1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There is one worker pool for each CPU and 20 * one extra for works which are better served by workers which are 21 * not bound to any specific CPU. 22 * 23 * Please read Documentation/workqueue.txt for details. 24 */ 25 26 #include <linux/export.h> 27 #include <linux/kernel.h> 28 #include <linux/sched.h> 29 #include <linux/init.h> 30 #include <linux/signal.h> 31 #include <linux/completion.h> 32 #include <linux/workqueue.h> 33 #include <linux/slab.h> 34 #include <linux/cpu.h> 35 #include <linux/notifier.h> 36 #include <linux/kthread.h> 37 #include <linux/hardirq.h> 38 #include <linux/mempolicy.h> 39 #include <linux/freezer.h> 40 #include <linux/kallsyms.h> 41 #include <linux/debug_locks.h> 42 #include <linux/lockdep.h> 43 #include <linux/idr.h> 44 #include <linux/hashtable.h> 45 46 #include "workqueue_internal.h" 47 48 enum { 49 /* 50 * worker_pool flags 51 * 52 * A bound pool is either associated or disassociated with its CPU. 53 * While associated (!DISASSOCIATED), all workers are bound to the 54 * CPU and none has %WORKER_UNBOUND set and concurrency management 55 * is in effect. 56 * 57 * While DISASSOCIATED, the cpu may be offline and all workers have 58 * %WORKER_UNBOUND set and concurrency management disabled, and may 59 * be executing on any CPU. The pool behaves as an unbound one. 60 * 61 * Note that DISASSOCIATED can be flipped only while holding 62 * assoc_mutex to avoid changing binding state while 63 * create_worker() is in progress. 64 */ 65 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */ 66 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */ 67 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 68 POOL_FREEZING = 1 << 3, /* freeze in progress */ 69 70 /* worker flags */ 71 WORKER_STARTED = 1 << 0, /* started */ 72 WORKER_DIE = 1 << 1, /* die die die */ 73 WORKER_IDLE = 1 << 2, /* is idle */ 74 WORKER_PREP = 1 << 3, /* preparing to run works */ 75 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 76 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 77 78 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND | 79 WORKER_CPU_INTENSIVE, 80 81 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 82 83 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 84 85 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 86 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 87 88 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 89 /* call for help after 10ms 90 (min two ticks) */ 91 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 92 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 93 94 /* 95 * Rescue workers are used only on emergencies and shared by 96 * all cpus. Give -20. 97 */ 98 RESCUER_NICE_LEVEL = -20, 99 HIGHPRI_NICE_LEVEL = -20, 100 }; 101 102 /* 103 * Structure fields follow one of the following exclusion rules. 104 * 105 * I: Modifiable by initialization/destruction paths and read-only for 106 * everyone else. 107 * 108 * P: Preemption protected. Disabling preemption is enough and should 109 * only be modified and accessed from the local cpu. 110 * 111 * L: pool->lock protected. Access with pool->lock held. 112 * 113 * X: During normal operation, modification requires pool->lock and should 114 * be done only from local cpu. Either disabling preemption on local 115 * cpu or grabbing pool->lock is enough for read access. If 116 * POOL_DISASSOCIATED is set, it's identical to L. 117 * 118 * F: wq->flush_mutex protected. 119 * 120 * W: workqueue_lock protected. 121 */ 122 123 /* struct worker is defined in workqueue_internal.h */ 124 125 struct worker_pool { 126 spinlock_t lock; /* the pool lock */ 127 unsigned int cpu; /* I: the associated cpu */ 128 int id; /* I: pool ID */ 129 unsigned int flags; /* X: flags */ 130 131 struct list_head worklist; /* L: list of pending works */ 132 int nr_workers; /* L: total number of workers */ 133 134 /* nr_idle includes the ones off idle_list for rebinding */ 135 int nr_idle; /* L: currently idle ones */ 136 137 struct list_head idle_list; /* X: list of idle workers */ 138 struct timer_list idle_timer; /* L: worker idle timeout */ 139 struct timer_list mayday_timer; /* L: SOS timer for workers */ 140 141 /* workers are chained either in busy_hash or idle_list */ 142 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 143 /* L: hash of busy workers */ 144 145 struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */ 146 struct ida worker_ida; /* L: for worker IDs */ 147 148 /* 149 * The current concurrency level. As it's likely to be accessed 150 * from other CPUs during try_to_wake_up(), put it in a separate 151 * cacheline. 152 */ 153 atomic_t nr_running ____cacheline_aligned_in_smp; 154 } ____cacheline_aligned_in_smp; 155 156 /* 157 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 158 * of work_struct->data are used for flags and the remaining high bits 159 * point to the pwq; thus, pwqs need to be aligned at two's power of the 160 * number of flag bits. 161 */ 162 struct pool_workqueue { 163 struct worker_pool *pool; /* I: the associated pool */ 164 struct workqueue_struct *wq; /* I: the owning workqueue */ 165 int work_color; /* L: current color */ 166 int flush_color; /* L: flushing color */ 167 int nr_in_flight[WORK_NR_COLORS]; 168 /* L: nr of in_flight works */ 169 int nr_active; /* L: nr of active works */ 170 int max_active; /* L: max active works */ 171 struct list_head delayed_works; /* L: delayed works */ 172 }; 173 174 /* 175 * Structure used to wait for workqueue flush. 176 */ 177 struct wq_flusher { 178 struct list_head list; /* F: list of flushers */ 179 int flush_color; /* F: flush color waiting for */ 180 struct completion done; /* flush completion */ 181 }; 182 183 /* 184 * All cpumasks are assumed to be always set on UP and thus can't be 185 * used to determine whether there's something to be done. 186 */ 187 #ifdef CONFIG_SMP 188 typedef cpumask_var_t mayday_mask_t; 189 #define mayday_test_and_set_cpu(cpu, mask) \ 190 cpumask_test_and_set_cpu((cpu), (mask)) 191 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask)) 192 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask)) 193 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp)) 194 #define free_mayday_mask(mask) free_cpumask_var((mask)) 195 #else 196 typedef unsigned long mayday_mask_t; 197 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask)) 198 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask)) 199 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask)) 200 #define alloc_mayday_mask(maskp, gfp) true 201 #define free_mayday_mask(mask) do { } while (0) 202 #endif 203 204 /* 205 * The externally visible workqueue abstraction is an array of 206 * per-CPU workqueues: 207 */ 208 struct workqueue_struct { 209 unsigned int flags; /* W: WQ_* flags */ 210 union { 211 struct pool_workqueue __percpu *pcpu; 212 struct pool_workqueue *single; 213 unsigned long v; 214 } pool_wq; /* I: pwq's */ 215 struct list_head list; /* W: list of all workqueues */ 216 217 struct mutex flush_mutex; /* protects wq flushing */ 218 int work_color; /* F: current work color */ 219 int flush_color; /* F: current flush color */ 220 atomic_t nr_pwqs_to_flush; /* flush in progress */ 221 struct wq_flusher *first_flusher; /* F: first flusher */ 222 struct list_head flusher_queue; /* F: flush waiters */ 223 struct list_head flusher_overflow; /* F: flush overflow list */ 224 225 mayday_mask_t mayday_mask; /* cpus requesting rescue */ 226 struct worker *rescuer; /* I: rescue worker */ 227 228 int nr_drainers; /* W: drain in progress */ 229 int saved_max_active; /* W: saved pwq max_active */ 230 #ifdef CONFIG_LOCKDEP 231 struct lockdep_map lockdep_map; 232 #endif 233 char name[]; /* I: workqueue name */ 234 }; 235 236 struct workqueue_struct *system_wq __read_mostly; 237 EXPORT_SYMBOL_GPL(system_wq); 238 struct workqueue_struct *system_highpri_wq __read_mostly; 239 EXPORT_SYMBOL_GPL(system_highpri_wq); 240 struct workqueue_struct *system_long_wq __read_mostly; 241 EXPORT_SYMBOL_GPL(system_long_wq); 242 struct workqueue_struct *system_unbound_wq __read_mostly; 243 EXPORT_SYMBOL_GPL(system_unbound_wq); 244 struct workqueue_struct *system_freezable_wq __read_mostly; 245 EXPORT_SYMBOL_GPL(system_freezable_wq); 246 247 #define CREATE_TRACE_POINTS 248 #include <trace/events/workqueue.h> 249 250 #define for_each_std_worker_pool(pool, cpu) \ 251 for ((pool) = &std_worker_pools(cpu)[0]; \ 252 (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++) 253 254 #define for_each_busy_worker(worker, i, pool) \ 255 hash_for_each(pool->busy_hash, i, worker, hentry) 256 257 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask, 258 unsigned int sw) 259 { 260 if (cpu < nr_cpu_ids) { 261 if (sw & 1) { 262 cpu = cpumask_next(cpu, mask); 263 if (cpu < nr_cpu_ids) 264 return cpu; 265 } 266 if (sw & 2) 267 return WORK_CPU_UNBOUND; 268 } 269 return WORK_CPU_END; 270 } 271 272 static inline int __next_pwq_cpu(int cpu, const struct cpumask *mask, 273 struct workqueue_struct *wq) 274 { 275 return __next_wq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2); 276 } 277 278 /* 279 * CPU iterators 280 * 281 * An extra cpu number is defined using an invalid cpu number 282 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any 283 * specific CPU. The following iterators are similar to for_each_*_cpu() 284 * iterators but also considers the unbound CPU. 285 * 286 * for_each_wq_cpu() : possible CPUs + WORK_CPU_UNBOUND 287 * for_each_online_wq_cpu() : online CPUs + WORK_CPU_UNBOUND 288 * for_each_pwq_cpu() : possible CPUs for bound workqueues, 289 * WORK_CPU_UNBOUND for unbound workqueues 290 */ 291 #define for_each_wq_cpu(cpu) \ 292 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3); \ 293 (cpu) < WORK_CPU_END; \ 294 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3)) 295 296 #define for_each_online_wq_cpu(cpu) \ 297 for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3); \ 298 (cpu) < WORK_CPU_END; \ 299 (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3)) 300 301 #define for_each_pwq_cpu(cpu, wq) \ 302 for ((cpu) = __next_pwq_cpu(-1, cpu_possible_mask, (wq)); \ 303 (cpu) < WORK_CPU_END; \ 304 (cpu) = __next_pwq_cpu((cpu), cpu_possible_mask, (wq))) 305 306 #ifdef CONFIG_DEBUG_OBJECTS_WORK 307 308 static struct debug_obj_descr work_debug_descr; 309 310 static void *work_debug_hint(void *addr) 311 { 312 return ((struct work_struct *) addr)->func; 313 } 314 315 /* 316 * fixup_init is called when: 317 * - an active object is initialized 318 */ 319 static int work_fixup_init(void *addr, enum debug_obj_state state) 320 { 321 struct work_struct *work = addr; 322 323 switch (state) { 324 case ODEBUG_STATE_ACTIVE: 325 cancel_work_sync(work); 326 debug_object_init(work, &work_debug_descr); 327 return 1; 328 default: 329 return 0; 330 } 331 } 332 333 /* 334 * fixup_activate is called when: 335 * - an active object is activated 336 * - an unknown object is activated (might be a statically initialized object) 337 */ 338 static int work_fixup_activate(void *addr, enum debug_obj_state state) 339 { 340 struct work_struct *work = addr; 341 342 switch (state) { 343 344 case ODEBUG_STATE_NOTAVAILABLE: 345 /* 346 * This is not really a fixup. The work struct was 347 * statically initialized. We just make sure that it 348 * is tracked in the object tracker. 349 */ 350 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) { 351 debug_object_init(work, &work_debug_descr); 352 debug_object_activate(work, &work_debug_descr); 353 return 0; 354 } 355 WARN_ON_ONCE(1); 356 return 0; 357 358 case ODEBUG_STATE_ACTIVE: 359 WARN_ON(1); 360 361 default: 362 return 0; 363 } 364 } 365 366 /* 367 * fixup_free is called when: 368 * - an active object is freed 369 */ 370 static int work_fixup_free(void *addr, enum debug_obj_state state) 371 { 372 struct work_struct *work = addr; 373 374 switch (state) { 375 case ODEBUG_STATE_ACTIVE: 376 cancel_work_sync(work); 377 debug_object_free(work, &work_debug_descr); 378 return 1; 379 default: 380 return 0; 381 } 382 } 383 384 static struct debug_obj_descr work_debug_descr = { 385 .name = "work_struct", 386 .debug_hint = work_debug_hint, 387 .fixup_init = work_fixup_init, 388 .fixup_activate = work_fixup_activate, 389 .fixup_free = work_fixup_free, 390 }; 391 392 static inline void debug_work_activate(struct work_struct *work) 393 { 394 debug_object_activate(work, &work_debug_descr); 395 } 396 397 static inline void debug_work_deactivate(struct work_struct *work) 398 { 399 debug_object_deactivate(work, &work_debug_descr); 400 } 401 402 void __init_work(struct work_struct *work, int onstack) 403 { 404 if (onstack) 405 debug_object_init_on_stack(work, &work_debug_descr); 406 else 407 debug_object_init(work, &work_debug_descr); 408 } 409 EXPORT_SYMBOL_GPL(__init_work); 410 411 void destroy_work_on_stack(struct work_struct *work) 412 { 413 debug_object_free(work, &work_debug_descr); 414 } 415 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 416 417 #else 418 static inline void debug_work_activate(struct work_struct *work) { } 419 static inline void debug_work_deactivate(struct work_struct *work) { } 420 #endif 421 422 /* Serializes the accesses to the list of workqueues. */ 423 static DEFINE_SPINLOCK(workqueue_lock); 424 static LIST_HEAD(workqueues); 425 static bool workqueue_freezing; /* W: have wqs started freezing? */ 426 427 /* 428 * The CPU and unbound standard worker pools. The unbound ones have 429 * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set. 430 */ 431 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 432 cpu_std_worker_pools); 433 static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS]; 434 435 /* idr of all pools */ 436 static DEFINE_MUTEX(worker_pool_idr_mutex); 437 static DEFINE_IDR(worker_pool_idr); 438 439 static int worker_thread(void *__worker); 440 441 static struct worker_pool *std_worker_pools(int cpu) 442 { 443 if (cpu != WORK_CPU_UNBOUND) 444 return per_cpu(cpu_std_worker_pools, cpu); 445 else 446 return unbound_std_worker_pools; 447 } 448 449 static int std_worker_pool_pri(struct worker_pool *pool) 450 { 451 return pool - std_worker_pools(pool->cpu); 452 } 453 454 /* allocate ID and assign it to @pool */ 455 static int worker_pool_assign_id(struct worker_pool *pool) 456 { 457 int ret; 458 459 mutex_lock(&worker_pool_idr_mutex); 460 idr_pre_get(&worker_pool_idr, GFP_KERNEL); 461 ret = idr_get_new(&worker_pool_idr, pool, &pool->id); 462 mutex_unlock(&worker_pool_idr_mutex); 463 464 return ret; 465 } 466 467 /* 468 * Lookup worker_pool by id. The idr currently is built during boot and 469 * never modified. Don't worry about locking for now. 470 */ 471 static struct worker_pool *worker_pool_by_id(int pool_id) 472 { 473 return idr_find(&worker_pool_idr, pool_id); 474 } 475 476 static struct worker_pool *get_std_worker_pool(int cpu, bool highpri) 477 { 478 struct worker_pool *pools = std_worker_pools(cpu); 479 480 return &pools[highpri]; 481 } 482 483 static struct pool_workqueue *get_pwq(unsigned int cpu, 484 struct workqueue_struct *wq) 485 { 486 if (!