xref: /openbmc/linux/kernel/workqueue.c (revision 95777591)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There are two worker pools for each CPU (one for
20  * normal work items and the other for high priority ones) and some extra
21  * pools for workqueues which are not bound to any specific CPU - the
22  * number of these backing pools is dynamic.
23  *
24  * Please read Documentation/core-api/workqueue.rst for details.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/jhash.h>
45 #include <linux/hashtable.h>
46 #include <linux/rculist.h>
47 #include <linux/nodemask.h>
48 #include <linux/moduleparam.h>
49 #include <linux/uaccess.h>
50 #include <linux/sched/isolation.h>
51 #include <linux/nmi.h>
52 
53 #include "workqueue_internal.h"
54 
55 enum {
56 	/*
57 	 * worker_pool flags
58 	 *
59 	 * A bound pool is either associated or disassociated with its CPU.
60 	 * While associated (!DISASSOCIATED), all workers are bound to the
61 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
62 	 * is in effect.
63 	 *
64 	 * While DISASSOCIATED, the cpu may be offline and all workers have
65 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
66 	 * be executing on any CPU.  The pool behaves as an unbound one.
67 	 *
68 	 * Note that DISASSOCIATED should be flipped only while holding
69 	 * wq_pool_attach_mutex to avoid changing binding state while
70 	 * worker_attach_to_pool() is in progress.
71 	 */
72 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
73 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
74 
75 	/* worker flags */
76 	WORKER_DIE		= 1 << 1,	/* die die die */
77 	WORKER_IDLE		= 1 << 2,	/* is idle */
78 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
79 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
80 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
81 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
82 
83 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
84 				  WORKER_UNBOUND | WORKER_REBOUND,
85 
86 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
87 
88 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
89 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
90 
91 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
92 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
93 
94 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
95 						/* call for help after 10ms
96 						   (min two ticks) */
97 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
98 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
99 
100 	/*
101 	 * Rescue workers are used only on emergencies and shared by
102 	 * all cpus.  Give MIN_NICE.
103 	 */
104 	RESCUER_NICE_LEVEL	= MIN_NICE,
105 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
106 
107 	WQ_NAME_LEN		= 24,
108 };
109 
110 /*
111  * Structure fields follow one of the following exclusion rules.
112  *
113  * I: Modifiable by initialization/destruction paths and read-only for
114  *    everyone else.
115  *
116  * P: Preemption protected.  Disabling preemption is enough and should
117  *    only be modified and accessed from the local cpu.
118  *
119  * L: pool->lock protected.  Access with pool->lock held.
120  *
121  * X: During normal operation, modification requires pool->lock and should
122  *    be done only from local cpu.  Either disabling preemption on local
123  *    cpu or grabbing pool->lock is enough for read access.  If
124  *    POOL_DISASSOCIATED is set, it's identical to L.
125  *
126  * A: wq_pool_attach_mutex protected.
127  *
128  * PL: wq_pool_mutex protected.
129  *
130  * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
131  *
132  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
133  *
134  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
135  *      sched-RCU for reads.
136  *
137  * WQ: wq->mutex protected.
138  *
139  * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
140  *
141  * MD: wq_mayday_lock protected.
142  */
143 
144 /* struct worker is defined in workqueue_internal.h */
145 
146 struct worker_pool {
147 	spinlock_t		lock;		/* the pool lock */
148 	int			cpu;		/* I: the associated cpu */
149 	int			node;		/* I: the associated node ID */
150 	int			id;		/* I: pool ID */
151 	unsigned int		flags;		/* X: flags */
152 
153 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
154 
155 	struct list_head	worklist;	/* L: list of pending works */
156 
157 	int			nr_workers;	/* L: total number of workers */
158 	int			nr_idle;	/* L: currently idle workers */
159 
160 	struct list_head	idle_list;	/* X: list of idle workers */
161 	struct timer_list	idle_timer;	/* L: worker idle timeout */
162 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
163 
164 	/* a workers is either on busy_hash or idle_list, or the manager */
165 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
166 						/* L: hash of busy workers */
167 
168 	struct worker		*manager;	/* L: purely informational */
169 	struct list_head	workers;	/* A: attached workers */
170 	struct completion	*detach_completion; /* all workers detached */
171 
172 	struct ida		worker_ida;	/* worker IDs for task name */
173 
174 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
175 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
176 	int			refcnt;		/* PL: refcnt for unbound pools */
177 
178 	/*
179 	 * The current concurrency level.  As it's likely to be accessed
180 	 * from other CPUs during try_to_wake_up(), put it in a separate
181 	 * cacheline.
182 	 */
183 	atomic_t		nr_running ____cacheline_aligned_in_smp;
184 
185 	/*
186 	 * Destruction of pool is sched-RCU protected to allow dereferences
187 	 * from get_work_pool().
188 	 */
189 	struct rcu_head		rcu;
190 } ____cacheline_aligned_in_smp;
191 
192 /*
193  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
194  * of work_struct->data are used for flags and the remaining high bits
195  * point to the pwq; thus, pwqs need to be aligned at two's power of the
196  * number of flag bits.
197  */
198 struct pool_workqueue {
199 	struct worker_pool	*pool;		/* I: the associated pool */
200 	struct workqueue_struct *wq;		/* I: the owning workqueue */
201 	int			work_color;	/* L: current color */
202 	int			flush_color;	/* L: flushing color */
203 	int			refcnt;		/* L: reference count */
204 	int			nr_in_flight[WORK_NR_COLORS];
205 						/* L: nr of in_flight works */
206 	int			nr_active;	/* L: nr of active works */
207 	int			max_active;	/* L: max active works */
208 	struct list_head	delayed_works;	/* L: delayed works */
209 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
210 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
211 
212 	/*
213 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
214 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
215 	 * itself is also sched-RCU protected so that the first pwq can be
216 	 * determined without grabbing wq->mutex.
217 	 */
218 	struct work_struct	unbound_release_work;
219 	struct rcu_head		rcu;
220 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
221 
222 /*
223  * Structure used to wait for workqueue flush.
224  */
225 struct wq_flusher {
226 	struct list_head	list;		/* WQ: list of flushers */
227 	int			flush_color;	/* WQ: flush color waiting for */
228 	struct completion	done;		/* flush completion */
229 };
230 
231 struct wq_device;
232 
233 /*
234  * The externally visible workqueue.  It relays the issued work items to
235  * the appropriate worker_pool through its pool_workqueues.
236  */
237 struct workqueue_struct {
238 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
239 	struct list_head	list;		/* PR: list of all workqueues */
240 
241 	struct mutex		mutex;		/* protects this wq */
242 	int			work_color;	/* WQ: current work color */
243 	int			flush_color;	/* WQ: current flush color */
244 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
245 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
246 	struct list_head	flusher_queue;	/* WQ: flush waiters */
247 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
248 
249 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
250 	struct worker		*rescuer;	/* I: rescue worker */
251 
252 	int			nr_drainers;	/* WQ: drain in progress */
253 	int			saved_max_active; /* WQ: saved pwq max_active */
254 
255 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
256 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
257 
258 #ifdef CONFIG_SYSFS
259 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
260 #endif
261 #ifdef CONFIG_LOCKDEP
262 	char			*lock_name;
263 	struct lock_class_key	key;
264 	struct lockdep_map	lockdep_map;
265 #endif
266 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
267 
268 	/*
269 	 * Destruction of workqueue_struct is sched-RCU protected to allow
270 	 * walking the workqueues list without grabbing wq_pool_mutex.
271 	 * This is used to dump all workqueues from sysrq.
272 	 */
273 	struct rcu_head		rcu;
274 
275 	/* hot fields used during command issue, aligned to cacheline */
276 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
278 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
279 };
280 
281 static struct kmem_cache *pwq_cache;
282 
283 static cpumask_var_t *wq_numa_possible_cpumask;
284 					/* possible CPUs of each node */
285 
286 static bool wq_disable_numa;
287 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
288 
289 /* see the comment above the definition of WQ_POWER_EFFICIENT */
290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
291 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
292 
293 static bool wq_online;			/* can kworkers be created yet? */
294 
295 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
296 
297 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
298 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
299 
300 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
301 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
302 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
303 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
304 
305 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
306 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
307 
308 /* PL: allowable cpus for unbound wqs and work items */
309 static cpumask_var_t wq_unbound_cpumask;
310 
311 /* CPU where unbound work was last round robin scheduled from this CPU */
312 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
313 
314 /*
315  * Local execution of unbound work items is no longer guaranteed.  The
316  * following always forces round-robin CPU selection on unbound work items
317  * to uncover usages which depend on it.
318  */
319 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
320 static bool wq_debug_force_rr_cpu = true;
321 #else
322 static bool wq_debug_force_rr_cpu = false;
323 #endif
324 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
325 
326 /* the per-cpu worker pools */
327 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
328 
329 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
330 
331 /* PL: hash of all unbound pools keyed by pool->attrs */
332 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
333 
334 /* I: attributes used when instantiating standard unbound pools on demand */
335 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
336 
337 /* I: attributes used when instantiating ordered pools on demand */
338 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
339 
340 struct workqueue_struct *system_wq __read_mostly;
341 EXPORT_SYMBOL(system_wq);
342 struct workqueue_struct *system_highpri_wq __read_mostly;
343 EXPORT_SYMBOL_GPL(system_highpri_wq);
344 struct workqueue_struct *system_long_wq __read_mostly;
345 EXPORT_SYMBOL_GPL(system_long_wq);
346 struct workqueue_struct *system_unbound_wq __read_mostly;
347 EXPORT_SYMBOL_GPL(system_unbound_wq);
348 struct workqueue_struct *system_freezable_wq __read_mostly;
349 EXPORT_SYMBOL_GPL(system_freezable_wq);
350 struct workqueue_struct *system_power_efficient_wq __read_mostly;
351 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
352 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
353 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
354 
355 static int worker_thread(void *__worker);
356 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
357 
358 #define CREATE_TRACE_POINTS
359 #include <trace/events/workqueue.h>
360 
361 #define assert_rcu_or_pool_mutex()					\
362 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
363 			 !lockdep_is_held(&wq_pool_mutex),		\
364 			 "sched RCU or wq_pool_mutex should be held")
365 
366 #define assert_rcu_or_wq_mutex(wq)					\
367 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
368 			 !lockdep_is_held(&wq->mutex),			\
369 			 "sched RCU or wq->mutex should be held")
370 
371 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
372 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
373 			 !lockdep_is_held(&wq->mutex) &&		\
374 			 !lockdep_is_held(&wq_pool_mutex),		\
375 			 "sched RCU, wq->mutex or wq_pool_mutex should be held")
376 
377 #define for_each_cpu_worker_pool(pool, cpu)				\
378 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
379 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
380 	     (pool)++)
381 
382 /**
383  * for_each_pool - iterate through all worker_pools in the system
384  * @pool: iteration cursor
385  * @pi: integer used for iteration
386  *
387  * This must be called either with wq_pool_mutex held or sched RCU read
388  * locked.  If the pool needs to be used beyond the locking in effect, the
389  * caller is responsible for guaranteeing that the pool stays online.
390  *
391  * The if/else clause exists only for the lockdep assertion and can be
392  * ignored.
393  */
394 #define for_each_pool(pool, pi)						\
395 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
396 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
397 		else
398 
399 /**
400  * for_each_pool_worker - iterate through all workers of a worker_pool
401  * @worker: iteration cursor
402  * @pool: worker_pool to iterate workers of
403  *
404  * This must be called with wq_pool_attach_mutex.
405  *
406  * The if/else clause exists only for the lockdep assertion and can be
407  * ignored.
408  */
409 #define for_each_pool_worker(worker, pool)				\
410 	list_for_each_entry((worker), &(pool)->workers, node)		\
411 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
412 		else
413 
414 /**
415  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
416  * @pwq: iteration cursor
417  * @wq: the target workqueue
418  *
419  * This must be called either with wq->mutex held or sched RCU read locked.
420  * If the pwq needs to be used beyond the locking in effect, the caller is
421  * responsible for guaranteeing that the pwq stays online.
422  *
423  * The if/else clause exists only for the lockdep assertion and can be
424  * ignored.
425  */
426 #define for_each_pwq(pwq, wq)						\
427 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
428 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
429 		else
430 
431 #ifdef CONFIG_DEBUG_OBJECTS_WORK
432 
433 static struct debug_obj_descr work_debug_descr;
434 
435 static void *work_debug_hint(void *addr)
436 {
437 	return ((struct work_struct *) addr)->func;
438 }
439 
440 static bool work_is_static_object(void *addr)
441 {
442 	struct work_struct *work = addr;
443 
444 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
445 }
446 
447 /*
448  * fixup_init is called when:
449  * - an active object is initialized
450  */
451 static bool work_fixup_init(void *addr, enum debug_obj_state state)
452 {
453 	struct work_struct *work = addr;
454 
455 	switch (state) {
456 	case ODEBUG_STATE_ACTIVE:
457 		cancel_work_sync(work);
458 		debug_object_init(work, &work_debug_descr);
459 		return true;
460 	default:
461 		return false;
462 	}
463 }
464 
465 /*
466  * fixup_free is called when:
467  * - an active object is freed
468  */
469 static bool work_fixup_free(void *addr, enum debug_obj_state state)
470 {
471 	struct work_struct *work = addr;
472 
473 	switch (state) {
474 	case ODEBUG_STATE_ACTIVE:
475 		cancel_work_sync(work);
476 		debug_object_free(work, &work_debug_descr);
477 		return true;
478 	default:
479 		return false;
480 	}
481 }
482 
483 static struct debug_obj_descr work_debug_descr = {
484 	.name		= "work_struct",
485 	.debug_hint	= work_debug_hint,
486 	.is_static_object = work_is_static_object,
487 	.fixup_init	= work_fixup_init,
488 	.fixup_free	= work_fixup_free,
489 };
490 
491 static inline void debug_work_activate(struct work_struct *work)
492 {
493 	debug_object_activate(work, &work_debug_descr);
494 }
495 
496 static inline void debug_work_deactivate(struct work_struct *work)
497 {
498 	debug_object_deactivate(work, &work_debug_descr);
499 }
500 
501 void __init_work(struct work_struct *work, int onstack)
502 {
503 	if (onstack)
504 		debug_object_init_on_stack(work, &work_debug_descr);
505 	else
506 		debug_object_init(work, &work_debug_descr);
507 }
508 EXPORT_SYMBOL_GPL(__init_work);
509 
510 void destroy_work_on_stack(struct work_struct *work)
511 {
512 	debug_object_free(work, &work_debug_descr);
513 }
514 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
515 
516 void destroy_delayed_work_on_stack(struct delayed_work *work)
517 {
518 	destroy_timer_on_stack(&work->timer);
519 	debug_object_free(&work->work, &work_debug_descr);
520 }
521 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
522 
523 #else
524 static inline void debug_work_activate(struct work_struct *work) { }
525 static inline void debug_work_deactivate(struct work_struct *work) { }
526 #endif
527 
528 /**
529  * worker_pool_assign_id - allocate ID and assing it to @pool
530  * @pool: the pool pointer of interest
531  *
532  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
533  * successfully, -errno on failure.
534  */
535 static int worker_pool_assign_id(struct worker_pool *pool)
536 {
537 	int ret;
538 
539 	lockdep_assert_held(&wq_pool_mutex);
540 
541 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
542 			GFP_KERNEL);
543 	if (ret >= 0) {
544 		pool->id = ret;
545 		return 0;
546 	}
547 	return ret;
548 }
549 
550 /**
551  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
552  * @wq: the target workqueue
553  * @node: the node ID
554  *
555  * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
556  * read locked.
557  * If the pwq needs to be used beyond the locking in effect, the caller is
558  * responsible for guaranteeing that the pwq stays online.
559  *
560  * Return: The unbound pool_workqueue for @node.
561  */
562 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
563 						  int node)
564 {
565 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
566 
567 	/*
568 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
569 	 * delayed item is pending.  The plan is to keep CPU -> NODE
570 	 * mapping valid and stable across CPU on/offlines.  Once that
571 	 * happens, this workaround can be removed.
572 	 */
573 	if (unlikely(node == NUMA_NO_NODE))
574 		return wq->dfl_pwq;
575 
576 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
577 }
578 
579 static unsigned int work_color_to_flags(int color)
580 {
581 	return color << WORK_STRUCT_COLOR_SHIFT;
582 }
583 
584 static int get_work_color(struct work_struct *work)
585 {
586 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
587 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
588 }
589 
590 static int work_next_color(int color)
591 {
592 	return (color + 1) % WORK_NR_COLORS;
593 }
594 
595 /*
596  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
597  * contain the pointer to the queued pwq.  Once execution starts, the flag
598  * is cleared and the high bits contain OFFQ flags and pool ID.
599  *
600  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
601  * and clear_work_data() can be used to set the pwq, pool or clear
602  * work->data.  These functions should only be called while the work is
603  * owned - ie. while the PENDING bit is set.
604  *
605  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
606  * corresponding to a work.  Pool is available once the work has been
607  * queued anywhere after initialization until it is sync canceled.  pwq is
608  * available only while the work item is queued.
609  *
610  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
611  * canceled.  While being canceled, a work item may have its PENDING set
612  * but stay off timer and worklist for arbitrarily long and nobody should
613  * try to steal the PENDING bit.
614  */
615 static inline void set_work_data(struct work_struct *work, unsigned long data,
616 				 unsigned long flags)
617 {
618 	WARN_ON_ONCE(!work_pending(work));
619 	atomic_long_set(&work->data, data | flags | work_static(work));
620 }
621 
622 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
623 			 unsigned long extra_flags)
624 {
625 	set_work_data(work, (unsigned long)pwq,
626 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
627 }
628 
629 static void set_work_pool_and_keep_pending(struct work_struct *work,
630 					   int pool_id)
631 {
632 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
633 		      WORK_STRUCT_PENDING);
634 }
635 
636 static void set_work_pool_and_clear_pending(struct work_struct *work,
637 					    int pool_id)
638 {
639 	/*
640 	 * The following wmb is paired with the implied mb in
641 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
642 	 * here are visible to and precede any updates by the next PENDING
643 	 * owner.
644 	 */
645 	smp_wmb();
646 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
647 	/*
648 	 * The following mb guarantees that previous clear of a PENDING bit
649 	 * will not be reordered with any speculative LOADS or STORES from
650 	 * work->current_func, which is executed afterwards.  This possible
651 	 * reordering can lead to a missed execution on attempt to qeueue
652 	 * the same @work.  E.g. consider this case:
653 	 *
654 	 *   CPU#0                         CPU#1
655 	 *   ----------------------------  --------------------------------
656 	 *
657 	 * 1  STORE event_indicated
658 	 * 2  queue_work_on() {
659 	 * 3    test_and_set_bit(PENDING)
660 	 * 4 }                             set_..._and_clear_pending() {
661 	 * 5                                 set_work_data() # clear bit
662 	 * 6                                 smp_mb()
663 	 * 7                               work->current_func() {
664 	 * 8				      LOAD event_indicated
665 	 *				   }
666 	 *
667 	 * Without an explicit full barrier speculative LOAD on line 8 can
668 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
669 	 * CPU#0 observes the PENDING bit is still set and new execution of
670 	 * a @work is not queued in a hope, that CPU#1 will eventually
671 	 * finish the queued @work.  Meanwhile CPU#1 does not see
672 	 * event_indicated is set, because speculative LOAD was executed
673 	 * before actual STORE.
674 	 */
675 	smp_mb();
676 }
677 
678 static void clear_work_data(struct work_struct *work)
679 {
680 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
681 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
682 }
683 
684 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
685 {
686 	unsigned long data = atomic_long_read(&work->data);
687 
688 	if (data & WORK_STRUCT_PWQ)
689 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
690 	else
691 		return NULL;
692 }
693 
694 /**
695  * get_work_pool - return the worker_pool a given work was associated with
696  * @work: the work item of interest
697  *
698  * Pools are created and destroyed under wq_pool_mutex, and allows read
699  * access under sched-RCU read lock.  As such, this function should be
700  * called under wq_pool_mutex or with preemption disabled.
701  *
702  * All fields of the returned pool are accessible as long as the above
703  * mentioned locking is in effect.  If the returned pool needs to be used
704  * beyond the critical section, the caller is responsible for ensuring the
705  * returned pool is and stays online.
706  *
707  * Return: The worker_pool @work was last associated with.  %NULL if none.
708  */
709 static struct worker_pool *get_work_pool(struct work_struct *work)
710 {
711 	unsigned long data = atomic_long_read(&work->data);
712 	int pool_id;
713 
714 	assert_rcu_or_pool_mutex();
715 
716 	if (data & WORK_STRUCT_PWQ)
717 		return ((struct pool_workqueue *)
718 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
719 
720 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
721 	if (pool_id == WORK_OFFQ_POOL_NONE)
722 		return NULL;
723 
724 	return idr_find(&worker_pool_idr, pool_id);
725 }
726 
727 /**
728  * get_work_pool_id - return the worker pool ID a given work is associated with
729  * @work: the work item of interest
730  *
731  * Return: The worker_pool ID @work was last associated with.
732  * %WORK_OFFQ_POOL_NONE if none.
733  */
734 static int get_work_pool_id(struct work_struct *work)
735 {
736 	unsigned long data = atomic_long_read(&work->data);
737 
738 	if (data & WORK_STRUCT_PWQ)
739 		return ((struct pool_workqueue *)
740 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
741 
742 	return data >> WORK_OFFQ_POOL_SHIFT;
743 }
744 
745 static void mark_work_canceling(struct work_struct *work)
746 {
747 	unsigned long pool_id = get_work_pool_id(work);
748 
749 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
750 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
751 }
752 
753 static bool work_is_canceling(struct work_struct *work)
754 {
755 	unsigned long data = atomic_long_read(&work->data);
756 
757 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
758 }
759 
760 /*
761  * Policy functions.  These define the policies on how the global worker
762  * pools are managed.  Unless noted otherwise, these functions assume that
763  * they're being called with pool->lock held.
764  */
765 
766 static bool __need_more_worker(struct worker_pool *pool)
767 {
768 	return !atomic_read(&pool->nr_running);
769 }
770 
771 /*
772  * Need to wake up a worker?  Called from anything but currently
773  * running workers.
774  *
775  * Note that, because unbound workers never contribute to nr_running, this
776  * function will always return %true for unbound pools as long as the
777  * worklist isn't empty.
778  */
779 static bool need_more_worker(struct worker_pool *pool)
780 {
781 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
782 }
783 
784 /* Can I start working?  Called from busy but !running workers. */
785 static bool may_start_working(struct worker_pool *pool)
786 {
787 	return pool->nr_idle;
788 }
789 
790 /* Do I need to keep working?  Called from currently running workers. */
791 static bool keep_working(struct worker_pool *pool)
792 {
793 	return !list_empty(&pool->worklist) &&
794 		atomic_read(&pool->nr_running) <= 1;
795 }
796 
797 /* Do we need a new worker?  Called from manager. */
798 static bool need_to_create_worker(struct worker_pool *pool)
799 {
800 	return need_more_worker(pool) && !may_start_working(pool);
801 }
802 
803 /* Do we have too many workers and should some go away? */
804 static bool too_many_workers(struct worker_pool *pool)
805 {
806 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
807 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
808 	int nr_busy = pool->nr_workers - nr_idle;
809 
810 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
811 }
812 
813 /*
814  * Wake up functions.
