex); 4066 cpus_read_unlock(); 4067 } 4068 4069 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 4070 const struct workqueue_attrs *attrs) 4071 { 4072 struct apply_wqattrs_ctx *ctx; 4073 4074 /* only unbound workqueues can change attributes */ 4075 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 4076 return -EINVAL; 4077 4078 /* creating multiple pwqs breaks ordering guarantee */ 4079 if (!list_empty(&wq->pwqs)) { 4080 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4081 return -EINVAL; 4082 4083 wq->flags &= ~__WQ_ORDERED; 4084 } 4085 4086 ctx = apply_wqattrs_prepare(wq, attrs); 4087 if (!ctx) 4088 return -ENOMEM; 4089 4090 /* the ctx has been prepared successfully, let's commit it */ 4091 apply_wqattrs_commit(ctx); 4092 apply_wqattrs_cleanup(ctx); 4093 4094 return 0; 4095 } 4096 4097 /** 4098 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 4099 * @wq: the target workqueue 4100 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 4101 * 4102 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 4103 * machines, this function maps a separate pwq to each NUMA node with 4104 * possibles CPUs in @attrs->cpumask so that work items are affine to the 4105 * NUMA node it was issued on. Older pwqs are released as in-flight work 4106 * items finish. Note that a work item which repeatedly requeues itself 4107 * back-to-back will stay on its current pwq. 4108 * 4109 * Performs GFP_KERNEL allocations. 4110 * 4111 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock(). 4112 * 4113 * Return: 0 on success and -errno on failure. 4114 */ 4115 int apply_workqueue_attrs(struct workqueue_struct *wq, 4116 const struct workqueue_attrs *attrs) 4117 { 4118 int ret; 4119 4120 lockdep_assert_cpus_held(); 4121 4122 mutex_lock(&wq_pool_mutex); 4123 ret = apply_workqueue_attrs_locked(wq, attrs); 4124 mutex_unlock(&wq_pool_mutex); 4125 4126 return ret; 4127 } 4128 4129 /** 4130 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 4131 * @wq: the target workqueue 4132 * @cpu: the CPU coming up or going down 4133 * @online: whether @cpu is coming up or going down 4134 * 4135 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 4136 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 4137 * @wq accordingly. 4138 * 4139 * If NUMA affinity can't be adjusted due to memory allocation failure, it 4140 * falls back to @wq->dfl_pwq which may not be optimal but is always 4141 * correct. 4142 * 4143 * Note that when the last allowed CPU of a NUMA node goes offline for a 4144 * workqueue with a cpumask spanning multiple nodes, the workers which were 4145 * already executing the work items for the workqueue will lose their CPU 4146 * affinity and may execute on any CPU. This is similar to how per-cpu 4147 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 4148 * affinity, it's the user's responsibility to flush the work item from 4149 * CPU_DOWN_PREPARE. 4150 */ 4151 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 4152 bool online) 4153 { 4154 int node = cpu_to_node(cpu); 4155 int cpu_off = online ? -1 : cpu; 4156 struct pool_workqueue *old_pwq = NULL, *pwq; 4157 struct workqueue_attrs *target_attrs; 4158 cpumask_t *cpumask; 4159 4160 lockdep_assert_held(&wq_pool_mutex); 4161 4162 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 4163 wq->unbound_attrs->no_numa) 4164 return; 4165 4166 /* 4167 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 4168 * Let's use a preallocated one. The following buf is protected by 4169 * CPU hotplug exclusion. 4170 */ 4171 target_attrs = wq_update_unbound_numa_attrs_buf; 4172 cpumask = target_attrs->cpumask; 4173 4174 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 4175 pwq = unbound_pwq_by_node(wq, node); 4176 4177 /* 4178 * Let's determine what needs to be done. If the target cpumask is 4179 * different from the default pwq's, we need to compare it to @pwq's 4180 * and create a new one if they don't match. If the target cpumask 4181 * equals the default pwq's, the default pwq should be used. 4182 */ 4183 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 4184 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 4185 return; 4186 } else { 4187 goto use_dfl_pwq; 4188 } 4189 4190 /* create a new pwq */ 4191 pwq = alloc_unbound_pwq(wq, target_attrs); 4192 if (!pwq) { 4193 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 4194 wq->name); 4195 goto use_dfl_pwq; 4196 } 4197 4198 /* Install the new pwq. */ 4199 mutex_lock(&wq->mutex); 4200 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 4201 goto out_unlock; 4202 4203 use_dfl_pwq: 4204 mutex_lock(&wq->mutex); 4205 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock); 4206 get_pwq(wq->dfl_pwq); 4207 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock); 4208 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 4209 out_unlock: 4210 mutex_unlock(&wq->mutex); 4211 put_pwq_unlocked(old_pwq); 4212 } 4213 4214 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4215 { 4216 bool highpri = wq->flags & WQ_HIGHPRI; 4217 int cpu, ret; 4218 4219 if (!(wq->flags & WQ_UNBOUND)) { 4220 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 4221 if (!wq->cpu_pwqs) 4222 return -ENOMEM; 4223 4224 for_each_possible_cpu(cpu) { 4225 struct pool_workqueue *pwq = 4226 per_cpu_ptr(wq->cpu_pwqs, cpu); 4227 struct worker_pool *cpu_pools = 4228 per_cpu(cpu_worker_pools, cpu); 4229 4230 init_pwq(pwq, wq, &cpu_pools[highpri]); 4231 4232 mutex_lock(&wq->mutex); 4233 link_pwq(pwq); 4234 mutex_unlock(&wq->mutex); 4235 } 4236 return 0; 4237 } 4238 4239 cpus_read_lock(); 4240 if (wq->flags & __WQ_ORDERED) { 4241 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 4242 /* there should only be single pwq for ordering guarantee */ 4243 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 4244 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 4245 "ordering guarantee broken for workqueue %s\n", wq->name); 4246 } else { 4247 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4248 } 4249 cpus_read_unlock(); 4250 4251 return ret; 4252 } 4253 4254 static int wq_clamp_max_active(int max_active, unsigned int flags, 4255 const char *name) 4256 { 4257 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 4258 4259 if (max_active < 1 || max_active > lim) 4260 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4261 max_active, name, 1, lim); 4262 4263 return clamp_val(max_active, 1, lim); 4264 } 4265 4266 /* 4267 * Workqueues which may be used during memory reclaim should have a rescuer 4268 * to guarantee forward progress. 4269 */ 4270 static int init_rescuer(struct workqueue_struct *wq) 4271 { 4272 struct worker *rescuer; 4273 int ret; 4274 4275 if (!(wq->flags & WQ_MEM_RECLAIM)) 4276 return 0; 4277 4278 rescuer = alloc_worker(NUMA_NO_NODE); 4279 if (!rescuer) 4280 return -ENOMEM; 4281 4282 rescuer->rescue_wq = wq; 4283 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name); 4284 if (IS_ERR(rescuer->task)) { 4285 ret = PTR_ERR(rescuer->task); 4286 kfree(rescuer); 4287 return ret; 4288 } 4289 4290 wq->rescuer = rescuer; 4291 kthread_bind_mask(rescuer->task, cpu_possible_mask); 4292 wake_up_process(rescuer->task); 4293 4294 return 0; 4295 } 4296 4297 __printf(1, 4) 4298 struct workqueue_struct *alloc_workqueue(const char *fmt, 4299 unsigned int flags, 4300 int max_active, ...) 