1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There are two worker pools for each CPU (one for 20 * normal work items and the other for high priority ones) and some extra 21 * pools for workqueues which are not bound to any specific CPU - the 22 * number of these backing pools is dynamic. 23 * 24 * Please read Documentation/workqueue.txt for details. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kernel.h> 29 #include <linux/sched.h> 30 #include <linux/init.h> 31 #include <linux/signal.h> 32 #include <linux/completion.h> 33 #include <linux/workqueue.h> 34 #include <linux/slab.h> 35 #include <linux/cpu.h> 36 #include <linux/notifier.h> 37 #include <linux/kthread.h> 38 #include <linux/hardirq.h> 39 #include <linux/mempolicy.h> 40 #include <linux/freezer.h> 41 #include <linux/kallsyms.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 52 #include "workqueue_internal.h" 53 54 enum { 55 /* 56 * worker_pool flags 57 * 58 * A bound pool is either associated or disassociated with its CPU. 59 * While associated (!DISASSOCIATED), all workers are bound to the 60 * CPU and none has %WORKER_UNBOUND set and concurrency management 61 * is in effect. 62 * 63 * While DISASSOCIATED, the cpu may be offline and all workers have 64 * %WORKER_UNBOUND set and concurrency management disabled, and may 65 * be executing on any CPU. The pool behaves as an unbound one. 66 * 67 * Note that DISASSOCIATED should be flipped only while holding 68 * manager_mutex to avoid changing binding state while 69 * create_worker() is in progress. 70 */ 71 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */ 72 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 73 POOL_FREEZING = 1 << 3, /* freeze in progress */ 74 75 /* worker flags */ 76 WORKER_STARTED = 1 << 0, /* started */ 77 WORKER_DIE = 1 << 1, /* die die die */ 78 WORKER_IDLE = 1 << 2, /* is idle */ 79 WORKER_PREP = 1 << 3, /* preparing to run works */ 80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 82 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 83 84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 85 WORKER_UNBOUND | WORKER_REBOUND, 86 87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 88 89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 91 92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 94 95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 96 /* call for help after 10ms 97 (min two ticks) */ 98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 99 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 100 101 /* 102 * Rescue workers are used only on emergencies and shared by 103 * all cpus. Give MIN_NICE. 104 */ 105 RESCUER_NICE_LEVEL = MIN_NICE, 106 HIGHPRI_NICE_LEVEL = MIN_NICE, 107 108 WQ_NAME_LEN = 24, 109 }; 110 111 /* 112 * Structure fields follow one of the following exclusion rules. 113 * 114 * I: Modifiable by initialization/destruction paths and read-only for 115 * everyone else. 116 * 117 * P: Preemption protected. Disabling preemption is enough and should 118 * only be modified and accessed from the local cpu. 119 * 120 * L: pool->lock protected. Access with pool->lock held. 121 * 122 * X: During normal operation, modification requires pool->lock and should 123 * be done only from local cpu. Either disabling preemption on local 124 * cpu or grabbing pool->lock is enough for read access. If 125 * POOL_DISASSOCIATED is set, it's identical to L. 126 * 127 * MG: pool->manager_mutex and pool->lock protected. Writes require both 128 * locks. Reads can happen under either lock. 129 * 130 * PL: wq_pool_mutex protected. 131 * 132 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads. 133 * 134 * WQ: wq->mutex protected. 135 * 136 * WR: wq->mutex protected for writes. Sched-RCU protected for reads. 137 * 138 * MD: wq_mayday_lock protected. 139 */ 140 141 /* struct worker is defined in workqueue_internal.h */ 142 143 struct worker_pool { 144 spinlock_t lock; /* the pool lock */ 145 int cpu; /* I: the associated cpu */ 146 int node; /* I: the associated node ID */ 147 int id; /* I: pool ID */ 148 unsigned int flags; /* X: flags */ 149 150 struct list_head worklist; /* L: list of pending works */ 151 int nr_workers; /* L: total number of workers */ 152 153 /* nr_idle includes the ones off idle_list for rebinding */ 154 int nr_idle; /* L: currently idle ones */ 155 156 struct list_head idle_list; /* X: list of idle workers */ 157 struct timer_list idle_timer; /* L: worker idle timeout */ 158 struct timer_list mayday_timer; /* L: SOS timer for workers */ 159 160 /* a workers is either on busy_hash or idle_list, or the manager */ 161 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 162 /* L: hash of busy workers */ 163 164 /* see manage_workers() for details on the two manager mutexes */ 165 struct mutex manager_arb; /* manager arbitration */ 166 struct mutex manager_mutex; /* manager exclusion */ 167 struct idr worker_idr; /* MG: worker IDs and iteration */ 168 169 struct workqueue_attrs *attrs; /* I: worker attributes */ 170 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 171 int refcnt; /* PL: refcnt for unbound pools */ 172 173 /* 174 * The current concurrency level. As it's likely to be accessed 175 * from other CPUs during try_to_wake_up(), put it in a separate 176 * cacheline. 177 */ 178 atomic_t nr_running ____cacheline_aligned_in_smp; 179 180 /* 181 * Destruction of pool is sched-RCU protected to allow dereferences 182 * from get_work_pool(). 183 */ 184 struct rcu_head rcu; 185 } ____cacheline_aligned_in_smp; 186 187 /* 188 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 189 * of work_struct->data are used for flags and the remaining high bits 190 * point to the pwq; thus, pwqs need to be aligned at two's power of the 191 * number of flag bits. 192 */ 193 struct pool_workqueue { 194 struct worker_pool *pool; /* I: the associated pool */ 195 struct workqueue_struct *wq; /* I: the owning workqueue */ 196 int work_color; /* L: current color */ 197 int flush_color; /* L: flushing color */ 198 int refcnt; /* L: reference count */ 199 int nr_in_flight[WORK_NR_COLORS]; 200 /* L: nr of in_flight works */ 201 int nr_active; /* L: nr of active works */ 202 int max_active; /* L: max active works */ 203 struct list_head delayed_works; /* L: delayed works */ 204 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 205 struct list_head mayday_node; /* MD: node on wq->maydays */ 206 207 /* 208 * Release of unbound pwq is punted to system_wq. See put_pwq() 209 * and pwq_unbound_release_workfn() for details. pool_workqueue 210 * itself is also sched-RCU protected so that the first pwq can be 211 * determined without grabbing wq->mutex. 212 */ 213 struct work_struct unbound_release_work; 214 struct rcu_head rcu; 215 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 216 217 /* 218 * Structure used to wait for workqueue flush. 219 */ 220 struct wq_flusher { 221 struct list_head list; /* WQ: list of flushers */ 222 int flush_color; /* WQ: flush color waiting for */ 223 struct completion done; /* flush completion */ 224 }; 225 226 struct wq_device; 227 228 /* 229 * The externally visible workqueue. It relays the issued work items to 230 * the appropriate worker_pool through its pool_workqueues. 231 */ 232 struct workqueue_struct { 233 struct list_head pwqs; /* WR: all pwqs of this wq */ 234 struct list_head list; /* PL: list of all workqueues */ 235 236 struct mutex mutex; /* protects this wq */ 237 int work_color; /* WQ: current work color */ 238 int flush_color; /* WQ: current flush color */ 239 atomic_t nr_pwqs_to_flush; /* flush in progress */ 240 struct wq_flusher *first_flusher; /* WQ: first flusher */ 241 struct list_head flusher_queue; /* WQ: flush waiters */ 242 struct list_head flusher_overflow; /* WQ: flush overflow list */ 243 244 struct list_head maydays; /* MD: pwqs requesting rescue */ 245 struct worker *rescuer; /* I: rescue worker */ 246 247 int nr_drainers; /* WQ: drain in progress */ 248 int saved_max_active; /* WQ: saved pwq max_active */ 249 250 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */ 251 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */ 252 253 #ifdef CONFIG_SYSFS 254 struct wq_device *wq_dev; /* I: for sysfs interface */ 255 #endif 256 #ifdef CONFIG_LOCKDEP 257 struct lockdep_map lockdep_map; 258 #endif 259 char name[WQ_NAME_LEN]; /* I: workqueue name */ 260 261 /* hot fields used during command issue, aligned to cacheline */ 262 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 263 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 264 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */ 265 }; 266 267 static struct kmem_cache *pwq_cache; 268 269 static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */ 270 static cpumask_var_t *wq_numa_possible_cpumask; 271 /* possible CPUs of each node */ 272 273 static bool wq_disable_numa; 274 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 275 276 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 277 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT 278 static bool wq_power_efficient = true; 279 #else 280 static bool wq_power_efficient; 281 #endif 282 283 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 284 285 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 286 287 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 288 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 289 290 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 291 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 292 293 static LIST_HEAD(workqueues); /* PL: list of all workqueues */ 294 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 295 296 /* the per-cpu worker pools */ 297 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 298 cpu_worker_pools); 299 300 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 301 302 /* PL: hash of all unbound pools keyed by pool->attrs */ 303 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 304 305 /* I: attributes used when instantiating standard unbound pools on demand */ 306 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 307 308 /* I: attributes used when instantiating ordered pools on demand */ 309 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 310 311 struct workqueue_struct *system_wq __read_mostly; 312 EXPORT_SYMBOL(system_wq); 313 struct workqueue_struct *system_highpri_wq __read_mostly; 314 EXPORT_SYMBOL_GPL(system_highpri_wq); 315 struct workqueue_struct *system_long_wq __read_mostly; 316 EXPORT_SYMBOL_GPL(system_long_wq); 317 struct workqueue_struct *system_unbound_wq __read_mostly; 318 EXPORT_SYMBOL_GPL(system_unbound_wq); 319 struct workqueue_struct *system_freezable_wq __read_mostly; 320 EXPORT_SYMBOL_GPL(system_freezable_wq); 321 struct workqueue_struct *system_power_efficient_wq __read_mostly; 322 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 323 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 324 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 325 326 static int worker_thread(void *__worker); 327 static void copy_workqueue_attrs(struct workqueue_attrs *to, 328 const struct workqueue_attrs *from); 329 330 #define CREATE_TRACE_POINTS 331 #include <trace/events/workqueue.h> 332 333 #define assert_rcu_or_pool_mutex() \ 334 rcu_lockdep_assert(rcu_read_lock_sched_held() || \ 335 lockdep_is_held(&wq_pool_mutex), \ 336 "sched RCU or wq_pool_mutex should be held") 337 338 #define assert_rcu_or_wq_mutex(wq) \ 339 rcu_lockdep_assert(rcu_read_lock_sched_held() || \ 340 lockdep_is_held(&wq->mutex), \ 341 "sched RCU or wq->mutex should be held") 342 343 #ifdef CONFIG_LOCKDEP 344 #define assert_manager_or_pool_lock(pool) \ 345 WARN_ONCE(debug_locks && \ 346 !lockdep_is_held(&(pool)->manager_mutex) && \ 347 !lockdep_is_held(&(pool)->lock), \ 348 "pool->manager_mutex or ->lock should be held") 349 #else 350 #define assert_manager_or_pool_lock(pool) do { } while (0) 351 #endif 352 353 #define for_each_cpu_worker_pool(pool, cpu) \ 354 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 355 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 356 (pool)++) 357 358 /** 359 * for_each_pool - iterate through all worker_pools in the system 360 * @pool: iteration cursor 361 * @pi: integer used for iteration 362 * 363 * This must be called either with wq_pool_mutex held or sched RCU read 364 * locked. If the pool needs to be used beyond the locking in effect, the 365 * caller is responsible for guaranteeing that the pool stays online. 366 * 367 * The if/else clause exists only for the lockdep assertion and can be 368 * ignored. 369 */ 370 #define for_each_pool(pool, pi) \ 371 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 372 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 373 else 374 375 /** 376 * for_each_pool_worker - iterate through all workers of a worker_pool 377 * @worker: iteration cursor 378 * @wi: integer used for iteration 379 * @pool: worker_pool to iterate workers of 380 * 381 * This must be called with either @pool->manager_mutex or ->lock held. 382 * 383 * The if/else clause exists only for the lockdep assertion and can be 384 * ignored. 385 */ 386 #define for_each_pool_worker(worker, wi, pool) \ 387 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \ 388 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \ 389 else 390 391 /** 392 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 393 * @pwq: iteration cursor 394 * @wq: the target workqueue 395 * 396 * This must be called either with wq->mutex held or sched RCU read locked. 397 * If the pwq needs to be used beyond the locking in effect, the caller is 398 * responsible for guaranteeing that the pwq stays online. 399 * 400 * The if/else clause exists only for the lockdep assertion and can be 401 * ignored. 402 */ 403 #define for_each_pwq(pwq, wq) \ 404 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \ 405 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ 406 else 407 408 #ifdef CONFIG_DEBUG_OBJECTS_WORK 409 410 static struct debug_obj_descr work_debug_descr; 411 412 static void *work_debug_hint(void *addr) 413 { 414 return ((struct work_struct *) addr)->func; 415 } 416 417 /* 418 * fixup_init is called when: 419 * - an active object is initialized 420 */ 421 static int work_fixup_init(void *addr, enum debug_obj_state state) 422 { 423 struct work_struct *work = addr; 424 425 switch (state) { 426 case ODEBUG_STATE_ACTIVE: 427 cancel_work_sync(work); 428 debug_object_init(work, &work_debug_descr); 429 return 1; 430 default: 431 return 0; 432 } 433 } 434 435 /* 436 * fixup_activate is called when: 437 * - an active object is activated 438 * - an unknown object is activated (might be a statically initialized object) 439 */ 440 static int work_fixup_activate(void *addr, enum debug_obj_state state) 441 { 442 struct work_struct *work = addr; 443 444 switch (state) { 445 446 case ODEBUG_STATE_NOTAVAILABLE: 447 /* 448 * This is not really a fixup. The work struct was 449 * statically initialized. We just make sure that it 450 * is tracked in the object tracker. 451 */ 452 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) { 453 debug_object_init(work, &work_debug_descr); 454 debug_object_activate(work, &work_debug_descr); 455 return 0; 456 } 457 WARN_ON_ONCE(1); 458 return 0; 459 460 case ODEBUG_STATE_ACTIVE: 461 WARN_ON(1); 462 463 default: 464 return 0; 465 } 466 } 467 468 /* 469 * fixup_free is called when: 470 * - an active object is freed 471 */ 472 static int work_fixup_free(void *addr, enum debug_obj_state state) 473 { 474 struct work_struct *work = addr; 475 476 switch (state) { 477 case ODEBUG_STATE_ACTIVE: 478 cancel_work_sync(work); 479 debug_object_free(work, &work_debug_descr); 480 return 1; 481 default: 482 return 0; 483 } 484 } 485 486 static struct debug_obj_descr work_debug_descr = { 487 .name = "work_struct", 488 .debug_hint = work_debug_hint, 489 .fixup_init = work_fixup_init, 490 .fixup_activate = work_fixup_activate, 491 .fixup_free = work_fixup_free, 492 }; 493 494 static inline void debug_work_activate(struct work_struct *work) 495 { 496 debug_object_activate(work, &work_debug_descr); 497 } 498 499 static inline void debug_work_deactivate(struct work_struct *work) 500 { 501 debug_object_deactivate(work, &work_debug_descr); 502 } 503 504 void __init_work(struct work_struct *work, int onstack) 505 { 506 if (onstack) 507 debug_object_init_on_stack(work, &work_debug_descr); 508 else 509 debug_object_init(work, &work_debug_descr); 510 } 511 EXPORT_SYMBOL_GPL(__init_work); 512 513 void destroy_work_on_stack(struct work_struct *work) 514 { 515 debug_object_free(work, &work_debug_descr); 516 } 517 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 518 519 void destroy_delayed_work_on_stack(struct delayed_work *work) 520 { 521 destroy_timer_on_stack(&work->timer); 522 debug_object_free(&work->work, &work_debug_descr); 523 } 524 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 525 526 #else 527 static inline void debug_work_activate(struct work_struct *work) { } 528 static inline void debug_work_deactivate(struct work_struct *work) { } 529 #endif 530 531 /** 532 * worker_pool_assign_id - allocate ID and assing it to @pool 533 * @pool: the pool pointer of interest 534 * 535 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 536 * successfully, -errno on failure. 537 */ 538 static int worker_pool_assign_id(struct worker_pool *pool) 539 { 540 int ret; 541 542 lockdep_assert_held(&wq_pool_mutex); 543 544 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 545 GFP_KERNEL); 546 if (ret >= 0) { 547 pool->id = ret; 548 return 0; 549 } 550 return ret; 551 } 552 553 /** 554 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 555 * @wq: the target workqueue 556 * @node: the node ID 557 * 558 * This must be called either with pwq_lock held or sched RCU read locked. 559 * If the pwq needs to be used beyond the locking in effect, the caller is 560 * responsible for guaranteeing that the pwq stays online. 561 * 562 * Return: The unbound pool_workqueue for @node. 563 */ 564 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 565 int node) 566 { 567 assert_rcu_or_wq_mutex(wq); 568 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 569 } 570 571 static unsigned int work_color_to_flags(int color) 572 { 573 return color << WORK_STRUCT_COLOR_SHIFT; 574 } 575 576 static int get_work_color(struct work_struct *work) 577 { 578 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 579 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 580 } 581 582 static int work_next_color(int color) 583 { 584 return (color + 1) % WORK_NR_COLORS; 585 } 586 587 /* 588 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 589 * contain the pointer to the queued pwq. Once execution starts, the flag 590 * is cleared and the high bits contain OFFQ flags and pool ID. 591 * 592 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 593 * and clear_work_data() can be used to set the pwq, pool or clear 594 * work->data. These functions should only be called while the work is 595 * owned - ie. while the PENDING bit is set. 596 * 597 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 598 * corresponding to a work. Pool is available once the work has been 599 * queued anywhere after initialization until it is sync canceled. pwq is 600 * available only while the work item is queued. 