1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 5 * Copyright (C) 2002 Ingo Molnar 6 * 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <dwmw2@infradead.org> 9 * Andrew Morton 10 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 11 * Theodore Ts'o <tytso@mit.edu> 12 * 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 17 * 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 24 * 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 27 28 #include <linux/export.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 32 #include <linux/signal.h> 33 #include <linux/completion.h> 34 #include <linux/workqueue.h> 35 #include <linux/slab.h> 36 #include <linux/cpu.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/hardirq.h> 40 #include <linux/mempolicy.h> 41 #include <linux/freezer.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 #include <linux/sched/isolation.h> 52 #include <linux/sched/debug.h> 53 #include <linux/nmi.h> 54 #include <linux/kvm_para.h> 55 56 #include "workqueue_internal.h" 57 58 enum { 59 /* 60 * worker_pool flags 61 * 62 * A bound pool is either associated or disassociated with its CPU. 63 * While associated (!DISASSOCIATED), all workers are bound to the 64 * CPU and none has %WORKER_UNBOUND set and concurrency management 65 * is in effect. 66 * 67 * While DISASSOCIATED, the cpu may be offline and all workers have 68 * %WORKER_UNBOUND set and concurrency management disabled, and may 69 * be executing on any CPU. The pool behaves as an unbound one. 70 * 71 * Note that DISASSOCIATED should be flipped only while holding 72 * wq_pool_attach_mutex to avoid changing binding state while 73 * worker_attach_to_pool() is in progress. 74 */ 75 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */ 76 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 77 78 /* worker flags */ 79 WORKER_DIE = 1 << 1, /* die die die */ 80 WORKER_IDLE = 1 << 2, /* is idle */ 81 WORKER_PREP = 1 << 3, /* preparing to run works */ 82 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 83 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 84 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 85 86 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 87 WORKER_UNBOUND | WORKER_REBOUND, 88 89 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 90 91 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 92 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 93 94 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 95 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 96 97 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 98 /* call for help after 10ms 99 (min two ticks) */ 100 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 101 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 102 103 /* 104 * Rescue workers are used only on emergencies and shared by 105 * all cpus. Give MIN_NICE. 106 */ 107 RESCUER_NICE_LEVEL = MIN_NICE, 108 HIGHPRI_NICE_LEVEL = MIN_NICE, 109 110 WQ_NAME_LEN = 24, 111 }; 112 113 /* 114 * Structure fields follow one of the following exclusion rules. 115 * 116 * I: Modifiable by initialization/destruction paths and read-only for 117 * everyone else. 118 * 119 * P: Preemption protected. Disabling preemption is enough and should 120 * only be modified and accessed from the local cpu. 121 * 122 * L: pool->lock protected. Access with pool->lock held. 123 * 124 * X: During normal operation, modification requires pool->lock and should 125 * be done only from local cpu. Either disabling preemption on local 126 * cpu or grabbing pool->lock is enough for read access. If 127 * POOL_DISASSOCIATED is set, it's identical to L. 128 * 129 * A: wq_pool_attach_mutex protected. 130 * 131 * PL: wq_pool_mutex protected. 132 * 133 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 134 * 135 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 136 * 137 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 138 * RCU for reads. 139 * 140 * WQ: wq->mutex protected. 141 * 142 * WR: wq->mutex protected for writes. RCU protected for reads. 143 * 144 * MD: wq_mayday_lock protected. 145 * 146 * WD: Used internally by the watchdog. 147 */ 148 149 /* struct worker is defined in workqueue_internal.h */ 150 151 struct worker_pool { 152 raw_spinlock_t lock; /* the pool lock */ 153 int cpu; /* I: the associated cpu */ 154 int node; /* I: the associated node ID */ 155 int id; /* I: pool ID */ 156 unsigned int flags; /* X: flags */ 157 158 unsigned long watchdog_ts; /* L: watchdog timestamp */ 159 bool cpu_stall; /* WD: stalled cpu bound pool */ 160 161 /* 162 * The counter is incremented in a process context on the associated CPU 163 * w/ preemption disabled, and decremented or reset in the same context 164 * but w/ pool->lock held. The readers grab pool->lock and are 165 * guaranteed to see if the counter reached zero. 166 */ 167 int nr_running; 168 169 struct list_head worklist; /* L: list of pending works */ 170 171 int nr_workers; /* L: total number of workers */ 172 int nr_idle; /* L: currently idle workers */ 173 174 struct list_head idle_list; /* L: list of idle workers */ 175 struct timer_list idle_timer; /* L: worker idle timeout */ 176 struct work_struct idle_cull_work; /* L: worker idle cleanup */ 177 178 struct timer_list mayday_timer; /* L: SOS timer for workers */ 179 180 /* a workers is either on busy_hash or idle_list, or the manager */ 181 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 182 /* L: hash of busy workers */ 183 184 struct worker *manager; /* L: purely informational */ 185 struct list_head workers; /* A: attached workers */ 186 struct list_head dying_workers; /* A: workers about to die */ 187 struct completion *detach_completion; /* all workers detached */ 188 189 struct ida worker_ida; /* worker IDs for task name */ 190 191 struct workqueue_attrs *attrs; /* I: worker attributes */ 192 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 193 int refcnt; /* PL: refcnt for unbound pools */ 194 195 /* 196 * Destruction of pool is RCU protected to allow dereferences 197 * from get_work_pool(). 198 */ 199 struct rcu_head rcu; 200 }; 201 202 /* 203 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 204 * of work_struct->data are used for flags and the remaining high bits 205 * point to the pwq; thus, pwqs need to be aligned at two's power of the 206 * number of flag bits. 207 */ 208 struct pool_workqueue { 209 struct worker_pool *pool; /* I: the associated pool */ 210 struct workqueue_struct *wq; /* I: the owning workqueue */ 211 int work_color; /* L: current color */ 212 int flush_color; /* L: flushing color */ 213 int refcnt; /* L: reference count */ 214 int nr_in_flight[WORK_NR_COLORS]; 215 /* L: nr of in_flight works */ 216 217 /* 218 * nr_active management and WORK_STRUCT_INACTIVE: 219 * 220 * When pwq->nr_active >= max_active, new work item is queued to 221 * pwq->inactive_works instead of pool->worklist and marked with 222 * WORK_STRUCT_INACTIVE. 223 * 224 * All work items marked with WORK_STRUCT_INACTIVE do not participate 225 * in pwq->nr_active and all work items in pwq->inactive_works are 226 * marked with WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE 227 * work items are in pwq->inactive_works. Some of them are ready to 228 * run in pool->worklist or worker->scheduled. Those work itmes are 229 * only struct wq_barrier which is used for flush_work() and should 230 * not participate in pwq->nr_active. For non-barrier work item, it 231 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works. 232 */ 233 int nr_active; /* L: nr of active works */ 234 int max_active; /* L: max active works */ 235 struct list_head inactive_works; /* L: inactive works */ 236 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 237 struct list_head mayday_node; /* MD: node on wq->maydays */ 238 239 /* 240 * Release of unbound pwq is punted to system_wq. See put_pwq() 241 * and pwq_unbound_release_workfn() for details. pool_workqueue 242 * itself is also RCU protected so that the first pwq can be 243 * determined without grabbing wq->mutex. 244 */ 245 struct work_struct unbound_release_work; 246 struct rcu_head rcu; 247 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 248 249 /* 250 * Structure used to wait for workqueue flush. 251 */ 252 struct wq_flusher { 253 struct list_head list; /* WQ: list of flushers */ 254 int flush_color; /* WQ: flush color waiting for */ 255 struct completion done; /* flush completion */ 256 }; 257 258 struct wq_device; 259 260 /* 261 * The externally visible workqueue. It relays the issued work items to 262 * the appropriate worker_pool through its pool_workqueues. 263 */ 264 struct workqueue_struct { 265 struct list_head pwqs; /* WR: all pwqs of this wq */ 266 struct list_head list; /* PR: list of all workqueues */ 267 268 struct mutex mutex; /* protects this wq */ 269 int work_color; /* WQ: current work color */ 270 int flush_color; /* WQ: current flush color */ 271 atomic_t nr_pwqs_to_flush; /* flush in progress */ 272 struct wq_flusher *first_flusher; /* WQ: first flusher */ 273 struct list_head flusher_queue; /* WQ: flush waiters */ 274 struct list_head flusher_overflow; /* WQ: flush overflow list */ 275 276 struct list_head maydays; /* MD: pwqs requesting rescue */ 277 struct worker *rescuer; /* MD: rescue worker */ 278 279 int nr_drainers; /* WQ: drain in progress */ 280 int saved_max_active; /* WQ: saved pwq max_active */ 281 282 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 283 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 284 285 #ifdef CONFIG_SYSFS 286 struct wq_device *wq_dev; /* I: for sysfs interface */ 287 #endif 288 #ifdef CONFIG_LOCKDEP 289 char *lock_name; 290 struct lock_class_key key; 291 struct lockdep_map lockdep_map; 292 #endif 293 char name[WQ_NAME_LEN]; /* I: workqueue name */ 294 295 /* 296 * Destruction of workqueue_struct is RCU protected to allow walking 297 * the workqueues list without grabbing wq_pool_mutex. 298 * This is used to dump all workqueues from sysrq. 299 */ 300 struct rcu_head rcu; 301 302 /* hot fields used during command issue, aligned to cacheline */ 303 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 304 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 305 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 306 }; 307 308 static struct kmem_cache *pwq_cache; 309 310 static cpumask_var_t *wq_numa_possible_cpumask; 311 /* possible CPUs of each node */ 312 313 static bool wq_disable_numa; 314 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 315 316 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 317 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 318 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 319 320 static bool wq_online; /* can kworkers be created yet? */ 321 322 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 323 324 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 325 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 326 327 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 328 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 329 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 330 /* wait for manager to go away */ 331 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait); 332 333 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 334 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 335 336 /* PL&A: allowable cpus for unbound wqs and work items */ 337 static cpumask_var_t wq_unbound_cpumask; 338 339 /* CPU where unbound work was last round robin scheduled from this CPU */ 340 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 341 342 /* 343 * Local execution of unbound work items is no longer guaranteed. The 344 * following always forces round-robin CPU selection on unbound work items 345 * to uncover usages which depend on it. 346 */ 347 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 348 static bool wq_debug_force_rr_cpu = true; 349 #else 350 static bool wq_debug_force_rr_cpu = false; 351 #endif 352 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 353 354 /* the per-cpu worker pools */ 355 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 356 357 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 358 359 /* PL: hash of all unbound pools keyed by pool->attrs */ 360 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 361 362 /* I: attributes used when instantiating standard unbound pools on demand */ 363 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 364 365 /* I: attributes used when instantiating ordered pools on demand */ 366 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 367 368 struct workqueue_struct *system_wq __read_mostly; 369 EXPORT_SYMBOL(system_wq); 370 struct workqueue_struct *system_highpri_wq __read_mostly; 371 EXPORT_SYMBOL_GPL(system_highpri_wq); 372 struct workqueue_struct *system_long_wq __read_mostly; 373 EXPORT_SYMBOL_GPL(system_long_wq); 374 struct workqueue_struct *system_unbound_wq __read_mostly; 375 EXPORT_SYMBOL_GPL(system_unbound_wq); 376 struct workqueue_struct *system_freezable_wq __read_mostly; 377 EXPORT_SYMBOL_GPL(system_freezable_wq); 378 struct workqueue_struct *system_power_efficient_wq __read_mostly; 379 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 380 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 381 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 382 383 static int worker_thread(void *__worker); 384 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 385 static void show_pwq(struct pool_workqueue *pwq); 386 static void show_one_worker_pool(struct worker_pool *pool); 387 388 #define CREATE_TRACE_POINTS 389 #include <trace/events/workqueue.h> 390 391 #define assert_rcu_or_pool_mutex() \ 392 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 393 !lockdep_is_held(&wq_pool_mutex), \ 394 "RCU or wq_pool_mutex should be held") 395 396 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 397 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 398 !lockdep_is_held(&wq->mutex) && \ 399 !lockdep_is_held(&wq_pool_mutex), \ 400 "RCU, wq->mutex or wq_pool_mutex should be held") 401 402 #define for_each_cpu_worker_pool(pool, cpu) \ 403 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 404 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 405 (pool)++) 406 407 /** 408 * for_each_pool - iterate through all worker_pools in the system 409 * @pool: iteration cursor 410 * @pi: integer used for iteration 411 * 412 * This must be called either with wq_pool_mutex held or RCU read 413 * locked. If the pool needs to be used beyond the locking in effect, the 414 * caller is responsible for guaranteeing that the pool stays online. 415 * 416 * The if/else clause exists only for the lockdep assertion and can be 417 * ignored. 418 */ 419 #define for_each_pool(pool, pi) \ 420 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 421 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 422 else 423 424 /** 425 * for_each_pool_worker - iterate through all workers of a worker_pool 426 * @worker: iteration cursor 427 * @pool: worker_pool to iterate workers of 428 * 429 * This must be called with wq_pool_attach_mutex. 430 * 431 * The if/else clause exists only for the lockdep assertion and can be 432 * ignored. 433 */ 434 #define for_each_pool_worker(worker, pool) \ 435 list_for_each_entry((worker), &(pool)->workers, node) \ 436 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 437 else 438 439 /** 440 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 441 * @pwq: iteration cursor 442 * @wq: the target workqueue 443 * 444 * This must be called either with wq->mutex held or RCU read locked. 445 * If the pwq needs to be used beyond the locking in effect, the caller is 446 * responsible for guaranteeing that the pwq stays online. 447 * 448 * The if/else clause exists only for the lockdep assertion and can be 449 * ignored. 450 */ 451 #define for_each_pwq(pwq, wq) \ 452 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ 453 lockdep_is_held(&(wq->mutex))) 454 455 #ifdef CONFIG_DEBUG_OBJECTS_WORK 456 457 static const struct debug_obj_descr work_debug_descr; 458 459 static void *work_debug_hint(void *addr) 460 { 461 return ((struct work_struct *) addr)->func; 462 } 463 464 static bool work_is_static_object(void *addr) 465 { 466 struct work_struct *work = addr; 467 468 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 469 } 470 471 /* 472 * fixup_init is called when: 473 * - an active object is initialized 474 */ 475 static bool work_fixup_init(void *addr, enum debug_obj_state state) 476 { 477 struct work_struct *work = addr; 478 479 switch (state) { 480 case ODEBUG_STATE_ACTIVE: 481 cancel_work_sync(work); 482 debug_object_init(work, &work_debug_descr); 483 return true; 484 default: 485 return false; 486 } 487 } 488 489 /* 490 * fixup_free is called when: 491 * - an active object is freed 492 */ 493 static bool work_fixup_free(void *addr, enum debug_obj_state state) 494 { 495 struct work_struct *work = addr; 496 497 switch (state) { 498 case ODEBUG_STATE_ACTIVE: 499 cancel_work_sync(work); 500 debug_object_free(work, &work_debug_descr); 501 return true; 502 default: 503 return false; 504 } 505 } 506 507 static const struct debug_obj_descr work_debug_descr = { 508 .name = "work_struct", 509 .debug_hint = work_debug_hint, 510 .is_static_object = work_is_static_object, 511 .fixup_init = work_fixup_init, 512 .fixup_free = work_fixup_free, 513 }; 514 515 static inline void debug_work_activate(struct work_struct *work) 516 { 517 debug_object_activate(work, &work_debug_descr); 518 } 519 520 static inline void debug_work_deactivate(struct work_struct *work) 521 { 522 debug_object_deactivate(work, &work_debug_descr); 523 } 524 525 void __init_work(struct work_struct *work, int onstack) 526 { 527 if (onstack) 528 debug_object_init_on_stack(work, &work_debug_descr); 529 else 530 debug_object_init(work, &work_debug_descr); 531 } 532 EXPORT_SYMBOL_GPL(__init_work); 533 534 void destroy_work_on_stack(struct work_struct *work) 535 { 536 debug_object_free(work, &work_debug_descr); 537 } 538 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 539 540 void destroy_delayed_work_on_stack(struct delayed_work *work) 541 { 542 destroy_timer_on_stack(&work->timer); 543 debug_object_free(&work->work, &work_debug_descr); 544 } 545 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 546 547 #else 548 static inline void debug_work_activate(struct work_struct *work) { } 549 static inline void debug_work_deactivate(struct work_struct *work) { } 550 #endif 551 552 /** 553 * worker_pool_assign_id - allocate ID and assign it to @pool 554 * @pool: the pool pointer of interest 555 * 556 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 557 * successfully, -errno on failure. 558 */ 559 static int worker_pool_assign_id(struct worker_pool *pool) 560 { 561 int ret; 562 563 lockdep_assert_held(&wq_pool_mutex); 564 565 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 566 GFP_KERNEL); 567 if (ret >= 0) { 568 pool->id = ret; 569 return 0; 570 } 571 return ret; 572 } 573 574 /** 575 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 576 * @wq: the target workqueue 577 * @node: the node ID 578 * 579 * This must be called with any of wq_pool_mutex, wq->mutex or RCU 580 * read locked. 581 * If the pwq needs to be used beyond the locking in effect, the caller is 582 * responsible for guaranteeing that the pwq stays online. 583 * 584 * Return: The unbound pool_workqueue for @node. 585 */ 586 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 587 int node) 588 { 589 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 590 591 /* 592 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a 593 * delayed item is pending. The plan is to keep CPU -> NODE 594 * mapping valid and stable across CPU on/offlines. Once that 595 * happens, this workaround can be removed. 596 */ 597 if (unlikely(node == NUMA_NO_NODE)) 598 return wq->dfl_pwq; 599 600 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 601 } 602 603 static unsigned int work_color_to_flags(int color) 604 { 605 return color << WORK_STRUCT_COLOR_SHIFT; 606 } 607 608 static int get_work_color(unsigned long work_data) 609 { 610 return (work_data >> WORK_STRUCT_COLOR_SHIFT) & 611 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 612 } 613 614 static int work_next_color(int color) 615 { 616 return (color + 1) % WORK_NR_COLORS; 617 } 618 619 /* 620 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 621 * contain the pointer to the queued pwq. Once execution starts, the flag 622 * is cleared and the high bits contain OFFQ flags and pool ID. 623 * 624 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 625 * and clear_work_data() can be used to set the pwq, pool or clear 626 * work->data. These functions should only be called while the work is 627 * owned - ie. while the PENDING bit is set. 628 * 629 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 630 * corresponding to a work. Pool is available once the work has been 631 * queued anywhere after initialization until it is sync canceled. pwq is 632 * available only while the work item is queued. 633 * 634 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 635 * canceled. While being canceled, a work item may have its PENDING set 636 * but stay off timer and worklist for arbitrarily long and nobody should 637 * try to steal the PENDING bit. 638 */ 639 static inline void set_work_data(struct work_struct *work, unsigned long data, 640 unsigned long flags) 641 { 642 WARN_ON_ONCE(!work_pending(work)); 643 atomic_long_set(&work->data, data | flags | work_static(work)); 644 } 645 646 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 647 unsigned long extra_flags) 648 { 649 set_work_data(work, (unsigned long)pwq, 650 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 651 } 652 653 static void set_work_pool_and_keep_pending(struct work_struct *work, 654 int pool_id) 655 { 656 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 657 WORK_STRUCT_PENDING); 658 } 659 660 static void set_work_pool_and_clear_pending(struct work_struct *work, 661 int pool_id) 662 { 663 /* 664 * The following wmb is paired with the implied mb in 665 * test_and_set_bit(PENDING) and ensures all updates to @work made 666 * here are visible to and precede any updates by the next PENDING 667 * owner. 668 */ 669 smp_wmb(); 670 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 671 /* 672 * The following mb guarantees that previous clear of a PENDING bit 673 * will not be reordered with any speculative LOADS or STORES from 674 * work->current_func, which is executed afterwards. This possible 675 * reordering can lead to a missed execution on attempt to queue 676 * the same @work. E.g. consider this case: 677 * 678 * CPU#0 CPU#1 679 * ---------------------------- -------------------------------- 680 * 681 * 1 STORE event_indicated 682 * 2 queue_work_on() { 683 * 3 test_and_set_bit(PENDING) 684 * 4 } set_..._and_clear_pending() { 685 * 5 set_work_data() # clear bit 686 * 6 smp_mb() 687 * 7 work->current_func() { 688 * 8 LOAD event_indicated 689 * } 690 * 691 * Without an explicit full barrier speculative LOAD on line 8 can 692 * be executed before CPU#0 does STORE on line 1. If that happens, 693 * CPU#0 observes the PENDING bit is still set and new execution of 694 * a @work is not queued in a hope, that CPU#1 will eventually 695 * finish the queued @work. Meanwhile CPU#1 does not see 696 * event_indicated is set, because speculative LOAD was executed 697 * before actual STORE. 698 */ 699 smp_mb(); 700 } 701 702 static void clear_work_data(struct work_struct *work) 703 { 704 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 705 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 706 } 707 708 static inline struct pool_workqueue *work_struct_pwq(unsigned long data) 709 { 710 return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK); 711 } 712 713 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 714 { 715 unsigned long data = atomic_long_read(&work->data); 716 717 if (data & WORK_STRUCT_PWQ) 718 return work_struct_pwq(data); 719 else 720 return NULL; 721 } 722 723 /** 724 * get_work_pool - return the worker_pool a given work was associated with 725 * @work: the work item of interest 726 * 727 * Pools are created and destroyed under wq_pool_mutex, and allows read 728 * access under RCU read lock. As such, this function should be 729 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 730 * 731 * All fields of the returned pool are accessible as long as the above 732 * mentioned locking is in effect. If the returned pool needs to be used 733 * beyond the critical section, the caller is responsible for ensuring the 734 * returned pool is and stays online. 