1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There is one worker pool for each CPU and 20 * one extra for works which are better served by workers which are 21 * not bound to any specific CPU. 22 * 23 * Please read Documentation/workqueue.txt for details. 24 */ 25 26 #include <linux/export.h> 27 #include <linux/kernel.h> 28 #include <linux/sched.h> 29 #include <linux/init.h> 30 #include <linux/signal.h> 31 #include <linux/completion.h> 32 #include <linux/workqueue.h> 33 #include <linux/slab.h> 34 #include <linux/cpu.h> 35 #include <linux/notifier.h> 36 #include <linux/kthread.h> 37 #include <linux/hardirq.h> 38 #include <linux/mempolicy.h> 39 #include <linux/freezer.h> 40 #include <linux/kallsyms.h> 41 #include <linux/debug_locks.h> 42 #include <linux/lockdep.h> 43 #include <linux/idr.h> 44 #include <linux/jhash.h> 45 #include <linux/hashtable.h> 46 #include <linux/rculist.h> 47 #include <linux/nodemask.h> 48 #include <linux/moduleparam.h> 49 #include <linux/uaccess.h> 50 51 #include "workqueue_internal.h" 52 53 enum { 54 /* 55 * worker_pool flags 56 * 57 * A bound pool is either associated or disassociated with its CPU. 58 * While associated (!DISASSOCIATED), all workers are bound to the 59 * CPU and none has %WORKER_UNBOUND set and concurrency management 60 * is in effect. 61 * 62 * While DISASSOCIATED, the cpu may be offline and all workers have 63 * %WORKER_UNBOUND set and concurrency management disabled, and may 64 * be executing on any CPU. The pool behaves as an unbound one. 65 * 66 * Note that DISASSOCIATED should be flipped only while holding 67 * manager_mutex to avoid changing binding state while 68 * create_worker() is in progress. 69 */ 70 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */ 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 72 POOL_FREEZING = 1 << 3, /* freeze in progress */ 73 74 /* worker flags */ 75 WORKER_STARTED = 1 << 0, /* started */ 76 WORKER_DIE = 1 << 1, /* die die die */ 77 WORKER_IDLE = 1 << 2, /* is idle */ 78 WORKER_PREP = 1 << 3, /* preparing to run works */ 79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 81 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 82 83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 84 WORKER_UNBOUND | WORKER_REBOUND, 85 86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 87 88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 90 91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 93 94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 95 /* call for help after 10ms 96 (min two ticks) */ 97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 98 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 99 100 /* 101 * Rescue workers are used only on emergencies and shared by 102 * all cpus. Give -20. 103 */ 104 RESCUER_NICE_LEVEL = -20, 105 HIGHPRI_NICE_LEVEL = -20, 106 107 WQ_NAME_LEN = 24, 108 }; 109 110 /* 111 * Structure fields follow one of the following exclusion rules. 112 * 113 * I: Modifiable by initialization/destruction paths and read-only for 114 * everyone else. 115 * 116 * P: Preemption protected. Disabling preemption is enough and should 117 * only be modified and accessed from the local cpu. 118 * 119 * L: pool->lock protected. Access with pool->lock held. 120 * 121 * X: During normal operation, modification requires pool->lock and should 122 * be done only from local cpu. Either disabling preemption on local 123 * cpu or grabbing pool->lock is enough for read access. If 124 * POOL_DISASSOCIATED is set, it's identical to L. 125 * 126 * MG: pool->manager_mutex and pool->lock protected. Writes require both 127 * locks. Reads can happen under either lock. 128 * 129 * PL: wq_pool_mutex protected. 130 * 131 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads. 132 * 133 * WQ: wq->mutex protected. 134 * 135 * WR: wq->mutex protected for writes. Sched-RCU protected for reads. 136 * 137 * MD: wq_mayday_lock protected. 138 */ 139 140 /* struct worker is defined in workqueue_internal.h */ 141 142 struct worker_pool { 143 spinlock_t lock; /* the pool lock */ 144 int cpu; /* I: the associated cpu */ 145 int node; /* I: the associated node ID */ 146 int id; /* I: pool ID */ 147 unsigned int flags; /* X: flags */ 148 149 struct list_head worklist; /* L: list of pending works */ 150 int nr_workers; /* L: total number of workers */ 151 152 /* nr_idle includes the ones off idle_list for rebinding */ 153 int nr_idle; /* L: currently idle ones */ 154 155 struct list_head idle_list; /* X: list of idle workers */ 156 struct timer_list idle_timer; /* L: worker idle timeout */ 157 struct timer_list mayday_timer; /* L: SOS timer for workers */ 158 159 /* a workers is either on busy_hash or idle_list, or the manager */ 160 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 161 /* L: hash of busy workers */ 162 163 /* see manage_workers() for details on the two manager mutexes */ 164 struct mutex manager_arb; /* manager arbitration */ 165 struct mutex manager_mutex; /* manager exclusion */ 166 struct idr worker_idr; /* MG: worker IDs and iteration */ 167 168 struct workqueue_attrs *attrs; /* I: worker attributes */ 169 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 170 int refcnt; /* PL: refcnt for unbound pools */ 171 172 /* 173 * The current concurrency level. As it's likely to be accessed 174 * from other CPUs during try_to_wake_up(), put it in a separate 175 * cacheline. 176 */ 177 atomic_t nr_running ____cacheline_aligned_in_smp; 178 179 /* 180 * Destruction of pool is sched-RCU protected to allow dereferences 181 * from get_work_pool(). 182 */ 183 struct rcu_head rcu; 184 } ____cacheline_aligned_in_smp; 185 186 /* 187 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 188 * of work_struct->data are used for flags and the remaining high bits 189 * point to the pwq; thus, pwqs need to be aligned at two's power of the 190 * number of flag bits. 191 */ 192 struct pool_workqueue { 193 struct worker_pool *pool; /* I: the associated pool */ 194 struct workqueue_struct *wq; /* I: the owning workqueue */ 195 int work_color; /* L: current color */ 196 int flush_color; /* L: flushing color */ 197 int refcnt; /* L: reference count */ 198 int nr_in_flight[WORK_NR_COLORS]; 199 /* L: nr of in_flight works */ 200 int nr_active; /* L: nr of active works */ 201 int max_active; /* L: max active works */ 202 struct list_head delayed_works; /* L: delayed works */ 203 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 204 struct list_head mayday_node; /* MD: node on wq->maydays */ 205 206 /* 207 * Release of unbound pwq is punted to system_wq. See put_pwq() 208 * and pwq_unbound_release_workfn() for details. pool_workqueue 209 * itself is also sched-RCU protected so that the first pwq can be 210 * determined without grabbing wq->mutex. 211 */ 212 struct work_struct unbound_release_work; 213 struct rcu_head rcu; 214 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 215 216 /* 217 * Structure used to wait for workqueue flush. 218 */ 219 struct wq_flusher { 220 struct list_head list; /* WQ: list of flushers */ 221 int flush_color; /* WQ: flush color waiting for */ 222 struct completion done; /* flush completion */ 223 }; 224 225 struct wq_device; 226 227 /* 228 * The externally visible workqueue. It relays the issued work items to 229 * the appropriate worker_pool through its pool_workqueues. 230 */ 231 struct workqueue_struct { 232 struct list_head pwqs; /* WR: all pwqs of this wq */ 233 struct list_head list; /* PL: list of all workqueues */ 234 235 struct mutex mutex; /* protects this wq */ 236 int work_color; /* WQ: current work color */ 237 int flush_color; /* WQ: current flush color */ 238 atomic_t nr_pwqs_to_flush; /* flush in progress */ 239 struct wq_flusher *first_flusher; /* WQ: first flusher */ 240 struct list_head flusher_queue; /* WQ: flush waiters */ 241 struct list_head flusher_overflow; /* WQ: flush overflow list */ 242 243 struct list_head maydays; /* MD: pwqs requesting rescue */ 244 struct worker *rescuer; /* I: rescue worker */ 245 246 int nr_drainers; /* WQ: drain in progress */ 247 int saved_max_active; /* WQ: saved pwq max_active */ 248 249 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */ 250 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */ 251 252 #ifdef CONFIG_SYSFS 253 struct wq_device *wq_dev; /* I: for sysfs interface */ 254 #endif 255 #ifdef CONFIG_LOCKDEP 256 struct lockdep_map lockdep_map; 257 #endif 258 char name[WQ_NAME_LEN]; /* I: workqueue name */ 259 260 /* hot fields used during command issue, aligned to cacheline */ 261 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 262 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 263 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */ 264 }; 265 266 static struct kmem_cache *pwq_cache; 267 268 static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */ 269 static cpumask_var_t *wq_numa_possible_cpumask; 270 /* possible CPUs of each node */ 271 272 static bool wq_disable_numa; 273 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 274 275 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 276 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT 277 static bool wq_power_efficient = true; 278 #else 279 static bool wq_power_efficient; 280 #endif 281 282 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 283 284 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 285 286 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 287 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 288 289 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 290 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 291 292 static LIST_HEAD(workqueues); /* PL: list of all workqueues */ 293 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 294 295 /* the per-cpu worker pools */ 296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 297 cpu_worker_pools); 298 299 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 300 301 /* PL: hash of all unbound pools keyed by pool->attrs */ 302 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 303 304 /* I: attributes used when instantiating standard unbound pools on demand */ 305 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 306 307 struct workqueue_struct *system_wq __read_mostly; 308 EXPORT_SYMBOL(system_wq); 309 struct workqueue_struct *system_highpri_wq __read_mostly; 310 EXPORT_SYMBOL_GPL(system_highpri_wq); 311 struct workqueue_struct *system_long_wq __read_mostly; 312 EXPORT_SYMBOL_GPL(system_long_wq); 313 struct workqueue_struct *system_unbound_wq __read_mostly; 314 EXPORT_SYMBOL_GPL(system_unbound_wq); 315 struct workqueue_struct *system_freezable_wq __read_mostly; 316 EXPORT_SYMBOL_GPL(system_freezable_wq); 317 struct workqueue_struct *system_power_efficient_wq __read_mostly; 318 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 319 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 320 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 321 322 static int worker_thread(void *__worker); 323 static void copy_workqueue_attrs(struct workqueue_attrs *to, 324 const struct workqueue_attrs *from); 325 326 #define CREATE_TRACE_POINTS 327 #include <trace/events/workqueue.h> 328 329 #define assert_rcu_or_pool_mutex() \ 330 rcu_lockdep_assert(rcu_read_lock_sched_held() || \ 331 lockdep_is_held(&wq_pool_mutex), \ 332 "sched RCU or wq_pool_mutex should be held") 333 334 #define assert_rcu_or_wq_mutex(wq) \ 335 rcu_lockdep_assert(rcu_read_lock_sched_held() || \ 336 lockdep_is_held(&wq->mutex), \ 337 "sched RCU or wq->mutex should be held") 338 339 #ifdef CONFIG_LOCKDEP 340 #define assert_manager_or_pool_lock(pool) \ 341 WARN_ONCE(debug_locks && \ 342 !lockdep_is_held(&(pool)->manager_mutex) && \ 343 !lockdep_is_held(&(pool)->lock), \ 344 "pool->manager_mutex or ->lock should be held") 345 #else 346 #define assert_manager_or_pool_lock(pool) do { } while (0) 347 #endif 348 349 #define for_each_cpu_worker_pool(pool, cpu) \ 350 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 351 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 352 (pool)++) 353 354 /** 355 * for_each_pool - iterate through all worker_pools in the system 356 * @pool: iteration cursor 357 * @pi: integer used for iteration 358 * 359 * This must be called either with wq_pool_mutex held or sched RCU read 360 * locked. If the pool needs to be used beyond the locking in effect, the 361 * caller is responsible for guaranteeing that the pool stays online. 362 * 363 * The if/else clause exists only for the lockdep assertion and can be 364 * ignored. 365 */ 366 #define for_each_pool(pool, pi) \ 367 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 368 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 369 else 370 371 /** 372 * for_each_pool_worker - iterate through all workers of a worker_pool 373 * @worker: iteration cursor 374 * @wi: integer used for iteration 375 * @pool: worker_pool to iterate workers of 376 * 377 * This must be called with either @pool->manager_mutex or ->lock held. 378 * 379 * The if/else clause exists only for the lockdep assertion and can be 380 * ignored. 381 */ 382 #define for_each_pool_worker(worker, wi, pool) \ 383 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \ 384 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \ 385 else 386 387 /** 388 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 389 * @pwq: iteration cursor 390 * @wq: the target workqueue 391 * 392 * This must be called either with wq->mutex held or sched RCU read locked. 393 * If the pwq needs to be used beyond the locking in effect, the caller is 394 * responsible for guaranteeing that the pwq stays online. 395 * 396 * The if/else clause exists only for the lockdep assertion and can be 397 * ignored. 398 */ 399 #define for_each_pwq(pwq, wq) \ 400 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \ 401 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ 402 else 403 404 #ifdef CONFIG_DEBUG_OBJECTS_WORK 405 406 static struct debug_obj_descr work_debug_descr; 407 408 static void *work_debug_hint(void *addr) 409 { 410 return ((struct work_struct *) addr)->func; 411 } 412 413 /* 414 * fixup_init is called when: 415 * - an active object is initialized 416 */ 417 static int work_fixup_init(void *addr, enum debug_obj_state state) 418 { 419 struct work_struct *work = addr; 420 421 switch (state) { 422 case ODEBUG_STATE_ACTIVE: 423 cancel_work_sync(work); 424 debug_object_init(work, &work_debug_descr); 425 return 1; 426 default: 427 return 0; 428 } 429 } 430 431 /* 432 * fixup_activate is called when: 433 * - an active object is activated 434 * - an unknown object is activated (might be a statically initialized object) 435 */ 436 static int work_fixup_activate(void *addr, enum debug_obj_state state) 437 { 438 struct work_struct *work = addr; 439 440 switch (state) { 441 442 case ODEBUG_STATE_NOTAVAILABLE: 443 /* 444 * This is not really a fixup. The work struct was 445 * statically initialized. We just make sure that it 446 * is tracked in the object tracker. 447 */ 448 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) { 449 debug_object_init(work, &work_debug_descr); 450 debug_object_activate(work, &work_debug_descr); 451 return 0; 452 } 453 WARN_ON_ONCE(1); 454 return 0; 455 456 case ODEBUG_STATE_ACTIVE: 457 WARN_ON(1); 458 459 default: 460 return 0; 461 } 462 } 463 464 /* 465 * fixup_free is called when: 466 * - an active object is freed 467 */ 468 static int work_fixup_free(void *addr, enum debug_obj_state state) 469 { 470 struct work_struct *work = addr; 471 472 switch (state) { 473 case ODEBUG_STATE_ACTIVE: 474 cancel_work_sync(work); 475 debug_object_free(work, &work_debug_descr); 476 return 1; 477 default: 478 return 0; 479 } 480 } 481 482 static struct debug_obj_descr work_debug_descr = { 483 .name = "work_struct", 484 .debug_hint = work_debug_hint, 485 .fixup_init = work_fixup_init, 486 .fixup_activate = work_fixup_activate, 487 .fixup_free = work_fixup_free, 488 }; 489 490 static inline void debug_work_activate(struct work_struct *work) 491 { 492 debug_object_activate(work, &work_debug_descr); 493 } 494 495 static inline void debug_work_deactivate(struct work_struct *work) 496 { 497 debug_object_deactivate(work, &work_debug_descr); 498 } 499 500 void __init_work(struct work_struct *work, int onstack) 501 { 502 if (onstack) 503 debug_object_init_on_stack(work, &work_debug_descr); 504 else 505 debug_object_init(work, &work_debug_descr); 506 } 507 EXPORT_SYMBOL_GPL(__init_work); 508 509 void destroy_work_on_stack(struct work_struct *work) 510 { 511 debug_object_free(work, &work_debug_descr); 512 } 513 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 514 515 #else 516 static inline void debug_work_activate(struct work_struct *work) { } 517 static inline void debug_work_deactivate(struct work_struct *work) { } 518 #endif 519 520 /* allocate ID and assign it to @pool */ 521 static int worker_pool_assign_id(struct worker_pool *pool) 522 { 523 int ret; 524 525 lockdep_assert_held(&wq_pool_mutex); 526 527 ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL); 528 if (ret >= 0) { 529 pool->id = ret; 530 return 0; 531 } 532 return ret; 533 } 534 535 /** 536 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 537 * @wq: the target workqueue 538 * @node: the node ID 539 * 540 * This must be called either with pwq_lock held or sched RCU read locked. 541 * If the pwq needs to be used beyond the locking in effect, the caller is 542 * responsible for guaranteeing that the pwq stays online. 543 */ 544 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 545 int node) 546 { 547 assert_rcu_or_wq_mutex(wq); 548 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 549 } 550 551 static unsigned int work_color_to_flags(int color) 552 { 553 return color << WORK_STRUCT_COLOR_SHIFT; 554 } 555 556 static int get_work_color(struct work_struct *work) 557 { 558 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 559 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 560 } 561 562 static int work_next_color(int color) 563 { 564 return (color + 1) % WORK_NR_COLORS; 565 } 566 567 /* 568 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 569 * contain the pointer to the queued pwq. Once execution starts, the flag 570 * is cleared and the high bits contain OFFQ flags and pool ID. 571 * 572 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 573 * and clear_work_data() can be used to set the pwq, pool or clear 574 * work->data. These functions should only be called while the work is 575 * owned - ie. while the PENDING bit is set. 576 * 577 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 578 * corresponding to a work. Pool is available once the work has been 579 * queued anywhere after initialization until it is sync canceled. pwq is 580 * available only while the work item is queued. 581 * 582 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 583 * canceled. While being canceled, a work item may have its PENDING set 584 * but stay off timer and worklist for arbitrarily long and nobody should 585 * try to steal the PENDING bit. 586 */ 587 static inline void set_work_data(struct work_struct *work, unsigned long data, 588 unsigned long flags) 589 { 590 WARN_ON_ONCE(!work_pending(work)); 591 atomic_long_set(&work->data, data | flags | work_static(work)); 592 } 593 594 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 595 unsigned long extra_flags) 596 { 597 set_work_data(work, (unsigned long)pwq, 598 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 599 } 600 601 static void set_work_pool_and_keep_pending(struct work_struct *work, 602 int pool_id) 603 { 604 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 605 WORK_STRUCT_PENDING); 606 } 607 608 static void set_work_pool_and_clear_pending(struct work_struct *work, 609 int pool_id) 610 { 611 /* 612 * The following wmb is paired with the implied mb in 613 * test_and_set_bit(PENDING) and ensures all updates to @work made 614 * here are visible to and precede any updates by the next PENDING 615 * owner. 