xref: /openbmc/linux/kernel/workqueue.c (revision 901bdf5ea1a836400ee69aa32b04e9c209271ec7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/sched/debug.h>
53 #include <linux/nmi.h>
54 #include <linux/kvm_para.h>
55 
56 #include "workqueue_internal.h"
57 
58 enum {
59 	/*
60 	 * worker_pool flags
61 	 *
62 	 * A bound pool is either associated or disassociated with its CPU.
63 	 * While associated (!DISASSOCIATED), all workers are bound to the
64 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
65 	 * is in effect.
66 	 *
67 	 * While DISASSOCIATED, the cpu may be offline and all workers have
68 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
69 	 * be executing on any CPU.  The pool behaves as an unbound one.
70 	 *
71 	 * Note that DISASSOCIATED should be flipped only while holding
72 	 * wq_pool_attach_mutex to avoid changing binding state while
73 	 * worker_attach_to_pool() is in progress.
74 	 */
75 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
76 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
77 
78 	/* worker flags */
79 	WORKER_DIE		= 1 << 1,	/* die die die */
80 	WORKER_IDLE		= 1 << 2,	/* is idle */
81 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
82 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
83 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
84 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
85 
86 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
87 				  WORKER_UNBOUND | WORKER_REBOUND,
88 
89 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
90 
91 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
92 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
93 
94 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
95 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
96 
97 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
98 						/* call for help after 10ms
99 						   (min two ticks) */
100 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
101 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
102 
103 	/*
104 	 * Rescue workers are used only on emergencies and shared by
105 	 * all cpus.  Give MIN_NICE.
106 	 */
107 	RESCUER_NICE_LEVEL	= MIN_NICE,
108 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
109 
110 	WQ_NAME_LEN		= 24,
111 };
112 
113 /*
114  * Structure fields follow one of the following exclusion rules.
115  *
116  * I: Modifiable by initialization/destruction paths and read-only for
117  *    everyone else.
118  *
119  * P: Preemption protected.  Disabling preemption is enough and should
120  *    only be modified and accessed from the local cpu.
121  *
122  * L: pool->lock protected.  Access with pool->lock held.
123  *
124  * X: During normal operation, modification requires pool->lock and should
125  *    be done only from local cpu.  Either disabling preemption on local
126  *    cpu or grabbing pool->lock is enough for read access.  If
127  *    POOL_DISASSOCIATED is set, it's identical to L.
128  *
129  * A: wq_pool_attach_mutex protected.
130  *
131  * PL: wq_pool_mutex protected.
132  *
133  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
134  *
135  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
136  *
137  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
138  *      RCU for reads.
139  *
140  * WQ: wq->mutex protected.
141  *
142  * WR: wq->mutex protected for writes.  RCU protected for reads.
143  *
144  * MD: wq_mayday_lock protected.
145  *
146  * WD: Used internally by the watchdog.
147  */
148 
149 /* struct worker is defined in workqueue_internal.h */
150 
151 struct worker_pool {
152 	raw_spinlock_t		lock;		/* the pool lock */
153 	int			cpu;		/* I: the associated cpu */
154 	int			node;		/* I: the associated node ID */
155 	int			id;		/* I: pool ID */
156 	unsigned int		flags;		/* X: flags */
157 
158 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
159 	bool			cpu_stall;	/* WD: stalled cpu bound pool */
160 
161 	/*
162 	 * The counter is incremented in a process context on the associated CPU
163 	 * w/ preemption disabled, and decremented or reset in the same context
164 	 * but w/ pool->lock held. The readers grab pool->lock and are
165 	 * guaranteed to see if the counter reached zero.
166 	 */
167 	int			nr_running;
168 
169 	struct list_head	worklist;	/* L: list of pending works */
170 
171 	int			nr_workers;	/* L: total number of workers */
172 	int			nr_idle;	/* L: currently idle workers */
173 
174 	struct list_head	idle_list;	/* L: list of idle workers */
175 	struct timer_list	idle_timer;	/* L: worker idle timeout */
176 	struct work_struct      idle_cull_work; /* L: worker idle cleanup */
177 
178 	struct timer_list	mayday_timer;	  /* L: SOS timer for workers */
179 
180 	/* a workers is either on busy_hash or idle_list, or the manager */
181 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
182 						/* L: hash of busy workers */
183 
184 	struct worker		*manager;	/* L: purely informational */
185 	struct list_head	workers;	/* A: attached workers */
186 	struct list_head        dying_workers;  /* A: workers about to die */
187 	struct completion	*detach_completion; /* all workers detached */
188 
189 	struct ida		worker_ida;	/* worker IDs for task name */
190 
191 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
192 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
193 	int			refcnt;		/* PL: refcnt for unbound pools */
194 
195 	/*
196 	 * Destruction of pool is RCU protected to allow dereferences
197 	 * from get_work_pool().
198 	 */
199 	struct rcu_head		rcu;
200 };
201 
202 /*
203  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
204  * of work_struct->data are used for flags and the remaining high bits
205  * point to the pwq; thus, pwqs need to be aligned at two's power of the
206  * number of flag bits.
207  */
208 struct pool_workqueue {
209 	struct worker_pool	*pool;		/* I: the associated pool */
210 	struct workqueue_struct *wq;		/* I: the owning workqueue */
211 	int			work_color;	/* L: current color */
212 	int			flush_color;	/* L: flushing color */
213 	int			refcnt;		/* L: reference count */
214 	int			nr_in_flight[WORK_NR_COLORS];
215 						/* L: nr of in_flight works */
216 
217 	/*
218 	 * nr_active management and WORK_STRUCT_INACTIVE:
219 	 *
220 	 * When pwq->nr_active >= max_active, new work item is queued to
221 	 * pwq->inactive_works instead of pool->worklist and marked with
222 	 * WORK_STRUCT_INACTIVE.
223 	 *
224 	 * All work items marked with WORK_STRUCT_INACTIVE do not participate
225 	 * in pwq->nr_active and all work items in pwq->inactive_works are
226 	 * marked with WORK_STRUCT_INACTIVE.  But not all WORK_STRUCT_INACTIVE
227 	 * work items are in pwq->inactive_works.  Some of them are ready to
228 	 * run in pool->worklist or worker->scheduled.  Those work itmes are
229 	 * only struct wq_barrier which is used for flush_work() and should
230 	 * not participate in pwq->nr_active.  For non-barrier work item, it
231 	 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
232 	 */
233 	int			nr_active;	/* L: nr of active works */
234 	int			max_active;	/* L: max active works */
235 	struct list_head	inactive_works;	/* L: inactive works */
236 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
237 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
238 
239 	/*
240 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
241 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
242 	 * itself is also RCU protected so that the first pwq can be
243 	 * determined without grabbing wq->mutex.
244 	 */
245 	struct work_struct	unbound_release_work;
246 	struct rcu_head		rcu;
247 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
248 
249 /*
250  * Structure used to wait for workqueue flush.
251  */
252 struct wq_flusher {
253 	struct list_head	list;		/* WQ: list of flushers */
254 	int			flush_color;	/* WQ: flush color waiting for */
255 	struct completion	done;		/* flush completion */
256 };
257 
258 struct wq_device;
259 
260 /*
261  * The externally visible workqueue.  It relays the issued work items to
262  * the appropriate worker_pool through its pool_workqueues.
263  */
264 struct workqueue_struct {
265 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
266 	struct list_head	list;		/* PR: list of all workqueues */
267 
268 	struct mutex		mutex;		/* protects this wq */
269 	int			work_color;	/* WQ: current work color */
270 	int			flush_color;	/* WQ: current flush color */
271 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
272 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
273 	struct list_head	flusher_queue;	/* WQ: flush waiters */
274 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
275 
276 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
277 	struct worker		*rescuer;	/* MD: rescue worker */
278 
279 	int			nr_drainers;	/* WQ: drain in progress */
280 	int			saved_max_active; /* WQ: saved pwq max_active */
281 
282 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
283 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
284 
285 #ifdef CONFIG_SYSFS
286 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
287 #endif
288 #ifdef CONFIG_LOCKDEP
289 	char			*lock_name;
290 	struct lock_class_key	key;
291 	struct lockdep_map	lockdep_map;
292 #endif
293 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
294 
295 	/*
296 	 * Destruction of workqueue_struct is RCU protected to allow walking
297 	 * the workqueues list without grabbing wq_pool_mutex.
298 	 * This is used to dump all workqueues from sysrq.
299 	 */
300 	struct rcu_head		rcu;
301 
302 	/* hot fields used during command issue, aligned to cacheline */
303 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
304 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
305 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
306 };
307 
308 static struct kmem_cache *pwq_cache;
309 
310 static cpumask_var_t *wq_numa_possible_cpumask;
311 					/* possible CPUs of each node */
312 
313 static bool wq_disable_numa;
314 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
315 
316 /* see the comment above the definition of WQ_POWER_EFFICIENT */
317 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
318 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
319 
320 static bool wq_online;			/* can kworkers be created yet? */
321 
322 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
323 
324 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
325 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
326 
327 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
328 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
329 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
330 /* wait for manager to go away */
331 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
332 
333 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
334 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
335 
336 /* PL&A: allowable cpus for unbound wqs and work items */
337 static cpumask_var_t wq_unbound_cpumask;
338 
339 /* CPU where unbound work was last round robin scheduled from this CPU */
340 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
341 
342 /*
343  * Local execution of unbound work items is no longer guaranteed.  The
344  * following always forces round-robin CPU selection on unbound work items
345  * to uncover usages which depend on it.
346  */
347 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
348 static bool wq_debug_force_rr_cpu = true;
349 #else
350 static bool wq_debug_force_rr_cpu = false;
351 #endif
352 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
353 
354 /* the per-cpu worker pools */
355 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
356 
357 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
358 
359 /* PL: hash of all unbound pools keyed by pool->attrs */
360 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
361 
362 /* I: attributes used when instantiating standard unbound pools on demand */
363 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
364 
365 /* I: attributes used when instantiating ordered pools on demand */
366 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
367 
368 struct workqueue_struct *system_wq __read_mostly;
369 EXPORT_SYMBOL(system_wq);
370 struct workqueue_struct *system_highpri_wq __read_mostly;
371 EXPORT_SYMBOL_GPL(system_highpri_wq);
372 struct workqueue_struct *system_long_wq __read_mostly;
373 EXPORT_SYMBOL_GPL(system_long_wq);
374 struct workqueue_struct *system_unbound_wq __read_mostly;
375 EXPORT_SYMBOL_GPL(system_unbound_wq);
376 struct workqueue_struct *system_freezable_wq __read_mostly;
377 EXPORT_SYMBOL_GPL(system_freezable_wq);
378 struct workqueue_struct *system_power_efficient_wq __read_mostly;
379 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
380 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
381 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
382 
383 static int worker_thread(void *__worker);
384 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
385 static void show_pwq(struct pool_workqueue *pwq);
386 static void show_one_worker_pool(struct worker_pool *pool);
387 
388 #define CREATE_TRACE_POINTS
389 #include <trace/events/workqueue.h>
390 
391 #define assert_rcu_or_pool_mutex()					\
392 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
393 			 !lockdep_is_held(&wq_pool_mutex),		\
394 			 "RCU or wq_pool_mutex should be held")
395 
396 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
397 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
398 			 !lockdep_is_held(&wq->mutex) &&		\
399 			 !lockdep_is_held(&wq_pool_mutex),		\
400 			 "RCU, wq->mutex or wq_pool_mutex should be held")
401 
402 #define for_each_cpu_worker_pool(pool, cpu)				\
403 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
404 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
405 	     (pool)++)
406 
407 /**
408  * for_each_pool - iterate through all worker_pools in the system
409  * @pool: iteration cursor
410  * @pi: integer used for iteration
411  *
412  * This must be called either with wq_pool_mutex held or RCU read
413  * locked.  If the pool needs to be used beyond the locking in effect, the
414  * caller is responsible for guaranteeing that the pool stays online.
415  *
416  * The if/else clause exists only for the lockdep assertion and can be
417  * ignored.
418  */
419 #define for_each_pool(pool, pi)						\
420 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
421 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
422 		else
423 
424 /**
425  * for_each_pool_worker - iterate through all workers of a worker_pool
426  * @worker: iteration cursor
427  * @pool: worker_pool to iterate workers of
428  *
429  * This must be called with wq_pool_attach_mutex.
430  *
431  * The if/else clause exists only for the lockdep assertion and can be
432  * ignored.
433  */
434 #define for_each_pool_worker(worker, pool)				\
435 	list_for_each_entry((worker), &(pool)->workers, node)		\
436 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
437 		else
438 
439 /**
440  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
441  * @pwq: iteration cursor
442  * @wq: the target workqueue
443  *
444  * This must be called either with wq->mutex held or RCU read locked.
445  * If the pwq needs to be used beyond the locking in effect, the caller is
446  * responsible for guaranteeing that the pwq stays online.
447  *
448  * The if/else clause exists only for the lockdep assertion and can be
449  * ignored.
450  */
451 #define for_each_pwq(pwq, wq)						\
452 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
453 				 lockdep_is_held(&(wq->mutex)))
454 
455 #ifdef CONFIG_DEBUG_OBJECTS_WORK
456 
457 static const struct debug_obj_descr work_debug_descr;
458 
459 static void *work_debug_hint(void *addr)
460 {
461 	return ((struct work_struct *) addr)->func;
462 }
463 
464 static bool work_is_static_object(void *addr)
465 {
466 	struct work_struct *work = addr;
467 
468 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
469 }
470 
471 /*
472  * fixup_init is called when:
473  * - an active object is initialized
474  */
475 static bool work_fixup_init(void *addr, enum debug_obj_state state)
476 {
477 	struct work_struct *work = addr;
478 
479 	switch (state) {
480 	case ODEBUG_STATE_ACTIVE:
481 		cancel_work_sync(work);
482 		debug_object_init(work, &work_debug_descr);
483 		return true;
484 	default:
485 		return false;
486 	}
487 }
488 
489 /*
490  * fixup_free is called when:
491  * - an active object is freed
492  */
493 static bool work_fixup_free(void *addr, enum debug_obj_state state)
494 {
495 	struct work_struct *work = addr;
496 
497 	switch (state) {
498 	case ODEBUG_STATE_ACTIVE:
499 		cancel_work_sync(work);
500 		debug_object_free(work, &work_debug_descr);
501 		return true;
502 	default:
503 		return false;
504 	}
505 }
506 
507 static const struct debug_obj_descr work_debug_descr = {
508 	.name		= "work_struct",
509 	.debug_hint	= work_debug_hint,
510 	.is_static_object = work_is_static_object,
511 	.fixup_init	= work_fixup_init,
512 	.fixup_free	= work_fixup_free,
513 };
514 
515 static inline void debug_work_activate(struct work_struct *work)
516 {
517 	debug_object_activate(work, &work_debug_descr);
518 }
519 
520 static inline void debug_work_deactivate(struct work_struct *work)
521 {
522 	debug_object_deactivate(work, &work_debug_descr);
523 }
524 
525 void __init_work(struct work_struct *work, int onstack)
526 {
527 	if (onstack)
528 		debug_object_init_on_stack(work, &work_debug_descr);
529 	else
530 		debug_object_init(work, &work_debug_descr);
531 }
532 EXPORT_SYMBOL_GPL(__init_work);
533 
534 void destroy_work_on_stack(struct work_struct *work)
535 {
536 	debug_object_free(work, &work_debug_descr);
537 }
538 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
539 
540 void destroy_delayed_work_on_stack(struct delayed_work *work)
541 {
542 	destroy_timer_on_stack(&work->timer);
543 	debug_object_free(&work->work, &work_debug_descr);
544 }
545 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
546 
547 #else
548 static inline void debug_work_activate(struct work_struct *work) { }
549 static inline void debug_work_deactivate(struct work_struct *work) { }
550 #endif
551 
552 /**
553  * worker_pool_assign_id - allocate ID and assign it to @pool
554  * @pool: the pool pointer of interest
555  *
556  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
557  * successfully, -errno on failure.
558  */
559 static int worker_pool_assign_id(struct worker_pool *pool)
560 {
561 	int ret;
562 
563 	lockdep_assert_held(&wq_pool_mutex);
564 
565 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
566 			GFP_KERNEL);
567 	if (ret >= 0) {
568 		pool->id = ret;
569 		return 0;
570 	}
571 	return ret;
572 }
573 
574 /**
575  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
576  * @wq: the target workqueue
577  * @node: the node ID
578  *
579  * This must be called with any of wq_pool_mutex, wq->mutex or RCU
580  * read locked.
581  * If the pwq needs to be used beyond the locking in effect, the caller is
582  * responsible for guaranteeing that the pwq stays online.
583  *
584  * Return: The unbound pool_workqueue for @node.
585  */
586 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
587 						  int node)
588 {
589 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
590 
591 	/*
592 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
593 	 * delayed item is pending.  The plan is to keep CPU -> NODE
594 	 * mapping valid and stable across CPU on/offlines.  Once that
595 	 * happens, this workaround can be removed.
596 	 */
597 	if (unlikely(node == NUMA_NO_NODE))
598 		return wq->dfl_pwq;
599 
600 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
601 }
602 
603 static unsigned int work_color_to_flags(int color)
604 {
605 	return color << WORK_STRUCT_COLOR_SHIFT;
606 }
607 
608 static int get_work_color(unsigned long work_data)
609 {
610 	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
611 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
612 }
613 
614 static int work_next_color(int color)
615 {
616 	return (color + 1) % WORK_NR_COLORS;
617 }
618 
619 /*
620  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
621  * contain the pointer to the queued pwq.  Once execution starts, the flag
622  * is cleared and the high bits contain OFFQ flags and pool ID.
623  *
624  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
625  * and clear_work_data() can be used to set the pwq, pool or clear
626  * work->data.  These functions should only be called while the work is
627  * owned - ie. while the PENDING bit is set.
628  *
629  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
630  * corresponding to a work.  Pool is available once the work has been
631  * queued anywhere after initialization until it is sync canceled.  pwq is
632  * available only while the work item is queued.
633  *
634  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
635  * canceled.  While being canceled, a work item may have its PENDING set
636  * but stay off timer and worklist for arbitrarily long and nobody should
637  * try to steal the PENDING bit.
638  */
639 static inline void set_work_data(struct work_struct *work, unsigned long data,
640 				 unsigned long flags)
641 {
642 	WARN_ON_ONCE(!work_pending(work));
643 	atomic_long_set(&work->data, data | flags | work_static(work));
644 }
645 
646 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
647 			 unsigned long extra_flags)
648 {
649 	set_work_data(work, (unsigned long)pwq,
650 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
651 }
652 
653 static void set_work_pool_and_keep_pending(struct work_struct *work,
654 					   int pool_id)
655 {
656 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
657 		      WORK_STRUCT_PENDING);
658 }
659 
660 static void set_work_pool_and_clear_pending(struct work_struct *work,
661 					    int pool_id)
662 {
663 	/*
664 	 * The following wmb is paired with the implied mb in
665 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
666 	 * here are visible to and precede any updates by the next PENDING
667 	 * owner.
668 	 */
669 	smp_wmb();
670 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
671 	/*
672 	 * The following mb guarantees that previous clear of a PENDING bit
673 	 * will not be reordered with any speculative LOADS or STORES from
674 	 * work->current_func, which is executed afterwards.  This possible
675 	 * reordering can lead to a missed execution on attempt to queue
676 	 * the same @work.  E.g. consider this case:
677 	 *
678 	 *   CPU#0                         CPU#1
679 	 *   ----------------------------  --------------------------------
680 	 *
681 	 * 1  STORE event_indicated
682 	 * 2  queue_work_on() {
683 	 * 3    test_and_set_bit(PENDING)
684 	 * 4 }                             set_..._and_clear_pending() {
685 	 * 5                                 set_work_data() # clear bit
686 	 * 6                                 smp_mb()
687 	 * 7                               work->current_func() {
688 	 * 8				      LOAD event_indicated
689 	 *				   }
690 	 *
691 	 * Without an explicit full barrier speculative LOAD on line 8 can
692 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
693 	 * CPU#0 observes the PENDING bit is still set and new execution of
694 	 * a @work is not queued in a hope, that CPU#1 will eventually
695 	 * finish the queued @work.  Meanwhile CPU#1 does not see
696 	 * event_indicated is set, because speculative LOAD was executed
697 	 * before actual STORE.
698 	 */
699 	smp_mb();
700 }
701 
702 static void clear_work_data(struct work_struct *work)
703 {
704 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
705 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
706 }
707 
708 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
709 {
710 	unsigned long data = atomic_long_read(&work->data);
711 
712 	if (data & WORK_STRUCT_PWQ)
713 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
714 	else
715 		return NULL;
716 }
717 
718 /**
719  * get_work_pool - return the worker_pool a given work was associated with
720  * @work: the work item of interest
721  *
722  * Pools are created and destroyed under wq_pool_mutex, and allows read
723  * access under RCU read lock.  As such, this function should be
724  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
725  *
726  * All fields of the returned pool are accessible as long as the above
727  * mentioned locking is in effect.  If the returned pool needs to be used
728  * beyond the critical section, the caller is responsible for ensuring the
729  * returned pool is and stays online.
730  *
731  * Return: The worker_pool @work was last associated with.  %NULL if none.
732  */
733 static struct worker_pool *get_work_pool(struct work_struct *work)
734 {
735 	unsigned long data = atomic_long_read(&work->data);
736 	int pool_id;
737 
738 	assert_rcu_or_pool_mutex();
739 
740 	if (data & WORK_STRUCT_PWQ)
741 		return ((struct pool_workqueue *)
742 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
743 
744 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
745 	if (pool_id == WORK_OFFQ_POOL_NONE)
746 		return NULL;
747 
748 	return idr_find(&worker_pool_idr, pool_id);
749 }
750 
751 /**
752  * get_work_pool_id - return the worker pool ID a given work is associated with
753  * @work: the work item of interest
754  *
755  * Return: The worker_pool ID @work was last associated with.
756  * %WORK_OFFQ_POOL_NONE if none.
757  */
758 static int get_work_pool_id(struct work_struct *work)
759 {
760 	unsigned long data = atomic_long_read(&work->data);
761 
762 	if (data & WORK_STRUCT_PWQ)
763 		return ((struct pool_workqueue *)
764 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
765 
766 	return data >> WORK_OFFQ_POOL_SHIFT;
767 }
768 
769 static void mark_work_canceling(struct work_struct *work)
770 {
771 	unsigned long pool_id = get_work_pool_id(work);
772 
773 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
774 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
775 }
776 
777 static bool work_is_canceling(struct work_struct *work)
778 {
779 	unsigned long data = atomic_long_read(&work->data);
780 
781 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
782 }
783 
784 /*
785  * Policy functions.  These define the policies on how the global worker
786  * pools are managed.  Unless noted otherwise, these functions assume that
787  * they're being called with pool->lock held.
788  */
789 
790 static bool __need_more_worker(struct worker_pool *pool)
791 {
792 	return !pool->nr_running;
793 }
794 
795 /*
796  * Need to wake up a worker?  Called from anything but currently
797  * running workers.
798  *
799  * Note that, because unbound workers never contribute to nr_running, this
800  * function will always return %true for unbound pools as long as the
801  * worklist isn't empty.
802  */
803 static bool need_more_worker(struct worker_pool *pool)
804 {
805 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
806 }
807 
808 /* Can I start working?  Called from busy but !running workers. */
809 static bool may_start_working(struct worker_pool *pool)
810 {
811 	return pool->nr_idle;
812 }
813 
814 /* Do I need to keep working?  Called from currently running workers. */
815 static bool keep_working(struct worker_pool *pool)
816 {
817 	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
818 }
819 
820 /* Do we need a new worker?  Called from manager. */
821 static bool need_to_create_worker(struct worker_pool *pool)
822 {
823 	return need_more_worker(pool) && !may_start_working(pool);
824 }
825 
826 /* Do we have too many workers and should some go away? */
827 static bool too_many_workers(struct worker_pool *pool)
828 {
829 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
830 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
831 	int nr_busy = pool->nr_workers - nr_idle;
832 
833 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
834 }
835 
836 /*
837  * Wake up functions.
838  */
839 
840 /* Return the first idle worker.  Called with pool->lock held. */
841 static struct worker *first_idle_worker(struct worker_pool *pool)
842 {
843 	if (unlikely(list_empty(&pool->idle_list)))
844 		return NULL;
845 
846 	return list_first_entry(&pool->idle_list, struct worker, entry);
847 }
848 
849 /**
850  * wake_up_worker - wake up an idle worker
851  * @pool: worker pool to wake worker from
852  *
853  * Wake up the first idle worker of @pool.
854  *
855  * CONTEXT:
856  * raw_spin_lock_irq(pool->lock).
857  */
858 static void wake_up_worker(struct worker_pool *pool)
859 {
860 	struct worker *worker = first_idle_worker(pool);
861 
862 	if (likely(worker))
863 		wake_up_process(worker->task);
864 }
865 
866 /**
867  * wq_worker_running - a worker is running again
868  * @task: task waking up
869  *
870  * This function is called when a worker returns from schedule()
871  */
872 void wq_worker_running(struct task_struct *task)
873 {
874 	struct worker *worker = kthread_data(task);
875 
876 	if (!worker->sleeping)
877 		return;
878 
879 	/*
880 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
881 	 * and the nr_running increment below, we may ruin the nr_running reset
882 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
883 	 * pool. Protect against such race.
