1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There are two worker pools for each CPU (one for 20 * normal work items and the other for high priority ones) and some extra 21 * pools for workqueues which are not bound to any specific CPU - the 22 * number of these backing pools is dynamic. 23 * 24 * Please read Documentation/core-api/workqueue.rst for details. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kernel.h> 29 #include <linux/sched.h> 30 #include <linux/init.h> 31 #include <linux/signal.h> 32 #include <linux/completion.h> 33 #include <linux/workqueue.h> 34 #include <linux/slab.h> 35 #include <linux/cpu.h> 36 #include <linux/notifier.h> 37 #include <linux/kthread.h> 38 #include <linux/hardirq.h> 39 #include <linux/mempolicy.h> 40 #include <linux/freezer.h> 41 #include <linux/debug_locks.h> 42 #include <linux/lockdep.h> 43 #include <linux/idr.h> 44 #include <linux/jhash.h> 45 #include <linux/hashtable.h> 46 #include <linux/rculist.h> 47 #include <linux/nodemask.h> 48 #include <linux/moduleparam.h> 49 #include <linux/uaccess.h> 50 #include <linux/sched/isolation.h> 51 #include <linux/nmi.h> 52 53 #include "workqueue_internal.h" 54 55 enum { 56 /* 57 * worker_pool flags 58 * 59 * A bound pool is either associated or disassociated with its CPU. 60 * While associated (!DISASSOCIATED), all workers are bound to the 61 * CPU and none has %WORKER_UNBOUND set and concurrency management 62 * is in effect. 63 * 64 * While DISASSOCIATED, the cpu may be offline and all workers have 65 * %WORKER_UNBOUND set and concurrency management disabled, and may 66 * be executing on any CPU. The pool behaves as an unbound one. 67 * 68 * Note that DISASSOCIATED should be flipped only while holding 69 * wq_pool_attach_mutex to avoid changing binding state while 70 * worker_attach_to_pool() is in progress. 71 */ 72 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */ 73 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 74 75 /* worker flags */ 76 WORKER_DIE = 1 << 1, /* die die die */ 77 WORKER_IDLE = 1 << 2, /* is idle */ 78 WORKER_PREP = 1 << 3, /* preparing to run works */ 79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 81 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 82 83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 84 WORKER_UNBOUND | WORKER_REBOUND, 85 86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 87 88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 90 91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 93 94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 95 /* call for help after 10ms 96 (min two ticks) */ 97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 98 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 99 100 /* 101 * Rescue workers are used only on emergencies and shared by 102 * all cpus. Give MIN_NICE. 103 */ 104 RESCUER_NICE_LEVEL = MIN_NICE, 105 HIGHPRI_NICE_LEVEL = MIN_NICE, 106 107 WQ_NAME_LEN = 24, 108 }; 109 110 /* 111 * Structure fields follow one of the following exclusion rules. 112 * 113 * I: Modifiable by initialization/destruction paths and read-only for 114 * everyone else. 115 * 116 * P: Preemption protected. Disabling preemption is enough and should 117 * only be modified and accessed from the local cpu. 118 * 119 * L: pool->lock protected. Access with pool->lock held. 120 * 121 * X: During normal operation, modification requires pool->lock and should 122 * be done only from local cpu. Either disabling preemption on local 123 * cpu or grabbing pool->lock is enough for read access. If 124 * POOL_DISASSOCIATED is set, it's identical to L. 125 * 126 * A: wq_pool_attach_mutex protected. 127 * 128 * PL: wq_pool_mutex protected. 129 * 130 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads. 131 * 132 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 133 * 134 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 135 * sched-RCU for reads. 136 * 137 * WQ: wq->mutex protected. 138 * 139 * WR: wq->mutex protected for writes. Sched-RCU protected for reads. 140 * 141 * MD: wq_mayday_lock protected. 142 */ 143 144 /* struct worker is defined in workqueue_internal.h */ 145 146 struct worker_pool { 147 spinlock_t lock; /* the pool lock */ 148 int cpu; /* I: the associated cpu */ 149 int node; /* I: the associated node ID */ 150 int id; /* I: pool ID */ 151 unsigned int flags; /* X: flags */ 152 153 unsigned long watchdog_ts; /* L: watchdog timestamp */ 154 155 struct list_head worklist; /* L: list of pending works */ 156 157 int nr_workers; /* L: total number of workers */ 158 int nr_idle; /* L: currently idle workers */ 159 160 struct list_head idle_list; /* X: list of idle workers */ 161 struct timer_list idle_timer; /* L: worker idle timeout */ 162 struct timer_list mayday_timer; /* L: SOS timer for workers */ 163 164 /* a workers is either on busy_hash or idle_list, or the manager */ 165 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 166 /* L: hash of busy workers */ 167 168 struct worker *manager; /* L: purely informational */ 169 struct list_head workers; /* A: attached workers */ 170 struct completion *detach_completion; /* all workers detached */ 171 172 struct ida worker_ida; /* worker IDs for task name */ 173 174 struct workqueue_attrs *attrs; /* I: worker attributes */ 175 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 176 int refcnt; /* PL: refcnt for unbound pools */ 177 178 /* 179 * The current concurrency level. As it's likely to be accessed 180 * from other CPUs during try_to_wake_up(), put it in a separate 181 * cacheline. 182 */ 183 atomic_t nr_running ____cacheline_aligned_in_smp; 184 185 /* 186 * Destruction of pool is sched-RCU protected to allow dereferences 187 * from get_work_pool(). 188 */ 189 struct rcu_head rcu; 190 } ____cacheline_aligned_in_smp; 191 192 /* 193 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 194 * of work_struct->data are used for flags and the remaining high bits 195 * point to the pwq; thus, pwqs need to be aligned at two's power of the 196 * number of flag bits. 197 */ 198 struct pool_workqueue { 199 struct worker_pool *pool; /* I: the associated pool */ 200 struct workqueue_struct *wq; /* I: the owning workqueue */ 201 int work_color; /* L: current color */ 202 int flush_color; /* L: flushing color */ 203 int refcnt; /* L: reference count */ 204 int nr_in_flight[WORK_NR_COLORS]; 205 /* L: nr of in_flight works */ 206 int nr_active; /* L: nr of active works */ 207 int max_active; /* L: max active works */ 208 struct list_head delayed_works; /* L: delayed works */ 209 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 210 struct list_head mayday_node; /* MD: node on wq->maydays */ 211 212 /* 213 * Release of unbound pwq is punted to system_wq. See put_pwq() 214 * and pwq_unbound_release_workfn() for details. pool_workqueue 215 * itself is also sched-RCU protected so that the first pwq can be 216 * determined without grabbing wq->mutex. 217 */ 218 struct work_struct unbound_release_work; 219 struct rcu_head rcu; 220 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 221 222 /* 223 * Structure used to wait for workqueue flush. 224 */ 225 struct wq_flusher { 226 struct list_head list; /* WQ: list of flushers */ 227 int flush_color; /* WQ: flush color waiting for */ 228 struct completion done; /* flush completion */ 229 }; 230 231 struct wq_device; 232 233 /* 234 * The externally visible workqueue. It relays the issued work items to 235 * the appropriate worker_pool through its pool_workqueues. 236 */ 237 struct workqueue_struct { 238 struct list_head pwqs; /* WR: all pwqs of this wq */ 239 struct list_head list; /* PR: list of all workqueues */ 240 241 struct mutex mutex; /* protects this wq */ 242 int work_color; /* WQ: current work color */ 243 int flush_color; /* WQ: current flush color */ 244 atomic_t nr_pwqs_to_flush; /* flush in progress */ 245 struct wq_flusher *first_flusher; /* WQ: first flusher */ 246 struct list_head flusher_queue; /* WQ: flush waiters */ 247 struct list_head flusher_overflow; /* WQ: flush overflow list */ 248 249 struct list_head maydays; /* MD: pwqs requesting rescue */ 250 struct worker *rescuer; /* I: rescue worker */ 251 252 int nr_drainers; /* WQ: drain in progress */ 253 int saved_max_active; /* WQ: saved pwq max_active */ 254 255 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 256 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 257 258 #ifdef CONFIG_SYSFS 259 struct wq_device *wq_dev; /* I: for sysfs interface */ 260 #endif 261 #ifdef CONFIG_LOCKDEP 262 char *lock_name; 263 struct lock_class_key key; 264 struct lockdep_map lockdep_map; 265 #endif 266 char name[WQ_NAME_LEN]; /* I: workqueue name */ 267 268 /* 269 * Destruction of workqueue_struct is sched-RCU protected to allow 270 * walking the workqueues list without grabbing wq_pool_mutex. 271 * This is used to dump all workqueues from sysrq. 272 */ 273 struct rcu_head rcu; 274 275 /* hot fields used during command issue, aligned to cacheline */ 276 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 277 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 278 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 279 }; 280 281 static struct kmem_cache *pwq_cache; 282 283 static cpumask_var_t *wq_numa_possible_cpumask; 284 /* possible CPUs of each node */ 285 286 static bool wq_disable_numa; 287 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 288 289 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 291 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 292 293 static bool wq_online; /* can kworkers be created yet? */ 294 295 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 296 297 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 298 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 299 300 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 301 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 302 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 303 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */ 304 305 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 306 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 307 308 /* PL: allowable cpus for unbound wqs and work items */ 309 static cpumask_var_t wq_unbound_cpumask; 310 311 /* CPU where unbound work was last round robin scheduled from this CPU */ 312 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 313 314 /* 315 * Local execution of unbound work items is no longer guaranteed. The 316 * following always forces round-robin CPU selection on unbound work items 317 * to uncover usages which depend on it. 318 */ 319 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 320 static bool wq_debug_force_rr_cpu = true; 321 #else 322 static bool wq_debug_force_rr_cpu = false; 323 #endif 324 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 325 326 /* the per-cpu worker pools */ 327 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 328 329 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 330 331 /* PL: hash of all unbound pools keyed by pool->attrs */ 332 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 333 334 /* I: attributes used when instantiating standard unbound pools on demand */ 335 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 336 337 /* I: attributes used when instantiating ordered pools on demand */ 338 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 339 340 struct workqueue_struct *system_wq __read_mostly; 341 EXPORT_SYMBOL(system_wq); 342 struct workqueue_struct *system_highpri_wq __read_mostly; 343 EXPORT_SYMBOL_GPL(system_highpri_wq); 344 struct workqueue_struct *system_long_wq __read_mostly; 345 EXPORT_SYMBOL_GPL(system_long_wq); 346 struct workqueue_struct *system_unbound_wq __read_mostly; 347 EXPORT_SYMBOL_GPL(system_unbound_wq); 348 struct workqueue_struct *system_freezable_wq __read_mostly; 349 EXPORT_SYMBOL_GPL(system_freezable_wq); 350 struct workqueue_struct *system_power_efficient_wq __read_mostly; 351 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 352 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 353 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 354 355 static int worker_thread(void *__worker); 356 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 357 358 #define CREATE_TRACE_POINTS 359 #include <trace/events/workqueue.h> 360 361 #define assert_rcu_or_pool_mutex() \ 362 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 363 !lockdep_is_held(&wq_pool_mutex), \ 364 "sched RCU or wq_pool_mutex should be held") 365 366 #define assert_rcu_or_wq_mutex(wq) \ 367 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 368 !lockdep_is_held(&wq->mutex), \ 369 "sched RCU or wq->mutex should be held") 370 371 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 372 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 373 !lockdep_is_held(&wq->mutex) && \ 374 !lockdep_is_held(&wq_pool_mutex), \ 375 "sched RCU, wq->mutex or wq_pool_mutex should be held") 376 377 #define for_each_cpu_worker_pool(pool, cpu) \ 378 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 379 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 380 (pool)++) 381 382 /** 383 * for_each_pool - iterate through all worker_pools in the system 384 * @pool: iteration cursor 385 * @pi: integer used for iteration 386 * 387 * This must be called either with wq_pool_mutex held or sched RCU read 388 * locked. If the pool needs to be used beyond the locking in effect, the 389 * caller is responsible for guaranteeing that the pool stays online. 390 * 391 * The if/else clause exists only for the lockdep assertion and can be 392 * ignored. 393 */ 394 #define for_each_pool(pool, pi) \ 395 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 396 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 397 else 398 399 /** 400 * for_each_pool_worker - iterate through all workers of a worker_pool 401 * @worker: iteration cursor 402 * @pool: worker_pool to iterate workers of 403 * 404 * This must be called with wq_pool_attach_mutex. 405 * 406 * The if/else clause exists only for the lockdep assertion and can be 407 * ignored. 408 */ 409 #define for_each_pool_worker(worker, pool) \ 410 list_for_each_entry((worker), &(pool)->workers, node) \ 411 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 412 else 413 414 /** 415 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 416 * @pwq: iteration cursor 417 * @wq: the target workqueue 418 * 419 * This must be called either with wq->mutex held or sched RCU read locked. 420 * If the pwq needs to be used beyond the locking in effect, the caller is 421 * responsible for guaranteeing that the pwq stays online. 422 * 423 * The if/else clause exists only for the lockdep assertion and can be 424 * ignored. 425 */ 426 #define for_each_pwq(pwq, wq) \ 427 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \ 428 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ 429 else 430 431 #ifdef CONFIG_DEBUG_OBJECTS_WORK 432 433 static struct debug_obj_descr work_debug_descr; 434 435 static void *work_debug_hint(void *addr) 436 { 437 return ((struct work_struct *) addr)->func; 438 } 439 440 static bool work_is_static_object(void *addr) 441 { 442 struct work_struct *work = addr; 443 444 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 445 } 446 447 /* 448 * fixup_init is called when: 449 * - an active object is initialized 450 */ 451 static bool work_fixup_init(void *addr, enum debug_obj_state state) 452 { 453 struct work_struct *work = addr; 454 455 switch (state) { 456 case ODEBUG_STATE_ACTIVE: 457 cancel_work_sync(work); 458 debug_object_init(work, &work_debug_descr); 459 return true; 460 default: 461 return false; 462 } 463 } 464 465 /* 466 * fixup_free is called when: 467 * - an active object is freed 468 */ 469 static bool work_fixup_free(void *addr, enum debug_obj_state state) 470 { 471 struct work_struct *work = addr; 472 473 switch (state) { 474 case ODEBUG_STATE_ACTIVE: 475 cancel_work_sync(work); 476 debug_object_free(work, &work_debug_descr); 477 return true; 478 default: 479 return false; 480 } 481 } 482 483 static struct debug_obj_descr work_debug_descr = { 484 .name = "work_struct", 485 .debug_hint = work_debug_hint, 486 .is_static_object = work_is_static_object, 487 .fixup_init = work_fixup_init, 488 .fixup_free = work_fixup_free, 489 }; 490 491 static inline void debug_work_activate(struct work_struct *work) 492 { 493 debug_object_activate(work, &work_debug_descr); 494 } 495 496 static inline void debug_work_deactivate(struct work_struct *work) 497 { 498 debug_object_deactivate(work, &work_debug_descr); 499 } 500 501 void __init_work(struct work_struct *work, int onstack) 502 { 503 if (onstack) 504 debug_object_init_on_stack(work, &work_debug_descr); 505 else 506 debug_object_init(work, &work_debug_descr); 507 } 508 EXPORT_SYMBOL_GPL(__init_work); 509 510 void destroy_work_on_stack(struct work_struct *work) 511 { 512 debug_object_free(work, &work_debug_descr); 513 } 514 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 515 516 void destroy_delayed_work_on_stack(struct delayed_work *work) 517 { 518 destroy_timer_on_stack(&work->timer); 519 debug_object_free(&work->work, &work_debug_descr); 520 } 521 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 522 523 #else 524 static inline void debug_work_activate(struct work_struct *work) { } 525 static inline void debug_work_deactivate(struct work_struct *work) { } 526 #endif 527 528 /** 529 * worker_pool_assign_id - allocate ID and assing it to @pool 530 * @pool: the pool pointer of interest 531 * 532 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 533 * successfully, -errno on failure. 534 */ 535 static int worker_pool_assign_id(struct worker_pool *pool) 536 { 537 int ret; 538 539 lockdep_assert_held(&wq_pool_mutex); 540 541 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 542 GFP_KERNEL); 543 if (ret >= 0) { 544 pool->id = ret; 545 return 0; 546 } 547 return ret; 548 } 549 550 /** 551 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 552 * @wq: the target workqueue 553 * @node: the node ID 554 * 555 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU 556 * read locked. 557 * If the pwq needs to be used beyond the locking in effect, the caller is 558 * responsible for guaranteeing that the pwq stays online. 559 * 560 * Return: The unbound pool_workqueue for @node. 561 */ 562 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 563 int node) 564 { 565 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 566 567 /* 568 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a 569 * delayed item is pending. The plan is to keep CPU -> NODE 570 * mapping valid and stable across CPU on/offlines. Once that 571 * happens, this workaround can be removed. 572 */ 573 if (unlikely(node == NUMA_NO_NODE)) 574 return wq->dfl_pwq; 575 576 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 577 } 578 579 static unsigned int work_color_to_flags(int color) 580 { 581 return color << WORK_STRUCT_COLOR_SHIFT; 582 } 583 584 static int get_work_color(struct work_struct *work) 585 { 586 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 587 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 588 } 589 590 static int work_next_color(int color) 591 { 592 return (color + 1) % WORK_NR_COLORS; 593 } 594 595 /* 596 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 597 * contain the pointer to the queued pwq. Once execution starts, the flag 598 * is cleared and the high bits contain OFFQ flags and pool ID. 599 * 600 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 601 * and clear_work_data() can be used to set the pwq, pool or clear 602 * work->data. These functions should only be called while the work is 603 * owned - ie. while the PENDING bit is set. 604 * 605 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 606 * corresponding to a work. Pool is available once the work has been 607 * queued anywhere after initialization until it is sync canceled. pwq is 608 * available only while the work item is queued. 609 * 610 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 611 * canceled. While being canceled, a work item may have its PENDING set 612 * but stay off timer and worklist for arbitrarily long and nobody should 613 * try to steal the PENDING bit. 614 */ 615 static inline void set_work_data(struct work_struct *work, unsigned long data, 616 unsigned long flags) 617 { 618 WARN_ON_ONCE(!work_pending(work)); 619 atomic_long_set(&work->data, data | flags | work_static(work)); 620 } 621 622 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 623 unsigned long extra_flags) 624 { 625 set_work_data(work, (unsigned long)pwq, 626 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 627 } 628 629 static void set_work_pool_and_keep_pending(struct work_struct *work, 630 int pool_id) 631 { 632 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 633 WORK_STRUCT_PENDING); 634 } 635 636 static void set_work_pool_and_clear_pending(struct work_struct *work, 637 int pool_id) 638 { 639 /* 640 * The following wmb is paired with the implied mb in 641 * test_and_set_bit(PENDING) and ensures all updates to @work made 642 * here are visible to and precede any updates by the next PENDING 643 * owner. 644 */ 645 smp_wmb(); 646 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 647 /* 648 * The following mb guarantees that previous clear of a PENDING bit 649 * will not be reordered with any speculative LOADS or STORES from 650 * work->current_func, which is executed afterwards. This possible 651 * reordering can lead to a missed execution on attempt to qeueue 652 * the same @work. E.g. consider this case: 653 * 654 * CPU#0 CPU#1 655 * ---------------------------- -------------------------------- 656 * 657 * 1 STORE event_indicated 658 * 2 queue_work_on() { 659 * 3 test_and_set_bit(PENDING) 660 * 4 } set_..._and_clear_pending() { 661 * 5 set_work_data() # clear bit 662 * 6 smp_mb() 663 * 7 work->current_func() { 664 * 8 LOAD event_indicated 665 * } 666 * 667 * Without an explicit full barrier speculative LOAD on line 8 can 668 * be executed before CPU#0 does STORE on line 1. If that happens, 669 * CPU#0 observes the PENDING bit is still set and new execution of 670 * a @work is not queued in a hope, that CPU#1 will eventually 671 * finish the queued @work. Meanwhile CPU#1 does not see 672 * event_indicated is set, because speculative LOAD was executed 673 * before actual STORE. 674 */ 675 smp_mb(); 676 } 677 678 static void clear_work_data(struct work_struct *work) 679 { 680 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 681 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 682 } 683 684 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 685 { 686 unsigned long data = atomic_long_read(&work->data); 687 688 if (data & WORK_STRUCT_PWQ) 689 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 690 else 691 return NULL; 692 } 693 694 /** 695 * get_work_pool - return the worker_pool a given work was associated with 696 * @work: the work item of interest 697 * 698 * Pools are created and destroyed under wq_pool_mutex, and allows read 699 * access under sched-RCU read lock. As such, this function should be 700 * called under wq_pool_mutex or with preemption disabled. 