(wq->flags & WQ_UNBOUND)) { 487 if (likely(cpu < nr_cpu_ids)) 488 return per_cpu_ptr(wq->pool_wq.pcpu, cpu); 489 } else if (likely(cpu == WORK_CPU_UNBOUND)) 490 return wq->pool_wq.single; 491 return NULL; 492 } 493 494 static unsigned int work_color_to_flags(int color) 495 { 496 return color << WORK_STRUCT_COLOR_SHIFT; 497 } 498 499 static int get_work_color(struct work_struct *work) 500 { 501 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 502 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 503 } 504 505 static int work_next_color(int color) 506 { 507 return (color + 1) % WORK_NR_COLORS; 508 } 509 510 /* 511 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 512 * contain the pointer to the queued pwq. Once execution starts, the flag 513 * is cleared and the high bits contain OFFQ flags and pool ID. 514 * 515 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 516 * and clear_work_data() can be used to set the pwq, pool or clear 517 * work->data. These functions should only be called while the work is 518 * owned - ie. while the PENDING bit is set. 519 * 520 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 521 * corresponding to a work. Pool is available once the work has been 522 * queued anywhere after initialization until it is sync canceled. pwq is 523 * available only while the work item is queued. 524 * 525 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 526 * canceled. While being canceled, a work item may have its PENDING set 527 * but stay off timer and worklist for arbitrarily long and nobody should 528 * try to steal the PENDING bit. 529 */ 530 static inline void set_work_data(struct work_struct *work, unsigned long data, 531 unsigned long flags) 532 { 533 BUG_ON(!work_pending(work)); 534 atomic_long_set(&work->data, data | flags | work_static(work)); 535 } 536 537 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 538 unsigned long extra_flags) 539 { 540 set_work_data(work, (unsigned long)pwq, 541 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 542 } 543 544 static void set_work_pool_and_keep_pending(struct work_struct *work, 545 int pool_id) 546 { 547 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 548 WORK_STRUCT_PENDING); 549 } 550 551 static void set_work_pool_and_clear_pending(struct work_struct *work, 552 int pool_id) 553 { 554 /* 555 * The following wmb is paired with the implied mb in 556 * test_and_set_bit(PENDING) and ensures all updates to @work made 557 * here are visible to and precede any updates by the next PENDING 558 * owner. 559 */ 560 smp_wmb(); 561 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 562 } 563 564 static void clear_work_data(struct work_struct *work) 565 { 566 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 567 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 568 } 569 570 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 571 { 572 unsigned long data = atomic_long_read(&work->data); 573 574 if (data & WORK_STRUCT_PWQ) 575 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 576 else 577 return NULL; 578 } 579 580 /** 581 * get_work_pool - return the worker_pool a given work was associated with 582 * @work: the work item of interest 583 * 584 * Return the worker_pool @work was last associated with. %NULL if none. 585 */ 586 static struct worker_pool *get_work_pool(struct work_struct *work) 587 { 588 unsigned long data = atomic_long_read(&work->data); 589 struct worker_pool *pool; 590 int pool_id; 591 592 if (data & WORK_STRUCT_PWQ) 593 return ((struct pool_workqueue *) 594 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 595 596 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 597 if (pool_id == WORK_OFFQ_POOL_NONE) 598 return NULL; 599 600 pool = worker_pool_by_id(pool_id); 601 WARN_ON_ONCE(!pool); 602 return pool; 603 } 604 605 /** 606 * get_work_pool_id - return the worker pool ID a given work is associated with 607 * @work: the work item of interest 608 * 609 * Return the worker_pool ID @work was last associated with. 610 * %WORK_OFFQ_POOL_NONE if none. 611 */ 612 static int get_work_pool_id(struct work_struct *work) 613 { 614 unsigned long data = atomic_long_read(&work->data); 615 616 if (data & WORK_STRUCT_PWQ) 617 return ((struct pool_workqueue *) 618 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 619 620 return data >> WORK_OFFQ_POOL_SHIFT; 621 } 622 623 static void mark_work_canceling(struct work_struct *work) 624 { 625 unsigned long pool_id = get_work_pool_id(work); 626 627 pool_id <<= WORK_OFFQ_POOL_SHIFT; 628 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 629 } 630 631 static bool work_is_canceling(struct work_struct *work) 632 { 633 unsigned long data = atomic_long_read(&work->data); 634 635 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 636 } 637 638 /* 639 * Policy functions. These define the policies on how the global worker 640 * pools are managed. Unless noted otherwise, these functions assume that 641 * they're being called with pool->lock held. 642 */ 643 644 static bool __need_more_worker(struct worker_pool *pool) 645 { 646 return !atomic_read(&pool->nr_running); 647 } 648 649 /* 650 * Need to wake up a worker? Called from anything but currently 651 * running workers. 652 * 653 * Note that, because unbound workers never contribute to nr_running, this 654 * function will always return %true for unbound pools as long as the 655 * worklist isn't empty. 656 */ 657 static bool need_more_worker(struct worker_pool *pool) 658 { 659 return !list_empty(&pool->worklist) && __need_more_worker(pool); 660 } 661 662 /* Can I start working? Called from busy but !running workers. */ 663 static bool may_start_working(struct worker_pool *pool) 664 { 665 return pool->nr_idle; 666 } 667 668 /* Do I need to keep working? Called from currently running workers. */ 669 static bool keep_working(struct worker_pool *pool) 670 { 671 return !list_empty(&pool->worklist) && 672 atomic_read(&pool->nr_running) <= 1; 673 } 674 675 /* Do we need a new worker? Called from manager. */ 676 static bool need_to_create_worker(struct worker_pool *pool) 677 { 678 return need_more_worker(pool) && !may_start_working(pool); 679 } 680 681 /* Do I need to be the manager? */ 682 static bool need_to_manage_workers(struct worker_pool *pool) 683 { 684 return need_to_create_worker(pool) || 685 (pool->flags & POOL_MANAGE_WORKERS); 686 } 687 688 /* Do we have too many workers and should some go away? */ 689 static bool too_many_workers(struct worker_pool *pool) 690 { 691 bool managing = pool->flags & POOL_MANAGING_WORKERS; 692 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 693 int nr_busy = pool->nr_workers - nr_idle; 694 695 /* 696 * nr_idle and idle_list may disagree if idle rebinding is in 697 * progress. Never return %true if idle_list is empty. 698 */ 699 if (list_empty(&pool->idle_list)) 700 return false; 701 702 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 703 } 704 705 /* 706 * Wake up functions. 707 */ 708 709 /* Return the first worker. Safe with preemption disabled */ 710 static struct worker *first_worker(struct worker_pool *pool) 711 { 712 if (unlikely(list_empty(&pool->idle_list))) 713 return NULL; 714 715 return list_first_entry(&pool->idle_list, struct worker, entry); 716 } 717 718 /** 719 * wake_up_worker - wake up an idle worker 720 * @pool: worker pool to wake worker from 721 * 722 * Wake up the first idle worker of @pool. 723 * 724 * CONTEXT: 725 * spin_lock_irq(pool->lock). 726 */ 727 static void wake_up_worker(struct worker_pool *pool) 728 { 729 struct worker *worker = first_worker(pool); 730 731 if (likely(worker)) 732 wake_up_process(worker->task); 733 } 734 735 /** 736 * wq_worker_waking_up - a worker is waking up 737 * @task: task waking up 738 * @cpu: CPU @task is waking up to 739 * 740 * This function is called during try_to_wake_up() when a worker is 741 * being awoken. 742 * 743 * CONTEXT: 744 * spin_lock_irq(rq->lock) 745 */ 746 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu) 747 { 748 struct worker *worker = kthread_data(task); 749 750 if (!(worker->flags & WORKER_NOT_RUNNING)) { 751 WARN_ON_ONCE(worker->pool->cpu != cpu); 752 atomic_inc(&worker->pool->nr_running); 753 } 754 } 755 756 /** 757 * wq_worker_sleeping - a worker is going to sleep 758 * @task: task going to sleep 759 * @cpu: CPU in question, must be the current CPU number 760 * 761 * This function is called during schedule() when a busy worker is 762 * going to sleep. Worker on the same cpu can be woken up by 763 * returning pointer to its task. 764 * 765 * CONTEXT: 766 * spin_lock_irq(rq->lock) 767 * 768 * RETURNS: 769 * Worker task on @cpu to wake up, %NULL if none. 770 */ 771 struct task_struct *wq_worker_sleeping(struct task_struct *task, 772 unsigned int cpu) 773 { 774 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 775 struct worker_pool *pool; 776 777 /* 778 * Rescuers, which may not have all the fields set up like normal 779 * workers, also reach here, let's not access anything before 780 * checking NOT_RUNNING. 781 */ 782 if (worker->flags & WORKER_NOT_RUNNING) 783 return NULL; 784 785 pool = worker->pool; 786 787 /* this can only happen on the local cpu */ 788 BUG_ON(cpu != raw_smp_processor_id()); 789 790 /* 791 * The counterpart of the following dec_and_test, implied mb, 792 * worklist not empty test sequence is in insert_work(). 793 * Please read comment there. 794 * 795 * NOT_RUNNING is clear. This means that we're bound to and 796 * running on the local cpu w/ rq lock held and preemption 797 * disabled, which in turn means that none else could be 798 * manipulating idle_list, so dereferencing idle_list without pool 799 * lock is safe. 800 */ 801 if (atomic_dec_and_test(&pool->nr_running) && 802 !list_empty(&pool->worklist)) 803 to_wakeup = first_worker(pool); 804 return to_wakeup ? to_wakeup->task : NULL; 805 } 806 807 /** 808 * worker_set_flags - set worker flags and adjust nr_running accordingly 809 * @worker: self 810 * @flags: flags to set 811 * @wakeup: wakeup an idle worker if necessary 812 * 813 * Set @flags in @worker->flags and adjust nr_running accordingly. If 814 * nr_running becomes zero and @wakeup is %true, an idle worker is 815 * woken up. 816 * 817 * CONTEXT: 818 * spin_lock_irq(pool->lock) 819 */ 820 static inline void worker_set_flags(struct worker *worker, unsigned int flags, 821 bool wakeup) 822 { 823 struct worker_pool *pool = worker->pool; 824 825 WARN_ON_ONCE(worker->task != current); 826 827 /* 828 * If transitioning into NOT_RUNNING, adjust nr_running and 829 * wake up an idle worker as necessary if requested by 830 * @wakeup. 831 */ 832 if ((flags & WORKER_NOT_RUNNING) && 833 !(worker->flags & WORKER_NOT_RUNNING)) { 834 if (wakeup) { 835 if (atomic_dec_and_test(&pool->nr_running) && 836 !list_empty(&pool->worklist)) 837 wake_up_worker(pool); 838 } else 839 atomic_dec(&pool->nr_running); 840 } 841 842 worker->flags |= flags; 843 } 844 845 /** 846 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 847 * @worker: self 848 * @flags: flags to clear 849 * 850 * Clear @flags in @worker->flags and adjust nr_running accordingly. 851 * 852 * CONTEXT: 853 * spin_lock_irq(pool->lock) 854 */ 855 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 856 { 857 struct worker_pool *pool = worker->pool; 858 unsigned int oflags = worker->flags; 859 860 WARN_ON_ONCE(worker->task != current); 861 862 worker->flags &= ~flags; 863 864 /* 865 * If transitioning out of NOT_RUNNING, increment nr_running. Note 866 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 867 * of multiple flags, not a single flag. 868 */ 869 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 870 if (!(worker->flags & WORKER_NOT_RUNNING)) 871 atomic_inc(&pool->nr_running); 872 } 873 874 /** 875 * find_worker_executing_work - find worker which is executing a work 876 * @pool: pool of interest 877 * @work: work to find worker for 878 * 879 * Find a worker which is executing @work on @pool by searching 880 * @pool->busy_hash which is keyed by the address of @work. For a worker 881 * to match, its current execution should match the address of @work and 882 * its work function. This is to avoid unwanted dependency between 883 * unrelated work executions through a work item being recycled while still 884 * being executed. 885 * 886 * This is a bit tricky. A work item may be freed once its execution 887 * starts and nothing prevents the freed area from being recycled for 888 * another work item. If the same work item address ends up being reused 889 * before the original execution finishes, workqueue will identify the 890 * recycled work item as currently executing and make it wait until the 891 * current execution finishes, introducing an unwanted dependency. 892 * 893 * This function checks the work item address, work function and workqueue 894 * to avoid false positives. Note that this isn't complete as one may 895 * construct a work function which can introduce dependency onto itself 896 * through a recycled work item. Well, if somebody wants to shoot oneself 897 * in the foot that badly, there's only so much we can do, and if such 898 * deadlock actually occurs, it should be easy to locate the culprit work 899 * function. 900 * 901 * CONTEXT: 902 * spin_lock_irq(pool->lock). 903 * 904 * RETURNS: 905 * Pointer to worker which is executing @work if found, NULL 906 * otherwise. 907 */ 908 static struct worker *find_worker_executing_work(struct worker_pool *pool, 909 struct work_struct *work) 910 { 911 struct worker *worker; 912 913 hash_for_each_possible(pool->busy_hash, worker, hentry, 914 (unsigned long)work) 915 if (worker->current_work == work && 916 worker->current_func == work->func) 917 return worker; 918 919 return NULL; 920 } 921 922 /** 923 * move_linked_works - move linked works to a list 924 * @work: start of series of works to be scheduled 925 * @head: target list to append @work to 926 * @nextp: out paramter for nested worklist walking 927 * 928 * Schedule linked works starting from @work to @head. Work series to 929 * be scheduled starts at @work and includes any consecutive work with 930 * WORK_STRUCT_LINKED set in its predecessor. 