884 	 */
885 	preempt_disable();
886 	if (!(worker->flags & WORKER_NOT_RUNNING))
887 		worker->pool->nr_running++;
888 	preempt_enable();
889 	worker->sleeping = 0;
890 }
891 
892 /**
893  * wq_worker_sleeping - a worker is going to sleep
894  * @task: task going to sleep
895  *
896  * This function is called from schedule() when a busy worker is
897  * going to sleep.
898  */
899 void wq_worker_sleeping(struct task_struct *task)
900 {
901 	struct worker *worker = kthread_data(task);
902 	struct worker_pool *pool;
903 
904 	/*
905 	 * Rescuers, which may not have all the fields set up like normal
906 	 * workers, also reach here, let's not access anything before
907 	 * checking NOT_RUNNING.
908 	 */
909 	if (worker->flags & WORKER_NOT_RUNNING)
910 		return;
911 
912 	pool = worker->pool;
913 
914 	/* Return if preempted before wq_worker_running() was reached */
915 	if (worker->sleeping)
916 		return;
917 
918 	worker->sleeping = 1;
919 	raw_spin_lock_irq(&pool->lock);
920 
921 	/*
922 	 * Recheck in case unbind_workers() preempted us. We don't
923 	 * want to decrement nr_running after the worker is unbound
924 	 * and nr_running has been reset.
925 	 */
926 	if (worker->flags & WORKER_NOT_RUNNING) {
927 		raw_spin_unlock_irq(&pool->lock);
928 		return;
929 	}
930 
931 	pool->nr_running--;
932 	if (need_more_worker(pool))
933 		wake_up_worker(pool);
934 	raw_spin_unlock_irq(&pool->lock);
935 }
936 
937 /**
938  * wq_worker_last_func - retrieve worker's last work function
939  * @task: Task to retrieve last work function of.
940  *
941  * Determine the last function a worker executed. This is called from
942  * the scheduler to get a worker's last known identity.
943  *
944  * CONTEXT:
945  * raw_spin_lock_irq(rq->lock)
946  *
947  * This function is called during schedule() when a kworker is going
948  * to sleep. It's used by psi to identify aggregation workers during
949  * dequeuing, to allow periodic aggregation to shut-off when that
950  * worker is the last task in the system or cgroup to go to sleep.
951  *
952  * As this function doesn't involve any workqueue-related locking, it
953  * only returns stable values when called from inside the scheduler's
954  * queuing and dequeuing paths, when @task, which must be a kworker,
955  * is guaranteed to not be processing any works.
956  *
957  * Return:
958  * The last work function %current executed as a worker, NULL if it
959  * hasn't executed any work yet.
960  */
961 work_func_t wq_worker_last_func(struct task_struct *task)
962 {
963 	struct worker *worker = kthread_data(task);
964 
965 	return worker->last_func;
966 }
967 
968 /**
969  * worker_set_flags - set worker flags and adjust nr_running accordingly
970  * @worker: self
971  * @flags: flags to set
972  *
973  * Set @flags in @worker->flags and adjust nr_running accordingly.
974  *
975  * CONTEXT:
976  * raw_spin_lock_irq(pool->lock)
977  */
978 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
979 {
980 	struct worker_pool *pool = worker->pool;
981 
982 	WARN_ON_ONCE(worker->task != current);
983 
984 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
985 	if ((flags & WORKER_NOT_RUNNING) &&
986 	    !(worker->flags & WORKER_NOT_RUNNING)) {
987 		pool->nr_running--;
988 	}
989 
990 	worker->flags |= flags;
991 }
992 
993 /**
994  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
995  * @worker: self
996  * @flags: flags to clear
997  *
998  * Clear @flags in @worker->flags and adjust nr_running accordingly.
999  *
1000  * CONTEXT:
1001  * raw_spin_lock_irq(pool->lock)
1002  */
1003 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
1004 {
1005 	struct worker_pool *pool = worker->pool;
1006 	unsigned int oflags = worker->flags;
1007 
1008 	WARN_ON_ONCE(worker->task != current);
1009 
1010 	worker->flags &= ~flags;
1011 
1012 	/*
1013 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1014 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1015 	 * of multiple flags, not a single flag.
1016 	 */
1017 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1018 		if (!(worker->flags & WORKER_NOT_RUNNING))
1019 			pool->nr_running++;
1020 }
1021 
1022 /**
1023  * find_worker_executing_work - find worker which is executing a work
1024  * @pool: pool of interest
1025  * @work: work to find worker for
1026  *
1027  * Find a worker which is executing @work on @pool by searching
1028  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1029  * to match, its current execution should match the address of @work and
1030  * its work function.  This is to avoid unwanted dependency between
1031  * unrelated work executions through a work item being recycled while still
1032  * being executed.
1033  *
1034  * This is a bit tricky.  A work item may be freed once its execution
1035  * starts and nothing prevents the freed area from being recycled for
1036  * another work item.  If the same work item address ends up being reused
1037  * before the original execution finishes, workqueue will identify the
1038  * recycled work item as currently executing and make it wait until the
1039  * current execution finishes, introducing an unwanted dependency.
1040  *
1041  * This function checks the work item address and work function to avoid
1042  * false positives.  Note that this isn't complete as one may construct a
1043  * work function which can introduce dependency onto itself through a
1044  * recycled work item.  Well, if somebody wants to shoot oneself in the
1045  * foot that badly, there's only so much we can do, and if such deadlock
1046  * actually occurs, it should be easy to locate the culprit work function.
1047  *
1048  * CONTEXT:
1049  * raw_spin_lock_irq(pool->lock).
1050  *
1051  * Return:
1052  * Pointer to worker which is executing @work if found, %NULL
1053  * otherwise.
1054  */
1055 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1056 						 struct work_struct *work)
1057 {
1058 	struct worker *worker;
1059 
1060 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1061 			       (unsigned long)work)
1062 		if (worker->current_work == work &&
1063 		    worker->current_func == work->func)
1064 			return worker;
1065 
1066 	return NULL;
1067 }
1068 
1069 /**
1070  * move_linked_works - move linked works to a list
1071  * @work: start of series of works to be scheduled
1072  * @head: target list to append @work to
1073  * @nextp: out parameter for nested worklist walking
1074  *
1075  * Schedule linked works starting from @work to @head.  Work series to
1076  * be scheduled starts at @work and includes any consecutive work with
1077  * WORK_STRUCT_LINKED set in its predecessor.
1078  *
1079  * If @nextp is not NULL, it's updated to point to the next work of
1080  * the last scheduled work.  This allows move_linked_works() to be
1081  * nested inside outer list_for_each_entry_safe().
1082  *
1083  * CONTEXT:
1084  * raw_spin_lock_irq(pool->lock).
1085  */
1086 static void move_linked_works(struct work_struct *work, struct list_head *head,
1087 			      struct work_struct **nextp)
1088 {
1089 	struct work_struct *n;
1090 
1091 	/*
1092 	 * Linked worklist will always end before the end of the list,
1093 	 * use NULL for list head.
1094 	 */
1095 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1096 		list_move_tail(&work->entry, head);
1097 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1098 			break;
1099 	}
1100 
1101 	/*
1102 	 * If we're already inside safe list traversal and have moved
1103 	 * multiple works to the scheduled queue, the next position
1104 	 * needs to be updated.
1105 	 */
1106 	if (nextp)
1107 		*nextp = n;
1108 }
1109 
1110 /**
1111  * get_pwq - get an extra reference on the specified pool_workqueue
1112  * @pwq: pool_workqueue to get
1113  *
1114  * Obtain an extra reference on @pwq.  The caller should guarantee that
1115  * @pwq has positive refcnt and be holding the matching pool->lock.
1116  */
1117 static void get_pwq(struct pool_workqueue *pwq)
1118 {
1119 	lockdep_assert_held(&pwq->pool->lock);
1120 	WARN_ON_ONCE(pwq->refcnt <= 0);
1121 	pwq->refcnt++;
1122 }
1123 
1124 /**
1125  * put_pwq - put a pool_workqueue reference
1126  * @pwq: pool_workqueue to put
1127  *
1128  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1129  * destruction.  The caller should be holding the matching pool->lock.
1130  */
1131 static void put_pwq(struct pool_workqueue *pwq)
1132 {
1133 	lockdep_assert_held(&pwq->pool->lock);
1134 	if (likely(--pwq->refcnt))
1135 		return;
1136 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1137 		return;
1138 	/*
1139 	 * @pwq can't be released under pool->lock, bounce to
1140 	 * pwq_unbound_release_workfn().  This never recurses on the same
1141 	 * pool->lock as this path is taken only for unbound workqueues and
1142 	 * the release work item is scheduled on a per-cpu workqueue.  To
1143 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1144 	 * subclass of 1 in get_unbound_pool().
1145 	 */
1146 	schedule_work(&pwq->unbound_release_work);
1147 }
1148 
1149 /**
1150  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1151  * @pwq: pool_workqueue to put (can be %NULL)
1152  *
1153  * put_pwq() with locking.  This function also allows %NULL @pwq.
1154  */
1155 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1156 {
1157 	if (pwq) {
1158 		/*
1159 		 * As both pwqs and pools are RCU protected, the
1160 		 * following lock operations are safe.
1161 		 */
1162 		raw_spin_lock_irq(&pwq->pool->lock);
1163 		put_pwq(pwq);
1164 		raw_spin_unlock_irq(&pwq->pool->lock);
1165 	}
1166 }
1167 
1168 static void pwq_activate_inactive_work(struct work_struct *work)
1169 {
1170 	struct pool_workqueue *pwq = get_work_pwq(work);
1171 
1172 	trace_workqueue_activate_work(work);
1173 	if (list_empty(&pwq->pool->worklist))
1174 		pwq->pool->watchdog_ts = jiffies;
1175 	move_linked_works(work, &pwq->pool->worklist, NULL);
1176 	__clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
1177 	pwq->nr_active++;
1178 }
1179 
1180 static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
1181 {
1182 	struct work_struct *work = list_first_entry(&pwq->inactive_works,
1183 						    struct work_struct, entry);
1184 
1185 	pwq_activate_inactive_work(work);
1186 }
1187 
1188 /**
1189  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1190  * @pwq: pwq of interest
1191  * @work_data: work_data of work which left the queue
1192  *
1193  * A work either has completed or is removed from pending queue,
1194  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1195  *
1196  * CONTEXT:
1197  * raw_spin_lock_irq(pool->lock).
1198  */
1199 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1200 {
1201 	int color = get_work_color(work_data);
1202 
1203 	if (!(work_data & WORK_STRUCT_INACTIVE)) {
1204 		pwq->nr_active--;
1205 		if (!list_empty(&pwq->inactive_works)) {
1206 			/* one down, submit an inactive one */
1207 			if (pwq->nr_active < pwq->max_active)
1208 				pwq_activate_first_inactive(pwq);
1209 		}
1210 	}
1211 
1212 	pwq->nr_in_flight[color]--;
1213 
1214 	/* is flush in progress and are we at the flushing tip? */
1215 	if (likely(pwq->flush_color != color))
1216 		goto out_put;
1217 
1218 	/* are there still in-flight works? */
1219 	if (pwq->nr_in_flight[color])
1220 		goto out_put;
1221 
1222 	/* this pwq is done, clear flush_color */
1223 	pwq->flush_color = -1;
1224 
1225 	/*
1226 	 * If this was the last pwq, wake up the first flusher.  It
1227 	 * will handle the rest.
1228 	 */
1229 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1230 		complete(&pwq->wq->first_flusher->done);
1231 out_put:
1232 	put_pwq(pwq);
1233 }
1234 
1235 /**
1236  * try_to_grab_pending - steal work item from worklist and disable irq
1237  * @work: work item to steal
1238  * @is_dwork: @work is a delayed_work
1239  * @flags: place to store irq state
1240  *
1241  * Try to grab PENDING bit of @work.  This function can handle @work in any
1242  * stable state - idle, on timer or on worklist.
1243  *
1244  * Return:
1245  *
1246  *  ========	================================================================
1247  *  1		if @work was pending and we successfully stole PENDING
1248  *  0		if @work was idle and we claimed PENDING
1249  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1250  *  -ENOENT	if someone else is canceling @work, this state may persist
1251  *		for arbitrarily long
1252  *  ========	================================================================
1253  *
1254  * Note:
1255  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1256  * interrupted while holding PENDING and @work off queue, irq must be
1257  * disabled on entry.  This, combined with delayed_work->timer being
1258  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1259  *
1260  * On successful return, >= 0, irq is disabled and the caller is
1261  * responsible for releasing it using local_irq_restore(*@flags).
1262  *
1263  * This function is safe to call from any context including IRQ handler.
1264  */
1265 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1266 			       unsigned long *flags)
1267 {
1268 	struct worker_pool *pool;
1269 	struct pool_workqueue *pwq;
1270 
1271 	local_irq_save(*flags);
1272 
1273 	/* try to steal the timer if it exists */
1274 	if (is_dwork) {
1275 		struct delayed_work *dwork = to_delayed_work(work);
1276 
1277 		/*
1278 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1279 		 * guaranteed that the timer is not queued anywhere and not
1280 		 * running on the local CPU.
1281 		 */
1282 		if (likely(del_timer(&dwork->timer)))
1283 			return 1;
1284 	}
1285 
1286 	/* try to claim PENDING the normal way */
1287 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1288 		return 0;
1289 
1290 	rcu_read_lock();
1291 	/*
1292 	 * The queueing is in progress, or it is already queued. Try to
1293 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1294 	 */
1295 	pool = get_work_pool(work);
1296 	if (!pool)
1297 		goto fail;
1298 
1299 	raw_spin_lock(&pool->lock);
1300 	/*
1301 	 * work->data is guaranteed to point to pwq only while the work
1302 	 * item is queued on pwq->wq, and both updating work->data to point
1303 	 * to pwq on queueing and to pool on dequeueing are done under
1304 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1305 	 * points to pwq which is associated with a locked pool, the work
1306 	 * item is currently queued on that pool.
1307 	 */
1308 	pwq = get_work_pwq(work);
1309 	if (pwq && pwq->pool == pool) {
1310 		debug_work_deactivate(work);
1311 
1312 		/*
1313 		 * A cancelable inactive work item must be in the
1314 		 * pwq->inactive_works since a queued barrier can't be
1315 		 * canceled (see the comments in insert_wq_barrier()).
1316 		 *
1317 		 * An inactive work item cannot be grabbed directly because
1318 		 * it might have linked barrier work items which, if left
1319 		 * on the inactive_works list, will confuse pwq->nr_active
1320 		 * management later on and cause stall.  Make sure the work
1321 		 * item is activated before grabbing.
1322 		 */
1323 		if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1324 			pwq_activate_inactive_work(work);
1325 
1326 		list_del_init(&work->entry);
1327 		pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
1328 
1329 		/* work->data points to pwq iff queued, point to pool */
1330 		set_work_pool_and_keep_pending(work, pool->id);
1331 
1332 		raw_spin_unlock(&pool->lock);
1333 		rcu_read_unlock();
1334 		return 1;
1335 	}
1336 	raw_spin_unlock(&pool->lock);
1337 fail:
1338 	rcu_read_unlock();
1339 	local_irq_restore(*flags);
1340 	if (work_is_canceling(work))
1341 		return -ENOENT;
1342 	cpu_relax();
1343 	return -EAGAIN;
1344 }
1345 
1346 /**
1347  * insert_work - insert a work into a pool
1348  * @pwq: pwq @work belongs to
1349  * @work: work to insert
1350  * @head: insertion point
1351  * @extra_flags: extra WORK_STRUCT_* flags to set
1352  *
1353  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1354  * work_struct flags.
1355  *
1356  * CONTEXT:
1357  * raw_spin_lock_irq(pool->lock).
1358  */
1359 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1360 			struct list_head *head, unsigned int extra_flags)
1361 {
1362 	struct worker_pool *pool = pwq->pool;
1363 
1364 	/* record the work call stack in order to print it in KASAN reports */
1365 	kasan_record_aux_stack_noalloc(work);
1366 
1367 	/* we own @work, set data and link */
1368 	set_work_pwq(work, pwq, extra_flags);
1369 	list_add_tail(&work->entry, head);
1370 	get_pwq(pwq);
1371 
1372 	if (__need_more_worker(pool))
1373 		wake_up_worker(pool);
1374 }
1375 
1376 /*
1377  * Test whether @work is being queued from another work executing on the
1378  * same workqueue.
1379  */
1380 static bool is_chained_work(struct workqueue_struct *wq)
1381 {
1382 	struct worker *worker;
1383 
1384 	worker = current_wq_worker();
1385 	/*
1386 	 * Return %true iff I'm a worker executing a work item on @wq.  If
1387 	 * I'm @worker, it's safe to dereference it without locking.
1388 	 */
1389 	return worker && worker->current_pwq->wq == wq;
1390 }
1391 
1392 /*
1393  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1394  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1395  * avoid perturbing sensitive tasks.
1396  */
1397 static int wq_select_unbound_cpu(int cpu)
1398 {
1399 	int new_cpu;
1400 
1401 	if (likely(!wq_debug_force_rr_cpu)) {
1402 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1403 			return cpu;
1404 	} else {
1405 		pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
1406 	}
1407 
1408 	if (cpumask_empty(wq_unbound_cpumask))
1409 		return cpu;
1410 
1411 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1412 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1413 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1414 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1415 		if (unlikely(new_cpu >= nr_cpu_ids))
1416 			return cpu;
1417 	}
1418 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1419 
1420 	return new_cpu;
1421 }
1422 
1423 static void __queue_work(int cpu, struct workqueue_struct *wq,
1424 			 struct work_struct *work)
1425 {
1426 	struct pool_workqueue *pwq;
1427 	struct worker_pool *last_pool;
1428 	struct list_head *worklist;
1429 	unsigned int work_flags;
1430 	unsigned int req_cpu = cpu;
1431 
1432 	/*
1433 	 * While a work item is PENDING && off queue, a task trying to
1434 	 * steal the PENDING will busy-loop waiting for it to either get
1435 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1436 	 * happen with IRQ disabled.
1437 	 */
1438 	lockdep_assert_irqs_disabled();
1439 
1440 
1441 	/*
1442 	 * For a draining wq, only works from the same workqueue are
1443 	 * allowed. The __WQ_DESTROYING helps to spot the issue that
1444 	 * queues a new work item to a wq after destroy_workqueue(wq).
1445 	 */
1446 	if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
1447 		     WARN_ON_ONCE(!is_chained_work(wq))))
1448 		return;
1449 	rcu_read_lock();
1450 retry:
1451 	/* pwq which will be used unless @work is executing elsewhere */
1452 	if (wq->flags & WQ_UNBOUND) {
1453 		if (req_cpu == WORK_CPU_UNBOUND)
1454 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1455 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1456 	} else {
1457 		if (req_cpu == WORK_CPU_UNBOUND)
1458 			cpu = raw_smp_processor_id();
1459 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1460 	}
1461 
1462 	/*
1463 	 * If @work was previously on a different pool, it might still be
1464 	 * running there, in which case the work needs to be queued on that
1465 	 * pool to guarantee non-reentrancy.
1466 	 */
1467 	last_pool = get_work_pool(work);
1468 	if (last_pool && last_pool != pwq->pool) {
1469 		struct worker *worker;
1470 
1471 		raw_spin_lock(&last_pool->lock);
1472 
1473 		worker = find_worker_executing_work(last_pool, work);
1474 
1475 		if (worker && worker->current_pwq->wq == wq) {
1476 			pwq = worker->current_pwq;
1477 		} else {
1478 			/* meh... not running there, queue here */
1479 			raw_spin_unlock(&last_pool->lock);
1480 			raw_spin_lock(&pwq->pool->lock);
1481 		}
1482 	} else {
1483 		raw_spin_lock(&pwq->pool->lock);
1484 	}
1485 
1486 	/*
1487 	 * pwq is determined and locked.  For unbound pools, we could have
1488 	 * raced with pwq release and it could already be dead.  If its
1489 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1490 	 * without another pwq replacing it in the numa_pwq_tbl or while
1491 	 * work items are executing on it, so the retrying is guaranteed to
1492 	 * make forward-progress.
1493 	 */
1494 	if (unlikely(!pwq->refcnt)) {
1495 		if (wq->flags & WQ_UNBOUND) {
1496 			raw_spin_unlock(&pwq->pool->lock);
1497 			cpu_relax();
1498 			goto retry;
1499 		}
1500 		/* oops */
1501 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1502 			  wq->name, cpu);
1503 	}
1504 
1505 	/* pwq determined, queue */
1506 	trace_workqueue_queue_work(req_cpu, pwq, work);
1507 
1508 	if (WARN_ON(!list_empty(&work->entry)))
1509 		goto out;
1510 
1511 	pwq->nr_in_flight[pwq->work_color]++;
1512 	work_flags = work_color_to_flags(pwq->work_color);
1513 
1514 	if (likely(pwq->nr_active < pwq->max_active)) {
1515 		trace_workqueue_activate_work(work);
1516 		pwq->nr_active++;
1517 		worklist = &pwq->pool->worklist;
1518 		if (list_empty(worklist))
1519 			pwq->pool->watchdog_ts = jiffies;
1520 	} else {
1521 		work_flags |= WORK_STRUCT_INACTIVE;
1522 		worklist = &pwq->inactive_works;
1523 	}
1524 
1525 	debug_work_activate(work);
1526 	insert_work(pwq, work, worklist, work_flags);
1527 
1528 out:
1529 	raw_spin_unlock(&pwq->pool->lock);
1530 	rcu_read_unlock();
1531 }
1532 
1533 /**
1534  * queue_work_on - queue work on specific cpu
1535  * @cpu: CPU number to execute work on
1536  * @wq: workqueue to use
1537  * @work: work to queue
1538  *
1539  * We queue the work to a specific CPU, the caller must ensure it
1540  * can't go away.  Callers that fail to ensure that the specified
1541  * CPU cannot go away will execute on a randomly chosen CPU.
1542  *
1543  * Return: %false if @work was already on a queue, %true otherwise.
1544  */
1545 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1546 		   struct work_struct *work)
1547 {
1548 	bool ret = false;
1549 	unsigned long flags;
1550 
1551 	local_irq_save(flags);
1552 
1553 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1554 		__queue_work(cpu, wq, work);
1555 		ret = true;
1556 	}
1557 
1558 	local_irq_restore(flags);
1559 	return ret;
1560 }
1561 EXPORT_SYMBOL(queue_work_on);
1562 
1563 /**
1564  * workqueue_select_cpu_near - Select a CPU based on NUMA node
1565  * @node: NUMA node ID that we want to select a CPU from
1566  *
1567  * This function will attempt to find a "random" cpu available on a given
1568  * node. If there are no CPUs available on the given node it will return
1569  * WORK_CPU_UNBOUND indicating that we should just schedule to any
1570  * available CPU if we need to schedule this work.
1571  */
1572 static int workqueue_select_cpu_near(int node)
1573 {
1574 	int cpu;
1575 
1576 	/* No point in doing this if NUMA isn't enabled for workqueues */
1577 	if (!wq_numa_enabled)
1578 		return WORK_CPU_UNBOUND;
1579 
1580 	/* Delay binding to CPU if node is not valid or online */
1581 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1582 		return WORK_CPU_UNBOUND;
1583 
1584 	/* Use local node/cpu if we are already there */
1585 	cpu = raw_smp_processor_id();
1586 	if (node == cpu_to_node(cpu))
1587 		return cpu;
1588 
1589 	/* Use "random" otherwise know as "first" online CPU of node */
1590 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1591 
1592 	/* If CPU is valid return that, otherwise just defer */
1593 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1594 }
1595 
1596 /**
1597  * queue_work_node - queue work on a "random" cpu for a given NUMA node
1598  * @node: NUMA node that we are targeting the work for
1599  * @wq: workqueue to use
1600  * @work: work to queue
1601  *
1602  * We queue the work to a "random" CPU within a given NUMA node. The basic
1603  * idea here is to provide a way to somehow associate work with a given
1604  * NUMA node.
1605  *
1606  * This function will only make a best effort attempt at getting this onto
1607  * the right NUMA node. If no node is requested or the requested node is
1608  * offline then we just fall back to standard queue_work behavior.
1609  *
1610  * Currently the "random" CPU ends up being the first available CPU in the
1611  * intersection of cpu_online_mask and the cpumask of the node, unless we
1612  * are running on the node. In that case we just use the current CPU.
1613  *
1614  * Return: %false if @work was already on a queue, %true otherwise.
1615  */
1616 bool queue_work_node(int node, struct workqueue_struct *wq,
1617 		     struct work_struct *work)
1618 {
1619 	unsigned long flags;
1620 	bool ret = false;
1621 
1622 	/*
1623 	 * This current implementation is specific to unbound workqueues.
1624 	 * Specifically we only return the first available CPU for a given
1625 	 * node instead of cycling through individual CPUs within the node.
1626 	 *
1627 	 * If this is used with a per-cpu workqueue then the logic in
1628 	 * workqueue_select_cpu_near would need to be updated to allow for
1629 	 * some round robin type logic.
