xref: /openbmc/linux/kernel/workqueue.c (revision 97da55fc)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There is one worker pool for each CPU and
20  * one extra for works which are better served by workers which are
21  * not bound to any specific CPU.
22  *
23  * Please read Documentation/workqueue.txt for details.
24  */
25 
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/hashtable.h>
45 
46 #include "workqueue_internal.h"
47 
48 enum {
49 	/*
50 	 * worker_pool flags
51 	 *
52 	 * A bound pool is either associated or disassociated with its CPU.
53 	 * While associated (!DISASSOCIATED), all workers are bound to the
54 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
55 	 * is in effect.
56 	 *
57 	 * While DISASSOCIATED, the cpu may be offline and all workers have
58 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
59 	 * be executing on any CPU.  The pool behaves as an unbound one.
60 	 *
61 	 * Note that DISASSOCIATED can be flipped only while holding
62 	 * assoc_mutex to avoid changing binding state while
63 	 * create_worker() is in progress.
64 	 */
65 	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
66 	POOL_MANAGING_WORKERS   = 1 << 1,       /* managing workers */
67 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
68 	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
69 
70 	/* worker flags */
71 	WORKER_STARTED		= 1 << 0,	/* started */
72 	WORKER_DIE		= 1 << 1,	/* die die die */
73 	WORKER_IDLE		= 1 << 2,	/* is idle */
74 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
75 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
76 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
77 
78 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_UNBOUND |
79 				  WORKER_CPU_INTENSIVE,
80 
81 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
82 
83 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
84 
85 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
86 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
87 
88 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
89 						/* call for help after 10ms
90 						   (min two ticks) */
91 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
92 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
93 
94 	/*
95 	 * Rescue workers are used only on emergencies and shared by
96 	 * all cpus.  Give -20.
97 	 */
98 	RESCUER_NICE_LEVEL	= -20,
99 	HIGHPRI_NICE_LEVEL	= -20,
100 };
101 
102 /*
103  * Structure fields follow one of the following exclusion rules.
104  *
105  * I: Modifiable by initialization/destruction paths and read-only for
106  *    everyone else.
107  *
108  * P: Preemption protected.  Disabling preemption is enough and should
109  *    only be modified and accessed from the local cpu.
110  *
111  * L: pool->lock protected.  Access with pool->lock held.
112  *
113  * X: During normal operation, modification requires pool->lock and should
114  *    be done only from local cpu.  Either disabling preemption on local
115  *    cpu or grabbing pool->lock is enough for read access.  If
116  *    POOL_DISASSOCIATED is set, it's identical to L.
117  *
118  * F: wq->flush_mutex protected.
119  *
120  * W: workqueue_lock protected.
121  */
122 
123 /* struct worker is defined in workqueue_internal.h */
124 
125 struct worker_pool {
126 	spinlock_t		lock;		/* the pool lock */
127 	unsigned int		cpu;		/* I: the associated cpu */
128 	int			id;		/* I: pool ID */
129 	unsigned int		flags;		/* X: flags */
130 
131 	struct list_head	worklist;	/* L: list of pending works */
132 	int			nr_workers;	/* L: total number of workers */
133 
134 	/* nr_idle includes the ones off idle_list for rebinding */
135 	int			nr_idle;	/* L: currently idle ones */
136 
137 	struct list_head	idle_list;	/* X: list of idle workers */
138 	struct timer_list	idle_timer;	/* L: worker idle timeout */
139 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
140 
141 	/* workers are chained either in busy_hash or idle_list */
142 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
143 						/* L: hash of busy workers */
144 
145 	struct mutex		assoc_mutex;	/* protect POOL_DISASSOCIATED */
146 	struct ida		worker_ida;	/* L: for worker IDs */
147 
148 	/*
149 	 * The current concurrency level.  As it's likely to be accessed
150 	 * from other CPUs during try_to_wake_up(), put it in a separate
151 	 * cacheline.
152 	 */
153 	atomic_t		nr_running ____cacheline_aligned_in_smp;
154 } ____cacheline_aligned_in_smp;
155 
156 /*
157  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
158  * of work_struct->data are used for flags and the remaining high bits
159  * point to the pwq; thus, pwqs need to be aligned at two's power of the
160  * number of flag bits.
161  */
162 struct pool_workqueue {
163 	struct worker_pool	*pool;		/* I: the associated pool */
164 	struct workqueue_struct *wq;		/* I: the owning workqueue */
165 	int			work_color;	/* L: current color */
166 	int			flush_color;	/* L: flushing color */
167 	int			nr_in_flight[WORK_NR_COLORS];
168 						/* L: nr of in_flight works */
169 	int			nr_active;	/* L: nr of active works */
170 	int			max_active;	/* L: max active works */
171 	struct list_head	delayed_works;	/* L: delayed works */
172 };
173 
174 /*
175  * Structure used to wait for workqueue flush.
176  */
177 struct wq_flusher {
178 	struct list_head	list;		/* F: list of flushers */
179 	int			flush_color;	/* F: flush color waiting for */
180 	struct completion	done;		/* flush completion */
181 };
182 
183 /*
184  * All cpumasks are assumed to be always set on UP and thus can't be
185  * used to determine whether there's something to be done.
186  */
187 #ifdef CONFIG_SMP
188 typedef cpumask_var_t mayday_mask_t;
189 #define mayday_test_and_set_cpu(cpu, mask)	\
190 	cpumask_test_and_set_cpu((cpu), (mask))
191 #define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
192 #define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
193 #define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
194 #define free_mayday_mask(mask)			free_cpumask_var((mask))
195 #else
196 typedef unsigned long mayday_mask_t;
197 #define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
198 #define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
199 #define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
200 #define alloc_mayday_mask(maskp, gfp)		true
201 #define free_mayday_mask(mask)			do { } while (0)
202 #endif
203 
204 /*
205  * The externally visible workqueue abstraction is an array of
206  * per-CPU workqueues:
207  */
208 struct workqueue_struct {
209 	unsigned int		flags;		/* W: WQ_* flags */
210 	union {
211 		struct pool_workqueue __percpu		*pcpu;
212 		struct pool_workqueue			*single;
213 		unsigned long				v;
214 	} pool_wq;				/* I: pwq's */
215 	struct list_head	list;		/* W: list of all workqueues */
216 
217 	struct mutex		flush_mutex;	/* protects wq flushing */
218 	int			work_color;	/* F: current work color */
219 	int			flush_color;	/* F: current flush color */
220 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
221 	struct wq_flusher	*first_flusher;	/* F: first flusher */
222 	struct list_head	flusher_queue;	/* F: flush waiters */
223 	struct list_head	flusher_overflow; /* F: flush overflow list */
224 
225 	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
226 	struct worker		*rescuer;	/* I: rescue worker */
227 
228 	int			nr_drainers;	/* W: drain in progress */
229 	int			saved_max_active; /* W: saved pwq max_active */
230 #ifdef CONFIG_LOCKDEP
231 	struct lockdep_map	lockdep_map;
232 #endif
233 	char			name[];		/* I: workqueue name */
234 };
235 
236 struct workqueue_struct *system_wq __read_mostly;
237 EXPORT_SYMBOL_GPL(system_wq);
238 struct workqueue_struct *system_highpri_wq __read_mostly;
239 EXPORT_SYMBOL_GPL(system_highpri_wq);
240 struct workqueue_struct *system_long_wq __read_mostly;
241 EXPORT_SYMBOL_GPL(system_long_wq);
242 struct workqueue_struct *system_unbound_wq __read_mostly;
243 EXPORT_SYMBOL_GPL(system_unbound_wq);
244 struct workqueue_struct *system_freezable_wq __read_mostly;
245 EXPORT_SYMBOL_GPL(system_freezable_wq);
246 
247 #define CREATE_TRACE_POINTS
248 #include <trace/events/workqueue.h>
249 
250 #define for_each_std_worker_pool(pool, cpu)				\
251 	for ((pool) = &std_worker_pools(cpu)[0];			\
252 	     (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++)
253 
254 #define for_each_busy_worker(worker, i, pool)				\
255 	hash_for_each(pool->busy_hash, i, worker, hentry)
256 
257 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
258 				unsigned int sw)
259 {
260 	if (cpu < nr_cpu_ids) {
261 		if (sw & 1) {
262 			cpu = cpumask_next(cpu, mask);
263 			if (cpu < nr_cpu_ids)
264 				return cpu;
265 		}
266 		if (sw & 2)
267 			return WORK_CPU_UNBOUND;
268 	}
269 	return WORK_CPU_END;
270 }
271 
272 static inline int __next_pwq_cpu(int cpu, const struct cpumask *mask,
273 				 struct workqueue_struct *wq)
274 {
275 	return __next_wq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
276 }
277 
278 /*
279  * CPU iterators
280  *
281  * An extra cpu number is defined using an invalid cpu number
282  * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
283  * specific CPU.  The following iterators are similar to for_each_*_cpu()
284  * iterators but also considers the unbound CPU.
285  *
286  * for_each_wq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
287  * for_each_online_wq_cpu()	: online CPUs + WORK_CPU_UNBOUND
288  * for_each_pwq_cpu()		: possible CPUs for bound workqueues,
289  *				  WORK_CPU_UNBOUND for unbound workqueues
290  */
291 #define for_each_wq_cpu(cpu)						\
292 	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3);		\
293 	     (cpu) < WORK_CPU_END;					\
294 	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3))
295 
296 #define for_each_online_wq_cpu(cpu)					\
297 	for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3);		\
298 	     (cpu) < WORK_CPU_END;					\
299 	     (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3))
300 
301 #define for_each_pwq_cpu(cpu, wq)					\
302 	for ((cpu) = __next_pwq_cpu(-1, cpu_possible_mask, (wq));	\
303 	     (cpu) < WORK_CPU_END;					\
304 	     (cpu) = __next_pwq_cpu((cpu), cpu_possible_mask, (wq)))
305 
306 #ifdef CONFIG_DEBUG_OBJECTS_WORK
307 
308 static struct debug_obj_descr work_debug_descr;
309 
310 static void *work_debug_hint(void *addr)
311 {
312 	return ((struct work_struct *) addr)->func;
313 }
314 
315 /*
316  * fixup_init is called when:
317  * - an active object is initialized
318  */
319 static int work_fixup_init(void *addr, enum debug_obj_state state)
320 {
321 	struct work_struct *work = addr;
322 
323 	switch (state) {
324 	case ODEBUG_STATE_ACTIVE:
325 		cancel_work_sync(work);
326 		debug_object_init(work, &work_debug_descr);
327 		return 1;
328 	default:
329 		return 0;
330 	}
331 }
332 
333 /*
334  * fixup_activate is called when:
335  * - an active object is activated
336  * - an unknown object is activated (might be a statically initialized object)
337  */
338 static int work_fixup_activate(void *addr, enum debug_obj_state state)
339 {
340 	struct work_struct *work = addr;
341 
342 	switch (state) {
343 
344 	case ODEBUG_STATE_NOTAVAILABLE:
345 		/*
346 		 * This is not really a fixup. The work struct was
347 		 * statically initialized. We just make sure that it
348 		 * is tracked in the object tracker.
349 		 */
350 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
351 			debug_object_init(work, &work_debug_descr);
352 			debug_object_activate(work, &work_debug_descr);
353 			return 0;
354 		}
355 		WARN_ON_ONCE(1);
356 		return 0;
357 
358 	case ODEBUG_STATE_ACTIVE:
359 		WARN_ON(1);
360 
361 	default:
362 		return 0;
363 	}
364 }
365 
366 /*
367  * fixup_free is called when:
368  * - an active object is freed
369  */
370 static int work_fixup_free(void *addr, enum debug_obj_state state)
371 {
372 	struct work_struct *work = addr;
373 
374 	switch (state) {
375 	case ODEBUG_STATE_ACTIVE:
376 		cancel_work_sync(work);
377 		debug_object_free(work, &work_debug_descr);
378 		return 1;
379 	default:
380 		return 0;
381 	}
382 }
383 
384 static struct debug_obj_descr work_debug_descr = {
385 	.name		= "work_struct",
386 	.debug_hint	= work_debug_hint,
387 	.fixup_init	= work_fixup_init,
388 	.fixup_activate	= work_fixup_activate,
389 	.fixup_free	= work_fixup_free,
390 };
391 
392 static inline void debug_work_activate(struct work_struct *work)
393 {
394 	debug_object_activate(work, &work_debug_descr);
395 }
396 
397 static inline void debug_work_deactivate(struct work_struct *work)
398 {
399 	debug_object_deactivate(work, &work_debug_descr);
400 }
401 
402 void __init_work(struct work_struct *work, int onstack)
403 {
404 	if (onstack)
405 		debug_object_init_on_stack(work, &work_debug_descr);
406 	else
407 		debug_object_init(work, &work_debug_descr);
408 }
409 EXPORT_SYMBOL_GPL(__init_work);
410 
411 void destroy_work_on_stack(struct work_struct *work)
412 {
413 	debug_object_free(work, &work_debug_descr);
414 }
415 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
416 
417 #else
418 static inline void debug_work_activate(struct work_struct *work) { }
419 static inline void debug_work_deactivate(struct work_struct *work) { }
420 #endif
421 
422 /* Serializes the accesses to the list of workqueues. */
423 static DEFINE_SPINLOCK(workqueue_lock);
424 static LIST_HEAD(workqueues);
425 static bool workqueue_freezing;		/* W: have wqs started freezing? */
426 
427 /*
428  * The CPU and unbound standard worker pools.  The unbound ones have
429  * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set.
430  */
431 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
432 				     cpu_std_worker_pools);
433 static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS];
434 
435 /* idr of all pools */
436 static DEFINE_MUTEX(worker_pool_idr_mutex);
437 static DEFINE_IDR(worker_pool_idr);
438 
439 static int worker_thread(void *__worker);
440 
441 static struct worker_pool *std_worker_pools(int cpu)
442 {
443 	if (cpu != WORK_CPU_UNBOUND)
444 		return per_cpu(cpu_std_worker_pools, cpu);
445 	else
446 		return unbound_std_worker_pools;
447 }
448 
449 static int std_worker_pool_pri(struct worker_pool *pool)
450 {
451 	return pool - std_worker_pools(pool->cpu);
452 }
453 
454 /* allocate ID and assign it to @pool */
455 static int worker_pool_assign_id(struct worker_pool *pool)
456 {
457 	int ret;
458 
459 	mutex_lock(&worker_pool_idr_mutex);
460 	ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL);
461 	if (ret >= 0)
462 		pool->id = ret;
463 	mutex_unlock(&worker_pool_idr_mutex);
464 
465 	return ret < 0 ? ret : 0;
466 }
467 
468 /*
469  * Lookup worker_pool by id.  The idr currently is built during boot and
470  * never modified.  Don't worry about locking for now.
471  */
472 static struct worker_pool *worker_pool_by_id(int pool_id)
473 {
474 	return idr_find(&worker_pool_idr, pool_id);
475 }
476 
477 static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
478 {
479 	struct worker_pool *pools = std_worker_pools(cpu);
480 
481 	return &pools[highpri];
482 }
483 
484 static struct pool_workqueue *get_pwq(unsigned int cpu,
485 				      struct workqueue_struct *wq)
486 {
487 	if (!(wq->flags & WQ_UNBOUND)) {
488 		if (likely(cpu < nr_cpu_ids))
489 			return per_cpu_ptr(wq->pool_wq.pcpu, cpu);
490 	} else if (likely(cpu == WORK_CPU_UNBOUND))
491 		return wq->pool_wq.single;
492 	return NULL;
493 }
494 
495 static unsigned int work_color_to_flags(int color)
496 {
497 	return color << WORK_STRUCT_COLOR_SHIFT;
498 }
499 
500 static int get_work_color(struct work_struct *work)
501 {
502 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
503 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
504 }
505 
506 static int work_next_color(int color)
507 {
508 	return (color + 1) % WORK_NR_COLORS;
509 }
510 
511 /*
512  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
513  * contain the pointer to the queued pwq.  Once execution starts, the flag
514  * is cleared and the high bits contain OFFQ flags and pool ID.
