1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There is one worker pool for each CPU and 20 * one extra for works which are better served by workers which are 21 * not bound to any specific CPU. 22 * 23 * Please read Documentation/workqueue.txt for details. 24 */ 25 26 #include <linux/export.h> 27 #include <linux/kernel.h> 28 #include <linux/sched.h> 29 #include <linux/init.h> 30 #include <linux/signal.h> 31 #include <linux/completion.h> 32 #include <linux/workqueue.h> 33 #include <linux/slab.h> 34 #include <linux/cpu.h> 35 #include <linux/notifier.h> 36 #include <linux/kthread.h> 37 #include <linux/hardirq.h> 38 #include <linux/mempolicy.h> 39 #include <linux/freezer.h> 40 #include <linux/kallsyms.h> 41 #include <linux/debug_locks.h> 42 #include <linux/lockdep.h> 43 #include <linux/idr.h> 44 #include <linux/hashtable.h> 45 46 #include "workqueue_internal.h" 47 48 enum { 49 /* 50 * worker_pool flags 51 * 52 * A bound pool is either associated or disassociated with its CPU. 53 * While associated (!DISASSOCIATED), all workers are bound to the 54 * CPU and none has %WORKER_UNBOUND set and concurrency management 55 * is in effect. 56 * 57 * While DISASSOCIATED, the cpu may be offline and all workers have 58 * %WORKER_UNBOUND set and concurrency management disabled, and may 59 * be executing on any CPU. The pool behaves as an unbound one. 60 * 61 * Note that DISASSOCIATED can be flipped only while holding 62 * assoc_mutex to avoid changing binding state while 63 * create_worker() is in progress. 64 */ 65 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */ 66 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */ 67 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 68 POOL_FREEZING = 1 << 3, /* freeze in progress */ 69 70 /* worker flags */ 71 WORKER_STARTED = 1 << 0, /* started */ 72 WORKER_DIE = 1 << 1, /* die die die */ 73 WORKER_IDLE = 1 << 2, /* is idle */ 74 WORKER_PREP = 1 << 3, /* preparing to run works */ 75 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 76 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 77 78 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND | 79 WORKER_CPU_INTENSIVE, 80 81 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 82 83 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 84 85 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 86 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 87 88 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 89 /* call for help after 10ms 90 (min two ticks) */ 91 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 92 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 93 94 /* 95 * Rescue workers are used only on emergencies and shared by 96 * all cpus. Give -20. 97 */ 98 RESCUER_NICE_LEVEL = -20, 99 HIGHPRI_NICE_LEVEL = -20, 100 }; 101 102 /* 103 * Structure fields follow one of the following exclusion rules. 104 * 105 * I: Modifiable by initialization/destruction paths and read-only for 106 * everyone else. 107 * 108 * P: Preemption protected. Disabling preemption is enough and should 109 * only be modified and accessed from the local cpu. 110 * 111 * L: pool->lock protected. Access with pool->lock held. 112 * 113 * X: During normal operation, modification requires pool->lock and should 114 * be done only from local cpu. Either disabling preemption on local 115 * cpu or grabbing pool->lock is enough for read access. If 116 * POOL_DISASSOCIATED is set, it's identical to L. 117 * 118 * F: wq->flush_mutex protected. 119 * 120 * W: workqueue_lock protected. 121 */ 122 123 /* struct worker is defined in workqueue_internal.h */ 124 125 struct worker_pool { 126 spinlock_t lock; /* the pool lock */ 127 unsigned int cpu; /* I: the associated cpu */ 128 int id; /* I: pool ID */ 129 unsigned int flags; /* X: flags */ 130 131 struct list_head worklist; /* L: list of pending works */ 132 int nr_workers; /* L: total number of workers */ 133 134 /* nr_idle includes the ones off idle_list for rebinding */ 135 int nr_idle; /* L: currently idle ones */ 136 137 struct list_head idle_list; /* X: list of idle workers */ 138 struct timer_list idle_timer; /* L: worker idle timeout */ 139 struct timer_list mayday_timer; /* L: SOS timer for workers */ 140 141 /* workers are chained either in busy_hash or idle_list */ 142 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 143 /* L: hash of busy workers */ 144 145 struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */ 146 struct ida worker_ida; /* L: for worker IDs */ 147 148 /* 149 * The current concurrency level. As it's likely to be accessed 150 * from other CPUs during try_to_wake_up(), put it in a separate 151 * cacheline. 152 */ 153 atomic_t nr_running ____cacheline_aligned_in_smp; 154 } ____cacheline_aligned_in_smp; 155 156 /* 157 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 158 * of work_struct->data are used for flags and the remaining high bits 159 * point to the pwq; thus, pwqs need to be aligned at two's power of the 160 * number of flag bits. 161 */ 162 struct pool_workqueue { 163 struct worker_pool *pool; /* I: the associated pool */ 164 struct workqueue_struct *wq; /* I: the owning workqueue */ 165 int work_color; /* L: current color */ 166 int flush_color; /* L: flushing color */ 167 int nr_in_flight[WORK_NR_COLORS]; 168 /* L: nr of in_flight works */ 169 int nr_active; /* L: nr of active works */ 170 int max_active; /* L: max active works */ 171 struct list_head delayed_works; /* L: delayed works */ 172 }; 173 174 /* 175 * Structure used to wait for workqueue flush. 176 */ 177 struct wq_flusher { 178 struct list_head list; /* F: list of flushers */ 179 int flush_color; /* F: flush color waiting for */ 180 struct completion done; /* flush completion */ 181 }; 182 183 /* 184 * All cpumasks are assumed to be always set on UP and thus can't be 185 * used to determine whether there's something to be done. 186 */ 187 #ifdef CONFIG_SMP 188 typedef cpumask_var_t mayday_mask_t; 189 #define mayday_test_and_set_cpu(cpu, mask) \ 190 cpumask_test_and_set_cpu((cpu), (mask)) 191 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask)) 192 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask)) 193 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp)) 194 #define free_mayday_mask(mask) free_cpumask_var((mask)) 195 #else 196 typedef unsigned long mayday_mask_t; 197 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask)) 198 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask)) 199 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask)) 200 #define alloc_mayday_mask(maskp, gfp) true 201 #define free_mayday_mask(mask) do { } while (0) 202 #endif 203 204 /* 205 * The externally visible workqueue abstraction is an array of 206 * per-CPU workqueues: 207 */ 208 struct workqueue_struct { 209 unsigned int flags; /* W: WQ_* flags */ 210 union { 211 struct pool_workqueue __percpu *pcpu; 212 struct pool_workqueue *single; 213 unsigned long v; 214 } pool_wq; /* I: pwq's */ 215 struct list_head list; /* W: list of all workqueues */ 216 217 struct mutex flush_mutex; /* protects wq flushing */ 218 int work_color; /* F: current work color */ 219 int flush_color; /* F: current flush color */ 220 atomic_t nr_pwqs_to_flush; /* flush in progress */ 221 struct wq_flusher *first_flusher; /* F: first flusher */ 222 struct list_head flusher_queue; /* F: flush waiters */ 223 struct list_head flusher_overflow; /* F: flush overflow list */ 224 225 mayday_mask_t mayday_mask; /* cpus requesting rescue */ 226 struct worker *rescuer; /* I: rescue worker */ 227 228 int nr_drainers; /* W: drain in progress */ 229 int saved_max_active; /* W: saved pwq max_active */ 230 #ifdef CONFIG_LOCKDEP 231 struct lockdep_map lockdep_map; 232 #endif 233 char name[]; /* I: workqueue name */ 234 }; 235 236 struct workqueue_struct *system_wq __read_mostly; 237 EXPORT_SYMBOL_GPL(system_wq); 238 struct workqueue_struct *system_highpri_wq __read_mostly; 239 EXPORT_SYMBOL_GPL(system_highpri_wq); 240 struct workqueue_struct *system_long_wq __read_mostly; 241 EXPORT_SYMBOL_GPL(system_long_wq); 242 struct workqueue_struct *system_unbound_wq __read_mostly; 243 EXPORT_SYMBOL_GPL(system_unbound_wq); 244 struct workqueue_struct *system_freezable_wq __read_mostly; 245 EXPORT_SYMBOL_GPL(system_freezable_wq); 246 247 #define CREATE_TRACE_POINTS 248 #include <trace/events/workqueue.h> 249 250 #define for_each_std_worker_pool(pool, cpu) \ 251 for ((pool) = &std_worker_pools(cpu)[0]; \ 252 (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++) 253 254 #define for_each_busy_worker(worker, i, pool) \ 255 hash_for_each(pool->busy_hash, i, worker, hentry) 256 257 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask, 258 unsigned int sw) 259 { 260 if (cpu < nr_cpu_ids) { 261 if (sw & 1) { 262 cpu = cpumask_next(cpu, mask); 263 if (cpu < nr_cpu_ids) 264 return cpu; 265 } 266 if (sw & 2) 267 return WORK_CPU_UNBOUND; 268 } 269 return WORK_CPU_END; 270 } 271 272 static inline int __next_pwq_cpu(int cpu, const struct cpumask *mask, 273 struct workqueue_struct *wq) 274 { 275 return __next_wq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2); 276 } 277 278 /* 279 * CPU iterators 280 * 281 * An extra cpu number is defined using an invalid cpu number 282 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any 283 * specific CPU. The following iterators are similar to for_each_*_cpu() 284 * iterators but also considers the unbound CPU. 285 * 286 * for_each_wq_cpu() : possible CPUs + WORK_CPU_UNBOUND 287 * for_each_online_wq_cpu() : online CPUs + WORK_CPU_UNBOUND 288 * for_each_pwq_cpu() : possible CPUs for bound workqueues, 289 * WORK_CPU_UNBOUND for unbound workqueues 290 */ 291 #define for_each_wq_cpu(cpu) \ 292 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3); \ 293 (cpu) < WORK_CPU_END; \ 294 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3)) 295 296 #define for_each_online_wq_cpu(cpu) \ 297 for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3); \ 298 (cpu) < WORK_CPU_END; \ 299 (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3)) 300 301 #define for_each_pwq_cpu(cpu, wq) \ 302 for ((cpu) = __next_pwq_cpu(-1, cpu_possible_mask, (wq)); \ 303 (cpu) < WORK_CPU_END; \ 304 (cpu) = __next_pwq_cpu((cpu), cpu_possible_mask, (wq))) 305 306 #ifdef CONFIG_DEBUG_OBJECTS_WORK 307 308 static struct debug_obj_descr work_debug_descr; 309 310 static void *work_debug_hint(void *addr) 311 { 312 return ((struct work_struct *) addr)->func; 313 } 314 315 /* 316 * fixup_init is called when: 317 * - an active object is initialized 318 */ 319 static int work_fixup_init(void *addr, enum debug_obj_state state) 320 { 321 struct work_struct *work = addr; 322 323 switch (state) { 324 case ODEBUG_STATE_ACTIVE: 325 cancel_work_sync(work); 326 debug_object_init(work, &work_debug_descr); 327 return 1; 328 default: 329 return 0; 330 } 331 } 332 333 /* 334 * fixup_activate is called when: 335 * - an active object is activated 336 * - an unknown object is activated (might be a statically initialized object) 337 */ 338 static int work_fixup_activate(void *addr, enum debug_obj_state state) 339 { 340 struct work_struct *work = addr; 341 342 switch (state) { 343 344 case ODEBUG_STATE_NOTAVAILABLE: 345 /* 346 * This is not really a fixup. The work struct was 347 * statically initialized. We just make sure that it 348 * is tracked in the object tracker. 349 */ 350 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) { 351 debug_object_init(work, &work_debug_descr); 352 debug_object_activate(work, &work_debug_descr); 353 return 0; 354 } 355 WARN_ON_ONCE(1); 356 return 0; 357 358 case ODEBUG_STATE_ACTIVE: 359 WARN_ON(1); 360 361 default: 362 return 0; 363 } 364 } 365 366 /* 367 * fixup_free is called when: 368 * - an active object is freed 369 */ 370 static int work_fixup_free(void *addr, enum debug_obj_state state) 371 { 372 struct work_struct *work = addr; 373 374 switch (state) { 375 case ODEBUG_STATE_ACTIVE: 376 cancel_work_sync(work); 377 debug_object_free(work, &work_debug_descr); 378 return 1; 379 default: 380 return 0; 381 } 382 } 383 384 static struct debug_obj_descr work_debug_descr = { 385 .name = "work_struct", 386 .debug_hint = work_debug_hint, 387 .fixup_init = work_fixup_init, 388 .fixup_activate = work_fixup_activate, 389 .fixup_free = work_fixup_free, 390 }; 391 392 static inline void debug_work_activate(struct work_struct *work) 393 { 394 debug_object_activate(work, &work_debug_descr); 395 } 396 397 static inline void debug_work_deactivate(struct work_struct *work) 398 { 399 debug_object_deactivate(work, &work_debug_descr); 400 } 401 402 void __init_work(struct work_struct *work, int onstack) 403 { 404 if (onstack) 405 debug_object_init_on_stack(work, &work_debug_descr); 406 else 407 debug_object_init(work, &work_debug_descr); 408 } 409 EXPORT_SYMBOL_GPL(__init_work); 410 411 void destroy_work_on_stack(struct work_struct *work) 412 { 413 debug_object_free(work, &work_debug_descr); 414 } 415 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 416 417 #else 418 static inline void debug_work_activate(struct work_struct *work) { } 419 static inline void debug_work_deactivate(struct work_struct *work) { } 420 #endif 421 422 /* Serializes the accesses to the list of workqueues. */ 423 static DEFINE_SPINLOCK(workqueue_lock); 424 static LIST_HEAD(workqueues); 425 static bool workqueue_freezing; /* W: have wqs started freezing? */ 426 427 /* 428 * The CPU and unbound standard worker pools. The unbound ones have 429 * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set. 430 */ 431 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 432 cpu_std_worker_pools); 433 static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS]; 434 435 /* idr of all pools */ 436 static DEFINE_MUTEX(worker_pool_idr_mutex); 437 static DEFINE_IDR(worker_pool_idr); 438 439 static int worker_thread(void *__worker); 440 441 static struct worker_pool *std_worker_pools(int cpu) 442 { 443 if (cpu != WORK_CPU_UNBOUND) 444 return per_cpu(cpu_std_worker_pools, cpu); 445 else 446 return unbound_std_worker_pools; 447 } 448 449 static int std_worker_pool_pri(struct worker_pool *pool) 450 { 451 return pool - std_worker_pools(pool->cpu); 452 } 453 454 /* allocate ID and assign it to @pool */ 455 static int worker_pool_assign_id(struct worker_pool *pool) 456 { 457 int ret; 458 459 mutex_lock(&worker_pool_idr_mutex); 460 ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL); 461 if (ret >= 0) 462 pool->id = ret; 463 mutex_unlock(&worker_pool_idr_mutex); 464 465 return ret < 0 ? ret : 0; 466 } 467 468 /* 469 * Lookup worker_pool by id. The idr currently is built during boot and 470 * never modified. Don't worry about locking for now. 471 */ 472 static struct worker_pool *worker_pool_by_id(int pool_id) 473 { 474 return idr_find(&worker_pool_idr, pool_id); 475 } 476 477 static struct worker_pool *get_std_worker_pool(int cpu, bool highpri) 478 { 479 struct worker_pool *pools = std_worker_pools(cpu); 480 481 return &pools[highpri]; 482 } 483 484 static struct pool_workqueue *get_pwq(unsigned int cpu, 485 struct workqueue_struct *wq) 486 { 487 if (!