1630 	 */
1631 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1632 
1633 	local_irq_save(flags);
1634 
1635 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1636 		int cpu = workqueue_select_cpu_near(node);
1637 
1638 		__queue_work(cpu, wq, work);
1639 		ret = true;
1640 	}
1641 
1642 	local_irq_restore(flags);
1643 	return ret;
1644 }
1645 EXPORT_SYMBOL_GPL(queue_work_node);
1646 
1647 void delayed_work_timer_fn(struct timer_list *t)
1648 {
1649 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1650 
1651 	/* should have been called from irqsafe timer with irq already off */
1652 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1653 }
1654 EXPORT_SYMBOL(delayed_work_timer_fn);
1655 
1656 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1657 				struct delayed_work *dwork, unsigned long delay)
1658 {
1659 	struct timer_list *timer = &dwork->timer;
1660 	struct work_struct *work = &dwork->work;
1661 
1662 	WARN_ON_ONCE(!wq);
1663 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1664 	WARN_ON_ONCE(timer_pending(timer));
1665 	WARN_ON_ONCE(!list_empty(&work->entry));
1666 
1667 	/*
1668 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1669 	 * both optimization and correctness.  The earliest @timer can
1670 	 * expire is on the closest next tick and delayed_work users depend
1671 	 * on that there's no such delay when @delay is 0.
1672 	 */
1673 	if (!delay) {
1674 		__queue_work(cpu, wq, &dwork->work);
1675 		return;
1676 	}
1677 
1678 	dwork->wq = wq;
1679 	dwork->cpu = cpu;
1680 	timer->expires = jiffies + delay;
1681 
1682 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1683 		add_timer_on(timer, cpu);
1684 	else
1685 		add_timer(timer);
1686 }
1687 
1688 /**
1689  * queue_delayed_work_on - queue work on specific CPU after delay
1690  * @cpu: CPU number to execute work on
1691  * @wq: workqueue to use
1692  * @dwork: work to queue
1693  * @delay: number of jiffies to wait before queueing
1694  *
1695  * Return: %false if @work was already on a queue, %true otherwise.  If
1696  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1697  * execution.
1698  */
1699 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1700 			   struct delayed_work *dwork, unsigned long delay)
1701 {
1702 	struct work_struct *work = &dwork->work;
1703 	bool ret = false;
1704 	unsigned long flags;
1705 
1706 	/* read the comment in __queue_work() */
1707 	local_irq_save(flags);
1708 
1709 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1710 		__queue_delayed_work(cpu, wq, dwork, delay);
1711 		ret = true;
1712 	}
1713 
1714 	local_irq_restore(flags);
1715 	return ret;
1716 }
1717 EXPORT_SYMBOL(queue_delayed_work_on);
1718 
1719 /**
1720  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1721  * @cpu: CPU number to execute work on
1722  * @wq: workqueue to use
1723  * @dwork: work to queue
1724  * @delay: number of jiffies to wait before queueing
1725  *
1726  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1727  * modify @dwork's timer so that it expires after @delay.  If @delay is
1728  * zero, @work is guaranteed to be scheduled immediately regardless of its
1729  * current state.
1730  *
1731  * Return: %false if @dwork was idle and queued, %true if @dwork was
1732  * pending and its timer was modified.
1733  *
1734  * This function is safe to call from any context including IRQ handler.
1735  * See try_to_grab_pending() for details.
1736  */
1737 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1738 			 struct delayed_work *dwork, unsigned long delay)
1739 {
1740 	unsigned long flags;
1741 	int ret;
1742 
1743 	do {
1744 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1745 	} while (unlikely(ret == -EAGAIN));
1746 
1747 	if (likely(ret >= 0)) {
1748 		__queue_delayed_work(cpu, wq, dwork, delay);
1749 		local_irq_restore(flags);
1750 	}
1751 
1752 	/* -ENOENT from try_to_grab_pending() becomes %true */
1753 	return ret;
1754 }
1755 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1756 
1757 static void rcu_work_rcufn(struct rcu_head *rcu)
1758 {
1759 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1760 
1761 	/* read the comment in __queue_work() */
1762 	local_irq_disable();
1763 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1764 	local_irq_enable();
1765 }
1766 
1767 /**
1768  * queue_rcu_work - queue work after a RCU grace period
1769  * @wq: workqueue to use
1770  * @rwork: work to queue
1771  *
1772  * Return: %false if @rwork was already pending, %true otherwise.  Note
1773  * that a full RCU grace period is guaranteed only after a %true return.
1774  * While @rwork is guaranteed to be executed after a %false return, the
1775  * execution may happen before a full RCU grace period has passed.
1776  */
1777 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1778 {
1779 	struct work_struct *work = &rwork->work;
1780 
1781 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1782 		rwork->wq = wq;
1783 		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
1784 		return true;
1785 	}
1786 
1787 	return false;
1788 }
1789 EXPORT_SYMBOL(queue_rcu_work);
1790 
1791 /**
1792  * worker_enter_idle - enter idle state
1793  * @worker: worker which is entering idle state
1794  *
1795  * @worker is entering idle state.  Update stats and idle timer if
1796  * necessary.
1797  *
1798  * LOCKING:
1799  * raw_spin_lock_irq(pool->lock).
1800  */
1801 static void worker_enter_idle(struct worker *worker)
1802 {
1803 	struct worker_pool *pool = worker->pool;
1804 
1805 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1806 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1807 			 (worker->hentry.next || worker->hentry.pprev)))
1808 		return;
1809 
1810 	/* can't use worker_set_flags(), also called from create_worker() */
1811 	worker->flags |= WORKER_IDLE;
1812 	pool->nr_idle++;
1813 	worker->last_active = jiffies;
1814 
1815 	/* idle_list is LIFO */
1816 	list_add(&worker->entry, &pool->idle_list);
1817 
1818 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1819 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1820 
1821 	/* Sanity check nr_running. */
1822 	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1823 }
1824 
1825 /**
1826  * worker_leave_idle - leave idle state
1827  * @worker: worker which is leaving idle state
1828  *
1829  * @worker is leaving idle state.  Update stats.
1830  *
1831  * LOCKING:
1832  * raw_spin_lock_irq(pool->lock).
1833  */
1834 static void worker_leave_idle(struct worker *worker)
1835 {
1836 	struct worker_pool *pool = worker->pool;
1837 
1838 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1839 		return;
1840 	worker_clr_flags(worker, WORKER_IDLE);
1841 	pool->nr_idle--;
1842 	list_del_init(&worker->entry);
1843 }
1844 
1845 static struct worker *alloc_worker(int node)
1846 {
1847 	struct worker *worker;
1848 
1849 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1850 	if (worker) {
1851 		INIT_LIST_HEAD(&worker->entry);
1852 		INIT_LIST_HEAD(&worker->scheduled);
1853 		INIT_LIST_HEAD(&worker->node);
1854 		/* on creation a worker is in !idle && prep state */
1855 		worker->flags = WORKER_PREP;
1856 	}
1857 	return worker;
1858 }
1859 
1860 /**
1861  * worker_attach_to_pool() - attach a worker to a pool
1862  * @worker: worker to be attached
1863  * @pool: the target pool
1864  *
1865  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1866  * cpu-binding of @worker are kept coordinated with the pool across
1867  * cpu-[un]hotplugs.
1868  */
1869 static void worker_attach_to_pool(struct worker *worker,
1870 				   struct worker_pool *pool)
1871 {
1872 	mutex_lock(&wq_pool_attach_mutex);
1873 
1874 	/*
1875 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1876 	 * stable across this function.  See the comments above the flag
1877 	 * definition for details.
1878 	 */
1879 	if (pool->flags & POOL_DISASSOCIATED)
1880 		worker->flags |= WORKER_UNBOUND;
1881 	else
1882 		kthread_set_per_cpu(worker->task, pool->cpu);
1883 
1884 	if (worker->rescue_wq)
1885 		set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1886 
1887 	list_add_tail(&worker->node, &pool->workers);
1888 	worker->pool = pool;
1889 
1890 	mutex_unlock(&wq_pool_attach_mutex);
1891 }
1892 
1893 /**
1894  * worker_detach_from_pool() - detach a worker from its pool
1895  * @worker: worker which is attached to its pool
1896  *
1897  * Undo the attaching which had been done in worker_attach_to_pool().  The
1898  * caller worker shouldn't access to the pool after detached except it has
1899  * other reference to the pool.
1900  */
1901 static void worker_detach_from_pool(struct worker *worker)
1902 {
1903 	struct worker_pool *pool = worker->pool;
1904 	struct completion *detach_completion = NULL;
1905 
1906 	mutex_lock(&wq_pool_attach_mutex);
1907 
1908 	kthread_set_per_cpu(worker->task, -1);
1909 	list_del(&worker->node);
1910 	worker->pool = NULL;
1911 
1912 	if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
1913 		detach_completion = pool->detach_completion;
1914 	mutex_unlock(&wq_pool_attach_mutex);
1915 
1916 	/* clear leftover flags without pool->lock after it is detached */
1917 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1918 
1919 	if (detach_completion)
1920 		complete(detach_completion);
1921 }
1922 
1923 /**
1924  * create_worker - create a new workqueue worker
1925  * @pool: pool the new worker will belong to
1926  *
1927  * Create and start a new worker which is attached to @pool.
1928  *
1929  * CONTEXT:
1930  * Might sleep.  Does GFP_KERNEL allocations.
1931  *
1932  * Return:
1933  * Pointer to the newly created worker.
1934  */
1935 static struct worker *create_worker(struct worker_pool *pool)
1936 {
1937 	struct worker *worker;
1938 	int id;
1939 	char id_buf[16];
1940 
1941 	/* ID is needed to determine kthread name */
1942 	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
1943 	if (id < 0) {
1944 		pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
1945 			    ERR_PTR(id));
1946 		return NULL;
1947 	}
1948 
1949 	worker = alloc_worker(pool->node);
1950 	if (!worker) {
1951 		pr_err_once("workqueue: Failed to allocate a worker\n");
1952 		goto fail;
1953 	}
1954 
1955 	worker->id = id;
1956 
1957 	if (pool->cpu >= 0)
1958 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1959 			 pool->attrs->nice < 0  ? "H" : "");
1960 	else
1961 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1962 
1963 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1964 					      "kworker/%s", id_buf);
1965 	if (IS_ERR(worker->task)) {
1966 		if (PTR_ERR(worker->task) == -EINTR) {
1967 			pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
1968 			       id_buf);
1969 		} else {
1970 			pr_err_once("workqueue: Failed to create a worker thread: %pe",
1971 				    worker->task);
1972 		}
1973 		goto fail;
1974 	}
1975 
1976 	set_user_nice(worker->task, pool->attrs->nice);
1977 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1978 
1979 	/* successful, attach the worker to the pool */
1980 	worker_attach_to_pool(worker, pool);
1981 
1982 	/* start the newly created worker */
1983 	raw_spin_lock_irq(&pool->lock);
1984 	worker->pool->nr_workers++;
1985 	worker_enter_idle(worker);
1986 	wake_up_process(worker->task);
1987 	raw_spin_unlock_irq(&pool->lock);
1988 
1989 	return worker;
1990 
1991 fail:
1992 	ida_free(&pool->worker_ida, id);
1993 	kfree(worker);
1994 	return NULL;
1995 }
1996 
1997 static void unbind_worker(struct worker *worker)
1998 {
1999 	lockdep_assert_held(&wq_pool_attach_mutex);
2000 
2001 	kthread_set_per_cpu(worker->task, -1);
2002 	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2003 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2004 	else
2005 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2006 }
2007 
2008 static void wake_dying_workers(struct list_head *cull_list)
2009 {
2010 	struct worker *worker, *tmp;
2011 
2012 	list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2013 		list_del_init(&worker->entry);
2014 		unbind_worker(worker);
2015 		/*
2016 		 * If the worker was somehow already running, then it had to be
2017 		 * in pool->idle_list when set_worker_dying() happened or we
2018 		 * wouldn't have gotten here.
2019 		 *
2020 		 * Thus, the worker must either have observed the WORKER_DIE
2021 		 * flag, or have set its state to TASK_IDLE. Either way, the
2022 		 * below will be observed by the worker and is safe to do
2023 		 * outside of pool->lock.
2024 		 */
2025 		wake_up_process(worker->task);
2026 	}
2027 }
2028 
2029 /**
2030  * set_worker_dying - Tag a worker for destruction
2031  * @worker: worker to be destroyed
2032  * @list: transfer worker away from its pool->idle_list and into list
2033  *
2034  * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
2035  * should be idle.
2036  *
2037  * CONTEXT:
2038  * raw_spin_lock_irq(pool->lock).
2039  */
2040 static void set_worker_dying(struct worker *worker, struct list_head *list)
2041 {
2042 	struct worker_pool *pool = worker->pool;
2043 
2044 	lockdep_assert_held(&pool->lock);
2045 	lockdep_assert_held(&wq_pool_attach_mutex);
2046 
2047 	/* sanity check frenzy */
2048 	if (WARN_ON(worker->current_work) ||
2049 	    WARN_ON(!list_empty(&worker->scheduled)) ||
2050 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2051 		return;
2052 
2053 	pool->nr_workers--;
2054 	pool->nr_idle--;
2055 
2056 	worker->flags |= WORKER_DIE;
2057 
2058 	list_move(&worker->entry, list);
2059 	list_move(&worker->node, &pool->dying_workers);
2060 }
2061 
2062 /**
2063  * idle_worker_timeout - check if some idle workers can now be deleted.
2064  * @t: The pool's idle_timer that just expired
2065  *
2066  * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2067  * worker_leave_idle(), as a worker flicking between idle and active while its
2068  * pool is at the too_many_workers() tipping point would cause too much timer
2069  * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2070  * it expire and re-evaluate things from there.
2071  */
2072 static void idle_worker_timeout(struct timer_list *t)
2073 {
2074 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2075 	bool do_cull = false;
2076 
2077 	if (work_pending(&pool->idle_cull_work))
2078 		return;
2079 
2080 	raw_spin_lock_irq(&pool->lock);
2081 
2082 	if (too_many_workers(pool)) {
2083 		struct worker *worker;
2084 		unsigned long expires;
2085 
2086 		/* idle_list is kept in LIFO order, check the last one */
2087 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2088 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2089 		do_cull = !time_before(jiffies, expires);
2090 
2091 		if (!do_cull)
2092 			mod_timer(&pool->idle_timer, expires);
2093 	}
2094 	raw_spin_unlock_irq(&pool->lock);
2095 
2096 	if (do_cull)
2097 		queue_work(system_unbound_wq, &pool->idle_cull_work);
2098 }
2099 
2100 /**
2101  * idle_cull_fn - cull workers that have been idle for too long.
2102  * @work: the pool's work for handling these idle workers
2103  *
2104  * This goes through a pool's idle workers and gets rid of those that have been
2105  * idle for at least IDLE_WORKER_TIMEOUT seconds.
2106  *
2107  * We don't want to disturb isolated CPUs because of a pcpu kworker being
2108  * culled, so this also resets worker affinity. This requires a sleepable
2109  * context, hence the split between timer callback and work item.
2110  */
2111 static void idle_cull_fn(struct work_struct *work)
2112 {
2113 	struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2114 	struct list_head cull_list;
2115 
2116 	INIT_LIST_HEAD(&cull_list);
2117 	/*
2118 	 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2119 	 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
2120 	 * path. This is required as a previously-preempted worker could run after
2121 	 * set_worker_dying() has happened but before wake_dying_workers() did.
2122 	 */
2123 	mutex_lock(&wq_pool_attach_mutex);
2124 	raw_spin_lock_irq(&pool->lock);
2125 
2126 	while (too_many_workers(pool)) {
2127 		struct worker *worker;
2128 		unsigned long expires;
2129 
2130 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2131 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2132 
2133 		if (time_before(jiffies, expires)) {
2134 			mod_timer(&pool->idle_timer, expires);
2135 			break;
2136 		}
2137 
2138 		set_worker_dying(worker, &cull_list);
2139 	}
2140 
2141 	raw_spin_unlock_irq(&pool->lock);
2142 	wake_dying_workers(&cull_list);
2143 	mutex_unlock(&wq_pool_attach_mutex);
2144 }
2145 
2146 static void send_mayday(struct work_struct *work)
2147 {
2148 	struct pool_workqueue *pwq = get_work_pwq(work);
2149 	struct workqueue_struct *wq = pwq->wq;
2150 
2151 	lockdep_assert_held(&wq_mayday_lock);
2152 
2153 	if (!wq->rescuer)
2154 		return;
2155 
2156 	/* mayday mayday mayday */
2157 	if (list_empty(&pwq->mayday_node)) {
2158 		/*
2159 		 * If @pwq is for an unbound wq, its base ref may be put at
2160 		 * any time due to an attribute change.  Pin @pwq until the
2161 		 * rescuer is done with it.
2162 		 */
2163 		get_pwq(pwq);
2164 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2165 		wake_up_process(wq->rescuer->task);
2166 	}
2167 }
2168 
2169 static void pool_mayday_timeout(struct timer_list *t)
2170 {
2171 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2172 	struct work_struct *work;
2173 
2174 	raw_spin_lock_irq(&pool->lock);
2175 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2176 
2177 	if (need_to_create_worker(pool)) {
2178 		/*
2179 		 * We've been trying to create a new worker but
2180 		 * haven't been successful.  We might be hitting an
2181 		 * allocation deadlock.  Send distress signals to
2182 		 * rescuers.
2183 		 */
2184 		list_for_each_entry(work, &pool->worklist, entry)
2185 			send_mayday(work);
2186 	}
2187 
2188 	raw_spin_unlock(&wq_mayday_lock);
2189 	raw_spin_unlock_irq(&pool->lock);
2190 
2191 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2192 }
2193 
2194 /**
2195  * maybe_create_worker - create a new worker if necessary
2196  * @pool: pool to create a new worker for
2197  *
2198  * Create a new worker for @pool if necessary.  @pool is guaranteed to
2199  * have at least one idle worker on return from this function.  If
2200  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2201  * sent to all rescuers with works scheduled on @pool to resolve
2202  * possible allocation deadlock.
2203  *
2204  * On return, need_to_create_worker() is guaranteed to be %false and
2205  * may_start_working() %true.
2206  *
2207  * LOCKING:
2208  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2209  * multiple times.  Does GFP_KERNEL allocations.  Called only from
2210  * manager.
2211  */
2212 static void maybe_create_worker(struct worker_pool *pool)
2213 __releases(&pool->lock)
2214 __acquires(&pool->lock)
2215 {
2216 restart:
2217 	raw_spin_unlock_irq(&pool->lock);
2218 
2219 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2220 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2221 
2222 	while (true) {
2223 		if (create_worker(pool) || !need_to_create_worker(pool))
2224 			break;
2225 
2226 		schedule_timeout_interruptible(CREATE_COOLDOWN);
2227 
2228 		if (!need_to_create_worker(pool))
2229 			break;
2230 	}
2231 
2232 	del_timer_sync(&pool->mayday_timer);
2233 	raw_spin_lock_irq(&pool->lock);
2234 	/*
2235 	 * This is necessary even after a new worker was just successfully
2236 	 * created as @pool->lock was dropped and the new worker might have
2237 	 * already become busy.
2238 	 */
2239 	if (need_to_create_worker(pool))
2240 		goto restart;
2241 }
2242 
2243 /**
2244  * manage_workers - manage worker pool
2245  * @worker: self
2246  *
2247  * Assume the manager role and manage the worker pool @worker belongs
2248  * to.  At any given time, there can be only zero or one manager per
2249  * pool.  The exclusion is handled automatically by this function.
2250  *
2251  * The caller can safely start processing works on false return.  On
2252  * true return, it's guaranteed that need_to_create_worker() is false
2253  * and may_start_working() is true.
2254  *
2255  * CONTEXT:
2256  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2257  * multiple times.  Does GFP_KERNEL allocations.
2258  *
2259  * Return:
2260  * %false if the pool doesn't need management and the caller can safely
2261  * start processing works, %true if management function was performed and
2262  * the conditions that the caller verified before calling the function may
2263  * no longer be true.
2264  */
2265 static bool manage_workers(struct worker *worker)
2266 {
2267 	struct worker_pool *pool = worker->pool;
2268 
2269 	if (pool->flags & POOL_MANAGER_ACTIVE)
2270 		return false;
2271 
2272 	pool->flags |= POOL_MANAGER_ACTIVE;
2273 	pool->manager = worker;
2274 
2275 	maybe_create_worker(pool);
2276 
2277 	pool->manager = NULL;
2278 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2279 	rcuwait_wake_up(&manager_wait);
2280 	return true;
2281 }
2282 
2283 /**
2284  * process_one_work - process single work
2285  * @worker: self
2286  * @work: work to process
2287  *
2288  * Process @work.  This function contains all the logics necessary to
2289  * process a single work including synchronization against and
2290  * interaction with other workers on the same cpu, queueing and
2291  * flushing.  As long as context requirement is met, any worker can
2292  * call this function to process a work.
2293  *
2294  * CONTEXT:
2295  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2296  */
2297 static void process_one_work(struct worker *worker, struct work_struct *work)
2298 __releases(&pool->lock)
2299 __acquires(&pool->lock)
2300 {
2301 	struct pool_workqueue *pwq = get_work_pwq(work);
2302 	struct worker_pool *pool = worker->pool;
2303 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2304 	unsigned long work_data;
2305 	struct worker *collision;
2306 #ifdef CONFIG_LOCKDEP
2307 	/*
2308 	 * It is permissible to free the struct work_struct from
2309 	 * inside the function that is called from it, this we need to
2310 	 * take into account for lockdep too.  To avoid bogus "held
2311 	 * lock freed" warnings as well as problems when looking into
2312 	 * work->lockdep_map, make a copy and use that here.
2313 	 */
2314 	struct lockdep_map lockdep_map;
2315 
2316 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2317 #endif
2318 	/* ensure we're on the correct CPU */
2319 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2320 		     raw_smp_processor_id() != pool->cpu);
2321 
2322 	/*
2323 	 * A single work shouldn't be executed concurrently by
2324 	 * multiple workers on a single cpu.  Check whether anyone is
2325 	 * already processing the work.  If so, defer the work to the
2326 	 * currently executing one.
2327 	 */
2328 	collision = find_worker_executing_work(pool, work);
2329 	if (unlikely(collision)) {
2330 		move_linked_works(work, &collision->scheduled, NULL);
2331 		return;
2332 	}
2333 
2334 	/* claim and dequeue */
2335 	debug_work_deactivate(work);
2336 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2337 	worker->current_work = work;
2338 	worker->current_func = work->func;
2339 	worker->current_pwq = pwq;
2340 	work_data = *work_data_bits(work);
2341 	worker->current_color = get_work_color(work_data);
2342 
2343 	/*
2344 	 * Record wq name for cmdline and debug reporting, may get
2345 	 * overridden through set_worker_desc().
2346 	 */
2347 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2348 
2349 	list_del_init(&work->entry);
2350 
2351 	/*
2352 	 * CPU intensive works don't participate in concurrency management.
2353 	 * They're the scheduler's responsibility.  This takes @worker out
2354 	 * of concurrency management and the next code block will chain
2355 	 * execution of the pending work items.
2356 	 */
2357 	if (unlikely(cpu_intensive))
2358 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2359 
2360 	/*
2361 	 * Wake up another worker if necessary.  The condition is always
2362 	 * false for normal per-cpu workers since nr_running would always
2363 	 * be >= 1 at this point.  This is used to chain execution of the
2364 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2365 	 * UNBOUND and CPU_INTENSIVE ones.
2366 	 */
2367 	if (need_more_worker(pool))
2368 		wake_up_worker(pool);
2369 
2370 	/*
2371 	 * Record the last pool and clear PENDING which should be the last
2372 	 * update to @work.  Also, do this inside @pool->lock so that
2373 	 * PENDING and queued state changes happen together while IRQ is
2374 	 * disabled.
2375 	 */
2376 	set_work_pool_and_clear_pending(work, pool->id);
2377 
2378 	raw_spin_unlock_irq(&pool->lock);
2379 
2380 	lock_map_acquire(&pwq->wq->lockdep_map);
2381 	lock_map_acquire(&lockdep_map);
2382 	/*
2383 	 * Strictly speaking we should mark the invariant state without holding
2384 	 * any locks, that is, before these two lock_map_acquire()'s.
2385 	 *
2386 	 * However, that would result in:
2387 	 *
2388 	 *   A(W1)
2389 	 *   WFC(C)
2390 	 *		A(W1)
2391 	 *		C(C)
2392 	 *
2393 	 * Which would create W1->C->W1 dependencies, even though there is no
2394 	 * actual deadlock possible. There are two solutions, using a
2395 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2396 	 * hit the lockdep limitation on recursive locks, or simply discard
2397 	 * these locks.
2398 	 *
2399 	 * AFAICT there is no possible deadlock scenario between the
2400 	 * flush_work() and complete() primitives (except for single-threaded
2401 	 * workqueues), so hiding them isn't a problem.
2402 	 */
2403 	lockdep_invariant_state(true);
2404 	trace_workqueue_execute_start(work);
2405 	worker->current_func(work);
2406 	/*
2407 	 * While we must be careful to not use "work" after this, the trace
2408 	 * point will only record its address.
2409 	 */
2410 	trace_workqueue_execute_end(work, worker->current_func);
2411 	lock_map_release(&lockdep_map);
2412 	lock_map_release(&pwq->wq->lockdep_map);
2413 
2414 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2415 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2416 		       "     last function: %ps\n",
2417 		       current->comm, preempt_count(), task_pid_nr(current),
2418 		       worker->current_func);
2419 		debug_show_held_locks(current);
2420 		dump_stack();
2421 	}
2422 
2423 	/*
2424 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
2425 	 * kernels, where a requeueing work item waiting for something to
2426 	 * happen could deadlock with stop_machine as such work item could
2427 	 * indefinitely requeue itself while all other CPUs are trapped in
2428 	 * stop_machine. At the same time, report a quiescent RCU state so
2429 	 * the same condition doesn't freeze RCU.