735 * 736 * Return: The worker_pool @work was last associated with. %NULL if none. 737 */ 738 static struct worker_pool *get_work_pool(struct work_struct *work) 739 { 740 unsigned long data = atomic_long_read(&work->data); 741 int pool_id; 742 743 assert_rcu_or_pool_mutex(); 744 745 if (data & WORK_STRUCT_PWQ) 746 return work_struct_pwq(data)->pool; 747 748 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 749 if (pool_id == WORK_OFFQ_POOL_NONE) 750 return NULL; 751 752 return idr_find(&worker_pool_idr, pool_id); 753 } 754 755 /** 756 * get_work_pool_id - return the worker pool ID a given work is associated with 757 * @work: the work item of interest 758 * 759 * Return: The worker_pool ID @work was last associated with. 760 * %WORK_OFFQ_POOL_NONE if none. 761 */ 762 static int get_work_pool_id(struct work_struct *work) 763 { 764 unsigned long data = atomic_long_read(&work->data); 765 766 if (data & WORK_STRUCT_PWQ) 767 return work_struct_pwq(data)->pool->id; 768 769 return data >> WORK_OFFQ_POOL_SHIFT; 770 } 771 772 static void mark_work_canceling(struct work_struct *work) 773 { 774 unsigned long pool_id = get_work_pool_id(work); 775 776 pool_id <<= WORK_OFFQ_POOL_SHIFT; 777 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 778 } 779 780 static bool work_is_canceling(struct work_struct *work) 781 { 782 unsigned long data = atomic_long_read(&work->data); 783 784 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 785 } 786 787 /* 788 * Policy functions. These define the policies on how the global worker 789 * pools are managed. Unless noted otherwise, these functions assume that 790 * they're being called with pool->lock held. 791 */ 792 793 static bool __need_more_worker(struct worker_pool *pool) 794 { 795 return !pool->nr_running; 796 } 797 798 /* 799 * Need to wake up a worker? Called from anything but currently 800 * running workers. 801 * 802 * Note that, because unbound workers never contribute to nr_running, this 803 * function will always return %true for unbound pools as long as the 804 * worklist isn't empty. 805 */ 806 static bool need_more_worker(struct worker_pool *pool) 807 { 808 return !list_empty(&pool->worklist) && __need_more_worker(pool); 809 } 810 811 /* Can I start working? Called from busy but !running workers. */ 812 static bool may_start_working(struct worker_pool *pool) 813 { 814 return pool->nr_idle; 815 } 816 817 /* Do I need to keep working? Called from currently running workers. */ 818 static bool keep_working(struct worker_pool *pool) 819 { 820 return !list_empty(&pool->worklist) && (pool->nr_running <= 1); 821 } 822 823 /* Do we need a new worker? Called from manager. */ 824 static bool need_to_create_worker(struct worker_pool *pool) 825 { 826 return need_more_worker(pool) && !may_start_working(pool); 827 } 828 829 /* Do we have too many workers and should some go away? */ 830 static bool too_many_workers(struct worker_pool *pool) 831 { 832 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 833 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 834 int nr_busy = pool->nr_workers - nr_idle; 835 836 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 837 } 838 839 /* 840 * Wake up functions. 841 */ 842 843 /* Return the first idle worker. Called with pool->lock held. */ 844 static struct worker *first_idle_worker(struct worker_pool *pool) 845 { 846 if (unlikely(list_empty(&pool->idle_list))) 847 return NULL; 848 849 return list_first_entry(&pool->idle_list, struct worker, entry); 850 } 851 852 /** 853 * wake_up_worker - wake up an idle worker 854 * @pool: worker pool to wake worker from 855 * 856 * Wake up the first idle worker of @pool. 857 * 858 * CONTEXT: 859 * raw_spin_lock_irq(pool->lock). 860 */ 861 static void wake_up_worker(struct worker_pool *pool) 862 { 863 struct worker *worker = first_idle_worker(pool); 864 865 if (likely(worker)) 866 wake_up_process(worker->task); 867 } 868 869 /** 870 * wq_worker_running - a worker is running again 871 * @task: task waking up 872 * 873 * This function is called when a worker returns from schedule() 874 */ 875 void wq_worker_running(struct task_struct *task) 876 { 877 struct worker *worker = kthread_data(task); 878 879 if (!worker->sleeping) 880 return; 881 882 /* 883 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check 884 * and the nr_running increment below, we may ruin the nr_running reset 885 * and leave with an unexpected pool->nr_running == 1 on the newly unbound 886 * pool. Protect against such race. 887 */ 888 preempt_disable(); 889 if (!(worker->flags & WORKER_NOT_RUNNING)) 890 worker->pool->nr_running++; 891 preempt_enable(); 892 worker->sleeping = 0; 893 } 894 895 /** 896 * wq_worker_sleeping - a worker is going to sleep 897 * @task: task going to sleep 898 * 899 * This function is called from schedule() when a busy worker is 900 * going to sleep. 901 */ 902 void wq_worker_sleeping(struct task_struct *task) 903 { 904 struct worker *worker = kthread_data(task); 905 struct worker_pool *pool; 906 907 /* 908 * Rescuers, which may not have all the fields set up like normal 909 * workers, also reach here, let's not access anything before 910 * checking NOT_RUNNING. 911 */ 912 if (worker->flags & WORKER_NOT_RUNNING) 913 return; 914 915 pool = worker->pool; 916 917 /* Return if preempted before wq_worker_running() was reached */ 918 if (worker->sleeping) 919 return; 920 921 worker->sleeping = 1; 922 raw_spin_lock_irq(&pool->lock); 923 924 /* 925 * Recheck in case unbind_workers() preempted us. We don't 926 * want to decrement nr_running after the worker is unbound 927 * and nr_running has been reset. 928 */ 929 if (worker->flags & WORKER_NOT_RUNNING) { 930 raw_spin_unlock_irq(&pool->lock); 931 return; 932 } 933 934 pool->nr_running--; 935 if (need_more_worker(pool)) 936 wake_up_worker(pool); 937 raw_spin_unlock_irq(&pool->lock); 938 } 939 940 /** 941 * wq_worker_last_func - retrieve worker's last work function 942 * @task: Task to retrieve last work function of. 943 * 944 * Determine the last function a worker executed. This is called from 945 * the scheduler to get a worker's last known identity. 946 * 947 * CONTEXT: 948 * raw_spin_lock_irq(rq->lock) 949 * 950 * This function is called during schedule() when a kworker is going 951 * to sleep. It's used by psi to identify aggregation workers during 952 * dequeuing, to allow periodic aggregation to shut-off when that 953 * worker is the last task in the system or cgroup to go to sleep. 954 * 955 * As this function doesn't involve any workqueue-related locking, it 956 * only returns stable values when called from inside the scheduler's 957 * queuing and dequeuing paths, when @task, which must be a kworker, 958 * is guaranteed to not be processing any works. 959 * 960 * Return: 961 * The last work function %current executed as a worker, NULL if it 962 * hasn't executed any work yet. 963 */ 964 work_func_t wq_worker_last_func(struct task_struct *task) 965 { 966 struct worker *worker = kthread_data(task); 967 968 return worker->last_func; 969 } 970 971 /** 972 * worker_set_flags - set worker flags and adjust nr_running accordingly 973 * @worker: self 974 * @flags: flags to set 975 * 976 * Set @flags in @worker->flags and adjust nr_running accordingly. 977 * 978 * CONTEXT: 979 * raw_spin_lock_irq(pool->lock) 980 */ 981 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 982 { 983 struct worker_pool *pool = worker->pool; 984 985 WARN_ON_ONCE(worker->task != current); 986 987 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 988 if ((flags & WORKER_NOT_RUNNING) && 989 !(worker->flags & WORKER_NOT_RUNNING)) { 990 pool->nr_running--; 991 } 992 993 worker->flags |= flags; 994 } 995 996 /** 997 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 998 * @worker: self 999 * @flags: flags to clear 1000 * 1001 * Clear @flags in @worker->flags and adjust nr_running accordingly. 1002 * 1003 * CONTEXT: 1004 * raw_spin_lock_irq(pool->lock) 1005 */ 1006 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 1007 { 1008 struct worker_pool *pool = worker->pool; 1009 unsigned int oflags = worker->flags; 1010 1011 WARN_ON_ONCE(worker->task != current); 1012 1013 worker->flags &= ~flags; 1014 1015 /* 1016 * If transitioning out of NOT_RUNNING, increment nr_running. Note 1017 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 1018 * of multiple flags, not a single flag. 1019 */ 1020 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 1021 if (!(worker->flags & WORKER_NOT_RUNNING)) 1022 pool->nr_running++; 1023 } 1024 1025 /** 1026 * find_worker_executing_work - find worker which is executing a work 1027 * @pool: pool of interest 1028 * @work: work to find worker for 1029 * 1030 * Find a worker which is executing @work on @pool by searching 1031 * @pool->busy_hash which is keyed by the address of @work. For a worker 1032 * to match, its current execution should match the address of @work and 1033 * its work function. This is to avoid unwanted dependency between 1034 * unrelated work executions through a work item being recycled while still 1035 * being executed. 1036 * 1037 * This is a bit tricky. A work item may be freed once its execution 1038 * starts and nothing prevents the freed area from being recycled for 1039 * another work item. If the same work item address ends up being reused 1040 * before the original execution finishes, workqueue will identify the 1041 * recycled work item as currently executing and make it wait until the 1042 * current execution finishes, introducing an unwanted dependency. 1043 * 1044 * This function checks the work item address and work function to avoid 1045 * false positives. Note that this isn't complete as one may construct a 1046 * work function which can introduce dependency onto itself through a 1047 * recycled work item. Well, if somebody wants to shoot oneself in the 1048 * foot that badly, there's only so much we can do, and if such deadlock 1049 * actually occurs, it should be easy to locate the culprit work function. 1050 * 1051 * CONTEXT: 1052 * raw_spin_lock_irq(pool->lock). 1053 * 1054 * Return: 1055 * Pointer to worker which is executing @work if found, %NULL 1056 * otherwise. 1057 */ 1058 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1059 struct work_struct *work) 1060 { 1061 struct worker *worker; 1062 1063 hash_for_each_possible(pool->busy_hash, worker, hentry, 1064 (unsigned long)work) 1065 if (worker->current_work == work && 1066 worker->current_func == work->func) 1067 return worker; 1068 1069 return NULL; 1070 } 1071 1072 /** 1073 * move_linked_works - move linked works to a list 1074 * @work: start of series of works to be scheduled 1075 * @head: target list to append @work to 1076 * @nextp: out parameter for nested worklist walking 1077 * 1078 * Schedule linked works starting from @work to @head. Work series to 1079 * be scheduled starts at @work and includes any consecutive work with 1080 * WORK_STRUCT_LINKED set in its predecessor. 1081 * 1082 * If @nextp is not NULL, it's updated to point to the next work of 1083 * the last scheduled work. This allows move_linked_works() to be 1084 * nested inside outer list_for_each_entry_safe(). 1085 * 1086 * CONTEXT: 1087 * raw_spin_lock_irq(pool->lock). 1088 */ 1089 static void move_linked_works(struct work_struct *work, struct list_head *head, 1090 struct work_struct **nextp) 1091 { 1092 struct work_struct *n; 1093 1094 /* 1095 * Linked worklist will always end before the end of the list, 1096 * use NULL for list head. 1097 */ 1098 list_for_each_entry_safe_from(work, n, NULL, entry) { 1099 list_move_tail(&work->entry, head); 1100 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1101 break; 1102 } 1103 1104 /* 1105 * If we're already inside safe list traversal and have moved 1106 * multiple works to the scheduled queue, the next position 1107 * needs to be updated. 1108 */ 1109 if (nextp) 1110 *nextp = n; 1111 } 1112 1113 /** 1114 * get_pwq - get an extra reference on the specified pool_workqueue 1115 * @pwq: pool_workqueue to get 1116 * 1117 * Obtain an extra reference on @pwq. The caller should guarantee that 1118 * @pwq has positive refcnt and be holding the matching pool->lock. 1119 */ 1120 static void get_pwq(struct pool_workqueue *pwq) 1121 { 1122 lockdep_assert_held(&pwq->pool->lock); 1123 WARN_ON_ONCE(pwq->refcnt <= 0); 1124 pwq->refcnt++; 1125 } 1126 1127 /** 1128 * put_pwq - put a pool_workqueue reference 1129 * @pwq: pool_workqueue to put 1130 * 1131 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1132 * destruction. The caller should be holding the matching pool->lock. 1133 */ 1134 static void put_pwq(struct pool_workqueue *pwq) 1135 { 1136 lockdep_assert_held(&pwq->pool->lock); 1137 if (likely(--pwq->refcnt)) 1138 return; 1139 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1140 return; 1141 /* 1142 * @pwq can't be released under pool->lock, bounce to 1143 * pwq_unbound_release_workfn(). This never recurses on the same 1144 * pool->lock as this path is taken only for unbound workqueues and 1145 * the release work item is scheduled on a per-cpu workqueue. To 1146 * avoid lockdep warning, unbound pool->locks are given lockdep 1147 * subclass of 1 in get_unbound_pool(). 1148 */ 1149 schedule_work(&pwq->unbound_release_work); 1150 } 1151 1152 /** 1153 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1154 * @pwq: pool_workqueue to put (can be %NULL) 1155 * 1156 * put_pwq() with locking. This function also allows %NULL @pwq. 1157 */ 1158 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1159 { 1160 if (pwq) { 1161 /* 1162 * As both pwqs and pools are RCU protected, the 1163 * following lock operations are safe. 1164 */ 1165 raw_spin_lock_irq(&pwq->pool->lock); 1166 put_pwq(pwq); 1167 raw_spin_unlock_irq(&pwq->pool->lock); 1168 } 1169 } 1170 1171 static void pwq_activate_inactive_work(struct work_struct *work) 1172 { 1173 struct pool_workqueue *pwq = get_work_pwq(work); 1174 1175 trace_workqueue_activate_work(work); 1176 if (list_empty(&pwq->pool->worklist)) 1177 pwq->pool->watchdog_ts = jiffies; 1178 move_linked_works(work, &pwq->pool->worklist, NULL); 1179 __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work)); 1180 pwq->nr_active++; 1181 } 1182 1183 static void pwq_activate_first_inactive(struct pool_workqueue *pwq) 1184 { 1185 struct work_struct *work = list_first_entry(&pwq->inactive_works, 1186 struct work_struct, entry); 1187 1188 pwq_activate_inactive_work(work); 1189 } 1190 1191 /** 1192 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1193 * @pwq: pwq of interest 1194 * @work_data: work_data of work which left the queue 1195 * 1196 * A work either has completed or is removed from pending queue, 1197 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1198 * 1199 * CONTEXT: 1200 * raw_spin_lock_irq(pool->lock). 1201 */ 1202 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data) 1203 { 1204 int color = get_work_color(work_data); 1205 1206 if (!(work_data & WORK_STRUCT_INACTIVE)) { 1207 pwq->nr_active--; 1208 if (!list_empty(&pwq->inactive_works)) { 1209 /* one down, submit an inactive one */ 1210 if (pwq->nr_active < pwq->max_active) 1211 pwq_activate_first_inactive(pwq); 1212 } 1213 } 1214 1215 pwq->nr_in_flight[color]--; 1216 1217 /* is flush in progress and are we at the flushing tip? */ 1218 if (likely(pwq->flush_color != color)) 1219 goto out_put; 1220 1221 /* are there still in-flight works? */ 1222 if (pwq->nr_in_flight[color]) 1223 goto out_put; 1224 1225 /* this pwq is done, clear flush_color */ 1226 pwq->flush_color = -1; 1227 1228 /* 1229 * If this was the last pwq, wake up the first flusher. It 1230 * will handle the rest. 1231 */ 1232 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1233 complete(&pwq->wq->first_flusher->done); 1234 out_put: 1235 put_pwq(pwq); 1236 } 1237 1238 /** 1239 * try_to_grab_pending - steal work item from worklist and disable irq 1240 * @work: work item to steal 1241 * @is_dwork: @work is a delayed_work 1242 * @flags: place to store irq state 1243 * 1244 * Try to grab PENDING bit of @work. This function can handle @work in any 1245 * stable state - idle, on timer or on worklist. 1246 * 1247 * Return: 1248 * 1249 * ======== ================================================================ 1250 * 1 if @work was pending and we successfully stole PENDING 1251 * 0 if @work was idle and we claimed PENDING 1252 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1253 * -ENOENT if someone else is canceling @work, this state may persist 1254 * for arbitrarily long 1255 * ======== ================================================================ 1256 * 1257 * Note: 1258 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1259 * interrupted while holding PENDING and @work off queue, irq must be 1260 * disabled on entry. This, combined with delayed_work->timer being 1261 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1262 * 1263 * On successful return, >= 0, irq is disabled and the caller is 1264 * responsible for releasing it using local_irq_restore(*@flags). 1265 * 1266 * This function is safe to call from any context including IRQ handler. 1267 */ 1268 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1269 unsigned long *flags) 1270 { 1271 struct worker_pool *pool; 1272 struct pool_workqueue *pwq; 1273 1274 local_irq_save(*flags); 1275 1276 /* try to steal the timer if it exists */ 1277 if (is_dwork) { 1278 struct delayed_work *dwork = to_delayed_work(work); 1279 1280 /* 1281 * dwork->timer is irqsafe. If del_timer() fails, it's 1282 * guaranteed that the timer is not queued anywhere and not 1283 * running on the local CPU. 1284 */ 1285 if (likely(del_timer(&dwork->timer))) 1286 return 1; 1287 } 1288 1289 /* try to claim PENDING the normal way */ 1290 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1291 return 0; 1292 1293 rcu_read_lock(); 1294 /* 1295 * The queueing is in progress, or it is already queued. Try to 1296 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1297 */ 1298 pool = get_work_pool(work); 1299 if (!pool) 1300 goto fail; 1301 1302 raw_spin_lock(&pool->lock); 1303 /* 1304 * work->data is guaranteed to point to pwq only while the work 1305 * item is queued on pwq->wq, and both updating work->data to point 1306 * to pwq on queueing and to pool on dequeueing are done under 1307 * pwq->pool->lock. This in turn guarantees that, if work->data 1308 * points to pwq which is associated with a locked pool, the work 1309 * item is currently queued on that pool. 1310 */ 1311 pwq = get_work_pwq(work); 1312 if (pwq && pwq->pool == pool) { 1313 debug_work_deactivate(work); 1314 1315 /* 1316 * A cancelable inactive work item must be in the 1317 * pwq->inactive_works since a queued barrier can't be 1318 * canceled (see the comments in insert_wq_barrier()). 1319 * 1320 * An inactive work item cannot be grabbed directly because 1321 * it might have linked barrier work items which, if left 1322 * on the inactive_works list, will confuse pwq->nr_active 1323 * management later on and cause stall. Make sure the work 1324 * item is activated before grabbing. 1325 */ 1326 if (*work_data_bits(work) & WORK_STRUCT_INACTIVE) 1327 pwq_activate_inactive_work(work); 1328 1329 list_del_init(&work->entry); 1330 pwq_dec_nr_in_flight(pwq, *work_data_bits(work)); 1331 1332 /* work->data points to pwq iff queued, point to pool */ 1333 set_work_pool_and_keep_pending(work, pool->id); 1334 1335 raw_spin_unlock(&pool->lock); 1336 rcu_read_unlock(); 1337 return 1; 1338 } 1339 raw_spin_unlock(&pool->lock); 1340 fail: 1341 rcu_read_unlock(); 1342 local_irq_restore(*flags); 1343 if (work_is_canceling(work)) 1344 return -ENOENT; 1345 cpu_relax(); 1346 return -EAGAIN; 1347 } 1348 1349 /** 1350 * insert_work - insert a work into a pool 1351 * @pwq: pwq @work belongs to 1352 * @work: work to insert 1353 * @head: insertion point 1354 * @extra_flags: extra WORK_STRUCT_* flags to set 1355 * 1356 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1357 * work_struct flags. 1358 * 1359 * CONTEXT: 1360 * raw_spin_lock_irq(pool->lock). 1361 */ 1362 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1363 struct list_head *head, unsigned int extra_flags) 1364 { 1365 struct worker_pool *pool = pwq->pool; 1366 1367 /* record the work call stack in order to print it in KASAN reports */ 1368 kasan_record_aux_stack_noalloc(work); 1369 1370 /* we own @work, set data and link */ 1371 set_work_pwq(work, pwq, extra_flags); 1372 list_add_tail(&work->entry, head); 1373 get_pwq(pwq); 1374 1375 if (__need_more_worker(pool)) 1376 wake_up_worker(pool); 1377 } 1378 1379 /* 1380 * Test whether @work is being queued from another work executing on the 1381 * same workqueue. 1382 */ 1383 static bool is_chained_work(struct workqueue_struct *wq) 1384 { 1385 struct worker *worker; 1386 1387 worker = current_wq_worker(); 1388 /* 1389 * Return %true iff I'm a worker executing a work item on @wq. If 1390 * I'm @worker, it's safe to dereference it without locking. 1391 */ 1392 return worker && worker->current_pwq->wq == wq; 1393 } 1394 1395 /* 1396 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1397 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1398 * avoid perturbing sensitive tasks. 1399 */ 1400 static int wq_select_unbound_cpu(int cpu) 1401 { 1402 int new_cpu; 1403 1404 if (likely(!wq_debug_force_rr_cpu)) { 1405 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1406 return cpu; 1407 } else { 1408 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1409 } 1410 1411 if (cpumask_empty(wq_unbound_cpumask)) 1412 return cpu; 1413 1414 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1415 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1416 if (unlikely(new_cpu >= nr_cpu_ids)) { 1417 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1418 if (unlikely(new_cpu >= nr_cpu_ids)) 1419 return cpu; 1420 } 1421 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1422 1423 return new_cpu; 1424 } 1425 1426 static void __queue_work(int cpu, struct workqueue_struct *wq, 1427 struct work_struct *work) 1428 { 1429 struct pool_workqueue *pwq; 1430 struct worker_pool *last_pool; 1431 struct list_head *worklist; 1432 unsigned int work_flags; 1433 unsigned int req_cpu = cpu; 1434 1435 /* 1436 * While a work item is PENDING && off queue, a task trying to 1437 * steal the PENDING will busy-loop waiting for it to either get 1438 * queued or lose PENDING. Grabbing PENDING and queueing should 1439 * happen with IRQ disabled. 1440 */ 1441 lockdep_assert_irqs_disabled(); 1442 1443 1444 /* 1445 * For a draining wq, only works from the same workqueue are 1446 * allowed. The __WQ_DESTROYING helps to spot the issue that 1447 * queues a new work item to a wq after destroy_workqueue(wq). 1448 */ 1449 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) && 1450 WARN_ON_ONCE(!is_chained_work(wq)))) 1451 return; 1452 rcu_read_lock(); 1453 retry: 1454 /* pwq which will be used unless @work is executing elsewhere */ 1455 if (wq->flags & WQ_UNBOUND) { 1456 if (req_cpu == WORK_CPU_UNBOUND) 1457 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1458 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1459 } else { 1460 if (req_cpu == WORK_CPU_UNBOUND) 1461 cpu = raw_smp_processor_id(); 1462 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1463 } 1464 1465 /* 1466 * If @work was previously on a different pool, it might still be 1467 * running there, in which case the work needs to be queued on that 1468 * pool to guarantee non-reentrancy. 1469 */ 1470 last_pool = get_work_pool(work); 1471 if (last_pool && last_pool != pwq->pool) { 1472 struct worker *worker; 1473 1474 raw_spin_lock(&last_pool->lock); 1475 1476 worker = find_worker_executing_work(last_pool, work); 1477 1478 if (worker && worker->current_pwq->wq == wq) { 1479 pwq = worker->current_pwq; 1480 } else { 1481 /* meh... not running there, queue here */ 1482 raw_spin_unlock(&last_pool->lock); 1483 raw_spin_lock(&pwq->pool->lock); 1484 } 1485 } else { 1486 raw_spin_lock(&pwq->pool->lock); 1487 } 1488 1489 /* 1490 * pwq is determined and locked. For unbound pools, we could have 1491 * raced with pwq release and it could already be dead. If its 1492 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1493 * without another pwq replacing it in the numa_pwq_tbl or while 1494 * work items are executing on it, so the retrying is guaranteed to 1495 * make forward-progress. 