931 * 932 * If @nextp is not NULL, it's updated to point to the next work of 933 * the last scheduled work. This allows move_linked_works() to be 934 * nested inside outer list_for_each_entry_safe(). 935 * 936 * CONTEXT: 937 * spin_lock_irq(pool->lock). 938 */ 939 static void move_linked_works(struct work_struct *work, struct list_head *head, 940 struct work_struct **nextp) 941 { 942 struct work_struct *n; 943 944 /* 945 * Linked worklist will always end before the end of the list, 946 * use NULL for list head. 947 */ 948 list_for_each_entry_safe_from(work, n, NULL, entry) { 949 list_move_tail(&work->entry, head); 950 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 951 break; 952 } 953 954 /* 955 * If we're already inside safe list traversal and have moved 956 * multiple works to the scheduled queue, the next position 957 * needs to be updated. 958 */ 959 if (nextp) 960 *nextp = n; 961 } 962 963 static void pwq_activate_delayed_work(struct work_struct *work) 964 { 965 struct pool_workqueue *pwq = get_work_pwq(work); 966 967 trace_workqueue_activate_work(work); 968 move_linked_works(work, &pwq->pool->worklist, NULL); 969 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 970 pwq->nr_active++; 971 } 972 973 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 974 { 975 struct work_struct *work = list_first_entry(&pwq->delayed_works, 976 struct work_struct, entry); 977 978 pwq_activate_delayed_work(work); 979 } 980 981 /** 982 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 983 * @pwq: pwq of interest 984 * @color: color of work which left the queue 985 * 986 * A work either has completed or is removed from pending queue, 987 * decrement nr_in_flight of its pwq and handle workqueue flushing. 988 * 989 * CONTEXT: 990 * spin_lock_irq(pool->lock). 991 */ 992 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 993 { 994 /* ignore uncolored works */ 995 if (color == WORK_NO_COLOR) 996 return; 997 998 pwq->nr_in_flight[color]--; 999 1000 pwq->nr_active--; 1001 if (!list_empty(&pwq->delayed_works)) { 1002 /* one down, submit a delayed one */ 1003 if (pwq->nr_active < pwq->max_active) 1004 pwq_activate_first_delayed(pwq); 1005 } 1006 1007 /* is flush in progress and are we at the flushing tip? */ 1008 if (likely(pwq->flush_color != color)) 1009 return; 1010 1011 /* are there still in-flight works? */ 1012 if (pwq->nr_in_flight[color]) 1013 return; 1014 1015 /* this pwq is done, clear flush_color */ 1016 pwq->flush_color = -1; 1017 1018 /* 1019 * If this was the last pwq, wake up the first flusher. It 1020 * will handle the rest. 1021 */ 1022 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1023 complete(&pwq->wq->first_flusher->done); 1024 } 1025 1026 /** 1027 * try_to_grab_pending - steal work item from worklist and disable irq 1028 * @work: work item to steal 1029 * @is_dwork: @work is a delayed_work 1030 * @flags: place to store irq state 1031 * 1032 * Try to grab PENDING bit of @work. This function can handle @work in any 1033 * stable state - idle, on timer or on worklist. Return values are 1034 * 1035 * 1 if @work was pending and we successfully stole PENDING 1036 * 0 if @work was idle and we claimed PENDING 1037 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1038 * -ENOENT if someone else is canceling @work, this state may persist 1039 * for arbitrarily long 1040 * 1041 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1042 * interrupted while holding PENDING and @work off queue, irq must be 1043 * disabled on entry. This, combined with delayed_work->timer being 1044 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1045 * 1046 * On successful return, >= 0, irq is disabled and the caller is 1047 * responsible for releasing it using local_irq_restore(*@flags). 1048 * 1049 * This function is safe to call from any context including IRQ handler. 1050 */ 1051 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1052 unsigned long *flags) 1053 { 1054 struct worker_pool *pool; 1055 struct pool_workqueue *pwq; 1056 1057 local_irq_save(*flags); 1058 1059 /* try to steal the timer if it exists */ 1060 if (is_dwork) { 1061 struct delayed_work *dwork = to_delayed_work(work); 1062 1063 /* 1064 * dwork->timer is irqsafe. If del_timer() fails, it's 1065 * guaranteed that the timer is not queued anywhere and not 1066 * running on the local CPU. 1067 */ 1068 if (likely(del_timer(&dwork->timer))) 1069 return 1; 1070 } 1071 1072 /* try to claim PENDING the normal way */ 1073 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1074 return 0; 1075 1076 /* 1077 * The queueing is in progress, or it is already queued. Try to 1078 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1079 */ 1080 pool = get_work_pool(work); 1081 if (!pool) 1082 goto fail; 1083 1084 spin_lock(&pool->lock); 1085 /* 1086 * work->data is guaranteed to point to pwq only while the work 1087 * item is queued on pwq->wq, and both updating work->data to point 1088 * to pwq on queueing and to pool on dequeueing are done under 1089 * pwq->pool->lock. This in turn guarantees that, if work->data 1090 * points to pwq which is associated with a locked pool, the work 1091 * item is currently queued on that pool. 1092 */ 1093 pwq = get_work_pwq(work); 1094 if (pwq && pwq->pool == pool) { 1095 debug_work_deactivate(work); 1096 1097 /* 1098 * A delayed work item cannot be grabbed directly because 1099 * it might have linked NO_COLOR work items which, if left 1100 * on the delayed_list, will confuse pwq->nr_active 1101 * management later on and cause stall. Make sure the work 1102 * item is activated before grabbing. 1103 */ 1104 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1105 pwq_activate_delayed_work(work); 1106 1107 list_del_init(&work->entry); 1108 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work)); 1109 1110 /* work->data points to pwq iff queued, point to pool */ 1111 set_work_pool_and_keep_pending(work, pool->id); 1112 1113 spin_unlock(&pool->lock); 1114 return 1; 1115 } 1116 spin_unlock(&pool->lock); 1117 fail: 1118 local_irq_restore(*flags); 1119 if (work_is_canceling(work)) 1120 return -ENOENT; 1121 cpu_relax(); 1122 return -EAGAIN; 1123 } 1124 1125 /** 1126 * insert_work - insert a work into a pool 1127 * @pwq: pwq @work belongs to 1128 * @work: work to insert 1129 * @head: insertion point 1130 * @extra_flags: extra WORK_STRUCT_* flags to set 1131 * 1132 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1133 * work_struct flags. 1134 * 1135 * CONTEXT: 1136 * spin_lock_irq(pool->lock). 1137 */ 1138 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1139 struct list_head *head, unsigned int extra_flags) 1140 { 1141 struct worker_pool *pool = pwq->pool; 1142 1143 /* we own @work, set data and link */ 1144 set_work_pwq(work, pwq, extra_flags); 1145 list_add_tail(&work->entry, head); 1146 1147 /* 1148 * Ensure either worker_sched_deactivated() sees the above 1149 * list_add_tail() or we see zero nr_running to avoid workers 1150 * lying around lazily while there are works to be processed. 1151 */ 1152 smp_mb(); 1153 1154 if (__need_more_worker(pool)) 1155 wake_up_worker(pool); 1156 } 1157 1158 /* 1159 * Test whether @work is being queued from another work executing on the 1160 * same workqueue. 1161 */ 1162 static bool is_chained_work(struct workqueue_struct *wq) 1163 { 1164 struct worker *worker; 1165 1166 worker = current_wq_worker(); 1167 /* 1168 * Return %true iff I'm a worker execuing a work item on @wq. If 1169 * I'm @worker, it's safe to dereference it without locking. 1170 */ 1171 return worker && worker->current_pwq->wq == wq; 1172 } 1173 1174 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq, 1175 struct work_struct *work) 1176 { 1177 struct pool_workqueue *pwq; 1178 struct list_head *worklist; 1179 unsigned int work_flags; 1180 unsigned int req_cpu = cpu; 1181 1182 /* 1183 * While a work item is PENDING && off queue, a task trying to 1184 * steal the PENDING will busy-loop waiting for it to either get 1185 * queued or lose PENDING. Grabbing PENDING and queueing should 1186 * happen with IRQ disabled. 1187 */ 1188 WARN_ON_ONCE(!irqs_disabled()); 1189 1190 debug_work_activate(work); 1191 1192 /* if dying, only works from the same workqueue are allowed */ 1193 if (unlikely(wq->flags & WQ_DRAINING) && 1194 WARN_ON_ONCE(!is_chained_work(wq))) 1195 return; 1196 1197 /* determine the pwq to use */ 1198 if (!(wq->flags & WQ_UNBOUND)) { 1199 struct worker_pool *last_pool; 1200 1201 if (cpu == WORK_CPU_UNBOUND) 1202 cpu = raw_smp_processor_id(); 1203 1204 /* 1205 * It's multi cpu. If @work was previously on a different 1206 * cpu, it might still be running there, in which case the 1207 * work needs to be queued on that cpu to guarantee 1208 * non-reentrancy. 1209 */ 1210 pwq = get_pwq(cpu, wq); 1211 last_pool = get_work_pool(work); 1212 1213 if (last_pool && last_pool != pwq->pool) { 1214 struct worker *worker; 1215 1216 spin_lock(&last_pool->lock); 1217 1218 worker = find_worker_executing_work(last_pool, work); 1219 1220 if (worker && worker->current_pwq->wq == wq) { 1221 pwq = get_pwq(last_pool->cpu, wq); 1222 } else { 1223 /* meh... not running there, queue here */ 1224 spin_unlock(&last_pool->lock); 1225 spin_lock(&pwq->pool->lock); 1226 } 1227 } else { 1228 spin_lock(&pwq->pool->lock); 1229 } 1230 } else { 1231 pwq = get_pwq(WORK_CPU_UNBOUND, wq); 1232 spin_lock(&pwq->pool->lock); 1233 } 1234 1235 /* pwq determined, queue */ 1236 trace_workqueue_queue_work(req_cpu, pwq, work); 1237 1238 if (WARN_ON(!list_empty(&work->entry))) { 1239 spin_unlock(&pwq->pool->lock); 1240 return; 1241 } 1242 1243 pwq->nr_in_flight[pwq->work_color]++; 1244 work_flags = work_color_to_flags(pwq->work_color); 1245 1246 if (likely(pwq->nr_active < pwq->max_active)) { 1247 trace_workqueue_activate_work(work); 1248 pwq->nr_active++; 1249 worklist = &pwq->pool->worklist; 1250 } else { 1251 work_flags |= WORK_STRUCT_DELAYED; 1252 worklist = &pwq->delayed_works; 1253 } 1254 1255 insert_work(pwq, work, worklist, work_flags); 1256 1257 spin_unlock(&pwq->pool->lock); 1258 } 1259 1260 /** 1261 * queue_work_on - queue work on specific cpu 1262 * @cpu: CPU number to execute work on 1263 * @wq: workqueue to use 1264 * @work: work to queue 1265 * 1266 * Returns %false if @work was already on a queue, %true otherwise. 1267 * 1268 * We queue the work to a specific CPU, the caller must ensure it 1269 * can't go away. 1270 */ 1271 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1272 struct work_struct *work) 1273 { 1274 bool ret = false; 1275 unsigned long flags; 1276 1277 local_irq_save(flags); 1278 1279 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1280 __queue_work(cpu, wq, work); 1281 ret = true; 1282 } 1283 1284 local_irq_restore(flags); 1285 return ret; 1286 } 1287 EXPORT_SYMBOL_GPL(queue_work_on); 1288 1289 /** 1290 * queue_work - queue work on a workqueue 1291 * @wq: workqueue to use 1292 * @work: work to queue 1293 * 1294 * Returns %false if @work was already on a queue, %true otherwise. 1295 * 1296 * We queue the work to the CPU on which it was submitted, but if the CPU dies 1297 * it can be processed by another CPU. 1298 */ 1299 bool queue_work(struct workqueue_struct *wq, struct work_struct *work) 1300 { 1301 return queue_work_on(WORK_CPU_UNBOUND, wq, work); 1302 } 1303 EXPORT_SYMBOL_GPL(queue_work); 1304 1305 void delayed_work_timer_fn(unsigned long __data) 1306 { 1307 struct delayed_work *dwork = (struct delayed_work *)__data; 1308 1309 /* should have been called from irqsafe timer with irq already off */ 1310 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1311 } 1312 EXPORT_SYMBOL(delayed_work_timer_fn); 1313 1314 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1315 struct delayed_work *dwork, unsigned long delay) 1316 { 1317 struct timer_list *timer = &dwork->timer; 1318 struct work_struct *work = &dwork->work; 1319 1320 WARN_ON_ONCE(timer->function != delayed_work_timer_fn || 1321 timer->data != (unsigned long)dwork); 1322 WARN_ON_ONCE(timer_pending(timer)); 1323 WARN_ON_ONCE(!list_empty(&work->entry)); 1324 1325 /* 1326 * If @delay is 0, queue @dwork->work immediately. This is for 1327 * both optimization and correctness. The earliest @timer can 1328 * expire is on the closest next tick and delayed_work users depend 1329 * on that there's no such delay when @delay is 0. 1330 */ 1331 if (!delay) { 1332 __queue_work(cpu, wq, &dwork->work); 1333 return; 1334 } 1335 1336 timer_stats_timer_set_start_info(&dwork->timer); 1337 1338 dwork->wq = wq; 1339 dwork->cpu = cpu; 1340 timer->expires = jiffies + delay; 1341 1342 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1343 add_timer_on(timer, cpu); 1344 else 1345 add_timer(timer); 1346 } 1347 1348 /** 1349 * queue_delayed_work_on - queue work on specific CPU after delay 1350 * @cpu: CPU number to execute work on 1351 * @wq: workqueue to use 1352 * @dwork: work to queue 1353 * @delay: number of jiffies to wait before queueing 1354 * 1355 * Returns %false if @work was already on a queue, %true otherwise. If 1356 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1357 * execution. 1358 */ 1359 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1360 struct delayed_work *dwork, unsigned long delay) 1361 { 1362 struct work_struct *work = &dwork->work; 1363 bool ret = false; 1364 unsigned long flags; 1365 1366 /* read the comment in __queue_work() */ 1367 local_irq_save(flags); 1368 1369 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1370 __queue_delayed_work(cpu, wq, dwork, delay); 1371 ret = true; 1372 } 1373 1374 local_irq_restore(flags); 1375 return ret; 1376 } 1377 EXPORT_SYMBOL_GPL(queue_delayed_work_on); 1378 1379 /** 1380 * queue_delayed_work - queue work on a workqueue after delay 1381 * @wq: workqueue to use 1382 * @dwork: delayable work to queue 1383 * @delay: number of jiffies to wait before queueing 1384 * 1385 * Equivalent to queue_delayed_work_on() but tries to use the local CPU. 1386 */ 1387 bool queue_delayed_work(struct workqueue_struct *wq, 1388 struct delayed_work *dwork, unsigned long delay) 1389 { 1390 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay); 1391 } 1392 EXPORT_SYMBOL_GPL(queue_delayed_work); 1393 1394 /** 1395 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1396 * @cpu: CPU number to execute work on 1397 * @wq: workqueue to use 1398 * @dwork: work to queue 1399 * @delay: number of jiffies to wait before queueing 1400 * 1401 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1402 * modify @dwork's timer so that it expires after @delay. If @delay is 1403 * zero, @work is guaranteed to be scheduled immediately regardless of its 1404 * current state. 