xref: /openbmc/linux/kernel/workqueue.c (revision 812dd0202379a242f764f75aa30abfbef4398ba4)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There are two worker pools for each CPU (one for
20  * normal work items and the other for high priority ones) and some extra
21  * pools for workqueues which are not bound to any specific CPU - the
22  * number of these backing pools is dynamic.
23  *
24  * Please read Documentation/core-api/workqueue.rst for details.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/jhash.h>
45 #include <linux/hashtable.h>
46 #include <linux/rculist.h>
47 #include <linux/nodemask.h>
48 #include <linux/moduleparam.h>
49 #include <linux/uaccess.h>
50 #include <linux/sched/isolation.h>
51 #include <linux/nmi.h>
52 
53 #include "workqueue_internal.h"
54 
55 enum {
56 	/*
57 	 * worker_pool flags
58 	 *
59 	 * A bound pool is either associated or disassociated with its CPU.
60 	 * While associated (!DISASSOCIATED), all workers are bound to the
61 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
62 	 * is in effect.
63 	 *
64 	 * While DISASSOCIATED, the cpu may be offline and all workers have
65 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
66 	 * be executing on any CPU.  The pool behaves as an unbound one.
67 	 *
68 	 * Note that DISASSOCIATED should be flipped only while holding
69 	 * attach_mutex to avoid changing binding state while
70 	 * worker_attach_to_pool() is in progress.
71 	 */
72 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
73 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
74 
75 	/* worker flags */
76 	WORKER_DIE		= 1 << 1,	/* die die die */
77 	WORKER_IDLE		= 1 << 2,	/* is idle */
78 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
79 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
80 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
81 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
82 
83 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
84 				  WORKER_UNBOUND | WORKER_REBOUND,
85 
86 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
87 
88 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
89 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
90 
91 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
92 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
93 
94 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
95 						/* call for help after 10ms
96 						   (min two ticks) */
97 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
98 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
99 
100 	/*
101 	 * Rescue workers are used only on emergencies and shared by
102 	 * all cpus.  Give MIN_NICE.
103 	 */
104 	RESCUER_NICE_LEVEL	= MIN_NICE,
105 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
106 
107 	WQ_NAME_LEN		= 24,
108 };
109 
110 /*
111  * Structure fields follow one of the following exclusion rules.
112  *
113  * I: Modifiable by initialization/destruction paths and read-only for
114  *    everyone else.
115  *
116  * P: Preemption protected.  Disabling preemption is enough and should
117  *    only be modified and accessed from the local cpu.
118  *
119  * L: pool->lock protected.  Access with pool->lock held.
120  *
121  * X: During normal operation, modification requires pool->lock and should
122  *    be done only from local cpu.  Either disabling preemption on local
123  *    cpu or grabbing pool->lock is enough for read access.  If
124  *    POOL_DISASSOCIATED is set, it's identical to L.
125  *
126  * A: pool->attach_mutex protected.
127  *
128  * PL: wq_pool_mutex protected.
129  *
130  * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
131  *
132  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
133  *
134  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
135  *      sched-RCU for reads.
136  *
137  * WQ: wq->mutex protected.
138  *
139  * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
140  *
141  * MD: wq_mayday_lock protected.
142  */
143 
144 /* struct worker is defined in workqueue_internal.h */
145 
146 struct worker_pool {
147 	spinlock_t		lock;		/* the pool lock */
148 	int			cpu;		/* I: the associated cpu */
149 	int			node;		/* I: the associated node ID */
150 	int			id;		/* I: pool ID */
151 	unsigned int		flags;		/* X: flags */
152 
153 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
154 
155 	struct list_head	worklist;	/* L: list of pending works */
156 	int			nr_workers;	/* L: total number of workers */
157 
158 	/* nr_idle includes the ones off idle_list for rebinding */
159 	int			nr_idle;	/* L: currently idle ones */
160 
161 	struct list_head	idle_list;	/* X: list of idle workers */
162 	struct timer_list	idle_timer;	/* L: worker idle timeout */
163 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
164 
165 	/* a workers is either on busy_hash or idle_list, or the manager */
166 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
167 						/* L: hash of busy workers */
168 
169 	/* see manage_workers() for details on the two manager mutexes */
170 	struct worker		*manager;	/* L: purely informational */
171 	struct mutex		attach_mutex;	/* attach/detach exclusion */
172 	struct list_head	workers;	/* A: attached workers */
173 	struct completion	*detach_completion; /* all workers detached */
174 
175 	struct ida		worker_ida;	/* worker IDs for task name */
176 
177 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
178 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
179 	int			refcnt;		/* PL: refcnt for unbound pools */
180 
181 	/*
182 	 * The current concurrency level.  As it's likely to be accessed
183 	 * from other CPUs during try_to_wake_up(), put it in a separate
184 	 * cacheline.
185 	 */
186 	atomic_t		nr_running ____cacheline_aligned_in_smp;
187 
188 	/*
189 	 * Destruction of pool is sched-RCU protected to allow dereferences
190 	 * from get_work_pool().
191 	 */
192 	struct rcu_head		rcu;
193 } ____cacheline_aligned_in_smp;
194 
195 /*
196  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
197  * of work_struct->data are used for flags and the remaining high bits
198  * point to the pwq; thus, pwqs need to be aligned at two's power of the
199  * number of flag bits.
200  */
201 struct pool_workqueue {
202 	struct worker_pool	*pool;		/* I: the associated pool */
203 	struct workqueue_struct *wq;		/* I: the owning workqueue */
204 	int			work_color;	/* L: current color */
205 	int			flush_color;	/* L: flushing color */
206 	int			refcnt;		/* L: reference count */
207 	int			nr_in_flight[WORK_NR_COLORS];
208 						/* L: nr of in_flight works */
209 	int			nr_active;	/* L: nr of active works */
210 	int			max_active;	/* L: max active works */
211 	struct list_head	delayed_works;	/* L: delayed works */
212 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
213 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
214 
215 	/*
216 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
217 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
218 	 * itself is also sched-RCU protected so that the first pwq can be
219 	 * determined without grabbing wq->mutex.
220 	 */
221 	struct work_struct	unbound_release_work;
222 	struct rcu_head		rcu;
223 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
224 
225 /*
226  * Structure used to wait for workqueue flush.
227  */
228 struct wq_flusher {
229 	struct list_head	list;		/* WQ: list of flushers */
230 	int			flush_color;	/* WQ: flush color waiting for */
231 	struct completion	done;		/* flush completion */
232 };
233 
234 struct wq_device;
235 
236 /*
237  * The externally visible workqueue.  It relays the issued work items to
238  * the appropriate worker_pool through its pool_workqueues.
239  */
240 struct workqueue_struct {
241 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
242 	struct list_head	list;		/* PR: list of all workqueues */
243 
244 	struct mutex		mutex;		/* protects this wq */
245 	int			work_color;	/* WQ: current work color */
246 	int			flush_color;	/* WQ: current flush color */
247 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
248 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
249 	struct list_head	flusher_queue;	/* WQ: flush waiters */
250 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
251 
252 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
253 	struct worker		*rescuer;	/* I: rescue worker */
254 
255 	int			nr_drainers;	/* WQ: drain in progress */
256 	int			saved_max_active; /* WQ: saved pwq max_active */
257 
258 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
259 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
260 
261 #ifdef CONFIG_SYSFS
262 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
263 #endif
264 #ifdef CONFIG_LOCKDEP
265 	struct lockdep_map	lockdep_map;
266 #endif
267 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
268 
269 	/*
270 	 * Destruction of workqueue_struct is sched-RCU protected to allow
271 	 * walking the workqueues list without grabbing wq_pool_mutex.
272 	 * This is used to dump all workqueues from sysrq.
273 	 */
274 	struct rcu_head		rcu;
275 
276 	/* hot fields used during command issue, aligned to cacheline */
277 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
278 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
279 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
280 };
281 
282 static struct kmem_cache *pwq_cache;
283 
284 static cpumask_var_t *wq_numa_possible_cpumask;
285 					/* possible CPUs of each node */
286 
287 static bool wq_disable_numa;
288 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
289 
290 /* see the comment above the definition of WQ_POWER_EFFICIENT */
291 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
292 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
293 
294 static bool wq_online;			/* can kworkers be created yet? */
295 
296 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
297 
298 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
299 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
300 
301 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
302 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
303 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
304 
305 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
306 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
307 
308 /* PL: allowable cpus for unbound wqs and work items */
309 static cpumask_var_t wq_unbound_cpumask;
310 
311 /* CPU where unbound work was last round robin scheduled from this CPU */
312 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
313 
314 /*
315  * Local execution of unbound work items is no longer guaranteed.  The
316  * following always forces round-robin CPU selection on unbound work items
317  * to uncover usages which depend on it.
318  */
319 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
320 static bool wq_debug_force_rr_cpu = true;
321 #else
322 static bool wq_debug_force_rr_cpu = false;
323 #endif
324 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
325 
326 /* the per-cpu worker pools */
327 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
328 
329 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
330 
331 /* PL: hash of all unbound pools keyed by pool->attrs */
332 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
333 
334 /* I: attributes used when instantiating standard unbound pools on demand */
335 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
336 
337 /* I: attributes used when instantiating ordered pools on demand */
338 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
339 
340 struct workqueue_struct *system_wq __read_mostly;
341 EXPORT_SYMBOL(system_wq);
342 struct workqueue_struct *system_highpri_wq __read_mostly;
343 EXPORT_SYMBOL_GPL(system_highpri_wq);
344 struct workqueue_struct *system_long_wq __read_mostly;
345 EXPORT_SYMBOL_GPL(system_long_wq);
346 struct workqueue_struct *system_unbound_wq __read_mostly;
347 EXPORT_SYMBOL_GPL(system_unbound_wq);
348 struct workqueue_struct *system_freezable_wq __read_mostly;
349 EXPORT_SYMBOL_GPL(system_freezable_wq);
350 struct workqueue_struct *system_power_efficient_wq __read_mostly;
351 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
352 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
353 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
354 
355 static int worker_thread(void *__worker);
356 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
357 
358 #define CREATE_TRACE_POINTS
359 #include <trace/events/workqueue.h>
360 
361 #define assert_rcu_or_pool_mutex()					\
362 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
363 			 !lockdep_is_held(&wq_pool_mutex),		\
364 			 "sched RCU or wq_pool_mutex should be held")
365 
366 #define assert_rcu_or_wq_mutex(wq)					\
367 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
368 			 !lockdep_is_held(&wq->mutex),			\
369 			 "sched RCU or wq->mutex should be held")
370 
371 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
372 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
373 			 !lockdep_is_held(&wq->mutex) &&		\
374 			 !lockdep_is_held(&wq_pool_mutex),		\
375 			 "sched RCU, wq->mutex or wq_pool_mutex should be held")
376 
377 #define for_each_cpu_worker_pool(pool, cpu)				\
378 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
379 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
380 	     (pool)++)
381 
382 /**
383  * for_each_pool - iterate through all worker_pools in the system
384  * @pool: iteration cursor
385  * @pi: integer used for iteration
386  *
387  * This must be called either with wq_pool_mutex held or sched RCU read
388  * locked.  If the pool needs to be used beyond the locking in effect, the
389  * caller is responsible for guaranteeing that the pool stays online.
390  *
391  * The if/else clause exists only for the lockdep assertion and can be
392  * ignored.
393  */
394 #define for_each_pool(pool, pi)						\
395 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
396 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
397 		else
398 
399 /**
400  * for_each_pool_worker - iterate through all workers of a worker_pool
401  * @worker: iteration cursor
402  * @pool: worker_pool to iterate workers of
403  *
404  * This must be called with @pool->attach_mutex.
405  *
406  * The if/else clause exists only for the lockdep assertion and can be
407  * ignored.
408  */
409 #define for_each_pool_worker(worker, pool)				\
410 	list_for_each_entry((worker), &(pool)->workers, node)		\
411 		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
412 		else
413 
414 /**
415  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
416  * @pwq: iteration cursor
417  * @wq: the target workqueue
418  *
419  * This must be called either with wq->mutex held or sched RCU read locked.
420  * If the pwq needs to be used beyond the locking in effect, the caller is
421  * responsible for guaranteeing that the pwq stays online.
422  *
423  * The if/else clause exists only for the lockdep assertion and can be
424  * ignored.
425  */
426 #define for_each_pwq(pwq, wq)						\
427 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
428 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
429 		else
430 
431 #ifdef CONFIG_DEBUG_OBJECTS_WORK
432 
433 static struct debug_obj_descr work_debug_descr;
434 
435 static void *work_debug_hint(void *addr)
436 {
437 	return ((struct work_struct *) addr)->func;
438 }
439 
440 static bool work_is_static_object(void *addr)
441 {
442 	struct work_struct *work = addr;
443 
444 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
445 }
446 
447 /*
448  * fixup_init is called when:
449  * - an active object is initialized
450  */
451 static bool work_fixup_init(void *addr, enum debug_obj_state state)
452 {
453 	struct work_struct *work = addr;
454 
455 	switch (state) {
456 	case ODEBUG_STATE_ACTIVE:
457 		cancel_work_sync(work);
458 		debug_object_init(work, &work_debug_descr);
459 		return true;
460 	default:
461 		return false;
462 	}
463 }
464 
465 /*
466  * fixup_free is called when:
467  * - an active object is freed
468  */
469 static bool work_fixup_free(void *addr, enum debug_obj_state state)
470 {
471 	struct work_struct *work = addr;
472 
473 	switch (state) {
474 	case ODEBUG_STATE_ACTIVE:
475 		cancel_work_sync(work);
476 		debug_object_free(work, &work_debug_descr);
477 		return true;
478 	default:
479 		return false;
480 	}
481 }
482 
483 static struct debug_obj_descr work_debug_descr = {
484 	.name		= "work_struct",
485 	.debug_hint	= work_debug_hint,
486 	.is_static_object = work_is_static_object,
487 	.fixup_init	= work_fixup_init,
488 	.fixup_free	= work_fixup_free,
489 };
490 
491 static inline void debug_work_activate(struct work_struct *work)
492 {
493 	debug_object_activate(work, &work_debug_descr);
494 }
495 
496 static inline void debug_work_deactivate(struct work_struct *work)
497 {
498 	debug_object_deactivate(work, &work_debug_descr);
499 }
500 
501 void __init_work(struct work_struct *work, int onstack)
502 {
503 	if (onstack)
504 		debug_object_init_on_stack(work, &work_debug_descr);
505 	else
506 		debug_object_init(work, &work_debug_descr);
507 }
508 EXPORT_SYMBOL_GPL(__init_work);
509 
510 void destroy_work_on_stack(struct work_struct *work)
511 {
512 	debug_object_free(work, &work_debug_descr);
513 }
514 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
515 
516 void destroy_delayed_work_on_stack(struct delayed_work *work)
517 {
518 	destroy_timer_on_stack(&work->timer);
519 	debug_object_free(&work->work, &work_debug_descr);
520 }
521 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
522 
523 #else
524 static inline void debug_work_activate(struct work_struct *work) { }
525 static inline void debug_work_deactivate(struct work_struct *work) { }
526 #endif
527 
528 /**
529  * worker_pool_assign_id - allocate ID and assing it to @pool
530  * @pool: the pool pointer of interest
531  *
532  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
533  * successfully, -errno on failure.
534  */
535 static int worker_pool_assign_id(struct worker_pool *pool)
536 {
537 	int ret;
538 
539 	lockdep_assert_held(&wq_pool_mutex);
540 
541 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
542 			GFP_KERNEL);
543 	if (ret >= 0) {
544 		pool->id = ret;
545 		return 0;
546 	}
547 	return ret;
548 }
549 
550 /**
551  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
552  * @wq: the target workqueue
553  * @node: the node ID
554  *
555  * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
556  * read locked.
557  * If the pwq needs to be used beyond the locking in effect, the caller is
558  * responsible for guaranteeing that the pwq stays online.
559  *
560  * Return: The unbound pool_workqueue for @node.
561  */
562 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
563 						  int node)
564 {
565 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
566 
567 	/*
568 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
569 	 * delayed item is pending.  The plan is to keep CPU -> NODE
570 	 * mapping valid and stable across CPU on/offlines.  Once that
571 	 * happens, this workaround can be removed.
572 	 */
573 	if (unlikely(node == NUMA_NO_NODE))
574 		return wq->dfl_pwq;
575 
576 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
577 }
578 
579 static unsigned int work_color_to_flags(int color)
580 {
581 	return color << WORK_STRUCT_COLOR_SHIFT;
582 }
583 
584 static int get_work_color(struct work_struct *work)
585 {
586 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
587 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
588 }
589 
590 static int work_next_color(int color)
591 {
592 	return (color + 1) % WORK_NR_COLORS;
593 }
594 
595 /*
596  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
597  * contain the pointer to the queued pwq.  Once execution starts, the flag
598  * is cleared and the high bits contain OFFQ flags and pool ID.
599  *
600  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
601  * and clear_work_data() can be used to set the pwq, pool or clear
602  * work->data.  These functions should only be called while the work is
603  * owned - ie. while the PENDING bit is set.
604  *
605  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
606  * corresponding to a work.  Pool is available once the work has been
607  * queued anywhere after initialization until it is sync canceled.  pwq is
608  * available only while the work item is queued.
609  *
610  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
611  * canceled.  While being canceled, a work item may have its PENDING set
612  * but stay off timer and worklist for arbitrarily long and nobody should
613  * try to steal the PENDING bit.
614  */
615 static inline void set_work_data(struct work_struct *work, unsigned long data,
616 				 unsigned long flags)
617 {
618 	WARN_ON_ONCE(!work_pending(work));
619 	atomic_long_set(&work->data, data | flags | work_static(work));
620 }
621 
622 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
623 			 unsigned long extra_flags)
624 {
625 	set_work_data(work, (unsigned long)pwq,
626 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
627 }
628 
629 static void set_work_pool_and_keep_pending(struct work_struct *work,
630 					   int pool_id)
631 {
632 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
633 		      WORK_STRUCT_PENDING);
634 }
635 
636 static void set_work_pool_and_clear_pending(struct work_struct *work,
637 					    int pool_id)
638 {
639 	/*
640 	 * The following wmb is paired with the implied mb in
641 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
642 	 * here are visible to and precede any updates by the next PENDING
643 	 * owner.
644 	 */
645 	smp_wmb();
646 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
647 	/*
648 	 * The following mb guarantees that previous clear of a PENDING bit
649 	 * will not be reordered with any speculative LOADS or STORES from
650 	 * work->current_func, which is executed afterwards.  This possible
651 	 * reordering can lead to a missed execution on attempt to qeueue
652 	 * the same @work.  E.g. consider this case:
653 	 *
654 	 *   CPU#0                         CPU#1
655 	 *   ----------------------------  --------------------------------
656 	 *
657 	 * 1  STORE event_indicated
658 	 * 2  queue_work_on() {
659 	 * 3    test_and_set_bit(PENDING)
660 	 * 4 }                             set_..._and_clear_pending() {
661 	 * 5                                 set_work_data() # clear bit
662 	 * 6                                 smp_mb()
663 	 * 7                               work->current_func() {
664 	 * 8				      LOAD event_indicated
665 	 *				   }
666 	 *
667 	 * Without an explicit full barrier speculative LOAD on line 8 can
668 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
669 	 * CPU#0 observes the PENDING bit is still set and new execution of
670 	 * a @work is not queued in a hope, that CPU#1 will eventually
671 	 * finish the queued @work.  Meanwhile CPU#1 does not see
672 	 * event_indicated is set, because speculative LOAD was executed
673 	 * before actual STORE.
674 	 */
675 	smp_mb();
676 }
677 
678 static void clear_work_data(struct work_struct *work)
679 {
680 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
681 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
682 }
683 
684 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
685 {
686 	unsigned long data = atomic_long_read(&work->data);
687 
688 	if (data & WORK_STRUCT_PWQ)
689 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
690 	else
691 		return NULL;
692 }
693 
694 /**
695  * get_work_pool - return the worker_pool a given work was associated with
696  * @work: the work item of interest
697  *
698  * Pools are created and destroyed under wq_pool_mutex, and allows read
699  * access under sched-RCU read lock.  As such, this function should be
700  * called under wq_pool_mutex or with preemption disabled.
701  *
702  * All fields of the returned pool are accessible as long as the above
703  * mentioned locking is in effect.  If the returned pool needs to be used
704  * beyond the critical section, the caller is responsible for ensuring the
705  * returned pool is and stays online.
706  *
707  * Return: The worker_pool @work was last associated with.  %NULL if none.
708  */
709 static struct worker_pool *get_work_pool(struct work_struct *work)
710 {
711 	unsigned long data = atomic_long_read(&work->data);
712 	int pool_id;
713 
714 	assert_rcu_or_pool_mutex();
715 
716 	if (data & WORK_STRUCT_PWQ)
717 		return ((struct pool_workqueue *)
718 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
719 
720 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
721 	if (pool_id == WORK_OFFQ_POOL_NONE)
722 		return NULL;
723 
724 	return idr_find(&worker_pool_idr, pool_id);
725 }
726 
727 /**
728  * get_work_pool_id - return the worker pool ID a given work is associated with
729  * @work: the work item of interest
730  *
731  * Return: The worker_pool ID @work was last associated with.
732  * %WORK_OFFQ_POOL_NONE if none.
733  */
734 static int get_work_pool_id(struct work_struct *work)
735 {
736 	unsigned long data = atomic_long_read(&work->data);
737 
738 	if (data & WORK_STRUCT_PWQ)
739 		return ((struct pool_workqueue *)
740 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
741 
742 	return data >> WORK_OFFQ_POOL_SHIFT;
743 }
744 
745 static void mark_work_canceling(struct work_struct *work)
746 {
747 	unsigned long pool_id = get_work_pool_id(work);
748 
749 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
750 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
751 }
752 
753 static bool work_is_canceling(struct work_struct *work)
754 {
755 	unsigned long data = atomic_long_read(&work->data);
756 
757 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
758 }
759 
760 /*
761  * Policy functions.  These define the policies on how the global worker
762  * pools are managed.  Unless noted otherwise, these functions assume that
763  * they're being called with pool->lock held.
764  */
765 
766 static bool __need_more_worker(struct worker_pool *pool)
767 {
768 	return !atomic_read(&pool->nr_running);
769 }
770 
771 /*
772  * Need to wake up a worker?  Called from anything but currently
773  * running workers.
774  *
775  * Note that, because unbound workers never contribute to nr_running, this
776  * function will always return %true for unbound pools as long as the
777  * worklist isn't empty.
