1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There are two worker pools for each CPU (one for 20 * normal work items and the other for high priority ones) and some extra 21 * pools for workqueues which are not bound to any specific CPU - the 22 * number of these backing pools is dynamic. 23 * 24 * Please read Documentation/workqueue.txt for details. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kernel.h> 29 #include <linux/sched.h> 30 #include <linux/init.h> 31 #include <linux/signal.h> 32 #include <linux/completion.h> 33 #include <linux/workqueue.h> 34 #include <linux/slab.h> 35 #include <linux/cpu.h> 36 #include <linux/notifier.h> 37 #include <linux/kthread.h> 38 #include <linux/hardirq.h> 39 #include <linux/mempolicy.h> 40 #include <linux/freezer.h> 41 #include <linux/kallsyms.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 52 #include "workqueue_internal.h" 53 54 enum { 55 /* 56 * worker_pool flags 57 * 58 * A bound pool is either associated or disassociated with its CPU. 59 * While associated (!DISASSOCIATED), all workers are bound to the 60 * CPU and none has %WORKER_UNBOUND set and concurrency management 61 * is in effect. 62 * 63 * While DISASSOCIATED, the cpu may be offline and all workers have 64 * %WORKER_UNBOUND set and concurrency management disabled, and may 65 * be executing on any CPU. The pool behaves as an unbound one. 66 * 67 * Note that DISASSOCIATED should be flipped only while holding 68 * attach_mutex to avoid changing binding state while 69 * worker_attach_to_pool() is in progress. 70 */ 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 72 73 /* worker flags */ 74 WORKER_DIE = 1 << 1, /* die die die */ 75 WORKER_IDLE = 1 << 2, /* is idle */ 76 WORKER_PREP = 1 << 3, /* preparing to run works */ 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 79 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 80 81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 82 WORKER_UNBOUND | WORKER_REBOUND, 83 84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 85 86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 88 89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 91 92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 93 /* call for help after 10ms 94 (min two ticks) */ 95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 96 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 97 98 /* 99 * Rescue workers are used only on emergencies and shared by 100 * all cpus. Give MIN_NICE. 101 */ 102 RESCUER_NICE_LEVEL = MIN_NICE, 103 HIGHPRI_NICE_LEVEL = MIN_NICE, 104 105 WQ_NAME_LEN = 24, 106 }; 107 108 /* 109 * Structure fields follow one of the following exclusion rules. 110 * 111 * I: Modifiable by initialization/destruction paths and read-only for 112 * everyone else. 113 * 114 * P: Preemption protected. Disabling preemption is enough and should 115 * only be modified and accessed from the local cpu. 116 * 117 * L: pool->lock protected. Access with pool->lock held. 118 * 119 * X: During normal operation, modification requires pool->lock and should 120 * be done only from local cpu. Either disabling preemption on local 121 * cpu or grabbing pool->lock is enough for read access. If 122 * POOL_DISASSOCIATED is set, it's identical to L. 123 * 124 * A: pool->attach_mutex protected. 125 * 126 * PL: wq_pool_mutex protected. 127 * 128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads. 129 * 130 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 131 * 132 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 133 * sched-RCU for reads. 134 * 135 * WQ: wq->mutex protected. 136 * 137 * WR: wq->mutex protected for writes. Sched-RCU protected for reads. 138 * 139 * MD: wq_mayday_lock protected. 140 */ 141 142 /* struct worker is defined in workqueue_internal.h */ 143 144 struct worker_pool { 145 spinlock_t lock; /* the pool lock */ 146 int cpu; /* I: the associated cpu */ 147 int node; /* I: the associated node ID */ 148 int id; /* I: pool ID */ 149 unsigned int flags; /* X: flags */ 150 151 unsigned long watchdog_ts; /* L: watchdog timestamp */ 152 153 struct list_head worklist; /* L: list of pending works */ 154 int nr_workers; /* L: total number of workers */ 155 156 /* nr_idle includes the ones off idle_list for rebinding */ 157 int nr_idle; /* L: currently idle ones */ 158 159 struct list_head idle_list; /* X: list of idle workers */ 160 struct timer_list idle_timer; /* L: worker idle timeout */ 161 struct timer_list mayday_timer; /* L: SOS timer for workers */ 162 163 /* a workers is either on busy_hash or idle_list, or the manager */ 164 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 165 /* L: hash of busy workers */ 166 167 /* see manage_workers() for details on the two manager mutexes */ 168 struct mutex manager_arb; /* manager arbitration */ 169 struct worker *manager; /* L: purely informational */ 170 struct mutex attach_mutex; /* attach/detach exclusion */ 171 struct list_head workers; /* A: attached workers */ 172 struct completion *detach_completion; /* all workers detached */ 173 174 struct ida worker_ida; /* worker IDs for task name */ 175 176 struct workqueue_attrs *attrs; /* I: worker attributes */ 177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 178 int refcnt; /* PL: refcnt for unbound pools */ 179 180 /* 181 * The current concurrency level. As it's likely to be accessed 182 * from other CPUs during try_to_wake_up(), put it in a separate 183 * cacheline. 184 */ 185 atomic_t nr_running ____cacheline_aligned_in_smp; 186 187 /* 188 * Destruction of pool is sched-RCU protected to allow dereferences 189 * from get_work_pool(). 190 */ 191 struct rcu_head rcu; 192 } ____cacheline_aligned_in_smp; 193 194 /* 195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 196 * of work_struct->data are used for flags and the remaining high bits 197 * point to the pwq; thus, pwqs need to be aligned at two's power of the 198 * number of flag bits. 199 */ 200 struct pool_workqueue { 201 struct worker_pool *pool; /* I: the associated pool */ 202 struct workqueue_struct *wq; /* I: the owning workqueue */ 203 int work_color; /* L: current color */ 204 int flush_color; /* L: flushing color */ 205 int refcnt; /* L: reference count */ 206 int nr_in_flight[WORK_NR_COLORS]; 207 /* L: nr of in_flight works */ 208 int nr_active; /* L: nr of active works */ 209 int max_active; /* L: max active works */ 210 struct list_head delayed_works; /* L: delayed works */ 211 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 212 struct list_head mayday_node; /* MD: node on wq->maydays */ 213 214 /* 215 * Release of unbound pwq is punted to system_wq. See put_pwq() 216 * and pwq_unbound_release_workfn() for details. pool_workqueue 217 * itself is also sched-RCU protected so that the first pwq can be 218 * determined without grabbing wq->mutex. 219 */ 220 struct work_struct unbound_release_work; 221 struct rcu_head rcu; 222 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 223 224 /* 225 * Structure used to wait for workqueue flush. 226 */ 227 struct wq_flusher { 228 struct list_head list; /* WQ: list of flushers */ 229 int flush_color; /* WQ: flush color waiting for */ 230 struct completion done; /* flush completion */ 231 }; 232 233 struct wq_device; 234 235 /* 236 * The externally visible workqueue. It relays the issued work items to 237 * the appropriate worker_pool through its pool_workqueues. 238 */ 239 struct workqueue_struct { 240 struct list_head pwqs; /* WR: all pwqs of this wq */ 241 struct list_head list; /* PR: list of all workqueues */ 242 243 struct mutex mutex; /* protects this wq */ 244 int work_color; /* WQ: current work color */ 245 int flush_color; /* WQ: current flush color */ 246 atomic_t nr_pwqs_to_flush; /* flush in progress */ 247 struct wq_flusher *first_flusher; /* WQ: first flusher */ 248 struct list_head flusher_queue; /* WQ: flush waiters */ 249 struct list_head flusher_overflow; /* WQ: flush overflow list */ 250 251 struct list_head maydays; /* MD: pwqs requesting rescue */ 252 struct worker *rescuer; /* I: rescue worker */ 253 254 int nr_drainers; /* WQ: drain in progress */ 255 int saved_max_active; /* WQ: saved pwq max_active */ 256 257 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 258 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 259 260 #ifdef CONFIG_SYSFS 261 struct wq_device *wq_dev; /* I: for sysfs interface */ 262 #endif 263 #ifdef CONFIG_LOCKDEP 264 struct lockdep_map lockdep_map; 265 #endif 266 char name[WQ_NAME_LEN]; /* I: workqueue name */ 267 268 /* 269 * Destruction of workqueue_struct is sched-RCU protected to allow 270 * walking the workqueues list without grabbing wq_pool_mutex. 271 * This is used to dump all workqueues from sysrq. 272 */ 273 struct rcu_head rcu; 274 275 /* hot fields used during command issue, aligned to cacheline */ 276 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 277 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 278 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 279 }; 280 281 static struct kmem_cache *pwq_cache; 282 283 static cpumask_var_t *wq_numa_possible_cpumask; 284 /* possible CPUs of each node */ 285 286 static bool wq_disable_numa; 287 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 288 289 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 291 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 292 293 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 294 295 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 296 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 297 298 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 299 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 300 301 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 302 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 303 304 /* PL: allowable cpus for unbound wqs and work items */ 305 static cpumask_var_t wq_unbound_cpumask; 306 307 /* CPU where unbound work was last round robin scheduled from this CPU */ 308 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 309 310 /* 311 * Local execution of unbound work items is no longer guaranteed. The 312 * following always forces round-robin CPU selection on unbound work items 313 * to uncover usages which depend on it. 314 */ 315 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 316 static bool wq_debug_force_rr_cpu = true; 317 #else 318 static bool wq_debug_force_rr_cpu = false; 319 #endif 320 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 321 322 /* the per-cpu worker pools */ 323 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 324 325 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 326 327 /* PL: hash of all unbound pools keyed by pool->attrs */ 328 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 329 330 /* I: attributes used when instantiating standard unbound pools on demand */ 331 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 332 333 /* I: attributes used when instantiating ordered pools on demand */ 334 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 335 336 struct workqueue_struct *system_wq __read_mostly; 337 EXPORT_SYMBOL(system_wq); 338 struct workqueue_struct *system_highpri_wq __read_mostly; 339 EXPORT_SYMBOL_GPL(system_highpri_wq); 340 struct workqueue_struct *system_long_wq __read_mostly; 341 EXPORT_SYMBOL_GPL(system_long_wq); 342 struct workqueue_struct *system_unbound_wq __read_mostly; 343 EXPORT_SYMBOL_GPL(system_unbound_wq); 344 struct workqueue_struct *system_freezable_wq __read_mostly; 345 EXPORT_SYMBOL_GPL(system_freezable_wq); 346 struct workqueue_struct *system_power_efficient_wq __read_mostly; 347 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 348 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 349 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 350 351 static int worker_thread(void *__worker); 352 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 353 354 #define CREATE_TRACE_POINTS 355 #include <trace/events/workqueue.h> 356 357 #define assert_rcu_or_pool_mutex() \ 358 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 359 !lockdep_is_held(&wq_pool_mutex), \ 360 "sched RCU or wq_pool_mutex should be held") 361 362 #define assert_rcu_or_wq_mutex(wq) \ 363 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 364 !lockdep_is_held(&wq->mutex), \ 365 "sched RCU or wq->mutex should be held") 366 367 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 368 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 369 !lockdep_is_held(&wq->mutex) && \ 370 !lockdep_is_held(&wq_pool_mutex), \ 371 "sched RCU, wq->mutex or wq_pool_mutex should be held") 372 373 #define for_each_cpu_worker_pool(pool, cpu) \ 374 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 375 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 376 (pool)++) 377 378 /** 379 * for_each_pool - iterate through all worker_pools in the system 380 * @pool: iteration cursor 381 * @pi: integer used for iteration 382 * 383 * This must be called either with wq_pool_mutex held or sched RCU read 384 * locked. If the pool needs to be used beyond the locking in effect, the 385 * caller is responsible for guaranteeing that the pool stays online. 386 * 387 * The if/else clause exists only for the lockdep assertion and can be 388 * ignored. 389 */ 390 #define for_each_pool(pool, pi) \ 391 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 392 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 393 else 394 395 /** 396 * for_each_pool_worker - iterate through all workers of a worker_pool 397 * @worker: iteration cursor 398 * @pool: worker_pool to iterate workers of 399 * 400 * This must be called with @pool->attach_mutex. 401 * 402 * The if/else clause exists only for the lockdep assertion and can be 403 * ignored. 404 */ 405 #define for_each_pool_worker(worker, pool) \ 406 list_for_each_entry((worker), &(pool)->workers, node) \ 407 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \ 408 else 409 410 /** 411 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 412 * @pwq: iteration cursor 413 * @wq: the target workqueue 414 * 415 * This must be called either with wq->mutex held or sched RCU read locked. 416 * If the pwq needs to be used beyond the locking in effect, the caller is 417 * responsible for guaranteeing that the pwq stays online. 418 * 419 * The if/else clause exists only for the lockdep assertion and can be 420 * ignored. 421 */ 422 #define for_each_pwq(pwq, wq) \ 423 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \ 424 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ 425 else 426 427 #ifdef CONFIG_DEBUG_OBJECTS_WORK 428 429 static struct debug_obj_descr work_debug_descr; 430 431 static void *work_debug_hint(void *addr) 432 { 433 return ((struct work_struct *) addr)->func; 434 } 435 436 static bool work_is_static_object(void *addr) 437 { 438 struct work_struct *work = addr; 439 440 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 441 } 442 443 /* 444 * fixup_init is called when: 445 * - an active object is initialized 446 */ 447 static bool work_fixup_init(void *addr, enum debug_obj_state state) 448 { 449 struct work_struct *work = addr; 450 451 switch (state) { 452 case ODEBUG_STATE_ACTIVE: 453 cancel_work_sync(work); 454 debug_object_init(work, &work_debug_descr); 455 return true; 456 default: 457 return false; 458 } 459 } 460 461 /* 462 * fixup_free is called when: 463 * - an active object is freed 464 */ 465 static bool work_fixup_free(void *addr, enum debug_obj_state state) 466 { 467 struct work_struct *work = addr; 468 469 switch (state) { 470 case ODEBUG_STATE_ACTIVE: 471 cancel_work_sync(work); 472 debug_object_free(work, &work_debug_descr); 473 return true; 474 default: 475 return false; 476 } 477 } 478 479 static struct debug_obj_descr work_debug_descr = { 480 .name = "work_struct", 481 .debug_hint = work_debug_hint, 482 .is_static_object = work_is_static_object, 483 .fixup_init = work_fixup_init, 484 .fixup_free = work_fixup_free, 485 }; 486 487 static inline void debug_work_activate(struct work_struct *work) 488 { 489 debug_object_activate(work, &work_debug_descr); 490 } 491 492 static inline void debug_work_deactivate(struct work_struct *work) 493 { 494 debug_object_deactivate(work, &work_debug_descr); 495 } 496 497 void __init_work(struct work_struct *work, int onstack) 498 { 499 if (onstack) 500 debug_object_init_on_stack(work, &work_debug_descr); 501 else 502 debug_object_init(work, &work_debug_descr); 503 } 504 EXPORT_SYMBOL_GPL(__init_work); 505 506 void destroy_work_on_stack(struct work_struct *work) 507 { 508 debug_object_free(work, &work_debug_descr); 509 } 510 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 511 512 void destroy_delayed_work_on_stack(struct delayed_work *work) 513 { 514 destroy_timer_on_stack(&work->timer); 515 debug_object_free(&work->work, &work_debug_descr); 516 } 517 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 518 519 #else 520 static inline void debug_work_activate(struct work_struct *work) { } 521 static inline void debug_work_deactivate(struct work_struct *work) { } 522 #endif 523 524 /** 525 * worker_pool_assign_id - allocate ID and assing it to @pool 526 * @pool: the pool pointer of interest 527 * 528 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 529 * successfully, -errno on failure. 530 */ 531 static int worker_pool_assign_id(struct worker_pool *pool) 532 { 533 int ret; 534 535 lockdep_assert_held(&wq_pool_mutex); 536 537 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 538 GFP_KERNEL); 539 if (ret >= 0) { 540 pool->id = ret; 541 return 0; 542 } 543 return ret; 544 } 545 546 /** 547 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 548 * @wq: the target workqueue 549 * @node: the node ID 550 * 551 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU 552 * read locked. 553 * If the pwq needs to be used beyond the locking in effect, the caller is 554 * responsible for guaranteeing that the pwq stays online. 555 * 556 * Return: The unbound pool_workqueue for @node. 557 */ 558 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 559 int node) 560 { 561 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 562 563 /* 564 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a 565 * delayed item is pending. The plan is to keep CPU -> NODE 566 * mapping valid and stable across CPU on/offlines. Once that 567 * happens, this workaround can be removed. 568 */ 569 if (unlikely(node == NUMA_NO_NODE)) 570 return wq->dfl_pwq; 571 572 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 573 } 574 575 static unsigned int work_color_to_flags(int color) 576 { 577 return color << WORK_STRUCT_COLOR_SHIFT; 578 } 579 580 static int get_work_color(struct work_struct *work) 581 { 582 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 583 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 584 } 585 586 static int work_next_color(int color) 587 { 588 return (color + 1) % WORK_NR_COLORS; 589 } 590 591 /* 592 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 593 * contain the pointer to the queued pwq. Once execution starts, the flag 594 * is cleared and the high bits contain OFFQ flags and pool ID. 595 * 596 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 597 * and clear_work_data() can be used to set the pwq, pool or clear 598 * work->data. These functions should only be called while the work is 599 * owned - ie. while the PENDING bit is set. 600 * 601 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 602 * corresponding to a work. Pool is available once the work has been 603 * queued anywhere after initialization until it is sync canceled. pwq is 604 * available only while the work item is queued. 605 * 606 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 607 * canceled. While being canceled, a work item may have its PENDING set 608 * but stay off timer and worklist for arbitrarily long and nobody should 609 * try to steal the PENDING bit. 610 */ 611 static inline void set_work_data(struct work_struct *work, unsigned long data, 612 unsigned long flags) 613 { 614 WARN_ON_ONCE(!work_pending(work)); 615 atomic_long_set(&work->data, data | flags | work_static(work)); 616 } 617 618 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 619 unsigned long extra_flags) 620 { 621 set_work_data(work, (unsigned long)pwq, 622 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 623 } 624 625 static void set_work_pool_and_keep_pending(struct work_struct *work, 626 int pool_id) 627 { 628 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 629 WORK_STRUCT_PENDING); 630 } 631 632 static void set_work_pool_and_clear_pending(struct work_struct *work, 633 int pool_id) 634 { 635 /* 636 * The following wmb is paired with the implied mb in 637 * test_and_set_bit(PENDING) and ensures all updates to @work made 638 * here are visible to and precede any updates by the next PENDING 639 * owner. 