1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There is one worker pool for each CPU and 20 * one extra for works which are better served by workers which are 21 * not bound to any specific CPU. 22 * 23 * Please read Documentation/workqueue.txt for details. 24 */ 25 26 #include <linux/module.h> 27 #include <linux/kernel.h> 28 #include <linux/sched.h> 29 #include <linux/init.h> 30 #include <linux/signal.h> 31 #include <linux/completion.h> 32 #include <linux/workqueue.h> 33 #include <linux/slab.h> 34 #include <linux/cpu.h> 35 #include <linux/notifier.h> 36 #include <linux/kthread.h> 37 #include <linux/hardirq.h> 38 #include <linux/mempolicy.h> 39 #include <linux/freezer.h> 40 #include <linux/kallsyms.h> 41 #include <linux/debug_locks.h> 42 #include <linux/lockdep.h> 43 #include <linux/idr.h> 44 45 #include "workqueue_sched.h" 46 47 enum { 48 /* global_cwq flags */ 49 GCWQ_MANAGE_WORKERS = 1 << 0, /* need to manage workers */ 50 GCWQ_MANAGING_WORKERS = 1 << 1, /* managing workers */ 51 GCWQ_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 52 GCWQ_FREEZING = 1 << 3, /* freeze in progress */ 53 GCWQ_HIGHPRI_PENDING = 1 << 4, /* highpri works on queue */ 54 55 /* worker flags */ 56 WORKER_STARTED = 1 << 0, /* started */ 57 WORKER_DIE = 1 << 1, /* die die die */ 58 WORKER_IDLE = 1 << 2, /* is idle */ 59 WORKER_PREP = 1 << 3, /* preparing to run works */ 60 WORKER_ROGUE = 1 << 4, /* not bound to any cpu */ 61 WORKER_REBIND = 1 << 5, /* mom is home, come back */ 62 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 63 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 64 65 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_ROGUE | WORKER_REBIND | 66 WORKER_CPU_INTENSIVE | WORKER_UNBOUND, 67 68 /* gcwq->trustee_state */ 69 TRUSTEE_START = 0, /* start */ 70 TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */ 71 TRUSTEE_BUTCHER = 2, /* butcher workers */ 72 TRUSTEE_RELEASE = 3, /* release workers */ 73 TRUSTEE_DONE = 4, /* trustee is done */ 74 75 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 76 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER, 77 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1, 78 79 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 80 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 81 82 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 83 /* call for help after 10ms 84 (min two ticks) */ 85 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 86 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 87 TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */ 88 89 /* 90 * Rescue workers are used only on emergencies and shared by 91 * all cpus. Give -20. 92 */ 93 RESCUER_NICE_LEVEL = -20, 94 }; 95 96 /* 97 * Structure fields follow one of the following exclusion rules. 98 * 99 * I: Modifiable by initialization/destruction paths and read-only for 100 * everyone else. 101 * 102 * P: Preemption protected. Disabling preemption is enough and should 103 * only be modified and accessed from the local cpu. 104 * 105 * L: gcwq->lock protected. Access with gcwq->lock held. 106 * 107 * X: During normal operation, modification requires gcwq->lock and 108 * should be done only from local cpu. Either disabling preemption 109 * on local cpu or grabbing gcwq->lock is enough for read access. 110 * If GCWQ_DISASSOCIATED is set, it's identical to L. 111 * 112 * F: wq->flush_mutex protected. 113 * 114 * W: workqueue_lock protected. 115 */ 116 117 struct global_cwq; 118 119 /* 120 * The poor guys doing the actual heavy lifting. All on-duty workers 121 * are either serving the manager role, on idle list or on busy hash. 122 */ 123 struct worker { 124 /* on idle list while idle, on busy hash table while busy */ 125 union { 126 struct list_head entry; /* L: while idle */ 127 struct hlist_node hentry; /* L: while busy */ 128 }; 129 130 struct work_struct *current_work; /* L: work being processed */ 131 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */ 132 struct list_head scheduled; /* L: scheduled works */ 133 struct task_struct *task; /* I: worker task */ 134 struct global_cwq *gcwq; /* I: the associated gcwq */ 135 /* 64 bytes boundary on 64bit, 32 on 32bit */ 136 unsigned long last_active; /* L: last active timestamp */ 137 unsigned int flags; /* X: flags */ 138 int id; /* I: worker id */ 139 struct work_struct rebind_work; /* L: rebind worker to cpu */ 140 }; 141 142 /* 143 * Global per-cpu workqueue. There's one and only one for each cpu 144 * and all works are queued and processed here regardless of their 145 * target workqueues. 146 */ 147 struct global_cwq { 148 spinlock_t lock; /* the gcwq lock */ 149 struct list_head worklist; /* L: list of pending works */ 150 unsigned int cpu; /* I: the associated cpu */ 151 unsigned int flags; /* L: GCWQ_* flags */ 152 153 int nr_workers; /* L: total number of workers */ 154 int nr_idle; /* L: currently idle ones */ 155 156 /* workers are chained either in the idle_list or busy_hash */ 157 struct list_head idle_list; /* X: list of idle workers */ 158 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE]; 159 /* L: hash of busy workers */ 160 161 struct timer_list idle_timer; /* L: worker idle timeout */ 162 struct timer_list mayday_timer; /* L: SOS timer for dworkers */ 163 164 struct ida worker_ida; /* L: for worker IDs */ 165 166 struct task_struct *trustee; /* L: for gcwq shutdown */ 167 unsigned int trustee_state; /* L: trustee state */ 168 wait_queue_head_t trustee_wait; /* trustee wait */ 169 struct worker *first_idle; /* L: first idle worker */ 170 } ____cacheline_aligned_in_smp; 171 172 /* 173 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of 174 * work_struct->data are used for flags and thus cwqs need to be 175 * aligned at two's power of the number of flag bits. 176 */ 177 struct cpu_workqueue_struct { 178 struct global_cwq *gcwq; /* I: the associated gcwq */ 179 struct workqueue_struct *wq; /* I: the owning workqueue */ 180 int work_color; /* L: current color */ 181 int flush_color; /* L: flushing color */ 182 int nr_in_flight[WORK_NR_COLORS]; 183 /* L: nr of in_flight works */ 184 int nr_active; /* L: nr of active works */ 185 int max_active; /* L: max active works */ 186 struct list_head delayed_works; /* L: delayed works */ 187 }; 188 189 /* 190 * Structure used to wait for workqueue flush. 191 */ 192 struct wq_flusher { 193 struct list_head list; /* F: list of flushers */ 194 int flush_color; /* F: flush color waiting for */ 195 struct completion done; /* flush completion */ 196 }; 197 198 /* 199 * All cpumasks are assumed to be always set on UP and thus can't be 200 * used to determine whether there's something to be done. 201 */ 202 #ifdef CONFIG_SMP 203 typedef cpumask_var_t mayday_mask_t; 204 #define mayday_test_and_set_cpu(cpu, mask) \ 205 cpumask_test_and_set_cpu((cpu), (mask)) 206 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask)) 207 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask)) 208 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp)) 209 #define free_mayday_mask(mask) free_cpumask_var((mask)) 210 #else 211 typedef unsigned long mayday_mask_t; 212 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask)) 213 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask)) 214 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask)) 215 #define alloc_mayday_mask(maskp, gfp) true 216 #define free_mayday_mask(mask) do { } while (0) 217 #endif 218 219 /* 220 * The externally visible workqueue abstraction is an array of 221 * per-CPU workqueues: 222 */ 223 struct workqueue_struct { 224 unsigned int flags; /* W: WQ_* flags */ 225 union { 226 struct cpu_workqueue_struct __percpu *pcpu; 227 struct cpu_workqueue_struct *single; 228 unsigned long v; 229 } cpu_wq; /* I: cwq's */ 230 struct list_head list; /* W: list of all workqueues */ 231 232 struct mutex flush_mutex; /* protects wq flushing */ 233 int work_color; /* F: current work color */ 234 int flush_color; /* F: current flush color */ 235 atomic_t nr_cwqs_to_flush; /* flush in progress */ 236 struct wq_flusher *first_flusher; /* F: first flusher */ 237 struct list_head flusher_queue; /* F: flush waiters */ 238 struct list_head flusher_overflow; /* F: flush overflow list */ 239 240 mayday_mask_t mayday_mask; /* cpus requesting rescue */ 241 struct worker *rescuer; /* I: rescue worker */ 242 243 int nr_drainers; /* W: drain in progress */ 244 int saved_max_active; /* W: saved cwq max_active */ 245 const char *name; /* I: workqueue name */ 246 #ifdef CONFIG_LOCKDEP 247 struct lockdep_map lockdep_map; 248 #endif 249 }; 250 251 struct workqueue_struct *system_wq __read_mostly; 252 struct workqueue_struct *system_long_wq __read_mostly; 253 struct workqueue_struct *system_nrt_wq __read_mostly; 254 struct workqueue_struct *system_unbound_wq __read_mostly; 255 struct workqueue_struct *system_freezable_wq __read_mostly; 256 EXPORT_SYMBOL_GPL(system_wq); 257 EXPORT_SYMBOL_GPL(system_long_wq); 258 EXPORT_SYMBOL_GPL(system_nrt_wq); 259 EXPORT_SYMBOL_GPL(system_unbound_wq); 260 EXPORT_SYMBOL_GPL(system_freezable_wq); 261 262 #define CREATE_TRACE_POINTS 263 #include <trace/events/workqueue.h> 264 265 #define for_each_busy_worker(worker, i, pos, gcwq) \ 266 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \ 267 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry) 268 269 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask, 270 unsigned int sw) 271 { 272 if (cpu < nr_cpu_ids) { 273 if (sw & 1) { 274 cpu = cpumask_next(cpu, mask); 275 if (cpu < nr_cpu_ids) 276 return cpu; 277 } 278 if (sw & 2) 279 return WORK_CPU_UNBOUND; 280 } 281 return WORK_CPU_NONE; 282 } 283 284 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask, 285 struct workqueue_struct *wq) 286 { 287 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2); 288 } 289 290 /* 291 * CPU iterators 292 * 293 * An extra gcwq is defined for an invalid cpu number 294 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any 295 * specific CPU. The following iterators are similar to 296 * for_each_*_cpu() iterators but also considers the unbound gcwq. 297 * 298 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND 299 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND 300 * for_each_cwq_cpu() : possible CPUs for bound workqueues, 301 * WORK_CPU_UNBOUND for unbound workqueues 302 */ 303 #define for_each_gcwq_cpu(cpu) \ 304 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \ 305 (cpu) < WORK_CPU_NONE; \ 306 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3)) 307 308 #define for_each_online_gcwq_cpu(cpu) \ 309 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \ 310 (cpu) < WORK_CPU_NONE; \ 311 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3)) 312 313 #define for_each_cwq_cpu(cpu, wq) \ 314 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \ 315 (cpu) < WORK_CPU_NONE; \ 316 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq))) 317 318 #ifdef CONFIG_DEBUG_OBJECTS_WORK 319 320 static struct debug_obj_descr work_debug_descr; 321 322 static void *work_debug_hint(void *addr) 323 { 324 return ((struct work_struct *) addr)->func; 325 } 326 327 /* 328 * fixup_init is called when: 329 * - an active object is initialized 330 */ 331 static int work_fixup_init(void *addr, enum debug_obj_state state) 332 { 333 struct work_struct *work = addr; 334 335 switch (state) { 336 case ODEBUG_STATE_ACTIVE: 337 cancel_work_sync(work); 338 debug_object_init(work, &work_debug_descr); 339 return 1; 340 default: 341 return 0; 342 } 343 } 344 345 /* 346 * fixup_activate is called when: 347 * - an active object is activated 348 * - an unknown object is activated (might be a statically initialized object) 349 */ 350 static int work_fixup_activate(void *addr, enum debug_obj_state state) 351 { 352 struct work_struct *work = addr; 353 354 switch (state) { 355 356 case ODEBUG_STATE_NOTAVAILABLE: 357 /* 358 * This is not really a fixup. The work struct was 359 * statically initialized. We just make sure that it 360 * is tracked in the object tracker. 361 */ 362 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) { 363 debug_object_init(work, &work_debug_descr); 364 debug_object_activate(work, &work_debug_descr); 365 return 0; 366 } 367 WARN_ON_ONCE(1); 368 return 0; 369 370 case ODEBUG_STATE_ACTIVE: 371 WARN_ON(1); 372 373 default: 374 return 0; 375 } 376 } 377 378 /* 379 * fixup_free is called when: 380 * - an active object is freed 381 */ 382 static int work_fixup_free(void *addr, enum debug_obj_state state) 383 { 384 struct work_struct *work = addr; 385 386 switch (state) { 387 case ODEBUG_STATE_ACTIVE: 388 cancel_work_sync(work); 389 debug_object_free(work, &work_debug_descr); 390 return 1; 391 default: 392 return 0; 393 } 394 } 395 396 static struct debug_obj_descr work_debug_descr = { 397 .name = "work_struct", 398 .debug_hint = work_debug_hint, 399 .fixup_init = work_fixup_init, 400 .fixup_activate = work_fixup_activate, 401 .fixup_free = work_fixup_free, 402 }; 403 404 static inline void debug_work_activate(struct work_struct *work) 405 { 406 debug_object_activate(work, &work_debug_descr); 407 } 408 409 static inline void debug_work_deactivate(struct work_struct *work) 410 { 411 debug_object_deactivate(work, &work_debug_descr); 412 } 413 414 void __init_work(struct work_struct *work, int onstack) 415 { 416 if (onstack) 417 debug_object_init_on_stack(work, &work_debug_descr); 418 else 419 debug_object_init(work, &work_debug_descr); 420 } 421 EXPORT_SYMBOL_GPL(__init_work); 422 423 void destroy_work_on_stack(struct work_struct *work) 424 { 425 debug_object_free(work, &work_debug_descr); 426 } 427 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 428 429 #else 430 static inline void debug_work_activate(struct work_struct *work) { } 431 static inline void debug_work_deactivate(struct work_struct *work) { } 432 #endif 433 434 /* Serializes the accesses to the list of workqueues. */ 435 static DEFINE_SPINLOCK(workqueue_lock); 436 static LIST_HEAD(workqueues); 437 static bool workqueue_freezing; /* W: have wqs started freezing? */ 438 439 /* 440 * The almighty global cpu workqueues. nr_running is the only field 441 * which is expected to be used frequently by other cpus via 442 * try_to_wake_up(). Put it in a separate cacheline. 