(wq->flags & WQ_UNBOUND)) { 488 if (likely(cpu < nr_cpu_ids)) 489 return per_cpu_ptr(wq->pool_wq.pcpu, cpu); 490 } else if (likely(cpu == WORK_CPU_UNBOUND)) 491 return wq->pool_wq.single; 492 return NULL; 493 } 494 495 static unsigned int work_color_to_flags(int color) 496 { 497 return color << WORK_STRUCT_COLOR_SHIFT; 498 } 499 500 static int get_work_color(struct work_struct *work) 501 { 502 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 503 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 504 } 505 506 static int work_next_color(int color) 507 { 508 return (color + 1) % WORK_NR_COLORS; 509 } 510 511 /* 512 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 513 * contain the pointer to the queued pwq. Once execution starts, the flag 514 * is cleared and the high bits contain OFFQ flags and pool ID. 515 * 516 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 517 * and clear_work_data() can be used to set the pwq, pool or clear 518 * work->data. These functions should only be called while the work is 519 * owned - ie. while the PENDING bit is set. 520 * 521 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 522 * corresponding to a work. Pool is available once the work has been 523 * queued anywhere after initialization until it is sync canceled. pwq is 524 * available only while the work item is queued. 525 * 526 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 527 * canceled. While being canceled, a work item may have its PENDING set 528 * but stay off timer and worklist for arbitrarily long and nobody should 529 * try to steal the PENDING bit. 530 */ 531 static inline void set_work_data(struct work_struct *work, unsigned long data, 532 unsigned long flags) 533 { 534 BUG_ON(!work_pending(work)); 535 atomic_long_set(&work->data, data | flags | work_static(work)); 536 } 537 538 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 539 unsigned long extra_flags) 540 { 541 set_work_data(work, (unsigned long)pwq, 542 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 543 } 544 545 static void set_work_pool_and_keep_pending(struct work_struct *work, 546 int pool_id) 547 { 548 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 549 WORK_STRUCT_PENDING); 550 } 551 552 static void set_work_pool_and_clear_pending(struct work_struct *work, 553 int pool_id) 554 { 555 /* 556 * The following wmb is paired with the implied mb in 557 * test_and_set_bit(PENDING) and ensures all updates to @work made 558 * here are visible to and precede any updates by the next PENDING 559 * owner. 560 */ 561 smp_wmb(); 562 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 563 } 564 565 static void clear_work_data(struct work_struct *work) 566 { 567 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 568 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 569 } 570 571 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 572 { 573 unsigned long data = atomic_long_read(&work->data); 574 575 if (data & WORK_STRUCT_PWQ) 576 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 577 else 578 return NULL; 579 } 580 581 /** 582 * get_work_pool - return the worker_pool a given work was associated with 583 * @work: the work item of interest 584 * 585 * Return the worker_pool @work was last associated with. %NULL if none. 586 */ 587 static struct worker_pool *get_work_pool(struct work_struct *work) 588 { 589 unsigned long data = atomic_long_read(&work->data); 590 struct worker_pool *pool; 591 int pool_id; 592 593 if (data & WORK_STRUCT_PWQ) 594 return ((struct pool_workqueue *) 595 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 596 597 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 598 if (pool_id == WORK_OFFQ_POOL_NONE) 599 return NULL; 600 601 pool = worker_pool_by_id(pool_id); 602 WARN_ON_ONCE(!pool); 603 return pool; 604 } 605 606 /** 607 * get_work_pool_id - return the worker pool ID a given work is associated with 608 * @work: the work item of interest 609 * 610 * Return the worker_pool ID @work was last associated with. 611 * %WORK_OFFQ_POOL_NONE if none. 612 */ 613 static int get_work_pool_id(struct work_struct *work) 614 { 615 unsigned long data = atomic_long_read(&work->data); 616 617 if (data & WORK_STRUCT_PWQ) 618 return ((struct pool_workqueue *) 619 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 620 621 return data >> WORK_OFFQ_POOL_SHIFT; 622 } 623 624 static void mark_work_canceling(struct work_struct *work) 625 { 626 unsigned long pool_id = get_work_pool_id(work); 627 628 pool_id <<= WORK_OFFQ_POOL_SHIFT; 629 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 630 } 631 632 static bool work_is_canceling(struct work_struct *work) 633 { 634 unsigned long data = atomic_long_read(&work->data); 635 636 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 637 } 638 639 /* 640 * Policy functions. These define the policies on how the global worker 641 * pools are managed. Unless noted otherwise, these functions assume that 642 * they're being called with pool->lock held. 643 */ 644 645 static bool __need_more_worker(struct worker_pool *pool) 646 { 647 return !atomic_read(&pool->nr_running); 648 } 649 650 /* 651 * Need to wake up a worker? Called from anything but currently 652 * running workers. 653 * 654 * Note that, because unbound workers never contribute to nr_running, this 655 * function will always return %true for unbound pools as long as the 656 * worklist isn't empty. 657 */ 658 static bool need_more_worker(struct worker_pool *pool) 659 { 660 return !list_empty(&pool->worklist) && __need_more_worker(pool); 661 } 662 663 /* Can I start working? Called from busy but !running workers. */ 664 static bool may_start_working(struct worker_pool *pool) 665 { 666 return pool->nr_idle; 667 } 668 669 /* Do I need to keep working? Called from currently running workers. */ 670 static bool keep_working(struct worker_pool *pool) 671 { 672 return !list_empty(&pool->worklist) && 673 atomic_read(&pool->nr_running) <= 1; 674 } 675 676 /* Do we need a new worker? Called from manager. */ 677 static bool need_to_create_worker(struct worker_pool *pool) 678 { 679 return need_more_worker(pool) && !may_start_working(pool); 680 } 681 682 /* Do I need to be the manager? */ 683 static bool need_to_manage_workers(struct worker_pool *pool) 684 { 685 return need_to_create_worker(pool) || 686 (pool->flags & POOL_MANAGE_WORKERS); 687 } 688 689 /* Do we have too many workers and should some go away? */ 690 static bool too_many_workers(struct worker_pool *pool) 691 { 692 bool managing = pool->flags & POOL_MANAGING_WORKERS; 693 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 694 int nr_busy = pool->nr_workers - nr_idle; 695 696 /* 697 * nr_idle and idle_list may disagree if idle rebinding is in 698 * progress. Never return %true if idle_list is empty. 699 */ 700 if (list_empty(&pool->idle_list)) 701 return false; 702 703 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 704 } 705 706 /* 707 * Wake up functions. 708 */ 709 710 /* Return the first worker. Safe with preemption disabled */ 711 static struct worker *first_worker(struct worker_pool *pool) 712 { 713 if (unlikely(list_empty(&pool->idle_list))) 714 return NULL; 715 716 return list_first_entry(&pool->idle_list, struct worker, entry); 717 } 718 719 /** 720 * wake_up_worker - wake up an idle worker 721 * @pool: worker pool to wake worker from 722 * 723 * Wake up the first idle worker of @pool. 724 * 725 * CONTEXT: 726 * spin_lock_irq(pool->lock). 727 */ 728 static void wake_up_worker(struct worker_pool *pool) 729 { 730 struct worker *worker = first_worker(pool); 731 732 if (likely(worker)) 733 wake_up_process(worker->task); 734 } 735 736 /** 737 * wq_worker_waking_up - a worker is waking up 738 * @task: task waking up 739 * @cpu: CPU @task is waking up to 740 * 741 * This function is called during try_to_wake_up() when a worker is 742 * being awoken. 743 * 744 * CONTEXT: 745 * spin_lock_irq(rq->lock) 746 */ 747 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu) 748 { 749 struct worker *worker = kthread_data(task); 750 751 if (!(worker->flags & WORKER_NOT_RUNNING)) { 752 WARN_ON_ONCE(worker->pool->cpu != cpu); 753 atomic_inc(&worker->pool->nr_running); 754 } 755 } 756 757 /** 758 * wq_worker_sleeping - a worker is going to sleep 759 * @task: task going to sleep 760 * @cpu: CPU in question, must be the current CPU number 761 * 762 * This function is called during schedule() when a busy worker is 763 * going to sleep. Worker on the same cpu can be woken up by 764 * returning pointer to its task. 765 * 766 * CONTEXT: 767 * spin_lock_irq(rq->lock) 768 * 769 * RETURNS: 770 * Worker task on @cpu to wake up, %NULL if none. 771 */ 772 struct task_struct *wq_worker_sleeping(struct task_struct *task, 773 unsigned int cpu) 774 { 775 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 776 struct worker_pool *pool; 777 778 /* 779 * Rescuers, which may not have all the fields set up like normal 780 * workers, also reach here, let's not access anything before 781 * checking NOT_RUNNING. 782 */ 783 if (worker->flags & WORKER_NOT_RUNNING) 784 return NULL; 785 786 pool = worker->pool; 787 788 /* this can only happen on the local cpu */ 789 BUG_ON(cpu != raw_smp_processor_id()); 790 791 /* 792 * The counterpart of the following dec_and_test, implied mb, 793 * worklist not empty test sequence is in insert_work(). 794 * Please read comment there. 795 * 796 * NOT_RUNNING is clear. This means that we're bound to and 797 * running on the local cpu w/ rq lock held and preemption 798 * disabled, which in turn means that none else could be 799 * manipulating idle_list, so dereferencing idle_list without pool 800 * lock is safe. 801 */ 802 if (atomic_dec_and_test(&pool->nr_running) && 803 !list_empty(&pool->worklist)) 804 to_wakeup = first_worker(pool); 805 return to_wakeup ? to_wakeup->task : NULL; 806 } 807 808 /** 809 * worker_set_flags - set worker flags and adjust nr_running accordingly 810 * @worker: self 811 * @flags: flags to set 812 * @wakeup: wakeup an idle worker if necessary 813 * 814 * Set @flags in @worker->flags and adjust nr_running accordingly. If 815 * nr_running becomes zero and @wakeup is %true, an idle worker is 816 * woken up. 817 * 818 * CONTEXT: 819 * spin_lock_irq(pool->lock) 820 */ 821 static inline void worker_set_flags(struct worker *worker, unsigned int flags, 822 bool wakeup) 823 { 824 struct worker_pool *pool = worker->pool; 825 826 WARN_ON_ONCE(worker->task != current); 827 828 /* 829 * If transitioning into NOT_RUNNING, adjust nr_running and 830 * wake up an idle worker as necessary if requested by 831 * @wakeup. 832 */ 833 if ((flags & WORKER_NOT_RUNNING) && 834 !(worker->flags & WORKER_NOT_RUNNING)) { 835 if (wakeup) { 836 if (atomic_dec_and_test(&pool->nr_running) && 837 !list_empty(&pool->worklist)) 838 wake_up_worker(pool); 839 } else 840 atomic_dec(&pool->nr_running); 841 } 842 843 worker->flags |= flags; 844 } 845 846 /** 847 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 848 * @worker: self 849 * @flags: flags to clear 850 * 851 * Clear @flags in @worker->flags and adjust nr_running accordingly. 852 * 853 * CONTEXT: 854 * spin_lock_irq(pool->lock) 855 */ 856 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 857 { 858 struct worker_pool *pool = worker->pool; 859 unsigned int oflags = worker->flags; 860 861 WARN_ON_ONCE(worker->task != current); 862 863 worker->flags &= ~flags; 864 865 /* 866 * If transitioning out of NOT_RUNNING, increment nr_running. Note 867 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 868 * of multiple flags, not a single flag. 869 */ 870 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 871 if (!(worker->flags & WORKER_NOT_RUNNING)) 872 atomic_inc(&pool->nr_running); 873 } 874 875 /** 876 * find_worker_executing_work - find worker which is executing a work 877 * @pool: pool of interest 878 * @work: work to find worker for 879 * 880 * Find a worker which is executing @work on @pool by searching 881 * @pool->busy_hash which is keyed by the address of @work. For a worker 882 * to match, its current execution should match the address of @work and 883 * its work function. This is to avoid unwanted dependency between 884 * unrelated work executions through a work item being recycled while still 885 * being executed. 886 * 887 * This is a bit tricky. A work item may be freed once its execution 888 * starts and nothing prevents the freed area from being recycled for 889 * another work item. If the same work item address ends up being reused 890 * before the original execution finishes, workqueue will identify the 891 * recycled work item as currently executing and make it wait until the 892 * current execution finishes, introducing an unwanted dependency. 893 * 894 * This function checks the work item address, work function and workqueue 895 * to avoid false positives. Note that this isn't complete as one may 896 * construct a work function which can introduce dependency onto itself 897 * through a recycled work item. Well, if somebody wants to shoot oneself 898 * in the foot that badly, there's only so much we can do, and if such 899 * deadlock actually occurs, it should be easy to locate the culprit work 900 * function. 901 * 902 * CONTEXT: 903 * spin_lock_irq(pool->lock). 904 * 905 * RETURNS: 906 * Pointer to worker which is executing @work if found, NULL 907 * otherwise. 908 */ 909 static struct worker *find_worker_executing_work(struct worker_pool *pool, 910 struct work_struct *work) 911 { 912 struct worker *worker; 913 914 hash_for_each_possible(pool->busy_hash, worker, hentry, 915 (unsigned long)work) 916 if (worker->current_work == work && 917 worker->current_func == work->func) 918 return worker; 919 920 return NULL; 921 } 922 923 /** 924 * move_linked_works - move linked works to a list 925 * @work: start of series of works to be scheduled 926 * @head: target list to append @work to 927 * @nextp: out paramter for nested worklist walking 928 * 929 * Schedule linked works starting from @work to @head. Work series to 930 * be scheduled starts at @work and includes any consecutive work with 931 * WORK_STRUCT_LINKED set in its predecessor. 