701 * 702 * All fields of the returned pool are accessible as long as the above 703 * mentioned locking is in effect. If the returned pool needs to be used 704 * beyond the critical section, the caller is responsible for ensuring the 705 * returned pool is and stays online. 706 * 707 * Return: The worker_pool @work was last associated with. %NULL if none. 708 */ 709 static struct worker_pool *get_work_pool(struct work_struct *work) 710 { 711 unsigned long data = atomic_long_read(&work->data); 712 int pool_id; 713 714 assert_rcu_or_pool_mutex(); 715 716 if (data & WORK_STRUCT_PWQ) 717 return ((struct pool_workqueue *) 718 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 719 720 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 721 if (pool_id == WORK_OFFQ_POOL_NONE) 722 return NULL; 723 724 return idr_find(&worker_pool_idr, pool_id); 725 } 726 727 /** 728 * get_work_pool_id - return the worker pool ID a given work is associated with 729 * @work: the work item of interest 730 * 731 * Return: The worker_pool ID @work was last associated with. 732 * %WORK_OFFQ_POOL_NONE if none. 733 */ 734 static int get_work_pool_id(struct work_struct *work) 735 { 736 unsigned long data = atomic_long_read(&work->data); 737 738 if (data & WORK_STRUCT_PWQ) 739 return ((struct pool_workqueue *) 740 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 741 742 return data >> WORK_OFFQ_POOL_SHIFT; 743 } 744 745 static void mark_work_canceling(struct work_struct *work) 746 { 747 unsigned long pool_id = get_work_pool_id(work); 748 749 pool_id <<= WORK_OFFQ_POOL_SHIFT; 750 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 751 } 752 753 static bool work_is_canceling(struct work_struct *work) 754 { 755 unsigned long data = atomic_long_read(&work->data); 756 757 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 758 } 759 760 /* 761 * Policy functions. These define the policies on how the global worker 762 * pools are managed. Unless noted otherwise, these functions assume that 763 * they're being called with pool->lock held. 764 */ 765 766 static bool __need_more_worker(struct worker_pool *pool) 767 { 768 return !atomic_read(&pool->nr_running); 769 } 770 771 /* 772 * Need to wake up a worker? Called from anything but currently 773 * running workers. 774 * 775 * Note that, because unbound workers never contribute to nr_running, this 776 * function will always return %true for unbound pools as long as the 777 * worklist isn't empty. 778 */ 779 static bool need_more_worker(struct worker_pool *pool) 780 { 781 return !list_empty(&pool->worklist) && __need_more_worker(pool); 782 } 783 784 /* Can I start working? Called from busy but !running workers. */ 785 static bool may_start_working(struct worker_pool *pool) 786 { 787 return pool->nr_idle; 788 } 789 790 /* Do I need to keep working? Called from currently running workers. */ 791 static bool keep_working(struct worker_pool *pool) 792 { 793 return !list_empty(&pool->worklist) && 794 atomic_read(&pool->nr_running) <= 1; 795 } 796 797 /* Do we need a new worker? Called from manager. */ 798 static bool need_to_create_worker(struct worker_pool *pool) 799 { 800 return need_more_worker(pool) && !may_start_working(pool); 801 } 802 803 /* Do we have too many workers and should some go away? */ 804 static bool too_many_workers(struct worker_pool *pool) 805 { 806 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 807 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 808 int nr_busy = pool->nr_workers - nr_idle; 809 810 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 811 } 812 813 /* 814 * Wake up functions. 815 */ 816 817 /* Return the first idle worker. Safe with preemption disabled */ 818 static struct worker *first_idle_worker(struct worker_pool *pool) 819 { 820 if (unlikely(list_empty(&pool->idle_list))) 821 return NULL; 822 823 return list_first_entry(&pool->idle_list, struct worker, entry); 824 } 825 826 /** 827 * wake_up_worker - wake up an idle worker 828 * @pool: worker pool to wake worker from 829 * 830 * Wake up the first idle worker of @pool. 831 * 832 * CONTEXT: 833 * spin_lock_irq(pool->lock). 834 */ 835 static void wake_up_worker(struct worker_pool *pool) 836 { 837 struct worker *worker = first_idle_worker(pool); 838 839 if (likely(worker)) 840 wake_up_process(worker->task); 841 } 842 843 /** 844 * wq_worker_waking_up - a worker is waking up 845 * @task: task waking up 846 * @cpu: CPU @task is waking up to 847 * 848 * This function is called during try_to_wake_up() when a worker is 849 * being awoken. 850 * 851 * CONTEXT: 852 * spin_lock_irq(rq->lock) 853 */ 854 void wq_worker_waking_up(struct task_struct *task, int cpu) 855 { 856 struct worker *worker = kthread_data(task); 857 858 if (!(worker->flags & WORKER_NOT_RUNNING)) { 859 WARN_ON_ONCE(worker->pool->cpu != cpu); 860 atomic_inc(&worker->pool->nr_running); 861 } 862 } 863 864 /** 865 * wq_worker_sleeping - a worker is going to sleep 866 * @task: task going to sleep 867 * 868 * This function is called during schedule() when a busy worker is 869 * going to sleep. Worker on the same cpu can be woken up by 870 * returning pointer to its task. 871 * 872 * CONTEXT: 873 * spin_lock_irq(rq->lock) 874 * 875 * Return: 876 * Worker task on @cpu to wake up, %NULL if none. 877 */ 878 struct task_struct *wq_worker_sleeping(struct task_struct *task) 879 { 880 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 881 struct worker_pool *pool; 882 883 /* 884 * Rescuers, which may not have all the fields set up like normal 885 * workers, also reach here, let's not access anything before 886 * checking NOT_RUNNING. 887 */ 888 if (worker->flags & WORKER_NOT_RUNNING) 889 return NULL; 890 891 pool = worker->pool; 892 893 /* this can only happen on the local cpu */ 894 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id())) 895 return NULL; 896 897 /* 898 * The counterpart of the following dec_and_test, implied mb, 899 * worklist not empty test sequence is in insert_work(). 900 * Please read comment there. 901 * 902 * NOT_RUNNING is clear. This means that we're bound to and 903 * running on the local cpu w/ rq lock held and preemption 904 * disabled, which in turn means that none else could be 905 * manipulating idle_list, so dereferencing idle_list without pool 906 * lock is safe. 907 */ 908 if (atomic_dec_and_test(&pool->nr_running) && 909 !list_empty(&pool->worklist)) 910 to_wakeup = first_idle_worker(pool); 911 return to_wakeup ? to_wakeup->task : NULL; 912 } 913 914 /** 915 * wq_worker_last_func - retrieve worker's last work function 916 * 917 * Determine the last function a worker executed. This is called from 918 * the scheduler to get a worker's last known identity. 919 * 920 * CONTEXT: 921 * spin_lock_irq(rq->lock) 922 * 923 * This function is called during schedule() when a kworker is going 924 * to sleep. It's used by psi to identify aggregation workers during 925 * dequeuing, to allow periodic aggregation to shut-off when that 926 * worker is the last task in the system or cgroup to go to sleep. 927 * 928 * As this function doesn't involve any workqueue-related locking, it 929 * only returns stable values when called from inside the scheduler's 930 * queuing and dequeuing paths, when @task, which must be a kworker, 931 * is guaranteed to not be processing any works. 932 * 933 * Return: 934 * The last work function %current executed as a worker, NULL if it 935 * hasn't executed any work yet. 936 */ 937 work_func_t wq_worker_last_func(struct task_struct *task) 938 { 939 struct worker *worker = kthread_data(task); 940 941 return worker->last_func; 942 } 943 944 /** 945 * worker_set_flags - set worker flags and adjust nr_running accordingly 946 * @worker: self 947 * @flags: flags to set 948 * 949 * Set @flags in @worker->flags and adjust nr_running accordingly. 950 * 951 * CONTEXT: 952 * spin_lock_irq(pool->lock) 953 */ 954 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 955 { 956 struct worker_pool *pool = worker->pool; 957 958 WARN_ON_ONCE(worker->task != current); 959 960 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 961 if ((flags & WORKER_NOT_RUNNING) && 962 !(worker->flags & WORKER_NOT_RUNNING)) { 963 atomic_dec(&pool->nr_running); 964 } 965 966 worker->flags |= flags; 967 } 968 969 /** 970 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 971 * @worker: self 972 * @flags: flags to clear 973 * 974 * Clear @flags in @worker->flags and adjust nr_running accordingly. 975 * 976 * CONTEXT: 977 * spin_lock_irq(pool->lock) 978 */ 979 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 980 { 981 struct worker_pool *pool = worker->pool; 982 unsigned int oflags = worker->flags; 983 984 WARN_ON_ONCE(worker->task != current); 985 986 worker->flags &= ~flags; 987 988 /* 989 * If transitioning out of NOT_RUNNING, increment nr_running. Note 990 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 991 * of multiple flags, not a single flag. 992 */ 993 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 994 if (!(worker->flags & WORKER_NOT_RUNNING)) 995 atomic_inc(&pool->nr_running); 996 } 997 998 /** 999 * find_worker_executing_work - find worker which is executing a work 1000 * @pool: pool of interest 1001 * @work: work to find worker for 1002 * 1003 * Find a worker which is executing @work on @pool by searching 1004 * @pool->busy_hash which is keyed by the address of @work. For a worker 1005 * to match, its current execution should match the address of @work and 1006 * its work function. This is to avoid unwanted dependency between 1007 * unrelated work executions through a work item being recycled while still 1008 * being executed. 1009 * 1010 * This is a bit tricky. A work item may be freed once its execution 1011 * starts and nothing prevents the freed area from being recycled for 1012 * another work item. If the same work item address ends up being reused 1013 * before the original execution finishes, workqueue will identify the 1014 * recycled work item as currently executing and make it wait until the 1015 * current execution finishes, introducing an unwanted dependency. 1016 * 1017 * This function checks the work item address and work function to avoid 1018 * false positives. Note that this isn't complete as one may construct a 1019 * work function which can introduce dependency onto itself through a 1020 * recycled work item. Well, if somebody wants to shoot oneself in the 1021 * foot that badly, there's only so much we can do, and if such deadlock 1022 * actually occurs, it should be easy to locate the culprit work function. 1023 * 1024 * CONTEXT: 1025 * spin_lock_irq(pool->lock). 1026 * 1027 * Return: 1028 * Pointer to worker which is executing @work if found, %NULL 1029 * otherwise. 1030 */ 1031 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1032 struct work_struct *work) 1033 { 1034 struct worker *worker; 1035 1036 hash_for_each_possible(pool->busy_hash, worker, hentry, 1037 (unsigned long)work) 1038 if (worker->current_work == work && 1039 worker->current_func == work->func) 1040 return worker; 1041 1042 return NULL; 1043 } 1044 1045 /** 1046 * move_linked_works - move linked works to a list 1047 * @work: start of series of works to be scheduled 1048 * @head: target list to append @work to 1049 * @nextp: out parameter for nested worklist walking 1050 * 1051 * Schedule linked works starting from @work to @head. Work series to 1052 * be scheduled starts at @work and includes any consecutive work with 1053 * WORK_STRUCT_LINKED set in its predecessor. 1054 * 1055 * If @nextp is not NULL, it's updated to point to the next work of 1056 * the last scheduled work. This allows move_linked_works() to be 1057 * nested inside outer list_for_each_entry_safe(). 1058 * 1059 * CONTEXT: 1060 * spin_lock_irq(pool->lock). 1061 */ 1062 static void move_linked_works(struct work_struct *work, struct list_head *head, 1063 struct work_struct **nextp) 1064 { 1065 struct work_struct *n; 1066 1067 /* 1068 * Linked worklist will always end before the end of the list, 1069 * use NULL for list head. 1070 */ 1071 list_for_each_entry_safe_from(work, n, NULL, entry) { 1072 list_move_tail(&work->entry, head); 1073 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1074 break; 1075 } 1076 1077 /* 1078 * If we're already inside safe list traversal and have moved 1079 * multiple works to the scheduled queue, the next position 1080 * needs to be updated. 1081 */ 1082 if (nextp) 1083 *nextp = n; 1084 } 1085 1086 /** 1087 * get_pwq - get an extra reference on the specified pool_workqueue 1088 * @pwq: pool_workqueue to get 1089 * 1090 * Obtain an extra reference on @pwq. The caller should guarantee that 1091 * @pwq has positive refcnt and be holding the matching pool->lock. 1092 */ 1093 static void get_pwq(struct pool_workqueue *pwq) 1094 { 1095 lockdep_assert_held(&pwq->pool->lock); 1096 WARN_ON_ONCE(pwq->refcnt <= 0); 1097 pwq->refcnt++; 1098 } 1099 1100 /** 1101 * put_pwq - put a pool_workqueue reference 1102 * @pwq: pool_workqueue to put 1103 * 1104 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1105 * destruction. The caller should be holding the matching pool->lock. 1106 */ 1107 static void put_pwq(struct pool_workqueue *pwq) 1108 { 1109 lockdep_assert_held(&pwq->pool->lock); 1110 if (likely(--pwq->refcnt)) 1111 return; 1112 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1113 return; 1114 /* 1115 * @pwq can't be released under pool->lock, bounce to 1116 * pwq_unbound_release_workfn(). This never recurses on the same 1117 * pool->lock as this path is taken only for unbound workqueues and 1118 * the release work item is scheduled on a per-cpu workqueue. To 1119 * avoid lockdep warning, unbound pool->locks are given lockdep 1120 * subclass of 1 in get_unbound_pool(). 1121 */ 1122 schedule_work(&pwq->unbound_release_work); 1123 } 1124 1125 /** 1126 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1127 * @pwq: pool_workqueue to put (can be %NULL) 1128 * 1129 * put_pwq() with locking. This function also allows %NULL @pwq. 1130 */ 1131 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1132 { 1133 if (pwq) { 1134 /* 1135 * As both pwqs and pools are sched-RCU protected, the 1136 * following lock operations are safe. 1137 */ 1138 spin_lock_irq(&pwq->pool->lock); 1139 put_pwq(pwq); 1140 spin_unlock_irq(&pwq->pool->lock); 1141 } 1142 } 1143 1144 static void pwq_activate_delayed_work(struct work_struct *work) 1145 { 1146 struct pool_workqueue *pwq = get_work_pwq(work); 1147 1148 trace_workqueue_activate_work(work); 1149 if (list_empty(&pwq->pool->worklist)) 1150 pwq->pool->watchdog_ts = jiffies; 1151 move_linked_works(work, &pwq->pool->worklist, NULL); 1152 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1153 pwq->nr_active++; 1154 } 1155 1156 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1157 { 1158 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1159 struct work_struct, entry); 1160 1161 pwq_activate_delayed_work(work); 1162 } 1163 1164 /** 1165 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1166 * @pwq: pwq of interest 1167 * @color: color of work which left the queue 1168 * 1169 * A work either has completed or is removed from pending queue, 1170 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1171 * 1172 * CONTEXT: 1173 * spin_lock_irq(pool->lock). 1174 */ 1175 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1176 { 1177 /* uncolored work items don't participate in flushing or nr_active */ 1178 if (color == WORK_NO_COLOR) 1179 goto out_put; 1180 1181 pwq->nr_in_flight[color]--; 1182 1183 pwq->nr_active--; 1184 if (!list_empty(&pwq->delayed_works)) { 1185 /* one down, submit a delayed one */ 1186 if (pwq->nr_active < pwq->max_active) 1187 pwq_activate_first_delayed(pwq); 1188 } 1189 1190 /* is flush in progress and are we at the flushing tip? */ 1191 if (likely(pwq->flush_color != color)) 1192 goto out_put; 1193 1194 /* are there still in-flight works? */ 1195 if (pwq->nr_in_flight[color]) 1196 goto out_put; 1197 1198 /* this pwq is done, clear flush_color */ 1199 pwq->flush_color = -1; 1200 1201 /* 1202 * If this was the last pwq, wake up the first flusher. It 1203 * will handle the rest. 1204 */ 1205 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1206 complete(&pwq->wq->first_flusher->done); 1207 out_put: 1208 put_pwq(pwq); 1209 } 1210 1211 /** 1212 * try_to_grab_pending - steal work item from worklist and disable irq 1213 * @work: work item to steal 1214 * @is_dwork: @work is a delayed_work 1215 * @flags: place to store irq state 1216 * 1217 * Try to grab PENDING bit of @work. This function can handle @work in any 1218 * stable state - idle, on timer or on worklist. 1219 * 1220 * Return: 1221 * 1 if @work was pending and we successfully stole PENDING 1222 * 0 if @work was idle and we claimed PENDING 1223 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1224 * -ENOENT if someone else is canceling @work, this state may persist 1225 * for arbitrarily long 1226 * 1227 * Note: 1228 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1229 * interrupted while holding PENDING and @work off queue, irq must be 1230 * disabled on entry. This, combined with delayed_work->timer being 1231 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1232 * 1233 * On successful return, >= 0, irq is disabled and the caller is 1234 * responsible for releasing it using local_irq_restore(*@flags). 1235 * 1236 * This function is safe to call from any context including IRQ handler. 1237 */ 1238 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1239 unsigned long *flags) 1240 { 1241 struct worker_pool *pool; 1242 struct pool_workqueue *pwq; 1243 1244 local_irq_save(*flags); 1245 1246 /* try to steal the timer if it exists */ 1247 if (is_dwork) { 1248 struct delayed_work *dwork = to_delayed_work(work); 1249 1250 /* 1251 * dwork->timer is irqsafe. If del_timer() fails, it's 1252 * guaranteed that the timer is not queued anywhere and not 1253 * running on the local CPU. 1254 */ 1255 if (likely(del_timer(&dwork->timer))) 1256 return 1; 1257 } 1258 1259 /* try to claim PENDING the normal way */ 1260 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1261 return 0; 1262 1263 /* 1264 * The queueing is in progress, or it is already queued. Try to 1265 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1266 */ 1267 pool = get_work_pool(work); 1268 if (!pool) 1269 goto fail; 1270 1271 spin_lock(&pool->lock); 1272 /* 1273 * work->data is guaranteed to point to pwq only while the work 1274 * item is queued on pwq->wq, and both updating work->data to point 1275 * to pwq on queueing and to pool on dequeueing are done under 1276 * pwq->pool->lock. This in turn guarantees that, if work->data 1277 * points to pwq which is associated with a locked pool, the work 1278 * item is currently queued on that pool. 1279 */ 1280 pwq = get_work_pwq(work); 1281 if (pwq && pwq->pool == pool) { 1282 debug_work_deactivate(work); 1283 1284 /* 1285 * A delayed work item cannot be grabbed directly because 1286 * it might have linked NO_COLOR work items which, if left 1287 * on the delayed_list, will confuse pwq->nr_active 1288 * management later on and cause stall. Make sure the work 1289 * item is activated before grabbing. 1290 */ 1291 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1292 pwq_activate_delayed_work(work); 1293 1294 list_del_init(&work->entry); 1295 pwq_dec_nr_in_flight(pwq, get_work_color(work)); 1296 1297 /* work->data points to pwq iff queued, point to pool */ 1298 set_work_pool_and_keep_pending(work, pool->id); 1299 1300 spin_unlock(&pool->lock); 1301 return 1; 1302 } 1303 spin_unlock(&pool->lock); 1304 fail: 1305 local_irq_restore(*flags); 1306 if (work_is_canceling(work)) 1307 return -ENOENT; 1308 cpu_relax(); 1309 return -EAGAIN; 1310 } 1311 1312 /** 1313 * insert_work - insert a work into a pool 1314 * @pwq: pwq @work belongs to 1315 * @work: work to insert 1316 * @head: insertion point 1317 * @extra_flags: extra WORK_STRUCT_* flags to set 1318 * 1319 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1320 * work_struct flags. 1321 * 1322 * CONTEXT: 1323 * spin_lock_irq(pool->lock). 1324 */ 1325 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1326 struct list_head *head, unsigned int extra_flags) 1327 { 1328 struct worker_pool *pool = pwq->pool; 1329 1330 /* we own @work, set data and link */ 1331 set_work_pwq(work, pwq, extra_flags); 1332 list_add_tail(&work->entry, head); 1333 get_pwq(pwq); 1334 1335 /* 1336 * Ensure either wq_worker_sleeping() sees the above 1337 * list_add_tail() or we see zero nr_running to avoid workers lying 1338 * around lazily while there are works to be processed. 1339 */ 1340 smp_mb(); 1341 1342 if (__need_more_worker(pool)) 1343 wake_up_worker(pool); 1344 } 1345 1346 /* 1347 * Test whether @work is being queued from another work executing on the 1348 * same workqueue. 1349 */ 1350 static bool is_chained_work(struct workqueue_struct *wq) 1351 { 1352 struct worker *worker; 1353 1354 worker = current_wq_worker(); 1355 /* 1356 * Return %true iff I'm a worker execuing a work item on @wq. If 1357 * I'm @worker, it's safe to dereference it without locking. 1358 */ 1359 return worker && worker->current_pwq->wq == wq; 1360 } 1361 1362 /* 1363 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1364 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1365 * avoid perturbing sensitive tasks. 1366 */ 1367 static int wq_select_unbound_cpu(int cpu) 1368 { 1369 static bool printed_dbg_warning; 1370 int new_cpu; 1371 1372 if (likely(!wq_debug_force_rr_cpu)) { 1373 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1374 return cpu; 1375 } else if (!printed_dbg_warning) { 1376 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1377 printed_dbg_warning = true; 1378 } 1379 1380 if (cpumask_empty(wq_unbound_cpumask)) 1381 return cpu; 1382 1383 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1384 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1385 if (unlikely(new_cpu >= nr_cpu_ids)) { 1386 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1387 if (unlikely(new_cpu >= nr_cpu_ids)) 1388 return cpu; 1389 } 1390 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1391 1392 return new_cpu; 1393 } 1394 1395 static void __queue_work(int cpu, struct workqueue_struct *wq, 1396 struct work_struct *work) 1397 { 1398 struct pool_workqueue *pwq; 1399 struct worker_pool *last_pool; 1400 struct list_head *worklist; 1401 unsigned int work_flags; 1402 unsigned int req_cpu = cpu; 1403 1404 /* 1405 * While a work item is PENDING && off queue, a task trying to 1406 * steal the PENDING will busy-loop waiting for it to either get 1407 * queued or lose PENDING. Grabbing PENDING and queueing should 1408 * happen with IRQ disabled. 