xref: /openbmc/linux/kernel/workqueue.c (revision 86e281fc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/sched/debug.h>
53 #include <linux/nmi.h>
54 #include <linux/kvm_para.h>
55 #include <linux/delay.h>
56 
57 #include "workqueue_internal.h"
58 
59 enum {
60 	/*
61 	 * worker_pool flags
62 	 *
63 	 * A bound pool is either associated or disassociated with its CPU.
64 	 * While associated (!DISASSOCIATED), all workers are bound to the
65 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
66 	 * is in effect.
67 	 *
68 	 * While DISASSOCIATED, the cpu may be offline and all workers have
69 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
70 	 * be executing on any CPU.  The pool behaves as an unbound one.
71 	 *
72 	 * Note that DISASSOCIATED should be flipped only while holding
73 	 * wq_pool_attach_mutex to avoid changing binding state while
74 	 * worker_attach_to_pool() is in progress.
75 	 */
76 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
77 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
78 
79 	/* worker flags */
80 	WORKER_DIE		= 1 << 1,	/* die die die */
81 	WORKER_IDLE		= 1 << 2,	/* is idle */
82 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
83 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
84 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
85 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
86 
87 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
88 				  WORKER_UNBOUND | WORKER_REBOUND,
89 
90 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
91 
92 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
93 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
94 
95 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
96 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
97 
98 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
99 						/* call for help after 10ms
100 						   (min two ticks) */
101 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
102 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
103 
104 	/*
105 	 * Rescue workers are used only on emergencies and shared by
106 	 * all cpus.  Give MIN_NICE.
107 	 */
108 	RESCUER_NICE_LEVEL	= MIN_NICE,
109 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
110 
111 	WQ_NAME_LEN		= 24,
112 };
113 
114 /*
115  * Structure fields follow one of the following exclusion rules.
116  *
117  * I: Modifiable by initialization/destruction paths and read-only for
118  *    everyone else.
119  *
120  * P: Preemption protected.  Disabling preemption is enough and should
121  *    only be modified and accessed from the local cpu.
122  *
123  * L: pool->lock protected.  Access with pool->lock held.
124  *
125  * K: Only modified by worker while holding pool->lock. Can be safely read by
126  *    self, while holding pool->lock or from IRQ context if %current is the
127  *    kworker.
128  *
129  * S: Only modified by worker self.
130  *
131  * A: wq_pool_attach_mutex protected.
132  *
133  * PL: wq_pool_mutex protected.
134  *
135  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
136  *
137  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
138  *
139  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
140  *      RCU for reads.
141  *
142  * WQ: wq->mutex protected.
143  *
144  * WR: wq->mutex protected for writes.  RCU protected for reads.
145  *
146  * MD: wq_mayday_lock protected.
147  *
148  * WD: Used internally by the watchdog.
149  */
150 
151 /* struct worker is defined in workqueue_internal.h */
152 
153 struct worker_pool {
154 	raw_spinlock_t		lock;		/* the pool lock */
155 	int			cpu;		/* I: the associated cpu */
156 	int			node;		/* I: the associated node ID */
157 	int			id;		/* I: pool ID */
158 	unsigned int		flags;		/* L: flags */
159 
160 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
161 	bool			cpu_stall;	/* WD: stalled cpu bound pool */
162 
163 	/*
164 	 * The counter is incremented in a process context on the associated CPU
165 	 * w/ preemption disabled, and decremented or reset in the same context
166 	 * but w/ pool->lock held. The readers grab pool->lock and are
167 	 * guaranteed to see if the counter reached zero.
168 	 */
169 	int			nr_running;
170 
171 	struct list_head	worklist;	/* L: list of pending works */
172 
173 	int			nr_workers;	/* L: total number of workers */
174 	int			nr_idle;	/* L: currently idle workers */
175 
176 	struct list_head	idle_list;	/* L: list of idle workers */
177 	struct timer_list	idle_timer;	/* L: worker idle timeout */
178 	struct work_struct      idle_cull_work; /* L: worker idle cleanup */
179 
180 	struct timer_list	mayday_timer;	  /* L: SOS timer for workers */
181 
182 	/* a workers is either on busy_hash or idle_list, or the manager */
183 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
184 						/* L: hash of busy workers */
185 
186 	struct worker		*manager;	/* L: purely informational */
187 	struct list_head	workers;	/* A: attached workers */
188 	struct list_head        dying_workers;  /* A: workers about to die */
189 	struct completion	*detach_completion; /* all workers detached */
190 
191 	struct ida		worker_ida;	/* worker IDs for task name */
192 
193 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
194 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
195 	int			refcnt;		/* PL: refcnt for unbound pools */
196 
197 	/*
198 	 * Destruction of pool is RCU protected to allow dereferences
199 	 * from get_work_pool().
200 	 */
201 	struct rcu_head		rcu;
202 };
203 
204 /*
205  * Per-pool_workqueue statistics. These can be monitored using
206  * tools/workqueue/wq_monitor.py.
207  */
208 enum pool_workqueue_stats {
209 	PWQ_STAT_STARTED,	/* work items started execution */
210 	PWQ_STAT_COMPLETED,	/* work items completed execution */
211 	PWQ_STAT_CPU_TIME,	/* total CPU time consumed */
212 	PWQ_STAT_CPU_INTENSIVE,	/* wq_cpu_intensive_thresh_us violations */
213 	PWQ_STAT_CM_WAKEUP,	/* concurrency-management worker wakeups */
214 	PWQ_STAT_REPATRIATED,	/* unbound workers brought back into scope */
215 	PWQ_STAT_MAYDAY,	/* maydays to rescuer */
216 	PWQ_STAT_RESCUED,	/* linked work items executed by rescuer */
217 
218 	PWQ_NR_STATS,
219 };
220 
221 /*
222  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
223  * of work_struct->data are used for flags and the remaining high bits
224  * point to the pwq; thus, pwqs need to be aligned at two's power of the
225  * number of flag bits.
226  */
227 struct pool_workqueue {
228 	struct worker_pool	*pool;		/* I: the associated pool */
229 	struct workqueue_struct *wq;		/* I: the owning workqueue */
230 	int			work_color;	/* L: current color */
231 	int			flush_color;	/* L: flushing color */
232 	int			refcnt;		/* L: reference count */
233 	int			nr_in_flight[WORK_NR_COLORS];
234 						/* L: nr of in_flight works */
235 
236 	/*
237 	 * nr_active management and WORK_STRUCT_INACTIVE:
238 	 *
239 	 * When pwq->nr_active >= max_active, new work item is queued to
240 	 * pwq->inactive_works instead of pool->worklist and marked with
241 	 * WORK_STRUCT_INACTIVE.
242 	 *
243 	 * All work items marked with WORK_STRUCT_INACTIVE do not participate
244 	 * in pwq->nr_active and all work items in pwq->inactive_works are
245 	 * marked with WORK_STRUCT_INACTIVE.  But not all WORK_STRUCT_INACTIVE
246 	 * work items are in pwq->inactive_works.  Some of them are ready to
247 	 * run in pool->worklist or worker->scheduled.  Those work itmes are
248 	 * only struct wq_barrier which is used for flush_work() and should
249 	 * not participate in pwq->nr_active.  For non-barrier work item, it
250 	 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
251 	 */
252 	int			nr_active;	/* L: nr of active works */
253 	int			max_active;	/* L: max active works */
254 	struct list_head	inactive_works;	/* L: inactive works */
255 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
256 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
257 
258 	u64			stats[PWQ_NR_STATS];
259 
260 	/*
261 	 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
262 	 * and pwq_release_workfn() for details. pool_workqueue itself is also
263 	 * RCU protected so that the first pwq can be determined without
264 	 * grabbing wq->mutex.
265 	 */
266 	struct kthread_work	release_work;
267 	struct rcu_head		rcu;
268 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
269 
270 /*
271  * Structure used to wait for workqueue flush.
272  */
273 struct wq_flusher {
274 	struct list_head	list;		/* WQ: list of flushers */
275 	int			flush_color;	/* WQ: flush color waiting for */
276 	struct completion	done;		/* flush completion */
277 };
278 
279 struct wq_device;
280 
281 /*
282  * The externally visible workqueue.  It relays the issued work items to
283  * the appropriate worker_pool through its pool_workqueues.
284  */
285 struct workqueue_struct {
286 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
287 	struct list_head	list;		/* PR: list of all workqueues */
288 
289 	struct mutex		mutex;		/* protects this wq */
290 	int			work_color;	/* WQ: current work color */
291 	int			flush_color;	/* WQ: current flush color */
292 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
293 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
294 	struct list_head	flusher_queue;	/* WQ: flush waiters */
295 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
296 
297 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
298 	struct worker		*rescuer;	/* MD: rescue worker */
299 
300 	int			nr_drainers;	/* WQ: drain in progress */
301 	int			saved_max_active; /* WQ: saved pwq max_active */
302 
303 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
304 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
305 
306 #ifdef CONFIG_SYSFS
307 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
308 #endif
309 #ifdef CONFIG_LOCKDEP
310 	char			*lock_name;
311 	struct lock_class_key	key;
312 	struct lockdep_map	lockdep_map;
313 #endif
314 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
315 
316 	/*
317 	 * Destruction of workqueue_struct is RCU protected to allow walking
318 	 * the workqueues list without grabbing wq_pool_mutex.
319 	 * This is used to dump all workqueues from sysrq.
320 	 */
321 	struct rcu_head		rcu;
322 
323 	/* hot fields used during command issue, aligned to cacheline */
324 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
325 	struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */
326 };
327 
328 static struct kmem_cache *pwq_cache;
329 
330 /*
331  * Each pod type describes how CPUs should be grouped for unbound workqueues.
332  * See the comment above workqueue_attrs->affn_scope.
333  */
334 struct wq_pod_type {
335 	int			nr_pods;	/* number of pods */
336 	cpumask_var_t		*pod_cpus;	/* pod -> cpus */
337 	int			*pod_node;	/* pod -> node */
338 	int			*cpu_pod;	/* cpu -> pod */
339 };
340 
341 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
342 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
343 
344 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
345 	[WQ_AFFN_DFL]			= "default",
346 	[WQ_AFFN_CPU]			= "cpu",
347 	[WQ_AFFN_SMT]			= "smt",
348 	[WQ_AFFN_CACHE]			= "cache",
349 	[WQ_AFFN_NUMA]			= "numa",
350 	[WQ_AFFN_SYSTEM]		= "system",
351 };
352 
353 /*
354  * Per-cpu work items which run for longer than the following threshold are
355  * automatically considered CPU intensive and excluded from concurrency
356  * management to prevent them from noticeably delaying other per-cpu work items.
357  * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
358  * The actual value is initialized in wq_cpu_intensive_thresh_init().
359  */
360 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
361 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
362 
363 /* see the comment above the definition of WQ_POWER_EFFICIENT */
364 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
365 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
366 
367 static bool wq_online;			/* can kworkers be created yet? */
368 
369 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
370 static struct workqueue_attrs *wq_update_pod_attrs_buf;
371 
372 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
373 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
374 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
375 /* wait for manager to go away */
376 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
377 
378 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
379 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
380 
381 /* PL&A: allowable cpus for unbound wqs and work items */
382 static cpumask_var_t wq_unbound_cpumask;
383 
384 /* for further constrain wq_unbound_cpumask by cmdline parameter*/
385 static struct cpumask wq_cmdline_cpumask __initdata;
386 
387 /* CPU where unbound work was last round robin scheduled from this CPU */
388 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
389 
390 /*
391  * Local execution of unbound work items is no longer guaranteed.  The
392  * following always forces round-robin CPU selection on unbound work items
393  * to uncover usages which depend on it.
394  */
395 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
396 static bool wq_debug_force_rr_cpu = true;
397 #else
398 static bool wq_debug_force_rr_cpu = false;
399 #endif
400 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
401 
402 /* the per-cpu worker pools */
403 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
404 
405 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
406 
407 /* PL: hash of all unbound pools keyed by pool->attrs */
408 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
409 
410 /* I: attributes used when instantiating standard unbound pools on demand */
411 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
412 
413 /* I: attributes used when instantiating ordered pools on demand */
414 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
415 
416 /*
417  * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
418  * process context while holding a pool lock. Bounce to a dedicated kthread
419  * worker to avoid A-A deadlocks.
420  */
421 static struct kthread_worker *pwq_release_worker;
422 
423 struct workqueue_struct *system_wq __read_mostly;
424 EXPORT_SYMBOL(system_wq);
425 struct workqueue_struct *system_highpri_wq __read_mostly;
426 EXPORT_SYMBOL_GPL(system_highpri_wq);
427 struct workqueue_struct *system_long_wq __read_mostly;
428 EXPORT_SYMBOL_GPL(system_long_wq);
429 struct workqueue_struct *system_unbound_wq __read_mostly;
430 EXPORT_SYMBOL_GPL(system_unbound_wq);
431 struct workqueue_struct *system_freezable_wq __read_mostly;
432 EXPORT_SYMBOL_GPL(system_freezable_wq);
433 struct workqueue_struct *system_power_efficient_wq __read_mostly;
434 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
435 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
436 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
437 
438 static int worker_thread(void *__worker);
439 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
440 static void show_pwq(struct pool_workqueue *pwq);
441 static void show_one_worker_pool(struct worker_pool *pool);
442 
443 #define CREATE_TRACE_POINTS
444 #include <trace/events/workqueue.h>
445 
446 #define assert_rcu_or_pool_mutex()					\
447 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
448 			 !lockdep_is_held(&wq_pool_mutex),		\
449 			 "RCU or wq_pool_mutex should be held")
450 
451 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
452 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
453 			 !lockdep_is_held(&wq->mutex) &&		\
454 			 !lockdep_is_held(&wq_pool_mutex),		\
455 			 "RCU, wq->mutex or wq_pool_mutex should be held")
456 
457 #define for_each_cpu_worker_pool(pool, cpu)				\
458 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
459 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
460 	     (pool)++)
461 
462 /**
463  * for_each_pool - iterate through all worker_pools in the system
464  * @pool: iteration cursor
465  * @pi: integer used for iteration
466  *
467  * This must be called either with wq_pool_mutex held or RCU read
468  * locked.  If the pool needs to be used beyond the locking in effect, the
469  * caller is responsible for guaranteeing that the pool stays online.
470  *
471  * The if/else clause exists only for the lockdep assertion and can be
472  * ignored.
473  */
474 #define for_each_pool(pool, pi)						\
475 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
476 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
477 		else
478 
479 /**
480  * for_each_pool_worker - iterate through all workers of a worker_pool
481  * @worker: iteration cursor
482  * @pool: worker_pool to iterate workers of
483  *
484  * This must be called with wq_pool_attach_mutex.
485  *
486  * The if/else clause exists only for the lockdep assertion and can be
487  * ignored.
488  */
489 #define for_each_pool_worker(worker, pool)				\
490 	list_for_each_entry((worker), &(pool)->workers, node)		\
491 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
492 		else
493 
494 /**
495  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
496  * @pwq: iteration cursor
497  * @wq: the target workqueue
498  *
499  * This must be called either with wq->mutex held or RCU read locked.
500  * If the pwq needs to be used beyond the locking in effect, the caller is
501  * responsible for guaranteeing that the pwq stays online.
502  *
503  * The if/else clause exists only for the lockdep assertion and can be
504  * ignored.
505  */
506 #define for_each_pwq(pwq, wq)						\
507 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
508 				 lockdep_is_held(&(wq->mutex)))
509 
510 #ifdef CONFIG_DEBUG_OBJECTS_WORK
511 
512 static const struct debug_obj_descr work_debug_descr;
513 
514 static void *work_debug_hint(void *addr)
515 {
516 	return ((struct work_struct *) addr)->func;
517 }
518 
519 static bool work_is_static_object(void *addr)
520 {
521 	struct work_struct *work = addr;
522 
523 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
524 }
525 
526 /*
527  * fixup_init is called when:
528  * - an active object is initialized
529  */
530 static bool work_fixup_init(void *addr, enum debug_obj_state state)
531 {
532 	struct work_struct *work = addr;
533 
534 	switch (state) {
535 	case ODEBUG_STATE_ACTIVE:
536 		cancel_work_sync(work);
537 		debug_object_init(work, &work_debug_descr);
538 		return true;
539 	default:
540 		return false;
541 	}
542 }
543 
544 /*
545  * fixup_free is called when:
546  * - an active object is freed
547  */
548 static bool work_fixup_free(void *addr, enum debug_obj_state state)
549 {
550 	struct work_struct *work = addr;
551 
552 	switch (state) {
553 	case ODEBUG_STATE_ACTIVE:
554 		cancel_work_sync(work);
555 		debug_object_free(work, &work_debug_descr);
556 		return true;
557 	default:
558 		return false;
559 	}
560 }
561 
562 static const struct debug_obj_descr work_debug_descr = {
563 	.name		= "work_struct",
564 	.debug_hint	= work_debug_hint,
565 	.is_static_object = work_is_static_object,
566 	.fixup_init	= work_fixup_init,
567 	.fixup_free	= work_fixup_free,
568 };
569 
570 static inline void debug_work_activate(struct work_struct *work)
571 {
572 	debug_object_activate(work, &work_debug_descr);
573 }
574 
575 static inline void debug_work_deactivate(struct work_struct *work)
576 {
577 	debug_object_deactivate(work, &work_debug_descr);
578 }
579 
580 void __init_work(struct work_struct *work, int onstack)
581 {
582 	if (onstack)
583 		debug_object_init_on_stack(work, &work_debug_descr);
584 	else
585 		debug_object_init(work, &work_debug_descr);
586 }
587 EXPORT_SYMBOL_GPL(__init_work);
588 
589 void destroy_work_on_stack(struct work_struct *work)
590 {
591 	debug_object_free(work, &work_debug_descr);
592 }
593 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
594 
595 void destroy_delayed_work_on_stack(struct delayed_work *work)
596 {
597 	destroy_timer_on_stack(&work->timer);
598 	debug_object_free(&work->work, &work_debug_descr);
599 }
600 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
601 
602 #else
603 static inline void debug_work_activate(struct work_struct *work) { }
604 static inline void debug_work_deactivate(struct work_struct *work) { }
605 #endif
606 
607 /**
608  * worker_pool_assign_id - allocate ID and assign it to @pool
609  * @pool: the pool pointer of interest
610  *
611  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
612  * successfully, -errno on failure.
613  */
614 static int worker_pool_assign_id(struct worker_pool *pool)
615 {
616 	int ret;
617 
618 	lockdep_assert_held(&wq_pool_mutex);
619 
620 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
621 			GFP_KERNEL);
622 	if (ret >= 0) {
623 		pool->id = ret;
624 		return 0;
625 	}
626 	return ret;
627 }
628 
629 static unsigned int work_color_to_flags(int color)
630 {
631 	return color << WORK_STRUCT_COLOR_SHIFT;
632 }
633 
634 static int get_work_color(unsigned long work_data)
635 {
636 	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
637 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
638 }
639 
640 static int work_next_color(int color)
641 {
642 	return (color + 1) % WORK_NR_COLORS;
643 }
644 
645 /*
646  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
647  * contain the pointer to the queued pwq.  Once execution starts, the flag
648  * is cleared and the high bits contain OFFQ flags and pool ID.
649  *
650  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
651  * and clear_work_data() can be used to set the pwq, pool or clear
652  * work->data.  These functions should only be called while the work is
653  * owned - ie. while the PENDING bit is set.
654  *
655  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
656  * corresponding to a work.  Pool is available once the work has been
657  * queued anywhere after initialization until it is sync canceled.  pwq is
658  * available only while the work item is queued.
659  *
660  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
661  * canceled.  While being canceled, a work item may have its PENDING set
662  * but stay off timer and worklist for arbitrarily long and nobody should
663  * try to steal the PENDING bit.
664  */
665 static inline void set_work_data(struct work_struct *work, unsigned long data,
666 				 unsigned long flags)
667 {
668 	WARN_ON_ONCE(!work_pending(work));
669 	atomic_long_set(&work->data, data | flags | work_static(work));
670 }
671 
672 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
673 			 unsigned long extra_flags)
674 {
675 	set_work_data(work, (unsigned long)pwq,
676 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
677 }
678 
679 static void set_work_pool_and_keep_pending(struct work_struct *work,
680 					   int pool_id)
681 {
682 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
683 		      WORK_STRUCT_PENDING);
684 }
685 
686 static void set_work_pool_and_clear_pending(struct work_struct *work,
687 					    int pool_id)
688 {
689 	/*
690 	 * The following wmb is paired with the implied mb in
691 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
692 	 * here are visible to and precede any updates by the next PENDING
693 	 * owner.
694 	 */
695 	smp_wmb();
696 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
697 	/*
698 	 * The following mb guarantees that previous clear of a PENDING bit
699 	 * will not be reordered with any speculative LOADS or STORES from
700 	 * work->current_func, which is executed afterwards.  This possible
701 	 * reordering can lead to a missed execution on attempt to queue
702 	 * the same @work.  E.g. consider this case:
703 	 *
704 	 *   CPU#0                         CPU#1
705 	 *   ----------------------------  --------------------------------
706 	 *
707 	 * 1  STORE event_indicated
708 	 * 2  queue_work_on() {
709 	 * 3    test_and_set_bit(PENDING)
710 	 * 4 }                             set_..._and_clear_pending() {
711 	 * 5                                 set_work_data() # clear bit
712 	 * 6                                 smp_mb()
713 	 * 7                               work->current_func() {
714 	 * 8				      LOAD event_indicated
715 	 *				   }
716 	 *
717 	 * Without an explicit full barrier speculative LOAD on line 8 can
718 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
719 	 * CPU#0 observes the PENDING bit is still set and new execution of
720 	 * a @work is not queued in a hope, that CPU#1 will eventually
721 	 * finish the queued @work.  Meanwhile CPU#1 does not see
722 	 * event_indicated is set, because speculative LOAD was executed
723 	 * before actual STORE.
724 	 */
725 	smp_mb();
726 }
727 
728 static void clear_work_data(struct work_struct *work)
729 {
730 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
731 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
732 }
733 
734 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
735 {
736 	return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK);
737 }
738 
739 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
740 {
741 	unsigned long data = atomic_long_read(&work->data);
742 
743 	if (data & WORK_STRUCT_PWQ)
744 		return work_struct_pwq(data);
745 	else
746 		return NULL;
747 }
748 
749 /**
750  * get_work_pool - return the worker_pool a given work was associated with
751  * @work: the work item of interest
752  *
753  * Pools are created and destroyed under wq_pool_mutex, and allows read
754  * access under RCU read lock.  As such, this function should be
755  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
756  *
757  * All fields of the returned pool are accessible as long as the above
758  * mentioned locking is in effect.  If the returned pool needs to be used
759  * beyond the critical section, the caller is responsible for ensuring the
760  * returned pool is and stays online.
761  *
762  * Return: The worker_pool @work was last associated with.  %NULL if none.
763  */
764 static struct worker_pool *get_work_pool(struct work_struct *work)
765 {
766 	unsigned long data = atomic_long_read(&work->data);
767 	int pool_id;
768 
769 	assert_rcu_or_pool_mutex();
770 
771 	if (data & WORK_STRUCT_PWQ)
772 		return work_struct_pwq(data)->pool;
773 
774 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
775 	if (pool_id == WORK_OFFQ_POOL_NONE)
776 		return NULL;
777 
778 	return idr_find(&worker_pool_idr, pool_id);
779 }
780 
781 /**
782  * get_work_pool_id - return the worker pool ID a given work is associated with
783  * @work: the work item of interest
784  *
785  * Return: The worker_pool ID @work was last associated with.
786  * %WORK_OFFQ_POOL_NONE if none.
787  */
788 static int get_work_pool_id(struct work_struct *work)
789 {
790 	unsigned long data = atomic_long_read(&work->data);
791 
792 	if (data & WORK_STRUCT_PWQ)
793 		return work_struct_pwq(data)->pool->id;
794 
795 	return data >> WORK_OFFQ_POOL_SHIFT;
796 }
797 
798 static void mark_work_canceling(struct work_struct *work)
799 {
800 	unsigned long pool_id = get_work_pool_id(work);
801 
802 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
803 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
804 }
805 
806 static bool work_is_canceling(struct work_struct *work)
807 {
808 	unsigned long data = atomic_long_read(&work->data);
809 
810 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
811 }
812 
813 /*
814  * Policy functions.  These define the policies on how the global worker
815  * pools are managed.  Unless noted otherwise, these functions assume that
816  * they're being called with pool->lock held.
817  */
818 
819 /*
820  * Need to wake up a worker?  Called from anything but currently
821  * running workers.
822  *
823  * Note that, because unbound workers never contribute to nr_running, this
824  * function will always return %true for unbound pools as long as the
825  * worklist isn't empty.
826  */
827 static bool need_more_worker(struct worker_pool *pool)
828 {
829 	return !list_empty(&pool->worklist) && !pool->nr_running;
830 }
831 
832 /* Can I start working?  Called from busy but !running workers. */
833 static bool may_start_working(struct worker_pool *pool)
834 {
835 	return pool->nr_idle;
836 }
837 
838 /* Do I need to keep working?  Called from currently running workers. */
839 static bool keep_working(struct worker_pool *pool)
840 {
841 	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
842 }
843 
844 /* Do we need a new worker?  Called from manager. */
845 static bool need_to_create_worker(struct worker_pool *pool)
846 {
847 	return need_more_worker(pool) && !may_start_working(pool);
848 }
849 
850 /* Do we have too many workers and should some go away? */
851 static bool too_many_workers(struct worker_pool *pool)
852 {
853 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
854 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
855 	int nr_busy = pool->nr_workers - nr_idle;
856 
857 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
858 }
859 
860 /**
861  * worker_set_flags - set worker flags and adjust nr_running accordingly
862  * @worker: self
863  * @flags: flags to set
864  *
865  * Set @flags in @worker->flags and adjust nr_running accordingly.
866  */
867 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
868 {
869 	struct worker_pool *pool = worker->pool;
870 
871 	lockdep_assert_held(&pool->lock);
872 
873 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
874 	if ((flags & WORKER_NOT_RUNNING) &&
875 	    !(worker->flags & WORKER_NOT_RUNNING)) {
876 		pool->nr_running--;
877 	}
878 
879 	worker->flags |= flags;
880 }
881 
882 /**
883  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
884  * @worker: self
885  * @flags: flags to clear
886  *
887  * Clear @flags in @worker->flags and adjust nr_running accordingly.
888  */
889 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
890 {
891 	struct worker_pool *pool = worker->pool;
892 	unsigned int oflags = worker->flags;
893 
894 	lockdep_assert_held(&pool->lock);
895 
896 	worker->flags &= ~flags;
897 
898 	/*
899 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
900 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
901 	 * of multiple flags, not a single flag.
902 	 */
903 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
904 		if (!(worker->flags & WORKER_NOT_RUNNING))
905 			pool->nr_running++;
906 }
907 
908 /* Return the first idle worker.  Called with pool->lock held. */
909 static struct worker *first_idle_worker(struct worker_pool *pool)
910 {
911 	if (unlikely(list_empty(&pool->idle_list)))
912 		return NULL;
913 
914 	return list_first_entry(&pool->idle_list, struct worker, entry);
915 }
916 
917 /**
918  * worker_enter_idle - enter idle state
919  * @worker: worker which is entering idle state
920  *
921  * @worker is entering idle state.  Update stats and idle timer if
922  * necessary.
923  *
924  * LOCKING:
925  * raw_spin_lock_irq(pool->lock).