616 */ 617 smp_wmb(); 618 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 619 } 620 621 static void clear_work_data(struct work_struct *work) 622 { 623 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 624 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 625 } 626 627 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 628 { 629 unsigned long data = atomic_long_read(&work->data); 630 631 if (data & WORK_STRUCT_PWQ) 632 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 633 else 634 return NULL; 635 } 636 637 /** 638 * get_work_pool - return the worker_pool a given work was associated with 639 * @work: the work item of interest 640 * 641 * Return the worker_pool @work was last associated with. %NULL if none. 642 * 643 * Pools are created and destroyed under wq_pool_mutex, and allows read 644 * access under sched-RCU read lock. As such, this function should be 645 * called under wq_pool_mutex or with preemption disabled. 646 * 647 * All fields of the returned pool are accessible as long as the above 648 * mentioned locking is in effect. If the returned pool needs to be used 649 * beyond the critical section, the caller is responsible for ensuring the 650 * returned pool is and stays online. 651 */ 652 static struct worker_pool *get_work_pool(struct work_struct *work) 653 { 654 unsigned long data = atomic_long_read(&work->data); 655 int pool_id; 656 657 assert_rcu_or_pool_mutex(); 658 659 if (data & WORK_STRUCT_PWQ) 660 return ((struct pool_workqueue *) 661 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 662 663 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 664 if (pool_id == WORK_OFFQ_POOL_NONE) 665 return NULL; 666 667 return idr_find(&worker_pool_idr, pool_id); 668 } 669 670 /** 671 * get_work_pool_id - return the worker pool ID a given work is associated with 672 * @work: the work item of interest 673 * 674 * Return the worker_pool ID @work was last associated with. 675 * %WORK_OFFQ_POOL_NONE if none. 676 */ 677 static int get_work_pool_id(struct work_struct *work) 678 { 679 unsigned long data = atomic_long_read(&work->data); 680 681 if (data & WORK_STRUCT_PWQ) 682 return ((struct pool_workqueue *) 683 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 684 685 return data >> WORK_OFFQ_POOL_SHIFT; 686 } 687 688 static void mark_work_canceling(struct work_struct *work) 689 { 690 unsigned long pool_id = get_work_pool_id(work); 691 692 pool_id <<= WORK_OFFQ_POOL_SHIFT; 693 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 694 } 695 696 static bool work_is_canceling(struct work_struct *work) 697 { 698 unsigned long data = atomic_long_read(&work->data); 699 700 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 701 } 702 703 /* 704 * Policy functions. These define the policies on how the global worker 705 * pools are managed. Unless noted otherwise, these functions assume that 706 * they're being called with pool->lock held. 707 */ 708 709 static bool __need_more_worker(struct worker_pool *pool) 710 { 711 return !atomic_read(&pool->nr_running); 712 } 713 714 /* 715 * Need to wake up a worker? Called from anything but currently 716 * running workers. 717 * 718 * Note that, because unbound workers never contribute to nr_running, this 719 * function will always return %true for unbound pools as long as the 720 * worklist isn't empty. 721 */ 722 static bool need_more_worker(struct worker_pool *pool) 723 { 724 return !list_empty(&pool->worklist) && __need_more_worker(pool); 725 } 726 727 /* Can I start working? Called from busy but !running workers. */ 728 static bool may_start_working(struct worker_pool *pool) 729 { 730 return pool->nr_idle; 731 } 732 733 /* Do I need to keep working? Called from currently running workers. */ 734 static bool keep_working(struct worker_pool *pool) 735 { 736 return !list_empty(&pool->worklist) && 737 atomic_read(&pool->nr_running) <= 1; 738 } 739 740 /* Do we need a new worker? Called from manager. */ 741 static bool need_to_create_worker(struct worker_pool *pool) 742 { 743 return need_more_worker(pool) && !may_start_working(pool); 744 } 745 746 /* Do I need to be the manager? */ 747 static bool need_to_manage_workers(struct worker_pool *pool) 748 { 749 return need_to_create_worker(pool) || 750 (pool->flags & POOL_MANAGE_WORKERS); 751 } 752 753 /* Do we have too many workers and should some go away? */ 754 static bool too_many_workers(struct worker_pool *pool) 755 { 756 bool managing = mutex_is_locked(&pool->manager_arb); 757 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 758 int nr_busy = pool->nr_workers - nr_idle; 759 760 /* 761 * nr_idle and idle_list may disagree if idle rebinding is in 762 * progress. Never return %true if idle_list is empty. 763 */ 764 if (list_empty(&pool->idle_list)) 765 return false; 766 767 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 768 } 769 770 /* 771 * Wake up functions. 772 */ 773 774 /* Return the first worker. Safe with preemption disabled */ 775 static struct worker *first_worker(struct worker_pool *pool) 776 { 777 if (unlikely(list_empty(&pool->idle_list))) 778 return NULL; 779 780 return list_first_entry(&pool->idle_list, struct worker, entry); 781 } 782 783 /** 784 * wake_up_worker - wake up an idle worker 785 * @pool: worker pool to wake worker from 786 * 787 * Wake up the first idle worker of @pool. 788 * 789 * CONTEXT: 790 * spin_lock_irq(pool->lock). 791 */ 792 static void wake_up_worker(struct worker_pool *pool) 793 { 794 struct worker *worker = first_worker(pool); 795 796 if (likely(worker)) 797 wake_up_process(worker->task); 798 } 799 800 /** 801 * wq_worker_waking_up - a worker is waking up 802 * @task: task waking up 803 * @cpu: CPU @task is waking up to 804 * 805 * This function is called during try_to_wake_up() when a worker is 806 * being awoken. 807 * 808 * CONTEXT: 809 * spin_lock_irq(rq->lock) 810 */ 811 void wq_worker_waking_up(struct task_struct *task, int cpu) 812 { 813 struct worker *worker = kthread_data(task); 814 815 if (!(worker->flags & WORKER_NOT_RUNNING)) { 816 WARN_ON_ONCE(worker->pool->cpu != cpu); 817 atomic_inc(&worker->pool->nr_running); 818 } 819 } 820 821 /** 822 * wq_worker_sleeping - a worker is going to sleep 823 * @task: task going to sleep 824 * @cpu: CPU in question, must be the current CPU number 825 * 826 * This function is called during schedule() when a busy worker is 827 * going to sleep. Worker on the same cpu can be woken up by 828 * returning pointer to its task. 829 * 830 * CONTEXT: 831 * spin_lock_irq(rq->lock) 832 * 833 * RETURNS: 834 * Worker task on @cpu to wake up, %NULL if none. 835 */ 836 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu) 837 { 838 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 839 struct worker_pool *pool; 840 841 /* 842 * Rescuers, which may not have all the fields set up like normal 843 * workers, also reach here, let's not access anything before 844 * checking NOT_RUNNING. 845 */ 846 if (worker->flags & WORKER_NOT_RUNNING) 847 return NULL; 848 849 pool = worker->pool; 850 851 /* this can only happen on the local cpu */ 852 if (WARN_ON_ONCE(cpu != raw_smp_processor_id())) 853 return NULL; 854 855 /* 856 * The counterpart of the following dec_and_test, implied mb, 857 * worklist not empty test sequence is in insert_work(). 858 * Please read comment there. 859 * 860 * NOT_RUNNING is clear. This means that we're bound to and 861 * running on the local cpu w/ rq lock held and preemption 862 * disabled, which in turn means that none else could be 863 * manipulating idle_list, so dereferencing idle_list without pool 864 * lock is safe. 865 */ 866 if (atomic_dec_and_test(&pool->nr_running) && 867 !list_empty(&pool->worklist)) 868 to_wakeup = first_worker(pool); 869 return to_wakeup ? to_wakeup->task : NULL; 870 } 871 872 /** 873 * worker_set_flags - set worker flags and adjust nr_running accordingly 874 * @worker: self 875 * @flags: flags to set 876 * @wakeup: wakeup an idle worker if necessary 877 * 878 * Set @flags in @worker->flags and adjust nr_running accordingly. If 879 * nr_running becomes zero and @wakeup is %true, an idle worker is 880 * woken up. 881 * 882 * CONTEXT: 883 * spin_lock_irq(pool->lock) 884 */ 885 static inline void worker_set_flags(struct worker *worker, unsigned int flags, 886 bool wakeup) 887 { 888 struct worker_pool *pool = worker->pool; 889 890 WARN_ON_ONCE(worker->task != current); 891 892 /* 893 * If transitioning into NOT_RUNNING, adjust nr_running and 894 * wake up an idle worker as necessary if requested by 895 * @wakeup. 896 */ 897 if ((flags & WORKER_NOT_RUNNING) && 898 !(worker->flags & WORKER_NOT_RUNNING)) { 899 if (wakeup) { 900 if (atomic_dec_and_test(&pool->nr_running) && 901 !list_empty(&pool->worklist)) 902 wake_up_worker(pool); 903 } else 904 atomic_dec(&pool->nr_running); 905 } 906 907 worker->flags |= flags; 908 } 909 910 /** 911 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 912 * @worker: self 913 * @flags: flags to clear 914 * 915 * Clear @flags in @worker->flags and adjust nr_running accordingly. 916 * 917 * CONTEXT: 918 * spin_lock_irq(pool->lock) 919 */ 920 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 921 { 922 struct worker_pool *pool = worker->pool; 923 unsigned int oflags = worker->flags; 924 925 WARN_ON_ONCE(worker->task != current); 926 927 worker->flags &= ~flags; 928 929 /* 930 * If transitioning out of NOT_RUNNING, increment nr_running. Note 931 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 932 * of multiple flags, not a single flag. 933 */ 934 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 935 if (!(worker->flags & WORKER_NOT_RUNNING)) 936 atomic_inc(&pool->nr_running); 937 } 938 939 /** 940 * find_worker_executing_work - find worker which is executing a work 941 * @pool: pool of interest 942 * @work: work to find worker for 943 * 944 * Find a worker which is executing @work on @pool by searching 945 * @pool->busy_hash which is keyed by the address of @work. For a worker 946 * to match, its current execution should match the address of @work and 947 * its work function. This is to avoid unwanted dependency between 948 * unrelated work executions through a work item being recycled while still 949 * being executed. 950 * 951 * This is a bit tricky. A work item may be freed once its execution 952 * starts and nothing prevents the freed area from being recycled for 953 * another work item. If the same work item address ends up being reused 954 * before the original execution finishes, workqueue will identify the 955 * recycled work item as currently executing and make it wait until the 956 * current execution finishes, introducing an unwanted dependency. 957 * 958 * This function checks the work item address and work function to avoid 959 * false positives. Note that this isn't complete as one may construct a 960 * work function which can introduce dependency onto itself through a 961 * recycled work item. Well, if somebody wants to shoot oneself in the 962 * foot that badly, there's only so much we can do, and if such deadlock 963 * actually occurs, it should be easy to locate the culprit work function. 964 * 965 * CONTEXT: 966 * spin_lock_irq(pool->lock). 967 * 968 * RETURNS: 969 * Pointer to worker which is executing @work if found, NULL 970 * otherwise. 971 */ 972 static struct worker *find_worker_executing_work(struct worker_pool *pool, 973 struct work_struct *work) 974 { 975 struct worker *worker; 976 977 hash_for_each_possible(pool->busy_hash, worker, hentry, 978 (unsigned long)work) 979 if (worker->current_work == work && 980 worker->current_func == work->func) 981 return worker; 982 983 return NULL; 984 } 985 986 /** 987 * move_linked_works - move linked works to a list 988 * @work: start of series of works to be scheduled 989 * @head: target list to append @work to 990 * @nextp: out paramter for nested worklist walking 991 * 992 * Schedule linked works starting from @work to @head. Work series to 993 * be scheduled starts at @work and includes any consecutive work with 994 * WORK_STRUCT_LINKED set in its predecessor. 995 * 996 * If @nextp is not NULL, it's updated to point to the next work of 997 * the last scheduled work. This allows move_linked_works() to be 998 * nested inside outer list_for_each_entry_safe(). 999 * 1000 * CONTEXT: 1001 * spin_lock_irq(pool->lock). 1002 */ 1003 static void move_linked_works(struct work_struct *work, struct list_head *head, 1004 struct work_struct **nextp) 1005 { 1006 struct work_struct *n; 1007 1008 /* 1009 * Linked worklist will always end before the end of the list, 1010 * use NULL for list head. 1011 */ 1012 list_for_each_entry_safe_from(work, n, NULL, entry) { 1013 list_move_tail(&work->entry, head); 1014 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1015 break; 1016 } 1017 1018 /* 1019 * If we're already inside safe list traversal and have moved 1020 * multiple works to the scheduled queue, the next position 1021 * needs to be updated. 1022 */ 1023 if (nextp) 1024 *nextp = n; 1025 } 1026 1027 /** 1028 * get_pwq - get an extra reference on the specified pool_workqueue 1029 * @pwq: pool_workqueue to get 1030 * 1031 * Obtain an extra reference on @pwq. The caller should guarantee that 1032 * @pwq has positive refcnt and be holding the matching pool->lock. 1033 */ 1034 static void get_pwq(struct pool_workqueue *pwq) 1035 { 1036 lockdep_assert_held(&pwq->pool->lock); 1037 WARN_ON_ONCE(pwq->refcnt <= 0); 1038 pwq->refcnt++; 1039 } 1040 1041 /** 1042 * put_pwq - put a pool_workqueue reference 1043 * @pwq: pool_workqueue to put 1044 * 1045 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1046 * destruction. The caller should be holding the matching pool->lock. 1047 */ 1048 static void put_pwq(struct pool_workqueue *pwq) 1049 { 1050 lockdep_assert_held(&pwq->pool->lock); 1051 if (likely(--pwq->refcnt)) 1052 return; 1053 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1054 return; 1055 /* 1056 * @pwq can't be released under pool->lock, bounce to 1057 * pwq_unbound_release_workfn(). This never recurses on the same 1058 * pool->lock as this path is taken only for unbound workqueues and 1059 * the release work item is scheduled on a per-cpu workqueue. To 1060 * avoid lockdep warning, unbound pool->locks are given lockdep 1061 * subclass of 1 in get_unbound_pool(). 1062 */ 1063 schedule_work(&pwq->unbound_release_work); 1064 } 1065 1066 /** 1067 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1068 * @pwq: pool_workqueue to put (can be %NULL) 1069 * 1070 * put_pwq() with locking. This function also allows %NULL @pwq. 1071 */ 1072 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1073 { 1074 if (pwq) { 1075 /* 1076 * As both pwqs and pools are sched-RCU protected, the 1077 * following lock operations are safe. 1078 */ 1079 spin_lock_irq(&pwq->pool->lock); 1080 put_pwq(pwq); 1081 spin_unlock_irq(&pwq->pool->lock); 1082 } 1083 } 1084 1085 static void pwq_activate_delayed_work(struct work_struct *work) 1086 { 1087 struct pool_workqueue *pwq = get_work_pwq(work); 1088 1089 trace_workqueue_activate_work(work); 1090 move_linked_works(work, &pwq->pool->worklist, NULL); 1091 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1092 pwq->nr_active++; 1093 } 1094 1095 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1096 { 1097 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1098 struct work_struct, entry); 1099 1100 pwq_activate_delayed_work(work); 1101 } 1102 1103 /** 1104 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1105 * @pwq: pwq of interest 1106 * @color: color of work which left the queue 1107 * 1108 * A work either has completed or is removed from pending queue, 1109 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1110 * 1111 * CONTEXT: 1112 * spin_lock_irq(pool->lock). 1113 */ 1114 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1115 { 1116 /* uncolored work items don't participate in flushing or nr_active */ 1117 if (color == WORK_NO_COLOR) 1118 goto out_put; 1119 1120 pwq->nr_in_flight[color]--; 1121 1122 pwq->nr_active--; 1123 if (!list_empty(&pwq->delayed_works)) { 1124 /* one down, submit a delayed one */ 1125 if (pwq->nr_active < pwq->max_active) 1126 pwq_activate_first_delayed(pwq); 1127 } 1128 1129 /* is flush in progress and are we at the flushing tip? */ 1130 if (likely(pwq->flush_color != color)) 1131 goto out_put; 1132 1133 /* are there still in-flight works? */ 1134 if (pwq->nr_in_flight[color]) 1135 goto out_put; 1136 1137 /* this pwq is done, clear flush_color */ 1138 pwq->flush_color = -1; 1139 1140 /* 1141 * If this was the last pwq, wake up the first flusher. It 1142 * will handle the rest. 1143 */ 1144 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1145 complete(&pwq->wq->first_flusher->done); 1146 out_put: 1147 put_pwq(pwq); 1148 } 1149 1150 /** 1151 * try_to_grab_pending - steal work item from worklist and disable irq 1152 * @work: work item to steal 1153 * @is_dwork: @work is a delayed_work 1154 * @flags: place to store irq state 1155 * 1156 * Try to grab PENDING bit of @work. This function can handle @work in any 1157 * stable state - idle, on timer or on worklist. Return values are 1158 * 1159 * 1 if @work was pending and we successfully stole PENDING 1160 * 0 if @work was idle and we claimed PENDING 1161 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1162 * -ENOENT if someone else is canceling @work, this state may persist 1163 * for arbitrarily long 1164 * 1165 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1166 * interrupted while holding PENDING and @work off queue, irq must be 1167 * disabled on entry. This, combined with delayed_work->timer being 1168 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1169 * 1170 * On successful return, >= 0, irq is disabled and the caller is 1171 * responsible for releasing it using local_irq_restore(*@flags). 1172 * 1173 * This function is safe to call from any context including IRQ handler. 1174 */ 1175 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1176 unsigned long *flags) 1177 { 1178 struct worker_pool *pool; 1179 struct pool_workqueue *pwq; 1180 1181 local_irq_save(*flags); 1182 1183 /* try to steal the timer if it exists */ 1184 if (is_dwork) { 1185 struct delayed_work *dwork = to_delayed_work(work); 1186 1187 /* 1188 * dwork->timer is irqsafe. If del_timer() fails, it's 1189 * guaranteed that the timer is not queued anywhere and not 1190 * running on the local CPU. 1191 */ 1192 if (likely(del_timer(&dwork->timer))) 1193 return 1; 1194 } 1195 1196 /* try to claim PENDING the normal way */ 1197 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1198 return 0; 1199 1200 /* 1201 * The queueing is in progress, or it is already queued. Try to 1202 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1203 */ 1204 pool = get_work_pool(work); 1205 if (!pool) 1206 goto fail; 1207 1208 spin_lock(&pool->lock); 1209 /* 1210 * work->data is guaranteed to point to pwq only while the work 1211 * item is queued on pwq->wq, and both updating work->data to point 1212 * to pwq on queueing and to pool on dequeueing are done under 1213 * pwq->pool->lock. This in turn guarantees that, if work->data 1214 * points to pwq which is associated with a locked pool, the work 1215 * item is currently queued on that pool. 1216 */ 1217 pwq = get_work_pwq(work); 1218 if (pwq && pwq->pool == pool) { 1219 debug_work_deactivate(work); 1220 1221 /* 1222 * A delayed work item cannot be grabbed directly because 1223 * it might have linked NO_COLOR work items which, if left 1224 * on the delayed_list, will confuse pwq->nr_active 1225 * management later on and cause stall. Make sure the work 1226 * item is activated before grabbing. 