xref: /openbmc/linux/kernel/workqueue.c (revision 840ef8b7cc584a23c4f9d05352f4dbaf8e56e5ab)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There is one worker pool for each CPU and
20  * one extra for works which are better served by workers which are
21  * not bound to any specific CPU.
22  *
23  * Please read Documentation/workqueue.txt for details.
24  */
25 
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/hashtable.h>
45 
46 #include "workqueue_internal.h"
47 
48 enum {
49 	/*
50 	 * worker_pool flags
51 	 *
52 	 * A bound pool is either associated or disassociated with its CPU.
53 	 * While associated (!DISASSOCIATED), all workers are bound to the
54 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
55 	 * is in effect.
56 	 *
57 	 * While DISASSOCIATED, the cpu may be offline and all workers have
58 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
59 	 * be executing on any CPU.  The pool behaves as an unbound one.
60 	 *
61 	 * Note that DISASSOCIATED can be flipped only while holding
62 	 * assoc_mutex to avoid changing binding state while
63 	 * create_worker() is in progress.
64 	 */
65 	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
66 	POOL_MANAGING_WORKERS   = 1 << 1,       /* managing workers */
67 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
68 	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
69 
70 	/* worker flags */
71 	WORKER_STARTED		= 1 << 0,	/* started */
72 	WORKER_DIE		= 1 << 1,	/* die die die */
73 	WORKER_IDLE		= 1 << 2,	/* is idle */
74 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
75 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
76 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
77 
78 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_UNBOUND |
79 				  WORKER_CPU_INTENSIVE,
80 
81 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
82 
83 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
84 
85 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
86 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
87 
88 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
89 						/* call for help after 10ms
90 						   (min two ticks) */
91 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
92 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
93 
94 	/*
95 	 * Rescue workers are used only on emergencies and shared by
96 	 * all cpus.  Give -20.
97 	 */
98 	RESCUER_NICE_LEVEL	= -20,
99 	HIGHPRI_NICE_LEVEL	= -20,
100 };
101 
102 /*
103  * Structure fields follow one of the following exclusion rules.
104  *
105  * I: Modifiable by initialization/destruction paths and read-only for
106  *    everyone else.
107  *
108  * P: Preemption protected.  Disabling preemption is enough and should
109  *    only be modified and accessed from the local cpu.
110  *
111  * L: pool->lock protected.  Access with pool->lock held.
112  *
113  * X: During normal operation, modification requires pool->lock and should
114  *    be done only from local cpu.  Either disabling preemption on local
115  *    cpu or grabbing pool->lock is enough for read access.  If
116  *    POOL_DISASSOCIATED is set, it's identical to L.
117  *
118  * F: wq->flush_mutex protected.
119  *
120  * W: workqueue_lock protected.
121  */
122 
123 /* struct worker is defined in workqueue_internal.h */
124 
125 struct worker_pool {
126 	spinlock_t		lock;		/* the pool lock */
127 	unsigned int		cpu;		/* I: the associated cpu */
128 	int			id;		/* I: pool ID */
129 	unsigned int		flags;		/* X: flags */
130 
131 	struct list_head	worklist;	/* L: list of pending works */
132 	int			nr_workers;	/* L: total number of workers */
133 
134 	/* nr_idle includes the ones off idle_list for rebinding */
135 	int			nr_idle;	/* L: currently idle ones */
136 
137 	struct list_head	idle_list;	/* X: list of idle workers */
138 	struct timer_list	idle_timer;	/* L: worker idle timeout */
139 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
140 
141 	/* workers are chained either in busy_hash or idle_list */
142 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
143 						/* L: hash of busy workers */
144 
145 	struct mutex		assoc_mutex;	/* protect POOL_DISASSOCIATED */
146 	struct ida		worker_ida;	/* L: for worker IDs */
147 
148 	/*
149 	 * The current concurrency level.  As it's likely to be accessed
150 	 * from other CPUs during try_to_wake_up(), put it in a separate
151 	 * cacheline.
152 	 */
153 	atomic_t		nr_running ____cacheline_aligned_in_smp;
154 } ____cacheline_aligned_in_smp;
155 
156 /*
157  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
158  * of work_struct->data are used for flags and the remaining high bits
159  * point to the pwq; thus, pwqs need to be aligned at two's power of the
160  * number of flag bits.
161  */
162 struct pool_workqueue {
163 	struct worker_pool	*pool;		/* I: the associated pool */
164 	struct workqueue_struct *wq;		/* I: the owning workqueue */
165 	int			work_color;	/* L: current color */
166 	int			flush_color;	/* L: flushing color */
167 	int			nr_in_flight[WORK_NR_COLORS];
168 						/* L: nr of in_flight works */
169 	int			nr_active;	/* L: nr of active works */
170 	int			max_active;	/* L: max active works */
171 	struct list_head	delayed_works;	/* L: delayed works */
172 };
173 
174 /*
175  * Structure used to wait for workqueue flush.
176  */
177 struct wq_flusher {
178 	struct list_head	list;		/* F: list of flushers */
179 	int			flush_color;	/* F: flush color waiting for */
180 	struct completion	done;		/* flush completion */
181 };
182 
183 /*
184  * All cpumasks are assumed to be always set on UP and thus can't be
185  * used to determine whether there's something to be done.
186  */
187 #ifdef CONFIG_SMP
188 typedef cpumask_var_t mayday_mask_t;
189 #define mayday_test_and_set_cpu(cpu, mask)	\
190 	cpumask_test_and_set_cpu((cpu), (mask))
191 #define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
192 #define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
193 #define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
194 #define free_mayday_mask(mask)			free_cpumask_var((mask))
195 #else
196 typedef unsigned long mayday_mask_t;
197 #define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
198 #define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
199 #define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
200 #define alloc_mayday_mask(maskp, gfp)		true
201 #define free_mayday_mask(mask)			do { } while (0)
202 #endif
203 
204 /*
205  * The externally visible workqueue abstraction is an array of
206  * per-CPU workqueues:
207  */
208 struct workqueue_struct {
209 	unsigned int		flags;		/* W: WQ_* flags */
210 	union {
211 		struct pool_workqueue __percpu		*pcpu;
212 		struct pool_workqueue			*single;
213 		unsigned long				v;
214 	} pool_wq;				/* I: pwq's */
215 	struct list_head	list;		/* W: list of all workqueues */
216 
217 	struct mutex		flush_mutex;	/* protects wq flushing */
218 	int			work_color;	/* F: current work color */
219 	int			flush_color;	/* F: current flush color */
220 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
221 	struct wq_flusher	*first_flusher;	/* F: first flusher */
222 	struct list_head	flusher_queue;	/* F: flush waiters */
223 	struct list_head	flusher_overflow; /* F: flush overflow list */
224 
225 	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
226 	struct worker		*rescuer;	/* I: rescue worker */
227 
228 	int			nr_drainers;	/* W: drain in progress */
229 	int			saved_max_active; /* W: saved pwq max_active */
230 #ifdef CONFIG_LOCKDEP
231 	struct lockdep_map	lockdep_map;
232 #endif
233 	char			name[];		/* I: workqueue name */
234 };
235 
236 struct workqueue_struct *system_wq __read_mostly;
237 EXPORT_SYMBOL_GPL(system_wq);
238 struct workqueue_struct *system_highpri_wq __read_mostly;
239 EXPORT_SYMBOL_GPL(system_highpri_wq);
240 struct workqueue_struct *system_long_wq __read_mostly;
241 EXPORT_SYMBOL_GPL(system_long_wq);
242 struct workqueue_struct *system_unbound_wq __read_mostly;
243 EXPORT_SYMBOL_GPL(system_unbound_wq);
244 struct workqueue_struct *system_freezable_wq __read_mostly;
245 EXPORT_SYMBOL_GPL(system_freezable_wq);
246 
247 #define CREATE_TRACE_POINTS
248 #include <trace/events/workqueue.h>
249 
250 #define for_each_std_worker_pool(pool, cpu)				\
251 	for ((pool) = &std_worker_pools(cpu)[0];			\
252 	     (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++)
253 
254 #define for_each_busy_worker(worker, i, pool)				\
255 	hash_for_each(pool->busy_hash, i, worker, hentry)
256 
257 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
258 				unsigned int sw)
259 {
260 	if (cpu < nr_cpu_ids) {
261 		if (sw & 1) {
262 			cpu = cpumask_next(cpu, mask);
263 			if (cpu < nr_cpu_ids)
264 				return cpu;
265 		}
266 		if (sw & 2)
267 			return WORK_CPU_UNBOUND;
268 	}
269 	return WORK_CPU_END;
270 }
271 
272 static inline int __next_pwq_cpu(int cpu, const struct cpumask *mask,
273 				 struct workqueue_struct *wq)
274 {
275 	return __next_wq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
276 }
277 
278 /*
279  * CPU iterators
280  *
281  * An extra cpu number is defined using an invalid cpu number
282  * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
283  * specific CPU.  The following iterators are similar to for_each_*_cpu()
284  * iterators but also considers the unbound CPU.
285  *
286  * for_each_wq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
287  * for_each_online_wq_cpu()	: online CPUs + WORK_CPU_UNBOUND
288  * for_each_pwq_cpu()		: possible CPUs for bound workqueues,
289  *				  WORK_CPU_UNBOUND for unbound workqueues
290  */
291 #define for_each_wq_cpu(cpu)						\
292 	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3);		\
293 	     (cpu) < WORK_CPU_END;					\
294 	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3))
295 
296 #define for_each_online_wq_cpu(cpu)					\
297 	for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3);		\
298 	     (cpu) < WORK_CPU_END;					\
299 	     (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3))
300 
301 #define for_each_pwq_cpu(cpu, wq)					\
302 	for ((cpu) = __next_pwq_cpu(-1, cpu_possible_mask, (wq));	\
303 	     (cpu) < WORK_CPU_END;					\
304 	     (cpu) = __next_pwq_cpu((cpu), cpu_possible_mask, (wq)))
305 
306 #ifdef CONFIG_DEBUG_OBJECTS_WORK
307 
308 static struct debug_obj_descr work_debug_descr;
309 
310 static void *work_debug_hint(void *addr)
311 {
312 	return ((struct work_struct *) addr)->func;
313 }
314 
315 /*
316  * fixup_init is called when:
317  * - an active object is initialized
318  */
319 static int work_fixup_init(void *addr, enum debug_obj_state state)
320 {
321 	struct work_struct *work = addr;
322 
323 	switch (state) {
324 	case ODEBUG_STATE_ACTIVE:
325 		cancel_work_sync(work);
326 		debug_object_init(work, &work_debug_descr);
327 		return 1;
328 	default:
329 		return 0;
330 	}
331 }
332 
333 /*
334  * fixup_activate is called when:
335  * - an active object is activated
336  * - an unknown object is activated (might be a statically initialized object)
337  */
338 static int work_fixup_activate(void *addr, enum debug_obj_state state)
339 {
340 	struct work_struct *work = addr;
341 
342 	switch (state) {
343 
344 	case ODEBUG_STATE_NOTAVAILABLE:
345 		/*
346 		 * This is not really a fixup. The work struct was
347 		 * statically initialized. We just make sure that it
348 		 * is tracked in the object tracker.
349 		 */
350 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
351 			debug_object_init(work, &work_debug_descr);
352 			debug_object_activate(work, &work_debug_descr);
353 			return 0;
354 		}
355 		WARN_ON_ONCE(1);
356 		return 0;
357 
358 	case ODEBUG_STATE_ACTIVE:
359 		WARN_ON(1);
360 
361 	default:
362 		return 0;
363 	}
364 }
365 
366 /*
367  * fixup_free is called when:
368  * - an active object is freed
369  */
370 static int work_fixup_free(void *addr, enum debug_obj_state state)
371 {
372 	struct work_struct *work = addr;
373 
374 	switch (state) {
375 	case ODEBUG_STATE_ACTIVE:
376 		cancel_work_sync(work);
377 		debug_object_free(work, &work_debug_descr);
378 		return 1;
379 	default:
380 		return 0;
381 	}
382 }
383 
384 static struct debug_obj_descr work_debug_descr = {
385 	.name		= "work_struct",
386 	.debug_hint	= work_debug_hint,
387 	.fixup_init	= work_fixup_init,
388 	.fixup_activate	= work_fixup_activate,
389 	.fixup_free	= work_fixup_free,
390 };
391 
392 static inline void debug_work_activate(struct work_struct *work)
393 {
394 	debug_object_activate(work, &work_debug_descr);
395 }
396 
397 static inline void debug_work_deactivate(struct work_struct *work)
398 {
399 	debug_object_deactivate(work, &work_debug_descr);
400 }
401 
402 void __init_work(struct work_struct *work, int onstack)
403 {
404 	if (onstack)
405 		debug_object_init_on_stack(work, &work_debug_descr);
406 	else
407 		debug_object_init(work, &work_debug_descr);
408 }
409 EXPORT_SYMBOL_GPL(__init_work);
410 
411 void destroy_work_on_stack(struct work_struct *work)
412 {
413 	debug_object_free(work, &work_debug_descr);
414 }
415 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
416 
417 #else
418 static inline void debug_work_activate(struct work_struct *work) { }
419 static inline void debug_work_deactivate(struct work_struct *work) { }
420 #endif
421 
422 /* Serializes the accesses to the list of workqueues. */
423 static DEFINE_SPINLOCK(workqueue_lock);
424 static LIST_HEAD(workqueues);
425 static bool workqueue_freezing;		/* W: have wqs started freezing? */
426 
427 /*
428  * The CPU and unbound standard worker pools.  The unbound ones have
429  * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set.
430  */
431 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
432 				     cpu_std_worker_pools);
433 static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS];
434 
435 /* idr of all pools */
436 static DEFINE_MUTEX(worker_pool_idr_mutex);
437 static DEFINE_IDR(worker_pool_idr);
438 
439 static int worker_thread(void *__worker);
440 
441 static struct worker_pool *std_worker_pools(int cpu)
442 {
443 	if (cpu != WORK_CPU_UNBOUND)
444 		return per_cpu(cpu_std_worker_pools, cpu);
445 	else
446 		return unbound_std_worker_pools;
447 }
448 
449 static int std_worker_pool_pri(struct worker_pool *pool)
450 {
451 	return pool - std_worker_pools(pool->cpu);
452 }
453 
454 /* allocate ID and assign it to @pool */
455 static int worker_pool_assign_id(struct worker_pool *pool)
456 {
457 	int ret;
458 
459 	mutex_lock(&worker_pool_idr_mutex);
460 	idr_pre_get(&worker_pool_idr, GFP_KERNEL);
461 	ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
462 	mutex_unlock(&worker_pool_idr_mutex);
463 
464 	return ret;
465 }
466 
467 /*
468  * Lookup worker_pool by id.  The idr currently is built during boot and
469  * never modified.  Don't worry about locking for now.
470  */
471 static struct worker_pool *worker_pool_by_id(int pool_id)
472 {
473 	return idr_find(&worker_pool_idr, pool_id);
474 }
475 
476 static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
477 {
478 	struct worker_pool *pools = std_worker_pools(cpu);
479 
480 	return &pools[highpri];
481 }
482 
483 static struct pool_workqueue *get_pwq(unsigned int cpu,
484 				      struct workqueue_struct *wq)
485 {
486 	if (!(wq->flags & WQ_UNBOUND)) {
487 		if (likely(cpu < nr_cpu_ids))
488 			return per_cpu_ptr(wq->pool_wq.pcpu, cpu);
489 	} else if (likely(cpu == WORK_CPU_UNBOUND))
490 		return wq->pool_wq.single;
491 	return NULL;
492 }
493 
494 static unsigned int work_color_to_flags(int color)
495 {
496 	return color << WORK_STRUCT_COLOR_SHIFT;
497 }
498 
499 static int get_work_color(struct work_struct *work)
500 {
501 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
502 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
503 }
504 
505 static int work_next_color(int color)
506 {
507 	return (color + 1) % WORK_NR_COLORS;
508 }
509 
510 /*
511  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
512  * contain the pointer to the queued pwq.  Once execution starts, the flag
513  * is cleared and the high bits contain OFFQ flags and pool ID.