815  */
816 
817 /* Return the first idle worker.  Safe with preemption disabled */
818 static struct worker *first_idle_worker(struct worker_pool *pool)
819 {
820 	if (unlikely(list_empty(&pool->idle_list)))
821 		return NULL;
822 
823 	return list_first_entry(&pool->idle_list, struct worker, entry);
824 }
825 
826 /**
827  * wake_up_worker - wake up an idle worker
828  * @pool: worker pool to wake worker from
829  *
830  * Wake up the first idle worker of @pool.
831  *
832  * CONTEXT:
833  * spin_lock_irq(pool->lock).
834  */
835 static void wake_up_worker(struct worker_pool *pool)
836 {
837 	struct worker *worker = first_idle_worker(pool);
838 
839 	if (likely(worker))
840 		wake_up_process(worker->task);
841 }
842 
843 /**
844  * wq_worker_waking_up - a worker is waking up
845  * @task: task waking up
846  * @cpu: CPU @task is waking up to
847  *
848  * This function is called during try_to_wake_up() when a worker is
849  * being awoken.
850  *
851  * CONTEXT:
852  * spin_lock_irq(rq->lock)
853  */
854 void wq_worker_waking_up(struct task_struct *task, int cpu)
855 {
856 	struct worker *worker = kthread_data(task);
857 
858 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
859 		WARN_ON_ONCE(worker->pool->cpu != cpu);
860 		atomic_inc(&worker->pool->nr_running);
861 	}
862 }
863 
864 /**
865  * wq_worker_sleeping - a worker is going to sleep
866  * @task: task going to sleep
867  *
868  * This function is called during schedule() when a busy worker is
869  * going to sleep.  Worker on the same cpu can be woken up by
870  * returning pointer to its task.
871  *
872  * CONTEXT:
873  * spin_lock_irq(rq->lock)
874  *
875  * Return:
876  * Worker task on @cpu to wake up, %NULL if none.
877  */
878 struct task_struct *wq_worker_sleeping(struct task_struct *task)
879 {
880 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
881 	struct worker_pool *pool;
882 
883 	/*
884 	 * Rescuers, which may not have all the fields set up like normal
885 	 * workers, also reach here, let's not access anything before
886 	 * checking NOT_RUNNING.
887 	 */
888 	if (worker->flags & WORKER_NOT_RUNNING)
889 		return NULL;
890 
891 	pool = worker->pool;
892 
893 	/* this can only happen on the local cpu */
894 	if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
895 		return NULL;
896 
897 	/*
898 	 * The counterpart of the following dec_and_test, implied mb,
899 	 * worklist not empty test sequence is in insert_work().
900 	 * Please read comment there.
901 	 *
902 	 * NOT_RUNNING is clear.  This means that we're bound to and
903 	 * running on the local cpu w/ rq lock held and preemption
904 	 * disabled, which in turn means that none else could be
905 	 * manipulating idle_list, so dereferencing idle_list without pool
906 	 * lock is safe.
907 	 */
908 	if (atomic_dec_and_test(&pool->nr_running) &&
909 	    !list_empty(&pool->worklist))
910 		to_wakeup = first_idle_worker(pool);
911 	return to_wakeup ? to_wakeup->task : NULL;
912 }
913 
914 /**
915  * wq_worker_last_func - retrieve worker's last work function
916  *
917  * Determine the last function a worker executed. This is called from
918  * the scheduler to get a worker's last known identity.
919  *
920  * CONTEXT:
921  * spin_lock_irq(rq->lock)
922  *
923  * This function is called during schedule() when a kworker is going
924  * to sleep. It's used by psi to identify aggregation workers during
925  * dequeuing, to allow periodic aggregation to shut-off when that
926  * worker is the last task in the system or cgroup to go to sleep.
927  *
928  * As this function doesn't involve any workqueue-related locking, it
929  * only returns stable values when called from inside the scheduler's
930  * queuing and dequeuing paths, when @task, which must be a kworker,
931  * is guaranteed to not be processing any works.
932  *
933  * Return:
934  * The last work function %current executed as a worker, NULL if it
935  * hasn't executed any work yet.
936  */
937 work_func_t wq_worker_last_func(struct task_struct *task)
938 {
939 	struct worker *worker = kthread_data(task);
940 
941 	return worker->last_func;
942 }
943 
944 /**
945  * worker_set_flags - set worker flags and adjust nr_running accordingly
946  * @worker: self
947  * @flags: flags to set
948  *
949  * Set @flags in @worker->flags and adjust nr_running accordingly.
950  *
951  * CONTEXT:
952  * spin_lock_irq(pool->lock)
953  */
954 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
955 {
956 	struct worker_pool *pool = worker->pool;
957 
958 	WARN_ON_ONCE(worker->task != current);
959 
960 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
961 	if ((flags & WORKER_NOT_RUNNING) &&
962 	    !(worker->flags & WORKER_NOT_RUNNING)) {
963 		atomic_dec(&pool->nr_running);
964 	}
965 
966 	worker->flags |= flags;
967 }
968 
969 /**
970  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
971  * @worker: self
972  * @flags: flags to clear
973  *
974  * Clear @flags in @worker->flags and adjust nr_running accordingly.
975  *
976  * CONTEXT:
977  * spin_lock_irq(pool->lock)
978  */
979 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
980 {
981 	struct worker_pool *pool = worker->pool;
982 	unsigned int oflags = worker->flags;
983 
984 	WARN_ON_ONCE(worker->task != current);
985 
986 	worker->flags &= ~flags;
987 
988 	/*
989 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
990 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
991 	 * of multiple flags, not a single flag.
992 	 */
993 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
994 		if (!(worker->flags & WORKER_NOT_RUNNING))
995 			atomic_inc(&pool->nr_running);
996 }
997 
998 /**
999  * find_worker_executing_work - find worker which is executing a work
1000  * @pool: pool of interest
1001  * @work: work to find worker for
1002  *
1003  * Find a worker which is executing @work on @pool by searching
1004  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1005  * to match, its current execution should match the address of @work and
1006  * its work function.  This is to avoid unwanted dependency between
1007  * unrelated work executions through a work item being recycled while still
1008  * being executed.
1009  *
1010  * This is a bit tricky.  A work item may be freed once its execution
1011  * starts and nothing prevents the freed area from being recycled for
1012  * another work item.  If the same work item address ends up being reused
1013  * before the original execution finishes, workqueue will identify the
1014  * recycled work item as currently executing and make it wait until the
1015  * current execution finishes, introducing an unwanted dependency.
1016  *
1017  * This function checks the work item address and work function to avoid
1018  * false positives.  Note that this isn't complete as one may construct a
1019  * work function which can introduce dependency onto itself through a
1020  * recycled work item.  Well, if somebody wants to shoot oneself in the
1021  * foot that badly, there's only so much we can do, and if such deadlock
1022  * actually occurs, it should be easy to locate the culprit work function.
1023  *
1024  * CONTEXT:
1025  * spin_lock_irq(pool->lock).
1026  *
1027  * Return:
1028  * Pointer to worker which is executing @work if found, %NULL
1029  * otherwise.
1030  */
1031 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1032 						 struct work_struct *work)
1033 {
1034 	struct worker *worker;
1035 
1036 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1037 			       (unsigned long)work)
1038 		if (worker->current_work == work &&
1039 		    worker->current_func == work->func)
1040 			return worker;
1041 
1042 	return NULL;
1043 }
1044 
1045 /**
1046  * move_linked_works - move linked works to a list
1047  * @work: start of series of works to be scheduled
1048  * @head: target list to append @work to
1049  * @nextp: out parameter for nested worklist walking
1050  *
1051  * Schedule linked works starting from @work to @head.  Work series to
1052  * be scheduled starts at @work and includes any consecutive work with
1053  * WORK_STRUCT_LINKED set in its predecessor.
1054  *
1055  * If @nextp is not NULL, it's updated to point to the next work of
1056  * the last scheduled work.  This allows move_linked_works() to be
1057  * nested inside outer list_for_each_entry_safe().
1058  *
1059  * CONTEXT:
1060  * spin_lock_irq(pool->lock).
1061  */
1062 static void move_linked_works(struct work_struct *work, struct list_head *head,
1063 			      struct work_struct **nextp)
1064 {
1065 	struct work_struct *n;
1066 
1067 	/*
1068 	 * Linked worklist will always end before the end of the list,
1069 	 * use NULL for list head.
1070 	 */
1071 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1072 		list_move_tail(&work->entry, head);
1073 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1074 			break;
1075 	}
1076 
1077 	/*
1078 	 * If we're already inside safe list traversal and have moved
1079 	 * multiple works to the scheduled queue, the next position
1080 	 * needs to be updated.
1081 	 */
1082 	if (nextp)
1083 		*nextp = n;
1084 }
1085 
1086 /**
1087  * get_pwq - get an extra reference on the specified pool_workqueue
1088  * @pwq: pool_workqueue to get
1089  *
1090  * Obtain an extra reference on @pwq.  The caller should guarantee that
1091  * @pwq has positive refcnt and be holding the matching pool->lock.
1092  */
1093 static void get_pwq(struct pool_workqueue *pwq)
1094 {
1095 	lockdep_assert_held(&pwq->pool->lock);
1096 	WARN_ON_ONCE(pwq->refcnt <= 0);
1097 	pwq->refcnt++;
1098 }
1099 
1100 /**
1101  * put_pwq - put a pool_workqueue reference
1102  * @pwq: pool_workqueue to put
1103  *
1104  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1105  * destruction.  The caller should be holding the matching pool->lock.
1106  */
1107 static void put_pwq(struct pool_workqueue *pwq)
1108 {
1109 	lockdep_assert_held(&pwq->pool->lock);
1110 	if (likely(--pwq->refcnt))
1111 		return;
1112 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1113 		return;
1114 	/*
1115 	 * @pwq can't be released under pool->lock, bounce to
1116 	 * pwq_unbound_release_workfn().  This never recurses on the same
1117 	 * pool->lock as this path is taken only for unbound workqueues and
1118 	 * the release work item is scheduled on a per-cpu workqueue.  To
1119 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1120 	 * subclass of 1 in get_unbound_pool().
1121 	 */
1122 	schedule_work(&pwq->unbound_release_work);
1123 }
1124 
1125 /**
1126  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1127  * @pwq: pool_workqueue to put (can be %NULL)
1128  *
1129  * put_pwq() with locking.  This function also allows %NULL @pwq.
1130  */
1131 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1132 {
1133 	if (pwq) {
1134 		/*
1135 		 * As both pwqs and pools are sched-RCU protected, the
1136 		 * following lock operations are safe.
1137 		 */
1138 		spin_lock_irq(&pwq->pool->lock);
1139 		put_pwq(pwq);
1140 		spin_unlock_irq(&pwq->pool->lock);
1141 	}
1142 }
1143 
1144 static void pwq_activate_delayed_work(struct work_struct *work)
1145 {
1146 	struct pool_workqueue *pwq = get_work_pwq(work);
1147 
1148 	trace_workqueue_activate_work(work);
1149 	if (list_empty(&pwq->pool->worklist))
1150 		pwq->pool->watchdog_ts = jiffies;
1151 	move_linked_works(work, &pwq->pool->worklist, NULL);
1152 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1153 	pwq->nr_active++;
1154 }
1155 
1156 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1157 {
1158 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1159 						    struct work_struct, entry);
1160 
1161 	pwq_activate_delayed_work(work);
1162 }
1163 
1164 /**
1165  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1166  * @pwq: pwq of interest
1167  * @color: color of work which left the queue
1168  *
1169  * A work either has completed or is removed from pending queue,
1170  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1171  *
1172  * CONTEXT:
1173  * spin_lock_irq(pool->lock).
1174  */
1175 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1176 {
1177 	/* uncolored work items don't participate in flushing or nr_active */
1178 	if (color == WORK_NO_COLOR)
1179 		goto out_put;
1180 
1181 	pwq->nr_in_flight[color]--;
1182 
1183 	pwq->nr_active--;
1184 	if (!list_empty(&pwq->delayed_works)) {
1185 		/* one down, submit a delayed one */
1186 		if (pwq->nr_active < pwq->max_active)
1187 			pwq_activate_first_delayed(pwq);
1188 	}
1189 
1190 	/* is flush in progress and are we at the flushing tip? */
1191 	if (likely(pwq->flush_color != color))
1192 		goto out_put;
1193 
1194 	/* are there still in-flight works? */
1195 	if (pwq->nr_in_flight[color])
1196 		goto out_put;
1197 
1198 	/* this pwq is done, clear flush_color */
1199 	pwq->flush_color = -1;
1200 
1201 	/*
1202 	 * If this was the last pwq, wake up the first flusher.  It
1203 	 * will handle the rest.
1204 	 */
1205 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1206 		complete(&pwq->wq->first_flusher->done);
1207 out_put:
1208 	put_pwq(pwq);
1209 }
1210 
1211 /**
1212  * try_to_grab_pending - steal work item from worklist and disable irq
1213  * @work: work item to steal
1214  * @is_dwork: @work is a delayed_work
1215  * @flags: place to store irq state
1216  *
1217  * Try to grab PENDING bit of @work.  This function can handle @work in any
1218  * stable state - idle, on timer or on worklist.
1219  *
1220  * Return:
1221  *  1		if @work was pending and we successfully stole PENDING
1222  *  0		if @work was idle and we claimed PENDING
1223  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1224  *  -ENOENT	if someone else is canceling @work, this state may persist
1225  *		for arbitrarily long
1226  *
1227  * Note:
1228  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1229  * interrupted while holding PENDING and @work off queue, irq must be
1230  * disabled on entry.  This, combined with delayed_work->timer being
1231  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1232  *
1233  * On successful return, >= 0, irq is disabled and the caller is
1234  * responsible for releasing it using local_irq_restore(*@flags).
1235  *
1236  * This function is safe to call from any context including IRQ handler.
1237  */
1238 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1239 			       unsigned long *flags)
1240 {
1241 	struct worker_pool *pool;
1242 	struct pool_workqueue *pwq;
1243 
1244 	local_irq_save(*flags);
1245 
1246 	/* try to steal the timer if it exists */
1247 	if (is_dwork) {
1248 		struct delayed_work *dwork = to_delayed_work(work);
1249 
1250 		/*
1251 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1252 		 * guaranteed that the timer is not queued anywhere and not
1253 		 * running on the local CPU.
1254 		 */
1255 		if (likely(del_timer(&dwork->timer)))
1256 			return 1;
1257 	}
1258 
1259 	/* try to claim PENDING the normal way */
1260 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1261 		return 0;
1262 
1263 	/*
1264 	 * The queueing is in progress, or it is already queued. Try to
1265 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1266 	 */
1267 	pool = get_work_pool(work);
1268 	if (!pool)
1269 		goto fail;
1270 
1271 	spin_lock(&pool->lock);
1272 	/*
1273 	 * work->data is guaranteed to point to pwq only while the work
1274 	 * item is queued on pwq->wq, and both updating work->data to point
1275 	 * to pwq on queueing and to pool on dequeueing are done under
1276 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1277 	 * points to pwq which is associated with a locked pool, the work
1278 	 * item is currently queued on that pool.
1279 	 */
1280 	pwq = get_work_pwq(work);
1281 	if (pwq && pwq->pool == pool) {
1282 		debug_work_deactivate(work);
1283 
1284 		/*
1285 		 * A delayed work item cannot be grabbed directly because
1286 		 * it might have linked NO_COLOR work items which, if left
1287 		 * on the delayed_list, will confuse pwq->nr_active
1288 		 * management later on and cause stall.  Make sure the work
1289 		 * item is activated before grabbing.
1290 		 */
1291 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1292 			pwq_activate_delayed_work(work);
1293 
1294 		list_del_init(&work->entry);
1295 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1296 
1297 		/* work->data points to pwq iff queued, point to pool */
1298 		set_work_pool_and_keep_pending(work, pool->id);
1299 
1300 		spin_unlock(&pool->lock);
1301 		return 1;
1302 	}
1303 	spin_unlock(&pool->lock);
1304 fail:
1305 	local_irq_restore(*flags);
1306 	if (work_is_canceling(work))
1307 		return -ENOENT;
1308 	cpu_relax();
1309 	return -EAGAIN;
1310 }
1311 
1312 /**
1313  * insert_work - insert a work into a pool
1314  * @pwq: pwq @work belongs to
1315  * @work: work to insert
1316  * @head: insertion point
1317  * @extra_flags: extra WORK_STRUCT_* flags to set
1318  *
1319  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1320  * work_struct flags.
1321  *
1322  * CONTEXT:
1323  * spin_lock_irq(pool->lock).
1324  */
1325 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1326 			struct list_head *head, unsigned int extra_flags)
1327 {
1328 	struct worker_pool *pool = pwq->pool;
1329 
1330 	/* we own @work, set data and link */
1331 	set_work_pwq(work, pwq, extra_flags);
1332 	list_add_tail(&work->entry, head);
1333 	get_pwq(pwq);
1334 
1335 	/*
1336 	 * Ensure either wq_worker_sleeping() sees the above
1337 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1338 	 * around lazily while there are works to be processed.
1339 	 */
1340 	smp_mb();
1341 
1342 	if (__need_more_worker(pool))
1343 		wake_up_worker(pool);
1344 }
1345 
1346 /*
1347  * Test whether @work is being queued from another work executing on the
1348  * same workqueue.
1349  */
1350 static bool is_chained_work(struct workqueue_struct *wq)
1351 {
1352 	struct worker *worker;
1353 
1354 	worker = current_wq_worker();
1355 	/*
1356 	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1357 	 * I'm @worker, it's safe to dereference it without locking.
1358 	 */
1359 	return worker && worker->current_pwq->wq == wq;
1360 }
1361 
1362 /*
1363  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1364  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1365  * avoid perturbing sensitive tasks.
1366  */
1367 static int wq_select_unbound_cpu(int cpu)
1368 {
1369 	static bool printed_dbg_warning;
1370 	int new_cpu;
1371 
1372 	if (likely(!wq_debug_force_rr_cpu)) {
1373 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1374 			return cpu;
1375 	} else if (!printed_dbg_warning) {
1376 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1377 		printed_dbg_warning = true;
1378 	}
1379 
1380 	if (cpumask_empty(wq_unbound_cpumask))
1381 		return cpu;
1382 
1383 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1384 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1385 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1386 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1387 		if (unlikely(new_cpu >= nr_cpu_ids))
1388 			return cpu;
1389 	}
1390 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1391 
1392 	return new_cpu;
1393 }
1394 
1395 static void __queue_work(int cpu, struct workqueue_struct *wq,
1396 			 struct work_struct *work)
1397 {
1398 	struct pool_workqueue *pwq;
1399 	struct worker_pool *last_pool;
1400 	struct list_head *worklist;
1401 	unsigned int work_flags;
1402 	unsigned int req_cpu = cpu;
1403 
1404 	/*
1405 	 * While a work item is PENDING && off queue, a task trying to
1406 	 * steal the PENDING will busy-loop waiting for it to either get
1407 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1408 	 * happen with IRQ disabled.
1409 	 */
1410 	lockdep_assert_irqs_disabled();
1411 
1412 	debug_work_activate(work);
1413 
1414 	/* if draining, only works from the same workqueue are allowed */
1415 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1416 	    WARN_ON_ONCE(!is_chained_work(wq)))
1417 		return;
1418 retry:
1419 	if (req_cpu == WORK_CPU_UNBOUND)
1420 		cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1421 
1422 	/* pwq which will be used unless @work is executing elsewhere */
1423 	if (!(wq->flags & WQ_UNBOUND))
1424 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1425 	else
1426 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1427 
1428 	/*
1429 	 * If @work was previously on a different pool, it might still be
1430 	 * running there, in which case the work needs to be queued on that
1431 	 * pool to guarantee non-reentrancy.
1432 	 */
1433 	last_pool = get_work_pool(work);
1434 	if (last_pool && last_pool != pwq->pool) {
1435 		struct worker *worker;
1436 
1437 		spin_lock(&last_pool->lock);
1438 
1439 		worker = find_worker_executing_work(last_pool, work);
1440 
1441 		if (worker && worker->current_pwq->wq == wq) {
1442 			pwq = worker->current_pwq;
1443 		} else {
1444 			/* meh... not running there, queue here */
1445 			spin_unlock(&last_pool->lock);
1446 			spin_lock(&pwq->pool->lock);
1447 		}
1448 	} else {
1449 		spin_lock(&pwq->pool->lock);
1450 	}
1451 
1452 	/*
1453 	 * pwq is determined and locked.  For unbound pools, we could have
1454 	 * raced with pwq release and it could already be dead.  If its
1455 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1456 	 * without another pwq replacing it in the numa_pwq_tbl or while
1457 	 * work items are executing on it, so the retrying is guaranteed to
1458 	 * make forward-progress.
1459 	 */
1460 	if (unlikely(!pwq->refcnt)) {
1461 		if (wq->flags & WQ_UNBOUND) {
1462 			spin_unlock(&pwq->pool->lock);
1463 			cpu_relax();
1464 			goto retry;
1465 		}
1466 		/* oops */
1467 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1468 			  wq->name, cpu);
1469 	}
1470 
1471 	/* pwq determined, queue */
1472 	trace_workqueue_queue_work(req_cpu, pwq, work);
1473 
1474 	if (WARN_ON(!list_empty(&work->entry))) {
1475 		spin_unlock(&pwq->pool->lock);
1476 		return;
1477 	}
1478 
1479 	pwq->nr_in_flight[pwq->work_color]++;
1480 	work_flags = work_color_to_flags(pwq->work_color);
1481 
1482 	if (likely(pwq->nr_active < pwq->max_active)) {
1483 		trace_workqueue_activate_work(work);
1484 		pwq->nr_active++;
1485 		worklist = &pwq->pool->worklist;
1486 		if (list_empty(worklist))
1487 			pwq->pool->watchdog_ts = jiffies;
1488 	} else {
1489 		work_flags |= WORK_STRUCT_DELAYED;
1490 		worklist = &pwq->delayed_works;
1491 	}
1492 
1493 	insert_work(pwq, work, worklist, work_flags);
1494 
1495 	spin_unlock(&pwq->pool->lock);
1496 }
1497 
1498 /**
1499  * queue_work_on - queue work on specific cpu
1500  * @cpu: CPU number to execute work on
1501  * @wq: workqueue to use
1502  * @work: work to queue
1503  *
1504  * We queue the work to a specific CPU, the caller must ensure it
1505  * can't go away.
1506  *
1507  * Return: %false if @work was already on a queue, %true otherwise.
1508  */
1509 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1510 		   struct work_struct *work)
1511 {
1512 	bool ret = false;
1513 	unsigned long flags;
1514 
1515 	local_irq_save(flags);
1516 
1517 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1518 		__queue_work(cpu, wq, work);
1519 		ret = true;
1520 	}
1521 
1522 	local_irq_restore(flags);
1523 	return ret;
1524 }
1525 EXPORT_SYMBOL(queue_work_on);
1526 
1527 /**
1528  * workqueue_select_cpu_near - Select a CPU based on NUMA node
1529  * @node: NUMA node ID that we want to select a CPU from
1530  *
1531  * This function will attempt to find a "random" cpu available on a given
1532  * node. If there are no CPUs available on the given node it will return
1533  * WORK_CPU_UNBOUND indicating that we should just schedule to any
1534  * available CPU if we need to schedule this work.