1227 */ 1228 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1229 pwq_activate_delayed_work(work); 1230 1231 list_del_init(&work->entry); 1232 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work)); 1233 1234 /* work->data points to pwq iff queued, point to pool */ 1235 set_work_pool_and_keep_pending(work, pool->id); 1236 1237 spin_unlock(&pool->lock); 1238 return 1; 1239 } 1240 spin_unlock(&pool->lock); 1241 fail: 1242 local_irq_restore(*flags); 1243 if (work_is_canceling(work)) 1244 return -ENOENT; 1245 cpu_relax(); 1246 return -EAGAIN; 1247 } 1248 1249 /** 1250 * insert_work - insert a work into a pool 1251 * @pwq: pwq @work belongs to 1252 * @work: work to insert 1253 * @head: insertion point 1254 * @extra_flags: extra WORK_STRUCT_* flags to set 1255 * 1256 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1257 * work_struct flags. 1258 * 1259 * CONTEXT: 1260 * spin_lock_irq(pool->lock). 1261 */ 1262 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1263 struct list_head *head, unsigned int extra_flags) 1264 { 1265 struct worker_pool *pool = pwq->pool; 1266 1267 /* we own @work, set data and link */ 1268 set_work_pwq(work, pwq, extra_flags); 1269 list_add_tail(&work->entry, head); 1270 get_pwq(pwq); 1271 1272 /* 1273 * Ensure either wq_worker_sleeping() sees the above 1274 * list_add_tail() or we see zero nr_running to avoid workers lying 1275 * around lazily while there are works to be processed. 1276 */ 1277 smp_mb(); 1278 1279 if (__need_more_worker(pool)) 1280 wake_up_worker(pool); 1281 } 1282 1283 /* 1284 * Test whether @work is being queued from another work executing on the 1285 * same workqueue. 1286 */ 1287 static bool is_chained_work(struct workqueue_struct *wq) 1288 { 1289 struct worker *worker; 1290 1291 worker = current_wq_worker(); 1292 /* 1293 * Return %true iff I'm a worker execuing a work item on @wq. If 1294 * I'm @worker, it's safe to dereference it without locking. 1295 */ 1296 return worker && worker->current_pwq->wq == wq; 1297 } 1298 1299 static void __queue_work(int cpu, struct workqueue_struct *wq, 1300 struct work_struct *work) 1301 { 1302 struct pool_workqueue *pwq; 1303 struct worker_pool *last_pool; 1304 struct list_head *worklist; 1305 unsigned int work_flags; 1306 unsigned int req_cpu = cpu; 1307 1308 /* 1309 * While a work item is PENDING && off queue, a task trying to 1310 * steal the PENDING will busy-loop waiting for it to either get 1311 * queued or lose PENDING. Grabbing PENDING and queueing should 1312 * happen with IRQ disabled. 1313 */ 1314 WARN_ON_ONCE(!irqs_disabled()); 1315 1316 debug_work_activate(work); 1317 1318 /* if dying, only works from the same workqueue are allowed */ 1319 if (unlikely(wq->flags & __WQ_DRAINING) && 1320 WARN_ON_ONCE(!is_chained_work(wq))) 1321 return; 1322 retry: 1323 if (req_cpu == WORK_CPU_UNBOUND) 1324 cpu = raw_smp_processor_id(); 1325 1326 /* pwq which will be used unless @work is executing elsewhere */ 1327 if (!(wq->flags & WQ_UNBOUND)) 1328 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1329 else 1330 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1331 1332 /* 1333 * If @work was previously on a different pool, it might still be 1334 * running there, in which case the work needs to be queued on that 1335 * pool to guarantee non-reentrancy. 1336 */ 1337 last_pool = get_work_pool(work); 1338 if (last_pool && last_pool != pwq->pool) { 1339 struct worker *worker; 1340 1341 spin_lock(&last_pool->lock); 1342 1343 worker = find_worker_executing_work(last_pool, work); 1344 1345 if (worker && worker->current_pwq->wq == wq) { 1346 pwq = worker->current_pwq; 1347 } else { 1348 /* meh... not running there, queue here */ 1349 spin_unlock(&last_pool->lock); 1350 spin_lock(&pwq->pool->lock); 1351 } 1352 } else { 1353 spin_lock(&pwq->pool->lock); 1354 } 1355 1356 /* 1357 * pwq is determined and locked. For unbound pools, we could have 1358 * raced with pwq release and it could already be dead. If its 1359 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1360 * without another pwq replacing it in the numa_pwq_tbl or while 1361 * work items are executing on it, so the retrying is guaranteed to 1362 * make forward-progress. 1363 */ 1364 if (unlikely(!pwq->refcnt)) { 1365 if (wq->flags & WQ_UNBOUND) { 1366 spin_unlock(&pwq->pool->lock); 1367 cpu_relax(); 1368 goto retry; 1369 } 1370 /* oops */ 1371 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1372 wq->name, cpu); 1373 } 1374 1375 /* pwq determined, queue */ 1376 trace_workqueue_queue_work(req_cpu, pwq, work); 1377 1378 if (WARN_ON(!list_empty(&work->entry))) { 1379 spin_unlock(&pwq->pool->lock); 1380 return; 1381 } 1382 1383 pwq->nr_in_flight[pwq->work_color]++; 1384 work_flags = work_color_to_flags(pwq->work_color); 1385 1386 if (likely(pwq->nr_active < pwq->max_active)) { 1387 trace_workqueue_activate_work(work); 1388 pwq->nr_active++; 1389 worklist = &pwq->pool->worklist; 1390 } else { 1391 work_flags |= WORK_STRUCT_DELAYED; 1392 worklist = &pwq->delayed_works; 1393 } 1394 1395 insert_work(pwq, work, worklist, work_flags); 1396 1397 spin_unlock(&pwq->pool->lock); 1398 } 1399 1400 /** 1401 * queue_work_on - queue work on specific cpu 1402 * @cpu: CPU number to execute work on 1403 * @wq: workqueue to use 1404 * @work: work to queue 1405 * 1406 * Returns %false if @work was already on a queue, %true otherwise. 1407 * 1408 * We queue the work to a specific CPU, the caller must ensure it 1409 * can't go away. 1410 */ 1411 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1412 struct work_struct *work) 1413 { 1414 bool ret = false; 1415 unsigned long flags; 1416 1417 local_irq_save(flags); 1418 1419 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1420 __queue_work(cpu, wq, work); 1421 ret = true; 1422 } 1423 1424 local_irq_restore(flags); 1425 return ret; 1426 } 1427 EXPORT_SYMBOL(queue_work_on); 1428 1429 void delayed_work_timer_fn(unsigned long __data) 1430 { 1431 struct delayed_work *dwork = (struct delayed_work *)__data; 1432 1433 /* should have been called from irqsafe timer with irq already off */ 1434 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1435 } 1436 EXPORT_SYMBOL(delayed_work_timer_fn); 1437 1438 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1439 struct delayed_work *dwork, unsigned long delay) 1440 { 1441 struct timer_list *timer = &dwork->timer; 1442 struct work_struct *work = &dwork->work; 1443 1444 WARN_ON_ONCE(timer->function != delayed_work_timer_fn || 1445 timer->data != (unsigned long)dwork); 1446 WARN_ON_ONCE(timer_pending(timer)); 1447 WARN_ON_ONCE(!list_empty(&work->entry)); 1448 1449 /* 1450 * If @delay is 0, queue @dwork->work immediately. This is for 1451 * both optimization and correctness. The earliest @timer can 1452 * expire is on the closest next tick and delayed_work users depend 1453 * on that there's no such delay when @delay is 0. 1454 */ 1455 if (!delay) { 1456 __queue_work(cpu, wq, &dwork->work); 1457 return; 1458 } 1459 1460 timer_stats_timer_set_start_info(&dwork->timer); 1461 1462 dwork->wq = wq; 1463 dwork->cpu = cpu; 1464 timer->expires = jiffies + delay; 1465 1466 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1467 add_timer_on(timer, cpu); 1468 else 1469 add_timer(timer); 1470 } 1471 1472 /** 1473 * queue_delayed_work_on - queue work on specific CPU after delay 1474 * @cpu: CPU number to execute work on 1475 * @wq: workqueue to use 1476 * @dwork: work to queue 1477 * @delay: number of jiffies to wait before queueing 1478 * 1479 * Returns %false if @work was already on a queue, %true otherwise. If 1480 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1481 * execution. 1482 */ 1483 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1484 struct delayed_work *dwork, unsigned long delay) 1485 { 1486 struct work_struct *work = &dwork->work; 1487 bool ret = false; 1488 unsigned long flags; 1489 1490 /* read the comment in __queue_work() */ 1491 local_irq_save(flags); 1492 1493 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1494 __queue_delayed_work(cpu, wq, dwork, delay); 1495 ret = true; 1496 } 1497 1498 local_irq_restore(flags); 1499 return ret; 1500 } 1501 EXPORT_SYMBOL(queue_delayed_work_on); 1502 1503 /** 1504 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1505 * @cpu: CPU number to execute work on 1506 * @wq: workqueue to use 1507 * @dwork: work to queue 1508 * @delay: number of jiffies to wait before queueing 1509 * 1510 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1511 * modify @dwork's timer so that it expires after @delay. If @delay is 1512 * zero, @work is guaranteed to be scheduled immediately regardless of its 1513 * current state. 1514 * 1515 * Returns %false if @dwork was idle and queued, %true if @dwork was 1516 * pending and its timer was modified. 1517 * 1518 * This function is safe to call from any context including IRQ handler. 1519 * See try_to_grab_pending() for details. 1520 */ 1521 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1522 struct delayed_work *dwork, unsigned long delay) 1523 { 1524 unsigned long flags; 1525 int ret; 1526 1527 do { 1528 ret = try_to_grab_pending(&dwork->work, true, &flags); 1529 } while (unlikely(ret == -EAGAIN)); 1530 1531 if (likely(ret >= 0)) { 1532 __queue_delayed_work(cpu, wq, dwork, delay); 1533 local_irq_restore(flags); 1534 } 1535 1536 /* -ENOENT from try_to_grab_pending() becomes %true */ 1537 return ret; 1538 } 1539 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1540 1541 /** 1542 * worker_enter_idle - enter idle state 1543 * @worker: worker which is entering idle state 1544 * 1545 * @worker is entering idle state. Update stats and idle timer if 1546 * necessary. 1547 * 1548 * LOCKING: 1549 * spin_lock_irq(pool->lock). 1550 */ 1551 static void worker_enter_idle(struct worker *worker) 1552 { 1553 struct worker_pool *pool = worker->pool; 1554 1555 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1556 WARN_ON_ONCE(!list_empty(&worker->entry) && 1557 (worker->hentry.next || worker->hentry.pprev))) 1558 return; 1559 1560 /* can't use worker_set_flags(), also called from start_worker() */ 1561 worker->flags |= WORKER_IDLE; 1562 pool->nr_idle++; 1563 worker->last_active = jiffies; 1564 1565 /* idle_list is LIFO */ 1566 list_add(&worker->entry, &pool->idle_list); 1567 1568 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1569 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1570 1571 /* 1572 * Sanity check nr_running. Because wq_unbind_fn() releases 1573 * pool->lock between setting %WORKER_UNBOUND and zapping 1574 * nr_running, the warning may trigger spuriously. Check iff 1575 * unbind is not in progress. 1576 */ 1577 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1578 pool->nr_workers == pool->nr_idle && 1579 atomic_read(&pool->nr_running)); 1580 } 1581 1582 /** 1583 * worker_leave_idle - leave idle state 1584 * @worker: worker which is leaving idle state 1585 * 1586 * @worker is leaving idle state. Update stats. 1587 * 1588 * LOCKING: 1589 * spin_lock_irq(pool->lock). 1590 */ 1591 static void worker_leave_idle(struct worker *worker) 1592 { 1593 struct worker_pool *pool = worker->pool; 1594 1595 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1596 return; 1597 worker_clr_flags(worker, WORKER_IDLE); 1598 pool->nr_idle--; 1599 list_del_init(&worker->entry); 1600 } 1601 1602 /** 1603 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it 1604 * @pool: target worker_pool 1605 * 1606 * Bind %current to the cpu of @pool if it is associated and lock @pool. 1607 * 1608 * Works which are scheduled while the cpu is online must at least be 1609 * scheduled to a worker which is bound to the cpu so that if they are 1610 * flushed from cpu callbacks while cpu is going down, they are 1611 * guaranteed to execute on the cpu. 1612 * 1613 * This function is to be used by unbound workers and rescuers to bind 1614 * themselves to the target cpu and may race with cpu going down or 1615 * coming online. kthread_bind() can't be used because it may put the 1616 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used 1617 * verbatim as it's best effort and blocking and pool may be 1618 * [dis]associated in the meantime. 1619 * 1620 * This function tries set_cpus_allowed() and locks pool and verifies the 1621 * binding against %POOL_DISASSOCIATED which is set during 1622 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker 1623 * enters idle state or fetches works without dropping lock, it can 1624 * guarantee the scheduling requirement described in the first paragraph. 1625 * 1626 * CONTEXT: 1627 * Might sleep. Called without any lock but returns with pool->lock 1628 * held. 1629 * 1630 * RETURNS: 1631 * %true if the associated pool is online (@worker is successfully 1632 * bound), %false if offline. 1633 */ 1634 static bool worker_maybe_bind_and_lock(struct worker_pool *pool) 1635 __acquires(&pool->lock) 1636 { 1637 while (true) { 1638 /* 1639 * The following call may fail, succeed or succeed 1640 * without actually migrating the task to the cpu if 1641 * it races with cpu hotunplug operation. Verify 1642 * against POOL_DISASSOCIATED. 1643 */ 1644 if (!(pool->flags & POOL_DISASSOCIATED)) 1645 set_cpus_allowed_ptr(current, pool->attrs->cpumask); 1646 1647 spin_lock_irq(&pool->lock); 1648 if (pool->flags & POOL_DISASSOCIATED) 1649 return false; 1650 if (task_cpu(current) == pool->cpu && 1651 cpumask_equal(¤t->cpus_allowed, pool->attrs->cpumask)) 1652 return true; 1653 spin_unlock_irq(&pool->lock); 1654 1655 /* 1656 * We've raced with CPU hot[un]plug. Give it a breather 1657 * and retry migration. cond_resched() is required here; 1658 * otherwise, we might deadlock against cpu_stop trying to 1659 * bring down the CPU on non-preemptive kernel. 1660 */ 1661 cpu_relax(); 1662 cond_resched(); 1663 } 1664 } 1665 1666 static struct worker *alloc_worker(void) 1667 { 1668 struct worker *worker; 1669 1670 worker = kzalloc(sizeof(*worker), GFP_KERNEL); 1671 if (worker) { 1672 INIT_LIST_HEAD(&worker->entry); 1673 INIT_LIST_HEAD(&worker->scheduled); 1674 /* on creation a worker is in !idle && prep state */ 1675 worker->flags = WORKER_PREP; 1676 } 1677 return worker; 1678 } 1679 1680 /** 1681 * create_worker - create a new workqueue worker 1682 * @pool: pool the new worker will belong to 1683 * 1684 * Create a new worker which is bound to @pool. The returned worker 1685 * can be started by calling start_worker() or destroyed using 1686 * destroy_worker(). 1687 * 1688 * CONTEXT: 1689 * Might sleep. Does GFP_KERNEL allocations. 1690 * 1691 * RETURNS: 1692 * Pointer to the newly created worker. 1693 */ 1694 static struct worker *create_worker(struct worker_pool *pool) 1695 { 1696 struct worker *worker = NULL; 1697 int id = -1; 1698 char id_buf[16]; 1699 1700 lockdep_assert_held(&pool->manager_mutex); 1701 1702 /* 1703 * ID is needed to determine kthread name. Allocate ID first 1704 * without installing the pointer. 1705 */ 1706 idr_preload(GFP_KERNEL); 1707 spin_lock_irq(&pool->lock); 1708 1709 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT); 1710 1711 spin_unlock_irq(&pool->lock); 1712 idr_preload_end(); 1713 if (id < 0) 1714 goto fail; 1715 1716 worker = alloc_worker(); 1717 if (!worker) 1718 goto fail; 1719 1720 worker->pool = pool; 1721 worker->id = id; 1722 1723 if (pool->cpu >= 0) 1724 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1725 pool->attrs->nice < 0 ? "H" : ""); 1726 else 1727 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1728 1729 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1730 "kworker/%s", id_buf); 1731 if (IS_ERR(worker->task)) 1732 goto fail; 1733 1734 /* 1735 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1736 * online CPUs. It'll be re-applied when any of the CPUs come up. 1737 */ 1738 set_user_nice(worker->task, pool->attrs->nice); 1739 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1740 1741 /* prevent userland from meddling with cpumask of workqueue workers */ 1742 worker->task->flags |= PF_NO_SETAFFINITY; 1743 1744 /* 1745 * The caller is responsible for ensuring %POOL_DISASSOCIATED 1746 * remains stable across this function. See the comments above the 1747 * flag definition for details. 1748 */ 1749 if (pool->flags & POOL_DISASSOCIATED) 1750 worker->flags |= WORKER_UNBOUND; 1751 1752 /* successful, commit the pointer to idr */ 1753 spin_lock_irq(&pool->lock); 1754 idr_replace(&pool->worker_idr, worker, worker->id); 1755 spin_unlock_irq(&pool->lock); 1756 1757 return worker; 1758 1759 fail: 1760 if (id >= 0) { 1761 spin_lock_irq(&pool->lock); 1762 idr_remove(&pool->worker_idr, id); 1763 spin_unlock_irq(&pool->lock); 1764 } 1765 kfree(worker); 1766 return NULL; 1767 } 1768 1769 /** 1770 * start_worker - start a newly created worker 1771 * @worker: worker to start 1772 * 1773 * Make the pool aware of @worker and start it. 1774 * 1775 * CONTEXT: 1776 * spin_lock_irq(pool->lock). 1777 */ 1778 static void start_worker(struct worker *worker) 1779 { 1780 worker->flags |= WORKER_STARTED; 1781 worker->pool->nr_workers++; 1782 worker_enter_idle(worker); 1783 wake_up_process(worker->task); 1784 } 1785 1786 /** 1787 * create_and_start_worker - create and start a worker for a pool 1788 * @pool: the target pool 1789 * 1790 * Grab the managership of @pool and create and start a new worker for it. 1791 */ 1792 static int create_and_start_worker(struct worker_pool *pool) 1793 { 1794 struct worker *worker; 1795 1796 mutex_lock(&pool->manager_mutex); 1797 1798 worker = create_worker(pool); 1799 if (worker) { 1800 spin_lock_irq(&pool->lock); 1801 start_worker(worker); 1802 spin_unlock_irq(&pool->lock); 1803 } 1804 1805 mutex_unlock(&pool->manager_mutex); 1806 1807 return worker ? 0 : -ENOMEM; 1808 } 1809 1810 /** 1811 * destroy_worker - destroy a workqueue worker 1812 * @worker: worker to be destroyed 1813 * 1814 * Destroy @worker and adjust @pool stats accordingly. 1815 * 1816 * CONTEXT: 1817 * spin_lock_irq(pool->lock) which is released and regrabbed. 