601 * 602 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 603 * canceled. While being canceled, a work item may have its PENDING set 604 * but stay off timer and worklist for arbitrarily long and nobody should 605 * try to steal the PENDING bit. 606 */ 607 static inline void set_work_data(struct work_struct *work, unsigned long data, 608 unsigned long flags) 609 { 610 WARN_ON_ONCE(!work_pending(work)); 611 atomic_long_set(&work->data, data | flags | work_static(work)); 612 } 613 614 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 615 unsigned long extra_flags) 616 { 617 set_work_data(work, (unsigned long)pwq, 618 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 619 } 620 621 static void set_work_pool_and_keep_pending(struct work_struct *work, 622 int pool_id) 623 { 624 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 625 WORK_STRUCT_PENDING); 626 } 627 628 static void set_work_pool_and_clear_pending(struct work_struct *work, 629 int pool_id) 630 { 631 /* 632 * The following wmb is paired with the implied mb in 633 * test_and_set_bit(PENDING) and ensures all updates to @work made 634 * here are visible to and precede any updates by the next PENDING 635 * owner. 636 */ 637 smp_wmb(); 638 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 639 } 640 641 static void clear_work_data(struct work_struct *work) 642 { 643 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 644 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 645 } 646 647 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 648 { 649 unsigned long data = atomic_long_read(&work->data); 650 651 if (data & WORK_STRUCT_PWQ) 652 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 653 else 654 return NULL; 655 } 656 657 /** 658 * get_work_pool - return the worker_pool a given work was associated with 659 * @work: the work item of interest 660 * 661 * Pools are created and destroyed under wq_pool_mutex, and allows read 662 * access under sched-RCU read lock. As such, this function should be 663 * called under wq_pool_mutex or with preemption disabled. 664 * 665 * All fields of the returned pool are accessible as long as the above 666 * mentioned locking is in effect. If the returned pool needs to be used 667 * beyond the critical section, the caller is responsible for ensuring the 668 * returned pool is and stays online. 669 * 670 * Return: The worker_pool @work was last associated with. %NULL if none. 671 */ 672 static struct worker_pool *get_work_pool(struct work_struct *work) 673 { 674 unsigned long data = atomic_long_read(&work->data); 675 int pool_id; 676 677 assert_rcu_or_pool_mutex(); 678 679 if (data & WORK_STRUCT_PWQ) 680 return ((struct pool_workqueue *) 681 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 682 683 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 684 if (pool_id == WORK_OFFQ_POOL_NONE) 685 return NULL; 686 687 return idr_find(&worker_pool_idr, pool_id); 688 } 689 690 /** 691 * get_work_pool_id - return the worker pool ID a given work is associated with 692 * @work: the work item of interest 693 * 694 * Return: The worker_pool ID @work was last associated with. 695 * %WORK_OFFQ_POOL_NONE if none. 696 */ 697 static int get_work_pool_id(struct work_struct *work) 698 { 699 unsigned long data = atomic_long_read(&work->data); 700 701 if (data & WORK_STRUCT_PWQ) 702 return ((struct pool_workqueue *) 703 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 704 705 return data >> WORK_OFFQ_POOL_SHIFT; 706 } 707 708 static void mark_work_canceling(struct work_struct *work) 709 { 710 unsigned long pool_id = get_work_pool_id(work); 711 712 pool_id <<= WORK_OFFQ_POOL_SHIFT; 713 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 714 } 715 716 static bool work_is_canceling(struct work_struct *work) 717 { 718 unsigned long data = atomic_long_read(&work->data); 719 720 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 721 } 722 723 /* 724 * Policy functions. These define the policies on how the global worker 725 * pools are managed. Unless noted otherwise, these functions assume that 726 * they're being called with pool->lock held. 727 */ 728 729 static bool __need_more_worker(struct worker_pool *pool) 730 { 731 return !atomic_read(&pool->nr_running); 732 } 733 734 /* 735 * Need to wake up a worker? Called from anything but currently 736 * running workers. 737 * 738 * Note that, because unbound workers never contribute to nr_running, this 739 * function will always return %true for unbound pools as long as the 740 * worklist isn't empty. 741 */ 742 static bool need_more_worker(struct worker_pool *pool) 743 { 744 return !list_empty(&pool->worklist) && __need_more_worker(pool); 745 } 746 747 /* Can I start working? Called from busy but !running workers. */ 748 static bool may_start_working(struct worker_pool *pool) 749 { 750 return pool->nr_idle; 751 } 752 753 /* Do I need to keep working? Called from currently running workers. */ 754 static bool keep_working(struct worker_pool *pool) 755 { 756 return !list_empty(&pool->worklist) && 757 atomic_read(&pool->nr_running) <= 1; 758 } 759 760 /* Do we need a new worker? Called from manager. */ 761 static bool need_to_create_worker(struct worker_pool *pool) 762 { 763 return need_more_worker(pool) && !may_start_working(pool); 764 } 765 766 /* Do I need to be the manager? */ 767 static bool need_to_manage_workers(struct worker_pool *pool) 768 { 769 return need_to_create_worker(pool) || 770 (pool->flags & POOL_MANAGE_WORKERS); 771 } 772 773 /* Do we have too many workers and should some go away? */ 774 static bool too_many_workers(struct worker_pool *pool) 775 { 776 bool managing = mutex_is_locked(&pool->manager_arb); 777 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 778 int nr_busy = pool->nr_workers - nr_idle; 779 780 /* 781 * nr_idle and idle_list may disagree if idle rebinding is in 782 * progress. Never return %true if idle_list is empty. 783 */ 784 if (list_empty(&pool->idle_list)) 785 return false; 786 787 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 788 } 789 790 /* 791 * Wake up functions. 792 */ 793 794 /* Return the first worker. Safe with preemption disabled */ 795 static struct worker *first_worker(struct worker_pool *pool) 796 { 797 if (unlikely(list_empty(&pool->idle_list))) 798 return NULL; 799 800 return list_first_entry(&pool->idle_list, struct worker, entry); 801 } 802 803 /** 804 * wake_up_worker - wake up an idle worker 805 * @pool: worker pool to wake worker from 806 * 807 * Wake up the first idle worker of @pool. 808 * 809 * CONTEXT: 810 * spin_lock_irq(pool->lock). 811 */ 812 static void wake_up_worker(struct worker_pool *pool) 813 { 814 struct worker *worker = first_worker(pool); 815 816 if (likely(worker)) 817 wake_up_process(worker->task); 818 } 819 820 /** 821 * wq_worker_waking_up - a worker is waking up 822 * @task: task waking up 823 * @cpu: CPU @task is waking up to 824 * 825 * This function is called during try_to_wake_up() when a worker is 826 * being awoken. 827 * 828 * CONTEXT: 829 * spin_lock_irq(rq->lock) 830 */ 831 void wq_worker_waking_up(struct task_struct *task, int cpu) 832 { 833 struct worker *worker = kthread_data(task); 834 835 if (!(worker->flags & WORKER_NOT_RUNNING)) { 836 WARN_ON_ONCE(worker->pool->cpu != cpu); 837 atomic_inc(&worker->pool->nr_running); 838 } 839 } 840 841 /** 842 * wq_worker_sleeping - a worker is going to sleep 843 * @task: task going to sleep 844 * @cpu: CPU in question, must be the current CPU number 845 * 846 * This function is called during schedule() when a busy worker is 847 * going to sleep. Worker on the same cpu can be woken up by 848 * returning pointer to its task. 849 * 850 * CONTEXT: 851 * spin_lock_irq(rq->lock) 852 * 853 * Return: 854 * Worker task on @cpu to wake up, %NULL if none. 855 */ 856 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu) 857 { 858 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 859 struct worker_pool *pool; 860 861 /* 862 * Rescuers, which may not have all the fields set up like normal 863 * workers, also reach here, let's not access anything before 864 * checking NOT_RUNNING. 865 */ 866 if (worker->flags & WORKER_NOT_RUNNING) 867 return NULL; 868 869 pool = worker->pool; 870 871 /* this can only happen on the local cpu */ 872 if (WARN_ON_ONCE(cpu != raw_smp_processor_id())) 873 return NULL; 874 875 /* 876 * The counterpart of the following dec_and_test, implied mb, 877 * worklist not empty test sequence is in insert_work(). 878 * Please read comment there. 879 * 880 * NOT_RUNNING is clear. This means that we're bound to and 881 * running on the local cpu w/ rq lock held and preemption 882 * disabled, which in turn means that none else could be 883 * manipulating idle_list, so dereferencing idle_list without pool 884 * lock is safe. 885 */ 886 if (atomic_dec_and_test(&pool->nr_running) && 887 !list_empty(&pool->worklist)) 888 to_wakeup = first_worker(pool); 889 return to_wakeup ? to_wakeup->task : NULL; 890 } 891 892 /** 893 * worker_set_flags - set worker flags and adjust nr_running accordingly 894 * @worker: self 895 * @flags: flags to set 896 * @wakeup: wakeup an idle worker if necessary 897 * 898 * Set @flags in @worker->flags and adjust nr_running accordingly. If 899 * nr_running becomes zero and @wakeup is %true, an idle worker is 900 * woken up. 901 * 902 * CONTEXT: 903 * spin_lock_irq(pool->lock) 904 */ 905 static inline void worker_set_flags(struct worker *worker, unsigned int flags, 906 bool wakeup) 907 { 908 struct worker_pool *pool = worker->pool; 909 910 WARN_ON_ONCE(worker->task != current); 911 912 /* 913 * If transitioning into NOT_RUNNING, adjust nr_running and 914 * wake up an idle worker as necessary if requested by 915 * @wakeup. 916 */ 917 if ((flags & WORKER_NOT_RUNNING) && 918 !(worker->flags & WORKER_NOT_RUNNING)) { 919 if (wakeup) { 920 if (atomic_dec_and_test(&pool->nr_running) && 921 !list_empty(&pool->worklist)) 922 wake_up_worker(pool); 923 } else 924 atomic_dec(&pool->nr_running); 925 } 926 927 worker->flags |= flags; 928 } 929 930 /** 931 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 932 * @worker: self 933 * @flags: flags to clear 934 * 935 * Clear @flags in @worker->flags and adjust nr_running accordingly. 936 * 937 * CONTEXT: 938 * spin_lock_irq(pool->lock) 939 */ 940 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 941 { 942 struct worker_pool *pool = worker->pool; 943 unsigned int oflags = worker->flags; 944 945 WARN_ON_ONCE(worker->task != current); 946 947 worker->flags &= ~flags; 948 949 /* 950 * If transitioning out of NOT_RUNNING, increment nr_running. Note 951 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 952 * of multiple flags, not a single flag. 953 */ 954 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 955 if (!(worker->flags & WORKER_NOT_RUNNING)) 956 atomic_inc(&pool->nr_running); 957 } 958 959 /** 960 * find_worker_executing_work - find worker which is executing a work 961 * @pool: pool of interest 962 * @work: work to find worker for 963 * 964 * Find a worker which is executing @work on @pool by searching 965 * @pool->busy_hash which is keyed by the address of @work. For a worker 966 * to match, its current execution should match the address of @work and 967 * its work function. This is to avoid unwanted dependency between 968 * unrelated work executions through a work item being recycled while still 969 * being executed. 970 * 971 * This is a bit tricky. A work item may be freed once its execution 972 * starts and nothing prevents the freed area from being recycled for 973 * another work item. If the same work item address ends up being reused 974 * before the original execution finishes, workqueue will identify the 975 * recycled work item as currently executing and make it wait until the 976 * current execution finishes, introducing an unwanted dependency. 977 * 978 * This function checks the work item address and work function to avoid 979 * false positives. Note that this isn't complete as one may construct a 980 * work function which can introduce dependency onto itself through a 981 * recycled work item. Well, if somebody wants to shoot oneself in the 982 * foot that badly, there's only so much we can do, and if such deadlock 983 * actually occurs, it should be easy to locate the culprit work function. 984 * 985 * CONTEXT: 986 * spin_lock_irq(pool->lock). 987 * 988 * Return: 989 * Pointer to worker which is executing @work if found, %NULL 990 * otherwise. 991 */ 992 static struct worker *find_worker_executing_work(struct worker_pool *pool, 993 struct work_struct *work) 994 { 995 struct worker *worker; 996 997 hash_for_each_possible(pool->busy_hash, worker, hentry, 998 (unsigned long)work) 999 if (worker->current_work == work && 1000 worker->current_func == work->func) 1001 return worker; 1002 1003 return NULL; 1004 } 1005 1006 /** 1007 * move_linked_works - move linked works to a list 1008 * @work: start of series of works to be scheduled 1009 * @head: target list to append @work to 1010 * @nextp: out paramter for nested worklist walking 1011 * 1012 * Schedule linked works starting from @work to @head. Work series to 1013 * be scheduled starts at @work and includes any consecutive work with 1014 * WORK_STRUCT_LINKED set in its predecessor. 1015 * 1016 * If @nextp is not NULL, it's updated to point to the next work of 1017 * the last scheduled work. This allows move_linked_works() to be 1018 * nested inside outer list_for_each_entry_safe(). 1019 * 1020 * CONTEXT: 1021 * spin_lock_irq(pool->lock). 1022 */ 1023 static void move_linked_works(struct work_struct *work, struct list_head *head, 1024 struct work_struct **nextp) 1025 { 1026 struct work_struct *n; 1027 1028 /* 1029 * Linked worklist will always end before the end of the list, 1030 * use NULL for list head. 1031 */ 1032 list_for_each_entry_safe_from(work, n, NULL, entry) { 1033 list_move_tail(&work->entry, head); 1034 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1035 break; 1036 } 1037 1038 /* 1039 * If we're already inside safe list traversal and have moved 1040 * multiple works to the scheduled queue, the next position 1041 * needs to be updated. 1042 */ 1043 if (nextp) 1044 *nextp = n; 1045 } 1046 1047 /** 1048 * get_pwq - get an extra reference on the specified pool_workqueue 1049 * @pwq: pool_workqueue to get 1050 * 1051 * Obtain an extra reference on @pwq. The caller should guarantee that 1052 * @pwq has positive refcnt and be holding the matching pool->lock. 1053 */ 1054 static void get_pwq(struct pool_workqueue *pwq) 1055 { 1056 lockdep_assert_held(&pwq->pool->lock); 1057 WARN_ON_ONCE(pwq->refcnt <= 0); 1058 pwq->refcnt++; 1059 } 1060 1061 /** 1062 * put_pwq - put a pool_workqueue reference 1063 * @pwq: pool_workqueue to put 1064 * 1065 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1066 * destruction. The caller should be holding the matching pool->lock. 1067 */ 1068 static void put_pwq(struct pool_workqueue *pwq) 1069 { 1070 lockdep_assert_held(&pwq->pool->lock); 1071 if (likely(--pwq->refcnt)) 1072 return; 1073 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1074 return; 1075 /* 1076 * @pwq can't be released under pool->lock, bounce to 1077 * pwq_unbound_release_workfn(). This never recurses on the same 1078 * pool->lock as this path is taken only for unbound workqueues and 1079 * the release work item is scheduled on a per-cpu workqueue. To 1080 * avoid lockdep warning, unbound pool->locks are given lockdep 1081 * subclass of 1 in get_unbound_pool(). 1082 */ 1083 schedule_work(&pwq->unbound_release_work); 1084 } 1085 1086 /** 1087 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1088 * @pwq: pool_workqueue to put (can be %NULL) 1089 * 1090 * put_pwq() with locking. This function also allows %NULL @pwq. 1091 */ 1092 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1093 { 1094 if (pwq) { 1095 /* 1096 * As both pwqs and pools are sched-RCU protected, the 1097 * following lock operations are safe. 1098 */ 1099 spin_lock_irq(&pwq->pool->lock); 1100 put_pwq(pwq); 1101 spin_unlock_irq(&pwq->pool->lock); 1102 } 1103 } 1104 1105 static void pwq_activate_delayed_work(struct work_struct *work) 1106 { 1107 struct pool_workqueue *pwq = get_work_pwq(work); 1108 1109 trace_workqueue_activate_work(work); 1110 move_linked_works(work, &pwq->pool->worklist, NULL); 1111 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1112 pwq->nr_active++; 1113 } 1114 1115 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1116 { 1117 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1118 struct work_struct, entry); 1119 1120 pwq_activate_delayed_work(work); 1121 } 1122 1123 /** 1124 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1125 * @pwq: pwq of interest 1126 * @color: color of work which left the queue 1127 * 1128 * A work either has completed or is removed from pending queue, 1129 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1130 * 1131 * CONTEXT: 1132 * spin_lock_irq(pool->lock). 1133 */ 1134 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1135 { 1136 /* uncolored work items don't participate in flushing or nr_active */ 1137 if (color == WORK_NO_COLOR) 1138 goto out_put; 1139 1140 pwq->nr_in_flight[color]--; 1141 1142 pwq->nr_active--; 1143 if (!list_empty(&pwq->delayed_works)) { 1144 /* one down, submit a delayed one */ 1145 if (pwq->nr_active < pwq->max_active) 1146 pwq_activate_first_delayed(pwq); 1147 } 1148 1149 /* is flush in progress and are we at the flushing tip? */ 1150 if (likely(pwq->flush_color != color)) 1151 goto out_put; 1152 1153 /* are there still in-flight works? */ 1154 if (pwq->nr_in_flight[color]) 1155 goto out_put; 1156 1157 /* this pwq is done, clear flush_color */ 1158 pwq->flush_color = -1; 1159 1160 /* 1161 * If this was the last pwq, wake up the first flusher. It 1162 * will handle the rest. 1163 */ 1164 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1165 complete(&pwq->wq->first_flusher->done); 1166 out_put: 1167 put_pwq(pwq); 1168 } 1169 1170 /** 1171 * try_to_grab_pending - steal work item from worklist and disable irq 1172 * @work: work item to steal 1173 * @is_dwork: @work is a delayed_work 1174 * @flags: place to store irq state 1175 * 1176 * Try to grab PENDING bit of @work. This function can handle @work in any 1177 * stable state - idle, on timer or on worklist. 1178 * 1179 * Return: 1180 * 1 if @work was pending and we successfully stole PENDING 1181 * 0 if @work was idle and we claimed PENDING 1182 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1183 * -ENOENT if someone else is canceling @work, this state may persist 1184 * for arbitrarily long 1185 * 1186 * Note: 1187 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1188 * interrupted while holding PENDING and @work off queue, irq must be 1189 * disabled on entry. This, combined with delayed_work->timer being 1190 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1191 * 1192 * On successful return, >= 0, irq is disabled and the caller is 1193 * responsible for releasing it using local_irq_restore(*@flags). 1194 * 1195 * This function is safe to call from any context including IRQ handler. 1196 */ 1197 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1198 unsigned long *flags) 1199 { 1200 struct worker_pool *pool; 1201 struct pool_workqueue *pwq; 1202 1203 local_irq_save(*flags); 1204 1205 /* try to steal the timer if it exists */ 1206 if (is_dwork) { 1207 struct delayed_work *dwork = to_delayed_work(work); 1208 1209 /* 1210 * dwork->timer is irqsafe. If del_timer() fails, it's 1211 * guaranteed that the timer is not queued anywhere and not 1212 * running on the local CPU. 1213 */ 1214 if (likely(del_timer(&dwork->timer))) 1215 return 1; 1216 } 1217 1218 /* try to claim PENDING the normal way */ 1219 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1220 return 0; 1221 1222 /* 1223 * The queueing is in progress, or it is already queued. Try to 1224 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1225 */ 1226 pool = get_work_pool(work); 1227 if (!pool) 1228 goto fail; 1229 1230 spin_lock(&pool->lock); 1231 /* 1232 * work->data is guaranteed to point to pwq only while the work 1233 * item is queued on pwq->wq, and both updating work->data to point 1234 * to pwq on queueing and to pool on dequeueing are done under 1235 * pwq->pool->lock. This in turn guarantees that, if work->data 1236 * points to pwq which is associated with a locked pool, the work 1237 * item is currently queued on that pool. 1238 */ 1239 pwq = get_work_pwq(work); 1240 if (pwq && pwq->pool == pool) { 1241 debug_work_deactivate(work); 1242 1243 /* 1244 * A delayed work item cannot be grabbed directly because 1245 * it might have linked NO_COLOR work items which, if left 1246 * on the delayed_list, will confuse pwq->nr_active 1247 * management later on and cause stall. Make sure the work 1248 * item is activated before grabbing. 