1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There are two worker pools for each CPU (one for 20 * normal work items and the other for high priority ones) and some extra 21 * pools for workqueues which are not bound to any specific CPU - the 22 * number of these backing pools is dynamic. 23 * 24 * Please read Documentation/workqueue.txt for details. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kernel.h> 29 #include <linux/sched.h> 30 #include <linux/init.h> 31 #include <linux/signal.h> 32 #include <linux/completion.h> 33 #include <linux/workqueue.h> 34 #include <linux/slab.h> 35 #include <linux/cpu.h> 36 #include <linux/notifier.h> 37 #include <linux/kthread.h> 38 #include <linux/hardirq.h> 39 #include <linux/mempolicy.h> 40 #include <linux/freezer.h> 41 #include <linux/kallsyms.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 52 #include "workqueue_internal.h" 53 54 enum { 55 /* 56 * worker_pool flags 57 * 58 * A bound pool is either associated or disassociated with its CPU. 59 * While associated (!DISASSOCIATED), all workers are bound to the 60 * CPU and none has %WORKER_UNBOUND set and concurrency management 61 * is in effect. 62 * 63 * While DISASSOCIATED, the cpu may be offline and all workers have 64 * %WORKER_UNBOUND set and concurrency management disabled, and may 65 * be executing on any CPU. The pool behaves as an unbound one. 66 * 67 * Note that DISASSOCIATED should be flipped only while holding 68 * manager_mutex to avoid changing binding state while 69 * create_worker() is in progress. 70 */ 71 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */ 72 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 73 POOL_FREEZING = 1 << 3, /* freeze in progress */ 74 75 /* worker flags */ 76 WORKER_STARTED = 1 << 0, /* started */ 77 WORKER_DIE = 1 << 1, /* die die die */ 78 WORKER_IDLE = 1 << 2, /* is idle */ 79 WORKER_PREP = 1 << 3, /* preparing to run works */ 80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 82 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 83 84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 85 WORKER_UNBOUND | WORKER_REBOUND, 86 87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 88 89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 91 92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 94 95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 96 /* call for help after 10ms 97 (min two ticks) */ 98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 99 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 100 101 /* 102 * Rescue workers are used only on emergencies and shared by 103 * all cpus. Give -20. 104 */ 105 RESCUER_NICE_LEVEL = -20, 106 HIGHPRI_NICE_LEVEL = -20, 107 108 WQ_NAME_LEN = 24, 109 }; 110 111 /* 112 * Structure fields follow one of the following exclusion rules. 113 * 114 * I: Modifiable by initialization/destruction paths and read-only for 115 * everyone else. 116 * 117 * P: Preemption protected. Disabling preemption is enough and should 118 * only be modified and accessed from the local cpu. 119 * 120 * L: pool->lock protected. Access with pool->lock held. 121 * 122 * X: During normal operation, modification requires pool->lock and should 123 * be done only from local cpu. Either disabling preemption on local 124 * cpu or grabbing pool->lock is enough for read access. If 125 * POOL_DISASSOCIATED is set, it's identical to L. 126 * 127 * MG: pool->manager_mutex and pool->lock protected. Writes require both 128 * locks. Reads can happen under either lock. 129 * 130 * PL: wq_pool_mutex protected. 131 * 132 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads. 133 * 134 * WQ: wq->mutex protected. 135 * 136 * WR: wq->mutex protected for writes. Sched-RCU protected for reads. 137 * 138 * MD: wq_mayday_lock protected. 139 */ 140 141 /* struct worker is defined in workqueue_internal.h */ 142 143 struct worker_pool { 144 spinlock_t lock; /* the pool lock */ 145 int cpu; /* I: the associated cpu */ 146 int node; /* I: the associated node ID */ 147 int id; /* I: pool ID */ 148 unsigned int flags; /* X: flags */ 149 150 struct list_head worklist; /* L: list of pending works */ 151 int nr_workers; /* L: total number of workers */ 152 153 /* nr_idle includes the ones off idle_list for rebinding */ 154 int nr_idle; /* L: currently idle ones */ 155 156 struct list_head idle_list; /* X: list of idle workers */ 157 struct timer_list idle_timer; /* L: worker idle timeout */ 158 struct timer_list mayday_timer; /* L: SOS timer for workers */ 159 160 /* a workers is either on busy_hash or idle_list, or the manager */ 161 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 162 /* L: hash of busy workers */ 163 164 /* see manage_workers() for details on the two manager mutexes */ 165 struct mutex manager_arb; /* manager arbitration */ 166 struct mutex manager_mutex; /* manager exclusion */ 167 struct idr worker_idr; /* MG: worker IDs and iteration */ 168 169 struct workqueue_attrs *attrs; /* I: worker attributes */ 170 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 171 int refcnt; /* PL: refcnt for unbound pools */ 172 173 /* 174 * The current concurrency level. As it's likely to be accessed 175 * from other CPUs during try_to_wake_up(), put it in a separate 176 * cacheline. 177 */ 178 atomic_t nr_running ____cacheline_aligned_in_smp; 179 180 /* 181 * Destruction of pool is sched-RCU protected to allow dereferences 182 * from get_work_pool(). 183 */ 184 struct rcu_head rcu; 185 } ____cacheline_aligned_in_smp; 186 187 /* 188 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 189 * of work_struct->data are used for flags and the remaining high bits 190 * point to the pwq; thus, pwqs need to be aligned at two's power of the 191 * number of flag bits. 192 */ 193 struct pool_workqueue { 194 struct worker_pool *pool; /* I: the associated pool */ 195 struct workqueue_struct *wq; /* I: the owning workqueue */ 196 int work_color; /* L: current color */ 197 int flush_color; /* L: flushing color */ 198 int refcnt; /* L: reference count */ 199 int nr_in_flight[WORK_NR_COLORS]; 200 /* L: nr of in_flight works */ 201 int nr_active; /* L: nr of active works */ 202 int max_active; /* L: max active works */ 203 struct list_head delayed_works; /* L: delayed works */ 204 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 205 struct list_head mayday_node; /* MD: node on wq->maydays */ 206 207 /* 208 * Release of unbound pwq is punted to system_wq. See put_pwq() 209 * and pwq_unbound_release_workfn() for details. pool_workqueue 210 * itself is also sched-RCU protected so that the first pwq can be 211 * determined without grabbing wq->mutex. 212 */ 213 struct work_struct unbound_release_work; 214 struct rcu_head rcu; 215 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 216 217 /* 218 * Structure used to wait for workqueue flush. 219 */ 220 struct wq_flusher { 221 struct list_head list; /* WQ: list of flushers */ 222 int flush_color; /* WQ: flush color waiting for */ 223 struct completion done; /* flush completion */ 224 }; 225 226 struct wq_device; 227 228 /* 229 * The externally visible workqueue. It relays the issued work items to 230 * the appropriate worker_pool through its pool_workqueues. 231 */ 232 struct workqueue_struct { 233 struct list_head pwqs; /* WR: all pwqs of this wq */ 234 struct list_head list; /* PL: list of all workqueues */ 235 236 struct mutex mutex; /* protects this wq */ 237 int work_color; /* WQ: current work color */ 238 int flush_color; /* WQ: current flush color */ 239 atomic_t nr_pwqs_to_flush; /* flush in progress */ 240 struct wq_flusher *first_flusher; /* WQ: first flusher */ 241 struct list_head flusher_queue; /* WQ: flush waiters */ 242 struct list_head flusher_overflow; /* WQ: flush overflow list */ 243 244 struct list_head maydays; /* MD: pwqs requesting rescue */ 245 struct worker *rescuer; /* I: rescue worker */ 246 247 int nr_drainers; /* WQ: drain in progress */ 248 int saved_max_active; /* WQ: saved pwq max_active */ 249 250 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */ 251 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */ 252 253 #ifdef CONFIG_SYSFS 254 struct wq_device *wq_dev; /* I: for sysfs interface */ 255 #endif 256 #ifdef CONFIG_LOCKDEP 257 struct lockdep_map lockdep_map; 258 #endif 259 char name[WQ_NAME_LEN]; /* I: workqueue name */ 260 261 /* hot fields used during command issue, aligned to cacheline */ 262 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 263 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 264 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */ 265 }; 266 267 static struct kmem_cache *pwq_cache; 268 269 static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */ 270 static cpumask_var_t *wq_numa_possible_cpumask; 271 /* possible CPUs of each node */ 272 273 static bool wq_disable_numa; 274 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 275 276 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 277 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT 278 static bool wq_power_efficient = true; 279 #else 280 static bool wq_power_efficient; 281 #endif 282 283 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 284 285 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 286 287 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 288 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 289 290 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 291 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 292 293 static LIST_HEAD(workqueues); /* PL: list of all workqueues */ 294 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 295 296 /* the per-cpu worker pools */ 297 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 298 cpu_worker_pools); 299 300 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 301 302 /* PL: hash of all unbound pools keyed by pool->attrs */ 303 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 304 305 /* I: attributes used when instantiating standard unbound pools on demand */ 306 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 307 308 /* I: attributes used when instantiating ordered pools on demand */ 309 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 310 311 struct workqueue_struct *system_wq __read_mostly; 312 EXPORT_SYMBOL(system_wq); 313 struct workqueue_struct *system_highpri_wq __read_mostly; 314 EXPORT_SYMBOL_GPL(system_highpri_wq); 315 struct workqueue_struct *system_long_wq __read_mostly; 316 EXPORT_SYMBOL_GPL(system_long_wq); 317 struct workqueue_struct *system_unbound_wq __read_mostly; 318 EXPORT_SYMBOL_GPL(system_unbound_wq); 319 struct workqueue_struct *system_freezable_wq __read_mostly; 320 EXPORT_SYMBOL_GPL(system_freezable_wq); 321 struct workqueue_struct *system_power_efficient_wq __read_mostly; 322 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 323 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 324 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 325 326 static int worker_thread(void *__worker); 327 static void copy_workqueue_attrs(struct workqueue_attrs *to, 328 const struct workqueue_attrs *from); 329 330 #define CREATE_TRACE_POINTS 331 #include <trace/events/workqueue.h> 332 333 #define assert_rcu_or_pool_mutex() \ 334 rcu_lockdep_assert(rcu_read_lock_sched_held() || \ 335 lockdep_is_held(&wq_pool_mutex), \ 336 "sched RCU or wq_pool_mutex should be held") 337 338 #define assert_rcu_or_wq_mutex(wq) \ 339 rcu_lockdep_assert(rcu_read_lock_sched_held() || \ 340 lockdep_is_held(&wq->mutex), \ 341 "sched RCU or wq->mutex should be held") 342 343 #ifdef CONFIG_LOCKDEP 344 #define assert_manager_or_pool_lock(pool) \ 345 WARN_ONCE(debug_locks && \ 346 !lockdep_is_held(&(pool)->manager_mutex) && \ 347 !lockdep_is_held(&(pool)->lock), \ 348 "pool->manager_mutex or ->lock should be held") 349 #else 350 #define assert_manager_or_pool_lock(pool) do { } while (0) 351 #endif 352 353 #define for_each_cpu_worker_pool(pool, cpu) \ 354 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 355 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 356 (pool)++) 357 358 /** 359 * for_each_pool - iterate through all worker_pools in the system 360 * @pool: iteration cursor 361 * @pi: integer used for iteration 362 * 363 * This must be called either with wq_pool_mutex held or sched RCU read 364 * locked. If the pool needs to be used beyond the locking in effect, the 365 * caller is responsible for guaranteeing that the pool stays online. 366 * 367 * The if/else clause exists only for the lockdep assertion and can be 368 * ignored. 369 */ 370 #define for_each_pool(pool, pi) \ 371 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 372 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 373 else 374 375 /** 376 * for_each_pool_worker - iterate through all workers of a worker_pool 377 * @worker: iteration cursor 378 * @wi: integer used for iteration 379 * @pool: worker_pool to iterate workers of 380 * 381 * This must be called with either @pool->manager_mutex or ->lock held. 382 * 383 * The if/else clause exists only for the lockdep assertion and can be 384 * ignored. 385 */ 386 #define for_each_pool_worker(worker, wi, pool) \ 387 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \ 388 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \ 389 else 390 391 /** 392 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 393 * @pwq: iteration cursor 394 * @wq: the target workqueue 395 * 396 * This must be called either with wq->mutex held or sched RCU read locked. 397 * If the pwq needs to be used beyond the locking in effect, the caller is 398 * responsible for guaranteeing that the pwq stays online. 399 * 400 * The if/else clause exists only for the lockdep assertion and can be 401 * ignored. 402 */ 403 #define for_each_pwq(pwq, wq) \ 404 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \ 405 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ 406 else 407 408 #ifdef CONFIG_DEBUG_OBJECTS_WORK 409 410 static struct debug_obj_descr work_debug_descr; 411 412 static void *work_debug_hint(void *addr) 413 { 414 return ((struct work_struct *) addr)->func; 415 } 416 417 /* 418 * fixup_init is called when: 419 * - an active object is initialized 420 */ 421 static int work_fixup_init(void *addr, enum debug_obj_state state) 422 { 423 struct work_struct *work = addr; 424 425 switch (state) { 426 case ODEBUG_STATE_ACTIVE: 427 cancel_work_sync(work); 428 debug_object_init(work, &work_debug_descr); 429 return 1; 430 default: 431 return 0; 432 } 433 } 434 435 /* 436 * fixup_activate is called when: 437 * - an active object is activated 438 * - an unknown object is activated (might be a statically initialized object) 439 */ 440 static int work_fixup_activate(void *addr, enum debug_obj_state state) 441 { 442 struct work_struct *work = addr; 443 444 switch (state) { 445 446 case ODEBUG_STATE_NOTAVAILABLE: 447 /* 448 * This is not really a fixup. The work struct was 449 * statically initialized. We just make sure that it 450 * is tracked in the object tracker. 451 */ 452 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) { 453 debug_object_init(work, &work_debug_descr); 454 debug_object_activate(work, &work_debug_descr); 455 return 0; 456 } 457 WARN_ON_ONCE(1); 458 return 0; 459 460 case ODEBUG_STATE_ACTIVE: 461 WARN_ON(1); 462 463 default: 464 return 0; 465 } 466 } 467 468 /* 469 * fixup_free is called when: 470 * - an active object is freed 471 */ 472 static int work_fixup_free(void *addr, enum debug_obj_state state) 473 { 474 struct work_struct *work = addr; 475 476 switch (state) { 477 case ODEBUG_STATE_ACTIVE: 478 cancel_work_sync(work); 479 debug_object_free(work, &work_debug_descr); 480 return 1; 481 default: 482 return 0; 483 } 484 } 485 486 static struct debug_obj_descr work_debug_descr = { 487 .name = "work_struct", 488 .debug_hint = work_debug_hint, 489 .fixup_init = work_fixup_init, 490 .fixup_activate = work_fixup_activate, 491 .fixup_free = work_fixup_free, 492 }; 493 494 static inline void debug_work_activate(struct work_struct *work) 495 { 496 debug_object_activate(work, &work_debug_descr); 497 } 498 499 static inline void debug_work_deactivate(struct work_struct *work) 500 { 501 debug_object_deactivate(work, &work_debug_descr); 502 } 503 504 void __init_work(struct work_struct *work, int onstack) 505 { 506 if (onstack) 507 debug_object_init_on_stack(work, &work_debug_descr); 508 else 509 debug_object_init(work, &work_debug_descr); 510 } 511 EXPORT_SYMBOL_GPL(__init_work); 512 513 void destroy_work_on_stack(struct work_struct *work) 514 { 515 debug_object_free(work, &work_debug_descr); 516 } 517 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 518 519 #else 520 static inline void debug_work_activate(struct work_struct *work) { } 521 static inline void debug_work_deactivate(struct work_struct *work) { } 522 #endif 523 524 /** 525 * worker_pool_assign_id - allocate ID and assing it to @pool 526 * @pool: the pool pointer of interest 527 * 528 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 529 * successfully, -errno on failure. 530 */ 531 static int worker_pool_assign_id(struct worker_pool *pool) 532 { 533 int ret; 534 535 lockdep_assert_held(&wq_pool_mutex); 536 537 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 538 GFP_KERNEL); 539 if (ret >= 0) { 540 pool->id = ret; 541 return 0; 542 } 543 return ret; 544 } 545 546 /** 547 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 548 * @wq: the target workqueue 549 * @node: the node ID 550 * 551 * This must be called either with pwq_lock held or sched RCU read locked. 552 * If the pwq needs to be used beyond the locking in effect, the caller is 553 * responsible for guaranteeing that the pwq stays online. 554 * 555 * Return: The unbound pool_workqueue for @node. 556 */ 557 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 558 int node) 559 { 560 assert_rcu_or_wq_mutex(wq); 561 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 562 } 563 564 static unsigned int work_color_to_flags(int color) 565 { 566 return color << WORK_STRUCT_COLOR_SHIFT; 567 } 568 569 static int get_work_color(struct work_struct *work) 570 { 571 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 572 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 573 } 574 575 static int work_next_color(int color) 576 { 577 return (color + 1) % WORK_NR_COLORS; 578 } 579 580 /* 581 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 582 * contain the pointer to the queued pwq. Once execution starts, the flag 583 * is cleared and the high bits contain OFFQ flags and pool ID. 584 * 585 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 586 * and clear_work_data() can be used to set the pwq, pool or clear 587 * work->data. These functions should only be called while the work is 588 * owned - ie. while the PENDING bit is set. 589 * 590 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 591 * corresponding to a work. Pool is available once the work has been 592 * queued anywhere after initialization until it is sync canceled. pwq is 593 * available only while the work item is queued. 