932 * 933 * If @nextp is not NULL, it's updated to point to the next work of 934 * the last scheduled work. This allows move_linked_works() to be 935 * nested inside outer list_for_each_entry_safe(). 936 * 937 * CONTEXT: 938 * spin_lock_irq(pool->lock). 939 */ 940 static void move_linked_works(struct work_struct *work, struct list_head *head, 941 struct work_struct **nextp) 942 { 943 struct work_struct *n; 944 945 /* 946 * Linked worklist will always end before the end of the list, 947 * use NULL for list head. 948 */ 949 list_for_each_entry_safe_from(work, n, NULL, entry) { 950 list_move_tail(&work->entry, head); 951 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 952 break; 953 } 954 955 /* 956 * If we're already inside safe list traversal and have moved 957 * multiple works to the scheduled queue, the next position 958 * needs to be updated. 959 */ 960 if (nextp) 961 *nextp = n; 962 } 963 964 static void pwq_activate_delayed_work(struct work_struct *work) 965 { 966 struct pool_workqueue *pwq = get_work_pwq(work); 967 968 trace_workqueue_activate_work(work); 969 move_linked_works(work, &pwq->pool->worklist, NULL); 970 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 971 pwq->nr_active++; 972 } 973 974 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 975 { 976 struct work_struct *work = list_first_entry(&pwq->delayed_works, 977 struct work_struct, entry); 978 979 pwq_activate_delayed_work(work); 980 } 981 982 /** 983 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 984 * @pwq: pwq of interest 985 * @color: color of work which left the queue 986 * 987 * A work either has completed or is removed from pending queue, 988 * decrement nr_in_flight of its pwq and handle workqueue flushing. 989 * 990 * CONTEXT: 991 * spin_lock_irq(pool->lock). 992 */ 993 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 994 { 995 /* ignore uncolored works */ 996 if (color == WORK_NO_COLOR) 997 return; 998 999 pwq->nr_in_flight[color]--; 1000 1001 pwq->nr_active--; 1002 if (!list_empty(&pwq->delayed_works)) { 1003 /* one down, submit a delayed one */ 1004 if (pwq->nr_active < pwq->max_active) 1005 pwq_activate_first_delayed(pwq); 1006 } 1007 1008 /* is flush in progress and are we at the flushing tip? */ 1009 if (likely(pwq->flush_color != color)) 1010 return; 1011 1012 /* are there still in-flight works? */ 1013 if (pwq->nr_in_flight[color]) 1014 return; 1015 1016 /* this pwq is done, clear flush_color */ 1017 pwq->flush_color = -1; 1018 1019 /* 1020 * If this was the last pwq, wake up the first flusher. It 1021 * will handle the rest. 1022 */ 1023 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1024 complete(&pwq->wq->first_flusher->done); 1025 } 1026 1027 /** 1028 * try_to_grab_pending - steal work item from worklist and disable irq 1029 * @work: work item to steal 1030 * @is_dwork: @work is a delayed_work 1031 * @flags: place to store irq state 1032 * 1033 * Try to grab PENDING bit of @work. This function can handle @work in any 1034 * stable state - idle, on timer or on worklist. Return values are 1035 * 1036 * 1 if @work was pending and we successfully stole PENDING 1037 * 0 if @work was idle and we claimed PENDING 1038 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1039 * -ENOENT if someone else is canceling @work, this state may persist 1040 * for arbitrarily long 1041 * 1042 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1043 * interrupted while holding PENDING and @work off queue, irq must be 1044 * disabled on entry. This, combined with delayed_work->timer being 1045 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1046 * 1047 * On successful return, >= 0, irq is disabled and the caller is 1048 * responsible for releasing it using local_irq_restore(*@flags). 1049 * 1050 * This function is safe to call from any context including IRQ handler. 1051 */ 1052 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1053 unsigned long *flags) 1054 { 1055 struct worker_pool *pool; 1056 struct pool_workqueue *pwq; 1057 1058 local_irq_save(*flags); 1059 1060 /* try to steal the timer if it exists */ 1061 if (is_dwork) { 1062 struct delayed_work *dwork = to_delayed_work(work); 1063 1064 /* 1065 * dwork->timer is irqsafe. If del_timer() fails, it's 1066 * guaranteed that the timer is not queued anywhere and not 1067 * running on the local CPU. 1068 */ 1069 if (likely(del_timer(&dwork->timer))) 1070 return 1; 1071 } 1072 1073 /* try to claim PENDING the normal way */ 1074 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1075 return 0; 1076 1077 /* 1078 * The queueing is in progress, or it is already queued. Try to 1079 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1080 */ 1081 pool = get_work_pool(work); 1082 if (!pool) 1083 goto fail; 1084 1085 spin_lock(&pool->lock); 1086 /* 1087 * work->data is guaranteed to point to pwq only while the work 1088 * item is queued on pwq->wq, and both updating work->data to point 1089 * to pwq on queueing and to pool on dequeueing are done under 1090 * pwq->pool->lock. This in turn guarantees that, if work->data 1091 * points to pwq which is associated with a locked pool, the work 1092 * item is currently queued on that pool. 1093 */ 1094 pwq = get_work_pwq(work); 1095 if (pwq && pwq->pool == pool) { 1096 debug_work_deactivate(work); 1097 1098 /* 1099 * A delayed work item cannot be grabbed directly because 1100 * it might have linked NO_COLOR work items which, if left 1101 * on the delayed_list, will confuse pwq->nr_active 1102 * management later on and cause stall. Make sure the work 1103 * item is activated before grabbing. 1104 */ 1105 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1106 pwq_activate_delayed_work(work); 1107 1108 list_del_init(&work->entry); 1109 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work)); 1110 1111 /* work->data points to pwq iff queued, point to pool */ 1112 set_work_pool_and_keep_pending(work, pool->id); 1113 1114 spin_unlock(&pool->lock); 1115 return 1; 1116 } 1117 spin_unlock(&pool->lock); 1118 fail: 1119 local_irq_restore(*flags); 1120 if (work_is_canceling(work)) 1121 return -ENOENT; 1122 cpu_relax(); 1123 return -EAGAIN; 1124 } 1125 1126 /** 1127 * insert_work - insert a work into a pool 1128 * @pwq: pwq @work belongs to 1129 * @work: work to insert 1130 * @head: insertion point 1131 * @extra_flags: extra WORK_STRUCT_* flags to set 1132 * 1133 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1134 * work_struct flags. 1135 * 1136 * CONTEXT: 1137 * spin_lock_irq(pool->lock). 1138 */ 1139 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1140 struct list_head *head, unsigned int extra_flags) 1141 { 1142 struct worker_pool *pool = pwq->pool; 1143 1144 /* we own @work, set data and link */ 1145 set_work_pwq(work, pwq, extra_flags); 1146 list_add_tail(&work->entry, head); 1147 1148 /* 1149 * Ensure either worker_sched_deactivated() sees the above 1150 * list_add_tail() or we see zero nr_running to avoid workers 1151 * lying around lazily while there are works to be processed. 1152 */ 1153 smp_mb(); 1154 1155 if (__need_more_worker(pool)) 1156 wake_up_worker(pool); 1157 } 1158 1159 /* 1160 * Test whether @work is being queued from another work executing on the 1161 * same workqueue. 1162 */ 1163 static bool is_chained_work(struct workqueue_struct *wq) 1164 { 1165 struct worker *worker; 1166 1167 worker = current_wq_worker(); 1168 /* 1169 * Return %true iff I'm a worker execuing a work item on @wq. If 1170 * I'm @worker, it's safe to dereference it without locking. 1171 */ 1172 return worker && worker->current_pwq->wq == wq; 1173 } 1174 1175 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq, 1176 struct work_struct *work) 1177 { 1178 struct pool_workqueue *pwq; 1179 struct list_head *worklist; 1180 unsigned int work_flags; 1181 unsigned int req_cpu = cpu; 1182 1183 /* 1184 * While a work item is PENDING && off queue, a task trying to 1185 * steal the PENDING will busy-loop waiting for it to either get 1186 * queued or lose PENDING. Grabbing PENDING and queueing should 1187 * happen with IRQ disabled. 1188 */ 1189 WARN_ON_ONCE(!irqs_disabled()); 1190 1191 debug_work_activate(work); 1192 1193 /* if dying, only works from the same workqueue are allowed */ 1194 if (unlikely(wq->flags & WQ_DRAINING) && 1195 WARN_ON_ONCE(!is_chained_work(wq))) 1196 return; 1197 1198 /* determine the pwq to use */ 1199 if (!(wq->flags & WQ_UNBOUND)) { 1200 struct worker_pool *last_pool; 1201 1202 if (cpu == WORK_CPU_UNBOUND) 1203 cpu = raw_smp_processor_id(); 1204 1205 /* 1206 * It's multi cpu. If @work was previously on a different 1207 * cpu, it might still be running there, in which case the 1208 * work needs to be queued on that cpu to guarantee 1209 * non-reentrancy. 1210 */ 1211 pwq = get_pwq(cpu, wq); 1212 last_pool = get_work_pool(work); 1213 1214 if (last_pool && last_pool != pwq->pool) { 1215 struct worker *worker; 1216 1217 spin_lock(&last_pool->lock); 1218 1219 worker = find_worker_executing_work(last_pool, work); 1220 1221 if (worker && worker->current_pwq->wq == wq) { 1222 pwq = get_pwq(last_pool->cpu, wq); 1223 } else { 1224 /* meh... not running there, queue here */ 1225 spin_unlock(&last_pool->lock); 1226 spin_lock(&pwq->pool->lock); 1227 } 1228 } else { 1229 spin_lock(&pwq->pool->lock); 1230 } 1231 } else { 1232 pwq = get_pwq(WORK_CPU_UNBOUND, wq); 1233 spin_lock(&pwq->pool->lock); 1234 } 1235 1236 /* pwq determined, queue */ 1237 trace_workqueue_queue_work(req_cpu, pwq, work); 1238 1239 if (WARN_ON(!list_empty(&work->entry))) { 1240 spin_unlock(&pwq->pool->lock); 1241 return; 1242 } 1243 1244 pwq->nr_in_flight[pwq->work_color]++; 1245 work_flags = work_color_to_flags(pwq->work_color); 1246 1247 if (likely(pwq->nr_active < pwq->max_active)) { 1248 trace_workqueue_activate_work(work); 1249 pwq->nr_active++; 1250 worklist = &pwq->pool->worklist; 1251 } else { 1252 work_flags |= WORK_STRUCT_DELAYED; 1253 worklist = &pwq->delayed_works; 1254 } 1255 1256 insert_work(pwq, work, worklist, work_flags); 1257 1258 spin_unlock(&pwq->pool->lock); 1259 } 1260 1261 /** 1262 * queue_work_on - queue work on specific cpu 1263 * @cpu: CPU number to execute work on 1264 * @wq: workqueue to use 1265 * @work: work to queue 1266 * 1267 * Returns %false if @work was already on a queue, %true otherwise. 1268 * 1269 * We queue the work to a specific CPU, the caller must ensure it 1270 * can't go away. 1271 */ 1272 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1273 struct work_struct *work) 1274 { 1275 bool ret = false; 1276 unsigned long flags; 1277 1278 local_irq_save(flags); 1279 1280 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1281 __queue_work(cpu, wq, work); 1282 ret = true; 1283 } 1284 1285 local_irq_restore(flags); 1286 return ret; 1287 } 1288 EXPORT_SYMBOL_GPL(queue_work_on); 1289 1290 /** 1291 * queue_work - queue work on a workqueue 1292 * @wq: workqueue to use 1293 * @work: work to queue 1294 * 1295 * Returns %false if @work was already on a queue, %true otherwise. 1296 * 1297 * We queue the work to the CPU on which it was submitted, but if the CPU dies 1298 * it can be processed by another CPU. 1299 */ 1300 bool queue_work(struct workqueue_struct *wq, struct work_struct *work) 1301 { 1302 return queue_work_on(WORK_CPU_UNBOUND, wq, work); 1303 } 1304 EXPORT_SYMBOL_GPL(queue_work); 1305 1306 void delayed_work_timer_fn(unsigned long __data) 1307 { 1308 struct delayed_work *dwork = (struct delayed_work *)__data; 1309 1310 /* should have been called from irqsafe timer with irq already off */ 1311 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1312 } 1313 EXPORT_SYMBOL(delayed_work_timer_fn); 1314 1315 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1316 struct delayed_work *dwork, unsigned long delay) 1317 { 1318 struct timer_list *timer = &dwork->timer; 1319 struct work_struct *work = &dwork->work; 1320 1321 WARN_ON_ONCE(timer->function != delayed_work_timer_fn || 1322 timer->data != (unsigned long)dwork); 1323 WARN_ON_ONCE(timer_pending(timer)); 1324 WARN_ON_ONCE(!list_empty(&work->entry)); 1325 1326 /* 1327 * If @delay is 0, queue @dwork->work immediately. This is for 1328 * both optimization and correctness. The earliest @timer can 1329 * expire is on the closest next tick and delayed_work users depend 1330 * on that there's no such delay when @delay is 0. 1331 */ 1332 if (!delay) { 1333 __queue_work(cpu, wq, &dwork->work); 1334 return; 1335 } 1336 1337 timer_stats_timer_set_start_info(&dwork->timer); 1338 1339 dwork->wq = wq; 1340 dwork->cpu = cpu; 1341 timer->expires = jiffies + delay; 1342 1343 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1344 add_timer_on(timer, cpu); 1345 else 1346 add_timer(timer); 1347 } 1348 1349 /** 1350 * queue_delayed_work_on - queue work on specific CPU after delay 1351 * @cpu: CPU number to execute work on 1352 * @wq: workqueue to use 1353 * @dwork: work to queue 1354 * @delay: number of jiffies to wait before queueing 1355 * 1356 * Returns %false if @work was already on a queue, %true otherwise. If 1357 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1358 * execution. 1359 */ 1360 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1361 struct delayed_work *dwork, unsigned long delay) 1362 { 1363 struct work_struct *work = &dwork->work; 1364 bool ret = false; 1365 unsigned long flags; 1366 1367 /* read the comment in __queue_work() */ 1368 local_irq_save(flags); 1369 1370 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1371 __queue_delayed_work(cpu, wq, dwork, delay); 1372 ret = true; 1373 } 1374 1375 local_irq_restore(flags); 1376 return ret; 1377 } 1378 EXPORT_SYMBOL_GPL(queue_delayed_work_on); 1379 1380 /** 1381 * queue_delayed_work - queue work on a workqueue after delay 1382 * @wq: workqueue to use 1383 * @dwork: delayable work to queue 1384 * @delay: number of jiffies to wait before queueing 1385 * 1386 * Equivalent to queue_delayed_work_on() but tries to use the local CPU. 1387 */ 1388 bool queue_delayed_work(struct workqueue_struct *wq, 1389 struct delayed_work *dwork, unsigned long delay) 1390 { 1391 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay); 1392 } 1393 EXPORT_SYMBOL_GPL(queue_delayed_work); 1394 1395 /** 1396 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1397 * @cpu: CPU number to execute work on 1398 * @wq: workqueue to use 1399 * @dwork: work to queue 1400 * @delay: number of jiffies to wait before queueing 1401 * 1402 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1403 * modify @dwork's timer so that it expires after @delay. If @delay is 1404 * zero, @work is guaranteed to be scheduled immediately regardless of its 1405 * current state. 