778  */
779 static bool need_more_worker(struct worker_pool *pool)
780 {
781 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
782 }
783 
784 /* Can I start working?  Called from busy but !running workers. */
785 static bool may_start_working(struct worker_pool *pool)
786 {
787 	return pool->nr_idle;
788 }
789 
790 /* Do I need to keep working?  Called from currently running workers. */
791 static bool keep_working(struct worker_pool *pool)
792 {
793 	return !list_empty(&pool->worklist) &&
794 		atomic_read(&pool->nr_running) <= 1;
795 }
796 
797 /* Do we need a new worker?  Called from manager. */
798 static bool need_to_create_worker(struct worker_pool *pool)
799 {
800 	return need_more_worker(pool) && !may_start_working(pool);
801 }
802 
803 /* Do we have too many workers and should some go away? */
804 static bool too_many_workers(struct worker_pool *pool)
805 {
806 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
807 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
808 	int nr_busy = pool->nr_workers - nr_idle;
809 
810 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
811 }
812 
813 /*
814  * Wake up functions.
815  */
816 
817 /* Return the first idle worker.  Safe with preemption disabled */
818 static struct worker *first_idle_worker(struct worker_pool *pool)
819 {
820 	if (unlikely(list_empty(&pool->idle_list)))
821 		return NULL;
822 
823 	return list_first_entry(&pool->idle_list, struct worker, entry);
824 }
825 
826 /**
827  * wake_up_worker - wake up an idle worker
828  * @pool: worker pool to wake worker from
829  *
830  * Wake up the first idle worker of @pool.
831  *
832  * CONTEXT:
833  * spin_lock_irq(pool->lock).
834  */
835 static void wake_up_worker(struct worker_pool *pool)
836 {
837 	struct worker *worker = first_idle_worker(pool);
838 
839 	if (likely(worker))
840 		wake_up_process(worker->task);
841 }
842 
843 /**
844  * wq_worker_waking_up - a worker is waking up
845  * @task: task waking up
846  * @cpu: CPU @task is waking up to
847  *
848  * This function is called during try_to_wake_up() when a worker is
849  * being awoken.
850  *
851  * CONTEXT:
852  * spin_lock_irq(rq->lock)
853  */
854 void wq_worker_waking_up(struct task_struct *task, int cpu)
855 {
856 	struct worker *worker = kthread_data(task);
857 
858 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
859 		WARN_ON_ONCE(worker->pool->cpu != cpu);
860 		atomic_inc(&worker->pool->nr_running);
861 	}
862 }
863 
864 /**
865  * wq_worker_sleeping - a worker is going to sleep
866  * @task: task going to sleep
867  *
868  * This function is called during schedule() when a busy worker is
869  * going to sleep.  Worker on the same cpu can be woken up by
870  * returning pointer to its task.
871  *
872  * CONTEXT:
873  * spin_lock_irq(rq->lock)
874  *
875  * Return:
876  * Worker task on @cpu to wake up, %NULL if none.
877  */
878 struct task_struct *wq_worker_sleeping(struct task_struct *task)
879 {
880 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
881 	struct worker_pool *pool;
882 
883 	/*
884 	 * Rescuers, which may not have all the fields set up like normal
885 	 * workers, also reach here, let's not access anything before
886 	 * checking NOT_RUNNING.
887 	 */
888 	if (worker->flags & WORKER_NOT_RUNNING)
889 		return NULL;
890 
891 	pool = worker->pool;
892 
893 	/* this can only happen on the local cpu */
894 	if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
895 		return NULL;
896 
897 	/*
898 	 * The counterpart of the following dec_and_test, implied mb,
899 	 * worklist not empty test sequence is in insert_work().
900 	 * Please read comment there.
901 	 *
902 	 * NOT_RUNNING is clear.  This means that we're bound to and
903 	 * running on the local cpu w/ rq lock held and preemption
904 	 * disabled, which in turn means that none else could be
905 	 * manipulating idle_list, so dereferencing idle_list without pool
906 	 * lock is safe.
907 	 */
908 	if (atomic_dec_and_test(&pool->nr_running) &&
909 	    !list_empty(&pool->worklist))
910 		to_wakeup = first_idle_worker(pool);
911 	return to_wakeup ? to_wakeup->task : NULL;
912 }
913 
914 /**
915  * worker_set_flags - set worker flags and adjust nr_running accordingly
916  * @worker: self
917  * @flags: flags to set
918  *
919  * Set @flags in @worker->flags and adjust nr_running accordingly.
920  *
921  * CONTEXT:
922  * spin_lock_irq(pool->lock)
923  */
924 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
925 {
926 	struct worker_pool *pool = worker->pool;
927 
928 	WARN_ON_ONCE(worker->task != current);
929 
930 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
931 	if ((flags & WORKER_NOT_RUNNING) &&
932 	    !(worker->flags & WORKER_NOT_RUNNING)) {
933 		atomic_dec(&pool->nr_running);
934 	}
935 
936 	worker->flags |= flags;
937 }
938 
939 /**
940  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
941  * @worker: self
942  * @flags: flags to clear
943  *
944  * Clear @flags in @worker->flags and adjust nr_running accordingly.
945  *
946  * CONTEXT:
947  * spin_lock_irq(pool->lock)
948  */
949 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
950 {
951 	struct worker_pool *pool = worker->pool;
952 	unsigned int oflags = worker->flags;
953 
954 	WARN_ON_ONCE(worker->task != current);
955 
956 	worker->flags &= ~flags;
957 
958 	/*
959 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
960 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
961 	 * of multiple flags, not a single flag.
962 	 */
963 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
964 		if (!(worker->flags & WORKER_NOT_RUNNING))
965 			atomic_inc(&pool->nr_running);
966 }
967 
968 /**
969  * find_worker_executing_work - find worker which is executing a work
970  * @pool: pool of interest
971  * @work: work to find worker for
972  *
973  * Find a worker which is executing @work on @pool by searching
974  * @pool->busy_hash which is keyed by the address of @work.  For a worker
975  * to match, its current execution should match the address of @work and
976  * its work function.  This is to avoid unwanted dependency between
977  * unrelated work executions through a work item being recycled while still
978  * being executed.
979  *
980  * This is a bit tricky.  A work item may be freed once its execution
981  * starts and nothing prevents the freed area from being recycled for
982  * another work item.  If the same work item address ends up being reused
983  * before the original execution finishes, workqueue will identify the
984  * recycled work item as currently executing and make it wait until the
985  * current execution finishes, introducing an unwanted dependency.
986  *
987  * This function checks the work item address and work function to avoid
988  * false positives.  Note that this isn't complete as one may construct a
989  * work function which can introduce dependency onto itself through a
990  * recycled work item.  Well, if somebody wants to shoot oneself in the
991  * foot that badly, there's only so much we can do, and if such deadlock
992  * actually occurs, it should be easy to locate the culprit work function.
993  *
994  * CONTEXT:
995  * spin_lock_irq(pool->lock).
996  *
997  * Return:
998  * Pointer to worker which is executing @work if found, %NULL
999  * otherwise.
1000  */
1001 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1002 						 struct work_struct *work)
1003 {
1004 	struct worker *worker;
1005 
1006 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1007 			       (unsigned long)work)
1008 		if (worker->current_work == work &&
1009 		    worker->current_func == work->func)
1010 			return worker;
1011 
1012 	return NULL;
1013 }
1014 
1015 /**
1016  * move_linked_works - move linked works to a list
1017  * @work: start of series of works to be scheduled
1018  * @head: target list to append @work to
1019  * @nextp: out parameter for nested worklist walking
1020  *
1021  * Schedule linked works starting from @work to @head.  Work series to
1022  * be scheduled starts at @work and includes any consecutive work with
1023  * WORK_STRUCT_LINKED set in its predecessor.
1024  *
1025  * If @nextp is not NULL, it's updated to point to the next work of
1026  * the last scheduled work.  This allows move_linked_works() to be
1027  * nested inside outer list_for_each_entry_safe().
1028  *
1029  * CONTEXT:
1030  * spin_lock_irq(pool->lock).
1031  */
1032 static void move_linked_works(struct work_struct *work, struct list_head *head,
1033 			      struct work_struct **nextp)
1034 {
1035 	struct work_struct *n;
1036 
1037 	/*
1038 	 * Linked worklist will always end before the end of the list,
1039 	 * use NULL for list head.
1040 	 */
1041 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1042 		list_move_tail(&work->entry, head);
1043 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1044 			break;
1045 	}
1046 
1047 	/*
1048 	 * If we're already inside safe list traversal and have moved
1049 	 * multiple works to the scheduled queue, the next position
1050 	 * needs to be updated.
1051 	 */
1052 	if (nextp)
1053 		*nextp = n;
1054 }
1055 
1056 /**
1057  * get_pwq - get an extra reference on the specified pool_workqueue
1058  * @pwq: pool_workqueue to get
1059  *
1060  * Obtain an extra reference on @pwq.  The caller should guarantee that
1061  * @pwq has positive refcnt and be holding the matching pool->lock.
1062  */
1063 static void get_pwq(struct pool_workqueue *pwq)
1064 {
1065 	lockdep_assert_held(&pwq->pool->lock);
1066 	WARN_ON_ONCE(pwq->refcnt <= 0);
1067 	pwq->refcnt++;
1068 }
1069 
1070 /**
1071  * put_pwq - put a pool_workqueue reference
1072  * @pwq: pool_workqueue to put
1073  *
1074  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1075  * destruction.  The caller should be holding the matching pool->lock.
1076  */
1077 static void put_pwq(struct pool_workqueue *pwq)
1078 {
1079 	lockdep_assert_held(&pwq->pool->lock);
1080 	if (likely(--pwq->refcnt))
1081 		return;
1082 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1083 		return;
1084 	/*
1085 	 * @pwq can't be released under pool->lock, bounce to
1086 	 * pwq_unbound_release_workfn().  This never recurses on the same
1087 	 * pool->lock as this path is taken only for unbound workqueues and
1088 	 * the release work item is scheduled on a per-cpu workqueue.  To
1089 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1090 	 * subclass of 1 in get_unbound_pool().
1091 	 */
1092 	schedule_work(&pwq->unbound_release_work);
1093 }
1094 
1095 /**
1096  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1097  * @pwq: pool_workqueue to put (can be %NULL)
1098  *
1099  * put_pwq() with locking.  This function also allows %NULL @pwq.
1100  */
1101 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1102 {
1103 	if (pwq) {
1104 		/*
1105 		 * As both pwqs and pools are sched-RCU protected, the
1106 		 * following lock operations are safe.
1107 		 */
1108 		spin_lock_irq(&pwq->pool->lock);
1109 		put_pwq(pwq);
1110 		spin_unlock_irq(&pwq->pool->lock);
1111 	}
1112 }
1113 
1114 static void pwq_activate_delayed_work(struct work_struct *work)
1115 {
1116 	struct pool_workqueue *pwq = get_work_pwq(work);
1117 
1118 	trace_workqueue_activate_work(work);
1119 	if (list_empty(&pwq->pool->worklist))
1120 		pwq->pool->watchdog_ts = jiffies;
1121 	move_linked_works(work, &pwq->pool->worklist, NULL);
1122 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1123 	pwq->nr_active++;
1124 }
1125 
1126 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1127 {
1128 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1129 						    struct work_struct, entry);
1130 
1131 	pwq_activate_delayed_work(work);
1132 }
1133 
1134 /**
1135  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1136  * @pwq: pwq of interest
1137  * @color: color of work which left the queue
1138  *
1139  * A work either has completed or is removed from pending queue,
1140  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1141  *
1142  * CONTEXT:
1143  * spin_lock_irq(pool->lock).
1144  */
1145 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1146 {
1147 	/* uncolored work items don't participate in flushing or nr_active */
1148 	if (color == WORK_NO_COLOR)
1149 		goto out_put;
1150 
1151 	pwq->nr_in_flight[color]--;
1152 
1153 	pwq->nr_active--;
1154 	if (!list_empty(&pwq->delayed_works)) {
1155 		/* one down, submit a delayed one */
1156 		if (pwq->nr_active < pwq->max_active)
1157 			pwq_activate_first_delayed(pwq);
1158 	}
1159 
1160 	/* is flush in progress and are we at the flushing tip? */
1161 	if (likely(pwq->flush_color != color))
1162 		goto out_put;
1163 
1164 	/* are there still in-flight works? */
1165 	if (pwq->nr_in_flight[color])
1166 		goto out_put;
1167 
1168 	/* this pwq is done, clear flush_color */
1169 	pwq->flush_color = -1;
1170 
1171 	/*
1172 	 * If this was the last pwq, wake up the first flusher.  It
1173 	 * will handle the rest.
1174 	 */
1175 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1176 		complete(&pwq->wq->first_flusher->done);
1177 out_put:
1178 	put_pwq(pwq);
1179 }
1180 
1181 /**
1182  * try_to_grab_pending - steal work item from worklist and disable irq
1183  * @work: work item to steal
1184  * @is_dwork: @work is a delayed_work
1185  * @flags: place to store irq state
1186  *
1187  * Try to grab PENDING bit of @work.  This function can handle @work in any
1188  * stable state - idle, on timer or on worklist.
1189  *
1190  * Return:
1191  *  1		if @work was pending and we successfully stole PENDING
1192  *  0		if @work was idle and we claimed PENDING
1193  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1194  *  -ENOENT	if someone else is canceling @work, this state may persist
1195  *		for arbitrarily long
1196  *
1197  * Note:
1198  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1199  * interrupted while holding PENDING and @work off queue, irq must be
1200  * disabled on entry.  This, combined with delayed_work->timer being
1201  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1202  *
1203  * On successful return, >= 0, irq is disabled and the caller is
1204  * responsible for releasing it using local_irq_restore(*@flags).
1205  *
1206  * This function is safe to call from any context including IRQ handler.
1207  */
1208 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1209 			       unsigned long *flags)
1210 {
1211 	struct worker_pool *pool;
1212 	struct pool_workqueue *pwq;
1213 
1214 	local_irq_save(*flags);
1215 
1216 	/* try to steal the timer if it exists */
1217 	if (is_dwork) {
1218 		struct delayed_work *dwork = to_delayed_work(work);
1219 
1220 		/*
1221 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1222 		 * guaranteed that the timer is not queued anywhere and not
1223 		 * running on the local CPU.
1224 		 */
1225 		if (likely(del_timer(&dwork->timer)))
1226 			return 1;
1227 	}
1228 
1229 	/* try to claim PENDING the normal way */
1230 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1231 		return 0;
1232 
1233 	/*
1234 	 * The queueing is in progress, or it is already queued. Try to
1235 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1236 	 */
1237 	pool = get_work_pool(work);
1238 	if (!pool)
1239 		goto fail;
1240 
1241 	spin_lock(&pool->lock);
1242 	/*
1243 	 * work->data is guaranteed to point to pwq only while the work
1244 	 * item is queued on pwq->wq, and both updating work->data to point
1245 	 * to pwq on queueing and to pool on dequeueing are done under
1246 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1247 	 * points to pwq which is associated with a locked pool, the work
1248 	 * item is currently queued on that pool.
1249 	 */
1250 	pwq = get_work_pwq(work);
1251 	if (pwq && pwq->pool == pool) {
1252 		debug_work_deactivate(work);
1253 
1254 		/*
1255 		 * A delayed work item cannot be grabbed directly because
1256 		 * it might have linked NO_COLOR work items which, if left
1257 		 * on the delayed_list, will confuse pwq->nr_active
1258 		 * management later on and cause stall.  Make sure the work
1259 		 * item is activated before grabbing.
1260 		 */
1261 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1262 			pwq_activate_delayed_work(work);
1263 
1264 		list_del_init(&work->entry);
1265 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1266 
1267 		/* work->data points to pwq iff queued, point to pool */
1268 		set_work_pool_and_keep_pending(work, pool->id);
1269 
1270 		spin_unlock(&pool->lock);
1271 		return 1;
1272 	}
1273 	spin_unlock(&pool->lock);
1274 fail:
1275 	local_irq_restore(*flags);
1276 	if (work_is_canceling(work))
1277 		return -ENOENT;
1278 	cpu_relax();
1279 	return -EAGAIN;
1280 }
1281 
1282 /**
1283  * insert_work - insert a work into a pool
1284  * @pwq: pwq @work belongs to
1285  * @work: work to insert
1286  * @head: insertion point
1287  * @extra_flags: extra WORK_STRUCT_* flags to set
1288  *
1289  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1290  * work_struct flags.
1291  *
1292  * CONTEXT:
1293  * spin_lock_irq(pool->lock).
1294  */
1295 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1296 			struct list_head *head, unsigned int extra_flags)
1297 {
1298 	struct worker_pool *pool = pwq->pool;
1299 
1300 	/* we own @work, set data and link */
1301 	set_work_pwq(work, pwq, extra_flags);
1302 	list_add_tail(&work->entry, head);
1303 	get_pwq(pwq);
1304 
1305 	/*
1306 	 * Ensure either wq_worker_sleeping() sees the above
1307 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1308 	 * around lazily while there are works to be processed.
1309 	 */
1310 	smp_mb();
1311 
1312 	if (__need_more_worker(pool))
1313 		wake_up_worker(pool);
1314 }
1315 
1316 /*
1317  * Test whether @work is being queued from another work executing on the
1318  * same workqueue.
1319  */
1320 static bool is_chained_work(struct workqueue_struct *wq)
1321 {
1322 	struct worker *worker;
1323 
1324 	worker = current_wq_worker();
1325 	/*
1326 	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1327 	 * I'm @worker, it's safe to dereference it without locking.
1328 	 */
1329 	return worker && worker->current_pwq->wq == wq;
1330 }
1331 
1332 /*
1333  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1334  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1335  * avoid perturbing sensitive tasks.
1336  */
1337 static int wq_select_unbound_cpu(int cpu)
1338 {
1339 	static bool printed_dbg_warning;
1340 	int new_cpu;
1341 
1342 	if (likely(!wq_debug_force_rr_cpu)) {
1343 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1344 			return cpu;
1345 	} else if (!printed_dbg_warning) {
1346 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1347 		printed_dbg_warning = true;
1348 	}
1349 
1350 	if (cpumask_empty(wq_unbound_cpumask))
1351 		return cpu;
1352 
1353 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1354 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1355 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1356 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1357 		if (unlikely(new_cpu >= nr_cpu_ids))
1358 			return cpu;
1359 	}
1360 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1361 
1362 	return new_cpu;
1363 }
1364 
1365 static void __queue_work(int cpu, struct workqueue_struct *wq,
1366 			 struct work_struct *work)
1367 {
1368 	struct pool_workqueue *pwq;
1369 	struct worker_pool *last_pool;
1370 	struct list_head *worklist;
1371 	unsigned int work_flags;
1372 	unsigned int req_cpu = cpu;
1373 
1374 	/*
1375 	 * While a work item is PENDING && off queue, a task trying to
1376 	 * steal the PENDING will busy-loop waiting for it to either get
1377 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1378 	 * happen with IRQ disabled.
1379 	 */
1380 	lockdep_assert_irqs_disabled();
1381 
1382 	debug_work_activate(work);
1383 
1384 	/* if draining, only works from the same workqueue are allowed */
1385 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1386 	    WARN_ON_ONCE(!is_chained_work(wq)))
1387 		return;
1388 retry:
1389 	if (req_cpu == WORK_CPU_UNBOUND)
1390 		cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1391 
1392 	/* pwq which will be used unless @work is executing elsewhere */
1393 	if (!(wq->flags & WQ_UNBOUND))
1394 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1395 	else
1396 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1397 
1398 	/*
1399 	 * If @work was previously on a different pool, it might still be
1400 	 * running there, in which case the work needs to be queued on that
1401 	 * pool to guarantee non-reentrancy.
1402 	 */
1403 	last_pool = get_work_pool(work);
1404 	if (last_pool && last_pool != pwq->pool) {
1405 		struct worker *worker;
1406 
1407 		spin_lock(&last_pool->lock);
1408 
1409 		worker = find_worker_executing_work(last_pool, work);
1410 
1411 		if (worker && worker->current_pwq->wq == wq) {
1412 			pwq = worker->current_pwq;
1413 		} else {
1414 			/* meh... not running there, queue here */
1415 			spin_unlock(&last_pool->lock);
1416 			spin_lock(&pwq->pool->lock);
1417 		}
1418 	} else {
1419 		spin_lock(&pwq->pool->lock);
1420 	}
1421 
1422 	/*
1423 	 * pwq is determined and locked.  For unbound pools, we could have
1424 	 * raced with pwq release and it could already be dead.  If its
1425 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1426 	 * without another pwq replacing it in the numa_pwq_tbl or while
1427 	 * work items are executing on it, so the retrying is guaranteed to
1428 	 * make forward-progress.
1429 	 */
1430 	if (unlikely(!pwq->refcnt)) {
1431 		if (wq->flags & WQ_UNBOUND) {
1432 			spin_unlock(&pwq->pool->lock);
1433 			cpu_relax();
1434 			goto retry;
1435 		}
1436 		/* oops */
1437 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1438 			  wq->name, cpu);
1439 	}
1440 
1441 	/* pwq determined, queue */
1442 	trace_workqueue_queue_work(req_cpu, pwq, work);
1443 
1444 	if (WARN_ON(!list_empty(&work->entry))) {
1445 		spin_unlock(&pwq->pool->lock);
1446 		return;
1447 	}
1448 
1449 	pwq->nr_in_flight[pwq->work_color]++;
1450 	work_flags = work_color_to_flags(pwq->work_color);
1451 
1452 	if (likely(pwq->nr_active < pwq->max_active)) {
1453 		trace_workqueue_activate_work(work);
1454 		pwq->nr_active++;
1455 		worklist = &pwq->pool->worklist;
1456 		if (list_empty(worklist))
1457 			pwq->pool->watchdog_ts = jiffies;
1458 	} else {
1459 		work_flags |= WORK_STRUCT_DELAYED;
1460 		worklist = &pwq->delayed_works;
1461 	}
1462 
1463 	insert_work(pwq, work, worklist, work_flags);
1464 
1465 	spin_unlock(&pwq->pool->lock);
1466 }
1467 
1468 /**
1469  * queue_work_on - queue work on specific cpu
1470  * @cpu: CPU number to execute work on
1471  * @wq: workqueue to use
1472  * @work: work to queue
1473  *
1474  * We queue the work to a specific CPU, the caller must ensure it
1475  * can't go away.
1476  *
1477  * Return: %false if @work was already on a queue, %true otherwise.