1409 */ 1410 lockdep_assert_irqs_disabled(); 1411 1412 debug_work_activate(work); 1413 1414 /* if draining, only works from the same workqueue are allowed */ 1415 if (unlikely(wq->flags & __WQ_DRAINING) && 1416 WARN_ON_ONCE(!is_chained_work(wq))) 1417 return; 1418 retry: 1419 if (req_cpu == WORK_CPU_UNBOUND) 1420 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1421 1422 /* pwq which will be used unless @work is executing elsewhere */ 1423 if (!(wq->flags & WQ_UNBOUND)) 1424 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1425 else 1426 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1427 1428 /* 1429 * If @work was previously on a different pool, it might still be 1430 * running there, in which case the work needs to be queued on that 1431 * pool to guarantee non-reentrancy. 1432 */ 1433 last_pool = get_work_pool(work); 1434 if (last_pool && last_pool != pwq->pool) { 1435 struct worker *worker; 1436 1437 spin_lock(&last_pool->lock); 1438 1439 worker = find_worker_executing_work(last_pool, work); 1440 1441 if (worker && worker->current_pwq->wq == wq) { 1442 pwq = worker->current_pwq; 1443 } else { 1444 /* meh... not running there, queue here */ 1445 spin_unlock(&last_pool->lock); 1446 spin_lock(&pwq->pool->lock); 1447 } 1448 } else { 1449 spin_lock(&pwq->pool->lock); 1450 } 1451 1452 /* 1453 * pwq is determined and locked. For unbound pools, we could have 1454 * raced with pwq release and it could already be dead. If its 1455 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1456 * without another pwq replacing it in the numa_pwq_tbl or while 1457 * work items are executing on it, so the retrying is guaranteed to 1458 * make forward-progress. 1459 */ 1460 if (unlikely(!pwq->refcnt)) { 1461 if (wq->flags & WQ_UNBOUND) { 1462 spin_unlock(&pwq->pool->lock); 1463 cpu_relax(); 1464 goto retry; 1465 } 1466 /* oops */ 1467 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1468 wq->name, cpu); 1469 } 1470 1471 /* pwq determined, queue */ 1472 trace_workqueue_queue_work(req_cpu, pwq, work); 1473 1474 if (WARN_ON(!list_empty(&work->entry))) { 1475 spin_unlock(&pwq->pool->lock); 1476 return; 1477 } 1478 1479 pwq->nr_in_flight[pwq->work_color]++; 1480 work_flags = work_color_to_flags(pwq->work_color); 1481 1482 if (likely(pwq->nr_active < pwq->max_active)) { 1483 trace_workqueue_activate_work(work); 1484 pwq->nr_active++; 1485 worklist = &pwq->pool->worklist; 1486 if (list_empty(worklist)) 1487 pwq->pool->watchdog_ts = jiffies; 1488 } else { 1489 work_flags |= WORK_STRUCT_DELAYED; 1490 worklist = &pwq->delayed_works; 1491 } 1492 1493 insert_work(pwq, work, worklist, work_flags); 1494 1495 spin_unlock(&pwq->pool->lock); 1496 } 1497 1498 /** 1499 * queue_work_on - queue work on specific cpu 1500 * @cpu: CPU number to execute work on 1501 * @wq: workqueue to use 1502 * @work: work to queue 1503 * 1504 * We queue the work to a specific CPU, the caller must ensure it 1505 * can't go away. 1506 * 1507 * Return: %false if @work was already on a queue, %true otherwise. 1508 */ 1509 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1510 struct work_struct *work) 1511 { 1512 bool ret = false; 1513 unsigned long flags; 1514 1515 local_irq_save(flags); 1516 1517 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1518 __queue_work(cpu, wq, work); 1519 ret = true; 1520 } 1521 1522 local_irq_restore(flags); 1523 return ret; 1524 } 1525 EXPORT_SYMBOL(queue_work_on); 1526 1527 /** 1528 * workqueue_select_cpu_near - Select a CPU based on NUMA node 1529 * @node: NUMA node ID that we want to select a CPU from 1530 * 1531 * This function will attempt to find a "random" cpu available on a given 1532 * node. If there are no CPUs available on the given node it will return 1533 * WORK_CPU_UNBOUND indicating that we should just schedule to any 1534 * available CPU if we need to schedule this work. 1535 */ 1536 static int workqueue_select_cpu_near(int node) 1537 { 1538 int cpu; 1539 1540 /* No point in doing this if NUMA isn't enabled for workqueues */ 1541 if (!wq_numa_enabled) 1542 return WORK_CPU_UNBOUND; 1543 1544 /* Delay binding to CPU if node is not valid or online */ 1545 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 1546 return WORK_CPU_UNBOUND; 1547 1548 /* Use local node/cpu if we are already there */ 1549 cpu = raw_smp_processor_id(); 1550 if (node == cpu_to_node(cpu)) 1551 return cpu; 1552 1553 /* Use "random" otherwise know as "first" online CPU of node */ 1554 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 1555 1556 /* If CPU is valid return that, otherwise just defer */ 1557 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 1558 } 1559 1560 /** 1561 * queue_work_node - queue work on a "random" cpu for a given NUMA node 1562 * @node: NUMA node that we are targeting the work for 1563 * @wq: workqueue to use 1564 * @work: work to queue 1565 * 1566 * We queue the work to a "random" CPU within a given NUMA node. The basic 1567 * idea here is to provide a way to somehow associate work with a given 1568 * NUMA node. 1569 * 1570 * This function will only make a best effort attempt at getting this onto 1571 * the right NUMA node. If no node is requested or the requested node is 1572 * offline then we just fall back to standard queue_work behavior. 1573 * 1574 * Currently the "random" CPU ends up being the first available CPU in the 1575 * intersection of cpu_online_mask and the cpumask of the node, unless we 1576 * are running on the node. In that case we just use the current CPU. 1577 * 1578 * Return: %false if @work was already on a queue, %true otherwise. 1579 */ 1580 bool queue_work_node(int node, struct workqueue_struct *wq, 1581 struct work_struct *work) 1582 { 1583 unsigned long flags; 1584 bool ret = false; 1585 1586 /* 1587 * This current implementation is specific to unbound workqueues. 1588 * Specifically we only return the first available CPU for a given 1589 * node instead of cycling through individual CPUs within the node. 1590 * 1591 * If this is used with a per-cpu workqueue then the logic in 1592 * workqueue_select_cpu_near would need to be updated to allow for 1593 * some round robin type logic. 1594 */ 1595 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 1596 1597 local_irq_save(flags); 1598 1599 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1600 int cpu = workqueue_select_cpu_near(node); 1601 1602 __queue_work(cpu, wq, work); 1603 ret = true; 1604 } 1605 1606 local_irq_restore(flags); 1607 return ret; 1608 } 1609 EXPORT_SYMBOL_GPL(queue_work_node); 1610 1611 void delayed_work_timer_fn(struct timer_list *t) 1612 { 1613 struct delayed_work *dwork = from_timer(dwork, t, timer); 1614 1615 /* should have been called from irqsafe timer with irq already off */ 1616 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1617 } 1618 EXPORT_SYMBOL(delayed_work_timer_fn); 1619 1620 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1621 struct delayed_work *dwork, unsigned long delay) 1622 { 1623 struct timer_list *timer = &dwork->timer; 1624 struct work_struct *work = &dwork->work; 1625 1626 WARN_ON_ONCE(!wq); 1627 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 1628 WARN_ON_ONCE(timer_pending(timer)); 1629 WARN_ON_ONCE(!list_empty(&work->entry)); 1630 1631 /* 1632 * If @delay is 0, queue @dwork->work immediately. This is for 1633 * both optimization and correctness. The earliest @timer can 1634 * expire is on the closest next tick and delayed_work users depend 1635 * on that there's no such delay when @delay is 0. 1636 */ 1637 if (!delay) { 1638 __queue_work(cpu, wq, &dwork->work); 1639 return; 1640 } 1641 1642 dwork->wq = wq; 1643 dwork->cpu = cpu; 1644 timer->expires = jiffies + delay; 1645 1646 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1647 add_timer_on(timer, cpu); 1648 else 1649 add_timer(timer); 1650 } 1651 1652 /** 1653 * queue_delayed_work_on - queue work on specific CPU after delay 1654 * @cpu: CPU number to execute work on 1655 * @wq: workqueue to use 1656 * @dwork: work to queue 1657 * @delay: number of jiffies to wait before queueing 1658 * 1659 * Return: %false if @work was already on a queue, %true otherwise. If 1660 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1661 * execution. 1662 */ 1663 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1664 struct delayed_work *dwork, unsigned long delay) 1665 { 1666 struct work_struct *work = &dwork->work; 1667 bool ret = false; 1668 unsigned long flags; 1669 1670 /* read the comment in __queue_work() */ 1671 local_irq_save(flags); 1672 1673 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1674 __queue_delayed_work(cpu, wq, dwork, delay); 1675 ret = true; 1676 } 1677 1678 local_irq_restore(flags); 1679 return ret; 1680 } 1681 EXPORT_SYMBOL(queue_delayed_work_on); 1682 1683 /** 1684 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1685 * @cpu: CPU number to execute work on 1686 * @wq: workqueue to use 1687 * @dwork: work to queue 1688 * @delay: number of jiffies to wait before queueing 1689 * 1690 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1691 * modify @dwork's timer so that it expires after @delay. If @delay is 1692 * zero, @work is guaranteed to be scheduled immediately regardless of its 1693 * current state. 1694 * 1695 * Return: %false if @dwork was idle and queued, %true if @dwork was 1696 * pending and its timer was modified. 1697 * 1698 * This function is safe to call from any context including IRQ handler. 1699 * See try_to_grab_pending() for details. 1700 */ 1701 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1702 struct delayed_work *dwork, unsigned long delay) 1703 { 1704 unsigned long flags; 1705 int ret; 1706 1707 do { 1708 ret = try_to_grab_pending(&dwork->work, true, &flags); 1709 } while (unlikely(ret == -EAGAIN)); 1710 1711 if (likely(ret >= 0)) { 1712 __queue_delayed_work(cpu, wq, dwork, delay); 1713 local_irq_restore(flags); 1714 } 1715 1716 /* -ENOENT from try_to_grab_pending() becomes %true */ 1717 return ret; 1718 } 1719 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1720 1721 static void rcu_work_rcufn(struct rcu_head *rcu) 1722 { 1723 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 1724 1725 /* read the comment in __queue_work() */ 1726 local_irq_disable(); 1727 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 1728 local_irq_enable(); 1729 } 1730 1731 /** 1732 * queue_rcu_work - queue work after a RCU grace period 1733 * @wq: workqueue to use 1734 * @rwork: work to queue 1735 * 1736 * Return: %false if @rwork was already pending, %true otherwise. Note 1737 * that a full RCU grace period is guaranteed only after a %true return. 1738 * While @rwork is guarnateed to be executed after a %false return, the 1739 * execution may happen before a full RCU grace period has passed. 1740 */ 1741 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 1742 { 1743 struct work_struct *work = &rwork->work; 1744 1745 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1746 rwork->wq = wq; 1747 call_rcu(&rwork->rcu, rcu_work_rcufn); 1748 return true; 1749 } 1750 1751 return false; 1752 } 1753 EXPORT_SYMBOL(queue_rcu_work); 1754 1755 /** 1756 * worker_enter_idle - enter idle state 1757 * @worker: worker which is entering idle state 1758 * 1759 * @worker is entering idle state. Update stats and idle timer if 1760 * necessary. 1761 * 1762 * LOCKING: 1763 * spin_lock_irq(pool->lock). 1764 */ 1765 static void worker_enter_idle(struct worker *worker) 1766 { 1767 struct worker_pool *pool = worker->pool; 1768 1769 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1770 WARN_ON_ONCE(!list_empty(&worker->entry) && 1771 (worker->hentry.next || worker->hentry.pprev))) 1772 return; 1773 1774 /* can't use worker_set_flags(), also called from create_worker() */ 1775 worker->flags |= WORKER_IDLE; 1776 pool->nr_idle++; 1777 worker->last_active = jiffies; 1778 1779 /* idle_list is LIFO */ 1780 list_add(&worker->entry, &pool->idle_list); 1781 1782 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1783 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1784 1785 /* 1786 * Sanity check nr_running. Because unbind_workers() releases 1787 * pool->lock between setting %WORKER_UNBOUND and zapping 1788 * nr_running, the warning may trigger spuriously. Check iff 1789 * unbind is not in progress. 1790 */ 1791 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1792 pool->nr_workers == pool->nr_idle && 1793 atomic_read(&pool->nr_running)); 1794 } 1795 1796 /** 1797 * worker_leave_idle - leave idle state 1798 * @worker: worker which is leaving idle state 1799 * 1800 * @worker is leaving idle state. Update stats. 1801 * 1802 * LOCKING: 1803 * spin_lock_irq(pool->lock). 1804 */ 1805 static void worker_leave_idle(struct worker *worker) 1806 { 1807 struct worker_pool *pool = worker->pool; 1808 1809 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1810 return; 1811 worker_clr_flags(worker, WORKER_IDLE); 1812 pool->nr_idle--; 1813 list_del_init(&worker->entry); 1814 } 1815 1816 static struct worker *alloc_worker(int node) 1817 { 1818 struct worker *worker; 1819 1820 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1821 if (worker) { 1822 INIT_LIST_HEAD(&worker->entry); 1823 INIT_LIST_HEAD(&worker->scheduled); 1824 INIT_LIST_HEAD(&worker->node); 1825 /* on creation a worker is in !idle && prep state */ 1826 worker->flags = WORKER_PREP; 1827 } 1828 return worker; 1829 } 1830 1831 /** 1832 * worker_attach_to_pool() - attach a worker to a pool 1833 * @worker: worker to be attached 1834 * @pool: the target pool 1835 * 1836 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1837 * cpu-binding of @worker are kept coordinated with the pool across 1838 * cpu-[un]hotplugs. 1839 */ 1840 static void worker_attach_to_pool(struct worker *worker, 1841 struct worker_pool *pool) 1842 { 1843 mutex_lock(&wq_pool_attach_mutex); 1844 1845 /* 1846 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1847 * online CPUs. It'll be re-applied when any of the CPUs come up. 1848 */ 1849 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1850 1851 /* 1852 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains 1853 * stable across this function. See the comments above the flag 1854 * definition for details. 1855 */ 1856 if (pool->flags & POOL_DISASSOCIATED) 1857 worker->flags |= WORKER_UNBOUND; 1858 1859 list_add_tail(&worker->node, &pool->workers); 1860 worker->pool = pool; 1861 1862 mutex_unlock(&wq_pool_attach_mutex); 1863 } 1864 1865 /** 1866 * worker_detach_from_pool() - detach a worker from its pool 1867 * @worker: worker which is attached to its pool 1868 * 1869 * Undo the attaching which had been done in worker_attach_to_pool(). The 1870 * caller worker shouldn't access to the pool after detached except it has 1871 * other reference to the pool. 1872 */ 1873 static void worker_detach_from_pool(struct worker *worker) 1874 { 1875 struct worker_pool *pool = worker->pool; 1876 struct completion *detach_completion = NULL; 1877 1878 mutex_lock(&wq_pool_attach_mutex); 1879 1880 list_del(&worker->node); 1881 worker->pool = NULL; 1882 1883 if (list_empty(&pool->workers)) 1884 detach_completion = pool->detach_completion; 1885 mutex_unlock(&wq_pool_attach_mutex); 1886 1887 /* clear leftover flags without pool->lock after it is detached */ 1888 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1889 1890 if (detach_completion) 1891 complete(detach_completion); 1892 } 1893 1894 /** 1895 * create_worker - create a new workqueue worker 1896 * @pool: pool the new worker will belong to 1897 * 1898 * Create and start a new worker which is attached to @pool. 1899 * 1900 * CONTEXT: 1901 * Might sleep. Does GFP_KERNEL allocations. 1902 * 1903 * Return: 1904 * Pointer to the newly created worker. 1905 */ 1906 static struct worker *create_worker(struct worker_pool *pool) 1907 { 1908 struct worker *worker = NULL; 1909 int id = -1; 1910 char id_buf[16]; 1911 1912 /* ID is needed to determine kthread name */ 1913 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL); 1914 if (id < 0) 1915 goto fail; 1916 1917 worker = alloc_worker(pool->node); 1918 if (!worker) 1919 goto fail; 1920 1921 worker->id = id; 1922 1923 if (pool->cpu >= 0) 1924 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1925 pool->attrs->nice < 0 ? "H" : ""); 1926 else 1927 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1928 1929 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1930 "kworker/%s", id_buf); 1931 if (IS_ERR(worker->task)) 1932 goto fail; 1933 1934 set_user_nice(worker->task, pool->attrs->nice); 1935 kthread_bind_mask(worker->task, pool->attrs->cpumask); 1936 1937 /* successful, attach the worker to the pool */ 1938 worker_attach_to_pool(worker, pool); 1939 1940 /* start the newly created worker */ 1941 spin_lock_irq(&pool->lock); 1942 worker->pool->nr_workers++; 1943 worker_enter_idle(worker); 1944 wake_up_process(worker->task); 1945 spin_unlock_irq(&pool->lock); 1946 1947 return worker; 1948 1949 fail: 1950 if (id >= 0) 1951 ida_simple_remove(&pool->worker_ida, id); 1952 kfree(worker); 1953 return NULL; 1954 } 1955 1956 /** 1957 * destroy_worker - destroy a workqueue worker 1958 * @worker: worker to be destroyed 1959 * 1960 * Destroy @worker and adjust @pool stats accordingly. The worker should 1961 * be idle. 1962 * 1963 * CONTEXT: 1964 * spin_lock_irq(pool->lock). 1965 */ 1966 static void destroy_worker(struct worker *worker) 1967 { 1968 struct worker_pool *pool = worker->pool; 1969 1970 lockdep_assert_held(&pool->lock); 1971 1972 /* sanity check frenzy */ 1973 if (WARN_ON(worker->current_work) || 1974 WARN_ON(!list_empty(&worker->scheduled)) || 1975 WARN_ON(!(worker->flags & WORKER_IDLE))) 1976 return; 1977 1978 pool->nr_workers--; 1979 pool->nr_idle--; 1980 1981 list_del_init(&worker->entry); 1982 worker->flags |= WORKER_DIE; 1983 wake_up_process(worker->task); 1984 } 1985 1986 static void idle_worker_timeout(struct timer_list *t) 1987 { 1988 struct worker_pool *pool = from_timer(pool, t, idle_timer); 1989 1990 spin_lock_irq(&pool->lock); 1991 1992 while (too_many_workers(pool)) { 1993 struct worker *worker; 1994 unsigned long expires; 1995 1996 /* idle_list is kept in LIFO order, check the last one */ 1997 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1998 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1999 2000 if (time_before(jiffies, expires)) { 2001 mod_timer(&pool->idle_timer, expires); 2002 break; 2003 } 2004 2005 destroy_worker(worker); 2006 } 2007 2008 spin_unlock_irq(&pool->lock); 2009 } 2010 2011 static void send_mayday(struct work_struct *work) 2012 { 2013 struct pool_workqueue *pwq = get_work_pwq(work); 2014 struct workqueue_struct *wq = pwq->wq; 2015 2016 lockdep_assert_held(&wq_mayday_lock); 2017 2018 if (!wq->rescuer) 2019 return; 2020 2021 /* mayday mayday mayday */ 2022 if (list_empty(&pwq->mayday_node)) { 2023 /* 2024 * If @pwq is for an unbound wq, its base ref may be put at 2025 * any time due to an attribute change. Pin @pwq until the 2026 * rescuer is done with it. 2027 */ 2028 get_pwq(pwq); 2029 list_add_tail(&pwq->mayday_node, &wq->maydays); 2030 wake_up_process(wq->rescuer->task); 2031 } 2032 } 2033 2034 static void pool_mayday_timeout(struct timer_list *t) 2035 { 2036 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 2037 struct work_struct *work; 2038 2039 spin_lock_irq(&pool->lock); 2040 spin_lock(&wq_mayday_lock); /* for wq->maydays */ 2041 2042 if (need_to_create_worker(pool)) { 2043 /* 2044 * We've been trying to create a new worker but 2045 * haven't been successful. We might be hitting an 2046 * allocation deadlock. Send distress signals to 2047 * rescuers. 2048 */ 2049 list_for_each_entry(work, &pool->worklist, entry) 2050 send_mayday(work); 2051 } 2052 2053 spin_unlock(&wq_mayday_lock); 2054 spin_unlock_irq(&pool->lock); 2055 2056 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 2057 } 2058 2059 /** 2060 * maybe_create_worker - create a new worker if necessary 2061 * @pool: pool to create a new worker for 2062 * 2063 * Create a new worker for @pool if necessary. @pool is guaranteed to 2064 * have at least one idle worker on return from this function. If 2065 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 2066 * sent to all rescuers with works scheduled on @pool to resolve 2067 * possible allocation deadlock. 2068 * 2069 * On return, need_to_create_worker() is guaranteed to be %false and 2070 * may_start_working() %true. 2071 * 2072 * LOCKING: 2073 * spin_lock_irq(pool->lock) which may be released and regrabbed 2074 * multiple times. Does GFP_KERNEL allocations. Called only from 2075 * manager. 2076 */ 2077 static void maybe_create_worker(struct worker_pool *pool) 2078 __releases(&pool->lock) 2079 __acquires(&pool->lock) 2080 { 2081 restart: 2082 spin_unlock_irq(&pool->lock); 2083 2084 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 2085 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 2086 2087 while (true) { 2088 if (create_worker(pool) || !need_to_create_worker(pool)) 2089 break; 2090 2091 schedule_timeout_interruptible(CREATE_COOLDOWN); 2092 2093 if (!need_to_create_worker(pool)) 2094 break; 2095 } 2096 2097 del_timer_sync(&pool->mayday_timer); 2098 spin_lock_irq(&pool->lock); 2099 /* 2100 * This is necessary even after a new worker was just successfully 2101 * created as @pool->lock was dropped and the new worker might have 2102 * already become busy. 2103 */ 2104 if (need_to_create_worker(pool)) 2105 goto restart; 2106 } 2107 2108 /** 2109 * manage_workers - manage worker pool 2110 * @worker: self 2111 * 2112 * Assume the manager role and manage the worker pool @worker belongs 2113 * to. At any given time, there can be only zero or one manager per 2114 * pool. The exclusion is handled automatically by this function. 2115 * 2116 * The caller can safely start processing works on false return. On 2117 * true return, it's guaranteed that need_to_create_worker() is false 2118 * and may_start_working() is true. 2119 * 2120 * CONTEXT: 2121 * spin_lock_irq(pool->lock) which may be released and regrabbed 2122 * multiple times. Does GFP_KERNEL allocations. 2123 * 2124 * Return: 2125 * %false if the pool doesn't need management and the caller can safely 2126 * start processing works, %true if management function was performed and 2127 * the conditions that the caller verified before calling the function may 2128 * no longer be true. 2129 */ 2130 static bool manage_workers(struct worker *worker) 2131 { 2132 struct worker_pool *pool = worker->pool; 2133 2134 if (pool->flags & POOL_MANAGER_ACTIVE) 2135 return false; 2136 2137 pool->flags |= POOL_MANAGER_ACTIVE; 2138 pool->manager = worker; 2139 2140 maybe_create_worker(pool); 2141 2142 pool->manager = NULL; 2143 pool->flags &= ~POOL_MANAGER_ACTIVE; 2144 wake_up(&wq_manager_wait); 2145 return true; 2146 } 2147 2148 /** 2149 * process_one_work - process single work 2150 * @worker: self 2151 * @work: work to process 2152 * 2153 * Process @work. This function contains all the logics necessary to 2154 * process a single work including synchronization against and 2155 * interaction with other workers on the same cpu, queueing and 2156 * flushing. As long as context requirement is met, any worker can 2157 * call this function to process a work. 2158 * 2159 * CONTEXT: 2160 * spin_lock_irq(pool->lock) which is released and regrabbed. 