1249 */ 1250 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1251 pwq_activate_delayed_work(work); 1252 1253 list_del_init(&work->entry); 1254 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work)); 1255 1256 /* work->data points to pwq iff queued, point to pool */ 1257 set_work_pool_and_keep_pending(work, pool->id); 1258 1259 spin_unlock(&pool->lock); 1260 return 1; 1261 } 1262 spin_unlock(&pool->lock); 1263 fail: 1264 local_irq_restore(*flags); 1265 if (work_is_canceling(work)) 1266 return -ENOENT; 1267 cpu_relax(); 1268 return -EAGAIN; 1269 } 1270 1271 /** 1272 * insert_work - insert a work into a pool 1273 * @pwq: pwq @work belongs to 1274 * @work: work to insert 1275 * @head: insertion point 1276 * @extra_flags: extra WORK_STRUCT_* flags to set 1277 * 1278 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1279 * work_struct flags. 1280 * 1281 * CONTEXT: 1282 * spin_lock_irq(pool->lock). 1283 */ 1284 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1285 struct list_head *head, unsigned int extra_flags) 1286 { 1287 struct worker_pool *pool = pwq->pool; 1288 1289 /* we own @work, set data and link */ 1290 set_work_pwq(work, pwq, extra_flags); 1291 list_add_tail(&work->entry, head); 1292 get_pwq(pwq); 1293 1294 /* 1295 * Ensure either wq_worker_sleeping() sees the above 1296 * list_add_tail() or we see zero nr_running to avoid workers lying 1297 * around lazily while there are works to be processed. 1298 */ 1299 smp_mb(); 1300 1301 if (__need_more_worker(pool)) 1302 wake_up_worker(pool); 1303 } 1304 1305 /* 1306 * Test whether @work is being queued from another work executing on the 1307 * same workqueue. 1308 */ 1309 static bool is_chained_work(struct workqueue_struct *wq) 1310 { 1311 struct worker *worker; 1312 1313 worker = current_wq_worker(); 1314 /* 1315 * Return %true iff I'm a worker execuing a work item on @wq. If 1316 * I'm @worker, it's safe to dereference it without locking. 1317 */ 1318 return worker && worker->current_pwq->wq == wq; 1319 } 1320 1321 static void __queue_work(int cpu, struct workqueue_struct *wq, 1322 struct work_struct *work) 1323 { 1324 struct pool_workqueue *pwq; 1325 struct worker_pool *last_pool; 1326 struct list_head *worklist; 1327 unsigned int work_flags; 1328 unsigned int req_cpu = cpu; 1329 1330 /* 1331 * While a work item is PENDING && off queue, a task trying to 1332 * steal the PENDING will busy-loop waiting for it to either get 1333 * queued or lose PENDING. Grabbing PENDING and queueing should 1334 * happen with IRQ disabled. 1335 */ 1336 WARN_ON_ONCE(!irqs_disabled()); 1337 1338 debug_work_activate(work); 1339 1340 /* if draining, only works from the same workqueue are allowed */ 1341 if (unlikely(wq->flags & __WQ_DRAINING) && 1342 WARN_ON_ONCE(!is_chained_work(wq))) 1343 return; 1344 retry: 1345 if (req_cpu == WORK_CPU_UNBOUND) 1346 cpu = raw_smp_processor_id(); 1347 1348 /* pwq which will be used unless @work is executing elsewhere */ 1349 if (!(wq->flags & WQ_UNBOUND)) 1350 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1351 else 1352 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1353 1354 /* 1355 * If @work was previously on a different pool, it might still be 1356 * running there, in which case the work needs to be queued on that 1357 * pool to guarantee non-reentrancy. 1358 */ 1359 last_pool = get_work_pool(work); 1360 if (last_pool && last_pool != pwq->pool) { 1361 struct worker *worker; 1362 1363 spin_lock(&last_pool->lock); 1364 1365 worker = find_worker_executing_work(last_pool, work); 1366 1367 if (worker && worker->current_pwq->wq == wq) { 1368 pwq = worker->current_pwq; 1369 } else { 1370 /* meh... not running there, queue here */ 1371 spin_unlock(&last_pool->lock); 1372 spin_lock(&pwq->pool->lock); 1373 } 1374 } else { 1375 spin_lock(&pwq->pool->lock); 1376 } 1377 1378 /* 1379 * pwq is determined and locked. For unbound pools, we could have 1380 * raced with pwq release and it could already be dead. If its 1381 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1382 * without another pwq replacing it in the numa_pwq_tbl or while 1383 * work items are executing on it, so the retrying is guaranteed to 1384 * make forward-progress. 1385 */ 1386 if (unlikely(!pwq->refcnt)) { 1387 if (wq->flags & WQ_UNBOUND) { 1388 spin_unlock(&pwq->pool->lock); 1389 cpu_relax(); 1390 goto retry; 1391 } 1392 /* oops */ 1393 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1394 wq->name, cpu); 1395 } 1396 1397 /* pwq determined, queue */ 1398 trace_workqueue_queue_work(req_cpu, pwq, work); 1399 1400 if (WARN_ON(!list_empty(&work->entry))) { 1401 spin_unlock(&pwq->pool->lock); 1402 return; 1403 } 1404 1405 pwq->nr_in_flight[pwq->work_color]++; 1406 work_flags = work_color_to_flags(pwq->work_color); 1407 1408 if (likely(pwq->nr_active < pwq->max_active)) { 1409 trace_workqueue_activate_work(work); 1410 pwq->nr_active++; 1411 worklist = &pwq->pool->worklist; 1412 } else { 1413 work_flags |= WORK_STRUCT_DELAYED; 1414 worklist = &pwq->delayed_works; 1415 } 1416 1417 insert_work(pwq, work, worklist, work_flags); 1418 1419 spin_unlock(&pwq->pool->lock); 1420 } 1421 1422 /** 1423 * queue_work_on - queue work on specific cpu 1424 * @cpu: CPU number to execute work on 1425 * @wq: workqueue to use 1426 * @work: work to queue 1427 * 1428 * We queue the work to a specific CPU, the caller must ensure it 1429 * can't go away. 1430 * 1431 * Return: %false if @work was already on a queue, %true otherwise. 1432 */ 1433 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1434 struct work_struct *work) 1435 { 1436 bool ret = false; 1437 unsigned long flags; 1438 1439 local_irq_save(flags); 1440 1441 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1442 __queue_work(cpu, wq, work); 1443 ret = true; 1444 } 1445 1446 local_irq_restore(flags); 1447 return ret; 1448 } 1449 EXPORT_SYMBOL(queue_work_on); 1450 1451 void delayed_work_timer_fn(unsigned long __data) 1452 { 1453 struct delayed_work *dwork = (struct delayed_work *)__data; 1454 1455 /* should have been called from irqsafe timer with irq already off */ 1456 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1457 } 1458 EXPORT_SYMBOL(delayed_work_timer_fn); 1459 1460 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1461 struct delayed_work *dwork, unsigned long delay) 1462 { 1463 struct timer_list *timer = &dwork->timer; 1464 struct work_struct *work = &dwork->work; 1465 1466 WARN_ON_ONCE(timer->function != delayed_work_timer_fn || 1467 timer->data != (unsigned long)dwork); 1468 WARN_ON_ONCE(timer_pending(timer)); 1469 WARN_ON_ONCE(!list_empty(&work->entry)); 1470 1471 /* 1472 * If @delay is 0, queue @dwork->work immediately. This is for 1473 * both optimization and correctness. The earliest @timer can 1474 * expire is on the closest next tick and delayed_work users depend 1475 * on that there's no such delay when @delay is 0. 1476 */ 1477 if (!delay) { 1478 __queue_work(cpu, wq, &dwork->work); 1479 return; 1480 } 1481 1482 timer_stats_timer_set_start_info(&dwork->timer); 1483 1484 dwork->wq = wq; 1485 dwork->cpu = cpu; 1486 timer->expires = jiffies + delay; 1487 1488 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1489 add_timer_on(timer, cpu); 1490 else 1491 add_timer(timer); 1492 } 1493 1494 /** 1495 * queue_delayed_work_on - queue work on specific CPU after delay 1496 * @cpu: CPU number to execute work on 1497 * @wq: workqueue to use 1498 * @dwork: work to queue 1499 * @delay: number of jiffies to wait before queueing 1500 * 1501 * Return: %false if @work was already on a queue, %true otherwise. If 1502 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1503 * execution. 1504 */ 1505 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1506 struct delayed_work *dwork, unsigned long delay) 1507 { 1508 struct work_struct *work = &dwork->work; 1509 bool ret = false; 1510 unsigned long flags; 1511 1512 /* read the comment in __queue_work() */ 1513 local_irq_save(flags); 1514 1515 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1516 __queue_delayed_work(cpu, wq, dwork, delay); 1517 ret = true; 1518 } 1519 1520 local_irq_restore(flags); 1521 return ret; 1522 } 1523 EXPORT_SYMBOL(queue_delayed_work_on); 1524 1525 /** 1526 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1527 * @cpu: CPU number to execute work on 1528 * @wq: workqueue to use 1529 * @dwork: work to queue 1530 * @delay: number of jiffies to wait before queueing 1531 * 1532 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1533 * modify @dwork's timer so that it expires after @delay. If @delay is 1534 * zero, @work is guaranteed to be scheduled immediately regardless of its 1535 * current state. 1536 * 1537 * Return: %false if @dwork was idle and queued, %true if @dwork was 1538 * pending and its timer was modified. 1539 * 1540 * This function is safe to call from any context including IRQ handler. 1541 * See try_to_grab_pending() for details. 1542 */ 1543 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1544 struct delayed_work *dwork, unsigned long delay) 1545 { 1546 unsigned long flags; 1547 int ret; 1548 1549 do { 1550 ret = try_to_grab_pending(&dwork->work, true, &flags); 1551 } while (unlikely(ret == -EAGAIN)); 1552 1553 if (likely(ret >= 0)) { 1554 __queue_delayed_work(cpu, wq, dwork, delay); 1555 local_irq_restore(flags); 1556 } 1557 1558 /* -ENOENT from try_to_grab_pending() becomes %true */ 1559 return ret; 1560 } 1561 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1562 1563 /** 1564 * worker_enter_idle - enter idle state 1565 * @worker: worker which is entering idle state 1566 * 1567 * @worker is entering idle state. Update stats and idle timer if 1568 * necessary. 1569 * 1570 * LOCKING: 1571 * spin_lock_irq(pool->lock). 1572 */ 1573 static void worker_enter_idle(struct worker *worker) 1574 { 1575 struct worker_pool *pool = worker->pool; 1576 1577 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1578 WARN_ON_ONCE(!list_empty(&worker->entry) && 1579 (worker->hentry.next || worker->hentry.pprev))) 1580 return; 1581 1582 /* can't use worker_set_flags(), also called from start_worker() */ 1583 worker->flags |= WORKER_IDLE; 1584 pool->nr_idle++; 1585 worker->last_active = jiffies; 1586 1587 /* idle_list is LIFO */ 1588 list_add(&worker->entry, &pool->idle_list); 1589 1590 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1591 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1592 1593 /* 1594 * Sanity check nr_running. Because wq_unbind_fn() releases 1595 * pool->lock between setting %WORKER_UNBOUND and zapping 1596 * nr_running, the warning may trigger spuriously. Check iff 1597 * unbind is not in progress. 1598 */ 1599 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1600 pool->nr_workers == pool->nr_idle && 1601 atomic_read(&pool->nr_running)); 1602 } 1603 1604 /** 1605 * worker_leave_idle - leave idle state 1606 * @worker: worker which is leaving idle state 1607 * 1608 * @worker is leaving idle state. Update stats. 1609 * 1610 * LOCKING: 1611 * spin_lock_irq(pool->lock). 1612 */ 1613 static void worker_leave_idle(struct worker *worker) 1614 { 1615 struct worker_pool *pool = worker->pool; 1616 1617 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1618 return; 1619 worker_clr_flags(worker, WORKER_IDLE); 1620 pool->nr_idle--; 1621 list_del_init(&worker->entry); 1622 } 1623 1624 /** 1625 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it 1626 * @pool: target worker_pool 1627 * 1628 * Bind %current to the cpu of @pool if it is associated and lock @pool. 1629 * 1630 * Works which are scheduled while the cpu is online must at least be 1631 * scheduled to a worker which is bound to the cpu so that if they are 1632 * flushed from cpu callbacks while cpu is going down, they are 1633 * guaranteed to execute on the cpu. 1634 * 1635 * This function is to be used by unbound workers and rescuers to bind 1636 * themselves to the target cpu and may race with cpu going down or 1637 * coming online. kthread_bind() can't be used because it may put the 1638 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used 1639 * verbatim as it's best effort and blocking and pool may be 1640 * [dis]associated in the meantime. 1641 * 1642 * This function tries set_cpus_allowed() and locks pool and verifies the 1643 * binding against %POOL_DISASSOCIATED which is set during 1644 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker 1645 * enters idle state or fetches works without dropping lock, it can 1646 * guarantee the scheduling requirement described in the first paragraph. 1647 * 1648 * CONTEXT: 1649 * Might sleep. Called without any lock but returns with pool->lock 1650 * held. 1651 * 1652 * Return: 1653 * %true if the associated pool is online (@worker is successfully 1654 * bound), %false if offline. 1655 */ 1656 static bool worker_maybe_bind_and_lock(struct worker_pool *pool) 1657 __acquires(&pool->lock) 1658 { 1659 while (true) { 1660 /* 1661 * The following call may fail, succeed or succeed 1662 * without actually migrating the task to the cpu if 1663 * it races with cpu hotunplug operation. Verify 1664 * against POOL_DISASSOCIATED. 1665 */ 1666 if (!(pool->flags & POOL_DISASSOCIATED)) 1667 set_cpus_allowed_ptr(current, pool->attrs->cpumask); 1668 1669 spin_lock_irq(&pool->lock); 1670 if (pool->flags & POOL_DISASSOCIATED) 1671 return false; 1672 if (task_cpu(current) == pool->cpu && 1673 cpumask_equal(¤t->cpus_allowed, pool->attrs->cpumask)) 1674 return true; 1675 spin_unlock_irq(&pool->lock); 1676 1677 /* 1678 * We've raced with CPU hot[un]plug. Give it a breather 1679 * and retry migration. cond_resched() is required here; 1680 * otherwise, we might deadlock against cpu_stop trying to 1681 * bring down the CPU on non-preemptive kernel. 1682 */ 1683 cpu_relax(); 1684 cond_resched(); 1685 } 1686 } 1687 1688 static struct worker *alloc_worker(void) 1689 { 1690 struct worker *worker; 1691 1692 worker = kzalloc(sizeof(*worker), GFP_KERNEL); 1693 if (worker) { 1694 INIT_LIST_HEAD(&worker->entry); 1695 INIT_LIST_HEAD(&worker->scheduled); 1696 /* on creation a worker is in !idle && prep state */ 1697 worker->flags = WORKER_PREP; 1698 } 1699 return worker; 1700 } 1701 1702 /** 1703 * create_worker - create a new workqueue worker 1704 * @pool: pool the new worker will belong to 1705 * 1706 * Create a new worker which is bound to @pool. The returned worker 1707 * can be started by calling start_worker() or destroyed using 1708 * destroy_worker(). 1709 * 1710 * CONTEXT: 1711 * Might sleep. Does GFP_KERNEL allocations. 1712 * 1713 * Return: 1714 * Pointer to the newly created worker. 1715 */ 1716 static struct worker *create_worker(struct worker_pool *pool) 1717 { 1718 struct worker *worker = NULL; 1719 int id = -1; 1720 char id_buf[16]; 1721 1722 lockdep_assert_held(&pool->manager_mutex); 1723 1724 /* 1725 * ID is needed to determine kthread name. Allocate ID first 1726 * without installing the pointer. 1727 */ 1728 idr_preload(GFP_KERNEL); 1729 spin_lock_irq(&pool->lock); 1730 1731 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT); 1732 1733 spin_unlock_irq(&pool->lock); 1734 idr_preload_end(); 1735 if (id < 0) 1736 goto fail; 1737 1738 worker = alloc_worker(); 1739 if (!worker) 1740 goto fail; 1741 1742 worker->pool = pool; 1743 worker->id = id; 1744 1745 if (pool->cpu >= 0) 1746 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1747 pool->attrs->nice < 0 ? "H" : ""); 1748 else 1749 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1750 1751 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1752 "kworker/%s", id_buf); 1753 if (IS_ERR(worker->task)) 1754 goto fail; 1755 1756 set_user_nice(worker->task, pool->attrs->nice); 1757 1758 /* prevent userland from meddling with cpumask of workqueue workers */ 1759 worker->task->flags |= PF_NO_SETAFFINITY; 1760 1761 /* 1762 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1763 * online CPUs. It'll be re-applied when any of the CPUs come up. 1764 */ 1765 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1766 1767 /* 1768 * The caller is responsible for ensuring %POOL_DISASSOCIATED 1769 * remains stable across this function. See the comments above the 1770 * flag definition for details. 1771 */ 1772 if (pool->flags & POOL_DISASSOCIATED) 1773 worker->flags |= WORKER_UNBOUND; 1774 1775 /* successful, commit the pointer to idr */ 1776 spin_lock_irq(&pool->lock); 1777 idr_replace(&pool->worker_idr, worker, worker->id); 1778 spin_unlock_irq(&pool->lock); 1779 1780 return worker; 1781 1782 fail: 1783 if (id >= 0) { 1784 spin_lock_irq(&pool->lock); 1785 idr_remove(&pool->worker_idr, id); 1786 spin_unlock_irq(&pool->lock); 1787 } 1788 kfree(worker); 1789 return NULL; 1790 } 1791 1792 /** 1793 * start_worker - start a newly created worker 1794 * @worker: worker to start 1795 * 1796 * Make the pool aware of @worker and start it. 1797 * 1798 * CONTEXT: 1799 * spin_lock_irq(pool->lock). 1800 */ 1801 static void start_worker(struct worker *worker) 1802 { 1803 worker->flags |= WORKER_STARTED; 1804 worker->pool->nr_workers++; 1805 worker_enter_idle(worker); 1806 wake_up_process(worker->task); 1807 } 1808 1809 /** 1810 * create_and_start_worker - create and start a worker for a pool 1811 * @pool: the target pool 1812 * 1813 * Grab the managership of @pool and create and start a new worker for it. 1814 * 1815 * Return: 0 on success. A negative error code otherwise. 1816 */ 1817 static int create_and_start_worker(struct worker_pool *pool) 1818 { 1819 struct worker *worker; 1820 1821 mutex_lock(&pool->manager_mutex); 1822 1823 worker = create_worker(pool); 1824 if (worker) { 1825 spin_lock_irq(&pool->lock); 1826 start_worker(worker); 1827 spin_unlock_irq(&pool->lock); 1828 } 1829 1830 mutex_unlock(&pool->manager_mutex); 1831 1832 return worker ? 0 : -ENOMEM; 1833 } 1834 1835 /** 1836 * destroy_worker - destroy a workqueue worker 1837 * @worker: worker to be destroyed 1838 * 1839 * Destroy @worker and adjust @pool stats accordingly. 1840 * 1841 * CONTEXT: 1842 * spin_lock_irq(pool->lock) which is released and regrabbed. 