xref: /openbmc/linux/kernel/workqueue.c (revision 7f1005dd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/sched/debug.h>
53 #include <linux/nmi.h>
54 #include <linux/kvm_para.h>
55 #include <linux/delay.h>
56 
57 #include "workqueue_internal.h"
58 
59 enum {
60 	/*
61 	 * worker_pool flags
62 	 *
63 	 * A bound pool is either associated or disassociated with its CPU.
64 	 * While associated (!DISASSOCIATED), all workers are bound to the
65 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
66 	 * is in effect.
67 	 *
68 	 * While DISASSOCIATED, the cpu may be offline and all workers have
69 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
70 	 * be executing on any CPU.  The pool behaves as an unbound one.
71 	 *
72 	 * Note that DISASSOCIATED should be flipped only while holding
73 	 * wq_pool_attach_mutex to avoid changing binding state while
74 	 * worker_attach_to_pool() is in progress.
75 	 */
76 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
77 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
78 
79 	/* worker flags */
80 	WORKER_DIE		= 1 << 1,	/* die die die */
81 	WORKER_IDLE		= 1 << 2,	/* is idle */
82 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
83 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
84 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
85 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
86 
87 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
88 				  WORKER_UNBOUND | WORKER_REBOUND,
89 
90 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
91 
92 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
93 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
94 
95 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
96 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
97 
98 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
99 						/* call for help after 10ms
100 						   (min two ticks) */
101 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
102 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
103 
104 	/*
105 	 * Rescue workers are used only on emergencies and shared by
106 	 * all cpus.  Give MIN_NICE.
107 	 */
108 	RESCUER_NICE_LEVEL	= MIN_NICE,
109 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
110 
111 	WQ_NAME_LEN		= 32,
112 };
113 
114 /*
115  * Structure fields follow one of the following exclusion rules.
116  *
117  * I: Modifiable by initialization/destruction paths and read-only for
118  *    everyone else.
119  *
120  * P: Preemption protected.  Disabling preemption is enough and should
121  *    only be modified and accessed from the local cpu.
122  *
123  * L: pool->lock protected.  Access with pool->lock held.
124  *
125  * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
126  *     reads.
127  *
128  * K: Only modified by worker while holding pool->lock. Can be safely read by
129  *    self, while holding pool->lock or from IRQ context if %current is the
130  *    kworker.
131  *
132  * S: Only modified by worker self.
133  *
134  * A: wq_pool_attach_mutex protected.
135  *
136  * PL: wq_pool_mutex protected.
137  *
138  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
139  *
140  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
141  *
142  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
143  *      RCU for reads.
144  *
145  * WQ: wq->mutex protected.
146  *
147  * WR: wq->mutex protected for writes.  RCU protected for reads.
148  *
149  * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
150  *     with READ_ONCE() without locking.
151  *
152  * MD: wq_mayday_lock protected.
153  *
154  * WD: Used internally by the watchdog.
155  */
156 
157 /* struct worker is defined in workqueue_internal.h */
158 
159 struct worker_pool {
160 	raw_spinlock_t		lock;		/* the pool lock */
161 	int			cpu;		/* I: the associated cpu */
162 	int			node;		/* I: the associated node ID */
163 	int			id;		/* I: pool ID */
164 	unsigned int		flags;		/* L: flags */
165 
166 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
167 	bool			cpu_stall;	/* WD: stalled cpu bound pool */
168 
169 	/*
170 	 * The counter is incremented in a process context on the associated CPU
171 	 * w/ preemption disabled, and decremented or reset in the same context
172 	 * but w/ pool->lock held. The readers grab pool->lock and are
173 	 * guaranteed to see if the counter reached zero.
174 	 */
175 	int			nr_running;
176 
177 	struct list_head	worklist;	/* L: list of pending works */
178 
179 	int			nr_workers;	/* L: total number of workers */
180 	int			nr_idle;	/* L: currently idle workers */
181 
182 	struct list_head	idle_list;	/* L: list of idle workers */
183 	struct timer_list	idle_timer;	/* L: worker idle timeout */
184 	struct work_struct      idle_cull_work; /* L: worker idle cleanup */
185 
186 	struct timer_list	mayday_timer;	  /* L: SOS timer for workers */
187 
188 	/* a workers is either on busy_hash or idle_list, or the manager */
189 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
190 						/* L: hash of busy workers */
191 
192 	struct worker		*manager;	/* L: purely informational */
193 	struct list_head	workers;	/* A: attached workers */
194 	struct list_head        dying_workers;  /* A: workers about to die */
195 	struct completion	*detach_completion; /* all workers detached */
196 
197 	struct ida		worker_ida;	/* worker IDs for task name */
198 
199 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
200 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
201 	int			refcnt;		/* PL: refcnt for unbound pools */
202 
203 	/*
204 	 * Destruction of pool is RCU protected to allow dereferences
205 	 * from get_work_pool().
206 	 */
207 	struct rcu_head		rcu;
208 };
209 
210 /*
211  * Per-pool_workqueue statistics. These can be monitored using
212  * tools/workqueue/wq_monitor.py.
213  */
214 enum pool_workqueue_stats {
215 	PWQ_STAT_STARTED,	/* work items started execution */
216 	PWQ_STAT_COMPLETED,	/* work items completed execution */
217 	PWQ_STAT_CPU_TIME,	/* total CPU time consumed */
218 	PWQ_STAT_CPU_INTENSIVE,	/* wq_cpu_intensive_thresh_us violations */
219 	PWQ_STAT_CM_WAKEUP,	/* concurrency-management worker wakeups */
220 	PWQ_STAT_REPATRIATED,	/* unbound workers brought back into scope */
221 	PWQ_STAT_MAYDAY,	/* maydays to rescuer */
222 	PWQ_STAT_RESCUED,	/* linked work items executed by rescuer */
223 
224 	PWQ_NR_STATS,
225 };
226 
227 /*
228  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
229  * of work_struct->data are used for flags and the remaining high bits
230  * point to the pwq; thus, pwqs need to be aligned at two's power of the
231  * number of flag bits.
232  */
233 struct pool_workqueue {
234 	struct worker_pool	*pool;		/* I: the associated pool */
235 	struct workqueue_struct *wq;		/* I: the owning workqueue */
236 	int			work_color;	/* L: current color */
237 	int			flush_color;	/* L: flushing color */
238 	int			refcnt;		/* L: reference count */
239 	int			nr_in_flight[WORK_NR_COLORS];
240 						/* L: nr of in_flight works */
241 
242 	/*
243 	 * nr_active management and WORK_STRUCT_INACTIVE:
244 	 *
245 	 * When pwq->nr_active >= max_active, new work item is queued to
246 	 * pwq->inactive_works instead of pool->worklist and marked with
247 	 * WORK_STRUCT_INACTIVE.
248 	 *
249 	 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
250 	 * nr_active and all work items in pwq->inactive_works are marked with
251 	 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
252 	 * in pwq->inactive_works. Some of them are ready to run in
253 	 * pool->worklist or worker->scheduled. Those work itmes are only struct
254 	 * wq_barrier which is used for flush_work() and should not participate
255 	 * in nr_active. For non-barrier work item, it is marked with
256 	 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
257 	 */
258 	int			nr_active;	/* L: nr of active works */
259 	struct list_head	inactive_works;	/* L: inactive works */
260 	struct list_head	pending_node;	/* LN: node on wq_node_nr_active->pending_pwqs */
261 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
262 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
263 
264 	u64			stats[PWQ_NR_STATS];
265 
266 	/*
267 	 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
268 	 * and pwq_release_workfn() for details. pool_workqueue itself is also
269 	 * RCU protected so that the first pwq can be determined without
270 	 * grabbing wq->mutex.
271 	 */
272 	struct kthread_work	release_work;
273 	struct rcu_head		rcu;
274 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
275 
276 /*
277  * Structure used to wait for workqueue flush.
278  */
279 struct wq_flusher {
280 	struct list_head	list;		/* WQ: list of flushers */
281 	int			flush_color;	/* WQ: flush color waiting for */
282 	struct completion	done;		/* flush completion */
283 };
284 
285 struct wq_device;
286 
287 /*
288  * Unlike in a per-cpu workqueue where max_active limits its concurrency level
289  * on each CPU, in an unbound workqueue, max_active applies to the whole system.
290  * As sharing a single nr_active across multiple sockets can be very expensive,
291  * the counting and enforcement is per NUMA node.
292  *
293  * The following struct is used to enforce per-node max_active. When a pwq wants
294  * to start executing a work item, it should increment ->nr using
295  * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
296  * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
297  * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
298  * round-robin order.
299  */
300 struct wq_node_nr_active {
301 	int			max;		/* per-node max_active */
302 	atomic_t		nr;		/* per-node nr_active */
303 	raw_spinlock_t		lock;		/* nests inside pool locks */
304 	struct list_head	pending_pwqs;	/* LN: pwqs with inactive works */
305 };
306 
307 /*
308  * The externally visible workqueue.  It relays the issued work items to
309  * the appropriate worker_pool through its pool_workqueues.
310  */
311 struct workqueue_struct {
312 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
313 	struct list_head	list;		/* PR: list of all workqueues */
314 
315 	struct mutex		mutex;		/* protects this wq */
316 	int			work_color;	/* WQ: current work color */
317 	int			flush_color;	/* WQ: current flush color */
318 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
319 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
320 	struct list_head	flusher_queue;	/* WQ: flush waiters */
321 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
322 
323 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
324 	struct worker		*rescuer;	/* MD: rescue worker */
325 
326 	int			nr_drainers;	/* WQ: drain in progress */
327 
328 	/* See alloc_workqueue() function comment for info on min/max_active */
329 	int			max_active;	/* WO: max active works */
330 	int			min_active;	/* WO: min active works */
331 	int			saved_max_active; /* WQ: saved max_active */
332 	int			saved_min_active; /* WQ: saved min_active */
333 
334 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
335 	struct pool_workqueue __rcu *dfl_pwq;   /* PW: only for unbound wqs */
336 
337 #ifdef CONFIG_SYSFS
338 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
339 #endif
340 #ifdef CONFIG_LOCKDEP
341 	char			*lock_name;
342 	struct lock_class_key	key;
343 	struct lockdep_map	lockdep_map;
344 #endif
345 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
346 
347 	/*
348 	 * Destruction of workqueue_struct is RCU protected to allow walking
349 	 * the workqueues list without grabbing wq_pool_mutex.
350 	 * This is used to dump all workqueues from sysrq.
351 	 */
352 	struct rcu_head		rcu;
353 
354 	/* hot fields used during command issue, aligned to cacheline */
355 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
356 	struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */
357 	struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
358 };
359 
360 static struct kmem_cache *pwq_cache;
361 
362 /*
363  * Each pod type describes how CPUs should be grouped for unbound workqueues.
364  * See the comment above workqueue_attrs->affn_scope.
365  */
366 struct wq_pod_type {
367 	int			nr_pods;	/* number of pods */
368 	cpumask_var_t		*pod_cpus;	/* pod -> cpus */
369 	int			*pod_node;	/* pod -> node */
370 	int			*cpu_pod;	/* cpu -> pod */
371 };
372 
373 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
374 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
375 
376 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
377 	[WQ_AFFN_DFL]			= "default",
378 	[WQ_AFFN_CPU]			= "cpu",
379 	[WQ_AFFN_SMT]			= "smt",
380 	[WQ_AFFN_CACHE]			= "cache",
381 	[WQ_AFFN_NUMA]			= "numa",
382 	[WQ_AFFN_SYSTEM]		= "system",
383 };
384 
385 /*
386  * Per-cpu work items which run for longer than the following threshold are
387  * automatically considered CPU intensive and excluded from concurrency
388  * management to prevent them from noticeably delaying other per-cpu work items.
389  * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
390  * The actual value is initialized in wq_cpu_intensive_thresh_init().
391  */
392 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
393 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
394 
395 /* see the comment above the definition of WQ_POWER_EFFICIENT */
396 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
397 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
398 
399 static bool wq_online;			/* can kworkers be created yet? */
400 
401 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
402 static struct workqueue_attrs *wq_update_pod_attrs_buf;
403 
404 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
405 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
406 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
407 /* wait for manager to go away */
408 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
409 
410 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
411 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
412 
413 /* PL&A: allowable cpus for unbound wqs and work items */
414 static cpumask_var_t wq_unbound_cpumask;
415 
416 /* for further constrain wq_unbound_cpumask by cmdline parameter*/
417 static struct cpumask wq_cmdline_cpumask __initdata;
418 
419 /* CPU where unbound work was last round robin scheduled from this CPU */
420 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
421 
422 /*
423  * Local execution of unbound work items is no longer guaranteed.  The
424  * following always forces round-robin CPU selection on unbound work items
425  * to uncover usages which depend on it.
426  */
427 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
428 static bool wq_debug_force_rr_cpu = true;
429 #else
430 static bool wq_debug_force_rr_cpu = false;
431 #endif
432 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
433 
434 /* the per-cpu worker pools */
435 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
436 
437 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
438 
439 /* PL: hash of all unbound pools keyed by pool->attrs */
440 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
441 
442 /* I: attributes used when instantiating standard unbound pools on demand */
443 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
444 
445 /* I: attributes used when instantiating ordered pools on demand */
446 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
447 
448 /*
449  * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
450  * process context while holding a pool lock. Bounce to a dedicated kthread
451  * worker to avoid A-A deadlocks.
452  */
453 static struct kthread_worker *pwq_release_worker;
454 
455 struct workqueue_struct *system_wq __read_mostly;
456 EXPORT_SYMBOL(system_wq);
457 struct workqueue_struct *system_highpri_wq __read_mostly;
458 EXPORT_SYMBOL_GPL(system_highpri_wq);
459 struct workqueue_struct *system_long_wq __read_mostly;
460 EXPORT_SYMBOL_GPL(system_long_wq);
461 struct workqueue_struct *system_unbound_wq __read_mostly;
462 EXPORT_SYMBOL_GPL(system_unbound_wq);
463 struct workqueue_struct *system_freezable_wq __read_mostly;
464 EXPORT_SYMBOL_GPL(system_freezable_wq);
465 struct workqueue_struct *system_power_efficient_wq __read_mostly;
466 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
467 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
468 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
469 
470 static int worker_thread(void *__worker);
471 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
472 static void show_pwq(struct pool_workqueue *pwq);
473 static void show_one_worker_pool(struct worker_pool *pool);
474 
475 #define CREATE_TRACE_POINTS
476 #include <trace/events/workqueue.h>
477 
478 #define assert_rcu_or_pool_mutex()					\
479 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
480 			 !lockdep_is_held(&wq_pool_mutex),		\
481 			 "RCU or wq_pool_mutex should be held")
482 
483 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
484 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
485 			 !lockdep_is_held(&wq->mutex) &&		\
486 			 !lockdep_is_held(&wq_pool_mutex),		\
487 			 "RCU, wq->mutex or wq_pool_mutex should be held")
488 
489 #define for_each_cpu_worker_pool(pool, cpu)				\
490 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
491 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
492 	     (pool)++)
493 
494 /**
495  * for_each_pool - iterate through all worker_pools in the system
496  * @pool: iteration cursor
497  * @pi: integer used for iteration
498  *
499  * This must be called either with wq_pool_mutex held or RCU read
500  * locked.  If the pool needs to be used beyond the locking in effect, the
501  * caller is responsible for guaranteeing that the pool stays online.
502  *
503  * The if/else clause exists only for the lockdep assertion and can be
504  * ignored.
505  */
506 #define for_each_pool(pool, pi)						\
507 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
508 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
509 		else
510 
511 /**
512  * for_each_pool_worker - iterate through all workers of a worker_pool
513  * @worker: iteration cursor
514  * @pool: worker_pool to iterate workers of
515  *
516  * This must be called with wq_pool_attach_mutex.
517  *
518  * The if/else clause exists only for the lockdep assertion and can be
519  * ignored.
520  */
521 #define for_each_pool_worker(worker, pool)				\
522 	list_for_each_entry((worker), &(pool)->workers, node)		\
523 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
524 		else
525 
526 /**
527  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
528  * @pwq: iteration cursor
529  * @wq: the target workqueue
530  *
531  * This must be called either with wq->mutex held or RCU read locked.
532  * If the pwq needs to be used beyond the locking in effect, the caller is
533  * responsible for guaranteeing that the pwq stays online.
534  *
535  * The if/else clause exists only for the lockdep assertion and can be
536  * ignored.