2161 */ 2162 static void process_one_work(struct worker *worker, struct work_struct *work) 2163 __releases(&pool->lock) 2164 __acquires(&pool->lock) 2165 { 2166 struct pool_workqueue *pwq = get_work_pwq(work); 2167 struct worker_pool *pool = worker->pool; 2168 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2169 int work_color; 2170 struct worker *collision; 2171 #ifdef CONFIG_LOCKDEP 2172 /* 2173 * It is permissible to free the struct work_struct from 2174 * inside the function that is called from it, this we need to 2175 * take into account for lockdep too. To avoid bogus "held 2176 * lock freed" warnings as well as problems when looking into 2177 * work->lockdep_map, make a copy and use that here. 2178 */ 2179 struct lockdep_map lockdep_map; 2180 2181 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2182 #endif 2183 /* ensure we're on the correct CPU */ 2184 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2185 raw_smp_processor_id() != pool->cpu); 2186 2187 /* 2188 * A single work shouldn't be executed concurrently by 2189 * multiple workers on a single cpu. Check whether anyone is 2190 * already processing the work. If so, defer the work to the 2191 * currently executing one. 2192 */ 2193 collision = find_worker_executing_work(pool, work); 2194 if (unlikely(collision)) { 2195 move_linked_works(work, &collision->scheduled, NULL); 2196 return; 2197 } 2198 2199 /* claim and dequeue */ 2200 debug_work_deactivate(work); 2201 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2202 worker->current_work = work; 2203 worker->current_func = work->func; 2204 worker->current_pwq = pwq; 2205 work_color = get_work_color(work); 2206 2207 /* 2208 * Record wq name for cmdline and debug reporting, may get 2209 * overridden through set_worker_desc(). 2210 */ 2211 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 2212 2213 list_del_init(&work->entry); 2214 2215 /* 2216 * CPU intensive works don't participate in concurrency management. 2217 * They're the scheduler's responsibility. This takes @worker out 2218 * of concurrency management and the next code block will chain 2219 * execution of the pending work items. 2220 */ 2221 if (unlikely(cpu_intensive)) 2222 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2223 2224 /* 2225 * Wake up another worker if necessary. The condition is always 2226 * false for normal per-cpu workers since nr_running would always 2227 * be >= 1 at this point. This is used to chain execution of the 2228 * pending work items for WORKER_NOT_RUNNING workers such as the 2229 * UNBOUND and CPU_INTENSIVE ones. 2230 */ 2231 if (need_more_worker(pool)) 2232 wake_up_worker(pool); 2233 2234 /* 2235 * Record the last pool and clear PENDING which should be the last 2236 * update to @work. Also, do this inside @pool->lock so that 2237 * PENDING and queued state changes happen together while IRQ is 2238 * disabled. 2239 */ 2240 set_work_pool_and_clear_pending(work, pool->id); 2241 2242 spin_unlock_irq(&pool->lock); 2243 2244 lock_map_acquire(&pwq->wq->lockdep_map); 2245 lock_map_acquire(&lockdep_map); 2246 /* 2247 * Strictly speaking we should mark the invariant state without holding 2248 * any locks, that is, before these two lock_map_acquire()'s. 2249 * 2250 * However, that would result in: 2251 * 2252 * A(W1) 2253 * WFC(C) 2254 * A(W1) 2255 * C(C) 2256 * 2257 * Which would create W1->C->W1 dependencies, even though there is no 2258 * actual deadlock possible. There are two solutions, using a 2259 * read-recursive acquire on the work(queue) 'locks', but this will then 2260 * hit the lockdep limitation on recursive locks, or simply discard 2261 * these locks. 2262 * 2263 * AFAICT there is no possible deadlock scenario between the 2264 * flush_work() and complete() primitives (except for single-threaded 2265 * workqueues), so hiding them isn't a problem. 2266 */ 2267 lockdep_invariant_state(true); 2268 trace_workqueue_execute_start(work); 2269 worker->current_func(work); 2270 /* 2271 * While we must be careful to not use "work" after this, the trace 2272 * point will only record its address. 2273 */ 2274 trace_workqueue_execute_end(work); 2275 lock_map_release(&lockdep_map); 2276 lock_map_release(&pwq->wq->lockdep_map); 2277 2278 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2279 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2280 " last function: %pf\n", 2281 current->comm, preempt_count(), task_pid_nr(current), 2282 worker->current_func); 2283 debug_show_held_locks(current); 2284 dump_stack(); 2285 } 2286 2287 /* 2288 * The following prevents a kworker from hogging CPU on !PREEMPT 2289 * kernels, where a requeueing work item waiting for something to 2290 * happen could deadlock with stop_machine as such work item could 2291 * indefinitely requeue itself while all other CPUs are trapped in 2292 * stop_machine. At the same time, report a quiescent RCU state so 2293 * the same condition doesn't freeze RCU. 2294 */ 2295 cond_resched(); 2296 2297 spin_lock_irq(&pool->lock); 2298 2299 /* clear cpu intensive status */ 2300 if (unlikely(cpu_intensive)) 2301 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2302 2303 /* tag the worker for identification in schedule() */ 2304 worker->last_func = worker->current_func; 2305 2306 /* we're done with it, release */ 2307 hash_del(&worker->hentry); 2308 worker->current_work = NULL; 2309 worker->current_func = NULL; 2310 worker->current_pwq = NULL; 2311 pwq_dec_nr_in_flight(pwq, work_color); 2312 } 2313 2314 /** 2315 * process_scheduled_works - process scheduled works 2316 * @worker: self 2317 * 2318 * Process all scheduled works. Please note that the scheduled list 2319 * may change while processing a work, so this function repeatedly 2320 * fetches a work from the top and executes it. 2321 * 2322 * CONTEXT: 2323 * spin_lock_irq(pool->lock) which may be released and regrabbed 2324 * multiple times. 2325 */ 2326 static void process_scheduled_works(struct worker *worker) 2327 { 2328 while (!list_empty(&worker->scheduled)) { 2329 struct work_struct *work = list_first_entry(&worker->scheduled, 2330 struct work_struct, entry); 2331 process_one_work(worker, work); 2332 } 2333 } 2334 2335 static void set_pf_worker(bool val) 2336 { 2337 mutex_lock(&wq_pool_attach_mutex); 2338 if (val) 2339 current->flags |= PF_WQ_WORKER; 2340 else 2341 current->flags &= ~PF_WQ_WORKER; 2342 mutex_unlock(&wq_pool_attach_mutex); 2343 } 2344 2345 /** 2346 * worker_thread - the worker thread function 2347 * @__worker: self 2348 * 2349 * The worker thread function. All workers belong to a worker_pool - 2350 * either a per-cpu one or dynamic unbound one. These workers process all 2351 * work items regardless of their specific target workqueue. The only 2352 * exception is work items which belong to workqueues with a rescuer which 2353 * will be explained in rescuer_thread(). 2354 * 2355 * Return: 0 2356 */ 2357 static int worker_thread(void *__worker) 2358 { 2359 struct worker *worker = __worker; 2360 struct worker_pool *pool = worker->pool; 2361 2362 /* tell the scheduler that this is a workqueue worker */ 2363 set_pf_worker(true); 2364 woke_up: 2365 spin_lock_irq(&pool->lock); 2366 2367 /* am I supposed to die? */ 2368 if (unlikely(worker->flags & WORKER_DIE)) { 2369 spin_unlock_irq(&pool->lock); 2370 WARN_ON_ONCE(!list_empty(&worker->entry)); 2371 set_pf_worker(false); 2372 2373 set_task_comm(worker->task, "kworker/dying"); 2374 ida_simple_remove(&pool->worker_ida, worker->id); 2375 worker_detach_from_pool(worker); 2376 kfree(worker); 2377 return 0; 2378 } 2379 2380 worker_leave_idle(worker); 2381 recheck: 2382 /* no more worker necessary? */ 2383 if (!need_more_worker(pool)) 2384 goto sleep; 2385 2386 /* do we need to manage? */ 2387 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2388 goto recheck; 2389 2390 /* 2391 * ->scheduled list can only be filled while a worker is 2392 * preparing to process a work or actually processing it. 2393 * Make sure nobody diddled with it while I was sleeping. 2394 */ 2395 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2396 2397 /* 2398 * Finish PREP stage. We're guaranteed to have at least one idle 2399 * worker or that someone else has already assumed the manager 2400 * role. This is where @worker starts participating in concurrency 2401 * management if applicable and concurrency management is restored 2402 * after being rebound. See rebind_workers() for details. 2403 */ 2404 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2405 2406 do { 2407 struct work_struct *work = 2408 list_first_entry(&pool->worklist, 2409 struct work_struct, entry); 2410 2411 pool->watchdog_ts = jiffies; 2412 2413 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2414 /* optimization path, not strictly necessary */ 2415 process_one_work(worker, work); 2416 if (unlikely(!list_empty(&worker->scheduled))) 2417 process_scheduled_works(worker); 2418 } else { 2419 move_linked_works(work, &worker->scheduled, NULL); 2420 process_scheduled_works(worker); 2421 } 2422 } while (keep_working(pool)); 2423 2424 worker_set_flags(worker, WORKER_PREP); 2425 sleep: 2426 /* 2427 * pool->lock is held and there's no work to process and no need to 2428 * manage, sleep. Workers are woken up only while holding 2429 * pool->lock or from local cpu, so setting the current state 2430 * before releasing pool->lock is enough to prevent losing any 2431 * event. 2432 */ 2433 worker_enter_idle(worker); 2434 __set_current_state(TASK_IDLE); 2435 spin_unlock_irq(&pool->lock); 2436 schedule(); 2437 goto woke_up; 2438 } 2439 2440 /** 2441 * rescuer_thread - the rescuer thread function 2442 * @__rescuer: self 2443 * 2444 * Workqueue rescuer thread function. There's one rescuer for each 2445 * workqueue which has WQ_MEM_RECLAIM set. 2446 * 2447 * Regular work processing on a pool may block trying to create a new 2448 * worker which uses GFP_KERNEL allocation which has slight chance of 2449 * developing into deadlock if some works currently on the same queue 2450 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2451 * the problem rescuer solves. 2452 * 2453 * When such condition is possible, the pool summons rescuers of all 2454 * workqueues which have works queued on the pool and let them process 2455 * those works so that forward progress can be guaranteed. 2456 * 2457 * This should happen rarely. 2458 * 2459 * Return: 0 2460 */ 2461 static int rescuer_thread(void *__rescuer) 2462 { 2463 struct worker *rescuer = __rescuer; 2464 struct workqueue_struct *wq = rescuer->rescue_wq; 2465 struct list_head *scheduled = &rescuer->scheduled; 2466 bool should_stop; 2467 2468 set_user_nice(current, RESCUER_NICE_LEVEL); 2469 2470 /* 2471 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2472 * doesn't participate in concurrency management. 2473 */ 2474 set_pf_worker(true); 2475 repeat: 2476 set_current_state(TASK_IDLE); 2477 2478 /* 2479 * By the time the rescuer is requested to stop, the workqueue 2480 * shouldn't have any work pending, but @wq->maydays may still have 2481 * pwq(s) queued. This can happen by non-rescuer workers consuming 2482 * all the work items before the rescuer got to them. Go through 2483 * @wq->maydays processing before acting on should_stop so that the 2484 * list is always empty on exit. 2485 */ 2486 should_stop = kthread_should_stop(); 2487 2488 /* see whether any pwq is asking for help */ 2489 spin_lock_irq(&wq_mayday_lock); 2490 2491 while (!list_empty(&wq->maydays)) { 2492 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2493 struct pool_workqueue, mayday_node); 2494 struct worker_pool *pool = pwq->pool; 2495 struct work_struct *work, *n; 2496 bool first = true; 2497 2498 __set_current_state(TASK_RUNNING); 2499 list_del_init(&pwq->mayday_node); 2500 2501 spin_unlock_irq(&wq_mayday_lock); 2502 2503 worker_attach_to_pool(rescuer, pool); 2504 2505 spin_lock_irq(&pool->lock); 2506 2507 /* 2508 * Slurp in all works issued via this workqueue and 2509 * process'em. 2510 */ 2511 WARN_ON_ONCE(!list_empty(scheduled)); 2512 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2513 if (get_work_pwq(work) == pwq) { 2514 if (first) 2515 pool->watchdog_ts = jiffies; 2516 move_linked_works(work, scheduled, &n); 2517 } 2518 first = false; 2519 } 2520 2521 if (!list_empty(scheduled)) { 2522 process_scheduled_works(rescuer); 2523 2524 /* 2525 * The above execution of rescued work items could 2526 * have created more to rescue through 2527 * pwq_activate_first_delayed() or chained 2528 * queueing. Let's put @pwq back on mayday list so 2529 * that such back-to-back work items, which may be 2530 * being used to relieve memory pressure, don't 2531 * incur MAYDAY_INTERVAL delay inbetween. 2532 */ 2533 if (need_to_create_worker(pool)) { 2534 spin_lock(&wq_mayday_lock); 2535 get_pwq(pwq); 2536 list_move_tail(&pwq->mayday_node, &wq->maydays); 2537 spin_unlock(&wq_mayday_lock); 2538 } 2539 } 2540 2541 /* 2542 * Put the reference grabbed by send_mayday(). @pool won't 2543 * go away while we're still attached to it. 2544 */ 2545 put_pwq(pwq); 2546 2547 /* 2548 * Leave this pool. If need_more_worker() is %true, notify a 2549 * regular worker; otherwise, we end up with 0 concurrency 2550 * and stalling the execution. 2551 */ 2552 if (need_more_worker(pool)) 2553 wake_up_worker(pool); 2554 2555 spin_unlock_irq(&pool->lock); 2556 2557 worker_detach_from_pool(rescuer); 2558 2559 spin_lock_irq(&wq_mayday_lock); 2560 } 2561 2562 spin_unlock_irq(&wq_mayday_lock); 2563 2564 if (should_stop) { 2565 __set_current_state(TASK_RUNNING); 2566 set_pf_worker(false); 2567 return 0; 2568 } 2569 2570 /* rescuers should never participate in concurrency management */ 2571 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2572 schedule(); 2573 goto repeat; 2574 } 2575 2576 /** 2577 * check_flush_dependency - check for flush dependency sanity 2578 * @target_wq: workqueue being flushed 2579 * @target_work: work item being flushed (NULL for workqueue flushes) 2580 * 2581 * %current is trying to flush the whole @target_wq or @target_work on it. 2582 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2583 * reclaiming memory or running on a workqueue which doesn't have 2584 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2585 * a deadlock. 2586 */ 2587 static void check_flush_dependency(struct workqueue_struct *target_wq, 2588 struct work_struct *target_work) 2589 { 2590 work_func_t target_func = target_work ? target_work->func : NULL; 2591 struct worker *worker; 2592 2593 if (target_wq->flags & WQ_MEM_RECLAIM) 2594 return; 2595 2596 worker = current_wq_worker(); 2597 2598 WARN_ONCE(current->flags & PF_MEMALLOC, 2599 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf", 2600 current->pid, current->comm, target_wq->name, target_func); 2601 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2602 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2603 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf", 2604 worker->current_pwq->wq->name, worker->current_func, 2605 target_wq->name, target_func); 2606 } 2607 2608 struct wq_barrier { 2609 struct work_struct work; 2610 struct completion done; 2611 struct task_struct *task; /* purely informational */ 2612 }; 2613 2614 static void wq_barrier_func(struct work_struct *work) 2615 { 2616 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2617 complete(&barr->done); 2618 } 2619 2620 /** 2621 * insert_wq_barrier - insert a barrier work 2622 * @pwq: pwq to insert barrier into 2623 * @barr: wq_barrier to insert 2624 * @target: target work to attach @barr to 2625 * @worker: worker currently executing @target, NULL if @target is not executing 2626 * 2627 * @barr is linked to @target such that @barr is completed only after 2628 * @target finishes execution. Please note that the ordering 2629 * guarantee is observed only with respect to @target and on the local 2630 * cpu. 2631 * 2632 * Currently, a queued barrier can't be canceled. This is because 2633 * try_to_grab_pending() can't determine whether the work to be 2634 * grabbed is at the head of the queue and thus can't clear LINKED 2635 * flag of the previous work while there must be a valid next work 2636 * after a work with LINKED flag set. 2637 * 2638 * Note that when @worker is non-NULL, @target may be modified 2639 * underneath us, so we can't reliably determine pwq from @target. 2640 * 2641 * CONTEXT: 2642 * spin_lock_irq(pool->lock). 2643 */ 2644 static void insert_wq_barrier(struct pool_workqueue *pwq, 2645 struct wq_barrier *barr, 2646 struct work_struct *target, struct worker *worker) 2647 { 2648 struct list_head *head; 2649 unsigned int linked = 0; 2650 2651 /* 2652 * debugobject calls are safe here even with pool->lock locked 2653 * as we know for sure that this will not trigger any of the 2654 * checks and call back into the fixup functions where we 2655 * might deadlock. 2656 */ 2657 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2658 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2659 2660 init_completion_map(&barr->done, &target->lockdep_map); 2661 2662 barr->task = current; 2663 2664 /* 2665 * If @target is currently being executed, schedule the 2666 * barrier to the worker; otherwise, put it after @target. 2667 */ 2668 if (worker) 2669 head = worker->scheduled.next; 2670 else { 2671 unsigned long *bits = work_data_bits(target); 2672 2673 head = target->entry.next; 2674 /* there can already be other linked works, inherit and set */ 2675 linked = *bits & WORK_STRUCT_LINKED; 2676 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2677 } 2678 2679 debug_work_activate(&barr->work); 2680 insert_work(pwq, &barr->work, head, 2681 work_color_to_flags(WORK_NO_COLOR) | linked); 2682 } 2683 2684 /** 2685 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2686 * @wq: workqueue being flushed 2687 * @flush_color: new flush color, < 0 for no-op 2688 * @work_color: new work color, < 0 for no-op 2689 * 2690 * Prepare pwqs for workqueue flushing. 2691 * 2692 * If @flush_color is non-negative, flush_color on all pwqs should be 2693 * -1. If no pwq has in-flight commands at the specified color, all 2694 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2695 * has in flight commands, its pwq->flush_color is set to 2696 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2697 * wakeup logic is armed and %true is returned. 2698 * 2699 * The caller should have initialized @wq->first_flusher prior to 2700 * calling this function with non-negative @flush_color. If 2701 * @flush_color is negative, no flush color update is done and %false 2702 * is returned. 2703 * 2704 * If @work_color is non-negative, all pwqs should have the same 2705 * work_color which is previous to @work_color and all will be 2706 * advanced to @work_color. 2707 * 2708 * CONTEXT: 2709 * mutex_lock(wq->mutex). 2710 * 2711 * Return: 2712 * %true if @flush_color >= 0 and there's something to flush. %false 2713 * otherwise. 2714 */ 2715 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2716 int flush_color, int work_color) 2717 { 2718 bool wait = false; 2719 struct pool_workqueue *pwq; 2720 2721 if (flush_color >= 0) { 2722 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2723 atomic_set(&wq->nr_pwqs_to_flush, 1); 2724 } 2725 2726 for_each_pwq(pwq, wq) { 2727 struct worker_pool *pool = pwq->pool; 2728 2729 spin_lock_irq(&pool->lock); 2730 2731 if (flush_color >= 0) { 2732 WARN_ON_ONCE(pwq->flush_color != -1); 2733 2734 if (pwq->nr_in_flight[flush_color]) { 2735 pwq->flush_color = flush_color; 2736 atomic_inc(&wq->nr_pwqs_to_flush); 2737 wait = true; 2738 } 2739 } 2740 2741 if (work_color >= 0) { 2742 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2743 pwq->work_color = work_color; 2744 } 2745 2746 spin_unlock_irq(&pool->lock); 2747 } 2748 2749 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2750 complete(&wq->first_flusher->done); 2751 2752 return wait; 2753 } 2754 2755 /** 2756 * flush_workqueue - ensure that any scheduled work has run to completion. 2757 * @wq: workqueue to flush 2758 * 2759 * This function sleeps until all work items which were queued on entry 2760 * have finished execution, but it is not livelocked by new incoming ones. 2761 */ 2762 void flush_workqueue(struct workqueue_struct *wq) 2763 { 2764 struct wq_flusher this_flusher = { 2765 .list = LIST_HEAD_INIT(this_flusher.list), 2766 .flush_color = -1, 2767 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 2768 }; 2769 int next_color; 2770 2771 if (WARN_ON(!wq_online)) 2772 return; 2773 2774 lock_map_acquire(&wq->lockdep_map); 2775 lock_map_release(&wq->lockdep_map); 2776 2777 mutex_lock(&wq->mutex); 2778 2779 /* 2780 * Start-to-wait phase 2781 */ 2782 next_color = work_next_color(wq->work_color); 2783 2784 if (next_color != wq->flush_color) { 2785 /* 2786 * Color space is not full. The current work_color 2787 * becomes our flush_color and work_color is advanced 2788 * by one. 2789 */ 2790 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2791 this_flusher.flush_color = wq->work_color; 2792 wq->work_color = next_color; 2793 2794 if (!wq->first_flusher) { 2795 /* no flush in progress, become the first flusher */ 2796 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2797 2798 wq->first_flusher = &this_flusher; 2799 2800 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2801 wq->work_color)) { 2802 /* nothing to flush, done */ 2803 wq->flush_color = next_color; 2804 wq->first_flusher = NULL; 2805 goto out_unlock; 2806 } 2807 } else { 2808 /* wait in queue */ 2809 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2810 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2811 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2812 } 2813 } else { 2814 /* 2815 * Oops, color space is full, wait on overflow queue. 2816 * The next flush completion will assign us 2817 * flush_color and transfer to flusher_queue. 2818 */ 2819 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2820 } 2821 2822 check_flush_dependency(wq, NULL); 2823 2824 mutex_unlock(&wq->mutex); 2825 2826 wait_for_completion(&this_flusher.done); 2827 2828 /* 2829 * Wake-up-and-cascade phase 2830 * 2831 * First flushers are responsible for cascading flushes and 2832 * handling overflow. Non-first flushers can simply return. 