1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There are two worker pools for each CPU (one for 20 * normal work items and the other for high priority ones) and some extra 21 * pools for workqueues which are not bound to any specific CPU - the 22 * number of these backing pools is dynamic. 23 * 24 * Please read Documentation/core-api/workqueue.rst for details. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kernel.h> 29 #include <linux/sched.h> 30 #include <linux/init.h> 31 #include <linux/signal.h> 32 #include <linux/completion.h> 33 #include <linux/workqueue.h> 34 #include <linux/slab.h> 35 #include <linux/cpu.h> 36 #include <linux/notifier.h> 37 #include <linux/kthread.h> 38 #include <linux/hardirq.h> 39 #include <linux/mempolicy.h> 40 #include <linux/freezer.h> 41 #include <linux/kallsyms.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 52 #include "workqueue_internal.h" 53 54 enum { 55 /* 56 * worker_pool flags 57 * 58 * A bound pool is either associated or disassociated with its CPU. 59 * While associated (!DISASSOCIATED), all workers are bound to the 60 * CPU and none has %WORKER_UNBOUND set and concurrency management 61 * is in effect. 62 * 63 * While DISASSOCIATED, the cpu may be offline and all workers have 64 * %WORKER_UNBOUND set and concurrency management disabled, and may 65 * be executing on any CPU. The pool behaves as an unbound one. 66 * 67 * Note that DISASSOCIATED should be flipped only while holding 68 * attach_mutex to avoid changing binding state while 69 * worker_attach_to_pool() is in progress. 70 */ 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 72 73 /* worker flags */ 74 WORKER_DIE = 1 << 1, /* die die die */ 75 WORKER_IDLE = 1 << 2, /* is idle */ 76 WORKER_PREP = 1 << 3, /* preparing to run works */ 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 79 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 80 81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 82 WORKER_UNBOUND | WORKER_REBOUND, 83 84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 85 86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 88 89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 91 92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 93 /* call for help after 10ms 94 (min two ticks) */ 95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 96 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 97 98 /* 99 * Rescue workers are used only on emergencies and shared by 100 * all cpus. Give MIN_NICE. 101 */ 102 RESCUER_NICE_LEVEL = MIN_NICE, 103 HIGHPRI_NICE_LEVEL = MIN_NICE, 104 105 WQ_NAME_LEN = 24, 106 }; 107 108 /* 109 * Structure fields follow one of the following exclusion rules. 110 * 111 * I: Modifiable by initialization/destruction paths and read-only for 112 * everyone else. 113 * 114 * P: Preemption protected. Disabling preemption is enough and should 115 * only be modified and accessed from the local cpu. 116 * 117 * L: pool->lock protected. Access with pool->lock held. 118 * 119 * X: During normal operation, modification requires pool->lock and should 120 * be done only from local cpu. Either disabling preemption on local 121 * cpu or grabbing pool->lock is enough for read access. If 122 * POOL_DISASSOCIATED is set, it's identical to L. 123 * 124 * A: pool->attach_mutex protected. 125 * 126 * PL: wq_pool_mutex protected. 127 * 128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads. 129 * 130 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 131 * 132 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 133 * sched-RCU for reads. 134 * 135 * WQ: wq->mutex protected. 136 * 137 * WR: wq->mutex protected for writes. Sched-RCU protected for reads. 138 * 139 * MD: wq_mayday_lock protected. 140 */ 141 142 /* struct worker is defined in workqueue_internal.h */ 143 144 struct worker_pool { 145 spinlock_t lock; /* the pool lock */ 146 int cpu; /* I: the associated cpu */ 147 int node; /* I: the associated node ID */ 148 int id; /* I: pool ID */ 149 unsigned int flags; /* X: flags */ 150 151 unsigned long watchdog_ts; /* L: watchdog timestamp */ 152 153 struct list_head worklist; /* L: list of pending works */ 154 int nr_workers; /* L: total number of workers */ 155 156 /* nr_idle includes the ones off idle_list for rebinding */ 157 int nr_idle; /* L: currently idle ones */ 158 159 struct list_head idle_list; /* X: list of idle workers */ 160 struct timer_list idle_timer; /* L: worker idle timeout */ 161 struct timer_list mayday_timer; /* L: SOS timer for workers */ 162 163 /* a workers is either on busy_hash or idle_list, or the manager */ 164 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 165 /* L: hash of busy workers */ 166 167 /* see manage_workers() for details on the two manager mutexes */ 168 struct mutex manager_arb; /* manager arbitration */ 169 struct worker *manager; /* L: purely informational */ 170 struct mutex attach_mutex; /* attach/detach exclusion */ 171 struct list_head workers; /* A: attached workers */ 172 struct completion *detach_completion; /* all workers detached */ 173 174 struct ida worker_ida; /* worker IDs for task name */ 175 176 struct workqueue_attrs *attrs; /* I: worker attributes */ 177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 178 int refcnt; /* PL: refcnt for unbound pools */ 179 180 /* 181 * The current concurrency level. As it's likely to be accessed 182 * from other CPUs during try_to_wake_up(), put it in a separate 183 * cacheline. 184 */ 185 atomic_t nr_running ____cacheline_aligned_in_smp; 186 187 /* 188 * Destruction of pool is sched-RCU protected to allow dereferences 189 * from get_work_pool(). 190 */ 191 struct rcu_head rcu; 192 } ____cacheline_aligned_in_smp; 193 194 /* 195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 196 * of work_struct->data are used for flags and the remaining high bits 197 * point to the pwq; thus, pwqs need to be aligned at two's power of the 198 * number of flag bits. 199 */ 200 struct pool_workqueue { 201 struct worker_pool *pool; /* I: the associated pool */ 202 struct workqueue_struct *wq; /* I: the owning workqueue */ 203 int work_color; /* L: current color */ 204 int flush_color; /* L: flushing color */ 205 int refcnt; /* L: reference count */ 206 int nr_in_flight[WORK_NR_COLORS]; 207 /* L: nr of in_flight works */ 208 int nr_active; /* L: nr of active works */ 209 int max_active; /* L: max active works */ 210 struct list_head delayed_works; /* L: delayed works */ 211 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 212 struct list_head mayday_node; /* MD: node on wq->maydays */ 213 214 /* 215 * Release of unbound pwq is punted to system_wq. See put_pwq() 216 * and pwq_unbound_release_workfn() for details. pool_workqueue 217 * itself is also sched-RCU protected so that the first pwq can be 218 * determined without grabbing wq->mutex. 219 */ 220 struct work_struct unbound_release_work; 221 struct rcu_head rcu; 222 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 223 224 /* 225 * Structure used to wait for workqueue flush. 226 */ 227 struct wq_flusher { 228 struct list_head list; /* WQ: list of flushers */ 229 int flush_color; /* WQ: flush color waiting for */ 230 struct completion done; /* flush completion */ 231 }; 232 233 struct wq_device; 234 235 /* 236 * The externally visible workqueue. It relays the issued work items to 237 * the appropriate worker_pool through its pool_workqueues. 238 */ 239 struct workqueue_struct { 240 struct list_head pwqs; /* WR: all pwqs of this wq */ 241 struct list_head list; /* PR: list of all workqueues */ 242 243 struct mutex mutex; /* protects this wq */ 244 int work_color; /* WQ: current work color */ 245 int flush_color; /* WQ: current flush color */ 246 atomic_t nr_pwqs_to_flush; /* flush in progress */ 247 struct wq_flusher *first_flusher; /* WQ: first flusher */ 248 struct list_head flusher_queue; /* WQ: flush waiters */ 249 struct list_head flusher_overflow; /* WQ: flush overflow list */ 250 251 struct list_head maydays; /* MD: pwqs requesting rescue */ 252 struct worker *rescuer; /* I: rescue worker */ 253 254 int nr_drainers; /* WQ: drain in progress */ 255 int saved_max_active; /* WQ: saved pwq max_active */ 256 257 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 258 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 259 260 #ifdef CONFIG_SYSFS 261 struct wq_device *wq_dev; /* I: for sysfs interface */ 262 #endif 263 #ifdef CONFIG_LOCKDEP 264 struct lockdep_map lockdep_map; 265 #endif 266 char name[WQ_NAME_LEN]; /* I: workqueue name */ 267 268 /* 269 * Destruction of workqueue_struct is sched-RCU protected to allow 270 * walking the workqueues list without grabbing wq_pool_mutex. 271 * This is used to dump all workqueues from sysrq. 272 */ 273 struct rcu_head rcu; 274 275 /* hot fields used during command issue, aligned to cacheline */ 276 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 277 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 278 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 279 }; 280 281 static struct kmem_cache *pwq_cache; 282 283 static cpumask_var_t *wq_numa_possible_cpumask; 284 /* possible CPUs of each node */ 285 286 static bool wq_disable_numa; 287 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 288 289 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 291 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 292 293 static bool wq_online; /* can kworkers be created yet? */ 294 295 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 296 297 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 298 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 299 300 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 301 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 302 303 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 304 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 305 306 /* PL: allowable cpus for unbound wqs and work items */ 307 static cpumask_var_t wq_unbound_cpumask; 308 309 /* CPU where unbound work was last round robin scheduled from this CPU */ 310 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 311 312 /* 313 * Local execution of unbound work items is no longer guaranteed. The 314 * following always forces round-robin CPU selection on unbound work items 315 * to uncover usages which depend on it. 316 */ 317 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 318 static bool wq_debug_force_rr_cpu = true; 319 #else 320 static bool wq_debug_force_rr_cpu = false; 321 #endif 322 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 323 324 /* the per-cpu worker pools */ 325 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 326 327 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 328 329 /* PL: hash of all unbound pools keyed by pool->attrs */ 330 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 331 332 /* I: attributes used when instantiating standard unbound pools on demand */ 333 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 334 335 /* I: attributes used when instantiating ordered pools on demand */ 336 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 337 338 struct workqueue_struct *system_wq __read_mostly; 339 EXPORT_SYMBOL(system_wq); 340 struct workqueue_struct *system_highpri_wq __read_mostly; 341 EXPORT_SYMBOL_GPL(system_highpri_wq); 342 struct workqueue_struct *system_long_wq __read_mostly; 343 EXPORT_SYMBOL_GPL(system_long_wq); 344 struct workqueue_struct *system_unbound_wq __read_mostly; 345 EXPORT_SYMBOL_GPL(system_unbound_wq); 346 struct workqueue_struct *system_freezable_wq __read_mostly; 347 EXPORT_SYMBOL_GPL(system_freezable_wq); 348 struct workqueue_struct *system_power_efficient_wq __read_mostly; 349 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 350 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 351 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 352 353 static int worker_thread(void *__worker); 354 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 355 356 #define CREATE_TRACE_POINTS 357 #include <trace/events/workqueue.h> 358 359 #define assert_rcu_or_pool_mutex() \ 360 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 361 !lockdep_is_held(&wq_pool_mutex), \ 362 "sched RCU or wq_pool_mutex should be held") 363 364 #define assert_rcu_or_wq_mutex(wq) \ 365 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 366 !lockdep_is_held(&wq->mutex), \ 367 "sched RCU or wq->mutex should be held") 368 369 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 370 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 371 !lockdep_is_held(&wq->mutex) && \ 372 !lockdep_is_held(&wq_pool_mutex), \ 373 "sched RCU, wq->mutex or wq_pool_mutex should be held") 374 375 #define for_each_cpu_worker_pool(pool, cpu) \ 376 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 377 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 378 (pool)++) 379 380 /** 381 * for_each_pool - iterate through all worker_pools in the system 382 * @pool: iteration cursor 383 * @pi: integer used for iteration 384 * 385 * This must be called either with wq_pool_mutex held or sched RCU read 386 * locked. If the pool needs to be used beyond the locking in effect, the 387 * caller is responsible for guaranteeing that the pool stays online. 388 * 389 * The if/else clause exists only for the lockdep assertion and can be 390 * ignored. 391 */ 392 #define for_each_pool(pool, pi) \ 393 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 394 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 395 else 396 397 /** 398 * for_each_pool_worker - iterate through all workers of a worker_pool 399 * @worker: iteration cursor 400 * @pool: worker_pool to iterate workers of 401 * 402 * This must be called with @pool->attach_mutex. 403 * 404 * The if/else clause exists only for the lockdep assertion and can be 405 * ignored. 406 */ 407 #define for_each_pool_worker(worker, pool) \ 408 list_for_each_entry((worker), &(pool)->workers, node) \ 409 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \ 410 else 411 412 /** 413 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 414 * @pwq: iteration cursor 415 * @wq: the target workqueue 416 * 417 * This must be called either with wq->mutex held or sched RCU read locked. 418 * If the pwq needs to be used beyond the locking in effect, the caller is 419 * responsible for guaranteeing that the pwq stays online. 420 * 421 * The if/else clause exists only for the lockdep assertion and can be 422 * ignored. 423 */ 424 #define for_each_pwq(pwq, wq) \ 425 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \ 426 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ 427 else 428 429 #ifdef CONFIG_DEBUG_OBJECTS_WORK 430 431 static struct debug_obj_descr work_debug_descr; 432 433 static void *work_debug_hint(void *addr) 434 { 435 return ((struct work_struct *) addr)->func; 436 } 437 438 static bool work_is_static_object(void *addr) 439 { 440 struct work_struct *work = addr; 441 442 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 443 } 444 445 /* 446 * fixup_init is called when: 447 * - an active object is initialized 448 */ 449 static bool work_fixup_init(void *addr, enum debug_obj_state state) 450 { 451 struct work_struct *work = addr; 452 453 switch (state) { 454 case ODEBUG_STATE_ACTIVE: 455 cancel_work_sync(work); 456 debug_object_init(work, &work_debug_descr); 457 return true; 458 default: 459 return false; 460 } 461 } 462 463 /* 464 * fixup_free is called when: 465 * - an active object is freed 466 */ 467 static bool work_fixup_free(void *addr, enum debug_obj_state state) 468 { 469 struct work_struct *work = addr; 470 471 switch (state) { 472 case ODEBUG_STATE_ACTIVE: 473 cancel_work_sync(work); 474 debug_object_free(work, &work_debug_descr); 475 return true; 476 default: 477 return false; 478 } 479 } 480 481 static struct debug_obj_descr work_debug_descr = { 482 .name = "work_struct", 483 .debug_hint = work_debug_hint, 484 .is_static_object = work_is_static_object, 485 .fixup_init = work_fixup_init, 486 .fixup_free = work_fixup_free, 487 }; 488 489 static inline void debug_work_activate(struct work_struct *work) 490 { 491 debug_object_activate(work, &work_debug_descr); 492 } 493 494 static inline void debug_work_deactivate(struct work_struct *work) 495 { 496 debug_object_deactivate(work, &work_debug_descr); 497 } 498 499 void __init_work(struct work_struct *work, int onstack) 500 { 501 if (onstack) 502 debug_object_init_on_stack(work, &work_debug_descr); 503 else 504 debug_object_init(work, &work_debug_descr); 505 } 506 EXPORT_SYMBOL_GPL(__init_work); 507 508 void destroy_work_on_stack(struct work_struct *work) 509 { 510 debug_object_free(work, &work_debug_descr); 511 } 512 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 513 514 void destroy_delayed_work_on_stack(struct delayed_work *work) 515 { 516 destroy_timer_on_stack(&work->timer); 517 debug_object_free(&work->work, &work_debug_descr); 518 } 519 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 520 521 #else 522 static inline void debug_work_activate(struct work_struct *work) { } 523 static inline void debug_work_deactivate(struct work_struct *work) { } 524 #endif 525 526 /** 527 * worker_pool_assign_id - allocate ID and assing it to @pool 528 * @pool: the pool pointer of interest 529 * 530 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 531 * successfully, -errno on failure. 532 */ 533 static int worker_pool_assign_id(struct worker_pool *pool) 534 { 535 int ret; 536 537 lockdep_assert_held(&wq_pool_mutex); 538 539 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 540 GFP_KERNEL); 541 if (ret >= 0) { 542 pool->id = ret; 543 return 0; 544 } 545 return ret; 546 } 547 548 /** 549 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 550 * @wq: the target workqueue 551 * @node: the node ID 552 * 553 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU 554 * read locked. 555 * If the pwq needs to be used beyond the locking in effect, the caller is 556 * responsible for guaranteeing that the pwq stays online. 557 * 558 * Return: The unbound pool_workqueue for @node. 559 */ 560 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 561 int node) 562 { 563 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 564 565 /* 566 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a 567 * delayed item is pending. The plan is to keep CPU -> NODE 568 * mapping valid and stable across CPU on/offlines. Once that 569 * happens, this workaround can be removed. 570 */ 571 if (unlikely(node == NUMA_NO_NODE)) 572 return wq->dfl_pwq; 573 574 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 575 } 576 577 static unsigned int work_color_to_flags(int color) 578 { 579 return color << WORK_STRUCT_COLOR_SHIFT; 580 } 581 582 static int get_work_color(struct work_struct *work) 583 { 584 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 585 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 586 } 587 588 static int work_next_color(int color) 589 { 590 return (color + 1) % WORK_NR_COLORS; 591 } 592 593 /* 594 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 595 * contain the pointer to the queued pwq. Once execution starts, the flag 596 * is cleared and the high bits contain OFFQ flags and pool ID. 597 * 598 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 599 * and clear_work_data() can be used to set the pwq, pool or clear 600 * work->data. These functions should only be called while the work is 601 * owned - ie. while the PENDING bit is set. 602 * 603 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 604 * corresponding to a work. Pool is available once the work has been 605 * queued anywhere after initialization until it is sync canceled. pwq is 606 * available only while the work item is queued. 607 * 608 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 609 * canceled. While being canceled, a work item may have its PENDING set 610 * but stay off timer and worklist for arbitrarily long and nobody should 611 * try to steal the PENDING bit. 612 */ 613 static inline void set_work_data(struct work_struct *work, unsigned long data, 614 unsigned long flags) 615 { 616 WARN_ON_ONCE(!work_pending(work)); 617 atomic_long_set(&work->data, data | flags | work_static(work)); 618 } 619 620 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 621 unsigned long extra_flags) 622 { 623 set_work_data(work, (unsigned long)pwq, 624 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 625 } 626 627 static void set_work_pool_and_keep_pending(struct work_struct *work, 628 int pool_id) 629 { 630 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 631 WORK_STRUCT_PENDING); 632 } 633 634 static void set_work_pool_and_clear_pending(struct work_struct *work, 635 int pool_id) 636 { 637 /* 638 * The following wmb is paired with the implied mb in 639 * test_and_set_bit(PENDING) and ensures all updates to @work made 640 * here are visible to and precede any updates by the next PENDING 641 * owner. 642 */ 643 smp_wmb(); 644 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 645 /* 646 * The following mb guarantees that previous clear of a PENDING bit 647 * will not be reordered with any speculative LOADS or STORES from 648 * work->current_func, which is executed afterwards. This possible 649 * reordering can lead to a missed execution on attempt to qeueue 650 * the same @work. E.g. consider this case: 651 * 652 * CPU#0 CPU#1 653 * ---------------------------- -------------------------------- 654 * 655 * 1 STORE event_indicated 656 * 2 queue_work_on() { 657 * 3 test_and_set_bit(PENDING) 658 * 4 } set_..._and_clear_pending() { 659 * 5 set_work_data() # clear bit 660 * 6 smp_mb() 661 * 7 work->current_func() { 662 * 8 LOAD event_indicated 663 * } 664 * 665 * Without an explicit full barrier speculative LOAD on line 8 can 666 * be executed before CPU#0 does STORE on line 1. If that happens, 667 * CPU#0 observes the PENDING bit is still set and new execution of 668 * a @work is not queued in a hope, that CPU#1 will eventually 669 * finish the queued @work. Meanwhile CPU#1 does not see 670 * event_indicated is set, because speculative LOAD was executed 671 * before actual STORE. 