640 */ 641 smp_wmb(); 642 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 643 /* 644 * The following mb guarantees that previous clear of a PENDING bit 645 * will not be reordered with any speculative LOADS or STORES from 646 * work->current_func, which is executed afterwards. This possible 647 * reordering can lead to a missed execution on attempt to qeueue 648 * the same @work. E.g. consider this case: 649 * 650 * CPU#0 CPU#1 651 * ---------------------------- -------------------------------- 652 * 653 * 1 STORE event_indicated 654 * 2 queue_work_on() { 655 * 3 test_and_set_bit(PENDING) 656 * 4 } set_..._and_clear_pending() { 657 * 5 set_work_data() # clear bit 658 * 6 smp_mb() 659 * 7 work->current_func() { 660 * 8 LOAD event_indicated 661 * } 662 * 663 * Without an explicit full barrier speculative LOAD on line 8 can 664 * be executed before CPU#0 does STORE on line 1. If that happens, 665 * CPU#0 observes the PENDING bit is still set and new execution of 666 * a @work is not queued in a hope, that CPU#1 will eventually 667 * finish the queued @work. Meanwhile CPU#1 does not see 668 * event_indicated is set, because speculative LOAD was executed 669 * before actual STORE. 670 */ 671 smp_mb(); 672 } 673 674 static void clear_work_data(struct work_struct *work) 675 { 676 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 677 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 678 } 679 680 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 681 { 682 unsigned long data = atomic_long_read(&work->data); 683 684 if (data & WORK_STRUCT_PWQ) 685 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 686 else 687 return NULL; 688 } 689 690 /** 691 * get_work_pool - return the worker_pool a given work was associated with 692 * @work: the work item of interest 693 * 694 * Pools are created and destroyed under wq_pool_mutex, and allows read 695 * access under sched-RCU read lock. As such, this function should be 696 * called under wq_pool_mutex or with preemption disabled. 697 * 698 * All fields of the returned pool are accessible as long as the above 699 * mentioned locking is in effect. If the returned pool needs to be used 700 * beyond the critical section, the caller is responsible for ensuring the 701 * returned pool is and stays online. 702 * 703 * Return: The worker_pool @work was last associated with. %NULL if none. 704 */ 705 static struct worker_pool *get_work_pool(struct work_struct *work) 706 { 707 unsigned long data = atomic_long_read(&work->data); 708 int pool_id; 709 710 assert_rcu_or_pool_mutex(); 711 712 if (data & WORK_STRUCT_PWQ) 713 return ((struct pool_workqueue *) 714 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 715 716 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 717 if (pool_id == WORK_OFFQ_POOL_NONE) 718 return NULL; 719 720 return idr_find(&worker_pool_idr, pool_id); 721 } 722 723 /** 724 * get_work_pool_id - return the worker pool ID a given work is associated with 725 * @work: the work item of interest 726 * 727 * Return: The worker_pool ID @work was last associated with. 728 * %WORK_OFFQ_POOL_NONE if none. 729 */ 730 static int get_work_pool_id(struct work_struct *work) 731 { 732 unsigned long data = atomic_long_read(&work->data); 733 734 if (data & WORK_STRUCT_PWQ) 735 return ((struct pool_workqueue *) 736 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 737 738 return data >> WORK_OFFQ_POOL_SHIFT; 739 } 740 741 static void mark_work_canceling(struct work_struct *work) 742 { 743 unsigned long pool_id = get_work_pool_id(work); 744 745 pool_id <<= WORK_OFFQ_POOL_SHIFT; 746 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 747 } 748 749 static bool work_is_canceling(struct work_struct *work) 750 { 751 unsigned long data = atomic_long_read(&work->data); 752 753 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 754 } 755 756 /* 757 * Policy functions. These define the policies on how the global worker 758 * pools are managed. Unless noted otherwise, these functions assume that 759 * they're being called with pool->lock held. 760 */ 761 762 static bool __need_more_worker(struct worker_pool *pool) 763 { 764 return !atomic_read(&pool->nr_running); 765 } 766 767 /* 768 * Need to wake up a worker? Called from anything but currently 769 * running workers. 770 * 771 * Note that, because unbound workers never contribute to nr_running, this 772 * function will always return %true for unbound pools as long as the 773 * worklist isn't empty. 774 */ 775 static bool need_more_worker(struct worker_pool *pool) 776 { 777 return !list_empty(&pool->worklist) && __need_more_worker(pool); 778 } 779 780 /* Can I start working? Called from busy but !running workers. */ 781 static bool may_start_working(struct worker_pool *pool) 782 { 783 return pool->nr_idle; 784 } 785 786 /* Do I need to keep working? Called from currently running workers. */ 787 static bool keep_working(struct worker_pool *pool) 788 { 789 return !list_empty(&pool->worklist) && 790 atomic_read(&pool->nr_running) <= 1; 791 } 792 793 /* Do we need a new worker? Called from manager. */ 794 static bool need_to_create_worker(struct worker_pool *pool) 795 { 796 return need_more_worker(pool) && !may_start_working(pool); 797 } 798 799 /* Do we have too many workers and should some go away? */ 800 static bool too_many_workers(struct worker_pool *pool) 801 { 802 bool managing = mutex_is_locked(&pool->manager_arb); 803 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 804 int nr_busy = pool->nr_workers - nr_idle; 805 806 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 807 } 808 809 /* 810 * Wake up functions. 811 */ 812 813 /* Return the first idle worker. Safe with preemption disabled */ 814 static struct worker *first_idle_worker(struct worker_pool *pool) 815 { 816 if (unlikely(list_empty(&pool->idle_list))) 817 return NULL; 818 819 return list_first_entry(&pool->idle_list, struct worker, entry); 820 } 821 822 /** 823 * wake_up_worker - wake up an idle worker 824 * @pool: worker pool to wake worker from 825 * 826 * Wake up the first idle worker of @pool. 827 * 828 * CONTEXT: 829 * spin_lock_irq(pool->lock). 830 */ 831 static void wake_up_worker(struct worker_pool *pool) 832 { 833 struct worker *worker = first_idle_worker(pool); 834 835 if (likely(worker)) 836 wake_up_process(worker->task); 837 } 838 839 /** 840 * wq_worker_waking_up - a worker is waking up 841 * @task: task waking up 842 * @cpu: CPU @task is waking up to 843 * 844 * This function is called during try_to_wake_up() when a worker is 845 * being awoken. 846 * 847 * CONTEXT: 848 * spin_lock_irq(rq->lock) 849 */ 850 void wq_worker_waking_up(struct task_struct *task, int cpu) 851 { 852 struct worker *worker = kthread_data(task); 853 854 if (!(worker->flags & WORKER_NOT_RUNNING)) { 855 WARN_ON_ONCE(worker->pool->cpu != cpu); 856 atomic_inc(&worker->pool->nr_running); 857 } 858 } 859 860 /** 861 * wq_worker_sleeping - a worker is going to sleep 862 * @task: task going to sleep 863 * 864 * This function is called during schedule() when a busy worker is 865 * going to sleep. Worker on the same cpu can be woken up by 866 * returning pointer to its task. 867 * 868 * CONTEXT: 869 * spin_lock_irq(rq->lock) 870 * 871 * Return: 872 * Worker task on @cpu to wake up, %NULL if none. 873 */ 874 struct task_struct *wq_worker_sleeping(struct task_struct *task) 875 { 876 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 877 struct worker_pool *pool; 878 879 /* 880 * Rescuers, which may not have all the fields set up like normal 881 * workers, also reach here, let's not access anything before 882 * checking NOT_RUNNING. 883 */ 884 if (worker->flags & WORKER_NOT_RUNNING) 885 return NULL; 886 887 pool = worker->pool; 888 889 /* this can only happen on the local cpu */ 890 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id())) 891 return NULL; 892 893 /* 894 * The counterpart of the following dec_and_test, implied mb, 895 * worklist not empty test sequence is in insert_work(). 896 * Please read comment there. 897 * 898 * NOT_RUNNING is clear. This means that we're bound to and 899 * running on the local cpu w/ rq lock held and preemption 900 * disabled, which in turn means that none else could be 901 * manipulating idle_list, so dereferencing idle_list without pool 902 * lock is safe. 903 */ 904 if (atomic_dec_and_test(&pool->nr_running) && 905 !list_empty(&pool->worklist)) 906 to_wakeup = first_idle_worker(pool); 907 return to_wakeup ? to_wakeup->task : NULL; 908 } 909 910 /** 911 * worker_set_flags - set worker flags and adjust nr_running accordingly 912 * @worker: self 913 * @flags: flags to set 914 * 915 * Set @flags in @worker->flags and adjust nr_running accordingly. 916 * 917 * CONTEXT: 918 * spin_lock_irq(pool->lock) 919 */ 920 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 921 { 922 struct worker_pool *pool = worker->pool; 923 924 WARN_ON_ONCE(worker->task != current); 925 926 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 927 if ((flags & WORKER_NOT_RUNNING) && 928 !(worker->flags & WORKER_NOT_RUNNING)) { 929 atomic_dec(&pool->nr_running); 930 } 931 932 worker->flags |= flags; 933 } 934 935 /** 936 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 937 * @worker: self 938 * @flags: flags to clear 939 * 940 * Clear @flags in @worker->flags and adjust nr_running accordingly. 941 * 942 * CONTEXT: 943 * spin_lock_irq(pool->lock) 944 */ 945 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 946 { 947 struct worker_pool *pool = worker->pool; 948 unsigned int oflags = worker->flags; 949 950 WARN_ON_ONCE(worker->task != current); 951 952 worker->flags &= ~flags; 953 954 /* 955 * If transitioning out of NOT_RUNNING, increment nr_running. Note 956 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 957 * of multiple flags, not a single flag. 958 */ 959 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 960 if (!(worker->flags & WORKER_NOT_RUNNING)) 961 atomic_inc(&pool->nr_running); 962 } 963 964 /** 965 * find_worker_executing_work - find worker which is executing a work 966 * @pool: pool of interest 967 * @work: work to find worker for 968 * 969 * Find a worker which is executing @work on @pool by searching 970 * @pool->busy_hash which is keyed by the address of @work. For a worker 971 * to match, its current execution should match the address of @work and 972 * its work function. This is to avoid unwanted dependency between 973 * unrelated work executions through a work item being recycled while still 974 * being executed. 975 * 976 * This is a bit tricky. A work item may be freed once its execution 977 * starts and nothing prevents the freed area from being recycled for 978 * another work item. If the same work item address ends up being reused 979 * before the original execution finishes, workqueue will identify the 980 * recycled work item as currently executing and make it wait until the 981 * current execution finishes, introducing an unwanted dependency. 982 * 983 * This function checks the work item address and work function to avoid 984 * false positives. Note that this isn't complete as one may construct a 985 * work function which can introduce dependency onto itself through a 986 * recycled work item. Well, if somebody wants to shoot oneself in the 987 * foot that badly, there's only so much we can do, and if such deadlock 988 * actually occurs, it should be easy to locate the culprit work function. 989 * 990 * CONTEXT: 991 * spin_lock_irq(pool->lock). 992 * 993 * Return: 994 * Pointer to worker which is executing @work if found, %NULL 995 * otherwise. 996 */ 997 static struct worker *find_worker_executing_work(struct worker_pool *pool, 998 struct work_struct *work) 999 { 1000 struct worker *worker; 1001 1002 hash_for_each_possible(pool->busy_hash, worker, hentry, 1003 (unsigned long)work) 1004 if (worker->current_work == work && 1005 worker->current_func == work->func) 1006 return worker; 1007 1008 return NULL; 1009 } 1010 1011 /** 1012 * move_linked_works - move linked works to a list 1013 * @work: start of series of works to be scheduled 1014 * @head: target list to append @work to 1015 * @nextp: out parameter for nested worklist walking 1016 * 1017 * Schedule linked works starting from @work to @head. Work series to 1018 * be scheduled starts at @work and includes any consecutive work with 1019 * WORK_STRUCT_LINKED set in its predecessor. 1020 * 1021 * If @nextp is not NULL, it's updated to point to the next work of 1022 * the last scheduled work. This allows move_linked_works() to be 1023 * nested inside outer list_for_each_entry_safe(). 1024 * 1025 * CONTEXT: 1026 * spin_lock_irq(pool->lock). 1027 */ 1028 static void move_linked_works(struct work_struct *work, struct list_head *head, 1029 struct work_struct **nextp) 1030 { 1031 struct work_struct *n; 1032 1033 /* 1034 * Linked worklist will always end before the end of the list, 1035 * use NULL for list head. 1036 */ 1037 list_for_each_entry_safe_from(work, n, NULL, entry) { 1038 list_move_tail(&work->entry, head); 1039 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1040 break; 1041 } 1042 1043 /* 1044 * If we're already inside safe list traversal and have moved 1045 * multiple works to the scheduled queue, the next position 1046 * needs to be updated. 1047 */ 1048 if (nextp) 1049 *nextp = n; 1050 } 1051 1052 /** 1053 * get_pwq - get an extra reference on the specified pool_workqueue 1054 * @pwq: pool_workqueue to get 1055 * 1056 * Obtain an extra reference on @pwq. The caller should guarantee that 1057 * @pwq has positive refcnt and be holding the matching pool->lock. 1058 */ 1059 static void get_pwq(struct pool_workqueue *pwq) 1060 { 1061 lockdep_assert_held(&pwq->pool->lock); 1062 WARN_ON_ONCE(pwq->refcnt <= 0); 1063 pwq->refcnt++; 1064 } 1065 1066 /** 1067 * put_pwq - put a pool_workqueue reference 1068 * @pwq: pool_workqueue to put 1069 * 1070 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1071 * destruction. The caller should be holding the matching pool->lock. 1072 */ 1073 static void put_pwq(struct pool_workqueue *pwq) 1074 { 1075 lockdep_assert_held(&pwq->pool->lock); 1076 if (likely(--pwq->refcnt)) 1077 return; 1078 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1079 return; 1080 /* 1081 * @pwq can't be released under pool->lock, bounce to 1082 * pwq_unbound_release_workfn(). This never recurses on the same 1083 * pool->lock as this path is taken only for unbound workqueues and 1084 * the release work item is scheduled on a per-cpu workqueue. To 1085 * avoid lockdep warning, unbound pool->locks are given lockdep 1086 * subclass of 1 in get_unbound_pool(). 1087 */ 1088 schedule_work(&pwq->unbound_release_work); 1089 } 1090 1091 /** 1092 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1093 * @pwq: pool_workqueue to put (can be %NULL) 1094 * 1095 * put_pwq() with locking. This function also allows %NULL @pwq. 1096 */ 1097 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1098 { 1099 if (pwq) { 1100 /* 1101 * As both pwqs and pools are sched-RCU protected, the 1102 * following lock operations are safe. 1103 */ 1104 spin_lock_irq(&pwq->pool->lock); 1105 put_pwq(pwq); 1106 spin_unlock_irq(&pwq->pool->lock); 1107 } 1108 } 1109 1110 static void pwq_activate_delayed_work(struct work_struct *work) 1111 { 1112 struct pool_workqueue *pwq = get_work_pwq(work); 1113 1114 trace_workqueue_activate_work(work); 1115 if (list_empty(&pwq->pool->worklist)) 1116 pwq->pool->watchdog_ts = jiffies; 1117 move_linked_works(work, &pwq->pool->worklist, NULL); 1118 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1119 pwq->nr_active++; 1120 } 1121 1122 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1123 { 1124 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1125 struct work_struct, entry); 1126 1127 pwq_activate_delayed_work(work); 1128 } 1129 1130 /** 1131 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1132 * @pwq: pwq of interest 1133 * @color: color of work which left the queue 1134 * 1135 * A work either has completed or is removed from pending queue, 1136 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1137 * 1138 * CONTEXT: 1139 * spin_lock_irq(pool->lock). 1140 */ 1141 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1142 { 1143 /* uncolored work items don't participate in flushing or nr_active */ 1144 if (color == WORK_NO_COLOR) 1145 goto out_put; 1146 1147 pwq->nr_in_flight[color]--; 1148 1149 pwq->nr_active--; 1150 if (!list_empty(&pwq->delayed_works)) { 1151 /* one down, submit a delayed one */ 1152 if (pwq->nr_active < pwq->max_active) 1153 pwq_activate_first_delayed(pwq); 1154 } 1155 1156 /* is flush in progress and are we at the flushing tip? */ 1157 if (likely(pwq->flush_color != color)) 1158 goto out_put; 1159 1160 /* are there still in-flight works? */ 1161 if (pwq->nr_in_flight[color]) 1162 goto out_put; 1163 1164 /* this pwq is done, clear flush_color */ 1165 pwq->flush_color = -1; 1166 1167 /* 1168 * If this was the last pwq, wake up the first flusher. It 1169 * will handle the rest. 1170 */ 1171 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1172 complete(&pwq->wq->first_flusher->done); 1173 out_put: 1174 put_pwq(pwq); 1175 } 1176 1177 /** 1178 * try_to_grab_pending - steal work item from worklist and disable irq 1179 * @work: work item to steal 1180 * @is_dwork: @work is a delayed_work 1181 * @flags: place to store irq state 1182 * 1183 * Try to grab PENDING bit of @work. This function can handle @work in any 1184 * stable state - idle, on timer or on worklist. 1185 * 1186 * Return: 1187 * 1 if @work was pending and we successfully stole PENDING 1188 * 0 if @work was idle and we claimed PENDING 1189 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1190 * -ENOENT if someone else is canceling @work, this state may persist 1191 * for arbitrarily long 1192 * 1193 * Note: 1194 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1195 * interrupted while holding PENDING and @work off queue, irq must be 1196 * disabled on entry. This, combined with delayed_work->timer being 1197 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1198 * 1199 * On successful return, >= 0, irq is disabled and the caller is 1200 * responsible for releasing it using local_irq_restore(*@flags). 1201 * 1202 * This function is safe to call from any context including IRQ handler. 1203 */ 1204 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1205 unsigned long *flags) 1206 { 1207 struct worker_pool *pool; 1208 struct pool_workqueue *pwq; 1209 1210 local_irq_save(*flags); 1211 1212 /* try to steal the timer if it exists */ 1213 if (is_dwork) { 1214 struct delayed_work *dwork = to_delayed_work(work); 1215 1216 /* 1217 * dwork->timer is irqsafe. If del_timer() fails, it's 1218 * guaranteed that the timer is not queued anywhere and not 1219 * running on the local CPU. 1220 */ 1221 if (likely(del_timer(&dwork->timer))) 1222 return 1; 1223 } 1224 1225 /* try to claim PENDING the normal way */ 1226 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1227 return 0; 1228 1229 /* 1230 * The queueing is in progress, or it is already queued. Try to 1231 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1232 */ 1233 pool = get_work_pool(work); 1234 if (!pool) 1235 goto fail; 1236 1237 spin_lock(&pool->lock); 1238 /* 1239 * work->data is guaranteed to point to pwq only while the work 1240 * item is queued on pwq->wq, and both updating work->data to point 1241 * to pwq on queueing and to pool on dequeueing are done under 1242 * pwq->pool->lock. This in turn guarantees that, if work->data 1243 * points to pwq which is associated with a locked pool, the work 1244 * item is currently queued on that pool. 1245 */ 1246 pwq = get_work_pwq(work); 1247 if (pwq && pwq->pool == pool) { 1248 debug_work_deactivate(work); 1249 1250 /* 1251 * A delayed work item cannot be grabbed directly because 1252 * it might have linked NO_COLOR work items which, if left 1253 * on the delayed_list, will confuse pwq->nr_active 1254 * management later on and cause stall. Make sure the work 1255 * item is activated before grabbing. 1256 */ 1257 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1258 pwq_activate_delayed_work(work); 1259 1260 list_del_init(&work->entry); 1261 pwq_dec_nr_in_flight(pwq, get_work_color(work)); 1262 1263 /* work->data points to pwq iff queued, point to pool */ 1264 set_work_pool_and_keep_pending(work, pool->id); 1265 1266 spin_unlock(&pool->lock); 1267 return 1; 1268 } 1269 spin_unlock(&pool->lock); 1270 fail: 1271 local_irq_restore(*flags); 1272 if (work_is_canceling(work)) 1273 return -ENOENT; 1274 cpu_relax(); 1275 return -EAGAIN; 1276 } 1277 1278 /** 1279 * insert_work - insert a work into a pool 1280 * @pwq: pwq @work belongs to 1281 * @work: work to insert 1282 * @head: insertion point 1283 * @extra_flags: extra WORK_STRUCT_* flags to set 1284 * 1285 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1286 * work_struct flags. 1287 * 1288 * CONTEXT: 1289 * spin_lock_irq(pool->lock). 1290 */ 1291 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1292 struct list_head *head, unsigned int extra_flags) 1293 { 1294 struct worker_pool *pool = pwq->pool; 1295 1296 /* we own @work, set data and link */ 1297 set_work_pwq(work, pwq, extra_flags); 1298 list_add_tail(&work->entry, head); 1299 get_pwq(pwq); 1300 1301 /* 1302 * Ensure either wq_worker_sleeping() sees the above 1303 * list_add_tail() or we see zero nr_running to avoid workers lying 1304 * around lazily while there are works to be processed. 1305 */ 1306 smp_mb(); 1307 1308 if (__need_more_worker(pool)) 1309 wake_up_worker(pool); 1310 } 1311 1312 /* 1313 * Test whether @work is being queued from another work executing on the 1314 * same workqueue. 