4301 { 4302 size_t tbl_size = 0; 4303 va_list args; 4304 struct workqueue_struct *wq; 4305 struct pool_workqueue *pwq; 4306 4307 /* 4308 * Unbound && max_active == 1 used to imply ordered, which is no 4309 * longer the case on NUMA machines due to per-node pools. While 4310 * alloc_ordered_workqueue() is the right way to create an ordered 4311 * workqueue, keep the previous behavior to avoid subtle breakages 4312 * on NUMA. 4313 */ 4314 if ((flags & WQ_UNBOUND) && max_active == 1) 4315 flags |= __WQ_ORDERED; 4316 4317 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4318 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4319 flags |= WQ_UNBOUND; 4320 4321 /* allocate wq and format name */ 4322 if (flags & WQ_UNBOUND) 4323 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 4324 4325 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4326 if (!wq) 4327 return NULL; 4328 4329 if (flags & WQ_UNBOUND) { 4330 wq->unbound_attrs = alloc_workqueue_attrs(); 4331 if (!wq->unbound_attrs) 4332 goto err_free_wq; 4333 } 4334 4335 va_start(args, max_active); 4336 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4337 va_end(args); 4338 4339 max_active = max_active ?: WQ_DFL_ACTIVE; 4340 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4341 4342 /* init wq */ 4343 wq->flags = flags; 4344 wq->saved_max_active = max_active; 4345 mutex_init(&wq->mutex); 4346 atomic_set(&wq->nr_pwqs_to_flush, 0); 4347 INIT_LIST_HEAD(&wq->pwqs); 4348 INIT_LIST_HEAD(&wq->flusher_queue); 4349 INIT_LIST_HEAD(&wq->flusher_overflow); 4350 INIT_LIST_HEAD(&wq->maydays); 4351 4352 wq_init_lockdep(wq); 4353 INIT_LIST_HEAD(&wq->list); 4354 4355 if (alloc_and_link_pwqs(wq) < 0) 4356 goto err_unreg_lockdep; 4357 4358 if (wq_online && init_rescuer(wq) < 0) 4359 goto err_destroy; 4360 4361 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4362 goto err_destroy; 4363 4364 /* 4365 * wq_pool_mutex protects global freeze state and workqueues list. 4366 * Grab it, adjust max_active and add the new @wq to workqueues 4367 * list. 4368 */ 4369 mutex_lock(&wq_pool_mutex); 4370 4371 mutex_lock(&wq->mutex); 4372 for_each_pwq(pwq, wq) 4373 pwq_adjust_max_active(pwq); 4374 mutex_unlock(&wq->mutex); 4375 4376 list_add_tail_rcu(&wq->list, &workqueues); 4377 4378 mutex_unlock(&wq_pool_mutex); 4379 4380 return wq; 4381 4382 err_unreg_lockdep: 4383 wq_unregister_lockdep(wq); 4384 wq_free_lockdep(wq); 4385 err_free_wq: 4386 free_workqueue_attrs(wq->unbound_attrs); 4387 kfree(wq); 4388 return NULL; 4389 err_destroy: 4390 destroy_workqueue(wq); 4391 return NULL; 4392 } 4393 EXPORT_SYMBOL_GPL(alloc_workqueue); 4394 4395 static bool pwq_busy(struct pool_workqueue *pwq) 4396 { 4397 int i; 4398 4399 for (i = 0; i < WORK_NR_COLORS; i++) 4400 if (pwq->nr_in_flight[i]) 4401 return true; 4402 4403 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1)) 4404 return true; 4405 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) 4406 return true; 4407 4408 return false; 4409 } 4410 4411 /** 4412 * destroy_workqueue - safely terminate a workqueue 4413 * @wq: target workqueue 4414 * 4415 * Safely destroy a workqueue. All work currently pending will be done first. 4416 */ 4417 void destroy_workqueue(struct workqueue_struct *wq) 4418 { 4419 struct pool_workqueue *pwq; 4420 int node; 4421 4422 /* 4423 * Remove it from sysfs first so that sanity check failure doesn't 4424 * lead to sysfs name conflicts. 4425 */ 4426 workqueue_sysfs_unregister(wq); 4427 4428 /* drain it before proceeding with destruction */ 4429 drain_workqueue(wq); 4430 4431 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ 4432 if (wq->rescuer) { 4433 struct worker *rescuer = wq->rescuer; 4434 4435 /* this prevents new queueing */ 4436 raw_spin_lock_irq(&wq_mayday_lock); 4437 wq->rescuer = NULL; 4438 raw_spin_unlock_irq(&wq_mayday_lock); 4439 4440 /* rescuer will empty maydays list before exiting */ 4441 kthread_stop(rescuer->task); 4442 kfree(rescuer); 4443 } 4444 4445 /* 4446 * Sanity checks - grab all the locks so that we wait for all 4447 * in-flight operations which may do put_pwq(). 4448 */ 4449 mutex_lock(&wq_pool_mutex); 4450 mutex_lock(&wq->mutex); 4451 for_each_pwq(pwq, wq) { 4452 raw_spin_lock_irq(&pwq->pool->lock); 4453 if (WARN_ON(pwq_busy(pwq))) { 4454 pr_warn("%s: %s has the following busy pwq\n", 4455 __func__, wq->name); 4456 show_pwq(pwq); 4457 raw_spin_unlock_irq(&pwq->pool->lock); 4458 mutex_unlock(&wq->mutex); 4459 mutex_unlock(&wq_pool_mutex); 4460 show_one_workqueue(wq); 4461 return; 4462 } 4463 raw_spin_unlock_irq(&pwq->pool->lock); 4464 } 4465 mutex_unlock(&wq->mutex); 4466 4467 /* 4468 * wq list is used to freeze wq, remove from list after 4469 * flushing is complete in case freeze races us. 4470 */ 4471 list_del_rcu(&wq->list); 4472 mutex_unlock(&wq_pool_mutex); 4473 4474 if (!(wq->flags & WQ_UNBOUND)) { 4475 wq_unregister_lockdep(wq); 4476 /* 4477 * The base ref is never dropped on per-cpu pwqs. Directly 4478 * schedule RCU free. 4479 */ 4480 call_rcu(&wq->rcu, rcu_free_wq); 4481 } else { 4482 /* 4483 * We're the sole accessor of @wq at this point. Directly 4484 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4485 * @wq will be freed when the last pwq is released. 4486 */ 4487 for_each_node(node) { 4488 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4489 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4490 put_pwq_unlocked(pwq); 4491 } 4492 4493 /* 4494 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4495 * put. Don't access it afterwards. 4496 */ 4497 pwq = wq->dfl_pwq; 4498 wq->dfl_pwq = NULL; 4499 put_pwq_unlocked(pwq); 4500 } 4501 } 4502 EXPORT_SYMBOL_GPL(destroy_workqueue); 4503 4504 /** 4505 * workqueue_set_max_active - adjust max_active of a workqueue 4506 * @wq: target workqueue 4507 * @max_active: new max_active value. 4508 * 4509 * Set max_active of @wq to @max_active. 4510 * 4511 * CONTEXT: 4512 * Don't call from IRQ context. 4513 */ 4514 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4515 { 4516 struct pool_workqueue *pwq; 4517 4518 /* disallow meddling with max_active for ordered workqueues */ 4519 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4520 return; 4521 4522 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4523 4524 mutex_lock(&wq->mutex); 4525 4526 wq->flags &= ~__WQ_ORDERED; 4527 wq->saved_max_active = max_active; 4528 4529 for_each_pwq(pwq, wq) 4530 pwq_adjust_max_active(pwq); 4531 4532 mutex_unlock(&wq->mutex); 4533 } 4534 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4535 4536 /** 4537 * current_work - retrieve %current task's work struct 4538 * 4539 * Determine if %current task is a workqueue worker and what it's working on. 4540 * Useful to find out the context that the %current task is running in. 4541 * 4542 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 4543 */ 4544 struct work_struct *current_work(void) 4545 { 4546 struct worker *worker = current_wq_worker(); 4547 4548 return worker ? worker->current_work : NULL; 4549 } 4550 EXPORT_SYMBOL(current_work); 4551 4552 /** 4553 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4554 * 4555 * Determine whether %current is a workqueue rescuer. Can be used from 4556 * work functions to determine whether it's being run off the rescuer task. 4557 * 4558 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4559 */ 4560 bool current_is_workqueue_rescuer(void) 4561 { 4562 struct worker *worker = current_wq_worker(); 4563 4564 return worker && worker->rescue_wq; 4565 } 4566 4567 /** 4568 * workqueue_congested - test whether a workqueue is congested 4569 * @cpu: CPU in question 4570 * @wq: target workqueue 4571 * 4572 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4573 * no synchronization around this function and the test result is 4574 * unreliable and only useful as advisory hints or for debugging. 