1406 * 1407 * Returns %false if @dwork was idle and queued, %true if @dwork was 1408 * pending and its timer was modified. 1409 * 1410 * This function is safe to call from any context including IRQ handler. 1411 * See try_to_grab_pending() for details. 1412 */ 1413 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1414 struct delayed_work *dwork, unsigned long delay) 1415 { 1416 unsigned long flags; 1417 int ret; 1418 1419 do { 1420 ret = try_to_grab_pending(&dwork->work, true, &flags); 1421 } while (unlikely(ret == -EAGAIN)); 1422 1423 if (likely(ret >= 0)) { 1424 __queue_delayed_work(cpu, wq, dwork, delay); 1425 local_irq_restore(flags); 1426 } 1427 1428 /* -ENOENT from try_to_grab_pending() becomes %true */ 1429 return ret; 1430 } 1431 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1432 1433 /** 1434 * mod_delayed_work - modify delay of or queue a delayed work 1435 * @wq: workqueue to use 1436 * @dwork: work to queue 1437 * @delay: number of jiffies to wait before queueing 1438 * 1439 * mod_delayed_work_on() on local CPU. 1440 */ 1441 bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork, 1442 unsigned long delay) 1443 { 1444 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay); 1445 } 1446 EXPORT_SYMBOL_GPL(mod_delayed_work); 1447 1448 /** 1449 * worker_enter_idle - enter idle state 1450 * @worker: worker which is entering idle state 1451 * 1452 * @worker is entering idle state. Update stats and idle timer if 1453 * necessary. 1454 * 1455 * LOCKING: 1456 * spin_lock_irq(pool->lock). 1457 */ 1458 static void worker_enter_idle(struct worker *worker) 1459 { 1460 struct worker_pool *pool = worker->pool; 1461 1462 BUG_ON(worker->flags & WORKER_IDLE); 1463 BUG_ON(!list_empty(&worker->entry) && 1464 (worker->hentry.next || worker->hentry.pprev)); 1465 1466 /* can't use worker_set_flags(), also called from start_worker() */ 1467 worker->flags |= WORKER_IDLE; 1468 pool->nr_idle++; 1469 worker->last_active = jiffies; 1470 1471 /* idle_list is LIFO */ 1472 list_add(&worker->entry, &pool->idle_list); 1473 1474 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1475 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1476 1477 /* 1478 * Sanity check nr_running. Because wq_unbind_fn() releases 1479 * pool->lock between setting %WORKER_UNBOUND and zapping 1480 * nr_running, the warning may trigger spuriously. Check iff 1481 * unbind is not in progress. 1482 */ 1483 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1484 pool->nr_workers == pool->nr_idle && 1485 atomic_read(&pool->nr_running)); 1486 } 1487 1488 /** 1489 * worker_leave_idle - leave idle state 1490 * @worker: worker which is leaving idle state 1491 * 1492 * @worker is leaving idle state. Update stats. 1493 * 1494 * LOCKING: 1495 * spin_lock_irq(pool->lock). 1496 */ 1497 static void worker_leave_idle(struct worker *worker) 1498 { 1499 struct worker_pool *pool = worker->pool; 1500 1501 BUG_ON(!(worker->flags & WORKER_IDLE)); 1502 worker_clr_flags(worker, WORKER_IDLE); 1503 pool->nr_idle--; 1504 list_del_init(&worker->entry); 1505 } 1506 1507 /** 1508 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock pool 1509 * @worker: self 1510 * 1511 * Works which are scheduled while the cpu is online must at least be 1512 * scheduled to a worker which is bound to the cpu so that if they are 1513 * flushed from cpu callbacks while cpu is going down, they are 1514 * guaranteed to execute on the cpu. 1515 * 1516 * This function is to be used by rogue workers and rescuers to bind 1517 * themselves to the target cpu and may race with cpu going down or 1518 * coming online. kthread_bind() can't be used because it may put the 1519 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used 1520 * verbatim as it's best effort and blocking and pool may be 1521 * [dis]associated in the meantime. 1522 * 1523 * This function tries set_cpus_allowed() and locks pool and verifies the 1524 * binding against %POOL_DISASSOCIATED which is set during 1525 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker 1526 * enters idle state or fetches works without dropping lock, it can 1527 * guarantee the scheduling requirement described in the first paragraph. 1528 * 1529 * CONTEXT: 1530 * Might sleep. Called without any lock but returns with pool->lock 1531 * held. 1532 * 1533 * RETURNS: 1534 * %true if the associated pool is online (@worker is successfully 1535 * bound), %false if offline. 1536 */ 1537 static bool worker_maybe_bind_and_lock(struct worker *worker) 1538 __acquires(&pool->lock) 1539 { 1540 struct worker_pool *pool = worker->pool; 1541 struct task_struct *task = worker->task; 1542 1543 while (true) { 1544 /* 1545 * The following call may fail, succeed or succeed 1546 * without actually migrating the task to the cpu if 1547 * it races with cpu hotunplug operation. Verify 1548 * against POOL_DISASSOCIATED. 1549 */ 1550 if (!(pool->flags & POOL_DISASSOCIATED)) 1551 set_cpus_allowed_ptr(task, get_cpu_mask(pool->cpu)); 1552 1553 spin_lock_irq(&pool->lock); 1554 if (pool->flags & POOL_DISASSOCIATED) 1555 return false; 1556 if (task_cpu(task) == pool->cpu && 1557 cpumask_equal(¤t->cpus_allowed, 1558 get_cpu_mask(pool->cpu))) 1559 return true; 1560 spin_unlock_irq(&pool->lock); 1561 1562 /* 1563 * We've raced with CPU hot[un]plug. Give it a breather 1564 * and retry migration. cond_resched() is required here; 1565 * otherwise, we might deadlock against cpu_stop trying to 1566 * bring down the CPU on non-preemptive kernel. 1567 */ 1568 cpu_relax(); 1569 cond_resched(); 1570 } 1571 } 1572 1573 /* 1574 * Rebind an idle @worker to its CPU. worker_thread() will test 1575 * list_empty(@worker->entry) before leaving idle and call this function. 1576 */ 1577 static void idle_worker_rebind(struct worker *worker) 1578 { 1579 /* CPU may go down again inbetween, clear UNBOUND only on success */ 1580 if (worker_maybe_bind_and_lock(worker)) 1581 worker_clr_flags(worker, WORKER_UNBOUND); 1582 1583 /* rebind complete, become available again */ 1584 list_add(&worker->entry, &worker->pool->idle_list); 1585 spin_unlock_irq(&worker->pool->lock); 1586 } 1587 1588 /* 1589 * Function for @worker->rebind.work used to rebind unbound busy workers to 1590 * the associated cpu which is coming back online. This is scheduled by 1591 * cpu up but can race with other cpu hotplug operations and may be 1592 * executed twice without intervening cpu down. 1593 */ 1594 static void busy_worker_rebind_fn(struct work_struct *work) 1595 { 1596 struct worker *worker = container_of(work, struct worker, rebind_work); 1597 1598 if (worker_maybe_bind_and_lock(worker)) 1599 worker_clr_flags(worker, WORKER_UNBOUND); 1600 1601 spin_unlock_irq(&worker->pool->lock); 1602 } 1603 1604 /** 1605 * rebind_workers - rebind all workers of a pool to the associated CPU 1606 * @pool: pool of interest 1607 * 1608 * @pool->cpu is coming online. Rebind all workers to the CPU. Rebinding 1609 * is different for idle and busy ones. 1610 * 1611 * Idle ones will be removed from the idle_list and woken up. They will 1612 * add themselves back after completing rebind. This ensures that the 1613 * idle_list doesn't contain any unbound workers when re-bound busy workers 1614 * try to perform local wake-ups for concurrency management. 1615 * 1616 * Busy workers can rebind after they finish their current work items. 1617 * Queueing the rebind work item at the head of the scheduled list is 1618 * enough. Note that nr_running will be properly bumped as busy workers 1619 * rebind. 1620 * 1621 * On return, all non-manager workers are scheduled for rebind - see 1622 * manage_workers() for the manager special case. Any idle worker 1623 * including the manager will not appear on @idle_list until rebind is 1624 * complete, making local wake-ups safe. 1625 */ 1626 static void rebind_workers(struct worker_pool *pool) 1627 { 1628 struct worker *worker, *n; 1629 int i; 1630 1631 lockdep_assert_held(&pool->assoc_mutex); 1632 lockdep_assert_held(&pool->lock); 1633 1634 /* dequeue and kick idle ones */ 1635 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) { 1636 /* 1637 * idle workers should be off @pool->idle_list until rebind 1638 * is complete to avoid receiving premature local wake-ups. 1639 */ 1640 list_del_init(&worker->entry); 1641 1642 /* 1643 * worker_thread() will see the above dequeuing and call 1644 * idle_worker_rebind(). 1645 */ 1646 wake_up_process(worker->task); 1647 } 1648 1649 /* rebind busy workers */ 1650 for_each_busy_worker(worker, i, pool) { 1651 struct work_struct *rebind_work = &worker->rebind_work; 1652 struct workqueue_struct *wq; 1653 1654 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT, 1655 work_data_bits(rebind_work))) 1656 continue; 1657 1658 debug_work_activate(rebind_work); 1659 1660 /* 1661 * wq doesn't really matter but let's keep @worker->pool 1662 * and @pwq->pool consistent for sanity. 1663 */ 1664 if (std_worker_pool_pri(worker->pool)) 1665 wq = system_highpri_wq; 1666 else 1667 wq = system_wq; 1668 1669 insert_work(get_pwq(pool->cpu, wq), rebind_work, 1670 worker->scheduled.next, 1671 work_color_to_flags(WORK_NO_COLOR)); 1672 } 1673 } 1674 1675 static struct worker *alloc_worker(void) 1676 { 1677 struct worker *worker; 1678 1679 worker = kzalloc(sizeof(*worker), GFP_KERNEL); 1680 if (worker) { 1681 INIT_LIST_HEAD(&worker->entry); 1682 INIT_LIST_HEAD(&worker->scheduled); 1683 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn); 1684 /* on creation a worker is in !idle && prep state */ 1685 worker->flags = WORKER_PREP; 1686 } 1687 return worker; 1688 } 1689 1690 /** 1691 * create_worker - create a new workqueue worker 1692 * @pool: pool the new worker will belong to 1693 * 1694 * Create a new worker which is bound to @pool. The returned worker 1695 * can be started by calling start_worker() or destroyed using 1696 * destroy_worker(). 1697 * 1698 * CONTEXT: 1699 * Might sleep. Does GFP_KERNEL allocations. 1700 * 1701 * RETURNS: 1702 * Pointer to the newly created worker. 1703 */ 1704 static struct worker *create_worker(struct worker_pool *pool) 1705 { 1706 const char *pri = std_worker_pool_pri(pool) ? "H" : ""; 1707 struct worker *worker = NULL; 1708 int id = -1; 1709 1710 spin_lock_irq(&pool->lock); 1711 while (ida_get_new(&pool->worker_ida, &id)) { 1712 spin_unlock_irq(&pool->lock); 1713 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL)) 1714 goto fail; 1715 spin_lock_irq(&pool->lock); 1716 } 1717 spin_unlock_irq(&pool->lock); 1718 1719 worker = alloc_worker(); 1720 if (!worker) 1721 goto fail; 1722 1723 worker->pool = pool; 1724 worker->id = id; 1725 1726 if (pool->cpu != WORK_CPU_UNBOUND) 1727 worker->task = kthread_create_on_node(worker_thread, 1728 worker, cpu_to_node(pool->cpu), 1729 "kworker/%u:%d%s", pool->cpu, id, pri); 1730 else 1731 worker->task = kthread_create(worker_thread, worker, 1732 "kworker/u:%d%s", id, pri); 1733 if (IS_ERR(worker->task)) 1734 goto fail; 1735 1736 if (std_worker_pool_pri(pool)) 1737 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL); 1738 1739 /* 1740 * Determine CPU binding of the new worker depending on 1741 * %POOL_DISASSOCIATED. The caller is responsible for ensuring the 1742 * flag remains stable across this function. See the comments 1743 * above the flag definition for details. 1744 * 1745 * As an unbound worker may later become a regular one if CPU comes 1746 * online, make sure every worker has %PF_THREAD_BOUND set. 1747 */ 1748 if (!(pool->flags & POOL_DISASSOCIATED)) { 1749 kthread_bind(worker->task, pool->cpu); 1750 } else { 1751 worker->task->flags |= PF_THREAD_BOUND; 1752 worker->flags |= WORKER_UNBOUND; 1753 } 1754 1755 return worker; 1756 fail: 1757 if (id >= 0) { 1758 spin_lock_irq(&pool->lock); 1759 ida_remove(&pool->worker_ida, id); 1760 spin_unlock_irq(&pool->lock); 1761 } 1762 kfree(worker); 1763 return NULL; 1764 } 1765 1766 /** 1767 * start_worker - start a newly created worker 1768 * @worker: worker to start 1769 * 1770 * Make the pool aware of @worker and start it. 1771 * 1772 * CONTEXT: 1773 * spin_lock_irq(pool->lock). 1774 */ 1775 static void start_worker(struct worker *worker) 1776 { 1777 worker->flags |= WORKER_STARTED; 1778 worker->pool->nr_workers++; 1779 worker_enter_idle(worker); 1780 wake_up_process(worker->task); 1781 } 1782 1783 /** 1784 * destroy_worker - destroy a workqueue worker 1785 * @worker: worker to be destroyed 1786 * 1787 * Destroy @worker and adjust @pool stats accordingly. 1788 * 1789 * CONTEXT: 1790 * spin_lock_irq(pool->lock) which is released and regrabbed. 1791 */ 1792 static void destroy_worker(struct worker *worker) 1793 { 1794 struct worker_pool *pool = worker->pool; 1795 int id = worker->id; 1796 1797 /* sanity check frenzy */ 1798 BUG_ON(worker->current_work); 1799 BUG_ON(!list_empty(&worker->scheduled)); 1800 1801 if (worker->flags & WORKER_STARTED) 1802 pool->nr_workers--; 1803 if (worker->flags & WORKER_IDLE) 1804 pool->nr_idle--; 1805 1806 list_del_init(&worker->entry); 1807 worker->flags |= WORKER_DIE; 1808 1809 spin_unlock_irq(&pool->lock); 1810 1811 kthread_stop(worker->task); 1812 kfree(worker); 1813 1814 spin_lock_irq(&pool->lock); 1815 ida_remove(&pool->worker_ida, id); 1816 } 1817 1818 static void idle_worker_timeout(unsigned long __pool) 1819 { 1820 struct worker_pool *pool = (void *)__pool; 1821 1822 spin_lock_irq(&pool->lock); 1823 1824 if (too_many_workers(pool)) { 1825 struct worker *worker; 1826 unsigned long expires; 1827 1828 /* idle_list is kept in LIFO order, check the last one */ 1829 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1830 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1831 1832 if (time_before(jiffies, expires)) 1833 mod_timer(&pool->idle_timer, expires); 1834 else { 1835 /* it's been idle for too long, wake up manager */ 1836 pool->flags |= POOL_MANAGE_WORKERS; 1837 wake_up_worker(pool); 1838 } 1839 } 1840 1841 spin_unlock_irq(&pool->lock); 1842 } 1843 1844 static bool send_mayday(struct work_struct *work) 1845 { 1846 struct pool_workqueue *pwq = get_work_pwq(work); 1847 struct workqueue_struct *wq = pwq->wq; 1848 unsigned int cpu; 1849 1850 if (!(wq->flags & WQ_RESCUER)) 1851 return false; 1852 1853 /* mayday mayday mayday */ 1854 cpu = pwq->pool->cpu; 1855 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */ 1856 if (cpu == WORK_CPU_UNBOUND) 1857 cpu = 0; 1858 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask)) 1859 wake_up_process(wq->rescuer->task); 1860 return true; 1861 } 1862 1863 static void pool_mayday_timeout(unsigned long __pool) 1864 { 1865 struct worker_pool *pool = (void *)__pool; 1866 struct work_struct *work; 1867 1868 spin_lock_irq(&pool->lock); 1869 1870 if (need_to_create_worker(pool)) { 1871 /* 1872 * We've been trying to create a new worker but 1873 * haven't been successful. We might be hitting an 1874 * allocation deadlock. Send distress signals to 1875 * rescuers. 