672 */ 673 smp_mb(); 674 } 675 676 static void clear_work_data(struct work_struct *work) 677 { 678 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 679 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 680 } 681 682 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 683 { 684 unsigned long data = atomic_long_read(&work->data); 685 686 if (data & WORK_STRUCT_PWQ) 687 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 688 else 689 return NULL; 690 } 691 692 /** 693 * get_work_pool - return the worker_pool a given work was associated with 694 * @work: the work item of interest 695 * 696 * Pools are created and destroyed under wq_pool_mutex, and allows read 697 * access under sched-RCU read lock. As such, this function should be 698 * called under wq_pool_mutex or with preemption disabled. 699 * 700 * All fields of the returned pool are accessible as long as the above 701 * mentioned locking is in effect. If the returned pool needs to be used 702 * beyond the critical section, the caller is responsible for ensuring the 703 * returned pool is and stays online. 704 * 705 * Return: The worker_pool @work was last associated with. %NULL if none. 706 */ 707 static struct worker_pool *get_work_pool(struct work_struct *work) 708 { 709 unsigned long data = atomic_long_read(&work->data); 710 int pool_id; 711 712 assert_rcu_or_pool_mutex(); 713 714 if (data & WORK_STRUCT_PWQ) 715 return ((struct pool_workqueue *) 716 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 717 718 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 719 if (pool_id == WORK_OFFQ_POOL_NONE) 720 return NULL; 721 722 return idr_find(&worker_pool_idr, pool_id); 723 } 724 725 /** 726 * get_work_pool_id - return the worker pool ID a given work is associated with 727 * @work: the work item of interest 728 * 729 * Return: The worker_pool ID @work was last associated with. 730 * %WORK_OFFQ_POOL_NONE if none. 731 */ 732 static int get_work_pool_id(struct work_struct *work) 733 { 734 unsigned long data = atomic_long_read(&work->data); 735 736 if (data & WORK_STRUCT_PWQ) 737 return ((struct pool_workqueue *) 738 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 739 740 return data >> WORK_OFFQ_POOL_SHIFT; 741 } 742 743 static void mark_work_canceling(struct work_struct *work) 744 { 745 unsigned long pool_id = get_work_pool_id(work); 746 747 pool_id <<= WORK_OFFQ_POOL_SHIFT; 748 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 749 } 750 751 static bool work_is_canceling(struct work_struct *work) 752 { 753 unsigned long data = atomic_long_read(&work->data); 754 755 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 756 } 757 758 /* 759 * Policy functions. These define the policies on how the global worker 760 * pools are managed. Unless noted otherwise, these functions assume that 761 * they're being called with pool->lock held. 762 */ 763 764 static bool __need_more_worker(struct worker_pool *pool) 765 { 766 return !atomic_read(&pool->nr_running); 767 } 768 769 /* 770 * Need to wake up a worker? Called from anything but currently 771 * running workers. 772 * 773 * Note that, because unbound workers never contribute to nr_running, this 774 * function will always return %true for unbound pools as long as the 775 * worklist isn't empty. 776 */ 777 static bool need_more_worker(struct worker_pool *pool) 778 { 779 return !list_empty(&pool->worklist) && __need_more_worker(pool); 780 } 781 782 /* Can I start working? Called from busy but !running workers. */ 783 static bool may_start_working(struct worker_pool *pool) 784 { 785 return pool->nr_idle; 786 } 787 788 /* Do I need to keep working? Called from currently running workers. */ 789 static bool keep_working(struct worker_pool *pool) 790 { 791 return !list_empty(&pool->worklist) && 792 atomic_read(&pool->nr_running) <= 1; 793 } 794 795 /* Do we need a new worker? Called from manager. */ 796 static bool need_to_create_worker(struct worker_pool *pool) 797 { 798 return need_more_worker(pool) && !may_start_working(pool); 799 } 800 801 /* Do we have too many workers and should some go away? */ 802 static bool too_many_workers(struct worker_pool *pool) 803 { 804 bool managing = mutex_is_locked(&pool->manager_arb); 805 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 806 int nr_busy = pool->nr_workers - nr_idle; 807 808 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 809 } 810 811 /* 812 * Wake up functions. 813 */ 814 815 /* Return the first idle worker. Safe with preemption disabled */ 816 static struct worker *first_idle_worker(struct worker_pool *pool) 817 { 818 if (unlikely(list_empty(&pool->idle_list))) 819 return NULL; 820 821 return list_first_entry(&pool->idle_list, struct worker, entry); 822 } 823 824 /** 825 * wake_up_worker - wake up an idle worker 826 * @pool: worker pool to wake worker from 827 * 828 * Wake up the first idle worker of @pool. 829 * 830 * CONTEXT: 831 * spin_lock_irq(pool->lock). 832 */ 833 static void wake_up_worker(struct worker_pool *pool) 834 { 835 struct worker *worker = first_idle_worker(pool); 836 837 if (likely(worker)) 838 wake_up_process(worker->task); 839 } 840 841 /** 842 * wq_worker_waking_up - a worker is waking up 843 * @task: task waking up 844 * @cpu: CPU @task is waking up to 845 * 846 * This function is called during try_to_wake_up() when a worker is 847 * being awoken. 848 * 849 * CONTEXT: 850 * spin_lock_irq(rq->lock) 851 */ 852 void wq_worker_waking_up(struct task_struct *task, int cpu) 853 { 854 struct worker *worker = kthread_data(task); 855 856 if (!(worker->flags & WORKER_NOT_RUNNING)) { 857 WARN_ON_ONCE(worker->pool->cpu != cpu); 858 atomic_inc(&worker->pool->nr_running); 859 } 860 } 861 862 /** 863 * wq_worker_sleeping - a worker is going to sleep 864 * @task: task going to sleep 865 * 866 * This function is called during schedule() when a busy worker is 867 * going to sleep. Worker on the same cpu can be woken up by 868 * returning pointer to its task. 869 * 870 * CONTEXT: 871 * spin_lock_irq(rq->lock) 872 * 873 * Return: 874 * Worker task on @cpu to wake up, %NULL if none. 875 */ 876 struct task_struct *wq_worker_sleeping(struct task_struct *task) 877 { 878 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 879 struct worker_pool *pool; 880 881 /* 882 * Rescuers, which may not have all the fields set up like normal 883 * workers, also reach here, let's not access anything before 884 * checking NOT_RUNNING. 885 */ 886 if (worker->flags & WORKER_NOT_RUNNING) 887 return NULL; 888 889 pool = worker->pool; 890 891 /* this can only happen on the local cpu */ 892 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id())) 893 return NULL; 894 895 /* 896 * The counterpart of the following dec_and_test, implied mb, 897 * worklist not empty test sequence is in insert_work(). 898 * Please read comment there. 899 * 900 * NOT_RUNNING is clear. This means that we're bound to and 901 * running on the local cpu w/ rq lock held and preemption 902 * disabled, which in turn means that none else could be 903 * manipulating idle_list, so dereferencing idle_list without pool 904 * lock is safe. 905 */ 906 if (atomic_dec_and_test(&pool->nr_running) && 907 !list_empty(&pool->worklist)) 908 to_wakeup = first_idle_worker(pool); 909 return to_wakeup ? to_wakeup->task : NULL; 910 } 911 912 /** 913 * worker_set_flags - set worker flags and adjust nr_running accordingly 914 * @worker: self 915 * @flags: flags to set 916 * 917 * Set @flags in @worker->flags and adjust nr_running accordingly. 918 * 919 * CONTEXT: 920 * spin_lock_irq(pool->lock) 921 */ 922 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 923 { 924 struct worker_pool *pool = worker->pool; 925 926 WARN_ON_ONCE(worker->task != current); 927 928 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 929 if ((flags & WORKER_NOT_RUNNING) && 930 !(worker->flags & WORKER_NOT_RUNNING)) { 931 atomic_dec(&pool->nr_running); 932 } 933 934 worker->flags |= flags; 935 } 936 937 /** 938 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 939 * @worker: self 940 * @flags: flags to clear 941 * 942 * Clear @flags in @worker->flags and adjust nr_running accordingly. 943 * 944 * CONTEXT: 945 * spin_lock_irq(pool->lock) 946 */ 947 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 948 { 949 struct worker_pool *pool = worker->pool; 950 unsigned int oflags = worker->flags; 951 952 WARN_ON_ONCE(worker->task != current); 953 954 worker->flags &= ~flags; 955 956 /* 957 * If transitioning out of NOT_RUNNING, increment nr_running. Note 958 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 959 * of multiple flags, not a single flag. 960 */ 961 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 962 if (!(worker->flags & WORKER_NOT_RUNNING)) 963 atomic_inc(&pool->nr_running); 964 } 965 966 /** 967 * find_worker_executing_work - find worker which is executing a work 968 * @pool: pool of interest 969 * @work: work to find worker for 970 * 971 * Find a worker which is executing @work on @pool by searching 972 * @pool->busy_hash which is keyed by the address of @work. For a worker 973 * to match, its current execution should match the address of @work and 974 * its work function. This is to avoid unwanted dependency between 975 * unrelated work executions through a work item being recycled while still 976 * being executed. 977 * 978 * This is a bit tricky. A work item may be freed once its execution 979 * starts and nothing prevents the freed area from being recycled for 980 * another work item. If the same work item address ends up being reused 981 * before the original execution finishes, workqueue will identify the 982 * recycled work item as currently executing and make it wait until the 983 * current execution finishes, introducing an unwanted dependency. 984 * 985 * This function checks the work item address and work function to avoid 986 * false positives. Note that this isn't complete as one may construct a 987 * work function which can introduce dependency onto itself through a 988 * recycled work item. Well, if somebody wants to shoot oneself in the 989 * foot that badly, there's only so much we can do, and if such deadlock 990 * actually occurs, it should be easy to locate the culprit work function. 991 * 992 * CONTEXT: 993 * spin_lock_irq(pool->lock). 994 * 995 * Return: 996 * Pointer to worker which is executing @work if found, %NULL 997 * otherwise. 998 */ 999 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1000 struct work_struct *work) 1001 { 1002 struct worker *worker; 1003 1004 hash_for_each_possible(pool->busy_hash, worker, hentry, 1005 (unsigned long)work) 1006 if (worker->current_work == work && 1007 worker->current_func == work->func) 1008 return worker; 1009 1010 return NULL; 1011 } 1012 1013 /** 1014 * move_linked_works - move linked works to a list 1015 * @work: start of series of works to be scheduled 1016 * @head: target list to append @work to 1017 * @nextp: out parameter for nested worklist walking 1018 * 1019 * Schedule linked works starting from @work to @head. Work series to 1020 * be scheduled starts at @work and includes any consecutive work with 1021 * WORK_STRUCT_LINKED set in its predecessor. 1022 * 1023 * If @nextp is not NULL, it's updated to point to the next work of 1024 * the last scheduled work. This allows move_linked_works() to be 1025 * nested inside outer list_for_each_entry_safe(). 1026 * 1027 * CONTEXT: 1028 * spin_lock_irq(pool->lock). 1029 */ 1030 static void move_linked_works(struct work_struct *work, struct list_head *head, 1031 struct work_struct **nextp) 1032 { 1033 struct work_struct *n; 1034 1035 /* 1036 * Linked worklist will always end before the end of the list, 1037 * use NULL for list head. 1038 */ 1039 list_for_each_entry_safe_from(work, n, NULL, entry) { 1040 list_move_tail(&work->entry, head); 1041 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1042 break; 1043 } 1044 1045 /* 1046 * If we're already inside safe list traversal and have moved 1047 * multiple works to the scheduled queue, the next position 1048 * needs to be updated. 1049 */ 1050 if (nextp) 1051 *nextp = n; 1052 } 1053 1054 /** 1055 * get_pwq - get an extra reference on the specified pool_workqueue 1056 * @pwq: pool_workqueue to get 1057 * 1058 * Obtain an extra reference on @pwq. The caller should guarantee that 1059 * @pwq has positive refcnt and be holding the matching pool->lock. 1060 */ 1061 static void get_pwq(struct pool_workqueue *pwq) 1062 { 1063 lockdep_assert_held(&pwq->pool->lock); 1064 WARN_ON_ONCE(pwq->refcnt <= 0); 1065 pwq->refcnt++; 1066 } 1067 1068 /** 1069 * put_pwq - put a pool_workqueue reference 1070 * @pwq: pool_workqueue to put 1071 * 1072 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1073 * destruction. The caller should be holding the matching pool->lock. 1074 */ 1075 static void put_pwq(struct pool_workqueue *pwq) 1076 { 1077 lockdep_assert_held(&pwq->pool->lock); 1078 if (likely(--pwq->refcnt)) 1079 return; 1080 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1081 return; 1082 /* 1083 * @pwq can't be released under pool->lock, bounce to 1084 * pwq_unbound_release_workfn(). This never recurses on the same 1085 * pool->lock as this path is taken only for unbound workqueues and 1086 * the release work item is scheduled on a per-cpu workqueue. To 1087 * avoid lockdep warning, unbound pool->locks are given lockdep 1088 * subclass of 1 in get_unbound_pool(). 1089 */ 1090 schedule_work(&pwq->unbound_release_work); 1091 } 1092 1093 /** 1094 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1095 * @pwq: pool_workqueue to put (can be %NULL) 1096 * 1097 * put_pwq() with locking. This function also allows %NULL @pwq. 1098 */ 1099 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1100 { 1101 if (pwq) { 1102 /* 1103 * As both pwqs and pools are sched-RCU protected, the 1104 * following lock operations are safe. 1105 */ 1106 spin_lock_irq(&pwq->pool->lock); 1107 put_pwq(pwq); 1108 spin_unlock_irq(&pwq->pool->lock); 1109 } 1110 } 1111 1112 static void pwq_activate_delayed_work(struct work_struct *work) 1113 { 1114 struct pool_workqueue *pwq = get_work_pwq(work); 1115 1116 trace_workqueue_activate_work(work); 1117 if (list_empty(&pwq->pool->worklist)) 1118 pwq->pool->watchdog_ts = jiffies; 1119 move_linked_works(work, &pwq->pool->worklist, NULL); 1120 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1121 pwq->nr_active++; 1122 } 1123 1124 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1125 { 1126 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1127 struct work_struct, entry); 1128 1129 pwq_activate_delayed_work(work); 1130 } 1131 1132 /** 1133 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1134 * @pwq: pwq of interest 1135 * @color: color of work which left the queue 1136 * 1137 * A work either has completed or is removed from pending queue, 1138 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1139 * 1140 * CONTEXT: 1141 * spin_lock_irq(pool->lock). 1142 */ 1143 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1144 { 1145 /* uncolored work items don't participate in flushing or nr_active */ 1146 if (color == WORK_NO_COLOR) 1147 goto out_put; 1148 1149 pwq->nr_in_flight[color]--; 1150 1151 pwq->nr_active--; 1152 if (!list_empty(&pwq->delayed_works)) { 1153 /* one down, submit a delayed one */ 1154 if (pwq->nr_active < pwq->max_active) 1155 pwq_activate_first_delayed(pwq); 1156 } 1157 1158 /* is flush in progress and are we at the flushing tip? */ 1159 if (likely(pwq->flush_color != color)) 1160 goto out_put; 1161 1162 /* are there still in-flight works? */ 1163 if (pwq->nr_in_flight[color]) 1164 goto out_put; 1165 1166 /* this pwq is done, clear flush_color */ 1167 pwq->flush_color = -1; 1168 1169 /* 1170 * If this was the last pwq, wake up the first flusher. It 1171 * will handle the rest. 1172 */ 1173 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1174 complete(&pwq->wq->first_flusher->done); 1175 out_put: 1176 put_pwq(pwq); 1177 } 1178 1179 /** 1180 * try_to_grab_pending - steal work item from worklist and disable irq 1181 * @work: work item to steal 1182 * @is_dwork: @work is a delayed_work 1183 * @flags: place to store irq state 1184 * 1185 * Try to grab PENDING bit of @work. This function can handle @work in any 1186 * stable state - idle, on timer or on worklist. 1187 * 1188 * Return: 1189 * 1 if @work was pending and we successfully stole PENDING 1190 * 0 if @work was idle and we claimed PENDING 1191 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1192 * -ENOENT if someone else is canceling @work, this state may persist 1193 * for arbitrarily long 1194 * 1195 * Note: 1196 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1197 * interrupted while holding PENDING and @work off queue, irq must be 1198 * disabled on entry. This, combined with delayed_work->timer being 1199 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1200 * 1201 * On successful return, >= 0, irq is disabled and the caller is 1202 * responsible for releasing it using local_irq_restore(*@flags). 1203 * 1204 * This function is safe to call from any context including IRQ handler. 1205 */ 1206 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1207 unsigned long *flags) 1208 { 1209 struct worker_pool *pool; 1210 struct pool_workqueue *pwq; 1211 1212 local_irq_save(*flags); 1213 1214 /* try to steal the timer if it exists */ 1215 if (is_dwork) { 1216 struct delayed_work *dwork = to_delayed_work(work); 1217 1218 /* 1219 * dwork->timer is irqsafe. If del_timer() fails, it's 1220 * guaranteed that the timer is not queued anywhere and not 1221 * running on the local CPU. 1222 */ 1223 if (likely(del_timer(&dwork->timer))) 1224 return 1; 1225 } 1226 1227 /* try to claim PENDING the normal way */ 1228 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1229 return 0; 1230 1231 /* 1232 * The queueing is in progress, or it is already queued. Try to 1233 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1234 */ 1235 pool = get_work_pool(work); 1236 if (!pool) 1237 goto fail; 1238 1239 spin_lock(&pool->lock); 1240 /* 1241 * work->data is guaranteed to point to pwq only while the work 1242 * item is queued on pwq->wq, and both updating work->data to point 1243 * to pwq on queueing and to pool on dequeueing are done under 1244 * pwq->pool->lock. This in turn guarantees that, if work->data 1245 * points to pwq which is associated with a locked pool, the work 1246 * item is currently queued on that pool. 1247 */ 1248 pwq = get_work_pwq(work); 1249 if (pwq && pwq->pool == pool) { 1250 debug_work_deactivate(work); 1251 1252 /* 1253 * A delayed work item cannot be grabbed directly because 1254 * it might have linked NO_COLOR work items which, if left 1255 * on the delayed_list, will confuse pwq->nr_active 1256 * management later on and cause stall. Make sure the work 1257 * item is activated before grabbing. 1258 */ 1259 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1260 pwq_activate_delayed_work(work); 1261 1262 list_del_init(&work->entry); 1263 pwq_dec_nr_in_flight(pwq, get_work_color(work)); 1264 1265 /* work->data points to pwq iff queued, point to pool */ 1266 set_work_pool_and_keep_pending(work, pool->id); 1267 1268 spin_unlock(&pool->lock); 1269 return 1; 1270 } 1271 spin_unlock(&pool->lock); 1272 fail: 1273 local_irq_restore(*flags); 1274 if (work_is_canceling(work)) 1275 return -ENOENT; 1276 cpu_relax(); 1277 return -EAGAIN; 1278 } 1279 1280 /** 1281 * insert_work - insert a work into a pool 1282 * @pwq: pwq @work belongs to 1283 * @work: work to insert 1284 * @head: insertion point 1285 * @extra_flags: extra WORK_STRUCT_* flags to set 1286 * 1287 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1288 * work_struct flags. 1289 * 1290 * CONTEXT: 1291 * spin_lock_irq(pool->lock). 1292 */ 1293 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1294 struct list_head *head, unsigned int extra_flags) 1295 { 1296 struct worker_pool *pool = pwq->pool; 1297 1298 /* we own @work, set data and link */ 1299 set_work_pwq(work, pwq, extra_flags); 1300 list_add_tail(&work->entry, head); 1301 get_pwq(pwq); 1302 1303 /* 1304 * Ensure either wq_worker_sleeping() sees the above 1305 * list_add_tail() or we see zero nr_running to avoid workers lying 1306 * around lazily while there are works to be processed. 1307 */ 1308 smp_mb(); 1309 1310 if (__need_more_worker(pool)) 1311 wake_up_worker(pool); 1312 } 1313 1314 /* 1315 * Test whether @work is being queued from another work executing on the 1316 * same workqueue. 1317 */ 1318 static bool is_chained_work(struct workqueue_struct *wq) 1319 { 1320 struct worker *worker; 1321 1322 worker = current_wq_worker(); 1323 /* 1324 * Return %true iff I'm a worker execuing a work item on @wq. If 1325 * I'm @worker, it's safe to dereference it without locking. 1326 */ 1327 return worker && worker->current_pwq->wq == wq; 1328 } 1329 1330 /* 1331 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1332 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1333 * avoid perturbing sensitive tasks. 