514  *
515  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
516  * and clear_work_data() can be used to set the pwq, pool or clear
517  * work->data.  These functions should only be called while the work is
518  * owned - ie. while the PENDING bit is set.
519  *
520  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
521  * corresponding to a work.  Pool is available once the work has been
522  * queued anywhere after initialization until it is sync canceled.  pwq is
523  * available only while the work item is queued.
524  *
525  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
526  * canceled.  While being canceled, a work item may have its PENDING set
527  * but stay off timer and worklist for arbitrarily long and nobody should
528  * try to steal the PENDING bit.
529  */
530 static inline void set_work_data(struct work_struct *work, unsigned long data,
531 				 unsigned long flags)
532 {
533 	BUG_ON(!work_pending(work));
534 	atomic_long_set(&work->data, data | flags | work_static(work));
535 }
536 
537 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
538 			 unsigned long extra_flags)
539 {
540 	set_work_data(work, (unsigned long)pwq,
541 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
542 }
543 
544 static void set_work_pool_and_keep_pending(struct work_struct *work,
545 					   int pool_id)
546 {
547 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
548 		      WORK_STRUCT_PENDING);
549 }
550 
551 static void set_work_pool_and_clear_pending(struct work_struct *work,
552 					    int pool_id)
553 {
554 	/*
555 	 * The following wmb is paired with the implied mb in
556 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
557 	 * here are visible to and precede any updates by the next PENDING
558 	 * owner.
559 	 */
560 	smp_wmb();
561 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
562 }
563 
564 static void clear_work_data(struct work_struct *work)
565 {
566 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
567 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
568 }
569 
570 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
571 {
572 	unsigned long data = atomic_long_read(&work->data);
573 
574 	if (data & WORK_STRUCT_PWQ)
575 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
576 	else
577 		return NULL;
578 }
579 
580 /**
581  * get_work_pool - return the worker_pool a given work was associated with
582  * @work: the work item of interest
583  *
584  * Return the worker_pool @work was last associated with.  %NULL if none.
585  */
586 static struct worker_pool *get_work_pool(struct work_struct *work)
587 {
588 	unsigned long data = atomic_long_read(&work->data);
589 	struct worker_pool *pool;
590 	int pool_id;
591 
592 	if (data & WORK_STRUCT_PWQ)
593 		return ((struct pool_workqueue *)
594 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
595 
596 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
597 	if (pool_id == WORK_OFFQ_POOL_NONE)
598 		return NULL;
599 
600 	pool = worker_pool_by_id(pool_id);
601 	WARN_ON_ONCE(!pool);
602 	return pool;
603 }
604 
605 /**
606  * get_work_pool_id - return the worker pool ID a given work is associated with
607  * @work: the work item of interest
608  *
609  * Return the worker_pool ID @work was last associated with.
610  * %WORK_OFFQ_POOL_NONE if none.
611  */
612 static int get_work_pool_id(struct work_struct *work)
613 {
614 	unsigned long data = atomic_long_read(&work->data);
615 
616 	if (data & WORK_STRUCT_PWQ)
617 		return ((struct pool_workqueue *)
618 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
619 
620 	return data >> WORK_OFFQ_POOL_SHIFT;
621 }
622 
623 static void mark_work_canceling(struct work_struct *work)
624 {
625 	unsigned long pool_id = get_work_pool_id(work);
626 
627 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
628 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
629 }
630 
631 static bool work_is_canceling(struct work_struct *work)
632 {
633 	unsigned long data = atomic_long_read(&work->data);
634 
635 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
636 }
637 
638 /*
639  * Policy functions.  These define the policies on how the global worker
640  * pools are managed.  Unless noted otherwise, these functions assume that
641  * they're being called with pool->lock held.
642  */
643 
644 static bool __need_more_worker(struct worker_pool *pool)
645 {
646 	return !atomic_read(&pool->nr_running);
647 }
648 
649 /*
650  * Need to wake up a worker?  Called from anything but currently
651  * running workers.
652  *
653  * Note that, because unbound workers never contribute to nr_running, this
654  * function will always return %true for unbound pools as long as the
655  * worklist isn't empty.
656  */
657 static bool need_more_worker(struct worker_pool *pool)
658 {
659 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
660 }
661 
662 /* Can I start working?  Called from busy but !running workers. */
663 static bool may_start_working(struct worker_pool *pool)
664 {
665 	return pool->nr_idle;
666 }
667 
668 /* Do I need to keep working?  Called from currently running workers. */
669 static bool keep_working(struct worker_pool *pool)
670 {
671 	return !list_empty(&pool->worklist) &&
672 		atomic_read(&pool->nr_running) <= 1;
673 }
674 
675 /* Do we need a new worker?  Called from manager. */
676 static bool need_to_create_worker(struct worker_pool *pool)
677 {
678 	return need_more_worker(pool) && !may_start_working(pool);
679 }
680 
681 /* Do I need to be the manager? */
682 static bool need_to_manage_workers(struct worker_pool *pool)
683 {
684 	return need_to_create_worker(pool) ||
685 		(pool->flags & POOL_MANAGE_WORKERS);
686 }
687 
688 /* Do we have too many workers and should some go away? */
689 static bool too_many_workers(struct worker_pool *pool)
690 {
691 	bool managing = pool->flags & POOL_MANAGING_WORKERS;
692 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
693 	int nr_busy = pool->nr_workers - nr_idle;
694 
695 	/*
696 	 * nr_idle and idle_list may disagree if idle rebinding is in
697 	 * progress.  Never return %true if idle_list is empty.
698 	 */
699 	if (list_empty(&pool->idle_list))
700 		return false;
701 
702 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
703 }
704 
705 /*
706  * Wake up functions.
707  */
708 
709 /* Return the first worker.  Safe with preemption disabled */
710 static struct worker *first_worker(struct worker_pool *pool)
711 {
712 	if (unlikely(list_empty(&pool->idle_list)))
713 		return NULL;
714 
715 	return list_first_entry(&pool->idle_list, struct worker, entry);
716 }
717 
718 /**
719  * wake_up_worker - wake up an idle worker
720  * @pool: worker pool to wake worker from
721  *
722  * Wake up the first idle worker of @pool.
723  *
724  * CONTEXT:
725  * spin_lock_irq(pool->lock).
726  */
727 static void wake_up_worker(struct worker_pool *pool)
728 {
729 	struct worker *worker = first_worker(pool);
730 
731 	if (likely(worker))
732 		wake_up_process(worker->task);
733 }
734 
735 /**
736  * wq_worker_waking_up - a worker is waking up
737  * @task: task waking up
738  * @cpu: CPU @task is waking up to
739  *
740  * This function is called during try_to_wake_up() when a worker is
741  * being awoken.
742  *
743  * CONTEXT:
744  * spin_lock_irq(rq->lock)
745  */
746 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
747 {
748 	struct worker *worker = kthread_data(task);
749 
750 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
751 		WARN_ON_ONCE(worker->pool->cpu != cpu);
752 		atomic_inc(&worker->pool->nr_running);
753 	}
754 }
755 
756 /**
757  * wq_worker_sleeping - a worker is going to sleep
758  * @task: task going to sleep
759  * @cpu: CPU in question, must be the current CPU number
760  *
761  * This function is called during schedule() when a busy worker is
762  * going to sleep.  Worker on the same cpu can be woken up by
763  * returning pointer to its task.
764  *
765  * CONTEXT:
766  * spin_lock_irq(rq->lock)
767  *
768  * RETURNS:
769  * Worker task on @cpu to wake up, %NULL if none.
770  */
771 struct task_struct *wq_worker_sleeping(struct task_struct *task,
772 				       unsigned int cpu)
773 {
774 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
775 	struct worker_pool *pool;
776 
777 	/*
778 	 * Rescuers, which may not have all the fields set up like normal
779 	 * workers, also reach here, let's not access anything before
780 	 * checking NOT_RUNNING.
781 	 */
782 	if (worker->flags & WORKER_NOT_RUNNING)
783 		return NULL;
784 
785 	pool = worker->pool;
786 
787 	/* this can only happen on the local cpu */
788 	BUG_ON(cpu != raw_smp_processor_id());
789 
790 	/*
791 	 * The counterpart of the following dec_and_test, implied mb,
792 	 * worklist not empty test sequence is in insert_work().
793 	 * Please read comment there.
794 	 *
795 	 * NOT_RUNNING is clear.  This means that we're bound to and
796 	 * running on the local cpu w/ rq lock held and preemption
797 	 * disabled, which in turn means that none else could be
798 	 * manipulating idle_list, so dereferencing idle_list without pool
799 	 * lock is safe.
800 	 */
801 	if (atomic_dec_and_test(&pool->nr_running) &&
802 	    !list_empty(&pool->worklist))
803 		to_wakeup = first_worker(pool);
804 	return to_wakeup ? to_wakeup->task : NULL;
805 }
806 
807 /**
808  * worker_set_flags - set worker flags and adjust nr_running accordingly
809  * @worker: self
810  * @flags: flags to set
811  * @wakeup: wakeup an idle worker if necessary
812  *
813  * Set @flags in @worker->flags and adjust nr_running accordingly.  If
814  * nr_running becomes zero and @wakeup is %true, an idle worker is
815  * woken up.
816  *
817  * CONTEXT:
818  * spin_lock_irq(pool->lock)
819  */
820 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
821 				    bool wakeup)
822 {
823 	struct worker_pool *pool = worker->pool;
824 
825 	WARN_ON_ONCE(worker->task != current);
826 
827 	/*
828 	 * If transitioning into NOT_RUNNING, adjust nr_running and
829 	 * wake up an idle worker as necessary if requested by
830 	 * @wakeup.
831 	 */
832 	if ((flags & WORKER_NOT_RUNNING) &&
833 	    !(worker->flags & WORKER_NOT_RUNNING)) {
834 		if (wakeup) {
835 			if (atomic_dec_and_test(&pool->nr_running) &&
836 			    !list_empty(&pool->worklist))
837 				wake_up_worker(pool);
838 		} else
839 			atomic_dec(&pool->nr_running);
840 	}
841 
842 	worker->flags |= flags;
843 }
844 
845 /**
846  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
847  * @worker: self
848  * @flags: flags to clear
849  *
850  * Clear @flags in @worker->flags and adjust nr_running accordingly.
851  *
852  * CONTEXT:
853  * spin_lock_irq(pool->lock)
854  */
855 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
856 {
857 	struct worker_pool *pool = worker->pool;
858 	unsigned int oflags = worker->flags;
859 
860 	WARN_ON_ONCE(worker->task != current);
861 
862 	worker->flags &= ~flags;
863 
864 	/*
865 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
866 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
867 	 * of multiple flags, not a single flag.
868 	 */
869 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
870 		if (!(worker->flags & WORKER_NOT_RUNNING))
871 			atomic_inc(&pool->nr_running);
872 }
873 
874 /**
875  * find_worker_executing_work - find worker which is executing a work
876  * @pool: pool of interest
877  * @work: work to find worker for
878  *
879  * Find a worker which is executing @work on @pool by searching
880  * @pool->busy_hash which is keyed by the address of @work.  For a worker
881  * to match, its current execution should match the address of @work and
882  * its work function.  This is to avoid unwanted dependency between
883  * unrelated work executions through a work item being recycled while still
884  * being executed.
885  *
886  * This is a bit tricky.  A work item may be freed once its execution
887  * starts and nothing prevents the freed area from being recycled for
888  * another work item.  If the same work item address ends up being reused
889  * before the original execution finishes, workqueue will identify the
890  * recycled work item as currently executing and make it wait until the
891  * current execution finishes, introducing an unwanted dependency.
892  *
893  * This function checks the work item address, work function and workqueue
894  * to avoid false positives.  Note that this isn't complete as one may
895  * construct a work function which can introduce dependency onto itself
896  * through a recycled work item.  Well, if somebody wants to shoot oneself
897  * in the foot that badly, there's only so much we can do, and if such
898  * deadlock actually occurs, it should be easy to locate the culprit work
899  * function.
900  *
901  * CONTEXT:
902  * spin_lock_irq(pool->lock).
903  *
904  * RETURNS:
905  * Pointer to worker which is executing @work if found, NULL
906  * otherwise.
907  */
908 static struct worker *find_worker_executing_work(struct worker_pool *pool,
909 						 struct work_struct *work)
910 {
911 	struct worker *worker;
912 
913 	hash_for_each_possible(pool->busy_hash, worker, hentry,
914 			       (unsigned long)work)
915 		if (worker->current_work == work &&
916 		    worker->current_func == work->func)
917 			return worker;
918 
919 	return NULL;
920 }
921 
922 /**
923  * move_linked_works - move linked works to a list
924  * @work: start of series of works to be scheduled
925  * @head: target list to append @work to
926  * @nextp: out paramter for nested worklist walking
927  *
928  * Schedule linked works starting from @work to @head.  Work series to
929  * be scheduled starts at @work and includes any consecutive work with
930  * WORK_STRUCT_LINKED set in its predecessor.
931  *
932  * If @nextp is not NULL, it's updated to point to the next work of
933  * the last scheduled work.  This allows move_linked_works() to be
934  * nested inside outer list_for_each_entry_safe().
935  *
936  * CONTEXT:
937  * spin_lock_irq(pool->lock).
938  */
939 static void move_linked_works(struct work_struct *work, struct list_head *head,
940 			      struct work_struct **nextp)
941 {
942 	struct work_struct *n;
943 
944 	/*
945 	 * Linked worklist will always end before the end of the list,
946 	 * use NULL for list head.
947 	 */
948 	list_for_each_entry_safe_from(work, n, NULL, entry) {
949 		list_move_tail(&work->entry, head);
950 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
951 			break;
952 	}
953 
954 	/*
955 	 * If we're already inside safe list traversal and have moved
956 	 * multiple works to the scheduled queue, the next position
957 	 * needs to be updated.
958 	 */
959 	if (nextp)
960 		*nextp = n;
961 }
962 
963 static void pwq_activate_delayed_work(struct work_struct *work)
964 {
965 	struct pool_workqueue *pwq = get_work_pwq(work);
966 
967 	trace_workqueue_activate_work(work);
968 	move_linked_works(work, &pwq->pool->worklist, NULL);
969 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
970 	pwq->nr_active++;
971 }
972 
973 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
974 {
975 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
976 						    struct work_struct, entry);
977 
978 	pwq_activate_delayed_work(work);
979 }
980 
981 /**
982  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
983  * @pwq: pwq of interest
984  * @color: color of work which left the queue
985  *
986  * A work either has completed or is removed from pending queue,
987  * decrement nr_in_flight of its pwq and handle workqueue flushing.
988  *
989  * CONTEXT:
990  * spin_lock_irq(pool->lock).
991  */
992 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
993 {
994 	/* ignore uncolored works */
995 	if (color == WORK_NO_COLOR)
996 		return;
997 
998 	pwq->nr_in_flight[color]--;
999 
1000 	pwq->nr_active--;
1001 	if (!list_empty(&pwq->delayed_works)) {
1002 		/* one down, submit a delayed one */
1003 		if (pwq->nr_active < pwq->max_active)
1004 			pwq_activate_first_delayed(pwq);
1005 	}
1006 
1007 	/* is flush in progress and are we at the flushing tip? */
1008 	if (likely(pwq->flush_color != color))
1009 		return;
1010 
1011 	/* are there still in-flight works? */
1012 	if (pwq->nr_in_flight[color])
1013 		return;
1014 
1015 	/* this pwq is done, clear flush_color */
1016 	pwq->flush_color = -1;
1017 
1018 	/*
1019 	 * If this was the last pwq, wake up the first flusher.  It
1020 	 * will handle the rest.