1496 */ 1497 if (unlikely(!pwq->refcnt)) { 1498 if (wq->flags & WQ_UNBOUND) { 1499 raw_spin_unlock(&pwq->pool->lock); 1500 cpu_relax(); 1501 goto retry; 1502 } 1503 /* oops */ 1504 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1505 wq->name, cpu); 1506 } 1507 1508 /* pwq determined, queue */ 1509 trace_workqueue_queue_work(req_cpu, pwq, work); 1510 1511 if (WARN_ON(!list_empty(&work->entry))) 1512 goto out; 1513 1514 pwq->nr_in_flight[pwq->work_color]++; 1515 work_flags = work_color_to_flags(pwq->work_color); 1516 1517 if (likely(pwq->nr_active < pwq->max_active)) { 1518 trace_workqueue_activate_work(work); 1519 pwq->nr_active++; 1520 worklist = &pwq->pool->worklist; 1521 if (list_empty(worklist)) 1522 pwq->pool->watchdog_ts = jiffies; 1523 } else { 1524 work_flags |= WORK_STRUCT_INACTIVE; 1525 worklist = &pwq->inactive_works; 1526 } 1527 1528 debug_work_activate(work); 1529 insert_work(pwq, work, worklist, work_flags); 1530 1531 out: 1532 raw_spin_unlock(&pwq->pool->lock); 1533 rcu_read_unlock(); 1534 } 1535 1536 /** 1537 * queue_work_on - queue work on specific cpu 1538 * @cpu: CPU number to execute work on 1539 * @wq: workqueue to use 1540 * @work: work to queue 1541 * 1542 * We queue the work to a specific CPU, the caller must ensure it 1543 * can't go away. Callers that fail to ensure that the specified 1544 * CPU cannot go away will execute on a randomly chosen CPU. 1545 * 1546 * Return: %false if @work was already on a queue, %true otherwise. 1547 */ 1548 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1549 struct work_struct *work) 1550 { 1551 bool ret = false; 1552 unsigned long flags; 1553 1554 local_irq_save(flags); 1555 1556 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1557 __queue_work(cpu, wq, work); 1558 ret = true; 1559 } 1560 1561 local_irq_restore(flags); 1562 return ret; 1563 } 1564 EXPORT_SYMBOL(queue_work_on); 1565 1566 /** 1567 * workqueue_select_cpu_near - Select a CPU based on NUMA node 1568 * @node: NUMA node ID that we want to select a CPU from 1569 * 1570 * This function will attempt to find a "random" cpu available on a given 1571 * node. If there are no CPUs available on the given node it will return 1572 * WORK_CPU_UNBOUND indicating that we should just schedule to any 1573 * available CPU if we need to schedule this work. 1574 */ 1575 static int workqueue_select_cpu_near(int node) 1576 { 1577 int cpu; 1578 1579 /* No point in doing this if NUMA isn't enabled for workqueues */ 1580 if (!wq_numa_enabled) 1581 return WORK_CPU_UNBOUND; 1582 1583 /* Delay binding to CPU if node is not valid or online */ 1584 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 1585 return WORK_CPU_UNBOUND; 1586 1587 /* Use local node/cpu if we are already there */ 1588 cpu = raw_smp_processor_id(); 1589 if (node == cpu_to_node(cpu)) 1590 return cpu; 1591 1592 /* Use "random" otherwise know as "first" online CPU of node */ 1593 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 1594 1595 /* If CPU is valid return that, otherwise just defer */ 1596 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 1597 } 1598 1599 /** 1600 * queue_work_node - queue work on a "random" cpu for a given NUMA node 1601 * @node: NUMA node that we are targeting the work for 1602 * @wq: workqueue to use 1603 * @work: work to queue 1604 * 1605 * We queue the work to a "random" CPU within a given NUMA node. The basic 1606 * idea here is to provide a way to somehow associate work with a given 1607 * NUMA node. 1608 * 1609 * This function will only make a best effort attempt at getting this onto 1610 * the right NUMA node. If no node is requested or the requested node is 1611 * offline then we just fall back to standard queue_work behavior. 1612 * 1613 * Currently the "random" CPU ends up being the first available CPU in the 1614 * intersection of cpu_online_mask and the cpumask of the node, unless we 1615 * are running on the node. In that case we just use the current CPU. 1616 * 1617 * Return: %false if @work was already on a queue, %true otherwise. 1618 */ 1619 bool queue_work_node(int node, struct workqueue_struct *wq, 1620 struct work_struct *work) 1621 { 1622 unsigned long flags; 1623 bool ret = false; 1624 1625 /* 1626 * This current implementation is specific to unbound workqueues. 1627 * Specifically we only return the first available CPU for a given 1628 * node instead of cycling through individual CPUs within the node. 1629 * 1630 * If this is used with a per-cpu workqueue then the logic in 1631 * workqueue_select_cpu_near would need to be updated to allow for 1632 * some round robin type logic. 1633 */ 1634 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 1635 1636 local_irq_save(flags); 1637 1638 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1639 int cpu = workqueue_select_cpu_near(node); 1640 1641 __queue_work(cpu, wq, work); 1642 ret = true; 1643 } 1644 1645 local_irq_restore(flags); 1646 return ret; 1647 } 1648 EXPORT_SYMBOL_GPL(queue_work_node); 1649 1650 void delayed_work_timer_fn(struct timer_list *t) 1651 { 1652 struct delayed_work *dwork = from_timer(dwork, t, timer); 1653 1654 /* should have been called from irqsafe timer with irq already off */ 1655 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1656 } 1657 EXPORT_SYMBOL(delayed_work_timer_fn); 1658 1659 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1660 struct delayed_work *dwork, unsigned long delay) 1661 { 1662 struct timer_list *timer = &dwork->timer; 1663 struct work_struct *work = &dwork->work; 1664 1665 WARN_ON_ONCE(!wq); 1666 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 1667 WARN_ON_ONCE(timer_pending(timer)); 1668 WARN_ON_ONCE(!list_empty(&work->entry)); 1669 1670 /* 1671 * If @delay is 0, queue @dwork->work immediately. This is for 1672 * both optimization and correctness. The earliest @timer can 1673 * expire is on the closest next tick and delayed_work users depend 1674 * on that there's no such delay when @delay is 0. 1675 */ 1676 if (!delay) { 1677 __queue_work(cpu, wq, &dwork->work); 1678 return; 1679 } 1680 1681 dwork->wq = wq; 1682 dwork->cpu = cpu; 1683 timer->expires = jiffies + delay; 1684 1685 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1686 add_timer_on(timer, cpu); 1687 else 1688 add_timer(timer); 1689 } 1690 1691 /** 1692 * queue_delayed_work_on - queue work on specific CPU after delay 1693 * @cpu: CPU number to execute work on 1694 * @wq: workqueue to use 1695 * @dwork: work to queue 1696 * @delay: number of jiffies to wait before queueing 1697 * 1698 * Return: %false if @work was already on a queue, %true otherwise. If 1699 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1700 * execution. 1701 */ 1702 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1703 struct delayed_work *dwork, unsigned long delay) 1704 { 1705 struct work_struct *work = &dwork->work; 1706 bool ret = false; 1707 unsigned long flags; 1708 1709 /* read the comment in __queue_work() */ 1710 local_irq_save(flags); 1711 1712 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1713 __queue_delayed_work(cpu, wq, dwork, delay); 1714 ret = true; 1715 } 1716 1717 local_irq_restore(flags); 1718 return ret; 1719 } 1720 EXPORT_SYMBOL(queue_delayed_work_on); 1721 1722 /** 1723 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1724 * @cpu: CPU number to execute work on 1725 * @wq: workqueue to use 1726 * @dwork: work to queue 1727 * @delay: number of jiffies to wait before queueing 1728 * 1729 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1730 * modify @dwork's timer so that it expires after @delay. If @delay is 1731 * zero, @work is guaranteed to be scheduled immediately regardless of its 1732 * current state. 1733 * 1734 * Return: %false if @dwork was idle and queued, %true if @dwork was 1735 * pending and its timer was modified. 1736 * 1737 * This function is safe to call from any context including IRQ handler. 1738 * See try_to_grab_pending() for details. 1739 */ 1740 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1741 struct delayed_work *dwork, unsigned long delay) 1742 { 1743 unsigned long flags; 1744 int ret; 1745 1746 do { 1747 ret = try_to_grab_pending(&dwork->work, true, &flags); 1748 } while (unlikely(ret == -EAGAIN)); 1749 1750 if (likely(ret >= 0)) { 1751 __queue_delayed_work(cpu, wq, dwork, delay); 1752 local_irq_restore(flags); 1753 } 1754 1755 /* -ENOENT from try_to_grab_pending() becomes %true */ 1756 return ret; 1757 } 1758 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1759 1760 static void rcu_work_rcufn(struct rcu_head *rcu) 1761 { 1762 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 1763 1764 /* read the comment in __queue_work() */ 1765 local_irq_disable(); 1766 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 1767 local_irq_enable(); 1768 } 1769 1770 /** 1771 * queue_rcu_work - queue work after a RCU grace period 1772 * @wq: workqueue to use 1773 * @rwork: work to queue 1774 * 1775 * Return: %false if @rwork was already pending, %true otherwise. Note 1776 * that a full RCU grace period is guaranteed only after a %true return. 1777 * While @rwork is guaranteed to be executed after a %false return, the 1778 * execution may happen before a full RCU grace period has passed. 1779 */ 1780 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 1781 { 1782 struct work_struct *work = &rwork->work; 1783 1784 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1785 rwork->wq = wq; 1786 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn); 1787 return true; 1788 } 1789 1790 return false; 1791 } 1792 EXPORT_SYMBOL(queue_rcu_work); 1793 1794 /** 1795 * worker_enter_idle - enter idle state 1796 * @worker: worker which is entering idle state 1797 * 1798 * @worker is entering idle state. Update stats and idle timer if 1799 * necessary. 1800 * 1801 * LOCKING: 1802 * raw_spin_lock_irq(pool->lock). 1803 */ 1804 static void worker_enter_idle(struct worker *worker) 1805 { 1806 struct worker_pool *pool = worker->pool; 1807 1808 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1809 WARN_ON_ONCE(!list_empty(&worker->entry) && 1810 (worker->hentry.next || worker->hentry.pprev))) 1811 return; 1812 1813 /* can't use worker_set_flags(), also called from create_worker() */ 1814 worker->flags |= WORKER_IDLE; 1815 pool->nr_idle++; 1816 worker->last_active = jiffies; 1817 1818 /* idle_list is LIFO */ 1819 list_add(&worker->entry, &pool->idle_list); 1820 1821 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1822 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1823 1824 /* Sanity check nr_running. */ 1825 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running); 1826 } 1827 1828 /** 1829 * worker_leave_idle - leave idle state 1830 * @worker: worker which is leaving idle state 1831 * 1832 * @worker is leaving idle state. Update stats. 1833 * 1834 * LOCKING: 1835 * raw_spin_lock_irq(pool->lock). 1836 */ 1837 static void worker_leave_idle(struct worker *worker) 1838 { 1839 struct worker_pool *pool = worker->pool; 1840 1841 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1842 return; 1843 worker_clr_flags(worker, WORKER_IDLE); 1844 pool->nr_idle--; 1845 list_del_init(&worker->entry); 1846 } 1847 1848 static struct worker *alloc_worker(int node) 1849 { 1850 struct worker *worker; 1851 1852 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1853 if (worker) { 1854 INIT_LIST_HEAD(&worker->entry); 1855 INIT_LIST_HEAD(&worker->scheduled); 1856 INIT_LIST_HEAD(&worker->node); 1857 /* on creation a worker is in !idle && prep state */ 1858 worker->flags = WORKER_PREP; 1859 } 1860 return worker; 1861 } 1862 1863 /** 1864 * worker_attach_to_pool() - attach a worker to a pool 1865 * @worker: worker to be attached 1866 * @pool: the target pool 1867 * 1868 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1869 * cpu-binding of @worker are kept coordinated with the pool across 1870 * cpu-[un]hotplugs. 1871 */ 1872 static void worker_attach_to_pool(struct worker *worker, 1873 struct worker_pool *pool) 1874 { 1875 mutex_lock(&wq_pool_attach_mutex); 1876 1877 /* 1878 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains 1879 * stable across this function. See the comments above the flag 1880 * definition for details. 1881 */ 1882 if (pool->flags & POOL_DISASSOCIATED) 1883 worker->flags |= WORKER_UNBOUND; 1884 else 1885 kthread_set_per_cpu(worker->task, pool->cpu); 1886 1887 if (worker->rescue_wq) 1888 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1889 1890 list_add_tail(&worker->node, &pool->workers); 1891 worker->pool = pool; 1892 1893 mutex_unlock(&wq_pool_attach_mutex); 1894 } 1895 1896 /** 1897 * worker_detach_from_pool() - detach a worker from its pool 1898 * @worker: worker which is attached to its pool 1899 * 1900 * Undo the attaching which had been done in worker_attach_to_pool(). The 1901 * caller worker shouldn't access to the pool after detached except it has 1902 * other reference to the pool. 1903 */ 1904 static void worker_detach_from_pool(struct worker *worker) 1905 { 1906 struct worker_pool *pool = worker->pool; 1907 struct completion *detach_completion = NULL; 1908 1909 mutex_lock(&wq_pool_attach_mutex); 1910 1911 kthread_set_per_cpu(worker->task, -1); 1912 list_del(&worker->node); 1913 worker->pool = NULL; 1914 1915 if (list_empty(&pool->workers) && list_empty(&pool->dying_workers)) 1916 detach_completion = pool->detach_completion; 1917 mutex_unlock(&wq_pool_attach_mutex); 1918 1919 /* clear leftover flags without pool->lock after it is detached */ 1920 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1921 1922 if (detach_completion) 1923 complete(detach_completion); 1924 } 1925 1926 /** 1927 * create_worker - create a new workqueue worker 1928 * @pool: pool the new worker will belong to 1929 * 1930 * Create and start a new worker which is attached to @pool. 1931 * 1932 * CONTEXT: 1933 * Might sleep. Does GFP_KERNEL allocations. 1934 * 1935 * Return: 1936 * Pointer to the newly created worker. 1937 */ 1938 static struct worker *create_worker(struct worker_pool *pool) 1939 { 1940 struct worker *worker; 1941 int id; 1942 char id_buf[16]; 1943 1944 /* ID is needed to determine kthread name */ 1945 id = ida_alloc(&pool->worker_ida, GFP_KERNEL); 1946 if (id < 0) { 1947 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n", 1948 ERR_PTR(id)); 1949 return NULL; 1950 } 1951 1952 worker = alloc_worker(pool->node); 1953 if (!worker) { 1954 pr_err_once("workqueue: Failed to allocate a worker\n"); 1955 goto fail; 1956 } 1957 1958 worker->id = id; 1959 1960 if (pool->cpu >= 0) 1961 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1962 pool->attrs->nice < 0 ? "H" : ""); 1963 else 1964 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1965 1966 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1967 "kworker/%s", id_buf); 1968 if (IS_ERR(worker->task)) { 1969 if (PTR_ERR(worker->task) == -EINTR) { 1970 pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n", 1971 id_buf); 1972 } else { 1973 pr_err_once("workqueue: Failed to create a worker thread: %pe", 1974 worker->task); 1975 } 1976 goto fail; 1977 } 1978 1979 set_user_nice(worker->task, pool->attrs->nice); 1980 kthread_bind_mask(worker->task, pool->attrs->cpumask); 1981 1982 /* successful, attach the worker to the pool */ 1983 worker_attach_to_pool(worker, pool); 1984 1985 /* start the newly created worker */ 1986 raw_spin_lock_irq(&pool->lock); 1987 worker->pool->nr_workers++; 1988 worker_enter_idle(worker); 1989 wake_up_process(worker->task); 1990 raw_spin_unlock_irq(&pool->lock); 1991 1992 return worker; 1993 1994 fail: 1995 ida_free(&pool->worker_ida, id); 1996 kfree(worker); 1997 return NULL; 1998 } 1999 2000 static void unbind_worker(struct worker *worker) 2001 { 2002 lockdep_assert_held(&wq_pool_attach_mutex); 2003 2004 kthread_set_per_cpu(worker->task, -1); 2005 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask)) 2006 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0); 2007 else 2008 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0); 2009 } 2010 2011 static void wake_dying_workers(struct list_head *cull_list) 2012 { 2013 struct worker *worker, *tmp; 2014 2015 list_for_each_entry_safe(worker, tmp, cull_list, entry) { 2016 list_del_init(&worker->entry); 2017 unbind_worker(worker); 2018 /* 2019 * If the worker was somehow already running, then it had to be 2020 * in pool->idle_list when set_worker_dying() happened or we 2021 * wouldn't have gotten here. 2022 * 2023 * Thus, the worker must either have observed the WORKER_DIE 2024 * flag, or have set its state to TASK_IDLE. Either way, the 2025 * below will be observed by the worker and is safe to do 2026 * outside of pool->lock. 2027 */ 2028 wake_up_process(worker->task); 2029 } 2030 } 2031 2032 /** 2033 * set_worker_dying - Tag a worker for destruction 2034 * @worker: worker to be destroyed 2035 * @list: transfer worker away from its pool->idle_list and into list 2036 * 2037 * Tag @worker for destruction and adjust @pool stats accordingly. The worker 2038 * should be idle. 2039 * 2040 * CONTEXT: 2041 * raw_spin_lock_irq(pool->lock). 2042 */ 2043 static void set_worker_dying(struct worker *worker, struct list_head *list) 2044 { 2045 struct worker_pool *pool = worker->pool; 2046 2047 lockdep_assert_held(&pool->lock); 2048 lockdep_assert_held(&wq_pool_attach_mutex); 2049 2050 /* sanity check frenzy */ 2051 if (WARN_ON(worker->current_work) || 2052 WARN_ON(!list_empty(&worker->scheduled)) || 2053 WARN_ON(!(worker->flags & WORKER_IDLE))) 2054 return; 2055 2056 pool->nr_workers--; 2057 pool->nr_idle--; 2058 2059 worker->flags |= WORKER_DIE; 2060 2061 list_move(&worker->entry, list); 2062 list_move(&worker->node, &pool->dying_workers); 2063 } 2064 2065 /** 2066 * idle_worker_timeout - check if some idle workers can now be deleted. 2067 * @t: The pool's idle_timer that just expired 2068 * 2069 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in 2070 * worker_leave_idle(), as a worker flicking between idle and active while its 2071 * pool is at the too_many_workers() tipping point would cause too much timer 2072 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let 2073 * it expire and re-evaluate things from there. 2074 */ 2075 static void idle_worker_timeout(struct timer_list *t) 2076 { 2077 struct worker_pool *pool = from_timer(pool, t, idle_timer); 2078 bool do_cull = false; 2079 2080 if (work_pending(&pool->idle_cull_work)) 2081 return; 2082 2083 raw_spin_lock_irq(&pool->lock); 2084 2085 if (too_many_workers(pool)) { 2086 struct worker *worker; 2087 unsigned long expires; 2088 2089 /* idle_list is kept in LIFO order, check the last one */ 2090 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2091 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2092 do_cull = !time_before(jiffies, expires); 2093 2094 if (!do_cull) 2095 mod_timer(&pool->idle_timer, expires); 2096 } 2097 raw_spin_unlock_irq(&pool->lock); 2098 2099 if (do_cull) 2100 queue_work(system_unbound_wq, &pool->idle_cull_work); 2101 } 2102 2103 /** 2104 * idle_cull_fn - cull workers that have been idle for too long. 2105 * @work: the pool's work for handling these idle workers 2106 * 2107 * This goes through a pool's idle workers and gets rid of those that have been 2108 * idle for at least IDLE_WORKER_TIMEOUT seconds. 2109 * 2110 * We don't want to disturb isolated CPUs because of a pcpu kworker being 2111 * culled, so this also resets worker affinity. This requires a sleepable 2112 * context, hence the split between timer callback and work item. 2113 */ 2114 static void idle_cull_fn(struct work_struct *work) 2115 { 2116 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work); 2117 struct list_head cull_list; 2118 2119 INIT_LIST_HEAD(&cull_list); 2120 /* 2121 * Grabbing wq_pool_attach_mutex here ensures an already-running worker 2122 * cannot proceed beyong worker_detach_from_pool() in its self-destruct 2123 * path. This is required as a previously-preempted worker could run after 2124 * set_worker_dying() has happened but before wake_dying_workers() did. 2125 */ 2126 mutex_lock(&wq_pool_attach_mutex); 2127 raw_spin_lock_irq(&pool->lock); 2128 2129 while (too_many_workers(pool)) { 2130 struct worker *worker; 2131 unsigned long expires; 2132 2133 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2134 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2135 2136 if (time_before(jiffies, expires)) { 2137 mod_timer(&pool->idle_timer, expires); 2138 break; 2139 } 2140 2141 set_worker_dying(worker, &cull_list); 2142 } 2143 2144 raw_spin_unlock_irq(&pool->lock); 2145 wake_dying_workers(&cull_list); 2146 mutex_unlock(&wq_pool_attach_mutex); 2147 } 2148 2149 static void send_mayday(struct work_struct *work) 2150 { 2151 struct pool_workqueue *pwq = get_work_pwq(work); 2152 struct workqueue_struct *wq = pwq->wq; 2153 2154 lockdep_assert_held(&wq_mayday_lock); 2155 2156 if (!wq->rescuer) 2157 return; 2158 2159 /* mayday mayday mayday */ 2160 if (list_empty(&pwq->mayday_node)) { 2161 /* 2162 * If @pwq is for an unbound wq, its base ref may be put at 2163 * any time due to an attribute change. Pin @pwq until the 2164 * rescuer is done with it. 2165 */ 2166 get_pwq(pwq); 2167 list_add_tail(&pwq->mayday_node, &wq->maydays); 2168 wake_up_process(wq->rescuer->task); 2169 } 2170 } 2171 2172 static void pool_mayday_timeout(struct timer_list *t) 2173 { 2174 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 2175 struct work_struct *work; 2176 2177 raw_spin_lock_irq(&pool->lock); 2178 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */ 2179 2180 if (need_to_create_worker(pool)) { 2181 /* 2182 * We've been trying to create a new worker but 2183 * haven't been successful. We might be hitting an 2184 * allocation deadlock. Send distress signals to 2185 * rescuers. 2186 */ 2187 list_for_each_entry(work, &pool->worklist, entry) 2188 send_mayday(work); 2189 } 2190 2191 raw_spin_unlock(&wq_mayday_lock); 2192 raw_spin_unlock_irq(&pool->lock); 2193 2194 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 2195 } 2196 2197 /** 2198 * maybe_create_worker - create a new worker if necessary 2199 * @pool: pool to create a new worker for 2200 * 2201 * Create a new worker for @pool if necessary. @pool is guaranteed to 2202 * have at least one idle worker on return from this function. If 2203 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 2204 * sent to all rescuers with works scheduled on @pool to resolve 2205 * possible allocation deadlock. 2206 * 2207 * On return, need_to_create_worker() is guaranteed to be %false and 2208 * may_start_working() %true. 2209 * 2210 * LOCKING: 2211 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2212 * multiple times. Does GFP_KERNEL allocations. Called only from 2213 * manager. 2214 */ 2215 static void maybe_create_worker(struct worker_pool *pool) 2216 __releases(&pool->lock) 2217 __acquires(&pool->lock) 2218 { 2219 restart: 2220 raw_spin_unlock_irq(&pool->lock); 2221 2222 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 2223 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 2224 2225 while (true) { 2226 if (create_worker(pool) || !need_to_create_worker(pool)) 2227 break; 2228 2229 schedule_timeout_interruptible(CREATE_COOLDOWN); 2230 2231 if (!need_to_create_worker(pool)) 2232 break; 2233 } 2234 2235 del_timer_sync(&pool->mayday_timer); 2236 raw_spin_lock_irq(&pool->lock); 2237 /* 2238 * This is necessary even after a new worker was just successfully 2239 * created as @pool->lock was dropped and the new worker might have 2240 * already become busy. 2241 */ 2242 if (need_to_create_worker(pool)) 2243 goto restart; 2244 } 2245 2246 /** 2247 * manage_workers - manage worker pool 2248 * @worker: self 2249 * 2250 * Assume the manager role and manage the worker pool @worker belongs 2251 * to. At any given time, there can be only zero or one manager per 2252 * pool. The exclusion is handled automatically by this function. 2253 * 2254 * The caller can safely start processing works on false return. On 2255 * true return, it's guaranteed that need_to_create_worker() is false 2256 * and may_start_working() is true. 2257 * 2258 * CONTEXT: 2259 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2260 * multiple times. Does GFP_KERNEL allocations. 