1334 */ 1335 static int wq_select_unbound_cpu(int cpu) 1336 { 1337 static bool printed_dbg_warning; 1338 int new_cpu; 1339 1340 if (likely(!wq_debug_force_rr_cpu)) { 1341 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1342 return cpu; 1343 } else if (!printed_dbg_warning) { 1344 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1345 printed_dbg_warning = true; 1346 } 1347 1348 if (cpumask_empty(wq_unbound_cpumask)) 1349 return cpu; 1350 1351 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1352 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1353 if (unlikely(new_cpu >= nr_cpu_ids)) { 1354 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1355 if (unlikely(new_cpu >= nr_cpu_ids)) 1356 return cpu; 1357 } 1358 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1359 1360 return new_cpu; 1361 } 1362 1363 static void __queue_work(int cpu, struct workqueue_struct *wq, 1364 struct work_struct *work) 1365 { 1366 struct pool_workqueue *pwq; 1367 struct worker_pool *last_pool; 1368 struct list_head *worklist; 1369 unsigned int work_flags; 1370 unsigned int req_cpu = cpu; 1371 1372 /* 1373 * While a work item is PENDING && off queue, a task trying to 1374 * steal the PENDING will busy-loop waiting for it to either get 1375 * queued or lose PENDING. Grabbing PENDING and queueing should 1376 * happen with IRQ disabled. 1377 */ 1378 WARN_ON_ONCE(!irqs_disabled()); 1379 1380 debug_work_activate(work); 1381 1382 /* if draining, only works from the same workqueue are allowed */ 1383 if (unlikely(wq->flags & __WQ_DRAINING) && 1384 WARN_ON_ONCE(!is_chained_work(wq))) 1385 return; 1386 retry: 1387 if (req_cpu == WORK_CPU_UNBOUND) 1388 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1389 1390 /* pwq which will be used unless @work is executing elsewhere */ 1391 if (!(wq->flags & WQ_UNBOUND)) 1392 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1393 else 1394 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1395 1396 /* 1397 * If @work was previously on a different pool, it might still be 1398 * running there, in which case the work needs to be queued on that 1399 * pool to guarantee non-reentrancy. 1400 */ 1401 last_pool = get_work_pool(work); 1402 if (last_pool && last_pool != pwq->pool) { 1403 struct worker *worker; 1404 1405 spin_lock(&last_pool->lock); 1406 1407 worker = find_worker_executing_work(last_pool, work); 1408 1409 if (worker && worker->current_pwq->wq == wq) { 1410 pwq = worker->current_pwq; 1411 } else { 1412 /* meh... not running there, queue here */ 1413 spin_unlock(&last_pool->lock); 1414 spin_lock(&pwq->pool->lock); 1415 } 1416 } else { 1417 spin_lock(&pwq->pool->lock); 1418 } 1419 1420 /* 1421 * pwq is determined and locked. For unbound pools, we could have 1422 * raced with pwq release and it could already be dead. If its 1423 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1424 * without another pwq replacing it in the numa_pwq_tbl or while 1425 * work items are executing on it, so the retrying is guaranteed to 1426 * make forward-progress. 1427 */ 1428 if (unlikely(!pwq->refcnt)) { 1429 if (wq->flags & WQ_UNBOUND) { 1430 spin_unlock(&pwq->pool->lock); 1431 cpu_relax(); 1432 goto retry; 1433 } 1434 /* oops */ 1435 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1436 wq->name, cpu); 1437 } 1438 1439 /* pwq determined, queue */ 1440 trace_workqueue_queue_work(req_cpu, pwq, work); 1441 1442 if (WARN_ON(!list_empty(&work->entry))) { 1443 spin_unlock(&pwq->pool->lock); 1444 return; 1445 } 1446 1447 pwq->nr_in_flight[pwq->work_color]++; 1448 work_flags = work_color_to_flags(pwq->work_color); 1449 1450 if (likely(pwq->nr_active < pwq->max_active)) { 1451 trace_workqueue_activate_work(work); 1452 pwq->nr_active++; 1453 worklist = &pwq->pool->worklist; 1454 if (list_empty(worklist)) 1455 pwq->pool->watchdog_ts = jiffies; 1456 } else { 1457 work_flags |= WORK_STRUCT_DELAYED; 1458 worklist = &pwq->delayed_works; 1459 } 1460 1461 insert_work(pwq, work, worklist, work_flags); 1462 1463 spin_unlock(&pwq->pool->lock); 1464 } 1465 1466 /** 1467 * queue_work_on - queue work on specific cpu 1468 * @cpu: CPU number to execute work on 1469 * @wq: workqueue to use 1470 * @work: work to queue 1471 * 1472 * We queue the work to a specific CPU, the caller must ensure it 1473 * can't go away. 1474 * 1475 * Return: %false if @work was already on a queue, %true otherwise. 1476 */ 1477 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1478 struct work_struct *work) 1479 { 1480 bool ret = false; 1481 unsigned long flags; 1482 1483 local_irq_save(flags); 1484 1485 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1486 __queue_work(cpu, wq, work); 1487 ret = true; 1488 } 1489 1490 local_irq_restore(flags); 1491 return ret; 1492 } 1493 EXPORT_SYMBOL(queue_work_on); 1494 1495 void delayed_work_timer_fn(unsigned long __data) 1496 { 1497 struct delayed_work *dwork = (struct delayed_work *)__data; 1498 1499 /* should have been called from irqsafe timer with irq already off */ 1500 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1501 } 1502 EXPORT_SYMBOL(delayed_work_timer_fn); 1503 1504 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1505 struct delayed_work *dwork, unsigned long delay) 1506 { 1507 struct timer_list *timer = &dwork->timer; 1508 struct work_struct *work = &dwork->work; 1509 1510 WARN_ON_ONCE(!wq); 1511 WARN_ON_ONCE(timer->function != delayed_work_timer_fn || 1512 timer->data != (unsigned long)dwork); 1513 WARN_ON_ONCE(timer_pending(timer)); 1514 WARN_ON_ONCE(!list_empty(&work->entry)); 1515 1516 /* 1517 * If @delay is 0, queue @dwork->work immediately. This is for 1518 * both optimization and correctness. The earliest @timer can 1519 * expire is on the closest next tick and delayed_work users depend 1520 * on that there's no such delay when @delay is 0. 1521 */ 1522 if (!delay) { 1523 __queue_work(cpu, wq, &dwork->work); 1524 return; 1525 } 1526 1527 dwork->wq = wq; 1528 dwork->cpu = cpu; 1529 timer->expires = jiffies + delay; 1530 1531 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1532 add_timer_on(timer, cpu); 1533 else 1534 add_timer(timer); 1535 } 1536 1537 /** 1538 * queue_delayed_work_on - queue work on specific CPU after delay 1539 * @cpu: CPU number to execute work on 1540 * @wq: workqueue to use 1541 * @dwork: work to queue 1542 * @delay: number of jiffies to wait before queueing 1543 * 1544 * Return: %false if @work was already on a queue, %true otherwise. If 1545 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1546 * execution. 1547 */ 1548 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1549 struct delayed_work *dwork, unsigned long delay) 1550 { 1551 struct work_struct *work = &dwork->work; 1552 bool ret = false; 1553 unsigned long flags; 1554 1555 /* read the comment in __queue_work() */ 1556 local_irq_save(flags); 1557 1558 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1559 __queue_delayed_work(cpu, wq, dwork, delay); 1560 ret = true; 1561 } 1562 1563 local_irq_restore(flags); 1564 return ret; 1565 } 1566 EXPORT_SYMBOL(queue_delayed_work_on); 1567 1568 /** 1569 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1570 * @cpu: CPU number to execute work on 1571 * @wq: workqueue to use 1572 * @dwork: work to queue 1573 * @delay: number of jiffies to wait before queueing 1574 * 1575 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1576 * modify @dwork's timer so that it expires after @delay. If @delay is 1577 * zero, @work is guaranteed to be scheduled immediately regardless of its 1578 * current state. 1579 * 1580 * Return: %false if @dwork was idle and queued, %true if @dwork was 1581 * pending and its timer was modified. 1582 * 1583 * This function is safe to call from any context including IRQ handler. 1584 * See try_to_grab_pending() for details. 1585 */ 1586 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1587 struct delayed_work *dwork, unsigned long delay) 1588 { 1589 unsigned long flags; 1590 int ret; 1591 1592 do { 1593 ret = try_to_grab_pending(&dwork->work, true, &flags); 1594 } while (unlikely(ret == -EAGAIN)); 1595 1596 if (likely(ret >= 0)) { 1597 __queue_delayed_work(cpu, wq, dwork, delay); 1598 local_irq_restore(flags); 1599 } 1600 1601 /* -ENOENT from try_to_grab_pending() becomes %true */ 1602 return ret; 1603 } 1604 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1605 1606 /** 1607 * worker_enter_idle - enter idle state 1608 * @worker: worker which is entering idle state 1609 * 1610 * @worker is entering idle state. Update stats and idle timer if 1611 * necessary. 1612 * 1613 * LOCKING: 1614 * spin_lock_irq(pool->lock). 1615 */ 1616 static void worker_enter_idle(struct worker *worker) 1617 { 1618 struct worker_pool *pool = worker->pool; 1619 1620 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1621 WARN_ON_ONCE(!list_empty(&worker->entry) && 1622 (worker->hentry.next || worker->hentry.pprev))) 1623 return; 1624 1625 /* can't use worker_set_flags(), also called from create_worker() */ 1626 worker->flags |= WORKER_IDLE; 1627 pool->nr_idle++; 1628 worker->last_active = jiffies; 1629 1630 /* idle_list is LIFO */ 1631 list_add(&worker->entry, &pool->idle_list); 1632 1633 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1634 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1635 1636 /* 1637 * Sanity check nr_running. Because wq_unbind_fn() releases 1638 * pool->lock between setting %WORKER_UNBOUND and zapping 1639 * nr_running, the warning may trigger spuriously. Check iff 1640 * unbind is not in progress. 1641 */ 1642 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1643 pool->nr_workers == pool->nr_idle && 1644 atomic_read(&pool->nr_running)); 1645 } 1646 1647 /** 1648 * worker_leave_idle - leave idle state 1649 * @worker: worker which is leaving idle state 1650 * 1651 * @worker is leaving idle state. Update stats. 1652 * 1653 * LOCKING: 1654 * spin_lock_irq(pool->lock). 1655 */ 1656 static void worker_leave_idle(struct worker *worker) 1657 { 1658 struct worker_pool *pool = worker->pool; 1659 1660 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1661 return; 1662 worker_clr_flags(worker, WORKER_IDLE); 1663 pool->nr_idle--; 1664 list_del_init(&worker->entry); 1665 } 1666 1667 static struct worker *alloc_worker(int node) 1668 { 1669 struct worker *worker; 1670 1671 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1672 if (worker) { 1673 INIT_LIST_HEAD(&worker->entry); 1674 INIT_LIST_HEAD(&worker->scheduled); 1675 INIT_LIST_HEAD(&worker->node); 1676 /* on creation a worker is in !idle && prep state */ 1677 worker->flags = WORKER_PREP; 1678 } 1679 return worker; 1680 } 1681 1682 /** 1683 * worker_attach_to_pool() - attach a worker to a pool 1684 * @worker: worker to be attached 1685 * @pool: the target pool 1686 * 1687 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1688 * cpu-binding of @worker are kept coordinated with the pool across 1689 * cpu-[un]hotplugs. 1690 */ 1691 static void worker_attach_to_pool(struct worker *worker, 1692 struct worker_pool *pool) 1693 { 1694 mutex_lock(&pool->attach_mutex); 1695 1696 /* 1697 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1698 * online CPUs. It'll be re-applied when any of the CPUs come up. 1699 */ 1700 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1701 1702 /* 1703 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains 1704 * stable across this function. See the comments above the 1705 * flag definition for details. 1706 */ 1707 if (pool->flags & POOL_DISASSOCIATED) 1708 worker->flags |= WORKER_UNBOUND; 1709 1710 list_add_tail(&worker->node, &pool->workers); 1711 1712 mutex_unlock(&pool->attach_mutex); 1713 } 1714 1715 /** 1716 * worker_detach_from_pool() - detach a worker from its pool 1717 * @worker: worker which is attached to its pool 1718 * @pool: the pool @worker is attached to 1719 * 1720 * Undo the attaching which had been done in worker_attach_to_pool(). The 1721 * caller worker shouldn't access to the pool after detached except it has 1722 * other reference to the pool. 1723 */ 1724 static void worker_detach_from_pool(struct worker *worker, 1725 struct worker_pool *pool) 1726 { 1727 struct completion *detach_completion = NULL; 1728 1729 mutex_lock(&pool->attach_mutex); 1730 list_del(&worker->node); 1731 if (list_empty(&pool->workers)) 1732 detach_completion = pool->detach_completion; 1733 mutex_unlock(&pool->attach_mutex); 1734 1735 /* clear leftover flags without pool->lock after it is detached */ 1736 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1737 1738 if (detach_completion) 1739 complete(detach_completion); 1740 } 1741 1742 /** 1743 * create_worker - create a new workqueue worker 1744 * @pool: pool the new worker will belong to 1745 * 1746 * Create and start a new worker which is attached to @pool. 1747 * 1748 * CONTEXT: 1749 * Might sleep. Does GFP_KERNEL allocations. 1750 * 1751 * Return: 1752 * Pointer to the newly created worker. 1753 */ 1754 static struct worker *create_worker(struct worker_pool *pool) 1755 { 1756 struct worker *worker = NULL; 1757 int id = -1; 1758 char id_buf[16]; 1759 1760 /* ID is needed to determine kthread name */ 1761 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL); 1762 if (id < 0) 1763 goto fail; 1764 1765 worker = alloc_worker(pool->node); 1766 if (!worker) 1767 goto fail; 1768 1769 worker->pool = pool; 1770 worker->id = id; 1771 1772 if (pool->cpu >= 0) 1773 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1774 pool->attrs->nice < 0 ? "H" : ""); 1775 else 1776 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1777 1778 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1779 "kworker/%s", id_buf); 1780 if (IS_ERR(worker->task)) 1781 goto fail; 1782 1783 set_user_nice(worker->task, pool->attrs->nice); 1784 kthread_bind_mask(worker->task, pool->attrs->cpumask); 1785 1786 /* successful, attach the worker to the pool */ 1787 worker_attach_to_pool(worker, pool); 1788 1789 /* start the newly created worker */ 1790 spin_lock_irq(&pool->lock); 1791 worker->pool->nr_workers++; 1792 worker_enter_idle(worker); 1793 wake_up_process(worker->task); 1794 spin_unlock_irq(&pool->lock); 1795 1796 return worker; 1797 1798 fail: 1799 if (id >= 0) 1800 ida_simple_remove(&pool->worker_ida, id); 1801 kfree(worker); 1802 return NULL; 1803 } 1804 1805 /** 1806 * destroy_worker - destroy a workqueue worker 1807 * @worker: worker to be destroyed 1808 * 1809 * Destroy @worker and adjust @pool stats accordingly. The worker should 1810 * be idle. 1811 * 1812 * CONTEXT: 1813 * spin_lock_irq(pool->lock). 1814 */ 1815 static void destroy_worker(struct worker *worker) 1816 { 1817 struct worker_pool *pool = worker->pool; 1818 1819 lockdep_assert_held(&pool->lock); 1820 1821 /* sanity check frenzy */ 1822 if (WARN_ON(worker->current_work) || 1823 WARN_ON(!list_empty(&worker->scheduled)) || 1824 WARN_ON(!(worker->flags & WORKER_IDLE))) 1825 return; 1826 1827 pool->nr_workers--; 1828 pool->nr_idle--; 1829 1830 list_del_init(&worker->entry); 1831 worker->flags |= WORKER_DIE; 1832 wake_up_process(worker->task); 1833 } 1834 1835 static void idle_worker_timeout(unsigned long __pool) 1836 { 1837 struct worker_pool *pool = (void *)__pool; 1838 1839 spin_lock_irq(&pool->lock); 1840 1841 while (too_many_workers(pool)) { 1842 struct worker *worker; 1843 unsigned long expires; 1844 1845 /* idle_list is kept in LIFO order, check the last one */ 1846 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1847 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1848 1849 if (time_before(jiffies, expires)) { 1850 mod_timer(&pool->idle_timer, expires); 1851 break; 1852 } 1853 1854 destroy_worker(worker); 1855 } 1856 1857 spin_unlock_irq(&pool->lock); 1858 } 1859 1860 static void send_mayday(struct work_struct *work) 1861 { 1862 struct pool_workqueue *pwq = get_work_pwq(work); 1863 struct workqueue_struct *wq = pwq->wq; 1864 1865 lockdep_assert_held(&wq_mayday_lock); 1866 1867 if (!wq->rescuer) 1868 return; 1869 1870 /* mayday mayday mayday */ 1871 if (list_empty(&pwq->mayday_node)) { 1872 /* 1873 * If @pwq is for an unbound wq, its base ref may be put at 1874 * any time due to an attribute change. Pin @pwq until the 1875 * rescuer is done with it. 1876 */ 1877 get_pwq(pwq); 1878 list_add_tail(&pwq->mayday_node, &wq->maydays); 1879 wake_up_process(wq->rescuer->task); 1880 } 1881 } 1882 1883 static void pool_mayday_timeout(unsigned long __pool) 1884 { 1885 struct worker_pool *pool = (void *)__pool; 1886 struct work_struct *work; 1887 1888 spin_lock_irq(&pool->lock); 1889 spin_lock(&wq_mayday_lock); /* for wq->maydays */ 1890 1891 if (need_to_create_worker(pool)) { 1892 /* 1893 * We've been trying to create a new worker but 1894 * haven't been successful. We might be hitting an 1895 * allocation deadlock. Send distress signals to 1896 * rescuers. 1897 */ 1898 list_for_each_entry(work, &pool->worklist, entry) 1899 send_mayday(work); 1900 } 1901 1902 spin_unlock(&wq_mayday_lock); 1903 spin_unlock_irq(&pool->lock); 1904 1905 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 1906 } 1907 1908 /** 1909 * maybe_create_worker - create a new worker if necessary 1910 * @pool: pool to create a new worker for 1911 * 1912 * Create a new worker for @pool if necessary. @pool is guaranteed to 1913 * have at least one idle worker on return from this function. If 1914 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1915 * sent to all rescuers with works scheduled on @pool to resolve 1916 * possible allocation deadlock. 1917 * 1918 * On return, need_to_create_worker() is guaranteed to be %false and 1919 * may_start_working() %true. 1920 * 1921 * LOCKING: 1922 * spin_lock_irq(pool->lock) which may be released and regrabbed 1923 * multiple times. Does GFP_KERNEL allocations. Called only from 1924 * manager. 1925 */ 1926 static void maybe_create_worker(struct worker_pool *pool) 1927 __releases(&pool->lock) 1928 __acquires(&pool->lock) 1929 { 1930 restart: 1931 spin_unlock_irq(&pool->lock); 1932 1933 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1934 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1935 1936 while (true) { 1937 if (create_worker(pool) || !need_to_create_worker(pool)) 1938 break; 1939 1940 schedule_timeout_interruptible(CREATE_COOLDOWN); 1941 1942 if (!need_to_create_worker(pool)) 1943 break; 1944 } 1945 1946 del_timer_sync(&pool->mayday_timer); 1947 spin_lock_irq(&pool->lock); 1948 /* 1949 * This is necessary even after a new worker was just successfully 1950 * created as @pool->lock was dropped and the new worker might have 1951 * already become busy. 1952 */ 1953 if (need_to_create_worker(pool)) 1954 goto restart; 1955 } 1956 1957 /** 1958 * manage_workers - manage worker pool 1959 * @worker: self 1960 * 1961 * Assume the manager role and manage the worker pool @worker belongs 1962 * to. At any given time, there can be only zero or one manager per 1963 * pool. The exclusion is handled automatically by this function. 1964 * 1965 * The caller can safely start processing works on false return. On 1966 * true return, it's guaranteed that need_to_create_worker() is false 1967 * and may_start_working() is true. 1968 * 1969 * CONTEXT: 1970 * spin_lock_irq(pool->lock) which may be released and regrabbed 1971 * multiple times. Does GFP_KERNEL allocations. 1972 * 1973 * Return: 1974 * %false if the pool doesn't need management and the caller can safely 1975 * start processing works, %true if management function was performed and 1976 * the conditions that the caller verified before calling the function may 1977 * no longer be true. 1978 */ 1979 static bool manage_workers(struct worker *worker) 1980 { 1981 struct worker_pool *pool = worker->pool; 1982 1983 /* 1984 * Anyone who successfully grabs manager_arb wins the arbitration 1985 * and becomes the manager. mutex_trylock() on pool->manager_arb 1986 * failure while holding pool->lock reliably indicates that someone 1987 * else is managing the pool and the worker which failed trylock 1988 * can proceed to executing work items. This means that anyone 1989 * grabbing manager_arb is responsible for actually performing 1990 * manager duties. If manager_arb is grabbed and released without 1991 * actual management, the pool may stall indefinitely. 1992 */ 1993 if (!mutex_trylock(&pool->manager_arb)) 1994 return false; 1995 pool->manager = worker; 1996 1997 maybe_create_worker(pool); 1998 1999 pool->manager = NULL; 2000 mutex_unlock(&pool->manager_arb); 2001 return true; 2002 } 2003 2004 /** 2005 * process_one_work - process single work 2006 * @worker: self 2007 * @work: work to process 2008 * 2009 * Process @work. This function contains all the logics necessary to 2010 * process a single work including synchronization against and 2011 * interaction with other workers on the same cpu, queueing and 2012 * flushing. As long as context requirement is met, any worker can 2013 * call this function to process a work. 2014 * 2015 * CONTEXT: 2016 * spin_lock_irq(pool->lock) which is released and regrabbed. 2017 */ 2018 static void process_one_work(struct worker *worker, struct work_struct *work) 2019 __releases(&pool->lock) 2020 __acquires(&pool->lock) 2021 { 2022 struct pool_workqueue *pwq = get_work_pwq(work); 2023 struct worker_pool *pool = worker->pool; 2024 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2025 int work_color; 2026 struct worker *collision; 2027 #ifdef CONFIG_LOCKDEP 2028 /* 2029 * It is permissible to free the struct work_struct from 2030 * inside the function that is called from it, this we need to 2031 * take into account for lockdep too. To avoid bogus "held 2032 * lock freed" warnings as well as problems when looking into 2033 * work->lockdep_map, make a copy and use that here. 2034 */ 2035 struct lockdep_map lockdep_map; 2036 2037 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2038 #endif 2039 /* ensure we're on the correct CPU */ 2040 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2041 raw_smp_processor_id() != pool->cpu); 2042 2043 /* 2044 * A single work shouldn't be executed concurrently by 2045 * multiple workers on a single cpu. Check whether anyone is 2046 * already processing the work. If so, defer the work to the 2047 * currently executing one. 2048 */ 2049 collision = find_worker_executing_work(pool, work); 2050 if (unlikely(collision)) { 2051 move_linked_works(work, &collision->scheduled, NULL); 2052 return; 2053 } 2054 2055 /* claim and dequeue */ 2056 debug_work_deactivate(work); 2057 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2058 worker->current_work = work; 2059 worker->current_func = work->func; 2060 worker->current_pwq = pwq; 2061 work_color = get_work_color(work); 2062 2063 list_del_init(&work->entry); 2064 2065 /* 2066 * CPU intensive works don't participate in concurrency management. 