1478  */
1479 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1480 		   struct work_struct *work)
1481 {
1482 	bool ret = false;
1483 	unsigned long flags;
1484 
1485 	local_irq_save(flags);
1486 
1487 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1488 		__queue_work(cpu, wq, work);
1489 		ret = true;
1490 	}
1491 
1492 	local_irq_restore(flags);
1493 	return ret;
1494 }
1495 EXPORT_SYMBOL(queue_work_on);
1496 
1497 void delayed_work_timer_fn(struct timer_list *t)
1498 {
1499 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1500 
1501 	/* should have been called from irqsafe timer with irq already off */
1502 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1503 }
1504 EXPORT_SYMBOL(delayed_work_timer_fn);
1505 
1506 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1507 				struct delayed_work *dwork, unsigned long delay)
1508 {
1509 	struct timer_list *timer = &dwork->timer;
1510 	struct work_struct *work = &dwork->work;
1511 
1512 	WARN_ON_ONCE(!wq);
1513 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1514 	WARN_ON_ONCE(timer_pending(timer));
1515 	WARN_ON_ONCE(!list_empty(&work->entry));
1516 
1517 	/*
1518 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1519 	 * both optimization and correctness.  The earliest @timer can
1520 	 * expire is on the closest next tick and delayed_work users depend
1521 	 * on that there's no such delay when @delay is 0.
1522 	 */
1523 	if (!delay) {
1524 		__queue_work(cpu, wq, &dwork->work);
1525 		return;
1526 	}
1527 
1528 	dwork->wq = wq;
1529 	dwork->cpu = cpu;
1530 	timer->expires = jiffies + delay;
1531 
1532 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1533 		add_timer_on(timer, cpu);
1534 	else
1535 		add_timer(timer);
1536 }
1537 
1538 /**
1539  * queue_delayed_work_on - queue work on specific CPU after delay
1540  * @cpu: CPU number to execute work on
1541  * @wq: workqueue to use
1542  * @dwork: work to queue
1543  * @delay: number of jiffies to wait before queueing
1544  *
1545  * Return: %false if @work was already on a queue, %true otherwise.  If
1546  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1547  * execution.
1548  */
1549 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1550 			   struct delayed_work *dwork, unsigned long delay)
1551 {
1552 	struct work_struct *work = &dwork->work;
1553 	bool ret = false;
1554 	unsigned long flags;
1555 
1556 	/* read the comment in __queue_work() */
1557 	local_irq_save(flags);
1558 
1559 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1560 		__queue_delayed_work(cpu, wq, dwork, delay);
1561 		ret = true;
1562 	}
1563 
1564 	local_irq_restore(flags);
1565 	return ret;
1566 }
1567 EXPORT_SYMBOL(queue_delayed_work_on);
1568 
1569 /**
1570  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1571  * @cpu: CPU number to execute work on
1572  * @wq: workqueue to use
1573  * @dwork: work to queue
1574  * @delay: number of jiffies to wait before queueing
1575  *
1576  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1577  * modify @dwork's timer so that it expires after @delay.  If @delay is
1578  * zero, @work is guaranteed to be scheduled immediately regardless of its
1579  * current state.
1580  *
1581  * Return: %false if @dwork was idle and queued, %true if @dwork was
1582  * pending and its timer was modified.
1583  *
1584  * This function is safe to call from any context including IRQ handler.
1585  * See try_to_grab_pending() for details.
1586  */
1587 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1588 			 struct delayed_work *dwork, unsigned long delay)
1589 {
1590 	unsigned long flags;
1591 	int ret;
1592 
1593 	do {
1594 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1595 	} while (unlikely(ret == -EAGAIN));
1596 
1597 	if (likely(ret >= 0)) {
1598 		__queue_delayed_work(cpu, wq, dwork, delay);
1599 		local_irq_restore(flags);
1600 	}
1601 
1602 	/* -ENOENT from try_to_grab_pending() becomes %true */
1603 	return ret;
1604 }
1605 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1606 
1607 /**
1608  * worker_enter_idle - enter idle state
1609  * @worker: worker which is entering idle state
1610  *
1611  * @worker is entering idle state.  Update stats and idle timer if
1612  * necessary.
1613  *
1614  * LOCKING:
1615  * spin_lock_irq(pool->lock).
1616  */
1617 static void worker_enter_idle(struct worker *worker)
1618 {
1619 	struct worker_pool *pool = worker->pool;
1620 
1621 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1622 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1623 			 (worker->hentry.next || worker->hentry.pprev)))
1624 		return;
1625 
1626 	/* can't use worker_set_flags(), also called from create_worker() */
1627 	worker->flags |= WORKER_IDLE;
1628 	pool->nr_idle++;
1629 	worker->last_active = jiffies;
1630 
1631 	/* idle_list is LIFO */
1632 	list_add(&worker->entry, &pool->idle_list);
1633 
1634 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1635 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1636 
1637 	/*
1638 	 * Sanity check nr_running.  Because unbind_workers() releases
1639 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1640 	 * nr_running, the warning may trigger spuriously.  Check iff
1641 	 * unbind is not in progress.
1642 	 */
1643 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1644 		     pool->nr_workers == pool->nr_idle &&
1645 		     atomic_read(&pool->nr_running));
1646 }
1647 
1648 /**
1649  * worker_leave_idle - leave idle state
1650  * @worker: worker which is leaving idle state
1651  *
1652  * @worker is leaving idle state.  Update stats.
1653  *
1654  * LOCKING:
1655  * spin_lock_irq(pool->lock).
1656  */
1657 static void worker_leave_idle(struct worker *worker)
1658 {
1659 	struct worker_pool *pool = worker->pool;
1660 
1661 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1662 		return;
1663 	worker_clr_flags(worker, WORKER_IDLE);
1664 	pool->nr_idle--;
1665 	list_del_init(&worker->entry);
1666 }
1667 
1668 static struct worker *alloc_worker(int node)
1669 {
1670 	struct worker *worker;
1671 
1672 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1673 	if (worker) {
1674 		INIT_LIST_HEAD(&worker->entry);
1675 		INIT_LIST_HEAD(&worker->scheduled);
1676 		INIT_LIST_HEAD(&worker->node);
1677 		/* on creation a worker is in !idle && prep state */
1678 		worker->flags = WORKER_PREP;
1679 	}
1680 	return worker;
1681 }
1682 
1683 /**
1684  * worker_attach_to_pool() - attach a worker to a pool
1685  * @worker: worker to be attached
1686  * @pool: the target pool
1687  *
1688  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1689  * cpu-binding of @worker are kept coordinated with the pool across
1690  * cpu-[un]hotplugs.
1691  */
1692 static void worker_attach_to_pool(struct worker *worker,
1693 				   struct worker_pool *pool)
1694 {
1695 	mutex_lock(&pool->attach_mutex);
1696 
1697 	/*
1698 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1699 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1700 	 */
1701 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1702 
1703 	/*
1704 	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1705 	 * stable across this function.  See the comments above the
1706 	 * flag definition for details.
1707 	 */
1708 	if (pool->flags & POOL_DISASSOCIATED)
1709 		worker->flags |= WORKER_UNBOUND;
1710 
1711 	list_add_tail(&worker->node, &pool->workers);
1712 
1713 	mutex_unlock(&pool->attach_mutex);
1714 }
1715 
1716 /**
1717  * worker_detach_from_pool() - detach a worker from its pool
1718  * @worker: worker which is attached to its pool
1719  * @pool: the pool @worker is attached to
1720  *
1721  * Undo the attaching which had been done in worker_attach_to_pool().  The
1722  * caller worker shouldn't access to the pool after detached except it has
1723  * other reference to the pool.
1724  */
1725 static void worker_detach_from_pool(struct worker *worker,
1726 				    struct worker_pool *pool)
1727 {
1728 	struct completion *detach_completion = NULL;
1729 
1730 	mutex_lock(&pool->attach_mutex);
1731 	list_del(&worker->node);
1732 	if (list_empty(&pool->workers))
1733 		detach_completion = pool->detach_completion;
1734 	mutex_unlock(&pool->attach_mutex);
1735 
1736 	/* clear leftover flags without pool->lock after it is detached */
1737 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1738 
1739 	if (detach_completion)
1740 		complete(detach_completion);
1741 }
1742 
1743 /**
1744  * create_worker - create a new workqueue worker
1745  * @pool: pool the new worker will belong to
1746  *
1747  * Create and start a new worker which is attached to @pool.
1748  *
1749  * CONTEXT:
1750  * Might sleep.  Does GFP_KERNEL allocations.
1751  *
1752  * Return:
1753  * Pointer to the newly created worker.
1754  */
1755 static struct worker *create_worker(struct worker_pool *pool)
1756 {
1757 	struct worker *worker = NULL;
1758 	int id = -1;
1759 	char id_buf[16];
1760 
1761 	/* ID is needed to determine kthread name */
1762 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1763 	if (id < 0)
1764 		goto fail;
1765 
1766 	worker = alloc_worker(pool->node);
1767 	if (!worker)
1768 		goto fail;
1769 
1770 	worker->pool = pool;
1771 	worker->id = id;
1772 
1773 	if (pool->cpu >= 0)
1774 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1775 			 pool->attrs->nice < 0  ? "H" : "");
1776 	else
1777 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1778 
1779 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1780 					      "kworker/%s", id_buf);
1781 	if (IS_ERR(worker->task))
1782 		goto fail;
1783 
1784 	set_user_nice(worker->task, pool->attrs->nice);
1785 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1786 
1787 	/* successful, attach the worker to the pool */
1788 	worker_attach_to_pool(worker, pool);
1789 
1790 	/* start the newly created worker */
1791 	spin_lock_irq(&pool->lock);
1792 	worker->pool->nr_workers++;
1793 	worker_enter_idle(worker);
1794 	wake_up_process(worker->task);
1795 	spin_unlock_irq(&pool->lock);
1796 
1797 	return worker;
1798 
1799 fail:
1800 	if (id >= 0)
1801 		ida_simple_remove(&pool->worker_ida, id);
1802 	kfree(worker);
1803 	return NULL;
1804 }
1805 
1806 /**
1807  * destroy_worker - destroy a workqueue worker
1808  * @worker: worker to be destroyed
1809  *
1810  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1811  * be idle.
1812  *
1813  * CONTEXT:
1814  * spin_lock_irq(pool->lock).
1815  */
1816 static void destroy_worker(struct worker *worker)
1817 {
1818 	struct worker_pool *pool = worker->pool;
1819 
1820 	lockdep_assert_held(&pool->lock);
1821 
1822 	/* sanity check frenzy */
1823 	if (WARN_ON(worker->current_work) ||
1824 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1825 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1826 		return;
1827 
1828 	pool->nr_workers--;
1829 	pool->nr_idle--;
1830 
1831 	list_del_init(&worker->entry);
1832 	worker->flags |= WORKER_DIE;
1833 	wake_up_process(worker->task);
1834 }
1835 
1836 static void idle_worker_timeout(struct timer_list *t)
1837 {
1838 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
1839 
1840 	spin_lock_irq(&pool->lock);
1841 
1842 	while (too_many_workers(pool)) {
1843 		struct worker *worker;
1844 		unsigned long expires;
1845 
1846 		/* idle_list is kept in LIFO order, check the last one */
1847 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1848 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1849 
1850 		if (time_before(jiffies, expires)) {
1851 			mod_timer(&pool->idle_timer, expires);
1852 			break;
1853 		}
1854 
1855 		destroy_worker(worker);
1856 	}
1857 
1858 	spin_unlock_irq(&pool->lock);
1859 }
1860 
1861 static void send_mayday(struct work_struct *work)
1862 {
1863 	struct pool_workqueue *pwq = get_work_pwq(work);
1864 	struct workqueue_struct *wq = pwq->wq;
1865 
1866 	lockdep_assert_held(&wq_mayday_lock);
1867 
1868 	if (!wq->rescuer)
1869 		return;
1870 
1871 	/* mayday mayday mayday */
1872 	if (list_empty(&pwq->mayday_node)) {
1873 		/*
1874 		 * If @pwq is for an unbound wq, its base ref may be put at
1875 		 * any time due to an attribute change.  Pin @pwq until the
1876 		 * rescuer is done with it.
1877 		 */
1878 		get_pwq(pwq);
1879 		list_add_tail(&pwq->mayday_node, &wq->maydays);
1880 		wake_up_process(wq->rescuer->task);
1881 	}
1882 }
1883 
1884 static void pool_mayday_timeout(struct timer_list *t)
1885 {
1886 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
1887 	struct work_struct *work;
1888 
1889 	spin_lock_irq(&pool->lock);
1890 	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1891 
1892 	if (need_to_create_worker(pool)) {
1893 		/*
1894 		 * We've been trying to create a new worker but
1895 		 * haven't been successful.  We might be hitting an
1896 		 * allocation deadlock.  Send distress signals to
1897 		 * rescuers.
1898 		 */
1899 		list_for_each_entry(work, &pool->worklist, entry)
1900 			send_mayday(work);
1901 	}
1902 
1903 	spin_unlock(&wq_mayday_lock);
1904 	spin_unlock_irq(&pool->lock);
1905 
1906 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1907 }
1908 
1909 /**
1910  * maybe_create_worker - create a new worker if necessary
1911  * @pool: pool to create a new worker for
1912  *
1913  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1914  * have at least one idle worker on return from this function.  If
1915  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1916  * sent to all rescuers with works scheduled on @pool to resolve
1917  * possible allocation deadlock.
1918  *
1919  * On return, need_to_create_worker() is guaranteed to be %false and
1920  * may_start_working() %true.
1921  *
1922  * LOCKING:
1923  * spin_lock_irq(pool->lock) which may be released and regrabbed
1924  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1925  * manager.
1926  */
1927 static void maybe_create_worker(struct worker_pool *pool)
1928 __releases(&pool->lock)
1929 __acquires(&pool->lock)
1930 {
1931 restart:
1932 	spin_unlock_irq(&pool->lock);
1933 
1934 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1935 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1936 
1937 	while (true) {
1938 		if (create_worker(pool) || !need_to_create_worker(pool))
1939 			break;
1940 
1941 		schedule_timeout_interruptible(CREATE_COOLDOWN);
1942 
1943 		if (!need_to_create_worker(pool))
1944 			break;
1945 	}
1946 
1947 	del_timer_sync(&pool->mayday_timer);
1948 	spin_lock_irq(&pool->lock);
1949 	/*
1950 	 * This is necessary even after a new worker was just successfully
1951 	 * created as @pool->lock was dropped and the new worker might have
1952 	 * already become busy.
1953 	 */
1954 	if (need_to_create_worker(pool))
1955 		goto restart;
1956 }
1957 
1958 /**
1959  * manage_workers - manage worker pool
1960  * @worker: self
1961  *
1962  * Assume the manager role and manage the worker pool @worker belongs
1963  * to.  At any given time, there can be only zero or one manager per
1964  * pool.  The exclusion is handled automatically by this function.
1965  *
1966  * The caller can safely start processing works on false return.  On
1967  * true return, it's guaranteed that need_to_create_worker() is false
1968  * and may_start_working() is true.
1969  *
1970  * CONTEXT:
1971  * spin_lock_irq(pool->lock) which may be released and regrabbed
1972  * multiple times.  Does GFP_KERNEL allocations.
1973  *
1974  * Return:
1975  * %false if the pool doesn't need management and the caller can safely
1976  * start processing works, %true if management function was performed and
1977  * the conditions that the caller verified before calling the function may
1978  * no longer be true.
1979  */
1980 static bool manage_workers(struct worker *worker)
1981 {
1982 	struct worker_pool *pool = worker->pool;
1983 
1984 	if (pool->flags & POOL_MANAGER_ACTIVE)
1985 		return false;
1986 
1987 	pool->flags |= POOL_MANAGER_ACTIVE;
1988 	pool->manager = worker;
1989 
1990 	maybe_create_worker(pool);
1991 
1992 	pool->manager = NULL;
1993 	pool->flags &= ~POOL_MANAGER_ACTIVE;
1994 	wake_up(&wq_manager_wait);
1995 	return true;
1996 }
1997 
1998 /**
1999  * process_one_work - process single work
2000  * @worker: self
2001  * @work: work to process
2002  *
2003  * Process @work.  This function contains all the logics necessary to
2004  * process a single work including synchronization against and
2005  * interaction with other workers on the same cpu, queueing and
2006  * flushing.  As long as context requirement is met, any worker can
2007  * call this function to process a work.
2008  *
2009  * CONTEXT:
2010  * spin_lock_irq(pool->lock) which is released and regrabbed.
2011  */
2012 static void process_one_work(struct worker *worker, struct work_struct *work)
2013 __releases(&pool->lock)
2014 __acquires(&pool->lock)
2015 {
2016 	struct pool_workqueue *pwq = get_work_pwq(work);
2017 	struct worker_pool *pool = worker->pool;
2018 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2019 	int work_color;
2020 	struct worker *collision;
2021 #ifdef CONFIG_LOCKDEP
2022 	/*
2023 	 * It is permissible to free the struct work_struct from
2024 	 * inside the function that is called from it, this we need to
2025 	 * take into account for lockdep too.  To avoid bogus "held
2026 	 * lock freed" warnings as well as problems when looking into
2027 	 * work->lockdep_map, make a copy and use that here.
2028 	 */
2029 	struct lockdep_map lockdep_map;
2030 
2031 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2032 #endif
2033 	/* ensure we're on the correct CPU */
2034 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2035 		     raw_smp_processor_id() != pool->cpu);
2036 
2037 	/*
2038 	 * A single work shouldn't be executed concurrently by
2039 	 * multiple workers on a single cpu.  Check whether anyone is
2040 	 * already processing the work.  If so, defer the work to the
2041 	 * currently executing one.
2042 	 */
2043 	collision = find_worker_executing_work(pool, work);
2044 	if (unlikely(collision)) {
2045 		move_linked_works(work, &collision->scheduled, NULL);
2046 		return;
2047 	}
2048 
2049 	/* claim and dequeue */
2050 	debug_work_deactivate(work);
2051 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2052 	worker->current_work = work;
2053 	worker->current_func = work->func;
2054 	worker->current_pwq = pwq;
2055 	work_color = get_work_color(work);
2056 
2057 	list_del_init(&work->entry);
2058 
2059 	/*
2060 	 * CPU intensive works don't participate in concurrency management.
2061 	 * They're the scheduler's responsibility.  This takes @worker out
2062 	 * of concurrency management and the next code block will chain
2063 	 * execution of the pending work items.
2064 	 */
2065 	if (unlikely(cpu_intensive))
2066 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2067 
2068 	/*
2069 	 * Wake up another worker if necessary.  The condition is always
2070 	 * false for normal per-cpu workers since nr_running would always
2071 	 * be >= 1 at this point.  This is used to chain execution of the
2072 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2073 	 * UNBOUND and CPU_INTENSIVE ones.
2074 	 */
2075 	if (need_more_worker(pool))
2076 		wake_up_worker(pool);
2077 
2078 	/*
2079 	 * Record the last pool and clear PENDING which should be the last
2080 	 * update to @work.  Also, do this inside @pool->lock so that
2081 	 * PENDING and queued state changes happen together while IRQ is
2082 	 * disabled.
2083 	 */
2084 	set_work_pool_and_clear_pending(work, pool->id);
2085 
2086 	spin_unlock_irq(&pool->lock);
2087 
2088 	lock_map_acquire(&pwq->wq->lockdep_map);
2089 	lock_map_acquire(&lockdep_map);
2090 	/*
2091 	 * Strictly speaking we should mark the invariant state without holding
2092 	 * any locks, that is, before these two lock_map_acquire()'s.
2093 	 *
2094 	 * However, that would result in:
2095 	 *
2096 	 *   A(W1)
2097 	 *   WFC(C)
2098 	 *		A(W1)
2099 	 *		C(C)
2100 	 *
2101 	 * Which would create W1->C->W1 dependencies, even though there is no
2102 	 * actual deadlock possible. There are two solutions, using a
2103 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2104 	 * hit the lockdep limitation on recursive locks, or simply discard
2105 	 * these locks.
2106 	 *
2107 	 * AFAICT there is no possible deadlock scenario between the
2108 	 * flush_work() and complete() primitives (except for single-threaded
2109 	 * workqueues), so hiding them isn't a problem.
2110 	 */
2111 	lockdep_invariant_state(true);
2112 	trace_workqueue_execute_start(work);
2113 	worker->current_func(work);
2114 	/*
2115 	 * While we must be careful to not use "work" after this, the trace
2116 	 * point will only record its address.
2117 	 */
2118 	trace_workqueue_execute_end(work);
2119 	lock_map_release(&lockdep_map);
2120 	lock_map_release(&pwq->wq->lockdep_map);
2121 
2122 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2123 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2124 		       "     last function: %pf\n",
2125 		       current->comm, preempt_count(), task_pid_nr(current),
2126 		       worker->current_func);
2127 		debug_show_held_locks(current);
2128 		dump_stack();
2129 	}
2130 
2131 	/*
2132 	 * The following prevents a kworker from hogging CPU on !PREEMPT
2133 	 * kernels, where a requeueing work item waiting for something to
2134 	 * happen could deadlock with stop_machine as such work item could
2135 	 * indefinitely requeue itself while all other CPUs are trapped in
2136 	 * stop_machine. At the same time, report a quiescent RCU state so
2137 	 * the same condition doesn't freeze RCU.
2138 	 */
2139 	cond_resched();
2140 
2141 	spin_lock_irq(&pool->lock);
2142 
2143 	/* clear cpu intensive status */
2144 	if (unlikely(cpu_intensive))
2145 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2146 
2147 	/* we're done with it, release */
2148 	hash_del(&worker->hentry);
2149 	worker->current_work = NULL;
2150 	worker->current_func = NULL;
2151 	worker->current_pwq = NULL;
2152 	worker->desc_valid = false;
2153 	pwq_dec_nr_in_flight(pwq, work_color);
2154 }
2155 
2156 /**
2157  * process_scheduled_works - process scheduled works
2158  * @worker: self
2159  *
2160  * Process all scheduled works.  Please note that the scheduled list
2161  * may change while processing a work, so this function repeatedly
2162  * fetches a work from the top and executes it.
2163  *
2164  * CONTEXT:
2165  * spin_lock_irq(pool->lock) which may be released and regrabbed
2166  * multiple times.