443 */ 444 static DEFINE_PER_CPU(struct global_cwq, global_cwq); 445 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running); 446 447 /* 448 * Global cpu workqueue and nr_running counter for unbound gcwq. The 449 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its 450 * workers have WORKER_UNBOUND set. 451 */ 452 static struct global_cwq unbound_global_cwq; 453 static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0); /* always 0 */ 454 455 static int worker_thread(void *__worker); 456 457 static struct global_cwq *get_gcwq(unsigned int cpu) 458 { 459 if (cpu != WORK_CPU_UNBOUND) 460 return &per_cpu(global_cwq, cpu); 461 else 462 return &unbound_global_cwq; 463 } 464 465 static atomic_t *get_gcwq_nr_running(unsigned int cpu) 466 { 467 if (cpu != WORK_CPU_UNBOUND) 468 return &per_cpu(gcwq_nr_running, cpu); 469 else 470 return &unbound_gcwq_nr_running; 471 } 472 473 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu, 474 struct workqueue_struct *wq) 475 { 476 if (!(wq->flags & WQ_UNBOUND)) { 477 if (likely(cpu < nr_cpu_ids)) { 478 #ifdef CONFIG_SMP 479 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu); 480 #else 481 return wq->cpu_wq.single; 482 #endif 483 } 484 } else if (likely(cpu == WORK_CPU_UNBOUND)) 485 return wq->cpu_wq.single; 486 return NULL; 487 } 488 489 static unsigned int work_color_to_flags(int color) 490 { 491 return color << WORK_STRUCT_COLOR_SHIFT; 492 } 493 494 static int get_work_color(struct work_struct *work) 495 { 496 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 497 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 498 } 499 500 static int work_next_color(int color) 501 { 502 return (color + 1) % WORK_NR_COLORS; 503 } 504 505 /* 506 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the 507 * work is on queue. Once execution starts, WORK_STRUCT_CWQ is 508 * cleared and the work data contains the cpu number it was last on. 509 * 510 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the 511 * cwq, cpu or clear work->data. These functions should only be 512 * called while the work is owned - ie. while the PENDING bit is set. 513 * 514 * get_work_[g]cwq() can be used to obtain the gcwq or cwq 515 * corresponding to a work. gcwq is available once the work has been 516 * queued anywhere after initialization. cwq is available only from 517 * queueing until execution starts. 518 */ 519 static inline void set_work_data(struct work_struct *work, unsigned long data, 520 unsigned long flags) 521 { 522 BUG_ON(!work_pending(work)); 523 atomic_long_set(&work->data, data | flags | work_static(work)); 524 } 525 526 static void set_work_cwq(struct work_struct *work, 527 struct cpu_workqueue_struct *cwq, 528 unsigned long extra_flags) 529 { 530 set_work_data(work, (unsigned long)cwq, 531 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags); 532 } 533 534 static void set_work_cpu(struct work_struct *work, unsigned int cpu) 535 { 536 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING); 537 } 538 539 static void clear_work_data(struct work_struct *work) 540 { 541 set_work_data(work, WORK_STRUCT_NO_CPU, 0); 542 } 543 544 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work) 545 { 546 unsigned long data = atomic_long_read(&work->data); 547 548 if (data & WORK_STRUCT_CWQ) 549 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 550 else 551 return NULL; 552 } 553 554 static struct global_cwq *get_work_gcwq(struct work_struct *work) 555 { 556 unsigned long data = atomic_long_read(&work->data); 557 unsigned int cpu; 558 559 if (data & WORK_STRUCT_CWQ) 560 return ((struct cpu_workqueue_struct *) 561 (data & WORK_STRUCT_WQ_DATA_MASK))->gcwq; 562 563 cpu = data >> WORK_STRUCT_FLAG_BITS; 564 if (cpu == WORK_CPU_NONE) 565 return NULL; 566 567 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND); 568 return get_gcwq(cpu); 569 } 570 571 /* 572 * Policy functions. These define the policies on how the global 573 * worker pool is managed. Unless noted otherwise, these functions 574 * assume that they're being called with gcwq->lock held. 575 */ 576 577 static bool __need_more_worker(struct global_cwq *gcwq) 578 { 579 return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) || 580 gcwq->flags & GCWQ_HIGHPRI_PENDING; 581 } 582 583 /* 584 * Need to wake up a worker? Called from anything but currently 585 * running workers. 586 */ 587 static bool need_more_worker(struct global_cwq *gcwq) 588 { 589 return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq); 590 } 591 592 /* Can I start working? Called from busy but !running workers. */ 593 static bool may_start_working(struct global_cwq *gcwq) 594 { 595 return gcwq->nr_idle; 596 } 597 598 /* Do I need to keep working? Called from currently running workers. */ 599 static bool keep_working(struct global_cwq *gcwq) 600 { 601 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu); 602 603 return !list_empty(&gcwq->worklist) && 604 (atomic_read(nr_running) <= 1 || 605 gcwq->flags & GCWQ_HIGHPRI_PENDING); 606 } 607 608 /* Do we need a new worker? Called from manager. */ 609 static bool need_to_create_worker(struct global_cwq *gcwq) 610 { 611 return need_more_worker(gcwq) && !may_start_working(gcwq); 612 } 613 614 /* Do I need to be the manager? */ 615 static bool need_to_manage_workers(struct global_cwq *gcwq) 616 { 617 return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS; 618 } 619 620 /* Do we have too many workers and should some go away? */ 621 static bool too_many_workers(struct global_cwq *gcwq) 622 { 623 bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS; 624 int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */ 625 int nr_busy = gcwq->nr_workers - nr_idle; 626 627 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 628 } 629 630 /* 631 * Wake up functions. 632 */ 633 634 /* Return the first worker. Safe with preemption disabled */ 635 static struct worker *first_worker(struct global_cwq *gcwq) 636 { 637 if (unlikely(list_empty(&gcwq->idle_list))) 638 return NULL; 639 640 return list_first_entry(&gcwq->idle_list, struct worker, entry); 641 } 642 643 /** 644 * wake_up_worker - wake up an idle worker 645 * @gcwq: gcwq to wake worker for 646 * 647 * Wake up the first idle worker of @gcwq. 648 * 649 * CONTEXT: 650 * spin_lock_irq(gcwq->lock). 651 */ 652 static void wake_up_worker(struct global_cwq *gcwq) 653 { 654 struct worker *worker = first_worker(gcwq); 655 656 if (likely(worker)) 657 wake_up_process(worker->task); 658 } 659 660 /** 661 * wq_worker_waking_up - a worker is waking up 662 * @task: task waking up 663 * @cpu: CPU @task is waking up to 664 * 665 * This function is called during try_to_wake_up() when a worker is 666 * being awoken. 667 * 668 * CONTEXT: 669 * spin_lock_irq(rq->lock) 670 */ 671 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu) 672 { 673 struct worker *worker = kthread_data(task); 674 675 if (!(worker->flags & WORKER_NOT_RUNNING)) 676 atomic_inc(get_gcwq_nr_running(cpu)); 677 } 678 679 /** 680 * wq_worker_sleeping - a worker is going to sleep 681 * @task: task going to sleep 682 * @cpu: CPU in question, must be the current CPU number 683 * 684 * This function is called during schedule() when a busy worker is 685 * going to sleep. Worker on the same cpu can be woken up by 686 * returning pointer to its task. 687 * 688 * CONTEXT: 689 * spin_lock_irq(rq->lock) 690 * 691 * RETURNS: 692 * Worker task on @cpu to wake up, %NULL if none. 693 */ 694 struct task_struct *wq_worker_sleeping(struct task_struct *task, 695 unsigned int cpu) 696 { 697 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 698 struct global_cwq *gcwq = get_gcwq(cpu); 699 atomic_t *nr_running = get_gcwq_nr_running(cpu); 700 701 if (worker->flags & WORKER_NOT_RUNNING) 702 return NULL; 703 704 /* this can only happen on the local cpu */ 705 BUG_ON(cpu != raw_smp_processor_id()); 706 707 /* 708 * The counterpart of the following dec_and_test, implied mb, 709 * worklist not empty test sequence is in insert_work(). 710 * Please read comment there. 711 * 712 * NOT_RUNNING is clear. This means that trustee is not in 713 * charge and we're running on the local cpu w/ rq lock held 714 * and preemption disabled, which in turn means that none else 715 * could be manipulating idle_list, so dereferencing idle_list 716 * without gcwq lock is safe. 717 */ 718 if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist)) 719 to_wakeup = first_worker(gcwq); 720 return to_wakeup ? to_wakeup->task : NULL; 721 } 722 723 /** 724 * worker_set_flags - set worker flags and adjust nr_running accordingly 725 * @worker: self 726 * @flags: flags to set 727 * @wakeup: wakeup an idle worker if necessary 728 * 729 * Set @flags in @worker->flags and adjust nr_running accordingly. If 730 * nr_running becomes zero and @wakeup is %true, an idle worker is 731 * woken up. 732 * 733 * CONTEXT: 734 * spin_lock_irq(gcwq->lock) 735 */ 736 static inline void worker_set_flags(struct worker *worker, unsigned int flags, 737 bool wakeup) 738 { 739 struct global_cwq *gcwq = worker->gcwq; 740 741 WARN_ON_ONCE(worker->task != current); 742 743 /* 744 * If transitioning into NOT_RUNNING, adjust nr_running and 745 * wake up an idle worker as necessary if requested by 746 * @wakeup. 747 */ 748 if ((flags & WORKER_NOT_RUNNING) && 749 !(worker->flags & WORKER_NOT_RUNNING)) { 750 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu); 751 752 if (wakeup) { 753 if (atomic_dec_and_test(nr_running) && 754 !list_empty(&gcwq->worklist)) 755 wake_up_worker(gcwq); 756 } else 757 atomic_dec(nr_running); 758 } 759 760 worker->flags |= flags; 761 } 762 763 /** 764 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 765 * @worker: self 766 * @flags: flags to clear 767 * 768 * Clear @flags in @worker->flags and adjust nr_running accordingly. 769 * 770 * CONTEXT: 771 * spin_lock_irq(gcwq->lock) 772 */ 773 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 774 { 775 struct global_cwq *gcwq = worker->gcwq; 776 unsigned int oflags = worker->flags; 777 778 WARN_ON_ONCE(worker->task != current); 779 780 worker->flags &= ~flags; 781 782 /* 783 * If transitioning out of NOT_RUNNING, increment nr_running. Note 784 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 785 * of multiple flags, not a single flag. 786 */ 787 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 788 if (!(worker->flags & WORKER_NOT_RUNNING)) 789 atomic_inc(get_gcwq_nr_running(gcwq->cpu)); 790 } 791 792 /** 793 * busy_worker_head - return the busy hash head for a work 794 * @gcwq: gcwq of interest 795 * @work: work to be hashed 796 * 797 * Return hash head of @gcwq for @work. 798 * 799 * CONTEXT: 800 * spin_lock_irq(gcwq->lock). 801 * 802 * RETURNS: 803 * Pointer to the hash head. 804 */ 805 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq, 806 struct work_struct *work) 807 { 808 const int base_shift = ilog2(sizeof(struct work_struct)); 809 unsigned long v = (unsigned long)work; 810 811 /* simple shift and fold hash, do we need something better? */ 812 v >>= base_shift; 813 v += v >> BUSY_WORKER_HASH_ORDER; 814 v &= BUSY_WORKER_HASH_MASK; 815 816 return &gcwq->busy_hash[v]; 817 } 818 819 /** 820 * __find_worker_executing_work - find worker which is executing a work 821 * @gcwq: gcwq of interest 822 * @bwh: hash head as returned by busy_worker_head() 823 * @work: work to find worker for 824 * 825 * Find a worker which is executing @work on @gcwq. @bwh should be 826 * the hash head obtained by calling busy_worker_head() with the same 827 * work. 828 * 829 * CONTEXT: 830 * spin_lock_irq(gcwq->lock). 831 * 832 * RETURNS: 833 * Pointer to worker which is executing @work if found, NULL 834 * otherwise. 835 */ 836 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq, 837 struct hlist_head *bwh, 838 struct work_struct *work) 839 { 840 struct worker *worker; 841 struct hlist_node *tmp; 842 843 hlist_for_each_entry(worker, tmp, bwh, hentry) 844 if (worker->current_work == work) 845 return worker; 846 return NULL; 847 } 848 849 /** 850 * find_worker_executing_work - find worker which is executing a work 851 * @gcwq: gcwq of interest 852 * @work: work to find worker for 853 * 854 * Find a worker which is executing @work on @gcwq. This function is 855 * identical to __find_worker_executing_work() except that this 856 * function calculates @bwh itself. 857 * 858 * CONTEXT: 859 * spin_lock_irq(gcwq->lock). 860 * 861 * RETURNS: 862 * Pointer to worker which is executing @work if found, NULL 863 * otherwise. 864 */ 865 static struct worker *find_worker_executing_work(struct global_cwq *gcwq, 866 struct work_struct *work) 867 { 868 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work), 869 work); 870 } 871 872 /** 873 * gcwq_determine_ins_pos - find insertion position 874 * @gcwq: gcwq of interest 875 * @cwq: cwq a work is being queued for 876 * 877 * A work for @cwq is about to be queued on @gcwq, determine insertion 878 * position for the work. If @cwq is for HIGHPRI wq, the work is 879 * queued at the head of the queue but in FIFO order with respect to 880 * other HIGHPRI works; otherwise, at the end of the queue. This 881 * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that 882 * there are HIGHPRI works pending. 883 * 884 * CONTEXT: 885 * spin_lock_irq(gcwq->lock). 886 * 887 * RETURNS: 888 * Pointer to inserstion position. 889 */ 890 static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq, 891 struct cpu_workqueue_struct *cwq) 892 { 893 struct work_struct *twork; 894 895 if (likely(!(cwq->wq->flags & WQ_HIGHPRI))) 896 return &gcwq->worklist; 897 898 list_for_each_entry(twork, &gcwq->worklist, entry) { 899 struct cpu_workqueue_struct *tcwq = get_work_cwq(twork); 900 901 if (!(tcwq->wq->flags & WQ_HIGHPRI)) 902 break; 903 } 904 905 gcwq->flags |= GCWQ_HIGHPRI_PENDING; 906 return &twork->entry; 907 } 908 909 /** 910 * insert_work - insert a work into gcwq 911 * @cwq: cwq @work belongs to 912 * @work: work to insert 913 * @head: insertion point 914 * @extra_flags: extra WORK_STRUCT_* flags to set 915 * 916 * Insert @work which belongs to @cwq into @gcwq after @head. 917 * @extra_flags is or'd to work_struct flags. 918 * 919 * CONTEXT: 920 * spin_lock_irq(gcwq->lock). 921 */ 922 static void insert_work(struct cpu_workqueue_struct *cwq, 923 struct work_struct *work, struct list_head *head, 924 unsigned int extra_flags) 925 { 926 struct global_cwq *gcwq = cwq->gcwq; 927 928 /* we own @work, set data and link */ 929 set_work_cwq(work, cwq, extra_flags); 930 931 /* 932 * Ensure that we get the right work->data if we see the 933 * result of list_add() below, see try_to_grab_pending(). 934 */ 935 smp_wmb(); 936 937 list_add_tail(&work->entry, head); 938 939 /* 940 * Ensure either worker_sched_deactivated() sees the above 941 * list_add_tail() or we see zero nr_running to avoid workers 942 * lying around lazily while there are works to be processed. 