1405 * 1406 * Returns %false if @dwork was idle and queued, %true if @dwork was 1407 * pending and its timer was modified. 1408 * 1409 * This function is safe to call from any context including IRQ handler. 1410 * See try_to_grab_pending() for details. 1411 */ 1412 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1413 struct delayed_work *dwork, unsigned long delay) 1414 { 1415 unsigned long flags; 1416 int ret; 1417 1418 do { 1419 ret = try_to_grab_pending(&dwork->work, true, &flags); 1420 } while (unlikely(ret == -EAGAIN)); 1421 1422 if (likely(ret >= 0)) { 1423 __queue_delayed_work(cpu, wq, dwork, delay); 1424 local_irq_restore(flags); 1425 } 1426 1427 /* -ENOENT from try_to_grab_pending() becomes %true */ 1428 return ret; 1429 } 1430 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1431 1432 /** 1433 * mod_delayed_work - modify delay of or queue a delayed work 1434 * @wq: workqueue to use 1435 * @dwork: work to queue 1436 * @delay: number of jiffies to wait before queueing 1437 * 1438 * mod_delayed_work_on() on local CPU. 1439 */ 1440 bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork, 1441 unsigned long delay) 1442 { 1443 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay); 1444 } 1445 EXPORT_SYMBOL_GPL(mod_delayed_work); 1446 1447 /** 1448 * worker_enter_idle - enter idle state 1449 * @worker: worker which is entering idle state 1450 * 1451 * @worker is entering idle state. Update stats and idle timer if 1452 * necessary. 1453 * 1454 * LOCKING: 1455 * spin_lock_irq(pool->lock). 1456 */ 1457 static void worker_enter_idle(struct worker *worker) 1458 { 1459 struct worker_pool *pool = worker->pool; 1460 1461 BUG_ON(worker->flags & WORKER_IDLE); 1462 BUG_ON(!list_empty(&worker->entry) && 1463 (worker->hentry.next || worker->hentry.pprev)); 1464 1465 /* can't use worker_set_flags(), also called from start_worker() */ 1466 worker->flags |= WORKER_IDLE; 1467 pool->nr_idle++; 1468 worker->last_active = jiffies; 1469 1470 /* idle_list is LIFO */ 1471 list_add(&worker->entry, &pool->idle_list); 1472 1473 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1474 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1475 1476 /* 1477 * Sanity check nr_running. Because wq_unbind_fn() releases 1478 * pool->lock between setting %WORKER_UNBOUND and zapping 1479 * nr_running, the warning may trigger spuriously. Check iff 1480 * unbind is not in progress. 1481 */ 1482 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1483 pool->nr_workers == pool->nr_idle && 1484 atomic_read(&pool->nr_running)); 1485 } 1486 1487 /** 1488 * worker_leave_idle - leave idle state 1489 * @worker: worker which is leaving idle state 1490 * 1491 * @worker is leaving idle state. Update stats. 1492 * 1493 * LOCKING: 1494 * spin_lock_irq(pool->lock). 1495 */ 1496 static void worker_leave_idle(struct worker *worker) 1497 { 1498 struct worker_pool *pool = worker->pool; 1499 1500 BUG_ON(!(worker->flags & WORKER_IDLE)); 1501 worker_clr_flags(worker, WORKER_IDLE); 1502 pool->nr_idle--; 1503 list_del_init(&worker->entry); 1504 } 1505 1506 /** 1507 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock pool 1508 * @worker: self 1509 * 1510 * Works which are scheduled while the cpu is online must at least be 1511 * scheduled to a worker which is bound to the cpu so that if they are 1512 * flushed from cpu callbacks while cpu is going down, they are 1513 * guaranteed to execute on the cpu. 1514 * 1515 * This function is to be used by rogue workers and rescuers to bind 1516 * themselves to the target cpu and may race with cpu going down or 1517 * coming online. kthread_bind() can't be used because it may put the 1518 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used 1519 * verbatim as it's best effort and blocking and pool may be 1520 * [dis]associated in the meantime. 1521 * 1522 * This function tries set_cpus_allowed() and locks pool and verifies the 1523 * binding against %POOL_DISASSOCIATED which is set during 1524 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker 1525 * enters idle state or fetches works without dropping lock, it can 1526 * guarantee the scheduling requirement described in the first paragraph. 1527 * 1528 * CONTEXT: 1529 * Might sleep. Called without any lock but returns with pool->lock 1530 * held. 1531 * 1532 * RETURNS: 1533 * %true if the associated pool is online (@worker is successfully 1534 * bound), %false if offline. 1535 */ 1536 static bool worker_maybe_bind_and_lock(struct worker *worker) 1537 __acquires(&pool->lock) 1538 { 1539 struct worker_pool *pool = worker->pool; 1540 struct task_struct *task = worker->task; 1541 1542 while (true) { 1543 /* 1544 * The following call may fail, succeed or succeed 1545 * without actually migrating the task to the cpu if 1546 * it races with cpu hotunplug operation. Verify 1547 * against POOL_DISASSOCIATED. 1548 */ 1549 if (!(pool->flags & POOL_DISASSOCIATED)) 1550 set_cpus_allowed_ptr(task, get_cpu_mask(pool->cpu)); 1551 1552 spin_lock_irq(&pool->lock); 1553 if (pool->flags & POOL_DISASSOCIATED) 1554 return false; 1555 if (task_cpu(task) == pool->cpu && 1556 cpumask_equal(¤t->cpus_allowed, 1557 get_cpu_mask(pool->cpu))) 1558 return true; 1559 spin_unlock_irq(&pool->lock); 1560 1561 /* 1562 * We've raced with CPU hot[un]plug. Give it a breather 1563 * and retry migration. cond_resched() is required here; 1564 * otherwise, we might deadlock against cpu_stop trying to 1565 * bring down the CPU on non-preemptive kernel. 1566 */ 1567 cpu_relax(); 1568 cond_resched(); 1569 } 1570 } 1571 1572 /* 1573 * Rebind an idle @worker to its CPU. worker_thread() will test 1574 * list_empty(@worker->entry) before leaving idle and call this function. 1575 */ 1576 static void idle_worker_rebind(struct worker *worker) 1577 { 1578 /* CPU may go down again inbetween, clear UNBOUND only on success */ 1579 if (worker_maybe_bind_and_lock(worker)) 1580 worker_clr_flags(worker, WORKER_UNBOUND); 1581 1582 /* rebind complete, become available again */ 1583 list_add(&worker->entry, &worker->pool->idle_list); 1584 spin_unlock_irq(&worker->pool->lock); 1585 } 1586 1587 /* 1588 * Function for @worker->rebind.work used to rebind unbound busy workers to 1589 * the associated cpu which is coming back online. This is scheduled by 1590 * cpu up but can race with other cpu hotplug operations and may be 1591 * executed twice without intervening cpu down. 1592 */ 1593 static void busy_worker_rebind_fn(struct work_struct *work) 1594 { 1595 struct worker *worker = container_of(work, struct worker, rebind_work); 1596 1597 if (worker_maybe_bind_and_lock(worker)) 1598 worker_clr_flags(worker, WORKER_UNBOUND); 1599 1600 spin_unlock_irq(&worker->pool->lock); 1601 } 1602 1603 /** 1604 * rebind_workers - rebind all workers of a pool to the associated CPU 1605 * @pool: pool of interest 1606 * 1607 * @pool->cpu is coming online. Rebind all workers to the CPU. Rebinding 1608 * is different for idle and busy ones. 1609 * 1610 * Idle ones will be removed from the idle_list and woken up. They will 1611 * add themselves back after completing rebind. This ensures that the 1612 * idle_list doesn't contain any unbound workers when re-bound busy workers 1613 * try to perform local wake-ups for concurrency management. 1614 * 1615 * Busy workers can rebind after they finish their current work items. 1616 * Queueing the rebind work item at the head of the scheduled list is 1617 * enough. Note that nr_running will be properly bumped as busy workers 1618 * rebind. 1619 * 1620 * On return, all non-manager workers are scheduled for rebind - see 1621 * manage_workers() for the manager special case. Any idle worker 1622 * including the manager will not appear on @idle_list until rebind is 1623 * complete, making local wake-ups safe. 1624 */ 1625 static void rebind_workers(struct worker_pool *pool) 1626 { 1627 struct worker *worker, *n; 1628 int i; 1629 1630 lockdep_assert_held(&pool->assoc_mutex); 1631 lockdep_assert_held(&pool->lock); 1632 1633 /* dequeue and kick idle ones */ 1634 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) { 1635 /* 1636 * idle workers should be off @pool->idle_list until rebind 1637 * is complete to avoid receiving premature local wake-ups. 1638 */ 1639 list_del_init(&worker->entry); 1640 1641 /* 1642 * worker_thread() will see the above dequeuing and call 1643 * idle_worker_rebind(). 1644 */ 1645 wake_up_process(worker->task); 1646 } 1647 1648 /* rebind busy workers */ 1649 for_each_busy_worker(worker, i, pool) { 1650 struct work_struct *rebind_work = &worker->rebind_work; 1651 struct workqueue_struct *wq; 1652 1653 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT, 1654 work_data_bits(rebind_work))) 1655 continue; 1656 1657 debug_work_activate(rebind_work); 1658 1659 /* 1660 * wq doesn't really matter but let's keep @worker->pool 1661 * and @pwq->pool consistent for sanity. 1662 */ 1663 if (std_worker_pool_pri(worker->pool)) 1664 wq = system_highpri_wq; 1665 else 1666 wq = system_wq; 1667 1668 insert_work(get_pwq(pool->cpu, wq), rebind_work, 1669 worker->scheduled.next, 1670 work_color_to_flags(WORK_NO_COLOR)); 1671 } 1672 } 1673 1674 static struct worker *alloc_worker(void) 1675 { 1676 struct worker *worker; 1677 1678 worker = kzalloc(sizeof(*worker), GFP_KERNEL); 1679 if (worker) { 1680 INIT_LIST_HEAD(&worker->entry); 1681 INIT_LIST_HEAD(&worker->scheduled); 1682 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn); 1683 /* on creation a worker is in !idle && prep state */ 1684 worker->flags = WORKER_PREP; 1685 } 1686 return worker; 1687 } 1688 1689 /** 1690 * create_worker - create a new workqueue worker 1691 * @pool: pool the new worker will belong to 1692 * 1693 * Create a new worker which is bound to @pool. The returned worker 1694 * can be started by calling start_worker() or destroyed using 1695 * destroy_worker(). 1696 * 1697 * CONTEXT: 1698 * Might sleep. Does GFP_KERNEL allocations. 1699 * 1700 * RETURNS: 1701 * Pointer to the newly created worker. 1702 */ 1703 static struct worker *create_worker(struct worker_pool *pool) 1704 { 1705 const char *pri = std_worker_pool_pri(pool) ? "H" : ""; 1706 struct worker *worker = NULL; 1707 int id = -1; 1708 1709 spin_lock_irq(&pool->lock); 1710 while (ida_get_new(&pool->worker_ida, &id)) { 1711 spin_unlock_irq(&pool->lock); 1712 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL)) 1713 goto fail; 1714 spin_lock_irq(&pool->lock); 1715 } 1716 spin_unlock_irq(&pool->lock); 1717 1718 worker = alloc_worker(); 1719 if (!worker) 1720 goto fail; 1721 1722 worker->pool = pool; 1723 worker->id = id; 1724 1725 if (pool->cpu != WORK_CPU_UNBOUND) 1726 worker->task = kthread_create_on_node(worker_thread, 1727 worker, cpu_to_node(pool->cpu), 1728 "kworker/%u:%d%s", pool->cpu, id, pri); 1729 else 1730 worker->task = kthread_create(worker_thread, worker, 1731 "kworker/u:%d%s", id, pri); 1732 if (IS_ERR(worker->task)) 1733 goto fail; 1734 1735 if (std_worker_pool_pri(pool)) 1736 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL); 1737 1738 /* 1739 * Determine CPU binding of the new worker depending on 1740 * %POOL_DISASSOCIATED. The caller is responsible for ensuring the 1741 * flag remains stable across this function. See the comments 1742 * above the flag definition for details. 1743 * 1744 * As an unbound worker may later become a regular one if CPU comes 1745 * online, make sure every worker has %PF_THREAD_BOUND set. 1746 */ 1747 if (!(pool->flags & POOL_DISASSOCIATED)) { 1748 kthread_bind(worker->task, pool->cpu); 1749 } else { 1750 worker->task->flags |= PF_THREAD_BOUND; 1751 worker->flags |= WORKER_UNBOUND; 1752 } 1753 1754 return worker; 1755 fail: 1756 if (id >= 0) { 1757 spin_lock_irq(&pool->lock); 1758 ida_remove(&pool->worker_ida, id); 1759 spin_unlock_irq(&pool->lock); 1760 } 1761 kfree(worker); 1762 return NULL; 1763 } 1764 1765 /** 1766 * start_worker - start a newly created worker 1767 * @worker: worker to start 1768 * 1769 * Make the pool aware of @worker and start it. 1770 * 1771 * CONTEXT: 1772 * spin_lock_irq(pool->lock). 1773 */ 1774 static void start_worker(struct worker *worker) 1775 { 1776 worker->flags |= WORKER_STARTED; 1777 worker->pool->nr_workers++; 1778 worker_enter_idle(worker); 1779 wake_up_process(worker->task); 1780 } 1781 1782 /** 1783 * destroy_worker - destroy a workqueue worker 1784 * @worker: worker to be destroyed 1785 * 1786 * Destroy @worker and adjust @pool stats accordingly. 1787 * 1788 * CONTEXT: 1789 * spin_lock_irq(pool->lock) which is released and regrabbed. 1790 */ 1791 static void destroy_worker(struct worker *worker) 1792 { 1793 struct worker_pool *pool = worker->pool; 1794 int id = worker->id; 1795 1796 /* sanity check frenzy */ 1797 BUG_ON(worker->current_work); 1798 BUG_ON(!list_empty(&worker->scheduled)); 1799 1800 if (worker->flags & WORKER_STARTED) 1801 pool->nr_workers--; 1802 if (worker->flags & WORKER_IDLE) 1803 pool->nr_idle--; 1804 1805 list_del_init(&worker->entry); 1806 worker->flags |= WORKER_DIE; 1807 1808 spin_unlock_irq(&pool->lock); 1809 1810 kthread_stop(worker->task); 1811 kfree(worker); 1812 1813 spin_lock_irq(&pool->lock); 1814 ida_remove(&pool->worker_ida, id); 1815 } 1816 1817 static void idle_worker_timeout(unsigned long __pool) 1818 { 1819 struct worker_pool *pool = (void *)__pool; 1820 1821 spin_lock_irq(&pool->lock); 1822 1823 if (too_many_workers(pool)) { 1824 struct worker *worker; 1825 unsigned long expires; 1826 1827 /* idle_list is kept in LIFO order, check the last one */ 1828 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1829 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1830 1831 if (time_before(jiffies, expires)) 1832 mod_timer(&pool->idle_timer, expires); 1833 else { 1834 /* it's been idle for too long, wake up manager */ 1835 pool->flags |= POOL_MANAGE_WORKERS; 1836 wake_up_worker(pool); 1837 } 1838 } 1839 1840 spin_unlock_irq(&pool->lock); 1841 } 1842 1843 static bool send_mayday(struct work_struct *work) 1844 { 1845 struct pool_workqueue *pwq = get_work_pwq(work); 1846 struct workqueue_struct *wq = pwq->wq; 1847 unsigned int cpu; 1848 1849 if (!(wq->flags & WQ_RESCUER)) 1850 return false; 1851 1852 /* mayday mayday mayday */ 1853 cpu = pwq->pool->cpu; 1854 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */ 1855 if (cpu == WORK_CPU_UNBOUND) 1856 cpu = 0; 1857 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask)) 1858 wake_up_process(wq->rescuer->task); 1859 return true; 1860 } 1861 1862 static void pool_mayday_timeout(unsigned long __pool) 1863 { 1864 struct worker_pool *pool = (void *)__pool; 1865 struct work_struct *work; 1866 1867 spin_lock_irq(&pool->lock); 1868 1869 if (need_to_create_worker(pool)) { 1870 /* 1871 * We've been trying to create a new worker but 1872 * haven't been successful. We might be hitting an 1873 * allocation deadlock. Send distress signals to 1874 * rescuers. 