1315 */ 1316 static bool is_chained_work(struct workqueue_struct *wq) 1317 { 1318 struct worker *worker; 1319 1320 worker = current_wq_worker(); 1321 /* 1322 * Return %true iff I'm a worker execuing a work item on @wq. If 1323 * I'm @worker, it's safe to dereference it without locking. 1324 */ 1325 return worker && worker->current_pwq->wq == wq; 1326 } 1327 1328 /* 1329 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1330 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1331 * avoid perturbing sensitive tasks. 1332 */ 1333 static int wq_select_unbound_cpu(int cpu) 1334 { 1335 static bool printed_dbg_warning; 1336 int new_cpu; 1337 1338 if (likely(!wq_debug_force_rr_cpu)) { 1339 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1340 return cpu; 1341 } else if (!printed_dbg_warning) { 1342 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1343 printed_dbg_warning = true; 1344 } 1345 1346 if (cpumask_empty(wq_unbound_cpumask)) 1347 return cpu; 1348 1349 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1350 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1351 if (unlikely(new_cpu >= nr_cpu_ids)) { 1352 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1353 if (unlikely(new_cpu >= nr_cpu_ids)) 1354 return cpu; 1355 } 1356 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1357 1358 return new_cpu; 1359 } 1360 1361 static void __queue_work(int cpu, struct workqueue_struct *wq, 1362 struct work_struct *work) 1363 { 1364 struct pool_workqueue *pwq; 1365 struct worker_pool *last_pool; 1366 struct list_head *worklist; 1367 unsigned int work_flags; 1368 unsigned int req_cpu = cpu; 1369 1370 /* 1371 * While a work item is PENDING && off queue, a task trying to 1372 * steal the PENDING will busy-loop waiting for it to either get 1373 * queued or lose PENDING. Grabbing PENDING and queueing should 1374 * happen with IRQ disabled. 1375 */ 1376 WARN_ON_ONCE(!irqs_disabled()); 1377 1378 debug_work_activate(work); 1379 1380 /* if draining, only works from the same workqueue are allowed */ 1381 if (unlikely(wq->flags & __WQ_DRAINING) && 1382 WARN_ON_ONCE(!is_chained_work(wq))) 1383 return; 1384 retry: 1385 if (req_cpu == WORK_CPU_UNBOUND) 1386 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1387 1388 /* pwq which will be used unless @work is executing elsewhere */ 1389 if (!(wq->flags & WQ_UNBOUND)) 1390 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1391 else 1392 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1393 1394 /* 1395 * If @work was previously on a different pool, it might still be 1396 * running there, in which case the work needs to be queued on that 1397 * pool to guarantee non-reentrancy. 1398 */ 1399 last_pool = get_work_pool(work); 1400 if (last_pool && last_pool != pwq->pool) { 1401 struct worker *worker; 1402 1403 spin_lock(&last_pool->lock); 1404 1405 worker = find_worker_executing_work(last_pool, work); 1406 1407 if (worker && worker->current_pwq->wq == wq) { 1408 pwq = worker->current_pwq; 1409 } else { 1410 /* meh... not running there, queue here */ 1411 spin_unlock(&last_pool->lock); 1412 spin_lock(&pwq->pool->lock); 1413 } 1414 } else { 1415 spin_lock(&pwq->pool->lock); 1416 } 1417 1418 /* 1419 * pwq is determined and locked. For unbound pools, we could have 1420 * raced with pwq release and it could already be dead. If its 1421 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1422 * without another pwq replacing it in the numa_pwq_tbl or while 1423 * work items are executing on it, so the retrying is guaranteed to 1424 * make forward-progress. 1425 */ 1426 if (unlikely(!pwq->refcnt)) { 1427 if (wq->flags & WQ_UNBOUND) { 1428 spin_unlock(&pwq->pool->lock); 1429 cpu_relax(); 1430 goto retry; 1431 } 1432 /* oops */ 1433 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1434 wq->name, cpu); 1435 } 1436 1437 /* pwq determined, queue */ 1438 trace_workqueue_queue_work(req_cpu, pwq, work); 1439 1440 if (WARN_ON(!list_empty(&work->entry))) { 1441 spin_unlock(&pwq->pool->lock); 1442 return; 1443 } 1444 1445 pwq->nr_in_flight[pwq->work_color]++; 1446 work_flags = work_color_to_flags(pwq->work_color); 1447 1448 if (likely(pwq->nr_active < pwq->max_active)) { 1449 trace_workqueue_activate_work(work); 1450 pwq->nr_active++; 1451 worklist = &pwq->pool->worklist; 1452 if (list_empty(worklist)) 1453 pwq->pool->watchdog_ts = jiffies; 1454 } else { 1455 work_flags |= WORK_STRUCT_DELAYED; 1456 worklist = &pwq->delayed_works; 1457 } 1458 1459 insert_work(pwq, work, worklist, work_flags); 1460 1461 spin_unlock(&pwq->pool->lock); 1462 } 1463 1464 /** 1465 * queue_work_on - queue work on specific cpu 1466 * @cpu: CPU number to execute work on 1467 * @wq: workqueue to use 1468 * @work: work to queue 1469 * 1470 * We queue the work to a specific CPU, the caller must ensure it 1471 * can't go away. 1472 * 1473 * Return: %false if @work was already on a queue, %true otherwise. 1474 */ 1475 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1476 struct work_struct *work) 1477 { 1478 bool ret = false; 1479 unsigned long flags; 1480 1481 local_irq_save(flags); 1482 1483 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1484 __queue_work(cpu, wq, work); 1485 ret = true; 1486 } 1487 1488 local_irq_restore(flags); 1489 return ret; 1490 } 1491 EXPORT_SYMBOL(queue_work_on); 1492 1493 void delayed_work_timer_fn(unsigned long __data) 1494 { 1495 struct delayed_work *dwork = (struct delayed_work *)__data; 1496 1497 /* should have been called from irqsafe timer with irq already off */ 1498 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1499 } 1500 EXPORT_SYMBOL(delayed_work_timer_fn); 1501 1502 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1503 struct delayed_work *dwork, unsigned long delay) 1504 { 1505 struct timer_list *timer = &dwork->timer; 1506 struct work_struct *work = &dwork->work; 1507 1508 WARN_ON_ONCE(timer->function != delayed_work_timer_fn || 1509 timer->data != (unsigned long)dwork); 1510 WARN_ON_ONCE(timer_pending(timer)); 1511 WARN_ON_ONCE(!list_empty(&work->entry)); 1512 1513 /* 1514 * If @delay is 0, queue @dwork->work immediately. This is for 1515 * both optimization and correctness. The earliest @timer can 1516 * expire is on the closest next tick and delayed_work users depend 1517 * on that there's no such delay when @delay is 0. 1518 */ 1519 if (!delay) { 1520 __queue_work(cpu, wq, &dwork->work); 1521 return; 1522 } 1523 1524 timer_stats_timer_set_start_info(&dwork->timer); 1525 1526 dwork->wq = wq; 1527 dwork->cpu = cpu; 1528 timer->expires = jiffies + delay; 1529 1530 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1531 add_timer_on(timer, cpu); 1532 else 1533 add_timer(timer); 1534 } 1535 1536 /** 1537 * queue_delayed_work_on - queue work on specific CPU after delay 1538 * @cpu: CPU number to execute work on 1539 * @wq: workqueue to use 1540 * @dwork: work to queue 1541 * @delay: number of jiffies to wait before queueing 1542 * 1543 * Return: %false if @work was already on a queue, %true otherwise. If 1544 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1545 * execution. 1546 */ 1547 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1548 struct delayed_work *dwork, unsigned long delay) 1549 { 1550 struct work_struct *work = &dwork->work; 1551 bool ret = false; 1552 unsigned long flags; 1553 1554 /* read the comment in __queue_work() */ 1555 local_irq_save(flags); 1556 1557 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1558 __queue_delayed_work(cpu, wq, dwork, delay); 1559 ret = true; 1560 } 1561 1562 local_irq_restore(flags); 1563 return ret; 1564 } 1565 EXPORT_SYMBOL(queue_delayed_work_on); 1566 1567 /** 1568 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1569 * @cpu: CPU number to execute work on 1570 * @wq: workqueue to use 1571 * @dwork: work to queue 1572 * @delay: number of jiffies to wait before queueing 1573 * 1574 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1575 * modify @dwork's timer so that it expires after @delay. If @delay is 1576 * zero, @work is guaranteed to be scheduled immediately regardless of its 1577 * current state. 1578 * 1579 * Return: %false if @dwork was idle and queued, %true if @dwork was 1580 * pending and its timer was modified. 1581 * 1582 * This function is safe to call from any context including IRQ handler. 1583 * See try_to_grab_pending() for details. 1584 */ 1585 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1586 struct delayed_work *dwork, unsigned long delay) 1587 { 1588 unsigned long flags; 1589 int ret; 1590 1591 do { 1592 ret = try_to_grab_pending(&dwork->work, true, &flags); 1593 } while (unlikely(ret == -EAGAIN)); 1594 1595 if (likely(ret >= 0)) { 1596 __queue_delayed_work(cpu, wq, dwork, delay); 1597 local_irq_restore(flags); 1598 } 1599 1600 /* -ENOENT from try_to_grab_pending() becomes %true */ 1601 return ret; 1602 } 1603 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1604 1605 /** 1606 * worker_enter_idle - enter idle state 1607 * @worker: worker which is entering idle state 1608 * 1609 * @worker is entering idle state. Update stats and idle timer if 1610 * necessary. 1611 * 1612 * LOCKING: 1613 * spin_lock_irq(pool->lock). 1614 */ 1615 static void worker_enter_idle(struct worker *worker) 1616 { 1617 struct worker_pool *pool = worker->pool; 1618 1619 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1620 WARN_ON_ONCE(!list_empty(&worker->entry) && 1621 (worker->hentry.next || worker->hentry.pprev))) 1622 return; 1623 1624 /* can't use worker_set_flags(), also called from create_worker() */ 1625 worker->flags |= WORKER_IDLE; 1626 pool->nr_idle++; 1627 worker->last_active = jiffies; 1628 1629 /* idle_list is LIFO */ 1630 list_add(&worker->entry, &pool->idle_list); 1631 1632 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1633 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1634 1635 /* 1636 * Sanity check nr_running. Because wq_unbind_fn() releases 1637 * pool->lock between setting %WORKER_UNBOUND and zapping 1638 * nr_running, the warning may trigger spuriously. Check iff 1639 * unbind is not in progress. 1640 */ 1641 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1642 pool->nr_workers == pool->nr_idle && 1643 atomic_read(&pool->nr_running)); 1644 } 1645 1646 /** 1647 * worker_leave_idle - leave idle state 1648 * @worker: worker which is leaving idle state 1649 * 1650 * @worker is leaving idle state. Update stats. 1651 * 1652 * LOCKING: 1653 * spin_lock_irq(pool->lock). 1654 */ 1655 static void worker_leave_idle(struct worker *worker) 1656 { 1657 struct worker_pool *pool = worker->pool; 1658 1659 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1660 return; 1661 worker_clr_flags(worker, WORKER_IDLE); 1662 pool->nr_idle--; 1663 list_del_init(&worker->entry); 1664 } 1665 1666 static struct worker *alloc_worker(int node) 1667 { 1668 struct worker *worker; 1669 1670 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1671 if (worker) { 1672 INIT_LIST_HEAD(&worker->entry); 1673 INIT_LIST_HEAD(&worker->scheduled); 1674 INIT_LIST_HEAD(&worker->node); 1675 /* on creation a worker is in !idle && prep state */ 1676 worker->flags = WORKER_PREP; 1677 } 1678 return worker; 1679 } 1680 1681 /** 1682 * worker_attach_to_pool() - attach a worker to a pool 1683 * @worker: worker to be attached 1684 * @pool: the target pool 1685 * 1686 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1687 * cpu-binding of @worker are kept coordinated with the pool across 1688 * cpu-[un]hotplugs. 1689 */ 1690 static void worker_attach_to_pool(struct worker *worker, 1691 struct worker_pool *pool) 1692 { 1693 mutex_lock(&pool->attach_mutex); 1694 1695 /* 1696 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1697 * online CPUs. It'll be re-applied when any of the CPUs come up. 1698 */ 1699 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1700 1701 /* 1702 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains 1703 * stable across this function. See the comments above the 1704 * flag definition for details. 1705 */ 1706 if (pool->flags & POOL_DISASSOCIATED) 1707 worker->flags |= WORKER_UNBOUND; 1708 1709 list_add_tail(&worker->node, &pool->workers); 1710 1711 mutex_unlock(&pool->attach_mutex); 1712 } 1713 1714 /** 1715 * worker_detach_from_pool() - detach a worker from its pool 1716 * @worker: worker which is attached to its pool 1717 * @pool: the pool @worker is attached to 1718 * 1719 * Undo the attaching which had been done in worker_attach_to_pool(). The 1720 * caller worker shouldn't access to the pool after detached except it has 1721 * other reference to the pool. 1722 */ 1723 static void worker_detach_from_pool(struct worker *worker, 1724 struct worker_pool *pool) 1725 { 1726 struct completion *detach_completion = NULL; 1727 1728 mutex_lock(&pool->attach_mutex); 1729 list_del(&worker->node); 1730 if (list_empty(&pool->workers)) 1731 detach_completion = pool->detach_completion; 1732 mutex_unlock(&pool->attach_mutex); 1733 1734 /* clear leftover flags without pool->lock after it is detached */ 1735 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1736 1737 if (detach_completion) 1738 complete(detach_completion); 1739 } 1740 1741 /** 1742 * create_worker - create a new workqueue worker 1743 * @pool: pool the new worker will belong to 1744 * 1745 * Create and start a new worker which is attached to @pool. 1746 * 1747 * CONTEXT: 1748 * Might sleep. Does GFP_KERNEL allocations. 1749 * 1750 * Return: 1751 * Pointer to the newly created worker. 1752 */ 1753 static struct worker *create_worker(struct worker_pool *pool) 1754 { 1755 struct worker *worker = NULL; 1756 int id = -1; 1757 char id_buf[16]; 1758 1759 /* ID is needed to determine kthread name */ 1760 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL); 1761 if (id < 0) 1762 goto fail; 1763 1764 worker = alloc_worker(pool->node); 1765 if (!worker) 1766 goto fail; 1767 1768 worker->pool = pool; 1769 worker->id = id; 1770 1771 if (pool->cpu >= 0) 1772 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1773 pool->attrs->nice < 0 ? "H" : ""); 1774 else 1775 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1776 1777 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1778 "kworker/%s", id_buf); 1779 if (IS_ERR(worker->task)) 1780 goto fail; 1781 1782 set_user_nice(worker->task, pool->attrs->nice); 1783 kthread_bind_mask(worker->task, pool->attrs->cpumask); 1784 1785 /* successful, attach the worker to the pool */ 1786 worker_attach_to_pool(worker, pool); 1787 1788 /* start the newly created worker */ 1789 spin_lock_irq(&pool->lock); 1790 worker->pool->nr_workers++; 1791 worker_enter_idle(worker); 1792 wake_up_process(worker->task); 1793 spin_unlock_irq(&pool->lock); 1794 1795 return worker; 1796 1797 fail: 1798 if (id >= 0) 1799 ida_simple_remove(&pool->worker_ida, id); 1800 kfree(worker); 1801 return NULL; 1802 } 1803 1804 /** 1805 * destroy_worker - destroy a workqueue worker 1806 * @worker: worker to be destroyed 1807 * 1808 * Destroy @worker and adjust @pool stats accordingly. The worker should 1809 * be idle. 1810 * 1811 * CONTEXT: 1812 * spin_lock_irq(pool->lock). 1813 */ 1814 static void destroy_worker(struct worker *worker) 1815 { 1816 struct worker_pool *pool = worker->pool; 1817 1818 lockdep_assert_held(&pool->lock); 1819 1820 /* sanity check frenzy */ 1821 if (WARN_ON(worker->current_work) || 1822 WARN_ON(!list_empty(&worker->scheduled)) || 1823 WARN_ON(!(worker->flags & WORKER_IDLE))) 1824 return; 1825 1826 pool->nr_workers--; 1827 pool->nr_idle--; 1828 1829 list_del_init(&worker->entry); 1830 worker->flags |= WORKER_DIE; 1831 wake_up_process(worker->task); 1832 } 1833 1834 static void idle_worker_timeout(unsigned long __pool) 1835 { 1836 struct worker_pool *pool = (void *)__pool; 1837 1838 spin_lock_irq(&pool->lock); 1839 1840 while (too_many_workers(pool)) { 1841 struct worker *worker; 1842 unsigned long expires; 1843 1844 /* idle_list is kept in LIFO order, check the last one */ 1845 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1846 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1847 1848 if (time_before(jiffies, expires)) { 1849 mod_timer(&pool->idle_timer, expires); 1850 break; 1851 } 1852 1853 destroy_worker(worker); 1854 } 1855 1856 spin_unlock_irq(&pool->lock); 1857 } 1858 1859 static void send_mayday(struct work_struct *work) 1860 { 1861 struct pool_workqueue *pwq = get_work_pwq(work); 1862 struct workqueue_struct *wq = pwq->wq; 1863 1864 lockdep_assert_held(&wq_mayday_lock); 1865 1866 if (!wq->rescuer) 1867 return; 1868 1869 /* mayday mayday mayday */ 1870 if (list_empty(&pwq->mayday_node)) { 1871 /* 1872 * If @pwq is for an unbound wq, its base ref may be put at 1873 * any time due to an attribute change. Pin @pwq until the 1874 * rescuer is done with it. 1875 */ 1876 get_pwq(pwq); 1877 list_add_tail(&pwq->mayday_node, &wq->maydays); 1878 wake_up_process(wq->rescuer->task); 1879 } 1880 } 1881 1882 static void pool_mayday_timeout(unsigned long __pool) 1883 { 1884 struct worker_pool *pool = (void *)__pool; 1885 struct work_struct *work; 1886 1887 spin_lock_irq(&pool->lock); 1888 spin_lock(&wq_mayday_lock); /* for wq->maydays */ 1889 1890 if (need_to_create_worker(pool)) { 1891 /* 1892 * We've been trying to create a new worker but 1893 * haven't been successful. We might be hitting an 1894 * allocation deadlock. Send distress signals to 1895 * rescuers. 1896 */ 1897 list_for_each_entry(work, &pool->worklist, entry) 1898 send_mayday(work); 1899 } 1900 1901 spin_unlock(&wq_mayday_lock); 1902 spin_unlock_irq(&pool->lock); 1903 1904 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 1905 } 1906 1907 /** 1908 * maybe_create_worker - create a new worker if necessary 1909 * @pool: pool to create a new worker for 1910 * 1911 * Create a new worker for @pool if necessary. @pool is guaranteed to 1912 * have at least one idle worker on return from this function. If 1913 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1914 * sent to all rescuers with works scheduled on @pool to resolve 1915 * possible allocation deadlock. 1916 * 1917 * On return, need_to_create_worker() is guaranteed to be %false and 1918 * may_start_working() %true. 1919 * 1920 * LOCKING: 1921 * spin_lock_irq(pool->lock) which may be released and regrabbed 1922 * multiple times. Does GFP_KERNEL allocations. Called only from 1923 * manager. 1924 */ 1925 static void maybe_create_worker(struct worker_pool *pool) 1926 __releases(&pool->lock) 1927 __acquires(&pool->lock) 1928 { 1929 restart: 1930 spin_unlock_irq(&pool->lock); 1931 1932 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1933 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1934 1935 while (true) { 1936 if (create_worker(pool) || !need_to_create_worker(pool)) 1937 break; 1938 1939 schedule_timeout_interruptible(CREATE_COOLDOWN); 1940 1941 if (!need_to_create_worker(pool)) 1942 break; 1943 } 1944 1945 del_timer_sync(&pool->mayday_timer); 1946 spin_lock_irq(&pool->lock); 1947 /* 1948 * This is necessary even after a new worker was just successfully 1949 * created as @pool->lock was dropped and the new worker might have 1950 * already become busy. 1951 */ 1952 if (need_to_create_worker(pool)) 1953 goto restart; 1954 } 1955 1956 /** 1957 * manage_workers - manage worker pool 1958 * @worker: self 1959 * 1960 * Assume the manager role and manage the worker pool @worker belongs 1961 * to. At any given time, there can be only zero or one manager per 1962 * pool. The exclusion is handled automatically by this function. 1963 * 1964 * The caller can safely start processing works on false return. On 1965 * true return, it's guaranteed that need_to_create_worker() is false 1966 * and may_start_working() is true. 1967 * 1968 * CONTEXT: 1969 * spin_lock_irq(pool->lock) which may be released and regrabbed 1970 * multiple times. Does GFP_KERNEL allocations. 1971 * 1972 * Return: 1973 * %false if the pool doesn't need management and the caller can safely 1974 * start processing works, %true if management function was performed and 1975 * the conditions that the caller verified before calling the function may 1976 * no longer be true. 1977 */ 1978 static bool manage_workers(struct worker *worker) 1979 { 1980 struct worker_pool *pool = worker->pool; 1981 1982 /* 1983 * Anyone who successfully grabs manager_arb wins the arbitration 1984 * and becomes the manager. mutex_trylock() on pool->manager_arb 1985 * failure while holding pool->lock reliably indicates that someone 1986 * else is managing the pool and the worker which failed trylock 1987 * can proceed to executing work items. This means that anyone 1988 * grabbing manager_arb is responsible for actually performing 1989 * manager duties. If manager_arb is grabbed and released without 1990 * actual management, the pool may stall indefinitely. 1991 */ 1992 if (!mutex_trylock(&pool->manager_arb)) 1993 return false; 1994 pool->manager = worker; 1995 1996 maybe_create_worker(pool); 1997 1998 pool->manager = NULL; 1999 mutex_unlock(&pool->manager_arb); 2000 return true; 2001 } 2002 2003 /** 2004 * process_one_work - process single work 2005 * @worker: self 2006 * @work: work to process 2007 * 2008 * Process @work. This function contains all the logics necessary to 2009 * process a single work including synchronization against and 2010 * interaction with other workers on the same cpu, queueing and 2011 * flushing. As long as context requirement is met, any worker can 2012 * call this function to process a work. 2013 * 2014 * CONTEXT: 2015 * spin_lock_irq(pool->lock) which is released and regrabbed. 