594 * 595 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 596 * canceled. While being canceled, a work item may have its PENDING set 597 * but stay off timer and worklist for arbitrarily long and nobody should 598 * try to steal the PENDING bit. 599 */ 600 static inline void set_work_data(struct work_struct *work, unsigned long data, 601 unsigned long flags) 602 { 603 WARN_ON_ONCE(!work_pending(work)); 604 atomic_long_set(&work->data, data | flags | work_static(work)); 605 } 606 607 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 608 unsigned long extra_flags) 609 { 610 set_work_data(work, (unsigned long)pwq, 611 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 612 } 613 614 static void set_work_pool_and_keep_pending(struct work_struct *work, 615 int pool_id) 616 { 617 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 618 WORK_STRUCT_PENDING); 619 } 620 621 static void set_work_pool_and_clear_pending(struct work_struct *work, 622 int pool_id) 623 { 624 /* 625 * The following wmb is paired with the implied mb in 626 * test_and_set_bit(PENDING) and ensures all updates to @work made 627 * here are visible to and precede any updates by the next PENDING 628 * owner. 629 */ 630 smp_wmb(); 631 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 632 } 633 634 static void clear_work_data(struct work_struct *work) 635 { 636 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 637 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 638 } 639 640 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 641 { 642 unsigned long data = atomic_long_read(&work->data); 643 644 if (data & WORK_STRUCT_PWQ) 645 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 646 else 647 return NULL; 648 } 649 650 /** 651 * get_work_pool - return the worker_pool a given work was associated with 652 * @work: the work item of interest 653 * 654 * Pools are created and destroyed under wq_pool_mutex, and allows read 655 * access under sched-RCU read lock. As such, this function should be 656 * called under wq_pool_mutex or with preemption disabled. 657 * 658 * All fields of the returned pool are accessible as long as the above 659 * mentioned locking is in effect. If the returned pool needs to be used 660 * beyond the critical section, the caller is responsible for ensuring the 661 * returned pool is and stays online. 662 * 663 * Return: The worker_pool @work was last associated with. %NULL if none. 664 */ 665 static struct worker_pool *get_work_pool(struct work_struct *work) 666 { 667 unsigned long data = atomic_long_read(&work->data); 668 int pool_id; 669 670 assert_rcu_or_pool_mutex(); 671 672 if (data & WORK_STRUCT_PWQ) 673 return ((struct pool_workqueue *) 674 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 675 676 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 677 if (pool_id == WORK_OFFQ_POOL_NONE) 678 return NULL; 679 680 return idr_find(&worker_pool_idr, pool_id); 681 } 682 683 /** 684 * get_work_pool_id - return the worker pool ID a given work is associated with 685 * @work: the work item of interest 686 * 687 * Return: The worker_pool ID @work was last associated with. 688 * %WORK_OFFQ_POOL_NONE if none. 689 */ 690 static int get_work_pool_id(struct work_struct *work) 691 { 692 unsigned long data = atomic_long_read(&work->data); 693 694 if (data & WORK_STRUCT_PWQ) 695 return ((struct pool_workqueue *) 696 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 697 698 return data >> WORK_OFFQ_POOL_SHIFT; 699 } 700 701 static void mark_work_canceling(struct work_struct *work) 702 { 703 unsigned long pool_id = get_work_pool_id(work); 704 705 pool_id <<= WORK_OFFQ_POOL_SHIFT; 706 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 707 } 708 709 static bool work_is_canceling(struct work_struct *work) 710 { 711 unsigned long data = atomic_long_read(&work->data); 712 713 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 714 } 715 716 /* 717 * Policy functions. These define the policies on how the global worker 718 * pools are managed. Unless noted otherwise, these functions assume that 719 * they're being called with pool->lock held. 720 */ 721 722 static bool __need_more_worker(struct worker_pool *pool) 723 { 724 return !atomic_read(&pool->nr_running); 725 } 726 727 /* 728 * Need to wake up a worker? Called from anything but currently 729 * running workers. 730 * 731 * Note that, because unbound workers never contribute to nr_running, this 732 * function will always return %true for unbound pools as long as the 733 * worklist isn't empty. 734 */ 735 static bool need_more_worker(struct worker_pool *pool) 736 { 737 return !list_empty(&pool->worklist) && __need_more_worker(pool); 738 } 739 740 /* Can I start working? Called from busy but !running workers. */ 741 static bool may_start_working(struct worker_pool *pool) 742 { 743 return pool->nr_idle; 744 } 745 746 /* Do I need to keep working? Called from currently running workers. */ 747 static bool keep_working(struct worker_pool *pool) 748 { 749 return !list_empty(&pool->worklist) && 750 atomic_read(&pool->nr_running) <= 1; 751 } 752 753 /* Do we need a new worker? Called from manager. */ 754 static bool need_to_create_worker(struct worker_pool *pool) 755 { 756 return need_more_worker(pool) && !may_start_working(pool); 757 } 758 759 /* Do I need to be the manager? */ 760 static bool need_to_manage_workers(struct worker_pool *pool) 761 { 762 return need_to_create_worker(pool) || 763 (pool->flags & POOL_MANAGE_WORKERS); 764 } 765 766 /* Do we have too many workers and should some go away? */ 767 static bool too_many_workers(struct worker_pool *pool) 768 { 769 bool managing = mutex_is_locked(&pool->manager_arb); 770 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 771 int nr_busy = pool->nr_workers - nr_idle; 772 773 /* 774 * nr_idle and idle_list may disagree if idle rebinding is in 775 * progress. Never return %true if idle_list is empty. 776 */ 777 if (list_empty(&pool->idle_list)) 778 return false; 779 780 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 781 } 782 783 /* 784 * Wake up functions. 785 */ 786 787 /* Return the first worker. Safe with preemption disabled */ 788 static struct worker *first_worker(struct worker_pool *pool) 789 { 790 if (unlikely(list_empty(&pool->idle_list))) 791 return NULL; 792 793 return list_first_entry(&pool->idle_list, struct worker, entry); 794 } 795 796 /** 797 * wake_up_worker - wake up an idle worker 798 * @pool: worker pool to wake worker from 799 * 800 * Wake up the first idle worker of @pool. 801 * 802 * CONTEXT: 803 * spin_lock_irq(pool->lock). 804 */ 805 static void wake_up_worker(struct worker_pool *pool) 806 { 807 struct worker *worker = first_worker(pool); 808 809 if (likely(worker)) 810 wake_up_process(worker->task); 811 } 812 813 /** 814 * wq_worker_waking_up - a worker is waking up 815 * @task: task waking up 816 * @cpu: CPU @task is waking up to 817 * 818 * This function is called during try_to_wake_up() when a worker is 819 * being awoken. 820 * 821 * CONTEXT: 822 * spin_lock_irq(rq->lock) 823 */ 824 void wq_worker_waking_up(struct task_struct *task, int cpu) 825 { 826 struct worker *worker = kthread_data(task); 827 828 if (!(worker->flags & WORKER_NOT_RUNNING)) { 829 WARN_ON_ONCE(worker->pool->cpu != cpu); 830 atomic_inc(&worker->pool->nr_running); 831 } 832 } 833 834 /** 835 * wq_worker_sleeping - a worker is going to sleep 836 * @task: task going to sleep 837 * @cpu: CPU in question, must be the current CPU number 838 * 839 * This function is called during schedule() when a busy worker is 840 * going to sleep. Worker on the same cpu can be woken up by 841 * returning pointer to its task. 842 * 843 * CONTEXT: 844 * spin_lock_irq(rq->lock) 845 * 846 * Return: 847 * Worker task on @cpu to wake up, %NULL if none. 848 */ 849 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu) 850 { 851 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 852 struct worker_pool *pool; 853 854 /* 855 * Rescuers, which may not have all the fields set up like normal 856 * workers, also reach here, let's not access anything before 857 * checking NOT_RUNNING. 858 */ 859 if (worker->flags & WORKER_NOT_RUNNING) 860 return NULL; 861 862 pool = worker->pool; 863 864 /* this can only happen on the local cpu */ 865 if (WARN_ON_ONCE(cpu != raw_smp_processor_id())) 866 return NULL; 867 868 /* 869 * The counterpart of the following dec_and_test, implied mb, 870 * worklist not empty test sequence is in insert_work(). 871 * Please read comment there. 872 * 873 * NOT_RUNNING is clear. This means that we're bound to and 874 * running on the local cpu w/ rq lock held and preemption 875 * disabled, which in turn means that none else could be 876 * manipulating idle_list, so dereferencing idle_list without pool 877 * lock is safe. 878 */ 879 if (atomic_dec_and_test(&pool->nr_running) && 880 !list_empty(&pool->worklist)) 881 to_wakeup = first_worker(pool); 882 return to_wakeup ? to_wakeup->task : NULL; 883 } 884 885 /** 886 * worker_set_flags - set worker flags and adjust nr_running accordingly 887 * @worker: self 888 * @flags: flags to set 889 * @wakeup: wakeup an idle worker if necessary 890 * 891 * Set @flags in @worker->flags and adjust nr_running accordingly. If 892 * nr_running becomes zero and @wakeup is %true, an idle worker is 893 * woken up. 894 * 895 * CONTEXT: 896 * spin_lock_irq(pool->lock) 897 */ 898 static inline void worker_set_flags(struct worker *worker, unsigned int flags, 899 bool wakeup) 900 { 901 struct worker_pool *pool = worker->pool; 902 903 WARN_ON_ONCE(worker->task != current); 904 905 /* 906 * If transitioning into NOT_RUNNING, adjust nr_running and 907 * wake up an idle worker as necessary if requested by 908 * @wakeup. 909 */ 910 if ((flags & WORKER_NOT_RUNNING) && 911 !(worker->flags & WORKER_NOT_RUNNING)) { 912 if (wakeup) { 913 if (atomic_dec_and_test(&pool->nr_running) && 914 !list_empty(&pool->worklist)) 915 wake_up_worker(pool); 916 } else 917 atomic_dec(&pool->nr_running); 918 } 919 920 worker->flags |= flags; 921 } 922 923 /** 924 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 925 * @worker: self 926 * @flags: flags to clear 927 * 928 * Clear @flags in @worker->flags and adjust nr_running accordingly. 929 * 930 * CONTEXT: 931 * spin_lock_irq(pool->lock) 932 */ 933 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 934 { 935 struct worker_pool *pool = worker->pool; 936 unsigned int oflags = worker->flags; 937 938 WARN_ON_ONCE(worker->task != current); 939 940 worker->flags &= ~flags; 941 942 /* 943 * If transitioning out of NOT_RUNNING, increment nr_running. Note 944 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 945 * of multiple flags, not a single flag. 946 */ 947 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 948 if (!(worker->flags & WORKER_NOT_RUNNING)) 949 atomic_inc(&pool->nr_running); 950 } 951 952 /** 953 * find_worker_executing_work - find worker which is executing a work 954 * @pool: pool of interest 955 * @work: work to find worker for 956 * 957 * Find a worker which is executing @work on @pool by searching 958 * @pool->busy_hash which is keyed by the address of @work. For a worker 959 * to match, its current execution should match the address of @work and 960 * its work function. This is to avoid unwanted dependency between 961 * unrelated work executions through a work item being recycled while still 962 * being executed. 963 * 964 * This is a bit tricky. A work item may be freed once its execution 965 * starts and nothing prevents the freed area from being recycled for 966 * another work item. If the same work item address ends up being reused 967 * before the original execution finishes, workqueue will identify the 968 * recycled work item as currently executing and make it wait until the 969 * current execution finishes, introducing an unwanted dependency. 970 * 971 * This function checks the work item address and work function to avoid 972 * false positives. Note that this isn't complete as one may construct a 973 * work function which can introduce dependency onto itself through a 974 * recycled work item. Well, if somebody wants to shoot oneself in the 975 * foot that badly, there's only so much we can do, and if such deadlock 976 * actually occurs, it should be easy to locate the culprit work function. 977 * 978 * CONTEXT: 979 * spin_lock_irq(pool->lock). 980 * 981 * Return: 982 * Pointer to worker which is executing @work if found, %NULL 983 * otherwise. 984 */ 985 static struct worker *find_worker_executing_work(struct worker_pool *pool, 986 struct work_struct *work) 987 { 988 struct worker *worker; 989 990 hash_for_each_possible(pool->busy_hash, worker, hentry, 991 (unsigned long)work) 992 if (worker->current_work == work && 993 worker->current_func == work->func) 994 return worker; 995 996 return NULL; 997 } 998 999 /** 1000 * move_linked_works - move linked works to a list 1001 * @work: start of series of works to be scheduled 1002 * @head: target list to append @work to 1003 * @nextp: out paramter for nested worklist walking 1004 * 1005 * Schedule linked works starting from @work to @head. Work series to 1006 * be scheduled starts at @work and includes any consecutive work with 1007 * WORK_STRUCT_LINKED set in its predecessor. 1008 * 1009 * If @nextp is not NULL, it's updated to point to the next work of 1010 * the last scheduled work. This allows move_linked_works() to be 1011 * nested inside outer list_for_each_entry_safe(). 1012 * 1013 * CONTEXT: 1014 * spin_lock_irq(pool->lock). 1015 */ 1016 static void move_linked_works(struct work_struct *work, struct list_head *head, 1017 struct work_struct **nextp) 1018 { 1019 struct work_struct *n; 1020 1021 /* 1022 * Linked worklist will always end before the end of the list, 1023 * use NULL for list head. 1024 */ 1025 list_for_each_entry_safe_from(work, n, NULL, entry) { 1026 list_move_tail(&work->entry, head); 1027 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1028 break; 1029 } 1030 1031 /* 1032 * If we're already inside safe list traversal and have moved 1033 * multiple works to the scheduled queue, the next position 1034 * needs to be updated. 1035 */ 1036 if (nextp) 1037 *nextp = n; 1038 } 1039 1040 /** 1041 * get_pwq - get an extra reference on the specified pool_workqueue 1042 * @pwq: pool_workqueue to get 1043 * 1044 * Obtain an extra reference on @pwq. The caller should guarantee that 1045 * @pwq has positive refcnt and be holding the matching pool->lock. 1046 */ 1047 static void get_pwq(struct pool_workqueue *pwq) 1048 { 1049 lockdep_assert_held(&pwq->pool->lock); 1050 WARN_ON_ONCE(pwq->refcnt <= 0); 1051 pwq->refcnt++; 1052 } 1053 1054 /** 1055 * put_pwq - put a pool_workqueue reference 1056 * @pwq: pool_workqueue to put 1057 * 1058 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1059 * destruction. The caller should be holding the matching pool->lock. 1060 */ 1061 static void put_pwq(struct pool_workqueue *pwq) 1062 { 1063 lockdep_assert_held(&pwq->pool->lock); 1064 if (likely(--pwq->refcnt)) 1065 return; 1066 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1067 return; 1068 /* 1069 * @pwq can't be released under pool->lock, bounce to 1070 * pwq_unbound_release_workfn(). This never recurses on the same 1071 * pool->lock as this path is taken only for unbound workqueues and 1072 * the release work item is scheduled on a per-cpu workqueue. To 1073 * avoid lockdep warning, unbound pool->locks are given lockdep 1074 * subclass of 1 in get_unbound_pool(). 1075 */ 1076 schedule_work(&pwq->unbound_release_work); 1077 } 1078 1079 /** 1080 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1081 * @pwq: pool_workqueue to put (can be %NULL) 1082 * 1083 * put_pwq() with locking. This function also allows %NULL @pwq. 1084 */ 1085 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1086 { 1087 if (pwq) { 1088 /* 1089 * As both pwqs and pools are sched-RCU protected, the 1090 * following lock operations are safe. 1091 */ 1092 spin_lock_irq(&pwq->pool->lock); 1093 put_pwq(pwq); 1094 spin_unlock_irq(&pwq->pool->lock); 1095 } 1096 } 1097 1098 static void pwq_activate_delayed_work(struct work_struct *work) 1099 { 1100 struct pool_workqueue *pwq = get_work_pwq(work); 1101 1102 trace_workqueue_activate_work(work); 1103 move_linked_works(work, &pwq->pool->worklist, NULL); 1104 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1105 pwq->nr_active++; 1106 } 1107 1108 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1109 { 1110 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1111 struct work_struct, entry); 1112 1113 pwq_activate_delayed_work(work); 1114 } 1115 1116 /** 1117 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1118 * @pwq: pwq of interest 1119 * @color: color of work which left the queue 1120 * 1121 * A work either has completed or is removed from pending queue, 1122 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1123 * 1124 * CONTEXT: 1125 * spin_lock_irq(pool->lock). 1126 */ 1127 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1128 { 1129 /* uncolored work items don't participate in flushing or nr_active */ 1130 if (color == WORK_NO_COLOR) 1131 goto out_put; 1132 1133 pwq->nr_in_flight[color]--; 1134 1135 pwq->nr_active--; 1136 if (!list_empty(&pwq->delayed_works)) { 1137 /* one down, submit a delayed one */ 1138 if (pwq->nr_active < pwq->max_active) 1139 pwq_activate_first_delayed(pwq); 1140 } 1141 1142 /* is flush in progress and are we at the flushing tip? */ 1143 if (likely(pwq->flush_color != color)) 1144 goto out_put; 1145 1146 /* are there still in-flight works? */ 1147 if (pwq->nr_in_flight[color]) 1148 goto out_put; 1149 1150 /* this pwq is done, clear flush_color */ 1151 pwq->flush_color = -1; 1152 1153 /* 1154 * If this was the last pwq, wake up the first flusher. It 1155 * will handle the rest. 1156 */ 1157 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1158 complete(&pwq->wq->first_flusher->done); 1159 out_put: 1160 put_pwq(pwq); 1161 } 1162 1163 /** 1164 * try_to_grab_pending - steal work item from worklist and disable irq 1165 * @work: work item to steal 1166 * @is_dwork: @work is a delayed_work 1167 * @flags: place to store irq state 1168 * 1169 * Try to grab PENDING bit of @work. This function can handle @work in any 1170 * stable state - idle, on timer or on worklist. 1171 * 1172 * Return: 1173 * 1 if @work was pending and we successfully stole PENDING 1174 * 0 if @work was idle and we claimed PENDING 1175 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1176 * -ENOENT if someone else is canceling @work, this state may persist 1177 * for arbitrarily long 1178 * 1179 * Note: 1180 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1181 * interrupted while holding PENDING and @work off queue, irq must be 1182 * disabled on entry. This, combined with delayed_work->timer being 1183 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1184 * 1185 * On successful return, >= 0, irq is disabled and the caller is 1186 * responsible for releasing it using local_irq_restore(*@flags). 1187 * 1188 * This function is safe to call from any context including IRQ handler. 1189 */ 1190 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1191 unsigned long *flags) 1192 { 1193 struct worker_pool *pool; 1194 struct pool_workqueue *pwq; 1195 1196 local_irq_save(*flags); 1197 1198 /* try to steal the timer if it exists */ 1199 if (is_dwork) { 1200 struct delayed_work *dwork = to_delayed_work(work); 1201 1202 /* 1203 * dwork->timer is irqsafe. If del_timer() fails, it's 1204 * guaranteed that the timer is not queued anywhere and not 1205 * running on the local CPU. 1206 */ 1207 if (likely(del_timer(&dwork->timer))) 1208 return 1; 1209 } 1210 1211 /* try to claim PENDING the normal way */ 1212 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1213 return 0; 1214 1215 /* 1216 * The queueing is in progress, or it is already queued. Try to 1217 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1218 */ 1219 pool = get_work_pool(work); 1220 if (!pool) 1221 goto fail; 1222 1223 spin_lock(&pool->lock); 1224 /* 1225 * work->data is guaranteed to point to pwq only while the work 1226 * item is queued on pwq->wq, and both updating work->data to point 1227 * to pwq on queueing and to pool on dequeueing are done under 1228 * pwq->pool->lock. This in turn guarantees that, if work->data 1229 * points to pwq which is associated with a locked pool, the work 1230 * item is currently queued on that pool. 1231 */ 1232 pwq = get_work_pwq(work); 1233 if (pwq && pwq->pool == pool) { 1234 debug_work_deactivate(work); 1235 1236 /* 1237 * A delayed work item cannot be grabbed directly because 1238 * it might have linked NO_COLOR work items which, if left 1239 * on the delayed_list, will confuse pwq->nr_active 1240 * management later on and cause stall. Make sure the work 1241 * item is activated before grabbing. 