1875 */ 1876 list_for_each_entry(work, &pool->worklist, entry) 1877 send_mayday(work); 1878 } 1879 1880 spin_unlock_irq(&pool->lock); 1881 1882 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 1883 } 1884 1885 /** 1886 * maybe_create_worker - create a new worker if necessary 1887 * @pool: pool to create a new worker for 1888 * 1889 * Create a new worker for @pool if necessary. @pool is guaranteed to 1890 * have at least one idle worker on return from this function. If 1891 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1892 * sent to all rescuers with works scheduled on @pool to resolve 1893 * possible allocation deadlock. 1894 * 1895 * On return, need_to_create_worker() is guaranteed to be false and 1896 * may_start_working() true. 1897 * 1898 * LOCKING: 1899 * spin_lock_irq(pool->lock) which may be released and regrabbed 1900 * multiple times. Does GFP_KERNEL allocations. Called only from 1901 * manager. 1902 * 1903 * RETURNS: 1904 * false if no action was taken and pool->lock stayed locked, true 1905 * otherwise. 1906 */ 1907 static bool maybe_create_worker(struct worker_pool *pool) 1908 __releases(&pool->lock) 1909 __acquires(&pool->lock) 1910 { 1911 if (!need_to_create_worker(pool)) 1912 return false; 1913 restart: 1914 spin_unlock_irq(&pool->lock); 1915 1916 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1917 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1918 1919 while (true) { 1920 struct worker *worker; 1921 1922 worker = create_worker(pool); 1923 if (worker) { 1924 del_timer_sync(&pool->mayday_timer); 1925 spin_lock_irq(&pool->lock); 1926 start_worker(worker); 1927 BUG_ON(need_to_create_worker(pool)); 1928 return true; 1929 } 1930 1931 if (!need_to_create_worker(pool)) 1932 break; 1933 1934 __set_current_state(TASK_INTERRUPTIBLE); 1935 schedule_timeout(CREATE_COOLDOWN); 1936 1937 if (!need_to_create_worker(pool)) 1938 break; 1939 } 1940 1941 del_timer_sync(&pool->mayday_timer); 1942 spin_lock_irq(&pool->lock); 1943 if (need_to_create_worker(pool)) 1944 goto restart; 1945 return true; 1946 } 1947 1948 /** 1949 * maybe_destroy_worker - destroy workers which have been idle for a while 1950 * @pool: pool to destroy workers for 1951 * 1952 * Destroy @pool workers which have been idle for longer than 1953 * IDLE_WORKER_TIMEOUT. 1954 * 1955 * LOCKING: 1956 * spin_lock_irq(pool->lock) which may be released and regrabbed 1957 * multiple times. Called only from manager. 1958 * 1959 * RETURNS: 1960 * false if no action was taken and pool->lock stayed locked, true 1961 * otherwise. 1962 */ 1963 static bool maybe_destroy_workers(struct worker_pool *pool) 1964 { 1965 bool ret = false; 1966 1967 while (too_many_workers(pool)) { 1968 struct worker *worker; 1969 unsigned long expires; 1970 1971 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1972 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1973 1974 if (time_before(jiffies, expires)) { 1975 mod_timer(&pool->idle_timer, expires); 1976 break; 1977 } 1978 1979 destroy_worker(worker); 1980 ret = true; 1981 } 1982 1983 return ret; 1984 } 1985 1986 /** 1987 * manage_workers - manage worker pool 1988 * @worker: self 1989 * 1990 * Assume the manager role and manage the worker pool @worker belongs 1991 * to. At any given time, there can be only zero or one manager per 1992 * pool. The exclusion is handled automatically by this function. 1993 * 1994 * The caller can safely start processing works on false return. On 1995 * true return, it's guaranteed that need_to_create_worker() is false 1996 * and may_start_working() is true. 1997 * 1998 * CONTEXT: 1999 * spin_lock_irq(pool->lock) which may be released and regrabbed 2000 * multiple times. Does GFP_KERNEL allocations. 2001 * 2002 * RETURNS: 2003 * spin_lock_irq(pool->lock) which may be released and regrabbed 2004 * multiple times. Does GFP_KERNEL allocations. 2005 */ 2006 static bool manage_workers(struct worker *worker) 2007 { 2008 struct worker_pool *pool = worker->pool; 2009 bool ret = false; 2010 2011 if (pool->flags & POOL_MANAGING_WORKERS) 2012 return ret; 2013 2014 pool->flags |= POOL_MANAGING_WORKERS; 2015 2016 /* 2017 * To simplify both worker management and CPU hotplug, hold off 2018 * management while hotplug is in progress. CPU hotplug path can't 2019 * grab %POOL_MANAGING_WORKERS to achieve this because that can 2020 * lead to idle worker depletion (all become busy thinking someone 2021 * else is managing) which in turn can result in deadlock under 2022 * extreme circumstances. Use @pool->assoc_mutex to synchronize 2023 * manager against CPU hotplug. 2024 * 2025 * assoc_mutex would always be free unless CPU hotplug is in 2026 * progress. trylock first without dropping @pool->lock. 2027 */ 2028 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) { 2029 spin_unlock_irq(&pool->lock); 2030 mutex_lock(&pool->assoc_mutex); 2031 /* 2032 * CPU hotplug could have happened while we were waiting 2033 * for assoc_mutex. Hotplug itself can't handle us 2034 * because manager isn't either on idle or busy list, and 2035 * @pool's state and ours could have deviated. 2036 * 2037 * As hotplug is now excluded via assoc_mutex, we can 2038 * simply try to bind. It will succeed or fail depending 2039 * on @pool's current state. Try it and adjust 2040 * %WORKER_UNBOUND accordingly. 2041 */ 2042 if (worker_maybe_bind_and_lock(worker)) 2043 worker->flags &= ~WORKER_UNBOUND; 2044 else 2045 worker->flags |= WORKER_UNBOUND; 2046 2047 ret = true; 2048 } 2049 2050 pool->flags &= ~POOL_MANAGE_WORKERS; 2051 2052 /* 2053 * Destroy and then create so that may_start_working() is true 2054 * on return. 2055 */ 2056 ret |= maybe_destroy_workers(pool); 2057 ret |= maybe_create_worker(pool); 2058 2059 pool->flags &= ~POOL_MANAGING_WORKERS; 2060 mutex_unlock(&pool->assoc_mutex); 2061 return ret; 2062 } 2063 2064 /** 2065 * process_one_work - process single work 2066 * @worker: self 2067 * @work: work to process 2068 * 2069 * Process @work. This function contains all the logics necessary to 2070 * process a single work including synchronization against and 2071 * interaction with other workers on the same cpu, queueing and 2072 * flushing. As long as context requirement is met, any worker can 2073 * call this function to process a work. 2074 * 2075 * CONTEXT: 2076 * spin_lock_irq(pool->lock) which is released and regrabbed. 2077 */ 2078 static void process_one_work(struct worker *worker, struct work_struct *work) 2079 __releases(&pool->lock) 2080 __acquires(&pool->lock) 2081 { 2082 struct pool_workqueue *pwq = get_work_pwq(work); 2083 struct worker_pool *pool = worker->pool; 2084 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2085 int work_color; 2086 struct worker *collision; 2087 #ifdef CONFIG_LOCKDEP 2088 /* 2089 * It is permissible to free the struct work_struct from 2090 * inside the function that is called from it, this we need to 2091 * take into account for lockdep too. To avoid bogus "held 2092 * lock freed" warnings as well as problems when looking into 2093 * work->lockdep_map, make a copy and use that here. 2094 */ 2095 struct lockdep_map lockdep_map; 2096 2097 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2098 #endif 2099 /* 2100 * Ensure we're on the correct CPU. DISASSOCIATED test is 2101 * necessary to avoid spurious warnings from rescuers servicing the 2102 * unbound or a disassociated pool. 2103 */ 2104 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) && 2105 !(pool->flags & POOL_DISASSOCIATED) && 2106 raw_smp_processor_id() != pool->cpu); 2107 2108 /* 2109 * A single work shouldn't be executed concurrently by 2110 * multiple workers on a single cpu. Check whether anyone is 2111 * already processing the work. If so, defer the work to the 2112 * currently executing one. 2113 */ 2114 collision = find_worker_executing_work(pool, work); 2115 if (unlikely(collision)) { 2116 move_linked_works(work, &collision->scheduled, NULL); 2117 return; 2118 } 2119 2120 /* claim and dequeue */ 2121 debug_work_deactivate(work); 2122 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2123 worker->current_work = work; 2124 worker->current_func = work->func; 2125 worker->current_pwq = pwq; 2126 work_color = get_work_color(work); 2127 2128 list_del_init(&work->entry); 2129 2130 /* 2131 * CPU intensive works don't participate in concurrency 2132 * management. They're the scheduler's responsibility. 2133 */ 2134 if (unlikely(cpu_intensive)) 2135 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true); 2136 2137 /* 2138 * Unbound pool isn't concurrency managed and work items should be 2139 * executed ASAP. Wake up another worker if necessary. 2140 */ 2141 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool)) 2142 wake_up_worker(pool); 2143 2144 /* 2145 * Record the last pool and clear PENDING which should be the last 2146 * update to @work. Also, do this inside @pool->lock so that 2147 * PENDING and queued state changes happen together while IRQ is 2148 * disabled. 2149 */ 2150 set_work_pool_and_clear_pending(work, pool->id); 2151 2152 spin_unlock_irq(&pool->lock); 2153 2154 lock_map_acquire_read(&pwq->wq->lockdep_map); 2155 lock_map_acquire(&lockdep_map); 2156 trace_workqueue_execute_start(work); 2157 worker->current_func(work); 2158 /* 2159 * While we must be careful to not use "work" after this, the trace 2160 * point will only record its address. 2161 */ 2162 trace_workqueue_execute_end(work); 2163 lock_map_release(&lockdep_map); 2164 lock_map_release(&pwq->wq->lockdep_map); 2165 2166 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2167 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2168 " last function: %pf\n", 2169 current->comm, preempt_count(), task_pid_nr(current), 2170 worker->current_func); 2171 debug_show_held_locks(current); 2172 dump_stack(); 2173 } 2174 2175 spin_lock_irq(&pool->lock); 2176 2177 /* clear cpu intensive status */ 2178 if (unlikely(cpu_intensive)) 2179 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2180 2181 /* we're done with it, release */ 2182 hash_del(&worker->hentry); 2183 worker->current_work = NULL; 2184 worker->current_func = NULL; 2185 worker->current_pwq = NULL; 2186 pwq_dec_nr_in_flight(pwq, work_color); 2187 } 2188 2189 /** 2190 * process_scheduled_works - process scheduled works 2191 * @worker: self 2192 * 2193 * Process all scheduled works. Please note that the scheduled list 2194 * may change while processing a work, so this function repeatedly 2195 * fetches a work from the top and executes it. 2196 * 2197 * CONTEXT: 2198 * spin_lock_irq(pool->lock) which may be released and regrabbed 2199 * multiple times. 2200 */ 2201 static void process_scheduled_works(struct worker *worker) 2202 { 2203 while (!list_empty(&worker->scheduled)) { 2204 struct work_struct *work = list_first_entry(&worker->scheduled, 2205 struct work_struct, entry); 2206 process_one_work(worker, work); 2207 } 2208 } 2209 2210 /** 2211 * worker_thread - the worker thread function 2212 * @__worker: self 2213 * 2214 * The worker thread function. There are NR_CPU_WORKER_POOLS dynamic pools 2215 * of these per each cpu. These workers process all works regardless of 2216 * their specific target workqueue. The only exception is works which 2217 * belong to workqueues with a rescuer which will be explained in 2218 * rescuer_thread(). 2219 */ 2220 static int worker_thread(void *__worker) 2221 { 2222 struct worker *worker = __worker; 2223 struct worker_pool *pool = worker->pool; 2224 2225 /* tell the scheduler that this is a workqueue worker */ 2226 worker->task->flags |= PF_WQ_WORKER; 2227 woke_up: 2228 spin_lock_irq(&pool->lock); 2229 2230 /* we are off idle list if destruction or rebind is requested */ 2231 if (unlikely(list_empty(&worker->entry))) { 2232 spin_unlock_irq(&pool->lock); 2233 2234 /* if DIE is set, destruction is requested */ 2235 if (worker->flags & WORKER_DIE) { 2236 worker->task->flags &= ~PF_WQ_WORKER; 2237 return 0; 2238 } 2239 2240 /* otherwise, rebind */ 2241 idle_worker_rebind(worker); 2242 goto woke_up; 2243 } 2244 2245 worker_leave_idle(worker); 2246 recheck: 2247 /* no more worker necessary? */ 2248 if (!need_more_worker(pool)) 2249 goto sleep; 2250 2251 /* do we need to manage? */ 2252 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2253 goto recheck; 2254 2255 /* 2256 * ->scheduled list can only be filled while a worker is 2257 * preparing to process a work or actually processing it. 2258 * Make sure nobody diddled with it while I was sleeping. 2259 */ 2260 BUG_ON(!list_empty(&worker->scheduled)); 2261 2262 /* 2263 * When control reaches this point, we're guaranteed to have 2264 * at least one idle worker or that someone else has already 2265 * assumed the manager role. 2266 */ 2267 worker_clr_flags(worker, WORKER_PREP); 2268 2269 do { 2270 struct work_struct *work = 2271 list_first_entry(&pool->worklist, 2272 struct work_struct, entry); 2273 2274 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2275 /* optimization path, not strictly necessary */ 2276 process_one_work(worker, work); 2277 if (unlikely(!list_empty(&worker->scheduled))) 2278 process_scheduled_works(worker); 2279 } else { 2280 move_linked_works(work, &worker->scheduled, NULL); 2281 process_scheduled_works(worker); 2282 } 2283 } while (keep_working(pool)); 2284 2285 worker_set_flags(worker, WORKER_PREP, false); 2286 sleep: 2287 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker)) 2288 goto recheck; 2289 2290 /* 2291 * pool->lock is held and there's no work to process and no need to 2292 * manage, sleep. Workers are woken up only while holding 2293 * pool->lock or from local cpu, so setting the current state 2294 * before releasing pool->lock is enough to prevent losing any 2295 * event. 2296 */ 2297 worker_enter_idle(worker); 2298 __set_current_state(TASK_INTERRUPTIBLE); 2299 spin_unlock_irq(&pool->lock); 2300 schedule(); 2301 goto woke_up; 2302 } 2303 2304 /** 2305 * rescuer_thread - the rescuer thread function 2306 * @__rescuer: self 2307 * 2308 * Workqueue rescuer thread function. There's one rescuer for each 2309 * workqueue which has WQ_RESCUER set. 2310 * 2311 * Regular work processing on a pool may block trying to create a new 2312 * worker which uses GFP_KERNEL allocation which has slight chance of 2313 * developing into deadlock if some works currently on the same queue 2314 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2315 * the problem rescuer solves. 