2261 * 2262 * Return: 2263 * %false if the pool doesn't need management and the caller can safely 2264 * start processing works, %true if management function was performed and 2265 * the conditions that the caller verified before calling the function may 2266 * no longer be true. 2267 */ 2268 static bool manage_workers(struct worker *worker) 2269 { 2270 struct worker_pool *pool = worker->pool; 2271 2272 if (pool->flags & POOL_MANAGER_ACTIVE) 2273 return false; 2274 2275 pool->flags |= POOL_MANAGER_ACTIVE; 2276 pool->manager = worker; 2277 2278 maybe_create_worker(pool); 2279 2280 pool->manager = NULL; 2281 pool->flags &= ~POOL_MANAGER_ACTIVE; 2282 rcuwait_wake_up(&manager_wait); 2283 return true; 2284 } 2285 2286 /** 2287 * process_one_work - process single work 2288 * @worker: self 2289 * @work: work to process 2290 * 2291 * Process @work. This function contains all the logics necessary to 2292 * process a single work including synchronization against and 2293 * interaction with other workers on the same cpu, queueing and 2294 * flushing. As long as context requirement is met, any worker can 2295 * call this function to process a work. 2296 * 2297 * CONTEXT: 2298 * raw_spin_lock_irq(pool->lock) which is released and regrabbed. 2299 */ 2300 static void process_one_work(struct worker *worker, struct work_struct *work) 2301 __releases(&pool->lock) 2302 __acquires(&pool->lock) 2303 { 2304 struct pool_workqueue *pwq = get_work_pwq(work); 2305 struct worker_pool *pool = worker->pool; 2306 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2307 unsigned long work_data; 2308 struct worker *collision; 2309 #ifdef CONFIG_LOCKDEP 2310 /* 2311 * It is permissible to free the struct work_struct from 2312 * inside the function that is called from it, this we need to 2313 * take into account for lockdep too. To avoid bogus "held 2314 * lock freed" warnings as well as problems when looking into 2315 * work->lockdep_map, make a copy and use that here. 2316 */ 2317 struct lockdep_map lockdep_map; 2318 2319 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2320 #endif 2321 /* ensure we're on the correct CPU */ 2322 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2323 raw_smp_processor_id() != pool->cpu); 2324 2325 /* 2326 * A single work shouldn't be executed concurrently by 2327 * multiple workers on a single cpu. Check whether anyone is 2328 * already processing the work. If so, defer the work to the 2329 * currently executing one. 2330 */ 2331 collision = find_worker_executing_work(pool, work); 2332 if (unlikely(collision)) { 2333 move_linked_works(work, &collision->scheduled, NULL); 2334 return; 2335 } 2336 2337 /* claim and dequeue */ 2338 debug_work_deactivate(work); 2339 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2340 worker->current_work = work; 2341 worker->current_func = work->func; 2342 worker->current_pwq = pwq; 2343 work_data = *work_data_bits(work); 2344 worker->current_color = get_work_color(work_data); 2345 2346 /* 2347 * Record wq name for cmdline and debug reporting, may get 2348 * overridden through set_worker_desc(). 2349 */ 2350 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 2351 2352 list_del_init(&work->entry); 2353 2354 /* 2355 * CPU intensive works don't participate in concurrency management. 2356 * They're the scheduler's responsibility. This takes @worker out 2357 * of concurrency management and the next code block will chain 2358 * execution of the pending work items. 2359 */ 2360 if (unlikely(cpu_intensive)) 2361 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2362 2363 /* 2364 * Wake up another worker if necessary. The condition is always 2365 * false for normal per-cpu workers since nr_running would always 2366 * be >= 1 at this point. This is used to chain execution of the 2367 * pending work items for WORKER_NOT_RUNNING workers such as the 2368 * UNBOUND and CPU_INTENSIVE ones. 2369 */ 2370 if (need_more_worker(pool)) 2371 wake_up_worker(pool); 2372 2373 /* 2374 * Record the last pool and clear PENDING which should be the last 2375 * update to @work. Also, do this inside @pool->lock so that 2376 * PENDING and queued state changes happen together while IRQ is 2377 * disabled. 2378 */ 2379 set_work_pool_and_clear_pending(work, pool->id); 2380 2381 raw_spin_unlock_irq(&pool->lock); 2382 2383 lock_map_acquire(&pwq->wq->lockdep_map); 2384 lock_map_acquire(&lockdep_map); 2385 /* 2386 * Strictly speaking we should mark the invariant state without holding 2387 * any locks, that is, before these two lock_map_acquire()'s. 2388 * 2389 * However, that would result in: 2390 * 2391 * A(W1) 2392 * WFC(C) 2393 * A(W1) 2394 * C(C) 2395 * 2396 * Which would create W1->C->W1 dependencies, even though there is no 2397 * actual deadlock possible. There are two solutions, using a 2398 * read-recursive acquire on the work(queue) 'locks', but this will then 2399 * hit the lockdep limitation on recursive locks, or simply discard 2400 * these locks. 2401 * 2402 * AFAICT there is no possible deadlock scenario between the 2403 * flush_work() and complete() primitives (except for single-threaded 2404 * workqueues), so hiding them isn't a problem. 2405 */ 2406 lockdep_invariant_state(true); 2407 trace_workqueue_execute_start(work); 2408 worker->current_func(work); 2409 /* 2410 * While we must be careful to not use "work" after this, the trace 2411 * point will only record its address. 2412 */ 2413 trace_workqueue_execute_end(work, worker->current_func); 2414 lock_map_release(&lockdep_map); 2415 lock_map_release(&pwq->wq->lockdep_map); 2416 2417 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2418 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2419 " last function: %ps\n", 2420 current->comm, preempt_count(), task_pid_nr(current), 2421 worker->current_func); 2422 debug_show_held_locks(current); 2423 dump_stack(); 2424 } 2425 2426 /* 2427 * The following prevents a kworker from hogging CPU on !PREEMPTION 2428 * kernels, where a requeueing work item waiting for something to 2429 * happen could deadlock with stop_machine as such work item could 2430 * indefinitely requeue itself while all other CPUs are trapped in 2431 * stop_machine. At the same time, report a quiescent RCU state so 2432 * the same condition doesn't freeze RCU. 2433 */ 2434 cond_resched(); 2435 2436 raw_spin_lock_irq(&pool->lock); 2437 2438 /* clear cpu intensive status */ 2439 if (unlikely(cpu_intensive)) 2440 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2441 2442 /* tag the worker for identification in schedule() */ 2443 worker->last_func = worker->current_func; 2444 2445 /* we're done with it, release */ 2446 hash_del(&worker->hentry); 2447 worker->current_work = NULL; 2448 worker->current_func = NULL; 2449 worker->current_pwq = NULL; 2450 worker->current_color = INT_MAX; 2451 pwq_dec_nr_in_flight(pwq, work_data); 2452 } 2453 2454 /** 2455 * process_scheduled_works - process scheduled works 2456 * @worker: self 2457 * 2458 * Process all scheduled works. Please note that the scheduled list 2459 * may change while processing a work, so this function repeatedly 2460 * fetches a work from the top and executes it. 2461 * 2462 * CONTEXT: 2463 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2464 * multiple times. 2465 */ 2466 static void process_scheduled_works(struct worker *worker) 2467 { 2468 while (!list_empty(&worker->scheduled)) { 2469 struct work_struct *work = list_first_entry(&worker->scheduled, 2470 struct work_struct, entry); 2471 process_one_work(worker, work); 2472 } 2473 } 2474 2475 static void set_pf_worker(bool val) 2476 { 2477 mutex_lock(&wq_pool_attach_mutex); 2478 if (val) 2479 current->flags |= PF_WQ_WORKER; 2480 else 2481 current->flags &= ~PF_WQ_WORKER; 2482 mutex_unlock(&wq_pool_attach_mutex); 2483 } 2484 2485 /** 2486 * worker_thread - the worker thread function 2487 * @__worker: self 2488 * 2489 * The worker thread function. All workers belong to a worker_pool - 2490 * either a per-cpu one or dynamic unbound one. These workers process all 2491 * work items regardless of their specific target workqueue. The only 2492 * exception is work items which belong to workqueues with a rescuer which 2493 * will be explained in rescuer_thread(). 2494 * 2495 * Return: 0 2496 */ 2497 static int worker_thread(void *__worker) 2498 { 2499 struct worker *worker = __worker; 2500 struct worker_pool *pool = worker->pool; 2501 2502 /* tell the scheduler that this is a workqueue worker */ 2503 set_pf_worker(true); 2504 woke_up: 2505 raw_spin_lock_irq(&pool->lock); 2506 2507 /* am I supposed to die? */ 2508 if (unlikely(worker->flags & WORKER_DIE)) { 2509 raw_spin_unlock_irq(&pool->lock); 2510 set_pf_worker(false); 2511 2512 set_task_comm(worker->task, "kworker/dying"); 2513 ida_free(&pool->worker_ida, worker->id); 2514 worker_detach_from_pool(worker); 2515 WARN_ON_ONCE(!list_empty(&worker->entry)); 2516 kfree(worker); 2517 return 0; 2518 } 2519 2520 worker_leave_idle(worker); 2521 recheck: 2522 /* no more worker necessary? */ 2523 if (!need_more_worker(pool)) 2524 goto sleep; 2525 2526 /* do we need to manage? */ 2527 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2528 goto recheck; 2529 2530 /* 2531 * ->scheduled list can only be filled while a worker is 2532 * preparing to process a work or actually processing it. 2533 * Make sure nobody diddled with it while I was sleeping. 2534 */ 2535 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2536 2537 /* 2538 * Finish PREP stage. We're guaranteed to have at least one idle 2539 * worker or that someone else has already assumed the manager 2540 * role. This is where @worker starts participating in concurrency 2541 * management if applicable and concurrency management is restored 2542 * after being rebound. See rebind_workers() for details. 2543 */ 2544 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2545 2546 do { 2547 struct work_struct *work = 2548 list_first_entry(&pool->worklist, 2549 struct work_struct, entry); 2550 2551 pool->watchdog_ts = jiffies; 2552 2553 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2554 /* optimization path, not strictly necessary */ 2555 process_one_work(worker, work); 2556 if (unlikely(!list_empty(&worker->scheduled))) 2557 process_scheduled_works(worker); 2558 } else { 2559 move_linked_works(work, &worker->scheduled, NULL); 2560 process_scheduled_works(worker); 2561 } 2562 } while (keep_working(pool)); 2563 2564 worker_set_flags(worker, WORKER_PREP); 2565 sleep: 2566 /* 2567 * pool->lock is held and there's no work to process and no need to 2568 * manage, sleep. Workers are woken up only while holding 2569 * pool->lock or from local cpu, so setting the current state 2570 * before releasing pool->lock is enough to prevent losing any 2571 * event. 2572 */ 2573 worker_enter_idle(worker); 2574 __set_current_state(TASK_IDLE); 2575 raw_spin_unlock_irq(&pool->lock); 2576 schedule(); 2577 goto woke_up; 2578 } 2579 2580 /** 2581 * rescuer_thread - the rescuer thread function 2582 * @__rescuer: self 2583 * 2584 * Workqueue rescuer thread function. There's one rescuer for each 2585 * workqueue which has WQ_MEM_RECLAIM set. 2586 * 2587 * Regular work processing on a pool may block trying to create a new 2588 * worker which uses GFP_KERNEL allocation which has slight chance of 2589 * developing into deadlock if some works currently on the same queue 2590 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2591 * the problem rescuer solves. 2592 * 2593 * When such condition is possible, the pool summons rescuers of all 2594 * workqueues which have works queued on the pool and let them process 2595 * those works so that forward progress can be guaranteed. 2596 * 2597 * This should happen rarely. 2598 * 2599 * Return: 0 2600 */ 2601 static int rescuer_thread(void *__rescuer) 2602 { 2603 struct worker *rescuer = __rescuer; 2604 struct workqueue_struct *wq = rescuer->rescue_wq; 2605 struct list_head *scheduled = &rescuer->scheduled; 2606 bool should_stop; 2607 2608 set_user_nice(current, RESCUER_NICE_LEVEL); 2609 2610 /* 2611 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2612 * doesn't participate in concurrency management. 2613 */ 2614 set_pf_worker(true); 2615 repeat: 2616 set_current_state(TASK_IDLE); 2617 2618 /* 2619 * By the time the rescuer is requested to stop, the workqueue 2620 * shouldn't have any work pending, but @wq->maydays may still have 2621 * pwq(s) queued. This can happen by non-rescuer workers consuming 2622 * all the work items before the rescuer got to them. Go through 2623 * @wq->maydays processing before acting on should_stop so that the 2624 * list is always empty on exit. 2625 */ 2626 should_stop = kthread_should_stop(); 2627 2628 /* see whether any pwq is asking for help */ 2629 raw_spin_lock_irq(&wq_mayday_lock); 2630 2631 while (!list_empty(&wq->maydays)) { 2632 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2633 struct pool_workqueue, mayday_node); 2634 struct worker_pool *pool = pwq->pool; 2635 struct work_struct *work, *n; 2636 bool first = true; 2637 2638 __set_current_state(TASK_RUNNING); 2639 list_del_init(&pwq->mayday_node); 2640 2641 raw_spin_unlock_irq(&wq_mayday_lock); 2642 2643 worker_attach_to_pool(rescuer, pool); 2644 2645 raw_spin_lock_irq(&pool->lock); 2646 2647 /* 2648 * Slurp in all works issued via this workqueue and 2649 * process'em. 2650 */ 2651 WARN_ON_ONCE(!list_empty(scheduled)); 2652 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2653 if (get_work_pwq(work) == pwq) { 2654 if (first) 2655 pool->watchdog_ts = jiffies; 2656 move_linked_works(work, scheduled, &n); 2657 } 2658 first = false; 2659 } 2660 2661 if (!list_empty(scheduled)) { 2662 process_scheduled_works(rescuer); 2663 2664 /* 2665 * The above execution of rescued work items could 2666 * have created more to rescue through 2667 * pwq_activate_first_inactive() or chained 2668 * queueing. Let's put @pwq back on mayday list so 2669 * that such back-to-back work items, which may be 2670 * being used to relieve memory pressure, don't 2671 * incur MAYDAY_INTERVAL delay inbetween. 2672 */ 2673 if (pwq->nr_active && need_to_create_worker(pool)) { 2674 raw_spin_lock(&wq_mayday_lock); 2675 /* 2676 * Queue iff we aren't racing destruction 2677 * and somebody else hasn't queued it already. 2678 */ 2679 if (wq->rescuer && list_empty(&pwq->mayday_node)) { 2680 get_pwq(pwq); 2681 list_add_tail(&pwq->mayday_node, &wq->maydays); 2682 } 2683 raw_spin_unlock(&wq_mayday_lock); 2684 } 2685 } 2686 2687 /* 2688 * Put the reference grabbed by send_mayday(). @pool won't 2689 * go away while we're still attached to it. 2690 */ 2691 put_pwq(pwq); 2692 2693 /* 2694 * Leave this pool. If need_more_worker() is %true, notify a 2695 * regular worker; otherwise, we end up with 0 concurrency 2696 * and stalling the execution. 2697 */ 2698 if (need_more_worker(pool)) 2699 wake_up_worker(pool); 2700 2701 raw_spin_unlock_irq(&pool->lock); 2702 2703 worker_detach_from_pool(rescuer); 2704 2705 raw_spin_lock_irq(&wq_mayday_lock); 2706 } 2707 2708 raw_spin_unlock_irq(&wq_mayday_lock); 2709 2710 if (should_stop) { 2711 __set_current_state(TASK_RUNNING); 2712 set_pf_worker(false); 2713 return 0; 2714 } 2715 2716 /* rescuers should never participate in concurrency management */ 2717 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2718 schedule(); 2719 goto repeat; 2720 } 2721 2722 /** 2723 * check_flush_dependency - check for flush dependency sanity 2724 * @target_wq: workqueue being flushed 2725 * @target_work: work item being flushed (NULL for workqueue flushes) 2726 * 2727 * %current is trying to flush the whole @target_wq or @target_work on it. 2728 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2729 * reclaiming memory or running on a workqueue which doesn't have 2730 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2731 * a deadlock. 2732 */ 2733 static void check_flush_dependency(struct workqueue_struct *target_wq, 2734 struct work_struct *target_work) 2735 { 2736 work_func_t target_func = target_work ? target_work->func : NULL; 2737 struct worker *worker; 2738 2739 if (target_wq->flags & WQ_MEM_RECLAIM) 2740 return; 2741 2742 worker = current_wq_worker(); 2743 2744 WARN_ONCE(current->flags & PF_MEMALLOC, 2745 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 2746 current->pid, current->comm, target_wq->name, target_func); 2747 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2748 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2749 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 2750 worker->current_pwq->wq->name, worker->current_func, 2751 target_wq->name, target_func); 2752 } 2753 2754 struct wq_barrier { 2755 struct work_struct work; 2756 struct completion done; 2757 struct task_struct *task; /* purely informational */ 2758 }; 2759 2760 static void wq_barrier_func(struct work_struct *work) 2761 { 2762 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2763 complete(&barr->done); 2764 } 2765 2766 /** 2767 * insert_wq_barrier - insert a barrier work 2768 * @pwq: pwq to insert barrier into 2769 * @barr: wq_barrier to insert 2770 * @target: target work to attach @barr to 2771 * @worker: worker currently executing @target, NULL if @target is not executing 2772 * 2773 * @barr is linked to @target such that @barr is completed only after 2774 * @target finishes execution. Please note that the ordering 2775 * guarantee is observed only with respect to @target and on the local 2776 * cpu. 2777 * 2778 * Currently, a queued barrier can't be canceled. This is because 2779 * try_to_grab_pending() can't determine whether the work to be 2780 * grabbed is at the head of the queue and thus can't clear LINKED 2781 * flag of the previous work while there must be a valid next work 2782 * after a work with LINKED flag set. 2783 * 2784 * Note that when @worker is non-NULL, @target may be modified 2785 * underneath us, so we can't reliably determine pwq from @target. 2786 * 2787 * CONTEXT: 2788 * raw_spin_lock_irq(pool->lock). 2789 */ 2790 static void insert_wq_barrier(struct pool_workqueue *pwq, 2791 struct wq_barrier *barr, 2792 struct work_struct *target, struct worker *worker) 2793 { 2794 unsigned int work_flags = 0; 2795 unsigned int work_color; 2796 struct list_head *head; 2797 2798 /* 2799 * debugobject calls are safe here even with pool->lock locked 2800 * as we know for sure that this will not trigger any of the 2801 * checks and call back into the fixup functions where we 2802 * might deadlock. 2803 */ 2804 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2805 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2806 2807 init_completion_map(&barr->done, &target->lockdep_map); 2808 2809 barr->task = current; 2810 2811 /* The barrier work item does not participate in pwq->nr_active. */ 2812 work_flags |= WORK_STRUCT_INACTIVE; 2813 2814 /* 2815 * If @target is currently being executed, schedule the 2816 * barrier to the worker; otherwise, put it after @target. 2817 */ 2818 if (worker) { 2819 head = worker->scheduled.next; 2820 work_color = worker->current_color; 2821 } else { 2822 unsigned long *bits = work_data_bits(target); 2823 2824 head = target->entry.next; 2825 /* there can already be other linked works, inherit and set */ 2826 work_flags |= *bits & WORK_STRUCT_LINKED; 2827 work_color = get_work_color(*bits); 2828 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2829 } 2830 2831 pwq->nr_in_flight[work_color]++; 2832 work_flags |= work_color_to_flags(work_color); 2833 2834 debug_work_activate(&barr->work); 2835 insert_work(pwq, &barr->work, head, work_flags); 2836 } 2837 2838 /** 2839 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2840 * @wq: workqueue being flushed 2841 * @flush_color: new flush color, < 0 for no-op 2842 * @work_color: new work color, < 0 for no-op 2843 * 2844 * Prepare pwqs for workqueue flushing. 2845 * 2846 * If @flush_color is non-negative, flush_color on all pwqs should be 2847 * -1. If no pwq has in-flight commands at the specified color, all 2848 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2849 * has in flight commands, its pwq->flush_color is set to 2850 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2851 * wakeup logic is armed and %true is returned. 2852 * 2853 * The caller should have initialized @wq->first_flusher prior to 2854 * calling this function with non-negative @flush_color. If 2855 * @flush_color is negative, no flush color update is done and %false 2856 * is returned. 2857 * 2858 * If @work_color is non-negative, all pwqs should have the same 2859 * work_color which is previous to @work_color and all will be 2860 * advanced to @work_color. 2861 * 2862 * CONTEXT: 2863 * mutex_lock(wq->mutex). 2864 * 2865 * Return: 2866 * %true if @flush_color >= 0 and there's something to flush. %false 2867 * otherwise. 2868 */ 2869 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2870 int flush_color, int work_color) 2871 { 2872 bool wait = false; 2873 struct pool_workqueue *pwq; 2874 2875 if (flush_color >= 0) { 2876 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2877 atomic_set(&wq->nr_pwqs_to_flush, 1); 2878 } 2879 2880 for_each_pwq(pwq, wq) { 2881 struct worker_pool *pool = pwq->pool; 2882 2883 raw_spin_lock_irq(&pool->lock); 2884 2885 if (flush_color >= 0) { 2886 WARN_ON_ONCE(pwq->flush_color != -1); 2887 2888 if (pwq->nr_in_flight[flush_color]) { 2889 pwq->flush_color = flush_color; 2890 atomic_inc(&wq->nr_pwqs_to_flush); 2891 wait = true; 2892 } 2893 } 2894 2895 if (work_color >= 0) { 2896 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2897 pwq->work_color = work_color; 2898 } 2899 2900 raw_spin_unlock_irq(&pool->lock); 2901 } 2902 2903 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2904 complete(&wq->first_flusher->done); 2905 2906 return wait; 2907 } 2908 2909 /** 2910 * __flush_workqueue - ensure that any scheduled work has run to completion. 2911 * @wq: workqueue to flush 2912 * 2913 * This function sleeps until all work items which were queued on entry 2914 * have finished execution, but it is not livelocked by new incoming ones. 2915 */ 2916 void __flush_workqueue(struct workqueue_struct *wq) 2917 { 2918 struct wq_flusher this_flusher = { 2919 .list = LIST_HEAD_INIT(this_flusher.list), 2920 .flush_color = -1, 2921 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 2922 }; 2923 int next_color; 2924 2925 if (WARN_ON(!wq_online)) 2926 return; 2927 2928 lock_map_acquire(&wq->lockdep_map); 2929 lock_map_release(&wq->lockdep_map); 2930 2931 mutex_lock(&wq->mutex); 2932 2933 /* 2934 * Start-to-wait phase 2935 */ 2936 next_color = work_next_color(wq->work_color); 2937 2938 if (next_color != wq->flush_color) { 2939 /* 2940 * Color space is not full. The current work_color 2941 * becomes our flush_color and work_color is advanced 2942 * by one. 2943 */ 2944 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2945 this_flusher.flush_color = wq->work_color; 2946 wq->work_color = next_color; 2947 2948 if (!wq->first_flusher) { 2949 /* no flush in progress, become the first flusher */ 2950 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2951 2952 wq->first_flusher = &this_flusher; 2953 2954 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2955 wq->work_color)) { 2956 /* nothing to flush, done */ 2957 wq->flush_color = next_color; 2958 wq->first_flusher = NULL; 2959 goto out_unlock; 2960 } 2961 } else { 2962 /* wait in queue */ 2963 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2964 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2965 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2966 } 2967 } else { 2968 /* 2969 * Oops, color space is full, wait on overflow queue. 2970 * The next flush completion will assign us 2971 * flush_color and transfer to flusher_queue. 2972 */ 2973 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2974 } 2975 2976 check_flush_dependency(wq, NULL); 2977 2978 mutex_unlock(&wq->mutex); 2979 2980 wait_for_completion(&this_flusher.done); 2981 2982 /* 2983 * Wake-up-and-cascade phase 2984 * 2985 * First flushers are responsible for cascading flushes and 2986 * handling overflow. Non-first flushers can simply return. 2987 */ 2988 if (READ_ONCE(wq->first_flusher) != &this_flusher) 2989 return; 2990 2991 mutex_lock(&wq->mutex); 2992 2993 /* we might have raced, check again with mutex held */ 2994 if (wq->first_flusher != &this_flusher) 2995 goto out_unlock; 2996 2997 WRITE_ONCE(wq->first_flusher, NULL); 2998 2999 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 3000 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3001 3002 while (true) { 3003 struct wq_flusher *next, *tmp; 3004 3005 /* complete all the flushers sharing the current flush color */ 3006 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 3007 if (next->flush_color != wq->flush_color) 3008 break; 3009 list_del_init(&next->list); 3010 complete(&next->done); 3011 } 3012 3013 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 3014 wq->flush_color != work_next_color(wq->work_color)); 3015 3016 /* this flush_color is finished, advance by one */ 3017 wq->flush_color = work_next_color(wq->flush_color); 3018 3019 /* one color has been freed, handle overflow queue */ 3020 if (!list_empty(&wq->flusher_overflow)) { 3021 /* 3022 * Assign the same color to all overflowed 3023 * flushers, advance work_color and append to 3024 * flusher_queue. This is the start-to-wait 3025 * phase for these overflowed flushers. 