1843 */ 1844 static void destroy_worker(struct worker *worker) 1845 { 1846 struct worker_pool *pool = worker->pool; 1847 1848 lockdep_assert_held(&pool->manager_mutex); 1849 lockdep_assert_held(&pool->lock); 1850 1851 /* sanity check frenzy */ 1852 if (WARN_ON(worker->current_work) || 1853 WARN_ON(!list_empty(&worker->scheduled))) 1854 return; 1855 1856 if (worker->flags & WORKER_STARTED) 1857 pool->nr_workers--; 1858 if (worker->flags & WORKER_IDLE) 1859 pool->nr_idle--; 1860 1861 /* 1862 * Once WORKER_DIE is set, the kworker may destroy itself at any 1863 * point. Pin to ensure the task stays until we're done with it. 1864 */ 1865 get_task_struct(worker->task); 1866 1867 list_del_init(&worker->entry); 1868 worker->flags |= WORKER_DIE; 1869 1870 idr_remove(&pool->worker_idr, worker->id); 1871 1872 spin_unlock_irq(&pool->lock); 1873 1874 kthread_stop(worker->task); 1875 put_task_struct(worker->task); 1876 kfree(worker); 1877 1878 spin_lock_irq(&pool->lock); 1879 } 1880 1881 static void idle_worker_timeout(unsigned long __pool) 1882 { 1883 struct worker_pool *pool = (void *)__pool; 1884 1885 spin_lock_irq(&pool->lock); 1886 1887 if (too_many_workers(pool)) { 1888 struct worker *worker; 1889 unsigned long expires; 1890 1891 /* idle_list is kept in LIFO order, check the last one */ 1892 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1893 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1894 1895 if (time_before(jiffies, expires)) 1896 mod_timer(&pool->idle_timer, expires); 1897 else { 1898 /* it's been idle for too long, wake up manager */ 1899 pool->flags |= POOL_MANAGE_WORKERS; 1900 wake_up_worker(pool); 1901 } 1902 } 1903 1904 spin_unlock_irq(&pool->lock); 1905 } 1906 1907 static void send_mayday(struct work_struct *work) 1908 { 1909 struct pool_workqueue *pwq = get_work_pwq(work); 1910 struct workqueue_struct *wq = pwq->wq; 1911 1912 lockdep_assert_held(&wq_mayday_lock); 1913 1914 if (!wq->rescuer) 1915 return; 1916 1917 /* mayday mayday mayday */ 1918 if (list_empty(&pwq->mayday_node)) { 1919 /* 1920 * If @pwq is for an unbound wq, its base ref may be put at 1921 * any time due to an attribute change. Pin @pwq until the 1922 * rescuer is done with it. 1923 */ 1924 get_pwq(pwq); 1925 list_add_tail(&pwq->mayday_node, &wq->maydays); 1926 wake_up_process(wq->rescuer->task); 1927 } 1928 } 1929 1930 static void pool_mayday_timeout(unsigned long __pool) 1931 { 1932 struct worker_pool *pool = (void *)__pool; 1933 struct work_struct *work; 1934 1935 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */ 1936 spin_lock(&pool->lock); 1937 1938 if (need_to_create_worker(pool)) { 1939 /* 1940 * We've been trying to create a new worker but 1941 * haven't been successful. We might be hitting an 1942 * allocation deadlock. Send distress signals to 1943 * rescuers. 1944 */ 1945 list_for_each_entry(work, &pool->worklist, entry) 1946 send_mayday(work); 1947 } 1948 1949 spin_unlock(&pool->lock); 1950 spin_unlock_irq(&wq_mayday_lock); 1951 1952 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 1953 } 1954 1955 /** 1956 * maybe_create_worker - create a new worker if necessary 1957 * @pool: pool to create a new worker for 1958 * 1959 * Create a new worker for @pool if necessary. @pool is guaranteed to 1960 * have at least one idle worker on return from this function. If 1961 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1962 * sent to all rescuers with works scheduled on @pool to resolve 1963 * possible allocation deadlock. 1964 * 1965 * On return, need_to_create_worker() is guaranteed to be %false and 1966 * may_start_working() %true. 1967 * 1968 * LOCKING: 1969 * spin_lock_irq(pool->lock) which may be released and regrabbed 1970 * multiple times. Does GFP_KERNEL allocations. Called only from 1971 * manager. 1972 * 1973 * Return: 1974 * %false if no action was taken and pool->lock stayed locked, %true 1975 * otherwise. 1976 */ 1977 static bool maybe_create_worker(struct worker_pool *pool) 1978 __releases(&pool->lock) 1979 __acquires(&pool->lock) 1980 { 1981 if (!need_to_create_worker(pool)) 1982 return false; 1983 restart: 1984 spin_unlock_irq(&pool->lock); 1985 1986 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1987 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1988 1989 while (true) { 1990 struct worker *worker; 1991 1992 worker = create_worker(pool); 1993 if (worker) { 1994 del_timer_sync(&pool->mayday_timer); 1995 spin_lock_irq(&pool->lock); 1996 start_worker(worker); 1997 if (WARN_ON_ONCE(need_to_create_worker(pool))) 1998 goto restart; 1999 return true; 2000 } 2001 2002 if (!need_to_create_worker(pool)) 2003 break; 2004 2005 __set_current_state(TASK_INTERRUPTIBLE); 2006 schedule_timeout(CREATE_COOLDOWN); 2007 2008 if (!need_to_create_worker(pool)) 2009 break; 2010 } 2011 2012 del_timer_sync(&pool->mayday_timer); 2013 spin_lock_irq(&pool->lock); 2014 if (need_to_create_worker(pool)) 2015 goto restart; 2016 return true; 2017 } 2018 2019 /** 2020 * maybe_destroy_worker - destroy workers which have been idle for a while 2021 * @pool: pool to destroy workers for 2022 * 2023 * Destroy @pool workers which have been idle for longer than 2024 * IDLE_WORKER_TIMEOUT. 2025 * 2026 * LOCKING: 2027 * spin_lock_irq(pool->lock) which may be released and regrabbed 2028 * multiple times. Called only from manager. 2029 * 2030 * Return: 2031 * %false if no action was taken and pool->lock stayed locked, %true 2032 * otherwise. 2033 */ 2034 static bool maybe_destroy_workers(struct worker_pool *pool) 2035 { 2036 bool ret = false; 2037 2038 while (too_many_workers(pool)) { 2039 struct worker *worker; 2040 unsigned long expires; 2041 2042 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2043 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2044 2045 if (time_before(jiffies, expires)) { 2046 mod_timer(&pool->idle_timer, expires); 2047 break; 2048 } 2049 2050 destroy_worker(worker); 2051 ret = true; 2052 } 2053 2054 return ret; 2055 } 2056 2057 /** 2058 * manage_workers - manage worker pool 2059 * @worker: self 2060 * 2061 * Assume the manager role and manage the worker pool @worker belongs 2062 * to. At any given time, there can be only zero or one manager per 2063 * pool. The exclusion is handled automatically by this function. 2064 * 2065 * The caller can safely start processing works on false return. On 2066 * true return, it's guaranteed that need_to_create_worker() is false 2067 * and may_start_working() is true. 2068 * 2069 * CONTEXT: 2070 * spin_lock_irq(pool->lock) which may be released and regrabbed 2071 * multiple times. Does GFP_KERNEL allocations. 2072 * 2073 * Return: 2074 * %false if the pool don't need management and the caller can safely start 2075 * processing works, %true indicates that the function released pool->lock 2076 * and reacquired it to perform some management function and that the 2077 * conditions that the caller verified while holding the lock before 2078 * calling the function might no longer be true. 2079 */ 2080 static bool manage_workers(struct worker *worker) 2081 { 2082 struct worker_pool *pool = worker->pool; 2083 bool ret = false; 2084 2085 /* 2086 * Managership is governed by two mutexes - manager_arb and 2087 * manager_mutex. manager_arb handles arbitration of manager role. 2088 * Anyone who successfully grabs manager_arb wins the arbitration 2089 * and becomes the manager. mutex_trylock() on pool->manager_arb 2090 * failure while holding pool->lock reliably indicates that someone 2091 * else is managing the pool and the worker which failed trylock 2092 * can proceed to executing work items. This means that anyone 2093 * grabbing manager_arb is responsible for actually performing 2094 * manager duties. If manager_arb is grabbed and released without 2095 * actual management, the pool may stall indefinitely. 2096 * 2097 * manager_mutex is used for exclusion of actual management 2098 * operations. The holder of manager_mutex can be sure that none 2099 * of management operations, including creation and destruction of 2100 * workers, won't take place until the mutex is released. Because 2101 * manager_mutex doesn't interfere with manager role arbitration, 2102 * it is guaranteed that the pool's management, while may be 2103 * delayed, won't be disturbed by someone else grabbing 2104 * manager_mutex. 2105 */ 2106 if (!mutex_trylock(&pool->manager_arb)) 2107 return ret; 2108 2109 /* 2110 * With manager arbitration won, manager_mutex would be free in 2111 * most cases. trylock first without dropping @pool->lock. 2112 */ 2113 if (unlikely(!mutex_trylock(&pool->manager_mutex))) { 2114 spin_unlock_irq(&pool->lock); 2115 mutex_lock(&pool->manager_mutex); 2116 spin_lock_irq(&pool->lock); 2117 ret = true; 2118 } 2119 2120 pool->flags &= ~POOL_MANAGE_WORKERS; 2121 2122 /* 2123 * Destroy and then create so that may_start_working() is true 2124 * on return. 2125 */ 2126 ret |= maybe_destroy_workers(pool); 2127 ret |= maybe_create_worker(pool); 2128 2129 mutex_unlock(&pool->manager_mutex); 2130 mutex_unlock(&pool->manager_arb); 2131 return ret; 2132 } 2133 2134 /** 2135 * process_one_work - process single work 2136 * @worker: self 2137 * @work: work to process 2138 * 2139 * Process @work. This function contains all the logics necessary to 2140 * process a single work including synchronization against and 2141 * interaction with other workers on the same cpu, queueing and 2142 * flushing. As long as context requirement is met, any worker can 2143 * call this function to process a work. 2144 * 2145 * CONTEXT: 2146 * spin_lock_irq(pool->lock) which is released and regrabbed. 2147 */ 2148 static void process_one_work(struct worker *worker, struct work_struct *work) 2149 __releases(&pool->lock) 2150 __acquires(&pool->lock) 2151 { 2152 struct pool_workqueue *pwq = get_work_pwq(work); 2153 struct worker_pool *pool = worker->pool; 2154 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2155 int work_color; 2156 struct worker *collision; 2157 #ifdef CONFIG_LOCKDEP 2158 /* 2159 * It is permissible to free the struct work_struct from 2160 * inside the function that is called from it, this we need to 2161 * take into account for lockdep too. To avoid bogus "held 2162 * lock freed" warnings as well as problems when looking into 2163 * work->lockdep_map, make a copy and use that here. 2164 */ 2165 struct lockdep_map lockdep_map; 2166 2167 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2168 #endif 2169 /* 2170 * Ensure we're on the correct CPU. DISASSOCIATED test is 2171 * necessary to avoid spurious warnings from rescuers servicing the 2172 * unbound or a disassociated pool. 2173 */ 2174 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) && 2175 !(pool->flags & POOL_DISASSOCIATED) && 2176 raw_smp_processor_id() != pool->cpu); 2177 2178 /* 2179 * A single work shouldn't be executed concurrently by 2180 * multiple workers on a single cpu. Check whether anyone is 2181 * already processing the work. If so, defer the work to the 2182 * currently executing one. 2183 */ 2184 collision = find_worker_executing_work(pool, work); 2185 if (unlikely(collision)) { 2186 move_linked_works(work, &collision->scheduled, NULL); 2187 return; 2188 } 2189 2190 /* claim and dequeue */ 2191 debug_work_deactivate(work); 2192 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2193 worker->current_work = work; 2194 worker->current_func = work->func; 2195 worker->current_pwq = pwq; 2196 work_color = get_work_color(work); 2197 2198 list_del_init(&work->entry); 2199 2200 /* 2201 * CPU intensive works don't participate in concurrency 2202 * management. They're the scheduler's responsibility. 2203 */ 2204 if (unlikely(cpu_intensive)) 2205 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true); 2206 2207 /* 2208 * Unbound pool isn't concurrency managed and work items should be 2209 * executed ASAP. Wake up another worker if necessary. 2210 */ 2211 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool)) 2212 wake_up_worker(pool); 2213 2214 /* 2215 * Record the last pool and clear PENDING which should be the last 2216 * update to @work. Also, do this inside @pool->lock so that 2217 * PENDING and queued state changes happen together while IRQ is 2218 * disabled. 2219 */ 2220 set_work_pool_and_clear_pending(work, pool->id); 2221 2222 spin_unlock_irq(&pool->lock); 2223 2224 lock_map_acquire_read(&pwq->wq->lockdep_map); 2225 lock_map_acquire(&lockdep_map); 2226 trace_workqueue_execute_start(work); 2227 worker->current_func(work); 2228 /* 2229 * While we must be careful to not use "work" after this, the trace 2230 * point will only record its address. 2231 */ 2232 trace_workqueue_execute_end(work); 2233 lock_map_release(&lockdep_map); 2234 lock_map_release(&pwq->wq->lockdep_map); 2235 2236 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2237 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2238 " last function: %pf\n", 2239 current->comm, preempt_count(), task_pid_nr(current), 2240 worker->current_func); 2241 debug_show_held_locks(current); 2242 dump_stack(); 2243 } 2244 2245 /* 2246 * The following prevents a kworker from hogging CPU on !PREEMPT 2247 * kernels, where a requeueing work item waiting for something to 2248 * happen could deadlock with stop_machine as such work item could 2249 * indefinitely requeue itself while all other CPUs are trapped in 2250 * stop_machine. 2251 */ 2252 cond_resched(); 2253 2254 spin_lock_irq(&pool->lock); 2255 2256 /* clear cpu intensive status */ 2257 if (unlikely(cpu_intensive)) 2258 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2259 2260 /* we're done with it, release */ 2261 hash_del(&worker->hentry); 2262 worker->current_work = NULL; 2263 worker->current_func = NULL; 2264 worker->current_pwq = NULL; 2265 worker->desc_valid = false; 2266 pwq_dec_nr_in_flight(pwq, work_color); 2267 } 2268 2269 /** 2270 * process_scheduled_works - process scheduled works 2271 * @worker: self 2272 * 2273 * Process all scheduled works. Please note that the scheduled list 2274 * may change while processing a work, so this function repeatedly 2275 * fetches a work from the top and executes it. 2276 * 2277 * CONTEXT: 2278 * spin_lock_irq(pool->lock) which may be released and regrabbed 2279 * multiple times. 2280 */ 2281 static void process_scheduled_works(struct worker *worker) 2282 { 2283 while (!list_empty(&worker->scheduled)) { 2284 struct work_struct *work = list_first_entry(&worker->scheduled, 2285 struct work_struct, entry); 2286 process_one_work(worker, work); 2287 } 2288 } 2289 2290 /** 2291 * worker_thread - the worker thread function 2292 * @__worker: self 2293 * 2294 * The worker thread function. All workers belong to a worker_pool - 2295 * either a per-cpu one or dynamic unbound one. These workers process all 2296 * work items regardless of their specific target workqueue. The only 2297 * exception is work items which belong to workqueues with a rescuer which 2298 * will be explained in rescuer_thread(). 2299 * 2300 * Return: 0 2301 */ 2302 static int worker_thread(void *__worker) 2303 { 2304 struct worker *worker = __worker; 2305 struct worker_pool *pool = worker->pool; 2306 2307 /* tell the scheduler that this is a workqueue worker */ 2308 worker->task->flags |= PF_WQ_WORKER; 2309 woke_up: 2310 spin_lock_irq(&pool->lock); 2311 2312 /* am I supposed to die? */ 2313 if (unlikely(worker->flags & WORKER_DIE)) { 2314 spin_unlock_irq(&pool->lock); 2315 WARN_ON_ONCE(!list_empty(&worker->entry)); 2316 worker->task->flags &= ~PF_WQ_WORKER; 2317 return 0; 2318 } 2319 2320 worker_leave_idle(worker); 2321 recheck: 2322 /* no more worker necessary? */ 2323 if (!need_more_worker(pool)) 2324 goto sleep; 2325 2326 /* do we need to manage? */ 2327 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2328 goto recheck; 2329 2330 /* 2331 * ->scheduled list can only be filled while a worker is 2332 * preparing to process a work or actually processing it. 2333 * Make sure nobody diddled with it while I was sleeping. 2334 */ 2335 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2336 2337 /* 2338 * Finish PREP stage. We're guaranteed to have at least one idle 2339 * worker or that someone else has already assumed the manager 2340 * role. This is where @worker starts participating in concurrency 2341 * management if applicable and concurrency management is restored 2342 * after being rebound. See rebind_workers() for details. 2343 */ 2344 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2345 2346 do { 2347 struct work_struct *work = 2348 list_first_entry(&pool->worklist, 2349 struct work_struct, entry); 2350 2351 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2352 /* optimization path, not strictly necessary */ 2353 process_one_work(worker, work); 2354 if (unlikely(!list_empty(&worker->scheduled))) 2355 process_scheduled_works(worker); 2356 } else { 2357 move_linked_works(work, &worker->scheduled, NULL); 2358 process_scheduled_works(worker); 2359 } 2360 } while (keep_working(pool)); 2361 2362 worker_set_flags(worker, WORKER_PREP, false); 2363 sleep: 2364 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker)) 2365 goto recheck; 2366 2367 /* 2368 * pool->lock is held and there's no work to process and no need to 2369 * manage, sleep. Workers are woken up only while holding 2370 * pool->lock or from local cpu, so setting the current state 2371 * before releasing pool->lock is enough to prevent losing any 2372 * event. 2373 */ 2374 worker_enter_idle(worker); 2375 __set_current_state(TASK_INTERRUPTIBLE); 2376 spin_unlock_irq(&pool->lock); 2377 schedule(); 2378 goto woke_up; 2379 } 2380 2381 /** 2382 * rescuer_thread - the rescuer thread function 2383 * @__rescuer: self 2384 * 2385 * Workqueue rescuer thread function. There's one rescuer for each 2386 * workqueue which has WQ_MEM_RECLAIM set. 2387 * 2388 * Regular work processing on a pool may block trying to create a new 2389 * worker which uses GFP_KERNEL allocation which has slight chance of 2390 * developing into deadlock if some works currently on the same queue 2391 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2392 * the problem rescuer solves. 2393 * 2394 * When such condition is possible, the pool summons rescuers of all 2395 * workqueues which have works queued on the pool and let them process 2396 * those works so that forward progress can be guaranteed. 2397 * 2398 * This should happen rarely. 2399 * 2400 * Return: 0 2401 */ 2402 static int rescuer_thread(void *__rescuer) 2403 { 2404 struct worker *rescuer = __rescuer; 2405 struct workqueue_struct *wq = rescuer->rescue_wq; 2406 struct list_head *scheduled = &rescuer->scheduled; 2407 bool should_stop; 2408 2409 set_user_nice(current, RESCUER_NICE_LEVEL); 2410 2411 /* 2412 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2413 * doesn't participate in concurrency management. 2414 */ 2415 rescuer->task->flags |= PF_WQ_WORKER; 2416 repeat: 2417 set_current_state(TASK_INTERRUPTIBLE); 2418 2419 /* 2420 * By the time the rescuer is requested to stop, the workqueue 2421 * shouldn't have any work pending, but @wq->maydays may still have 2422 * pwq(s) queued. This can happen by non-rescuer workers consuming 2423 * all the work items before the rescuer got to them. Go through 2424 * @wq->maydays processing before acting on should_stop so that the 2425 * list is always empty on exit. 2426 */ 2427 should_stop = kthread_should_stop(); 2428 2429 /* see whether any pwq is asking for help */ 2430 spin_lock_irq(&wq_mayday_lock); 2431 2432 while (!list_empty(&wq->maydays)) { 2433 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2434 struct pool_workqueue, mayday_node); 2435 struct worker_pool *pool = pwq->pool; 2436 struct work_struct *work, *n; 2437 2438 __set_current_state(TASK_RUNNING); 2439 list_del_init(&pwq->mayday_node); 2440 2441 spin_unlock_irq(&wq_mayday_lock); 2442 2443 /* migrate to the target cpu if possible */ 2444 worker_maybe_bind_and_lock(pool); 2445 rescuer->pool = pool; 2446 2447 /* 2448 * Slurp in all works issued via this workqueue and 2449 * process'em. 2450 */ 2451 WARN_ON_ONCE(!list_empty(&rescuer->scheduled)); 2452 list_for_each_entry_safe(work, n, &pool->worklist, entry) 2453 if (get_work_pwq(work) == pwq) 2454 move_linked_works(work, scheduled, &n); 2455 2456 process_scheduled_works(rescuer); 2457 2458 /* 2459 * Put the reference grabbed by send_mayday(). @pool won't 2460 * go away while we're holding its lock. 2461 */ 2462 put_pwq(pwq); 2463 2464 /* 2465 * Leave this pool. If keep_working() is %true, notify a 2466 * regular worker; otherwise, we end up with 0 concurrency 2467 * and stalling the execution. 