2067 * They're the scheduler's responsibility. This takes @worker out 2068 * of concurrency management and the next code block will chain 2069 * execution of the pending work items. 2070 */ 2071 if (unlikely(cpu_intensive)) 2072 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2073 2074 /* 2075 * Wake up another worker if necessary. The condition is always 2076 * false for normal per-cpu workers since nr_running would always 2077 * be >= 1 at this point. This is used to chain execution of the 2078 * pending work items for WORKER_NOT_RUNNING workers such as the 2079 * UNBOUND and CPU_INTENSIVE ones. 2080 */ 2081 if (need_more_worker(pool)) 2082 wake_up_worker(pool); 2083 2084 /* 2085 * Record the last pool and clear PENDING which should be the last 2086 * update to @work. Also, do this inside @pool->lock so that 2087 * PENDING and queued state changes happen together while IRQ is 2088 * disabled. 2089 */ 2090 set_work_pool_and_clear_pending(work, pool->id); 2091 2092 spin_unlock_irq(&pool->lock); 2093 2094 lock_map_acquire(&pwq->wq->lockdep_map); 2095 lock_map_acquire(&lockdep_map); 2096 /* 2097 * Strictly speaking we should mark the invariant state without holding 2098 * any locks, that is, before these two lock_map_acquire()'s. 2099 * 2100 * However, that would result in: 2101 * 2102 * A(W1) 2103 * WFC(C) 2104 * A(W1) 2105 * C(C) 2106 * 2107 * Which would create W1->C->W1 dependencies, even though there is no 2108 * actual deadlock possible. There are two solutions, using a 2109 * read-recursive acquire on the work(queue) 'locks', but this will then 2110 * hit the lockdep limitation on recursive locks, or simply discard 2111 * these locks. 2112 * 2113 * AFAICT there is no possible deadlock scenario between the 2114 * flush_work() and complete() primitives (except for single-threaded 2115 * workqueues), so hiding them isn't a problem. 2116 */ 2117 lockdep_invariant_state(true); 2118 trace_workqueue_execute_start(work); 2119 worker->current_func(work); 2120 /* 2121 * While we must be careful to not use "work" after this, the trace 2122 * point will only record its address. 2123 */ 2124 trace_workqueue_execute_end(work); 2125 lock_map_release(&lockdep_map); 2126 lock_map_release(&pwq->wq->lockdep_map); 2127 2128 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2129 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2130 " last function: %pf\n", 2131 current->comm, preempt_count(), task_pid_nr(current), 2132 worker->current_func); 2133 debug_show_held_locks(current); 2134 dump_stack(); 2135 } 2136 2137 /* 2138 * The following prevents a kworker from hogging CPU on !PREEMPT 2139 * kernels, where a requeueing work item waiting for something to 2140 * happen could deadlock with stop_machine as such work item could 2141 * indefinitely requeue itself while all other CPUs are trapped in 2142 * stop_machine. At the same time, report a quiescent RCU state so 2143 * the same condition doesn't freeze RCU. 2144 */ 2145 cond_resched_rcu_qs(); 2146 2147 spin_lock_irq(&pool->lock); 2148 2149 /* clear cpu intensive status */ 2150 if (unlikely(cpu_intensive)) 2151 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2152 2153 /* we're done with it, release */ 2154 hash_del(&worker->hentry); 2155 worker->current_work = NULL; 2156 worker->current_func = NULL; 2157 worker->current_pwq = NULL; 2158 worker->desc_valid = false; 2159 pwq_dec_nr_in_flight(pwq, work_color); 2160 } 2161 2162 /** 2163 * process_scheduled_works - process scheduled works 2164 * @worker: self 2165 * 2166 * Process all scheduled works. Please note that the scheduled list 2167 * may change while processing a work, so this function repeatedly 2168 * fetches a work from the top and executes it. 2169 * 2170 * CONTEXT: 2171 * spin_lock_irq(pool->lock) which may be released and regrabbed 2172 * multiple times. 2173 */ 2174 static void process_scheduled_works(struct worker *worker) 2175 { 2176 while (!list_empty(&worker->scheduled)) { 2177 struct work_struct *work = list_first_entry(&worker->scheduled, 2178 struct work_struct, entry); 2179 process_one_work(worker, work); 2180 } 2181 } 2182 2183 /** 2184 * worker_thread - the worker thread function 2185 * @__worker: self 2186 * 2187 * The worker thread function. All workers belong to a worker_pool - 2188 * either a per-cpu one or dynamic unbound one. These workers process all 2189 * work items regardless of their specific target workqueue. The only 2190 * exception is work items which belong to workqueues with a rescuer which 2191 * will be explained in rescuer_thread(). 2192 * 2193 * Return: 0 2194 */ 2195 static int worker_thread(void *__worker) 2196 { 2197 struct worker *worker = __worker; 2198 struct worker_pool *pool = worker->pool; 2199 2200 /* tell the scheduler that this is a workqueue worker */ 2201 worker->task->flags |= PF_WQ_WORKER; 2202 woke_up: 2203 spin_lock_irq(&pool->lock); 2204 2205 /* am I supposed to die? */ 2206 if (unlikely(worker->flags & WORKER_DIE)) { 2207 spin_unlock_irq(&pool->lock); 2208 WARN_ON_ONCE(!list_empty(&worker->entry)); 2209 worker->task->flags &= ~PF_WQ_WORKER; 2210 2211 set_task_comm(worker->task, "kworker/dying"); 2212 ida_simple_remove(&pool->worker_ida, worker->id); 2213 worker_detach_from_pool(worker, pool); 2214 kfree(worker); 2215 return 0; 2216 } 2217 2218 worker_leave_idle(worker); 2219 recheck: 2220 /* no more worker necessary? */ 2221 if (!need_more_worker(pool)) 2222 goto sleep; 2223 2224 /* do we need to manage? */ 2225 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2226 goto recheck; 2227 2228 /* 2229 * ->scheduled list can only be filled while a worker is 2230 * preparing to process a work or actually processing it. 2231 * Make sure nobody diddled with it while I was sleeping. 2232 */ 2233 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2234 2235 /* 2236 * Finish PREP stage. We're guaranteed to have at least one idle 2237 * worker or that someone else has already assumed the manager 2238 * role. This is where @worker starts participating in concurrency 2239 * management if applicable and concurrency management is restored 2240 * after being rebound. See rebind_workers() for details. 2241 */ 2242 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2243 2244 do { 2245 struct work_struct *work = 2246 list_first_entry(&pool->worklist, 2247 struct work_struct, entry); 2248 2249 pool->watchdog_ts = jiffies; 2250 2251 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2252 /* optimization path, not strictly necessary */ 2253 process_one_work(worker, work); 2254 if (unlikely(!list_empty(&worker->scheduled))) 2255 process_scheduled_works(worker); 2256 } else { 2257 move_linked_works(work, &worker->scheduled, NULL); 2258 process_scheduled_works(worker); 2259 } 2260 } while (keep_working(pool)); 2261 2262 worker_set_flags(worker, WORKER_PREP); 2263 sleep: 2264 /* 2265 * pool->lock is held and there's no work to process and no need to 2266 * manage, sleep. Workers are woken up only while holding 2267 * pool->lock or from local cpu, so setting the current state 2268 * before releasing pool->lock is enough to prevent losing any 2269 * event. 2270 */ 2271 worker_enter_idle(worker); 2272 __set_current_state(TASK_IDLE); 2273 spin_unlock_irq(&pool->lock); 2274 schedule(); 2275 goto woke_up; 2276 } 2277 2278 /** 2279 * rescuer_thread - the rescuer thread function 2280 * @__rescuer: self 2281 * 2282 * Workqueue rescuer thread function. There's one rescuer for each 2283 * workqueue which has WQ_MEM_RECLAIM set. 2284 * 2285 * Regular work processing on a pool may block trying to create a new 2286 * worker which uses GFP_KERNEL allocation which has slight chance of 2287 * developing into deadlock if some works currently on the same queue 2288 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2289 * the problem rescuer solves. 2290 * 2291 * When such condition is possible, the pool summons rescuers of all 2292 * workqueues which have works queued on the pool and let them process 2293 * those works so that forward progress can be guaranteed. 2294 * 2295 * This should happen rarely. 2296 * 2297 * Return: 0 2298 */ 2299 static int rescuer_thread(void *__rescuer) 2300 { 2301 struct worker *rescuer = __rescuer; 2302 struct workqueue_struct *wq = rescuer->rescue_wq; 2303 struct list_head *scheduled = &rescuer->scheduled; 2304 bool should_stop; 2305 2306 set_user_nice(current, RESCUER_NICE_LEVEL); 2307 2308 /* 2309 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2310 * doesn't participate in concurrency management. 2311 */ 2312 rescuer->task->flags |= PF_WQ_WORKER; 2313 repeat: 2314 set_current_state(TASK_IDLE); 2315 2316 /* 2317 * By the time the rescuer is requested to stop, the workqueue 2318 * shouldn't have any work pending, but @wq->maydays may still have 2319 * pwq(s) queued. This can happen by non-rescuer workers consuming 2320 * all the work items before the rescuer got to them. Go through 2321 * @wq->maydays processing before acting on should_stop so that the 2322 * list is always empty on exit. 2323 */ 2324 should_stop = kthread_should_stop(); 2325 2326 /* see whether any pwq is asking for help */ 2327 spin_lock_irq(&wq_mayday_lock); 2328 2329 while (!list_empty(&wq->maydays)) { 2330 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2331 struct pool_workqueue, mayday_node); 2332 struct worker_pool *pool = pwq->pool; 2333 struct work_struct *work, *n; 2334 bool first = true; 2335 2336 __set_current_state(TASK_RUNNING); 2337 list_del_init(&pwq->mayday_node); 2338 2339 spin_unlock_irq(&wq_mayday_lock); 2340 2341 worker_attach_to_pool(rescuer, pool); 2342 2343 spin_lock_irq(&pool->lock); 2344 rescuer->pool = pool; 2345 2346 /* 2347 * Slurp in all works issued via this workqueue and 2348 * process'em. 2349 */ 2350 WARN_ON_ONCE(!list_empty(scheduled)); 2351 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2352 if (get_work_pwq(work) == pwq) { 2353 if (first) 2354 pool->watchdog_ts = jiffies; 2355 move_linked_works(work, scheduled, &n); 2356 } 2357 first = false; 2358 } 2359 2360 if (!list_empty(scheduled)) { 2361 process_scheduled_works(rescuer); 2362 2363 /* 2364 * The above execution of rescued work items could 2365 * have created more to rescue through 2366 * pwq_activate_first_delayed() or chained 2367 * queueing. Let's put @pwq back on mayday list so 2368 * that such back-to-back work items, which may be 2369 * being used to relieve memory pressure, don't 2370 * incur MAYDAY_INTERVAL delay inbetween. 2371 */ 2372 if (need_to_create_worker(pool)) { 2373 spin_lock(&wq_mayday_lock); 2374 get_pwq(pwq); 2375 list_move_tail(&pwq->mayday_node, &wq->maydays); 2376 spin_unlock(&wq_mayday_lock); 2377 } 2378 } 2379 2380 /* 2381 * Put the reference grabbed by send_mayday(). @pool won't 2382 * go away while we're still attached to it. 2383 */ 2384 put_pwq(pwq); 2385 2386 /* 2387 * Leave this pool. If need_more_worker() is %true, notify a 2388 * regular worker; otherwise, we end up with 0 concurrency 2389 * and stalling the execution. 2390 */ 2391 if (need_more_worker(pool)) 2392 wake_up_worker(pool); 2393 2394 rescuer->pool = NULL; 2395 spin_unlock_irq(&pool->lock); 2396 2397 worker_detach_from_pool(rescuer, pool); 2398 2399 spin_lock_irq(&wq_mayday_lock); 2400 } 2401 2402 spin_unlock_irq(&wq_mayday_lock); 2403 2404 if (should_stop) { 2405 __set_current_state(TASK_RUNNING); 2406 rescuer->task->flags &= ~PF_WQ_WORKER; 2407 return 0; 2408 } 2409 2410 /* rescuers should never participate in concurrency management */ 2411 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2412 schedule(); 2413 goto repeat; 2414 } 2415 2416 /** 2417 * check_flush_dependency - check for flush dependency sanity 2418 * @target_wq: workqueue being flushed 2419 * @target_work: work item being flushed (NULL for workqueue flushes) 2420 * 2421 * %current is trying to flush the whole @target_wq or @target_work on it. 2422 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2423 * reclaiming memory or running on a workqueue which doesn't have 2424 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2425 * a deadlock. 2426 */ 2427 static void check_flush_dependency(struct workqueue_struct *target_wq, 2428 struct work_struct *target_work) 2429 { 2430 work_func_t target_func = target_work ? target_work->func : NULL; 2431 struct worker *worker; 2432 2433 if (target_wq->flags & WQ_MEM_RECLAIM) 2434 return; 2435 2436 worker = current_wq_worker(); 2437 2438 WARN_ONCE(current->flags & PF_MEMALLOC, 2439 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf", 2440 current->pid, current->comm, target_wq->name, target_func); 2441 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2442 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2443 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf", 2444 worker->current_pwq->wq->name, worker->current_func, 2445 target_wq->name, target_func); 2446 } 2447 2448 struct wq_barrier { 2449 struct work_struct work; 2450 struct completion done; 2451 struct task_struct *task; /* purely informational */ 2452 }; 2453 2454 static void wq_barrier_func(struct work_struct *work) 2455 { 2456 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2457 complete(&barr->done); 2458 } 2459 2460 /** 2461 * insert_wq_barrier - insert a barrier work 2462 * @pwq: pwq to insert barrier into 2463 * @barr: wq_barrier to insert 2464 * @target: target work to attach @barr to 2465 * @worker: worker currently executing @target, NULL if @target is not executing 2466 * 2467 * @barr is linked to @target such that @barr is completed only after 2468 * @target finishes execution. Please note that the ordering 2469 * guarantee is observed only with respect to @target and on the local 2470 * cpu. 2471 * 2472 * Currently, a queued barrier can't be canceled. This is because 2473 * try_to_grab_pending() can't determine whether the work to be 2474 * grabbed is at the head of the queue and thus can't clear LINKED 2475 * flag of the previous work while there must be a valid next work 2476 * after a work with LINKED flag set. 2477 * 2478 * Note that when @worker is non-NULL, @target may be modified 2479 * underneath us, so we can't reliably determine pwq from @target. 2480 * 2481 * CONTEXT: 2482 * spin_lock_irq(pool->lock). 2483 */ 2484 static void insert_wq_barrier(struct pool_workqueue *pwq, 2485 struct wq_barrier *barr, 2486 struct work_struct *target, struct worker *worker) 2487 { 2488 struct list_head *head; 2489 unsigned int linked = 0; 2490 2491 /* 2492 * debugobject calls are safe here even with pool->lock locked 2493 * as we know for sure that this will not trigger any of the 2494 * checks and call back into the fixup functions where we 2495 * might deadlock. 2496 */ 2497 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2498 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2499 2500 /* 2501 * Explicitly init the crosslock for wq_barrier::done, make its lock 2502 * key a subkey of the corresponding work. As a result we won't 2503 * build a dependency between wq_barrier::done and unrelated work. 2504 */ 2505 lockdep_init_map_crosslock((struct lockdep_map *)&barr->done.map, 2506 "(complete)wq_barr::done", 2507 target->lockdep_map.key, 1); 2508 __init_completion(&barr->done); 2509 barr->task = current; 2510 2511 /* 2512 * If @target is currently being executed, schedule the 2513 * barrier to the worker; otherwise, put it after @target. 2514 */ 2515 if (worker) 2516 head = worker->scheduled.next; 2517 else { 2518 unsigned long *bits = work_data_bits(target); 2519 2520 head = target->entry.next; 2521 /* there can already be other linked works, inherit and set */ 2522 linked = *bits & WORK_STRUCT_LINKED; 2523 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2524 } 2525 2526 debug_work_activate(&barr->work); 2527 insert_work(pwq, &barr->work, head, 2528 work_color_to_flags(WORK_NO_COLOR) | linked); 2529 } 2530 2531 /** 2532 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2533 * @wq: workqueue being flushed 2534 * @flush_color: new flush color, < 0 for no-op 2535 * @work_color: new work color, < 0 for no-op 2536 * 2537 * Prepare pwqs for workqueue flushing. 2538 * 2539 * If @flush_color is non-negative, flush_color on all pwqs should be 2540 * -1. If no pwq has in-flight commands at the specified color, all 2541 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2542 * has in flight commands, its pwq->flush_color is set to 2543 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2544 * wakeup logic is armed and %true is returned. 2545 * 2546 * The caller should have initialized @wq->first_flusher prior to 2547 * calling this function with non-negative @flush_color. If 2548 * @flush_color is negative, no flush color update is done and %false 2549 * is returned. 2550 * 2551 * If @work_color is non-negative, all pwqs should have the same 2552 * work_color which is previous to @work_color and all will be 2553 * advanced to @work_color. 2554 * 2555 * CONTEXT: 2556 * mutex_lock(wq->mutex). 2557 * 2558 * Return: 2559 * %true if @flush_color >= 0 and there's something to flush. %false 2560 * otherwise. 2561 */ 2562 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2563 int flush_color, int work_color) 2564 { 2565 bool wait = false; 2566 struct pool_workqueue *pwq; 2567 2568 if (flush_color >= 0) { 2569 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2570 atomic_set(&wq->nr_pwqs_to_flush, 1); 2571 } 2572 2573 for_each_pwq(pwq, wq) { 2574 struct worker_pool *pool = pwq->pool; 2575 2576 spin_lock_irq(&pool->lock); 2577 2578 if (flush_color >= 0) { 2579 WARN_ON_ONCE(pwq->flush_color != -1); 2580 2581 if (pwq->nr_in_flight[flush_color]) { 2582 pwq->flush_color = flush_color; 2583 atomic_inc(&wq->nr_pwqs_to_flush); 2584 wait = true; 2585 } 2586 } 2587 2588 if (work_color >= 0) { 2589 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2590 pwq->work_color = work_color; 2591 } 2592 2593 spin_unlock_irq(&pool->lock); 2594 } 2595 2596 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2597 complete(&wq->first_flusher->done); 2598 2599 return wait; 2600 } 2601 2602 /** 2603 * flush_workqueue - ensure that any scheduled work has run to completion. 2604 * @wq: workqueue to flush 2605 * 2606 * This function sleeps until all work items which were queued on entry 2607 * have finished execution, but it is not livelocked by new incoming ones. 2608 */ 2609 void flush_workqueue(struct workqueue_struct *wq) 2610 { 2611 struct wq_flusher this_flusher = { 2612 .list = LIST_HEAD_INIT(this_flusher.list), 2613 .flush_color = -1, 2614 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2615 }; 2616 int next_color; 2617 2618 if (WARN_ON(!wq_online)) 2619 return; 2620 2621 lock_map_acquire(&wq->lockdep_map); 2622 lock_map_release(&wq->lockdep_map); 2623 2624 mutex_lock(&wq->mutex); 2625 2626 /* 2627 * Start-to-wait phase 2628 */ 2629 next_color = work_next_color(wq->work_color); 2630 2631 if (next_color != wq->flush_color) { 2632 /* 2633 * Color space is not full. The current work_color 2634 * becomes our flush_color and work_color is advanced 2635 * by one. 2636 */ 2637 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2638 this_flusher.flush_color = wq->work_color; 2639 wq->work_color = next_color; 2640 2641 if (!wq->first_flusher) { 2642 /* no flush in progress, become the first flusher */ 2643 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2644 2645 wq->first_flusher = &this_flusher; 2646 2647 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2648 wq->work_color)) { 2649 /* nothing to flush, done */ 2650 wq->flush_color = next_color; 2651 wq->first_flusher = NULL; 2652 goto out_unlock; 2653 } 2654 } else { 2655 /* wait in queue */ 2656 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2657 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2658 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2659 } 2660 } else { 2661 /* 2662 * Oops, color space is full, wait on overflow queue. 2663 * The next flush completion will assign us 2664 * flush_color and transfer to flusher_queue. 2665 */ 2666 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2667 } 2668 2669 check_flush_dependency(wq, NULL); 2670 2671 mutex_unlock(&wq->mutex); 2672 2673 wait_for_completion(&this_flusher.done); 2674 2675 /* 2676 * Wake-up-and-cascade phase 2677 * 2678 * First flushers are responsible for cascading flushes and 2679 * handling overflow. Non-first flushers can simply return. 2680 */ 2681 if (wq->first_flusher != &this_flusher) 2682 return; 2683 2684 mutex_lock(&wq->mutex); 2685 2686 /* we might have raced, check again with mutex held */ 2687 if (wq->first_flusher != &this_flusher) 2688 goto out_unlock; 2689 2690 wq->first_flusher = NULL; 2691 2692 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2693 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2694 2695 while (true) { 2696 struct wq_flusher *next, *tmp; 2697 2698 /* complete all the flushers sharing the current flush color */ 2699 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2700 if (next->flush_color != wq->flush_color) 2701 break; 2702 list_del_init(&next->list); 2703 complete(&next->done); 2704 } 2705 2706 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2707 wq->flush_color != work_next_color(wq->work_color)); 2708 2709 /* this flush_color is finished, advance by one */ 2710 wq->flush_color = work_next_color(wq->flush_color); 2711 2712 /* one color has been freed, handle overflow queue */ 2713 if (!list_empty(&wq->flusher_overflow)) { 2714 /* 2715 * Assign the same color to all overflowed 2716 * flushers, advance work_color and append to 2717 * flusher_queue. This is the start-to-wait 2718 * phase for these overflowed flushers. 