4575 * 4576 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4577 * Note that both per-cpu and unbound workqueues may be associated with 4578 * multiple pool_workqueues which have separate congested states. A 4579 * workqueue being congested on one CPU doesn't mean the workqueue is also 4580 * contested on other CPUs / NUMA nodes. 4581 * 4582 * Return: 4583 * %true if congested, %false otherwise. 4584 */ 4585 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4586 { 4587 struct pool_workqueue *pwq; 4588 bool ret; 4589 4590 rcu_read_lock(); 4591 preempt_disable(); 4592 4593 if (cpu == WORK_CPU_UNBOUND) 4594 cpu = smp_processor_id(); 4595 4596 if (!(wq->flags & WQ_UNBOUND)) 4597 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4598 else 4599 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4600 4601 ret = !list_empty(&pwq->inactive_works); 4602 preempt_enable(); 4603 rcu_read_unlock(); 4604 4605 return ret; 4606 } 4607 EXPORT_SYMBOL_GPL(workqueue_congested); 4608 4609 /** 4610 * work_busy - test whether a work is currently pending or running 4611 * @work: the work to be tested 4612 * 4613 * Test whether @work is currently pending or running. There is no 4614 * synchronization around this function and the test result is 4615 * unreliable and only useful as advisory hints or for debugging. 4616 * 4617 * Return: 4618 * OR'd bitmask of WORK_BUSY_* bits. 4619 */ 4620 unsigned int work_busy(struct work_struct *work) 4621 { 4622 struct worker_pool *pool; 4623 unsigned long flags; 4624 unsigned int ret = 0; 4625 4626 if (work_pending(work)) 4627 ret |= WORK_BUSY_PENDING; 4628 4629 rcu_read_lock(); 4630 pool = get_work_pool(work); 4631 if (pool) { 4632 raw_spin_lock_irqsave(&pool->lock, flags); 4633 if (find_worker_executing_work(pool, work)) 4634 ret |= WORK_BUSY_RUNNING; 4635 raw_spin_unlock_irqrestore(&pool->lock, flags); 4636 } 4637 rcu_read_unlock(); 4638 4639 return ret; 4640 } 4641 EXPORT_SYMBOL_GPL(work_busy); 4642 4643 /** 4644 * set_worker_desc - set description for the current work item 4645 * @fmt: printf-style format string 4646 * @...: arguments for the format string 4647 * 4648 * This function can be called by a running work function to describe what 4649 * the work item is about. If the worker task gets dumped, this 4650 * information will be printed out together to help debugging. The 4651 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4652 */ 4653 void set_worker_desc(const char *fmt, ...) 4654 { 4655 struct worker *worker = current_wq_worker(); 4656 va_list args; 4657 4658 if (worker) { 4659 va_start(args, fmt); 4660 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4661 va_end(args); 4662 } 4663 } 4664 EXPORT_SYMBOL_GPL(set_worker_desc); 4665 4666 /** 4667 * print_worker_info - print out worker information and description 4668 * @log_lvl: the log level to use when printing 4669 * @task: target task 4670 * 4671 * If @task is a worker and currently executing a work item, print out the 4672 * name of the workqueue being serviced and worker description set with 4673 * set_worker_desc() by the currently executing work item. 4674 * 4675 * This function can be safely called on any task as long as the 4676 * task_struct itself is accessible. While safe, this function isn't 4677 * synchronized and may print out mixups or garbages of limited length. 4678 */ 4679 void print_worker_info(const char *log_lvl, struct task_struct *task) 4680 { 4681 work_func_t *fn = NULL; 4682 char name[WQ_NAME_LEN] = { }; 4683 char desc[WORKER_DESC_LEN] = { }; 4684 struct pool_workqueue *pwq = NULL; 4685 struct workqueue_struct *wq = NULL; 4686 struct worker *worker; 4687 4688 if (!(task->flags & PF_WQ_WORKER)) 4689 return; 4690 4691 /* 4692 * This function is called without any synchronization and @task 4693 * could be in any state. Be careful with dereferences. 4694 */ 4695 worker = kthread_probe_data(task); 4696 4697 /* 4698 * Carefully copy the associated workqueue's workfn, name and desc. 4699 * Keep the original last '\0' in case the original is garbage. 4700 */ 4701 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn)); 4702 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq)); 4703 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq)); 4704 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1); 4705 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1); 4706 4707 if (fn || name[0] || desc[0]) { 4708 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 4709 if (strcmp(name, desc)) 4710 pr_cont(" (%s)", desc); 4711 pr_cont("\n"); 4712 } 4713 } 4714 4715 static void pr_cont_pool_info(struct worker_pool *pool) 4716 { 4717 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4718 if (pool->node != NUMA_NO_NODE) 4719 pr_cont(" node=%d", pool->node); 4720 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4721 } 4722 4723 static void pr_cont_work(bool comma, struct work_struct *work) 4724 { 4725 if (work->func == wq_barrier_func) { 4726 struct wq_barrier *barr; 4727 4728 barr = container_of(work, struct wq_barrier, work); 4729 4730 pr_cont("%s BAR(%d)", comma ? "," : "", 4731 task_pid_nr(barr->task)); 4732 } else { 4733 pr_cont("%s %ps", comma ? "," : "", work->func); 4734 } 4735 } 4736 4737 static void show_pwq(struct pool_workqueue *pwq) 4738 { 4739 struct worker_pool *pool = pwq->pool; 4740 struct work_struct *work; 4741 struct worker *worker; 4742 bool has_in_flight = false, has_pending = false; 4743 int bkt; 4744 4745 pr_info(" pwq %d:", pool->id); 4746 pr_cont_pool_info(pool); 4747 4748 pr_cont(" active=%d/%d refcnt=%d%s\n", 4749 pwq->nr_active, pwq->max_active, pwq->refcnt, 4750 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4751 4752 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4753 if (worker->current_pwq == pwq) { 4754 has_in_flight = true; 4755 break; 4756 } 4757 } 4758 if (has_in_flight) { 4759 bool comma = false; 4760 4761 pr_info(" in-flight:"); 4762 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4763 if (worker->current_pwq != pwq) 4764 continue; 4765 4766 pr_cont("%s %d%s:%ps", comma ? "," : "", 4767 task_pid_nr(worker->task), 4768 worker->rescue_wq ? "(RESCUER)" : "", 4769 worker->current_func); 4770 list_for_each_entry(work, &worker->scheduled, entry) 4771 pr_cont_work(false, work); 4772 comma = true; 4773 } 4774 pr_cont("\n"); 4775 } 4776 4777 list_for_each_entry(work, &pool->worklist, entry) { 4778 if (get_work_pwq(work) == pwq) { 4779 has_pending = true; 4780 break; 4781 } 4782 } 4783 if (has_pending) { 4784 bool comma = false; 4785 4786 pr_info(" pending:"); 4787 list_for_each_entry(work, &pool->worklist, entry) { 4788 if (get_work_pwq(work) != pwq) 4789 continue; 4790 4791 pr_cont_work(comma, work); 4792 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4793 } 4794 pr_cont("\n"); 4795 } 4796 4797 if (!list_empty(&pwq->inactive_works)) { 4798 bool comma = false; 4799 4800 pr_info(" inactive:"); 4801 list_for_each_entry(work, &pwq->inactive_works, entry) { 4802 pr_cont_work(comma, work); 4803 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4804 } 4805 pr_cont("\n"); 4806 } 4807 } 4808 4809 /** 4810 * show_one_workqueue - dump state of specified workqueue 4811 * @wq: workqueue whose state will be printed 4812 */ 4813 void show_one_workqueue(struct workqueue_struct *wq) 4814 { 4815 struct pool_workqueue *pwq; 4816 bool idle = true; 4817 unsigned long flags; 4818 4819 for_each_pwq(pwq, wq) { 4820 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) { 4821 idle = false; 4822 break; 4823 } 4824 } 4825 if (idle) /* Nothing to print for idle workqueue */ 4826 return; 4827 4828 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4829 4830 for_each_pwq(pwq, wq) { 4831 raw_spin_lock_irqsave(&pwq->pool->lock, flags); 4832 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) { 4833 /* 4834 * Defer printing to avoid deadlocks in console 4835 * drivers that queue work while holding locks 4836 * also taken in their write paths. 