943 */ 944 smp_mb(); 945 946 if (__need_more_worker(gcwq)) 947 wake_up_worker(gcwq); 948 } 949 950 /* 951 * Test whether @work is being queued from another work executing on the 952 * same workqueue. This is rather expensive and should only be used from 953 * cold paths. 954 */ 955 static bool is_chained_work(struct workqueue_struct *wq) 956 { 957 unsigned long flags; 958 unsigned int cpu; 959 960 for_each_gcwq_cpu(cpu) { 961 struct global_cwq *gcwq = get_gcwq(cpu); 962 struct worker *worker; 963 struct hlist_node *pos; 964 int i; 965 966 spin_lock_irqsave(&gcwq->lock, flags); 967 for_each_busy_worker(worker, i, pos, gcwq) { 968 if (worker->task != current) 969 continue; 970 spin_unlock_irqrestore(&gcwq->lock, flags); 971 /* 972 * I'm @worker, no locking necessary. See if @work 973 * is headed to the same workqueue. 974 */ 975 return worker->current_cwq->wq == wq; 976 } 977 spin_unlock_irqrestore(&gcwq->lock, flags); 978 } 979 return false; 980 } 981 982 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq, 983 struct work_struct *work) 984 { 985 struct global_cwq *gcwq; 986 struct cpu_workqueue_struct *cwq; 987 struct list_head *worklist; 988 unsigned int work_flags; 989 unsigned long flags; 990 991 debug_work_activate(work); 992 993 /* if dying, only works from the same workqueue are allowed */ 994 if (unlikely(wq->flags & WQ_DRAINING) && 995 WARN_ON_ONCE(!is_chained_work(wq))) 996 return; 997 998 /* determine gcwq to use */ 999 if (!(wq->flags & WQ_UNBOUND)) { 1000 struct global_cwq *last_gcwq; 1001 1002 if (unlikely(cpu == WORK_CPU_UNBOUND)) 1003 cpu = raw_smp_processor_id(); 1004 1005 /* 1006 * It's multi cpu. If @wq is non-reentrant and @work 1007 * was previously on a different cpu, it might still 1008 * be running there, in which case the work needs to 1009 * be queued on that cpu to guarantee non-reentrance. 1010 */ 1011 gcwq = get_gcwq(cpu); 1012 if (wq->flags & WQ_NON_REENTRANT && 1013 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) { 1014 struct worker *worker; 1015 1016 spin_lock_irqsave(&last_gcwq->lock, flags); 1017 1018 worker = find_worker_executing_work(last_gcwq, work); 1019 1020 if (worker && worker->current_cwq->wq == wq) 1021 gcwq = last_gcwq; 1022 else { 1023 /* meh... not running there, queue here */ 1024 spin_unlock_irqrestore(&last_gcwq->lock, flags); 1025 spin_lock_irqsave(&gcwq->lock, flags); 1026 } 1027 } else 1028 spin_lock_irqsave(&gcwq->lock, flags); 1029 } else { 1030 gcwq = get_gcwq(WORK_CPU_UNBOUND); 1031 spin_lock_irqsave(&gcwq->lock, flags); 1032 } 1033 1034 /* gcwq determined, get cwq and queue */ 1035 cwq = get_cwq(gcwq->cpu, wq); 1036 trace_workqueue_queue_work(cpu, cwq, work); 1037 1038 BUG_ON(!list_empty(&work->entry)); 1039 1040 cwq->nr_in_flight[cwq->work_color]++; 1041 work_flags = work_color_to_flags(cwq->work_color); 1042 1043 if (likely(cwq->nr_active < cwq->max_active)) { 1044 trace_workqueue_activate_work(work); 1045 cwq->nr_active++; 1046 worklist = gcwq_determine_ins_pos(gcwq, cwq); 1047 } else { 1048 work_flags |= WORK_STRUCT_DELAYED; 1049 worklist = &cwq->delayed_works; 1050 } 1051 1052 insert_work(cwq, work, worklist, work_flags); 1053 1054 spin_unlock_irqrestore(&gcwq->lock, flags); 1055 } 1056 1057 /** 1058 * queue_work - queue work on a workqueue 1059 * @wq: workqueue to use 1060 * @work: work to queue 1061 * 1062 * Returns 0 if @work was already on a queue, non-zero otherwise. 1063 * 1064 * We queue the work to the CPU on which it was submitted, but if the CPU dies 1065 * it can be processed by another CPU. 1066 */ 1067 int queue_work(struct workqueue_struct *wq, struct work_struct *work) 1068 { 1069 int ret; 1070 1071 ret = queue_work_on(get_cpu(), wq, work); 1072 put_cpu(); 1073 1074 return ret; 1075 } 1076 EXPORT_SYMBOL_GPL(queue_work); 1077 1078 /** 1079 * queue_work_on - queue work on specific cpu 1080 * @cpu: CPU number to execute work on 1081 * @wq: workqueue to use 1082 * @work: work to queue 1083 * 1084 * Returns 0 if @work was already on a queue, non-zero otherwise. 1085 * 1086 * We queue the work to a specific CPU, the caller must ensure it 1087 * can't go away. 1088 */ 1089 int 1090 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work) 1091 { 1092 int ret = 0; 1093 1094 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1095 __queue_work(cpu, wq, work); 1096 ret = 1; 1097 } 1098 return ret; 1099 } 1100 EXPORT_SYMBOL_GPL(queue_work_on); 1101 1102 static void delayed_work_timer_fn(unsigned long __data) 1103 { 1104 struct delayed_work *dwork = (struct delayed_work *)__data; 1105 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work); 1106 1107 __queue_work(smp_processor_id(), cwq->wq, &dwork->work); 1108 } 1109 1110 /** 1111 * queue_delayed_work - queue work on a workqueue after delay 1112 * @wq: workqueue to use 1113 * @dwork: delayable work to queue 1114 * @delay: number of jiffies to wait before queueing 1115 * 1116 * Returns 0 if @work was already on a queue, non-zero otherwise. 1117 */ 1118 int queue_delayed_work(struct workqueue_struct *wq, 1119 struct delayed_work *dwork, unsigned long delay) 1120 { 1121 if (delay == 0) 1122 return queue_work(wq, &dwork->work); 1123 1124 return queue_delayed_work_on(-1, wq, dwork, delay); 1125 } 1126 EXPORT_SYMBOL_GPL(queue_delayed_work); 1127 1128 /** 1129 * queue_delayed_work_on - queue work on specific CPU after delay 1130 * @cpu: CPU number to execute work on 1131 * @wq: workqueue to use 1132 * @dwork: work to queue 1133 * @delay: number of jiffies to wait before queueing 1134 * 1135 * Returns 0 if @work was already on a queue, non-zero otherwise. 1136 */ 1137 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1138 struct delayed_work *dwork, unsigned long delay) 1139 { 1140 int ret = 0; 1141 struct timer_list *timer = &dwork->timer; 1142 struct work_struct *work = &dwork->work; 1143 1144 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1145 unsigned int lcpu; 1146 1147 BUG_ON(timer_pending(timer)); 1148 BUG_ON(!list_empty(&work->entry)); 1149 1150 timer_stats_timer_set_start_info(&dwork->timer); 1151 1152 /* 1153 * This stores cwq for the moment, for the timer_fn. 1154 * Note that the work's gcwq is preserved to allow 1155 * reentrance detection for delayed works. 1156 */ 1157 if (!(wq->flags & WQ_UNBOUND)) { 1158 struct global_cwq *gcwq = get_work_gcwq(work); 1159 1160 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND) 1161 lcpu = gcwq->cpu; 1162 else 1163 lcpu = raw_smp_processor_id(); 1164 } else 1165 lcpu = WORK_CPU_UNBOUND; 1166 1167 set_work_cwq(work, get_cwq(lcpu, wq), 0); 1168 1169 timer->expires = jiffies + delay; 1170 timer->data = (unsigned long)dwork; 1171 timer->function = delayed_work_timer_fn; 1172 1173 if (unlikely(cpu >= 0)) 1174 add_timer_on(timer, cpu); 1175 else 1176 add_timer(timer); 1177 ret = 1; 1178 } 1179 return ret; 1180 } 1181 EXPORT_SYMBOL_GPL(queue_delayed_work_on); 1182 1183 /** 1184 * worker_enter_idle - enter idle state 1185 * @worker: worker which is entering idle state 1186 * 1187 * @worker is entering idle state. Update stats and idle timer if 1188 * necessary. 1189 * 1190 * LOCKING: 1191 * spin_lock_irq(gcwq->lock). 1192 */ 1193 static void worker_enter_idle(struct worker *worker) 1194 { 1195 struct global_cwq *gcwq = worker->gcwq; 1196 1197 BUG_ON(worker->flags & WORKER_IDLE); 1198 BUG_ON(!list_empty(&worker->entry) && 1199 (worker->hentry.next || worker->hentry.pprev)); 1200 1201 /* can't use worker_set_flags(), also called from start_worker() */ 1202 worker->flags |= WORKER_IDLE; 1203 gcwq->nr_idle++; 1204 worker->last_active = jiffies; 1205 1206 /* idle_list is LIFO */ 1207 list_add(&worker->entry, &gcwq->idle_list); 1208 1209 if (likely(!(worker->flags & WORKER_ROGUE))) { 1210 if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer)) 1211 mod_timer(&gcwq->idle_timer, 1212 jiffies + IDLE_WORKER_TIMEOUT); 1213 } else 1214 wake_up_all(&gcwq->trustee_wait); 1215 1216 /* sanity check nr_running */ 1217 WARN_ON_ONCE(gcwq->nr_workers == gcwq->nr_idle && 1218 atomic_read(get_gcwq_nr_running(gcwq->cpu))); 1219 } 1220 1221 /** 1222 * worker_leave_idle - leave idle state 1223 * @worker: worker which is leaving idle state 1224 * 1225 * @worker is leaving idle state. Update stats. 1226 * 1227 * LOCKING: 1228 * spin_lock_irq(gcwq->lock). 1229 */ 1230 static void worker_leave_idle(struct worker *worker) 1231 { 1232 struct global_cwq *gcwq = worker->gcwq; 1233 1234 BUG_ON(!(worker->flags & WORKER_IDLE)); 1235 worker_clr_flags(worker, WORKER_IDLE); 1236 gcwq->nr_idle--; 1237 list_del_init(&worker->entry); 1238 } 1239 1240 /** 1241 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq 1242 * @worker: self 1243 * 1244 * Works which are scheduled while the cpu is online must at least be 1245 * scheduled to a worker which is bound to the cpu so that if they are 1246 * flushed from cpu callbacks while cpu is going down, they are 1247 * guaranteed to execute on the cpu. 1248 * 1249 * This function is to be used by rogue workers and rescuers to bind 1250 * themselves to the target cpu and may race with cpu going down or 1251 * coming online. kthread_bind() can't be used because it may put the 1252 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used 1253 * verbatim as it's best effort and blocking and gcwq may be 1254 * [dis]associated in the meantime. 1255 * 1256 * This function tries set_cpus_allowed() and locks gcwq and verifies 1257 * the binding against GCWQ_DISASSOCIATED which is set during 1258 * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters 1259 * idle state or fetches works without dropping lock, it can guarantee 1260 * the scheduling requirement described in the first paragraph. 1261 * 1262 * CONTEXT: 1263 * Might sleep. Called without any lock but returns with gcwq->lock 1264 * held. 1265 * 1266 * RETURNS: 1267 * %true if the associated gcwq is online (@worker is successfully 1268 * bound), %false if offline. 1269 */ 1270 static bool worker_maybe_bind_and_lock(struct worker *worker) 1271 __acquires(&gcwq->lock) 1272 { 1273 struct global_cwq *gcwq = worker->gcwq; 1274 struct task_struct *task = worker->task; 1275 1276 while (true) { 1277 /* 1278 * The following call may fail, succeed or succeed 1279 * without actually migrating the task to the cpu if 1280 * it races with cpu hotunplug operation. Verify 1281 * against GCWQ_DISASSOCIATED. 1282 */ 1283 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) 1284 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu)); 1285 1286 spin_lock_irq(&gcwq->lock); 1287 if (gcwq->flags & GCWQ_DISASSOCIATED) 1288 return false; 1289 if (task_cpu(task) == gcwq->cpu && 1290 cpumask_equal(¤t->cpus_allowed, 1291 get_cpu_mask(gcwq->cpu))) 1292 return true; 1293 spin_unlock_irq(&gcwq->lock); 1294 1295 /* 1296 * We've raced with CPU hot[un]plug. Give it a breather 1297 * and retry migration. cond_resched() is required here; 1298 * otherwise, we might deadlock against cpu_stop trying to 1299 * bring down the CPU on non-preemptive kernel. 1300 */ 1301 cpu_relax(); 1302 cond_resched(); 1303 } 1304 } 1305 1306 /* 1307 * Function for worker->rebind_work used to rebind rogue busy workers 1308 * to the associated cpu which is coming back online. This is 1309 * scheduled by cpu up but can race with other cpu hotplug operations 1310 * and may be executed twice without intervening cpu down. 1311 */ 1312 static void worker_rebind_fn(struct work_struct *work) 1313 { 1314 struct worker *worker = container_of(work, struct worker, rebind_work); 1315 struct global_cwq *gcwq = worker->gcwq; 1316 1317 if (worker_maybe_bind_and_lock(worker)) 1318 worker_clr_flags(worker, WORKER_REBIND); 1319 1320 spin_unlock_irq(&gcwq->lock); 1321 } 1322 1323 static struct worker *alloc_worker(void) 1324 { 1325 struct worker *worker; 1326 1327 worker = kzalloc(sizeof(*worker), GFP_KERNEL); 1328 if (worker) { 1329 INIT_LIST_HEAD(&worker->entry); 1330 INIT_LIST_HEAD(&worker->scheduled); 1331 INIT_WORK(&worker->rebind_work, worker_rebind_fn); 1332 /* on creation a worker is in !idle && prep state */ 1333 worker->flags = WORKER_PREP; 1334 } 1335 return worker; 1336 } 1337 1338 /** 1339 * create_worker - create a new workqueue worker 1340 * @gcwq: gcwq the new worker will belong to 1341 * @bind: whether to set affinity to @cpu or not 1342 * 1343 * Create a new worker which is bound to @gcwq. The returned worker 1344 * can be started by calling start_worker() or destroyed using 1345 * destroy_worker(). 1346 * 1347 * CONTEXT: 1348 * Might sleep. Does GFP_KERNEL allocations. 1349 * 1350 * RETURNS: 1351 * Pointer to the newly created worker. 1352 */ 1353 static struct worker *create_worker(struct global_cwq *gcwq, bool bind) 1354 { 1355 bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND; 1356 struct worker *worker = NULL; 1357 int id = -1; 1358 1359 spin_lock_irq(&gcwq->lock); 1360 while (ida_get_new(&gcwq->worker_ida, &id)) { 1361 spin_unlock_irq(&gcwq->lock); 1362 if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL)) 1363 goto fail; 1364 spin_lock_irq(&gcwq->lock); 1365 } 1366 spin_unlock_irq(&gcwq->lock); 1367 1368 worker = alloc_worker(); 1369 if (!worker) 1370 goto fail; 1371 1372 worker->gcwq = gcwq; 1373 worker->id = id; 1374 1375 if (!on_unbound_cpu) 1376 worker->task = kthread_create_on_node(worker_thread, 1377 worker, 1378 cpu_to_node(gcwq->cpu), 1379 "kworker/%u:%d", gcwq->cpu, id); 1380 else 1381 worker->task = kthread_create(worker_thread, worker, 1382 "kworker/u:%d", id); 1383 if (IS_ERR(worker->task)) 1384 goto fail; 1385 1386 /* 1387 * A rogue worker will become a regular one if CPU comes 1388 * online later on. Make sure every worker has 1389 * PF_THREAD_BOUND set. 1390 */ 1391 if (bind && !on_unbound_cpu) 1392 kthread_bind(worker->task, gcwq->cpu); 1393 else { 1394 worker->task->flags |= PF_THREAD_BOUND; 1395 if (on_unbound_cpu) 1396 worker->flags |= WORKER_UNBOUND; 1397 } 1398 1399 return worker; 1400 fail: 1401 if (id >= 0) { 1402 spin_lock_irq(&gcwq->lock); 1403 ida_remove(&gcwq->worker_ida, id); 1404 spin_unlock_irq(&gcwq->lock); 1405 } 1406 kfree(worker); 1407 return NULL; 1408 } 1409 1410 /** 1411 * start_worker - start a newly created worker 1412 * @worker: worker to start 1413 * 1414 * Make the gcwq aware of @worker and start it. 1415 * 1416 * CONTEXT: 1417 * spin_lock_irq(gcwq->lock). 1418 */ 1419 static void start_worker(struct worker *worker) 1420 { 1421 worker->flags |= WORKER_STARTED; 1422 worker->gcwq->nr_workers++; 1423 worker_enter_idle(worker); 1424 wake_up_process(worker->task); 1425 } 1426 1427 /** 1428 * destroy_worker - destroy a workqueue worker 1429 * @worker: worker to be destroyed 1430 * 1431 * Destroy @worker and adjust @gcwq stats accordingly. 1432 * 1433 * CONTEXT: 1434 * spin_lock_irq(gcwq->lock) which is released and regrabbed. 