1535  */
1536 static int workqueue_select_cpu_near(int node)
1537 {
1538 	int cpu;
1539 
1540 	/* No point in doing this if NUMA isn't enabled for workqueues */
1541 	if (!wq_numa_enabled)
1542 		return WORK_CPU_UNBOUND;
1543 
1544 	/* Delay binding to CPU if node is not valid or online */
1545 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1546 		return WORK_CPU_UNBOUND;
1547 
1548 	/* Use local node/cpu if we are already there */
1549 	cpu = raw_smp_processor_id();
1550 	if (node == cpu_to_node(cpu))
1551 		return cpu;
1552 
1553 	/* Use "random" otherwise know as "first" online CPU of node */
1554 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1555 
1556 	/* If CPU is valid return that, otherwise just defer */
1557 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1558 }
1559 
1560 /**
1561  * queue_work_node - queue work on a "random" cpu for a given NUMA node
1562  * @node: NUMA node that we are targeting the work for
1563  * @wq: workqueue to use
1564  * @work: work to queue
1565  *
1566  * We queue the work to a "random" CPU within a given NUMA node. The basic
1567  * idea here is to provide a way to somehow associate work with a given
1568  * NUMA node.
1569  *
1570  * This function will only make a best effort attempt at getting this onto
1571  * the right NUMA node. If no node is requested or the requested node is
1572  * offline then we just fall back to standard queue_work behavior.
1573  *
1574  * Currently the "random" CPU ends up being the first available CPU in the
1575  * intersection of cpu_online_mask and the cpumask of the node, unless we
1576  * are running on the node. In that case we just use the current CPU.
1577  *
1578  * Return: %false if @work was already on a queue, %true otherwise.
1579  */
1580 bool queue_work_node(int node, struct workqueue_struct *wq,
1581 		     struct work_struct *work)
1582 {
1583 	unsigned long flags;
1584 	bool ret = false;
1585 
1586 	/*
1587 	 * This current implementation is specific to unbound workqueues.
1588 	 * Specifically we only return the first available CPU for a given
1589 	 * node instead of cycling through individual CPUs within the node.
1590 	 *
1591 	 * If this is used with a per-cpu workqueue then the logic in
1592 	 * workqueue_select_cpu_near would need to be updated to allow for
1593 	 * some round robin type logic.
1594 	 */
1595 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1596 
1597 	local_irq_save(flags);
1598 
1599 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1600 		int cpu = workqueue_select_cpu_near(node);
1601 
1602 		__queue_work(cpu, wq, work);
1603 		ret = true;
1604 	}
1605 
1606 	local_irq_restore(flags);
1607 	return ret;
1608 }
1609 EXPORT_SYMBOL_GPL(queue_work_node);
1610 
1611 void delayed_work_timer_fn(struct timer_list *t)
1612 {
1613 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1614 
1615 	/* should have been called from irqsafe timer with irq already off */
1616 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1617 }
1618 EXPORT_SYMBOL(delayed_work_timer_fn);
1619 
1620 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1621 				struct delayed_work *dwork, unsigned long delay)
1622 {
1623 	struct timer_list *timer = &dwork->timer;
1624 	struct work_struct *work = &dwork->work;
1625 
1626 	WARN_ON_ONCE(!wq);
1627 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1628 	WARN_ON_ONCE(timer_pending(timer));
1629 	WARN_ON_ONCE(!list_empty(&work->entry));
1630 
1631 	/*
1632 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1633 	 * both optimization and correctness.  The earliest @timer can
1634 	 * expire is on the closest next tick and delayed_work users depend
1635 	 * on that there's no such delay when @delay is 0.
1636 	 */
1637 	if (!delay) {
1638 		__queue_work(cpu, wq, &dwork->work);
1639 		return;
1640 	}
1641 
1642 	dwork->wq = wq;
1643 	dwork->cpu = cpu;
1644 	timer->expires = jiffies + delay;
1645 
1646 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1647 		add_timer_on(timer, cpu);
1648 	else
1649 		add_timer(timer);
1650 }
1651 
1652 /**
1653  * queue_delayed_work_on - queue work on specific CPU after delay
1654  * @cpu: CPU number to execute work on
1655  * @wq: workqueue to use
1656  * @dwork: work to queue
1657  * @delay: number of jiffies to wait before queueing
1658  *
1659  * Return: %false if @work was already on a queue, %true otherwise.  If
1660  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1661  * execution.
1662  */
1663 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1664 			   struct delayed_work *dwork, unsigned long delay)
1665 {
1666 	struct work_struct *work = &dwork->work;
1667 	bool ret = false;
1668 	unsigned long flags;
1669 
1670 	/* read the comment in __queue_work() */
1671 	local_irq_save(flags);
1672 
1673 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1674 		__queue_delayed_work(cpu, wq, dwork, delay);
1675 		ret = true;
1676 	}
1677 
1678 	local_irq_restore(flags);
1679 	return ret;
1680 }
1681 EXPORT_SYMBOL(queue_delayed_work_on);
1682 
1683 /**
1684  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1685  * @cpu: CPU number to execute work on
1686  * @wq: workqueue to use
1687  * @dwork: work to queue
1688  * @delay: number of jiffies to wait before queueing
1689  *
1690  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1691  * modify @dwork's timer so that it expires after @delay.  If @delay is
1692  * zero, @work is guaranteed to be scheduled immediately regardless of its
1693  * current state.
1694  *
1695  * Return: %false if @dwork was idle and queued, %true if @dwork was
1696  * pending and its timer was modified.
1697  *
1698  * This function is safe to call from any context including IRQ handler.
1699  * See try_to_grab_pending() for details.
1700  */
1701 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1702 			 struct delayed_work *dwork, unsigned long delay)
1703 {
1704 	unsigned long flags;
1705 	int ret;
1706 
1707 	do {
1708 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1709 	} while (unlikely(ret == -EAGAIN));
1710 
1711 	if (likely(ret >= 0)) {
1712 		__queue_delayed_work(cpu, wq, dwork, delay);
1713 		local_irq_restore(flags);
1714 	}
1715 
1716 	/* -ENOENT from try_to_grab_pending() becomes %true */
1717 	return ret;
1718 }
1719 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1720 
1721 static void rcu_work_rcufn(struct rcu_head *rcu)
1722 {
1723 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1724 
1725 	/* read the comment in __queue_work() */
1726 	local_irq_disable();
1727 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1728 	local_irq_enable();
1729 }
1730 
1731 /**
1732  * queue_rcu_work - queue work after a RCU grace period
1733  * @wq: workqueue to use
1734  * @rwork: work to queue
1735  *
1736  * Return: %false if @rwork was already pending, %true otherwise.  Note
1737  * that a full RCU grace period is guaranteed only after a %true return.
1738  * While @rwork is guarnateed to be executed after a %false return, the
1739  * execution may happen before a full RCU grace period has passed.
1740  */
1741 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1742 {
1743 	struct work_struct *work = &rwork->work;
1744 
1745 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1746 		rwork->wq = wq;
1747 		call_rcu(&rwork->rcu, rcu_work_rcufn);
1748 		return true;
1749 	}
1750 
1751 	return false;
1752 }
1753 EXPORT_SYMBOL(queue_rcu_work);
1754 
1755 /**
1756  * worker_enter_idle - enter idle state
1757  * @worker: worker which is entering idle state
1758  *
1759  * @worker is entering idle state.  Update stats and idle timer if
1760  * necessary.
1761  *
1762  * LOCKING:
1763  * spin_lock_irq(pool->lock).
1764  */
1765 static void worker_enter_idle(struct worker *worker)
1766 {
1767 	struct worker_pool *pool = worker->pool;
1768 
1769 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1770 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1771 			 (worker->hentry.next || worker->hentry.pprev)))
1772 		return;
1773 
1774 	/* can't use worker_set_flags(), also called from create_worker() */
1775 	worker->flags |= WORKER_IDLE;
1776 	pool->nr_idle++;
1777 	worker->last_active = jiffies;
1778 
1779 	/* idle_list is LIFO */
1780 	list_add(&worker->entry, &pool->idle_list);
1781 
1782 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1783 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1784 
1785 	/*
1786 	 * Sanity check nr_running.  Because unbind_workers() releases
1787 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1788 	 * nr_running, the warning may trigger spuriously.  Check iff
1789 	 * unbind is not in progress.
1790 	 */
1791 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1792 		     pool->nr_workers == pool->nr_idle &&
1793 		     atomic_read(&pool->nr_running));
1794 }
1795 
1796 /**
1797  * worker_leave_idle - leave idle state
1798  * @worker: worker which is leaving idle state
1799  *
1800  * @worker is leaving idle state.  Update stats.
1801  *
1802  * LOCKING:
1803  * spin_lock_irq(pool->lock).
1804  */
1805 static void worker_leave_idle(struct worker *worker)
1806 {
1807 	struct worker_pool *pool = worker->pool;
1808 
1809 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1810 		return;
1811 	worker_clr_flags(worker, WORKER_IDLE);
1812 	pool->nr_idle--;
1813 	list_del_init(&worker->entry);
1814 }
1815 
1816 static struct worker *alloc_worker(int node)
1817 {
1818 	struct worker *worker;
1819 
1820 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1821 	if (worker) {
1822 		INIT_LIST_HEAD(&worker->entry);
1823 		INIT_LIST_HEAD(&worker->scheduled);
1824 		INIT_LIST_HEAD(&worker->node);
1825 		/* on creation a worker is in !idle && prep state */
1826 		worker->flags = WORKER_PREP;
1827 	}
1828 	return worker;
1829 }
1830 
1831 /**
1832  * worker_attach_to_pool() - attach a worker to a pool
1833  * @worker: worker to be attached
1834  * @pool: the target pool
1835  *
1836  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1837  * cpu-binding of @worker are kept coordinated with the pool across
1838  * cpu-[un]hotplugs.
1839  */
1840 static void worker_attach_to_pool(struct worker *worker,
1841 				   struct worker_pool *pool)
1842 {
1843 	mutex_lock(&wq_pool_attach_mutex);
1844 
1845 	/*
1846 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1847 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1848 	 */
1849 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1850 
1851 	/*
1852 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1853 	 * stable across this function.  See the comments above the flag
1854 	 * definition for details.
1855 	 */
1856 	if (pool->flags & POOL_DISASSOCIATED)
1857 		worker->flags |= WORKER_UNBOUND;
1858 
1859 	list_add_tail(&worker->node, &pool->workers);
1860 	worker->pool = pool;
1861 
1862 	mutex_unlock(&wq_pool_attach_mutex);
1863 }
1864 
1865 /**
1866  * worker_detach_from_pool() - detach a worker from its pool
1867  * @worker: worker which is attached to its pool
1868  *
1869  * Undo the attaching which had been done in worker_attach_to_pool().  The
1870  * caller worker shouldn't access to the pool after detached except it has
1871  * other reference to the pool.
1872  */
1873 static void worker_detach_from_pool(struct worker *worker)
1874 {
1875 	struct worker_pool *pool = worker->pool;
1876 	struct completion *detach_completion = NULL;
1877 
1878 	mutex_lock(&wq_pool_attach_mutex);
1879 
1880 	list_del(&worker->node);
1881 	worker->pool = NULL;
1882 
1883 	if (list_empty(&pool->workers))
1884 		detach_completion = pool->detach_completion;
1885 	mutex_unlock(&wq_pool_attach_mutex);
1886 
1887 	/* clear leftover flags without pool->lock after it is detached */
1888 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1889 
1890 	if (detach_completion)
1891 		complete(detach_completion);
1892 }
1893 
1894 /**
1895  * create_worker - create a new workqueue worker
1896  * @pool: pool the new worker will belong to
1897  *
1898  * Create and start a new worker which is attached to @pool.
1899  *
1900  * CONTEXT:
1901  * Might sleep.  Does GFP_KERNEL allocations.
1902  *
1903  * Return:
1904  * Pointer to the newly created worker.
1905  */
1906 static struct worker *create_worker(struct worker_pool *pool)
1907 {
1908 	struct worker *worker = NULL;
1909 	int id = -1;
1910 	char id_buf[16];
1911 
1912 	/* ID is needed to determine kthread name */
1913 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1914 	if (id < 0)
1915 		goto fail;
1916 
1917 	worker = alloc_worker(pool->node);
1918 	if (!worker)
1919 		goto fail;
1920 
1921 	worker->id = id;
1922 
1923 	if (pool->cpu >= 0)
1924 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1925 			 pool->attrs->nice < 0  ? "H" : "");
1926 	else
1927 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1928 
1929 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1930 					      "kworker/%s", id_buf);
1931 	if (IS_ERR(worker->task))
1932 		goto fail;
1933 
1934 	set_user_nice(worker->task, pool->attrs->nice);
1935 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1936 
1937 	/* successful, attach the worker to the pool */
1938 	worker_attach_to_pool(worker, pool);
1939 
1940 	/* start the newly created worker */
1941 	spin_lock_irq(&pool->lock);
1942 	worker->pool->nr_workers++;
1943 	worker_enter_idle(worker);
1944 	wake_up_process(worker->task);
1945 	spin_unlock_irq(&pool->lock);
1946 
1947 	return worker;
1948 
1949 fail:
1950 	if (id >= 0)
1951 		ida_simple_remove(&pool->worker_ida, id);
1952 	kfree(worker);
1953 	return NULL;
1954 }
1955 
1956 /**
1957  * destroy_worker - destroy a workqueue worker
1958  * @worker: worker to be destroyed
1959  *
1960  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1961  * be idle.
1962  *
1963  * CONTEXT:
1964  * spin_lock_irq(pool->lock).
1965  */
1966 static void destroy_worker(struct worker *worker)
1967 {
1968 	struct worker_pool *pool = worker->pool;
1969 
1970 	lockdep_assert_held(&pool->lock);
1971 
1972 	/* sanity check frenzy */
1973 	if (WARN_ON(worker->current_work) ||
1974 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1975 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1976 		return;
1977 
1978 	pool->nr_workers--;
1979 	pool->nr_idle--;
1980 
1981 	list_del_init(&worker->entry);
1982 	worker->flags |= WORKER_DIE;
1983 	wake_up_process(worker->task);
1984 }
1985 
1986 static void idle_worker_timeout(struct timer_list *t)
1987 {
1988 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
1989 
1990 	spin_lock_irq(&pool->lock);
1991 
1992 	while (too_many_workers(pool)) {
1993 		struct worker *worker;
1994 		unsigned long expires;
1995 
1996 		/* idle_list is kept in LIFO order, check the last one */
1997 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1998 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1999 
2000 		if (time_before(jiffies, expires)) {
2001 			mod_timer(&pool->idle_timer, expires);
2002 			break;
2003 		}
2004 
2005 		destroy_worker(worker);
2006 	}
2007 
2008 	spin_unlock_irq(&pool->lock);
2009 }
2010 
2011 static void send_mayday(struct work_struct *work)
2012 {
2013 	struct pool_workqueue *pwq = get_work_pwq(work);
2014 	struct workqueue_struct *wq = pwq->wq;
2015 
2016 	lockdep_assert_held(&wq_mayday_lock);
2017 
2018 	if (!wq->rescuer)
2019 		return;
2020 
2021 	/* mayday mayday mayday */
2022 	if (list_empty(&pwq->mayday_node)) {
2023 		/*
2024 		 * If @pwq is for an unbound wq, its base ref may be put at
2025 		 * any time due to an attribute change.  Pin @pwq until the
2026 		 * rescuer is done with it.
2027 		 */
2028 		get_pwq(pwq);
2029 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2030 		wake_up_process(wq->rescuer->task);
2031 	}
2032 }
2033 
2034 static void pool_mayday_timeout(struct timer_list *t)
2035 {
2036 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2037 	struct work_struct *work;
2038 
2039 	spin_lock_irq(&pool->lock);
2040 	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2041 
2042 	if (need_to_create_worker(pool)) {
2043 		/*
2044 		 * We've been trying to create a new worker but
2045 		 * haven't been successful.  We might be hitting an
2046 		 * allocation deadlock.  Send distress signals to
2047 		 * rescuers.
2048 		 */
2049 		list_for_each_entry(work, &pool->worklist, entry)
2050 			send_mayday(work);
2051 	}
2052 
2053 	spin_unlock(&wq_mayday_lock);
2054 	spin_unlock_irq(&pool->lock);
2055 
2056 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2057 }
2058 
2059 /**
2060  * maybe_create_worker - create a new worker if necessary
2061  * @pool: pool to create a new worker for
2062  *
2063  * Create a new worker for @pool if necessary.  @pool is guaranteed to
2064  * have at least one idle worker on return from this function.  If
2065  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2066  * sent to all rescuers with works scheduled on @pool to resolve
2067  * possible allocation deadlock.
2068  *
2069  * On return, need_to_create_worker() is guaranteed to be %false and
2070  * may_start_working() %true.
2071  *
2072  * LOCKING:
2073  * spin_lock_irq(pool->lock) which may be released and regrabbed
2074  * multiple times.  Does GFP_KERNEL allocations.  Called only from
2075  * manager.
2076  */
2077 static void maybe_create_worker(struct worker_pool *pool)
2078 __releases(&pool->lock)
2079 __acquires(&pool->lock)
2080 {
2081 restart:
2082 	spin_unlock_irq(&pool->lock);
2083 
2084 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2085 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2086 
2087 	while (true) {
2088 		if (create_worker(pool) || !need_to_create_worker(pool))
2089 			break;
2090 
2091 		schedule_timeout_interruptible(CREATE_COOLDOWN);
2092 
2093 		if (!need_to_create_worker(pool))
2094 			break;
2095 	}
2096 
2097 	del_timer_sync(&pool->mayday_timer);
2098 	spin_lock_irq(&pool->lock);
2099 	/*
2100 	 * This is necessary even after a new worker was just successfully
2101 	 * created as @pool->lock was dropped and the new worker might have
2102 	 * already become busy.
2103 	 */
2104 	if (need_to_create_worker(pool))
2105 		goto restart;
2106 }
2107 
2108 /**
2109  * manage_workers - manage worker pool
2110  * @worker: self
2111  *
2112  * Assume the manager role and manage the worker pool @worker belongs
2113  * to.  At any given time, there can be only zero or one manager per
2114  * pool.  The exclusion is handled automatically by this function.
2115  *
2116  * The caller can safely start processing works on false return.  On
2117  * true return, it's guaranteed that need_to_create_worker() is false
2118  * and may_start_working() is true.
2119  *
2120  * CONTEXT:
2121  * spin_lock_irq(pool->lock) which may be released and regrabbed
2122  * multiple times.  Does GFP_KERNEL allocations.
2123  *
2124  * Return:
2125  * %false if the pool doesn't need management and the caller can safely
2126  * start processing works, %true if management function was performed and
2127  * the conditions that the caller verified before calling the function may
2128  * no longer be true.
2129  */
2130 static bool manage_workers(struct worker *worker)
2131 {
2132 	struct worker_pool *pool = worker->pool;
2133 
2134 	if (pool->flags & POOL_MANAGER_ACTIVE)
2135 		return false;
2136 
2137 	pool->flags |= POOL_MANAGER_ACTIVE;
2138 	pool->manager = worker;
2139 
2140 	maybe_create_worker(pool);
2141 
2142 	pool->manager = NULL;
2143 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2144 	wake_up(&wq_manager_wait);
2145 	return true;
2146 }
2147 
2148 /**
2149  * process_one_work - process single work
2150  * @worker: self
2151  * @work: work to process
2152  *
2153  * Process @work.  This function contains all the logics necessary to
2154  * process a single work including synchronization against and
2155  * interaction with other workers on the same cpu, queueing and
2156  * flushing.  As long as context requirement is met, any worker can
2157  * call this function to process a work.
2158  *
2159  * CONTEXT:
2160  * spin_lock_irq(pool->lock) which is released and regrabbed.
2161  */
2162 static void process_one_work(struct worker *worker, struct work_struct *work)
2163 __releases(&pool->lock)
2164 __acquires(&pool->lock)
2165 {
2166 	struct pool_workqueue *pwq = get_work_pwq(work);
2167 	struct worker_pool *pool = worker->pool;
2168 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2169 	int work_color;
2170 	struct worker *collision;
2171 #ifdef CONFIG_LOCKDEP
2172 	/*
2173 	 * It is permissible to free the struct work_struct from
2174 	 * inside the function that is called from it, this we need to
2175 	 * take into account for lockdep too.  To avoid bogus "held
2176 	 * lock freed" warnings as well as problems when looking into
2177 	 * work->lockdep_map, make a copy and use that here.
2178 	 */
2179 	struct lockdep_map lockdep_map;
2180 
2181 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2182 #endif
2183 	/* ensure we're on the correct CPU */
2184 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2185 		     raw_smp_processor_id() != pool->cpu);
2186 
2187 	/*
2188 	 * A single work shouldn't be executed concurrently by
2189 	 * multiple workers on a single cpu.  Check whether anyone is
2190 	 * already processing the work.  If so, defer the work to the
2191 	 * currently executing one.
2192 	 */
2193 	collision = find_worker_executing_work(pool, work);
2194 	if (unlikely(collision)) {
2195 		move_linked_works(work, &collision->scheduled, NULL);
2196 		return;
2197 	}
2198 
2199 	/* claim and dequeue */
2200 	debug_work_deactivate(work);
2201 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2202 	worker->current_work = work;
2203 	worker->current_func = work->func;
2204 	worker->current_pwq = pwq;
2205 	work_color = get_work_color(work);
2206 
2207 	/*
2208 	 * Record wq name for cmdline and debug reporting, may get
2209 	 * overridden through set_worker_desc().
2210 	 */
2211 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2212 
2213 	list_del_init(&work->entry);
2214 
2215 	/*
2216 	 * CPU intensive works don't participate in concurrency management.
2217 	 * They're the scheduler's responsibility.  This takes @worker out
2218 	 * of concurrency management and the next code block will chain
2219 	 * execution of the pending work items.
2220 	 */
2221 	if (unlikely(cpu_intensive))
2222 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2223 
2224 	/*
2225 	 * Wake up another worker if necessary.  The condition is always
2226 	 * false for normal per-cpu workers since nr_running would always
2227 	 * be >= 1 at this point.  This is used to chain execution of the
2228 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2229 	 * UNBOUND and CPU_INTENSIVE ones.
2230 	 */
2231 	if (need_more_worker(pool))
2232 		wake_up_worker(pool);
2233 
2234 	/*
2235 	 * Record the last pool and clear PENDING which should be the last
2236 	 * update to @work.  Also, do this inside @pool->lock so that
2237 	 * PENDING and queued state changes happen together while IRQ is
2238 	 * disabled.
2239 	 */
2240 	set_work_pool_and_clear_pending(work, pool->id);
2241 
2242 	spin_unlock_irq(&pool->lock);
2243 
2244 	lock_map_acquire(&pwq->wq->lockdep_map);
2245 	lock_map_acquire(&lockdep_map);
2246 	/*
2247 	 * Strictly speaking we should mark the invariant state without holding
2248 	 * any locks, that is, before these two lock_map_acquire()'s.
2249 	 *
2250 	 * However, that would result in:
2251 	 *
2252 	 *   A(W1)
2253 	 *   WFC(C)
2254 	 *		A(W1)
2255 	 *		C(C)
2256 	 *
2257 	 * Which would create W1->C->W1 dependencies, even though there is no
2258 	 * actual deadlock possible. There are two solutions, using a
2259 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2260 	 * hit the lockdep limitation on recursive locks, or simply discard
2261 	 * these locks.
2262 	 *
2263 	 * AFAICT there is no possible deadlock scenario between the
2264 	 * flush_work() and complete() primitives (except for single-threaded
2265 	 * workqueues), so hiding them isn't a problem.
2266 	 */
2267 	lockdep_invariant_state(true);
2268 	trace_workqueue_execute_start(work);
2269 	worker->current_func(work);
2270 	/*
2271 	 * While we must be careful to not use "work" after this, the trace
2272 	 * point will only record its address.