2468 */ 2469 if (keep_working(pool)) 2470 wake_up_worker(pool); 2471 2472 rescuer->pool = NULL; 2473 spin_unlock(&pool->lock); 2474 spin_lock(&wq_mayday_lock); 2475 } 2476 2477 spin_unlock_irq(&wq_mayday_lock); 2478 2479 if (should_stop) { 2480 __set_current_state(TASK_RUNNING); 2481 rescuer->task->flags &= ~PF_WQ_WORKER; 2482 return 0; 2483 } 2484 2485 /* rescuers should never participate in concurrency management */ 2486 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2487 schedule(); 2488 goto repeat; 2489 } 2490 2491 struct wq_barrier { 2492 struct work_struct work; 2493 struct completion done; 2494 }; 2495 2496 static void wq_barrier_func(struct work_struct *work) 2497 { 2498 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2499 complete(&barr->done); 2500 } 2501 2502 /** 2503 * insert_wq_barrier - insert a barrier work 2504 * @pwq: pwq to insert barrier into 2505 * @barr: wq_barrier to insert 2506 * @target: target work to attach @barr to 2507 * @worker: worker currently executing @target, NULL if @target is not executing 2508 * 2509 * @barr is linked to @target such that @barr is completed only after 2510 * @target finishes execution. Please note that the ordering 2511 * guarantee is observed only with respect to @target and on the local 2512 * cpu. 2513 * 2514 * Currently, a queued barrier can't be canceled. This is because 2515 * try_to_grab_pending() can't determine whether the work to be 2516 * grabbed is at the head of the queue and thus can't clear LINKED 2517 * flag of the previous work while there must be a valid next work 2518 * after a work with LINKED flag set. 2519 * 2520 * Note that when @worker is non-NULL, @target may be modified 2521 * underneath us, so we can't reliably determine pwq from @target. 2522 * 2523 * CONTEXT: 2524 * spin_lock_irq(pool->lock). 2525 */ 2526 static void insert_wq_barrier(struct pool_workqueue *pwq, 2527 struct wq_barrier *barr, 2528 struct work_struct *target, struct worker *worker) 2529 { 2530 struct list_head *head; 2531 unsigned int linked = 0; 2532 2533 /* 2534 * debugobject calls are safe here even with pool->lock locked 2535 * as we know for sure that this will not trigger any of the 2536 * checks and call back into the fixup functions where we 2537 * might deadlock. 2538 */ 2539 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2540 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2541 init_completion(&barr->done); 2542 2543 /* 2544 * If @target is currently being executed, schedule the 2545 * barrier to the worker; otherwise, put it after @target. 2546 */ 2547 if (worker) 2548 head = worker->scheduled.next; 2549 else { 2550 unsigned long *bits = work_data_bits(target); 2551 2552 head = target->entry.next; 2553 /* there can already be other linked works, inherit and set */ 2554 linked = *bits & WORK_STRUCT_LINKED; 2555 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2556 } 2557 2558 debug_work_activate(&barr->work); 2559 insert_work(pwq, &barr->work, head, 2560 work_color_to_flags(WORK_NO_COLOR) | linked); 2561 } 2562 2563 /** 2564 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2565 * @wq: workqueue being flushed 2566 * @flush_color: new flush color, < 0 for no-op 2567 * @work_color: new work color, < 0 for no-op 2568 * 2569 * Prepare pwqs for workqueue flushing. 2570 * 2571 * If @flush_color is non-negative, flush_color on all pwqs should be 2572 * -1. If no pwq has in-flight commands at the specified color, all 2573 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2574 * has in flight commands, its pwq->flush_color is set to 2575 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2576 * wakeup logic is armed and %true is returned. 2577 * 2578 * The caller should have initialized @wq->first_flusher prior to 2579 * calling this function with non-negative @flush_color. If 2580 * @flush_color is negative, no flush color update is done and %false 2581 * is returned. 2582 * 2583 * If @work_color is non-negative, all pwqs should have the same 2584 * work_color which is previous to @work_color and all will be 2585 * advanced to @work_color. 2586 * 2587 * CONTEXT: 2588 * mutex_lock(wq->mutex). 2589 * 2590 * Return: 2591 * %true if @flush_color >= 0 and there's something to flush. %false 2592 * otherwise. 2593 */ 2594 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2595 int flush_color, int work_color) 2596 { 2597 bool wait = false; 2598 struct pool_workqueue *pwq; 2599 2600 if (flush_color >= 0) { 2601 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2602 atomic_set(&wq->nr_pwqs_to_flush, 1); 2603 } 2604 2605 for_each_pwq(pwq, wq) { 2606 struct worker_pool *pool = pwq->pool; 2607 2608 spin_lock_irq(&pool->lock); 2609 2610 if (flush_color >= 0) { 2611 WARN_ON_ONCE(pwq->flush_color != -1); 2612 2613 if (pwq->nr_in_flight[flush_color]) { 2614 pwq->flush_color = flush_color; 2615 atomic_inc(&wq->nr_pwqs_to_flush); 2616 wait = true; 2617 } 2618 } 2619 2620 if (work_color >= 0) { 2621 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2622 pwq->work_color = work_color; 2623 } 2624 2625 spin_unlock_irq(&pool->lock); 2626 } 2627 2628 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2629 complete(&wq->first_flusher->done); 2630 2631 return wait; 2632 } 2633 2634 /** 2635 * flush_workqueue - ensure that any scheduled work has run to completion. 2636 * @wq: workqueue to flush 2637 * 2638 * This function sleeps until all work items which were queued on entry 2639 * have finished execution, but it is not livelocked by new incoming ones. 2640 */ 2641 void flush_workqueue(struct workqueue_struct *wq) 2642 { 2643 struct wq_flusher this_flusher = { 2644 .list = LIST_HEAD_INIT(this_flusher.list), 2645 .flush_color = -1, 2646 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2647 }; 2648 int next_color; 2649 2650 lock_map_acquire(&wq->lockdep_map); 2651 lock_map_release(&wq->lockdep_map); 2652 2653 mutex_lock(&wq->mutex); 2654 2655 /* 2656 * Start-to-wait phase 2657 */ 2658 next_color = work_next_color(wq->work_color); 2659 2660 if (next_color != wq->flush_color) { 2661 /* 2662 * Color space is not full. The current work_color 2663 * becomes our flush_color and work_color is advanced 2664 * by one. 2665 */ 2666 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2667 this_flusher.flush_color = wq->work_color; 2668 wq->work_color = next_color; 2669 2670 if (!wq->first_flusher) { 2671 /* no flush in progress, become the first flusher */ 2672 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2673 2674 wq->first_flusher = &this_flusher; 2675 2676 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2677 wq->work_color)) { 2678 /* nothing to flush, done */ 2679 wq->flush_color = next_color; 2680 wq->first_flusher = NULL; 2681 goto out_unlock; 2682 } 2683 } else { 2684 /* wait in queue */ 2685 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2686 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2687 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2688 } 2689 } else { 2690 /* 2691 * Oops, color space is full, wait on overflow queue. 2692 * The next flush completion will assign us 2693 * flush_color and transfer to flusher_queue. 2694 */ 2695 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2696 } 2697 2698 mutex_unlock(&wq->mutex); 2699 2700 wait_for_completion(&this_flusher.done); 2701 2702 /* 2703 * Wake-up-and-cascade phase 2704 * 2705 * First flushers are responsible for cascading flushes and 2706 * handling overflow. Non-first flushers can simply return. 2707 */ 2708 if (wq->first_flusher != &this_flusher) 2709 return; 2710 2711 mutex_lock(&wq->mutex); 2712 2713 /* we might have raced, check again with mutex held */ 2714 if (wq->first_flusher != &this_flusher) 2715 goto out_unlock; 2716 2717 wq->first_flusher = NULL; 2718 2719 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2720 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2721 2722 while (true) { 2723 struct wq_flusher *next, *tmp; 2724 2725 /* complete all the flushers sharing the current flush color */ 2726 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2727 if (next->flush_color != wq->flush_color) 2728 break; 2729 list_del_init(&next->list); 2730 complete(&next->done); 2731 } 2732 2733 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2734 wq->flush_color != work_next_color(wq->work_color)); 2735 2736 /* this flush_color is finished, advance by one */ 2737 wq->flush_color = work_next_color(wq->flush_color); 2738 2739 /* one color has been freed, handle overflow queue */ 2740 if (!list_empty(&wq->flusher_overflow)) { 2741 /* 2742 * Assign the same color to all overflowed 2743 * flushers, advance work_color and append to 2744 * flusher_queue. This is the start-to-wait 2745 * phase for these overflowed flushers. 2746 */ 2747 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2748 tmp->flush_color = wq->work_color; 2749 2750 wq->work_color = work_next_color(wq->work_color); 2751 2752 list_splice_tail_init(&wq->flusher_overflow, 2753 &wq->flusher_queue); 2754 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2755 } 2756 2757 if (list_empty(&wq->flusher_queue)) { 2758 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2759 break; 2760 } 2761 2762 /* 2763 * Need to flush more colors. Make the next flusher 2764 * the new first flusher and arm pwqs. 2765 */ 2766 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2767 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2768 2769 list_del_init(&next->list); 2770 wq->first_flusher = next; 2771 2772 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2773 break; 2774 2775 /* 2776 * Meh... this color is already done, clear first 2777 * flusher and repeat cascading. 2778 */ 2779 wq->first_flusher = NULL; 2780 } 2781 2782 out_unlock: 2783 mutex_unlock(&wq->mutex); 2784 } 2785 EXPORT_SYMBOL_GPL(flush_workqueue); 2786 2787 /** 2788 * drain_workqueue - drain a workqueue 2789 * @wq: workqueue to drain 2790 * 2791 * Wait until the workqueue becomes empty. While draining is in progress, 2792 * only chain queueing is allowed. IOW, only currently pending or running 2793 * work items on @wq can queue further work items on it. @wq is flushed 2794 * repeatedly until it becomes empty. The number of flushing is detemined 2795 * by the depth of chaining and should be relatively short. Whine if it 2796 * takes too long. 2797 */ 2798 void drain_workqueue(struct workqueue_struct *wq) 2799 { 2800 unsigned int flush_cnt = 0; 2801 struct pool_workqueue *pwq; 2802 2803 /* 2804 * __queue_work() needs to test whether there are drainers, is much 2805 * hotter than drain_workqueue() and already looks at @wq->flags. 2806 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2807 */ 2808 mutex_lock(&wq->mutex); 2809 if (!wq->nr_drainers++) 2810 wq->flags |= __WQ_DRAINING; 2811 mutex_unlock(&wq->mutex); 2812 reflush: 2813 flush_workqueue(wq); 2814 2815 mutex_lock(&wq->mutex); 2816 2817 for_each_pwq(pwq, wq) { 2818 bool drained; 2819 2820 spin_lock_irq(&pwq->pool->lock); 2821 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2822 spin_unlock_irq(&pwq->pool->lock); 2823 2824 if (drained) 2825 continue; 2826 2827 if (++flush_cnt == 10 || 2828 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2829 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2830 wq->name, flush_cnt); 2831 2832 mutex_unlock(&wq->mutex); 2833 goto reflush; 2834 } 2835 2836 if (!--wq->nr_drainers) 2837 wq->flags &= ~__WQ_DRAINING; 2838 mutex_unlock(&wq->mutex); 2839 } 2840 EXPORT_SYMBOL_GPL(drain_workqueue); 2841 2842 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr) 2843 { 2844 struct worker *worker = NULL; 2845 struct worker_pool *pool; 2846 struct pool_workqueue *pwq; 2847 2848 might_sleep(); 2849 2850 local_irq_disable(); 2851 pool = get_work_pool(work); 2852 if (!pool) { 2853 local_irq_enable(); 2854 return false; 2855 } 2856 2857 spin_lock(&pool->lock); 2858 /* see the comment in try_to_grab_pending() with the same code */ 2859 pwq = get_work_pwq(work); 2860 if (pwq) { 2861 if (unlikely(pwq->pool != pool)) 2862 goto already_gone; 2863 } else { 2864 worker = find_worker_executing_work(pool, work); 2865 if (!worker) 2866 goto already_gone; 2867 pwq = worker->current_pwq; 2868 } 2869 2870 insert_wq_barrier(pwq, barr, work, worker); 2871 spin_unlock_irq(&pool->lock); 2872 2873 /* 2874 * If @max_active is 1 or rescuer is in use, flushing another work 2875 * item on the same workqueue may lead to deadlock. Make sure the 2876 * flusher is not running on the same workqueue by verifying write 2877 * access. 2878 */ 2879 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) 2880 lock_map_acquire(&pwq->wq->lockdep_map); 2881 else 2882 lock_map_acquire_read(&pwq->wq->lockdep_map); 2883 lock_map_release(&pwq->wq->lockdep_map); 2884 2885 return true; 2886 already_gone: 2887 spin_unlock_irq(&pool->lock); 2888 return false; 2889 } 2890 2891 /** 2892 * flush_work - wait for a work to finish executing the last queueing instance 2893 * @work: the work to flush 2894 * 2895 * Wait until @work has finished execution. @work is guaranteed to be idle 2896 * on return if it hasn't been requeued since flush started. 2897 * 2898 * Return: 2899 * %true if flush_work() waited for the work to finish execution, 2900 * %false if it was already idle. 2901 */ 2902 bool flush_work(struct work_struct *work) 2903 { 2904 struct wq_barrier barr; 2905 2906 lock_map_acquire(&work->lockdep_map); 2907 lock_map_release(&work->lockdep_map); 2908 2909 if (start_flush_work(work, &barr)) { 2910 wait_for_completion(&barr.done); 2911 destroy_work_on_stack(&barr.work); 2912 return true; 2913 } else { 2914 return false; 2915 } 2916 } 2917 EXPORT_SYMBOL_GPL(flush_work); 2918 2919 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 2920 { 2921 unsigned long flags; 2922 int ret; 2923 2924 do { 2925 ret = try_to_grab_pending(work, is_dwork, &flags); 2926 /* 2927 * If someone else is canceling, wait for the same event it 2928 * would be waiting for before retrying. 2929 */ 2930 if (unlikely(ret == -ENOENT)) 2931 flush_work(work); 2932 } while (unlikely(ret < 0)); 2933 2934 /* tell other tasks trying to grab @work to back off */ 2935 mark_work_canceling(work); 2936 local_irq_restore(flags); 2937 2938 flush_work(work); 2939 clear_work_data(work); 2940 return ret; 2941 } 2942 2943 /** 2944 * cancel_work_sync - cancel a work and wait for it to finish 2945 * @work: the work to cancel 2946 * 2947 * Cancel @work and wait for its execution to finish. This function 2948 * can be used even if the work re-queues itself or migrates to 2949 * another workqueue. On return from this function, @work is 2950 * guaranteed to be not pending or executing on any CPU. 2951 * 2952 * cancel_work_sync(&delayed_work->work) must not be used for 2953 * delayed_work's. Use cancel_delayed_work_sync() instead. 2954 * 2955 * The caller must ensure that the workqueue on which @work was last 2956 * queued can't be destroyed before this function returns. 2957 * 2958 * Return: 2959 * %true if @work was pending, %false otherwise. 2960 */ 2961 bool cancel_work_sync(struct work_struct *work) 2962 { 2963 return __cancel_work_timer(work, false); 2964 } 2965 EXPORT_SYMBOL_GPL(cancel_work_sync); 2966 2967 /** 2968 * flush_delayed_work - wait for a dwork to finish executing the last queueing 2969 * @dwork: the delayed work to flush 2970 * 2971 * Delayed timer is cancelled and the pending work is queued for 2972 * immediate execution. Like flush_work(), this function only 2973 * considers the last queueing instance of @dwork. 2974 * 2975 * Return: 2976 * %true if flush_work() waited for the work to finish execution, 2977 * %false if it was already idle. 2978 */ 2979 bool flush_delayed_work(struct delayed_work *dwork) 2980 { 2981 local_irq_disable(); 2982 if (del_timer_sync(&dwork->timer)) 2983 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2984 local_irq_enable(); 2985 return flush_work(&dwork->work); 2986 } 2987 EXPORT_SYMBOL(flush_delayed_work); 2988 2989 /** 2990 * cancel_delayed_work - cancel a delayed work 2991 * @dwork: delayed_work to cancel 2992 * 2993 * Kill off a pending delayed_work. 2994 * 2995 * Return: %true if @dwork was pending and canceled; %false if it wasn't 2996 * pending. 2997 * 2998 * Note: 2999 * The work callback function may still be running on return, unless 3000 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 3001 * use cancel_delayed_work_sync() to wait on it. 3002 * 3003 * This function is safe to call from any context including IRQ handler. 3004 */ 3005 bool cancel_delayed_work(struct delayed_work *dwork) 3006 { 3007 unsigned long flags; 3008 int ret; 3009 3010 do { 3011 ret = try_to_grab_pending(&dwork->work, true, &flags); 3012 } while (unlikely(ret == -EAGAIN)); 3013 3014 if (unlikely(ret < 0)) 3015 return false; 3016 3017 set_work_pool_and_clear_pending(&dwork->work, 3018 get_work_pool_id(&dwork->work)); 3019 local_irq_restore(flags); 3020 return ret; 3021 } 3022 EXPORT_SYMBOL(cancel_delayed_work); 3023 3024 /** 3025 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3026 * @dwork: the delayed work cancel 3027 * 3028 * This is cancel_work_sync() for delayed works. 3029 * 3030 * Return: 3031 * %true if @dwork was pending, %false otherwise. 3032 */ 3033 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3034 { 3035 return __cancel_work_timer(&dwork->work, true); 3036 } 3037 EXPORT_SYMBOL(cancel_delayed_work_sync); 3038 3039 /** 3040 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3041 * @func: the function to call 3042 * 3043 * schedule_on_each_cpu() executes @func on each online CPU using the 3044 * system workqueue and blocks until all CPUs have completed. 3045 * schedule_on_each_cpu() is very slow. 3046 * 3047 * Return: 3048 * 0 on success, -errno on failure. 3049 */ 3050 int schedule_on_each_cpu(work_func_t func) 3051 { 3052 int cpu; 3053 struct work_struct __percpu *works; 3054 3055 works = alloc_percpu(struct work_struct); 3056 if (!works) 3057 return -ENOMEM; 3058 3059 get_online_cpus(); 3060 3061 for_each_online_cpu(cpu) { 3062 struct work_struct *work = per_cpu_ptr(works, cpu); 3063 3064 INIT_WORK(work, func); 3065 schedule_work_on(cpu, work); 3066 } 3067 3068 for_each_online_cpu(cpu) 3069 flush_work(per_cpu_ptr(works, cpu)); 3070 3071 put_online_cpus(); 3072 free_percpu(works); 3073 return 0; 3074 } 3075 3076 /** 3077 * flush_scheduled_work - ensure that any scheduled work has run to completion. 3078 * 3079 * Forces execution of the kernel-global workqueue and blocks until its 3080 * completion. 3081 * 3082 * Think twice before calling this function! It's very easy to get into 3083 * trouble if you don't take great care. Either of the following situations 3084 * will lead to deadlock: 3085 * 3086 * One of the work items currently on the workqueue needs to acquire 3087 * a lock held by your code or its caller. 3088 * 3089 * Your code is running in the context of a work routine. 3090 * 3091 * They will be detected by lockdep when they occur, but the first might not 3092 * occur very often. It depends on what work items are on the workqueue and 3093 * what locks they need, which you have no control over. 3094 * 3095 * In most situations flushing the entire workqueue is overkill; you merely 3096 * need to know that a particular work item isn't queued and isn't running. 3097 * In such cases you should use cancel_delayed_work_sync() or 3098 * cancel_work_sync() instead. 3099 */ 3100 void flush_scheduled_work(void) 3101 { 3102 flush_workqueue(system_wq); 3103 } 3104 EXPORT_SYMBOL(flush_scheduled_work); 3105 3106 /** 3107 * execute_in_process_context - reliably execute the routine with user context 3108 * @fn: the function to execute 3109 * @ew: guaranteed storage for the execute work structure (must 3110 * be available when the work executes) 3111 * 3112 * Executes the function immediately if process context is available, 3113 * otherwise schedules the function for delayed execution. 3114 * 3115 * Return: 0 - function was executed 3116 * 1 - function was scheduled for execution 3117 */ 3118 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3119 { 3120 if (!in_interrupt()) { 3121 fn(&ew->work); 3122 return 0; 3123 } 3124 3125 INIT_WORK(&ew->work, fn); 3126 schedule_work(&ew->work); 3127 3128 return 1; 3129 } 3130 EXPORT_SYMBOL_GPL(execute_in_process_context); 3131 3132 #ifdef CONFIG_SYSFS 3133 /* 3134 * Workqueues with WQ_SYSFS flag set is visible to userland via 3135 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 3136 * following attributes. 