1435 */ 1436 static void destroy_worker(struct worker *worker) 1437 { 1438 struct global_cwq *gcwq = worker->gcwq; 1439 int id = worker->id; 1440 1441 /* sanity check frenzy */ 1442 BUG_ON(worker->current_work); 1443 BUG_ON(!list_empty(&worker->scheduled)); 1444 1445 if (worker->flags & WORKER_STARTED) 1446 gcwq->nr_workers--; 1447 if (worker->flags & WORKER_IDLE) 1448 gcwq->nr_idle--; 1449 1450 list_del_init(&worker->entry); 1451 worker->flags |= WORKER_DIE; 1452 1453 spin_unlock_irq(&gcwq->lock); 1454 1455 kthread_stop(worker->task); 1456 kfree(worker); 1457 1458 spin_lock_irq(&gcwq->lock); 1459 ida_remove(&gcwq->worker_ida, id); 1460 } 1461 1462 static void idle_worker_timeout(unsigned long __gcwq) 1463 { 1464 struct global_cwq *gcwq = (void *)__gcwq; 1465 1466 spin_lock_irq(&gcwq->lock); 1467 1468 if (too_many_workers(gcwq)) { 1469 struct worker *worker; 1470 unsigned long expires; 1471 1472 /* idle_list is kept in LIFO order, check the last one */ 1473 worker = list_entry(gcwq->idle_list.prev, struct worker, entry); 1474 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1475 1476 if (time_before(jiffies, expires)) 1477 mod_timer(&gcwq->idle_timer, expires); 1478 else { 1479 /* it's been idle for too long, wake up manager */ 1480 gcwq->flags |= GCWQ_MANAGE_WORKERS; 1481 wake_up_worker(gcwq); 1482 } 1483 } 1484 1485 spin_unlock_irq(&gcwq->lock); 1486 } 1487 1488 static bool send_mayday(struct work_struct *work) 1489 { 1490 struct cpu_workqueue_struct *cwq = get_work_cwq(work); 1491 struct workqueue_struct *wq = cwq->wq; 1492 unsigned int cpu; 1493 1494 if (!(wq->flags & WQ_RESCUER)) 1495 return false; 1496 1497 /* mayday mayday mayday */ 1498 cpu = cwq->gcwq->cpu; 1499 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */ 1500 if (cpu == WORK_CPU_UNBOUND) 1501 cpu = 0; 1502 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask)) 1503 wake_up_process(wq->rescuer->task); 1504 return true; 1505 } 1506 1507 static void gcwq_mayday_timeout(unsigned long __gcwq) 1508 { 1509 struct global_cwq *gcwq = (void *)__gcwq; 1510 struct work_struct *work; 1511 1512 spin_lock_irq(&gcwq->lock); 1513 1514 if (need_to_create_worker(gcwq)) { 1515 /* 1516 * We've been trying to create a new worker but 1517 * haven't been successful. We might be hitting an 1518 * allocation deadlock. Send distress signals to 1519 * rescuers. 1520 */ 1521 list_for_each_entry(work, &gcwq->worklist, entry) 1522 send_mayday(work); 1523 } 1524 1525 spin_unlock_irq(&gcwq->lock); 1526 1527 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL); 1528 } 1529 1530 /** 1531 * maybe_create_worker - create a new worker if necessary 1532 * @gcwq: gcwq to create a new worker for 1533 * 1534 * Create a new worker for @gcwq if necessary. @gcwq is guaranteed to 1535 * have at least one idle worker on return from this function. If 1536 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1537 * sent to all rescuers with works scheduled on @gcwq to resolve 1538 * possible allocation deadlock. 1539 * 1540 * On return, need_to_create_worker() is guaranteed to be false and 1541 * may_start_working() true. 1542 * 1543 * LOCKING: 1544 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1545 * multiple times. Does GFP_KERNEL allocations. Called only from 1546 * manager. 1547 * 1548 * RETURNS: 1549 * false if no action was taken and gcwq->lock stayed locked, true 1550 * otherwise. 1551 */ 1552 static bool maybe_create_worker(struct global_cwq *gcwq) 1553 __releases(&gcwq->lock) 1554 __acquires(&gcwq->lock) 1555 { 1556 if (!need_to_create_worker(gcwq)) 1557 return false; 1558 restart: 1559 spin_unlock_irq(&gcwq->lock); 1560 1561 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1562 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1563 1564 while (true) { 1565 struct worker *worker; 1566 1567 worker = create_worker(gcwq, true); 1568 if (worker) { 1569 del_timer_sync(&gcwq->mayday_timer); 1570 spin_lock_irq(&gcwq->lock); 1571 start_worker(worker); 1572 BUG_ON(need_to_create_worker(gcwq)); 1573 return true; 1574 } 1575 1576 if (!need_to_create_worker(gcwq)) 1577 break; 1578 1579 __set_current_state(TASK_INTERRUPTIBLE); 1580 schedule_timeout(CREATE_COOLDOWN); 1581 1582 if (!need_to_create_worker(gcwq)) 1583 break; 1584 } 1585 1586 del_timer_sync(&gcwq->mayday_timer); 1587 spin_lock_irq(&gcwq->lock); 1588 if (need_to_create_worker(gcwq)) 1589 goto restart; 1590 return true; 1591 } 1592 1593 /** 1594 * maybe_destroy_worker - destroy workers which have been idle for a while 1595 * @gcwq: gcwq to destroy workers for 1596 * 1597 * Destroy @gcwq workers which have been idle for longer than 1598 * IDLE_WORKER_TIMEOUT. 1599 * 1600 * LOCKING: 1601 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1602 * multiple times. Called only from manager. 1603 * 1604 * RETURNS: 1605 * false if no action was taken and gcwq->lock stayed locked, true 1606 * otherwise. 1607 */ 1608 static bool maybe_destroy_workers(struct global_cwq *gcwq) 1609 { 1610 bool ret = false; 1611 1612 while (too_many_workers(gcwq)) { 1613 struct worker *worker; 1614 unsigned long expires; 1615 1616 worker = list_entry(gcwq->idle_list.prev, struct worker, entry); 1617 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1618 1619 if (time_before(jiffies, expires)) { 1620 mod_timer(&gcwq->idle_timer, expires); 1621 break; 1622 } 1623 1624 destroy_worker(worker); 1625 ret = true; 1626 } 1627 1628 return ret; 1629 } 1630 1631 /** 1632 * manage_workers - manage worker pool 1633 * @worker: self 1634 * 1635 * Assume the manager role and manage gcwq worker pool @worker belongs 1636 * to. At any given time, there can be only zero or one manager per 1637 * gcwq. The exclusion is handled automatically by this function. 1638 * 1639 * The caller can safely start processing works on false return. On 1640 * true return, it's guaranteed that need_to_create_worker() is false 1641 * and may_start_working() is true. 1642 * 1643 * CONTEXT: 1644 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1645 * multiple times. Does GFP_KERNEL allocations. 1646 * 1647 * RETURNS: 1648 * false if no action was taken and gcwq->lock stayed locked, true if 1649 * some action was taken. 1650 */ 1651 static bool manage_workers(struct worker *worker) 1652 { 1653 struct global_cwq *gcwq = worker->gcwq; 1654 bool ret = false; 1655 1656 if (gcwq->flags & GCWQ_MANAGING_WORKERS) 1657 return ret; 1658 1659 gcwq->flags &= ~GCWQ_MANAGE_WORKERS; 1660 gcwq->flags |= GCWQ_MANAGING_WORKERS; 1661 1662 /* 1663 * Destroy and then create so that may_start_working() is true 1664 * on return. 1665 */ 1666 ret |= maybe_destroy_workers(gcwq); 1667 ret |= maybe_create_worker(gcwq); 1668 1669 gcwq->flags &= ~GCWQ_MANAGING_WORKERS; 1670 1671 /* 1672 * The trustee might be waiting to take over the manager 1673 * position, tell it we're done. 1674 */ 1675 if (unlikely(gcwq->trustee)) 1676 wake_up_all(&gcwq->trustee_wait); 1677 1678 return ret; 1679 } 1680 1681 /** 1682 * move_linked_works - move linked works to a list 1683 * @work: start of series of works to be scheduled 1684 * @head: target list to append @work to 1685 * @nextp: out paramter for nested worklist walking 1686 * 1687 * Schedule linked works starting from @work to @head. Work series to 1688 * be scheduled starts at @work and includes any consecutive work with 1689 * WORK_STRUCT_LINKED set in its predecessor. 1690 * 1691 * If @nextp is not NULL, it's updated to point to the next work of 1692 * the last scheduled work. This allows move_linked_works() to be 1693 * nested inside outer list_for_each_entry_safe(). 1694 * 1695 * CONTEXT: 1696 * spin_lock_irq(gcwq->lock). 1697 */ 1698 static void move_linked_works(struct work_struct *work, struct list_head *head, 1699 struct work_struct **nextp) 1700 { 1701 struct work_struct *n; 1702 1703 /* 1704 * Linked worklist will always end before the end of the list, 1705 * use NULL for list head. 1706 */ 1707 list_for_each_entry_safe_from(work, n, NULL, entry) { 1708 list_move_tail(&work->entry, head); 1709 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1710 break; 1711 } 1712 1713 /* 1714 * If we're already inside safe list traversal and have moved 1715 * multiple works to the scheduled queue, the next position 1716 * needs to be updated. 1717 */ 1718 if (nextp) 1719 *nextp = n; 1720 } 1721 1722 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq) 1723 { 1724 struct work_struct *work = list_first_entry(&cwq->delayed_works, 1725 struct work_struct, entry); 1726 struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq); 1727 1728 trace_workqueue_activate_work(work); 1729 move_linked_works(work, pos, NULL); 1730 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1731 cwq->nr_active++; 1732 } 1733 1734 /** 1735 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight 1736 * @cwq: cwq of interest 1737 * @color: color of work which left the queue 1738 * @delayed: for a delayed work 1739 * 1740 * A work either has completed or is removed from pending queue, 1741 * decrement nr_in_flight of its cwq and handle workqueue flushing. 1742 * 1743 * CONTEXT: 1744 * spin_lock_irq(gcwq->lock). 1745 */ 1746 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color, 1747 bool delayed) 1748 { 1749 /* ignore uncolored works */ 1750 if (color == WORK_NO_COLOR) 1751 return; 1752 1753 cwq->nr_in_flight[color]--; 1754 1755 if (!delayed) { 1756 cwq->nr_active--; 1757 if (!list_empty(&cwq->delayed_works)) { 1758 /* one down, submit a delayed one */ 1759 if (cwq->nr_active < cwq->max_active) 1760 cwq_activate_first_delayed(cwq); 1761 } 1762 } 1763 1764 /* is flush in progress and are we at the flushing tip? */ 1765 if (likely(cwq->flush_color != color)) 1766 return; 1767 1768 /* are there still in-flight works? */ 1769 if (cwq->nr_in_flight[color]) 1770 return; 1771 1772 /* this cwq is done, clear flush_color */ 1773 cwq->flush_color = -1; 1774 1775 /* 1776 * If this was the last cwq, wake up the first flusher. It 1777 * will handle the rest. 1778 */ 1779 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush)) 1780 complete(&cwq->wq->first_flusher->done); 1781 } 1782 1783 /** 1784 * process_one_work - process single work 1785 * @worker: self 1786 * @work: work to process 1787 * 1788 * Process @work. This function contains all the logics necessary to 1789 * process a single work including synchronization against and 1790 * interaction with other workers on the same cpu, queueing and 1791 * flushing. As long as context requirement is met, any worker can 1792 * call this function to process a work. 1793 * 1794 * CONTEXT: 1795 * spin_lock_irq(gcwq->lock) which is released and regrabbed. 1796 */ 1797 static void process_one_work(struct worker *worker, struct work_struct *work) 1798 __releases(&gcwq->lock) 1799 __acquires(&gcwq->lock) 1800 { 1801 struct cpu_workqueue_struct *cwq = get_work_cwq(work); 1802 struct global_cwq *gcwq = cwq->gcwq; 1803 struct hlist_head *bwh = busy_worker_head(gcwq, work); 1804 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE; 1805 work_func_t f = work->func; 1806 int work_color; 1807 struct worker *collision; 1808 #ifdef CONFIG_LOCKDEP 1809 /* 1810 * It is permissible to free the struct work_struct from 1811 * inside the function that is called from it, this we need to 1812 * take into account for lockdep too. To avoid bogus "held 1813 * lock freed" warnings as well as problems when looking into 1814 * work->lockdep_map, make a copy and use that here. 1815 */ 1816 struct lockdep_map lockdep_map = work->lockdep_map; 1817 #endif 1818 /* 1819 * A single work shouldn't be executed concurrently by 1820 * multiple workers on a single cpu. Check whether anyone is 1821 * already processing the work. If so, defer the work to the 1822 * currently executing one. 1823 */ 1824 collision = __find_worker_executing_work(gcwq, bwh, work); 1825 if (unlikely(collision)) { 1826 move_linked_works(work, &collision->scheduled, NULL); 1827 return; 1828 } 1829 1830 /* claim and process */ 1831 debug_work_deactivate(work); 1832 hlist_add_head(&worker->hentry, bwh); 1833 worker->current_work = work; 1834 worker->current_cwq = cwq; 1835 work_color = get_work_color(work); 1836 1837 /* record the current cpu number in the work data and dequeue */ 1838 set_work_cpu(work, gcwq->cpu); 1839 list_del_init(&work->entry); 1840 1841 /* 1842 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI, 1843 * wake up another worker; otherwise, clear HIGHPRI_PENDING. 1844 */ 1845 if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) { 1846 struct work_struct *nwork = list_first_entry(&gcwq->worklist, 1847 struct work_struct, entry); 1848 1849 if (!list_empty(&gcwq->worklist) && 1850 get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI) 1851 wake_up_worker(gcwq); 1852 else 1853 gcwq->flags &= ~GCWQ_HIGHPRI_PENDING; 1854 } 1855 1856 /* 1857 * CPU intensive works don't participate in concurrency 1858 * management. They're the scheduler's responsibility. 1859 */ 1860 if (unlikely(cpu_intensive)) 1861 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true); 1862 1863 spin_unlock_irq(&gcwq->lock); 1864 1865 work_clear_pending(work); 1866 lock_map_acquire_read(&cwq->wq->lockdep_map); 1867 lock_map_acquire(&lockdep_map); 1868 trace_workqueue_execute_start(work); 1869 f(work); 1870 /* 1871 * While we must be careful to not use "work" after this, the trace 1872 * point will only record its address. 1873 */ 1874 trace_workqueue_execute_end(work); 1875 lock_map_release(&lockdep_map); 1876 lock_map_release(&cwq->wq->lockdep_map); 1877 1878 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 1879 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: " 1880 "%s/0x%08x/%d\n", 1881 current->comm, preempt_count(), task_pid_nr(current)); 1882 printk(KERN_ERR " last function: "); 1883 print_symbol("%s\n", (unsigned long)f); 1884 debug_show_held_locks(current); 1885 dump_stack(); 1886 } 1887 1888 spin_lock_irq(&gcwq->lock); 1889 1890 /* clear cpu intensive status */ 1891 if (unlikely(cpu_intensive)) 1892 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 1893 1894 /* we're done with it, release */ 1895 hlist_del_init(&worker->hentry); 1896 worker->current_work = NULL; 1897 worker->current_cwq = NULL; 1898 cwq_dec_nr_in_flight(cwq, work_color, false); 1899 } 1900 1901 /** 1902 * process_scheduled_works - process scheduled works 1903 * @worker: self 1904 * 1905 * Process all scheduled works. Please note that the scheduled list 1906 * may change while processing a work, so this function repeatedly 1907 * fetches a work from the top and executes it. 1908 * 1909 * CONTEXT: 1910 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1911 * multiple times. 