2273 	 */
2274 	trace_workqueue_execute_end(work);
2275 	lock_map_release(&lockdep_map);
2276 	lock_map_release(&pwq->wq->lockdep_map);
2277 
2278 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2279 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2280 		       "     last function: %pf\n",
2281 		       current->comm, preempt_count(), task_pid_nr(current),
2282 		       worker->current_func);
2283 		debug_show_held_locks(current);
2284 		dump_stack();
2285 	}
2286 
2287 	/*
2288 	 * The following prevents a kworker from hogging CPU on !PREEMPT
2289 	 * kernels, where a requeueing work item waiting for something to
2290 	 * happen could deadlock with stop_machine as such work item could
2291 	 * indefinitely requeue itself while all other CPUs are trapped in
2292 	 * stop_machine. At the same time, report a quiescent RCU state so
2293 	 * the same condition doesn't freeze RCU.
2294 	 */
2295 	cond_resched();
2296 
2297 	spin_lock_irq(&pool->lock);
2298 
2299 	/* clear cpu intensive status */
2300 	if (unlikely(cpu_intensive))
2301 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2302 
2303 	/* tag the worker for identification in schedule() */
2304 	worker->last_func = worker->current_func;
2305 
2306 	/* we're done with it, release */
2307 	hash_del(&worker->hentry);
2308 	worker->current_work = NULL;
2309 	worker->current_func = NULL;
2310 	worker->current_pwq = NULL;
2311 	pwq_dec_nr_in_flight(pwq, work_color);
2312 }
2313 
2314 /**
2315  * process_scheduled_works - process scheduled works
2316  * @worker: self
2317  *
2318  * Process all scheduled works.  Please note that the scheduled list
2319  * may change while processing a work, so this function repeatedly
2320  * fetches a work from the top and executes it.
2321  *
2322  * CONTEXT:
2323  * spin_lock_irq(pool->lock) which may be released and regrabbed
2324  * multiple times.
2325  */
2326 static void process_scheduled_works(struct worker *worker)
2327 {
2328 	while (!list_empty(&worker->scheduled)) {
2329 		struct work_struct *work = list_first_entry(&worker->scheduled,
2330 						struct work_struct, entry);
2331 		process_one_work(worker, work);
2332 	}
2333 }
2334 
2335 static void set_pf_worker(bool val)
2336 {
2337 	mutex_lock(&wq_pool_attach_mutex);
2338 	if (val)
2339 		current->flags |= PF_WQ_WORKER;
2340 	else
2341 		current->flags &= ~PF_WQ_WORKER;
2342 	mutex_unlock(&wq_pool_attach_mutex);
2343 }
2344 
2345 /**
2346  * worker_thread - the worker thread function
2347  * @__worker: self
2348  *
2349  * The worker thread function.  All workers belong to a worker_pool -
2350  * either a per-cpu one or dynamic unbound one.  These workers process all
2351  * work items regardless of their specific target workqueue.  The only
2352  * exception is work items which belong to workqueues with a rescuer which
2353  * will be explained in rescuer_thread().
2354  *
2355  * Return: 0
2356  */
2357 static int worker_thread(void *__worker)
2358 {
2359 	struct worker *worker = __worker;
2360 	struct worker_pool *pool = worker->pool;
2361 
2362 	/* tell the scheduler that this is a workqueue worker */
2363 	set_pf_worker(true);
2364 woke_up:
2365 	spin_lock_irq(&pool->lock);
2366 
2367 	/* am I supposed to die? */
2368 	if (unlikely(worker->flags & WORKER_DIE)) {
2369 		spin_unlock_irq(&pool->lock);
2370 		WARN_ON_ONCE(!list_empty(&worker->entry));
2371 		set_pf_worker(false);
2372 
2373 		set_task_comm(worker->task, "kworker/dying");
2374 		ida_simple_remove(&pool->worker_ida, worker->id);
2375 		worker_detach_from_pool(worker);
2376 		kfree(worker);
2377 		return 0;
2378 	}
2379 
2380 	worker_leave_idle(worker);
2381 recheck:
2382 	/* no more worker necessary? */
2383 	if (!need_more_worker(pool))
2384 		goto sleep;
2385 
2386 	/* do we need to manage? */
2387 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2388 		goto recheck;
2389 
2390 	/*
2391 	 * ->scheduled list can only be filled while a worker is
2392 	 * preparing to process a work or actually processing it.
2393 	 * Make sure nobody diddled with it while I was sleeping.
2394 	 */
2395 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2396 
2397 	/*
2398 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2399 	 * worker or that someone else has already assumed the manager
2400 	 * role.  This is where @worker starts participating in concurrency
2401 	 * management if applicable and concurrency management is restored
2402 	 * after being rebound.  See rebind_workers() for details.
2403 	 */
2404 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2405 
2406 	do {
2407 		struct work_struct *work =
2408 			list_first_entry(&pool->worklist,
2409 					 struct work_struct, entry);
2410 
2411 		pool->watchdog_ts = jiffies;
2412 
2413 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2414 			/* optimization path, not strictly necessary */
2415 			process_one_work(worker, work);
2416 			if (unlikely(!list_empty(&worker->scheduled)))
2417 				process_scheduled_works(worker);
2418 		} else {
2419 			move_linked_works(work, &worker->scheduled, NULL);
2420 			process_scheduled_works(worker);
2421 		}
2422 	} while (keep_working(pool));
2423 
2424 	worker_set_flags(worker, WORKER_PREP);
2425 sleep:
2426 	/*
2427 	 * pool->lock is held and there's no work to process and no need to
2428 	 * manage, sleep.  Workers are woken up only while holding
2429 	 * pool->lock or from local cpu, so setting the current state
2430 	 * before releasing pool->lock is enough to prevent losing any
2431 	 * event.
2432 	 */
2433 	worker_enter_idle(worker);
2434 	__set_current_state(TASK_IDLE);
2435 	spin_unlock_irq(&pool->lock);
2436 	schedule();
2437 	goto woke_up;
2438 }
2439 
2440 /**
2441  * rescuer_thread - the rescuer thread function
2442  * @__rescuer: self
2443  *
2444  * Workqueue rescuer thread function.  There's one rescuer for each
2445  * workqueue which has WQ_MEM_RECLAIM set.
2446  *
2447  * Regular work processing on a pool may block trying to create a new
2448  * worker which uses GFP_KERNEL allocation which has slight chance of
2449  * developing into deadlock if some works currently on the same queue
2450  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2451  * the problem rescuer solves.
2452  *
2453  * When such condition is possible, the pool summons rescuers of all
2454  * workqueues which have works queued on the pool and let them process
2455  * those works so that forward progress can be guaranteed.
2456  *
2457  * This should happen rarely.
2458  *
2459  * Return: 0
2460  */
2461 static int rescuer_thread(void *__rescuer)
2462 {
2463 	struct worker *rescuer = __rescuer;
2464 	struct workqueue_struct *wq = rescuer->rescue_wq;
2465 	struct list_head *scheduled = &rescuer->scheduled;
2466 	bool should_stop;
2467 
2468 	set_user_nice(current, RESCUER_NICE_LEVEL);
2469 
2470 	/*
2471 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2472 	 * doesn't participate in concurrency management.
2473 	 */
2474 	set_pf_worker(true);
2475 repeat:
2476 	set_current_state(TASK_IDLE);
2477 
2478 	/*
2479 	 * By the time the rescuer is requested to stop, the workqueue
2480 	 * shouldn't have any work pending, but @wq->maydays may still have
2481 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2482 	 * all the work items before the rescuer got to them.  Go through
2483 	 * @wq->maydays processing before acting on should_stop so that the
2484 	 * list is always empty on exit.
2485 	 */
2486 	should_stop = kthread_should_stop();
2487 
2488 	/* see whether any pwq is asking for help */
2489 	spin_lock_irq(&wq_mayday_lock);
2490 
2491 	while (!list_empty(&wq->maydays)) {
2492 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2493 					struct pool_workqueue, mayday_node);
2494 		struct worker_pool *pool = pwq->pool;
2495 		struct work_struct *work, *n;
2496 		bool first = true;
2497 
2498 		__set_current_state(TASK_RUNNING);
2499 		list_del_init(&pwq->mayday_node);
2500 
2501 		spin_unlock_irq(&wq_mayday_lock);
2502 
2503 		worker_attach_to_pool(rescuer, pool);
2504 
2505 		spin_lock_irq(&pool->lock);
2506 
2507 		/*
2508 		 * Slurp in all works issued via this workqueue and
2509 		 * process'em.
2510 		 */
2511 		WARN_ON_ONCE(!list_empty(scheduled));
2512 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2513 			if (get_work_pwq(work) == pwq) {
2514 				if (first)
2515 					pool->watchdog_ts = jiffies;
2516 				move_linked_works(work, scheduled, &n);
2517 			}
2518 			first = false;
2519 		}
2520 
2521 		if (!list_empty(scheduled)) {
2522 			process_scheduled_works(rescuer);
2523 
2524 			/*
2525 			 * The above execution of rescued work items could
2526 			 * have created more to rescue through
2527 			 * pwq_activate_first_delayed() or chained
2528 			 * queueing.  Let's put @pwq back on mayday list so
2529 			 * that such back-to-back work items, which may be
2530 			 * being used to relieve memory pressure, don't
2531 			 * incur MAYDAY_INTERVAL delay inbetween.
2532 			 */
2533 			if (need_to_create_worker(pool)) {
2534 				spin_lock(&wq_mayday_lock);
2535 				get_pwq(pwq);
2536 				list_move_tail(&pwq->mayday_node, &wq->maydays);
2537 				spin_unlock(&wq_mayday_lock);
2538 			}
2539 		}
2540 
2541 		/*
2542 		 * Put the reference grabbed by send_mayday().  @pool won't
2543 		 * go away while we're still attached to it.
2544 		 */
2545 		put_pwq(pwq);
2546 
2547 		/*
2548 		 * Leave this pool.  If need_more_worker() is %true, notify a
2549 		 * regular worker; otherwise, we end up with 0 concurrency
2550 		 * and stalling the execution.
2551 		 */
2552 		if (need_more_worker(pool))
2553 			wake_up_worker(pool);
2554 
2555 		spin_unlock_irq(&pool->lock);
2556 
2557 		worker_detach_from_pool(rescuer);
2558 
2559 		spin_lock_irq(&wq_mayday_lock);
2560 	}
2561 
2562 	spin_unlock_irq(&wq_mayday_lock);
2563 
2564 	if (should_stop) {
2565 		__set_current_state(TASK_RUNNING);
2566 		set_pf_worker(false);
2567 		return 0;
2568 	}
2569 
2570 	/* rescuers should never participate in concurrency management */
2571 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2572 	schedule();
2573 	goto repeat;
2574 }
2575 
2576 /**
2577  * check_flush_dependency - check for flush dependency sanity
2578  * @target_wq: workqueue being flushed
2579  * @target_work: work item being flushed (NULL for workqueue flushes)
2580  *
2581  * %current is trying to flush the whole @target_wq or @target_work on it.
2582  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2583  * reclaiming memory or running on a workqueue which doesn't have
2584  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2585  * a deadlock.
2586  */
2587 static void check_flush_dependency(struct workqueue_struct *target_wq,
2588 				   struct work_struct *target_work)
2589 {
2590 	work_func_t target_func = target_work ? target_work->func : NULL;
2591 	struct worker *worker;
2592 
2593 	if (target_wq->flags & WQ_MEM_RECLAIM)
2594 		return;
2595 
2596 	worker = current_wq_worker();
2597 
2598 	WARN_ONCE(current->flags & PF_MEMALLOC,
2599 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2600 		  current->pid, current->comm, target_wq->name, target_func);
2601 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2602 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2603 		  "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2604 		  worker->current_pwq->wq->name, worker->current_func,
2605 		  target_wq->name, target_func);
2606 }
2607 
2608 struct wq_barrier {
2609 	struct work_struct	work;
2610 	struct completion	done;
2611 	struct task_struct	*task;	/* purely informational */
2612 };
2613 
2614 static void wq_barrier_func(struct work_struct *work)
2615 {
2616 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2617 	complete(&barr->done);
2618 }
2619 
2620 /**
2621  * insert_wq_barrier - insert a barrier work
2622  * @pwq: pwq to insert barrier into
2623  * @barr: wq_barrier to insert
2624  * @target: target work to attach @barr to
2625  * @worker: worker currently executing @target, NULL if @target is not executing
2626  *
2627  * @barr is linked to @target such that @barr is completed only after
2628  * @target finishes execution.  Please note that the ordering
2629  * guarantee is observed only with respect to @target and on the local
2630  * cpu.
2631  *
2632  * Currently, a queued barrier can't be canceled.  This is because
2633  * try_to_grab_pending() can't determine whether the work to be
2634  * grabbed is at the head of the queue and thus can't clear LINKED
2635  * flag of the previous work while there must be a valid next work
2636  * after a work with LINKED flag set.
2637  *
2638  * Note that when @worker is non-NULL, @target may be modified
2639  * underneath us, so we can't reliably determine pwq from @target.
2640  *
2641  * CONTEXT:
2642  * spin_lock_irq(pool->lock).
2643  */
2644 static void insert_wq_barrier(struct pool_workqueue *pwq,
2645 			      struct wq_barrier *barr,
2646 			      struct work_struct *target, struct worker *worker)
2647 {
2648 	struct list_head *head;
2649 	unsigned int linked = 0;
2650 
2651 	/*
2652 	 * debugobject calls are safe here even with pool->lock locked
2653 	 * as we know for sure that this will not trigger any of the
2654 	 * checks and call back into the fixup functions where we
2655 	 * might deadlock.
2656 	 */
2657 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2658 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2659 
2660 	init_completion_map(&barr->done, &target->lockdep_map);
2661 
2662 	barr->task = current;
2663 
2664 	/*
2665 	 * If @target is currently being executed, schedule the
2666 	 * barrier to the worker; otherwise, put it after @target.
2667 	 */
2668 	if (worker)
2669 		head = worker->scheduled.next;
2670 	else {
2671 		unsigned long *bits = work_data_bits(target);
2672 
2673 		head = target->entry.next;
2674 		/* there can already be other linked works, inherit and set */
2675 		linked = *bits & WORK_STRUCT_LINKED;
2676 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2677 	}
2678 
2679 	debug_work_activate(&barr->work);
2680 	insert_work(pwq, &barr->work, head,
2681 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2682 }
2683 
2684 /**
2685  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2686  * @wq: workqueue being flushed
2687  * @flush_color: new flush color, < 0 for no-op
2688  * @work_color: new work color, < 0 for no-op
2689  *
2690  * Prepare pwqs for workqueue flushing.
2691  *
2692  * If @flush_color is non-negative, flush_color on all pwqs should be
2693  * -1.  If no pwq has in-flight commands at the specified color, all
2694  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2695  * has in flight commands, its pwq->flush_color is set to
2696  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2697  * wakeup logic is armed and %true is returned.
2698  *
2699  * The caller should have initialized @wq->first_flusher prior to
2700  * calling this function with non-negative @flush_color.  If
2701  * @flush_color is negative, no flush color update is done and %false
2702  * is returned.
2703  *
2704  * If @work_color is non-negative, all pwqs should have the same
2705  * work_color which is previous to @work_color and all will be
2706  * advanced to @work_color.
2707  *
2708  * CONTEXT:
2709  * mutex_lock(wq->mutex).
2710  *
2711  * Return:
2712  * %true if @flush_color >= 0 and there's something to flush.  %false
2713  * otherwise.
2714  */
2715 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2716 				      int flush_color, int work_color)
2717 {
2718 	bool wait = false;
2719 	struct pool_workqueue *pwq;
2720 
2721 	if (flush_color >= 0) {
2722 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2723 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2724 	}
2725 
2726 	for_each_pwq(pwq, wq) {
2727 		struct worker_pool *pool = pwq->pool;
2728 
2729 		spin_lock_irq(&pool->lock);
2730 
2731 		if (flush_color >= 0) {
2732 			WARN_ON_ONCE(pwq->flush_color != -1);
2733 
2734 			if (pwq->nr_in_flight[flush_color]) {
2735 				pwq->flush_color = flush_color;
2736 				atomic_inc(&wq->nr_pwqs_to_flush);
2737 				wait = true;
2738 			}
2739 		}
2740 
2741 		if (work_color >= 0) {
2742 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2743 			pwq->work_color = work_color;
2744 		}
2745 
2746 		spin_unlock_irq(&pool->lock);
2747 	}
2748 
2749 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2750 		complete(&wq->first_flusher->done);
2751 
2752 	return wait;
2753 }
2754 
2755 /**
2756  * flush_workqueue - ensure that any scheduled work has run to completion.
2757  * @wq: workqueue to flush
2758  *
2759  * This function sleeps until all work items which were queued on entry
2760  * have finished execution, but it is not livelocked by new incoming ones.
2761  */
2762 void flush_workqueue(struct workqueue_struct *wq)
2763 {
2764 	struct wq_flusher this_flusher = {
2765 		.list = LIST_HEAD_INIT(this_flusher.list),
2766 		.flush_color = -1,
2767 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2768 	};
2769 	int next_color;
2770 
2771 	if (WARN_ON(!wq_online))
2772 		return;
2773 
2774 	lock_map_acquire(&wq->lockdep_map);
2775 	lock_map_release(&wq->lockdep_map);
2776 
2777 	mutex_lock(&wq->mutex);
2778 
2779 	/*
2780 	 * Start-to-wait phase
2781 	 */
2782 	next_color = work_next_color(wq->work_color);
2783 
2784 	if (next_color != wq->flush_color) {
2785 		/*
2786 		 * Color space is not full.  The current work_color
2787 		 * becomes our flush_color and work_color is advanced
2788 		 * by one.
2789 		 */
2790 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2791 		this_flusher.flush_color = wq->work_color;
2792 		wq->work_color = next_color;
2793 
2794 		if (!wq->first_flusher) {
2795 			/* no flush in progress, become the first flusher */
2796 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2797 
2798 			wq->first_flusher = &this_flusher;
2799 
2800 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2801 						       wq->work_color)) {
2802 				/* nothing to flush, done */
2803 				wq->flush_color = next_color;
2804 				wq->first_flusher = NULL;
2805 				goto out_unlock;
2806 			}
2807 		} else {
2808 			/* wait in queue */
2809 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2810 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2811 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2812 		}
2813 	} else {
2814 		/*
2815 		 * Oops, color space is full, wait on overflow queue.
2816 		 * The next flush completion will assign us
2817 		 * flush_color and transfer to flusher_queue.
2818 		 */
2819 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2820 	}
2821 
2822 	check_flush_dependency(wq, NULL);
2823 
2824 	mutex_unlock(&wq->mutex);
2825 
2826 	wait_for_completion(&this_flusher.done);
2827 
2828 	/*
2829 	 * Wake-up-and-cascade phase
2830 	 *
2831 	 * First flushers are responsible for cascading flushes and
2832 	 * handling overflow.  Non-first flushers can simply return.
2833 	 */
2834 	if (wq->first_flusher != &this_flusher)
2835 		return;
2836 
2837 	mutex_lock(&wq->mutex);
2838 
2839 	/* we might have raced, check again with mutex held */
2840 	if (wq->first_flusher != &this_flusher)
2841 		goto out_unlock;
2842 
2843 	wq->first_flusher = NULL;
2844 
2845 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2846 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2847 
2848 	while (true) {
2849 		struct wq_flusher *next, *tmp;
2850 
2851 		/* complete all the flushers sharing the current flush color */
2852 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2853 			if (next->flush_color != wq->flush_color)
2854 				break;
2855 			list_del_init(&next->list);
2856 			complete(&next->done);
2857 		}
2858 
2859 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2860 			     wq->flush_color != work_next_color(wq->work_color));
2861 
2862 		/* this flush_color is finished, advance by one */
2863 		wq->flush_color = work_next_color(wq->flush_color);
2864 
2865 		/* one color has been freed, handle overflow queue */
2866 		if (!list_empty(&wq->flusher_overflow)) {
2867 			/*
2868 			 * Assign the same color to all overflowed
2869 			 * flushers, advance work_color and append to
2870 			 * flusher_queue.  This is the start-to-wait
2871 			 * phase for these overflowed flushers.
2872 			 */
2873 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2874 				tmp->flush_color = wq->work_color;
2875 
2876 			wq->work_color = work_next_color(wq->work_color);
2877 
2878 			list_splice_tail_init(&wq->flusher_overflow,
2879 					      &wq->flusher_queue);
2880 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2881 		}
2882 
2883 		if (list_empty(&wq->flusher_queue)) {
2884 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2885 			break;
2886 		}
2887 
2888 		/*
2889 		 * Need to flush more colors.  Make the next flusher
2890 		 * the new first flusher and arm pwqs.
2891 		 */
2892 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2893 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2894 
2895 		list_del_init(&next->list);
2896 		wq->first_flusher = next;
2897 
2898 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2899 			break;
2900 
2901 		/*
2902 		 * Meh... this color is already done, clear first
2903 		 * flusher and repeat cascading.
2904 		 */
2905 		wq->first_flusher = NULL;
2906 	}
2907 
2908 out_unlock:
2909 	mutex_unlock(&wq->mutex);
2910 }
2911 EXPORT_SYMBOL(flush_workqueue);
2912 
2913 /**
2914  * drain_workqueue - drain a workqueue
2915  * @wq: workqueue to drain
2916  *
2917  * Wait until the workqueue becomes empty.  While draining is in progress,
2918  * only chain queueing is allowed.  IOW, only currently pending or running
2919  * work items on @wq can queue further work items on it.  @wq is flushed
2920  * repeatedly until it becomes empty.  The number of flushing is determined
2921  * by the depth of chaining and should be relatively short.  Whine if it
2922  * takes too long.
2923  */
2924 void drain_workqueue(struct workqueue_struct *wq)
2925 {
2926 	unsigned int flush_cnt = 0;
2927 	struct pool_workqueue *pwq;
2928 
2929 	/*
2930 	 * __queue_work() needs to test whether there are drainers, is much
2931 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2932 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2933 	 */
2934 	mutex_lock(&wq->mutex);
2935 	if (!wq->nr_drainers++)
2936 		wq->flags |= __WQ_DRAINING;
2937 	mutex_unlock(&wq->mutex);
2938 reflush:
2939 	flush_workqueue(wq);
2940 
2941 	mutex_lock(&wq->mutex);
2942 
2943 	for_each_pwq(pwq, wq) {
2944 		bool drained;
2945 
2946 		spin_lock_irq(&pwq->pool->lock);
2947 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2948 		spin_unlock_irq(&pwq->pool->lock);
2949 
2950 		if (drained)
2951 			continue;
2952 
2953 		if (++flush_cnt == 10 ||
2954 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2955 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2956 				wq->name, flush_cnt);
2957 
2958 		mutex_unlock(&wq->mutex);
2959 		goto reflush;
2960 	}
2961 
2962 	if (!--wq->nr_drainers)
2963 		wq->flags &= ~__WQ_DRAINING;
2964 	mutex_unlock(&wq->mutex);
2965 }
2966 EXPORT_SYMBOL_GPL(drain_workqueue);
2967 
2968 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2969 			     bool from_cancel)
2970 {
2971 	struct worker *worker = NULL;
2972 	struct worker_pool *pool;
2973 	struct pool_workqueue *pwq;
2974 
2975 	might_sleep();
2976 
2977 	local_irq_disable();
2978 	pool = get_work_pool(work);
2979 	if (!pool) {
2980 		local_irq_enable();
2981 		return false;
2982 	}
2983 
2984 	spin_lock(&pool->lock);
2985 	/* see the comment in try_to_grab_pending() with the same code */
2986 	pwq = get_work_pwq(work);
2987 	if (pwq) {
2988 		if (unlikely(pwq->pool != pool))
2989 			goto already_gone;
2990 	} else {
2991 		worker = find_worker_executing_work(pool, work);
2992 		if (!worker)
2993 			goto already_gone;
2994 		pwq = worker->current_pwq;
2995 	}
2996 
2997 	check_flush_dependency(pwq->wq, work);
2998 
2999 	insert_wq_barrier(pwq, barr, work, worker);
3000 	spin_unlock_irq(&pool->lock);
3001 
3002 	/*
3003 	 * Force a lock recursion deadlock when using flush_work() inside a
3004 	 * single-threaded or rescuer equipped workqueue.