926  */
927 static void worker_enter_idle(struct worker *worker)
928 {
929 	struct worker_pool *pool = worker->pool;
930 
931 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
932 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
933 			 (worker->hentry.next || worker->hentry.pprev)))
934 		return;
935 
936 	/* can't use worker_set_flags(), also called from create_worker() */
937 	worker->flags |= WORKER_IDLE;
938 	pool->nr_idle++;
939 	worker->last_active = jiffies;
940 
941 	/* idle_list is LIFO */
942 	list_add(&worker->entry, &pool->idle_list);
943 
944 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
945 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
946 
947 	/* Sanity check nr_running. */
948 	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
949 }
950 
951 /**
952  * worker_leave_idle - leave idle state
953  * @worker: worker which is leaving idle state
954  *
955  * @worker is leaving idle state.  Update stats.
956  *
957  * LOCKING:
958  * raw_spin_lock_irq(pool->lock).
959  */
960 static void worker_leave_idle(struct worker *worker)
961 {
962 	struct worker_pool *pool = worker->pool;
963 
964 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
965 		return;
966 	worker_clr_flags(worker, WORKER_IDLE);
967 	pool->nr_idle--;
968 	list_del_init(&worker->entry);
969 }
970 
971 /**
972  * find_worker_executing_work - find worker which is executing a work
973  * @pool: pool of interest
974  * @work: work to find worker for
975  *
976  * Find a worker which is executing @work on @pool by searching
977  * @pool->busy_hash which is keyed by the address of @work.  For a worker
978  * to match, its current execution should match the address of @work and
979  * its work function.  This is to avoid unwanted dependency between
980  * unrelated work executions through a work item being recycled while still
981  * being executed.
982  *
983  * This is a bit tricky.  A work item may be freed once its execution
984  * starts and nothing prevents the freed area from being recycled for
985  * another work item.  If the same work item address ends up being reused
986  * before the original execution finishes, workqueue will identify the
987  * recycled work item as currently executing and make it wait until the
988  * current execution finishes, introducing an unwanted dependency.
989  *
990  * This function checks the work item address and work function to avoid
991  * false positives.  Note that this isn't complete as one may construct a
992  * work function which can introduce dependency onto itself through a
993  * recycled work item.  Well, if somebody wants to shoot oneself in the
994  * foot that badly, there's only so much we can do, and if such deadlock
995  * actually occurs, it should be easy to locate the culprit work function.
996  *
997  * CONTEXT:
998  * raw_spin_lock_irq(pool->lock).
999  *
1000  * Return:
1001  * Pointer to worker which is executing @work if found, %NULL
1002  * otherwise.
1003  */
1004 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1005 						 struct work_struct *work)
1006 {
1007 	struct worker *worker;
1008 
1009 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1010 			       (unsigned long)work)
1011 		if (worker->current_work == work &&
1012 		    worker->current_func == work->func)
1013 			return worker;
1014 
1015 	return NULL;
1016 }
1017 
1018 /**
1019  * move_linked_works - move linked works to a list
1020  * @work: start of series of works to be scheduled
1021  * @head: target list to append @work to
1022  * @nextp: out parameter for nested worklist walking
1023  *
1024  * Schedule linked works starting from @work to @head. Work series to be
1025  * scheduled starts at @work and includes any consecutive work with
1026  * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1027  * @nextp.
1028  *
1029  * CONTEXT:
1030  * raw_spin_lock_irq(pool->lock).
1031  */
1032 static void move_linked_works(struct work_struct *work, struct list_head *head,
1033 			      struct work_struct **nextp)
1034 {
1035 	struct work_struct *n;
1036 
1037 	/*
1038 	 * Linked worklist will always end before the end of the list,
1039 	 * use NULL for list head.
1040 	 */
1041 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1042 		list_move_tail(&work->entry, head);
1043 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1044 			break;
1045 	}
1046 
1047 	/*
1048 	 * If we're already inside safe list traversal and have moved
1049 	 * multiple works to the scheduled queue, the next position
1050 	 * needs to be updated.
1051 	 */
1052 	if (nextp)
1053 		*nextp = n;
1054 }
1055 
1056 /**
1057  * assign_work - assign a work item and its linked work items to a worker
1058  * @work: work to assign
1059  * @worker: worker to assign to
1060  * @nextp: out parameter for nested worklist walking
1061  *
1062  * Assign @work and its linked work items to @worker. If @work is already being
1063  * executed by another worker in the same pool, it'll be punted there.
1064  *
1065  * If @nextp is not NULL, it's updated to point to the next work of the last
1066  * scheduled work. This allows assign_work() to be nested inside
1067  * list_for_each_entry_safe().
1068  *
1069  * Returns %true if @work was successfully assigned to @worker. %false if @work
1070  * was punted to another worker already executing it.
1071  */
1072 static bool assign_work(struct work_struct *work, struct worker *worker,
1073 			struct work_struct **nextp)
1074 {
1075 	struct worker_pool *pool = worker->pool;
1076 	struct worker *collision;
1077 
1078 	lockdep_assert_held(&pool->lock);
1079 
1080 	/*
1081 	 * A single work shouldn't be executed concurrently by multiple workers.
1082 	 * __queue_work() ensures that @work doesn't jump to a different pool
1083 	 * while still running in the previous pool. Here, we should ensure that
1084 	 * @work is not executed concurrently by multiple workers from the same
1085 	 * pool. Check whether anyone is already processing the work. If so,
1086 	 * defer the work to the currently executing one.
1087 	 */
1088 	collision = find_worker_executing_work(pool, work);
1089 	if (unlikely(collision)) {
1090 		move_linked_works(work, &collision->scheduled, nextp);
1091 		return false;
1092 	}
1093 
1094 	move_linked_works(work, &worker->scheduled, nextp);
1095 	return true;
1096 }
1097 
1098 /**
1099  * kick_pool - wake up an idle worker if necessary
1100  * @pool: pool to kick
1101  *
1102  * @pool may have pending work items. Wake up worker if necessary. Returns
1103  * whether a worker was woken up.
1104  */
1105 static bool kick_pool(struct worker_pool *pool)
1106 {
1107 	struct worker *worker = first_idle_worker(pool);
1108 	struct task_struct *p;
1109 
1110 	lockdep_assert_held(&pool->lock);
1111 
1112 	if (!need_more_worker(pool) || !worker)
1113 		return false;
1114 
1115 	p = worker->task;
1116 
1117 #ifdef CONFIG_SMP
1118 	/*
1119 	 * Idle @worker is about to execute @work and waking up provides an
1120 	 * opportunity to migrate @worker at a lower cost by setting the task's
1121 	 * wake_cpu field. Let's see if we want to move @worker to improve
1122 	 * execution locality.
1123 	 *
1124 	 * We're waking the worker that went idle the latest and there's some
1125 	 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1126 	 * so, setting the wake_cpu won't do anything. As this is a best-effort
1127 	 * optimization and the race window is narrow, let's leave as-is for
1128 	 * now. If this becomes pronounced, we can skip over workers which are
1129 	 * still on cpu when picking an idle worker.
1130 	 *
1131 	 * If @pool has non-strict affinity, @worker might have ended up outside
1132 	 * its affinity scope. Repatriate.
1133 	 */
1134 	if (!pool->attrs->affn_strict &&
1135 	    !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1136 		struct work_struct *work = list_first_entry(&pool->worklist,
1137 						struct work_struct, entry);
1138 		p->wake_cpu = cpumask_any_distribute(pool->attrs->__pod_cpumask);
1139 		get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1140 	}
1141 #endif
1142 	wake_up_process(p);
1143 	return true;
1144 }
1145 
1146 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1147 
1148 /*
1149  * Concurrency-managed per-cpu work items that hog CPU for longer than
1150  * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1151  * which prevents them from stalling other concurrency-managed work items. If a
1152  * work function keeps triggering this mechanism, it's likely that the work item
1153  * should be using an unbound workqueue instead.
1154  *
1155  * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1156  * and report them so that they can be examined and converted to use unbound
1157  * workqueues as appropriate. To avoid flooding the console, each violating work
1158  * function is tracked and reported with exponential backoff.
1159  */
1160 #define WCI_MAX_ENTS 128
1161 
1162 struct wci_ent {
1163 	work_func_t		func;
1164 	atomic64_t		cnt;
1165 	struct hlist_node	hash_node;
1166 };
1167 
1168 static struct wci_ent wci_ents[WCI_MAX_ENTS];
1169 static int wci_nr_ents;
1170 static DEFINE_RAW_SPINLOCK(wci_lock);
1171 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1172 
1173 static struct wci_ent *wci_find_ent(work_func_t func)
1174 {
1175 	struct wci_ent *ent;
1176 
1177 	hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1178 				   (unsigned long)func) {
1179 		if (ent->func == func)
1180 			return ent;
1181 	}
1182 	return NULL;
1183 }
1184 
1185 static void wq_cpu_intensive_report(work_func_t func)
1186 {
1187 	struct wci_ent *ent;
1188 
1189 restart:
1190 	ent = wci_find_ent(func);
1191 	if (ent) {
1192 		u64 cnt;
1193 
1194 		/*
1195 		 * Start reporting from the fourth time and back off
1196 		 * exponentially.
1197 		 */
1198 		cnt = atomic64_inc_return_relaxed(&ent->cnt);
1199 		if (cnt >= 4 && is_power_of_2(cnt))
1200 			printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1201 					ent->func, wq_cpu_intensive_thresh_us,
1202 					atomic64_read(&ent->cnt));
1203 		return;
1204 	}
1205 
1206 	/*
1207 	 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1208 	 * is exhausted, something went really wrong and we probably made enough
1209 	 * noise already.
1210 	 */
1211 	if (wci_nr_ents >= WCI_MAX_ENTS)
1212 		return;
1213 
1214 	raw_spin_lock(&wci_lock);
1215 
1216 	if (wci_nr_ents >= WCI_MAX_ENTS) {
1217 		raw_spin_unlock(&wci_lock);
1218 		return;
1219 	}
1220 
1221 	if (wci_find_ent(func)) {
1222 		raw_spin_unlock(&wci_lock);
1223 		goto restart;
1224 	}
1225 
1226 	ent = &wci_ents[wci_nr_ents++];
1227 	ent->func = func;
1228 	atomic64_set(&ent->cnt, 1);
1229 	hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1230 
1231 	raw_spin_unlock(&wci_lock);
1232 }
1233 
1234 #else	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1235 static void wq_cpu_intensive_report(work_func_t func) {}
1236 #endif	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1237 
1238 /**
1239  * wq_worker_running - a worker is running again
1240  * @task: task waking up
1241  *
1242  * This function is called when a worker returns from schedule()
1243  */
1244 void wq_worker_running(struct task_struct *task)
1245 {
1246 	struct worker *worker = kthread_data(task);
1247 
1248 	if (!READ_ONCE(worker->sleeping))
1249 		return;
1250 
1251 	/*
1252 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1253 	 * and the nr_running increment below, we may ruin the nr_running reset
1254 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1255 	 * pool. Protect against such race.
1256 	 */
1257 	preempt_disable();
1258 	if (!(worker->flags & WORKER_NOT_RUNNING))
1259 		worker->pool->nr_running++;
1260 	preempt_enable();
1261 
1262 	/*
1263 	 * CPU intensive auto-detection cares about how long a work item hogged
1264 	 * CPU without sleeping. Reset the starting timestamp on wakeup.
1265 	 */
1266 	worker->current_at = worker->task->se.sum_exec_runtime;
1267 
1268 	WRITE_ONCE(worker->sleeping, 0);
1269 }
1270 
1271 /**
1272  * wq_worker_sleeping - a worker is going to sleep
1273  * @task: task going to sleep
1274  *
1275  * This function is called from schedule() when a busy worker is
1276  * going to sleep.
1277  */
1278 void wq_worker_sleeping(struct task_struct *task)
1279 {
1280 	struct worker *worker = kthread_data(task);
1281 	struct worker_pool *pool;
1282 
1283 	/*
1284 	 * Rescuers, which may not have all the fields set up like normal
1285 	 * workers, also reach here, let's not access anything before
1286 	 * checking NOT_RUNNING.
1287 	 */
1288 	if (worker->flags & WORKER_NOT_RUNNING)
1289 		return;
1290 
1291 	pool = worker->pool;
1292 
1293 	/* Return if preempted before wq_worker_running() was reached */
1294 	if (READ_ONCE(worker->sleeping))
1295 		return;
1296 
1297 	WRITE_ONCE(worker->sleeping, 1);
1298 	raw_spin_lock_irq(&pool->lock);
1299 
1300 	/*
1301 	 * Recheck in case unbind_workers() preempted us. We don't
1302 	 * want to decrement nr_running after the worker is unbound
1303 	 * and nr_running has been reset.
1304 	 */
1305 	if (worker->flags & WORKER_NOT_RUNNING) {
1306 		raw_spin_unlock_irq(&pool->lock);
1307 		return;
1308 	}
1309 
1310 	pool->nr_running--;
1311 	if (kick_pool(pool))
1312 		worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1313 
1314 	raw_spin_unlock_irq(&pool->lock);
1315 }
1316 
1317 /**
1318  * wq_worker_tick - a scheduler tick occurred while a kworker is running
1319  * @task: task currently running
1320  *
1321  * Called from scheduler_tick(). We're in the IRQ context and the current
1322  * worker's fields which follow the 'K' locking rule can be accessed safely.
1323  */
1324 void wq_worker_tick(struct task_struct *task)
1325 {
1326 	struct worker *worker = kthread_data(task);
1327 	struct pool_workqueue *pwq = worker->current_pwq;
1328 	struct worker_pool *pool = worker->pool;
1329 
1330 	if (!pwq)
1331 		return;
1332 
1333 	pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1334 
1335 	if (!wq_cpu_intensive_thresh_us)
1336 		return;
1337 
1338 	/*
1339 	 * If the current worker is concurrency managed and hogged the CPU for
1340 	 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1341 	 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1342 	 *
1343 	 * Set @worker->sleeping means that @worker is in the process of
1344 	 * switching out voluntarily and won't be contributing to
1345 	 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1346 	 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1347 	 * double decrements. The task is releasing the CPU anyway. Let's skip.
1348 	 * We probably want to make this prettier in the future.
1349 	 */
1350 	if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1351 	    worker->task->se.sum_exec_runtime - worker->current_at <
1352 	    wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1353 		return;
1354 
1355 	raw_spin_lock(&pool->lock);
1356 
1357 	worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1358 	wq_cpu_intensive_report(worker->current_func);
1359 	pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1360 
1361 	if (kick_pool(pool))
1362 		pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1363 
1364 	raw_spin_unlock(&pool->lock);
1365 }
1366 
1367 /**
1368  * wq_worker_last_func - retrieve worker's last work function
1369  * @task: Task to retrieve last work function of.
1370  *
1371  * Determine the last function a worker executed. This is called from
1372  * the scheduler to get a worker's last known identity.
1373  *
1374  * CONTEXT:
1375  * raw_spin_lock_irq(rq->lock)
1376  *
1377  * This function is called during schedule() when a kworker is going
1378  * to sleep. It's used by psi to identify aggregation workers during
1379  * dequeuing, to allow periodic aggregation to shut-off when that
1380  * worker is the last task in the system or cgroup to go to sleep.
1381  *
1382  * As this function doesn't involve any workqueue-related locking, it
1383  * only returns stable values when called from inside the scheduler's
1384  * queuing and dequeuing paths, when @task, which must be a kworker,
1385  * is guaranteed to not be processing any works.
1386  *
1387  * Return:
1388  * The last work function %current executed as a worker, NULL if it
1389  * hasn't executed any work yet.
1390  */
1391 work_func_t wq_worker_last_func(struct task_struct *task)
1392 {
1393 	struct worker *worker = kthread_data(task);
1394 
1395 	return worker->last_func;
1396 }
1397 
1398 /**
1399  * get_pwq - get an extra reference on the specified pool_workqueue
1400  * @pwq: pool_workqueue to get
1401  *
1402  * Obtain an extra reference on @pwq.  The caller should guarantee that
1403  * @pwq has positive refcnt and be holding the matching pool->lock.
1404  */
1405 static void get_pwq(struct pool_workqueue *pwq)
1406 {
1407 	lockdep_assert_held(&pwq->pool->lock);
1408 	WARN_ON_ONCE(pwq->refcnt <= 0);
1409 	pwq->refcnt++;
1410 }
1411 
1412 /**
1413  * put_pwq - put a pool_workqueue reference
1414  * @pwq: pool_workqueue to put
1415  *
1416  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1417  * destruction.  The caller should be holding the matching pool->lock.
1418  */
1419 static void put_pwq(struct pool_workqueue *pwq)
1420 {
1421 	lockdep_assert_held(&pwq->pool->lock);
1422 	if (likely(--pwq->refcnt))
1423 		return;
1424 	/*
1425 	 * @pwq can't be released under pool->lock, bounce to a dedicated
1426 	 * kthread_worker to avoid A-A deadlocks.
1427 	 */
1428 	kthread_queue_work(pwq_release_worker, &pwq->release_work);
1429 }
1430 
1431 /**
1432  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1433  * @pwq: pool_workqueue to put (can be %NULL)
1434  *
1435  * put_pwq() with locking.  This function also allows %NULL @pwq.
1436  */
1437 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1438 {
1439 	if (pwq) {
1440 		/*
1441 		 * As both pwqs and pools are RCU protected, the
1442 		 * following lock operations are safe.
1443 		 */
1444 		raw_spin_lock_irq(&pwq->pool->lock);
1445 		put_pwq(pwq);
1446 		raw_spin_unlock_irq(&pwq->pool->lock);
1447 	}
1448 }
1449 
1450 static void pwq_activate_inactive_work(struct work_struct *work)
1451 {
1452 	struct pool_workqueue *pwq = get_work_pwq(work);
1453 
1454 	trace_workqueue_activate_work(work);
1455 	if (list_empty(&pwq->pool->worklist))
1456 		pwq->pool->watchdog_ts = jiffies;
1457 	move_linked_works(work, &pwq->pool->worklist, NULL);
1458 	__clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
1459 	pwq->nr_active++;
1460 }
1461 
1462 static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
1463 {
1464 	struct work_struct *work = list_first_entry(&pwq->inactive_works,
1465 						    struct work_struct, entry);
1466 
1467 	pwq_activate_inactive_work(work);
1468 }
1469 
1470 /**
1471  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1472  * @pwq: pwq of interest
1473  * @work_data: work_data of work which left the queue
1474  *
1475  * A work either has completed or is removed from pending queue,
1476  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1477  *
1478  * CONTEXT:
1479  * raw_spin_lock_irq(pool->lock).
1480  */
1481 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1482 {
1483 	int color = get_work_color(work_data);
1484 
1485 	if (!(work_data & WORK_STRUCT_INACTIVE)) {
1486 		pwq->nr_active--;
1487 		if (!list_empty(&pwq->inactive_works)) {
1488 			/* one down, submit an inactive one */
1489 			if (pwq->nr_active < pwq->max_active)
1490 				pwq_activate_first_inactive(pwq);
1491 		}
1492 	}
1493 
1494 	pwq->nr_in_flight[color]--;
1495 
1496 	/* is flush in progress and are we at the flushing tip? */
1497 	if (likely(pwq->flush_color != color))
1498 		goto out_put;
1499 
1500 	/* are there still in-flight works? */
1501 	if (pwq->nr_in_flight[color])
1502 		goto out_put;
1503 
1504 	/* this pwq is done, clear flush_color */
1505 	pwq->flush_color = -1;
1506 
1507 	/*
1508 	 * If this was the last pwq, wake up the first flusher.  It
1509 	 * will handle the rest.
1510 	 */
1511 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1512 		complete(&pwq->wq->first_flusher->done);
1513 out_put:
1514 	put_pwq(pwq);
1515 }
1516 
1517 /**
1518  * try_to_grab_pending - steal work item from worklist and disable irq
1519  * @work: work item to steal
1520  * @is_dwork: @work is a delayed_work
1521  * @flags: place to store irq state
1522  *
1523  * Try to grab PENDING bit of @work.  This function can handle @work in any
1524  * stable state - idle, on timer or on worklist.
1525  *
1526  * Return:
1527  *
1528  *  ========	================================================================
1529  *  1		if @work was pending and we successfully stole PENDING
1530  *  0		if @work was idle and we claimed PENDING
1531  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1532  *  -ENOENT	if someone else is canceling @work, this state may persist
1533  *		for arbitrarily long
1534  *  ========	================================================================
1535  *
1536  * Note:
1537  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1538  * interrupted while holding PENDING and @work off queue, irq must be
1539  * disabled on entry.  This, combined with delayed_work->timer being
1540  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1541  *
1542  * On successful return, >= 0, irq is disabled and the caller is
1543  * responsible for releasing it using local_irq_restore(*@flags).
1544  *
1545  * This function is safe to call from any context including IRQ handler.
1546  */
1547 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1548 			       unsigned long *flags)
1549 {
1550 	struct worker_pool *pool;
1551 	struct pool_workqueue *pwq;
1552 
1553 	local_irq_save(*flags);
1554 
1555 	/* try to steal the timer if it exists */
1556 	if (is_dwork) {
1557 		struct delayed_work *dwork = to_delayed_work(work);
1558 
1559 		/*
1560 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1561 		 * guaranteed that the timer is not queued anywhere and not
1562 		 * running on the local CPU.
1563 		 */
1564 		if (likely(del_timer(&dwork->timer)))
1565 			return 1;
1566 	}
1567 
1568 	/* try to claim PENDING the normal way */
1569 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1570 		return 0;
1571 
1572 	rcu_read_lock();
1573 	/*
1574 	 * The queueing is in progress, or it is already queued. Try to
1575 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1576 	 */
1577 	pool = get_work_pool(work);
1578 	if (!pool)
1579 		goto fail;
1580 
1581 	raw_spin_lock(&pool->lock);
1582 	/*
1583 	 * work->data is guaranteed to point to pwq only while the work
1584 	 * item is queued on pwq->wq, and both updating work->data to point
1585 	 * to pwq on queueing and to pool on dequeueing are done under
1586 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1587 	 * points to pwq which is associated with a locked pool, the work
1588 	 * item is currently queued on that pool.
1589 	 */
1590 	pwq = get_work_pwq(work);
1591 	if (pwq && pwq->pool == pool) {
1592 		debug_work_deactivate(work);
1593 
1594 		/*
1595 		 * A cancelable inactive work item must be in the
1596 		 * pwq->inactive_works since a queued barrier can't be
1597 		 * canceled (see the comments in insert_wq_barrier()).
1598 		 *
1599 		 * An inactive work item cannot be grabbed directly because
1600 		 * it might have linked barrier work items which, if left
1601 		 * on the inactive_works list, will confuse pwq->nr_active
1602 		 * management later on and cause stall.  Make sure the work
1603 		 * item is activated before grabbing.
1604 		 */
1605 		if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1606 			pwq_activate_inactive_work(work);
1607 
1608 		list_del_init(&work->entry);
1609 		pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
1610 
1611 		/* work->data points to pwq iff queued, point to pool */
1612 		set_work_pool_and_keep_pending(work, pool->id);
1613 
1614 		raw_spin_unlock(&pool->lock);
1615 		rcu_read_unlock();
1616 		return 1;
1617 	}
1618 	raw_spin_unlock(&pool->lock);
1619 fail:
1620 	rcu_read_unlock();
1621 	local_irq_restore(*flags);
1622 	if (work_is_canceling(work))
1623 		return -ENOENT;
1624 	cpu_relax();
1625 	return -EAGAIN;
1626 }
1627 
1628 /**
1629  * insert_work - insert a work into a pool
1630  * @pwq: pwq @work belongs to
1631  * @work: work to insert
1632  * @head: insertion point
1633  * @extra_flags: extra WORK_STRUCT_* flags to set
1634  *
1635  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1636  * work_struct flags.
1637  *
1638  * CONTEXT:
1639  * raw_spin_lock_irq(pool->lock).
1640  */
1641 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1642 			struct list_head *head, unsigned int extra_flags)
1643 {
1644 	debug_work_activate(work);
1645 
1646 	/* record the work call stack in order to print it in KASAN reports */
1647 	kasan_record_aux_stack_noalloc(work);
1648 
1649 	/* we own @work, set data and link */
1650 	set_work_pwq(work, pwq, extra_flags);
1651 	list_add_tail(&work->entry, head);
1652 	get_pwq(pwq);
1653 }
1654 
1655 /*
1656  * Test whether @work is being queued from another work executing on the
1657  * same workqueue.
1658  */
1659 static bool is_chained_work(struct workqueue_struct *wq)
1660 {
1661 	struct worker *worker;
1662 
1663 	worker = current_wq_worker();
1664 	/*
1665 	 * Return %true iff I'm a worker executing a work item on @wq.  If
1666 	 * I'm @worker, it's safe to dereference it without locking.
1667 	 */
1668 	return worker && worker->current_pwq->wq == wq;
1669 }
1670 
1671 /*
1672  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1673  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1674  * avoid perturbing sensitive tasks.
1675  */
1676 static int wq_select_unbound_cpu(int cpu)
1677 {
1678 	int new_cpu;
1679 
1680 	if (likely(!wq_debug_force_rr_cpu)) {
1681 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1682 			return cpu;
1683 	} else {
1684 		pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
1685 	}
1686 
1687 	if (cpumask_empty(wq_unbound_cpumask))
1688 		return cpu;
1689 
1690 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1691 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1692 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1693 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1694 		if (unlikely(new_cpu >= nr_cpu_ids))
1695 			return cpu;
1696 	}
1697 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1698 
1699 	return new_cpu;
1700 }
1701 
1702 static void __queue_work(int cpu, struct workqueue_struct *wq,
1703 			 struct work_struct *work)
1704 {
1705 	struct pool_workqueue *pwq;
1706 	struct worker_pool *last_pool, *pool;
1707 	unsigned int work_flags;
1708 	unsigned int req_cpu = cpu;
1709 
1710 	/*
1711 	 * While a work item is PENDING && off queue, a task trying to
1712 	 * steal the PENDING will busy-loop waiting for it to either get
1713 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1714 	 * happen with IRQ disabled.
1715 	 */
1716 	lockdep_assert_irqs_disabled();
1717 
1718 
1719 	/*
1720 	 * For a draining wq, only works from the same workqueue are
1721 	 * allowed. The __WQ_DESTROYING helps to spot the issue that
1722 	 * queues a new work item to a wq after destroy_workqueue(wq).
1723 	 */
1724 	if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
1725 		     WARN_ON_ONCE(!is_chained_work(wq))))
1726 		return;
1727 	rcu_read_lock();
1728 retry:
1729 	/* pwq which will be used unless @work is executing elsewhere */
1730 	if (req_cpu == WORK_CPU_UNBOUND) {
1731 		if (wq->flags & WQ_UNBOUND)
1732 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1733 		else
1734 			cpu = raw_smp_processor_id();
1735 	}
1736 
1737 	pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
1738 	pool = pwq->pool;
1739 
1740 	/*
1741 	 * If @work was previously on a different pool, it might still be
1742 	 * running there, in which case the work needs to be queued on that
1743 	 * pool to guarantee non-reentrancy.
1744 	 */
1745 	last_pool = get_work_pool(work);
1746 	if (last_pool && last_pool != pool) {
1747 		struct worker *worker;
1748 
1749 		raw_spin_lock(&last_pool->lock);
1750 
1751 		worker = find_worker_executing_work(last_pool, work);
1752 
1753 		if (worker && worker->current_pwq->wq == wq) {
1754 			pwq = worker->current_pwq;
1755 			pool = pwq->pool;
1756 			WARN_ON_ONCE(pool != last_pool);
1757 		} else {
1758 			/* meh... not running there, queue here */
1759 			raw_spin_unlock(&last_pool->lock);
1760 			raw_spin_lock(&pool->lock);
1761 		}
1762 	} else {
1763 		raw_spin_lock(&pool->lock);
1764 	}
1765 
1766 	/*
1767 	 * pwq is determined and locked. For unbound pools, we could have raced
1768 	 * with pwq release and it could already be dead. If its refcnt is zero,
1769 	 * repeat pwq selection. Note that unbound pwqs never die without
1770 	 * another pwq replacing it in cpu_pwq or while work items are executing
1771 	 * on it, so the retrying is guaranteed to make forward-progress.