1912 */ 1913 static void process_scheduled_works(struct worker *worker) 1914 { 1915 while (!list_empty(&worker->scheduled)) { 1916 struct work_struct *work = list_first_entry(&worker->scheduled, 1917 struct work_struct, entry); 1918 process_one_work(worker, work); 1919 } 1920 } 1921 1922 /** 1923 * worker_thread - the worker thread function 1924 * @__worker: self 1925 * 1926 * The gcwq worker thread function. There's a single dynamic pool of 1927 * these per each cpu. These workers process all works regardless of 1928 * their specific target workqueue. The only exception is works which 1929 * belong to workqueues with a rescuer which will be explained in 1930 * rescuer_thread(). 1931 */ 1932 static int worker_thread(void *__worker) 1933 { 1934 struct worker *worker = __worker; 1935 struct global_cwq *gcwq = worker->gcwq; 1936 1937 /* tell the scheduler that this is a workqueue worker */ 1938 worker->task->flags |= PF_WQ_WORKER; 1939 woke_up: 1940 spin_lock_irq(&gcwq->lock); 1941 1942 /* DIE can be set only while we're idle, checking here is enough */ 1943 if (worker->flags & WORKER_DIE) { 1944 spin_unlock_irq(&gcwq->lock); 1945 worker->task->flags &= ~PF_WQ_WORKER; 1946 return 0; 1947 } 1948 1949 worker_leave_idle(worker); 1950 recheck: 1951 /* no more worker necessary? */ 1952 if (!need_more_worker(gcwq)) 1953 goto sleep; 1954 1955 /* do we need to manage? */ 1956 if (unlikely(!may_start_working(gcwq)) && manage_workers(worker)) 1957 goto recheck; 1958 1959 /* 1960 * ->scheduled list can only be filled while a worker is 1961 * preparing to process a work or actually processing it. 1962 * Make sure nobody diddled with it while I was sleeping. 1963 */ 1964 BUG_ON(!list_empty(&worker->scheduled)); 1965 1966 /* 1967 * When control reaches this point, we're guaranteed to have 1968 * at least one idle worker or that someone else has already 1969 * assumed the manager role. 1970 */ 1971 worker_clr_flags(worker, WORKER_PREP); 1972 1973 do { 1974 struct work_struct *work = 1975 list_first_entry(&gcwq->worklist, 1976 struct work_struct, entry); 1977 1978 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 1979 /* optimization path, not strictly necessary */ 1980 process_one_work(worker, work); 1981 if (unlikely(!list_empty(&worker->scheduled))) 1982 process_scheduled_works(worker); 1983 } else { 1984 move_linked_works(work, &worker->scheduled, NULL); 1985 process_scheduled_works(worker); 1986 } 1987 } while (keep_working(gcwq)); 1988 1989 worker_set_flags(worker, WORKER_PREP, false); 1990 sleep: 1991 if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker)) 1992 goto recheck; 1993 1994 /* 1995 * gcwq->lock is held and there's no work to process and no 1996 * need to manage, sleep. Workers are woken up only while 1997 * holding gcwq->lock or from local cpu, so setting the 1998 * current state before releasing gcwq->lock is enough to 1999 * prevent losing any event. 2000 */ 2001 worker_enter_idle(worker); 2002 __set_current_state(TASK_INTERRUPTIBLE); 2003 spin_unlock_irq(&gcwq->lock); 2004 schedule(); 2005 goto woke_up; 2006 } 2007 2008 /** 2009 * rescuer_thread - the rescuer thread function 2010 * @__wq: the associated workqueue 2011 * 2012 * Workqueue rescuer thread function. There's one rescuer for each 2013 * workqueue which has WQ_RESCUER set. 2014 * 2015 * Regular work processing on a gcwq may block trying to create a new 2016 * worker which uses GFP_KERNEL allocation which has slight chance of 2017 * developing into deadlock if some works currently on the same queue 2018 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2019 * the problem rescuer solves. 2020 * 2021 * When such condition is possible, the gcwq summons rescuers of all 2022 * workqueues which have works queued on the gcwq and let them process 2023 * those works so that forward progress can be guaranteed. 2024 * 2025 * This should happen rarely. 2026 */ 2027 static int rescuer_thread(void *__wq) 2028 { 2029 struct workqueue_struct *wq = __wq; 2030 struct worker *rescuer = wq->rescuer; 2031 struct list_head *scheduled = &rescuer->scheduled; 2032 bool is_unbound = wq->flags & WQ_UNBOUND; 2033 unsigned int cpu; 2034 2035 set_user_nice(current, RESCUER_NICE_LEVEL); 2036 repeat: 2037 set_current_state(TASK_INTERRUPTIBLE); 2038 2039 if (kthread_should_stop()) 2040 return 0; 2041 2042 /* 2043 * See whether any cpu is asking for help. Unbounded 2044 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND. 2045 */ 2046 for_each_mayday_cpu(cpu, wq->mayday_mask) { 2047 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu; 2048 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq); 2049 struct global_cwq *gcwq = cwq->gcwq; 2050 struct work_struct *work, *n; 2051 2052 __set_current_state(TASK_RUNNING); 2053 mayday_clear_cpu(cpu, wq->mayday_mask); 2054 2055 /* migrate to the target cpu if possible */ 2056 rescuer->gcwq = gcwq; 2057 worker_maybe_bind_and_lock(rescuer); 2058 2059 /* 2060 * Slurp in all works issued via this workqueue and 2061 * process'em. 2062 */ 2063 BUG_ON(!list_empty(&rescuer->scheduled)); 2064 list_for_each_entry_safe(work, n, &gcwq->worklist, entry) 2065 if (get_work_cwq(work) == cwq) 2066 move_linked_works(work, scheduled, &n); 2067 2068 process_scheduled_works(rescuer); 2069 2070 /* 2071 * Leave this gcwq. If keep_working() is %true, notify a 2072 * regular worker; otherwise, we end up with 0 concurrency 2073 * and stalling the execution. 2074 */ 2075 if (keep_working(gcwq)) 2076 wake_up_worker(gcwq); 2077 2078 spin_unlock_irq(&gcwq->lock); 2079 } 2080 2081 schedule(); 2082 goto repeat; 2083 } 2084 2085 struct wq_barrier { 2086 struct work_struct work; 2087 struct completion done; 2088 }; 2089 2090 static void wq_barrier_func(struct work_struct *work) 2091 { 2092 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2093 complete(&barr->done); 2094 } 2095 2096 /** 2097 * insert_wq_barrier - insert a barrier work 2098 * @cwq: cwq to insert barrier into 2099 * @barr: wq_barrier to insert 2100 * @target: target work to attach @barr to 2101 * @worker: worker currently executing @target, NULL if @target is not executing 2102 * 2103 * @barr is linked to @target such that @barr is completed only after 2104 * @target finishes execution. Please note that the ordering 2105 * guarantee is observed only with respect to @target and on the local 2106 * cpu. 2107 * 2108 * Currently, a queued barrier can't be canceled. This is because 2109 * try_to_grab_pending() can't determine whether the work to be 2110 * grabbed is at the head of the queue and thus can't clear LINKED 2111 * flag of the previous work while there must be a valid next work 2112 * after a work with LINKED flag set. 2113 * 2114 * Note that when @worker is non-NULL, @target may be modified 2115 * underneath us, so we can't reliably determine cwq from @target. 2116 * 2117 * CONTEXT: 2118 * spin_lock_irq(gcwq->lock). 2119 */ 2120 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq, 2121 struct wq_barrier *barr, 2122 struct work_struct *target, struct worker *worker) 2123 { 2124 struct list_head *head; 2125 unsigned int linked = 0; 2126 2127 /* 2128 * debugobject calls are safe here even with gcwq->lock locked 2129 * as we know for sure that this will not trigger any of the 2130 * checks and call back into the fixup functions where we 2131 * might deadlock. 2132 */ 2133 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2134 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2135 init_completion(&barr->done); 2136 2137 /* 2138 * If @target is currently being executed, schedule the 2139 * barrier to the worker; otherwise, put it after @target. 2140 */ 2141 if (worker) 2142 head = worker->scheduled.next; 2143 else { 2144 unsigned long *bits = work_data_bits(target); 2145 2146 head = target->entry.next; 2147 /* there can already be other linked works, inherit and set */ 2148 linked = *bits & WORK_STRUCT_LINKED; 2149 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2150 } 2151 2152 debug_work_activate(&barr->work); 2153 insert_work(cwq, &barr->work, head, 2154 work_color_to_flags(WORK_NO_COLOR) | linked); 2155 } 2156 2157 /** 2158 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing 2159 * @wq: workqueue being flushed 2160 * @flush_color: new flush color, < 0 for no-op 2161 * @work_color: new work color, < 0 for no-op 2162 * 2163 * Prepare cwqs for workqueue flushing. 2164 * 2165 * If @flush_color is non-negative, flush_color on all cwqs should be 2166 * -1. If no cwq has in-flight commands at the specified color, all 2167 * cwq->flush_color's stay at -1 and %false is returned. If any cwq 2168 * has in flight commands, its cwq->flush_color is set to 2169 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq 2170 * wakeup logic is armed and %true is returned. 2171 * 2172 * The caller should have initialized @wq->first_flusher prior to 2173 * calling this function with non-negative @flush_color. If 2174 * @flush_color is negative, no flush color update is done and %false 2175 * is returned. 2176 * 2177 * If @work_color is non-negative, all cwqs should have the same 2178 * work_color which is previous to @work_color and all will be 2179 * advanced to @work_color. 2180 * 2181 * CONTEXT: 2182 * mutex_lock(wq->flush_mutex). 2183 * 2184 * RETURNS: 2185 * %true if @flush_color >= 0 and there's something to flush. %false 2186 * otherwise. 2187 */ 2188 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq, 2189 int flush_color, int work_color) 2190 { 2191 bool wait = false; 2192 unsigned int cpu; 2193 2194 if (flush_color >= 0) { 2195 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush)); 2196 atomic_set(&wq->nr_cwqs_to_flush, 1); 2197 } 2198 2199 for_each_cwq_cpu(cpu, wq) { 2200 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 2201 struct global_cwq *gcwq = cwq->gcwq; 2202 2203 spin_lock_irq(&gcwq->lock); 2204 2205 if (flush_color >= 0) { 2206 BUG_ON(cwq->flush_color != -1); 2207 2208 if (cwq->nr_in_flight[flush_color]) { 2209 cwq->flush_color = flush_color; 2210 atomic_inc(&wq->nr_cwqs_to_flush); 2211 wait = true; 2212 } 2213 } 2214 2215 if (work_color >= 0) { 2216 BUG_ON(work_color != work_next_color(cwq->work_color)); 2217 cwq->work_color = work_color; 2218 } 2219 2220 spin_unlock_irq(&gcwq->lock); 2221 } 2222 2223 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush)) 2224 complete(&wq->first_flusher->done); 2225 2226 return wait; 2227 } 2228 2229 /** 2230 * flush_workqueue - ensure that any scheduled work has run to completion. 2231 * @wq: workqueue to flush 2232 * 2233 * Forces execution of the workqueue and blocks until its completion. 2234 * This is typically used in driver shutdown handlers. 2235 * 2236 * We sleep until all works which were queued on entry have been handled, 2237 * but we are not livelocked by new incoming ones. 2238 */ 2239 void flush_workqueue(struct workqueue_struct *wq) 2240 { 2241 struct wq_flusher this_flusher = { 2242 .list = LIST_HEAD_INIT(this_flusher.list), 2243 .flush_color = -1, 2244 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2245 }; 2246 int next_color; 2247 2248 lock_map_acquire(&wq->lockdep_map); 2249 lock_map_release(&wq->lockdep_map); 2250 2251 mutex_lock(&wq->flush_mutex); 2252 2253 /* 2254 * Start-to-wait phase 2255 */ 2256 next_color = work_next_color(wq->work_color); 2257 2258 if (next_color != wq->flush_color) { 2259 /* 2260 * Color space is not full. The current work_color 2261 * becomes our flush_color and work_color is advanced 2262 * by one. 2263 */ 2264 BUG_ON(!list_empty(&wq->flusher_overflow)); 2265 this_flusher.flush_color = wq->work_color; 2266 wq->work_color = next_color; 2267 2268 if (!wq->first_flusher) { 2269 /* no flush in progress, become the first flusher */ 2270 BUG_ON(wq->flush_color != this_flusher.flush_color); 2271 2272 wq->first_flusher = &this_flusher; 2273 2274 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color, 2275 wq->work_color)) { 2276 /* nothing to flush, done */ 2277 wq->flush_color = next_color; 2278 wq->first_flusher = NULL; 2279 goto out_unlock; 2280 } 2281 } else { 2282 /* wait in queue */ 2283 BUG_ON(wq->flush_color == this_flusher.flush_color); 2284 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2285 flush_workqueue_prep_cwqs(wq, -1, wq->work_color); 2286 } 2287 } else { 2288 /* 2289 * Oops, color space is full, wait on overflow queue. 2290 * The next flush completion will assign us 2291 * flush_color and transfer to flusher_queue. 2292 */ 2293 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2294 } 2295 2296 mutex_unlock(&wq->flush_mutex); 2297 2298 wait_for_completion(&this_flusher.done); 2299 2300 /* 2301 * Wake-up-and-cascade phase 2302 * 2303 * First flushers are responsible for cascading flushes and 2304 * handling overflow. Non-first flushers can simply return. 2305 */ 2306 if (wq->first_flusher != &this_flusher) 2307 return; 2308 2309 mutex_lock(&wq->flush_mutex); 2310 2311 /* we might have raced, check again with mutex held */ 2312 if (wq->first_flusher != &this_flusher) 2313 goto out_unlock; 2314 2315 wq->first_flusher = NULL; 2316 2317 BUG_ON(!list_empty(&this_flusher.list)); 2318 BUG_ON(wq->flush_color != this_flusher.flush_color); 2319 2320 while (true) { 2321 struct wq_flusher *next, *tmp; 2322 2323 /* complete all the flushers sharing the current flush color */ 2324 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2325 if (next->flush_color != wq->flush_color) 2326 break; 2327 list_del_init(&next->list); 2328 complete(&next->done); 2329 } 2330 2331 BUG_ON(!list_empty(&wq->flusher_overflow) && 2332 wq->flush_color != work_next_color(wq->work_color)); 2333 2334 /* this flush_color is finished, advance by one */ 2335 wq->flush_color = work_next_color(wq->flush_color); 2336 2337 /* one color has been freed, handle overflow queue */ 2338 if (!list_empty(&wq->flusher_overflow)) { 2339 /* 2340 * Assign the same color to all overflowed 2341 * flushers, advance work_color and append to 2342 * flusher_queue. This is the start-to-wait 2343 * phase for these overflowed flushers. 2344 */ 2345 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2346 tmp->flush_color = wq->work_color; 2347 2348 wq->work_color = work_next_color(wq->work_color); 2349 2350 list_splice_tail_init(&wq->flusher_overflow, 2351 &wq->flusher_queue); 2352 flush_workqueue_prep_cwqs(wq, -1, wq->work_color); 2353 } 2354 2355 if (list_empty(&wq->flusher_queue)) { 2356 BUG_ON(wq->flush_color != wq->work_color); 2357 break; 2358 } 2359 2360 /* 2361 * Need to flush more colors. Make the next flusher 2362 * the new first flusher and arm cwqs. 2363 */ 2364 BUG_ON(wq->flush_color == wq->work_color); 2365 BUG_ON(wq->flush_color != next->flush_color); 2366 2367 list_del_init(&next->list); 2368 wq->first_flusher = next; 2369 2370 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1)) 2371 break; 2372 2373 /* 2374 * Meh... this color is already done, clear first 2375 * flusher and repeat cascading. 