2719 */ 2720 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2721 tmp->flush_color = wq->work_color; 2722 2723 wq->work_color = work_next_color(wq->work_color); 2724 2725 list_splice_tail_init(&wq->flusher_overflow, 2726 &wq->flusher_queue); 2727 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2728 } 2729 2730 if (list_empty(&wq->flusher_queue)) { 2731 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2732 break; 2733 } 2734 2735 /* 2736 * Need to flush more colors. Make the next flusher 2737 * the new first flusher and arm pwqs. 2738 */ 2739 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2740 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2741 2742 list_del_init(&next->list); 2743 wq->first_flusher = next; 2744 2745 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2746 break; 2747 2748 /* 2749 * Meh... this color is already done, clear first 2750 * flusher and repeat cascading. 2751 */ 2752 wq->first_flusher = NULL; 2753 } 2754 2755 out_unlock: 2756 mutex_unlock(&wq->mutex); 2757 } 2758 EXPORT_SYMBOL(flush_workqueue); 2759 2760 /** 2761 * drain_workqueue - drain a workqueue 2762 * @wq: workqueue to drain 2763 * 2764 * Wait until the workqueue becomes empty. While draining is in progress, 2765 * only chain queueing is allowed. IOW, only currently pending or running 2766 * work items on @wq can queue further work items on it. @wq is flushed 2767 * repeatedly until it becomes empty. The number of flushing is determined 2768 * by the depth of chaining and should be relatively short. Whine if it 2769 * takes too long. 2770 */ 2771 void drain_workqueue(struct workqueue_struct *wq) 2772 { 2773 unsigned int flush_cnt = 0; 2774 struct pool_workqueue *pwq; 2775 2776 /* 2777 * __queue_work() needs to test whether there are drainers, is much 2778 * hotter than drain_workqueue() and already looks at @wq->flags. 2779 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2780 */ 2781 mutex_lock(&wq->mutex); 2782 if (!wq->nr_drainers++) 2783 wq->flags |= __WQ_DRAINING; 2784 mutex_unlock(&wq->mutex); 2785 reflush: 2786 flush_workqueue(wq); 2787 2788 mutex_lock(&wq->mutex); 2789 2790 for_each_pwq(pwq, wq) { 2791 bool drained; 2792 2793 spin_lock_irq(&pwq->pool->lock); 2794 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2795 spin_unlock_irq(&pwq->pool->lock); 2796 2797 if (drained) 2798 continue; 2799 2800 if (++flush_cnt == 10 || 2801 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2802 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2803 wq->name, flush_cnt); 2804 2805 mutex_unlock(&wq->mutex); 2806 goto reflush; 2807 } 2808 2809 if (!--wq->nr_drainers) 2810 wq->flags &= ~__WQ_DRAINING; 2811 mutex_unlock(&wq->mutex); 2812 } 2813 EXPORT_SYMBOL_GPL(drain_workqueue); 2814 2815 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr) 2816 { 2817 struct worker *worker = NULL; 2818 struct worker_pool *pool; 2819 struct pool_workqueue *pwq; 2820 2821 might_sleep(); 2822 2823 local_irq_disable(); 2824 pool = get_work_pool(work); 2825 if (!pool) { 2826 local_irq_enable(); 2827 return false; 2828 } 2829 2830 spin_lock(&pool->lock); 2831 /* see the comment in try_to_grab_pending() with the same code */ 2832 pwq = get_work_pwq(work); 2833 if (pwq) { 2834 if (unlikely(pwq->pool != pool)) 2835 goto already_gone; 2836 } else { 2837 worker = find_worker_executing_work(pool, work); 2838 if (!worker) 2839 goto already_gone; 2840 pwq = worker->current_pwq; 2841 } 2842 2843 check_flush_dependency(pwq->wq, work); 2844 2845 insert_wq_barrier(pwq, barr, work, worker); 2846 spin_unlock_irq(&pool->lock); 2847 2848 /* 2849 * Force a lock recursion deadlock when using flush_work() inside a 2850 * single-threaded or rescuer equipped workqueue. 2851 * 2852 * For single threaded workqueues the deadlock happens when the work 2853 * is after the work issuing the flush_work(). For rescuer equipped 2854 * workqueues the deadlock happens when the rescuer stalls, blocking 2855 * forward progress. 2856 */ 2857 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) { 2858 lock_map_acquire(&pwq->wq->lockdep_map); 2859 lock_map_release(&pwq->wq->lockdep_map); 2860 } 2861 2862 return true; 2863 already_gone: 2864 spin_unlock_irq(&pool->lock); 2865 return false; 2866 } 2867 2868 /** 2869 * flush_work - wait for a work to finish executing the last queueing instance 2870 * @work: the work to flush 2871 * 2872 * Wait until @work has finished execution. @work is guaranteed to be idle 2873 * on return if it hasn't been requeued since flush started. 2874 * 2875 * Return: 2876 * %true if flush_work() waited for the work to finish execution, 2877 * %false if it was already idle. 2878 */ 2879 bool flush_work(struct work_struct *work) 2880 { 2881 struct wq_barrier barr; 2882 2883 if (WARN_ON(!wq_online)) 2884 return false; 2885 2886 lock_map_acquire(&work->lockdep_map); 2887 lock_map_release(&work->lockdep_map); 2888 2889 if (start_flush_work(work, &barr)) { 2890 wait_for_completion(&barr.done); 2891 destroy_work_on_stack(&barr.work); 2892 return true; 2893 } else { 2894 return false; 2895 } 2896 } 2897 EXPORT_SYMBOL_GPL(flush_work); 2898 2899 struct cwt_wait { 2900 wait_queue_entry_t wait; 2901 struct work_struct *work; 2902 }; 2903 2904 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2905 { 2906 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 2907 2908 if (cwait->work != key) 2909 return 0; 2910 return autoremove_wake_function(wait, mode, sync, key); 2911 } 2912 2913 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 2914 { 2915 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 2916 unsigned long flags; 2917 int ret; 2918 2919 do { 2920 ret = try_to_grab_pending(work, is_dwork, &flags); 2921 /* 2922 * If someone else is already canceling, wait for it to 2923 * finish. flush_work() doesn't work for PREEMPT_NONE 2924 * because we may get scheduled between @work's completion 2925 * and the other canceling task resuming and clearing 2926 * CANCELING - flush_work() will return false immediately 2927 * as @work is no longer busy, try_to_grab_pending() will 2928 * return -ENOENT as @work is still being canceled and the 2929 * other canceling task won't be able to clear CANCELING as 2930 * we're hogging the CPU. 2931 * 2932 * Let's wait for completion using a waitqueue. As this 2933 * may lead to the thundering herd problem, use a custom 2934 * wake function which matches @work along with exclusive 2935 * wait and wakeup. 2936 */ 2937 if (unlikely(ret == -ENOENT)) { 2938 struct cwt_wait cwait; 2939 2940 init_wait(&cwait.wait); 2941 cwait.wait.func = cwt_wakefn; 2942 cwait.work = work; 2943 2944 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 2945 TASK_UNINTERRUPTIBLE); 2946 if (work_is_canceling(work)) 2947 schedule(); 2948 finish_wait(&cancel_waitq, &cwait.wait); 2949 } 2950 } while (unlikely(ret < 0)); 2951 2952 /* tell other tasks trying to grab @work to back off */ 2953 mark_work_canceling(work); 2954 local_irq_restore(flags); 2955 2956 /* 2957 * This allows canceling during early boot. We know that @work 2958 * isn't executing. 2959 */ 2960 if (wq_online) 2961 flush_work(work); 2962 2963 clear_work_data(work); 2964 2965 /* 2966 * Paired with prepare_to_wait() above so that either 2967 * waitqueue_active() is visible here or !work_is_canceling() is 2968 * visible there. 2969 */ 2970 smp_mb(); 2971 if (waitqueue_active(&cancel_waitq)) 2972 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 2973 2974 return ret; 2975 } 2976 2977 /** 2978 * cancel_work_sync - cancel a work and wait for it to finish 2979 * @work: the work to cancel 2980 * 2981 * Cancel @work and wait for its execution to finish. This function 2982 * can be used even if the work re-queues itself or migrates to 2983 * another workqueue. On return from this function, @work is 2984 * guaranteed to be not pending or executing on any CPU. 2985 * 2986 * cancel_work_sync(&delayed_work->work) must not be used for 2987 * delayed_work's. Use cancel_delayed_work_sync() instead. 2988 * 2989 * The caller must ensure that the workqueue on which @work was last 2990 * queued can't be destroyed before this function returns. 2991 * 2992 * Return: 2993 * %true if @work was pending, %false otherwise. 2994 */ 2995 bool cancel_work_sync(struct work_struct *work) 2996 { 2997 return __cancel_work_timer(work, false); 2998 } 2999 EXPORT_SYMBOL_GPL(cancel_work_sync); 3000 3001 /** 3002 * flush_delayed_work - wait for a dwork to finish executing the last queueing 3003 * @dwork: the delayed work to flush 3004 * 3005 * Delayed timer is cancelled and the pending work is queued for 3006 * immediate execution. Like flush_work(), this function only 3007 * considers the last queueing instance of @dwork. 3008 * 3009 * Return: 3010 * %true if flush_work() waited for the work to finish execution, 3011 * %false if it was already idle. 3012 */ 3013 bool flush_delayed_work(struct delayed_work *dwork) 3014 { 3015 local_irq_disable(); 3016 if (del_timer_sync(&dwork->timer)) 3017 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 3018 local_irq_enable(); 3019 return flush_work(&dwork->work); 3020 } 3021 EXPORT_SYMBOL(flush_delayed_work); 3022 3023 static bool __cancel_work(struct work_struct *work, bool is_dwork) 3024 { 3025 unsigned long flags; 3026 int ret; 3027 3028 do { 3029 ret = try_to_grab_pending(work, is_dwork, &flags); 3030 } while (unlikely(ret == -EAGAIN)); 3031 3032 if (unlikely(ret < 0)) 3033 return false; 3034 3035 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 3036 local_irq_restore(flags); 3037 return ret; 3038 } 3039 3040 /* 3041 * See cancel_delayed_work() 3042 */ 3043 bool cancel_work(struct work_struct *work) 3044 { 3045 return __cancel_work(work, false); 3046 } 3047 3048 /** 3049 * cancel_delayed_work - cancel a delayed work 3050 * @dwork: delayed_work to cancel 3051 * 3052 * Kill off a pending delayed_work. 3053 * 3054 * Return: %true if @dwork was pending and canceled; %false if it wasn't 3055 * pending. 3056 * 3057 * Note: 3058 * The work callback function may still be running on return, unless 3059 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 3060 * use cancel_delayed_work_sync() to wait on it. 3061 * 3062 * This function is safe to call from any context including IRQ handler. 3063 */ 3064 bool cancel_delayed_work(struct delayed_work *dwork) 3065 { 3066 return __cancel_work(&dwork->work, true); 3067 } 3068 EXPORT_SYMBOL(cancel_delayed_work); 3069 3070 /** 3071 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3072 * @dwork: the delayed work cancel 3073 * 3074 * This is cancel_work_sync() for delayed works. 3075 * 3076 * Return: 3077 * %true if @dwork was pending, %false otherwise. 3078 */ 3079 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3080 { 3081 return __cancel_work_timer(&dwork->work, true); 3082 } 3083 EXPORT_SYMBOL(cancel_delayed_work_sync); 3084 3085 /** 3086 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3087 * @func: the function to call 3088 * 3089 * schedule_on_each_cpu() executes @func on each online CPU using the 3090 * system workqueue and blocks until all CPUs have completed. 3091 * schedule_on_each_cpu() is very slow. 3092 * 3093 * Return: 3094 * 0 on success, -errno on failure. 3095 */ 3096 int schedule_on_each_cpu(work_func_t func) 3097 { 3098 int cpu; 3099 struct work_struct __percpu *works; 3100 3101 works = alloc_percpu(struct work_struct); 3102 if (!works) 3103 return -ENOMEM; 3104 3105 get_online_cpus(); 3106 3107 for_each_online_cpu(cpu) { 3108 struct work_struct *work = per_cpu_ptr(works, cpu); 3109 3110 INIT_WORK(work, func); 3111 schedule_work_on(cpu, work); 3112 } 3113 3114 for_each_online_cpu(cpu) 3115 flush_work(per_cpu_ptr(works, cpu)); 3116 3117 put_online_cpus(); 3118 free_percpu(works); 3119 return 0; 3120 } 3121 3122 /** 3123 * execute_in_process_context - reliably execute the routine with user context 3124 * @fn: the function to execute 3125 * @ew: guaranteed storage for the execute work structure (must 3126 * be available when the work executes) 3127 * 3128 * Executes the function immediately if process context is available, 3129 * otherwise schedules the function for delayed execution. 3130 * 3131 * Return: 0 - function was executed 3132 * 1 - function was scheduled for execution 3133 */ 3134 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3135 { 3136 if (!in_interrupt()) { 3137 fn(&ew->work); 3138 return 0; 3139 } 3140 3141 INIT_WORK(&ew->work, fn); 3142 schedule_work(&ew->work); 3143 3144 return 1; 3145 } 3146 EXPORT_SYMBOL_GPL(execute_in_process_context); 3147 3148 /** 3149 * free_workqueue_attrs - free a workqueue_attrs 3150 * @attrs: workqueue_attrs to free 3151 * 3152 * Undo alloc_workqueue_attrs(). 3153 */ 3154 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3155 { 3156 if (attrs) { 3157 free_cpumask_var(attrs->cpumask); 3158 kfree(attrs); 3159 } 3160 } 3161 3162 /** 3163 * alloc_workqueue_attrs - allocate a workqueue_attrs 3164 * @gfp_mask: allocation mask to use 3165 * 3166 * Allocate a new workqueue_attrs, initialize with default settings and 3167 * return it. 3168 * 3169 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3170 */ 3171 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask) 3172 { 3173 struct workqueue_attrs *attrs; 3174 3175 attrs = kzalloc(sizeof(*attrs), gfp_mask); 3176 if (!attrs) 3177 goto fail; 3178 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask)) 3179 goto fail; 3180 3181 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3182 return attrs; 3183 fail: 3184 free_workqueue_attrs(attrs); 3185 return NULL; 3186 } 3187 3188 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3189 const struct workqueue_attrs *from) 3190 { 3191 to->nice = from->nice; 3192 cpumask_copy(to->cpumask, from->cpumask); 3193 /* 3194 * Unlike hash and equality test, this function doesn't ignore 3195 * ->no_numa as it is used for both pool and wq attrs. Instead, 3196 * get_unbound_pool() explicitly clears ->no_numa after copying. 3197 */ 3198 to->no_numa = from->no_numa; 3199 } 3200 3201 /* hash value of the content of @attr */ 3202 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3203 { 3204 u32 hash = 0; 3205 3206 hash = jhash_1word(attrs->nice, hash); 3207 hash = jhash(cpumask_bits(attrs->cpumask), 3208 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3209 return hash; 3210 } 3211 3212 /* content equality test */ 3213 static bool wqattrs_equal(const struct workqueue_attrs *a, 3214 const struct workqueue_attrs *b) 3215 { 3216 if (a->nice != b->nice) 3217 return false; 3218 if (!cpumask_equal(a->cpumask, b->cpumask)) 3219 return false; 3220 return true; 3221 } 3222 3223 /** 3224 * init_worker_pool - initialize a newly zalloc'd worker_pool 3225 * @pool: worker_pool to initialize 3226 * 3227 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3228 * 3229 * Return: 0 on success, -errno on failure. Even on failure, all fields 3230 * inside @pool proper are initialized and put_unbound_pool() can be called 3231 * on @pool safely to release it. 3232 */ 3233 static int init_worker_pool(struct worker_pool *pool) 3234 { 3235 spin_lock_init(&pool->lock); 3236 pool->id = -1; 3237 pool->cpu = -1; 3238 pool->node = NUMA_NO_NODE; 3239 pool->flags |= POOL_DISASSOCIATED; 3240 pool->watchdog_ts = jiffies; 3241 INIT_LIST_HEAD(&pool->worklist); 3242 INIT_LIST_HEAD(&pool->idle_list); 3243 hash_init(pool->busy_hash); 3244 3245 setup_deferrable_timer(&pool->idle_timer, idle_worker_timeout, 3246 (unsigned long)pool); 3247 3248 setup_timer(&pool->mayday_timer, pool_mayday_timeout, 3249 (unsigned long)pool); 3250 3251 mutex_init(&pool->manager_arb); 3252 mutex_init(&pool->attach_mutex); 3253 INIT_LIST_HEAD(&pool->workers); 3254 3255 ida_init(&pool->worker_ida); 3256 INIT_HLIST_NODE(&pool->hash_node); 3257 pool->refcnt = 1; 3258 3259 /* shouldn't fail above this point */ 3260 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL); 3261 if (!pool->attrs) 3262 return -ENOMEM; 3263 return 0; 3264 } 3265 3266 static void rcu_free_wq(struct rcu_head *rcu) 3267 { 3268 struct workqueue_struct *wq = 3269 container_of(rcu, struct workqueue_struct, rcu); 3270 3271 if (!(wq->flags & WQ_UNBOUND)) 3272 free_percpu(wq->cpu_pwqs); 3273 else 3274 free_workqueue_attrs(wq->unbound_attrs); 3275 3276 kfree(wq->rescuer); 3277 kfree(wq); 3278 } 3279 3280 static void rcu_free_pool(struct rcu_head *rcu) 3281 { 3282 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3283 3284 ida_destroy(&pool->worker_ida); 3285 free_workqueue_attrs(pool->attrs); 3286 kfree(pool); 3287 } 3288 3289 /** 3290 * put_unbound_pool - put a worker_pool 3291 * @pool: worker_pool to put 3292 * 3293 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU 3294 * safe manner. get_unbound_pool() calls this function on its failure path 3295 * and this function should be able to release pools which went through, 3296 * successfully or not, init_worker_pool(). 3297 * 3298 * Should be called with wq_pool_mutex held. 3299 */ 3300 static void put_unbound_pool(struct worker_pool *pool) 3301 { 3302 DECLARE_COMPLETION_ONSTACK(detach_completion); 3303 struct worker *worker; 3304 3305 lockdep_assert_held(&wq_pool_mutex); 3306 3307 if (--pool->refcnt) 3308 return; 3309 3310 /* sanity checks */ 3311 if (WARN_ON(!(pool->cpu < 0)) || 3312 WARN_ON(!list_empty(&pool->worklist))) 3313 return; 3314 3315 /* release id and unhash */ 3316 if (pool->id >= 0) 3317 idr_remove(&worker_pool_idr, pool->id); 3318 hash_del(&pool->hash_node); 3319 3320 /* 3321 * Become the manager and destroy all workers. Grabbing 3322 * manager_arb prevents @pool's workers from blocking on 3323 * attach_mutex. 3324 */ 3325 mutex_lock(&pool->manager_arb); 3326 3327 spin_lock_irq(&pool->lock); 3328 while ((worker = first_idle_worker(pool))) 3329 destroy_worker(worker); 3330 WARN_ON(pool->nr_workers || pool->nr_idle); 3331 spin_unlock_irq(&pool->lock); 3332 3333 mutex_lock(&pool->attach_mutex); 3334 if (!list_empty(&pool->workers)) 3335 pool->detach_completion = &detach_completion; 3336 mutex_unlock(&pool->attach_mutex); 3337 3338 if (pool->detach_completion) 3339 wait_for_completion(pool->detach_completion); 3340 3341 mutex_unlock(&pool->manager_arb); 3342 3343 /* shut down the timers */ 3344 del_timer_sync(&pool->idle_timer); 3345 del_timer_sync(&pool->mayday_timer); 3346 3347 /* sched-RCU protected to allow dereferences from get_work_pool() */ 3348 call_rcu_sched(&pool->rcu, rcu_free_pool); 3349 } 3350 3351 /** 3352 * get_unbound_pool - get a worker_pool with the specified attributes 3353 * @attrs: the attributes of the worker_pool to get 3354 * 3355 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3356 * reference count and return it. If there already is a matching 3357 * worker_pool, it will be used; otherwise, this function attempts to 3358 * create a new one. 3359 * 3360 * Should be called with wq_pool_mutex held. 3361 * 3362 * Return: On success, a worker_pool with the same attributes as @attrs. 3363 * On failure, %NULL. 3364 */ 3365 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3366 { 3367 u32 hash = wqattrs_hash(attrs); 3368 struct worker_pool *pool; 3369 int node; 3370 int target_node = NUMA_NO_NODE; 3371 3372 lockdep_assert_held(&wq_pool_mutex); 3373 3374 /* do we already have a matching pool? */ 3375 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3376 if (wqattrs_equal(pool->attrs, attrs)) { 3377 pool->refcnt++; 3378 return pool; 3379 } 3380 } 3381 3382 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3383 if (wq_numa_enabled) { 3384 for_each_node(node) { 3385 if (cpumask_subset(attrs->cpumask, 3386 wq_numa_possible_cpumask[node])) { 3387 target_node = node; 3388 break; 3389 } 3390 } 3391 } 3392 3393 /* nope, create a new one */ 3394 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3395 if (!pool || init_worker_pool(pool) < 0) 3396 goto fail; 3397 3398 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3399 copy_workqueue_attrs(pool->attrs, attrs); 3400 pool->node = target_node; 3401 3402 /* 3403 * no_numa isn't a worker_pool attribute, always clear it. See 3404 * 'struct workqueue_attrs' comments for detail. 3405 */ 3406 pool->attrs->no_numa = false; 3407 3408 if (worker_pool_assign_id(pool) < 0) 3409 goto fail; 3410 3411 /* create and start the initial worker */ 3412 if (wq_online && !create_worker(pool)) 3413 goto fail; 3414 3415 /* install */ 3416 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3417 3418 return pool; 3419 fail: 3420 if (pool) 3421 put_unbound_pool(pool); 3422 return NULL; 3423 } 3424 3425 static void rcu_free_pwq(struct rcu_head *rcu) 3426 { 3427 kmem_cache_free(pwq_cache, 3428 container_of(rcu, struct pool_workqueue, rcu)); 3429 } 3430 3431 /* 3432 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3433 * and needs to be destroyed. 3434 */ 3435 static void pwq_unbound_release_workfn(struct work_struct *work) 3436 { 3437 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3438 unbound_release_work); 3439 struct workqueue_struct *wq = pwq->wq; 3440 struct worker_pool *pool = pwq->pool; 3441 bool is_last; 3442 3443 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3444 return; 3445 3446 mutex_lock(&wq->mutex); 3447 list_del_rcu(&pwq->pwqs_node); 3448 is_last = list_empty(&wq->pwqs); 3449 mutex_unlock(&wq->mutex); 3450 3451 mutex_lock(&wq_pool_mutex); 3452 put_unbound_pool(pool); 3453 mutex_unlock(&wq_pool_mutex); 3454 3455 call_rcu_sched(&pwq->rcu, rcu_free_pwq); 3456 3457 /* 3458 * If we're the last pwq going away, @wq is already dead and no one 3459 * is gonna access it anymore. Schedule RCU free. 3460 */ 3461 if (is_last) 3462 call_rcu_sched(&wq->rcu, rcu_free_wq); 3463 } 3464 3465 /** 3466 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3467 * @pwq: target pool_workqueue 3468 * 3469 * If @pwq isn't freezing, set @pwq->max_active to the associated 3470 * workqueue's saved_max_active and activate delayed work items 3471 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3472 */ 3473 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3474 { 3475 struct workqueue_struct *wq = pwq->wq; 3476 bool freezable = wq->flags & WQ_FREEZABLE; 3477 unsigned long flags; 3478 3479 /* for @wq->saved_max_active */ 3480 lockdep_assert_held(&wq->mutex); 3481 3482 /* fast exit for non-freezable wqs */ 3483 if (!freezable && pwq->max_active == wq->saved_max_active) 3484 return; 3485 3486 /* this function can be called during early boot w/ irq disabled */ 3487 spin_lock_irqsave(&pwq->pool->lock, flags); 3488 3489 /* 3490 * During [un]freezing, the caller is responsible for ensuring that 3491 * this function is called at least once after @workqueue_freezing 3492 * is updated and visible. 