1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There are two worker pools for each CPU (one for 20 * normal work items and the other for high priority ones) and some extra 21 * pools for workqueues which are not bound to any specific CPU - the 22 * number of these backing pools is dynamic. 23 * 24 * Please read Documentation/core-api/workqueue.rst for details. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kernel.h> 29 #include <linux/sched.h> 30 #include <linux/init.h> 31 #include <linux/signal.h> 32 #include <linux/completion.h> 33 #include <linux/workqueue.h> 34 #include <linux/slab.h> 35 #include <linux/cpu.h> 36 #include <linux/notifier.h> 37 #include <linux/kthread.h> 38 #include <linux/hardirq.h> 39 #include <linux/mempolicy.h> 40 #include <linux/freezer.h> 41 #include <linux/debug_locks.h> 42 #include <linux/lockdep.h> 43 #include <linux/idr.h> 44 #include <linux/jhash.h> 45 #include <linux/hashtable.h> 46 #include <linux/rculist.h> 47 #include <linux/nodemask.h> 48 #include <linux/moduleparam.h> 49 #include <linux/uaccess.h> 50 #include <linux/sched/isolation.h> 51 #include <linux/nmi.h> 52 53 #include "workqueue_internal.h" 54 55 enum { 56 /* 57 * worker_pool flags 58 * 59 * A bound pool is either associated or disassociated with its CPU. 60 * While associated (!DISASSOCIATED), all workers are bound to the 61 * CPU and none has %WORKER_UNBOUND set and concurrency management 62 * is in effect. 63 * 64 * While DISASSOCIATED, the cpu may be offline and all workers have 65 * %WORKER_UNBOUND set and concurrency management disabled, and may 66 * be executing on any CPU. The pool behaves as an unbound one. 67 * 68 * Note that DISASSOCIATED should be flipped only while holding 69 * attach_mutex to avoid changing binding state while 70 * worker_attach_to_pool() is in progress. 71 */ 72 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */ 73 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 74 75 /* worker flags */ 76 WORKER_DIE = 1 << 1, /* die die die */ 77 WORKER_IDLE = 1 << 2, /* is idle */ 78 WORKER_PREP = 1 << 3, /* preparing to run works */ 79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 81 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 82 83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 84 WORKER_UNBOUND | WORKER_REBOUND, 85 86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 87 88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 90 91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 93 94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 95 /* call for help after 10ms 96 (min two ticks) */ 97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 98 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 99 100 /* 101 * Rescue workers are used only on emergencies and shared by 102 * all cpus. Give MIN_NICE. 103 */ 104 RESCUER_NICE_LEVEL = MIN_NICE, 105 HIGHPRI_NICE_LEVEL = MIN_NICE, 106 107 WQ_NAME_LEN = 24, 108 }; 109 110 /* 111 * Structure fields follow one of the following exclusion rules. 112 * 113 * I: Modifiable by initialization/destruction paths and read-only for 114 * everyone else. 115 * 116 * P: Preemption protected. Disabling preemption is enough and should 117 * only be modified and accessed from the local cpu. 118 * 119 * L: pool->lock protected. Access with pool->lock held. 120 * 121 * X: During normal operation, modification requires pool->lock and should 122 * be done only from local cpu. Either disabling preemption on local 123 * cpu or grabbing pool->lock is enough for read access. If 124 * POOL_DISASSOCIATED is set, it's identical to L. 125 * 126 * A: pool->attach_mutex protected. 127 * 128 * PL: wq_pool_mutex protected. 129 * 130 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads. 131 * 132 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 133 * 134 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 135 * sched-RCU for reads. 136 * 137 * WQ: wq->mutex protected. 138 * 139 * WR: wq->mutex protected for writes. Sched-RCU protected for reads. 140 * 141 * MD: wq_mayday_lock protected. 142 */ 143 144 /* struct worker is defined in workqueue_internal.h */ 145 146 struct worker_pool { 147 spinlock_t lock; /* the pool lock */ 148 int cpu; /* I: the associated cpu */ 149 int node; /* I: the associated node ID */ 150 int id; /* I: pool ID */ 151 unsigned int flags; /* X: flags */ 152 153 unsigned long watchdog_ts; /* L: watchdog timestamp */ 154 155 struct list_head worklist; /* L: list of pending works */ 156 int nr_workers; /* L: total number of workers */ 157 158 /* nr_idle includes the ones off idle_list for rebinding */ 159 int nr_idle; /* L: currently idle ones */ 160 161 struct list_head idle_list; /* X: list of idle workers */ 162 struct timer_list idle_timer; /* L: worker idle timeout */ 163 struct timer_list mayday_timer; /* L: SOS timer for workers */ 164 165 /* a workers is either on busy_hash or idle_list, or the manager */ 166 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 167 /* L: hash of busy workers */ 168 169 /* see manage_workers() for details on the two manager mutexes */ 170 struct worker *manager; /* L: purely informational */ 171 struct mutex attach_mutex; /* attach/detach exclusion */ 172 struct list_head workers; /* A: attached workers */ 173 struct completion *detach_completion; /* all workers detached */ 174 175 struct ida worker_ida; /* worker IDs for task name */ 176 177 struct workqueue_attrs *attrs; /* I: worker attributes */ 178 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 179 int refcnt; /* PL: refcnt for unbound pools */ 180 181 /* 182 * The current concurrency level. As it's likely to be accessed 183 * from other CPUs during try_to_wake_up(), put it in a separate 184 * cacheline. 185 */ 186 atomic_t nr_running ____cacheline_aligned_in_smp; 187 188 /* 189 * Destruction of pool is sched-RCU protected to allow dereferences 190 * from get_work_pool(). 191 */ 192 struct rcu_head rcu; 193 } ____cacheline_aligned_in_smp; 194 195 /* 196 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 197 * of work_struct->data are used for flags and the remaining high bits 198 * point to the pwq; thus, pwqs need to be aligned at two's power of the 199 * number of flag bits. 200 */ 201 struct pool_workqueue { 202 struct worker_pool *pool; /* I: the associated pool */ 203 struct workqueue_struct *wq; /* I: the owning workqueue */ 204 int work_color; /* L: current color */ 205 int flush_color; /* L: flushing color */ 206 int refcnt; /* L: reference count */ 207 int nr_in_flight[WORK_NR_COLORS]; 208 /* L: nr of in_flight works */ 209 int nr_active; /* L: nr of active works */ 210 int max_active; /* L: max active works */ 211 struct list_head delayed_works; /* L: delayed works */ 212 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 213 struct list_head mayday_node; /* MD: node on wq->maydays */ 214 215 /* 216 * Release of unbound pwq is punted to system_wq. See put_pwq() 217 * and pwq_unbound_release_workfn() for details. pool_workqueue 218 * itself is also sched-RCU protected so that the first pwq can be 219 * determined without grabbing wq->mutex. 220 */ 221 struct work_struct unbound_release_work; 222 struct rcu_head rcu; 223 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 224 225 /* 226 * Structure used to wait for workqueue flush. 227 */ 228 struct wq_flusher { 229 struct list_head list; /* WQ: list of flushers */ 230 int flush_color; /* WQ: flush color waiting for */ 231 struct completion done; /* flush completion */ 232 }; 233 234 struct wq_device; 235 236 /* 237 * The externally visible workqueue. It relays the issued work items to 238 * the appropriate worker_pool through its pool_workqueues. 239 */ 240 struct workqueue_struct { 241 struct list_head pwqs; /* WR: all pwqs of this wq */ 242 struct list_head list; /* PR: list of all workqueues */ 243 244 struct mutex mutex; /* protects this wq */ 245 int work_color; /* WQ: current work color */ 246 int flush_color; /* WQ: current flush color */ 247 atomic_t nr_pwqs_to_flush; /* flush in progress */ 248 struct wq_flusher *first_flusher; /* WQ: first flusher */ 249 struct list_head flusher_queue; /* WQ: flush waiters */ 250 struct list_head flusher_overflow; /* WQ: flush overflow list */ 251 252 struct list_head maydays; /* MD: pwqs requesting rescue */ 253 struct worker *rescuer; /* I: rescue worker */ 254 255 int nr_drainers; /* WQ: drain in progress */ 256 int saved_max_active; /* WQ: saved pwq max_active */ 257 258 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 259 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 260 261 #ifdef CONFIG_SYSFS 262 struct wq_device *wq_dev; /* I: for sysfs interface */ 263 #endif 264 #ifdef CONFIG_LOCKDEP 265 struct lockdep_map lockdep_map; 266 #endif 267 char name[WQ_NAME_LEN]; /* I: workqueue name */ 268 269 /* 270 * Destruction of workqueue_struct is sched-RCU protected to allow 271 * walking the workqueues list without grabbing wq_pool_mutex. 272 * This is used to dump all workqueues from sysrq. 273 */ 274 struct rcu_head rcu; 275 276 /* hot fields used during command issue, aligned to cacheline */ 277 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 278 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 279 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 280 }; 281 282 static struct kmem_cache *pwq_cache; 283 284 static cpumask_var_t *wq_numa_possible_cpumask; 285 /* possible CPUs of each node */ 286 287 static bool wq_disable_numa; 288 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 289 290 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 291 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 292 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 293 294 static bool wq_online; /* can kworkers be created yet? */ 295 296 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 297 298 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 299 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 300 301 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 302 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 303 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */ 304 305 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 306 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 307 308 /* PL: allowable cpus for unbound wqs and work items */ 309 static cpumask_var_t wq_unbound_cpumask; 310 311 /* CPU where unbound work was last round robin scheduled from this CPU */ 312 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 313 314 /* 315 * Local execution of unbound work items is no longer guaranteed. The 316 * following always forces round-robin CPU selection on unbound work items 317 * to uncover usages which depend on it. 318 */ 319 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 320 static bool wq_debug_force_rr_cpu = true; 321 #else 322 static bool wq_debug_force_rr_cpu = false; 323 #endif 324 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 325 326 /* the per-cpu worker pools */ 327 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 328 329 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 330 331 /* PL: hash of all unbound pools keyed by pool->attrs */ 332 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 333 334 /* I: attributes used when instantiating standard unbound pools on demand */ 335 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 336 337 /* I: attributes used when instantiating ordered pools on demand */ 338 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 339 340 struct workqueue_struct *system_wq __read_mostly; 341 EXPORT_SYMBOL(system_wq); 342 struct workqueue_struct *system_highpri_wq __read_mostly; 343 EXPORT_SYMBOL_GPL(system_highpri_wq); 344 struct workqueue_struct *system_long_wq __read_mostly; 345 EXPORT_SYMBOL_GPL(system_long_wq); 346 struct workqueue_struct *system_unbound_wq __read_mostly; 347 EXPORT_SYMBOL_GPL(system_unbound_wq); 348 struct workqueue_struct *system_freezable_wq __read_mostly; 349 EXPORT_SYMBOL_GPL(system_freezable_wq); 350 struct workqueue_struct *system_power_efficient_wq __read_mostly; 351 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 352 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 353 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 354 355 static int worker_thread(void *__worker); 356 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 357 358 #define CREATE_TRACE_POINTS 359 #include <trace/events/workqueue.h> 360 361 #define assert_rcu_or_pool_mutex() \ 362 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 363 !lockdep_is_held(&wq_pool_mutex), \ 364 "sched RCU or wq_pool_mutex should be held") 365 366 #define assert_rcu_or_wq_mutex(wq) \ 367 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 368 !lockdep_is_held(&wq->mutex), \ 369 "sched RCU or wq->mutex should be held") 370 371 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 372 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 373 !lockdep_is_held(&wq->mutex) && \ 374 !lockdep_is_held(&wq_pool_mutex), \ 375 "sched RCU, wq->mutex or wq_pool_mutex should be held") 376 377 #define for_each_cpu_worker_pool(pool, cpu) \ 378 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 379 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 380 (pool)++) 381 382 /** 383 * for_each_pool - iterate through all worker_pools in the system 384 * @pool: iteration cursor 385 * @pi: integer used for iteration 386 * 387 * This must be called either with wq_pool_mutex held or sched RCU read 388 * locked. If the pool needs to be used beyond the locking in effect, the 389 * caller is responsible for guaranteeing that the pool stays online. 390 * 391 * The if/else clause exists only for the lockdep assertion and can be 392 * ignored. 393 */ 394 #define for_each_pool(pool, pi) \ 395 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 396 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 397 else 398 399 /** 400 * for_each_pool_worker - iterate through all workers of a worker_pool 401 * @worker: iteration cursor 402 * @pool: worker_pool to iterate workers of 403 * 404 * This must be called with @pool->attach_mutex. 405 * 406 * The if/else clause exists only for the lockdep assertion and can be 407 * ignored. 408 */ 409 #define for_each_pool_worker(worker, pool) \ 410 list_for_each_entry((worker), &(pool)->workers, node) \ 411 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \ 412 else 413 414 /** 415 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 416 * @pwq: iteration cursor 417 * @wq: the target workqueue 418 * 419 * This must be called either with wq->mutex held or sched RCU read locked. 420 * If the pwq needs to be used beyond the locking in effect, the caller is 421 * responsible for guaranteeing that the pwq stays online. 422 * 423 * The if/else clause exists only for the lockdep assertion and can be 424 * ignored. 425 */ 426 #define for_each_pwq(pwq, wq) \ 427 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \ 428 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ 429 else 430 431 #ifdef CONFIG_DEBUG_OBJECTS_WORK 432 433 static struct debug_obj_descr work_debug_descr; 434 435 static void *work_debug_hint(void *addr) 436 { 437 return ((struct work_struct *) addr)->func; 438 } 439 440 static bool work_is_static_object(void *addr) 441 { 442 struct work_struct *work = addr; 443 444 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 445 } 446 447 /* 448 * fixup_init is called when: 449 * - an active object is initialized 450 */ 451 static bool work_fixup_init(void *addr, enum debug_obj_state state) 452 { 453 struct work_struct *work = addr; 454 455 switch (state) { 456 case ODEBUG_STATE_ACTIVE: 457 cancel_work_sync(work); 458 debug_object_init(work, &work_debug_descr); 459 return true; 460 default: 461 return false; 462 } 463 } 464 465 /* 466 * fixup_free is called when: 467 * - an active object is freed 468 */ 469 static bool work_fixup_free(void *addr, enum debug_obj_state state) 470 { 471 struct work_struct *work = addr; 472 473 switch (state) { 474 case ODEBUG_STATE_ACTIVE: 475 cancel_work_sync(work); 476 debug_object_free(work, &work_debug_descr); 477 return true; 478 default: 479 return false; 480 } 481 } 482 483 static struct debug_obj_descr work_debug_descr = { 484 .name = "work_struct", 485 .debug_hint = work_debug_hint, 486 .is_static_object = work_is_static_object, 487 .fixup_init = work_fixup_init, 488 .fixup_free = work_fixup_free, 489 }; 490 491 static inline void debug_work_activate(struct work_struct *work) 492 { 493 debug_object_activate(work, &work_debug_descr); 494 } 495 496 static inline void debug_work_deactivate(struct work_struct *work) 497 { 498 debug_object_deactivate(work, &work_debug_descr); 499 } 500 501 void __init_work(struct work_struct *work, int onstack) 502 { 503 if (onstack) 504 debug_object_init_on_stack(work, &work_debug_descr); 505 else 506 debug_object_init(work, &work_debug_descr); 507 } 508 EXPORT_SYMBOL_GPL(__init_work); 509 510 void destroy_work_on_stack(struct work_struct *work) 511 { 512 debug_object_free(work, &work_debug_descr); 513 } 514 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 515 516 void destroy_delayed_work_on_stack(struct delayed_work *work) 517 { 518 destroy_timer_on_stack(&work->timer); 519 debug_object_free(&work->work, &work_debug_descr); 520 } 521 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 522 523 #else 524 static inline void debug_work_activate(struct work_struct *work) { } 525 static inline void debug_work_deactivate(struct work_struct *work) { } 526 #endif 527 528 /** 529 * worker_pool_assign_id - allocate ID and assing it to @pool 530 * @pool: the pool pointer of interest 531 * 532 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 533 * successfully, -errno on failure. 534 */ 535 static int worker_pool_assign_id(struct worker_pool *pool) 536 { 537 int ret; 538 539 lockdep_assert_held(&wq_pool_mutex); 540 541 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 542 GFP_KERNEL); 543 if (ret >= 0) { 544 pool->id = ret; 545 return 0; 546 } 547 return ret; 548 } 549 550 /** 551 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 552 * @wq: the target workqueue 553 * @node: the node ID 554 * 555 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU 556 * read locked. 557 * If the pwq needs to be used beyond the locking in effect, the caller is 558 * responsible for guaranteeing that the pwq stays online. 559 * 560 * Return: The unbound pool_workqueue for @node. 561 */ 562 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 563 int node) 564 { 565 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 566 567 /* 568 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a 569 * delayed item is pending. The plan is to keep CPU -> NODE 570 * mapping valid and stable across CPU on/offlines. Once that 571 * happens, this workaround can be removed. 572 */ 573 if (unlikely(node == NUMA_NO_NODE)) 574 return wq->dfl_pwq; 575 576 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 577 } 578 579 static unsigned int work_color_to_flags(int color) 580 { 581 return color << WORK_STRUCT_COLOR_SHIFT; 582 } 583 584 static int get_work_color(struct work_struct *work) 585 { 586 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 587 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 588 } 589 590 static int work_next_color(int color) 591 { 592 return (color + 1) % WORK_NR_COLORS; 593 } 594 595 /* 596 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 597 * contain the pointer to the queued pwq. Once execution starts, the flag 598 * is cleared and the high bits contain OFFQ flags and pool ID. 599 * 600 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 601 * and clear_work_data() can be used to set the pwq, pool or clear 602 * work->data. These functions should only be called while the work is 603 * owned - ie. while the PENDING bit is set. 604 * 605 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 606 * corresponding to a work. Pool is available once the work has been 607 * queued anywhere after initialization until it is sync canceled. pwq is 608 * available only while the work item is queued. 609 * 610 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 611 * canceled. While being canceled, a work item may have its PENDING set 612 * but stay off timer and worklist for arbitrarily long and nobody should 613 * try to steal the PENDING bit. 614 */ 615 static inline void set_work_data(struct work_struct *work, unsigned long data, 616 unsigned long flags) 617 { 618 WARN_ON_ONCE(!work_pending(work)); 619 atomic_long_set(&work->data, data | flags | work_static(work)); 620 } 621 622 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 623 unsigned long extra_flags) 624 { 625 set_work_data(work, (unsigned long)pwq, 626 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 627 } 628 629 static void set_work_pool_and_keep_pending(struct work_struct *work, 630 int pool_id) 631 { 632 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 633 WORK_STRUCT_PENDING); 634 } 635 636 static void set_work_pool_and_clear_pending(struct work_struct *work, 637 int pool_id) 638 { 639 /* 640 * The following wmb is paired with the implied mb in 641 * test_and_set_bit(PENDING) and ensures all updates to @work made 642 * here are visible to and precede any updates by the next PENDING 643 * owner. 