2376 */ 2377 wq->first_flusher = NULL; 2378 } 2379 2380 out_unlock: 2381 mutex_unlock(&wq->flush_mutex); 2382 } 2383 EXPORT_SYMBOL_GPL(flush_workqueue); 2384 2385 /** 2386 * drain_workqueue - drain a workqueue 2387 * @wq: workqueue to drain 2388 * 2389 * Wait until the workqueue becomes empty. While draining is in progress, 2390 * only chain queueing is allowed. IOW, only currently pending or running 2391 * work items on @wq can queue further work items on it. @wq is flushed 2392 * repeatedly until it becomes empty. The number of flushing is detemined 2393 * by the depth of chaining and should be relatively short. Whine if it 2394 * takes too long. 2395 */ 2396 void drain_workqueue(struct workqueue_struct *wq) 2397 { 2398 unsigned int flush_cnt = 0; 2399 unsigned int cpu; 2400 2401 /* 2402 * __queue_work() needs to test whether there are drainers, is much 2403 * hotter than drain_workqueue() and already looks at @wq->flags. 2404 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers. 2405 */ 2406 spin_lock(&workqueue_lock); 2407 if (!wq->nr_drainers++) 2408 wq->flags |= WQ_DRAINING; 2409 spin_unlock(&workqueue_lock); 2410 reflush: 2411 flush_workqueue(wq); 2412 2413 for_each_cwq_cpu(cpu, wq) { 2414 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 2415 2416 if (!cwq->nr_active && list_empty(&cwq->delayed_works)) 2417 continue; 2418 2419 if (++flush_cnt == 10 || 2420 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2421 pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n", 2422 wq->name, flush_cnt); 2423 goto reflush; 2424 } 2425 2426 spin_lock(&workqueue_lock); 2427 if (!--wq->nr_drainers) 2428 wq->flags &= ~WQ_DRAINING; 2429 spin_unlock(&workqueue_lock); 2430 } 2431 EXPORT_SYMBOL_GPL(drain_workqueue); 2432 2433 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 2434 bool wait_executing) 2435 { 2436 struct worker *worker = NULL; 2437 struct global_cwq *gcwq; 2438 struct cpu_workqueue_struct *cwq; 2439 2440 might_sleep(); 2441 gcwq = get_work_gcwq(work); 2442 if (!gcwq) 2443 return false; 2444 2445 spin_lock_irq(&gcwq->lock); 2446 if (!list_empty(&work->entry)) { 2447 /* 2448 * See the comment near try_to_grab_pending()->smp_rmb(). 2449 * If it was re-queued to a different gcwq under us, we 2450 * are not going to wait. 2451 */ 2452 smp_rmb(); 2453 cwq = get_work_cwq(work); 2454 if (unlikely(!cwq || gcwq != cwq->gcwq)) 2455 goto already_gone; 2456 } else if (wait_executing) { 2457 worker = find_worker_executing_work(gcwq, work); 2458 if (!worker) 2459 goto already_gone; 2460 cwq = worker->current_cwq; 2461 } else 2462 goto already_gone; 2463 2464 insert_wq_barrier(cwq, barr, work, worker); 2465 spin_unlock_irq(&gcwq->lock); 2466 2467 /* 2468 * If @max_active is 1 or rescuer is in use, flushing another work 2469 * item on the same workqueue may lead to deadlock. Make sure the 2470 * flusher is not running on the same workqueue by verifying write 2471 * access. 2472 */ 2473 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER) 2474 lock_map_acquire(&cwq->wq->lockdep_map); 2475 else 2476 lock_map_acquire_read(&cwq->wq->lockdep_map); 2477 lock_map_release(&cwq->wq->lockdep_map); 2478 2479 return true; 2480 already_gone: 2481 spin_unlock_irq(&gcwq->lock); 2482 return false; 2483 } 2484 2485 /** 2486 * flush_work - wait for a work to finish executing the last queueing instance 2487 * @work: the work to flush 2488 * 2489 * Wait until @work has finished execution. This function considers 2490 * only the last queueing instance of @work. If @work has been 2491 * enqueued across different CPUs on a non-reentrant workqueue or on 2492 * multiple workqueues, @work might still be executing on return on 2493 * some of the CPUs from earlier queueing. 2494 * 2495 * If @work was queued only on a non-reentrant, ordered or unbound 2496 * workqueue, @work is guaranteed to be idle on return if it hasn't 2497 * been requeued since flush started. 2498 * 2499 * RETURNS: 2500 * %true if flush_work() waited for the work to finish execution, 2501 * %false if it was already idle. 2502 */ 2503 bool flush_work(struct work_struct *work) 2504 { 2505 struct wq_barrier barr; 2506 2507 if (start_flush_work(work, &barr, true)) { 2508 wait_for_completion(&barr.done); 2509 destroy_work_on_stack(&barr.work); 2510 return true; 2511 } else 2512 return false; 2513 } 2514 EXPORT_SYMBOL_GPL(flush_work); 2515 2516 static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work) 2517 { 2518 struct wq_barrier barr; 2519 struct worker *worker; 2520 2521 spin_lock_irq(&gcwq->lock); 2522 2523 worker = find_worker_executing_work(gcwq, work); 2524 if (unlikely(worker)) 2525 insert_wq_barrier(worker->current_cwq, &barr, work, worker); 2526 2527 spin_unlock_irq(&gcwq->lock); 2528 2529 if (unlikely(worker)) { 2530 wait_for_completion(&barr.done); 2531 destroy_work_on_stack(&barr.work); 2532 return true; 2533 } else 2534 return false; 2535 } 2536 2537 static bool wait_on_work(struct work_struct *work) 2538 { 2539 bool ret = false; 2540 int cpu; 2541 2542 might_sleep(); 2543 2544 lock_map_acquire(&work->lockdep_map); 2545 lock_map_release(&work->lockdep_map); 2546 2547 for_each_gcwq_cpu(cpu) 2548 ret |= wait_on_cpu_work(get_gcwq(cpu), work); 2549 return ret; 2550 } 2551 2552 /** 2553 * flush_work_sync - wait until a work has finished execution 2554 * @work: the work to flush 2555 * 2556 * Wait until @work has finished execution. On return, it's 2557 * guaranteed that all queueing instances of @work which happened 2558 * before this function is called are finished. In other words, if 2559 * @work hasn't been requeued since this function was called, @work is 2560 * guaranteed to be idle on return. 2561 * 2562 * RETURNS: 2563 * %true if flush_work_sync() waited for the work to finish execution, 2564 * %false if it was already idle. 2565 */ 2566 bool flush_work_sync(struct work_struct *work) 2567 { 2568 struct wq_barrier barr; 2569 bool pending, waited; 2570 2571 /* we'll wait for executions separately, queue barr only if pending */ 2572 pending = start_flush_work(work, &barr, false); 2573 2574 /* wait for executions to finish */ 2575 waited = wait_on_work(work); 2576 2577 /* wait for the pending one */ 2578 if (pending) { 2579 wait_for_completion(&barr.done); 2580 destroy_work_on_stack(&barr.work); 2581 } 2582 2583 return pending || waited; 2584 } 2585 EXPORT_SYMBOL_GPL(flush_work_sync); 2586 2587 /* 2588 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit, 2589 * so this work can't be re-armed in any way. 2590 */ 2591 static int try_to_grab_pending(struct work_struct *work) 2592 { 2593 struct global_cwq *gcwq; 2594 int ret = -1; 2595 2596 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 2597 return 0; 2598 2599 /* 2600 * The queueing is in progress, or it is already queued. Try to 2601 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 2602 */ 2603 gcwq = get_work_gcwq(work); 2604 if (!gcwq) 2605 return ret; 2606 2607 spin_lock_irq(&gcwq->lock); 2608 if (!list_empty(&work->entry)) { 2609 /* 2610 * This work is queued, but perhaps we locked the wrong gcwq. 2611 * In that case we must see the new value after rmb(), see 2612 * insert_work()->wmb(). 2613 */ 2614 smp_rmb(); 2615 if (gcwq == get_work_gcwq(work)) { 2616 debug_work_deactivate(work); 2617 list_del_init(&work->entry); 2618 cwq_dec_nr_in_flight(get_work_cwq(work), 2619 get_work_color(work), 2620 *work_data_bits(work) & WORK_STRUCT_DELAYED); 2621 ret = 1; 2622 } 2623 } 2624 spin_unlock_irq(&gcwq->lock); 2625 2626 return ret; 2627 } 2628 2629 static bool __cancel_work_timer(struct work_struct *work, 2630 struct timer_list* timer) 2631 { 2632 int ret; 2633 2634 do { 2635 ret = (timer && likely(del_timer(timer))); 2636 if (!ret) 2637 ret = try_to_grab_pending(work); 2638 wait_on_work(work); 2639 } while (unlikely(ret < 0)); 2640 2641 clear_work_data(work); 2642 return ret; 2643 } 2644 2645 /** 2646 * cancel_work_sync - cancel a work and wait for it to finish 2647 * @work: the work to cancel 2648 * 2649 * Cancel @work and wait for its execution to finish. This function 2650 * can be used even if the work re-queues itself or migrates to 2651 * another workqueue. On return from this function, @work is 2652 * guaranteed to be not pending or executing on any CPU. 2653 * 2654 * cancel_work_sync(&delayed_work->work) must not be used for 2655 * delayed_work's. Use cancel_delayed_work_sync() instead. 2656 * 2657 * The caller must ensure that the workqueue on which @work was last 2658 * queued can't be destroyed before this function returns. 2659 * 2660 * RETURNS: 2661 * %true if @work was pending, %false otherwise. 2662 */ 2663 bool cancel_work_sync(struct work_struct *work) 2664 { 2665 return __cancel_work_timer(work, NULL); 2666 } 2667 EXPORT_SYMBOL_GPL(cancel_work_sync); 2668 2669 /** 2670 * flush_delayed_work - wait for a dwork to finish executing the last queueing 2671 * @dwork: the delayed work to flush 2672 * 2673 * Delayed timer is cancelled and the pending work is queued for 2674 * immediate execution. Like flush_work(), this function only 2675 * considers the last queueing instance of @dwork. 2676 * 2677 * RETURNS: 2678 * %true if flush_work() waited for the work to finish execution, 2679 * %false if it was already idle. 2680 */ 2681 bool flush_delayed_work(struct delayed_work *dwork) 2682 { 2683 if (del_timer_sync(&dwork->timer)) 2684 __queue_work(raw_smp_processor_id(), 2685 get_work_cwq(&dwork->work)->wq, &dwork->work); 2686 return flush_work(&dwork->work); 2687 } 2688 EXPORT_SYMBOL(flush_delayed_work); 2689 2690 /** 2691 * flush_delayed_work_sync - wait for a dwork to finish 2692 * @dwork: the delayed work to flush 2693 * 2694 * Delayed timer is cancelled and the pending work is queued for 2695 * execution immediately. Other than timer handling, its behavior 2696 * is identical to flush_work_sync(). 2697 * 2698 * RETURNS: 2699 * %true if flush_work_sync() waited for the work to finish execution, 2700 * %false if it was already idle. 2701 */ 2702 bool flush_delayed_work_sync(struct delayed_work *dwork) 2703 { 2704 if (del_timer_sync(&dwork->timer)) 2705 __queue_work(raw_smp_processor_id(), 2706 get_work_cwq(&dwork->work)->wq, &dwork->work); 2707 return flush_work_sync(&dwork->work); 2708 } 2709 EXPORT_SYMBOL(flush_delayed_work_sync); 2710 2711 /** 2712 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 2713 * @dwork: the delayed work cancel 2714 * 2715 * This is cancel_work_sync() for delayed works. 2716 * 2717 * RETURNS: 2718 * %true if @dwork was pending, %false otherwise. 2719 */ 2720 bool cancel_delayed_work_sync(struct delayed_work *dwork) 2721 { 2722 return __cancel_work_timer(&dwork->work, &dwork->timer); 2723 } 2724 EXPORT_SYMBOL(cancel_delayed_work_sync); 2725 2726 /** 2727 * schedule_work - put work task in global workqueue 2728 * @work: job to be done 2729 * 2730 * Returns zero if @work was already on the kernel-global workqueue and 2731 * non-zero otherwise. 2732 * 2733 * This puts a job in the kernel-global workqueue if it was not already 2734 * queued and leaves it in the same position on the kernel-global 2735 * workqueue otherwise. 2736 */ 2737 int schedule_work(struct work_struct *work) 2738 { 2739 return queue_work(system_wq, work); 2740 } 2741 EXPORT_SYMBOL(schedule_work); 2742 2743 /* 2744 * schedule_work_on - put work task on a specific cpu 2745 * @cpu: cpu to put the work task on 2746 * @work: job to be done 2747 * 2748 * This puts a job on a specific cpu 2749 */ 2750 int schedule_work_on(int cpu, struct work_struct *work) 2751 { 2752 return queue_work_on(cpu, system_wq, work); 2753 } 2754 EXPORT_SYMBOL(schedule_work_on); 2755 2756 /** 2757 * schedule_delayed_work - put work task in global workqueue after delay 2758 * @dwork: job to be done 2759 * @delay: number of jiffies to wait or 0 for immediate execution 2760 * 2761 * After waiting for a given time this puts a job in the kernel-global 2762 * workqueue. 2763 */ 2764 int schedule_delayed_work(struct delayed_work *dwork, 2765 unsigned long delay) 2766 { 2767 return queue_delayed_work(system_wq, dwork, delay); 2768 } 2769 EXPORT_SYMBOL(schedule_delayed_work); 2770 2771 /** 2772 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay 2773 * @cpu: cpu to use 2774 * @dwork: job to be done 2775 * @delay: number of jiffies to wait 2776 * 2777 * After waiting for a given time this puts a job in the kernel-global 2778 * workqueue on the specified CPU. 2779 */ 2780 int schedule_delayed_work_on(int cpu, 2781 struct delayed_work *dwork, unsigned long delay) 2782 { 2783 return queue_delayed_work_on(cpu, system_wq, dwork, delay); 2784 } 2785 EXPORT_SYMBOL(schedule_delayed_work_on); 2786 2787 /** 2788 * schedule_on_each_cpu - execute a function synchronously on each online CPU 2789 * @func: the function to call 2790 * 2791 * schedule_on_each_cpu() executes @func on each online CPU using the 2792 * system workqueue and blocks until all CPUs have completed. 2793 * schedule_on_each_cpu() is very slow. 2794 * 2795 * RETURNS: 2796 * 0 on success, -errno on failure. 2797 */ 2798 int schedule_on_each_cpu(work_func_t func) 2799 { 2800 int cpu; 2801 struct work_struct __percpu *works; 2802 2803 works = alloc_percpu(struct work_struct); 2804 if (!works) 2805 return -ENOMEM; 2806 2807 get_online_cpus(); 2808 2809 for_each_online_cpu(cpu) { 2810 struct work_struct *work = per_cpu_ptr(works, cpu); 2811 2812 INIT_WORK(work, func); 2813 schedule_work_on(cpu, work); 2814 } 2815 2816 for_each_online_cpu(cpu) 2817 flush_work(per_cpu_ptr(works, cpu)); 2818 2819 put_online_cpus(); 2820 free_percpu(works); 2821 return 0; 2822 } 2823 2824 /** 2825 * flush_scheduled_work - ensure that any scheduled work has run to completion. 2826 * 2827 * Forces execution of the kernel-global workqueue and blocks until its 2828 * completion. 2829 * 2830 * Think twice before calling this function! It's very easy to get into 2831 * trouble if you don't take great care. Either of the following situations 2832 * will lead to deadlock: 2833 * 2834 * One of the work items currently on the workqueue needs to acquire 2835 * a lock held by your code or its caller. 2836 * 2837 * Your code is running in the context of a work routine. 