1818 */ 1819 static void destroy_worker(struct worker *worker) 1820 { 1821 struct worker_pool *pool = worker->pool; 1822 1823 lockdep_assert_held(&pool->manager_mutex); 1824 lockdep_assert_held(&pool->lock); 1825 1826 /* sanity check frenzy */ 1827 if (WARN_ON(worker->current_work) || 1828 WARN_ON(!list_empty(&worker->scheduled))) 1829 return; 1830 1831 if (worker->flags & WORKER_STARTED) 1832 pool->nr_workers--; 1833 if (worker->flags & WORKER_IDLE) 1834 pool->nr_idle--; 1835 1836 list_del_init(&worker->entry); 1837 worker->flags |= WORKER_DIE; 1838 1839 idr_remove(&pool->worker_idr, worker->id); 1840 1841 spin_unlock_irq(&pool->lock); 1842 1843 kthread_stop(worker->task); 1844 kfree(worker); 1845 1846 spin_lock_irq(&pool->lock); 1847 } 1848 1849 static void idle_worker_timeout(unsigned long __pool) 1850 { 1851 struct worker_pool *pool = (void *)__pool; 1852 1853 spin_lock_irq(&pool->lock); 1854 1855 if (too_many_workers(pool)) { 1856 struct worker *worker; 1857 unsigned long expires; 1858 1859 /* idle_list is kept in LIFO order, check the last one */ 1860 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1861 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1862 1863 if (time_before(jiffies, expires)) 1864 mod_timer(&pool->idle_timer, expires); 1865 else { 1866 /* it's been idle for too long, wake up manager */ 1867 pool->flags |= POOL_MANAGE_WORKERS; 1868 wake_up_worker(pool); 1869 } 1870 } 1871 1872 spin_unlock_irq(&pool->lock); 1873 } 1874 1875 static void send_mayday(struct work_struct *work) 1876 { 1877 struct pool_workqueue *pwq = get_work_pwq(work); 1878 struct workqueue_struct *wq = pwq->wq; 1879 1880 lockdep_assert_held(&wq_mayday_lock); 1881 1882 if (!wq->rescuer) 1883 return; 1884 1885 /* mayday mayday mayday */ 1886 if (list_empty(&pwq->mayday_node)) { 1887 list_add_tail(&pwq->mayday_node, &wq->maydays); 1888 wake_up_process(wq->rescuer->task); 1889 } 1890 } 1891 1892 static void pool_mayday_timeout(unsigned long __pool) 1893 { 1894 struct worker_pool *pool = (void *)__pool; 1895 struct work_struct *work; 1896 1897 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */ 1898 spin_lock(&pool->lock); 1899 1900 if (need_to_create_worker(pool)) { 1901 /* 1902 * We've been trying to create a new worker but 1903 * haven't been successful. We might be hitting an 1904 * allocation deadlock. Send distress signals to 1905 * rescuers. 1906 */ 1907 list_for_each_entry(work, &pool->worklist, entry) 1908 send_mayday(work); 1909 } 1910 1911 spin_unlock(&pool->lock); 1912 spin_unlock_irq(&wq_mayday_lock); 1913 1914 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 1915 } 1916 1917 /** 1918 * maybe_create_worker - create a new worker if necessary 1919 * @pool: pool to create a new worker for 1920 * 1921 * Create a new worker for @pool if necessary. @pool is guaranteed to 1922 * have at least one idle worker on return from this function. If 1923 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1924 * sent to all rescuers with works scheduled on @pool to resolve 1925 * possible allocation deadlock. 1926 * 1927 * On return, need_to_create_worker() is guaranteed to be %false and 1928 * may_start_working() %true. 1929 * 1930 * LOCKING: 1931 * spin_lock_irq(pool->lock) which may be released and regrabbed 1932 * multiple times. Does GFP_KERNEL allocations. Called only from 1933 * manager. 1934 * 1935 * RETURNS: 1936 * %false if no action was taken and pool->lock stayed locked, %true 1937 * otherwise. 1938 */ 1939 static bool maybe_create_worker(struct worker_pool *pool) 1940 __releases(&pool->lock) 1941 __acquires(&pool->lock) 1942 { 1943 if (!need_to_create_worker(pool)) 1944 return false; 1945 restart: 1946 spin_unlock_irq(&pool->lock); 1947 1948 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1949 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1950 1951 while (true) { 1952 struct worker *worker; 1953 1954 worker = create_worker(pool); 1955 if (worker) { 1956 del_timer_sync(&pool->mayday_timer); 1957 spin_lock_irq(&pool->lock); 1958 start_worker(worker); 1959 if (WARN_ON_ONCE(need_to_create_worker(pool))) 1960 goto restart; 1961 return true; 1962 } 1963 1964 if (!need_to_create_worker(pool)) 1965 break; 1966 1967 __set_current_state(TASK_INTERRUPTIBLE); 1968 schedule_timeout(CREATE_COOLDOWN); 1969 1970 if (!need_to_create_worker(pool)) 1971 break; 1972 } 1973 1974 del_timer_sync(&pool->mayday_timer); 1975 spin_lock_irq(&pool->lock); 1976 if (need_to_create_worker(pool)) 1977 goto restart; 1978 return true; 1979 } 1980 1981 /** 1982 * maybe_destroy_worker - destroy workers which have been idle for a while 1983 * @pool: pool to destroy workers for 1984 * 1985 * Destroy @pool workers which have been idle for longer than 1986 * IDLE_WORKER_TIMEOUT. 1987 * 1988 * LOCKING: 1989 * spin_lock_irq(pool->lock) which may be released and regrabbed 1990 * multiple times. Called only from manager. 1991 * 1992 * RETURNS: 1993 * %false if no action was taken and pool->lock stayed locked, %true 1994 * otherwise. 1995 */ 1996 static bool maybe_destroy_workers(struct worker_pool *pool) 1997 { 1998 bool ret = false; 1999 2000 while (too_many_workers(pool)) { 2001 struct worker *worker; 2002 unsigned long expires; 2003 2004 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2005 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2006 2007 if (time_before(jiffies, expires)) { 2008 mod_timer(&pool->idle_timer, expires); 2009 break; 2010 } 2011 2012 destroy_worker(worker); 2013 ret = true; 2014 } 2015 2016 return ret; 2017 } 2018 2019 /** 2020 * manage_workers - manage worker pool 2021 * @worker: self 2022 * 2023 * Assume the manager role and manage the worker pool @worker belongs 2024 * to. At any given time, there can be only zero or one manager per 2025 * pool. The exclusion is handled automatically by this function. 2026 * 2027 * The caller can safely start processing works on false return. On 2028 * true return, it's guaranteed that need_to_create_worker() is false 2029 * and may_start_working() is true. 2030 * 2031 * CONTEXT: 2032 * spin_lock_irq(pool->lock) which may be released and regrabbed 2033 * multiple times. Does GFP_KERNEL allocations. 2034 * 2035 * RETURNS: 2036 * spin_lock_irq(pool->lock) which may be released and regrabbed 2037 * multiple times. Does GFP_KERNEL allocations. 2038 */ 2039 static bool manage_workers(struct worker *worker) 2040 { 2041 struct worker_pool *pool = worker->pool; 2042 bool ret = false; 2043 2044 /* 2045 * Managership is governed by two mutexes - manager_arb and 2046 * manager_mutex. manager_arb handles arbitration of manager role. 2047 * Anyone who successfully grabs manager_arb wins the arbitration 2048 * and becomes the manager. mutex_trylock() on pool->manager_arb 2049 * failure while holding pool->lock reliably indicates that someone 2050 * else is managing the pool and the worker which failed trylock 2051 * can proceed to executing work items. This means that anyone 2052 * grabbing manager_arb is responsible for actually performing 2053 * manager duties. If manager_arb is grabbed and released without 2054 * actual management, the pool may stall indefinitely. 2055 * 2056 * manager_mutex is used for exclusion of actual management 2057 * operations. The holder of manager_mutex can be sure that none 2058 * of management operations, including creation and destruction of 2059 * workers, won't take place until the mutex is released. Because 2060 * manager_mutex doesn't interfere with manager role arbitration, 2061 * it is guaranteed that the pool's management, while may be 2062 * delayed, won't be disturbed by someone else grabbing 2063 * manager_mutex. 2064 */ 2065 if (!mutex_trylock(&pool->manager_arb)) 2066 return ret; 2067 2068 /* 2069 * With manager arbitration won, manager_mutex would be free in 2070 * most cases. trylock first without dropping @pool->lock. 2071 */ 2072 if (unlikely(!mutex_trylock(&pool->manager_mutex))) { 2073 spin_unlock_irq(&pool->lock); 2074 mutex_lock(&pool->manager_mutex); 2075 spin_lock_irq(&pool->lock); 2076 ret = true; 2077 } 2078 2079 pool->flags &= ~POOL_MANAGE_WORKERS; 2080 2081 /* 2082 * Destroy and then create so that may_start_working() is true 2083 * on return. 2084 */ 2085 ret |= maybe_destroy_workers(pool); 2086 ret |= maybe_create_worker(pool); 2087 2088 mutex_unlock(&pool->manager_mutex); 2089 mutex_unlock(&pool->manager_arb); 2090 return ret; 2091 } 2092 2093 /** 2094 * process_one_work - process single work 2095 * @worker: self 2096 * @work: work to process 2097 * 2098 * Process @work. This function contains all the logics necessary to 2099 * process a single work including synchronization against and 2100 * interaction with other workers on the same cpu, queueing and 2101 * flushing. As long as context requirement is met, any worker can 2102 * call this function to process a work. 2103 * 2104 * CONTEXT: 2105 * spin_lock_irq(pool->lock) which is released and regrabbed. 2106 */ 2107 static void process_one_work(struct worker *worker, struct work_struct *work) 2108 __releases(&pool->lock) 2109 __acquires(&pool->lock) 2110 { 2111 struct pool_workqueue *pwq = get_work_pwq(work); 2112 struct worker_pool *pool = worker->pool; 2113 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2114 int work_color; 2115 struct worker *collision; 2116 #ifdef CONFIG_LOCKDEP 2117 /* 2118 * It is permissible to free the struct work_struct from 2119 * inside the function that is called from it, this we need to 2120 * take into account for lockdep too. To avoid bogus "held 2121 * lock freed" warnings as well as problems when looking into 2122 * work->lockdep_map, make a copy and use that here. 2123 */ 2124 struct lockdep_map lockdep_map; 2125 2126 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2127 #endif 2128 /* 2129 * Ensure we're on the correct CPU. DISASSOCIATED test is 2130 * necessary to avoid spurious warnings from rescuers servicing the 2131 * unbound or a disassociated pool. 2132 */ 2133 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) && 2134 !(pool->flags & POOL_DISASSOCIATED) && 2135 raw_smp_processor_id() != pool->cpu); 2136 2137 /* 2138 * A single work shouldn't be executed concurrently by 2139 * multiple workers on a single cpu. Check whether anyone is 2140 * already processing the work. If so, defer the work to the 2141 * currently executing one. 2142 */ 2143 collision = find_worker_executing_work(pool, work); 2144 if (unlikely(collision)) { 2145 move_linked_works(work, &collision->scheduled, NULL); 2146 return; 2147 } 2148 2149 /* claim and dequeue */ 2150 debug_work_deactivate(work); 2151 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2152 worker->current_work = work; 2153 worker->current_func = work->func; 2154 worker->current_pwq = pwq; 2155 work_color = get_work_color(work); 2156 2157 list_del_init(&work->entry); 2158 2159 /* 2160 * CPU intensive works don't participate in concurrency 2161 * management. They're the scheduler's responsibility. 2162 */ 2163 if (unlikely(cpu_intensive)) 2164 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true); 2165 2166 /* 2167 * Unbound pool isn't concurrency managed and work items should be 2168 * executed ASAP. Wake up another worker if necessary. 2169 */ 2170 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool)) 2171 wake_up_worker(pool); 2172 2173 /* 2174 * Record the last pool and clear PENDING which should be the last 2175 * update to @work. Also, do this inside @pool->lock so that 2176 * PENDING and queued state changes happen together while IRQ is 2177 * disabled. 2178 */ 2179 set_work_pool_and_clear_pending(work, pool->id); 2180 2181 spin_unlock_irq(&pool->lock); 2182 2183 lock_map_acquire_read(&pwq->wq->lockdep_map); 2184 lock_map_acquire(&lockdep_map); 2185 trace_workqueue_execute_start(work); 2186 worker->current_func(work); 2187 /* 2188 * While we must be careful to not use "work" after this, the trace 2189 * point will only record its address. 2190 */ 2191 trace_workqueue_execute_end(work); 2192 lock_map_release(&lockdep_map); 2193 lock_map_release(&pwq->wq->lockdep_map); 2194 2195 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2196 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2197 " last function: %pf\n", 2198 current->comm, preempt_count(), task_pid_nr(current), 2199 worker->current_func); 2200 debug_show_held_locks(current); 2201 dump_stack(); 2202 } 2203 2204 spin_lock_irq(&pool->lock); 2205 2206 /* clear cpu intensive status */ 2207 if (unlikely(cpu_intensive)) 2208 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2209 2210 /* we're done with it, release */ 2211 hash_del(&worker->hentry); 2212 worker->current_work = NULL; 2213 worker->current_func = NULL; 2214 worker->current_pwq = NULL; 2215 worker->desc_valid = false; 2216 pwq_dec_nr_in_flight(pwq, work_color); 2217 } 2218 2219 /** 2220 * process_scheduled_works - process scheduled works 2221 * @worker: self 2222 * 2223 * Process all scheduled works. Please note that the scheduled list 2224 * may change while processing a work, so this function repeatedly 2225 * fetches a work from the top and executes it. 2226 * 2227 * CONTEXT: 2228 * spin_lock_irq(pool->lock) which may be released and regrabbed 2229 * multiple times. 2230 */ 2231 static void process_scheduled_works(struct worker *worker) 2232 { 2233 while (!list_empty(&worker->scheduled)) { 2234 struct work_struct *work = list_first_entry(&worker->scheduled, 2235 struct work_struct, entry); 2236 process_one_work(worker, work); 2237 } 2238 } 2239 2240 /** 2241 * worker_thread - the worker thread function 2242 * @__worker: self 2243 * 2244 * The worker thread function. All workers belong to a worker_pool - 2245 * either a per-cpu one or dynamic unbound one. These workers process all 2246 * work items regardless of their specific target workqueue. The only 2247 * exception is work items which belong to workqueues with a rescuer which 2248 * will be explained in rescuer_thread(). 2249 */ 2250 static int worker_thread(void *__worker) 2251 { 2252 struct worker *worker = __worker; 2253 struct worker_pool *pool = worker->pool; 2254 2255 /* tell the scheduler that this is a workqueue worker */ 2256 worker->task->flags |= PF_WQ_WORKER; 2257 woke_up: 2258 spin_lock_irq(&pool->lock); 2259 2260 /* am I supposed to die? */ 2261 if (unlikely(worker->flags & WORKER_DIE)) { 2262 spin_unlock_irq(&pool->lock); 2263 WARN_ON_ONCE(!list_empty(&worker->entry)); 2264 worker->task->flags &= ~PF_WQ_WORKER; 2265 return 0; 2266 } 2267 2268 worker_leave_idle(worker); 2269 recheck: 2270 /* no more worker necessary? */ 2271 if (!need_more_worker(pool)) 2272 goto sleep; 2273 2274 /* do we need to manage? */ 2275 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2276 goto recheck; 2277 2278 /* 2279 * ->scheduled list can only be filled while a worker is 2280 * preparing to process a work or actually processing it. 2281 * Make sure nobody diddled with it while I was sleeping. 2282 */ 2283 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2284 2285 /* 2286 * Finish PREP stage. We're guaranteed to have at least one idle 2287 * worker or that someone else has already assumed the manager 2288 * role. This is where @worker starts participating in concurrency 2289 * management if applicable and concurrency management is restored 2290 * after being rebound. See rebind_workers() for details. 2291 */ 2292 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2293 2294 do { 2295 struct work_struct *work = 2296 list_first_entry(&pool->worklist, 2297 struct work_struct, entry); 2298 2299 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2300 /* optimization path, not strictly necessary */ 2301 process_one_work(worker, work); 2302 if (unlikely(!list_empty(&worker->scheduled))) 2303 process_scheduled_works(worker); 2304 } else { 2305 move_linked_works(work, &worker->scheduled, NULL); 2306 process_scheduled_works(worker); 2307 } 2308 } while (keep_working(pool)); 2309 2310 worker_set_flags(worker, WORKER_PREP, false); 2311 sleep: 2312 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker)) 2313 goto recheck; 2314 2315 /* 2316 * pool->lock is held and there's no work to process and no need to 2317 * manage, sleep. Workers are woken up only while holding 2318 * pool->lock or from local cpu, so setting the current state 2319 * before releasing pool->lock is enough to prevent losing any 2320 * event. 2321 */ 2322 worker_enter_idle(worker); 2323 __set_current_state(TASK_INTERRUPTIBLE); 2324 spin_unlock_irq(&pool->lock); 2325 schedule(); 2326 goto woke_up; 2327 } 2328 2329 /** 2330 * rescuer_thread - the rescuer thread function 2331 * @__rescuer: self 2332 * 2333 * Workqueue rescuer thread function. There's one rescuer for each 2334 * workqueue which has WQ_MEM_RECLAIM set. 2335 * 2336 * Regular work processing on a pool may block trying to create a new 2337 * worker which uses GFP_KERNEL allocation which has slight chance of 2338 * developing into deadlock if some works currently on the same queue 2339 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2340 * the problem rescuer solves. 2341 * 2342 * When such condition is possible, the pool summons rescuers of all 2343 * workqueues which have works queued on the pool and let them process 2344 * those works so that forward progress can be guaranteed. 2345 * 2346 * This should happen rarely. 2347 */ 2348 static int rescuer_thread(void *__rescuer) 2349 { 2350 struct worker *rescuer = __rescuer; 2351 struct workqueue_struct *wq = rescuer->rescue_wq; 2352 struct list_head *scheduled = &rescuer->scheduled; 2353 2354 set_user_nice(current, RESCUER_NICE_LEVEL); 2355 2356 /* 2357 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2358 * doesn't participate in concurrency management. 2359 */ 2360 rescuer->task->flags |= PF_WQ_WORKER; 2361 repeat: 2362 set_current_state(TASK_INTERRUPTIBLE); 2363 2364 if (kthread_should_stop()) { 2365 __set_current_state(TASK_RUNNING); 2366 rescuer->task->flags &= ~PF_WQ_WORKER; 2367 return 0; 2368 } 2369 2370 /* see whether any pwq is asking for help */ 2371 spin_lock_irq(&wq_mayday_lock); 2372 2373 while (!list_empty(&wq->maydays)) { 2374 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2375 struct pool_workqueue, mayday_node); 2376 struct worker_pool *pool = pwq->pool; 2377 struct work_struct *work, *n; 2378 2379 __set_current_state(TASK_RUNNING); 2380 list_del_init(&pwq->mayday_node); 2381 2382 spin_unlock_irq(&wq_mayday_lock); 2383 2384 /* migrate to the target cpu if possible */ 2385 worker_maybe_bind_and_lock(pool); 2386 rescuer->pool = pool; 2387 2388 /* 2389 * Slurp in all works issued via this workqueue and 2390 * process'em. 2391 */ 2392 WARN_ON_ONCE(!list_empty(&rescuer->scheduled)); 2393 list_for_each_entry_safe(work, n, &pool->worklist, entry) 2394 if (get_work_pwq(work) == pwq) 2395 move_linked_works(work, scheduled, &n); 2396 2397 process_scheduled_works(rescuer); 2398 2399 /* 2400 * Leave this pool. If keep_working() is %true, notify a 2401 * regular worker; otherwise, we end up with 0 concurrency 2402 * and stalling the execution. 2403 */ 2404 if (keep_working(pool)) 2405 wake_up_worker(pool); 2406 2407 rescuer->pool = NULL; 2408 spin_unlock(&pool->lock); 2409 spin_lock(&wq_mayday_lock); 2410 } 2411 2412 spin_unlock_irq(&wq_mayday_lock); 2413 2414 /* rescuers should never participate in concurrency management */ 2415 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2416 schedule(); 2417 goto repeat; 2418 } 2419 2420 struct wq_barrier { 2421 struct work_struct work; 2422 struct completion done; 2423 }; 2424 2425 static void wq_barrier_func(struct work_struct *work) 2426 { 2427 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2428 complete(&barr->done); 2429 } 2430 2431 /** 2432 * insert_wq_barrier - insert a barrier work 2433 * @pwq: pwq to insert barrier into 2434 * @barr: wq_barrier to insert 2435 * @target: target work to attach @barr to 2436 * @worker: worker currently executing @target, NULL if @target is not executing 2437 * 2438 * @barr is linked to @target such that @barr is completed only after 2439 * @target finishes execution. Please note that the ordering 2440 * guarantee is observed only with respect to @target and on the local 2441 * cpu. 2442 * 2443 * Currently, a queued barrier can't be canceled. This is because 2444 * try_to_grab_pending() can't determine whether the work to be 2445 * grabbed is at the head of the queue and thus can't clear LINKED 2446 * flag of the previous work while there must be a valid next work 2447 * after a work with LINKED flag set. 2448 * 2449 * Note that when @worker is non-NULL, @target may be modified 2450 * underneath us, so we can't reliably determine pwq from @target. 