3026 */ 3027 list_for_each_entry(tmp, &wq->flusher_overflow, list) 3028 tmp->flush_color = wq->work_color; 3029 3030 wq->work_color = work_next_color(wq->work_color); 3031 3032 list_splice_tail_init(&wq->flusher_overflow, 3033 &wq->flusher_queue); 3034 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 3035 } 3036 3037 if (list_empty(&wq->flusher_queue)) { 3038 WARN_ON_ONCE(wq->flush_color != wq->work_color); 3039 break; 3040 } 3041 3042 /* 3043 * Need to flush more colors. Make the next flusher 3044 * the new first flusher and arm pwqs. 3045 */ 3046 WARN_ON_ONCE(wq->flush_color == wq->work_color); 3047 WARN_ON_ONCE(wq->flush_color != next->flush_color); 3048 3049 list_del_init(&next->list); 3050 wq->first_flusher = next; 3051 3052 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 3053 break; 3054 3055 /* 3056 * Meh... this color is already done, clear first 3057 * flusher and repeat cascading. 3058 */ 3059 wq->first_flusher = NULL; 3060 } 3061 3062 out_unlock: 3063 mutex_unlock(&wq->mutex); 3064 } 3065 EXPORT_SYMBOL(__flush_workqueue); 3066 3067 /** 3068 * drain_workqueue - drain a workqueue 3069 * @wq: workqueue to drain 3070 * 3071 * Wait until the workqueue becomes empty. While draining is in progress, 3072 * only chain queueing is allowed. IOW, only currently pending or running 3073 * work items on @wq can queue further work items on it. @wq is flushed 3074 * repeatedly until it becomes empty. The number of flushing is determined 3075 * by the depth of chaining and should be relatively short. Whine if it 3076 * takes too long. 3077 */ 3078 void drain_workqueue(struct workqueue_struct *wq) 3079 { 3080 unsigned int flush_cnt = 0; 3081 struct pool_workqueue *pwq; 3082 3083 /* 3084 * __queue_work() needs to test whether there are drainers, is much 3085 * hotter than drain_workqueue() and already looks at @wq->flags. 3086 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 3087 */ 3088 mutex_lock(&wq->mutex); 3089 if (!wq->nr_drainers++) 3090 wq->flags |= __WQ_DRAINING; 3091 mutex_unlock(&wq->mutex); 3092 reflush: 3093 __flush_workqueue(wq); 3094 3095 mutex_lock(&wq->mutex); 3096 3097 for_each_pwq(pwq, wq) { 3098 bool drained; 3099 3100 raw_spin_lock_irq(&pwq->pool->lock); 3101 drained = !pwq->nr_active && list_empty(&pwq->inactive_works); 3102 raw_spin_unlock_irq(&pwq->pool->lock); 3103 3104 if (drained) 3105 continue; 3106 3107 if (++flush_cnt == 10 || 3108 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 3109 pr_warn("workqueue %s: %s() isn't complete after %u tries\n", 3110 wq->name, __func__, flush_cnt); 3111 3112 mutex_unlock(&wq->mutex); 3113 goto reflush; 3114 } 3115 3116 if (!--wq->nr_drainers) 3117 wq->flags &= ~__WQ_DRAINING; 3118 mutex_unlock(&wq->mutex); 3119 } 3120 EXPORT_SYMBOL_GPL(drain_workqueue); 3121 3122 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 3123 bool from_cancel) 3124 { 3125 struct worker *worker = NULL; 3126 struct worker_pool *pool; 3127 struct pool_workqueue *pwq; 3128 3129 might_sleep(); 3130 3131 rcu_read_lock(); 3132 pool = get_work_pool(work); 3133 if (!pool) { 3134 rcu_read_unlock(); 3135 return false; 3136 } 3137 3138 raw_spin_lock_irq(&pool->lock); 3139 /* see the comment in try_to_grab_pending() with the same code */ 3140 pwq = get_work_pwq(work); 3141 if (pwq) { 3142 if (unlikely(pwq->pool != pool)) 3143 goto already_gone; 3144 } else { 3145 worker = find_worker_executing_work(pool, work); 3146 if (!worker) 3147 goto already_gone; 3148 pwq = worker->current_pwq; 3149 } 3150 3151 check_flush_dependency(pwq->wq, work); 3152 3153 insert_wq_barrier(pwq, barr, work, worker); 3154 raw_spin_unlock_irq(&pool->lock); 3155 3156 /* 3157 * Force a lock recursion deadlock when using flush_work() inside a 3158 * single-threaded or rescuer equipped workqueue. 3159 * 3160 * For single threaded workqueues the deadlock happens when the work 3161 * is after the work issuing the flush_work(). For rescuer equipped 3162 * workqueues the deadlock happens when the rescuer stalls, blocking 3163 * forward progress. 3164 */ 3165 if (!from_cancel && 3166 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) { 3167 lock_map_acquire(&pwq->wq->lockdep_map); 3168 lock_map_release(&pwq->wq->lockdep_map); 3169 } 3170 rcu_read_unlock(); 3171 return true; 3172 already_gone: 3173 raw_spin_unlock_irq(&pool->lock); 3174 rcu_read_unlock(); 3175 return false; 3176 } 3177 3178 static bool __flush_work(struct work_struct *work, bool from_cancel) 3179 { 3180 struct wq_barrier barr; 3181 3182 if (WARN_ON(!wq_online)) 3183 return false; 3184 3185 if (WARN_ON(!work->func)) 3186 return false; 3187 3188 lock_map_acquire(&work->lockdep_map); 3189 lock_map_release(&work->lockdep_map); 3190 3191 if (start_flush_work(work, &barr, from_cancel)) { 3192 wait_for_completion(&barr.done); 3193 destroy_work_on_stack(&barr.work); 3194 return true; 3195 } else { 3196 return false; 3197 } 3198 } 3199 3200 /** 3201 * flush_work - wait for a work to finish executing the last queueing instance 3202 * @work: the work to flush 3203 * 3204 * Wait until @work has finished execution. @work is guaranteed to be idle 3205 * on return if it hasn't been requeued since flush started. 3206 * 3207 * Return: 3208 * %true if flush_work() waited for the work to finish execution, 3209 * %false if it was already idle. 3210 */ 3211 bool flush_work(struct work_struct *work) 3212 { 3213 return __flush_work(work, false); 3214 } 3215 EXPORT_SYMBOL_GPL(flush_work); 3216 3217 struct cwt_wait { 3218 wait_queue_entry_t wait; 3219 struct work_struct *work; 3220 }; 3221 3222 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 3223 { 3224 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 3225 3226 if (cwait->work != key) 3227 return 0; 3228 return autoremove_wake_function(wait, mode, sync, key); 3229 } 3230 3231 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 3232 { 3233 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 3234 unsigned long flags; 3235 int ret; 3236 3237 do { 3238 ret = try_to_grab_pending(work, is_dwork, &flags); 3239 /* 3240 * If someone else is already canceling, wait for it to 3241 * finish. flush_work() doesn't work for PREEMPT_NONE 3242 * because we may get scheduled between @work's completion 3243 * and the other canceling task resuming and clearing 3244 * CANCELING - flush_work() will return false immediately 3245 * as @work is no longer busy, try_to_grab_pending() will 3246 * return -ENOENT as @work is still being canceled and the 3247 * other canceling task won't be able to clear CANCELING as 3248 * we're hogging the CPU. 3249 * 3250 * Let's wait for completion using a waitqueue. As this 3251 * may lead to the thundering herd problem, use a custom 3252 * wake function which matches @work along with exclusive 3253 * wait and wakeup. 3254 */ 3255 if (unlikely(ret == -ENOENT)) { 3256 struct cwt_wait cwait; 3257 3258 init_wait(&cwait.wait); 3259 cwait.wait.func = cwt_wakefn; 3260 cwait.work = work; 3261 3262 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 3263 TASK_UNINTERRUPTIBLE); 3264 if (work_is_canceling(work)) 3265 schedule(); 3266 finish_wait(&cancel_waitq, &cwait.wait); 3267 } 3268 } while (unlikely(ret < 0)); 3269 3270 /* tell other tasks trying to grab @work to back off */ 3271 mark_work_canceling(work); 3272 local_irq_restore(flags); 3273 3274 /* 3275 * This allows canceling during early boot. We know that @work 3276 * isn't executing. 3277 */ 3278 if (wq_online) 3279 __flush_work(work, true); 3280 3281 clear_work_data(work); 3282 3283 /* 3284 * Paired with prepare_to_wait() above so that either 3285 * waitqueue_active() is visible here or !work_is_canceling() is 3286 * visible there. 3287 */ 3288 smp_mb(); 3289 if (waitqueue_active(&cancel_waitq)) 3290 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 3291 3292 return ret; 3293 } 3294 3295 /** 3296 * cancel_work_sync - cancel a work and wait for it to finish 3297 * @work: the work to cancel 3298 * 3299 * Cancel @work and wait for its execution to finish. This function 3300 * can be used even if the work re-queues itself or migrates to 3301 * another workqueue. On return from this function, @work is 3302 * guaranteed to be not pending or executing on any CPU. 3303 * 3304 * cancel_work_sync(&delayed_work->work) must not be used for 3305 * delayed_work's. Use cancel_delayed_work_sync() instead. 3306 * 3307 * The caller must ensure that the workqueue on which @work was last 3308 * queued can't be destroyed before this function returns. 3309 * 3310 * Return: 3311 * %true if @work was pending, %false otherwise. 3312 */ 3313 bool cancel_work_sync(struct work_struct *work) 3314 { 3315 return __cancel_work_timer(work, false); 3316 } 3317 EXPORT_SYMBOL_GPL(cancel_work_sync); 3318 3319 /** 3320 * flush_delayed_work - wait for a dwork to finish executing the last queueing 3321 * @dwork: the delayed work to flush 3322 * 3323 * Delayed timer is cancelled and the pending work is queued for 3324 * immediate execution. Like flush_work(), this function only 3325 * considers the last queueing instance of @dwork. 3326 * 3327 * Return: 3328 * %true if flush_work() waited for the work to finish execution, 3329 * %false if it was already idle. 3330 */ 3331 bool flush_delayed_work(struct delayed_work *dwork) 3332 { 3333 local_irq_disable(); 3334 if (del_timer_sync(&dwork->timer)) 3335 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 3336 local_irq_enable(); 3337 return flush_work(&dwork->work); 3338 } 3339 EXPORT_SYMBOL(flush_delayed_work); 3340 3341 /** 3342 * flush_rcu_work - wait for a rwork to finish executing the last queueing 3343 * @rwork: the rcu work to flush 3344 * 3345 * Return: 3346 * %true if flush_rcu_work() waited for the work to finish execution, 3347 * %false if it was already idle. 3348 */ 3349 bool flush_rcu_work(struct rcu_work *rwork) 3350 { 3351 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 3352 rcu_barrier(); 3353 flush_work(&rwork->work); 3354 return true; 3355 } else { 3356 return flush_work(&rwork->work); 3357 } 3358 } 3359 EXPORT_SYMBOL(flush_rcu_work); 3360 3361 static bool __cancel_work(struct work_struct *work, bool is_dwork) 3362 { 3363 unsigned long flags; 3364 int ret; 3365 3366 do { 3367 ret = try_to_grab_pending(work, is_dwork, &flags); 3368 } while (unlikely(ret == -EAGAIN)); 3369 3370 if (unlikely(ret < 0)) 3371 return false; 3372 3373 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 3374 local_irq_restore(flags); 3375 return ret; 3376 } 3377 3378 /* 3379 * See cancel_delayed_work() 3380 */ 3381 bool cancel_work(struct work_struct *work) 3382 { 3383 return __cancel_work(work, false); 3384 } 3385 EXPORT_SYMBOL(cancel_work); 3386 3387 /** 3388 * cancel_delayed_work - cancel a delayed work 3389 * @dwork: delayed_work to cancel 3390 * 3391 * Kill off a pending delayed_work. 3392 * 3393 * Return: %true if @dwork was pending and canceled; %false if it wasn't 3394 * pending. 3395 * 3396 * Note: 3397 * The work callback function may still be running on return, unless 3398 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 3399 * use cancel_delayed_work_sync() to wait on it. 3400 * 3401 * This function is safe to call from any context including IRQ handler. 3402 */ 3403 bool cancel_delayed_work(struct delayed_work *dwork) 3404 { 3405 return __cancel_work(&dwork->work, true); 3406 } 3407 EXPORT_SYMBOL(cancel_delayed_work); 3408 3409 /** 3410 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3411 * @dwork: the delayed work cancel 3412 * 3413 * This is cancel_work_sync() for delayed works. 3414 * 3415 * Return: 3416 * %true if @dwork was pending, %false otherwise. 3417 */ 3418 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3419 { 3420 return __cancel_work_timer(&dwork->work, true); 3421 } 3422 EXPORT_SYMBOL(cancel_delayed_work_sync); 3423 3424 /** 3425 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3426 * @func: the function to call 3427 * 3428 * schedule_on_each_cpu() executes @func on each online CPU using the 3429 * system workqueue and blocks until all CPUs have completed. 3430 * schedule_on_each_cpu() is very slow. 3431 * 3432 * Return: 3433 * 0 on success, -errno on failure. 3434 */ 3435 int schedule_on_each_cpu(work_func_t func) 3436 { 3437 int cpu; 3438 struct work_struct __percpu *works; 3439 3440 works = alloc_percpu(struct work_struct); 3441 if (!works) 3442 return -ENOMEM; 3443 3444 cpus_read_lock(); 3445 3446 for_each_online_cpu(cpu) { 3447 struct work_struct *work = per_cpu_ptr(works, cpu); 3448 3449 INIT_WORK(work, func); 3450 schedule_work_on(cpu, work); 3451 } 3452 3453 for_each_online_cpu(cpu) 3454 flush_work(per_cpu_ptr(works, cpu)); 3455 3456 cpus_read_unlock(); 3457 free_percpu(works); 3458 return 0; 3459 } 3460 3461 /** 3462 * execute_in_process_context - reliably execute the routine with user context 3463 * @fn: the function to execute 3464 * @ew: guaranteed storage for the execute work structure (must 3465 * be available when the work executes) 3466 * 3467 * Executes the function immediately if process context is available, 3468 * otherwise schedules the function for delayed execution. 3469 * 3470 * Return: 0 - function was executed 3471 * 1 - function was scheduled for execution 3472 */ 3473 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3474 { 3475 if (!in_interrupt()) { 3476 fn(&ew->work); 3477 return 0; 3478 } 3479 3480 INIT_WORK(&ew->work, fn); 3481 schedule_work(&ew->work); 3482 3483 return 1; 3484 } 3485 EXPORT_SYMBOL_GPL(execute_in_process_context); 3486 3487 /** 3488 * free_workqueue_attrs - free a workqueue_attrs 3489 * @attrs: workqueue_attrs to free 3490 * 3491 * Undo alloc_workqueue_attrs(). 3492 */ 3493 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3494 { 3495 if (attrs) { 3496 free_cpumask_var(attrs->cpumask); 3497 kfree(attrs); 3498 } 3499 } 3500 3501 /** 3502 * alloc_workqueue_attrs - allocate a workqueue_attrs 3503 * 3504 * Allocate a new workqueue_attrs, initialize with default settings and 3505 * return it. 3506 * 3507 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3508 */ 3509 struct workqueue_attrs *alloc_workqueue_attrs(void) 3510 { 3511 struct workqueue_attrs *attrs; 3512 3513 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); 3514 if (!attrs) 3515 goto fail; 3516 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) 3517 goto fail; 3518 3519 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3520 return attrs; 3521 fail: 3522 free_workqueue_attrs(attrs); 3523 return NULL; 3524 } 3525 3526 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3527 const struct workqueue_attrs *from) 3528 { 3529 to->nice = from->nice; 3530 cpumask_copy(to->cpumask, from->cpumask); 3531 /* 3532 * Unlike hash and equality test, this function doesn't ignore 3533 * ->no_numa as it is used for both pool and wq attrs. Instead, 3534 * get_unbound_pool() explicitly clears ->no_numa after copying. 3535 */ 3536 to->no_numa = from->no_numa; 3537 } 3538 3539 /* hash value of the content of @attr */ 3540 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3541 { 3542 u32 hash = 0; 3543 3544 hash = jhash_1word(attrs->nice, hash); 3545 hash = jhash(cpumask_bits(attrs->cpumask), 3546 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3547 return hash; 3548 } 3549 3550 /* content equality test */ 3551 static bool wqattrs_equal(const struct workqueue_attrs *a, 3552 const struct workqueue_attrs *b) 3553 { 3554 if (a->nice != b->nice) 3555 return false; 3556 if (!cpumask_equal(a->cpumask, b->cpumask)) 3557 return false; 3558 return true; 3559 } 3560 3561 /** 3562 * init_worker_pool - initialize a newly zalloc'd worker_pool 3563 * @pool: worker_pool to initialize 3564 * 3565 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3566 * 3567 * Return: 0 on success, -errno on failure. Even on failure, all fields 3568 * inside @pool proper are initialized and put_unbound_pool() can be called 3569 * on @pool safely to release it. 3570 */ 3571 static int init_worker_pool(struct worker_pool *pool) 3572 { 3573 raw_spin_lock_init(&pool->lock); 3574 pool->id = -1; 3575 pool->cpu = -1; 3576 pool->node = NUMA_NO_NODE; 3577 pool->flags |= POOL_DISASSOCIATED; 3578 pool->watchdog_ts = jiffies; 3579 INIT_LIST_HEAD(&pool->worklist); 3580 INIT_LIST_HEAD(&pool->idle_list); 3581 hash_init(pool->busy_hash); 3582 3583 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 3584 INIT_WORK(&pool->idle_cull_work, idle_cull_fn); 3585 3586 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 3587 3588 INIT_LIST_HEAD(&pool->workers); 3589 INIT_LIST_HEAD(&pool->dying_workers); 3590 3591 ida_init(&pool->worker_ida); 3592 INIT_HLIST_NODE(&pool->hash_node); 3593 pool->refcnt = 1; 3594 3595 /* shouldn't fail above this point */ 3596 pool->attrs = alloc_workqueue_attrs(); 3597 if (!pool->attrs) 3598 return -ENOMEM; 3599 return 0; 3600 } 3601 3602 #ifdef CONFIG_LOCKDEP 3603 static void wq_init_lockdep(struct workqueue_struct *wq) 3604 { 3605 char *lock_name; 3606 3607 lockdep_register_key(&wq->key); 3608 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 3609 if (!lock_name) 3610 lock_name = wq->name; 3611 3612 wq->lock_name = lock_name; 3613 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); 3614 } 3615 3616 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3617 { 3618 lockdep_unregister_key(&wq->key); 3619 } 3620 3621 static void wq_free_lockdep(struct workqueue_struct *wq) 3622 { 3623 if (wq->lock_name != wq->name) 3624 kfree(wq->lock_name); 3625 } 3626 #else 3627 static void wq_init_lockdep(struct workqueue_struct *wq) 3628 { 3629 } 3630 3631 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3632 { 3633 } 3634 3635 static void wq_free_lockdep(struct workqueue_struct *wq) 3636 { 3637 } 3638 #endif 3639 3640 static void rcu_free_wq(struct rcu_head *rcu) 3641 { 3642 struct workqueue_struct *wq = 3643 container_of(rcu, struct workqueue_struct, rcu); 3644 3645 wq_free_lockdep(wq); 3646 3647 if (!(wq->flags & WQ_UNBOUND)) 3648 free_percpu(wq->cpu_pwqs); 3649 else 3650 free_workqueue_attrs(wq->unbound_attrs); 3651 3652 kfree(wq); 3653 } 3654 3655 static void rcu_free_pool(struct rcu_head *rcu) 3656 { 3657 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3658 3659 ida_destroy(&pool->worker_ida); 3660 free_workqueue_attrs(pool->attrs); 3661 kfree(pool); 3662 } 3663 3664 /** 3665 * put_unbound_pool - put a worker_pool 3666 * @pool: worker_pool to put 3667 * 3668 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 3669 * safe manner. get_unbound_pool() calls this function on its failure path 3670 * and this function should be able to release pools which went through, 3671 * successfully or not, init_worker_pool(). 3672 * 3673 * Should be called with wq_pool_mutex held. 3674 */ 3675 static void put_unbound_pool(struct worker_pool *pool) 3676 { 3677 DECLARE_COMPLETION_ONSTACK(detach_completion); 3678 struct list_head cull_list; 3679 struct worker *worker; 3680 3681 INIT_LIST_HEAD(&cull_list); 3682 3683 lockdep_assert_held(&wq_pool_mutex); 3684 3685 if (--pool->refcnt) 3686 return; 3687 3688 /* sanity checks */ 3689 if (WARN_ON(!(pool->cpu < 0)) || 3690 WARN_ON(!list_empty(&pool->worklist))) 3691 return; 3692 3693 /* release id and unhash */ 3694 if (pool->id >= 0) 3695 idr_remove(&worker_pool_idr, pool->id); 3696 hash_del(&pool->hash_node); 3697 3698 /* 3699 * Become the manager and destroy all workers. This prevents 3700 * @pool's workers from blocking on attach_mutex. We're the last 3701 * manager and @pool gets freed with the flag set. 3702 * 3703 * Having a concurrent manager is quite unlikely to happen as we can 3704 * only get here with 3705 * pwq->refcnt == pool->refcnt == 0 3706 * which implies no work queued to the pool, which implies no worker can 3707 * become the manager. However a worker could have taken the role of 3708 * manager before the refcnts dropped to 0, since maybe_create_worker() 3709 * drops pool->lock 3710 */ 3711 while (true) { 3712 rcuwait_wait_event(&manager_wait, 3713 !(pool->flags & POOL_MANAGER_ACTIVE), 3714 TASK_UNINTERRUPTIBLE); 3715 3716 mutex_lock(&wq_pool_attach_mutex); 3717 raw_spin_lock_irq(&pool->lock); 3718 if (!(pool->flags & POOL_MANAGER_ACTIVE)) { 3719 pool->flags |= POOL_MANAGER_ACTIVE; 3720 break; 3721 } 3722 raw_spin_unlock_irq(&pool->lock); 3723 mutex_unlock(&wq_pool_attach_mutex); 3724 } 3725 3726 while ((worker = first_idle_worker(pool))) 3727 set_worker_dying(worker, &cull_list); 3728 WARN_ON(pool->nr_workers || pool->nr_idle); 3729 raw_spin_unlock_irq(&pool->lock); 3730 3731 wake_dying_workers(&cull_list); 3732 3733 if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers)) 3734 pool->detach_completion = &detach_completion; 3735 mutex_unlock(&wq_pool_attach_mutex); 3736 3737 if (pool->detach_completion) 3738 wait_for_completion(pool->detach_completion); 3739 3740 /* shut down the timers */ 3741 del_timer_sync(&pool->idle_timer); 3742 cancel_work_sync(&pool->idle_cull_work); 3743 del_timer_sync(&pool->mayday_timer); 3744 3745 /* RCU protected to allow dereferences from get_work_pool() */ 3746 call_rcu(&pool->rcu, rcu_free_pool); 3747 } 3748 3749 /** 3750 * get_unbound_pool - get a worker_pool with the specified attributes 3751 * @attrs: the attributes of the worker_pool to get 3752 * 3753 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3754 * reference count and return it. If there already is a matching 3755 * worker_pool, it will be used; otherwise, this function attempts to 3756 * create a new one. 3757 * 3758 * Should be called with wq_pool_mutex held. 3759 * 3760 * Return: On success, a worker_pool with the same attributes as @attrs. 3761 * On failure, %NULL. 3762 */ 3763 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3764 { 3765 u32 hash = wqattrs_hash(attrs); 3766 struct worker_pool *pool; 3767 int node; 3768 int target_node = NUMA_NO_NODE; 3769 3770 lockdep_assert_held(&wq_pool_mutex); 3771 3772 /* do we already have a matching pool? */ 3773 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3774 if (wqattrs_equal(pool->attrs, attrs)) { 3775 pool->refcnt++; 3776 return pool; 3777 } 3778 } 3779 3780 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3781 if (wq_numa_enabled) { 3782 for_each_node(node) { 3783 if (cpumask_subset(attrs->cpumask, 3784 wq_numa_possible_cpumask[node])) { 3785 target_node = node; 3786 break; 3787 } 3788 } 3789 } 3790 3791 /* nope, create a new one */ 3792 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3793 if (!pool || init_worker_pool(pool) < 0) 3794 goto fail; 3795 3796 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3797 copy_workqueue_attrs(pool->attrs, attrs); 3798 pool->node = target_node; 3799 3800 /* 3801 * no_numa isn't a worker_pool attribute, always clear it. See 3802 * 'struct workqueue_attrs' comments for detail. 3803 */ 3804 pool->attrs->no_numa = false; 3805 3806 if (worker_pool_assign_id(pool) < 0) 3807 goto fail; 3808 3809 /* create and start the initial worker */ 3810 if (wq_online && !create_worker(pool)) 3811 goto fail; 3812 3813 /* install */ 3814 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3815 3816 return pool; 3817 fail: 3818 if (pool) 3819 put_unbound_pool(pool); 3820 return NULL; 3821 } 3822 3823 static void rcu_free_pwq(struct rcu_head *rcu) 3824 { 3825 kmem_cache_free(pwq_cache, 3826 container_of(rcu, struct pool_workqueue, rcu)); 3827 } 3828 3829 /* 3830 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3831 * and needs to be destroyed. 3832 */ 3833 static void pwq_unbound_release_workfn(struct work_struct *work) 3834 { 3835 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3836 unbound_release_work); 3837 struct workqueue_struct *wq = pwq->wq; 3838 struct worker_pool *pool = pwq->pool; 3839 bool is_last = false; 3840 3841 /* 3842 * when @pwq is not linked, it doesn't hold any reference to the 3843 * @wq, and @wq is invalid to access. 