2838 * 2839 * They will be detected by lockdep when they occur, but the first might not 2840 * occur very often. It depends on what work items are on the workqueue and 2841 * what locks they need, which you have no control over. 2842 * 2843 * In most situations flushing the entire workqueue is overkill; you merely 2844 * need to know that a particular work item isn't queued and isn't running. 2845 * In such cases you should use cancel_delayed_work_sync() or 2846 * cancel_work_sync() instead. 2847 */ 2848 void flush_scheduled_work(void) 2849 { 2850 flush_workqueue(system_wq); 2851 } 2852 EXPORT_SYMBOL(flush_scheduled_work); 2853 2854 /** 2855 * execute_in_process_context - reliably execute the routine with user context 2856 * @fn: the function to execute 2857 * @ew: guaranteed storage for the execute work structure (must 2858 * be available when the work executes) 2859 * 2860 * Executes the function immediately if process context is available, 2861 * otherwise schedules the function for delayed execution. 2862 * 2863 * Returns: 0 - function was executed 2864 * 1 - function was scheduled for execution 2865 */ 2866 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 2867 { 2868 if (!in_interrupt()) { 2869 fn(&ew->work); 2870 return 0; 2871 } 2872 2873 INIT_WORK(&ew->work, fn); 2874 schedule_work(&ew->work); 2875 2876 return 1; 2877 } 2878 EXPORT_SYMBOL_GPL(execute_in_process_context); 2879 2880 int keventd_up(void) 2881 { 2882 return system_wq != NULL; 2883 } 2884 2885 static int alloc_cwqs(struct workqueue_struct *wq) 2886 { 2887 /* 2888 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS. 2889 * Make sure that the alignment isn't lower than that of 2890 * unsigned long long. 2891 */ 2892 const size_t size = sizeof(struct cpu_workqueue_struct); 2893 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS, 2894 __alignof__(unsigned long long)); 2895 #ifdef CONFIG_SMP 2896 bool percpu = !(wq->flags & WQ_UNBOUND); 2897 #else 2898 bool percpu = false; 2899 #endif 2900 2901 if (percpu) 2902 wq->cpu_wq.pcpu = __alloc_percpu(size, align); 2903 else { 2904 void *ptr; 2905 2906 /* 2907 * Allocate enough room to align cwq and put an extra 2908 * pointer at the end pointing back to the originally 2909 * allocated pointer which will be used for free. 2910 */ 2911 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL); 2912 if (ptr) { 2913 wq->cpu_wq.single = PTR_ALIGN(ptr, align); 2914 *(void **)(wq->cpu_wq.single + 1) = ptr; 2915 } 2916 } 2917 2918 /* just in case, make sure it's actually aligned */ 2919 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align)); 2920 return wq->cpu_wq.v ? 0 : -ENOMEM; 2921 } 2922 2923 static void free_cwqs(struct workqueue_struct *wq) 2924 { 2925 #ifdef CONFIG_SMP 2926 bool percpu = !(wq->flags & WQ_UNBOUND); 2927 #else 2928 bool percpu = false; 2929 #endif 2930 2931 if (percpu) 2932 free_percpu(wq->cpu_wq.pcpu); 2933 else if (wq->cpu_wq.single) { 2934 /* the pointer to free is stored right after the cwq */ 2935 kfree(*(void **)(wq->cpu_wq.single + 1)); 2936 } 2937 } 2938 2939 static int wq_clamp_max_active(int max_active, unsigned int flags, 2940 const char *name) 2941 { 2942 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 2943 2944 if (max_active < 1 || max_active > lim) 2945 printk(KERN_WARNING "workqueue: max_active %d requested for %s " 2946 "is out of range, clamping between %d and %d\n", 2947 max_active, name, 1, lim); 2948 2949 return clamp_val(max_active, 1, lim); 2950 } 2951 2952 struct workqueue_struct *__alloc_workqueue_key(const char *name, 2953 unsigned int flags, 2954 int max_active, 2955 struct lock_class_key *key, 2956 const char *lock_name) 2957 { 2958 struct workqueue_struct *wq; 2959 unsigned int cpu; 2960 2961 /* 2962 * Workqueues which may be used during memory reclaim should 2963 * have a rescuer to guarantee forward progress. 2964 */ 2965 if (flags & WQ_MEM_RECLAIM) 2966 flags |= WQ_RESCUER; 2967 2968 /* 2969 * Unbound workqueues aren't concurrency managed and should be 2970 * dispatched to workers immediately. 2971 */ 2972 if (flags & WQ_UNBOUND) 2973 flags |= WQ_HIGHPRI; 2974 2975 max_active = max_active ?: WQ_DFL_ACTIVE; 2976 max_active = wq_clamp_max_active(max_active, flags, name); 2977 2978 wq = kzalloc(sizeof(*wq), GFP_KERNEL); 2979 if (!wq) 2980 goto err; 2981 2982 wq->flags = flags; 2983 wq->saved_max_active = max_active; 2984 mutex_init(&wq->flush_mutex); 2985 atomic_set(&wq->nr_cwqs_to_flush, 0); 2986 INIT_LIST_HEAD(&wq->flusher_queue); 2987 INIT_LIST_HEAD(&wq->flusher_overflow); 2988 2989 wq->name = name; 2990 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 2991 INIT_LIST_HEAD(&wq->list); 2992 2993 if (alloc_cwqs(wq) < 0) 2994 goto err; 2995 2996 for_each_cwq_cpu(cpu, wq) { 2997 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 2998 struct global_cwq *gcwq = get_gcwq(cpu); 2999 3000 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK); 3001 cwq->gcwq = gcwq; 3002 cwq->wq = wq; 3003 cwq->flush_color = -1; 3004 cwq->max_active = max_active; 3005 INIT_LIST_HEAD(&cwq->delayed_works); 3006 } 3007 3008 if (flags & WQ_RESCUER) { 3009 struct worker *rescuer; 3010 3011 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL)) 3012 goto err; 3013 3014 wq->rescuer = rescuer = alloc_worker(); 3015 if (!rescuer) 3016 goto err; 3017 3018 rescuer->task = kthread_create(rescuer_thread, wq, "%s", name); 3019 if (IS_ERR(rescuer->task)) 3020 goto err; 3021 3022 rescuer->task->flags |= PF_THREAD_BOUND; 3023 wake_up_process(rescuer->task); 3024 } 3025 3026 /* 3027 * workqueue_lock protects global freeze state and workqueues 3028 * list. Grab it, set max_active accordingly and add the new 3029 * workqueue to workqueues list. 3030 */ 3031 spin_lock(&workqueue_lock); 3032 3033 if (workqueue_freezing && wq->flags & WQ_FREEZABLE) 3034 for_each_cwq_cpu(cpu, wq) 3035 get_cwq(cpu, wq)->max_active = 0; 3036 3037 list_add(&wq->list, &workqueues); 3038 3039 spin_unlock(&workqueue_lock); 3040 3041 return wq; 3042 err: 3043 if (wq) { 3044 free_cwqs(wq); 3045 free_mayday_mask(wq->mayday_mask); 3046 kfree(wq->rescuer); 3047 kfree(wq); 3048 } 3049 return NULL; 3050 } 3051 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 3052 3053 /** 3054 * destroy_workqueue - safely terminate a workqueue 3055 * @wq: target workqueue 3056 * 3057 * Safely destroy a workqueue. All work currently pending will be done first. 3058 */ 3059 void destroy_workqueue(struct workqueue_struct *wq) 3060 { 3061 unsigned int cpu; 3062 3063 /* drain it before proceeding with destruction */ 3064 drain_workqueue(wq); 3065 3066 /* 3067 * wq list is used to freeze wq, remove from list after 3068 * flushing is complete in case freeze races us. 3069 */ 3070 spin_lock(&workqueue_lock); 3071 list_del(&wq->list); 3072 spin_unlock(&workqueue_lock); 3073 3074 /* sanity check */ 3075 for_each_cwq_cpu(cpu, wq) { 3076 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3077 int i; 3078 3079 for (i = 0; i < WORK_NR_COLORS; i++) 3080 BUG_ON(cwq->nr_in_flight[i]); 3081 BUG_ON(cwq->nr_active); 3082 BUG_ON(!list_empty(&cwq->delayed_works)); 3083 } 3084 3085 if (wq->flags & WQ_RESCUER) { 3086 kthread_stop(wq->rescuer->task); 3087 free_mayday_mask(wq->mayday_mask); 3088 kfree(wq->rescuer); 3089 } 3090 3091 free_cwqs(wq); 3092 kfree(wq); 3093 } 3094 EXPORT_SYMBOL_GPL(destroy_workqueue); 3095 3096 /** 3097 * workqueue_set_max_active - adjust max_active of a workqueue 3098 * @wq: target workqueue 3099 * @max_active: new max_active value. 3100 * 3101 * Set max_active of @wq to @max_active. 3102 * 3103 * CONTEXT: 3104 * Don't call from IRQ context. 3105 */ 3106 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 3107 { 3108 unsigned int cpu; 3109 3110 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 3111 3112 spin_lock(&workqueue_lock); 3113 3114 wq->saved_max_active = max_active; 3115 3116 for_each_cwq_cpu(cpu, wq) { 3117 struct global_cwq *gcwq = get_gcwq(cpu); 3118 3119 spin_lock_irq(&gcwq->lock); 3120 3121 if (!(wq->flags & WQ_FREEZABLE) || 3122 !(gcwq->flags & GCWQ_FREEZING)) 3123 get_cwq(gcwq->cpu, wq)->max_active = max_active; 3124 3125 spin_unlock_irq(&gcwq->lock); 3126 } 3127 3128 spin_unlock(&workqueue_lock); 3129 } 3130 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 3131 3132 /** 3133 * workqueue_congested - test whether a workqueue is congested 3134 * @cpu: CPU in question 3135 * @wq: target workqueue 3136 * 3137 * Test whether @wq's cpu workqueue for @cpu is congested. There is 3138 * no synchronization around this function and the test result is 3139 * unreliable and only useful as advisory hints or for debugging. 3140 * 3141 * RETURNS: 3142 * %true if congested, %false otherwise. 3143 */ 3144 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq) 3145 { 3146 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3147 3148 return !list_empty(&cwq->delayed_works); 3149 } 3150 EXPORT_SYMBOL_GPL(workqueue_congested); 3151 3152 /** 3153 * work_cpu - return the last known associated cpu for @work 3154 * @work: the work of interest 3155 * 3156 * RETURNS: 3157 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise. 3158 */ 3159 unsigned int work_cpu(struct work_struct *work) 3160 { 3161 struct global_cwq *gcwq = get_work_gcwq(work); 3162 3163 return gcwq ? gcwq->cpu : WORK_CPU_NONE; 3164 } 3165 EXPORT_SYMBOL_GPL(work_cpu); 3166 3167 /** 3168 * work_busy - test whether a work is currently pending or running 3169 * @work: the work to be tested 3170 * 3171 * Test whether @work is currently pending or running. There is no 3172 * synchronization around this function and the test result is 3173 * unreliable and only useful as advisory hints or for debugging. 3174 * Especially for reentrant wqs, the pending state might hide the 3175 * running state. 3176 * 3177 * RETURNS: 3178 * OR'd bitmask of WORK_BUSY_* bits. 3179 */ 3180 unsigned int work_busy(struct work_struct *work) 3181 { 3182 struct global_cwq *gcwq = get_work_gcwq(work); 3183 unsigned long flags; 3184 unsigned int ret = 0; 3185 3186 if (!gcwq) 3187 return false; 3188 3189 spin_lock_irqsave(&gcwq->lock, flags); 3190 3191 if (work_pending(work)) 3192 ret |= WORK_BUSY_PENDING; 3193 if (find_worker_executing_work(gcwq, work)) 3194 ret |= WORK_BUSY_RUNNING; 3195 3196 spin_unlock_irqrestore(&gcwq->lock, flags); 3197 3198 return ret; 3199 } 3200 EXPORT_SYMBOL_GPL(work_busy); 3201 3202 /* 3203 * CPU hotplug. 3204 * 3205 * There are two challenges in supporting CPU hotplug. Firstly, there 3206 * are a lot of assumptions on strong associations among work, cwq and 3207 * gcwq which make migrating pending and scheduled works very 3208 * difficult to implement without impacting hot paths. Secondly, 3209 * gcwqs serve mix of short, long and very long running works making 3210 * blocked draining impractical. 3211 * 3212 * This is solved by allowing a gcwq to be detached from CPU, running 3213 * it with unbound (rogue) workers and allowing it to be reattached 3214 * later if the cpu comes back online. A separate thread is created 3215 * to govern a gcwq in such state and is called the trustee of the 3216 * gcwq. 3217 * 3218 * Trustee states and their descriptions. 3219 * 3220 * START Command state used on startup. On CPU_DOWN_PREPARE, a 3221 * new trustee is started with this state. 3222 * 3223 * IN_CHARGE Once started, trustee will enter this state after 3224 * assuming the manager role and making all existing 3225 * workers rogue. DOWN_PREPARE waits for trustee to 3226 * enter this state. After reaching IN_CHARGE, trustee 3227 * tries to execute the pending worklist until it's empty 3228 * and the state is set to BUTCHER, or the state is set 3229 * to RELEASE. 3230 * 3231 * BUTCHER Command state which is set by the cpu callback after 3232 * the cpu has went down. Once this state is set trustee 3233 * knows that there will be no new works on the worklist 3234 * and once the worklist is empty it can proceed to 3235 * killing idle workers. 3236 * 3237 * RELEASE Command state which is set by the cpu callback if the 3238 * cpu down has been canceled or it has come online 3239 * again. After recognizing this state, trustee stops 3240 * trying to drain or butcher and clears ROGUE, rebinds 3241 * all remaining workers back to the cpu and releases 3242 * manager role. 3243 * 3244 * DONE Trustee will enter this state after BUTCHER or RELEASE 3245 * is complete. 3246 * 3247 * trustee CPU draining 3248 * took over down complete 3249 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE 3250 * | | ^ 3251 * | CPU is back online v return workers | 3252 * ----------------> RELEASE -------------- 3253 */ 3254 3255 /** 3256 * trustee_wait_event_timeout - timed event wait for trustee 3257 * @cond: condition to wait for 3258 * @timeout: timeout in jiffies 3259 * 3260 * wait_event_timeout() for trustee to use. Handles locking and 3261 * checks for RELEASE request. 3262 * 3263 * CONTEXT: 3264 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 3265 * multiple times. To be used by trustee. 3266 * 3267 * RETURNS: 3268 * Positive indicating left time if @cond is satisfied, 0 if timed 3269 * out, -1 if canceled. 3270 */ 3271 #define trustee_wait_event_timeout(cond, timeout) ({ \ 3272 long __ret = (timeout); \ 3273 while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \ 3274 __ret) { \ 3275 spin_unlock_irq(&gcwq->lock); \ 3276 __wait_event_timeout(gcwq->trustee_wait, (cond) || \ 3277 (gcwq->trustee_state == TRUSTEE_RELEASE), \ 3278 __ret); \ 3279 spin_lock_irq(&gcwq->lock); \ 3280 } \ 3281 gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \ 3282 }) 3283 3284 /** 3285 * trustee_wait_event - event wait for trustee 3286 * @cond: condition to wait for 3287 * 3288 * wait_event() for trustee to use. Automatically handles locking and 3289 * checks for CANCEL request. 3290 * 3291 * CONTEXT: 3292 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 3293 * multiple times. To be used by trustee. 3294 * 3295 * RETURNS: 3296 * 0 if @cond is satisfied, -1 if canceled. 3297 */ 3298 #define trustee_wait_event(cond) ({ \ 3299 long __ret1; \ 3300 __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\ 3301 __ret1 < 0 ? -1 : 0; \ 3302 }) 3303 3304 static int __cpuinit trustee_thread(void *__gcwq) 3305 { 3306 struct global_cwq *gcwq = __gcwq; 3307 struct worker *worker; 3308 struct work_struct *work; 3309 struct hlist_node *pos; 3310 long rc; 3311 int i; 3312 3313 BUG_ON(gcwq->cpu != smp_processor_id()); 3314 3315 spin_lock_irq(&gcwq->lock); 3316 /* 3317 * Claim the manager position and make all workers rogue. 3318 * Trustee must be bound to the target cpu and can't be 3319 * cancelled. 