2833 */ 2834 if (wq->first_flusher != &this_flusher) 2835 return; 2836 2837 mutex_lock(&wq->mutex); 2838 2839 /* we might have raced, check again with mutex held */ 2840 if (wq->first_flusher != &this_flusher) 2841 goto out_unlock; 2842 2843 wq->first_flusher = NULL; 2844 2845 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2846 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2847 2848 while (true) { 2849 struct wq_flusher *next, *tmp; 2850 2851 /* complete all the flushers sharing the current flush color */ 2852 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2853 if (next->flush_color != wq->flush_color) 2854 break; 2855 list_del_init(&next->list); 2856 complete(&next->done); 2857 } 2858 2859 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2860 wq->flush_color != work_next_color(wq->work_color)); 2861 2862 /* this flush_color is finished, advance by one */ 2863 wq->flush_color = work_next_color(wq->flush_color); 2864 2865 /* one color has been freed, handle overflow queue */ 2866 if (!list_empty(&wq->flusher_overflow)) { 2867 /* 2868 * Assign the same color to all overflowed 2869 * flushers, advance work_color and append to 2870 * flusher_queue. This is the start-to-wait 2871 * phase for these overflowed flushers. 2872 */ 2873 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2874 tmp->flush_color = wq->work_color; 2875 2876 wq->work_color = work_next_color(wq->work_color); 2877 2878 list_splice_tail_init(&wq->flusher_overflow, 2879 &wq->flusher_queue); 2880 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2881 } 2882 2883 if (list_empty(&wq->flusher_queue)) { 2884 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2885 break; 2886 } 2887 2888 /* 2889 * Need to flush more colors. Make the next flusher 2890 * the new first flusher and arm pwqs. 2891 */ 2892 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2893 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2894 2895 list_del_init(&next->list); 2896 wq->first_flusher = next; 2897 2898 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2899 break; 2900 2901 /* 2902 * Meh... this color is already done, clear first 2903 * flusher and repeat cascading. 2904 */ 2905 wq->first_flusher = NULL; 2906 } 2907 2908 out_unlock: 2909 mutex_unlock(&wq->mutex); 2910 } 2911 EXPORT_SYMBOL(flush_workqueue); 2912 2913 /** 2914 * drain_workqueue - drain a workqueue 2915 * @wq: workqueue to drain 2916 * 2917 * Wait until the workqueue becomes empty. While draining is in progress, 2918 * only chain queueing is allowed. IOW, only currently pending or running 2919 * work items on @wq can queue further work items on it. @wq is flushed 2920 * repeatedly until it becomes empty. The number of flushing is determined 2921 * by the depth of chaining and should be relatively short. Whine if it 2922 * takes too long. 2923 */ 2924 void drain_workqueue(struct workqueue_struct *wq) 2925 { 2926 unsigned int flush_cnt = 0; 2927 struct pool_workqueue *pwq; 2928 2929 /* 2930 * __queue_work() needs to test whether there are drainers, is much 2931 * hotter than drain_workqueue() and already looks at @wq->flags. 2932 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2933 */ 2934 mutex_lock(&wq->mutex); 2935 if (!wq->nr_drainers++) 2936 wq->flags |= __WQ_DRAINING; 2937 mutex_unlock(&wq->mutex); 2938 reflush: 2939 flush_workqueue(wq); 2940 2941 mutex_lock(&wq->mutex); 2942 2943 for_each_pwq(pwq, wq) { 2944 bool drained; 2945 2946 spin_lock_irq(&pwq->pool->lock); 2947 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2948 spin_unlock_irq(&pwq->pool->lock); 2949 2950 if (drained) 2951 continue; 2952 2953 if (++flush_cnt == 10 || 2954 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2955 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2956 wq->name, flush_cnt); 2957 2958 mutex_unlock(&wq->mutex); 2959 goto reflush; 2960 } 2961 2962 if (!--wq->nr_drainers) 2963 wq->flags &= ~__WQ_DRAINING; 2964 mutex_unlock(&wq->mutex); 2965 } 2966 EXPORT_SYMBOL_GPL(drain_workqueue); 2967 2968 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 2969 bool from_cancel) 2970 { 2971 struct worker *worker = NULL; 2972 struct worker_pool *pool; 2973 struct pool_workqueue *pwq; 2974 2975 might_sleep(); 2976 2977 local_irq_disable(); 2978 pool = get_work_pool(work); 2979 if (!pool) { 2980 local_irq_enable(); 2981 return false; 2982 } 2983 2984 spin_lock(&pool->lock); 2985 /* see the comment in try_to_grab_pending() with the same code */ 2986 pwq = get_work_pwq(work); 2987 if (pwq) { 2988 if (unlikely(pwq->pool != pool)) 2989 goto already_gone; 2990 } else { 2991 worker = find_worker_executing_work(pool, work); 2992 if (!worker) 2993 goto already_gone; 2994 pwq = worker->current_pwq; 2995 } 2996 2997 check_flush_dependency(pwq->wq, work); 2998 2999 insert_wq_barrier(pwq, barr, work, worker); 3000 spin_unlock_irq(&pool->lock); 3001 3002 /* 3003 * Force a lock recursion deadlock when using flush_work() inside a 3004 * single-threaded or rescuer equipped workqueue. 3005 * 3006 * For single threaded workqueues the deadlock happens when the work 3007 * is after the work issuing the flush_work(). For rescuer equipped 3008 * workqueues the deadlock happens when the rescuer stalls, blocking 3009 * forward progress. 3010 */ 3011 if (!from_cancel && 3012 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) { 3013 lock_map_acquire(&pwq->wq->lockdep_map); 3014 lock_map_release(&pwq->wq->lockdep_map); 3015 } 3016 3017 return true; 3018 already_gone: 3019 spin_unlock_irq(&pool->lock); 3020 return false; 3021 } 3022 3023 static bool __flush_work(struct work_struct *work, bool from_cancel) 3024 { 3025 struct wq_barrier barr; 3026 3027 if (WARN_ON(!wq_online)) 3028 return false; 3029 3030 if (!from_cancel) { 3031 lock_map_acquire(&work->lockdep_map); 3032 lock_map_release(&work->lockdep_map); 3033 } 3034 3035 if (start_flush_work(work, &barr, from_cancel)) { 3036 wait_for_completion(&barr.done); 3037 destroy_work_on_stack(&barr.work); 3038 return true; 3039 } else { 3040 return false; 3041 } 3042 } 3043 3044 /** 3045 * flush_work - wait for a work to finish executing the last queueing instance 3046 * @work: the work to flush 3047 * 3048 * Wait until @work has finished execution. @work is guaranteed to be idle 3049 * on return if it hasn't been requeued since flush started. 3050 * 3051 * Return: 3052 * %true if flush_work() waited for the work to finish execution, 3053 * %false if it was already idle. 3054 */ 3055 bool flush_work(struct work_struct *work) 3056 { 3057 return __flush_work(work, false); 3058 } 3059 EXPORT_SYMBOL_GPL(flush_work); 3060 3061 struct cwt_wait { 3062 wait_queue_entry_t wait; 3063 struct work_struct *work; 3064 }; 3065 3066 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 3067 { 3068 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 3069 3070 if (cwait->work != key) 3071 return 0; 3072 return autoremove_wake_function(wait, mode, sync, key); 3073 } 3074 3075 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 3076 { 3077 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 3078 unsigned long flags; 3079 int ret; 3080 3081 do { 3082 ret = try_to_grab_pending(work, is_dwork, &flags); 3083 /* 3084 * If someone else is already canceling, wait for it to 3085 * finish. flush_work() doesn't work for PREEMPT_NONE 3086 * because we may get scheduled between @work's completion 3087 * and the other canceling task resuming and clearing 3088 * CANCELING - flush_work() will return false immediately 3089 * as @work is no longer busy, try_to_grab_pending() will 3090 * return -ENOENT as @work is still being canceled and the 3091 * other canceling task won't be able to clear CANCELING as 3092 * we're hogging the CPU. 3093 * 3094 * Let's wait for completion using a waitqueue. As this 3095 * may lead to the thundering herd problem, use a custom 3096 * wake function which matches @work along with exclusive 3097 * wait and wakeup. 3098 */ 3099 if (unlikely(ret == -ENOENT)) { 3100 struct cwt_wait cwait; 3101 3102 init_wait(&cwait.wait); 3103 cwait.wait.func = cwt_wakefn; 3104 cwait.work = work; 3105 3106 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 3107 TASK_UNINTERRUPTIBLE); 3108 if (work_is_canceling(work)) 3109 schedule(); 3110 finish_wait(&cancel_waitq, &cwait.wait); 3111 } 3112 } while (unlikely(ret < 0)); 3113 3114 /* tell other tasks trying to grab @work to back off */ 3115 mark_work_canceling(work); 3116 local_irq_restore(flags); 3117 3118 /* 3119 * This allows canceling during early boot. We know that @work 3120 * isn't executing. 3121 */ 3122 if (wq_online) 3123 __flush_work(work, true); 3124 3125 clear_work_data(work); 3126 3127 /* 3128 * Paired with prepare_to_wait() above so that either 3129 * waitqueue_active() is visible here or !work_is_canceling() is 3130 * visible there. 3131 */ 3132 smp_mb(); 3133 if (waitqueue_active(&cancel_waitq)) 3134 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 3135 3136 return ret; 3137 } 3138 3139 /** 3140 * cancel_work_sync - cancel a work and wait for it to finish 3141 * @work: the work to cancel 3142 * 3143 * Cancel @work and wait for its execution to finish. This function 3144 * can be used even if the work re-queues itself or migrates to 3145 * another workqueue. On return from this function, @work is 3146 * guaranteed to be not pending or executing on any CPU. 3147 * 3148 * cancel_work_sync(&delayed_work->work) must not be used for 3149 * delayed_work's. Use cancel_delayed_work_sync() instead. 3150 * 3151 * The caller must ensure that the workqueue on which @work was last 3152 * queued can't be destroyed before this function returns. 3153 * 3154 * Return: 3155 * %true if @work was pending, %false otherwise. 3156 */ 3157 bool cancel_work_sync(struct work_struct *work) 3158 { 3159 return __cancel_work_timer(work, false); 3160 } 3161 EXPORT_SYMBOL_GPL(cancel_work_sync); 3162 3163 /** 3164 * flush_delayed_work - wait for a dwork to finish executing the last queueing 3165 * @dwork: the delayed work to flush 3166 * 3167 * Delayed timer is cancelled and the pending work is queued for 3168 * immediate execution. Like flush_work(), this function only 3169 * considers the last queueing instance of @dwork. 3170 * 3171 * Return: 3172 * %true if flush_work() waited for the work to finish execution, 3173 * %false if it was already idle. 3174 */ 3175 bool flush_delayed_work(struct delayed_work *dwork) 3176 { 3177 local_irq_disable(); 3178 if (del_timer_sync(&dwork->timer)) 3179 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 3180 local_irq_enable(); 3181 return flush_work(&dwork->work); 3182 } 3183 EXPORT_SYMBOL(flush_delayed_work); 3184 3185 /** 3186 * flush_rcu_work - wait for a rwork to finish executing the last queueing 3187 * @rwork: the rcu work to flush 3188 * 3189 * Return: 3190 * %true if flush_rcu_work() waited for the work to finish execution, 3191 * %false if it was already idle. 3192 */ 3193 bool flush_rcu_work(struct rcu_work *rwork) 3194 { 3195 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 3196 rcu_barrier(); 3197 flush_work(&rwork->work); 3198 return true; 3199 } else { 3200 return flush_work(&rwork->work); 3201 } 3202 } 3203 EXPORT_SYMBOL(flush_rcu_work); 3204 3205 static bool __cancel_work(struct work_struct *work, bool is_dwork) 3206 { 3207 unsigned long flags; 3208 int ret; 3209 3210 do { 3211 ret = try_to_grab_pending(work, is_dwork, &flags); 3212 } while (unlikely(ret == -EAGAIN)); 3213 3214 if (unlikely(ret < 0)) 3215 return false; 3216 3217 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 3218 local_irq_restore(flags); 3219 return ret; 3220 } 3221 3222 /** 3223 * cancel_delayed_work - cancel a delayed work 3224 * @dwork: delayed_work to cancel 3225 * 3226 * Kill off a pending delayed_work. 3227 * 3228 * Return: %true if @dwork was pending and canceled; %false if it wasn't 3229 * pending. 3230 * 3231 * Note: 3232 * The work callback function may still be running on return, unless 3233 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 3234 * use cancel_delayed_work_sync() to wait on it. 3235 * 3236 * This function is safe to call from any context including IRQ handler. 3237 */ 3238 bool cancel_delayed_work(struct delayed_work *dwork) 3239 { 3240 return __cancel_work(&dwork->work, true); 3241 } 3242 EXPORT_SYMBOL(cancel_delayed_work); 3243 3244 /** 3245 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3246 * @dwork: the delayed work cancel 3247 * 3248 * This is cancel_work_sync() for delayed works. 3249 * 3250 * Return: 3251 * %true if @dwork was pending, %false otherwise. 3252 */ 3253 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3254 { 3255 return __cancel_work_timer(&dwork->work, true); 3256 } 3257 EXPORT_SYMBOL(cancel_delayed_work_sync); 3258 3259 /** 3260 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3261 * @func: the function to call 3262 * 3263 * schedule_on_each_cpu() executes @func on each online CPU using the 3264 * system workqueue and blocks until all CPUs have completed. 3265 * schedule_on_each_cpu() is very slow. 3266 * 3267 * Return: 3268 * 0 on success, -errno on failure. 3269 */ 3270 int schedule_on_each_cpu(work_func_t func) 3271 { 3272 int cpu; 3273 struct work_struct __percpu *works; 3274 3275 works = alloc_percpu(struct work_struct); 3276 if (!works) 3277 return -ENOMEM; 3278 3279 get_online_cpus(); 3280 3281 for_each_online_cpu(cpu) { 3282 struct work_struct *work = per_cpu_ptr(works, cpu); 3283 3284 INIT_WORK(work, func); 3285 schedule_work_on(cpu, work); 3286 } 3287 3288 for_each_online_cpu(cpu) 3289 flush_work(per_cpu_ptr(works, cpu)); 3290 3291 put_online_cpus(); 3292 free_percpu(works); 3293 return 0; 3294 } 3295 3296 /** 3297 * execute_in_process_context - reliably execute the routine with user context 3298 * @fn: the function to execute 3299 * @ew: guaranteed storage for the execute work structure (must 3300 * be available when the work executes) 3301 * 3302 * Executes the function immediately if process context is available, 3303 * otherwise schedules the function for delayed execution. 3304 * 3305 * Return: 0 - function was executed 3306 * 1 - function was scheduled for execution 3307 */ 3308 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3309 { 3310 if (!in_interrupt()) { 3311 fn(&ew->work); 3312 return 0; 3313 } 3314 3315 INIT_WORK(&ew->work, fn); 3316 schedule_work(&ew->work); 3317 3318 return 1; 3319 } 3320 EXPORT_SYMBOL_GPL(execute_in_process_context); 3321 3322 /** 3323 * free_workqueue_attrs - free a workqueue_attrs 3324 * @attrs: workqueue_attrs to free 3325 * 3326 * Undo alloc_workqueue_attrs(). 3327 */ 3328 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3329 { 3330 if (attrs) { 3331 free_cpumask_var(attrs->cpumask); 3332 kfree(attrs); 3333 } 3334 } 3335 3336 /** 3337 * alloc_workqueue_attrs - allocate a workqueue_attrs 3338 * @gfp_mask: allocation mask to use 3339 * 3340 * Allocate a new workqueue_attrs, initialize with default settings and 3341 * return it. 3342 * 3343 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3344 */ 3345 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask) 3346 { 3347 struct workqueue_attrs *attrs; 3348 3349 attrs = kzalloc(sizeof(*attrs), gfp_mask); 3350 if (!attrs) 3351 goto fail; 3352 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask)) 3353 goto fail; 3354 3355 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3356 return attrs; 3357 fail: 3358 free_workqueue_attrs(attrs); 3359 return NULL; 3360 } 3361 3362 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3363 const struct workqueue_attrs *from) 3364 { 3365 to->nice = from->nice; 3366 cpumask_copy(to->cpumask, from->cpumask); 3367 /* 3368 * Unlike hash and equality test, this function doesn't ignore 3369 * ->no_numa as it is used for both pool and wq attrs. Instead, 3370 * get_unbound_pool() explicitly clears ->no_numa after copying. 3371 */ 3372 to->no_numa = from->no_numa; 3373 } 3374 3375 /* hash value of the content of @attr */ 3376 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3377 { 3378 u32 hash = 0; 3379 3380 hash = jhash_1word(attrs->nice, hash); 3381 hash = jhash(cpumask_bits(attrs->cpumask), 3382 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3383 return hash; 3384 } 3385 3386 /* content equality test */ 3387 static bool wqattrs_equal(const struct workqueue_attrs *a, 3388 const struct workqueue_attrs *b) 3389 { 3390 if (a->nice != b->nice) 3391 return false; 3392 if (!cpumask_equal(a->cpumask, b->cpumask)) 3393 return false; 3394 return true; 3395 } 3396 3397 /** 3398 * init_worker_pool - initialize a newly zalloc'd worker_pool 3399 * @pool: worker_pool to initialize 3400 * 3401 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3402 * 3403 * Return: 0 on success, -errno on failure. Even on failure, all fields 3404 * inside @pool proper are initialized and put_unbound_pool() can be called 3405 * on @pool safely to release it. 3406 */ 3407 static int init_worker_pool(struct worker_pool *pool) 3408 { 3409 spin_lock_init(&pool->lock); 3410 pool->id = -1; 3411 pool->cpu = -1; 3412 pool->node = NUMA_NO_NODE; 3413 pool->flags |= POOL_DISASSOCIATED; 3414 pool->watchdog_ts = jiffies; 3415 INIT_LIST_HEAD(&pool->worklist); 3416 INIT_LIST_HEAD(&pool->idle_list); 3417 hash_init(pool->busy_hash); 3418 3419 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 3420 3421 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 3422 3423 INIT_LIST_HEAD(&pool->workers); 3424 3425 ida_init(&pool->worker_ida); 3426 INIT_HLIST_NODE(&pool->hash_node); 3427 pool->refcnt = 1; 3428 3429 /* shouldn't fail above this point */ 3430 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL); 3431 if (!pool->attrs) 3432 return -ENOMEM; 3433 return 0; 3434 } 3435 3436 #ifdef CONFIG_LOCKDEP 3437 static void wq_init_lockdep(struct workqueue_struct *wq) 3438 { 3439 char *lock_name; 3440 3441 lockdep_register_key(&wq->key); 3442 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 3443 if (!lock_name) 3444 lock_name = wq->name; 3445 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); 3446 } 3447 3448 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3449 { 3450 lockdep_unregister_key(&wq->key); 3451 } 3452 3453 static void wq_free_lockdep(struct workqueue_struct *wq) 3454 { 3455 if (wq->lock_name != wq->name) 3456 kfree(wq->lock_name); 3457 } 3458 #else 3459 static void wq_init_lockdep(struct workqueue_struct *wq) 3460 { 3461 } 3462 3463 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3464 { 3465 } 3466 3467 static void wq_free_lockdep(struct workqueue_struct *wq) 3468 { 3469 } 3470 #endif 3471 3472 static void rcu_free_wq(struct rcu_head *rcu) 3473 { 3474 struct workqueue_struct *wq = 3475 container_of(rcu, struct workqueue_struct, rcu); 3476 3477 wq_free_lockdep(wq); 3478 3479 if (!(wq->flags & WQ_UNBOUND)) 3480 free_percpu(wq->cpu_pwqs); 3481 else 3482 free_workqueue_attrs(wq->unbound_attrs); 3483 3484 kfree(wq->rescuer); 3485 kfree(wq); 3486 } 3487 3488 static void rcu_free_pool(struct rcu_head *rcu) 3489 { 3490 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3491 3492 ida_destroy(&pool->worker_ida); 3493 free_workqueue_attrs(pool->attrs); 3494 kfree(pool); 3495 } 3496 3497 /** 3498 * put_unbound_pool - put a worker_pool 3499 * @pool: worker_pool to put 3500 * 3501 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU 3502 * safe manner. get_unbound_pool() calls this function on its failure path 3503 * and this function should be able to release pools which went through, 3504 * successfully or not, init_worker_pool(). 3505 * 3506 * Should be called with wq_pool_mutex held. 3507 */ 3508 static void put_unbound_pool(struct worker_pool *pool) 3509 { 3510 DECLARE_COMPLETION_ONSTACK(detach_completion); 3511 struct worker *worker; 3512 3513 lockdep_assert_held(&wq_pool_mutex); 3514 3515 if (--pool->refcnt) 3516 return; 3517 3518 /* sanity checks */ 3519 if (WARN_ON(!(pool->cpu < 0)) || 3520 WARN_ON(!list_empty(&pool->worklist))) 3521 return; 3522 3523 /* release id and unhash */ 3524 if (pool->id >= 0) 3525 idr_remove(&worker_pool_idr, pool->id); 3526 hash_del(&pool->hash_node); 3527 3528 /* 3529 * Become the manager and destroy all workers. This prevents 3530 * @pool's workers from blocking on attach_mutex. We're the last 3531 * manager and @pool gets freed with the flag set. 3532 */ 3533 spin_lock_irq(&pool->lock); 3534 wait_event_lock_irq(wq_manager_wait, 3535 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock); 3536 pool->flags |= POOL_MANAGER_ACTIVE; 3537 3538 while ((worker = first_idle_worker(pool))) 3539 destroy_worker(worker); 3540 WARN_ON(pool->nr_workers || pool->nr_idle); 3541 spin_unlock_irq(&pool->lock); 3542 3543 mutex_lock(&wq_pool_attach_mutex); 3544 if (!list_empty(&pool->workers)) 3545 pool->detach_completion = &detach_completion; 3546 mutex_unlock(&wq_pool_attach_mutex); 3547 3548 if (pool->detach_completion) 3549 wait_for_completion(pool->detach_completion); 3550 3551 /* shut down the timers */ 3552 del_timer_sync(&pool->idle_timer); 3553 del_timer_sync(&pool->mayday_timer); 3554 3555 /* sched-RCU protected to allow dereferences from get_work_pool() */ 3556 call_rcu(&pool->rcu, rcu_free_pool); 3557 } 3558 3559 /** 3560 * get_unbound_pool - get a worker_pool with the specified attributes 3561 * @attrs: the attributes of the worker_pool to get 3562 * 3563 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3564 * reference count and return it. If there already is a matching 3565 * worker_pool, it will be used; otherwise, this function attempts to 3566 * create a new one. 3567 * 3568 * Should be called with wq_pool_mutex held. 3569 * 3570 * Return: On success, a worker_pool with the same attributes as @attrs. 3571 * On failure, %NULL. 3572 */ 3573 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3574 { 3575 u32 hash = wqattrs_hash(attrs); 3576 struct worker_pool *pool; 3577 int node; 3578 int target_node = NUMA_NO_NODE; 3579 3580 lockdep_assert_held(&wq_pool_mutex); 3581 3582 /* do we already have a matching pool? */ 3583 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3584 if (wqattrs_equal(pool->attrs, attrs)) { 3585 pool->refcnt++; 3586 return pool; 3587 } 3588 } 3589 3590 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3591 if (wq_numa_enabled) { 3592 for_each_node(node) { 3593 if (cpumask_subset(attrs->cpumask, 3594 wq_numa_possible_cpumask[node])) { 3595 target_node = node; 3596 break; 3597 } 3598 } 3599 } 3600 3601 /* nope, create a new one */ 3602 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3603 if (!pool || init_worker_pool(pool) < 0) 3604 goto fail; 3605 3606 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3607 copy_workqueue_attrs(pool->attrs, attrs); 3608 pool->node = target_node; 3609 3610 /* 3611 * no_numa isn't a worker_pool attribute, always clear it. See 3612 * 'struct workqueue_attrs' comments for detail. 3613 */ 3614 pool->attrs->no_numa = false; 3615 3616 if (worker_pool_assign_id(pool) < 0) 3617 goto fail; 3618 3619 /* create and start the initial worker */ 3620 if (wq_online && !create_worker(pool)) 3621 goto fail; 3622 3623 /* install */ 3624 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3625 3626 return pool; 3627 fail: 3628 if (pool) 3629 put_unbound_pool(pool); 3630 return NULL; 3631 } 3632 3633 static void rcu_free_pwq(struct rcu_head *rcu) 3634 { 3635 kmem_cache_free(pwq_cache, 3636 container_of(rcu, struct pool_workqueue, rcu)); 3637 } 3638 3639 /* 3640 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3641 * and needs to be destroyed. 