3005 	 *
3006 	 * For single threaded workqueues the deadlock happens when the work
3007 	 * is after the work issuing the flush_work(). For rescuer equipped
3008 	 * workqueues the deadlock happens when the rescuer stalls, blocking
3009 	 * forward progress.
3010 	 */
3011 	if (!from_cancel &&
3012 	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3013 		lock_map_acquire(&pwq->wq->lockdep_map);
3014 		lock_map_release(&pwq->wq->lockdep_map);
3015 	}
3016 
3017 	return true;
3018 already_gone:
3019 	spin_unlock_irq(&pool->lock);
3020 	return false;
3021 }
3022 
3023 static bool __flush_work(struct work_struct *work, bool from_cancel)
3024 {
3025 	struct wq_barrier barr;
3026 
3027 	if (WARN_ON(!wq_online))
3028 		return false;
3029 
3030 	if (!from_cancel) {
3031 		lock_map_acquire(&work->lockdep_map);
3032 		lock_map_release(&work->lockdep_map);
3033 	}
3034 
3035 	if (start_flush_work(work, &barr, from_cancel)) {
3036 		wait_for_completion(&barr.done);
3037 		destroy_work_on_stack(&barr.work);
3038 		return true;
3039 	} else {
3040 		return false;
3041 	}
3042 }
3043 
3044 /**
3045  * flush_work - wait for a work to finish executing the last queueing instance
3046  * @work: the work to flush
3047  *
3048  * Wait until @work has finished execution.  @work is guaranteed to be idle
3049  * on return if it hasn't been requeued since flush started.
3050  *
3051  * Return:
3052  * %true if flush_work() waited for the work to finish execution,
3053  * %false if it was already idle.
3054  */
3055 bool flush_work(struct work_struct *work)
3056 {
3057 	return __flush_work(work, false);
3058 }
3059 EXPORT_SYMBOL_GPL(flush_work);
3060 
3061 struct cwt_wait {
3062 	wait_queue_entry_t		wait;
3063 	struct work_struct	*work;
3064 };
3065 
3066 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3067 {
3068 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3069 
3070 	if (cwait->work != key)
3071 		return 0;
3072 	return autoremove_wake_function(wait, mode, sync, key);
3073 }
3074 
3075 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3076 {
3077 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3078 	unsigned long flags;
3079 	int ret;
3080 
3081 	do {
3082 		ret = try_to_grab_pending(work, is_dwork, &flags);
3083 		/*
3084 		 * If someone else is already canceling, wait for it to
3085 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3086 		 * because we may get scheduled between @work's completion
3087 		 * and the other canceling task resuming and clearing
3088 		 * CANCELING - flush_work() will return false immediately
3089 		 * as @work is no longer busy, try_to_grab_pending() will
3090 		 * return -ENOENT as @work is still being canceled and the
3091 		 * other canceling task won't be able to clear CANCELING as
3092 		 * we're hogging the CPU.
3093 		 *
3094 		 * Let's wait for completion using a waitqueue.  As this
3095 		 * may lead to the thundering herd problem, use a custom
3096 		 * wake function which matches @work along with exclusive
3097 		 * wait and wakeup.
3098 		 */
3099 		if (unlikely(ret == -ENOENT)) {
3100 			struct cwt_wait cwait;
3101 
3102 			init_wait(&cwait.wait);
3103 			cwait.wait.func = cwt_wakefn;
3104 			cwait.work = work;
3105 
3106 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3107 						  TASK_UNINTERRUPTIBLE);
3108 			if (work_is_canceling(work))
3109 				schedule();
3110 			finish_wait(&cancel_waitq, &cwait.wait);
3111 		}
3112 	} while (unlikely(ret < 0));
3113 
3114 	/* tell other tasks trying to grab @work to back off */
3115 	mark_work_canceling(work);
3116 	local_irq_restore(flags);
3117 
3118 	/*
3119 	 * This allows canceling during early boot.  We know that @work
3120 	 * isn't executing.
3121 	 */
3122 	if (wq_online)
3123 		__flush_work(work, true);
3124 
3125 	clear_work_data(work);
3126 
3127 	/*
3128 	 * Paired with prepare_to_wait() above so that either
3129 	 * waitqueue_active() is visible here or !work_is_canceling() is
3130 	 * visible there.
3131 	 */
3132 	smp_mb();
3133 	if (waitqueue_active(&cancel_waitq))
3134 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3135 
3136 	return ret;
3137 }
3138 
3139 /**
3140  * cancel_work_sync - cancel a work and wait for it to finish
3141  * @work: the work to cancel
3142  *
3143  * Cancel @work and wait for its execution to finish.  This function
3144  * can be used even if the work re-queues itself or migrates to
3145  * another workqueue.  On return from this function, @work is
3146  * guaranteed to be not pending or executing on any CPU.
3147  *
3148  * cancel_work_sync(&delayed_work->work) must not be used for
3149  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3150  *
3151  * The caller must ensure that the workqueue on which @work was last
3152  * queued can't be destroyed before this function returns.
3153  *
3154  * Return:
3155  * %true if @work was pending, %false otherwise.
3156  */
3157 bool cancel_work_sync(struct work_struct *work)
3158 {
3159 	return __cancel_work_timer(work, false);
3160 }
3161 EXPORT_SYMBOL_GPL(cancel_work_sync);
3162 
3163 /**
3164  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3165  * @dwork: the delayed work to flush
3166  *
3167  * Delayed timer is cancelled and the pending work is queued for
3168  * immediate execution.  Like flush_work(), this function only
3169  * considers the last queueing instance of @dwork.
3170  *
3171  * Return:
3172  * %true if flush_work() waited for the work to finish execution,
3173  * %false if it was already idle.
3174  */
3175 bool flush_delayed_work(struct delayed_work *dwork)
3176 {
3177 	local_irq_disable();
3178 	if (del_timer_sync(&dwork->timer))
3179 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3180 	local_irq_enable();
3181 	return flush_work(&dwork->work);
3182 }
3183 EXPORT_SYMBOL(flush_delayed_work);
3184 
3185 /**
3186  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3187  * @rwork: the rcu work to flush
3188  *
3189  * Return:
3190  * %true if flush_rcu_work() waited for the work to finish execution,
3191  * %false if it was already idle.
3192  */
3193 bool flush_rcu_work(struct rcu_work *rwork)
3194 {
3195 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3196 		rcu_barrier();
3197 		flush_work(&rwork->work);
3198 		return true;
3199 	} else {
3200 		return flush_work(&rwork->work);
3201 	}
3202 }
3203 EXPORT_SYMBOL(flush_rcu_work);
3204 
3205 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3206 {
3207 	unsigned long flags;
3208 	int ret;
3209 
3210 	do {
3211 		ret = try_to_grab_pending(work, is_dwork, &flags);
3212 	} while (unlikely(ret == -EAGAIN));
3213 
3214 	if (unlikely(ret < 0))
3215 		return false;
3216 
3217 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3218 	local_irq_restore(flags);
3219 	return ret;
3220 }
3221 
3222 /**
3223  * cancel_delayed_work - cancel a delayed work
3224  * @dwork: delayed_work to cancel
3225  *
3226  * Kill off a pending delayed_work.
3227  *
3228  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3229  * pending.
3230  *
3231  * Note:
3232  * The work callback function may still be running on return, unless
3233  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3234  * use cancel_delayed_work_sync() to wait on it.
3235  *
3236  * This function is safe to call from any context including IRQ handler.
3237  */
3238 bool cancel_delayed_work(struct delayed_work *dwork)
3239 {
3240 	return __cancel_work(&dwork->work, true);
3241 }
3242 EXPORT_SYMBOL(cancel_delayed_work);
3243 
3244 /**
3245  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3246  * @dwork: the delayed work cancel
3247  *
3248  * This is cancel_work_sync() for delayed works.
3249  *
3250  * Return:
3251  * %true if @dwork was pending, %false otherwise.
3252  */
3253 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3254 {
3255 	return __cancel_work_timer(&dwork->work, true);
3256 }
3257 EXPORT_SYMBOL(cancel_delayed_work_sync);
3258 
3259 /**
3260  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3261  * @func: the function to call
3262  *
3263  * schedule_on_each_cpu() executes @func on each online CPU using the
3264  * system workqueue and blocks until all CPUs have completed.
3265  * schedule_on_each_cpu() is very slow.
3266  *
3267  * Return:
3268  * 0 on success, -errno on failure.
3269  */
3270 int schedule_on_each_cpu(work_func_t func)
3271 {
3272 	int cpu;
3273 	struct work_struct __percpu *works;
3274 
3275 	works = alloc_percpu(struct work_struct);
3276 	if (!works)
3277 		return -ENOMEM;
3278 
3279 	get_online_cpus();
3280 
3281 	for_each_online_cpu(cpu) {
3282 		struct work_struct *work = per_cpu_ptr(works, cpu);
3283 
3284 		INIT_WORK(work, func);
3285 		schedule_work_on(cpu, work);
3286 	}
3287 
3288 	for_each_online_cpu(cpu)
3289 		flush_work(per_cpu_ptr(works, cpu));
3290 
3291 	put_online_cpus();
3292 	free_percpu(works);
3293 	return 0;
3294 }
3295 
3296 /**
3297  * execute_in_process_context - reliably execute the routine with user context
3298  * @fn:		the function to execute
3299  * @ew:		guaranteed storage for the execute work structure (must
3300  *		be available when the work executes)
3301  *
3302  * Executes the function immediately if process context is available,
3303  * otherwise schedules the function for delayed execution.
3304  *
3305  * Return:	0 - function was executed
3306  *		1 - function was scheduled for execution
3307  */
3308 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3309 {
3310 	if (!in_interrupt()) {
3311 		fn(&ew->work);
3312 		return 0;
3313 	}
3314 
3315 	INIT_WORK(&ew->work, fn);
3316 	schedule_work(&ew->work);
3317 
3318 	return 1;
3319 }
3320 EXPORT_SYMBOL_GPL(execute_in_process_context);
3321 
3322 /**
3323  * free_workqueue_attrs - free a workqueue_attrs
3324  * @attrs: workqueue_attrs to free
3325  *
3326  * Undo alloc_workqueue_attrs().
3327  */
3328 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3329 {
3330 	if (attrs) {
3331 		free_cpumask_var(attrs->cpumask);
3332 		kfree(attrs);
3333 	}
3334 }
3335 
3336 /**
3337  * alloc_workqueue_attrs - allocate a workqueue_attrs
3338  * @gfp_mask: allocation mask to use
3339  *
3340  * Allocate a new workqueue_attrs, initialize with default settings and
3341  * return it.
3342  *
3343  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3344  */
3345 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3346 {
3347 	struct workqueue_attrs *attrs;
3348 
3349 	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3350 	if (!attrs)
3351 		goto fail;
3352 	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3353 		goto fail;
3354 
3355 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3356 	return attrs;
3357 fail:
3358 	free_workqueue_attrs(attrs);
3359 	return NULL;
3360 }
3361 
3362 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3363 				 const struct workqueue_attrs *from)
3364 {
3365 	to->nice = from->nice;
3366 	cpumask_copy(to->cpumask, from->cpumask);
3367 	/*
3368 	 * Unlike hash and equality test, this function doesn't ignore
3369 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3370 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3371 	 */
3372 	to->no_numa = from->no_numa;
3373 }
3374 
3375 /* hash value of the content of @attr */
3376 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3377 {
3378 	u32 hash = 0;
3379 
3380 	hash = jhash_1word(attrs->nice, hash);
3381 	hash = jhash(cpumask_bits(attrs->cpumask),
3382 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3383 	return hash;
3384 }
3385 
3386 /* content equality test */
3387 static bool wqattrs_equal(const struct workqueue_attrs *a,
3388 			  const struct workqueue_attrs *b)
3389 {
3390 	if (a->nice != b->nice)
3391 		return false;
3392 	if (!cpumask_equal(a->cpumask, b->cpumask))
3393 		return false;
3394 	return true;
3395 }
3396 
3397 /**
3398  * init_worker_pool - initialize a newly zalloc'd worker_pool
3399  * @pool: worker_pool to initialize
3400  *
3401  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3402  *
3403  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3404  * inside @pool proper are initialized and put_unbound_pool() can be called
3405  * on @pool safely to release it.
3406  */
3407 static int init_worker_pool(struct worker_pool *pool)
3408 {
3409 	spin_lock_init(&pool->lock);
3410 	pool->id = -1;
3411 	pool->cpu = -1;
3412 	pool->node = NUMA_NO_NODE;
3413 	pool->flags |= POOL_DISASSOCIATED;
3414 	pool->watchdog_ts = jiffies;
3415 	INIT_LIST_HEAD(&pool->worklist);
3416 	INIT_LIST_HEAD(&pool->idle_list);
3417 	hash_init(pool->busy_hash);
3418 
3419 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3420 
3421 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3422 
3423 	INIT_LIST_HEAD(&pool->workers);
3424 
3425 	ida_init(&pool->worker_ida);
3426 	INIT_HLIST_NODE(&pool->hash_node);
3427 	pool->refcnt = 1;
3428 
3429 	/* shouldn't fail above this point */
3430 	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3431 	if (!pool->attrs)
3432 		return -ENOMEM;
3433 	return 0;
3434 }
3435 
3436 #ifdef CONFIG_LOCKDEP
3437 static void wq_init_lockdep(struct workqueue_struct *wq)
3438 {
3439 	char *lock_name;
3440 
3441 	lockdep_register_key(&wq->key);
3442 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3443 	if (!lock_name)
3444 		lock_name = wq->name;
3445 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3446 }
3447 
3448 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3449 {
3450 	lockdep_unregister_key(&wq->key);
3451 }
3452 
3453 static void wq_free_lockdep(struct workqueue_struct *wq)
3454 {
3455 	if (wq->lock_name != wq->name)
3456 		kfree(wq->lock_name);
3457 }
3458 #else
3459 static void wq_init_lockdep(struct workqueue_struct *wq)
3460 {
3461 }
3462 
3463 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3464 {
3465 }
3466 
3467 static void wq_free_lockdep(struct workqueue_struct *wq)
3468 {
3469 }
3470 #endif
3471 
3472 static void rcu_free_wq(struct rcu_head *rcu)
3473 {
3474 	struct workqueue_struct *wq =
3475 		container_of(rcu, struct workqueue_struct, rcu);
3476 
3477 	wq_free_lockdep(wq);
3478 
3479 	if (!(wq->flags & WQ_UNBOUND))
3480 		free_percpu(wq->cpu_pwqs);
3481 	else
3482 		free_workqueue_attrs(wq->unbound_attrs);
3483 
3484 	kfree(wq->rescuer);
3485 	kfree(wq);
3486 }
3487 
3488 static void rcu_free_pool(struct rcu_head *rcu)
3489 {
3490 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3491 
3492 	ida_destroy(&pool->worker_ida);
3493 	free_workqueue_attrs(pool->attrs);
3494 	kfree(pool);
3495 }
3496 
3497 /**
3498  * put_unbound_pool - put a worker_pool
3499  * @pool: worker_pool to put
3500  *
3501  * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3502  * safe manner.  get_unbound_pool() calls this function on its failure path
3503  * and this function should be able to release pools which went through,
3504  * successfully or not, init_worker_pool().
3505  *
3506  * Should be called with wq_pool_mutex held.
3507  */
3508 static void put_unbound_pool(struct worker_pool *pool)
3509 {
3510 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3511 	struct worker *worker;
3512 
3513 	lockdep_assert_held(&wq_pool_mutex);
3514 
3515 	if (--pool->refcnt)
3516 		return;
3517 
3518 	/* sanity checks */
3519 	if (WARN_ON(!(pool->cpu < 0)) ||
3520 	    WARN_ON(!list_empty(&pool->worklist)))
3521 		return;
3522 
3523 	/* release id and unhash */
3524 	if (pool->id >= 0)
3525 		idr_remove(&worker_pool_idr, pool->id);
3526 	hash_del(&pool->hash_node);
3527 
3528 	/*
3529 	 * Become the manager and destroy all workers.  This prevents
3530 	 * @pool's workers from blocking on attach_mutex.  We're the last
3531 	 * manager and @pool gets freed with the flag set.
3532 	 */
3533 	spin_lock_irq(&pool->lock);
3534 	wait_event_lock_irq(wq_manager_wait,
3535 			    !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3536 	pool->flags |= POOL_MANAGER_ACTIVE;
3537 
3538 	while ((worker = first_idle_worker(pool)))
3539 		destroy_worker(worker);
3540 	WARN_ON(pool->nr_workers || pool->nr_idle);
3541 	spin_unlock_irq(&pool->lock);
3542 
3543 	mutex_lock(&wq_pool_attach_mutex);
3544 	if (!list_empty(&pool->workers))
3545 		pool->detach_completion = &detach_completion;
3546 	mutex_unlock(&wq_pool_attach_mutex);
3547 
3548 	if (pool->detach_completion)
3549 		wait_for_completion(pool->detach_completion);
3550 
3551 	/* shut down the timers */
3552 	del_timer_sync(&pool->idle_timer);
3553 	del_timer_sync(&pool->mayday_timer);
3554 
3555 	/* sched-RCU protected to allow dereferences from get_work_pool() */
3556 	call_rcu(&pool->rcu, rcu_free_pool);
3557 }
3558 
3559 /**
3560  * get_unbound_pool - get a worker_pool with the specified attributes
3561  * @attrs: the attributes of the worker_pool to get
3562  *
3563  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3564  * reference count and return it.  If there already is a matching
3565  * worker_pool, it will be used; otherwise, this function attempts to
3566  * create a new one.
3567  *
3568  * Should be called with wq_pool_mutex held.
3569  *
3570  * Return: On success, a worker_pool with the same attributes as @attrs.
3571  * On failure, %NULL.
3572  */
3573 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3574 {
3575 	u32 hash = wqattrs_hash(attrs);
3576 	struct worker_pool *pool;
3577 	int node;
3578 	int target_node = NUMA_NO_NODE;
3579 
3580 	lockdep_assert_held(&wq_pool_mutex);
3581 
3582 	/* do we already have a matching pool? */
3583 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3584 		if (wqattrs_equal(pool->attrs, attrs)) {
3585 			pool->refcnt++;
3586 			return pool;
3587 		}
3588 	}
3589 
3590 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3591 	if (wq_numa_enabled) {
3592 		for_each_node(node) {
3593 			if (cpumask_subset(attrs->cpumask,
3594 					   wq_numa_possible_cpumask[node])) {
3595 				target_node = node;
3596 				break;
3597 			}
3598 		}
3599 	}
3600 
3601 	/* nope, create a new one */
3602 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3603 	if (!pool || init_worker_pool(pool) < 0)
3604 		goto fail;
3605 
3606 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3607 	copy_workqueue_attrs(pool->attrs, attrs);
3608 	pool->node = target_node;
3609 
3610 	/*
3611 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3612 	 * 'struct workqueue_attrs' comments for detail.
3613 	 */
3614 	pool->attrs->no_numa = false;
3615 
3616 	if (worker_pool_assign_id(pool) < 0)
3617 		goto fail;
3618 
3619 	/* create and start the initial worker */
3620 	if (wq_online && !create_worker(pool))
3621 		goto fail;
3622 
3623 	/* install */
3624 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3625 
3626 	return pool;
3627 fail:
3628 	if (pool)
3629 		put_unbound_pool(pool);
3630 	return NULL;
3631 }
3632 
3633 static void rcu_free_pwq(struct rcu_head *rcu)
3634 {
3635 	kmem_cache_free(pwq_cache,
3636 			container_of(rcu, struct pool_workqueue, rcu));
3637 }
3638 
3639 /*
3640  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3641  * and needs to be destroyed.
3642  */
3643 static void pwq_unbound_release_workfn(struct work_struct *work)
3644 {
3645 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3646 						  unbound_release_work);
3647 	struct workqueue_struct *wq = pwq->wq;
3648 	struct worker_pool *pool = pwq->pool;
3649 	bool is_last;
3650 
3651 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3652 		return;
3653 
3654 	mutex_lock(&wq->mutex);
3655 	list_del_rcu(&pwq->pwqs_node);
3656 	is_last = list_empty(&wq->pwqs);
3657 	mutex_unlock(&wq->mutex);
3658 
3659 	mutex_lock(&wq_pool_mutex);
3660 	put_unbound_pool(pool);
3661 	mutex_unlock(&wq_pool_mutex);
3662 
3663 	call_rcu(&pwq->rcu, rcu_free_pwq);
3664 
3665 	/*
3666 	 * If we're the last pwq going away, @wq is already dead and no one
3667 	 * is gonna access it anymore.  Schedule RCU free.
3668 	 */
3669 	if (is_last) {
3670 		wq_unregister_lockdep(wq);
3671 		call_rcu(&wq->rcu, rcu_free_wq);
3672 	}
3673 }
3674 
3675 /**
3676  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3677  * @pwq: target pool_workqueue
3678  *
3679  * If @pwq isn't freezing, set @pwq->max_active to the associated
3680  * workqueue's saved_max_active and activate delayed work items
3681  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3682  */
3683 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3684 {
3685 	struct workqueue_struct *wq = pwq->wq;
3686 	bool freezable = wq->flags & WQ_FREEZABLE;
3687 	unsigned long flags;
3688 
3689 	/* for @wq->saved_max_active */
3690 	lockdep_assert_held(&wq->mutex);
3691 
3692 	/* fast exit for non-freezable wqs */
3693 	if (!freezable && pwq->max_active == wq->saved_max_active)
3694 		return;
3695 
3696 	/* this function can be called during early boot w/ irq disabled */
3697 	spin_lock_irqsave(&pwq->pool->lock, flags);
3698 
3699 	/*
3700 	 * During [un]freezing, the caller is responsible for ensuring that
3701 	 * this function is called at least once after @workqueue_freezing
3702 	 * is updated and visible.
3703 	 */
3704 	if (!freezable || !workqueue_freezing) {
3705 		pwq->max_active = wq->saved_max_active;
3706 
3707 		while (!list_empty(&pwq->delayed_works) &&
3708 		       pwq->nr_active < pwq->max_active)
3709 			pwq_activate_first_delayed(pwq);
3710 
3711 		/*
3712 		 * Need to kick a worker after thawed or an unbound wq's
3713 		 * max_active is bumped.  It's a slow path.  Do it always.