3320 */ 3321 BUG_ON(gcwq->cpu != smp_processor_id()); 3322 rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS)); 3323 BUG_ON(rc < 0); 3324 3325 gcwq->flags |= GCWQ_MANAGING_WORKERS; 3326 3327 list_for_each_entry(worker, &gcwq->idle_list, entry) 3328 worker->flags |= WORKER_ROGUE; 3329 3330 for_each_busy_worker(worker, i, pos, gcwq) 3331 worker->flags |= WORKER_ROGUE; 3332 3333 /* 3334 * Call schedule() so that we cross rq->lock and thus can 3335 * guarantee sched callbacks see the rogue flag. This is 3336 * necessary as scheduler callbacks may be invoked from other 3337 * cpus. 3338 */ 3339 spin_unlock_irq(&gcwq->lock); 3340 schedule(); 3341 spin_lock_irq(&gcwq->lock); 3342 3343 /* 3344 * Sched callbacks are disabled now. Zap nr_running. After 3345 * this, nr_running stays zero and need_more_worker() and 3346 * keep_working() are always true as long as the worklist is 3347 * not empty. 3348 */ 3349 atomic_set(get_gcwq_nr_running(gcwq->cpu), 0); 3350 3351 spin_unlock_irq(&gcwq->lock); 3352 del_timer_sync(&gcwq->idle_timer); 3353 spin_lock_irq(&gcwq->lock); 3354 3355 /* 3356 * We're now in charge. Notify and proceed to drain. We need 3357 * to keep the gcwq running during the whole CPU down 3358 * procedure as other cpu hotunplug callbacks may need to 3359 * flush currently running tasks. 3360 */ 3361 gcwq->trustee_state = TRUSTEE_IN_CHARGE; 3362 wake_up_all(&gcwq->trustee_wait); 3363 3364 /* 3365 * The original cpu is in the process of dying and may go away 3366 * anytime now. When that happens, we and all workers would 3367 * be migrated to other cpus. Try draining any left work. We 3368 * want to get it over with ASAP - spam rescuers, wake up as 3369 * many idlers as necessary and create new ones till the 3370 * worklist is empty. Note that if the gcwq is frozen, there 3371 * may be frozen works in freezable cwqs. Don't declare 3372 * completion while frozen. 3373 */ 3374 while (gcwq->nr_workers != gcwq->nr_idle || 3375 gcwq->flags & GCWQ_FREEZING || 3376 gcwq->trustee_state == TRUSTEE_IN_CHARGE) { 3377 int nr_works = 0; 3378 3379 list_for_each_entry(work, &gcwq->worklist, entry) { 3380 send_mayday(work); 3381 nr_works++; 3382 } 3383 3384 list_for_each_entry(worker, &gcwq->idle_list, entry) { 3385 if (!nr_works--) 3386 break; 3387 wake_up_process(worker->task); 3388 } 3389 3390 if (need_to_create_worker(gcwq)) { 3391 spin_unlock_irq(&gcwq->lock); 3392 worker = create_worker(gcwq, false); 3393 spin_lock_irq(&gcwq->lock); 3394 if (worker) { 3395 worker->flags |= WORKER_ROGUE; 3396 start_worker(worker); 3397 } 3398 } 3399 3400 /* give a breather */ 3401 if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0) 3402 break; 3403 } 3404 3405 /* 3406 * Either all works have been scheduled and cpu is down, or 3407 * cpu down has already been canceled. Wait for and butcher 3408 * all workers till we're canceled. 3409 */ 3410 do { 3411 rc = trustee_wait_event(!list_empty(&gcwq->idle_list)); 3412 while (!list_empty(&gcwq->idle_list)) 3413 destroy_worker(list_first_entry(&gcwq->idle_list, 3414 struct worker, entry)); 3415 } while (gcwq->nr_workers && rc >= 0); 3416 3417 /* 3418 * At this point, either draining has completed and no worker 3419 * is left, or cpu down has been canceled or the cpu is being 3420 * brought back up. There shouldn't be any idle one left. 3421 * Tell the remaining busy ones to rebind once it finishes the 3422 * currently scheduled works by scheduling the rebind_work. 3423 */ 3424 WARN_ON(!list_empty(&gcwq->idle_list)); 3425 3426 for_each_busy_worker(worker, i, pos, gcwq) { 3427 struct work_struct *rebind_work = &worker->rebind_work; 3428 3429 /* 3430 * Rebind_work may race with future cpu hotplug 3431 * operations. Use a separate flag to mark that 3432 * rebinding is scheduled. 3433 */ 3434 worker->flags |= WORKER_REBIND; 3435 worker->flags &= ~WORKER_ROGUE; 3436 3437 /* queue rebind_work, wq doesn't matter, use the default one */ 3438 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT, 3439 work_data_bits(rebind_work))) 3440 continue; 3441 3442 debug_work_activate(rebind_work); 3443 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work, 3444 worker->scheduled.next, 3445 work_color_to_flags(WORK_NO_COLOR)); 3446 } 3447 3448 /* relinquish manager role */ 3449 gcwq->flags &= ~GCWQ_MANAGING_WORKERS; 3450 3451 /* notify completion */ 3452 gcwq->trustee = NULL; 3453 gcwq->trustee_state = TRUSTEE_DONE; 3454 wake_up_all(&gcwq->trustee_wait); 3455 spin_unlock_irq(&gcwq->lock); 3456 return 0; 3457 } 3458 3459 /** 3460 * wait_trustee_state - wait for trustee to enter the specified state 3461 * @gcwq: gcwq the trustee of interest belongs to 3462 * @state: target state to wait for 3463 * 3464 * Wait for the trustee to reach @state. DONE is already matched. 3465 * 3466 * CONTEXT: 3467 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 3468 * multiple times. To be used by cpu_callback. 3469 */ 3470 static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state) 3471 __releases(&gcwq->lock) 3472 __acquires(&gcwq->lock) 3473 { 3474 if (!(gcwq->trustee_state == state || 3475 gcwq->trustee_state == TRUSTEE_DONE)) { 3476 spin_unlock_irq(&gcwq->lock); 3477 __wait_event(gcwq->trustee_wait, 3478 gcwq->trustee_state == state || 3479 gcwq->trustee_state == TRUSTEE_DONE); 3480 spin_lock_irq(&gcwq->lock); 3481 } 3482 } 3483 3484 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb, 3485 unsigned long action, 3486 void *hcpu) 3487 { 3488 unsigned int cpu = (unsigned long)hcpu; 3489 struct global_cwq *gcwq = get_gcwq(cpu); 3490 struct task_struct *new_trustee = NULL; 3491 struct worker *uninitialized_var(new_worker); 3492 unsigned long flags; 3493 3494 action &= ~CPU_TASKS_FROZEN; 3495 3496 switch (action) { 3497 case CPU_DOWN_PREPARE: 3498 new_trustee = kthread_create(trustee_thread, gcwq, 3499 "workqueue_trustee/%d\n", cpu); 3500 if (IS_ERR(new_trustee)) 3501 return notifier_from_errno(PTR_ERR(new_trustee)); 3502 kthread_bind(new_trustee, cpu); 3503 /* fall through */ 3504 case CPU_UP_PREPARE: 3505 BUG_ON(gcwq->first_idle); 3506 new_worker = create_worker(gcwq, false); 3507 if (!new_worker) { 3508 if (new_trustee) 3509 kthread_stop(new_trustee); 3510 return NOTIFY_BAD; 3511 } 3512 } 3513 3514 /* some are called w/ irq disabled, don't disturb irq status */ 3515 spin_lock_irqsave(&gcwq->lock, flags); 3516 3517 switch (action) { 3518 case CPU_DOWN_PREPARE: 3519 /* initialize trustee and tell it to acquire the gcwq */ 3520 BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE); 3521 gcwq->trustee = new_trustee; 3522 gcwq->trustee_state = TRUSTEE_START; 3523 wake_up_process(gcwq->trustee); 3524 wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE); 3525 /* fall through */ 3526 case CPU_UP_PREPARE: 3527 BUG_ON(gcwq->first_idle); 3528 gcwq->first_idle = new_worker; 3529 break; 3530 3531 case CPU_DYING: 3532 /* 3533 * Before this, the trustee and all workers except for 3534 * the ones which are still executing works from 3535 * before the last CPU down must be on the cpu. After 3536 * this, they'll all be diasporas. 3537 */ 3538 gcwq->flags |= GCWQ_DISASSOCIATED; 3539 break; 3540 3541 case CPU_POST_DEAD: 3542 gcwq->trustee_state = TRUSTEE_BUTCHER; 3543 /* fall through */ 3544 case CPU_UP_CANCELED: 3545 destroy_worker(gcwq->first_idle); 3546 gcwq->first_idle = NULL; 3547 break; 3548 3549 case CPU_DOWN_FAILED: 3550 case CPU_ONLINE: 3551 gcwq->flags &= ~GCWQ_DISASSOCIATED; 3552 if (gcwq->trustee_state != TRUSTEE_DONE) { 3553 gcwq->trustee_state = TRUSTEE_RELEASE; 3554 wake_up_process(gcwq->trustee); 3555 wait_trustee_state(gcwq, TRUSTEE_DONE); 3556 } 3557 3558 /* 3559 * Trustee is done and there might be no worker left. 3560 * Put the first_idle in and request a real manager to 3561 * take a look. 3562 */ 3563 spin_unlock_irq(&gcwq->lock); 3564 kthread_bind(gcwq->first_idle->task, cpu); 3565 spin_lock_irq(&gcwq->lock); 3566 gcwq->flags |= GCWQ_MANAGE_WORKERS; 3567 start_worker(gcwq->first_idle); 3568 gcwq->first_idle = NULL; 3569 break; 3570 } 3571 3572 spin_unlock_irqrestore(&gcwq->lock, flags); 3573 3574 return notifier_from_errno(0); 3575 } 3576 3577 #ifdef CONFIG_SMP 3578 3579 struct work_for_cpu { 3580 struct completion completion; 3581 long (*fn)(void *); 3582 void *arg; 3583 long ret; 3584 }; 3585 3586 static int do_work_for_cpu(void *_wfc) 3587 { 3588 struct work_for_cpu *wfc = _wfc; 3589 wfc->ret = wfc->fn(wfc->arg); 3590 complete(&wfc->completion); 3591 return 0; 3592 } 3593 3594 /** 3595 * work_on_cpu - run a function in user context on a particular cpu 3596 * @cpu: the cpu to run on 3597 * @fn: the function to run 3598 * @arg: the function arg 3599 * 3600 * This will return the value @fn returns. 3601 * It is up to the caller to ensure that the cpu doesn't go offline. 3602 * The caller must not hold any locks which would prevent @fn from completing. 3603 */ 3604 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg) 3605 { 3606 struct task_struct *sub_thread; 3607 struct work_for_cpu wfc = { 3608 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion), 3609 .fn = fn, 3610 .arg = arg, 3611 }; 3612 3613 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu"); 3614 if (IS_ERR(sub_thread)) 3615 return PTR_ERR(sub_thread); 3616 kthread_bind(sub_thread, cpu); 3617 wake_up_process(sub_thread); 3618 wait_for_completion(&wfc.completion); 3619 return wfc.ret; 3620 } 3621 EXPORT_SYMBOL_GPL(work_on_cpu); 3622 #endif /* CONFIG_SMP */ 3623 3624 #ifdef CONFIG_FREEZER 3625 3626 /** 3627 * freeze_workqueues_begin - begin freezing workqueues 3628 * 3629 * Start freezing workqueues. After this function returns, all freezable 3630 * workqueues will queue new works to their frozen_works list instead of 3631 * gcwq->worklist. 3632 * 3633 * CONTEXT: 3634 * Grabs and releases workqueue_lock and gcwq->lock's. 3635 */ 3636 void freeze_workqueues_begin(void) 3637 { 3638 unsigned int cpu; 3639 3640 spin_lock(&workqueue_lock); 3641 3642 BUG_ON(workqueue_freezing); 3643 workqueue_freezing = true; 3644 3645 for_each_gcwq_cpu(cpu) { 3646 struct global_cwq *gcwq = get_gcwq(cpu); 3647 struct workqueue_struct *wq; 3648 3649 spin_lock_irq(&gcwq->lock); 3650 3651 BUG_ON(gcwq->flags & GCWQ_FREEZING); 3652 gcwq->flags |= GCWQ_FREEZING; 3653 3654 list_for_each_entry(wq, &workqueues, list) { 3655 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3656 3657 if (cwq && wq->flags & WQ_FREEZABLE) 3658 cwq->max_active = 0; 3659 } 3660 3661 spin_unlock_irq(&gcwq->lock); 3662 } 3663 3664 spin_unlock(&workqueue_lock); 3665 } 3666 3667 /** 3668 * freeze_workqueues_busy - are freezable workqueues still busy? 3669 * 3670 * Check whether freezing is complete. This function must be called 3671 * between freeze_workqueues_begin() and thaw_workqueues(). 3672 * 3673 * CONTEXT: 3674 * Grabs and releases workqueue_lock. 3675 * 3676 * RETURNS: 3677 * %true if some freezable workqueues are still busy. %false if freezing 3678 * is complete. 3679 */ 3680 bool freeze_workqueues_busy(void) 3681 { 3682 unsigned int cpu; 3683 bool busy = false; 3684 3685 spin_lock(&workqueue_lock); 3686 3687 BUG_ON(!workqueue_freezing); 3688 3689 for_each_gcwq_cpu(cpu) { 3690 struct workqueue_struct *wq; 3691 /* 3692 * nr_active is monotonically decreasing. It's safe 3693 * to peek without lock. 3694 */ 3695 list_for_each_entry(wq, &workqueues, list) { 3696 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3697 3698 if (!cwq || !(wq->flags & WQ_FREEZABLE)) 3699 continue; 3700 3701 BUG_ON(cwq->nr_active < 0); 3702 if (cwq->nr_active) { 3703 busy = true; 3704 goto out_unlock; 3705 } 3706 } 3707 } 3708 out_unlock: 3709 spin_unlock(&workqueue_lock); 3710 return busy; 3711 } 3712 3713 /** 3714 * thaw_workqueues - thaw workqueues 3715 * 3716 * Thaw workqueues. Normal queueing is restored and all collected 3717 * frozen works are transferred to their respective gcwq worklists. 3718 * 3719 * CONTEXT: 3720 * Grabs and releases workqueue_lock and gcwq->lock's. 3721 */ 3722 void thaw_workqueues(void) 3723 { 3724 unsigned int cpu; 3725 3726 spin_lock(&workqueue_lock); 3727 3728 if (!workqueue_freezing) 3729 goto out_unlock; 3730 3731 for_each_gcwq_cpu(cpu) { 3732 struct global_cwq *gcwq = get_gcwq(cpu); 3733 struct workqueue_struct *wq; 3734 3735 spin_lock_irq(&gcwq->lock); 3736 3737 BUG_ON(!(gcwq->flags & GCWQ_FREEZING)); 3738 gcwq->flags &= ~GCWQ_FREEZING; 3739 3740 list_for_each_entry(wq, &workqueues, list) { 3741 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3742 3743 if (!cwq || !(wq->flags & WQ_FREEZABLE)) 3744 continue; 3745 3746 /* restore max_active and repopulate worklist */ 3747 cwq->max_active = wq->saved_max_active; 3748 3749 while (!list_empty(&cwq->delayed_works) && 3750 cwq->nr_active < cwq->max_active) 3751 cwq_activate_first_delayed(cwq); 3752 } 3753 3754 wake_up_worker(gcwq); 3755 3756 spin_unlock_irq(&gcwq->lock); 3757 } 3758 3759 workqueue_freezing = false; 3760 out_unlock: 3761 spin_unlock(&workqueue_lock); 3762 } 3763 #endif /* CONFIG_FREEZER */ 3764 3765 static int __init init_workqueues(void) 3766 { 3767 unsigned int cpu; 3768 int i; 3769 3770 cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE); 3771 3772 /* initialize gcwqs */ 3773 for_each_gcwq_cpu(cpu) { 3774 struct global_cwq *gcwq = get_gcwq(cpu); 3775 3776 spin_lock_init(&gcwq->lock); 3777 INIT_LIST_HEAD(&gcwq->worklist); 3778 gcwq->cpu = cpu; 3779 gcwq->flags |= GCWQ_DISASSOCIATED; 3780 3781 INIT_LIST_HEAD(&gcwq->idle_list); 3782 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) 3783 INIT_HLIST_HEAD(&gcwq->busy_hash[i]); 3784 3785 init_timer_deferrable(&gcwq->idle_timer); 3786 gcwq->idle_timer.function = idle_worker_timeout; 3787 gcwq->idle_timer.data = (unsigned long)gcwq; 3788 3789 setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout, 3790 (unsigned long)gcwq); 3791 3792 ida_init(&gcwq->worker_ida); 3793 3794 gcwq->trustee_state = TRUSTEE_DONE; 3795 init_waitqueue_head(&gcwq->trustee_wait); 3796 } 3797 3798 /* create the initial worker */ 3799 for_each_online_gcwq_cpu(cpu) { 3800 struct global_cwq *gcwq = get_gcwq(cpu); 3801 struct worker *worker; 3802 3803 if (cpu != WORK_CPU_UNBOUND) 3804 gcwq->flags &= ~GCWQ_DISASSOCIATED; 3805 worker = create_worker(gcwq, true); 3806 BUG_ON(!worker); 3807 spin_lock_irq(&gcwq->lock); 3808 start_worker(worker); 3809 spin_unlock_irq(&gcwq->lock); 3810 } 3811 3812 system_wq = alloc_workqueue("events", 0, 0); 3813 system_long_wq = alloc_workqueue("events_long", 0, 0); 3814 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0); 3815 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 3816 WQ_UNBOUND_MAX_ACTIVE); 3817 system_freezable_wq = alloc_workqueue("events_freezable", 3818 WQ_FREEZABLE, 0); 3819 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq || 3820 !system_unbound_wq || !system_freezable_wq); 3821 return 0; 3822 } 3823 early_initcall(init_workqueues); 3824