1021 	 */
1022 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1023 		complete(&pwq->wq->first_flusher->done);
1024 }
1025 
1026 /**
1027  * try_to_grab_pending - steal work item from worklist and disable irq
1028  * @work: work item to steal
1029  * @is_dwork: @work is a delayed_work
1030  * @flags: place to store irq state
1031  *
1032  * Try to grab PENDING bit of @work.  This function can handle @work in any
1033  * stable state - idle, on timer or on worklist.  Return values are
1034  *
1035  *  1		if @work was pending and we successfully stole PENDING
1036  *  0		if @work was idle and we claimed PENDING
1037  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1038  *  -ENOENT	if someone else is canceling @work, this state may persist
1039  *		for arbitrarily long
1040  *
1041  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1042  * interrupted while holding PENDING and @work off queue, irq must be
1043  * disabled on entry.  This, combined with delayed_work->timer being
1044  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1045  *
1046  * On successful return, >= 0, irq is disabled and the caller is
1047  * responsible for releasing it using local_irq_restore(*@flags).
1048  *
1049  * This function is safe to call from any context including IRQ handler.
1050  */
1051 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1052 			       unsigned long *flags)
1053 {
1054 	struct worker_pool *pool;
1055 	struct pool_workqueue *pwq;
1056 
1057 	local_irq_save(*flags);
1058 
1059 	/* try to steal the timer if it exists */
1060 	if (is_dwork) {
1061 		struct delayed_work *dwork = to_delayed_work(work);
1062 
1063 		/*
1064 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1065 		 * guaranteed that the timer is not queued anywhere and not
1066 		 * running on the local CPU.
1067 		 */
1068 		if (likely(del_timer(&dwork->timer)))
1069 			return 1;
1070 	}
1071 
1072 	/* try to claim PENDING the normal way */
1073 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1074 		return 0;
1075 
1076 	/*
1077 	 * The queueing is in progress, or it is already queued. Try to
1078 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1079 	 */
1080 	pool = get_work_pool(work);
1081 	if (!pool)
1082 		goto fail;
1083 
1084 	spin_lock(&pool->lock);
1085 	/*
1086 	 * work->data is guaranteed to point to pwq only while the work
1087 	 * item is queued on pwq->wq, and both updating work->data to point
1088 	 * to pwq on queueing and to pool on dequeueing are done under
1089 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1090 	 * points to pwq which is associated with a locked pool, the work
1091 	 * item is currently queued on that pool.
1092 	 */
1093 	pwq = get_work_pwq(work);
1094 	if (pwq && pwq->pool == pool) {
1095 		debug_work_deactivate(work);
1096 
1097 		/*
1098 		 * A delayed work item cannot be grabbed directly because
1099 		 * it might have linked NO_COLOR work items which, if left
1100 		 * on the delayed_list, will confuse pwq->nr_active
1101 		 * management later on and cause stall.  Make sure the work
1102 		 * item is activated before grabbing.
1103 		 */
1104 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1105 			pwq_activate_delayed_work(work);
1106 
1107 		list_del_init(&work->entry);
1108 		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1109 
1110 		/* work->data points to pwq iff queued, point to pool */
1111 		set_work_pool_and_keep_pending(work, pool->id);
1112 
1113 		spin_unlock(&pool->lock);
1114 		return 1;
1115 	}
1116 	spin_unlock(&pool->lock);
1117 fail:
1118 	local_irq_restore(*flags);
1119 	if (work_is_canceling(work))
1120 		return -ENOENT;
1121 	cpu_relax();
1122 	return -EAGAIN;
1123 }
1124 
1125 /**
1126  * insert_work - insert a work into a pool
1127  * @pwq: pwq @work belongs to
1128  * @work: work to insert
1129  * @head: insertion point
1130  * @extra_flags: extra WORK_STRUCT_* flags to set
1131  *
1132  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1133  * work_struct flags.
1134  *
1135  * CONTEXT:
1136  * spin_lock_irq(pool->lock).
1137  */
1138 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1139 			struct list_head *head, unsigned int extra_flags)
1140 {
1141 	struct worker_pool *pool = pwq->pool;
1142 
1143 	/* we own @work, set data and link */
1144 	set_work_pwq(work, pwq, extra_flags);
1145 	list_add_tail(&work->entry, head);
1146 
1147 	/*
1148 	 * Ensure either worker_sched_deactivated() sees the above
1149 	 * list_add_tail() or we see zero nr_running to avoid workers
1150 	 * lying around lazily while there are works to be processed.
1151 	 */
1152 	smp_mb();
1153 
1154 	if (__need_more_worker(pool))
1155 		wake_up_worker(pool);
1156 }
1157 
1158 /*
1159  * Test whether @work is being queued from another work executing on the
1160  * same workqueue.
1161  */
1162 static bool is_chained_work(struct workqueue_struct *wq)
1163 {
1164 	struct worker *worker;
1165 
1166 	worker = current_wq_worker();
1167 	/*
1168 	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1169 	 * I'm @worker, it's safe to dereference it without locking.
1170 	 */
1171 	return worker && worker->current_pwq->wq == wq;
1172 }
1173 
1174 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1175 			 struct work_struct *work)
1176 {
1177 	struct pool_workqueue *pwq;
1178 	struct list_head *worklist;
1179 	unsigned int work_flags;
1180 	unsigned int req_cpu = cpu;
1181 
1182 	/*
1183 	 * While a work item is PENDING && off queue, a task trying to
1184 	 * steal the PENDING will busy-loop waiting for it to either get
1185 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1186 	 * happen with IRQ disabled.
1187 	 */
1188 	WARN_ON_ONCE(!irqs_disabled());
1189 
1190 	debug_work_activate(work);
1191 
1192 	/* if dying, only works from the same workqueue are allowed */
1193 	if (unlikely(wq->flags & WQ_DRAINING) &&
1194 	    WARN_ON_ONCE(!is_chained_work(wq)))
1195 		return;
1196 
1197 	/* determine the pwq to use */
1198 	if (!(wq->flags & WQ_UNBOUND)) {
1199 		struct worker_pool *last_pool;
1200 
1201 		if (cpu == WORK_CPU_UNBOUND)
1202 			cpu = raw_smp_processor_id();
1203 
1204 		/*
1205 		 * It's multi cpu.  If @work was previously on a different
1206 		 * cpu, it might still be running there, in which case the
1207 		 * work needs to be queued on that cpu to guarantee
1208 		 * non-reentrancy.
1209 		 */
1210 		pwq = get_pwq(cpu, wq);
1211 		last_pool = get_work_pool(work);
1212 
1213 		if (last_pool && last_pool != pwq->pool) {
1214 			struct worker *worker;
1215 
1216 			spin_lock(&last_pool->lock);
1217 
1218 			worker = find_worker_executing_work(last_pool, work);
1219 
1220 			if (worker && worker->current_pwq->wq == wq) {
1221 				pwq = get_pwq(last_pool->cpu, wq);
1222 			} else {
1223 				/* meh... not running there, queue here */
1224 				spin_unlock(&last_pool->lock);
1225 				spin_lock(&pwq->pool->lock);
1226 			}
1227 		} else {
1228 			spin_lock(&pwq->pool->lock);
1229 		}
1230 	} else {
1231 		pwq = get_pwq(WORK_CPU_UNBOUND, wq);
1232 		spin_lock(&pwq->pool->lock);
1233 	}
1234 
1235 	/* pwq determined, queue */
1236 	trace_workqueue_queue_work(req_cpu, pwq, work);
1237 
1238 	if (WARN_ON(!list_empty(&work->entry))) {
1239 		spin_unlock(&pwq->pool->lock);
1240 		return;
1241 	}
1242 
1243 	pwq->nr_in_flight[pwq->work_color]++;
1244 	work_flags = work_color_to_flags(pwq->work_color);
1245 
1246 	if (likely(pwq->nr_active < pwq->max_active)) {
1247 		trace_workqueue_activate_work(work);
1248 		pwq->nr_active++;
1249 		worklist = &pwq->pool->worklist;
1250 	} else {
1251 		work_flags |= WORK_STRUCT_DELAYED;
1252 		worklist = &pwq->delayed_works;
1253 	}
1254 
1255 	insert_work(pwq, work, worklist, work_flags);
1256 
1257 	spin_unlock(&pwq->pool->lock);
1258 }
1259 
1260 /**
1261  * queue_work_on - queue work on specific cpu
1262  * @cpu: CPU number to execute work on
1263  * @wq: workqueue to use
1264  * @work: work to queue
1265  *
1266  * Returns %false if @work was already on a queue, %true otherwise.
1267  *
1268  * We queue the work to a specific CPU, the caller must ensure it
1269  * can't go away.
1270  */
1271 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1272 		   struct work_struct *work)
1273 {
1274 	bool ret = false;
1275 	unsigned long flags;
1276 
1277 	local_irq_save(flags);
1278 
1279 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1280 		__queue_work(cpu, wq, work);
1281 		ret = true;
1282 	}
1283 
1284 	local_irq_restore(flags);
1285 	return ret;
1286 }
1287 EXPORT_SYMBOL_GPL(queue_work_on);
1288 
1289 /**
1290  * queue_work - queue work on a workqueue
1291  * @wq: workqueue to use
1292  * @work: work to queue
1293  *
1294  * Returns %false if @work was already on a queue, %true otherwise.
1295  *
1296  * We queue the work to the CPU on which it was submitted, but if the CPU dies
1297  * it can be processed by another CPU.
1298  */
1299 bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1300 {
1301 	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1302 }
1303 EXPORT_SYMBOL_GPL(queue_work);
1304 
1305 void delayed_work_timer_fn(unsigned long __data)
1306 {
1307 	struct delayed_work *dwork = (struct delayed_work *)__data;
1308 
1309 	/* should have been called from irqsafe timer with irq already off */
1310 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1311 }
1312 EXPORT_SYMBOL(delayed_work_timer_fn);
1313 
1314 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1315 				struct delayed_work *dwork, unsigned long delay)
1316 {
1317 	struct timer_list *timer = &dwork->timer;
1318 	struct work_struct *work = &dwork->work;
1319 
1320 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1321 		     timer->data != (unsigned long)dwork);
1322 	WARN_ON_ONCE(timer_pending(timer));
1323 	WARN_ON_ONCE(!list_empty(&work->entry));
1324 
1325 	/*
1326 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1327 	 * both optimization and correctness.  The earliest @timer can
1328 	 * expire is on the closest next tick and delayed_work users depend
1329 	 * on that there's no such delay when @delay is 0.
1330 	 */
1331 	if (!delay) {
1332 		__queue_work(cpu, wq, &dwork->work);
1333 		return;
1334 	}
1335 
1336 	timer_stats_timer_set_start_info(&dwork->timer);
1337 
1338 	dwork->wq = wq;
1339 	dwork->cpu = cpu;
1340 	timer->expires = jiffies + delay;
1341 
1342 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1343 		add_timer_on(timer, cpu);
1344 	else
1345 		add_timer(timer);
1346 }
1347 
1348 /**
1349  * queue_delayed_work_on - queue work on specific CPU after delay
1350  * @cpu: CPU number to execute work on
1351  * @wq: workqueue to use
1352  * @dwork: work to queue
1353  * @delay: number of jiffies to wait before queueing
1354  *
1355  * Returns %false if @work was already on a queue, %true otherwise.  If
1356  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1357  * execution.
1358  */
1359 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1360 			   struct delayed_work *dwork, unsigned long delay)
1361 {
1362 	struct work_struct *work = &dwork->work;
1363 	bool ret = false;
1364 	unsigned long flags;
1365 
1366 	/* read the comment in __queue_work() */
1367 	local_irq_save(flags);
1368 
1369 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1370 		__queue_delayed_work(cpu, wq, dwork, delay);
1371 		ret = true;
1372 	}
1373 
1374 	local_irq_restore(flags);
1375 	return ret;
1376 }
1377 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1378 
1379 /**
1380  * queue_delayed_work - queue work on a workqueue after delay
1381  * @wq: workqueue to use
1382  * @dwork: delayable work to queue
1383  * @delay: number of jiffies to wait before queueing
1384  *
1385  * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1386  */
1387 bool queue_delayed_work(struct workqueue_struct *wq,
1388 			struct delayed_work *dwork, unsigned long delay)
1389 {
1390 	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1391 }
1392 EXPORT_SYMBOL_GPL(queue_delayed_work);
1393 
1394 /**
1395  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1396  * @cpu: CPU number to execute work on
1397  * @wq: workqueue to use
1398  * @dwork: work to queue
1399  * @delay: number of jiffies to wait before queueing
1400  *
1401  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1402  * modify @dwork's timer so that it expires after @delay.  If @delay is
1403  * zero, @work is guaranteed to be scheduled immediately regardless of its
1404  * current state.
1405  *
1406  * Returns %false if @dwork was idle and queued, %true if @dwork was
1407  * pending and its timer was modified.
1408  *
1409  * This function is safe to call from any context including IRQ handler.
1410  * See try_to_grab_pending() for details.
1411  */
1412 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1413 			 struct delayed_work *dwork, unsigned long delay)
1414 {
1415 	unsigned long flags;
1416 	int ret;
1417 
1418 	do {
1419 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1420 	} while (unlikely(ret == -EAGAIN));
1421 
1422 	if (likely(ret >= 0)) {
1423 		__queue_delayed_work(cpu, wq, dwork, delay);
1424 		local_irq_restore(flags);
1425 	}
1426 
1427 	/* -ENOENT from try_to_grab_pending() becomes %true */
1428 	return ret;
1429 }
1430 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1431 
1432 /**
1433  * mod_delayed_work - modify delay of or queue a delayed work
1434  * @wq: workqueue to use
1435  * @dwork: work to queue
1436  * @delay: number of jiffies to wait before queueing
1437  *
1438  * mod_delayed_work_on() on local CPU.
1439  */
1440 bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1441 		      unsigned long delay)
1442 {
1443 	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1444 }
1445 EXPORT_SYMBOL_GPL(mod_delayed_work);
1446 
1447 /**
1448  * worker_enter_idle - enter idle state
1449  * @worker: worker which is entering idle state
1450  *
1451  * @worker is entering idle state.  Update stats and idle timer if
1452  * necessary.
1453  *
1454  * LOCKING:
1455  * spin_lock_irq(pool->lock).
1456  */
1457 static void worker_enter_idle(struct worker *worker)
1458 {
1459 	struct worker_pool *pool = worker->pool;
1460 
1461 	BUG_ON(worker->flags & WORKER_IDLE);
1462 	BUG_ON(!list_empty(&worker->entry) &&
1463 	       (worker->hentry.next || worker->hentry.pprev));
1464 
1465 	/* can't use worker_set_flags(), also called from start_worker() */
1466 	worker->flags |= WORKER_IDLE;
1467 	pool->nr_idle++;
1468 	worker->last_active = jiffies;
1469 
1470 	/* idle_list is LIFO */
1471 	list_add(&worker->entry, &pool->idle_list);
1472 
1473 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1474 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1475 
1476 	/*
1477 	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1478 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1479 	 * nr_running, the warning may trigger spuriously.  Check iff
1480 	 * unbind is not in progress.
1481 	 */
1482 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1483 		     pool->nr_workers == pool->nr_idle &&
1484 		     atomic_read(&pool->nr_running));
1485 }
1486 
1487 /**
1488  * worker_leave_idle - leave idle state
1489  * @worker: worker which is leaving idle state
1490  *
1491  * @worker is leaving idle state.  Update stats.
1492  *
1493  * LOCKING:
1494  * spin_lock_irq(pool->lock).
1495  */
1496 static void worker_leave_idle(struct worker *worker)
1497 {
1498 	struct worker_pool *pool = worker->pool;
1499 
1500 	BUG_ON(!(worker->flags & WORKER_IDLE));
1501 	worker_clr_flags(worker, WORKER_IDLE);
1502 	pool->nr_idle--;
1503 	list_del_init(&worker->entry);
1504 }
1505 
1506 /**
1507  * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock pool
1508  * @worker: self
1509  *
1510  * Works which are scheduled while the cpu is online must at least be
1511  * scheduled to a worker which is bound to the cpu so that if they are
1512  * flushed from cpu callbacks while cpu is going down, they are
1513  * guaranteed to execute on the cpu.