1772 	 */
1773 	if (unlikely(!pwq->refcnt)) {
1774 		if (wq->flags & WQ_UNBOUND) {
1775 			raw_spin_unlock(&pool->lock);
1776 			cpu_relax();
1777 			goto retry;
1778 		}
1779 		/* oops */
1780 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1781 			  wq->name, cpu);
1782 	}
1783 
1784 	/* pwq determined, queue */
1785 	trace_workqueue_queue_work(req_cpu, pwq, work);
1786 
1787 	if (WARN_ON(!list_empty(&work->entry)))
1788 		goto out;
1789 
1790 	pwq->nr_in_flight[pwq->work_color]++;
1791 	work_flags = work_color_to_flags(pwq->work_color);
1792 
1793 	if (likely(pwq->nr_active < pwq->max_active)) {
1794 		if (list_empty(&pool->worklist))
1795 			pool->watchdog_ts = jiffies;
1796 
1797 		trace_workqueue_activate_work(work);
1798 		pwq->nr_active++;
1799 		insert_work(pwq, work, &pool->worklist, work_flags);
1800 		kick_pool(pool);
1801 	} else {
1802 		work_flags |= WORK_STRUCT_INACTIVE;
1803 		insert_work(pwq, work, &pwq->inactive_works, work_flags);
1804 	}
1805 
1806 out:
1807 	raw_spin_unlock(&pool->lock);
1808 	rcu_read_unlock();
1809 }
1810 
1811 /**
1812  * queue_work_on - queue work on specific cpu
1813  * @cpu: CPU number to execute work on
1814  * @wq: workqueue to use
1815  * @work: work to queue
1816  *
1817  * We queue the work to a specific CPU, the caller must ensure it
1818  * can't go away.  Callers that fail to ensure that the specified
1819  * CPU cannot go away will execute on a randomly chosen CPU.
1820  * But note well that callers specifying a CPU that never has been
1821  * online will get a splat.
1822  *
1823  * Return: %false if @work was already on a queue, %true otherwise.
1824  */
1825 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1826 		   struct work_struct *work)
1827 {
1828 	bool ret = false;
1829 	unsigned long flags;
1830 
1831 	local_irq_save(flags);
1832 
1833 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1834 		__queue_work(cpu, wq, work);
1835 		ret = true;
1836 	}
1837 
1838 	local_irq_restore(flags);
1839 	return ret;
1840 }
1841 EXPORT_SYMBOL(queue_work_on);
1842 
1843 /**
1844  * select_numa_node_cpu - Select a CPU based on NUMA node
1845  * @node: NUMA node ID that we want to select a CPU from
1846  *
1847  * This function will attempt to find a "random" cpu available on a given
1848  * node. If there are no CPUs available on the given node it will return
1849  * WORK_CPU_UNBOUND indicating that we should just schedule to any
1850  * available CPU if we need to schedule this work.
1851  */
1852 static int select_numa_node_cpu(int node)
1853 {
1854 	int cpu;
1855 
1856 	/* Delay binding to CPU if node is not valid or online */
1857 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1858 		return WORK_CPU_UNBOUND;
1859 
1860 	/* Use local node/cpu if we are already there */
1861 	cpu = raw_smp_processor_id();
1862 	if (node == cpu_to_node(cpu))
1863 		return cpu;
1864 
1865 	/* Use "random" otherwise know as "first" online CPU of node */
1866 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1867 
1868 	/* If CPU is valid return that, otherwise just defer */
1869 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1870 }
1871 
1872 /**
1873  * queue_work_node - queue work on a "random" cpu for a given NUMA node
1874  * @node: NUMA node that we are targeting the work for
1875  * @wq: workqueue to use
1876  * @work: work to queue
1877  *
1878  * We queue the work to a "random" CPU within a given NUMA node. The basic
1879  * idea here is to provide a way to somehow associate work with a given
1880  * NUMA node.
1881  *
1882  * This function will only make a best effort attempt at getting this onto
1883  * the right NUMA node. If no node is requested or the requested node is
1884  * offline then we just fall back to standard queue_work behavior.
1885  *
1886  * Currently the "random" CPU ends up being the first available CPU in the
1887  * intersection of cpu_online_mask and the cpumask of the node, unless we
1888  * are running on the node. In that case we just use the current CPU.
1889  *
1890  * Return: %false if @work was already on a queue, %true otherwise.
1891  */
1892 bool queue_work_node(int node, struct workqueue_struct *wq,
1893 		     struct work_struct *work)
1894 {
1895 	unsigned long flags;
1896 	bool ret = false;
1897 
1898 	/*
1899 	 * This current implementation is specific to unbound workqueues.
1900 	 * Specifically we only return the first available CPU for a given
1901 	 * node instead of cycling through individual CPUs within the node.
1902 	 *
1903 	 * If this is used with a per-cpu workqueue then the logic in
1904 	 * workqueue_select_cpu_near would need to be updated to allow for
1905 	 * some round robin type logic.
1906 	 */
1907 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1908 
1909 	local_irq_save(flags);
1910 
1911 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1912 		int cpu = select_numa_node_cpu(node);
1913 
1914 		__queue_work(cpu, wq, work);
1915 		ret = true;
1916 	}
1917 
1918 	local_irq_restore(flags);
1919 	return ret;
1920 }
1921 EXPORT_SYMBOL_GPL(queue_work_node);
1922 
1923 void delayed_work_timer_fn(struct timer_list *t)
1924 {
1925 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1926 
1927 	/* should have been called from irqsafe timer with irq already off */
1928 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1929 }
1930 EXPORT_SYMBOL(delayed_work_timer_fn);
1931 
1932 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1933 				struct delayed_work *dwork, unsigned long delay)
1934 {
1935 	struct timer_list *timer = &dwork->timer;
1936 	struct work_struct *work = &dwork->work;
1937 
1938 	WARN_ON_ONCE(!wq);
1939 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1940 	WARN_ON_ONCE(timer_pending(timer));
1941 	WARN_ON_ONCE(!list_empty(&work->entry));
1942 
1943 	/*
1944 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1945 	 * both optimization and correctness.  The earliest @timer can
1946 	 * expire is on the closest next tick and delayed_work users depend
1947 	 * on that there's no such delay when @delay is 0.
1948 	 */
1949 	if (!delay) {
1950 		__queue_work(cpu, wq, &dwork->work);
1951 		return;
1952 	}
1953 
1954 	dwork->wq = wq;
1955 	dwork->cpu = cpu;
1956 	timer->expires = jiffies + delay;
1957 
1958 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1959 		add_timer_on(timer, cpu);
1960 	else
1961 		add_timer(timer);
1962 }
1963 
1964 /**
1965  * queue_delayed_work_on - queue work on specific CPU after delay
1966  * @cpu: CPU number to execute work on
1967  * @wq: workqueue to use
1968  * @dwork: work to queue
1969  * @delay: number of jiffies to wait before queueing
1970  *
1971  * Return: %false if @work was already on a queue, %true otherwise.  If
1972  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1973  * execution.
1974  */
1975 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1976 			   struct delayed_work *dwork, unsigned long delay)
1977 {
1978 	struct work_struct *work = &dwork->work;
1979 	bool ret = false;
1980 	unsigned long flags;
1981 
1982 	/* read the comment in __queue_work() */
1983 	local_irq_save(flags);
1984 
1985 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1986 		__queue_delayed_work(cpu, wq, dwork, delay);
1987 		ret = true;
1988 	}
1989 
1990 	local_irq_restore(flags);
1991 	return ret;
1992 }
1993 EXPORT_SYMBOL(queue_delayed_work_on);
1994 
1995 /**
1996  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1997  * @cpu: CPU number to execute work on
1998  * @wq: workqueue to use
1999  * @dwork: work to queue
2000  * @delay: number of jiffies to wait before queueing
2001  *
2002  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2003  * modify @dwork's timer so that it expires after @delay.  If @delay is
2004  * zero, @work is guaranteed to be scheduled immediately regardless of its
2005  * current state.
2006  *
2007  * Return: %false if @dwork was idle and queued, %true if @dwork was
2008  * pending and its timer was modified.
2009  *
2010  * This function is safe to call from any context including IRQ handler.
2011  * See try_to_grab_pending() for details.
2012  */
2013 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2014 			 struct delayed_work *dwork, unsigned long delay)
2015 {
2016 	unsigned long flags;
2017 	int ret;
2018 
2019 	do {
2020 		ret = try_to_grab_pending(&dwork->work, true, &flags);
2021 	} while (unlikely(ret == -EAGAIN));
2022 
2023 	if (likely(ret >= 0)) {
2024 		__queue_delayed_work(cpu, wq, dwork, delay);
2025 		local_irq_restore(flags);
2026 	}
2027 
2028 	/* -ENOENT from try_to_grab_pending() becomes %true */
2029 	return ret;
2030 }
2031 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2032 
2033 static void rcu_work_rcufn(struct rcu_head *rcu)
2034 {
2035 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2036 
2037 	/* read the comment in __queue_work() */
2038 	local_irq_disable();
2039 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2040 	local_irq_enable();
2041 }
2042 
2043 /**
2044  * queue_rcu_work - queue work after a RCU grace period
2045  * @wq: workqueue to use
2046  * @rwork: work to queue
2047  *
2048  * Return: %false if @rwork was already pending, %true otherwise.  Note
2049  * that a full RCU grace period is guaranteed only after a %true return.
2050  * While @rwork is guaranteed to be executed after a %false return, the
2051  * execution may happen before a full RCU grace period has passed.
2052  */
2053 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2054 {
2055 	struct work_struct *work = &rwork->work;
2056 
2057 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2058 		rwork->wq = wq;
2059 		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2060 		return true;
2061 	}
2062 
2063 	return false;
2064 }
2065 EXPORT_SYMBOL(queue_rcu_work);
2066 
2067 static struct worker *alloc_worker(int node)
2068 {
2069 	struct worker *worker;
2070 
2071 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2072 	if (worker) {
2073 		INIT_LIST_HEAD(&worker->entry);
2074 		INIT_LIST_HEAD(&worker->scheduled);
2075 		INIT_LIST_HEAD(&worker->node);
2076 		/* on creation a worker is in !idle && prep state */
2077 		worker->flags = WORKER_PREP;
2078 	}
2079 	return worker;
2080 }
2081 
2082 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2083 {
2084 	if (pool->cpu < 0 && pool->attrs->affn_strict)
2085 		return pool->attrs->__pod_cpumask;
2086 	else
2087 		return pool->attrs->cpumask;
2088 }
2089 
2090 /**
2091  * worker_attach_to_pool() - attach a worker to a pool
2092  * @worker: worker to be attached
2093  * @pool: the target pool
2094  *
2095  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
2096  * cpu-binding of @worker are kept coordinated with the pool across
2097  * cpu-[un]hotplugs.
2098  */
2099 static void worker_attach_to_pool(struct worker *worker,
2100 				   struct worker_pool *pool)
2101 {
2102 	mutex_lock(&wq_pool_attach_mutex);
2103 
2104 	/*
2105 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
2106 	 * stable across this function.  See the comments above the flag
2107 	 * definition for details.
2108 	 */
2109 	if (pool->flags & POOL_DISASSOCIATED)
2110 		worker->flags |= WORKER_UNBOUND;
2111 	else
2112 		kthread_set_per_cpu(worker->task, pool->cpu);
2113 
2114 	if (worker->rescue_wq)
2115 		set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2116 
2117 	list_add_tail(&worker->node, &pool->workers);
2118 	worker->pool = pool;
2119 
2120 	mutex_unlock(&wq_pool_attach_mutex);
2121 }
2122 
2123 /**
2124  * worker_detach_from_pool() - detach a worker from its pool
2125  * @worker: worker which is attached to its pool
2126  *
2127  * Undo the attaching which had been done in worker_attach_to_pool().  The
2128  * caller worker shouldn't access to the pool after detached except it has
2129  * other reference to the pool.
2130  */
2131 static void worker_detach_from_pool(struct worker *worker)
2132 {
2133 	struct worker_pool *pool = worker->pool;
2134 	struct completion *detach_completion = NULL;
2135 
2136 	mutex_lock(&wq_pool_attach_mutex);
2137 
2138 	kthread_set_per_cpu(worker->task, -1);
2139 	list_del(&worker->node);
2140 	worker->pool = NULL;
2141 
2142 	if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
2143 		detach_completion = pool->detach_completion;
2144 	mutex_unlock(&wq_pool_attach_mutex);
2145 
2146 	/* clear leftover flags without pool->lock after it is detached */
2147 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2148 
2149 	if (detach_completion)
2150 		complete(detach_completion);
2151 }
2152 
2153 /**
2154  * create_worker - create a new workqueue worker
2155  * @pool: pool the new worker will belong to
2156  *
2157  * Create and start a new worker which is attached to @pool.
2158  *
2159  * CONTEXT:
2160  * Might sleep.  Does GFP_KERNEL allocations.
2161  *
2162  * Return:
2163  * Pointer to the newly created worker.
2164  */
2165 static struct worker *create_worker(struct worker_pool *pool)
2166 {
2167 	struct worker *worker;
2168 	int id;
2169 	char id_buf[23];
2170 
2171 	/* ID is needed to determine kthread name */
2172 	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2173 	if (id < 0) {
2174 		pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2175 			    ERR_PTR(id));
2176 		return NULL;
2177 	}
2178 
2179 	worker = alloc_worker(pool->node);
2180 	if (!worker) {
2181 		pr_err_once("workqueue: Failed to allocate a worker\n");
2182 		goto fail;
2183 	}
2184 
2185 	worker->id = id;
2186 
2187 	if (pool->cpu >= 0)
2188 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
2189 			 pool->attrs->nice < 0  ? "H" : "");
2190 	else
2191 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
2192 
2193 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
2194 					      "kworker/%s", id_buf);
2195 	if (IS_ERR(worker->task)) {
2196 		if (PTR_ERR(worker->task) == -EINTR) {
2197 			pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
2198 			       id_buf);
2199 		} else {
2200 			pr_err_once("workqueue: Failed to create a worker thread: %pe",
2201 				    worker->task);
2202 		}
2203 		goto fail;
2204 	}
2205 
2206 	set_user_nice(worker->task, pool->attrs->nice);
2207 	kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2208 
2209 	/* successful, attach the worker to the pool */
2210 	worker_attach_to_pool(worker, pool);
2211 
2212 	/* start the newly created worker */
2213 	raw_spin_lock_irq(&pool->lock);
2214 
2215 	worker->pool->nr_workers++;
2216 	worker_enter_idle(worker);
2217 	kick_pool(pool);
2218 
2219 	/*
2220 	 * @worker is waiting on a completion in kthread() and will trigger hung
2221 	 * check if not woken up soon. As kick_pool() might not have waken it
2222 	 * up, wake it up explicitly once more.
2223 	 */
2224 	wake_up_process(worker->task);
2225 
2226 	raw_spin_unlock_irq(&pool->lock);
2227 
2228 	return worker;
2229 
2230 fail:
2231 	ida_free(&pool->worker_ida, id);
2232 	kfree(worker);
2233 	return NULL;
2234 }
2235 
2236 static void unbind_worker(struct worker *worker)
2237 {
2238 	lockdep_assert_held(&wq_pool_attach_mutex);
2239 
2240 	kthread_set_per_cpu(worker->task, -1);
2241 	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2242 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2243 	else
2244 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2245 }
2246 
2247 static void wake_dying_workers(struct list_head *cull_list)
2248 {
2249 	struct worker *worker, *tmp;
2250 
2251 	list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2252 		list_del_init(&worker->entry);
2253 		unbind_worker(worker);
2254 		/*
2255 		 * If the worker was somehow already running, then it had to be
2256 		 * in pool->idle_list when set_worker_dying() happened or we
2257 		 * wouldn't have gotten here.
2258 		 *
2259 		 * Thus, the worker must either have observed the WORKER_DIE
2260 		 * flag, or have set its state to TASK_IDLE. Either way, the
2261 		 * below will be observed by the worker and is safe to do
2262 		 * outside of pool->lock.
2263 		 */
2264 		wake_up_process(worker->task);
2265 	}
2266 }
2267 
2268 /**
2269  * set_worker_dying - Tag a worker for destruction
2270  * @worker: worker to be destroyed
2271  * @list: transfer worker away from its pool->idle_list and into list
2272  *
2273  * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
2274  * should be idle.
2275  *
2276  * CONTEXT:
2277  * raw_spin_lock_irq(pool->lock).
2278  */
2279 static void set_worker_dying(struct worker *worker, struct list_head *list)
2280 {
2281 	struct worker_pool *pool = worker->pool;
2282 
2283 	lockdep_assert_held(&pool->lock);
2284 	lockdep_assert_held(&wq_pool_attach_mutex);
2285 
2286 	/* sanity check frenzy */
2287 	if (WARN_ON(worker->current_work) ||
2288 	    WARN_ON(!list_empty(&worker->scheduled)) ||
2289 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2290 		return;
2291 
2292 	pool->nr_workers--;
2293 	pool->nr_idle--;
2294 
2295 	worker->flags |= WORKER_DIE;
2296 
2297 	list_move(&worker->entry, list);
2298 	list_move(&worker->node, &pool->dying_workers);
2299 }
2300 
2301 /**
2302  * idle_worker_timeout - check if some idle workers can now be deleted.
2303  * @t: The pool's idle_timer that just expired
2304  *
2305  * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2306  * worker_leave_idle(), as a worker flicking between idle and active while its
2307  * pool is at the too_many_workers() tipping point would cause too much timer
2308  * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2309  * it expire and re-evaluate things from there.
2310  */
2311 static void idle_worker_timeout(struct timer_list *t)
2312 {
2313 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2314 	bool do_cull = false;
2315 
2316 	if (work_pending(&pool->idle_cull_work))
2317 		return;
2318 
2319 	raw_spin_lock_irq(&pool->lock);
2320 
2321 	if (too_many_workers(pool)) {
2322 		struct worker *worker;
2323 		unsigned long expires;
2324 
2325 		/* idle_list is kept in LIFO order, check the last one */
2326 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2327 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2328 		do_cull = !time_before(jiffies, expires);
2329 
2330 		if (!do_cull)
2331 			mod_timer(&pool->idle_timer, expires);
2332 	}
2333 	raw_spin_unlock_irq(&pool->lock);
2334 
2335 	if (do_cull)
2336 		queue_work(system_unbound_wq, &pool->idle_cull_work);
2337 }
2338 
2339 /**
2340  * idle_cull_fn - cull workers that have been idle for too long.
2341  * @work: the pool's work for handling these idle workers
2342  *
2343  * This goes through a pool's idle workers and gets rid of those that have been
2344  * idle for at least IDLE_WORKER_TIMEOUT seconds.
2345  *
2346  * We don't want to disturb isolated CPUs because of a pcpu kworker being
2347  * culled, so this also resets worker affinity. This requires a sleepable
2348  * context, hence the split between timer callback and work item.
2349  */
2350 static void idle_cull_fn(struct work_struct *work)
2351 {
2352 	struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2353 	LIST_HEAD(cull_list);
2354 
2355 	/*
2356 	 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2357 	 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
2358 	 * path. This is required as a previously-preempted worker could run after
2359 	 * set_worker_dying() has happened but before wake_dying_workers() did.
2360 	 */
2361 	mutex_lock(&wq_pool_attach_mutex);
2362 	raw_spin_lock_irq(&pool->lock);
2363 
2364 	while (too_many_workers(pool)) {
2365 		struct worker *worker;
2366 		unsigned long expires;
2367 
2368 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2369 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2370 
2371 		if (time_before(jiffies, expires)) {
2372 			mod_timer(&pool->idle_timer, expires);
2373 			break;
2374 		}
2375 
2376 		set_worker_dying(worker, &cull_list);
2377 	}
2378 
2379 	raw_spin_unlock_irq(&pool->lock);
2380 	wake_dying_workers(&cull_list);
2381 	mutex_unlock(&wq_pool_attach_mutex);
2382 }
2383 
2384 static void send_mayday(struct work_struct *work)
2385 {
2386 	struct pool_workqueue *pwq = get_work_pwq(work);
2387 	struct workqueue_struct *wq = pwq->wq;
2388 
2389 	lockdep_assert_held(&wq_mayday_lock);
2390 
2391 	if (!wq->rescuer)
2392 		return;
2393 
2394 	/* mayday mayday mayday */
2395 	if (list_empty(&pwq->mayday_node)) {
2396 		/*
2397 		 * If @pwq is for an unbound wq, its base ref may be put at
2398 		 * any time due to an attribute change.  Pin @pwq until the
2399 		 * rescuer is done with it.
2400 		 */
2401 		get_pwq(pwq);
2402 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2403 		wake_up_process(wq->rescuer->task);
2404 		pwq->stats[PWQ_STAT_MAYDAY]++;
2405 	}
2406 }
2407 
2408 static void pool_mayday_timeout(struct timer_list *t)
2409 {
2410 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2411 	struct work_struct *work;
2412 
2413 	raw_spin_lock_irq(&pool->lock);
2414 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2415 
2416 	if (need_to_create_worker(pool)) {
2417 		/*
2418 		 * We've been trying to create a new worker but
2419 		 * haven't been successful.  We might be hitting an
2420 		 * allocation deadlock.  Send distress signals to
2421 		 * rescuers.
2422 		 */
2423 		list_for_each_entry(work, &pool->worklist, entry)
2424 			send_mayday(work);
2425 	}
2426 
2427 	raw_spin_unlock(&wq_mayday_lock);
2428 	raw_spin_unlock_irq(&pool->lock);
2429 
2430 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2431 }
2432 
2433 /**
2434  * maybe_create_worker - create a new worker if necessary
2435  * @pool: pool to create a new worker for
2436  *
2437  * Create a new worker for @pool if necessary.  @pool is guaranteed to
2438  * have at least one idle worker on return from this function.  If
2439  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2440  * sent to all rescuers with works scheduled on @pool to resolve
2441  * possible allocation deadlock.
2442  *
2443  * On return, need_to_create_worker() is guaranteed to be %false and
2444  * may_start_working() %true.
2445  *
2446  * LOCKING:
2447  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2448  * multiple times.  Does GFP_KERNEL allocations.  Called only from
2449  * manager.
2450  */
2451 static void maybe_create_worker(struct worker_pool *pool)
2452 __releases(&pool->lock)
2453 __acquires(&pool->lock)
2454 {
2455 restart:
2456 	raw_spin_unlock_irq(&pool->lock);
2457 
2458 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2459 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2460 
2461 	while (true) {
2462 		if (create_worker(pool) || !need_to_create_worker(pool))
2463 			break;
2464 
2465 		schedule_timeout_interruptible(CREATE_COOLDOWN);
2466 
2467 		if (!need_to_create_worker(pool))
2468 			break;
2469 	}
2470 
2471 	del_timer_sync(&pool->mayday_timer);
2472 	raw_spin_lock_irq(&pool->lock);
2473 	/*
2474 	 * This is necessary even after a new worker was just successfully
2475 	 * created as @pool->lock was dropped and the new worker might have
2476 	 * already become busy.
2477 	 */
2478 	if (need_to_create_worker(pool))
2479 		goto restart;
2480 }
2481 
2482 /**
2483  * manage_workers - manage worker pool
2484  * @worker: self
2485  *
2486  * Assume the manager role and manage the worker pool @worker belongs
2487  * to.  At any given time, there can be only zero or one manager per
2488  * pool.  The exclusion is handled automatically by this function.
2489  *
2490  * The caller can safely start processing works on false return.  On
2491  * true return, it's guaranteed that need_to_create_worker() is false
2492  * and may_start_working() is true.
2493  *
2494  * CONTEXT:
2495  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2496  * multiple times.  Does GFP_KERNEL allocations.
2497  *
2498  * Return:
2499  * %false if the pool doesn't need management and the caller can safely
2500  * start processing works, %true if management function was performed and
2501  * the conditions that the caller verified before calling the function may
2502  * no longer be true.
2503  */
2504 static bool manage_workers(struct worker *worker)
2505 {
2506 	struct worker_pool *pool = worker->pool;
2507 
2508 	if (pool->flags & POOL_MANAGER_ACTIVE)
2509 		return false;
2510 
2511 	pool->flags |= POOL_MANAGER_ACTIVE;
2512 	pool->manager = worker;
2513 
2514 	maybe_create_worker(pool);
2515 
2516 	pool->manager = NULL;
2517 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2518 	rcuwait_wake_up(&manager_wait);
2519 	return true;
2520 }
2521 
2522 /**
2523  * process_one_work - process single work
2524  * @worker: self
2525  * @work: work to process
2526  *
2527  * Process @work.  This function contains all the logics necessary to
2528  * process a single work including synchronization against and
2529  * interaction with other workers on the same cpu, queueing and
2530  * flushing.  As long as context requirement is met, any worker can
2531  * call this function to process a work.
2532  *
2533  * CONTEXT:
2534  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2535  */
2536 static void process_one_work(struct worker *worker, struct work_struct *work)
2537 __releases(&pool->lock)
2538 __acquires(&pool->lock)
2539 {
2540 	struct pool_workqueue *pwq = get_work_pwq(work);
2541 	struct worker_pool *pool = worker->pool;
2542 	unsigned long work_data;
2543 #ifdef CONFIG_LOCKDEP
2544 	/*
2545 	 * It is permissible to free the struct work_struct from
2546 	 * inside the function that is called from it, this we need to
2547 	 * take into account for lockdep too.  To avoid bogus "held
2548 	 * lock freed" warnings as well as problems when looking into
2549 	 * work->lockdep_map, make a copy and use that here.
2550 	 */
2551 	struct lockdep_map lockdep_map;
2552 
2553 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2554 #endif
2555 	/* ensure we're on the correct CPU */
2556 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2557 		     raw_smp_processor_id() != pool->cpu);
2558 
2559 	/* claim and dequeue */
2560 	debug_work_deactivate(work);
2561 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2562 	worker->current_work = work;
2563 	worker->current_func = work->func;
2564 	worker->current_pwq = pwq;
2565 	worker->current_at = worker->task->se.sum_exec_runtime;
2566 	work_data = *work_data_bits(work);
2567 	worker->current_color = get_work_color(work_data);
2568 
2569 	/*
2570 	 * Record wq name for cmdline and debug reporting, may get
2571 	 * overridden through set_worker_desc().
2572 	 */
2573 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2574 
2575 	list_del_init(&work->entry);
2576 
2577 	/*
2578 	 * CPU intensive works don't participate in concurrency management.
2579 	 * They're the scheduler's responsibility.  This takes @worker out
2580 	 * of concurrency management and the next code block will chain
2581 	 * execution of the pending work items.
2582 	 */
2583 	if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
2584 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2585 
2586 	/*
2587 	 * Kick @pool if necessary. It's always noop for per-cpu worker pools
2588 	 * since nr_running would always be >= 1 at this point. This is used to
2589 	 * chain execution of the pending work items for WORKER_NOT_RUNNING
2590 	 * workers such as the UNBOUND and CPU_INTENSIVE ones.
2591 	 */
2592 	kick_pool(pool);
2593 
2594 	/*
2595 	 * Record the last pool and clear PENDING which should be the last
2596 	 * update to @work.  Also, do this inside @pool->lock so that
2597 	 * PENDING and queued state changes happen together while IRQ is
2598 	 * disabled.