1242 */ 1243 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1244 pwq_activate_delayed_work(work); 1245 1246 list_del_init(&work->entry); 1247 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work)); 1248 1249 /* work->data points to pwq iff queued, point to pool */ 1250 set_work_pool_and_keep_pending(work, pool->id); 1251 1252 spin_unlock(&pool->lock); 1253 return 1; 1254 } 1255 spin_unlock(&pool->lock); 1256 fail: 1257 local_irq_restore(*flags); 1258 if (work_is_canceling(work)) 1259 return -ENOENT; 1260 cpu_relax(); 1261 return -EAGAIN; 1262 } 1263 1264 /** 1265 * insert_work - insert a work into a pool 1266 * @pwq: pwq @work belongs to 1267 * @work: work to insert 1268 * @head: insertion point 1269 * @extra_flags: extra WORK_STRUCT_* flags to set 1270 * 1271 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1272 * work_struct flags. 1273 * 1274 * CONTEXT: 1275 * spin_lock_irq(pool->lock). 1276 */ 1277 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1278 struct list_head *head, unsigned int extra_flags) 1279 { 1280 struct worker_pool *pool = pwq->pool; 1281 1282 /* we own @work, set data and link */ 1283 set_work_pwq(work, pwq, extra_flags); 1284 list_add_tail(&work->entry, head); 1285 get_pwq(pwq); 1286 1287 /* 1288 * Ensure either wq_worker_sleeping() sees the above 1289 * list_add_tail() or we see zero nr_running to avoid workers lying 1290 * around lazily while there are works to be processed. 1291 */ 1292 smp_mb(); 1293 1294 if (__need_more_worker(pool)) 1295 wake_up_worker(pool); 1296 } 1297 1298 /* 1299 * Test whether @work is being queued from another work executing on the 1300 * same workqueue. 1301 */ 1302 static bool is_chained_work(struct workqueue_struct *wq) 1303 { 1304 struct worker *worker; 1305 1306 worker = current_wq_worker(); 1307 /* 1308 * Return %true iff I'm a worker execuing a work item on @wq. If 1309 * I'm @worker, it's safe to dereference it without locking. 1310 */ 1311 return worker && worker->current_pwq->wq == wq; 1312 } 1313 1314 static void __queue_work(int cpu, struct workqueue_struct *wq, 1315 struct work_struct *work) 1316 { 1317 struct pool_workqueue *pwq; 1318 struct worker_pool *last_pool; 1319 struct list_head *worklist; 1320 unsigned int work_flags; 1321 unsigned int req_cpu = cpu; 1322 1323 /* 1324 * While a work item is PENDING && off queue, a task trying to 1325 * steal the PENDING will busy-loop waiting for it to either get 1326 * queued or lose PENDING. Grabbing PENDING and queueing should 1327 * happen with IRQ disabled. 1328 */ 1329 WARN_ON_ONCE(!irqs_disabled()); 1330 1331 debug_work_activate(work); 1332 1333 /* if draining, only works from the same workqueue are allowed */ 1334 if (unlikely(wq->flags & __WQ_DRAINING) && 1335 WARN_ON_ONCE(!is_chained_work(wq))) 1336 return; 1337 retry: 1338 if (req_cpu == WORK_CPU_UNBOUND) 1339 cpu = raw_smp_processor_id(); 1340 1341 /* pwq which will be used unless @work is executing elsewhere */ 1342 if (!(wq->flags & WQ_UNBOUND)) 1343 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1344 else 1345 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1346 1347 /* 1348 * If @work was previously on a different pool, it might still be 1349 * running there, in which case the work needs to be queued on that 1350 * pool to guarantee non-reentrancy. 1351 */ 1352 last_pool = get_work_pool(work); 1353 if (last_pool && last_pool != pwq->pool) { 1354 struct worker *worker; 1355 1356 spin_lock(&last_pool->lock); 1357 1358 worker = find_worker_executing_work(last_pool, work); 1359 1360 if (worker && worker->current_pwq->wq == wq) { 1361 pwq = worker->current_pwq; 1362 } else { 1363 /* meh... not running there, queue here */ 1364 spin_unlock(&last_pool->lock); 1365 spin_lock(&pwq->pool->lock); 1366 } 1367 } else { 1368 spin_lock(&pwq->pool->lock); 1369 } 1370 1371 /* 1372 * pwq is determined and locked. For unbound pools, we could have 1373 * raced with pwq release and it could already be dead. If its 1374 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1375 * without another pwq replacing it in the numa_pwq_tbl or while 1376 * work items are executing on it, so the retrying is guaranteed to 1377 * make forward-progress. 1378 */ 1379 if (unlikely(!pwq->refcnt)) { 1380 if (wq->flags & WQ_UNBOUND) { 1381 spin_unlock(&pwq->pool->lock); 1382 cpu_relax(); 1383 goto retry; 1384 } 1385 /* oops */ 1386 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1387 wq->name, cpu); 1388 } 1389 1390 /* pwq determined, queue */ 1391 trace_workqueue_queue_work(req_cpu, pwq, work); 1392 1393 if (WARN_ON(!list_empty(&work->entry))) { 1394 spin_unlock(&pwq->pool->lock); 1395 return; 1396 } 1397 1398 pwq->nr_in_flight[pwq->work_color]++; 1399 work_flags = work_color_to_flags(pwq->work_color); 1400 1401 if (likely(pwq->nr_active < pwq->max_active)) { 1402 trace_workqueue_activate_work(work); 1403 pwq->nr_active++; 1404 worklist = &pwq->pool->worklist; 1405 } else { 1406 work_flags |= WORK_STRUCT_DELAYED; 1407 worklist = &pwq->delayed_works; 1408 } 1409 1410 insert_work(pwq, work, worklist, work_flags); 1411 1412 spin_unlock(&pwq->pool->lock); 1413 } 1414 1415 /** 1416 * queue_work_on - queue work on specific cpu 1417 * @cpu: CPU number to execute work on 1418 * @wq: workqueue to use 1419 * @work: work to queue 1420 * 1421 * We queue the work to a specific CPU, the caller must ensure it 1422 * can't go away. 1423 * 1424 * Return: %false if @work was already on a queue, %true otherwise. 1425 */ 1426 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1427 struct work_struct *work) 1428 { 1429 bool ret = false; 1430 unsigned long flags; 1431 1432 local_irq_save(flags); 1433 1434 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1435 __queue_work(cpu, wq, work); 1436 ret = true; 1437 } 1438 1439 local_irq_restore(flags); 1440 return ret; 1441 } 1442 EXPORT_SYMBOL(queue_work_on); 1443 1444 void delayed_work_timer_fn(unsigned long __data) 1445 { 1446 struct delayed_work *dwork = (struct delayed_work *)__data; 1447 1448 /* should have been called from irqsafe timer with irq already off */ 1449 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1450 } 1451 EXPORT_SYMBOL(delayed_work_timer_fn); 1452 1453 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1454 struct delayed_work *dwork, unsigned long delay) 1455 { 1456 struct timer_list *timer = &dwork->timer; 1457 struct work_struct *work = &dwork->work; 1458 1459 WARN_ON_ONCE(timer->function != delayed_work_timer_fn || 1460 timer->data != (unsigned long)dwork); 1461 WARN_ON_ONCE(timer_pending(timer)); 1462 WARN_ON_ONCE(!list_empty(&work->entry)); 1463 1464 /* 1465 * If @delay is 0, queue @dwork->work immediately. This is for 1466 * both optimization and correctness. The earliest @timer can 1467 * expire is on the closest next tick and delayed_work users depend 1468 * on that there's no such delay when @delay is 0. 1469 */ 1470 if (!delay) { 1471 __queue_work(cpu, wq, &dwork->work); 1472 return; 1473 } 1474 1475 timer_stats_timer_set_start_info(&dwork->timer); 1476 1477 dwork->wq = wq; 1478 dwork->cpu = cpu; 1479 timer->expires = jiffies + delay; 1480 1481 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1482 add_timer_on(timer, cpu); 1483 else 1484 add_timer(timer); 1485 } 1486 1487 /** 1488 * queue_delayed_work_on - queue work on specific CPU after delay 1489 * @cpu: CPU number to execute work on 1490 * @wq: workqueue to use 1491 * @dwork: work to queue 1492 * @delay: number of jiffies to wait before queueing 1493 * 1494 * Return: %false if @work was already on a queue, %true otherwise. If 1495 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1496 * execution. 1497 */ 1498 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1499 struct delayed_work *dwork, unsigned long delay) 1500 { 1501 struct work_struct *work = &dwork->work; 1502 bool ret = false; 1503 unsigned long flags; 1504 1505 /* read the comment in __queue_work() */ 1506 local_irq_save(flags); 1507 1508 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1509 __queue_delayed_work(cpu, wq, dwork, delay); 1510 ret = true; 1511 } 1512 1513 local_irq_restore(flags); 1514 return ret; 1515 } 1516 EXPORT_SYMBOL(queue_delayed_work_on); 1517 1518 /** 1519 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1520 * @cpu: CPU number to execute work on 1521 * @wq: workqueue to use 1522 * @dwork: work to queue 1523 * @delay: number of jiffies to wait before queueing 1524 * 1525 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1526 * modify @dwork's timer so that it expires after @delay. If @delay is 1527 * zero, @work is guaranteed to be scheduled immediately regardless of its 1528 * current state. 1529 * 1530 * Return: %false if @dwork was idle and queued, %true if @dwork was 1531 * pending and its timer was modified. 1532 * 1533 * This function is safe to call from any context including IRQ handler. 1534 * See try_to_grab_pending() for details. 1535 */ 1536 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1537 struct delayed_work *dwork, unsigned long delay) 1538 { 1539 unsigned long flags; 1540 int ret; 1541 1542 do { 1543 ret = try_to_grab_pending(&dwork->work, true, &flags); 1544 } while (unlikely(ret == -EAGAIN)); 1545 1546 if (likely(ret >= 0)) { 1547 __queue_delayed_work(cpu, wq, dwork, delay); 1548 local_irq_restore(flags); 1549 } 1550 1551 /* -ENOENT from try_to_grab_pending() becomes %true */ 1552 return ret; 1553 } 1554 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1555 1556 /** 1557 * worker_enter_idle - enter idle state 1558 * @worker: worker which is entering idle state 1559 * 1560 * @worker is entering idle state. Update stats and idle timer if 1561 * necessary. 1562 * 1563 * LOCKING: 1564 * spin_lock_irq(pool->lock). 1565 */ 1566 static void worker_enter_idle(struct worker *worker) 1567 { 1568 struct worker_pool *pool = worker->pool; 1569 1570 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1571 WARN_ON_ONCE(!list_empty(&worker->entry) && 1572 (worker->hentry.next || worker->hentry.pprev))) 1573 return; 1574 1575 /* can't use worker_set_flags(), also called from start_worker() */ 1576 worker->flags |= WORKER_IDLE; 1577 pool->nr_idle++; 1578 worker->last_active = jiffies; 1579 1580 /* idle_list is LIFO */ 1581 list_add(&worker->entry, &pool->idle_list); 1582 1583 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1584 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1585 1586 /* 1587 * Sanity check nr_running. Because wq_unbind_fn() releases 1588 * pool->lock between setting %WORKER_UNBOUND and zapping 1589 * nr_running, the warning may trigger spuriously. Check iff 1590 * unbind is not in progress. 1591 */ 1592 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1593 pool->nr_workers == pool->nr_idle && 1594 atomic_read(&pool->nr_running)); 1595 } 1596 1597 /** 1598 * worker_leave_idle - leave idle state 1599 * @worker: worker which is leaving idle state 1600 * 1601 * @worker is leaving idle state. Update stats. 1602 * 1603 * LOCKING: 1604 * spin_lock_irq(pool->lock). 1605 */ 1606 static void worker_leave_idle(struct worker *worker) 1607 { 1608 struct worker_pool *pool = worker->pool; 1609 1610 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1611 return; 1612 worker_clr_flags(worker, WORKER_IDLE); 1613 pool->nr_idle--; 1614 list_del_init(&worker->entry); 1615 } 1616 1617 /** 1618 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it 1619 * @pool: target worker_pool 1620 * 1621 * Bind %current to the cpu of @pool if it is associated and lock @pool. 1622 * 1623 * Works which are scheduled while the cpu is online must at least be 1624 * scheduled to a worker which is bound to the cpu so that if they are 1625 * flushed from cpu callbacks while cpu is going down, they are 1626 * guaranteed to execute on the cpu. 1627 * 1628 * This function is to be used by unbound workers and rescuers to bind 1629 * themselves to the target cpu and may race with cpu going down or 1630 * coming online. kthread_bind() can't be used because it may put the 1631 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used 1632 * verbatim as it's best effort and blocking and pool may be 1633 * [dis]associated in the meantime. 1634 * 1635 * This function tries set_cpus_allowed() and locks pool and verifies the 1636 * binding against %POOL_DISASSOCIATED which is set during 1637 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker 1638 * enters idle state or fetches works without dropping lock, it can 1639 * guarantee the scheduling requirement described in the first paragraph. 1640 * 1641 * CONTEXT: 1642 * Might sleep. Called without any lock but returns with pool->lock 1643 * held. 1644 * 1645 * Return: 1646 * %true if the associated pool is online (@worker is successfully 1647 * bound), %false if offline. 1648 */ 1649 static bool worker_maybe_bind_and_lock(struct worker_pool *pool) 1650 __acquires(&pool->lock) 1651 { 1652 while (true) { 1653 /* 1654 * The following call may fail, succeed or succeed 1655 * without actually migrating the task to the cpu if 1656 * it races with cpu hotunplug operation. Verify 1657 * against POOL_DISASSOCIATED. 1658 */ 1659 if (!(pool->flags & POOL_DISASSOCIATED)) 1660 set_cpus_allowed_ptr(current, pool->attrs->cpumask); 1661 1662 spin_lock_irq(&pool->lock); 1663 if (pool->flags & POOL_DISASSOCIATED) 1664 return false; 1665 if (task_cpu(current) == pool->cpu && 1666 cpumask_equal(¤t->cpus_allowed, pool->attrs->cpumask)) 1667 return true; 1668 spin_unlock_irq(&pool->lock); 1669 1670 /* 1671 * We've raced with CPU hot[un]plug. Give it a breather 1672 * and retry migration. cond_resched() is required here; 1673 * otherwise, we might deadlock against cpu_stop trying to 1674 * bring down the CPU on non-preemptive kernel. 1675 */ 1676 cpu_relax(); 1677 cond_resched(); 1678 } 1679 } 1680 1681 static struct worker *alloc_worker(void) 1682 { 1683 struct worker *worker; 1684 1685 worker = kzalloc(sizeof(*worker), GFP_KERNEL); 1686 if (worker) { 1687 INIT_LIST_HEAD(&worker->entry); 1688 INIT_LIST_HEAD(&worker->scheduled); 1689 /* on creation a worker is in !idle && prep state */ 1690 worker->flags = WORKER_PREP; 1691 } 1692 return worker; 1693 } 1694 1695 /** 1696 * create_worker - create a new workqueue worker 1697 * @pool: pool the new worker will belong to 1698 * 1699 * Create a new worker which is bound to @pool. The returned worker 1700 * can be started by calling start_worker() or destroyed using 1701 * destroy_worker(). 1702 * 1703 * CONTEXT: 1704 * Might sleep. Does GFP_KERNEL allocations. 1705 * 1706 * Return: 1707 * Pointer to the newly created worker. 1708 */ 1709 static struct worker *create_worker(struct worker_pool *pool) 1710 { 1711 struct worker *worker = NULL; 1712 int id = -1; 1713 char id_buf[16]; 1714 1715 lockdep_assert_held(&pool->manager_mutex); 1716 1717 /* 1718 * ID is needed to determine kthread name. Allocate ID first 1719 * without installing the pointer. 1720 */ 1721 idr_preload(GFP_KERNEL); 1722 spin_lock_irq(&pool->lock); 1723 1724 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT); 1725 1726 spin_unlock_irq(&pool->lock); 1727 idr_preload_end(); 1728 if (id < 0) 1729 goto fail; 1730 1731 worker = alloc_worker(); 1732 if (!worker) 1733 goto fail; 1734 1735 worker->pool = pool; 1736 worker->id = id; 1737 1738 if (pool->cpu >= 0) 1739 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1740 pool->attrs->nice < 0 ? "H" : ""); 1741 else 1742 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1743 1744 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1745 "kworker/%s", id_buf); 1746 if (IS_ERR(worker->task)) 1747 goto fail; 1748 1749 set_user_nice(worker->task, pool->attrs->nice); 1750 1751 /* prevent userland from meddling with cpumask of workqueue workers */ 1752 worker->task->flags |= PF_NO_SETAFFINITY; 1753 1754 /* 1755 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1756 * online CPUs. It'll be re-applied when any of the CPUs come up. 1757 */ 1758 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1759 1760 /* 1761 * The caller is responsible for ensuring %POOL_DISASSOCIATED 1762 * remains stable across this function. See the comments above the 1763 * flag definition for details. 1764 */ 1765 if (pool->flags & POOL_DISASSOCIATED) 1766 worker->flags |= WORKER_UNBOUND; 1767 1768 /* successful, commit the pointer to idr */ 1769 spin_lock_irq(&pool->lock); 1770 idr_replace(&pool->worker_idr, worker, worker->id); 1771 spin_unlock_irq(&pool->lock); 1772 1773 return worker; 1774 1775 fail: 1776 if (id >= 0) { 1777 spin_lock_irq(&pool->lock); 1778 idr_remove(&pool->worker_idr, id); 1779 spin_unlock_irq(&pool->lock); 1780 } 1781 kfree(worker); 1782 return NULL; 1783 } 1784 1785 /** 1786 * start_worker - start a newly created worker 1787 * @worker: worker to start 1788 * 1789 * Make the pool aware of @worker and start it. 1790 * 1791 * CONTEXT: 1792 * spin_lock_irq(pool->lock). 1793 */ 1794 static void start_worker(struct worker *worker) 1795 { 1796 worker->flags |= WORKER_STARTED; 1797 worker->pool->nr_workers++; 1798 worker_enter_idle(worker); 1799 wake_up_process(worker->task); 1800 } 1801 1802 /** 1803 * create_and_start_worker - create and start a worker for a pool 1804 * @pool: the target pool 1805 * 1806 * Grab the managership of @pool and create and start a new worker for it. 1807 * 1808 * Return: 0 on success. A negative error code otherwise. 1809 */ 1810 static int create_and_start_worker(struct worker_pool *pool) 1811 { 1812 struct worker *worker; 1813 1814 mutex_lock(&pool->manager_mutex); 1815 1816 worker = create_worker(pool); 1817 if (worker) { 1818 spin_lock_irq(&pool->lock); 1819 start_worker(worker); 1820 spin_unlock_irq(&pool->lock); 1821 } 1822 1823 mutex_unlock(&pool->manager_mutex); 1824 1825 return worker ? 0 : -ENOMEM; 1826 } 1827 1828 /** 1829 * destroy_worker - destroy a workqueue worker 1830 * @worker: worker to be destroyed 1831 * 1832 * Destroy @worker and adjust @pool stats accordingly. 1833 * 1834 * CONTEXT: 1835 * spin_lock_irq(pool->lock) which is released and regrabbed. 