1876 */ 1877 list_for_each_entry(work, &pool->worklist, entry) 1878 send_mayday(work); 1879 } 1880 1881 spin_unlock_irq(&pool->lock); 1882 1883 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 1884 } 1885 1886 /** 1887 * maybe_create_worker - create a new worker if necessary 1888 * @pool: pool to create a new worker for 1889 * 1890 * Create a new worker for @pool if necessary. @pool is guaranteed to 1891 * have at least one idle worker on return from this function. If 1892 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1893 * sent to all rescuers with works scheduled on @pool to resolve 1894 * possible allocation deadlock. 1895 * 1896 * On return, need_to_create_worker() is guaranteed to be false and 1897 * may_start_working() true. 1898 * 1899 * LOCKING: 1900 * spin_lock_irq(pool->lock) which may be released and regrabbed 1901 * multiple times. Does GFP_KERNEL allocations. Called only from 1902 * manager. 1903 * 1904 * RETURNS: 1905 * false if no action was taken and pool->lock stayed locked, true 1906 * otherwise. 1907 */ 1908 static bool maybe_create_worker(struct worker_pool *pool) 1909 __releases(&pool->lock) 1910 __acquires(&pool->lock) 1911 { 1912 if (!need_to_create_worker(pool)) 1913 return false; 1914 restart: 1915 spin_unlock_irq(&pool->lock); 1916 1917 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1918 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1919 1920 while (true) { 1921 struct worker *worker; 1922 1923 worker = create_worker(pool); 1924 if (worker) { 1925 del_timer_sync(&pool->mayday_timer); 1926 spin_lock_irq(&pool->lock); 1927 start_worker(worker); 1928 BUG_ON(need_to_create_worker(pool)); 1929 return true; 1930 } 1931 1932 if (!need_to_create_worker(pool)) 1933 break; 1934 1935 __set_current_state(TASK_INTERRUPTIBLE); 1936 schedule_timeout(CREATE_COOLDOWN); 1937 1938 if (!need_to_create_worker(pool)) 1939 break; 1940 } 1941 1942 del_timer_sync(&pool->mayday_timer); 1943 spin_lock_irq(&pool->lock); 1944 if (need_to_create_worker(pool)) 1945 goto restart; 1946 return true; 1947 } 1948 1949 /** 1950 * maybe_destroy_worker - destroy workers which have been idle for a while 1951 * @pool: pool to destroy workers for 1952 * 1953 * Destroy @pool workers which have been idle for longer than 1954 * IDLE_WORKER_TIMEOUT. 1955 * 1956 * LOCKING: 1957 * spin_lock_irq(pool->lock) which may be released and regrabbed 1958 * multiple times. Called only from manager. 1959 * 1960 * RETURNS: 1961 * false if no action was taken and pool->lock stayed locked, true 1962 * otherwise. 1963 */ 1964 static bool maybe_destroy_workers(struct worker_pool *pool) 1965 { 1966 bool ret = false; 1967 1968 while (too_many_workers(pool)) { 1969 struct worker *worker; 1970 unsigned long expires; 1971 1972 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1973 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1974 1975 if (time_before(jiffies, expires)) { 1976 mod_timer(&pool->idle_timer, expires); 1977 break; 1978 } 1979 1980 destroy_worker(worker); 1981 ret = true; 1982 } 1983 1984 return ret; 1985 } 1986 1987 /** 1988 * manage_workers - manage worker pool 1989 * @worker: self 1990 * 1991 * Assume the manager role and manage the worker pool @worker belongs 1992 * to. At any given time, there can be only zero or one manager per 1993 * pool. The exclusion is handled automatically by this function. 1994 * 1995 * The caller can safely start processing works on false return. On 1996 * true return, it's guaranteed that need_to_create_worker() is false 1997 * and may_start_working() is true. 1998 * 1999 * CONTEXT: 2000 * spin_lock_irq(pool->lock) which may be released and regrabbed 2001 * multiple times. Does GFP_KERNEL allocations. 2002 * 2003 * RETURNS: 2004 * spin_lock_irq(pool->lock) which may be released and regrabbed 2005 * multiple times. Does GFP_KERNEL allocations. 2006 */ 2007 static bool manage_workers(struct worker *worker) 2008 { 2009 struct worker_pool *pool = worker->pool; 2010 bool ret = false; 2011 2012 if (pool->flags & POOL_MANAGING_WORKERS) 2013 return ret; 2014 2015 pool->flags |= POOL_MANAGING_WORKERS; 2016 2017 /* 2018 * To simplify both worker management and CPU hotplug, hold off 2019 * management while hotplug is in progress. CPU hotplug path can't 2020 * grab %POOL_MANAGING_WORKERS to achieve this because that can 2021 * lead to idle worker depletion (all become busy thinking someone 2022 * else is managing) which in turn can result in deadlock under 2023 * extreme circumstances. Use @pool->assoc_mutex to synchronize 2024 * manager against CPU hotplug. 2025 * 2026 * assoc_mutex would always be free unless CPU hotplug is in 2027 * progress. trylock first without dropping @pool->lock. 2028 */ 2029 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) { 2030 spin_unlock_irq(&pool->lock); 2031 mutex_lock(&pool->assoc_mutex); 2032 /* 2033 * CPU hotplug could have happened while we were waiting 2034 * for assoc_mutex. Hotplug itself can't handle us 2035 * because manager isn't either on idle or busy list, and 2036 * @pool's state and ours could have deviated. 2037 * 2038 * As hotplug is now excluded via assoc_mutex, we can 2039 * simply try to bind. It will succeed or fail depending 2040 * on @pool's current state. Try it and adjust 2041 * %WORKER_UNBOUND accordingly. 2042 */ 2043 if (worker_maybe_bind_and_lock(worker)) 2044 worker->flags &= ~WORKER_UNBOUND; 2045 else 2046 worker->flags |= WORKER_UNBOUND; 2047 2048 ret = true; 2049 } 2050 2051 pool->flags &= ~POOL_MANAGE_WORKERS; 2052 2053 /* 2054 * Destroy and then create so that may_start_working() is true 2055 * on return. 2056 */ 2057 ret |= maybe_destroy_workers(pool); 2058 ret |= maybe_create_worker(pool); 2059 2060 pool->flags &= ~POOL_MANAGING_WORKERS; 2061 mutex_unlock(&pool->assoc_mutex); 2062 return ret; 2063 } 2064 2065 /** 2066 * process_one_work - process single work 2067 * @worker: self 2068 * @work: work to process 2069 * 2070 * Process @work. This function contains all the logics necessary to 2071 * process a single work including synchronization against and 2072 * interaction with other workers on the same cpu, queueing and 2073 * flushing. As long as context requirement is met, any worker can 2074 * call this function to process a work. 2075 * 2076 * CONTEXT: 2077 * spin_lock_irq(pool->lock) which is released and regrabbed. 2078 */ 2079 static void process_one_work(struct worker *worker, struct work_struct *work) 2080 __releases(&pool->lock) 2081 __acquires(&pool->lock) 2082 { 2083 struct pool_workqueue *pwq = get_work_pwq(work); 2084 struct worker_pool *pool = worker->pool; 2085 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2086 int work_color; 2087 struct worker *collision; 2088 #ifdef CONFIG_LOCKDEP 2089 /* 2090 * It is permissible to free the struct work_struct from 2091 * inside the function that is called from it, this we need to 2092 * take into account for lockdep too. To avoid bogus "held 2093 * lock freed" warnings as well as problems when looking into 2094 * work->lockdep_map, make a copy and use that here. 2095 */ 2096 struct lockdep_map lockdep_map; 2097 2098 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2099 #endif 2100 /* 2101 * Ensure we're on the correct CPU. DISASSOCIATED test is 2102 * necessary to avoid spurious warnings from rescuers servicing the 2103 * unbound or a disassociated pool. 2104 */ 2105 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) && 2106 !(pool->flags & POOL_DISASSOCIATED) && 2107 raw_smp_processor_id() != pool->cpu); 2108 2109 /* 2110 * A single work shouldn't be executed concurrently by 2111 * multiple workers on a single cpu. Check whether anyone is 2112 * already processing the work. If so, defer the work to the 2113 * currently executing one. 2114 */ 2115 collision = find_worker_executing_work(pool, work); 2116 if (unlikely(collision)) { 2117 move_linked_works(work, &collision->scheduled, NULL); 2118 return; 2119 } 2120 2121 /* claim and dequeue */ 2122 debug_work_deactivate(work); 2123 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2124 worker->current_work = work; 2125 worker->current_func = work->func; 2126 worker->current_pwq = pwq; 2127 work_color = get_work_color(work); 2128 2129 list_del_init(&work->entry); 2130 2131 /* 2132 * CPU intensive works don't participate in concurrency 2133 * management. They're the scheduler's responsibility. 2134 */ 2135 if (unlikely(cpu_intensive)) 2136 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true); 2137 2138 /* 2139 * Unbound pool isn't concurrency managed and work items should be 2140 * executed ASAP. Wake up another worker if necessary. 2141 */ 2142 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool)) 2143 wake_up_worker(pool); 2144 2145 /* 2146 * Record the last pool and clear PENDING which should be the last 2147 * update to @work. Also, do this inside @pool->lock so that 2148 * PENDING and queued state changes happen together while IRQ is 2149 * disabled. 2150 */ 2151 set_work_pool_and_clear_pending(work, pool->id); 2152 2153 spin_unlock_irq(&pool->lock); 2154 2155 lock_map_acquire_read(&pwq->wq->lockdep_map); 2156 lock_map_acquire(&lockdep_map); 2157 trace_workqueue_execute_start(work); 2158 worker->current_func(work); 2159 /* 2160 * While we must be careful to not use "work" after this, the trace 2161 * point will only record its address. 2162 */ 2163 trace_workqueue_execute_end(work); 2164 lock_map_release(&lockdep_map); 2165 lock_map_release(&pwq->wq->lockdep_map); 2166 2167 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2168 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2169 " last function: %pf\n", 2170 current->comm, preempt_count(), task_pid_nr(current), 2171 worker->current_func); 2172 debug_show_held_locks(current); 2173 dump_stack(); 2174 } 2175 2176 spin_lock_irq(&pool->lock); 2177 2178 /* clear cpu intensive status */ 2179 if (unlikely(cpu_intensive)) 2180 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2181 2182 /* we're done with it, release */ 2183 hash_del(&worker->hentry); 2184 worker->current_work = NULL; 2185 worker->current_func = NULL; 2186 worker->current_pwq = NULL; 2187 pwq_dec_nr_in_flight(pwq, work_color); 2188 } 2189 2190 /** 2191 * process_scheduled_works - process scheduled works 2192 * @worker: self 2193 * 2194 * Process all scheduled works. Please note that the scheduled list 2195 * may change while processing a work, so this function repeatedly 2196 * fetches a work from the top and executes it. 2197 * 2198 * CONTEXT: 2199 * spin_lock_irq(pool->lock) which may be released and regrabbed 2200 * multiple times. 2201 */ 2202 static void process_scheduled_works(struct worker *worker) 2203 { 2204 while (!list_empty(&worker->scheduled)) { 2205 struct work_struct *work = list_first_entry(&worker->scheduled, 2206 struct work_struct, entry); 2207 process_one_work(worker, work); 2208 } 2209 } 2210 2211 /** 2212 * worker_thread - the worker thread function 2213 * @__worker: self 2214 * 2215 * The worker thread function. There are NR_CPU_WORKER_POOLS dynamic pools 2216 * of these per each cpu. These workers process all works regardless of 2217 * their specific target workqueue. The only exception is works which 2218 * belong to workqueues with a rescuer which will be explained in 2219 * rescuer_thread(). 2220 */ 2221 static int worker_thread(void *__worker) 2222 { 2223 struct worker *worker = __worker; 2224 struct worker_pool *pool = worker->pool; 2225 2226 /* tell the scheduler that this is a workqueue worker */ 2227 worker->task->flags |= PF_WQ_WORKER; 2228 woke_up: 2229 spin_lock_irq(&pool->lock); 2230 2231 /* we are off idle list if destruction or rebind is requested */ 2232 if (unlikely(list_empty(&worker->entry))) { 2233 spin_unlock_irq(&pool->lock); 2234 2235 /* if DIE is set, destruction is requested */ 2236 if (worker->flags & WORKER_DIE) { 2237 worker->task->flags &= ~PF_WQ_WORKER; 2238 return 0; 2239 } 2240 2241 /* otherwise, rebind */ 2242 idle_worker_rebind(worker); 2243 goto woke_up; 2244 } 2245 2246 worker_leave_idle(worker); 2247 recheck: 2248 /* no more worker necessary? */ 2249 if (!need_more_worker(pool)) 2250 goto sleep; 2251 2252 /* do we need to manage? */ 2253 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2254 goto recheck; 2255 2256 /* 2257 * ->scheduled list can only be filled while a worker is 2258 * preparing to process a work or actually processing it. 2259 * Make sure nobody diddled with it while I was sleeping. 2260 */ 2261 BUG_ON(!list_empty(&worker->scheduled)); 2262 2263 /* 2264 * When control reaches this point, we're guaranteed to have 2265 * at least one idle worker or that someone else has already 2266 * assumed the manager role. 2267 */ 2268 worker_clr_flags(worker, WORKER_PREP); 2269 2270 do { 2271 struct work_struct *work = 2272 list_first_entry(&pool->worklist, 2273 struct work_struct, entry); 2274 2275 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2276 /* optimization path, not strictly necessary */ 2277 process_one_work(worker, work); 2278 if (unlikely(!list_empty(&worker->scheduled))) 2279 process_scheduled_works(worker); 2280 } else { 2281 move_linked_works(work, &worker->scheduled, NULL); 2282 process_scheduled_works(worker); 2283 } 2284 } while (keep_working(pool)); 2285 2286 worker_set_flags(worker, WORKER_PREP, false); 2287 sleep: 2288 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker)) 2289 goto recheck; 2290 2291 /* 2292 * pool->lock is held and there's no work to process and no need to 2293 * manage, sleep. Workers are woken up only while holding 2294 * pool->lock or from local cpu, so setting the current state 2295 * before releasing pool->lock is enough to prevent losing any 2296 * event. 2297 */ 2298 worker_enter_idle(worker); 2299 __set_current_state(TASK_INTERRUPTIBLE); 2300 spin_unlock_irq(&pool->lock); 2301 schedule(); 2302 goto woke_up; 2303 } 2304 2305 /** 2306 * rescuer_thread - the rescuer thread function 2307 * @__rescuer: self 2308 * 2309 * Workqueue rescuer thread function. There's one rescuer for each 2310 * workqueue which has WQ_RESCUER set. 2311 * 2312 * Regular work processing on a pool may block trying to create a new 2313 * worker which uses GFP_KERNEL allocation which has slight chance of 2314 * developing into deadlock if some works currently on the same queue 2315 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2316 * the problem rescuer solves. 