2451 * 2452 * CONTEXT: 2453 * spin_lock_irq(pool->lock). 2454 */ 2455 static void insert_wq_barrier(struct pool_workqueue *pwq, 2456 struct wq_barrier *barr, 2457 struct work_struct *target, struct worker *worker) 2458 { 2459 struct list_head *head; 2460 unsigned int linked = 0; 2461 2462 /* 2463 * debugobject calls are safe here even with pool->lock locked 2464 * as we know for sure that this will not trigger any of the 2465 * checks and call back into the fixup functions where we 2466 * might deadlock. 2467 */ 2468 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2469 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2470 init_completion(&barr->done); 2471 2472 /* 2473 * If @target is currently being executed, schedule the 2474 * barrier to the worker; otherwise, put it after @target. 2475 */ 2476 if (worker) 2477 head = worker->scheduled.next; 2478 else { 2479 unsigned long *bits = work_data_bits(target); 2480 2481 head = target->entry.next; 2482 /* there can already be other linked works, inherit and set */ 2483 linked = *bits & WORK_STRUCT_LINKED; 2484 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2485 } 2486 2487 debug_work_activate(&barr->work); 2488 insert_work(pwq, &barr->work, head, 2489 work_color_to_flags(WORK_NO_COLOR) | linked); 2490 } 2491 2492 /** 2493 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2494 * @wq: workqueue being flushed 2495 * @flush_color: new flush color, < 0 for no-op 2496 * @work_color: new work color, < 0 for no-op 2497 * 2498 * Prepare pwqs for workqueue flushing. 2499 * 2500 * If @flush_color is non-negative, flush_color on all pwqs should be 2501 * -1. If no pwq has in-flight commands at the specified color, all 2502 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2503 * has in flight commands, its pwq->flush_color is set to 2504 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2505 * wakeup logic is armed and %true is returned. 2506 * 2507 * The caller should have initialized @wq->first_flusher prior to 2508 * calling this function with non-negative @flush_color. If 2509 * @flush_color is negative, no flush color update is done and %false 2510 * is returned. 2511 * 2512 * If @work_color is non-negative, all pwqs should have the same 2513 * work_color which is previous to @work_color and all will be 2514 * advanced to @work_color. 2515 * 2516 * CONTEXT: 2517 * mutex_lock(wq->mutex). 2518 * 2519 * RETURNS: 2520 * %true if @flush_color >= 0 and there's something to flush. %false 2521 * otherwise. 2522 */ 2523 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2524 int flush_color, int work_color) 2525 { 2526 bool wait = false; 2527 struct pool_workqueue *pwq; 2528 2529 if (flush_color >= 0) { 2530 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2531 atomic_set(&wq->nr_pwqs_to_flush, 1); 2532 } 2533 2534 for_each_pwq(pwq, wq) { 2535 struct worker_pool *pool = pwq->pool; 2536 2537 spin_lock_irq(&pool->lock); 2538 2539 if (flush_color >= 0) { 2540 WARN_ON_ONCE(pwq->flush_color != -1); 2541 2542 if (pwq->nr_in_flight[flush_color]) { 2543 pwq->flush_color = flush_color; 2544 atomic_inc(&wq->nr_pwqs_to_flush); 2545 wait = true; 2546 } 2547 } 2548 2549 if (work_color >= 0) { 2550 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2551 pwq->work_color = work_color; 2552 } 2553 2554 spin_unlock_irq(&pool->lock); 2555 } 2556 2557 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2558 complete(&wq->first_flusher->done); 2559 2560 return wait; 2561 } 2562 2563 /** 2564 * flush_workqueue - ensure that any scheduled work has run to completion. 2565 * @wq: workqueue to flush 2566 * 2567 * This function sleeps until all work items which were queued on entry 2568 * have finished execution, but it is not livelocked by new incoming ones. 2569 */ 2570 void flush_workqueue(struct workqueue_struct *wq) 2571 { 2572 struct wq_flusher this_flusher = { 2573 .list = LIST_HEAD_INIT(this_flusher.list), 2574 .flush_color = -1, 2575 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2576 }; 2577 int next_color; 2578 2579 lock_map_acquire(&wq->lockdep_map); 2580 lock_map_release(&wq->lockdep_map); 2581 2582 mutex_lock(&wq->mutex); 2583 2584 /* 2585 * Start-to-wait phase 2586 */ 2587 next_color = work_next_color(wq->work_color); 2588 2589 if (next_color != wq->flush_color) { 2590 /* 2591 * Color space is not full. The current work_color 2592 * becomes our flush_color and work_color is advanced 2593 * by one. 2594 */ 2595 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2596 this_flusher.flush_color = wq->work_color; 2597 wq->work_color = next_color; 2598 2599 if (!wq->first_flusher) { 2600 /* no flush in progress, become the first flusher */ 2601 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2602 2603 wq->first_flusher = &this_flusher; 2604 2605 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2606 wq->work_color)) { 2607 /* nothing to flush, done */ 2608 wq->flush_color = next_color; 2609 wq->first_flusher = NULL; 2610 goto out_unlock; 2611 } 2612 } else { 2613 /* wait in queue */ 2614 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2615 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2616 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2617 } 2618 } else { 2619 /* 2620 * Oops, color space is full, wait on overflow queue. 2621 * The next flush completion will assign us 2622 * flush_color and transfer to flusher_queue. 2623 */ 2624 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2625 } 2626 2627 mutex_unlock(&wq->mutex); 2628 2629 wait_for_completion(&this_flusher.done); 2630 2631 /* 2632 * Wake-up-and-cascade phase 2633 * 2634 * First flushers are responsible for cascading flushes and 2635 * handling overflow. Non-first flushers can simply return. 2636 */ 2637 if (wq->first_flusher != &this_flusher) 2638 return; 2639 2640 mutex_lock(&wq->mutex); 2641 2642 /* we might have raced, check again with mutex held */ 2643 if (wq->first_flusher != &this_flusher) 2644 goto out_unlock; 2645 2646 wq->first_flusher = NULL; 2647 2648 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2649 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2650 2651 while (true) { 2652 struct wq_flusher *next, *tmp; 2653 2654 /* complete all the flushers sharing the current flush color */ 2655 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2656 if (next->flush_color != wq->flush_color) 2657 break; 2658 list_del_init(&next->list); 2659 complete(&next->done); 2660 } 2661 2662 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2663 wq->flush_color != work_next_color(wq->work_color)); 2664 2665 /* this flush_color is finished, advance by one */ 2666 wq->flush_color = work_next_color(wq->flush_color); 2667 2668 /* one color has been freed, handle overflow queue */ 2669 if (!list_empty(&wq->flusher_overflow)) { 2670 /* 2671 * Assign the same color to all overflowed 2672 * flushers, advance work_color and append to 2673 * flusher_queue. This is the start-to-wait 2674 * phase for these overflowed flushers. 2675 */ 2676 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2677 tmp->flush_color = wq->work_color; 2678 2679 wq->work_color = work_next_color(wq->work_color); 2680 2681 list_splice_tail_init(&wq->flusher_overflow, 2682 &wq->flusher_queue); 2683 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2684 } 2685 2686 if (list_empty(&wq->flusher_queue)) { 2687 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2688 break; 2689 } 2690 2691 /* 2692 * Need to flush more colors. Make the next flusher 2693 * the new first flusher and arm pwqs. 2694 */ 2695 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2696 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2697 2698 list_del_init(&next->list); 2699 wq->first_flusher = next; 2700 2701 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2702 break; 2703 2704 /* 2705 * Meh... this color is already done, clear first 2706 * flusher and repeat cascading. 2707 */ 2708 wq->first_flusher = NULL; 2709 } 2710 2711 out_unlock: 2712 mutex_unlock(&wq->mutex); 2713 } 2714 EXPORT_SYMBOL_GPL(flush_workqueue); 2715 2716 /** 2717 * drain_workqueue - drain a workqueue 2718 * @wq: workqueue to drain 2719 * 2720 * Wait until the workqueue becomes empty. While draining is in progress, 2721 * only chain queueing is allowed. IOW, only currently pending or running 2722 * work items on @wq can queue further work items on it. @wq is flushed 2723 * repeatedly until it becomes empty. The number of flushing is detemined 2724 * by the depth of chaining and should be relatively short. Whine if it 2725 * takes too long. 2726 */ 2727 void drain_workqueue(struct workqueue_struct *wq) 2728 { 2729 unsigned int flush_cnt = 0; 2730 struct pool_workqueue *pwq; 2731 2732 /* 2733 * __queue_work() needs to test whether there are drainers, is much 2734 * hotter than drain_workqueue() and already looks at @wq->flags. 2735 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2736 */ 2737 mutex_lock(&wq->mutex); 2738 if (!wq->nr_drainers++) 2739 wq->flags |= __WQ_DRAINING; 2740 mutex_unlock(&wq->mutex); 2741 reflush: 2742 flush_workqueue(wq); 2743 2744 mutex_lock(&wq->mutex); 2745 2746 for_each_pwq(pwq, wq) { 2747 bool drained; 2748 2749 spin_lock_irq(&pwq->pool->lock); 2750 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2751 spin_unlock_irq(&pwq->pool->lock); 2752 2753 if (drained) 2754 continue; 2755 2756 if (++flush_cnt == 10 || 2757 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2758 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2759 wq->name, flush_cnt); 2760 2761 mutex_unlock(&wq->mutex); 2762 goto reflush; 2763 } 2764 2765 if (!--wq->nr_drainers) 2766 wq->flags &= ~__WQ_DRAINING; 2767 mutex_unlock(&wq->mutex); 2768 } 2769 EXPORT_SYMBOL_GPL(drain_workqueue); 2770 2771 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr) 2772 { 2773 struct worker *worker = NULL; 2774 struct worker_pool *pool; 2775 struct pool_workqueue *pwq; 2776 2777 might_sleep(); 2778 2779 local_irq_disable(); 2780 pool = get_work_pool(work); 2781 if (!pool) { 2782 local_irq_enable(); 2783 return false; 2784 } 2785 2786 spin_lock(&pool->lock); 2787 /* see the comment in try_to_grab_pending() with the same code */ 2788 pwq = get_work_pwq(work); 2789 if (pwq) { 2790 if (unlikely(pwq->pool != pool)) 2791 goto already_gone; 2792 } else { 2793 worker = find_worker_executing_work(pool, work); 2794 if (!worker) 2795 goto already_gone; 2796 pwq = worker->current_pwq; 2797 } 2798 2799 insert_wq_barrier(pwq, barr, work, worker); 2800 spin_unlock_irq(&pool->lock); 2801 2802 /* 2803 * If @max_active is 1 or rescuer is in use, flushing another work 2804 * item on the same workqueue may lead to deadlock. Make sure the 2805 * flusher is not running on the same workqueue by verifying write 2806 * access. 2807 */ 2808 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) 2809 lock_map_acquire(&pwq->wq->lockdep_map); 2810 else 2811 lock_map_acquire_read(&pwq->wq->lockdep_map); 2812 lock_map_release(&pwq->wq->lockdep_map); 2813 2814 return true; 2815 already_gone: 2816 spin_unlock_irq(&pool->lock); 2817 return false; 2818 } 2819 2820 static bool __flush_work(struct work_struct *work) 2821 { 2822 struct wq_barrier barr; 2823 2824 if (start_flush_work(work, &barr)) { 2825 wait_for_completion(&barr.done); 2826 destroy_work_on_stack(&barr.work); 2827 return true; 2828 } else { 2829 return false; 2830 } 2831 } 2832 2833 /** 2834 * flush_work - wait for a work to finish executing the last queueing instance 2835 * @work: the work to flush 2836 * 2837 * Wait until @work has finished execution. @work is guaranteed to be idle 2838 * on return if it hasn't been requeued since flush started. 2839 * 2840 * RETURNS: 2841 * %true if flush_work() waited for the work to finish execution, 2842 * %false if it was already idle. 2843 */ 2844 bool flush_work(struct work_struct *work) 2845 { 2846 lock_map_acquire(&work->lockdep_map); 2847 lock_map_release(&work->lockdep_map); 2848 2849 return __flush_work(work); 2850 } 2851 EXPORT_SYMBOL_GPL(flush_work); 2852 2853 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 2854 { 2855 unsigned long flags; 2856 int ret; 2857 2858 do { 2859 ret = try_to_grab_pending(work, is_dwork, &flags); 2860 /* 2861 * If someone else is canceling, wait for the same event it 2862 * would be waiting for before retrying. 2863 */ 2864 if (unlikely(ret == -ENOENT)) 2865 flush_work(work); 2866 } while (unlikely(ret < 0)); 2867 2868 /* tell other tasks trying to grab @work to back off */ 2869 mark_work_canceling(work); 2870 local_irq_restore(flags); 2871 2872 flush_work(work); 2873 clear_work_data(work); 2874 return ret; 2875 } 2876 2877 /** 2878 * cancel_work_sync - cancel a work and wait for it to finish 2879 * @work: the work to cancel 2880 * 2881 * Cancel @work and wait for its execution to finish. This function 2882 * can be used even if the work re-queues itself or migrates to 2883 * another workqueue. On return from this function, @work is 2884 * guaranteed to be not pending or executing on any CPU. 2885 * 2886 * cancel_work_sync(&delayed_work->work) must not be used for 2887 * delayed_work's. Use cancel_delayed_work_sync() instead. 2888 * 2889 * The caller must ensure that the workqueue on which @work was last 2890 * queued can't be destroyed before this function returns. 2891 * 2892 * RETURNS: 2893 * %true if @work was pending, %false otherwise. 2894 */ 2895 bool cancel_work_sync(struct work_struct *work) 2896 { 2897 return __cancel_work_timer(work, false); 2898 } 2899 EXPORT_SYMBOL_GPL(cancel_work_sync); 2900 2901 /** 2902 * flush_delayed_work - wait for a dwork to finish executing the last queueing 2903 * @dwork: the delayed work to flush 2904 * 2905 * Delayed timer is cancelled and the pending work is queued for 2906 * immediate execution. Like flush_work(), this function only 2907 * considers the last queueing instance of @dwork. 2908 * 2909 * RETURNS: 2910 * %true if flush_work() waited for the work to finish execution, 2911 * %false if it was already idle. 2912 */ 2913 bool flush_delayed_work(struct delayed_work *dwork) 2914 { 2915 local_irq_disable(); 2916 if (del_timer_sync(&dwork->timer)) 2917 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2918 local_irq_enable(); 2919 return flush_work(&dwork->work); 2920 } 2921 EXPORT_SYMBOL(flush_delayed_work); 2922 2923 /** 2924 * cancel_delayed_work - cancel a delayed work 2925 * @dwork: delayed_work to cancel 2926 * 2927 * Kill off a pending delayed_work. Returns %true if @dwork was pending 2928 * and canceled; %false if wasn't pending. Note that the work callback 2929 * function may still be running on return, unless it returns %true and the 2930 * work doesn't re-arm itself. Explicitly flush or use 2931 * cancel_delayed_work_sync() to wait on it. 2932 * 2933 * This function is safe to call from any context including IRQ handler. 2934 */ 2935 bool cancel_delayed_work(struct delayed_work *dwork) 2936 { 2937 unsigned long flags; 2938 int ret; 2939 2940 do { 2941 ret = try_to_grab_pending(&dwork->work, true, &flags); 2942 } while (unlikely(ret == -EAGAIN)); 2943 2944 if (unlikely(ret < 0)) 2945 return false; 2946 2947 set_work_pool_and_clear_pending(&dwork->work, 2948 get_work_pool_id(&dwork->work)); 2949 local_irq_restore(flags); 2950 return ret; 2951 } 2952 EXPORT_SYMBOL(cancel_delayed_work); 2953 2954 /** 2955 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 2956 * @dwork: the delayed work cancel 2957 * 2958 * This is cancel_work_sync() for delayed works. 2959 * 2960 * RETURNS: 2961 * %true if @dwork was pending, %false otherwise. 2962 */ 2963 bool cancel_delayed_work_sync(struct delayed_work *dwork) 2964 { 2965 return __cancel_work_timer(&dwork->work, true); 2966 } 2967 EXPORT_SYMBOL(cancel_delayed_work_sync); 2968 2969 /** 2970 * schedule_on_each_cpu - execute a function synchronously on each online CPU 2971 * @func: the function to call 2972 * 2973 * schedule_on_each_cpu() executes @func on each online CPU using the 2974 * system workqueue and blocks until all CPUs have completed. 2975 * schedule_on_each_cpu() is very slow. 2976 * 2977 * RETURNS: 2978 * 0 on success, -errno on failure. 2979 */ 2980 int schedule_on_each_cpu(work_func_t func) 2981 { 2982 int cpu; 2983 struct work_struct __percpu *works; 2984 2985 works = alloc_percpu(struct work_struct); 2986 if (!works) 2987 return -ENOMEM; 2988 2989 get_online_cpus(); 2990 2991 for_each_online_cpu(cpu) { 2992 struct work_struct *work = per_cpu_ptr(works, cpu); 2993 2994 INIT_WORK(work, func); 2995 schedule_work_on(cpu, work); 2996 } 2997 2998 for_each_online_cpu(cpu) 2999 flush_work(per_cpu_ptr(works, cpu)); 3000 3001 put_online_cpus(); 3002 free_percpu(works); 3003 return 0; 3004 } 3005 3006 /** 3007 * flush_scheduled_work - ensure that any scheduled work has run to completion. 3008 * 3009 * Forces execution of the kernel-global workqueue and blocks until its 3010 * completion. 3011 * 3012 * Think twice before calling this function! It's very easy to get into 3013 * trouble if you don't take great care. Either of the following situations 3014 * will lead to deadlock: 3015 * 3016 * One of the work items currently on the workqueue needs to acquire 3017 * a lock held by your code or its caller. 3018 * 3019 * Your code is running in the context of a work routine. 3020 * 3021 * They will be detected by lockdep when they occur, but the first might not 3022 * occur very often. It depends on what work items are on the workqueue and 3023 * what locks they need, which you have no control over. 3024 * 3025 * In most situations flushing the entire workqueue is overkill; you merely 3026 * need to know that a particular work item isn't queued and isn't running. 3027 * In such cases you should use cancel_delayed_work_sync() or 3028 * cancel_work_sync() instead. 3029 */ 3030 void flush_scheduled_work(void) 3031 { 3032 flush_workqueue(system_wq); 3033 } 3034 EXPORT_SYMBOL(flush_scheduled_work); 3035 3036 /** 3037 * execute_in_process_context - reliably execute the routine with user context 3038 * @fn: the function to execute 3039 * @ew: guaranteed storage for the execute work structure (must 3040 * be available when the work executes) 3041 * 3042 * Executes the function immediately if process context is available, 3043 * otherwise schedules the function for delayed execution. 3044 * 3045 * Returns: 0 - function was executed 3046 * 1 - function was scheduled for execution 3047 */ 3048 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3049 { 3050 if (!in_interrupt()) { 3051 fn(&ew->work); 3052 return 0; 3053 } 3054 3055 INIT_WORK(&ew->work, fn); 3056 schedule_work(&ew->work); 3057 3058 return 1; 3059 } 3060 EXPORT_SYMBOL_GPL(execute_in_process_context); 3061 3062 #ifdef CONFIG_SYSFS 3063 /* 3064 * Workqueues with WQ_SYSFS flag set is visible to userland via 3065 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 3066 * following attributes. 3067 * 3068 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 3069 * max_active RW int : maximum number of in-flight work items 3070 * 3071 * Unbound workqueues have the following extra attributes. 