3714 		 */
3715 		wake_up_worker(pwq->pool);
3716 	} else {
3717 		pwq->max_active = 0;
3718 	}
3719 
3720 	spin_unlock_irqrestore(&pwq->pool->lock, flags);
3721 }
3722 
3723 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3724 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3725 		     struct worker_pool *pool)
3726 {
3727 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3728 
3729 	memset(pwq, 0, sizeof(*pwq));
3730 
3731 	pwq->pool = pool;
3732 	pwq->wq = wq;
3733 	pwq->flush_color = -1;
3734 	pwq->refcnt = 1;
3735 	INIT_LIST_HEAD(&pwq->delayed_works);
3736 	INIT_LIST_HEAD(&pwq->pwqs_node);
3737 	INIT_LIST_HEAD(&pwq->mayday_node);
3738 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3739 }
3740 
3741 /* sync @pwq with the current state of its associated wq and link it */
3742 static void link_pwq(struct pool_workqueue *pwq)
3743 {
3744 	struct workqueue_struct *wq = pwq->wq;
3745 
3746 	lockdep_assert_held(&wq->mutex);
3747 
3748 	/* may be called multiple times, ignore if already linked */
3749 	if (!list_empty(&pwq->pwqs_node))
3750 		return;
3751 
3752 	/* set the matching work_color */
3753 	pwq->work_color = wq->work_color;
3754 
3755 	/* sync max_active to the current setting */
3756 	pwq_adjust_max_active(pwq);
3757 
3758 	/* link in @pwq */
3759 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3760 }
3761 
3762 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3763 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3764 					const struct workqueue_attrs *attrs)
3765 {
3766 	struct worker_pool *pool;
3767 	struct pool_workqueue *pwq;
3768 
3769 	lockdep_assert_held(&wq_pool_mutex);
3770 
3771 	pool = get_unbound_pool(attrs);
3772 	if (!pool)
3773 		return NULL;
3774 
3775 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3776 	if (!pwq) {
3777 		put_unbound_pool(pool);
3778 		return NULL;
3779 	}
3780 
3781 	init_pwq(pwq, wq, pool);
3782 	return pwq;
3783 }
3784 
3785 /**
3786  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3787  * @attrs: the wq_attrs of the default pwq of the target workqueue
3788  * @node: the target NUMA node
3789  * @cpu_going_down: if >= 0, the CPU to consider as offline
3790  * @cpumask: outarg, the resulting cpumask
3791  *
3792  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3793  * @cpu_going_down is >= 0, that cpu is considered offline during
3794  * calculation.  The result is stored in @cpumask.
3795  *
3796  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3797  * enabled and @node has online CPUs requested by @attrs, the returned
3798  * cpumask is the intersection of the possible CPUs of @node and
3799  * @attrs->cpumask.
3800  *
3801  * The caller is responsible for ensuring that the cpumask of @node stays
3802  * stable.
3803  *
3804  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3805  * %false if equal.
3806  */
3807 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3808 				 int cpu_going_down, cpumask_t *cpumask)
3809 {
3810 	if (!wq_numa_enabled || attrs->no_numa)
3811 		goto use_dfl;
3812 
3813 	/* does @node have any online CPUs @attrs wants? */
3814 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3815 	if (cpu_going_down >= 0)
3816 		cpumask_clear_cpu(cpu_going_down, cpumask);
3817 
3818 	if (cpumask_empty(cpumask))
3819 		goto use_dfl;
3820 
3821 	/* yeap, return possible CPUs in @node that @attrs wants */
3822 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3823 
3824 	if (cpumask_empty(cpumask)) {
3825 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3826 				"possible intersect\n");
3827 		return false;
3828 	}
3829 
3830 	return !cpumask_equal(cpumask, attrs->cpumask);
3831 
3832 use_dfl:
3833 	cpumask_copy(cpumask, attrs->cpumask);
3834 	return false;
3835 }
3836 
3837 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3838 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3839 						   int node,
3840 						   struct pool_workqueue *pwq)
3841 {
3842 	struct pool_workqueue *old_pwq;
3843 
3844 	lockdep_assert_held(&wq_pool_mutex);
3845 	lockdep_assert_held(&wq->mutex);
3846 
3847 	/* link_pwq() can handle duplicate calls */
3848 	link_pwq(pwq);
3849 
3850 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3851 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3852 	return old_pwq;
3853 }
3854 
3855 /* context to store the prepared attrs & pwqs before applying */
3856 struct apply_wqattrs_ctx {
3857 	struct workqueue_struct	*wq;		/* target workqueue */
3858 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3859 	struct list_head	list;		/* queued for batching commit */
3860 	struct pool_workqueue	*dfl_pwq;
3861 	struct pool_workqueue	*pwq_tbl[];
3862 };
3863 
3864 /* free the resources after success or abort */
3865 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3866 {
3867 	if (ctx) {
3868 		int node;
3869 
3870 		for_each_node(node)
3871 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3872 		put_pwq_unlocked(ctx->dfl_pwq);
3873 
3874 		free_workqueue_attrs(ctx->attrs);
3875 
3876 		kfree(ctx);
3877 	}
3878 }
3879 
3880 /* allocate the attrs and pwqs for later installation */
3881 static struct apply_wqattrs_ctx *
3882 apply_wqattrs_prepare(struct workqueue_struct *wq,
3883 		      const struct workqueue_attrs *attrs)
3884 {
3885 	struct apply_wqattrs_ctx *ctx;
3886 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3887 	int node;
3888 
3889 	lockdep_assert_held(&wq_pool_mutex);
3890 
3891 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3892 
3893 	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3894 	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3895 	if (!ctx || !new_attrs || !tmp_attrs)
3896 		goto out_free;
3897 
3898 	/*
3899 	 * Calculate the attrs of the default pwq.
3900 	 * If the user configured cpumask doesn't overlap with the
3901 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3902 	 */
3903 	copy_workqueue_attrs(new_attrs, attrs);
3904 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3905 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3906 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3907 
3908 	/*
3909 	 * We may create multiple pwqs with differing cpumasks.  Make a
3910 	 * copy of @new_attrs which will be modified and used to obtain
3911 	 * pools.
3912 	 */
3913 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3914 
3915 	/*
3916 	 * If something goes wrong during CPU up/down, we'll fall back to
3917 	 * the default pwq covering whole @attrs->cpumask.  Always create
3918 	 * it even if we don't use it immediately.
3919 	 */
3920 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3921 	if (!ctx->dfl_pwq)
3922 		goto out_free;
3923 
3924 	for_each_node(node) {
3925 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3926 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3927 			if (!ctx->pwq_tbl[node])
3928 				goto out_free;
3929 		} else {
3930 			ctx->dfl_pwq->refcnt++;
3931 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3932 		}
3933 	}
3934 
3935 	/* save the user configured attrs and sanitize it. */
3936 	copy_workqueue_attrs(new_attrs, attrs);
3937 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3938 	ctx->attrs = new_attrs;
3939 
3940 	ctx->wq = wq;
3941 	free_workqueue_attrs(tmp_attrs);
3942 	return ctx;
3943 
3944 out_free:
3945 	free_workqueue_attrs(tmp_attrs);
3946 	free_workqueue_attrs(new_attrs);
3947 	apply_wqattrs_cleanup(ctx);
3948 	return NULL;
3949 }
3950 
3951 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3952 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3953 {
3954 	int node;
3955 
3956 	/* all pwqs have been created successfully, let's install'em */
3957 	mutex_lock(&ctx->wq->mutex);
3958 
3959 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3960 
3961 	/* save the previous pwq and install the new one */
3962 	for_each_node(node)
3963 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3964 							  ctx->pwq_tbl[node]);
3965 
3966 	/* @dfl_pwq might not have been used, ensure it's linked */
3967 	link_pwq(ctx->dfl_pwq);
3968 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3969 
3970 	mutex_unlock(&ctx->wq->mutex);
3971 }
3972 
3973 static void apply_wqattrs_lock(void)
3974 {
3975 	/* CPUs should stay stable across pwq creations and installations */
3976 	get_online_cpus();
3977 	mutex_lock(&wq_pool_mutex);
3978 }
3979 
3980 static void apply_wqattrs_unlock(void)
3981 {
3982 	mutex_unlock(&wq_pool_mutex);
3983 	put_online_cpus();
3984 }
3985 
3986 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3987 					const struct workqueue_attrs *attrs)
3988 {
3989 	struct apply_wqattrs_ctx *ctx;
3990 
3991 	/* only unbound workqueues can change attributes */
3992 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3993 		return -EINVAL;
3994 
3995 	/* creating multiple pwqs breaks ordering guarantee */
3996 	if (!list_empty(&wq->pwqs)) {
3997 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3998 			return -EINVAL;
3999 
4000 		wq->flags &= ~__WQ_ORDERED;
4001 	}
4002 
4003 	ctx = apply_wqattrs_prepare(wq, attrs);
4004 	if (!ctx)
4005 		return -ENOMEM;
4006 
4007 	/* the ctx has been prepared successfully, let's commit it */
4008 	apply_wqattrs_commit(ctx);
4009 	apply_wqattrs_cleanup(ctx);
4010 
4011 	return 0;
4012 }
4013 
4014 /**
4015  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4016  * @wq: the target workqueue
4017  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4018  *
4019  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
4020  * machines, this function maps a separate pwq to each NUMA node with
4021  * possibles CPUs in @attrs->cpumask so that work items are affine to the
4022  * NUMA node it was issued on.  Older pwqs are released as in-flight work
4023  * items finish.  Note that a work item which repeatedly requeues itself
4024  * back-to-back will stay on its current pwq.
4025  *
4026  * Performs GFP_KERNEL allocations.
4027  *
4028  * Return: 0 on success and -errno on failure.
4029  */
4030 int apply_workqueue_attrs(struct workqueue_struct *wq,
4031 			  const struct workqueue_attrs *attrs)
4032 {
4033 	int ret;
4034 
4035 	apply_wqattrs_lock();
4036 	ret = apply_workqueue_attrs_locked(wq, attrs);
4037 	apply_wqattrs_unlock();
4038 
4039 	return ret;
4040 }
4041 EXPORT_SYMBOL_GPL(apply_workqueue_attrs);
4042 
4043 /**
4044  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4045  * @wq: the target workqueue
4046  * @cpu: the CPU coming up or going down
4047  * @online: whether @cpu is coming up or going down
4048  *
4049  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4050  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4051  * @wq accordingly.
4052  *
4053  * If NUMA affinity can't be adjusted due to memory allocation failure, it
4054  * falls back to @wq->dfl_pwq which may not be optimal but is always
4055  * correct.
4056  *
4057  * Note that when the last allowed CPU of a NUMA node goes offline for a
4058  * workqueue with a cpumask spanning multiple nodes, the workers which were
4059  * already executing the work items for the workqueue will lose their CPU
4060  * affinity and may execute on any CPU.  This is similar to how per-cpu
4061  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4062  * affinity, it's the user's responsibility to flush the work item from
4063  * CPU_DOWN_PREPARE.
4064  */
4065 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4066 				   bool online)
4067 {
4068 	int node = cpu_to_node(cpu);
4069 	int cpu_off = online ? -1 : cpu;
4070 	struct pool_workqueue *old_pwq = NULL, *pwq;
4071 	struct workqueue_attrs *target_attrs;
4072 	cpumask_t *cpumask;
4073 
4074 	lockdep_assert_held(&wq_pool_mutex);
4075 
4076 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4077 	    wq->unbound_attrs->no_numa)
4078 		return;
4079 
4080 	/*
4081 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4082 	 * Let's use a preallocated one.  The following buf is protected by
4083 	 * CPU hotplug exclusion.
4084 	 */
4085 	target_attrs = wq_update_unbound_numa_attrs_buf;
4086 	cpumask = target_attrs->cpumask;
4087 
4088 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4089 	pwq = unbound_pwq_by_node(wq, node);
4090 
4091 	/*
4092 	 * Let's determine what needs to be done.  If the target cpumask is
4093 	 * different from the default pwq's, we need to compare it to @pwq's
4094 	 * and create a new one if they don't match.  If the target cpumask
4095 	 * equals the default pwq's, the default pwq should be used.
4096 	 */
4097 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4098 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4099 			return;
4100 	} else {
4101 		goto use_dfl_pwq;
4102 	}
4103 
4104 	/* create a new pwq */
4105 	pwq = alloc_unbound_pwq(wq, target_attrs);
4106 	if (!pwq) {
4107 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4108 			wq->name);
4109 		goto use_dfl_pwq;
4110 	}
4111 
4112 	/* Install the new pwq. */
4113 	mutex_lock(&wq->mutex);
4114 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4115 	goto out_unlock;
4116 
4117 use_dfl_pwq:
4118 	mutex_lock(&wq->mutex);
4119 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
4120 	get_pwq(wq->dfl_pwq);
4121 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4122 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4123 out_unlock:
4124 	mutex_unlock(&wq->mutex);
4125 	put_pwq_unlocked(old_pwq);
4126 }
4127 
4128 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4129 {
4130 	bool highpri = wq->flags & WQ_HIGHPRI;
4131 	int cpu, ret;
4132 
4133 	if (!(wq->flags & WQ_UNBOUND)) {
4134 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4135 		if (!wq->cpu_pwqs)
4136 			return -ENOMEM;
4137 
4138 		for_each_possible_cpu(cpu) {
4139 			struct pool_workqueue *pwq =
4140 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4141 			struct worker_pool *cpu_pools =
4142 				per_cpu(cpu_worker_pools, cpu);
4143 
4144 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4145 
4146 			mutex_lock(&wq->mutex);
4147 			link_pwq(pwq);
4148 			mutex_unlock(&wq->mutex);
4149 		}
4150 		return 0;
4151 	} else if (wq->flags & __WQ_ORDERED) {
4152 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4153 		/* there should only be single pwq for ordering guarantee */
4154 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4155 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4156 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4157 		return ret;
4158 	} else {
4159 		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4160 	}
4161 }
4162 
4163 static int wq_clamp_max_active(int max_active, unsigned int flags,
4164 			       const char *name)
4165 {
4166 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4167 
4168 	if (max_active < 1 || max_active > lim)
4169 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4170 			max_active, name, 1, lim);
4171 
4172 	return clamp_val(max_active, 1, lim);
4173 }
4174 
4175 /*
4176  * Workqueues which may be used during memory reclaim should have a rescuer
4177  * to guarantee forward progress.
4178  */
4179 static int init_rescuer(struct workqueue_struct *wq)
4180 {
4181 	struct worker *rescuer;
4182 	int ret;
4183 
4184 	if (!(wq->flags & WQ_MEM_RECLAIM))
4185 		return 0;
4186 
4187 	rescuer = alloc_worker(NUMA_NO_NODE);
4188 	if (!rescuer)
4189 		return -ENOMEM;
4190 
4191 	rescuer->rescue_wq = wq;
4192 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4193 	ret = PTR_ERR_OR_ZERO(rescuer->task);
4194 	if (ret) {
4195 		kfree(rescuer);
4196 		return ret;
4197 	}
4198 
4199 	wq->rescuer = rescuer;
4200 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4201 	wake_up_process(rescuer->task);
4202 
4203 	return 0;
4204 }
4205 
4206 struct workqueue_struct *alloc_workqueue(const char *fmt,
4207 					 unsigned int flags,
4208 					 int max_active, ...)
4209 {
4210 	size_t tbl_size = 0;
4211 	va_list args;
4212 	struct workqueue_struct *wq;
4213 	struct pool_workqueue *pwq;
4214 
4215 	/*
4216 	 * Unbound && max_active == 1 used to imply ordered, which is no
4217 	 * longer the case on NUMA machines due to per-node pools.  While
4218 	 * alloc_ordered_workqueue() is the right way to create an ordered
4219 	 * workqueue, keep the previous behavior to avoid subtle breakages
4220 	 * on NUMA.
4221 	 */
4222 	if ((flags & WQ_UNBOUND) && max_active == 1)
4223 		flags |= __WQ_ORDERED;
4224 
4225 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4226 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4227 		flags |= WQ_UNBOUND;
4228 
4229 	/* allocate wq and format name */
4230 	if (flags & WQ_UNBOUND)
4231 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4232 
4233 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4234 	if (!wq)
4235 		return NULL;
4236 
4237 	if (flags & WQ_UNBOUND) {
4238 		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4239 		if (!wq->unbound_attrs)
4240 			goto err_free_wq;
4241 	}
4242 
4243 	va_start(args, max_active);
4244 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4245 	va_end(args);
4246 
4247 	max_active = max_active ?: WQ_DFL_ACTIVE;
4248 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4249 
4250 	/* init wq */
4251 	wq->flags = flags;
4252 	wq->saved_max_active = max_active;
4253 	mutex_init(&wq->mutex);
4254 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4255 	INIT_LIST_HEAD(&wq->pwqs);
4256 	INIT_LIST_HEAD(&wq->flusher_queue);
4257 	INIT_LIST_HEAD(&wq->flusher_overflow);
4258 	INIT_LIST_HEAD(&wq->maydays);
4259 
4260 	wq_init_lockdep(wq);
4261 	INIT_LIST_HEAD(&wq->list);
4262 
4263 	if (alloc_and_link_pwqs(wq) < 0)
4264 		goto err_free_wq;
4265 
4266 	if (wq_online && init_rescuer(wq) < 0)
4267 		goto err_destroy;
4268 
4269 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4270 		goto err_destroy;
4271 
4272 	/*
4273 	 * wq_pool_mutex protects global freeze state and workqueues list.
4274 	 * Grab it, adjust max_active and add the new @wq to workqueues
4275 	 * list.
4276 	 */
4277 	mutex_lock(&wq_pool_mutex);
4278 
4279 	mutex_lock(&wq->mutex);
4280 	for_each_pwq(pwq, wq)
4281 		pwq_adjust_max_active(pwq);
4282 	mutex_unlock(&wq->mutex);
4283 
4284 	list_add_tail_rcu(&wq->list, &workqueues);
4285 
4286 	mutex_unlock(&wq_pool_mutex);
4287 
4288 	return wq;
4289 
4290 err_free_wq:
4291 	free_workqueue_attrs(wq->unbound_attrs);
4292 	kfree(wq);
4293 	return NULL;
4294 err_destroy:
4295 	destroy_workqueue(wq);
4296 	return NULL;
4297 }
4298 EXPORT_SYMBOL_GPL(alloc_workqueue);
4299 
4300 /**
4301  * destroy_workqueue - safely terminate a workqueue
4302  * @wq: target workqueue
4303  *
4304  * Safely destroy a workqueue. All work currently pending will be done first.
4305  */
4306 void destroy_workqueue(struct workqueue_struct *wq)
4307 {
4308 	struct pool_workqueue *pwq;
4309 	int node;
4310 
4311 	/* drain it before proceeding with destruction */
4312 	drain_workqueue(wq);
4313 
4314 	/* sanity checks */
4315 	mutex_lock(&wq->mutex);
4316 	for_each_pwq(pwq, wq) {
4317 		int i;
4318 
4319 		for (i = 0; i < WORK_NR_COLORS; i++) {
4320 			if (WARN_ON(pwq->nr_in_flight[i])) {
4321 				mutex_unlock(&wq->mutex);
4322 				show_workqueue_state();
4323 				return;
4324 			}
4325 		}
4326 
4327 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4328 		    WARN_ON(pwq->nr_active) ||
4329 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4330 			mutex_unlock(&wq->mutex);
4331 			show_workqueue_state();
4332 			return;
4333 		}
4334 	}
4335 	mutex_unlock(&wq->mutex);
4336 
4337 	/*
4338 	 * wq list is used to freeze wq, remove from list after
4339 	 * flushing is complete in case freeze races us.
4340 	 */
4341 	mutex_lock(&wq_pool_mutex);
4342 	list_del_rcu(&wq->list);
4343 	mutex_unlock(&wq_pool_mutex);
4344 
4345 	workqueue_sysfs_unregister(wq);
4346 
4347 	if (wq->rescuer)
4348 		kthread_stop(wq->rescuer->task);
4349 
4350 	if (!(wq->flags & WQ_UNBOUND)) {
4351 		wq_unregister_lockdep(wq);
4352 		/*
4353 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4354 		 * schedule RCU free.
4355 		 */
4356 		call_rcu(&wq->rcu, rcu_free_wq);
4357 	} else {
4358 		/*
4359 		 * We're the sole accessor of @wq at this point.  Directly
4360 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4361 		 * @wq will be freed when the last pwq is released.
4362 		 */
4363 		for_each_node(node) {
4364 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4365 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4366 			put_pwq_unlocked(pwq);
4367 		}
4368 
4369 		/*
4370 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4371 		 * put.  Don't access it afterwards.
4372 		 */
4373 		pwq = wq->dfl_pwq;
4374 		wq->dfl_pwq = NULL;
4375 		put_pwq_unlocked(pwq);
4376 	}
4377 }
4378 EXPORT_SYMBOL_GPL(destroy_workqueue);
4379 
4380 /**
4381  * workqueue_set_max_active - adjust max_active of a workqueue
4382  * @wq: target workqueue
4383  * @max_active: new max_active value.
4384  *
4385  * Set max_active of @wq to @max_active.
4386  *
4387  * CONTEXT:
4388  * Don't call from IRQ context.
4389  */
4390 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4391 {
4392 	struct pool_workqueue *pwq;
4393 
4394 	/* disallow meddling with max_active for ordered workqueues */
4395 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4396 		return;
4397 
4398 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4399 
4400 	mutex_lock(&wq->mutex);
4401 
4402 	wq->flags &= ~__WQ_ORDERED;
4403 	wq->saved_max_active = max_active;
4404 
4405 	for_each_pwq(pwq, wq)
4406 		pwq_adjust_max_active(pwq);
4407 
4408 	mutex_unlock(&wq->mutex);
4409 }
4410 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4411 
4412 /**
4413  * current_work - retrieve %current task's work struct
4414  *
4415  * Determine if %current task is a workqueue worker and what it's working on.
4416  * Useful to find out the context that the %current task is running in.
4417  *
4418  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4419  */
4420 struct work_struct *current_work(void)
4421 {
4422 	struct worker *worker = current_wq_worker();
4423 
4424 	return worker ? worker->current_work : NULL;
4425 }
4426 EXPORT_SYMBOL(current_work);
4427 
4428 /**
4429  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4430  *
4431  * Determine whether %current is a workqueue rescuer.  Can be used from
4432  * work functions to determine whether it's being run off the rescuer task.
4433  *
4434  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4435  */
4436 bool current_is_workqueue_rescuer(void)
4437 {
4438 	struct worker *worker = current_wq_worker();
4439 
4440 	return worker && worker->rescue_wq;
4441 }
4442 
4443 /**
4444  * workqueue_congested - test whether a workqueue is congested
4445  * @cpu: CPU in question
4446  * @wq: target workqueue
4447  *
4448  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4449  * no synchronization around this function and the test result is
4450  * unreliable and only useful as advisory hints or for debugging.
4451  *
4452  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4453  * Note that both per-cpu and unbound workqueues may be associated with
4454  * multiple pool_workqueues which have separate congested states.  A
4455  * workqueue being congested on one CPU doesn't mean the workqueue is also
4456  * contested on other CPUs / NUMA nodes.
4457  *
4458  * Return:
4459  * %true if congested, %false otherwise.
4460  */
4461 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4462 {
4463 	struct pool_workqueue *pwq;
4464 	bool ret;
4465 
4466 	rcu_read_lock_sched();
4467 
4468 	if (cpu == WORK_CPU_UNBOUND)
4469 		cpu = smp_processor_id();
4470 
4471 	if (!(wq->flags & WQ_UNBOUND))
4472 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4473 	else
4474 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4475 
4476 	ret = !list_empty(&pwq->delayed_works);
4477 	rcu_read_unlock_sched();
4478 
4479 	return ret;
4480 }
4481 EXPORT_SYMBOL_GPL(workqueue_congested);
4482 
4483 /**
4484  * work_busy - test whether a work is currently pending or running
4485  * @work: the work to be tested
4486  *
4487  * Test whether @work is currently pending or running.  There is no
4488  * synchronization around this function and the test result is
4489  * unreliable and only useful as advisory hints or for debugging.