1836 */ 1837 static void destroy_worker(struct worker *worker) 1838 { 1839 struct worker_pool *pool = worker->pool; 1840 1841 lockdep_assert_held(&pool->manager_mutex); 1842 lockdep_assert_held(&pool->lock); 1843 1844 /* sanity check frenzy */ 1845 if (WARN_ON(worker->current_work) || 1846 WARN_ON(!list_empty(&worker->scheduled))) 1847 return; 1848 1849 if (worker->flags & WORKER_STARTED) 1850 pool->nr_workers--; 1851 if (worker->flags & WORKER_IDLE) 1852 pool->nr_idle--; 1853 1854 list_del_init(&worker->entry); 1855 worker->flags |= WORKER_DIE; 1856 1857 idr_remove(&pool->worker_idr, worker->id); 1858 1859 spin_unlock_irq(&pool->lock); 1860 1861 kthread_stop(worker->task); 1862 kfree(worker); 1863 1864 spin_lock_irq(&pool->lock); 1865 } 1866 1867 static void idle_worker_timeout(unsigned long __pool) 1868 { 1869 struct worker_pool *pool = (void *)__pool; 1870 1871 spin_lock_irq(&pool->lock); 1872 1873 if (too_many_workers(pool)) { 1874 struct worker *worker; 1875 unsigned long expires; 1876 1877 /* idle_list is kept in LIFO order, check the last one */ 1878 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1879 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1880 1881 if (time_before(jiffies, expires)) 1882 mod_timer(&pool->idle_timer, expires); 1883 else { 1884 /* it's been idle for too long, wake up manager */ 1885 pool->flags |= POOL_MANAGE_WORKERS; 1886 wake_up_worker(pool); 1887 } 1888 } 1889 1890 spin_unlock_irq(&pool->lock); 1891 } 1892 1893 static void send_mayday(struct work_struct *work) 1894 { 1895 struct pool_workqueue *pwq = get_work_pwq(work); 1896 struct workqueue_struct *wq = pwq->wq; 1897 1898 lockdep_assert_held(&wq_mayday_lock); 1899 1900 if (!wq->rescuer) 1901 return; 1902 1903 /* mayday mayday mayday */ 1904 if (list_empty(&pwq->mayday_node)) { 1905 list_add_tail(&pwq->mayday_node, &wq->maydays); 1906 wake_up_process(wq->rescuer->task); 1907 } 1908 } 1909 1910 static void pool_mayday_timeout(unsigned long __pool) 1911 { 1912 struct worker_pool *pool = (void *)__pool; 1913 struct work_struct *work; 1914 1915 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */ 1916 spin_lock(&pool->lock); 1917 1918 if (need_to_create_worker(pool)) { 1919 /* 1920 * We've been trying to create a new worker but 1921 * haven't been successful. We might be hitting an 1922 * allocation deadlock. Send distress signals to 1923 * rescuers. 1924 */ 1925 list_for_each_entry(work, &pool->worklist, entry) 1926 send_mayday(work); 1927 } 1928 1929 spin_unlock(&pool->lock); 1930 spin_unlock_irq(&wq_mayday_lock); 1931 1932 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 1933 } 1934 1935 /** 1936 * maybe_create_worker - create a new worker if necessary 1937 * @pool: pool to create a new worker for 1938 * 1939 * Create a new worker for @pool if necessary. @pool is guaranteed to 1940 * have at least one idle worker on return from this function. If 1941 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1942 * sent to all rescuers with works scheduled on @pool to resolve 1943 * possible allocation deadlock. 1944 * 1945 * On return, need_to_create_worker() is guaranteed to be %false and 1946 * may_start_working() %true. 1947 * 1948 * LOCKING: 1949 * spin_lock_irq(pool->lock) which may be released and regrabbed 1950 * multiple times. Does GFP_KERNEL allocations. Called only from 1951 * manager. 1952 * 1953 * Return: 1954 * %false if no action was taken and pool->lock stayed locked, %true 1955 * otherwise. 1956 */ 1957 static bool maybe_create_worker(struct worker_pool *pool) 1958 __releases(&pool->lock) 1959 __acquires(&pool->lock) 1960 { 1961 if (!need_to_create_worker(pool)) 1962 return false; 1963 restart: 1964 spin_unlock_irq(&pool->lock); 1965 1966 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1967 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1968 1969 while (true) { 1970 struct worker *worker; 1971 1972 worker = create_worker(pool); 1973 if (worker) { 1974 del_timer_sync(&pool->mayday_timer); 1975 spin_lock_irq(&pool->lock); 1976 start_worker(worker); 1977 if (WARN_ON_ONCE(need_to_create_worker(pool))) 1978 goto restart; 1979 return true; 1980 } 1981 1982 if (!need_to_create_worker(pool)) 1983 break; 1984 1985 __set_current_state(TASK_INTERRUPTIBLE); 1986 schedule_timeout(CREATE_COOLDOWN); 1987 1988 if (!need_to_create_worker(pool)) 1989 break; 1990 } 1991 1992 del_timer_sync(&pool->mayday_timer); 1993 spin_lock_irq(&pool->lock); 1994 if (need_to_create_worker(pool)) 1995 goto restart; 1996 return true; 1997 } 1998 1999 /** 2000 * maybe_destroy_worker - destroy workers which have been idle for a while 2001 * @pool: pool to destroy workers for 2002 * 2003 * Destroy @pool workers which have been idle for longer than 2004 * IDLE_WORKER_TIMEOUT. 2005 * 2006 * LOCKING: 2007 * spin_lock_irq(pool->lock) which may be released and regrabbed 2008 * multiple times. Called only from manager. 2009 * 2010 * Return: 2011 * %false if no action was taken and pool->lock stayed locked, %true 2012 * otherwise. 2013 */ 2014 static bool maybe_destroy_workers(struct worker_pool *pool) 2015 { 2016 bool ret = false; 2017 2018 while (too_many_workers(pool)) { 2019 struct worker *worker; 2020 unsigned long expires; 2021 2022 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2023 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2024 2025 if (time_before(jiffies, expires)) { 2026 mod_timer(&pool->idle_timer, expires); 2027 break; 2028 } 2029 2030 destroy_worker(worker); 2031 ret = true; 2032 } 2033 2034 return ret; 2035 } 2036 2037 /** 2038 * manage_workers - manage worker pool 2039 * @worker: self 2040 * 2041 * Assume the manager role and manage the worker pool @worker belongs 2042 * to. At any given time, there can be only zero or one manager per 2043 * pool. The exclusion is handled automatically by this function. 2044 * 2045 * The caller can safely start processing works on false return. On 2046 * true return, it's guaranteed that need_to_create_worker() is false 2047 * and may_start_working() is true. 2048 * 2049 * CONTEXT: 2050 * spin_lock_irq(pool->lock) which may be released and regrabbed 2051 * multiple times. Does GFP_KERNEL allocations. 2052 * 2053 * Return: 2054 * %false if the pool don't need management and the caller can safely start 2055 * processing works, %true indicates that the function released pool->lock 2056 * and reacquired it to perform some management function and that the 2057 * conditions that the caller verified while holding the lock before 2058 * calling the function might no longer be true. 2059 */ 2060 static bool manage_workers(struct worker *worker) 2061 { 2062 struct worker_pool *pool = worker->pool; 2063 bool ret = false; 2064 2065 /* 2066 * Managership is governed by two mutexes - manager_arb and 2067 * manager_mutex. manager_arb handles arbitration of manager role. 2068 * Anyone who successfully grabs manager_arb wins the arbitration 2069 * and becomes the manager. mutex_trylock() on pool->manager_arb 2070 * failure while holding pool->lock reliably indicates that someone 2071 * else is managing the pool and the worker which failed trylock 2072 * can proceed to executing work items. This means that anyone 2073 * grabbing manager_arb is responsible for actually performing 2074 * manager duties. If manager_arb is grabbed and released without 2075 * actual management, the pool may stall indefinitely. 2076 * 2077 * manager_mutex is used for exclusion of actual management 2078 * operations. The holder of manager_mutex can be sure that none 2079 * of management operations, including creation and destruction of 2080 * workers, won't take place until the mutex is released. Because 2081 * manager_mutex doesn't interfere with manager role arbitration, 2082 * it is guaranteed that the pool's management, while may be 2083 * delayed, won't be disturbed by someone else grabbing 2084 * manager_mutex. 2085 */ 2086 if (!mutex_trylock(&pool->manager_arb)) 2087 return ret; 2088 2089 /* 2090 * With manager arbitration won, manager_mutex would be free in 2091 * most cases. trylock first without dropping @pool->lock. 2092 */ 2093 if (unlikely(!mutex_trylock(&pool->manager_mutex))) { 2094 spin_unlock_irq(&pool->lock); 2095 mutex_lock(&pool->manager_mutex); 2096 spin_lock_irq(&pool->lock); 2097 ret = true; 2098 } 2099 2100 pool->flags &= ~POOL_MANAGE_WORKERS; 2101 2102 /* 2103 * Destroy and then create so that may_start_working() is true 2104 * on return. 2105 */ 2106 ret |= maybe_destroy_workers(pool); 2107 ret |= maybe_create_worker(pool); 2108 2109 mutex_unlock(&pool->manager_mutex); 2110 mutex_unlock(&pool->manager_arb); 2111 return ret; 2112 } 2113 2114 /** 2115 * process_one_work - process single work 2116 * @worker: self 2117 * @work: work to process 2118 * 2119 * Process @work. This function contains all the logics necessary to 2120 * process a single work including synchronization against and 2121 * interaction with other workers on the same cpu, queueing and 2122 * flushing. As long as context requirement is met, any worker can 2123 * call this function to process a work. 2124 * 2125 * CONTEXT: 2126 * spin_lock_irq(pool->lock) which is released and regrabbed. 2127 */ 2128 static void process_one_work(struct worker *worker, struct work_struct *work) 2129 __releases(&pool->lock) 2130 __acquires(&pool->lock) 2131 { 2132 struct pool_workqueue *pwq = get_work_pwq(work); 2133 struct worker_pool *pool = worker->pool; 2134 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2135 int work_color; 2136 struct worker *collision; 2137 #ifdef CONFIG_LOCKDEP 2138 /* 2139 * It is permissible to free the struct work_struct from 2140 * inside the function that is called from it, this we need to 2141 * take into account for lockdep too. To avoid bogus "held 2142 * lock freed" warnings as well as problems when looking into 2143 * work->lockdep_map, make a copy and use that here. 2144 */ 2145 struct lockdep_map lockdep_map; 2146 2147 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2148 #endif 2149 /* 2150 * Ensure we're on the correct CPU. DISASSOCIATED test is 2151 * necessary to avoid spurious warnings from rescuers servicing the 2152 * unbound or a disassociated pool. 2153 */ 2154 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) && 2155 !(pool->flags & POOL_DISASSOCIATED) && 2156 raw_smp_processor_id() != pool->cpu); 2157 2158 /* 2159 * A single work shouldn't be executed concurrently by 2160 * multiple workers on a single cpu. Check whether anyone is 2161 * already processing the work. If so, defer the work to the 2162 * currently executing one. 2163 */ 2164 collision = find_worker_executing_work(pool, work); 2165 if (unlikely(collision)) { 2166 move_linked_works(work, &collision->scheduled, NULL); 2167 return; 2168 } 2169 2170 /* claim and dequeue */ 2171 debug_work_deactivate(work); 2172 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2173 worker->current_work = work; 2174 worker->current_func = work->func; 2175 worker->current_pwq = pwq; 2176 work_color = get_work_color(work); 2177 2178 list_del_init(&work->entry); 2179 2180 /* 2181 * CPU intensive works don't participate in concurrency 2182 * management. They're the scheduler's responsibility. 2183 */ 2184 if (unlikely(cpu_intensive)) 2185 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true); 2186 2187 /* 2188 * Unbound pool isn't concurrency managed and work items should be 2189 * executed ASAP. Wake up another worker if necessary. 2190 */ 2191 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool)) 2192 wake_up_worker(pool); 2193 2194 /* 2195 * Record the last pool and clear PENDING which should be the last 2196 * update to @work. Also, do this inside @pool->lock so that 2197 * PENDING and queued state changes happen together while IRQ is 2198 * disabled. 2199 */ 2200 set_work_pool_and_clear_pending(work, pool->id); 2201 2202 spin_unlock_irq(&pool->lock); 2203 2204 lock_map_acquire_read(&pwq->wq->lockdep_map); 2205 lock_map_acquire(&lockdep_map); 2206 trace_workqueue_execute_start(work); 2207 worker->current_func(work); 2208 /* 2209 * While we must be careful to not use "work" after this, the trace 2210 * point will only record its address. 2211 */ 2212 trace_workqueue_execute_end(work); 2213 lock_map_release(&lockdep_map); 2214 lock_map_release(&pwq->wq->lockdep_map); 2215 2216 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2217 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2218 " last function: %pf\n", 2219 current->comm, preempt_count(), task_pid_nr(current), 2220 worker->current_func); 2221 debug_show_held_locks(current); 2222 dump_stack(); 2223 } 2224 2225 /* 2226 * The following prevents a kworker from hogging CPU on !PREEMPT 2227 * kernels, where a requeueing work item waiting for something to 2228 * happen could deadlock with stop_machine as such work item could 2229 * indefinitely requeue itself while all other CPUs are trapped in 2230 * stop_machine. 2231 */ 2232 cond_resched(); 2233 2234 spin_lock_irq(&pool->lock); 2235 2236 /* clear cpu intensive status */ 2237 if (unlikely(cpu_intensive)) 2238 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2239 2240 /* we're done with it, release */ 2241 hash_del(&worker->hentry); 2242 worker->current_work = NULL; 2243 worker->current_func = NULL; 2244 worker->current_pwq = NULL; 2245 worker->desc_valid = false; 2246 pwq_dec_nr_in_flight(pwq, work_color); 2247 } 2248 2249 /** 2250 * process_scheduled_works - process scheduled works 2251 * @worker: self 2252 * 2253 * Process all scheduled works. Please note that the scheduled list 2254 * may change while processing a work, so this function repeatedly 2255 * fetches a work from the top and executes it. 2256 * 2257 * CONTEXT: 2258 * spin_lock_irq(pool->lock) which may be released and regrabbed 2259 * multiple times. 2260 */ 2261 static void process_scheduled_works(struct worker *worker) 2262 { 2263 while (!list_empty(&worker->scheduled)) { 2264 struct work_struct *work = list_first_entry(&worker->scheduled, 2265 struct work_struct, entry); 2266 process_one_work(worker, work); 2267 } 2268 } 2269 2270 /** 2271 * worker_thread - the worker thread function 2272 * @__worker: self 2273 * 2274 * The worker thread function. All workers belong to a worker_pool - 2275 * either a per-cpu one or dynamic unbound one. These workers process all 2276 * work items regardless of their specific target workqueue. The only 2277 * exception is work items which belong to workqueues with a rescuer which 2278 * will be explained in rescuer_thread(). 2279 * 2280 * Return: 0 2281 */ 2282 static int worker_thread(void *__worker) 2283 { 2284 struct worker *worker = __worker; 2285 struct worker_pool *pool = worker->pool; 2286 2287 /* tell the scheduler that this is a workqueue worker */ 2288 worker->task->flags |= PF_WQ_WORKER; 2289 woke_up: 2290 spin_lock_irq(&pool->lock); 2291 2292 /* am I supposed to die? */ 2293 if (unlikely(worker->flags & WORKER_DIE)) { 2294 spin_unlock_irq(&pool->lock); 2295 WARN_ON_ONCE(!list_empty(&worker->entry)); 2296 worker->task->flags &= ~PF_WQ_WORKER; 2297 return 0; 2298 } 2299 2300 worker_leave_idle(worker); 2301 recheck: 2302 /* no more worker necessary? */ 2303 if (!need_more_worker(pool)) 2304 goto sleep; 2305 2306 /* do we need to manage? */ 2307 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2308 goto recheck; 2309 2310 /* 2311 * ->scheduled list can only be filled while a worker is 2312 * preparing to process a work or actually processing it. 2313 * Make sure nobody diddled with it while I was sleeping. 2314 */ 2315 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2316 2317 /* 2318 * Finish PREP stage. We're guaranteed to have at least one idle 2319 * worker or that someone else has already assumed the manager 2320 * role. This is where @worker starts participating in concurrency 2321 * management if applicable and concurrency management is restored 2322 * after being rebound. See rebind_workers() for details. 2323 */ 2324 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2325 2326 do { 2327 struct work_struct *work = 2328 list_first_entry(&pool->worklist, 2329 struct work_struct, entry); 2330 2331 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2332 /* optimization path, not strictly necessary */ 2333 process_one_work(worker, work); 2334 if (unlikely(!list_empty(&worker->scheduled))) 2335 process_scheduled_works(worker); 2336 } else { 2337 move_linked_works(work, &worker->scheduled, NULL); 2338 process_scheduled_works(worker); 2339 } 2340 } while (keep_working(pool)); 2341 2342 worker_set_flags(worker, WORKER_PREP, false); 2343 sleep: 2344 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker)) 2345 goto recheck; 2346 2347 /* 2348 * pool->lock is held and there's no work to process and no need to 2349 * manage, sleep. Workers are woken up only while holding 2350 * pool->lock or from local cpu, so setting the current state 2351 * before releasing pool->lock is enough to prevent losing any 2352 * event. 2353 */ 2354 worker_enter_idle(worker); 2355 __set_current_state(TASK_INTERRUPTIBLE); 2356 spin_unlock_irq(&pool->lock); 2357 schedule(); 2358 goto woke_up; 2359 } 2360 2361 /** 2362 * rescuer_thread - the rescuer thread function 2363 * @__rescuer: self 2364 * 2365 * Workqueue rescuer thread function. There's one rescuer for each 2366 * workqueue which has WQ_MEM_RECLAIM set. 2367 * 2368 * Regular work processing on a pool may block trying to create a new 2369 * worker which uses GFP_KERNEL allocation which has slight chance of 2370 * developing into deadlock if some works currently on the same queue 2371 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2372 * the problem rescuer solves. 2373 * 2374 * When such condition is possible, the pool summons rescuers of all 2375 * workqueues which have works queued on the pool and let them process 2376 * those works so that forward progress can be guaranteed. 2377 * 2378 * This should happen rarely. 2379 * 2380 * Return: 0 2381 */ 2382 static int rescuer_thread(void *__rescuer) 2383 { 2384 struct worker *rescuer = __rescuer; 2385 struct workqueue_struct *wq = rescuer->rescue_wq; 2386 struct list_head *scheduled = &rescuer->scheduled; 2387 2388 set_user_nice(current, RESCUER_NICE_LEVEL); 2389 2390 /* 2391 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2392 * doesn't participate in concurrency management. 2393 */ 2394 rescuer->task->flags |= PF_WQ_WORKER; 2395 repeat: 2396 set_current_state(TASK_INTERRUPTIBLE); 2397 2398 if (kthread_should_stop()) { 2399 __set_current_state(TASK_RUNNING); 2400 rescuer->task->flags &= ~PF_WQ_WORKER; 2401 return 0; 2402 } 2403 2404 /* see whether any pwq is asking for help */ 2405 spin_lock_irq(&wq_mayday_lock); 2406 2407 while (!list_empty(&wq->maydays)) { 2408 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2409 struct pool_workqueue, mayday_node); 2410 struct worker_pool *pool = pwq->pool; 2411 struct work_struct *work, *n; 2412 2413 __set_current_state(TASK_RUNNING); 2414 list_del_init(&pwq->mayday_node); 2415 2416 spin_unlock_irq(&wq_mayday_lock); 2417 2418 /* migrate to the target cpu if possible */ 2419 worker_maybe_bind_and_lock(pool); 2420 rescuer->pool = pool; 2421 2422 /* 2423 * Slurp in all works issued via this workqueue and 2424 * process'em. 2425 */ 2426 WARN_ON_ONCE(!list_empty(&rescuer->scheduled)); 2427 list_for_each_entry_safe(work, n, &pool->worklist, entry) 2428 if (get_work_pwq(work) == pwq) 2429 move_linked_works(work, scheduled, &n); 2430 2431 process_scheduled_works(rescuer); 2432 2433 /* 2434 * Leave this pool. If keep_working() is %true, notify a 2435 * regular worker; otherwise, we end up with 0 concurrency 2436 * and stalling the execution. 2437 */ 2438 if (keep_working(pool)) 2439 wake_up_worker(pool); 2440 2441 rescuer->pool = NULL; 2442 spin_unlock(&pool->lock); 2443 spin_lock(&wq_mayday_lock); 2444 } 2445 2446 spin_unlock_irq(&wq_mayday_lock); 2447 2448 /* rescuers should never participate in concurrency management */ 2449 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2450 schedule(); 2451 goto repeat; 2452 } 2453 2454 struct wq_barrier { 2455 struct work_struct work; 2456 struct completion done; 2457 }; 2458 2459 static void wq_barrier_func(struct work_struct *work) 2460 { 2461 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2462 complete(&barr->done); 2463 } 2464 2465 /** 2466 * insert_wq_barrier - insert a barrier work 2467 * @pwq: pwq to insert barrier into 2468 * @barr: wq_barrier to insert 2469 * @target: target work to attach @barr to 2470 * @worker: worker currently executing @target, NULL if @target is not executing 2471 * 2472 * @barr is linked to @target such that @barr is completed only after 2473 * @target finishes execution. Please note that the ordering 2474 * guarantee is observed only with respect to @target and on the local 2475 * cpu. 2476 * 2477 * Currently, a queued barrier can't be canceled. This is because 2478 * try_to_grab_pending() can't determine whether the work to be 2479 * grabbed is at the head of the queue and thus can't clear LINKED 2480 * flag of the previous work while there must be a valid next work 2481 * after a work with LINKED flag set. 2482 * 2483 * Note that when @worker is non-NULL, @target may be modified 2484 * underneath us, so we can't reliably determine pwq from @target. 