3642 */ 3643 static void pwq_unbound_release_workfn(struct work_struct *work) 3644 { 3645 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3646 unbound_release_work); 3647 struct workqueue_struct *wq = pwq->wq; 3648 struct worker_pool *pool = pwq->pool; 3649 bool is_last; 3650 3651 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3652 return; 3653 3654 mutex_lock(&wq->mutex); 3655 list_del_rcu(&pwq->pwqs_node); 3656 is_last = list_empty(&wq->pwqs); 3657 mutex_unlock(&wq->mutex); 3658 3659 mutex_lock(&wq_pool_mutex); 3660 put_unbound_pool(pool); 3661 mutex_unlock(&wq_pool_mutex); 3662 3663 call_rcu(&pwq->rcu, rcu_free_pwq); 3664 3665 /* 3666 * If we're the last pwq going away, @wq is already dead and no one 3667 * is gonna access it anymore. Schedule RCU free. 3668 */ 3669 if (is_last) { 3670 wq_unregister_lockdep(wq); 3671 call_rcu(&wq->rcu, rcu_free_wq); 3672 } 3673 } 3674 3675 /** 3676 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3677 * @pwq: target pool_workqueue 3678 * 3679 * If @pwq isn't freezing, set @pwq->max_active to the associated 3680 * workqueue's saved_max_active and activate delayed work items 3681 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3682 */ 3683 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3684 { 3685 struct workqueue_struct *wq = pwq->wq; 3686 bool freezable = wq->flags & WQ_FREEZABLE; 3687 unsigned long flags; 3688 3689 /* for @wq->saved_max_active */ 3690 lockdep_assert_held(&wq->mutex); 3691 3692 /* fast exit for non-freezable wqs */ 3693 if (!freezable && pwq->max_active == wq->saved_max_active) 3694 return; 3695 3696 /* this function can be called during early boot w/ irq disabled */ 3697 spin_lock_irqsave(&pwq->pool->lock, flags); 3698 3699 /* 3700 * During [un]freezing, the caller is responsible for ensuring that 3701 * this function is called at least once after @workqueue_freezing 3702 * is updated and visible. 3703 */ 3704 if (!freezable || !workqueue_freezing) { 3705 pwq->max_active = wq->saved_max_active; 3706 3707 while (!list_empty(&pwq->delayed_works) && 3708 pwq->nr_active < pwq->max_active) 3709 pwq_activate_first_delayed(pwq); 3710 3711 /* 3712 * Need to kick a worker after thawed or an unbound wq's 3713 * max_active is bumped. It's a slow path. Do it always. 3714 */ 3715 wake_up_worker(pwq->pool); 3716 } else { 3717 pwq->max_active = 0; 3718 } 3719 3720 spin_unlock_irqrestore(&pwq->pool->lock, flags); 3721 } 3722 3723 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3724 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3725 struct worker_pool *pool) 3726 { 3727 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3728 3729 memset(pwq, 0, sizeof(*pwq)); 3730 3731 pwq->pool = pool; 3732 pwq->wq = wq; 3733 pwq->flush_color = -1; 3734 pwq->refcnt = 1; 3735 INIT_LIST_HEAD(&pwq->delayed_works); 3736 INIT_LIST_HEAD(&pwq->pwqs_node); 3737 INIT_LIST_HEAD(&pwq->mayday_node); 3738 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3739 } 3740 3741 /* sync @pwq with the current state of its associated wq and link it */ 3742 static void link_pwq(struct pool_workqueue *pwq) 3743 { 3744 struct workqueue_struct *wq = pwq->wq; 3745 3746 lockdep_assert_held(&wq->mutex); 3747 3748 /* may be called multiple times, ignore if already linked */ 3749 if (!list_empty(&pwq->pwqs_node)) 3750 return; 3751 3752 /* set the matching work_color */ 3753 pwq->work_color = wq->work_color; 3754 3755 /* sync max_active to the current setting */ 3756 pwq_adjust_max_active(pwq); 3757 3758 /* link in @pwq */ 3759 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3760 } 3761 3762 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3763 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3764 const struct workqueue_attrs *attrs) 3765 { 3766 struct worker_pool *pool; 3767 struct pool_workqueue *pwq; 3768 3769 lockdep_assert_held(&wq_pool_mutex); 3770 3771 pool = get_unbound_pool(attrs); 3772 if (!pool) 3773 return NULL; 3774 3775 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3776 if (!pwq) { 3777 put_unbound_pool(pool); 3778 return NULL; 3779 } 3780 3781 init_pwq(pwq, wq, pool); 3782 return pwq; 3783 } 3784 3785 /** 3786 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3787 * @attrs: the wq_attrs of the default pwq of the target workqueue 3788 * @node: the target NUMA node 3789 * @cpu_going_down: if >= 0, the CPU to consider as offline 3790 * @cpumask: outarg, the resulting cpumask 3791 * 3792 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3793 * @cpu_going_down is >= 0, that cpu is considered offline during 3794 * calculation. The result is stored in @cpumask. 3795 * 3796 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3797 * enabled and @node has online CPUs requested by @attrs, the returned 3798 * cpumask is the intersection of the possible CPUs of @node and 3799 * @attrs->cpumask. 3800 * 3801 * The caller is responsible for ensuring that the cpumask of @node stays 3802 * stable. 3803 * 3804 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3805 * %false if equal. 3806 */ 3807 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3808 int cpu_going_down, cpumask_t *cpumask) 3809 { 3810 if (!wq_numa_enabled || attrs->no_numa) 3811 goto use_dfl; 3812 3813 /* does @node have any online CPUs @attrs wants? */ 3814 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3815 if (cpu_going_down >= 0) 3816 cpumask_clear_cpu(cpu_going_down, cpumask); 3817 3818 if (cpumask_empty(cpumask)) 3819 goto use_dfl; 3820 3821 /* yeap, return possible CPUs in @node that @attrs wants */ 3822 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3823 3824 if (cpumask_empty(cpumask)) { 3825 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 3826 "possible intersect\n"); 3827 return false; 3828 } 3829 3830 return !cpumask_equal(cpumask, attrs->cpumask); 3831 3832 use_dfl: 3833 cpumask_copy(cpumask, attrs->cpumask); 3834 return false; 3835 } 3836 3837 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3838 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3839 int node, 3840 struct pool_workqueue *pwq) 3841 { 3842 struct pool_workqueue *old_pwq; 3843 3844 lockdep_assert_held(&wq_pool_mutex); 3845 lockdep_assert_held(&wq->mutex); 3846 3847 /* link_pwq() can handle duplicate calls */ 3848 link_pwq(pwq); 3849 3850 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3851 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3852 return old_pwq; 3853 } 3854 3855 /* context to store the prepared attrs & pwqs before applying */ 3856 struct apply_wqattrs_ctx { 3857 struct workqueue_struct *wq; /* target workqueue */ 3858 struct workqueue_attrs *attrs; /* attrs to apply */ 3859 struct list_head list; /* queued for batching commit */ 3860 struct pool_workqueue *dfl_pwq; 3861 struct pool_workqueue *pwq_tbl[]; 3862 }; 3863 3864 /* free the resources after success or abort */ 3865 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 3866 { 3867 if (ctx) { 3868 int node; 3869 3870 for_each_node(node) 3871 put_pwq_unlocked(ctx->pwq_tbl[node]); 3872 put_pwq_unlocked(ctx->dfl_pwq); 3873 3874 free_workqueue_attrs(ctx->attrs); 3875 3876 kfree(ctx); 3877 } 3878 } 3879 3880 /* allocate the attrs and pwqs for later installation */ 3881 static struct apply_wqattrs_ctx * 3882 apply_wqattrs_prepare(struct workqueue_struct *wq, 3883 const struct workqueue_attrs *attrs) 3884 { 3885 struct apply_wqattrs_ctx *ctx; 3886 struct workqueue_attrs *new_attrs, *tmp_attrs; 3887 int node; 3888 3889 lockdep_assert_held(&wq_pool_mutex); 3890 3891 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL); 3892 3893 new_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3894 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3895 if (!ctx || !new_attrs || !tmp_attrs) 3896 goto out_free; 3897 3898 /* 3899 * Calculate the attrs of the default pwq. 3900 * If the user configured cpumask doesn't overlap with the 3901 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 3902 */ 3903 copy_workqueue_attrs(new_attrs, attrs); 3904 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask); 3905 if (unlikely(cpumask_empty(new_attrs->cpumask))) 3906 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask); 3907 3908 /* 3909 * We may create multiple pwqs with differing cpumasks. Make a 3910 * copy of @new_attrs which will be modified and used to obtain 3911 * pools. 3912 */ 3913 copy_workqueue_attrs(tmp_attrs, new_attrs); 3914 3915 /* 3916 * If something goes wrong during CPU up/down, we'll fall back to 3917 * the default pwq covering whole @attrs->cpumask. Always create 3918 * it even if we don't use it immediately. 3919 */ 3920 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3921 if (!ctx->dfl_pwq) 3922 goto out_free; 3923 3924 for_each_node(node) { 3925 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 3926 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3927 if (!ctx->pwq_tbl[node]) 3928 goto out_free; 3929 } else { 3930 ctx->dfl_pwq->refcnt++; 3931 ctx->pwq_tbl[node] = ctx->dfl_pwq; 3932 } 3933 } 3934 3935 /* save the user configured attrs and sanitize it. */ 3936 copy_workqueue_attrs(new_attrs, attrs); 3937 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3938 ctx->attrs = new_attrs; 3939 3940 ctx->wq = wq; 3941 free_workqueue_attrs(tmp_attrs); 3942 return ctx; 3943 3944 out_free: 3945 free_workqueue_attrs(tmp_attrs); 3946 free_workqueue_attrs(new_attrs); 3947 apply_wqattrs_cleanup(ctx); 3948 return NULL; 3949 } 3950 3951 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 3952 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 3953 { 3954 int node; 3955 3956 /* all pwqs have been created successfully, let's install'em */ 3957 mutex_lock(&ctx->wq->mutex); 3958 3959 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 3960 3961 /* save the previous pwq and install the new one */ 3962 for_each_node(node) 3963 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 3964 ctx->pwq_tbl[node]); 3965 3966 /* @dfl_pwq might not have been used, ensure it's linked */ 3967 link_pwq(ctx->dfl_pwq); 3968 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 3969 3970 mutex_unlock(&ctx->wq->mutex); 3971 } 3972 3973 static void apply_wqattrs_lock(void) 3974 { 3975 /* CPUs should stay stable across pwq creations and installations */ 3976 get_online_cpus(); 3977 mutex_lock(&wq_pool_mutex); 3978 } 3979 3980 static void apply_wqattrs_unlock(void) 3981 { 3982 mutex_unlock(&wq_pool_mutex); 3983 put_online_cpus(); 3984 } 3985 3986 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 3987 const struct workqueue_attrs *attrs) 3988 { 3989 struct apply_wqattrs_ctx *ctx; 3990 3991 /* only unbound workqueues can change attributes */ 3992 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 3993 return -EINVAL; 3994 3995 /* creating multiple pwqs breaks ordering guarantee */ 3996 if (!list_empty(&wq->pwqs)) { 3997 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 3998 return -EINVAL; 3999 4000 wq->flags &= ~__WQ_ORDERED; 4001 } 4002 4003 ctx = apply_wqattrs_prepare(wq, attrs); 4004 if (!ctx) 4005 return -ENOMEM; 4006 4007 /* the ctx has been prepared successfully, let's commit it */ 4008 apply_wqattrs_commit(ctx); 4009 apply_wqattrs_cleanup(ctx); 4010 4011 return 0; 4012 } 4013 4014 /** 4015 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 4016 * @wq: the target workqueue 4017 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 4018 * 4019 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 4020 * machines, this function maps a separate pwq to each NUMA node with 4021 * possibles CPUs in @attrs->cpumask so that work items are affine to the 4022 * NUMA node it was issued on. Older pwqs are released as in-flight work 4023 * items finish. Note that a work item which repeatedly requeues itself 4024 * back-to-back will stay on its current pwq. 4025 * 4026 * Performs GFP_KERNEL allocations. 4027 * 4028 * Return: 0 on success and -errno on failure. 4029 */ 4030 int apply_workqueue_attrs(struct workqueue_struct *wq, 4031 const struct workqueue_attrs *attrs) 4032 { 4033 int ret; 4034 4035 apply_wqattrs_lock(); 4036 ret = apply_workqueue_attrs_locked(wq, attrs); 4037 apply_wqattrs_unlock(); 4038 4039 return ret; 4040 } 4041 EXPORT_SYMBOL_GPL(apply_workqueue_attrs); 4042 4043 /** 4044 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 4045 * @wq: the target workqueue 4046 * @cpu: the CPU coming up or going down 4047 * @online: whether @cpu is coming up or going down 4048 * 4049 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 4050 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 4051 * @wq accordingly. 4052 * 4053 * If NUMA affinity can't be adjusted due to memory allocation failure, it 4054 * falls back to @wq->dfl_pwq which may not be optimal but is always 4055 * correct. 4056 * 4057 * Note that when the last allowed CPU of a NUMA node goes offline for a 4058 * workqueue with a cpumask spanning multiple nodes, the workers which were 4059 * already executing the work items for the workqueue will lose their CPU 4060 * affinity and may execute on any CPU. This is similar to how per-cpu 4061 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 4062 * affinity, it's the user's responsibility to flush the work item from 4063 * CPU_DOWN_PREPARE. 4064 */ 4065 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 4066 bool online) 4067 { 4068 int node = cpu_to_node(cpu); 4069 int cpu_off = online ? -1 : cpu; 4070 struct pool_workqueue *old_pwq = NULL, *pwq; 4071 struct workqueue_attrs *target_attrs; 4072 cpumask_t *cpumask; 4073 4074 lockdep_assert_held(&wq_pool_mutex); 4075 4076 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 4077 wq->unbound_attrs->no_numa) 4078 return; 4079 4080 /* 4081 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 4082 * Let's use a preallocated one. The following buf is protected by 4083 * CPU hotplug exclusion. 4084 */ 4085 target_attrs = wq_update_unbound_numa_attrs_buf; 4086 cpumask = target_attrs->cpumask; 4087 4088 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 4089 pwq = unbound_pwq_by_node(wq, node); 4090 4091 /* 4092 * Let's determine what needs to be done. If the target cpumask is 4093 * different from the default pwq's, we need to compare it to @pwq's 4094 * and create a new one if they don't match. If the target cpumask 4095 * equals the default pwq's, the default pwq should be used. 4096 */ 4097 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 4098 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 4099 return; 4100 } else { 4101 goto use_dfl_pwq; 4102 } 4103 4104 /* create a new pwq */ 4105 pwq = alloc_unbound_pwq(wq, target_attrs); 4106 if (!pwq) { 4107 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 4108 wq->name); 4109 goto use_dfl_pwq; 4110 } 4111 4112 /* Install the new pwq. */ 4113 mutex_lock(&wq->mutex); 4114 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 4115 goto out_unlock; 4116 4117 use_dfl_pwq: 4118 mutex_lock(&wq->mutex); 4119 spin_lock_irq(&wq->dfl_pwq->pool->lock); 4120 get_pwq(wq->dfl_pwq); 4121 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 4122 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 4123 out_unlock: 4124 mutex_unlock(&wq->mutex); 4125 put_pwq_unlocked(old_pwq); 4126 } 4127 4128 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4129 { 4130 bool highpri = wq->flags & WQ_HIGHPRI; 4131 int cpu, ret; 4132 4133 if (!(wq->flags & WQ_UNBOUND)) { 4134 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 4135 if (!wq->cpu_pwqs) 4136 return -ENOMEM; 4137 4138 for_each_possible_cpu(cpu) { 4139 struct pool_workqueue *pwq = 4140 per_cpu_ptr(wq->cpu_pwqs, cpu); 4141 struct worker_pool *cpu_pools = 4142 per_cpu(cpu_worker_pools, cpu); 4143 4144 init_pwq(pwq, wq, &cpu_pools[highpri]); 4145 4146 mutex_lock(&wq->mutex); 4147 link_pwq(pwq); 4148 mutex_unlock(&wq->mutex); 4149 } 4150 return 0; 4151 } else if (wq->flags & __WQ_ORDERED) { 4152 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 4153 /* there should only be single pwq for ordering guarantee */ 4154 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 4155 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 4156 "ordering guarantee broken for workqueue %s\n", wq->name); 4157 return ret; 4158 } else { 4159 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4160 } 4161 } 4162 4163 static int wq_clamp_max_active(int max_active, unsigned int flags, 4164 const char *name) 4165 { 4166 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 4167 4168 if (max_active < 1 || max_active > lim) 4169 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4170 max_active, name, 1, lim); 4171 4172 return clamp_val(max_active, 1, lim); 4173 } 4174 4175 /* 4176 * Workqueues which may be used during memory reclaim should have a rescuer 4177 * to guarantee forward progress. 4178 */ 4179 static int init_rescuer(struct workqueue_struct *wq) 4180 { 4181 struct worker *rescuer; 4182 int ret; 4183 4184 if (!(wq->flags & WQ_MEM_RECLAIM)) 4185 return 0; 4186 4187 rescuer = alloc_worker(NUMA_NO_NODE); 4188 if (!rescuer) 4189 return -ENOMEM; 4190 4191 rescuer->rescue_wq = wq; 4192 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name); 4193 ret = PTR_ERR_OR_ZERO(rescuer->task); 4194 if (ret) { 4195 kfree(rescuer); 4196 return ret; 4197 } 4198 4199 wq->rescuer = rescuer; 4200 kthread_bind_mask(rescuer->task, cpu_possible_mask); 4201 wake_up_process(rescuer->task); 4202 4203 return 0; 4204 } 4205 4206 struct workqueue_struct *alloc_workqueue(const char *fmt, 4207 unsigned int flags, 4208 int max_active, ...) 4209 { 4210 size_t tbl_size = 0; 4211 va_list args; 4212 struct workqueue_struct *wq; 4213 struct pool_workqueue *pwq; 4214 4215 /* 4216 * Unbound && max_active == 1 used to imply ordered, which is no 4217 * longer the case on NUMA machines due to per-node pools. While 4218 * alloc_ordered_workqueue() is the right way to create an ordered 4219 * workqueue, keep the previous behavior to avoid subtle breakages 4220 * on NUMA. 4221 */ 4222 if ((flags & WQ_UNBOUND) && max_active == 1) 4223 flags |= __WQ_ORDERED; 4224 4225 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4226 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4227 flags |= WQ_UNBOUND; 4228 4229 /* allocate wq and format name */ 4230 if (flags & WQ_UNBOUND) 4231 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 4232 4233 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4234 if (!wq) 4235 return NULL; 4236 4237 if (flags & WQ_UNBOUND) { 4238 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL); 4239 if (!wq->unbound_attrs) 4240 goto err_free_wq; 4241 } 4242 4243 va_start(args, max_active); 4244 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4245 va_end(args); 4246 4247 max_active = max_active ?: WQ_DFL_ACTIVE; 4248 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4249 4250 /* init wq */ 4251 wq->flags = flags; 4252 wq->saved_max_active = max_active; 4253 mutex_init(&wq->mutex); 4254 atomic_set(&wq->nr_pwqs_to_flush, 0); 4255 INIT_LIST_HEAD(&wq->pwqs); 4256 INIT_LIST_HEAD(&wq->flusher_queue); 4257 INIT_LIST_HEAD(&wq->flusher_overflow); 4258 INIT_LIST_HEAD(&wq->maydays); 4259 4260 wq_init_lockdep(wq); 4261 INIT_LIST_HEAD(&wq->list); 4262 4263 if (alloc_and_link_pwqs(wq) < 0) 4264 goto err_free_wq; 4265 4266 if (wq_online && init_rescuer(wq) < 0) 4267 goto err_destroy; 4268 4269 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4270 goto err_destroy; 4271 4272 /* 4273 * wq_pool_mutex protects global freeze state and workqueues list. 4274 * Grab it, adjust max_active and add the new @wq to workqueues 4275 * list. 4276 */ 4277 mutex_lock(&wq_pool_mutex); 4278 4279 mutex_lock(&wq->mutex); 4280 for_each_pwq(pwq, wq) 4281 pwq_adjust_max_active(pwq); 4282 mutex_unlock(&wq->mutex); 4283 4284 list_add_tail_rcu(&wq->list, &workqueues); 4285 4286 mutex_unlock(&wq_pool_mutex); 4287 4288 return wq; 4289 4290 err_free_wq: 4291 free_workqueue_attrs(wq->unbound_attrs); 4292 kfree(wq); 4293 return NULL; 4294 err_destroy: 4295 destroy_workqueue(wq); 4296 return NULL; 4297 } 4298 EXPORT_SYMBOL_GPL(alloc_workqueue); 4299 4300 /** 4301 * destroy_workqueue - safely terminate a workqueue 4302 * @wq: target workqueue 4303 * 4304 * Safely destroy a workqueue. All work currently pending will be done first. 4305 */ 4306 void destroy_workqueue(struct workqueue_struct *wq) 4307 { 4308 struct pool_workqueue *pwq; 4309 int node; 4310 4311 /* drain it before proceeding with destruction */ 4312 drain_workqueue(wq); 4313 4314 /* sanity checks */ 4315 mutex_lock(&wq->mutex); 4316 for_each_pwq(pwq, wq) { 4317 int i; 4318 4319 for (i = 0; i < WORK_NR_COLORS; i++) { 4320 if (WARN_ON(pwq->nr_in_flight[i])) { 4321 mutex_unlock(&wq->mutex); 4322 show_workqueue_state(); 4323 return; 4324 } 4325 } 4326 4327 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) || 4328 WARN_ON(pwq->nr_active) || 4329 WARN_ON(!list_empty(&pwq->delayed_works))) { 4330 mutex_unlock(&wq->mutex); 4331 show_workqueue_state(); 4332 return; 4333 } 4334 } 4335 mutex_unlock(&wq->mutex); 4336 4337 /* 4338 * wq list is used to freeze wq, remove from list after 4339 * flushing is complete in case freeze races us. 4340 */ 4341 mutex_lock(&wq_pool_mutex); 4342 list_del_rcu(&wq->list); 4343 mutex_unlock(&wq_pool_mutex); 4344 4345 workqueue_sysfs_unregister(wq); 4346 4347 if (wq->rescuer) 4348 kthread_stop(wq->rescuer->task); 4349 4350 if (!(wq->flags & WQ_UNBOUND)) { 4351 wq_unregister_lockdep(wq); 4352 /* 4353 * The base ref is never dropped on per-cpu pwqs. Directly 4354 * schedule RCU free. 4355 */ 4356 call_rcu(&wq->rcu, rcu_free_wq); 4357 } else { 4358 /* 4359 * We're the sole accessor of @wq at this point. Directly 4360 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4361 * @wq will be freed when the last pwq is released. 4362 */ 4363 for_each_node(node) { 4364 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4365 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4366 put_pwq_unlocked(pwq); 4367 } 4368 4369 /* 4370 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4371 * put. Don't access it afterwards. 4372 */ 4373 pwq = wq->dfl_pwq; 4374 wq->dfl_pwq = NULL; 4375 put_pwq_unlocked(pwq); 4376 } 4377 } 4378 EXPORT_SYMBOL_GPL(destroy_workqueue); 4379 4380 /** 4381 * workqueue_set_max_active - adjust max_active of a workqueue 4382 * @wq: target workqueue 4383 * @max_active: new max_active value. 4384 * 4385 * Set max_active of @wq to @max_active. 4386 * 4387 * CONTEXT: 4388 * Don't call from IRQ context. 