4490  *
4491  * Return:
4492  * OR'd bitmask of WORK_BUSY_* bits.
4493  */
4494 unsigned int work_busy(struct work_struct *work)
4495 {
4496 	struct worker_pool *pool;
4497 	unsigned long flags;
4498 	unsigned int ret = 0;
4499 
4500 	if (work_pending(work))
4501 		ret |= WORK_BUSY_PENDING;
4502 
4503 	local_irq_save(flags);
4504 	pool = get_work_pool(work);
4505 	if (pool) {
4506 		spin_lock(&pool->lock);
4507 		if (find_worker_executing_work(pool, work))
4508 			ret |= WORK_BUSY_RUNNING;
4509 		spin_unlock(&pool->lock);
4510 	}
4511 	local_irq_restore(flags);
4512 
4513 	return ret;
4514 }
4515 EXPORT_SYMBOL_GPL(work_busy);
4516 
4517 /**
4518  * set_worker_desc - set description for the current work item
4519  * @fmt: printf-style format string
4520  * @...: arguments for the format string
4521  *
4522  * This function can be called by a running work function to describe what
4523  * the work item is about.  If the worker task gets dumped, this
4524  * information will be printed out together to help debugging.  The
4525  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4526  */
4527 void set_worker_desc(const char *fmt, ...)
4528 {
4529 	struct worker *worker = current_wq_worker();
4530 	va_list args;
4531 
4532 	if (worker) {
4533 		va_start(args, fmt);
4534 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4535 		va_end(args);
4536 	}
4537 }
4538 EXPORT_SYMBOL_GPL(set_worker_desc);
4539 
4540 /**
4541  * print_worker_info - print out worker information and description
4542  * @log_lvl: the log level to use when printing
4543  * @task: target task
4544  *
4545  * If @task is a worker and currently executing a work item, print out the
4546  * name of the workqueue being serviced and worker description set with
4547  * set_worker_desc() by the currently executing work item.
4548  *
4549  * This function can be safely called on any task as long as the
4550  * task_struct itself is accessible.  While safe, this function isn't
4551  * synchronized and may print out mixups or garbages of limited length.
4552  */
4553 void print_worker_info(const char *log_lvl, struct task_struct *task)
4554 {
4555 	work_func_t *fn = NULL;
4556 	char name[WQ_NAME_LEN] = { };
4557 	char desc[WORKER_DESC_LEN] = { };
4558 	struct pool_workqueue *pwq = NULL;
4559 	struct workqueue_struct *wq = NULL;
4560 	struct worker *worker;
4561 
4562 	if (!(task->flags & PF_WQ_WORKER))
4563 		return;
4564 
4565 	/*
4566 	 * This function is called without any synchronization and @task
4567 	 * could be in any state.  Be careful with dereferences.
4568 	 */
4569 	worker = kthread_probe_data(task);
4570 
4571 	/*
4572 	 * Carefully copy the associated workqueue's workfn, name and desc.
4573 	 * Keep the original last '\0' in case the original is garbage.
4574 	 */
4575 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4576 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4577 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4578 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4579 	probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4580 
4581 	if (fn || name[0] || desc[0]) {
4582 		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4583 		if (strcmp(name, desc))
4584 			pr_cont(" (%s)", desc);
4585 		pr_cont("\n");
4586 	}
4587 }
4588 
4589 static void pr_cont_pool_info(struct worker_pool *pool)
4590 {
4591 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4592 	if (pool->node != NUMA_NO_NODE)
4593 		pr_cont(" node=%d", pool->node);
4594 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4595 }
4596 
4597 static void pr_cont_work(bool comma, struct work_struct *work)
4598 {
4599 	if (work->func == wq_barrier_func) {
4600 		struct wq_barrier *barr;
4601 
4602 		barr = container_of(work, struct wq_barrier, work);
4603 
4604 		pr_cont("%s BAR(%d)", comma ? "," : "",
4605 			task_pid_nr(barr->task));
4606 	} else {
4607 		pr_cont("%s %pf", comma ? "," : "", work->func);
4608 	}
4609 }
4610 
4611 static void show_pwq(struct pool_workqueue *pwq)
4612 {
4613 	struct worker_pool *pool = pwq->pool;
4614 	struct work_struct *work;
4615 	struct worker *worker;
4616 	bool has_in_flight = false, has_pending = false;
4617 	int bkt;
4618 
4619 	pr_info("  pwq %d:", pool->id);
4620 	pr_cont_pool_info(pool);
4621 
4622 	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4623 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4624 
4625 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4626 		if (worker->current_pwq == pwq) {
4627 			has_in_flight = true;
4628 			break;
4629 		}
4630 	}
4631 	if (has_in_flight) {
4632 		bool comma = false;
4633 
4634 		pr_info("    in-flight:");
4635 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4636 			if (worker->current_pwq != pwq)
4637 				continue;
4638 
4639 			pr_cont("%s %d%s:%pf", comma ? "," : "",
4640 				task_pid_nr(worker->task),
4641 				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4642 				worker->current_func);
4643 			list_for_each_entry(work, &worker->scheduled, entry)
4644 				pr_cont_work(false, work);
4645 			comma = true;
4646 		}
4647 		pr_cont("\n");
4648 	}
4649 
4650 	list_for_each_entry(work, &pool->worklist, entry) {
4651 		if (get_work_pwq(work) == pwq) {
4652 			has_pending = true;
4653 			break;
4654 		}
4655 	}
4656 	if (has_pending) {
4657 		bool comma = false;
4658 
4659 		pr_info("    pending:");
4660 		list_for_each_entry(work, &pool->worklist, entry) {
4661 			if (get_work_pwq(work) != pwq)
4662 				continue;
4663 
4664 			pr_cont_work(comma, work);
4665 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4666 		}
4667 		pr_cont("\n");
4668 	}
4669 
4670 	if (!list_empty(&pwq->delayed_works)) {
4671 		bool comma = false;
4672 
4673 		pr_info("    delayed:");
4674 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4675 			pr_cont_work(comma, work);
4676 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4677 		}
4678 		pr_cont("\n");
4679 	}
4680 }
4681 
4682 /**
4683  * show_workqueue_state - dump workqueue state
4684  *
4685  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4686  * all busy workqueues and pools.
4687  */
4688 void show_workqueue_state(void)
4689 {
4690 	struct workqueue_struct *wq;
4691 	struct worker_pool *pool;
4692 	unsigned long flags;
4693 	int pi;
4694 
4695 	rcu_read_lock_sched();
4696 
4697 	pr_info("Showing busy workqueues and worker pools:\n");
4698 
4699 	list_for_each_entry_rcu(wq, &workqueues, list) {
4700 		struct pool_workqueue *pwq;
4701 		bool idle = true;
4702 
4703 		for_each_pwq(pwq, wq) {
4704 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4705 				idle = false;
4706 				break;
4707 			}
4708 		}
4709 		if (idle)
4710 			continue;
4711 
4712 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4713 
4714 		for_each_pwq(pwq, wq) {
4715 			spin_lock_irqsave(&pwq->pool->lock, flags);
4716 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4717 				show_pwq(pwq);
4718 			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4719 			/*
4720 			 * We could be printing a lot from atomic context, e.g.
4721 			 * sysrq-t -> show_workqueue_state(). Avoid triggering
4722 			 * hard lockup.
4723 			 */
4724 			touch_nmi_watchdog();
4725 		}
4726 	}
4727 
4728 	for_each_pool(pool, pi) {
4729 		struct worker *worker;
4730 		bool first = true;
4731 
4732 		spin_lock_irqsave(&pool->lock, flags);
4733 		if (pool->nr_workers == pool->nr_idle)
4734 			goto next_pool;
4735 
4736 		pr_info("pool %d:", pool->id);
4737 		pr_cont_pool_info(pool);
4738 		pr_cont(" hung=%us workers=%d",
4739 			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4740 			pool->nr_workers);
4741 		if (pool->manager)
4742 			pr_cont(" manager: %d",
4743 				task_pid_nr(pool->manager->task));
4744 		list_for_each_entry(worker, &pool->idle_list, entry) {
4745 			pr_cont(" %s%d", first ? "idle: " : "",
4746 				task_pid_nr(worker->task));
4747 			first = false;
4748 		}
4749 		pr_cont("\n");
4750 	next_pool:
4751 		spin_unlock_irqrestore(&pool->lock, flags);
4752 		/*
4753 		 * We could be printing a lot from atomic context, e.g.
4754 		 * sysrq-t -> show_workqueue_state(). Avoid triggering
4755 		 * hard lockup.
4756 		 */
4757 		touch_nmi_watchdog();
4758 	}
4759 
4760 	rcu_read_unlock_sched();
4761 }
4762 
4763 /* used to show worker information through /proc/PID/{comm,stat,status} */
4764 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4765 {
4766 	int off;
4767 
4768 	/* always show the actual comm */
4769 	off = strscpy(buf, task->comm, size);
4770 	if (off < 0)
4771 		return;
4772 
4773 	/* stabilize PF_WQ_WORKER and worker pool association */
4774 	mutex_lock(&wq_pool_attach_mutex);
4775 
4776 	if (task->flags & PF_WQ_WORKER) {
4777 		struct worker *worker = kthread_data(task);
4778 		struct worker_pool *pool = worker->pool;
4779 
4780 		if (pool) {
4781 			spin_lock_irq(&pool->lock);
4782 			/*
4783 			 * ->desc tracks information (wq name or
4784 			 * set_worker_desc()) for the latest execution.  If
4785 			 * current, prepend '+', otherwise '-'.
4786 			 */
4787 			if (worker->desc[0] != '\0') {
4788 				if (worker->current_work)
4789 					scnprintf(buf + off, size - off, "+%s",
4790 						  worker->desc);
4791 				else
4792 					scnprintf(buf + off, size - off, "-%s",
4793 						  worker->desc);
4794 			}
4795 			spin_unlock_irq(&pool->lock);
4796 		}
4797 	}
4798 
4799 	mutex_unlock(&wq_pool_attach_mutex);
4800 }
4801 
4802 #ifdef CONFIG_SMP
4803 
4804 /*
4805  * CPU hotplug.
4806  *
4807  * There are two challenges in supporting CPU hotplug.  Firstly, there
4808  * are a lot of assumptions on strong associations among work, pwq and
4809  * pool which make migrating pending and scheduled works very
4810  * difficult to implement without impacting hot paths.  Secondly,
4811  * worker pools serve mix of short, long and very long running works making
4812  * blocked draining impractical.
4813  *
4814  * This is solved by allowing the pools to be disassociated from the CPU
4815  * running as an unbound one and allowing it to be reattached later if the
4816  * cpu comes back online.
4817  */
4818 
4819 static void unbind_workers(int cpu)
4820 {
4821 	struct worker_pool *pool;
4822 	struct worker *worker;
4823 
4824 	for_each_cpu_worker_pool(pool, cpu) {
4825 		mutex_lock(&wq_pool_attach_mutex);
4826 		spin_lock_irq(&pool->lock);
4827 
4828 		/*
4829 		 * We've blocked all attach/detach operations. Make all workers
4830 		 * unbound and set DISASSOCIATED.  Before this, all workers
4831 		 * except for the ones which are still executing works from
4832 		 * before the last CPU down must be on the cpu.  After
4833 		 * this, they may become diasporas.
4834 		 */
4835 		for_each_pool_worker(worker, pool)
4836 			worker->flags |= WORKER_UNBOUND;
4837 
4838 		pool->flags |= POOL_DISASSOCIATED;
4839 
4840 		spin_unlock_irq(&pool->lock);
4841 		mutex_unlock(&wq_pool_attach_mutex);
4842 
4843 		/*
4844 		 * Call schedule() so that we cross rq->lock and thus can
4845 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4846 		 * This is necessary as scheduler callbacks may be invoked
4847 		 * from other cpus.
4848 		 */
4849 		schedule();
4850 
4851 		/*
4852 		 * Sched callbacks are disabled now.  Zap nr_running.
4853 		 * After this, nr_running stays zero and need_more_worker()
4854 		 * and keep_working() are always true as long as the
4855 		 * worklist is not empty.  This pool now behaves as an
4856 		 * unbound (in terms of concurrency management) pool which
4857 		 * are served by workers tied to the pool.
4858 		 */
4859 		atomic_set(&pool->nr_running, 0);
4860 
4861 		/*
4862 		 * With concurrency management just turned off, a busy
4863 		 * worker blocking could lead to lengthy stalls.  Kick off
4864 		 * unbound chain execution of currently pending work items.
4865 		 */
4866 		spin_lock_irq(&pool->lock);
4867 		wake_up_worker(pool);
4868 		spin_unlock_irq(&pool->lock);
4869 	}
4870 }
4871 
4872 /**
4873  * rebind_workers - rebind all workers of a pool to the associated CPU
4874  * @pool: pool of interest
4875  *
4876  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4877  */
4878 static void rebind_workers(struct worker_pool *pool)
4879 {
4880 	struct worker *worker;
4881 
4882 	lockdep_assert_held(&wq_pool_attach_mutex);
4883 
4884 	/*
4885 	 * Restore CPU affinity of all workers.  As all idle workers should
4886 	 * be on the run-queue of the associated CPU before any local
4887 	 * wake-ups for concurrency management happen, restore CPU affinity
4888 	 * of all workers first and then clear UNBOUND.  As we're called
4889 	 * from CPU_ONLINE, the following shouldn't fail.
4890 	 */
4891 	for_each_pool_worker(worker, pool)
4892 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4893 						  pool->attrs->cpumask) < 0);
4894 
4895 	spin_lock_irq(&pool->lock);
4896 
4897 	pool->flags &= ~POOL_DISASSOCIATED;
4898 
4899 	for_each_pool_worker(worker, pool) {
4900 		unsigned int worker_flags = worker->flags;
4901 
4902 		/*
4903 		 * A bound idle worker should actually be on the runqueue
4904 		 * of the associated CPU for local wake-ups targeting it to
4905 		 * work.  Kick all idle workers so that they migrate to the
4906 		 * associated CPU.  Doing this in the same loop as
4907 		 * replacing UNBOUND with REBOUND is safe as no worker will
4908 		 * be bound before @pool->lock is released.
4909 		 */
4910 		if (worker_flags & WORKER_IDLE)
4911 			wake_up_process(worker->task);
4912 
4913 		/*
4914 		 * We want to clear UNBOUND but can't directly call
4915 		 * worker_clr_flags() or adjust nr_running.  Atomically
4916 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4917 		 * @worker will clear REBOUND using worker_clr_flags() when
4918 		 * it initiates the next execution cycle thus restoring
4919 		 * concurrency management.  Note that when or whether
4920 		 * @worker clears REBOUND doesn't affect correctness.
4921 		 *
4922 		 * WRITE_ONCE() is necessary because @worker->flags may be
4923 		 * tested without holding any lock in
4924 		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4925 		 * fail incorrectly leading to premature concurrency
4926 		 * management operations.
4927 		 */
4928 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4929 		worker_flags |= WORKER_REBOUND;
4930 		worker_flags &= ~WORKER_UNBOUND;
4931 		WRITE_ONCE(worker->flags, worker_flags);
4932 	}
4933 
4934 	spin_unlock_irq(&pool->lock);
4935 }
4936 
4937 /**
4938  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4939  * @pool: unbound pool of interest
4940  * @cpu: the CPU which is coming up
4941  *
4942  * An unbound pool may end up with a cpumask which doesn't have any online
4943  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4944  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4945  * online CPU before, cpus_allowed of all its workers should be restored.
4946  */
4947 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4948 {
4949 	static cpumask_t cpumask;
4950 	struct worker *worker;
4951 
4952 	lockdep_assert_held(&wq_pool_attach_mutex);
4953 
4954 	/* is @cpu allowed for @pool? */
4955 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4956 		return;
4957 
4958 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4959 
4960 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4961 	for_each_pool_worker(worker, pool)
4962 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4963 }
4964 
4965 int workqueue_prepare_cpu(unsigned int cpu)
4966 {
4967 	struct worker_pool *pool;
4968 
4969 	for_each_cpu_worker_pool(pool, cpu) {
4970 		if (pool->nr_workers)
4971 			continue;
4972 		if (!create_worker(pool))
4973 			return -ENOMEM;
4974 	}
4975 	return 0;
4976 }
4977 
4978 int workqueue_online_cpu(unsigned int cpu)
4979 {
4980 	struct worker_pool *pool;
4981 	struct workqueue_struct *wq;
4982 	int pi;
4983 
4984 	mutex_lock(&wq_pool_mutex);
4985 
4986 	for_each_pool(pool, pi) {
4987 		mutex_lock(&wq_pool_attach_mutex);
4988 
4989 		if (pool->cpu == cpu)
4990 			rebind_workers(pool);
4991 		else if (pool->cpu < 0)
4992 			restore_unbound_workers_cpumask(pool, cpu);
4993 
4994 		mutex_unlock(&wq_pool_attach_mutex);
4995 	}
4996 
4997 	/* update NUMA affinity of unbound workqueues */
4998 	list_for_each_entry(wq, &workqueues, list)
4999 		wq_update_unbound_numa(wq, cpu, true);
5000 
5001 	mutex_unlock(&wq_pool_mutex);
5002 	return 0;
5003 }
5004 
5005 int workqueue_offline_cpu(unsigned int cpu)
5006 {
5007 	struct workqueue_struct *wq;
5008 
5009 	/* unbinding per-cpu workers should happen on the local CPU */
5010 	if (WARN_ON(cpu != smp_processor_id()))
5011 		return -1;
5012 
5013 	unbind_workers(cpu);
5014 
5015 	/* update NUMA affinity of unbound workqueues */
5016 	mutex_lock(&wq_pool_mutex);
5017 	list_for_each_entry(wq, &workqueues, list)
5018 		wq_update_unbound_numa(wq, cpu, false);
5019 	mutex_unlock(&wq_pool_mutex);
5020 
5021 	return 0;
5022 }
5023 
5024 struct work_for_cpu {
5025 	struct work_struct work;
5026 	long (*fn)(void *);
5027 	void *arg;
5028 	long ret;
5029 };
5030 
5031 static void work_for_cpu_fn(struct work_struct *work)
5032 {
5033 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5034 
5035 	wfc->ret = wfc->fn(wfc->arg);
5036 }
5037 
5038 /**
5039  * work_on_cpu - run a function in thread context on a particular cpu
5040  * @cpu: the cpu to run on
5041  * @fn: the function to run
5042  * @arg: the function arg
5043  *
5044  * It is up to the caller to ensure that the cpu doesn't go offline.
5045  * The caller must not hold any locks which would prevent @fn from completing.
5046  *
5047  * Return: The value @fn returns.
5048  */
5049 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5050 {
5051 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5052 
5053 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5054 	schedule_work_on(cpu, &wfc.work);
5055 	flush_work(&wfc.work);
5056 	destroy_work_on_stack(&wfc.work);
5057 	return wfc.ret;
5058 }
5059 EXPORT_SYMBOL_GPL(work_on_cpu);
5060 
5061 /**
5062  * work_on_cpu_safe - run a function in thread context on a particular cpu
5063  * @cpu: the cpu to run on
5064  * @fn:  the function to run
5065  * @arg: the function argument
5066  *
5067  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5068  * any locks which would prevent @fn from completing.
5069  *
5070  * Return: The value @fn returns.
5071  */
5072 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5073 {
5074 	long ret = -ENODEV;
5075 
5076 	get_online_cpus();
5077 	if (cpu_online(cpu))
5078 		ret = work_on_cpu(cpu, fn, arg);
5079 	put_online_cpus();
5080 	return ret;
5081 }
5082 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5083 #endif /* CONFIG_SMP */
5084 
5085 #ifdef CONFIG_FREEZER
5086 
5087 /**
5088  * freeze_workqueues_begin - begin freezing workqueues
5089  *
5090  * Start freezing workqueues.  After this function returns, all freezable
5091  * workqueues will queue new works to their delayed_works list instead of
5092  * pool->worklist.
5093  *
5094  * CONTEXT:
5095  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5096  */
5097 void freeze_workqueues_begin(void)
5098 {
5099 	struct workqueue_struct *wq;
5100 	struct pool_workqueue *pwq;
5101 
5102 	mutex_lock(&wq_pool_mutex);
5103 
5104 	WARN_ON_ONCE(workqueue_freezing);
5105 	workqueue_freezing = true;
5106 
5107 	list_for_each_entry(wq, &workqueues, list) {
5108 		mutex_lock(&wq->mutex);
5109 		for_each_pwq(pwq, wq)
5110 			pwq_adjust_max_active(pwq);
5111 		mutex_unlock(&wq->mutex);
5112 	}
5113 
5114 	mutex_unlock(&wq_pool_mutex);
5115 }
5116 
5117 /**
5118  * freeze_workqueues_busy - are freezable workqueues still busy?
5119  *
5120  * Check whether freezing is complete.  This function must be called
5121  * between freeze_workqueues_begin() and thaw_workqueues().
5122  *
5123  * CONTEXT:
5124  * Grabs and releases wq_pool_mutex.
5125  *
5126  * Return:
5127  * %true if some freezable workqueues are still busy.  %false if freezing
5128  * is complete.
5129  */
5130 bool freeze_workqueues_busy(void)
5131 {
5132 	bool busy = false;
5133 	struct workqueue_struct *wq;
5134 	struct pool_workqueue *pwq;
5135 
5136 	mutex_lock(&wq_pool_mutex);
5137 
5138 	WARN_ON_ONCE(!workqueue_freezing);
5139 
5140 	list_for_each_entry(wq, &workqueues, list) {
5141 		if (!(wq->flags & WQ_FREEZABLE))
5142 			continue;
5143 		/*
5144 		 * nr_active is monotonically decreasing.  It's safe
5145 		 * to peek without lock.
5146 		 */
5147 		rcu_read_lock_sched();
5148 		for_each_pwq(pwq, wq) {
5149 			WARN_ON_ONCE(pwq->nr_active < 0);
5150 			if (pwq->nr_active) {
5151 				busy = true;
5152 				rcu_read_unlock_sched();
5153 				goto out_unlock;
5154 			}
5155 		}
5156 		rcu_read_unlock_sched();
5157 	}
5158 out_unlock:
5159 	mutex_unlock(&wq_pool_mutex);
5160 	return busy;
5161 }
5162 
5163 /**
5164  * thaw_workqueues - thaw workqueues
5165  *
5166  * Thaw workqueues.  Normal queueing is restored and all collected
5167  * frozen works are transferred to their respective pool worklists.