1514  *
1515  * This function is to be used by rogue workers and rescuers to bind
1516  * themselves to the target cpu and may race with cpu going down or
1517  * coming online.  kthread_bind() can't be used because it may put the
1518  * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1519  * verbatim as it's best effort and blocking and pool may be
1520  * [dis]associated in the meantime.
1521  *
1522  * This function tries set_cpus_allowed() and locks pool and verifies the
1523  * binding against %POOL_DISASSOCIATED which is set during
1524  * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1525  * enters idle state or fetches works without dropping lock, it can
1526  * guarantee the scheduling requirement described in the first paragraph.
1527  *
1528  * CONTEXT:
1529  * Might sleep.  Called without any lock but returns with pool->lock
1530  * held.
1531  *
1532  * RETURNS:
1533  * %true if the associated pool is online (@worker is successfully
1534  * bound), %false if offline.
1535  */
1536 static bool worker_maybe_bind_and_lock(struct worker *worker)
1537 __acquires(&pool->lock)
1538 {
1539 	struct worker_pool *pool = worker->pool;
1540 	struct task_struct *task = worker->task;
1541 
1542 	while (true) {
1543 		/*
1544 		 * The following call may fail, succeed or succeed
1545 		 * without actually migrating the task to the cpu if
1546 		 * it races with cpu hotunplug operation.  Verify
1547 		 * against POOL_DISASSOCIATED.
1548 		 */
1549 		if (!(pool->flags & POOL_DISASSOCIATED))
1550 			set_cpus_allowed_ptr(task, get_cpu_mask(pool->cpu));
1551 
1552 		spin_lock_irq(&pool->lock);
1553 		if (pool->flags & POOL_DISASSOCIATED)
1554 			return false;
1555 		if (task_cpu(task) == pool->cpu &&
1556 		    cpumask_equal(&current->cpus_allowed,
1557 				  get_cpu_mask(pool->cpu)))
1558 			return true;
1559 		spin_unlock_irq(&pool->lock);
1560 
1561 		/*
1562 		 * We've raced with CPU hot[un]plug.  Give it a breather
1563 		 * and retry migration.  cond_resched() is required here;
1564 		 * otherwise, we might deadlock against cpu_stop trying to
1565 		 * bring down the CPU on non-preemptive kernel.
1566 		 */
1567 		cpu_relax();
1568 		cond_resched();
1569 	}
1570 }
1571 
1572 /*
1573  * Rebind an idle @worker to its CPU.  worker_thread() will test
1574  * list_empty(@worker->entry) before leaving idle and call this function.
1575  */
1576 static void idle_worker_rebind(struct worker *worker)
1577 {
1578 	/* CPU may go down again inbetween, clear UNBOUND only on success */
1579 	if (worker_maybe_bind_and_lock(worker))
1580 		worker_clr_flags(worker, WORKER_UNBOUND);
1581 
1582 	/* rebind complete, become available again */
1583 	list_add(&worker->entry, &worker->pool->idle_list);
1584 	spin_unlock_irq(&worker->pool->lock);
1585 }
1586 
1587 /*
1588  * Function for @worker->rebind.work used to rebind unbound busy workers to
1589  * the associated cpu which is coming back online.  This is scheduled by
1590  * cpu up but can race with other cpu hotplug operations and may be
1591  * executed twice without intervening cpu down.
1592  */
1593 static void busy_worker_rebind_fn(struct work_struct *work)
1594 {
1595 	struct worker *worker = container_of(work, struct worker, rebind_work);
1596 
1597 	if (worker_maybe_bind_and_lock(worker))
1598 		worker_clr_flags(worker, WORKER_UNBOUND);
1599 
1600 	spin_unlock_irq(&worker->pool->lock);
1601 }
1602 
1603 /**
1604  * rebind_workers - rebind all workers of a pool to the associated CPU
1605  * @pool: pool of interest
1606  *
1607  * @pool->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
1608  * is different for idle and busy ones.
1609  *
1610  * Idle ones will be removed from the idle_list and woken up.  They will
1611  * add themselves back after completing rebind.  This ensures that the
1612  * idle_list doesn't contain any unbound workers when re-bound busy workers
1613  * try to perform local wake-ups for concurrency management.
1614  *
1615  * Busy workers can rebind after they finish their current work items.
1616  * Queueing the rebind work item at the head of the scheduled list is
1617  * enough.  Note that nr_running will be properly bumped as busy workers
1618  * rebind.
1619  *
1620  * On return, all non-manager workers are scheduled for rebind - see
1621  * manage_workers() for the manager special case.  Any idle worker
1622  * including the manager will not appear on @idle_list until rebind is
1623  * complete, making local wake-ups safe.
1624  */
1625 static void rebind_workers(struct worker_pool *pool)
1626 {
1627 	struct worker *worker, *n;
1628 	int i;
1629 
1630 	lockdep_assert_held(&pool->assoc_mutex);
1631 	lockdep_assert_held(&pool->lock);
1632 
1633 	/* dequeue and kick idle ones */
1634 	list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1635 		/*
1636 		 * idle workers should be off @pool->idle_list until rebind
1637 		 * is complete to avoid receiving premature local wake-ups.
1638 		 */
1639 		list_del_init(&worker->entry);
1640 
1641 		/*
1642 		 * worker_thread() will see the above dequeuing and call
1643 		 * idle_worker_rebind().
1644 		 */
1645 		wake_up_process(worker->task);
1646 	}
1647 
1648 	/* rebind busy workers */
1649 	for_each_busy_worker(worker, i, pool) {
1650 		struct work_struct *rebind_work = &worker->rebind_work;
1651 		struct workqueue_struct *wq;
1652 
1653 		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1654 				     work_data_bits(rebind_work)))
1655 			continue;
1656 
1657 		debug_work_activate(rebind_work);
1658 
1659 		/*
1660 		 * wq doesn't really matter but let's keep @worker->pool
1661 		 * and @pwq->pool consistent for sanity.
1662 		 */
1663 		if (std_worker_pool_pri(worker->pool))
1664 			wq = system_highpri_wq;
1665 		else
1666 			wq = system_wq;
1667 
1668 		insert_work(get_pwq(pool->cpu, wq), rebind_work,
1669 			    worker->scheduled.next,
1670 			    work_color_to_flags(WORK_NO_COLOR));
1671 	}
1672 }
1673 
1674 static struct worker *alloc_worker(void)
1675 {
1676 	struct worker *worker;
1677 
1678 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1679 	if (worker) {
1680 		INIT_LIST_HEAD(&worker->entry);
1681 		INIT_LIST_HEAD(&worker->scheduled);
1682 		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1683 		/* on creation a worker is in !idle && prep state */
1684 		worker->flags = WORKER_PREP;
1685 	}
1686 	return worker;
1687 }
1688 
1689 /**
1690  * create_worker - create a new workqueue worker
1691  * @pool: pool the new worker will belong to
1692  *
1693  * Create a new worker which is bound to @pool.  The returned worker
1694  * can be started by calling start_worker() or destroyed using
1695  * destroy_worker().
1696  *
1697  * CONTEXT:
1698  * Might sleep.  Does GFP_KERNEL allocations.
1699  *
1700  * RETURNS:
1701  * Pointer to the newly created worker.
1702  */
1703 static struct worker *create_worker(struct worker_pool *pool)
1704 {
1705 	const char *pri = std_worker_pool_pri(pool) ? "H" : "";
1706 	struct worker *worker = NULL;
1707 	int id = -1;
1708 
1709 	spin_lock_irq(&pool->lock);
1710 	while (ida_get_new(&pool->worker_ida, &id)) {
1711 		spin_unlock_irq(&pool->lock);
1712 		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
1713 			goto fail;
1714 		spin_lock_irq(&pool->lock);
1715 	}
1716 	spin_unlock_irq(&pool->lock);
1717 
1718 	worker = alloc_worker();
1719 	if (!worker)
1720 		goto fail;
1721 
1722 	worker->pool = pool;
1723 	worker->id = id;
1724 
1725 	if (pool->cpu != WORK_CPU_UNBOUND)
1726 		worker->task = kthread_create_on_node(worker_thread,
1727 					worker, cpu_to_node(pool->cpu),
1728 					"kworker/%u:%d%s", pool->cpu, id, pri);
1729 	else
1730 		worker->task = kthread_create(worker_thread, worker,
1731 					      "kworker/u:%d%s", id, pri);
1732 	if (IS_ERR(worker->task))
1733 		goto fail;
1734 
1735 	if (std_worker_pool_pri(pool))
1736 		set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1737 
1738 	/*
1739 	 * Determine CPU binding of the new worker depending on
1740 	 * %POOL_DISASSOCIATED.  The caller is responsible for ensuring the
1741 	 * flag remains stable across this function.  See the comments
1742 	 * above the flag definition for details.
1743 	 *
1744 	 * As an unbound worker may later become a regular one if CPU comes
1745 	 * online, make sure every worker has %PF_THREAD_BOUND set.
1746 	 */
1747 	if (!(pool->flags & POOL_DISASSOCIATED)) {
1748 		kthread_bind(worker->task, pool->cpu);
1749 	} else {
1750 		worker->task->flags |= PF_THREAD_BOUND;
1751 		worker->flags |= WORKER_UNBOUND;
1752 	}
1753 
1754 	return worker;
1755 fail:
1756 	if (id >= 0) {
1757 		spin_lock_irq(&pool->lock);
1758 		ida_remove(&pool->worker_ida, id);
1759 		spin_unlock_irq(&pool->lock);
1760 	}
1761 	kfree(worker);
1762 	return NULL;
1763 }
1764 
1765 /**
1766  * start_worker - start a newly created worker
1767  * @worker: worker to start
1768  *
1769  * Make the pool aware of @worker and start it.
1770  *
1771  * CONTEXT:
1772  * spin_lock_irq(pool->lock).
1773  */
1774 static void start_worker(struct worker *worker)
1775 {
1776 	worker->flags |= WORKER_STARTED;
1777 	worker->pool->nr_workers++;
1778 	worker_enter_idle(worker);
1779 	wake_up_process(worker->task);
1780 }
1781 
1782 /**
1783  * destroy_worker - destroy a workqueue worker
1784  * @worker: worker to be destroyed
1785  *
1786  * Destroy @worker and adjust @pool stats accordingly.
1787  *
1788  * CONTEXT:
1789  * spin_lock_irq(pool->lock) which is released and regrabbed.
1790  */
1791 static void destroy_worker(struct worker *worker)
1792 {
1793 	struct worker_pool *pool = worker->pool;
1794 	int id = worker->id;
1795 
1796 	/* sanity check frenzy */
1797 	BUG_ON(worker->current_work);
1798 	BUG_ON(!list_empty(&worker->scheduled));
1799 
1800 	if (worker->flags & WORKER_STARTED)
1801 		pool->nr_workers--;
1802 	if (worker->flags & WORKER_IDLE)
1803 		pool->nr_idle--;
1804 
1805 	list_del_init(&worker->entry);
1806 	worker->flags |= WORKER_DIE;
1807 
1808 	spin_unlock_irq(&pool->lock);
1809 
1810 	kthread_stop(worker->task);
1811 	kfree(worker);
1812 
1813 	spin_lock_irq(&pool->lock);
1814 	ida_remove(&pool->worker_ida, id);
1815 }
1816 
1817 static void idle_worker_timeout(unsigned long __pool)
1818 {
1819 	struct worker_pool *pool = (void *)__pool;
1820 
1821 	spin_lock_irq(&pool->lock);
1822 
1823 	if (too_many_workers(pool)) {
1824 		struct worker *worker;
1825 		unsigned long expires;
1826 
1827 		/* idle_list is kept in LIFO order, check the last one */
1828 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1829 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1830 
1831 		if (time_before(jiffies, expires))
1832 			mod_timer(&pool->idle_timer, expires);
1833 		else {
1834 			/* it's been idle for too long, wake up manager */
1835 			pool->flags |= POOL_MANAGE_WORKERS;
1836 			wake_up_worker(pool);
1837 		}
1838 	}
1839 
1840 	spin_unlock_irq(&pool->lock);
1841 }
1842 
1843 static bool send_mayday(struct work_struct *work)
1844 {
1845 	struct pool_workqueue *pwq = get_work_pwq(work);
1846 	struct workqueue_struct *wq = pwq->wq;
1847 	unsigned int cpu;
1848 
1849 	if (!(wq->flags & WQ_RESCUER))
1850 		return false;
1851 
1852 	/* mayday mayday mayday */
1853 	cpu = pwq->pool->cpu;
1854 	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1855 	if (cpu == WORK_CPU_UNBOUND)
1856 		cpu = 0;
1857 	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1858 		wake_up_process(wq->rescuer->task);
1859 	return true;
1860 }
1861 
1862 static void pool_mayday_timeout(unsigned long __pool)
1863 {
1864 	struct worker_pool *pool = (void *)__pool;
1865 	struct work_struct *work;
1866 
1867 	spin_lock_irq(&pool->lock);
1868 
1869 	if (need_to_create_worker(pool)) {
1870 		/*
1871 		 * We've been trying to create a new worker but
1872 		 * haven't been successful.  We might be hitting an
1873 		 * allocation deadlock.  Send distress signals to
1874 		 * rescuers.
1875 		 */
1876 		list_for_each_entry(work, &pool->worklist, entry)
1877 			send_mayday(work);
1878 	}
1879 
1880 	spin_unlock_irq(&pool->lock);
1881 
1882 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1883 }
1884 
1885 /**
1886  * maybe_create_worker - create a new worker if necessary
1887  * @pool: pool to create a new worker for
1888  *
1889  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1890  * have at least one idle worker on return from this function.  If
1891  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1892  * sent to all rescuers with works scheduled on @pool to resolve
1893  * possible allocation deadlock.
1894  *
1895  * On return, need_to_create_worker() is guaranteed to be false and
1896  * may_start_working() true.
1897  *
1898  * LOCKING:
1899  * spin_lock_irq(pool->lock) which may be released and regrabbed
1900  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1901  * manager.
1902  *
1903  * RETURNS:
1904  * false if no action was taken and pool->lock stayed locked, true
1905  * otherwise.
1906  */
1907 static bool maybe_create_worker(struct worker_pool *pool)
1908 __releases(&pool->lock)
1909 __acquires(&pool->lock)
1910 {
1911 	if (!need_to_create_worker(pool))
1912 		return false;
1913 restart:
1914 	spin_unlock_irq(&pool->lock);
1915 
1916 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1917 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1918 
1919 	while (true) {
1920 		struct worker *worker;
1921 
1922 		worker = create_worker(pool);
1923 		if (worker) {
1924 			del_timer_sync(&pool->mayday_timer);
1925 			spin_lock_irq(&pool->lock);
1926 			start_worker(worker);
1927 			BUG_ON(need_to_create_worker(pool));
1928 			return true;
1929 		}
1930 
1931 		if (!need_to_create_worker(pool))
1932 			break;
1933 
1934 		__set_current_state(TASK_INTERRUPTIBLE);
1935 		schedule_timeout(CREATE_COOLDOWN);
1936 
1937 		if (!need_to_create_worker(pool))
1938 			break;
1939 	}
1940 
1941 	del_timer_sync(&pool->mayday_timer);
1942 	spin_lock_irq(&pool->lock);
1943 	if (need_to_create_worker(pool))
1944 		goto restart;
1945 	return true;
1946 }
1947 
1948 /**
1949  * maybe_destroy_worker - destroy workers which have been idle for a while
1950  * @pool: pool to destroy workers for
1951  *
1952  * Destroy @pool workers which have been idle for longer than
1953  * IDLE_WORKER_TIMEOUT.