4837 */ 4838 printk_deferred_enter(); 4839 show_pwq(pwq); 4840 printk_deferred_exit(); 4841 } 4842 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); 4843 /* 4844 * We could be printing a lot from atomic context, e.g. 4845 * sysrq-t -> show_all_workqueues(). Avoid triggering 4846 * hard lockup. 4847 */ 4848 touch_nmi_watchdog(); 4849 } 4850 4851 } 4852 4853 /** 4854 * show_one_worker_pool - dump state of specified worker pool 4855 * @pool: worker pool whose state will be printed 4856 */ 4857 static void show_one_worker_pool(struct worker_pool *pool) 4858 { 4859 struct worker *worker; 4860 bool first = true; 4861 unsigned long flags; 4862 4863 raw_spin_lock_irqsave(&pool->lock, flags); 4864 if (pool->nr_workers == pool->nr_idle) 4865 goto next_pool; 4866 /* 4867 * Defer printing to avoid deadlocks in console drivers that 4868 * queue work while holding locks also taken in their write 4869 * paths. 4870 */ 4871 printk_deferred_enter(); 4872 pr_info("pool %d:", pool->id); 4873 pr_cont_pool_info(pool); 4874 pr_cont(" hung=%us workers=%d", 4875 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000, 4876 pool->nr_workers); 4877 if (pool->manager) 4878 pr_cont(" manager: %d", 4879 task_pid_nr(pool->manager->task)); 4880 list_for_each_entry(worker, &pool->idle_list, entry) { 4881 pr_cont(" %s%d", first ? "idle: " : "", 4882 task_pid_nr(worker->task)); 4883 first = false; 4884 } 4885 pr_cont("\n"); 4886 printk_deferred_exit(); 4887 next_pool: 4888 raw_spin_unlock_irqrestore(&pool->lock, flags); 4889 /* 4890 * We could be printing a lot from atomic context, e.g. 4891 * sysrq-t -> show_all_workqueues(). Avoid triggering 4892 * hard lockup. 4893 */ 4894 touch_nmi_watchdog(); 4895 4896 } 4897 4898 /** 4899 * show_all_workqueues - dump workqueue state 4900 * 4901 * Called from a sysrq handler or try_to_freeze_tasks() and prints out 4902 * all busy workqueues and pools. 4903 */ 4904 void show_all_workqueues(void) 4905 { 4906 struct workqueue_struct *wq; 4907 struct worker_pool *pool; 4908 int pi; 4909 4910 rcu_read_lock(); 4911 4912 pr_info("Showing busy workqueues and worker pools:\n"); 4913 4914 list_for_each_entry_rcu(wq, &workqueues, list) 4915 show_one_workqueue(wq); 4916 4917 for_each_pool(pool, pi) 4918 show_one_worker_pool(pool); 4919 4920 rcu_read_unlock(); 4921 } 4922 4923 /* used to show worker information through /proc/PID/{comm,stat,status} */ 4924 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 4925 { 4926 int off; 4927 4928 /* always show the actual comm */ 4929 off = strscpy(buf, task->comm, size); 4930 if (off < 0) 4931 return; 4932 4933 /* stabilize PF_WQ_WORKER and worker pool association */ 4934 mutex_lock(&wq_pool_attach_mutex); 4935 4936 if (task->flags & PF_WQ_WORKER) { 4937 struct worker *worker = kthread_data(task); 4938 struct worker_pool *pool = worker->pool; 4939 4940 if (pool) { 4941 raw_spin_lock_irq(&pool->lock); 4942 /* 4943 * ->desc tracks information (wq name or 4944 * set_worker_desc()) for the latest execution. If 4945 * current, prepend '+', otherwise '-'. 4946 */ 4947 if (worker->desc[0] != '\0') { 4948 if (worker->current_work) 4949 scnprintf(buf + off, size - off, "+%s", 4950 worker->desc); 4951 else 4952 scnprintf(buf + off, size - off, "-%s", 4953 worker->desc); 4954 } 4955 raw_spin_unlock_irq(&pool->lock); 4956 } 4957 } 4958 4959 mutex_unlock(&wq_pool_attach_mutex); 4960 } 4961 4962 #ifdef CONFIG_SMP 4963 4964 /* 4965 * CPU hotplug. 4966 * 4967 * There are two challenges in supporting CPU hotplug. Firstly, there 4968 * are a lot of assumptions on strong associations among work, pwq and 4969 * pool which make migrating pending and scheduled works very 4970 * difficult to implement without impacting hot paths. Secondly, 4971 * worker pools serve mix of short, long and very long running works making 4972 * blocked draining impractical. 4973 * 4974 * This is solved by allowing the pools to be disassociated from the CPU 4975 * running as an unbound one and allowing it to be reattached later if the 4976 * cpu comes back online. 4977 */ 4978 4979 static void unbind_workers(int cpu) 4980 { 4981 struct worker_pool *pool; 4982 struct worker *worker; 4983 4984 for_each_cpu_worker_pool(pool, cpu) { 4985 mutex_lock(&wq_pool_attach_mutex); 4986 raw_spin_lock_irq(&pool->lock); 4987 4988 /* 4989 * We've blocked all attach/detach operations. Make all workers 4990 * unbound and set DISASSOCIATED. Before this, all workers 4991 * must be on the cpu. After this, they may become diasporas. 4992 * And the preemption disabled section in their sched callbacks 4993 * are guaranteed to see WORKER_UNBOUND since the code here 4994 * is on the same cpu. 4995 */ 4996 for_each_pool_worker(worker, pool) 4997 worker->flags |= WORKER_UNBOUND; 4998 4999 pool->flags |= POOL_DISASSOCIATED; 5000 5001 /* 5002 * The handling of nr_running in sched callbacks are disabled 5003 * now. Zap nr_running. After this, nr_running stays zero and 5004 * need_more_worker() and keep_working() are always true as 5005 * long as the worklist is not empty. This pool now behaves as 5006 * an unbound (in terms of concurrency management) pool which 5007 * are served by workers tied to the pool. 5008 */ 5009 atomic_set(&pool->nr_running, 0); 5010 5011 /* 5012 * With concurrency management just turned off, a busy 5013 * worker blocking could lead to lengthy stalls. Kick off 5014 * unbound chain execution of currently pending work items. 5015 */ 5016 wake_up_worker(pool); 5017 5018 raw_spin_unlock_irq(&pool->lock); 5019 5020 for_each_pool_worker(worker, pool) { 5021 kthread_set_per_cpu(worker->task, -1); 5022 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0); 5023 } 5024 5025 mutex_unlock(&wq_pool_attach_mutex); 5026 } 5027 } 5028 5029 /** 5030 * rebind_workers - rebind all workers of a pool to the associated CPU 5031 * @pool: pool of interest 5032 * 5033 * @pool->cpu is coming online. Rebind all workers to the CPU. 5034 */ 5035 static void rebind_workers(struct worker_pool *pool) 5036 { 5037 struct worker *worker; 5038 5039 lockdep_assert_held(&wq_pool_attach_mutex); 5040 5041 /* 5042 * Restore CPU affinity of all workers. As all idle workers should 5043 * be on the run-queue of the associated CPU before any local 5044 * wake-ups for concurrency management happen, restore CPU affinity 5045 * of all workers first and then clear UNBOUND. As we're called 5046 * from CPU_ONLINE, the following shouldn't fail. 5047 */ 5048 for_each_pool_worker(worker, pool) { 5049 kthread_set_per_cpu(worker->task, pool->cpu); 5050 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 5051 pool->attrs->cpumask) < 0); 5052 } 5053 5054 raw_spin_lock_irq(&pool->lock); 5055 5056 pool->flags &= ~POOL_DISASSOCIATED; 5057 5058 for_each_pool_worker(worker, pool) { 5059 unsigned int worker_flags = worker->flags; 5060 5061 /* 5062 * We want to clear UNBOUND but can't directly call 5063 * worker_clr_flags() or adjust nr_running. Atomically 5064 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 5065 * @worker will clear REBOUND using worker_clr_flags() when 5066 * it initiates the next execution cycle thus restoring 5067 * concurrency management. Note that when or whether 5068 * @worker clears REBOUND doesn't affect correctness. 