3493 */ 3494 if (!freezable || !workqueue_freezing) { 3495 pwq->max_active = wq->saved_max_active; 3496 3497 while (!list_empty(&pwq->delayed_works) && 3498 pwq->nr_active < pwq->max_active) 3499 pwq_activate_first_delayed(pwq); 3500 3501 /* 3502 * Need to kick a worker after thawed or an unbound wq's 3503 * max_active is bumped. It's a slow path. Do it always. 3504 */ 3505 wake_up_worker(pwq->pool); 3506 } else { 3507 pwq->max_active = 0; 3508 } 3509 3510 spin_unlock_irqrestore(&pwq->pool->lock, flags); 3511 } 3512 3513 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3514 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3515 struct worker_pool *pool) 3516 { 3517 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3518 3519 memset(pwq, 0, sizeof(*pwq)); 3520 3521 pwq->pool = pool; 3522 pwq->wq = wq; 3523 pwq->flush_color = -1; 3524 pwq->refcnt = 1; 3525 INIT_LIST_HEAD(&pwq->delayed_works); 3526 INIT_LIST_HEAD(&pwq->pwqs_node); 3527 INIT_LIST_HEAD(&pwq->mayday_node); 3528 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3529 } 3530 3531 /* sync @pwq with the current state of its associated wq and link it */ 3532 static void link_pwq(struct pool_workqueue *pwq) 3533 { 3534 struct workqueue_struct *wq = pwq->wq; 3535 3536 lockdep_assert_held(&wq->mutex); 3537 3538 /* may be called multiple times, ignore if already linked */ 3539 if (!list_empty(&pwq->pwqs_node)) 3540 return; 3541 3542 /* set the matching work_color */ 3543 pwq->work_color = wq->work_color; 3544 3545 /* sync max_active to the current setting */ 3546 pwq_adjust_max_active(pwq); 3547 3548 /* link in @pwq */ 3549 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3550 } 3551 3552 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3553 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3554 const struct workqueue_attrs *attrs) 3555 { 3556 struct worker_pool *pool; 3557 struct pool_workqueue *pwq; 3558 3559 lockdep_assert_held(&wq_pool_mutex); 3560 3561 pool = get_unbound_pool(attrs); 3562 if (!pool) 3563 return NULL; 3564 3565 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3566 if (!pwq) { 3567 put_unbound_pool(pool); 3568 return NULL; 3569 } 3570 3571 init_pwq(pwq, wq, pool); 3572 return pwq; 3573 } 3574 3575 /** 3576 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3577 * @attrs: the wq_attrs of the default pwq of the target workqueue 3578 * @node: the target NUMA node 3579 * @cpu_going_down: if >= 0, the CPU to consider as offline 3580 * @cpumask: outarg, the resulting cpumask 3581 * 3582 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3583 * @cpu_going_down is >= 0, that cpu is considered offline during 3584 * calculation. The result is stored in @cpumask. 3585 * 3586 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3587 * enabled and @node has online CPUs requested by @attrs, the returned 3588 * cpumask is the intersection of the possible CPUs of @node and 3589 * @attrs->cpumask. 3590 * 3591 * The caller is responsible for ensuring that the cpumask of @node stays 3592 * stable. 3593 * 3594 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3595 * %false if equal. 3596 */ 3597 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3598 int cpu_going_down, cpumask_t *cpumask) 3599 { 3600 if (!wq_numa_enabled || attrs->no_numa) 3601 goto use_dfl; 3602 3603 /* does @node have any online CPUs @attrs wants? */ 3604 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3605 if (cpu_going_down >= 0) 3606 cpumask_clear_cpu(cpu_going_down, cpumask); 3607 3608 if (cpumask_empty(cpumask)) 3609 goto use_dfl; 3610 3611 /* yeap, return possible CPUs in @node that @attrs wants */ 3612 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3613 3614 if (cpumask_empty(cpumask)) { 3615 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 3616 "possible intersect\n"); 3617 return false; 3618 } 3619 3620 return !cpumask_equal(cpumask, attrs->cpumask); 3621 3622 use_dfl: 3623 cpumask_copy(cpumask, attrs->cpumask); 3624 return false; 3625 } 3626 3627 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3628 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3629 int node, 3630 struct pool_workqueue *pwq) 3631 { 3632 struct pool_workqueue *old_pwq; 3633 3634 lockdep_assert_held(&wq_pool_mutex); 3635 lockdep_assert_held(&wq->mutex); 3636 3637 /* link_pwq() can handle duplicate calls */ 3638 link_pwq(pwq); 3639 3640 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3641 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3642 return old_pwq; 3643 } 3644 3645 /* context to store the prepared attrs & pwqs before applying */ 3646 struct apply_wqattrs_ctx { 3647 struct workqueue_struct *wq; /* target workqueue */ 3648 struct workqueue_attrs *attrs; /* attrs to apply */ 3649 struct list_head list; /* queued for batching commit */ 3650 struct pool_workqueue *dfl_pwq; 3651 struct pool_workqueue *pwq_tbl[]; 3652 }; 3653 3654 /* free the resources after success or abort */ 3655 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 3656 { 3657 if (ctx) { 3658 int node; 3659 3660 for_each_node(node) 3661 put_pwq_unlocked(ctx->pwq_tbl[node]); 3662 put_pwq_unlocked(ctx->dfl_pwq); 3663 3664 free_workqueue_attrs(ctx->attrs); 3665 3666 kfree(ctx); 3667 } 3668 } 3669 3670 /* allocate the attrs and pwqs for later installation */ 3671 static struct apply_wqattrs_ctx * 3672 apply_wqattrs_prepare(struct workqueue_struct *wq, 3673 const struct workqueue_attrs *attrs) 3674 { 3675 struct apply_wqattrs_ctx *ctx; 3676 struct workqueue_attrs *new_attrs, *tmp_attrs; 3677 int node; 3678 3679 lockdep_assert_held(&wq_pool_mutex); 3680 3681 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]), 3682 GFP_KERNEL); 3683 3684 new_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3685 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3686 if (!ctx || !new_attrs || !tmp_attrs) 3687 goto out_free; 3688 3689 /* 3690 * Calculate the attrs of the default pwq. 3691 * If the user configured cpumask doesn't overlap with the 3692 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 3693 */ 3694 copy_workqueue_attrs(new_attrs, attrs); 3695 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask); 3696 if (unlikely(cpumask_empty(new_attrs->cpumask))) 3697 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask); 3698 3699 /* 3700 * We may create multiple pwqs with differing cpumasks. Make a 3701 * copy of @new_attrs which will be modified and used to obtain 3702 * pools. 3703 */ 3704 copy_workqueue_attrs(tmp_attrs, new_attrs); 3705 3706 /* 3707 * If something goes wrong during CPU up/down, we'll fall back to 3708 * the default pwq covering whole @attrs->cpumask. Always create 3709 * it even if we don't use it immediately. 3710 */ 3711 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3712 if (!ctx->dfl_pwq) 3713 goto out_free; 3714 3715 for_each_node(node) { 3716 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 3717 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3718 if (!ctx->pwq_tbl[node]) 3719 goto out_free; 3720 } else { 3721 ctx->dfl_pwq->refcnt++; 3722 ctx->pwq_tbl[node] = ctx->dfl_pwq; 3723 } 3724 } 3725 3726 /* save the user configured attrs and sanitize it. */ 3727 copy_workqueue_attrs(new_attrs, attrs); 3728 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3729 ctx->attrs = new_attrs; 3730 3731 ctx->wq = wq; 3732 free_workqueue_attrs(tmp_attrs); 3733 return ctx; 3734 3735 out_free: 3736 free_workqueue_attrs(tmp_attrs); 3737 free_workqueue_attrs(new_attrs); 3738 apply_wqattrs_cleanup(ctx); 3739 return NULL; 3740 } 3741 3742 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 3743 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 3744 { 3745 int node; 3746 3747 /* all pwqs have been created successfully, let's install'em */ 3748 mutex_lock(&ctx->wq->mutex); 3749 3750 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 3751 3752 /* save the previous pwq and install the new one */ 3753 for_each_node(node) 3754 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 3755 ctx->pwq_tbl[node]); 3756 3757 /* @dfl_pwq might not have been used, ensure it's linked */ 3758 link_pwq(ctx->dfl_pwq); 3759 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 3760 3761 mutex_unlock(&ctx->wq->mutex); 3762 } 3763 3764 static void apply_wqattrs_lock(void) 3765 { 3766 /* CPUs should stay stable across pwq creations and installations */ 3767 get_online_cpus(); 3768 mutex_lock(&wq_pool_mutex); 3769 } 3770 3771 static void apply_wqattrs_unlock(void) 3772 { 3773 mutex_unlock(&wq_pool_mutex); 3774 put_online_cpus(); 3775 } 3776 3777 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 3778 const struct workqueue_attrs *attrs) 3779 { 3780 struct apply_wqattrs_ctx *ctx; 3781 3782 /* only unbound workqueues can change attributes */ 3783 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 3784 return -EINVAL; 3785 3786 /* creating multiple pwqs breaks ordering guarantee */ 3787 if (!list_empty(&wq->pwqs)) { 3788 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 3789 return -EINVAL; 3790 3791 wq->flags &= ~__WQ_ORDERED; 3792 } 3793 3794 ctx = apply_wqattrs_prepare(wq, attrs); 3795 if (!ctx) 3796 return -ENOMEM; 3797 3798 /* the ctx has been prepared successfully, let's commit it */ 3799 apply_wqattrs_commit(ctx); 3800 apply_wqattrs_cleanup(ctx); 3801 3802 return 0; 3803 } 3804 3805 /** 3806 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 3807 * @wq: the target workqueue 3808 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 3809 * 3810 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 3811 * machines, this function maps a separate pwq to each NUMA node with 3812 * possibles CPUs in @attrs->cpumask so that work items are affine to the 3813 * NUMA node it was issued on. Older pwqs are released as in-flight work 3814 * items finish. Note that a work item which repeatedly requeues itself 3815 * back-to-back will stay on its current pwq. 3816 * 3817 * Performs GFP_KERNEL allocations. 3818 * 3819 * Return: 0 on success and -errno on failure. 3820 */ 3821 int apply_workqueue_attrs(struct workqueue_struct *wq, 3822 const struct workqueue_attrs *attrs) 3823 { 3824 int ret; 3825 3826 apply_wqattrs_lock(); 3827 ret = apply_workqueue_attrs_locked(wq, attrs); 3828 apply_wqattrs_unlock(); 3829 3830 return ret; 3831 } 3832 3833 /** 3834 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 3835 * @wq: the target workqueue 3836 * @cpu: the CPU coming up or going down 3837 * @online: whether @cpu is coming up or going down 3838 * 3839 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 3840 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 3841 * @wq accordingly. 3842 * 3843 * If NUMA affinity can't be adjusted due to memory allocation failure, it 3844 * falls back to @wq->dfl_pwq which may not be optimal but is always 3845 * correct. 3846 * 3847 * Note that when the last allowed CPU of a NUMA node goes offline for a 3848 * workqueue with a cpumask spanning multiple nodes, the workers which were 3849 * already executing the work items for the workqueue will lose their CPU 3850 * affinity and may execute on any CPU. This is similar to how per-cpu 3851 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 3852 * affinity, it's the user's responsibility to flush the work item from 3853 * CPU_DOWN_PREPARE. 3854 */ 3855 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 3856 bool online) 3857 { 3858 int node = cpu_to_node(cpu); 3859 int cpu_off = online ? -1 : cpu; 3860 struct pool_workqueue *old_pwq = NULL, *pwq; 3861 struct workqueue_attrs *target_attrs; 3862 cpumask_t *cpumask; 3863 3864 lockdep_assert_held(&wq_pool_mutex); 3865 3866 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 3867 wq->unbound_attrs->no_numa) 3868 return; 3869 3870 /* 3871 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 3872 * Let's use a preallocated one. The following buf is protected by 3873 * CPU hotplug exclusion. 3874 */ 3875 target_attrs = wq_update_unbound_numa_attrs_buf; 3876 cpumask = target_attrs->cpumask; 3877 3878 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 3879 pwq = unbound_pwq_by_node(wq, node); 3880 3881 /* 3882 * Let's determine what needs to be done. If the target cpumask is 3883 * different from the default pwq's, we need to compare it to @pwq's 3884 * and create a new one if they don't match. If the target cpumask 3885 * equals the default pwq's, the default pwq should be used. 3886 */ 3887 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 3888 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 3889 return; 3890 } else { 3891 goto use_dfl_pwq; 3892 } 3893 3894 /* create a new pwq */ 3895 pwq = alloc_unbound_pwq(wq, target_attrs); 3896 if (!pwq) { 3897 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 3898 wq->name); 3899 goto use_dfl_pwq; 3900 } 3901 3902 /* Install the new pwq. */ 3903 mutex_lock(&wq->mutex); 3904 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 3905 goto out_unlock; 3906 3907 use_dfl_pwq: 3908 mutex_lock(&wq->mutex); 3909 spin_lock_irq(&wq->dfl_pwq->pool->lock); 3910 get_pwq(wq->dfl_pwq); 3911 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 3912 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 3913 out_unlock: 3914 mutex_unlock(&wq->mutex); 3915 put_pwq_unlocked(old_pwq); 3916 } 3917 3918 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 3919 { 3920 bool highpri = wq->flags & WQ_HIGHPRI; 3921 int cpu, ret; 3922 3923 if (!(wq->flags & WQ_UNBOUND)) { 3924 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 3925 if (!wq->cpu_pwqs) 3926 return -ENOMEM; 3927 3928 for_each_possible_cpu(cpu) { 3929 struct pool_workqueue *pwq = 3930 per_cpu_ptr(wq->cpu_pwqs, cpu); 3931 struct worker_pool *cpu_pools = 3932 per_cpu(cpu_worker_pools, cpu); 3933 3934 init_pwq(pwq, wq, &cpu_pools[highpri]); 3935 3936 mutex_lock(&wq->mutex); 3937 link_pwq(pwq); 3938 mutex_unlock(&wq->mutex); 3939 } 3940 return 0; 3941 } else if (wq->flags & __WQ_ORDERED) { 3942 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 3943 /* there should only be single pwq for ordering guarantee */ 3944 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 3945 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 3946 "ordering guarantee broken for workqueue %s\n", wq->name); 3947 return ret; 3948 } else { 3949 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 3950 } 3951 } 3952 3953 static int wq_clamp_max_active(int max_active, unsigned int flags, 3954 const char *name) 3955 { 3956 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 3957 3958 if (max_active < 1 || max_active > lim) 3959 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 3960 max_active, name, 1, lim); 3961 3962 return clamp_val(max_active, 1, lim); 3963 } 3964 3965 struct workqueue_struct *__alloc_workqueue_key(const char *fmt, 3966 unsigned int flags, 3967 int max_active, 3968 struct lock_class_key *key, 3969 const char *lock_name, ...) 3970 { 3971 size_t tbl_size = 0; 3972 va_list args; 3973 struct workqueue_struct *wq; 3974 struct pool_workqueue *pwq; 3975 3976 /* 3977 * Unbound && max_active == 1 used to imply ordered, which is no 3978 * longer the case on NUMA machines due to per-node pools. While 3979 * alloc_ordered_workqueue() is the right way to create an ordered 3980 * workqueue, keep the previous behavior to avoid subtle breakages 3981 * on NUMA. 3982 */ 3983 if ((flags & WQ_UNBOUND) && max_active == 1) 3984 flags |= __WQ_ORDERED; 3985 3986 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 3987 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 3988 flags |= WQ_UNBOUND; 3989 3990 /* allocate wq and format name */ 3991 if (flags & WQ_UNBOUND) 3992 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 3993 3994 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 3995 if (!wq) 3996 return NULL; 3997 3998 if (flags & WQ_UNBOUND) { 3999 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL); 4000 if (!wq->unbound_attrs) 4001 goto err_free_wq; 4002 } 4003 4004 va_start(args, lock_name); 4005 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4006 va_end(args); 4007 4008 max_active = max_active ?: WQ_DFL_ACTIVE; 4009 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4010 4011 /* init wq */ 4012 wq->flags = flags; 4013 wq->saved_max_active = max_active; 4014 mutex_init(&wq->mutex); 4015 atomic_set(&wq->nr_pwqs_to_flush, 0); 4016 INIT_LIST_HEAD(&wq->pwqs); 4017 INIT_LIST_HEAD(&wq->flusher_queue); 4018 INIT_LIST_HEAD(&wq->flusher_overflow); 4019 INIT_LIST_HEAD(&wq->maydays); 4020 4021 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 4022 INIT_LIST_HEAD(&wq->list); 4023 4024 if (alloc_and_link_pwqs(wq) < 0) 4025 goto err_free_wq; 4026 4027 /* 4028 * Workqueues which may be used during memory reclaim should 4029 * have a rescuer to guarantee forward progress. 4030 */ 4031 if (flags & WQ_MEM_RECLAIM) { 4032 struct worker *rescuer; 4033 4034 rescuer = alloc_worker(NUMA_NO_NODE); 4035 if (!rescuer) 4036 goto err_destroy; 4037 4038 rescuer->rescue_wq = wq; 4039 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", 4040 wq->name); 4041 if (IS_ERR(rescuer->task)) { 4042 kfree(rescuer); 4043 goto err_destroy; 4044 } 4045 4046 wq->rescuer = rescuer; 4047 kthread_bind_mask(rescuer->task, cpu_possible_mask); 4048 wake_up_process(rescuer->task); 4049 } 4050 4051 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4052 goto err_destroy; 4053 4054 /* 4055 * wq_pool_mutex protects global freeze state and workqueues list. 4056 * Grab it, adjust max_active and add the new @wq to workqueues 4057 * list. 4058 */ 4059 mutex_lock(&wq_pool_mutex); 4060 4061 mutex_lock(&wq->mutex); 4062 for_each_pwq(pwq, wq) 4063 pwq_adjust_max_active(pwq); 4064 mutex_unlock(&wq->mutex); 4065 4066 list_add_tail_rcu(&wq->list, &workqueues); 4067 4068 mutex_unlock(&wq_pool_mutex); 4069 4070 return wq; 4071 4072 err_free_wq: 4073 free_workqueue_attrs(wq->unbound_attrs); 4074 kfree(wq); 4075 return NULL; 4076 err_destroy: 4077 destroy_workqueue(wq); 4078 return NULL; 4079 } 4080 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 4081 4082 /** 4083 * destroy_workqueue - safely terminate a workqueue 4084 * @wq: target workqueue 4085 * 4086 * Safely destroy a workqueue. All work currently pending will be done first. 4087 */ 4088 void destroy_workqueue(struct workqueue_struct *wq) 4089 { 4090 struct pool_workqueue *pwq; 4091 int node; 4092 4093 /* drain it before proceeding with destruction */ 4094 drain_workqueue(wq); 4095 4096 /* sanity checks */ 4097 mutex_lock(&wq->mutex); 4098 for_each_pwq(pwq, wq) { 4099 int i; 4100 4101 for (i = 0; i < WORK_NR_COLORS; i++) { 4102 if (WARN_ON(pwq->nr_in_flight[i])) { 4103 mutex_unlock(&wq->mutex); 4104 show_workqueue_state(); 4105 return; 4106 } 4107 } 4108 4109 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) || 4110 WARN_ON(pwq->nr_active) || 4111 WARN_ON(!list_empty(&pwq->delayed_works))) { 4112 mutex_unlock(&wq->mutex); 4113 show_workqueue_state(); 4114 return; 4115 } 4116 } 4117 mutex_unlock(&wq->mutex); 4118 4119 /* 4120 * wq list is used to freeze wq, remove from list after 4121 * flushing is complete in case freeze races us. 4122 */ 4123 mutex_lock(&wq_pool_mutex); 4124 list_del_rcu(&wq->list); 4125 mutex_unlock(&wq_pool_mutex); 4126 4127 workqueue_sysfs_unregister(wq); 4128 4129 if (wq->rescuer) 4130 kthread_stop(wq->rescuer->task); 4131 4132 if (!(wq->flags & WQ_UNBOUND)) { 4133 /* 4134 * The base ref is never dropped on per-cpu pwqs. Directly 4135 * schedule RCU free. 4136 */ 4137 call_rcu_sched(&wq->rcu, rcu_free_wq); 4138 } else { 4139 /* 4140 * We're the sole accessor of @wq at this point. Directly 4141 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4142 * @wq will be freed when the last pwq is released. 4143 */ 4144 for_each_node(node) { 4145 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4146 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4147 put_pwq_unlocked(pwq); 4148 } 4149 4150 /* 4151 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4152 * put. Don't access it afterwards. 4153 */ 4154 pwq = wq->dfl_pwq; 4155 wq->dfl_pwq = NULL; 4156 put_pwq_unlocked(pwq); 4157 } 4158 } 4159 EXPORT_SYMBOL_GPL(destroy_workqueue); 4160 4161 /** 4162 * workqueue_set_max_active - adjust max_active of a workqueue 4163 * @wq: target workqueue 4164 * @max_active: new max_active value. 4165 * 4166 * Set max_active of @wq to @max_active. 4167 * 4168 * CONTEXT: 4169 * Don't call from IRQ context. 