2016 */ 2017 static void process_one_work(struct worker *worker, struct work_struct *work) 2018 __releases(&pool->lock) 2019 __acquires(&pool->lock) 2020 { 2021 struct pool_workqueue *pwq = get_work_pwq(work); 2022 struct worker_pool *pool = worker->pool; 2023 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2024 int work_color; 2025 struct worker *collision; 2026 #ifdef CONFIG_LOCKDEP 2027 /* 2028 * It is permissible to free the struct work_struct from 2029 * inside the function that is called from it, this we need to 2030 * take into account for lockdep too. To avoid bogus "held 2031 * lock freed" warnings as well as problems when looking into 2032 * work->lockdep_map, make a copy and use that here. 2033 */ 2034 struct lockdep_map lockdep_map; 2035 2036 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2037 #endif 2038 /* ensure we're on the correct CPU */ 2039 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2040 raw_smp_processor_id() != pool->cpu); 2041 2042 /* 2043 * A single work shouldn't be executed concurrently by 2044 * multiple workers on a single cpu. Check whether anyone is 2045 * already processing the work. If so, defer the work to the 2046 * currently executing one. 2047 */ 2048 collision = find_worker_executing_work(pool, work); 2049 if (unlikely(collision)) { 2050 move_linked_works(work, &collision->scheduled, NULL); 2051 return; 2052 } 2053 2054 /* claim and dequeue */ 2055 debug_work_deactivate(work); 2056 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2057 worker->current_work = work; 2058 worker->current_func = work->func; 2059 worker->current_pwq = pwq; 2060 work_color = get_work_color(work); 2061 2062 list_del_init(&work->entry); 2063 2064 /* 2065 * CPU intensive works don't participate in concurrency management. 2066 * They're the scheduler's responsibility. This takes @worker out 2067 * of concurrency management and the next code block will chain 2068 * execution of the pending work items. 2069 */ 2070 if (unlikely(cpu_intensive)) 2071 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2072 2073 /* 2074 * Wake up another worker if necessary. The condition is always 2075 * false for normal per-cpu workers since nr_running would always 2076 * be >= 1 at this point. This is used to chain execution of the 2077 * pending work items for WORKER_NOT_RUNNING workers such as the 2078 * UNBOUND and CPU_INTENSIVE ones. 2079 */ 2080 if (need_more_worker(pool)) 2081 wake_up_worker(pool); 2082 2083 /* 2084 * Record the last pool and clear PENDING which should be the last 2085 * update to @work. Also, do this inside @pool->lock so that 2086 * PENDING and queued state changes happen together while IRQ is 2087 * disabled. 2088 */ 2089 set_work_pool_and_clear_pending(work, pool->id); 2090 2091 spin_unlock_irq(&pool->lock); 2092 2093 lock_map_acquire_read(&pwq->wq->lockdep_map); 2094 lock_map_acquire(&lockdep_map); 2095 trace_workqueue_execute_start(work); 2096 worker->current_func(work); 2097 /* 2098 * While we must be careful to not use "work" after this, the trace 2099 * point will only record its address. 2100 */ 2101 trace_workqueue_execute_end(work); 2102 lock_map_release(&lockdep_map); 2103 lock_map_release(&pwq->wq->lockdep_map); 2104 2105 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2106 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2107 " last function: %pf\n", 2108 current->comm, preempt_count(), task_pid_nr(current), 2109 worker->current_func); 2110 debug_show_held_locks(current); 2111 dump_stack(); 2112 } 2113 2114 /* 2115 * The following prevents a kworker from hogging CPU on !PREEMPT 2116 * kernels, where a requeueing work item waiting for something to 2117 * happen could deadlock with stop_machine as such work item could 2118 * indefinitely requeue itself while all other CPUs are trapped in 2119 * stop_machine. At the same time, report a quiescent RCU state so 2120 * the same condition doesn't freeze RCU. 2121 */ 2122 cond_resched_rcu_qs(); 2123 2124 spin_lock_irq(&pool->lock); 2125 2126 /* clear cpu intensive status */ 2127 if (unlikely(cpu_intensive)) 2128 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2129 2130 /* we're done with it, release */ 2131 hash_del(&worker->hentry); 2132 worker->current_work = NULL; 2133 worker->current_func = NULL; 2134 worker->current_pwq = NULL; 2135 worker->desc_valid = false; 2136 pwq_dec_nr_in_flight(pwq, work_color); 2137 } 2138 2139 /** 2140 * process_scheduled_works - process scheduled works 2141 * @worker: self 2142 * 2143 * Process all scheduled works. Please note that the scheduled list 2144 * may change while processing a work, so this function repeatedly 2145 * fetches a work from the top and executes it. 2146 * 2147 * CONTEXT: 2148 * spin_lock_irq(pool->lock) which may be released and regrabbed 2149 * multiple times. 2150 */ 2151 static void process_scheduled_works(struct worker *worker) 2152 { 2153 while (!list_empty(&worker->scheduled)) { 2154 struct work_struct *work = list_first_entry(&worker->scheduled, 2155 struct work_struct, entry); 2156 process_one_work(worker, work); 2157 } 2158 } 2159 2160 /** 2161 * worker_thread - the worker thread function 2162 * @__worker: self 2163 * 2164 * The worker thread function. All workers belong to a worker_pool - 2165 * either a per-cpu one or dynamic unbound one. These workers process all 2166 * work items regardless of their specific target workqueue. The only 2167 * exception is work items which belong to workqueues with a rescuer which 2168 * will be explained in rescuer_thread(). 2169 * 2170 * Return: 0 2171 */ 2172 static int worker_thread(void *__worker) 2173 { 2174 struct worker *worker = __worker; 2175 struct worker_pool *pool = worker->pool; 2176 2177 /* tell the scheduler that this is a workqueue worker */ 2178 worker->task->flags |= PF_WQ_WORKER; 2179 woke_up: 2180 spin_lock_irq(&pool->lock); 2181 2182 /* am I supposed to die? */ 2183 if (unlikely(worker->flags & WORKER_DIE)) { 2184 spin_unlock_irq(&pool->lock); 2185 WARN_ON_ONCE(!list_empty(&worker->entry)); 2186 worker->task->flags &= ~PF_WQ_WORKER; 2187 2188 set_task_comm(worker->task, "kworker/dying"); 2189 ida_simple_remove(&pool->worker_ida, worker->id); 2190 worker_detach_from_pool(worker, pool); 2191 kfree(worker); 2192 return 0; 2193 } 2194 2195 worker_leave_idle(worker); 2196 recheck: 2197 /* no more worker necessary? */ 2198 if (!need_more_worker(pool)) 2199 goto sleep; 2200 2201 /* do we need to manage? */ 2202 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2203 goto recheck; 2204 2205 /* 2206 * ->scheduled list can only be filled while a worker is 2207 * preparing to process a work or actually processing it. 2208 * Make sure nobody diddled with it while I was sleeping. 2209 */ 2210 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2211 2212 /* 2213 * Finish PREP stage. We're guaranteed to have at least one idle 2214 * worker or that someone else has already assumed the manager 2215 * role. This is where @worker starts participating in concurrency 2216 * management if applicable and concurrency management is restored 2217 * after being rebound. See rebind_workers() for details. 2218 */ 2219 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2220 2221 do { 2222 struct work_struct *work = 2223 list_first_entry(&pool->worklist, 2224 struct work_struct, entry); 2225 2226 pool->watchdog_ts = jiffies; 2227 2228 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2229 /* optimization path, not strictly necessary */ 2230 process_one_work(worker, work); 2231 if (unlikely(!list_empty(&worker->scheduled))) 2232 process_scheduled_works(worker); 2233 } else { 2234 move_linked_works(work, &worker->scheduled, NULL); 2235 process_scheduled_works(worker); 2236 } 2237 } while (keep_working(pool)); 2238 2239 worker_set_flags(worker, WORKER_PREP); 2240 sleep: 2241 /* 2242 * pool->lock is held and there's no work to process and no need to 2243 * manage, sleep. Workers are woken up only while holding 2244 * pool->lock or from local cpu, so setting the current state 2245 * before releasing pool->lock is enough to prevent losing any 2246 * event. 2247 */ 2248 worker_enter_idle(worker); 2249 __set_current_state(TASK_INTERRUPTIBLE); 2250 spin_unlock_irq(&pool->lock); 2251 schedule(); 2252 goto woke_up; 2253 } 2254 2255 /** 2256 * rescuer_thread - the rescuer thread function 2257 * @__rescuer: self 2258 * 2259 * Workqueue rescuer thread function. There's one rescuer for each 2260 * workqueue which has WQ_MEM_RECLAIM set. 2261 * 2262 * Regular work processing on a pool may block trying to create a new 2263 * worker which uses GFP_KERNEL allocation which has slight chance of 2264 * developing into deadlock if some works currently on the same queue 2265 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2266 * the problem rescuer solves. 2267 * 2268 * When such condition is possible, the pool summons rescuers of all 2269 * workqueues which have works queued on the pool and let them process 2270 * those works so that forward progress can be guaranteed. 2271 * 2272 * This should happen rarely. 2273 * 2274 * Return: 0 2275 */ 2276 static int rescuer_thread(void *__rescuer) 2277 { 2278 struct worker *rescuer = __rescuer; 2279 struct workqueue_struct *wq = rescuer->rescue_wq; 2280 struct list_head *scheduled = &rescuer->scheduled; 2281 bool should_stop; 2282 2283 set_user_nice(current, RESCUER_NICE_LEVEL); 2284 2285 /* 2286 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2287 * doesn't participate in concurrency management. 2288 */ 2289 rescuer->task->flags |= PF_WQ_WORKER; 2290 repeat: 2291 set_current_state(TASK_INTERRUPTIBLE); 2292 2293 /* 2294 * By the time the rescuer is requested to stop, the workqueue 2295 * shouldn't have any work pending, but @wq->maydays may still have 2296 * pwq(s) queued. This can happen by non-rescuer workers consuming 2297 * all the work items before the rescuer got to them. Go through 2298 * @wq->maydays processing before acting on should_stop so that the 2299 * list is always empty on exit. 2300 */ 2301 should_stop = kthread_should_stop(); 2302 2303 /* see whether any pwq is asking for help */ 2304 spin_lock_irq(&wq_mayday_lock); 2305 2306 while (!list_empty(&wq->maydays)) { 2307 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2308 struct pool_workqueue, mayday_node); 2309 struct worker_pool *pool = pwq->pool; 2310 struct work_struct *work, *n; 2311 bool first = true; 2312 2313 __set_current_state(TASK_RUNNING); 2314 list_del_init(&pwq->mayday_node); 2315 2316 spin_unlock_irq(&wq_mayday_lock); 2317 2318 worker_attach_to_pool(rescuer, pool); 2319 2320 spin_lock_irq(&pool->lock); 2321 rescuer->pool = pool; 2322 2323 /* 2324 * Slurp in all works issued via this workqueue and 2325 * process'em. 2326 */ 2327 WARN_ON_ONCE(!list_empty(scheduled)); 2328 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2329 if (get_work_pwq(work) == pwq) { 2330 if (first) 2331 pool->watchdog_ts = jiffies; 2332 move_linked_works(work, scheduled, &n); 2333 } 2334 first = false; 2335 } 2336 2337 if (!list_empty(scheduled)) { 2338 process_scheduled_works(rescuer); 2339 2340 /* 2341 * The above execution of rescued work items could 2342 * have created more to rescue through 2343 * pwq_activate_first_delayed() or chained 2344 * queueing. Let's put @pwq back on mayday list so 2345 * that such back-to-back work items, which may be 2346 * being used to relieve memory pressure, don't 2347 * incur MAYDAY_INTERVAL delay inbetween. 2348 */ 2349 if (need_to_create_worker(pool)) { 2350 spin_lock(&wq_mayday_lock); 2351 get_pwq(pwq); 2352 list_move_tail(&pwq->mayday_node, &wq->maydays); 2353 spin_unlock(&wq_mayday_lock); 2354 } 2355 } 2356 2357 /* 2358 * Put the reference grabbed by send_mayday(). @pool won't 2359 * go away while we're still attached to it. 2360 */ 2361 put_pwq(pwq); 2362 2363 /* 2364 * Leave this pool. If need_more_worker() is %true, notify a 2365 * regular worker; otherwise, we end up with 0 concurrency 2366 * and stalling the execution. 2367 */ 2368 if (need_more_worker(pool)) 2369 wake_up_worker(pool); 2370 2371 rescuer->pool = NULL; 2372 spin_unlock_irq(&pool->lock); 2373 2374 worker_detach_from_pool(rescuer, pool); 2375 2376 spin_lock_irq(&wq_mayday_lock); 2377 } 2378 2379 spin_unlock_irq(&wq_mayday_lock); 2380 2381 if (should_stop) { 2382 __set_current_state(TASK_RUNNING); 2383 rescuer->task->flags &= ~PF_WQ_WORKER; 2384 return 0; 2385 } 2386 2387 /* rescuers should never participate in concurrency management */ 2388 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2389 schedule(); 2390 goto repeat; 2391 } 2392 2393 /** 2394 * check_flush_dependency - check for flush dependency sanity 2395 * @target_wq: workqueue being flushed 2396 * @target_work: work item being flushed (NULL for workqueue flushes) 2397 * 2398 * %current is trying to flush the whole @target_wq or @target_work on it. 2399 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2400 * reclaiming memory or running on a workqueue which doesn't have 2401 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2402 * a deadlock. 2403 */ 2404 static void check_flush_dependency(struct workqueue_struct *target_wq, 2405 struct work_struct *target_work) 2406 { 2407 work_func_t target_func = target_work ? target_work->func : NULL; 2408 struct worker *worker; 2409 2410 if (target_wq->flags & WQ_MEM_RECLAIM) 2411 return; 2412 2413 worker = current_wq_worker(); 2414 2415 WARN_ONCE(current->flags & PF_MEMALLOC, 2416 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf", 2417 current->pid, current->comm, target_wq->name, target_func); 2418 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2419 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2420 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf", 2421 worker->current_pwq->wq->name, worker->current_func, 2422 target_wq->name, target_func); 2423 } 2424 2425 struct wq_barrier { 2426 struct work_struct work; 2427 struct completion done; 2428 struct task_struct *task; /* purely informational */ 2429 }; 2430 2431 static void wq_barrier_func(struct work_struct *work) 2432 { 2433 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2434 complete(&barr->done); 2435 } 2436 2437 /** 2438 * insert_wq_barrier - insert a barrier work 2439 * @pwq: pwq to insert barrier into 2440 * @barr: wq_barrier to insert 2441 * @target: target work to attach @barr to 2442 * @worker: worker currently executing @target, NULL if @target is not executing 2443 * 2444 * @barr is linked to @target such that @barr is completed only after 2445 * @target finishes execution. Please note that the ordering 2446 * guarantee is observed only with respect to @target and on the local 2447 * cpu. 2448 * 2449 * Currently, a queued barrier can't be canceled. This is because 2450 * try_to_grab_pending() can't determine whether the work to be 2451 * grabbed is at the head of the queue and thus can't clear LINKED 2452 * flag of the previous work while there must be a valid next work 2453 * after a work with LINKED flag set. 2454 * 2455 * Note that when @worker is non-NULL, @target may be modified 2456 * underneath us, so we can't reliably determine pwq from @target. 2457 * 2458 * CONTEXT: 2459 * spin_lock_irq(pool->lock). 2460 */ 2461 static void insert_wq_barrier(struct pool_workqueue *pwq, 2462 struct wq_barrier *barr, 2463 struct work_struct *target, struct worker *worker) 2464 { 2465 struct list_head *head; 2466 unsigned int linked = 0; 2467 2468 /* 2469 * debugobject calls are safe here even with pool->lock locked 2470 * as we know for sure that this will not trigger any of the 2471 * checks and call back into the fixup functions where we 2472 * might deadlock. 2473 */ 2474 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2475 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2476 init_completion(&barr->done); 2477 barr->task = current; 2478 2479 /* 2480 * If @target is currently being executed, schedule the 2481 * barrier to the worker; otherwise, put it after @target. 2482 */ 2483 if (worker) 2484 head = worker->scheduled.next; 2485 else { 2486 unsigned long *bits = work_data_bits(target); 2487 2488 head = target->entry.next; 2489 /* there can already be other linked works, inherit and set */ 2490 linked = *bits & WORK_STRUCT_LINKED; 2491 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2492 } 2493 2494 debug_work_activate(&barr->work); 2495 insert_work(pwq, &barr->work, head, 2496 work_color_to_flags(WORK_NO_COLOR) | linked); 2497 } 2498 2499 /** 2500 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2501 * @wq: workqueue being flushed 2502 * @flush_color: new flush color, < 0 for no-op 2503 * @work_color: new work color, < 0 for no-op 2504 * 2505 * Prepare pwqs for workqueue flushing. 2506 * 2507 * If @flush_color is non-negative, flush_color on all pwqs should be 2508 * -1. If no pwq has in-flight commands at the specified color, all 2509 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2510 * has in flight commands, its pwq->flush_color is set to 2511 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2512 * wakeup logic is armed and %true is returned. 2513 * 2514 * The caller should have initialized @wq->first_flusher prior to 2515 * calling this function with non-negative @flush_color. If 2516 * @flush_color is negative, no flush color update is done and %false 2517 * is returned. 2518 * 2519 * If @work_color is non-negative, all pwqs should have the same 2520 * work_color which is previous to @work_color and all will be 2521 * advanced to @work_color. 2522 * 2523 * CONTEXT: 2524 * mutex_lock(wq->mutex). 2525 * 2526 * Return: 2527 * %true if @flush_color >= 0 and there's something to flush. %false 2528 * otherwise. 2529 */ 2530 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2531 int flush_color, int work_color) 2532 { 2533 bool wait = false; 2534 struct pool_workqueue *pwq; 2535 2536 if (flush_color >= 0) { 2537 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2538 atomic_set(&wq->nr_pwqs_to_flush, 1); 2539 } 2540 2541 for_each_pwq(pwq, wq) { 2542 struct worker_pool *pool = pwq->pool; 2543 2544 spin_lock_irq(&pool->lock); 2545 2546 if (flush_color >= 0) { 2547 WARN_ON_ONCE(pwq->flush_color != -1); 2548 2549 if (pwq->nr_in_flight[flush_color]) { 2550 pwq->flush_color = flush_color; 2551 atomic_inc(&wq->nr_pwqs_to_flush); 2552 wait = true; 2553 } 2554 } 2555 2556 if (work_color >= 0) { 2557 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2558 pwq->work_color = work_color; 2559 } 2560 2561 spin_unlock_irq(&pool->lock); 2562 } 2563 2564 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2565 complete(&wq->first_flusher->done); 2566 2567 return wait; 2568 } 2569 2570 /** 2571 * flush_workqueue - ensure that any scheduled work has run to completion. 2572 * @wq: workqueue to flush 2573 * 2574 * This function sleeps until all work items which were queued on entry 2575 * have finished execution, but it is not livelocked by new incoming ones. 2576 */ 2577 void flush_workqueue(struct workqueue_struct *wq) 2578 { 2579 struct wq_flusher this_flusher = { 2580 .list = LIST_HEAD_INIT(this_flusher.list), 2581 .flush_color = -1, 2582 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2583 }; 2584 int next_color; 2585 2586 lock_map_acquire(&wq->lockdep_map); 2587 lock_map_release(&wq->lockdep_map); 2588 2589 mutex_lock(&wq->mutex); 2590 2591 /* 2592 * Start-to-wait phase 2593 */ 2594 next_color = work_next_color(wq->work_color); 2595 2596 if (next_color != wq->flush_color) { 2597 /* 2598 * Color space is not full. The current work_color 2599 * becomes our flush_color and work_color is advanced 2600 * by one. 2601 */ 2602 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2603 this_flusher.flush_color = wq->work_color; 2604 wq->work_color = next_color; 2605 2606 if (!wq->first_flusher) { 2607 /* no flush in progress, become the first flusher */ 2608 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2609 2610 wq->first_flusher = &this_flusher; 2611 2612 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2613 wq->work_color)) { 2614 /* nothing to flush, done */ 2615 wq->flush_color = next_color; 2616 wq->first_flusher = NULL; 2617 goto out_unlock; 2618 } 2619 } else { 2620 /* wait in queue */ 2621 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2622 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2623 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2624 } 2625 } else { 2626 /* 2627 * Oops, color space is full, wait on overflow queue. 2628 * The next flush completion will assign us 2629 * flush_color and transfer to flusher_queue. 2630 */ 2631 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2632 } 2633 2634 check_flush_dependency(wq, NULL); 2635 2636 mutex_unlock(&wq->mutex); 2637 2638 wait_for_completion(&this_flusher.done); 2639 2640 /* 2641 * Wake-up-and-cascade phase 2642 * 2643 * First flushers are responsible for cascading flushes and 2644 * handling overflow. Non-first flushers can simply return. 