2485 * 2486 * CONTEXT: 2487 * spin_lock_irq(pool->lock). 2488 */ 2489 static void insert_wq_barrier(struct pool_workqueue *pwq, 2490 struct wq_barrier *barr, 2491 struct work_struct *target, struct worker *worker) 2492 { 2493 struct list_head *head; 2494 unsigned int linked = 0; 2495 2496 /* 2497 * debugobject calls are safe here even with pool->lock locked 2498 * as we know for sure that this will not trigger any of the 2499 * checks and call back into the fixup functions where we 2500 * might deadlock. 2501 */ 2502 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2503 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2504 init_completion(&barr->done); 2505 2506 /* 2507 * If @target is currently being executed, schedule the 2508 * barrier to the worker; otherwise, put it after @target. 2509 */ 2510 if (worker) 2511 head = worker->scheduled.next; 2512 else { 2513 unsigned long *bits = work_data_bits(target); 2514 2515 head = target->entry.next; 2516 /* there can already be other linked works, inherit and set */ 2517 linked = *bits & WORK_STRUCT_LINKED; 2518 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2519 } 2520 2521 debug_work_activate(&barr->work); 2522 insert_work(pwq, &barr->work, head, 2523 work_color_to_flags(WORK_NO_COLOR) | linked); 2524 } 2525 2526 /** 2527 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2528 * @wq: workqueue being flushed 2529 * @flush_color: new flush color, < 0 for no-op 2530 * @work_color: new work color, < 0 for no-op 2531 * 2532 * Prepare pwqs for workqueue flushing. 2533 * 2534 * If @flush_color is non-negative, flush_color on all pwqs should be 2535 * -1. If no pwq has in-flight commands at the specified color, all 2536 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2537 * has in flight commands, its pwq->flush_color is set to 2538 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2539 * wakeup logic is armed and %true is returned. 2540 * 2541 * The caller should have initialized @wq->first_flusher prior to 2542 * calling this function with non-negative @flush_color. If 2543 * @flush_color is negative, no flush color update is done and %false 2544 * is returned. 2545 * 2546 * If @work_color is non-negative, all pwqs should have the same 2547 * work_color which is previous to @work_color and all will be 2548 * advanced to @work_color. 2549 * 2550 * CONTEXT: 2551 * mutex_lock(wq->mutex). 2552 * 2553 * Return: 2554 * %true if @flush_color >= 0 and there's something to flush. %false 2555 * otherwise. 2556 */ 2557 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2558 int flush_color, int work_color) 2559 { 2560 bool wait = false; 2561 struct pool_workqueue *pwq; 2562 2563 if (flush_color >= 0) { 2564 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2565 atomic_set(&wq->nr_pwqs_to_flush, 1); 2566 } 2567 2568 for_each_pwq(pwq, wq) { 2569 struct worker_pool *pool = pwq->pool; 2570 2571 spin_lock_irq(&pool->lock); 2572 2573 if (flush_color >= 0) { 2574 WARN_ON_ONCE(pwq->flush_color != -1); 2575 2576 if (pwq->nr_in_flight[flush_color]) { 2577 pwq->flush_color = flush_color; 2578 atomic_inc(&wq->nr_pwqs_to_flush); 2579 wait = true; 2580 } 2581 } 2582 2583 if (work_color >= 0) { 2584 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2585 pwq->work_color = work_color; 2586 } 2587 2588 spin_unlock_irq(&pool->lock); 2589 } 2590 2591 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2592 complete(&wq->first_flusher->done); 2593 2594 return wait; 2595 } 2596 2597 /** 2598 * flush_workqueue - ensure that any scheduled work has run to completion. 2599 * @wq: workqueue to flush 2600 * 2601 * This function sleeps until all work items which were queued on entry 2602 * have finished execution, but it is not livelocked by new incoming ones. 2603 */ 2604 void flush_workqueue(struct workqueue_struct *wq) 2605 { 2606 struct wq_flusher this_flusher = { 2607 .list = LIST_HEAD_INIT(this_flusher.list), 2608 .flush_color = -1, 2609 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2610 }; 2611 int next_color; 2612 2613 lock_map_acquire(&wq->lockdep_map); 2614 lock_map_release(&wq->lockdep_map); 2615 2616 mutex_lock(&wq->mutex); 2617 2618 /* 2619 * Start-to-wait phase 2620 */ 2621 next_color = work_next_color(wq->work_color); 2622 2623 if (next_color != wq->flush_color) { 2624 /* 2625 * Color space is not full. The current work_color 2626 * becomes our flush_color and work_color is advanced 2627 * by one. 2628 */ 2629 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2630 this_flusher.flush_color = wq->work_color; 2631 wq->work_color = next_color; 2632 2633 if (!wq->first_flusher) { 2634 /* no flush in progress, become the first flusher */ 2635 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2636 2637 wq->first_flusher = &this_flusher; 2638 2639 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2640 wq->work_color)) { 2641 /* nothing to flush, done */ 2642 wq->flush_color = next_color; 2643 wq->first_flusher = NULL; 2644 goto out_unlock; 2645 } 2646 } else { 2647 /* wait in queue */ 2648 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2649 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2650 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2651 } 2652 } else { 2653 /* 2654 * Oops, color space is full, wait on overflow queue. 2655 * The next flush completion will assign us 2656 * flush_color and transfer to flusher_queue. 2657 */ 2658 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2659 } 2660 2661 mutex_unlock(&wq->mutex); 2662 2663 wait_for_completion(&this_flusher.done); 2664 2665 /* 2666 * Wake-up-and-cascade phase 2667 * 2668 * First flushers are responsible for cascading flushes and 2669 * handling overflow. Non-first flushers can simply return. 2670 */ 2671 if (wq->first_flusher != &this_flusher) 2672 return; 2673 2674 mutex_lock(&wq->mutex); 2675 2676 /* we might have raced, check again with mutex held */ 2677 if (wq->first_flusher != &this_flusher) 2678 goto out_unlock; 2679 2680 wq->first_flusher = NULL; 2681 2682 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2683 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2684 2685 while (true) { 2686 struct wq_flusher *next, *tmp; 2687 2688 /* complete all the flushers sharing the current flush color */ 2689 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2690 if (next->flush_color != wq->flush_color) 2691 break; 2692 list_del_init(&next->list); 2693 complete(&next->done); 2694 } 2695 2696 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2697 wq->flush_color != work_next_color(wq->work_color)); 2698 2699 /* this flush_color is finished, advance by one */ 2700 wq->flush_color = work_next_color(wq->flush_color); 2701 2702 /* one color has been freed, handle overflow queue */ 2703 if (!list_empty(&wq->flusher_overflow)) { 2704 /* 2705 * Assign the same color to all overflowed 2706 * flushers, advance work_color and append to 2707 * flusher_queue. This is the start-to-wait 2708 * phase for these overflowed flushers. 2709 */ 2710 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2711 tmp->flush_color = wq->work_color; 2712 2713 wq->work_color = work_next_color(wq->work_color); 2714 2715 list_splice_tail_init(&wq->flusher_overflow, 2716 &wq->flusher_queue); 2717 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2718 } 2719 2720 if (list_empty(&wq->flusher_queue)) { 2721 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2722 break; 2723 } 2724 2725 /* 2726 * Need to flush more colors. Make the next flusher 2727 * the new first flusher and arm pwqs. 2728 */ 2729 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2730 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2731 2732 list_del_init(&next->list); 2733 wq->first_flusher = next; 2734 2735 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2736 break; 2737 2738 /* 2739 * Meh... this color is already done, clear first 2740 * flusher and repeat cascading. 2741 */ 2742 wq->first_flusher = NULL; 2743 } 2744 2745 out_unlock: 2746 mutex_unlock(&wq->mutex); 2747 } 2748 EXPORT_SYMBOL_GPL(flush_workqueue); 2749 2750 /** 2751 * drain_workqueue - drain a workqueue 2752 * @wq: workqueue to drain 2753 * 2754 * Wait until the workqueue becomes empty. While draining is in progress, 2755 * only chain queueing is allowed. IOW, only currently pending or running 2756 * work items on @wq can queue further work items on it. @wq is flushed 2757 * repeatedly until it becomes empty. The number of flushing is detemined 2758 * by the depth of chaining and should be relatively short. Whine if it 2759 * takes too long. 2760 */ 2761 void drain_workqueue(struct workqueue_struct *wq) 2762 { 2763 unsigned int flush_cnt = 0; 2764 struct pool_workqueue *pwq; 2765 2766 /* 2767 * __queue_work() needs to test whether there are drainers, is much 2768 * hotter than drain_workqueue() and already looks at @wq->flags. 2769 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2770 */ 2771 mutex_lock(&wq->mutex); 2772 if (!wq->nr_drainers++) 2773 wq->flags |= __WQ_DRAINING; 2774 mutex_unlock(&wq->mutex); 2775 reflush: 2776 flush_workqueue(wq); 2777 2778 mutex_lock(&wq->mutex); 2779 2780 for_each_pwq(pwq, wq) { 2781 bool drained; 2782 2783 spin_lock_irq(&pwq->pool->lock); 2784 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2785 spin_unlock_irq(&pwq->pool->lock); 2786 2787 if (drained) 2788 continue; 2789 2790 if (++flush_cnt == 10 || 2791 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2792 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2793 wq->name, flush_cnt); 2794 2795 mutex_unlock(&wq->mutex); 2796 goto reflush; 2797 } 2798 2799 if (!--wq->nr_drainers) 2800 wq->flags &= ~__WQ_DRAINING; 2801 mutex_unlock(&wq->mutex); 2802 } 2803 EXPORT_SYMBOL_GPL(drain_workqueue); 2804 2805 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr) 2806 { 2807 struct worker *worker = NULL; 2808 struct worker_pool *pool; 2809 struct pool_workqueue *pwq; 2810 2811 might_sleep(); 2812 2813 local_irq_disable(); 2814 pool = get_work_pool(work); 2815 if (!pool) { 2816 local_irq_enable(); 2817 return false; 2818 } 2819 2820 spin_lock(&pool->lock); 2821 /* see the comment in try_to_grab_pending() with the same code */ 2822 pwq = get_work_pwq(work); 2823 if (pwq) { 2824 if (unlikely(pwq->pool != pool)) 2825 goto already_gone; 2826 } else { 2827 worker = find_worker_executing_work(pool, work); 2828 if (!worker) 2829 goto already_gone; 2830 pwq = worker->current_pwq; 2831 } 2832 2833 insert_wq_barrier(pwq, barr, work, worker); 2834 spin_unlock_irq(&pool->lock); 2835 2836 /* 2837 * If @max_active is 1 or rescuer is in use, flushing another work 2838 * item on the same workqueue may lead to deadlock. Make sure the 2839 * flusher is not running on the same workqueue by verifying write 2840 * access. 2841 */ 2842 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) 2843 lock_map_acquire(&pwq->wq->lockdep_map); 2844 else 2845 lock_map_acquire_read(&pwq->wq->lockdep_map); 2846 lock_map_release(&pwq->wq->lockdep_map); 2847 2848 return true; 2849 already_gone: 2850 spin_unlock_irq(&pool->lock); 2851 return false; 2852 } 2853 2854 /** 2855 * flush_work - wait for a work to finish executing the last queueing instance 2856 * @work: the work to flush 2857 * 2858 * Wait until @work has finished execution. @work is guaranteed to be idle 2859 * on return if it hasn't been requeued since flush started. 2860 * 2861 * Return: 2862 * %true if flush_work() waited for the work to finish execution, 2863 * %false if it was already idle. 2864 */ 2865 bool flush_work(struct work_struct *work) 2866 { 2867 struct wq_barrier barr; 2868 2869 lock_map_acquire(&work->lockdep_map); 2870 lock_map_release(&work->lockdep_map); 2871 2872 if (start_flush_work(work, &barr)) { 2873 wait_for_completion(&barr.done); 2874 destroy_work_on_stack(&barr.work); 2875 return true; 2876 } else { 2877 return false; 2878 } 2879 } 2880 EXPORT_SYMBOL_GPL(flush_work); 2881 2882 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 2883 { 2884 unsigned long flags; 2885 int ret; 2886 2887 do { 2888 ret = try_to_grab_pending(work, is_dwork, &flags); 2889 /* 2890 * If someone else is canceling, wait for the same event it 2891 * would be waiting for before retrying. 2892 */ 2893 if (unlikely(ret == -ENOENT)) 2894 flush_work(work); 2895 } while (unlikely(ret < 0)); 2896 2897 /* tell other tasks trying to grab @work to back off */ 2898 mark_work_canceling(work); 2899 local_irq_restore(flags); 2900 2901 flush_work(work); 2902 clear_work_data(work); 2903 return ret; 2904 } 2905 2906 /** 2907 * cancel_work_sync - cancel a work and wait for it to finish 2908 * @work: the work to cancel 2909 * 2910 * Cancel @work and wait for its execution to finish. This function 2911 * can be used even if the work re-queues itself or migrates to 2912 * another workqueue. On return from this function, @work is 2913 * guaranteed to be not pending or executing on any CPU. 2914 * 2915 * cancel_work_sync(&delayed_work->work) must not be used for 2916 * delayed_work's. Use cancel_delayed_work_sync() instead. 2917 * 2918 * The caller must ensure that the workqueue on which @work was last 2919 * queued can't be destroyed before this function returns. 2920 * 2921 * Return: 2922 * %true if @work was pending, %false otherwise. 2923 */ 2924 bool cancel_work_sync(struct work_struct *work) 2925 { 2926 return __cancel_work_timer(work, false); 2927 } 2928 EXPORT_SYMBOL_GPL(cancel_work_sync); 2929 2930 /** 2931 * flush_delayed_work - wait for a dwork to finish executing the last queueing 2932 * @dwork: the delayed work to flush 2933 * 2934 * Delayed timer is cancelled and the pending work is queued for 2935 * immediate execution. Like flush_work(), this function only 2936 * considers the last queueing instance of @dwork. 2937 * 2938 * Return: 2939 * %true if flush_work() waited for the work to finish execution, 2940 * %false if it was already idle. 2941 */ 2942 bool flush_delayed_work(struct delayed_work *dwork) 2943 { 2944 local_irq_disable(); 2945 if (del_timer_sync(&dwork->timer)) 2946 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2947 local_irq_enable(); 2948 return flush_work(&dwork->work); 2949 } 2950 EXPORT_SYMBOL(flush_delayed_work); 2951 2952 /** 2953 * cancel_delayed_work - cancel a delayed work 2954 * @dwork: delayed_work to cancel 2955 * 2956 * Kill off a pending delayed_work. 2957 * 2958 * Return: %true if @dwork was pending and canceled; %false if it wasn't 2959 * pending. 2960 * 2961 * Note: 2962 * The work callback function may still be running on return, unless 2963 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 2964 * use cancel_delayed_work_sync() to wait on it. 2965 * 2966 * This function is safe to call from any context including IRQ handler. 2967 */ 2968 bool cancel_delayed_work(struct delayed_work *dwork) 2969 { 2970 unsigned long flags; 2971 int ret; 2972 2973 do { 2974 ret = try_to_grab_pending(&dwork->work, true, &flags); 2975 } while (unlikely(ret == -EAGAIN)); 2976 2977 if (unlikely(ret < 0)) 2978 return false; 2979 2980 set_work_pool_and_clear_pending(&dwork->work, 2981 get_work_pool_id(&dwork->work)); 2982 local_irq_restore(flags); 2983 return ret; 2984 } 2985 EXPORT_SYMBOL(cancel_delayed_work); 2986 2987 /** 2988 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 2989 * @dwork: the delayed work cancel 2990 * 2991 * This is cancel_work_sync() for delayed works. 2992 * 2993 * Return: 2994 * %true if @dwork was pending, %false otherwise. 2995 */ 2996 bool cancel_delayed_work_sync(struct delayed_work *dwork) 2997 { 2998 return __cancel_work_timer(&dwork->work, true); 2999 } 3000 EXPORT_SYMBOL(cancel_delayed_work_sync); 3001 3002 /** 3003 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3004 * @func: the function to call 3005 * 3006 * schedule_on_each_cpu() executes @func on each online CPU using the 3007 * system workqueue and blocks until all CPUs have completed. 3008 * schedule_on_each_cpu() is very slow. 3009 * 3010 * Return: 3011 * 0 on success, -errno on failure. 3012 */ 3013 int schedule_on_each_cpu(work_func_t func) 3014 { 3015 int cpu; 3016 struct work_struct __percpu *works; 3017 3018 works = alloc_percpu(struct work_struct); 3019 if (!works) 3020 return -ENOMEM; 3021 3022 get_online_cpus(); 3023 3024 for_each_online_cpu(cpu) { 3025 struct work_struct *work = per_cpu_ptr(works, cpu); 3026 3027 INIT_WORK(work, func); 3028 schedule_work_on(cpu, work); 3029 } 3030 3031 for_each_online_cpu(cpu) 3032 flush_work(per_cpu_ptr(works, cpu)); 3033 3034 put_online_cpus(); 3035 free_percpu(works); 3036 return 0; 3037 } 3038 3039 /** 3040 * flush_scheduled_work - ensure that any scheduled work has run to completion. 3041 * 3042 * Forces execution of the kernel-global workqueue and blocks until its 3043 * completion. 3044 * 3045 * Think twice before calling this function! It's very easy to get into 3046 * trouble if you don't take great care. Either of the following situations 3047 * will lead to deadlock: 3048 * 3049 * One of the work items currently on the workqueue needs to acquire 3050 * a lock held by your code or its caller. 3051 * 3052 * Your code is running in the context of a work routine. 3053 * 3054 * They will be detected by lockdep when they occur, but the first might not 3055 * occur very often. It depends on what work items are on the workqueue and 3056 * what locks they need, which you have no control over. 3057 * 3058 * In most situations flushing the entire workqueue is overkill; you merely 3059 * need to know that a particular work item isn't queued and isn't running. 3060 * In such cases you should use cancel_delayed_work_sync() or 3061 * cancel_work_sync() instead. 3062 */ 3063 void flush_scheduled_work(void) 3064 { 3065 flush_workqueue(system_wq); 3066 } 3067 EXPORT_SYMBOL(flush_scheduled_work); 3068 3069 /** 3070 * execute_in_process_context - reliably execute the routine with user context 3071 * @fn: the function to execute 3072 * @ew: guaranteed storage for the execute work structure (must 3073 * be available when the work executes) 3074 * 3075 * Executes the function immediately if process context is available, 3076 * otherwise schedules the function for delayed execution. 3077 * 3078 * Return: 0 - function was executed 3079 * 1 - function was scheduled for execution 3080 */ 3081 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3082 { 3083 if (!in_interrupt()) { 3084 fn(&ew->work); 3085 return 0; 3086 } 3087 3088 INIT_WORK(&ew->work, fn); 3089 schedule_work(&ew->work); 3090 3091 return 1; 3092 } 3093 EXPORT_SYMBOL_GPL(execute_in_process_context); 3094 3095 #ifdef CONFIG_SYSFS 3096 /* 3097 * Workqueues with WQ_SYSFS flag set is visible to userland via 3098 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 3099 * following attributes. 3100 * 3101 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 3102 * max_active RW int : maximum number of in-flight work items 3103 * 3104 * Unbound workqueues have the following extra attributes. 