2316 * 2317 * When such condition is possible, the pool summons rescuers of all 2318 * workqueues which have works queued on the pool and let them process 2319 * those works so that forward progress can be guaranteed. 2320 * 2321 * This should happen rarely. 2322 */ 2323 static int rescuer_thread(void *__rescuer) 2324 { 2325 struct worker *rescuer = __rescuer; 2326 struct workqueue_struct *wq = rescuer->rescue_wq; 2327 struct list_head *scheduled = &rescuer->scheduled; 2328 bool is_unbound = wq->flags & WQ_UNBOUND; 2329 unsigned int cpu; 2330 2331 set_user_nice(current, RESCUER_NICE_LEVEL); 2332 2333 /* 2334 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2335 * doesn't participate in concurrency management. 2336 */ 2337 rescuer->task->flags |= PF_WQ_WORKER; 2338 repeat: 2339 set_current_state(TASK_INTERRUPTIBLE); 2340 2341 if (kthread_should_stop()) { 2342 __set_current_state(TASK_RUNNING); 2343 rescuer->task->flags &= ~PF_WQ_WORKER; 2344 return 0; 2345 } 2346 2347 /* 2348 * See whether any cpu is asking for help. Unbounded 2349 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND. 2350 */ 2351 for_each_mayday_cpu(cpu, wq->mayday_mask) { 2352 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu; 2353 struct pool_workqueue *pwq = get_pwq(tcpu, wq); 2354 struct worker_pool *pool = pwq->pool; 2355 struct work_struct *work, *n; 2356 2357 __set_current_state(TASK_RUNNING); 2358 mayday_clear_cpu(cpu, wq->mayday_mask); 2359 2360 /* migrate to the target cpu if possible */ 2361 rescuer->pool = pool; 2362 worker_maybe_bind_and_lock(rescuer); 2363 2364 /* 2365 * Slurp in all works issued via this workqueue and 2366 * process'em. 2367 */ 2368 BUG_ON(!list_empty(&rescuer->scheduled)); 2369 list_for_each_entry_safe(work, n, &pool->worklist, entry) 2370 if (get_work_pwq(work) == pwq) 2371 move_linked_works(work, scheduled, &n); 2372 2373 process_scheduled_works(rescuer); 2374 2375 /* 2376 * Leave this pool. If keep_working() is %true, notify a 2377 * regular worker; otherwise, we end up with 0 concurrency 2378 * and stalling the execution. 2379 */ 2380 if (keep_working(pool)) 2381 wake_up_worker(pool); 2382 2383 spin_unlock_irq(&pool->lock); 2384 } 2385 2386 /* rescuers should never participate in concurrency management */ 2387 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2388 schedule(); 2389 goto repeat; 2390 } 2391 2392 struct wq_barrier { 2393 struct work_struct work; 2394 struct completion done; 2395 }; 2396 2397 static void wq_barrier_func(struct work_struct *work) 2398 { 2399 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2400 complete(&barr->done); 2401 } 2402 2403 /** 2404 * insert_wq_barrier - insert a barrier work 2405 * @pwq: pwq to insert barrier into 2406 * @barr: wq_barrier to insert 2407 * @target: target work to attach @barr to 2408 * @worker: worker currently executing @target, NULL if @target is not executing 2409 * 2410 * @barr is linked to @target such that @barr is completed only after 2411 * @target finishes execution. Please note that the ordering 2412 * guarantee is observed only with respect to @target and on the local 2413 * cpu. 2414 * 2415 * Currently, a queued barrier can't be canceled. This is because 2416 * try_to_grab_pending() can't determine whether the work to be 2417 * grabbed is at the head of the queue and thus can't clear LINKED 2418 * flag of the previous work while there must be a valid next work 2419 * after a work with LINKED flag set. 2420 * 2421 * Note that when @worker is non-NULL, @target may be modified 2422 * underneath us, so we can't reliably determine pwq from @target. 2423 * 2424 * CONTEXT: 2425 * spin_lock_irq(pool->lock). 2426 */ 2427 static void insert_wq_barrier(struct pool_workqueue *pwq, 2428 struct wq_barrier *barr, 2429 struct work_struct *target, struct worker *worker) 2430 { 2431 struct list_head *head; 2432 unsigned int linked = 0; 2433 2434 /* 2435 * debugobject calls are safe here even with pool->lock locked 2436 * as we know for sure that this will not trigger any of the 2437 * checks and call back into the fixup functions where we 2438 * might deadlock. 2439 */ 2440 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2441 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2442 init_completion(&barr->done); 2443 2444 /* 2445 * If @target is currently being executed, schedule the 2446 * barrier to the worker; otherwise, put it after @target. 2447 */ 2448 if (worker) 2449 head = worker->scheduled.next; 2450 else { 2451 unsigned long *bits = work_data_bits(target); 2452 2453 head = target->entry.next; 2454 /* there can already be other linked works, inherit and set */ 2455 linked = *bits & WORK_STRUCT_LINKED; 2456 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2457 } 2458 2459 debug_work_activate(&barr->work); 2460 insert_work(pwq, &barr->work, head, 2461 work_color_to_flags(WORK_NO_COLOR) | linked); 2462 } 2463 2464 /** 2465 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2466 * @wq: workqueue being flushed 2467 * @flush_color: new flush color, < 0 for no-op 2468 * @work_color: new work color, < 0 for no-op 2469 * 2470 * Prepare pwqs for workqueue flushing. 2471 * 2472 * If @flush_color is non-negative, flush_color on all pwqs should be 2473 * -1. If no pwq has in-flight commands at the specified color, all 2474 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2475 * has in flight commands, its pwq->flush_color is set to 2476 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2477 * wakeup logic is armed and %true is returned. 2478 * 2479 * The caller should have initialized @wq->first_flusher prior to 2480 * calling this function with non-negative @flush_color. If 2481 * @flush_color is negative, no flush color update is done and %false 2482 * is returned. 2483 * 2484 * If @work_color is non-negative, all pwqs should have the same 2485 * work_color which is previous to @work_color and all will be 2486 * advanced to @work_color. 2487 * 2488 * CONTEXT: 2489 * mutex_lock(wq->flush_mutex). 2490 * 2491 * RETURNS: 2492 * %true if @flush_color >= 0 and there's something to flush. %false 2493 * otherwise. 2494 */ 2495 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2496 int flush_color, int work_color) 2497 { 2498 bool wait = false; 2499 unsigned int cpu; 2500 2501 if (flush_color >= 0) { 2502 BUG_ON(atomic_read(&wq->nr_pwqs_to_flush)); 2503 atomic_set(&wq->nr_pwqs_to_flush, 1); 2504 } 2505 2506 for_each_pwq_cpu(cpu, wq) { 2507 struct pool_workqueue *pwq = get_pwq(cpu, wq); 2508 struct worker_pool *pool = pwq->pool; 2509 2510 spin_lock_irq(&pool->lock); 2511 2512 if (flush_color >= 0) { 2513 BUG_ON(pwq->flush_color != -1); 2514 2515 if (pwq->nr_in_flight[flush_color]) { 2516 pwq->flush_color = flush_color; 2517 atomic_inc(&wq->nr_pwqs_to_flush); 2518 wait = true; 2519 } 2520 } 2521 2522 if (work_color >= 0) { 2523 BUG_ON(work_color != work_next_color(pwq->work_color)); 2524 pwq->work_color = work_color; 2525 } 2526 2527 spin_unlock_irq(&pool->lock); 2528 } 2529 2530 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2531 complete(&wq->first_flusher->done); 2532 2533 return wait; 2534 } 2535 2536 /** 2537 * flush_workqueue - ensure that any scheduled work has run to completion. 2538 * @wq: workqueue to flush 2539 * 2540 * Forces execution of the workqueue and blocks until its completion. 2541 * This is typically used in driver shutdown handlers. 2542 * 2543 * We sleep until all works which were queued on entry have been handled, 2544 * but we are not livelocked by new incoming ones. 2545 */ 2546 void flush_workqueue(struct workqueue_struct *wq) 2547 { 2548 struct wq_flusher this_flusher = { 2549 .list = LIST_HEAD_INIT(this_flusher.list), 2550 .flush_color = -1, 2551 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2552 }; 2553 int next_color; 2554 2555 lock_map_acquire(&wq->lockdep_map); 2556 lock_map_release(&wq->lockdep_map); 2557 2558 mutex_lock(&wq->flush_mutex); 2559 2560 /* 2561 * Start-to-wait phase 2562 */ 2563 next_color = work_next_color(wq->work_color); 2564 2565 if (next_color != wq->flush_color) { 2566 /* 2567 * Color space is not full. The current work_color 2568 * becomes our flush_color and work_color is advanced 2569 * by one. 2570 */ 2571 BUG_ON(!list_empty(&wq->flusher_overflow)); 2572 this_flusher.flush_color = wq->work_color; 2573 wq->work_color = next_color; 2574 2575 if (!wq->first_flusher) { 2576 /* no flush in progress, become the first flusher */ 2577 BUG_ON(wq->flush_color != this_flusher.flush_color); 2578 2579 wq->first_flusher = &this_flusher; 2580 2581 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2582 wq->work_color)) { 2583 /* nothing to flush, done */ 2584 wq->flush_color = next_color; 2585 wq->first_flusher = NULL; 2586 goto out_unlock; 2587 } 2588 } else { 2589 /* wait in queue */ 2590 BUG_ON(wq->flush_color == this_flusher.flush_color); 2591 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2592 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2593 } 2594 } else { 2595 /* 2596 * Oops, color space is full, wait on overflow queue. 2597 * The next flush completion will assign us 2598 * flush_color and transfer to flusher_queue. 2599 */ 2600 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2601 } 2602 2603 mutex_unlock(&wq->flush_mutex); 2604 2605 wait_for_completion(&this_flusher.done); 2606 2607 /* 2608 * Wake-up-and-cascade phase 2609 * 2610 * First flushers are responsible for cascading flushes and 2611 * handling overflow. Non-first flushers can simply return. 2612 */ 2613 if (wq->first_flusher != &this_flusher) 2614 return; 2615 2616 mutex_lock(&wq->flush_mutex); 2617 2618 /* we might have raced, check again with mutex held */ 2619 if (wq->first_flusher != &this_flusher) 2620 goto out_unlock; 2621 2622 wq->first_flusher = NULL; 2623 2624 BUG_ON(!list_empty(&this_flusher.list)); 2625 BUG_ON(wq->flush_color != this_flusher.flush_color); 2626 2627 while (true) { 2628 struct wq_flusher *next, *tmp; 2629 2630 /* complete all the flushers sharing the current flush color */ 2631 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2632 if (next->flush_color != wq->flush_color) 2633 break; 2634 list_del_init(&next->list); 2635 complete(&next->done); 2636 } 2637 2638 BUG_ON(!list_empty(&wq->flusher_overflow) && 2639 wq->flush_color != work_next_color(wq->work_color)); 2640 2641 /* this flush_color is finished, advance by one */ 2642 wq->flush_color = work_next_color(wq->flush_color); 2643 2644 /* one color has been freed, handle overflow queue */ 2645 if (!list_empty(&wq->flusher_overflow)) { 2646 /* 2647 * Assign the same color to all overflowed 2648 * flushers, advance work_color and append to 2649 * flusher_queue. This is the start-to-wait 2650 * phase for these overflowed flushers. 2651 */ 2652 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2653 tmp->flush_color = wq->work_color; 2654 2655 wq->work_color = work_next_color(wq->work_color); 2656 2657 list_splice_tail_init(&wq->flusher_overflow, 2658 &wq->flusher_queue); 2659 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2660 } 2661 2662 if (list_empty(&wq->flusher_queue)) { 2663 BUG_ON(wq->flush_color != wq->work_color); 2664 break; 2665 } 2666 2667 /* 2668 * Need to flush more colors. Make the next flusher 2669 * the new first flusher and arm pwqs. 2670 */ 2671 BUG_ON(wq->flush_color == wq->work_color); 2672 BUG_ON(wq->flush_color != next->flush_color); 2673 2674 list_del_init(&next->list); 2675 wq->first_flusher = next; 2676 2677 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2678 break; 2679 2680 /* 2681 * Meh... this color is already done, clear first 2682 * flusher and repeat cascading. 2683 */ 2684 wq->first_flusher = NULL; 2685 } 2686 2687 out_unlock: 2688 mutex_unlock(&wq->flush_mutex); 2689 } 2690 EXPORT_SYMBOL_GPL(flush_workqueue); 2691 2692 /** 2693 * drain_workqueue - drain a workqueue 2694 * @wq: workqueue to drain 2695 * 2696 * Wait until the workqueue becomes empty. While draining is in progress, 2697 * only chain queueing is allowed. IOW, only currently pending or running 2698 * work items on @wq can queue further work items on it. @wq is flushed 2699 * repeatedly until it becomes empty. The number of flushing is detemined 2700 * by the depth of chaining and should be relatively short. Whine if it 2701 * takes too long. 2702 */ 2703 void drain_workqueue(struct workqueue_struct *wq) 2704 { 2705 unsigned int flush_cnt = 0; 2706 unsigned int cpu; 2707 2708 /* 2709 * __queue_work() needs to test whether there are drainers, is much 2710 * hotter than drain_workqueue() and already looks at @wq->flags. 2711 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers. 2712 */ 2713 spin_lock(&workqueue_lock); 2714 if (!wq->nr_drainers++) 2715 wq->flags |= WQ_DRAINING; 2716 spin_unlock(&workqueue_lock); 2717 reflush: 2718 flush_workqueue(wq); 2719 2720 for_each_pwq_cpu(cpu, wq) { 2721 struct pool_workqueue *pwq = get_pwq(cpu, wq); 2722 bool drained; 2723 2724 spin_lock_irq(&pwq->pool->lock); 2725 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2726 spin_unlock_irq(&pwq->pool->lock); 2727 2728 if (drained) 2729 continue; 2730 2731 if (++flush_cnt == 10 || 2732 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2733 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n", 2734 wq->name, flush_cnt); 2735 goto reflush; 2736 } 2737 2738 spin_lock(&workqueue_lock); 2739 if (!--wq->nr_drainers) 2740 wq->flags &= ~WQ_DRAINING; 2741 spin_unlock(&workqueue_lock); 2742 } 2743 EXPORT_SYMBOL_GPL(drain_workqueue); 2744 2745 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr) 2746 { 2747 struct worker *worker = NULL; 2748 struct worker_pool *pool; 2749 struct pool_workqueue *pwq; 2750 2751 might_sleep(); 2752 pool = get_work_pool(work); 2753 if (!pool) 2754 return false; 2755 2756 spin_lock_irq(&pool->lock); 2757 /* see the comment in try_to_grab_pending() with the same code */ 2758 pwq = get_work_pwq(work); 2759 if (pwq) { 2760 if (unlikely(pwq->pool != pool)) 2761 goto already_gone; 2762 } else { 2763 worker = find_worker_executing_work(pool, work); 2764 if (!worker) 2765 goto already_gone; 2766 pwq = worker->current_pwq; 2767 } 2768 2769 insert_wq_barrier(pwq, barr, work, worker); 2770 spin_unlock_irq(&pool->lock); 2771 2772 /* 2773 * If @max_active is 1 or rescuer is in use, flushing another work 2774 * item on the same workqueue may lead to deadlock. Make sure the 2775 * flusher is not running on the same workqueue by verifying write 2776 * access. 