515  *
516  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
517  * and clear_work_data() can be used to set the pwq, pool or clear
518  * work->data.  These functions should only be called while the work is
519  * owned - ie. while the PENDING bit is set.
520  *
521  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
522  * corresponding to a work.  Pool is available once the work has been
523  * queued anywhere after initialization until it is sync canceled.  pwq is
524  * available only while the work item is queued.
525  *
526  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
527  * canceled.  While being canceled, a work item may have its PENDING set
528  * but stay off timer and worklist for arbitrarily long and nobody should
529  * try to steal the PENDING bit.
530  */
531 static inline void set_work_data(struct work_struct *work, unsigned long data,
532 				 unsigned long flags)
533 {
534 	BUG_ON(!work_pending(work));
535 	atomic_long_set(&work->data, data | flags | work_static(work));
536 }
537 
538 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
539 			 unsigned long extra_flags)
540 {
541 	set_work_data(work, (unsigned long)pwq,
542 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
543 }
544 
545 static void set_work_pool_and_keep_pending(struct work_struct *work,
546 					   int pool_id)
547 {
548 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
549 		      WORK_STRUCT_PENDING);
550 }
551 
552 static void set_work_pool_and_clear_pending(struct work_struct *work,
553 					    int pool_id)
554 {
555 	/*
556 	 * The following wmb is paired with the implied mb in
557 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
558 	 * here are visible to and precede any updates by the next PENDING
559 	 * owner.
560 	 */
561 	smp_wmb();
562 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
563 }
564 
565 static void clear_work_data(struct work_struct *work)
566 {
567 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
568 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
569 }
570 
571 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
572 {
573 	unsigned long data = atomic_long_read(&work->data);
574 
575 	if (data & WORK_STRUCT_PWQ)
576 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
577 	else
578 		return NULL;
579 }
580 
581 /**
582  * get_work_pool - return the worker_pool a given work was associated with
583  * @work: the work item of interest
584  *
585  * Return the worker_pool @work was last associated with.  %NULL if none.
586  */
587 static struct worker_pool *get_work_pool(struct work_struct *work)
588 {
589 	unsigned long data = atomic_long_read(&work->data);
590 	struct worker_pool *pool;
591 	int pool_id;
592 
593 	if (data & WORK_STRUCT_PWQ)
594 		return ((struct pool_workqueue *)
595 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
596 
597 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
598 	if (pool_id == WORK_OFFQ_POOL_NONE)
599 		return NULL;
600 
601 	pool = worker_pool_by_id(pool_id);
602 	WARN_ON_ONCE(!pool);
603 	return pool;
604 }
605 
606 /**
607  * get_work_pool_id - return the worker pool ID a given work is associated with
608  * @work: the work item of interest
609  *
610  * Return the worker_pool ID @work was last associated with.
611  * %WORK_OFFQ_POOL_NONE if none.
612  */
613 static int get_work_pool_id(struct work_struct *work)
614 {
615 	unsigned long data = atomic_long_read(&work->data);
616 
617 	if (data & WORK_STRUCT_PWQ)
618 		return ((struct pool_workqueue *)
619 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
620 
621 	return data >> WORK_OFFQ_POOL_SHIFT;
622 }
623 
624 static void mark_work_canceling(struct work_struct *work)
625 {
626 	unsigned long pool_id = get_work_pool_id(work);
627 
628 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
629 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
630 }
631 
632 static bool work_is_canceling(struct work_struct *work)
633 {
634 	unsigned long data = atomic_long_read(&work->data);
635 
636 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
637 }
638 
639 /*
640  * Policy functions.  These define the policies on how the global worker
641  * pools are managed.  Unless noted otherwise, these functions assume that
642  * they're being called with pool->lock held.
643  */
644 
645 static bool __need_more_worker(struct worker_pool *pool)
646 {
647 	return !atomic_read(&pool->nr_running);
648 }
649 
650 /*
651  * Need to wake up a worker?  Called from anything but currently
652  * running workers.
653  *
654  * Note that, because unbound workers never contribute to nr_running, this
655  * function will always return %true for unbound pools as long as the
656  * worklist isn't empty.
657  */
658 static bool need_more_worker(struct worker_pool *pool)
659 {
660 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
661 }
662 
663 /* Can I start working?  Called from busy but !running workers. */
664 static bool may_start_working(struct worker_pool *pool)
665 {
666 	return pool->nr_idle;
667 }
668 
669 /* Do I need to keep working?  Called from currently running workers. */
670 static bool keep_working(struct worker_pool *pool)
671 {
672 	return !list_empty(&pool->worklist) &&
673 		atomic_read(&pool->nr_running) <= 1;
674 }
675 
676 /* Do we need a new worker?  Called from manager. */
677 static bool need_to_create_worker(struct worker_pool *pool)
678 {
679 	return need_more_worker(pool) && !may_start_working(pool);
680 }
681 
682 /* Do I need to be the manager? */
683 static bool need_to_manage_workers(struct worker_pool *pool)
684 {
685 	return need_to_create_worker(pool) ||
686 		(pool->flags & POOL_MANAGE_WORKERS);
687 }
688 
689 /* Do we have too many workers and should some go away? */
690 static bool too_many_workers(struct worker_pool *pool)
691 {
692 	bool managing = pool->flags & POOL_MANAGING_WORKERS;
693 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
694 	int nr_busy = pool->nr_workers - nr_idle;
695 
696 	/*
697 	 * nr_idle and idle_list may disagree if idle rebinding is in
698 	 * progress.  Never return %true if idle_list is empty.
699 	 */
700 	if (list_empty(&pool->idle_list))
701 		return false;
702 
703 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
704 }
705 
706 /*
707  * Wake up functions.
708  */
709 
710 /* Return the first worker.  Safe with preemption disabled */
711 static struct worker *first_worker(struct worker_pool *pool)
712 {
713 	if (unlikely(list_empty(&pool->idle_list)))
714 		return NULL;
715 
716 	return list_first_entry(&pool->idle_list, struct worker, entry);
717 }
718 
719 /**
720  * wake_up_worker - wake up an idle worker
721  * @pool: worker pool to wake worker from
722  *
723  * Wake up the first idle worker of @pool.
724  *
725  * CONTEXT:
726  * spin_lock_irq(pool->lock).
727  */
728 static void wake_up_worker(struct worker_pool *pool)
729 {
730 	struct worker *worker = first_worker(pool);
731 
732 	if (likely(worker))
733 		wake_up_process(worker->task);
734 }
735 
736 /**
737  * wq_worker_waking_up - a worker is waking up
738  * @task: task waking up
739  * @cpu: CPU @task is waking up to
740  *
741  * This function is called during try_to_wake_up() when a worker is
742  * being awoken.
743  *
744  * CONTEXT:
745  * spin_lock_irq(rq->lock)
746  */
747 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
748 {
749 	struct worker *worker = kthread_data(task);
750 
751 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
752 		WARN_ON_ONCE(worker->pool->cpu != cpu);
753 		atomic_inc(&worker->pool->nr_running);
754 	}
755 }
756 
757 /**
758  * wq_worker_sleeping - a worker is going to sleep
759  * @task: task going to sleep
760  * @cpu: CPU in question, must be the current CPU number
761  *
762  * This function is called during schedule() when a busy worker is
763  * going to sleep.  Worker on the same cpu can be woken up by
764  * returning pointer to its task.
765  *
766  * CONTEXT:
767  * spin_lock_irq(rq->lock)
768  *
769  * RETURNS:
770  * Worker task on @cpu to wake up, %NULL if none.
771  */
772 struct task_struct *wq_worker_sleeping(struct task_struct *task,
773 				       unsigned int cpu)
774 {
775 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
776 	struct worker_pool *pool;
777 
778 	/*
779 	 * Rescuers, which may not have all the fields set up like normal
780 	 * workers, also reach here, let's not access anything before
781 	 * checking NOT_RUNNING.
782 	 */
783 	if (worker->flags & WORKER_NOT_RUNNING)
784 		return NULL;
785 
786 	pool = worker->pool;
787 
788 	/* this can only happen on the local cpu */
789 	BUG_ON(cpu != raw_smp_processor_id());
790 
791 	/*
792 	 * The counterpart of the following dec_and_test, implied mb,
793 	 * worklist not empty test sequence is in insert_work().
794 	 * Please read comment there.
795 	 *
796 	 * NOT_RUNNING is clear.  This means that we're bound to and
797 	 * running on the local cpu w/ rq lock held and preemption
798 	 * disabled, which in turn means that none else could be
799 	 * manipulating idle_list, so dereferencing idle_list without pool
800 	 * lock is safe.
801 	 */
802 	if (atomic_dec_and_test(&pool->nr_running) &&
803 	    !list_empty(&pool->worklist))
804 		to_wakeup = first_worker(pool);
805 	return to_wakeup ? to_wakeup->task : NULL;
806 }
807 
808 /**
809  * worker_set_flags - set worker flags and adjust nr_running accordingly
810  * @worker: self
811  * @flags: flags to set
812  * @wakeup: wakeup an idle worker if necessary
813  *
814  * Set @flags in @worker->flags and adjust nr_running accordingly.  If
815  * nr_running becomes zero and @wakeup is %true, an idle worker is
816  * woken up.
817  *
818  * CONTEXT:
819  * spin_lock_irq(pool->lock)
820  */
821 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
822 				    bool wakeup)
823 {
824 	struct worker_pool *pool = worker->pool;
825 
826 	WARN_ON_ONCE(worker->task != current);
827 
828 	/*
829 	 * If transitioning into NOT_RUNNING, adjust nr_running and
830 	 * wake up an idle worker as necessary if requested by
831 	 * @wakeup.
832 	 */
833 	if ((flags & WORKER_NOT_RUNNING) &&
834 	    !(worker->flags & WORKER_NOT_RUNNING)) {
835 		if (wakeup) {
836 			if (atomic_dec_and_test(&pool->nr_running) &&
837 			    !list_empty(&pool->worklist))
838 				wake_up_worker(pool);
839 		} else
840 			atomic_dec(&pool->nr_running);
841 	}
842 
843 	worker->flags |= flags;
844 }
845 
846 /**
847  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
848  * @worker: self
849  * @flags: flags to clear
850  *
851  * Clear @flags in @worker->flags and adjust nr_running accordingly.
852  *
853  * CONTEXT:
854  * spin_lock_irq(pool->lock)
855  */
856 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
857 {
858 	struct worker_pool *pool = worker->pool;
859 	unsigned int oflags = worker->flags;
860 
861 	WARN_ON_ONCE(worker->task != current);
862 
863 	worker->flags &= ~flags;
864 
865 	/*
866 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
867 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
868 	 * of multiple flags, not a single flag.
869 	 */
870 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
871 		if (!(worker->flags & WORKER_NOT_RUNNING))
872 			atomic_inc(&pool->nr_running);
873 }
874 
875 /**
876  * find_worker_executing_work - find worker which is executing a work
877  * @pool: pool of interest
878  * @work: work to find worker for
879  *
880  * Find a worker which is executing @work on @pool by searching
881  * @pool->busy_hash which is keyed by the address of @work.  For a worker
882  * to match, its current execution should match the address of @work and
883  * its work function.  This is to avoid unwanted dependency between
884  * unrelated work executions through a work item being recycled while still
885  * being executed.
886  *
887  * This is a bit tricky.  A work item may be freed once its execution
888  * starts and nothing prevents the freed area from being recycled for
889  * another work item.  If the same work item address ends up being reused
890  * before the original execution finishes, workqueue will identify the
891  * recycled work item as currently executing and make it wait until the
892  * current execution finishes, introducing an unwanted dependency.
893  *
894  * This function checks the work item address, work function and workqueue
895  * to avoid false positives.  Note that this isn't complete as one may
896  * construct a work function which can introduce dependency onto itself
897  * through a recycled work item.  Well, if somebody wants to shoot oneself
898  * in the foot that badly, there's only so much we can do, and if such
899  * deadlock actually occurs, it should be easy to locate the culprit work
900  * function.
901  *
902  * CONTEXT:
903  * spin_lock_irq(pool->lock).
904  *
905  * RETURNS:
906  * Pointer to worker which is executing @work if found, NULL
907  * otherwise.
908  */
909 static struct worker *find_worker_executing_work(struct worker_pool *pool,
910 						 struct work_struct *work)
911 {
912 	struct worker *worker;
913 
914 	hash_for_each_possible(pool->busy_hash, worker, hentry,
915 			       (unsigned long)work)
916 		if (worker->current_work == work &&
917 		    worker->current_func == work->func)
918 			return worker;
919 
920 	return NULL;
921 }
922 
923 /**
924  * move_linked_works - move linked works to a list
925  * @work: start of series of works to be scheduled
926  * @head: target list to append @work to
927  * @nextp: out paramter for nested worklist walking
928  *
929  * Schedule linked works starting from @work to @head.  Work series to
930  * be scheduled starts at @work and includes any consecutive work with
931  * WORK_STRUCT_LINKED set in its predecessor.
932  *
933  * If @nextp is not NULL, it's updated to point to the next work of
934  * the last scheduled work.  This allows move_linked_works() to be
935  * nested inside outer list_for_each_entry_safe().
936  *
937  * CONTEXT:
938  * spin_lock_irq(pool->lock).
939  */
940 static void move_linked_works(struct work_struct *work, struct list_head *head,
941 			      struct work_struct **nextp)
942 {
943 	struct work_struct *n;
944 
945 	/*
946 	 * Linked worklist will always end before the end of the list,
947 	 * use NULL for list head.
948 	 */
949 	list_for_each_entry_safe_from(work, n, NULL, entry) {
950 		list_move_tail(&work->entry, head);
951 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
952 			break;
953 	}
954 
955 	/*
956 	 * If we're already inside safe list traversal and have moved
957 	 * multiple works to the scheduled queue, the next position
958 	 * needs to be updated.
959 	 */
960 	if (nextp)
961 		*nextp = n;
962 }
963 
964 static void pwq_activate_delayed_work(struct work_struct *work)
965 {
966 	struct pool_workqueue *pwq = get_work_pwq(work);
967 
968 	trace_workqueue_activate_work(work);
969 	move_linked_works(work, &pwq->pool->worklist, NULL);
970 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
971 	pwq->nr_active++;
972 }
973 
974 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
975 {
976 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
977 						    struct work_struct, entry);
978 
979 	pwq_activate_delayed_work(work);
980 }
981 
982 /**
983  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
984  * @pwq: pwq of interest
985  * @color: color of work which left the queue
986  *
987  * A work either has completed or is removed from pending queue,
988  * decrement nr_in_flight of its pwq and handle workqueue flushing.
989  *
990  * CONTEXT:
991  * spin_lock_irq(pool->lock).
992  */
993 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
994 {
995 	/* ignore uncolored works */
996 	if (color == WORK_NO_COLOR)
997 		return;
998 
999 	pwq->nr_in_flight[color]--;
1000 
1001 	pwq->nr_active--;
1002 	if (!list_empty(&pwq->delayed_works)) {
1003 		/* one down, submit a delayed one */
1004 		if (pwq->nr_active < pwq->max_active)
1005 			pwq_activate_first_delayed(pwq);
1006 	}
1007 
1008 	/* is flush in progress and are we at the flushing tip? */
1009 	if (likely(pwq->flush_color != color))
1010 		return;
1011 
1012 	/* are there still in-flight works? */
1013 	if (pwq->nr_in_flight[color])
1014 		return;
1015 
1016 	/* this pwq is done, clear flush_color */
1017 	pwq->flush_color = -1;
1018 
1019 	/*
1020 	 * If this was the last pwq, wake up the first flusher.  It
1021 	 * will handle the rest.