3072 * 3073 * id RO int : the associated pool ID 3074 * nice RW int : nice value of the workers 3075 * cpumask RW mask : bitmask of allowed CPUs for the workers 3076 */ 3077 struct wq_device { 3078 struct workqueue_struct *wq; 3079 struct device dev; 3080 }; 3081 3082 static struct workqueue_struct *dev_to_wq(struct device *dev) 3083 { 3084 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 3085 3086 return wq_dev->wq; 3087 } 3088 3089 static ssize_t wq_per_cpu_show(struct device *dev, 3090 struct device_attribute *attr, char *buf) 3091 { 3092 struct workqueue_struct *wq = dev_to_wq(dev); 3093 3094 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 3095 } 3096 3097 static ssize_t wq_max_active_show(struct device *dev, 3098 struct device_attribute *attr, char *buf) 3099 { 3100 struct workqueue_struct *wq = dev_to_wq(dev); 3101 3102 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 3103 } 3104 3105 static ssize_t wq_max_active_store(struct device *dev, 3106 struct device_attribute *attr, 3107 const char *buf, size_t count) 3108 { 3109 struct workqueue_struct *wq = dev_to_wq(dev); 3110 int val; 3111 3112 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 3113 return -EINVAL; 3114 3115 workqueue_set_max_active(wq, val); 3116 return count; 3117 } 3118 3119 static struct device_attribute wq_sysfs_attrs[] = { 3120 __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL), 3121 __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store), 3122 __ATTR_NULL, 3123 }; 3124 3125 static ssize_t wq_pool_ids_show(struct device *dev, 3126 struct device_attribute *attr, char *buf) 3127 { 3128 struct workqueue_struct *wq = dev_to_wq(dev); 3129 const char *delim = ""; 3130 int node, written = 0; 3131 3132 rcu_read_lock_sched(); 3133 for_each_node(node) { 3134 written += scnprintf(buf + written, PAGE_SIZE - written, 3135 "%s%d:%d", delim, node, 3136 unbound_pwq_by_node(wq, node)->pool->id); 3137 delim = " "; 3138 } 3139 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 3140 rcu_read_unlock_sched(); 3141 3142 return written; 3143 } 3144 3145 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 3146 char *buf) 3147 { 3148 struct workqueue_struct *wq = dev_to_wq(dev); 3149 int written; 3150 3151 mutex_lock(&wq->mutex); 3152 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 3153 mutex_unlock(&wq->mutex); 3154 3155 return written; 3156 } 3157 3158 /* prepare workqueue_attrs for sysfs store operations */ 3159 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 3160 { 3161 struct workqueue_attrs *attrs; 3162 3163 attrs = alloc_workqueue_attrs(GFP_KERNEL); 3164 if (!attrs) 3165 return NULL; 3166 3167 mutex_lock(&wq->mutex); 3168 copy_workqueue_attrs(attrs, wq->unbound_attrs); 3169 mutex_unlock(&wq->mutex); 3170 return attrs; 3171 } 3172 3173 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 3174 const char *buf, size_t count) 3175 { 3176 struct workqueue_struct *wq = dev_to_wq(dev); 3177 struct workqueue_attrs *attrs; 3178 int ret; 3179 3180 attrs = wq_sysfs_prep_attrs(wq); 3181 if (!attrs) 3182 return -ENOMEM; 3183 3184 if (sscanf(buf, "%d", &attrs->nice) == 1 && 3185 attrs->nice >= -20 && attrs->nice <= 19) 3186 ret = apply_workqueue_attrs(wq, attrs); 3187 else 3188 ret = -EINVAL; 3189 3190 free_workqueue_attrs(attrs); 3191 return ret ?: count; 3192 } 3193 3194 static ssize_t wq_cpumask_show(struct device *dev, 3195 struct device_attribute *attr, char *buf) 3196 { 3197 struct workqueue_struct *wq = dev_to_wq(dev); 3198 int written; 3199 3200 mutex_lock(&wq->mutex); 3201 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask); 3202 mutex_unlock(&wq->mutex); 3203 3204 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 3205 return written; 3206 } 3207 3208 static ssize_t wq_cpumask_store(struct device *dev, 3209 struct device_attribute *attr, 3210 const char *buf, size_t count) 3211 { 3212 struct workqueue_struct *wq = dev_to_wq(dev); 3213 struct workqueue_attrs *attrs; 3214 int ret; 3215 3216 attrs = wq_sysfs_prep_attrs(wq); 3217 if (!attrs) 3218 return -ENOMEM; 3219 3220 ret = cpumask_parse(buf, attrs->cpumask); 3221 if (!ret) 3222 ret = apply_workqueue_attrs(wq, attrs); 3223 3224 free_workqueue_attrs(attrs); 3225 return ret ?: count; 3226 } 3227 3228 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 3229 char *buf) 3230 { 3231 struct workqueue_struct *wq = dev_to_wq(dev); 3232 int written; 3233 3234 mutex_lock(&wq->mutex); 3235 written = scnprintf(buf, PAGE_SIZE, "%d\n", 3236 !wq->unbound_attrs->no_numa); 3237 mutex_unlock(&wq->mutex); 3238 3239 return written; 3240 } 3241 3242 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 3243 const char *buf, size_t count) 3244 { 3245 struct workqueue_struct *wq = dev_to_wq(dev); 3246 struct workqueue_attrs *attrs; 3247 int v, ret; 3248 3249 attrs = wq_sysfs_prep_attrs(wq); 3250 if (!attrs) 3251 return -ENOMEM; 3252 3253 ret = -EINVAL; 3254 if (sscanf(buf, "%d", &v) == 1) { 3255 attrs->no_numa = !v; 3256 ret = apply_workqueue_attrs(wq, attrs); 3257 } 3258 3259 free_workqueue_attrs(attrs); 3260 return ret ?: count; 3261 } 3262 3263 static struct device_attribute wq_sysfs_unbound_attrs[] = { 3264 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 3265 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 3266 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 3267 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 3268 __ATTR_NULL, 3269 }; 3270 3271 static struct bus_type wq_subsys = { 3272 .name = "workqueue", 3273 .dev_attrs = wq_sysfs_attrs, 3274 }; 3275 3276 static int __init wq_sysfs_init(void) 3277 { 3278 return subsys_virtual_register(&wq_subsys, NULL); 3279 } 3280 core_initcall(wq_sysfs_init); 3281 3282 static void wq_device_release(struct device *dev) 3283 { 3284 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 3285 3286 kfree(wq_dev); 3287 } 3288 3289 /** 3290 * workqueue_sysfs_register - make a workqueue visible in sysfs 3291 * @wq: the workqueue to register 3292 * 3293 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 3294 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 3295 * which is the preferred method. 3296 * 3297 * Workqueue user should use this function directly iff it wants to apply 3298 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 3299 * apply_workqueue_attrs() may race against userland updating the 3300 * attributes. 3301 * 3302 * Returns 0 on success, -errno on failure. 3303 */ 3304 int workqueue_sysfs_register(struct workqueue_struct *wq) 3305 { 3306 struct wq_device *wq_dev; 3307 int ret; 3308 3309 /* 3310 * Adjusting max_active or creating new pwqs by applyting 3311 * attributes breaks ordering guarantee. Disallow exposing ordered 3312 * workqueues. 3313 */ 3314 if (WARN_ON(wq->flags & __WQ_ORDERED)) 3315 return -EINVAL; 3316 3317 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 3318 if (!wq_dev) 3319 return -ENOMEM; 3320 3321 wq_dev->wq = wq; 3322 wq_dev->dev.bus = &wq_subsys; 3323 wq_dev->dev.init_name = wq->name; 3324 wq_dev->dev.release = wq_device_release; 3325 3326 /* 3327 * unbound_attrs are created separately. Suppress uevent until 3328 * everything is ready. 3329 */ 3330 dev_set_uevent_suppress(&wq_dev->dev, true); 3331 3332 ret = device_register(&wq_dev->dev); 3333 if (ret) { 3334 kfree(wq_dev); 3335 wq->wq_dev = NULL; 3336 return ret; 3337 } 3338 3339 if (wq->flags & WQ_UNBOUND) { 3340 struct device_attribute *attr; 3341 3342 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 3343 ret = device_create_file(&wq_dev->dev, attr); 3344 if (ret) { 3345 device_unregister(&wq_dev->dev); 3346 wq->wq_dev = NULL; 3347 return ret; 3348 } 3349 } 3350 } 3351 3352 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 3353 return 0; 3354 } 3355 3356 /** 3357 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 3358 * @wq: the workqueue to unregister 3359 * 3360 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 3361 */ 3362 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 3363 { 3364 struct wq_device *wq_dev = wq->wq_dev; 3365 3366 if (!wq->wq_dev) 3367 return; 3368 3369 wq->wq_dev = NULL; 3370 device_unregister(&wq_dev->dev); 3371 } 3372 #else /* CONFIG_SYSFS */ 3373 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 3374 #endif /* CONFIG_SYSFS */ 3375 3376 /** 3377 * free_workqueue_attrs - free a workqueue_attrs 3378 * @attrs: workqueue_attrs to free 3379 * 3380 * Undo alloc_workqueue_attrs(). 3381 */ 3382 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3383 { 3384 if (attrs) { 3385 free_cpumask_var(attrs->cpumask); 3386 kfree(attrs); 3387 } 3388 } 3389 3390 /** 3391 * alloc_workqueue_attrs - allocate a workqueue_attrs 3392 * @gfp_mask: allocation mask to use 3393 * 3394 * Allocate a new workqueue_attrs, initialize with default settings and 3395 * return it. Returns NULL on failure. 3396 */ 3397 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask) 3398 { 3399 struct workqueue_attrs *attrs; 3400 3401 attrs = kzalloc(sizeof(*attrs), gfp_mask); 3402 if (!attrs) 3403 goto fail; 3404 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask)) 3405 goto fail; 3406 3407 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3408 return attrs; 3409 fail: 3410 free_workqueue_attrs(attrs); 3411 return NULL; 3412 } 3413 3414 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3415 const struct workqueue_attrs *from) 3416 { 3417 to->nice = from->nice; 3418 cpumask_copy(to->cpumask, from->cpumask); 3419 /* 3420 * Unlike hash and equality test, this function doesn't ignore 3421 * ->no_numa as it is used for both pool and wq attrs. Instead, 3422 * get_unbound_pool() explicitly clears ->no_numa after copying. 3423 */ 3424 to->no_numa = from->no_numa; 3425 } 3426 3427 /* hash value of the content of @attr */ 3428 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3429 { 3430 u32 hash = 0; 3431 3432 hash = jhash_1word(attrs->nice, hash); 3433 hash = jhash(cpumask_bits(attrs->cpumask), 3434 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3435 return hash; 3436 } 3437 3438 /* content equality test */ 3439 static bool wqattrs_equal(const struct workqueue_attrs *a, 3440 const struct workqueue_attrs *b) 3441 { 3442 if (a->nice != b->nice) 3443 return false; 3444 if (!cpumask_equal(a->cpumask, b->cpumask)) 3445 return false; 3446 return true; 3447 } 3448 3449 /** 3450 * init_worker_pool - initialize a newly zalloc'd worker_pool 3451 * @pool: worker_pool to initialize 3452 * 3453 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs. 3454 * Returns 0 on success, -errno on failure. Even on failure, all fields 3455 * inside @pool proper are initialized and put_unbound_pool() can be called 3456 * on @pool safely to release it. 3457 */ 3458 static int init_worker_pool(struct worker_pool *pool) 3459 { 3460 spin_lock_init(&pool->lock); 3461 pool->id = -1; 3462 pool->cpu = -1; 3463 pool->node = NUMA_NO_NODE; 3464 pool->flags |= POOL_DISASSOCIATED; 3465 INIT_LIST_HEAD(&pool->worklist); 3466 INIT_LIST_HEAD(&pool->idle_list); 3467 hash_init(pool->busy_hash); 3468 3469 init_timer_deferrable(&pool->idle_timer); 3470 pool->idle_timer.function = idle_worker_timeout; 3471 pool->idle_timer.data = (unsigned long)pool; 3472 3473 setup_timer(&pool->mayday_timer, pool_mayday_timeout, 3474 (unsigned long)pool); 3475 3476 mutex_init(&pool->manager_arb); 3477 mutex_init(&pool->manager_mutex); 3478 idr_init(&pool->worker_idr); 3479 3480 INIT_HLIST_NODE(&pool->hash_node); 3481 pool->refcnt = 1; 3482 3483 /* shouldn't fail above this point */ 3484 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL); 3485 if (!pool->attrs) 3486 return -ENOMEM; 3487 return 0; 3488 } 3489 3490 static void rcu_free_pool(struct rcu_head *rcu) 3491 { 3492 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3493 3494 idr_destroy(&pool->worker_idr); 3495 free_workqueue_attrs(pool->attrs); 3496 kfree(pool); 3497 } 3498 3499 /** 3500 * put_unbound_pool - put a worker_pool 3501 * @pool: worker_pool to put 3502 * 3503 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU 3504 * safe manner. get_unbound_pool() calls this function on its failure path 3505 * and this function should be able to release pools which went through, 3506 * successfully or not, init_worker_pool(). 3507 * 3508 * Should be called with wq_pool_mutex held. 3509 */ 3510 static void put_unbound_pool(struct worker_pool *pool) 3511 { 3512 struct worker *worker; 3513 3514 lockdep_assert_held(&wq_pool_mutex); 3515 3516 if (--pool->refcnt) 3517 return; 3518 3519 /* sanity checks */ 3520 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) || 3521 WARN_ON(!list_empty(&pool->worklist))) 3522 return; 3523 3524 /* release id and unhash */ 3525 if (pool->id >= 0) 3526 idr_remove(&worker_pool_idr, pool->id); 3527 hash_del(&pool->hash_node); 3528 3529 /* 3530 * Become the manager and destroy all workers. Grabbing 3531 * manager_arb prevents @pool's workers from blocking on 3532 * manager_mutex. 3533 */ 3534 mutex_lock(&pool->manager_arb); 3535 mutex_lock(&pool->manager_mutex); 3536 spin_lock_irq(&pool->lock); 3537 3538 while ((worker = first_worker(pool))) 3539 destroy_worker(worker); 3540 WARN_ON(pool->nr_workers || pool->nr_idle); 3541 3542 spin_unlock_irq(&pool->lock); 3543 mutex_unlock(&pool->manager_mutex); 3544 mutex_unlock(&pool->manager_arb); 3545 3546 /* shut down the timers */ 3547 del_timer_sync(&pool->idle_timer); 3548 del_timer_sync(&pool->mayday_timer); 3549 3550 /* sched-RCU protected to allow dereferences from get_work_pool() */ 3551 call_rcu_sched(&pool->rcu, rcu_free_pool); 3552 } 3553 3554 /** 3555 * get_unbound_pool - get a worker_pool with the specified attributes 3556 * @attrs: the attributes of the worker_pool to get 3557 * 3558 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3559 * reference count and return it. If there already is a matching 3560 * worker_pool, it will be used; otherwise, this function attempts to 3561 * create a new one. On failure, returns NULL. 3562 * 3563 * Should be called with wq_pool_mutex held. 3564 */ 3565 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3566 { 3567 u32 hash = wqattrs_hash(attrs); 3568 struct worker_pool *pool; 3569 int node; 3570 3571 lockdep_assert_held(&wq_pool_mutex); 3572 3573 /* do we already have a matching pool? */ 3574 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3575 if (wqattrs_equal(pool->attrs, attrs)) { 3576 pool->refcnt++; 3577 goto out_unlock; 3578 } 3579 } 3580 3581 /* nope, create a new one */ 3582 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 3583 if (!pool || init_worker_pool(pool) < 0) 3584 goto fail; 3585 3586 if (workqueue_freezing) 3587 pool->flags |= POOL_FREEZING; 3588 3589 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3590 copy_workqueue_attrs(pool->attrs, attrs); 3591 3592 /* 3593 * no_numa isn't a worker_pool attribute, always clear it. See 3594 * 'struct workqueue_attrs' comments for detail. 3595 */ 3596 pool->attrs->no_numa = false; 3597 3598 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3599 if (wq_numa_enabled) { 3600 for_each_node(node) { 3601 if (cpumask_subset(pool->attrs->cpumask, 3602 wq_numa_possible_cpumask[node])) { 3603 pool->node = node; 3604 break; 3605 } 3606 } 3607 } 3608 3609 if (worker_pool_assign_id(pool) < 0) 3610 goto fail; 3611 3612 /* create and start the initial worker */ 3613 if (create_and_start_worker(pool) < 0) 3614 goto fail; 3615 3616 /* install */ 3617 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3618 out_unlock: 3619 return pool; 3620 fail: 3621 if (pool) 3622 put_unbound_pool(pool); 3623 return NULL; 3624 } 3625 3626 static void rcu_free_pwq(struct rcu_head *rcu) 3627 { 3628 kmem_cache_free(pwq_cache, 3629 container_of(rcu, struct pool_workqueue, rcu)); 3630 } 3631 3632 /* 3633 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3634 * and needs to be destroyed. 3635 */ 3636 static void pwq_unbound_release_workfn(struct work_struct *work) 3637 { 3638 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3639 unbound_release_work); 3640 struct workqueue_struct *wq = pwq->wq; 3641 struct worker_pool *pool = pwq->pool; 3642 bool is_last; 3643 3644 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3645 return; 3646 3647 /* 3648 * Unlink @pwq. Synchronization against wq->mutex isn't strictly 3649 * necessary on release but do it anyway. It's easier to verify 3650 * and consistent with the linking path. 3651 */ 3652 mutex_lock(&wq->mutex); 3653 list_del_rcu(&pwq->pwqs_node); 3654 is_last = list_empty(&wq->pwqs); 3655 mutex_unlock(&wq->mutex); 3656 3657 mutex_lock(&wq_pool_mutex); 3658 put_unbound_pool(pool); 3659 mutex_unlock(&wq_pool_mutex); 3660 3661 call_rcu_sched(&pwq->rcu, rcu_free_pwq); 3662 3663 /* 3664 * If we're the last pwq going away, @wq is already dead and no one 3665 * is gonna access it anymore. Free it. 3666 */ 3667 if (is_last) { 3668 free_workqueue_attrs(wq->unbound_attrs); 3669 kfree(wq); 3670 } 3671 } 3672 3673 /** 3674 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3675 * @pwq: target pool_workqueue 3676 * 3677 * If @pwq isn't freezing, set @pwq->max_active to the associated 3678 * workqueue's saved_max_active and activate delayed work items 3679 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3680 */ 3681 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3682 { 3683 struct workqueue_struct *wq = pwq->wq; 3684 bool freezable = wq->flags & WQ_FREEZABLE; 3685 3686 /* for @wq->saved_max_active */ 3687 lockdep_assert_held(&wq->mutex); 3688 3689 /* fast exit for non-freezable wqs */ 3690 if (!freezable && pwq->max_active == wq->saved_max_active) 3691 return; 3692 3693 spin_lock_irq(&pwq->pool->lock); 3694 3695 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) { 3696 pwq->max_active = wq->saved_max_active; 3697 3698 while (!list_empty(&pwq->delayed_works) && 3699 pwq->nr_active < pwq->max_active) 3700 pwq_activate_first_delayed(pwq); 3701 3702 /* 3703 * Need to kick a worker after thawed or an unbound wq's 3704 * max_active is bumped. It's a slow path. Do it always. 3705 */ 3706 wake_up_worker(pwq->pool); 3707 } else { 3708 pwq->max_active = 0; 3709 } 3710 3711 spin_unlock_irq(&pwq->pool->lock); 3712 } 3713 3714 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3715 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3716 struct worker_pool *pool) 3717 { 3718 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3719 3720 memset(pwq, 0, sizeof(*pwq)); 3721 3722 pwq->pool = pool; 3723 pwq->wq = wq; 3724 pwq->flush_color = -1; 3725 pwq->refcnt = 1; 3726 INIT_LIST_HEAD(&pwq->delayed_works); 3727 INIT_LIST_HEAD(&pwq->pwqs_node); 3728 INIT_LIST_HEAD(&pwq->mayday_node); 3729 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3730 } 3731 3732 /* sync @pwq with the current state of its associated wq and link it */ 3733 static void link_pwq(struct pool_workqueue *pwq) 3734 { 3735 struct workqueue_struct *wq = pwq->wq; 3736 3737 lockdep_assert_held(&wq->mutex); 3738 3739 /* may be called multiple times, ignore if already linked */ 3740 if (!list_empty(&pwq->pwqs_node)) 3741 return; 3742 3743 /* 3744 * Set the matching work_color. This is synchronized with 3745 * wq->mutex to avoid confusing flush_workqueue(). 