2167  */
2168 static void process_scheduled_works(struct worker *worker)
2169 {
2170 	while (!list_empty(&worker->scheduled)) {
2171 		struct work_struct *work = list_first_entry(&worker->scheduled,
2172 						struct work_struct, entry);
2173 		process_one_work(worker, work);
2174 	}
2175 }
2176 
2177 /**
2178  * worker_thread - the worker thread function
2179  * @__worker: self
2180  *
2181  * The worker thread function.  All workers belong to a worker_pool -
2182  * either a per-cpu one or dynamic unbound one.  These workers process all
2183  * work items regardless of their specific target workqueue.  The only
2184  * exception is work items which belong to workqueues with a rescuer which
2185  * will be explained in rescuer_thread().
2186  *
2187  * Return: 0
2188  */
2189 static int worker_thread(void *__worker)
2190 {
2191 	struct worker *worker = __worker;
2192 	struct worker_pool *pool = worker->pool;
2193 
2194 	/* tell the scheduler that this is a workqueue worker */
2195 	worker->task->flags |= PF_WQ_WORKER;
2196 woke_up:
2197 	spin_lock_irq(&pool->lock);
2198 
2199 	/* am I supposed to die? */
2200 	if (unlikely(worker->flags & WORKER_DIE)) {
2201 		spin_unlock_irq(&pool->lock);
2202 		WARN_ON_ONCE(!list_empty(&worker->entry));
2203 		worker->task->flags &= ~PF_WQ_WORKER;
2204 
2205 		set_task_comm(worker->task, "kworker/dying");
2206 		ida_simple_remove(&pool->worker_ida, worker->id);
2207 		worker_detach_from_pool(worker, pool);
2208 		kfree(worker);
2209 		return 0;
2210 	}
2211 
2212 	worker_leave_idle(worker);
2213 recheck:
2214 	/* no more worker necessary? */
2215 	if (!need_more_worker(pool))
2216 		goto sleep;
2217 
2218 	/* do we need to manage? */
2219 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2220 		goto recheck;
2221 
2222 	/*
2223 	 * ->scheduled list can only be filled while a worker is
2224 	 * preparing to process a work or actually processing it.
2225 	 * Make sure nobody diddled with it while I was sleeping.
2226 	 */
2227 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2228 
2229 	/*
2230 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2231 	 * worker or that someone else has already assumed the manager
2232 	 * role.  This is where @worker starts participating in concurrency
2233 	 * management if applicable and concurrency management is restored
2234 	 * after being rebound.  See rebind_workers() for details.
2235 	 */
2236 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2237 
2238 	do {
2239 		struct work_struct *work =
2240 			list_first_entry(&pool->worklist,
2241 					 struct work_struct, entry);
2242 
2243 		pool->watchdog_ts = jiffies;
2244 
2245 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2246 			/* optimization path, not strictly necessary */
2247 			process_one_work(worker, work);
2248 			if (unlikely(!list_empty(&worker->scheduled)))
2249 				process_scheduled_works(worker);
2250 		} else {
2251 			move_linked_works(work, &worker->scheduled, NULL);
2252 			process_scheduled_works(worker);
2253 		}
2254 	} while (keep_working(pool));
2255 
2256 	worker_set_flags(worker, WORKER_PREP);
2257 sleep:
2258 	/*
2259 	 * pool->lock is held and there's no work to process and no need to
2260 	 * manage, sleep.  Workers are woken up only while holding
2261 	 * pool->lock or from local cpu, so setting the current state
2262 	 * before releasing pool->lock is enough to prevent losing any
2263 	 * event.
2264 	 */
2265 	worker_enter_idle(worker);
2266 	__set_current_state(TASK_IDLE);
2267 	spin_unlock_irq(&pool->lock);
2268 	schedule();
2269 	goto woke_up;
2270 }
2271 
2272 /**
2273  * rescuer_thread - the rescuer thread function
2274  * @__rescuer: self
2275  *
2276  * Workqueue rescuer thread function.  There's one rescuer for each
2277  * workqueue which has WQ_MEM_RECLAIM set.
2278  *
2279  * Regular work processing on a pool may block trying to create a new
2280  * worker which uses GFP_KERNEL allocation which has slight chance of
2281  * developing into deadlock if some works currently on the same queue
2282  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2283  * the problem rescuer solves.
2284  *
2285  * When such condition is possible, the pool summons rescuers of all
2286  * workqueues which have works queued on the pool and let them process
2287  * those works so that forward progress can be guaranteed.
2288  *
2289  * This should happen rarely.
2290  *
2291  * Return: 0
2292  */
2293 static int rescuer_thread(void *__rescuer)
2294 {
2295 	struct worker *rescuer = __rescuer;
2296 	struct workqueue_struct *wq = rescuer->rescue_wq;
2297 	struct list_head *scheduled = &rescuer->scheduled;
2298 	bool should_stop;
2299 
2300 	set_user_nice(current, RESCUER_NICE_LEVEL);
2301 
2302 	/*
2303 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2304 	 * doesn't participate in concurrency management.
2305 	 */
2306 	rescuer->task->flags |= PF_WQ_WORKER;
2307 repeat:
2308 	set_current_state(TASK_IDLE);
2309 
2310 	/*
2311 	 * By the time the rescuer is requested to stop, the workqueue
2312 	 * shouldn't have any work pending, but @wq->maydays may still have
2313 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2314 	 * all the work items before the rescuer got to them.  Go through
2315 	 * @wq->maydays processing before acting on should_stop so that the
2316 	 * list is always empty on exit.
2317 	 */
2318 	should_stop = kthread_should_stop();
2319 
2320 	/* see whether any pwq is asking for help */
2321 	spin_lock_irq(&wq_mayday_lock);
2322 
2323 	while (!list_empty(&wq->maydays)) {
2324 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2325 					struct pool_workqueue, mayday_node);
2326 		struct worker_pool *pool = pwq->pool;
2327 		struct work_struct *work, *n;
2328 		bool first = true;
2329 
2330 		__set_current_state(TASK_RUNNING);
2331 		list_del_init(&pwq->mayday_node);
2332 
2333 		spin_unlock_irq(&wq_mayday_lock);
2334 
2335 		worker_attach_to_pool(rescuer, pool);
2336 
2337 		spin_lock_irq(&pool->lock);
2338 		rescuer->pool = pool;
2339 
2340 		/*
2341 		 * Slurp in all works issued via this workqueue and
2342 		 * process'em.
2343 		 */
2344 		WARN_ON_ONCE(!list_empty(scheduled));
2345 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2346 			if (get_work_pwq(work) == pwq) {
2347 				if (first)
2348 					pool->watchdog_ts = jiffies;
2349 				move_linked_works(work, scheduled, &n);
2350 			}
2351 			first = false;
2352 		}
2353 
2354 		if (!list_empty(scheduled)) {
2355 			process_scheduled_works(rescuer);
2356 
2357 			/*
2358 			 * The above execution of rescued work items could
2359 			 * have created more to rescue through
2360 			 * pwq_activate_first_delayed() or chained
2361 			 * queueing.  Let's put @pwq back on mayday list so
2362 			 * that such back-to-back work items, which may be
2363 			 * being used to relieve memory pressure, don't
2364 			 * incur MAYDAY_INTERVAL delay inbetween.
2365 			 */
2366 			if (need_to_create_worker(pool)) {
2367 				spin_lock(&wq_mayday_lock);
2368 				get_pwq(pwq);
2369 				list_move_tail(&pwq->mayday_node, &wq->maydays);
2370 				spin_unlock(&wq_mayday_lock);
2371 			}
2372 		}
2373 
2374 		/*
2375 		 * Put the reference grabbed by send_mayday().  @pool won't
2376 		 * go away while we're still attached to it.
2377 		 */
2378 		put_pwq(pwq);
2379 
2380 		/*
2381 		 * Leave this pool.  If need_more_worker() is %true, notify a
2382 		 * regular worker; otherwise, we end up with 0 concurrency
2383 		 * and stalling the execution.
2384 		 */
2385 		if (need_more_worker(pool))
2386 			wake_up_worker(pool);
2387 
2388 		rescuer->pool = NULL;
2389 		spin_unlock_irq(&pool->lock);
2390 
2391 		worker_detach_from_pool(rescuer, pool);
2392 
2393 		spin_lock_irq(&wq_mayday_lock);
2394 	}
2395 
2396 	spin_unlock_irq(&wq_mayday_lock);
2397 
2398 	if (should_stop) {
2399 		__set_current_state(TASK_RUNNING);
2400 		rescuer->task->flags &= ~PF_WQ_WORKER;
2401 		return 0;
2402 	}
2403 
2404 	/* rescuers should never participate in concurrency management */
2405 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2406 	schedule();
2407 	goto repeat;
2408 }
2409 
2410 /**
2411  * check_flush_dependency - check for flush dependency sanity
2412  * @target_wq: workqueue being flushed
2413  * @target_work: work item being flushed (NULL for workqueue flushes)
2414  *
2415  * %current is trying to flush the whole @target_wq or @target_work on it.
2416  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2417  * reclaiming memory or running on a workqueue which doesn't have
2418  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2419  * a deadlock.
2420  */
2421 static void check_flush_dependency(struct workqueue_struct *target_wq,
2422 				   struct work_struct *target_work)
2423 {
2424 	work_func_t target_func = target_work ? target_work->func : NULL;
2425 	struct worker *worker;
2426 
2427 	if (target_wq->flags & WQ_MEM_RECLAIM)
2428 		return;
2429 
2430 	worker = current_wq_worker();
2431 
2432 	WARN_ONCE(current->flags & PF_MEMALLOC,
2433 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2434 		  current->pid, current->comm, target_wq->name, target_func);
2435 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2436 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2437 		  "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2438 		  worker->current_pwq->wq->name, worker->current_func,
2439 		  target_wq->name, target_func);
2440 }
2441 
2442 struct wq_barrier {
2443 	struct work_struct	work;
2444 	struct completion	done;
2445 	struct task_struct	*task;	/* purely informational */
2446 };
2447 
2448 static void wq_barrier_func(struct work_struct *work)
2449 {
2450 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2451 	complete(&barr->done);
2452 }
2453 
2454 /**
2455  * insert_wq_barrier - insert a barrier work
2456  * @pwq: pwq to insert barrier into
2457  * @barr: wq_barrier to insert
2458  * @target: target work to attach @barr to
2459  * @worker: worker currently executing @target, NULL if @target is not executing
2460  *
2461  * @barr is linked to @target such that @barr is completed only after
2462  * @target finishes execution.  Please note that the ordering
2463  * guarantee is observed only with respect to @target and on the local
2464  * cpu.
2465  *
2466  * Currently, a queued barrier can't be canceled.  This is because
2467  * try_to_grab_pending() can't determine whether the work to be
2468  * grabbed is at the head of the queue and thus can't clear LINKED
2469  * flag of the previous work while there must be a valid next work
2470  * after a work with LINKED flag set.
2471  *
2472  * Note that when @worker is non-NULL, @target may be modified
2473  * underneath us, so we can't reliably determine pwq from @target.
2474  *
2475  * CONTEXT:
2476  * spin_lock_irq(pool->lock).
2477  */
2478 static void insert_wq_barrier(struct pool_workqueue *pwq,
2479 			      struct wq_barrier *barr,
2480 			      struct work_struct *target, struct worker *worker)
2481 {
2482 	struct list_head *head;
2483 	unsigned int linked = 0;
2484 
2485 	/*
2486 	 * debugobject calls are safe here even with pool->lock locked
2487 	 * as we know for sure that this will not trigger any of the
2488 	 * checks and call back into the fixup functions where we
2489 	 * might deadlock.
2490 	 */
2491 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2492 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2493 
2494 	init_completion_map(&barr->done, &target->lockdep_map);
2495 
2496 	barr->task = current;
2497 
2498 	/*
2499 	 * If @target is currently being executed, schedule the
2500 	 * barrier to the worker; otherwise, put it after @target.
2501 	 */
2502 	if (worker)
2503 		head = worker->scheduled.next;
2504 	else {
2505 		unsigned long *bits = work_data_bits(target);
2506 
2507 		head = target->entry.next;
2508 		/* there can already be other linked works, inherit and set */
2509 		linked = *bits & WORK_STRUCT_LINKED;
2510 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2511 	}
2512 
2513 	debug_work_activate(&barr->work);
2514 	insert_work(pwq, &barr->work, head,
2515 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2516 }
2517 
2518 /**
2519  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2520  * @wq: workqueue being flushed
2521  * @flush_color: new flush color, < 0 for no-op
2522  * @work_color: new work color, < 0 for no-op
2523  *
2524  * Prepare pwqs for workqueue flushing.
2525  *
2526  * If @flush_color is non-negative, flush_color on all pwqs should be
2527  * -1.  If no pwq has in-flight commands at the specified color, all
2528  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2529  * has in flight commands, its pwq->flush_color is set to
2530  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2531  * wakeup logic is armed and %true is returned.
2532  *
2533  * The caller should have initialized @wq->first_flusher prior to
2534  * calling this function with non-negative @flush_color.  If
2535  * @flush_color is negative, no flush color update is done and %false
2536  * is returned.
2537  *
2538  * If @work_color is non-negative, all pwqs should have the same
2539  * work_color which is previous to @work_color and all will be
2540  * advanced to @work_color.
2541  *
2542  * CONTEXT:
2543  * mutex_lock(wq->mutex).
2544  *
2545  * Return:
2546  * %true if @flush_color >= 0 and there's something to flush.  %false
2547  * otherwise.
2548  */
2549 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2550 				      int flush_color, int work_color)
2551 {
2552 	bool wait = false;
2553 	struct pool_workqueue *pwq;
2554 
2555 	if (flush_color >= 0) {
2556 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2557 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2558 	}
2559 
2560 	for_each_pwq(pwq, wq) {
2561 		struct worker_pool *pool = pwq->pool;
2562 
2563 		spin_lock_irq(&pool->lock);
2564 
2565 		if (flush_color >= 0) {
2566 			WARN_ON_ONCE(pwq->flush_color != -1);
2567 
2568 			if (pwq->nr_in_flight[flush_color]) {
2569 				pwq->flush_color = flush_color;
2570 				atomic_inc(&wq->nr_pwqs_to_flush);
2571 				wait = true;
2572 			}
2573 		}
2574 
2575 		if (work_color >= 0) {
2576 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2577 			pwq->work_color = work_color;
2578 		}
2579 
2580 		spin_unlock_irq(&pool->lock);
2581 	}
2582 
2583 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2584 		complete(&wq->first_flusher->done);
2585 
2586 	return wait;
2587 }
2588 
2589 /**
2590  * flush_workqueue - ensure that any scheduled work has run to completion.
2591  * @wq: workqueue to flush
2592  *
2593  * This function sleeps until all work items which were queued on entry
2594  * have finished execution, but it is not livelocked by new incoming ones.
2595  */
2596 void flush_workqueue(struct workqueue_struct *wq)
2597 {
2598 	struct wq_flusher this_flusher = {
2599 		.list = LIST_HEAD_INIT(this_flusher.list),
2600 		.flush_color = -1,
2601 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2602 	};
2603 	int next_color;
2604 
2605 	if (WARN_ON(!wq_online))
2606 		return;
2607 
2608 	mutex_lock(&wq->mutex);
2609 
2610 	/*
2611 	 * Start-to-wait phase
2612 	 */
2613 	next_color = work_next_color(wq->work_color);
2614 
2615 	if (next_color != wq->flush_color) {
2616 		/*
2617 		 * Color space is not full.  The current work_color
2618 		 * becomes our flush_color and work_color is advanced
2619 		 * by one.
2620 		 */
2621 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2622 		this_flusher.flush_color = wq->work_color;
2623 		wq->work_color = next_color;
2624 
2625 		if (!wq->first_flusher) {
2626 			/* no flush in progress, become the first flusher */
2627 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2628 
2629 			wq->first_flusher = &this_flusher;
2630 
2631 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2632 						       wq->work_color)) {
2633 				/* nothing to flush, done */
2634 				wq->flush_color = next_color;
2635 				wq->first_flusher = NULL;
2636 				goto out_unlock;
2637 			}
2638 		} else {
2639 			/* wait in queue */
2640 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2641 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2642 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2643 		}
2644 	} else {
2645 		/*
2646 		 * Oops, color space is full, wait on overflow queue.
2647 		 * The next flush completion will assign us
2648 		 * flush_color and transfer to flusher_queue.
2649 		 */
2650 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2651 	}
2652 
2653 	check_flush_dependency(wq, NULL);
2654 
2655 	mutex_unlock(&wq->mutex);
2656 
2657 	wait_for_completion(&this_flusher.done);
2658 
2659 	/*
2660 	 * Wake-up-and-cascade phase
2661 	 *
2662 	 * First flushers are responsible for cascading flushes and
2663 	 * handling overflow.  Non-first flushers can simply return.
2664 	 */
2665 	if (wq->first_flusher != &this_flusher)
2666 		return;
2667 
2668 	mutex_lock(&wq->mutex);
2669 
2670 	/* we might have raced, check again with mutex held */
2671 	if (wq->first_flusher != &this_flusher)
2672 		goto out_unlock;
2673 
2674 	wq->first_flusher = NULL;
2675 
2676 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2677 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2678 
2679 	while (true) {
2680 		struct wq_flusher *next, *tmp;
2681 
2682 		/* complete all the flushers sharing the current flush color */
2683 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2684 			if (next->flush_color != wq->flush_color)
2685 				break;
2686 			list_del_init(&next->list);
2687 			complete(&next->done);
2688 		}
2689 
2690 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2691 			     wq->flush_color != work_next_color(wq->work_color));
2692 
2693 		/* this flush_color is finished, advance by one */
2694 		wq->flush_color = work_next_color(wq->flush_color);
2695 
2696 		/* one color has been freed, handle overflow queue */
2697 		if (!list_empty(&wq->flusher_overflow)) {
2698 			/*
2699 			 * Assign the same color to all overflowed
2700 			 * flushers, advance work_color and append to
2701 			 * flusher_queue.  This is the start-to-wait
2702 			 * phase for these overflowed flushers.
2703 			 */
2704 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2705 				tmp->flush_color = wq->work_color;
2706 
2707 			wq->work_color = work_next_color(wq->work_color);
2708 
2709 			list_splice_tail_init(&wq->flusher_overflow,
2710 					      &wq->flusher_queue);
2711 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2712 		}
2713 
2714 		if (list_empty(&wq->flusher_queue)) {
2715 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2716 			break;
2717 		}
2718 
2719 		/*
2720 		 * Need to flush more colors.  Make the next flusher
2721 		 * the new first flusher and arm pwqs.
2722 		 */
2723 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2724 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2725 
2726 		list_del_init(&next->list);
2727 		wq->first_flusher = next;
2728 
2729 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2730 			break;
2731 
2732 		/*
2733 		 * Meh... this color is already done, clear first
2734 		 * flusher and repeat cascading.
2735 		 */
2736 		wq->first_flusher = NULL;
2737 	}
2738 
2739 out_unlock:
2740 	mutex_unlock(&wq->mutex);
2741 }
2742 EXPORT_SYMBOL(flush_workqueue);
2743 
2744 /**
2745  * drain_workqueue - drain a workqueue
2746  * @wq: workqueue to drain
2747  *
2748  * Wait until the workqueue becomes empty.  While draining is in progress,
2749  * only chain queueing is allowed.  IOW, only currently pending or running
2750  * work items on @wq can queue further work items on it.  @wq is flushed
2751  * repeatedly until it becomes empty.  The number of flushing is determined
2752  * by the depth of chaining and should be relatively short.  Whine if it
2753  * takes too long.
2754  */
2755 void drain_workqueue(struct workqueue_struct *wq)
2756 {
2757 	unsigned int flush_cnt = 0;
2758 	struct pool_workqueue *pwq;
2759 
2760 	/*
2761 	 * __queue_work() needs to test whether there are drainers, is much
2762 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2763 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2764 	 */
2765 	mutex_lock(&wq->mutex);
2766 	if (!wq->nr_drainers++)
2767 		wq->flags |= __WQ_DRAINING;
2768 	mutex_unlock(&wq->mutex);
2769 reflush:
2770 	flush_workqueue(wq);
2771 
2772 	mutex_lock(&wq->mutex);
2773 
2774 	for_each_pwq(pwq, wq) {
2775 		bool drained;
2776 
2777 		spin_lock_irq(&pwq->pool->lock);
2778 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2779 		spin_unlock_irq(&pwq->pool->lock);
2780 
2781 		if (drained)
2782 			continue;
2783 
2784 		if (++flush_cnt == 10 ||
2785 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2786 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2787 				wq->name, flush_cnt);
2788 
2789 		mutex_unlock(&wq->mutex);
2790 		goto reflush;
2791 	}
2792 
2793 	if (!--wq->nr_drainers)
2794 		wq->flags &= ~__WQ_DRAINING;
2795 	mutex_unlock(&wq->mutex);
2796 }
2797 EXPORT_SYMBOL_GPL(drain_workqueue);
2798 
2799 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2800 {
2801 	struct worker *worker = NULL;
2802 	struct worker_pool *pool;
2803 	struct pool_workqueue *pwq;
2804 
2805 	might_sleep();
2806 
2807 	local_irq_disable();
2808 	pool = get_work_pool(work);
2809 	if (!pool) {
2810 		local_irq_enable();
2811 		return false;
2812 	}
2813 
2814 	spin_lock(&pool->lock);
2815 	/* see the comment in try_to_grab_pending() with the same code */
2816 	pwq = get_work_pwq(work);
2817 	if (pwq) {
2818 		if (unlikely(pwq->pool != pool))
2819 			goto already_gone;
2820 	} else {
2821 		worker = find_worker_executing_work(pool, work);
2822 		if (!worker)
2823 			goto already_gone;
2824 		pwq = worker->current_pwq;
2825 	}
2826 
2827 	check_flush_dependency(pwq->wq, work);
2828 
2829 	insert_wq_barrier(pwq, barr, work, worker);
2830 	spin_unlock_irq(&pool->lock);
2831 
2832 	/*
2833 	 * Force a lock recursion deadlock when using flush_work() inside a
2834 	 * single-threaded or rescuer equipped workqueue.
2835 	 *
2836 	 * For single threaded workqueues the deadlock happens when the work
2837 	 * is after the work issuing the flush_work(). For rescuer equipped
2838 	 * workqueues the deadlock happens when the rescuer stalls, blocking
2839 	 * forward progress.