2599 	 */
2600 	set_work_pool_and_clear_pending(work, pool->id);
2601 
2602 	pwq->stats[PWQ_STAT_STARTED]++;
2603 	raw_spin_unlock_irq(&pool->lock);
2604 
2605 	lock_map_acquire(&pwq->wq->lockdep_map);
2606 	lock_map_acquire(&lockdep_map);
2607 	/*
2608 	 * Strictly speaking we should mark the invariant state without holding
2609 	 * any locks, that is, before these two lock_map_acquire()'s.
2610 	 *
2611 	 * However, that would result in:
2612 	 *
2613 	 *   A(W1)
2614 	 *   WFC(C)
2615 	 *		A(W1)
2616 	 *		C(C)
2617 	 *
2618 	 * Which would create W1->C->W1 dependencies, even though there is no
2619 	 * actual deadlock possible. There are two solutions, using a
2620 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2621 	 * hit the lockdep limitation on recursive locks, or simply discard
2622 	 * these locks.
2623 	 *
2624 	 * AFAICT there is no possible deadlock scenario between the
2625 	 * flush_work() and complete() primitives (except for single-threaded
2626 	 * workqueues), so hiding them isn't a problem.
2627 	 */
2628 	lockdep_invariant_state(true);
2629 	trace_workqueue_execute_start(work);
2630 	worker->current_func(work);
2631 	/*
2632 	 * While we must be careful to not use "work" after this, the trace
2633 	 * point will only record its address.
2634 	 */
2635 	trace_workqueue_execute_end(work, worker->current_func);
2636 	pwq->stats[PWQ_STAT_COMPLETED]++;
2637 	lock_map_release(&lockdep_map);
2638 	lock_map_release(&pwq->wq->lockdep_map);
2639 
2640 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2641 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2642 		       "     last function: %ps\n",
2643 		       current->comm, preempt_count(), task_pid_nr(current),
2644 		       worker->current_func);
2645 		debug_show_held_locks(current);
2646 		dump_stack();
2647 	}
2648 
2649 	/*
2650 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
2651 	 * kernels, where a requeueing work item waiting for something to
2652 	 * happen could deadlock with stop_machine as such work item could
2653 	 * indefinitely requeue itself while all other CPUs are trapped in
2654 	 * stop_machine. At the same time, report a quiescent RCU state so
2655 	 * the same condition doesn't freeze RCU.
2656 	 */
2657 	cond_resched();
2658 
2659 	raw_spin_lock_irq(&pool->lock);
2660 
2661 	/*
2662 	 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
2663 	 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
2664 	 * wq_cpu_intensive_thresh_us. Clear it.
2665 	 */
2666 	worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2667 
2668 	/* tag the worker for identification in schedule() */
2669 	worker->last_func = worker->current_func;
2670 
2671 	/* we're done with it, release */
2672 	hash_del(&worker->hentry);
2673 	worker->current_work = NULL;
2674 	worker->current_func = NULL;
2675 	worker->current_pwq = NULL;
2676 	worker->current_color = INT_MAX;
2677 	pwq_dec_nr_in_flight(pwq, work_data);
2678 }
2679 
2680 /**
2681  * process_scheduled_works - process scheduled works
2682  * @worker: self
2683  *
2684  * Process all scheduled works.  Please note that the scheduled list
2685  * may change while processing a work, so this function repeatedly
2686  * fetches a work from the top and executes it.
2687  *
2688  * CONTEXT:
2689  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2690  * multiple times.
2691  */
2692 static void process_scheduled_works(struct worker *worker)
2693 {
2694 	struct work_struct *work;
2695 	bool first = true;
2696 
2697 	while ((work = list_first_entry_or_null(&worker->scheduled,
2698 						struct work_struct, entry))) {
2699 		if (first) {
2700 			worker->pool->watchdog_ts = jiffies;
2701 			first = false;
2702 		}
2703 		process_one_work(worker, work);
2704 	}
2705 }
2706 
2707 static void set_pf_worker(bool val)
2708 {
2709 	mutex_lock(&wq_pool_attach_mutex);
2710 	if (val)
2711 		current->flags |= PF_WQ_WORKER;
2712 	else
2713 		current->flags &= ~PF_WQ_WORKER;
2714 	mutex_unlock(&wq_pool_attach_mutex);
2715 }
2716 
2717 /**
2718  * worker_thread - the worker thread function
2719  * @__worker: self
2720  *
2721  * The worker thread function.  All workers belong to a worker_pool -
2722  * either a per-cpu one or dynamic unbound one.  These workers process all
2723  * work items regardless of their specific target workqueue.  The only
2724  * exception is work items which belong to workqueues with a rescuer which
2725  * will be explained in rescuer_thread().
2726  *
2727  * Return: 0
2728  */
2729 static int worker_thread(void *__worker)
2730 {
2731 	struct worker *worker = __worker;
2732 	struct worker_pool *pool = worker->pool;
2733 
2734 	/* tell the scheduler that this is a workqueue worker */
2735 	set_pf_worker(true);
2736 woke_up:
2737 	raw_spin_lock_irq(&pool->lock);
2738 
2739 	/* am I supposed to die? */
2740 	if (unlikely(worker->flags & WORKER_DIE)) {
2741 		raw_spin_unlock_irq(&pool->lock);
2742 		set_pf_worker(false);
2743 
2744 		set_task_comm(worker->task, "kworker/dying");
2745 		ida_free(&pool->worker_ida, worker->id);
2746 		worker_detach_from_pool(worker);
2747 		WARN_ON_ONCE(!list_empty(&worker->entry));
2748 		kfree(worker);
2749 		return 0;
2750 	}
2751 
2752 	worker_leave_idle(worker);
2753 recheck:
2754 	/* no more worker necessary? */
2755 	if (!need_more_worker(pool))
2756 		goto sleep;
2757 
2758 	/* do we need to manage? */
2759 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2760 		goto recheck;
2761 
2762 	/*
2763 	 * ->scheduled list can only be filled while a worker is
2764 	 * preparing to process a work or actually processing it.
2765 	 * Make sure nobody diddled with it while I was sleeping.
2766 	 */
2767 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2768 
2769 	/*
2770 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2771 	 * worker or that someone else has already assumed the manager
2772 	 * role.  This is where @worker starts participating in concurrency
2773 	 * management if applicable and concurrency management is restored
2774 	 * after being rebound.  See rebind_workers() for details.
2775 	 */
2776 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2777 
2778 	do {
2779 		struct work_struct *work =
2780 			list_first_entry(&pool->worklist,
2781 					 struct work_struct, entry);
2782 
2783 		if (assign_work(work, worker, NULL))
2784 			process_scheduled_works(worker);
2785 	} while (keep_working(pool));
2786 
2787 	worker_set_flags(worker, WORKER_PREP);
2788 sleep:
2789 	/*
2790 	 * pool->lock is held and there's no work to process and no need to
2791 	 * manage, sleep.  Workers are woken up only while holding
2792 	 * pool->lock or from local cpu, so setting the current state
2793 	 * before releasing pool->lock is enough to prevent losing any
2794 	 * event.
2795 	 */
2796 	worker_enter_idle(worker);
2797 	__set_current_state(TASK_IDLE);
2798 	raw_spin_unlock_irq(&pool->lock);
2799 	schedule();
2800 	goto woke_up;
2801 }
2802 
2803 /**
2804  * rescuer_thread - the rescuer thread function
2805  * @__rescuer: self
2806  *
2807  * Workqueue rescuer thread function.  There's one rescuer for each
2808  * workqueue which has WQ_MEM_RECLAIM set.
2809  *
2810  * Regular work processing on a pool may block trying to create a new
2811  * worker which uses GFP_KERNEL allocation which has slight chance of
2812  * developing into deadlock if some works currently on the same queue
2813  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2814  * the problem rescuer solves.
2815  *
2816  * When such condition is possible, the pool summons rescuers of all
2817  * workqueues which have works queued on the pool and let them process
2818  * those works so that forward progress can be guaranteed.
2819  *
2820  * This should happen rarely.
2821  *
2822  * Return: 0
2823  */
2824 static int rescuer_thread(void *__rescuer)
2825 {
2826 	struct worker *rescuer = __rescuer;
2827 	struct workqueue_struct *wq = rescuer->rescue_wq;
2828 	bool should_stop;
2829 
2830 	set_user_nice(current, RESCUER_NICE_LEVEL);
2831 
2832 	/*
2833 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2834 	 * doesn't participate in concurrency management.
2835 	 */
2836 	set_pf_worker(true);
2837 repeat:
2838 	set_current_state(TASK_IDLE);
2839 
2840 	/*
2841 	 * By the time the rescuer is requested to stop, the workqueue
2842 	 * shouldn't have any work pending, but @wq->maydays may still have
2843 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2844 	 * all the work items before the rescuer got to them.  Go through
2845 	 * @wq->maydays processing before acting on should_stop so that the
2846 	 * list is always empty on exit.
2847 	 */
2848 	should_stop = kthread_should_stop();
2849 
2850 	/* see whether any pwq is asking for help */
2851 	raw_spin_lock_irq(&wq_mayday_lock);
2852 
2853 	while (!list_empty(&wq->maydays)) {
2854 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2855 					struct pool_workqueue, mayday_node);
2856 		struct worker_pool *pool = pwq->pool;
2857 		struct work_struct *work, *n;
2858 
2859 		__set_current_state(TASK_RUNNING);
2860 		list_del_init(&pwq->mayday_node);
2861 
2862 		raw_spin_unlock_irq(&wq_mayday_lock);
2863 
2864 		worker_attach_to_pool(rescuer, pool);
2865 
2866 		raw_spin_lock_irq(&pool->lock);
2867 
2868 		/*
2869 		 * Slurp in all works issued via this workqueue and
2870 		 * process'em.
2871 		 */
2872 		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2873 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2874 			if (get_work_pwq(work) == pwq &&
2875 			    assign_work(work, rescuer, &n))
2876 				pwq->stats[PWQ_STAT_RESCUED]++;
2877 		}
2878 
2879 		if (!list_empty(&rescuer->scheduled)) {
2880 			process_scheduled_works(rescuer);
2881 
2882 			/*
2883 			 * The above execution of rescued work items could
2884 			 * have created more to rescue through
2885 			 * pwq_activate_first_inactive() or chained
2886 			 * queueing.  Let's put @pwq back on mayday list so
2887 			 * that such back-to-back work items, which may be
2888 			 * being used to relieve memory pressure, don't
2889 			 * incur MAYDAY_INTERVAL delay inbetween.
2890 			 */
2891 			if (pwq->nr_active && need_to_create_worker(pool)) {
2892 				raw_spin_lock(&wq_mayday_lock);
2893 				/*
2894 				 * Queue iff we aren't racing destruction
2895 				 * and somebody else hasn't queued it already.
2896 				 */
2897 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2898 					get_pwq(pwq);
2899 					list_add_tail(&pwq->mayday_node, &wq->maydays);
2900 				}
2901 				raw_spin_unlock(&wq_mayday_lock);
2902 			}
2903 		}
2904 
2905 		/*
2906 		 * Put the reference grabbed by send_mayday().  @pool won't
2907 		 * go away while we're still attached to it.
2908 		 */
2909 		put_pwq(pwq);
2910 
2911 		/*
2912 		 * Leave this pool. Notify regular workers; otherwise, we end up
2913 		 * with 0 concurrency and stalling the execution.
2914 		 */
2915 		kick_pool(pool);
2916 
2917 		raw_spin_unlock_irq(&pool->lock);
2918 
2919 		worker_detach_from_pool(rescuer);
2920 
2921 		raw_spin_lock_irq(&wq_mayday_lock);
2922 	}
2923 
2924 	raw_spin_unlock_irq(&wq_mayday_lock);
2925 
2926 	if (should_stop) {
2927 		__set_current_state(TASK_RUNNING);
2928 		set_pf_worker(false);
2929 		return 0;
2930 	}
2931 
2932 	/* rescuers should never participate in concurrency management */
2933 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2934 	schedule();
2935 	goto repeat;
2936 }
2937 
2938 /**
2939  * check_flush_dependency - check for flush dependency sanity
2940  * @target_wq: workqueue being flushed
2941  * @target_work: work item being flushed (NULL for workqueue flushes)
2942  *
2943  * %current is trying to flush the whole @target_wq or @target_work on it.
2944  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2945  * reclaiming memory or running on a workqueue which doesn't have
2946  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2947  * a deadlock.
2948  */
2949 static void check_flush_dependency(struct workqueue_struct *target_wq,
2950 				   struct work_struct *target_work)
2951 {
2952 	work_func_t target_func = target_work ? target_work->func : NULL;
2953 	struct worker *worker;
2954 
2955 	if (target_wq->flags & WQ_MEM_RECLAIM)
2956 		return;
2957 
2958 	worker = current_wq_worker();
2959 
2960 	WARN_ONCE(current->flags & PF_MEMALLOC,
2961 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2962 		  current->pid, current->comm, target_wq->name, target_func);
2963 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2964 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2965 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2966 		  worker->current_pwq->wq->name, worker->current_func,
2967 		  target_wq->name, target_func);
2968 }
2969 
2970 struct wq_barrier {
2971 	struct work_struct	work;
2972 	struct completion	done;
2973 	struct task_struct	*task;	/* purely informational */
2974 };
2975 
2976 static void wq_barrier_func(struct work_struct *work)
2977 {
2978 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2979 	complete(&barr->done);
2980 }
2981 
2982 /**
2983  * insert_wq_barrier - insert a barrier work
2984  * @pwq: pwq to insert barrier into
2985  * @barr: wq_barrier to insert
2986  * @target: target work to attach @barr to
2987  * @worker: worker currently executing @target, NULL if @target is not executing
2988  *
2989  * @barr is linked to @target such that @barr is completed only after
2990  * @target finishes execution.  Please note that the ordering
2991  * guarantee is observed only with respect to @target and on the local
2992  * cpu.
2993  *
2994  * Currently, a queued barrier can't be canceled.  This is because
2995  * try_to_grab_pending() can't determine whether the work to be
2996  * grabbed is at the head of the queue and thus can't clear LINKED
2997  * flag of the previous work while there must be a valid next work
2998  * after a work with LINKED flag set.
2999  *
3000  * Note that when @worker is non-NULL, @target may be modified
3001  * underneath us, so we can't reliably determine pwq from @target.
3002  *
3003  * CONTEXT:
3004  * raw_spin_lock_irq(pool->lock).
3005  */
3006 static void insert_wq_barrier(struct pool_workqueue *pwq,
3007 			      struct wq_barrier *barr,
3008 			      struct work_struct *target, struct worker *worker)
3009 {
3010 	unsigned int work_flags = 0;
3011 	unsigned int work_color;
3012 	struct list_head *head;
3013 
3014 	/*
3015 	 * debugobject calls are safe here even with pool->lock locked
3016 	 * as we know for sure that this will not trigger any of the
3017 	 * checks and call back into the fixup functions where we
3018 	 * might deadlock.
3019 	 */
3020 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
3021 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3022 
3023 	init_completion_map(&barr->done, &target->lockdep_map);
3024 
3025 	barr->task = current;
3026 
3027 	/* The barrier work item does not participate in pwq->nr_active. */
3028 	work_flags |= WORK_STRUCT_INACTIVE;
3029 
3030 	/*
3031 	 * If @target is currently being executed, schedule the
3032 	 * barrier to the worker; otherwise, put it after @target.
3033 	 */
3034 	if (worker) {
3035 		head = worker->scheduled.next;
3036 		work_color = worker->current_color;
3037 	} else {
3038 		unsigned long *bits = work_data_bits(target);
3039 
3040 		head = target->entry.next;
3041 		/* there can already be other linked works, inherit and set */
3042 		work_flags |= *bits & WORK_STRUCT_LINKED;
3043 		work_color = get_work_color(*bits);
3044 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
3045 	}
3046 
3047 	pwq->nr_in_flight[work_color]++;
3048 	work_flags |= work_color_to_flags(work_color);
3049 
3050 	insert_work(pwq, &barr->work, head, work_flags);
3051 }
3052 
3053 /**
3054  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3055  * @wq: workqueue being flushed
3056  * @flush_color: new flush color, < 0 for no-op
3057  * @work_color: new work color, < 0 for no-op
3058  *
3059  * Prepare pwqs for workqueue flushing.
3060  *
3061  * If @flush_color is non-negative, flush_color on all pwqs should be
3062  * -1.  If no pwq has in-flight commands at the specified color, all
3063  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
3064  * has in flight commands, its pwq->flush_color is set to
3065  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3066  * wakeup logic is armed and %true is returned.
3067  *
3068  * The caller should have initialized @wq->first_flusher prior to
3069  * calling this function with non-negative @flush_color.  If
3070  * @flush_color is negative, no flush color update is done and %false
3071  * is returned.
3072  *
3073  * If @work_color is non-negative, all pwqs should have the same
3074  * work_color which is previous to @work_color and all will be
3075  * advanced to @work_color.
3076  *
3077  * CONTEXT:
3078  * mutex_lock(wq->mutex).
3079  *
3080  * Return:
3081  * %true if @flush_color >= 0 and there's something to flush.  %false
3082  * otherwise.
3083  */
3084 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3085 				      int flush_color, int work_color)
3086 {
3087 	bool wait = false;
3088 	struct pool_workqueue *pwq;
3089 
3090 	if (flush_color >= 0) {
3091 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3092 		atomic_set(&wq->nr_pwqs_to_flush, 1);
3093 	}
3094 
3095 	for_each_pwq(pwq, wq) {
3096 		struct worker_pool *pool = pwq->pool;
3097 
3098 		raw_spin_lock_irq(&pool->lock);
3099 
3100 		if (flush_color >= 0) {
3101 			WARN_ON_ONCE(pwq->flush_color != -1);
3102 
3103 			if (pwq->nr_in_flight[flush_color]) {
3104 				pwq->flush_color = flush_color;
3105 				atomic_inc(&wq->nr_pwqs_to_flush);
3106 				wait = true;
3107 			}
3108 		}
3109 
3110 		if (work_color >= 0) {
3111 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3112 			pwq->work_color = work_color;
3113 		}
3114 
3115 		raw_spin_unlock_irq(&pool->lock);
3116 	}
3117 
3118 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3119 		complete(&wq->first_flusher->done);
3120 
3121 	return wait;
3122 }
3123 
3124 /**
3125  * __flush_workqueue - ensure that any scheduled work has run to completion.
3126  * @wq: workqueue to flush
3127  *
3128  * This function sleeps until all work items which were queued on entry
3129  * have finished execution, but it is not livelocked by new incoming ones.
3130  */
3131 void __flush_workqueue(struct workqueue_struct *wq)
3132 {
3133 	struct wq_flusher this_flusher = {
3134 		.list = LIST_HEAD_INIT(this_flusher.list),
3135 		.flush_color = -1,
3136 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
3137 	};
3138 	int next_color;
3139 
3140 	if (WARN_ON(!wq_online))
3141 		return;
3142 
3143 	lock_map_acquire(&wq->lockdep_map);
3144 	lock_map_release(&wq->lockdep_map);
3145 
3146 	mutex_lock(&wq->mutex);
3147 
3148 	/*
3149 	 * Start-to-wait phase
3150 	 */
3151 	next_color = work_next_color(wq->work_color);
3152 
3153 	if (next_color != wq->flush_color) {
3154 		/*
3155 		 * Color space is not full.  The current work_color
3156 		 * becomes our flush_color and work_color is advanced
3157 		 * by one.
3158 		 */
3159 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3160 		this_flusher.flush_color = wq->work_color;
3161 		wq->work_color = next_color;
3162 
3163 		if (!wq->first_flusher) {
3164 			/* no flush in progress, become the first flusher */
3165 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3166 
3167 			wq->first_flusher = &this_flusher;
3168 
3169 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3170 						       wq->work_color)) {
3171 				/* nothing to flush, done */
3172 				wq->flush_color = next_color;
3173 				wq->first_flusher = NULL;
3174 				goto out_unlock;
3175 			}
3176 		} else {
3177 			/* wait in queue */
3178 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3179 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
3180 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3181 		}
3182 	} else {
3183 		/*
3184 		 * Oops, color space is full, wait on overflow queue.
3185 		 * The next flush completion will assign us
3186 		 * flush_color and transfer to flusher_queue.
3187 		 */
3188 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3189 	}
3190 
3191 	check_flush_dependency(wq, NULL);
3192 
3193 	mutex_unlock(&wq->mutex);
3194 
3195 	wait_for_completion(&this_flusher.done);
3196 
3197 	/*
3198 	 * Wake-up-and-cascade phase
3199 	 *
3200 	 * First flushers are responsible for cascading flushes and
3201 	 * handling overflow.  Non-first flushers can simply return.
3202 	 */
3203 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
3204 		return;
3205 
3206 	mutex_lock(&wq->mutex);
3207 
3208 	/* we might have raced, check again with mutex held */
3209 	if (wq->first_flusher != &this_flusher)
3210 		goto out_unlock;
3211 
3212 	WRITE_ONCE(wq->first_flusher, NULL);
3213 
3214 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
3215 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3216 
3217 	while (true) {
3218 		struct wq_flusher *next, *tmp;
3219 
3220 		/* complete all the flushers sharing the current flush color */
3221 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
3222 			if (next->flush_color != wq->flush_color)
3223 				break;
3224 			list_del_init(&next->list);
3225 			complete(&next->done);
3226 		}
3227 
3228 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
3229 			     wq->flush_color != work_next_color(wq->work_color));
3230 
3231 		/* this flush_color is finished, advance by one */
3232 		wq->flush_color = work_next_color(wq->flush_color);
3233 
3234 		/* one color has been freed, handle overflow queue */
3235 		if (!list_empty(&wq->flusher_overflow)) {
3236 			/*
3237 			 * Assign the same color to all overflowed
3238 			 * flushers, advance work_color and append to
3239 			 * flusher_queue.  This is the start-to-wait
3240 			 * phase for these overflowed flushers.
3241 			 */
3242 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
3243 				tmp->flush_color = wq->work_color;
3244 
3245 			wq->work_color = work_next_color(wq->work_color);
3246 
3247 			list_splice_tail_init(&wq->flusher_overflow,
3248 					      &wq->flusher_queue);
3249 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3250 		}
3251 
3252 		if (list_empty(&wq->flusher_queue)) {
3253 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
3254 			break;
3255 		}
3256 
3257 		/*
3258 		 * Need to flush more colors.  Make the next flusher
3259 		 * the new first flusher and arm pwqs.
3260 		 */
3261 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
3262 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
3263 
3264 		list_del_init(&next->list);
3265 		wq->first_flusher = next;
3266 
3267 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
3268 			break;
3269 
3270 		/*
3271 		 * Meh... this color is already done, clear first
3272 		 * flusher and repeat cascading.
3273 		 */
3274 		wq->first_flusher = NULL;
3275 	}
3276 
3277 out_unlock:
3278 	mutex_unlock(&wq->mutex);
3279 }
3280 EXPORT_SYMBOL(__flush_workqueue);
3281 
3282 /**
3283  * drain_workqueue - drain a workqueue
3284  * @wq: workqueue to drain
3285  *
3286  * Wait until the workqueue becomes empty.  While draining is in progress,
3287  * only chain queueing is allowed.  IOW, only currently pending or running
3288  * work items on @wq can queue further work items on it.  @wq is flushed
3289  * repeatedly until it becomes empty.  The number of flushing is determined
3290  * by the depth of chaining and should be relatively short.  Whine if it
3291  * takes too long.
3292  */
3293 void drain_workqueue(struct workqueue_struct *wq)
3294 {
3295 	unsigned int flush_cnt = 0;
3296 	struct pool_workqueue *pwq;
3297 
3298 	/*
3299 	 * __queue_work() needs to test whether there are drainers, is much
3300 	 * hotter than drain_workqueue() and already looks at @wq->flags.
3301 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
3302 	 */
3303 	mutex_lock(&wq->mutex);
3304 	if (!wq->nr_drainers++)
3305 		wq->flags |= __WQ_DRAINING;
3306 	mutex_unlock(&wq->mutex);
3307 reflush:
3308 	__flush_workqueue(wq);
3309 
3310 	mutex_lock(&wq->mutex);
3311 
3312 	for_each_pwq(pwq, wq) {
3313 		bool drained;
3314 
3315 		raw_spin_lock_irq(&pwq->pool->lock);
3316 		drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
3317 		raw_spin_unlock_irq(&pwq->pool->lock);
3318 
3319 		if (drained)
3320 			continue;
3321 
3322 		if (++flush_cnt == 10 ||
3323 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
3324 			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3325 				wq->name, __func__, flush_cnt);
3326 
3327 		mutex_unlock(&wq->mutex);
3328 		goto reflush;
3329 	}
3330 
3331 	if (!--wq->nr_drainers)
3332 		wq->flags &= ~__WQ_DRAINING;
3333 	mutex_unlock(&wq->mutex);
3334 }
3335 EXPORT_SYMBOL_GPL(drain_workqueue);
3336 
3337 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3338 			     bool from_cancel)
3339 {
3340 	struct worker *worker = NULL;
3341 	struct worker_pool *pool;
3342 	struct pool_workqueue *pwq;
3343 
3344 	might_sleep();
3345 
3346 	rcu_read_lock();
3347 	pool = get_work_pool(work);
3348 	if (!pool) {
3349 		rcu_read_unlock();
3350 		return false;
3351 	}
3352 
3353 	raw_spin_lock_irq(&pool->lock);
3354 	/* see the comment in try_to_grab_pending() with the same code */
3355 	pwq = get_work_pwq(work);
3356 	if (pwq) {
3357 		if (unlikely(pwq->pool != pool))
3358 			goto already_gone;
3359 	} else {
3360 		worker = find_worker_executing_work(pool, work);
3361 		if (!worker)
3362 			goto already_gone;
3363 		pwq = worker->current_pwq;
3364 	}
3365 
3366 	check_flush_dependency(pwq->wq, work);
3367 
3368 	insert_wq_barrier(pwq, barr, work, worker);
3369 	raw_spin_unlock_irq(&pool->lock);
3370 
3371 	/*
3372 	 * Force a lock recursion deadlock when using flush_work() inside a
3373 	 * single-threaded or rescuer equipped workqueue.
3374 	 *
3375 	 * For single threaded workqueues the deadlock happens when the work
3376 	 * is after the work issuing the flush_work(). For rescuer equipped
3377 	 * workqueues the deadlock happens when the rescuer stalls, blocking
3378 	 * forward progress.
3379 	 */
3380 	if (!from_cancel &&
3381 	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3382 		lock_map_acquire(&pwq->wq->lockdep_map);
3383 		lock_map_release(&pwq->wq->lockdep_map);
3384 	}
3385 	rcu_read_unlock();
3386 	return true;
3387 already_gone:
3388 	raw_spin_unlock_irq(&pool->lock);
3389 	rcu_read_unlock();
3390 	return false;
3391 }
3392 
3393 static bool __flush_work(struct work_struct *work, bool from_cancel)
3394 {
3395 	struct wq_barrier barr;
3396 
3397 	if (WARN_ON(!wq_online))
3398 		return false;
3399 
3400 	if (WARN_ON(!work->func))
3401 		return false;
3402 
3403 	lock_map_acquire(&work->lockdep_map);
3404 	lock_map_release(&work->lockdep_map);
3405 
3406 	if (start_flush_work(work, &barr, from_cancel)) {
3407 		wait_for_completion(&barr.done);
3408 		destroy_work_on_stack(&barr.work);
3409 		return true;
3410 	} else {
3411 		return false;
3412 	}
3413 }
3414 
3415 /**
3416  * flush_work - wait for a work to finish executing the last queueing instance
3417  * @work: the work to flush
3418  *
3419  * Wait until @work has finished execution.  @work is guaranteed to be idle
3420  * on return if it hasn't been requeued since flush started.