1022 	 */
1023 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1024 		complete(&pwq->wq->first_flusher->done);
1025 }
1026 
1027 /**
1028  * try_to_grab_pending - steal work item from worklist and disable irq
1029  * @work: work item to steal
1030  * @is_dwork: @work is a delayed_work
1031  * @flags: place to store irq state
1032  *
1033  * Try to grab PENDING bit of @work.  This function can handle @work in any
1034  * stable state - idle, on timer or on worklist.  Return values are
1035  *
1036  *  1		if @work was pending and we successfully stole PENDING
1037  *  0		if @work was idle and we claimed PENDING
1038  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1039  *  -ENOENT	if someone else is canceling @work, this state may persist
1040  *		for arbitrarily long
1041  *
1042  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1043  * interrupted while holding PENDING and @work off queue, irq must be
1044  * disabled on entry.  This, combined with delayed_work->timer being
1045  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1046  *
1047  * On successful return, >= 0, irq is disabled and the caller is
1048  * responsible for releasing it using local_irq_restore(*@flags).
1049  *
1050  * This function is safe to call from any context including IRQ handler.
1051  */
1052 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1053 			       unsigned long *flags)
1054 {
1055 	struct worker_pool *pool;
1056 	struct pool_workqueue *pwq;
1057 
1058 	local_irq_save(*flags);
1059 
1060 	/* try to steal the timer if it exists */
1061 	if (is_dwork) {
1062 		struct delayed_work *dwork = to_delayed_work(work);
1063 
1064 		/*
1065 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1066 		 * guaranteed that the timer is not queued anywhere and not
1067 		 * running on the local CPU.
1068 		 */
1069 		if (likely(del_timer(&dwork->timer)))
1070 			return 1;
1071 	}
1072 
1073 	/* try to claim PENDING the normal way */
1074 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1075 		return 0;
1076 
1077 	/*
1078 	 * The queueing is in progress, or it is already queued. Try to
1079 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1080 	 */
1081 	pool = get_work_pool(work);
1082 	if (!pool)
1083 		goto fail;
1084 
1085 	spin_lock(&pool->lock);
1086 	/*
1087 	 * work->data is guaranteed to point to pwq only while the work
1088 	 * item is queued on pwq->wq, and both updating work->data to point
1089 	 * to pwq on queueing and to pool on dequeueing are done under
1090 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1091 	 * points to pwq which is associated with a locked pool, the work
1092 	 * item is currently queued on that pool.
1093 	 */
1094 	pwq = get_work_pwq(work);
1095 	if (pwq && pwq->pool == pool) {
1096 		debug_work_deactivate(work);
1097 
1098 		/*
1099 		 * A delayed work item cannot be grabbed directly because
1100 		 * it might have linked NO_COLOR work items which, if left
1101 		 * on the delayed_list, will confuse pwq->nr_active
1102 		 * management later on and cause stall.  Make sure the work
1103 		 * item is activated before grabbing.
1104 		 */
1105 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1106 			pwq_activate_delayed_work(work);
1107 
1108 		list_del_init(&work->entry);
1109 		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1110 
1111 		/* work->data points to pwq iff queued, point to pool */
1112 		set_work_pool_and_keep_pending(work, pool->id);
1113 
1114 		spin_unlock(&pool->lock);
1115 		return 1;
1116 	}
1117 	spin_unlock(&pool->lock);
1118 fail:
1119 	local_irq_restore(*flags);
1120 	if (work_is_canceling(work))
1121 		return -ENOENT;
1122 	cpu_relax();
1123 	return -EAGAIN;
1124 }
1125 
1126 /**
1127  * insert_work - insert a work into a pool
1128  * @pwq: pwq @work belongs to
1129  * @work: work to insert
1130  * @head: insertion point
1131  * @extra_flags: extra WORK_STRUCT_* flags to set
1132  *
1133  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1134  * work_struct flags.
1135  *
1136  * CONTEXT:
1137  * spin_lock_irq(pool->lock).
1138  */
1139 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1140 			struct list_head *head, unsigned int extra_flags)
1141 {
1142 	struct worker_pool *pool = pwq->pool;
1143 
1144 	/* we own @work, set data and link */
1145 	set_work_pwq(work, pwq, extra_flags);
1146 	list_add_tail(&work->entry, head);
1147 
1148 	/*
1149 	 * Ensure either worker_sched_deactivated() sees the above
1150 	 * list_add_tail() or we see zero nr_running to avoid workers
1151 	 * lying around lazily while there are works to be processed.
1152 	 */
1153 	smp_mb();
1154 
1155 	if (__need_more_worker(pool))
1156 		wake_up_worker(pool);
1157 }
1158 
1159 /*
1160  * Test whether @work is being queued from another work executing on the
1161  * same workqueue.
1162  */
1163 static bool is_chained_work(struct workqueue_struct *wq)
1164 {
1165 	struct worker *worker;
1166 
1167 	worker = current_wq_worker();
1168 	/*
1169 	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1170 	 * I'm @worker, it's safe to dereference it without locking.
1171 	 */
1172 	return worker && worker->current_pwq->wq == wq;
1173 }
1174 
1175 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1176 			 struct work_struct *work)
1177 {
1178 	struct pool_workqueue *pwq;
1179 	struct list_head *worklist;
1180 	unsigned int work_flags;
1181 	unsigned int req_cpu = cpu;
1182 
1183 	/*
1184 	 * While a work item is PENDING && off queue, a task trying to
1185 	 * steal the PENDING will busy-loop waiting for it to either get
1186 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1187 	 * happen with IRQ disabled.
1188 	 */
1189 	WARN_ON_ONCE(!irqs_disabled());
1190 
1191 	debug_work_activate(work);
1192 
1193 	/* if dying, only works from the same workqueue are allowed */
1194 	if (unlikely(wq->flags & WQ_DRAINING) &&
1195 	    WARN_ON_ONCE(!is_chained_work(wq)))
1196 		return;
1197 
1198 	/* determine the pwq to use */
1199 	if (!(wq->flags & WQ_UNBOUND)) {
1200 		struct worker_pool *last_pool;
1201 
1202 		if (cpu == WORK_CPU_UNBOUND)
1203 			cpu = raw_smp_processor_id();
1204 
1205 		/*
1206 		 * It's multi cpu.  If @work was previously on a different
1207 		 * cpu, it might still be running there, in which case the
1208 		 * work needs to be queued on that cpu to guarantee
1209 		 * non-reentrancy.
1210 		 */
1211 		pwq = get_pwq(cpu, wq);
1212 		last_pool = get_work_pool(work);
1213 
1214 		if (last_pool && last_pool != pwq->pool) {
1215 			struct worker *worker;
1216 
1217 			spin_lock(&last_pool->lock);
1218 
1219 			worker = find_worker_executing_work(last_pool, work);
1220 
1221 			if (worker && worker->current_pwq->wq == wq) {
1222 				pwq = get_pwq(last_pool->cpu, wq);
1223 			} else {
1224 				/* meh... not running there, queue here */
1225 				spin_unlock(&last_pool->lock);
1226 				spin_lock(&pwq->pool->lock);
1227 			}
1228 		} else {
1229 			spin_lock(&pwq->pool->lock);
1230 		}
1231 	} else {
1232 		pwq = get_pwq(WORK_CPU_UNBOUND, wq);
1233 		spin_lock(&pwq->pool->lock);
1234 	}
1235 
1236 	/* pwq determined, queue */
1237 	trace_workqueue_queue_work(req_cpu, pwq, work);
1238 
1239 	if (WARN_ON(!list_empty(&work->entry))) {
1240 		spin_unlock(&pwq->pool->lock);
1241 		return;
1242 	}
1243 
1244 	pwq->nr_in_flight[pwq->work_color]++;
1245 	work_flags = work_color_to_flags(pwq->work_color);
1246 
1247 	if (likely(pwq->nr_active < pwq->max_active)) {
1248 		trace_workqueue_activate_work(work);
1249 		pwq->nr_active++;
1250 		worklist = &pwq->pool->worklist;
1251 	} else {
1252 		work_flags |= WORK_STRUCT_DELAYED;
1253 		worklist = &pwq->delayed_works;
1254 	}
1255 
1256 	insert_work(pwq, work, worklist, work_flags);
1257 
1258 	spin_unlock(&pwq->pool->lock);
1259 }
1260 
1261 /**
1262  * queue_work_on - queue work on specific cpu
1263  * @cpu: CPU number to execute work on
1264  * @wq: workqueue to use
1265  * @work: work to queue
1266  *
1267  * Returns %false if @work was already on a queue, %true otherwise.
1268  *
1269  * We queue the work to a specific CPU, the caller must ensure it
1270  * can't go away.
1271  */
1272 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1273 		   struct work_struct *work)
1274 {
1275 	bool ret = false;
1276 	unsigned long flags;
1277 
1278 	local_irq_save(flags);
1279 
1280 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1281 		__queue_work(cpu, wq, work);
1282 		ret = true;
1283 	}
1284 
1285 	local_irq_restore(flags);
1286 	return ret;
1287 }
1288 EXPORT_SYMBOL_GPL(queue_work_on);
1289 
1290 /**
1291  * queue_work - queue work on a workqueue
1292  * @wq: workqueue to use
1293  * @work: work to queue
1294  *
1295  * Returns %false if @work was already on a queue, %true otherwise.
1296  *
1297  * We queue the work to the CPU on which it was submitted, but if the CPU dies
1298  * it can be processed by another CPU.
1299  */
1300 bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1301 {
1302 	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1303 }
1304 EXPORT_SYMBOL_GPL(queue_work);
1305 
1306 void delayed_work_timer_fn(unsigned long __data)
1307 {
1308 	struct delayed_work *dwork = (struct delayed_work *)__data;
1309 
1310 	/* should have been called from irqsafe timer with irq already off */
1311 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1312 }
1313 EXPORT_SYMBOL(delayed_work_timer_fn);
1314 
1315 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1316 				struct delayed_work *dwork, unsigned long delay)
1317 {
1318 	struct timer_list *timer = &dwork->timer;
1319 	struct work_struct *work = &dwork->work;
1320 
1321 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1322 		     timer->data != (unsigned long)dwork);
1323 	WARN_ON_ONCE(timer_pending(timer));
1324 	WARN_ON_ONCE(!list_empty(&work->entry));
1325 
1326 	/*
1327 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1328 	 * both optimization and correctness.  The earliest @timer can
1329 	 * expire is on the closest next tick and delayed_work users depend
1330 	 * on that there's no such delay when @delay is 0.
1331 	 */
1332 	if (!delay) {
1333 		__queue_work(cpu, wq, &dwork->work);
1334 		return;
1335 	}
1336 
1337 	timer_stats_timer_set_start_info(&dwork->timer);
1338 
1339 	dwork->wq = wq;
1340 	dwork->cpu = cpu;
1341 	timer->expires = jiffies + delay;
1342 
1343 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1344 		add_timer_on(timer, cpu);
1345 	else
1346 		add_timer(timer);
1347 }
1348 
1349 /**
1350  * queue_delayed_work_on - queue work on specific CPU after delay
1351  * @cpu: CPU number to execute work on
1352  * @wq: workqueue to use
1353  * @dwork: work to queue
1354  * @delay: number of jiffies to wait before queueing
1355  *
1356  * Returns %false if @work was already on a queue, %true otherwise.  If
1357  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1358  * execution.
1359  */
1360 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1361 			   struct delayed_work *dwork, unsigned long delay)
1362 {
1363 	struct work_struct *work = &dwork->work;
1364 	bool ret = false;
1365 	unsigned long flags;
1366 
1367 	/* read the comment in __queue_work() */
1368 	local_irq_save(flags);
1369 
1370 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1371 		__queue_delayed_work(cpu, wq, dwork, delay);
1372 		ret = true;
1373 	}
1374 
1375 	local_irq_restore(flags);
1376 	return ret;
1377 }
1378 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1379 
1380 /**
1381  * queue_delayed_work - queue work on a workqueue after delay
1382  * @wq: workqueue to use
1383  * @dwork: delayable work to queue
1384  * @delay: number of jiffies to wait before queueing
1385  *
1386  * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1387  */
1388 bool queue_delayed_work(struct workqueue_struct *wq,
1389 			struct delayed_work *dwork, unsigned long delay)
1390 {
1391 	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1392 }
1393 EXPORT_SYMBOL_GPL(queue_delayed_work);
1394 
1395 /**
1396  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1397  * @cpu: CPU number to execute work on
1398  * @wq: workqueue to use
1399  * @dwork: work to queue
1400  * @delay: number of jiffies to wait before queueing
1401  *
1402  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1403  * modify @dwork's timer so that it expires after @delay.  If @delay is
1404  * zero, @work is guaranteed to be scheduled immediately regardless of its
1405  * current state.
1406  *
1407  * Returns %false if @dwork was idle and queued, %true if @dwork was
1408  * pending and its timer was modified.
1409  *
1410  * This function is safe to call from any context including IRQ handler.
1411  * See try_to_grab_pending() for details.
1412  */
1413 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1414 			 struct delayed_work *dwork, unsigned long delay)
1415 {
1416 	unsigned long flags;
1417 	int ret;
1418 
1419 	do {
1420 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1421 	} while (unlikely(ret == -EAGAIN));
1422 
1423 	if (likely(ret >= 0)) {
1424 		__queue_delayed_work(cpu, wq, dwork, delay);
1425 		local_irq_restore(flags);
1426 	}
1427 
1428 	/* -ENOENT from try_to_grab_pending() becomes %true */
1429 	return ret;
1430 }
1431 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1432 
1433 /**
1434  * mod_delayed_work - modify delay of or queue a delayed work
1435  * @wq: workqueue to use
1436  * @dwork: work to queue
1437  * @delay: number of jiffies to wait before queueing
1438  *
1439  * mod_delayed_work_on() on local CPU.
1440  */
1441 bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1442 		      unsigned long delay)
1443 {
1444 	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1445 }
1446 EXPORT_SYMBOL_GPL(mod_delayed_work);
1447 
1448 /**
1449  * worker_enter_idle - enter idle state
1450  * @worker: worker which is entering idle state
1451  *
1452  * @worker is entering idle state.  Update stats and idle timer if
1453  * necessary.
1454  *
1455  * LOCKING:
1456  * spin_lock_irq(pool->lock).
1457  */
1458 static void worker_enter_idle(struct worker *worker)
1459 {
1460 	struct worker_pool *pool = worker->pool;
1461 
1462 	BUG_ON(worker->flags & WORKER_IDLE);
1463 	BUG_ON(!list_empty(&worker->entry) &&
1464 	       (worker->hentry.next || worker->hentry.pprev));
1465 
1466 	/* can't use worker_set_flags(), also called from start_worker() */
1467 	worker->flags |= WORKER_IDLE;
1468 	pool->nr_idle++;
1469 	worker->last_active = jiffies;
1470 
1471 	/* idle_list is LIFO */
1472 	list_add(&worker->entry, &pool->idle_list);
1473 
1474 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1475 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1476 
1477 	/*
1478 	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1479 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1480 	 * nr_running, the warning may trigger spuriously.  Check iff
1481 	 * unbind is not in progress.
1482 	 */
1483 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1484 		     pool->nr_workers == pool->nr_idle &&
1485 		     atomic_read(&pool->nr_running));
1486 }
1487 
1488 /**
1489  * worker_leave_idle - leave idle state
1490  * @worker: worker which is leaving idle state
1491  *
1492  * @worker is leaving idle state.  Update stats.
1493  *
1494  * LOCKING:
1495  * spin_lock_irq(pool->lock).
1496  */
1497 static void worker_leave_idle(struct worker *worker)
1498 {
1499 	struct worker_pool *pool = worker->pool;
1500 
1501 	BUG_ON(!(worker->flags & WORKER_IDLE));
1502 	worker_clr_flags(worker, WORKER_IDLE);
1503 	pool->nr_idle--;
1504 	list_del_init(&worker->entry);
1505 }
1506 
1507 /**
1508  * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock pool
1509  * @worker: self
1510  *
1511  * Works which are scheduled while the cpu is online must at least be
1512  * scheduled to a worker which is bound to the cpu so that if they are
1513  * flushed from cpu callbacks while cpu is going down, they are
1514  * guaranteed to execute on the cpu.