644 */ 645 smp_wmb(); 646 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 647 /* 648 * The following mb guarantees that previous clear of a PENDING bit 649 * will not be reordered with any speculative LOADS or STORES from 650 * work->current_func, which is executed afterwards. This possible 651 * reordering can lead to a missed execution on attempt to qeueue 652 * the same @work. E.g. consider this case: 653 * 654 * CPU#0 CPU#1 655 * ---------------------------- -------------------------------- 656 * 657 * 1 STORE event_indicated 658 * 2 queue_work_on() { 659 * 3 test_and_set_bit(PENDING) 660 * 4 } set_..._and_clear_pending() { 661 * 5 set_work_data() # clear bit 662 * 6 smp_mb() 663 * 7 work->current_func() { 664 * 8 LOAD event_indicated 665 * } 666 * 667 * Without an explicit full barrier speculative LOAD on line 8 can 668 * be executed before CPU#0 does STORE on line 1. If that happens, 669 * CPU#0 observes the PENDING bit is still set and new execution of 670 * a @work is not queued in a hope, that CPU#1 will eventually 671 * finish the queued @work. Meanwhile CPU#1 does not see 672 * event_indicated is set, because speculative LOAD was executed 673 * before actual STORE. 674 */ 675 smp_mb(); 676 } 677 678 static void clear_work_data(struct work_struct *work) 679 { 680 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 681 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 682 } 683 684 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 685 { 686 unsigned long data = atomic_long_read(&work->data); 687 688 if (data & WORK_STRUCT_PWQ) 689 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 690 else 691 return NULL; 692 } 693 694 /** 695 * get_work_pool - return the worker_pool a given work was associated with 696 * @work: the work item of interest 697 * 698 * Pools are created and destroyed under wq_pool_mutex, and allows read 699 * access under sched-RCU read lock. As such, this function should be 700 * called under wq_pool_mutex or with preemption disabled. 701 * 702 * All fields of the returned pool are accessible as long as the above 703 * mentioned locking is in effect. If the returned pool needs to be used 704 * beyond the critical section, the caller is responsible for ensuring the 705 * returned pool is and stays online. 706 * 707 * Return: The worker_pool @work was last associated with. %NULL if none. 708 */ 709 static struct worker_pool *get_work_pool(struct work_struct *work) 710 { 711 unsigned long data = atomic_long_read(&work->data); 712 int pool_id; 713 714 assert_rcu_or_pool_mutex(); 715 716 if (data & WORK_STRUCT_PWQ) 717 return ((struct pool_workqueue *) 718 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 719 720 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 721 if (pool_id == WORK_OFFQ_POOL_NONE) 722 return NULL; 723 724 return idr_find(&worker_pool_idr, pool_id); 725 } 726 727 /** 728 * get_work_pool_id - return the worker pool ID a given work is associated with 729 * @work: the work item of interest 730 * 731 * Return: The worker_pool ID @work was last associated with. 732 * %WORK_OFFQ_POOL_NONE if none. 733 */ 734 static int get_work_pool_id(struct work_struct *work) 735 { 736 unsigned long data = atomic_long_read(&work->data); 737 738 if (data & WORK_STRUCT_PWQ) 739 return ((struct pool_workqueue *) 740 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 741 742 return data >> WORK_OFFQ_POOL_SHIFT; 743 } 744 745 static void mark_work_canceling(struct work_struct *work) 746 { 747 unsigned long pool_id = get_work_pool_id(work); 748 749 pool_id <<= WORK_OFFQ_POOL_SHIFT; 750 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 751 } 752 753 static bool work_is_canceling(struct work_struct *work) 754 { 755 unsigned long data = atomic_long_read(&work->data); 756 757 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 758 } 759 760 /* 761 * Policy functions. These define the policies on how the global worker 762 * pools are managed. Unless noted otherwise, these functions assume that 763 * they're being called with pool->lock held. 764 */ 765 766 static bool __need_more_worker(struct worker_pool *pool) 767 { 768 return !atomic_read(&pool->nr_running); 769 } 770 771 /* 772 * Need to wake up a worker? Called from anything but currently 773 * running workers. 774 * 775 * Note that, because unbound workers never contribute to nr_running, this 776 * function will always return %true for unbound pools as long as the 777 * worklist isn't empty. 778 */ 779 static bool need_more_worker(struct worker_pool *pool) 780 { 781 return !list_empty(&pool->worklist) && __need_more_worker(pool); 782 } 783 784 /* Can I start working? Called from busy but !running workers. */ 785 static bool may_start_working(struct worker_pool *pool) 786 { 787 return pool->nr_idle; 788 } 789 790 /* Do I need to keep working? Called from currently running workers. */ 791 static bool keep_working(struct worker_pool *pool) 792 { 793 return !list_empty(&pool->worklist) && 794 atomic_read(&pool->nr_running) <= 1; 795 } 796 797 /* Do we need a new worker? Called from manager. */ 798 static bool need_to_create_worker(struct worker_pool *pool) 799 { 800 return need_more_worker(pool) && !may_start_working(pool); 801 } 802 803 /* Do we have too many workers and should some go away? */ 804 static bool too_many_workers(struct worker_pool *pool) 805 { 806 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 807 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 808 int nr_busy = pool->nr_workers - nr_idle; 809 810 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 811 } 812 813 /* 814 * Wake up functions. 815 */ 816 817 /* Return the first idle worker. Safe with preemption disabled */ 818 static struct worker *first_idle_worker(struct worker_pool *pool) 819 { 820 if (unlikely(list_empty(&pool->idle_list))) 821 return NULL; 822 823 return list_first_entry(&pool->idle_list, struct worker, entry); 824 } 825 826 /** 827 * wake_up_worker - wake up an idle worker 828 * @pool: worker pool to wake worker from 829 * 830 * Wake up the first idle worker of @pool. 831 * 832 * CONTEXT: 833 * spin_lock_irq(pool->lock). 834 */ 835 static void wake_up_worker(struct worker_pool *pool) 836 { 837 struct worker *worker = first_idle_worker(pool); 838 839 if (likely(worker)) 840 wake_up_process(worker->task); 841 } 842 843 /** 844 * wq_worker_waking_up - a worker is waking up 845 * @task: task waking up 846 * @cpu: CPU @task is waking up to 847 * 848 * This function is called during try_to_wake_up() when a worker is 849 * being awoken. 850 * 851 * CONTEXT: 852 * spin_lock_irq(rq->lock) 853 */ 854 void wq_worker_waking_up(struct task_struct *task, int cpu) 855 { 856 struct worker *worker = kthread_data(task); 857 858 if (!(worker->flags & WORKER_NOT_RUNNING)) { 859 WARN_ON_ONCE(worker->pool->cpu != cpu); 860 atomic_inc(&worker->pool->nr_running); 861 } 862 } 863 864 /** 865 * wq_worker_sleeping - a worker is going to sleep 866 * @task: task going to sleep 867 * 868 * This function is called during schedule() when a busy worker is 869 * going to sleep. Worker on the same cpu can be woken up by 870 * returning pointer to its task. 871 * 872 * CONTEXT: 873 * spin_lock_irq(rq->lock) 874 * 875 * Return: 876 * Worker task on @cpu to wake up, %NULL if none. 877 */ 878 struct task_struct *wq_worker_sleeping(struct task_struct *task) 879 { 880 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 881 struct worker_pool *pool; 882 883 /* 884 * Rescuers, which may not have all the fields set up like normal 885 * workers, also reach here, let's not access anything before 886 * checking NOT_RUNNING. 887 */ 888 if (worker->flags & WORKER_NOT_RUNNING) 889 return NULL; 890 891 pool = worker->pool; 892 893 /* this can only happen on the local cpu */ 894 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id())) 895 return NULL; 896 897 /* 898 * The counterpart of the following dec_and_test, implied mb, 899 * worklist not empty test sequence is in insert_work(). 900 * Please read comment there. 901 * 902 * NOT_RUNNING is clear. This means that we're bound to and 903 * running on the local cpu w/ rq lock held and preemption 904 * disabled, which in turn means that none else could be 905 * manipulating idle_list, so dereferencing idle_list without pool 906 * lock is safe. 907 */ 908 if (atomic_dec_and_test(&pool->nr_running) && 909 !list_empty(&pool->worklist)) 910 to_wakeup = first_idle_worker(pool); 911 return to_wakeup ? to_wakeup->task : NULL; 912 } 913 914 /** 915 * worker_set_flags - set worker flags and adjust nr_running accordingly 916 * @worker: self 917 * @flags: flags to set 918 * 919 * Set @flags in @worker->flags and adjust nr_running accordingly. 920 * 921 * CONTEXT: 922 * spin_lock_irq(pool->lock) 923 */ 924 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 925 { 926 struct worker_pool *pool = worker->pool; 927 928 WARN_ON_ONCE(worker->task != current); 929 930 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 931 if ((flags & WORKER_NOT_RUNNING) && 932 !(worker->flags & WORKER_NOT_RUNNING)) { 933 atomic_dec(&pool->nr_running); 934 } 935 936 worker->flags |= flags; 937 } 938 939 /** 940 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 941 * @worker: self 942 * @flags: flags to clear 943 * 944 * Clear @flags in @worker->flags and adjust nr_running accordingly. 945 * 946 * CONTEXT: 947 * spin_lock_irq(pool->lock) 948 */ 949 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 950 { 951 struct worker_pool *pool = worker->pool; 952 unsigned int oflags = worker->flags; 953 954 WARN_ON_ONCE(worker->task != current); 955 956 worker->flags &= ~flags; 957 958 /* 959 * If transitioning out of NOT_RUNNING, increment nr_running. Note 960 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 961 * of multiple flags, not a single flag. 962 */ 963 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 964 if (!(worker->flags & WORKER_NOT_RUNNING)) 965 atomic_inc(&pool->nr_running); 966 } 967 968 /** 969 * find_worker_executing_work - find worker which is executing a work 970 * @pool: pool of interest 971 * @work: work to find worker for 972 * 973 * Find a worker which is executing @work on @pool by searching 974 * @pool->busy_hash which is keyed by the address of @work. For a worker 975 * to match, its current execution should match the address of @work and 976 * its work function. This is to avoid unwanted dependency between 977 * unrelated work executions through a work item being recycled while still 978 * being executed. 979 * 980 * This is a bit tricky. A work item may be freed once its execution 981 * starts and nothing prevents the freed area from being recycled for 982 * another work item. If the same work item address ends up being reused 983 * before the original execution finishes, workqueue will identify the 984 * recycled work item as currently executing and make it wait until the 985 * current execution finishes, introducing an unwanted dependency. 986 * 987 * This function checks the work item address and work function to avoid 988 * false positives. Note that this isn't complete as one may construct a 989 * work function which can introduce dependency onto itself through a 990 * recycled work item. Well, if somebody wants to shoot oneself in the 991 * foot that badly, there's only so much we can do, and if such deadlock 992 * actually occurs, it should be easy to locate the culprit work function. 993 * 994 * CONTEXT: 995 * spin_lock_irq(pool->lock). 996 * 997 * Return: 998 * Pointer to worker which is executing @work if found, %NULL 999 * otherwise. 1000 */ 1001 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1002 struct work_struct *work) 1003 { 1004 struct worker *worker; 1005 1006 hash_for_each_possible(pool->busy_hash, worker, hentry, 1007 (unsigned long)work) 1008 if (worker->current_work == work && 1009 worker->current_func == work->func) 1010 return worker; 1011 1012 return NULL; 1013 } 1014 1015 /** 1016 * move_linked_works - move linked works to a list 1017 * @work: start of series of works to be scheduled 1018 * @head: target list to append @work to 1019 * @nextp: out parameter for nested worklist walking 1020 * 1021 * Schedule linked works starting from @work to @head. Work series to 1022 * be scheduled starts at @work and includes any consecutive work with 1023 * WORK_STRUCT_LINKED set in its predecessor. 1024 * 1025 * If @nextp is not NULL, it's updated to point to the next work of 1026 * the last scheduled work. This allows move_linked_works() to be 1027 * nested inside outer list_for_each_entry_safe(). 1028 * 1029 * CONTEXT: 1030 * spin_lock_irq(pool->lock). 1031 */ 1032 static void move_linked_works(struct work_struct *work, struct list_head *head, 1033 struct work_struct **nextp) 1034 { 1035 struct work_struct *n; 1036 1037 /* 1038 * Linked worklist will always end before the end of the list, 1039 * use NULL for list head. 1040 */ 1041 list_for_each_entry_safe_from(work, n, NULL, entry) { 1042 list_move_tail(&work->entry, head); 1043 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1044 break; 1045 } 1046 1047 /* 1048 * If we're already inside safe list traversal and have moved 1049 * multiple works to the scheduled queue, the next position 1050 * needs to be updated. 1051 */ 1052 if (nextp) 1053 *nextp = n; 1054 } 1055 1056 /** 1057 * get_pwq - get an extra reference on the specified pool_workqueue 1058 * @pwq: pool_workqueue to get 1059 * 1060 * Obtain an extra reference on @pwq. The caller should guarantee that 1061 * @pwq has positive refcnt and be holding the matching pool->lock. 1062 */ 1063 static void get_pwq(struct pool_workqueue *pwq) 1064 { 1065 lockdep_assert_held(&pwq->pool->lock); 1066 WARN_ON_ONCE(pwq->refcnt <= 0); 1067 pwq->refcnt++; 1068 } 1069 1070 /** 1071 * put_pwq - put a pool_workqueue reference 1072 * @pwq: pool_workqueue to put 1073 * 1074 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1075 * destruction. The caller should be holding the matching pool->lock. 1076 */ 1077 static void put_pwq(struct pool_workqueue *pwq) 1078 { 1079 lockdep_assert_held(&pwq->pool->lock); 1080 if (likely(--pwq->refcnt)) 1081 return; 1082 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1083 return; 1084 /* 1085 * @pwq can't be released under pool->lock, bounce to 1086 * pwq_unbound_release_workfn(). This never recurses on the same 1087 * pool->lock as this path is taken only for unbound workqueues and 1088 * the release work item is scheduled on a per-cpu workqueue. To 1089 * avoid lockdep warning, unbound pool->locks are given lockdep 1090 * subclass of 1 in get_unbound_pool(). 1091 */ 1092 schedule_work(&pwq->unbound_release_work); 1093 } 1094 1095 /** 1096 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1097 * @pwq: pool_workqueue to put (can be %NULL) 1098 * 1099 * put_pwq() with locking. This function also allows %NULL @pwq. 1100 */ 1101 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1102 { 1103 if (pwq) { 1104 /* 1105 * As both pwqs and pools are sched-RCU protected, the 1106 * following lock operations are safe. 1107 */ 1108 spin_lock_irq(&pwq->pool->lock); 1109 put_pwq(pwq); 1110 spin_unlock_irq(&pwq->pool->lock); 1111 } 1112 } 1113 1114 static void pwq_activate_delayed_work(struct work_struct *work) 1115 { 1116 struct pool_workqueue *pwq = get_work_pwq(work); 1117 1118 trace_workqueue_activate_work(work); 1119 if (list_empty(&pwq->pool->worklist)) 1120 pwq->pool->watchdog_ts = jiffies; 1121 move_linked_works(work, &pwq->pool->worklist, NULL); 1122 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1123 pwq->nr_active++; 1124 } 1125 1126 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1127 { 1128 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1129 struct work_struct, entry); 1130 1131 pwq_activate_delayed_work(work); 1132 } 1133 1134 /** 1135 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1136 * @pwq: pwq of interest 1137 * @color: color of work which left the queue 1138 * 1139 * A work either has completed or is removed from pending queue, 1140 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1141 * 1142 * CONTEXT: 1143 * spin_lock_irq(pool->lock). 1144 */ 1145 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1146 { 1147 /* uncolored work items don't participate in flushing or nr_active */ 1148 if (color == WORK_NO_COLOR) 1149 goto out_put; 1150 1151 pwq->nr_in_flight[color]--; 1152 1153 pwq->nr_active--; 1154 if (!list_empty(&pwq->delayed_works)) { 1155 /* one down, submit a delayed one */ 1156 if (pwq->nr_active < pwq->max_active) 1157 pwq_activate_first_delayed(pwq); 1158 } 1159 1160 /* is flush in progress and are we at the flushing tip? */ 1161 if (likely(pwq->flush_color != color)) 1162 goto out_put; 1163 1164 /* are there still in-flight works? */ 1165 if (pwq->nr_in_flight[color]) 1166 goto out_put; 1167 1168 /* this pwq is done, clear flush_color */ 1169 pwq->flush_color = -1; 1170 1171 /* 1172 * If this was the last pwq, wake up the first flusher. It 1173 * will handle the rest. 1174 */ 1175 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1176 complete(&pwq->wq->first_flusher->done); 1177 out_put: 1178 put_pwq(pwq); 1179 } 1180 1181 /** 1182 * try_to_grab_pending - steal work item from worklist and disable irq 1183 * @work: work item to steal 1184 * @is_dwork: @work is a delayed_work 1185 * @flags: place to store irq state 1186 * 1187 * Try to grab PENDING bit of @work. This function can handle @work in any 1188 * stable state - idle, on timer or on worklist. 1189 * 1190 * Return: 1191 * 1 if @work was pending and we successfully stole PENDING 1192 * 0 if @work was idle and we claimed PENDING 1193 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1194 * -ENOENT if someone else is canceling @work, this state may persist 1195 * for arbitrarily long 1196 * 1197 * Note: 1198 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1199 * interrupted while holding PENDING and @work off queue, irq must be 1200 * disabled on entry. This, combined with delayed_work->timer being 1201 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1202 * 1203 * On successful return, >= 0, irq is disabled and the caller is 1204 * responsible for releasing it using local_irq_restore(*@flags). 1205 * 1206 * This function is safe to call from any context including IRQ handler. 1207 */ 1208 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1209 unsigned long *flags) 1210 { 1211 struct worker_pool *pool; 1212 struct pool_workqueue *pwq; 1213 1214 local_irq_save(*flags); 1215 1216 /* try to steal the timer if it exists */ 1217 if (is_dwork) { 1218 struct delayed_work *dwork = to_delayed_work(work); 1219 1220 /* 1221 * dwork->timer is irqsafe. If del_timer() fails, it's 1222 * guaranteed that the timer is not queued anywhere and not 1223 * running on the local CPU. 1224 */ 1225 if (likely(del_timer(&dwork->timer))) 1226 return 1; 1227 } 1228 1229 /* try to claim PENDING the normal way */ 1230 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1231 return 0; 1232 1233 /* 1234 * The queueing is in progress, or it is already queued. Try to 1235 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1236 */ 1237 pool = get_work_pool(work); 1238 if (!pool) 1239 goto fail; 1240 1241 spin_lock(&pool->lock); 1242 /* 1243 * work->data is guaranteed to point to pwq only while the work 1244 * item is queued on pwq->wq, and both updating work->data to point 1245 * to pwq on queueing and to pool on dequeueing are done under 1246 * pwq->pool->lock. This in turn guarantees that, if work->data 1247 * points to pwq which is associated with a locked pool, the work 1248 * item is currently queued on that pool. 1249 */ 1250 pwq = get_work_pwq(work); 1251 if (pwq && pwq->pool == pool) { 1252 debug_work_deactivate(work); 1253 1254 /* 1255 * A delayed work item cannot be grabbed directly because 1256 * it might have linked NO_COLOR work items which, if left 1257 * on the delayed_list, will confuse pwq->nr_active 1258 * management later on and cause stall. Make sure the work 1259 * item is activated before grabbing. 1260 */ 1261 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1262 pwq_activate_delayed_work(work); 1263 1264 list_del_init(&work->entry); 1265 pwq_dec_nr_in_flight(pwq, get_work_color(work)); 1266 1267 /* work->data points to pwq iff queued, point to pool */ 1268 set_work_pool_and_keep_pending(work, pool->id); 1269 1270 spin_unlock(&pool->lock); 1271 return 1; 1272 } 1273 spin_unlock(&pool->lock); 1274 fail: 1275 local_irq_restore(*flags); 1276 if (work_is_canceling(work)) 1277 return -ENOENT; 1278 cpu_relax(); 1279 return -EAGAIN; 1280 } 1281 1282 /** 1283 * insert_work - insert a work into a pool 1284 * @pwq: pwq @work belongs to 1285 * @work: work to insert 1286 * @head: insertion point 1287 * @extra_flags: extra WORK_STRUCT_* flags to set 1288 * 1289 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1290 * work_struct flags. 1291 * 1292 * CONTEXT: 1293 * spin_lock_irq(pool->lock). 1294 */ 1295 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1296 struct list_head *head, unsigned int extra_flags) 1297 { 1298 struct worker_pool *pool = pwq->pool; 1299 1300 /* we own @work, set data and link */ 1301 set_work_pwq(work, pwq, extra_flags); 1302 list_add_tail(&work->entry, head); 1303 get_pwq(pwq); 1304 1305 /* 1306 * Ensure either wq_worker_sleeping() sees the above 1307 * list_add_tail() or we see zero nr_running to avoid workers lying 1308 * around lazily while there are works to be processed. 1309 */ 1310 smp_mb(); 1311 1312 if (__need_more_worker(pool)) 1313 wake_up_worker(pool); 1314 } 1315 1316 /* 1317 * Test whether @work is being queued from another work executing on the 1318 * same workqueue. 1319 */ 1320 static bool is_chained_work(struct workqueue_struct *wq) 1321 { 1322 struct worker *worker; 1323 1324 worker = current_wq_worker(); 1325 /* 1326 * Return %true iff I'm a worker execuing a work item on @wq. If 1327 * I'm @worker, it's safe to dereference it without locking. 1328 */ 1329 return worker && worker->current_pwq->wq == wq; 1330 } 1331 1332 /* 1333 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1334 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1335 * avoid perturbing sensitive tasks. 