2430 	 */
2431 	cond_resched();
2432 
2433 	raw_spin_lock_irq(&pool->lock);
2434 
2435 	/* clear cpu intensive status */
2436 	if (unlikely(cpu_intensive))
2437 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2438 
2439 	/* tag the worker for identification in schedule() */
2440 	worker->last_func = worker->current_func;
2441 
2442 	/* we're done with it, release */
2443 	hash_del(&worker->hentry);
2444 	worker->current_work = NULL;
2445 	worker->current_func = NULL;
2446 	worker->current_pwq = NULL;
2447 	worker->current_color = INT_MAX;
2448 	pwq_dec_nr_in_flight(pwq, work_data);
2449 }
2450 
2451 /**
2452  * process_scheduled_works - process scheduled works
2453  * @worker: self
2454  *
2455  * Process all scheduled works.  Please note that the scheduled list
2456  * may change while processing a work, so this function repeatedly
2457  * fetches a work from the top and executes it.
2458  *
2459  * CONTEXT:
2460  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2461  * multiple times.
2462  */
2463 static void process_scheduled_works(struct worker *worker)
2464 {
2465 	while (!list_empty(&worker->scheduled)) {
2466 		struct work_struct *work = list_first_entry(&worker->scheduled,
2467 						struct work_struct, entry);
2468 		process_one_work(worker, work);
2469 	}
2470 }
2471 
2472 static void set_pf_worker(bool val)
2473 {
2474 	mutex_lock(&wq_pool_attach_mutex);
2475 	if (val)
2476 		current->flags |= PF_WQ_WORKER;
2477 	else
2478 		current->flags &= ~PF_WQ_WORKER;
2479 	mutex_unlock(&wq_pool_attach_mutex);
2480 }
2481 
2482 /**
2483  * worker_thread - the worker thread function
2484  * @__worker: self
2485  *
2486  * The worker thread function.  All workers belong to a worker_pool -
2487  * either a per-cpu one or dynamic unbound one.  These workers process all
2488  * work items regardless of their specific target workqueue.  The only
2489  * exception is work items which belong to workqueues with a rescuer which
2490  * will be explained in rescuer_thread().
2491  *
2492  * Return: 0
2493  */
2494 static int worker_thread(void *__worker)
2495 {
2496 	struct worker *worker = __worker;
2497 	struct worker_pool *pool = worker->pool;
2498 
2499 	/* tell the scheduler that this is a workqueue worker */
2500 	set_pf_worker(true);
2501 woke_up:
2502 	raw_spin_lock_irq(&pool->lock);
2503 
2504 	/* am I supposed to die? */
2505 	if (unlikely(worker->flags & WORKER_DIE)) {
2506 		raw_spin_unlock_irq(&pool->lock);
2507 		set_pf_worker(false);
2508 
2509 		set_task_comm(worker->task, "kworker/dying");
2510 		ida_free(&pool->worker_ida, worker->id);
2511 		worker_detach_from_pool(worker);
2512 		WARN_ON_ONCE(!list_empty(&worker->entry));
2513 		kfree(worker);
2514 		return 0;
2515 	}
2516 
2517 	worker_leave_idle(worker);
2518 recheck:
2519 	/* no more worker necessary? */
2520 	if (!need_more_worker(pool))
2521 		goto sleep;
2522 
2523 	/* do we need to manage? */
2524 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2525 		goto recheck;
2526 
2527 	/*
2528 	 * ->scheduled list can only be filled while a worker is
2529 	 * preparing to process a work or actually processing it.
2530 	 * Make sure nobody diddled with it while I was sleeping.
2531 	 */
2532 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2533 
2534 	/*
2535 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2536 	 * worker or that someone else has already assumed the manager
2537 	 * role.  This is where @worker starts participating in concurrency
2538 	 * management if applicable and concurrency management is restored
2539 	 * after being rebound.  See rebind_workers() for details.
2540 	 */
2541 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2542 
2543 	do {
2544 		struct work_struct *work =
2545 			list_first_entry(&pool->worklist,
2546 					 struct work_struct, entry);
2547 
2548 		pool->watchdog_ts = jiffies;
2549 
2550 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2551 			/* optimization path, not strictly necessary */
2552 			process_one_work(worker, work);
2553 			if (unlikely(!list_empty(&worker->scheduled)))
2554 				process_scheduled_works(worker);
2555 		} else {
2556 			move_linked_works(work, &worker->scheduled, NULL);
2557 			process_scheduled_works(worker);
2558 		}
2559 	} while (keep_working(pool));
2560 
2561 	worker_set_flags(worker, WORKER_PREP);
2562 sleep:
2563 	/*
2564 	 * pool->lock is held and there's no work to process and no need to
2565 	 * manage, sleep.  Workers are woken up only while holding
2566 	 * pool->lock or from local cpu, so setting the current state
2567 	 * before releasing pool->lock is enough to prevent losing any
2568 	 * event.
2569 	 */
2570 	worker_enter_idle(worker);
2571 	__set_current_state(TASK_IDLE);
2572 	raw_spin_unlock_irq(&pool->lock);
2573 	schedule();
2574 	goto woke_up;
2575 }
2576 
2577 /**
2578  * rescuer_thread - the rescuer thread function
2579  * @__rescuer: self
2580  *
2581  * Workqueue rescuer thread function.  There's one rescuer for each
2582  * workqueue which has WQ_MEM_RECLAIM set.
2583  *
2584  * Regular work processing on a pool may block trying to create a new
2585  * worker which uses GFP_KERNEL allocation which has slight chance of
2586  * developing into deadlock if some works currently on the same queue
2587  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2588  * the problem rescuer solves.
2589  *
2590  * When such condition is possible, the pool summons rescuers of all
2591  * workqueues which have works queued on the pool and let them process
2592  * those works so that forward progress can be guaranteed.
2593  *
2594  * This should happen rarely.
2595  *
2596  * Return: 0
2597  */
2598 static int rescuer_thread(void *__rescuer)
2599 {
2600 	struct worker *rescuer = __rescuer;
2601 	struct workqueue_struct *wq = rescuer->rescue_wq;
2602 	struct list_head *scheduled = &rescuer->scheduled;
2603 	bool should_stop;
2604 
2605 	set_user_nice(current, RESCUER_NICE_LEVEL);
2606 
2607 	/*
2608 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2609 	 * doesn't participate in concurrency management.
2610 	 */
2611 	set_pf_worker(true);
2612 repeat:
2613 	set_current_state(TASK_IDLE);
2614 
2615 	/*
2616 	 * By the time the rescuer is requested to stop, the workqueue
2617 	 * shouldn't have any work pending, but @wq->maydays may still have
2618 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2619 	 * all the work items before the rescuer got to them.  Go through
2620 	 * @wq->maydays processing before acting on should_stop so that the
2621 	 * list is always empty on exit.
2622 	 */
2623 	should_stop = kthread_should_stop();
2624 
2625 	/* see whether any pwq is asking for help */
2626 	raw_spin_lock_irq(&wq_mayday_lock);
2627 
2628 	while (!list_empty(&wq->maydays)) {
2629 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2630 					struct pool_workqueue, mayday_node);
2631 		struct worker_pool *pool = pwq->pool;
2632 		struct work_struct *work, *n;
2633 		bool first = true;
2634 
2635 		__set_current_state(TASK_RUNNING);
2636 		list_del_init(&pwq->mayday_node);
2637 
2638 		raw_spin_unlock_irq(&wq_mayday_lock);
2639 
2640 		worker_attach_to_pool(rescuer, pool);
2641 
2642 		raw_spin_lock_irq(&pool->lock);
2643 
2644 		/*
2645 		 * Slurp in all works issued via this workqueue and
2646 		 * process'em.
2647 		 */
2648 		WARN_ON_ONCE(!list_empty(scheduled));
2649 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2650 			if (get_work_pwq(work) == pwq) {
2651 				if (first)
2652 					pool->watchdog_ts = jiffies;
2653 				move_linked_works(work, scheduled, &n);
2654 			}
2655 			first = false;
2656 		}
2657 
2658 		if (!list_empty(scheduled)) {
2659 			process_scheduled_works(rescuer);
2660 
2661 			/*
2662 			 * The above execution of rescued work items could
2663 			 * have created more to rescue through
2664 			 * pwq_activate_first_inactive() or chained
2665 			 * queueing.  Let's put @pwq back on mayday list so
2666 			 * that such back-to-back work items, which may be
2667 			 * being used to relieve memory pressure, don't
2668 			 * incur MAYDAY_INTERVAL delay inbetween.
2669 			 */
2670 			if (pwq->nr_active && need_to_create_worker(pool)) {
2671 				raw_spin_lock(&wq_mayday_lock);
2672 				/*
2673 				 * Queue iff we aren't racing destruction
2674 				 * and somebody else hasn't queued it already.
2675 				 */
2676 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2677 					get_pwq(pwq);
2678 					list_add_tail(&pwq->mayday_node, &wq->maydays);
2679 				}
2680 				raw_spin_unlock(&wq_mayday_lock);
2681 			}
2682 		}
2683 
2684 		/*
2685 		 * Put the reference grabbed by send_mayday().  @pool won't
2686 		 * go away while we're still attached to it.
2687 		 */
2688 		put_pwq(pwq);
2689 
2690 		/*
2691 		 * Leave this pool.  If need_more_worker() is %true, notify a
2692 		 * regular worker; otherwise, we end up with 0 concurrency
2693 		 * and stalling the execution.
2694 		 */
2695 		if (need_more_worker(pool))
2696 			wake_up_worker(pool);
2697 
2698 		raw_spin_unlock_irq(&pool->lock);
2699 
2700 		worker_detach_from_pool(rescuer);
2701 
2702 		raw_spin_lock_irq(&wq_mayday_lock);
2703 	}
2704 
2705 	raw_spin_unlock_irq(&wq_mayday_lock);
2706 
2707 	if (should_stop) {
2708 		__set_current_state(TASK_RUNNING);
2709 		set_pf_worker(false);
2710 		return 0;
2711 	}
2712 
2713 	/* rescuers should never participate in concurrency management */
2714 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2715 	schedule();
2716 	goto repeat;
2717 }
2718 
2719 /**
2720  * check_flush_dependency - check for flush dependency sanity
2721  * @target_wq: workqueue being flushed
2722  * @target_work: work item being flushed (NULL for workqueue flushes)
2723  *
2724  * %current is trying to flush the whole @target_wq or @target_work on it.
2725  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2726  * reclaiming memory or running on a workqueue which doesn't have
2727  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2728  * a deadlock.
2729  */
2730 static void check_flush_dependency(struct workqueue_struct *target_wq,
2731 				   struct work_struct *target_work)
2732 {
2733 	work_func_t target_func = target_work ? target_work->func : NULL;
2734 	struct worker *worker;
2735 
2736 	if (target_wq->flags & WQ_MEM_RECLAIM)
2737 		return;
2738 
2739 	worker = current_wq_worker();
2740 
2741 	WARN_ONCE(current->flags & PF_MEMALLOC,
2742 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2743 		  current->pid, current->comm, target_wq->name, target_func);
2744 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2745 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2746 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2747 		  worker->current_pwq->wq->name, worker->current_func,
2748 		  target_wq->name, target_func);
2749 }
2750 
2751 struct wq_barrier {
2752 	struct work_struct	work;
2753 	struct completion	done;
2754 	struct task_struct	*task;	/* purely informational */
2755 };
2756 
2757 static void wq_barrier_func(struct work_struct *work)
2758 {
2759 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2760 	complete(&barr->done);
2761 }
2762 
2763 /**
2764  * insert_wq_barrier - insert a barrier work
2765  * @pwq: pwq to insert barrier into
2766  * @barr: wq_barrier to insert
2767  * @target: target work to attach @barr to
2768  * @worker: worker currently executing @target, NULL if @target is not executing
2769  *
2770  * @barr is linked to @target such that @barr is completed only after
2771  * @target finishes execution.  Please note that the ordering
2772  * guarantee is observed only with respect to @target and on the local
2773  * cpu.
2774  *
2775  * Currently, a queued barrier can't be canceled.  This is because
2776  * try_to_grab_pending() can't determine whether the work to be
2777  * grabbed is at the head of the queue and thus can't clear LINKED
2778  * flag of the previous work while there must be a valid next work
2779  * after a work with LINKED flag set.
2780  *
2781  * Note that when @worker is non-NULL, @target may be modified
2782  * underneath us, so we can't reliably determine pwq from @target.
2783  *
2784  * CONTEXT:
2785  * raw_spin_lock_irq(pool->lock).
2786  */
2787 static void insert_wq_barrier(struct pool_workqueue *pwq,
2788 			      struct wq_barrier *barr,
2789 			      struct work_struct *target, struct worker *worker)
2790 {
2791 	unsigned int work_flags = 0;
2792 	unsigned int work_color;
2793 	struct list_head *head;
2794 
2795 	/*
2796 	 * debugobject calls are safe here even with pool->lock locked
2797 	 * as we know for sure that this will not trigger any of the
2798 	 * checks and call back into the fixup functions where we
2799 	 * might deadlock.
2800 	 */
2801 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2802 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2803 
2804 	init_completion_map(&barr->done, &target->lockdep_map);
2805 
2806 	barr->task = current;
2807 
2808 	/* The barrier work item does not participate in pwq->nr_active. */
2809 	work_flags |= WORK_STRUCT_INACTIVE;
2810 
2811 	/*
2812 	 * If @target is currently being executed, schedule the
2813 	 * barrier to the worker; otherwise, put it after @target.
2814 	 */
2815 	if (worker) {
2816 		head = worker->scheduled.next;
2817 		work_color = worker->current_color;
2818 	} else {
2819 		unsigned long *bits = work_data_bits(target);
2820 
2821 		head = target->entry.next;
2822 		/* there can already be other linked works, inherit and set */
2823 		work_flags |= *bits & WORK_STRUCT_LINKED;
2824 		work_color = get_work_color(*bits);
2825 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2826 	}
2827 
2828 	pwq->nr_in_flight[work_color]++;
2829 	work_flags |= work_color_to_flags(work_color);
2830 
2831 	debug_work_activate(&barr->work);
2832 	insert_work(pwq, &barr->work, head, work_flags);
2833 }
2834 
2835 /**
2836  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2837  * @wq: workqueue being flushed
2838  * @flush_color: new flush color, < 0 for no-op
2839  * @work_color: new work color, < 0 for no-op
2840  *
2841  * Prepare pwqs for workqueue flushing.
2842  *
2843  * If @flush_color is non-negative, flush_color on all pwqs should be
2844  * -1.  If no pwq has in-flight commands at the specified color, all
2845  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2846  * has in flight commands, its pwq->flush_color is set to
2847  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2848  * wakeup logic is armed and %true is returned.
2849  *
2850  * The caller should have initialized @wq->first_flusher prior to
2851  * calling this function with non-negative @flush_color.  If
2852  * @flush_color is negative, no flush color update is done and %false
2853  * is returned.
2854  *
2855  * If @work_color is non-negative, all pwqs should have the same
2856  * work_color which is previous to @work_color and all will be
2857  * advanced to @work_color.
2858  *
2859  * CONTEXT:
2860  * mutex_lock(wq->mutex).
2861  *
2862  * Return:
2863  * %true if @flush_color >= 0 and there's something to flush.  %false
2864  * otherwise.
2865  */
2866 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2867 				      int flush_color, int work_color)
2868 {
2869 	bool wait = false;
2870 	struct pool_workqueue *pwq;
2871 
2872 	if (flush_color >= 0) {
2873 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2874 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2875 	}
2876 
2877 	for_each_pwq(pwq, wq) {
2878 		struct worker_pool *pool = pwq->pool;
2879 
2880 		raw_spin_lock_irq(&pool->lock);
2881 
2882 		if (flush_color >= 0) {
2883 			WARN_ON_ONCE(pwq->flush_color != -1);
2884 
2885 			if (pwq->nr_in_flight[flush_color]) {
2886 				pwq->flush_color = flush_color;
2887 				atomic_inc(&wq->nr_pwqs_to_flush);
2888 				wait = true;
2889 			}
2890 		}
2891 
2892 		if (work_color >= 0) {
2893 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2894 			pwq->work_color = work_color;
2895 		}
2896 
2897 		raw_spin_unlock_irq(&pool->lock);
2898 	}
2899 
2900 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2901 		complete(&wq->first_flusher->done);
2902 
2903 	return wait;
2904 }
2905 
2906 /**
2907  * __flush_workqueue - ensure that any scheduled work has run to completion.
2908  * @wq: workqueue to flush
2909  *
2910  * This function sleeps until all work items which were queued on entry
2911  * have finished execution, but it is not livelocked by new incoming ones.
2912  */
2913 void __flush_workqueue(struct workqueue_struct *wq)
2914 {
2915 	struct wq_flusher this_flusher = {
2916 		.list = LIST_HEAD_INIT(this_flusher.list),
2917 		.flush_color = -1,
2918 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2919 	};
2920 	int next_color;
2921 
2922 	if (WARN_ON(!wq_online))
2923 		return;
2924 
2925 	lock_map_acquire(&wq->lockdep_map);
2926 	lock_map_release(&wq->lockdep_map);
2927 
2928 	mutex_lock(&wq->mutex);
2929 
2930 	/*
2931 	 * Start-to-wait phase
2932 	 */
2933 	next_color = work_next_color(wq->work_color);
2934 
2935 	if (next_color != wq->flush_color) {
2936 		/*
2937 		 * Color space is not full.  The current work_color
2938 		 * becomes our flush_color and work_color is advanced
2939 		 * by one.
2940 		 */
2941 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2942 		this_flusher.flush_color = wq->work_color;
2943 		wq->work_color = next_color;
2944 
2945 		if (!wq->first_flusher) {
2946 			/* no flush in progress, become the first flusher */
2947 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2948 
2949 			wq->first_flusher = &this_flusher;
2950 
2951 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2952 						       wq->work_color)) {
2953 				/* nothing to flush, done */
2954 				wq->flush_color = next_color;
2955 				wq->first_flusher = NULL;
2956 				goto out_unlock;
2957 			}
2958 		} else {
2959 			/* wait in queue */
2960 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2961 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2962 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2963 		}
2964 	} else {
2965 		/*
2966 		 * Oops, color space is full, wait on overflow queue.
2967 		 * The next flush completion will assign us
2968 		 * flush_color and transfer to flusher_queue.
2969 		 */
2970 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2971 	}
2972 
2973 	check_flush_dependency(wq, NULL);
2974 
2975 	mutex_unlock(&wq->mutex);
2976 
2977 	wait_for_completion(&this_flusher.done);
2978 
2979 	/*
2980 	 * Wake-up-and-cascade phase
2981 	 *
2982 	 * First flushers are responsible for cascading flushes and
2983 	 * handling overflow.  Non-first flushers can simply return.
2984 	 */
2985 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
2986 		return;
2987 
2988 	mutex_lock(&wq->mutex);
2989 
2990 	/* we might have raced, check again with mutex held */
2991 	if (wq->first_flusher != &this_flusher)
2992 		goto out_unlock;
2993 
2994 	WRITE_ONCE(wq->first_flusher, NULL);
2995 
2996 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2997 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2998 
2999 	while (true) {
3000 		struct wq_flusher *next, *tmp;
3001 
3002 		/* complete all the flushers sharing the current flush color */
3003 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
3004 			if (next->flush_color != wq->flush_color)
3005 				break;
3006 			list_del_init(&next->list);
3007 			complete(&next->done);
3008 		}
3009 
3010 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
3011 			     wq->flush_color != work_next_color(wq->work_color));
3012 
3013 		/* this flush_color is finished, advance by one */
3014 		wq->flush_color = work_next_color(wq->flush_color);
3015 
3016 		/* one color has been freed, handle overflow queue */
3017 		if (!list_empty(&wq->flusher_overflow)) {
3018 			/*
3019 			 * Assign the same color to all overflowed
3020 			 * flushers, advance work_color and append to
3021 			 * flusher_queue.  This is the start-to-wait
3022 			 * phase for these overflowed flushers.
3023 			 */
3024 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
3025 				tmp->flush_color = wq->work_color;
3026 
3027 			wq->work_color = work_next_color(wq->work_color);
3028 
3029 			list_splice_tail_init(&wq->flusher_overflow,
3030 					      &wq->flusher_queue);
3031 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3032 		}
3033 
3034 		if (list_empty(&wq->flusher_queue)) {
3035 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
3036 			break;
3037 		}
3038 
3039 		/*
3040 		 * Need to flush more colors.  Make the next flusher
3041 		 * the new first flusher and arm pwqs.
3042 		 */
3043 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
3044 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
3045 
3046 		list_del_init(&next->list);
3047 		wq->first_flusher = next;
3048 
3049 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
3050 			break;
3051 
3052 		/*
3053 		 * Meh... this color is already done, clear first
3054 		 * flusher and repeat cascading.
3055 		 */
3056 		wq->first_flusher = NULL;
3057 	}
3058 
3059 out_unlock:
3060 	mutex_unlock(&wq->mutex);
3061 }
3062 EXPORT_SYMBOL(__flush_workqueue);
3063 
3064 /**
3065  * drain_workqueue - drain a workqueue
3066  * @wq: workqueue to drain
3067  *
3068  * Wait until the workqueue becomes empty.  While draining is in progress,
3069  * only chain queueing is allowed.  IOW, only currently pending or running
3070  * work items on @wq can queue further work items on it.  @wq is flushed
3071  * repeatedly until it becomes empty.  The number of flushing is determined
3072  * by the depth of chaining and should be relatively short.  Whine if it
3073  * takes too long.
3074  */
3075 void drain_workqueue(struct workqueue_struct *wq)
3076 {
3077 	unsigned int flush_cnt = 0;
3078 	struct pool_workqueue *pwq;
3079 
3080 	/*
3081 	 * __queue_work() needs to test whether there are drainers, is much
3082 	 * hotter than drain_workqueue() and already looks at @wq->flags.
3083 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
3084 	 */
3085 	mutex_lock(&wq->mutex);
3086 	if (!wq->nr_drainers++)
3087 		wq->flags |= __WQ_DRAINING;
3088 	mutex_unlock(&wq->mutex);
3089 reflush:
3090 	__flush_workqueue(wq);
3091 
3092 	mutex_lock(&wq->mutex);
3093 
3094 	for_each_pwq(pwq, wq) {
3095 		bool drained;
3096 
3097 		raw_spin_lock_irq(&pwq->pool->lock);
3098 		drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
3099 		raw_spin_unlock_irq(&pwq->pool->lock);
3100 
3101 		if (drained)
3102 			continue;
3103 
3104 		if (++flush_cnt == 10 ||
3105 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
3106 			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3107 				wq->name, __func__, flush_cnt);
3108 
3109 		mutex_unlock(&wq->mutex);
3110 		goto reflush;
3111 	}
3112 
3113 	if (!--wq->nr_drainers)
3114 		wq->flags &= ~__WQ_DRAINING;
3115 	mutex_unlock(&wq->mutex);
3116 }
3117 EXPORT_SYMBOL_GPL(drain_workqueue);
3118 
3119 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3120 			     bool from_cancel)
3121 {
3122 	struct worker *worker = NULL;
3123 	struct worker_pool *pool;
3124 	struct pool_workqueue *pwq;
3125 
3126 	might_sleep();
3127 
3128 	rcu_read_lock();
3129 	pool = get_work_pool(work);
3130 	if (!pool) {
3131 		rcu_read_unlock();
3132 		return false;
3133 	}
3134 
3135 	raw_spin_lock_irq(&pool->lock);
3136 	/* see the comment in try_to_grab_pending() with the same code */
3137 	pwq = get_work_pwq(work);
3138 	if (pwq) {
3139 		if (unlikely(pwq->pool != pool))
3140 			goto already_gone;
3141 	} else {
3142 		worker = find_worker_executing_work(pool, work);
3143 		if (!worker)
3144 			goto already_gone;
3145 		pwq = worker->current_pwq;
3146 	}
3147 
3148 	check_flush_dependency(pwq->wq, work);
3149 
3150 	insert_wq_barrier(pwq, barr, work, worker);
3151 	raw_spin_unlock_irq(&pool->lock);
3152 
3153 	/*
3154 	 * Force a lock recursion deadlock when using flush_work() inside a
3155 	 * single-threaded or rescuer equipped workqueue.
3156 	 *
3157 	 * For single threaded workqueues the deadlock happens when the work
3158 	 * is after the work issuing the flush_work(). For rescuer equipped
3159 	 * workqueues the deadlock happens when the rescuer stalls, blocking
3160 	 * forward progress.
3161 	 */
3162 	if (!from_cancel &&
3163 	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3164 		lock_map_acquire(&pwq->wq->lockdep_map);
3165 		lock_map_release(&pwq->wq->lockdep_map);
3166 	}
3167 	rcu_read_unlock();
3168 	return true;
3169 already_gone:
3170 	raw_spin_unlock_irq(&pool->lock);
3171 	rcu_read_unlock();
3172 	return false;
3173 }
3174 
3175 static bool __flush_work(struct work_struct *work, bool from_cancel)
3176 {
3177 	struct wq_barrier barr;
3178 
3179 	if (WARN_ON(!wq_online))
3180 		return false;
3181 
3182 	if (WARN_ON(!work->func))
3183 		return false;
3184 
3185 	lock_map_acquire(&work->lockdep_map);
3186 	lock_map_release(&work->lockdep_map);
3187 
3188 	if (start_flush_work(work, &barr, from_cancel)) {
3189 		wait_for_completion(&barr.done);
3190 		destroy_work_on_stack(&barr.work);
3191 		return true;
3192 	} else {
3193 		return false;
3194 	}
3195 }
3196 
3197 /**
3198  * flush_work - wait for a work to finish executing the last queueing instance
3199  * @work: the work to flush
3200  *
3201  * Wait until @work has finished execution.  @work is guaranteed to be idle
3202  * on return if it hasn't been requeued since flush started.