537  */
538 #define for_each_pwq(pwq, wq)						\
539 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
540 				 lockdep_is_held(&(wq->mutex)))
541 
542 #ifdef CONFIG_DEBUG_OBJECTS_WORK
543 
544 static const struct debug_obj_descr work_debug_descr;
545 
546 static void *work_debug_hint(void *addr)
547 {
548 	return ((struct work_struct *) addr)->func;
549 }
550 
551 static bool work_is_static_object(void *addr)
552 {
553 	struct work_struct *work = addr;
554 
555 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
556 }
557 
558 /*
559  * fixup_init is called when:
560  * - an active object is initialized
561  */
562 static bool work_fixup_init(void *addr, enum debug_obj_state state)
563 {
564 	struct work_struct *work = addr;
565 
566 	switch (state) {
567 	case ODEBUG_STATE_ACTIVE:
568 		cancel_work_sync(work);
569 		debug_object_init(work, &work_debug_descr);
570 		return true;
571 	default:
572 		return false;
573 	}
574 }
575 
576 /*
577  * fixup_free is called when:
578  * - an active object is freed
579  */
580 static bool work_fixup_free(void *addr, enum debug_obj_state state)
581 {
582 	struct work_struct *work = addr;
583 
584 	switch (state) {
585 	case ODEBUG_STATE_ACTIVE:
586 		cancel_work_sync(work);
587 		debug_object_free(work, &work_debug_descr);
588 		return true;
589 	default:
590 		return false;
591 	}
592 }
593 
594 static const struct debug_obj_descr work_debug_descr = {
595 	.name		= "work_struct",
596 	.debug_hint	= work_debug_hint,
597 	.is_static_object = work_is_static_object,
598 	.fixup_init	= work_fixup_init,
599 	.fixup_free	= work_fixup_free,
600 };
601 
602 static inline void debug_work_activate(struct work_struct *work)
603 {
604 	debug_object_activate(work, &work_debug_descr);
605 }
606 
607 static inline void debug_work_deactivate(struct work_struct *work)
608 {
609 	debug_object_deactivate(work, &work_debug_descr);
610 }
611 
612 void __init_work(struct work_struct *work, int onstack)
613 {
614 	if (onstack)
615 		debug_object_init_on_stack(work, &work_debug_descr);
616 	else
617 		debug_object_init(work, &work_debug_descr);
618 }
619 EXPORT_SYMBOL_GPL(__init_work);
620 
621 void destroy_work_on_stack(struct work_struct *work)
622 {
623 	debug_object_free(work, &work_debug_descr);
624 }
625 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
626 
627 void destroy_delayed_work_on_stack(struct delayed_work *work)
628 {
629 	destroy_timer_on_stack(&work->timer);
630 	debug_object_free(&work->work, &work_debug_descr);
631 }
632 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
633 
634 #else
635 static inline void debug_work_activate(struct work_struct *work) { }
636 static inline void debug_work_deactivate(struct work_struct *work) { }
637 #endif
638 
639 /**
640  * worker_pool_assign_id - allocate ID and assign it to @pool
641  * @pool: the pool pointer of interest
642  *
643  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
644  * successfully, -errno on failure.
645  */
646 static int worker_pool_assign_id(struct worker_pool *pool)
647 {
648 	int ret;
649 
650 	lockdep_assert_held(&wq_pool_mutex);
651 
652 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
653 			GFP_KERNEL);
654 	if (ret >= 0) {
655 		pool->id = ret;
656 		return 0;
657 	}
658 	return ret;
659 }
660 
661 static struct pool_workqueue __rcu **
662 unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
663 {
664        if (cpu >= 0)
665                return per_cpu_ptr(wq->cpu_pwq, cpu);
666        else
667                return &wq->dfl_pwq;
668 }
669 
670 /* @cpu < 0 for dfl_pwq */
671 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
672 {
673 	return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
674 				     lockdep_is_held(&wq_pool_mutex) ||
675 				     lockdep_is_held(&wq->mutex));
676 }
677 
678 /**
679  * unbound_effective_cpumask - effective cpumask of an unbound workqueue
680  * @wq: workqueue of interest
681  *
682  * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
683  * is masked with wq_unbound_cpumask to determine the effective cpumask. The
684  * default pwq is always mapped to the pool with the current effective cpumask.
685  */
686 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
687 {
688 	return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
689 }
690 
691 static unsigned int work_color_to_flags(int color)
692 {
693 	return color << WORK_STRUCT_COLOR_SHIFT;
694 }
695 
696 static int get_work_color(unsigned long work_data)
697 {
698 	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
699 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
700 }
701 
702 static int work_next_color(int color)
703 {
704 	return (color + 1) % WORK_NR_COLORS;
705 }
706 
707 /*
708  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
709  * contain the pointer to the queued pwq.  Once execution starts, the flag
710  * is cleared and the high bits contain OFFQ flags and pool ID.
711  *
712  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
713  * and clear_work_data() can be used to set the pwq, pool or clear
714  * work->data.  These functions should only be called while the work is
715  * owned - ie. while the PENDING bit is set.
716  *
717  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
718  * corresponding to a work.  Pool is available once the work has been
719  * queued anywhere after initialization until it is sync canceled.  pwq is
720  * available only while the work item is queued.
721  *
722  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
723  * canceled.  While being canceled, a work item may have its PENDING set
724  * but stay off timer and worklist for arbitrarily long and nobody should
725  * try to steal the PENDING bit.
726  */
727 static inline void set_work_data(struct work_struct *work, unsigned long data,
728 				 unsigned long flags)
729 {
730 	WARN_ON_ONCE(!work_pending(work));
731 	atomic_long_set(&work->data, data | flags | work_static(work));
732 }
733 
734 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
735 			 unsigned long extra_flags)
736 {
737 	set_work_data(work, (unsigned long)pwq,
738 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
739 }
740 
741 static void set_work_pool_and_keep_pending(struct work_struct *work,
742 					   int pool_id)
743 {
744 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
745 		      WORK_STRUCT_PENDING);
746 }
747 
748 static void set_work_pool_and_clear_pending(struct work_struct *work,
749 					    int pool_id)
750 {
751 	/*
752 	 * The following wmb is paired with the implied mb in
753 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
754 	 * here are visible to and precede any updates by the next PENDING
755 	 * owner.
756 	 */
757 	smp_wmb();
758 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
759 	/*
760 	 * The following mb guarantees that previous clear of a PENDING bit
761 	 * will not be reordered with any speculative LOADS or STORES from
762 	 * work->current_func, which is executed afterwards.  This possible
763 	 * reordering can lead to a missed execution on attempt to queue
764 	 * the same @work.  E.g. consider this case:
765 	 *
766 	 *   CPU#0                         CPU#1
767 	 *   ----------------------------  --------------------------------
768 	 *
769 	 * 1  STORE event_indicated
770 	 * 2  queue_work_on() {
771 	 * 3    test_and_set_bit(PENDING)
772 	 * 4 }                             set_..._and_clear_pending() {
773 	 * 5                                 set_work_data() # clear bit
774 	 * 6                                 smp_mb()
775 	 * 7                               work->current_func() {
776 	 * 8				      LOAD event_indicated
777 	 *				   }
778 	 *
779 	 * Without an explicit full barrier speculative LOAD on line 8 can
780 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
781 	 * CPU#0 observes the PENDING bit is still set and new execution of
782 	 * a @work is not queued in a hope, that CPU#1 will eventually
783 	 * finish the queued @work.  Meanwhile CPU#1 does not see
784 	 * event_indicated is set, because speculative LOAD was executed
785 	 * before actual STORE.
786 	 */
787 	smp_mb();
788 }
789 
790 static void clear_work_data(struct work_struct *work)
791 {
792 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
793 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
794 }
795 
796 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
797 {
798 	return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK);
799 }
800 
801 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
802 {
803 	unsigned long data = atomic_long_read(&work->data);
804 
805 	if (data & WORK_STRUCT_PWQ)
806 		return work_struct_pwq(data);
807 	else
808 		return NULL;
809 }
810 
811 /**
812  * get_work_pool - return the worker_pool a given work was associated with
813  * @work: the work item of interest
814  *
815  * Pools are created and destroyed under wq_pool_mutex, and allows read
816  * access under RCU read lock.  As such, this function should be
817  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
818  *
819  * All fields of the returned pool are accessible as long as the above
820  * mentioned locking is in effect.  If the returned pool needs to be used
821  * beyond the critical section, the caller is responsible for ensuring the
822  * returned pool is and stays online.
823  *
824  * Return: The worker_pool @work was last associated with.  %NULL if none.
825  */
826 static struct worker_pool *get_work_pool(struct work_struct *work)
827 {
828 	unsigned long data = atomic_long_read(&work->data);
829 	int pool_id;
830 
831 	assert_rcu_or_pool_mutex();
832 
833 	if (data & WORK_STRUCT_PWQ)
834 		return work_struct_pwq(data)->pool;
835 
836 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
837 	if (pool_id == WORK_OFFQ_POOL_NONE)
838 		return NULL;
839 
840 	return idr_find(&worker_pool_idr, pool_id);
841 }
842 
843 /**
844  * get_work_pool_id - return the worker pool ID a given work is associated with
845  * @work: the work item of interest
846  *
847  * Return: The worker_pool ID @work was last associated with.
848  * %WORK_OFFQ_POOL_NONE if none.
849  */
850 static int get_work_pool_id(struct work_struct *work)
851 {
852 	unsigned long data = atomic_long_read(&work->data);
853 
854 	if (data & WORK_STRUCT_PWQ)
855 		return work_struct_pwq(data)->pool->id;
856 
857 	return data >> WORK_OFFQ_POOL_SHIFT;
858 }
859 
860 static void mark_work_canceling(struct work_struct *work)
861 {
862 	unsigned long pool_id = get_work_pool_id(work);
863 
864 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
865 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
866 }
867 
868 static bool work_is_canceling(struct work_struct *work)
869 {
870 	unsigned long data = atomic_long_read(&work->data);
871 
872 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
873 }
874 
875 /*
876  * Policy functions.  These define the policies on how the global worker
877  * pools are managed.  Unless noted otherwise, these functions assume that
878  * they're being called with pool->lock held.
879  */
880 
881 /*
882  * Need to wake up a worker?  Called from anything but currently
883  * running workers.
884  *
885  * Note that, because unbound workers never contribute to nr_running, this
886  * function will always return %true for unbound pools as long as the
887  * worklist isn't empty.
888  */
889 static bool need_more_worker(struct worker_pool *pool)
890 {
891 	return !list_empty(&pool->worklist) && !pool->nr_running;
892 }
893 
894 /* Can I start working?  Called from busy but !running workers. */
895 static bool may_start_working(struct worker_pool *pool)
896 {
897 	return pool->nr_idle;
898 }
899 
900 /* Do I need to keep working?  Called from currently running workers. */
901 static bool keep_working(struct worker_pool *pool)
902 {
903 	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
904 }
905 
906 /* Do we need a new worker?  Called from manager. */
907 static bool need_to_create_worker(struct worker_pool *pool)
908 {
909 	return need_more_worker(pool) && !may_start_working(pool);
910 }
911 
912 /* Do we have too many workers and should some go away? */
913 static bool too_many_workers(struct worker_pool *pool)
914 {
915 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
916 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
917 	int nr_busy = pool->nr_workers - nr_idle;
918 
919 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
920 }
921 
922 /**
923  * worker_set_flags - set worker flags and adjust nr_running accordingly
924  * @worker: self
925  * @flags: flags to set
926  *
927  * Set @flags in @worker->flags and adjust nr_running accordingly.
928  */
929 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
930 {
931 	struct worker_pool *pool = worker->pool;
932 
933 	lockdep_assert_held(&pool->lock);
934 
935 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
936 	if ((flags & WORKER_NOT_RUNNING) &&
937 	    !(worker->flags & WORKER_NOT_RUNNING)) {
938 		pool->nr_running--;
939 	}
940 
941 	worker->flags |= flags;
942 }
943 
944 /**
945  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
946  * @worker: self
947  * @flags: flags to clear
948  *
949  * Clear @flags in @worker->flags and adjust nr_running accordingly.
950  */
951 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
952 {
953 	struct worker_pool *pool = worker->pool;
954 	unsigned int oflags = worker->flags;
955 
956 	lockdep_assert_held(&pool->lock);
957 
958 	worker->flags &= ~flags;
959 
960 	/*
961 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
962 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
963 	 * of multiple flags, not a single flag.
964 	 */
965 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
966 		if (!(worker->flags & WORKER_NOT_RUNNING))
967 			pool->nr_running++;
968 }
969 
970 /* Return the first idle worker.  Called with pool->lock held. */
971 static struct worker *first_idle_worker(struct worker_pool *pool)
972 {
973 	if (unlikely(list_empty(&pool->idle_list)))
974 		return NULL;
975 
976 	return list_first_entry(&pool->idle_list, struct worker, entry);
977 }
978 
979 /**
980  * worker_enter_idle - enter idle state
981  * @worker: worker which is entering idle state
982  *
983  * @worker is entering idle state.  Update stats and idle timer if
984  * necessary.
985  *
986  * LOCKING:
987  * raw_spin_lock_irq(pool->lock).
988  */
989 static void worker_enter_idle(struct worker *worker)
990 {
991 	struct worker_pool *pool = worker->pool;
992 
993 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
994 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
995 			 (worker->hentry.next || worker->hentry.pprev)))
996 		return;
997 
998 	/* can't use worker_set_flags(), also called from create_worker() */
999 	worker->flags |= WORKER_IDLE;
1000 	pool->nr_idle++;
1001 	worker->last_active = jiffies;
1002 
1003 	/* idle_list is LIFO */
1004 	list_add(&worker->entry, &pool->idle_list);
1005 
1006 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1007 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1008 
1009 	/* Sanity check nr_running. */
1010 	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1011 }
1012 
1013 /**
1014  * worker_leave_idle - leave idle state
1015  * @worker: worker which is leaving idle state
1016  *
1017  * @worker is leaving idle state.  Update stats.
1018  *
1019  * LOCKING:
1020  * raw_spin_lock_irq(pool->lock).
1021  */
1022 static void worker_leave_idle(struct worker *worker)
1023 {
1024 	struct worker_pool *pool = worker->pool;
1025 
1026 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1027 		return;
1028 	worker_clr_flags(worker, WORKER_IDLE);
1029 	pool->nr_idle--;
1030 	list_del_init(&worker->entry);
1031 }
1032 
1033 /**
1034  * find_worker_executing_work - find worker which is executing a work
1035  * @pool: pool of interest
1036  * @work: work to find worker for
1037  *
1038  * Find a worker which is executing @work on @pool by searching
1039  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1040  * to match, its current execution should match the address of @work and
1041  * its work function.  This is to avoid unwanted dependency between
1042  * unrelated work executions through a work item being recycled while still
1043  * being executed.
1044  *
1045  * This is a bit tricky.  A work item may be freed once its execution
1046  * starts and nothing prevents the freed area from being recycled for
1047  * another work item.  If the same work item address ends up being reused
1048  * before the original execution finishes, workqueue will identify the
1049  * recycled work item as currently executing and make it wait until the
1050  * current execution finishes, introducing an unwanted dependency.
1051  *
1052  * This function checks the work item address and work function to avoid
1053  * false positives.  Note that this isn't complete as one may construct a
1054  * work function which can introduce dependency onto itself through a
1055  * recycled work item.  Well, if somebody wants to shoot oneself in the
1056  * foot that badly, there's only so much we can do, and if such deadlock
1057  * actually occurs, it should be easy to locate the culprit work function.
1058  *
1059  * CONTEXT:
1060  * raw_spin_lock_irq(pool->lock).
1061  *
1062  * Return:
1063  * Pointer to worker which is executing @work if found, %NULL
1064  * otherwise.
1065  */
1066 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1067 						 struct work_struct *work)
1068 {
1069 	struct worker *worker;
1070 
1071 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1072 			       (unsigned long)work)
1073 		if (worker->current_work == work &&
1074 		    worker->current_func == work->func)
1075 			return worker;
1076 
1077 	return NULL;
1078 }
1079 
1080 /**
1081  * move_linked_works - move linked works to a list
1082  * @work: start of series of works to be scheduled
1083  * @head: target list to append @work to
1084  * @nextp: out parameter for nested worklist walking
1085  *
1086  * Schedule linked works starting from @work to @head. Work series to be
1087  * scheduled starts at @work and includes any consecutive work with
1088  * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1089  * @nextp.
1090  *
1091  * CONTEXT:
1092  * raw_spin_lock_irq(pool->lock).
1093  */
1094 static void move_linked_works(struct work_struct *work, struct list_head *head,
1095 			      struct work_struct **nextp)
1096 {
1097 	struct work_struct *n;
1098 
1099 	/*
1100 	 * Linked worklist will always end before the end of the list,
1101 	 * use NULL for list head.
1102 	 */
1103 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1104 		list_move_tail(&work->entry, head);
1105 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1106 			break;
1107 	}
1108 
1109 	/*
1110 	 * If we're already inside safe list traversal and have moved
1111 	 * multiple works to the scheduled queue, the next position
1112 	 * needs to be updated.
1113 	 */
1114 	if (nextp)
1115 		*nextp = n;
1116 }
1117 
1118 /**
1119  * assign_work - assign a work item and its linked work items to a worker
1120  * @work: work to assign
1121  * @worker: worker to assign to
1122  * @nextp: out parameter for nested worklist walking
1123  *
1124  * Assign @work and its linked work items to @worker. If @work is already being
1125  * executed by another worker in the same pool, it'll be punted there.
1126  *
1127  * If @nextp is not NULL, it's updated to point to the next work of the last
1128  * scheduled work. This allows assign_work() to be nested inside
1129  * list_for_each_entry_safe().
1130  *
1131  * Returns %true if @work was successfully assigned to @worker. %false if @work
1132  * was punted to another worker already executing it.
1133  */
1134 static bool assign_work(struct work_struct *work, struct worker *worker,
1135 			struct work_struct **nextp)
1136 {
1137 	struct worker_pool *pool = worker->pool;
1138 	struct worker *collision;
1139 
1140 	lockdep_assert_held(&pool->lock);
1141 
1142 	/*
1143 	 * A single work shouldn't be executed concurrently by multiple workers.
1144 	 * __queue_work() ensures that @work doesn't jump to a different pool
1145 	 * while still running in the previous pool. Here, we should ensure that
1146 	 * @work is not executed concurrently by multiple workers from the same
1147 	 * pool. Check whether anyone is already processing the work. If so,
1148 	 * defer the work to the currently executing one.
1149 	 */
1150 	collision = find_worker_executing_work(pool, work);
1151 	if (unlikely(collision)) {
1152 		move_linked_works(work, &collision->scheduled, nextp);
1153 		return false;
1154 	}
1155 
1156 	move_linked_works(work, &worker->scheduled, nextp);
1157 	return true;
1158 }
1159 
1160 /**
1161  * kick_pool - wake up an idle worker if necessary
1162  * @pool: pool to kick
1163  *
1164  * @pool may have pending work items. Wake up worker if necessary. Returns
1165  * whether a worker was woken up.