5069 * 5070 * WRITE_ONCE() is necessary because @worker->flags may be 5071 * tested without holding any lock in 5072 * wq_worker_running(). Without it, NOT_RUNNING test may 5073 * fail incorrectly leading to premature concurrency 5074 * management operations. 5075 */ 5076 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 5077 worker_flags |= WORKER_REBOUND; 5078 worker_flags &= ~WORKER_UNBOUND; 5079 WRITE_ONCE(worker->flags, worker_flags); 5080 } 5081 5082 raw_spin_unlock_irq(&pool->lock); 5083 } 5084 5085 /** 5086 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 5087 * @pool: unbound pool of interest 5088 * @cpu: the CPU which is coming up 5089 * 5090 * An unbound pool may end up with a cpumask which doesn't have any online 5091 * CPUs. When a worker of such pool get scheduled, the scheduler resets 5092 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 5093 * online CPU before, cpus_allowed of all its workers should be restored. 5094 */ 5095 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 5096 { 5097 static cpumask_t cpumask; 5098 struct worker *worker; 5099 5100 lockdep_assert_held(&wq_pool_attach_mutex); 5101 5102 /* is @cpu allowed for @pool? */ 5103 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 5104 return; 5105 5106 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 5107 5108 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 5109 for_each_pool_worker(worker, pool) 5110 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 5111 } 5112 5113 int workqueue_prepare_cpu(unsigned int cpu) 5114 { 5115 struct worker_pool *pool; 5116 5117 for_each_cpu_worker_pool(pool, cpu) { 5118 if (pool->nr_workers) 5119 continue; 5120 if (!create_worker(pool)) 5121 return -ENOMEM; 5122 } 5123 return 0; 5124 } 5125 5126 int workqueue_online_cpu(unsigned int cpu) 5127 { 5128 struct worker_pool *pool; 5129 struct workqueue_struct *wq; 5130 int pi; 5131 5132 mutex_lock(&wq_pool_mutex); 5133 5134 for_each_pool(pool, pi) { 5135 mutex_lock(&wq_pool_attach_mutex); 5136 5137 if (pool->cpu == cpu) 5138 rebind_workers(pool); 5139 else if (pool->cpu < 0) 5140 restore_unbound_workers_cpumask(pool, cpu); 5141 5142 mutex_unlock(&wq_pool_attach_mutex); 5143 } 5144 5145 /* update NUMA affinity of unbound workqueues */ 5146 list_for_each_entry(wq, &workqueues, list) 5147 wq_update_unbound_numa(wq, cpu, true); 5148 5149 mutex_unlock(&wq_pool_mutex); 5150 return 0; 5151 } 5152 5153 int workqueue_offline_cpu(unsigned int cpu) 5154 { 5155 struct workqueue_struct *wq; 5156 5157 /* unbinding per-cpu workers should happen on the local CPU */ 5158 if (WARN_ON(cpu != smp_processor_id())) 5159 return -1; 5160 5161 unbind_workers(cpu); 5162 5163 /* update NUMA affinity of unbound workqueues */ 5164 mutex_lock(&wq_pool_mutex); 5165 list_for_each_entry(wq, &workqueues, list) 5166 wq_update_unbound_numa(wq, cpu, false); 5167 mutex_unlock(&wq_pool_mutex); 5168 5169 return 0; 5170 } 5171 5172 struct work_for_cpu { 5173 struct work_struct work; 5174 long (*fn)(void *); 5175 void *arg; 5176 long ret; 5177 }; 5178 5179 static void work_for_cpu_fn(struct work_struct *work) 5180 { 5181 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 5182 5183 wfc->ret = wfc->fn(wfc->arg); 5184 } 5185 5186 /** 5187 * work_on_cpu - run a function in thread context on a particular cpu 5188 * @cpu: the cpu to run on 5189 * @fn: the function to run 5190 * @arg: the function arg 5191 * 5192 * It is up to the caller to ensure that the cpu doesn't go offline. 5193 * The caller must not hold any locks which would prevent @fn from completing. 5194 * 5195 * Return: The value @fn returns. 5196 */ 5197 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 5198 { 5199 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 5200 5201 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 5202 schedule_work_on(cpu, &wfc.work); 5203 flush_work(&wfc.work); 5204 destroy_work_on_stack(&wfc.work); 5205 return wfc.ret; 5206 } 5207 EXPORT_SYMBOL_GPL(work_on_cpu); 5208 5209 /** 5210 * work_on_cpu_safe - run a function in thread context on a particular cpu 5211 * @cpu: the cpu to run on 5212 * @fn: the function to run 5213 * @arg: the function argument 5214 * 5215 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 5216 * any locks which would prevent @fn from completing. 5217 * 5218 * Return: The value @fn returns. 5219 */ 5220 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) 5221 { 5222 long ret = -ENODEV; 5223 5224 cpus_read_lock(); 5225 if (cpu_online(cpu)) 5226 ret = work_on_cpu(cpu, fn, arg); 5227 cpus_read_unlock(); 5228 return ret; 5229 } 5230 EXPORT_SYMBOL_GPL(work_on_cpu_safe); 5231 #endif /* CONFIG_SMP */ 5232 5233 #ifdef CONFIG_FREEZER 5234 5235 /** 5236 * freeze_workqueues_begin - begin freezing workqueues 5237 * 5238 * Start freezing workqueues. After this function returns, all freezable 5239 * workqueues will queue new works to their inactive_works list instead of 5240 * pool->worklist. 5241 * 5242 * CONTEXT: 5243 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5244 */ 5245 void freeze_workqueues_begin(void) 5246 { 5247 struct workqueue_struct *wq; 5248 struct pool_workqueue *pwq; 5249 5250 mutex_lock(&wq_pool_mutex); 5251 5252 WARN_ON_ONCE(workqueue_freezing); 5253 workqueue_freezing = true; 5254 5255 list_for_each_entry(wq, &workqueues, list) { 5256 mutex_lock(&wq->mutex); 5257 for_each_pwq(pwq, wq) 5258 pwq_adjust_max_active(pwq); 5259 mutex_unlock(&wq->mutex); 5260 } 5261 5262 mutex_unlock(&wq_pool_mutex); 5263 } 5264 5265 /** 5266 * freeze_workqueues_busy - are freezable workqueues still busy? 5267 * 5268 * Check whether freezing is complete. This function must be called 5269 * between freeze_workqueues_begin() and thaw_workqueues(). 5270 * 5271 * CONTEXT: 5272 * Grabs and releases wq_pool_mutex. 5273 * 5274 * Return: 5275 * %true if some freezable workqueues are still busy. %false if freezing 5276 * is complete. 5277 */ 5278 bool freeze_workqueues_busy(void) 5279 { 5280 bool busy = false; 5281 struct workqueue_struct *wq; 5282 struct pool_workqueue *pwq; 5283 5284 mutex_lock(&wq_pool_mutex); 5285 5286 WARN_ON_ONCE(!workqueue_freezing); 5287 5288 list_for_each_entry(wq, &workqueues, list) { 5289 if (!(wq->flags & WQ_FREEZABLE)) 5290 continue; 5291 /* 5292 * nr_active is monotonically decreasing. It's safe 5293 * to peek without lock. 5294 */ 5295 rcu_read_lock(); 5296 for_each_pwq(pwq, wq) { 5297 WARN_ON_ONCE(pwq->nr_active < 0); 5298 if (pwq->nr_active) { 5299 busy = true; 5300 rcu_read_unlock(); 5301 goto out_unlock; 5302 } 5303 } 5304 rcu_read_unlock(); 5305 } 5306 out_unlock: 5307 mutex_unlock(&wq_pool_mutex); 5308 return busy; 5309 } 5310 5311 /** 5312 * thaw_workqueues - thaw workqueues 5313 * 5314 * Thaw workqueues. Normal queueing is restored and all collected 5315 * frozen works are transferred to their respective pool worklists. 5316 * 5317 * CONTEXT: 5318 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5319 */ 5320 void thaw_workqueues(void) 5321 { 5322 struct workqueue_struct *wq; 5323 struct pool_workqueue *pwq; 5324 5325 mutex_lock(&wq_pool_mutex); 5326 5327 if (!workqueue_freezing) 5328 goto out_unlock; 5329 5330 workqueue_freezing = false; 5331 5332 /* restore max_active and repopulate worklist */ 5333 list_for_each_entry(wq, &workqueues, list) { 5334 mutex_lock(&wq->mutex); 5335 for_each_pwq(pwq, wq) 5336 pwq_adjust_max_active(pwq); 5337 mutex_unlock(&wq->mutex); 5338 } 5339 5340 out_unlock: 5341 mutex_unlock(&wq_pool_mutex); 5342 } 5343 #endif /* CONFIG_FREEZER */ 5344 5345 static int workqueue_apply_unbound_cpumask(void) 5346 { 5347 LIST_HEAD(ctxs); 5348 int ret = 0; 5349 struct workqueue_struct *wq; 5350 struct apply_wqattrs_ctx *ctx, *n; 5351 5352 lockdep_assert_held(&wq_pool_mutex); 5353 5354 list_for_each_entry(wq, &workqueues, list) { 5355 if (!