1336 */ 1337 static int wq_select_unbound_cpu(int cpu) 1338 { 1339 static bool printed_dbg_warning; 1340 int new_cpu; 1341 1342 if (likely(!wq_debug_force_rr_cpu)) { 1343 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1344 return cpu; 1345 } else if (!printed_dbg_warning) { 1346 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1347 printed_dbg_warning = true; 1348 } 1349 1350 if (cpumask_empty(wq_unbound_cpumask)) 1351 return cpu; 1352 1353 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1354 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1355 if (unlikely(new_cpu >= nr_cpu_ids)) { 1356 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1357 if (unlikely(new_cpu >= nr_cpu_ids)) 1358 return cpu; 1359 } 1360 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1361 1362 return new_cpu; 1363 } 1364 1365 static void __queue_work(int cpu, struct workqueue_struct *wq, 1366 struct work_struct *work) 1367 { 1368 struct pool_workqueue *pwq; 1369 struct worker_pool *last_pool; 1370 struct list_head *worklist; 1371 unsigned int work_flags; 1372 unsigned int req_cpu = cpu; 1373 1374 /* 1375 * While a work item is PENDING && off queue, a task trying to 1376 * steal the PENDING will busy-loop waiting for it to either get 1377 * queued or lose PENDING. Grabbing PENDING and queueing should 1378 * happen with IRQ disabled. 1379 */ 1380 lockdep_assert_irqs_disabled(); 1381 1382 debug_work_activate(work); 1383 1384 /* if draining, only works from the same workqueue are allowed */ 1385 if (unlikely(wq->flags & __WQ_DRAINING) && 1386 WARN_ON_ONCE(!is_chained_work(wq))) 1387 return; 1388 retry: 1389 if (req_cpu == WORK_CPU_UNBOUND) 1390 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1391 1392 /* pwq which will be used unless @work is executing elsewhere */ 1393 if (!(wq->flags & WQ_UNBOUND)) 1394 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1395 else 1396 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1397 1398 /* 1399 * If @work was previously on a different pool, it might still be 1400 * running there, in which case the work needs to be queued on that 1401 * pool to guarantee non-reentrancy. 1402 */ 1403 last_pool = get_work_pool(work); 1404 if (last_pool && last_pool != pwq->pool) { 1405 struct worker *worker; 1406 1407 spin_lock(&last_pool->lock); 1408 1409 worker = find_worker_executing_work(last_pool, work); 1410 1411 if (worker && worker->current_pwq->wq == wq) { 1412 pwq = worker->current_pwq; 1413 } else { 1414 /* meh... not running there, queue here */ 1415 spin_unlock(&last_pool->lock); 1416 spin_lock(&pwq->pool->lock); 1417 } 1418 } else { 1419 spin_lock(&pwq->pool->lock); 1420 } 1421 1422 /* 1423 * pwq is determined and locked. For unbound pools, we could have 1424 * raced with pwq release and it could already be dead. If its 1425 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1426 * without another pwq replacing it in the numa_pwq_tbl or while 1427 * work items are executing on it, so the retrying is guaranteed to 1428 * make forward-progress. 1429 */ 1430 if (unlikely(!pwq->refcnt)) { 1431 if (wq->flags & WQ_UNBOUND) { 1432 spin_unlock(&pwq->pool->lock); 1433 cpu_relax(); 1434 goto retry; 1435 } 1436 /* oops */ 1437 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1438 wq->name, cpu); 1439 } 1440 1441 /* pwq determined, queue */ 1442 trace_workqueue_queue_work(req_cpu, pwq, work); 1443 1444 if (WARN_ON(!list_empty(&work->entry))) { 1445 spin_unlock(&pwq->pool->lock); 1446 return; 1447 } 1448 1449 pwq->nr_in_flight[pwq->work_color]++; 1450 work_flags = work_color_to_flags(pwq->work_color); 1451 1452 if (likely(pwq->nr_active < pwq->max_active)) { 1453 trace_workqueue_activate_work(work); 1454 pwq->nr_active++; 1455 worklist = &pwq->pool->worklist; 1456 if (list_empty(worklist)) 1457 pwq->pool->watchdog_ts = jiffies; 1458 } else { 1459 work_flags |= WORK_STRUCT_DELAYED; 1460 worklist = &pwq->delayed_works; 1461 } 1462 1463 insert_work(pwq, work, worklist, work_flags); 1464 1465 spin_unlock(&pwq->pool->lock); 1466 } 1467 1468 /** 1469 * queue_work_on - queue work on specific cpu 1470 * @cpu: CPU number to execute work on 1471 * @wq: workqueue to use 1472 * @work: work to queue 1473 * 1474 * We queue the work to a specific CPU, the caller must ensure it 1475 * can't go away. 1476 * 1477 * Return: %false if @work was already on a queue, %true otherwise. 1478 */ 1479 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1480 struct work_struct *work) 1481 { 1482 bool ret = false; 1483 unsigned long flags; 1484 1485 local_irq_save(flags); 1486 1487 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1488 __queue_work(cpu, wq, work); 1489 ret = true; 1490 } 1491 1492 local_irq_restore(flags); 1493 return ret; 1494 } 1495 EXPORT_SYMBOL(queue_work_on); 1496 1497 void delayed_work_timer_fn(struct timer_list *t) 1498 { 1499 struct delayed_work *dwork = from_timer(dwork, t, timer); 1500 1501 /* should have been called from irqsafe timer with irq already off */ 1502 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1503 } 1504 EXPORT_SYMBOL(delayed_work_timer_fn); 1505 1506 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1507 struct delayed_work *dwork, unsigned long delay) 1508 { 1509 struct timer_list *timer = &dwork->timer; 1510 struct work_struct *work = &dwork->work; 1511 1512 WARN_ON_ONCE(!wq); 1513 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 1514 WARN_ON_ONCE(timer_pending(timer)); 1515 WARN_ON_ONCE(!list_empty(&work->entry)); 1516 1517 /* 1518 * If @delay is 0, queue @dwork->work immediately. This is for 1519 * both optimization and correctness. The earliest @timer can 1520 * expire is on the closest next tick and delayed_work users depend 1521 * on that there's no such delay when @delay is 0. 1522 */ 1523 if (!delay) { 1524 __queue_work(cpu, wq, &dwork->work); 1525 return; 1526 } 1527 1528 dwork->wq = wq; 1529 dwork->cpu = cpu; 1530 timer->expires = jiffies + delay; 1531 1532 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1533 add_timer_on(timer, cpu); 1534 else 1535 add_timer(timer); 1536 } 1537 1538 /** 1539 * queue_delayed_work_on - queue work on specific CPU after delay 1540 * @cpu: CPU number to execute work on 1541 * @wq: workqueue to use 1542 * @dwork: work to queue 1543 * @delay: number of jiffies to wait before queueing 1544 * 1545 * Return: %false if @work was already on a queue, %true otherwise. If 1546 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1547 * execution. 1548 */ 1549 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1550 struct delayed_work *dwork, unsigned long delay) 1551 { 1552 struct work_struct *work = &dwork->work; 1553 bool ret = false; 1554 unsigned long flags; 1555 1556 /* read the comment in __queue_work() */ 1557 local_irq_save(flags); 1558 1559 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1560 __queue_delayed_work(cpu, wq, dwork, delay); 1561 ret = true; 1562 } 1563 1564 local_irq_restore(flags); 1565 return ret; 1566 } 1567 EXPORT_SYMBOL(queue_delayed_work_on); 1568 1569 /** 1570 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1571 * @cpu: CPU number to execute work on 1572 * @wq: workqueue to use 1573 * @dwork: work to queue 1574 * @delay: number of jiffies to wait before queueing 1575 * 1576 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1577 * modify @dwork's timer so that it expires after @delay. If @delay is 1578 * zero, @work is guaranteed to be scheduled immediately regardless of its 1579 * current state. 1580 * 1581 * Return: %false if @dwork was idle and queued, %true if @dwork was 1582 * pending and its timer was modified. 1583 * 1584 * This function is safe to call from any context including IRQ handler. 1585 * See try_to_grab_pending() for details. 1586 */ 1587 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1588 struct delayed_work *dwork, unsigned long delay) 1589 { 1590 unsigned long flags; 1591 int ret; 1592 1593 do { 1594 ret = try_to_grab_pending(&dwork->work, true, &flags); 1595 } while (unlikely(ret == -EAGAIN)); 1596 1597 if (likely(ret >= 0)) { 1598 __queue_delayed_work(cpu, wq, dwork, delay); 1599 local_irq_restore(flags); 1600 } 1601 1602 /* -ENOENT from try_to_grab_pending() becomes %true */ 1603 return ret; 1604 } 1605 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1606 1607 /** 1608 * worker_enter_idle - enter idle state 1609 * @worker: worker which is entering idle state 1610 * 1611 * @worker is entering idle state. Update stats and idle timer if 1612 * necessary. 1613 * 1614 * LOCKING: 1615 * spin_lock_irq(pool->lock). 1616 */ 1617 static void worker_enter_idle(struct worker *worker) 1618 { 1619 struct worker_pool *pool = worker->pool; 1620 1621 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1622 WARN_ON_ONCE(!list_empty(&worker->entry) && 1623 (worker->hentry.next || worker->hentry.pprev))) 1624 return; 1625 1626 /* can't use worker_set_flags(), also called from create_worker() */ 1627 worker->flags |= WORKER_IDLE; 1628 pool->nr_idle++; 1629 worker->last_active = jiffies; 1630 1631 /* idle_list is LIFO */ 1632 list_add(&worker->entry, &pool->idle_list); 1633 1634 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1635 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1636 1637 /* 1638 * Sanity check nr_running. Because unbind_workers() releases 1639 * pool->lock between setting %WORKER_UNBOUND and zapping 1640 * nr_running, the warning may trigger spuriously. Check iff 1641 * unbind is not in progress. 1642 */ 1643 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1644 pool->nr_workers == pool->nr_idle && 1645 atomic_read(&pool->nr_running)); 1646 } 1647 1648 /** 1649 * worker_leave_idle - leave idle state 1650 * @worker: worker which is leaving idle state 1651 * 1652 * @worker is leaving idle state. Update stats. 1653 * 1654 * LOCKING: 1655 * spin_lock_irq(pool->lock). 1656 */ 1657 static void worker_leave_idle(struct worker *worker) 1658 { 1659 struct worker_pool *pool = worker->pool; 1660 1661 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1662 return; 1663 worker_clr_flags(worker, WORKER_IDLE); 1664 pool->nr_idle--; 1665 list_del_init(&worker->entry); 1666 } 1667 1668 static struct worker *alloc_worker(int node) 1669 { 1670 struct worker *worker; 1671 1672 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1673 if (worker) { 1674 INIT_LIST_HEAD(&worker->entry); 1675 INIT_LIST_HEAD(&worker->scheduled); 1676 INIT_LIST_HEAD(&worker->node); 1677 /* on creation a worker is in !idle && prep state */ 1678 worker->flags = WORKER_PREP; 1679 } 1680 return worker; 1681 } 1682 1683 /** 1684 * worker_attach_to_pool() - attach a worker to a pool 1685 * @worker: worker to be attached 1686 * @pool: the target pool 1687 * 1688 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1689 * cpu-binding of @worker are kept coordinated with the pool across 1690 * cpu-[un]hotplugs. 1691 */ 1692 static void worker_attach_to_pool(struct worker *worker, 1693 struct worker_pool *pool) 1694 { 1695 mutex_lock(&pool->attach_mutex); 1696 1697 /* 1698 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1699 * online CPUs. It'll be re-applied when any of the CPUs come up. 1700 */ 1701 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1702 1703 /* 1704 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains 1705 * stable across this function. See the comments above the 1706 * flag definition for details. 1707 */ 1708 if (pool->flags & POOL_DISASSOCIATED) 1709 worker->flags |= WORKER_UNBOUND; 1710 1711 list_add_tail(&worker->node, &pool->workers); 1712 1713 mutex_unlock(&pool->attach_mutex); 1714 } 1715 1716 /** 1717 * worker_detach_from_pool() - detach a worker from its pool 1718 * @worker: worker which is attached to its pool 1719 * @pool: the pool @worker is attached to 1720 * 1721 * Undo the attaching which had been done in worker_attach_to_pool(). The 1722 * caller worker shouldn't access to the pool after detached except it has 1723 * other reference to the pool. 1724 */ 1725 static void worker_detach_from_pool(struct worker *worker, 1726 struct worker_pool *pool) 1727 { 1728 struct completion *detach_completion = NULL; 1729 1730 mutex_lock(&pool->attach_mutex); 1731 list_del(&worker->node); 1732 if (list_empty(&pool->workers)) 1733 detach_completion = pool->detach_completion; 1734 mutex_unlock(&pool->attach_mutex); 1735 1736 /* clear leftover flags without pool->lock after it is detached */ 1737 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1738 1739 if (detach_completion) 1740 complete(detach_completion); 1741 } 1742 1743 /** 1744 * create_worker - create a new workqueue worker 1745 * @pool: pool the new worker will belong to 1746 * 1747 * Create and start a new worker which is attached to @pool. 1748 * 1749 * CONTEXT: 1750 * Might sleep. Does GFP_KERNEL allocations. 1751 * 1752 * Return: 1753 * Pointer to the newly created worker. 1754 */ 1755 static struct worker *create_worker(struct worker_pool *pool) 1756 { 1757 struct worker *worker = NULL; 1758 int id = -1; 1759 char id_buf[16]; 1760 1761 /* ID is needed to determine kthread name */ 1762 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL); 1763 if (id < 0) 1764 goto fail; 1765 1766 worker = alloc_worker(pool->node); 1767 if (!worker) 1768 goto fail; 1769 1770 worker->pool = pool; 1771 worker->id = id; 1772 1773 if (pool->cpu >= 0) 1774 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1775 pool->attrs->nice < 0 ? "H" : ""); 1776 else 1777 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1778 1779 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1780 "kworker/%s", id_buf); 1781 if (IS_ERR(worker->task)) 1782 goto fail; 1783 1784 set_user_nice(worker->task, pool->attrs->nice); 1785 kthread_bind_mask(worker->task, pool->attrs->cpumask); 1786 1787 /* successful, attach the worker to the pool */ 1788 worker_attach_to_pool(worker, pool); 1789 1790 /* start the newly created worker */ 1791 spin_lock_irq(&pool->lock); 1792 worker->pool->nr_workers++; 1793 worker_enter_idle(worker); 1794 wake_up_process(worker->task); 1795 spin_unlock_irq(&pool->lock); 1796 1797 return worker; 1798 1799 fail: 1800 if (id >= 0) 1801 ida_simple_remove(&pool->worker_ida, id); 1802 kfree(worker); 1803 return NULL; 1804 } 1805 1806 /** 1807 * destroy_worker - destroy a workqueue worker 1808 * @worker: worker to be destroyed 1809 * 1810 * Destroy @worker and adjust @pool stats accordingly. The worker should 1811 * be idle. 1812 * 1813 * CONTEXT: 1814 * spin_lock_irq(pool->lock). 1815 */ 1816 static void destroy_worker(struct worker *worker) 1817 { 1818 struct worker_pool *pool = worker->pool; 1819 1820 lockdep_assert_held(&pool->lock); 1821 1822 /* sanity check frenzy */ 1823 if (WARN_ON(worker->current_work) || 1824 WARN_ON(!list_empty(&worker->scheduled)) || 1825 WARN_ON(!(worker->flags & WORKER_IDLE))) 1826 return; 1827 1828 pool->nr_workers--; 1829 pool->nr_idle--; 1830 1831 list_del_init(&worker->entry); 1832 worker->flags |= WORKER_DIE; 1833 wake_up_process(worker->task); 1834 } 1835 1836 static void idle_worker_timeout(struct timer_list *t) 1837 { 1838 struct worker_pool *pool = from_timer(pool, t, idle_timer); 1839 1840 spin_lock_irq(&pool->lock); 1841 1842 while (too_many_workers(pool)) { 1843 struct worker *worker; 1844 unsigned long expires; 1845 1846 /* idle_list is kept in LIFO order, check the last one */ 1847 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1848 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1849 1850 if (time_before(jiffies, expires)) { 1851 mod_timer(&pool->idle_timer, expires); 1852 break; 1853 } 1854 1855 destroy_worker(worker); 1856 } 1857 1858 spin_unlock_irq(&pool->lock); 1859 } 1860 1861 static void send_mayday(struct work_struct *work) 1862 { 1863 struct pool_workqueue *pwq = get_work_pwq(work); 1864 struct workqueue_struct *wq = pwq->wq; 1865 1866 lockdep_assert_held(&wq_mayday_lock); 1867 1868 if (!wq->rescuer) 1869 return; 1870 1871 /* mayday mayday mayday */ 1872 if (list_empty(&pwq->mayday_node)) { 1873 /* 1874 * If @pwq is for an unbound wq, its base ref may be put at 1875 * any time due to an attribute change. Pin @pwq until the 1876 * rescuer is done with it. 1877 */ 1878 get_pwq(pwq); 1879 list_add_tail(&pwq->mayday_node, &wq->maydays); 1880 wake_up_process(wq->rescuer->task); 1881 } 1882 } 1883 1884 static void pool_mayday_timeout(struct timer_list *t) 1885 { 1886 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 1887 struct work_struct *work; 1888 1889 spin_lock_irq(&pool->lock); 1890 spin_lock(&wq_mayday_lock); /* for wq->maydays */ 1891 1892 if (need_to_create_worker(pool)) { 1893 /* 1894 * We've been trying to create a new worker but 1895 * haven't been successful. We might be hitting an 1896 * allocation deadlock. Send distress signals to 1897 * rescuers. 1898 */ 1899 list_for_each_entry(work, &pool->worklist, entry) 1900 send_mayday(work); 1901 } 1902 1903 spin_unlock(&wq_mayday_lock); 1904 spin_unlock_irq(&pool->lock); 1905 1906 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 1907 } 1908 1909 /** 1910 * maybe_create_worker - create a new worker if necessary 1911 * @pool: pool to create a new worker for 1912 * 1913 * Create a new worker for @pool if necessary. @pool is guaranteed to 1914 * have at least one idle worker on return from this function. If 1915 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1916 * sent to all rescuers with works scheduled on @pool to resolve 1917 * possible allocation deadlock. 1918 * 1919 * On return, need_to_create_worker() is guaranteed to be %false and 1920 * may_start_working() %true. 1921 * 1922 * LOCKING: 1923 * spin_lock_irq(pool->lock) which may be released and regrabbed 1924 * multiple times. Does GFP_KERNEL allocations. Called only from 1925 * manager. 1926 */ 1927 static void maybe_create_worker(struct worker_pool *pool) 1928 __releases(&pool->lock) 1929 __acquires(&pool->lock) 1930 { 1931 restart: 1932 spin_unlock_irq(&pool->lock); 1933 1934 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1935 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1936 1937 while (true) { 1938 if (create_worker(pool) || !need_to_create_worker(pool)) 1939 break; 1940 1941 schedule_timeout_interruptible(CREATE_COOLDOWN); 1942 1943 if (!need_to_create_worker(pool)) 1944 break; 1945 } 1946 1947 del_timer_sync(&pool->mayday_timer); 1948 spin_lock_irq(&pool->lock); 1949 /* 1950 * This is necessary even after a new worker was just successfully 1951 * created as @pool->lock was dropped and the new worker might have 1952 * already become busy. 1953 */ 1954 if (need_to_create_worker(pool)) 1955 goto restart; 1956 } 1957 1958 /** 1959 * manage_workers - manage worker pool 1960 * @worker: self 1961 * 1962 * Assume the manager role and manage the worker pool @worker belongs 1963 * to. At any given time, there can be only zero or one manager per 1964 * pool. The exclusion is handled automatically by this function. 1965 * 1966 * The caller can safely start processing works on false return. On 1967 * true return, it's guaranteed that need_to_create_worker() is false 1968 * and may_start_working() is true. 1969 * 1970 * CONTEXT: 1971 * spin_lock_irq(pool->lock) which may be released and regrabbed 1972 * multiple times. Does GFP_KERNEL allocations. 1973 * 1974 * Return: 1975 * %false if the pool doesn't need management and the caller can safely 1976 * start processing works, %true if management function was performed and 1977 * the conditions that the caller verified before calling the function may 1978 * no longer be true. 1979 */ 1980 static bool manage_workers(struct worker *worker) 1981 { 1982 struct worker_pool *pool = worker->pool; 1983 1984 if (pool->flags & POOL_MANAGER_ACTIVE) 1985 return false; 1986 1987 pool->flags |= POOL_MANAGER_ACTIVE; 1988 pool->manager = worker; 1989 1990 maybe_create_worker(pool); 1991 1992 pool->manager = NULL; 1993 pool->flags &= ~POOL_MANAGER_ACTIVE; 1994 wake_up(&wq_manager_wait); 1995 return true; 1996 } 1997 1998 /** 1999 * process_one_work - process single work 2000 * @worker: self 2001 * @work: work to process 2002 * 2003 * Process @work. This function contains all the logics necessary to 2004 * process a single work including synchronization against and 2005 * interaction with other workers on the same cpu, queueing and 2006 * flushing. As long as context requirement is met, any worker can 2007 * call this function to process a work. 2008 * 2009 * CONTEXT: 2010 * spin_lock_irq(pool->lock) which is released and regrabbed. 2011 */ 2012 static void process_one_work(struct worker *worker, struct work_struct *work) 2013 __releases(&pool->lock) 2014 __acquires(&pool->lock) 2015 { 2016 struct pool_workqueue *pwq = get_work_pwq(work); 2017 struct worker_pool *pool = worker->pool; 2018 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2019 int work_color; 2020 struct worker *collision; 2021 #ifdef CONFIG_LOCKDEP 2022 /* 2023 * It is permissible to free the struct work_struct from 2024 * inside the function that is called from it, this we need to 2025 * take into account for lockdep too. To avoid bogus "held 2026 * lock freed" warnings as well as problems when looking into 2027 * work->lockdep_map, make a copy and use that here. 2028 */ 2029 struct lockdep_map lockdep_map; 2030 2031 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2032 #endif 2033 /* ensure we're on the correct CPU */ 2034 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2035 raw_smp_processor_id() != pool->cpu); 2036 2037 /* 2038 * A single work shouldn't be executed concurrently by 2039 * multiple workers on a single cpu. Check whether anyone is 2040 * already processing the work. If so, defer the work to the 2041 * currently executing one. 2042 */ 2043 collision = find_worker_executing_work(pool, work); 2044 if (unlikely(collision)) { 2045 move_linked_works(work, &collision->scheduled, NULL); 2046 return; 2047 } 2048 2049 /* claim and dequeue */ 2050 debug_work_deactivate(work); 2051 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2052 worker->current_work = work; 2053 worker->current_func = work->func; 2054 worker->current_pwq = pwq; 2055 work_color = get_work_color(work); 2056 2057 list_del_init(&work->entry); 2058 2059 /* 2060 * CPU intensive works don't participate in concurrency management. 