2645 */ 2646 if (wq->first_flusher != &this_flusher) 2647 return; 2648 2649 mutex_lock(&wq->mutex); 2650 2651 /* we might have raced, check again with mutex held */ 2652 if (wq->first_flusher != &this_flusher) 2653 goto out_unlock; 2654 2655 wq->first_flusher = NULL; 2656 2657 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2658 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2659 2660 while (true) { 2661 struct wq_flusher *next, *tmp; 2662 2663 /* complete all the flushers sharing the current flush color */ 2664 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2665 if (next->flush_color != wq->flush_color) 2666 break; 2667 list_del_init(&next->list); 2668 complete(&next->done); 2669 } 2670 2671 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2672 wq->flush_color != work_next_color(wq->work_color)); 2673 2674 /* this flush_color is finished, advance by one */ 2675 wq->flush_color = work_next_color(wq->flush_color); 2676 2677 /* one color has been freed, handle overflow queue */ 2678 if (!list_empty(&wq->flusher_overflow)) { 2679 /* 2680 * Assign the same color to all overflowed 2681 * flushers, advance work_color and append to 2682 * flusher_queue. This is the start-to-wait 2683 * phase for these overflowed flushers. 2684 */ 2685 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2686 tmp->flush_color = wq->work_color; 2687 2688 wq->work_color = work_next_color(wq->work_color); 2689 2690 list_splice_tail_init(&wq->flusher_overflow, 2691 &wq->flusher_queue); 2692 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2693 } 2694 2695 if (list_empty(&wq->flusher_queue)) { 2696 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2697 break; 2698 } 2699 2700 /* 2701 * Need to flush more colors. Make the next flusher 2702 * the new first flusher and arm pwqs. 2703 */ 2704 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2705 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2706 2707 list_del_init(&next->list); 2708 wq->first_flusher = next; 2709 2710 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2711 break; 2712 2713 /* 2714 * Meh... this color is already done, clear first 2715 * flusher and repeat cascading. 2716 */ 2717 wq->first_flusher = NULL; 2718 } 2719 2720 out_unlock: 2721 mutex_unlock(&wq->mutex); 2722 } 2723 EXPORT_SYMBOL(flush_workqueue); 2724 2725 /** 2726 * drain_workqueue - drain a workqueue 2727 * @wq: workqueue to drain 2728 * 2729 * Wait until the workqueue becomes empty. While draining is in progress, 2730 * only chain queueing is allowed. IOW, only currently pending or running 2731 * work items on @wq can queue further work items on it. @wq is flushed 2732 * repeatedly until it becomes empty. The number of flushing is determined 2733 * by the depth of chaining and should be relatively short. Whine if it 2734 * takes too long. 2735 */ 2736 void drain_workqueue(struct workqueue_struct *wq) 2737 { 2738 unsigned int flush_cnt = 0; 2739 struct pool_workqueue *pwq; 2740 2741 /* 2742 * __queue_work() needs to test whether there are drainers, is much 2743 * hotter than drain_workqueue() and already looks at @wq->flags. 2744 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2745 */ 2746 mutex_lock(&wq->mutex); 2747 if (!wq->nr_drainers++) 2748 wq->flags |= __WQ_DRAINING; 2749 mutex_unlock(&wq->mutex); 2750 reflush: 2751 flush_workqueue(wq); 2752 2753 mutex_lock(&wq->mutex); 2754 2755 for_each_pwq(pwq, wq) { 2756 bool drained; 2757 2758 spin_lock_irq(&pwq->pool->lock); 2759 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2760 spin_unlock_irq(&pwq->pool->lock); 2761 2762 if (drained) 2763 continue; 2764 2765 if (++flush_cnt == 10 || 2766 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2767 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2768 wq->name, flush_cnt); 2769 2770 mutex_unlock(&wq->mutex); 2771 goto reflush; 2772 } 2773 2774 if (!--wq->nr_drainers) 2775 wq->flags &= ~__WQ_DRAINING; 2776 mutex_unlock(&wq->mutex); 2777 } 2778 EXPORT_SYMBOL_GPL(drain_workqueue); 2779 2780 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr) 2781 { 2782 struct worker *worker = NULL; 2783 struct worker_pool *pool; 2784 struct pool_workqueue *pwq; 2785 2786 might_sleep(); 2787 2788 local_irq_disable(); 2789 pool = get_work_pool(work); 2790 if (!pool) { 2791 local_irq_enable(); 2792 return false; 2793 } 2794 2795 spin_lock(&pool->lock); 2796 /* see the comment in try_to_grab_pending() with the same code */ 2797 pwq = get_work_pwq(work); 2798 if (pwq) { 2799 if (unlikely(pwq->pool != pool)) 2800 goto already_gone; 2801 } else { 2802 worker = find_worker_executing_work(pool, work); 2803 if (!worker) 2804 goto already_gone; 2805 pwq = worker->current_pwq; 2806 } 2807 2808 check_flush_dependency(pwq->wq, work); 2809 2810 insert_wq_barrier(pwq, barr, work, worker); 2811 spin_unlock_irq(&pool->lock); 2812 2813 /* 2814 * If @max_active is 1 or rescuer is in use, flushing another work 2815 * item on the same workqueue may lead to deadlock. Make sure the 2816 * flusher is not running on the same workqueue by verifying write 2817 * access. 2818 */ 2819 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) 2820 lock_map_acquire(&pwq->wq->lockdep_map); 2821 else 2822 lock_map_acquire_read(&pwq->wq->lockdep_map); 2823 lock_map_release(&pwq->wq->lockdep_map); 2824 2825 return true; 2826 already_gone: 2827 spin_unlock_irq(&pool->lock); 2828 return false; 2829 } 2830 2831 /** 2832 * flush_work - wait for a work to finish executing the last queueing instance 2833 * @work: the work to flush 2834 * 2835 * Wait until @work has finished execution. @work is guaranteed to be idle 2836 * on return if it hasn't been requeued since flush started. 2837 * 2838 * Return: 2839 * %true if flush_work() waited for the work to finish execution, 2840 * %false if it was already idle. 2841 */ 2842 bool flush_work(struct work_struct *work) 2843 { 2844 struct wq_barrier barr; 2845 2846 lock_map_acquire(&work->lockdep_map); 2847 lock_map_release(&work->lockdep_map); 2848 2849 if (start_flush_work(work, &barr)) { 2850 wait_for_completion(&barr.done); 2851 destroy_work_on_stack(&barr.work); 2852 return true; 2853 } else { 2854 return false; 2855 } 2856 } 2857 EXPORT_SYMBOL_GPL(flush_work); 2858 2859 struct cwt_wait { 2860 wait_queue_t wait; 2861 struct work_struct *work; 2862 }; 2863 2864 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key) 2865 { 2866 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 2867 2868 if (cwait->work != key) 2869 return 0; 2870 return autoremove_wake_function(wait, mode, sync, key); 2871 } 2872 2873 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 2874 { 2875 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 2876 unsigned long flags; 2877 int ret; 2878 2879 do { 2880 ret = try_to_grab_pending(work, is_dwork, &flags); 2881 /* 2882 * If someone else is already canceling, wait for it to 2883 * finish. flush_work() doesn't work for PREEMPT_NONE 2884 * because we may get scheduled between @work's completion 2885 * and the other canceling task resuming and clearing 2886 * CANCELING - flush_work() will return false immediately 2887 * as @work is no longer busy, try_to_grab_pending() will 2888 * return -ENOENT as @work is still being canceled and the 2889 * other canceling task won't be able to clear CANCELING as 2890 * we're hogging the CPU. 2891 * 2892 * Let's wait for completion using a waitqueue. As this 2893 * may lead to the thundering herd problem, use a custom 2894 * wake function which matches @work along with exclusive 2895 * wait and wakeup. 2896 */ 2897 if (unlikely(ret == -ENOENT)) { 2898 struct cwt_wait cwait; 2899 2900 init_wait(&cwait.wait); 2901 cwait.wait.func = cwt_wakefn; 2902 cwait.work = work; 2903 2904 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 2905 TASK_UNINTERRUPTIBLE); 2906 if (work_is_canceling(work)) 2907 schedule(); 2908 finish_wait(&cancel_waitq, &cwait.wait); 2909 } 2910 } while (unlikely(ret < 0)); 2911 2912 /* tell other tasks trying to grab @work to back off */ 2913 mark_work_canceling(work); 2914 local_irq_restore(flags); 2915 2916 flush_work(work); 2917 clear_work_data(work); 2918 2919 /* 2920 * Paired with prepare_to_wait() above so that either 2921 * waitqueue_active() is visible here or !work_is_canceling() is 2922 * visible there. 2923 */ 2924 smp_mb(); 2925 if (waitqueue_active(&cancel_waitq)) 2926 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 2927 2928 return ret; 2929 } 2930 2931 /** 2932 * cancel_work_sync - cancel a work and wait for it to finish 2933 * @work: the work to cancel 2934 * 2935 * Cancel @work and wait for its execution to finish. This function 2936 * can be used even if the work re-queues itself or migrates to 2937 * another workqueue. On return from this function, @work is 2938 * guaranteed to be not pending or executing on any CPU. 2939 * 2940 * cancel_work_sync(&delayed_work->work) must not be used for 2941 * delayed_work's. Use cancel_delayed_work_sync() instead. 2942 * 2943 * The caller must ensure that the workqueue on which @work was last 2944 * queued can't be destroyed before this function returns. 2945 * 2946 * Return: 2947 * %true if @work was pending, %false otherwise. 2948 */ 2949 bool cancel_work_sync(struct work_struct *work) 2950 { 2951 return __cancel_work_timer(work, false); 2952 } 2953 EXPORT_SYMBOL_GPL(cancel_work_sync); 2954 2955 /** 2956 * flush_delayed_work - wait for a dwork to finish executing the last queueing 2957 * @dwork: the delayed work to flush 2958 * 2959 * Delayed timer is cancelled and the pending work is queued for 2960 * immediate execution. Like flush_work(), this function only 2961 * considers the last queueing instance of @dwork. 2962 * 2963 * Return: 2964 * %true if flush_work() waited for the work to finish execution, 2965 * %false if it was already idle. 2966 */ 2967 bool flush_delayed_work(struct delayed_work *dwork) 2968 { 2969 local_irq_disable(); 2970 if (del_timer_sync(&dwork->timer)) 2971 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2972 local_irq_enable(); 2973 return flush_work(&dwork->work); 2974 } 2975 EXPORT_SYMBOL(flush_delayed_work); 2976 2977 /** 2978 * cancel_delayed_work - cancel a delayed work 2979 * @dwork: delayed_work to cancel 2980 * 2981 * Kill off a pending delayed_work. 2982 * 2983 * Return: %true if @dwork was pending and canceled; %false if it wasn't 2984 * pending. 2985 * 2986 * Note: 2987 * The work callback function may still be running on return, unless 2988 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 2989 * use cancel_delayed_work_sync() to wait on it. 2990 * 2991 * This function is safe to call from any context including IRQ handler. 2992 */ 2993 bool cancel_delayed_work(struct delayed_work *dwork) 2994 { 2995 unsigned long flags; 2996 int ret; 2997 2998 do { 2999 ret = try_to_grab_pending(&dwork->work, true, &flags); 3000 } while (unlikely(ret == -EAGAIN)); 3001 3002 if (unlikely(ret < 0)) 3003 return false; 3004 3005 set_work_pool_and_clear_pending(&dwork->work, 3006 get_work_pool_id(&dwork->work)); 3007 local_irq_restore(flags); 3008 return ret; 3009 } 3010 EXPORT_SYMBOL(cancel_delayed_work); 3011 3012 /** 3013 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3014 * @dwork: the delayed work cancel 3015 * 3016 * This is cancel_work_sync() for delayed works. 3017 * 3018 * Return: 3019 * %true if @dwork was pending, %false otherwise. 3020 */ 3021 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3022 { 3023 return __cancel_work_timer(&dwork->work, true); 3024 } 3025 EXPORT_SYMBOL(cancel_delayed_work_sync); 3026 3027 /** 3028 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3029 * @func: the function to call 3030 * 3031 * schedule_on_each_cpu() executes @func on each online CPU using the 3032 * system workqueue and blocks until all CPUs have completed. 3033 * schedule_on_each_cpu() is very slow. 3034 * 3035 * Return: 3036 * 0 on success, -errno on failure. 3037 */ 3038 int schedule_on_each_cpu(work_func_t func) 3039 { 3040 int cpu; 3041 struct work_struct __percpu *works; 3042 3043 works = alloc_percpu(struct work_struct); 3044 if (!works) 3045 return -ENOMEM; 3046 3047 get_online_cpus(); 3048 3049 for_each_online_cpu(cpu) { 3050 struct work_struct *work = per_cpu_ptr(works, cpu); 3051 3052 INIT_WORK(work, func); 3053 schedule_work_on(cpu, work); 3054 } 3055 3056 for_each_online_cpu(cpu) 3057 flush_work(per_cpu_ptr(works, cpu)); 3058 3059 put_online_cpus(); 3060 free_percpu(works); 3061 return 0; 3062 } 3063 3064 /** 3065 * execute_in_process_context - reliably execute the routine with user context 3066 * @fn: the function to execute 3067 * @ew: guaranteed storage for the execute work structure (must 3068 * be available when the work executes) 3069 * 3070 * Executes the function immediately if process context is available, 3071 * otherwise schedules the function for delayed execution. 3072 * 3073 * Return: 0 - function was executed 3074 * 1 - function was scheduled for execution 3075 */ 3076 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3077 { 3078 if (!in_interrupt()) { 3079 fn(&ew->work); 3080 return 0; 3081 } 3082 3083 INIT_WORK(&ew->work, fn); 3084 schedule_work(&ew->work); 3085 3086 return 1; 3087 } 3088 EXPORT_SYMBOL_GPL(execute_in_process_context); 3089 3090 /** 3091 * free_workqueue_attrs - free a workqueue_attrs 3092 * @attrs: workqueue_attrs to free 3093 * 3094 * Undo alloc_workqueue_attrs(). 3095 */ 3096 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3097 { 3098 if (attrs) { 3099 free_cpumask_var(attrs->cpumask); 3100 kfree(attrs); 3101 } 3102 } 3103 3104 /** 3105 * alloc_workqueue_attrs - allocate a workqueue_attrs 3106 * @gfp_mask: allocation mask to use 3107 * 3108 * Allocate a new workqueue_attrs, initialize with default settings and 3109 * return it. 3110 * 3111 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3112 */ 3113 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask) 3114 { 3115 struct workqueue_attrs *attrs; 3116 3117 attrs = kzalloc(sizeof(*attrs), gfp_mask); 3118 if (!attrs) 3119 goto fail; 3120 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask)) 3121 goto fail; 3122 3123 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3124 return attrs; 3125 fail: 3126 free_workqueue_attrs(attrs); 3127 return NULL; 3128 } 3129 3130 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3131 const struct workqueue_attrs *from) 3132 { 3133 to->nice = from->nice; 3134 cpumask_copy(to->cpumask, from->cpumask); 3135 /* 3136 * Unlike hash and equality test, this function doesn't ignore 3137 * ->no_numa as it is used for both pool and wq attrs. Instead, 3138 * get_unbound_pool() explicitly clears ->no_numa after copying. 3139 */ 3140 to->no_numa = from->no_numa; 3141 } 3142 3143 /* hash value of the content of @attr */ 3144 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3145 { 3146 u32 hash = 0; 3147 3148 hash = jhash_1word(attrs->nice, hash); 3149 hash = jhash(cpumask_bits(attrs->cpumask), 3150 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3151 return hash; 3152 } 3153 3154 /* content equality test */ 3155 static bool wqattrs_equal(const struct workqueue_attrs *a, 3156 const struct workqueue_attrs *b) 3157 { 3158 if (a->nice != b->nice) 3159 return false; 3160 if (!cpumask_equal(a->cpumask, b->cpumask)) 3161 return false; 3162 return true; 3163 } 3164 3165 /** 3166 * init_worker_pool - initialize a newly zalloc'd worker_pool 3167 * @pool: worker_pool to initialize 3168 * 3169 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3170 * 3171 * Return: 0 on success, -errno on failure. Even on failure, all fields 3172 * inside @pool proper are initialized and put_unbound_pool() can be called 3173 * on @pool safely to release it. 3174 */ 3175 static int init_worker_pool(struct worker_pool *pool) 3176 { 3177 spin_lock_init(&pool->lock); 3178 pool->id = -1; 3179 pool->cpu = -1; 3180 pool->node = NUMA_NO_NODE; 3181 pool->flags |= POOL_DISASSOCIATED; 3182 pool->watchdog_ts = jiffies; 3183 INIT_LIST_HEAD(&pool->worklist); 3184 INIT_LIST_HEAD(&pool->idle_list); 3185 hash_init(pool->busy_hash); 3186 3187 init_timer_deferrable(&pool->idle_timer); 3188 pool->idle_timer.function = idle_worker_timeout; 3189 pool->idle_timer.data = (unsigned long)pool; 3190 3191 setup_timer(&pool->mayday_timer, pool_mayday_timeout, 3192 (unsigned long)pool); 3193 3194 mutex_init(&pool->manager_arb); 3195 mutex_init(&pool->attach_mutex); 3196 INIT_LIST_HEAD(&pool->workers); 3197 3198 ida_init(&pool->worker_ida); 3199 INIT_HLIST_NODE(&pool->hash_node); 3200 pool->refcnt = 1; 3201 3202 /* shouldn't fail above this point */ 3203 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL); 3204 if (!pool->attrs) 3205 return -ENOMEM; 3206 return 0; 3207 } 3208 3209 static void rcu_free_wq(struct rcu_head *rcu) 3210 { 3211 struct workqueue_struct *wq = 3212 container_of(rcu, struct workqueue_struct, rcu); 3213 3214 if (!(wq->flags & WQ_UNBOUND)) 3215 free_percpu(wq->cpu_pwqs); 3216 else 3217 free_workqueue_attrs(wq->unbound_attrs); 3218 3219 kfree(wq->rescuer); 3220 kfree(wq); 3221 } 3222 3223 static void rcu_free_pool(struct rcu_head *rcu) 3224 { 3225 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3226 3227 ida_destroy(&pool->worker_ida); 3228 free_workqueue_attrs(pool->attrs); 3229 kfree(pool); 3230 } 3231 3232 /** 3233 * put_unbound_pool - put a worker_pool 3234 * @pool: worker_pool to put 3235 * 3236 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU 3237 * safe manner. get_unbound_pool() calls this function on its failure path 3238 * and this function should be able to release pools which went through, 3239 * successfully or not, init_worker_pool(). 3240 * 3241 * Should be called with wq_pool_mutex held. 3242 */ 3243 static void put_unbound_pool(struct worker_pool *pool) 3244 { 3245 DECLARE_COMPLETION_ONSTACK(detach_completion); 3246 struct worker *worker; 3247 3248 lockdep_assert_held(&wq_pool_mutex); 3249 3250 if (--pool->refcnt) 3251 return; 3252 3253 /* sanity checks */ 3254 if (WARN_ON(!(pool->cpu < 0)) || 3255 WARN_ON(!list_empty(&pool->worklist))) 3256 return; 3257 3258 /* release id and unhash */ 3259 if (pool->id >= 0) 3260 idr_remove(&worker_pool_idr, pool->id); 3261 hash_del(&pool->hash_node); 3262 3263 /* 3264 * Become the manager and destroy all workers. Grabbing 3265 * manager_arb prevents @pool's workers from blocking on 3266 * attach_mutex. 3267 */ 3268 mutex_lock(&pool->manager_arb); 3269 3270 spin_lock_irq(&pool->lock); 3271 while ((worker = first_idle_worker(pool))) 3272 destroy_worker(worker); 3273 WARN_ON(pool->nr_workers || pool->nr_idle); 3274 spin_unlock_irq(&pool->lock); 3275 3276 mutex_lock(&pool->attach_mutex); 3277 if (!list_empty(&pool->workers)) 3278 pool->detach_completion = &detach_completion; 3279 mutex_unlock(&pool->attach_mutex); 3280 3281 if (pool->detach_completion) 3282 wait_for_completion(pool->detach_completion); 3283 3284 mutex_unlock(&pool->manager_arb); 3285 3286 /* shut down the timers */ 3287 del_timer_sync(&pool->idle_timer); 3288 del_timer_sync(&pool->mayday_timer); 3289 3290 /* sched-RCU protected to allow dereferences from get_work_pool() */ 3291 call_rcu_sched(&pool->rcu, rcu_free_pool); 3292 } 3293 3294 /** 3295 * get_unbound_pool - get a worker_pool with the specified attributes 3296 * @attrs: the attributes of the worker_pool to get 3297 * 3298 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3299 * reference count and return it. If there already is a matching 3300 * worker_pool, it will be used; otherwise, this function attempts to 3301 * create a new one. 3302 * 3303 * Should be called with wq_pool_mutex held. 3304 * 3305 * Return: On success, a worker_pool with the same attributes as @attrs. 3306 * On failure, %NULL. 3307 */ 3308 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3309 { 3310 u32 hash = wqattrs_hash(attrs); 3311 struct worker_pool *pool; 3312 int node; 3313 int target_node = NUMA_NO_NODE; 3314 3315 lockdep_assert_held(&wq_pool_mutex); 3316 3317 /* do we already have a matching pool? */ 3318 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3319 if (wqattrs_equal(pool->attrs, attrs)) { 3320 pool->refcnt++; 3321 return pool; 3322 } 3323 } 3324 3325 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3326 if (wq_numa_enabled) { 3327 for_each_node(node) { 3328 if (cpumask_subset(attrs->cpumask, 3329 wq_numa_possible_cpumask[node])) { 3330 target_node = node; 3331 break; 3332 } 3333 } 3334 } 3335 3336 /* nope, create a new one */ 3337 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3338 if (!pool || init_worker_pool(pool) < 0) 3339 goto fail; 3340 3341 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3342 copy_workqueue_attrs(pool->attrs, attrs); 3343 pool->node = target_node; 3344 3345 /* 3346 * no_numa isn't a worker_pool attribute, always clear it. See 3347 * 'struct workqueue_attrs' comments for detail. 