2777 */ 2778 if (pwq->wq->saved_max_active == 1 || pwq->wq->flags & WQ_RESCUER) 2779 lock_map_acquire(&pwq->wq->lockdep_map); 2780 else 2781 lock_map_acquire_read(&pwq->wq->lockdep_map); 2782 lock_map_release(&pwq->wq->lockdep_map); 2783 2784 return true; 2785 already_gone: 2786 spin_unlock_irq(&pool->lock); 2787 return false; 2788 } 2789 2790 /** 2791 * flush_work - wait for a work to finish executing the last queueing instance 2792 * @work: the work to flush 2793 * 2794 * Wait until @work has finished execution. @work is guaranteed to be idle 2795 * on return if it hasn't been requeued since flush started. 2796 * 2797 * RETURNS: 2798 * %true if flush_work() waited for the work to finish execution, 2799 * %false if it was already idle. 2800 */ 2801 bool flush_work(struct work_struct *work) 2802 { 2803 struct wq_barrier barr; 2804 2805 lock_map_acquire(&work->lockdep_map); 2806 lock_map_release(&work->lockdep_map); 2807 2808 if (start_flush_work(work, &barr)) { 2809 wait_for_completion(&barr.done); 2810 destroy_work_on_stack(&barr.work); 2811 return true; 2812 } else { 2813 return false; 2814 } 2815 } 2816 EXPORT_SYMBOL_GPL(flush_work); 2817 2818 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 2819 { 2820 unsigned long flags; 2821 int ret; 2822 2823 do { 2824 ret = try_to_grab_pending(work, is_dwork, &flags); 2825 /* 2826 * If someone else is canceling, wait for the same event it 2827 * would be waiting for before retrying. 2828 */ 2829 if (unlikely(ret == -ENOENT)) 2830 flush_work(work); 2831 } while (unlikely(ret < 0)); 2832 2833 /* tell other tasks trying to grab @work to back off */ 2834 mark_work_canceling(work); 2835 local_irq_restore(flags); 2836 2837 flush_work(work); 2838 clear_work_data(work); 2839 return ret; 2840 } 2841 2842 /** 2843 * cancel_work_sync - cancel a work and wait for it to finish 2844 * @work: the work to cancel 2845 * 2846 * Cancel @work and wait for its execution to finish. This function 2847 * can be used even if the work re-queues itself or migrates to 2848 * another workqueue. On return from this function, @work is 2849 * guaranteed to be not pending or executing on any CPU. 2850 * 2851 * cancel_work_sync(&delayed_work->work) must not be used for 2852 * delayed_work's. Use cancel_delayed_work_sync() instead. 2853 * 2854 * The caller must ensure that the workqueue on which @work was last 2855 * queued can't be destroyed before this function returns. 2856 * 2857 * RETURNS: 2858 * %true if @work was pending, %false otherwise. 2859 */ 2860 bool cancel_work_sync(struct work_struct *work) 2861 { 2862 return __cancel_work_timer(work, false); 2863 } 2864 EXPORT_SYMBOL_GPL(cancel_work_sync); 2865 2866 /** 2867 * flush_delayed_work - wait for a dwork to finish executing the last queueing 2868 * @dwork: the delayed work to flush 2869 * 2870 * Delayed timer is cancelled and the pending work is queued for 2871 * immediate execution. Like flush_work(), this function only 2872 * considers the last queueing instance of @dwork. 2873 * 2874 * RETURNS: 2875 * %true if flush_work() waited for the work to finish execution, 2876 * %false if it was already idle. 2877 */ 2878 bool flush_delayed_work(struct delayed_work *dwork) 2879 { 2880 local_irq_disable(); 2881 if (del_timer_sync(&dwork->timer)) 2882 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2883 local_irq_enable(); 2884 return flush_work(&dwork->work); 2885 } 2886 EXPORT_SYMBOL(flush_delayed_work); 2887 2888 /** 2889 * cancel_delayed_work - cancel a delayed work 2890 * @dwork: delayed_work to cancel 2891 * 2892 * Kill off a pending delayed_work. Returns %true if @dwork was pending 2893 * and canceled; %false if wasn't pending. Note that the work callback 2894 * function may still be running on return, unless it returns %true and the 2895 * work doesn't re-arm itself. Explicitly flush or use 2896 * cancel_delayed_work_sync() to wait on it. 2897 * 2898 * This function is safe to call from any context including IRQ handler. 2899 */ 2900 bool cancel_delayed_work(struct delayed_work *dwork) 2901 { 2902 unsigned long flags; 2903 int ret; 2904 2905 do { 2906 ret = try_to_grab_pending(&dwork->work, true, &flags); 2907 } while (unlikely(ret == -EAGAIN)); 2908 2909 if (unlikely(ret < 0)) 2910 return false; 2911 2912 set_work_pool_and_clear_pending(&dwork->work, 2913 get_work_pool_id(&dwork->work)); 2914 local_irq_restore(flags); 2915 return ret; 2916 } 2917 EXPORT_SYMBOL(cancel_delayed_work); 2918 2919 /** 2920 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 2921 * @dwork: the delayed work cancel 2922 * 2923 * This is cancel_work_sync() for delayed works. 2924 * 2925 * RETURNS: 2926 * %true if @dwork was pending, %false otherwise. 2927 */ 2928 bool cancel_delayed_work_sync(struct delayed_work *dwork) 2929 { 2930 return __cancel_work_timer(&dwork->work, true); 2931 } 2932 EXPORT_SYMBOL(cancel_delayed_work_sync); 2933 2934 /** 2935 * schedule_work_on - put work task on a specific cpu 2936 * @cpu: cpu to put the work task on 2937 * @work: job to be done 2938 * 2939 * This puts a job on a specific cpu 2940 */ 2941 bool schedule_work_on(int cpu, struct work_struct *work) 2942 { 2943 return queue_work_on(cpu, system_wq, work); 2944 } 2945 EXPORT_SYMBOL(schedule_work_on); 2946 2947 /** 2948 * schedule_work - put work task in global workqueue 2949 * @work: job to be done 2950 * 2951 * Returns %false if @work was already on the kernel-global workqueue and 2952 * %true otherwise. 2953 * 2954 * This puts a job in the kernel-global workqueue if it was not already 2955 * queued and leaves it in the same position on the kernel-global 2956 * workqueue otherwise. 2957 */ 2958 bool schedule_work(struct work_struct *work) 2959 { 2960 return queue_work(system_wq, work); 2961 } 2962 EXPORT_SYMBOL(schedule_work); 2963 2964 /** 2965 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay 2966 * @cpu: cpu to use 2967 * @dwork: job to be done 2968 * @delay: number of jiffies to wait 2969 * 2970 * After waiting for a given time this puts a job in the kernel-global 2971 * workqueue on the specified CPU. 2972 */ 2973 bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork, 2974 unsigned long delay) 2975 { 2976 return queue_delayed_work_on(cpu, system_wq, dwork, delay); 2977 } 2978 EXPORT_SYMBOL(schedule_delayed_work_on); 2979 2980 /** 2981 * schedule_delayed_work - put work task in global workqueue after delay 2982 * @dwork: job to be done 2983 * @delay: number of jiffies to wait or 0 for immediate execution 2984 * 2985 * After waiting for a given time this puts a job in the kernel-global 2986 * workqueue. 2987 */ 2988 bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay) 2989 { 2990 return queue_delayed_work(system_wq, dwork, delay); 2991 } 2992 EXPORT_SYMBOL(schedule_delayed_work); 2993 2994 /** 2995 * schedule_on_each_cpu - execute a function synchronously on each online CPU 2996 * @func: the function to call 2997 * 2998 * schedule_on_each_cpu() executes @func on each online CPU using the 2999 * system workqueue and blocks until all CPUs have completed. 3000 * schedule_on_each_cpu() is very slow. 3001 * 3002 * RETURNS: 3003 * 0 on success, -errno on failure. 3004 */ 3005 int schedule_on_each_cpu(work_func_t func) 3006 { 3007 int cpu; 3008 struct work_struct __percpu *works; 3009 3010 works = alloc_percpu(struct work_struct); 3011 if (!works) 3012 return -ENOMEM; 3013 3014 get_online_cpus(); 3015 3016 for_each_online_cpu(cpu) { 3017 struct work_struct *work = per_cpu_ptr(works, cpu); 3018 3019 INIT_WORK(work, func); 3020 schedule_work_on(cpu, work); 3021 } 3022 3023 for_each_online_cpu(cpu) 3024 flush_work(per_cpu_ptr(works, cpu)); 3025 3026 put_online_cpus(); 3027 free_percpu(works); 3028 return 0; 3029 } 3030 3031 /** 3032 * flush_scheduled_work - ensure that any scheduled work has run to completion. 3033 * 3034 * Forces execution of the kernel-global workqueue and blocks until its 3035 * completion. 3036 * 3037 * Think twice before calling this function! It's very easy to get into 3038 * trouble if you don't take great care. Either of the following situations 3039 * will lead to deadlock: 3040 * 3041 * One of the work items currently on the workqueue needs to acquire 3042 * a lock held by your code or its caller. 3043 * 3044 * Your code is running in the context of a work routine. 3045 * 3046 * They will be detected by lockdep when they occur, but the first might not 3047 * occur very often. It depends on what work items are on the workqueue and 3048 * what locks they need, which you have no control over. 3049 * 3050 * In most situations flushing the entire workqueue is overkill; you merely 3051 * need to know that a particular work item isn't queued and isn't running. 3052 * In such cases you should use cancel_delayed_work_sync() or 3053 * cancel_work_sync() instead. 3054 */ 3055 void flush_scheduled_work(void) 3056 { 3057 flush_workqueue(system_wq); 3058 } 3059 EXPORT_SYMBOL(flush_scheduled_work); 3060 3061 /** 3062 * execute_in_process_context - reliably execute the routine with user context 3063 * @fn: the function to execute 3064 * @ew: guaranteed storage for the execute work structure (must 3065 * be available when the work executes) 3066 * 3067 * Executes the function immediately if process context is available, 3068 * otherwise schedules the function for delayed execution. 3069 * 3070 * Returns: 0 - function was executed 3071 * 1 - function was scheduled for execution 3072 */ 3073 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3074 { 3075 if (!in_interrupt()) { 3076 fn(&ew->work); 3077 return 0; 3078 } 3079 3080 INIT_WORK(&ew->work, fn); 3081 schedule_work(&ew->work); 3082 3083 return 1; 3084 } 3085 EXPORT_SYMBOL_GPL(execute_in_process_context); 3086 3087 int keventd_up(void) 3088 { 3089 return system_wq != NULL; 3090 } 3091 3092 static int alloc_pwqs(struct workqueue_struct *wq) 3093 { 3094 /* 3095 * pwqs are forced aligned according to WORK_STRUCT_FLAG_BITS. 3096 * Make sure that the alignment isn't lower than that of 3097 * unsigned long long. 3098 */ 3099 const size_t size = sizeof(struct pool_workqueue); 3100 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS, 3101 __alignof__(unsigned long long)); 3102 3103 if (!(wq->flags & WQ_UNBOUND)) 3104 wq->pool_wq.pcpu = __alloc_percpu(size, align); 3105 else { 3106 void *ptr; 3107 3108 /* 3109 * Allocate enough room to align pwq and put an extra 3110 * pointer at the end pointing back to the originally 3111 * allocated pointer which will be used for free. 3112 */ 3113 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL); 3114 if (ptr) { 3115 wq->pool_wq.single = PTR_ALIGN(ptr, align); 3116 *(void **)(wq->pool_wq.single + 1) = ptr; 3117 } 3118 } 3119 3120 /* just in case, make sure it's actually aligned */ 3121 BUG_ON(!IS_ALIGNED(wq->pool_wq.v, align)); 3122 return wq->pool_wq.v ? 0 : -ENOMEM; 3123 } 3124 3125 static void free_pwqs(struct workqueue_struct *wq) 3126 { 3127 if (!(wq->flags & WQ_UNBOUND)) 3128 free_percpu(wq->pool_wq.pcpu); 3129 else if (wq->pool_wq.single) { 3130 /* the pointer to free is stored right after the pwq */ 3131 kfree(*(void **)(wq->pool_wq.single + 1)); 3132 } 3133 } 3134 3135 static int wq_clamp_max_active(int max_active, unsigned int flags, 3136 const char *name) 3137 { 3138 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 3139 3140 if (max_active < 1 || max_active > lim) 3141 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 3142 max_active, name, 1, lim); 3143 3144 return clamp_val(max_active, 1, lim); 3145 } 3146 3147 struct workqueue_struct *__alloc_workqueue_key(const char *fmt, 3148 unsigned int flags, 3149 int max_active, 3150 struct lock_class_key *key, 3151 const char *lock_name, ...) 3152 { 3153 va_list args, args1; 3154 struct workqueue_struct *wq; 3155 unsigned int cpu; 3156 size_t namelen; 3157 3158 /* determine namelen, allocate wq and format name */ 3159 va_start(args, lock_name); 3160 va_copy(args1, args); 3161 namelen = vsnprintf(NULL, 0, fmt, args) + 1; 3162 3163 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL); 3164 if (!wq) 3165 goto err; 3166 3167 vsnprintf(wq->name, namelen, fmt, args1); 3168 va_end(args); 3169 va_end(args1); 3170 3171 /* 3172 * Workqueues which may be used during memory reclaim should 3173 * have a rescuer to guarantee forward progress. 3174 */ 3175 if (flags & WQ_MEM_RECLAIM) 3176 flags |= WQ_RESCUER; 3177 3178 max_active = max_active ?: WQ_DFL_ACTIVE; 3179 max_active = wq_clamp_max_active(max_active, flags, wq->name); 3180 3181 /* init wq */ 3182 wq->flags = flags; 3183 wq->saved_max_active = max_active; 3184 mutex_init(&wq->flush_mutex); 3185 atomic_set(&wq->nr_pwqs_to_flush, 0); 3186 INIT_LIST_HEAD(&wq->flusher_queue); 3187 INIT_LIST_HEAD(&wq->flusher_overflow); 3188 3189 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 3190 INIT_LIST_HEAD(&wq->list); 3191 3192 if (alloc_pwqs(wq) < 0) 3193 goto err; 3194 3195 for_each_pwq_cpu(cpu, wq) { 3196 struct pool_workqueue *pwq = get_pwq(cpu, wq); 3197 3198 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3199 pwq->pool = get_std_worker_pool(cpu, flags & WQ_HIGHPRI); 3200 pwq->wq = wq; 3201 pwq->flush_color = -1; 3202 pwq->max_active = max_active; 3203 INIT_LIST_HEAD(&pwq->delayed_works); 3204 } 3205 3206 if (flags & WQ_RESCUER) { 3207 struct worker *rescuer; 3208 3209 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL)) 3210 goto err; 3211 3212 wq->rescuer = rescuer = alloc_worker(); 3213 if (!rescuer) 3214 goto err; 3215 3216 rescuer->rescue_wq = wq; 3217 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", 3218 wq->name); 3219 if (IS_ERR(rescuer->task)) 3220 goto err; 3221 3222 rescuer->task->flags |= PF_THREAD_BOUND; 3223 wake_up_process(rescuer->task); 3224 } 3225 3226 /* 3227 * workqueue_lock protects global freeze state and workqueues 3228 * list. Grab it, set max_active accordingly and add the new 3229 * workqueue to workqueues list. 3230 */ 3231 spin_lock(&workqueue_lock); 3232 3233 if (workqueue_freezing && wq->flags & WQ_FREEZABLE) 3234 for_each_pwq_cpu(cpu, wq) 3235 get_pwq(cpu, wq)->max_active = 0; 3236 3237 list_add(&wq->list, &workqueues); 3238 3239 spin_unlock(&workqueue_lock); 3240 3241 return wq; 3242 err: 3243 if (wq) { 3244 free_pwqs(wq); 3245 free_mayday_mask(wq->mayday_mask); 3246 kfree(wq->rescuer); 3247 kfree(wq); 3248 } 3249 return NULL; 3250 } 3251 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 3252 3253 /** 3254 * destroy_workqueue - safely terminate a workqueue 3255 * @wq: target workqueue 3256 * 3257 * Safely destroy a workqueue. All work currently pending will be done first. 