2061 * They're the scheduler's responsibility. This takes @worker out 2062 * of concurrency management and the next code block will chain 2063 * execution of the pending work items. 2064 */ 2065 if (unlikely(cpu_intensive)) 2066 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2067 2068 /* 2069 * Wake up another worker if necessary. The condition is always 2070 * false for normal per-cpu workers since nr_running would always 2071 * be >= 1 at this point. This is used to chain execution of the 2072 * pending work items for WORKER_NOT_RUNNING workers such as the 2073 * UNBOUND and CPU_INTENSIVE ones. 2074 */ 2075 if (need_more_worker(pool)) 2076 wake_up_worker(pool); 2077 2078 /* 2079 * Record the last pool and clear PENDING which should be the last 2080 * update to @work. Also, do this inside @pool->lock so that 2081 * PENDING and queued state changes happen together while IRQ is 2082 * disabled. 2083 */ 2084 set_work_pool_and_clear_pending(work, pool->id); 2085 2086 spin_unlock_irq(&pool->lock); 2087 2088 lock_map_acquire(&pwq->wq->lockdep_map); 2089 lock_map_acquire(&lockdep_map); 2090 /* 2091 * Strictly speaking we should mark the invariant state without holding 2092 * any locks, that is, before these two lock_map_acquire()'s. 2093 * 2094 * However, that would result in: 2095 * 2096 * A(W1) 2097 * WFC(C) 2098 * A(W1) 2099 * C(C) 2100 * 2101 * Which would create W1->C->W1 dependencies, even though there is no 2102 * actual deadlock possible. There are two solutions, using a 2103 * read-recursive acquire on the work(queue) 'locks', but this will then 2104 * hit the lockdep limitation on recursive locks, or simply discard 2105 * these locks. 2106 * 2107 * AFAICT there is no possible deadlock scenario between the 2108 * flush_work() and complete() primitives (except for single-threaded 2109 * workqueues), so hiding them isn't a problem. 2110 */ 2111 lockdep_invariant_state(true); 2112 trace_workqueue_execute_start(work); 2113 worker->current_func(work); 2114 /* 2115 * While we must be careful to not use "work" after this, the trace 2116 * point will only record its address. 2117 */ 2118 trace_workqueue_execute_end(work); 2119 lock_map_release(&lockdep_map); 2120 lock_map_release(&pwq->wq->lockdep_map); 2121 2122 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2123 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2124 " last function: %pf\n", 2125 current->comm, preempt_count(), task_pid_nr(current), 2126 worker->current_func); 2127 debug_show_held_locks(current); 2128 dump_stack(); 2129 } 2130 2131 /* 2132 * The following prevents a kworker from hogging CPU on !PREEMPT 2133 * kernels, where a requeueing work item waiting for something to 2134 * happen could deadlock with stop_machine as such work item could 2135 * indefinitely requeue itself while all other CPUs are trapped in 2136 * stop_machine. At the same time, report a quiescent RCU state so 2137 * the same condition doesn't freeze RCU. 2138 */ 2139 cond_resched(); 2140 2141 spin_lock_irq(&pool->lock); 2142 2143 /* clear cpu intensive status */ 2144 if (unlikely(cpu_intensive)) 2145 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2146 2147 /* we're done with it, release */ 2148 hash_del(&worker->hentry); 2149 worker->current_work = NULL; 2150 worker->current_func = NULL; 2151 worker->current_pwq = NULL; 2152 worker->desc_valid = false; 2153 pwq_dec_nr_in_flight(pwq, work_color); 2154 } 2155 2156 /** 2157 * process_scheduled_works - process scheduled works 2158 * @worker: self 2159 * 2160 * Process all scheduled works. Please note that the scheduled list 2161 * may change while processing a work, so this function repeatedly 2162 * fetches a work from the top and executes it. 2163 * 2164 * CONTEXT: 2165 * spin_lock_irq(pool->lock) which may be released and regrabbed 2166 * multiple times. 2167 */ 2168 static void process_scheduled_works(struct worker *worker) 2169 { 2170 while (!list_empty(&worker->scheduled)) { 2171 struct work_struct *work = list_first_entry(&worker->scheduled, 2172 struct work_struct, entry); 2173 process_one_work(worker, work); 2174 } 2175 } 2176 2177 /** 2178 * worker_thread - the worker thread function 2179 * @__worker: self 2180 * 2181 * The worker thread function. All workers belong to a worker_pool - 2182 * either a per-cpu one or dynamic unbound one. These workers process all 2183 * work items regardless of their specific target workqueue. The only 2184 * exception is work items which belong to workqueues with a rescuer which 2185 * will be explained in rescuer_thread(). 2186 * 2187 * Return: 0 2188 */ 2189 static int worker_thread(void *__worker) 2190 { 2191 struct worker *worker = __worker; 2192 struct worker_pool *pool = worker->pool; 2193 2194 /* tell the scheduler that this is a workqueue worker */ 2195 worker->task->flags |= PF_WQ_WORKER; 2196 woke_up: 2197 spin_lock_irq(&pool->lock); 2198 2199 /* am I supposed to die? */ 2200 if (unlikely(worker->flags & WORKER_DIE)) { 2201 spin_unlock_irq(&pool->lock); 2202 WARN_ON_ONCE(!list_empty(&worker->entry)); 2203 worker->task->flags &= ~PF_WQ_WORKER; 2204 2205 set_task_comm(worker->task, "kworker/dying"); 2206 ida_simple_remove(&pool->worker_ida, worker->id); 2207 worker_detach_from_pool(worker, pool); 2208 kfree(worker); 2209 return 0; 2210 } 2211 2212 worker_leave_idle(worker); 2213 recheck: 2214 /* no more worker necessary? */ 2215 if (!need_more_worker(pool)) 2216 goto sleep; 2217 2218 /* do we need to manage? */ 2219 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2220 goto recheck; 2221 2222 /* 2223 * ->scheduled list can only be filled while a worker is 2224 * preparing to process a work or actually processing it. 2225 * Make sure nobody diddled with it while I was sleeping. 2226 */ 2227 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2228 2229 /* 2230 * Finish PREP stage. We're guaranteed to have at least one idle 2231 * worker or that someone else has already assumed the manager 2232 * role. This is where @worker starts participating in concurrency 2233 * management if applicable and concurrency management is restored 2234 * after being rebound. See rebind_workers() for details. 2235 */ 2236 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2237 2238 do { 2239 struct work_struct *work = 2240 list_first_entry(&pool->worklist, 2241 struct work_struct, entry); 2242 2243 pool->watchdog_ts = jiffies; 2244 2245 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2246 /* optimization path, not strictly necessary */ 2247 process_one_work(worker, work); 2248 if (unlikely(!list_empty(&worker->scheduled))) 2249 process_scheduled_works(worker); 2250 } else { 2251 move_linked_works(work, &worker->scheduled, NULL); 2252 process_scheduled_works(worker); 2253 } 2254 } while (keep_working(pool)); 2255 2256 worker_set_flags(worker, WORKER_PREP); 2257 sleep: 2258 /* 2259 * pool->lock is held and there's no work to process and no need to 2260 * manage, sleep. Workers are woken up only while holding 2261 * pool->lock or from local cpu, so setting the current state 2262 * before releasing pool->lock is enough to prevent losing any 2263 * event. 2264 */ 2265 worker_enter_idle(worker); 2266 __set_current_state(TASK_IDLE); 2267 spin_unlock_irq(&pool->lock); 2268 schedule(); 2269 goto woke_up; 2270 } 2271 2272 /** 2273 * rescuer_thread - the rescuer thread function 2274 * @__rescuer: self 2275 * 2276 * Workqueue rescuer thread function. There's one rescuer for each 2277 * workqueue which has WQ_MEM_RECLAIM set. 2278 * 2279 * Regular work processing on a pool may block trying to create a new 2280 * worker which uses GFP_KERNEL allocation which has slight chance of 2281 * developing into deadlock if some works currently on the same queue 2282 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2283 * the problem rescuer solves. 2284 * 2285 * When such condition is possible, the pool summons rescuers of all 2286 * workqueues which have works queued on the pool and let them process 2287 * those works so that forward progress can be guaranteed. 2288 * 2289 * This should happen rarely. 2290 * 2291 * Return: 0 2292 */ 2293 static int rescuer_thread(void *__rescuer) 2294 { 2295 struct worker *rescuer = __rescuer; 2296 struct workqueue_struct *wq = rescuer->rescue_wq; 2297 struct list_head *scheduled = &rescuer->scheduled; 2298 bool should_stop; 2299 2300 set_user_nice(current, RESCUER_NICE_LEVEL); 2301 2302 /* 2303 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2304 * doesn't participate in concurrency management. 2305 */ 2306 rescuer->task->flags |= PF_WQ_WORKER; 2307 repeat: 2308 set_current_state(TASK_IDLE); 2309 2310 /* 2311 * By the time the rescuer is requested to stop, the workqueue 2312 * shouldn't have any work pending, but @wq->maydays may still have 2313 * pwq(s) queued. This can happen by non-rescuer workers consuming 2314 * all the work items before the rescuer got to them. Go through 2315 * @wq->maydays processing before acting on should_stop so that the 2316 * list is always empty on exit. 2317 */ 2318 should_stop = kthread_should_stop(); 2319 2320 /* see whether any pwq is asking for help */ 2321 spin_lock_irq(&wq_mayday_lock); 2322 2323 while (!list_empty(&wq->maydays)) { 2324 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2325 struct pool_workqueue, mayday_node); 2326 struct worker_pool *pool = pwq->pool; 2327 struct work_struct *work, *n; 2328 bool first = true; 2329 2330 __set_current_state(TASK_RUNNING); 2331 list_del_init(&pwq->mayday_node); 2332 2333 spin_unlock_irq(&wq_mayday_lock); 2334 2335 worker_attach_to_pool(rescuer, pool); 2336 2337 spin_lock_irq(&pool->lock); 2338 rescuer->pool = pool; 2339 2340 /* 2341 * Slurp in all works issued via this workqueue and 2342 * process'em. 2343 */ 2344 WARN_ON_ONCE(!list_empty(scheduled)); 2345 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2346 if (get_work_pwq(work) == pwq) { 2347 if (first) 2348 pool->watchdog_ts = jiffies; 2349 move_linked_works(work, scheduled, &n); 2350 } 2351 first = false; 2352 } 2353 2354 if (!list_empty(scheduled)) { 2355 process_scheduled_works(rescuer); 2356 2357 /* 2358 * The above execution of rescued work items could 2359 * have created more to rescue through 2360 * pwq_activate_first_delayed() or chained 2361 * queueing. Let's put @pwq back on mayday list so 2362 * that such back-to-back work items, which may be 2363 * being used to relieve memory pressure, don't 2364 * incur MAYDAY_INTERVAL delay inbetween. 2365 */ 2366 if (need_to_create_worker(pool)) { 2367 spin_lock(&wq_mayday_lock); 2368 get_pwq(pwq); 2369 list_move_tail(&pwq->mayday_node, &wq->maydays); 2370 spin_unlock(&wq_mayday_lock); 2371 } 2372 } 2373 2374 /* 2375 * Put the reference grabbed by send_mayday(). @pool won't 2376 * go away while we're still attached to it. 2377 */ 2378 put_pwq(pwq); 2379 2380 /* 2381 * Leave this pool. If need_more_worker() is %true, notify a 2382 * regular worker; otherwise, we end up with 0 concurrency 2383 * and stalling the execution. 2384 */ 2385 if (need_more_worker(pool)) 2386 wake_up_worker(pool); 2387 2388 rescuer->pool = NULL; 2389 spin_unlock_irq(&pool->lock); 2390 2391 worker_detach_from_pool(rescuer, pool); 2392 2393 spin_lock_irq(&wq_mayday_lock); 2394 } 2395 2396 spin_unlock_irq(&wq_mayday_lock); 2397 2398 if (should_stop) { 2399 __set_current_state(TASK_RUNNING); 2400 rescuer->task->flags &= ~PF_WQ_WORKER; 2401 return 0; 2402 } 2403 2404 /* rescuers should never participate in concurrency management */ 2405 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2406 schedule(); 2407 goto repeat; 2408 } 2409 2410 /** 2411 * check_flush_dependency - check for flush dependency sanity 2412 * @target_wq: workqueue being flushed 2413 * @target_work: work item being flushed (NULL for workqueue flushes) 2414 * 2415 * %current is trying to flush the whole @target_wq or @target_work on it. 2416 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2417 * reclaiming memory or running on a workqueue which doesn't have 2418 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2419 * a deadlock. 2420 */ 2421 static void check_flush_dependency(struct workqueue_struct *target_wq, 2422 struct work_struct *target_work) 2423 { 2424 work_func_t target_func = target_work ? target_work->func : NULL; 2425 struct worker *worker; 2426 2427 if (target_wq->flags & WQ_MEM_RECLAIM) 2428 return; 2429 2430 worker = current_wq_worker(); 2431 2432 WARN_ONCE(current->flags & PF_MEMALLOC, 2433 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf", 2434 current->pid, current->comm, target_wq->name, target_func); 2435 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2436 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2437 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf", 2438 worker->current_pwq->wq->name, worker->current_func, 2439 target_wq->name, target_func); 2440 } 2441 2442 struct wq_barrier { 2443 struct work_struct work; 2444 struct completion done; 2445 struct task_struct *task; /* purely informational */ 2446 }; 2447 2448 static void wq_barrier_func(struct work_struct *work) 2449 { 2450 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2451 complete(&barr->done); 2452 } 2453 2454 /** 2455 * insert_wq_barrier - insert a barrier work 2456 * @pwq: pwq to insert barrier into 2457 * @barr: wq_barrier to insert 2458 * @target: target work to attach @barr to 2459 * @worker: worker currently executing @target, NULL if @target is not executing 2460 * 2461 * @barr is linked to @target such that @barr is completed only after 2462 * @target finishes execution. Please note that the ordering 2463 * guarantee is observed only with respect to @target and on the local 2464 * cpu. 2465 * 2466 * Currently, a queued barrier can't be canceled. This is because 2467 * try_to_grab_pending() can't determine whether the work to be 2468 * grabbed is at the head of the queue and thus can't clear LINKED 2469 * flag of the previous work while there must be a valid next work 2470 * after a work with LINKED flag set. 2471 * 2472 * Note that when @worker is non-NULL, @target may be modified 2473 * underneath us, so we can't reliably determine pwq from @target. 2474 * 2475 * CONTEXT: 2476 * spin_lock_irq(pool->lock). 2477 */ 2478 static void insert_wq_barrier(struct pool_workqueue *pwq, 2479 struct wq_barrier *barr, 2480 struct work_struct *target, struct worker *worker) 2481 { 2482 struct list_head *head; 2483 unsigned int linked = 0; 2484 2485 /* 2486 * debugobject calls are safe here even with pool->lock locked 2487 * as we know for sure that this will not trigger any of the 2488 * checks and call back into the fixup functions where we 2489 * might deadlock. 2490 */ 2491 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2492 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2493 2494 init_completion_map(&barr->done, &target->lockdep_map); 2495 2496 barr->task = current; 2497 2498 /* 2499 * If @target is currently being executed, schedule the 2500 * barrier to the worker; otherwise, put it after @target. 2501 */ 2502 if (worker) 2503 head = worker->scheduled.next; 2504 else { 2505 unsigned long *bits = work_data_bits(target); 2506 2507 head = target->entry.next; 2508 /* there can already be other linked works, inherit and set */ 2509 linked = *bits & WORK_STRUCT_LINKED; 2510 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2511 } 2512 2513 debug_work_activate(&barr->work); 2514 insert_work(pwq, &barr->work, head, 2515 work_color_to_flags(WORK_NO_COLOR) | linked); 2516 } 2517 2518 /** 2519 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2520 * @wq: workqueue being flushed 2521 * @flush_color: new flush color, < 0 for no-op 2522 * @work_color: new work color, < 0 for no-op 2523 * 2524 * Prepare pwqs for workqueue flushing. 2525 * 2526 * If @flush_color is non-negative, flush_color on all pwqs should be 2527 * -1. If no pwq has in-flight commands at the specified color, all 2528 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2529 * has in flight commands, its pwq->flush_color is set to 2530 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2531 * wakeup logic is armed and %true is returned. 2532 * 2533 * The caller should have initialized @wq->first_flusher prior to 2534 * calling this function with non-negative @flush_color. If 2535 * @flush_color is negative, no flush color update is done and %false 2536 * is returned. 2537 * 2538 * If @work_color is non-negative, all pwqs should have the same 2539 * work_color which is previous to @work_color and all will be 2540 * advanced to @work_color. 2541 * 2542 * CONTEXT: 2543 * mutex_lock(wq->mutex). 2544 * 2545 * Return: 2546 * %true if @flush_color >= 0 and there's something to flush. %false 2547 * otherwise. 2548 */ 2549 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2550 int flush_color, int work_color) 2551 { 2552 bool wait = false; 2553 struct pool_workqueue *pwq; 2554 2555 if (flush_color >= 0) { 2556 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2557 atomic_set(&wq->nr_pwqs_to_flush, 1); 2558 } 2559 2560 for_each_pwq(pwq, wq) { 2561 struct worker_pool *pool = pwq->pool; 2562 2563 spin_lock_irq(&pool->lock); 2564 2565 if (flush_color >= 0) { 2566 WARN_ON_ONCE(pwq->flush_color != -1); 2567 2568 if (pwq->nr_in_flight[flush_color]) { 2569 pwq->flush_color = flush_color; 2570 atomic_inc(&wq->nr_pwqs_to_flush); 2571 wait = true; 2572 } 2573 } 2574 2575 if (work_color >= 0) { 2576 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2577 pwq->work_color = work_color; 2578 } 2579 2580 spin_unlock_irq(&pool->lock); 2581 } 2582 2583 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2584 complete(&wq->first_flusher->done); 2585 2586 return wait; 2587 } 2588 2589 /** 2590 * flush_workqueue - ensure that any scheduled work has run to completion. 2591 * @wq: workqueue to flush 2592 * 2593 * This function sleeps until all work items which were queued on entry 2594 * have finished execution, but it is not livelocked by new incoming ones. 2595 */ 2596 void flush_workqueue(struct workqueue_struct *wq) 2597 { 2598 struct wq_flusher this_flusher = { 2599 .list = LIST_HEAD_INIT(this_flusher.list), 2600 .flush_color = -1, 2601 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 2602 }; 2603 int next_color; 2604 2605 if (WARN_ON(!wq_online)) 2606 return; 2607 2608 mutex_lock(&wq->mutex); 2609 2610 /* 2611 * Start-to-wait phase 2612 */ 2613 next_color = work_next_color(wq->work_color); 2614 2615 if (next_color != wq->flush_color) { 2616 /* 2617 * Color space is not full. The current work_color 2618 * becomes our flush_color and work_color is advanced 2619 * by one. 2620 */ 2621 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2622 this_flusher.flush_color = wq->work_color; 2623 wq->work_color = next_color; 2624 2625 if (!wq->first_flusher) { 2626 /* no flush in progress, become the first flusher */ 2627 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2628 2629 wq->first_flusher = &this_flusher; 2630 2631 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2632 wq->work_color)) { 2633 /* nothing to flush, done */ 2634 wq->flush_color = next_color; 2635 wq->first_flusher = NULL; 2636 goto out_unlock; 2637 } 2638 } else { 2639 /* wait in queue */ 2640 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2641 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2642 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2643 } 2644 } else { 2645 /* 2646 * Oops, color space is full, wait on overflow queue. 2647 * The next flush completion will assign us 2648 * flush_color and transfer to flusher_queue. 2649 */ 2650 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2651 } 2652 2653 check_flush_dependency(wq, NULL); 2654 2655 mutex_unlock(&wq->mutex); 2656 2657 wait_for_completion(&this_flusher.done); 2658 2659 /* 2660 * Wake-up-and-cascade phase 2661 * 2662 * First flushers are responsible for cascading flushes and 2663 * handling overflow. Non-first flushers can simply return. 2664 */ 2665 if (wq->first_flusher != &this_flusher) 2666 return; 2667 2668 mutex_lock(&wq->mutex); 2669 2670 /* we might have raced, check again with mutex held */ 2671 if (wq->first_flusher != &this_flusher) 2672 goto out_unlock; 2673 2674 wq->first_flusher = NULL; 2675 2676 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2677 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2678 2679 while (true) { 2680 struct wq_flusher *next, *tmp; 2681 2682 /* complete all the flushers sharing the current flush color */ 2683 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2684 if (next->flush_color != wq->flush_color) 2685 break; 2686 list_del_init(&next->list); 2687 complete(&next->done); 2688 } 2689 2690 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2691 wq->flush_color != work_next_color(wq->work_color)); 2692 2693 /* this flush_color is finished, advance by one */ 2694 wq->flush_color = work_next_color(wq->flush_color); 2695 2696 /* one color has been freed, handle overflow queue */ 2697 if (!list_empty(&wq->flusher_overflow)) { 2698 /* 2699 * Assign the same color to all overflowed 2700 * flushers, advance work_color and append to 2701 * flusher_queue. This is the start-to-wait 2702 * phase for these overflowed flushers. 2703 */ 2704 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2705 tmp->flush_color = wq->work_color; 2706 2707 wq->work_color = work_next_color(wq->work_color); 2708 2709 list_splice_tail_init(&wq->flusher_overflow, 2710 &wq->flusher_queue); 2711 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2712 } 2713 2714 if (list_empty(&wq->flusher_queue)) { 2715 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2716 break; 2717 } 2718 2719 /* 2720 * Need to flush more colors. Make the next flusher 2721 * the new first flusher and arm pwqs. 2722 */ 2723 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2724 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2725 2726 list_del_init(&next->list); 2727 wq->first_flusher = next; 2728 2729 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2730 break; 2731 2732 /* 2733 * Meh... this color is already done, clear first 2734 * flusher and repeat cascading. 