3746 */ 3747 pwq->work_color = wq->work_color; 3748 3749 /* sync max_active to the current setting */ 3750 pwq_adjust_max_active(pwq); 3751 3752 /* link in @pwq */ 3753 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3754 } 3755 3756 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3757 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3758 const struct workqueue_attrs *attrs) 3759 { 3760 struct worker_pool *pool; 3761 struct pool_workqueue *pwq; 3762 3763 lockdep_assert_held(&wq_pool_mutex); 3764 3765 pool = get_unbound_pool(attrs); 3766 if (!pool) 3767 return NULL; 3768 3769 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3770 if (!pwq) { 3771 put_unbound_pool(pool); 3772 return NULL; 3773 } 3774 3775 init_pwq(pwq, wq, pool); 3776 return pwq; 3777 } 3778 3779 /* undo alloc_unbound_pwq(), used only in the error path */ 3780 static void free_unbound_pwq(struct pool_workqueue *pwq) 3781 { 3782 lockdep_assert_held(&wq_pool_mutex); 3783 3784 if (pwq) { 3785 put_unbound_pool(pwq->pool); 3786 kmem_cache_free(pwq_cache, pwq); 3787 } 3788 } 3789 3790 /** 3791 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node 3792 * @attrs: the wq_attrs of interest 3793 * @node: the target NUMA node 3794 * @cpu_going_down: if >= 0, the CPU to consider as offline 3795 * @cpumask: outarg, the resulting cpumask 3796 * 3797 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3798 * @cpu_going_down is >= 0, that cpu is considered offline during 3799 * calculation. The result is stored in @cpumask. This function returns 3800 * %true if the resulting @cpumask is different from @attrs->cpumask, 3801 * %false if equal. 3802 * 3803 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3804 * enabled and @node has online CPUs requested by @attrs, the returned 3805 * cpumask is the intersection of the possible CPUs of @node and 3806 * @attrs->cpumask. 3807 * 3808 * The caller is responsible for ensuring that the cpumask of @node stays 3809 * stable. 3810 */ 3811 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3812 int cpu_going_down, cpumask_t *cpumask) 3813 { 3814 if (!wq_numa_enabled || attrs->no_numa) 3815 goto use_dfl; 3816 3817 /* does @node have any online CPUs @attrs wants? */ 3818 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3819 if (cpu_going_down >= 0) 3820 cpumask_clear_cpu(cpu_going_down, cpumask); 3821 3822 if (cpumask_empty(cpumask)) 3823 goto use_dfl; 3824 3825 /* yeap, return possible CPUs in @node that @attrs wants */ 3826 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3827 return !cpumask_equal(cpumask, attrs->cpumask); 3828 3829 use_dfl: 3830 cpumask_copy(cpumask, attrs->cpumask); 3831 return false; 3832 } 3833 3834 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3835 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3836 int node, 3837 struct pool_workqueue *pwq) 3838 { 3839 struct pool_workqueue *old_pwq; 3840 3841 lockdep_assert_held(&wq->mutex); 3842 3843 /* link_pwq() can handle duplicate calls */ 3844 link_pwq(pwq); 3845 3846 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3847 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3848 return old_pwq; 3849 } 3850 3851 /** 3852 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 3853 * @wq: the target workqueue 3854 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 3855 * 3856 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 3857 * machines, this function maps a separate pwq to each NUMA node with 3858 * possibles CPUs in @attrs->cpumask so that work items are affine to the 3859 * NUMA node it was issued on. Older pwqs are released as in-flight work 3860 * items finish. Note that a work item which repeatedly requeues itself 3861 * back-to-back will stay on its current pwq. 3862 * 3863 * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on 3864 * failure. 3865 */ 3866 int apply_workqueue_attrs(struct workqueue_struct *wq, 3867 const struct workqueue_attrs *attrs) 3868 { 3869 struct workqueue_attrs *new_attrs, *tmp_attrs; 3870 struct pool_workqueue **pwq_tbl, *dfl_pwq; 3871 int node, ret; 3872 3873 /* only unbound workqueues can change attributes */ 3874 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 3875 return -EINVAL; 3876 3877 /* creating multiple pwqs breaks ordering guarantee */ 3878 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))) 3879 return -EINVAL; 3880 3881 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL); 3882 new_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3883 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3884 if (!pwq_tbl || !new_attrs || !tmp_attrs) 3885 goto enomem; 3886 3887 /* make a copy of @attrs and sanitize it */ 3888 copy_workqueue_attrs(new_attrs, attrs); 3889 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3890 3891 /* 3892 * We may create multiple pwqs with differing cpumasks. Make a 3893 * copy of @new_attrs which will be modified and used to obtain 3894 * pools. 3895 */ 3896 copy_workqueue_attrs(tmp_attrs, new_attrs); 3897 3898 /* 3899 * CPUs should stay stable across pwq creations and installations. 3900 * Pin CPUs, determine the target cpumask for each node and create 3901 * pwqs accordingly. 3902 */ 3903 get_online_cpus(); 3904 3905 mutex_lock(&wq_pool_mutex); 3906 3907 /* 3908 * If something goes wrong during CPU up/down, we'll fall back to 3909 * the default pwq covering whole @attrs->cpumask. Always create 3910 * it even if we don't use it immediately. 3911 */ 3912 dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3913 if (!dfl_pwq) 3914 goto enomem_pwq; 3915 3916 for_each_node(node) { 3917 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) { 3918 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3919 if (!pwq_tbl[node]) 3920 goto enomem_pwq; 3921 } else { 3922 dfl_pwq->refcnt++; 3923 pwq_tbl[node] = dfl_pwq; 3924 } 3925 } 3926 3927 mutex_unlock(&wq_pool_mutex); 3928 3929 /* all pwqs have been created successfully, let's install'em */ 3930 mutex_lock(&wq->mutex); 3931 3932 copy_workqueue_attrs(wq->unbound_attrs, new_attrs); 3933 3934 /* save the previous pwq and install the new one */ 3935 for_each_node(node) 3936 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]); 3937 3938 /* @dfl_pwq might not have been used, ensure it's linked */ 3939 link_pwq(dfl_pwq); 3940 swap(wq->dfl_pwq, dfl_pwq); 3941 3942 mutex_unlock(&wq->mutex); 3943 3944 /* put the old pwqs */ 3945 for_each_node(node) 3946 put_pwq_unlocked(pwq_tbl[node]); 3947 put_pwq_unlocked(dfl_pwq); 3948 3949 put_online_cpus(); 3950 ret = 0; 3951 /* fall through */ 3952 out_free: 3953 free_workqueue_attrs(tmp_attrs); 3954 free_workqueue_attrs(new_attrs); 3955 kfree(pwq_tbl); 3956 return ret; 3957 3958 enomem_pwq: 3959 free_unbound_pwq(dfl_pwq); 3960 for_each_node(node) 3961 if (pwq_tbl && pwq_tbl[node] != dfl_pwq) 3962 free_unbound_pwq(pwq_tbl[node]); 3963 mutex_unlock(&wq_pool_mutex); 3964 put_online_cpus(); 3965 enomem: 3966 ret = -ENOMEM; 3967 goto out_free; 3968 } 3969 3970 /** 3971 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 3972 * @wq: the target workqueue 3973 * @cpu: the CPU coming up or going down 3974 * @online: whether @cpu is coming up or going down 3975 * 3976 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 3977 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 3978 * @wq accordingly. 3979 * 3980 * If NUMA affinity can't be adjusted due to memory allocation failure, it 3981 * falls back to @wq->dfl_pwq which may not be optimal but is always 3982 * correct. 3983 * 3984 * Note that when the last allowed CPU of a NUMA node goes offline for a 3985 * workqueue with a cpumask spanning multiple nodes, the workers which were 3986 * already executing the work items for the workqueue will lose their CPU 3987 * affinity and may execute on any CPU. This is similar to how per-cpu 3988 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 3989 * affinity, it's the user's responsibility to flush the work item from 3990 * CPU_DOWN_PREPARE. 3991 */ 3992 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 3993 bool online) 3994 { 3995 int node = cpu_to_node(cpu); 3996 int cpu_off = online ? -1 : cpu; 3997 struct pool_workqueue *old_pwq = NULL, *pwq; 3998 struct workqueue_attrs *target_attrs; 3999 cpumask_t *cpumask; 4000 4001 lockdep_assert_held(&wq_pool_mutex); 4002 4003 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND)) 4004 return; 4005 4006 /* 4007 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 4008 * Let's use a preallocated one. The following buf is protected by 4009 * CPU hotplug exclusion. 4010 */ 4011 target_attrs = wq_update_unbound_numa_attrs_buf; 4012 cpumask = target_attrs->cpumask; 4013 4014 mutex_lock(&wq->mutex); 4015 if (wq->unbound_attrs->no_numa) 4016 goto out_unlock; 4017 4018 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 4019 pwq = unbound_pwq_by_node(wq, node); 4020 4021 /* 4022 * Let's determine what needs to be done. If the target cpumask is 4023 * different from wq's, we need to compare it to @pwq's and create 4024 * a new one if they don't match. If the target cpumask equals 4025 * wq's, the default pwq should be used. If @pwq is already the 4026 * default one, nothing to do; otherwise, install the default one. 4027 */ 4028 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) { 4029 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 4030 goto out_unlock; 4031 } else { 4032 if (pwq == wq->dfl_pwq) 4033 goto out_unlock; 4034 else 4035 goto use_dfl_pwq; 4036 } 4037 4038 mutex_unlock(&wq->mutex); 4039 4040 /* create a new pwq */ 4041 pwq = alloc_unbound_pwq(wq, target_attrs); 4042 if (!pwq) { 4043 pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 4044 wq->name); 4045 goto out_unlock; 4046 } 4047 4048 /* 4049 * Install the new pwq. As this function is called only from CPU 4050 * hotplug callbacks and applying a new attrs is wrapped with 4051 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed 4052 * inbetween. 4053 */ 4054 mutex_lock(&wq->mutex); 4055 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 4056 goto out_unlock; 4057 4058 use_dfl_pwq: 4059 spin_lock_irq(&wq->dfl_pwq->pool->lock); 4060 get_pwq(wq->dfl_pwq); 4061 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 4062 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 4063 out_unlock: 4064 mutex_unlock(&wq->mutex); 4065 put_pwq_unlocked(old_pwq); 4066 } 4067 4068 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4069 { 4070 bool highpri = wq->flags & WQ_HIGHPRI; 4071 int cpu; 4072 4073 if (!(wq->flags & WQ_UNBOUND)) { 4074 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 4075 if (!wq->cpu_pwqs) 4076 return -ENOMEM; 4077 4078 for_each_possible_cpu(cpu) { 4079 struct pool_workqueue *pwq = 4080 per_cpu_ptr(wq->cpu_pwqs, cpu); 4081 struct worker_pool *cpu_pools = 4082 per_cpu(cpu_worker_pools, cpu); 4083 4084 init_pwq(pwq, wq, &cpu_pools[highpri]); 4085 4086 mutex_lock(&wq->mutex); 4087 link_pwq(pwq); 4088 mutex_unlock(&wq->mutex); 4089 } 4090 return 0; 4091 } else { 4092 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4093 } 4094 } 4095 4096 static int wq_clamp_max_active(int max_active, unsigned int flags, 4097 const char *name) 4098 { 4099 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 4100 4101 if (max_active < 1 || max_active > lim) 4102 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4103 max_active, name, 1, lim); 4104 4105 return clamp_val(max_active, 1, lim); 4106 } 4107 4108 struct workqueue_struct *__alloc_workqueue_key(const char *fmt, 4109 unsigned int flags, 4110 int max_active, 4111 struct lock_class_key *key, 4112 const char *lock_name, ...) 4113 { 4114 size_t tbl_size = 0; 4115 va_list args; 4116 struct workqueue_struct *wq; 4117 struct pool_workqueue *pwq; 4118 4119 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4120 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4121 flags |= WQ_UNBOUND; 4122 4123 /* allocate wq and format name */ 4124 if (flags & WQ_UNBOUND) 4125 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]); 4126 4127 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4128 if (!wq) 4129 return NULL; 4130 4131 if (flags & WQ_UNBOUND) { 4132 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL); 4133 if (!wq->unbound_attrs) 4134 goto err_free_wq; 4135 } 4136 4137 va_start(args, lock_name); 4138 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4139 va_end(args); 4140 4141 max_active = max_active ?: WQ_DFL_ACTIVE; 4142 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4143 4144 /* init wq */ 4145 wq->flags = flags; 4146 wq->saved_max_active = max_active; 4147 mutex_init(&wq->mutex); 4148 atomic_set(&wq->nr_pwqs_to_flush, 0); 4149 INIT_LIST_HEAD(&wq->pwqs); 4150 INIT_LIST_HEAD(&wq->flusher_queue); 4151 INIT_LIST_HEAD(&wq->flusher_overflow); 4152 INIT_LIST_HEAD(&wq->maydays); 4153 4154 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 4155 INIT_LIST_HEAD(&wq->list); 4156 4157 if (alloc_and_link_pwqs(wq) < 0) 4158 goto err_free_wq; 4159 4160 /* 4161 * Workqueues which may be used during memory reclaim should 4162 * have a rescuer to guarantee forward progress. 4163 */ 4164 if (flags & WQ_MEM_RECLAIM) { 4165 struct worker *rescuer; 4166 4167 rescuer = alloc_worker(); 4168 if (!rescuer) 4169 goto err_destroy; 4170 4171 rescuer->rescue_wq = wq; 4172 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", 4173 wq->name); 4174 if (IS_ERR(rescuer->task)) { 4175 kfree(rescuer); 4176 goto err_destroy; 4177 } 4178 4179 wq->rescuer = rescuer; 4180 rescuer->task->flags |= PF_NO_SETAFFINITY; 4181 wake_up_process(rescuer->task); 4182 } 4183 4184 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4185 goto err_destroy; 4186 4187 /* 4188 * wq_pool_mutex protects global freeze state and workqueues list. 4189 * Grab it, adjust max_active and add the new @wq to workqueues 4190 * list. 4191 */ 4192 mutex_lock(&wq_pool_mutex); 4193 4194 mutex_lock(&wq->mutex); 4195 for_each_pwq(pwq, wq) 4196 pwq_adjust_max_active(pwq); 4197 mutex_unlock(&wq->mutex); 4198 4199 list_add(&wq->list, &workqueues); 4200 4201 mutex_unlock(&wq_pool_mutex); 4202 4203 return wq; 4204 4205 err_free_wq: 4206 free_workqueue_attrs(wq->unbound_attrs); 4207 kfree(wq); 4208 return NULL; 4209 err_destroy: 4210 destroy_workqueue(wq); 4211 return NULL; 4212 } 4213 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 4214 4215 /** 4216 * destroy_workqueue - safely terminate a workqueue 4217 * @wq: target workqueue 4218 * 4219 * Safely destroy a workqueue. All work currently pending will be done first. 4220 */ 4221 void destroy_workqueue(struct workqueue_struct *wq) 4222 { 4223 struct pool_workqueue *pwq; 4224 int node; 4225 4226 /* drain it before proceeding with destruction */ 4227 drain_workqueue(wq); 4228 4229 /* sanity checks */ 4230 mutex_lock(&wq->mutex); 4231 for_each_pwq(pwq, wq) { 4232 int i; 4233 4234 for (i = 0; i < WORK_NR_COLORS; i++) { 4235 if (WARN_ON(pwq->nr_in_flight[i])) { 4236 mutex_unlock(&wq->mutex); 4237 return; 4238 } 4239 } 4240 4241 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) || 4242 WARN_ON(pwq->nr_active) || 4243 WARN_ON(!list_empty(&pwq->delayed_works))) { 4244 mutex_unlock(&wq->mutex); 4245 return; 4246 } 4247 } 4248 mutex_unlock(&wq->mutex); 4249 4250 /* 4251 * wq list is used to freeze wq, remove from list after 4252 * flushing is complete in case freeze races us. 4253 */ 4254 mutex_lock(&wq_pool_mutex); 4255 list_del_init(&wq->list); 4256 mutex_unlock(&wq_pool_mutex); 4257 4258 workqueue_sysfs_unregister(wq); 4259 4260 if (wq->rescuer) { 4261 kthread_stop(wq->rescuer->task); 4262 kfree(wq->rescuer); 4263 wq->rescuer = NULL; 4264 } 4265 4266 if (!(wq->flags & WQ_UNBOUND)) { 4267 /* 4268 * The base ref is never dropped on per-cpu pwqs. Directly 4269 * free the pwqs and wq. 4270 */ 4271 free_percpu(wq->cpu_pwqs); 4272 kfree(wq); 4273 } else { 4274 /* 4275 * We're the sole accessor of @wq at this point. Directly 4276 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4277 * @wq will be freed when the last pwq is released. 4278 */ 4279 for_each_node(node) { 4280 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4281 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4282 put_pwq_unlocked(pwq); 4283 } 4284 4285 /* 4286 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4287 * put. Don't access it afterwards. 4288 */ 4289 pwq = wq->dfl_pwq; 4290 wq->dfl_pwq = NULL; 4291 put_pwq_unlocked(pwq); 4292 } 4293 } 4294 EXPORT_SYMBOL_GPL(destroy_workqueue); 4295 4296 /** 4297 * workqueue_set_max_active - adjust max_active of a workqueue 4298 * @wq: target workqueue 4299 * @max_active: new max_active value. 4300 * 4301 * Set max_active of @wq to @max_active. 4302 * 4303 * CONTEXT: 4304 * Don't call from IRQ context. 4305 */ 4306 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4307 { 4308 struct pool_workqueue *pwq; 4309 4310 /* disallow meddling with max_active for ordered workqueues */ 4311 if (WARN_ON(wq->flags & __WQ_ORDERED)) 4312 return; 4313 4314 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4315 4316 mutex_lock(&wq->mutex); 4317 4318 wq->saved_max_active = max_active; 4319 4320 for_each_pwq(pwq, wq) 4321 pwq_adjust_max_active(pwq); 4322 4323 mutex_unlock(&wq->mutex); 4324 } 4325 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4326 4327 /** 4328 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4329 * 4330 * Determine whether %current is a workqueue rescuer. Can be used from 4331 * work functions to determine whether it's being run off the rescuer task. 4332 */ 4333 bool current_is_workqueue_rescuer(void) 4334 { 4335 struct worker *worker = current_wq_worker(); 4336 4337 return worker && worker->rescue_wq; 4338 } 4339 4340 /** 4341 * workqueue_congested - test whether a workqueue is congested 4342 * @cpu: CPU in question 4343 * @wq: target workqueue 4344 * 4345 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4346 * no synchronization around this function and the test result is 4347 * unreliable and only useful as advisory hints or for debugging. 4348 * 4349 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4350 * Note that both per-cpu and unbound workqueues may be associated with 4351 * multiple pool_workqueues which have separate congested states. A 4352 * workqueue being congested on one CPU doesn't mean the workqueue is also 4353 * contested on other CPUs / NUMA nodes. 4354 * 4355 * RETURNS: 4356 * %true if congested, %false otherwise. 4357 */ 4358 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4359 { 4360 struct pool_workqueue *pwq; 4361 bool ret; 4362 4363 rcu_read_lock_sched(); 4364 4365 if (cpu == WORK_CPU_UNBOUND) 4366 cpu = smp_processor_id(); 4367 4368 if (!(wq->flags & WQ_UNBOUND)) 4369 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4370 else 4371 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4372 4373 ret = !list_empty(&pwq->delayed_works); 4374 rcu_read_unlock_sched(); 4375 4376 return ret; 4377 } 4378 EXPORT_SYMBOL_GPL(workqueue_congested); 4379 4380 /** 4381 * work_busy - test whether a work is currently pending or running 4382 * @work: the work to be tested 4383 * 4384 * Test whether @work is currently pending or running. There is no 4385 * synchronization around this function and the test result is 4386 * unreliable and only useful as advisory hints or for debugging. 4387 * 4388 * RETURNS: 4389 * OR'd bitmask of WORK_BUSY_* bits. 4390 */ 4391 unsigned int work_busy(struct work_struct *work) 4392 { 4393 struct worker_pool *pool; 4394 unsigned long flags; 4395 unsigned int ret = 0; 4396 4397 if (work_pending(work)) 4398 ret |= WORK_BUSY_PENDING; 4399 4400 local_irq_save(flags); 4401 pool = get_work_pool(work); 4402 if (pool) { 4403 spin_lock(&pool->lock); 4404 if (find_worker_executing_work(pool, work)) 4405 ret |= WORK_BUSY_RUNNING; 4406 spin_unlock(&pool->lock); 4407 } 4408 local_irq_restore(flags); 4409 4410 return ret; 4411 } 4412 EXPORT_SYMBOL_GPL(work_busy); 4413 4414 /** 4415 * set_worker_desc - set description for the current work item 4416 * @fmt: printf-style format string 4417 * @...: arguments for the format string 4418 * 4419 * This function can be called by a running work function to describe what 4420 * the work item is about. If the worker task gets dumped, this 4421 * information will be printed out together to help debugging. The 4422 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4423 */ 4424 void set_worker_desc(const char *fmt, ...) 