2840 	 */
2841 	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) {
2842 		lock_map_acquire(&pwq->wq->lockdep_map);
2843 		lock_map_release(&pwq->wq->lockdep_map);
2844 	}
2845 
2846 	return true;
2847 already_gone:
2848 	spin_unlock_irq(&pool->lock);
2849 	return false;
2850 }
2851 
2852 /**
2853  * flush_work - wait for a work to finish executing the last queueing instance
2854  * @work: the work to flush
2855  *
2856  * Wait until @work has finished execution.  @work is guaranteed to be idle
2857  * on return if it hasn't been requeued since flush started.
2858  *
2859  * Return:
2860  * %true if flush_work() waited for the work to finish execution,
2861  * %false if it was already idle.
2862  */
2863 bool flush_work(struct work_struct *work)
2864 {
2865 	struct wq_barrier barr;
2866 
2867 	if (WARN_ON(!wq_online))
2868 		return false;
2869 
2870 	if (start_flush_work(work, &barr)) {
2871 		wait_for_completion(&barr.done);
2872 		destroy_work_on_stack(&barr.work);
2873 		return true;
2874 	} else {
2875 		return false;
2876 	}
2877 }
2878 EXPORT_SYMBOL_GPL(flush_work);
2879 
2880 struct cwt_wait {
2881 	wait_queue_entry_t		wait;
2882 	struct work_struct	*work;
2883 };
2884 
2885 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2886 {
2887 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2888 
2889 	if (cwait->work != key)
2890 		return 0;
2891 	return autoremove_wake_function(wait, mode, sync, key);
2892 }
2893 
2894 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2895 {
2896 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2897 	unsigned long flags;
2898 	int ret;
2899 
2900 	do {
2901 		ret = try_to_grab_pending(work, is_dwork, &flags);
2902 		/*
2903 		 * If someone else is already canceling, wait for it to
2904 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
2905 		 * because we may get scheduled between @work's completion
2906 		 * and the other canceling task resuming and clearing
2907 		 * CANCELING - flush_work() will return false immediately
2908 		 * as @work is no longer busy, try_to_grab_pending() will
2909 		 * return -ENOENT as @work is still being canceled and the
2910 		 * other canceling task won't be able to clear CANCELING as
2911 		 * we're hogging the CPU.
2912 		 *
2913 		 * Let's wait for completion using a waitqueue.  As this
2914 		 * may lead to the thundering herd problem, use a custom
2915 		 * wake function which matches @work along with exclusive
2916 		 * wait and wakeup.
2917 		 */
2918 		if (unlikely(ret == -ENOENT)) {
2919 			struct cwt_wait cwait;
2920 
2921 			init_wait(&cwait.wait);
2922 			cwait.wait.func = cwt_wakefn;
2923 			cwait.work = work;
2924 
2925 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2926 						  TASK_UNINTERRUPTIBLE);
2927 			if (work_is_canceling(work))
2928 				schedule();
2929 			finish_wait(&cancel_waitq, &cwait.wait);
2930 		}
2931 	} while (unlikely(ret < 0));
2932 
2933 	/* tell other tasks trying to grab @work to back off */
2934 	mark_work_canceling(work);
2935 	local_irq_restore(flags);
2936 
2937 	/*
2938 	 * This allows canceling during early boot.  We know that @work
2939 	 * isn't executing.
2940 	 */
2941 	if (wq_online)
2942 		flush_work(work);
2943 
2944 	clear_work_data(work);
2945 
2946 	/*
2947 	 * Paired with prepare_to_wait() above so that either
2948 	 * waitqueue_active() is visible here or !work_is_canceling() is
2949 	 * visible there.
2950 	 */
2951 	smp_mb();
2952 	if (waitqueue_active(&cancel_waitq))
2953 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2954 
2955 	return ret;
2956 }
2957 
2958 /**
2959  * cancel_work_sync - cancel a work and wait for it to finish
2960  * @work: the work to cancel
2961  *
2962  * Cancel @work and wait for its execution to finish.  This function
2963  * can be used even if the work re-queues itself or migrates to
2964  * another workqueue.  On return from this function, @work is
2965  * guaranteed to be not pending or executing on any CPU.
2966  *
2967  * cancel_work_sync(&delayed_work->work) must not be used for
2968  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2969  *
2970  * The caller must ensure that the workqueue on which @work was last
2971  * queued can't be destroyed before this function returns.
2972  *
2973  * Return:
2974  * %true if @work was pending, %false otherwise.
2975  */
2976 bool cancel_work_sync(struct work_struct *work)
2977 {
2978 	return __cancel_work_timer(work, false);
2979 }
2980 EXPORT_SYMBOL_GPL(cancel_work_sync);
2981 
2982 /**
2983  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2984  * @dwork: the delayed work to flush
2985  *
2986  * Delayed timer is cancelled and the pending work is queued for
2987  * immediate execution.  Like flush_work(), this function only
2988  * considers the last queueing instance of @dwork.
2989  *
2990  * Return:
2991  * %true if flush_work() waited for the work to finish execution,
2992  * %false if it was already idle.
2993  */
2994 bool flush_delayed_work(struct delayed_work *dwork)
2995 {
2996 	local_irq_disable();
2997 	if (del_timer_sync(&dwork->timer))
2998 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2999 	local_irq_enable();
3000 	return flush_work(&dwork->work);
3001 }
3002 EXPORT_SYMBOL(flush_delayed_work);
3003 
3004 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3005 {
3006 	unsigned long flags;
3007 	int ret;
3008 
3009 	do {
3010 		ret = try_to_grab_pending(work, is_dwork, &flags);
3011 	} while (unlikely(ret == -EAGAIN));
3012 
3013 	if (unlikely(ret < 0))
3014 		return false;
3015 
3016 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3017 	local_irq_restore(flags);
3018 	return ret;
3019 }
3020 
3021 /*
3022  * See cancel_delayed_work()
3023  */
3024 bool cancel_work(struct work_struct *work)
3025 {
3026 	return __cancel_work(work, false);
3027 }
3028 
3029 /**
3030  * cancel_delayed_work - cancel a delayed work
3031  * @dwork: delayed_work to cancel
3032  *
3033  * Kill off a pending delayed_work.
3034  *
3035  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3036  * pending.
3037  *
3038  * Note:
3039  * The work callback function may still be running on return, unless
3040  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3041  * use cancel_delayed_work_sync() to wait on it.
3042  *
3043  * This function is safe to call from any context including IRQ handler.
3044  */
3045 bool cancel_delayed_work(struct delayed_work *dwork)
3046 {
3047 	return __cancel_work(&dwork->work, true);
3048 }
3049 EXPORT_SYMBOL(cancel_delayed_work);
3050 
3051 /**
3052  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3053  * @dwork: the delayed work cancel
3054  *
3055  * This is cancel_work_sync() for delayed works.
3056  *
3057  * Return:
3058  * %true if @dwork was pending, %false otherwise.
3059  */
3060 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3061 {
3062 	return __cancel_work_timer(&dwork->work, true);
3063 }
3064 EXPORT_SYMBOL(cancel_delayed_work_sync);
3065 
3066 /**
3067  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3068  * @func: the function to call
3069  *
3070  * schedule_on_each_cpu() executes @func on each online CPU using the
3071  * system workqueue and blocks until all CPUs have completed.
3072  * schedule_on_each_cpu() is very slow.
3073  *
3074  * Return:
3075  * 0 on success, -errno on failure.
3076  */
3077 int schedule_on_each_cpu(work_func_t func)
3078 {
3079 	int cpu;
3080 	struct work_struct __percpu *works;
3081 
3082 	works = alloc_percpu(struct work_struct);
3083 	if (!works)
3084 		return -ENOMEM;
3085 
3086 	get_online_cpus();
3087 
3088 	for_each_online_cpu(cpu) {
3089 		struct work_struct *work = per_cpu_ptr(works, cpu);
3090 
3091 		INIT_WORK(work, func);
3092 		schedule_work_on(cpu, work);
3093 	}
3094 
3095 	for_each_online_cpu(cpu)
3096 		flush_work(per_cpu_ptr(works, cpu));
3097 
3098 	put_online_cpus();
3099 	free_percpu(works);
3100 	return 0;
3101 }
3102 
3103 /**
3104  * execute_in_process_context - reliably execute the routine with user context
3105  * @fn:		the function to execute
3106  * @ew:		guaranteed storage for the execute work structure (must
3107  *		be available when the work executes)
3108  *
3109  * Executes the function immediately if process context is available,
3110  * otherwise schedules the function for delayed execution.
3111  *
3112  * Return:	0 - function was executed
3113  *		1 - function was scheduled for execution
3114  */
3115 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3116 {
3117 	if (!in_interrupt()) {
3118 		fn(&ew->work);
3119 		return 0;
3120 	}
3121 
3122 	INIT_WORK(&ew->work, fn);
3123 	schedule_work(&ew->work);
3124 
3125 	return 1;
3126 }
3127 EXPORT_SYMBOL_GPL(execute_in_process_context);
3128 
3129 /**
3130  * free_workqueue_attrs - free a workqueue_attrs
3131  * @attrs: workqueue_attrs to free
3132  *
3133  * Undo alloc_workqueue_attrs().
3134  */
3135 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3136 {
3137 	if (attrs) {
3138 		free_cpumask_var(attrs->cpumask);
3139 		kfree(attrs);
3140 	}
3141 }
3142 
3143 /**
3144  * alloc_workqueue_attrs - allocate a workqueue_attrs
3145  * @gfp_mask: allocation mask to use
3146  *
3147  * Allocate a new workqueue_attrs, initialize with default settings and
3148  * return it.
3149  *
3150  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3151  */
3152 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3153 {
3154 	struct workqueue_attrs *attrs;
3155 
3156 	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3157 	if (!attrs)
3158 		goto fail;
3159 	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3160 		goto fail;
3161 
3162 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3163 	return attrs;
3164 fail:
3165 	free_workqueue_attrs(attrs);
3166 	return NULL;
3167 }
3168 
3169 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3170 				 const struct workqueue_attrs *from)
3171 {
3172 	to->nice = from->nice;
3173 	cpumask_copy(to->cpumask, from->cpumask);
3174 	/*
3175 	 * Unlike hash and equality test, this function doesn't ignore
3176 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3177 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3178 	 */
3179 	to->no_numa = from->no_numa;
3180 }
3181 
3182 /* hash value of the content of @attr */
3183 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3184 {
3185 	u32 hash = 0;
3186 
3187 	hash = jhash_1word(attrs->nice, hash);
3188 	hash = jhash(cpumask_bits(attrs->cpumask),
3189 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3190 	return hash;
3191 }
3192 
3193 /* content equality test */
3194 static bool wqattrs_equal(const struct workqueue_attrs *a,
3195 			  const struct workqueue_attrs *b)
3196 {
3197 	if (a->nice != b->nice)
3198 		return false;
3199 	if (!cpumask_equal(a->cpumask, b->cpumask))
3200 		return false;
3201 	return true;
3202 }
3203 
3204 /**
3205  * init_worker_pool - initialize a newly zalloc'd worker_pool
3206  * @pool: worker_pool to initialize
3207  *
3208  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3209  *
3210  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3211  * inside @pool proper are initialized and put_unbound_pool() can be called
3212  * on @pool safely to release it.
3213  */
3214 static int init_worker_pool(struct worker_pool *pool)
3215 {
3216 	spin_lock_init(&pool->lock);
3217 	pool->id = -1;
3218 	pool->cpu = -1;
3219 	pool->node = NUMA_NO_NODE;
3220 	pool->flags |= POOL_DISASSOCIATED;
3221 	pool->watchdog_ts = jiffies;
3222 	INIT_LIST_HEAD(&pool->worklist);
3223 	INIT_LIST_HEAD(&pool->idle_list);
3224 	hash_init(pool->busy_hash);
3225 
3226 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3227 
3228 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3229 
3230 	mutex_init(&pool->attach_mutex);
3231 	INIT_LIST_HEAD(&pool->workers);
3232 
3233 	ida_init(&pool->worker_ida);
3234 	INIT_HLIST_NODE(&pool->hash_node);
3235 	pool->refcnt = 1;
3236 
3237 	/* shouldn't fail above this point */
3238 	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3239 	if (!pool->attrs)
3240 		return -ENOMEM;
3241 	return 0;
3242 }
3243 
3244 static void rcu_free_wq(struct rcu_head *rcu)
3245 {
3246 	struct workqueue_struct *wq =
3247 		container_of(rcu, struct workqueue_struct, rcu);
3248 
3249 	if (!(wq->flags & WQ_UNBOUND))
3250 		free_percpu(wq->cpu_pwqs);
3251 	else
3252 		free_workqueue_attrs(wq->unbound_attrs);
3253 
3254 	kfree(wq->rescuer);
3255 	kfree(wq);
3256 }
3257 
3258 static void rcu_free_pool(struct rcu_head *rcu)
3259 {
3260 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3261 
3262 	ida_destroy(&pool->worker_ida);
3263 	free_workqueue_attrs(pool->attrs);
3264 	kfree(pool);
3265 }
3266 
3267 /**
3268  * put_unbound_pool - put a worker_pool
3269  * @pool: worker_pool to put
3270  *
3271  * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3272  * safe manner.  get_unbound_pool() calls this function on its failure path
3273  * and this function should be able to release pools which went through,
3274  * successfully or not, init_worker_pool().
3275  *
3276  * Should be called with wq_pool_mutex held.
3277  */
3278 static void put_unbound_pool(struct worker_pool *pool)
3279 {
3280 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3281 	struct worker *worker;
3282 
3283 	lockdep_assert_held(&wq_pool_mutex);
3284 
3285 	if (--pool->refcnt)
3286 		return;
3287 
3288 	/* sanity checks */
3289 	if (WARN_ON(!(pool->cpu < 0)) ||
3290 	    WARN_ON(!list_empty(&pool->worklist)))
3291 		return;
3292 
3293 	/* release id and unhash */
3294 	if (pool->id >= 0)
3295 		idr_remove(&worker_pool_idr, pool->id);
3296 	hash_del(&pool->hash_node);
3297 
3298 	/*
3299 	 * Become the manager and destroy all workers.  This prevents
3300 	 * @pool's workers from blocking on attach_mutex.  We're the last
3301 	 * manager and @pool gets freed with the flag set.
3302 	 */
3303 	spin_lock_irq(&pool->lock);
3304 	wait_event_lock_irq(wq_manager_wait,
3305 			    !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3306 	pool->flags |= POOL_MANAGER_ACTIVE;
3307 
3308 	while ((worker = first_idle_worker(pool)))
3309 		destroy_worker(worker);
3310 	WARN_ON(pool->nr_workers || pool->nr_idle);
3311 	spin_unlock_irq(&pool->lock);
3312 
3313 	mutex_lock(&pool->attach_mutex);
3314 	if (!list_empty(&pool->workers))
3315 		pool->detach_completion = &detach_completion;
3316 	mutex_unlock(&pool->attach_mutex);
3317 
3318 	if (pool->detach_completion)
3319 		wait_for_completion(pool->detach_completion);
3320 
3321 	/* shut down the timers */
3322 	del_timer_sync(&pool->idle_timer);
3323 	del_timer_sync(&pool->mayday_timer);
3324 
3325 	/* sched-RCU protected to allow dereferences from get_work_pool() */
3326 	call_rcu_sched(&pool->rcu, rcu_free_pool);
3327 }
3328 
3329 /**
3330  * get_unbound_pool - get a worker_pool with the specified attributes
3331  * @attrs: the attributes of the worker_pool to get
3332  *
3333  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3334  * reference count and return it.  If there already is a matching
3335  * worker_pool, it will be used; otherwise, this function attempts to
3336  * create a new one.
3337  *
3338  * Should be called with wq_pool_mutex held.
3339  *
3340  * Return: On success, a worker_pool with the same attributes as @attrs.
3341  * On failure, %NULL.
3342  */
3343 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3344 {
3345 	u32 hash = wqattrs_hash(attrs);
3346 	struct worker_pool *pool;
3347 	int node;
3348 	int target_node = NUMA_NO_NODE;
3349 
3350 	lockdep_assert_held(&wq_pool_mutex);
3351 
3352 	/* do we already have a matching pool? */
3353 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3354 		if (wqattrs_equal(pool->attrs, attrs)) {
3355 			pool->refcnt++;
3356 			return pool;
3357 		}
3358 	}
3359 
3360 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3361 	if (wq_numa_enabled) {
3362 		for_each_node(node) {
3363 			if (cpumask_subset(attrs->cpumask,
3364 					   wq_numa_possible_cpumask[node])) {
3365 				target_node = node;
3366 				break;
3367 			}
3368 		}
3369 	}
3370 
3371 	/* nope, create a new one */
3372 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3373 	if (!pool || init_worker_pool(pool) < 0)
3374 		goto fail;
3375 
3376 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3377 	copy_workqueue_attrs(pool->attrs, attrs);
3378 	pool->node = target_node;
3379 
3380 	/*
3381 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3382 	 * 'struct workqueue_attrs' comments for detail.
3383 	 */
3384 	pool->attrs->no_numa = false;
3385 
3386 	if (worker_pool_assign_id(pool) < 0)
3387 		goto fail;
3388 
3389 	/* create and start the initial worker */
3390 	if (wq_online && !create_worker(pool))
3391 		goto fail;
3392 
3393 	/* install */
3394 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3395 
3396 	return pool;
3397 fail:
3398 	if (pool)
3399 		put_unbound_pool(pool);
3400 	return NULL;
3401 }
3402 
3403 static void rcu_free_pwq(struct rcu_head *rcu)
3404 {
3405 	kmem_cache_free(pwq_cache,
3406 			container_of(rcu, struct pool_workqueue, rcu));
3407 }
3408 
3409 /*
3410  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3411  * and needs to be destroyed.
3412  */
3413 static void pwq_unbound_release_workfn(struct work_struct *work)
3414 {
3415 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3416 						  unbound_release_work);
3417 	struct workqueue_struct *wq = pwq->wq;
3418 	struct worker_pool *pool = pwq->pool;
3419 	bool is_last;
3420 
3421 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3422 		return;
3423 
3424 	mutex_lock(&wq->mutex);
3425 	list_del_rcu(&pwq->pwqs_node);
3426 	is_last = list_empty(&wq->pwqs);
3427 	mutex_unlock(&wq->mutex);
3428 
3429 	mutex_lock(&wq_pool_mutex);
3430 	put_unbound_pool(pool);
3431 	mutex_unlock(&wq_pool_mutex);
3432 
3433 	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3434 
3435 	/*
3436 	 * If we're the last pwq going away, @wq is already dead and no one
3437 	 * is gonna access it anymore.  Schedule RCU free.
3438 	 */
3439 	if (is_last)
3440 		call_rcu_sched(&wq->rcu, rcu_free_wq);
3441 }
3442 
3443 /**
3444  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3445  * @pwq: target pool_workqueue
3446  *
3447  * If @pwq isn't freezing, set @pwq->max_active to the associated
3448  * workqueue's saved_max_active and activate delayed work items
3449  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3450  */
3451 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3452 {
3453 	struct workqueue_struct *wq = pwq->wq;
3454 	bool freezable = wq->flags & WQ_FREEZABLE;
3455 	unsigned long flags;
3456 
3457 	/* for @wq->saved_max_active */
3458 	lockdep_assert_held(&wq->mutex);
3459 
3460 	/* fast exit for non-freezable wqs */
3461 	if (!freezable && pwq->max_active == wq->saved_max_active)
3462 		return;
3463 
3464 	/* this function can be called during early boot w/ irq disabled */
3465 	spin_lock_irqsave(&pwq->pool->lock, flags);
3466 
3467 	/*
3468 	 * During [un]freezing, the caller is responsible for ensuring that
3469 	 * this function is called at least once after @workqueue_freezing
3470 	 * is updated and visible.
3471 	 */
3472 	if (!freezable || !workqueue_freezing) {
3473 		pwq->max_active = wq->saved_max_active;
3474 
3475 		while (!list_empty(&pwq->delayed_works) &&
3476 		       pwq->nr_active < pwq->max_active)
3477 			pwq_activate_first_delayed(pwq);
3478 
3479 		/*
3480 		 * Need to kick a worker after thawed or an unbound wq's
3481 		 * max_active is bumped.  It's a slow path.  Do it always.
3482 		 */
3483 		wake_up_worker(pwq->pool);
3484 	} else {
3485 		pwq->max_active = 0;
3486 	}
3487 
3488 	spin_unlock_irqrestore(&pwq->pool->lock, flags);
3489 }
3490 
3491 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3492 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3493 		     struct worker_pool *pool)
3494 {
3495 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3496 
3497 	memset(pwq, 0, sizeof(*pwq));
3498 
3499 	pwq->pool = pool;
3500 	pwq->wq = wq;
3501 	pwq->flush_color = -1;
3502 	pwq->refcnt = 1;
3503 	INIT_LIST_HEAD(&pwq->delayed_works);
3504 	INIT_LIST_HEAD(&pwq->pwqs_node);
3505 	INIT_LIST_HEAD(&pwq->mayday_node);
3506 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3507 }
3508 
3509 /* sync @pwq with the current state of its associated wq and link it */
3510 static void link_pwq(struct pool_workqueue *pwq)
3511 {
3512 	struct workqueue_struct *wq = pwq->wq;
3513 
3514 	lockdep_assert_held(&wq->mutex);
3515 
3516 	/* may be called multiple times, ignore if already linked */
3517 	if (!list_empty(&pwq->pwqs_node))
3518 		return;
3519 
3520 	/* set the matching work_color */
3521 	pwq->work_color = wq->work_color;
3522 
3523 	/* sync max_active to the current setting */
3524 	pwq_adjust_max_active(pwq);
3525 
3526 	/* link in @pwq */
3527 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3528 }
3529 
3530 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3531 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3532 					const struct workqueue_attrs *attrs)
3533 {
3534 	struct worker_pool *pool;
3535 	struct pool_workqueue *pwq;
3536 
3537 	lockdep_assert_held(&wq_pool_mutex);
3538 
3539 	pool = get_unbound_pool(attrs);
3540 	if (!pool)
3541 		return NULL;
3542 
3543 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3544 	if (!pwq) {
3545 		put_unbound_pool(pool);
3546 		return NULL;
3547 	}
3548 
3549 	init_pwq(pwq, wq, pool);
3550 	return pwq;
3551 }
3552 
3553 /**
3554  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3555  * @attrs: the wq_attrs of the default pwq of the target workqueue
3556  * @node: the target NUMA node
3557  * @cpu_going_down: if >= 0, the CPU to consider as offline
3558  * @cpumask: outarg, the resulting cpumask
3559  *
3560  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3561  * @cpu_going_down is >= 0, that cpu is considered offline during
3562  * calculation.  The result is stored in @cpumask.