3421  *
3422  * Return:
3423  * %true if flush_work() waited for the work to finish execution,
3424  * %false if it was already idle.
3425  */
3426 bool flush_work(struct work_struct *work)
3427 {
3428 	return __flush_work(work, false);
3429 }
3430 EXPORT_SYMBOL_GPL(flush_work);
3431 
3432 struct cwt_wait {
3433 	wait_queue_entry_t		wait;
3434 	struct work_struct	*work;
3435 };
3436 
3437 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3438 {
3439 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3440 
3441 	if (cwait->work != key)
3442 		return 0;
3443 	return autoremove_wake_function(wait, mode, sync, key);
3444 }
3445 
3446 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3447 {
3448 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3449 	unsigned long flags;
3450 	int ret;
3451 
3452 	do {
3453 		ret = try_to_grab_pending(work, is_dwork, &flags);
3454 		/*
3455 		 * If someone else is already canceling, wait for it to
3456 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3457 		 * because we may get scheduled between @work's completion
3458 		 * and the other canceling task resuming and clearing
3459 		 * CANCELING - flush_work() will return false immediately
3460 		 * as @work is no longer busy, try_to_grab_pending() will
3461 		 * return -ENOENT as @work is still being canceled and the
3462 		 * other canceling task won't be able to clear CANCELING as
3463 		 * we're hogging the CPU.
3464 		 *
3465 		 * Let's wait for completion using a waitqueue.  As this
3466 		 * may lead to the thundering herd problem, use a custom
3467 		 * wake function which matches @work along with exclusive
3468 		 * wait and wakeup.
3469 		 */
3470 		if (unlikely(ret == -ENOENT)) {
3471 			struct cwt_wait cwait;
3472 
3473 			init_wait(&cwait.wait);
3474 			cwait.wait.func = cwt_wakefn;
3475 			cwait.work = work;
3476 
3477 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3478 						  TASK_UNINTERRUPTIBLE);
3479 			if (work_is_canceling(work))
3480 				schedule();
3481 			finish_wait(&cancel_waitq, &cwait.wait);
3482 		}
3483 	} while (unlikely(ret < 0));
3484 
3485 	/* tell other tasks trying to grab @work to back off */
3486 	mark_work_canceling(work);
3487 	local_irq_restore(flags);
3488 
3489 	/*
3490 	 * This allows canceling during early boot.  We know that @work
3491 	 * isn't executing.
3492 	 */
3493 	if (wq_online)
3494 		__flush_work(work, true);
3495 
3496 	clear_work_data(work);
3497 
3498 	/*
3499 	 * Paired with prepare_to_wait() above so that either
3500 	 * waitqueue_active() is visible here or !work_is_canceling() is
3501 	 * visible there.
3502 	 */
3503 	smp_mb();
3504 	if (waitqueue_active(&cancel_waitq))
3505 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3506 
3507 	return ret;
3508 }
3509 
3510 /**
3511  * cancel_work_sync - cancel a work and wait for it to finish
3512  * @work: the work to cancel
3513  *
3514  * Cancel @work and wait for its execution to finish.  This function
3515  * can be used even if the work re-queues itself or migrates to
3516  * another workqueue.  On return from this function, @work is
3517  * guaranteed to be not pending or executing on any CPU.
3518  *
3519  * cancel_work_sync(&delayed_work->work) must not be used for
3520  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3521  *
3522  * The caller must ensure that the workqueue on which @work was last
3523  * queued can't be destroyed before this function returns.
3524  *
3525  * Return:
3526  * %true if @work was pending, %false otherwise.
3527  */
3528 bool cancel_work_sync(struct work_struct *work)
3529 {
3530 	return __cancel_work_timer(work, false);
3531 }
3532 EXPORT_SYMBOL_GPL(cancel_work_sync);
3533 
3534 /**
3535  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3536  * @dwork: the delayed work to flush
3537  *
3538  * Delayed timer is cancelled and the pending work is queued for
3539  * immediate execution.  Like flush_work(), this function only
3540  * considers the last queueing instance of @dwork.
3541  *
3542  * Return:
3543  * %true if flush_work() waited for the work to finish execution,
3544  * %false if it was already idle.
3545  */
3546 bool flush_delayed_work(struct delayed_work *dwork)
3547 {
3548 	local_irq_disable();
3549 	if (del_timer_sync(&dwork->timer))
3550 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3551 	local_irq_enable();
3552 	return flush_work(&dwork->work);
3553 }
3554 EXPORT_SYMBOL(flush_delayed_work);
3555 
3556 /**
3557  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3558  * @rwork: the rcu work to flush
3559  *
3560  * Return:
3561  * %true if flush_rcu_work() waited for the work to finish execution,
3562  * %false if it was already idle.
3563  */
3564 bool flush_rcu_work(struct rcu_work *rwork)
3565 {
3566 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3567 		rcu_barrier();
3568 		flush_work(&rwork->work);
3569 		return true;
3570 	} else {
3571 		return flush_work(&rwork->work);
3572 	}
3573 }
3574 EXPORT_SYMBOL(flush_rcu_work);
3575 
3576 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3577 {
3578 	unsigned long flags;
3579 	int ret;
3580 
3581 	do {
3582 		ret = try_to_grab_pending(work, is_dwork, &flags);
3583 	} while (unlikely(ret == -EAGAIN));
3584 
3585 	if (unlikely(ret < 0))
3586 		return false;
3587 
3588 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3589 	local_irq_restore(flags);
3590 	return ret;
3591 }
3592 
3593 /*
3594  * See cancel_delayed_work()
3595  */
3596 bool cancel_work(struct work_struct *work)
3597 {
3598 	return __cancel_work(work, false);
3599 }
3600 EXPORT_SYMBOL(cancel_work);
3601 
3602 /**
3603  * cancel_delayed_work - cancel a delayed work
3604  * @dwork: delayed_work to cancel
3605  *
3606  * Kill off a pending delayed_work.
3607  *
3608  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3609  * pending.
3610  *
3611  * Note:
3612  * The work callback function may still be running on return, unless
3613  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3614  * use cancel_delayed_work_sync() to wait on it.
3615  *
3616  * This function is safe to call from any context including IRQ handler.
3617  */
3618 bool cancel_delayed_work(struct delayed_work *dwork)
3619 {
3620 	return __cancel_work(&dwork->work, true);
3621 }
3622 EXPORT_SYMBOL(cancel_delayed_work);
3623 
3624 /**
3625  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3626  * @dwork: the delayed work cancel
3627  *
3628  * This is cancel_work_sync() for delayed works.
3629  *
3630  * Return:
3631  * %true if @dwork was pending, %false otherwise.
3632  */
3633 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3634 {
3635 	return __cancel_work_timer(&dwork->work, true);
3636 }
3637 EXPORT_SYMBOL(cancel_delayed_work_sync);
3638 
3639 /**
3640  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3641  * @func: the function to call
3642  *
3643  * schedule_on_each_cpu() executes @func on each online CPU using the
3644  * system workqueue and blocks until all CPUs have completed.
3645  * schedule_on_each_cpu() is very slow.
3646  *
3647  * Return:
3648  * 0 on success, -errno on failure.
3649  */
3650 int schedule_on_each_cpu(work_func_t func)
3651 {
3652 	int cpu;
3653 	struct work_struct __percpu *works;
3654 
3655 	works = alloc_percpu(struct work_struct);
3656 	if (!works)
3657 		return -ENOMEM;
3658 
3659 	cpus_read_lock();
3660 
3661 	for_each_online_cpu(cpu) {
3662 		struct work_struct *work = per_cpu_ptr(works, cpu);
3663 
3664 		INIT_WORK(work, func);
3665 		schedule_work_on(cpu, work);
3666 	}
3667 
3668 	for_each_online_cpu(cpu)
3669 		flush_work(per_cpu_ptr(works, cpu));
3670 
3671 	cpus_read_unlock();
3672 	free_percpu(works);
3673 	return 0;
3674 }
3675 
3676 /**
3677  * execute_in_process_context - reliably execute the routine with user context
3678  * @fn:		the function to execute
3679  * @ew:		guaranteed storage for the execute work structure (must
3680  *		be available when the work executes)
3681  *
3682  * Executes the function immediately if process context is available,
3683  * otherwise schedules the function for delayed execution.
3684  *
3685  * Return:	0 - function was executed
3686  *		1 - function was scheduled for execution
3687  */
3688 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3689 {
3690 	if (!in_interrupt()) {
3691 		fn(&ew->work);
3692 		return 0;
3693 	}
3694 
3695 	INIT_WORK(&ew->work, fn);
3696 	schedule_work(&ew->work);
3697 
3698 	return 1;
3699 }
3700 EXPORT_SYMBOL_GPL(execute_in_process_context);
3701 
3702 /**
3703  * free_workqueue_attrs - free a workqueue_attrs
3704  * @attrs: workqueue_attrs to free
3705  *
3706  * Undo alloc_workqueue_attrs().
3707  */
3708 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3709 {
3710 	if (attrs) {
3711 		free_cpumask_var(attrs->cpumask);
3712 		free_cpumask_var(attrs->__pod_cpumask);
3713 		kfree(attrs);
3714 	}
3715 }
3716 
3717 /**
3718  * alloc_workqueue_attrs - allocate a workqueue_attrs
3719  *
3720  * Allocate a new workqueue_attrs, initialize with default settings and
3721  * return it.
3722  *
3723  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3724  */
3725 struct workqueue_attrs *alloc_workqueue_attrs(void)
3726 {
3727 	struct workqueue_attrs *attrs;
3728 
3729 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3730 	if (!attrs)
3731 		goto fail;
3732 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3733 		goto fail;
3734 	if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
3735 		goto fail;
3736 
3737 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3738 	attrs->affn_scope = WQ_AFFN_DFL;
3739 	return attrs;
3740 fail:
3741 	free_workqueue_attrs(attrs);
3742 	return NULL;
3743 }
3744 
3745 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3746 				 const struct workqueue_attrs *from)
3747 {
3748 	to->nice = from->nice;
3749 	cpumask_copy(to->cpumask, from->cpumask);
3750 	cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
3751 	to->affn_strict = from->affn_strict;
3752 
3753 	/*
3754 	 * Unlike hash and equality test, copying shouldn't ignore wq-only
3755 	 * fields as copying is used for both pool and wq attrs. Instead,
3756 	 * get_unbound_pool() explicitly clears the fields.
3757 	 */
3758 	to->affn_scope = from->affn_scope;
3759 	to->ordered = from->ordered;
3760 }
3761 
3762 /*
3763  * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
3764  * comments in 'struct workqueue_attrs' definition.
3765  */
3766 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
3767 {
3768 	attrs->affn_scope = WQ_AFFN_NR_TYPES;
3769 	attrs->ordered = false;
3770 }
3771 
3772 /* hash value of the content of @attr */
3773 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3774 {
3775 	u32 hash = 0;
3776 
3777 	hash = jhash_1word(attrs->nice, hash);
3778 	hash = jhash(cpumask_bits(attrs->cpumask),
3779 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3780 	hash = jhash(cpumask_bits(attrs->__pod_cpumask),
3781 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3782 	hash = jhash_1word(attrs->affn_strict, hash);
3783 	return hash;
3784 }
3785 
3786 /* content equality test */
3787 static bool wqattrs_equal(const struct workqueue_attrs *a,
3788 			  const struct workqueue_attrs *b)
3789 {
3790 	if (a->nice != b->nice)
3791 		return false;
3792 	if (!cpumask_equal(a->cpumask, b->cpumask))
3793 		return false;
3794 	if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
3795 		return false;
3796 	if (a->affn_strict != b->affn_strict)
3797 		return false;
3798 	return true;
3799 }
3800 
3801 /* Update @attrs with actually available CPUs */
3802 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
3803 				      const cpumask_t *unbound_cpumask)
3804 {
3805 	/*
3806 	 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
3807 	 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
3808 	 * @unbound_cpumask.
3809 	 */
3810 	cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
3811 	if (unlikely(cpumask_empty(attrs->cpumask)))
3812 		cpumask_copy(attrs->cpumask, unbound_cpumask);
3813 }
3814 
3815 /* find wq_pod_type to use for @attrs */
3816 static const struct wq_pod_type *
3817 wqattrs_pod_type(const struct workqueue_attrs *attrs)
3818 {
3819 	enum wq_affn_scope scope;
3820 	struct wq_pod_type *pt;
3821 
3822 	/* to synchronize access to wq_affn_dfl */
3823 	lockdep_assert_held(&wq_pool_mutex);
3824 
3825 	if (attrs->affn_scope == WQ_AFFN_DFL)
3826 		scope = wq_affn_dfl;
3827 	else
3828 		scope = attrs->affn_scope;
3829 
3830 	pt = &wq_pod_types[scope];
3831 
3832 	if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
3833 	    likely(pt->nr_pods))
3834 		return pt;
3835 
3836 	/*
3837 	 * Before workqueue_init_topology(), only SYSTEM is available which is
3838 	 * initialized in workqueue_init_early().
3839 	 */
3840 	pt = &wq_pod_types[WQ_AFFN_SYSTEM];
3841 	BUG_ON(!pt->nr_pods);
3842 	return pt;
3843 }
3844 
3845 /**
3846  * init_worker_pool - initialize a newly zalloc'd worker_pool
3847  * @pool: worker_pool to initialize
3848  *
3849  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3850  *
3851  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3852  * inside @pool proper are initialized and put_unbound_pool() can be called
3853  * on @pool safely to release it.
3854  */
3855 static int init_worker_pool(struct worker_pool *pool)
3856 {
3857 	raw_spin_lock_init(&pool->lock);
3858 	pool->id = -1;
3859 	pool->cpu = -1;
3860 	pool->node = NUMA_NO_NODE;
3861 	pool->flags |= POOL_DISASSOCIATED;
3862 	pool->watchdog_ts = jiffies;
3863 	INIT_LIST_HEAD(&pool->worklist);
3864 	INIT_LIST_HEAD(&pool->idle_list);
3865 	hash_init(pool->busy_hash);
3866 
3867 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3868 	INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
3869 
3870 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3871 
3872 	INIT_LIST_HEAD(&pool->workers);
3873 	INIT_LIST_HEAD(&pool->dying_workers);
3874 
3875 	ida_init(&pool->worker_ida);
3876 	INIT_HLIST_NODE(&pool->hash_node);
3877 	pool->refcnt = 1;
3878 
3879 	/* shouldn't fail above this point */
3880 	pool->attrs = alloc_workqueue_attrs();
3881 	if (!pool->attrs)
3882 		return -ENOMEM;
3883 
3884 	wqattrs_clear_for_pool(pool->attrs);
3885 
3886 	return 0;
3887 }
3888 
3889 #ifdef CONFIG_LOCKDEP
3890 static void wq_init_lockdep(struct workqueue_struct *wq)
3891 {
3892 	char *lock_name;
3893 
3894 	lockdep_register_key(&wq->key);
3895 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3896 	if (!lock_name)
3897 		lock_name = wq->name;
3898 
3899 	wq->lock_name = lock_name;
3900 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3901 }
3902 
3903 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3904 {
3905 	lockdep_unregister_key(&wq->key);
3906 }
3907 
3908 static void wq_free_lockdep(struct workqueue_struct *wq)
3909 {
3910 	if (wq->lock_name != wq->name)
3911 		kfree(wq->lock_name);
3912 }
3913 #else
3914 static void wq_init_lockdep(struct workqueue_struct *wq)
3915 {
3916 }
3917 
3918 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3919 {
3920 }
3921 
3922 static void wq_free_lockdep(struct workqueue_struct *wq)
3923 {
3924 }
3925 #endif
3926 
3927 static void rcu_free_wq(struct rcu_head *rcu)
3928 {
3929 	struct workqueue_struct *wq =
3930 		container_of(rcu, struct workqueue_struct, rcu);
3931 
3932 	wq_free_lockdep(wq);
3933 	free_percpu(wq->cpu_pwq);
3934 	free_workqueue_attrs(wq->unbound_attrs);
3935 	kfree(wq);
3936 }
3937 
3938 static void rcu_free_pool(struct rcu_head *rcu)
3939 {
3940 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3941 
3942 	ida_destroy(&pool->worker_ida);
3943 	free_workqueue_attrs(pool->attrs);
3944 	kfree(pool);
3945 }
3946 
3947 /**
3948  * put_unbound_pool - put a worker_pool
3949  * @pool: worker_pool to put
3950  *
3951  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3952  * safe manner.  get_unbound_pool() calls this function on its failure path
3953  * and this function should be able to release pools which went through,
3954  * successfully or not, init_worker_pool().
3955  *
3956  * Should be called with wq_pool_mutex held.
3957  */
3958 static void put_unbound_pool(struct worker_pool *pool)
3959 {
3960 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3961 	struct worker *worker;
3962 	LIST_HEAD(cull_list);
3963 
3964 	lockdep_assert_held(&wq_pool_mutex);
3965 
3966 	if (--pool->refcnt)
3967 		return;
3968 
3969 	/* sanity checks */
3970 	if (WARN_ON(!(pool->cpu < 0)) ||
3971 	    WARN_ON(!list_empty(&pool->worklist)))
3972 		return;
3973 
3974 	/* release id and unhash */
3975 	if (pool->id >= 0)
3976 		idr_remove(&worker_pool_idr, pool->id);
3977 	hash_del(&pool->hash_node);
3978 
3979 	/*
3980 	 * Become the manager and destroy all workers.  This prevents
3981 	 * @pool's workers from blocking on attach_mutex.  We're the last
3982 	 * manager and @pool gets freed with the flag set.
3983 	 *
3984 	 * Having a concurrent manager is quite unlikely to happen as we can
3985 	 * only get here with
3986 	 *   pwq->refcnt == pool->refcnt == 0
3987 	 * which implies no work queued to the pool, which implies no worker can
3988 	 * become the manager. However a worker could have taken the role of
3989 	 * manager before the refcnts dropped to 0, since maybe_create_worker()
3990 	 * drops pool->lock
3991 	 */
3992 	while (true) {
3993 		rcuwait_wait_event(&manager_wait,
3994 				   !(pool->flags & POOL_MANAGER_ACTIVE),
3995 				   TASK_UNINTERRUPTIBLE);
3996 
3997 		mutex_lock(&wq_pool_attach_mutex);
3998 		raw_spin_lock_irq(&pool->lock);
3999 		if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4000 			pool->flags |= POOL_MANAGER_ACTIVE;
4001 			break;
4002 		}
4003 		raw_spin_unlock_irq(&pool->lock);
4004 		mutex_unlock(&wq_pool_attach_mutex);
4005 	}
4006 
4007 	while ((worker = first_idle_worker(pool)))
4008 		set_worker_dying(worker, &cull_list);
4009 	WARN_ON(pool->nr_workers || pool->nr_idle);
4010 	raw_spin_unlock_irq(&pool->lock);
4011 
4012 	wake_dying_workers(&cull_list);
4013 
4014 	if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
4015 		pool->detach_completion = &detach_completion;
4016 	mutex_unlock(&wq_pool_attach_mutex);
4017 
4018 	if (pool->detach_completion)
4019 		wait_for_completion(pool->detach_completion);
4020 
4021 	/* shut down the timers */
4022 	del_timer_sync(&pool->idle_timer);
4023 	cancel_work_sync(&pool->idle_cull_work);
4024 	del_timer_sync(&pool->mayday_timer);
4025 
4026 	/* RCU protected to allow dereferences from get_work_pool() */
4027 	call_rcu(&pool->rcu, rcu_free_pool);
4028 }
4029 
4030 /**
4031  * get_unbound_pool - get a worker_pool with the specified attributes
4032  * @attrs: the attributes of the worker_pool to get
4033  *
4034  * Obtain a worker_pool which has the same attributes as @attrs, bump the
4035  * reference count and return it.  If there already is a matching
4036  * worker_pool, it will be used; otherwise, this function attempts to
4037  * create a new one.
4038  *
4039  * Should be called with wq_pool_mutex held.
4040  *
4041  * Return: On success, a worker_pool with the same attributes as @attrs.
4042  * On failure, %NULL.
4043  */
4044 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
4045 {
4046 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
4047 	u32 hash = wqattrs_hash(attrs);
4048 	struct worker_pool *pool;
4049 	int pod, node = NUMA_NO_NODE;
4050 
4051 	lockdep_assert_held(&wq_pool_mutex);
4052 
4053 	/* do we already have a matching pool? */
4054 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
4055 		if (wqattrs_equal(pool->attrs, attrs)) {
4056 			pool->refcnt++;
4057 			return pool;
4058 		}
4059 	}
4060 
4061 	/* If __pod_cpumask is contained inside a NUMA pod, that's our node */
4062 	for (pod = 0; pod < pt->nr_pods; pod++) {
4063 		if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
4064 			node = pt->pod_node[pod];
4065 			break;
4066 		}
4067 	}
4068 
4069 	/* nope, create a new one */
4070 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
4071 	if (!pool || init_worker_pool(pool) < 0)
4072 		goto fail;
4073 
4074 	pool->node = node;
4075 	copy_workqueue_attrs(pool->attrs, attrs);
4076 	wqattrs_clear_for_pool(pool->attrs);
4077 
4078 	if (worker_pool_assign_id(pool) < 0)
4079 		goto fail;
4080 
4081 	/* create and start the initial worker */
4082 	if (wq_online && !create_worker(pool))
4083 		goto fail;
4084 
4085 	/* install */
4086 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
4087 
4088 	return pool;
4089 fail:
4090 	if (pool)
4091 		put_unbound_pool(pool);
4092 	return NULL;
4093 }
4094 
4095 static void rcu_free_pwq(struct rcu_head *rcu)
4096 {
4097 	kmem_cache_free(pwq_cache,
4098 			container_of(rcu, struct pool_workqueue, rcu));
4099 }
4100 
4101 /*
4102  * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
4103  * refcnt and needs to be destroyed.
4104  */
4105 static void pwq_release_workfn(struct kthread_work *work)
4106 {
4107 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
4108 						  release_work);
4109 	struct workqueue_struct *wq = pwq->wq;
4110 	struct worker_pool *pool = pwq->pool;
4111 	bool is_last = false;
4112 
4113 	/*
4114 	 * When @pwq is not linked, it doesn't hold any reference to the
4115 	 * @wq, and @wq is invalid to access.
4116 	 */
4117 	if (!list_empty(&pwq->pwqs_node)) {
4118 		mutex_lock(&wq->mutex);
4119 		list_del_rcu(&pwq->pwqs_node);
4120 		is_last = list_empty(&wq->pwqs);
4121 		mutex_unlock(&wq->mutex);
4122 	}
4123 
4124 	if (wq->flags & WQ_UNBOUND) {
4125 		mutex_lock(&wq_pool_mutex);
4126 		put_unbound_pool(pool);
4127 		mutex_unlock(&wq_pool_mutex);
4128 	}
4129 
4130 	call_rcu(&pwq->rcu, rcu_free_pwq);
4131 
4132 	/*
4133 	 * If we're the last pwq going away, @wq is already dead and no one
4134 	 * is gonna access it anymore.  Schedule RCU free.
4135 	 */
4136 	if (is_last) {
4137 		wq_unregister_lockdep(wq);
4138 		call_rcu(&wq->rcu, rcu_free_wq);
4139 	}
4140 }
4141 
4142 /**
4143  * pwq_adjust_max_active - update a pwq's max_active to the current setting
4144  * @pwq: target pool_workqueue
4145  *
4146  * If @pwq isn't freezing, set @pwq->max_active to the associated
4147  * workqueue's saved_max_active and activate inactive work items
4148  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
4149  */
4150 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4151 {
4152 	struct workqueue_struct *wq = pwq->wq;
4153 	bool freezable = wq->flags & WQ_FREEZABLE;
4154 	unsigned long flags;
4155 
4156 	/* for @wq->saved_max_active */
4157 	lockdep_assert_held(&wq->mutex);
4158 
4159 	/* fast exit for non-freezable wqs */
4160 	if (!freezable && pwq->max_active == wq->saved_max_active)
4161 		return;
4162 
4163 	/* this function can be called during early boot w/ irq disabled */
4164 	raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4165 
4166 	/*
4167 	 * During [un]freezing, the caller is responsible for ensuring that
4168 	 * this function is called at least once after @workqueue_freezing
4169 	 * is updated and visible.
4170 	 */
4171 	if (!freezable || !workqueue_freezing) {
4172 		pwq->max_active = wq->saved_max_active;
4173 
4174 		while (!list_empty(&pwq->inactive_works) &&
4175 		       pwq->nr_active < pwq->max_active)
4176 			pwq_activate_first_inactive(pwq);
4177 
4178 		kick_pool(pwq->pool);
4179 	} else {
4180 		pwq->max_active = 0;
4181 	}
4182 
4183 	raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4184 }
4185 
4186 /* initialize newly allocated @pwq which is associated with @wq and @pool */
4187 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
4188 		     struct worker_pool *pool)
4189 {
4190 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
4191 
4192 	memset(pwq, 0, sizeof(*pwq));
4193 
4194 	pwq->pool = pool;
4195 	pwq->wq = wq;
4196 	pwq->flush_color = -1;
4197 	pwq->refcnt = 1;
4198 	INIT_LIST_HEAD(&pwq->inactive_works);
4199 	INIT_LIST_HEAD(&pwq->pwqs_node);
4200 	INIT_LIST_HEAD(&pwq->mayday_node);
4201 	kthread_init_work(&pwq->release_work, pwq_release_workfn);
4202 }
4203 
4204 /* sync @pwq with the current state of its associated wq and link it */
4205 static void link_pwq(struct pool_workqueue *pwq)
4206 {
4207 	struct workqueue_struct *wq = pwq->wq;
4208 
4209 	lockdep_assert_held(&wq->mutex);
4210 
4211 	/* may be called multiple times, ignore if already linked */
4212 	if (!list_empty(&pwq->pwqs_node))
4213 		return;
4214 
4215 	/* set the matching work_color */
4216 	pwq->work_color = wq->work_color;
4217 
4218 	/* sync max_active to the current setting */
4219 	pwq_adjust_max_active(pwq);
4220 
4221 	/* link in @pwq */
4222 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
4223 }
4224 
4225 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
4226 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
4227 					const struct workqueue_attrs *attrs)
4228 {
4229 	struct worker_pool *pool;
4230 	struct pool_workqueue *pwq;
4231 
4232 	lockdep_assert_held(&wq_pool_mutex);
4233 
4234 	pool = get_unbound_pool(attrs);
4235 	if (!pool)
4236 		return NULL;
4237 
4238 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
4239 	if (!pwq) {
4240 		put_unbound_pool(pool);
4241 		return NULL;
4242 	}
4243 
4244 	init_pwq(pwq, wq, pool);
4245 	return pwq;
4246 }
4247 
4248 /**
4249  * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
4250  * @attrs: the wq_attrs of the default pwq of the target workqueue
4251  * @cpu: the target CPU
4252  * @cpu_going_down: if >= 0, the CPU to consider as offline
4253  *
4254  * Calculate the cpumask a workqueue with @attrs should use on @pod. If
4255  * @cpu_going_down is >= 0, that cpu is considered offline during calculation.
4256  * The result is stored in @attrs->__pod_cpumask.
4257  *
4258  * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
4259  * and @pod has online CPUs requested by @attrs, the returned cpumask is the
4260  * intersection of the possible CPUs of @pod and @attrs->cpumask.
4261  *
4262  * The caller is responsible for ensuring that the cpumask of @pod stays stable.