4170 */ 4171 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4172 { 4173 struct pool_workqueue *pwq; 4174 4175 /* disallow meddling with max_active for ordered workqueues */ 4176 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4177 return; 4178 4179 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4180 4181 mutex_lock(&wq->mutex); 4182 4183 wq->flags &= ~__WQ_ORDERED; 4184 wq->saved_max_active = max_active; 4185 4186 for_each_pwq(pwq, wq) 4187 pwq_adjust_max_active(pwq); 4188 4189 mutex_unlock(&wq->mutex); 4190 } 4191 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4192 4193 /** 4194 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4195 * 4196 * Determine whether %current is a workqueue rescuer. Can be used from 4197 * work functions to determine whether it's being run off the rescuer task. 4198 * 4199 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4200 */ 4201 bool current_is_workqueue_rescuer(void) 4202 { 4203 struct worker *worker = current_wq_worker(); 4204 4205 return worker && worker->rescue_wq; 4206 } 4207 4208 /** 4209 * workqueue_congested - test whether a workqueue is congested 4210 * @cpu: CPU in question 4211 * @wq: target workqueue 4212 * 4213 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4214 * no synchronization around this function and the test result is 4215 * unreliable and only useful as advisory hints or for debugging. 4216 * 4217 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4218 * Note that both per-cpu and unbound workqueues may be associated with 4219 * multiple pool_workqueues which have separate congested states. A 4220 * workqueue being congested on one CPU doesn't mean the workqueue is also 4221 * contested on other CPUs / NUMA nodes. 4222 * 4223 * Return: 4224 * %true if congested, %false otherwise. 4225 */ 4226 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4227 { 4228 struct pool_workqueue *pwq; 4229 bool ret; 4230 4231 rcu_read_lock_sched(); 4232 4233 if (cpu == WORK_CPU_UNBOUND) 4234 cpu = smp_processor_id(); 4235 4236 if (!(wq->flags & WQ_UNBOUND)) 4237 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4238 else 4239 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4240 4241 ret = !list_empty(&pwq->delayed_works); 4242 rcu_read_unlock_sched(); 4243 4244 return ret; 4245 } 4246 EXPORT_SYMBOL_GPL(workqueue_congested); 4247 4248 /** 4249 * work_busy - test whether a work is currently pending or running 4250 * @work: the work to be tested 4251 * 4252 * Test whether @work is currently pending or running. There is no 4253 * synchronization around this function and the test result is 4254 * unreliable and only useful as advisory hints or for debugging. 4255 * 4256 * Return: 4257 * OR'd bitmask of WORK_BUSY_* bits. 4258 */ 4259 unsigned int work_busy(struct work_struct *work) 4260 { 4261 struct worker_pool *pool; 4262 unsigned long flags; 4263 unsigned int ret = 0; 4264 4265 if (work_pending(work)) 4266 ret |= WORK_BUSY_PENDING; 4267 4268 local_irq_save(flags); 4269 pool = get_work_pool(work); 4270 if (pool) { 4271 spin_lock(&pool->lock); 4272 if (find_worker_executing_work(pool, work)) 4273 ret |= WORK_BUSY_RUNNING; 4274 spin_unlock(&pool->lock); 4275 } 4276 local_irq_restore(flags); 4277 4278 return ret; 4279 } 4280 EXPORT_SYMBOL_GPL(work_busy); 4281 4282 /** 4283 * set_worker_desc - set description for the current work item 4284 * @fmt: printf-style format string 4285 * @...: arguments for the format string 4286 * 4287 * This function can be called by a running work function to describe what 4288 * the work item is about. If the worker task gets dumped, this 4289 * information will be printed out together to help debugging. The 4290 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4291 */ 4292 void set_worker_desc(const char *fmt, ...) 4293 { 4294 struct worker *worker = current_wq_worker(); 4295 va_list args; 4296 4297 if (worker) { 4298 va_start(args, fmt); 4299 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4300 va_end(args); 4301 worker->desc_valid = true; 4302 } 4303 } 4304 4305 /** 4306 * print_worker_info - print out worker information and description 4307 * @log_lvl: the log level to use when printing 4308 * @task: target task 4309 * 4310 * If @task is a worker and currently executing a work item, print out the 4311 * name of the workqueue being serviced and worker description set with 4312 * set_worker_desc() by the currently executing work item. 4313 * 4314 * This function can be safely called on any task as long as the 4315 * task_struct itself is accessible. While safe, this function isn't 4316 * synchronized and may print out mixups or garbages of limited length. 4317 */ 4318 void print_worker_info(const char *log_lvl, struct task_struct *task) 4319 { 4320 work_func_t *fn = NULL; 4321 char name[WQ_NAME_LEN] = { }; 4322 char desc[WORKER_DESC_LEN] = { }; 4323 struct pool_workqueue *pwq = NULL; 4324 struct workqueue_struct *wq = NULL; 4325 bool desc_valid = false; 4326 struct worker *worker; 4327 4328 if (!(task->flags & PF_WQ_WORKER)) 4329 return; 4330 4331 /* 4332 * This function is called without any synchronization and @task 4333 * could be in any state. Be careful with dereferences. 4334 */ 4335 worker = kthread_probe_data(task); 4336 4337 /* 4338 * Carefully copy the associated workqueue's workfn and name. Keep 4339 * the original last '\0' in case the original contains garbage. 4340 */ 4341 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4342 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4343 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4344 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4345 4346 /* copy worker description */ 4347 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid)); 4348 if (desc_valid) 4349 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4350 4351 if (fn || name[0] || desc[0]) { 4352 printk("%sWorkqueue: %s %pf", log_lvl, name, fn); 4353 if (desc[0]) 4354 pr_cont(" (%s)", desc); 4355 pr_cont("\n"); 4356 } 4357 } 4358 4359 static void pr_cont_pool_info(struct worker_pool *pool) 4360 { 4361 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4362 if (pool->node != NUMA_NO_NODE) 4363 pr_cont(" node=%d", pool->node); 4364 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4365 } 4366 4367 static void pr_cont_work(bool comma, struct work_struct *work) 4368 { 4369 if (work->func == wq_barrier_func) { 4370 struct wq_barrier *barr; 4371 4372 barr = container_of(work, struct wq_barrier, work); 4373 4374 pr_cont("%s BAR(%d)", comma ? "," : "", 4375 task_pid_nr(barr->task)); 4376 } else { 4377 pr_cont("%s %pf", comma ? "," : "", work->func); 4378 } 4379 } 4380 4381 static void show_pwq(struct pool_workqueue *pwq) 4382 { 4383 struct worker_pool *pool = pwq->pool; 4384 struct work_struct *work; 4385 struct worker *worker; 4386 bool has_in_flight = false, has_pending = false; 4387 int bkt; 4388 4389 pr_info(" pwq %d:", pool->id); 4390 pr_cont_pool_info(pool); 4391 4392 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active, 4393 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4394 4395 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4396 if (worker->current_pwq == pwq) { 4397 has_in_flight = true; 4398 break; 4399 } 4400 } 4401 if (has_in_flight) { 4402 bool comma = false; 4403 4404 pr_info(" in-flight:"); 4405 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4406 if (worker->current_pwq != pwq) 4407 continue; 4408 4409 pr_cont("%s %d%s:%pf", comma ? "," : "", 4410 task_pid_nr(worker->task), 4411 worker == pwq->wq->rescuer ? "(RESCUER)" : "", 4412 worker->current_func); 4413 list_for_each_entry(work, &worker->scheduled, entry) 4414 pr_cont_work(false, work); 4415 comma = true; 4416 } 4417 pr_cont("\n"); 4418 } 4419 4420 list_for_each_entry(work, &pool->worklist, entry) { 4421 if (get_work_pwq(work) == pwq) { 4422 has_pending = true; 4423 break; 4424 } 4425 } 4426 if (has_pending) { 4427 bool comma = false; 4428 4429 pr_info(" pending:"); 4430 list_for_each_entry(work, &pool->worklist, entry) { 4431 if (get_work_pwq(work) != pwq) 4432 continue; 4433 4434 pr_cont_work(comma, work); 4435 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4436 } 4437 pr_cont("\n"); 4438 } 4439 4440 if (!list_empty(&pwq->delayed_works)) { 4441 bool comma = false; 4442 4443 pr_info(" delayed:"); 4444 list_for_each_entry(work, &pwq->delayed_works, entry) { 4445 pr_cont_work(comma, work); 4446 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4447 } 4448 pr_cont("\n"); 4449 } 4450 } 4451 4452 /** 4453 * show_workqueue_state - dump workqueue state 4454 * 4455 * Called from a sysrq handler or try_to_freeze_tasks() and prints out 4456 * all busy workqueues and pools. 4457 */ 4458 void show_workqueue_state(void) 4459 { 4460 struct workqueue_struct *wq; 4461 struct worker_pool *pool; 4462 unsigned long flags; 4463 int pi; 4464 4465 rcu_read_lock_sched(); 4466 4467 pr_info("Showing busy workqueues and worker pools:\n"); 4468 4469 list_for_each_entry_rcu(wq, &workqueues, list) { 4470 struct pool_workqueue *pwq; 4471 bool idle = true; 4472 4473 for_each_pwq(pwq, wq) { 4474 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) { 4475 idle = false; 4476 break; 4477 } 4478 } 4479 if (idle) 4480 continue; 4481 4482 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4483 4484 for_each_pwq(pwq, wq) { 4485 spin_lock_irqsave(&pwq->pool->lock, flags); 4486 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4487 show_pwq(pwq); 4488 spin_unlock_irqrestore(&pwq->pool->lock, flags); 4489 } 4490 } 4491 4492 for_each_pool(pool, pi) { 4493 struct worker *worker; 4494 bool first = true; 4495 4496 spin_lock_irqsave(&pool->lock, flags); 4497 if (pool->nr_workers == pool->nr_idle) 4498 goto next_pool; 4499 4500 pr_info("pool %d:", pool->id); 4501 pr_cont_pool_info(pool); 4502 pr_cont(" hung=%us workers=%d", 4503 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000, 4504 pool->nr_workers); 4505 if (pool->manager) 4506 pr_cont(" manager: %d", 4507 task_pid_nr(pool->manager->task)); 4508 list_for_each_entry(worker, &pool->idle_list, entry) { 4509 pr_cont(" %s%d", first ? "idle: " : "", 4510 task_pid_nr(worker->task)); 4511 first = false; 4512 } 4513 pr_cont("\n"); 4514 next_pool: 4515 spin_unlock_irqrestore(&pool->lock, flags); 4516 } 4517 4518 rcu_read_unlock_sched(); 4519 } 4520 4521 /* 4522 * CPU hotplug. 4523 * 4524 * There are two challenges in supporting CPU hotplug. Firstly, there 4525 * are a lot of assumptions on strong associations among work, pwq and 4526 * pool which make migrating pending and scheduled works very 4527 * difficult to implement without impacting hot paths. Secondly, 4528 * worker pools serve mix of short, long and very long running works making 4529 * blocked draining impractical. 4530 * 4531 * This is solved by allowing the pools to be disassociated from the CPU 4532 * running as an unbound one and allowing it to be reattached later if the 4533 * cpu comes back online. 4534 */ 4535 4536 static void wq_unbind_fn(struct work_struct *work) 4537 { 4538 int cpu = smp_processor_id(); 4539 struct worker_pool *pool; 4540 struct worker *worker; 4541 4542 for_each_cpu_worker_pool(pool, cpu) { 4543 mutex_lock(&pool->attach_mutex); 4544 spin_lock_irq(&pool->lock); 4545 4546 /* 4547 * We've blocked all attach/detach operations. Make all workers 4548 * unbound and set DISASSOCIATED. Before this, all workers 4549 * except for the ones which are still executing works from 4550 * before the last CPU down must be on the cpu. After 4551 * this, they may become diasporas. 4552 */ 4553 for_each_pool_worker(worker, pool) 4554 worker->flags |= WORKER_UNBOUND; 4555 4556 pool->flags |= POOL_DISASSOCIATED; 4557 4558 spin_unlock_irq(&pool->lock); 4559 mutex_unlock(&pool->attach_mutex); 4560 4561 /* 4562 * Call schedule() so that we cross rq->lock and thus can 4563 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4564 * This is necessary as scheduler callbacks may be invoked 4565 * from other cpus. 4566 */ 4567 schedule(); 4568 4569 /* 4570 * Sched callbacks are disabled now. Zap nr_running. 4571 * After this, nr_running stays zero and need_more_worker() 4572 * and keep_working() are always true as long as the 4573 * worklist is not empty. This pool now behaves as an 4574 * unbound (in terms of concurrency management) pool which 4575 * are served by workers tied to the pool. 4576 */ 4577 atomic_set(&pool->nr_running, 0); 4578 4579 /* 4580 * With concurrency management just turned off, a busy 4581 * worker blocking could lead to lengthy stalls. Kick off 4582 * unbound chain execution of currently pending work items. 4583 */ 4584 spin_lock_irq(&pool->lock); 4585 wake_up_worker(pool); 4586 spin_unlock_irq(&pool->lock); 4587 } 4588 } 4589 4590 /** 4591 * rebind_workers - rebind all workers of a pool to the associated CPU 4592 * @pool: pool of interest 4593 * 4594 * @pool->cpu is coming online. Rebind all workers to the CPU. 4595 */ 4596 static void rebind_workers(struct worker_pool *pool) 4597 { 4598 struct worker *worker; 4599 4600 lockdep_assert_held(&pool->attach_mutex); 4601 4602 /* 4603 * Restore CPU affinity of all workers. As all idle workers should 4604 * be on the run-queue of the associated CPU before any local 4605 * wake-ups for concurrency management happen, restore CPU affinity 4606 * of all workers first and then clear UNBOUND. As we're called 4607 * from CPU_ONLINE, the following shouldn't fail. 4608 */ 4609 for_each_pool_worker(worker, pool) 4610 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4611 pool->attrs->cpumask) < 0); 4612 4613 spin_lock_irq(&pool->lock); 4614 4615 /* 4616 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED 4617 * w/o preceding DOWN_PREPARE. Work around it. CPU hotplug is 4618 * being reworked and this can go away in time. 4619 */ 4620 if (!(pool->flags & POOL_DISASSOCIATED)) { 4621 spin_unlock_irq(&pool->lock); 4622 return; 4623 } 4624 4625 pool->flags &= ~POOL_DISASSOCIATED; 4626 4627 for_each_pool_worker(worker, pool) { 4628 unsigned int worker_flags = worker->flags; 4629 4630 /* 4631 * A bound idle worker should actually be on the runqueue 4632 * of the associated CPU for local wake-ups targeting it to 4633 * work. Kick all idle workers so that they migrate to the 4634 * associated CPU. Doing this in the same loop as 4635 * replacing UNBOUND with REBOUND is safe as no worker will 4636 * be bound before @pool->lock is released. 4637 */ 4638 if (worker_flags & WORKER_IDLE) 4639 wake_up_process(worker->task); 4640 4641 /* 4642 * We want to clear UNBOUND but can't directly call 4643 * worker_clr_flags() or adjust nr_running. Atomically 4644 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4645 * @worker will clear REBOUND using worker_clr_flags() when 4646 * it initiates the next execution cycle thus restoring 4647 * concurrency management. Note that when or whether 4648 * @worker clears REBOUND doesn't affect correctness. 4649 * 4650 * ACCESS_ONCE() is necessary because @worker->flags may be 4651 * tested without holding any lock in 4652 * wq_worker_waking_up(). Without it, NOT_RUNNING test may 4653 * fail incorrectly leading to premature concurrency 4654 * management operations. 4655 */ 4656 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4657 worker_flags |= WORKER_REBOUND; 4658 worker_flags &= ~WORKER_UNBOUND; 4659 ACCESS_ONCE(worker->flags) = worker_flags; 4660 } 4661 4662 spin_unlock_irq(&pool->lock); 4663 } 4664 4665 /** 4666 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4667 * @pool: unbound pool of interest 4668 * @cpu: the CPU which is coming up 4669 * 4670 * An unbound pool may end up with a cpumask which doesn't have any online 4671 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4672 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4673 * online CPU before, cpus_allowed of all its workers should be restored. 4674 */ 4675 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 4676 { 4677 static cpumask_t cpumask; 4678 struct worker *worker; 4679 4680 lockdep_assert_held(&pool->attach_mutex); 4681 4682 /* is @cpu allowed for @pool? */ 4683 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 4684 return; 4685 4686 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 4687 4688 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 4689 for_each_pool_worker(worker, pool) 4690 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 4691 } 4692 4693 int workqueue_prepare_cpu(unsigned int cpu) 4694 { 4695 struct worker_pool *pool; 4696 4697 for_each_cpu_worker_pool(pool, cpu) { 4698 if (pool->nr_workers) 4699 continue; 4700 if (!create_worker(pool)) 4701 return -ENOMEM; 4702 } 4703 return 0; 4704 } 4705 4706 int workqueue_online_cpu(unsigned int cpu) 4707 { 4708 struct worker_pool *pool; 4709 struct workqueue_struct *wq; 4710 int pi; 4711 4712 mutex_lock(&wq_pool_mutex); 4713 4714 for_each_pool(pool, pi) { 4715 mutex_lock(&pool->attach_mutex); 4716 4717 if (pool->cpu == cpu) 4718 rebind_workers(pool); 4719 else if (pool->cpu < 0) 4720 restore_unbound_workers_cpumask(pool, cpu); 4721 4722 mutex_unlock(&pool->attach_mutex); 4723 } 4724 4725 /* update NUMA affinity of unbound workqueues */ 4726 list_for_each_entry(wq, &workqueues, list) 4727 wq_update_unbound_numa(wq, cpu, true); 4728 4729 mutex_unlock(&wq_pool_mutex); 4730 return 0; 4731 } 4732 4733 int workqueue_offline_cpu(unsigned int cpu) 4734 { 4735 struct work_struct unbind_work; 4736 struct workqueue_struct *wq; 4737 4738 /* unbinding per-cpu workers should happen on the local CPU */ 4739 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn); 4740 queue_work_on(cpu, system_highpri_wq, &unbind_work); 4741 4742 /* update NUMA affinity of unbound workqueues */ 4743 mutex_lock(&wq_pool_mutex); 4744 list_for_each_entry(wq, &workqueues, list) 4745 wq_update_unbound_numa(wq, cpu, false); 4746 mutex_unlock(&wq_pool_mutex); 4747 4748 /* wait for per-cpu unbinding to finish */ 4749 flush_work(&unbind_work); 4750 destroy_work_on_stack(&unbind_work); 4751 return 0; 4752 } 4753 4754 #ifdef CONFIG_SMP 4755 4756 struct work_for_cpu { 4757 struct work_struct work; 4758 long (*fn)(void *); 4759 void *arg; 4760 long ret; 4761 }; 4762 4763 static void work_for_cpu_fn(struct work_struct *work) 4764 { 4765 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 4766 4767 wfc->ret = wfc->fn(wfc->arg); 4768 } 4769 4770 /** 4771 * work_on_cpu - run a function in thread context on a particular cpu 4772 * @cpu: the cpu to run on 4773 * @fn: the function to run 4774 * @arg: the function arg 4775 * 4776 * It is up to the caller to ensure that the cpu doesn't go offline. 4777 * The caller must not hold any locks which would prevent @fn from completing. 4778 * 4779 * Return: The value @fn returns. 4780 */ 4781 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 4782 { 4783 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 4784 4785 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 4786 schedule_work_on(cpu, &wfc.work); 4787 flush_work(&wfc.work); 4788 destroy_work_on_stack(&wfc.work); 4789 return wfc.ret; 4790 } 4791 EXPORT_SYMBOL_GPL(work_on_cpu); 4792 4793 /** 4794 * work_on_cpu_safe - run a function in thread context on a particular cpu 4795 * @cpu: the cpu to run on 4796 * @fn: the function to run 4797 * @arg: the function argument 4798 * 4799 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 4800 * any locks which would prevent @fn from completing. 4801 * 4802 * Return: The value @fn returns. 4803 */ 4804 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) 4805 { 4806 long ret = -ENODEV; 4807 4808 get_online_cpus(); 4809 if (cpu_online(cpu)) 4810 ret = work_on_cpu(cpu, fn, arg); 4811 put_online_cpus(); 4812 return ret; 4813 } 4814 EXPORT_SYMBOL_GPL(work_on_cpu_safe); 4815 #endif /* CONFIG_SMP */ 4816 4817 #ifdef CONFIG_FREEZER 4818 4819 /** 4820 * freeze_workqueues_begin - begin freezing workqueues 4821 * 4822 * Start freezing workqueues. After this function returns, all freezable 4823 * workqueues will queue new works to their delayed_works list instead of 4824 * pool->worklist. 4825 * 4826 * CONTEXT: 4827 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4828 */ 4829 void freeze_workqueues_begin(void) 4830 { 4831 struct workqueue_struct *wq; 4832 struct pool_workqueue *pwq; 4833 4834 mutex_lock(&wq_pool_mutex); 4835 4836 WARN_ON_ONCE(workqueue_freezing); 4837 workqueue_freezing = true; 4838 4839 list_for_each_entry(wq, &workqueues, list) { 4840 mutex_lock(&wq->mutex); 4841 for_each_pwq(pwq, wq) 4842 pwq_adjust_max_active(pwq); 4843 mutex_unlock(&wq->mutex); 4844 } 4845 4846 mutex_unlock(&wq_pool_mutex); 4847 } 4848 4849 /** 4850 * freeze_workqueues_busy - are freezable workqueues still busy? 4851 * 4852 * Check whether freezing is complete. This function must be called 4853 * between freeze_workqueues_begin() and thaw_workqueues(). 4854 * 4855 * CONTEXT: 4856 * Grabs and releases wq_pool_mutex. 4857 * 4858 * Return: 4859 * %true if some freezable workqueues are still busy. %false if freezing 4860 * is complete. 4861 */ 4862 bool freeze_workqueues_busy(void) 4863 { 4864 bool busy = false; 4865 struct workqueue_struct *wq; 4866 struct pool_workqueue *pwq; 4867 4868 mutex_lock(&wq_pool_mutex); 4869 4870 WARN_ON_ONCE(!workqueue_freezing); 4871 4872 list_for_each_entry(wq, &workqueues, list) { 4873 if (!(wq->flags & WQ_FREEZABLE)) 4874 continue; 4875 /* 4876 * nr_active is monotonically decreasing. It's safe 4877 * to peek without lock. 4878 */ 4879 rcu_read_lock_sched(); 4880 for_each_pwq(pwq, wq) { 4881 WARN_ON_ONCE(pwq->nr_active < 0); 4882 if (pwq->nr_active) { 4883 busy = true; 4884 rcu_read_unlock_sched(); 4885 goto out_unlock; 4886 } 4887 } 4888 rcu_read_unlock_sched(); 4889 } 4890 out_unlock: 4891 mutex_unlock(&wq_pool_mutex); 4892 return busy; 4893 } 4894 4895 /** 4896 * thaw_workqueues - thaw workqueues 4897 * 4898 * Thaw workqueues. Normal queueing is restored and all collected 4899 * frozen works are transferred to their respective pool worklists. 4900 * 4901 * CONTEXT: 4902 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4903 */ 4904 void thaw_workqueues(void) 4905 { 4906 struct workqueue_struct *wq; 4907 struct pool_workqueue *pwq; 4908 4909 mutex_lock(&wq_pool_mutex); 4910 4911 if (!workqueue_freezing) 4912 goto out_unlock; 4913 4914 workqueue_freezing = false; 4915 4916 /* restore max_active and repopulate worklist */ 4917 list_for_each_entry(wq, &workqueues, list) { 4918 mutex_lock(&wq->mutex); 4919 for_each_pwq(pwq, wq) 4920 pwq_adjust_max_active(pwq); 4921 mutex_unlock(&wq->mutex); 4922 } 4923 4924 out_unlock: 4925 mutex_unlock(&wq_pool_mutex); 4926 } 4927 #endif /* CONFIG_FREEZER */ 4928 4929 static int workqueue_apply_unbound_cpumask(void) 4930 { 4931 LIST_HEAD(ctxs); 4932 int ret = 0; 4933 struct workqueue_struct *wq; 4934 struct apply_wqattrs_ctx *ctx, *n; 4935 4936 lockdep_assert_held(&wq_pool_mutex); 4937 4938 list_for_each_entry(wq, &workqueues, list) { 4939 if (!