2317 * 2318 * When such condition is possible, the pool summons rescuers of all 2319 * workqueues which have works queued on the pool and let them process 2320 * those works so that forward progress can be guaranteed. 2321 * 2322 * This should happen rarely. 2323 */ 2324 static int rescuer_thread(void *__rescuer) 2325 { 2326 struct worker *rescuer = __rescuer; 2327 struct workqueue_struct *wq = rescuer->rescue_wq; 2328 struct list_head *scheduled = &rescuer->scheduled; 2329 bool is_unbound = wq->flags & WQ_UNBOUND; 2330 unsigned int cpu; 2331 2332 set_user_nice(current, RESCUER_NICE_LEVEL); 2333 2334 /* 2335 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2336 * doesn't participate in concurrency management. 2337 */ 2338 rescuer->task->flags |= PF_WQ_WORKER; 2339 repeat: 2340 set_current_state(TASK_INTERRUPTIBLE); 2341 2342 if (kthread_should_stop()) { 2343 __set_current_state(TASK_RUNNING); 2344 rescuer->task->flags &= ~PF_WQ_WORKER; 2345 return 0; 2346 } 2347 2348 /* 2349 * See whether any cpu is asking for help. Unbounded 2350 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND. 2351 */ 2352 for_each_mayday_cpu(cpu, wq->mayday_mask) { 2353 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu; 2354 struct pool_workqueue *pwq = get_pwq(tcpu, wq); 2355 struct worker_pool *pool = pwq->pool; 2356 struct work_struct *work, *n; 2357 2358 __set_current_state(TASK_RUNNING); 2359 mayday_clear_cpu(cpu, wq->mayday_mask); 2360 2361 /* migrate to the target cpu if possible */ 2362 rescuer->pool = pool; 2363 worker_maybe_bind_and_lock(rescuer); 2364 2365 /* 2366 * Slurp in all works issued via this workqueue and 2367 * process'em. 2368 */ 2369 BUG_ON(!list_empty(&rescuer->scheduled)); 2370 list_for_each_entry_safe(work, n, &pool->worklist, entry) 2371 if (get_work_pwq(work) == pwq) 2372 move_linked_works(work, scheduled, &n); 2373 2374 process_scheduled_works(rescuer); 2375 2376 /* 2377 * Leave this pool. If keep_working() is %true, notify a 2378 * regular worker; otherwise, we end up with 0 concurrency 2379 * and stalling the execution. 2380 */ 2381 if (keep_working(pool)) 2382 wake_up_worker(pool); 2383 2384 spin_unlock_irq(&pool->lock); 2385 } 2386 2387 /* rescuers should never participate in concurrency management */ 2388 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2389 schedule(); 2390 goto repeat; 2391 } 2392 2393 struct wq_barrier { 2394 struct work_struct work; 2395 struct completion done; 2396 }; 2397 2398 static void wq_barrier_func(struct work_struct *work) 2399 { 2400 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2401 complete(&barr->done); 2402 } 2403 2404 /** 2405 * insert_wq_barrier - insert a barrier work 2406 * @pwq: pwq to insert barrier into 2407 * @barr: wq_barrier to insert 2408 * @target: target work to attach @barr to 2409 * @worker: worker currently executing @target, NULL if @target is not executing 2410 * 2411 * @barr is linked to @target such that @barr is completed only after 2412 * @target finishes execution. Please note that the ordering 2413 * guarantee is observed only with respect to @target and on the local 2414 * cpu. 2415 * 2416 * Currently, a queued barrier can't be canceled. This is because 2417 * try_to_grab_pending() can't determine whether the work to be 2418 * grabbed is at the head of the queue and thus can't clear LINKED 2419 * flag of the previous work while there must be a valid next work 2420 * after a work with LINKED flag set. 2421 * 2422 * Note that when @worker is non-NULL, @target may be modified 2423 * underneath us, so we can't reliably determine pwq from @target. 2424 * 2425 * CONTEXT: 2426 * spin_lock_irq(pool->lock). 2427 */ 2428 static void insert_wq_barrier(struct pool_workqueue *pwq, 2429 struct wq_barrier *barr, 2430 struct work_struct *target, struct worker *worker) 2431 { 2432 struct list_head *head; 2433 unsigned int linked = 0; 2434 2435 /* 2436 * debugobject calls are safe here even with pool->lock locked 2437 * as we know for sure that this will not trigger any of the 2438 * checks and call back into the fixup functions where we 2439 * might deadlock. 2440 */ 2441 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2442 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2443 init_completion(&barr->done); 2444 2445 /* 2446 * If @target is currently being executed, schedule the 2447 * barrier to the worker; otherwise, put it after @target. 2448 */ 2449 if (worker) 2450 head = worker->scheduled.next; 2451 else { 2452 unsigned long *bits = work_data_bits(target); 2453 2454 head = target->entry.next; 2455 /* there can already be other linked works, inherit and set */ 2456 linked = *bits & WORK_STRUCT_LINKED; 2457 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2458 } 2459 2460 debug_work_activate(&barr->work); 2461 insert_work(pwq, &barr->work, head, 2462 work_color_to_flags(WORK_NO_COLOR) | linked); 2463 } 2464 2465 /** 2466 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2467 * @wq: workqueue being flushed 2468 * @flush_color: new flush color, < 0 for no-op 2469 * @work_color: new work color, < 0 for no-op 2470 * 2471 * Prepare pwqs for workqueue flushing. 2472 * 2473 * If @flush_color is non-negative, flush_color on all pwqs should be 2474 * -1. If no pwq has in-flight commands at the specified color, all 2475 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2476 * has in flight commands, its pwq->flush_color is set to 2477 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2478 * wakeup logic is armed and %true is returned. 2479 * 2480 * The caller should have initialized @wq->first_flusher prior to 2481 * calling this function with non-negative @flush_color. If 2482 * @flush_color is negative, no flush color update is done and %false 2483 * is returned. 2484 * 2485 * If @work_color is non-negative, all pwqs should have the same 2486 * work_color which is previous to @work_color and all will be 2487 * advanced to @work_color. 2488 * 2489 * CONTEXT: 2490 * mutex_lock(wq->flush_mutex). 2491 * 2492 * RETURNS: 2493 * %true if @flush_color >= 0 and there's something to flush. %false 2494 * otherwise. 2495 */ 2496 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2497 int flush_color, int work_color) 2498 { 2499 bool wait = false; 2500 unsigned int cpu; 2501 2502 if (flush_color >= 0) { 2503 BUG_ON(atomic_read(&wq->nr_pwqs_to_flush)); 2504 atomic_set(&wq->nr_pwqs_to_flush, 1); 2505 } 2506 2507 for_each_pwq_cpu(cpu, wq) { 2508 struct pool_workqueue *pwq = get_pwq(cpu, wq); 2509 struct worker_pool *pool = pwq->pool; 2510 2511 spin_lock_irq(&pool->lock); 2512 2513 if (flush_color >= 0) { 2514 BUG_ON(pwq->flush_color != -1); 2515 2516 if (pwq->nr_in_flight[flush_color]) { 2517 pwq->flush_color = flush_color; 2518 atomic_inc(&wq->nr_pwqs_to_flush); 2519 wait = true; 2520 } 2521 } 2522 2523 if (work_color >= 0) { 2524 BUG_ON(work_color != work_next_color(pwq->work_color)); 2525 pwq->work_color = work_color; 2526 } 2527 2528 spin_unlock_irq(&pool->lock); 2529 } 2530 2531 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2532 complete(&wq->first_flusher->done); 2533 2534 return wait; 2535 } 2536 2537 /** 2538 * flush_workqueue - ensure that any scheduled work has run to completion. 2539 * @wq: workqueue to flush 2540 * 2541 * Forces execution of the workqueue and blocks until its completion. 2542 * This is typically used in driver shutdown handlers. 2543 * 2544 * We sleep until all works which were queued on entry have been handled, 2545 * but we are not livelocked by new incoming ones. 2546 */ 2547 void flush_workqueue(struct workqueue_struct *wq) 2548 { 2549 struct wq_flusher this_flusher = { 2550 .list = LIST_HEAD_INIT(this_flusher.list), 2551 .flush_color = -1, 2552 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2553 }; 2554 int next_color; 2555 2556 lock_map_acquire(&wq->lockdep_map); 2557 lock_map_release(&wq->lockdep_map); 2558 2559 mutex_lock(&wq->flush_mutex); 2560 2561 /* 2562 * Start-to-wait phase 2563 */ 2564 next_color = work_next_color(wq->work_color); 2565 2566 if (next_color != wq->flush_color) { 2567 /* 2568 * Color space is not full. The current work_color 2569 * becomes our flush_color and work_color is advanced 2570 * by one. 2571 */ 2572 BUG_ON(!list_empty(&wq->flusher_overflow)); 2573 this_flusher.flush_color = wq->work_color; 2574 wq->work_color = next_color; 2575 2576 if (!wq->first_flusher) { 2577 /* no flush in progress, become the first flusher */ 2578 BUG_ON(wq->flush_color != this_flusher.flush_color); 2579 2580 wq->first_flusher = &this_flusher; 2581 2582 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2583 wq->work_color)) { 2584 /* nothing to flush, done */ 2585 wq->flush_color = next_color; 2586 wq->first_flusher = NULL; 2587 goto out_unlock; 2588 } 2589 } else { 2590 /* wait in queue */ 2591 BUG_ON(wq->flush_color == this_flusher.flush_color); 2592 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2593 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2594 } 2595 } else { 2596 /* 2597 * Oops, color space is full, wait on overflow queue. 2598 * The next flush completion will assign us 2599 * flush_color and transfer to flusher_queue. 2600 */ 2601 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2602 } 2603 2604 mutex_unlock(&wq->flush_mutex); 2605 2606 wait_for_completion(&this_flusher.done); 2607 2608 /* 2609 * Wake-up-and-cascade phase 2610 * 2611 * First flushers are responsible for cascading flushes and 2612 * handling overflow. Non-first flushers can simply return. 2613 */ 2614 if (wq->first_flusher != &this_flusher) 2615 return; 2616 2617 mutex_lock(&wq->flush_mutex); 2618 2619 /* we might have raced, check again with mutex held */ 2620 if (wq->first_flusher != &this_flusher) 2621 goto out_unlock; 2622 2623 wq->first_flusher = NULL; 2624 2625 BUG_ON(!list_empty(&this_flusher.list)); 2626 BUG_ON(wq->flush_color != this_flusher.flush_color); 2627 2628 while (true) { 2629 struct wq_flusher *next, *tmp; 2630 2631 /* complete all the flushers sharing the current flush color */ 2632 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2633 if (next->flush_color != wq->flush_color) 2634 break; 2635 list_del_init(&next->list); 2636 complete(&next->done); 2637 } 2638 2639 BUG_ON(!list_empty(&wq->flusher_overflow) && 2640 wq->flush_color != work_next_color(wq->work_color)); 2641 2642 /* this flush_color is finished, advance by one */ 2643 wq->flush_color = work_next_color(wq->flush_color); 2644 2645 /* one color has been freed, handle overflow queue */ 2646 if (!list_empty(&wq->flusher_overflow)) { 2647 /* 2648 * Assign the same color to all overflowed 2649 * flushers, advance work_color and append to 2650 * flusher_queue. This is the start-to-wait 2651 * phase for these overflowed flushers. 2652 */ 2653 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2654 tmp->flush_color = wq->work_color; 2655 2656 wq->work_color = work_next_color(wq->work_color); 2657 2658 list_splice_tail_init(&wq->flusher_overflow, 2659 &wq->flusher_queue); 2660 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2661 } 2662 2663 if (list_empty(&wq->flusher_queue)) { 2664 BUG_ON(wq->flush_color != wq->work_color); 2665 break; 2666 } 2667 2668 /* 2669 * Need to flush more colors. Make the next flusher 2670 * the new first flusher and arm pwqs. 2671 */ 2672 BUG_ON(wq->flush_color == wq->work_color); 2673 BUG_ON(wq->flush_color != next->flush_color); 2674 2675 list_del_init(&next->list); 2676 wq->first_flusher = next; 2677 2678 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2679 break; 2680 2681 /* 2682 * Meh... this color is already done, clear first 2683 * flusher and repeat cascading. 2684 */ 2685 wq->first_flusher = NULL; 2686 } 2687 2688 out_unlock: 2689 mutex_unlock(&wq->flush_mutex); 2690 } 2691 EXPORT_SYMBOL_GPL(flush_workqueue); 2692 2693 /** 2694 * drain_workqueue - drain a workqueue 2695 * @wq: workqueue to drain 2696 * 2697 * Wait until the workqueue becomes empty. While draining is in progress, 2698 * only chain queueing is allowed. IOW, only currently pending or running 2699 * work items on @wq can queue further work items on it. @wq is flushed 2700 * repeatedly until it becomes empty. The number of flushing is detemined 2701 * by the depth of chaining and should be relatively short. Whine if it 2702 * takes too long. 2703 */ 2704 void drain_workqueue(struct workqueue_struct *wq) 2705 { 2706 unsigned int flush_cnt = 0; 2707 unsigned int cpu; 2708 2709 /* 2710 * __queue_work() needs to test whether there are drainers, is much 2711 * hotter than drain_workqueue() and already looks at @wq->flags. 2712 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers. 2713 */ 2714 spin_lock(&workqueue_lock); 2715 if (!wq->nr_drainers++) 2716 wq->flags |= WQ_DRAINING; 2717 spin_unlock(&workqueue_lock); 2718 reflush: 2719 flush_workqueue(wq); 2720 2721 for_each_pwq_cpu(cpu, wq) { 2722 struct pool_workqueue *pwq = get_pwq(cpu, wq); 2723 bool drained; 2724 2725 spin_lock_irq(&pwq->pool->lock); 2726 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2727 spin_unlock_irq(&pwq->pool->lock); 2728 2729 if (drained) 2730 continue; 2731 2732 if (++flush_cnt == 10 || 2733 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2734 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n", 2735 wq->name, flush_cnt); 2736 goto reflush; 2737 } 2738 2739 spin_lock(&workqueue_lock); 2740 if (!--wq->nr_drainers) 2741 wq->flags &= ~WQ_DRAINING; 2742 spin_unlock(&workqueue_lock); 2743 } 2744 EXPORT_SYMBOL_GPL(drain_workqueue); 2745 2746 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr) 2747 { 2748 struct worker *worker = NULL; 2749 struct worker_pool *pool; 2750 struct pool_workqueue *pwq; 2751 2752 might_sleep(); 2753 pool = get_work_pool(work); 2754 if (!pool) 2755 return false; 2756 2757 spin_lock_irq(&pool->lock); 2758 /* see the comment in try_to_grab_pending() with the same code */ 2759 pwq = get_work_pwq(work); 2760 if (pwq) { 2761 if (unlikely(pwq->pool != pool)) 2762 goto already_gone; 2763 } else { 2764 worker = find_worker_executing_work(pool, work); 2765 if (!worker) 2766 goto already_gone; 2767 pwq = worker->current_pwq; 2768 } 2769 2770 insert_wq_barrier(pwq, barr, work, worker); 2771 spin_unlock_irq(&pool->lock); 2772 2773 /* 2774 * If @max_active is 1 or rescuer is in use, flushing another work 2775 * item on the same workqueue may lead to deadlock. Make sure the 2776 * flusher is not running on the same workqueue by verifying write 2777 * access. 