1954  *
1955  * LOCKING:
1956  * spin_lock_irq(pool->lock) which may be released and regrabbed
1957  * multiple times.  Called only from manager.
1958  *
1959  * RETURNS:
1960  * false if no action was taken and pool->lock stayed locked, true
1961  * otherwise.
1962  */
1963 static bool maybe_destroy_workers(struct worker_pool *pool)
1964 {
1965 	bool ret = false;
1966 
1967 	while (too_many_workers(pool)) {
1968 		struct worker *worker;
1969 		unsigned long expires;
1970 
1971 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1972 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1973 
1974 		if (time_before(jiffies, expires)) {
1975 			mod_timer(&pool->idle_timer, expires);
1976 			break;
1977 		}
1978 
1979 		destroy_worker(worker);
1980 		ret = true;
1981 	}
1982 
1983 	return ret;
1984 }
1985 
1986 /**
1987  * manage_workers - manage worker pool
1988  * @worker: self
1989  *
1990  * Assume the manager role and manage the worker pool @worker belongs
1991  * to.  At any given time, there can be only zero or one manager per
1992  * pool.  The exclusion is handled automatically by this function.
1993  *
1994  * The caller can safely start processing works on false return.  On
1995  * true return, it's guaranteed that need_to_create_worker() is false
1996  * and may_start_working() is true.
1997  *
1998  * CONTEXT:
1999  * spin_lock_irq(pool->lock) which may be released and regrabbed
2000  * multiple times.  Does GFP_KERNEL allocations.
2001  *
2002  * RETURNS:
2003  * spin_lock_irq(pool->lock) which may be released and regrabbed
2004  * multiple times.  Does GFP_KERNEL allocations.
2005  */
2006 static bool manage_workers(struct worker *worker)
2007 {
2008 	struct worker_pool *pool = worker->pool;
2009 	bool ret = false;
2010 
2011 	if (pool->flags & POOL_MANAGING_WORKERS)
2012 		return ret;
2013 
2014 	pool->flags |= POOL_MANAGING_WORKERS;
2015 
2016 	/*
2017 	 * To simplify both worker management and CPU hotplug, hold off
2018 	 * management while hotplug is in progress.  CPU hotplug path can't
2019 	 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2020 	 * lead to idle worker depletion (all become busy thinking someone
2021 	 * else is managing) which in turn can result in deadlock under
2022 	 * extreme circumstances.  Use @pool->assoc_mutex to synchronize
2023 	 * manager against CPU hotplug.
2024 	 *
2025 	 * assoc_mutex would always be free unless CPU hotplug is in
2026 	 * progress.  trylock first without dropping @pool->lock.
2027 	 */
2028 	if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2029 		spin_unlock_irq(&pool->lock);
2030 		mutex_lock(&pool->assoc_mutex);
2031 		/*
2032 		 * CPU hotplug could have happened while we were waiting
2033 		 * for assoc_mutex.  Hotplug itself can't handle us
2034 		 * because manager isn't either on idle or busy list, and
2035 		 * @pool's state and ours could have deviated.
2036 		 *
2037 		 * As hotplug is now excluded via assoc_mutex, we can
2038 		 * simply try to bind.  It will succeed or fail depending
2039 		 * on @pool's current state.  Try it and adjust
2040 		 * %WORKER_UNBOUND accordingly.
2041 		 */
2042 		if (worker_maybe_bind_and_lock(worker))
2043 			worker->flags &= ~WORKER_UNBOUND;
2044 		else
2045 			worker->flags |= WORKER_UNBOUND;
2046 
2047 		ret = true;
2048 	}
2049 
2050 	pool->flags &= ~POOL_MANAGE_WORKERS;
2051 
2052 	/*
2053 	 * Destroy and then create so that may_start_working() is true
2054 	 * on return.
2055 	 */
2056 	ret |= maybe_destroy_workers(pool);
2057 	ret |= maybe_create_worker(pool);
2058 
2059 	pool->flags &= ~POOL_MANAGING_WORKERS;
2060 	mutex_unlock(&pool->assoc_mutex);
2061 	return ret;
2062 }
2063 
2064 /**
2065  * process_one_work - process single work
2066  * @worker: self
2067  * @work: work to process
2068  *
2069  * Process @work.  This function contains all the logics necessary to
2070  * process a single work including synchronization against and
2071  * interaction with other workers on the same cpu, queueing and
2072  * flushing.  As long as context requirement is met, any worker can
2073  * call this function to process a work.
2074  *
2075  * CONTEXT:
2076  * spin_lock_irq(pool->lock) which is released and regrabbed.
2077  */
2078 static void process_one_work(struct worker *worker, struct work_struct *work)
2079 __releases(&pool->lock)
2080 __acquires(&pool->lock)
2081 {
2082 	struct pool_workqueue *pwq = get_work_pwq(work);
2083 	struct worker_pool *pool = worker->pool;
2084 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2085 	int work_color;
2086 	struct worker *collision;
2087 #ifdef CONFIG_LOCKDEP
2088 	/*
2089 	 * It is permissible to free the struct work_struct from
2090 	 * inside the function that is called from it, this we need to
2091 	 * take into account for lockdep too.  To avoid bogus "held
2092 	 * lock freed" warnings as well as problems when looking into
2093 	 * work->lockdep_map, make a copy and use that here.
2094 	 */
2095 	struct lockdep_map lockdep_map;
2096 
2097 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2098 #endif
2099 	/*
2100 	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
2101 	 * necessary to avoid spurious warnings from rescuers servicing the
2102 	 * unbound or a disassociated pool.
2103 	 */
2104 	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2105 		     !(pool->flags & POOL_DISASSOCIATED) &&
2106 		     raw_smp_processor_id() != pool->cpu);
2107 
2108 	/*
2109 	 * A single work shouldn't be executed concurrently by
2110 	 * multiple workers on a single cpu.  Check whether anyone is
2111 	 * already processing the work.  If so, defer the work to the
2112 	 * currently executing one.
2113 	 */
2114 	collision = find_worker_executing_work(pool, work);
2115 	if (unlikely(collision)) {
2116 		move_linked_works(work, &collision->scheduled, NULL);
2117 		return;
2118 	}
2119 
2120 	/* claim and dequeue */
2121 	debug_work_deactivate(work);
2122 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2123 	worker->current_work = work;
2124 	worker->current_func = work->func;
2125 	worker->current_pwq = pwq;
2126 	work_color = get_work_color(work);
2127 
2128 	list_del_init(&work->entry);
2129 
2130 	/*
2131 	 * CPU intensive works don't participate in concurrency
2132 	 * management.  They're the scheduler's responsibility.
2133 	 */
2134 	if (unlikely(cpu_intensive))
2135 		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2136 
2137 	/*
2138 	 * Unbound pool isn't concurrency managed and work items should be
2139 	 * executed ASAP.  Wake up another worker if necessary.
2140 	 */
2141 	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2142 		wake_up_worker(pool);
2143 
2144 	/*
2145 	 * Record the last pool and clear PENDING which should be the last
2146 	 * update to @work.  Also, do this inside @pool->lock so that
2147 	 * PENDING and queued state changes happen together while IRQ is
2148 	 * disabled.
2149 	 */
2150 	set_work_pool_and_clear_pending(work, pool->id);
2151 
2152 	spin_unlock_irq(&pool->lock);
2153 
2154 	lock_map_acquire_read(&pwq->wq->lockdep_map);
2155 	lock_map_acquire(&lockdep_map);
2156 	trace_workqueue_execute_start(work);
2157 	worker->current_func(work);
2158 	/*
2159 	 * While we must be careful to not use "work" after this, the trace
2160 	 * point will only record its address.
2161 	 */
2162 	trace_workqueue_execute_end(work);
2163 	lock_map_release(&lockdep_map);
2164 	lock_map_release(&pwq->wq->lockdep_map);
2165 
2166 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2167 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2168 		       "     last function: %pf\n",
2169 		       current->comm, preempt_count(), task_pid_nr(current),
2170 		       worker->current_func);
2171 		debug_show_held_locks(current);
2172 		dump_stack();
2173 	}
2174 
2175 	spin_lock_irq(&pool->lock);
2176 
2177 	/* clear cpu intensive status */
2178 	if (unlikely(cpu_intensive))
2179 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2180 
2181 	/* we're done with it, release */
2182 	hash_del(&worker->hentry);
2183 	worker->current_work = NULL;
2184 	worker->current_func = NULL;
2185 	worker->current_pwq = NULL;
2186 	pwq_dec_nr_in_flight(pwq, work_color);
2187 }
2188 
2189 /**
2190  * process_scheduled_works - process scheduled works
2191  * @worker: self
2192  *
2193  * Process all scheduled works.  Please note that the scheduled list
2194  * may change while processing a work, so this function repeatedly
2195  * fetches a work from the top and executes it.
2196  *
2197  * CONTEXT:
2198  * spin_lock_irq(pool->lock) which may be released and regrabbed
2199  * multiple times.
2200  */
2201 static void process_scheduled_works(struct worker *worker)
2202 {
2203 	while (!list_empty(&worker->scheduled)) {
2204 		struct work_struct *work = list_first_entry(&worker->scheduled,
2205 						struct work_struct, entry);
2206 		process_one_work(worker, work);
2207 	}
2208 }
2209 
2210 /**
2211  * worker_thread - the worker thread function
2212  * @__worker: self
2213  *
2214  * The worker thread function.  There are NR_CPU_WORKER_POOLS dynamic pools
2215  * of these per each cpu.  These workers process all works regardless of
2216  * their specific target workqueue.  The only exception is works which
2217  * belong to workqueues with a rescuer which will be explained in
2218  * rescuer_thread().
2219  */
2220 static int worker_thread(void *__worker)
2221 {
2222 	struct worker *worker = __worker;
2223 	struct worker_pool *pool = worker->pool;
2224 
2225 	/* tell the scheduler that this is a workqueue worker */
2226 	worker->task->flags |= PF_WQ_WORKER;
2227 woke_up:
2228 	spin_lock_irq(&pool->lock);
2229 
2230 	/* we are off idle list if destruction or rebind is requested */
2231 	if (unlikely(list_empty(&worker->entry))) {
2232 		spin_unlock_irq(&pool->lock);
2233 
2234 		/* if DIE is set, destruction is requested */
2235 		if (worker->flags & WORKER_DIE) {
2236 			worker->task->flags &= ~PF_WQ_WORKER;
2237 			return 0;
2238 		}
2239 
2240 		/* otherwise, rebind */
2241 		idle_worker_rebind(worker);
2242 		goto woke_up;
2243 	}
2244 
2245 	worker_leave_idle(worker);
2246 recheck:
2247 	/* no more worker necessary? */
2248 	if (!need_more_worker(pool))
2249 		goto sleep;
2250 
2251 	/* do we need to manage? */
2252 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2253 		goto recheck;
2254 
2255 	/*
2256 	 * ->scheduled list can only be filled while a worker is
2257 	 * preparing to process a work or actually processing it.
2258 	 * Make sure nobody diddled with it while I was sleeping.
2259 	 */
2260 	BUG_ON(!list_empty(&worker->scheduled));
2261 
2262 	/*
2263 	 * When control reaches this point, we're guaranteed to have
2264 	 * at least one idle worker or that someone else has already
2265 	 * assumed the manager role.
2266 	 */
2267 	worker_clr_flags(worker, WORKER_PREP);
2268 
2269 	do {
2270 		struct work_struct *work =
2271 			list_first_entry(&pool->worklist,
2272 					 struct work_struct, entry);
2273 
2274 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2275 			/* optimization path, not strictly necessary */
2276 			process_one_work(worker, work);
2277 			if (unlikely(!list_empty(&worker->scheduled)))
2278 				process_scheduled_works(worker);
2279 		} else {
2280 			move_linked_works(work, &worker->scheduled, NULL);
2281 			process_scheduled_works(worker);
2282 		}
2283 	} while (keep_working(pool));
2284 
2285 	worker_set_flags(worker, WORKER_PREP, false);
2286 sleep:
2287 	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2288 		goto recheck;
2289 
2290 	/*
2291 	 * pool->lock is held and there's no work to process and no need to
2292 	 * manage, sleep.  Workers are woken up only while holding
2293 	 * pool->lock or from local cpu, so setting the current state
2294 	 * before releasing pool->lock is enough to prevent losing any
2295 	 * event.
2296 	 */
2297 	worker_enter_idle(worker);
2298 	__set_current_state(TASK_INTERRUPTIBLE);
2299 	spin_unlock_irq(&pool->lock);
2300 	schedule();
2301 	goto woke_up;
2302 }
2303 
2304 /**
2305  * rescuer_thread - the rescuer thread function
2306  * @__rescuer: self
2307  *
2308  * Workqueue rescuer thread function.  There's one rescuer for each
2309  * workqueue which has WQ_RESCUER set.
2310  *
2311  * Regular work processing on a pool may block trying to create a new
2312  * worker which uses GFP_KERNEL allocation which has slight chance of
2313  * developing into deadlock if some works currently on the same queue
2314  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2315  * the problem rescuer solves.
2316  *
2317  * When such condition is possible, the pool summons rescuers of all
2318  * workqueues which have works queued on the pool and let them process
2319  * those works so that forward progress can be guaranteed.
2320  *
2321  * This should happen rarely.
2322  */
2323 static int rescuer_thread(void *__rescuer)
2324 {
2325 	struct worker *rescuer = __rescuer;
2326 	struct workqueue_struct *wq = rescuer->rescue_wq;
2327 	struct list_head *scheduled = &rescuer->scheduled;
2328 	bool is_unbound = wq->flags & WQ_UNBOUND;
2329 	unsigned int cpu;
2330 
2331 	set_user_nice(current, RESCUER_NICE_LEVEL);
2332 
2333 	/*
2334 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2335 	 * doesn't participate in concurrency management.
2336 	 */
2337 	rescuer->task->flags |= PF_WQ_WORKER;
2338 repeat:
2339 	set_current_state(TASK_INTERRUPTIBLE);
2340 
2341 	if (kthread_should_stop()) {
2342 		__set_current_state(TASK_RUNNING);
2343 		rescuer->task->flags &= ~PF_WQ_WORKER;
2344 		return 0;
2345 	}
2346 
2347 	/*
2348 	 * See whether any cpu is asking for help.  Unbounded
2349 	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2350 	 */
2351 	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2352 		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2353 		struct pool_workqueue *pwq = get_pwq(tcpu, wq);
2354 		struct worker_pool *pool = pwq->pool;
2355 		struct work_struct *work, *n;
2356 
2357 		__set_current_state(TASK_RUNNING);
2358 		mayday_clear_cpu(cpu, wq->mayday_mask);
2359 
2360 		/* migrate to the target cpu if possible */
2361 		rescuer->pool = pool;
2362 		worker_maybe_bind_and_lock(rescuer);
2363 
2364 		/*
2365 		 * Slurp in all works issued via this workqueue and
2366 		 * process'em.
2367 		 */
2368 		BUG_ON(!list_empty(&rescuer->scheduled));
2369 		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2370 			if (get_work_pwq(work) == pwq)
2371 				move_linked_works(work, scheduled, &n);
2372 
2373 		process_scheduled_works(rescuer);
2374 
2375 		/*
2376 		 * Leave this pool.  If keep_working() is %true, notify a
2377 		 * regular worker; otherwise, we end up with 0 concurrency
2378 		 * and stalling the execution.