1166  */
1167 static bool kick_pool(struct worker_pool *pool)
1168 {
1169 	struct worker *worker = first_idle_worker(pool);
1170 	struct task_struct *p;
1171 
1172 	lockdep_assert_held(&pool->lock);
1173 
1174 	if (!need_more_worker(pool) || !worker)
1175 		return false;
1176 
1177 	p = worker->task;
1178 
1179 #ifdef CONFIG_SMP
1180 	/*
1181 	 * Idle @worker is about to execute @work and waking up provides an
1182 	 * opportunity to migrate @worker at a lower cost by setting the task's
1183 	 * wake_cpu field. Let's see if we want to move @worker to improve
1184 	 * execution locality.
1185 	 *
1186 	 * We're waking the worker that went idle the latest and there's some
1187 	 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1188 	 * so, setting the wake_cpu won't do anything. As this is a best-effort
1189 	 * optimization and the race window is narrow, let's leave as-is for
1190 	 * now. If this becomes pronounced, we can skip over workers which are
1191 	 * still on cpu when picking an idle worker.
1192 	 *
1193 	 * If @pool has non-strict affinity, @worker might have ended up outside
1194 	 * its affinity scope. Repatriate.
1195 	 */
1196 	if (!pool->attrs->affn_strict &&
1197 	    !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1198 		struct work_struct *work = list_first_entry(&pool->worklist,
1199 						struct work_struct, entry);
1200 		p->wake_cpu = cpumask_any_distribute(pool->attrs->__pod_cpumask);
1201 		get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1202 	}
1203 #endif
1204 	wake_up_process(p);
1205 	return true;
1206 }
1207 
1208 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1209 
1210 /*
1211  * Concurrency-managed per-cpu work items that hog CPU for longer than
1212  * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1213  * which prevents them from stalling other concurrency-managed work items. If a
1214  * work function keeps triggering this mechanism, it's likely that the work item
1215  * should be using an unbound workqueue instead.
1216  *
1217  * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1218  * and report them so that they can be examined and converted to use unbound
1219  * workqueues as appropriate. To avoid flooding the console, each violating work
1220  * function is tracked and reported with exponential backoff.
1221  */
1222 #define WCI_MAX_ENTS 128
1223 
1224 struct wci_ent {
1225 	work_func_t		func;
1226 	atomic64_t		cnt;
1227 	struct hlist_node	hash_node;
1228 };
1229 
1230 static struct wci_ent wci_ents[WCI_MAX_ENTS];
1231 static int wci_nr_ents;
1232 static DEFINE_RAW_SPINLOCK(wci_lock);
1233 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1234 
1235 static struct wci_ent *wci_find_ent(work_func_t func)
1236 {
1237 	struct wci_ent *ent;
1238 
1239 	hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1240 				   (unsigned long)func) {
1241 		if (ent->func == func)
1242 			return ent;
1243 	}
1244 	return NULL;
1245 }
1246 
1247 static void wq_cpu_intensive_report(work_func_t func)
1248 {
1249 	struct wci_ent *ent;
1250 
1251 restart:
1252 	ent = wci_find_ent(func);
1253 	if (ent) {
1254 		u64 cnt;
1255 
1256 		/*
1257 		 * Start reporting from the fourth time and back off
1258 		 * exponentially.
1259 		 */
1260 		cnt = atomic64_inc_return_relaxed(&ent->cnt);
1261 		if (cnt >= 4 && is_power_of_2(cnt))
1262 			printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1263 					ent->func, wq_cpu_intensive_thresh_us,
1264 					atomic64_read(&ent->cnt));
1265 		return;
1266 	}
1267 
1268 	/*
1269 	 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1270 	 * is exhausted, something went really wrong and we probably made enough
1271 	 * noise already.
1272 	 */
1273 	if (wci_nr_ents >= WCI_MAX_ENTS)
1274 		return;
1275 
1276 	raw_spin_lock(&wci_lock);
1277 
1278 	if (wci_nr_ents >= WCI_MAX_ENTS) {
1279 		raw_spin_unlock(&wci_lock);
1280 		return;
1281 	}
1282 
1283 	if (wci_find_ent(func)) {
1284 		raw_spin_unlock(&wci_lock);
1285 		goto restart;
1286 	}
1287 
1288 	ent = &wci_ents[wci_nr_ents++];
1289 	ent->func = func;
1290 	atomic64_set(&ent->cnt, 1);
1291 	hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1292 
1293 	raw_spin_unlock(&wci_lock);
1294 }
1295 
1296 #else	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1297 static void wq_cpu_intensive_report(work_func_t func) {}
1298 #endif	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1299 
1300 /**
1301  * wq_worker_running - a worker is running again
1302  * @task: task waking up
1303  *
1304  * This function is called when a worker returns from schedule()
1305  */
1306 void wq_worker_running(struct task_struct *task)
1307 {
1308 	struct worker *worker = kthread_data(task);
1309 
1310 	if (!READ_ONCE(worker->sleeping))
1311 		return;
1312 
1313 	/*
1314 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1315 	 * and the nr_running increment below, we may ruin the nr_running reset
1316 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1317 	 * pool. Protect against such race.
1318 	 */
1319 	preempt_disable();
1320 	if (!(worker->flags & WORKER_NOT_RUNNING))
1321 		worker->pool->nr_running++;
1322 	preempt_enable();
1323 
1324 	/*
1325 	 * CPU intensive auto-detection cares about how long a work item hogged
1326 	 * CPU without sleeping. Reset the starting timestamp on wakeup.
1327 	 */
1328 	worker->current_at = worker->task->se.sum_exec_runtime;
1329 
1330 	WRITE_ONCE(worker->sleeping, 0);
1331 }
1332 
1333 /**
1334  * wq_worker_sleeping - a worker is going to sleep
1335  * @task: task going to sleep
1336  *
1337  * This function is called from schedule() when a busy worker is
1338  * going to sleep.
1339  */
1340 void wq_worker_sleeping(struct task_struct *task)
1341 {
1342 	struct worker *worker = kthread_data(task);
1343 	struct worker_pool *pool;
1344 
1345 	/*
1346 	 * Rescuers, which may not have all the fields set up like normal
1347 	 * workers, also reach here, let's not access anything before
1348 	 * checking NOT_RUNNING.
1349 	 */
1350 	if (worker->flags & WORKER_NOT_RUNNING)
1351 		return;
1352 
1353 	pool = worker->pool;
1354 
1355 	/* Return if preempted before wq_worker_running() was reached */
1356 	if (READ_ONCE(worker->sleeping))
1357 		return;
1358 
1359 	WRITE_ONCE(worker->sleeping, 1);
1360 	raw_spin_lock_irq(&pool->lock);
1361 
1362 	/*
1363 	 * Recheck in case unbind_workers() preempted us. We don't
1364 	 * want to decrement nr_running after the worker is unbound
1365 	 * and nr_running has been reset.
1366 	 */
1367 	if (worker->flags & WORKER_NOT_RUNNING) {
1368 		raw_spin_unlock_irq(&pool->lock);
1369 		return;
1370 	}
1371 
1372 	pool->nr_running--;
1373 	if (kick_pool(pool))
1374 		worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1375 
1376 	raw_spin_unlock_irq(&pool->lock);
1377 }
1378 
1379 /**
1380  * wq_worker_tick - a scheduler tick occurred while a kworker is running
1381  * @task: task currently running
1382  *
1383  * Called from scheduler_tick(). We're in the IRQ context and the current
1384  * worker's fields which follow the 'K' locking rule can be accessed safely.
1385  */
1386 void wq_worker_tick(struct task_struct *task)
1387 {
1388 	struct worker *worker = kthread_data(task);
1389 	struct pool_workqueue *pwq = worker->current_pwq;
1390 	struct worker_pool *pool = worker->pool;
1391 
1392 	if (!pwq)
1393 		return;
1394 
1395 	pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1396 
1397 	if (!wq_cpu_intensive_thresh_us)
1398 		return;
1399 
1400 	/*
1401 	 * If the current worker is concurrency managed and hogged the CPU for
1402 	 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1403 	 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1404 	 *
1405 	 * Set @worker->sleeping means that @worker is in the process of
1406 	 * switching out voluntarily and won't be contributing to
1407 	 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1408 	 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1409 	 * double decrements. The task is releasing the CPU anyway. Let's skip.
1410 	 * We probably want to make this prettier in the future.
1411 	 */
1412 	if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1413 	    worker->task->se.sum_exec_runtime - worker->current_at <
1414 	    wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1415 		return;
1416 
1417 	raw_spin_lock(&pool->lock);
1418 
1419 	worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1420 	wq_cpu_intensive_report(worker->current_func);
1421 	pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1422 
1423 	if (kick_pool(pool))
1424 		pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1425 
1426 	raw_spin_unlock(&pool->lock);
1427 }
1428 
1429 /**
1430  * wq_worker_last_func - retrieve worker's last work function
1431  * @task: Task to retrieve last work function of.
1432  *
1433  * Determine the last function a worker executed. This is called from
1434  * the scheduler to get a worker's last known identity.
1435  *
1436  * CONTEXT:
1437  * raw_spin_lock_irq(rq->lock)
1438  *
1439  * This function is called during schedule() when a kworker is going
1440  * to sleep. It's used by psi to identify aggregation workers during
1441  * dequeuing, to allow periodic aggregation to shut-off when that
1442  * worker is the last task in the system or cgroup to go to sleep.
1443  *
1444  * As this function doesn't involve any workqueue-related locking, it
1445  * only returns stable values when called from inside the scheduler's
1446  * queuing and dequeuing paths, when @task, which must be a kworker,
1447  * is guaranteed to not be processing any works.
1448  *
1449  * Return:
1450  * The last work function %current executed as a worker, NULL if it
1451  * hasn't executed any work yet.
1452  */
1453 work_func_t wq_worker_last_func(struct task_struct *task)
1454 {
1455 	struct worker *worker = kthread_data(task);
1456 
1457 	return worker->last_func;
1458 }
1459 
1460 /**
1461  * wq_node_nr_active - Determine wq_node_nr_active to use
1462  * @wq: workqueue of interest
1463  * @node: NUMA node, can be %NUMA_NO_NODE
1464  *
1465  * Determine wq_node_nr_active to use for @wq on @node. Returns:
1466  *
1467  * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1468  *
1469  * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1470  *
1471  * - Otherwise, node_nr_active[@node].
1472  */
1473 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1474 						   int node)
1475 {
1476 	if (!(wq->flags & WQ_UNBOUND))
1477 		return NULL;
1478 
1479 	if (node == NUMA_NO_NODE)
1480 		node = nr_node_ids;
1481 
1482 	return wq->node_nr_active[node];
1483 }
1484 
1485 /**
1486  * wq_update_node_max_active - Update per-node max_actives to use
1487  * @wq: workqueue to update
1488  * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1489  *
1490  * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1491  * distributed among nodes according to the proportions of numbers of online
1492  * cpus. The result is always between @wq->min_active and max_active.
1493  */
1494 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
1495 {
1496 	struct cpumask *effective = unbound_effective_cpumask(wq);
1497 	int min_active = READ_ONCE(wq->min_active);
1498 	int max_active = READ_ONCE(wq->max_active);
1499 	int total_cpus, node;
1500 
1501 	lockdep_assert_held(&wq->mutex);
1502 
1503 	if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
1504 		off_cpu = -1;
1505 
1506 	total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1507 	if (off_cpu >= 0)
1508 		total_cpus--;
1509 
1510 	for_each_node(node) {
1511 		int node_cpus;
1512 
1513 		node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1514 		if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1515 			node_cpus--;
1516 
1517 		wq_node_nr_active(wq, node)->max =
1518 			clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1519 			      min_active, max_active);
1520 	}
1521 
1522 	wq_node_nr_active(wq, NUMA_NO_NODE)->max = min_active;
1523 }
1524 
1525 /**
1526  * get_pwq - get an extra reference on the specified pool_workqueue
1527  * @pwq: pool_workqueue to get
1528  *
1529  * Obtain an extra reference on @pwq.  The caller should guarantee that
1530  * @pwq has positive refcnt and be holding the matching pool->lock.
1531  */
1532 static void get_pwq(struct pool_workqueue *pwq)
1533 {
1534 	lockdep_assert_held(&pwq->pool->lock);
1535 	WARN_ON_ONCE(pwq->refcnt <= 0);
1536 	pwq->refcnt++;
1537 }
1538 
1539 /**
1540  * put_pwq - put a pool_workqueue reference
1541  * @pwq: pool_workqueue to put
1542  *
1543  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1544  * destruction.  The caller should be holding the matching pool->lock.
1545  */
1546 static void put_pwq(struct pool_workqueue *pwq)
1547 {
1548 	lockdep_assert_held(&pwq->pool->lock);
1549 	if (likely(--pwq->refcnt))
1550 		return;
1551 	/*
1552 	 * @pwq can't be released under pool->lock, bounce to a dedicated
1553 	 * kthread_worker to avoid A-A deadlocks.
1554 	 */
1555 	kthread_queue_work(pwq_release_worker, &pwq->release_work);
1556 }
1557 
1558 /**
1559  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1560  * @pwq: pool_workqueue to put (can be %NULL)
1561  *
1562  * put_pwq() with locking.  This function also allows %NULL @pwq.
1563  */
1564 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1565 {
1566 	if (pwq) {
1567 		/*
1568 		 * As both pwqs and pools are RCU protected, the
1569 		 * following lock operations are safe.
1570 		 */
1571 		raw_spin_lock_irq(&pwq->pool->lock);
1572 		put_pwq(pwq);
1573 		raw_spin_unlock_irq(&pwq->pool->lock);
1574 	}
1575 }
1576 
1577 static bool pwq_is_empty(struct pool_workqueue *pwq)
1578 {
1579 	return !pwq->nr_active && list_empty(&pwq->inactive_works);
1580 }
1581 
1582 static void __pwq_activate_work(struct pool_workqueue *pwq,
1583 				struct work_struct *work)
1584 {
1585 	unsigned long *wdb = work_data_bits(work);
1586 
1587 	WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
1588 	trace_workqueue_activate_work(work);
1589 	if (list_empty(&pwq->pool->worklist))
1590 		pwq->pool->watchdog_ts = jiffies;
1591 	move_linked_works(work, &pwq->pool->worklist, NULL);
1592 	__clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
1593 }
1594 
1595 /**
1596  * pwq_activate_work - Activate a work item if inactive
1597  * @pwq: pool_workqueue @work belongs to
1598  * @work: work item to activate
1599  *
1600  * Returns %true if activated. %false if already active.
1601  */
1602 static bool pwq_activate_work(struct pool_workqueue *pwq,
1603 			      struct work_struct *work)
1604 {
1605 	struct worker_pool *pool = pwq->pool;
1606 	struct wq_node_nr_active *nna;
1607 
1608 	lockdep_assert_held(&pool->lock);
1609 
1610 	if (!(*work_data_bits(work) & WORK_STRUCT_INACTIVE))
1611 		return false;
1612 
1613 	nna = wq_node_nr_active(pwq->wq, pool->node);
1614 	if (nna)
1615 		atomic_inc(&nna->nr);
1616 
1617 	pwq->nr_active++;
1618 	__pwq_activate_work(pwq, work);
1619 	return true;
1620 }
1621 
1622 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1623 {
1624 	int max = READ_ONCE(nna->max);
1625 
1626 	while (true) {
1627 		int old, tmp;
1628 
1629 		old = atomic_read(&nna->nr);
1630 		if (old >= max)
1631 			return false;
1632 		tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1);
1633 		if (tmp == old)
1634 			return true;
1635 	}
1636 }
1637 
1638 /**
1639  * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1640  * @pwq: pool_workqueue of interest
1641  * @fill: max_active may have increased, try to increase concurrency level
1642  *
1643  * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1644  * successfully obtained. %false otherwise.
1645  */
1646 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1647 {
1648 	struct workqueue_struct *wq = pwq->wq;
1649 	struct worker_pool *pool = pwq->pool;
1650 	struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
1651 	bool obtained = false;
1652 
1653 	lockdep_assert_held(&pool->lock);
1654 
1655 	if (!nna) {
1656 		/* per-cpu workqueue, pwq->nr_active is sufficient */
1657 		obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1658 		goto out;
1659 	}
1660 
1661 	/*
1662 	 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1663 	 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1664 	 * concurrency level. Don't jump the line.
1665 	 *
1666 	 * We need to ignore the pending test after max_active has increased as
1667 	 * pwq_dec_nr_active() can only maintain the concurrency level but not
1668 	 * increase it. This is indicated by @fill.
1669 	 */
1670 	if (!list_empty(&pwq->pending_node) && likely(!fill))
1671 		goto out;
1672 
1673 	obtained = tryinc_node_nr_active(nna);
1674 	if (obtained)
1675 		goto out;
1676 
1677 	/*
1678 	 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1679 	 * and try again. The smp_mb() is paired with the implied memory barrier
1680 	 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1681 	 * we see the decremented $nna->nr or they see non-empty
1682 	 * $nna->pending_pwqs.
1683 	 */
1684 	raw_spin_lock(&nna->lock);
1685 
1686 	if (list_empty(&pwq->pending_node))
1687 		list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1688 	else if (likely(!fill))
1689 		goto out_unlock;
1690 
1691 	smp_mb();
1692 
1693 	obtained = tryinc_node_nr_active(nna);
1694 
1695 	/*
1696 	 * If @fill, @pwq might have already been pending. Being spuriously
1697 	 * pending in cold paths doesn't affect anything. Let's leave it be.
1698 	 */
1699 	if (obtained && likely(!fill))
1700 		list_del_init(&pwq->pending_node);
1701 
1702 out_unlock:
1703 	raw_spin_unlock(&nna->lock);
1704 out:
1705 	if (obtained)
1706 		pwq->nr_active++;
1707 	return obtained;
1708 }
1709 
1710 /**
1711  * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1712  * @pwq: pool_workqueue of interest
1713  * @fill: max_active may have increased, try to increase concurrency level
1714  *
1715  * Activate the first inactive work item of @pwq if available and allowed by
1716  * max_active limit.