3844 */ 3845 if (!list_empty(&pwq->pwqs_node)) { 3846 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3847 return; 3848 3849 mutex_lock(&wq->mutex); 3850 list_del_rcu(&pwq->pwqs_node); 3851 is_last = list_empty(&wq->pwqs); 3852 mutex_unlock(&wq->mutex); 3853 } 3854 3855 mutex_lock(&wq_pool_mutex); 3856 put_unbound_pool(pool); 3857 mutex_unlock(&wq_pool_mutex); 3858 3859 call_rcu(&pwq->rcu, rcu_free_pwq); 3860 3861 /* 3862 * If we're the last pwq going away, @wq is already dead and no one 3863 * is gonna access it anymore. Schedule RCU free. 3864 */ 3865 if (is_last) { 3866 wq_unregister_lockdep(wq); 3867 call_rcu(&wq->rcu, rcu_free_wq); 3868 } 3869 } 3870 3871 /** 3872 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3873 * @pwq: target pool_workqueue 3874 * 3875 * If @pwq isn't freezing, set @pwq->max_active to the associated 3876 * workqueue's saved_max_active and activate inactive work items 3877 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3878 */ 3879 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3880 { 3881 struct workqueue_struct *wq = pwq->wq; 3882 bool freezable = wq->flags & WQ_FREEZABLE; 3883 unsigned long flags; 3884 3885 /* for @wq->saved_max_active */ 3886 lockdep_assert_held(&wq->mutex); 3887 3888 /* fast exit for non-freezable wqs */ 3889 if (!freezable && pwq->max_active == wq->saved_max_active) 3890 return; 3891 3892 /* this function can be called during early boot w/ irq disabled */ 3893 raw_spin_lock_irqsave(&pwq->pool->lock, flags); 3894 3895 /* 3896 * During [un]freezing, the caller is responsible for ensuring that 3897 * this function is called at least once after @workqueue_freezing 3898 * is updated and visible. 3899 */ 3900 if (!freezable || !workqueue_freezing) { 3901 bool kick = false; 3902 3903 pwq->max_active = wq->saved_max_active; 3904 3905 while (!list_empty(&pwq->inactive_works) && 3906 pwq->nr_active < pwq->max_active) { 3907 pwq_activate_first_inactive(pwq); 3908 kick = true; 3909 } 3910 3911 /* 3912 * Need to kick a worker after thawed or an unbound wq's 3913 * max_active is bumped. In realtime scenarios, always kicking a 3914 * worker will cause interference on the isolated cpu cores, so 3915 * let's kick iff work items were activated. 3916 */ 3917 if (kick) 3918 wake_up_worker(pwq->pool); 3919 } else { 3920 pwq->max_active = 0; 3921 } 3922 3923 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); 3924 } 3925 3926 /* initialize newly allocated @pwq which is associated with @wq and @pool */ 3927 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3928 struct worker_pool *pool) 3929 { 3930 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3931 3932 memset(pwq, 0, sizeof(*pwq)); 3933 3934 pwq->pool = pool; 3935 pwq->wq = wq; 3936 pwq->flush_color = -1; 3937 pwq->refcnt = 1; 3938 INIT_LIST_HEAD(&pwq->inactive_works); 3939 INIT_LIST_HEAD(&pwq->pwqs_node); 3940 INIT_LIST_HEAD(&pwq->mayday_node); 3941 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3942 } 3943 3944 /* sync @pwq with the current state of its associated wq and link it */ 3945 static void link_pwq(struct pool_workqueue *pwq) 3946 { 3947 struct workqueue_struct *wq = pwq->wq; 3948 3949 lockdep_assert_held(&wq->mutex); 3950 3951 /* may be called multiple times, ignore if already linked */ 3952 if (!list_empty(&pwq->pwqs_node)) 3953 return; 3954 3955 /* set the matching work_color */ 3956 pwq->work_color = wq->work_color; 3957 3958 /* sync max_active to the current setting */ 3959 pwq_adjust_max_active(pwq); 3960 3961 /* link in @pwq */ 3962 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3963 } 3964 3965 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3966 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3967 const struct workqueue_attrs *attrs) 3968 { 3969 struct worker_pool *pool; 3970 struct pool_workqueue *pwq; 3971 3972 lockdep_assert_held(&wq_pool_mutex); 3973 3974 pool = get_unbound_pool(attrs); 3975 if (!pool) 3976 return NULL; 3977 3978 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3979 if (!pwq) { 3980 put_unbound_pool(pool); 3981 return NULL; 3982 } 3983 3984 init_pwq(pwq, wq, pool); 3985 return pwq; 3986 } 3987 3988 /** 3989 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3990 * @attrs: the wq_attrs of the default pwq of the target workqueue 3991 * @node: the target NUMA node 3992 * @cpu_going_down: if >= 0, the CPU to consider as offline 3993 * @cpumask: outarg, the resulting cpumask 3994 * 3995 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3996 * @cpu_going_down is >= 0, that cpu is considered offline during 3997 * calculation. The result is stored in @cpumask. 3998 * 3999 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 4000 * enabled and @node has online CPUs requested by @attrs, the returned 4001 * cpumask is the intersection of the possible CPUs of @node and 4002 * @attrs->cpumask. 4003 * 4004 * The caller is responsible for ensuring that the cpumask of @node stays 4005 * stable. 4006 * 4007 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 4008 * %false if equal. 4009 */ 4010 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 4011 int cpu_going_down, cpumask_t *cpumask) 4012 { 4013 if (!wq_numa_enabled || attrs->no_numa) 4014 goto use_dfl; 4015 4016 /* does @node have any online CPUs @attrs wants? */ 4017 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 4018 if (cpu_going_down >= 0) 4019 cpumask_clear_cpu(cpu_going_down, cpumask); 4020 4021 if (cpumask_empty(cpumask)) 4022 goto use_dfl; 4023 4024 /* yeap, return possible CPUs in @node that @attrs wants */ 4025 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 4026 4027 if (cpumask_empty(cpumask)) { 4028 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 4029 "possible intersect\n"); 4030 return false; 4031 } 4032 4033 return !cpumask_equal(cpumask, attrs->cpumask); 4034 4035 use_dfl: 4036 cpumask_copy(cpumask, attrs->cpumask); 4037 return false; 4038 } 4039 4040 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 4041 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 4042 int node, 4043 struct pool_workqueue *pwq) 4044 { 4045 struct pool_workqueue *old_pwq; 4046 4047 lockdep_assert_held(&wq_pool_mutex); 4048 lockdep_assert_held(&wq->mutex); 4049 4050 /* link_pwq() can handle duplicate calls */ 4051 link_pwq(pwq); 4052 4053 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4054 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 4055 return old_pwq; 4056 } 4057 4058 /* context to store the prepared attrs & pwqs before applying */ 4059 struct apply_wqattrs_ctx { 4060 struct workqueue_struct *wq; /* target workqueue */ 4061 struct workqueue_attrs *attrs; /* attrs to apply */ 4062 struct list_head list; /* queued for batching commit */ 4063 struct pool_workqueue *dfl_pwq; 4064 struct pool_workqueue *pwq_tbl[]; 4065 }; 4066 4067 /* free the resources after success or abort */ 4068 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 4069 { 4070 if (ctx) { 4071 int node; 4072 4073 for_each_node(node) 4074 put_pwq_unlocked(ctx->pwq_tbl[node]); 4075 put_pwq_unlocked(ctx->dfl_pwq); 4076 4077 free_workqueue_attrs(ctx->attrs); 4078 4079 kfree(ctx); 4080 } 4081 } 4082 4083 /* allocate the attrs and pwqs for later installation */ 4084 static struct apply_wqattrs_ctx * 4085 apply_wqattrs_prepare(struct workqueue_struct *wq, 4086 const struct workqueue_attrs *attrs, 4087 const cpumask_var_t unbound_cpumask) 4088 { 4089 struct apply_wqattrs_ctx *ctx; 4090 struct workqueue_attrs *new_attrs, *tmp_attrs; 4091 int node; 4092 4093 lockdep_assert_held(&wq_pool_mutex); 4094 4095 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL); 4096 4097 new_attrs = alloc_workqueue_attrs(); 4098 tmp_attrs = alloc_workqueue_attrs(); 4099 if (!ctx || !new_attrs || !tmp_attrs) 4100 goto out_free; 4101 4102 /* 4103 * Calculate the attrs of the default pwq with unbound_cpumask 4104 * which is wq_unbound_cpumask or to set to wq_unbound_cpumask. 4105 * If the user configured cpumask doesn't overlap with the 4106 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 4107 */ 4108 copy_workqueue_attrs(new_attrs, attrs); 4109 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, unbound_cpumask); 4110 if (unlikely(cpumask_empty(new_attrs->cpumask))) 4111 cpumask_copy(new_attrs->cpumask, unbound_cpumask); 4112 4113 /* 4114 * We may create multiple pwqs with differing cpumasks. Make a 4115 * copy of @new_attrs which will be modified and used to obtain 4116 * pools. 4117 */ 4118 copy_workqueue_attrs(tmp_attrs, new_attrs); 4119 4120 /* 4121 * If something goes wrong during CPU up/down, we'll fall back to 4122 * the default pwq covering whole @attrs->cpumask. Always create 4123 * it even if we don't use it immediately. 4124 */ 4125 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 4126 if (!ctx->dfl_pwq) 4127 goto out_free; 4128 4129 for_each_node(node) { 4130 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 4131 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 4132 if (!ctx->pwq_tbl[node]) 4133 goto out_free; 4134 } else { 4135 ctx->dfl_pwq->refcnt++; 4136 ctx->pwq_tbl[node] = ctx->dfl_pwq; 4137 } 4138 } 4139 4140 /* save the user configured attrs and sanitize it. */ 4141 copy_workqueue_attrs(new_attrs, attrs); 4142 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 4143 ctx->attrs = new_attrs; 4144 4145 ctx->wq = wq; 4146 free_workqueue_attrs(tmp_attrs); 4147 return ctx; 4148 4149 out_free: 4150 free_workqueue_attrs(tmp_attrs); 4151 free_workqueue_attrs(new_attrs); 4152 apply_wqattrs_cleanup(ctx); 4153 return NULL; 4154 } 4155 4156 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 4157 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 4158 { 4159 int node; 4160 4161 /* all pwqs have been created successfully, let's install'em */ 4162 mutex_lock(&ctx->wq->mutex); 4163 4164 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 4165 4166 /* save the previous pwq and install the new one */ 4167 for_each_node(node) 4168 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 4169 ctx->pwq_tbl[node]); 4170 4171 /* @dfl_pwq might not have been used, ensure it's linked */ 4172 link_pwq(ctx->dfl_pwq); 4173 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 4174 4175 mutex_unlock(&ctx->wq->mutex); 4176 } 4177 4178 static void apply_wqattrs_lock(void) 4179 { 4180 /* CPUs should stay stable across pwq creations and installations */ 4181 cpus_read_lock(); 4182 mutex_lock(&wq_pool_mutex); 4183 } 4184 4185 static void apply_wqattrs_unlock(void) 4186 { 4187 mutex_unlock(&wq_pool_mutex); 4188 cpus_read_unlock(); 4189 } 4190 4191 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 4192 const struct workqueue_attrs *attrs) 4193 { 4194 struct apply_wqattrs_ctx *ctx; 4195 4196 /* only unbound workqueues can change attributes */ 4197 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 4198 return -EINVAL; 4199 4200 /* creating multiple pwqs breaks ordering guarantee */ 4201 if (!list_empty(&wq->pwqs)) { 4202 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4203 return -EINVAL; 4204 4205 wq->flags &= ~__WQ_ORDERED; 4206 } 4207 4208 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask); 4209 if (!ctx) 4210 return -ENOMEM; 4211 4212 /* the ctx has been prepared successfully, let's commit it */ 4213 apply_wqattrs_commit(ctx); 4214 apply_wqattrs_cleanup(ctx); 4215 4216 return 0; 4217 } 4218 4219 /** 4220 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 4221 * @wq: the target workqueue 4222 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 4223 * 4224 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 4225 * machines, this function maps a separate pwq to each NUMA node with 4226 * possibles CPUs in @attrs->cpumask so that work items are affine to the 4227 * NUMA node it was issued on. Older pwqs are released as in-flight work 4228 * items finish. Note that a work item which repeatedly requeues itself 4229 * back-to-back will stay on its current pwq. 4230 * 4231 * Performs GFP_KERNEL allocations. 4232 * 4233 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock(). 4234 * 4235 * Return: 0 on success and -errno on failure. 4236 */ 4237 int apply_workqueue_attrs(struct workqueue_struct *wq, 4238 const struct workqueue_attrs *attrs) 4239 { 4240 int ret; 4241 4242 lockdep_assert_cpus_held(); 4243 4244 mutex_lock(&wq_pool_mutex); 4245 ret = apply_workqueue_attrs_locked(wq, attrs); 4246 mutex_unlock(&wq_pool_mutex); 4247 4248 return ret; 4249 } 4250 4251 /** 4252 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 4253 * @wq: the target workqueue 4254 * @cpu: the CPU coming up or going down 4255 * @online: whether @cpu is coming up or going down 4256 * 4257 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 4258 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 4259 * @wq accordingly. 4260 * 4261 * If NUMA affinity can't be adjusted due to memory allocation failure, it 4262 * falls back to @wq->dfl_pwq which may not be optimal but is always 4263 * correct. 4264 * 4265 * Note that when the last allowed CPU of a NUMA node goes offline for a 4266 * workqueue with a cpumask spanning multiple nodes, the workers which were 4267 * already executing the work items for the workqueue will lose their CPU 4268 * affinity and may execute on any CPU. This is similar to how per-cpu 4269 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 4270 * affinity, it's the user's responsibility to flush the work item from 4271 * CPU_DOWN_PREPARE. 4272 */ 4273 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 4274 bool online) 4275 { 4276 int node = cpu_to_node(cpu); 4277 int cpu_off = online ? -1 : cpu; 4278 struct pool_workqueue *old_pwq = NULL, *pwq; 4279 struct workqueue_attrs *target_attrs; 4280 cpumask_t *cpumask; 4281 4282 lockdep_assert_held(&wq_pool_mutex); 4283 4284 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 4285 wq->unbound_attrs->no_numa) 4286 return; 4287 4288 /* 4289 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 4290 * Let's use a preallocated one. The following buf is protected by 4291 * CPU hotplug exclusion. 4292 */ 4293 target_attrs = wq_update_unbound_numa_attrs_buf; 4294 cpumask = target_attrs->cpumask; 4295 4296 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 4297 pwq = unbound_pwq_by_node(wq, node); 4298 4299 /* 4300 * Let's determine what needs to be done. If the target cpumask is 4301 * different from the default pwq's, we need to compare it to @pwq's 4302 * and create a new one if they don't match. If the target cpumask 4303 * equals the default pwq's, the default pwq should be used. 4304 */ 4305 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 4306 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 4307 return; 4308 } else { 4309 goto use_dfl_pwq; 4310 } 4311 4312 /* create a new pwq */ 4313 pwq = alloc_unbound_pwq(wq, target_attrs); 4314 if (!pwq) { 4315 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 4316 wq->name); 4317 goto use_dfl_pwq; 4318 } 4319 4320 /* Install the new pwq. */ 4321 mutex_lock(&wq->mutex); 4322 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 4323 goto out_unlock; 4324 4325 use_dfl_pwq: 4326 mutex_lock(&wq->mutex); 4327 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock); 4328 get_pwq(wq->dfl_pwq); 4329 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock); 4330 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 4331 out_unlock: 4332 mutex_unlock(&wq->mutex); 4333 put_pwq_unlocked(old_pwq); 4334 } 4335 4336 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4337 { 4338 bool highpri = wq->flags & WQ_HIGHPRI; 4339 int cpu, ret; 4340 4341 if (!(wq->flags & WQ_UNBOUND)) { 4342 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 4343 if (!wq->cpu_pwqs) 4344 return -ENOMEM; 4345 4346 for_each_possible_cpu(cpu) { 4347 struct pool_workqueue *pwq = 4348 per_cpu_ptr(wq->cpu_pwqs, cpu); 4349 struct worker_pool *cpu_pools = 4350 per_cpu(cpu_worker_pools, cpu); 4351 4352 init_pwq(pwq, wq, &cpu_pools[highpri]); 4353 4354 mutex_lock(&wq->mutex); 4355 link_pwq(pwq); 4356 mutex_unlock(&wq->mutex); 4357 } 4358 return 0; 4359 } 4360 4361 cpus_read_lock(); 4362 if (wq->flags & __WQ_ORDERED) { 4363 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 4364 /* there should only be single pwq for ordering guarantee */ 4365 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 4366 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 4367 "ordering guarantee broken for workqueue %s\n", wq->name); 4368 } else { 4369 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4370 } 4371 cpus_read_unlock(); 4372 4373 return ret; 4374 } 4375 4376 static int wq_clamp_max_active(int max_active, unsigned int flags, 4377 const char *name) 4378 { 4379 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 4380 4381 if (max_active < 1 || max_active > lim) 4382 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4383 max_active, name, 1, lim); 4384 4385 return clamp_val(max_active, 1, lim); 4386 } 4387 4388 /* 4389 * Workqueues which may be used during memory reclaim should have a rescuer 4390 * to guarantee forward progress. 4391 */ 4392 static int init_rescuer(struct workqueue_struct *wq) 4393 { 4394 struct worker *rescuer; 4395 int ret; 4396 4397 if (!(wq->flags & WQ_MEM_RECLAIM)) 4398 return 0; 4399 4400 rescuer = alloc_worker(NUMA_NO_NODE); 4401 if (!rescuer) { 4402 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n", 4403 wq->name); 4404 return -ENOMEM; 4405 } 4406 4407 rescuer->rescue_wq = wq; 4408 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name); 4409 if (IS_ERR(rescuer->task)) { 4410 ret = PTR_ERR(rescuer->task); 4411 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe", 4412 wq->name, ERR_PTR(ret)); 4413 kfree(rescuer); 4414 return ret; 4415 } 4416 4417 wq->rescuer = rescuer; 4418 kthread_bind_mask(rescuer->task, cpu_possible_mask); 4419 wake_up_process(rescuer->task); 4420 4421 return 0; 4422 } 4423 4424 __printf(1, 4) 4425 struct workqueue_struct *alloc_workqueue(const char *fmt, 4426 unsigned int flags, 4427 int max_active, ...) 4428 { 4429 size_t tbl_size = 0; 4430 va_list args; 4431 struct workqueue_struct *wq; 4432 struct pool_workqueue *pwq; 4433 4434 /* 4435 * Unbound && max_active == 1 used to imply ordered, which is no 4436 * longer the case on NUMA machines due to per-node pools. While 4437 * alloc_ordered_workqueue() is the right way to create an ordered 4438 * workqueue, keep the previous behavior to avoid subtle breakages 4439 * on NUMA. 4440 */ 4441 if ((flags & WQ_UNBOUND) && max_active == 1) 4442 flags |= __WQ_ORDERED; 4443 4444 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4445 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4446 flags |= WQ_UNBOUND; 4447 4448 /* allocate wq and format name */ 4449 if (flags & WQ_UNBOUND) 4450 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 4451 4452 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4453 if (!wq) 4454 return NULL; 4455 4456 if (flags & WQ_UNBOUND) { 4457 wq->unbound_attrs = alloc_workqueue_attrs(); 4458 if (!wq->unbound_attrs) 4459 goto err_free_wq; 4460 } 4461 4462 va_start(args, max_active); 4463 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4464 va_end(args); 4465 4466 max_active = max_active ?: WQ_DFL_ACTIVE; 4467 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4468 4469 /* init wq */ 4470 wq->flags = flags; 4471 wq->saved_max_active = max_active; 4472 mutex_init(&wq->mutex); 4473 atomic_set(&wq->nr_pwqs_to_flush, 0); 4474 INIT_LIST_HEAD(&wq->pwqs); 4475 INIT_LIST_HEAD(&wq->flusher_queue); 4476 INIT_LIST_HEAD(&wq->flusher_overflow); 4477 INIT_LIST_HEAD(&wq->maydays); 4478 4479 wq_init_lockdep(wq); 4480 INIT_LIST_HEAD(&wq->list); 4481 4482 if (alloc_and_link_pwqs(wq) < 0) 4483 goto err_unreg_lockdep; 4484 4485 if (wq_online && init_rescuer(wq) < 0) 4486 goto err_destroy; 4487 4488 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4489 goto err_destroy; 4490 4491 /* 4492 * wq_pool_mutex protects global freeze state and workqueues list. 4493 * Grab it, adjust max_active and add the new @wq to workqueues 4494 * list. 4495 */ 4496 mutex_lock(&wq_pool_mutex); 4497 4498 mutex_lock(&wq->mutex); 4499 for_each_pwq(pwq, wq) 4500 pwq_adjust_max_active(pwq); 4501 mutex_unlock(&wq->mutex); 4502 4503 list_add_tail_rcu(&wq->list, &workqueues); 4504 4505 mutex_unlock(&wq_pool_mutex); 4506 4507 return wq; 4508 4509 err_unreg_lockdep: 4510 wq_unregister_lockdep(wq); 4511 wq_free_lockdep(wq); 4512 err_free_wq: 4513 free_workqueue_attrs(wq->unbound_attrs); 4514 kfree(wq); 4515 return NULL; 4516 err_destroy: 4517 destroy_workqueue(wq); 4518 return NULL; 4519 } 4520 EXPORT_SYMBOL_GPL(alloc_workqueue); 4521 4522 static bool pwq_busy(struct pool_workqueue *pwq) 4523 { 4524 int i; 4525 4526 for (i = 0; i < WORK_NR_COLORS; i++) 4527 if (pwq->nr_in_flight[i]) 4528 return true; 4529 4530 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1)) 4531 return true; 4532 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) 4533 return true; 4534 4535 return false; 4536 } 4537 4538 /** 4539 * destroy_workqueue - safely terminate a workqueue 4540 * @wq: target workqueue 4541 * 4542 * Safely destroy a workqueue. All work currently pending will be done first. 4543 */ 4544 void destroy_workqueue(struct workqueue_struct *wq) 4545 { 4546 struct pool_workqueue *pwq; 4547 int node; 4548 4549 /* 4550 * Remove it from sysfs first so that sanity check failure doesn't 4551 * lead to sysfs name conflicts. 4552 */ 4553 workqueue_sysfs_unregister(wq); 4554 4555 /* mark the workqueue destruction is in progress */ 4556 mutex_lock(&wq->mutex); 4557 wq->flags |= __WQ_DESTROYING; 4558 mutex_unlock(&wq->mutex); 4559 4560 /* drain it before proceeding with destruction */ 4561 drain_workqueue(wq); 4562 4563 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ 4564 if (wq->rescuer) { 4565 struct worker *rescuer = wq->rescuer; 4566 4567 /* this prevents new queueing */ 4568 raw_spin_lock_irq(&wq_mayday_lock); 4569 wq->rescuer = NULL; 4570 raw_spin_unlock_irq(&wq_mayday_lock); 4571 4572 /* rescuer will empty maydays list before exiting */ 4573 kthread_stop(rescuer->task); 4574 kfree(rescuer); 4575 } 4576 4577 /* 4578 * Sanity checks - grab all the locks so that we wait for all 4579 * in-flight operations which may do put_pwq(). 4580 */ 4581 mutex_lock(&wq_pool_mutex); 4582 mutex_lock(&wq->mutex); 4583 for_each_pwq(pwq, wq) { 4584 raw_spin_lock_irq(&pwq->pool->lock); 4585 if (WARN_ON(pwq_busy(pwq))) { 4586 pr_warn("%s: %s has the following busy pwq\n", 4587 __func__, wq->name); 4588 show_pwq(pwq); 4589 raw_spin_unlock_irq(&pwq->pool->lock); 4590 mutex_unlock(&wq->mutex); 4591 mutex_unlock(&wq_pool_mutex); 4592 show_one_workqueue(wq); 4593 return; 4594 } 4595 raw_spin_unlock_irq(&pwq->pool->lock); 4596 } 4597 mutex_unlock(&wq->mutex); 4598 4599 /* 4600 * wq list is used to freeze wq, remove from list after 4601 * flushing is complete in case freeze races us. 4602 */ 4603 list_del_rcu(&wq->list); 4604 mutex_unlock(&wq_pool_mutex); 4605 4606 if (!(wq->flags & WQ_UNBOUND)) { 4607 wq_unregister_lockdep(wq); 4608 /* 4609 * The base ref is never dropped on per-cpu pwqs. Directly 4610 * schedule RCU free. 4611 */ 4612 call_rcu(&wq->rcu, rcu_free_wq); 4613 } else { 4614 /* 4615 * We're the sole accessor of @wq at this point. Directly 4616 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4617 * @wq will be freed when the last pwq is released. 4618 */ 4619 for_each_node(node) { 4620 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4621 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4622 put_pwq_unlocked(pwq); 4623 } 4624 4625 /* 4626 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4627 * put. Don't access it afterwards. 4628 */ 4629 pwq = wq->dfl_pwq; 4630 wq->dfl_pwq = NULL; 4631 put_pwq_unlocked(pwq); 4632 } 4633 } 4634 EXPORT_SYMBOL_GPL(destroy_workqueue); 4635 4636 /** 4637 * workqueue_set_max_active - adjust max_active of a workqueue 4638 * @wq: target workqueue 4639 * @max_active: new max_active value. 4640 * 4641 * Set max_active of @wq to @max_active. 4642 * 4643 * CONTEXT: 4644 * Don't call from IRQ context. 4645 */ 4646 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4647 { 4648 struct pool_workqueue *pwq; 4649 4650 /* disallow meddling with max_active for ordered workqueues */ 4651 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4652 return; 4653 4654 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4655 4656 mutex_lock(&wq->mutex); 4657 4658 wq->flags &= ~__WQ_ORDERED; 4659 wq->saved_max_active = max_active; 4660 4661 for_each_pwq(pwq, wq) 4662 pwq_adjust_max_active(pwq); 4663 4664 mutex_unlock(&wq->mutex); 4665 } 4666 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4667 4668 /** 4669 * current_work - retrieve %current task's work struct 4670 * 4671 * Determine if %current task is a workqueue worker and what it's working on. 4672 * Useful to find out the context that the %current task is running in. 4673 * 4674 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 4675 */ 4676 struct work_struct *current_work(void) 4677 { 4678 struct worker *worker = current_wq_worker(); 4679 4680 return worker ? worker->current_work : NULL; 4681 } 4682 EXPORT_SYMBOL(current_work); 4683 4684 /** 4685 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4686 * 4687 * Determine whether %current is a workqueue rescuer. Can be used from 4688 * work functions to determine whether it's being run off the rescuer task. 4689 * 4690 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4691 */ 4692 bool current_is_workqueue_rescuer(void) 4693 { 4694 struct worker *worker = current_wq_worker(); 4695 4696 return worker && worker->rescue_wq; 4697 } 4698 4699 /** 4700 * workqueue_congested - test whether a workqueue is congested 4701 * @cpu: CPU in question 4702 * @wq: target workqueue 4703 * 4704 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4705 * no synchronization around this function and the test result is 4706 * unreliable and only useful as advisory hints or for debugging. 