2735 */ 2736 wq->first_flusher = NULL; 2737 } 2738 2739 out_unlock: 2740 mutex_unlock(&wq->mutex); 2741 } 2742 EXPORT_SYMBOL(flush_workqueue); 2743 2744 /** 2745 * drain_workqueue - drain a workqueue 2746 * @wq: workqueue to drain 2747 * 2748 * Wait until the workqueue becomes empty. While draining is in progress, 2749 * only chain queueing is allowed. IOW, only currently pending or running 2750 * work items on @wq can queue further work items on it. @wq is flushed 2751 * repeatedly until it becomes empty. The number of flushing is determined 2752 * by the depth of chaining and should be relatively short. Whine if it 2753 * takes too long. 2754 */ 2755 void drain_workqueue(struct workqueue_struct *wq) 2756 { 2757 unsigned int flush_cnt = 0; 2758 struct pool_workqueue *pwq; 2759 2760 /* 2761 * __queue_work() needs to test whether there are drainers, is much 2762 * hotter than drain_workqueue() and already looks at @wq->flags. 2763 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2764 */ 2765 mutex_lock(&wq->mutex); 2766 if (!wq->nr_drainers++) 2767 wq->flags |= __WQ_DRAINING; 2768 mutex_unlock(&wq->mutex); 2769 reflush: 2770 flush_workqueue(wq); 2771 2772 mutex_lock(&wq->mutex); 2773 2774 for_each_pwq(pwq, wq) { 2775 bool drained; 2776 2777 spin_lock_irq(&pwq->pool->lock); 2778 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2779 spin_unlock_irq(&pwq->pool->lock); 2780 2781 if (drained) 2782 continue; 2783 2784 if (++flush_cnt == 10 || 2785 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2786 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2787 wq->name, flush_cnt); 2788 2789 mutex_unlock(&wq->mutex); 2790 goto reflush; 2791 } 2792 2793 if (!--wq->nr_drainers) 2794 wq->flags &= ~__WQ_DRAINING; 2795 mutex_unlock(&wq->mutex); 2796 } 2797 EXPORT_SYMBOL_GPL(drain_workqueue); 2798 2799 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr) 2800 { 2801 struct worker *worker = NULL; 2802 struct worker_pool *pool; 2803 struct pool_workqueue *pwq; 2804 2805 might_sleep(); 2806 2807 local_irq_disable(); 2808 pool = get_work_pool(work); 2809 if (!pool) { 2810 local_irq_enable(); 2811 return false; 2812 } 2813 2814 spin_lock(&pool->lock); 2815 /* see the comment in try_to_grab_pending() with the same code */ 2816 pwq = get_work_pwq(work); 2817 if (pwq) { 2818 if (unlikely(pwq->pool != pool)) 2819 goto already_gone; 2820 } else { 2821 worker = find_worker_executing_work(pool, work); 2822 if (!worker) 2823 goto already_gone; 2824 pwq = worker->current_pwq; 2825 } 2826 2827 check_flush_dependency(pwq->wq, work); 2828 2829 insert_wq_barrier(pwq, barr, work, worker); 2830 spin_unlock_irq(&pool->lock); 2831 2832 /* 2833 * Force a lock recursion deadlock when using flush_work() inside a 2834 * single-threaded or rescuer equipped workqueue. 2835 * 2836 * For single threaded workqueues the deadlock happens when the work 2837 * is after the work issuing the flush_work(). For rescuer equipped 2838 * workqueues the deadlock happens when the rescuer stalls, blocking 2839 * forward progress. 2840 */ 2841 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) { 2842 lock_map_acquire(&pwq->wq->lockdep_map); 2843 lock_map_release(&pwq->wq->lockdep_map); 2844 } 2845 2846 return true; 2847 already_gone: 2848 spin_unlock_irq(&pool->lock); 2849 return false; 2850 } 2851 2852 /** 2853 * flush_work - wait for a work to finish executing the last queueing instance 2854 * @work: the work to flush 2855 * 2856 * Wait until @work has finished execution. @work is guaranteed to be idle 2857 * on return if it hasn't been requeued since flush started. 2858 * 2859 * Return: 2860 * %true if flush_work() waited for the work to finish execution, 2861 * %false if it was already idle. 2862 */ 2863 bool flush_work(struct work_struct *work) 2864 { 2865 struct wq_barrier barr; 2866 2867 if (WARN_ON(!wq_online)) 2868 return false; 2869 2870 if (start_flush_work(work, &barr)) { 2871 wait_for_completion(&barr.done); 2872 destroy_work_on_stack(&barr.work); 2873 return true; 2874 } else { 2875 return false; 2876 } 2877 } 2878 EXPORT_SYMBOL_GPL(flush_work); 2879 2880 struct cwt_wait { 2881 wait_queue_entry_t wait; 2882 struct work_struct *work; 2883 }; 2884 2885 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2886 { 2887 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 2888 2889 if (cwait->work != key) 2890 return 0; 2891 return autoremove_wake_function(wait, mode, sync, key); 2892 } 2893 2894 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 2895 { 2896 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 2897 unsigned long flags; 2898 int ret; 2899 2900 do { 2901 ret = try_to_grab_pending(work, is_dwork, &flags); 2902 /* 2903 * If someone else is already canceling, wait for it to 2904 * finish. flush_work() doesn't work for PREEMPT_NONE 2905 * because we may get scheduled between @work's completion 2906 * and the other canceling task resuming and clearing 2907 * CANCELING - flush_work() will return false immediately 2908 * as @work is no longer busy, try_to_grab_pending() will 2909 * return -ENOENT as @work is still being canceled and the 2910 * other canceling task won't be able to clear CANCELING as 2911 * we're hogging the CPU. 2912 * 2913 * Let's wait for completion using a waitqueue. As this 2914 * may lead to the thundering herd problem, use a custom 2915 * wake function which matches @work along with exclusive 2916 * wait and wakeup. 2917 */ 2918 if (unlikely(ret == -ENOENT)) { 2919 struct cwt_wait cwait; 2920 2921 init_wait(&cwait.wait); 2922 cwait.wait.func = cwt_wakefn; 2923 cwait.work = work; 2924 2925 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 2926 TASK_UNINTERRUPTIBLE); 2927 if (work_is_canceling(work)) 2928 schedule(); 2929 finish_wait(&cancel_waitq, &cwait.wait); 2930 } 2931 } while (unlikely(ret < 0)); 2932 2933 /* tell other tasks trying to grab @work to back off */ 2934 mark_work_canceling(work); 2935 local_irq_restore(flags); 2936 2937 /* 2938 * This allows canceling during early boot. We know that @work 2939 * isn't executing. 2940 */ 2941 if (wq_online) 2942 flush_work(work); 2943 2944 clear_work_data(work); 2945 2946 /* 2947 * Paired with prepare_to_wait() above so that either 2948 * waitqueue_active() is visible here or !work_is_canceling() is 2949 * visible there. 2950 */ 2951 smp_mb(); 2952 if (waitqueue_active(&cancel_waitq)) 2953 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 2954 2955 return ret; 2956 } 2957 2958 /** 2959 * cancel_work_sync - cancel a work and wait for it to finish 2960 * @work: the work to cancel 2961 * 2962 * Cancel @work and wait for its execution to finish. This function 2963 * can be used even if the work re-queues itself or migrates to 2964 * another workqueue. On return from this function, @work is 2965 * guaranteed to be not pending or executing on any CPU. 2966 * 2967 * cancel_work_sync(&delayed_work->work) must not be used for 2968 * delayed_work's. Use cancel_delayed_work_sync() instead. 2969 * 2970 * The caller must ensure that the workqueue on which @work was last 2971 * queued can't be destroyed before this function returns. 2972 * 2973 * Return: 2974 * %true if @work was pending, %false otherwise. 2975 */ 2976 bool cancel_work_sync(struct work_struct *work) 2977 { 2978 return __cancel_work_timer(work, false); 2979 } 2980 EXPORT_SYMBOL_GPL(cancel_work_sync); 2981 2982 /** 2983 * flush_delayed_work - wait for a dwork to finish executing the last queueing 2984 * @dwork: the delayed work to flush 2985 * 2986 * Delayed timer is cancelled and the pending work is queued for 2987 * immediate execution. Like flush_work(), this function only 2988 * considers the last queueing instance of @dwork. 2989 * 2990 * Return: 2991 * %true if flush_work() waited for the work to finish execution, 2992 * %false if it was already idle. 2993 */ 2994 bool flush_delayed_work(struct delayed_work *dwork) 2995 { 2996 local_irq_disable(); 2997 if (del_timer_sync(&dwork->timer)) 2998 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2999 local_irq_enable(); 3000 return flush_work(&dwork->work); 3001 } 3002 EXPORT_SYMBOL(flush_delayed_work); 3003 3004 static bool __cancel_work(struct work_struct *work, bool is_dwork) 3005 { 3006 unsigned long flags; 3007 int ret; 3008 3009 do { 3010 ret = try_to_grab_pending(work, is_dwork, &flags); 3011 } while (unlikely(ret == -EAGAIN)); 3012 3013 if (unlikely(ret < 0)) 3014 return false; 3015 3016 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 3017 local_irq_restore(flags); 3018 return ret; 3019 } 3020 3021 /* 3022 * See cancel_delayed_work() 3023 */ 3024 bool cancel_work(struct work_struct *work) 3025 { 3026 return __cancel_work(work, false); 3027 } 3028 3029 /** 3030 * cancel_delayed_work - cancel a delayed work 3031 * @dwork: delayed_work to cancel 3032 * 3033 * Kill off a pending delayed_work. 3034 * 3035 * Return: %true if @dwork was pending and canceled; %false if it wasn't 3036 * pending. 3037 * 3038 * Note: 3039 * The work callback function may still be running on return, unless 3040 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 3041 * use cancel_delayed_work_sync() to wait on it. 3042 * 3043 * This function is safe to call from any context including IRQ handler. 3044 */ 3045 bool cancel_delayed_work(struct delayed_work *dwork) 3046 { 3047 return __cancel_work(&dwork->work, true); 3048 } 3049 EXPORT_SYMBOL(cancel_delayed_work); 3050 3051 /** 3052 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3053 * @dwork: the delayed work cancel 3054 * 3055 * This is cancel_work_sync() for delayed works. 3056 * 3057 * Return: 3058 * %true if @dwork was pending, %false otherwise. 3059 */ 3060 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3061 { 3062 return __cancel_work_timer(&dwork->work, true); 3063 } 3064 EXPORT_SYMBOL(cancel_delayed_work_sync); 3065 3066 /** 3067 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3068 * @func: the function to call 3069 * 3070 * schedule_on_each_cpu() executes @func on each online CPU using the 3071 * system workqueue and blocks until all CPUs have completed. 3072 * schedule_on_each_cpu() is very slow. 3073 * 3074 * Return: 3075 * 0 on success, -errno on failure. 3076 */ 3077 int schedule_on_each_cpu(work_func_t func) 3078 { 3079 int cpu; 3080 struct work_struct __percpu *works; 3081 3082 works = alloc_percpu(struct work_struct); 3083 if (!works) 3084 return -ENOMEM; 3085 3086 get_online_cpus(); 3087 3088 for_each_online_cpu(cpu) { 3089 struct work_struct *work = per_cpu_ptr(works, cpu); 3090 3091 INIT_WORK(work, func); 3092 schedule_work_on(cpu, work); 3093 } 3094 3095 for_each_online_cpu(cpu) 3096 flush_work(per_cpu_ptr(works, cpu)); 3097 3098 put_online_cpus(); 3099 free_percpu(works); 3100 return 0; 3101 } 3102 3103 /** 3104 * execute_in_process_context - reliably execute the routine with user context 3105 * @fn: the function to execute 3106 * @ew: guaranteed storage for the execute work structure (must 3107 * be available when the work executes) 3108 * 3109 * Executes the function immediately if process context is available, 3110 * otherwise schedules the function for delayed execution. 3111 * 3112 * Return: 0 - function was executed 3113 * 1 - function was scheduled for execution 3114 */ 3115 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3116 { 3117 if (!in_interrupt()) { 3118 fn(&ew->work); 3119 return 0; 3120 } 3121 3122 INIT_WORK(&ew->work, fn); 3123 schedule_work(&ew->work); 3124 3125 return 1; 3126 } 3127 EXPORT_SYMBOL_GPL(execute_in_process_context); 3128 3129 /** 3130 * free_workqueue_attrs - free a workqueue_attrs 3131 * @attrs: workqueue_attrs to free 3132 * 3133 * Undo alloc_workqueue_attrs(). 3134 */ 3135 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3136 { 3137 if (attrs) { 3138 free_cpumask_var(attrs->cpumask); 3139 kfree(attrs); 3140 } 3141 } 3142 3143 /** 3144 * alloc_workqueue_attrs - allocate a workqueue_attrs 3145 * @gfp_mask: allocation mask to use 3146 * 3147 * Allocate a new workqueue_attrs, initialize with default settings and 3148 * return it. 3149 * 3150 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3151 */ 3152 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask) 3153 { 3154 struct workqueue_attrs *attrs; 3155 3156 attrs = kzalloc(sizeof(*attrs), gfp_mask); 3157 if (!attrs) 3158 goto fail; 3159 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask)) 3160 goto fail; 3161 3162 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3163 return attrs; 3164 fail: 3165 free_workqueue_attrs(attrs); 3166 return NULL; 3167 } 3168 3169 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3170 const struct workqueue_attrs *from) 3171 { 3172 to->nice = from->nice; 3173 cpumask_copy(to->cpumask, from->cpumask); 3174 /* 3175 * Unlike hash and equality test, this function doesn't ignore 3176 * ->no_numa as it is used for both pool and wq attrs. Instead, 3177 * get_unbound_pool() explicitly clears ->no_numa after copying. 3178 */ 3179 to->no_numa = from->no_numa; 3180 } 3181 3182 /* hash value of the content of @attr */ 3183 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3184 { 3185 u32 hash = 0; 3186 3187 hash = jhash_1word(attrs->nice, hash); 3188 hash = jhash(cpumask_bits(attrs->cpumask), 3189 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3190 return hash; 3191 } 3192 3193 /* content equality test */ 3194 static bool wqattrs_equal(const struct workqueue_attrs *a, 3195 const struct workqueue_attrs *b) 3196 { 3197 if (a->nice != b->nice) 3198 return false; 3199 if (!cpumask_equal(a->cpumask, b->cpumask)) 3200 return false; 3201 return true; 3202 } 3203 3204 /** 3205 * init_worker_pool - initialize a newly zalloc'd worker_pool 3206 * @pool: worker_pool to initialize 3207 * 3208 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3209 * 3210 * Return: 0 on success, -errno on failure. Even on failure, all fields 3211 * inside @pool proper are initialized and put_unbound_pool() can be called 3212 * on @pool safely to release it. 3213 */ 3214 static int init_worker_pool(struct worker_pool *pool) 3215 { 3216 spin_lock_init(&pool->lock); 3217 pool->id = -1; 3218 pool->cpu = -1; 3219 pool->node = NUMA_NO_NODE; 3220 pool->flags |= POOL_DISASSOCIATED; 3221 pool->watchdog_ts = jiffies; 3222 INIT_LIST_HEAD(&pool->worklist); 3223 INIT_LIST_HEAD(&pool->idle_list); 3224 hash_init(pool->busy_hash); 3225 3226 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 3227 3228 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 3229 3230 mutex_init(&pool->attach_mutex); 3231 INIT_LIST_HEAD(&pool->workers); 3232 3233 ida_init(&pool->worker_ida); 3234 INIT_HLIST_NODE(&pool->hash_node); 3235 pool->refcnt = 1; 3236 3237 /* shouldn't fail above this point */ 3238 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL); 3239 if (!pool->attrs) 3240 return -ENOMEM; 3241 return 0; 3242 } 3243 3244 static void rcu_free_wq(struct rcu_head *rcu) 3245 { 3246 struct workqueue_struct *wq = 3247 container_of(rcu, struct workqueue_struct, rcu); 3248 3249 if (!(wq->flags & WQ_UNBOUND)) 3250 free_percpu(wq->cpu_pwqs); 3251 else 3252 free_workqueue_attrs(wq->unbound_attrs); 3253 3254 kfree(wq->rescuer); 3255 kfree(wq); 3256 } 3257 3258 static void rcu_free_pool(struct rcu_head *rcu) 3259 { 3260 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3261 3262 ida_destroy(&pool->worker_ida); 3263 free_workqueue_attrs(pool->attrs); 3264 kfree(pool); 3265 } 3266 3267 /** 3268 * put_unbound_pool - put a worker_pool 3269 * @pool: worker_pool to put 3270 * 3271 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU 3272 * safe manner. get_unbound_pool() calls this function on its failure path 3273 * and this function should be able to release pools which went through, 3274 * successfully or not, init_worker_pool(). 3275 * 3276 * Should be called with wq_pool_mutex held. 3277 */ 3278 static void put_unbound_pool(struct worker_pool *pool) 3279 { 3280 DECLARE_COMPLETION_ONSTACK(detach_completion); 3281 struct worker *worker; 3282 3283 lockdep_assert_held(&wq_pool_mutex); 3284 3285 if (--pool->refcnt) 3286 return; 3287 3288 /* sanity checks */ 3289 if (WARN_ON(!(pool->cpu < 0)) || 3290 WARN_ON(!list_empty(&pool->worklist))) 3291 return; 3292 3293 /* release id and unhash */ 3294 if (pool->id >= 0) 3295 idr_remove(&worker_pool_idr, pool->id); 3296 hash_del(&pool->hash_node); 3297 3298 /* 3299 * Become the manager and destroy all workers. This prevents 3300 * @pool's workers from blocking on attach_mutex. We're the last 3301 * manager and @pool gets freed with the flag set. 3302 */ 3303 spin_lock_irq(&pool->lock); 3304 wait_event_lock_irq(wq_manager_wait, 3305 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock); 3306 pool->flags |= POOL_MANAGER_ACTIVE; 3307 3308 while ((worker = first_idle_worker(pool))) 3309 destroy_worker(worker); 3310 WARN_ON(pool->nr_workers || pool->nr_idle); 3311 spin_unlock_irq(&pool->lock); 3312 3313 mutex_lock(&pool->attach_mutex); 3314 if (!list_empty(&pool->workers)) 3315 pool->detach_completion = &detach_completion; 3316 mutex_unlock(&pool->attach_mutex); 3317 3318 if (pool->detach_completion) 3319 wait_for_completion(pool->detach_completion); 3320 3321 /* shut down the timers */ 3322 del_timer_sync(&pool->idle_timer); 3323 del_timer_sync(&pool->mayday_timer); 3324 3325 /* sched-RCU protected to allow dereferences from get_work_pool() */ 3326 call_rcu_sched(&pool->rcu, rcu_free_pool); 3327 } 3328 3329 /** 3330 * get_unbound_pool - get a worker_pool with the specified attributes 3331 * @attrs: the attributes of the worker_pool to get 3332 * 3333 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3334 * reference count and return it. If there already is a matching 3335 * worker_pool, it will be used; otherwise, this function attempts to 3336 * create a new one. 3337 * 3338 * Should be called with wq_pool_mutex held. 3339 * 3340 * Return: On success, a worker_pool with the same attributes as @attrs. 3341 * On failure, %NULL. 3342 */ 3343 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3344 { 3345 u32 hash = wqattrs_hash(attrs); 3346 struct worker_pool *pool; 3347 int node; 3348 int target_node = NUMA_NO_NODE; 3349 3350 lockdep_assert_held(&wq_pool_mutex); 3351 3352 /* do we already have a matching pool? */ 3353 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3354 if (wqattrs_equal(pool->attrs, attrs)) { 3355 pool->refcnt++; 3356 return pool; 3357 } 3358 } 3359 3360 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3361 if (wq_numa_enabled) { 3362 for_each_node(node) { 3363 if (cpumask_subset(attrs->cpumask, 3364 wq_numa_possible_cpumask[node])) { 3365 target_node = node; 3366 break; 3367 } 3368 } 3369 } 3370 3371 /* nope, create a new one */ 3372 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3373 if (!pool || init_worker_pool(pool) < 0) 3374 goto fail; 3375 3376 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3377 copy_workqueue_attrs(pool->attrs, attrs); 3378 pool->node = target_node; 3379 3380 /* 3381 * no_numa isn't a worker_pool attribute, always clear it. See 3382 * 'struct workqueue_attrs' comments for detail. 3383 */ 3384 pool->attrs->no_numa = false; 3385 3386 if (worker_pool_assign_id(pool) < 0) 3387 goto fail; 3388 3389 /* create and start the initial worker */ 3390 if (wq_online && !create_worker(pool)) 3391 goto fail; 3392 3393 /* install */ 3394 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3395 3396 return pool; 3397 fail: 3398 if (pool) 3399 put_unbound_pool(pool); 3400 return NULL; 3401 } 3402 3403 static void rcu_free_pwq(struct rcu_head *rcu) 3404 { 3405 kmem_cache_free(pwq_cache, 3406 container_of(rcu, struct pool_workqueue, rcu)); 3407 } 3408 3409 /* 3410 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3411 * and needs to be destroyed. 3412 */ 3413 static void pwq_unbound_release_workfn(struct work_struct *work) 3414 { 3415 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3416 unbound_release_work); 3417 struct workqueue_struct *wq = pwq->wq; 3418 struct worker_pool *pool = pwq->pool; 3419 bool is_last; 3420 3421 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3422 return; 3423 3424 mutex_lock(&wq->mutex); 3425 list_del_rcu(&pwq->pwqs_node); 3426 is_last = list_empty(&wq->pwqs); 3427 mutex_unlock(&wq->mutex); 3428 3429 mutex_lock(&wq_pool_mutex); 3430 put_unbound_pool(pool); 3431 mutex_unlock(&wq_pool_mutex); 3432 3433 call_rcu_sched(&pwq->rcu, rcu_free_pwq); 3434 3435 /* 3436 * If we're the last pwq going away, @wq is already dead and no one 3437 * is gonna access it anymore. Schedule RCU free. 3438 */ 3439 if (is_last) 3440 call_rcu_sched(&wq->rcu, rcu_free_wq); 3441 } 3442 3443 /** 3444 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3445 * @pwq: target pool_workqueue 3446 * 3447 * If @pwq isn't freezing, set @pwq->max_active to the associated 3448 * workqueue's saved_max_active and activate delayed work items 3449 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3450 */ 3451 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3452 { 3453 struct workqueue_struct *wq = pwq->wq; 3454 bool freezable = wq->flags & WQ_FREEZABLE; 3455 unsigned long flags; 3456 3457 /* for @wq->saved_max_active */ 3458 lockdep_assert_held(&wq->mutex); 3459 3460 /* fast exit for non-freezable wqs */ 3461 if (!freezable && pwq->max_active == wq->saved_max_active) 3462 return; 3463 3464 /* this function can be called during early boot w/ irq disabled */ 3465 spin_lock_irqsave(&pwq->pool->lock, flags); 3466 3467 /* 3468 * During [un]freezing, the caller is responsible for ensuring that 3469 * this function is called at least once after @workqueue_freezing 3470 * is updated and visible. 