1717  *
1718  * Returns %true if an inactive work item has been activated. %false if no
1719  * inactive work item is found or max_active limit is reached.
1720  */
1721 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1722 {
1723 	struct work_struct *work =
1724 		list_first_entry_or_null(&pwq->inactive_works,
1725 					 struct work_struct, entry);
1726 
1727 	if (work && pwq_tryinc_nr_active(pwq, fill)) {
1728 		__pwq_activate_work(pwq, work);
1729 		return true;
1730 	} else {
1731 		return false;
1732 	}
1733 }
1734 
1735 /**
1736  * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1737  * @nna: wq_node_nr_active to activate a pending pwq for
1738  * @caller_pool: worker_pool the caller is locking
1739  *
1740  * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1741  * @caller_pool may be unlocked and relocked to lock other worker_pools.
1742  */
1743 static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1744 				      struct worker_pool *caller_pool)
1745 {
1746 	struct worker_pool *locked_pool = caller_pool;
1747 	struct pool_workqueue *pwq;
1748 	struct work_struct *work;
1749 
1750 	lockdep_assert_held(&caller_pool->lock);
1751 
1752 	raw_spin_lock(&nna->lock);
1753 retry:
1754 	pwq = list_first_entry_or_null(&nna->pending_pwqs,
1755 				       struct pool_workqueue, pending_node);
1756 	if (!pwq)
1757 		goto out_unlock;
1758 
1759 	/*
1760 	 * If @pwq is for a different pool than @locked_pool, we need to lock
1761 	 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1762 	 * / lock dance. For that, we also need to release @nna->lock as it's
1763 	 * nested inside pool locks.
1764 	 */
1765 	if (pwq->pool != locked_pool) {
1766 		raw_spin_unlock(&locked_pool->lock);
1767 		locked_pool = pwq->pool;
1768 		if (!raw_spin_trylock(&locked_pool->lock)) {
1769 			raw_spin_unlock(&nna->lock);
1770 			raw_spin_lock(&locked_pool->lock);
1771 			raw_spin_lock(&nna->lock);
1772 			goto retry;
1773 		}
1774 	}
1775 
1776 	/*
1777 	 * $pwq may not have any inactive work items due to e.g. cancellations.
1778 	 * Drop it from pending_pwqs and see if there's another one.
1779 	 */
1780 	work = list_first_entry_or_null(&pwq->inactive_works,
1781 					struct work_struct, entry);
1782 	if (!work) {
1783 		list_del_init(&pwq->pending_node);
1784 		goto retry;
1785 	}
1786 
1787 	/*
1788 	 * Acquire an nr_active count and activate the inactive work item. If
1789 	 * $pwq still has inactive work items, rotate it to the end of the
1790 	 * pending_pwqs so that we round-robin through them. This means that
1791 	 * inactive work items are not activated in queueing order which is fine
1792 	 * given that there has never been any ordering across different pwqs.
1793 	 */
1794 	if (likely(tryinc_node_nr_active(nna))) {
1795 		pwq->nr_active++;
1796 		__pwq_activate_work(pwq, work);
1797 
1798 		if (list_empty(&pwq->inactive_works))
1799 			list_del_init(&pwq->pending_node);
1800 		else
1801 			list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1802 
1803 		/* if activating a foreign pool, make sure it's running */
1804 		if (pwq->pool != caller_pool)
1805 			kick_pool(pwq->pool);
1806 	}
1807 
1808 out_unlock:
1809 	raw_spin_unlock(&nna->lock);
1810 	if (locked_pool != caller_pool) {
1811 		raw_spin_unlock(&locked_pool->lock);
1812 		raw_spin_lock(&caller_pool->lock);
1813 	}
1814 }
1815 
1816 /**
1817  * pwq_dec_nr_active - Retire an active count
1818  * @pwq: pool_workqueue of interest
1819  *
1820  * Decrement @pwq's nr_active and try to activate the first inactive work item.
1821  * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1822  */
1823 static void pwq_dec_nr_active(struct pool_workqueue *pwq)
1824 {
1825 	struct worker_pool *pool = pwq->pool;
1826 	struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
1827 
1828 	lockdep_assert_held(&pool->lock);
1829 
1830 	/*
1831 	 * @pwq->nr_active should be decremented for both percpu and unbound
1832 	 * workqueues.
1833 	 */
1834 	pwq->nr_active--;
1835 
1836 	/*
1837 	 * For a percpu workqueue, it's simple. Just need to kick the first
1838 	 * inactive work item on @pwq itself.
1839 	 */
1840 	if (!nna) {
1841 		pwq_activate_first_inactive(pwq, false);
1842 		return;
1843 	}
1844 
1845 	/*
1846 	 * If @pwq is for an unbound workqueue, it's more complicated because
1847 	 * multiple pwqs and pools may be sharing the nr_active count. When a
1848 	 * pwq needs to wait for an nr_active count, it puts itself on
1849 	 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1850 	 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1851 	 * guarantee that either we see non-empty pending_pwqs or they see
1852 	 * decremented $nna->nr.
1853 	 *
1854 	 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1855 	 * max_active gets updated. However, it is guaranteed to be equal to or
1856 	 * larger than @pwq->wq->min_active which is above zero unless freezing.
1857 	 * This maintains the forward progress guarantee.
1858 	 */
1859 	if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
1860 		return;
1861 
1862 	if (!list_empty(&nna->pending_pwqs))
1863 		node_activate_pending_pwq(nna, pool);
1864 }
1865 
1866 /**
1867  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1868  * @pwq: pwq of interest
1869  * @work_data: work_data of work which left the queue
1870  *
1871  * A work either has completed or is removed from pending queue,
1872  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1873  *
1874  * CONTEXT:
1875  * raw_spin_lock_irq(pool->lock).
1876  */
1877 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1878 {
1879 	int color = get_work_color(work_data);
1880 
1881 	if (!(work_data & WORK_STRUCT_INACTIVE))
1882 		pwq_dec_nr_active(pwq);
1883 
1884 	pwq->nr_in_flight[color]--;
1885 
1886 	/* is flush in progress and are we at the flushing tip? */
1887 	if (likely(pwq->flush_color != color))
1888 		goto out_put;
1889 
1890 	/* are there still in-flight works? */
1891 	if (pwq->nr_in_flight[color])
1892 		goto out_put;
1893 
1894 	/* this pwq is done, clear flush_color */
1895 	pwq->flush_color = -1;
1896 
1897 	/*
1898 	 * If this was the last pwq, wake up the first flusher.  It
1899 	 * will handle the rest.
1900 	 */
1901 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1902 		complete(&pwq->wq->first_flusher->done);
1903 out_put:
1904 	put_pwq(pwq);
1905 }
1906 
1907 /**
1908  * try_to_grab_pending - steal work item from worklist and disable irq
1909  * @work: work item to steal
1910  * @is_dwork: @work is a delayed_work
1911  * @flags: place to store irq state
1912  *
1913  * Try to grab PENDING bit of @work.  This function can handle @work in any
1914  * stable state - idle, on timer or on worklist.
1915  *
1916  * Return:
1917  *
1918  *  ========	================================================================
1919  *  1		if @work was pending and we successfully stole PENDING
1920  *  0		if @work was idle and we claimed PENDING
1921  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1922  *  -ENOENT	if someone else is canceling @work, this state may persist
1923  *		for arbitrarily long
1924  *  ========	================================================================
1925  *
1926  * Note:
1927  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1928  * interrupted while holding PENDING and @work off queue, irq must be
1929  * disabled on entry.  This, combined with delayed_work->timer being
1930  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1931  *
1932  * On successful return, >= 0, irq is disabled and the caller is
1933  * responsible for releasing it using local_irq_restore(*@flags).
1934  *
1935  * This function is safe to call from any context including IRQ handler.
1936  */
1937 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1938 			       unsigned long *flags)
1939 {
1940 	struct worker_pool *pool;
1941 	struct pool_workqueue *pwq;
1942 
1943 	local_irq_save(*flags);
1944 
1945 	/* try to steal the timer if it exists */
1946 	if (is_dwork) {
1947 		struct delayed_work *dwork = to_delayed_work(work);
1948 
1949 		/*
1950 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1951 		 * guaranteed that the timer is not queued anywhere and not
1952 		 * running on the local CPU.
1953 		 */
1954 		if (likely(del_timer(&dwork->timer)))
1955 			return 1;
1956 	}
1957 
1958 	/* try to claim PENDING the normal way */
1959 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1960 		return 0;
1961 
1962 	rcu_read_lock();
1963 	/*
1964 	 * The queueing is in progress, or it is already queued. Try to
1965 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1966 	 */
1967 	pool = get_work_pool(work);
1968 	if (!pool)
1969 		goto fail;
1970 
1971 	raw_spin_lock(&pool->lock);
1972 	/*
1973 	 * work->data is guaranteed to point to pwq only while the work
1974 	 * item is queued on pwq->wq, and both updating work->data to point
1975 	 * to pwq on queueing and to pool on dequeueing are done under
1976 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1977 	 * points to pwq which is associated with a locked pool, the work
1978 	 * item is currently queued on that pool.
1979 	 */
1980 	pwq = get_work_pwq(work);
1981 	if (pwq && pwq->pool == pool) {
1982 		debug_work_deactivate(work);
1983 
1984 		/*
1985 		 * A cancelable inactive work item must be in the
1986 		 * pwq->inactive_works since a queued barrier can't be
1987 		 * canceled (see the comments in insert_wq_barrier()).
1988 		 *
1989 		 * An inactive work item cannot be grabbed directly because
1990 		 * it might have linked barrier work items which, if left
1991 		 * on the inactive_works list, will confuse pwq->nr_active
1992 		 * management later on and cause stall.  Make sure the work
1993 		 * item is activated before grabbing.
1994 		 */
1995 		pwq_activate_work(pwq, work);
1996 
1997 		list_del_init(&work->entry);
1998 		pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
1999 
2000 		/* work->data points to pwq iff queued, point to pool */
2001 		set_work_pool_and_keep_pending(work, pool->id);
2002 
2003 		raw_spin_unlock(&pool->lock);
2004 		rcu_read_unlock();
2005 		return 1;
2006 	}
2007 	raw_spin_unlock(&pool->lock);
2008 fail:
2009 	rcu_read_unlock();
2010 	local_irq_restore(*flags);
2011 	if (work_is_canceling(work))
2012 		return -ENOENT;
2013 	cpu_relax();
2014 	return -EAGAIN;
2015 }
2016 
2017 /**
2018  * insert_work - insert a work into a pool
2019  * @pwq: pwq @work belongs to
2020  * @work: work to insert
2021  * @head: insertion point
2022  * @extra_flags: extra WORK_STRUCT_* flags to set
2023  *
2024  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
2025  * work_struct flags.
2026  *
2027  * CONTEXT:
2028  * raw_spin_lock_irq(pool->lock).
2029  */
2030 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2031 			struct list_head *head, unsigned int extra_flags)
2032 {
2033 	debug_work_activate(work);
2034 
2035 	/* record the work call stack in order to print it in KASAN reports */
2036 	kasan_record_aux_stack_noalloc(work);
2037 
2038 	/* we own @work, set data and link */
2039 	set_work_pwq(work, pwq, extra_flags);
2040 	list_add_tail(&work->entry, head);
2041 	get_pwq(pwq);
2042 }
2043 
2044 /*
2045  * Test whether @work is being queued from another work executing on the
2046  * same workqueue.
2047  */
2048 static bool is_chained_work(struct workqueue_struct *wq)
2049 {
2050 	struct worker *worker;
2051 
2052 	worker = current_wq_worker();
2053 	/*
2054 	 * Return %true iff I'm a worker executing a work item on @wq.  If
2055 	 * I'm @worker, it's safe to dereference it without locking.
2056 	 */
2057 	return worker && worker->current_pwq->wq == wq;
2058 }
2059 
2060 /*
2061  * When queueing an unbound work item to a wq, prefer local CPU if allowed
2062  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
2063  * avoid perturbing sensitive tasks.
2064  */
2065 static int wq_select_unbound_cpu(int cpu)
2066 {
2067 	int new_cpu;
2068 
2069 	if (likely(!wq_debug_force_rr_cpu)) {
2070 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2071 			return cpu;
2072 	} else {
2073 		pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
2074 	}
2075 
2076 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
2077 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2078 	if (unlikely(new_cpu >= nr_cpu_ids)) {
2079 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
2080 		if (unlikely(new_cpu >= nr_cpu_ids))
2081 			return cpu;
2082 	}
2083 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
2084 
2085 	return new_cpu;
2086 }
2087 
2088 static void __queue_work(int cpu, struct workqueue_struct *wq,
2089 			 struct work_struct *work)
2090 {
2091 	struct pool_workqueue *pwq;
2092 	struct worker_pool *last_pool, *pool;
2093 	unsigned int work_flags;
2094 	unsigned int req_cpu = cpu;
2095 
2096 	/*
2097 	 * While a work item is PENDING && off queue, a task trying to
2098 	 * steal the PENDING will busy-loop waiting for it to either get
2099 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
2100 	 * happen with IRQ disabled.
2101 	 */
2102 	lockdep_assert_irqs_disabled();
2103 
2104 
2105 	/*
2106 	 * For a draining wq, only works from the same workqueue are
2107 	 * allowed. The __WQ_DESTROYING helps to spot the issue that
2108 	 * queues a new work item to a wq after destroy_workqueue(wq).
2109 	 */
2110 	if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2111 		     WARN_ON_ONCE(!is_chained_work(wq))))
2112 		return;
2113 	rcu_read_lock();
2114 retry:
2115 	/* pwq which will be used unless @work is executing elsewhere */
2116 	if (req_cpu == WORK_CPU_UNBOUND) {
2117 		if (wq->flags & WQ_UNBOUND)
2118 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
2119 		else
2120 			cpu = raw_smp_processor_id();
2121 	}
2122 
2123 	pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
2124 	pool = pwq->pool;
2125 
2126 	/*
2127 	 * If @work was previously on a different pool, it might still be
2128 	 * running there, in which case the work needs to be queued on that
2129 	 * pool to guarantee non-reentrancy.
2130 	 */
2131 	last_pool = get_work_pool(work);
2132 	if (last_pool && last_pool != pool) {
2133 		struct worker *worker;
2134 
2135 		raw_spin_lock(&last_pool->lock);
2136 
2137 		worker = find_worker_executing_work(last_pool, work);
2138 
2139 		if (worker && worker->current_pwq->wq == wq) {
2140 			pwq = worker->current_pwq;
2141 			pool = pwq->pool;
2142 			WARN_ON_ONCE(pool != last_pool);
2143 		} else {
2144 			/* meh... not running there, queue here */
2145 			raw_spin_unlock(&last_pool->lock);
2146 			raw_spin_lock(&pool->lock);
2147 		}
2148 	} else {
2149 		raw_spin_lock(&pool->lock);
2150 	}
2151 
2152 	/*
2153 	 * pwq is determined and locked. For unbound pools, we could have raced
2154 	 * with pwq release and it could already be dead. If its refcnt is zero,
2155 	 * repeat pwq selection. Note that unbound pwqs never die without
2156 	 * another pwq replacing it in cpu_pwq or while work items are executing
2157 	 * on it, so the retrying is guaranteed to make forward-progress.
2158 	 */
2159 	if (unlikely(!pwq->refcnt)) {
2160 		if (wq->flags & WQ_UNBOUND) {
2161 			raw_spin_unlock(&pool->lock);
2162 			cpu_relax();
2163 			goto retry;
2164 		}
2165 		/* oops */
2166 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2167 			  wq->name, cpu);
2168 	}
2169 
2170 	/* pwq determined, queue */
2171 	trace_workqueue_queue_work(req_cpu, pwq, work);
2172 
2173 	if (WARN_ON(!list_empty(&work->entry)))
2174 		goto out;
2175 
2176 	pwq->nr_in_flight[pwq->work_color]++;
2177 	work_flags = work_color_to_flags(pwq->work_color);
2178 
2179 	/*
2180 	 * Limit the number of concurrently active work items to max_active.
2181 	 * @work must also queue behind existing inactive work items to maintain
2182 	 * ordering when max_active changes. See wq_adjust_max_active().
2183 	 */
2184 	if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
2185 		if (list_empty(&pool->worklist))
2186 			pool->watchdog_ts = jiffies;
2187 
2188 		trace_workqueue_activate_work(work);
2189 		insert_work(pwq, work, &pool->worklist, work_flags);
2190 		kick_pool(pool);
2191 	} else {
2192 		work_flags |= WORK_STRUCT_INACTIVE;
2193 		insert_work(pwq, work, &pwq->inactive_works, work_flags);
2194 	}
2195 
2196 out:
2197 	raw_spin_unlock(&pool->lock);
2198 	rcu_read_unlock();
2199 }
2200 
2201 /**
2202  * queue_work_on - queue work on specific cpu
2203  * @cpu: CPU number to execute work on
2204  * @wq: workqueue to use
2205  * @work: work to queue
2206  *
2207  * We queue the work to a specific CPU, the caller must ensure it
2208  * can't go away.  Callers that fail to ensure that the specified
2209  * CPU cannot go away will execute on a randomly chosen CPU.
2210  * But note well that callers specifying a CPU that never has been
2211  * online will get a splat.
2212  *
2213  * Return: %false if @work was already on a queue, %true otherwise.