2379 		 */
2380 		if (keep_working(pool))
2381 			wake_up_worker(pool);
2382 
2383 		spin_unlock_irq(&pool->lock);
2384 	}
2385 
2386 	/* rescuers should never participate in concurrency management */
2387 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2388 	schedule();
2389 	goto repeat;
2390 }
2391 
2392 struct wq_barrier {
2393 	struct work_struct	work;
2394 	struct completion	done;
2395 };
2396 
2397 static void wq_barrier_func(struct work_struct *work)
2398 {
2399 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2400 	complete(&barr->done);
2401 }
2402 
2403 /**
2404  * insert_wq_barrier - insert a barrier work
2405  * @pwq: pwq to insert barrier into
2406  * @barr: wq_barrier to insert
2407  * @target: target work to attach @barr to
2408  * @worker: worker currently executing @target, NULL if @target is not executing
2409  *
2410  * @barr is linked to @target such that @barr is completed only after
2411  * @target finishes execution.  Please note that the ordering
2412  * guarantee is observed only with respect to @target and on the local
2413  * cpu.
2414  *
2415  * Currently, a queued barrier can't be canceled.  This is because
2416  * try_to_grab_pending() can't determine whether the work to be
2417  * grabbed is at the head of the queue and thus can't clear LINKED
2418  * flag of the previous work while there must be a valid next work
2419  * after a work with LINKED flag set.
2420  *
2421  * Note that when @worker is non-NULL, @target may be modified
2422  * underneath us, so we can't reliably determine pwq from @target.
2423  *
2424  * CONTEXT:
2425  * spin_lock_irq(pool->lock).
2426  */
2427 static void insert_wq_barrier(struct pool_workqueue *pwq,
2428 			      struct wq_barrier *barr,
2429 			      struct work_struct *target, struct worker *worker)
2430 {
2431 	struct list_head *head;
2432 	unsigned int linked = 0;
2433 
2434 	/*
2435 	 * debugobject calls are safe here even with pool->lock locked
2436 	 * as we know for sure that this will not trigger any of the
2437 	 * checks and call back into the fixup functions where we
2438 	 * might deadlock.
2439 	 */
2440 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2441 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2442 	init_completion(&barr->done);
2443 
2444 	/*
2445 	 * If @target is currently being executed, schedule the
2446 	 * barrier to the worker; otherwise, put it after @target.
2447 	 */
2448 	if (worker)
2449 		head = worker->scheduled.next;
2450 	else {
2451 		unsigned long *bits = work_data_bits(target);
2452 
2453 		head = target->entry.next;
2454 		/* there can already be other linked works, inherit and set */
2455 		linked = *bits & WORK_STRUCT_LINKED;
2456 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2457 	}
2458 
2459 	debug_work_activate(&barr->work);
2460 	insert_work(pwq, &barr->work, head,
2461 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2462 }
2463 
2464 /**
2465  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2466  * @wq: workqueue being flushed
2467  * @flush_color: new flush color, < 0 for no-op
2468  * @work_color: new work color, < 0 for no-op
2469  *
2470  * Prepare pwqs for workqueue flushing.
2471  *
2472  * If @flush_color is non-negative, flush_color on all pwqs should be
2473  * -1.  If no pwq has in-flight commands at the specified color, all
2474  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2475  * has in flight commands, its pwq->flush_color is set to
2476  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2477  * wakeup logic is armed and %true is returned.
2478  *
2479  * The caller should have initialized @wq->first_flusher prior to
2480  * calling this function with non-negative @flush_color.  If
2481  * @flush_color is negative, no flush color update is done and %false
2482  * is returned.
2483  *
2484  * If @work_color is non-negative, all pwqs should have the same
2485  * work_color which is previous to @work_color and all will be
2486  * advanced to @work_color.
2487  *
2488  * CONTEXT:
2489  * mutex_lock(wq->flush_mutex).
2490  *
2491  * RETURNS:
2492  * %true if @flush_color >= 0 and there's something to flush.  %false
2493  * otherwise.
2494  */
2495 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2496 				      int flush_color, int work_color)
2497 {
2498 	bool wait = false;
2499 	unsigned int cpu;
2500 
2501 	if (flush_color >= 0) {
2502 		BUG_ON(atomic_read(&wq->nr_pwqs_to_flush));
2503 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2504 	}
2505 
2506 	for_each_pwq_cpu(cpu, wq) {
2507 		struct pool_workqueue *pwq = get_pwq(cpu, wq);
2508 		struct worker_pool *pool = pwq->pool;
2509 
2510 		spin_lock_irq(&pool->lock);
2511 
2512 		if (flush_color >= 0) {
2513 			BUG_ON(pwq->flush_color != -1);
2514 
2515 			if (pwq->nr_in_flight[flush_color]) {
2516 				pwq->flush_color = flush_color;
2517 				atomic_inc(&wq->nr_pwqs_to_flush);
2518 				wait = true;
2519 			}
2520 		}
2521 
2522 		if (work_color >= 0) {
2523 			BUG_ON(work_color != work_next_color(pwq->work_color));
2524 			pwq->work_color = work_color;
2525 		}
2526 
2527 		spin_unlock_irq(&pool->lock);
2528 	}
2529 
2530 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2531 		complete(&wq->first_flusher->done);
2532 
2533 	return wait;
2534 }
2535 
2536 /**
2537  * flush_workqueue - ensure that any scheduled work has run to completion.
2538  * @wq: workqueue to flush
2539  *
2540  * Forces execution of the workqueue and blocks until its completion.
2541  * This is typically used in driver shutdown handlers.
2542  *
2543  * We sleep until all works which were queued on entry have been handled,
2544  * but we are not livelocked by new incoming ones.
2545  */
2546 void flush_workqueue(struct workqueue_struct *wq)
2547 {
2548 	struct wq_flusher this_flusher = {
2549 		.list = LIST_HEAD_INIT(this_flusher.list),
2550 		.flush_color = -1,
2551 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2552 	};
2553 	int next_color;
2554 
2555 	lock_map_acquire(&wq->lockdep_map);
2556 	lock_map_release(&wq->lockdep_map);
2557 
2558 	mutex_lock(&wq->flush_mutex);
2559 
2560 	/*
2561 	 * Start-to-wait phase
2562 	 */
2563 	next_color = work_next_color(wq->work_color);
2564 
2565 	if (next_color != wq->flush_color) {
2566 		/*
2567 		 * Color space is not full.  The current work_color
2568 		 * becomes our flush_color and work_color is advanced
2569 		 * by one.
2570 		 */
2571 		BUG_ON(!list_empty(&wq->flusher_overflow));
2572 		this_flusher.flush_color = wq->work_color;
2573 		wq->work_color = next_color;
2574 
2575 		if (!wq->first_flusher) {
2576 			/* no flush in progress, become the first flusher */
2577 			BUG_ON(wq->flush_color != this_flusher.flush_color);
2578 
2579 			wq->first_flusher = &this_flusher;
2580 
2581 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2582 						       wq->work_color)) {
2583 				/* nothing to flush, done */
2584 				wq->flush_color = next_color;
2585 				wq->first_flusher = NULL;
2586 				goto out_unlock;
2587 			}
2588 		} else {
2589 			/* wait in queue */
2590 			BUG_ON(wq->flush_color == this_flusher.flush_color);
2591 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2592 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2593 		}
2594 	} else {
2595 		/*
2596 		 * Oops, color space is full, wait on overflow queue.
2597 		 * The next flush completion will assign us
2598 		 * flush_color and transfer to flusher_queue.
2599 		 */
2600 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2601 	}
2602 
2603 	mutex_unlock(&wq->flush_mutex);
2604 
2605 	wait_for_completion(&this_flusher.done);
2606 
2607 	/*
2608 	 * Wake-up-and-cascade phase
2609 	 *
2610 	 * First flushers are responsible for cascading flushes and
2611 	 * handling overflow.  Non-first flushers can simply return.
2612 	 */
2613 	if (wq->first_flusher != &this_flusher)
2614 		return;
2615 
2616 	mutex_lock(&wq->flush_mutex);
2617 
2618 	/* we might have raced, check again with mutex held */
2619 	if (wq->first_flusher != &this_flusher)
2620 		goto out_unlock;
2621 
2622 	wq->first_flusher = NULL;
2623 
2624 	BUG_ON(!list_empty(&this_flusher.list));
2625 	BUG_ON(wq->flush_color != this_flusher.flush_color);
2626 
2627 	while (true) {
2628 		struct wq_flusher *next, *tmp;
2629 
2630 		/* complete all the flushers sharing the current flush color */
2631 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2632 			if (next->flush_color != wq->flush_color)
2633 				break;
2634 			list_del_init(&next->list);
2635 			complete(&next->done);
2636 		}
2637 
2638 		BUG_ON(!list_empty(&wq->flusher_overflow) &&
2639 		       wq->flush_color != work_next_color(wq->work_color));
2640 
2641 		/* this flush_color is finished, advance by one */
2642 		wq->flush_color = work_next_color(wq->flush_color);
2643 
2644 		/* one color has been freed, handle overflow queue */
2645 		if (!list_empty(&wq->flusher_overflow)) {
2646 			/*
2647 			 * Assign the same color to all overflowed
2648 			 * flushers, advance work_color and append to
2649 			 * flusher_queue.  This is the start-to-wait
2650 			 * phase for these overflowed flushers.
2651 			 */
2652 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2653 				tmp->flush_color = wq->work_color;
2654 
2655 			wq->work_color = work_next_color(wq->work_color);
2656 
2657 			list_splice_tail_init(&wq->flusher_overflow,
2658 					      &wq->flusher_queue);
2659 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2660 		}
2661 
2662 		if (list_empty(&wq->flusher_queue)) {
2663 			BUG_ON(wq->flush_color != wq->work_color);
2664 			break;
2665 		}
2666 
2667 		/*
2668 		 * Need to flush more colors.  Make the next flusher
2669 		 * the new first flusher and arm pwqs.
2670 		 */
2671 		BUG_ON(wq->flush_color == wq->work_color);
2672 		BUG_ON(wq->flush_color != next->flush_color);
2673 
2674 		list_del_init(&next->list);
2675 		wq->first_flusher = next;
2676 
2677 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2678 			break;
2679 
2680 		/*
2681 		 * Meh... this color is already done, clear first
2682 		 * flusher and repeat cascading.
2683 		 */
2684 		wq->first_flusher = NULL;
2685 	}
2686 
2687 out_unlock:
2688 	mutex_unlock(&wq->flush_mutex);
2689 }
2690 EXPORT_SYMBOL_GPL(flush_workqueue);
2691 
2692 /**
2693  * drain_workqueue - drain a workqueue
2694  * @wq: workqueue to drain
2695  *
2696  * Wait until the workqueue becomes empty.  While draining is in progress,
2697  * only chain queueing is allowed.  IOW, only currently pending or running
2698  * work items on @wq can queue further work items on it.  @wq is flushed
2699  * repeatedly until it becomes empty.  The number of flushing is detemined
2700  * by the depth of chaining and should be relatively short.  Whine if it
2701  * takes too long.
2702  */
2703 void drain_workqueue(struct workqueue_struct *wq)
2704 {
2705 	unsigned int flush_cnt = 0;
2706 	unsigned int cpu;
2707 
2708 	/*
2709 	 * __queue_work() needs to test whether there are drainers, is much
2710 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2711 	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2712 	 */
2713 	spin_lock(&workqueue_lock);
2714 	if (!wq->nr_drainers++)
2715 		wq->flags |= WQ_DRAINING;
2716 	spin_unlock(&workqueue_lock);
2717 reflush:
2718 	flush_workqueue(wq);
2719 
2720 	for_each_pwq_cpu(cpu, wq) {
2721 		struct pool_workqueue *pwq = get_pwq(cpu, wq);
2722 		bool drained;
2723 
2724 		spin_lock_irq(&pwq->pool->lock);
2725 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2726 		spin_unlock_irq(&pwq->pool->lock);
2727 
2728 		if (drained)
2729 			continue;
2730 
2731 		if (++flush_cnt == 10 ||
2732 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2733 			pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2734 				wq->name, flush_cnt);
2735 		goto reflush;
2736 	}
2737 
2738 	spin_lock(&workqueue_lock);
2739 	if (!--wq->nr_drainers)
2740 		wq->flags &= ~WQ_DRAINING;
2741 	spin_unlock(&workqueue_lock);
2742 }
2743 EXPORT_SYMBOL_GPL(drain_workqueue);
2744 
2745 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2746 {
2747 	struct worker *worker = NULL;
2748 	struct worker_pool *pool;
2749 	struct pool_workqueue *pwq;
2750 
2751 	might_sleep();
2752 	pool = get_work_pool(work);
2753 	if (!pool)
2754 		return false;
2755 
2756 	spin_lock_irq(&pool->lock);
2757 	/* see the comment in try_to_grab_pending() with the same code */
2758 	pwq = get_work_pwq(work);
2759 	if (pwq) {
2760 		if (unlikely(pwq->pool != pool))
2761 			goto already_gone;
2762 	} else {
2763 		worker = find_worker_executing_work(pool, work);
2764 		if (!worker)
2765 			goto already_gone;
2766 		pwq = worker->current_pwq;
2767 	}
2768 
2769 	insert_wq_barrier(pwq, barr, work, worker);
2770 	spin_unlock_irq(&pool->lock);
2771 
2772 	/*
2773 	 * If @max_active is 1 or rescuer is in use, flushing another work
2774 	 * item on the same workqueue may lead to deadlock.  Make sure the
2775 	 * flusher is not running on the same workqueue by verifying write
2776 	 * access.
2777 	 */
2778 	if (pwq->wq->saved_max_active == 1 || pwq->wq->flags & WQ_RESCUER)
2779 		lock_map_acquire(&pwq->wq->lockdep_map);
2780 	else
2781 		lock_map_acquire_read(&pwq->wq->lockdep_map);
2782 	lock_map_release(&pwq->wq->lockdep_map);
2783 
2784 	return true;
2785 already_gone:
2786 	spin_unlock_irq(&pool->lock);
2787 	return false;
2788 }
2789 
2790 /**
2791  * flush_work - wait for a work to finish executing the last queueing instance
2792  * @work: the work to flush
2793  *
2794  * Wait until @work has finished execution.  @work is guaranteed to be idle
2795  * on return if it hasn't been requeued since flush started.
2796  *
2797  * RETURNS:
2798  * %true if flush_work() waited for the work to finish execution,
2799  * %false if it was already idle.
2800  */
2801 bool flush_work(struct work_struct *work)
2802 {
2803 	struct wq_barrier barr;
2804 
2805 	lock_map_acquire(&work->lockdep_map);
2806 	lock_map_release(&work->lockdep_map);
2807 
2808 	if (start_flush_work(work, &barr)) {
2809 		wait_for_completion(&barr.done);
2810 		destroy_work_on_stack(&barr.work);
2811 		return true;
2812 	} else {
2813 		return false;
2814 	}
2815 }
2816 EXPORT_SYMBOL_GPL(flush_work);
2817 
2818 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2819 {
2820 	unsigned long flags;
2821 	int ret;
2822 
2823 	do {
2824 		ret = try_to_grab_pending(work, is_dwork, &flags);
2825 		/*
2826 		 * If someone else is canceling, wait for the same event it
2827 		 * would be waiting for before retrying.
2828 		 */
2829 		if (unlikely(ret == -ENOENT))
2830 			flush_work(work);
2831 	} while (unlikely(ret < 0));
2832 
2833 	/* tell other tasks trying to grab @work to back off */
2834 	mark_work_canceling(work);
2835 	local_irq_restore(flags);
2836 
2837 	flush_work(work);
2838 	clear_work_data(work);
2839 	return ret;
2840 }
2841 
2842 /**
2843  * cancel_work_sync - cancel a work and wait for it to finish
2844  * @work: the work to cancel
2845  *
2846  * Cancel @work and wait for its execution to finish.  This function
2847  * can be used even if the work re-queues itself or migrates to
2848  * another workqueue.  On return from this function, @work is
2849  * guaranteed to be not pending or executing on any CPU.
2850  *
2851  * cancel_work_sync(&delayed_work->work) must not be used for
2852  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2853  *
2854  * The caller must ensure that the workqueue on which @work was last
2855  * queued can't be destroyed before this function returns.
2856  *
2857  * RETURNS:
2858  * %true if @work was pending, %false otherwise.