3137 * 3138 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 3139 * max_active RW int : maximum number of in-flight work items 3140 * 3141 * Unbound workqueues have the following extra attributes. 3142 * 3143 * id RO int : the associated pool ID 3144 * nice RW int : nice value of the workers 3145 * cpumask RW mask : bitmask of allowed CPUs for the workers 3146 */ 3147 struct wq_device { 3148 struct workqueue_struct *wq; 3149 struct device dev; 3150 }; 3151 3152 static struct workqueue_struct *dev_to_wq(struct device *dev) 3153 { 3154 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 3155 3156 return wq_dev->wq; 3157 } 3158 3159 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 3160 char *buf) 3161 { 3162 struct workqueue_struct *wq = dev_to_wq(dev); 3163 3164 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 3165 } 3166 static DEVICE_ATTR_RO(per_cpu); 3167 3168 static ssize_t max_active_show(struct device *dev, 3169 struct device_attribute *attr, char *buf) 3170 { 3171 struct workqueue_struct *wq = dev_to_wq(dev); 3172 3173 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 3174 } 3175 3176 static ssize_t max_active_store(struct device *dev, 3177 struct device_attribute *attr, const char *buf, 3178 size_t count) 3179 { 3180 struct workqueue_struct *wq = dev_to_wq(dev); 3181 int val; 3182 3183 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 3184 return -EINVAL; 3185 3186 workqueue_set_max_active(wq, val); 3187 return count; 3188 } 3189 static DEVICE_ATTR_RW(max_active); 3190 3191 static struct attribute *wq_sysfs_attrs[] = { 3192 &dev_attr_per_cpu.attr, 3193 &dev_attr_max_active.attr, 3194 NULL, 3195 }; 3196 ATTRIBUTE_GROUPS(wq_sysfs); 3197 3198 static ssize_t wq_pool_ids_show(struct device *dev, 3199 struct device_attribute *attr, char *buf) 3200 { 3201 struct workqueue_struct *wq = dev_to_wq(dev); 3202 const char *delim = ""; 3203 int node, written = 0; 3204 3205 rcu_read_lock_sched(); 3206 for_each_node(node) { 3207 written += scnprintf(buf + written, PAGE_SIZE - written, 3208 "%s%d:%d", delim, node, 3209 unbound_pwq_by_node(wq, node)->pool->id); 3210 delim = " "; 3211 } 3212 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 3213 rcu_read_unlock_sched(); 3214 3215 return written; 3216 } 3217 3218 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 3219 char *buf) 3220 { 3221 struct workqueue_struct *wq = dev_to_wq(dev); 3222 int written; 3223 3224 mutex_lock(&wq->mutex); 3225 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 3226 mutex_unlock(&wq->mutex); 3227 3228 return written; 3229 } 3230 3231 /* prepare workqueue_attrs for sysfs store operations */ 3232 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 3233 { 3234 struct workqueue_attrs *attrs; 3235 3236 attrs = alloc_workqueue_attrs(GFP_KERNEL); 3237 if (!attrs) 3238 return NULL; 3239 3240 mutex_lock(&wq->mutex); 3241 copy_workqueue_attrs(attrs, wq->unbound_attrs); 3242 mutex_unlock(&wq->mutex); 3243 return attrs; 3244 } 3245 3246 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 3247 const char *buf, size_t count) 3248 { 3249 struct workqueue_struct *wq = dev_to_wq(dev); 3250 struct workqueue_attrs *attrs; 3251 int ret; 3252 3253 attrs = wq_sysfs_prep_attrs(wq); 3254 if (!attrs) 3255 return -ENOMEM; 3256 3257 if (sscanf(buf, "%d", &attrs->nice) == 1 && 3258 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 3259 ret = apply_workqueue_attrs(wq, attrs); 3260 else 3261 ret = -EINVAL; 3262 3263 free_workqueue_attrs(attrs); 3264 return ret ?: count; 3265 } 3266 3267 static ssize_t wq_cpumask_show(struct device *dev, 3268 struct device_attribute *attr, char *buf) 3269 { 3270 struct workqueue_struct *wq = dev_to_wq(dev); 3271 int written; 3272 3273 mutex_lock(&wq->mutex); 3274 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask); 3275 mutex_unlock(&wq->mutex); 3276 3277 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 3278 return written; 3279 } 3280 3281 static ssize_t wq_cpumask_store(struct device *dev, 3282 struct device_attribute *attr, 3283 const char *buf, size_t count) 3284 { 3285 struct workqueue_struct *wq = dev_to_wq(dev); 3286 struct workqueue_attrs *attrs; 3287 int ret; 3288 3289 attrs = wq_sysfs_prep_attrs(wq); 3290 if (!attrs) 3291 return -ENOMEM; 3292 3293 ret = cpumask_parse(buf, attrs->cpumask); 3294 if (!ret) 3295 ret = apply_workqueue_attrs(wq, attrs); 3296 3297 free_workqueue_attrs(attrs); 3298 return ret ?: count; 3299 } 3300 3301 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 3302 char *buf) 3303 { 3304 struct workqueue_struct *wq = dev_to_wq(dev); 3305 int written; 3306 3307 mutex_lock(&wq->mutex); 3308 written = scnprintf(buf, PAGE_SIZE, "%d\n", 3309 !wq->unbound_attrs->no_numa); 3310 mutex_unlock(&wq->mutex); 3311 3312 return written; 3313 } 3314 3315 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 3316 const char *buf, size_t count) 3317 { 3318 struct workqueue_struct *wq = dev_to_wq(dev); 3319 struct workqueue_attrs *attrs; 3320 int v, ret; 3321 3322 attrs = wq_sysfs_prep_attrs(wq); 3323 if (!attrs) 3324 return -ENOMEM; 3325 3326 ret = -EINVAL; 3327 if (sscanf(buf, "%d", &v) == 1) { 3328 attrs->no_numa = !v; 3329 ret = apply_workqueue_attrs(wq, attrs); 3330 } 3331 3332 free_workqueue_attrs(attrs); 3333 return ret ?: count; 3334 } 3335 3336 static struct device_attribute wq_sysfs_unbound_attrs[] = { 3337 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 3338 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 3339 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 3340 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 3341 __ATTR_NULL, 3342 }; 3343 3344 static struct bus_type wq_subsys = { 3345 .name = "workqueue", 3346 .dev_groups = wq_sysfs_groups, 3347 }; 3348 3349 static int __init wq_sysfs_init(void) 3350 { 3351 return subsys_virtual_register(&wq_subsys, NULL); 3352 } 3353 core_initcall(wq_sysfs_init); 3354 3355 static void wq_device_release(struct device *dev) 3356 { 3357 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 3358 3359 kfree(wq_dev); 3360 } 3361 3362 /** 3363 * workqueue_sysfs_register - make a workqueue visible in sysfs 3364 * @wq: the workqueue to register 3365 * 3366 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 3367 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 3368 * which is the preferred method. 3369 * 3370 * Workqueue user should use this function directly iff it wants to apply 3371 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 3372 * apply_workqueue_attrs() may race against userland updating the 3373 * attributes. 3374 * 3375 * Return: 0 on success, -errno on failure. 3376 */ 3377 int workqueue_sysfs_register(struct workqueue_struct *wq) 3378 { 3379 struct wq_device *wq_dev; 3380 int ret; 3381 3382 /* 3383 * Adjusting max_active or creating new pwqs by applyting 3384 * attributes breaks ordering guarantee. Disallow exposing ordered 3385 * workqueues. 3386 */ 3387 if (WARN_ON(wq->flags & __WQ_ORDERED)) 3388 return -EINVAL; 3389 3390 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 3391 if (!wq_dev) 3392 return -ENOMEM; 3393 3394 wq_dev->wq = wq; 3395 wq_dev->dev.bus = &wq_subsys; 3396 wq_dev->dev.init_name = wq->name; 3397 wq_dev->dev.release = wq_device_release; 3398 3399 /* 3400 * unbound_attrs are created separately. Suppress uevent until 3401 * everything is ready. 3402 */ 3403 dev_set_uevent_suppress(&wq_dev->dev, true); 3404 3405 ret = device_register(&wq_dev->dev); 3406 if (ret) { 3407 kfree(wq_dev); 3408 wq->wq_dev = NULL; 3409 return ret; 3410 } 3411 3412 if (wq->flags & WQ_UNBOUND) { 3413 struct device_attribute *attr; 3414 3415 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 3416 ret = device_create_file(&wq_dev->dev, attr); 3417 if (ret) { 3418 device_unregister(&wq_dev->dev); 3419 wq->wq_dev = NULL; 3420 return ret; 3421 } 3422 } 3423 } 3424 3425 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 3426 return 0; 3427 } 3428 3429 /** 3430 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 3431 * @wq: the workqueue to unregister 3432 * 3433 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 3434 */ 3435 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 3436 { 3437 struct wq_device *wq_dev = wq->wq_dev; 3438 3439 if (!wq->wq_dev) 3440 return; 3441 3442 wq->wq_dev = NULL; 3443 device_unregister(&wq_dev->dev); 3444 } 3445 #else /* CONFIG_SYSFS */ 3446 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 3447 #endif /* CONFIG_SYSFS */ 3448 3449 /** 3450 * free_workqueue_attrs - free a workqueue_attrs 3451 * @attrs: workqueue_attrs to free 3452 * 3453 * Undo alloc_workqueue_attrs(). 3454 */ 3455 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3456 { 3457 if (attrs) { 3458 free_cpumask_var(attrs->cpumask); 3459 kfree(attrs); 3460 } 3461 } 3462 3463 /** 3464 * alloc_workqueue_attrs - allocate a workqueue_attrs 3465 * @gfp_mask: allocation mask to use 3466 * 3467 * Allocate a new workqueue_attrs, initialize with default settings and 3468 * return it. 3469 * 3470 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3471 */ 3472 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask) 3473 { 3474 struct workqueue_attrs *attrs; 3475 3476 attrs = kzalloc(sizeof(*attrs), gfp_mask); 3477 if (!attrs) 3478 goto fail; 3479 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask)) 3480 goto fail; 3481 3482 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3483 return attrs; 3484 fail: 3485 free_workqueue_attrs(attrs); 3486 return NULL; 3487 } 3488 3489 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3490 const struct workqueue_attrs *from) 3491 { 3492 to->nice = from->nice; 3493 cpumask_copy(to->cpumask, from->cpumask); 3494 /* 3495 * Unlike hash and equality test, this function doesn't ignore 3496 * ->no_numa as it is used for both pool and wq attrs. Instead, 3497 * get_unbound_pool() explicitly clears ->no_numa after copying. 3498 */ 3499 to->no_numa = from->no_numa; 3500 } 3501 3502 /* hash value of the content of @attr */ 3503 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3504 { 3505 u32 hash = 0; 3506 3507 hash = jhash_1word(attrs->nice, hash); 3508 hash = jhash(cpumask_bits(attrs->cpumask), 3509 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3510 return hash; 3511 } 3512 3513 /* content equality test */ 3514 static bool wqattrs_equal(const struct workqueue_attrs *a, 3515 const struct workqueue_attrs *b) 3516 { 3517 if (a->nice != b->nice) 3518 return false; 3519 if (!cpumask_equal(a->cpumask, b->cpumask)) 3520 return false; 3521 return true; 3522 } 3523 3524 /** 3525 * init_worker_pool - initialize a newly zalloc'd worker_pool 3526 * @pool: worker_pool to initialize 3527 * 3528 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs. 3529 * 3530 * Return: 0 on success, -errno on failure. Even on failure, all fields 3531 * inside @pool proper are initialized and put_unbound_pool() can be called 3532 * on @pool safely to release it. 3533 */ 3534 static int init_worker_pool(struct worker_pool *pool) 3535 { 3536 spin_lock_init(&pool->lock); 3537 pool->id = -1; 3538 pool->cpu = -1; 3539 pool->node = NUMA_NO_NODE; 3540 pool->flags |= POOL_DISASSOCIATED; 3541 INIT_LIST_HEAD(&pool->worklist); 3542 INIT_LIST_HEAD(&pool->idle_list); 3543 hash_init(pool->busy_hash); 3544 3545 init_timer_deferrable(&pool->idle_timer); 3546 pool->idle_timer.function = idle_worker_timeout; 3547 pool->idle_timer.data = (unsigned long)pool; 3548 3549 setup_timer(&pool->mayday_timer, pool_mayday_timeout, 3550 (unsigned long)pool); 3551 3552 mutex_init(&pool->manager_arb); 3553 mutex_init(&pool->manager_mutex); 3554 idr_init(&pool->worker_idr); 3555 3556 INIT_HLIST_NODE(&pool->hash_node); 3557 pool->refcnt = 1; 3558 3559 /* shouldn't fail above this point */ 3560 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL); 3561 if (!pool->attrs) 3562 return -ENOMEM; 3563 return 0; 3564 } 3565 3566 static void rcu_free_pool(struct rcu_head *rcu) 3567 { 3568 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3569 3570 idr_destroy(&pool->worker_idr); 3571 free_workqueue_attrs(pool->attrs); 3572 kfree(pool); 3573 } 3574 3575 /** 3576 * put_unbound_pool - put a worker_pool 3577 * @pool: worker_pool to put 3578 * 3579 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU 3580 * safe manner. get_unbound_pool() calls this function on its failure path 3581 * and this function should be able to release pools which went through, 3582 * successfully or not, init_worker_pool(). 3583 * 3584 * Should be called with wq_pool_mutex held. 3585 */ 3586 static void put_unbound_pool(struct worker_pool *pool) 3587 { 3588 struct worker *worker; 3589 3590 lockdep_assert_held(&wq_pool_mutex); 3591 3592 if (--pool->refcnt) 3593 return; 3594 3595 /* sanity checks */ 3596 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) || 3597 WARN_ON(!list_empty(&pool->worklist))) 3598 return; 3599 3600 /* release id and unhash */ 3601 if (pool->id >= 0) 3602 idr_remove(&worker_pool_idr, pool->id); 3603 hash_del(&pool->hash_node); 3604 3605 /* 3606 * Become the manager and destroy all workers. Grabbing 3607 * manager_arb prevents @pool's workers from blocking on 3608 * manager_mutex. 3609 */ 3610 mutex_lock(&pool->manager_arb); 3611 mutex_lock(&pool->manager_mutex); 3612 spin_lock_irq(&pool->lock); 3613 3614 while ((worker = first_worker(pool))) 3615 destroy_worker(worker); 3616 WARN_ON(pool->nr_workers || pool->nr_idle); 3617 3618 spin_unlock_irq(&pool->lock); 3619 mutex_unlock(&pool->manager_mutex); 3620 mutex_unlock(&pool->manager_arb); 3621 3622 /* shut down the timers */ 3623 del_timer_sync(&pool->idle_timer); 3624 del_timer_sync(&pool->mayday_timer); 3625 3626 /* sched-RCU protected to allow dereferences from get_work_pool() */ 3627 call_rcu_sched(&pool->rcu, rcu_free_pool); 3628 } 3629 3630 /** 3631 * get_unbound_pool - get a worker_pool with the specified attributes 3632 * @attrs: the attributes of the worker_pool to get 3633 * 3634 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3635 * reference count and return it. If there already is a matching 3636 * worker_pool, it will be used; otherwise, this function attempts to 3637 * create a new one. 3638 * 3639 * Should be called with wq_pool_mutex held. 3640 * 3641 * Return: On success, a worker_pool with the same attributes as @attrs. 3642 * On failure, %NULL. 3643 */ 3644 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3645 { 3646 u32 hash = wqattrs_hash(attrs); 3647 struct worker_pool *pool; 3648 int node; 3649 3650 lockdep_assert_held(&wq_pool_mutex); 3651 3652 /* do we already have a matching pool? */ 3653 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3654 if (wqattrs_equal(pool->attrs, attrs)) { 3655 pool->refcnt++; 3656 goto out_unlock; 3657 } 3658 } 3659 3660 /* nope, create a new one */ 3661 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 3662 if (!pool || init_worker_pool(pool) < 0) 3663 goto fail; 3664 3665 if (workqueue_freezing) 3666 pool->flags |= POOL_FREEZING; 3667 3668 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3669 copy_workqueue_attrs(pool->attrs, attrs); 3670 3671 /* 3672 * no_numa isn't a worker_pool attribute, always clear it. See 3673 * 'struct workqueue_attrs' comments for detail. 3674 */ 3675 pool->attrs->no_numa = false; 3676 3677 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3678 if (wq_numa_enabled) { 3679 for_each_node(node) { 3680 if (cpumask_subset(pool->attrs->cpumask, 3681 wq_numa_possible_cpumask[node])) { 3682 pool->node = node; 3683 break; 3684 } 3685 } 3686 } 3687 3688 if (worker_pool_assign_id(pool) < 0) 3689 goto fail; 3690 3691 /* create and start the initial worker */ 3692 if (create_and_start_worker(pool) < 0) 3693 goto fail; 3694 3695 /* install */ 3696 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3697 out_unlock: 3698 return pool; 3699 fail: 3700 if (pool) 3701 put_unbound_pool(pool); 3702 return NULL; 3703 } 3704 3705 static void rcu_free_pwq(struct rcu_head *rcu) 3706 { 3707 kmem_cache_free(pwq_cache, 3708 container_of(rcu, struct pool_workqueue, rcu)); 3709 } 3710 3711 /* 3712 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3713 * and needs to be destroyed. 3714 */ 3715 static void pwq_unbound_release_workfn(struct work_struct *work) 3716 { 3717 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3718 unbound_release_work); 3719 struct workqueue_struct *wq = pwq->wq; 3720 struct worker_pool *pool = pwq->pool; 3721 bool is_last; 3722 3723 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3724 return; 3725 3726 /* 3727 * Unlink @pwq. Synchronization against wq->mutex isn't strictly 3728 * necessary on release but do it anyway. It's easier to verify 3729 * and consistent with the linking path. 3730 */ 3731 mutex_lock(&wq->mutex); 3732 list_del_rcu(&pwq->pwqs_node); 3733 is_last = list_empty(&wq->pwqs); 3734 mutex_unlock(&wq->mutex); 3735 3736 mutex_lock(&wq_pool_mutex); 3737 put_unbound_pool(pool); 3738 mutex_unlock(&wq_pool_mutex); 3739 3740 call_rcu_sched(&pwq->rcu, rcu_free_pwq); 3741 3742 /* 3743 * If we're the last pwq going away, @wq is already dead and no one 3744 * is gonna access it anymore. Free it. 3745 */ 3746 if (is_last) { 3747 free_workqueue_attrs(wq->unbound_attrs); 3748 kfree(wq); 3749 } 3750 } 3751 3752 /** 3753 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3754 * @pwq: target pool_workqueue 3755 * 3756 * If @pwq isn't freezing, set @pwq->max_active to the associated 3757 * workqueue's saved_max_active and activate delayed work items 3758 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3759 */ 3760 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3761 { 3762 struct workqueue_struct *wq = pwq->wq; 3763 bool freezable = wq->flags & WQ_FREEZABLE; 3764 3765 /* for @wq->saved_max_active */ 3766 lockdep_assert_held(&wq->mutex); 3767 3768 /* fast exit for non-freezable wqs */ 3769 if (!freezable && pwq->max_active == wq->saved_max_active) 3770 return; 3771 3772 spin_lock_irq(&pwq->pool->lock); 3773 3774 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) { 3775 pwq->max_active = wq->saved_max_active; 3776 3777 while (!list_empty(&pwq->delayed_works) && 3778 pwq->nr_active < pwq->max_active) 3779 pwq_activate_first_delayed(pwq); 3780 3781 /* 3782 * Need to kick a worker after thawed or an unbound wq's 3783 * max_active is bumped. It's a slow path. Do it always. 3784 */ 3785 wake_up_worker(pwq->pool); 3786 } else { 3787 pwq->max_active = 0; 3788 } 3789 3790 spin_unlock_irq(&pwq->pool->lock); 3791 } 3792 3793 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3794 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3795 struct worker_pool *pool) 3796 { 3797 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3798 3799 memset(pwq, 0, sizeof(*pwq)); 3800 3801 pwq->pool = pool; 3802 pwq->wq = wq; 3803 pwq->flush_color = -1; 3804 pwq->refcnt = 1; 3805 INIT_LIST_HEAD(&pwq->delayed_works); 3806 INIT_LIST_HEAD(&pwq->pwqs_node); 3807 INIT_LIST_HEAD(&pwq->mayday_node); 3808 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3809 } 3810 3811 /* sync @pwq with the current state of its associated wq and link it */ 3812 static void link_pwq(struct pool_workqueue *pwq) 3813 { 3814 struct workqueue_struct *wq = pwq->wq; 3815 3816 lockdep_assert_held(&wq->mutex); 3817 3818 /* may be called multiple times, ignore if already linked */ 3819 if (!list_empty(&pwq->pwqs_node)) 3820 return; 3821 3822 /* 3823 * Set the matching work_color. This is synchronized with 3824 * wq->mutex to avoid confusing flush_workqueue(). 