2214  */
2215 bool queue_work_on(int cpu, struct workqueue_struct *wq,
2216 		   struct work_struct *work)
2217 {
2218 	bool ret = false;
2219 	unsigned long flags;
2220 
2221 	local_irq_save(flags);
2222 
2223 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2224 		__queue_work(cpu, wq, work);
2225 		ret = true;
2226 	}
2227 
2228 	local_irq_restore(flags);
2229 	return ret;
2230 }
2231 EXPORT_SYMBOL(queue_work_on);
2232 
2233 /**
2234  * select_numa_node_cpu - Select a CPU based on NUMA node
2235  * @node: NUMA node ID that we want to select a CPU from
2236  *
2237  * This function will attempt to find a "random" cpu available on a given
2238  * node. If there are no CPUs available on the given node it will return
2239  * WORK_CPU_UNBOUND indicating that we should just schedule to any
2240  * available CPU if we need to schedule this work.
2241  */
2242 static int select_numa_node_cpu(int node)
2243 {
2244 	int cpu;
2245 
2246 	/* Delay binding to CPU if node is not valid or online */
2247 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2248 		return WORK_CPU_UNBOUND;
2249 
2250 	/* Use local node/cpu if we are already there */
2251 	cpu = raw_smp_processor_id();
2252 	if (node == cpu_to_node(cpu))
2253 		return cpu;
2254 
2255 	/* Use "random" otherwise know as "first" online CPU of node */
2256 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2257 
2258 	/* If CPU is valid return that, otherwise just defer */
2259 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2260 }
2261 
2262 /**
2263  * queue_work_node - queue work on a "random" cpu for a given NUMA node
2264  * @node: NUMA node that we are targeting the work for
2265  * @wq: workqueue to use
2266  * @work: work to queue
2267  *
2268  * We queue the work to a "random" CPU within a given NUMA node. The basic
2269  * idea here is to provide a way to somehow associate work with a given
2270  * NUMA node.
2271  *
2272  * This function will only make a best effort attempt at getting this onto
2273  * the right NUMA node. If no node is requested or the requested node is
2274  * offline then we just fall back to standard queue_work behavior.
2275  *
2276  * Currently the "random" CPU ends up being the first available CPU in the
2277  * intersection of cpu_online_mask and the cpumask of the node, unless we
2278  * are running on the node. In that case we just use the current CPU.
2279  *
2280  * Return: %false if @work was already on a queue, %true otherwise.
2281  */
2282 bool queue_work_node(int node, struct workqueue_struct *wq,
2283 		     struct work_struct *work)
2284 {
2285 	unsigned long flags;
2286 	bool ret = false;
2287 
2288 	/*
2289 	 * This current implementation is specific to unbound workqueues.
2290 	 * Specifically we only return the first available CPU for a given
2291 	 * node instead of cycling through individual CPUs within the node.
2292 	 *
2293 	 * If this is used with a per-cpu workqueue then the logic in
2294 	 * workqueue_select_cpu_near would need to be updated to allow for
2295 	 * some round robin type logic.
2296 	 */
2297 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2298 
2299 	local_irq_save(flags);
2300 
2301 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2302 		int cpu = select_numa_node_cpu(node);
2303 
2304 		__queue_work(cpu, wq, work);
2305 		ret = true;
2306 	}
2307 
2308 	local_irq_restore(flags);
2309 	return ret;
2310 }
2311 EXPORT_SYMBOL_GPL(queue_work_node);
2312 
2313 void delayed_work_timer_fn(struct timer_list *t)
2314 {
2315 	struct delayed_work *dwork = from_timer(dwork, t, timer);
2316 
2317 	/* should have been called from irqsafe timer with irq already off */
2318 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2319 }
2320 EXPORT_SYMBOL(delayed_work_timer_fn);
2321 
2322 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2323 				struct delayed_work *dwork, unsigned long delay)
2324 {
2325 	struct timer_list *timer = &dwork->timer;
2326 	struct work_struct *work = &dwork->work;
2327 
2328 	WARN_ON_ONCE(!wq);
2329 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
2330 	WARN_ON_ONCE(timer_pending(timer));
2331 	WARN_ON_ONCE(!list_empty(&work->entry));
2332 
2333 	/*
2334 	 * If @delay is 0, queue @dwork->work immediately.  This is for
2335 	 * both optimization and correctness.  The earliest @timer can
2336 	 * expire is on the closest next tick and delayed_work users depend
2337 	 * on that there's no such delay when @delay is 0.
2338 	 */
2339 	if (!delay) {
2340 		__queue_work(cpu, wq, &dwork->work);
2341 		return;
2342 	}
2343 
2344 	dwork->wq = wq;
2345 	dwork->cpu = cpu;
2346 	timer->expires = jiffies + delay;
2347 
2348 	if (unlikely(cpu != WORK_CPU_UNBOUND))
2349 		add_timer_on(timer, cpu);
2350 	else
2351 		add_timer(timer);
2352 }
2353 
2354 /**
2355  * queue_delayed_work_on - queue work on specific CPU after delay
2356  * @cpu: CPU number to execute work on
2357  * @wq: workqueue to use
2358  * @dwork: work to queue
2359  * @delay: number of jiffies to wait before queueing
2360  *
2361  * Return: %false if @work was already on a queue, %true otherwise.  If
2362  * @delay is zero and @dwork is idle, it will be scheduled for immediate
2363  * execution.
2364  */
2365 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2366 			   struct delayed_work *dwork, unsigned long delay)
2367 {
2368 	struct work_struct *work = &dwork->work;
2369 	bool ret = false;
2370 	unsigned long flags;
2371 
2372 	/* read the comment in __queue_work() */
2373 	local_irq_save(flags);
2374 
2375 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2376 		__queue_delayed_work(cpu, wq, dwork, delay);
2377 		ret = true;
2378 	}
2379 
2380 	local_irq_restore(flags);
2381 	return ret;
2382 }
2383 EXPORT_SYMBOL(queue_delayed_work_on);
2384 
2385 /**
2386  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2387  * @cpu: CPU number to execute work on
2388  * @wq: workqueue to use
2389  * @dwork: work to queue
2390  * @delay: number of jiffies to wait before queueing
2391  *
2392  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2393  * modify @dwork's timer so that it expires after @delay.  If @delay is
2394  * zero, @work is guaranteed to be scheduled immediately regardless of its
2395  * current state.
2396  *
2397  * Return: %false if @dwork was idle and queued, %true if @dwork was
2398  * pending and its timer was modified.
2399  *
2400  * This function is safe to call from any context including IRQ handler.
2401  * See try_to_grab_pending() for details.
2402  */
2403 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2404 			 struct delayed_work *dwork, unsigned long delay)
2405 {
2406 	unsigned long flags;
2407 	int ret;
2408 
2409 	do {
2410 		ret = try_to_grab_pending(&dwork->work, true, &flags);
2411 	} while (unlikely(ret == -EAGAIN));
2412 
2413 	if (likely(ret >= 0)) {
2414 		__queue_delayed_work(cpu, wq, dwork, delay);
2415 		local_irq_restore(flags);
2416 	}
2417 
2418 	/* -ENOENT from try_to_grab_pending() becomes %true */
2419 	return ret;
2420 }
2421 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2422 
2423 static void rcu_work_rcufn(struct rcu_head *rcu)
2424 {
2425 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2426 
2427 	/* read the comment in __queue_work() */
2428 	local_irq_disable();
2429 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2430 	local_irq_enable();
2431 }
2432 
2433 /**
2434  * queue_rcu_work - queue work after a RCU grace period
2435  * @wq: workqueue to use
2436  * @rwork: work to queue
2437  *
2438  * Return: %false if @rwork was already pending, %true otherwise.  Note
2439  * that a full RCU grace period is guaranteed only after a %true return.
2440  * While @rwork is guaranteed to be executed after a %false return, the
2441  * execution may happen before a full RCU grace period has passed.
2442  */
2443 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2444 {
2445 	struct work_struct *work = &rwork->work;
2446 
2447 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2448 		rwork->wq = wq;
2449 		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2450 		return true;
2451 	}
2452 
2453 	return false;
2454 }
2455 EXPORT_SYMBOL(queue_rcu_work);
2456 
2457 static struct worker *alloc_worker(int node)
2458 {
2459 	struct worker *worker;
2460 
2461 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2462 	if (worker) {
2463 		INIT_LIST_HEAD(&worker->entry);
2464 		INIT_LIST_HEAD(&worker->scheduled);
2465 		INIT_LIST_HEAD(&worker->node);
2466 		/* on creation a worker is in !idle && prep state */
2467 		worker->flags = WORKER_PREP;
2468 	}
2469 	return worker;
2470 }
2471 
2472 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2473 {
2474 	if (pool->cpu < 0 && pool->attrs->affn_strict)
2475 		return pool->attrs->__pod_cpumask;
2476 	else
2477 		return pool->attrs->cpumask;
2478 }
2479 
2480 /**
2481  * worker_attach_to_pool() - attach a worker to a pool
2482  * @worker: worker to be attached
2483  * @pool: the target pool
2484  *
2485  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
2486  * cpu-binding of @worker are kept coordinated with the pool across
2487  * cpu-[un]hotplugs.
2488  */
2489 static void worker_attach_to_pool(struct worker *worker,
2490 				   struct worker_pool *pool)
2491 {
2492 	mutex_lock(&wq_pool_attach_mutex);
2493 
2494 	/*
2495 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
2496 	 * stable across this function.  See the comments above the flag
2497 	 * definition for details.
2498 	 */
2499 	if (pool->flags & POOL_DISASSOCIATED)
2500 		worker->flags |= WORKER_UNBOUND;
2501 	else
2502 		kthread_set_per_cpu(worker->task, pool->cpu);
2503 
2504 	if (worker->rescue_wq)
2505 		set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2506 
2507 	list_add_tail(&worker->node, &pool->workers);
2508 	worker->pool = pool;
2509 
2510 	mutex_unlock(&wq_pool_attach_mutex);
2511 }
2512 
2513 /**
2514  * worker_detach_from_pool() - detach a worker from its pool
2515  * @worker: worker which is attached to its pool
2516  *
2517  * Undo the attaching which had been done in worker_attach_to_pool().  The
2518  * caller worker shouldn't access to the pool after detached except it has
2519  * other reference to the pool.
2520  */
2521 static void worker_detach_from_pool(struct worker *worker)
2522 {
2523 	struct worker_pool *pool = worker->pool;
2524 	struct completion *detach_completion = NULL;
2525 
2526 	mutex_lock(&wq_pool_attach_mutex);
2527 
2528 	kthread_set_per_cpu(worker->task, -1);
2529 	list_del(&worker->node);
2530 	worker->pool = NULL;
2531 
2532 	if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
2533 		detach_completion = pool->detach_completion;
2534 	mutex_unlock(&wq_pool_attach_mutex);
2535 
2536 	/* clear leftover flags without pool->lock after it is detached */
2537 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2538 
2539 	if (detach_completion)
2540 		complete(detach_completion);
2541 }
2542 
2543 /**
2544  * create_worker - create a new workqueue worker
2545  * @pool: pool the new worker will belong to
2546  *
2547  * Create and start a new worker which is attached to @pool.
2548  *
2549  * CONTEXT:
2550  * Might sleep.  Does GFP_KERNEL allocations.
2551  *
2552  * Return:
2553  * Pointer to the newly created worker.
2554  */
2555 static struct worker *create_worker(struct worker_pool *pool)
2556 {
2557 	struct worker *worker;
2558 	int id;
2559 	char id_buf[23];
2560 
2561 	/* ID is needed to determine kthread name */
2562 	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2563 	if (id < 0) {
2564 		pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2565 			    ERR_PTR(id));
2566 		return NULL;
2567 	}
2568 
2569 	worker = alloc_worker(pool->node);
2570 	if (!worker) {
2571 		pr_err_once("workqueue: Failed to allocate a worker\n");
2572 		goto fail;
2573 	}
2574 
2575 	worker->id = id;
2576 
2577 	if (pool->cpu >= 0)
2578 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
2579 			 pool->attrs->nice < 0  ? "H" : "");
2580 	else
2581 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
2582 
2583 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
2584 					      "kworker/%s", id_buf);
2585 	if (IS_ERR(worker->task)) {
2586 		if (PTR_ERR(worker->task) == -EINTR) {
2587 			pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
2588 			       id_buf);
2589 		} else {
2590 			pr_err_once("workqueue: Failed to create a worker thread: %pe",
2591 				    worker->task);
2592 		}
2593 		goto fail;
2594 	}
2595 
2596 	set_user_nice(worker->task, pool->attrs->nice);
2597 	kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2598 
2599 	/* successful, attach the worker to the pool */
2600 	worker_attach_to_pool(worker, pool);
2601 
2602 	/* start the newly created worker */
2603 	raw_spin_lock_irq(&pool->lock);
2604 
2605 	worker->pool->nr_workers++;
2606 	worker_enter_idle(worker);
2607 	kick_pool(pool);
2608 
2609 	/*
2610 	 * @worker is waiting on a completion in kthread() and will trigger hung
2611 	 * check if not woken up soon. As kick_pool() might not have waken it
2612 	 * up, wake it up explicitly once more.
2613 	 */
2614 	wake_up_process(worker->task);
2615 
2616 	raw_spin_unlock_irq(&pool->lock);
2617 
2618 	return worker;
2619 
2620 fail:
2621 	ida_free(&pool->worker_ida, id);
2622 	kfree(worker);
2623 	return NULL;
2624 }
2625 
2626 static void unbind_worker(struct worker *worker)
2627 {
2628 	lockdep_assert_held(&wq_pool_attach_mutex);
2629 
2630 	kthread_set_per_cpu(worker->task, -1);
2631 	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2632 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2633 	else
2634 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2635 }
2636 
2637 static void wake_dying_workers(struct list_head *cull_list)
2638 {
2639 	struct worker *worker, *tmp;
2640 
2641 	list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2642 		list_del_init(&worker->entry);
2643 		unbind_worker(worker);
2644 		/*
2645 		 * If the worker was somehow already running, then it had to be
2646 		 * in pool->idle_list when set_worker_dying() happened or we
2647 		 * wouldn't have gotten here.
2648 		 *
2649 		 * Thus, the worker must either have observed the WORKER_DIE
2650 		 * flag, or have set its state to TASK_IDLE. Either way, the
2651 		 * below will be observed by the worker and is safe to do
2652 		 * outside of pool->lock.
2653 		 */
2654 		wake_up_process(worker->task);
2655 	}
2656 }
2657 
2658 /**
2659  * set_worker_dying - Tag a worker for destruction
2660  * @worker: worker to be destroyed
2661  * @list: transfer worker away from its pool->idle_list and into list
2662  *
2663  * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
2664  * should be idle.
2665  *
2666  * CONTEXT:
2667  * raw_spin_lock_irq(pool->lock).
2668  */
2669 static void set_worker_dying(struct worker *worker, struct list_head *list)
2670 {
2671 	struct worker_pool *pool = worker->pool;
2672 
2673 	lockdep_assert_held(&pool->lock);
2674 	lockdep_assert_held(&wq_pool_attach_mutex);
2675 
2676 	/* sanity check frenzy */
2677 	if (WARN_ON(worker->current_work) ||
2678 	    WARN_ON(!list_empty(&worker->scheduled)) ||
2679 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2680 		return;
2681 
2682 	pool->nr_workers--;
2683 	pool->nr_idle--;
2684 
2685 	worker->flags |= WORKER_DIE;
2686 
2687 	list_move(&worker->entry, list);
2688 	list_move(&worker->node, &pool->dying_workers);
2689 }
2690 
2691 /**
2692  * idle_worker_timeout - check if some idle workers can now be deleted.
2693  * @t: The pool's idle_timer that just expired
2694  *
2695  * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2696  * worker_leave_idle(), as a worker flicking between idle and active while its
2697  * pool is at the too_many_workers() tipping point would cause too much timer
2698  * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2699  * it expire and re-evaluate things from there.
2700  */
2701 static void idle_worker_timeout(struct timer_list *t)
2702 {
2703 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2704 	bool do_cull = false;
2705 
2706 	if (work_pending(&pool->idle_cull_work))
2707 		return;
2708 
2709 	raw_spin_lock_irq(&pool->lock);
2710 
2711 	if (too_many_workers(pool)) {
2712 		struct worker *worker;
2713 		unsigned long expires;
2714 
2715 		/* idle_list is kept in LIFO order, check the last one */
2716 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2717 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2718 		do_cull = !time_before(jiffies, expires);
2719 
2720 		if (!do_cull)
2721 			mod_timer(&pool->idle_timer, expires);
2722 	}
2723 	raw_spin_unlock_irq(&pool->lock);
2724 
2725 	if (do_cull)
2726 		queue_work(system_unbound_wq, &pool->idle_cull_work);
2727 }
2728 
2729 /**
2730  * idle_cull_fn - cull workers that have been idle for too long.
2731  * @work: the pool's work for handling these idle workers
2732  *
2733  * This goes through a pool's idle workers and gets rid of those that have been
2734  * idle for at least IDLE_WORKER_TIMEOUT seconds.
2735  *
2736  * We don't want to disturb isolated CPUs because of a pcpu kworker being
2737  * culled, so this also resets worker affinity. This requires a sleepable
2738  * context, hence the split between timer callback and work item.
2739  */
2740 static void idle_cull_fn(struct work_struct *work)
2741 {
2742 	struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2743 	LIST_HEAD(cull_list);
2744 
2745 	/*
2746 	 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2747 	 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
2748 	 * path. This is required as a previously-preempted worker could run after
2749 	 * set_worker_dying() has happened but before wake_dying_workers() did.