1515  *
1516  * This function is to be used by rogue workers and rescuers to bind
1517  * themselves to the target cpu and may race with cpu going down or
1518  * coming online.  kthread_bind() can't be used because it may put the
1519  * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1520  * verbatim as it's best effort and blocking and pool may be
1521  * [dis]associated in the meantime.
1522  *
1523  * This function tries set_cpus_allowed() and locks pool and verifies the
1524  * binding against %POOL_DISASSOCIATED which is set during
1525  * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1526  * enters idle state or fetches works without dropping lock, it can
1527  * guarantee the scheduling requirement described in the first paragraph.
1528  *
1529  * CONTEXT:
1530  * Might sleep.  Called without any lock but returns with pool->lock
1531  * held.
1532  *
1533  * RETURNS:
1534  * %true if the associated pool is online (@worker is successfully
1535  * bound), %false if offline.
1536  */
1537 static bool worker_maybe_bind_and_lock(struct worker *worker)
1538 __acquires(&pool->lock)
1539 {
1540 	struct worker_pool *pool = worker->pool;
1541 	struct task_struct *task = worker->task;
1542 
1543 	while (true) {
1544 		/*
1545 		 * The following call may fail, succeed or succeed
1546 		 * without actually migrating the task to the cpu if
1547 		 * it races with cpu hotunplug operation.  Verify
1548 		 * against POOL_DISASSOCIATED.
1549 		 */
1550 		if (!(pool->flags & POOL_DISASSOCIATED))
1551 			set_cpus_allowed_ptr(task, get_cpu_mask(pool->cpu));
1552 
1553 		spin_lock_irq(&pool->lock);
1554 		if (pool->flags & POOL_DISASSOCIATED)
1555 			return false;
1556 		if (task_cpu(task) == pool->cpu &&
1557 		    cpumask_equal(&current->cpus_allowed,
1558 				  get_cpu_mask(pool->cpu)))
1559 			return true;
1560 		spin_unlock_irq(&pool->lock);
1561 
1562 		/*
1563 		 * We've raced with CPU hot[un]plug.  Give it a breather
1564 		 * and retry migration.  cond_resched() is required here;
1565 		 * otherwise, we might deadlock against cpu_stop trying to
1566 		 * bring down the CPU on non-preemptive kernel.
1567 		 */
1568 		cpu_relax();
1569 		cond_resched();
1570 	}
1571 }
1572 
1573 /*
1574  * Rebind an idle @worker to its CPU.  worker_thread() will test
1575  * list_empty(@worker->entry) before leaving idle and call this function.
1576  */
1577 static void idle_worker_rebind(struct worker *worker)
1578 {
1579 	/* CPU may go down again inbetween, clear UNBOUND only on success */
1580 	if (worker_maybe_bind_and_lock(worker))
1581 		worker_clr_flags(worker, WORKER_UNBOUND);
1582 
1583 	/* rebind complete, become available again */
1584 	list_add(&worker->entry, &worker->pool->idle_list);
1585 	spin_unlock_irq(&worker->pool->lock);
1586 }
1587 
1588 /*
1589  * Function for @worker->rebind.work used to rebind unbound busy workers to
1590  * the associated cpu which is coming back online.  This is scheduled by
1591  * cpu up but can race with other cpu hotplug operations and may be
1592  * executed twice without intervening cpu down.
1593  */
1594 static void busy_worker_rebind_fn(struct work_struct *work)
1595 {
1596 	struct worker *worker = container_of(work, struct worker, rebind_work);
1597 
1598 	if (worker_maybe_bind_and_lock(worker))
1599 		worker_clr_flags(worker, WORKER_UNBOUND);
1600 
1601 	spin_unlock_irq(&worker->pool->lock);
1602 }
1603 
1604 /**
1605  * rebind_workers - rebind all workers of a pool to the associated CPU
1606  * @pool: pool of interest
1607  *
1608  * @pool->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
1609  * is different for idle and busy ones.
1610  *
1611  * Idle ones will be removed from the idle_list and woken up.  They will
1612  * add themselves back after completing rebind.  This ensures that the
1613  * idle_list doesn't contain any unbound workers when re-bound busy workers
1614  * try to perform local wake-ups for concurrency management.
1615  *
1616  * Busy workers can rebind after they finish their current work items.
1617  * Queueing the rebind work item at the head of the scheduled list is
1618  * enough.  Note that nr_running will be properly bumped as busy workers
1619  * rebind.
1620  *
1621  * On return, all non-manager workers are scheduled for rebind - see
1622  * manage_workers() for the manager special case.  Any idle worker
1623  * including the manager will not appear on @idle_list until rebind is
1624  * complete, making local wake-ups safe.
1625  */
1626 static void rebind_workers(struct worker_pool *pool)
1627 {
1628 	struct worker *worker, *n;
1629 	int i;
1630 
1631 	lockdep_assert_held(&pool->assoc_mutex);
1632 	lockdep_assert_held(&pool->lock);
1633 
1634 	/* dequeue and kick idle ones */
1635 	list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1636 		/*
1637 		 * idle workers should be off @pool->idle_list until rebind
1638 		 * is complete to avoid receiving premature local wake-ups.
1639 		 */
1640 		list_del_init(&worker->entry);
1641 
1642 		/*
1643 		 * worker_thread() will see the above dequeuing and call
1644 		 * idle_worker_rebind().
1645 		 */
1646 		wake_up_process(worker->task);
1647 	}
1648 
1649 	/* rebind busy workers */
1650 	for_each_busy_worker(worker, i, pool) {
1651 		struct work_struct *rebind_work = &worker->rebind_work;
1652 		struct workqueue_struct *wq;
1653 
1654 		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1655 				     work_data_bits(rebind_work)))
1656 			continue;
1657 
1658 		debug_work_activate(rebind_work);
1659 
1660 		/*
1661 		 * wq doesn't really matter but let's keep @worker->pool
1662 		 * and @pwq->pool consistent for sanity.
1663 		 */
1664 		if (std_worker_pool_pri(worker->pool))
1665 			wq = system_highpri_wq;
1666 		else
1667 			wq = system_wq;
1668 
1669 		insert_work(get_pwq(pool->cpu, wq), rebind_work,
1670 			    worker->scheduled.next,
1671 			    work_color_to_flags(WORK_NO_COLOR));
1672 	}
1673 }
1674 
1675 static struct worker *alloc_worker(void)
1676 {
1677 	struct worker *worker;
1678 
1679 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1680 	if (worker) {
1681 		INIT_LIST_HEAD(&worker->entry);
1682 		INIT_LIST_HEAD(&worker->scheduled);
1683 		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1684 		/* on creation a worker is in !idle && prep state */
1685 		worker->flags = WORKER_PREP;
1686 	}
1687 	return worker;
1688 }
1689 
1690 /**
1691  * create_worker - create a new workqueue worker
1692  * @pool: pool the new worker will belong to
1693  *
1694  * Create a new worker which is bound to @pool.  The returned worker
1695  * can be started by calling start_worker() or destroyed using
1696  * destroy_worker().
1697  *
1698  * CONTEXT:
1699  * Might sleep.  Does GFP_KERNEL allocations.
1700  *
1701  * RETURNS:
1702  * Pointer to the newly created worker.
1703  */
1704 static struct worker *create_worker(struct worker_pool *pool)
1705 {
1706 	const char *pri = std_worker_pool_pri(pool) ? "H" : "";
1707 	struct worker *worker = NULL;
1708 	int id = -1;
1709 
1710 	spin_lock_irq(&pool->lock);
1711 	while (ida_get_new(&pool->worker_ida, &id)) {
1712 		spin_unlock_irq(&pool->lock);
1713 		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
1714 			goto fail;
1715 		spin_lock_irq(&pool->lock);
1716 	}
1717 	spin_unlock_irq(&pool->lock);
1718 
1719 	worker = alloc_worker();
1720 	if (!worker)
1721 		goto fail;
1722 
1723 	worker->pool = pool;
1724 	worker->id = id;
1725 
1726 	if (pool->cpu != WORK_CPU_UNBOUND)
1727 		worker->task = kthread_create_on_node(worker_thread,
1728 					worker, cpu_to_node(pool->cpu),
1729 					"kworker/%u:%d%s", pool->cpu, id, pri);
1730 	else
1731 		worker->task = kthread_create(worker_thread, worker,
1732 					      "kworker/u:%d%s", id, pri);
1733 	if (IS_ERR(worker->task))
1734 		goto fail;
1735 
1736 	if (std_worker_pool_pri(pool))
1737 		set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1738 
1739 	/*
1740 	 * Determine CPU binding of the new worker depending on
1741 	 * %POOL_DISASSOCIATED.  The caller is responsible for ensuring the
1742 	 * flag remains stable across this function.  See the comments
1743 	 * above the flag definition for details.
1744 	 *
1745 	 * As an unbound worker may later become a regular one if CPU comes
1746 	 * online, make sure every worker has %PF_THREAD_BOUND set.
1747 	 */
1748 	if (!(pool->flags & POOL_DISASSOCIATED)) {
1749 		kthread_bind(worker->task, pool->cpu);
1750 	} else {
1751 		worker->task->flags |= PF_THREAD_BOUND;
1752 		worker->flags |= WORKER_UNBOUND;
1753 	}
1754 
1755 	return worker;
1756 fail:
1757 	if (id >= 0) {
1758 		spin_lock_irq(&pool->lock);
1759 		ida_remove(&pool->worker_ida, id);
1760 		spin_unlock_irq(&pool->lock);
1761 	}
1762 	kfree(worker);
1763 	return NULL;
1764 }
1765 
1766 /**
1767  * start_worker - start a newly created worker
1768  * @worker: worker to start
1769  *
1770  * Make the pool aware of @worker and start it.
1771  *
1772  * CONTEXT:
1773  * spin_lock_irq(pool->lock).
1774  */
1775 static void start_worker(struct worker *worker)
1776 {
1777 	worker->flags |= WORKER_STARTED;
1778 	worker->pool->nr_workers++;
1779 	worker_enter_idle(worker);
1780 	wake_up_process(worker->task);
1781 }
1782 
1783 /**
1784  * destroy_worker - destroy a workqueue worker
1785  * @worker: worker to be destroyed
1786  *
1787  * Destroy @worker and adjust @pool stats accordingly.
1788  *
1789  * CONTEXT:
1790  * spin_lock_irq(pool->lock) which is released and regrabbed.
1791  */
1792 static void destroy_worker(struct worker *worker)
1793 {
1794 	struct worker_pool *pool = worker->pool;
1795 	int id = worker->id;
1796 
1797 	/* sanity check frenzy */
1798 	BUG_ON(worker->current_work);
1799 	BUG_ON(!list_empty(&worker->scheduled));
1800 
1801 	if (worker->flags & WORKER_STARTED)
1802 		pool->nr_workers--;
1803 	if (worker->flags & WORKER_IDLE)
1804 		pool->nr_idle--;
1805 
1806 	list_del_init(&worker->entry);
1807 	worker->flags |= WORKER_DIE;
1808 
1809 	spin_unlock_irq(&pool->lock);
1810 
1811 	kthread_stop(worker->task);
1812 	kfree(worker);
1813 
1814 	spin_lock_irq(&pool->lock);
1815 	ida_remove(&pool->worker_ida, id);
1816 }
1817 
1818 static void idle_worker_timeout(unsigned long __pool)
1819 {
1820 	struct worker_pool *pool = (void *)__pool;
1821 
1822 	spin_lock_irq(&pool->lock);
1823 
1824 	if (too_many_workers(pool)) {
1825 		struct worker *worker;
1826 		unsigned long expires;
1827 
1828 		/* idle_list is kept in LIFO order, check the last one */
1829 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1830 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1831 
1832 		if (time_before(jiffies, expires))
1833 			mod_timer(&pool->idle_timer, expires);
1834 		else {
1835 			/* it's been idle for too long, wake up manager */
1836 			pool->flags |= POOL_MANAGE_WORKERS;
1837 			wake_up_worker(pool);
1838 		}
1839 	}
1840 
1841 	spin_unlock_irq(&pool->lock);
1842 }
1843 
1844 static bool send_mayday(struct work_struct *work)
1845 {
1846 	struct pool_workqueue *pwq = get_work_pwq(work);
1847 	struct workqueue_struct *wq = pwq->wq;
1848 	unsigned int cpu;
1849 
1850 	if (!(wq->flags & WQ_RESCUER))
1851 		return false;
1852 
1853 	/* mayday mayday mayday */
1854 	cpu = pwq->pool->cpu;
1855 	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1856 	if (cpu == WORK_CPU_UNBOUND)
1857 		cpu = 0;
1858 	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1859 		wake_up_process(wq->rescuer->task);
1860 	return true;
1861 }
1862 
1863 static void pool_mayday_timeout(unsigned long __pool)
1864 {
1865 	struct worker_pool *pool = (void *)__pool;
1866 	struct work_struct *work;
1867 
1868 	spin_lock_irq(&pool->lock);
1869 
1870 	if (need_to_create_worker(pool)) {
1871 		/*
1872 		 * We've been trying to create a new worker but
1873 		 * haven't been successful.  We might be hitting an
1874 		 * allocation deadlock.  Send distress signals to
1875 		 * rescuers.
1876 		 */
1877 		list_for_each_entry(work, &pool->worklist, entry)
1878 			send_mayday(work);
1879 	}
1880 
1881 	spin_unlock_irq(&pool->lock);
1882 
1883 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1884 }
1885 
1886 /**
1887  * maybe_create_worker - create a new worker if necessary
1888  * @pool: pool to create a new worker for
1889  *
1890  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1891  * have at least one idle worker on return from this function.  If
1892  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1893  * sent to all rescuers with works scheduled on @pool to resolve
1894  * possible allocation deadlock.
1895  *
1896  * On return, need_to_create_worker() is guaranteed to be false and
1897  * may_start_working() true.
1898  *
1899  * LOCKING:
1900  * spin_lock_irq(pool->lock) which may be released and regrabbed
1901  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1902  * manager.
1903  *
1904  * RETURNS:
1905  * false if no action was taken and pool->lock stayed locked, true
1906  * otherwise.
1907  */
1908 static bool maybe_create_worker(struct worker_pool *pool)
1909 __releases(&pool->lock)
1910 __acquires(&pool->lock)
1911 {
1912 	if (!need_to_create_worker(pool))
1913 		return false;
1914 restart:
1915 	spin_unlock_irq(&pool->lock);
1916 
1917 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1918 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1919 
1920 	while (true) {
1921 		struct worker *worker;
1922 
1923 		worker = create_worker(pool);
1924 		if (worker) {
1925 			del_timer_sync(&pool->mayday_timer);
1926 			spin_lock_irq(&pool->lock);
1927 			start_worker(worker);
1928 			BUG_ON(need_to_create_worker(pool));
1929 			return true;
1930 		}
1931 
1932 		if (!need_to_create_worker(pool))
1933 			break;
1934 
1935 		__set_current_state(TASK_INTERRUPTIBLE);
1936 		schedule_timeout(CREATE_COOLDOWN);
1937 
1938 		if (!need_to_create_worker(pool))
1939 			break;
1940 	}
1941 
1942 	del_timer_sync(&pool->mayday_timer);
1943 	spin_lock_irq(&pool->lock);
1944 	if (need_to_create_worker(pool))
1945 		goto restart;
1946 	return true;
1947 }
1948 
1949 /**
1950  * maybe_destroy_worker - destroy workers which have been idle for a while
1951  * @pool: pool to destroy workers for
1952  *
1953  * Destroy @pool workers which have been idle for longer than
1954  * IDLE_WORKER_TIMEOUT.