2859  */
2860 bool cancel_work_sync(struct work_struct *work)
2861 {
2862 	return __cancel_work_timer(work, false);
2863 }
2864 EXPORT_SYMBOL_GPL(cancel_work_sync);
2865 
2866 /**
2867  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2868  * @dwork: the delayed work to flush
2869  *
2870  * Delayed timer is cancelled and the pending work is queued for
2871  * immediate execution.  Like flush_work(), this function only
2872  * considers the last queueing instance of @dwork.
2873  *
2874  * RETURNS:
2875  * %true if flush_work() waited for the work to finish execution,
2876  * %false if it was already idle.
2877  */
2878 bool flush_delayed_work(struct delayed_work *dwork)
2879 {
2880 	local_irq_disable();
2881 	if (del_timer_sync(&dwork->timer))
2882 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2883 	local_irq_enable();
2884 	return flush_work(&dwork->work);
2885 }
2886 EXPORT_SYMBOL(flush_delayed_work);
2887 
2888 /**
2889  * cancel_delayed_work - cancel a delayed work
2890  * @dwork: delayed_work to cancel
2891  *
2892  * Kill off a pending delayed_work.  Returns %true if @dwork was pending
2893  * and canceled; %false if wasn't pending.  Note that the work callback
2894  * function may still be running on return, unless it returns %true and the
2895  * work doesn't re-arm itself.  Explicitly flush or use
2896  * cancel_delayed_work_sync() to wait on it.
2897  *
2898  * This function is safe to call from any context including IRQ handler.
2899  */
2900 bool cancel_delayed_work(struct delayed_work *dwork)
2901 {
2902 	unsigned long flags;
2903 	int ret;
2904 
2905 	do {
2906 		ret = try_to_grab_pending(&dwork->work, true, &flags);
2907 	} while (unlikely(ret == -EAGAIN));
2908 
2909 	if (unlikely(ret < 0))
2910 		return false;
2911 
2912 	set_work_pool_and_clear_pending(&dwork->work,
2913 					get_work_pool_id(&dwork->work));
2914 	local_irq_restore(flags);
2915 	return ret;
2916 }
2917 EXPORT_SYMBOL(cancel_delayed_work);
2918 
2919 /**
2920  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2921  * @dwork: the delayed work cancel
2922  *
2923  * This is cancel_work_sync() for delayed works.
2924  *
2925  * RETURNS:
2926  * %true if @dwork was pending, %false otherwise.
2927  */
2928 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2929 {
2930 	return __cancel_work_timer(&dwork->work, true);
2931 }
2932 EXPORT_SYMBOL(cancel_delayed_work_sync);
2933 
2934 /**
2935  * schedule_work_on - put work task on a specific cpu
2936  * @cpu: cpu to put the work task on
2937  * @work: job to be done
2938  *
2939  * This puts a job on a specific cpu
2940  */
2941 bool schedule_work_on(int cpu, struct work_struct *work)
2942 {
2943 	return queue_work_on(cpu, system_wq, work);
2944 }
2945 EXPORT_SYMBOL(schedule_work_on);
2946 
2947 /**
2948  * schedule_work - put work task in global workqueue
2949  * @work: job to be done
2950  *
2951  * Returns %false if @work was already on the kernel-global workqueue and
2952  * %true otherwise.
2953  *
2954  * This puts a job in the kernel-global workqueue if it was not already
2955  * queued and leaves it in the same position on the kernel-global
2956  * workqueue otherwise.
2957  */
2958 bool schedule_work(struct work_struct *work)
2959 {
2960 	return queue_work(system_wq, work);
2961 }
2962 EXPORT_SYMBOL(schedule_work);
2963 
2964 /**
2965  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2966  * @cpu: cpu to use
2967  * @dwork: job to be done
2968  * @delay: number of jiffies to wait
2969  *
2970  * After waiting for a given time this puts a job in the kernel-global
2971  * workqueue on the specified CPU.
2972  */
2973 bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2974 			      unsigned long delay)
2975 {
2976 	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2977 }
2978 EXPORT_SYMBOL(schedule_delayed_work_on);
2979 
2980 /**
2981  * schedule_delayed_work - put work task in global workqueue after delay
2982  * @dwork: job to be done
2983  * @delay: number of jiffies to wait or 0 for immediate execution
2984  *
2985  * After waiting for a given time this puts a job in the kernel-global
2986  * workqueue.
2987  */
2988 bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
2989 {
2990 	return queue_delayed_work(system_wq, dwork, delay);
2991 }
2992 EXPORT_SYMBOL(schedule_delayed_work);
2993 
2994 /**
2995  * schedule_on_each_cpu - execute a function synchronously on each online CPU
2996  * @func: the function to call
2997  *
2998  * schedule_on_each_cpu() executes @func on each online CPU using the
2999  * system workqueue and blocks until all CPUs have completed.
3000  * schedule_on_each_cpu() is very slow.
3001  *
3002  * RETURNS:
3003  * 0 on success, -errno on failure.
3004  */
3005 int schedule_on_each_cpu(work_func_t func)
3006 {
3007 	int cpu;
3008 	struct work_struct __percpu *works;
3009 
3010 	works = alloc_percpu(struct work_struct);
3011 	if (!works)
3012 		return -ENOMEM;
3013 
3014 	get_online_cpus();
3015 
3016 	for_each_online_cpu(cpu) {
3017 		struct work_struct *work = per_cpu_ptr(works, cpu);
3018 
3019 		INIT_WORK(work, func);
3020 		schedule_work_on(cpu, work);
3021 	}
3022 
3023 	for_each_online_cpu(cpu)
3024 		flush_work(per_cpu_ptr(works, cpu));
3025 
3026 	put_online_cpus();
3027 	free_percpu(works);
3028 	return 0;
3029 }
3030 
3031 /**
3032  * flush_scheduled_work - ensure that any scheduled work has run to completion.
3033  *
3034  * Forces execution of the kernel-global workqueue and blocks until its
3035  * completion.
3036  *
3037  * Think twice before calling this function!  It's very easy to get into
3038  * trouble if you don't take great care.  Either of the following situations
3039  * will lead to deadlock:
3040  *
3041  *	One of the work items currently on the workqueue needs to acquire
3042  *	a lock held by your code or its caller.
3043  *
3044  *	Your code is running in the context of a work routine.
3045  *
3046  * They will be detected by lockdep when they occur, but the first might not
3047  * occur very often.  It depends on what work items are on the workqueue and
3048  * what locks they need, which you have no control over.
3049  *
3050  * In most situations flushing the entire workqueue is overkill; you merely
3051  * need to know that a particular work item isn't queued and isn't running.
3052  * In such cases you should use cancel_delayed_work_sync() or
3053  * cancel_work_sync() instead.
3054  */
3055 void flush_scheduled_work(void)
3056 {
3057 	flush_workqueue(system_wq);
3058 }
3059 EXPORT_SYMBOL(flush_scheduled_work);
3060 
3061 /**
3062  * execute_in_process_context - reliably execute the routine with user context
3063  * @fn:		the function to execute
3064  * @ew:		guaranteed storage for the execute work structure (must
3065  *		be available when the work executes)
3066  *
3067  * Executes the function immediately if process context is available,
3068  * otherwise schedules the function for delayed execution.
3069  *
3070  * Returns:	0 - function was executed
3071  *		1 - function was scheduled for execution
3072  */
3073 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3074 {
3075 	if (!in_interrupt()) {
3076 		fn(&ew->work);
3077 		return 0;
3078 	}
3079 
3080 	INIT_WORK(&ew->work, fn);
3081 	schedule_work(&ew->work);
3082 
3083 	return 1;
3084 }
3085 EXPORT_SYMBOL_GPL(execute_in_process_context);
3086 
3087 int keventd_up(void)
3088 {
3089 	return system_wq != NULL;
3090 }
3091 
3092 static int alloc_pwqs(struct workqueue_struct *wq)
3093 {
3094 	/*
3095 	 * pwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3096 	 * Make sure that the alignment isn't lower than that of
3097 	 * unsigned long long.
3098 	 */
3099 	const size_t size = sizeof(struct pool_workqueue);
3100 	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3101 				   __alignof__(unsigned long long));
3102 
3103 	if (!(wq->flags & WQ_UNBOUND))
3104 		wq->pool_wq.pcpu = __alloc_percpu(size, align);
3105 	else {
3106 		void *ptr;
3107 
3108 		/*
3109 		 * Allocate enough room to align pwq and put an extra
3110 		 * pointer at the end pointing back to the originally
3111 		 * allocated pointer which will be used for free.
3112 		 */
3113 		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3114 		if (ptr) {
3115 			wq->pool_wq.single = PTR_ALIGN(ptr, align);
3116 			*(void **)(wq->pool_wq.single + 1) = ptr;
3117 		}
3118 	}
3119 
3120 	/* just in case, make sure it's actually aligned */
3121 	BUG_ON(!IS_ALIGNED(wq->pool_wq.v, align));
3122 	return wq->pool_wq.v ? 0 : -ENOMEM;
3123 }
3124 
3125 static void free_pwqs(struct workqueue_struct *wq)
3126 {
3127 	if (!(wq->flags & WQ_UNBOUND))
3128 		free_percpu(wq->pool_wq.pcpu);
3129 	else if (wq->pool_wq.single) {
3130 		/* the pointer to free is stored right after the pwq */
3131 		kfree(*(void **)(wq->pool_wq.single + 1));
3132 	}
3133 }
3134 
3135 static int wq_clamp_max_active(int max_active, unsigned int flags,
3136 			       const char *name)
3137 {
3138 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3139 
3140 	if (max_active < 1 || max_active > lim)
3141 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3142 			max_active, name, 1, lim);
3143 
3144 	return clamp_val(max_active, 1, lim);
3145 }
3146 
3147 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3148 					       unsigned int flags,
3149 					       int max_active,
3150 					       struct lock_class_key *key,
3151 					       const char *lock_name, ...)
3152 {
3153 	va_list args, args1;
3154 	struct workqueue_struct *wq;
3155 	unsigned int cpu;
3156 	size_t namelen;
3157 
3158 	/* determine namelen, allocate wq and format name */
3159 	va_start(args, lock_name);
3160 	va_copy(args1, args);
3161 	namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3162 
3163 	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3164 	if (!wq)
3165 		goto err;
3166 
3167 	vsnprintf(wq->name, namelen, fmt, args1);
3168 	va_end(args);
3169 	va_end(args1);
3170 
3171 	/*
3172 	 * Workqueues which may be used during memory reclaim should
3173 	 * have a rescuer to guarantee forward progress.
3174 	 */
3175 	if (flags & WQ_MEM_RECLAIM)
3176 		flags |= WQ_RESCUER;
3177 
3178 	max_active = max_active ?: WQ_DFL_ACTIVE;
3179 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3180 
3181 	/* init wq */
3182 	wq->flags = flags;
3183 	wq->saved_max_active = max_active;
3184 	mutex_init(&wq->flush_mutex);
3185 	atomic_set(&wq->nr_pwqs_to_flush, 0);
3186 	INIT_LIST_HEAD(&wq->flusher_queue);
3187 	INIT_LIST_HEAD(&wq->flusher_overflow);
3188 
3189 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3190 	INIT_LIST_HEAD(&wq->list);
3191 
3192 	if (alloc_pwqs(wq) < 0)
3193 		goto err;
3194 
3195 	for_each_pwq_cpu(cpu, wq) {
3196 		struct pool_workqueue *pwq = get_pwq(cpu, wq);
3197 
3198 		BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3199 		pwq->pool = get_std_worker_pool(cpu, flags & WQ_HIGHPRI);
3200 		pwq->wq = wq;
3201 		pwq->flush_color = -1;
3202 		pwq->max_active = max_active;
3203 		INIT_LIST_HEAD(&pwq->delayed_works);
3204 	}
3205 
3206 	if (flags & WQ_RESCUER) {
3207 		struct worker *rescuer;
3208 
3209 		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3210 			goto err;
3211 
3212 		wq->rescuer = rescuer = alloc_worker();
3213 		if (!rescuer)
3214 			goto err;
3215 
3216 		rescuer->rescue_wq = wq;
3217 		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3218 					       wq->name);
3219 		if (IS_ERR(rescuer->task))
3220 			goto err;
3221 
3222 		rescuer->task->flags |= PF_THREAD_BOUND;
3223 		wake_up_process(rescuer->task);
3224 	}
3225 
3226 	/*
3227 	 * workqueue_lock protects global freeze state and workqueues
3228 	 * list.  Grab it, set max_active accordingly and add the new
3229 	 * workqueue to workqueues list.
3230 	 */
3231 	spin_lock(&workqueue_lock);
3232 
3233 	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3234 		for_each_pwq_cpu(cpu, wq)
3235 			get_pwq(cpu, wq)->max_active = 0;
3236 
3237 	list_add(&wq->list, &workqueues);
3238 
3239 	spin_unlock(&workqueue_lock);
3240 
3241 	return wq;
3242 err:
3243 	if (wq) {
3244 		free_pwqs(wq);
3245 		free_mayday_mask(wq->mayday_mask);
3246 		kfree(wq->rescuer);
3247 		kfree(wq);
3248 	}
3249 	return NULL;
3250 }
3251 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3252 
3253 /**
3254  * destroy_workqueue - safely terminate a workqueue
3255  * @wq: target workqueue
3256  *
3257  * Safely destroy a workqueue. All work currently pending will be done first.
3258  */
3259 void destroy_workqueue(struct workqueue_struct *wq)
3260 {
3261 	unsigned int cpu;
3262 
3263 	/* drain it before proceeding with destruction */
3264 	drain_workqueue(wq);
3265 
3266 	/*
3267 	 * wq list is used to freeze wq, remove from list after
3268 	 * flushing is complete in case freeze races us.
3269 	 */
3270 	spin_lock(&workqueue_lock);
3271 	list_del(&wq->list);
3272 	spin_unlock(&workqueue_lock);
3273 
3274 	/* sanity check */
3275 	for_each_pwq_cpu(cpu, wq) {
3276 		struct pool_workqueue *pwq = get_pwq(cpu, wq);
3277 		int i;
3278 
3279 		for (i = 0; i < WORK_NR_COLORS; i++)
3280 			BUG_ON(pwq->nr_in_flight[i]);
3281 		BUG_ON(pwq->nr_active);
3282 		BUG_ON(!list_empty(&pwq->delayed_works));
3283 	}
3284 
3285 	if (wq->flags & WQ_RESCUER) {
3286 		kthread_stop(wq->rescuer->task);
3287 		free_mayday_mask(wq->mayday_mask);
3288 		kfree(wq->rescuer);
3289 	}
3290 
3291 	free_pwqs(wq);
3292 	kfree(wq);
3293 }
3294 EXPORT_SYMBOL_GPL(destroy_workqueue);
3295 
3296 /**
3297  * pwq_set_max_active - adjust max_active of a pwq
3298  * @pwq: target pool_workqueue
3299  * @max_active: new max_active value.
3300  *
3301  * Set @pwq->max_active to @max_active and activate delayed works if
3302  * increased.
3303  *
3304  * CONTEXT:
3305  * spin_lock_irq(pool->lock).
3306  */
3307 static void pwq_set_max_active(struct pool_workqueue *pwq, int max_active)
3308 {
3309 	pwq->max_active = max_active;
3310 
3311 	while (!list_empty(&pwq->delayed_works) &&
3312 	       pwq->nr_active < pwq->max_active)
3313 		pwq_activate_first_delayed(pwq);
3314 }
3315 
3316 /**
3317  * workqueue_set_max_active - adjust max_active of a workqueue
3318  * @wq: target workqueue
3319  * @max_active: new max_active value.
3320  *
3321  * Set max_active of @wq to @max_active.
3322  *
3323  * CONTEXT:
3324  * Don't call from IRQ context.