(wq->flags & WQ_UNBOUND)) 5356 continue; 5357 /* creating multiple pwqs breaks ordering guarantee */ 5358 if (wq->flags & __WQ_ORDERED) 5359 continue; 5360 5361 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs); 5362 if (!ctx) { 5363 ret = -ENOMEM; 5364 break; 5365 } 5366 5367 list_add_tail(&ctx->list, &ctxs); 5368 } 5369 5370 list_for_each_entry_safe(ctx, n, &ctxs, list) { 5371 if (!ret) 5372 apply_wqattrs_commit(ctx); 5373 apply_wqattrs_cleanup(ctx); 5374 } 5375 5376 return ret; 5377 } 5378 5379 /** 5380 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 5381 * @cpumask: the cpumask to set 5382 * 5383 * The low-level workqueues cpumask is a global cpumask that limits 5384 * the affinity of all unbound workqueues. This function check the @cpumask 5385 * and apply it to all unbound workqueues and updates all pwqs of them. 5386 * 5387 * Return: 0 - Success 5388 * -EINVAL - Invalid @cpumask 5389 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 5390 */ 5391 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 5392 { 5393 int ret = -EINVAL; 5394 cpumask_var_t saved_cpumask; 5395 5396 /* 5397 * Not excluding isolated cpus on purpose. 5398 * If the user wishes to include them, we allow that. 5399 */ 5400 cpumask_and(cpumask, cpumask, cpu_possible_mask); 5401 if (!cpumask_empty(cpumask)) { 5402 apply_wqattrs_lock(); 5403 if (cpumask_equal(cpumask, wq_unbound_cpumask)) { 5404 ret = 0; 5405 goto out_unlock; 5406 } 5407 5408 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) { 5409 ret = -ENOMEM; 5410 goto out_unlock; 5411 } 5412 5413 /* save the old wq_unbound_cpumask. */ 5414 cpumask_copy(saved_cpumask, wq_unbound_cpumask); 5415 5416 /* update wq_unbound_cpumask at first and apply it to wqs. */ 5417 cpumask_copy(wq_unbound_cpumask, cpumask); 5418 ret = workqueue_apply_unbound_cpumask(); 5419 5420 /* restore the wq_unbound_cpumask when failed. */ 5421 if (ret < 0) 5422 cpumask_copy(wq_unbound_cpumask, saved_cpumask); 5423 5424 free_cpumask_var(saved_cpumask); 5425 out_unlock: 5426 apply_wqattrs_unlock(); 5427 } 5428 5429 return ret; 5430 } 5431 5432 #ifdef CONFIG_SYSFS 5433 /* 5434 * Workqueues with WQ_SYSFS flag set is visible to userland via 5435 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 5436 * following attributes. 5437 * 5438 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 5439 * max_active RW int : maximum number of in-flight work items 5440 * 5441 * Unbound workqueues have the following extra attributes. 5442 * 5443 * pool_ids RO int : the associated pool IDs for each node 5444 * nice RW int : nice value of the workers 5445 * cpumask RW mask : bitmask of allowed CPUs for the workers 5446 * numa RW bool : whether enable NUMA affinity 5447 */ 5448 struct wq_device { 5449 struct workqueue_struct *wq; 5450 struct device dev; 5451 }; 5452 5453 static struct workqueue_struct *dev_to_wq(struct device *dev) 5454 { 5455 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5456 5457 return wq_dev->wq; 5458 } 5459 5460 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 5461 char *buf) 5462 { 5463 struct workqueue_struct *wq = dev_to_wq(dev); 5464 5465 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 5466 } 5467 static DEVICE_ATTR_RO(per_cpu); 5468 5469 static ssize_t max_active_show(struct device *dev, 5470 struct device_attribute *attr, char *buf) 5471 { 5472 struct workqueue_struct *wq = dev_to_wq(dev); 5473 5474 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 5475 } 5476 5477 static ssize_t max_active_store(struct device *dev, 5478 struct device_attribute *attr, const char *buf, 5479 size_t count) 5480 { 5481 struct workqueue_struct *wq = dev_to_wq(dev); 5482 int val; 5483 5484 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 5485 return -EINVAL; 5486 5487 workqueue_set_max_active(wq, val); 5488 return count; 5489 } 5490 static DEVICE_ATTR_RW(max_active); 5491 5492 static struct attribute *wq_sysfs_attrs[] = { 5493 &dev_attr_per_cpu.attr, 5494 &dev_attr_max_active.attr, 5495 NULL, 5496 }; 5497 ATTRIBUTE_GROUPS(wq_sysfs); 5498 5499 static ssize_t wq_pool_ids_show(struct device *dev, 5500 struct device_attribute *attr, char *buf) 5501 { 5502 struct workqueue_struct *wq = dev_to_wq(dev); 5503 const char *delim = ""; 5504 int node, written = 0; 5505 5506 cpus_read_lock(); 5507 rcu_read_lock(); 5508 for_each_node(node) { 5509 written += scnprintf(buf + written, PAGE_SIZE - written, 5510 "%s%d:%d", delim, node, 5511 unbound_pwq_by_node(wq, node)->pool->id); 5512 delim = " "; 5513 } 5514 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 5515 rcu_read_unlock(); 5516 cpus_read_unlock(); 5517 5518 return written; 5519 } 5520 5521 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 5522 char *buf) 5523 { 5524 struct workqueue_struct *wq = dev_to_wq(dev); 5525 int written; 5526 5527 mutex_lock(&wq->mutex); 5528 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 5529 mutex_unlock(&wq->mutex); 5530 5531 return written; 5532 } 5533 5534 /* prepare workqueue_attrs for sysfs store operations */ 5535 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5536 { 5537 struct workqueue_attrs *attrs; 5538 5539 lockdep_assert_held(&wq_pool_mutex); 5540 5541 attrs = alloc_workqueue_attrs(); 5542 if (!attrs) 5543 return NULL; 5544 5545 copy_workqueue_attrs(attrs, wq->unbound_attrs); 5546 return attrs; 5547 } 5548 5549 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 5550 const char *buf, size_t count) 5551 { 5552 struct workqueue_struct *wq = dev_to_wq(dev); 5553 struct workqueue_attrs *attrs; 5554 int ret = -ENOMEM; 5555 5556 apply_wqattrs_lock(); 5557 5558 attrs = wq_sysfs_prep_attrs(wq); 5559 if (!attrs) 5560 goto out_unlock; 5561 5562 if (sscanf(buf, "%d", &attrs->nice) == 1 && 5563 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 5564 ret = apply_workqueue_attrs_locked(wq, attrs); 5565 else 5566 ret = -EINVAL; 5567 5568 out_unlock: 5569 apply_wqattrs_unlock(); 5570 free_workqueue_attrs(attrs); 5571 return ret ?: count; 5572 } 5573 5574 static ssize_t wq_cpumask_show(struct device *dev, 5575 struct device_attribute *attr, char *buf) 5576 { 5577 struct workqueue_struct *wq = dev_to_wq(dev); 5578 int written; 5579 5580 mutex_lock(&wq->mutex); 5581 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5582 cpumask_pr_args(wq->unbound_attrs->cpumask)); 5583 mutex_unlock(&wq->mutex); 5584 return written; 5585 } 5586 5587 static ssize_t wq_cpumask_store(struct device *dev, 5588 struct device_attribute *attr, 5589 const char *buf, size_t count) 5590 { 5591 struct workqueue_struct *wq = dev_to_wq(dev); 5592 struct workqueue_attrs *attrs; 5593 int ret = -ENOMEM; 5594 5595 apply_wqattrs_lock(); 5596 5597 attrs = wq_sysfs_prep_attrs(wq); 5598 if (!attrs) 5599 goto out_unlock; 5600 5601 ret = cpumask_parse(buf, attrs->cpumask); 5602 if (!ret) 5603 ret = apply_workqueue_attrs_locked(wq, attrs); 5604 5605 out_unlock: 5606 apply_wqattrs_unlock(); 5607 free_workqueue_attrs(attrs); 5608 return ret ?: count; 5609 } 5610 5611 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5612 char *buf) 5613 { 5614 struct workqueue_struct *wq = dev_to_wq(dev); 