1955  *
1956  * LOCKING:
1957  * spin_lock_irq(pool->lock) which may be released and regrabbed
1958  * multiple times.  Called only from manager.
1959  *
1960  * RETURNS:
1961  * false if no action was taken and pool->lock stayed locked, true
1962  * otherwise.
1963  */
1964 static bool maybe_destroy_workers(struct worker_pool *pool)
1965 {
1966 	bool ret = false;
1967 
1968 	while (too_many_workers(pool)) {
1969 		struct worker *worker;
1970 		unsigned long expires;
1971 
1972 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1973 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1974 
1975 		if (time_before(jiffies, expires)) {
1976 			mod_timer(&pool->idle_timer, expires);
1977 			break;
1978 		}
1979 
1980 		destroy_worker(worker);
1981 		ret = true;
1982 	}
1983 
1984 	return ret;
1985 }
1986 
1987 /**
1988  * manage_workers - manage worker pool
1989  * @worker: self
1990  *
1991  * Assume the manager role and manage the worker pool @worker belongs
1992  * to.  At any given time, there can be only zero or one manager per
1993  * pool.  The exclusion is handled automatically by this function.
1994  *
1995  * The caller can safely start processing works on false return.  On
1996  * true return, it's guaranteed that need_to_create_worker() is false
1997  * and may_start_working() is true.
1998  *
1999  * CONTEXT:
2000  * spin_lock_irq(pool->lock) which may be released and regrabbed
2001  * multiple times.  Does GFP_KERNEL allocations.
2002  *
2003  * RETURNS:
2004  * spin_lock_irq(pool->lock) which may be released and regrabbed
2005  * multiple times.  Does GFP_KERNEL allocations.
2006  */
2007 static bool manage_workers(struct worker *worker)
2008 {
2009 	struct worker_pool *pool = worker->pool;
2010 	bool ret = false;
2011 
2012 	if (pool->flags & POOL_MANAGING_WORKERS)
2013 		return ret;
2014 
2015 	pool->flags |= POOL_MANAGING_WORKERS;
2016 
2017 	/*
2018 	 * To simplify both worker management and CPU hotplug, hold off
2019 	 * management while hotplug is in progress.  CPU hotplug path can't
2020 	 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2021 	 * lead to idle worker depletion (all become busy thinking someone
2022 	 * else is managing) which in turn can result in deadlock under
2023 	 * extreme circumstances.  Use @pool->assoc_mutex to synchronize
2024 	 * manager against CPU hotplug.
2025 	 *
2026 	 * assoc_mutex would always be free unless CPU hotplug is in
2027 	 * progress.  trylock first without dropping @pool->lock.
2028 	 */
2029 	if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2030 		spin_unlock_irq(&pool->lock);
2031 		mutex_lock(&pool->assoc_mutex);
2032 		/*
2033 		 * CPU hotplug could have happened while we were waiting
2034 		 * for assoc_mutex.  Hotplug itself can't handle us
2035 		 * because manager isn't either on idle or busy list, and
2036 		 * @pool's state and ours could have deviated.
2037 		 *
2038 		 * As hotplug is now excluded via assoc_mutex, we can
2039 		 * simply try to bind.  It will succeed or fail depending
2040 		 * on @pool's current state.  Try it and adjust
2041 		 * %WORKER_UNBOUND accordingly.
2042 		 */
2043 		if (worker_maybe_bind_and_lock(worker))
2044 			worker->flags &= ~WORKER_UNBOUND;
2045 		else
2046 			worker->flags |= WORKER_UNBOUND;
2047 
2048 		ret = true;
2049 	}
2050 
2051 	pool->flags &= ~POOL_MANAGE_WORKERS;
2052 
2053 	/*
2054 	 * Destroy and then create so that may_start_working() is true
2055 	 * on return.
2056 	 */
2057 	ret |= maybe_destroy_workers(pool);
2058 	ret |= maybe_create_worker(pool);
2059 
2060 	pool->flags &= ~POOL_MANAGING_WORKERS;
2061 	mutex_unlock(&pool->assoc_mutex);
2062 	return ret;
2063 }
2064 
2065 /**
2066  * process_one_work - process single work
2067  * @worker: self
2068  * @work: work to process
2069  *
2070  * Process @work.  This function contains all the logics necessary to
2071  * process a single work including synchronization against and
2072  * interaction with other workers on the same cpu, queueing and
2073  * flushing.  As long as context requirement is met, any worker can
2074  * call this function to process a work.
2075  *
2076  * CONTEXT:
2077  * spin_lock_irq(pool->lock) which is released and regrabbed.
2078  */
2079 static void process_one_work(struct worker *worker, struct work_struct *work)
2080 __releases(&pool->lock)
2081 __acquires(&pool->lock)
2082 {
2083 	struct pool_workqueue *pwq = get_work_pwq(work);
2084 	struct worker_pool *pool = worker->pool;
2085 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2086 	int work_color;
2087 	struct worker *collision;
2088 #ifdef CONFIG_LOCKDEP
2089 	/*
2090 	 * It is permissible to free the struct work_struct from
2091 	 * inside the function that is called from it, this we need to
2092 	 * take into account for lockdep too.  To avoid bogus "held
2093 	 * lock freed" warnings as well as problems when looking into
2094 	 * work->lockdep_map, make a copy and use that here.
2095 	 */
2096 	struct lockdep_map lockdep_map;
2097 
2098 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2099 #endif
2100 	/*
2101 	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
2102 	 * necessary to avoid spurious warnings from rescuers servicing the
2103 	 * unbound or a disassociated pool.
2104 	 */
2105 	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2106 		     !(pool->flags & POOL_DISASSOCIATED) &&
2107 		     raw_smp_processor_id() != pool->cpu);
2108 
2109 	/*
2110 	 * A single work shouldn't be executed concurrently by
2111 	 * multiple workers on a single cpu.  Check whether anyone is
2112 	 * already processing the work.  If so, defer the work to the
2113 	 * currently executing one.
2114 	 */
2115 	collision = find_worker_executing_work(pool, work);
2116 	if (unlikely(collision)) {
2117 		move_linked_works(work, &collision->scheduled, NULL);
2118 		return;
2119 	}
2120 
2121 	/* claim and dequeue */
2122 	debug_work_deactivate(work);
2123 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2124 	worker->current_work = work;
2125 	worker->current_func = work->func;
2126 	worker->current_pwq = pwq;
2127 	work_color = get_work_color(work);
2128 
2129 	list_del_init(&work->entry);
2130 
2131 	/*
2132 	 * CPU intensive works don't participate in concurrency
2133 	 * management.  They're the scheduler's responsibility.
2134 	 */
2135 	if (unlikely(cpu_intensive))
2136 		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2137 
2138 	/*
2139 	 * Unbound pool isn't concurrency managed and work items should be
2140 	 * executed ASAP.  Wake up another worker if necessary.
2141 	 */
2142 	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2143 		wake_up_worker(pool);
2144 
2145 	/*
2146 	 * Record the last pool and clear PENDING which should be the last
2147 	 * update to @work.  Also, do this inside @pool->lock so that
2148 	 * PENDING and queued state changes happen together while IRQ is
2149 	 * disabled.
2150 	 */
2151 	set_work_pool_and_clear_pending(work, pool->id);
2152 
2153 	spin_unlock_irq(&pool->lock);
2154 
2155 	lock_map_acquire_read(&pwq->wq->lockdep_map);
2156 	lock_map_acquire(&lockdep_map);
2157 	trace_workqueue_execute_start(work);
2158 	worker->current_func(work);
2159 	/*
2160 	 * While we must be careful to not use "work" after this, the trace
2161 	 * point will only record its address.
2162 	 */
2163 	trace_workqueue_execute_end(work);
2164 	lock_map_release(&lockdep_map);
2165 	lock_map_release(&pwq->wq->lockdep_map);
2166 
2167 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2168 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2169 		       "     last function: %pf\n",
2170 		       current->comm, preempt_count(), task_pid_nr(current),
2171 		       worker->current_func);
2172 		debug_show_held_locks(current);
2173 		dump_stack();
2174 	}
2175 
2176 	spin_lock_irq(&pool->lock);
2177 
2178 	/* clear cpu intensive status */
2179 	if (unlikely(cpu_intensive))
2180 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2181 
2182 	/* we're done with it, release */
2183 	hash_del(&worker->hentry);
2184 	worker->current_work = NULL;
2185 	worker->current_func = NULL;
2186 	worker->current_pwq = NULL;
2187 	pwq_dec_nr_in_flight(pwq, work_color);
2188 }
2189 
2190 /**
2191  * process_scheduled_works - process scheduled works
2192  * @worker: self
2193  *
2194  * Process all scheduled works.  Please note that the scheduled list
2195  * may change while processing a work, so this function repeatedly
2196  * fetches a work from the top and executes it.
2197  *
2198  * CONTEXT:
2199  * spin_lock_irq(pool->lock) which may be released and regrabbed
2200  * multiple times.
2201  */
2202 static void process_scheduled_works(struct worker *worker)
2203 {
2204 	while (!list_empty(&worker->scheduled)) {
2205 		struct work_struct *work = list_first_entry(&worker->scheduled,
2206 						struct work_struct, entry);
2207 		process_one_work(worker, work);
2208 	}
2209 }
2210 
2211 /**
2212  * worker_thread - the worker thread function
2213  * @__worker: self
2214  *
2215  * The worker thread function.  There are NR_CPU_WORKER_POOLS dynamic pools
2216  * of these per each cpu.  These workers process all works regardless of
2217  * their specific target workqueue.  The only exception is works which
2218  * belong to workqueues with a rescuer which will be explained in
2219  * rescuer_thread().
2220  */
2221 static int worker_thread(void *__worker)
2222 {
2223 	struct worker *worker = __worker;
2224 	struct worker_pool *pool = worker->pool;
2225 
2226 	/* tell the scheduler that this is a workqueue worker */
2227 	worker->task->flags |= PF_WQ_WORKER;
2228 woke_up:
2229 	spin_lock_irq(&pool->lock);
2230 
2231 	/* we are off idle list if destruction or rebind is requested */
2232 	if (unlikely(list_empty(&worker->entry))) {
2233 		spin_unlock_irq(&pool->lock);
2234 
2235 		/* if DIE is set, destruction is requested */
2236 		if (worker->flags & WORKER_DIE) {
2237 			worker->task->flags &= ~PF_WQ_WORKER;
2238 			return 0;
2239 		}
2240 
2241 		/* otherwise, rebind */
2242 		idle_worker_rebind(worker);
2243 		goto woke_up;
2244 	}
2245 
2246 	worker_leave_idle(worker);
2247 recheck:
2248 	/* no more worker necessary? */
2249 	if (!need_more_worker(pool))
2250 		goto sleep;
2251 
2252 	/* do we need to manage? */
2253 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2254 		goto recheck;
2255 
2256 	/*
2257 	 * ->scheduled list can only be filled while a worker is
2258 	 * preparing to process a work or actually processing it.
2259 	 * Make sure nobody diddled with it while I was sleeping.
2260 	 */
2261 	BUG_ON(!list_empty(&worker->scheduled));
2262 
2263 	/*
2264 	 * When control reaches this point, we're guaranteed to have
2265 	 * at least one idle worker or that someone else has already
2266 	 * assumed the manager role.
2267 	 */
2268 	worker_clr_flags(worker, WORKER_PREP);
2269 
2270 	do {
2271 		struct work_struct *work =
2272 			list_first_entry(&pool->worklist,
2273 					 struct work_struct, entry);
2274 
2275 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2276 			/* optimization path, not strictly necessary */
2277 			process_one_work(worker, work);
2278 			if (unlikely(!list_empty(&worker->scheduled)))
2279 				process_scheduled_works(worker);
2280 		} else {
2281 			move_linked_works(work, &worker->scheduled, NULL);
2282 			process_scheduled_works(worker);
2283 		}
2284 	} while (keep_working(pool));
2285 
2286 	worker_set_flags(worker, WORKER_PREP, false);
2287 sleep:
2288 	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2289 		goto recheck;
2290 
2291 	/*
2292 	 * pool->lock is held and there's no work to process and no need to
2293 	 * manage, sleep.  Workers are woken up only while holding
2294 	 * pool->lock or from local cpu, so setting the current state
2295 	 * before releasing pool->lock is enough to prevent losing any
2296 	 * event.
2297 	 */
2298 	worker_enter_idle(worker);
2299 	__set_current_state(TASK_INTERRUPTIBLE);
2300 	spin_unlock_irq(&pool->lock);
2301 	schedule();
2302 	goto woke_up;
2303 }
2304 
2305 /**
2306  * rescuer_thread - the rescuer thread function
2307  * @__rescuer: self
2308  *
2309  * Workqueue rescuer thread function.  There's one rescuer for each
2310  * workqueue which has WQ_RESCUER set.
2311  *
2312  * Regular work processing on a pool may block trying to create a new
2313  * worker which uses GFP_KERNEL allocation which has slight chance of
2314  * developing into deadlock if some works currently on the same queue
2315  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2316  * the problem rescuer solves.
2317  *
2318  * When such condition is possible, the pool summons rescuers of all
2319  * workqueues which have works queued on the pool and let them process
2320  * those works so that forward progress can be guaranteed.
2321  *
2322  * This should happen rarely.
2323  */
2324 static int rescuer_thread(void *__rescuer)
2325 {
2326 	struct worker *rescuer = __rescuer;
2327 	struct workqueue_struct *wq = rescuer->rescue_wq;
2328 	struct list_head *scheduled = &rescuer->scheduled;
2329 	bool is_unbound = wq->flags & WQ_UNBOUND;
2330 	unsigned int cpu;
2331 
2332 	set_user_nice(current, RESCUER_NICE_LEVEL);
2333 
2334 	/*
2335 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2336 	 * doesn't participate in concurrency management.
2337 	 */
2338 	rescuer->task->flags |= PF_WQ_WORKER;
2339 repeat:
2340 	set_current_state(TASK_INTERRUPTIBLE);
2341 
2342 	if (kthread_should_stop()) {
2343 		__set_current_state(TASK_RUNNING);
2344 		rescuer->task->flags &= ~PF_WQ_WORKER;
2345 		return 0;
2346 	}
2347 
2348 	/*
2349 	 * See whether any cpu is asking for help.  Unbounded
2350 	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2351 	 */
2352 	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2353 		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2354 		struct pool_workqueue *pwq = get_pwq(tcpu, wq);
2355 		struct worker_pool *pool = pwq->pool;
2356 		struct work_struct *work, *n;
2357 
2358 		__set_current_state(TASK_RUNNING);
2359 		mayday_clear_cpu(cpu, wq->mayday_mask);
2360 
2361 		/* migrate to the target cpu if possible */
2362 		rescuer->pool = pool;
2363 		worker_maybe_bind_and_lock(rescuer);
2364 
2365 		/*
2366 		 * Slurp in all works issued via this workqueue and
2367 		 * process'em.
2368 		 */
2369 		BUG_ON(!list_empty(&rescuer->scheduled));
2370 		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2371 			if (get_work_pwq(work) == pwq)
2372 				move_linked_works(work, scheduled, &n);
2373 
2374 		process_scheduled_works(rescuer);
2375 
2376 		/*
2377 		 * Leave this pool.  If keep_working() is %true, notify a
2378 		 * regular worker; otherwise, we end up with 0 concurrency
2379 		 * and stalling the execution.