4263  */
4264 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu,
4265 				int cpu_going_down)
4266 {
4267 	const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
4268 	int pod = pt->cpu_pod[cpu];
4269 
4270 	/* does @pod have any online CPUs @attrs wants? */
4271 	cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
4272 	cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask);
4273 	if (cpu_going_down >= 0)
4274 		cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask);
4275 
4276 	if (cpumask_empty(attrs->__pod_cpumask)) {
4277 		cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
4278 		return;
4279 	}
4280 
4281 	/* yeap, return possible CPUs in @pod that @attrs wants */
4282 	cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]);
4283 
4284 	if (cpumask_empty(attrs->__pod_cpumask))
4285 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
4286 				"possible intersect\n");
4287 }
4288 
4289 /* install @pwq into @wq's cpu_pwq and return the old pwq */
4290 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
4291 					int cpu, struct pool_workqueue *pwq)
4292 {
4293 	struct pool_workqueue *old_pwq;
4294 
4295 	lockdep_assert_held(&wq_pool_mutex);
4296 	lockdep_assert_held(&wq->mutex);
4297 
4298 	/* link_pwq() can handle duplicate calls */
4299 	link_pwq(pwq);
4300 
4301 	old_pwq = rcu_access_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu));
4302 	rcu_assign_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu), pwq);
4303 	return old_pwq;
4304 }
4305 
4306 /* context to store the prepared attrs & pwqs before applying */
4307 struct apply_wqattrs_ctx {
4308 	struct workqueue_struct	*wq;		/* target workqueue */
4309 	struct workqueue_attrs	*attrs;		/* attrs to apply */
4310 	struct list_head	list;		/* queued for batching commit */
4311 	struct pool_workqueue	*dfl_pwq;
4312 	struct pool_workqueue	*pwq_tbl[];
4313 };
4314 
4315 /* free the resources after success or abort */
4316 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
4317 {
4318 	if (ctx) {
4319 		int cpu;
4320 
4321 		for_each_possible_cpu(cpu)
4322 			put_pwq_unlocked(ctx->pwq_tbl[cpu]);
4323 		put_pwq_unlocked(ctx->dfl_pwq);
4324 
4325 		free_workqueue_attrs(ctx->attrs);
4326 
4327 		kfree(ctx);
4328 	}
4329 }
4330 
4331 /* allocate the attrs and pwqs for later installation */
4332 static struct apply_wqattrs_ctx *
4333 apply_wqattrs_prepare(struct workqueue_struct *wq,
4334 		      const struct workqueue_attrs *attrs,
4335 		      const cpumask_var_t unbound_cpumask)
4336 {
4337 	struct apply_wqattrs_ctx *ctx;
4338 	struct workqueue_attrs *new_attrs;
4339 	int cpu;
4340 
4341 	lockdep_assert_held(&wq_pool_mutex);
4342 
4343 	if (WARN_ON(attrs->affn_scope < 0 ||
4344 		    attrs->affn_scope >= WQ_AFFN_NR_TYPES))
4345 		return ERR_PTR(-EINVAL);
4346 
4347 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
4348 
4349 	new_attrs = alloc_workqueue_attrs();
4350 	if (!ctx || !new_attrs)
4351 		goto out_free;
4352 
4353 	/*
4354 	 * If something goes wrong during CPU up/down, we'll fall back to
4355 	 * the default pwq covering whole @attrs->cpumask.  Always create
4356 	 * it even if we don't use it immediately.
4357 	 */
4358 	copy_workqueue_attrs(new_attrs, attrs);
4359 	wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
4360 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
4361 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4362 	if (!ctx->dfl_pwq)
4363 		goto out_free;
4364 
4365 	for_each_possible_cpu(cpu) {
4366 		if (new_attrs->ordered) {
4367 			ctx->dfl_pwq->refcnt++;
4368 			ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
4369 		} else {
4370 			wq_calc_pod_cpumask(new_attrs, cpu, -1);
4371 			ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
4372 			if (!ctx->pwq_tbl[cpu])
4373 				goto out_free;
4374 		}
4375 	}
4376 
4377 	/* save the user configured attrs and sanitize it. */
4378 	copy_workqueue_attrs(new_attrs, attrs);
4379 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4380 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
4381 	ctx->attrs = new_attrs;
4382 
4383 	ctx->wq = wq;
4384 	return ctx;
4385 
4386 out_free:
4387 	free_workqueue_attrs(new_attrs);
4388 	apply_wqattrs_cleanup(ctx);
4389 	return ERR_PTR(-ENOMEM);
4390 }
4391 
4392 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
4393 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4394 {
4395 	int cpu;
4396 
4397 	/* all pwqs have been created successfully, let's install'em */
4398 	mutex_lock(&ctx->wq->mutex);
4399 
4400 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4401 
4402 	/* save the previous pwq and install the new one */
4403 	for_each_possible_cpu(cpu)
4404 		ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
4405 							ctx->pwq_tbl[cpu]);
4406 
4407 	/* @dfl_pwq might not have been used, ensure it's linked */
4408 	link_pwq(ctx->dfl_pwq);
4409 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4410 
4411 	mutex_unlock(&ctx->wq->mutex);
4412 }
4413 
4414 static void apply_wqattrs_lock(void)
4415 {
4416 	/* CPUs should stay stable across pwq creations and installations */
4417 	cpus_read_lock();
4418 	mutex_lock(&wq_pool_mutex);
4419 }
4420 
4421 static void apply_wqattrs_unlock(void)
4422 {
4423 	mutex_unlock(&wq_pool_mutex);
4424 	cpus_read_unlock();
4425 }
4426 
4427 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4428 					const struct workqueue_attrs *attrs)
4429 {
4430 	struct apply_wqattrs_ctx *ctx;
4431 
4432 	/* only unbound workqueues can change attributes */
4433 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4434 		return -EINVAL;
4435 
4436 	/* creating multiple pwqs breaks ordering guarantee */
4437 	if (!list_empty(&wq->pwqs)) {
4438 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4439 			return -EINVAL;
4440 
4441 		wq->flags &= ~__WQ_ORDERED;
4442 	}
4443 
4444 	ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
4445 	if (IS_ERR(ctx))
4446 		return PTR_ERR(ctx);
4447 
4448 	/* the ctx has been prepared successfully, let's commit it */
4449 	apply_wqattrs_commit(ctx);
4450 	apply_wqattrs_cleanup(ctx);
4451 
4452 	return 0;
4453 }
4454 
4455 /**
4456  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4457  * @wq: the target workqueue
4458  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4459  *
4460  * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
4461  * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
4462  * work items are affine to the pod it was issued on. Older pwqs are released as
4463  * in-flight work items finish. Note that a work item which repeatedly requeues
4464  * itself back-to-back will stay on its current pwq.
4465  *
4466  * Performs GFP_KERNEL allocations.
4467  *
4468  * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
4469  *
4470  * Return: 0 on success and -errno on failure.
4471  */
4472 int apply_workqueue_attrs(struct workqueue_struct *wq,
4473 			  const struct workqueue_attrs *attrs)
4474 {
4475 	int ret;
4476 
4477 	lockdep_assert_cpus_held();
4478 
4479 	mutex_lock(&wq_pool_mutex);
4480 	ret = apply_workqueue_attrs_locked(wq, attrs);
4481 	mutex_unlock(&wq_pool_mutex);
4482 
4483 	return ret;
4484 }
4485 
4486 /**
4487  * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug
4488  * @wq: the target workqueue
4489  * @cpu: the CPU to update pool association for
4490  * @hotplug_cpu: the CPU coming up or going down
4491  * @online: whether @cpu is coming up or going down
4492  *
4493  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4494  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update pod affinity of
4495  * @wq accordingly.
4496  *
4497  *
4498  * If pod affinity can't be adjusted due to memory allocation failure, it falls
4499  * back to @wq->dfl_pwq which may not be optimal but is always correct.
4500  *
4501  * Note that when the last allowed CPU of a pod goes offline for a workqueue
4502  * with a cpumask spanning multiple pods, the workers which were already
4503  * executing the work items for the workqueue will lose their CPU affinity and
4504  * may execute on any CPU. This is similar to how per-cpu workqueues behave on
4505  * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
4506  * responsibility to flush the work item from CPU_DOWN_PREPARE.
4507  */
4508 static void wq_update_pod(struct workqueue_struct *wq, int cpu,
4509 			  int hotplug_cpu, bool online)
4510 {
4511 	int off_cpu = online ? -1 : hotplug_cpu;
4512 	struct pool_workqueue *old_pwq = NULL, *pwq;
4513 	struct workqueue_attrs *target_attrs;
4514 
4515 	lockdep_assert_held(&wq_pool_mutex);
4516 
4517 	if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
4518 		return;
4519 
4520 	/*
4521 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4522 	 * Let's use a preallocated one.  The following buf is protected by
4523 	 * CPU hotplug exclusion.
4524 	 */
4525 	target_attrs = wq_update_pod_attrs_buf;
4526 
4527 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4528 	wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
4529 
4530 	/* nothing to do if the target cpumask matches the current pwq */
4531 	wq_calc_pod_cpumask(target_attrs, cpu, off_cpu);
4532 	pwq = rcu_dereference_protected(*per_cpu_ptr(wq->cpu_pwq, cpu),
4533 					lockdep_is_held(&wq_pool_mutex));
4534 	if (wqattrs_equal(target_attrs, pwq->pool->attrs))
4535 		return;
4536 
4537 	/* create a new pwq */
4538 	pwq = alloc_unbound_pwq(wq, target_attrs);
4539 	if (!pwq) {
4540 		pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
4541 			wq->name);
4542 		goto use_dfl_pwq;
4543 	}
4544 
4545 	/* Install the new pwq. */
4546 	mutex_lock(&wq->mutex);
4547 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
4548 	goto out_unlock;
4549 
4550 use_dfl_pwq:
4551 	mutex_lock(&wq->mutex);
4552 	raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4553 	get_pwq(wq->dfl_pwq);
4554 	raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4555 	old_pwq = install_unbound_pwq(wq, cpu, wq->dfl_pwq);
4556 out_unlock:
4557 	mutex_unlock(&wq->mutex);
4558 	put_pwq_unlocked(old_pwq);
4559 }
4560 
4561 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4562 {
4563 	bool highpri = wq->flags & WQ_HIGHPRI;
4564 	int cpu, ret;
4565 
4566 	wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
4567 	if (!wq->cpu_pwq)
4568 		goto enomem;
4569 
4570 	if (!(wq->flags & WQ_UNBOUND)) {
4571 		for_each_possible_cpu(cpu) {
4572 			struct pool_workqueue **pwq_p =
4573 				per_cpu_ptr(wq->cpu_pwq, cpu);
4574 			struct worker_pool *pool =
4575 				&(per_cpu_ptr(cpu_worker_pools, cpu)[highpri]);
4576 
4577 			*pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
4578 						       pool->node);
4579 			if (!*pwq_p)
4580 				goto enomem;
4581 
4582 			init_pwq(*pwq_p, wq, pool);
4583 
4584 			mutex_lock(&wq->mutex);
4585 			link_pwq(*pwq_p);
4586 			mutex_unlock(&wq->mutex);
4587 		}
4588 		return 0;
4589 	}
4590 
4591 	cpus_read_lock();
4592 	if (wq->flags & __WQ_ORDERED) {
4593 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4594 		/* there should only be single pwq for ordering guarantee */
4595 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4596 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4597 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4598 	} else {
4599 		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4600 	}
4601 	cpus_read_unlock();
4602 
4603 	/* for unbound pwq, flush the pwq_release_worker ensures that the
4604 	 * pwq_release_workfn() completes before calling kfree(wq).
4605 	 */
4606 	if (ret)
4607 		kthread_flush_worker(pwq_release_worker);
4608 
4609 	return ret;
4610 
4611 enomem:
4612 	if (wq->cpu_pwq) {
4613 		for_each_possible_cpu(cpu) {
4614 			struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
4615 
4616 			if (pwq)
4617 				kmem_cache_free(pwq_cache, pwq);
4618 		}
4619 		free_percpu(wq->cpu_pwq);
4620 		wq->cpu_pwq = NULL;
4621 	}
4622 	return -ENOMEM;
4623 }
4624 
4625 static int wq_clamp_max_active(int max_active, unsigned int flags,
4626 			       const char *name)
4627 {
4628 	if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
4629 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4630 			max_active, name, 1, WQ_MAX_ACTIVE);
4631 
4632 	return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
4633 }
4634 
4635 /*
4636  * Workqueues which may be used during memory reclaim should have a rescuer
4637  * to guarantee forward progress.
4638  */
4639 static int init_rescuer(struct workqueue_struct *wq)
4640 {
4641 	struct worker *rescuer;
4642 	int ret;
4643 
4644 	if (!(wq->flags & WQ_MEM_RECLAIM))
4645 		return 0;
4646 
4647 	rescuer = alloc_worker(NUMA_NO_NODE);
4648 	if (!rescuer) {
4649 		pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
4650 		       wq->name);
4651 		return -ENOMEM;
4652 	}
4653 
4654 	rescuer->rescue_wq = wq;
4655 	rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name);
4656 	if (IS_ERR(rescuer->task)) {
4657 		ret = PTR_ERR(rescuer->task);
4658 		pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
4659 		       wq->name, ERR_PTR(ret));
4660 		kfree(rescuer);
4661 		return ret;
4662 	}
4663 
4664 	wq->rescuer = rescuer;
4665 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4666 	wake_up_process(rescuer->task);
4667 
4668 	return 0;
4669 }
4670 
4671 __printf(1, 4)
4672 struct workqueue_struct *alloc_workqueue(const char *fmt,
4673 					 unsigned int flags,
4674 					 int max_active, ...)
4675 {
4676 	va_list args;
4677 	struct workqueue_struct *wq;
4678 	struct pool_workqueue *pwq;
4679 
4680 	/*
4681 	 * Unbound && max_active == 1 used to imply ordered, which is no longer
4682 	 * the case on many machines due to per-pod pools. While
4683 	 * alloc_ordered_workqueue() is the right way to create an ordered
4684 	 * workqueue, keep the previous behavior to avoid subtle breakages.
4685 	 */
4686 	if ((flags & WQ_UNBOUND) && max_active == 1)
4687 		flags |= __WQ_ORDERED;
4688 
4689 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4690 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4691 		flags |= WQ_UNBOUND;
4692 
4693 	/* allocate wq and format name */
4694 	wq = kzalloc(sizeof(*wq), GFP_KERNEL);
4695 	if (!wq)
4696 		return NULL;
4697 
4698 	if (flags & WQ_UNBOUND) {
4699 		wq->unbound_attrs = alloc_workqueue_attrs();
4700 		if (!wq->unbound_attrs)
4701 			goto err_free_wq;
4702 	}
4703 
4704 	va_start(args, max_active);
4705 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4706 	va_end(args);
4707 
4708 	max_active = max_active ?: WQ_DFL_ACTIVE;
4709 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4710 
4711 	/* init wq */
4712 	wq->flags = flags;
4713 	wq->saved_max_active = max_active;
4714 	mutex_init(&wq->mutex);
4715 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4716 	INIT_LIST_HEAD(&wq->pwqs);
4717 	INIT_LIST_HEAD(&wq->flusher_queue);
4718 	INIT_LIST_HEAD(&wq->flusher_overflow);
4719 	INIT_LIST_HEAD(&wq->maydays);
4720 
4721 	wq_init_lockdep(wq);
4722 	INIT_LIST_HEAD(&wq->list);
4723 
4724 	if (alloc_and_link_pwqs(wq) < 0)
4725 		goto err_unreg_lockdep;
4726 
4727 	if (wq_online && init_rescuer(wq) < 0)
4728 		goto err_destroy;
4729 
4730 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4731 		goto err_destroy;
4732 
4733 	/*
4734 	 * wq_pool_mutex protects global freeze state and workqueues list.
4735 	 * Grab it, adjust max_active and add the new @wq to workqueues
4736 	 * list.
4737 	 */
4738 	mutex_lock(&wq_pool_mutex);
4739 
4740 	mutex_lock(&wq->mutex);
4741 	for_each_pwq(pwq, wq)
4742 		pwq_adjust_max_active(pwq);
4743 	mutex_unlock(&wq->mutex);
4744 
4745 	list_add_tail_rcu(&wq->list, &workqueues);
4746 
4747 	mutex_unlock(&wq_pool_mutex);
4748 
4749 	return wq;
4750 
4751 err_unreg_lockdep:
4752 	wq_unregister_lockdep(wq);
4753 	wq_free_lockdep(wq);
4754 err_free_wq:
4755 	free_workqueue_attrs(wq->unbound_attrs);
4756 	kfree(wq);
4757 	return NULL;
4758 err_destroy:
4759 	destroy_workqueue(wq);
4760 	return NULL;
4761 }
4762 EXPORT_SYMBOL_GPL(alloc_workqueue);
4763 
4764 static bool pwq_busy(struct pool_workqueue *pwq)
4765 {
4766 	int i;
4767 
4768 	for (i = 0; i < WORK_NR_COLORS; i++)
4769 		if (pwq->nr_in_flight[i])
4770 			return true;
4771 
4772 	if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4773 		return true;
4774 	if (pwq->nr_active || !list_empty(&pwq->inactive_works))
4775 		return true;
4776 
4777 	return false;
4778 }
4779 
4780 /**
4781  * destroy_workqueue - safely terminate a workqueue
4782  * @wq: target workqueue
4783  *
4784  * Safely destroy a workqueue. All work currently pending will be done first.
4785  */
4786 void destroy_workqueue(struct workqueue_struct *wq)
4787 {
4788 	struct pool_workqueue *pwq;
4789 	int cpu;
4790 
4791 	/*
4792 	 * Remove it from sysfs first so that sanity check failure doesn't
4793 	 * lead to sysfs name conflicts.
4794 	 */
4795 	workqueue_sysfs_unregister(wq);
4796 
4797 	/* mark the workqueue destruction is in progress */
4798 	mutex_lock(&wq->mutex);
4799 	wq->flags |= __WQ_DESTROYING;
4800 	mutex_unlock(&wq->mutex);
4801 
4802 	/* drain it before proceeding with destruction */
4803 	drain_workqueue(wq);
4804 
4805 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4806 	if (wq->rescuer) {
4807 		struct worker *rescuer = wq->rescuer;
4808 
4809 		/* this prevents new queueing */
4810 		raw_spin_lock_irq(&wq_mayday_lock);
4811 		wq->rescuer = NULL;
4812 		raw_spin_unlock_irq(&wq_mayday_lock);
4813 
4814 		/* rescuer will empty maydays list before exiting */
4815 		kthread_stop(rescuer->task);
4816 		kfree(rescuer);
4817 	}
4818 
4819 	/*
4820 	 * Sanity checks - grab all the locks so that we wait for all
4821 	 * in-flight operations which may do put_pwq().
4822 	 */
4823 	mutex_lock(&wq_pool_mutex);
4824 	mutex_lock(&wq->mutex);
4825 	for_each_pwq(pwq, wq) {
4826 		raw_spin_lock_irq(&pwq->pool->lock);
4827 		if (WARN_ON(pwq_busy(pwq))) {
4828 			pr_warn("%s: %s has the following busy pwq\n",
4829 				__func__, wq->name);
4830 			show_pwq(pwq);
4831 			raw_spin_unlock_irq(&pwq->pool->lock);
4832 			mutex_unlock(&wq->mutex);
4833 			mutex_unlock(&wq_pool_mutex);
4834 			show_one_workqueue(wq);
4835 			return;
4836 		}
4837 		raw_spin_unlock_irq(&pwq->pool->lock);
4838 	}
4839 	mutex_unlock(&wq->mutex);
4840 
4841 	/*
4842 	 * wq list is used to freeze wq, remove from list after
4843 	 * flushing is complete in case freeze races us.
4844 	 */
4845 	list_del_rcu(&wq->list);
4846 	mutex_unlock(&wq_pool_mutex);
4847 
4848 	/*
4849 	 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
4850 	 * to put the base refs. @wq will be auto-destroyed from the last
4851 	 * pwq_put. RCU read lock prevents @wq from going away from under us.
4852 	 */
4853 	rcu_read_lock();
4854 
4855 	for_each_possible_cpu(cpu) {
4856 		pwq = rcu_access_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu));
4857 		RCU_INIT_POINTER(*per_cpu_ptr(wq->cpu_pwq, cpu), NULL);
4858 		put_pwq_unlocked(pwq);
4859 	}
4860 
4861 	put_pwq_unlocked(wq->dfl_pwq);
4862 	wq->dfl_pwq = NULL;
4863 
4864 	rcu_read_unlock();
4865 }
4866 EXPORT_SYMBOL_GPL(destroy_workqueue);
4867 
4868 /**
4869  * workqueue_set_max_active - adjust max_active of a workqueue
4870  * @wq: target workqueue
4871  * @max_active: new max_active value.
4872  *
4873  * Set max_active of @wq to @max_active.
4874  *
4875  * CONTEXT:
4876  * Don't call from IRQ context.
4877  */
4878 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4879 {
4880 	struct pool_workqueue *pwq;
4881 
4882 	/* disallow meddling with max_active for ordered workqueues */
4883 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4884 		return;
4885 
4886 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4887 
4888 	mutex_lock(&wq->mutex);
4889 
4890 	wq->flags &= ~__WQ_ORDERED;
4891 	wq->saved_max_active = max_active;
4892 
4893 	for_each_pwq(pwq, wq)
4894 		pwq_adjust_max_active(pwq);
4895 
4896 	mutex_unlock(&wq->mutex);
4897 }
4898 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4899 
4900 /**
4901  * current_work - retrieve %current task's work struct
4902  *
4903  * Determine if %current task is a workqueue worker and what it's working on.
4904  * Useful to find out the context that the %current task is running in.
4905  *
4906  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4907  */
4908 struct work_struct *current_work(void)
4909 {
4910 	struct worker *worker = current_wq_worker();
4911 
4912 	return worker ? worker->current_work : NULL;
4913 }
4914 EXPORT_SYMBOL(current_work);
4915 
4916 /**
4917  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4918  *
4919  * Determine whether %current is a workqueue rescuer.  Can be used from
4920  * work functions to determine whether it's being run off the rescuer task.
4921  *
4922  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4923  */
4924 bool current_is_workqueue_rescuer(void)
4925 {
4926 	struct worker *worker = current_wq_worker();
4927 
4928 	return worker && worker->rescue_wq;
4929 }
4930 
4931 /**
4932  * workqueue_congested - test whether a workqueue is congested
4933  * @cpu: CPU in question
4934  * @wq: target workqueue
4935  *
4936  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4937  * no synchronization around this function and the test result is
4938  * unreliable and only useful as advisory hints or for debugging.
4939  *
4940  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4941  *
4942  * With the exception of ordered workqueues, all workqueues have per-cpu
4943  * pool_workqueues, each with its own congested state. A workqueue being
4944  * congested on one CPU doesn't mean that the workqueue is contested on any
4945  * other CPUs.
4946  *
4947  * Return:
4948  * %true if congested, %false otherwise.
4949  */
4950 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4951 {
4952 	struct pool_workqueue *pwq;
4953 	bool ret;
4954 
4955 	rcu_read_lock();
4956 	preempt_disable();
4957 
4958 	if (cpu == WORK_CPU_UNBOUND)
4959 		cpu = smp_processor_id();
4960 
4961 	pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
4962 	ret = !list_empty(&pwq->inactive_works);
4963 
4964 	preempt_enable();
4965 	rcu_read_unlock();
4966 
4967 	return ret;
4968 }
4969 EXPORT_SYMBOL_GPL(workqueue_congested);
4970 
4971 /**
4972  * work_busy - test whether a work is currently pending or running
4973  * @work: the work to be tested
4974  *
4975  * Test whether @work is currently pending or running.  There is no
4976  * synchronization around this function and the test result is
4977  * unreliable and only useful as advisory hints or for debugging.
4978  *
4979  * Return:
4980  * OR'd bitmask of WORK_BUSY_* bits.
4981  */
4982 unsigned int work_busy(struct work_struct *work)
4983 {
4984 	struct worker_pool *pool;
4985 	unsigned long flags;
4986 	unsigned int ret = 0;
4987 
4988 	if (work_pending(work))
4989 		ret |= WORK_BUSY_PENDING;
4990 
4991 	rcu_read_lock();
4992 	pool = get_work_pool(work);
4993 	if (pool) {
4994 		raw_spin_lock_irqsave(&pool->lock, flags);
4995 		if (find_worker_executing_work(pool, work))
4996 			ret |= WORK_BUSY_RUNNING;
4997 		raw_spin_unlock_irqrestore(&pool->lock, flags);
4998 	}
4999 	rcu_read_unlock();
5000 
5001 	return ret;
5002 }
5003 EXPORT_SYMBOL_GPL(work_busy);
5004 
5005 /**
5006  * set_worker_desc - set description for the current work item
5007  * @fmt: printf-style format string
5008  * @...: arguments for the format string
5009  *
5010  * This function can be called by a running work function to describe what
5011  * the work item is about.  If the worker task gets dumped, this
5012  * information will be printed out together to help debugging.  The
5013  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
5014  */
5015 void set_worker_desc(const char *fmt, ...)
5016 {
5017 	struct worker *worker = current_wq_worker();
5018 	va_list args;
5019 
5020 	if (worker) {
5021 		va_start(args, fmt);
5022 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
5023 		va_end(args);
5024 	}
5025 }
5026 EXPORT_SYMBOL_GPL(set_worker_desc);
5027 
5028 /**
5029  * print_worker_info - print out worker information and description
5030  * @log_lvl: the log level to use when printing
5031  * @task: target task
5032  *
5033  * If @task is a worker and currently executing a work item, print out the
5034  * name of the workqueue being serviced and worker description set with
5035  * set_worker_desc() by the currently executing work item.
5036  *
5037  * This function can be safely called on any task as long as the
5038  * task_struct itself is accessible.  While safe, this function isn't
5039  * synchronized and may print out mixups or garbages of limited length.
5040  */
5041 void print_worker_info(const char *log_lvl, struct task_struct *task)
5042 {
5043 	work_func_t *fn = NULL;
5044 	char name[WQ_NAME_LEN] = { };
5045 	char desc[WORKER_DESC_LEN] = { };
5046 	struct pool_workqueue *pwq = NULL;
5047 	struct workqueue_struct *wq = NULL;
5048 	struct worker *worker;
5049 
5050 	if (!(task->flags & PF_WQ_WORKER))
5051 		return;
5052 
5053 	/*
5054 	 * This function is called without any synchronization and @task
5055 	 * could be in any state.  Be careful with dereferences.
5056 	 */
5057 	worker = kthread_probe_data(task);
5058 
5059 	/*
5060 	 * Carefully copy the associated workqueue's workfn, name and desc.
5061 	 * Keep the original last '\0' in case the original is garbage.