3105 * 3106 * id RO int : the associated pool ID 3107 * nice RW int : nice value of the workers 3108 * cpumask RW mask : bitmask of allowed CPUs for the workers 3109 */ 3110 struct wq_device { 3111 struct workqueue_struct *wq; 3112 struct device dev; 3113 }; 3114 3115 static struct workqueue_struct *dev_to_wq(struct device *dev) 3116 { 3117 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 3118 3119 return wq_dev->wq; 3120 } 3121 3122 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 3123 char *buf) 3124 { 3125 struct workqueue_struct *wq = dev_to_wq(dev); 3126 3127 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 3128 } 3129 static DEVICE_ATTR_RO(per_cpu); 3130 3131 static ssize_t max_active_show(struct device *dev, 3132 struct device_attribute *attr, char *buf) 3133 { 3134 struct workqueue_struct *wq = dev_to_wq(dev); 3135 3136 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 3137 } 3138 3139 static ssize_t max_active_store(struct device *dev, 3140 struct device_attribute *attr, const char *buf, 3141 size_t count) 3142 { 3143 struct workqueue_struct *wq = dev_to_wq(dev); 3144 int val; 3145 3146 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 3147 return -EINVAL; 3148 3149 workqueue_set_max_active(wq, val); 3150 return count; 3151 } 3152 static DEVICE_ATTR_RW(max_active); 3153 3154 static struct attribute *wq_sysfs_attrs[] = { 3155 &dev_attr_per_cpu.attr, 3156 &dev_attr_max_active.attr, 3157 NULL, 3158 }; 3159 ATTRIBUTE_GROUPS(wq_sysfs); 3160 3161 static ssize_t wq_pool_ids_show(struct device *dev, 3162 struct device_attribute *attr, char *buf) 3163 { 3164 struct workqueue_struct *wq = dev_to_wq(dev); 3165 const char *delim = ""; 3166 int node, written = 0; 3167 3168 rcu_read_lock_sched(); 3169 for_each_node(node) { 3170 written += scnprintf(buf + written, PAGE_SIZE - written, 3171 "%s%d:%d", delim, node, 3172 unbound_pwq_by_node(wq, node)->pool->id); 3173 delim = " "; 3174 } 3175 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 3176 rcu_read_unlock_sched(); 3177 3178 return written; 3179 } 3180 3181 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 3182 char *buf) 3183 { 3184 struct workqueue_struct *wq = dev_to_wq(dev); 3185 int written; 3186 3187 mutex_lock(&wq->mutex); 3188 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 3189 mutex_unlock(&wq->mutex); 3190 3191 return written; 3192 } 3193 3194 /* prepare workqueue_attrs for sysfs store operations */ 3195 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 3196 { 3197 struct workqueue_attrs *attrs; 3198 3199 attrs = alloc_workqueue_attrs(GFP_KERNEL); 3200 if (!attrs) 3201 return NULL; 3202 3203 mutex_lock(&wq->mutex); 3204 copy_workqueue_attrs(attrs, wq->unbound_attrs); 3205 mutex_unlock(&wq->mutex); 3206 return attrs; 3207 } 3208 3209 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 3210 const char *buf, size_t count) 3211 { 3212 struct workqueue_struct *wq = dev_to_wq(dev); 3213 struct workqueue_attrs *attrs; 3214 int ret; 3215 3216 attrs = wq_sysfs_prep_attrs(wq); 3217 if (!attrs) 3218 return -ENOMEM; 3219 3220 if (sscanf(buf, "%d", &attrs->nice) == 1 && 3221 attrs->nice >= -20 && attrs->nice <= 19) 3222 ret = apply_workqueue_attrs(wq, attrs); 3223 else 3224 ret = -EINVAL; 3225 3226 free_workqueue_attrs(attrs); 3227 return ret ?: count; 3228 } 3229 3230 static ssize_t wq_cpumask_show(struct device *dev, 3231 struct device_attribute *attr, char *buf) 3232 { 3233 struct workqueue_struct *wq = dev_to_wq(dev); 3234 int written; 3235 3236 mutex_lock(&wq->mutex); 3237 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask); 3238 mutex_unlock(&wq->mutex); 3239 3240 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 3241 return written; 3242 } 3243 3244 static ssize_t wq_cpumask_store(struct device *dev, 3245 struct device_attribute *attr, 3246 const char *buf, size_t count) 3247 { 3248 struct workqueue_struct *wq = dev_to_wq(dev); 3249 struct workqueue_attrs *attrs; 3250 int ret; 3251 3252 attrs = wq_sysfs_prep_attrs(wq); 3253 if (!attrs) 3254 return -ENOMEM; 3255 3256 ret = cpumask_parse(buf, attrs->cpumask); 3257 if (!ret) 3258 ret = apply_workqueue_attrs(wq, attrs); 3259 3260 free_workqueue_attrs(attrs); 3261 return ret ?: count; 3262 } 3263 3264 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 3265 char *buf) 3266 { 3267 struct workqueue_struct *wq = dev_to_wq(dev); 3268 int written; 3269 3270 mutex_lock(&wq->mutex); 3271 written = scnprintf(buf, PAGE_SIZE, "%d\n", 3272 !wq->unbound_attrs->no_numa); 3273 mutex_unlock(&wq->mutex); 3274 3275 return written; 3276 } 3277 3278 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 3279 const char *buf, size_t count) 3280 { 3281 struct workqueue_struct *wq = dev_to_wq(dev); 3282 struct workqueue_attrs *attrs; 3283 int v, ret; 3284 3285 attrs = wq_sysfs_prep_attrs(wq); 3286 if (!attrs) 3287 return -ENOMEM; 3288 3289 ret = -EINVAL; 3290 if (sscanf(buf, "%d", &v) == 1) { 3291 attrs->no_numa = !v; 3292 ret = apply_workqueue_attrs(wq, attrs); 3293 } 3294 3295 free_workqueue_attrs(attrs); 3296 return ret ?: count; 3297 } 3298 3299 static struct device_attribute wq_sysfs_unbound_attrs[] = { 3300 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 3301 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 3302 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 3303 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 3304 __ATTR_NULL, 3305 }; 3306 3307 static struct bus_type wq_subsys = { 3308 .name = "workqueue", 3309 .dev_groups = wq_sysfs_groups, 3310 }; 3311 3312 static int __init wq_sysfs_init(void) 3313 { 3314 return subsys_virtual_register(&wq_subsys, NULL); 3315 } 3316 core_initcall(wq_sysfs_init); 3317 3318 static void wq_device_release(struct device *dev) 3319 { 3320 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 3321 3322 kfree(wq_dev); 3323 } 3324 3325 /** 3326 * workqueue_sysfs_register - make a workqueue visible in sysfs 3327 * @wq: the workqueue to register 3328 * 3329 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 3330 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 3331 * which is the preferred method. 3332 * 3333 * Workqueue user should use this function directly iff it wants to apply 3334 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 3335 * apply_workqueue_attrs() may race against userland updating the 3336 * attributes. 3337 * 3338 * Return: 0 on success, -errno on failure. 3339 */ 3340 int workqueue_sysfs_register(struct workqueue_struct *wq) 3341 { 3342 struct wq_device *wq_dev; 3343 int ret; 3344 3345 /* 3346 * Adjusting max_active or creating new pwqs by applyting 3347 * attributes breaks ordering guarantee. Disallow exposing ordered 3348 * workqueues. 3349 */ 3350 if (WARN_ON(wq->flags & __WQ_ORDERED)) 3351 return -EINVAL; 3352 3353 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 3354 if (!wq_dev) 3355 return -ENOMEM; 3356 3357 wq_dev->wq = wq; 3358 wq_dev->dev.bus = &wq_subsys; 3359 wq_dev->dev.init_name = wq->name; 3360 wq_dev->dev.release = wq_device_release; 3361 3362 /* 3363 * unbound_attrs are created separately. Suppress uevent until 3364 * everything is ready. 3365 */ 3366 dev_set_uevent_suppress(&wq_dev->dev, true); 3367 3368 ret = device_register(&wq_dev->dev); 3369 if (ret) { 3370 kfree(wq_dev); 3371 wq->wq_dev = NULL; 3372 return ret; 3373 } 3374 3375 if (wq->flags & WQ_UNBOUND) { 3376 struct device_attribute *attr; 3377 3378 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 3379 ret = device_create_file(&wq_dev->dev, attr); 3380 if (ret) { 3381 device_unregister(&wq_dev->dev); 3382 wq->wq_dev = NULL; 3383 return ret; 3384 } 3385 } 3386 } 3387 3388 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 3389 return 0; 3390 } 3391 3392 /** 3393 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 3394 * @wq: the workqueue to unregister 3395 * 3396 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 3397 */ 3398 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 3399 { 3400 struct wq_device *wq_dev = wq->wq_dev; 3401 3402 if (!wq->wq_dev) 3403 return; 3404 3405 wq->wq_dev = NULL; 3406 device_unregister(&wq_dev->dev); 3407 } 3408 #else /* CONFIG_SYSFS */ 3409 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 3410 #endif /* CONFIG_SYSFS */ 3411 3412 /** 3413 * free_workqueue_attrs - free a workqueue_attrs 3414 * @attrs: workqueue_attrs to free 3415 * 3416 * Undo alloc_workqueue_attrs(). 3417 */ 3418 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3419 { 3420 if (attrs) { 3421 free_cpumask_var(attrs->cpumask); 3422 kfree(attrs); 3423 } 3424 } 3425 3426 /** 3427 * alloc_workqueue_attrs - allocate a workqueue_attrs 3428 * @gfp_mask: allocation mask to use 3429 * 3430 * Allocate a new workqueue_attrs, initialize with default settings and 3431 * return it. 3432 * 3433 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3434 */ 3435 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask) 3436 { 3437 struct workqueue_attrs *attrs; 3438 3439 attrs = kzalloc(sizeof(*attrs), gfp_mask); 3440 if (!attrs) 3441 goto fail; 3442 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask)) 3443 goto fail; 3444 3445 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3446 return attrs; 3447 fail: 3448 free_workqueue_attrs(attrs); 3449 return NULL; 3450 } 3451 3452 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3453 const struct workqueue_attrs *from) 3454 { 3455 to->nice = from->nice; 3456 cpumask_copy(to->cpumask, from->cpumask); 3457 /* 3458 * Unlike hash and equality test, this function doesn't ignore 3459 * ->no_numa as it is used for both pool and wq attrs. Instead, 3460 * get_unbound_pool() explicitly clears ->no_numa after copying. 3461 */ 3462 to->no_numa = from->no_numa; 3463 } 3464 3465 /* hash value of the content of @attr */ 3466 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3467 { 3468 u32 hash = 0; 3469 3470 hash = jhash_1word(attrs->nice, hash); 3471 hash = jhash(cpumask_bits(attrs->cpumask), 3472 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3473 return hash; 3474 } 3475 3476 /* content equality test */ 3477 static bool wqattrs_equal(const struct workqueue_attrs *a, 3478 const struct workqueue_attrs *b) 3479 { 3480 if (a->nice != b->nice) 3481 return false; 3482 if (!cpumask_equal(a->cpumask, b->cpumask)) 3483 return false; 3484 return true; 3485 } 3486 3487 /** 3488 * init_worker_pool - initialize a newly zalloc'd worker_pool 3489 * @pool: worker_pool to initialize 3490 * 3491 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs. 3492 * 3493 * Return: 0 on success, -errno on failure. Even on failure, all fields 3494 * inside @pool proper are initialized and put_unbound_pool() can be called 3495 * on @pool safely to release it. 3496 */ 3497 static int init_worker_pool(struct worker_pool *pool) 3498 { 3499 spin_lock_init(&pool->lock); 3500 pool->id = -1; 3501 pool->cpu = -1; 3502 pool->node = NUMA_NO_NODE; 3503 pool->flags |= POOL_DISASSOCIATED; 3504 INIT_LIST_HEAD(&pool->worklist); 3505 INIT_LIST_HEAD(&pool->idle_list); 3506 hash_init(pool->busy_hash); 3507 3508 init_timer_deferrable(&pool->idle_timer); 3509 pool->idle_timer.function = idle_worker_timeout; 3510 pool->idle_timer.data = (unsigned long)pool; 3511 3512 setup_timer(&pool->mayday_timer, pool_mayday_timeout, 3513 (unsigned long)pool); 3514 3515 mutex_init(&pool->manager_arb); 3516 mutex_init(&pool->manager_mutex); 3517 idr_init(&pool->worker_idr); 3518 3519 INIT_HLIST_NODE(&pool->hash_node); 3520 pool->refcnt = 1; 3521 3522 /* shouldn't fail above this point */ 3523 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL); 3524 if (!pool->attrs) 3525 return -ENOMEM; 3526 return 0; 3527 } 3528 3529 static void rcu_free_pool(struct rcu_head *rcu) 3530 { 3531 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3532 3533 idr_destroy(&pool->worker_idr); 3534 free_workqueue_attrs(pool->attrs); 3535 kfree(pool); 3536 } 3537 3538 /** 3539 * put_unbound_pool - put a worker_pool 3540 * @pool: worker_pool to put 3541 * 3542 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU 3543 * safe manner. get_unbound_pool() calls this function on its failure path 3544 * and this function should be able to release pools which went through, 3545 * successfully or not, init_worker_pool(). 3546 * 3547 * Should be called with wq_pool_mutex held. 3548 */ 3549 static void put_unbound_pool(struct worker_pool *pool) 3550 { 3551 struct worker *worker; 3552 3553 lockdep_assert_held(&wq_pool_mutex); 3554 3555 if (--pool->refcnt) 3556 return; 3557 3558 /* sanity checks */ 3559 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) || 3560 WARN_ON(!list_empty(&pool->worklist))) 3561 return; 3562 3563 /* release id and unhash */ 3564 if (pool->id >= 0) 3565 idr_remove(&worker_pool_idr, pool->id); 3566 hash_del(&pool->hash_node); 3567 3568 /* 3569 * Become the manager and destroy all workers. Grabbing 3570 * manager_arb prevents @pool's workers from blocking on 3571 * manager_mutex. 3572 */ 3573 mutex_lock(&pool->manager_arb); 3574 mutex_lock(&pool->manager_mutex); 3575 spin_lock_irq(&pool->lock); 3576 3577 while ((worker = first_worker(pool))) 3578 destroy_worker(worker); 3579 WARN_ON(pool->nr_workers || pool->nr_idle); 3580 3581 spin_unlock_irq(&pool->lock); 3582 mutex_unlock(&pool->manager_mutex); 3583 mutex_unlock(&pool->manager_arb); 3584 3585 /* shut down the timers */ 3586 del_timer_sync(&pool->idle_timer); 3587 del_timer_sync(&pool->mayday_timer); 3588 3589 /* sched-RCU protected to allow dereferences from get_work_pool() */ 3590 call_rcu_sched(&pool->rcu, rcu_free_pool); 3591 } 3592 3593 /** 3594 * get_unbound_pool - get a worker_pool with the specified attributes 3595 * @attrs: the attributes of the worker_pool to get 3596 * 3597 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3598 * reference count and return it. If there already is a matching 3599 * worker_pool, it will be used; otherwise, this function attempts to 3600 * create a new one. 3601 * 3602 * Should be called with wq_pool_mutex held. 3603 * 3604 * Return: On success, a worker_pool with the same attributes as @attrs. 3605 * On failure, %NULL. 3606 */ 3607 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3608 { 3609 u32 hash = wqattrs_hash(attrs); 3610 struct worker_pool *pool; 3611 int node; 3612 3613 lockdep_assert_held(&wq_pool_mutex); 3614 3615 /* do we already have a matching pool? */ 3616 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3617 if (wqattrs_equal(pool->attrs, attrs)) { 3618 pool->refcnt++; 3619 goto out_unlock; 3620 } 3621 } 3622 3623 /* nope, create a new one */ 3624 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 3625 if (!pool || init_worker_pool(pool) < 0) 3626 goto fail; 3627 3628 if (workqueue_freezing) 3629 pool->flags |= POOL_FREEZING; 3630 3631 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3632 copy_workqueue_attrs(pool->attrs, attrs); 3633 3634 /* 3635 * no_numa isn't a worker_pool attribute, always clear it. See 3636 * 'struct workqueue_attrs' comments for detail. 3637 */ 3638 pool->attrs->no_numa = false; 3639 3640 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3641 if (wq_numa_enabled) { 3642 for_each_node(node) { 3643 if (cpumask_subset(pool->attrs->cpumask, 3644 wq_numa_possible_cpumask[node])) { 3645 pool->node = node; 3646 break; 3647 } 3648 } 3649 } 3650 3651 if (worker_pool_assign_id(pool) < 0) 3652 goto fail; 3653 3654 /* create and start the initial worker */ 3655 if (create_and_start_worker(pool) < 0) 3656 goto fail; 3657 3658 /* install */ 3659 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3660 out_unlock: 3661 return pool; 3662 fail: 3663 if (pool) 3664 put_unbound_pool(pool); 3665 return NULL; 3666 } 3667 3668 static void rcu_free_pwq(struct rcu_head *rcu) 3669 { 3670 kmem_cache_free(pwq_cache, 3671 container_of(rcu, struct pool_workqueue, rcu)); 3672 } 3673 3674 /* 3675 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3676 * and needs to be destroyed. 3677 */ 3678 static void pwq_unbound_release_workfn(struct work_struct *work) 3679 { 3680 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3681 unbound_release_work); 3682 struct workqueue_struct *wq = pwq->wq; 3683 struct worker_pool *pool = pwq->pool; 3684 bool is_last; 3685 3686 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3687 return; 3688 3689 /* 3690 * Unlink @pwq. Synchronization against wq->mutex isn't strictly 3691 * necessary on release but do it anyway. It's easier to verify 3692 * and consistent with the linking path. 3693 */ 3694 mutex_lock(&wq->mutex); 3695 list_del_rcu(&pwq->pwqs_node); 3696 is_last = list_empty(&wq->pwqs); 3697 mutex_unlock(&wq->mutex); 3698 3699 mutex_lock(&wq_pool_mutex); 3700 put_unbound_pool(pool); 3701 mutex_unlock(&wq_pool_mutex); 3702 3703 call_rcu_sched(&pwq->rcu, rcu_free_pwq); 3704 3705 /* 3706 * If we're the last pwq going away, @wq is already dead and no one 3707 * is gonna access it anymore. Free it. 3708 */ 3709 if (is_last) { 3710 free_workqueue_attrs(wq->unbound_attrs); 3711 kfree(wq); 3712 } 3713 } 3714 3715 /** 3716 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3717 * @pwq: target pool_workqueue 3718 * 3719 * If @pwq isn't freezing, set @pwq->max_active to the associated 3720 * workqueue's saved_max_active and activate delayed work items 3721 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3722 */ 3723 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3724 { 3725 struct workqueue_struct *wq = pwq->wq; 3726 bool freezable = wq->flags & WQ_FREEZABLE; 3727 3728 /* for @wq->saved_max_active */ 3729 lockdep_assert_held(&wq->mutex); 3730 3731 /* fast exit for non-freezable wqs */ 3732 if (!freezable && pwq->max_active == wq->saved_max_active) 3733 return; 3734 3735 spin_lock_irq(&pwq->pool->lock); 3736 3737 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) { 3738 pwq->max_active = wq->saved_max_active; 3739 3740 while (!list_empty(&pwq->delayed_works) && 3741 pwq->nr_active < pwq->max_active) 3742 pwq_activate_first_delayed(pwq); 3743 3744 /* 3745 * Need to kick a worker after thawed or an unbound wq's 3746 * max_active is bumped. It's a slow path. Do it always. 3747 */ 3748 wake_up_worker(pwq->pool); 3749 } else { 3750 pwq->max_active = 0; 3751 } 3752 3753 spin_unlock_irq(&pwq->pool->lock); 3754 } 3755 3756 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3757 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3758 struct worker_pool *pool) 3759 { 3760 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3761 3762 memset(pwq, 0, sizeof(*pwq)); 3763 3764 pwq->pool = pool; 3765 pwq->wq = wq; 3766 pwq->flush_color = -1; 3767 pwq->refcnt = 1; 3768 INIT_LIST_HEAD(&pwq->delayed_works); 3769 INIT_LIST_HEAD(&pwq->pwqs_node); 3770 INIT_LIST_HEAD(&pwq->mayday_node); 3771 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3772 } 3773 3774 /* sync @pwq with the current state of its associated wq and link it */ 3775 static void link_pwq(struct pool_workqueue *pwq) 3776 { 3777 struct workqueue_struct *wq = pwq->wq; 3778 3779 lockdep_assert_held(&wq->mutex); 3780 3781 /* may be called multiple times, ignore if already linked */ 3782 if (!list_empty(&pwq->pwqs_node)) 3783 return; 3784 3785 /* 3786 * Set the matching work_color. This is synchronized with 3787 * wq->mutex to avoid confusing flush_workqueue(). 