4425 { 4426 struct worker *worker = current_wq_worker(); 4427 va_list args; 4428 4429 if (worker) { 4430 va_start(args, fmt); 4431 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4432 va_end(args); 4433 worker->desc_valid = true; 4434 } 4435 } 4436 4437 /** 4438 * print_worker_info - print out worker information and description 4439 * @log_lvl: the log level to use when printing 4440 * @task: target task 4441 * 4442 * If @task is a worker and currently executing a work item, print out the 4443 * name of the workqueue being serviced and worker description set with 4444 * set_worker_desc() by the currently executing work item. 4445 * 4446 * This function can be safely called on any task as long as the 4447 * task_struct itself is accessible. While safe, this function isn't 4448 * synchronized and may print out mixups or garbages of limited length. 4449 */ 4450 void print_worker_info(const char *log_lvl, struct task_struct *task) 4451 { 4452 work_func_t *fn = NULL; 4453 char name[WQ_NAME_LEN] = { }; 4454 char desc[WORKER_DESC_LEN] = { }; 4455 struct pool_workqueue *pwq = NULL; 4456 struct workqueue_struct *wq = NULL; 4457 bool desc_valid = false; 4458 struct worker *worker; 4459 4460 if (!(task->flags & PF_WQ_WORKER)) 4461 return; 4462 4463 /* 4464 * This function is called without any synchronization and @task 4465 * could be in any state. Be careful with dereferences. 4466 */ 4467 worker = probe_kthread_data(task); 4468 4469 /* 4470 * Carefully copy the associated workqueue's workfn and name. Keep 4471 * the original last '\0' in case the original contains garbage. 4472 */ 4473 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4474 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4475 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4476 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4477 4478 /* copy worker description */ 4479 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid)); 4480 if (desc_valid) 4481 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4482 4483 if (fn || name[0] || desc[0]) { 4484 printk("%sWorkqueue: %s %pf", log_lvl, name, fn); 4485 if (desc[0]) 4486 pr_cont(" (%s)", desc); 4487 pr_cont("\n"); 4488 } 4489 } 4490 4491 /* 4492 * CPU hotplug. 4493 * 4494 * There are two challenges in supporting CPU hotplug. Firstly, there 4495 * are a lot of assumptions on strong associations among work, pwq and 4496 * pool which make migrating pending and scheduled works very 4497 * difficult to implement without impacting hot paths. Secondly, 4498 * worker pools serve mix of short, long and very long running works making 4499 * blocked draining impractical. 4500 * 4501 * This is solved by allowing the pools to be disassociated from the CPU 4502 * running as an unbound one and allowing it to be reattached later if the 4503 * cpu comes back online. 4504 */ 4505 4506 static void wq_unbind_fn(struct work_struct *work) 4507 { 4508 int cpu = smp_processor_id(); 4509 struct worker_pool *pool; 4510 struct worker *worker; 4511 int wi; 4512 4513 for_each_cpu_worker_pool(pool, cpu) { 4514 WARN_ON_ONCE(cpu != smp_processor_id()); 4515 4516 mutex_lock(&pool->manager_mutex); 4517 spin_lock_irq(&pool->lock); 4518 4519 /* 4520 * We've blocked all manager operations. Make all workers 4521 * unbound and set DISASSOCIATED. Before this, all workers 4522 * except for the ones which are still executing works from 4523 * before the last CPU down must be on the cpu. After 4524 * this, they may become diasporas. 4525 */ 4526 for_each_pool_worker(worker, wi, pool) 4527 worker->flags |= WORKER_UNBOUND; 4528 4529 pool->flags |= POOL_DISASSOCIATED; 4530 4531 spin_unlock_irq(&pool->lock); 4532 mutex_unlock(&pool->manager_mutex); 4533 4534 /* 4535 * Call schedule() so that we cross rq->lock and thus can 4536 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4537 * This is necessary as scheduler callbacks may be invoked 4538 * from other cpus. 4539 */ 4540 schedule(); 4541 4542 /* 4543 * Sched callbacks are disabled now. Zap nr_running. 4544 * After this, nr_running stays zero and need_more_worker() 4545 * and keep_working() are always true as long as the 4546 * worklist is not empty. This pool now behaves as an 4547 * unbound (in terms of concurrency management) pool which 4548 * are served by workers tied to the pool. 4549 */ 4550 atomic_set(&pool->nr_running, 0); 4551 4552 /* 4553 * With concurrency management just turned off, a busy 4554 * worker blocking could lead to lengthy stalls. Kick off 4555 * unbound chain execution of currently pending work items. 4556 */ 4557 spin_lock_irq(&pool->lock); 4558 wake_up_worker(pool); 4559 spin_unlock_irq(&pool->lock); 4560 } 4561 } 4562 4563 /** 4564 * rebind_workers - rebind all workers of a pool to the associated CPU 4565 * @pool: pool of interest 4566 * 4567 * @pool->cpu is coming online. Rebind all workers to the CPU. 4568 */ 4569 static void rebind_workers(struct worker_pool *pool) 4570 { 4571 struct worker *worker; 4572 int wi; 4573 4574 lockdep_assert_held(&pool->manager_mutex); 4575 4576 /* 4577 * Restore CPU affinity of all workers. As all idle workers should 4578 * be on the run-queue of the associated CPU before any local 4579 * wake-ups for concurrency management happen, restore CPU affinty 4580 * of all workers first and then clear UNBOUND. As we're called 4581 * from CPU_ONLINE, the following shouldn't fail. 4582 */ 4583 for_each_pool_worker(worker, wi, pool) 4584 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4585 pool->attrs->cpumask) < 0); 4586 4587 spin_lock_irq(&pool->lock); 4588 4589 for_each_pool_worker(worker, wi, pool) { 4590 unsigned int worker_flags = worker->flags; 4591 4592 /* 4593 * A bound idle worker should actually be on the runqueue 4594 * of the associated CPU for local wake-ups targeting it to 4595 * work. Kick all idle workers so that they migrate to the 4596 * associated CPU. Doing this in the same loop as 4597 * replacing UNBOUND with REBOUND is safe as no worker will 4598 * be bound before @pool->lock is released. 4599 */ 4600 if (worker_flags & WORKER_IDLE) 4601 wake_up_process(worker->task); 4602 4603 /* 4604 * We want to clear UNBOUND but can't directly call 4605 * worker_clr_flags() or adjust nr_running. Atomically 4606 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4607 * @worker will clear REBOUND using worker_clr_flags() when 4608 * it initiates the next execution cycle thus restoring 4609 * concurrency management. Note that when or whether 4610 * @worker clears REBOUND doesn't affect correctness. 4611 * 4612 * ACCESS_ONCE() is necessary because @worker->flags may be 4613 * tested without holding any lock in 4614 * wq_worker_waking_up(). Without it, NOT_RUNNING test may 4615 * fail incorrectly leading to premature concurrency 4616 * management operations. 4617 */ 4618 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4619 worker_flags |= WORKER_REBOUND; 4620 worker_flags &= ~WORKER_UNBOUND; 4621 ACCESS_ONCE(worker->flags) = worker_flags; 4622 } 4623 4624 spin_unlock_irq(&pool->lock); 4625 } 4626 4627 /** 4628 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4629 * @pool: unbound pool of interest 4630 * @cpu: the CPU which is coming up 4631 * 4632 * An unbound pool may end up with a cpumask which doesn't have any online 4633 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4634 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4635 * online CPU before, cpus_allowed of all its workers should be restored. 4636 */ 4637 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 4638 { 4639 static cpumask_t cpumask; 4640 struct worker *worker; 4641 int wi; 4642 4643 lockdep_assert_held(&pool->manager_mutex); 4644 4645 /* is @cpu allowed for @pool? */ 4646 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 4647 return; 4648 4649 /* is @cpu the only online CPU? */ 4650 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 4651 if (cpumask_weight(&cpumask) != 1) 4652 return; 4653 4654 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 4655 for_each_pool_worker(worker, wi, pool) 4656 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4657 pool->attrs->cpumask) < 0); 4658 } 4659 4660 /* 4661 * Workqueues should be brought up before normal priority CPU notifiers. 4662 * This will be registered high priority CPU notifier. 4663 */ 4664 static int workqueue_cpu_up_callback(struct notifier_block *nfb, 4665 unsigned long action, 4666 void *hcpu) 4667 { 4668 int cpu = (unsigned long)hcpu; 4669 struct worker_pool *pool; 4670 struct workqueue_struct *wq; 4671 int pi; 4672 4673 switch (action & ~CPU_TASKS_FROZEN) { 4674 case CPU_UP_PREPARE: 4675 for_each_cpu_worker_pool(pool, cpu) { 4676 if (pool->nr_workers) 4677 continue; 4678 if (create_and_start_worker(pool) < 0) 4679 return NOTIFY_BAD; 4680 } 4681 break; 4682 4683 case CPU_DOWN_FAILED: 4684 case CPU_ONLINE: 4685 mutex_lock(&wq_pool_mutex); 4686 4687 for_each_pool(pool, pi) { 4688 mutex_lock(&pool->manager_mutex); 4689 4690 if (pool->cpu == cpu) { 4691 spin_lock_irq(&pool->lock); 4692 pool->flags &= ~POOL_DISASSOCIATED; 4693 spin_unlock_irq(&pool->lock); 4694 4695 rebind_workers(pool); 4696 } else if (pool->cpu < 0) { 4697 restore_unbound_workers_cpumask(pool, cpu); 4698 } 4699 4700 mutex_unlock(&pool->manager_mutex); 4701 } 4702 4703 /* update NUMA affinity of unbound workqueues */ 4704 list_for_each_entry(wq, &workqueues, list) 4705 wq_update_unbound_numa(wq, cpu, true); 4706 4707 mutex_unlock(&wq_pool_mutex); 4708 break; 4709 } 4710 return NOTIFY_OK; 4711 } 4712 4713 /* 4714 * Workqueues should be brought down after normal priority CPU notifiers. 4715 * This will be registered as low priority CPU notifier. 4716 */ 4717 static int workqueue_cpu_down_callback(struct notifier_block *nfb, 4718 unsigned long action, 4719 void *hcpu) 4720 { 4721 int cpu = (unsigned long)hcpu; 4722 struct work_struct unbind_work; 4723 struct workqueue_struct *wq; 4724 4725 switch (action & ~CPU_TASKS_FROZEN) { 4726 case CPU_DOWN_PREPARE: 4727 /* unbinding per-cpu workers should happen on the local CPU */ 4728 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn); 4729 queue_work_on(cpu, system_highpri_wq, &unbind_work); 4730 4731 /* update NUMA affinity of unbound workqueues */ 4732 mutex_lock(&wq_pool_mutex); 4733 list_for_each_entry(wq, &workqueues, list) 4734 wq_update_unbound_numa(wq, cpu, false); 4735 mutex_unlock(&wq_pool_mutex); 4736 4737 /* wait for per-cpu unbinding to finish */ 4738 flush_work(&unbind_work); 4739 break; 4740 } 4741 return NOTIFY_OK; 4742 } 4743 4744 #ifdef CONFIG_SMP 4745 4746 struct work_for_cpu { 4747 struct work_struct work; 4748 long (*fn)(void *); 4749 void *arg; 4750 long ret; 4751 }; 4752 4753 static void work_for_cpu_fn(struct work_struct *work) 4754 { 4755 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 4756 4757 wfc->ret = wfc->fn(wfc->arg); 4758 } 4759 4760 /** 4761 * work_on_cpu - run a function in user context on a particular cpu 4762 * @cpu: the cpu to run on 4763 * @fn: the function to run 4764 * @arg: the function arg 4765 * 4766 * This will return the value @fn returns. 4767 * It is up to the caller to ensure that the cpu doesn't go offline. 4768 * The caller must not hold any locks which would prevent @fn from completing. 4769 */ 4770 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 4771 { 4772 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 4773 4774 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 4775 schedule_work_on(cpu, &wfc.work); 4776 4777 /* 4778 * The work item is on-stack and can't lead to deadlock through 4779 * flushing. Use __flush_work() to avoid spurious lockdep warnings 4780 * when work_on_cpu()s are nested. 4781 */ 4782 __flush_work(&wfc.work); 4783 4784 return wfc.ret; 4785 } 4786 EXPORT_SYMBOL_GPL(work_on_cpu); 4787 #endif /* CONFIG_SMP */ 4788 4789 #ifdef CONFIG_FREEZER 4790 4791 /** 4792 * freeze_workqueues_begin - begin freezing workqueues 4793 * 4794 * Start freezing workqueues. After this function returns, all freezable 4795 * workqueues will queue new works to their delayed_works list instead of 4796 * pool->worklist. 4797 * 4798 * CONTEXT: 4799 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4800 */ 4801 void freeze_workqueues_begin(void) 4802 { 4803 struct worker_pool *pool; 4804 struct workqueue_struct *wq; 4805 struct pool_workqueue *pwq; 4806 int pi; 4807 4808 mutex_lock(&wq_pool_mutex); 4809 4810 WARN_ON_ONCE(workqueue_freezing); 4811 workqueue_freezing = true; 4812 4813 /* set FREEZING */ 4814 for_each_pool(pool, pi) { 4815 spin_lock_irq(&pool->lock); 4816 WARN_ON_ONCE(pool->flags & POOL_FREEZING); 4817 pool->flags |= POOL_FREEZING; 4818 spin_unlock_irq(&pool->lock); 4819 } 4820 4821 list_for_each_entry(wq, &workqueues, list) { 4822 mutex_lock(&wq->mutex); 4823 for_each_pwq(pwq, wq) 4824 pwq_adjust_max_active(pwq); 4825 mutex_unlock(&wq->mutex); 4826 } 4827 4828 mutex_unlock(&wq_pool_mutex); 4829 } 4830 4831 /** 4832 * freeze_workqueues_busy - are freezable workqueues still busy? 4833 * 4834 * Check whether freezing is complete. This function must be called 4835 * between freeze_workqueues_begin() and thaw_workqueues(). 4836 * 4837 * CONTEXT: 4838 * Grabs and releases wq_pool_mutex. 4839 * 4840 * RETURNS: 4841 * %true if some freezable workqueues are still busy. %false if freezing 4842 * is complete. 4843 */ 4844 bool freeze_workqueues_busy(void) 4845 { 4846 bool busy = false; 4847 struct workqueue_struct *wq; 4848 struct pool_workqueue *pwq; 4849 4850 mutex_lock(&wq_pool_mutex); 4851 4852 WARN_ON_ONCE(!workqueue_freezing); 4853 4854 list_for_each_entry(wq, &workqueues, list) { 4855 if (!(wq->flags & WQ_FREEZABLE)) 4856 continue; 4857 /* 4858 * nr_active is monotonically decreasing. It's safe 4859 * to peek without lock. 4860 */ 4861 rcu_read_lock_sched(); 4862 for_each_pwq(pwq, wq) { 4863 WARN_ON_ONCE(pwq->nr_active < 0); 4864 if (pwq->nr_active) { 4865 busy = true; 4866 rcu_read_unlock_sched(); 4867 goto out_unlock; 4868 } 4869 } 4870 rcu_read_unlock_sched(); 4871 } 4872 out_unlock: 4873 mutex_unlock(&wq_pool_mutex); 4874 return busy; 4875 } 4876 4877 /** 4878 * thaw_workqueues - thaw workqueues 4879 * 4880 * Thaw workqueues. Normal queueing is restored and all collected 4881 * frozen works are transferred to their respective pool worklists. 4882 * 4883 * CONTEXT: 4884 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4885 */ 4886 void thaw_workqueues(void) 4887 { 4888 struct workqueue_struct *wq; 4889 struct pool_workqueue *pwq; 4890 struct worker_pool *pool; 4891 int pi; 4892 4893 mutex_lock(&wq_pool_mutex); 4894 4895 if (!workqueue_freezing) 4896 goto out_unlock; 4897 4898 /* clear FREEZING */ 4899 for_each_pool(pool, pi) { 4900 spin_lock_irq(&pool->lock); 4901 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING)); 4902 pool->flags &= ~POOL_FREEZING; 4903 spin_unlock_irq(&pool->lock); 4904 } 4905 4906 /* restore max_active and repopulate worklist */ 4907 list_for_each_entry(wq, &workqueues, list) { 4908 mutex_lock(&wq->mutex); 4909 for_each_pwq(pwq, wq) 4910 pwq_adjust_max_active(pwq); 4911 mutex_unlock(&wq->mutex); 4912 } 4913 4914 workqueue_freezing = false; 4915 out_unlock: 4916 mutex_unlock(&wq_pool_mutex); 4917 } 4918 #endif /* CONFIG_FREEZER */ 4919 4920 static void __init wq_numa_init(void) 4921 { 4922 cpumask_var_t *tbl; 4923 int node, cpu; 4924 4925 /* determine NUMA pwq table len - highest node id + 1 */ 4926 for_each_node(node) 4927 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1); 4928 4929 if (num_possible_nodes() <= 1) 4930 return; 4931 4932 if (wq_disable_numa) { 4933 pr_info("workqueue: NUMA affinity support disabled\n"); 4934 return; 4935 } 4936 4937 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL); 4938 BUG_ON(!wq_update_unbound_numa_attrs_buf); 4939 4940 /* 4941 * We want masks of possible CPUs of each node which isn't readily 4942 * available. Build one from cpu_to_node() which should have been 4943 * fully initialized by now. 4944 */ 4945 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL); 4946 BUG_ON(!tbl); 4947 4948 for_each_node(node) 4949 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 4950 node_online(node) ? node : NUMA_NO_NODE)); 4951 4952 for_each_possible_cpu(cpu) { 4953 node = cpu_to_node(cpu); 4954 if (WARN_ON(node == NUMA_NO_NODE)) { 4955 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 4956 /* happens iff arch is bonkers, let's just proceed */ 4957 return; 4958 } 4959 cpumask_set_cpu(cpu, tbl[node]); 4960 } 4961 4962 wq_numa_possible_cpumask = tbl; 4963 wq_numa_enabled = true; 4964 } 4965 4966 static int __init init_workqueues(void) 4967 { 4968 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 4969 int i, cpu; 4970 4971 /* make sure we have enough bits for OFFQ pool ID */ 4972 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) < 4973 WORK_CPU_END * NR_STD_WORKER_POOLS); 4974 4975 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 4976 4977 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 4978 4979 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP); 4980 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN); 4981 4982 wq_numa_init(); 4983 4984 /* initialize CPU pools */ 4985 for_each_possible_cpu(cpu) { 4986 struct worker_pool *pool; 4987 4988 i = 0; 4989 for_each_cpu_worker_pool(pool, cpu) { 4990 BUG_ON(init_worker_pool(pool)); 4991 pool->cpu = cpu; 4992 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 4993 pool->attrs->nice = std_nice[i++]; 4994 pool->node = cpu_to_node(cpu); 4995 4996 /* alloc pool ID */ 4997 mutex_lock(&wq_pool_mutex); 4998 BUG_ON(worker_pool_assign_id(pool)); 4999 mutex_unlock(&wq_pool_mutex); 5000 } 5001 } 5002 5003 /* create the initial worker */ 5004 for_each_online_cpu(cpu) { 5005 struct worker_pool *pool; 5006 5007 for_each_cpu_worker_pool(pool, cpu) { 5008 pool->flags &= ~POOL_DISASSOCIATED; 5009 BUG_ON(create_and_start_worker(pool) < 0); 5010 } 5011 } 5012 5013 /* create default unbound wq attrs */ 5014 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5015 struct workqueue_attrs *attrs; 5016 5017 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5018 attrs->nice = std_nice[i]; 5019 unbound_std_wq_attrs[i] = attrs; 5020 } 5021 5022 system_wq = alloc_workqueue("events", 0, 0); 5023 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5024 system_long_wq = alloc_workqueue("events_long", 0, 0); 5025 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5026 WQ_UNBOUND_MAX_ACTIVE); 5027 system_freezable_wq = alloc_workqueue("events_freezable", 5028 WQ_FREEZABLE, 0); 5029 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5030 WQ_POWER_EFFICIENT, 0); 5031 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5032 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5033 0); 5034 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5035 !system_unbound_wq || !system_freezable_wq || 5036 !system_power_efficient_wq || 5037 !system_freezable_power_efficient_wq); 5038 return 0; 5039 } 5040 early_initcall(init_workqueues); 5041