3471 */ 3472 if (!freezable || !workqueue_freezing) { 3473 pwq->max_active = wq->saved_max_active; 3474 3475 while (!list_empty(&pwq->delayed_works) && 3476 pwq->nr_active < pwq->max_active) 3477 pwq_activate_first_delayed(pwq); 3478 3479 /* 3480 * Need to kick a worker after thawed or an unbound wq's 3481 * max_active is bumped. It's a slow path. Do it always. 3482 */ 3483 wake_up_worker(pwq->pool); 3484 } else { 3485 pwq->max_active = 0; 3486 } 3487 3488 spin_unlock_irqrestore(&pwq->pool->lock, flags); 3489 } 3490 3491 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3492 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3493 struct worker_pool *pool) 3494 { 3495 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3496 3497 memset(pwq, 0, sizeof(*pwq)); 3498 3499 pwq->pool = pool; 3500 pwq->wq = wq; 3501 pwq->flush_color = -1; 3502 pwq->refcnt = 1; 3503 INIT_LIST_HEAD(&pwq->delayed_works); 3504 INIT_LIST_HEAD(&pwq->pwqs_node); 3505 INIT_LIST_HEAD(&pwq->mayday_node); 3506 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3507 } 3508 3509 /* sync @pwq with the current state of its associated wq and link it */ 3510 static void link_pwq(struct pool_workqueue *pwq) 3511 { 3512 struct workqueue_struct *wq = pwq->wq; 3513 3514 lockdep_assert_held(&wq->mutex); 3515 3516 /* may be called multiple times, ignore if already linked */ 3517 if (!list_empty(&pwq->pwqs_node)) 3518 return; 3519 3520 /* set the matching work_color */ 3521 pwq->work_color = wq->work_color; 3522 3523 /* sync max_active to the current setting */ 3524 pwq_adjust_max_active(pwq); 3525 3526 /* link in @pwq */ 3527 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3528 } 3529 3530 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3531 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3532 const struct workqueue_attrs *attrs) 3533 { 3534 struct worker_pool *pool; 3535 struct pool_workqueue *pwq; 3536 3537 lockdep_assert_held(&wq_pool_mutex); 3538 3539 pool = get_unbound_pool(attrs); 3540 if (!pool) 3541 return NULL; 3542 3543 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3544 if (!pwq) { 3545 put_unbound_pool(pool); 3546 return NULL; 3547 } 3548 3549 init_pwq(pwq, wq, pool); 3550 return pwq; 3551 } 3552 3553 /** 3554 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3555 * @attrs: the wq_attrs of the default pwq of the target workqueue 3556 * @node: the target NUMA node 3557 * @cpu_going_down: if >= 0, the CPU to consider as offline 3558 * @cpumask: outarg, the resulting cpumask 3559 * 3560 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3561 * @cpu_going_down is >= 0, that cpu is considered offline during 3562 * calculation. The result is stored in @cpumask. 3563 * 3564 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3565 * enabled and @node has online CPUs requested by @attrs, the returned 3566 * cpumask is the intersection of the possible CPUs of @node and 3567 * @attrs->cpumask. 3568 * 3569 * The caller is responsible for ensuring that the cpumask of @node stays 3570 * stable. 3571 * 3572 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3573 * %false if equal. 3574 */ 3575 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3576 int cpu_going_down, cpumask_t *cpumask) 3577 { 3578 if (!wq_numa_enabled || attrs->no_numa) 3579 goto use_dfl; 3580 3581 /* does @node have any online CPUs @attrs wants? */ 3582 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3583 if (cpu_going_down >= 0) 3584 cpumask_clear_cpu(cpu_going_down, cpumask); 3585 3586 if (cpumask_empty(cpumask)) 3587 goto use_dfl; 3588 3589 /* yeap, return possible CPUs in @node that @attrs wants */ 3590 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3591 3592 if (cpumask_empty(cpumask)) { 3593 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 3594 "possible intersect\n"); 3595 return false; 3596 } 3597 3598 return !cpumask_equal(cpumask, attrs->cpumask); 3599 3600 use_dfl: 3601 cpumask_copy(cpumask, attrs->cpumask); 3602 return false; 3603 } 3604 3605 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3606 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3607 int node, 3608 struct pool_workqueue *pwq) 3609 { 3610 struct pool_workqueue *old_pwq; 3611 3612 lockdep_assert_held(&wq_pool_mutex); 3613 lockdep_assert_held(&wq->mutex); 3614 3615 /* link_pwq() can handle duplicate calls */ 3616 link_pwq(pwq); 3617 3618 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3619 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3620 return old_pwq; 3621 } 3622 3623 /* context to store the prepared attrs & pwqs before applying */ 3624 struct apply_wqattrs_ctx { 3625 struct workqueue_struct *wq; /* target workqueue */ 3626 struct workqueue_attrs *attrs; /* attrs to apply */ 3627 struct list_head list; /* queued for batching commit */ 3628 struct pool_workqueue *dfl_pwq; 3629 struct pool_workqueue *pwq_tbl[]; 3630 }; 3631 3632 /* free the resources after success or abort */ 3633 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 3634 { 3635 if (ctx) { 3636 int node; 3637 3638 for_each_node(node) 3639 put_pwq_unlocked(ctx->pwq_tbl[node]); 3640 put_pwq_unlocked(ctx->dfl_pwq); 3641 3642 free_workqueue_attrs(ctx->attrs); 3643 3644 kfree(ctx); 3645 } 3646 } 3647 3648 /* allocate the attrs and pwqs for later installation */ 3649 static struct apply_wqattrs_ctx * 3650 apply_wqattrs_prepare(struct workqueue_struct *wq, 3651 const struct workqueue_attrs *attrs) 3652 { 3653 struct apply_wqattrs_ctx *ctx; 3654 struct workqueue_attrs *new_attrs, *tmp_attrs; 3655 int node; 3656 3657 lockdep_assert_held(&wq_pool_mutex); 3658 3659 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]), 3660 GFP_KERNEL); 3661 3662 new_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3663 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3664 if (!ctx || !new_attrs || !tmp_attrs) 3665 goto out_free; 3666 3667 /* 3668 * Calculate the attrs of the default pwq. 3669 * If the user configured cpumask doesn't overlap with the 3670 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 3671 */ 3672 copy_workqueue_attrs(new_attrs, attrs); 3673 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask); 3674 if (unlikely(cpumask_empty(new_attrs->cpumask))) 3675 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask); 3676 3677 /* 3678 * We may create multiple pwqs with differing cpumasks. Make a 3679 * copy of @new_attrs which will be modified and used to obtain 3680 * pools. 3681 */ 3682 copy_workqueue_attrs(tmp_attrs, new_attrs); 3683 3684 /* 3685 * If something goes wrong during CPU up/down, we'll fall back to 3686 * the default pwq covering whole @attrs->cpumask. Always create 3687 * it even if we don't use it immediately. 3688 */ 3689 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3690 if (!ctx->dfl_pwq) 3691 goto out_free; 3692 3693 for_each_node(node) { 3694 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 3695 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3696 if (!ctx->pwq_tbl[node]) 3697 goto out_free; 3698 } else { 3699 ctx->dfl_pwq->refcnt++; 3700 ctx->pwq_tbl[node] = ctx->dfl_pwq; 3701 } 3702 } 3703 3704 /* save the user configured attrs and sanitize it. */ 3705 copy_workqueue_attrs(new_attrs, attrs); 3706 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3707 ctx->attrs = new_attrs; 3708 3709 ctx->wq = wq; 3710 free_workqueue_attrs(tmp_attrs); 3711 return ctx; 3712 3713 out_free: 3714 free_workqueue_attrs(tmp_attrs); 3715 free_workqueue_attrs(new_attrs); 3716 apply_wqattrs_cleanup(ctx); 3717 return NULL; 3718 } 3719 3720 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 3721 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 3722 { 3723 int node; 3724 3725 /* all pwqs have been created successfully, let's install'em */ 3726 mutex_lock(&ctx->wq->mutex); 3727 3728 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 3729 3730 /* save the previous pwq and install the new one */ 3731 for_each_node(node) 3732 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 3733 ctx->pwq_tbl[node]); 3734 3735 /* @dfl_pwq might not have been used, ensure it's linked */ 3736 link_pwq(ctx->dfl_pwq); 3737 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 3738 3739 mutex_unlock(&ctx->wq->mutex); 3740 } 3741 3742 static void apply_wqattrs_lock(void) 3743 { 3744 /* CPUs should stay stable across pwq creations and installations */ 3745 get_online_cpus(); 3746 mutex_lock(&wq_pool_mutex); 3747 } 3748 3749 static void apply_wqattrs_unlock(void) 3750 { 3751 mutex_unlock(&wq_pool_mutex); 3752 put_online_cpus(); 3753 } 3754 3755 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 3756 const struct workqueue_attrs *attrs) 3757 { 3758 struct apply_wqattrs_ctx *ctx; 3759 3760 /* only unbound workqueues can change attributes */ 3761 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 3762 return -EINVAL; 3763 3764 /* creating multiple pwqs breaks ordering guarantee */ 3765 if (!list_empty(&wq->pwqs)) { 3766 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 3767 return -EINVAL; 3768 3769 wq->flags &= ~__WQ_ORDERED; 3770 } 3771 3772 ctx = apply_wqattrs_prepare(wq, attrs); 3773 if (!ctx) 3774 return -ENOMEM; 3775 3776 /* the ctx has been prepared successfully, let's commit it */ 3777 apply_wqattrs_commit(ctx); 3778 apply_wqattrs_cleanup(ctx); 3779 3780 return 0; 3781 } 3782 3783 /** 3784 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 3785 * @wq: the target workqueue 3786 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 3787 * 3788 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 3789 * machines, this function maps a separate pwq to each NUMA node with 3790 * possibles CPUs in @attrs->cpumask so that work items are affine to the 3791 * NUMA node it was issued on. Older pwqs are released as in-flight work 3792 * items finish. Note that a work item which repeatedly requeues itself 3793 * back-to-back will stay on its current pwq. 3794 * 3795 * Performs GFP_KERNEL allocations. 3796 * 3797 * Return: 0 on success and -errno on failure. 3798 */ 3799 int apply_workqueue_attrs(struct workqueue_struct *wq, 3800 const struct workqueue_attrs *attrs) 3801 { 3802 int ret; 3803 3804 apply_wqattrs_lock(); 3805 ret = apply_workqueue_attrs_locked(wq, attrs); 3806 apply_wqattrs_unlock(); 3807 3808 return ret; 3809 } 3810 EXPORT_SYMBOL_GPL(apply_workqueue_attrs); 3811 3812 /** 3813 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 3814 * @wq: the target workqueue 3815 * @cpu: the CPU coming up or going down 3816 * @online: whether @cpu is coming up or going down 3817 * 3818 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 3819 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 3820 * @wq accordingly. 3821 * 3822 * If NUMA affinity can't be adjusted due to memory allocation failure, it 3823 * falls back to @wq->dfl_pwq which may not be optimal but is always 3824 * correct. 3825 * 3826 * Note that when the last allowed CPU of a NUMA node goes offline for a 3827 * workqueue with a cpumask spanning multiple nodes, the workers which were 3828 * already executing the work items for the workqueue will lose their CPU 3829 * affinity and may execute on any CPU. This is similar to how per-cpu 3830 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 3831 * affinity, it's the user's responsibility to flush the work item from 3832 * CPU_DOWN_PREPARE. 3833 */ 3834 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 3835 bool online) 3836 { 3837 int node = cpu_to_node(cpu); 3838 int cpu_off = online ? -1 : cpu; 3839 struct pool_workqueue *old_pwq = NULL, *pwq; 3840 struct workqueue_attrs *target_attrs; 3841 cpumask_t *cpumask; 3842 3843 lockdep_assert_held(&wq_pool_mutex); 3844 3845 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 3846 wq->unbound_attrs->no_numa) 3847 return; 3848 3849 /* 3850 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 3851 * Let's use a preallocated one. The following buf is protected by 3852 * CPU hotplug exclusion. 3853 */ 3854 target_attrs = wq_update_unbound_numa_attrs_buf; 3855 cpumask = target_attrs->cpumask; 3856 3857 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 3858 pwq = unbound_pwq_by_node(wq, node); 3859 3860 /* 3861 * Let's determine what needs to be done. If the target cpumask is 3862 * different from the default pwq's, we need to compare it to @pwq's 3863 * and create a new one if they don't match. If the target cpumask 3864 * equals the default pwq's, the default pwq should be used. 3865 */ 3866 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 3867 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 3868 return; 3869 } else { 3870 goto use_dfl_pwq; 3871 } 3872 3873 /* create a new pwq */ 3874 pwq = alloc_unbound_pwq(wq, target_attrs); 3875 if (!pwq) { 3876 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 3877 wq->name); 3878 goto use_dfl_pwq; 3879 } 3880 3881 /* Install the new pwq. */ 3882 mutex_lock(&wq->mutex); 3883 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 3884 goto out_unlock; 3885 3886 use_dfl_pwq: 3887 mutex_lock(&wq->mutex); 3888 spin_lock_irq(&wq->dfl_pwq->pool->lock); 3889 get_pwq(wq->dfl_pwq); 3890 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 3891 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 3892 out_unlock: 3893 mutex_unlock(&wq->mutex); 3894 put_pwq_unlocked(old_pwq); 3895 } 3896 3897 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 3898 { 3899 bool highpri = wq->flags & WQ_HIGHPRI; 3900 int cpu, ret; 3901 3902 if (!(wq->flags & WQ_UNBOUND)) { 3903 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 3904 if (!wq->cpu_pwqs) 3905 return -ENOMEM; 3906 3907 for_each_possible_cpu(cpu) { 3908 struct pool_workqueue *pwq = 3909 per_cpu_ptr(wq->cpu_pwqs, cpu); 3910 struct worker_pool *cpu_pools = 3911 per_cpu(cpu_worker_pools, cpu); 3912 3913 init_pwq(pwq, wq, &cpu_pools[highpri]); 3914 3915 mutex_lock(&wq->mutex); 3916 link_pwq(pwq); 3917 mutex_unlock(&wq->mutex); 3918 } 3919 return 0; 3920 } else if (wq->flags & __WQ_ORDERED) { 3921 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 3922 /* there should only be single pwq for ordering guarantee */ 3923 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 3924 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 3925 "ordering guarantee broken for workqueue %s\n", wq->name); 3926 return ret; 3927 } else { 3928 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 3929 } 3930 } 3931 3932 static int wq_clamp_max_active(int max_active, unsigned int flags, 3933 const char *name) 3934 { 3935 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 3936 3937 if (max_active < 1 || max_active > lim) 3938 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 3939 max_active, name, 1, lim); 3940 3941 return clamp_val(max_active, 1, lim); 3942 } 3943 3944 /* 3945 * Workqueues which may be used during memory reclaim should have a rescuer 3946 * to guarantee forward progress. 3947 */ 3948 static int init_rescuer(struct workqueue_struct *wq) 3949 { 3950 struct worker *rescuer; 3951 int ret; 3952 3953 if (!(wq->flags & WQ_MEM_RECLAIM)) 3954 return 0; 3955 3956 rescuer = alloc_worker(NUMA_NO_NODE); 3957 if (!rescuer) 3958 return -ENOMEM; 3959 3960 rescuer->rescue_wq = wq; 3961 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name); 3962 ret = PTR_ERR_OR_ZERO(rescuer->task); 3963 if (ret) { 3964 kfree(rescuer); 3965 return ret; 3966 } 3967 3968 wq->rescuer = rescuer; 3969 kthread_bind_mask(rescuer->task, cpu_possible_mask); 3970 wake_up_process(rescuer->task); 3971 3972 return 0; 3973 } 3974 3975 struct workqueue_struct *__alloc_workqueue_key(const char *fmt, 3976 unsigned int flags, 3977 int max_active, 3978 struct lock_class_key *key, 3979 const char *lock_name, ...) 3980 { 3981 size_t tbl_size = 0; 3982 va_list args; 3983 struct workqueue_struct *wq; 3984 struct pool_workqueue *pwq; 3985 3986 /* 3987 * Unbound && max_active == 1 used to imply ordered, which is no 3988 * longer the case on NUMA machines due to per-node pools. While 3989 * alloc_ordered_workqueue() is the right way to create an ordered 3990 * workqueue, keep the previous behavior to avoid subtle breakages 3991 * on NUMA. 3992 */ 3993 if ((flags & WQ_UNBOUND) && max_active == 1) 3994 flags |= __WQ_ORDERED; 3995 3996 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 3997 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 3998 flags |= WQ_UNBOUND; 3999 4000 /* allocate wq and format name */ 4001 if (flags & WQ_UNBOUND) 4002 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 4003 4004 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4005 if (!wq) 4006 return NULL; 4007 4008 if (flags & WQ_UNBOUND) { 4009 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL); 4010 if (!wq->unbound_attrs) 4011 goto err_free_wq; 4012 } 4013 4014 va_start(args, lock_name); 4015 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4016 va_end(args); 4017 4018 max_active = max_active ?: WQ_DFL_ACTIVE; 4019 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4020 4021 /* init wq */ 4022 wq->flags = flags; 4023 wq->saved_max_active = max_active; 4024 mutex_init(&wq->mutex); 4025 atomic_set(&wq->nr_pwqs_to_flush, 0); 4026 INIT_LIST_HEAD(&wq->pwqs); 4027 INIT_LIST_HEAD(&wq->flusher_queue); 4028 INIT_LIST_HEAD(&wq->flusher_overflow); 4029 INIT_LIST_HEAD(&wq->maydays); 4030 4031 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 4032 INIT_LIST_HEAD(&wq->list); 4033 4034 if (alloc_and_link_pwqs(wq) < 0) 4035 goto err_free_wq; 4036 4037 if (wq_online && init_rescuer(wq) < 0) 4038 goto err_destroy; 4039 4040 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4041 goto err_destroy; 4042 4043 /* 4044 * wq_pool_mutex protects global freeze state and workqueues list. 4045 * Grab it, adjust max_active and add the new @wq to workqueues 4046 * list. 4047 */ 4048 mutex_lock(&wq_pool_mutex); 4049 4050 mutex_lock(&wq->mutex); 4051 for_each_pwq(pwq, wq) 4052 pwq_adjust_max_active(pwq); 4053 mutex_unlock(&wq->mutex); 4054 4055 list_add_tail_rcu(&wq->list, &workqueues); 4056 4057 mutex_unlock(&wq_pool_mutex); 4058 4059 return wq; 4060 4061 err_free_wq: 4062 free_workqueue_attrs(wq->unbound_attrs); 4063 kfree(wq); 4064 return NULL; 4065 err_destroy: 4066 destroy_workqueue(wq); 4067 return NULL; 4068 } 4069 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 4070 4071 /** 4072 * destroy_workqueue - safely terminate a workqueue 4073 * @wq: target workqueue 4074 * 4075 * Safely destroy a workqueue. All work currently pending will be done first. 4076 */ 4077 void destroy_workqueue(struct workqueue_struct *wq) 4078 { 4079 struct pool_workqueue *pwq; 4080 int node; 4081 4082 /* drain it before proceeding with destruction */ 4083 drain_workqueue(wq); 4084 4085 /* sanity checks */ 4086 mutex_lock(&wq->mutex); 4087 for_each_pwq(pwq, wq) { 4088 int i; 4089 4090 for (i = 0; i < WORK_NR_COLORS; i++) { 4091 if (WARN_ON(pwq->nr_in_flight[i])) { 4092 mutex_unlock(&wq->mutex); 4093 show_workqueue_state(); 4094 return; 4095 } 4096 } 4097 4098 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) || 4099 WARN_ON(pwq->nr_active) || 4100 WARN_ON(!list_empty(&pwq->delayed_works))) { 4101 mutex_unlock(&wq->mutex); 4102 show_workqueue_state(); 4103 return; 4104 } 4105 } 4106 mutex_unlock(&wq->mutex); 4107 4108 /* 4109 * wq list is used to freeze wq, remove from list after 4110 * flushing is complete in case freeze races us. 4111 */ 4112 mutex_lock(&wq_pool_mutex); 4113 list_del_rcu(&wq->list); 4114 mutex_unlock(&wq_pool_mutex); 4115 4116 workqueue_sysfs_unregister(wq); 4117 4118 if (wq->rescuer) 4119 kthread_stop(wq->rescuer->task); 4120 4121 if (!(wq->flags & WQ_UNBOUND)) { 4122 /* 4123 * The base ref is never dropped on per-cpu pwqs. Directly 4124 * schedule RCU free. 4125 */ 4126 call_rcu_sched(&wq->rcu, rcu_free_wq); 4127 } else { 4128 /* 4129 * We're the sole accessor of @wq at this point. Directly 4130 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4131 * @wq will be freed when the last pwq is released. 4132 */ 4133 for_each_node(node) { 4134 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4135 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4136 put_pwq_unlocked(pwq); 4137 } 4138 4139 /* 4140 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4141 * put. Don't access it afterwards. 4142 */ 4143 pwq = wq->dfl_pwq; 4144 wq->dfl_pwq = NULL; 4145 put_pwq_unlocked(pwq); 4146 } 4147 } 4148 EXPORT_SYMBOL_GPL(destroy_workqueue); 4149 4150 /** 4151 * workqueue_set_max_active - adjust max_active of a workqueue 4152 * @wq: target workqueue 4153 * @max_active: new max_active value. 4154 * 4155 * Set max_active of @wq to @max_active. 4156 * 4157 * CONTEXT: 4158 * Don't call from IRQ context. 4159 */ 4160 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4161 { 4162 struct pool_workqueue *pwq; 4163 4164 /* disallow meddling with max_active for ordered workqueues */ 4165 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4166 return; 4167 4168 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4169 4170 mutex_lock(&wq->mutex); 4171 4172 wq->flags &= ~__WQ_ORDERED; 4173 wq->saved_max_active = max_active; 4174 4175 for_each_pwq(pwq, wq) 4176 pwq_adjust_max_active(pwq); 4177 4178 mutex_unlock(&wq->mutex); 4179 } 4180 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4181 4182 /** 4183 * current_work - retrieve %current task's work struct 4184 * 4185 * Determine if %current task is a workqueue worker and what it's working on. 4186 * Useful to find out the context that the %current task is running in. 4187 * 4188 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 4189 */ 4190 struct work_struct *current_work(void) 4191 { 4192 struct worker *worker = current_wq_worker(); 4193 4194 return worker ? worker->current_work : NULL; 4195 } 4196 EXPORT_SYMBOL(current_work); 4197 4198 /** 4199 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4200 * 4201 * Determine whether %current is a workqueue rescuer. Can be used from 4202 * work functions to determine whether it's being run off the rescuer task. 4203 * 4204 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4205 */ 4206 bool current_is_workqueue_rescuer(void) 4207 { 4208 struct worker *worker = current_wq_worker(); 4209 4210 return worker && worker->rescue_wq; 4211 } 4212 4213 /** 4214 * workqueue_congested - test whether a workqueue is congested 4215 * @cpu: CPU in question 4216 * @wq: target workqueue 4217 * 4218 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4219 * no synchronization around this function and the test result is 4220 * unreliable and only useful as advisory hints or for debugging. 