3203  *
3204  * Return:
3205  * %true if flush_work() waited for the work to finish execution,
3206  * %false if it was already idle.
3207  */
3208 bool flush_work(struct work_struct *work)
3209 {
3210 	return __flush_work(work, false);
3211 }
3212 EXPORT_SYMBOL_GPL(flush_work);
3213 
3214 struct cwt_wait {
3215 	wait_queue_entry_t		wait;
3216 	struct work_struct	*work;
3217 };
3218 
3219 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3220 {
3221 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3222 
3223 	if (cwait->work != key)
3224 		return 0;
3225 	return autoremove_wake_function(wait, mode, sync, key);
3226 }
3227 
3228 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3229 {
3230 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3231 	unsigned long flags;
3232 	int ret;
3233 
3234 	do {
3235 		ret = try_to_grab_pending(work, is_dwork, &flags);
3236 		/*
3237 		 * If someone else is already canceling, wait for it to
3238 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3239 		 * because we may get scheduled between @work's completion
3240 		 * and the other canceling task resuming and clearing
3241 		 * CANCELING - flush_work() will return false immediately
3242 		 * as @work is no longer busy, try_to_grab_pending() will
3243 		 * return -ENOENT as @work is still being canceled and the
3244 		 * other canceling task won't be able to clear CANCELING as
3245 		 * we're hogging the CPU.
3246 		 *
3247 		 * Let's wait for completion using a waitqueue.  As this
3248 		 * may lead to the thundering herd problem, use a custom
3249 		 * wake function which matches @work along with exclusive
3250 		 * wait and wakeup.
3251 		 */
3252 		if (unlikely(ret == -ENOENT)) {
3253 			struct cwt_wait cwait;
3254 
3255 			init_wait(&cwait.wait);
3256 			cwait.wait.func = cwt_wakefn;
3257 			cwait.work = work;
3258 
3259 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3260 						  TASK_UNINTERRUPTIBLE);
3261 			if (work_is_canceling(work))
3262 				schedule();
3263 			finish_wait(&cancel_waitq, &cwait.wait);
3264 		}
3265 	} while (unlikely(ret < 0));
3266 
3267 	/* tell other tasks trying to grab @work to back off */
3268 	mark_work_canceling(work);
3269 	local_irq_restore(flags);
3270 
3271 	/*
3272 	 * This allows canceling during early boot.  We know that @work
3273 	 * isn't executing.
3274 	 */
3275 	if (wq_online)
3276 		__flush_work(work, true);
3277 
3278 	clear_work_data(work);
3279 
3280 	/*
3281 	 * Paired with prepare_to_wait() above so that either
3282 	 * waitqueue_active() is visible here or !work_is_canceling() is
3283 	 * visible there.
3284 	 */
3285 	smp_mb();
3286 	if (waitqueue_active(&cancel_waitq))
3287 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3288 
3289 	return ret;
3290 }
3291 
3292 /**
3293  * cancel_work_sync - cancel a work and wait for it to finish
3294  * @work: the work to cancel
3295  *
3296  * Cancel @work and wait for its execution to finish.  This function
3297  * can be used even if the work re-queues itself or migrates to
3298  * another workqueue.  On return from this function, @work is
3299  * guaranteed to be not pending or executing on any CPU.
3300  *
3301  * cancel_work_sync(&delayed_work->work) must not be used for
3302  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3303  *
3304  * The caller must ensure that the workqueue on which @work was last
3305  * queued can't be destroyed before this function returns.
3306  *
3307  * Return:
3308  * %true if @work was pending, %false otherwise.
3309  */
3310 bool cancel_work_sync(struct work_struct *work)
3311 {
3312 	return __cancel_work_timer(work, false);
3313 }
3314 EXPORT_SYMBOL_GPL(cancel_work_sync);
3315 
3316 /**
3317  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3318  * @dwork: the delayed work to flush
3319  *
3320  * Delayed timer is cancelled and the pending work is queued for
3321  * immediate execution.  Like flush_work(), this function only
3322  * considers the last queueing instance of @dwork.
3323  *
3324  * Return:
3325  * %true if flush_work() waited for the work to finish execution,
3326  * %false if it was already idle.
3327  */
3328 bool flush_delayed_work(struct delayed_work *dwork)
3329 {
3330 	local_irq_disable();
3331 	if (del_timer_sync(&dwork->timer))
3332 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3333 	local_irq_enable();
3334 	return flush_work(&dwork->work);
3335 }
3336 EXPORT_SYMBOL(flush_delayed_work);
3337 
3338 /**
3339  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3340  * @rwork: the rcu work to flush
3341  *
3342  * Return:
3343  * %true if flush_rcu_work() waited for the work to finish execution,
3344  * %false if it was already idle.
3345  */
3346 bool flush_rcu_work(struct rcu_work *rwork)
3347 {
3348 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3349 		rcu_barrier();
3350 		flush_work(&rwork->work);
3351 		return true;
3352 	} else {
3353 		return flush_work(&rwork->work);
3354 	}
3355 }
3356 EXPORT_SYMBOL(flush_rcu_work);
3357 
3358 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3359 {
3360 	unsigned long flags;
3361 	int ret;
3362 
3363 	do {
3364 		ret = try_to_grab_pending(work, is_dwork, &flags);
3365 	} while (unlikely(ret == -EAGAIN));
3366 
3367 	if (unlikely(ret < 0))
3368 		return false;
3369 
3370 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3371 	local_irq_restore(flags);
3372 	return ret;
3373 }
3374 
3375 /*
3376  * See cancel_delayed_work()
3377  */
3378 bool cancel_work(struct work_struct *work)
3379 {
3380 	return __cancel_work(work, false);
3381 }
3382 EXPORT_SYMBOL(cancel_work);
3383 
3384 /**
3385  * cancel_delayed_work - cancel a delayed work
3386  * @dwork: delayed_work to cancel
3387  *
3388  * Kill off a pending delayed_work.
3389  *
3390  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3391  * pending.
3392  *
3393  * Note:
3394  * The work callback function may still be running on return, unless
3395  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3396  * use cancel_delayed_work_sync() to wait on it.
3397  *
3398  * This function is safe to call from any context including IRQ handler.
3399  */
3400 bool cancel_delayed_work(struct delayed_work *dwork)
3401 {
3402 	return __cancel_work(&dwork->work, true);
3403 }
3404 EXPORT_SYMBOL(cancel_delayed_work);
3405 
3406 /**
3407  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3408  * @dwork: the delayed work cancel
3409  *
3410  * This is cancel_work_sync() for delayed works.
3411  *
3412  * Return:
3413  * %true if @dwork was pending, %false otherwise.
3414  */
3415 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3416 {
3417 	return __cancel_work_timer(&dwork->work, true);
3418 }
3419 EXPORT_SYMBOL(cancel_delayed_work_sync);
3420 
3421 /**
3422  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3423  * @func: the function to call
3424  *
3425  * schedule_on_each_cpu() executes @func on each online CPU using the
3426  * system workqueue and blocks until all CPUs have completed.
3427  * schedule_on_each_cpu() is very slow.
3428  *
3429  * Return:
3430  * 0 on success, -errno on failure.
3431  */
3432 int schedule_on_each_cpu(work_func_t func)
3433 {
3434 	int cpu;
3435 	struct work_struct __percpu *works;
3436 
3437 	works = alloc_percpu(struct work_struct);
3438 	if (!works)
3439 		return -ENOMEM;
3440 
3441 	cpus_read_lock();
3442 
3443 	for_each_online_cpu(cpu) {
3444 		struct work_struct *work = per_cpu_ptr(works, cpu);
3445 
3446 		INIT_WORK(work, func);
3447 		schedule_work_on(cpu, work);
3448 	}
3449 
3450 	for_each_online_cpu(cpu)
3451 		flush_work(per_cpu_ptr(works, cpu));
3452 
3453 	cpus_read_unlock();
3454 	free_percpu(works);
3455 	return 0;
3456 }
3457 
3458 /**
3459  * execute_in_process_context - reliably execute the routine with user context
3460  * @fn:		the function to execute
3461  * @ew:		guaranteed storage for the execute work structure (must
3462  *		be available when the work executes)
3463  *
3464  * Executes the function immediately if process context is available,
3465  * otherwise schedules the function for delayed execution.
3466  *
3467  * Return:	0 - function was executed
3468  *		1 - function was scheduled for execution
3469  */
3470 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3471 {
3472 	if (!in_interrupt()) {
3473 		fn(&ew->work);
3474 		return 0;
3475 	}
3476 
3477 	INIT_WORK(&ew->work, fn);
3478 	schedule_work(&ew->work);
3479 
3480 	return 1;
3481 }
3482 EXPORT_SYMBOL_GPL(execute_in_process_context);
3483 
3484 /**
3485  * free_workqueue_attrs - free a workqueue_attrs
3486  * @attrs: workqueue_attrs to free
3487  *
3488  * Undo alloc_workqueue_attrs().
3489  */
3490 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3491 {
3492 	if (attrs) {
3493 		free_cpumask_var(attrs->cpumask);
3494 		kfree(attrs);
3495 	}
3496 }
3497 
3498 /**
3499  * alloc_workqueue_attrs - allocate a workqueue_attrs
3500  *
3501  * Allocate a new workqueue_attrs, initialize with default settings and
3502  * return it.
3503  *
3504  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3505  */
3506 struct workqueue_attrs *alloc_workqueue_attrs(void)
3507 {
3508 	struct workqueue_attrs *attrs;
3509 
3510 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3511 	if (!attrs)
3512 		goto fail;
3513 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3514 		goto fail;
3515 
3516 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3517 	return attrs;
3518 fail:
3519 	free_workqueue_attrs(attrs);
3520 	return NULL;
3521 }
3522 
3523 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3524 				 const struct workqueue_attrs *from)
3525 {
3526 	to->nice = from->nice;
3527 	cpumask_copy(to->cpumask, from->cpumask);
3528 	/*
3529 	 * Unlike hash and equality test, this function doesn't ignore
3530 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3531 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3532 	 */
3533 	to->no_numa = from->no_numa;
3534 }
3535 
3536 /* hash value of the content of @attr */
3537 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3538 {
3539 	u32 hash = 0;
3540 
3541 	hash = jhash_1word(attrs->nice, hash);
3542 	hash = jhash(cpumask_bits(attrs->cpumask),
3543 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3544 	return hash;
3545 }
3546 
3547 /* content equality test */
3548 static bool wqattrs_equal(const struct workqueue_attrs *a,
3549 			  const struct workqueue_attrs *b)
3550 {
3551 	if (a->nice != b->nice)
3552 		return false;
3553 	if (!cpumask_equal(a->cpumask, b->cpumask))
3554 		return false;
3555 	return true;
3556 }
3557 
3558 /**
3559  * init_worker_pool - initialize a newly zalloc'd worker_pool
3560  * @pool: worker_pool to initialize
3561  *
3562  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3563  *
3564  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3565  * inside @pool proper are initialized and put_unbound_pool() can be called
3566  * on @pool safely to release it.
3567  */
3568 static int init_worker_pool(struct worker_pool *pool)
3569 {
3570 	raw_spin_lock_init(&pool->lock);
3571 	pool->id = -1;
3572 	pool->cpu = -1;
3573 	pool->node = NUMA_NO_NODE;
3574 	pool->flags |= POOL_DISASSOCIATED;
3575 	pool->watchdog_ts = jiffies;
3576 	INIT_LIST_HEAD(&pool->worklist);
3577 	INIT_LIST_HEAD(&pool->idle_list);
3578 	hash_init(pool->busy_hash);
3579 
3580 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3581 	INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
3582 
3583 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3584 
3585 	INIT_LIST_HEAD(&pool->workers);
3586 	INIT_LIST_HEAD(&pool->dying_workers);
3587 
3588 	ida_init(&pool->worker_ida);
3589 	INIT_HLIST_NODE(&pool->hash_node);
3590 	pool->refcnt = 1;
3591 
3592 	/* shouldn't fail above this point */
3593 	pool->attrs = alloc_workqueue_attrs();
3594 	if (!pool->attrs)
3595 		return -ENOMEM;
3596 	return 0;
3597 }
3598 
3599 #ifdef CONFIG_LOCKDEP
3600 static void wq_init_lockdep(struct workqueue_struct *wq)
3601 {
3602 	char *lock_name;
3603 
3604 	lockdep_register_key(&wq->key);
3605 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3606 	if (!lock_name)
3607 		lock_name = wq->name;
3608 
3609 	wq->lock_name = lock_name;
3610 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3611 }
3612 
3613 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3614 {
3615 	lockdep_unregister_key(&wq->key);
3616 }
3617 
3618 static void wq_free_lockdep(struct workqueue_struct *wq)
3619 {
3620 	if (wq->lock_name != wq->name)
3621 		kfree(wq->lock_name);
3622 }
3623 #else
3624 static void wq_init_lockdep(struct workqueue_struct *wq)
3625 {
3626 }
3627 
3628 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3629 {
3630 }
3631 
3632 static void wq_free_lockdep(struct workqueue_struct *wq)
3633 {
3634 }
3635 #endif
3636 
3637 static void rcu_free_wq(struct rcu_head *rcu)
3638 {
3639 	struct workqueue_struct *wq =
3640 		container_of(rcu, struct workqueue_struct, rcu);
3641 
3642 	wq_free_lockdep(wq);
3643 
3644 	if (!(wq->flags & WQ_UNBOUND))
3645 		free_percpu(wq->cpu_pwqs);
3646 	else
3647 		free_workqueue_attrs(wq->unbound_attrs);
3648 
3649 	kfree(wq);
3650 }
3651 
3652 static void rcu_free_pool(struct rcu_head *rcu)
3653 {
3654 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3655 
3656 	ida_destroy(&pool->worker_ida);
3657 	free_workqueue_attrs(pool->attrs);
3658 	kfree(pool);
3659 }
3660 
3661 /**
3662  * put_unbound_pool - put a worker_pool
3663  * @pool: worker_pool to put
3664  *
3665  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3666  * safe manner.  get_unbound_pool() calls this function on its failure path
3667  * and this function should be able to release pools which went through,
3668  * successfully or not, init_worker_pool().
3669  *
3670  * Should be called with wq_pool_mutex held.
3671  */
3672 static void put_unbound_pool(struct worker_pool *pool)
3673 {
3674 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3675 	struct list_head cull_list;
3676 	struct worker *worker;
3677 
3678 	INIT_LIST_HEAD(&cull_list);
3679 
3680 	lockdep_assert_held(&wq_pool_mutex);
3681 
3682 	if (--pool->refcnt)
3683 		return;
3684 
3685 	/* sanity checks */
3686 	if (WARN_ON(!(pool->cpu < 0)) ||
3687 	    WARN_ON(!list_empty(&pool->worklist)))
3688 		return;
3689 
3690 	/* release id and unhash */
3691 	if (pool->id >= 0)
3692 		idr_remove(&worker_pool_idr, pool->id);
3693 	hash_del(&pool->hash_node);
3694 
3695 	/*
3696 	 * Become the manager and destroy all workers.  This prevents
3697 	 * @pool's workers from blocking on attach_mutex.  We're the last
3698 	 * manager and @pool gets freed with the flag set.
3699 	 *
3700 	 * Having a concurrent manager is quite unlikely to happen as we can
3701 	 * only get here with
3702 	 *   pwq->refcnt == pool->refcnt == 0
3703 	 * which implies no work queued to the pool, which implies no worker can
3704 	 * become the manager. However a worker could have taken the role of
3705 	 * manager before the refcnts dropped to 0, since maybe_create_worker()
3706 	 * drops pool->lock
3707 	 */
3708 	while (true) {
3709 		rcuwait_wait_event(&manager_wait,
3710 				   !(pool->flags & POOL_MANAGER_ACTIVE),
3711 				   TASK_UNINTERRUPTIBLE);
3712 
3713 		mutex_lock(&wq_pool_attach_mutex);
3714 		raw_spin_lock_irq(&pool->lock);
3715 		if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
3716 			pool->flags |= POOL_MANAGER_ACTIVE;
3717 			break;
3718 		}
3719 		raw_spin_unlock_irq(&pool->lock);
3720 		mutex_unlock(&wq_pool_attach_mutex);
3721 	}
3722 
3723 	while ((worker = first_idle_worker(pool)))
3724 		set_worker_dying(worker, &cull_list);
3725 	WARN_ON(pool->nr_workers || pool->nr_idle);
3726 	raw_spin_unlock_irq(&pool->lock);
3727 
3728 	wake_dying_workers(&cull_list);
3729 
3730 	if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
3731 		pool->detach_completion = &detach_completion;
3732 	mutex_unlock(&wq_pool_attach_mutex);
3733 
3734 	if (pool->detach_completion)
3735 		wait_for_completion(pool->detach_completion);
3736 
3737 	/* shut down the timers */
3738 	del_timer_sync(&pool->idle_timer);
3739 	cancel_work_sync(&pool->idle_cull_work);
3740 	del_timer_sync(&pool->mayday_timer);
3741 
3742 	/* RCU protected to allow dereferences from get_work_pool() */
3743 	call_rcu(&pool->rcu, rcu_free_pool);
3744 }
3745 
3746 /**
3747  * get_unbound_pool - get a worker_pool with the specified attributes
3748  * @attrs: the attributes of the worker_pool to get
3749  *
3750  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3751  * reference count and return it.  If there already is a matching
3752  * worker_pool, it will be used; otherwise, this function attempts to
3753  * create a new one.
3754  *
3755  * Should be called with wq_pool_mutex held.
3756  *
3757  * Return: On success, a worker_pool with the same attributes as @attrs.
3758  * On failure, %NULL.
3759  */
3760 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3761 {
3762 	u32 hash = wqattrs_hash(attrs);
3763 	struct worker_pool *pool;
3764 	int node;
3765 	int target_node = NUMA_NO_NODE;
3766 
3767 	lockdep_assert_held(&wq_pool_mutex);
3768 
3769 	/* do we already have a matching pool? */
3770 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3771 		if (wqattrs_equal(pool->attrs, attrs)) {
3772 			pool->refcnt++;
3773 			return pool;
3774 		}
3775 	}
3776 
3777 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3778 	if (wq_numa_enabled) {
3779 		for_each_node(node) {
3780 			if (cpumask_subset(attrs->cpumask,
3781 					   wq_numa_possible_cpumask[node])) {
3782 				target_node = node;
3783 				break;
3784 			}
3785 		}
3786 	}
3787 
3788 	/* nope, create a new one */
3789 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3790 	if (!pool || init_worker_pool(pool) < 0)
3791 		goto fail;
3792 
3793 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3794 	copy_workqueue_attrs(pool->attrs, attrs);
3795 	pool->node = target_node;
3796 
3797 	/*
3798 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3799 	 * 'struct workqueue_attrs' comments for detail.
3800 	 */
3801 	pool->attrs->no_numa = false;
3802 
3803 	if (worker_pool_assign_id(pool) < 0)
3804 		goto fail;
3805 
3806 	/* create and start the initial worker */
3807 	if (wq_online && !create_worker(pool))
3808 		goto fail;
3809 
3810 	/* install */
3811 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3812 
3813 	return pool;
3814 fail:
3815 	if (pool)
3816 		put_unbound_pool(pool);
3817 	return NULL;
3818 }
3819 
3820 static void rcu_free_pwq(struct rcu_head *rcu)
3821 {
3822 	kmem_cache_free(pwq_cache,
3823 			container_of(rcu, struct pool_workqueue, rcu));
3824 }
3825 
3826 /*
3827  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3828  * and needs to be destroyed.
3829  */
3830 static void pwq_unbound_release_workfn(struct work_struct *work)
3831 {
3832 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3833 						  unbound_release_work);
3834 	struct workqueue_struct *wq = pwq->wq;
3835 	struct worker_pool *pool = pwq->pool;
3836 	bool is_last = false;
3837 
3838 	/*
3839 	 * when @pwq is not linked, it doesn't hold any reference to the
3840 	 * @wq, and @wq is invalid to access.
3841 	 */
3842 	if (!list_empty(&pwq->pwqs_node)) {
3843 		if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3844 			return;
3845 
3846 		mutex_lock(&wq->mutex);
3847 		list_del_rcu(&pwq->pwqs_node);
3848 		is_last = list_empty(&wq->pwqs);
3849 		mutex_unlock(&wq->mutex);
3850 	}
3851 
3852 	mutex_lock(&wq_pool_mutex);
3853 	put_unbound_pool(pool);
3854 	mutex_unlock(&wq_pool_mutex);
3855 
3856 	call_rcu(&pwq->rcu, rcu_free_pwq);
3857 
3858 	/*
3859 	 * If we're the last pwq going away, @wq is already dead and no one
3860 	 * is gonna access it anymore.  Schedule RCU free.
3861 	 */
3862 	if (is_last) {
3863 		wq_unregister_lockdep(wq);
3864 		call_rcu(&wq->rcu, rcu_free_wq);
3865 	}
3866 }
3867 
3868 /**
3869  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3870  * @pwq: target pool_workqueue
3871  *
3872  * If @pwq isn't freezing, set @pwq->max_active to the associated
3873  * workqueue's saved_max_active and activate inactive work items
3874  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3875  */
3876 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3877 {
3878 	struct workqueue_struct *wq = pwq->wq;
3879 	bool freezable = wq->flags & WQ_FREEZABLE;
3880 	unsigned long flags;
3881 
3882 	/* for @wq->saved_max_active */
3883 	lockdep_assert_held(&wq->mutex);
3884 
3885 	/* fast exit for non-freezable wqs */
3886 	if (!freezable && pwq->max_active == wq->saved_max_active)
3887 		return;
3888 
3889 	/* this function can be called during early boot w/ irq disabled */
3890 	raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3891 
3892 	/*
3893 	 * During [un]freezing, the caller is responsible for ensuring that
3894 	 * this function is called at least once after @workqueue_freezing
3895 	 * is updated and visible.
3896 	 */
3897 	if (!freezable || !workqueue_freezing) {
3898 		bool kick = false;
3899 
3900 		pwq->max_active = wq->saved_max_active;
3901 
3902 		while (!list_empty(&pwq->inactive_works) &&
3903 		       pwq->nr_active < pwq->max_active) {
3904 			pwq_activate_first_inactive(pwq);
3905 			kick = true;
3906 		}
3907 
3908 		/*
3909 		 * Need to kick a worker after thawed or an unbound wq's
3910 		 * max_active is bumped. In realtime scenarios, always kicking a
3911 		 * worker will cause interference on the isolated cpu cores, so
3912 		 * let's kick iff work items were activated.
3913 		 */
3914 		if (kick)
3915 			wake_up_worker(pwq->pool);
3916 	} else {
3917 		pwq->max_active = 0;
3918 	}
3919 
3920 	raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3921 }
3922 
3923 /* initialize newly allocated @pwq which is associated with @wq and @pool */
3924 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3925 		     struct worker_pool *pool)
3926 {
3927 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3928 
3929 	memset(pwq, 0, sizeof(*pwq));
3930 
3931 	pwq->pool = pool;
3932 	pwq->wq = wq;
3933 	pwq->flush_color = -1;
3934 	pwq->refcnt = 1;
3935 	INIT_LIST_HEAD(&pwq->inactive_works);
3936 	INIT_LIST_HEAD(&pwq->pwqs_node);
3937 	INIT_LIST_HEAD(&pwq->mayday_node);
3938 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3939 }
3940 
3941 /* sync @pwq with the current state of its associated wq and link it */
3942 static void link_pwq(struct pool_workqueue *pwq)
3943 {
3944 	struct workqueue_struct *wq = pwq->wq;
3945 
3946 	lockdep_assert_held(&wq->mutex);
3947 
3948 	/* may be called multiple times, ignore if already linked */
3949 	if (!list_empty(&pwq->pwqs_node))
3950 		return;
3951 
3952 	/* set the matching work_color */
3953 	pwq->work_color = wq->work_color;
3954 
3955 	/* sync max_active to the current setting */
3956 	pwq_adjust_max_active(pwq);
3957 
3958 	/* link in @pwq */
3959 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3960 }
3961 
3962 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3963 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3964 					const struct workqueue_attrs *attrs)
3965 {
3966 	struct worker_pool *pool;
3967 	struct pool_workqueue *pwq;
3968 
3969 	lockdep_assert_held(&wq_pool_mutex);
3970 
3971 	pool = get_unbound_pool(attrs);
3972 	if (!pool)
3973 		return NULL;
3974 
3975 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3976 	if (!pwq) {
3977 		put_unbound_pool(pool);
3978 		return NULL;
3979 	}
3980 
3981 	init_pwq(pwq, wq, pool);
3982 	return pwq;
3983 }
3984 
3985 /**
3986  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3987  * @attrs: the wq_attrs of the default pwq of the target workqueue
3988  * @node: the target NUMA node
3989  * @cpu_going_down: if >= 0, the CPU to consider as offline
3990  * @cpumask: outarg, the resulting cpumask
3991  *
3992  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3993  * @cpu_going_down is >= 0, that cpu is considered offline during
3994  * calculation.  The result is stored in @cpumask.