2778 */ 2779 if (pwq->wq->saved_max_active == 1 || pwq->wq->flags & WQ_RESCUER) 2780 lock_map_acquire(&pwq->wq->lockdep_map); 2781 else 2782 lock_map_acquire_read(&pwq->wq->lockdep_map); 2783 lock_map_release(&pwq->wq->lockdep_map); 2784 2785 return true; 2786 already_gone: 2787 spin_unlock_irq(&pool->lock); 2788 return false; 2789 } 2790 2791 /** 2792 * flush_work - wait for a work to finish executing the last queueing instance 2793 * @work: the work to flush 2794 * 2795 * Wait until @work has finished execution. @work is guaranteed to be idle 2796 * on return if it hasn't been requeued since flush started. 2797 * 2798 * RETURNS: 2799 * %true if flush_work() waited for the work to finish execution, 2800 * %false if it was already idle. 2801 */ 2802 bool flush_work(struct work_struct *work) 2803 { 2804 struct wq_barrier barr; 2805 2806 lock_map_acquire(&work->lockdep_map); 2807 lock_map_release(&work->lockdep_map); 2808 2809 if (start_flush_work(work, &barr)) { 2810 wait_for_completion(&barr.done); 2811 destroy_work_on_stack(&barr.work); 2812 return true; 2813 } else { 2814 return false; 2815 } 2816 } 2817 EXPORT_SYMBOL_GPL(flush_work); 2818 2819 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 2820 { 2821 unsigned long flags; 2822 int ret; 2823 2824 do { 2825 ret = try_to_grab_pending(work, is_dwork, &flags); 2826 /* 2827 * If someone else is canceling, wait for the same event it 2828 * would be waiting for before retrying. 2829 */ 2830 if (unlikely(ret == -ENOENT)) 2831 flush_work(work); 2832 } while (unlikely(ret < 0)); 2833 2834 /* tell other tasks trying to grab @work to back off */ 2835 mark_work_canceling(work); 2836 local_irq_restore(flags); 2837 2838 flush_work(work); 2839 clear_work_data(work); 2840 return ret; 2841 } 2842 2843 /** 2844 * cancel_work_sync - cancel a work and wait for it to finish 2845 * @work: the work to cancel 2846 * 2847 * Cancel @work and wait for its execution to finish. This function 2848 * can be used even if the work re-queues itself or migrates to 2849 * another workqueue. On return from this function, @work is 2850 * guaranteed to be not pending or executing on any CPU. 2851 * 2852 * cancel_work_sync(&delayed_work->work) must not be used for 2853 * delayed_work's. Use cancel_delayed_work_sync() instead. 2854 * 2855 * The caller must ensure that the workqueue on which @work was last 2856 * queued can't be destroyed before this function returns. 2857 * 2858 * RETURNS: 2859 * %true if @work was pending, %false otherwise. 2860 */ 2861 bool cancel_work_sync(struct work_struct *work) 2862 { 2863 return __cancel_work_timer(work, false); 2864 } 2865 EXPORT_SYMBOL_GPL(cancel_work_sync); 2866 2867 /** 2868 * flush_delayed_work - wait for a dwork to finish executing the last queueing 2869 * @dwork: the delayed work to flush 2870 * 2871 * Delayed timer is cancelled and the pending work is queued for 2872 * immediate execution. Like flush_work(), this function only 2873 * considers the last queueing instance of @dwork. 2874 * 2875 * RETURNS: 2876 * %true if flush_work() waited for the work to finish execution, 2877 * %false if it was already idle. 2878 */ 2879 bool flush_delayed_work(struct delayed_work *dwork) 2880 { 2881 local_irq_disable(); 2882 if (del_timer_sync(&dwork->timer)) 2883 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2884 local_irq_enable(); 2885 return flush_work(&dwork->work); 2886 } 2887 EXPORT_SYMBOL(flush_delayed_work); 2888 2889 /** 2890 * cancel_delayed_work - cancel a delayed work 2891 * @dwork: delayed_work to cancel 2892 * 2893 * Kill off a pending delayed_work. Returns %true if @dwork was pending 2894 * and canceled; %false if wasn't pending. Note that the work callback 2895 * function may still be running on return, unless it returns %true and the 2896 * work doesn't re-arm itself. Explicitly flush or use 2897 * cancel_delayed_work_sync() to wait on it. 2898 * 2899 * This function is safe to call from any context including IRQ handler. 2900 */ 2901 bool cancel_delayed_work(struct delayed_work *dwork) 2902 { 2903 unsigned long flags; 2904 int ret; 2905 2906 do { 2907 ret = try_to_grab_pending(&dwork->work, true, &flags); 2908 } while (unlikely(ret == -EAGAIN)); 2909 2910 if (unlikely(ret < 0)) 2911 return false; 2912 2913 set_work_pool_and_clear_pending(&dwork->work, 2914 get_work_pool_id(&dwork->work)); 2915 local_irq_restore(flags); 2916 return ret; 2917 } 2918 EXPORT_SYMBOL(cancel_delayed_work); 2919 2920 /** 2921 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 2922 * @dwork: the delayed work cancel 2923 * 2924 * This is cancel_work_sync() for delayed works. 2925 * 2926 * RETURNS: 2927 * %true if @dwork was pending, %false otherwise. 2928 */ 2929 bool cancel_delayed_work_sync(struct delayed_work *dwork) 2930 { 2931 return __cancel_work_timer(&dwork->work, true); 2932 } 2933 EXPORT_SYMBOL(cancel_delayed_work_sync); 2934 2935 /** 2936 * schedule_work_on - put work task on a specific cpu 2937 * @cpu: cpu to put the work task on 2938 * @work: job to be done 2939 * 2940 * This puts a job on a specific cpu 2941 */ 2942 bool schedule_work_on(int cpu, struct work_struct *work) 2943 { 2944 return queue_work_on(cpu, system_wq, work); 2945 } 2946 EXPORT_SYMBOL(schedule_work_on); 2947 2948 /** 2949 * schedule_work - put work task in global workqueue 2950 * @work: job to be done 2951 * 2952 * Returns %false if @work was already on the kernel-global workqueue and 2953 * %true otherwise. 2954 * 2955 * This puts a job in the kernel-global workqueue if it was not already 2956 * queued and leaves it in the same position on the kernel-global 2957 * workqueue otherwise. 2958 */ 2959 bool schedule_work(struct work_struct *work) 2960 { 2961 return queue_work(system_wq, work); 2962 } 2963 EXPORT_SYMBOL(schedule_work); 2964 2965 /** 2966 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay 2967 * @cpu: cpu to use 2968 * @dwork: job to be done 2969 * @delay: number of jiffies to wait 2970 * 2971 * After waiting for a given time this puts a job in the kernel-global 2972 * workqueue on the specified CPU. 2973 */ 2974 bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork, 2975 unsigned long delay) 2976 { 2977 return queue_delayed_work_on(cpu, system_wq, dwork, delay); 2978 } 2979 EXPORT_SYMBOL(schedule_delayed_work_on); 2980 2981 /** 2982 * schedule_delayed_work - put work task in global workqueue after delay 2983 * @dwork: job to be done 2984 * @delay: number of jiffies to wait or 0 for immediate execution 2985 * 2986 * After waiting for a given time this puts a job in the kernel-global 2987 * workqueue. 2988 */ 2989 bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay) 2990 { 2991 return queue_delayed_work(system_wq, dwork, delay); 2992 } 2993 EXPORT_SYMBOL(schedule_delayed_work); 2994 2995 /** 2996 * schedule_on_each_cpu - execute a function synchronously on each online CPU 2997 * @func: the function to call 2998 * 2999 * schedule_on_each_cpu() executes @func on each online CPU using the 3000 * system workqueue and blocks until all CPUs have completed. 3001 * schedule_on_each_cpu() is very slow. 3002 * 3003 * RETURNS: 3004 * 0 on success, -errno on failure. 3005 */ 3006 int schedule_on_each_cpu(work_func_t func) 3007 { 3008 int cpu; 3009 struct work_struct __percpu *works; 3010 3011 works = alloc_percpu(struct work_struct); 3012 if (!works) 3013 return -ENOMEM; 3014 3015 get_online_cpus(); 3016 3017 for_each_online_cpu(cpu) { 3018 struct work_struct *work = per_cpu_ptr(works, cpu); 3019 3020 INIT_WORK(work, func); 3021 schedule_work_on(cpu, work); 3022 } 3023 3024 for_each_online_cpu(cpu) 3025 flush_work(per_cpu_ptr(works, cpu)); 3026 3027 put_online_cpus(); 3028 free_percpu(works); 3029 return 0; 3030 } 3031 3032 /** 3033 * flush_scheduled_work - ensure that any scheduled work has run to completion. 3034 * 3035 * Forces execution of the kernel-global workqueue and blocks until its 3036 * completion. 3037 * 3038 * Think twice before calling this function! It's very easy to get into 3039 * trouble if you don't take great care. Either of the following situations 3040 * will lead to deadlock: 3041 * 3042 * One of the work items currently on the workqueue needs to acquire 3043 * a lock held by your code or its caller. 3044 * 3045 * Your code is running in the context of a work routine. 3046 * 3047 * They will be detected by lockdep when they occur, but the first might not 3048 * occur very often. It depends on what work items are on the workqueue and 3049 * what locks they need, which you have no control over. 3050 * 3051 * In most situations flushing the entire workqueue is overkill; you merely 3052 * need to know that a particular work item isn't queued and isn't running. 3053 * In such cases you should use cancel_delayed_work_sync() or 3054 * cancel_work_sync() instead. 3055 */ 3056 void flush_scheduled_work(void) 3057 { 3058 flush_workqueue(system_wq); 3059 } 3060 EXPORT_SYMBOL(flush_scheduled_work); 3061 3062 /** 3063 * execute_in_process_context - reliably execute the routine with user context 3064 * @fn: the function to execute 3065 * @ew: guaranteed storage for the execute work structure (must 3066 * be available when the work executes) 3067 * 3068 * Executes the function immediately if process context is available, 3069 * otherwise schedules the function for delayed execution. 3070 * 3071 * Returns: 0 - function was executed 3072 * 1 - function was scheduled for execution 3073 */ 3074 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3075 { 3076 if (!in_interrupt()) { 3077 fn(&ew->work); 3078 return 0; 3079 } 3080 3081 INIT_WORK(&ew->work, fn); 3082 schedule_work(&ew->work); 3083 3084 return 1; 3085 } 3086 EXPORT_SYMBOL_GPL(execute_in_process_context); 3087 3088 int keventd_up(void) 3089 { 3090 return system_wq != NULL; 3091 } 3092 3093 static int alloc_pwqs(struct workqueue_struct *wq) 3094 { 3095 /* 3096 * pwqs are forced aligned according to WORK_STRUCT_FLAG_BITS. 3097 * Make sure that the alignment isn't lower than that of 3098 * unsigned long long. 3099 */ 3100 const size_t size = sizeof(struct pool_workqueue); 3101 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS, 3102 __alignof__(unsigned long long)); 3103 3104 if (!(wq->flags & WQ_UNBOUND)) 3105 wq->pool_wq.pcpu = __alloc_percpu(size, align); 3106 else { 3107 void *ptr; 3108 3109 /* 3110 * Allocate enough room to align pwq and put an extra 3111 * pointer at the end pointing back to the originally 3112 * allocated pointer which will be used for free. 3113 */ 3114 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL); 3115 if (ptr) { 3116 wq->pool_wq.single = PTR_ALIGN(ptr, align); 3117 *(void **)(wq->pool_wq.single + 1) = ptr; 3118 } 3119 } 3120 3121 /* just in case, make sure it's actually aligned */ 3122 BUG_ON(!IS_ALIGNED(wq->pool_wq.v, align)); 3123 return wq->pool_wq.v ? 0 : -ENOMEM; 3124 } 3125 3126 static void free_pwqs(struct workqueue_struct *wq) 3127 { 3128 if (!(wq->flags & WQ_UNBOUND)) 3129 free_percpu(wq->pool_wq.pcpu); 3130 else if (wq->pool_wq.single) { 3131 /* the pointer to free is stored right after the pwq */ 3132 kfree(*(void **)(wq->pool_wq.single + 1)); 3133 } 3134 } 3135 3136 static int wq_clamp_max_active(int max_active, unsigned int flags, 3137 const char *name) 3138 { 3139 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 3140 3141 if (max_active < 1 || max_active > lim) 3142 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 3143 max_active, name, 1, lim); 3144 3145 return clamp_val(max_active, 1, lim); 3146 } 3147 3148 struct workqueue_struct *__alloc_workqueue_key(const char *fmt, 3149 unsigned int flags, 3150 int max_active, 3151 struct lock_class_key *key, 3152 const char *lock_name, ...) 3153 { 3154 va_list args, args1; 3155 struct workqueue_struct *wq; 3156 unsigned int cpu; 3157 size_t namelen; 3158 3159 /* determine namelen, allocate wq and format name */ 3160 va_start(args, lock_name); 3161 va_copy(args1, args); 3162 namelen = vsnprintf(NULL, 0, fmt, args) + 1; 3163 3164 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL); 3165 if (!wq) 3166 goto err; 3167 3168 vsnprintf(wq->name, namelen, fmt, args1); 3169 va_end(args); 3170 va_end(args1); 3171 3172 /* 3173 * Workqueues which may be used during memory reclaim should 3174 * have a rescuer to guarantee forward progress. 3175 */ 3176 if (flags & WQ_MEM_RECLAIM) 3177 flags |= WQ_RESCUER; 3178 3179 max_active = max_active ?: WQ_DFL_ACTIVE; 3180 max_active = wq_clamp_max_active(max_active, flags, wq->name); 3181 3182 /* init wq */ 3183 wq->flags = flags; 3184 wq->saved_max_active = max_active; 3185 mutex_init(&wq->flush_mutex); 3186 atomic_set(&wq->nr_pwqs_to_flush, 0); 3187 INIT_LIST_HEAD(&wq->flusher_queue); 3188 INIT_LIST_HEAD(&wq->flusher_overflow); 3189 3190 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 3191 INIT_LIST_HEAD(&wq->list); 3192 3193 if (alloc_pwqs(wq) < 0) 3194 goto err; 3195 3196 for_each_pwq_cpu(cpu, wq) { 3197 struct pool_workqueue *pwq = get_pwq(cpu, wq); 3198 3199 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3200 pwq->pool = get_std_worker_pool(cpu, flags & WQ_HIGHPRI); 3201 pwq->wq = wq; 3202 pwq->flush_color = -1; 3203 pwq->max_active = max_active; 3204 INIT_LIST_HEAD(&pwq->delayed_works); 3205 } 3206 3207 if (flags & WQ_RESCUER) { 3208 struct worker *rescuer; 3209 3210 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL)) 3211 goto err; 3212 3213 wq->rescuer = rescuer = alloc_worker(); 3214 if (!rescuer) 3215 goto err; 3216 3217 rescuer->rescue_wq = wq; 3218 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", 3219 wq->name); 3220 if (IS_ERR(rescuer->task)) 3221 goto err; 3222 3223 rescuer->task->flags |= PF_THREAD_BOUND; 3224 wake_up_process(rescuer->task); 3225 } 3226 3227 /* 3228 * workqueue_lock protects global freeze state and workqueues 3229 * list. Grab it, set max_active accordingly and add the new 3230 * workqueue to workqueues list. 3231 */ 3232 spin_lock(&workqueue_lock); 3233 3234 if (workqueue_freezing && wq->flags & WQ_FREEZABLE) 3235 for_each_pwq_cpu(cpu, wq) 3236 get_pwq(cpu, wq)->max_active = 0; 3237 3238 list_add(&wq->list, &workqueues); 3239 3240 spin_unlock(&workqueue_lock); 3241 3242 return wq; 3243 err: 3244 if (wq) { 3245 free_pwqs(wq); 3246 free_mayday_mask(wq->mayday_mask); 3247 kfree(wq->rescuer); 3248 kfree(wq); 3249 } 3250 return NULL; 3251 } 3252 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 3253 3254 /** 3255 * destroy_workqueue - safely terminate a workqueue 3256 * @wq: target workqueue 3257 * 3258 * Safely destroy a workqueue. All work currently pending will be done first. 