5062 	 */
5063 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
5064 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
5065 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
5066 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
5067 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
5068 
5069 	if (fn || name[0] || desc[0]) {
5070 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
5071 		if (strcmp(name, desc))
5072 			pr_cont(" (%s)", desc);
5073 		pr_cont("\n");
5074 	}
5075 }
5076 
5077 static void pr_cont_pool_info(struct worker_pool *pool)
5078 {
5079 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
5080 	if (pool->node != NUMA_NO_NODE)
5081 		pr_cont(" node=%d", pool->node);
5082 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
5083 }
5084 
5085 struct pr_cont_work_struct {
5086 	bool comma;
5087 	work_func_t func;
5088 	long ctr;
5089 };
5090 
5091 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
5092 {
5093 	if (!pcwsp->ctr)
5094 		goto out_record;
5095 	if (func == pcwsp->func) {
5096 		pcwsp->ctr++;
5097 		return;
5098 	}
5099 	if (pcwsp->ctr == 1)
5100 		pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
5101 	else
5102 		pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
5103 	pcwsp->ctr = 0;
5104 out_record:
5105 	if ((long)func == -1L)
5106 		return;
5107 	pcwsp->comma = comma;
5108 	pcwsp->func = func;
5109 	pcwsp->ctr = 1;
5110 }
5111 
5112 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
5113 {
5114 	if (work->func == wq_barrier_func) {
5115 		struct wq_barrier *barr;
5116 
5117 		barr = container_of(work, struct wq_barrier, work);
5118 
5119 		pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
5120 		pr_cont("%s BAR(%d)", comma ? "," : "",
5121 			task_pid_nr(barr->task));
5122 	} else {
5123 		if (!comma)
5124 			pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
5125 		pr_cont_work_flush(comma, work->func, pcwsp);
5126 	}
5127 }
5128 
5129 static void show_pwq(struct pool_workqueue *pwq)
5130 {
5131 	struct pr_cont_work_struct pcws = { .ctr = 0, };
5132 	struct worker_pool *pool = pwq->pool;
5133 	struct work_struct *work;
5134 	struct worker *worker;
5135 	bool has_in_flight = false, has_pending = false;
5136 	int bkt;
5137 
5138 	pr_info("  pwq %d:", pool->id);
5139 	pr_cont_pool_info(pool);
5140 
5141 	pr_cont(" active=%d/%d refcnt=%d%s\n",
5142 		pwq->nr_active, pwq->max_active, pwq->refcnt,
5143 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
5144 
5145 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5146 		if (worker->current_pwq == pwq) {
5147 			has_in_flight = true;
5148 			break;
5149 		}
5150 	}
5151 	if (has_in_flight) {
5152 		bool comma = false;
5153 
5154 		pr_info("    in-flight:");
5155 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5156 			if (worker->current_pwq != pwq)
5157 				continue;
5158 
5159 			pr_cont("%s %d%s:%ps", comma ? "," : "",
5160 				task_pid_nr(worker->task),
5161 				worker->rescue_wq ? "(RESCUER)" : "",
5162 				worker->current_func);
5163 			list_for_each_entry(work, &worker->scheduled, entry)
5164 				pr_cont_work(false, work, &pcws);
5165 			pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5166 			comma = true;
5167 		}
5168 		pr_cont("\n");
5169 	}
5170 
5171 	list_for_each_entry(work, &pool->worklist, entry) {
5172 		if (get_work_pwq(work) == pwq) {
5173 			has_pending = true;
5174 			break;
5175 		}
5176 	}
5177 	if (has_pending) {
5178 		bool comma = false;
5179 
5180 		pr_info("    pending:");
5181 		list_for_each_entry(work, &pool->worklist, entry) {
5182 			if (get_work_pwq(work) != pwq)
5183 				continue;
5184 
5185 			pr_cont_work(comma, work, &pcws);
5186 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5187 		}
5188 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5189 		pr_cont("\n");
5190 	}
5191 
5192 	if (!list_empty(&pwq->inactive_works)) {
5193 		bool comma = false;
5194 
5195 		pr_info("    inactive:");
5196 		list_for_each_entry(work, &pwq->inactive_works, entry) {
5197 			pr_cont_work(comma, work, &pcws);
5198 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5199 		}
5200 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5201 		pr_cont("\n");
5202 	}
5203 }
5204 
5205 /**
5206  * show_one_workqueue - dump state of specified workqueue
5207  * @wq: workqueue whose state will be printed
5208  */
5209 void show_one_workqueue(struct workqueue_struct *wq)
5210 {
5211 	struct pool_workqueue *pwq;
5212 	bool idle = true;
5213 	unsigned long flags;
5214 
5215 	for_each_pwq(pwq, wq) {
5216 		if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
5217 			idle = false;
5218 			break;
5219 		}
5220 	}
5221 	if (idle) /* Nothing to print for idle workqueue */
5222 		return;
5223 
5224 	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
5225 
5226 	for_each_pwq(pwq, wq) {
5227 		raw_spin_lock_irqsave(&pwq->pool->lock, flags);
5228 		if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
5229 			/*
5230 			 * Defer printing to avoid deadlocks in console
5231 			 * drivers that queue work while holding locks
5232 			 * also taken in their write paths.
5233 			 */
5234 			printk_deferred_enter();
5235 			show_pwq(pwq);
5236 			printk_deferred_exit();
5237 		}
5238 		raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
5239 		/*
5240 		 * We could be printing a lot from atomic context, e.g.
5241 		 * sysrq-t -> show_all_workqueues(). Avoid triggering
5242 		 * hard lockup.
5243 		 */
5244 		touch_nmi_watchdog();
5245 	}
5246 
5247 }
5248 
5249 /**
5250  * show_one_worker_pool - dump state of specified worker pool
5251  * @pool: worker pool whose state will be printed
5252  */
5253 static void show_one_worker_pool(struct worker_pool *pool)
5254 {
5255 	struct worker *worker;
5256 	bool first = true;
5257 	unsigned long flags;
5258 	unsigned long hung = 0;
5259 
5260 	raw_spin_lock_irqsave(&pool->lock, flags);
5261 	if (pool->nr_workers == pool->nr_idle)
5262 		goto next_pool;
5263 
5264 	/* How long the first pending work is waiting for a worker. */
5265 	if (!list_empty(&pool->worklist))
5266 		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
5267 
5268 	/*
5269 	 * Defer printing to avoid deadlocks in console drivers that
5270 	 * queue work while holding locks also taken in their write
5271 	 * paths.
5272 	 */
5273 	printk_deferred_enter();
5274 	pr_info("pool %d:", pool->id);
5275 	pr_cont_pool_info(pool);
5276 	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
5277 	if (pool->manager)
5278 		pr_cont(" manager: %d",
5279 			task_pid_nr(pool->manager->task));
5280 	list_for_each_entry(worker, &pool->idle_list, entry) {
5281 		pr_cont(" %s%d", first ? "idle: " : "",
5282 			task_pid_nr(worker->task));
5283 		first = false;
5284 	}
5285 	pr_cont("\n");
5286 	printk_deferred_exit();
5287 next_pool:
5288 	raw_spin_unlock_irqrestore(&pool->lock, flags);
5289 	/*
5290 	 * We could be printing a lot from atomic context, e.g.
5291 	 * sysrq-t -> show_all_workqueues(). Avoid triggering
5292 	 * hard lockup.
5293 	 */
5294 	touch_nmi_watchdog();
5295 
5296 }
5297 
5298 /**
5299  * show_all_workqueues - dump workqueue state
5300  *
5301  * Called from a sysrq handler and prints out all busy workqueues and pools.
5302  */
5303 void show_all_workqueues(void)
5304 {
5305 	struct workqueue_struct *wq;
5306 	struct worker_pool *pool;
5307 	int pi;
5308 
5309 	rcu_read_lock();
5310 
5311 	pr_info("Showing busy workqueues and worker pools:\n");
5312 
5313 	list_for_each_entry_rcu(wq, &workqueues, list)
5314 		show_one_workqueue(wq);
5315 
5316 	for_each_pool(pool, pi)
5317 		show_one_worker_pool(pool);
5318 
5319 	rcu_read_unlock();
5320 }
5321 
5322 /**
5323  * show_freezable_workqueues - dump freezable workqueue state
5324  *
5325  * Called from try_to_freeze_tasks() and prints out all freezable workqueues
5326  * still busy.
5327  */
5328 void show_freezable_workqueues(void)
5329 {
5330 	struct workqueue_struct *wq;
5331 
5332 	rcu_read_lock();
5333 
5334 	pr_info("Showing freezable workqueues that are still busy:\n");
5335 
5336 	list_for_each_entry_rcu(wq, &workqueues, list) {
5337 		if (!(wq->flags & WQ_FREEZABLE))
5338 			continue;
5339 		show_one_workqueue(wq);
5340 	}
5341 
5342 	rcu_read_unlock();
5343 }
5344 
5345 /* used to show worker information through /proc/PID/{comm,stat,status} */
5346 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
5347 {
5348 	int off;
5349 
5350 	/* always show the actual comm */
5351 	off = strscpy(buf, task->comm, size);
5352 	if (off < 0)
5353 		return;
5354 
5355 	/* stabilize PF_WQ_WORKER and worker pool association */
5356 	mutex_lock(&wq_pool_attach_mutex);
5357 
5358 	if (task->flags & PF_WQ_WORKER) {
5359 		struct worker *worker = kthread_data(task);
5360 		struct worker_pool *pool = worker->pool;
5361 
5362 		if (pool) {
5363 			raw_spin_lock_irq(&pool->lock);
5364 			/*
5365 			 * ->desc tracks information (wq name or
5366 			 * set_worker_desc()) for the latest execution.  If
5367 			 * current, prepend '+', otherwise '-'.
5368 			 */
5369 			if (worker->desc[0] != '\0') {
5370 				if (worker->current_work)
5371 					scnprintf(buf + off, size - off, "+%s",
5372 						  worker->desc);
5373 				else
5374 					scnprintf(buf + off, size - off, "-%s",
5375 						  worker->desc);
5376 			}
5377 			raw_spin_unlock_irq(&pool->lock);
5378 		}
5379 	}
5380 
5381 	mutex_unlock(&wq_pool_attach_mutex);
5382 }
5383 
5384 #ifdef CONFIG_SMP
5385 
5386 /*
5387  * CPU hotplug.
5388  *
5389  * There are two challenges in supporting CPU hotplug.  Firstly, there
5390  * are a lot of assumptions on strong associations among work, pwq and
5391  * pool which make migrating pending and scheduled works very
5392  * difficult to implement without impacting hot paths.  Secondly,
5393  * worker pools serve mix of short, long and very long running works making
5394  * blocked draining impractical.
5395  *
5396  * This is solved by allowing the pools to be disassociated from the CPU
5397  * running as an unbound one and allowing it to be reattached later if the
5398  * cpu comes back online.
5399  */
5400 
5401 static void unbind_workers(int cpu)
5402 {
5403 	struct worker_pool *pool;
5404 	struct worker *worker;
5405 
5406 	for_each_cpu_worker_pool(pool, cpu) {
5407 		mutex_lock(&wq_pool_attach_mutex);
5408 		raw_spin_lock_irq(&pool->lock);
5409 
5410 		/*
5411 		 * We've blocked all attach/detach operations. Make all workers
5412 		 * unbound and set DISASSOCIATED.  Before this, all workers
5413 		 * must be on the cpu.  After this, they may become diasporas.
5414 		 * And the preemption disabled section in their sched callbacks
5415 		 * are guaranteed to see WORKER_UNBOUND since the code here
5416 		 * is on the same cpu.
5417 		 */
5418 		for_each_pool_worker(worker, pool)
5419 			worker->flags |= WORKER_UNBOUND;
5420 
5421 		pool->flags |= POOL_DISASSOCIATED;
5422 
5423 		/*
5424 		 * The handling of nr_running in sched callbacks are disabled
5425 		 * now.  Zap nr_running.  After this, nr_running stays zero and
5426 		 * need_more_worker() and keep_working() are always true as
5427 		 * long as the worklist is not empty.  This pool now behaves as
5428 		 * an unbound (in terms of concurrency management) pool which
5429 		 * are served by workers tied to the pool.
5430 		 */
5431 		pool->nr_running = 0;
5432 
5433 		/*
5434 		 * With concurrency management just turned off, a busy
5435 		 * worker blocking could lead to lengthy stalls.  Kick off
5436 		 * unbound chain execution of currently pending work items.
5437 		 */
5438 		kick_pool(pool);
5439 
5440 		raw_spin_unlock_irq(&pool->lock);
5441 
5442 		for_each_pool_worker(worker, pool)
5443 			unbind_worker(worker);
5444 
5445 		mutex_unlock(&wq_pool_attach_mutex);
5446 	}
5447 }
5448 
5449 /**
5450  * rebind_workers - rebind all workers of a pool to the associated CPU
5451  * @pool: pool of interest
5452  *
5453  * @pool->cpu is coming online.  Rebind all workers to the CPU.
5454  */
5455 static void rebind_workers(struct worker_pool *pool)
5456 {
5457 	struct worker *worker;
5458 
5459 	lockdep_assert_held(&wq_pool_attach_mutex);
5460 
5461 	/*
5462 	 * Restore CPU affinity of all workers.  As all idle workers should
5463 	 * be on the run-queue of the associated CPU before any local
5464 	 * wake-ups for concurrency management happen, restore CPU affinity
5465 	 * of all workers first and then clear UNBOUND.  As we're called
5466 	 * from CPU_ONLINE, the following shouldn't fail.
5467 	 */
5468 	for_each_pool_worker(worker, pool) {
5469 		kthread_set_per_cpu(worker->task, pool->cpu);
5470 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5471 						  pool_allowed_cpus(pool)) < 0);
5472 	}
5473 
5474 	raw_spin_lock_irq(&pool->lock);
5475 
5476 	pool->flags &= ~POOL_DISASSOCIATED;
5477 
5478 	for_each_pool_worker(worker, pool) {
5479 		unsigned int worker_flags = worker->flags;
5480 
5481 		/*
5482 		 * We want to clear UNBOUND but can't directly call
5483 		 * worker_clr_flags() or adjust nr_running.  Atomically
5484 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5485 		 * @worker will clear REBOUND using worker_clr_flags() when
5486 		 * it initiates the next execution cycle thus restoring
5487 		 * concurrency management.  Note that when or whether
5488 		 * @worker clears REBOUND doesn't affect correctness.
5489 		 *
5490 		 * WRITE_ONCE() is necessary because @worker->flags may be
5491 		 * tested without holding any lock in
5492 		 * wq_worker_running().  Without it, NOT_RUNNING test may
5493 		 * fail incorrectly leading to premature concurrency
5494 		 * management operations.
5495 		 */
5496 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5497 		worker_flags |= WORKER_REBOUND;
5498 		worker_flags &= ~WORKER_UNBOUND;
5499 		WRITE_ONCE(worker->flags, worker_flags);
5500 	}
5501 
5502 	raw_spin_unlock_irq(&pool->lock);
5503 }
5504 
5505 /**
5506  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5507  * @pool: unbound pool of interest
5508  * @cpu: the CPU which is coming up
5509  *
5510  * An unbound pool may end up with a cpumask which doesn't have any online
5511  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
5512  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
5513  * online CPU before, cpus_allowed of all its workers should be restored.
5514  */
5515 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5516 {
5517 	static cpumask_t cpumask;
5518 	struct worker *worker;
5519 
5520 	lockdep_assert_held(&wq_pool_attach_mutex);
5521 
5522 	/* is @cpu allowed for @pool? */
5523 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5524 		return;
5525 
5526 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5527 
5528 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
5529 	for_each_pool_worker(worker, pool)
5530 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5531 }
5532 
5533 int workqueue_prepare_cpu(unsigned int cpu)
5534 {
5535 	struct worker_pool *pool;
5536 
5537 	for_each_cpu_worker_pool(pool, cpu) {
5538 		if (pool->nr_workers)
5539 			continue;
5540 		if (!create_worker(pool))
5541 			return -ENOMEM;
5542 	}
5543 	return 0;
5544 }
5545 
5546 int workqueue_online_cpu(unsigned int cpu)
5547 {
5548 	struct worker_pool *pool;
5549 	struct workqueue_struct *wq;
5550 	int pi;
5551 
5552 	mutex_lock(&wq_pool_mutex);
5553 
5554 	for_each_pool(pool, pi) {
5555 		mutex_lock(&wq_pool_attach_mutex);
5556 
5557 		if (pool->cpu == cpu)
5558 			rebind_workers(pool);
5559 		else if (pool->cpu < 0)
5560 			restore_unbound_workers_cpumask(pool, cpu);
5561 
5562 		mutex_unlock(&wq_pool_attach_mutex);
5563 	}
5564 
5565 	/* update pod affinity of unbound workqueues */
5566 	list_for_each_entry(wq, &workqueues, list) {
5567 		struct workqueue_attrs *attrs = wq->unbound_attrs;
5568 
5569 		if (attrs) {
5570 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5571 			int tcpu;
5572 
5573 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
5574 				wq_update_pod(wq, tcpu, cpu, true);
5575 		}
5576 	}
5577 
5578 	mutex_unlock(&wq_pool_mutex);
5579 	return 0;
5580 }
5581 
5582 int workqueue_offline_cpu(unsigned int cpu)
5583 {
5584 	struct workqueue_struct *wq;
5585 
5586 	/* unbinding per-cpu workers should happen on the local CPU */
5587 	if (WARN_ON(cpu != smp_processor_id()))
5588 		return -1;
5589 
5590 	unbind_workers(cpu);
5591 
5592 	/* update pod affinity of unbound workqueues */
5593 	mutex_lock(&wq_pool_mutex);
5594 	list_for_each_entry(wq, &workqueues, list) {
5595 		struct workqueue_attrs *attrs = wq->unbound_attrs;
5596 
5597 		if (attrs) {
5598 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5599 			int tcpu;
5600 
5601 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
5602 				wq_update_pod(wq, tcpu, cpu, false);
5603 		}
5604 	}
5605 	mutex_unlock(&wq_pool_mutex);
5606 
5607 	return 0;
5608 }
5609 
5610 struct work_for_cpu {
5611 	struct work_struct work;
5612 	long (*fn)(void *);
5613 	void *arg;
5614 	long ret;
5615 };
5616 
5617 static void work_for_cpu_fn(struct work_struct *work)
5618 {
5619 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5620 
5621 	wfc->ret = wfc->fn(wfc->arg);
5622 }
5623 
5624 /**
5625  * work_on_cpu_key - run a function in thread context on a particular cpu
5626  * @cpu: the cpu to run on
5627  * @fn: the function to run
5628  * @arg: the function arg
5629  * @key: The lock class key for lock debugging purposes
5630  *
5631  * It is up to the caller to ensure that the cpu doesn't go offline.
5632  * The caller must not hold any locks which would prevent @fn from completing.
5633  *
5634  * Return: The value @fn returns.
5635  */
5636 long work_on_cpu_key(int cpu, long (*fn)(void *),
5637 		     void *arg, struct lock_class_key *key)
5638 {
5639 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5640 
5641 	INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
5642 	schedule_work_on(cpu, &wfc.work);
5643 	flush_work(&wfc.work);
5644 	destroy_work_on_stack(&wfc.work);
5645 	return wfc.ret;
5646 }
5647 EXPORT_SYMBOL_GPL(work_on_cpu_key);
5648 
5649 /**
5650  * work_on_cpu_safe_key - run a function in thread context on a particular cpu
5651  * @cpu: the cpu to run on
5652  * @fn:  the function to run
5653  * @arg: the function argument
5654  * @key: The lock class key for lock debugging purposes
5655  *
5656  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5657  * any locks which would prevent @fn from completing.
5658  *
5659  * Return: The value @fn returns.
5660  */
5661 long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
5662 			  void *arg, struct lock_class_key *key)
5663 {
5664 	long ret = -ENODEV;
5665 
5666 	cpus_read_lock();
5667 	if (cpu_online(cpu))
5668 		ret = work_on_cpu_key(cpu, fn, arg, key);
5669 	cpus_read_unlock();
5670 	return ret;
5671 }
5672 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
5673 #endif /* CONFIG_SMP */
5674 
5675 #ifdef CONFIG_FREEZER
5676 
5677 /**
5678  * freeze_workqueues_begin - begin freezing workqueues
5679  *
5680  * Start freezing workqueues.  After this function returns, all freezable
5681  * workqueues will queue new works to their inactive_works list instead of
5682  * pool->worklist.
5683  *
5684  * CONTEXT:
5685  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5686  */
5687 void freeze_workqueues_begin(void)
5688 {
5689 	struct workqueue_struct *wq;
5690 	struct pool_workqueue *pwq;
5691 
5692 	mutex_lock(&wq_pool_mutex);
5693 
5694 	WARN_ON_ONCE(workqueue_freezing);
5695 	workqueue_freezing = true;
5696 
5697 	list_for_each_entry(wq, &workqueues, list) {
5698 		mutex_lock(&wq->mutex);
5699 		for_each_pwq(pwq, wq)
5700 			pwq_adjust_max_active(pwq);
5701 		mutex_unlock(&wq->mutex);
5702 	}
5703 
5704 	mutex_unlock(&wq_pool_mutex);
5705 }
5706 
5707 /**
5708  * freeze_workqueues_busy - are freezable workqueues still busy?
5709  *
5710  * Check whether freezing is complete.  This function must be called
5711  * between freeze_workqueues_begin() and thaw_workqueues().
5712  *
5713  * CONTEXT:
5714  * Grabs and releases wq_pool_mutex.
5715  *
5716  * Return:
5717  * %true if some freezable workqueues are still busy.  %false if freezing
5718  * is complete.
5719  */
5720 bool freeze_workqueues_busy(void)
5721 {
5722 	bool busy = false;
5723 	struct workqueue_struct *wq;
5724 	struct pool_workqueue *pwq;
5725 
5726 	mutex_lock(&wq_pool_mutex);
5727 
5728 	WARN_ON_ONCE(!workqueue_freezing);
5729 
5730 	list_for_each_entry(wq, &workqueues, list) {
5731 		if (!(wq->flags & WQ_FREEZABLE))
5732 			continue;
5733 		/*
5734 		 * nr_active is monotonically decreasing.  It's safe
5735 		 * to peek without lock.
5736 		 */
5737 		rcu_read_lock();
5738 		for_each_pwq(pwq, wq) {
5739 			WARN_ON_ONCE(pwq->nr_active < 0);
5740 			if (pwq->nr_active) {
5741 				busy = true;
5742 				rcu_read_unlock();
5743 				goto out_unlock;
5744 			}
5745 		}
5746 		rcu_read_unlock();
5747 	}
5748 out_unlock:
5749 	mutex_unlock(&wq_pool_mutex);
5750 	return busy;
5751 }
5752 
5753 /**
5754  * thaw_workqueues - thaw workqueues
5755  *
5756  * Thaw workqueues.  Normal queueing is restored and all collected
5757  * frozen works are transferred to their respective pool worklists.
5758  *
5759  * CONTEXT:
5760  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5761  */
5762 void thaw_workqueues(void)
5763 {
5764 	struct workqueue_struct *wq;
5765 	struct pool_workqueue *pwq;
5766 
5767 	mutex_lock(&wq_pool_mutex);
5768 
5769 	if (!workqueue_freezing)
5770 		goto out_unlock;
5771 
5772 	workqueue_freezing = false;
5773 
5774 	/* restore max_active and repopulate worklist */
5775 	list_for_each_entry(wq, &workqueues, list) {
5776 		mutex_lock(&wq->mutex);
5777 		for_each_pwq(pwq, wq)
5778 			pwq_adjust_max_active(pwq);
5779 		mutex_unlock(&wq->mutex);
5780 	}
5781 
5782 out_unlock:
5783 	mutex_unlock(&wq_pool_mutex);
5784 }
5785 #endif /* CONFIG_FREEZER */
5786 
5787 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
5788 {
5789 	LIST_HEAD(ctxs);
5790 	int ret = 0;
5791 	struct workqueue_struct *wq;
5792 	struct apply_wqattrs_ctx *ctx, *n;
5793 
5794 	lockdep_assert_held(&wq_pool_mutex);
5795 
5796 	list_for_each_entry(wq, &workqueues, list) {
5797 		if (!(wq->flags & WQ_UNBOUND))
5798 			continue;
5799 
5800 		/* creating multiple pwqs breaks ordering guarantee */
5801 		if (!list_empty(&wq->pwqs)) {
5802 			if (wq->flags & __WQ_ORDERED_EXPLICIT)
5803 				continue;
5804 			wq->flags &= ~__WQ_ORDERED;
5805 		}
5806 
5807 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
5808 		if (IS_ERR(ctx)) {
5809 			ret = PTR_ERR(ctx);
5810 			break;
5811 		}
5812 
5813 		list_add_tail(&ctx->list, &ctxs);
5814 	}
5815 
5816 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5817 		if (!ret)
5818 			apply_wqattrs_commit(ctx);
5819 		apply_wqattrs_cleanup(ctx);
5820 	}
5821 
5822 	if (!ret) {
5823 		mutex_lock(&wq_pool_attach_mutex);
5824 		cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
5825 		mutex_unlock(&wq_pool_attach_mutex);
5826 	}
5827 	return ret;
5828 }
5829 
5830 /**
5831  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5832  *  @cpumask: the cpumask to set
5833  *
5834  *  The low-level workqueues cpumask is a global cpumask that limits
5835  *  the affinity of all unbound workqueues.  This function check the @cpumask
5836  *  and apply it to all unbound workqueues and updates all pwqs of them.
5837  *
5838  *  Return:	0	- Success
5839  *  		-EINVAL	- Invalid @cpumask
5840  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5841  */
5842 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5843 {
5844 	int ret = -EINVAL;
5845 
5846 	/*
5847 	 * Not excluding isolated cpus on purpose.
5848 	 * If the user wishes to include them, we allow that.
5849 	 */
5850 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5851 	if (!cpumask_empty(cpumask)) {
5852 		apply_wqattrs_lock();
5853 		if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5854 			ret = 0;
5855 			goto out_unlock;
5856 		}
5857 
5858 		ret = workqueue_apply_unbound_cpumask(cpumask);
5859 
5860 out_unlock:
5861 		apply_wqattrs_unlock();
5862 	}
5863 
5864 	return ret;
5865 }
5866 
5867 static int parse_affn_scope(const char *val)
5868 {
5869 	int i;
5870 
5871 	for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
5872 		if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
5873 			return i;
5874 	}
5875 	return -EINVAL;
5876 }
5877 
5878 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
5879 {
5880 	struct workqueue_struct *wq;
5881 	int affn, cpu;
5882 
5883 	affn = parse_affn_scope(val);
5884 	if (affn < 0)
5885 		return affn;
5886 	if (affn == WQ_AFFN_DFL)
5887 		return -EINVAL;
5888 
5889 	cpus_read_lock();
5890 	mutex_lock(&wq_pool_mutex);
5891 
5892 	wq_affn_dfl = affn;
5893 
5894 	list_for_each_entry(wq, &workqueues, list) {
5895 		for_each_online_cpu(cpu) {
5896 			wq_update_pod(wq, cpu, cpu, true);
5897 		}
5898 	}
5899 
5900 	mutex_unlock(&wq_pool_mutex);
5901 	cpus_read_unlock();
5902 
5903 	return 0;
5904 }
5905 
5906 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
5907 {
5908 	return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
5909 }
5910 
5911 static const struct kernel_param_ops wq_affn_dfl_ops = {
5912 	.set	= wq_affn_dfl_set,
5913 	.get	= wq_affn_dfl_get,
5914 };
5915 
5916 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
5917 
5918 #ifdef CONFIG_SYSFS
5919 /*
5920  * Workqueues with WQ_SYSFS flag set is visible to userland via
5921  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5922  * following attributes.
5923  *
5924  *  per_cpu		RO bool	: whether the workqueue is per-cpu or unbound
5925  *  max_active		RW int	: maximum number of in-flight work items
5926  *
5927  * Unbound workqueues have the following extra attributes.