5168  *
5169  * CONTEXT:
5170  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5171  */
5172 void thaw_workqueues(void)
5173 {
5174 	struct workqueue_struct *wq;
5175 	struct pool_workqueue *pwq;
5176 
5177 	mutex_lock(&wq_pool_mutex);
5178 
5179 	if (!workqueue_freezing)
5180 		goto out_unlock;
5181 
5182 	workqueue_freezing = false;
5183 
5184 	/* restore max_active and repopulate worklist */
5185 	list_for_each_entry(wq, &workqueues, list) {
5186 		mutex_lock(&wq->mutex);
5187 		for_each_pwq(pwq, wq)
5188 			pwq_adjust_max_active(pwq);
5189 		mutex_unlock(&wq->mutex);
5190 	}
5191 
5192 out_unlock:
5193 	mutex_unlock(&wq_pool_mutex);
5194 }
5195 #endif /* CONFIG_FREEZER */
5196 
5197 static int workqueue_apply_unbound_cpumask(void)
5198 {
5199 	LIST_HEAD(ctxs);
5200 	int ret = 0;
5201 	struct workqueue_struct *wq;
5202 	struct apply_wqattrs_ctx *ctx, *n;
5203 
5204 	lockdep_assert_held(&wq_pool_mutex);
5205 
5206 	list_for_each_entry(wq, &workqueues, list) {
5207 		if (!(wq->flags & WQ_UNBOUND))
5208 			continue;
5209 		/* creating multiple pwqs breaks ordering guarantee */
5210 		if (wq->flags & __WQ_ORDERED)
5211 			continue;
5212 
5213 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5214 		if (!ctx) {
5215 			ret = -ENOMEM;
5216 			break;
5217 		}
5218 
5219 		list_add_tail(&ctx->list, &ctxs);
5220 	}
5221 
5222 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5223 		if (!ret)
5224 			apply_wqattrs_commit(ctx);
5225 		apply_wqattrs_cleanup(ctx);
5226 	}
5227 
5228 	return ret;
5229 }
5230 
5231 /**
5232  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5233  *  @cpumask: the cpumask to set
5234  *
5235  *  The low-level workqueues cpumask is a global cpumask that limits
5236  *  the affinity of all unbound workqueues.  This function check the @cpumask
5237  *  and apply it to all unbound workqueues and updates all pwqs of them.
5238  *
5239  *  Retun:	0	- Success
5240  *  		-EINVAL	- Invalid @cpumask
5241  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5242  */
5243 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5244 {
5245 	int ret = -EINVAL;
5246 	cpumask_var_t saved_cpumask;
5247 
5248 	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5249 		return -ENOMEM;
5250 
5251 	/*
5252 	 * Not excluding isolated cpus on purpose.
5253 	 * If the user wishes to include them, we allow that.
5254 	 */
5255 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5256 	if (!cpumask_empty(cpumask)) {
5257 		apply_wqattrs_lock();
5258 
5259 		/* save the old wq_unbound_cpumask. */
5260 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5261 
5262 		/* update wq_unbound_cpumask at first and apply it to wqs. */
5263 		cpumask_copy(wq_unbound_cpumask, cpumask);
5264 		ret = workqueue_apply_unbound_cpumask();
5265 
5266 		/* restore the wq_unbound_cpumask when failed. */
5267 		if (ret < 0)
5268 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5269 
5270 		apply_wqattrs_unlock();
5271 	}
5272 
5273 	free_cpumask_var(saved_cpumask);
5274 	return ret;
5275 }
5276 
5277 #ifdef CONFIG_SYSFS
5278 /*
5279  * Workqueues with WQ_SYSFS flag set is visible to userland via
5280  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5281  * following attributes.
5282  *
5283  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5284  *  max_active	RW int	: maximum number of in-flight work items
5285  *
5286  * Unbound workqueues have the following extra attributes.
5287  *
5288  *  pool_ids	RO int	: the associated pool IDs for each node
5289  *  nice	RW int	: nice value of the workers
5290  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5291  *  numa	RW bool	: whether enable NUMA affinity
5292  */
5293 struct wq_device {
5294 	struct workqueue_struct		*wq;
5295 	struct device			dev;
5296 };
5297 
5298 static struct workqueue_struct *dev_to_wq(struct device *dev)
5299 {
5300 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5301 
5302 	return wq_dev->wq;
5303 }
5304 
5305 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5306 			    char *buf)
5307 {
5308 	struct workqueue_struct *wq = dev_to_wq(dev);
5309 
5310 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5311 }
5312 static DEVICE_ATTR_RO(per_cpu);
5313 
5314 static ssize_t max_active_show(struct device *dev,
5315 			       struct device_attribute *attr, char *buf)
5316 {
5317 	struct workqueue_struct *wq = dev_to_wq(dev);
5318 
5319 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5320 }
5321 
5322 static ssize_t max_active_store(struct device *dev,
5323 				struct device_attribute *attr, const char *buf,
5324 				size_t count)
5325 {
5326 	struct workqueue_struct *wq = dev_to_wq(dev);
5327 	int val;
5328 
5329 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5330 		return -EINVAL;
5331 
5332 	workqueue_set_max_active(wq, val);
5333 	return count;
5334 }
5335 static DEVICE_ATTR_RW(max_active);
5336 
5337 static struct attribute *wq_sysfs_attrs[] = {
5338 	&dev_attr_per_cpu.attr,
5339 	&dev_attr_max_active.attr,
5340 	NULL,
5341 };
5342 ATTRIBUTE_GROUPS(wq_sysfs);
5343 
5344 static ssize_t wq_pool_ids_show(struct device *dev,
5345 				struct device_attribute *attr, char *buf)
5346 {
5347 	struct workqueue_struct *wq = dev_to_wq(dev);
5348 	const char *delim = "";
5349 	int node, written = 0;
5350 
5351 	rcu_read_lock_sched();
5352 	for_each_node(node) {
5353 		written += scnprintf(buf + written, PAGE_SIZE - written,
5354 				     "%s%d:%d", delim, node,
5355 				     unbound_pwq_by_node(wq, node)->pool->id);
5356 		delim = " ";
5357 	}
5358 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5359 	rcu_read_unlock_sched();
5360 
5361 	return written;
5362 }
5363 
5364 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5365 			    char *buf)
5366 {
5367 	struct workqueue_struct *wq = dev_to_wq(dev);
5368 	int written;
5369 
5370 	mutex_lock(&wq->mutex);
5371 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5372 	mutex_unlock(&wq->mutex);
5373 
5374 	return written;
5375 }
5376 
5377 /* prepare workqueue_attrs for sysfs store operations */
5378 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5379 {
5380 	struct workqueue_attrs *attrs;
5381 
5382 	lockdep_assert_held(&wq_pool_mutex);
5383 
5384 	attrs = alloc_workqueue_attrs(GFP_KERNEL);
5385 	if (!attrs)
5386 		return NULL;
5387 
5388 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5389 	return attrs;
5390 }
5391 
5392 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5393 			     const char *buf, size_t count)
5394 {
5395 	struct workqueue_struct *wq = dev_to_wq(dev);
5396 	struct workqueue_attrs *attrs;
5397 	int ret = -ENOMEM;
5398 
5399 	apply_wqattrs_lock();
5400 
5401 	attrs = wq_sysfs_prep_attrs(wq);
5402 	if (!attrs)
5403 		goto out_unlock;
5404 
5405 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5406 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5407 		ret = apply_workqueue_attrs_locked(wq, attrs);
5408 	else
5409 		ret = -EINVAL;
5410 
5411 out_unlock:
5412 	apply_wqattrs_unlock();
5413 	free_workqueue_attrs(attrs);
5414 	return ret ?: count;
5415 }
5416 
5417 static ssize_t wq_cpumask_show(struct device *dev,
5418 			       struct device_attribute *attr, char *buf)
5419 {
5420 	struct workqueue_struct *wq = dev_to_wq(dev);
5421 	int written;
5422 
5423 	mutex_lock(&wq->mutex);
5424 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5425 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5426 	mutex_unlock(&wq->mutex);
5427 	return written;
5428 }
5429 
5430 static ssize_t wq_cpumask_store(struct device *dev,
5431 				struct device_attribute *attr,
5432 				const char *buf, size_t count)
5433 {
5434 	struct workqueue_struct *wq = dev_to_wq(dev);
5435 	struct workqueue_attrs *attrs;
5436 	int ret = -ENOMEM;
5437 
5438 	apply_wqattrs_lock();
5439 
5440 	attrs = wq_sysfs_prep_attrs(wq);
5441 	if (!attrs)
5442 		goto out_unlock;
5443 
5444 	ret = cpumask_parse(buf, attrs->cpumask);
5445 	if (!ret)
5446 		ret = apply_workqueue_attrs_locked(wq, attrs);
5447 
5448 out_unlock:
5449 	apply_wqattrs_unlock();
5450 	free_workqueue_attrs(attrs);
5451 	return ret ?: count;
5452 }
5453 
5454 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5455 			    char *buf)
5456 {
5457 	struct workqueue_struct *wq = dev_to_wq(dev);
5458 	int written;
5459 
5460 	mutex_lock(&wq->mutex);
5461 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5462 			    !wq->unbound_attrs->no_numa);
5463 	mutex_unlock(&wq->mutex);
5464 
5465 	return written;
5466 }
5467 
5468 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5469 			     const char *buf, size_t count)
5470 {
5471 	struct workqueue_struct *wq = dev_to_wq(dev);
5472 	struct workqueue_attrs *attrs;
5473 	int v, ret = -ENOMEM;
5474 
5475 	apply_wqattrs_lock();
5476 
5477 	attrs = wq_sysfs_prep_attrs(wq);
5478 	if (!attrs)
5479 		goto out_unlock;
5480 
5481 	ret = -EINVAL;
5482 	if (sscanf(buf, "%d", &v) == 1) {
5483 		attrs->no_numa = !v;
5484 		ret = apply_workqueue_attrs_locked(wq, attrs);
5485 	}
5486 
5487 out_unlock:
5488 	apply_wqattrs_unlock();
5489 	free_workqueue_attrs(attrs);
5490 	return ret ?: count;
5491 }
5492 
5493 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5494 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5495 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5496 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5497 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5498 	__ATTR_NULL,
5499 };
5500 
5501 static struct bus_type wq_subsys = {
5502 	.name				= "workqueue",
5503 	.dev_groups			= wq_sysfs_groups,
5504 };
5505 
5506 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5507 		struct device_attribute *attr, char *buf)
5508 {
5509 	int written;
5510 
5511 	mutex_lock(&wq_pool_mutex);
5512 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5513 			    cpumask_pr_args(wq_unbound_cpumask));
5514 	mutex_unlock(&wq_pool_mutex);
5515 
5516 	return written;
5517 }
5518 
5519 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5520 		struct device_attribute *attr, const char *buf, size_t count)
5521 {
5522 	cpumask_var_t cpumask;
5523 	int ret;
5524 
5525 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5526 		return -ENOMEM;
5527 
5528 	ret = cpumask_parse(buf, cpumask);
5529 	if (!ret)
5530 		ret = workqueue_set_unbound_cpumask(cpumask);
5531 
5532 	free_cpumask_var(cpumask);
5533 	return ret ? ret : count;
5534 }
5535 
5536 static struct device_attribute wq_sysfs_cpumask_attr =
5537 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5538 	       wq_unbound_cpumask_store);
5539 
5540 static int __init wq_sysfs_init(void)
5541 {
5542 	int err;
5543 
5544 	err = subsys_virtual_register(&wq_subsys, NULL);
5545 	if (err)
5546 		return err;
5547 
5548 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5549 }
5550 core_initcall(wq_sysfs_init);
5551 
5552 static void wq_device_release(struct device *dev)
5553 {
5554 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5555 
5556 	kfree(wq_dev);
5557 }
5558 
5559 /**
5560  * workqueue_sysfs_register - make a workqueue visible in sysfs
5561  * @wq: the workqueue to register
5562  *
5563  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5564  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5565  * which is the preferred method.
5566  *
5567  * Workqueue user should use this function directly iff it wants to apply
5568  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5569  * apply_workqueue_attrs() may race against userland updating the
5570  * attributes.
5571  *
5572  * Return: 0 on success, -errno on failure.
5573  */
5574 int workqueue_sysfs_register(struct workqueue_struct *wq)
5575 {
5576 	struct wq_device *wq_dev;
5577 	int ret;
5578 
5579 	/*
5580 	 * Adjusting max_active or creating new pwqs by applying
5581 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5582 	 * workqueues.
5583 	 */
5584 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5585 		return -EINVAL;
5586 
5587 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5588 	if (!wq_dev)
5589 		return -ENOMEM;
5590 
5591 	wq_dev->wq = wq;
5592 	wq_dev->dev.bus = &wq_subsys;
5593 	wq_dev->dev.release = wq_device_release;
5594 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5595 
5596 	/*
5597 	 * unbound_attrs are created separately.  Suppress uevent until
5598 	 * everything is ready.
5599 	 */
5600 	dev_set_uevent_suppress(&wq_dev->dev, true);
5601 
5602 	ret = device_register(&wq_dev->dev);
5603 	if (ret) {
5604 		put_device(&wq_dev->dev);
5605 		wq->wq_dev = NULL;
5606 		return ret;
5607 	}
5608 
5609 	if (wq->flags & WQ_UNBOUND) {
5610 		struct device_attribute *attr;
5611 
5612 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5613 			ret = device_create_file(&wq_dev->dev, attr);
5614 			if (ret) {
5615 				device_unregister(&wq_dev->dev);
5616 				wq->wq_dev = NULL;
5617 				return ret;
5618 			}
5619 		}
5620 	}
5621 
5622 	dev_set_uevent_suppress(&wq_dev->dev, false);
5623 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5624 	return 0;
5625 }
5626 
5627 /**
5628  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5629  * @wq: the workqueue to unregister
5630  *
5631  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5632  */
5633 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5634 {
5635 	struct wq_device *wq_dev = wq->wq_dev;
5636 
5637 	if (!wq->wq_dev)
5638 		return;
5639 
5640 	wq->wq_dev = NULL;
5641 	device_unregister(&wq_dev->dev);
5642 }
5643 #else	/* CONFIG_SYSFS */
5644 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5645 #endif	/* CONFIG_SYSFS */
5646 
5647 /*
5648  * Workqueue watchdog.
5649  *
5650  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5651  * flush dependency, a concurrency managed work item which stays RUNNING
5652  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5653  * usual warning mechanisms don't trigger and internal workqueue state is
5654  * largely opaque.
5655  *
5656  * Workqueue watchdog monitors all worker pools periodically and dumps
5657  * state if some pools failed to make forward progress for a while where
5658  * forward progress is defined as the first item on ->worklist changing.
5659  *
5660  * This mechanism is controlled through the kernel parameter
5661  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5662  * corresponding sysfs parameter file.
5663  */
5664 #ifdef CONFIG_WQ_WATCHDOG
5665 
5666 static unsigned long wq_watchdog_thresh = 30;
5667 static struct timer_list wq_watchdog_timer;
5668 
5669 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5670 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5671 
5672 static void wq_watchdog_reset_touched(void)
5673 {
5674 	int cpu;
5675 
5676 	wq_watchdog_touched = jiffies;
5677 	for_each_possible_cpu(cpu)
5678 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5679 }
5680 
5681 static void wq_watchdog_timer_fn(struct timer_list *unused)
5682 {
5683 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5684 	bool lockup_detected = false;
5685 	struct worker_pool *pool;
5686 	int pi;
5687 
5688 	if (!thresh)
5689 		return;
5690 
5691 	rcu_read_lock();
5692 
5693 	for_each_pool(pool, pi) {
5694 		unsigned long pool_ts, touched, ts;
5695 
5696 		if (list_empty(&pool->worklist))
5697 			continue;
5698 
5699 		/* get the latest of pool and touched timestamps */
5700 		pool_ts = READ_ONCE(pool->watchdog_ts);
5701 		touched = READ_ONCE(wq_watchdog_touched);
5702 
5703 		if (time_after(pool_ts, touched))
5704 			ts = pool_ts;
5705 		else
5706 			ts = touched;
5707 
5708 		if (pool->cpu >= 0) {
5709 			unsigned long cpu_touched =
5710 				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5711 						  pool->cpu));
5712 			if (time_after(cpu_touched, ts))
5713 				ts = cpu_touched;
5714 		}
5715 
5716 		/* did we stall? */
5717 		if (time_after(jiffies, ts + thresh)) {
5718 			lockup_detected = true;
5719 			pr_emerg("BUG: workqueue lockup - pool");
5720 			pr_cont_pool_info(pool);
5721 			pr_cont(" stuck for %us!\n",
5722 				jiffies_to_msecs(jiffies - pool_ts) / 1000);
5723 		}
5724 	}
5725 
5726 	rcu_read_unlock();
5727 
5728 	if (lockup_detected)
5729 		show_workqueue_state();
5730 
5731 	wq_watchdog_reset_touched();
5732 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5733 }
5734 
5735 notrace void wq_watchdog_touch(int cpu)
5736 {
5737 	if (cpu >= 0)
5738 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5739 	else
5740 		wq_watchdog_touched = jiffies;
5741 }
5742 
5743 static void wq_watchdog_set_thresh(unsigned long thresh)
5744 {
5745 	wq_watchdog_thresh = 0;
5746 	del_timer_sync(&wq_watchdog_timer);
5747 
5748 	if (thresh) {
5749 		wq_watchdog_thresh = thresh;
5750 		wq_watchdog_reset_touched();
5751 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5752 	}
5753 }
5754 
5755 static int wq_watchdog_param_set_thresh(const char *val,
5756 					const struct kernel_param *kp)
5757 {
5758 	unsigned long thresh;
5759 	int ret;
5760 
5761 	ret = kstrtoul(val, 0, &thresh);
5762 	if (ret)
5763 		return ret;
5764 
5765 	if (system_wq)
5766 		wq_watchdog_set_thresh(thresh);
5767 	else
5768 		wq_watchdog_thresh = thresh;
5769 
5770 	return 0;
5771 }
5772 
5773 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5774 	.set	= wq_watchdog_param_set_thresh,
5775 	.get	= param_get_ulong,
5776 };
5777 
5778 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5779 		0644);
5780 
5781 static void wq_watchdog_init(void)
5782 {
5783 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5784 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5785 }
5786 
5787 #else	/* CONFIG_WQ_WATCHDOG */
5788 
5789 static inline void wq_watchdog_init(void) { }
5790 
5791 #endif	/* CONFIG_WQ_WATCHDOG */
5792 
5793 static void __init wq_numa_init(void)
5794 {
5795 	cpumask_var_t *tbl;
5796 	int node, cpu;
5797 
5798 	if (num_possible_nodes() <= 1)
5799 		return;
5800 
5801 	if (wq_disable_numa) {
5802 		pr_info("workqueue: NUMA affinity support disabled\n");
5803 		return;
5804 	}
5805 
5806 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5807 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5808 
5809 	/*
5810 	 * We want masks of possible CPUs of each node which isn't readily
5811 	 * available.  Build one from cpu_to_node() which should have been
5812 	 * fully initialized by now.
5813 	 */
5814 	tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5815 	BUG_ON(!tbl);
5816 
5817 	for_each_node(node)
5818 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5819 				node_online(node) ? node : NUMA_NO_NODE));
5820 
5821 	for_each_possible_cpu(cpu) {
5822 		node = cpu_to_node(cpu);
5823 		if (WARN_ON(node == NUMA_NO_NODE)) {
5824 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5825 			/* happens iff arch is bonkers, let's just proceed */
5826 			return;
5827 		}
5828 		cpumask_set_cpu(cpu, tbl[node]);
5829 	}
5830 
5831 	wq_numa_possible_cpumask = tbl;
5832 	wq_numa_enabled = true;
5833 }
5834 
5835 /**
5836  * workqueue_init_early - early init for workqueue subsystem
5837  *
5838  * This is the first half of two-staged workqueue subsystem initialization
5839  * and invoked as soon as the bare basics - memory allocation, cpumasks and
5840  * idr are up.  It sets up all the data structures and system workqueues
5841  * and allows early boot code to create workqueues and queue/cancel work
5842  * items.  Actual work item execution starts only after kthreads can be
5843  * created and scheduled right before early initcalls.
5844  */
5845 int __init workqueue_init_early(void)
5846 {
5847 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5848 	int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5849 	int i, cpu;
5850 
5851 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5852 
5853 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5854 	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5855 
5856 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5857 
5858 	/* initialize CPU pools */
5859 	for_each_possible_cpu(cpu) {
5860 		struct worker_pool *pool;
5861 
5862 		i = 0;
5863 		for_each_cpu_worker_pool(pool, cpu) {
5864 			BUG_ON(init_worker_pool(pool));
5865 			pool->cpu = cpu;
5866 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5867 			pool->attrs->nice = std_nice[i++];
5868 			pool->node = cpu_to_node(cpu);
5869 
5870 			/* alloc pool ID */
5871 			mutex_lock(&wq_pool_mutex);
5872 			BUG_ON(worker_pool_assign_id(pool));
5873 			mutex_unlock(&wq_pool_mutex);
5874 		}
5875 	}
5876 
5877 	/* create default unbound and ordered wq attrs */
5878 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5879 		struct workqueue_attrs *attrs;
5880 
5881 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5882 		attrs->nice = std_nice[i];
5883 		unbound_std_wq_attrs[i] = attrs;
5884 
5885 		/*
5886 		 * An ordered wq should have only one pwq as ordering is
5887 		 * guaranteed by max_active which is enforced by pwqs.
5888 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5889 		 */
5890 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5891 		attrs->nice = std_nice[i];
5892 		attrs->no_numa = true;
5893 		ordered_wq_attrs[i] = attrs;
5894 	}
5895 
5896 	system_wq = alloc_workqueue("events", 0, 0);
5897 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5898 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5899 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5900 					    WQ_UNBOUND_MAX_ACTIVE);
5901 	system_freezable_wq = alloc_workqueue("events_freezable",
5902 					      WQ_FREEZABLE, 0);
5903 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5904 					      WQ_POWER_EFFICIENT, 0);
5905 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5906 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5907 					      0);
5908 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5909 	       !system_unbound_wq || !system_freezable_wq ||
5910 	       !system_power_efficient_wq ||
5911 	       !system_freezable_power_efficient_wq);
5912 
5913 	return 0;
5914 }
5915 
5916 /**
5917  * workqueue_init - bring workqueue subsystem fully online
5918  *
5919  * This is the latter half of two-staged workqueue subsystem initialization
5920  * and invoked as soon as kthreads can be created and scheduled.
5921  * Workqueues have been created and work items queued on them, but there
5922  * are no kworkers executing the work items yet.  Populate the worker pools
5923  * with the initial workers and enable future kworker creations.
5924  */
5925 int __init workqueue_init(void)
5926 {
5927 	struct workqueue_struct *wq;
5928 	struct worker_pool *pool;
5929 	int cpu, bkt;
5930 
5931 	/*
5932 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5933 	 * CPU to node mapping may not be available that early on some
5934 	 * archs such as power and arm64.  As per-cpu pools created
5935 	 * previously could be missing node hint and unbound pools NUMA
5936 	 * affinity, fix them up.
5937 	 *
5938 	 * Also, while iterating workqueues, create rescuers if requested.
5939 	 */
5940 	wq_numa_init();
5941 
5942 	mutex_lock(&wq_pool_mutex);
5943 
5944 	for_each_possible_cpu(cpu) {
5945 		for_each_cpu_worker_pool(pool, cpu) {
5946 			pool->node = cpu_to_node(cpu);
5947 		}
5948 	}
5949 
5950 	list_for_each_entry(wq, &workqueues, list) {
5951 		wq_update_unbound_numa(wq, smp_processor_id(), true);
5952 		WARN(init_rescuer(wq),
5953 		     "workqueue: failed to create early rescuer for %s",
5954 		     wq->name);
5955 	}
5956 
5957 	mutex_unlock(&wq_pool_mutex);
5958 
5959 	/* create the initial workers */
5960 	for_each_online_cpu(cpu) {
5961 		for_each_cpu_worker_pool(pool, cpu) {
5962 			pool->flags &= ~POOL_DISASSOCIATED;
5963 			BUG_ON(!create_worker(pool));
5964 		}
5965 	}
5966 
5967 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5968 		BUG_ON(!create_worker(pool));
5969 
5970 	wq_online = true;
5971 	wq_watchdog_init();
5972 
5973 	return 0;
5974 }
5975