3995  *
3996  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3997  * enabled and @node has online CPUs requested by @attrs, the returned
3998  * cpumask is the intersection of the possible CPUs of @node and
3999  * @attrs->cpumask.
4000  *
4001  * The caller is responsible for ensuring that the cpumask of @node stays
4002  * stable.
4003  *
4004  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
4005  * %false if equal.
4006  */
4007 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
4008 				 int cpu_going_down, cpumask_t *cpumask)
4009 {
4010 	if (!wq_numa_enabled || attrs->no_numa)
4011 		goto use_dfl;
4012 
4013 	/* does @node have any online CPUs @attrs wants? */
4014 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
4015 	if (cpu_going_down >= 0)
4016 		cpumask_clear_cpu(cpu_going_down, cpumask);
4017 
4018 	if (cpumask_empty(cpumask))
4019 		goto use_dfl;
4020 
4021 	/* yeap, return possible CPUs in @node that @attrs wants */
4022 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
4023 
4024 	if (cpumask_empty(cpumask)) {
4025 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
4026 				"possible intersect\n");
4027 		return false;
4028 	}
4029 
4030 	return !cpumask_equal(cpumask, attrs->cpumask);
4031 
4032 use_dfl:
4033 	cpumask_copy(cpumask, attrs->cpumask);
4034 	return false;
4035 }
4036 
4037 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
4038 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
4039 						   int node,
4040 						   struct pool_workqueue *pwq)
4041 {
4042 	struct pool_workqueue *old_pwq;
4043 
4044 	lockdep_assert_held(&wq_pool_mutex);
4045 	lockdep_assert_held(&wq->mutex);
4046 
4047 	/* link_pwq() can handle duplicate calls */
4048 	link_pwq(pwq);
4049 
4050 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4051 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
4052 	return old_pwq;
4053 }
4054 
4055 /* context to store the prepared attrs & pwqs before applying */
4056 struct apply_wqattrs_ctx {
4057 	struct workqueue_struct	*wq;		/* target workqueue */
4058 	struct workqueue_attrs	*attrs;		/* attrs to apply */
4059 	struct list_head	list;		/* queued for batching commit */
4060 	struct pool_workqueue	*dfl_pwq;
4061 	struct pool_workqueue	*pwq_tbl[];
4062 };
4063 
4064 /* free the resources after success or abort */
4065 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
4066 {
4067 	if (ctx) {
4068 		int node;
4069 
4070 		for_each_node(node)
4071 			put_pwq_unlocked(ctx->pwq_tbl[node]);
4072 		put_pwq_unlocked(ctx->dfl_pwq);
4073 
4074 		free_workqueue_attrs(ctx->attrs);
4075 
4076 		kfree(ctx);
4077 	}
4078 }
4079 
4080 /* allocate the attrs and pwqs for later installation */
4081 static struct apply_wqattrs_ctx *
4082 apply_wqattrs_prepare(struct workqueue_struct *wq,
4083 		      const struct workqueue_attrs *attrs,
4084 		      const cpumask_var_t unbound_cpumask)
4085 {
4086 	struct apply_wqattrs_ctx *ctx;
4087 	struct workqueue_attrs *new_attrs, *tmp_attrs;
4088 	int node;
4089 
4090 	lockdep_assert_held(&wq_pool_mutex);
4091 
4092 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
4093 
4094 	new_attrs = alloc_workqueue_attrs();
4095 	tmp_attrs = alloc_workqueue_attrs();
4096 	if (!ctx || !new_attrs || !tmp_attrs)
4097 		goto out_free;
4098 
4099 	/*
4100 	 * Calculate the attrs of the default pwq with unbound_cpumask
4101 	 * which is wq_unbound_cpumask or to set to wq_unbound_cpumask.
4102 	 * If the user configured cpumask doesn't overlap with the
4103 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
4104 	 */
4105 	copy_workqueue_attrs(new_attrs, attrs);
4106 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, unbound_cpumask);
4107 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
4108 		cpumask_copy(new_attrs->cpumask, unbound_cpumask);
4109 
4110 	/*
4111 	 * We may create multiple pwqs with differing cpumasks.  Make a
4112 	 * copy of @new_attrs which will be modified and used to obtain
4113 	 * pools.
4114 	 */
4115 	copy_workqueue_attrs(tmp_attrs, new_attrs);
4116 
4117 	/*
4118 	 * If something goes wrong during CPU up/down, we'll fall back to
4119 	 * the default pwq covering whole @attrs->cpumask.  Always create
4120 	 * it even if we don't use it immediately.
4121 	 */
4122 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4123 	if (!ctx->dfl_pwq)
4124 		goto out_free;
4125 
4126 	for_each_node(node) {
4127 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
4128 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
4129 			if (!ctx->pwq_tbl[node])
4130 				goto out_free;
4131 		} else {
4132 			ctx->dfl_pwq->refcnt++;
4133 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
4134 		}
4135 	}
4136 
4137 	/* save the user configured attrs and sanitize it. */
4138 	copy_workqueue_attrs(new_attrs, attrs);
4139 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4140 	ctx->attrs = new_attrs;
4141 
4142 	ctx->wq = wq;
4143 	free_workqueue_attrs(tmp_attrs);
4144 	return ctx;
4145 
4146 out_free:
4147 	free_workqueue_attrs(tmp_attrs);
4148 	free_workqueue_attrs(new_attrs);
4149 	apply_wqattrs_cleanup(ctx);
4150 	return NULL;
4151 }
4152 
4153 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
4154 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4155 {
4156 	int node;
4157 
4158 	/* all pwqs have been created successfully, let's install'em */
4159 	mutex_lock(&ctx->wq->mutex);
4160 
4161 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4162 
4163 	/* save the previous pwq and install the new one */
4164 	for_each_node(node)
4165 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4166 							  ctx->pwq_tbl[node]);
4167 
4168 	/* @dfl_pwq might not have been used, ensure it's linked */
4169 	link_pwq(ctx->dfl_pwq);
4170 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4171 
4172 	mutex_unlock(&ctx->wq->mutex);
4173 }
4174 
4175 static void apply_wqattrs_lock(void)
4176 {
4177 	/* CPUs should stay stable across pwq creations and installations */
4178 	cpus_read_lock();
4179 	mutex_lock(&wq_pool_mutex);
4180 }
4181 
4182 static void apply_wqattrs_unlock(void)
4183 {
4184 	mutex_unlock(&wq_pool_mutex);
4185 	cpus_read_unlock();
4186 }
4187 
4188 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4189 					const struct workqueue_attrs *attrs)
4190 {
4191 	struct apply_wqattrs_ctx *ctx;
4192 
4193 	/* only unbound workqueues can change attributes */
4194 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4195 		return -EINVAL;
4196 
4197 	/* creating multiple pwqs breaks ordering guarantee */
4198 	if (!list_empty(&wq->pwqs)) {
4199 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4200 			return -EINVAL;
4201 
4202 		wq->flags &= ~__WQ_ORDERED;
4203 	}
4204 
4205 	ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
4206 	if (!ctx)
4207 		return -ENOMEM;
4208 
4209 	/* the ctx has been prepared successfully, let's commit it */
4210 	apply_wqattrs_commit(ctx);
4211 	apply_wqattrs_cleanup(ctx);
4212 
4213 	return 0;
4214 }
4215 
4216 /**
4217  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4218  * @wq: the target workqueue
4219  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4220  *
4221  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
4222  * machines, this function maps a separate pwq to each NUMA node with
4223  * possibles CPUs in @attrs->cpumask so that work items are affine to the
4224  * NUMA node it was issued on.  Older pwqs are released as in-flight work
4225  * items finish.  Note that a work item which repeatedly requeues itself
4226  * back-to-back will stay on its current pwq.
4227  *
4228  * Performs GFP_KERNEL allocations.
4229  *
4230  * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
4231  *
4232  * Return: 0 on success and -errno on failure.
4233  */
4234 int apply_workqueue_attrs(struct workqueue_struct *wq,
4235 			  const struct workqueue_attrs *attrs)
4236 {
4237 	int ret;
4238 
4239 	lockdep_assert_cpus_held();
4240 
4241 	mutex_lock(&wq_pool_mutex);
4242 	ret = apply_workqueue_attrs_locked(wq, attrs);
4243 	mutex_unlock(&wq_pool_mutex);
4244 
4245 	return ret;
4246 }
4247 
4248 /**
4249  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4250  * @wq: the target workqueue
4251  * @cpu: the CPU coming up or going down
4252  * @online: whether @cpu is coming up or going down
4253  *
4254  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4255  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4256  * @wq accordingly.
4257  *
4258  * If NUMA affinity can't be adjusted due to memory allocation failure, it
4259  * falls back to @wq->dfl_pwq which may not be optimal but is always
4260  * correct.
4261  *
4262  * Note that when the last allowed CPU of a NUMA node goes offline for a
4263  * workqueue with a cpumask spanning multiple nodes, the workers which were
4264  * already executing the work items for the workqueue will lose their CPU
4265  * affinity and may execute on any CPU.  This is similar to how per-cpu
4266  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4267  * affinity, it's the user's responsibility to flush the work item from
4268  * CPU_DOWN_PREPARE.
4269  */
4270 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4271 				   bool online)
4272 {
4273 	int node = cpu_to_node(cpu);
4274 	int cpu_off = online ? -1 : cpu;
4275 	struct pool_workqueue *old_pwq = NULL, *pwq;
4276 	struct workqueue_attrs *target_attrs;
4277 	cpumask_t *cpumask;
4278 
4279 	lockdep_assert_held(&wq_pool_mutex);
4280 
4281 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4282 	    wq->unbound_attrs->no_numa)
4283 		return;
4284 
4285 	/*
4286 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4287 	 * Let's use a preallocated one.  The following buf is protected by
4288 	 * CPU hotplug exclusion.
4289 	 */
4290 	target_attrs = wq_update_unbound_numa_attrs_buf;
4291 	cpumask = target_attrs->cpumask;
4292 
4293 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4294 	pwq = unbound_pwq_by_node(wq, node);
4295 
4296 	/*
4297 	 * Let's determine what needs to be done.  If the target cpumask is
4298 	 * different from the default pwq's, we need to compare it to @pwq's
4299 	 * and create a new one if they don't match.  If the target cpumask
4300 	 * equals the default pwq's, the default pwq should be used.
4301 	 */
4302 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4303 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4304 			return;
4305 	} else {
4306 		goto use_dfl_pwq;
4307 	}
4308 
4309 	/* create a new pwq */
4310 	pwq = alloc_unbound_pwq(wq, target_attrs);
4311 	if (!pwq) {
4312 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4313 			wq->name);
4314 		goto use_dfl_pwq;
4315 	}
4316 
4317 	/* Install the new pwq. */
4318 	mutex_lock(&wq->mutex);
4319 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4320 	goto out_unlock;
4321 
4322 use_dfl_pwq:
4323 	mutex_lock(&wq->mutex);
4324 	raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4325 	get_pwq(wq->dfl_pwq);
4326 	raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4327 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4328 out_unlock:
4329 	mutex_unlock(&wq->mutex);
4330 	put_pwq_unlocked(old_pwq);
4331 }
4332 
4333 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4334 {
4335 	bool highpri = wq->flags & WQ_HIGHPRI;
4336 	int cpu, ret;
4337 
4338 	if (!(wq->flags & WQ_UNBOUND)) {
4339 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4340 		if (!wq->cpu_pwqs)
4341 			return -ENOMEM;
4342 
4343 		for_each_possible_cpu(cpu) {
4344 			struct pool_workqueue *pwq =
4345 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4346 			struct worker_pool *cpu_pools =
4347 				per_cpu(cpu_worker_pools, cpu);
4348 
4349 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4350 
4351 			mutex_lock(&wq->mutex);
4352 			link_pwq(pwq);
4353 			mutex_unlock(&wq->mutex);
4354 		}
4355 		return 0;
4356 	}
4357 
4358 	cpus_read_lock();
4359 	if (wq->flags & __WQ_ORDERED) {
4360 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4361 		/* there should only be single pwq for ordering guarantee */
4362 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4363 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4364 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4365 	} else {
4366 		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4367 	}
4368 	cpus_read_unlock();
4369 
4370 	return ret;
4371 }
4372 
4373 static int wq_clamp_max_active(int max_active, unsigned int flags,
4374 			       const char *name)
4375 {
4376 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4377 
4378 	if (max_active < 1 || max_active > lim)
4379 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4380 			max_active, name, 1, lim);
4381 
4382 	return clamp_val(max_active, 1, lim);
4383 }
4384 
4385 /*
4386  * Workqueues which may be used during memory reclaim should have a rescuer
4387  * to guarantee forward progress.
4388  */
4389 static int init_rescuer(struct workqueue_struct *wq)
4390 {
4391 	struct worker *rescuer;
4392 	int ret;
4393 
4394 	if (!(wq->flags & WQ_MEM_RECLAIM))
4395 		return 0;
4396 
4397 	rescuer = alloc_worker(NUMA_NO_NODE);
4398 	if (!rescuer) {
4399 		pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
4400 		       wq->name);
4401 		return -ENOMEM;
4402 	}
4403 
4404 	rescuer->rescue_wq = wq;
4405 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4406 	if (IS_ERR(rescuer->task)) {
4407 		ret = PTR_ERR(rescuer->task);
4408 		pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
4409 		       wq->name, ERR_PTR(ret));
4410 		kfree(rescuer);
4411 		return ret;
4412 	}
4413 
4414 	wq->rescuer = rescuer;
4415 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4416 	wake_up_process(rescuer->task);
4417 
4418 	return 0;
4419 }
4420 
4421 __printf(1, 4)
4422 struct workqueue_struct *alloc_workqueue(const char *fmt,
4423 					 unsigned int flags,
4424 					 int max_active, ...)
4425 {
4426 	size_t tbl_size = 0;
4427 	va_list args;
4428 	struct workqueue_struct *wq;
4429 	struct pool_workqueue *pwq;
4430 
4431 	/*
4432 	 * Unbound && max_active == 1 used to imply ordered, which is no
4433 	 * longer the case on NUMA machines due to per-node pools.  While
4434 	 * alloc_ordered_workqueue() is the right way to create an ordered
4435 	 * workqueue, keep the previous behavior to avoid subtle breakages
4436 	 * on NUMA.
4437 	 */
4438 	if ((flags & WQ_UNBOUND) && max_active == 1)
4439 		flags |= __WQ_ORDERED;
4440 
4441 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4442 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4443 		flags |= WQ_UNBOUND;
4444 
4445 	/* allocate wq and format name */
4446 	if (flags & WQ_UNBOUND)
4447 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4448 
4449 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4450 	if (!wq)
4451 		return NULL;
4452 
4453 	if (flags & WQ_UNBOUND) {
4454 		wq->unbound_attrs = alloc_workqueue_attrs();
4455 		if (!wq->unbound_attrs)
4456 			goto err_free_wq;
4457 	}
4458 
4459 	va_start(args, max_active);
4460 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4461 	va_end(args);
4462 
4463 	max_active = max_active ?: WQ_DFL_ACTIVE;
4464 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4465 
4466 	/* init wq */
4467 	wq->flags = flags;
4468 	wq->saved_max_active = max_active;
4469 	mutex_init(&wq->mutex);
4470 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4471 	INIT_LIST_HEAD(&wq->pwqs);
4472 	INIT_LIST_HEAD(&wq->flusher_queue);
4473 	INIT_LIST_HEAD(&wq->flusher_overflow);
4474 	INIT_LIST_HEAD(&wq->maydays);
4475 
4476 	wq_init_lockdep(wq);
4477 	INIT_LIST_HEAD(&wq->list);
4478 
4479 	if (alloc_and_link_pwqs(wq) < 0)
4480 		goto err_unreg_lockdep;
4481 
4482 	if (wq_online && init_rescuer(wq) < 0)
4483 		goto err_destroy;
4484 
4485 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4486 		goto err_destroy;
4487 
4488 	/*
4489 	 * wq_pool_mutex protects global freeze state and workqueues list.
4490 	 * Grab it, adjust max_active and add the new @wq to workqueues
4491 	 * list.
4492 	 */
4493 	mutex_lock(&wq_pool_mutex);
4494 
4495 	mutex_lock(&wq->mutex);
4496 	for_each_pwq(pwq, wq)
4497 		pwq_adjust_max_active(pwq);
4498 	mutex_unlock(&wq->mutex);
4499 
4500 	list_add_tail_rcu(&wq->list, &workqueues);
4501 
4502 	mutex_unlock(&wq_pool_mutex);
4503 
4504 	return wq;
4505 
4506 err_unreg_lockdep:
4507 	wq_unregister_lockdep(wq);
4508 	wq_free_lockdep(wq);
4509 err_free_wq:
4510 	free_workqueue_attrs(wq->unbound_attrs);
4511 	kfree(wq);
4512 	return NULL;
4513 err_destroy:
4514 	destroy_workqueue(wq);
4515 	return NULL;
4516 }
4517 EXPORT_SYMBOL_GPL(alloc_workqueue);
4518 
4519 static bool pwq_busy(struct pool_workqueue *pwq)
4520 {
4521 	int i;
4522 
4523 	for (i = 0; i < WORK_NR_COLORS; i++)
4524 		if (pwq->nr_in_flight[i])
4525 			return true;
4526 
4527 	if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4528 		return true;
4529 	if (pwq->nr_active || !list_empty(&pwq->inactive_works))
4530 		return true;
4531 
4532 	return false;
4533 }
4534 
4535 /**
4536  * destroy_workqueue - safely terminate a workqueue
4537  * @wq: target workqueue
4538  *
4539  * Safely destroy a workqueue. All work currently pending will be done first.
4540  */
4541 void destroy_workqueue(struct workqueue_struct *wq)
4542 {
4543 	struct pool_workqueue *pwq;
4544 	int node;
4545 
4546 	/*
4547 	 * Remove it from sysfs first so that sanity check failure doesn't
4548 	 * lead to sysfs name conflicts.
4549 	 */
4550 	workqueue_sysfs_unregister(wq);
4551 
4552 	/* mark the workqueue destruction is in progress */
4553 	mutex_lock(&wq->mutex);
4554 	wq->flags |= __WQ_DESTROYING;
4555 	mutex_unlock(&wq->mutex);
4556 
4557 	/* drain it before proceeding with destruction */
4558 	drain_workqueue(wq);
4559 
4560 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4561 	if (wq->rescuer) {
4562 		struct worker *rescuer = wq->rescuer;
4563 
4564 		/* this prevents new queueing */
4565 		raw_spin_lock_irq(&wq_mayday_lock);
4566 		wq->rescuer = NULL;
4567 		raw_spin_unlock_irq(&wq_mayday_lock);
4568 
4569 		/* rescuer will empty maydays list before exiting */
4570 		kthread_stop(rescuer->task);
4571 		kfree(rescuer);
4572 	}
4573 
4574 	/*
4575 	 * Sanity checks - grab all the locks so that we wait for all
4576 	 * in-flight operations which may do put_pwq().
4577 	 */
4578 	mutex_lock(&wq_pool_mutex);
4579 	mutex_lock(&wq->mutex);
4580 	for_each_pwq(pwq, wq) {
4581 		raw_spin_lock_irq(&pwq->pool->lock);
4582 		if (WARN_ON(pwq_busy(pwq))) {
4583 			pr_warn("%s: %s has the following busy pwq\n",
4584 				__func__, wq->name);
4585 			show_pwq(pwq);
4586 			raw_spin_unlock_irq(&pwq->pool->lock);
4587 			mutex_unlock(&wq->mutex);
4588 			mutex_unlock(&wq_pool_mutex);
4589 			show_one_workqueue(wq);
4590 			return;
4591 		}
4592 		raw_spin_unlock_irq(&pwq->pool->lock);
4593 	}
4594 	mutex_unlock(&wq->mutex);
4595 
4596 	/*
4597 	 * wq list is used to freeze wq, remove from list after
4598 	 * flushing is complete in case freeze races us.
4599 	 */
4600 	list_del_rcu(&wq->list);
4601 	mutex_unlock(&wq_pool_mutex);
4602 
4603 	if (!(wq->flags & WQ_UNBOUND)) {
4604 		wq_unregister_lockdep(wq);
4605 		/*
4606 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4607 		 * schedule RCU free.
4608 		 */
4609 		call_rcu(&wq->rcu, rcu_free_wq);
4610 	} else {
4611 		/*
4612 		 * We're the sole accessor of @wq at this point.  Directly
4613 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4614 		 * @wq will be freed when the last pwq is released.
4615 		 */
4616 		for_each_node(node) {
4617 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4618 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4619 			put_pwq_unlocked(pwq);
4620 		}
4621 
4622 		/*
4623 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4624 		 * put.  Don't access it afterwards.
4625 		 */
4626 		pwq = wq->dfl_pwq;
4627 		wq->dfl_pwq = NULL;
4628 		put_pwq_unlocked(pwq);
4629 	}
4630 }
4631 EXPORT_SYMBOL_GPL(destroy_workqueue);
4632 
4633 /**
4634  * workqueue_set_max_active - adjust max_active of a workqueue
4635  * @wq: target workqueue
4636  * @max_active: new max_active value.
4637  *
4638  * Set max_active of @wq to @max_active.
4639  *
4640  * CONTEXT:
4641  * Don't call from IRQ context.
4642  */
4643 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4644 {
4645 	struct pool_workqueue *pwq;
4646 
4647 	/* disallow meddling with max_active for ordered workqueues */
4648 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4649 		return;
4650 
4651 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4652 
4653 	mutex_lock(&wq->mutex);
4654 
4655 	wq->flags &= ~__WQ_ORDERED;
4656 	wq->saved_max_active = max_active;
4657 
4658 	for_each_pwq(pwq, wq)
4659 		pwq_adjust_max_active(pwq);
4660 
4661 	mutex_unlock(&wq->mutex);
4662 }
4663 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4664 
4665 /**
4666  * current_work - retrieve %current task's work struct
4667  *
4668  * Determine if %current task is a workqueue worker and what it's working on.
4669  * Useful to find out the context that the %current task is running in.
4670  *
4671  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4672  */
4673 struct work_struct *current_work(void)
4674 {
4675 	struct worker *worker = current_wq_worker();
4676 
4677 	return worker ? worker->current_work : NULL;
4678 }
4679 EXPORT_SYMBOL(current_work);
4680 
4681 /**
4682  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4683  *
4684  * Determine whether %current is a workqueue rescuer.  Can be used from
4685  * work functions to determine whether it's being run off the rescuer task.
4686  *
4687  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4688  */
4689 bool current_is_workqueue_rescuer(void)
4690 {
4691 	struct worker *worker = current_wq_worker();
4692 
4693 	return worker && worker->rescue_wq;
4694 }
4695 
4696 /**
4697  * workqueue_congested - test whether a workqueue is congested
4698  * @cpu: CPU in question
4699  * @wq: target workqueue
4700  *
4701  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4702  * no synchronization around this function and the test result is
4703  * unreliable and only useful as advisory hints or for debugging.
4704  *
4705  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4706  * Note that both per-cpu and unbound workqueues may be associated with
4707  * multiple pool_workqueues which have separate congested states.  A
4708  * workqueue being congested on one CPU doesn't mean the workqueue is also
4709  * contested on other CPUs / NUMA nodes.
4710  *
4711  * Return:
4712  * %true if congested, %false otherwise.
4713  */
4714 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4715 {
4716 	struct pool_workqueue *pwq;
4717 	bool ret;
4718 
4719 	rcu_read_lock();
4720 	preempt_disable();
4721 
4722 	if (cpu == WORK_CPU_UNBOUND)
4723 		cpu = smp_processor_id();
4724 
4725 	if (!(wq->flags & WQ_UNBOUND))
4726 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4727 	else
4728 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4729 
4730 	ret = !list_empty(&pwq->inactive_works);
4731 	preempt_enable();
4732 	rcu_read_unlock();
4733 
4734 	return ret;
4735 }
4736 EXPORT_SYMBOL_GPL(workqueue_congested);
4737 
4738 /**
4739  * work_busy - test whether a work is currently pending or running
4740  * @work: the work to be tested
4741  *
4742  * Test whether @work is currently pending or running.  There is no
4743  * synchronization around this function and the test result is
4744  * unreliable and only useful as advisory hints or for debugging.
4745  *
4746  * Return:
4747  * OR'd bitmask of WORK_BUSY_* bits.
4748  */
4749 unsigned int work_busy(struct work_struct *work)
4750 {
4751 	struct worker_pool *pool;
4752 	unsigned long flags;
4753 	unsigned int ret = 0;
4754 
4755 	if (work_pending(work))
4756 		ret |= WORK_BUSY_PENDING;
4757 
4758 	rcu_read_lock();
4759 	pool = get_work_pool(work);
4760 	if (pool) {
4761 		raw_spin_lock_irqsave(&pool->lock, flags);
4762 		if (find_worker_executing_work(pool, work))
4763 			ret |= WORK_BUSY_RUNNING;
4764 		raw_spin_unlock_irqrestore(&pool->lock, flags);
4765 	}
4766 	rcu_read_unlock();
4767 
4768 	return ret;
4769 }
4770 EXPORT_SYMBOL_GPL(work_busy);
4771 
4772 /**
4773  * set_worker_desc - set description for the current work item
4774  * @fmt: printf-style format string
4775  * @...: arguments for the format string
4776  *
4777  * This function can be called by a running work function to describe what
4778  * the work item is about.  If the worker task gets dumped, this
4779  * information will be printed out together to help debugging.  The
4780  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4781  */
4782 void set_worker_desc(const char *fmt, ...)