3259 */ 3260 void destroy_workqueue(struct workqueue_struct *wq) 3261 { 3262 unsigned int cpu; 3263 3264 /* drain it before proceeding with destruction */ 3265 drain_workqueue(wq); 3266 3267 /* 3268 * wq list is used to freeze wq, remove from list after 3269 * flushing is complete in case freeze races us. 3270 */ 3271 spin_lock(&workqueue_lock); 3272 list_del(&wq->list); 3273 spin_unlock(&workqueue_lock); 3274 3275 /* sanity check */ 3276 for_each_pwq_cpu(cpu, wq) { 3277 struct pool_workqueue *pwq = get_pwq(cpu, wq); 3278 int i; 3279 3280 for (i = 0; i < WORK_NR_COLORS; i++) 3281 BUG_ON(pwq->nr_in_flight[i]); 3282 BUG_ON(pwq->nr_active); 3283 BUG_ON(!list_empty(&pwq->delayed_works)); 3284 } 3285 3286 if (wq->flags & WQ_RESCUER) { 3287 kthread_stop(wq->rescuer->task); 3288 free_mayday_mask(wq->mayday_mask); 3289 kfree(wq->rescuer); 3290 } 3291 3292 free_pwqs(wq); 3293 kfree(wq); 3294 } 3295 EXPORT_SYMBOL_GPL(destroy_workqueue); 3296 3297 /** 3298 * pwq_set_max_active - adjust max_active of a pwq 3299 * @pwq: target pool_workqueue 3300 * @max_active: new max_active value. 3301 * 3302 * Set @pwq->max_active to @max_active and activate delayed works if 3303 * increased. 3304 * 3305 * CONTEXT: 3306 * spin_lock_irq(pool->lock). 3307 */ 3308 static void pwq_set_max_active(struct pool_workqueue *pwq, int max_active) 3309 { 3310 pwq->max_active = max_active; 3311 3312 while (!list_empty(&pwq->delayed_works) && 3313 pwq->nr_active < pwq->max_active) 3314 pwq_activate_first_delayed(pwq); 3315 } 3316 3317 /** 3318 * workqueue_set_max_active - adjust max_active of a workqueue 3319 * @wq: target workqueue 3320 * @max_active: new max_active value. 3321 * 3322 * Set max_active of @wq to @max_active. 3323 * 3324 * CONTEXT: 3325 * Don't call from IRQ context. 3326 */ 3327 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 3328 { 3329 unsigned int cpu; 3330 3331 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 3332 3333 spin_lock(&workqueue_lock); 3334 3335 wq->saved_max_active = max_active; 3336 3337 for_each_pwq_cpu(cpu, wq) { 3338 struct pool_workqueue *pwq = get_pwq(cpu, wq); 3339 struct worker_pool *pool = pwq->pool; 3340 3341 spin_lock_irq(&pool->lock); 3342 3343 if (!(wq->flags & WQ_FREEZABLE) || 3344 !(pool->flags & POOL_FREEZING)) 3345 pwq_set_max_active(pwq, max_active); 3346 3347 spin_unlock_irq(&pool->lock); 3348 } 3349 3350 spin_unlock(&workqueue_lock); 3351 } 3352 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 3353 3354 /** 3355 * workqueue_congested - test whether a workqueue is congested 3356 * @cpu: CPU in question 3357 * @wq: target workqueue 3358 * 3359 * Test whether @wq's cpu workqueue for @cpu is congested. There is 3360 * no synchronization around this function and the test result is 3361 * unreliable and only useful as advisory hints or for debugging. 3362 * 3363 * RETURNS: 3364 * %true if congested, %false otherwise. 3365 */ 3366 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq) 3367 { 3368 struct pool_workqueue *pwq = get_pwq(cpu, wq); 3369 3370 return !list_empty(&pwq->delayed_works); 3371 } 3372 EXPORT_SYMBOL_GPL(workqueue_congested); 3373 3374 /** 3375 * work_busy - test whether a work is currently pending or running 3376 * @work: the work to be tested 3377 * 3378 * Test whether @work is currently pending or running. There is no 3379 * synchronization around this function and the test result is 3380 * unreliable and only useful as advisory hints or for debugging. 3381 * 3382 * RETURNS: 3383 * OR'd bitmask of WORK_BUSY_* bits. 3384 */ 3385 unsigned int work_busy(struct work_struct *work) 3386 { 3387 struct worker_pool *pool = get_work_pool(work); 3388 unsigned long flags; 3389 unsigned int ret = 0; 3390 3391 if (work_pending(work)) 3392 ret |= WORK_BUSY_PENDING; 3393 3394 if (pool) { 3395 spin_lock_irqsave(&pool->lock, flags); 3396 if (find_worker_executing_work(pool, work)) 3397 ret |= WORK_BUSY_RUNNING; 3398 spin_unlock_irqrestore(&pool->lock, flags); 3399 } 3400 3401 return ret; 3402 } 3403 EXPORT_SYMBOL_GPL(work_busy); 3404 3405 /* 3406 * CPU hotplug. 3407 * 3408 * There are two challenges in supporting CPU hotplug. Firstly, there 3409 * are a lot of assumptions on strong associations among work, pwq and 3410 * pool which make migrating pending and scheduled works very 3411 * difficult to implement without impacting hot paths. Secondly, 3412 * worker pools serve mix of short, long and very long running works making 3413 * blocked draining impractical. 3414 * 3415 * This is solved by allowing the pools to be disassociated from the CPU 3416 * running as an unbound one and allowing it to be reattached later if the 3417 * cpu comes back online. 3418 */ 3419 3420 static void wq_unbind_fn(struct work_struct *work) 3421 { 3422 int cpu = smp_processor_id(); 3423 struct worker_pool *pool; 3424 struct worker *worker; 3425 int i; 3426 3427 for_each_std_worker_pool(pool, cpu) { 3428 BUG_ON(cpu != smp_processor_id()); 3429 3430 mutex_lock(&pool->assoc_mutex); 3431 spin_lock_irq(&pool->lock); 3432 3433 /* 3434 * We've claimed all manager positions. Make all workers 3435 * unbound and set DISASSOCIATED. Before this, all workers 3436 * except for the ones which are still executing works from 3437 * before the last CPU down must be on the cpu. After 3438 * this, they may become diasporas. 3439 */ 3440 list_for_each_entry(worker, &pool->idle_list, entry) 3441 worker->flags |= WORKER_UNBOUND; 3442 3443 for_each_busy_worker(worker, i, pool) 3444 worker->flags |= WORKER_UNBOUND; 3445 3446 pool->flags |= POOL_DISASSOCIATED; 3447 3448 spin_unlock_irq(&pool->lock); 3449 mutex_unlock(&pool->assoc_mutex); 3450 } 3451 3452 /* 3453 * Call schedule() so that we cross rq->lock and thus can guarantee 3454 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary 3455 * as scheduler callbacks may be invoked from other cpus. 3456 */ 3457 schedule(); 3458 3459 /* 3460 * Sched callbacks are disabled now. Zap nr_running. After this, 3461 * nr_running stays zero and need_more_worker() and keep_working() 3462 * are always true as long as the worklist is not empty. Pools on 3463 * @cpu now behave as unbound (in terms of concurrency management) 3464 * pools which are served by workers tied to the CPU. 3465 * 3466 * On return from this function, the current worker would trigger 3467 * unbound chain execution of pending work items if other workers 3468 * didn't already. 3469 */ 3470 for_each_std_worker_pool(pool, cpu) 3471 atomic_set(&pool->nr_running, 0); 3472 } 3473 3474 /* 3475 * Workqueues should be brought up before normal priority CPU notifiers. 3476 * This will be registered high priority CPU notifier. 3477 */ 3478 static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb, 3479 unsigned long action, 3480 void *hcpu) 3481 { 3482 unsigned int cpu = (unsigned long)hcpu; 3483 struct worker_pool *pool; 3484 3485 switch (action & ~CPU_TASKS_FROZEN) { 3486 case CPU_UP_PREPARE: 3487 for_each_std_worker_pool(pool, cpu) { 3488 struct worker *worker; 3489 3490 if (pool->nr_workers) 3491 continue; 3492 3493 worker = create_worker(pool); 3494 if (!worker) 3495 return NOTIFY_BAD; 3496 3497 spin_lock_irq(&pool->lock); 3498 start_worker(worker); 3499 spin_unlock_irq(&pool->lock); 3500 } 3501 break; 3502 3503 case CPU_DOWN_FAILED: 3504 case CPU_ONLINE: 3505 for_each_std_worker_pool(pool, cpu) { 3506 mutex_lock(&pool->assoc_mutex); 3507 spin_lock_irq(&pool->lock); 3508 3509 pool->flags &= ~POOL_DISASSOCIATED; 3510 rebind_workers(pool); 3511 3512 spin_unlock_irq(&pool->lock); 3513 mutex_unlock(&pool->assoc_mutex); 3514 } 3515 break; 3516 } 3517 return NOTIFY_OK; 3518 } 3519 3520 /* 3521 * Workqueues should be brought down after normal priority CPU notifiers. 3522 * This will be registered as low priority CPU notifier. 3523 */ 3524 static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb, 3525 unsigned long action, 3526 void *hcpu) 3527 { 3528 unsigned int cpu = (unsigned long)hcpu; 3529 struct work_struct unbind_work; 3530 3531 switch (action & ~CPU_TASKS_FROZEN) { 3532 case CPU_DOWN_PREPARE: 3533 /* unbinding should happen on the local CPU */ 3534 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn); 3535 queue_work_on(cpu, system_highpri_wq, &unbind_work); 3536 flush_work(&unbind_work); 3537 break; 3538 } 3539 return NOTIFY_OK; 3540 } 3541 3542 #ifdef CONFIG_SMP 3543 3544 struct work_for_cpu { 3545 struct work_struct work; 3546 long (*fn)(void *); 3547 void *arg; 3548 long ret; 3549 }; 3550 3551 static void work_for_cpu_fn(struct work_struct *work) 3552 { 3553 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 3554 3555 wfc->ret = wfc->fn(wfc->arg); 3556 } 3557 3558 /** 3559 * work_on_cpu - run a function in user context on a particular cpu 3560 * @cpu: the cpu to run on 3561 * @fn: the function to run 3562 * @arg: the function arg 3563 * 3564 * This will return the value @fn returns. 3565 * It is up to the caller to ensure that the cpu doesn't go offline. 3566 * The caller must not hold any locks which would prevent @fn from completing. 3567 */ 3568 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg) 3569 { 3570 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 3571 3572 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 3573 schedule_work_on(cpu, &wfc.work); 3574 flush_work(&wfc.work); 3575 return wfc.ret; 3576 } 3577 EXPORT_SYMBOL_GPL(work_on_cpu); 3578 #endif /* CONFIG_SMP */ 3579 3580 #ifdef CONFIG_FREEZER 3581 3582 /** 3583 * freeze_workqueues_begin - begin freezing workqueues 3584 * 3585 * Start freezing workqueues. After this function returns, all freezable 3586 * workqueues will queue new works to their frozen_works list instead of 3587 * pool->worklist. 3588 * 3589 * CONTEXT: 3590 * Grabs and releases workqueue_lock and pool->lock's. 3591 */ 3592 void freeze_workqueues_begin(void) 3593 { 3594 unsigned int cpu; 3595 3596 spin_lock(&workqueue_lock); 3597 3598 BUG_ON(workqueue_freezing); 3599 workqueue_freezing = true; 3600 3601 for_each_wq_cpu(cpu) { 3602 struct worker_pool *pool; 3603 struct workqueue_struct *wq; 3604 3605 for_each_std_worker_pool(pool, cpu) { 3606 spin_lock_irq(&pool->lock); 3607 3608 WARN_ON_ONCE(pool->flags & POOL_FREEZING); 3609 pool->flags |= POOL_FREEZING; 3610 3611 list_for_each_entry(wq, &workqueues, list) { 3612 struct pool_workqueue *pwq = get_pwq(cpu, wq); 3613 3614 if (pwq && pwq->pool == pool && 3615 (wq->flags & WQ_FREEZABLE)) 3616 pwq->max_active = 0; 3617 } 3618 3619 spin_unlock_irq(&pool->lock); 3620 } 3621 } 3622 3623 spin_unlock(&workqueue_lock); 3624 } 3625 3626 /** 3627 * freeze_workqueues_busy - are freezable workqueues still busy? 3628 * 3629 * Check whether freezing is complete. This function must be called 3630 * between freeze_workqueues_begin() and thaw_workqueues(). 3631 * 3632 * CONTEXT: 3633 * Grabs and releases workqueue_lock. 3634 * 3635 * RETURNS: 3636 * %true if some freezable workqueues are still busy. %false if freezing 3637 * is complete. 3638 */ 3639 bool freeze_workqueues_busy(void) 3640 { 3641 unsigned int cpu; 3642 bool busy = false; 3643 3644 spin_lock(&workqueue_lock); 3645 3646 BUG_ON(!workqueue_freezing); 3647 3648 for_each_wq_cpu(cpu) { 3649 struct workqueue_struct *wq; 3650 /* 3651 * nr_active is monotonically decreasing. It's safe 3652 * to peek without lock. 3653 */ 3654 list_for_each_entry(wq, &workqueues, list) { 3655 struct pool_workqueue *pwq = get_pwq(cpu, wq); 3656 3657 if (!pwq || !(wq->flags & WQ_FREEZABLE)) 3658 continue; 3659 3660 BUG_ON(pwq->nr_active < 0); 3661 if (pwq->nr_active) { 3662 busy = true; 3663 goto out_unlock; 3664 } 3665 } 3666 } 3667 out_unlock: 3668 spin_unlock(&workqueue_lock); 3669 return busy; 3670 } 3671 3672 /** 3673 * thaw_workqueues - thaw workqueues 3674 * 3675 * Thaw workqueues. Normal queueing is restored and all collected 3676 * frozen works are transferred to their respective pool worklists. 3677 * 3678 * CONTEXT: 3679 * Grabs and releases workqueue_lock and pool->lock's. 3680 */ 3681 void thaw_workqueues(void) 3682 { 3683 unsigned int cpu; 3684 3685 spin_lock(&workqueue_lock); 3686 3687 if (!workqueue_freezing) 3688 goto out_unlock; 3689 3690 for_each_wq_cpu(cpu) { 3691 struct worker_pool *pool; 3692 struct workqueue_struct *wq; 3693 3694 for_each_std_worker_pool(pool, cpu) { 3695 spin_lock_irq(&pool->lock); 3696 3697 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING)); 3698 pool->flags &= ~POOL_FREEZING; 3699 3700 list_for_each_entry(wq, &workqueues, list) { 3701 struct pool_workqueue *pwq = get_pwq(cpu, wq); 3702 3703 if (!pwq || pwq->pool != pool || 3704 !(wq->flags & WQ_FREEZABLE)) 3705 continue; 3706 3707 /* restore max_active and repopulate worklist */ 3708 pwq_set_max_active(pwq, wq->saved_max_active); 3709 } 3710 3711 wake_up_worker(pool); 3712 3713 spin_unlock_irq(&pool->lock); 3714 } 3715 } 3716 3717 workqueue_freezing = false; 3718 out_unlock: 3719 spin_unlock(&workqueue_lock); 3720 } 3721 #endif /* CONFIG_FREEZER */ 3722 3723 static int __init init_workqueues(void) 3724 { 3725 unsigned int cpu; 3726 3727 /* make sure we have enough bits for OFFQ pool ID */ 3728 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) < 3729 WORK_CPU_END * NR_STD_WORKER_POOLS); 3730 3731 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP); 3732 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN); 3733 3734 /* initialize CPU pools */ 3735 for_each_wq_cpu(cpu) { 3736 struct worker_pool *pool; 3737 3738 for_each_std_worker_pool(pool, cpu) { 3739 spin_lock_init(&pool->lock); 3740 pool->cpu = cpu; 3741 pool->flags |= POOL_DISASSOCIATED; 3742 INIT_LIST_HEAD(&pool->worklist); 3743 INIT_LIST_HEAD(&pool->idle_list); 3744 hash_init(pool->busy_hash); 3745 3746 init_timer_deferrable(&pool->idle_timer); 3747 pool->idle_timer.function = idle_worker_timeout; 3748 pool->idle_timer.data = (unsigned long)pool; 3749 3750 setup_timer(&pool->mayday_timer, pool_mayday_timeout, 3751 (unsigned long)pool); 3752 3753 mutex_init(&pool->assoc_mutex); 3754 ida_init(&pool->worker_ida); 3755 3756 /* alloc pool ID */ 3757 BUG_ON(worker_pool_assign_id(pool)); 3758 } 3759 } 3760 3761 /* create the initial worker */ 3762 for_each_online_wq_cpu(cpu) { 3763 struct worker_pool *pool; 3764 3765 for_each_std_worker_pool(pool, cpu) { 3766 struct worker *worker; 3767 3768 if (cpu != WORK_CPU_UNBOUND) 3769 pool->flags &= ~POOL_DISASSOCIATED; 3770 3771 worker = create_worker(pool); 3772 BUG_ON(!worker); 3773 spin_lock_irq(&pool->lock); 3774 start_worker(worker); 3775 spin_unlock_irq(&pool->lock); 3776 } 3777 } 3778 3779 system_wq = alloc_workqueue("events", 0, 0); 3780 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 3781 system_long_wq = alloc_workqueue("events_long", 0, 0); 3782 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 3783 WQ_UNBOUND_MAX_ACTIVE); 3784 system_freezable_wq = alloc_workqueue("events_freezable", 3785 WQ_FREEZABLE, 0); 3786 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 3787 !system_unbound_wq || !system_freezable_wq); 3788 return 0; 3789 } 3790 early_initcall(init_workqueues); 3791