3563  *
3564  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3565  * enabled and @node has online CPUs requested by @attrs, the returned
3566  * cpumask is the intersection of the possible CPUs of @node and
3567  * @attrs->cpumask.
3568  *
3569  * The caller is responsible for ensuring that the cpumask of @node stays
3570  * stable.
3571  *
3572  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3573  * %false if equal.
3574  */
3575 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3576 				 int cpu_going_down, cpumask_t *cpumask)
3577 {
3578 	if (!wq_numa_enabled || attrs->no_numa)
3579 		goto use_dfl;
3580 
3581 	/* does @node have any online CPUs @attrs wants? */
3582 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3583 	if (cpu_going_down >= 0)
3584 		cpumask_clear_cpu(cpu_going_down, cpumask);
3585 
3586 	if (cpumask_empty(cpumask))
3587 		goto use_dfl;
3588 
3589 	/* yeap, return possible CPUs in @node that @attrs wants */
3590 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3591 
3592 	if (cpumask_empty(cpumask)) {
3593 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3594 				"possible intersect\n");
3595 		return false;
3596 	}
3597 
3598 	return !cpumask_equal(cpumask, attrs->cpumask);
3599 
3600 use_dfl:
3601 	cpumask_copy(cpumask, attrs->cpumask);
3602 	return false;
3603 }
3604 
3605 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3606 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3607 						   int node,
3608 						   struct pool_workqueue *pwq)
3609 {
3610 	struct pool_workqueue *old_pwq;
3611 
3612 	lockdep_assert_held(&wq_pool_mutex);
3613 	lockdep_assert_held(&wq->mutex);
3614 
3615 	/* link_pwq() can handle duplicate calls */
3616 	link_pwq(pwq);
3617 
3618 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3619 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3620 	return old_pwq;
3621 }
3622 
3623 /* context to store the prepared attrs & pwqs before applying */
3624 struct apply_wqattrs_ctx {
3625 	struct workqueue_struct	*wq;		/* target workqueue */
3626 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3627 	struct list_head	list;		/* queued for batching commit */
3628 	struct pool_workqueue	*dfl_pwq;
3629 	struct pool_workqueue	*pwq_tbl[];
3630 };
3631 
3632 /* free the resources after success or abort */
3633 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3634 {
3635 	if (ctx) {
3636 		int node;
3637 
3638 		for_each_node(node)
3639 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3640 		put_pwq_unlocked(ctx->dfl_pwq);
3641 
3642 		free_workqueue_attrs(ctx->attrs);
3643 
3644 		kfree(ctx);
3645 	}
3646 }
3647 
3648 /* allocate the attrs and pwqs for later installation */
3649 static struct apply_wqattrs_ctx *
3650 apply_wqattrs_prepare(struct workqueue_struct *wq,
3651 		      const struct workqueue_attrs *attrs)
3652 {
3653 	struct apply_wqattrs_ctx *ctx;
3654 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3655 	int node;
3656 
3657 	lockdep_assert_held(&wq_pool_mutex);
3658 
3659 	ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3660 		      GFP_KERNEL);
3661 
3662 	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3663 	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3664 	if (!ctx || !new_attrs || !tmp_attrs)
3665 		goto out_free;
3666 
3667 	/*
3668 	 * Calculate the attrs of the default pwq.
3669 	 * If the user configured cpumask doesn't overlap with the
3670 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3671 	 */
3672 	copy_workqueue_attrs(new_attrs, attrs);
3673 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3674 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3675 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3676 
3677 	/*
3678 	 * We may create multiple pwqs with differing cpumasks.  Make a
3679 	 * copy of @new_attrs which will be modified and used to obtain
3680 	 * pools.
3681 	 */
3682 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3683 
3684 	/*
3685 	 * If something goes wrong during CPU up/down, we'll fall back to
3686 	 * the default pwq covering whole @attrs->cpumask.  Always create
3687 	 * it even if we don't use it immediately.
3688 	 */
3689 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3690 	if (!ctx->dfl_pwq)
3691 		goto out_free;
3692 
3693 	for_each_node(node) {
3694 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3695 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3696 			if (!ctx->pwq_tbl[node])
3697 				goto out_free;
3698 		} else {
3699 			ctx->dfl_pwq->refcnt++;
3700 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3701 		}
3702 	}
3703 
3704 	/* save the user configured attrs and sanitize it. */
3705 	copy_workqueue_attrs(new_attrs, attrs);
3706 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3707 	ctx->attrs = new_attrs;
3708 
3709 	ctx->wq = wq;
3710 	free_workqueue_attrs(tmp_attrs);
3711 	return ctx;
3712 
3713 out_free:
3714 	free_workqueue_attrs(tmp_attrs);
3715 	free_workqueue_attrs(new_attrs);
3716 	apply_wqattrs_cleanup(ctx);
3717 	return NULL;
3718 }
3719 
3720 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3721 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3722 {
3723 	int node;
3724 
3725 	/* all pwqs have been created successfully, let's install'em */
3726 	mutex_lock(&ctx->wq->mutex);
3727 
3728 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3729 
3730 	/* save the previous pwq and install the new one */
3731 	for_each_node(node)
3732 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3733 							  ctx->pwq_tbl[node]);
3734 
3735 	/* @dfl_pwq might not have been used, ensure it's linked */
3736 	link_pwq(ctx->dfl_pwq);
3737 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3738 
3739 	mutex_unlock(&ctx->wq->mutex);
3740 }
3741 
3742 static void apply_wqattrs_lock(void)
3743 {
3744 	/* CPUs should stay stable across pwq creations and installations */
3745 	get_online_cpus();
3746 	mutex_lock(&wq_pool_mutex);
3747 }
3748 
3749 static void apply_wqattrs_unlock(void)
3750 {
3751 	mutex_unlock(&wq_pool_mutex);
3752 	put_online_cpus();
3753 }
3754 
3755 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3756 					const struct workqueue_attrs *attrs)
3757 {
3758 	struct apply_wqattrs_ctx *ctx;
3759 
3760 	/* only unbound workqueues can change attributes */
3761 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3762 		return -EINVAL;
3763 
3764 	/* creating multiple pwqs breaks ordering guarantee */
3765 	if (!list_empty(&wq->pwqs)) {
3766 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3767 			return -EINVAL;
3768 
3769 		wq->flags &= ~__WQ_ORDERED;
3770 	}
3771 
3772 	ctx = apply_wqattrs_prepare(wq, attrs);
3773 	if (!ctx)
3774 		return -ENOMEM;
3775 
3776 	/* the ctx has been prepared successfully, let's commit it */
3777 	apply_wqattrs_commit(ctx);
3778 	apply_wqattrs_cleanup(ctx);
3779 
3780 	return 0;
3781 }
3782 
3783 /**
3784  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3785  * @wq: the target workqueue
3786  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3787  *
3788  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3789  * machines, this function maps a separate pwq to each NUMA node with
3790  * possibles CPUs in @attrs->cpumask so that work items are affine to the
3791  * NUMA node it was issued on.  Older pwqs are released as in-flight work
3792  * items finish.  Note that a work item which repeatedly requeues itself
3793  * back-to-back will stay on its current pwq.
3794  *
3795  * Performs GFP_KERNEL allocations.
3796  *
3797  * Return: 0 on success and -errno on failure.
3798  */
3799 int apply_workqueue_attrs(struct workqueue_struct *wq,
3800 			  const struct workqueue_attrs *attrs)
3801 {
3802 	int ret;
3803 
3804 	apply_wqattrs_lock();
3805 	ret = apply_workqueue_attrs_locked(wq, attrs);
3806 	apply_wqattrs_unlock();
3807 
3808 	return ret;
3809 }
3810 EXPORT_SYMBOL_GPL(apply_workqueue_attrs);
3811 
3812 /**
3813  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3814  * @wq: the target workqueue
3815  * @cpu: the CPU coming up or going down
3816  * @online: whether @cpu is coming up or going down
3817  *
3818  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3819  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3820  * @wq accordingly.
3821  *
3822  * If NUMA affinity can't be adjusted due to memory allocation failure, it
3823  * falls back to @wq->dfl_pwq which may not be optimal but is always
3824  * correct.
3825  *
3826  * Note that when the last allowed CPU of a NUMA node goes offline for a
3827  * workqueue with a cpumask spanning multiple nodes, the workers which were
3828  * already executing the work items for the workqueue will lose their CPU
3829  * affinity and may execute on any CPU.  This is similar to how per-cpu
3830  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3831  * affinity, it's the user's responsibility to flush the work item from
3832  * CPU_DOWN_PREPARE.
3833  */
3834 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3835 				   bool online)
3836 {
3837 	int node = cpu_to_node(cpu);
3838 	int cpu_off = online ? -1 : cpu;
3839 	struct pool_workqueue *old_pwq = NULL, *pwq;
3840 	struct workqueue_attrs *target_attrs;
3841 	cpumask_t *cpumask;
3842 
3843 	lockdep_assert_held(&wq_pool_mutex);
3844 
3845 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3846 	    wq->unbound_attrs->no_numa)
3847 		return;
3848 
3849 	/*
3850 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3851 	 * Let's use a preallocated one.  The following buf is protected by
3852 	 * CPU hotplug exclusion.
3853 	 */
3854 	target_attrs = wq_update_unbound_numa_attrs_buf;
3855 	cpumask = target_attrs->cpumask;
3856 
3857 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3858 	pwq = unbound_pwq_by_node(wq, node);
3859 
3860 	/*
3861 	 * Let's determine what needs to be done.  If the target cpumask is
3862 	 * different from the default pwq's, we need to compare it to @pwq's
3863 	 * and create a new one if they don't match.  If the target cpumask
3864 	 * equals the default pwq's, the default pwq should be used.
3865 	 */
3866 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3867 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3868 			return;
3869 	} else {
3870 		goto use_dfl_pwq;
3871 	}
3872 
3873 	/* create a new pwq */
3874 	pwq = alloc_unbound_pwq(wq, target_attrs);
3875 	if (!pwq) {
3876 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3877 			wq->name);
3878 		goto use_dfl_pwq;
3879 	}
3880 
3881 	/* Install the new pwq. */
3882 	mutex_lock(&wq->mutex);
3883 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3884 	goto out_unlock;
3885 
3886 use_dfl_pwq:
3887 	mutex_lock(&wq->mutex);
3888 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
3889 	get_pwq(wq->dfl_pwq);
3890 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3891 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3892 out_unlock:
3893 	mutex_unlock(&wq->mutex);
3894 	put_pwq_unlocked(old_pwq);
3895 }
3896 
3897 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3898 {
3899 	bool highpri = wq->flags & WQ_HIGHPRI;
3900 	int cpu, ret;
3901 
3902 	if (!(wq->flags & WQ_UNBOUND)) {
3903 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3904 		if (!wq->cpu_pwqs)
3905 			return -ENOMEM;
3906 
3907 		for_each_possible_cpu(cpu) {
3908 			struct pool_workqueue *pwq =
3909 				per_cpu_ptr(wq->cpu_pwqs, cpu);
3910 			struct worker_pool *cpu_pools =
3911 				per_cpu(cpu_worker_pools, cpu);
3912 
3913 			init_pwq(pwq, wq, &cpu_pools[highpri]);
3914 
3915 			mutex_lock(&wq->mutex);
3916 			link_pwq(pwq);
3917 			mutex_unlock(&wq->mutex);
3918 		}
3919 		return 0;
3920 	} else if (wq->flags & __WQ_ORDERED) {
3921 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3922 		/* there should only be single pwq for ordering guarantee */
3923 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3924 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3925 		     "ordering guarantee broken for workqueue %s\n", wq->name);
3926 		return ret;
3927 	} else {
3928 		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3929 	}
3930 }
3931 
3932 static int wq_clamp_max_active(int max_active, unsigned int flags,
3933 			       const char *name)
3934 {
3935 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3936 
3937 	if (max_active < 1 || max_active > lim)
3938 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3939 			max_active, name, 1, lim);
3940 
3941 	return clamp_val(max_active, 1, lim);
3942 }
3943 
3944 /*
3945  * Workqueues which may be used during memory reclaim should have a rescuer
3946  * to guarantee forward progress.
3947  */
3948 static int init_rescuer(struct workqueue_struct *wq)
3949 {
3950 	struct worker *rescuer;
3951 	int ret;
3952 
3953 	if (!(wq->flags & WQ_MEM_RECLAIM))
3954 		return 0;
3955 
3956 	rescuer = alloc_worker(NUMA_NO_NODE);
3957 	if (!rescuer)
3958 		return -ENOMEM;
3959 
3960 	rescuer->rescue_wq = wq;
3961 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
3962 	ret = PTR_ERR_OR_ZERO(rescuer->task);
3963 	if (ret) {
3964 		kfree(rescuer);
3965 		return ret;
3966 	}
3967 
3968 	wq->rescuer = rescuer;
3969 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
3970 	wake_up_process(rescuer->task);
3971 
3972 	return 0;
3973 }
3974 
3975 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3976 					       unsigned int flags,
3977 					       int max_active,
3978 					       struct lock_class_key *key,
3979 					       const char *lock_name, ...)
3980 {
3981 	size_t tbl_size = 0;
3982 	va_list args;
3983 	struct workqueue_struct *wq;
3984 	struct pool_workqueue *pwq;
3985 
3986 	/*
3987 	 * Unbound && max_active == 1 used to imply ordered, which is no
3988 	 * longer the case on NUMA machines due to per-node pools.  While
3989 	 * alloc_ordered_workqueue() is the right way to create an ordered
3990 	 * workqueue, keep the previous behavior to avoid subtle breakages
3991 	 * on NUMA.
3992 	 */
3993 	if ((flags & WQ_UNBOUND) && max_active == 1)
3994 		flags |= __WQ_ORDERED;
3995 
3996 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
3997 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3998 		flags |= WQ_UNBOUND;
3999 
4000 	/* allocate wq and format name */
4001 	if (flags & WQ_UNBOUND)
4002 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4003 
4004 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4005 	if (!wq)
4006 		return NULL;
4007 
4008 	if (flags & WQ_UNBOUND) {
4009 		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4010 		if (!wq->unbound_attrs)
4011 			goto err_free_wq;
4012 	}
4013 
4014 	va_start(args, lock_name);
4015 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4016 	va_end(args);
4017 
4018 	max_active = max_active ?: WQ_DFL_ACTIVE;
4019 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4020 
4021 	/* init wq */
4022 	wq->flags = flags;
4023 	wq->saved_max_active = max_active;
4024 	mutex_init(&wq->mutex);
4025 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4026 	INIT_LIST_HEAD(&wq->pwqs);
4027 	INIT_LIST_HEAD(&wq->flusher_queue);
4028 	INIT_LIST_HEAD(&wq->flusher_overflow);
4029 	INIT_LIST_HEAD(&wq->maydays);
4030 
4031 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4032 	INIT_LIST_HEAD(&wq->list);
4033 
4034 	if (alloc_and_link_pwqs(wq) < 0)
4035 		goto err_free_wq;
4036 
4037 	if (wq_online && init_rescuer(wq) < 0)
4038 		goto err_destroy;
4039 
4040 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4041 		goto err_destroy;
4042 
4043 	/*
4044 	 * wq_pool_mutex protects global freeze state and workqueues list.
4045 	 * Grab it, adjust max_active and add the new @wq to workqueues
4046 	 * list.
4047 	 */
4048 	mutex_lock(&wq_pool_mutex);
4049 
4050 	mutex_lock(&wq->mutex);
4051 	for_each_pwq(pwq, wq)
4052 		pwq_adjust_max_active(pwq);
4053 	mutex_unlock(&wq->mutex);
4054 
4055 	list_add_tail_rcu(&wq->list, &workqueues);
4056 
4057 	mutex_unlock(&wq_pool_mutex);
4058 
4059 	return wq;
4060 
4061 err_free_wq:
4062 	free_workqueue_attrs(wq->unbound_attrs);
4063 	kfree(wq);
4064 	return NULL;
4065 err_destroy:
4066 	destroy_workqueue(wq);
4067 	return NULL;
4068 }
4069 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4070 
4071 /**
4072  * destroy_workqueue - safely terminate a workqueue
4073  * @wq: target workqueue
4074  *
4075  * Safely destroy a workqueue. All work currently pending will be done first.
4076  */
4077 void destroy_workqueue(struct workqueue_struct *wq)
4078 {
4079 	struct pool_workqueue *pwq;
4080 	int node;
4081 
4082 	/* drain it before proceeding with destruction */
4083 	drain_workqueue(wq);
4084 
4085 	/* sanity checks */
4086 	mutex_lock(&wq->mutex);
4087 	for_each_pwq(pwq, wq) {
4088 		int i;
4089 
4090 		for (i = 0; i < WORK_NR_COLORS; i++) {
4091 			if (WARN_ON(pwq->nr_in_flight[i])) {
4092 				mutex_unlock(&wq->mutex);
4093 				show_workqueue_state();
4094 				return;
4095 			}
4096 		}
4097 
4098 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4099 		    WARN_ON(pwq->nr_active) ||
4100 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4101 			mutex_unlock(&wq->mutex);
4102 			show_workqueue_state();
4103 			return;
4104 		}
4105 	}
4106 	mutex_unlock(&wq->mutex);
4107 
4108 	/*
4109 	 * wq list is used to freeze wq, remove from list after
4110 	 * flushing is complete in case freeze races us.
4111 	 */
4112 	mutex_lock(&wq_pool_mutex);
4113 	list_del_rcu(&wq->list);
4114 	mutex_unlock(&wq_pool_mutex);
4115 
4116 	workqueue_sysfs_unregister(wq);
4117 
4118 	if (wq->rescuer)
4119 		kthread_stop(wq->rescuer->task);
4120 
4121 	if (!(wq->flags & WQ_UNBOUND)) {
4122 		/*
4123 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4124 		 * schedule RCU free.
4125 		 */
4126 		call_rcu_sched(&wq->rcu, rcu_free_wq);
4127 	} else {
4128 		/*
4129 		 * We're the sole accessor of @wq at this point.  Directly
4130 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4131 		 * @wq will be freed when the last pwq is released.
4132 		 */
4133 		for_each_node(node) {
4134 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4135 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4136 			put_pwq_unlocked(pwq);
4137 		}
4138 
4139 		/*
4140 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4141 		 * put.  Don't access it afterwards.
4142 		 */
4143 		pwq = wq->dfl_pwq;
4144 		wq->dfl_pwq = NULL;
4145 		put_pwq_unlocked(pwq);
4146 	}
4147 }
4148 EXPORT_SYMBOL_GPL(destroy_workqueue);
4149 
4150 /**
4151  * workqueue_set_max_active - adjust max_active of a workqueue
4152  * @wq: target workqueue
4153  * @max_active: new max_active value.
4154  *
4155  * Set max_active of @wq to @max_active.
4156  *
4157  * CONTEXT:
4158  * Don't call from IRQ context.
4159  */
4160 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4161 {
4162 	struct pool_workqueue *pwq;
4163 
4164 	/* disallow meddling with max_active for ordered workqueues */
4165 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4166 		return;
4167 
4168 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4169 
4170 	mutex_lock(&wq->mutex);
4171 
4172 	wq->flags &= ~__WQ_ORDERED;
4173 	wq->saved_max_active = max_active;
4174 
4175 	for_each_pwq(pwq, wq)
4176 		pwq_adjust_max_active(pwq);
4177 
4178 	mutex_unlock(&wq->mutex);
4179 }
4180 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4181 
4182 /**
4183  * current_work - retrieve %current task's work struct
4184  *
4185  * Determine if %current task is a workqueue worker and what it's working on.
4186  * Useful to find out the context that the %current task is running in.
4187  *
4188  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4189  */
4190 struct work_struct *current_work(void)
4191 {
4192 	struct worker *worker = current_wq_worker();
4193 
4194 	return worker ? worker->current_work : NULL;
4195 }
4196 EXPORT_SYMBOL(current_work);
4197 
4198 /**
4199  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4200  *
4201  * Determine whether %current is a workqueue rescuer.  Can be used from
4202  * work functions to determine whether it's being run off the rescuer task.
4203  *
4204  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4205  */
4206 bool current_is_workqueue_rescuer(void)
4207 {
4208 	struct worker *worker = current_wq_worker();
4209 
4210 	return worker && worker->rescue_wq;
4211 }
4212 
4213 /**
4214  * workqueue_congested - test whether a workqueue is congested
4215  * @cpu: CPU in question
4216  * @wq: target workqueue
4217  *
4218  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4219  * no synchronization around this function and the test result is
4220  * unreliable and only useful as advisory hints or for debugging.
4221  *
4222  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4223  * Note that both per-cpu and unbound workqueues may be associated with
4224  * multiple pool_workqueues which have separate congested states.  A
4225  * workqueue being congested on one CPU doesn't mean the workqueue is also
4226  * contested on other CPUs / NUMA nodes.
4227  *
4228  * Return:
4229  * %true if congested, %false otherwise.
4230  */
4231 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4232 {
4233 	struct pool_workqueue *pwq;
4234 	bool ret;
4235 
4236 	rcu_read_lock_sched();
4237 
4238 	if (cpu == WORK_CPU_UNBOUND)
4239 		cpu = smp_processor_id();
4240 
4241 	if (!(wq->flags & WQ_UNBOUND))
4242 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4243 	else
4244 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4245 
4246 	ret = !list_empty(&pwq->delayed_works);
4247 	rcu_read_unlock_sched();
4248 
4249 	return ret;
4250 }
4251 EXPORT_SYMBOL_GPL(workqueue_congested);
4252 
4253 /**
4254  * work_busy - test whether a work is currently pending or running
4255  * @work: the work to be tested
4256  *
4257  * Test whether @work is currently pending or running.  There is no
4258  * synchronization around this function and the test result is
4259  * unreliable and only useful as advisory hints or for debugging.
4260  *
4261  * Return:
4262  * OR'd bitmask of WORK_BUSY_* bits.