2750 	 */
2751 	mutex_lock(&wq_pool_attach_mutex);
2752 	raw_spin_lock_irq(&pool->lock);
2753 
2754 	while (too_many_workers(pool)) {
2755 		struct worker *worker;
2756 		unsigned long expires;
2757 
2758 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2759 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2760 
2761 		if (time_before(jiffies, expires)) {
2762 			mod_timer(&pool->idle_timer, expires);
2763 			break;
2764 		}
2765 
2766 		set_worker_dying(worker, &cull_list);
2767 	}
2768 
2769 	raw_spin_unlock_irq(&pool->lock);
2770 	wake_dying_workers(&cull_list);
2771 	mutex_unlock(&wq_pool_attach_mutex);
2772 }
2773 
2774 static void send_mayday(struct work_struct *work)
2775 {
2776 	struct pool_workqueue *pwq = get_work_pwq(work);
2777 	struct workqueue_struct *wq = pwq->wq;
2778 
2779 	lockdep_assert_held(&wq_mayday_lock);
2780 
2781 	if (!wq->rescuer)
2782 		return;
2783 
2784 	/* mayday mayday mayday */
2785 	if (list_empty(&pwq->mayday_node)) {
2786 		/*
2787 		 * If @pwq is for an unbound wq, its base ref may be put at
2788 		 * any time due to an attribute change.  Pin @pwq until the
2789 		 * rescuer is done with it.
2790 		 */
2791 		get_pwq(pwq);
2792 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2793 		wake_up_process(wq->rescuer->task);
2794 		pwq->stats[PWQ_STAT_MAYDAY]++;
2795 	}
2796 }
2797 
2798 static void pool_mayday_timeout(struct timer_list *t)
2799 {
2800 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2801 	struct work_struct *work;
2802 
2803 	raw_spin_lock_irq(&pool->lock);
2804 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2805 
2806 	if (need_to_create_worker(pool)) {
2807 		/*
2808 		 * We've been trying to create a new worker but
2809 		 * haven't been successful.  We might be hitting an
2810 		 * allocation deadlock.  Send distress signals to
2811 		 * rescuers.
2812 		 */
2813 		list_for_each_entry(work, &pool->worklist, entry)
2814 			send_mayday(work);
2815 	}
2816 
2817 	raw_spin_unlock(&wq_mayday_lock);
2818 	raw_spin_unlock_irq(&pool->lock);
2819 
2820 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2821 }
2822 
2823 /**
2824  * maybe_create_worker - create a new worker if necessary
2825  * @pool: pool to create a new worker for
2826  *
2827  * Create a new worker for @pool if necessary.  @pool is guaranteed to
2828  * have at least one idle worker on return from this function.  If
2829  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2830  * sent to all rescuers with works scheduled on @pool to resolve
2831  * possible allocation deadlock.
2832  *
2833  * On return, need_to_create_worker() is guaranteed to be %false and
2834  * may_start_working() %true.
2835  *
2836  * LOCKING:
2837  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2838  * multiple times.  Does GFP_KERNEL allocations.  Called only from
2839  * manager.
2840  */
2841 static void maybe_create_worker(struct worker_pool *pool)
2842 __releases(&pool->lock)
2843 __acquires(&pool->lock)
2844 {
2845 restart:
2846 	raw_spin_unlock_irq(&pool->lock);
2847 
2848 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2849 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2850 
2851 	while (true) {
2852 		if (create_worker(pool) || !need_to_create_worker(pool))
2853 			break;
2854 
2855 		schedule_timeout_interruptible(CREATE_COOLDOWN);
2856 
2857 		if (!need_to_create_worker(pool))
2858 			break;
2859 	}
2860 
2861 	del_timer_sync(&pool->mayday_timer);
2862 	raw_spin_lock_irq(&pool->lock);
2863 	/*
2864 	 * This is necessary even after a new worker was just successfully
2865 	 * created as @pool->lock was dropped and the new worker might have
2866 	 * already become busy.
2867 	 */
2868 	if (need_to_create_worker(pool))
2869 		goto restart;
2870 }
2871 
2872 /**
2873  * manage_workers - manage worker pool
2874  * @worker: self
2875  *
2876  * Assume the manager role and manage the worker pool @worker belongs
2877  * to.  At any given time, there can be only zero or one manager per
2878  * pool.  The exclusion is handled automatically by this function.
2879  *
2880  * The caller can safely start processing works on false return.  On
2881  * true return, it's guaranteed that need_to_create_worker() is false
2882  * and may_start_working() is true.
2883  *
2884  * CONTEXT:
2885  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2886  * multiple times.  Does GFP_KERNEL allocations.
2887  *
2888  * Return:
2889  * %false if the pool doesn't need management and the caller can safely
2890  * start processing works, %true if management function was performed and
2891  * the conditions that the caller verified before calling the function may
2892  * no longer be true.
2893  */
2894 static bool manage_workers(struct worker *worker)
2895 {
2896 	struct worker_pool *pool = worker->pool;
2897 
2898 	if (pool->flags & POOL_MANAGER_ACTIVE)
2899 		return false;
2900 
2901 	pool->flags |= POOL_MANAGER_ACTIVE;
2902 	pool->manager = worker;
2903 
2904 	maybe_create_worker(pool);
2905 
2906 	pool->manager = NULL;
2907 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2908 	rcuwait_wake_up(&manager_wait);
2909 	return true;
2910 }
2911 
2912 /**
2913  * process_one_work - process single work
2914  * @worker: self
2915  * @work: work to process
2916  *
2917  * Process @work.  This function contains all the logics necessary to
2918  * process a single work including synchronization against and
2919  * interaction with other workers on the same cpu, queueing and
2920  * flushing.  As long as context requirement is met, any worker can
2921  * call this function to process a work.
2922  *
2923  * CONTEXT:
2924  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2925  */
2926 static void process_one_work(struct worker *worker, struct work_struct *work)
2927 __releases(&pool->lock)
2928 __acquires(&pool->lock)
2929 {
2930 	struct pool_workqueue *pwq = get_work_pwq(work);
2931 	struct worker_pool *pool = worker->pool;
2932 	unsigned long work_data;
2933 #ifdef CONFIG_LOCKDEP
2934 	/*
2935 	 * It is permissible to free the struct work_struct from
2936 	 * inside the function that is called from it, this we need to
2937 	 * take into account for lockdep too.  To avoid bogus "held
2938 	 * lock freed" warnings as well as problems when looking into
2939 	 * work->lockdep_map, make a copy and use that here.
2940 	 */
2941 	struct lockdep_map lockdep_map;
2942 
2943 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2944 #endif
2945 	/* ensure we're on the correct CPU */
2946 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2947 		     raw_smp_processor_id() != pool->cpu);
2948 
2949 	/* claim and dequeue */
2950 	debug_work_deactivate(work);
2951 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2952 	worker->current_work = work;
2953 	worker->current_func = work->func;
2954 	worker->current_pwq = pwq;
2955 	worker->current_at = worker->task->se.sum_exec_runtime;
2956 	work_data = *work_data_bits(work);
2957 	worker->current_color = get_work_color(work_data);
2958 
2959 	/*
2960 	 * Record wq name for cmdline and debug reporting, may get
2961 	 * overridden through set_worker_desc().
2962 	 */
2963 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2964 
2965 	list_del_init(&work->entry);
2966 
2967 	/*
2968 	 * CPU intensive works don't participate in concurrency management.
2969 	 * They're the scheduler's responsibility.  This takes @worker out
2970 	 * of concurrency management and the next code block will chain
2971 	 * execution of the pending work items.
2972 	 */
2973 	if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
2974 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2975 
2976 	/*
2977 	 * Kick @pool if necessary. It's always noop for per-cpu worker pools
2978 	 * since nr_running would always be >= 1 at this point. This is used to
2979 	 * chain execution of the pending work items for WORKER_NOT_RUNNING
2980 	 * workers such as the UNBOUND and CPU_INTENSIVE ones.
2981 	 */
2982 	kick_pool(pool);
2983 
2984 	/*
2985 	 * Record the last pool and clear PENDING which should be the last
2986 	 * update to @work.  Also, do this inside @pool->lock so that
2987 	 * PENDING and queued state changes happen together while IRQ is
2988 	 * disabled.
2989 	 */
2990 	set_work_pool_and_clear_pending(work, pool->id);
2991 
2992 	pwq->stats[PWQ_STAT_STARTED]++;
2993 	raw_spin_unlock_irq(&pool->lock);
2994 
2995 	lock_map_acquire(&pwq->wq->lockdep_map);
2996 	lock_map_acquire(&lockdep_map);
2997 	/*
2998 	 * Strictly speaking we should mark the invariant state without holding
2999 	 * any locks, that is, before these two lock_map_acquire()'s.
3000 	 *
3001 	 * However, that would result in:
3002 	 *
3003 	 *   A(W1)
3004 	 *   WFC(C)
3005 	 *		A(W1)
3006 	 *		C(C)
3007 	 *
3008 	 * Which would create W1->C->W1 dependencies, even though there is no
3009 	 * actual deadlock possible. There are two solutions, using a
3010 	 * read-recursive acquire on the work(queue) 'locks', but this will then
3011 	 * hit the lockdep limitation on recursive locks, or simply discard
3012 	 * these locks.
3013 	 *
3014 	 * AFAICT there is no possible deadlock scenario between the
3015 	 * flush_work() and complete() primitives (except for single-threaded
3016 	 * workqueues), so hiding them isn't a problem.
3017 	 */
3018 	lockdep_invariant_state(true);
3019 	trace_workqueue_execute_start(work);
3020 	worker->current_func(work);
3021 	/*
3022 	 * While we must be careful to not use "work" after this, the trace
3023 	 * point will only record its address.
3024 	 */
3025 	trace_workqueue_execute_end(work, worker->current_func);
3026 	pwq->stats[PWQ_STAT_COMPLETED]++;
3027 	lock_map_release(&lockdep_map);
3028 	lock_map_release(&pwq->wq->lockdep_map);
3029 
3030 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
3031 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
3032 		       "     last function: %ps\n",
3033 		       current->comm, preempt_count(), task_pid_nr(current),
3034 		       worker->current_func);
3035 		debug_show_held_locks(current);
3036 		dump_stack();
3037 	}
3038 
3039 	/*
3040 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
3041 	 * kernels, where a requeueing work item waiting for something to
3042 	 * happen could deadlock with stop_machine as such work item could
3043 	 * indefinitely requeue itself while all other CPUs are trapped in
3044 	 * stop_machine. At the same time, report a quiescent RCU state so
3045 	 * the same condition doesn't freeze RCU.
3046 	 */
3047 	cond_resched();
3048 
3049 	raw_spin_lock_irq(&pool->lock);
3050 
3051 	/*
3052 	 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3053 	 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3054 	 * wq_cpu_intensive_thresh_us. Clear it.
3055 	 */
3056 	worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
3057 
3058 	/* tag the worker for identification in schedule() */
3059 	worker->last_func = worker->current_func;
3060 
3061 	/* we're done with it, release */
3062 	hash_del(&worker->hentry);
3063 	worker->current_work = NULL;
3064 	worker->current_func = NULL;
3065 	worker->current_pwq = NULL;
3066 	worker->current_color = INT_MAX;
3067 	pwq_dec_nr_in_flight(pwq, work_data);
3068 }
3069 
3070 /**
3071  * process_scheduled_works - process scheduled works
3072  * @worker: self
3073  *
3074  * Process all scheduled works.  Please note that the scheduled list
3075  * may change while processing a work, so this function repeatedly
3076  * fetches a work from the top and executes it.
3077  *
3078  * CONTEXT:
3079  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3080  * multiple times.
3081  */
3082 static void process_scheduled_works(struct worker *worker)
3083 {
3084 	struct work_struct *work;
3085 	bool first = true;
3086 
3087 	while ((work = list_first_entry_or_null(&worker->scheduled,
3088 						struct work_struct, entry))) {
3089 		if (first) {
3090 			worker->pool->watchdog_ts = jiffies;
3091 			first = false;
3092 		}
3093 		process_one_work(worker, work);
3094 	}
3095 }
3096 
3097 static void set_pf_worker(bool val)
3098 {
3099 	mutex_lock(&wq_pool_attach_mutex);
3100 	if (val)
3101 		current->flags |= PF_WQ_WORKER;
3102 	else
3103 		current->flags &= ~PF_WQ_WORKER;
3104 	mutex_unlock(&wq_pool_attach_mutex);
3105 }
3106 
3107 /**
3108  * worker_thread - the worker thread function
3109  * @__worker: self
3110  *
3111  * The worker thread function.  All workers belong to a worker_pool -
3112  * either a per-cpu one or dynamic unbound one.  These workers process all
3113  * work items regardless of their specific target workqueue.  The only
3114  * exception is work items which belong to workqueues with a rescuer which
3115  * will be explained in rescuer_thread().
3116  *
3117  * Return: 0
3118  */
3119 static int worker_thread(void *__worker)
3120 {
3121 	struct worker *worker = __worker;
3122 	struct worker_pool *pool = worker->pool;
3123 
3124 	/* tell the scheduler that this is a workqueue worker */
3125 	set_pf_worker(true);
3126 woke_up:
3127 	raw_spin_lock_irq(&pool->lock);
3128 
3129 	/* am I supposed to die? */
3130 	if (unlikely(worker->flags & WORKER_DIE)) {
3131 		raw_spin_unlock_irq(&pool->lock);
3132 		set_pf_worker(false);
3133 
3134 		set_task_comm(worker->task, "kworker/dying");
3135 		ida_free(&pool->worker_ida, worker->id);
3136 		worker_detach_from_pool(worker);
3137 		WARN_ON_ONCE(!list_empty(&worker->entry));
3138 		kfree(worker);
3139 		return 0;
3140 	}
3141 
3142 	worker_leave_idle(worker);
3143 recheck:
3144 	/* no more worker necessary? */
3145 	if (!need_more_worker(pool))
3146 		goto sleep;
3147 
3148 	/* do we need to manage? */
3149 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
3150 		goto recheck;
3151 
3152 	/*
3153 	 * ->scheduled list can only be filled while a worker is
3154 	 * preparing to process a work or actually processing it.
3155 	 * Make sure nobody diddled with it while I was sleeping.
3156 	 */
3157 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3158 
3159 	/*
3160 	 * Finish PREP stage.  We're guaranteed to have at least one idle
3161 	 * worker or that someone else has already assumed the manager
3162 	 * role.  This is where @worker starts participating in concurrency
3163 	 * management if applicable and concurrency management is restored
3164 	 * after being rebound.  See rebind_workers() for details.
3165 	 */
3166 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3167 
3168 	do {
3169 		struct work_struct *work =
3170 			list_first_entry(&pool->worklist,
3171 					 struct work_struct, entry);
3172 
3173 		if (assign_work(work, worker, NULL))
3174 			process_scheduled_works(worker);
3175 	} while (keep_working(pool));
3176 
3177 	worker_set_flags(worker, WORKER_PREP);
3178 sleep:
3179 	/*
3180 	 * pool->lock is held and there's no work to process and no need to
3181 	 * manage, sleep.  Workers are woken up only while holding
3182 	 * pool->lock or from local cpu, so setting the current state
3183 	 * before releasing pool->lock is enough to prevent losing any
3184 	 * event.
3185 	 */
3186 	worker_enter_idle(worker);
3187 	__set_current_state(TASK_IDLE);
3188 	raw_spin_unlock_irq(&pool->lock);
3189 	schedule();
3190 	goto woke_up;
3191 }
3192 
3193 /**
3194  * rescuer_thread - the rescuer thread function
3195  * @__rescuer: self
3196  *
3197  * Workqueue rescuer thread function.  There's one rescuer for each
3198  * workqueue which has WQ_MEM_RECLAIM set.
3199  *
3200  * Regular work processing on a pool may block trying to create a new
3201  * worker which uses GFP_KERNEL allocation which has slight chance of
3202  * developing into deadlock if some works currently on the same queue
3203  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
3204  * the problem rescuer solves.
3205  *
3206  * When such condition is possible, the pool summons rescuers of all
3207  * workqueues which have works queued on the pool and let them process
3208  * those works so that forward progress can be guaranteed.
3209  *
3210  * This should happen rarely.
3211  *
3212  * Return: 0
3213  */
3214 static int rescuer_thread(void *__rescuer)
3215 {
3216 	struct worker *rescuer = __rescuer;
3217 	struct workqueue_struct *wq = rescuer->rescue_wq;
3218 	bool should_stop;
3219 
3220 	set_user_nice(current, RESCUER_NICE_LEVEL);
3221 
3222 	/*
3223 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
3224 	 * doesn't participate in concurrency management.
3225 	 */
3226 	set_pf_worker(true);
3227 repeat:
3228 	set_current_state(TASK_IDLE);
3229 
3230 	/*
3231 	 * By the time the rescuer is requested to stop, the workqueue
3232 	 * shouldn't have any work pending, but @wq->maydays may still have
3233 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
3234 	 * all the work items before the rescuer got to them.  Go through
3235 	 * @wq->maydays processing before acting on should_stop so that the
3236 	 * list is always empty on exit.
3237 	 */
3238 	should_stop = kthread_should_stop();
3239 
3240 	/* see whether any pwq is asking for help */
3241 	raw_spin_lock_irq(&wq_mayday_lock);
3242 
3243 	while (!list_empty(&wq->maydays)) {
3244 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3245 					struct pool_workqueue, mayday_node);
3246 		struct worker_pool *pool = pwq->pool;
3247 		struct work_struct *work, *n;
3248 
3249 		__set_current_state(TASK_RUNNING);
3250 		list_del_init(&pwq->mayday_node);
3251 
3252 		raw_spin_unlock_irq(&wq_mayday_lock);
3253 
3254 		worker_attach_to_pool(rescuer, pool);
3255 
3256 		raw_spin_lock_irq(&pool->lock);
3257 
3258 		/*
3259 		 * Slurp in all works issued via this workqueue and
3260 		 * process'em.
3261 		 */
3262 		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
3263 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
3264 			if (get_work_pwq(work) == pwq &&
3265 			    assign_work(work, rescuer, &n))
3266 				pwq->stats[PWQ_STAT_RESCUED]++;
3267 		}
3268 
3269 		if (!list_empty(&rescuer->scheduled)) {
3270 			process_scheduled_works(rescuer);
3271 
3272 			/*
3273 			 * The above execution of rescued work items could
3274 			 * have created more to rescue through
3275 			 * pwq_activate_first_inactive() or chained
3276 			 * queueing.  Let's put @pwq back on mayday list so
3277 			 * that such back-to-back work items, which may be
3278 			 * being used to relieve memory pressure, don't
3279 			 * incur MAYDAY_INTERVAL delay inbetween.