3348 */ 3349 pool->attrs->no_numa = false; 3350 3351 if (worker_pool_assign_id(pool) < 0) 3352 goto fail; 3353 3354 /* create and start the initial worker */ 3355 if (!create_worker(pool)) 3356 goto fail; 3357 3358 /* install */ 3359 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3360 3361 return pool; 3362 fail: 3363 if (pool) 3364 put_unbound_pool(pool); 3365 return NULL; 3366 } 3367 3368 static void rcu_free_pwq(struct rcu_head *rcu) 3369 { 3370 kmem_cache_free(pwq_cache, 3371 container_of(rcu, struct pool_workqueue, rcu)); 3372 } 3373 3374 /* 3375 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3376 * and needs to be destroyed. 3377 */ 3378 static void pwq_unbound_release_workfn(struct work_struct *work) 3379 { 3380 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3381 unbound_release_work); 3382 struct workqueue_struct *wq = pwq->wq; 3383 struct worker_pool *pool = pwq->pool; 3384 bool is_last; 3385 3386 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3387 return; 3388 3389 mutex_lock(&wq->mutex); 3390 list_del_rcu(&pwq->pwqs_node); 3391 is_last = list_empty(&wq->pwqs); 3392 mutex_unlock(&wq->mutex); 3393 3394 mutex_lock(&wq_pool_mutex); 3395 put_unbound_pool(pool); 3396 mutex_unlock(&wq_pool_mutex); 3397 3398 call_rcu_sched(&pwq->rcu, rcu_free_pwq); 3399 3400 /* 3401 * If we're the last pwq going away, @wq is already dead and no one 3402 * is gonna access it anymore. Schedule RCU free. 3403 */ 3404 if (is_last) 3405 call_rcu_sched(&wq->rcu, rcu_free_wq); 3406 } 3407 3408 /** 3409 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3410 * @pwq: target pool_workqueue 3411 * 3412 * If @pwq isn't freezing, set @pwq->max_active to the associated 3413 * workqueue's saved_max_active and activate delayed work items 3414 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3415 */ 3416 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3417 { 3418 struct workqueue_struct *wq = pwq->wq; 3419 bool freezable = wq->flags & WQ_FREEZABLE; 3420 3421 /* for @wq->saved_max_active */ 3422 lockdep_assert_held(&wq->mutex); 3423 3424 /* fast exit for non-freezable wqs */ 3425 if (!freezable && pwq->max_active == wq->saved_max_active) 3426 return; 3427 3428 spin_lock_irq(&pwq->pool->lock); 3429 3430 /* 3431 * During [un]freezing, the caller is responsible for ensuring that 3432 * this function is called at least once after @workqueue_freezing 3433 * is updated and visible. 3434 */ 3435 if (!freezable || !workqueue_freezing) { 3436 pwq->max_active = wq->saved_max_active; 3437 3438 while (!list_empty(&pwq->delayed_works) && 3439 pwq->nr_active < pwq->max_active) 3440 pwq_activate_first_delayed(pwq); 3441 3442 /* 3443 * Need to kick a worker after thawed or an unbound wq's 3444 * max_active is bumped. It's a slow path. Do it always. 3445 */ 3446 wake_up_worker(pwq->pool); 3447 } else { 3448 pwq->max_active = 0; 3449 } 3450 3451 spin_unlock_irq(&pwq->pool->lock); 3452 } 3453 3454 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3455 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3456 struct worker_pool *pool) 3457 { 3458 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3459 3460 memset(pwq, 0, sizeof(*pwq)); 3461 3462 pwq->pool = pool; 3463 pwq->wq = wq; 3464 pwq->flush_color = -1; 3465 pwq->refcnt = 1; 3466 INIT_LIST_HEAD(&pwq->delayed_works); 3467 INIT_LIST_HEAD(&pwq->pwqs_node); 3468 INIT_LIST_HEAD(&pwq->mayday_node); 3469 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3470 } 3471 3472 /* sync @pwq with the current state of its associated wq and link it */ 3473 static void link_pwq(struct pool_workqueue *pwq) 3474 { 3475 struct workqueue_struct *wq = pwq->wq; 3476 3477 lockdep_assert_held(&wq->mutex); 3478 3479 /* may be called multiple times, ignore if already linked */ 3480 if (!list_empty(&pwq->pwqs_node)) 3481 return; 3482 3483 /* set the matching work_color */ 3484 pwq->work_color = wq->work_color; 3485 3486 /* sync max_active to the current setting */ 3487 pwq_adjust_max_active(pwq); 3488 3489 /* link in @pwq */ 3490 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3491 } 3492 3493 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3494 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3495 const struct workqueue_attrs *attrs) 3496 { 3497 struct worker_pool *pool; 3498 struct pool_workqueue *pwq; 3499 3500 lockdep_assert_held(&wq_pool_mutex); 3501 3502 pool = get_unbound_pool(attrs); 3503 if (!pool) 3504 return NULL; 3505 3506 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3507 if (!pwq) { 3508 put_unbound_pool(pool); 3509 return NULL; 3510 } 3511 3512 init_pwq(pwq, wq, pool); 3513 return pwq; 3514 } 3515 3516 /** 3517 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3518 * @attrs: the wq_attrs of the default pwq of the target workqueue 3519 * @node: the target NUMA node 3520 * @cpu_going_down: if >= 0, the CPU to consider as offline 3521 * @cpumask: outarg, the resulting cpumask 3522 * 3523 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3524 * @cpu_going_down is >= 0, that cpu is considered offline during 3525 * calculation. The result is stored in @cpumask. 3526 * 3527 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3528 * enabled and @node has online CPUs requested by @attrs, the returned 3529 * cpumask is the intersection of the possible CPUs of @node and 3530 * @attrs->cpumask. 3531 * 3532 * The caller is responsible for ensuring that the cpumask of @node stays 3533 * stable. 3534 * 3535 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3536 * %false if equal. 3537 */ 3538 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3539 int cpu_going_down, cpumask_t *cpumask) 3540 { 3541 if (!wq_numa_enabled || attrs->no_numa) 3542 goto use_dfl; 3543 3544 /* does @node have any online CPUs @attrs wants? */ 3545 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3546 if (cpu_going_down >= 0) 3547 cpumask_clear_cpu(cpu_going_down, cpumask); 3548 3549 if (cpumask_empty(cpumask)) 3550 goto use_dfl; 3551 3552 /* yeap, return possible CPUs in @node that @attrs wants */ 3553 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3554 return !cpumask_equal(cpumask, attrs->cpumask); 3555 3556 use_dfl: 3557 cpumask_copy(cpumask, attrs->cpumask); 3558 return false; 3559 } 3560 3561 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3562 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3563 int node, 3564 struct pool_workqueue *pwq) 3565 { 3566 struct pool_workqueue *old_pwq; 3567 3568 lockdep_assert_held(&wq_pool_mutex); 3569 lockdep_assert_held(&wq->mutex); 3570 3571 /* link_pwq() can handle duplicate calls */ 3572 link_pwq(pwq); 3573 3574 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3575 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3576 return old_pwq; 3577 } 3578 3579 /* context to store the prepared attrs & pwqs before applying */ 3580 struct apply_wqattrs_ctx { 3581 struct workqueue_struct *wq; /* target workqueue */ 3582 struct workqueue_attrs *attrs; /* attrs to apply */ 3583 struct list_head list; /* queued for batching commit */ 3584 struct pool_workqueue *dfl_pwq; 3585 struct pool_workqueue *pwq_tbl[]; 3586 }; 3587 3588 /* free the resources after success or abort */ 3589 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 3590 { 3591 if (ctx) { 3592 int node; 3593 3594 for_each_node(node) 3595 put_pwq_unlocked(ctx->pwq_tbl[node]); 3596 put_pwq_unlocked(ctx->dfl_pwq); 3597 3598 free_workqueue_attrs(ctx->attrs); 3599 3600 kfree(ctx); 3601 } 3602 } 3603 3604 /* allocate the attrs and pwqs for later installation */ 3605 static struct apply_wqattrs_ctx * 3606 apply_wqattrs_prepare(struct workqueue_struct *wq, 3607 const struct workqueue_attrs *attrs) 3608 { 3609 struct apply_wqattrs_ctx *ctx; 3610 struct workqueue_attrs *new_attrs, *tmp_attrs; 3611 int node; 3612 3613 lockdep_assert_held(&wq_pool_mutex); 3614 3615 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]), 3616 GFP_KERNEL); 3617 3618 new_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3619 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3620 if (!ctx || !new_attrs || !tmp_attrs) 3621 goto out_free; 3622 3623 /* 3624 * Calculate the attrs of the default pwq. 3625 * If the user configured cpumask doesn't overlap with the 3626 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 3627 */ 3628 copy_workqueue_attrs(new_attrs, attrs); 3629 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask); 3630 if (unlikely(cpumask_empty(new_attrs->cpumask))) 3631 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask); 3632 3633 /* 3634 * We may create multiple pwqs with differing cpumasks. Make a 3635 * copy of @new_attrs which will be modified and used to obtain 3636 * pools. 3637 */ 3638 copy_workqueue_attrs(tmp_attrs, new_attrs); 3639 3640 /* 3641 * If something goes wrong during CPU up/down, we'll fall back to 3642 * the default pwq covering whole @attrs->cpumask. Always create 3643 * it even if we don't use it immediately. 3644 */ 3645 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3646 if (!ctx->dfl_pwq) 3647 goto out_free; 3648 3649 for_each_node(node) { 3650 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 3651 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3652 if (!ctx->pwq_tbl[node]) 3653 goto out_free; 3654 } else { 3655 ctx->dfl_pwq->refcnt++; 3656 ctx->pwq_tbl[node] = ctx->dfl_pwq; 3657 } 3658 } 3659 3660 /* save the user configured attrs and sanitize it. */ 3661 copy_workqueue_attrs(new_attrs, attrs); 3662 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3663 ctx->attrs = new_attrs; 3664 3665 ctx->wq = wq; 3666 free_workqueue_attrs(tmp_attrs); 3667 return ctx; 3668 3669 out_free: 3670 free_workqueue_attrs(tmp_attrs); 3671 free_workqueue_attrs(new_attrs); 3672 apply_wqattrs_cleanup(ctx); 3673 return NULL; 3674 } 3675 3676 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 3677 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 3678 { 3679 int node; 3680 3681 /* all pwqs have been created successfully, let's install'em */ 3682 mutex_lock(&ctx->wq->mutex); 3683 3684 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 3685 3686 /* save the previous pwq and install the new one */ 3687 for_each_node(node) 3688 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 3689 ctx->pwq_tbl[node]); 3690 3691 /* @dfl_pwq might not have been used, ensure it's linked */ 3692 link_pwq(ctx->dfl_pwq); 3693 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 3694 3695 mutex_unlock(&ctx->wq->mutex); 3696 } 3697 3698 static void apply_wqattrs_lock(void) 3699 { 3700 /* CPUs should stay stable across pwq creations and installations */ 3701 get_online_cpus(); 3702 mutex_lock(&wq_pool_mutex); 3703 } 3704 3705 static void apply_wqattrs_unlock(void) 3706 { 3707 mutex_unlock(&wq_pool_mutex); 3708 put_online_cpus(); 3709 } 3710 3711 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 3712 const struct workqueue_attrs *attrs) 3713 { 3714 struct apply_wqattrs_ctx *ctx; 3715 3716 /* only unbound workqueues can change attributes */ 3717 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 3718 return -EINVAL; 3719 3720 /* creating multiple pwqs breaks ordering guarantee */ 3721 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))) 3722 return -EINVAL; 3723 3724 ctx = apply_wqattrs_prepare(wq, attrs); 3725 if (!ctx) 3726 return -ENOMEM; 3727 3728 /* the ctx has been prepared successfully, let's commit it */ 3729 apply_wqattrs_commit(ctx); 3730 apply_wqattrs_cleanup(ctx); 3731 3732 return 0; 3733 } 3734 3735 /** 3736 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 3737 * @wq: the target workqueue 3738 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 3739 * 3740 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 3741 * machines, this function maps a separate pwq to each NUMA node with 3742 * possibles CPUs in @attrs->cpumask so that work items are affine to the 3743 * NUMA node it was issued on. Older pwqs are released as in-flight work 3744 * items finish. Note that a work item which repeatedly requeues itself 3745 * back-to-back will stay on its current pwq. 3746 * 3747 * Performs GFP_KERNEL allocations. 3748 * 3749 * Return: 0 on success and -errno on failure. 3750 */ 3751 int apply_workqueue_attrs(struct workqueue_struct *wq, 3752 const struct workqueue_attrs *attrs) 3753 { 3754 int ret; 3755 3756 apply_wqattrs_lock(); 3757 ret = apply_workqueue_attrs_locked(wq, attrs); 3758 apply_wqattrs_unlock(); 3759 3760 return ret; 3761 } 3762 3763 /** 3764 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 3765 * @wq: the target workqueue 3766 * @cpu: the CPU coming up or going down 3767 * @online: whether @cpu is coming up or going down 3768 * 3769 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 3770 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 3771 * @wq accordingly. 3772 * 3773 * If NUMA affinity can't be adjusted due to memory allocation failure, it 3774 * falls back to @wq->dfl_pwq which may not be optimal but is always 3775 * correct. 3776 * 3777 * Note that when the last allowed CPU of a NUMA node goes offline for a 3778 * workqueue with a cpumask spanning multiple nodes, the workers which were 3779 * already executing the work items for the workqueue will lose their CPU 3780 * affinity and may execute on any CPU. This is similar to how per-cpu 3781 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 3782 * affinity, it's the user's responsibility to flush the work item from 3783 * CPU_DOWN_PREPARE. 3784 */ 3785 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 3786 bool online) 3787 { 3788 int node = cpu_to_node(cpu); 3789 int cpu_off = online ? -1 : cpu; 3790 struct pool_workqueue *old_pwq = NULL, *pwq; 3791 struct workqueue_attrs *target_attrs; 3792 cpumask_t *cpumask; 3793 3794 lockdep_assert_held(&wq_pool_mutex); 3795 3796 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 3797 wq->unbound_attrs->no_numa) 3798 return; 3799 3800 /* 3801 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 3802 * Let's use a preallocated one. The following buf is protected by 3803 * CPU hotplug exclusion. 3804 */ 3805 target_attrs = wq_update_unbound_numa_attrs_buf; 3806 cpumask = target_attrs->cpumask; 3807 3808 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 3809 pwq = unbound_pwq_by_node(wq, node); 3810 3811 /* 3812 * Let's determine what needs to be done. If the target cpumask is 3813 * different from the default pwq's, we need to compare it to @pwq's 3814 * and create a new one if they don't match. If the target cpumask 3815 * equals the default pwq's, the default pwq should be used. 3816 */ 3817 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 3818 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 3819 return; 3820 } else { 3821 goto use_dfl_pwq; 3822 } 3823 3824 /* create a new pwq */ 3825 pwq = alloc_unbound_pwq(wq, target_attrs); 3826 if (!pwq) { 3827 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 3828 wq->name); 3829 goto use_dfl_pwq; 3830 } 3831 3832 /* Install the new pwq. */ 3833 mutex_lock(&wq->mutex); 3834 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 3835 goto out_unlock; 3836 3837 use_dfl_pwq: 3838 mutex_lock(&wq->mutex); 3839 spin_lock_irq(&wq->dfl_pwq->pool->lock); 3840 get_pwq(wq->dfl_pwq); 3841 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 3842 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 3843 out_unlock: 3844 mutex_unlock(&wq->mutex); 3845 put_pwq_unlocked(old_pwq); 3846 } 3847 3848 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 3849 { 3850 bool highpri = wq->flags & WQ_HIGHPRI; 3851 int cpu, ret; 3852 3853 if (!(wq->flags & WQ_UNBOUND)) { 3854 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 3855 if (!wq->cpu_pwqs) 3856 return -ENOMEM; 3857 3858 for_each_possible_cpu(cpu) { 3859 struct pool_workqueue *pwq = 3860 per_cpu_ptr(wq->cpu_pwqs, cpu); 3861 struct worker_pool *cpu_pools = 3862 per_cpu(cpu_worker_pools, cpu); 3863 3864 init_pwq(pwq, wq, &cpu_pools[highpri]); 3865 3866 mutex_lock(&wq->mutex); 3867 link_pwq(pwq); 3868 mutex_unlock(&wq->mutex); 3869 } 3870 return 0; 3871 } else if (wq->flags & __WQ_ORDERED) { 3872 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 3873 /* there should only be single pwq for ordering guarantee */ 3874 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 3875 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 3876 "ordering guarantee broken for workqueue %s\n", wq->name); 3877 return ret; 3878 } else { 3879 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 3880 } 3881 } 3882 3883 static int wq_clamp_max_active(int max_active, unsigned int flags, 3884 const char *name) 3885 { 3886 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 3887 3888 if (max_active < 1 || max_active > lim) 3889 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 3890 max_active, name, 1, lim); 3891 3892 return clamp_val(max_active, 1, lim); 3893 } 3894 3895 struct workqueue_struct *__alloc_workqueue_key(const char *fmt, 3896 unsigned int flags, 3897 int max_active, 3898 struct lock_class_key *key, 3899 const char *lock_name, ...) 3900 { 3901 size_t tbl_size = 0; 3902 va_list args; 3903 struct workqueue_struct *wq; 3904 struct pool_workqueue *pwq; 3905 3906 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 3907 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 3908 flags |= WQ_UNBOUND; 3909 3910 /* allocate wq and format name */ 3911 if (flags & WQ_UNBOUND) 3912 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 3913 3914 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 3915 if (!wq) 3916 return NULL; 3917 3918 if (flags & WQ_UNBOUND) { 3919 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3920 if (!wq->unbound_attrs) 3921 goto err_free_wq; 3922 } 3923 3924 va_start(args, lock_name); 3925 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 3926 va_end(args); 3927 3928 max_active = max_active ?: WQ_DFL_ACTIVE; 3929 max_active = wq_clamp_max_active(max_active, flags, wq->name); 3930 3931 /* init wq */ 3932 wq->flags = flags; 3933 wq->saved_max_active = max_active; 3934 mutex_init(&wq->mutex); 3935 atomic_set(&wq->nr_pwqs_to_flush, 0); 3936 INIT_LIST_HEAD(&wq->pwqs); 3937 INIT_LIST_HEAD(&wq->flusher_queue); 3938 INIT_LIST_HEAD(&wq->flusher_overflow); 3939 INIT_LIST_HEAD(&wq->maydays); 3940 3941 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 3942 INIT_LIST_HEAD(&wq->list); 3943 3944 if (alloc_and_link_pwqs(wq) < 0) 3945 goto err_free_wq; 3946 3947 /* 3948 * Workqueues which may be used during memory reclaim should 3949 * have a rescuer to guarantee forward progress. 3950 */ 3951 if (flags & WQ_MEM_RECLAIM) { 3952 struct worker *rescuer; 3953 3954 rescuer = alloc_worker(NUMA_NO_NODE); 3955 if (!rescuer) 3956 goto err_destroy; 3957 3958 rescuer->rescue_wq = wq; 3959 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", 3960 wq->name); 3961 if (IS_ERR(rescuer->task)) { 3962 kfree(rescuer); 3963 goto err_destroy; 3964 } 3965 3966 wq->rescuer = rescuer; 3967 kthread_bind_mask(rescuer->task, cpu_possible_mask); 3968 wake_up_process(rescuer->task); 3969 } 3970 3971 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 3972 goto err_destroy; 3973 3974 /* 3975 * wq_pool_mutex protects global freeze state and workqueues list. 3976 * Grab it, adjust max_active and add the new @wq to workqueues 3977 * list. 3978 */ 3979 mutex_lock(&wq_pool_mutex); 3980 3981 mutex_lock(&wq->mutex); 3982 for_each_pwq(pwq, wq) 3983 pwq_adjust_max_active(pwq); 3984 mutex_unlock(&wq->mutex); 3985 3986 list_add_tail_rcu(&wq->list, &workqueues); 3987 3988 mutex_unlock(&wq_pool_mutex); 3989 3990 return wq; 3991 3992 err_free_wq: 3993 free_workqueue_attrs(wq->unbound_attrs); 3994 kfree(wq); 3995 return NULL; 3996 err_destroy: 3997 destroy_workqueue(wq); 3998 return NULL; 3999 } 4000 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 4001 4002 /** 4003 * destroy_workqueue - safely terminate a workqueue 4004 * @wq: target workqueue 4005 * 4006 * Safely destroy a workqueue. All work currently pending will be done first. 4007 */ 4008 void destroy_workqueue(struct workqueue_struct *wq) 4009 { 4010 struct pool_workqueue *pwq; 4011 int node; 4012 4013 /* drain it before proceeding with destruction */ 4014 drain_workqueue(wq); 4015 4016 /* sanity checks */ 4017 mutex_lock(&wq->mutex); 4018 for_each_pwq(pwq, wq) { 4019 int i; 4020 4021 for (i = 0; i < WORK_NR_COLORS; i++) { 4022 if (WARN_ON(pwq->nr_in_flight[i])) { 4023 mutex_unlock(&wq->mutex); 4024 return; 4025 } 4026 } 4027 4028 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) || 4029 WARN_ON(pwq->nr_active) || 4030 WARN_ON(!list_empty(&pwq->delayed_works))) { 4031 mutex_unlock(&wq->mutex); 4032 return; 4033 } 4034 } 4035 mutex_unlock(&wq->mutex); 4036 4037 /* 4038 * wq list is used to freeze wq, remove from list after 4039 * flushing is complete in case freeze races us. 4040 */ 4041 mutex_lock(&wq_pool_mutex); 4042 list_del_rcu(&wq->list); 4043 mutex_unlock(&wq_pool_mutex); 4044 4045 workqueue_sysfs_unregister(wq); 4046 4047 if (wq->rescuer) 4048 kthread_stop(wq->rescuer->task); 4049 4050 if (!(wq->flags & WQ_UNBOUND)) { 4051 /* 4052 * The base ref is never dropped on per-cpu pwqs. Directly 4053 * schedule RCU free. 4054 */ 4055 call_rcu_sched(&wq->rcu, rcu_free_wq); 4056 } else { 4057 /* 4058 * We're the sole accessor of @wq at this point. Directly 4059 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4060 * @wq will be freed when the last pwq is released. 