4263  */
4264 unsigned int work_busy(struct work_struct *work)
4265 {
4266 	struct worker_pool *pool;
4267 	unsigned long flags;
4268 	unsigned int ret = 0;
4269 
4270 	if (work_pending(work))
4271 		ret |= WORK_BUSY_PENDING;
4272 
4273 	local_irq_save(flags);
4274 	pool = get_work_pool(work);
4275 	if (pool) {
4276 		spin_lock(&pool->lock);
4277 		if (find_worker_executing_work(pool, work))
4278 			ret |= WORK_BUSY_RUNNING;
4279 		spin_unlock(&pool->lock);
4280 	}
4281 	local_irq_restore(flags);
4282 
4283 	return ret;
4284 }
4285 EXPORT_SYMBOL_GPL(work_busy);
4286 
4287 /**
4288  * set_worker_desc - set description for the current work item
4289  * @fmt: printf-style format string
4290  * @...: arguments for the format string
4291  *
4292  * This function can be called by a running work function to describe what
4293  * the work item is about.  If the worker task gets dumped, this
4294  * information will be printed out together to help debugging.  The
4295  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4296  */
4297 void set_worker_desc(const char *fmt, ...)
4298 {
4299 	struct worker *worker = current_wq_worker();
4300 	va_list args;
4301 
4302 	if (worker) {
4303 		va_start(args, fmt);
4304 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4305 		va_end(args);
4306 		worker->desc_valid = true;
4307 	}
4308 }
4309 
4310 /**
4311  * print_worker_info - print out worker information and description
4312  * @log_lvl: the log level to use when printing
4313  * @task: target task
4314  *
4315  * If @task is a worker and currently executing a work item, print out the
4316  * name of the workqueue being serviced and worker description set with
4317  * set_worker_desc() by the currently executing work item.
4318  *
4319  * This function can be safely called on any task as long as the
4320  * task_struct itself is accessible.  While safe, this function isn't
4321  * synchronized and may print out mixups or garbages of limited length.
4322  */
4323 void print_worker_info(const char *log_lvl, struct task_struct *task)
4324 {
4325 	work_func_t *fn = NULL;
4326 	char name[WQ_NAME_LEN] = { };
4327 	char desc[WORKER_DESC_LEN] = { };
4328 	struct pool_workqueue *pwq = NULL;
4329 	struct workqueue_struct *wq = NULL;
4330 	bool desc_valid = false;
4331 	struct worker *worker;
4332 
4333 	if (!(task->flags & PF_WQ_WORKER))
4334 		return;
4335 
4336 	/*
4337 	 * This function is called without any synchronization and @task
4338 	 * could be in any state.  Be careful with dereferences.
4339 	 */
4340 	worker = kthread_probe_data(task);
4341 
4342 	/*
4343 	 * Carefully copy the associated workqueue's workfn and name.  Keep
4344 	 * the original last '\0' in case the original contains garbage.
4345 	 */
4346 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4347 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4348 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4349 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4350 
4351 	/* copy worker description */
4352 	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4353 	if (desc_valid)
4354 		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4355 
4356 	if (fn || name[0] || desc[0]) {
4357 		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4358 		if (desc[0])
4359 			pr_cont(" (%s)", desc);
4360 		pr_cont("\n");
4361 	}
4362 }
4363 
4364 static void pr_cont_pool_info(struct worker_pool *pool)
4365 {
4366 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4367 	if (pool->node != NUMA_NO_NODE)
4368 		pr_cont(" node=%d", pool->node);
4369 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4370 }
4371 
4372 static void pr_cont_work(bool comma, struct work_struct *work)
4373 {
4374 	if (work->func == wq_barrier_func) {
4375 		struct wq_barrier *barr;
4376 
4377 		barr = container_of(work, struct wq_barrier, work);
4378 
4379 		pr_cont("%s BAR(%d)", comma ? "," : "",
4380 			task_pid_nr(barr->task));
4381 	} else {
4382 		pr_cont("%s %pf", comma ? "," : "", work->func);
4383 	}
4384 }
4385 
4386 static void show_pwq(struct pool_workqueue *pwq)
4387 {
4388 	struct worker_pool *pool = pwq->pool;
4389 	struct work_struct *work;
4390 	struct worker *worker;
4391 	bool has_in_flight = false, has_pending = false;
4392 	int bkt;
4393 
4394 	pr_info("  pwq %d:", pool->id);
4395 	pr_cont_pool_info(pool);
4396 
4397 	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4398 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4399 
4400 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4401 		if (worker->current_pwq == pwq) {
4402 			has_in_flight = true;
4403 			break;
4404 		}
4405 	}
4406 	if (has_in_flight) {
4407 		bool comma = false;
4408 
4409 		pr_info("    in-flight:");
4410 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4411 			if (worker->current_pwq != pwq)
4412 				continue;
4413 
4414 			pr_cont("%s %d%s:%pf", comma ? "," : "",
4415 				task_pid_nr(worker->task),
4416 				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4417 				worker->current_func);
4418 			list_for_each_entry(work, &worker->scheduled, entry)
4419 				pr_cont_work(false, work);
4420 			comma = true;
4421 		}
4422 		pr_cont("\n");
4423 	}
4424 
4425 	list_for_each_entry(work, &pool->worklist, entry) {
4426 		if (get_work_pwq(work) == pwq) {
4427 			has_pending = true;
4428 			break;
4429 		}
4430 	}
4431 	if (has_pending) {
4432 		bool comma = false;
4433 
4434 		pr_info("    pending:");
4435 		list_for_each_entry(work, &pool->worklist, entry) {
4436 			if (get_work_pwq(work) != pwq)
4437 				continue;
4438 
4439 			pr_cont_work(comma, work);
4440 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4441 		}
4442 		pr_cont("\n");
4443 	}
4444 
4445 	if (!list_empty(&pwq->delayed_works)) {
4446 		bool comma = false;
4447 
4448 		pr_info("    delayed:");
4449 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4450 			pr_cont_work(comma, work);
4451 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4452 		}
4453 		pr_cont("\n");
4454 	}
4455 }
4456 
4457 /**
4458  * show_workqueue_state - dump workqueue state
4459  *
4460  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4461  * all busy workqueues and pools.
4462  */
4463 void show_workqueue_state(void)
4464 {
4465 	struct workqueue_struct *wq;
4466 	struct worker_pool *pool;
4467 	unsigned long flags;
4468 	int pi;
4469 
4470 	rcu_read_lock_sched();
4471 
4472 	pr_info("Showing busy workqueues and worker pools:\n");
4473 
4474 	list_for_each_entry_rcu(wq, &workqueues, list) {
4475 		struct pool_workqueue *pwq;
4476 		bool idle = true;
4477 
4478 		for_each_pwq(pwq, wq) {
4479 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4480 				idle = false;
4481 				break;
4482 			}
4483 		}
4484 		if (idle)
4485 			continue;
4486 
4487 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4488 
4489 		for_each_pwq(pwq, wq) {
4490 			spin_lock_irqsave(&pwq->pool->lock, flags);
4491 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4492 				show_pwq(pwq);
4493 			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4494 			/*
4495 			 * We could be printing a lot from atomic context, e.g.
4496 			 * sysrq-t -> show_workqueue_state(). Avoid triggering
4497 			 * hard lockup.
4498 			 */
4499 			touch_nmi_watchdog();
4500 		}
4501 	}
4502 
4503 	for_each_pool(pool, pi) {
4504 		struct worker *worker;
4505 		bool first = true;
4506 
4507 		spin_lock_irqsave(&pool->lock, flags);
4508 		if (pool->nr_workers == pool->nr_idle)
4509 			goto next_pool;
4510 
4511 		pr_info("pool %d:", pool->id);
4512 		pr_cont_pool_info(pool);
4513 		pr_cont(" hung=%us workers=%d",
4514 			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4515 			pool->nr_workers);
4516 		if (pool->manager)
4517 			pr_cont(" manager: %d",
4518 				task_pid_nr(pool->manager->task));
4519 		list_for_each_entry(worker, &pool->idle_list, entry) {
4520 			pr_cont(" %s%d", first ? "idle: " : "",
4521 				task_pid_nr(worker->task));
4522 			first = false;
4523 		}
4524 		pr_cont("\n");
4525 	next_pool:
4526 		spin_unlock_irqrestore(&pool->lock, flags);
4527 		/*
4528 		 * We could be printing a lot from atomic context, e.g.
4529 		 * sysrq-t -> show_workqueue_state(). Avoid triggering
4530 		 * hard lockup.
4531 		 */
4532 		touch_nmi_watchdog();
4533 	}
4534 
4535 	rcu_read_unlock_sched();
4536 }
4537 
4538 /*
4539  * CPU hotplug.
4540  *
4541  * There are two challenges in supporting CPU hotplug.  Firstly, there
4542  * are a lot of assumptions on strong associations among work, pwq and
4543  * pool which make migrating pending and scheduled works very
4544  * difficult to implement without impacting hot paths.  Secondly,
4545  * worker pools serve mix of short, long and very long running works making
4546  * blocked draining impractical.
4547  *
4548  * This is solved by allowing the pools to be disassociated from the CPU
4549  * running as an unbound one and allowing it to be reattached later if the
4550  * cpu comes back online.
4551  */
4552 
4553 static void unbind_workers(int cpu)
4554 {
4555 	struct worker_pool *pool;
4556 	struct worker *worker;
4557 
4558 	for_each_cpu_worker_pool(pool, cpu) {
4559 		mutex_lock(&pool->attach_mutex);
4560 		spin_lock_irq(&pool->lock);
4561 
4562 		/*
4563 		 * We've blocked all attach/detach operations. Make all workers
4564 		 * unbound and set DISASSOCIATED.  Before this, all workers
4565 		 * except for the ones which are still executing works from
4566 		 * before the last CPU down must be on the cpu.  After
4567 		 * this, they may become diasporas.
4568 		 */
4569 		for_each_pool_worker(worker, pool)
4570 			worker->flags |= WORKER_UNBOUND;
4571 
4572 		pool->flags |= POOL_DISASSOCIATED;
4573 
4574 		spin_unlock_irq(&pool->lock);
4575 		mutex_unlock(&pool->attach_mutex);
4576 
4577 		/*
4578 		 * Call schedule() so that we cross rq->lock and thus can
4579 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4580 		 * This is necessary as scheduler callbacks may be invoked
4581 		 * from other cpus.
4582 		 */
4583 		schedule();
4584 
4585 		/*
4586 		 * Sched callbacks are disabled now.  Zap nr_running.
4587 		 * After this, nr_running stays zero and need_more_worker()
4588 		 * and keep_working() are always true as long as the
4589 		 * worklist is not empty.  This pool now behaves as an
4590 		 * unbound (in terms of concurrency management) pool which
4591 		 * are served by workers tied to the pool.
4592 		 */
4593 		atomic_set(&pool->nr_running, 0);
4594 
4595 		/*
4596 		 * With concurrency management just turned off, a busy
4597 		 * worker blocking could lead to lengthy stalls.  Kick off
4598 		 * unbound chain execution of currently pending work items.
4599 		 */
4600 		spin_lock_irq(&pool->lock);
4601 		wake_up_worker(pool);
4602 		spin_unlock_irq(&pool->lock);
4603 	}
4604 }
4605 
4606 /**
4607  * rebind_workers - rebind all workers of a pool to the associated CPU
4608  * @pool: pool of interest
4609  *
4610  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4611  */
4612 static void rebind_workers(struct worker_pool *pool)
4613 {
4614 	struct worker *worker;
4615 
4616 	lockdep_assert_held(&pool->attach_mutex);
4617 
4618 	/*
4619 	 * Restore CPU affinity of all workers.  As all idle workers should
4620 	 * be on the run-queue of the associated CPU before any local
4621 	 * wake-ups for concurrency management happen, restore CPU affinity
4622 	 * of all workers first and then clear UNBOUND.  As we're called
4623 	 * from CPU_ONLINE, the following shouldn't fail.
4624 	 */
4625 	for_each_pool_worker(worker, pool)
4626 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4627 						  pool->attrs->cpumask) < 0);
4628 
4629 	spin_lock_irq(&pool->lock);
4630 
4631 	pool->flags &= ~POOL_DISASSOCIATED;
4632 
4633 	for_each_pool_worker(worker, pool) {
4634 		unsigned int worker_flags = worker->flags;
4635 
4636 		/*
4637 		 * A bound idle worker should actually be on the runqueue
4638 		 * of the associated CPU for local wake-ups targeting it to
4639 		 * work.  Kick all idle workers so that they migrate to the
4640 		 * associated CPU.  Doing this in the same loop as
4641 		 * replacing UNBOUND with REBOUND is safe as no worker will
4642 		 * be bound before @pool->lock is released.
4643 		 */
4644 		if (worker_flags & WORKER_IDLE)
4645 			wake_up_process(worker->task);
4646 
4647 		/*
4648 		 * We want to clear UNBOUND but can't directly call
4649 		 * worker_clr_flags() or adjust nr_running.  Atomically
4650 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4651 		 * @worker will clear REBOUND using worker_clr_flags() when
4652 		 * it initiates the next execution cycle thus restoring
4653 		 * concurrency management.  Note that when or whether
4654 		 * @worker clears REBOUND doesn't affect correctness.
4655 		 *
4656 		 * WRITE_ONCE() is necessary because @worker->flags may be
4657 		 * tested without holding any lock in
4658 		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4659 		 * fail incorrectly leading to premature concurrency
4660 		 * management operations.
4661 		 */
4662 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4663 		worker_flags |= WORKER_REBOUND;
4664 		worker_flags &= ~WORKER_UNBOUND;
4665 		WRITE_ONCE(worker->flags, worker_flags);
4666 	}
4667 
4668 	spin_unlock_irq(&pool->lock);
4669 }
4670 
4671 /**
4672  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4673  * @pool: unbound pool of interest
4674  * @cpu: the CPU which is coming up
4675  *
4676  * An unbound pool may end up with a cpumask which doesn't have any online
4677  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4678  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4679  * online CPU before, cpus_allowed of all its workers should be restored.
4680  */
4681 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4682 {
4683 	static cpumask_t cpumask;
4684 	struct worker *worker;
4685 
4686 	lockdep_assert_held(&pool->attach_mutex);
4687 
4688 	/* is @cpu allowed for @pool? */
4689 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4690 		return;
4691 
4692 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4693 
4694 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4695 	for_each_pool_worker(worker, pool)
4696 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4697 }
4698 
4699 int workqueue_prepare_cpu(unsigned int cpu)
4700 {
4701 	struct worker_pool *pool;
4702 
4703 	for_each_cpu_worker_pool(pool, cpu) {
4704 		if (pool->nr_workers)
4705 			continue;
4706 		if (!create_worker(pool))
4707 			return -ENOMEM;
4708 	}
4709 	return 0;
4710 }
4711 
4712 int workqueue_online_cpu(unsigned int cpu)
4713 {
4714 	struct worker_pool *pool;
4715 	struct workqueue_struct *wq;
4716 	int pi;
4717 
4718 	mutex_lock(&wq_pool_mutex);
4719 
4720 	for_each_pool(pool, pi) {
4721 		mutex_lock(&pool->attach_mutex);
4722 
4723 		if (pool->cpu == cpu)
4724 			rebind_workers(pool);
4725 		else if (pool->cpu < 0)
4726 			restore_unbound_workers_cpumask(pool, cpu);
4727 
4728 		mutex_unlock(&pool->attach_mutex);
4729 	}
4730 
4731 	/* update NUMA affinity of unbound workqueues */
4732 	list_for_each_entry(wq, &workqueues, list)
4733 		wq_update_unbound_numa(wq, cpu, true);
4734 
4735 	mutex_unlock(&wq_pool_mutex);
4736 	return 0;
4737 }
4738 
4739 int workqueue_offline_cpu(unsigned int cpu)
4740 {
4741 	struct workqueue_struct *wq;
4742 
4743 	/* unbinding per-cpu workers should happen on the local CPU */
4744 	if (WARN_ON(cpu != smp_processor_id()))
4745 		return -1;
4746 
4747 	unbind_workers(cpu);
4748 
4749 	/* update NUMA affinity of unbound workqueues */
4750 	mutex_lock(&wq_pool_mutex);
4751 	list_for_each_entry(wq, &workqueues, list)
4752 		wq_update_unbound_numa(wq, cpu, false);
4753 	mutex_unlock(&wq_pool_mutex);
4754 
4755 	return 0;
4756 }
4757 
4758 #ifdef CONFIG_SMP
4759 
4760 struct work_for_cpu {
4761 	struct work_struct work;
4762 	long (*fn)(void *);
4763 	void *arg;
4764 	long ret;
4765 };
4766 
4767 static void work_for_cpu_fn(struct work_struct *work)
4768 {
4769 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4770 
4771 	wfc->ret = wfc->fn(wfc->arg);
4772 }
4773 
4774 /**
4775  * work_on_cpu - run a function in thread context on a particular cpu
4776  * @cpu: the cpu to run on
4777  * @fn: the function to run
4778  * @arg: the function arg
4779  *
4780  * It is up to the caller to ensure that the cpu doesn't go offline.
4781  * The caller must not hold any locks which would prevent @fn from completing.
4782  *
4783  * Return: The value @fn returns.
4784  */
4785 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4786 {
4787 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4788 
4789 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4790 	schedule_work_on(cpu, &wfc.work);
4791 	flush_work(&wfc.work);
4792 	destroy_work_on_stack(&wfc.work);
4793 	return wfc.ret;
4794 }
4795 EXPORT_SYMBOL_GPL(work_on_cpu);
4796 
4797 /**
4798  * work_on_cpu_safe - run a function in thread context on a particular cpu
4799  * @cpu: the cpu to run on
4800  * @fn:  the function to run
4801  * @arg: the function argument
4802  *
4803  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
4804  * any locks which would prevent @fn from completing.
4805  *
4806  * Return: The value @fn returns.
4807  */
4808 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
4809 {
4810 	long ret = -ENODEV;
4811 
4812 	get_online_cpus();
4813 	if (cpu_online(cpu))
4814 		ret = work_on_cpu(cpu, fn, arg);
4815 	put_online_cpus();
4816 	return ret;
4817 }
4818 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
4819 #endif /* CONFIG_SMP */
4820 
4821 #ifdef CONFIG_FREEZER
4822 
4823 /**
4824  * freeze_workqueues_begin - begin freezing workqueues
4825  *
4826  * Start freezing workqueues.  After this function returns, all freezable
4827  * workqueues will queue new works to their delayed_works list instead of
4828  * pool->worklist.
4829  *
4830  * CONTEXT:
4831  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4832  */
4833 void freeze_workqueues_begin(void)
4834 {
4835 	struct workqueue_struct *wq;
4836 	struct pool_workqueue *pwq;
4837 
4838 	mutex_lock(&wq_pool_mutex);
4839 
4840 	WARN_ON_ONCE(workqueue_freezing);
4841 	workqueue_freezing = true;
4842 
4843 	list_for_each_entry(wq, &workqueues, list) {
4844 		mutex_lock(&wq->mutex);
4845 		for_each_pwq(pwq, wq)
4846 			pwq_adjust_max_active(pwq);
4847 		mutex_unlock(&wq->mutex);
4848 	}
4849 
4850 	mutex_unlock(&wq_pool_mutex);
4851 }
4852 
4853 /**
4854  * freeze_workqueues_busy - are freezable workqueues still busy?
4855  *
4856  * Check whether freezing is complete.  This function must be called
4857  * between freeze_workqueues_begin() and thaw_workqueues().
4858  *
4859  * CONTEXT:
4860  * Grabs and releases wq_pool_mutex.
4861  *
4862  * Return:
4863  * %true if some freezable workqueues are still busy.  %false if freezing
4864  * is complete.
4865  */
4866 bool freeze_workqueues_busy(void)
4867 {
4868 	bool busy = false;
4869 	struct workqueue_struct *wq;
4870 	struct pool_workqueue *pwq;
4871 
4872 	mutex_lock(&wq_pool_mutex);
4873 
4874 	WARN_ON_ONCE(!workqueue_freezing);
4875 
4876 	list_for_each_entry(wq, &workqueues, list) {
4877 		if (!(wq->flags & WQ_FREEZABLE))
4878 			continue;
4879 		/*
4880 		 * nr_active is monotonically decreasing.  It's safe
4881 		 * to peek without lock.
4882 		 */
4883 		rcu_read_lock_sched();
4884 		for_each_pwq(pwq, wq) {
4885 			WARN_ON_ONCE(pwq->nr_active < 0);
4886 			if (pwq->nr_active) {
4887 				busy = true;
4888 				rcu_read_unlock_sched();
4889 				goto out_unlock;
4890 			}
4891 		}
4892 		rcu_read_unlock_sched();
4893 	}
4894 out_unlock:
4895 	mutex_unlock(&wq_pool_mutex);
4896 	return busy;
4897 }
4898 
4899 /**
4900  * thaw_workqueues - thaw workqueues
4901  *
4902  * Thaw workqueues.  Normal queueing is restored and all collected
4903  * frozen works are transferred to their respective pool worklists.
4904  *
4905  * CONTEXT:
4906  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4907  */
4908 void thaw_workqueues(void)
4909 {
4910 	struct workqueue_struct *wq;
4911 	struct pool_workqueue *pwq;
4912 
4913 	mutex_lock(&wq_pool_mutex);
4914 
4915 	if (!workqueue_freezing)
4916 		goto out_unlock;
4917 
4918 	workqueue_freezing = false;
4919 
4920 	/* restore max_active and repopulate worklist */
4921 	list_for_each_entry(wq, &workqueues, list) {
4922 		mutex_lock(&wq->mutex);
4923 		for_each_pwq(pwq, wq)
4924 			pwq_adjust_max_active(pwq);
4925 		mutex_unlock(&wq->mutex);
4926 	}
4927 
4928 out_unlock:
4929 	mutex_unlock(&wq_pool_mutex);
4930 }
4931 #endif /* CONFIG_FREEZER */
4932 
4933 static int workqueue_apply_unbound_cpumask(void)
4934 {
4935 	LIST_HEAD(ctxs);
4936 	int ret = 0;
4937 	struct workqueue_struct *wq;
4938 	struct apply_wqattrs_ctx *ctx, *n;
4939 
4940 	lockdep_assert_held(&wq_pool_mutex);
4941 
4942 	list_for_each_entry(wq, &workqueues, list) {
4943 		if (!(wq->flags & WQ_UNBOUND))
4944 			continue;
4945 		/* creating multiple pwqs breaks ordering guarantee */
4946 		if (wq->flags & __WQ_ORDERED)
4947 			continue;
4948 
4949 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4950 		if (!ctx) {
4951 			ret = -ENOMEM;
4952 			break;
4953 		}
4954 
4955 		list_add_tail(&ctx->list, &ctxs);
4956 	}
4957 
4958 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
4959 		if (!ret)
4960 			apply_wqattrs_commit(ctx);
4961 		apply_wqattrs_cleanup(ctx);
4962 	}
4963 
4964 	return ret;
4965 }
4966 
4967 /**
4968  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4969  *  @cpumask: the cpumask to set
4970  *
4971  *  The low-level workqueues cpumask is a global cpumask that limits
4972  *  the affinity of all unbound workqueues.  This function check the @cpumask
4973  *  and apply it to all unbound workqueues and updates all pwqs of them.