3788 */ 3789 pwq->work_color = wq->work_color; 3790 3791 /* sync max_active to the current setting */ 3792 pwq_adjust_max_active(pwq); 3793 3794 /* link in @pwq */ 3795 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3796 } 3797 3798 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3799 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3800 const struct workqueue_attrs *attrs) 3801 { 3802 struct worker_pool *pool; 3803 struct pool_workqueue *pwq; 3804 3805 lockdep_assert_held(&wq_pool_mutex); 3806 3807 pool = get_unbound_pool(attrs); 3808 if (!pool) 3809 return NULL; 3810 3811 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3812 if (!pwq) { 3813 put_unbound_pool(pool); 3814 return NULL; 3815 } 3816 3817 init_pwq(pwq, wq, pool); 3818 return pwq; 3819 } 3820 3821 /* undo alloc_unbound_pwq(), used only in the error path */ 3822 static void free_unbound_pwq(struct pool_workqueue *pwq) 3823 { 3824 lockdep_assert_held(&wq_pool_mutex); 3825 3826 if (pwq) { 3827 put_unbound_pool(pwq->pool); 3828 kmem_cache_free(pwq_cache, pwq); 3829 } 3830 } 3831 3832 /** 3833 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node 3834 * @attrs: the wq_attrs of interest 3835 * @node: the target NUMA node 3836 * @cpu_going_down: if >= 0, the CPU to consider as offline 3837 * @cpumask: outarg, the resulting cpumask 3838 * 3839 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3840 * @cpu_going_down is >= 0, that cpu is considered offline during 3841 * calculation. The result is stored in @cpumask. 3842 * 3843 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3844 * enabled and @node has online CPUs requested by @attrs, the returned 3845 * cpumask is the intersection of the possible CPUs of @node and 3846 * @attrs->cpumask. 3847 * 3848 * The caller is responsible for ensuring that the cpumask of @node stays 3849 * stable. 3850 * 3851 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3852 * %false if equal. 3853 */ 3854 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3855 int cpu_going_down, cpumask_t *cpumask) 3856 { 3857 if (!wq_numa_enabled || attrs->no_numa) 3858 goto use_dfl; 3859 3860 /* does @node have any online CPUs @attrs wants? */ 3861 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3862 if (cpu_going_down >= 0) 3863 cpumask_clear_cpu(cpu_going_down, cpumask); 3864 3865 if (cpumask_empty(cpumask)) 3866 goto use_dfl; 3867 3868 /* yeap, return possible CPUs in @node that @attrs wants */ 3869 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3870 return !cpumask_equal(cpumask, attrs->cpumask); 3871 3872 use_dfl: 3873 cpumask_copy(cpumask, attrs->cpumask); 3874 return false; 3875 } 3876 3877 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3878 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3879 int node, 3880 struct pool_workqueue *pwq) 3881 { 3882 struct pool_workqueue *old_pwq; 3883 3884 lockdep_assert_held(&wq->mutex); 3885 3886 /* link_pwq() can handle duplicate calls */ 3887 link_pwq(pwq); 3888 3889 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3890 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3891 return old_pwq; 3892 } 3893 3894 /** 3895 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 3896 * @wq: the target workqueue 3897 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 3898 * 3899 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 3900 * machines, this function maps a separate pwq to each NUMA node with 3901 * possibles CPUs in @attrs->cpumask so that work items are affine to the 3902 * NUMA node it was issued on. Older pwqs are released as in-flight work 3903 * items finish. Note that a work item which repeatedly requeues itself 3904 * back-to-back will stay on its current pwq. 3905 * 3906 * Performs GFP_KERNEL allocations. 3907 * 3908 * Return: 0 on success and -errno on failure. 3909 */ 3910 int apply_workqueue_attrs(struct workqueue_struct *wq, 3911 const struct workqueue_attrs *attrs) 3912 { 3913 struct workqueue_attrs *new_attrs, *tmp_attrs; 3914 struct pool_workqueue **pwq_tbl, *dfl_pwq; 3915 int node, ret; 3916 3917 /* only unbound workqueues can change attributes */ 3918 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 3919 return -EINVAL; 3920 3921 /* creating multiple pwqs breaks ordering guarantee */ 3922 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))) 3923 return -EINVAL; 3924 3925 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL); 3926 new_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3927 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3928 if (!pwq_tbl || !new_attrs || !tmp_attrs) 3929 goto enomem; 3930 3931 /* make a copy of @attrs and sanitize it */ 3932 copy_workqueue_attrs(new_attrs, attrs); 3933 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3934 3935 /* 3936 * We may create multiple pwqs with differing cpumasks. Make a 3937 * copy of @new_attrs which will be modified and used to obtain 3938 * pools. 3939 */ 3940 copy_workqueue_attrs(tmp_attrs, new_attrs); 3941 3942 /* 3943 * CPUs should stay stable across pwq creations and installations. 3944 * Pin CPUs, determine the target cpumask for each node and create 3945 * pwqs accordingly. 3946 */ 3947 get_online_cpus(); 3948 3949 mutex_lock(&wq_pool_mutex); 3950 3951 /* 3952 * If something goes wrong during CPU up/down, we'll fall back to 3953 * the default pwq covering whole @attrs->cpumask. Always create 3954 * it even if we don't use it immediately. 3955 */ 3956 dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3957 if (!dfl_pwq) 3958 goto enomem_pwq; 3959 3960 for_each_node(node) { 3961 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) { 3962 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3963 if (!pwq_tbl[node]) 3964 goto enomem_pwq; 3965 } else { 3966 dfl_pwq->refcnt++; 3967 pwq_tbl[node] = dfl_pwq; 3968 } 3969 } 3970 3971 mutex_unlock(&wq_pool_mutex); 3972 3973 /* all pwqs have been created successfully, let's install'em */ 3974 mutex_lock(&wq->mutex); 3975 3976 copy_workqueue_attrs(wq->unbound_attrs, new_attrs); 3977 3978 /* save the previous pwq and install the new one */ 3979 for_each_node(node) 3980 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]); 3981 3982 /* @dfl_pwq might not have been used, ensure it's linked */ 3983 link_pwq(dfl_pwq); 3984 swap(wq->dfl_pwq, dfl_pwq); 3985 3986 mutex_unlock(&wq->mutex); 3987 3988 /* put the old pwqs */ 3989 for_each_node(node) 3990 put_pwq_unlocked(pwq_tbl[node]); 3991 put_pwq_unlocked(dfl_pwq); 3992 3993 put_online_cpus(); 3994 ret = 0; 3995 /* fall through */ 3996 out_free: 3997 free_workqueue_attrs(tmp_attrs); 3998 free_workqueue_attrs(new_attrs); 3999 kfree(pwq_tbl); 4000 return ret; 4001 4002 enomem_pwq: 4003 free_unbound_pwq(dfl_pwq); 4004 for_each_node(node) 4005 if (pwq_tbl && pwq_tbl[node] != dfl_pwq) 4006 free_unbound_pwq(pwq_tbl[node]); 4007 mutex_unlock(&wq_pool_mutex); 4008 put_online_cpus(); 4009 enomem: 4010 ret = -ENOMEM; 4011 goto out_free; 4012 } 4013 4014 /** 4015 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 4016 * @wq: the target workqueue 4017 * @cpu: the CPU coming up or going down 4018 * @online: whether @cpu is coming up or going down 4019 * 4020 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 4021 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 4022 * @wq accordingly. 4023 * 4024 * If NUMA affinity can't be adjusted due to memory allocation failure, it 4025 * falls back to @wq->dfl_pwq which may not be optimal but is always 4026 * correct. 4027 * 4028 * Note that when the last allowed CPU of a NUMA node goes offline for a 4029 * workqueue with a cpumask spanning multiple nodes, the workers which were 4030 * already executing the work items for the workqueue will lose their CPU 4031 * affinity and may execute on any CPU. This is similar to how per-cpu 4032 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 4033 * affinity, it's the user's responsibility to flush the work item from 4034 * CPU_DOWN_PREPARE. 4035 */ 4036 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 4037 bool online) 4038 { 4039 int node = cpu_to_node(cpu); 4040 int cpu_off = online ? -1 : cpu; 4041 struct pool_workqueue *old_pwq = NULL, *pwq; 4042 struct workqueue_attrs *target_attrs; 4043 cpumask_t *cpumask; 4044 4045 lockdep_assert_held(&wq_pool_mutex); 4046 4047 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND)) 4048 return; 4049 4050 /* 4051 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 4052 * Let's use a preallocated one. The following buf is protected by 4053 * CPU hotplug exclusion. 4054 */ 4055 target_attrs = wq_update_unbound_numa_attrs_buf; 4056 cpumask = target_attrs->cpumask; 4057 4058 mutex_lock(&wq->mutex); 4059 if (wq->unbound_attrs->no_numa) 4060 goto out_unlock; 4061 4062 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 4063 pwq = unbound_pwq_by_node(wq, node); 4064 4065 /* 4066 * Let's determine what needs to be done. If the target cpumask is 4067 * different from wq's, we need to compare it to @pwq's and create 4068 * a new one if they don't match. If the target cpumask equals 4069 * wq's, the default pwq should be used. If @pwq is already the 4070 * default one, nothing to do; otherwise, install the default one. 4071 */ 4072 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) { 4073 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 4074 goto out_unlock; 4075 } else { 4076 if (pwq == wq->dfl_pwq) 4077 goto out_unlock; 4078 else 4079 goto use_dfl_pwq; 4080 } 4081 4082 mutex_unlock(&wq->mutex); 4083 4084 /* create a new pwq */ 4085 pwq = alloc_unbound_pwq(wq, target_attrs); 4086 if (!pwq) { 4087 pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 4088 wq->name); 4089 goto out_unlock; 4090 } 4091 4092 /* 4093 * Install the new pwq. As this function is called only from CPU 4094 * hotplug callbacks and applying a new attrs is wrapped with 4095 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed 4096 * inbetween. 4097 */ 4098 mutex_lock(&wq->mutex); 4099 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 4100 goto out_unlock; 4101 4102 use_dfl_pwq: 4103 spin_lock_irq(&wq->dfl_pwq->pool->lock); 4104 get_pwq(wq->dfl_pwq); 4105 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 4106 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 4107 out_unlock: 4108 mutex_unlock(&wq->mutex); 4109 put_pwq_unlocked(old_pwq); 4110 } 4111 4112 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4113 { 4114 bool highpri = wq->flags & WQ_HIGHPRI; 4115 int cpu, ret; 4116 4117 if (!(wq->flags & WQ_UNBOUND)) { 4118 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 4119 if (!wq->cpu_pwqs) 4120 return -ENOMEM; 4121 4122 for_each_possible_cpu(cpu) { 4123 struct pool_workqueue *pwq = 4124 per_cpu_ptr(wq->cpu_pwqs, cpu); 4125 struct worker_pool *cpu_pools = 4126 per_cpu(cpu_worker_pools, cpu); 4127 4128 init_pwq(pwq, wq, &cpu_pools[highpri]); 4129 4130 mutex_lock(&wq->mutex); 4131 link_pwq(pwq); 4132 mutex_unlock(&wq->mutex); 4133 } 4134 return 0; 4135 } else if (wq->flags & __WQ_ORDERED) { 4136 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 4137 /* there should only be single pwq for ordering guarantee */ 4138 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 4139 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 4140 "ordering guarantee broken for workqueue %s\n", wq->name); 4141 return ret; 4142 } else { 4143 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4144 } 4145 } 4146 4147 static int wq_clamp_max_active(int max_active, unsigned int flags, 4148 const char *name) 4149 { 4150 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 4151 4152 if (max_active < 1 || max_active > lim) 4153 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4154 max_active, name, 1, lim); 4155 4156 return clamp_val(max_active, 1, lim); 4157 } 4158 4159 struct workqueue_struct *__alloc_workqueue_key(const char *fmt, 4160 unsigned int flags, 4161 int max_active, 4162 struct lock_class_key *key, 4163 const char *lock_name, ...) 4164 { 4165 size_t tbl_size = 0; 4166 va_list args; 4167 struct workqueue_struct *wq; 4168 struct pool_workqueue *pwq; 4169 4170 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4171 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4172 flags |= WQ_UNBOUND; 4173 4174 /* allocate wq and format name */ 4175 if (flags & WQ_UNBOUND) 4176 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]); 4177 4178 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4179 if (!wq) 4180 return NULL; 4181 4182 if (flags & WQ_UNBOUND) { 4183 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL); 4184 if (!wq->unbound_attrs) 4185 goto err_free_wq; 4186 } 4187 4188 va_start(args, lock_name); 4189 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4190 va_end(args); 4191 4192 max_active = max_active ?: WQ_DFL_ACTIVE; 4193 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4194 4195 /* init wq */ 4196 wq->flags = flags; 4197 wq->saved_max_active = max_active; 4198 mutex_init(&wq->mutex); 4199 atomic_set(&wq->nr_pwqs_to_flush, 0); 4200 INIT_LIST_HEAD(&wq->pwqs); 4201 INIT_LIST_HEAD(&wq->flusher_queue); 4202 INIT_LIST_HEAD(&wq->flusher_overflow); 4203 INIT_LIST_HEAD(&wq->maydays); 4204 4205 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 4206 INIT_LIST_HEAD(&wq->list); 4207 4208 if (alloc_and_link_pwqs(wq) < 0) 4209 goto err_free_wq; 4210 4211 /* 4212 * Workqueues which may be used during memory reclaim should 4213 * have a rescuer to guarantee forward progress. 4214 */ 4215 if (flags & WQ_MEM_RECLAIM) { 4216 struct worker *rescuer; 4217 4218 rescuer = alloc_worker(); 4219 if (!rescuer) 4220 goto err_destroy; 4221 4222 rescuer->rescue_wq = wq; 4223 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", 4224 wq->name); 4225 if (IS_ERR(rescuer->task)) { 4226 kfree(rescuer); 4227 goto err_destroy; 4228 } 4229 4230 wq->rescuer = rescuer; 4231 rescuer->task->flags |= PF_NO_SETAFFINITY; 4232 wake_up_process(rescuer->task); 4233 } 4234 4235 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4236 goto err_destroy; 4237 4238 /* 4239 * wq_pool_mutex protects global freeze state and workqueues list. 4240 * Grab it, adjust max_active and add the new @wq to workqueues 4241 * list. 4242 */ 4243 mutex_lock(&wq_pool_mutex); 4244 4245 mutex_lock(&wq->mutex); 4246 for_each_pwq(pwq, wq) 4247 pwq_adjust_max_active(pwq); 4248 mutex_unlock(&wq->mutex); 4249 4250 list_add(&wq->list, &workqueues); 4251 4252 mutex_unlock(&wq_pool_mutex); 4253 4254 return wq; 4255 4256 err_free_wq: 4257 free_workqueue_attrs(wq->unbound_attrs); 4258 kfree(wq); 4259 return NULL; 4260 err_destroy: 4261 destroy_workqueue(wq); 4262 return NULL; 4263 } 4264 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 4265 4266 /** 4267 * destroy_workqueue - safely terminate a workqueue 4268 * @wq: target workqueue 4269 * 4270 * Safely destroy a workqueue. All work currently pending will be done first. 4271 */ 4272 void destroy_workqueue(struct workqueue_struct *wq) 4273 { 4274 struct pool_workqueue *pwq; 4275 int node; 4276 4277 /* drain it before proceeding with destruction */ 4278 drain_workqueue(wq); 4279 4280 /* sanity checks */ 4281 mutex_lock(&wq->mutex); 4282 for_each_pwq(pwq, wq) { 4283 int i; 4284 4285 for (i = 0; i < WORK_NR_COLORS; i++) { 4286 if (WARN_ON(pwq->nr_in_flight[i])) { 4287 mutex_unlock(&wq->mutex); 4288 return; 4289 } 4290 } 4291 4292 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) || 4293 WARN_ON(pwq->nr_active) || 4294 WARN_ON(!list_empty(&pwq->delayed_works))) { 4295 mutex_unlock(&wq->mutex); 4296 return; 4297 } 4298 } 4299 mutex_unlock(&wq->mutex); 4300 4301 /* 4302 * wq list is used to freeze wq, remove from list after 4303 * flushing is complete in case freeze races us. 4304 */ 4305 mutex_lock(&wq_pool_mutex); 4306 list_del_init(&wq->list); 4307 mutex_unlock(&wq_pool_mutex); 4308 4309 workqueue_sysfs_unregister(wq); 4310 4311 if (wq->rescuer) { 4312 kthread_stop(wq->rescuer->task); 4313 kfree(wq->rescuer); 4314 wq->rescuer = NULL; 4315 } 4316 4317 if (!(wq->flags & WQ_UNBOUND)) { 4318 /* 4319 * The base ref is never dropped on per-cpu pwqs. Directly 4320 * free the pwqs and wq. 4321 */ 4322 free_percpu(wq->cpu_pwqs); 4323 kfree(wq); 4324 } else { 4325 /* 4326 * We're the sole accessor of @wq at this point. Directly 4327 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4328 * @wq will be freed when the last pwq is released. 4329 */ 4330 for_each_node(node) { 4331 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4332 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4333 put_pwq_unlocked(pwq); 4334 } 4335 4336 /* 4337 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4338 * put. Don't access it afterwards. 4339 */ 4340 pwq = wq->dfl_pwq; 4341 wq->dfl_pwq = NULL; 4342 put_pwq_unlocked(pwq); 4343 } 4344 } 4345 EXPORT_SYMBOL_GPL(destroy_workqueue); 4346 4347 /** 4348 * workqueue_set_max_active - adjust max_active of a workqueue 4349 * @wq: target workqueue 4350 * @max_active: new max_active value. 4351 * 4352 * Set max_active of @wq to @max_active. 4353 * 4354 * CONTEXT: 4355 * Don't call from IRQ context. 4356 */ 4357 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4358 { 4359 struct pool_workqueue *pwq; 4360 4361 /* disallow meddling with max_active for ordered workqueues */ 4362 if (WARN_ON(wq->flags & __WQ_ORDERED)) 4363 return; 4364 4365 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4366 4367 mutex_lock(&wq->mutex); 4368 4369 wq->saved_max_active = max_active; 4370 4371 for_each_pwq(pwq, wq) 4372 pwq_adjust_max_active(pwq); 4373 4374 mutex_unlock(&wq->mutex); 4375 } 4376 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4377 4378 /** 4379 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4380 * 4381 * Determine whether %current is a workqueue rescuer. Can be used from 4382 * work functions to determine whether it's being run off the rescuer task. 4383 * 4384 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4385 */ 4386 bool current_is_workqueue_rescuer(void) 4387 { 4388 struct worker *worker = current_wq_worker(); 4389 4390 return worker && worker->rescue_wq; 4391 } 4392 4393 /** 4394 * workqueue_congested - test whether a workqueue is congested 4395 * @cpu: CPU in question 4396 * @wq: target workqueue 4397 * 4398 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4399 * no synchronization around this function and the test result is 4400 * unreliable and only useful as advisory hints or for debugging. 4401 * 4402 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4403 * Note that both per-cpu and unbound workqueues may be associated with 4404 * multiple pool_workqueues which have separate congested states. A 4405 * workqueue being congested on one CPU doesn't mean the workqueue is also 4406 * contested on other CPUs / NUMA nodes. 4407 * 4408 * Return: 4409 * %true if congested, %false otherwise. 4410 */ 4411 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4412 { 4413 struct pool_workqueue *pwq; 4414 bool ret; 4415 4416 rcu_read_lock_sched(); 4417 4418 if (cpu == WORK_CPU_UNBOUND) 4419 cpu = smp_processor_id(); 4420 4421 if (!(wq->flags & WQ_UNBOUND)) 4422 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4423 else 4424 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4425 4426 ret = !list_empty(&pwq->delayed_works); 4427 rcu_read_unlock_sched(); 4428 4429 return ret; 4430 } 4431 EXPORT_SYMBOL_GPL(workqueue_congested); 4432 4433 /** 4434 * work_busy - test whether a work is currently pending or running 4435 * @work: the work to be tested 4436 * 4437 * Test whether @work is currently pending or running. There is no 4438 * synchronization around this function and the test result is 4439 * unreliable and only useful as advisory hints or for debugging. 