3280 			 */
3281 			if (pwq->nr_active && need_to_create_worker(pool)) {
3282 				raw_spin_lock(&wq_mayday_lock);
3283 				/*
3284 				 * Queue iff we aren't racing destruction
3285 				 * and somebody else hasn't queued it already.
3286 				 */
3287 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
3288 					get_pwq(pwq);
3289 					list_add_tail(&pwq->mayday_node, &wq->maydays);
3290 				}
3291 				raw_spin_unlock(&wq_mayday_lock);
3292 			}
3293 		}
3294 
3295 		/*
3296 		 * Put the reference grabbed by send_mayday().  @pool won't
3297 		 * go away while we're still attached to it.
3298 		 */
3299 		put_pwq(pwq);
3300 
3301 		/*
3302 		 * Leave this pool. Notify regular workers; otherwise, we end up
3303 		 * with 0 concurrency and stalling the execution.
3304 		 */
3305 		kick_pool(pool);
3306 
3307 		raw_spin_unlock_irq(&pool->lock);
3308 
3309 		worker_detach_from_pool(rescuer);
3310 
3311 		raw_spin_lock_irq(&wq_mayday_lock);
3312 	}
3313 
3314 	raw_spin_unlock_irq(&wq_mayday_lock);
3315 
3316 	if (should_stop) {
3317 		__set_current_state(TASK_RUNNING);
3318 		set_pf_worker(false);
3319 		return 0;
3320 	}
3321 
3322 	/* rescuers should never participate in concurrency management */
3323 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
3324 	schedule();
3325 	goto repeat;
3326 }
3327 
3328 /**
3329  * check_flush_dependency - check for flush dependency sanity
3330  * @target_wq: workqueue being flushed
3331  * @target_work: work item being flushed (NULL for workqueue flushes)
3332  *
3333  * %current is trying to flush the whole @target_wq or @target_work on it.
3334  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
3335  * reclaiming memory or running on a workqueue which doesn't have
3336  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
3337  * a deadlock.
3338  */
3339 static void check_flush_dependency(struct workqueue_struct *target_wq,
3340 				   struct work_struct *target_work)
3341 {
3342 	work_func_t target_func = target_work ? target_work->func : NULL;
3343 	struct worker *worker;
3344 
3345 	if (target_wq->flags & WQ_MEM_RECLAIM)
3346 		return;
3347 
3348 	worker = current_wq_worker();
3349 
3350 	WARN_ONCE(current->flags & PF_MEMALLOC,
3351 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
3352 		  current->pid, current->comm, target_wq->name, target_func);
3353 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3354 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
3355 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
3356 		  worker->current_pwq->wq->name, worker->current_func,
3357 		  target_wq->name, target_func);
3358 }
3359 
3360 struct wq_barrier {
3361 	struct work_struct	work;
3362 	struct completion	done;
3363 	struct task_struct	*task;	/* purely informational */
3364 };
3365 
3366 static void wq_barrier_func(struct work_struct *work)
3367 {
3368 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3369 	complete(&barr->done);
3370 }
3371 
3372 /**
3373  * insert_wq_barrier - insert a barrier work
3374  * @pwq: pwq to insert barrier into
3375  * @barr: wq_barrier to insert
3376  * @target: target work to attach @barr to
3377  * @worker: worker currently executing @target, NULL if @target is not executing
3378  *
3379  * @barr is linked to @target such that @barr is completed only after
3380  * @target finishes execution.  Please note that the ordering
3381  * guarantee is observed only with respect to @target and on the local
3382  * cpu.
3383  *
3384  * Currently, a queued barrier can't be canceled.  This is because
3385  * try_to_grab_pending() can't determine whether the work to be
3386  * grabbed is at the head of the queue and thus can't clear LINKED
3387  * flag of the previous work while there must be a valid next work
3388  * after a work with LINKED flag set.
3389  *
3390  * Note that when @worker is non-NULL, @target may be modified
3391  * underneath us, so we can't reliably determine pwq from @target.
3392  *
3393  * CONTEXT:
3394  * raw_spin_lock_irq(pool->lock).
3395  */
3396 static void insert_wq_barrier(struct pool_workqueue *pwq,
3397 			      struct wq_barrier *barr,
3398 			      struct work_struct *target, struct worker *worker)
3399 {
3400 	unsigned int work_flags = 0;
3401 	unsigned int work_color;
3402 	struct list_head *head;
3403 
3404 	/*
3405 	 * debugobject calls are safe here even with pool->lock locked
3406 	 * as we know for sure that this will not trigger any of the
3407 	 * checks and call back into the fixup functions where we
3408 	 * might deadlock.
3409 	 */
3410 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
3411 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3412 
3413 	init_completion_map(&barr->done, &target->lockdep_map);
3414 
3415 	barr->task = current;
3416 
3417 	/* The barrier work item does not participate in nr_active. */
3418 	work_flags |= WORK_STRUCT_INACTIVE;
3419 
3420 	/*
3421 	 * If @target is currently being executed, schedule the
3422 	 * barrier to the worker; otherwise, put it after @target.
3423 	 */
3424 	if (worker) {
3425 		head = worker->scheduled.next;
3426 		work_color = worker->current_color;
3427 	} else {
3428 		unsigned long *bits = work_data_bits(target);
3429 
3430 		head = target->entry.next;
3431 		/* there can already be other linked works, inherit and set */
3432 		work_flags |= *bits & WORK_STRUCT_LINKED;
3433 		work_color = get_work_color(*bits);
3434 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
3435 	}
3436 
3437 	pwq->nr_in_flight[work_color]++;
3438 	work_flags |= work_color_to_flags(work_color);
3439 
3440 	insert_work(pwq, &barr->work, head, work_flags);
3441 }
3442 
3443 /**
3444  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3445  * @wq: workqueue being flushed
3446  * @flush_color: new flush color, < 0 for no-op
3447  * @work_color: new work color, < 0 for no-op
3448  *
3449  * Prepare pwqs for workqueue flushing.
3450  *
3451  * If @flush_color is non-negative, flush_color on all pwqs should be
3452  * -1.  If no pwq has in-flight commands at the specified color, all
3453  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
3454  * has in flight commands, its pwq->flush_color is set to
3455  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3456  * wakeup logic is armed and %true is returned.
3457  *
3458  * The caller should have initialized @wq->first_flusher prior to
3459  * calling this function with non-negative @flush_color.  If
3460  * @flush_color is negative, no flush color update is done and %false
3461  * is returned.
3462  *
3463  * If @work_color is non-negative, all pwqs should have the same
3464  * work_color which is previous to @work_color and all will be
3465  * advanced to @work_color.
3466  *
3467  * CONTEXT:
3468  * mutex_lock(wq->mutex).
3469  *
3470  * Return:
3471  * %true if @flush_color >= 0 and there's something to flush.  %false
3472  * otherwise.
3473  */
3474 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3475 				      int flush_color, int work_color)
3476 {
3477 	bool wait = false;
3478 	struct pool_workqueue *pwq;
3479 
3480 	if (flush_color >= 0) {
3481 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3482 		atomic_set(&wq->nr_pwqs_to_flush, 1);
3483 	}
3484 
3485 	for_each_pwq(pwq, wq) {
3486 		struct worker_pool *pool = pwq->pool;
3487 
3488 		raw_spin_lock_irq(&pool->lock);
3489 
3490 		if (flush_color >= 0) {
3491 			WARN_ON_ONCE(pwq->flush_color != -1);
3492 
3493 			if (pwq->nr_in_flight[flush_color]) {
3494 				pwq->flush_color = flush_color;
3495 				atomic_inc(&wq->nr_pwqs_to_flush);
3496 				wait = true;
3497 			}
3498 		}
3499 
3500 		if (work_color >= 0) {
3501 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3502 			pwq->work_color = work_color;
3503 		}
3504 
3505 		raw_spin_unlock_irq(&pool->lock);
3506 	}
3507 
3508 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3509 		complete(&wq->first_flusher->done);
3510 
3511 	return wait;
3512 }
3513 
3514 /**
3515  * __flush_workqueue - ensure that any scheduled work has run to completion.
3516  * @wq: workqueue to flush
3517  *
3518  * This function sleeps until all work items which were queued on entry
3519  * have finished execution, but it is not livelocked by new incoming ones.
3520  */
3521 void __flush_workqueue(struct workqueue_struct *wq)
3522 {
3523 	struct wq_flusher this_flusher = {
3524 		.list = LIST_HEAD_INIT(this_flusher.list),
3525 		.flush_color = -1,
3526 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
3527 	};
3528 	int next_color;
3529 
3530 	if (WARN_ON(!wq_online))
3531 		return;
3532 
3533 	lock_map_acquire(&wq->lockdep_map);
3534 	lock_map_release(&wq->lockdep_map);
3535 
3536 	mutex_lock(&wq->mutex);
3537 
3538 	/*
3539 	 * Start-to-wait phase
3540 	 */
3541 	next_color = work_next_color(wq->work_color);
3542 
3543 	if (next_color != wq->flush_color) {
3544 		/*
3545 		 * Color space is not full.  The current work_color
3546 		 * becomes our flush_color and work_color is advanced
3547 		 * by one.
3548 		 */
3549 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3550 		this_flusher.flush_color = wq->work_color;
3551 		wq->work_color = next_color;
3552 
3553 		if (!wq->first_flusher) {
3554 			/* no flush in progress, become the first flusher */
3555 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3556 
3557 			wq->first_flusher = &this_flusher;
3558 
3559 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3560 						       wq->work_color)) {
3561 				/* nothing to flush, done */
3562 				wq->flush_color = next_color;
3563 				wq->first_flusher = NULL;
3564 				goto out_unlock;
3565 			}
3566 		} else {
3567 			/* wait in queue */
3568 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3569 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
3570 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3571 		}
3572 	} else {
3573 		/*
3574 		 * Oops, color space is full, wait on overflow queue.
3575 		 * The next flush completion will assign us
3576 		 * flush_color and transfer to flusher_queue.
3577 		 */
3578 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3579 	}
3580 
3581 	check_flush_dependency(wq, NULL);
3582 
3583 	mutex_unlock(&wq->mutex);
3584 
3585 	wait_for_completion(&this_flusher.done);
3586 
3587 	/*
3588 	 * Wake-up-and-cascade phase
3589 	 *
3590 	 * First flushers are responsible for cascading flushes and
3591 	 * handling overflow.  Non-first flushers can simply return.
3592 	 */
3593 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
3594 		return;
3595 
3596 	mutex_lock(&wq->mutex);
3597 
3598 	/* we might have raced, check again with mutex held */
3599 	if (wq->first_flusher != &this_flusher)
3600 		goto out_unlock;
3601 
3602 	WRITE_ONCE(wq->first_flusher, NULL);
3603 
3604 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
3605 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3606 
3607 	while (true) {
3608 		struct wq_flusher *next, *tmp;
3609 
3610 		/* complete all the flushers sharing the current flush color */
3611 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
3612 			if (next->flush_color != wq->flush_color)
3613 				break;
3614 			list_del_init(&next->list);
3615 			complete(&next->done);
3616 		}
3617 
3618 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
3619 			     wq->flush_color != work_next_color(wq->work_color));
3620 
3621 		/* this flush_color is finished, advance by one */
3622 		wq->flush_color = work_next_color(wq->flush_color);
3623 
3624 		/* one color has been freed, handle overflow queue */
3625 		if (!list_empty(&wq->flusher_overflow)) {
3626 			/*
3627 			 * Assign the same color to all overflowed
3628 			 * flushers, advance work_color and append to
3629 			 * flusher_queue.  This is the start-to-wait
3630 			 * phase for these overflowed flushers.
3631 			 */
3632 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
3633 				tmp->flush_color = wq->work_color;
3634 
3635 			wq->work_color = work_next_color(wq->work_color);
3636 
3637 			list_splice_tail_init(&wq->flusher_overflow,
3638 					      &wq->flusher_queue);
3639 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3640 		}
3641 
3642 		if (list_empty(&wq->flusher_queue)) {
3643 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
3644 			break;
3645 		}
3646 
3647 		/*
3648 		 * Need to flush more colors.  Make the next flusher
3649 		 * the new first flusher and arm pwqs.
3650 		 */
3651 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
3652 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
3653 
3654 		list_del_init(&next->list);
3655 		wq->first_flusher = next;
3656 
3657 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
3658 			break;
3659 
3660 		/*
3661 		 * Meh... this color is already done, clear first
3662 		 * flusher and repeat cascading.
3663 		 */
3664 		wq->first_flusher = NULL;
3665 	}
3666 
3667 out_unlock:
3668 	mutex_unlock(&wq->mutex);
3669 }
3670 EXPORT_SYMBOL(__flush_workqueue);
3671 
3672 /**
3673  * drain_workqueue - drain a workqueue
3674  * @wq: workqueue to drain
3675  *
3676  * Wait until the workqueue becomes empty.  While draining is in progress,
3677  * only chain queueing is allowed.  IOW, only currently pending or running
3678  * work items on @wq can queue further work items on it.  @wq is flushed
3679  * repeatedly until it becomes empty.  The number of flushing is determined
3680  * by the depth of chaining and should be relatively short.  Whine if it
3681  * takes too long.
3682  */
3683 void drain_workqueue(struct workqueue_struct *wq)
3684 {
3685 	unsigned int flush_cnt = 0;
3686 	struct pool_workqueue *pwq;
3687 
3688 	/*
3689 	 * __queue_work() needs to test whether there are drainers, is much
3690 	 * hotter than drain_workqueue() and already looks at @wq->flags.
3691 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
3692 	 */
3693 	mutex_lock(&wq->mutex);
3694 	if (!wq->nr_drainers++)
3695 		wq->flags |= __WQ_DRAINING;
3696 	mutex_unlock(&wq->mutex);
3697 reflush:
3698 	__flush_workqueue(wq);
3699 
3700 	mutex_lock(&wq->mutex);
3701 
3702 	for_each_pwq(pwq, wq) {
3703 		bool drained;
3704 
3705 		raw_spin_lock_irq(&pwq->pool->lock);
3706 		drained = pwq_is_empty(pwq);
3707 		raw_spin_unlock_irq(&pwq->pool->lock);
3708 
3709 		if (drained)
3710 			continue;
3711 
3712 		if (++flush_cnt == 10 ||
3713 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
3714 			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3715 				wq->name, __func__, flush_cnt);
3716 
3717 		mutex_unlock(&wq->mutex);
3718 		goto reflush;
3719 	}
3720 
3721 	if (!--wq->nr_drainers)
3722 		wq->flags &= ~__WQ_DRAINING;
3723 	mutex_unlock(&wq->mutex);
3724 }
3725 EXPORT_SYMBOL_GPL(drain_workqueue);
3726 
3727 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3728 			     bool from_cancel)
3729 {
3730 	struct worker *worker = NULL;
3731 	struct worker_pool *pool;
3732 	struct pool_workqueue *pwq;
3733 
3734 	might_sleep();
3735 
3736 	rcu_read_lock();
3737 	pool = get_work_pool(work);
3738 	if (!pool) {
3739 		rcu_read_unlock();
3740 		return false;
3741 	}
3742 
3743 	raw_spin_lock_irq(&pool->lock);
3744 	/* see the comment in try_to_grab_pending() with the same code */
3745 	pwq = get_work_pwq(work);
3746 	if (pwq) {
3747 		if (unlikely(pwq->pool != pool))
3748 			goto already_gone;
3749 	} else {
3750 		worker = find_worker_executing_work(pool, work);
3751 		if (!worker)
3752 			goto already_gone;
3753 		pwq = worker->current_pwq;
3754 	}
3755 
3756 	check_flush_dependency(pwq->wq, work);
3757 
3758 	insert_wq_barrier(pwq, barr, work, worker);
3759 	raw_spin_unlock_irq(&pool->lock);
3760 
3761 	/*
3762 	 * Force a lock recursion deadlock when using flush_work() inside a
3763 	 * single-threaded or rescuer equipped workqueue.
3764 	 *
3765 	 * For single threaded workqueues the deadlock happens when the work
3766 	 * is after the work issuing the flush_work(). For rescuer equipped
3767 	 * workqueues the deadlock happens when the rescuer stalls, blocking
3768 	 * forward progress.
3769 	 */
3770 	if (!from_cancel &&
3771 	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3772 		lock_map_acquire(&pwq->wq->lockdep_map);
3773 		lock_map_release(&pwq->wq->lockdep_map);
3774 	}
3775 	rcu_read_unlock();
3776 	return true;
3777 already_gone:
3778 	raw_spin_unlock_irq(&pool->lock);
3779 	rcu_read_unlock();
3780 	return false;
3781 }
3782 
3783 static bool __flush_work(struct work_struct *work, bool from_cancel)
3784 {
3785 	struct wq_barrier barr;
3786 
3787 	if (WARN_ON(!wq_online))
3788 		return false;
3789 
3790 	if (WARN_ON(!work->func))
3791 		return false;
3792 
3793 	lock_map_acquire(&work->lockdep_map);
3794 	lock_map_release(&work->lockdep_map);
3795 
3796 	if (start_flush_work(work, &barr, from_cancel)) {
3797 		wait_for_completion(&barr.done);
3798 		destroy_work_on_stack(&barr.work);
3799 		return true;
3800 	} else {
3801 		return false;
3802 	}
3803 }
3804 
3805 /**
3806  * flush_work - wait for a work to finish executing the last queueing instance
3807  * @work: the work to flush
3808  *
3809  * Wait until @work has finished execution.  @work is guaranteed to be idle
3810  * on return if it hasn't been requeued since flush started.
3811  *
3812  * Return:
3813  * %true if flush_work() waited for the work to finish execution,
3814  * %false if it was already idle.