4974  *
4975  *  Retun:	0	- Success
4976  *  		-EINVAL	- Invalid @cpumask
4977  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
4978  */
4979 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4980 {
4981 	int ret = -EINVAL;
4982 	cpumask_var_t saved_cpumask;
4983 
4984 	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4985 		return -ENOMEM;
4986 
4987 	/*
4988 	 * Not excluding isolated cpus on purpose.
4989 	 * If the user wishes to include them, we allow that.
4990 	 */
4991 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
4992 	if (!cpumask_empty(cpumask)) {
4993 		apply_wqattrs_lock();
4994 
4995 		/* save the old wq_unbound_cpumask. */
4996 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4997 
4998 		/* update wq_unbound_cpumask at first and apply it to wqs. */
4999 		cpumask_copy(wq_unbound_cpumask, cpumask);
5000 		ret = workqueue_apply_unbound_cpumask();
5001 
5002 		/* restore the wq_unbound_cpumask when failed. */
5003 		if (ret < 0)
5004 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5005 
5006 		apply_wqattrs_unlock();
5007 	}
5008 
5009 	free_cpumask_var(saved_cpumask);
5010 	return ret;
5011 }
5012 
5013 #ifdef CONFIG_SYSFS
5014 /*
5015  * Workqueues with WQ_SYSFS flag set is visible to userland via
5016  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5017  * following attributes.
5018  *
5019  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5020  *  max_active	RW int	: maximum number of in-flight work items
5021  *
5022  * Unbound workqueues have the following extra attributes.
5023  *
5024  *  pool_ids	RO int	: the associated pool IDs for each node
5025  *  nice	RW int	: nice value of the workers
5026  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5027  *  numa	RW bool	: whether enable NUMA affinity
5028  */
5029 struct wq_device {
5030 	struct workqueue_struct		*wq;
5031 	struct device			dev;
5032 };
5033 
5034 static struct workqueue_struct *dev_to_wq(struct device *dev)
5035 {
5036 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5037 
5038 	return wq_dev->wq;
5039 }
5040 
5041 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5042 			    char *buf)
5043 {
5044 	struct workqueue_struct *wq = dev_to_wq(dev);
5045 
5046 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5047 }
5048 static DEVICE_ATTR_RO(per_cpu);
5049 
5050 static ssize_t max_active_show(struct device *dev,
5051 			       struct device_attribute *attr, char *buf)
5052 {
5053 	struct workqueue_struct *wq = dev_to_wq(dev);
5054 
5055 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5056 }
5057 
5058 static ssize_t max_active_store(struct device *dev,
5059 				struct device_attribute *attr, const char *buf,
5060 				size_t count)
5061 {
5062 	struct workqueue_struct *wq = dev_to_wq(dev);
5063 	int val;
5064 
5065 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5066 		return -EINVAL;
5067 
5068 	workqueue_set_max_active(wq, val);
5069 	return count;
5070 }
5071 static DEVICE_ATTR_RW(max_active);
5072 
5073 static struct attribute *wq_sysfs_attrs[] = {
5074 	&dev_attr_per_cpu.attr,
5075 	&dev_attr_max_active.attr,
5076 	NULL,
5077 };
5078 ATTRIBUTE_GROUPS(wq_sysfs);
5079 
5080 static ssize_t wq_pool_ids_show(struct device *dev,
5081 				struct device_attribute *attr, char *buf)
5082 {
5083 	struct workqueue_struct *wq = dev_to_wq(dev);
5084 	const char *delim = "";
5085 	int node, written = 0;
5086 
5087 	rcu_read_lock_sched();
5088 	for_each_node(node) {
5089 		written += scnprintf(buf + written, PAGE_SIZE - written,
5090 				     "%s%d:%d", delim, node,
5091 				     unbound_pwq_by_node(wq, node)->pool->id);
5092 		delim = " ";
5093 	}
5094 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5095 	rcu_read_unlock_sched();
5096 
5097 	return written;
5098 }
5099 
5100 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5101 			    char *buf)
5102 {
5103 	struct workqueue_struct *wq = dev_to_wq(dev);
5104 	int written;
5105 
5106 	mutex_lock(&wq->mutex);
5107 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5108 	mutex_unlock(&wq->mutex);
5109 
5110 	return written;
5111 }
5112 
5113 /* prepare workqueue_attrs for sysfs store operations */
5114 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5115 {
5116 	struct workqueue_attrs *attrs;
5117 
5118 	lockdep_assert_held(&wq_pool_mutex);
5119 
5120 	attrs = alloc_workqueue_attrs(GFP_KERNEL);
5121 	if (!attrs)
5122 		return NULL;
5123 
5124 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5125 	return attrs;
5126 }
5127 
5128 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5129 			     const char *buf, size_t count)
5130 {
5131 	struct workqueue_struct *wq = dev_to_wq(dev);
5132 	struct workqueue_attrs *attrs;
5133 	int ret = -ENOMEM;
5134 
5135 	apply_wqattrs_lock();
5136 
5137 	attrs = wq_sysfs_prep_attrs(wq);
5138 	if (!attrs)
5139 		goto out_unlock;
5140 
5141 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5142 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5143 		ret = apply_workqueue_attrs_locked(wq, attrs);
5144 	else
5145 		ret = -EINVAL;
5146 
5147 out_unlock:
5148 	apply_wqattrs_unlock();
5149 	free_workqueue_attrs(attrs);
5150 	return ret ?: count;
5151 }
5152 
5153 static ssize_t wq_cpumask_show(struct device *dev,
5154 			       struct device_attribute *attr, char *buf)
5155 {
5156 	struct workqueue_struct *wq = dev_to_wq(dev);
5157 	int written;
5158 
5159 	mutex_lock(&wq->mutex);
5160 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5161 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5162 	mutex_unlock(&wq->mutex);
5163 	return written;
5164 }
5165 
5166 static ssize_t wq_cpumask_store(struct device *dev,
5167 				struct device_attribute *attr,
5168 				const char *buf, size_t count)
5169 {
5170 	struct workqueue_struct *wq = dev_to_wq(dev);
5171 	struct workqueue_attrs *attrs;
5172 	int ret = -ENOMEM;
5173 
5174 	apply_wqattrs_lock();
5175 
5176 	attrs = wq_sysfs_prep_attrs(wq);
5177 	if (!attrs)
5178 		goto out_unlock;
5179 
5180 	ret = cpumask_parse(buf, attrs->cpumask);
5181 	if (!ret)
5182 		ret = apply_workqueue_attrs_locked(wq, attrs);
5183 
5184 out_unlock:
5185 	apply_wqattrs_unlock();
5186 	free_workqueue_attrs(attrs);
5187 	return ret ?: count;
5188 }
5189 
5190 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5191 			    char *buf)
5192 {
5193 	struct workqueue_struct *wq = dev_to_wq(dev);
5194 	int written;
5195 
5196 	mutex_lock(&wq->mutex);
5197 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5198 			    !wq->unbound_attrs->no_numa);
5199 	mutex_unlock(&wq->mutex);
5200 
5201 	return written;
5202 }
5203 
5204 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5205 			     const char *buf, size_t count)
5206 {
5207 	struct workqueue_struct *wq = dev_to_wq(dev);
5208 	struct workqueue_attrs *attrs;
5209 	int v, ret = -ENOMEM;
5210 
5211 	apply_wqattrs_lock();
5212 
5213 	attrs = wq_sysfs_prep_attrs(wq);
5214 	if (!attrs)
5215 		goto out_unlock;
5216 
5217 	ret = -EINVAL;
5218 	if (sscanf(buf, "%d", &v) == 1) {
5219 		attrs->no_numa = !v;
5220 		ret = apply_workqueue_attrs_locked(wq, attrs);
5221 	}
5222 
5223 out_unlock:
5224 	apply_wqattrs_unlock();
5225 	free_workqueue_attrs(attrs);
5226 	return ret ?: count;
5227 }
5228 
5229 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5230 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5231 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5232 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5233 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5234 	__ATTR_NULL,
5235 };
5236 
5237 static struct bus_type wq_subsys = {
5238 	.name				= "workqueue",
5239 	.dev_groups			= wq_sysfs_groups,
5240 };
5241 
5242 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5243 		struct device_attribute *attr, char *buf)
5244 {
5245 	int written;
5246 
5247 	mutex_lock(&wq_pool_mutex);
5248 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5249 			    cpumask_pr_args(wq_unbound_cpumask));
5250 	mutex_unlock(&wq_pool_mutex);
5251 
5252 	return written;
5253 }
5254 
5255 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5256 		struct device_attribute *attr, const char *buf, size_t count)
5257 {
5258 	cpumask_var_t cpumask;
5259 	int ret;
5260 
5261 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5262 		return -ENOMEM;
5263 
5264 	ret = cpumask_parse(buf, cpumask);
5265 	if (!ret)
5266 		ret = workqueue_set_unbound_cpumask(cpumask);
5267 
5268 	free_cpumask_var(cpumask);
5269 	return ret ? ret : count;
5270 }
5271 
5272 static struct device_attribute wq_sysfs_cpumask_attr =
5273 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5274 	       wq_unbound_cpumask_store);
5275 
5276 static int __init wq_sysfs_init(void)
5277 {
5278 	int err;
5279 
5280 	err = subsys_virtual_register(&wq_subsys, NULL);
5281 	if (err)
5282 		return err;
5283 
5284 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5285 }
5286 core_initcall(wq_sysfs_init);
5287 
5288 static void wq_device_release(struct device *dev)
5289 {
5290 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5291 
5292 	kfree(wq_dev);
5293 }
5294 
5295 /**
5296  * workqueue_sysfs_register - make a workqueue visible in sysfs
5297  * @wq: the workqueue to register
5298  *
5299  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5300  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5301  * which is the preferred method.
5302  *
5303  * Workqueue user should use this function directly iff it wants to apply
5304  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5305  * apply_workqueue_attrs() may race against userland updating the
5306  * attributes.
5307  *
5308  * Return: 0 on success, -errno on failure.
5309  */
5310 int workqueue_sysfs_register(struct workqueue_struct *wq)
5311 {
5312 	struct wq_device *wq_dev;
5313 	int ret;
5314 
5315 	/*
5316 	 * Adjusting max_active or creating new pwqs by applying
5317 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5318 	 * workqueues.
5319 	 */
5320 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5321 		return -EINVAL;
5322 
5323 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5324 	if (!wq_dev)
5325 		return -ENOMEM;
5326 
5327 	wq_dev->wq = wq;
5328 	wq_dev->dev.bus = &wq_subsys;
5329 	wq_dev->dev.release = wq_device_release;
5330 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5331 
5332 	/*
5333 	 * unbound_attrs are created separately.  Suppress uevent until
5334 	 * everything is ready.
5335 	 */
5336 	dev_set_uevent_suppress(&wq_dev->dev, true);
5337 
5338 	ret = device_register(&wq_dev->dev);
5339 	if (ret) {
5340 		kfree(wq_dev);
5341 		wq->wq_dev = NULL;
5342 		return ret;
5343 	}
5344 
5345 	if (wq->flags & WQ_UNBOUND) {
5346 		struct device_attribute *attr;
5347 
5348 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5349 			ret = device_create_file(&wq_dev->dev, attr);
5350 			if (ret) {
5351 				device_unregister(&wq_dev->dev);
5352 				wq->wq_dev = NULL;
5353 				return ret;
5354 			}
5355 		}
5356 	}
5357 
5358 	dev_set_uevent_suppress(&wq_dev->dev, false);
5359 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5360 	return 0;
5361 }
5362 
5363 /**
5364  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5365  * @wq: the workqueue to unregister
5366  *
5367  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5368  */
5369 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5370 {
5371 	struct wq_device *wq_dev = wq->wq_dev;
5372 
5373 	if (!wq->wq_dev)
5374 		return;
5375 
5376 	wq->wq_dev = NULL;
5377 	device_unregister(&wq_dev->dev);
5378 }
5379 #else	/* CONFIG_SYSFS */
5380 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5381 #endif	/* CONFIG_SYSFS */
5382 
5383 /*
5384  * Workqueue watchdog.
5385  *
5386  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5387  * flush dependency, a concurrency managed work item which stays RUNNING
5388  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5389  * usual warning mechanisms don't trigger and internal workqueue state is
5390  * largely opaque.
5391  *
5392  * Workqueue watchdog monitors all worker pools periodically and dumps
5393  * state if some pools failed to make forward progress for a while where
5394  * forward progress is defined as the first item on ->worklist changing.
5395  *
5396  * This mechanism is controlled through the kernel parameter
5397  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5398  * corresponding sysfs parameter file.
5399  */
5400 #ifdef CONFIG_WQ_WATCHDOG
5401 
5402 static unsigned long wq_watchdog_thresh = 30;
5403 static struct timer_list wq_watchdog_timer;
5404 
5405 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5406 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5407 
5408 static void wq_watchdog_reset_touched(void)
5409 {
5410 	int cpu;
5411 
5412 	wq_watchdog_touched = jiffies;
5413 	for_each_possible_cpu(cpu)
5414 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5415 }
5416 
5417 static void wq_watchdog_timer_fn(struct timer_list *unused)
5418 {
5419 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5420 	bool lockup_detected = false;
5421 	struct worker_pool *pool;
5422 	int pi;
5423 
5424 	if (!thresh)
5425 		return;
5426 
5427 	rcu_read_lock();
5428 
5429 	for_each_pool(pool, pi) {
5430 		unsigned long pool_ts, touched, ts;
5431 
5432 		if (list_empty(&pool->worklist))
5433 			continue;
5434 
5435 		/* get the latest of pool and touched timestamps */
5436 		pool_ts = READ_ONCE(pool->watchdog_ts);
5437 		touched = READ_ONCE(wq_watchdog_touched);
5438 
5439 		if (time_after(pool_ts, touched))
5440 			ts = pool_ts;
5441 		else
5442 			ts = touched;
5443 
5444 		if (pool->cpu >= 0) {
5445 			unsigned long cpu_touched =
5446 				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5447 						  pool->cpu));
5448 			if (time_after(cpu_touched, ts))
5449 				ts = cpu_touched;
5450 		}
5451 
5452 		/* did we stall? */
5453 		if (time_after(jiffies, ts + thresh)) {
5454 			lockup_detected = true;
5455 			pr_emerg("BUG: workqueue lockup - pool");
5456 			pr_cont_pool_info(pool);
5457 			pr_cont(" stuck for %us!\n",
5458 				jiffies_to_msecs(jiffies - pool_ts) / 1000);
5459 		}
5460 	}
5461 
5462 	rcu_read_unlock();
5463 
5464 	if (lockup_detected)
5465 		show_workqueue_state();
5466 
5467 	wq_watchdog_reset_touched();
5468 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5469 }
5470 
5471 void wq_watchdog_touch(int cpu)
5472 {
5473 	if (cpu >= 0)
5474 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5475 	else
5476 		wq_watchdog_touched = jiffies;
5477 }
5478 
5479 static void wq_watchdog_set_thresh(unsigned long thresh)
5480 {
5481 	wq_watchdog_thresh = 0;
5482 	del_timer_sync(&wq_watchdog_timer);
5483 
5484 	if (thresh) {
5485 		wq_watchdog_thresh = thresh;
5486 		wq_watchdog_reset_touched();
5487 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5488 	}
5489 }
5490 
5491 static int wq_watchdog_param_set_thresh(const char *val,
5492 					const struct kernel_param *kp)
5493 {
5494 	unsigned long thresh;
5495 	int ret;
5496 
5497 	ret = kstrtoul(val, 0, &thresh);
5498 	if (ret)
5499 		return ret;
5500 
5501 	if (system_wq)
5502 		wq_watchdog_set_thresh(thresh);
5503 	else
5504 		wq_watchdog_thresh = thresh;
5505 
5506 	return 0;
5507 }
5508 
5509 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5510 	.set	= wq_watchdog_param_set_thresh,
5511 	.get	= param_get_ulong,
5512 };
5513 
5514 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5515 		0644);
5516 
5517 static void wq_watchdog_init(void)
5518 {
5519 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5520 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5521 }
5522 
5523 #else	/* CONFIG_WQ_WATCHDOG */
5524 
5525 static inline void wq_watchdog_init(void) { }
5526 
5527 #endif	/* CONFIG_WQ_WATCHDOG */
5528 
5529 static void __init wq_numa_init(void)
5530 {
5531 	cpumask_var_t *tbl;
5532 	int node, cpu;
5533 
5534 	if (num_possible_nodes() <= 1)
5535 		return;
5536 
5537 	if (wq_disable_numa) {
5538 		pr_info("workqueue: NUMA affinity support disabled\n");
5539 		return;
5540 	}
5541 
5542 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5543 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5544 
5545 	/*
5546 	 * We want masks of possible CPUs of each node which isn't readily
5547 	 * available.  Build one from cpu_to_node() which should have been
5548 	 * fully initialized by now.
5549 	 */
5550 	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5551 	BUG_ON(!tbl);
5552 
5553 	for_each_node(node)
5554 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5555 				node_online(node) ? node : NUMA_NO_NODE));
5556 
5557 	for_each_possible_cpu(cpu) {
5558 		node = cpu_to_node(cpu);
5559 		if (WARN_ON(node == NUMA_NO_NODE)) {
5560 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5561 			/* happens iff arch is bonkers, let's just proceed */
5562 			return;
5563 		}
5564 		cpumask_set_cpu(cpu, tbl[node]);
5565 	}
5566 
5567 	wq_numa_possible_cpumask = tbl;
5568 	wq_numa_enabled = true;
5569 }
5570 
5571 /**
5572  * workqueue_init_early - early init for workqueue subsystem
5573  *
5574  * This is the first half of two-staged workqueue subsystem initialization
5575  * and invoked as soon as the bare basics - memory allocation, cpumasks and
5576  * idr are up.  It sets up all the data structures and system workqueues
5577  * and allows early boot code to create workqueues and queue/cancel work
5578  * items.  Actual work item execution starts only after kthreads can be
5579  * created and scheduled right before early initcalls.
5580  */
5581 int __init workqueue_init_early(void)
5582 {
5583 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5584 	int i, cpu;
5585 
5586 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5587 
5588 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5589 	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(HK_FLAG_DOMAIN));
5590 
5591 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5592 
5593 	/* initialize CPU pools */
5594 	for_each_possible_cpu(cpu) {
5595 		struct worker_pool *pool;
5596 
5597 		i = 0;
5598 		for_each_cpu_worker_pool(pool, cpu) {
5599 			BUG_ON(init_worker_pool(pool));
5600 			pool->cpu = cpu;
5601 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5602 			pool->attrs->nice = std_nice[i++];
5603 			pool->node = cpu_to_node(cpu);
5604 
5605 			/* alloc pool ID */
5606 			mutex_lock(&wq_pool_mutex);
5607 			BUG_ON(worker_pool_assign_id(pool));
5608 			mutex_unlock(&wq_pool_mutex);
5609 		}
5610 	}
5611 
5612 	/* create default unbound and ordered wq attrs */
5613 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5614 		struct workqueue_attrs *attrs;
5615 
5616 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5617 		attrs->nice = std_nice[i];
5618 		unbound_std_wq_attrs[i] = attrs;
5619 
5620 		/*
5621 		 * An ordered wq should have only one pwq as ordering is
5622 		 * guaranteed by max_active which is enforced by pwqs.
5623 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5624 		 */
5625 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5626 		attrs->nice = std_nice[i];
5627 		attrs->no_numa = true;
5628 		ordered_wq_attrs[i] = attrs;
5629 	}
5630 
5631 	system_wq = alloc_workqueue("events", 0, 0);
5632 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5633 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5634 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5635 					    WQ_UNBOUND_MAX_ACTIVE);
5636 	system_freezable_wq = alloc_workqueue("events_freezable",
5637 					      WQ_FREEZABLE, 0);
5638 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5639 					      WQ_POWER_EFFICIENT, 0);
5640 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5641 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5642 					      0);
5643 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5644 	       !system_unbound_wq || !system_freezable_wq ||
5645 	       !system_power_efficient_wq ||
5646 	       !system_freezable_power_efficient_wq);
5647 
5648 	return 0;
5649 }
5650 
5651 /**
5652  * workqueue_init - bring workqueue subsystem fully online
5653  *
5654  * This is the latter half of two-staged workqueue subsystem initialization
5655  * and invoked as soon as kthreads can be created and scheduled.
5656  * Workqueues have been created and work items queued on them, but there
5657  * are no kworkers executing the work items yet.  Populate the worker pools
5658  * with the initial workers and enable future kworker creations.
5659  */
5660 int __init workqueue_init(void)
5661 {
5662 	struct workqueue_struct *wq;
5663 	struct worker_pool *pool;
5664 	int cpu, bkt;
5665 
5666 	/*
5667 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5668 	 * CPU to node mapping may not be available that early on some
5669 	 * archs such as power and arm64.  As per-cpu pools created
5670 	 * previously could be missing node hint and unbound pools NUMA
5671 	 * affinity, fix them up.
5672 	 *
5673 	 * Also, while iterating workqueues, create rescuers if requested.
5674 	 */
5675 	wq_numa_init();
5676 
5677 	mutex_lock(&wq_pool_mutex);
5678 
5679 	for_each_possible_cpu(cpu) {
5680 		for_each_cpu_worker_pool(pool, cpu) {
5681 			pool->node = cpu_to_node(cpu);
5682 		}
5683 	}
5684 
5685 	list_for_each_entry(wq, &workqueues, list) {
5686 		wq_update_unbound_numa(wq, smp_processor_id(), true);
5687 		WARN(init_rescuer(wq),
5688 		     "workqueue: failed to create early rescuer for %s",
5689 		     wq->name);
5690 	}
5691 
5692 	mutex_unlock(&wq_pool_mutex);
5693 
5694 	/* create the initial workers */
5695 	for_each_online_cpu(cpu) {
5696 		for_each_cpu_worker_pool(pool, cpu) {
5697 			pool->flags &= ~POOL_DISASSOCIATED;
5698 			BUG_ON(!create_worker(pool));
5699 		}
5700 	}
5701 
5702 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5703 		BUG_ON(!create_worker(pool));
5704 
5705 	wq_online = true;
5706 	wq_watchdog_init();
5707 
5708 	return 0;
5709 }
5710