5928  *
5929  *  nice		RW int	: nice value of the workers
5930  *  cpumask		RW mask	: bitmask of allowed CPUs for the workers
5931  *  affinity_scope	RW str  : worker CPU affinity scope (cache, numa, none)
5932  *  affinity_strict	RW bool : worker CPU affinity is strict
5933  */
5934 struct wq_device {
5935 	struct workqueue_struct		*wq;
5936 	struct device			dev;
5937 };
5938 
5939 static struct workqueue_struct *dev_to_wq(struct device *dev)
5940 {
5941 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5942 
5943 	return wq_dev->wq;
5944 }
5945 
5946 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5947 			    char *buf)
5948 {
5949 	struct workqueue_struct *wq = dev_to_wq(dev);
5950 
5951 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5952 }
5953 static DEVICE_ATTR_RO(per_cpu);
5954 
5955 static ssize_t max_active_show(struct device *dev,
5956 			       struct device_attribute *attr, char *buf)
5957 {
5958 	struct workqueue_struct *wq = dev_to_wq(dev);
5959 
5960 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5961 }
5962 
5963 static ssize_t max_active_store(struct device *dev,
5964 				struct device_attribute *attr, const char *buf,
5965 				size_t count)
5966 {
5967 	struct workqueue_struct *wq = dev_to_wq(dev);
5968 	int val;
5969 
5970 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5971 		return -EINVAL;
5972 
5973 	workqueue_set_max_active(wq, val);
5974 	return count;
5975 }
5976 static DEVICE_ATTR_RW(max_active);
5977 
5978 static struct attribute *wq_sysfs_attrs[] = {
5979 	&dev_attr_per_cpu.attr,
5980 	&dev_attr_max_active.attr,
5981 	NULL,
5982 };
5983 ATTRIBUTE_GROUPS(wq_sysfs);
5984 
5985 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5986 			    char *buf)
5987 {
5988 	struct workqueue_struct *wq = dev_to_wq(dev);
5989 	int written;
5990 
5991 	mutex_lock(&wq->mutex);
5992 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5993 	mutex_unlock(&wq->mutex);
5994 
5995 	return written;
5996 }
5997 
5998 /* prepare workqueue_attrs for sysfs store operations */
5999 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
6000 {
6001 	struct workqueue_attrs *attrs;
6002 
6003 	lockdep_assert_held(&wq_pool_mutex);
6004 
6005 	attrs = alloc_workqueue_attrs();
6006 	if (!attrs)
6007 		return NULL;
6008 
6009 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
6010 	return attrs;
6011 }
6012 
6013 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
6014 			     const char *buf, size_t count)
6015 {
6016 	struct workqueue_struct *wq = dev_to_wq(dev);
6017 	struct workqueue_attrs *attrs;
6018 	int ret = -ENOMEM;
6019 
6020 	apply_wqattrs_lock();
6021 
6022 	attrs = wq_sysfs_prep_attrs(wq);
6023 	if (!attrs)
6024 		goto out_unlock;
6025 
6026 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
6027 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
6028 		ret = apply_workqueue_attrs_locked(wq, attrs);
6029 	else
6030 		ret = -EINVAL;
6031 
6032 out_unlock:
6033 	apply_wqattrs_unlock();
6034 	free_workqueue_attrs(attrs);
6035 	return ret ?: count;
6036 }
6037 
6038 static ssize_t wq_cpumask_show(struct device *dev,
6039 			       struct device_attribute *attr, char *buf)
6040 {
6041 	struct workqueue_struct *wq = dev_to_wq(dev);
6042 	int written;
6043 
6044 	mutex_lock(&wq->mutex);
6045 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
6046 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
6047 	mutex_unlock(&wq->mutex);
6048 	return written;
6049 }
6050 
6051 static ssize_t wq_cpumask_store(struct device *dev,
6052 				struct device_attribute *attr,
6053 				const char *buf, size_t count)
6054 {
6055 	struct workqueue_struct *wq = dev_to_wq(dev);
6056 	struct workqueue_attrs *attrs;
6057 	int ret = -ENOMEM;
6058 
6059 	apply_wqattrs_lock();
6060 
6061 	attrs = wq_sysfs_prep_attrs(wq);
6062 	if (!attrs)
6063 		goto out_unlock;
6064 
6065 	ret = cpumask_parse(buf, attrs->cpumask);
6066 	if (!ret)
6067 		ret = apply_workqueue_attrs_locked(wq, attrs);
6068 
6069 out_unlock:
6070 	apply_wqattrs_unlock();
6071 	free_workqueue_attrs(attrs);
6072 	return ret ?: count;
6073 }
6074 
6075 static ssize_t wq_affn_scope_show(struct device *dev,
6076 				  struct device_attribute *attr, char *buf)
6077 {
6078 	struct workqueue_struct *wq = dev_to_wq(dev);
6079 	int written;
6080 
6081 	mutex_lock(&wq->mutex);
6082 	if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
6083 		written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
6084 				    wq_affn_names[WQ_AFFN_DFL],
6085 				    wq_affn_names[wq_affn_dfl]);
6086 	else
6087 		written = scnprintf(buf, PAGE_SIZE, "%s\n",
6088 				    wq_affn_names[wq->unbound_attrs->affn_scope]);
6089 	mutex_unlock(&wq->mutex);
6090 
6091 	return written;
6092 }
6093 
6094 static ssize_t wq_affn_scope_store(struct device *dev,
6095 				   struct device_attribute *attr,
6096 				   const char *buf, size_t count)
6097 {
6098 	struct workqueue_struct *wq = dev_to_wq(dev);
6099 	struct workqueue_attrs *attrs;
6100 	int affn, ret = -ENOMEM;
6101 
6102 	affn = parse_affn_scope(buf);
6103 	if (affn < 0)
6104 		return affn;
6105 
6106 	apply_wqattrs_lock();
6107 	attrs = wq_sysfs_prep_attrs(wq);
6108 	if (attrs) {
6109 		attrs->affn_scope = affn;
6110 		ret = apply_workqueue_attrs_locked(wq, attrs);
6111 	}
6112 	apply_wqattrs_unlock();
6113 	free_workqueue_attrs(attrs);
6114 	return ret ?: count;
6115 }
6116 
6117 static ssize_t wq_affinity_strict_show(struct device *dev,
6118 				       struct device_attribute *attr, char *buf)
6119 {
6120 	struct workqueue_struct *wq = dev_to_wq(dev);
6121 
6122 	return scnprintf(buf, PAGE_SIZE, "%d\n",
6123 			 wq->unbound_attrs->affn_strict);
6124 }
6125 
6126 static ssize_t wq_affinity_strict_store(struct device *dev,
6127 					struct device_attribute *attr,
6128 					const char *buf, size_t count)
6129 {
6130 	struct workqueue_struct *wq = dev_to_wq(dev);
6131 	struct workqueue_attrs *attrs;
6132 	int v, ret = -ENOMEM;
6133 
6134 	if (sscanf(buf, "%d", &v) != 1)
6135 		return -EINVAL;
6136 
6137 	apply_wqattrs_lock();
6138 	attrs = wq_sysfs_prep_attrs(wq);
6139 	if (attrs) {
6140 		attrs->affn_strict = (bool)v;
6141 		ret = apply_workqueue_attrs_locked(wq, attrs);
6142 	}
6143 	apply_wqattrs_unlock();
6144 	free_workqueue_attrs(attrs);
6145 	return ret ?: count;
6146 }
6147 
6148 static struct device_attribute wq_sysfs_unbound_attrs[] = {
6149 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
6150 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
6151 	__ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
6152 	__ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
6153 	__ATTR_NULL,
6154 };
6155 
6156 static struct bus_type wq_subsys = {
6157 	.name				= "workqueue",
6158 	.dev_groups			= wq_sysfs_groups,
6159 };
6160 
6161 static ssize_t wq_unbound_cpumask_show(struct device *dev,
6162 		struct device_attribute *attr, char *buf)
6163 {
6164 	int written;
6165 
6166 	mutex_lock(&wq_pool_mutex);
6167 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
6168 			    cpumask_pr_args(wq_unbound_cpumask));
6169 	mutex_unlock(&wq_pool_mutex);
6170 
6171 	return written;
6172 }
6173 
6174 static ssize_t wq_unbound_cpumask_store(struct device *dev,
6175 		struct device_attribute *attr, const char *buf, size_t count)
6176 {
6177 	cpumask_var_t cpumask;
6178 	int ret;
6179 
6180 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6181 		return -ENOMEM;
6182 
6183 	ret = cpumask_parse(buf, cpumask);
6184 	if (!ret)
6185 		ret = workqueue_set_unbound_cpumask(cpumask);
6186 
6187 	free_cpumask_var(cpumask);
6188 	return ret ? ret : count;
6189 }
6190 
6191 static struct device_attribute wq_sysfs_cpumask_attr =
6192 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
6193 	       wq_unbound_cpumask_store);
6194 
6195 static int __init wq_sysfs_init(void)
6196 {
6197 	struct device *dev_root;
6198 	int err;
6199 
6200 	err = subsys_virtual_register(&wq_subsys, NULL);
6201 	if (err)
6202 		return err;
6203 
6204 	dev_root = bus_get_dev_root(&wq_subsys);
6205 	if (dev_root) {
6206 		err = device_create_file(dev_root, &wq_sysfs_cpumask_attr);
6207 		put_device(dev_root);
6208 	}
6209 	return err;
6210 }
6211 core_initcall(wq_sysfs_init);
6212 
6213 static void wq_device_release(struct device *dev)
6214 {
6215 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6216 
6217 	kfree(wq_dev);
6218 }
6219 
6220 /**
6221  * workqueue_sysfs_register - make a workqueue visible in sysfs
6222  * @wq: the workqueue to register
6223  *
6224  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
6225  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
6226  * which is the preferred method.
6227  *
6228  * Workqueue user should use this function directly iff it wants to apply
6229  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
6230  * apply_workqueue_attrs() may race against userland updating the
6231  * attributes.
6232  *
6233  * Return: 0 on success, -errno on failure.
6234  */
6235 int workqueue_sysfs_register(struct workqueue_struct *wq)
6236 {
6237 	struct wq_device *wq_dev;
6238 	int ret;
6239 
6240 	/*
6241 	 * Adjusting max_active or creating new pwqs by applying
6242 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
6243 	 * workqueues.
6244 	 */
6245 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6246 		return -EINVAL;
6247 
6248 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
6249 	if (!wq_dev)
6250 		return -ENOMEM;
6251 
6252 	wq_dev->wq = wq;
6253 	wq_dev->dev.bus = &wq_subsys;
6254 	wq_dev->dev.release = wq_device_release;
6255 	dev_set_name(&wq_dev->dev, "%s", wq->name);
6256 
6257 	/*
6258 	 * unbound_attrs are created separately.  Suppress uevent until
6259 	 * everything is ready.
6260 	 */
6261 	dev_set_uevent_suppress(&wq_dev->dev, true);
6262 
6263 	ret = device_register(&wq_dev->dev);
6264 	if (ret) {
6265 		put_device(&wq_dev->dev);
6266 		wq->wq_dev = NULL;
6267 		return ret;
6268 	}
6269 
6270 	if (wq->flags & WQ_UNBOUND) {
6271 		struct device_attribute *attr;
6272 
6273 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
6274 			ret = device_create_file(&wq_dev->dev, attr);
6275 			if (ret) {
6276 				device_unregister(&wq_dev->dev);
6277 				wq->wq_dev = NULL;
6278 				return ret;
6279 			}
6280 		}
6281 	}
6282 
6283 	dev_set_uevent_suppress(&wq_dev->dev, false);
6284 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
6285 	return 0;
6286 }
6287 
6288 /**
6289  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
6290  * @wq: the workqueue to unregister
6291  *
6292  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
6293  */
6294 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
6295 {
6296 	struct wq_device *wq_dev = wq->wq_dev;
6297 
6298 	if (!wq->wq_dev)
6299 		return;
6300 
6301 	wq->wq_dev = NULL;
6302 	device_unregister(&wq_dev->dev);
6303 }
6304 #else	/* CONFIG_SYSFS */
6305 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
6306 #endif	/* CONFIG_SYSFS */
6307 
6308 /*
6309  * Workqueue watchdog.
6310  *
6311  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
6312  * flush dependency, a concurrency managed work item which stays RUNNING
6313  * indefinitely.  Workqueue stalls can be very difficult to debug as the
6314  * usual warning mechanisms don't trigger and internal workqueue state is
6315  * largely opaque.
6316  *
6317  * Workqueue watchdog monitors all worker pools periodically and dumps
6318  * state if some pools failed to make forward progress for a while where
6319  * forward progress is defined as the first item on ->worklist changing.
6320  *
6321  * This mechanism is controlled through the kernel parameter
6322  * "workqueue.watchdog_thresh" which can be updated at runtime through the
6323  * corresponding sysfs parameter file.
6324  */
6325 #ifdef CONFIG_WQ_WATCHDOG
6326 
6327 static unsigned long wq_watchdog_thresh = 30;
6328 static struct timer_list wq_watchdog_timer;
6329 
6330 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
6331 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
6332 
6333 /*
6334  * Show workers that might prevent the processing of pending work items.
6335  * The only candidates are CPU-bound workers in the running state.
6336  * Pending work items should be handled by another idle worker
6337  * in all other situations.
6338  */
6339 static void show_cpu_pool_hog(struct worker_pool *pool)
6340 {
6341 	struct worker *worker;
6342 	unsigned long flags;
6343 	int bkt;
6344 
6345 	raw_spin_lock_irqsave(&pool->lock, flags);
6346 
6347 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6348 		if (task_is_running(worker->task)) {
6349 			/*
6350 			 * Defer printing to avoid deadlocks in console
6351 			 * drivers that queue work while holding locks
6352 			 * also taken in their write paths.
6353 			 */
6354 			printk_deferred_enter();
6355 
6356 			pr_info("pool %d:\n", pool->id);
6357 			sched_show_task(worker->task);
6358 
6359 			printk_deferred_exit();
6360 		}
6361 	}
6362 
6363 	raw_spin_unlock_irqrestore(&pool->lock, flags);
6364 }
6365 
6366 static void show_cpu_pools_hogs(void)
6367 {
6368 	struct worker_pool *pool;
6369 	int pi;
6370 
6371 	pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
6372 
6373 	rcu_read_lock();
6374 
6375 	for_each_pool(pool, pi) {
6376 		if (pool->cpu_stall)
6377 			show_cpu_pool_hog(pool);
6378 
6379 	}
6380 
6381 	rcu_read_unlock();
6382 }
6383 
6384 static void wq_watchdog_reset_touched(void)
6385 {
6386 	int cpu;
6387 
6388 	wq_watchdog_touched = jiffies;
6389 	for_each_possible_cpu(cpu)
6390 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
6391 }
6392 
6393 static void wq_watchdog_timer_fn(struct timer_list *unused)
6394 {
6395 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
6396 	bool lockup_detected = false;
6397 	bool cpu_pool_stall = false;
6398 	unsigned long now = jiffies;
6399 	struct worker_pool *pool;
6400 	int pi;
6401 
6402 	if (!thresh)
6403 		return;
6404 
6405 	rcu_read_lock();
6406 
6407 	for_each_pool(pool, pi) {
6408 		unsigned long pool_ts, touched, ts;
6409 
6410 		pool->cpu_stall = false;
6411 		if (list_empty(&pool->worklist))
6412 			continue;
6413 
6414 		/*
6415 		 * If a virtual machine is stopped by the host it can look to
6416 		 * the watchdog like a stall.
6417 		 */
6418 		kvm_check_and_clear_guest_paused();
6419 
6420 		/* get the latest of pool and touched timestamps */
6421 		if (pool->cpu >= 0)
6422 			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
6423 		else
6424 			touched = READ_ONCE(wq_watchdog_touched);
6425 		pool_ts = READ_ONCE(pool->watchdog_ts);
6426 
6427 		if (time_after(pool_ts, touched))
6428 			ts = pool_ts;
6429 		else
6430 			ts = touched;
6431 
6432 		/* did we stall? */
6433 		if (time_after(now, ts + thresh)) {
6434 			lockup_detected = true;
6435 			if (pool->cpu >= 0) {
6436 				pool->cpu_stall = true;
6437 				cpu_pool_stall = true;
6438 			}
6439 			pr_emerg("BUG: workqueue lockup - pool");
6440 			pr_cont_pool_info(pool);
6441 			pr_cont(" stuck for %us!\n",
6442 				jiffies_to_msecs(now - pool_ts) / 1000);
6443 		}
6444 
6445 
6446 	}
6447 
6448 	rcu_read_unlock();
6449 
6450 	if (lockup_detected)
6451 		show_all_workqueues();
6452 
6453 	if (cpu_pool_stall)
6454 		show_cpu_pools_hogs();
6455 
6456 	wq_watchdog_reset_touched();
6457 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
6458 }
6459 
6460 notrace void wq_watchdog_touch(int cpu)
6461 {
6462 	if (cpu >= 0)
6463 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
6464 
6465 	wq_watchdog_touched = jiffies;
6466 }
6467 
6468 static void wq_watchdog_set_thresh(unsigned long thresh)
6469 {
6470 	wq_watchdog_thresh = 0;
6471 	del_timer_sync(&wq_watchdog_timer);
6472 
6473 	if (thresh) {
6474 		wq_watchdog_thresh = thresh;
6475 		wq_watchdog_reset_touched();
6476 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
6477 	}
6478 }
6479 
6480 static int wq_watchdog_param_set_thresh(const char *val,
6481 					const struct kernel_param *kp)
6482 {
6483 	unsigned long thresh;
6484 	int ret;
6485 
6486 	ret = kstrtoul(val, 0, &thresh);
6487 	if (ret)
6488 		return ret;
6489 
6490 	if (system_wq)
6491 		wq_watchdog_set_thresh(thresh);
6492 	else
6493 		wq_watchdog_thresh = thresh;
6494 
6495 	return 0;
6496 }
6497 
6498 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
6499 	.set	= wq_watchdog_param_set_thresh,
6500 	.get	= param_get_ulong,
6501 };
6502 
6503 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
6504 		0644);
6505 
6506 static void wq_watchdog_init(void)
6507 {
6508 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
6509 	wq_watchdog_set_thresh(wq_watchdog_thresh);
6510 }
6511 
6512 #else	/* CONFIG_WQ_WATCHDOG */
6513 
6514 static inline void wq_watchdog_init(void) { }
6515 
6516 #endif	/* CONFIG_WQ_WATCHDOG */
6517 
6518 /**
6519  * workqueue_init_early - early init for workqueue subsystem
6520  *
6521  * This is the first step of three-staged workqueue subsystem initialization and
6522  * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
6523  * up. It sets up all the data structures and system workqueues and allows early
6524  * boot code to create workqueues and queue/cancel work items. Actual work item
6525  * execution starts only after kthreads can be created and scheduled right
6526  * before early initcalls.
6527  */
6528 void __init workqueue_init_early(void)
6529 {
6530 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
6531 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
6532 	int i, cpu;
6533 
6534 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
6535 
6536 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
6537 	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_WQ));
6538 	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_DOMAIN));
6539 
6540 	if (!cpumask_empty(&wq_cmdline_cpumask))
6541 		cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, &wq_cmdline_cpumask);
6542 
6543 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
6544 
6545 	wq_update_pod_attrs_buf = alloc_workqueue_attrs();
6546 	BUG_ON(!wq_update_pod_attrs_buf);
6547 
6548 	/* initialize WQ_AFFN_SYSTEM pods */
6549 	pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
6550 	pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
6551 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
6552 	BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
6553 
6554 	BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
6555 
6556 	pt->nr_pods = 1;
6557 	cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
6558 	pt->pod_node[0] = NUMA_NO_NODE;
6559 	pt->cpu_pod[0] = 0;
6560 
6561 	/* initialize CPU pools */
6562 	for_each_possible_cpu(cpu) {
6563 		struct worker_pool *pool;
6564 
6565 		i = 0;
6566 		for_each_cpu_worker_pool(pool, cpu) {
6567 			BUG_ON(init_worker_pool(pool));
6568 			pool->cpu = cpu;
6569 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
6570 			cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
6571 			pool->attrs->nice = std_nice[i++];
6572 			pool->attrs->affn_strict = true;
6573 			pool->node = cpu_to_node(cpu);
6574 
6575 			/* alloc pool ID */
6576 			mutex_lock(&wq_pool_mutex);
6577 			BUG_ON(worker_pool_assign_id(pool));
6578 			mutex_unlock(&wq_pool_mutex);
6579 		}
6580 	}
6581 
6582 	/* create default unbound and ordered wq attrs */
6583 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6584 		struct workqueue_attrs *attrs;
6585 
6586 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6587 		attrs->nice = std_nice[i];
6588 		unbound_std_wq_attrs[i] = attrs;
6589 
6590 		/*
6591 		 * An ordered wq should have only one pwq as ordering is
6592 		 * guaranteed by max_active which is enforced by pwqs.
6593 		 */
6594 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6595 		attrs->nice = std_nice[i];
6596 		attrs->ordered = true;
6597 		ordered_wq_attrs[i] = attrs;
6598 	}
6599 
6600 	system_wq = alloc_workqueue("events", 0, 0);
6601 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6602 	system_long_wq = alloc_workqueue("events_long", 0, 0);
6603 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6604 					    WQ_MAX_ACTIVE);
6605 	system_freezable_wq = alloc_workqueue("events_freezable",
6606 					      WQ_FREEZABLE, 0);
6607 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6608 					      WQ_POWER_EFFICIENT, 0);
6609 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6610 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6611 					      0);
6612 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6613 	       !system_unbound_wq || !system_freezable_wq ||
6614 	       !system_power_efficient_wq ||
6615 	       !system_freezable_power_efficient_wq);
6616 }
6617 
6618 static void __init wq_cpu_intensive_thresh_init(void)
6619 {
6620 	unsigned long thresh;
6621 	unsigned long bogo;
6622 
6623 	pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
6624 	BUG_ON(IS_ERR(pwq_release_worker));
6625 
6626 	/* if the user set it to a specific value, keep it */
6627 	if (wq_cpu_intensive_thresh_us != ULONG_MAX)
6628 		return;
6629 
6630 	/*
6631 	 * The default of 10ms is derived from the fact that most modern (as of
6632 	 * 2023) processors can do a lot in 10ms and that it's just below what
6633 	 * most consider human-perceivable. However, the kernel also runs on a
6634 	 * lot slower CPUs including microcontrollers where the threshold is way
6635 	 * too low.
6636 	 *
6637 	 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
6638 	 * This is by no means accurate but it doesn't have to be. The mechanism
6639 	 * is still useful even when the threshold is fully scaled up. Also, as
6640 	 * the reports would usually be applicable to everyone, some machines
6641 	 * operating on longer thresholds won't significantly diminish their
6642 	 * usefulness.
6643 	 */
6644 	thresh = 10 * USEC_PER_MSEC;
6645 
6646 	/* see init/calibrate.c for lpj -> BogoMIPS calculation */
6647 	bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
6648 	if (bogo < 4000)
6649 		thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
6650 
6651 	pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
6652 		 loops_per_jiffy, bogo, thresh);
6653 
6654 	wq_cpu_intensive_thresh_us = thresh;
6655 }
6656 
6657 /**
6658  * workqueue_init - bring workqueue subsystem fully online
6659  *
6660  * This is the second step of three-staged workqueue subsystem initialization
6661  * and invoked as soon as kthreads can be created and scheduled. Workqueues have
6662  * been created and work items queued on them, but there are no kworkers
6663  * executing the work items yet. Populate the worker pools with the initial
6664  * workers and enable future kworker creations.
6665  */
6666 void __init workqueue_init(void)
6667 {
6668 	struct workqueue_struct *wq;
6669 	struct worker_pool *pool;
6670 	int cpu, bkt;
6671 
6672 	wq_cpu_intensive_thresh_init();
6673 
6674 	mutex_lock(&wq_pool_mutex);
6675 
6676 	/*
6677 	 * Per-cpu pools created earlier could be missing node hint. Fix them
6678 	 * up. Also, create a rescuer for workqueues that requested it.
6679 	 */
6680 	for_each_possible_cpu(cpu) {
6681 		for_each_cpu_worker_pool(pool, cpu) {
6682 			pool->node = cpu_to_node(cpu);
6683 		}
6684 	}
6685 
6686 	list_for_each_entry(wq, &workqueues, list) {
6687 		WARN(init_rescuer(wq),
6688 		     "workqueue: failed to create early rescuer for %s",
6689 		     wq->name);
6690 	}
6691 
6692 	mutex_unlock(&wq_pool_mutex);
6693 
6694 	/* create the initial workers */
6695 	for_each_online_cpu(cpu) {
6696 		for_each_cpu_worker_pool(pool, cpu) {
6697 			pool->flags &= ~POOL_DISASSOCIATED;
6698 			BUG_ON(!create_worker(pool));
6699 		}
6700 	}
6701 
6702 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6703 		BUG_ON(!create_worker(pool));
6704 
6705 	wq_online = true;
6706 	wq_watchdog_init();
6707 }
6708 
6709 /*
6710  * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
6711  * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
6712  * and consecutive pod ID. The rest of @pt is initialized accordingly.
6713  */
6714 static void __init init_pod_type(struct wq_pod_type *pt,
6715 				 bool (*cpus_share_pod)(int, int))
6716 {
6717 	int cur, pre, cpu, pod;
6718 
6719 	pt->nr_pods = 0;
6720 
6721 	/* init @pt->cpu_pod[] according to @cpus_share_pod() */
6722 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
6723 	BUG_ON(!pt->cpu_pod);
6724 
6725 	for_each_possible_cpu(cur) {
6726 		for_each_possible_cpu(pre) {
6727 			if (pre >= cur) {
6728 				pt->cpu_pod[cur] = pt->nr_pods++;
6729 				break;
6730 			}
6731 			if (cpus_share_pod(cur, pre)) {
6732 				pt->cpu_pod[cur] = pt->cpu_pod[pre];
6733 				break;
6734 			}
6735 		}
6736 	}
6737 
6738 	/* init the rest to match @pt->cpu_pod[] */
6739 	pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
6740 	pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
6741 	BUG_ON(!pt->pod_cpus || !pt->pod_node);
6742 
6743 	for (pod = 0; pod < pt->nr_pods; pod++)
6744 		BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
6745 
6746 	for_each_possible_cpu(cpu) {
6747 		cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
6748 		pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
6749 	}
6750 }
6751 
6752 static bool __init cpus_dont_share(int cpu0, int cpu1)
6753 {
6754 	return false;
6755 }
6756 
6757 static bool __init cpus_share_smt(int cpu0, int cpu1)
6758 {
6759 #ifdef CONFIG_SCHED_SMT
6760 	return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
6761 #else
6762 	return false;
6763 #endif
6764 }
6765 
6766 static bool __init cpus_share_numa(int cpu0, int cpu1)
6767 {
6768 	return cpu_to_node(cpu0) == cpu_to_node(cpu1);
6769 }
6770 
6771 /**
6772  * workqueue_init_topology - initialize CPU pods for unbound workqueues
6773  *
6774  * This is the third step of there-staged workqueue subsystem initialization and
6775  * invoked after SMP and topology information are fully initialized. It
6776  * initializes the unbound CPU pods accordingly.
6777  */
6778 void __init workqueue_init_topology(void)
6779 {
6780 	struct workqueue_struct *wq;
6781 	int cpu;
6782 
6783 	init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
6784 	init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
6785 	init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
6786 	init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
6787 
6788 	mutex_lock(&wq_pool_mutex);
6789 
6790 	/*
6791 	 * Workqueues allocated earlier would have all CPUs sharing the default
6792 	 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU
6793 	 * combinations to apply per-pod sharing.
6794 	 */
6795 	list_for_each_entry(wq, &workqueues, list) {
6796 		for_each_online_cpu(cpu) {
6797 			wq_update_pod(wq, cpu, cpu, true);
6798 		}
6799 	}
6800 
6801 	mutex_unlock(&wq_pool_mutex);
6802 }
6803 
6804 void __warn_flushing_systemwide_wq(void)
6805 {
6806 	pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
6807 	dump_stack();
6808 }
6809 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
6810 
6811 static int __init workqueue_unbound_cpus_setup(char *str)
6812 {
6813 	if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
6814 		cpumask_clear(&wq_cmdline_cpumask);
6815 		pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
6816 	}
6817 
6818 	return 1;
6819 }
6820 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
6821