2380 		 */
2381 		if (keep_working(pool))
2382 			wake_up_worker(pool);
2383 
2384 		spin_unlock_irq(&pool->lock);
2385 	}
2386 
2387 	/* rescuers should never participate in concurrency management */
2388 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2389 	schedule();
2390 	goto repeat;
2391 }
2392 
2393 struct wq_barrier {
2394 	struct work_struct	work;
2395 	struct completion	done;
2396 };
2397 
2398 static void wq_barrier_func(struct work_struct *work)
2399 {
2400 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2401 	complete(&barr->done);
2402 }
2403 
2404 /**
2405  * insert_wq_barrier - insert a barrier work
2406  * @pwq: pwq to insert barrier into
2407  * @barr: wq_barrier to insert
2408  * @target: target work to attach @barr to
2409  * @worker: worker currently executing @target, NULL if @target is not executing
2410  *
2411  * @barr is linked to @target such that @barr is completed only after
2412  * @target finishes execution.  Please note that the ordering
2413  * guarantee is observed only with respect to @target and on the local
2414  * cpu.
2415  *
2416  * Currently, a queued barrier can't be canceled.  This is because
2417  * try_to_grab_pending() can't determine whether the work to be
2418  * grabbed is at the head of the queue and thus can't clear LINKED
2419  * flag of the previous work while there must be a valid next work
2420  * after a work with LINKED flag set.
2421  *
2422  * Note that when @worker is non-NULL, @target may be modified
2423  * underneath us, so we can't reliably determine pwq from @target.
2424  *
2425  * CONTEXT:
2426  * spin_lock_irq(pool->lock).
2427  */
2428 static void insert_wq_barrier(struct pool_workqueue *pwq,
2429 			      struct wq_barrier *barr,
2430 			      struct work_struct *target, struct worker *worker)
2431 {
2432 	struct list_head *head;
2433 	unsigned int linked = 0;
2434 
2435 	/*
2436 	 * debugobject calls are safe here even with pool->lock locked
2437 	 * as we know for sure that this will not trigger any of the
2438 	 * checks and call back into the fixup functions where we
2439 	 * might deadlock.
2440 	 */
2441 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2442 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2443 	init_completion(&barr->done);
2444 
2445 	/*
2446 	 * If @target is currently being executed, schedule the
2447 	 * barrier to the worker; otherwise, put it after @target.
2448 	 */
2449 	if (worker)
2450 		head = worker->scheduled.next;
2451 	else {
2452 		unsigned long *bits = work_data_bits(target);
2453 
2454 		head = target->entry.next;
2455 		/* there can already be other linked works, inherit and set */
2456 		linked = *bits & WORK_STRUCT_LINKED;
2457 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2458 	}
2459 
2460 	debug_work_activate(&barr->work);
2461 	insert_work(pwq, &barr->work, head,
2462 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2463 }
2464 
2465 /**
2466  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2467  * @wq: workqueue being flushed
2468  * @flush_color: new flush color, < 0 for no-op
2469  * @work_color: new work color, < 0 for no-op
2470  *
2471  * Prepare pwqs for workqueue flushing.
2472  *
2473  * If @flush_color is non-negative, flush_color on all pwqs should be
2474  * -1.  If no pwq has in-flight commands at the specified color, all
2475  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2476  * has in flight commands, its pwq->flush_color is set to
2477  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2478  * wakeup logic is armed and %true is returned.
2479  *
2480  * The caller should have initialized @wq->first_flusher prior to
2481  * calling this function with non-negative @flush_color.  If
2482  * @flush_color is negative, no flush color update is done and %false
2483  * is returned.
2484  *
2485  * If @work_color is non-negative, all pwqs should have the same
2486  * work_color which is previous to @work_color and all will be
2487  * advanced to @work_color.
2488  *
2489  * CONTEXT:
2490  * mutex_lock(wq->flush_mutex).
2491  *
2492  * RETURNS:
2493  * %true if @flush_color >= 0 and there's something to flush.  %false
2494  * otherwise.
2495  */
2496 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2497 				      int flush_color, int work_color)
2498 {
2499 	bool wait = false;
2500 	unsigned int cpu;
2501 
2502 	if (flush_color >= 0) {
2503 		BUG_ON(atomic_read(&wq->nr_pwqs_to_flush));
2504 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2505 	}
2506 
2507 	for_each_pwq_cpu(cpu, wq) {
2508 		struct pool_workqueue *pwq = get_pwq(cpu, wq);
2509 		struct worker_pool *pool = pwq->pool;
2510 
2511 		spin_lock_irq(&pool->lock);
2512 
2513 		if (flush_color >= 0) {
2514 			BUG_ON(pwq->flush_color != -1);
2515 
2516 			if (pwq->nr_in_flight[flush_color]) {
2517 				pwq->flush_color = flush_color;
2518 				atomic_inc(&wq->nr_pwqs_to_flush);
2519 				wait = true;
2520 			}
2521 		}
2522 
2523 		if (work_color >= 0) {
2524 			BUG_ON(work_color != work_next_color(pwq->work_color));
2525 			pwq->work_color = work_color;
2526 		}
2527 
2528 		spin_unlock_irq(&pool->lock);
2529 	}
2530 
2531 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2532 		complete(&wq->first_flusher->done);
2533 
2534 	return wait;
2535 }
2536 
2537 /**
2538  * flush_workqueue - ensure that any scheduled work has run to completion.
2539  * @wq: workqueue to flush
2540  *
2541  * Forces execution of the workqueue and blocks until its completion.
2542  * This is typically used in driver shutdown handlers.
2543  *
2544  * We sleep until all works which were queued on entry have been handled,
2545  * but we are not livelocked by new incoming ones.
2546  */
2547 void flush_workqueue(struct workqueue_struct *wq)
2548 {
2549 	struct wq_flusher this_flusher = {
2550 		.list = LIST_HEAD_INIT(this_flusher.list),
2551 		.flush_color = -1,
2552 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2553 	};
2554 	int next_color;
2555 
2556 	lock_map_acquire(&wq->lockdep_map);
2557 	lock_map_release(&wq->lockdep_map);
2558 
2559 	mutex_lock(&wq->flush_mutex);
2560 
2561 	/*
2562 	 * Start-to-wait phase
2563 	 */
2564 	next_color = work_next_color(wq->work_color);
2565 
2566 	if (next_color != wq->flush_color) {
2567 		/*
2568 		 * Color space is not full.  The current work_color
2569 		 * becomes our flush_color and work_color is advanced
2570 		 * by one.
2571 		 */
2572 		BUG_ON(!list_empty(&wq->flusher_overflow));
2573 		this_flusher.flush_color = wq->work_color;
2574 		wq->work_color = next_color;
2575 
2576 		if (!wq->first_flusher) {
2577 			/* no flush in progress, become the first flusher */
2578 			BUG_ON(wq->flush_color != this_flusher.flush_color);
2579 
2580 			wq->first_flusher = &this_flusher;
2581 
2582 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2583 						       wq->work_color)) {
2584 				/* nothing to flush, done */
2585 				wq->flush_color = next_color;
2586 				wq->first_flusher = NULL;
2587 				goto out_unlock;
2588 			}
2589 		} else {
2590 			/* wait in queue */
2591 			BUG_ON(wq->flush_color == this_flusher.flush_color);
2592 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2593 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2594 		}
2595 	} else {
2596 		/*
2597 		 * Oops, color space is full, wait on overflow queue.
2598 		 * The next flush completion will assign us
2599 		 * flush_color and transfer to flusher_queue.
2600 		 */
2601 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2602 	}
2603 
2604 	mutex_unlock(&wq->flush_mutex);
2605 
2606 	wait_for_completion(&this_flusher.done);
2607 
2608 	/*
2609 	 * Wake-up-and-cascade phase
2610 	 *
2611 	 * First flushers are responsible for cascading flushes and
2612 	 * handling overflow.  Non-first flushers can simply return.
2613 	 */
2614 	if (wq->first_flusher != &this_flusher)
2615 		return;
2616 
2617 	mutex_lock(&wq->flush_mutex);
2618 
2619 	/* we might have raced, check again with mutex held */
2620 	if (wq->first_flusher != &this_flusher)
2621 		goto out_unlock;
2622 
2623 	wq->first_flusher = NULL;
2624 
2625 	BUG_ON(!list_empty(&this_flusher.list));
2626 	BUG_ON(wq->flush_color != this_flusher.flush_color);
2627 
2628 	while (true) {
2629 		struct wq_flusher *next, *tmp;
2630 
2631 		/* complete all the flushers sharing the current flush color */
2632 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2633 			if (next->flush_color != wq->flush_color)
2634 				break;
2635 			list_del_init(&next->list);
2636 			complete(&next->done);
2637 		}
2638 
2639 		BUG_ON(!list_empty(&wq->flusher_overflow) &&
2640 		       wq->flush_color != work_next_color(wq->work_color));
2641 
2642 		/* this flush_color is finished, advance by one */
2643 		wq->flush_color = work_next_color(wq->flush_color);
2644 
2645 		/* one color has been freed, handle overflow queue */
2646 		if (!list_empty(&wq->flusher_overflow)) {
2647 			/*
2648 			 * Assign the same color to all overflowed
2649 			 * flushers, advance work_color and append to
2650 			 * flusher_queue.  This is the start-to-wait
2651 			 * phase for these overflowed flushers.
2652 			 */
2653 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2654 				tmp->flush_color = wq->work_color;
2655 
2656 			wq->work_color = work_next_color(wq->work_color);
2657 
2658 			list_splice_tail_init(&wq->flusher_overflow,
2659 					      &wq->flusher_queue);
2660 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2661 		}
2662 
2663 		if (list_empty(&wq->flusher_queue)) {
2664 			BUG_ON(wq->flush_color != wq->work_color);
2665 			break;
2666 		}
2667 
2668 		/*
2669 		 * Need to flush more colors.  Make the next flusher
2670 		 * the new first flusher and arm pwqs.
2671 		 */
2672 		BUG_ON(wq->flush_color == wq->work_color);
2673 		BUG_ON(wq->flush_color != next->flush_color);
2674 
2675 		list_del_init(&next->list);
2676 		wq->first_flusher = next;
2677 
2678 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2679 			break;
2680 
2681 		/*
2682 		 * Meh... this color is already done, clear first
2683 		 * flusher and repeat cascading.
2684 		 */
2685 		wq->first_flusher = NULL;
2686 	}
2687 
2688 out_unlock:
2689 	mutex_unlock(&wq->flush_mutex);
2690 }
2691 EXPORT_SYMBOL_GPL(flush_workqueue);
2692 
2693 /**
2694  * drain_workqueue - drain a workqueue
2695  * @wq: workqueue to drain
2696  *
2697  * Wait until the workqueue becomes empty.  While draining is in progress,
2698  * only chain queueing is allowed.  IOW, only currently pending or running
2699  * work items on @wq can queue further work items on it.  @wq is flushed
2700  * repeatedly until it becomes empty.  The number of flushing is detemined
2701  * by the depth of chaining and should be relatively short.  Whine if it
2702  * takes too long.
2703  */
2704 void drain_workqueue(struct workqueue_struct *wq)
2705 {
2706 	unsigned int flush_cnt = 0;
2707 	unsigned int cpu;
2708 
2709 	/*
2710 	 * __queue_work() needs to test whether there are drainers, is much
2711 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2712 	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2713 	 */
2714 	spin_lock(&workqueue_lock);
2715 	if (!wq->nr_drainers++)
2716 		wq->flags |= WQ_DRAINING;
2717 	spin_unlock(&workqueue_lock);
2718 reflush:
2719 	flush_workqueue(wq);
2720 
2721 	for_each_pwq_cpu(cpu, wq) {
2722 		struct pool_workqueue *pwq = get_pwq(cpu, wq);
2723 		bool drained;
2724 
2725 		spin_lock_irq(&pwq->pool->lock);
2726 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2727 		spin_unlock_irq(&pwq->pool->lock);
2728 
2729 		if (drained)
2730 			continue;
2731 
2732 		if (++flush_cnt == 10 ||
2733 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2734 			pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2735 				wq->name, flush_cnt);
2736 		goto reflush;
2737 	}
2738 
2739 	spin_lock(&workqueue_lock);
2740 	if (!--wq->nr_drainers)
2741 		wq->flags &= ~WQ_DRAINING;
2742 	spin_unlock(&workqueue_lock);
2743 }
2744 EXPORT_SYMBOL_GPL(drain_workqueue);
2745 
2746 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2747 {
2748 	struct worker *worker = NULL;
2749 	struct worker_pool *pool;
2750 	struct pool_workqueue *pwq;
2751 
2752 	might_sleep();
2753 	pool = get_work_pool(work);
2754 	if (!pool)
2755 		return false;
2756 
2757 	spin_lock_irq(&pool->lock);
2758 	/* see the comment in try_to_grab_pending() with the same code */
2759 	pwq = get_work_pwq(work);
2760 	if (pwq) {
2761 		if (unlikely(pwq->pool != pool))
2762 			goto already_gone;
2763 	} else {
2764 		worker = find_worker_executing_work(pool, work);
2765 		if (!worker)
2766 			goto already_gone;
2767 		pwq = worker->current_pwq;
2768 	}
2769 
2770 	insert_wq_barrier(pwq, barr, work, worker);
2771 	spin_unlock_irq(&pool->lock);
2772 
2773 	/*
2774 	 * If @max_active is 1 or rescuer is in use, flushing another work
2775 	 * item on the same workqueue may lead to deadlock.  Make sure the
2776 	 * flusher is not running on the same workqueue by verifying write
2777 	 * access.
2778 	 */
2779 	if (pwq->wq->saved_max_active == 1 || pwq->wq->flags & WQ_RESCUER)
2780 		lock_map_acquire(&pwq->wq->lockdep_map);
2781 	else
2782 		lock_map_acquire_read(&pwq->wq->lockdep_map);
2783 	lock_map_release(&pwq->wq->lockdep_map);
2784 
2785 	return true;
2786 already_gone:
2787 	spin_unlock_irq(&pool->lock);
2788 	return false;
2789 }
2790 
2791 /**
2792  * flush_work - wait for a work to finish executing the last queueing instance
2793  * @work: the work to flush
2794  *
2795  * Wait until @work has finished execution.  @work is guaranteed to be idle
2796  * on return if it hasn't been requeued since flush started.
2797  *
2798  * RETURNS:
2799  * %true if flush_work() waited for the work to finish execution,
2800  * %false if it was already idle.
2801  */
2802 bool flush_work(struct work_struct *work)
2803 {
2804 	struct wq_barrier barr;
2805 
2806 	lock_map_acquire(&work->lockdep_map);
2807 	lock_map_release(&work->lockdep_map);
2808 
2809 	if (start_flush_work(work, &barr)) {
2810 		wait_for_completion(&barr.done);
2811 		destroy_work_on_stack(&barr.work);
2812 		return true;
2813 	} else {
2814 		return false;
2815 	}
2816 }
2817 EXPORT_SYMBOL_GPL(flush_work);
2818 
2819 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2820 {
2821 	unsigned long flags;
2822 	int ret;
2823 
2824 	do {
2825 		ret = try_to_grab_pending(work, is_dwork, &flags);
2826 		/*
2827 		 * If someone else is canceling, wait for the same event it
2828 		 * would be waiting for before retrying.
2829 		 */
2830 		if (unlikely(ret == -ENOENT))
2831 			flush_work(work);
2832 	} while (unlikely(ret < 0));
2833 
2834 	/* tell other tasks trying to grab @work to back off */
2835 	mark_work_canceling(work);
2836 	local_irq_restore(flags);
2837 
2838 	flush_work(work);
2839 	clear_work_data(work);
2840 	return ret;
2841 }
2842 
2843 /**
2844  * cancel_work_sync - cancel a work and wait for it to finish
2845  * @work: the work to cancel
2846  *
2847  * Cancel @work and wait for its execution to finish.  This function
2848  * can be used even if the work re-queues itself or migrates to
2849  * another workqueue.  On return from this function, @work is
2850  * guaranteed to be not pending or executing on any CPU.
2851  *
2852  * cancel_work_sync(&delayed_work->work) must not be used for
2853  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2854  *
2855  * The caller must ensure that the workqueue on which @work was last
2856  * queued can't be destroyed before this function returns.
2857  *
2858  * RETURNS:
2859  * %true if @work was pending, %false otherwise.