4783 {
4784 	struct worker *worker = current_wq_worker();
4785 	va_list args;
4786 
4787 	if (worker) {
4788 		va_start(args, fmt);
4789 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4790 		va_end(args);
4791 	}
4792 }
4793 EXPORT_SYMBOL_GPL(set_worker_desc);
4794 
4795 /**
4796  * print_worker_info - print out worker information and description
4797  * @log_lvl: the log level to use when printing
4798  * @task: target task
4799  *
4800  * If @task is a worker and currently executing a work item, print out the
4801  * name of the workqueue being serviced and worker description set with
4802  * set_worker_desc() by the currently executing work item.
4803  *
4804  * This function can be safely called on any task as long as the
4805  * task_struct itself is accessible.  While safe, this function isn't
4806  * synchronized and may print out mixups or garbages of limited length.
4807  */
4808 void print_worker_info(const char *log_lvl, struct task_struct *task)
4809 {
4810 	work_func_t *fn = NULL;
4811 	char name[WQ_NAME_LEN] = { };
4812 	char desc[WORKER_DESC_LEN] = { };
4813 	struct pool_workqueue *pwq = NULL;
4814 	struct workqueue_struct *wq = NULL;
4815 	struct worker *worker;
4816 
4817 	if (!(task->flags & PF_WQ_WORKER))
4818 		return;
4819 
4820 	/*
4821 	 * This function is called without any synchronization and @task
4822 	 * could be in any state.  Be careful with dereferences.
4823 	 */
4824 	worker = kthread_probe_data(task);
4825 
4826 	/*
4827 	 * Carefully copy the associated workqueue's workfn, name and desc.
4828 	 * Keep the original last '\0' in case the original is garbage.
4829 	 */
4830 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4831 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4832 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4833 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4834 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4835 
4836 	if (fn || name[0] || desc[0]) {
4837 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4838 		if (strcmp(name, desc))
4839 			pr_cont(" (%s)", desc);
4840 		pr_cont("\n");
4841 	}
4842 }
4843 
4844 static void pr_cont_pool_info(struct worker_pool *pool)
4845 {
4846 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4847 	if (pool->node != NUMA_NO_NODE)
4848 		pr_cont(" node=%d", pool->node);
4849 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4850 }
4851 
4852 struct pr_cont_work_struct {
4853 	bool comma;
4854 	work_func_t func;
4855 	long ctr;
4856 };
4857 
4858 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
4859 {
4860 	if (!pcwsp->ctr)
4861 		goto out_record;
4862 	if (func == pcwsp->func) {
4863 		pcwsp->ctr++;
4864 		return;
4865 	}
4866 	if (pcwsp->ctr == 1)
4867 		pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
4868 	else
4869 		pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
4870 	pcwsp->ctr = 0;
4871 out_record:
4872 	if ((long)func == -1L)
4873 		return;
4874 	pcwsp->comma = comma;
4875 	pcwsp->func = func;
4876 	pcwsp->ctr = 1;
4877 }
4878 
4879 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
4880 {
4881 	if (work->func == wq_barrier_func) {
4882 		struct wq_barrier *barr;
4883 
4884 		barr = container_of(work, struct wq_barrier, work);
4885 
4886 		pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
4887 		pr_cont("%s BAR(%d)", comma ? "," : "",
4888 			task_pid_nr(barr->task));
4889 	} else {
4890 		if (!comma)
4891 			pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
4892 		pr_cont_work_flush(comma, work->func, pcwsp);
4893 	}
4894 }
4895 
4896 static void show_pwq(struct pool_workqueue *pwq)
4897 {
4898 	struct pr_cont_work_struct pcws = { .ctr = 0, };
4899 	struct worker_pool *pool = pwq->pool;
4900 	struct work_struct *work;
4901 	struct worker *worker;
4902 	bool has_in_flight = false, has_pending = false;
4903 	int bkt;
4904 
4905 	pr_info("  pwq %d:", pool->id);
4906 	pr_cont_pool_info(pool);
4907 
4908 	pr_cont(" active=%d/%d refcnt=%d%s\n",
4909 		pwq->nr_active, pwq->max_active, pwq->refcnt,
4910 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4911 
4912 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4913 		if (worker->current_pwq == pwq) {
4914 			has_in_flight = true;
4915 			break;
4916 		}
4917 	}
4918 	if (has_in_flight) {
4919 		bool comma = false;
4920 
4921 		pr_info("    in-flight:");
4922 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4923 			if (worker->current_pwq != pwq)
4924 				continue;
4925 
4926 			pr_cont("%s %d%s:%ps", comma ? "," : "",
4927 				task_pid_nr(worker->task),
4928 				worker->rescue_wq ? "(RESCUER)" : "",
4929 				worker->current_func);
4930 			list_for_each_entry(work, &worker->scheduled, entry)
4931 				pr_cont_work(false, work, &pcws);
4932 			pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
4933 			comma = true;
4934 		}
4935 		pr_cont("\n");
4936 	}
4937 
4938 	list_for_each_entry(work, &pool->worklist, entry) {
4939 		if (get_work_pwq(work) == pwq) {
4940 			has_pending = true;
4941 			break;
4942 		}
4943 	}
4944 	if (has_pending) {
4945 		bool comma = false;
4946 
4947 		pr_info("    pending:");
4948 		list_for_each_entry(work, &pool->worklist, entry) {
4949 			if (get_work_pwq(work) != pwq)
4950 				continue;
4951 
4952 			pr_cont_work(comma, work, &pcws);
4953 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4954 		}
4955 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
4956 		pr_cont("\n");
4957 	}
4958 
4959 	if (!list_empty(&pwq->inactive_works)) {
4960 		bool comma = false;
4961 
4962 		pr_info("    inactive:");
4963 		list_for_each_entry(work, &pwq->inactive_works, entry) {
4964 			pr_cont_work(comma, work, &pcws);
4965 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4966 		}
4967 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
4968 		pr_cont("\n");
4969 	}
4970 }
4971 
4972 /**
4973  * show_one_workqueue - dump state of specified workqueue
4974  * @wq: workqueue whose state will be printed
4975  */
4976 void show_one_workqueue(struct workqueue_struct *wq)
4977 {
4978 	struct pool_workqueue *pwq;
4979 	bool idle = true;
4980 	unsigned long flags;
4981 
4982 	for_each_pwq(pwq, wq) {
4983 		if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4984 			idle = false;
4985 			break;
4986 		}
4987 	}
4988 	if (idle) /* Nothing to print for idle workqueue */
4989 		return;
4990 
4991 	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4992 
4993 	for_each_pwq(pwq, wq) {
4994 		raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4995 		if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4996 			/*
4997 			 * Defer printing to avoid deadlocks in console
4998 			 * drivers that queue work while holding locks
4999 			 * also taken in their write paths.
5000 			 */
5001 			printk_deferred_enter();
5002 			show_pwq(pwq);
5003 			printk_deferred_exit();
5004 		}
5005 		raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
5006 		/*
5007 		 * We could be printing a lot from atomic context, e.g.
5008 		 * sysrq-t -> show_all_workqueues(). Avoid triggering
5009 		 * hard lockup.
5010 		 */
5011 		touch_nmi_watchdog();
5012 	}
5013 
5014 }
5015 
5016 /**
5017  * show_one_worker_pool - dump state of specified worker pool
5018  * @pool: worker pool whose state will be printed
5019  */
5020 static void show_one_worker_pool(struct worker_pool *pool)
5021 {
5022 	struct worker *worker;
5023 	bool first = true;
5024 	unsigned long flags;
5025 	unsigned long hung = 0;
5026 
5027 	raw_spin_lock_irqsave(&pool->lock, flags);
5028 	if (pool->nr_workers == pool->nr_idle)
5029 		goto next_pool;
5030 
5031 	/* How long the first pending work is waiting for a worker. */
5032 	if (!list_empty(&pool->worklist))
5033 		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
5034 
5035 	/*
5036 	 * Defer printing to avoid deadlocks in console drivers that
5037 	 * queue work while holding locks also taken in their write
5038 	 * paths.
5039 	 */
5040 	printk_deferred_enter();
5041 	pr_info("pool %d:", pool->id);
5042 	pr_cont_pool_info(pool);
5043 	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
5044 	if (pool->manager)
5045 		pr_cont(" manager: %d",
5046 			task_pid_nr(pool->manager->task));
5047 	list_for_each_entry(worker, &pool->idle_list, entry) {
5048 		pr_cont(" %s%d", first ? "idle: " : "",
5049 			task_pid_nr(worker->task));
5050 		first = false;
5051 	}
5052 	pr_cont("\n");
5053 	printk_deferred_exit();
5054 next_pool:
5055 	raw_spin_unlock_irqrestore(&pool->lock, flags);
5056 	/*
5057 	 * We could be printing a lot from atomic context, e.g.
5058 	 * sysrq-t -> show_all_workqueues(). Avoid triggering
5059 	 * hard lockup.
5060 	 */
5061 	touch_nmi_watchdog();
5062 
5063 }
5064 
5065 /**
5066  * show_all_workqueues - dump workqueue state
5067  *
5068  * Called from a sysrq handler and prints out all busy workqueues and pools.
5069  */
5070 void show_all_workqueues(void)
5071 {
5072 	struct workqueue_struct *wq;
5073 	struct worker_pool *pool;
5074 	int pi;
5075 
5076 	rcu_read_lock();
5077 
5078 	pr_info("Showing busy workqueues and worker pools:\n");
5079 
5080 	list_for_each_entry_rcu(wq, &workqueues, list)
5081 		show_one_workqueue(wq);
5082 
5083 	for_each_pool(pool, pi)
5084 		show_one_worker_pool(pool);
5085 
5086 	rcu_read_unlock();
5087 }
5088 
5089 /**
5090  * show_freezable_workqueues - dump freezable workqueue state
5091  *
5092  * Called from try_to_freeze_tasks() and prints out all freezable workqueues
5093  * still busy.
5094  */
5095 void show_freezable_workqueues(void)
5096 {
5097 	struct workqueue_struct *wq;
5098 
5099 	rcu_read_lock();
5100 
5101 	pr_info("Showing freezable workqueues that are still busy:\n");
5102 
5103 	list_for_each_entry_rcu(wq, &workqueues, list) {
5104 		if (!(wq->flags & WQ_FREEZABLE))
5105 			continue;
5106 		show_one_workqueue(wq);
5107 	}
5108 
5109 	rcu_read_unlock();
5110 }
5111 
5112 /* used to show worker information through /proc/PID/{comm,stat,status} */
5113 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
5114 {
5115 	int off;
5116 
5117 	/* always show the actual comm */
5118 	off = strscpy(buf, task->comm, size);
5119 	if (off < 0)
5120 		return;
5121 
5122 	/* stabilize PF_WQ_WORKER and worker pool association */
5123 	mutex_lock(&wq_pool_attach_mutex);
5124 
5125 	if (task->flags & PF_WQ_WORKER) {
5126 		struct worker *worker = kthread_data(task);
5127 		struct worker_pool *pool = worker->pool;
5128 
5129 		if (pool) {
5130 			raw_spin_lock_irq(&pool->lock);
5131 			/*
5132 			 * ->desc tracks information (wq name or
5133 			 * set_worker_desc()) for the latest execution.  If
5134 			 * current, prepend '+', otherwise '-'.
5135 			 */
5136 			if (worker->desc[0] != '\0') {
5137 				if (worker->current_work)
5138 					scnprintf(buf + off, size - off, "+%s",
5139 						  worker->desc);
5140 				else
5141 					scnprintf(buf + off, size - off, "-%s",
5142 						  worker->desc);
5143 			}
5144 			raw_spin_unlock_irq(&pool->lock);
5145 		}
5146 	}
5147 
5148 	mutex_unlock(&wq_pool_attach_mutex);
5149 }
5150 
5151 #ifdef CONFIG_SMP
5152 
5153 /*
5154  * CPU hotplug.
5155  *
5156  * There are two challenges in supporting CPU hotplug.  Firstly, there
5157  * are a lot of assumptions on strong associations among work, pwq and
5158  * pool which make migrating pending and scheduled works very
5159  * difficult to implement without impacting hot paths.  Secondly,
5160  * worker pools serve mix of short, long and very long running works making
5161  * blocked draining impractical.
5162  *
5163  * This is solved by allowing the pools to be disassociated from the CPU
5164  * running as an unbound one and allowing it to be reattached later if the
5165  * cpu comes back online.
5166  */
5167 
5168 static void unbind_workers(int cpu)
5169 {
5170 	struct worker_pool *pool;
5171 	struct worker *worker;
5172 
5173 	for_each_cpu_worker_pool(pool, cpu) {
5174 		mutex_lock(&wq_pool_attach_mutex);
5175 		raw_spin_lock_irq(&pool->lock);
5176 
5177 		/*
5178 		 * We've blocked all attach/detach operations. Make all workers
5179 		 * unbound and set DISASSOCIATED.  Before this, all workers
5180 		 * must be on the cpu.  After this, they may become diasporas.
5181 		 * And the preemption disabled section in their sched callbacks
5182 		 * are guaranteed to see WORKER_UNBOUND since the code here
5183 		 * is on the same cpu.
5184 		 */
5185 		for_each_pool_worker(worker, pool)
5186 			worker->flags |= WORKER_UNBOUND;
5187 
5188 		pool->flags |= POOL_DISASSOCIATED;
5189 
5190 		/*
5191 		 * The handling of nr_running in sched callbacks are disabled
5192 		 * now.  Zap nr_running.  After this, nr_running stays zero and
5193 		 * need_more_worker() and keep_working() are always true as
5194 		 * long as the worklist is not empty.  This pool now behaves as
5195 		 * an unbound (in terms of concurrency management) pool which
5196 		 * are served by workers tied to the pool.
5197 		 */
5198 		pool->nr_running = 0;
5199 
5200 		/*
5201 		 * With concurrency management just turned off, a busy
5202 		 * worker blocking could lead to lengthy stalls.  Kick off
5203 		 * unbound chain execution of currently pending work items.
5204 		 */
5205 		wake_up_worker(pool);
5206 
5207 		raw_spin_unlock_irq(&pool->lock);
5208 
5209 		for_each_pool_worker(worker, pool)
5210 			unbind_worker(worker);
5211 
5212 		mutex_unlock(&wq_pool_attach_mutex);
5213 	}
5214 }
5215 
5216 /**
5217  * rebind_workers - rebind all workers of a pool to the associated CPU
5218  * @pool: pool of interest
5219  *
5220  * @pool->cpu is coming online.  Rebind all workers to the CPU.
5221  */
5222 static void rebind_workers(struct worker_pool *pool)
5223 {
5224 	struct worker *worker;
5225 
5226 	lockdep_assert_held(&wq_pool_attach_mutex);
5227 
5228 	/*
5229 	 * Restore CPU affinity of all workers.  As all idle workers should
5230 	 * be on the run-queue of the associated CPU before any local
5231 	 * wake-ups for concurrency management happen, restore CPU affinity
5232 	 * of all workers first and then clear UNBOUND.  As we're called
5233 	 * from CPU_ONLINE, the following shouldn't fail.
5234 	 */
5235 	for_each_pool_worker(worker, pool) {
5236 		kthread_set_per_cpu(worker->task, pool->cpu);
5237 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5238 						  pool->attrs->cpumask) < 0);
5239 	}
5240 
5241 	raw_spin_lock_irq(&pool->lock);
5242 
5243 	pool->flags &= ~POOL_DISASSOCIATED;
5244 
5245 	for_each_pool_worker(worker, pool) {
5246 		unsigned int worker_flags = worker->flags;
5247 
5248 		/*
5249 		 * We want to clear UNBOUND but can't directly call
5250 		 * worker_clr_flags() or adjust nr_running.  Atomically
5251 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5252 		 * @worker will clear REBOUND using worker_clr_flags() when
5253 		 * it initiates the next execution cycle thus restoring
5254 		 * concurrency management.  Note that when or whether
5255 		 * @worker clears REBOUND doesn't affect correctness.
5256 		 *
5257 		 * WRITE_ONCE() is necessary because @worker->flags may be
5258 		 * tested without holding any lock in
5259 		 * wq_worker_running().  Without it, NOT_RUNNING test may
5260 		 * fail incorrectly leading to premature concurrency
5261 		 * management operations.
5262 		 */
5263 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5264 		worker_flags |= WORKER_REBOUND;
5265 		worker_flags &= ~WORKER_UNBOUND;
5266 		WRITE_ONCE(worker->flags, worker_flags);
5267 	}
5268 
5269 	raw_spin_unlock_irq(&pool->lock);
5270 }
5271 
5272 /**
5273  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5274  * @pool: unbound pool of interest
5275  * @cpu: the CPU which is coming up
5276  *
5277  * An unbound pool may end up with a cpumask which doesn't have any online
5278  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
5279  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
5280  * online CPU before, cpus_allowed of all its workers should be restored.
5281  */
5282 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5283 {
5284 	static cpumask_t cpumask;
5285 	struct worker *worker;
5286 
5287 	lockdep_assert_held(&wq_pool_attach_mutex);
5288 
5289 	/* is @cpu allowed for @pool? */
5290 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5291 		return;
5292 
5293 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5294 
5295 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
5296 	for_each_pool_worker(worker, pool)
5297 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5298 }
5299 
5300 int workqueue_prepare_cpu(unsigned int cpu)
5301 {
5302 	struct worker_pool *pool;
5303 
5304 	for_each_cpu_worker_pool(pool, cpu) {
5305 		if (pool->nr_workers)
5306 			continue;
5307 		if (!create_worker(pool))
5308 			return -ENOMEM;
5309 	}
5310 	return 0;
5311 }
5312 
5313 int workqueue_online_cpu(unsigned int cpu)
5314 {
5315 	struct worker_pool *pool;
5316 	struct workqueue_struct *wq;
5317 	int pi;
5318 
5319 	mutex_lock(&wq_pool_mutex);
5320 
5321 	for_each_pool(pool, pi) {
5322 		mutex_lock(&wq_pool_attach_mutex);
5323 
5324 		if (pool->cpu == cpu)
5325 			rebind_workers(pool);
5326 		else if (pool->cpu < 0)
5327 			restore_unbound_workers_cpumask(pool, cpu);
5328 
5329 		mutex_unlock(&wq_pool_attach_mutex);
5330 	}
5331 
5332 	/* update NUMA affinity of unbound workqueues */
5333 	list_for_each_entry(wq, &workqueues, list)
5334 		wq_update_unbound_numa(wq, cpu, true);
5335 
5336 	mutex_unlock(&wq_pool_mutex);
5337 	return 0;
5338 }
5339 
5340 int workqueue_offline_cpu(unsigned int cpu)
5341 {
5342 	struct workqueue_struct *wq;
5343 
5344 	/* unbinding per-cpu workers should happen on the local CPU */
5345 	if (WARN_ON(cpu != smp_processor_id()))
5346 		return -1;
5347 
5348 	unbind_workers(cpu);
5349 
5350 	/* update NUMA affinity of unbound workqueues */
5351 	mutex_lock(&wq_pool_mutex);
5352 	list_for_each_entry(wq, &workqueues, list)
5353 		wq_update_unbound_numa(wq, cpu, false);
5354 	mutex_unlock(&wq_pool_mutex);
5355 
5356 	return 0;
5357 }
5358 
5359 struct work_for_cpu {
5360 	struct work_struct work;
5361 	long (*fn)(void *);
5362 	void *arg;
5363 	long ret;
5364 };
5365 
5366 static void work_for_cpu_fn(struct work_struct *work)
5367 {
5368 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5369 
5370 	wfc->ret = wfc->fn(wfc->arg);
5371 }
5372 
5373 /**
5374  * work_on_cpu - run a function in thread context on a particular cpu
5375  * @cpu: the cpu to run on
5376  * @fn: the function to run
5377  * @arg: the function arg
5378  *
5379  * It is up to the caller to ensure that the cpu doesn't go offline.
5380  * The caller must not hold any locks which would prevent @fn from completing.
5381  *
5382  * Return: The value @fn returns.
5383  */
5384 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5385 {
5386 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5387 
5388 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5389 	schedule_work_on(cpu, &wfc.work);
5390 	flush_work(&wfc.work);
5391 	destroy_work_on_stack(&wfc.work);
5392 	return wfc.ret;
5393 }
5394 EXPORT_SYMBOL_GPL(work_on_cpu);
5395 
5396 /**
5397  * work_on_cpu_safe - run a function in thread context on a particular cpu
5398  * @cpu: the cpu to run on
5399  * @fn:  the function to run
5400  * @arg: the function argument
5401  *
5402  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5403  * any locks which would prevent @fn from completing.
5404  *
5405  * Return: The value @fn returns.
5406  */
5407 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5408 {
5409 	long ret = -ENODEV;
5410 
5411 	cpus_read_lock();
5412 	if (cpu_online(cpu))
5413 		ret = work_on_cpu(cpu, fn, arg);
5414 	cpus_read_unlock();
5415 	return ret;
5416 }
5417 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5418 #endif /* CONFIG_SMP */
5419 
5420 #ifdef CONFIG_FREEZER
5421 
5422 /**
5423  * freeze_workqueues_begin - begin freezing workqueues
5424  *
5425  * Start freezing workqueues.  After this function returns, all freezable
5426  * workqueues will queue new works to their inactive_works list instead of
5427  * pool->worklist.
5428  *
5429  * CONTEXT:
5430  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5431  */
5432 void freeze_workqueues_begin(void)
5433 {
5434 	struct workqueue_struct *wq;
5435 	struct pool_workqueue *pwq;
5436 
5437 	mutex_lock(&wq_pool_mutex);
5438 
5439 	WARN_ON_ONCE(workqueue_freezing);
5440 	workqueue_freezing = true;
5441 
5442 	list_for_each_entry(wq, &workqueues, list) {
5443 		mutex_lock(&wq->mutex);
5444 		for_each_pwq(pwq, wq)
5445 			pwq_adjust_max_active(pwq);
5446 		mutex_unlock(&wq->mutex);
5447 	}
5448 
5449 	mutex_unlock(&wq_pool_mutex);
5450 }
5451 
5452 /**
5453  * freeze_workqueues_busy - are freezable workqueues still busy?
5454  *
5455  * Check whether freezing is complete.  This function must be called
5456  * between freeze_workqueues_begin() and thaw_workqueues().
5457  *
5458  * CONTEXT:
5459  * Grabs and releases wq_pool_mutex.
5460  *
5461  * Return:
5462  * %true if some freezable workqueues are still busy.  %false if freezing
5463  * is complete.
5464  */
5465 bool freeze_workqueues_busy(void)
5466 {
5467 	bool busy = false;
5468 	struct workqueue_struct *wq;
5469 	struct pool_workqueue *pwq;
5470 
5471 	mutex_lock(&wq_pool_mutex);
5472 
5473 	WARN_ON_ONCE(!workqueue_freezing);
5474 
5475 	list_for_each_entry(wq, &workqueues, list) {
5476 		if (!(wq->flags & WQ_FREEZABLE))
5477 			continue;
5478 		/*
5479 		 * nr_active is monotonically decreasing.  It's safe
5480 		 * to peek without lock.
5481 		 */
5482 		rcu_read_lock();
5483 		for_each_pwq(pwq, wq) {
5484 			WARN_ON_ONCE(pwq->nr_active < 0);
5485 			if (pwq->nr_active) {
5486 				busy = true;
5487 				rcu_read_unlock();
5488 				goto out_unlock;
5489 			}
5490 		}
5491 		rcu_read_unlock();
5492 	}
5493 out_unlock:
5494 	mutex_unlock(&wq_pool_mutex);
5495 	return busy;
5496 }
5497 
5498 /**
5499  * thaw_workqueues - thaw workqueues
5500  *
5501  * Thaw workqueues.  Normal queueing is restored and all collected
5502  * frozen works are transferred to their respective pool worklists.
5503  *
5504  * CONTEXT:
5505  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5506  */
5507 void thaw_workqueues(void)
5508 {
5509 	struct workqueue_struct *wq;
5510 	struct pool_workqueue *pwq;
5511 
5512 	mutex_lock(&wq_pool_mutex);
5513 
5514 	if (!workqueue_freezing)
5515 		goto out_unlock;
5516 
5517 	workqueue_freezing = false;
5518 
5519 	/* restore max_active and repopulate worklist */
5520 	list_for_each_entry(wq, &workqueues, list) {
5521 		mutex_lock(&wq->mutex);
5522 		for_each_pwq(pwq, wq)
5523 			pwq_adjust_max_active(pwq);
5524 		mutex_unlock(&wq->mutex);
5525 	}
5526 
5527 out_unlock:
5528 	mutex_unlock(&wq_pool_mutex);
5529 }
5530 #endif /* CONFIG_FREEZER */
5531 
5532 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
5533 {
5534 	LIST_HEAD(ctxs);
5535 	int ret = 0;
5536 	struct workqueue_struct *wq;
5537 	struct apply_wqattrs_ctx *ctx, *n;
5538 
5539 	lockdep_assert_held(&wq_pool_mutex);
5540 
5541 	list_for_each_entry(wq, &workqueues, list) {
5542 		if (!(wq->flags & WQ_UNBOUND))
5543 			continue;
5544 		/* creating multiple pwqs breaks ordering guarantee */
5545 		if (wq->flags & __WQ_ORDERED)
5546 			continue;
5547 
5548 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
5549 		if (!ctx) {
5550 			ret = -ENOMEM;
5551 			break;
5552 		}
5553 
5554 		list_add_tail(&ctx->list, &ctxs);
5555 	}
5556 
5557 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5558 		if (!ret)
5559 			apply_wqattrs_commit(ctx);
5560 		apply_wqattrs_cleanup(ctx);
5561 	}
5562 
5563 	if (!ret) {
5564 		mutex_lock(&wq_pool_attach_mutex);
5565 		cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
5566 		mutex_unlock(&wq_pool_attach_mutex);
5567 	}
5568 	return ret;
5569 }
5570 
5571 /**
5572  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5573  *  @cpumask: the cpumask to set
5574  *
5575  *  The low-level workqueues cpumask is a global cpumask that limits
5576  *  the affinity of all unbound workqueues.  This function check the @cpumask
5577  *  and apply it to all unbound workqueues and updates all pwqs of them.