4440 * 4441 * Return: 4442 * OR'd bitmask of WORK_BUSY_* bits. 4443 */ 4444 unsigned int work_busy(struct work_struct *work) 4445 { 4446 struct worker_pool *pool; 4447 unsigned long flags; 4448 unsigned int ret = 0; 4449 4450 if (work_pending(work)) 4451 ret |= WORK_BUSY_PENDING; 4452 4453 local_irq_save(flags); 4454 pool = get_work_pool(work); 4455 if (pool) { 4456 spin_lock(&pool->lock); 4457 if (find_worker_executing_work(pool, work)) 4458 ret |= WORK_BUSY_RUNNING; 4459 spin_unlock(&pool->lock); 4460 } 4461 local_irq_restore(flags); 4462 4463 return ret; 4464 } 4465 EXPORT_SYMBOL_GPL(work_busy); 4466 4467 /** 4468 * set_worker_desc - set description for the current work item 4469 * @fmt: printf-style format string 4470 * @...: arguments for the format string 4471 * 4472 * This function can be called by a running work function to describe what 4473 * the work item is about. If the worker task gets dumped, this 4474 * information will be printed out together to help debugging. The 4475 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4476 */ 4477 void set_worker_desc(const char *fmt, ...) 4478 { 4479 struct worker *worker = current_wq_worker(); 4480 va_list args; 4481 4482 if (worker) { 4483 va_start(args, fmt); 4484 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4485 va_end(args); 4486 worker->desc_valid = true; 4487 } 4488 } 4489 4490 /** 4491 * print_worker_info - print out worker information and description 4492 * @log_lvl: the log level to use when printing 4493 * @task: target task 4494 * 4495 * If @task is a worker and currently executing a work item, print out the 4496 * name of the workqueue being serviced and worker description set with 4497 * set_worker_desc() by the currently executing work item. 4498 * 4499 * This function can be safely called on any task as long as the 4500 * task_struct itself is accessible. While safe, this function isn't 4501 * synchronized and may print out mixups or garbages of limited length. 4502 */ 4503 void print_worker_info(const char *log_lvl, struct task_struct *task) 4504 { 4505 work_func_t *fn = NULL; 4506 char name[WQ_NAME_LEN] = { }; 4507 char desc[WORKER_DESC_LEN] = { }; 4508 struct pool_workqueue *pwq = NULL; 4509 struct workqueue_struct *wq = NULL; 4510 bool desc_valid = false; 4511 struct worker *worker; 4512 4513 if (!(task->flags & PF_WQ_WORKER)) 4514 return; 4515 4516 /* 4517 * This function is called without any synchronization and @task 4518 * could be in any state. Be careful with dereferences. 4519 */ 4520 worker = probe_kthread_data(task); 4521 4522 /* 4523 * Carefully copy the associated workqueue's workfn and name. Keep 4524 * the original last '\0' in case the original contains garbage. 4525 */ 4526 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4527 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4528 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4529 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4530 4531 /* copy worker description */ 4532 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid)); 4533 if (desc_valid) 4534 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4535 4536 if (fn || name[0] || desc[0]) { 4537 printk("%sWorkqueue: %s %pf", log_lvl, name, fn); 4538 if (desc[0]) 4539 pr_cont(" (%s)", desc); 4540 pr_cont("\n"); 4541 } 4542 } 4543 4544 /* 4545 * CPU hotplug. 4546 * 4547 * There are two challenges in supporting CPU hotplug. Firstly, there 4548 * are a lot of assumptions on strong associations among work, pwq and 4549 * pool which make migrating pending and scheduled works very 4550 * difficult to implement without impacting hot paths. Secondly, 4551 * worker pools serve mix of short, long and very long running works making 4552 * blocked draining impractical. 4553 * 4554 * This is solved by allowing the pools to be disassociated from the CPU 4555 * running as an unbound one and allowing it to be reattached later if the 4556 * cpu comes back online. 4557 */ 4558 4559 static void wq_unbind_fn(struct work_struct *work) 4560 { 4561 int cpu = smp_processor_id(); 4562 struct worker_pool *pool; 4563 struct worker *worker; 4564 int wi; 4565 4566 for_each_cpu_worker_pool(pool, cpu) { 4567 WARN_ON_ONCE(cpu != smp_processor_id()); 4568 4569 mutex_lock(&pool->manager_mutex); 4570 spin_lock_irq(&pool->lock); 4571 4572 /* 4573 * We've blocked all manager operations. Make all workers 4574 * unbound and set DISASSOCIATED. Before this, all workers 4575 * except for the ones which are still executing works from 4576 * before the last CPU down must be on the cpu. After 4577 * this, they may become diasporas. 4578 */ 4579 for_each_pool_worker(worker, wi, pool) 4580 worker->flags |= WORKER_UNBOUND; 4581 4582 pool->flags |= POOL_DISASSOCIATED; 4583 4584 spin_unlock_irq(&pool->lock); 4585 mutex_unlock(&pool->manager_mutex); 4586 4587 /* 4588 * Call schedule() so that we cross rq->lock and thus can 4589 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4590 * This is necessary as scheduler callbacks may be invoked 4591 * from other cpus. 4592 */ 4593 schedule(); 4594 4595 /* 4596 * Sched callbacks are disabled now. Zap nr_running. 4597 * After this, nr_running stays zero and need_more_worker() 4598 * and keep_working() are always true as long as the 4599 * worklist is not empty. This pool now behaves as an 4600 * unbound (in terms of concurrency management) pool which 4601 * are served by workers tied to the pool. 4602 */ 4603 atomic_set(&pool->nr_running, 0); 4604 4605 /* 4606 * With concurrency management just turned off, a busy 4607 * worker blocking could lead to lengthy stalls. Kick off 4608 * unbound chain execution of currently pending work items. 4609 */ 4610 spin_lock_irq(&pool->lock); 4611 wake_up_worker(pool); 4612 spin_unlock_irq(&pool->lock); 4613 } 4614 } 4615 4616 /** 4617 * rebind_workers - rebind all workers of a pool to the associated CPU 4618 * @pool: pool of interest 4619 * 4620 * @pool->cpu is coming online. Rebind all workers to the CPU. 4621 */ 4622 static void rebind_workers(struct worker_pool *pool) 4623 { 4624 struct worker *worker; 4625 int wi; 4626 4627 lockdep_assert_held(&pool->manager_mutex); 4628 4629 /* 4630 * Restore CPU affinity of all workers. As all idle workers should 4631 * be on the run-queue of the associated CPU before any local 4632 * wake-ups for concurrency management happen, restore CPU affinty 4633 * of all workers first and then clear UNBOUND. As we're called 4634 * from CPU_ONLINE, the following shouldn't fail. 4635 */ 4636 for_each_pool_worker(worker, wi, pool) 4637 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4638 pool->attrs->cpumask) < 0); 4639 4640 spin_lock_irq(&pool->lock); 4641 4642 for_each_pool_worker(worker, wi, pool) { 4643 unsigned int worker_flags = worker->flags; 4644 4645 /* 4646 * A bound idle worker should actually be on the runqueue 4647 * of the associated CPU for local wake-ups targeting it to 4648 * work. Kick all idle workers so that they migrate to the 4649 * associated CPU. Doing this in the same loop as 4650 * replacing UNBOUND with REBOUND is safe as no worker will 4651 * be bound before @pool->lock is released. 4652 */ 4653 if (worker_flags & WORKER_IDLE) 4654 wake_up_process(worker->task); 4655 4656 /* 4657 * We want to clear UNBOUND but can't directly call 4658 * worker_clr_flags() or adjust nr_running. Atomically 4659 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4660 * @worker will clear REBOUND using worker_clr_flags() when 4661 * it initiates the next execution cycle thus restoring 4662 * concurrency management. Note that when or whether 4663 * @worker clears REBOUND doesn't affect correctness. 4664 * 4665 * ACCESS_ONCE() is necessary because @worker->flags may be 4666 * tested without holding any lock in 4667 * wq_worker_waking_up(). Without it, NOT_RUNNING test may 4668 * fail incorrectly leading to premature concurrency 4669 * management operations. 4670 */ 4671 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4672 worker_flags |= WORKER_REBOUND; 4673 worker_flags &= ~WORKER_UNBOUND; 4674 ACCESS_ONCE(worker->flags) = worker_flags; 4675 } 4676 4677 spin_unlock_irq(&pool->lock); 4678 } 4679 4680 /** 4681 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4682 * @pool: unbound pool of interest 4683 * @cpu: the CPU which is coming up 4684 * 4685 * An unbound pool may end up with a cpumask which doesn't have any online 4686 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4687 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4688 * online CPU before, cpus_allowed of all its workers should be restored. 4689 */ 4690 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 4691 { 4692 static cpumask_t cpumask; 4693 struct worker *worker; 4694 int wi; 4695 4696 lockdep_assert_held(&pool->manager_mutex); 4697 4698 /* is @cpu allowed for @pool? */ 4699 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 4700 return; 4701 4702 /* is @cpu the only online CPU? */ 4703 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 4704 if (cpumask_weight(&cpumask) != 1) 4705 return; 4706 4707 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 4708 for_each_pool_worker(worker, wi, pool) 4709 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4710 pool->attrs->cpumask) < 0); 4711 } 4712 4713 /* 4714 * Workqueues should be brought up before normal priority CPU notifiers. 4715 * This will be registered high priority CPU notifier. 4716 */ 4717 static int workqueue_cpu_up_callback(struct notifier_block *nfb, 4718 unsigned long action, 4719 void *hcpu) 4720 { 4721 int cpu = (unsigned long)hcpu; 4722 struct worker_pool *pool; 4723 struct workqueue_struct *wq; 4724 int pi; 4725 4726 switch (action & ~CPU_TASKS_FROZEN) { 4727 case CPU_UP_PREPARE: 4728 for_each_cpu_worker_pool(pool, cpu) { 4729 if (pool->nr_workers) 4730 continue; 4731 if (create_and_start_worker(pool) < 0) 4732 return NOTIFY_BAD; 4733 } 4734 break; 4735 4736 case CPU_DOWN_FAILED: 4737 case CPU_ONLINE: 4738 mutex_lock(&wq_pool_mutex); 4739 4740 for_each_pool(pool, pi) { 4741 mutex_lock(&pool->manager_mutex); 4742 4743 if (pool->cpu == cpu) { 4744 spin_lock_irq(&pool->lock); 4745 pool->flags &= ~POOL_DISASSOCIATED; 4746 spin_unlock_irq(&pool->lock); 4747 4748 rebind_workers(pool); 4749 } else if (pool->cpu < 0) { 4750 restore_unbound_workers_cpumask(pool, cpu); 4751 } 4752 4753 mutex_unlock(&pool->manager_mutex); 4754 } 4755 4756 /* update NUMA affinity of unbound workqueues */ 4757 list_for_each_entry(wq, &workqueues, list) 4758 wq_update_unbound_numa(wq, cpu, true); 4759 4760 mutex_unlock(&wq_pool_mutex); 4761 break; 4762 } 4763 return NOTIFY_OK; 4764 } 4765 4766 /* 4767 * Workqueues should be brought down after normal priority CPU notifiers. 4768 * This will be registered as low priority CPU notifier. 4769 */ 4770 static int workqueue_cpu_down_callback(struct notifier_block *nfb, 4771 unsigned long action, 4772 void *hcpu) 4773 { 4774 int cpu = (unsigned long)hcpu; 4775 struct work_struct unbind_work; 4776 struct workqueue_struct *wq; 4777 4778 switch (action & ~CPU_TASKS_FROZEN) { 4779 case CPU_DOWN_PREPARE: 4780 /* unbinding per-cpu workers should happen on the local CPU */ 4781 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn); 4782 queue_work_on(cpu, system_highpri_wq, &unbind_work); 4783 4784 /* update NUMA affinity of unbound workqueues */ 4785 mutex_lock(&wq_pool_mutex); 4786 list_for_each_entry(wq, &workqueues, list) 4787 wq_update_unbound_numa(wq, cpu, false); 4788 mutex_unlock(&wq_pool_mutex); 4789 4790 /* wait for per-cpu unbinding to finish */ 4791 flush_work(&unbind_work); 4792 break; 4793 } 4794 return NOTIFY_OK; 4795 } 4796 4797 #ifdef CONFIG_SMP 4798 4799 struct work_for_cpu { 4800 struct work_struct work; 4801 long (*fn)(void *); 4802 void *arg; 4803 long ret; 4804 }; 4805 4806 static void work_for_cpu_fn(struct work_struct *work) 4807 { 4808 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 4809 4810 wfc->ret = wfc->fn(wfc->arg); 4811 } 4812 4813 /** 4814 * work_on_cpu - run a function in user context on a particular cpu 4815 * @cpu: the cpu to run on 4816 * @fn: the function to run 4817 * @arg: the function arg 4818 * 4819 * It is up to the caller to ensure that the cpu doesn't go offline. 4820 * The caller must not hold any locks which would prevent @fn from completing. 4821 * 4822 * Return: The value @fn returns. 4823 */ 4824 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 4825 { 4826 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 4827 4828 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 4829 schedule_work_on(cpu, &wfc.work); 4830 flush_work(&wfc.work); 4831 return wfc.ret; 4832 } 4833 EXPORT_SYMBOL_GPL(work_on_cpu); 4834 #endif /* CONFIG_SMP */ 4835 4836 #ifdef CONFIG_FREEZER 4837 4838 /** 4839 * freeze_workqueues_begin - begin freezing workqueues 4840 * 4841 * Start freezing workqueues. After this function returns, all freezable 4842 * workqueues will queue new works to their delayed_works list instead of 4843 * pool->worklist. 4844 * 4845 * CONTEXT: 4846 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4847 */ 4848 void freeze_workqueues_begin(void) 4849 { 4850 struct worker_pool *pool; 4851 struct workqueue_struct *wq; 4852 struct pool_workqueue *pwq; 4853 int pi; 4854 4855 mutex_lock(&wq_pool_mutex); 4856 4857 WARN_ON_ONCE(workqueue_freezing); 4858 workqueue_freezing = true; 4859 4860 /* set FREEZING */ 4861 for_each_pool(pool, pi) { 4862 spin_lock_irq(&pool->lock); 4863 WARN_ON_ONCE(pool->flags & POOL_FREEZING); 4864 pool->flags |= POOL_FREEZING; 4865 spin_unlock_irq(&pool->lock); 4866 } 4867 4868 list_for_each_entry(wq, &workqueues, list) { 4869 mutex_lock(&wq->mutex); 4870 for_each_pwq(pwq, wq) 4871 pwq_adjust_max_active(pwq); 4872 mutex_unlock(&wq->mutex); 4873 } 4874 4875 mutex_unlock(&wq_pool_mutex); 4876 } 4877 4878 /** 4879 * freeze_workqueues_busy - are freezable workqueues still busy? 4880 * 4881 * Check whether freezing is complete. This function must be called 4882 * between freeze_workqueues_begin() and thaw_workqueues(). 4883 * 4884 * CONTEXT: 4885 * Grabs and releases wq_pool_mutex. 4886 * 4887 * Return: 4888 * %true if some freezable workqueues are still busy. %false if freezing 4889 * is complete. 4890 */ 4891 bool freeze_workqueues_busy(void) 4892 { 4893 bool busy = false; 4894 struct workqueue_struct *wq; 4895 struct pool_workqueue *pwq; 4896 4897 mutex_lock(&wq_pool_mutex); 4898 4899 WARN_ON_ONCE(!workqueue_freezing); 4900 4901 list_for_each_entry(wq, &workqueues, list) { 4902 if (!(wq->flags & WQ_FREEZABLE)) 4903 continue; 4904 /* 4905 * nr_active is monotonically decreasing. It's safe 4906 * to peek without lock. 4907 */ 4908 rcu_read_lock_sched(); 4909 for_each_pwq(pwq, wq) { 4910 WARN_ON_ONCE(pwq->nr_active < 0); 4911 if (pwq->nr_active) { 4912 busy = true; 4913 rcu_read_unlock_sched(); 4914 goto out_unlock; 4915 } 4916 } 4917 rcu_read_unlock_sched(); 4918 } 4919 out_unlock: 4920 mutex_unlock(&wq_pool_mutex); 4921 return busy; 4922 } 4923 4924 /** 4925 * thaw_workqueues - thaw workqueues 4926 * 4927 * Thaw workqueues. Normal queueing is restored and all collected 4928 * frozen works are transferred to their respective pool worklists. 4929 * 4930 * CONTEXT: 4931 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4932 */ 4933 void thaw_workqueues(void) 4934 { 4935 struct workqueue_struct *wq; 4936 struct pool_workqueue *pwq; 4937 struct worker_pool *pool; 4938 int pi; 4939 4940 mutex_lock(&wq_pool_mutex); 4941 4942 if (!workqueue_freezing) 4943 goto out_unlock; 4944 4945 /* clear FREEZING */ 4946 for_each_pool(pool, pi) { 4947 spin_lock_irq(&pool->lock); 4948 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING)); 4949 pool->flags &= ~POOL_FREEZING; 4950 spin_unlock_irq(&pool->lock); 4951 } 4952 4953 /* restore max_active and repopulate worklist */ 4954 list_for_each_entry(wq, &workqueues, list) { 4955 mutex_lock(&wq->mutex); 4956 for_each_pwq(pwq, wq) 4957 pwq_adjust_max_active(pwq); 4958 mutex_unlock(&wq->mutex); 4959 } 4960 4961 workqueue_freezing = false; 4962 out_unlock: 4963 mutex_unlock(&wq_pool_mutex); 4964 } 4965 #endif /* CONFIG_FREEZER */ 4966 4967 static void __init wq_numa_init(void) 4968 { 4969 cpumask_var_t *tbl; 4970 int node, cpu; 4971 4972 /* determine NUMA pwq table len - highest node id + 1 */ 4973 for_each_node(node) 4974 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1); 4975 4976 if (num_possible_nodes() <= 1) 4977 return; 4978 4979 if (wq_disable_numa) { 4980 pr_info("workqueue: NUMA affinity support disabled\n"); 4981 return; 4982 } 4983 4984 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL); 4985 BUG_ON(!wq_update_unbound_numa_attrs_buf); 4986 4987 /* 4988 * We want masks of possible CPUs of each node which isn't readily 4989 * available. Build one from cpu_to_node() which should have been 4990 * fully initialized by now. 4991 */ 4992 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL); 4993 BUG_ON(!tbl); 4994 4995 for_each_node(node) 4996 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 4997 node_online(node) ? node : NUMA_NO_NODE)); 4998 4999 for_each_possible_cpu(cpu) { 5000 node = cpu_to_node(cpu); 5001 if (WARN_ON(node == NUMA_NO_NODE)) { 5002 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5003 /* happens iff arch is bonkers, let's just proceed */ 5004 return; 5005 } 5006 cpumask_set_cpu(cpu, tbl[node]); 5007 } 5008 5009 wq_numa_possible_cpumask = tbl; 5010 wq_numa_enabled = true; 5011 } 5012 5013 static int __init init_workqueues(void) 5014 { 5015 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5016 int i, cpu; 5017 5018 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5019 5020 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5021 5022 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP); 5023 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN); 5024 5025 wq_numa_init(); 5026 5027 /* initialize CPU pools */ 5028 for_each_possible_cpu(cpu) { 5029 struct worker_pool *pool; 5030 5031 i = 0; 5032 for_each_cpu_worker_pool(pool, cpu) { 5033 BUG_ON(init_worker_pool(pool)); 5034 pool->cpu = cpu; 5035 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5036 pool->attrs->nice = std_nice[i++]; 5037 pool->node = cpu_to_node(cpu); 5038 5039 /* alloc pool ID */ 5040 mutex_lock(&wq_pool_mutex); 5041 BUG_ON(worker_pool_assign_id(pool)); 5042 mutex_unlock(&wq_pool_mutex); 5043 } 5044 } 5045 5046 /* create the initial worker */ 5047 for_each_online_cpu(cpu) { 5048 struct worker_pool *pool; 5049 5050 for_each_cpu_worker_pool(pool, cpu) { 5051 pool->flags &= ~POOL_DISASSOCIATED; 5052 BUG_ON(create_and_start_worker(pool) < 0); 5053 } 5054 } 5055 5056 /* create default unbound and ordered wq attrs */ 5057 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5058 struct workqueue_attrs *attrs; 5059 5060 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5061 attrs->nice = std_nice[i]; 5062 unbound_std_wq_attrs[i] = attrs; 5063 5064 /* 5065 * An ordered wq should have only one pwq as ordering is 5066 * guaranteed by max_active which is enforced by pwqs. 5067 * Turn off NUMA so that dfl_pwq is used for all nodes. 5068 */ 5069 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5070 attrs->nice = std_nice[i]; 5071 attrs->no_numa = true; 5072 ordered_wq_attrs[i] = attrs; 5073 } 5074 5075 system_wq = alloc_workqueue("events", 0, 0); 5076 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5077 system_long_wq = alloc_workqueue("events_long", 0, 0); 5078 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5079 WQ_UNBOUND_MAX_ACTIVE); 5080 system_freezable_wq = alloc_workqueue("events_freezable", 5081 WQ_FREEZABLE, 0); 5082 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5083 WQ_POWER_EFFICIENT, 0); 5084 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5085 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5086 0); 5087 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5088 !system_unbound_wq || !system_freezable_wq || 5089 !system_power_efficient_wq || 5090 !system_freezable_power_efficient_wq); 5091 return 0; 5092 } 5093 early_initcall(init_workqueues); 5094