5615 int written; 5616 5617 mutex_lock(&wq->mutex); 5618 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5619 !wq->unbound_attrs->no_numa); 5620 mutex_unlock(&wq->mutex); 5621 5622 return written; 5623 } 5624 5625 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 5626 const char *buf, size_t count) 5627 { 5628 struct workqueue_struct *wq = dev_to_wq(dev); 5629 struct workqueue_attrs *attrs; 5630 int v, ret = -ENOMEM; 5631 5632 apply_wqattrs_lock(); 5633 5634 attrs = wq_sysfs_prep_attrs(wq); 5635 if (!attrs) 5636 goto out_unlock; 5637 5638 ret = -EINVAL; 5639 if (sscanf(buf, "%d", &v) == 1) { 5640 attrs->no_numa = !v; 5641 ret = apply_workqueue_attrs_locked(wq, attrs); 5642 } 5643 5644 out_unlock: 5645 apply_wqattrs_unlock(); 5646 free_workqueue_attrs(attrs); 5647 return ret ?: count; 5648 } 5649 5650 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5651 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5652 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5653 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5654 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5655 __ATTR_NULL, 5656 }; 5657 5658 static struct bus_type wq_subsys = { 5659 .name = "workqueue", 5660 .dev_groups = wq_sysfs_groups, 5661 }; 5662 5663 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5664 struct device_attribute *attr, char *buf) 5665 { 5666 int written; 5667 5668 mutex_lock(&wq_pool_mutex); 5669 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5670 cpumask_pr_args(wq_unbound_cpumask)); 5671 mutex_unlock(&wq_pool_mutex); 5672 5673 return written; 5674 } 5675 5676 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5677 struct device_attribute *attr, const char *buf, size_t count) 5678 { 5679 cpumask_var_t cpumask; 5680 int ret; 5681 5682 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5683 return -ENOMEM; 5684 5685 ret = cpumask_parse(buf, cpumask); 5686 if (!ret) 5687 ret = workqueue_set_unbound_cpumask(cpumask); 5688 5689 free_cpumask_var(cpumask); 5690 return ret ? ret : count; 5691 } 5692 5693 static struct device_attribute wq_sysfs_cpumask_attr = 5694 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5695 wq_unbound_cpumask_store); 5696 5697 static int __init wq_sysfs_init(void) 5698 { 5699 int err; 5700 5701 err = subsys_virtual_register(&wq_subsys, NULL); 5702 if (err) 5703 return err; 5704 5705 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr); 5706 } 5707 core_initcall(wq_sysfs_init); 5708 5709 static void wq_device_release(struct device *dev) 5710 { 5711 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5712 5713 kfree(wq_dev); 5714 } 5715 5716 /** 5717 * workqueue_sysfs_register - make a workqueue visible in sysfs 5718 * @wq: the workqueue to register 5719 * 5720 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5721 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5722 * which is the preferred method. 5723 * 5724 * Workqueue user should use this function directly iff it wants to apply 5725 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5726 * apply_workqueue_attrs() may race against userland updating the 5727 * attributes. 5728 * 5729 * Return: 0 on success, -errno on failure. 5730 */ 5731 int workqueue_sysfs_register(struct workqueue_struct *wq) 5732 { 5733 struct wq_device *wq_dev; 5734 int ret; 5735 5736 /* 5737 * Adjusting max_active or creating new pwqs by applying 5738 * attributes breaks ordering guarantee. Disallow exposing ordered 5739 * workqueues. 5740 */ 5741 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 5742 return -EINVAL; 5743 5744 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5745 if (!wq_dev) 5746 return -ENOMEM; 5747 5748 wq_dev->wq = wq; 5749 wq_dev->dev.bus = &wq_subsys; 5750 wq_dev->dev.release = wq_device_release; 5751 dev_set_name(&wq_dev->dev, "%s", wq->name); 5752 5753 /* 5754 * unbound_attrs are created separately. Suppress uevent until 5755 * everything is ready. 5756 */ 5757 dev_set_uevent_suppress(&wq_dev->dev, true); 5758 5759 ret = device_register(&wq_dev->dev); 5760 if (ret) { 5761 put_device(&wq_dev->dev); 5762 wq->wq_dev = NULL; 5763 return ret; 5764 } 5765 5766 if (wq->flags & WQ_UNBOUND) { 5767 struct device_attribute *attr; 5768 5769 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5770 ret = device_create_file(&wq_dev->dev, attr); 5771 if (ret) { 5772 device_unregister(&wq_dev->dev); 5773 wq->wq_dev = NULL; 5774 return ret; 5775 } 5776 } 5777 } 5778 5779 dev_set_uevent_suppress(&wq_dev->dev, false); 5780 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5781 return 0; 5782 } 5783 5784 /** 5785 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5786 * @wq: the workqueue to unregister 5787 * 5788 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5789 */ 5790 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5791 { 5792 struct wq_device *wq_dev = wq->wq_dev; 5793 5794 if (!wq->wq_dev) 5795 return; 5796 5797 wq->wq_dev = NULL; 5798 device_unregister(&wq_dev->dev); 5799 } 5800 #else /* CONFIG_SYSFS */ 5801 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5802 #endif /* CONFIG_SYSFS */ 5803 5804 /* 5805 * Workqueue watchdog. 5806 * 5807 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 5808 * flush dependency, a concurrency managed work item which stays RUNNING 5809 * indefinitely. Workqueue stalls can be very difficult to debug as the 5810 * usual warning mechanisms don't trigger and internal workqueue state is 5811 * largely opaque. 5812 * 5813 * Workqueue watchdog monitors all worker pools periodically and dumps 5814 * state if some pools failed to make forward progress for a while where 5815 * forward progress is defined as the first item on ->worklist changing. 5816 * 5817 * This mechanism is controlled through the kernel parameter 5818 * "workqueue.watchdog_thresh" which can be updated at runtime through the 5819 * corresponding sysfs parameter file. 5820 */ 5821 #ifdef CONFIG_WQ_WATCHDOG 5822 5823 static unsigned long wq_watchdog_thresh = 30; 5824 static struct timer_list wq_watchdog_timer; 5825 5826 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 5827 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 5828 5829 static void wq_watchdog_reset_touched(void) 5830 { 5831 int cpu; 5832 5833 wq_watchdog_touched = jiffies; 5834 for_each_possible_cpu(cpu) 5835 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5836 } 5837 5838 static void wq_watchdog_timer_fn(struct timer_list *unused) 5839 { 5840 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 5841 bool lockup_detected = false; 5842 unsigned long now = jiffies; 5843 struct worker_pool *pool; 5844 int pi; 5845 5846 if (!thresh) 5847 return; 5848 5849 rcu_read_lock(); 5850 5851 for_each_pool(pool, pi) { 5852 unsigned long pool_ts, touched, ts; 5853 5854 if (list_empty(&pool->worklist)) 5855 continue; 5856 5857 /* 5858 * If a virtual machine is stopped by the host it can look to 5859 * the watchdog like a stall. 5860 */ 5861 kvm_check_and_clear_guest_paused(); 5862 5863 /* get the latest of pool and touched timestamps */ 5864 if (pool->cpu >= 0) 5865 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu)); 5866 else 5867 touched = READ_ONCE(wq_watchdog_touched); 5868 pool_ts = READ_ONCE(pool->watchdog_ts); 5869 5870 if (time_after(pool_ts, touched)) 5871 ts = pool_ts; 5872 else 5873 ts = touched; 5874 5875 /* did we stall? */ 5876 if (time_after(now, ts + thresh)) { 5877 lockup_detected = true; 5878 pr_emerg("BUG: workqueue lockup - pool"); 5879 pr_cont_pool_info(pool); 5880 pr_cont(" stuck for %us!