3258 */ 3259 void destroy_workqueue(struct workqueue_struct *wq) 3260 { 3261 unsigned int cpu; 3262 3263 /* drain it before proceeding with destruction */ 3264 drain_workqueue(wq); 3265 3266 /* 3267 * wq list is used to freeze wq, remove from list after 3268 * flushing is complete in case freeze races us. 3269 */ 3270 spin_lock(&workqueue_lock); 3271 list_del(&wq->list); 3272 spin_unlock(&workqueue_lock); 3273 3274 /* sanity check */ 3275 for_each_pwq_cpu(cpu, wq) { 3276 struct pool_workqueue *pwq = get_pwq(cpu, wq); 3277 int i; 3278 3279 for (i = 0; i < WORK_NR_COLORS; i++) 3280 BUG_ON(pwq->nr_in_flight[i]); 3281 BUG_ON(pwq->nr_active); 3282 BUG_ON(!list_empty(&pwq->delayed_works)); 3283 } 3284 3285 if (wq->flags & WQ_RESCUER) { 3286 kthread_stop(wq->rescuer->task); 3287 free_mayday_mask(wq->mayday_mask); 3288 kfree(wq->rescuer); 3289 } 3290 3291 free_pwqs(wq); 3292 kfree(wq); 3293 } 3294 EXPORT_SYMBOL_GPL(destroy_workqueue); 3295 3296 /** 3297 * pwq_set_max_active - adjust max_active of a pwq 3298 * @pwq: target pool_workqueue 3299 * @max_active: new max_active value. 3300 * 3301 * Set @pwq->max_active to @max_active and activate delayed works if 3302 * increased. 3303 * 3304 * CONTEXT: 3305 * spin_lock_irq(pool->lock). 3306 */ 3307 static void pwq_set_max_active(struct pool_workqueue *pwq, int max_active) 3308 { 3309 pwq->max_active = max_active; 3310 3311 while (!list_empty(&pwq->delayed_works) && 3312 pwq->nr_active < pwq->max_active) 3313 pwq_activate_first_delayed(pwq); 3314 } 3315 3316 /** 3317 * workqueue_set_max_active - adjust max_active of a workqueue 3318 * @wq: target workqueue 3319 * @max_active: new max_active value. 3320 * 3321 * Set max_active of @wq to @max_active. 3322 * 3323 * CONTEXT: 3324 * Don't call from IRQ context. 3325 */ 3326 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 3327 { 3328 unsigned int cpu; 3329 3330 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 3331 3332 spin_lock(&workqueue_lock); 3333 3334 wq->saved_max_active = max_active; 3335 3336 for_each_pwq_cpu(cpu, wq) { 3337 struct pool_workqueue *pwq = get_pwq(cpu, wq); 3338 struct worker_pool *pool = pwq->pool; 3339 3340 spin_lock_irq(&pool->lock); 3341 3342 if (!(wq->flags & WQ_FREEZABLE) || 3343 !(pool->flags & POOL_FREEZING)) 3344 pwq_set_max_active(pwq, max_active); 3345 3346 spin_unlock_irq(&pool->lock); 3347 } 3348 3349 spin_unlock(&workqueue_lock); 3350 } 3351 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 3352 3353 /** 3354 * workqueue_congested - test whether a workqueue is congested 3355 * @cpu: CPU in question 3356 * @wq: target workqueue 3357 * 3358 * Test whether @wq's cpu workqueue for @cpu is congested. There is 3359 * no synchronization around this function and the test result is 3360 * unreliable and only useful as advisory hints or for debugging. 3361 * 3362 * RETURNS: 3363 * %true if congested, %false otherwise. 3364 */ 3365 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq) 3366 { 3367 struct pool_workqueue *pwq = get_pwq(cpu, wq); 3368 3369 return !list_empty(&pwq->delayed_works); 3370 } 3371 EXPORT_SYMBOL_GPL(workqueue_congested); 3372 3373 /** 3374 * work_busy - test whether a work is currently pending or running 3375 * @work: the work to be tested 3376 * 3377 * Test whether @work is currently pending or running. There is no 3378 * synchronization around this function and the test result is 3379 * unreliable and only useful as advisory hints or for debugging. 3380 * 3381 * RETURNS: 3382 * OR'd bitmask of WORK_BUSY_* bits. 3383 */ 3384 unsigned int work_busy(struct work_struct *work) 3385 { 3386 struct worker_pool *pool = get_work_pool(work); 3387 unsigned long flags; 3388 unsigned int ret = 0; 3389 3390 if (work_pending(work)) 3391 ret |= WORK_BUSY_PENDING; 3392 3393 if (pool) { 3394 spin_lock_irqsave(&pool->lock, flags); 3395 if (find_worker_executing_work(pool, work)) 3396 ret |= WORK_BUSY_RUNNING; 3397 spin_unlock_irqrestore(&pool->lock, flags); 3398 } 3399 3400 return ret; 3401 } 3402 EXPORT_SYMBOL_GPL(work_busy); 3403 3404 /* 3405 * CPU hotplug. 3406 * 3407 * There are two challenges in supporting CPU hotplug. Firstly, there 3408 * are a lot of assumptions on strong associations among work, pwq and 3409 * pool which make migrating pending and scheduled works very 3410 * difficult to implement without impacting hot paths. Secondly, 3411 * worker pools serve mix of short, long and very long running works making 3412 * blocked draining impractical. 3413 * 3414 * This is solved by allowing the pools to be disassociated from the CPU 3415 * running as an unbound one and allowing it to be reattached later if the 3416 * cpu comes back online. 3417 */ 3418 3419 static void wq_unbind_fn(struct work_struct *work) 3420 { 3421 int cpu = smp_processor_id(); 3422 struct worker_pool *pool; 3423 struct worker *worker; 3424 int i; 3425 3426 for_each_std_worker_pool(pool, cpu) { 3427 BUG_ON(cpu != smp_processor_id()); 3428 3429 mutex_lock(&pool->assoc_mutex); 3430 spin_lock_irq(&pool->lock); 3431 3432 /* 3433 * We've claimed all manager positions. Make all workers 3434 * unbound and set DISASSOCIATED. Before this, all workers 3435 * except for the ones which are still executing works from 3436 * before the last CPU down must be on the cpu. After 3437 * this, they may become diasporas. 3438 */ 3439 list_for_each_entry(worker, &pool->idle_list, entry) 3440 worker->flags |= WORKER_UNBOUND; 3441 3442 for_each_busy_worker(worker, i, pool) 3443 worker->flags |= WORKER_UNBOUND; 3444 3445 pool->flags |= POOL_DISASSOCIATED; 3446 3447 spin_unlock_irq(&pool->lock); 3448 mutex_unlock(&pool->assoc_mutex); 3449 } 3450 3451 /* 3452 * Call schedule() so that we cross rq->lock and thus can guarantee 3453 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary 3454 * as scheduler callbacks may be invoked from other cpus. 3455 */ 3456 schedule(); 3457 3458 /* 3459 * Sched callbacks are disabled now. Zap nr_running. After this, 3460 * nr_running stays zero and need_more_worker() and keep_working() 3461 * are always true as long as the worklist is not empty. Pools on 3462 * @cpu now behave as unbound (in terms of concurrency management) 3463 * pools which are served by workers tied to the CPU. 3464 * 3465 * On return from this function, the current worker would trigger 3466 * unbound chain execution of pending work items if other workers 3467 * didn't already. 3468 */ 3469 for_each_std_worker_pool(pool, cpu) 3470 atomic_set(&pool->nr_running, 0); 3471 } 3472 3473 /* 3474 * Workqueues should be brought up before normal priority CPU notifiers. 3475 * This will be registered high priority CPU notifier. 3476 */ 3477 static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb, 3478 unsigned long action, 3479 void *hcpu) 3480 { 3481 unsigned int cpu = (unsigned long)hcpu; 3482 struct worker_pool *pool; 3483 3484 switch (action & ~CPU_TASKS_FROZEN) { 3485 case CPU_UP_PREPARE: 3486 for_each_std_worker_pool(pool, cpu) { 3487 struct worker *worker; 3488 3489 if (pool->nr_workers) 3490 continue; 3491 3492 worker = create_worker(pool); 3493 if (!worker) 3494 return NOTIFY_BAD; 3495 3496 spin_lock_irq(&pool->lock); 3497 start_worker(worker); 3498 spin_unlock_irq(&pool->lock); 3499 } 3500 break; 3501 3502 case CPU_DOWN_FAILED: 3503 case CPU_ONLINE: 3504 for_each_std_worker_pool(pool, cpu) { 3505 mutex_lock(&pool->assoc_mutex); 3506 spin_lock_irq(&pool->lock); 3507 3508 pool->flags &= ~POOL_DISASSOCIATED; 3509 rebind_workers(pool); 3510 3511 spin_unlock_irq(&pool->lock); 3512 mutex_unlock(&pool->assoc_mutex); 3513 } 3514 break; 3515 } 3516 return NOTIFY_OK; 3517 } 3518 3519 /* 3520 * Workqueues should be brought down after normal priority CPU notifiers. 3521 * This will be registered as low priority CPU notifier. 3522 */ 3523 static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb, 3524 unsigned long action, 3525 void *hcpu) 3526 { 3527 unsigned int cpu = (unsigned long)hcpu; 3528 struct work_struct unbind_work; 3529 3530 switch (action & ~CPU_TASKS_FROZEN) { 3531 case CPU_DOWN_PREPARE: 3532 /* unbinding should happen on the local CPU */ 3533 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn); 3534 queue_work_on(cpu, system_highpri_wq, &unbind_work); 3535 flush_work(&unbind_work); 3536 break; 3537 } 3538 return NOTIFY_OK; 3539 } 3540 3541 #ifdef CONFIG_SMP 3542 3543 struct work_for_cpu { 3544 struct work_struct work; 3545 long (*fn)(void *); 3546 void *arg; 3547 long ret; 3548 }; 3549 3550 static void work_for_cpu_fn(struct work_struct *work) 3551 { 3552 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 3553 3554 wfc->ret = wfc->fn(wfc->arg); 3555 } 3556 3557 /** 3558 * work_on_cpu - run a function in user context on a particular cpu 3559 * @cpu: the cpu to run on 3560 * @fn: the function to run 3561 * @arg: the function arg 3562 * 3563 * This will return the value @fn returns. 3564 * It is up to the caller to ensure that the cpu doesn't go offline. 3565 * The caller must not hold any locks which would prevent @fn from completing. 3566 */ 3567 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg) 3568 { 3569 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 3570 3571 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 3572 schedule_work_on(cpu, &wfc.work); 3573 flush_work(&wfc.work); 3574 return wfc.ret; 3575 } 3576 EXPORT_SYMBOL_GPL(work_on_cpu); 3577 #endif /* CONFIG_SMP */ 3578 3579 #ifdef CONFIG_FREEZER 3580 3581 /** 3582 * freeze_workqueues_begin - begin freezing workqueues 3583 * 3584 * Start freezing workqueues. After this function returns, all freezable 3585 * workqueues will queue new works to their frozen_works list instead of 3586 * pool->worklist. 3587 * 3588 * CONTEXT: 3589 * Grabs and releases workqueue_lock and pool->lock's. 3590 */ 3591 void freeze_workqueues_begin(void) 3592 { 3593 unsigned int cpu; 3594 3595 spin_lock(&workqueue_lock); 3596 3597 BUG_ON(workqueue_freezing); 3598 workqueue_freezing = true; 3599 3600 for_each_wq_cpu(cpu) { 3601 struct worker_pool *pool; 3602 struct workqueue_struct *wq; 3603 3604 for_each_std_worker_pool(pool, cpu) { 3605 spin_lock_irq(&pool->lock); 3606 3607 WARN_ON_ONCE(pool->flags & POOL_FREEZING); 3608 pool->flags |= POOL_FREEZING; 3609 3610 list_for_each_entry(wq, &workqueues, list) { 3611 struct pool_workqueue *pwq = get_pwq(cpu, wq); 3612 3613 if (pwq && pwq->pool == pool && 3614 (wq->flags & WQ_FREEZABLE)) 3615 pwq->max_active = 0; 3616 } 3617 3618 spin_unlock_irq(&pool->lock); 3619 } 3620 } 3621 3622 spin_unlock(&workqueue_lock); 3623 } 3624 3625 /** 3626 * freeze_workqueues_busy - are freezable workqueues still busy? 3627 * 3628 * Check whether freezing is complete. This function must be called 3629 * between freeze_workqueues_begin() and thaw_workqueues(). 3630 * 3631 * CONTEXT: 3632 * Grabs and releases workqueue_lock. 3633 * 3634 * RETURNS: 3635 * %true if some freezable workqueues are still busy. %false if freezing 3636 * is complete. 3637 */ 3638 bool freeze_workqueues_busy(void) 3639 { 3640 unsigned int cpu; 3641 bool busy = false; 3642 3643 spin_lock(&workqueue_lock); 3644 3645 BUG_ON(!workqueue_freezing); 3646 3647 for_each_wq_cpu(cpu) { 3648 struct workqueue_struct *wq; 3649 /* 3650 * nr_active is monotonically decreasing. It's safe 3651 * to peek without lock. 3652 */ 3653 list_for_each_entry(wq, &workqueues, list) { 3654 struct pool_workqueue *pwq = get_pwq(cpu, wq); 3655 3656 if (!pwq || !(wq->flags & WQ_FREEZABLE)) 3657 continue; 3658 3659 BUG_ON(pwq->nr_active < 0); 3660 if (pwq->nr_active) { 3661 busy = true; 3662 goto out_unlock; 3663 } 3664 } 3665 } 3666 out_unlock: 3667 spin_unlock(&workqueue_lock); 3668 return busy; 3669 } 3670 3671 /** 3672 * thaw_workqueues - thaw workqueues 3673 * 3674 * Thaw workqueues. Normal queueing is restored and all collected 3675 * frozen works are transferred to their respective pool worklists. 3676 * 3677 * CONTEXT: 3678 * Grabs and releases workqueue_lock and pool->lock's. 3679 */ 3680 void thaw_workqueues(void) 3681 { 3682 unsigned int cpu; 3683 3684 spin_lock(&workqueue_lock); 3685 3686 if (!workqueue_freezing) 3687 goto out_unlock; 3688 3689 for_each_wq_cpu(cpu) { 3690 struct worker_pool *pool; 3691 struct workqueue_struct *wq; 3692 3693 for_each_std_worker_pool(pool, cpu) { 3694 spin_lock_irq(&pool->lock); 3695 3696 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING)); 3697 pool->flags &= ~POOL_FREEZING; 3698 3699 list_for_each_entry(wq, &workqueues, list) { 3700 struct pool_workqueue *pwq = get_pwq(cpu, wq); 3701 3702 if (!pwq || pwq->pool != pool || 3703 !(wq->flags & WQ_FREEZABLE)) 3704 continue; 3705 3706 /* restore max_active and repopulate worklist */ 3707 pwq_set_max_active(pwq, wq->saved_max_active); 3708 } 3709 3710 wake_up_worker(pool); 3711 3712 spin_unlock_irq(&pool->lock); 3713 } 3714 } 3715 3716 workqueue_freezing = false; 3717 out_unlock: 3718 spin_unlock(&workqueue_lock); 3719 } 3720 #endif /* CONFIG_FREEZER */ 3721 3722 static int __init init_workqueues(void) 3723 { 3724 unsigned int cpu; 3725 3726 /* make sure we have enough bits for OFFQ pool ID */ 3727 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) < 3728 WORK_CPU_END * NR_STD_WORKER_POOLS); 3729 3730 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP); 3731 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN); 3732 3733 /* initialize CPU pools */ 3734 for_each_wq_cpu(cpu) { 3735 struct worker_pool *pool; 3736 3737 for_each_std_worker_pool(pool, cpu) { 3738 spin_lock_init(&pool->lock); 3739 pool->cpu = cpu; 3740 pool->flags |= POOL_DISASSOCIATED; 3741 INIT_LIST_HEAD(&pool->worklist); 3742 INIT_LIST_HEAD(&pool->idle_list); 3743 hash_init(pool->busy_hash); 3744 3745 init_timer_deferrable(&pool->idle_timer); 3746 pool->idle_timer.function = idle_worker_timeout; 3747 pool->idle_timer.data = (unsigned long)pool; 3748 3749 setup_timer(&pool->mayday_timer, pool_mayday_timeout, 3750 (unsigned long)pool); 3751 3752 mutex_init(&pool->assoc_mutex); 3753 ida_init(&pool->worker_ida); 3754 3755 /* alloc pool ID */ 3756 BUG_ON(worker_pool_assign_id(pool)); 3757 } 3758 } 3759 3760 /* create the initial worker */ 3761 for_each_online_wq_cpu(cpu) { 3762 struct worker_pool *pool; 3763 3764 for_each_std_worker_pool(pool, cpu) { 3765 struct worker *worker; 3766 3767 if (cpu != WORK_CPU_UNBOUND) 3768 pool->flags &= ~POOL_DISASSOCIATED; 3769 3770 worker = create_worker(pool); 3771 BUG_ON(!worker); 3772 spin_lock_irq(&pool->lock); 3773 start_worker(worker); 3774 spin_unlock_irq(&pool->lock); 3775 } 3776 } 3777 3778 system_wq = alloc_workqueue("events", 0, 0); 3779 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 3780 system_long_wq = alloc_workqueue("events_long", 0, 0); 3781 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 3782 WQ_UNBOUND_MAX_ACTIVE); 3783 system_freezable_wq = alloc_workqueue("events_freezable", 3784 WQ_FREEZABLE, 0); 3785 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 3786 !system_unbound_wq || !system_freezable_wq); 3787 return 0; 3788 } 3789 early_initcall(init_workqueues); 3790