4221 * 4222 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4223 * Note that both per-cpu and unbound workqueues may be associated with 4224 * multiple pool_workqueues which have separate congested states. A 4225 * workqueue being congested on one CPU doesn't mean the workqueue is also 4226 * contested on other CPUs / NUMA nodes. 4227 * 4228 * Return: 4229 * %true if congested, %false otherwise. 4230 */ 4231 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4232 { 4233 struct pool_workqueue *pwq; 4234 bool ret; 4235 4236 rcu_read_lock_sched(); 4237 4238 if (cpu == WORK_CPU_UNBOUND) 4239 cpu = smp_processor_id(); 4240 4241 if (!(wq->flags & WQ_UNBOUND)) 4242 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4243 else 4244 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4245 4246 ret = !list_empty(&pwq->delayed_works); 4247 rcu_read_unlock_sched(); 4248 4249 return ret; 4250 } 4251 EXPORT_SYMBOL_GPL(workqueue_congested); 4252 4253 /** 4254 * work_busy - test whether a work is currently pending or running 4255 * @work: the work to be tested 4256 * 4257 * Test whether @work is currently pending or running. There is no 4258 * synchronization around this function and the test result is 4259 * unreliable and only useful as advisory hints or for debugging. 4260 * 4261 * Return: 4262 * OR'd bitmask of WORK_BUSY_* bits. 4263 */ 4264 unsigned int work_busy(struct work_struct *work) 4265 { 4266 struct worker_pool *pool; 4267 unsigned long flags; 4268 unsigned int ret = 0; 4269 4270 if (work_pending(work)) 4271 ret |= WORK_BUSY_PENDING; 4272 4273 local_irq_save(flags); 4274 pool = get_work_pool(work); 4275 if (pool) { 4276 spin_lock(&pool->lock); 4277 if (find_worker_executing_work(pool, work)) 4278 ret |= WORK_BUSY_RUNNING; 4279 spin_unlock(&pool->lock); 4280 } 4281 local_irq_restore(flags); 4282 4283 return ret; 4284 } 4285 EXPORT_SYMBOL_GPL(work_busy); 4286 4287 /** 4288 * set_worker_desc - set description for the current work item 4289 * @fmt: printf-style format string 4290 * @...: arguments for the format string 4291 * 4292 * This function can be called by a running work function to describe what 4293 * the work item is about. If the worker task gets dumped, this 4294 * information will be printed out together to help debugging. The 4295 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4296 */ 4297 void set_worker_desc(const char *fmt, ...) 4298 { 4299 struct worker *worker = current_wq_worker(); 4300 va_list args; 4301 4302 if (worker) { 4303 va_start(args, fmt); 4304 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4305 va_end(args); 4306 worker->desc_valid = true; 4307 } 4308 } 4309 4310 /** 4311 * print_worker_info - print out worker information and description 4312 * @log_lvl: the log level to use when printing 4313 * @task: target task 4314 * 4315 * If @task is a worker and currently executing a work item, print out the 4316 * name of the workqueue being serviced and worker description set with 4317 * set_worker_desc() by the currently executing work item. 4318 * 4319 * This function can be safely called on any task as long as the 4320 * task_struct itself is accessible. While safe, this function isn't 4321 * synchronized and may print out mixups or garbages of limited length. 4322 */ 4323 void print_worker_info(const char *log_lvl, struct task_struct *task) 4324 { 4325 work_func_t *fn = NULL; 4326 char name[WQ_NAME_LEN] = { }; 4327 char desc[WORKER_DESC_LEN] = { }; 4328 struct pool_workqueue *pwq = NULL; 4329 struct workqueue_struct *wq = NULL; 4330 bool desc_valid = false; 4331 struct worker *worker; 4332 4333 if (!(task->flags & PF_WQ_WORKER)) 4334 return; 4335 4336 /* 4337 * This function is called without any synchronization and @task 4338 * could be in any state. Be careful with dereferences. 4339 */ 4340 worker = kthread_probe_data(task); 4341 4342 /* 4343 * Carefully copy the associated workqueue's workfn and name. Keep 4344 * the original last '\0' in case the original contains garbage. 4345 */ 4346 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4347 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4348 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4349 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4350 4351 /* copy worker description */ 4352 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid)); 4353 if (desc_valid) 4354 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4355 4356 if (fn || name[0] || desc[0]) { 4357 printk("%sWorkqueue: %s %pf", log_lvl, name, fn); 4358 if (desc[0]) 4359 pr_cont(" (%s)", desc); 4360 pr_cont("\n"); 4361 } 4362 } 4363 4364 static void pr_cont_pool_info(struct worker_pool *pool) 4365 { 4366 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4367 if (pool->node != NUMA_NO_NODE) 4368 pr_cont(" node=%d", pool->node); 4369 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4370 } 4371 4372 static void pr_cont_work(bool comma, struct work_struct *work) 4373 { 4374 if (work->func == wq_barrier_func) { 4375 struct wq_barrier *barr; 4376 4377 barr = container_of(work, struct wq_barrier, work); 4378 4379 pr_cont("%s BAR(%d)", comma ? "," : "", 4380 task_pid_nr(barr->task)); 4381 } else { 4382 pr_cont("%s %pf", comma ? "," : "", work->func); 4383 } 4384 } 4385 4386 static void show_pwq(struct pool_workqueue *pwq) 4387 { 4388 struct worker_pool *pool = pwq->pool; 4389 struct work_struct *work; 4390 struct worker *worker; 4391 bool has_in_flight = false, has_pending = false; 4392 int bkt; 4393 4394 pr_info(" pwq %d:", pool->id); 4395 pr_cont_pool_info(pool); 4396 4397 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active, 4398 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4399 4400 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4401 if (worker->current_pwq == pwq) { 4402 has_in_flight = true; 4403 break; 4404 } 4405 } 4406 if (has_in_flight) { 4407 bool comma = false; 4408 4409 pr_info(" in-flight:"); 4410 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4411 if (worker->current_pwq != pwq) 4412 continue; 4413 4414 pr_cont("%s %d%s:%pf", comma ? "," : "", 4415 task_pid_nr(worker->task), 4416 worker == pwq->wq->rescuer ? "(RESCUER)" : "", 4417 worker->current_func); 4418 list_for_each_entry(work, &worker->scheduled, entry) 4419 pr_cont_work(false, work); 4420 comma = true; 4421 } 4422 pr_cont("\n"); 4423 } 4424 4425 list_for_each_entry(work, &pool->worklist, entry) { 4426 if (get_work_pwq(work) == pwq) { 4427 has_pending = true; 4428 break; 4429 } 4430 } 4431 if (has_pending) { 4432 bool comma = false; 4433 4434 pr_info(" pending:"); 4435 list_for_each_entry(work, &pool->worklist, entry) { 4436 if (get_work_pwq(work) != pwq) 4437 continue; 4438 4439 pr_cont_work(comma, work); 4440 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4441 } 4442 pr_cont("\n"); 4443 } 4444 4445 if (!list_empty(&pwq->delayed_works)) { 4446 bool comma = false; 4447 4448 pr_info(" delayed:"); 4449 list_for_each_entry(work, &pwq->delayed_works, entry) { 4450 pr_cont_work(comma, work); 4451 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4452 } 4453 pr_cont("\n"); 4454 } 4455 } 4456 4457 /** 4458 * show_workqueue_state - dump workqueue state 4459 * 4460 * Called from a sysrq handler or try_to_freeze_tasks() and prints out 4461 * all busy workqueues and pools. 4462 */ 4463 void show_workqueue_state(void) 4464 { 4465 struct workqueue_struct *wq; 4466 struct worker_pool *pool; 4467 unsigned long flags; 4468 int pi; 4469 4470 rcu_read_lock_sched(); 4471 4472 pr_info("Showing busy workqueues and worker pools:\n"); 4473 4474 list_for_each_entry_rcu(wq, &workqueues, list) { 4475 struct pool_workqueue *pwq; 4476 bool idle = true; 4477 4478 for_each_pwq(pwq, wq) { 4479 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) { 4480 idle = false; 4481 break; 4482 } 4483 } 4484 if (idle) 4485 continue; 4486 4487 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4488 4489 for_each_pwq(pwq, wq) { 4490 spin_lock_irqsave(&pwq->pool->lock, flags); 4491 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4492 show_pwq(pwq); 4493 spin_unlock_irqrestore(&pwq->pool->lock, flags); 4494 /* 4495 * We could be printing a lot from atomic context, e.g. 4496 * sysrq-t -> show_workqueue_state(). Avoid triggering 4497 * hard lockup. 4498 */ 4499 touch_nmi_watchdog(); 4500 } 4501 } 4502 4503 for_each_pool(pool, pi) { 4504 struct worker *worker; 4505 bool first = true; 4506 4507 spin_lock_irqsave(&pool->lock, flags); 4508 if (pool->nr_workers == pool->nr_idle) 4509 goto next_pool; 4510 4511 pr_info("pool %d:", pool->id); 4512 pr_cont_pool_info(pool); 4513 pr_cont(" hung=%us workers=%d", 4514 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000, 4515 pool->nr_workers); 4516 if (pool->manager) 4517 pr_cont(" manager: %d", 4518 task_pid_nr(pool->manager->task)); 4519 list_for_each_entry(worker, &pool->idle_list, entry) { 4520 pr_cont(" %s%d", first ? "idle: " : "", 4521 task_pid_nr(worker->task)); 4522 first = false; 4523 } 4524 pr_cont("\n"); 4525 next_pool: 4526 spin_unlock_irqrestore(&pool->lock, flags); 4527 /* 4528 * We could be printing a lot from atomic context, e.g. 4529 * sysrq-t -> show_workqueue_state(). Avoid triggering 4530 * hard lockup. 4531 */ 4532 touch_nmi_watchdog(); 4533 } 4534 4535 rcu_read_unlock_sched(); 4536 } 4537 4538 /* 4539 * CPU hotplug. 4540 * 4541 * There are two challenges in supporting CPU hotplug. Firstly, there 4542 * are a lot of assumptions on strong associations among work, pwq and 4543 * pool which make migrating pending and scheduled works very 4544 * difficult to implement without impacting hot paths. Secondly, 4545 * worker pools serve mix of short, long and very long running works making 4546 * blocked draining impractical. 4547 * 4548 * This is solved by allowing the pools to be disassociated from the CPU 4549 * running as an unbound one and allowing it to be reattached later if the 4550 * cpu comes back online. 4551 */ 4552 4553 static void unbind_workers(int cpu) 4554 { 4555 struct worker_pool *pool; 4556 struct worker *worker; 4557 4558 for_each_cpu_worker_pool(pool, cpu) { 4559 mutex_lock(&pool->attach_mutex); 4560 spin_lock_irq(&pool->lock); 4561 4562 /* 4563 * We've blocked all attach/detach operations. Make all workers 4564 * unbound and set DISASSOCIATED. Before this, all workers 4565 * except for the ones which are still executing works from 4566 * before the last CPU down must be on the cpu. After 4567 * this, they may become diasporas. 4568 */ 4569 for_each_pool_worker(worker, pool) 4570 worker->flags |= WORKER_UNBOUND; 4571 4572 pool->flags |= POOL_DISASSOCIATED; 4573 4574 spin_unlock_irq(&pool->lock); 4575 mutex_unlock(&pool->attach_mutex); 4576 4577 /* 4578 * Call schedule() so that we cross rq->lock and thus can 4579 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4580 * This is necessary as scheduler callbacks may be invoked 4581 * from other cpus. 4582 */ 4583 schedule(); 4584 4585 /* 4586 * Sched callbacks are disabled now. Zap nr_running. 4587 * After this, nr_running stays zero and need_more_worker() 4588 * and keep_working() are always true as long as the 4589 * worklist is not empty. This pool now behaves as an 4590 * unbound (in terms of concurrency management) pool which 4591 * are served by workers tied to the pool. 4592 */ 4593 atomic_set(&pool->nr_running, 0); 4594 4595 /* 4596 * With concurrency management just turned off, a busy 4597 * worker blocking could lead to lengthy stalls. Kick off 4598 * unbound chain execution of currently pending work items. 4599 */ 4600 spin_lock_irq(&pool->lock); 4601 wake_up_worker(pool); 4602 spin_unlock_irq(&pool->lock); 4603 } 4604 } 4605 4606 /** 4607 * rebind_workers - rebind all workers of a pool to the associated CPU 4608 * @pool: pool of interest 4609 * 4610 * @pool->cpu is coming online. Rebind all workers to the CPU. 4611 */ 4612 static void rebind_workers(struct worker_pool *pool) 4613 { 4614 struct worker *worker; 4615 4616 lockdep_assert_held(&pool->attach_mutex); 4617 4618 /* 4619 * Restore CPU affinity of all workers. As all idle workers should 4620 * be on the run-queue of the associated CPU before any local 4621 * wake-ups for concurrency management happen, restore CPU affinity 4622 * of all workers first and then clear UNBOUND. As we're called 4623 * from CPU_ONLINE, the following shouldn't fail. 4624 */ 4625 for_each_pool_worker(worker, pool) 4626 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4627 pool->attrs->cpumask) < 0); 4628 4629 spin_lock_irq(&pool->lock); 4630 4631 pool->flags &= ~POOL_DISASSOCIATED; 4632 4633 for_each_pool_worker(worker, pool) { 4634 unsigned int worker_flags = worker->flags; 4635 4636 /* 4637 * A bound idle worker should actually be on the runqueue 4638 * of the associated CPU for local wake-ups targeting it to 4639 * work. Kick all idle workers so that they migrate to the 4640 * associated CPU. Doing this in the same loop as 4641 * replacing UNBOUND with REBOUND is safe as no worker will 4642 * be bound before @pool->lock is released. 4643 */ 4644 if (worker_flags & WORKER_IDLE) 4645 wake_up_process(worker->task); 4646 4647 /* 4648 * We want to clear UNBOUND but can't directly call 4649 * worker_clr_flags() or adjust nr_running. Atomically 4650 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4651 * @worker will clear REBOUND using worker_clr_flags() when 4652 * it initiates the next execution cycle thus restoring 4653 * concurrency management. Note that when or whether 4654 * @worker clears REBOUND doesn't affect correctness. 4655 * 4656 * WRITE_ONCE() is necessary because @worker->flags may be 4657 * tested without holding any lock in 4658 * wq_worker_waking_up(). Without it, NOT_RUNNING test may 4659 * fail incorrectly leading to premature concurrency 4660 * management operations. 4661 */ 4662 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4663 worker_flags |= WORKER_REBOUND; 4664 worker_flags &= ~WORKER_UNBOUND; 4665 WRITE_ONCE(worker->flags, worker_flags); 4666 } 4667 4668 spin_unlock_irq(&pool->lock); 4669 } 4670 4671 /** 4672 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4673 * @pool: unbound pool of interest 4674 * @cpu: the CPU which is coming up 4675 * 4676 * An unbound pool may end up with a cpumask which doesn't have any online 4677 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4678 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4679 * online CPU before, cpus_allowed of all its workers should be restored. 4680 */ 4681 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 4682 { 4683 static cpumask_t cpumask; 4684 struct worker *worker; 4685 4686 lockdep_assert_held(&pool->attach_mutex); 4687 4688 /* is @cpu allowed for @pool? */ 4689 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 4690 return; 4691 4692 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 4693 4694 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 4695 for_each_pool_worker(worker, pool) 4696 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 4697 } 4698 4699 int workqueue_prepare_cpu(unsigned int cpu) 4700 { 4701 struct worker_pool *pool; 4702 4703 for_each_cpu_worker_pool(pool, cpu) { 4704 if (pool->nr_workers) 4705 continue; 4706 if (!create_worker(pool)) 4707 return -ENOMEM; 4708 } 4709 return 0; 4710 } 4711 4712 int workqueue_online_cpu(unsigned int cpu) 4713 { 4714 struct worker_pool *pool; 4715 struct workqueue_struct *wq; 4716 int pi; 4717 4718 mutex_lock(&wq_pool_mutex); 4719 4720 for_each_pool(pool, pi) { 4721 mutex_lock(&pool->attach_mutex); 4722 4723 if (pool->cpu == cpu) 4724 rebind_workers(pool); 4725 else if (pool->cpu < 0) 4726 restore_unbound_workers_cpumask(pool, cpu); 4727 4728 mutex_unlock(&pool->attach_mutex); 4729 } 4730 4731 /* update NUMA affinity of unbound workqueues */ 4732 list_for_each_entry(wq, &workqueues, list) 4733 wq_update_unbound_numa(wq, cpu, true); 4734 4735 mutex_unlock(&wq_pool_mutex); 4736 return 0; 4737 } 4738 4739 int workqueue_offline_cpu(unsigned int cpu) 4740 { 4741 struct workqueue_struct *wq; 4742 4743 /* unbinding per-cpu workers should happen on the local CPU */ 4744 if (WARN_ON(cpu != smp_processor_id())) 4745 return -1; 4746 4747 unbind_workers(cpu); 4748 4749 /* update NUMA affinity of unbound workqueues */ 4750 mutex_lock(&wq_pool_mutex); 4751 list_for_each_entry(wq, &workqueues, list) 4752 wq_update_unbound_numa(wq, cpu, false); 4753 mutex_unlock(&wq_pool_mutex); 4754 4755 return 0; 4756 } 4757 4758 #ifdef CONFIG_SMP 4759 4760 struct work_for_cpu { 4761 struct work_struct work; 4762 long (*fn)(void *); 4763 void *arg; 4764 long ret; 4765 }; 4766 4767 static void work_for_cpu_fn(struct work_struct *work) 4768 { 4769 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 4770 4771 wfc->ret = wfc->fn(wfc->arg); 4772 } 4773 4774 /** 4775 * work_on_cpu - run a function in thread context on a particular cpu 4776 * @cpu: the cpu to run on 4777 * @fn: the function to run 4778 * @arg: the function arg 4779 * 4780 * It is up to the caller to ensure that the cpu doesn't go offline. 4781 * The caller must not hold any locks which would prevent @fn from completing. 4782 * 4783 * Return: The value @fn returns. 4784 */ 4785 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 4786 { 4787 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 4788 4789 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 4790 schedule_work_on(cpu, &wfc.work); 4791 flush_work(&wfc.work); 4792 destroy_work_on_stack(&wfc.work); 4793 return wfc.ret; 4794 } 4795 EXPORT_SYMBOL_GPL(work_on_cpu); 4796 4797 /** 4798 * work_on_cpu_safe - run a function in thread context on a particular cpu 4799 * @cpu: the cpu to run on 4800 * @fn: the function to run 4801 * @arg: the function argument 4802 * 4803 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 4804 * any locks which would prevent @fn from completing. 4805 * 4806 * Return: The value @fn returns. 4807 */ 4808 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) 4809 { 4810 long ret = -ENODEV; 4811 4812 get_online_cpus(); 4813 if (cpu_online(cpu)) 4814 ret = work_on_cpu(cpu, fn, arg); 4815 put_online_cpus(); 4816 return ret; 4817 } 4818 EXPORT_SYMBOL_GPL(work_on_cpu_safe); 4819 #endif /* CONFIG_SMP */ 4820 4821 #ifdef CONFIG_FREEZER 4822 4823 /** 4824 * freeze_workqueues_begin - begin freezing workqueues 4825 * 4826 * Start freezing workqueues. After this function returns, all freezable 4827 * workqueues will queue new works to their delayed_works list instead of 4828 * pool->worklist. 4829 * 4830 * CONTEXT: 4831 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4832 */ 4833 void freeze_workqueues_begin(void) 4834 { 4835 struct workqueue_struct *wq; 4836 struct pool_workqueue *pwq; 4837 4838 mutex_lock(&wq_pool_mutex); 4839 4840 WARN_ON_ONCE(workqueue_freezing); 4841 workqueue_freezing = true; 4842 4843 list_for_each_entry(wq, &workqueues, list) { 4844 mutex_lock(&wq->mutex); 4845 for_each_pwq(pwq, wq) 4846 pwq_adjust_max_active(pwq); 4847 mutex_unlock(&wq->mutex); 4848 } 4849 4850 mutex_unlock(&wq_pool_mutex); 4851 } 4852 4853 /** 4854 * freeze_workqueues_busy - are freezable workqueues still busy? 4855 * 4856 * Check whether freezing is complete. This function must be called 4857 * between freeze_workqueues_begin() and thaw_workqueues(). 4858 * 4859 * CONTEXT: 4860 * Grabs and releases wq_pool_mutex. 4861 * 4862 * Return: 4863 * %true if some freezable workqueues are still busy. %false if freezing 4864 * is complete. 4865 */ 4866 bool freeze_workqueues_busy(void) 4867 { 4868 bool busy = false; 4869 struct workqueue_struct *wq; 4870 struct pool_workqueue *pwq; 4871 4872 mutex_lock(&wq_pool_mutex); 4873 4874 WARN_ON_ONCE(!workqueue_freezing); 4875 4876 list_for_each_entry(wq, &workqueues, list) { 4877 if (!(wq->flags & WQ_FREEZABLE)) 4878 continue; 4879 /* 4880 * nr_active is monotonically decreasing. It's safe 4881 * to peek without lock. 4882 */ 4883 rcu_read_lock_sched(); 4884 for_each_pwq(pwq, wq) { 4885 WARN_ON_ONCE(pwq->nr_active < 0); 4886 if (pwq->nr_active) { 4887 busy = true; 4888 rcu_read_unlock_sched(); 4889 goto out_unlock; 4890 } 4891 } 4892 rcu_read_unlock_sched(); 4893 } 4894 out_unlock: 4895 mutex_unlock(&wq_pool_mutex); 4896 return busy; 4897 } 4898 4899 /** 4900 * thaw_workqueues - thaw workqueues 4901 * 4902 * Thaw workqueues. Normal queueing is restored and all collected 4903 * frozen works are transferred to their respective pool worklists. 4904 * 4905 * CONTEXT: 4906 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4907 */ 4908 void thaw_workqueues(void) 4909 { 4910 struct workqueue_struct *wq; 4911 struct pool_workqueue *pwq; 4912 4913 mutex_lock(&wq_pool_mutex); 4914 4915 if (!workqueue_freezing) 4916 goto out_unlock; 4917 4918 workqueue_freezing = false; 4919 4920 /* restore max_active and repopulate worklist */ 4921 list_for_each_entry(wq, &workqueues, list) { 4922 mutex_lock(&wq->mutex); 4923 for_each_pwq(pwq, wq) 4924 pwq_adjust_max_active(pwq); 4925 mutex_unlock(&wq->mutex); 4926 } 4927 4928 out_unlock: 4929 mutex_unlock(&wq_pool_mutex); 4930 } 4931 #endif /* CONFIG_FREEZER */ 4932 4933 static int workqueue_apply_unbound_cpumask(void) 4934 { 4935 LIST_HEAD(ctxs); 4936 int ret = 0; 4937 struct workqueue_struct *wq; 4938 struct apply_wqattrs_ctx *ctx, *n; 4939 4940 lockdep_assert_held(&wq_pool_mutex); 4941 4942 list_for_each_entry(wq, &workqueues, list) { 4943 if (!