\n", 5881 jiffies_to_msecs(now - pool_ts) / 1000); 5882 } 5883 } 5884 5885 rcu_read_unlock(); 5886 5887 if (lockup_detected) 5888 show_all_workqueues(); 5889 5890 wq_watchdog_reset_touched(); 5891 mod_timer(&wq_watchdog_timer, jiffies + thresh); 5892 } 5893 5894 notrace void wq_watchdog_touch(int cpu) 5895 { 5896 if (cpu >= 0) 5897 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5898 5899 wq_watchdog_touched = jiffies; 5900 } 5901 5902 static void wq_watchdog_set_thresh(unsigned long thresh) 5903 { 5904 wq_watchdog_thresh = 0; 5905 del_timer_sync(&wq_watchdog_timer); 5906 5907 if (thresh) { 5908 wq_watchdog_thresh = thresh; 5909 wq_watchdog_reset_touched(); 5910 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 5911 } 5912 } 5913 5914 static int wq_watchdog_param_set_thresh(const char *val, 5915 const struct kernel_param *kp) 5916 { 5917 unsigned long thresh; 5918 int ret; 5919 5920 ret = kstrtoul(val, 0, &thresh); 5921 if (ret) 5922 return ret; 5923 5924 if (system_wq) 5925 wq_watchdog_set_thresh(thresh); 5926 else 5927 wq_watchdog_thresh = thresh; 5928 5929 return 0; 5930 } 5931 5932 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 5933 .set = wq_watchdog_param_set_thresh, 5934 .get = param_get_ulong, 5935 }; 5936 5937 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 5938 0644); 5939 5940 static void wq_watchdog_init(void) 5941 { 5942 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 5943 wq_watchdog_set_thresh(wq_watchdog_thresh); 5944 } 5945 5946 #else /* CONFIG_WQ_WATCHDOG */ 5947 5948 static inline void wq_watchdog_init(void) { } 5949 5950 #endif /* CONFIG_WQ_WATCHDOG */ 5951 5952 static void __init wq_numa_init(void) 5953 { 5954 cpumask_var_t *tbl; 5955 int node, cpu; 5956 5957 if (num_possible_nodes() <= 1) 5958 return; 5959 5960 if (wq_disable_numa) { 5961 pr_info("workqueue: NUMA affinity support disabled\n"); 5962 return; 5963 } 5964 5965 for_each_possible_cpu(cpu) { 5966 if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) { 5967 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5968 return; 5969 } 5970 } 5971 5972 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(); 5973 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5974 5975 /* 5976 * We want masks of possible CPUs of each node which isn't readily 5977 * available. Build one from cpu_to_node() which should have been 5978 * fully initialized by now. 5979 */ 5980 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL); 5981 BUG_ON(!tbl); 5982 5983 for_each_node(node) 5984 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5985 node_online(node) ? node : NUMA_NO_NODE)); 5986 5987 for_each_possible_cpu(cpu) { 5988 node = cpu_to_node(cpu); 5989 cpumask_set_cpu(cpu, tbl[node]); 5990 } 5991 5992 wq_numa_possible_cpumask = tbl; 5993 wq_numa_enabled = true; 5994 } 5995 5996 /** 5997 * workqueue_init_early - early init for workqueue subsystem 5998 * 5999 * This is the first half of two-staged workqueue subsystem initialization 6000 * and invoked as soon as the bare basics - memory allocation, cpumasks and 6001 * idr are up. It sets up all the data structures and system workqueues 6002 * and allows early boot code to create workqueues and queue/cancel work 6003 * items. Actual work item execution starts only after kthreads can be 6004 * created and scheduled right before early initcalls. 6005 */ 6006 void __init workqueue_init_early(void) 6007 { 6008 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 6009 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ; 6010 int i, cpu; 6011 6012 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 6013 6014 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 6015 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags)); 6016 6017 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 6018 6019 /* initialize CPU pools */ 6020 for_each_possible_cpu(cpu) { 6021 struct worker_pool *pool; 6022 6023 i = 0; 6024 for_each_cpu_worker_pool(pool, cpu) { 6025 BUG_ON(init_worker_pool(pool)); 6026 pool->cpu = cpu; 6027 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 6028 pool->attrs->nice = std_nice[i++]; 6029 pool->node = cpu_to_node(cpu); 6030 6031 /* alloc pool ID */ 6032 mutex_lock(&wq_pool_mutex); 6033 BUG_ON(worker_pool_assign_id(pool)); 6034 mutex_unlock(&wq_pool_mutex); 6035 } 6036 } 6037 6038 /* create default unbound and ordered wq attrs */ 6039 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 6040 struct workqueue_attrs *attrs; 6041 6042 BUG_ON(!(attrs = alloc_workqueue_attrs())); 6043 attrs->nice = std_nice[i]; 6044 unbound_std_wq_attrs[i] = attrs; 6045 6046 /* 6047 * An ordered wq should have only one pwq as ordering is 6048 * guaranteed by max_active which is enforced by pwqs. 6049 * Turn off NUMA so that dfl_pwq is used for all nodes. 6050 */ 6051 BUG_ON(!(attrs = alloc_workqueue_attrs())); 6052 attrs->nice = std_nice[i]; 6053 attrs->no_numa = true; 6054 ordered_wq_attrs[i] = attrs; 6055 } 6056 6057 system_wq = alloc_workqueue("events", 0, 0); 6058 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 6059 system_long_wq = alloc_workqueue("events_long", 0, 0); 6060 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 6061 WQ_UNBOUND_MAX_ACTIVE); 6062 system_freezable_wq = alloc_workqueue("events_freezable", 6063 WQ_FREEZABLE, 0); 6064 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 6065 WQ_POWER_EFFICIENT, 0); 6066 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 6067 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 6068 0); 6069 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 6070 !system_unbound_wq || !system_freezable_wq || 6071 !system_power_efficient_wq || 6072 !system_freezable_power_efficient_wq); 6073 } 6074 6075 /** 6076 * workqueue_init - bring workqueue subsystem fully online 6077 * 6078 * This is the latter half of two-staged workqueue subsystem initialization 6079 * and invoked as soon as kthreads can be created and scheduled. 6080 * Workqueues have been created and work items queued on them, but there 6081 * are no kworkers executing the work items yet. Populate the worker pools 6082 * with the initial workers and enable future kworker creations. 6083 */ 6084 void __init workqueue_init(void) 6085 { 6086 struct workqueue_struct *wq; 6087 struct worker_pool *pool; 6088 int cpu, bkt; 6089 6090 /* 6091 * It'd be simpler to initialize NUMA in workqueue_init_early() but 6092 * CPU to node mapping may not be available that early on some 6093 * archs such as power and arm64. As per-cpu pools created 6094 * previously could be missing node hint and unbound pools NUMA 6095 * affinity, fix them up. 6096 * 6097 * Also, while iterating workqueues, create rescuers if requested. 6098 */ 6099 wq_numa_init(); 6100 6101 mutex_lock(&wq_pool_mutex); 6102 6103 for_each_possible_cpu(cpu) { 6104 for_each_cpu_worker_pool(pool, cpu) { 6105 pool->node = cpu_to_node(cpu); 6106 } 6107 } 6108 6109 list_for_each_entry(wq, &workqueues, list) { 6110 wq_update_unbound_numa(wq, smp_processor_id(), true); 6111 WARN(init_rescuer(wq), 6112 "workqueue: failed to create early rescuer for %s", 6113 wq->name); 6114 } 6115 6116 mutex_unlock(&wq_pool_mutex); 6117 6118 /* create the initial workers */ 6119 for_each_online_cpu(cpu) { 6120 for_each_cpu_worker_pool(pool, cpu) { 6121 pool->flags &= ~POOL_DISASSOCIATED; 6122 BUG_ON(!create_worker(pool)); 6123 } 6124 } 6125 6126 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 6127 BUG_ON(!create_worker(pool)); 6128 6129 wq_online = true; 6130 wq_watchdog_init(); 6131 } 6132