3825 */ 3826 pwq->work_color = wq->work_color; 3827 3828 /* sync max_active to the current setting */ 3829 pwq_adjust_max_active(pwq); 3830 3831 /* link in @pwq */ 3832 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3833 } 3834 3835 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3836 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3837 const struct workqueue_attrs *attrs) 3838 { 3839 struct worker_pool *pool; 3840 struct pool_workqueue *pwq; 3841 3842 lockdep_assert_held(&wq_pool_mutex); 3843 3844 pool = get_unbound_pool(attrs); 3845 if (!pool) 3846 return NULL; 3847 3848 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3849 if (!pwq) { 3850 put_unbound_pool(pool); 3851 return NULL; 3852 } 3853 3854 init_pwq(pwq, wq, pool); 3855 return pwq; 3856 } 3857 3858 /* undo alloc_unbound_pwq(), used only in the error path */ 3859 static void free_unbound_pwq(struct pool_workqueue *pwq) 3860 { 3861 lockdep_assert_held(&wq_pool_mutex); 3862 3863 if (pwq) { 3864 put_unbound_pool(pwq->pool); 3865 kmem_cache_free(pwq_cache, pwq); 3866 } 3867 } 3868 3869 /** 3870 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node 3871 * @attrs: the wq_attrs of interest 3872 * @node: the target NUMA node 3873 * @cpu_going_down: if >= 0, the CPU to consider as offline 3874 * @cpumask: outarg, the resulting cpumask 3875 * 3876 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3877 * @cpu_going_down is >= 0, that cpu is considered offline during 3878 * calculation. The result is stored in @cpumask. 3879 * 3880 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3881 * enabled and @node has online CPUs requested by @attrs, the returned 3882 * cpumask is the intersection of the possible CPUs of @node and 3883 * @attrs->cpumask. 3884 * 3885 * The caller is responsible for ensuring that the cpumask of @node stays 3886 * stable. 3887 * 3888 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3889 * %false if equal. 3890 */ 3891 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3892 int cpu_going_down, cpumask_t *cpumask) 3893 { 3894 if (!wq_numa_enabled || attrs->no_numa) 3895 goto use_dfl; 3896 3897 /* does @node have any online CPUs @attrs wants? */ 3898 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3899 if (cpu_going_down >= 0) 3900 cpumask_clear_cpu(cpu_going_down, cpumask); 3901 3902 if (cpumask_empty(cpumask)) 3903 goto use_dfl; 3904 3905 /* yeap, return possible CPUs in @node that @attrs wants */ 3906 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3907 return !cpumask_equal(cpumask, attrs->cpumask); 3908 3909 use_dfl: 3910 cpumask_copy(cpumask, attrs->cpumask); 3911 return false; 3912 } 3913 3914 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3915 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3916 int node, 3917 struct pool_workqueue *pwq) 3918 { 3919 struct pool_workqueue *old_pwq; 3920 3921 lockdep_assert_held(&wq->mutex); 3922 3923 /* link_pwq() can handle duplicate calls */ 3924 link_pwq(pwq); 3925 3926 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3927 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3928 return old_pwq; 3929 } 3930 3931 /** 3932 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 3933 * @wq: the target workqueue 3934 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 3935 * 3936 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 3937 * machines, this function maps a separate pwq to each NUMA node with 3938 * possibles CPUs in @attrs->cpumask so that work items are affine to the 3939 * NUMA node it was issued on. Older pwqs are released as in-flight work 3940 * items finish. Note that a work item which repeatedly requeues itself 3941 * back-to-back will stay on its current pwq. 3942 * 3943 * Performs GFP_KERNEL allocations. 3944 * 3945 * Return: 0 on success and -errno on failure. 3946 */ 3947 int apply_workqueue_attrs(struct workqueue_struct *wq, 3948 const struct workqueue_attrs *attrs) 3949 { 3950 struct workqueue_attrs *new_attrs, *tmp_attrs; 3951 struct pool_workqueue **pwq_tbl, *dfl_pwq; 3952 int node, ret; 3953 3954 /* only unbound workqueues can change attributes */ 3955 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 3956 return -EINVAL; 3957 3958 /* creating multiple pwqs breaks ordering guarantee */ 3959 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))) 3960 return -EINVAL; 3961 3962 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL); 3963 new_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3964 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3965 if (!pwq_tbl || !new_attrs || !tmp_attrs) 3966 goto enomem; 3967 3968 /* make a copy of @attrs and sanitize it */ 3969 copy_workqueue_attrs(new_attrs, attrs); 3970 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3971 3972 /* 3973 * We may create multiple pwqs with differing cpumasks. Make a 3974 * copy of @new_attrs which will be modified and used to obtain 3975 * pools. 3976 */ 3977 copy_workqueue_attrs(tmp_attrs, new_attrs); 3978 3979 /* 3980 * CPUs should stay stable across pwq creations and installations. 3981 * Pin CPUs, determine the target cpumask for each node and create 3982 * pwqs accordingly. 3983 */ 3984 get_online_cpus(); 3985 3986 mutex_lock(&wq_pool_mutex); 3987 3988 /* 3989 * If something goes wrong during CPU up/down, we'll fall back to 3990 * the default pwq covering whole @attrs->cpumask. Always create 3991 * it even if we don't use it immediately. 3992 */ 3993 dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3994 if (!dfl_pwq) 3995 goto enomem_pwq; 3996 3997 for_each_node(node) { 3998 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) { 3999 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 4000 if (!pwq_tbl[node]) 4001 goto enomem_pwq; 4002 } else { 4003 dfl_pwq->refcnt++; 4004 pwq_tbl[node] = dfl_pwq; 4005 } 4006 } 4007 4008 mutex_unlock(&wq_pool_mutex); 4009 4010 /* all pwqs have been created successfully, let's install'em */ 4011 mutex_lock(&wq->mutex); 4012 4013 copy_workqueue_attrs(wq->unbound_attrs, new_attrs); 4014 4015 /* save the previous pwq and install the new one */ 4016 for_each_node(node) 4017 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]); 4018 4019 /* @dfl_pwq might not have been used, ensure it's linked */ 4020 link_pwq(dfl_pwq); 4021 swap(wq->dfl_pwq, dfl_pwq); 4022 4023 mutex_unlock(&wq->mutex); 4024 4025 /* put the old pwqs */ 4026 for_each_node(node) 4027 put_pwq_unlocked(pwq_tbl[node]); 4028 put_pwq_unlocked(dfl_pwq); 4029 4030 put_online_cpus(); 4031 ret = 0; 4032 /* fall through */ 4033 out_free: 4034 free_workqueue_attrs(tmp_attrs); 4035 free_workqueue_attrs(new_attrs); 4036 kfree(pwq_tbl); 4037 return ret; 4038 4039 enomem_pwq: 4040 free_unbound_pwq(dfl_pwq); 4041 for_each_node(node) 4042 if (pwq_tbl && pwq_tbl[node] != dfl_pwq) 4043 free_unbound_pwq(pwq_tbl[node]); 4044 mutex_unlock(&wq_pool_mutex); 4045 put_online_cpus(); 4046 enomem: 4047 ret = -ENOMEM; 4048 goto out_free; 4049 } 4050 4051 /** 4052 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 4053 * @wq: the target workqueue 4054 * @cpu: the CPU coming up or going down 4055 * @online: whether @cpu is coming up or going down 4056 * 4057 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 4058 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 4059 * @wq accordingly. 4060 * 4061 * If NUMA affinity can't be adjusted due to memory allocation failure, it 4062 * falls back to @wq->dfl_pwq which may not be optimal but is always 4063 * correct. 4064 * 4065 * Note that when the last allowed CPU of a NUMA node goes offline for a 4066 * workqueue with a cpumask spanning multiple nodes, the workers which were 4067 * already executing the work items for the workqueue will lose their CPU 4068 * affinity and may execute on any CPU. This is similar to how per-cpu 4069 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 4070 * affinity, it's the user's responsibility to flush the work item from 4071 * CPU_DOWN_PREPARE. 4072 */ 4073 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 4074 bool online) 4075 { 4076 int node = cpu_to_node(cpu); 4077 int cpu_off = online ? -1 : cpu; 4078 struct pool_workqueue *old_pwq = NULL, *pwq; 4079 struct workqueue_attrs *target_attrs; 4080 cpumask_t *cpumask; 4081 4082 lockdep_assert_held(&wq_pool_mutex); 4083 4084 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND)) 4085 return; 4086 4087 /* 4088 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 4089 * Let's use a preallocated one. The following buf is protected by 4090 * CPU hotplug exclusion. 4091 */ 4092 target_attrs = wq_update_unbound_numa_attrs_buf; 4093 cpumask = target_attrs->cpumask; 4094 4095 mutex_lock(&wq->mutex); 4096 if (wq->unbound_attrs->no_numa) 4097 goto out_unlock; 4098 4099 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 4100 pwq = unbound_pwq_by_node(wq, node); 4101 4102 /* 4103 * Let's determine what needs to be done. If the target cpumask is 4104 * different from wq's, we need to compare it to @pwq's and create 4105 * a new one if they don't match. If the target cpumask equals 4106 * wq's, the default pwq should be used. If @pwq is already the 4107 * default one, nothing to do; otherwise, install the default one. 4108 */ 4109 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) { 4110 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 4111 goto out_unlock; 4112 } else { 4113 if (pwq == wq->dfl_pwq) 4114 goto out_unlock; 4115 else 4116 goto use_dfl_pwq; 4117 } 4118 4119 mutex_unlock(&wq->mutex); 4120 4121 /* create a new pwq */ 4122 pwq = alloc_unbound_pwq(wq, target_attrs); 4123 if (!pwq) { 4124 pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 4125 wq->name); 4126 mutex_lock(&wq->mutex); 4127 goto use_dfl_pwq; 4128 } 4129 4130 /* 4131 * Install the new pwq. As this function is called only from CPU 4132 * hotplug callbacks and applying a new attrs is wrapped with 4133 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed 4134 * inbetween. 4135 */ 4136 mutex_lock(&wq->mutex); 4137 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 4138 goto out_unlock; 4139 4140 use_dfl_pwq: 4141 spin_lock_irq(&wq->dfl_pwq->pool->lock); 4142 get_pwq(wq->dfl_pwq); 4143 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 4144 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 4145 out_unlock: 4146 mutex_unlock(&wq->mutex); 4147 put_pwq_unlocked(old_pwq); 4148 } 4149 4150 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4151 { 4152 bool highpri = wq->flags & WQ_HIGHPRI; 4153 int cpu, ret; 4154 4155 if (!(wq->flags & WQ_UNBOUND)) { 4156 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 4157 if (!wq->cpu_pwqs) 4158 return -ENOMEM; 4159 4160 for_each_possible_cpu(cpu) { 4161 struct pool_workqueue *pwq = 4162 per_cpu_ptr(wq->cpu_pwqs, cpu); 4163 struct worker_pool *cpu_pools = 4164 per_cpu(cpu_worker_pools, cpu); 4165 4166 init_pwq(pwq, wq, &cpu_pools[highpri]); 4167 4168 mutex_lock(&wq->mutex); 4169 link_pwq(pwq); 4170 mutex_unlock(&wq->mutex); 4171 } 4172 return 0; 4173 } else if (wq->flags & __WQ_ORDERED) { 4174 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 4175 /* there should only be single pwq for ordering guarantee */ 4176 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 4177 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 4178 "ordering guarantee broken for workqueue %s\n", wq->name); 4179 return ret; 4180 } else { 4181 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4182 } 4183 } 4184 4185 static int wq_clamp_max_active(int max_active, unsigned int flags, 4186 const char *name) 4187 { 4188 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 4189 4190 if (max_active < 1 || max_active > lim) 4191 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4192 max_active, name, 1, lim); 4193 4194 return clamp_val(max_active, 1, lim); 4195 } 4196 4197 struct workqueue_struct *__alloc_workqueue_key(const char *fmt, 4198 unsigned int flags, 4199 int max_active, 4200 struct lock_class_key *key, 4201 const char *lock_name, ...) 4202 { 4203 size_t tbl_size = 0; 4204 va_list args; 4205 struct workqueue_struct *wq; 4206 struct pool_workqueue *pwq; 4207 4208 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4209 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4210 flags |= WQ_UNBOUND; 4211 4212 /* allocate wq and format name */ 4213 if (flags & WQ_UNBOUND) 4214 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]); 4215 4216 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4217 if (!wq) 4218 return NULL; 4219 4220 if (flags & WQ_UNBOUND) { 4221 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL); 4222 if (!wq->unbound_attrs) 4223 goto err_free_wq; 4224 } 4225 4226 va_start(args, lock_name); 4227 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4228 va_end(args); 4229 4230 max_active = max_active ?: WQ_DFL_ACTIVE; 4231 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4232 4233 /* init wq */ 4234 wq->flags = flags; 4235 wq->saved_max_active = max_active; 4236 mutex_init(&wq->mutex); 4237 atomic_set(&wq->nr_pwqs_to_flush, 0); 4238 INIT_LIST_HEAD(&wq->pwqs); 4239 INIT_LIST_HEAD(&wq->flusher_queue); 4240 INIT_LIST_HEAD(&wq->flusher_overflow); 4241 INIT_LIST_HEAD(&wq->maydays); 4242 4243 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 4244 INIT_LIST_HEAD(&wq->list); 4245 4246 if (alloc_and_link_pwqs(wq) < 0) 4247 goto err_free_wq; 4248 4249 /* 4250 * Workqueues which may be used during memory reclaim should 4251 * have a rescuer to guarantee forward progress. 4252 */ 4253 if (flags & WQ_MEM_RECLAIM) { 4254 struct worker *rescuer; 4255 4256 rescuer = alloc_worker(); 4257 if (!rescuer) 4258 goto err_destroy; 4259 4260 rescuer->rescue_wq = wq; 4261 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", 4262 wq->name); 4263 if (IS_ERR(rescuer->task)) { 4264 kfree(rescuer); 4265 goto err_destroy; 4266 } 4267 4268 wq->rescuer = rescuer; 4269 rescuer->task->flags |= PF_NO_SETAFFINITY; 4270 wake_up_process(rescuer->task); 4271 } 4272 4273 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4274 goto err_destroy; 4275 4276 /* 4277 * wq_pool_mutex protects global freeze state and workqueues list. 4278 * Grab it, adjust max_active and add the new @wq to workqueues 4279 * list. 4280 */ 4281 mutex_lock(&wq_pool_mutex); 4282 4283 mutex_lock(&wq->mutex); 4284 for_each_pwq(pwq, wq) 4285 pwq_adjust_max_active(pwq); 4286 mutex_unlock(&wq->mutex); 4287 4288 list_add(&wq->list, &workqueues); 4289 4290 mutex_unlock(&wq_pool_mutex); 4291 4292 return wq; 4293 4294 err_free_wq: 4295 free_workqueue_attrs(wq->unbound_attrs); 4296 kfree(wq); 4297 return NULL; 4298 err_destroy: 4299 destroy_workqueue(wq); 4300 return NULL; 4301 } 4302 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 4303 4304 /** 4305 * destroy_workqueue - safely terminate a workqueue 4306 * @wq: target workqueue 4307 * 4308 * Safely destroy a workqueue. All work currently pending will be done first. 4309 */ 4310 void destroy_workqueue(struct workqueue_struct *wq) 4311 { 4312 struct pool_workqueue *pwq; 4313 int node; 4314 4315 /* drain it before proceeding with destruction */ 4316 drain_workqueue(wq); 4317 4318 /* sanity checks */ 4319 mutex_lock(&wq->mutex); 4320 for_each_pwq(pwq, wq) { 4321 int i; 4322 4323 for (i = 0; i < WORK_NR_COLORS; i++) { 4324 if (WARN_ON(pwq->nr_in_flight[i])) { 4325 mutex_unlock(&wq->mutex); 4326 return; 4327 } 4328 } 4329 4330 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) || 4331 WARN_ON(pwq->nr_active) || 4332 WARN_ON(!list_empty(&pwq->delayed_works))) { 4333 mutex_unlock(&wq->mutex); 4334 return; 4335 } 4336 } 4337 mutex_unlock(&wq->mutex); 4338 4339 /* 4340 * wq list is used to freeze wq, remove from list after 4341 * flushing is complete in case freeze races us. 4342 */ 4343 mutex_lock(&wq_pool_mutex); 4344 list_del_init(&wq->list); 4345 mutex_unlock(&wq_pool_mutex); 4346 4347 workqueue_sysfs_unregister(wq); 4348 4349 if (wq->rescuer) { 4350 kthread_stop(wq->rescuer->task); 4351 kfree(wq->rescuer); 4352 wq->rescuer = NULL; 4353 } 4354 4355 if (!(wq->flags & WQ_UNBOUND)) { 4356 /* 4357 * The base ref is never dropped on per-cpu pwqs. Directly 4358 * free the pwqs and wq. 4359 */ 4360 free_percpu(wq->cpu_pwqs); 4361 kfree(wq); 4362 } else { 4363 /* 4364 * We're the sole accessor of @wq at this point. Directly 4365 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4366 * @wq will be freed when the last pwq is released. 4367 */ 4368 for_each_node(node) { 4369 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4370 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4371 put_pwq_unlocked(pwq); 4372 } 4373 4374 /* 4375 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4376 * put. Don't access it afterwards. 4377 */ 4378 pwq = wq->dfl_pwq; 4379 wq->dfl_pwq = NULL; 4380 put_pwq_unlocked(pwq); 4381 } 4382 } 4383 EXPORT_SYMBOL_GPL(destroy_workqueue); 4384 4385 /** 4386 * workqueue_set_max_active - adjust max_active of a workqueue 4387 * @wq: target workqueue 4388 * @max_active: new max_active value. 4389 * 4390 * Set max_active of @wq to @max_active. 4391 * 4392 * CONTEXT: 4393 * Don't call from IRQ context. 4394 */ 4395 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4396 { 4397 struct pool_workqueue *pwq; 4398 4399 /* disallow meddling with max_active for ordered workqueues */ 4400 if (WARN_ON(wq->flags & __WQ_ORDERED)) 4401 return; 4402 4403 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4404 4405 mutex_lock(&wq->mutex); 4406 4407 wq->saved_max_active = max_active; 4408 4409 for_each_pwq(pwq, wq) 4410 pwq_adjust_max_active(pwq); 4411 4412 mutex_unlock(&wq->mutex); 4413 } 4414 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4415 4416 /** 4417 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4418 * 4419 * Determine whether %current is a workqueue rescuer. Can be used from 4420 * work functions to determine whether it's being run off the rescuer task. 4421 * 4422 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4423 */ 4424 bool current_is_workqueue_rescuer(void) 4425 { 4426 struct worker *worker = current_wq_worker(); 4427 4428 return worker && worker->rescue_wq; 4429 } 4430 4431 /** 4432 * workqueue_congested - test whether a workqueue is congested 4433 * @cpu: CPU in question 4434 * @wq: target workqueue 4435 * 4436 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4437 * no synchronization around this function and the test result is 4438 * unreliable and only useful as advisory hints or for debugging. 4439 * 4440 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4441 * Note that both per-cpu and unbound workqueues may be associated with 4442 * multiple pool_workqueues which have separate congested states. A 4443 * workqueue being congested on one CPU doesn't mean the workqueue is also 4444 * contested on other CPUs / NUMA nodes. 4445 * 4446 * Return: 4447 * %true if congested, %false otherwise. 4448 */ 4449 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4450 { 4451 struct pool_workqueue *pwq; 4452 bool ret; 4453 4454 rcu_read_lock_sched(); 4455 4456 if (cpu == WORK_CPU_UNBOUND) 4457 cpu = smp_processor_id(); 4458 4459 if (!(wq->flags & WQ_UNBOUND)) 4460 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4461 else 4462 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4463 4464 ret = !list_empty(&pwq->delayed_works); 4465 rcu_read_unlock_sched(); 4466 4467 return ret; 4468 } 4469 EXPORT_SYMBOL_GPL(workqueue_congested); 4470 4471 /** 4472 * work_busy - test whether a work is currently pending or running 4473 * @work: the work to be tested 4474 * 4475 * Test whether @work is currently pending or running. There is no 4476 * synchronization around this function and the test result is 4477 * unreliable and only useful as advisory hints or for debugging. 