(wq->flags & WQ_UNBOUND)) 4940 continue; 4941 /* creating multiple pwqs breaks ordering guarantee */ 4942 if (wq->flags & __WQ_ORDERED) 4943 continue; 4944 4945 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs); 4946 if (!ctx) { 4947 ret = -ENOMEM; 4948 break; 4949 } 4950 4951 list_add_tail(&ctx->list, &ctxs); 4952 } 4953 4954 list_for_each_entry_safe(ctx, n, &ctxs, list) { 4955 if (!ret) 4956 apply_wqattrs_commit(ctx); 4957 apply_wqattrs_cleanup(ctx); 4958 } 4959 4960 return ret; 4961 } 4962 4963 /** 4964 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 4965 * @cpumask: the cpumask to set 4966 * 4967 * The low-level workqueues cpumask is a global cpumask that limits 4968 * the affinity of all unbound workqueues. This function check the @cpumask 4969 * and apply it to all unbound workqueues and updates all pwqs of them. 4970 * 4971 * Retun: 0 - Success 4972 * -EINVAL - Invalid @cpumask 4973 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 4974 */ 4975 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 4976 { 4977 int ret = -EINVAL; 4978 cpumask_var_t saved_cpumask; 4979 4980 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) 4981 return -ENOMEM; 4982 4983 cpumask_and(cpumask, cpumask, cpu_possible_mask); 4984 if (!cpumask_empty(cpumask)) { 4985 apply_wqattrs_lock(); 4986 4987 /* save the old wq_unbound_cpumask. */ 4988 cpumask_copy(saved_cpumask, wq_unbound_cpumask); 4989 4990 /* update wq_unbound_cpumask at first and apply it to wqs. */ 4991 cpumask_copy(wq_unbound_cpumask, cpumask); 4992 ret = workqueue_apply_unbound_cpumask(); 4993 4994 /* restore the wq_unbound_cpumask when failed. */ 4995 if (ret < 0) 4996 cpumask_copy(wq_unbound_cpumask, saved_cpumask); 4997 4998 apply_wqattrs_unlock(); 4999 } 5000 5001 free_cpumask_var(saved_cpumask); 5002 return ret; 5003 } 5004 5005 #ifdef CONFIG_SYSFS 5006 /* 5007 * Workqueues with WQ_SYSFS flag set is visible to userland via 5008 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 5009 * following attributes. 5010 * 5011 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 5012 * max_active RW int : maximum number of in-flight work items 5013 * 5014 * Unbound workqueues have the following extra attributes. 5015 * 5016 * id RO int : the associated pool ID 5017 * nice RW int : nice value of the workers 5018 * cpumask RW mask : bitmask of allowed CPUs for the workers 5019 */ 5020 struct wq_device { 5021 struct workqueue_struct *wq; 5022 struct device dev; 5023 }; 5024 5025 static struct workqueue_struct *dev_to_wq(struct device *dev) 5026 { 5027 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5028 5029 return wq_dev->wq; 5030 } 5031 5032 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 5033 char *buf) 5034 { 5035 struct workqueue_struct *wq = dev_to_wq(dev); 5036 5037 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 5038 } 5039 static DEVICE_ATTR_RO(per_cpu); 5040 5041 static ssize_t max_active_show(struct device *dev, 5042 struct device_attribute *attr, char *buf) 5043 { 5044 struct workqueue_struct *wq = dev_to_wq(dev); 5045 5046 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 5047 } 5048 5049 static ssize_t max_active_store(struct device *dev, 5050 struct device_attribute *attr, const char *buf, 5051 size_t count) 5052 { 5053 struct workqueue_struct *wq = dev_to_wq(dev); 5054 int val; 5055 5056 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 5057 return -EINVAL; 5058 5059 workqueue_set_max_active(wq, val); 5060 return count; 5061 } 5062 static DEVICE_ATTR_RW(max_active); 5063 5064 static struct attribute *wq_sysfs_attrs[] = { 5065 &dev_attr_per_cpu.attr, 5066 &dev_attr_max_active.attr, 5067 NULL, 5068 }; 5069 ATTRIBUTE_GROUPS(wq_sysfs); 5070 5071 static ssize_t wq_pool_ids_show(struct device *dev, 5072 struct device_attribute *attr, char *buf) 5073 { 5074 struct workqueue_struct *wq = dev_to_wq(dev); 5075 const char *delim = ""; 5076 int node, written = 0; 5077 5078 rcu_read_lock_sched(); 5079 for_each_node(node) { 5080 written += scnprintf(buf + written, PAGE_SIZE - written, 5081 "%s%d:%d", delim, node, 5082 unbound_pwq_by_node(wq, node)->pool->id); 5083 delim = " "; 5084 } 5085 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 5086 rcu_read_unlock_sched(); 5087 5088 return written; 5089 } 5090 5091 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 5092 char *buf) 5093 { 5094 struct workqueue_struct *wq = dev_to_wq(dev); 5095 int written; 5096 5097 mutex_lock(&wq->mutex); 5098 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 5099 mutex_unlock(&wq->mutex); 5100 5101 return written; 5102 } 5103 5104 /* prepare workqueue_attrs for sysfs store operations */ 5105 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5106 { 5107 struct workqueue_attrs *attrs; 5108 5109 lockdep_assert_held(&wq_pool_mutex); 5110 5111 attrs = alloc_workqueue_attrs(GFP_KERNEL); 5112 if (!attrs) 5113 return NULL; 5114 5115 copy_workqueue_attrs(attrs, wq->unbound_attrs); 5116 return attrs; 5117 } 5118 5119 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 5120 const char *buf, size_t count) 5121 { 5122 struct workqueue_struct *wq = dev_to_wq(dev); 5123 struct workqueue_attrs *attrs; 5124 int ret = -ENOMEM; 5125 5126 apply_wqattrs_lock(); 5127 5128 attrs = wq_sysfs_prep_attrs(wq); 5129 if (!attrs) 5130 goto out_unlock; 5131 5132 if (sscanf(buf, "%d", &attrs->nice) == 1 && 5133 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 5134 ret = apply_workqueue_attrs_locked(wq, attrs); 5135 else 5136 ret = -EINVAL; 5137 5138 out_unlock: 5139 apply_wqattrs_unlock(); 5140 free_workqueue_attrs(attrs); 5141 return ret ?: count; 5142 } 5143 5144 static ssize_t wq_cpumask_show(struct device *dev, 5145 struct device_attribute *attr, char *buf) 5146 { 5147 struct workqueue_struct *wq = dev_to_wq(dev); 5148 int written; 5149 5150 mutex_lock(&wq->mutex); 5151 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5152 cpumask_pr_args(wq->unbound_attrs->cpumask)); 5153 mutex_unlock(&wq->mutex); 5154 return written; 5155 } 5156 5157 static ssize_t wq_cpumask_store(struct device *dev, 5158 struct device_attribute *attr, 5159 const char *buf, size_t count) 5160 { 5161 struct workqueue_struct *wq = dev_to_wq(dev); 5162 struct workqueue_attrs *attrs; 5163 int ret = -ENOMEM; 5164 5165 apply_wqattrs_lock(); 5166 5167 attrs = wq_sysfs_prep_attrs(wq); 5168 if (!attrs) 5169 goto out_unlock; 5170 5171 ret = cpumask_parse(buf, attrs->cpumask); 5172 if (!ret) 5173 ret = apply_workqueue_attrs_locked(wq, attrs); 5174 5175 out_unlock: 5176 apply_wqattrs_unlock(); 5177 free_workqueue_attrs(attrs); 5178 return ret ?: count; 5179 } 5180 5181 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5182 char *buf) 5183 { 5184 struct workqueue_struct *wq = dev_to_wq(dev); 5185 int written; 5186 5187 mutex_lock(&wq->mutex); 5188 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5189 !wq->unbound_attrs->no_numa); 5190 mutex_unlock(&wq->mutex); 5191 5192 return written; 5193 } 5194 5195 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 5196 const char *buf, size_t count) 5197 { 5198 struct workqueue_struct *wq = dev_to_wq(dev); 5199 struct workqueue_attrs *attrs; 5200 int v, ret = -ENOMEM; 5201 5202 apply_wqattrs_lock(); 5203 5204 attrs = wq_sysfs_prep_attrs(wq); 5205 if (!attrs) 5206 goto out_unlock; 5207 5208 ret = -EINVAL; 5209 if (sscanf(buf, "%d", &v) == 1) { 5210 attrs->no_numa = !v; 5211 ret = apply_workqueue_attrs_locked(wq, attrs); 5212 } 5213 5214 out_unlock: 5215 apply_wqattrs_unlock(); 5216 free_workqueue_attrs(attrs); 5217 return ret ?: count; 5218 } 5219 5220 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5221 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5222 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5223 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5224 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5225 __ATTR_NULL, 5226 }; 5227 5228 static struct bus_type wq_subsys = { 5229 .name = "workqueue", 5230 .dev_groups = wq_sysfs_groups, 5231 }; 5232 5233 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5234 struct device_attribute *attr, char *buf) 5235 { 5236 int written; 5237 5238 mutex_lock(&wq_pool_mutex); 5239 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5240 cpumask_pr_args(wq_unbound_cpumask)); 5241 mutex_unlock(&wq_pool_mutex); 5242 5243 return written; 5244 } 5245 5246 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5247 struct device_attribute *attr, const char *buf, size_t count) 5248 { 5249 cpumask_var_t cpumask; 5250 int ret; 5251 5252 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5253 return -ENOMEM; 5254 5255 ret = cpumask_parse(buf, cpumask); 5256 if (!ret) 5257 ret = workqueue_set_unbound_cpumask(cpumask); 5258 5259 free_cpumask_var(cpumask); 5260 return ret ? ret : count; 5261 } 5262 5263 static struct device_attribute wq_sysfs_cpumask_attr = 5264 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5265 wq_unbound_cpumask_store); 5266 5267 static int __init wq_sysfs_init(void) 5268 { 5269 int err; 5270 5271 err = subsys_virtual_register(&wq_subsys, NULL); 5272 if (err) 5273 return err; 5274 5275 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr); 5276 } 5277 core_initcall(wq_sysfs_init); 5278 5279 static void wq_device_release(struct device *dev) 5280 { 5281 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5282 5283 kfree(wq_dev); 5284 } 5285 5286 /** 5287 * workqueue_sysfs_register - make a workqueue visible in sysfs 5288 * @wq: the workqueue to register 5289 * 5290 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5291 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5292 * which is the preferred method. 5293 * 5294 * Workqueue user should use this function directly iff it wants to apply 5295 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5296 * apply_workqueue_attrs() may race against userland updating the 5297 * attributes. 5298 * 5299 * Return: 0 on success, -errno on failure. 5300 */ 5301 int workqueue_sysfs_register(struct workqueue_struct *wq) 5302 { 5303 struct wq_device *wq_dev; 5304 int ret; 5305 5306 /* 5307 * Adjusting max_active or creating new pwqs by applying 5308 * attributes breaks ordering guarantee. Disallow exposing ordered 5309 * workqueues. 5310 */ 5311 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 5312 return -EINVAL; 5313 5314 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5315 if (!wq_dev) 5316 return -ENOMEM; 5317 5318 wq_dev->wq = wq; 5319 wq_dev->dev.bus = &wq_subsys; 5320 wq_dev->dev.release = wq_device_release; 5321 dev_set_name(&wq_dev->dev, "%s", wq->name); 5322 5323 /* 5324 * unbound_attrs are created separately. Suppress uevent until 5325 * everything is ready. 5326 */ 5327 dev_set_uevent_suppress(&wq_dev->dev, true); 5328 5329 ret = device_register(&wq_dev->dev); 5330 if (ret) { 5331 kfree(wq_dev); 5332 wq->wq_dev = NULL; 5333 return ret; 5334 } 5335 5336 if (wq->flags & WQ_UNBOUND) { 5337 struct device_attribute *attr; 5338 5339 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5340 ret = device_create_file(&wq_dev->dev, attr); 5341 if (ret) { 5342 device_unregister(&wq_dev->dev); 5343 wq->wq_dev = NULL; 5344 return ret; 5345 } 5346 } 5347 } 5348 5349 dev_set_uevent_suppress(&wq_dev->dev, false); 5350 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5351 return 0; 5352 } 5353 5354 /** 5355 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5356 * @wq: the workqueue to unregister 5357 * 5358 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5359 */ 5360 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5361 { 5362 struct wq_device *wq_dev = wq->wq_dev; 5363 5364 if (!wq->wq_dev) 5365 return; 5366 5367 wq->wq_dev = NULL; 5368 device_unregister(&wq_dev->dev); 5369 } 5370 #else /* CONFIG_SYSFS */ 5371 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5372 #endif /* CONFIG_SYSFS */ 5373 5374 /* 5375 * Workqueue watchdog. 5376 * 5377 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 5378 * flush dependency, a concurrency managed work item which stays RUNNING 5379 * indefinitely. Workqueue stalls can be very difficult to debug as the 5380 * usual warning mechanisms don't trigger and internal workqueue state is 5381 * largely opaque. 5382 * 5383 * Workqueue watchdog monitors all worker pools periodically and dumps 5384 * state if some pools failed to make forward progress for a while where 5385 * forward progress is defined as the first item on ->worklist changing. 5386 * 5387 * This mechanism is controlled through the kernel parameter 5388 * "workqueue.watchdog_thresh" which can be updated at runtime through the 5389 * corresponding sysfs parameter file. 5390 */ 5391 #ifdef CONFIG_WQ_WATCHDOG 5392 5393 static void wq_watchdog_timer_fn(unsigned long data); 5394 5395 static unsigned long wq_watchdog_thresh = 30; 5396 static struct timer_list wq_watchdog_timer = 5397 TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0); 5398 5399 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 5400 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 5401 5402 static void wq_watchdog_reset_touched(void) 5403 { 5404 int cpu; 5405 5406 wq_watchdog_touched = jiffies; 5407 for_each_possible_cpu(cpu) 5408 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5409 } 5410 5411 static void wq_watchdog_timer_fn(unsigned long data) 5412 { 5413 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 5414 bool lockup_detected = false; 5415 struct worker_pool *pool; 5416 int pi; 5417 5418 if (!thresh) 5419 return; 5420 5421 rcu_read_lock(); 5422 5423 for_each_pool(pool, pi) { 5424 unsigned long pool_ts, touched, ts; 5425 5426 if (list_empty(&pool->worklist)) 5427 continue; 5428 5429 /* get the latest of pool and touched timestamps */ 5430 pool_ts = READ_ONCE(pool->watchdog_ts); 5431 touched = READ_ONCE(wq_watchdog_touched); 5432 5433 if (time_after(pool_ts, touched)) 5434 ts = pool_ts; 5435 else 5436 ts = touched; 5437 5438 if (pool->cpu >= 0) { 5439 unsigned long cpu_touched = 5440 READ_ONCE(per_cpu(wq_watchdog_touched_cpu, 5441 pool->cpu)); 5442 if (time_after(cpu_touched, ts)) 5443 ts = cpu_touched; 5444 } 5445 5446 /* did we stall? */ 5447 if (time_after(jiffies, ts + thresh)) { 5448 lockup_detected = true; 5449 pr_emerg("BUG: workqueue lockup - pool"); 5450 pr_cont_pool_info(pool); 5451 pr_cont(" stuck for %us!\n", 5452 jiffies_to_msecs(jiffies - pool_ts) / 1000); 5453 } 5454 } 5455 5456 rcu_read_unlock(); 5457 5458 if (lockup_detected) 5459 show_workqueue_state(); 5460 5461 wq_watchdog_reset_touched(); 5462 mod_timer(&wq_watchdog_timer, jiffies + thresh); 5463 } 5464 5465 void wq_watchdog_touch(int cpu) 5466 { 5467 if (cpu >= 0) 5468 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5469 else 5470 wq_watchdog_touched = jiffies; 5471 } 5472 5473 static void wq_watchdog_set_thresh(unsigned long thresh) 5474 { 5475 wq_watchdog_thresh = 0; 5476 del_timer_sync(&wq_watchdog_timer); 5477 5478 if (thresh) { 5479 wq_watchdog_thresh = thresh; 5480 wq_watchdog_reset_touched(); 5481 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 5482 } 5483 } 5484 5485 static int wq_watchdog_param_set_thresh(const char *val, 5486 const struct kernel_param *kp) 5487 { 5488 unsigned long thresh; 5489 int ret; 5490 5491 ret = kstrtoul(val, 0, &thresh); 5492 if (ret) 5493 return ret; 5494 5495 if (system_wq) 5496 wq_watchdog_set_thresh(thresh); 5497 else 5498 wq_watchdog_thresh = thresh; 5499 5500 return 0; 5501 } 5502 5503 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 5504 .set = wq_watchdog_param_set_thresh, 5505 .get = param_get_ulong, 5506 }; 5507 5508 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 5509 0644); 5510 5511 static void wq_watchdog_init(void) 5512 { 5513 wq_watchdog_set_thresh(wq_watchdog_thresh); 5514 } 5515 5516 #else /* CONFIG_WQ_WATCHDOG */ 5517 5518 static inline void wq_watchdog_init(void) { } 5519 5520 #endif /* CONFIG_WQ_WATCHDOG */ 5521 5522 static void __init wq_numa_init(void) 5523 { 5524 cpumask_var_t *tbl; 5525 int node, cpu; 5526 5527 if (num_possible_nodes() <= 1) 5528 return; 5529 5530 if (wq_disable_numa) { 5531 pr_info("workqueue: NUMA affinity support disabled\n"); 5532 return; 5533 } 5534 5535 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL); 5536 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5537 5538 /* 5539 * We want masks of possible CPUs of each node which isn't readily 5540 * available. Build one from cpu_to_node() which should have been 5541 * fully initialized by now. 5542 */ 5543 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL); 5544 BUG_ON(!tbl); 5545 5546 for_each_node(node) 5547 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5548 node_online(node) ? node : NUMA_NO_NODE)); 5549 5550 for_each_possible_cpu(cpu) { 5551 node = cpu_to_node(cpu); 5552 if (WARN_ON(node == NUMA_NO_NODE)) { 5553 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5554 /* happens iff arch is bonkers, let's just proceed */ 5555 return; 5556 } 5557 cpumask_set_cpu(cpu, tbl[node]); 5558 } 5559 5560 wq_numa_possible_cpumask = tbl; 5561 wq_numa_enabled = true; 5562 } 5563 5564 /** 5565 * workqueue_init_early - early init for workqueue subsystem 5566 * 5567 * This is the first half of two-staged workqueue subsystem initialization 5568 * and invoked as soon as the bare basics - memory allocation, cpumasks and 5569 * idr are up. It sets up all the data structures and system workqueues 5570 * and allows early boot code to create workqueues and queue/cancel work 5571 * items. Actual work item execution starts only after kthreads can be 5572 * created and scheduled right before early initcalls. 5573 */ 5574 int __init workqueue_init_early(void) 5575 { 5576 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5577 int i, cpu; 5578 5579 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5580 5581 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 5582 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask); 5583 5584 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5585 5586 /* initialize CPU pools */ 5587 for_each_possible_cpu(cpu) { 5588 struct worker_pool *pool; 5589 5590 i = 0; 5591 for_each_cpu_worker_pool(pool, cpu) { 5592 BUG_ON(init_worker_pool(pool)); 5593 pool->cpu = cpu; 5594 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5595 pool->attrs->nice = std_nice[i++]; 5596 pool->node = cpu_to_node(cpu); 5597 5598 /* alloc pool ID */ 5599 mutex_lock(&wq_pool_mutex); 5600 BUG_ON(worker_pool_assign_id(pool)); 5601 mutex_unlock(&wq_pool_mutex); 5602 } 5603 } 5604 5605 /* create default unbound and ordered wq attrs */ 5606 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5607 struct workqueue_attrs *attrs; 5608 5609 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5610 attrs->nice = std_nice[i]; 5611 unbound_std_wq_attrs[i] = attrs; 5612 5613 /* 5614 * An ordered wq should have only one pwq as ordering is 5615 * guaranteed by max_active which is enforced by pwqs. 5616 * Turn off NUMA so that dfl_pwq is used for all nodes. 5617 */ 5618 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5619 attrs->nice = std_nice[i]; 5620 attrs->no_numa = true; 5621 ordered_wq_attrs[i] = attrs; 5622 } 5623 5624 system_wq = alloc_workqueue("events", 0, 0); 5625 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5626 system_long_wq = alloc_workqueue("events_long", 0, 0); 5627 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5628 WQ_UNBOUND_MAX_ACTIVE); 5629 system_freezable_wq = alloc_workqueue("events_freezable", 5630 WQ_FREEZABLE, 0); 5631 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5632 WQ_POWER_EFFICIENT, 0); 5633 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5634 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5635 0); 5636 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5637 !system_unbound_wq || !system_freezable_wq || 5638 !system_power_efficient_wq || 5639 !system_freezable_power_efficient_wq); 5640 5641 return 0; 5642 } 5643 5644 /** 5645 * workqueue_init - bring workqueue subsystem fully online 5646 * 5647 * This is the latter half of two-staged workqueue subsystem initialization 5648 * and invoked as soon as kthreads can be created and scheduled. 5649 * Workqueues have been created and work items queued on them, but there 5650 * are no kworkers executing the work items yet. Populate the worker pools 5651 * with the initial workers and enable future kworker creations. 5652 */ 5653 int __init workqueue_init(void) 5654 { 5655 struct workqueue_struct *wq; 5656 struct worker_pool *pool; 5657 int cpu, bkt; 5658 5659 /* 5660 * It'd be simpler to initialize NUMA in workqueue_init_early() but 5661 * CPU to node mapping may not be available that early on some 5662 * archs such as power and arm64. As per-cpu pools created 5663 * previously could be missing node hint and unbound pools NUMA 5664 * affinity, fix them up. 5665 */ 5666 wq_numa_init(); 5667 5668 mutex_lock(&wq_pool_mutex); 5669 5670 for_each_possible_cpu(cpu) { 5671 for_each_cpu_worker_pool(pool, cpu) { 5672 pool->node = cpu_to_node(cpu); 5673 } 5674 } 5675 5676 list_for_each_entry(wq, &workqueues, list) 5677 wq_update_unbound_numa(wq, smp_processor_id(), true); 5678 5679 mutex_unlock(&wq_pool_mutex); 5680 5681 /* create the initial workers */ 5682 for_each_online_cpu(cpu) { 5683 for_each_cpu_worker_pool(pool, cpu) { 5684 pool->flags &= ~POOL_DISASSOCIATED; 5685 BUG_ON(!create_worker(pool)); 5686 } 5687 } 5688 5689 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 5690 BUG_ON(!create_worker(pool)); 5691 5692 wq_online = true; 5693 wq_watchdog_init(); 5694 5695 return 0; 5696 } 5697