4061 */ 4062 for_each_node(node) { 4063 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4064 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4065 put_pwq_unlocked(pwq); 4066 } 4067 4068 /* 4069 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4070 * put. Don't access it afterwards. 4071 */ 4072 pwq = wq->dfl_pwq; 4073 wq->dfl_pwq = NULL; 4074 put_pwq_unlocked(pwq); 4075 } 4076 } 4077 EXPORT_SYMBOL_GPL(destroy_workqueue); 4078 4079 /** 4080 * workqueue_set_max_active - adjust max_active of a workqueue 4081 * @wq: target workqueue 4082 * @max_active: new max_active value. 4083 * 4084 * Set max_active of @wq to @max_active. 4085 * 4086 * CONTEXT: 4087 * Don't call from IRQ context. 4088 */ 4089 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4090 { 4091 struct pool_workqueue *pwq; 4092 4093 /* disallow meddling with max_active for ordered workqueues */ 4094 if (WARN_ON(wq->flags & __WQ_ORDERED)) 4095 return; 4096 4097 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4098 4099 mutex_lock(&wq->mutex); 4100 4101 wq->saved_max_active = max_active; 4102 4103 for_each_pwq(pwq, wq) 4104 pwq_adjust_max_active(pwq); 4105 4106 mutex_unlock(&wq->mutex); 4107 } 4108 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4109 4110 /** 4111 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4112 * 4113 * Determine whether %current is a workqueue rescuer. Can be used from 4114 * work functions to determine whether it's being run off the rescuer task. 4115 * 4116 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4117 */ 4118 bool current_is_workqueue_rescuer(void) 4119 { 4120 struct worker *worker = current_wq_worker(); 4121 4122 return worker && worker->rescue_wq; 4123 } 4124 4125 /** 4126 * workqueue_congested - test whether a workqueue is congested 4127 * @cpu: CPU in question 4128 * @wq: target workqueue 4129 * 4130 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4131 * no synchronization around this function and the test result is 4132 * unreliable and only useful as advisory hints or for debugging. 4133 * 4134 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4135 * Note that both per-cpu and unbound workqueues may be associated with 4136 * multiple pool_workqueues which have separate congested states. A 4137 * workqueue being congested on one CPU doesn't mean the workqueue is also 4138 * contested on other CPUs / NUMA nodes. 4139 * 4140 * Return: 4141 * %true if congested, %false otherwise. 4142 */ 4143 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4144 { 4145 struct pool_workqueue *pwq; 4146 bool ret; 4147 4148 rcu_read_lock_sched(); 4149 4150 if (cpu == WORK_CPU_UNBOUND) 4151 cpu = smp_processor_id(); 4152 4153 if (!(wq->flags & WQ_UNBOUND)) 4154 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4155 else 4156 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4157 4158 ret = !list_empty(&pwq->delayed_works); 4159 rcu_read_unlock_sched(); 4160 4161 return ret; 4162 } 4163 EXPORT_SYMBOL_GPL(workqueue_congested); 4164 4165 /** 4166 * work_busy - test whether a work is currently pending or running 4167 * @work: the work to be tested 4168 * 4169 * Test whether @work is currently pending or running. There is no 4170 * synchronization around this function and the test result is 4171 * unreliable and only useful as advisory hints or for debugging. 4172 * 4173 * Return: 4174 * OR'd bitmask of WORK_BUSY_* bits. 4175 */ 4176 unsigned int work_busy(struct work_struct *work) 4177 { 4178 struct worker_pool *pool; 4179 unsigned long flags; 4180 unsigned int ret = 0; 4181 4182 if (work_pending(work)) 4183 ret |= WORK_BUSY_PENDING; 4184 4185 local_irq_save(flags); 4186 pool = get_work_pool(work); 4187 if (pool) { 4188 spin_lock(&pool->lock); 4189 if (find_worker_executing_work(pool, work)) 4190 ret |= WORK_BUSY_RUNNING; 4191 spin_unlock(&pool->lock); 4192 } 4193 local_irq_restore(flags); 4194 4195 return ret; 4196 } 4197 EXPORT_SYMBOL_GPL(work_busy); 4198 4199 /** 4200 * set_worker_desc - set description for the current work item 4201 * @fmt: printf-style format string 4202 * @...: arguments for the format string 4203 * 4204 * This function can be called by a running work function to describe what 4205 * the work item is about. If the worker task gets dumped, this 4206 * information will be printed out together to help debugging. The 4207 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4208 */ 4209 void set_worker_desc(const char *fmt, ...) 4210 { 4211 struct worker *worker = current_wq_worker(); 4212 va_list args; 4213 4214 if (worker) { 4215 va_start(args, fmt); 4216 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4217 va_end(args); 4218 worker->desc_valid = true; 4219 } 4220 } 4221 4222 /** 4223 * print_worker_info - print out worker information and description 4224 * @log_lvl: the log level to use when printing 4225 * @task: target task 4226 * 4227 * If @task is a worker and currently executing a work item, print out the 4228 * name of the workqueue being serviced and worker description set with 4229 * set_worker_desc() by the currently executing work item. 4230 * 4231 * This function can be safely called on any task as long as the 4232 * task_struct itself is accessible. While safe, this function isn't 4233 * synchronized and may print out mixups or garbages of limited length. 4234 */ 4235 void print_worker_info(const char *log_lvl, struct task_struct *task) 4236 { 4237 work_func_t *fn = NULL; 4238 char name[WQ_NAME_LEN] = { }; 4239 char desc[WORKER_DESC_LEN] = { }; 4240 struct pool_workqueue *pwq = NULL; 4241 struct workqueue_struct *wq = NULL; 4242 bool desc_valid = false; 4243 struct worker *worker; 4244 4245 if (!(task->flags & PF_WQ_WORKER)) 4246 return; 4247 4248 /* 4249 * This function is called without any synchronization and @task 4250 * could be in any state. Be careful with dereferences. 4251 */ 4252 worker = probe_kthread_data(task); 4253 4254 /* 4255 * Carefully copy the associated workqueue's workfn and name. Keep 4256 * the original last '\0' in case the original contains garbage. 4257 */ 4258 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4259 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4260 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4261 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4262 4263 /* copy worker description */ 4264 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid)); 4265 if (desc_valid) 4266 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4267 4268 if (fn || name[0] || desc[0]) { 4269 printk("%sWorkqueue: %s %pf", log_lvl, name, fn); 4270 if (desc[0]) 4271 pr_cont(" (%s)", desc); 4272 pr_cont("\n"); 4273 } 4274 } 4275 4276 static void pr_cont_pool_info(struct worker_pool *pool) 4277 { 4278 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4279 if (pool->node != NUMA_NO_NODE) 4280 pr_cont(" node=%d", pool->node); 4281 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4282 } 4283 4284 static void pr_cont_work(bool comma, struct work_struct *work) 4285 { 4286 if (work->func == wq_barrier_func) { 4287 struct wq_barrier *barr; 4288 4289 barr = container_of(work, struct wq_barrier, work); 4290 4291 pr_cont("%s BAR(%d)", comma ? "," : "", 4292 task_pid_nr(barr->task)); 4293 } else { 4294 pr_cont("%s %pf", comma ? "," : "", work->func); 4295 } 4296 } 4297 4298 static void show_pwq(struct pool_workqueue *pwq) 4299 { 4300 struct worker_pool *pool = pwq->pool; 4301 struct work_struct *work; 4302 struct worker *worker; 4303 bool has_in_flight = false, has_pending = false; 4304 int bkt; 4305 4306 pr_info(" pwq %d:", pool->id); 4307 pr_cont_pool_info(pool); 4308 4309 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active, 4310 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4311 4312 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4313 if (worker->current_pwq == pwq) { 4314 has_in_flight = true; 4315 break; 4316 } 4317 } 4318 if (has_in_flight) { 4319 bool comma = false; 4320 4321 pr_info(" in-flight:"); 4322 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4323 if (worker->current_pwq != pwq) 4324 continue; 4325 4326 pr_cont("%s %d%s:%pf", comma ? "," : "", 4327 task_pid_nr(worker->task), 4328 worker == pwq->wq->rescuer ? "(RESCUER)" : "", 4329 worker->current_func); 4330 list_for_each_entry(work, &worker->scheduled, entry) 4331 pr_cont_work(false, work); 4332 comma = true; 4333 } 4334 pr_cont("\n"); 4335 } 4336 4337 list_for_each_entry(work, &pool->worklist, entry) { 4338 if (get_work_pwq(work) == pwq) { 4339 has_pending = true; 4340 break; 4341 } 4342 } 4343 if (has_pending) { 4344 bool comma = false; 4345 4346 pr_info(" pending:"); 4347 list_for_each_entry(work, &pool->worklist, entry) { 4348 if (get_work_pwq(work) != pwq) 4349 continue; 4350 4351 pr_cont_work(comma, work); 4352 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4353 } 4354 pr_cont("\n"); 4355 } 4356 4357 if (!list_empty(&pwq->delayed_works)) { 4358 bool comma = false; 4359 4360 pr_info(" delayed:"); 4361 list_for_each_entry(work, &pwq->delayed_works, entry) { 4362 pr_cont_work(comma, work); 4363 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4364 } 4365 pr_cont("\n"); 4366 } 4367 } 4368 4369 /** 4370 * show_workqueue_state - dump workqueue state 4371 * 4372 * Called from a sysrq handler or try_to_freeze_tasks() and prints out 4373 * all busy workqueues and pools. 4374 */ 4375 void show_workqueue_state(void) 4376 { 4377 struct workqueue_struct *wq; 4378 struct worker_pool *pool; 4379 unsigned long flags; 4380 int pi; 4381 4382 rcu_read_lock_sched(); 4383 4384 pr_info("Showing busy workqueues and worker pools:\n"); 4385 4386 list_for_each_entry_rcu(wq, &workqueues, list) { 4387 struct pool_workqueue *pwq; 4388 bool idle = true; 4389 4390 for_each_pwq(pwq, wq) { 4391 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) { 4392 idle = false; 4393 break; 4394 } 4395 } 4396 if (idle) 4397 continue; 4398 4399 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4400 4401 for_each_pwq(pwq, wq) { 4402 spin_lock_irqsave(&pwq->pool->lock, flags); 4403 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4404 show_pwq(pwq); 4405 spin_unlock_irqrestore(&pwq->pool->lock, flags); 4406 } 4407 } 4408 4409 for_each_pool(pool, pi) { 4410 struct worker *worker; 4411 bool first = true; 4412 4413 spin_lock_irqsave(&pool->lock, flags); 4414 if (pool->nr_workers == pool->nr_idle) 4415 goto next_pool; 4416 4417 pr_info("pool %d:", pool->id); 4418 pr_cont_pool_info(pool); 4419 pr_cont(" hung=%us workers=%d", 4420 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000, 4421 pool->nr_workers); 4422 if (pool->manager) 4423 pr_cont(" manager: %d", 4424 task_pid_nr(pool->manager->task)); 4425 list_for_each_entry(worker, &pool->idle_list, entry) { 4426 pr_cont(" %s%d", first ? "idle: " : "", 4427 task_pid_nr(worker->task)); 4428 first = false; 4429 } 4430 pr_cont("\n"); 4431 next_pool: 4432 spin_unlock_irqrestore(&pool->lock, flags); 4433 } 4434 4435 rcu_read_unlock_sched(); 4436 } 4437 4438 /* 4439 * CPU hotplug. 4440 * 4441 * There are two challenges in supporting CPU hotplug. Firstly, there 4442 * are a lot of assumptions on strong associations among work, pwq and 4443 * pool which make migrating pending and scheduled works very 4444 * difficult to implement without impacting hot paths. Secondly, 4445 * worker pools serve mix of short, long and very long running works making 4446 * blocked draining impractical. 4447 * 4448 * This is solved by allowing the pools to be disassociated from the CPU 4449 * running as an unbound one and allowing it to be reattached later if the 4450 * cpu comes back online. 4451 */ 4452 4453 static void wq_unbind_fn(struct work_struct *work) 4454 { 4455 int cpu = smp_processor_id(); 4456 struct worker_pool *pool; 4457 struct worker *worker; 4458 4459 for_each_cpu_worker_pool(pool, cpu) { 4460 mutex_lock(&pool->attach_mutex); 4461 spin_lock_irq(&pool->lock); 4462 4463 /* 4464 * We've blocked all attach/detach operations. Make all workers 4465 * unbound and set DISASSOCIATED. Before this, all workers 4466 * except for the ones which are still executing works from 4467 * before the last CPU down must be on the cpu. After 4468 * this, they may become diasporas. 4469 */ 4470 for_each_pool_worker(worker, pool) 4471 worker->flags |= WORKER_UNBOUND; 4472 4473 pool->flags |= POOL_DISASSOCIATED; 4474 4475 spin_unlock_irq(&pool->lock); 4476 mutex_unlock(&pool->attach_mutex); 4477 4478 /* 4479 * Call schedule() so that we cross rq->lock and thus can 4480 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4481 * This is necessary as scheduler callbacks may be invoked 4482 * from other cpus. 4483 */ 4484 schedule(); 4485 4486 /* 4487 * Sched callbacks are disabled now. Zap nr_running. 4488 * After this, nr_running stays zero and need_more_worker() 4489 * and keep_working() are always true as long as the 4490 * worklist is not empty. This pool now behaves as an 4491 * unbound (in terms of concurrency management) pool which 4492 * are served by workers tied to the pool. 4493 */ 4494 atomic_set(&pool->nr_running, 0); 4495 4496 /* 4497 * With concurrency management just turned off, a busy 4498 * worker blocking could lead to lengthy stalls. Kick off 4499 * unbound chain execution of currently pending work items. 4500 */ 4501 spin_lock_irq(&pool->lock); 4502 wake_up_worker(pool); 4503 spin_unlock_irq(&pool->lock); 4504 } 4505 } 4506 4507 /** 4508 * rebind_workers - rebind all workers of a pool to the associated CPU 4509 * @pool: pool of interest 4510 * 4511 * @pool->cpu is coming online. Rebind all workers to the CPU. 4512 */ 4513 static void rebind_workers(struct worker_pool *pool) 4514 { 4515 struct worker *worker; 4516 4517 lockdep_assert_held(&pool->attach_mutex); 4518 4519 /* 4520 * Restore CPU affinity of all workers. As all idle workers should 4521 * be on the run-queue of the associated CPU before any local 4522 * wake-ups for concurrency management happen, restore CPU affinity 4523 * of all workers first and then clear UNBOUND. As we're called 4524 * from CPU_ONLINE, the following shouldn't fail. 4525 */ 4526 for_each_pool_worker(worker, pool) 4527 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4528 pool->attrs->cpumask) < 0); 4529 4530 spin_lock_irq(&pool->lock); 4531 4532 /* 4533 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED 4534 * w/o preceding DOWN_PREPARE. Work around it. CPU hotplug is 4535 * being reworked and this can go away in time. 4536 */ 4537 if (!(pool->flags & POOL_DISASSOCIATED)) { 4538 spin_unlock_irq(&pool->lock); 4539 return; 4540 } 4541 4542 pool->flags &= ~POOL_DISASSOCIATED; 4543 4544 for_each_pool_worker(worker, pool) { 4545 unsigned int worker_flags = worker->flags; 4546 4547 /* 4548 * A bound idle worker should actually be on the runqueue 4549 * of the associated CPU for local wake-ups targeting it to 4550 * work. Kick all idle workers so that they migrate to the 4551 * associated CPU. Doing this in the same loop as 4552 * replacing UNBOUND with REBOUND is safe as no worker will 4553 * be bound before @pool->lock is released. 4554 */ 4555 if (worker_flags & WORKER_IDLE) 4556 wake_up_process(worker->task); 4557 4558 /* 4559 * We want to clear UNBOUND but can't directly call 4560 * worker_clr_flags() or adjust nr_running. Atomically 4561 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4562 * @worker will clear REBOUND using worker_clr_flags() when 4563 * it initiates the next execution cycle thus restoring 4564 * concurrency management. Note that when or whether 4565 * @worker clears REBOUND doesn't affect correctness. 4566 * 4567 * ACCESS_ONCE() is necessary because @worker->flags may be 4568 * tested without holding any lock in 4569 * wq_worker_waking_up(). Without it, NOT_RUNNING test may 4570 * fail incorrectly leading to premature concurrency 4571 * management operations. 4572 */ 4573 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4574 worker_flags |= WORKER_REBOUND; 4575 worker_flags &= ~WORKER_UNBOUND; 4576 ACCESS_ONCE(worker->flags) = worker_flags; 4577 } 4578 4579 spin_unlock_irq(&pool->lock); 4580 } 4581 4582 /** 4583 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4584 * @pool: unbound pool of interest 4585 * @cpu: the CPU which is coming up 4586 * 4587 * An unbound pool may end up with a cpumask which doesn't have any online 4588 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4589 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4590 * online CPU before, cpus_allowed of all its workers should be restored. 4591 */ 4592 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 4593 { 4594 static cpumask_t cpumask; 4595 struct worker *worker; 4596 4597 lockdep_assert_held(&pool->attach_mutex); 4598 4599 /* is @cpu allowed for @pool? */ 4600 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 4601 return; 4602 4603 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 4604 4605 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 4606 for_each_pool_worker(worker, pool) 4607 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 4608 } 4609 4610 int workqueue_prepare_cpu(unsigned int cpu) 4611 { 4612 struct worker_pool *pool; 4613 4614 for_each_cpu_worker_pool(pool, cpu) { 4615 if (pool->nr_workers) 4616 continue; 4617 if (!create_worker(pool)) 4618 return -ENOMEM; 4619 } 4620 return 0; 4621 } 4622 4623 int workqueue_online_cpu(unsigned int cpu) 4624 { 4625 struct worker_pool *pool; 4626 struct workqueue_struct *wq; 4627 int pi; 4628 4629 mutex_lock(&wq_pool_mutex); 4630 4631 for_each_pool(pool, pi) { 4632 mutex_lock(&pool->attach_mutex); 4633 4634 if (pool->cpu == cpu) 4635 rebind_workers(pool); 4636 else if (pool->cpu < 0) 4637 restore_unbound_workers_cpumask(pool, cpu); 4638 4639 mutex_unlock(&pool->attach_mutex); 4640 } 4641 4642 /* update NUMA affinity of unbound workqueues */ 4643 list_for_each_entry(wq, &workqueues, list) 4644 wq_update_unbound_numa(wq, cpu, true); 4645 4646 mutex_unlock(&wq_pool_mutex); 4647 return 0; 4648 } 4649 4650 int workqueue_offline_cpu(unsigned int cpu) 4651 { 4652 struct work_struct unbind_work; 4653 struct workqueue_struct *wq; 4654 4655 /* unbinding per-cpu workers should happen on the local CPU */ 4656 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn); 4657 queue_work_on(cpu, system_highpri_wq, &unbind_work); 4658 4659 /* update NUMA affinity of unbound workqueues */ 4660 mutex_lock(&wq_pool_mutex); 4661 list_for_each_entry(wq, &workqueues, list) 4662 wq_update_unbound_numa(wq, cpu, false); 4663 mutex_unlock(&wq_pool_mutex); 4664 4665 /* wait for per-cpu unbinding to finish */ 4666 flush_work(&unbind_work); 4667 destroy_work_on_stack(&unbind_work); 4668 return 0; 4669 } 4670 4671 #ifdef CONFIG_SMP 4672 4673 struct work_for_cpu { 4674 struct work_struct work; 4675 long (*fn)(void *); 4676 void *arg; 4677 long ret; 4678 }; 4679 4680 static void work_for_cpu_fn(struct work_struct *work) 4681 { 4682 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 4683 4684 wfc->ret = wfc->fn(wfc->arg); 4685 } 4686 4687 /** 4688 * work_on_cpu - run a function in thread context on a particular cpu 4689 * @cpu: the cpu to run on 4690 * @fn: the function to run 4691 * @arg: the function arg 4692 * 4693 * It is up to the caller to ensure that the cpu doesn't go offline. 4694 * The caller must not hold any locks which would prevent @fn from completing. 4695 * 4696 * Return: The value @fn returns. 4697 */ 4698 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 4699 { 4700 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 4701 4702 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 4703 schedule_work_on(cpu, &wfc.work); 4704 flush_work(&wfc.work); 4705 destroy_work_on_stack(&wfc.work); 4706 return wfc.ret; 4707 } 4708 EXPORT_SYMBOL_GPL(work_on_cpu); 4709 #endif /* CONFIG_SMP */ 4710 4711 #ifdef CONFIG_FREEZER 4712 4713 /** 4714 * freeze_workqueues_begin - begin freezing workqueues 4715 * 4716 * Start freezing workqueues. After this function returns, all freezable 4717 * workqueues will queue new works to their delayed_works list instead of 4718 * pool->worklist. 4719 * 4720 * CONTEXT: 4721 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4722 */ 4723 void freeze_workqueues_begin(void) 4724 { 4725 struct workqueue_struct *wq; 4726 struct pool_workqueue *pwq; 4727 4728 mutex_lock(&wq_pool_mutex); 4729 4730 WARN_ON_ONCE(workqueue_freezing); 4731 workqueue_freezing = true; 4732 4733 list_for_each_entry(wq, &workqueues, list) { 4734 mutex_lock(&wq->mutex); 4735 for_each_pwq(pwq, wq) 4736 pwq_adjust_max_active(pwq); 4737 mutex_unlock(&wq->mutex); 4738 } 4739 4740 mutex_unlock(&wq_pool_mutex); 4741 } 4742 4743 /** 4744 * freeze_workqueues_busy - are freezable workqueues still busy? 4745 * 4746 * Check whether freezing is complete. This function must be called 4747 * between freeze_workqueues_begin() and thaw_workqueues(). 4748 * 4749 * CONTEXT: 4750 * Grabs and releases wq_pool_mutex. 4751 * 4752 * Return: 4753 * %true if some freezable workqueues are still busy. %false if freezing 4754 * is complete. 4755 */ 4756 bool freeze_workqueues_busy(void) 4757 { 4758 bool busy = false; 4759 struct workqueue_struct *wq; 4760 struct pool_workqueue *pwq; 4761 4762 mutex_lock(&wq_pool_mutex); 4763 4764 WARN_ON_ONCE(!workqueue_freezing); 4765 4766 list_for_each_entry(wq, &workqueues, list) { 4767 if (!