3325  */
3326 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3327 {
3328 	unsigned int cpu;
3329 
3330 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3331 
3332 	spin_lock(&workqueue_lock);
3333 
3334 	wq->saved_max_active = max_active;
3335 
3336 	for_each_pwq_cpu(cpu, wq) {
3337 		struct pool_workqueue *pwq = get_pwq(cpu, wq);
3338 		struct worker_pool *pool = pwq->pool;
3339 
3340 		spin_lock_irq(&pool->lock);
3341 
3342 		if (!(wq->flags & WQ_FREEZABLE) ||
3343 		    !(pool->flags & POOL_FREEZING))
3344 			pwq_set_max_active(pwq, max_active);
3345 
3346 		spin_unlock_irq(&pool->lock);
3347 	}
3348 
3349 	spin_unlock(&workqueue_lock);
3350 }
3351 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3352 
3353 /**
3354  * workqueue_congested - test whether a workqueue is congested
3355  * @cpu: CPU in question
3356  * @wq: target workqueue
3357  *
3358  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
3359  * no synchronization around this function and the test result is
3360  * unreliable and only useful as advisory hints or for debugging.
3361  *
3362  * RETURNS:
3363  * %true if congested, %false otherwise.
3364  */
3365 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3366 {
3367 	struct pool_workqueue *pwq = get_pwq(cpu, wq);
3368 
3369 	return !list_empty(&pwq->delayed_works);
3370 }
3371 EXPORT_SYMBOL_GPL(workqueue_congested);
3372 
3373 /**
3374  * work_busy - test whether a work is currently pending or running
3375  * @work: the work to be tested
3376  *
3377  * Test whether @work is currently pending or running.  There is no
3378  * synchronization around this function and the test result is
3379  * unreliable and only useful as advisory hints or for debugging.
3380  *
3381  * RETURNS:
3382  * OR'd bitmask of WORK_BUSY_* bits.
3383  */
3384 unsigned int work_busy(struct work_struct *work)
3385 {
3386 	struct worker_pool *pool = get_work_pool(work);
3387 	unsigned long flags;
3388 	unsigned int ret = 0;
3389 
3390 	if (work_pending(work))
3391 		ret |= WORK_BUSY_PENDING;
3392 
3393 	if (pool) {
3394 		spin_lock_irqsave(&pool->lock, flags);
3395 		if (find_worker_executing_work(pool, work))
3396 			ret |= WORK_BUSY_RUNNING;
3397 		spin_unlock_irqrestore(&pool->lock, flags);
3398 	}
3399 
3400 	return ret;
3401 }
3402 EXPORT_SYMBOL_GPL(work_busy);
3403 
3404 /*
3405  * CPU hotplug.
3406  *
3407  * There are two challenges in supporting CPU hotplug.  Firstly, there
3408  * are a lot of assumptions on strong associations among work, pwq and
3409  * pool which make migrating pending and scheduled works very
3410  * difficult to implement without impacting hot paths.  Secondly,
3411  * worker pools serve mix of short, long and very long running works making
3412  * blocked draining impractical.
3413  *
3414  * This is solved by allowing the pools to be disassociated from the CPU
3415  * running as an unbound one and allowing it to be reattached later if the
3416  * cpu comes back online.
3417  */
3418 
3419 static void wq_unbind_fn(struct work_struct *work)
3420 {
3421 	int cpu = smp_processor_id();
3422 	struct worker_pool *pool;
3423 	struct worker *worker;
3424 	int i;
3425 
3426 	for_each_std_worker_pool(pool, cpu) {
3427 		BUG_ON(cpu != smp_processor_id());
3428 
3429 		mutex_lock(&pool->assoc_mutex);
3430 		spin_lock_irq(&pool->lock);
3431 
3432 		/*
3433 		 * We've claimed all manager positions.  Make all workers
3434 		 * unbound and set DISASSOCIATED.  Before this, all workers
3435 		 * except for the ones which are still executing works from
3436 		 * before the last CPU down must be on the cpu.  After
3437 		 * this, they may become diasporas.
3438 		 */
3439 		list_for_each_entry(worker, &pool->idle_list, entry)
3440 			worker->flags |= WORKER_UNBOUND;
3441 
3442 		for_each_busy_worker(worker, i, pool)
3443 			worker->flags |= WORKER_UNBOUND;
3444 
3445 		pool->flags |= POOL_DISASSOCIATED;
3446 
3447 		spin_unlock_irq(&pool->lock);
3448 		mutex_unlock(&pool->assoc_mutex);
3449 	}
3450 
3451 	/*
3452 	 * Call schedule() so that we cross rq->lock and thus can guarantee
3453 	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
3454 	 * as scheduler callbacks may be invoked from other cpus.
3455 	 */
3456 	schedule();
3457 
3458 	/*
3459 	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
3460 	 * nr_running stays zero and need_more_worker() and keep_working()
3461 	 * are always true as long as the worklist is not empty.  Pools on
3462 	 * @cpu now behave as unbound (in terms of concurrency management)
3463 	 * pools which are served by workers tied to the CPU.
3464 	 *
3465 	 * On return from this function, the current worker would trigger
3466 	 * unbound chain execution of pending work items if other workers
3467 	 * didn't already.
3468 	 */
3469 	for_each_std_worker_pool(pool, cpu)
3470 		atomic_set(&pool->nr_running, 0);
3471 }
3472 
3473 /*
3474  * Workqueues should be brought up before normal priority CPU notifiers.
3475  * This will be registered high priority CPU notifier.
3476  */
3477 static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3478 					       unsigned long action,
3479 					       void *hcpu)
3480 {
3481 	unsigned int cpu = (unsigned long)hcpu;
3482 	struct worker_pool *pool;
3483 
3484 	switch (action & ~CPU_TASKS_FROZEN) {
3485 	case CPU_UP_PREPARE:
3486 		for_each_std_worker_pool(pool, cpu) {
3487 			struct worker *worker;
3488 
3489 			if (pool->nr_workers)
3490 				continue;
3491 
3492 			worker = create_worker(pool);
3493 			if (!worker)
3494 				return NOTIFY_BAD;
3495 
3496 			spin_lock_irq(&pool->lock);
3497 			start_worker(worker);
3498 			spin_unlock_irq(&pool->lock);
3499 		}
3500 		break;
3501 
3502 	case CPU_DOWN_FAILED:
3503 	case CPU_ONLINE:
3504 		for_each_std_worker_pool(pool, cpu) {
3505 			mutex_lock(&pool->assoc_mutex);
3506 			spin_lock_irq(&pool->lock);
3507 
3508 			pool->flags &= ~POOL_DISASSOCIATED;
3509 			rebind_workers(pool);
3510 
3511 			spin_unlock_irq(&pool->lock);
3512 			mutex_unlock(&pool->assoc_mutex);
3513 		}
3514 		break;
3515 	}
3516 	return NOTIFY_OK;
3517 }
3518 
3519 /*
3520  * Workqueues should be brought down after normal priority CPU notifiers.
3521  * This will be registered as low priority CPU notifier.
3522  */
3523 static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3524 						 unsigned long action,
3525 						 void *hcpu)
3526 {
3527 	unsigned int cpu = (unsigned long)hcpu;
3528 	struct work_struct unbind_work;
3529 
3530 	switch (action & ~CPU_TASKS_FROZEN) {
3531 	case CPU_DOWN_PREPARE:
3532 		/* unbinding should happen on the local CPU */
3533 		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
3534 		queue_work_on(cpu, system_highpri_wq, &unbind_work);
3535 		flush_work(&unbind_work);
3536 		break;
3537 	}
3538 	return NOTIFY_OK;
3539 }
3540 
3541 #ifdef CONFIG_SMP
3542 
3543 struct work_for_cpu {
3544 	struct work_struct work;
3545 	long (*fn)(void *);
3546 	void *arg;
3547 	long ret;
3548 };
3549 
3550 static void work_for_cpu_fn(struct work_struct *work)
3551 {
3552 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3553 
3554 	wfc->ret = wfc->fn(wfc->arg);
3555 }
3556 
3557 /**
3558  * work_on_cpu - run a function in user context on a particular cpu
3559  * @cpu: the cpu to run on
3560  * @fn: the function to run
3561  * @arg: the function arg
3562  *
3563  * This will return the value @fn returns.
3564  * It is up to the caller to ensure that the cpu doesn't go offline.
3565  * The caller must not hold any locks which would prevent @fn from completing.
3566  */
3567 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3568 {
3569 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3570 
3571 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3572 	schedule_work_on(cpu, &wfc.work);
3573 	flush_work(&wfc.work);
3574 	return wfc.ret;
3575 }
3576 EXPORT_SYMBOL_GPL(work_on_cpu);
3577 #endif /* CONFIG_SMP */
3578 
3579 #ifdef CONFIG_FREEZER
3580 
3581 /**
3582  * freeze_workqueues_begin - begin freezing workqueues
3583  *
3584  * Start freezing workqueues.  After this function returns, all freezable
3585  * workqueues will queue new works to their frozen_works list instead of
3586  * pool->worklist.
3587  *
3588  * CONTEXT:
3589  * Grabs and releases workqueue_lock and pool->lock's.
3590  */
3591 void freeze_workqueues_begin(void)
3592 {
3593 	unsigned int cpu;
3594 
3595 	spin_lock(&workqueue_lock);
3596 
3597 	BUG_ON(workqueue_freezing);
3598 	workqueue_freezing = true;
3599 
3600 	for_each_wq_cpu(cpu) {
3601 		struct worker_pool *pool;
3602 		struct workqueue_struct *wq;
3603 
3604 		for_each_std_worker_pool(pool, cpu) {
3605 			spin_lock_irq(&pool->lock);
3606 
3607 			WARN_ON_ONCE(pool->flags & POOL_FREEZING);
3608 			pool->flags |= POOL_FREEZING;
3609 
3610 			list_for_each_entry(wq, &workqueues, list) {
3611 				struct pool_workqueue *pwq = get_pwq(cpu, wq);
3612 
3613 				if (pwq && pwq->pool == pool &&
3614 				    (wq->flags & WQ_FREEZABLE))
3615 					pwq->max_active = 0;
3616 			}
3617 
3618 			spin_unlock_irq(&pool->lock);
3619 		}
3620 	}
3621 
3622 	spin_unlock(&workqueue_lock);
3623 }
3624 
3625 /**
3626  * freeze_workqueues_busy - are freezable workqueues still busy?
3627  *
3628  * Check whether freezing is complete.  This function must be called
3629  * between freeze_workqueues_begin() and thaw_workqueues().
3630  *
3631  * CONTEXT:
3632  * Grabs and releases workqueue_lock.
3633  *
3634  * RETURNS:
3635  * %true if some freezable workqueues are still busy.  %false if freezing
3636  * is complete.
3637  */
3638 bool freeze_workqueues_busy(void)
3639 {
3640 	unsigned int cpu;
3641 	bool busy = false;
3642 
3643 	spin_lock(&workqueue_lock);
3644 
3645 	BUG_ON(!workqueue_freezing);
3646 
3647 	for_each_wq_cpu(cpu) {
3648 		struct workqueue_struct *wq;
3649 		/*
3650 		 * nr_active is monotonically decreasing.  It's safe
3651 		 * to peek without lock.
3652 		 */
3653 		list_for_each_entry(wq, &workqueues, list) {
3654 			struct pool_workqueue *pwq = get_pwq(cpu, wq);
3655 
3656 			if (!pwq || !(wq->flags & WQ_FREEZABLE))
3657 				continue;
3658 
3659 			BUG_ON(pwq->nr_active < 0);
3660 			if (pwq->nr_active) {
3661 				busy = true;
3662 				goto out_unlock;
3663 			}
3664 		}
3665 	}
3666 out_unlock:
3667 	spin_unlock(&workqueue_lock);
3668 	return busy;
3669 }
3670 
3671 /**
3672  * thaw_workqueues - thaw workqueues
3673  *
3674  * Thaw workqueues.  Normal queueing is restored and all collected
3675  * frozen works are transferred to their respective pool worklists.
3676  *
3677  * CONTEXT:
3678  * Grabs and releases workqueue_lock and pool->lock's.
3679  */
3680 void thaw_workqueues(void)
3681 {
3682 	unsigned int cpu;
3683 
3684 	spin_lock(&workqueue_lock);
3685 
3686 	if (!workqueue_freezing)
3687 		goto out_unlock;
3688 
3689 	for_each_wq_cpu(cpu) {
3690 		struct worker_pool *pool;
3691 		struct workqueue_struct *wq;
3692 
3693 		for_each_std_worker_pool(pool, cpu) {
3694 			spin_lock_irq(&pool->lock);
3695 
3696 			WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
3697 			pool->flags &= ~POOL_FREEZING;
3698 
3699 			list_for_each_entry(wq, &workqueues, list) {
3700 				struct pool_workqueue *pwq = get_pwq(cpu, wq);
3701 
3702 				if (!pwq || pwq->pool != pool ||
3703 				    !(wq->flags & WQ_FREEZABLE))
3704 					continue;
3705 
3706 				/* restore max_active and repopulate worklist */
3707 				pwq_set_max_active(pwq, wq->saved_max_active);
3708 			}
3709 
3710 			wake_up_worker(pool);
3711 
3712 			spin_unlock_irq(&pool->lock);
3713 		}
3714 	}
3715 
3716 	workqueue_freezing = false;
3717 out_unlock:
3718 	spin_unlock(&workqueue_lock);
3719 }
3720 #endif /* CONFIG_FREEZER */
3721 
3722 static int __init init_workqueues(void)
3723 {
3724 	unsigned int cpu;
3725 
3726 	/* make sure we have enough bits for OFFQ pool ID */
3727 	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
3728 		     WORK_CPU_END * NR_STD_WORKER_POOLS);
3729 
3730 	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3731 	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3732 
3733 	/* initialize CPU pools */
3734 	for_each_wq_cpu(cpu) {
3735 		struct worker_pool *pool;
3736 
3737 		for_each_std_worker_pool(pool, cpu) {
3738 			spin_lock_init(&pool->lock);
3739 			pool->cpu = cpu;
3740 			pool->flags |= POOL_DISASSOCIATED;
3741 			INIT_LIST_HEAD(&pool->worklist);
3742 			INIT_LIST_HEAD(&pool->idle_list);
3743 			hash_init(pool->busy_hash);
3744 
3745 			init_timer_deferrable(&pool->idle_timer);
3746 			pool->idle_timer.function = idle_worker_timeout;
3747 			pool->idle_timer.data = (unsigned long)pool;
3748 
3749 			setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3750 				    (unsigned long)pool);
3751 
3752 			mutex_init(&pool->assoc_mutex);
3753 			ida_init(&pool->worker_ida);
3754 
3755 			/* alloc pool ID */
3756 			BUG_ON(worker_pool_assign_id(pool));
3757 		}
3758 	}
3759 
3760 	/* create the initial worker */
3761 	for_each_online_wq_cpu(cpu) {
3762 		struct worker_pool *pool;
3763 
3764 		for_each_std_worker_pool(pool, cpu) {
3765 			struct worker *worker;
3766 
3767 			if (cpu != WORK_CPU_UNBOUND)
3768 				pool->flags &= ~POOL_DISASSOCIATED;
3769 
3770 			worker = create_worker(pool);
3771 			BUG_ON(!worker);
3772 			spin_lock_irq(&pool->lock);
3773 			start_worker(worker);
3774 			spin_unlock_irq(&pool->lock);
3775 		}
3776 	}
3777 
3778 	system_wq = alloc_workqueue("events", 0, 0);
3779 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3780 	system_long_wq = alloc_workqueue("events_long", 0, 0);
3781 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3782 					    WQ_UNBOUND_MAX_ACTIVE);
3783 	system_freezable_wq = alloc_workqueue("events_freezable",
3784 					      WQ_FREEZABLE, 0);
3785 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3786 	       !system_unbound_wq || !system_freezable_wq);
3787 	return 0;
3788 }
3789 early_initcall(init_workqueues);
3790