2860  */
2861 bool cancel_work_sync(struct work_struct *work)
2862 {
2863 	return __cancel_work_timer(work, false);
2864 }
2865 EXPORT_SYMBOL_GPL(cancel_work_sync);
2866 
2867 /**
2868  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2869  * @dwork: the delayed work to flush
2870  *
2871  * Delayed timer is cancelled and the pending work is queued for
2872  * immediate execution.  Like flush_work(), this function only
2873  * considers the last queueing instance of @dwork.
2874  *
2875  * RETURNS:
2876  * %true if flush_work() waited for the work to finish execution,
2877  * %false if it was already idle.
2878  */
2879 bool flush_delayed_work(struct delayed_work *dwork)
2880 {
2881 	local_irq_disable();
2882 	if (del_timer_sync(&dwork->timer))
2883 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2884 	local_irq_enable();
2885 	return flush_work(&dwork->work);
2886 }
2887 EXPORT_SYMBOL(flush_delayed_work);
2888 
2889 /**
2890  * cancel_delayed_work - cancel a delayed work
2891  * @dwork: delayed_work to cancel
2892  *
2893  * Kill off a pending delayed_work.  Returns %true if @dwork was pending
2894  * and canceled; %false if wasn't pending.  Note that the work callback
2895  * function may still be running on return, unless it returns %true and the
2896  * work doesn't re-arm itself.  Explicitly flush or use
2897  * cancel_delayed_work_sync() to wait on it.
2898  *
2899  * This function is safe to call from any context including IRQ handler.
2900  */
2901 bool cancel_delayed_work(struct delayed_work *dwork)
2902 {
2903 	unsigned long flags;
2904 	int ret;
2905 
2906 	do {
2907 		ret = try_to_grab_pending(&dwork->work, true, &flags);
2908 	} while (unlikely(ret == -EAGAIN));
2909 
2910 	if (unlikely(ret < 0))
2911 		return false;
2912 
2913 	set_work_pool_and_clear_pending(&dwork->work,
2914 					get_work_pool_id(&dwork->work));
2915 	local_irq_restore(flags);
2916 	return ret;
2917 }
2918 EXPORT_SYMBOL(cancel_delayed_work);
2919 
2920 /**
2921  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2922  * @dwork: the delayed work cancel
2923  *
2924  * This is cancel_work_sync() for delayed works.
2925  *
2926  * RETURNS:
2927  * %true if @dwork was pending, %false otherwise.
2928  */
2929 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2930 {
2931 	return __cancel_work_timer(&dwork->work, true);
2932 }
2933 EXPORT_SYMBOL(cancel_delayed_work_sync);
2934 
2935 /**
2936  * schedule_work_on - put work task on a specific cpu
2937  * @cpu: cpu to put the work task on
2938  * @work: job to be done
2939  *
2940  * This puts a job on a specific cpu
2941  */
2942 bool schedule_work_on(int cpu, struct work_struct *work)
2943 {
2944 	return queue_work_on(cpu, system_wq, work);
2945 }
2946 EXPORT_SYMBOL(schedule_work_on);
2947 
2948 /**
2949  * schedule_work - put work task in global workqueue
2950  * @work: job to be done
2951  *
2952  * Returns %false if @work was already on the kernel-global workqueue and
2953  * %true otherwise.
2954  *
2955  * This puts a job in the kernel-global workqueue if it was not already
2956  * queued and leaves it in the same position on the kernel-global
2957  * workqueue otherwise.
2958  */
2959 bool schedule_work(struct work_struct *work)
2960 {
2961 	return queue_work(system_wq, work);
2962 }
2963 EXPORT_SYMBOL(schedule_work);
2964 
2965 /**
2966  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2967  * @cpu: cpu to use
2968  * @dwork: job to be done
2969  * @delay: number of jiffies to wait
2970  *
2971  * After waiting for a given time this puts a job in the kernel-global
2972  * workqueue on the specified CPU.
2973  */
2974 bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2975 			      unsigned long delay)
2976 {
2977 	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2978 }
2979 EXPORT_SYMBOL(schedule_delayed_work_on);
2980 
2981 /**
2982  * schedule_delayed_work - put work task in global workqueue after delay
2983  * @dwork: job to be done
2984  * @delay: number of jiffies to wait or 0 for immediate execution
2985  *
2986  * After waiting for a given time this puts a job in the kernel-global
2987  * workqueue.
2988  */
2989 bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
2990 {
2991 	return queue_delayed_work(system_wq, dwork, delay);
2992 }
2993 EXPORT_SYMBOL(schedule_delayed_work);
2994 
2995 /**
2996  * schedule_on_each_cpu - execute a function synchronously on each online CPU
2997  * @func: the function to call
2998  *
2999  * schedule_on_each_cpu() executes @func on each online CPU using the
3000  * system workqueue and blocks until all CPUs have completed.
3001  * schedule_on_each_cpu() is very slow.
3002  *
3003  * RETURNS:
3004  * 0 on success, -errno on failure.
3005  */
3006 int schedule_on_each_cpu(work_func_t func)
3007 {
3008 	int cpu;
3009 	struct work_struct __percpu *works;
3010 
3011 	works = alloc_percpu(struct work_struct);
3012 	if (!works)
3013 		return -ENOMEM;
3014 
3015 	get_online_cpus();
3016 
3017 	for_each_online_cpu(cpu) {
3018 		struct work_struct *work = per_cpu_ptr(works, cpu);
3019 
3020 		INIT_WORK(work, func);
3021 		schedule_work_on(cpu, work);
3022 	}
3023 
3024 	for_each_online_cpu(cpu)
3025 		flush_work(per_cpu_ptr(works, cpu));
3026 
3027 	put_online_cpus();
3028 	free_percpu(works);
3029 	return 0;
3030 }
3031 
3032 /**
3033  * flush_scheduled_work - ensure that any scheduled work has run to completion.
3034  *
3035  * Forces execution of the kernel-global workqueue and blocks until its
3036  * completion.
3037  *
3038  * Think twice before calling this function!  It's very easy to get into
3039  * trouble if you don't take great care.  Either of the following situations
3040  * will lead to deadlock:
3041  *
3042  *	One of the work items currently on the workqueue needs to acquire
3043  *	a lock held by your code or its caller.
3044  *
3045  *	Your code is running in the context of a work routine.
3046  *
3047  * They will be detected by lockdep when they occur, but the first might not
3048  * occur very often.  It depends on what work items are on the workqueue and
3049  * what locks they need, which you have no control over.
3050  *
3051  * In most situations flushing the entire workqueue is overkill; you merely
3052  * need to know that a particular work item isn't queued and isn't running.
3053  * In such cases you should use cancel_delayed_work_sync() or
3054  * cancel_work_sync() instead.
3055  */
3056 void flush_scheduled_work(void)
3057 {
3058 	flush_workqueue(system_wq);
3059 }
3060 EXPORT_SYMBOL(flush_scheduled_work);
3061 
3062 /**
3063  * execute_in_process_context - reliably execute the routine with user context
3064  * @fn:		the function to execute
3065  * @ew:		guaranteed storage for the execute work structure (must
3066  *		be available when the work executes)
3067  *
3068  * Executes the function immediately if process context is available,
3069  * otherwise schedules the function for delayed execution.
3070  *
3071  * Returns:	0 - function was executed
3072  *		1 - function was scheduled for execution
3073  */
3074 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3075 {
3076 	if (!in_interrupt()) {
3077 		fn(&ew->work);
3078 		return 0;
3079 	}
3080 
3081 	INIT_WORK(&ew->work, fn);
3082 	schedule_work(&ew->work);
3083 
3084 	return 1;
3085 }
3086 EXPORT_SYMBOL_GPL(execute_in_process_context);
3087 
3088 int keventd_up(void)
3089 {
3090 	return system_wq != NULL;
3091 }
3092 
3093 static int alloc_pwqs(struct workqueue_struct *wq)
3094 {
3095 	/*
3096 	 * pwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3097 	 * Make sure that the alignment isn't lower than that of
3098 	 * unsigned long long.
3099 	 */
3100 	const size_t size = sizeof(struct pool_workqueue);
3101 	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3102 				   __alignof__(unsigned long long));
3103 
3104 	if (!(wq->flags & WQ_UNBOUND))
3105 		wq->pool_wq.pcpu = __alloc_percpu(size, align);
3106 	else {
3107 		void *ptr;
3108 
3109 		/*
3110 		 * Allocate enough room to align pwq and put an extra
3111 		 * pointer at the end pointing back to the originally
3112 		 * allocated pointer which will be used for free.
3113 		 */
3114 		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3115 		if (ptr) {
3116 			wq->pool_wq.single = PTR_ALIGN(ptr, align);
3117 			*(void **)(wq->pool_wq.single + 1) = ptr;
3118 		}
3119 	}
3120 
3121 	/* just in case, make sure it's actually aligned */
3122 	BUG_ON(!IS_ALIGNED(wq->pool_wq.v, align));
3123 	return wq->pool_wq.v ? 0 : -ENOMEM;
3124 }
3125 
3126 static void free_pwqs(struct workqueue_struct *wq)
3127 {
3128 	if (!(wq->flags & WQ_UNBOUND))
3129 		free_percpu(wq->pool_wq.pcpu);
3130 	else if (wq->pool_wq.single) {
3131 		/* the pointer to free is stored right after the pwq */
3132 		kfree(*(void **)(wq->pool_wq.single + 1));
3133 	}
3134 }
3135 
3136 static int wq_clamp_max_active(int max_active, unsigned int flags,
3137 			       const char *name)
3138 {
3139 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3140 
3141 	if (max_active < 1 || max_active > lim)
3142 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3143 			max_active, name, 1, lim);
3144 
3145 	return clamp_val(max_active, 1, lim);
3146 }
3147 
3148 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3149 					       unsigned int flags,
3150 					       int max_active,
3151 					       struct lock_class_key *key,
3152 					       const char *lock_name, ...)
3153 {
3154 	va_list args, args1;
3155 	struct workqueue_struct *wq;
3156 	unsigned int cpu;
3157 	size_t namelen;
3158 
3159 	/* determine namelen, allocate wq and format name */
3160 	va_start(args, lock_name);
3161 	va_copy(args1, args);
3162 	namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3163 
3164 	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3165 	if (!wq)
3166 		goto err;
3167 
3168 	vsnprintf(wq->name, namelen, fmt, args1);
3169 	va_end(args);
3170 	va_end(args1);
3171 
3172 	/*
3173 	 * Workqueues which may be used during memory reclaim should
3174 	 * have a rescuer to guarantee forward progress.
3175 	 */
3176 	if (flags & WQ_MEM_RECLAIM)
3177 		flags |= WQ_RESCUER;
3178 
3179 	max_active = max_active ?: WQ_DFL_ACTIVE;
3180 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3181 
3182 	/* init wq */
3183 	wq->flags = flags;
3184 	wq->saved_max_active = max_active;
3185 	mutex_init(&wq->flush_mutex);
3186 	atomic_set(&wq->nr_pwqs_to_flush, 0);
3187 	INIT_LIST_HEAD(&wq->flusher_queue);
3188 	INIT_LIST_HEAD(&wq->flusher_overflow);
3189 
3190 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3191 	INIT_LIST_HEAD(&wq->list);
3192 
3193 	if (alloc_pwqs(wq) < 0)
3194 		goto err;
3195 
3196 	for_each_pwq_cpu(cpu, wq) {
3197 		struct pool_workqueue *pwq = get_pwq(cpu, wq);
3198 
3199 		BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3200 		pwq->pool = get_std_worker_pool(cpu, flags & WQ_HIGHPRI);
3201 		pwq->wq = wq;
3202 		pwq->flush_color = -1;
3203 		pwq->max_active = max_active;
3204 		INIT_LIST_HEAD(&pwq->delayed_works);
3205 	}
3206 
3207 	if (flags & WQ_RESCUER) {
3208 		struct worker *rescuer;
3209 
3210 		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3211 			goto err;
3212 
3213 		wq->rescuer = rescuer = alloc_worker();
3214 		if (!rescuer)
3215 			goto err;
3216 
3217 		rescuer->rescue_wq = wq;
3218 		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3219 					       wq->name);
3220 		if (IS_ERR(rescuer->task))
3221 			goto err;
3222 
3223 		rescuer->task->flags |= PF_THREAD_BOUND;
3224 		wake_up_process(rescuer->task);
3225 	}
3226 
3227 	/*
3228 	 * workqueue_lock protects global freeze state and workqueues
3229 	 * list.  Grab it, set max_active accordingly and add the new
3230 	 * workqueue to workqueues list.
3231 	 */
3232 	spin_lock(&workqueue_lock);
3233 
3234 	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3235 		for_each_pwq_cpu(cpu, wq)
3236 			get_pwq(cpu, wq)->max_active = 0;
3237 
3238 	list_add(&wq->list, &workqueues);
3239 
3240 	spin_unlock(&workqueue_lock);
3241 
3242 	return wq;
3243 err:
3244 	if (wq) {
3245 		free_pwqs(wq);
3246 		free_mayday_mask(wq->mayday_mask);
3247 		kfree(wq->rescuer);
3248 		kfree(wq);
3249 	}
3250 	return NULL;
3251 }
3252 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3253 
3254 /**
3255  * destroy_workqueue - safely terminate a workqueue
3256  * @wq: target workqueue
3257  *
3258  * Safely destroy a workqueue. All work currently pending will be done first.
3259  */
3260 void destroy_workqueue(struct workqueue_struct *wq)
3261 {
3262 	unsigned int cpu;
3263 
3264 	/* drain it before proceeding with destruction */
3265 	drain_workqueue(wq);
3266 
3267 	/*
3268 	 * wq list is used to freeze wq, remove from list after
3269 	 * flushing is complete in case freeze races us.
3270 	 */
3271 	spin_lock(&workqueue_lock);
3272 	list_del(&wq->list);
3273 	spin_unlock(&workqueue_lock);
3274 
3275 	/* sanity check */
3276 	for_each_pwq_cpu(cpu, wq) {
3277 		struct pool_workqueue *pwq = get_pwq(cpu, wq);
3278 		int i;
3279 
3280 		for (i = 0; i < WORK_NR_COLORS; i++)
3281 			BUG_ON(pwq->nr_in_flight[i]);
3282 		BUG_ON(pwq->nr_active);
3283 		BUG_ON(!list_empty(&pwq->delayed_works));
3284 	}
3285 
3286 	if (wq->flags & WQ_RESCUER) {
3287 		kthread_stop(wq->rescuer->task);
3288 		free_mayday_mask(wq->mayday_mask);
3289 		kfree(wq->rescuer);
3290 	}
3291 
3292 	free_pwqs(wq);
3293 	kfree(wq);
3294 }
3295 EXPORT_SYMBOL_GPL(destroy_workqueue);
3296 
3297 /**
3298  * pwq_set_max_active - adjust max_active of a pwq
3299  * @pwq: target pool_workqueue
3300  * @max_active: new max_active value.
3301  *
3302  * Set @pwq->max_active to @max_active and activate delayed works if
3303  * increased.
3304  *
3305  * CONTEXT:
3306  * spin_lock_irq(pool->lock).
3307  */
3308 static void pwq_set_max_active(struct pool_workqueue *pwq, int max_active)
3309 {
3310 	pwq->max_active = max_active;
3311 
3312 	while (!list_empty(&pwq->delayed_works) &&
3313 	       pwq->nr_active < pwq->max_active)
3314 		pwq_activate_first_delayed(pwq);
3315 }
3316 
3317 /**
3318  * workqueue_set_max_active - adjust max_active of a workqueue
3319  * @wq: target workqueue
3320  * @max_active: new max_active value.
3321  *
3322  * Set max_active of @wq to @max_active.
3323  *
3324  * CONTEXT:
3325  * Don't call from IRQ context.