5578  *
5579  *  Return:	0	- Success
5580  *  		-EINVAL	- Invalid @cpumask
5581  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5582  */
5583 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5584 {
5585 	int ret = -EINVAL;
5586 
5587 	/*
5588 	 * Not excluding isolated cpus on purpose.
5589 	 * If the user wishes to include them, we allow that.
5590 	 */
5591 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5592 	if (!cpumask_empty(cpumask)) {
5593 		apply_wqattrs_lock();
5594 		if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5595 			ret = 0;
5596 			goto out_unlock;
5597 		}
5598 
5599 		ret = workqueue_apply_unbound_cpumask(cpumask);
5600 
5601 out_unlock:
5602 		apply_wqattrs_unlock();
5603 	}
5604 
5605 	return ret;
5606 }
5607 
5608 #ifdef CONFIG_SYSFS
5609 /*
5610  * Workqueues with WQ_SYSFS flag set is visible to userland via
5611  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5612  * following attributes.
5613  *
5614  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5615  *  max_active	RW int	: maximum number of in-flight work items
5616  *
5617  * Unbound workqueues have the following extra attributes.
5618  *
5619  *  pool_ids	RO int	: the associated pool IDs for each node
5620  *  nice	RW int	: nice value of the workers
5621  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5622  *  numa	RW bool	: whether enable NUMA affinity
5623  */
5624 struct wq_device {
5625 	struct workqueue_struct		*wq;
5626 	struct device			dev;
5627 };
5628 
5629 static struct workqueue_struct *dev_to_wq(struct device *dev)
5630 {
5631 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5632 
5633 	return wq_dev->wq;
5634 }
5635 
5636 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5637 			    char *buf)
5638 {
5639 	struct workqueue_struct *wq = dev_to_wq(dev);
5640 
5641 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5642 }
5643 static DEVICE_ATTR_RO(per_cpu);
5644 
5645 static ssize_t max_active_show(struct device *dev,
5646 			       struct device_attribute *attr, char *buf)
5647 {
5648 	struct workqueue_struct *wq = dev_to_wq(dev);
5649 
5650 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5651 }
5652 
5653 static ssize_t max_active_store(struct device *dev,
5654 				struct device_attribute *attr, const char *buf,
5655 				size_t count)
5656 {
5657 	struct workqueue_struct *wq = dev_to_wq(dev);
5658 	int val;
5659 
5660 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5661 		return -EINVAL;
5662 
5663 	workqueue_set_max_active(wq, val);
5664 	return count;
5665 }
5666 static DEVICE_ATTR_RW(max_active);
5667 
5668 static struct attribute *wq_sysfs_attrs[] = {
5669 	&dev_attr_per_cpu.attr,
5670 	&dev_attr_max_active.attr,
5671 	NULL,
5672 };
5673 ATTRIBUTE_GROUPS(wq_sysfs);
5674 
5675 static ssize_t wq_pool_ids_show(struct device *dev,
5676 				struct device_attribute *attr, char *buf)
5677 {
5678 	struct workqueue_struct *wq = dev_to_wq(dev);
5679 	const char *delim = "";
5680 	int node, written = 0;
5681 
5682 	cpus_read_lock();
5683 	rcu_read_lock();
5684 	for_each_node(node) {
5685 		written += scnprintf(buf + written, PAGE_SIZE - written,
5686 				     "%s%d:%d", delim, node,
5687 				     unbound_pwq_by_node(wq, node)->pool->id);
5688 		delim = " ";
5689 	}
5690 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5691 	rcu_read_unlock();
5692 	cpus_read_unlock();
5693 
5694 	return written;
5695 }
5696 
5697 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5698 			    char *buf)
5699 {
5700 	struct workqueue_struct *wq = dev_to_wq(dev);
5701 	int written;
5702 
5703 	mutex_lock(&wq->mutex);
5704 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5705 	mutex_unlock(&wq->mutex);
5706 
5707 	return written;
5708 }
5709 
5710 /* prepare workqueue_attrs for sysfs store operations */
5711 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5712 {
5713 	struct workqueue_attrs *attrs;
5714 
5715 	lockdep_assert_held(&wq_pool_mutex);
5716 
5717 	attrs = alloc_workqueue_attrs();
5718 	if (!attrs)
5719 		return NULL;
5720 
5721 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5722 	return attrs;
5723 }
5724 
5725 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5726 			     const char *buf, size_t count)
5727 {
5728 	struct workqueue_struct *wq = dev_to_wq(dev);
5729 	struct workqueue_attrs *attrs;
5730 	int ret = -ENOMEM;
5731 
5732 	apply_wqattrs_lock();
5733 
5734 	attrs = wq_sysfs_prep_attrs(wq);
5735 	if (!attrs)
5736 		goto out_unlock;
5737 
5738 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5739 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5740 		ret = apply_workqueue_attrs_locked(wq, attrs);
5741 	else
5742 		ret = -EINVAL;
5743 
5744 out_unlock:
5745 	apply_wqattrs_unlock();
5746 	free_workqueue_attrs(attrs);
5747 	return ret ?: count;
5748 }
5749 
5750 static ssize_t wq_cpumask_show(struct device *dev,
5751 			       struct device_attribute *attr, char *buf)
5752 {
5753 	struct workqueue_struct *wq = dev_to_wq(dev);
5754 	int written;
5755 
5756 	mutex_lock(&wq->mutex);
5757 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5758 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5759 	mutex_unlock(&wq->mutex);
5760 	return written;
5761 }
5762 
5763 static ssize_t wq_cpumask_store(struct device *dev,
5764 				struct device_attribute *attr,
5765 				const char *buf, size_t count)
5766 {
5767 	struct workqueue_struct *wq = dev_to_wq(dev);
5768 	struct workqueue_attrs *attrs;
5769 	int ret = -ENOMEM;
5770 
5771 	apply_wqattrs_lock();
5772 
5773 	attrs = wq_sysfs_prep_attrs(wq);
5774 	if (!attrs)
5775 		goto out_unlock;
5776 
5777 	ret = cpumask_parse(buf, attrs->cpumask);
5778 	if (!ret)
5779 		ret = apply_workqueue_attrs_locked(wq, attrs);
5780 
5781 out_unlock:
5782 	apply_wqattrs_unlock();
5783 	free_workqueue_attrs(attrs);
5784 	return ret ?: count;
5785 }
5786 
5787 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5788 			    char *buf)
5789 {
5790 	struct workqueue_struct *wq = dev_to_wq(dev);
5791 	int written;
5792 
5793 	mutex_lock(&wq->mutex);
5794 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5795 			    !wq->unbound_attrs->no_numa);
5796 	mutex_unlock(&wq->mutex);
5797 
5798 	return written;
5799 }
5800 
5801 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5802 			     const char *buf, size_t count)
5803 {
5804 	struct workqueue_struct *wq = dev_to_wq(dev);
5805 	struct workqueue_attrs *attrs;
5806 	int v, ret = -ENOMEM;
5807 
5808 	apply_wqattrs_lock();
5809 
5810 	attrs = wq_sysfs_prep_attrs(wq);
5811 	if (!attrs)
5812 		goto out_unlock;
5813 
5814 	ret = -EINVAL;
5815 	if (sscanf(buf, "%d", &v) == 1) {
5816 		attrs->no_numa = !v;
5817 		ret = apply_workqueue_attrs_locked(wq, attrs);
5818 	}
5819 
5820 out_unlock:
5821 	apply_wqattrs_unlock();
5822 	free_workqueue_attrs(attrs);
5823 	return ret ?: count;
5824 }
5825 
5826 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5827 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5828 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5829 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5830 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5831 	__ATTR_NULL,
5832 };
5833 
5834 static struct bus_type wq_subsys = {
5835 	.name				= "workqueue",
5836 	.dev_groups			= wq_sysfs_groups,
5837 };
5838 
5839 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5840 		struct device_attribute *attr, char *buf)
5841 {
5842 	int written;
5843 
5844 	mutex_lock(&wq_pool_mutex);
5845 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5846 			    cpumask_pr_args(wq_unbound_cpumask));
5847 	mutex_unlock(&wq_pool_mutex);
5848 
5849 	return written;
5850 }
5851 
5852 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5853 		struct device_attribute *attr, const char *buf, size_t count)
5854 {
5855 	cpumask_var_t cpumask;
5856 	int ret;
5857 
5858 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5859 		return -ENOMEM;
5860 
5861 	ret = cpumask_parse(buf, cpumask);
5862 	if (!ret)
5863 		ret = workqueue_set_unbound_cpumask(cpumask);
5864 
5865 	free_cpumask_var(cpumask);
5866 	return ret ? ret : count;
5867 }
5868 
5869 static struct device_attribute wq_sysfs_cpumask_attr =
5870 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5871 	       wq_unbound_cpumask_store);
5872 
5873 static int __init wq_sysfs_init(void)
5874 {
5875 	struct device *dev_root;
5876 	int err;
5877 
5878 	err = subsys_virtual_register(&wq_subsys, NULL);
5879 	if (err)
5880 		return err;
5881 
5882 	dev_root = bus_get_dev_root(&wq_subsys);
5883 	if (dev_root) {
5884 		err = device_create_file(dev_root, &wq_sysfs_cpumask_attr);
5885 		put_device(dev_root);
5886 	}
5887 	return err;
5888 }
5889 core_initcall(wq_sysfs_init);
5890 
5891 static void wq_device_release(struct device *dev)
5892 {
5893 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5894 
5895 	kfree(wq_dev);
5896 }
5897 
5898 /**
5899  * workqueue_sysfs_register - make a workqueue visible in sysfs
5900  * @wq: the workqueue to register
5901  *
5902  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5903  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5904  * which is the preferred method.
5905  *
5906  * Workqueue user should use this function directly iff it wants to apply
5907  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5908  * apply_workqueue_attrs() may race against userland updating the
5909  * attributes.
5910  *
5911  * Return: 0 on success, -errno on failure.
5912  */
5913 int workqueue_sysfs_register(struct workqueue_struct *wq)
5914 {
5915 	struct wq_device *wq_dev;
5916 	int ret;
5917 
5918 	/*
5919 	 * Adjusting max_active or creating new pwqs by applying
5920 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5921 	 * workqueues.
5922 	 */
5923 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5924 		return -EINVAL;
5925 
5926 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5927 	if (!wq_dev)
5928 		return -ENOMEM;
5929 
5930 	wq_dev->wq = wq;
5931 	wq_dev->dev.bus = &wq_subsys;
5932 	wq_dev->dev.release = wq_device_release;
5933 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5934 
5935 	/*
5936 	 * unbound_attrs are created separately.  Suppress uevent until
5937 	 * everything is ready.
5938 	 */
5939 	dev_set_uevent_suppress(&wq_dev->dev, true);
5940 
5941 	ret = device_register(&wq_dev->dev);
5942 	if (ret) {
5943 		put_device(&wq_dev->dev);
5944 		wq->wq_dev = NULL;
5945 		return ret;
5946 	}
5947 
5948 	if (wq->flags & WQ_UNBOUND) {
5949 		struct device_attribute *attr;
5950 
5951 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5952 			ret = device_create_file(&wq_dev->dev, attr);
5953 			if (ret) {
5954 				device_unregister(&wq_dev->dev);
5955 				wq->wq_dev = NULL;
5956 				return ret;
5957 			}
5958 		}
5959 	}
5960 
5961 	dev_set_uevent_suppress(&wq_dev->dev, false);
5962 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5963 	return 0;
5964 }
5965 
5966 /**
5967  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5968  * @wq: the workqueue to unregister
5969  *
5970  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5971  */
5972 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5973 {
5974 	struct wq_device *wq_dev = wq->wq_dev;
5975 
5976 	if (!wq->wq_dev)
5977 		return;
5978 
5979 	wq->wq_dev = NULL;
5980 	device_unregister(&wq_dev->dev);
5981 }
5982 #else	/* CONFIG_SYSFS */
5983 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5984 #endif	/* CONFIG_SYSFS */
5985 
5986 /*
5987  * Workqueue watchdog.
5988  *
5989  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5990  * flush dependency, a concurrency managed work item which stays RUNNING
5991  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5992  * usual warning mechanisms don't trigger and internal workqueue state is
5993  * largely opaque.
5994  *
5995  * Workqueue watchdog monitors all worker pools periodically and dumps
5996  * state if some pools failed to make forward progress for a while where
5997  * forward progress is defined as the first item on ->worklist changing.
5998  *
5999  * This mechanism is controlled through the kernel parameter
6000  * "workqueue.watchdog_thresh" which can be updated at runtime through the
6001  * corresponding sysfs parameter file.
6002  */
6003 #ifdef CONFIG_WQ_WATCHDOG
6004 
6005 static unsigned long wq_watchdog_thresh = 30;
6006 static struct timer_list wq_watchdog_timer;
6007 
6008 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
6009 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
6010 
6011 /*
6012  * Show workers that might prevent the processing of pending work items.
6013  * The only candidates are CPU-bound workers in the running state.
6014  * Pending work items should be handled by another idle worker
6015  * in all other situations.
6016  */
6017 static void show_cpu_pool_hog(struct worker_pool *pool)
6018 {
6019 	struct worker *worker;
6020 	unsigned long flags;
6021 	int bkt;
6022 
6023 	raw_spin_lock_irqsave(&pool->lock, flags);
6024 
6025 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6026 		if (task_is_running(worker->task)) {
6027 			/*
6028 			 * Defer printing to avoid deadlocks in console
6029 			 * drivers that queue work while holding locks
6030 			 * also taken in their write paths.
6031 			 */
6032 			printk_deferred_enter();
6033 
6034 			pr_info("pool %d:\n", pool->id);
6035 			sched_show_task(worker->task);
6036 
6037 			printk_deferred_exit();
6038 		}
6039 	}
6040 
6041 	raw_spin_unlock_irqrestore(&pool->lock, flags);
6042 }
6043 
6044 static void show_cpu_pools_hogs(void)
6045 {
6046 	struct worker_pool *pool;
6047 	int pi;
6048 
6049 	pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
6050 
6051 	rcu_read_lock();
6052 
6053 	for_each_pool(pool, pi) {
6054 		if (pool->cpu_stall)
6055 			show_cpu_pool_hog(pool);
6056 
6057 	}
6058 
6059 	rcu_read_unlock();
6060 }
6061 
6062 static void wq_watchdog_reset_touched(void)
6063 {
6064 	int cpu;
6065 
6066 	wq_watchdog_touched = jiffies;
6067 	for_each_possible_cpu(cpu)
6068 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
6069 }
6070 
6071 static void wq_watchdog_timer_fn(struct timer_list *unused)
6072 {
6073 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
6074 	bool lockup_detected = false;
6075 	bool cpu_pool_stall = false;
6076 	unsigned long now = jiffies;
6077 	struct worker_pool *pool;
6078 	int pi;
6079 
6080 	if (!thresh)
6081 		return;
6082 
6083 	rcu_read_lock();
6084 
6085 	for_each_pool(pool, pi) {
6086 		unsigned long pool_ts, touched, ts;
6087 
6088 		pool->cpu_stall = false;
6089 		if (list_empty(&pool->worklist))
6090 			continue;
6091 
6092 		/*
6093 		 * If a virtual machine is stopped by the host it can look to
6094 		 * the watchdog like a stall.
6095 		 */
6096 		kvm_check_and_clear_guest_paused();
6097 
6098 		/* get the latest of pool and touched timestamps */
6099 		if (pool->cpu >= 0)
6100 			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
6101 		else
6102 			touched = READ_ONCE(wq_watchdog_touched);
6103 		pool_ts = READ_ONCE(pool->watchdog_ts);
6104 
6105 		if (time_after(pool_ts, touched))
6106 			ts = pool_ts;
6107 		else
6108 			ts = touched;
6109 
6110 		/* did we stall? */
6111 		if (time_after(now, ts + thresh)) {
6112 			lockup_detected = true;
6113 			if (pool->cpu >= 0) {
6114 				pool->cpu_stall = true;
6115 				cpu_pool_stall = true;
6116 			}
6117 			pr_emerg("BUG: workqueue lockup - pool");
6118 			pr_cont_pool_info(pool);
6119 			pr_cont(" stuck for %us!\n",
6120 				jiffies_to_msecs(now - pool_ts) / 1000);
6121 		}
6122 
6123 
6124 	}
6125 
6126 	rcu_read_unlock();
6127 
6128 	if (lockup_detected)
6129 		show_all_workqueues();
6130 
6131 	if (cpu_pool_stall)
6132 		show_cpu_pools_hogs();
6133 
6134 	wq_watchdog_reset_touched();
6135 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
6136 }
6137 
6138 notrace void wq_watchdog_touch(int cpu)
6139 {
6140 	if (cpu >= 0)
6141 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
6142 
6143 	wq_watchdog_touched = jiffies;
6144 }
6145 
6146 static void wq_watchdog_set_thresh(unsigned long thresh)
6147 {
6148 	wq_watchdog_thresh = 0;
6149 	del_timer_sync(&wq_watchdog_timer);
6150 
6151 	if (thresh) {
6152 		wq_watchdog_thresh = thresh;
6153 		wq_watchdog_reset_touched();
6154 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
6155 	}
6156 }
6157 
6158 static int wq_watchdog_param_set_thresh(const char *val,
6159 					const struct kernel_param *kp)
6160 {
6161 	unsigned long thresh;
6162 	int ret;
6163 
6164 	ret = kstrtoul(val, 0, &thresh);
6165 	if (ret)
6166 		return ret;
6167 
6168 	if (system_wq)
6169 		wq_watchdog_set_thresh(thresh);
6170 	else
6171 		wq_watchdog_thresh = thresh;
6172 
6173 	return 0;
6174 }
6175 
6176 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
6177 	.set	= wq_watchdog_param_set_thresh,
6178 	.get	= param_get_ulong,
6179 };
6180 
6181 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
6182 		0644);
6183 
6184 static void wq_watchdog_init(void)
6185 {
6186 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
6187 	wq_watchdog_set_thresh(wq_watchdog_thresh);
6188 }
6189 
6190 #else	/* CONFIG_WQ_WATCHDOG */
6191 
6192 static inline void wq_watchdog_init(void) { }
6193 
6194 #endif	/* CONFIG_WQ_WATCHDOG */
6195 
6196 static void __init wq_numa_init(void)
6197 {
6198 	cpumask_var_t *tbl;
6199 	int node, cpu;
6200 
6201 	if (num_possible_nodes() <= 1)
6202 		return;
6203 
6204 	if (wq_disable_numa) {
6205 		pr_info("workqueue: NUMA affinity support disabled\n");
6206 		return;
6207 	}
6208 
6209 	for_each_possible_cpu(cpu) {
6210 		if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
6211 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
6212 			return;
6213 		}
6214 	}
6215 
6216 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
6217 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
6218 
6219 	/*
6220 	 * We want masks of possible CPUs of each node which isn't readily
6221 	 * available.  Build one from cpu_to_node() which should have been
6222 	 * fully initialized by now.
6223 	 */
6224 	tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
6225 	BUG_ON(!tbl);
6226 
6227 	for_each_node(node)
6228 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
6229 				node_online(node) ? node : NUMA_NO_NODE));
6230 
6231 	for_each_possible_cpu(cpu) {
6232 		node = cpu_to_node(cpu);
6233 		cpumask_set_cpu(cpu, tbl[node]);
6234 	}
6235 
6236 	wq_numa_possible_cpumask = tbl;
6237 	wq_numa_enabled = true;
6238 }
6239 
6240 /**
6241  * workqueue_init_early - early init for workqueue subsystem
6242  *
6243  * This is the first half of two-staged workqueue subsystem initialization
6244  * and invoked as soon as the bare basics - memory allocation, cpumasks and
6245  * idr are up.  It sets up all the data structures and system workqueues
6246  * and allows early boot code to create workqueues and queue/cancel work
6247  * items.  Actual work item execution starts only after kthreads can be
6248  * created and scheduled right before early initcalls.
6249  */
6250 void __init workqueue_init_early(void)
6251 {
6252 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
6253 	int i, cpu;
6254 
6255 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
6256 
6257 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
6258 	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_WQ));
6259 	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_DOMAIN));
6260 
6261 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
6262 
6263 	/* initialize CPU pools */
6264 	for_each_possible_cpu(cpu) {
6265 		struct worker_pool *pool;
6266 
6267 		i = 0;
6268 		for_each_cpu_worker_pool(pool, cpu) {
6269 			BUG_ON(init_worker_pool(pool));
6270 			pool->cpu = cpu;
6271 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
6272 			pool->attrs->nice = std_nice[i++];
6273 			pool->node = cpu_to_node(cpu);
6274 
6275 			/* alloc pool ID */
6276 			mutex_lock(&wq_pool_mutex);
6277 			BUG_ON(worker_pool_assign_id(pool));
6278 			mutex_unlock(&wq_pool_mutex);
6279 		}
6280 	}
6281 
6282 	/* create default unbound and ordered wq attrs */
6283 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6284 		struct workqueue_attrs *attrs;
6285 
6286 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6287 		attrs->nice = std_nice[i];
6288 		unbound_std_wq_attrs[i] = attrs;
6289 
6290 		/*
6291 		 * An ordered wq should have only one pwq as ordering is
6292 		 * guaranteed by max_active which is enforced by pwqs.
6293 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
6294 		 */
6295 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6296 		attrs->nice = std_nice[i];
6297 		attrs->no_numa = true;
6298 		ordered_wq_attrs[i] = attrs;
6299 	}
6300 
6301 	system_wq = alloc_workqueue("events", 0, 0);
6302 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6303 	system_long_wq = alloc_workqueue("events_long", 0, 0);
6304 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6305 					    WQ_UNBOUND_MAX_ACTIVE);
6306 	system_freezable_wq = alloc_workqueue("events_freezable",
6307 					      WQ_FREEZABLE, 0);
6308 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6309 					      WQ_POWER_EFFICIENT, 0);
6310 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6311 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6312 					      0);
6313 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6314 	       !system_unbound_wq || !system_freezable_wq ||
6315 	       !system_power_efficient_wq ||
6316 	       !system_freezable_power_efficient_wq);
6317 }
6318 
6319 /**
6320  * workqueue_init - bring workqueue subsystem fully online
6321  *
6322  * This is the latter half of two-staged workqueue subsystem initialization
6323  * and invoked as soon as kthreads can be created and scheduled.
6324  * Workqueues have been created and work items queued on them, but there
6325  * are no kworkers executing the work items yet.  Populate the worker pools
6326  * with the initial workers and enable future kworker creations.
6327  */
6328 void __init workqueue_init(void)
6329 {
6330 	struct workqueue_struct *wq;
6331 	struct worker_pool *pool;
6332 	int cpu, bkt;
6333 
6334 	/*
6335 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6336 	 * CPU to node mapping may not be available that early on some
6337 	 * archs such as power and arm64.  As per-cpu pools created
6338 	 * previously could be missing node hint and unbound pools NUMA
6339 	 * affinity, fix them up.
6340 	 *
6341 	 * Also, while iterating workqueues, create rescuers if requested.
6342 	 */
6343 	wq_numa_init();
6344 
6345 	mutex_lock(&wq_pool_mutex);
6346 
6347 	for_each_possible_cpu(cpu) {
6348 		for_each_cpu_worker_pool(pool, cpu) {
6349 			pool->node = cpu_to_node(cpu);
6350 		}
6351 	}
6352 
6353 	list_for_each_entry(wq, &workqueues, list) {
6354 		wq_update_unbound_numa(wq, smp_processor_id(), true);
6355 		WARN(init_rescuer(wq),
6356 		     "workqueue: failed to create early rescuer for %s",
6357 		     wq->name);
6358 	}
6359 
6360 	mutex_unlock(&wq_pool_mutex);
6361 
6362 	/* create the initial workers */
6363 	for_each_online_cpu(cpu) {
6364 		for_each_cpu_worker_pool(pool, cpu) {
6365 			pool->flags &= ~POOL_DISASSOCIATED;
6366 			BUG_ON(!create_worker(pool));
6367 		}
6368 	}
6369 
6370 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6371 		BUG_ON(!create_worker(pool));
6372 
6373 	wq_online = true;
6374 	wq_watchdog_init();
6375 }
6376 
6377 /*
6378  * Despite the naming, this is a no-op function which is here only for avoiding
6379  * link error. Since compile-time warning may fail to catch, we will need to
6380  * emit run-time warning from __flush_workqueue().
6381  */
6382 void __warn_flushing_systemwide_wq(void) { }
6383 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
6384