4389 */ 4390 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4391 { 4392 struct pool_workqueue *pwq; 4393 4394 /* disallow meddling with max_active for ordered workqueues */ 4395 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4396 return; 4397 4398 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4399 4400 mutex_lock(&wq->mutex); 4401 4402 wq->flags &= ~__WQ_ORDERED; 4403 wq->saved_max_active = max_active; 4404 4405 for_each_pwq(pwq, wq) 4406 pwq_adjust_max_active(pwq); 4407 4408 mutex_unlock(&wq->mutex); 4409 } 4410 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4411 4412 /** 4413 * current_work - retrieve %current task's work struct 4414 * 4415 * Determine if %current task is a workqueue worker and what it's working on. 4416 * Useful to find out the context that the %current task is running in. 4417 * 4418 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 4419 */ 4420 struct work_struct *current_work(void) 4421 { 4422 struct worker *worker = current_wq_worker(); 4423 4424 return worker ? worker->current_work : NULL; 4425 } 4426 EXPORT_SYMBOL(current_work); 4427 4428 /** 4429 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4430 * 4431 * Determine whether %current is a workqueue rescuer. Can be used from 4432 * work functions to determine whether it's being run off the rescuer task. 4433 * 4434 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4435 */ 4436 bool current_is_workqueue_rescuer(void) 4437 { 4438 struct worker *worker = current_wq_worker(); 4439 4440 return worker && worker->rescue_wq; 4441 } 4442 4443 /** 4444 * workqueue_congested - test whether a workqueue is congested 4445 * @cpu: CPU in question 4446 * @wq: target workqueue 4447 * 4448 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4449 * no synchronization around this function and the test result is 4450 * unreliable and only useful as advisory hints or for debugging. 4451 * 4452 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4453 * Note that both per-cpu and unbound workqueues may be associated with 4454 * multiple pool_workqueues which have separate congested states. A 4455 * workqueue being congested on one CPU doesn't mean the workqueue is also 4456 * contested on other CPUs / NUMA nodes. 4457 * 4458 * Return: 4459 * %true if congested, %false otherwise. 4460 */ 4461 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4462 { 4463 struct pool_workqueue *pwq; 4464 bool ret; 4465 4466 rcu_read_lock_sched(); 4467 4468 if (cpu == WORK_CPU_UNBOUND) 4469 cpu = smp_processor_id(); 4470 4471 if (!(wq->flags & WQ_UNBOUND)) 4472 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4473 else 4474 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4475 4476 ret = !list_empty(&pwq->delayed_works); 4477 rcu_read_unlock_sched(); 4478 4479 return ret; 4480 } 4481 EXPORT_SYMBOL_GPL(workqueue_congested); 4482 4483 /** 4484 * work_busy - test whether a work is currently pending or running 4485 * @work: the work to be tested 4486 * 4487 * Test whether @work is currently pending or running. There is no 4488 * synchronization around this function and the test result is 4489 * unreliable and only useful as advisory hints or for debugging. 4490 * 4491 * Return: 4492 * OR'd bitmask of WORK_BUSY_* bits. 4493 */ 4494 unsigned int work_busy(struct work_struct *work) 4495 { 4496 struct worker_pool *pool; 4497 unsigned long flags; 4498 unsigned int ret = 0; 4499 4500 if (work_pending(work)) 4501 ret |= WORK_BUSY_PENDING; 4502 4503 local_irq_save(flags); 4504 pool = get_work_pool(work); 4505 if (pool) { 4506 spin_lock(&pool->lock); 4507 if (find_worker_executing_work(pool, work)) 4508 ret |= WORK_BUSY_RUNNING; 4509 spin_unlock(&pool->lock); 4510 } 4511 local_irq_restore(flags); 4512 4513 return ret; 4514 } 4515 EXPORT_SYMBOL_GPL(work_busy); 4516 4517 /** 4518 * set_worker_desc - set description for the current work item 4519 * @fmt: printf-style format string 4520 * @...: arguments for the format string 4521 * 4522 * This function can be called by a running work function to describe what 4523 * the work item is about. If the worker task gets dumped, this 4524 * information will be printed out together to help debugging. The 4525 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4526 */ 4527 void set_worker_desc(const char *fmt, ...) 4528 { 4529 struct worker *worker = current_wq_worker(); 4530 va_list args; 4531 4532 if (worker) { 4533 va_start(args, fmt); 4534 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4535 va_end(args); 4536 } 4537 } 4538 EXPORT_SYMBOL_GPL(set_worker_desc); 4539 4540 /** 4541 * print_worker_info - print out worker information and description 4542 * @log_lvl: the log level to use when printing 4543 * @task: target task 4544 * 4545 * If @task is a worker and currently executing a work item, print out the 4546 * name of the workqueue being serviced and worker description set with 4547 * set_worker_desc() by the currently executing work item. 4548 * 4549 * This function can be safely called on any task as long as the 4550 * task_struct itself is accessible. While safe, this function isn't 4551 * synchronized and may print out mixups or garbages of limited length. 4552 */ 4553 void print_worker_info(const char *log_lvl, struct task_struct *task) 4554 { 4555 work_func_t *fn = NULL; 4556 char name[WQ_NAME_LEN] = { }; 4557 char desc[WORKER_DESC_LEN] = { }; 4558 struct pool_workqueue *pwq = NULL; 4559 struct workqueue_struct *wq = NULL; 4560 struct worker *worker; 4561 4562 if (!(task->flags & PF_WQ_WORKER)) 4563 return; 4564 4565 /* 4566 * This function is called without any synchronization and @task 4567 * could be in any state. Be careful with dereferences. 4568 */ 4569 worker = kthread_probe_data(task); 4570 4571 /* 4572 * Carefully copy the associated workqueue's workfn, name and desc. 4573 * Keep the original last '\0' in case the original is garbage. 4574 */ 4575 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4576 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4577 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4578 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4579 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4580 4581 if (fn || name[0] || desc[0]) { 4582 printk("%sWorkqueue: %s %pf", log_lvl, name, fn); 4583 if (strcmp(name, desc)) 4584 pr_cont(" (%s)", desc); 4585 pr_cont("\n"); 4586 } 4587 } 4588 4589 static void pr_cont_pool_info(struct worker_pool *pool) 4590 { 4591 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4592 if (pool->node != NUMA_NO_NODE) 4593 pr_cont(" node=%d", pool->node); 4594 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4595 } 4596 4597 static void pr_cont_work(bool comma, struct work_struct *work) 4598 { 4599 if (work->func == wq_barrier_func) { 4600 struct wq_barrier *barr; 4601 4602 barr = container_of(work, struct wq_barrier, work); 4603 4604 pr_cont("%s BAR(%d)", comma ? "," : "", 4605 task_pid_nr(barr->task)); 4606 } else { 4607 pr_cont("%s %pf", comma ? "," : "", work->func); 4608 } 4609 } 4610 4611 static void show_pwq(struct pool_workqueue *pwq) 4612 { 4613 struct worker_pool *pool = pwq->pool; 4614 struct work_struct *work; 4615 struct worker *worker; 4616 bool has_in_flight = false, has_pending = false; 4617 int bkt; 4618 4619 pr_info(" pwq %d:", pool->id); 4620 pr_cont_pool_info(pool); 4621 4622 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active, 4623 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4624 4625 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4626 if (worker->current_pwq == pwq) { 4627 has_in_flight = true; 4628 break; 4629 } 4630 } 4631 if (has_in_flight) { 4632 bool comma = false; 4633 4634 pr_info(" in-flight:"); 4635 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4636 if (worker->current_pwq != pwq) 4637 continue; 4638 4639 pr_cont("%s %d%s:%pf", comma ? "," : "", 4640 task_pid_nr(worker->task), 4641 worker == pwq->wq->rescuer ? "(RESCUER)" : "", 4642 worker->current_func); 4643 list_for_each_entry(work, &worker->scheduled, entry) 4644 pr_cont_work(false, work); 4645 comma = true; 4646 } 4647 pr_cont("\n"); 4648 } 4649 4650 list_for_each_entry(work, &pool->worklist, entry) { 4651 if (get_work_pwq(work) == pwq) { 4652 has_pending = true; 4653 break; 4654 } 4655 } 4656 if (has_pending) { 4657 bool comma = false; 4658 4659 pr_info(" pending:"); 4660 list_for_each_entry(work, &pool->worklist, entry) { 4661 if (get_work_pwq(work) != pwq) 4662 continue; 4663 4664 pr_cont_work(comma, work); 4665 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4666 } 4667 pr_cont("\n"); 4668 } 4669 4670 if (!list_empty(&pwq->delayed_works)) { 4671 bool comma = false; 4672 4673 pr_info(" delayed:"); 4674 list_for_each_entry(work, &pwq->delayed_works, entry) { 4675 pr_cont_work(comma, work); 4676 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4677 } 4678 pr_cont("\n"); 4679 } 4680 } 4681 4682 /** 4683 * show_workqueue_state - dump workqueue state 4684 * 4685 * Called from a sysrq handler or try_to_freeze_tasks() and prints out 4686 * all busy workqueues and pools. 4687 */ 4688 void show_workqueue_state(void) 4689 { 4690 struct workqueue_struct *wq; 4691 struct worker_pool *pool; 4692 unsigned long flags; 4693 int pi; 4694 4695 rcu_read_lock_sched(); 4696 4697 pr_info("Showing busy workqueues and worker pools:\n"); 4698 4699 list_for_each_entry_rcu(wq, &workqueues, list) { 4700 struct pool_workqueue *pwq; 4701 bool idle = true; 4702 4703 for_each_pwq(pwq, wq) { 4704 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) { 4705 idle = false; 4706 break; 4707 } 4708 } 4709 if (idle) 4710 continue; 4711 4712 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4713 4714 for_each_pwq(pwq, wq) { 4715 spin_lock_irqsave(&pwq->pool->lock, flags); 4716 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4717 show_pwq(pwq); 4718 spin_unlock_irqrestore(&pwq->pool->lock, flags); 4719 /* 4720 * We could be printing a lot from atomic context, e.g. 4721 * sysrq-t -> show_workqueue_state(). Avoid triggering 4722 * hard lockup. 4723 */ 4724 touch_nmi_watchdog(); 4725 } 4726 } 4727 4728 for_each_pool(pool, pi) { 4729 struct worker *worker; 4730 bool first = true; 4731 4732 spin_lock_irqsave(&pool->lock, flags); 4733 if (pool->nr_workers == pool->nr_idle) 4734 goto next_pool; 4735 4736 pr_info("pool %d:", pool->id); 4737 pr_cont_pool_info(pool); 4738 pr_cont(" hung=%us workers=%d", 4739 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000, 4740 pool->nr_workers); 4741 if (pool->manager) 4742 pr_cont(" manager: %d", 4743 task_pid_nr(pool->manager->task)); 4744 list_for_each_entry(worker, &pool->idle_list, entry) { 4745 pr_cont(" %s%d", first ? "idle: " : "", 4746 task_pid_nr(worker->task)); 4747 first = false; 4748 } 4749 pr_cont("\n"); 4750 next_pool: 4751 spin_unlock_irqrestore(&pool->lock, flags); 4752 /* 4753 * We could be printing a lot from atomic context, e.g. 4754 * sysrq-t -> show_workqueue_state(). Avoid triggering 4755 * hard lockup. 4756 */ 4757 touch_nmi_watchdog(); 4758 } 4759 4760 rcu_read_unlock_sched(); 4761 } 4762 4763 /* used to show worker information through /proc/PID/{comm,stat,status} */ 4764 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 4765 { 4766 int off; 4767 4768 /* always show the actual comm */ 4769 off = strscpy(buf, task->comm, size); 4770 if (off < 0) 4771 return; 4772 4773 /* stabilize PF_WQ_WORKER and worker pool association */ 4774 mutex_lock(&wq_pool_attach_mutex); 4775 4776 if (task->flags & PF_WQ_WORKER) { 4777 struct worker *worker = kthread_data(task); 4778 struct worker_pool *pool = worker->pool; 4779 4780 if (pool) { 4781 spin_lock_irq(&pool->lock); 4782 /* 4783 * ->desc tracks information (wq name or 4784 * set_worker_desc()) for the latest execution. If 4785 * current, prepend '+', otherwise '-'. 4786 */ 4787 if (worker->desc[0] != '\0') { 4788 if (worker->current_work) 4789 scnprintf(buf + off, size - off, "+%s", 4790 worker->desc); 4791 else 4792 scnprintf(buf + off, size - off, "-%s", 4793 worker->desc); 4794 } 4795 spin_unlock_irq(&pool->lock); 4796 } 4797 } 4798 4799 mutex_unlock(&wq_pool_attach_mutex); 4800 } 4801 4802 #ifdef CONFIG_SMP 4803 4804 /* 4805 * CPU hotplug. 4806 * 4807 * There are two challenges in supporting CPU hotplug. Firstly, there 4808 * are a lot of assumptions on strong associations among work, pwq and 4809 * pool which make migrating pending and scheduled works very 4810 * difficult to implement without impacting hot paths. Secondly, 4811 * worker pools serve mix of short, long and very long running works making 4812 * blocked draining impractical. 4813 * 4814 * This is solved by allowing the pools to be disassociated from the CPU 4815 * running as an unbound one and allowing it to be reattached later if the 4816 * cpu comes back online. 4817 */ 4818 4819 static void unbind_workers(int cpu) 4820 { 4821 struct worker_pool *pool; 4822 struct worker *worker; 4823 4824 for_each_cpu_worker_pool(pool, cpu) { 4825 mutex_lock(&wq_pool_attach_mutex); 4826 spin_lock_irq(&pool->lock); 4827 4828 /* 4829 * We've blocked all attach/detach operations. Make all workers 4830 * unbound and set DISASSOCIATED. Before this, all workers 4831 * except for the ones which are still executing works from 4832 * before the last CPU down must be on the cpu. After 4833 * this, they may become diasporas. 4834 */ 4835 for_each_pool_worker(worker, pool) 4836 worker->flags |= WORKER_UNBOUND; 4837 4838 pool->flags |= POOL_DISASSOCIATED; 4839 4840 spin_unlock_irq(&pool->lock); 4841 mutex_unlock(&wq_pool_attach_mutex); 4842 4843 /* 4844 * Call schedule() so that we cross rq->lock and thus can 4845 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4846 * This is necessary as scheduler callbacks may be invoked 4847 * from other cpus. 4848 */ 4849 schedule(); 4850 4851 /* 4852 * Sched callbacks are disabled now. Zap nr_running. 4853 * After this, nr_running stays zero and need_more_worker() 4854 * and keep_working() are always true as long as the 4855 * worklist is not empty. This pool now behaves as an 4856 * unbound (in terms of concurrency management) pool which 4857 * are served by workers tied to the pool. 4858 */ 4859 atomic_set(&pool->nr_running, 0); 4860 4861 /* 4862 * With concurrency management just turned off, a busy 4863 * worker blocking could lead to lengthy stalls. Kick off 4864 * unbound chain execution of currently pending work items. 4865 */ 4866 spin_lock_irq(&pool->lock); 4867 wake_up_worker(pool); 4868 spin_unlock_irq(&pool->lock); 4869 } 4870 } 4871 4872 /** 4873 * rebind_workers - rebind all workers of a pool to the associated CPU 4874 * @pool: pool of interest 4875 * 4876 * @pool->cpu is coming online. Rebind all workers to the CPU. 4877 */ 4878 static void rebind_workers(struct worker_pool *pool) 4879 { 4880 struct worker *worker; 4881 4882 lockdep_assert_held(&wq_pool_attach_mutex); 4883 4884 /* 4885 * Restore CPU affinity of all workers. As all idle workers should 4886 * be on the run-queue of the associated CPU before any local 4887 * wake-ups for concurrency management happen, restore CPU affinity 4888 * of all workers first and then clear UNBOUND. As we're called 4889 * from CPU_ONLINE, the following shouldn't fail. 4890 */ 4891 for_each_pool_worker(worker, pool) 4892 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4893 pool->attrs->cpumask) < 0); 4894 4895 spin_lock_irq(&pool->lock); 4896 4897 pool->flags &= ~POOL_DISASSOCIATED; 4898 4899 for_each_pool_worker(worker, pool) { 4900 unsigned int worker_flags = worker->flags; 4901 4902 /* 4903 * A bound idle worker should actually be on the runqueue 4904 * of the associated CPU for local wake-ups targeting it to 4905 * work. Kick all idle workers so that they migrate to the 4906 * associated CPU. Doing this in the same loop as 4907 * replacing UNBOUND with REBOUND is safe as no worker will 4908 * be bound before @pool->lock is released. 4909 */ 4910 if (worker_flags & WORKER_IDLE) 4911 wake_up_process(worker->task); 4912 4913 /* 4914 * We want to clear UNBOUND but can't directly call 4915 * worker_clr_flags() or adjust nr_running. Atomically 4916 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4917 * @worker will clear REBOUND using worker_clr_flags() when 4918 * it initiates the next execution cycle thus restoring 4919 * concurrency management. Note that when or whether 4920 * @worker clears REBOUND doesn't affect correctness. 4921 * 4922 * WRITE_ONCE() is necessary because @worker->flags may be 4923 * tested without holding any lock in 4924 * wq_worker_waking_up(). Without it, NOT_RUNNING test may 4925 * fail incorrectly leading to premature concurrency 4926 * management operations. 4927 */ 4928 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4929 worker_flags |= WORKER_REBOUND; 4930 worker_flags &= ~WORKER_UNBOUND; 4931 WRITE_ONCE(worker->flags, worker_flags); 4932 } 4933 4934 spin_unlock_irq(&pool->lock); 4935 } 4936 4937 /** 4938 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4939 * @pool: unbound pool of interest 4940 * @cpu: the CPU which is coming up 4941 * 4942 * An unbound pool may end up with a cpumask which doesn't have any online 4943 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4944 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4945 * online CPU before, cpus_allowed of all its workers should be restored. 4946 */ 4947 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 4948 { 4949 static cpumask_t cpumask; 4950 struct worker *worker; 4951 4952 lockdep_assert_held(&wq_pool_attach_mutex); 4953 4954 /* is @cpu allowed for @pool? */ 4955 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 4956 return; 4957 4958 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 4959 4960 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 4961 for_each_pool_worker(worker, pool) 4962 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 4963 } 4964 4965 int workqueue_prepare_cpu(unsigned int cpu) 4966 { 4967 struct worker_pool *pool; 4968 4969 for_each_cpu_worker_pool(pool, cpu) { 4970 if (pool->nr_workers) 4971 continue; 4972 if (!create_worker(pool)) 4973 return -ENOMEM; 4974 } 4975 return 0; 4976 } 4977 4978 int workqueue_online_cpu(unsigned int cpu) 4979 { 4980 struct worker_pool *pool; 4981 struct workqueue_struct *wq; 4982 int pi; 4983 4984 mutex_lock(&wq_pool_mutex); 4985 4986 for_each_pool(pool, pi) { 4987 mutex_lock(&wq_pool_attach_mutex); 4988 4989 if (pool->cpu == cpu) 4990 rebind_workers(pool); 4991 else if (pool->cpu < 0) 4992 restore_unbound_workers_cpumask(pool, cpu); 4993 4994 mutex_unlock(&wq_pool_attach_mutex); 4995 } 4996 4997 /* update NUMA affinity of unbound workqueues */ 4998 list_for_each_entry(wq, &workqueues, list) 4999 wq_update_unbound_numa(wq, cpu, true); 5000 5001 mutex_unlock(&wq_pool_mutex); 5002 return 0; 5003 } 5004 5005 int workqueue_offline_cpu(unsigned int cpu) 5006 { 5007 struct workqueue_struct *wq; 5008 5009 /* unbinding per-cpu workers should happen on the local CPU */ 5010 if (WARN_ON(cpu != smp_processor_id())) 5011 return -1; 5012 5013 unbind_workers(cpu); 5014 5015 /* update NUMA affinity of unbound workqueues */ 5016 mutex_lock(&wq_pool_mutex); 5017 list_for_each_entry(wq, &workqueues, list) 5018 wq_update_unbound_numa(wq, cpu, false); 5019 mutex_unlock(&wq_pool_mutex); 5020 5021 return 0; 5022 } 5023 5024 struct work_for_cpu { 5025 struct work_struct work; 5026 long (*fn)(void *); 5027 void *arg; 5028 long ret; 5029 }; 5030 5031 static void work_for_cpu_fn(struct work_struct *work) 5032 { 5033 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 5034 5035 wfc->ret = wfc->fn(wfc->arg); 5036 } 5037 5038 /** 5039 * work_on_cpu - run a function in thread context on a particular cpu 5040 * @cpu: the cpu to run on 5041 * @fn: the function to run 5042 * @arg: the function arg 5043 * 5044 * It is up to the caller to ensure that the cpu doesn't go offline. 5045 * The caller must not hold any locks which would prevent @fn from completing. 5046 * 5047 * Return: The value @fn returns. 5048 */ 5049 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 5050 { 5051 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 5052 5053 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 5054 schedule_work_on(cpu, &wfc.work); 5055 flush_work(&wfc.work); 5056 destroy_work_on_stack(&wfc.work); 5057 return wfc.ret; 5058 } 5059 EXPORT_SYMBOL_GPL(work_on_cpu); 5060 5061 /** 5062 * work_on_cpu_safe - run a function in thread context on a particular cpu 5063 * @cpu: the cpu to run on 5064 * @fn: the function to run 5065 * @arg: the function argument 5066 * 5067 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 5068 * any locks which would prevent @fn from completing. 5069 * 5070 * Return: The value @fn returns. 5071 */ 5072 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) 5073 { 5074 long ret = -ENODEV; 5075 5076 get_online_cpus(); 5077 if (cpu_online(cpu)) 5078 ret = work_on_cpu(cpu, fn, arg); 5079 put_online_cpus(); 5080 return ret; 5081 } 5082 EXPORT_SYMBOL_GPL(work_on_cpu_safe); 5083 #endif /* CONFIG_SMP */ 5084 5085 #ifdef CONFIG_FREEZER 5086 5087 /** 5088 * freeze_workqueues_begin - begin freezing workqueues 5089 * 5090 * Start freezing workqueues. After this function returns, all freezable 5091 * workqueues will queue new works to their delayed_works list instead of 5092 * pool->worklist. 5093 * 5094 * CONTEXT: 5095 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5096 */ 5097 void freeze_workqueues_begin(void) 5098 { 5099 struct workqueue_struct *wq; 5100 struct pool_workqueue *pwq; 5101 5102 mutex_lock(&wq_pool_mutex); 5103 5104 WARN_ON_ONCE(workqueue_freezing); 5105 workqueue_freezing = true; 5106 5107 list_for_each_entry(wq, &workqueues, list) { 5108 mutex_lock(&wq->mutex); 5109 for_each_pwq(pwq, wq) 5110 pwq_adjust_max_active(pwq); 5111 mutex_unlock(&wq->mutex); 5112 } 5113 5114 mutex_unlock(&wq_pool_mutex); 5115 } 5116 5117 /** 5118 * freeze_workqueues_busy - are freezable workqueues still busy? 5119 * 5120 * Check whether freezing is complete. This function must be called 5121 * between freeze_workqueues_begin() and thaw_workqueues(). 5122 * 5123 * CONTEXT: 5124 * Grabs and releases wq_pool_mutex. 5125 * 5126 * Return: 5127 * %true if some freezable workqueues are still busy. %false if freezing 5128 * is complete. 5129 */ 5130 bool freeze_workqueues_busy(void) 5131 { 5132 bool busy = false; 5133 struct workqueue_struct *wq; 5134 struct pool_workqueue *pwq; 5135 5136 mutex_lock(&wq_pool_mutex); 5137 5138 WARN_ON_ONCE(!workqueue_freezing); 5139 5140 list_for_each_entry(wq, &workqueues, list) { 5141 if (!(wq->flags & WQ_FREEZABLE)) 5142 continue; 5143 /* 5144 * nr_active is monotonically decreasing. It's safe 5145 * to peek without lock. 5146 */ 5147 rcu_read_lock_sched(); 5148 for_each_pwq(pwq, wq) { 5149 WARN_ON_ONCE(pwq->nr_active < 0); 5150 if (pwq->nr_active) { 5151 busy = true; 5152 rcu_read_unlock_sched(); 5153 goto out_unlock; 5154 } 5155 } 5156 rcu_read_unlock_sched(); 5157 } 5158 out_unlock: 5159 mutex_unlock(&wq_pool_mutex); 5160 return busy; 5161 } 5162 5163 /** 5164 * thaw_workqueues - thaw workqueues 5165 * 5166 * Thaw workqueues. Normal queueing is restored and all collected 5167 * frozen works are transferred to their respective pool worklists. 