4478 * 4479 * Return: 4480 * OR'd bitmask of WORK_BUSY_* bits. 4481 */ 4482 unsigned int work_busy(struct work_struct *work) 4483 { 4484 struct worker_pool *pool; 4485 unsigned long flags; 4486 unsigned int ret = 0; 4487 4488 if (work_pending(work)) 4489 ret |= WORK_BUSY_PENDING; 4490 4491 local_irq_save(flags); 4492 pool = get_work_pool(work); 4493 if (pool) { 4494 spin_lock(&pool->lock); 4495 if (find_worker_executing_work(pool, work)) 4496 ret |= WORK_BUSY_RUNNING; 4497 spin_unlock(&pool->lock); 4498 } 4499 local_irq_restore(flags); 4500 4501 return ret; 4502 } 4503 EXPORT_SYMBOL_GPL(work_busy); 4504 4505 /** 4506 * set_worker_desc - set description for the current work item 4507 * @fmt: printf-style format string 4508 * @...: arguments for the format string 4509 * 4510 * This function can be called by a running work function to describe what 4511 * the work item is about. If the worker task gets dumped, this 4512 * information will be printed out together to help debugging. The 4513 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4514 */ 4515 void set_worker_desc(const char *fmt, ...) 4516 { 4517 struct worker *worker = current_wq_worker(); 4518 va_list args; 4519 4520 if (worker) { 4521 va_start(args, fmt); 4522 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4523 va_end(args); 4524 worker->desc_valid = true; 4525 } 4526 } 4527 4528 /** 4529 * print_worker_info - print out worker information and description 4530 * @log_lvl: the log level to use when printing 4531 * @task: target task 4532 * 4533 * If @task is a worker and currently executing a work item, print out the 4534 * name of the workqueue being serviced and worker description set with 4535 * set_worker_desc() by the currently executing work item. 4536 * 4537 * This function can be safely called on any task as long as the 4538 * task_struct itself is accessible. While safe, this function isn't 4539 * synchronized and may print out mixups or garbages of limited length. 4540 */ 4541 void print_worker_info(const char *log_lvl, struct task_struct *task) 4542 { 4543 work_func_t *fn = NULL; 4544 char name[WQ_NAME_LEN] = { }; 4545 char desc[WORKER_DESC_LEN] = { }; 4546 struct pool_workqueue *pwq = NULL; 4547 struct workqueue_struct *wq = NULL; 4548 bool desc_valid = false; 4549 struct worker *worker; 4550 4551 if (!(task->flags & PF_WQ_WORKER)) 4552 return; 4553 4554 /* 4555 * This function is called without any synchronization and @task 4556 * could be in any state. Be careful with dereferences. 4557 */ 4558 worker = probe_kthread_data(task); 4559 4560 /* 4561 * Carefully copy the associated workqueue's workfn and name. Keep 4562 * the original last '\0' in case the original contains garbage. 4563 */ 4564 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4565 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4566 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4567 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4568 4569 /* copy worker description */ 4570 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid)); 4571 if (desc_valid) 4572 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4573 4574 if (fn || name[0] || desc[0]) { 4575 printk("%sWorkqueue: %s %pf", log_lvl, name, fn); 4576 if (desc[0]) 4577 pr_cont(" (%s)", desc); 4578 pr_cont("\n"); 4579 } 4580 } 4581 4582 /* 4583 * CPU hotplug. 4584 * 4585 * There are two challenges in supporting CPU hotplug. Firstly, there 4586 * are a lot of assumptions on strong associations among work, pwq and 4587 * pool which make migrating pending and scheduled works very 4588 * difficult to implement without impacting hot paths. Secondly, 4589 * worker pools serve mix of short, long and very long running works making 4590 * blocked draining impractical. 4591 * 4592 * This is solved by allowing the pools to be disassociated from the CPU 4593 * running as an unbound one and allowing it to be reattached later if the 4594 * cpu comes back online. 4595 */ 4596 4597 static void wq_unbind_fn(struct work_struct *work) 4598 { 4599 int cpu = smp_processor_id(); 4600 struct worker_pool *pool; 4601 struct worker *worker; 4602 int wi; 4603 4604 for_each_cpu_worker_pool(pool, cpu) { 4605 WARN_ON_ONCE(cpu != smp_processor_id()); 4606 4607 mutex_lock(&pool->manager_mutex); 4608 spin_lock_irq(&pool->lock); 4609 4610 /* 4611 * We've blocked all manager operations. Make all workers 4612 * unbound and set DISASSOCIATED. Before this, all workers 4613 * except for the ones which are still executing works from 4614 * before the last CPU down must be on the cpu. After 4615 * this, they may become diasporas. 4616 */ 4617 for_each_pool_worker(worker, wi, pool) 4618 worker->flags |= WORKER_UNBOUND; 4619 4620 pool->flags |= POOL_DISASSOCIATED; 4621 4622 spin_unlock_irq(&pool->lock); 4623 mutex_unlock(&pool->manager_mutex); 4624 4625 /* 4626 * Call schedule() so that we cross rq->lock and thus can 4627 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4628 * This is necessary as scheduler callbacks may be invoked 4629 * from other cpus. 4630 */ 4631 schedule(); 4632 4633 /* 4634 * Sched callbacks are disabled now. Zap nr_running. 4635 * After this, nr_running stays zero and need_more_worker() 4636 * and keep_working() are always true as long as the 4637 * worklist is not empty. This pool now behaves as an 4638 * unbound (in terms of concurrency management) pool which 4639 * are served by workers tied to the pool. 4640 */ 4641 atomic_set(&pool->nr_running, 0); 4642 4643 /* 4644 * With concurrency management just turned off, a busy 4645 * worker blocking could lead to lengthy stalls. Kick off 4646 * unbound chain execution of currently pending work items. 4647 */ 4648 spin_lock_irq(&pool->lock); 4649 wake_up_worker(pool); 4650 spin_unlock_irq(&pool->lock); 4651 } 4652 } 4653 4654 /** 4655 * rebind_workers - rebind all workers of a pool to the associated CPU 4656 * @pool: pool of interest 4657 * 4658 * @pool->cpu is coming online. Rebind all workers to the CPU. 4659 */ 4660 static void rebind_workers(struct worker_pool *pool) 4661 { 4662 struct worker *worker; 4663 int wi; 4664 4665 lockdep_assert_held(&pool->manager_mutex); 4666 4667 /* 4668 * Restore CPU affinity of all workers. As all idle workers should 4669 * be on the run-queue of the associated CPU before any local 4670 * wake-ups for concurrency management happen, restore CPU affinty 4671 * of all workers first and then clear UNBOUND. As we're called 4672 * from CPU_ONLINE, the following shouldn't fail. 4673 */ 4674 for_each_pool_worker(worker, wi, pool) 4675 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4676 pool->attrs->cpumask) < 0); 4677 4678 spin_lock_irq(&pool->lock); 4679 4680 for_each_pool_worker(worker, wi, pool) { 4681 unsigned int worker_flags = worker->flags; 4682 4683 /* 4684 * A bound idle worker should actually be on the runqueue 4685 * of the associated CPU for local wake-ups targeting it to 4686 * work. Kick all idle workers so that they migrate to the 4687 * associated CPU. Doing this in the same loop as 4688 * replacing UNBOUND with REBOUND is safe as no worker will 4689 * be bound before @pool->lock is released. 4690 */ 4691 if (worker_flags & WORKER_IDLE) 4692 wake_up_process(worker->task); 4693 4694 /* 4695 * We want to clear UNBOUND but can't directly call 4696 * worker_clr_flags() or adjust nr_running. Atomically 4697 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4698 * @worker will clear REBOUND using worker_clr_flags() when 4699 * it initiates the next execution cycle thus restoring 4700 * concurrency management. Note that when or whether 4701 * @worker clears REBOUND doesn't affect correctness. 4702 * 4703 * ACCESS_ONCE() is necessary because @worker->flags may be 4704 * tested without holding any lock in 4705 * wq_worker_waking_up(). Without it, NOT_RUNNING test may 4706 * fail incorrectly leading to premature concurrency 4707 * management operations. 4708 */ 4709 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4710 worker_flags |= WORKER_REBOUND; 4711 worker_flags &= ~WORKER_UNBOUND; 4712 ACCESS_ONCE(worker->flags) = worker_flags; 4713 } 4714 4715 spin_unlock_irq(&pool->lock); 4716 } 4717 4718 /** 4719 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4720 * @pool: unbound pool of interest 4721 * @cpu: the CPU which is coming up 4722 * 4723 * An unbound pool may end up with a cpumask which doesn't have any online 4724 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4725 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4726 * online CPU before, cpus_allowed of all its workers should be restored. 4727 */ 4728 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 4729 { 4730 static cpumask_t cpumask; 4731 struct worker *worker; 4732 int wi; 4733 4734 lockdep_assert_held(&pool->manager_mutex); 4735 4736 /* is @cpu allowed for @pool? */ 4737 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 4738 return; 4739 4740 /* is @cpu the only online CPU? */ 4741 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 4742 if (cpumask_weight(&cpumask) != 1) 4743 return; 4744 4745 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 4746 for_each_pool_worker(worker, wi, pool) 4747 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4748 pool->attrs->cpumask) < 0); 4749 } 4750 4751 /* 4752 * Workqueues should be brought up before normal priority CPU notifiers. 4753 * This will be registered high priority CPU notifier. 4754 */ 4755 static int workqueue_cpu_up_callback(struct notifier_block *nfb, 4756 unsigned long action, 4757 void *hcpu) 4758 { 4759 int cpu = (unsigned long)hcpu; 4760 struct worker_pool *pool; 4761 struct workqueue_struct *wq; 4762 int pi; 4763 4764 switch (action & ~CPU_TASKS_FROZEN) { 4765 case CPU_UP_PREPARE: 4766 for_each_cpu_worker_pool(pool, cpu) { 4767 if (pool->nr_workers) 4768 continue; 4769 if (create_and_start_worker(pool) < 0) 4770 return NOTIFY_BAD; 4771 } 4772 break; 4773 4774 case CPU_DOWN_FAILED: 4775 case CPU_ONLINE: 4776 mutex_lock(&wq_pool_mutex); 4777 4778 for_each_pool(pool, pi) { 4779 mutex_lock(&pool->manager_mutex); 4780 4781 if (pool->cpu == cpu) { 4782 spin_lock_irq(&pool->lock); 4783 pool->flags &= ~POOL_DISASSOCIATED; 4784 spin_unlock_irq(&pool->lock); 4785 4786 rebind_workers(pool); 4787 } else if (pool->cpu < 0) { 4788 restore_unbound_workers_cpumask(pool, cpu); 4789 } 4790 4791 mutex_unlock(&pool->manager_mutex); 4792 } 4793 4794 /* update NUMA affinity of unbound workqueues */ 4795 list_for_each_entry(wq, &workqueues, list) 4796 wq_update_unbound_numa(wq, cpu, true); 4797 4798 mutex_unlock(&wq_pool_mutex); 4799 break; 4800 } 4801 return NOTIFY_OK; 4802 } 4803 4804 /* 4805 * Workqueues should be brought down after normal priority CPU notifiers. 4806 * This will be registered as low priority CPU notifier. 4807 */ 4808 static int workqueue_cpu_down_callback(struct notifier_block *nfb, 4809 unsigned long action, 4810 void *hcpu) 4811 { 4812 int cpu = (unsigned long)hcpu; 4813 struct work_struct unbind_work; 4814 struct workqueue_struct *wq; 4815 4816 switch (action & ~CPU_TASKS_FROZEN) { 4817 case CPU_DOWN_PREPARE: 4818 /* unbinding per-cpu workers should happen on the local CPU */ 4819 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn); 4820 queue_work_on(cpu, system_highpri_wq, &unbind_work); 4821 4822 /* update NUMA affinity of unbound workqueues */ 4823 mutex_lock(&wq_pool_mutex); 4824 list_for_each_entry(wq, &workqueues, list) 4825 wq_update_unbound_numa(wq, cpu, false); 4826 mutex_unlock(&wq_pool_mutex); 4827 4828 /* wait for per-cpu unbinding to finish */ 4829 flush_work(&unbind_work); 4830 destroy_work_on_stack(&unbind_work); 4831 break; 4832 } 4833 return NOTIFY_OK; 4834 } 4835 4836 #ifdef CONFIG_SMP 4837 4838 struct work_for_cpu { 4839 struct work_struct work; 4840 long (*fn)(void *); 4841 void *arg; 4842 long ret; 4843 }; 4844 4845 static void work_for_cpu_fn(struct work_struct *work) 4846 { 4847 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 4848 4849 wfc->ret = wfc->fn(wfc->arg); 4850 } 4851 4852 /** 4853 * work_on_cpu - run a function in user context on a particular cpu 4854 * @cpu: the cpu to run on 4855 * @fn: the function to run 4856 * @arg: the function arg 4857 * 4858 * It is up to the caller to ensure that the cpu doesn't go offline. 4859 * The caller must not hold any locks which would prevent @fn from completing. 4860 * 4861 * Return: The value @fn returns. 4862 */ 4863 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 4864 { 4865 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 4866 4867 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 4868 schedule_work_on(cpu, &wfc.work); 4869 flush_work(&wfc.work); 4870 destroy_work_on_stack(&wfc.work); 4871 return wfc.ret; 4872 } 4873 EXPORT_SYMBOL_GPL(work_on_cpu); 4874 #endif /* CONFIG_SMP */ 4875 4876 #ifdef CONFIG_FREEZER 4877 4878 /** 4879 * freeze_workqueues_begin - begin freezing workqueues 4880 * 4881 * Start freezing workqueues. After this function returns, all freezable 4882 * workqueues will queue new works to their delayed_works list instead of 4883 * pool->worklist. 4884 * 4885 * CONTEXT: 4886 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4887 */ 4888 void freeze_workqueues_begin(void) 4889 { 4890 struct worker_pool *pool; 4891 struct workqueue_struct *wq; 4892 struct pool_workqueue *pwq; 4893 int pi; 4894 4895 mutex_lock(&wq_pool_mutex); 4896 4897 WARN_ON_ONCE(workqueue_freezing); 4898 workqueue_freezing = true; 4899 4900 /* set FREEZING */ 4901 for_each_pool(pool, pi) { 4902 spin_lock_irq(&pool->lock); 4903 WARN_ON_ONCE(pool->flags & POOL_FREEZING); 4904 pool->flags |= POOL_FREEZING; 4905 spin_unlock_irq(&pool->lock); 4906 } 4907 4908 list_for_each_entry(wq, &workqueues, list) { 4909 mutex_lock(&wq->mutex); 4910 for_each_pwq(pwq, wq) 4911 pwq_adjust_max_active(pwq); 4912 mutex_unlock(&wq->mutex); 4913 } 4914 4915 mutex_unlock(&wq_pool_mutex); 4916 } 4917 4918 /** 4919 * freeze_workqueues_busy - are freezable workqueues still busy? 4920 * 4921 * Check whether freezing is complete. This function must be called 4922 * between freeze_workqueues_begin() and thaw_workqueues(). 4923 * 4924 * CONTEXT: 4925 * Grabs and releases wq_pool_mutex. 4926 * 4927 * Return: 4928 * %true if some freezable workqueues are still busy. %false if freezing 4929 * is complete. 4930 */ 4931 bool freeze_workqueues_busy(void) 4932 { 4933 bool busy = false; 4934 struct workqueue_struct *wq; 4935 struct pool_workqueue *pwq; 4936 4937 mutex_lock(&wq_pool_mutex); 4938 4939 WARN_ON_ONCE(!workqueue_freezing); 4940 4941 list_for_each_entry(wq, &workqueues, list) { 4942 if (!(wq->flags & WQ_FREEZABLE)) 4943 continue; 4944 /* 4945 * nr_active is monotonically decreasing. It's safe 4946 * to peek without lock. 4947 */ 4948 rcu_read_lock_sched(); 4949 for_each_pwq(pwq, wq) { 4950 WARN_ON_ONCE(pwq->nr_active < 0); 4951 if (pwq->nr_active) { 4952 busy = true; 4953 rcu_read_unlock_sched(); 4954 goto out_unlock; 4955 } 4956 } 4957 rcu_read_unlock_sched(); 4958 } 4959 out_unlock: 4960 mutex_unlock(&wq_pool_mutex); 4961 return busy; 4962 } 4963 4964 /** 4965 * thaw_workqueues - thaw workqueues 4966 * 4967 * Thaw workqueues. Normal queueing is restored and all collected 4968 * frozen works are transferred to their respective pool worklists. 4969 * 4970 * CONTEXT: 4971 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4972 */ 4973 void thaw_workqueues(void) 4974 { 4975 struct workqueue_struct *wq; 4976 struct pool_workqueue *pwq; 4977 struct worker_pool *pool; 4978 int pi; 4979 4980 mutex_lock(&wq_pool_mutex); 4981 4982 if (!workqueue_freezing) 4983 goto out_unlock; 4984 4985 /* clear FREEZING */ 4986 for_each_pool(pool, pi) { 4987 spin_lock_irq(&pool->lock); 4988 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING)); 4989 pool->flags &= ~POOL_FREEZING; 4990 spin_unlock_irq(&pool->lock); 4991 } 4992 4993 /* restore max_active and repopulate worklist */ 4994 list_for_each_entry(wq, &workqueues, list) { 4995 mutex_lock(&wq->mutex); 4996 for_each_pwq(pwq, wq) 4997 pwq_adjust_max_active(pwq); 4998 mutex_unlock(&wq->mutex); 4999 } 5000 5001 workqueue_freezing = false; 5002 out_unlock: 5003 mutex_unlock(&wq_pool_mutex); 5004 } 5005 #endif /* CONFIG_FREEZER */ 5006 5007 static void __init wq_numa_init(void) 5008 { 5009 cpumask_var_t *tbl; 5010 int node, cpu; 5011 5012 /* determine NUMA pwq table len - highest node id + 1 */ 5013 for_each_node(node) 5014 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1); 5015 5016 if (num_possible_nodes() <= 1) 5017 return; 5018 5019 if (wq_disable_numa) { 5020 pr_info("workqueue: NUMA affinity support disabled\n"); 5021 return; 5022 } 5023 5024 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL); 5025 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5026 5027 /* 5028 * We want masks of possible CPUs of each node which isn't readily 5029 * available. Build one from cpu_to_node() which should have been 5030 * fully initialized by now. 5031 */ 5032 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL); 5033 BUG_ON(!tbl); 5034 5035 for_each_node(node) 5036 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5037 node_online(node) ? node : NUMA_NO_NODE)); 5038 5039 for_each_possible_cpu(cpu) { 5040 node = cpu_to_node(cpu); 5041 if (WARN_ON(node == NUMA_NO_NODE)) { 5042 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5043 /* happens iff arch is bonkers, let's just proceed */ 5044 return; 5045 } 5046 cpumask_set_cpu(cpu, tbl[node]); 5047 } 5048 5049 wq_numa_possible_cpumask = tbl; 5050 wq_numa_enabled = true; 5051 } 5052 5053 static int __init init_workqueues(void) 5054 { 5055 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5056 int i, cpu; 5057 5058 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5059 5060 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5061 5062 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP); 5063 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN); 5064 5065 wq_numa_init(); 5066 5067 /* initialize CPU pools */ 5068 for_each_possible_cpu(cpu) { 5069 struct worker_pool *pool; 5070 5071 i = 0; 5072 for_each_cpu_worker_pool(pool, cpu) { 5073 BUG_ON(init_worker_pool(pool)); 5074 pool->cpu = cpu; 5075 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5076 pool->attrs->nice = std_nice[i++]; 5077 pool->node = cpu_to_node(cpu); 5078 5079 /* alloc pool ID */ 5080 mutex_lock(&wq_pool_mutex); 5081 BUG_ON(worker_pool_assign_id(pool)); 5082 mutex_unlock(&wq_pool_mutex); 5083 } 5084 } 5085 5086 /* create the initial worker */ 5087 for_each_online_cpu(cpu) { 5088 struct worker_pool *pool; 5089 5090 for_each_cpu_worker_pool(pool, cpu) { 5091 pool->flags &= ~POOL_DISASSOCIATED; 5092 BUG_ON(create_and_start_worker(pool) < 0); 5093 } 5094 } 5095 5096 /* create default unbound and ordered wq attrs */ 5097 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5098 struct workqueue_attrs *attrs; 5099 5100 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5101 attrs->nice = std_nice[i]; 5102 unbound_std_wq_attrs[i] = attrs; 5103 5104 /* 5105 * An ordered wq should have only one pwq as ordering is 5106 * guaranteed by max_active which is enforced by pwqs. 5107 * Turn off NUMA so that dfl_pwq is used for all nodes. 5108 */ 5109 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5110 attrs->nice = std_nice[i]; 5111 attrs->no_numa = true; 5112 ordered_wq_attrs[i] = attrs; 5113 } 5114 5115 system_wq = alloc_workqueue("events", 0, 0); 5116 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5117 system_long_wq = alloc_workqueue("events_long", 0, 0); 5118 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5119 WQ_UNBOUND_MAX_ACTIVE); 5120 system_freezable_wq = alloc_workqueue("events_freezable", 5121 WQ_FREEZABLE, 0); 5122 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5123 WQ_POWER_EFFICIENT, 0); 5124 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5125 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5126 0); 5127 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5128 !system_unbound_wq || !system_freezable_wq || 5129 !system_power_efficient_wq || 5130 !system_freezable_power_efficient_wq); 5131 return 0; 5132 } 5133 early_initcall(init_workqueues); 5134