(wq->flags & WQ_UNBOUND)) 4944 continue; 4945 /* creating multiple pwqs breaks ordering guarantee */ 4946 if (wq->flags & __WQ_ORDERED) 4947 continue; 4948 4949 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs); 4950 if (!ctx) { 4951 ret = -ENOMEM; 4952 break; 4953 } 4954 4955 list_add_tail(&ctx->list, &ctxs); 4956 } 4957 4958 list_for_each_entry_safe(ctx, n, &ctxs, list) { 4959 if (!ret) 4960 apply_wqattrs_commit(ctx); 4961 apply_wqattrs_cleanup(ctx); 4962 } 4963 4964 return ret; 4965 } 4966 4967 /** 4968 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 4969 * @cpumask: the cpumask to set 4970 * 4971 * The low-level workqueues cpumask is a global cpumask that limits 4972 * the affinity of all unbound workqueues. This function check the @cpumask 4973 * and apply it to all unbound workqueues and updates all pwqs of them. 4974 * 4975 * Retun: 0 - Success 4976 * -EINVAL - Invalid @cpumask 4977 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 4978 */ 4979 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 4980 { 4981 int ret = -EINVAL; 4982 cpumask_var_t saved_cpumask; 4983 4984 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) 4985 return -ENOMEM; 4986 4987 /* 4988 * Not excluding isolated cpus on purpose. 4989 * If the user wishes to include them, we allow that. 4990 */ 4991 cpumask_and(cpumask, cpumask, cpu_possible_mask); 4992 if (!cpumask_empty(cpumask)) { 4993 apply_wqattrs_lock(); 4994 4995 /* save the old wq_unbound_cpumask. */ 4996 cpumask_copy(saved_cpumask, wq_unbound_cpumask); 4997 4998 /* update wq_unbound_cpumask at first and apply it to wqs. */ 4999 cpumask_copy(wq_unbound_cpumask, cpumask); 5000 ret = workqueue_apply_unbound_cpumask(); 5001 5002 /* restore the wq_unbound_cpumask when failed. */ 5003 if (ret < 0) 5004 cpumask_copy(wq_unbound_cpumask, saved_cpumask); 5005 5006 apply_wqattrs_unlock(); 5007 } 5008 5009 free_cpumask_var(saved_cpumask); 5010 return ret; 5011 } 5012 5013 #ifdef CONFIG_SYSFS 5014 /* 5015 * Workqueues with WQ_SYSFS flag set is visible to userland via 5016 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 5017 * following attributes. 5018 * 5019 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 5020 * max_active RW int : maximum number of in-flight work items 5021 * 5022 * Unbound workqueues have the following extra attributes. 5023 * 5024 * pool_ids RO int : the associated pool IDs for each node 5025 * nice RW int : nice value of the workers 5026 * cpumask RW mask : bitmask of allowed CPUs for the workers 5027 * numa RW bool : whether enable NUMA affinity 5028 */ 5029 struct wq_device { 5030 struct workqueue_struct *wq; 5031 struct device dev; 5032 }; 5033 5034 static struct workqueue_struct *dev_to_wq(struct device *dev) 5035 { 5036 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5037 5038 return wq_dev->wq; 5039 } 5040 5041 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 5042 char *buf) 5043 { 5044 struct workqueue_struct *wq = dev_to_wq(dev); 5045 5046 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 5047 } 5048 static DEVICE_ATTR_RO(per_cpu); 5049 5050 static ssize_t max_active_show(struct device *dev, 5051 struct device_attribute *attr, char *buf) 5052 { 5053 struct workqueue_struct *wq = dev_to_wq(dev); 5054 5055 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 5056 } 5057 5058 static ssize_t max_active_store(struct device *dev, 5059 struct device_attribute *attr, const char *buf, 5060 size_t count) 5061 { 5062 struct workqueue_struct *wq = dev_to_wq(dev); 5063 int val; 5064 5065 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 5066 return -EINVAL; 5067 5068 workqueue_set_max_active(wq, val); 5069 return count; 5070 } 5071 static DEVICE_ATTR_RW(max_active); 5072 5073 static struct attribute *wq_sysfs_attrs[] = { 5074 &dev_attr_per_cpu.attr, 5075 &dev_attr_max_active.attr, 5076 NULL, 5077 }; 5078 ATTRIBUTE_GROUPS(wq_sysfs); 5079 5080 static ssize_t wq_pool_ids_show(struct device *dev, 5081 struct device_attribute *attr, char *buf) 5082 { 5083 struct workqueue_struct *wq = dev_to_wq(dev); 5084 const char *delim = ""; 5085 int node, written = 0; 5086 5087 rcu_read_lock_sched(); 5088 for_each_node(node) { 5089 written += scnprintf(buf + written, PAGE_SIZE - written, 5090 "%s%d:%d", delim, node, 5091 unbound_pwq_by_node(wq, node)->pool->id); 5092 delim = " "; 5093 } 5094 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 5095 rcu_read_unlock_sched(); 5096 5097 return written; 5098 } 5099 5100 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 5101 char *buf) 5102 { 5103 struct workqueue_struct *wq = dev_to_wq(dev); 5104 int written; 5105 5106 mutex_lock(&wq->mutex); 5107 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 5108 mutex_unlock(&wq->mutex); 5109 5110 return written; 5111 } 5112 5113 /* prepare workqueue_attrs for sysfs store operations */ 5114 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5115 { 5116 struct workqueue_attrs *attrs; 5117 5118 lockdep_assert_held(&wq_pool_mutex); 5119 5120 attrs = alloc_workqueue_attrs(GFP_KERNEL); 5121 if (!attrs) 5122 return NULL; 5123 5124 copy_workqueue_attrs(attrs, wq->unbound_attrs); 5125 return attrs; 5126 } 5127 5128 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 5129 const char *buf, size_t count) 5130 { 5131 struct workqueue_struct *wq = dev_to_wq(dev); 5132 struct workqueue_attrs *attrs; 5133 int ret = -ENOMEM; 5134 5135 apply_wqattrs_lock(); 5136 5137 attrs = wq_sysfs_prep_attrs(wq); 5138 if (!attrs) 5139 goto out_unlock; 5140 5141 if (sscanf(buf, "%d", &attrs->nice) == 1 && 5142 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 5143 ret = apply_workqueue_attrs_locked(wq, attrs); 5144 else 5145 ret = -EINVAL; 5146 5147 out_unlock: 5148 apply_wqattrs_unlock(); 5149 free_workqueue_attrs(attrs); 5150 return ret ?: count; 5151 } 5152 5153 static ssize_t wq_cpumask_show(struct device *dev, 5154 struct device_attribute *attr, char *buf) 5155 { 5156 struct workqueue_struct *wq = dev_to_wq(dev); 5157 int written; 5158 5159 mutex_lock(&wq->mutex); 5160 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5161 cpumask_pr_args(wq->unbound_attrs->cpumask)); 5162 mutex_unlock(&wq->mutex); 5163 return written; 5164 } 5165 5166 static ssize_t wq_cpumask_store(struct device *dev, 5167 struct device_attribute *attr, 5168 const char *buf, size_t count) 5169 { 5170 struct workqueue_struct *wq = dev_to_wq(dev); 5171 struct workqueue_attrs *attrs; 5172 int ret = -ENOMEM; 5173 5174 apply_wqattrs_lock(); 5175 5176 attrs = wq_sysfs_prep_attrs(wq); 5177 if (!attrs) 5178 goto out_unlock; 5179 5180 ret = cpumask_parse(buf, attrs->cpumask); 5181 if (!ret) 5182 ret = apply_workqueue_attrs_locked(wq, attrs); 5183 5184 out_unlock: 5185 apply_wqattrs_unlock(); 5186 free_workqueue_attrs(attrs); 5187 return ret ?: count; 5188 } 5189 5190 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5191 char *buf) 5192 { 5193 struct workqueue_struct *wq = dev_to_wq(dev); 5194 int written; 5195 5196 mutex_lock(&wq->mutex); 5197 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5198 !wq->unbound_attrs->no_numa); 5199 mutex_unlock(&wq->mutex); 5200 5201 return written; 5202 } 5203 5204 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 5205 const char *buf, size_t count) 5206 { 5207 struct workqueue_struct *wq = dev_to_wq(dev); 5208 struct workqueue_attrs *attrs; 5209 int v, ret = -ENOMEM; 5210 5211 apply_wqattrs_lock(); 5212 5213 attrs = wq_sysfs_prep_attrs(wq); 5214 if (!attrs) 5215 goto out_unlock; 5216 5217 ret = -EINVAL; 5218 if (sscanf(buf, "%d", &v) == 1) { 5219 attrs->no_numa = !v; 5220 ret = apply_workqueue_attrs_locked(wq, attrs); 5221 } 5222 5223 out_unlock: 5224 apply_wqattrs_unlock(); 5225 free_workqueue_attrs(attrs); 5226 return ret ?: count; 5227 } 5228 5229 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5230 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5231 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5232 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5233 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5234 __ATTR_NULL, 5235 }; 5236 5237 static struct bus_type wq_subsys = { 5238 .name = "workqueue", 5239 .dev_groups = wq_sysfs_groups, 5240 }; 5241 5242 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5243 struct device_attribute *attr, char *buf) 5244 { 5245 int written; 5246 5247 mutex_lock(&wq_pool_mutex); 5248 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5249 cpumask_pr_args(wq_unbound_cpumask)); 5250 mutex_unlock(&wq_pool_mutex); 5251 5252 return written; 5253 } 5254 5255 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5256 struct device_attribute *attr, const char *buf, size_t count) 5257 { 5258 cpumask_var_t cpumask; 5259 int ret; 5260 5261 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5262 return -ENOMEM; 5263 5264 ret = cpumask_parse(buf, cpumask); 5265 if (!ret) 5266 ret = workqueue_set_unbound_cpumask(cpumask); 5267 5268 free_cpumask_var(cpumask); 5269 return ret ? ret : count; 5270 } 5271 5272 static struct device_attribute wq_sysfs_cpumask_attr = 5273 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5274 wq_unbound_cpumask_store); 5275 5276 static int __init wq_sysfs_init(void) 5277 { 5278 int err; 5279 5280 err = subsys_virtual_register(&wq_subsys, NULL); 5281 if (err) 5282 return err; 5283 5284 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr); 5285 } 5286 core_initcall(wq_sysfs_init); 5287 5288 static void wq_device_release(struct device *dev) 5289 { 5290 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5291 5292 kfree(wq_dev); 5293 } 5294 5295 /** 5296 * workqueue_sysfs_register - make a workqueue visible in sysfs 5297 * @wq: the workqueue to register 5298 * 5299 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5300 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5301 * which is the preferred method. 5302 * 5303 * Workqueue user should use this function directly iff it wants to apply 5304 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5305 * apply_workqueue_attrs() may race against userland updating the 5306 * attributes. 5307 * 5308 * Return: 0 on success, -errno on failure. 5309 */ 5310 int workqueue_sysfs_register(struct workqueue_struct *wq) 5311 { 5312 struct wq_device *wq_dev; 5313 int ret; 5314 5315 /* 5316 * Adjusting max_active or creating new pwqs by applying 5317 * attributes breaks ordering guarantee. Disallow exposing ordered 5318 * workqueues. 5319 */ 5320 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 5321 return -EINVAL; 5322 5323 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5324 if (!wq_dev) 5325 return -ENOMEM; 5326 5327 wq_dev->wq = wq; 5328 wq_dev->dev.bus = &wq_subsys; 5329 wq_dev->dev.release = wq_device_release; 5330 dev_set_name(&wq_dev->dev, "%s", wq->name); 5331 5332 /* 5333 * unbound_attrs are created separately. Suppress uevent until 5334 * everything is ready. 5335 */ 5336 dev_set_uevent_suppress(&wq_dev->dev, true); 5337 5338 ret = device_register(&wq_dev->dev); 5339 if (ret) { 5340 kfree(wq_dev); 5341 wq->wq_dev = NULL; 5342 return ret; 5343 } 5344 5345 if (wq->flags & WQ_UNBOUND) { 5346 struct device_attribute *attr; 5347 5348 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5349 ret = device_create_file(&wq_dev->dev, attr); 5350 if (ret) { 5351 device_unregister(&wq_dev->dev); 5352 wq->wq_dev = NULL; 5353 return ret; 5354 } 5355 } 5356 } 5357 5358 dev_set_uevent_suppress(&wq_dev->dev, false); 5359 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5360 return 0; 5361 } 5362 5363 /** 5364 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5365 * @wq: the workqueue to unregister 5366 * 5367 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5368 */ 5369 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5370 { 5371 struct wq_device *wq_dev = wq->wq_dev; 5372 5373 if (!wq->wq_dev) 5374 return; 5375 5376 wq->wq_dev = NULL; 5377 device_unregister(&wq_dev->dev); 5378 } 5379 #else /* CONFIG_SYSFS */ 5380 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5381 #endif /* CONFIG_SYSFS */ 5382 5383 /* 5384 * Workqueue watchdog. 5385 * 5386 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 5387 * flush dependency, a concurrency managed work item which stays RUNNING 5388 * indefinitely. Workqueue stalls can be very difficult to debug as the 5389 * usual warning mechanisms don't trigger and internal workqueue state is 5390 * largely opaque. 5391 * 5392 * Workqueue watchdog monitors all worker pools periodically and dumps 5393 * state if some pools failed to make forward progress for a while where 5394 * forward progress is defined as the first item on ->worklist changing. 5395 * 5396 * This mechanism is controlled through the kernel parameter 5397 * "workqueue.watchdog_thresh" which can be updated at runtime through the 5398 * corresponding sysfs parameter file. 5399 */ 5400 #ifdef CONFIG_WQ_WATCHDOG 5401 5402 static unsigned long wq_watchdog_thresh = 30; 5403 static struct timer_list wq_watchdog_timer; 5404 5405 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 5406 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 5407 5408 static void wq_watchdog_reset_touched(void) 5409 { 5410 int cpu; 5411 5412 wq_watchdog_touched = jiffies; 5413 for_each_possible_cpu(cpu) 5414 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5415 } 5416 5417 static void wq_watchdog_timer_fn(struct timer_list *unused) 5418 { 5419 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 5420 bool lockup_detected = false; 5421 struct worker_pool *pool; 5422 int pi; 5423 5424 if (!thresh) 5425 return; 5426 5427 rcu_read_lock(); 5428 5429 for_each_pool(pool, pi) { 5430 unsigned long pool_ts, touched, ts; 5431 5432 if (list_empty(&pool->worklist)) 5433 continue; 5434 5435 /* get the latest of pool and touched timestamps */ 5436 pool_ts = READ_ONCE(pool->watchdog_ts); 5437 touched = READ_ONCE(wq_watchdog_touched); 5438 5439 if (time_after(pool_ts, touched)) 5440 ts = pool_ts; 5441 else 5442 ts = touched; 5443 5444 if (pool->cpu >= 0) { 5445 unsigned long cpu_touched = 5446 READ_ONCE(per_cpu(wq_watchdog_touched_cpu, 5447 pool->cpu)); 5448 if (time_after(cpu_touched, ts)) 5449 ts = cpu_touched; 5450 } 5451 5452 /* did we stall? */ 5453 if (time_after(jiffies, ts + thresh)) { 5454 lockup_detected = true; 5455 pr_emerg("BUG: workqueue lockup - pool"); 5456 pr_cont_pool_info(pool); 5457 pr_cont(" stuck for %us!\n", 5458 jiffies_to_msecs(jiffies - pool_ts) / 1000); 5459 } 5460 } 5461 5462 rcu_read_unlock(); 5463 5464 if (lockup_detected) 5465 show_workqueue_state(); 5466 5467 wq_watchdog_reset_touched(); 5468 mod_timer(&wq_watchdog_timer, jiffies + thresh); 5469 } 5470 5471 void wq_watchdog_touch(int cpu) 5472 { 5473 if (cpu >= 0) 5474 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5475 else 5476 wq_watchdog_touched = jiffies; 5477 } 5478 5479 static void wq_watchdog_set_thresh(unsigned long thresh) 5480 { 5481 wq_watchdog_thresh = 0; 5482 del_timer_sync(&wq_watchdog_timer); 5483 5484 if (thresh) { 5485 wq_watchdog_thresh = thresh; 5486 wq_watchdog_reset_touched(); 5487 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 5488 } 5489 } 5490 5491 static int wq_watchdog_param_set_thresh(const char *val, 5492 const struct kernel_param *kp) 5493 { 5494 unsigned long thresh; 5495 int ret; 5496 5497 ret = kstrtoul(val, 0, &thresh); 5498 if (ret) 5499 return ret; 5500 5501 if (system_wq) 5502 wq_watchdog_set_thresh(thresh); 5503 else 5504 wq_watchdog_thresh = thresh; 5505 5506 return 0; 5507 } 5508 5509 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 5510 .set = wq_watchdog_param_set_thresh, 5511 .get = param_get_ulong, 5512 }; 5513 5514 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 5515 0644); 5516 5517 static void wq_watchdog_init(void) 5518 { 5519 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 5520 wq_watchdog_set_thresh(wq_watchdog_thresh); 5521 } 5522 5523 #else /* CONFIG_WQ_WATCHDOG */ 5524 5525 static inline void wq_watchdog_init(void) { } 5526 5527 #endif /* CONFIG_WQ_WATCHDOG */ 5528 5529 static void __init wq_numa_init(void) 5530 { 5531 cpumask_var_t *tbl; 5532 int node, cpu; 5533 5534 if (num_possible_nodes() <= 1) 5535 return; 5536 5537 if (wq_disable_numa) { 5538 pr_info("workqueue: NUMA affinity support disabled\n"); 5539 return; 5540 } 5541 5542 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL); 5543 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5544 5545 /* 5546 * We want masks of possible CPUs of each node which isn't readily 5547 * available. Build one from cpu_to_node() which should have been 5548 * fully initialized by now. 5549 */ 5550 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL); 5551 BUG_ON(!tbl); 5552 5553 for_each_node(node) 5554 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5555 node_online(node) ? node : NUMA_NO_NODE)); 5556 5557 for_each_possible_cpu(cpu) { 5558 node = cpu_to_node(cpu); 5559 if (WARN_ON(node == NUMA_NO_NODE)) { 5560 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5561 /* happens iff arch is bonkers, let's just proceed */ 5562 return; 5563 } 5564 cpumask_set_cpu(cpu, tbl[node]); 5565 } 5566 5567 wq_numa_possible_cpumask = tbl; 5568 wq_numa_enabled = true; 5569 } 5570 5571 /** 5572 * workqueue_init_early - early init for workqueue subsystem 5573 * 5574 * This is the first half of two-staged workqueue subsystem initialization 5575 * and invoked as soon as the bare basics - memory allocation, cpumasks and 5576 * idr are up. It sets up all the data structures and system workqueues 5577 * and allows early boot code to create workqueues and queue/cancel work 5578 * items. Actual work item execution starts only after kthreads can be 5579 * created and scheduled right before early initcalls. 5580 */ 5581 int __init workqueue_init_early(void) 5582 { 5583 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5584 int i, cpu; 5585 5586 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5587 5588 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 5589 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(HK_FLAG_DOMAIN)); 5590 5591 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5592 5593 /* initialize CPU pools */ 5594 for_each_possible_cpu(cpu) { 5595 struct worker_pool *pool; 5596 5597 i = 0; 5598 for_each_cpu_worker_pool(pool, cpu) { 5599 BUG_ON(init_worker_pool(pool)); 5600 pool->cpu = cpu; 5601 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5602 pool->attrs->nice = std_nice[i++]; 5603 pool->node = cpu_to_node(cpu); 5604 5605 /* alloc pool ID */ 5606 mutex_lock(&wq_pool_mutex); 5607 BUG_ON(worker_pool_assign_id(pool)); 5608 mutex_unlock(&wq_pool_mutex); 5609 } 5610 } 5611 5612 /* create default unbound and ordered wq attrs */ 5613 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5614 struct workqueue_attrs *attrs; 5615 5616 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5617 attrs->nice = std_nice[i]; 5618 unbound_std_wq_attrs[i] = attrs; 5619 5620 /* 5621 * An ordered wq should have only one pwq as ordering is 5622 * guaranteed by max_active which is enforced by pwqs. 5623 * Turn off NUMA so that dfl_pwq is used for all nodes. 5624 */ 5625 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5626 attrs->nice = std_nice[i]; 5627 attrs->no_numa = true; 5628 ordered_wq_attrs[i] = attrs; 5629 } 5630 5631 system_wq = alloc_workqueue("events", 0, 0); 5632 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5633 system_long_wq = alloc_workqueue("events_long", 0, 0); 5634 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5635 WQ_UNBOUND_MAX_ACTIVE); 5636 system_freezable_wq = alloc_workqueue("events_freezable", 5637 WQ_FREEZABLE, 0); 5638 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5639 WQ_POWER_EFFICIENT, 0); 5640 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5641 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5642 0); 5643 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5644 !system_unbound_wq || !system_freezable_wq || 5645 !system_power_efficient_wq || 5646 !system_freezable_power_efficient_wq); 5647 5648 return 0; 5649 } 5650 5651 /** 5652 * workqueue_init - bring workqueue subsystem fully online 5653 * 5654 * This is the latter half of two-staged workqueue subsystem initialization 5655 * and invoked as soon as kthreads can be created and scheduled. 5656 * Workqueues have been created and work items queued on them, but there 5657 * are no kworkers executing the work items yet. Populate the worker pools 5658 * with the initial workers and enable future kworker creations. 5659 */ 5660 int __init workqueue_init(void) 5661 { 5662 struct workqueue_struct *wq; 5663 struct worker_pool *pool; 5664 int cpu, bkt; 5665 5666 /* 5667 * It'd be simpler to initialize NUMA in workqueue_init_early() but 5668 * CPU to node mapping may not be available that early on some 5669 * archs such as power and arm64. As per-cpu pools created 5670 * previously could be missing node hint and unbound pools NUMA 5671 * affinity, fix them up. 5672 * 5673 * Also, while iterating workqueues, create rescuers if requested. 5674 */ 5675 wq_numa_init(); 5676 5677 mutex_lock(&wq_pool_mutex); 5678 5679 for_each_possible_cpu(cpu) { 5680 for_each_cpu_worker_pool(pool, cpu) { 5681 pool->node = cpu_to_node(cpu); 5682 } 5683 } 5684 5685 list_for_each_entry(wq, &workqueues, list) { 5686 wq_update_unbound_numa(wq, smp_processor_id(), true); 5687 WARN(init_rescuer(wq), 5688 "workqueue: failed to create early rescuer for %s", 5689 wq->name); 5690 } 5691 5692 mutex_unlock(&wq_pool_mutex); 5693 5694 /* create the initial workers */ 5695 for_each_online_cpu(cpu) { 5696 for_each_cpu_worker_pool(pool, cpu) { 5697 pool->flags &= ~POOL_DISASSOCIATED; 5698 BUG_ON(!create_worker(pool)); 5699 } 5700 } 5701 5702 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 5703 BUG_ON(!create_worker(pool)); 5704 5705 wq_online = true; 5706 wq_watchdog_init(); 5707 5708 return 0; 5709 } 5710