4707 * 4708 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4709 * Note that both per-cpu and unbound workqueues may be associated with 4710 * multiple pool_workqueues which have separate congested states. A 4711 * workqueue being congested on one CPU doesn't mean the workqueue is also 4712 * contested on other CPUs / NUMA nodes. 4713 * 4714 * Return: 4715 * %true if congested, %false otherwise. 4716 */ 4717 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4718 { 4719 struct pool_workqueue *pwq; 4720 bool ret; 4721 4722 rcu_read_lock(); 4723 preempt_disable(); 4724 4725 if (cpu == WORK_CPU_UNBOUND) 4726 cpu = smp_processor_id(); 4727 4728 if (!(wq->flags & WQ_UNBOUND)) 4729 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4730 else 4731 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4732 4733 ret = !list_empty(&pwq->inactive_works); 4734 preempt_enable(); 4735 rcu_read_unlock(); 4736 4737 return ret; 4738 } 4739 EXPORT_SYMBOL_GPL(workqueue_congested); 4740 4741 /** 4742 * work_busy - test whether a work is currently pending or running 4743 * @work: the work to be tested 4744 * 4745 * Test whether @work is currently pending or running. There is no 4746 * synchronization around this function and the test result is 4747 * unreliable and only useful as advisory hints or for debugging. 4748 * 4749 * Return: 4750 * OR'd bitmask of WORK_BUSY_* bits. 4751 */ 4752 unsigned int work_busy(struct work_struct *work) 4753 { 4754 struct worker_pool *pool; 4755 unsigned long flags; 4756 unsigned int ret = 0; 4757 4758 if (work_pending(work)) 4759 ret |= WORK_BUSY_PENDING; 4760 4761 rcu_read_lock(); 4762 pool = get_work_pool(work); 4763 if (pool) { 4764 raw_spin_lock_irqsave(&pool->lock, flags); 4765 if (find_worker_executing_work(pool, work)) 4766 ret |= WORK_BUSY_RUNNING; 4767 raw_spin_unlock_irqrestore(&pool->lock, flags); 4768 } 4769 rcu_read_unlock(); 4770 4771 return ret; 4772 } 4773 EXPORT_SYMBOL_GPL(work_busy); 4774 4775 /** 4776 * set_worker_desc - set description for the current work item 4777 * @fmt: printf-style format string 4778 * @...: arguments for the format string 4779 * 4780 * This function can be called by a running work function to describe what 4781 * the work item is about. If the worker task gets dumped, this 4782 * information will be printed out together to help debugging. The 4783 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4784 */ 4785 void set_worker_desc(const char *fmt, ...) 4786 { 4787 struct worker *worker = current_wq_worker(); 4788 va_list args; 4789 4790 if (worker) { 4791 va_start(args, fmt); 4792 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4793 va_end(args); 4794 } 4795 } 4796 EXPORT_SYMBOL_GPL(set_worker_desc); 4797 4798 /** 4799 * print_worker_info - print out worker information and description 4800 * @log_lvl: the log level to use when printing 4801 * @task: target task 4802 * 4803 * If @task is a worker and currently executing a work item, print out the 4804 * name of the workqueue being serviced and worker description set with 4805 * set_worker_desc() by the currently executing work item. 4806 * 4807 * This function can be safely called on any task as long as the 4808 * task_struct itself is accessible. While safe, this function isn't 4809 * synchronized and may print out mixups or garbages of limited length. 4810 */ 4811 void print_worker_info(const char *log_lvl, struct task_struct *task) 4812 { 4813 work_func_t *fn = NULL; 4814 char name[WQ_NAME_LEN] = { }; 4815 char desc[WORKER_DESC_LEN] = { }; 4816 struct pool_workqueue *pwq = NULL; 4817 struct workqueue_struct *wq = NULL; 4818 struct worker *worker; 4819 4820 if (!(task->flags & PF_WQ_WORKER)) 4821 return; 4822 4823 /* 4824 * This function is called without any synchronization and @task 4825 * could be in any state. Be careful with dereferences. 4826 */ 4827 worker = kthread_probe_data(task); 4828 4829 /* 4830 * Carefully copy the associated workqueue's workfn, name and desc. 4831 * Keep the original last '\0' in case the original is garbage. 4832 */ 4833 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn)); 4834 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq)); 4835 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq)); 4836 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1); 4837 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1); 4838 4839 if (fn || name[0] || desc[0]) { 4840 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 4841 if (strcmp(name, desc)) 4842 pr_cont(" (%s)", desc); 4843 pr_cont("\n"); 4844 } 4845 } 4846 4847 static void pr_cont_pool_info(struct worker_pool *pool) 4848 { 4849 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4850 if (pool->node != NUMA_NO_NODE) 4851 pr_cont(" node=%d", pool->node); 4852 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4853 } 4854 4855 struct pr_cont_work_struct { 4856 bool comma; 4857 work_func_t func; 4858 long ctr; 4859 }; 4860 4861 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp) 4862 { 4863 if (!pcwsp->ctr) 4864 goto out_record; 4865 if (func == pcwsp->func) { 4866 pcwsp->ctr++; 4867 return; 4868 } 4869 if (pcwsp->ctr == 1) 4870 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func); 4871 else 4872 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func); 4873 pcwsp->ctr = 0; 4874 out_record: 4875 if ((long)func == -1L) 4876 return; 4877 pcwsp->comma = comma; 4878 pcwsp->func = func; 4879 pcwsp->ctr = 1; 4880 } 4881 4882 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp) 4883 { 4884 if (work->func == wq_barrier_func) { 4885 struct wq_barrier *barr; 4886 4887 barr = container_of(work, struct wq_barrier, work); 4888 4889 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 4890 pr_cont("%s BAR(%d)", comma ? "," : "", 4891 task_pid_nr(barr->task)); 4892 } else { 4893 if (!comma) 4894 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 4895 pr_cont_work_flush(comma, work->func, pcwsp); 4896 } 4897 } 4898 4899 static void show_pwq(struct pool_workqueue *pwq) 4900 { 4901 struct pr_cont_work_struct pcws = { .ctr = 0, }; 4902 struct worker_pool *pool = pwq->pool; 4903 struct work_struct *work; 4904 struct worker *worker; 4905 bool has_in_flight = false, has_pending = false; 4906 int bkt; 4907 4908 pr_info(" pwq %d:", pool->id); 4909 pr_cont_pool_info(pool); 4910 4911 pr_cont(" active=%d/%d refcnt=%d%s\n", 4912 pwq->nr_active, pwq->max_active, pwq->refcnt, 4913 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4914 4915 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4916 if (worker->current_pwq == pwq) { 4917 has_in_flight = true; 4918 break; 4919 } 4920 } 4921 if (has_in_flight) { 4922 bool comma = false; 4923 4924 pr_info(" in-flight:"); 4925 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4926 if (worker->current_pwq != pwq) 4927 continue; 4928 4929 pr_cont("%s %d%s:%ps", comma ? "," : "", 4930 task_pid_nr(worker->task), 4931 worker->rescue_wq ? "(RESCUER)" : "", 4932 worker->current_func); 4933 list_for_each_entry(work, &worker->scheduled, entry) 4934 pr_cont_work(false, work, &pcws); 4935 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 4936 comma = true; 4937 } 4938 pr_cont("\n"); 4939 } 4940 4941 list_for_each_entry(work, &pool->worklist, entry) { 4942 if (get_work_pwq(work) == pwq) { 4943 has_pending = true; 4944 break; 4945 } 4946 } 4947 if (has_pending) { 4948 bool comma = false; 4949 4950 pr_info(" pending:"); 4951 list_for_each_entry(work, &pool->worklist, entry) { 4952 if (get_work_pwq(work) != pwq) 4953 continue; 4954 4955 pr_cont_work(comma, work, &pcws); 4956 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4957 } 4958 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 4959 pr_cont("\n"); 4960 } 4961 4962 if (!list_empty(&pwq->inactive_works)) { 4963 bool comma = false; 4964 4965 pr_info(" inactive:"); 4966 list_for_each_entry(work, &pwq->inactive_works, entry) { 4967 pr_cont_work(comma, work, &pcws); 4968 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4969 } 4970 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 4971 pr_cont("\n"); 4972 } 4973 } 4974 4975 /** 4976 * show_one_workqueue - dump state of specified workqueue 4977 * @wq: workqueue whose state will be printed 4978 */ 4979 void show_one_workqueue(struct workqueue_struct *wq) 4980 { 4981 struct pool_workqueue *pwq; 4982 bool idle = true; 4983 unsigned long flags; 4984 4985 for_each_pwq(pwq, wq) { 4986 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) { 4987 idle = false; 4988 break; 4989 } 4990 } 4991 if (idle) /* Nothing to print for idle workqueue */ 4992 return; 4993 4994 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4995 4996 for_each_pwq(pwq, wq) { 4997 raw_spin_lock_irqsave(&pwq->pool->lock, flags); 4998 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) { 4999 /* 5000 * Defer printing to avoid deadlocks in console 5001 * drivers that queue work while holding locks 5002 * also taken in their write paths. 5003 */ 5004 printk_deferred_enter(); 5005 show_pwq(pwq); 5006 printk_deferred_exit(); 5007 } 5008 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); 5009 /* 5010 * We could be printing a lot from atomic context, e.g. 5011 * sysrq-t -> show_all_workqueues(). Avoid triggering 5012 * hard lockup. 5013 */ 5014 touch_nmi_watchdog(); 5015 } 5016 5017 } 5018 5019 /** 5020 * show_one_worker_pool - dump state of specified worker pool 5021 * @pool: worker pool whose state will be printed 5022 */ 5023 static void show_one_worker_pool(struct worker_pool *pool) 5024 { 5025 struct worker *worker; 5026 bool first = true; 5027 unsigned long flags; 5028 unsigned long hung = 0; 5029 5030 raw_spin_lock_irqsave(&pool->lock, flags); 5031 if (pool->nr_workers == pool->nr_idle) 5032 goto next_pool; 5033 5034 /* How long the first pending work is waiting for a worker. */ 5035 if (!list_empty(&pool->worklist)) 5036 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000; 5037 5038 /* 5039 * Defer printing to avoid deadlocks in console drivers that 5040 * queue work while holding locks also taken in their write 5041 * paths. 5042 */ 5043 printk_deferred_enter(); 5044 pr_info("pool %d:", pool->id); 5045 pr_cont_pool_info(pool); 5046 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers); 5047 if (pool->manager) 5048 pr_cont(" manager: %d", 5049 task_pid_nr(pool->manager->task)); 5050 list_for_each_entry(worker, &pool->idle_list, entry) { 5051 pr_cont(" %s%d", first ? "idle: " : "", 5052 task_pid_nr(worker->task)); 5053 first = false; 5054 } 5055 pr_cont("\n"); 5056 printk_deferred_exit(); 5057 next_pool: 5058 raw_spin_unlock_irqrestore(&pool->lock, flags); 5059 /* 5060 * We could be printing a lot from atomic context, e.g. 5061 * sysrq-t -> show_all_workqueues(). Avoid triggering 5062 * hard lockup. 5063 */ 5064 touch_nmi_watchdog(); 5065 5066 } 5067 5068 /** 5069 * show_all_workqueues - dump workqueue state 5070 * 5071 * Called from a sysrq handler and prints out all busy workqueues and pools. 5072 */ 5073 void show_all_workqueues(void) 5074 { 5075 struct workqueue_struct *wq; 5076 struct worker_pool *pool; 5077 int pi; 5078 5079 rcu_read_lock(); 5080 5081 pr_info("Showing busy workqueues and worker pools:\n"); 5082 5083 list_for_each_entry_rcu(wq, &workqueues, list) 5084 show_one_workqueue(wq); 5085 5086 for_each_pool(pool, pi) 5087 show_one_worker_pool(pool); 5088 5089 rcu_read_unlock(); 5090 } 5091 5092 /** 5093 * show_freezable_workqueues - dump freezable workqueue state 5094 * 5095 * Called from try_to_freeze_tasks() and prints out all freezable workqueues 5096 * still busy. 5097 */ 5098 void show_freezable_workqueues(void) 5099 { 5100 struct workqueue_struct *wq; 5101 5102 rcu_read_lock(); 5103 5104 pr_info("Showing freezable workqueues that are still busy:\n"); 5105 5106 list_for_each_entry_rcu(wq, &workqueues, list) { 5107 if (!(wq->flags & WQ_FREEZABLE)) 5108 continue; 5109 show_one_workqueue(wq); 5110 } 5111 5112 rcu_read_unlock(); 5113 } 5114 5115 /* used to show worker information through /proc/PID/{comm,stat,status} */ 5116 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 5117 { 5118 int off; 5119 5120 /* always show the actual comm */ 5121 off = strscpy(buf, task->comm, size); 5122 if (off < 0) 5123 return; 5124 5125 /* stabilize PF_WQ_WORKER and worker pool association */ 5126 mutex_lock(&wq_pool_attach_mutex); 5127 5128 if (task->flags & PF_WQ_WORKER) { 5129 struct worker *worker = kthread_data(task); 5130 struct worker_pool *pool = worker->pool; 5131 5132 if (pool) { 5133 raw_spin_lock_irq(&pool->lock); 5134 /* 5135 * ->desc tracks information (wq name or 5136 * set_worker_desc()) for the latest execution. If 5137 * current, prepend '+', otherwise '-'. 5138 */ 5139 if (worker->desc[0] != '\0') { 5140 if (worker->current_work) 5141 scnprintf(buf + off, size - off, "+%s", 5142 worker->desc); 5143 else 5144 scnprintf(buf + off, size - off, "-%s", 5145 worker->desc); 5146 } 5147 raw_spin_unlock_irq(&pool->lock); 5148 } 5149 } 5150 5151 mutex_unlock(&wq_pool_attach_mutex); 5152 } 5153 5154 #ifdef CONFIG_SMP 5155 5156 /* 5157 * CPU hotplug. 5158 * 5159 * There are two challenges in supporting CPU hotplug. Firstly, there 5160 * are a lot of assumptions on strong associations among work, pwq and 5161 * pool which make migrating pending and scheduled works very 5162 * difficult to implement without impacting hot paths. Secondly, 5163 * worker pools serve mix of short, long and very long running works making 5164 * blocked draining impractical. 5165 * 5166 * This is solved by allowing the pools to be disassociated from the CPU 5167 * running as an unbound one and allowing it to be reattached later if the 5168 * cpu comes back online. 5169 */ 5170 5171 static void unbind_workers(int cpu) 5172 { 5173 struct worker_pool *pool; 5174 struct worker *worker; 5175 5176 for_each_cpu_worker_pool(pool, cpu) { 5177 mutex_lock(&wq_pool_attach_mutex); 5178 raw_spin_lock_irq(&pool->lock); 5179 5180 /* 5181 * We've blocked all attach/detach operations. Make all workers 5182 * unbound and set DISASSOCIATED. Before this, all workers 5183 * must be on the cpu. After this, they may become diasporas. 5184 * And the preemption disabled section in their sched callbacks 5185 * are guaranteed to see WORKER_UNBOUND since the code here 5186 * is on the same cpu. 5187 */ 5188 for_each_pool_worker(worker, pool) 5189 worker->flags |= WORKER_UNBOUND; 5190 5191 pool->flags |= POOL_DISASSOCIATED; 5192 5193 /* 5194 * The handling of nr_running in sched callbacks are disabled 5195 * now. Zap nr_running. After this, nr_running stays zero and 5196 * need_more_worker() and keep_working() are always true as 5197 * long as the worklist is not empty. This pool now behaves as 5198 * an unbound (in terms of concurrency management) pool which 5199 * are served by workers tied to the pool. 5200 */ 5201 pool->nr_running = 0; 5202 5203 /* 5204 * With concurrency management just turned off, a busy 5205 * worker blocking could lead to lengthy stalls. Kick off 5206 * unbound chain execution of currently pending work items. 5207 */ 5208 wake_up_worker(pool); 5209 5210 raw_spin_unlock_irq(&pool->lock); 5211 5212 for_each_pool_worker(worker, pool) 5213 unbind_worker(worker); 5214 5215 mutex_unlock(&wq_pool_attach_mutex); 5216 } 5217 } 5218 5219 /** 5220 * rebind_workers - rebind all workers of a pool to the associated CPU 5221 * @pool: pool of interest 5222 * 5223 * @pool->cpu is coming online. Rebind all workers to the CPU. 5224 */ 5225 static void rebind_workers(struct worker_pool *pool) 5226 { 5227 struct worker *worker; 5228 5229 lockdep_assert_held(&wq_pool_attach_mutex); 5230 5231 /* 5232 * Restore CPU affinity of all workers. As all idle workers should 5233 * be on the run-queue of the associated CPU before any local 5234 * wake-ups for concurrency management happen, restore CPU affinity 5235 * of all workers first and then clear UNBOUND. As we're called 5236 * from CPU_ONLINE, the following shouldn't fail. 5237 */ 5238 for_each_pool_worker(worker, pool) { 5239 kthread_set_per_cpu(worker->task, pool->cpu); 5240 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 5241 pool->attrs->cpumask) < 0); 5242 } 5243 5244 raw_spin_lock_irq(&pool->lock); 5245 5246 pool->flags &= ~POOL_DISASSOCIATED; 5247 5248 for_each_pool_worker(worker, pool) { 5249 unsigned int worker_flags = worker->flags; 5250 5251 /* 5252 * We want to clear UNBOUND but can't directly call 5253 * worker_clr_flags() or adjust nr_running. Atomically 5254 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 5255 * @worker will clear REBOUND using worker_clr_flags() when 5256 * it initiates the next execution cycle thus restoring 5257 * concurrency management. Note that when or whether 5258 * @worker clears REBOUND doesn't affect correctness. 5259 * 5260 * WRITE_ONCE() is necessary because @worker->flags may be 5261 * tested without holding any lock in 5262 * wq_worker_running(). Without it, NOT_RUNNING test may 5263 * fail incorrectly leading to premature concurrency 5264 * management operations. 5265 */ 5266 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 5267 worker_flags |= WORKER_REBOUND; 5268 worker_flags &= ~WORKER_UNBOUND; 5269 WRITE_ONCE(worker->flags, worker_flags); 5270 } 5271 5272 raw_spin_unlock_irq(&pool->lock); 5273 } 5274 5275 /** 5276 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 5277 * @pool: unbound pool of interest 5278 * @cpu: the CPU which is coming up 5279 * 5280 * An unbound pool may end up with a cpumask which doesn't have any online 5281 * CPUs. When a worker of such pool get scheduled, the scheduler resets 5282 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 5283 * online CPU before, cpus_allowed of all its workers should be restored. 5284 */ 5285 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 5286 { 5287 static cpumask_t cpumask; 5288 struct worker *worker; 5289 5290 lockdep_assert_held(&wq_pool_attach_mutex); 5291 5292 /* is @cpu allowed for @pool? */ 5293 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 5294 return; 5295 5296 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 5297 5298 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 5299 for_each_pool_worker(worker, pool) 5300 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 5301 } 5302 5303 int workqueue_prepare_cpu(unsigned int cpu) 5304 { 5305 struct worker_pool *pool; 5306 5307 for_each_cpu_worker_pool(pool, cpu) { 5308 if (pool->nr_workers) 5309 continue; 5310 if (!create_worker(pool)) 5311 return -ENOMEM; 5312 } 5313 return 0; 5314 } 5315 5316 int workqueue_online_cpu(unsigned int cpu) 5317 { 5318 struct worker_pool *pool; 5319 struct workqueue_struct *wq; 5320 int pi; 5321 5322 mutex_lock(&wq_pool_mutex); 5323 5324 for_each_pool(pool, pi) { 5325 mutex_lock(&wq_pool_attach_mutex); 5326 5327 if (pool->cpu == cpu) 5328 rebind_workers(pool); 5329 else if (pool->cpu < 0) 5330 restore_unbound_workers_cpumask(pool, cpu); 5331 5332 mutex_unlock(&wq_pool_attach_mutex); 5333 } 5334 5335 /* update NUMA affinity of unbound workqueues */ 5336 list_for_each_entry(wq, &workqueues, list) 5337 wq_update_unbound_numa(wq, cpu, true); 5338 5339 mutex_unlock(&wq_pool_mutex); 5340 return 0; 5341 } 5342 5343 int workqueue_offline_cpu(unsigned int cpu) 5344 { 5345 struct workqueue_struct *wq; 5346 5347 /* unbinding per-cpu workers should happen on the local CPU */ 5348 if (WARN_ON(cpu != smp_processor_id())) 5349 return -1; 5350 5351 unbind_workers(cpu); 5352 5353 /* update NUMA affinity of unbound workqueues */ 5354 mutex_lock(&wq_pool_mutex); 5355 list_for_each_entry(wq, &workqueues, list) 5356 wq_update_unbound_numa(wq, cpu, false); 5357 mutex_unlock(&wq_pool_mutex); 5358 5359 return 0; 5360 } 5361 5362 struct work_for_cpu { 5363 struct work_struct work; 5364 long (*fn)(void *); 5365 void *arg; 5366 long ret; 5367 }; 5368 5369 static void work_for_cpu_fn(struct work_struct *work) 5370 { 5371 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 5372 5373 wfc->ret = wfc->fn(wfc->arg); 5374 } 5375 5376 /** 5377 * work_on_cpu - run a function in thread context on a particular cpu 5378 * @cpu: the cpu to run on 5379 * @fn: the function to run 5380 * @arg: the function arg 5381 * 5382 * It is up to the caller to ensure that the cpu doesn't go offline. 5383 * The caller must not hold any locks which would prevent @fn from completing. 5384 * 5385 * Return: The value @fn returns. 5386 */ 5387 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 5388 { 5389 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 5390 5391 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 5392 schedule_work_on(cpu, &wfc.work); 5393 flush_work(&wfc.work); 5394 destroy_work_on_stack(&wfc.work); 5395 return wfc.ret; 5396 } 5397 EXPORT_SYMBOL_GPL(work_on_cpu); 5398 5399 /** 5400 * work_on_cpu_safe - run a function in thread context on a particular cpu 5401 * @cpu: the cpu to run on 5402 * @fn: the function to run 5403 * @arg: the function argument 5404 * 5405 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 5406 * any locks which would prevent @fn from completing. 5407 * 5408 * Return: The value @fn returns. 5409 */ 5410 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) 5411 { 5412 long ret = -ENODEV; 5413 5414 cpus_read_lock(); 5415 if (cpu_online(cpu)) 5416 ret = work_on_cpu(cpu, fn, arg); 5417 cpus_read_unlock(); 5418 return ret; 5419 } 5420 EXPORT_SYMBOL_GPL(work_on_cpu_safe); 5421 #endif /* CONFIG_SMP */ 5422 5423 #ifdef CONFIG_FREEZER 5424 5425 /** 5426 * freeze_workqueues_begin - begin freezing workqueues 5427 * 5428 * Start freezing workqueues. After this function returns, all freezable 5429 * workqueues will queue new works to their inactive_works list instead of 5430 * pool->worklist. 5431 * 5432 * CONTEXT: 5433 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5434 */ 5435 void freeze_workqueues_begin(void) 5436 { 5437 struct workqueue_struct *wq; 5438 struct pool_workqueue *pwq; 5439 5440 mutex_lock(&wq_pool_mutex); 5441 5442 WARN_ON_ONCE(workqueue_freezing); 5443 workqueue_freezing = true; 5444 5445 list_for_each_entry(wq, &workqueues, list) { 5446 mutex_lock(&wq->mutex); 5447 for_each_pwq(pwq, wq) 5448 pwq_adjust_max_active(pwq); 5449 mutex_unlock(&wq->mutex); 5450 } 5451 5452 mutex_unlock(&wq_pool_mutex); 5453 } 5454 5455 /** 5456 * freeze_workqueues_busy - are freezable workqueues still busy? 5457 * 5458 * Check whether freezing is complete. This function must be called 5459 * between freeze_workqueues_begin() and thaw_workqueues(). 5460 * 5461 * CONTEXT: 5462 * Grabs and releases wq_pool_mutex. 5463 * 5464 * Return: 5465 * %true if some freezable workqueues are still busy. %false if freezing 5466 * is complete. 5467 */ 5468 bool freeze_workqueues_busy(void) 5469 { 5470 bool busy = false; 5471 struct workqueue_struct *wq; 5472 struct pool_workqueue *pwq; 5473 5474 mutex_lock(&wq_pool_mutex); 5475 5476 WARN_ON_ONCE(!workqueue_freezing); 5477 5478 list_for_each_entry(wq, &workqueues, list) { 5479 if (!(wq->flags & WQ_FREEZABLE)) 5480 continue; 5481 /* 5482 * nr_active is monotonically decreasing. It's safe 5483 * to peek without lock. 5484 */ 5485 rcu_read_lock(); 5486 for_each_pwq(pwq, wq) { 5487 WARN_ON_ONCE(pwq->nr_active < 0); 5488 if (pwq->nr_active) { 5489 busy = true; 5490 rcu_read_unlock(); 5491 goto out_unlock; 5492 } 5493 } 5494 rcu_read_unlock(); 5495 } 5496 out_unlock: 5497 mutex_unlock(&wq_pool_mutex); 5498 return busy; 5499 } 5500 5501 /** 5502 * thaw_workqueues - thaw workqueues 5503 * 5504 * Thaw workqueues. Normal queueing is restored and all collected 5505 * frozen works are transferred to their respective pool worklists. 