5168 * 5169 * CONTEXT: 5170 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5171 */ 5172 void thaw_workqueues(void) 5173 { 5174 struct workqueue_struct *wq; 5175 struct pool_workqueue *pwq; 5176 5177 mutex_lock(&wq_pool_mutex); 5178 5179 if (!workqueue_freezing) 5180 goto out_unlock; 5181 5182 workqueue_freezing = false; 5183 5184 /* restore max_active and repopulate worklist */ 5185 list_for_each_entry(wq, &workqueues, list) { 5186 mutex_lock(&wq->mutex); 5187 for_each_pwq(pwq, wq) 5188 pwq_adjust_max_active(pwq); 5189 mutex_unlock(&wq->mutex); 5190 } 5191 5192 out_unlock: 5193 mutex_unlock(&wq_pool_mutex); 5194 } 5195 #endif /* CONFIG_FREEZER */ 5196 5197 static int workqueue_apply_unbound_cpumask(void) 5198 { 5199 LIST_HEAD(ctxs); 5200 int ret = 0; 5201 struct workqueue_struct *wq; 5202 struct apply_wqattrs_ctx *ctx, *n; 5203 5204 lockdep_assert_held(&wq_pool_mutex); 5205 5206 list_for_each_entry(wq, &workqueues, list) { 5207 if (!(wq->flags & WQ_UNBOUND)) 5208 continue; 5209 /* creating multiple pwqs breaks ordering guarantee */ 5210 if (wq->flags & __WQ_ORDERED) 5211 continue; 5212 5213 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs); 5214 if (!ctx) { 5215 ret = -ENOMEM; 5216 break; 5217 } 5218 5219 list_add_tail(&ctx->list, &ctxs); 5220 } 5221 5222 list_for_each_entry_safe(ctx, n, &ctxs, list) { 5223 if (!ret) 5224 apply_wqattrs_commit(ctx); 5225 apply_wqattrs_cleanup(ctx); 5226 } 5227 5228 return ret; 5229 } 5230 5231 /** 5232 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 5233 * @cpumask: the cpumask to set 5234 * 5235 * The low-level workqueues cpumask is a global cpumask that limits 5236 * the affinity of all unbound workqueues. This function check the @cpumask 5237 * and apply it to all unbound workqueues and updates all pwqs of them. 5238 * 5239 * Retun: 0 - Success 5240 * -EINVAL - Invalid @cpumask 5241 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 5242 */ 5243 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 5244 { 5245 int ret = -EINVAL; 5246 cpumask_var_t saved_cpumask; 5247 5248 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) 5249 return -ENOMEM; 5250 5251 /* 5252 * Not excluding isolated cpus on purpose. 5253 * If the user wishes to include them, we allow that. 5254 */ 5255 cpumask_and(cpumask, cpumask, cpu_possible_mask); 5256 if (!cpumask_empty(cpumask)) { 5257 apply_wqattrs_lock(); 5258 5259 /* save the old wq_unbound_cpumask. */ 5260 cpumask_copy(saved_cpumask, wq_unbound_cpumask); 5261 5262 /* update wq_unbound_cpumask at first and apply it to wqs. */ 5263 cpumask_copy(wq_unbound_cpumask, cpumask); 5264 ret = workqueue_apply_unbound_cpumask(); 5265 5266 /* restore the wq_unbound_cpumask when failed. */ 5267 if (ret < 0) 5268 cpumask_copy(wq_unbound_cpumask, saved_cpumask); 5269 5270 apply_wqattrs_unlock(); 5271 } 5272 5273 free_cpumask_var(saved_cpumask); 5274 return ret; 5275 } 5276 5277 #ifdef CONFIG_SYSFS 5278 /* 5279 * Workqueues with WQ_SYSFS flag set is visible to userland via 5280 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 5281 * following attributes. 5282 * 5283 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 5284 * max_active RW int : maximum number of in-flight work items 5285 * 5286 * Unbound workqueues have the following extra attributes. 5287 * 5288 * pool_ids RO int : the associated pool IDs for each node 5289 * nice RW int : nice value of the workers 5290 * cpumask RW mask : bitmask of allowed CPUs for the workers 5291 * numa RW bool : whether enable NUMA affinity 5292 */ 5293 struct wq_device { 5294 struct workqueue_struct *wq; 5295 struct device dev; 5296 }; 5297 5298 static struct workqueue_struct *dev_to_wq(struct device *dev) 5299 { 5300 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5301 5302 return wq_dev->wq; 5303 } 5304 5305 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 5306 char *buf) 5307 { 5308 struct workqueue_struct *wq = dev_to_wq(dev); 5309 5310 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 5311 } 5312 static DEVICE_ATTR_RO(per_cpu); 5313 5314 static ssize_t max_active_show(struct device *dev, 5315 struct device_attribute *attr, char *buf) 5316 { 5317 struct workqueue_struct *wq = dev_to_wq(dev); 5318 5319 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 5320 } 5321 5322 static ssize_t max_active_store(struct device *dev, 5323 struct device_attribute *attr, const char *buf, 5324 size_t count) 5325 { 5326 struct workqueue_struct *wq = dev_to_wq(dev); 5327 int val; 5328 5329 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 5330 return -EINVAL; 5331 5332 workqueue_set_max_active(wq, val); 5333 return count; 5334 } 5335 static DEVICE_ATTR_RW(max_active); 5336 5337 static struct attribute *wq_sysfs_attrs[] = { 5338 &dev_attr_per_cpu.attr, 5339 &dev_attr_max_active.attr, 5340 NULL, 5341 }; 5342 ATTRIBUTE_GROUPS(wq_sysfs); 5343 5344 static ssize_t wq_pool_ids_show(struct device *dev, 5345 struct device_attribute *attr, char *buf) 5346 { 5347 struct workqueue_struct *wq = dev_to_wq(dev); 5348 const char *delim = ""; 5349 int node, written = 0; 5350 5351 rcu_read_lock_sched(); 5352 for_each_node(node) { 5353 written += scnprintf(buf + written, PAGE_SIZE - written, 5354 "%s%d:%d", delim, node, 5355 unbound_pwq_by_node(wq, node)->pool->id); 5356 delim = " "; 5357 } 5358 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 5359 rcu_read_unlock_sched(); 5360 5361 return written; 5362 } 5363 5364 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 5365 char *buf) 5366 { 5367 struct workqueue_struct *wq = dev_to_wq(dev); 5368 int written; 5369 5370 mutex_lock(&wq->mutex); 5371 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 5372 mutex_unlock(&wq->mutex); 5373 5374 return written; 5375 } 5376 5377 /* prepare workqueue_attrs for sysfs store operations */ 5378 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5379 { 5380 struct workqueue_attrs *attrs; 5381 5382 lockdep_assert_held(&wq_pool_mutex); 5383 5384 attrs = alloc_workqueue_attrs(GFP_KERNEL); 5385 if (!attrs) 5386 return NULL; 5387 5388 copy_workqueue_attrs(attrs, wq->unbound_attrs); 5389 return attrs; 5390 } 5391 5392 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 5393 const char *buf, size_t count) 5394 { 5395 struct workqueue_struct *wq = dev_to_wq(dev); 5396 struct workqueue_attrs *attrs; 5397 int ret = -ENOMEM; 5398 5399 apply_wqattrs_lock(); 5400 5401 attrs = wq_sysfs_prep_attrs(wq); 5402 if (!attrs) 5403 goto out_unlock; 5404 5405 if (sscanf(buf, "%d", &attrs->nice) == 1 && 5406 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 5407 ret = apply_workqueue_attrs_locked(wq, attrs); 5408 else 5409 ret = -EINVAL; 5410 5411 out_unlock: 5412 apply_wqattrs_unlock(); 5413 free_workqueue_attrs(attrs); 5414 return ret ?: count; 5415 } 5416 5417 static ssize_t wq_cpumask_show(struct device *dev, 5418 struct device_attribute *attr, char *buf) 5419 { 5420 struct workqueue_struct *wq = dev_to_wq(dev); 5421 int written; 5422 5423 mutex_lock(&wq->mutex); 5424 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5425 cpumask_pr_args(wq->unbound_attrs->cpumask)); 5426 mutex_unlock(&wq->mutex); 5427 return written; 5428 } 5429 5430 static ssize_t wq_cpumask_store(struct device *dev, 5431 struct device_attribute *attr, 5432 const char *buf, size_t count) 5433 { 5434 struct workqueue_struct *wq = dev_to_wq(dev); 5435 struct workqueue_attrs *attrs; 5436 int ret = -ENOMEM; 5437 5438 apply_wqattrs_lock(); 5439 5440 attrs = wq_sysfs_prep_attrs(wq); 5441 if (!attrs) 5442 goto out_unlock; 5443 5444 ret = cpumask_parse(buf, attrs->cpumask); 5445 if (!ret) 5446 ret = apply_workqueue_attrs_locked(wq, attrs); 5447 5448 out_unlock: 5449 apply_wqattrs_unlock(); 5450 free_workqueue_attrs(attrs); 5451 return ret ?: count; 5452 } 5453 5454 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5455 char *buf) 5456 { 5457 struct workqueue_struct *wq = dev_to_wq(dev); 5458 int written; 5459 5460 mutex_lock(&wq->mutex); 5461 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5462 !wq->unbound_attrs->no_numa); 5463 mutex_unlock(&wq->mutex); 5464 5465 return written; 5466 } 5467 5468 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 5469 const char *buf, size_t count) 5470 { 5471 struct workqueue_struct *wq = dev_to_wq(dev); 5472 struct workqueue_attrs *attrs; 5473 int v, ret = -ENOMEM; 5474 5475 apply_wqattrs_lock(); 5476 5477 attrs = wq_sysfs_prep_attrs(wq); 5478 if (!attrs) 5479 goto out_unlock; 5480 5481 ret = -EINVAL; 5482 if (sscanf(buf, "%d", &v) == 1) { 5483 attrs->no_numa = !v; 5484 ret = apply_workqueue_attrs_locked(wq, attrs); 5485 } 5486 5487 out_unlock: 5488 apply_wqattrs_unlock(); 5489 free_workqueue_attrs(attrs); 5490 return ret ?: count; 5491 } 5492 5493 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5494 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5495 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5496 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5497 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5498 __ATTR_NULL, 5499 }; 5500 5501 static struct bus_type wq_subsys = { 5502 .name = "workqueue", 5503 .dev_groups = wq_sysfs_groups, 5504 }; 5505 5506 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5507 struct device_attribute *attr, char *buf) 5508 { 5509 int written; 5510 5511 mutex_lock(&wq_pool_mutex); 5512 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5513 cpumask_pr_args(wq_unbound_cpumask)); 5514 mutex_unlock(&wq_pool_mutex); 5515 5516 return written; 5517 } 5518 5519 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5520 struct device_attribute *attr, const char *buf, size_t count) 5521 { 5522 cpumask_var_t cpumask; 5523 int ret; 5524 5525 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5526 return -ENOMEM; 5527 5528 ret = cpumask_parse(buf, cpumask); 5529 if (!ret) 5530 ret = workqueue_set_unbound_cpumask(cpumask); 5531 5532 free_cpumask_var(cpumask); 5533 return ret ? ret : count; 5534 } 5535 5536 static struct device_attribute wq_sysfs_cpumask_attr = 5537 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5538 wq_unbound_cpumask_store); 5539 5540 static int __init wq_sysfs_init(void) 5541 { 5542 int err; 5543 5544 err = subsys_virtual_register(&wq_subsys, NULL); 5545 if (err) 5546 return err; 5547 5548 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr); 5549 } 5550 core_initcall(wq_sysfs_init); 5551 5552 static void wq_device_release(struct device *dev) 5553 { 5554 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5555 5556 kfree(wq_dev); 5557 } 5558 5559 /** 5560 * workqueue_sysfs_register - make a workqueue visible in sysfs 5561 * @wq: the workqueue to register 5562 * 5563 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5564 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5565 * which is the preferred method. 5566 * 5567 * Workqueue user should use this function directly iff it wants to apply 5568 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5569 * apply_workqueue_attrs() may race against userland updating the 5570 * attributes. 5571 * 5572 * Return: 0 on success, -errno on failure. 5573 */ 5574 int workqueue_sysfs_register(struct workqueue_struct *wq) 5575 { 5576 struct wq_device *wq_dev; 5577 int ret; 5578 5579 /* 5580 * Adjusting max_active or creating new pwqs by applying 5581 * attributes breaks ordering guarantee. Disallow exposing ordered 5582 * workqueues. 5583 */ 5584 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 5585 return -EINVAL; 5586 5587 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5588 if (!wq_dev) 5589 return -ENOMEM; 5590 5591 wq_dev->wq = wq; 5592 wq_dev->dev.bus = &wq_subsys; 5593 wq_dev->dev.release = wq_device_release; 5594 dev_set_name(&wq_dev->dev, "%s", wq->name); 5595 5596 /* 5597 * unbound_attrs are created separately. Suppress uevent until 5598 * everything is ready. 5599 */ 5600 dev_set_uevent_suppress(&wq_dev->dev, true); 5601 5602 ret = device_register(&wq_dev->dev); 5603 if (ret) { 5604 put_device(&wq_dev->dev); 5605 wq->wq_dev = NULL; 5606 return ret; 5607 } 5608 5609 if (wq->flags & WQ_UNBOUND) { 5610 struct device_attribute *attr; 5611 5612 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5613 ret = device_create_file(&wq_dev->dev, attr); 5614 if (ret) { 5615 device_unregister(&wq_dev->dev); 5616 wq->wq_dev = NULL; 5617 return ret; 5618 } 5619 } 5620 } 5621 5622 dev_set_uevent_suppress(&wq_dev->dev, false); 5623 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5624 return 0; 5625 } 5626 5627 /** 5628 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5629 * @wq: the workqueue to unregister 5630 * 5631 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5632 */ 5633 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5634 { 5635 struct wq_device *wq_dev = wq->wq_dev; 5636 5637 if (!wq->wq_dev) 5638 return; 5639 5640 wq->wq_dev = NULL; 5641 device_unregister(&wq_dev->dev); 5642 } 5643 #else /* CONFIG_SYSFS */ 5644 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5645 #endif /* CONFIG_SYSFS */ 5646 5647 /* 5648 * Workqueue watchdog. 5649 * 5650 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 5651 * flush dependency, a concurrency managed work item which stays RUNNING 5652 * indefinitely. Workqueue stalls can be very difficult to debug as the 5653 * usual warning mechanisms don't trigger and internal workqueue state is 5654 * largely opaque. 5655 * 5656 * Workqueue watchdog monitors all worker pools periodically and dumps 5657 * state if some pools failed to make forward progress for a while where 5658 * forward progress is defined as the first item on ->worklist changing. 5659 * 5660 * This mechanism is controlled through the kernel parameter 5661 * "workqueue.watchdog_thresh" which can be updated at runtime through the 5662 * corresponding sysfs parameter file. 5663 */ 5664 #ifdef CONFIG_WQ_WATCHDOG 5665 5666 static unsigned long wq_watchdog_thresh = 30; 5667 static struct timer_list wq_watchdog_timer; 5668 5669 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 5670 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 5671 5672 static void wq_watchdog_reset_touched(void) 5673 { 5674 int cpu; 5675 5676 wq_watchdog_touched = jiffies; 5677 for_each_possible_cpu(cpu) 5678 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5679 } 5680 5681 static void wq_watchdog_timer_fn(struct timer_list *unused) 5682 { 5683 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 5684 bool lockup_detected = false; 5685 struct worker_pool *pool; 5686 int pi; 5687 5688 if (!thresh) 5689 return; 5690 5691 rcu_read_lock(); 5692 5693 for_each_pool(pool, pi) { 5694 unsigned long pool_ts, touched, ts; 5695 5696 if (list_empty(&pool->worklist)) 5697 continue; 5698 5699 /* get the latest of pool and touched timestamps */ 5700 pool_ts = READ_ONCE(pool->watchdog_ts); 5701 touched = READ_ONCE(wq_watchdog_touched); 5702 5703 if (time_after(pool_ts, touched)) 5704 ts = pool_ts; 5705 else 5706 ts = touched; 5707 5708 if (pool->cpu >= 0) { 5709 unsigned long cpu_touched = 5710 READ_ONCE(per_cpu(wq_watchdog_touched_cpu, 5711 pool->cpu)); 5712 if (time_after(cpu_touched, ts)) 5713 ts = cpu_touched; 5714 } 5715 5716 /* did we stall? */ 5717 if (time_after(jiffies, ts + thresh)) { 5718 lockup_detected = true; 5719 pr_emerg("BUG: workqueue lockup - pool"); 5720 pr_cont_pool_info(pool); 5721 pr_cont(" stuck for %us!\n", 5722 jiffies_to_msecs(jiffies - pool_ts) / 1000); 5723 } 5724 } 5725 5726 rcu_read_unlock(); 5727 5728 if (lockup_detected) 5729 show_workqueue_state(); 5730 5731 wq_watchdog_reset_touched(); 5732 mod_timer(&wq_watchdog_timer, jiffies + thresh); 5733 } 5734 5735 notrace void wq_watchdog_touch(int cpu) 5736 { 5737 if (cpu >= 0) 5738 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5739 else 5740 wq_watchdog_touched = jiffies; 5741 } 5742 5743 static void wq_watchdog_set_thresh(unsigned long thresh) 5744 { 5745 wq_watchdog_thresh = 0; 5746 del_timer_sync(&wq_watchdog_timer); 5747 5748 if (thresh) { 5749 wq_watchdog_thresh = thresh; 5750 wq_watchdog_reset_touched(); 5751 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 5752 } 5753 } 5754 5755 static int wq_watchdog_param_set_thresh(const char *val, 5756 const struct kernel_param *kp) 5757 { 5758 unsigned long thresh; 5759 int ret; 5760 5761 ret = kstrtoul(val, 0, &thresh); 5762 if (ret) 5763 return ret; 5764 5765 if (system_wq) 5766 wq_watchdog_set_thresh(thresh); 5767 else 5768 wq_watchdog_thresh = thresh; 5769 5770 return 0; 5771 } 5772 5773 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 5774 .set = wq_watchdog_param_set_thresh, 5775 .get = param_get_ulong, 5776 }; 5777 5778 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 5779 0644); 5780 5781 static void wq_watchdog_init(void) 5782 { 5783 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 5784 wq_watchdog_set_thresh(wq_watchdog_thresh); 5785 } 5786 5787 #else /* CONFIG_WQ_WATCHDOG */ 5788 5789 static inline void wq_watchdog_init(void) { } 5790 5791 #endif /* CONFIG_WQ_WATCHDOG */ 5792 5793 static void __init wq_numa_init(void) 5794 { 5795 cpumask_var_t *tbl; 5796 int node, cpu; 5797 5798 if (num_possible_nodes() <= 1) 5799 return; 5800 5801 if (wq_disable_numa) { 5802 pr_info("workqueue: NUMA affinity support disabled\n"); 5803 return; 5804 } 5805 5806 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL); 5807 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5808 5809 /* 5810 * We want masks of possible CPUs of each node which isn't readily 5811 * available. Build one from cpu_to_node() which should have been 5812 * fully initialized by now. 5813 */ 5814 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL); 5815 BUG_ON(!tbl); 5816 5817 for_each_node(node) 5818 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5819 node_online(node) ? node : NUMA_NO_NODE)); 5820 5821 for_each_possible_cpu(cpu) { 5822 node = cpu_to_node(cpu); 5823 if (WARN_ON(node == NUMA_NO_NODE)) { 5824 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5825 /* happens iff arch is bonkers, let's just proceed */ 5826 return; 5827 } 5828 cpumask_set_cpu(cpu, tbl[node]); 5829 } 5830 5831 wq_numa_possible_cpumask = tbl; 5832 wq_numa_enabled = true; 5833 } 5834 5835 /** 5836 * workqueue_init_early - early init for workqueue subsystem 5837 * 5838 * This is the first half of two-staged workqueue subsystem initialization 5839 * and invoked as soon as the bare basics - memory allocation, cpumasks and 5840 * idr are up. It sets up all the data structures and system workqueues 5841 * and allows early boot code to create workqueues and queue/cancel work 5842 * items. Actual work item execution starts only after kthreads can be 5843 * created and scheduled right before early initcalls. 5844 */ 5845 int __init workqueue_init_early(void) 5846 { 5847 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5848 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ; 5849 int i, cpu; 5850 5851 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5852 5853 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 5854 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags)); 5855 5856 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5857 5858 /* initialize CPU pools */ 5859 for_each_possible_cpu(cpu) { 5860 struct worker_pool *pool; 5861 5862 i = 0; 5863 for_each_cpu_worker_pool(pool, cpu) { 5864 BUG_ON(init_worker_pool(pool)); 5865 pool->cpu = cpu; 5866 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5867 pool->attrs->nice = std_nice[i++]; 5868 pool->node = cpu_to_node(cpu); 5869 5870 /* alloc pool ID */ 5871 mutex_lock(&wq_pool_mutex); 5872 BUG_ON(worker_pool_assign_id(pool)); 5873 mutex_unlock(&wq_pool_mutex); 5874 } 5875 } 5876 5877 /* create default unbound and ordered wq attrs */ 5878 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5879 struct workqueue_attrs *attrs; 5880 5881 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5882 attrs->nice = std_nice[i]; 5883 unbound_std_wq_attrs[i] = attrs; 5884 5885 /* 5886 * An ordered wq should have only one pwq as ordering is 5887 * guaranteed by max_active which is enforced by pwqs. 5888 * Turn off NUMA so that dfl_pwq is used for all nodes. 5889 */ 5890 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5891 attrs->nice = std_nice[i]; 5892 attrs->no_numa = true; 5893 ordered_wq_attrs[i] = attrs; 5894 } 5895 5896 system_wq = alloc_workqueue("events", 0, 0); 5897 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5898 system_long_wq = alloc_workqueue("events_long", 0, 0); 5899 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5900 WQ_UNBOUND_MAX_ACTIVE); 5901 system_freezable_wq = alloc_workqueue("events_freezable", 5902 WQ_FREEZABLE, 0); 5903 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5904 WQ_POWER_EFFICIENT, 0); 5905 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5906 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5907 0); 5908 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5909 !system_unbound_wq || !system_freezable_wq || 5910 !system_power_efficient_wq || 5911 !system_freezable_power_efficient_wq); 5912 5913 return 0; 5914 } 5915 5916 /** 5917 * workqueue_init - bring workqueue subsystem fully online 5918 * 5919 * This is the latter half of two-staged workqueue subsystem initialization 5920 * and invoked as soon as kthreads can be created and scheduled. 5921 * Workqueues have been created and work items queued on them, but there 5922 * are no kworkers executing the work items yet. Populate the worker pools 5923 * with the initial workers and enable future kworker creations. 5924 */ 5925 int __init workqueue_init(void) 5926 { 5927 struct workqueue_struct *wq; 5928 struct worker_pool *pool; 5929 int cpu, bkt; 5930 5931 /* 5932 * It'd be simpler to initialize NUMA in workqueue_init_early() but 5933 * CPU to node mapping may not be available that early on some 5934 * archs such as power and arm64. As per-cpu pools created 5935 * previously could be missing node hint and unbound pools NUMA 5936 * affinity, fix them up. 5937 * 5938 * Also, while iterating workqueues, create rescuers if requested. 5939 */ 5940 wq_numa_init(); 5941 5942 mutex_lock(&wq_pool_mutex); 5943 5944 for_each_possible_cpu(cpu) { 5945 for_each_cpu_worker_pool(pool, cpu) { 5946 pool->node = cpu_to_node(cpu); 5947 } 5948 } 5949 5950 list_for_each_entry(wq, &workqueues, list) { 5951 wq_update_unbound_numa(wq, smp_processor_id(), true); 5952 WARN(init_rescuer(wq), 5953 "workqueue: failed to create early rescuer for %s", 5954 wq->name); 5955 } 5956 5957 mutex_unlock(&wq_pool_mutex); 5958 5959 /* create the initial workers */ 5960 for_each_online_cpu(cpu) { 5961 for_each_cpu_worker_pool(pool, cpu) { 5962 pool->flags &= ~POOL_DISASSOCIATED; 5963 BUG_ON(!create_worker(pool)); 5964 } 5965 } 5966 5967 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 5968 BUG_ON(!create_worker(pool)); 5969 5970 wq_online = true; 5971 wq_watchdog_init(); 5972 5973 return 0; 5974 } 5975