3326  */
3327 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3328 {
3329 	unsigned int cpu;
3330 
3331 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3332 
3333 	spin_lock(&workqueue_lock);
3334 
3335 	wq->saved_max_active = max_active;
3336 
3337 	for_each_pwq_cpu(cpu, wq) {
3338 		struct pool_workqueue *pwq = get_pwq(cpu, wq);
3339 		struct worker_pool *pool = pwq->pool;
3340 
3341 		spin_lock_irq(&pool->lock);
3342 
3343 		if (!(wq->flags & WQ_FREEZABLE) ||
3344 		    !(pool->flags & POOL_FREEZING))
3345 			pwq_set_max_active(pwq, max_active);
3346 
3347 		spin_unlock_irq(&pool->lock);
3348 	}
3349 
3350 	spin_unlock(&workqueue_lock);
3351 }
3352 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3353 
3354 /**
3355  * workqueue_congested - test whether a workqueue is congested
3356  * @cpu: CPU in question
3357  * @wq: target workqueue
3358  *
3359  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
3360  * no synchronization around this function and the test result is
3361  * unreliable and only useful as advisory hints or for debugging.
3362  *
3363  * RETURNS:
3364  * %true if congested, %false otherwise.
3365  */
3366 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3367 {
3368 	struct pool_workqueue *pwq = get_pwq(cpu, wq);
3369 
3370 	return !list_empty(&pwq->delayed_works);
3371 }
3372 EXPORT_SYMBOL_GPL(workqueue_congested);
3373 
3374 /**
3375  * work_busy - test whether a work is currently pending or running
3376  * @work: the work to be tested
3377  *
3378  * Test whether @work is currently pending or running.  There is no
3379  * synchronization around this function and the test result is
3380  * unreliable and only useful as advisory hints or for debugging.
3381  *
3382  * RETURNS:
3383  * OR'd bitmask of WORK_BUSY_* bits.
3384  */
3385 unsigned int work_busy(struct work_struct *work)
3386 {
3387 	struct worker_pool *pool = get_work_pool(work);
3388 	unsigned long flags;
3389 	unsigned int ret = 0;
3390 
3391 	if (work_pending(work))
3392 		ret |= WORK_BUSY_PENDING;
3393 
3394 	if (pool) {
3395 		spin_lock_irqsave(&pool->lock, flags);
3396 		if (find_worker_executing_work(pool, work))
3397 			ret |= WORK_BUSY_RUNNING;
3398 		spin_unlock_irqrestore(&pool->lock, flags);
3399 	}
3400 
3401 	return ret;
3402 }
3403 EXPORT_SYMBOL_GPL(work_busy);
3404 
3405 /*
3406  * CPU hotplug.
3407  *
3408  * There are two challenges in supporting CPU hotplug.  Firstly, there
3409  * are a lot of assumptions on strong associations among work, pwq and
3410  * pool which make migrating pending and scheduled works very
3411  * difficult to implement without impacting hot paths.  Secondly,
3412  * worker pools serve mix of short, long and very long running works making
3413  * blocked draining impractical.
3414  *
3415  * This is solved by allowing the pools to be disassociated from the CPU
3416  * running as an unbound one and allowing it to be reattached later if the
3417  * cpu comes back online.
3418  */
3419 
3420 static void wq_unbind_fn(struct work_struct *work)
3421 {
3422 	int cpu = smp_processor_id();
3423 	struct worker_pool *pool;
3424 	struct worker *worker;
3425 	int i;
3426 
3427 	for_each_std_worker_pool(pool, cpu) {
3428 		BUG_ON(cpu != smp_processor_id());
3429 
3430 		mutex_lock(&pool->assoc_mutex);
3431 		spin_lock_irq(&pool->lock);
3432 
3433 		/*
3434 		 * We've claimed all manager positions.  Make all workers
3435 		 * unbound and set DISASSOCIATED.  Before this, all workers
3436 		 * except for the ones which are still executing works from
3437 		 * before the last CPU down must be on the cpu.  After
3438 		 * this, they may become diasporas.
3439 		 */
3440 		list_for_each_entry(worker, &pool->idle_list, entry)
3441 			worker->flags |= WORKER_UNBOUND;
3442 
3443 		for_each_busy_worker(worker, i, pool)
3444 			worker->flags |= WORKER_UNBOUND;
3445 
3446 		pool->flags |= POOL_DISASSOCIATED;
3447 
3448 		spin_unlock_irq(&pool->lock);
3449 		mutex_unlock(&pool->assoc_mutex);
3450 	}
3451 
3452 	/*
3453 	 * Call schedule() so that we cross rq->lock and thus can guarantee
3454 	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
3455 	 * as scheduler callbacks may be invoked from other cpus.
3456 	 */
3457 	schedule();
3458 
3459 	/*
3460 	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
3461 	 * nr_running stays zero and need_more_worker() and keep_working()
3462 	 * are always true as long as the worklist is not empty.  Pools on
3463 	 * @cpu now behave as unbound (in terms of concurrency management)
3464 	 * pools which are served by workers tied to the CPU.
3465 	 *
3466 	 * On return from this function, the current worker would trigger
3467 	 * unbound chain execution of pending work items if other workers
3468 	 * didn't already.
3469 	 */
3470 	for_each_std_worker_pool(pool, cpu)
3471 		atomic_set(&pool->nr_running, 0);
3472 }
3473 
3474 /*
3475  * Workqueues should be brought up before normal priority CPU notifiers.
3476  * This will be registered high priority CPU notifier.
3477  */
3478 static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3479 					       unsigned long action,
3480 					       void *hcpu)
3481 {
3482 	unsigned int cpu = (unsigned long)hcpu;
3483 	struct worker_pool *pool;
3484 
3485 	switch (action & ~CPU_TASKS_FROZEN) {
3486 	case CPU_UP_PREPARE:
3487 		for_each_std_worker_pool(pool, cpu) {
3488 			struct worker *worker;
3489 
3490 			if (pool->nr_workers)
3491 				continue;
3492 
3493 			worker = create_worker(pool);
3494 			if (!worker)
3495 				return NOTIFY_BAD;
3496 
3497 			spin_lock_irq(&pool->lock);
3498 			start_worker(worker);
3499 			spin_unlock_irq(&pool->lock);
3500 		}
3501 		break;
3502 
3503 	case CPU_DOWN_FAILED:
3504 	case CPU_ONLINE:
3505 		for_each_std_worker_pool(pool, cpu) {
3506 			mutex_lock(&pool->assoc_mutex);
3507 			spin_lock_irq(&pool->lock);
3508 
3509 			pool->flags &= ~POOL_DISASSOCIATED;
3510 			rebind_workers(pool);
3511 
3512 			spin_unlock_irq(&pool->lock);
3513 			mutex_unlock(&pool->assoc_mutex);
3514 		}
3515 		break;
3516 	}
3517 	return NOTIFY_OK;
3518 }
3519 
3520 /*
3521  * Workqueues should be brought down after normal priority CPU notifiers.
3522  * This will be registered as low priority CPU notifier.
3523  */
3524 static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3525 						 unsigned long action,
3526 						 void *hcpu)
3527 {
3528 	unsigned int cpu = (unsigned long)hcpu;
3529 	struct work_struct unbind_work;
3530 
3531 	switch (action & ~CPU_TASKS_FROZEN) {
3532 	case CPU_DOWN_PREPARE:
3533 		/* unbinding should happen on the local CPU */
3534 		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
3535 		queue_work_on(cpu, system_highpri_wq, &unbind_work);
3536 		flush_work(&unbind_work);
3537 		break;
3538 	}
3539 	return NOTIFY_OK;
3540 }
3541 
3542 #ifdef CONFIG_SMP
3543 
3544 struct work_for_cpu {
3545 	struct work_struct work;
3546 	long (*fn)(void *);
3547 	void *arg;
3548 	long ret;
3549 };
3550 
3551 static void work_for_cpu_fn(struct work_struct *work)
3552 {
3553 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3554 
3555 	wfc->ret = wfc->fn(wfc->arg);
3556 }
3557 
3558 /**
3559  * work_on_cpu - run a function in user context on a particular cpu
3560  * @cpu: the cpu to run on
3561  * @fn: the function to run
3562  * @arg: the function arg
3563  *
3564  * This will return the value @fn returns.
3565  * It is up to the caller to ensure that the cpu doesn't go offline.
3566  * The caller must not hold any locks which would prevent @fn from completing.
3567  */
3568 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3569 {
3570 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3571 
3572 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3573 	schedule_work_on(cpu, &wfc.work);
3574 	flush_work(&wfc.work);
3575 	return wfc.ret;
3576 }
3577 EXPORT_SYMBOL_GPL(work_on_cpu);
3578 #endif /* CONFIG_SMP */
3579 
3580 #ifdef CONFIG_FREEZER
3581 
3582 /**
3583  * freeze_workqueues_begin - begin freezing workqueues
3584  *
3585  * Start freezing workqueues.  After this function returns, all freezable
3586  * workqueues will queue new works to their frozen_works list instead of
3587  * pool->worklist.
3588  *
3589  * CONTEXT:
3590  * Grabs and releases workqueue_lock and pool->lock's.
3591  */
3592 void freeze_workqueues_begin(void)
3593 {
3594 	unsigned int cpu;
3595 
3596 	spin_lock(&workqueue_lock);
3597 
3598 	BUG_ON(workqueue_freezing);
3599 	workqueue_freezing = true;
3600 
3601 	for_each_wq_cpu(cpu) {
3602 		struct worker_pool *pool;
3603 		struct workqueue_struct *wq;
3604 
3605 		for_each_std_worker_pool(pool, cpu) {
3606 			spin_lock_irq(&pool->lock);
3607 
3608 			WARN_ON_ONCE(pool->flags & POOL_FREEZING);
3609 			pool->flags |= POOL_FREEZING;
3610 
3611 			list_for_each_entry(wq, &workqueues, list) {
3612 				struct pool_workqueue *pwq = get_pwq(cpu, wq);
3613 
3614 				if (pwq && pwq->pool == pool &&
3615 				    (wq->flags & WQ_FREEZABLE))
3616 					pwq->max_active = 0;
3617 			}
3618 
3619 			spin_unlock_irq(&pool->lock);
3620 		}
3621 	}
3622 
3623 	spin_unlock(&workqueue_lock);
3624 }
3625 
3626 /**
3627  * freeze_workqueues_busy - are freezable workqueues still busy?
3628  *
3629  * Check whether freezing is complete.  This function must be called
3630  * between freeze_workqueues_begin() and thaw_workqueues().
3631  *
3632  * CONTEXT:
3633  * Grabs and releases workqueue_lock.
3634  *
3635  * RETURNS:
3636  * %true if some freezable workqueues are still busy.  %false if freezing
3637  * is complete.
3638  */
3639 bool freeze_workqueues_busy(void)
3640 {
3641 	unsigned int cpu;
3642 	bool busy = false;
3643 
3644 	spin_lock(&workqueue_lock);
3645 
3646 	BUG_ON(!workqueue_freezing);
3647 
3648 	for_each_wq_cpu(cpu) {
3649 		struct workqueue_struct *wq;
3650 		/*
3651 		 * nr_active is monotonically decreasing.  It's safe
3652 		 * to peek without lock.
3653 		 */
3654 		list_for_each_entry(wq, &workqueues, list) {
3655 			struct pool_workqueue *pwq = get_pwq(cpu, wq);
3656 
3657 			if (!pwq || !(wq->flags & WQ_FREEZABLE))
3658 				continue;
3659 
3660 			BUG_ON(pwq->nr_active < 0);
3661 			if (pwq->nr_active) {
3662 				busy = true;
3663 				goto out_unlock;
3664 			}
3665 		}
3666 	}
3667 out_unlock:
3668 	spin_unlock(&workqueue_lock);
3669 	return busy;
3670 }
3671 
3672 /**
3673  * thaw_workqueues - thaw workqueues
3674  *
3675  * Thaw workqueues.  Normal queueing is restored and all collected
3676  * frozen works are transferred to their respective pool worklists.
3677  *
3678  * CONTEXT:
3679  * Grabs and releases workqueue_lock and pool->lock's.
3680  */
3681 void thaw_workqueues(void)
3682 {
3683 	unsigned int cpu;
3684 
3685 	spin_lock(&workqueue_lock);
3686 
3687 	if (!workqueue_freezing)
3688 		goto out_unlock;
3689 
3690 	for_each_wq_cpu(cpu) {
3691 		struct worker_pool *pool;
3692 		struct workqueue_struct *wq;
3693 
3694 		for_each_std_worker_pool(pool, cpu) {
3695 			spin_lock_irq(&pool->lock);
3696 
3697 			WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
3698 			pool->flags &= ~POOL_FREEZING;
3699 
3700 			list_for_each_entry(wq, &workqueues, list) {
3701 				struct pool_workqueue *pwq = get_pwq(cpu, wq);
3702 
3703 				if (!pwq || pwq->pool != pool ||
3704 				    !(wq->flags & WQ_FREEZABLE))
3705 					continue;
3706 
3707 				/* restore max_active and repopulate worklist */
3708 				pwq_set_max_active(pwq, wq->saved_max_active);
3709 			}
3710 
3711 			wake_up_worker(pool);
3712 
3713 			spin_unlock_irq(&pool->lock);
3714 		}
3715 	}
3716 
3717 	workqueue_freezing = false;
3718 out_unlock:
3719 	spin_unlock(&workqueue_lock);
3720 }
3721 #endif /* CONFIG_FREEZER */
3722 
3723 static int __init init_workqueues(void)
3724 {
3725 	unsigned int cpu;
3726 
3727 	/* make sure we have enough bits for OFFQ pool ID */
3728 	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
3729 		     WORK_CPU_END * NR_STD_WORKER_POOLS);
3730 
3731 	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3732 	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3733 
3734 	/* initialize CPU pools */
3735 	for_each_wq_cpu(cpu) {
3736 		struct worker_pool *pool;
3737 
3738 		for_each_std_worker_pool(pool, cpu) {
3739 			spin_lock_init(&pool->lock);
3740 			pool->cpu = cpu;
3741 			pool->flags |= POOL_DISASSOCIATED;
3742 			INIT_LIST_HEAD(&pool->worklist);
3743 			INIT_LIST_HEAD(&pool->idle_list);
3744 			hash_init(pool->busy_hash);
3745 
3746 			init_timer_deferrable(&pool->idle_timer);
3747 			pool->idle_timer.function = idle_worker_timeout;
3748 			pool->idle_timer.data = (unsigned long)pool;
3749 
3750 			setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3751 				    (unsigned long)pool);
3752 
3753 			mutex_init(&pool->assoc_mutex);
3754 			ida_init(&pool->worker_ida);
3755 
3756 			/* alloc pool ID */
3757 			BUG_ON(worker_pool_assign_id(pool));
3758 		}
3759 	}
3760 
3761 	/* create the initial worker */
3762 	for_each_online_wq_cpu(cpu) {
3763 		struct worker_pool *pool;
3764 
3765 		for_each_std_worker_pool(pool, cpu) {
3766 			struct worker *worker;
3767 
3768 			if (cpu != WORK_CPU_UNBOUND)
3769 				pool->flags &= ~POOL_DISASSOCIATED;
3770 
3771 			worker = create_worker(pool);
3772 			BUG_ON(!worker);
3773 			spin_lock_irq(&pool->lock);
3774 			start_worker(worker);
3775 			spin_unlock_irq(&pool->lock);
3776 		}
3777 	}
3778 
3779 	system_wq = alloc_workqueue("events", 0, 0);
3780 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3781 	system_long_wq = alloc_workqueue("events_long", 0, 0);
3782 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3783 					    WQ_UNBOUND_MAX_ACTIVE);
3784 	system_freezable_wq = alloc_workqueue("events_freezable",
3785 					      WQ_FREEZABLE, 0);
3786 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3787 	       !system_unbound_wq || !system_freezable_wq);
3788 	return 0;
3789 }
3790 early_initcall(init_workqueues);
3791