(wq->flags & WQ_FREEZABLE)) 4768 continue; 4769 /* 4770 * nr_active is monotonically decreasing. It's safe 4771 * to peek without lock. 4772 */ 4773 rcu_read_lock_sched(); 4774 for_each_pwq(pwq, wq) { 4775 WARN_ON_ONCE(pwq->nr_active < 0); 4776 if (pwq->nr_active) { 4777 busy = true; 4778 rcu_read_unlock_sched(); 4779 goto out_unlock; 4780 } 4781 } 4782 rcu_read_unlock_sched(); 4783 } 4784 out_unlock: 4785 mutex_unlock(&wq_pool_mutex); 4786 return busy; 4787 } 4788 4789 /** 4790 * thaw_workqueues - thaw workqueues 4791 * 4792 * Thaw workqueues. Normal queueing is restored and all collected 4793 * frozen works are transferred to their respective pool worklists. 4794 * 4795 * CONTEXT: 4796 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4797 */ 4798 void thaw_workqueues(void) 4799 { 4800 struct workqueue_struct *wq; 4801 struct pool_workqueue *pwq; 4802 4803 mutex_lock(&wq_pool_mutex); 4804 4805 if (!workqueue_freezing) 4806 goto out_unlock; 4807 4808 workqueue_freezing = false; 4809 4810 /* restore max_active and repopulate worklist */ 4811 list_for_each_entry(wq, &workqueues, list) { 4812 mutex_lock(&wq->mutex); 4813 for_each_pwq(pwq, wq) 4814 pwq_adjust_max_active(pwq); 4815 mutex_unlock(&wq->mutex); 4816 } 4817 4818 out_unlock: 4819 mutex_unlock(&wq_pool_mutex); 4820 } 4821 #endif /* CONFIG_FREEZER */ 4822 4823 static int workqueue_apply_unbound_cpumask(void) 4824 { 4825 LIST_HEAD(ctxs); 4826 int ret = 0; 4827 struct workqueue_struct *wq; 4828 struct apply_wqattrs_ctx *ctx, *n; 4829 4830 lockdep_assert_held(&wq_pool_mutex); 4831 4832 list_for_each_entry(wq, &workqueues, list) { 4833 if (!(wq->flags & WQ_UNBOUND)) 4834 continue; 4835 /* creating multiple pwqs breaks ordering guarantee */ 4836 if (wq->flags & __WQ_ORDERED) 4837 continue; 4838 4839 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs); 4840 if (!ctx) { 4841 ret = -ENOMEM; 4842 break; 4843 } 4844 4845 list_add_tail(&ctx->list, &ctxs); 4846 } 4847 4848 list_for_each_entry_safe(ctx, n, &ctxs, list) { 4849 if (!ret) 4850 apply_wqattrs_commit(ctx); 4851 apply_wqattrs_cleanup(ctx); 4852 } 4853 4854 return ret; 4855 } 4856 4857 /** 4858 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 4859 * @cpumask: the cpumask to set 4860 * 4861 * The low-level workqueues cpumask is a global cpumask that limits 4862 * the affinity of all unbound workqueues. This function check the @cpumask 4863 * and apply it to all unbound workqueues and updates all pwqs of them. 4864 * 4865 * Retun: 0 - Success 4866 * -EINVAL - Invalid @cpumask 4867 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 4868 */ 4869 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 4870 { 4871 int ret = -EINVAL; 4872 cpumask_var_t saved_cpumask; 4873 4874 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) 4875 return -ENOMEM; 4876 4877 cpumask_and(cpumask, cpumask, cpu_possible_mask); 4878 if (!cpumask_empty(cpumask)) { 4879 apply_wqattrs_lock(); 4880 4881 /* save the old wq_unbound_cpumask. */ 4882 cpumask_copy(saved_cpumask, wq_unbound_cpumask); 4883 4884 /* update wq_unbound_cpumask at first and apply it to wqs. */ 4885 cpumask_copy(wq_unbound_cpumask, cpumask); 4886 ret = workqueue_apply_unbound_cpumask(); 4887 4888 /* restore the wq_unbound_cpumask when failed. */ 4889 if (ret < 0) 4890 cpumask_copy(wq_unbound_cpumask, saved_cpumask); 4891 4892 apply_wqattrs_unlock(); 4893 } 4894 4895 free_cpumask_var(saved_cpumask); 4896 return ret; 4897 } 4898 4899 #ifdef CONFIG_SYSFS 4900 /* 4901 * Workqueues with WQ_SYSFS flag set is visible to userland via 4902 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 4903 * following attributes. 4904 * 4905 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 4906 * max_active RW int : maximum number of in-flight work items 4907 * 4908 * Unbound workqueues have the following extra attributes. 4909 * 4910 * id RO int : the associated pool ID 4911 * nice RW int : nice value of the workers 4912 * cpumask RW mask : bitmask of allowed CPUs for the workers 4913 */ 4914 struct wq_device { 4915 struct workqueue_struct *wq; 4916 struct device dev; 4917 }; 4918 4919 static struct workqueue_struct *dev_to_wq(struct device *dev) 4920 { 4921 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 4922 4923 return wq_dev->wq; 4924 } 4925 4926 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 4927 char *buf) 4928 { 4929 struct workqueue_struct *wq = dev_to_wq(dev); 4930 4931 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 4932 } 4933 static DEVICE_ATTR_RO(per_cpu); 4934 4935 static ssize_t max_active_show(struct device *dev, 4936 struct device_attribute *attr, char *buf) 4937 { 4938 struct workqueue_struct *wq = dev_to_wq(dev); 4939 4940 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 4941 } 4942 4943 static ssize_t max_active_store(struct device *dev, 4944 struct device_attribute *attr, const char *buf, 4945 size_t count) 4946 { 4947 struct workqueue_struct *wq = dev_to_wq(dev); 4948 int val; 4949 4950 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 4951 return -EINVAL; 4952 4953 workqueue_set_max_active(wq, val); 4954 return count; 4955 } 4956 static DEVICE_ATTR_RW(max_active); 4957 4958 static struct attribute *wq_sysfs_attrs[] = { 4959 &dev_attr_per_cpu.attr, 4960 &dev_attr_max_active.attr, 4961 NULL, 4962 }; 4963 ATTRIBUTE_GROUPS(wq_sysfs); 4964 4965 static ssize_t wq_pool_ids_show(struct device *dev, 4966 struct device_attribute *attr, char *buf) 4967 { 4968 struct workqueue_struct *wq = dev_to_wq(dev); 4969 const char *delim = ""; 4970 int node, written = 0; 4971 4972 rcu_read_lock_sched(); 4973 for_each_node(node) { 4974 written += scnprintf(buf + written, PAGE_SIZE - written, 4975 "%s%d:%d", delim, node, 4976 unbound_pwq_by_node(wq, node)->pool->id); 4977 delim = " "; 4978 } 4979 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 4980 rcu_read_unlock_sched(); 4981 4982 return written; 4983 } 4984 4985 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 4986 char *buf) 4987 { 4988 struct workqueue_struct *wq = dev_to_wq(dev); 4989 int written; 4990 4991 mutex_lock(&wq->mutex); 4992 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 4993 mutex_unlock(&wq->mutex); 4994 4995 return written; 4996 } 4997 4998 /* prepare workqueue_attrs for sysfs store operations */ 4999 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5000 { 5001 struct workqueue_attrs *attrs; 5002 5003 lockdep_assert_held(&wq_pool_mutex); 5004 5005 attrs = alloc_workqueue_attrs(GFP_KERNEL); 5006 if (!attrs) 5007 return NULL; 5008 5009 copy_workqueue_attrs(attrs, wq->unbound_attrs); 5010 return attrs; 5011 } 5012 5013 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 5014 const char *buf, size_t count) 5015 { 5016 struct workqueue_struct *wq = dev_to_wq(dev); 5017 struct workqueue_attrs *attrs; 5018 int ret = -ENOMEM; 5019 5020 apply_wqattrs_lock(); 5021 5022 attrs = wq_sysfs_prep_attrs(wq); 5023 if (!attrs) 5024 goto out_unlock; 5025 5026 if (sscanf(buf, "%d", &attrs->nice) == 1 && 5027 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 5028 ret = apply_workqueue_attrs_locked(wq, attrs); 5029 else 5030 ret = -EINVAL; 5031 5032 out_unlock: 5033 apply_wqattrs_unlock(); 5034 free_workqueue_attrs(attrs); 5035 return ret ?: count; 5036 } 5037 5038 static ssize_t wq_cpumask_show(struct device *dev, 5039 struct device_attribute *attr, char *buf) 5040 { 5041 struct workqueue_struct *wq = dev_to_wq(dev); 5042 int written; 5043 5044 mutex_lock(&wq->mutex); 5045 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5046 cpumask_pr_args(wq->unbound_attrs->cpumask)); 5047 mutex_unlock(&wq->mutex); 5048 return written; 5049 } 5050 5051 static ssize_t wq_cpumask_store(struct device *dev, 5052 struct device_attribute *attr, 5053 const char *buf, size_t count) 5054 { 5055 struct workqueue_struct *wq = dev_to_wq(dev); 5056 struct workqueue_attrs *attrs; 5057 int ret = -ENOMEM; 5058 5059 apply_wqattrs_lock(); 5060 5061 attrs = wq_sysfs_prep_attrs(wq); 5062 if (!attrs) 5063 goto out_unlock; 5064 5065 ret = cpumask_parse(buf, attrs->cpumask); 5066 if (!ret) 5067 ret = apply_workqueue_attrs_locked(wq, attrs); 5068 5069 out_unlock: 5070 apply_wqattrs_unlock(); 5071 free_workqueue_attrs(attrs); 5072 return ret ?: count; 5073 } 5074 5075 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5076 char *buf) 5077 { 5078 struct workqueue_struct *wq = dev_to_wq(dev); 5079 int written; 5080 5081 mutex_lock(&wq->mutex); 5082 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5083 !wq->unbound_attrs->no_numa); 5084 mutex_unlock(&wq->mutex); 5085 5086 return written; 5087 } 5088 5089 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 5090 const char *buf, size_t count) 5091 { 5092 struct workqueue_struct *wq = dev_to_wq(dev); 5093 struct workqueue_attrs *attrs; 5094 int v, ret = -ENOMEM; 5095 5096 apply_wqattrs_lock(); 5097 5098 attrs = wq_sysfs_prep_attrs(wq); 5099 if (!attrs) 5100 goto out_unlock; 5101 5102 ret = -EINVAL; 5103 if (sscanf(buf, "%d", &v) == 1) { 5104 attrs->no_numa = !v; 5105 ret = apply_workqueue_attrs_locked(wq, attrs); 5106 } 5107 5108 out_unlock: 5109 apply_wqattrs_unlock(); 5110 free_workqueue_attrs(attrs); 5111 return ret ?: count; 5112 } 5113 5114 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5115 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5116 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5117 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5118 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5119 __ATTR_NULL, 5120 }; 5121 5122 static struct bus_type wq_subsys = { 5123 .name = "workqueue", 5124 .dev_groups = wq_sysfs_groups, 5125 }; 5126 5127 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5128 struct device_attribute *attr, char *buf) 5129 { 5130 int written; 5131 5132 mutex_lock(&wq_pool_mutex); 5133 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5134 cpumask_pr_args(wq_unbound_cpumask)); 5135 mutex_unlock(&wq_pool_mutex); 5136 5137 return written; 5138 } 5139 5140 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5141 struct device_attribute *attr, const char *buf, size_t count) 5142 { 5143 cpumask_var_t cpumask; 5144 int ret; 5145 5146 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5147 return -ENOMEM; 5148 5149 ret = cpumask_parse(buf, cpumask); 5150 if (!ret) 5151 ret = workqueue_set_unbound_cpumask(cpumask); 5152 5153 free_cpumask_var(cpumask); 5154 return ret ? ret : count; 5155 } 5156 5157 static struct device_attribute wq_sysfs_cpumask_attr = 5158 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5159 wq_unbound_cpumask_store); 5160 5161 static int __init wq_sysfs_init(void) 5162 { 5163 int err; 5164 5165 err = subsys_virtual_register(&wq_subsys, NULL); 5166 if (err) 5167 return err; 5168 5169 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr); 5170 } 5171 core_initcall(wq_sysfs_init); 5172 5173 static void wq_device_release(struct device *dev) 5174 { 5175 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5176 5177 kfree(wq_dev); 5178 } 5179 5180 /** 5181 * workqueue_sysfs_register - make a workqueue visible in sysfs 5182 * @wq: the workqueue to register 5183 * 5184 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5185 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5186 * which is the preferred method. 5187 * 5188 * Workqueue user should use this function directly iff it wants to apply 5189 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5190 * apply_workqueue_attrs() may race against userland updating the 5191 * attributes. 5192 * 5193 * Return: 0 on success, -errno on failure. 5194 */ 5195 int workqueue_sysfs_register(struct workqueue_struct *wq) 5196 { 5197 struct wq_device *wq_dev; 5198 int ret; 5199 5200 /* 5201 * Adjusting max_active or creating new pwqs by applying 5202 * attributes breaks ordering guarantee. Disallow exposing ordered 5203 * workqueues. 5204 */ 5205 if (WARN_ON(wq->flags & __WQ_ORDERED)) 5206 return -EINVAL; 5207 5208 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5209 if (!wq_dev) 5210 return -ENOMEM; 5211 5212 wq_dev->wq = wq; 5213 wq_dev->dev.bus = &wq_subsys; 5214 wq_dev->dev.release = wq_device_release; 5215 dev_set_name(&wq_dev->dev, "%s", wq->name); 5216 5217 /* 5218 * unbound_attrs are created separately. Suppress uevent until 5219 * everything is ready. 5220 */ 5221 dev_set_uevent_suppress(&wq_dev->dev, true); 5222 5223 ret = device_register(&wq_dev->dev); 5224 if (ret) { 5225 kfree(wq_dev); 5226 wq->wq_dev = NULL; 5227 return ret; 5228 } 5229 5230 if (wq->flags & WQ_UNBOUND) { 5231 struct device_attribute *attr; 5232 5233 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5234 ret = device_create_file(&wq_dev->dev, attr); 5235 if (ret) { 5236 device_unregister(&wq_dev->dev); 5237 wq->wq_dev = NULL; 5238 return ret; 5239 } 5240 } 5241 } 5242 5243 dev_set_uevent_suppress(&wq_dev->dev, false); 5244 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5245 return 0; 5246 } 5247 5248 /** 5249 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5250 * @wq: the workqueue to unregister 5251 * 5252 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5253 */ 5254 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5255 { 5256 struct wq_device *wq_dev = wq->wq_dev; 5257 5258 if (!wq->wq_dev) 5259 return; 5260 5261 wq->wq_dev = NULL; 5262 device_unregister(&wq_dev->dev); 5263 } 5264 #else /* CONFIG_SYSFS */ 5265 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5266 #endif /* CONFIG_SYSFS */ 5267 5268 /* 5269 * Workqueue watchdog. 5270 * 5271 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 5272 * flush dependency, a concurrency managed work item which stays RUNNING 5273 * indefinitely. Workqueue stalls can be very difficult to debug as the 5274 * usual warning mechanisms don't trigger and internal workqueue state is 5275 * largely opaque. 5276 * 5277 * Workqueue watchdog monitors all worker pools periodically and dumps 5278 * state if some pools failed to make forward progress for a while where 5279 * forward progress is defined as the first item on ->worklist changing. 5280 * 5281 * This mechanism is controlled through the kernel parameter 5282 * "workqueue.watchdog_thresh" which can be updated at runtime through the 5283 * corresponding sysfs parameter file. 5284 */ 5285 #ifdef CONFIG_WQ_WATCHDOG 5286 5287 static void wq_watchdog_timer_fn(unsigned long data); 5288 5289 static unsigned long wq_watchdog_thresh = 30; 5290 static struct timer_list wq_watchdog_timer = 5291 TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0); 5292 5293 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 5294 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 5295 5296 static void wq_watchdog_reset_touched(void) 5297 { 5298 int cpu; 5299 5300 wq_watchdog_touched = jiffies; 5301 for_each_possible_cpu(cpu) 5302 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5303 } 5304 5305 static void wq_watchdog_timer_fn(unsigned long data) 5306 { 5307 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 5308 bool lockup_detected = false; 5309 struct worker_pool *pool; 5310 int pi; 5311 5312 if (!thresh) 5313 return; 5314 5315 rcu_read_lock(); 5316 5317 for_each_pool(pool, pi) { 5318 unsigned long pool_ts, touched, ts; 5319 5320 if (list_empty(&pool->worklist)) 5321 continue; 5322 5323 /* get the latest of pool and touched timestamps */ 5324 pool_ts = READ_ONCE(pool->watchdog_ts); 5325 touched = READ_ONCE(wq_watchdog_touched); 5326 5327 if (time_after(pool_ts, touched)) 5328 ts = pool_ts; 5329 else 5330 ts = touched; 5331 5332 if (pool->cpu >= 0) { 5333 unsigned long cpu_touched = 5334 READ_ONCE(per_cpu(wq_watchdog_touched_cpu, 5335 pool->cpu)); 5336 if (time_after(cpu_touched, ts)) 5337 ts = cpu_touched; 5338 } 5339 5340 /* did we stall? */ 5341 if (time_after(jiffies, ts + thresh)) { 5342 lockup_detected = true; 5343 pr_emerg("BUG: workqueue lockup - pool"); 5344 pr_cont_pool_info(pool); 5345 pr_cont(" stuck for %us!\n", 5346 jiffies_to_msecs(jiffies - pool_ts) / 1000); 5347 } 5348 } 5349 5350 rcu_read_unlock(); 5351 5352 if (lockup_detected) 5353 show_workqueue_state(); 5354 5355 wq_watchdog_reset_touched(); 5356 mod_timer(&wq_watchdog_timer, jiffies + thresh); 5357 } 5358 5359 void wq_watchdog_touch(int cpu) 5360 { 5361 if (cpu >= 0) 5362 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5363 else 5364 wq_watchdog_touched = jiffies; 5365 } 5366 5367 static void wq_watchdog_set_thresh(unsigned long thresh) 5368 { 5369 wq_watchdog_thresh = 0; 5370 del_timer_sync(&wq_watchdog_timer); 5371 5372 if (thresh) { 5373 wq_watchdog_thresh = thresh; 5374 wq_watchdog_reset_touched(); 5375 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 5376 } 5377 } 5378 5379 static int wq_watchdog_param_set_thresh(const char *val, 5380 const struct kernel_param *kp) 5381 { 5382 unsigned long thresh; 5383 int ret; 5384 5385 ret = kstrtoul(val, 0, &thresh); 5386 if (ret) 5387 return ret; 5388 5389 if (system_wq) 5390 wq_watchdog_set_thresh(thresh); 5391 else 5392 wq_watchdog_thresh = thresh; 5393 5394 return 0; 5395 } 5396 5397 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 5398 .set = wq_watchdog_param_set_thresh, 5399 .get = param_get_ulong, 5400 }; 5401 5402 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 5403 0644); 5404 5405 static void wq_watchdog_init(void) 5406 { 5407 wq_watchdog_set_thresh(wq_watchdog_thresh); 5408 } 5409 5410 #else /* CONFIG_WQ_WATCHDOG */ 5411 5412 static inline void wq_watchdog_init(void) { } 5413 5414 #endif /* CONFIG_WQ_WATCHDOG */ 5415 5416 static void __init wq_numa_init(void) 5417 { 5418 cpumask_var_t *tbl; 5419 int node, cpu; 5420 5421 if (num_possible_nodes() <= 1) 5422 return; 5423 5424 if (wq_disable_numa) { 5425 pr_info("workqueue: NUMA affinity support disabled\n"); 5426 return; 5427 } 5428 5429 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL); 5430 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5431 5432 /* 5433 * We want masks of possible CPUs of each node which isn't readily 5434 * available. Build one from cpu_to_node() which should have been 5435 * fully initialized by now. 5436 */ 5437 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL); 5438 BUG_ON(!tbl); 5439 5440 for_each_node(node) 5441 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5442 node_online(node) ? node : NUMA_NO_NODE)); 5443 5444 for_each_possible_cpu(cpu) { 5445 node = cpu_to_node(cpu); 5446 if (WARN_ON(node == NUMA_NO_NODE)) { 5447 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5448 /* happens iff arch is bonkers, let's just proceed */ 5449 return; 5450 } 5451 cpumask_set_cpu(cpu, tbl[node]); 5452 } 5453 5454 wq_numa_possible_cpumask = tbl; 5455 wq_numa_enabled = true; 5456 } 5457 5458 static int __init init_workqueues(void) 5459 { 5460 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5461 int i, cpu; 5462 5463 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5464 5465 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 5466 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask); 5467 5468 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5469 5470 wq_numa_init(); 5471 5472 /* initialize CPU pools */ 5473 for_each_possible_cpu(cpu) { 5474 struct worker_pool *pool; 5475 5476 i = 0; 5477 for_each_cpu_worker_pool(pool, cpu) { 5478 BUG_ON(init_worker_pool(pool)); 5479 pool->cpu = cpu; 5480 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5481 pool->attrs->nice = std_nice[i++]; 5482 pool->node = cpu_to_node(cpu); 5483 5484 /* alloc pool ID */ 5485 mutex_lock(&wq_pool_mutex); 5486 BUG_ON(worker_pool_assign_id(pool)); 5487 mutex_unlock(&wq_pool_mutex); 5488 } 5489 } 5490 5491 /* create the initial worker */ 5492 for_each_online_cpu(cpu) { 5493 struct worker_pool *pool; 5494 5495 for_each_cpu_worker_pool(pool, cpu) { 5496 pool->flags &= ~POOL_DISASSOCIATED; 5497 BUG_ON(!create_worker(pool)); 5498 } 5499 } 5500 5501 /* create default unbound and ordered wq attrs */ 5502 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5503 struct workqueue_attrs *attrs; 5504 5505 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5506 attrs->nice = std_nice[i]; 5507 unbound_std_wq_attrs[i] = attrs; 5508 5509 /* 5510 * An ordered wq should have only one pwq as ordering is 5511 * guaranteed by max_active which is enforced by pwqs. 5512 * Turn off NUMA so that dfl_pwq is used for all nodes. 5513 */ 5514 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5515 attrs->nice = std_nice[i]; 5516 attrs->no_numa = true; 5517 ordered_wq_attrs[i] = attrs; 5518 } 5519 5520 system_wq = alloc_workqueue("events", 0, 0); 5521 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5522 system_long_wq = alloc_workqueue("events_long", 0, 0); 5523 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5524 WQ_UNBOUND_MAX_ACTIVE); 5525 system_freezable_wq = alloc_workqueue("events_freezable", 5526 WQ_FREEZABLE, 0); 5527 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5528 WQ_POWER_EFFICIENT, 0); 5529 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5530 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5531 0); 5532 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5533 !system_unbound_wq || !system_freezable_wq || 5534 !system_power_efficient_wq || 5535 !system_freezable_power_efficient_wq); 5536 5537 wq_watchdog_init(); 5538 5539 return 0; 5540 } 5541 early_initcall(init_workqueues); 5542