5506 * 5507 * CONTEXT: 5508 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5509 */ 5510 void thaw_workqueues(void) 5511 { 5512 struct workqueue_struct *wq; 5513 struct pool_workqueue *pwq; 5514 5515 mutex_lock(&wq_pool_mutex); 5516 5517 if (!workqueue_freezing) 5518 goto out_unlock; 5519 5520 workqueue_freezing = false; 5521 5522 /* restore max_active and repopulate worklist */ 5523 list_for_each_entry(wq, &workqueues, list) { 5524 mutex_lock(&wq->mutex); 5525 for_each_pwq(pwq, wq) 5526 pwq_adjust_max_active(pwq); 5527 mutex_unlock(&wq->mutex); 5528 } 5529 5530 out_unlock: 5531 mutex_unlock(&wq_pool_mutex); 5532 } 5533 #endif /* CONFIG_FREEZER */ 5534 5535 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask) 5536 { 5537 LIST_HEAD(ctxs); 5538 int ret = 0; 5539 struct workqueue_struct *wq; 5540 struct apply_wqattrs_ctx *ctx, *n; 5541 5542 lockdep_assert_held(&wq_pool_mutex); 5543 5544 list_for_each_entry(wq, &workqueues, list) { 5545 if (!(wq->flags & WQ_UNBOUND)) 5546 continue; 5547 /* creating multiple pwqs breaks ordering guarantee */ 5548 if (wq->flags & __WQ_ORDERED) 5549 continue; 5550 5551 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask); 5552 if (!ctx) { 5553 ret = -ENOMEM; 5554 break; 5555 } 5556 5557 list_add_tail(&ctx->list, &ctxs); 5558 } 5559 5560 list_for_each_entry_safe(ctx, n, &ctxs, list) { 5561 if (!ret) 5562 apply_wqattrs_commit(ctx); 5563 apply_wqattrs_cleanup(ctx); 5564 } 5565 5566 if (!ret) { 5567 mutex_lock(&wq_pool_attach_mutex); 5568 cpumask_copy(wq_unbound_cpumask, unbound_cpumask); 5569 mutex_unlock(&wq_pool_attach_mutex); 5570 } 5571 return ret; 5572 } 5573 5574 /** 5575 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 5576 * @cpumask: the cpumask to set 5577 * 5578 * The low-level workqueues cpumask is a global cpumask that limits 5579 * the affinity of all unbound workqueues. This function check the @cpumask 5580 * and apply it to all unbound workqueues and updates all pwqs of them. 5581 * 5582 * Return: 0 - Success 5583 * -EINVAL - Invalid @cpumask 5584 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 5585 */ 5586 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 5587 { 5588 int ret = -EINVAL; 5589 5590 /* 5591 * Not excluding isolated cpus on purpose. 5592 * If the user wishes to include them, we allow that. 5593 */ 5594 cpumask_and(cpumask, cpumask, cpu_possible_mask); 5595 if (!cpumask_empty(cpumask)) { 5596 apply_wqattrs_lock(); 5597 if (cpumask_equal(cpumask, wq_unbound_cpumask)) { 5598 ret = 0; 5599 goto out_unlock; 5600 } 5601 5602 ret = workqueue_apply_unbound_cpumask(cpumask); 5603 5604 out_unlock: 5605 apply_wqattrs_unlock(); 5606 } 5607 5608 return ret; 5609 } 5610 5611 #ifdef CONFIG_SYSFS 5612 /* 5613 * Workqueues with WQ_SYSFS flag set is visible to userland via 5614 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 5615 * following attributes. 5616 * 5617 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 5618 * max_active RW int : maximum number of in-flight work items 5619 * 5620 * Unbound workqueues have the following extra attributes. 5621 * 5622 * pool_ids RO int : the associated pool IDs for each node 5623 * nice RW int : nice value of the workers 5624 * cpumask RW mask : bitmask of allowed CPUs for the workers 5625 * numa RW bool : whether enable NUMA affinity 5626 */ 5627 struct wq_device { 5628 struct workqueue_struct *wq; 5629 struct device dev; 5630 }; 5631 5632 static struct workqueue_struct *dev_to_wq(struct device *dev) 5633 { 5634 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5635 5636 return wq_dev->wq; 5637 } 5638 5639 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 5640 char *buf) 5641 { 5642 struct workqueue_struct *wq = dev_to_wq(dev); 5643 5644 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 5645 } 5646 static DEVICE_ATTR_RO(per_cpu); 5647 5648 static ssize_t max_active_show(struct device *dev, 5649 struct device_attribute *attr, char *buf) 5650 { 5651 struct workqueue_struct *wq = dev_to_wq(dev); 5652 5653 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 5654 } 5655 5656 static ssize_t max_active_store(struct device *dev, 5657 struct device_attribute *attr, const char *buf, 5658 size_t count) 5659 { 5660 struct workqueue_struct *wq = dev_to_wq(dev); 5661 int val; 5662 5663 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 5664 return -EINVAL; 5665 5666 workqueue_set_max_active(wq, val); 5667 return count; 5668 } 5669 static DEVICE_ATTR_RW(max_active); 5670 5671 static struct attribute *wq_sysfs_attrs[] = { 5672 &dev_attr_per_cpu.attr, 5673 &dev_attr_max_active.attr, 5674 NULL, 5675 }; 5676 ATTRIBUTE_GROUPS(wq_sysfs); 5677 5678 static ssize_t wq_pool_ids_show(struct device *dev, 5679 struct device_attribute *attr, char *buf) 5680 { 5681 struct workqueue_struct *wq = dev_to_wq(dev); 5682 const char *delim = ""; 5683 int node, written = 0; 5684 5685 cpus_read_lock(); 5686 rcu_read_lock(); 5687 for_each_node(node) { 5688 written += scnprintf(buf + written, PAGE_SIZE - written, 5689 "%s%d:%d", delim, node, 5690 unbound_pwq_by_node(wq, node)->pool->id); 5691 delim = " "; 5692 } 5693 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 5694 rcu_read_unlock(); 5695 cpus_read_unlock(); 5696 5697 return written; 5698 } 5699 5700 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 5701 char *buf) 5702 { 5703 struct workqueue_struct *wq = dev_to_wq(dev); 5704 int written; 5705 5706 mutex_lock(&wq->mutex); 5707 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 5708 mutex_unlock(&wq->mutex); 5709 5710 return written; 5711 } 5712 5713 /* prepare workqueue_attrs for sysfs store operations */ 5714 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5715 { 5716 struct workqueue_attrs *attrs; 5717 5718 lockdep_assert_held(&wq_pool_mutex); 5719 5720 attrs = alloc_workqueue_attrs(); 5721 if (!attrs) 5722 return NULL; 5723 5724 copy_workqueue_attrs(attrs, wq->unbound_attrs); 5725 return attrs; 5726 } 5727 5728 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 5729 const char *buf, size_t count) 5730 { 5731 struct workqueue_struct *wq = dev_to_wq(dev); 5732 struct workqueue_attrs *attrs; 5733 int ret = -ENOMEM; 5734 5735 apply_wqattrs_lock(); 5736 5737 attrs = wq_sysfs_prep_attrs(wq); 5738 if (!attrs) 5739 goto out_unlock; 5740 5741 if (sscanf(buf, "%d", &attrs->nice) == 1 && 5742 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 5743 ret = apply_workqueue_attrs_locked(wq, attrs); 5744 else 5745 ret = -EINVAL; 5746 5747 out_unlock: 5748 apply_wqattrs_unlock(); 5749 free_workqueue_attrs(attrs); 5750 return ret ?: count; 5751 } 5752 5753 static ssize_t wq_cpumask_show(struct device *dev, 5754 struct device_attribute *attr, char *buf) 5755 { 5756 struct workqueue_struct *wq = dev_to_wq(dev); 5757 int written; 5758 5759 mutex_lock(&wq->mutex); 5760 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5761 cpumask_pr_args(wq->unbound_attrs->cpumask)); 5762 mutex_unlock(&wq->mutex); 5763 return written; 5764 } 5765 5766 static ssize_t wq_cpumask_store(struct device *dev, 5767 struct device_attribute *attr, 5768 const char *buf, size_t count) 5769 { 5770 struct workqueue_struct *wq = dev_to_wq(dev); 5771 struct workqueue_attrs *attrs; 5772 int ret = -ENOMEM; 5773 5774 apply_wqattrs_lock(); 5775 5776 attrs = wq_sysfs_prep_attrs(wq); 5777 if (!attrs) 5778 goto out_unlock; 5779 5780 ret = cpumask_parse(buf, attrs->cpumask); 5781 if (!ret) 5782 ret = apply_workqueue_attrs_locked(wq, attrs); 5783 5784 out_unlock: 5785 apply_wqattrs_unlock(); 5786 free_workqueue_attrs(attrs); 5787 return ret ?: count; 5788 } 5789 5790 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5791 char *buf) 5792 { 5793 struct workqueue_struct *wq = dev_to_wq(dev); 5794 int written; 5795 5796 mutex_lock(&wq->mutex); 5797 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5798 !wq->unbound_attrs->no_numa); 5799 mutex_unlock(&wq->mutex); 5800 5801 return written; 5802 } 5803 5804 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 5805 const char *buf, size_t count) 5806 { 5807 struct workqueue_struct *wq = dev_to_wq(dev); 5808 struct workqueue_attrs *attrs; 5809 int v, ret = -ENOMEM; 5810 5811 apply_wqattrs_lock(); 5812 5813 attrs = wq_sysfs_prep_attrs(wq); 5814 if (!attrs) 5815 goto out_unlock; 5816 5817 ret = -EINVAL; 5818 if (sscanf(buf, "%d", &v) == 1) { 5819 attrs->no_numa = !v; 5820 ret = apply_workqueue_attrs_locked(wq, attrs); 5821 } 5822 5823 out_unlock: 5824 apply_wqattrs_unlock(); 5825 free_workqueue_attrs(attrs); 5826 return ret ?: count; 5827 } 5828 5829 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5830 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5831 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5832 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5833 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5834 __ATTR_NULL, 5835 }; 5836 5837 static struct bus_type wq_subsys = { 5838 .name = "workqueue", 5839 .dev_groups = wq_sysfs_groups, 5840 }; 5841 5842 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5843 struct device_attribute *attr, char *buf) 5844 { 5845 int written; 5846 5847 mutex_lock(&wq_pool_mutex); 5848 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5849 cpumask_pr_args(wq_unbound_cpumask)); 5850 mutex_unlock(&wq_pool_mutex); 5851 5852 return written; 5853 } 5854 5855 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5856 struct device_attribute *attr, const char *buf, size_t count) 5857 { 5858 cpumask_var_t cpumask; 5859 int ret; 5860 5861 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5862 return -ENOMEM; 5863 5864 ret = cpumask_parse(buf, cpumask); 5865 if (!ret) 5866 ret = workqueue_set_unbound_cpumask(cpumask); 5867 5868 free_cpumask_var(cpumask); 5869 return ret ? ret : count; 5870 } 5871 5872 static struct device_attribute wq_sysfs_cpumask_attr = 5873 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5874 wq_unbound_cpumask_store); 5875 5876 static int __init wq_sysfs_init(void) 5877 { 5878 struct device *dev_root; 5879 int err; 5880 5881 err = subsys_virtual_register(&wq_subsys, NULL); 5882 if (err) 5883 return err; 5884 5885 dev_root = bus_get_dev_root(&wq_subsys); 5886 if (dev_root) { 5887 err = device_create_file(dev_root, &wq_sysfs_cpumask_attr); 5888 put_device(dev_root); 5889 } 5890 return err; 5891 } 5892 core_initcall(wq_sysfs_init); 5893 5894 static void wq_device_release(struct device *dev) 5895 { 5896 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5897 5898 kfree(wq_dev); 5899 } 5900 5901 /** 5902 * workqueue_sysfs_register - make a workqueue visible in sysfs 5903 * @wq: the workqueue to register 5904 * 5905 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5906 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5907 * which is the preferred method. 5908 * 5909 * Workqueue user should use this function directly iff it wants to apply 5910 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5911 * apply_workqueue_attrs() may race against userland updating the 5912 * attributes. 5913 * 5914 * Return: 0 on success, -errno on failure. 5915 */ 5916 int workqueue_sysfs_register(struct workqueue_struct *wq) 5917 { 5918 struct wq_device *wq_dev; 5919 int ret; 5920 5921 /* 5922 * Adjusting max_active or creating new pwqs by applying 5923 * attributes breaks ordering guarantee. Disallow exposing ordered 5924 * workqueues. 5925 */ 5926 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 5927 return -EINVAL; 5928 5929 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5930 if (!wq_dev) 5931 return -ENOMEM; 5932 5933 wq_dev->wq = wq; 5934 wq_dev->dev.bus = &wq_subsys; 5935 wq_dev->dev.release = wq_device_release; 5936 dev_set_name(&wq_dev->dev, "%s", wq->name); 5937 5938 /* 5939 * unbound_attrs are created separately. Suppress uevent until 5940 * everything is ready. 5941 */ 5942 dev_set_uevent_suppress(&wq_dev->dev, true); 5943 5944 ret = device_register(&wq_dev->dev); 5945 if (ret) { 5946 put_device(&wq_dev->dev); 5947 wq->wq_dev = NULL; 5948 return ret; 5949 } 5950 5951 if (wq->flags & WQ_UNBOUND) { 5952 struct device_attribute *attr; 5953 5954 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5955 ret = device_create_file(&wq_dev->dev, attr); 5956 if (ret) { 5957 device_unregister(&wq_dev->dev); 5958 wq->wq_dev = NULL; 5959 return ret; 5960 } 5961 } 5962 } 5963 5964 dev_set_uevent_suppress(&wq_dev->dev, false); 5965 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5966 return 0; 5967 } 5968 5969 /** 5970 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5971 * @wq: the workqueue to unregister 5972 * 5973 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5974 */ 5975 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5976 { 5977 struct wq_device *wq_dev = wq->wq_dev; 5978 5979 if (!wq->wq_dev) 5980 return; 5981 5982 wq->wq_dev = NULL; 5983 device_unregister(&wq_dev->dev); 5984 } 5985 #else /* CONFIG_SYSFS */ 5986 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5987 #endif /* CONFIG_SYSFS */ 5988 5989 /* 5990 * Workqueue watchdog. 5991 * 5992 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 5993 * flush dependency, a concurrency managed work item which stays RUNNING 5994 * indefinitely. Workqueue stalls can be very difficult to debug as the 5995 * usual warning mechanisms don't trigger and internal workqueue state is 5996 * largely opaque. 5997 * 5998 * Workqueue watchdog monitors all worker pools periodically and dumps 5999 * state if some pools failed to make forward progress for a while where 6000 * forward progress is defined as the first item on ->worklist changing. 6001 * 6002 * This mechanism is controlled through the kernel parameter 6003 * "workqueue.watchdog_thresh" which can be updated at runtime through the 6004 * corresponding sysfs parameter file. 6005 */ 6006 #ifdef CONFIG_WQ_WATCHDOG 6007 6008 static unsigned long wq_watchdog_thresh = 30; 6009 static struct timer_list wq_watchdog_timer; 6010 6011 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 6012 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 6013 6014 /* 6015 * Show workers that might prevent the processing of pending work items. 6016 * The only candidates are CPU-bound workers in the running state. 6017 * Pending work items should be handled by another idle worker 6018 * in all other situations. 6019 */ 6020 static void show_cpu_pool_hog(struct worker_pool *pool) 6021 { 6022 struct worker *worker; 6023 unsigned long flags; 6024 int bkt; 6025 6026 raw_spin_lock_irqsave(&pool->lock, flags); 6027 6028 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 6029 if (task_is_running(worker->task)) { 6030 /* 6031 * Defer printing to avoid deadlocks in console 6032 * drivers that queue work while holding locks 6033 * also taken in their write paths. 6034 */ 6035 printk_deferred_enter(); 6036 6037 pr_info("pool %d:\n", pool->id); 6038 sched_show_task(worker->task); 6039 6040 printk_deferred_exit(); 6041 } 6042 } 6043 6044 raw_spin_unlock_irqrestore(&pool->lock, flags); 6045 } 6046 6047 static void show_cpu_pools_hogs(void) 6048 { 6049 struct worker_pool *pool; 6050 int pi; 6051 6052 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n"); 6053 6054 rcu_read_lock(); 6055 6056 for_each_pool(pool, pi) { 6057 if (pool->cpu_stall) 6058 show_cpu_pool_hog(pool); 6059 6060 } 6061 6062 rcu_read_unlock(); 6063 } 6064 6065 static void wq_watchdog_reset_touched(void) 6066 { 6067 int cpu; 6068 6069 wq_watchdog_touched = jiffies; 6070 for_each_possible_cpu(cpu) 6071 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 6072 } 6073 6074 static void wq_watchdog_timer_fn(struct timer_list *unused) 6075 { 6076 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 6077 bool lockup_detected = false; 6078 bool cpu_pool_stall = false; 6079 unsigned long now = jiffies; 6080 struct worker_pool *pool; 6081 int pi; 6082 6083 if (!thresh) 6084 return; 6085 6086 rcu_read_lock(); 6087 6088 for_each_pool(pool, pi) { 6089 unsigned long pool_ts, touched, ts; 6090 6091 pool->cpu_stall = false; 6092 if (list_empty(&pool->worklist)) 6093 continue; 6094 6095 /* 6096 * If a virtual machine is stopped by the host it can look to 6097 * the watchdog like a stall. 6098 */ 6099 kvm_check_and_clear_guest_paused(); 6100 6101 /* get the latest of pool and touched timestamps */ 6102 if (pool->cpu >= 0) 6103 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu)); 6104 else 6105 touched = READ_ONCE(wq_watchdog_touched); 6106 pool_ts = READ_ONCE(pool->watchdog_ts); 6107 6108 if (time_after(pool_ts, touched)) 6109 ts = pool_ts; 6110 else 6111 ts = touched; 6112 6113 /* did we stall? */ 6114 if (time_after(now, ts + thresh)) { 6115 lockup_detected = true; 6116 if (pool->cpu >= 0) { 6117 pool->cpu_stall = true; 6118 cpu_pool_stall = true; 6119 } 6120 pr_emerg("BUG: workqueue lockup - pool"); 6121 pr_cont_pool_info(pool); 6122 pr_cont(" stuck for %us!\n", 6123 jiffies_to_msecs(now - pool_ts) / 1000); 6124 } 6125 6126 6127 } 6128 6129 rcu_read_unlock(); 6130 6131 if (lockup_detected) 6132 show_all_workqueues(); 6133 6134 if (cpu_pool_stall) 6135 show_cpu_pools_hogs(); 6136 6137 wq_watchdog_reset_touched(); 6138 mod_timer(&wq_watchdog_timer, jiffies + thresh); 6139 } 6140 6141 notrace void wq_watchdog_touch(int cpu) 6142 { 6143 if (cpu >= 0) 6144 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 6145 6146 wq_watchdog_touched = jiffies; 6147 } 6148 6149 static void wq_watchdog_set_thresh(unsigned long thresh) 6150 { 6151 wq_watchdog_thresh = 0; 6152 del_timer_sync(&wq_watchdog_timer); 6153 6154 if (thresh) { 6155 wq_watchdog_thresh = thresh; 6156 wq_watchdog_reset_touched(); 6157 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 6158 } 6159 } 6160 6161 static int wq_watchdog_param_set_thresh(const char *val, 6162 const struct kernel_param *kp) 6163 { 6164 unsigned long thresh; 6165 int ret; 6166 6167 ret = kstrtoul(val, 0, &thresh); 6168 if (ret) 6169 return ret; 6170 6171 if (system_wq) 6172 wq_watchdog_set_thresh(thresh); 6173 else 6174 wq_watchdog_thresh = thresh; 6175 6176 return 0; 6177 } 6178 6179 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 6180 .set = wq_watchdog_param_set_thresh, 6181 .get = param_get_ulong, 6182 }; 6183 6184 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 6185 0644); 6186 6187 static void wq_watchdog_init(void) 6188 { 6189 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 6190 wq_watchdog_set_thresh(wq_watchdog_thresh); 6191 } 6192 6193 #else /* CONFIG_WQ_WATCHDOG */ 6194 6195 static inline void wq_watchdog_init(void) { } 6196 6197 #endif /* CONFIG_WQ_WATCHDOG */ 6198 6199 static void __init wq_numa_init(void) 6200 { 6201 cpumask_var_t *tbl; 6202 int node, cpu; 6203 6204 if (num_possible_nodes() <= 1) 6205 return; 6206 6207 if (wq_disable_numa) { 6208 pr_info("workqueue: NUMA affinity support disabled\n"); 6209 return; 6210 } 6211 6212 for_each_possible_cpu(cpu) { 6213 if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) { 6214 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 6215 return; 6216 } 6217 } 6218 6219 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(); 6220 BUG_ON(!wq_update_unbound_numa_attrs_buf); 6221 6222 /* 6223 * We want masks of possible CPUs of each node which isn't readily 6224 * available. Build one from cpu_to_node() which should have been 6225 * fully initialized by now. 6226 */ 6227 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL); 6228 BUG_ON(!tbl); 6229 6230 for_each_node(node) 6231 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 6232 node_online(node) ? node : NUMA_NO_NODE)); 6233 6234 for_each_possible_cpu(cpu) { 6235 node = cpu_to_node(cpu); 6236 cpumask_set_cpu(cpu, tbl[node]); 6237 } 6238 6239 wq_numa_possible_cpumask = tbl; 6240 wq_numa_enabled = true; 6241 } 6242 6243 /** 6244 * workqueue_init_early - early init for workqueue subsystem 6245 * 6246 * This is the first half of two-staged workqueue subsystem initialization 6247 * and invoked as soon as the bare basics - memory allocation, cpumasks and 6248 * idr are up. It sets up all the data structures and system workqueues 6249 * and allows early boot code to create workqueues and queue/cancel work 6250 * items. Actual work item execution starts only after kthreads can be 6251 * created and scheduled right before early initcalls. 6252 */ 6253 void __init workqueue_init_early(void) 6254 { 6255 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 6256 int i, cpu; 6257 6258 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 6259 6260 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 6261 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_WQ)); 6262 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_DOMAIN)); 6263 6264 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 6265 6266 /* initialize CPU pools */ 6267 for_each_possible_cpu(cpu) { 6268 struct worker_pool *pool; 6269 6270 i = 0; 6271 for_each_cpu_worker_pool(pool, cpu) { 6272 BUG_ON(init_worker_pool(pool)); 6273 pool->cpu = cpu; 6274 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 6275 pool->attrs->nice = std_nice[i++]; 6276 pool->node = cpu_to_node(cpu); 6277 6278 /* alloc pool ID */ 6279 mutex_lock(&wq_pool_mutex); 6280 BUG_ON(worker_pool_assign_id(pool)); 6281 mutex_unlock(&wq_pool_mutex); 6282 } 6283 } 6284 6285 /* create default unbound and ordered wq attrs */ 6286 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 6287 struct workqueue_attrs *attrs; 6288 6289 BUG_ON(!(attrs = alloc_workqueue_attrs())); 6290 attrs->nice = std_nice[i]; 6291 unbound_std_wq_attrs[i] = attrs; 6292 6293 /* 6294 * An ordered wq should have only one pwq as ordering is 6295 * guaranteed by max_active which is enforced by pwqs. 6296 * Turn off NUMA so that dfl_pwq is used for all nodes. 6297 */ 6298 BUG_ON(!(attrs = alloc_workqueue_attrs())); 6299 attrs->nice = std_nice[i]; 6300 attrs->no_numa = true; 6301 ordered_wq_attrs[i] = attrs; 6302 } 6303 6304 system_wq = alloc_workqueue("events", 0, 0); 6305 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 6306 system_long_wq = alloc_workqueue("events_long", 0, 0); 6307 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 6308 WQ_UNBOUND_MAX_ACTIVE); 6309 system_freezable_wq = alloc_workqueue("events_freezable", 6310 WQ_FREEZABLE, 0); 6311 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 6312 WQ_POWER_EFFICIENT, 0); 6313 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 6314 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 6315 0); 6316 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 6317 !system_unbound_wq || !system_freezable_wq || 6318 !system_power_efficient_wq || 6319 !system_freezable_power_efficient_wq); 6320 } 6321 6322 /** 6323 * workqueue_init - bring workqueue subsystem fully online 6324 * 6325 * This is the latter half of two-staged workqueue subsystem initialization 6326 * and invoked as soon as kthreads can be created and scheduled. 6327 * Workqueues have been created and work items queued on them, but there 6328 * are no kworkers executing the work items yet. Populate the worker pools 6329 * with the initial workers and enable future kworker creations. 6330 */ 6331 void __init workqueue_init(void) 6332 { 6333 struct workqueue_struct *wq; 6334 struct worker_pool *pool; 6335 int cpu, bkt; 6336 6337 /* 6338 * It'd be simpler to initialize NUMA in workqueue_init_early() but 6339 * CPU to node mapping may not be available that early on some 6340 * archs such as power and arm64. As per-cpu pools created 6341 * previously could be missing node hint and unbound pools NUMA 6342 * affinity, fix them up. 6343 * 6344 * Also, while iterating workqueues, create rescuers if requested. 6345 */ 6346 wq_numa_init(); 6347 6348 mutex_lock(&wq_pool_mutex); 6349 6350 for_each_possible_cpu(cpu) { 6351 for_each_cpu_worker_pool(pool, cpu) { 6352 pool->node = cpu_to_node(cpu); 6353 } 6354 } 6355 6356 list_for_each_entry(wq, &workqueues, list) { 6357 wq_update_unbound_numa(wq, smp_processor_id(), true); 6358 WARN(init_rescuer(wq), 6359 "workqueue: failed to create early rescuer for %s", 6360 wq->name); 6361 } 6362 6363 mutex_unlock(&wq_pool_mutex); 6364 6365 /* create the initial workers */ 6366 for_each_online_cpu(cpu) { 6367 for_each_cpu_worker_pool(pool, cpu) { 6368 pool->flags &= ~POOL_DISASSOCIATED; 6369 BUG_ON(!create_worker(pool)); 6370 } 6371 } 6372 6373 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 6374 BUG_ON(!create_worker(pool)); 6375 6376 wq_online = true; 6377 wq_watchdog_init(); 6378 } 6379 6380 /* 6381 * Despite the naming, this is a no-op function which is here only for avoiding 6382 * link error. Since compile-time warning may fail to catch, we will need to 6383 * emit run-time warning from __flush_workqueue(). 6384 */ 6385 void __warn_flushing_systemwide_wq(void) { } 6386 EXPORT_SYMBOL(__warn_flushing_systemwide_wq); 6387