3815  */
3816 bool flush_work(struct work_struct *work)
3817 {
3818 	return __flush_work(work, false);
3819 }
3820 EXPORT_SYMBOL_GPL(flush_work);
3821 
3822 struct cwt_wait {
3823 	wait_queue_entry_t		wait;
3824 	struct work_struct	*work;
3825 };
3826 
3827 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3828 {
3829 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3830 
3831 	if (cwait->work != key)
3832 		return 0;
3833 	return autoremove_wake_function(wait, mode, sync, key);
3834 }
3835 
3836 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3837 {
3838 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3839 	unsigned long flags;
3840 	int ret;
3841 
3842 	do {
3843 		ret = try_to_grab_pending(work, is_dwork, &flags);
3844 		/*
3845 		 * If someone else is already canceling, wait for it to
3846 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3847 		 * because we may get scheduled between @work's completion
3848 		 * and the other canceling task resuming and clearing
3849 		 * CANCELING - flush_work() will return false immediately
3850 		 * as @work is no longer busy, try_to_grab_pending() will
3851 		 * return -ENOENT as @work is still being canceled and the
3852 		 * other canceling task won't be able to clear CANCELING as
3853 		 * we're hogging the CPU.
3854 		 *
3855 		 * Let's wait for completion using a waitqueue.  As this
3856 		 * may lead to the thundering herd problem, use a custom
3857 		 * wake function which matches @work along with exclusive
3858 		 * wait and wakeup.
3859 		 */
3860 		if (unlikely(ret == -ENOENT)) {
3861 			struct cwt_wait cwait;
3862 
3863 			init_wait(&cwait.wait);
3864 			cwait.wait.func = cwt_wakefn;
3865 			cwait.work = work;
3866 
3867 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3868 						  TASK_UNINTERRUPTIBLE);
3869 			if (work_is_canceling(work))
3870 				schedule();
3871 			finish_wait(&cancel_waitq, &cwait.wait);
3872 		}
3873 	} while (unlikely(ret < 0));
3874 
3875 	/* tell other tasks trying to grab @work to back off */
3876 	mark_work_canceling(work);
3877 	local_irq_restore(flags);
3878 
3879 	/*
3880 	 * This allows canceling during early boot.  We know that @work
3881 	 * isn't executing.
3882 	 */
3883 	if (wq_online)
3884 		__flush_work(work, true);
3885 
3886 	clear_work_data(work);
3887 
3888 	/*
3889 	 * Paired with prepare_to_wait() above so that either
3890 	 * waitqueue_active() is visible here or !work_is_canceling() is
3891 	 * visible there.
3892 	 */
3893 	smp_mb();
3894 	if (waitqueue_active(&cancel_waitq))
3895 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3896 
3897 	return ret;
3898 }
3899 
3900 /**
3901  * cancel_work_sync - cancel a work and wait for it to finish
3902  * @work: the work to cancel
3903  *
3904  * Cancel @work and wait for its execution to finish.  This function
3905  * can be used even if the work re-queues itself or migrates to
3906  * another workqueue.  On return from this function, @work is
3907  * guaranteed to be not pending or executing on any CPU.
3908  *
3909  * cancel_work_sync(&delayed_work->work) must not be used for
3910  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3911  *
3912  * The caller must ensure that the workqueue on which @work was last
3913  * queued can't be destroyed before this function returns.
3914  *
3915  * Return:
3916  * %true if @work was pending, %false otherwise.
3917  */
3918 bool cancel_work_sync(struct work_struct *work)
3919 {
3920 	return __cancel_work_timer(work, false);
3921 }
3922 EXPORT_SYMBOL_GPL(cancel_work_sync);
3923 
3924 /**
3925  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3926  * @dwork: the delayed work to flush
3927  *
3928  * Delayed timer is cancelled and the pending work is queued for
3929  * immediate execution.  Like flush_work(), this function only
3930  * considers the last queueing instance of @dwork.
3931  *
3932  * Return:
3933  * %true if flush_work() waited for the work to finish execution,
3934  * %false if it was already idle.
3935  */
3936 bool flush_delayed_work(struct delayed_work *dwork)
3937 {
3938 	local_irq_disable();
3939 	if (del_timer_sync(&dwork->timer))
3940 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3941 	local_irq_enable();
3942 	return flush_work(&dwork->work);
3943 }
3944 EXPORT_SYMBOL(flush_delayed_work);
3945 
3946 /**
3947  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3948  * @rwork: the rcu work to flush
3949  *
3950  * Return:
3951  * %true if flush_rcu_work() waited for the work to finish execution,
3952  * %false if it was already idle.
3953  */
3954 bool flush_rcu_work(struct rcu_work *rwork)
3955 {
3956 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3957 		rcu_barrier();
3958 		flush_work(&rwork->work);
3959 		return true;
3960 	} else {
3961 		return flush_work(&rwork->work);
3962 	}
3963 }
3964 EXPORT_SYMBOL(flush_rcu_work);
3965 
3966 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3967 {
3968 	unsigned long flags;
3969 	int ret;
3970 
3971 	do {
3972 		ret = try_to_grab_pending(work, is_dwork, &flags);
3973 	} while (unlikely(ret == -EAGAIN));
3974 
3975 	if (unlikely(ret < 0))
3976 		return false;
3977 
3978 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3979 	local_irq_restore(flags);
3980 	return ret;
3981 }
3982 
3983 /*
3984  * See cancel_delayed_work()
3985  */
3986 bool cancel_work(struct work_struct *work)
3987 {
3988 	return __cancel_work(work, false);
3989 }
3990 EXPORT_SYMBOL(cancel_work);
3991 
3992 /**
3993  * cancel_delayed_work - cancel a delayed work
3994  * @dwork: delayed_work to cancel
3995  *
3996  * Kill off a pending delayed_work.
3997  *
3998  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3999  * pending.
4000  *
4001  * Note:
4002  * The work callback function may still be running on return, unless
4003  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
4004  * use cancel_delayed_work_sync() to wait on it.
4005  *
4006  * This function is safe to call from any context including IRQ handler.
4007  */
4008 bool cancel_delayed_work(struct delayed_work *dwork)
4009 {
4010 	return __cancel_work(&dwork->work, true);
4011 }
4012 EXPORT_SYMBOL(cancel_delayed_work);
4013 
4014 /**
4015  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4016  * @dwork: the delayed work cancel
4017  *
4018  * This is cancel_work_sync() for delayed works.
4019  *
4020  * Return:
4021  * %true if @dwork was pending, %false otherwise.
4022  */
4023 bool cancel_delayed_work_sync(struct delayed_work *dwork)
4024 {
4025 	return __cancel_work_timer(&dwork->work, true);
4026 }
4027 EXPORT_SYMBOL(cancel_delayed_work_sync);
4028 
4029 /**
4030  * schedule_on_each_cpu - execute a function synchronously on each online CPU
4031  * @func: the function to call
4032  *
4033  * schedule_on_each_cpu() executes @func on each online CPU using the
4034  * system workqueue and blocks until all CPUs have completed.
4035  * schedule_on_each_cpu() is very slow.
4036  *
4037  * Return:
4038  * 0 on success, -errno on failure.
4039  */
4040 int schedule_on_each_cpu(work_func_t func)
4041 {
4042 	int cpu;
4043 	struct work_struct __percpu *works;
4044 
4045 	works = alloc_percpu(struct work_struct);
4046 	if (!works)
4047 		return -ENOMEM;
4048 
4049 	cpus_read_lock();
4050 
4051 	for_each_online_cpu(cpu) {
4052 		struct work_struct *work = per_cpu_ptr(works, cpu);
4053 
4054 		INIT_WORK(work, func);
4055 		schedule_work_on(cpu, work);
4056 	}
4057 
4058 	for_each_online_cpu(cpu)
4059 		flush_work(per_cpu_ptr(works, cpu));
4060 
4061 	cpus_read_unlock();
4062 	free_percpu(works);
4063 	return 0;
4064 }
4065 
4066 /**
4067  * execute_in_process_context - reliably execute the routine with user context
4068  * @fn:		the function to execute
4069  * @ew:		guaranteed storage for the execute work structure (must
4070  *		be available when the work executes)
4071  *
4072  * Executes the function immediately if process context is available,
4073  * otherwise schedules the function for delayed execution.
4074  *
4075  * Return:	0 - function was executed
4076  *		1 - function was scheduled for execution
4077  */
4078 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
4079 {
4080 	if (!in_interrupt()) {
4081 		fn(&ew->work);
4082 		return 0;
4083 	}
4084 
4085 	INIT_WORK(&ew->work, fn);
4086 	schedule_work(&ew->work);
4087 
4088 	return 1;
4089 }
4090 EXPORT_SYMBOL_GPL(execute_in_process_context);
4091 
4092 /**
4093  * free_workqueue_attrs - free a workqueue_attrs
4094  * @attrs: workqueue_attrs to free
4095  *
4096  * Undo alloc_workqueue_attrs().
4097  */
4098 void free_workqueue_attrs(struct workqueue_attrs *attrs)
4099 {
4100 	if (attrs) {
4101 		free_cpumask_var(attrs->cpumask);
4102 		free_cpumask_var(attrs->__pod_cpumask);
4103 		kfree(attrs);
4104 	}
4105 }
4106 
4107 /**
4108  * alloc_workqueue_attrs - allocate a workqueue_attrs
4109  *
4110  * Allocate a new workqueue_attrs, initialize with default settings and
4111  * return it.
4112  *
4113  * Return: The allocated new workqueue_attr on success. %NULL on failure.
4114  */
4115 struct workqueue_attrs *alloc_workqueue_attrs(void)
4116 {
4117 	struct workqueue_attrs *attrs;
4118 
4119 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
4120 	if (!attrs)
4121 		goto fail;
4122 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
4123 		goto fail;
4124 	if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4125 		goto fail;
4126 
4127 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
4128 	attrs->affn_scope = WQ_AFFN_DFL;
4129 	return attrs;
4130 fail:
4131 	free_workqueue_attrs(attrs);
4132 	return NULL;
4133 }
4134 
4135 static void copy_workqueue_attrs(struct workqueue_attrs *to,
4136 				 const struct workqueue_attrs *from)
4137 {
4138 	to->nice = from->nice;
4139 	cpumask_copy(to->cpumask, from->cpumask);
4140 	cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
4141 	to->affn_strict = from->affn_strict;
4142 
4143 	/*
4144 	 * Unlike hash and equality test, copying shouldn't ignore wq-only
4145 	 * fields as copying is used for both pool and wq attrs. Instead,
4146 	 * get_unbound_pool() explicitly clears the fields.
4147 	 */
4148 	to->affn_scope = from->affn_scope;
4149 	to->ordered = from->ordered;
4150 }
4151 
4152 /*
4153  * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4154  * comments in 'struct workqueue_attrs' definition.
4155  */
4156 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4157 {
4158 	attrs->affn_scope = WQ_AFFN_NR_TYPES;
4159 	attrs->ordered = false;
4160 }
4161 
4162 /* hash value of the content of @attr */
4163 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
4164 {
4165 	u32 hash = 0;
4166 
4167 	hash = jhash_1word(attrs->nice, hash);
4168 	hash = jhash(cpumask_bits(attrs->cpumask),
4169 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4170 	hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4171 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4172 	hash = jhash_1word(attrs->affn_strict, hash);
4173 	return hash;
4174 }
4175 
4176 /* content equality test */
4177 static bool wqattrs_equal(const struct workqueue_attrs *a,
4178 			  const struct workqueue_attrs *b)
4179 {
4180 	if (a->nice != b->nice)
4181 		return false;
4182 	if (!cpumask_equal(a->cpumask, b->cpumask))
4183 		return false;
4184 	if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4185 		return false;
4186 	if (a->affn_strict != b->affn_strict)
4187 		return false;
4188 	return true;
4189 }
4190 
4191 /* Update @attrs with actually available CPUs */
4192 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4193 				      const cpumask_t *unbound_cpumask)
4194 {
4195 	/*
4196 	 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4197 	 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4198 	 * @unbound_cpumask.
4199 	 */
4200 	cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4201 	if (unlikely(cpumask_empty(attrs->cpumask)))
4202 		cpumask_copy(attrs->cpumask, unbound_cpumask);
4203 }
4204 
4205 /* find wq_pod_type to use for @attrs */
4206 static const struct wq_pod_type *
4207 wqattrs_pod_type(const struct workqueue_attrs *attrs)
4208 {
4209 	enum wq_affn_scope scope;
4210 	struct wq_pod_type *pt;
4211 
4212 	/* to synchronize access to wq_affn_dfl */
4213 	lockdep_assert_held(&wq_pool_mutex);
4214 
4215 	if (attrs->affn_scope == WQ_AFFN_DFL)
4216 		scope = wq_affn_dfl;
4217 	else
4218 		scope = attrs->affn_scope;
4219 
4220 	pt = &wq_pod_types[scope];
4221 
4222 	if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4223 	    likely(pt->nr_pods))
4224 		return pt;
4225 
4226 	/*
4227 	 * Before workqueue_init_topology(), only SYSTEM is available which is
4228 	 * initialized in workqueue_init_early().
4229 	 */
4230 	pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4231 	BUG_ON(!pt->nr_pods);
4232 	return pt;
4233 }
4234 
4235 /**
4236  * init_worker_pool - initialize a newly zalloc'd worker_pool
4237  * @pool: worker_pool to initialize
4238  *
4239  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
4240  *
4241  * Return: 0 on success, -errno on failure.  Even on failure, all fields
4242  * inside @pool proper are initialized and put_unbound_pool() can be called
4243  * on @pool safely to release it.
4244  */
4245 static int init_worker_pool(struct worker_pool *pool)
4246 {
4247 	raw_spin_lock_init(&pool->lock);
4248 	pool->id = -1;
4249 	pool->cpu = -1;
4250 	pool->node = NUMA_NO_NODE;
4251 	pool->flags |= POOL_DISASSOCIATED;
4252 	pool->watchdog_ts = jiffies;
4253 	INIT_LIST_HEAD(&pool->worklist);
4254 	INIT_LIST_HEAD(&pool->idle_list);
4255 	hash_init(pool->busy_hash);
4256 
4257 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
4258 	INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
4259 
4260 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
4261 
4262 	INIT_LIST_HEAD(&pool->workers);
4263 	INIT_LIST_HEAD(&pool->dying_workers);
4264 
4265 	ida_init(&pool->worker_ida);
4266 	INIT_HLIST_NODE(&pool->hash_node);
4267 	pool->refcnt = 1;
4268 
4269 	/* shouldn't fail above this point */
4270 	pool->attrs = alloc_workqueue_attrs();
4271 	if (!pool->attrs)
4272 		return -ENOMEM;
4273 
4274 	wqattrs_clear_for_pool(pool->attrs);
4275 
4276 	return 0;
4277 }
4278 
4279 #ifdef CONFIG_LOCKDEP
4280 static void wq_init_lockdep(struct workqueue_struct *wq)
4281 {
4282 	char *lock_name;
4283 
4284 	lockdep_register_key(&wq->key);
4285 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4286 	if (!lock_name)
4287 		lock_name = wq->name;
4288 
4289 	wq->lock_name = lock_name;
4290 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
4291 }
4292 
4293 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4294 {
4295 	lockdep_unregister_key(&wq->key);
4296 }
4297 
4298 static void wq_free_lockdep(struct workqueue_struct *wq)
4299 {
4300 	if (wq->lock_name != wq->name)
4301 		kfree(wq->lock_name);
4302 }
4303 #else
4304 static void wq_init_lockdep(struct workqueue_struct *wq)
4305 {
4306 }
4307 
4308 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4309 {
4310 }
4311 
4312 static void wq_free_lockdep(struct workqueue_struct *wq)
4313 {
4314 }
4315 #endif
4316 
4317 static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4318 {
4319 	int node;
4320 
4321 	for_each_node(node) {
4322 		kfree(nna_ar[node]);
4323 		nna_ar[node] = NULL;
4324 	}
4325 
4326 	kfree(nna_ar[nr_node_ids]);
4327 	nna_ar[nr_node_ids] = NULL;
4328 }
4329 
4330 static void init_node_nr_active(struct wq_node_nr_active *nna)
4331 {
4332 	atomic_set(&nna->nr, 0);
4333 	raw_spin_lock_init(&nna->lock);
4334 	INIT_LIST_HEAD(&nna->pending_pwqs);
4335 }
4336 
4337 /*
4338  * Each node's nr_active counter will be accessed mostly from its own node and
4339  * should be allocated in the node.
4340  */
4341 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4342 {
4343 	struct wq_node_nr_active *nna;
4344 	int node;
4345 
4346 	for_each_node(node) {
4347 		nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4348 		if (!nna)
4349 			goto err_free;
4350 		init_node_nr_active(nna);
4351 		nna_ar[node] = nna;
4352 	}
4353 
4354 	/* [nr_node_ids] is used as the fallback */
4355 	nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4356 	if (!nna)
4357 		goto err_free;
4358 	init_node_nr_active(nna);
4359 	nna_ar[nr_node_ids] = nna;
4360 
4361 	return 0;
4362 
4363 err_free:
4364 	free_node_nr_active(nna_ar);
4365 	return -ENOMEM;
4366 }
4367 
4368 static void rcu_free_wq(struct rcu_head *rcu)
4369 {
4370 	struct workqueue_struct *wq =
4371 		container_of(rcu, struct workqueue_struct, rcu);
4372 
4373 	if (wq->flags & WQ_UNBOUND)
4374 		free_node_nr_active(wq->node_nr_active);
4375 
4376 	wq_free_lockdep(wq);
4377 	free_percpu(wq->cpu_pwq);
4378 	free_workqueue_attrs(wq->unbound_attrs);
4379 	kfree(wq);
4380 }
4381 
4382 static void rcu_free_pool(struct rcu_head *rcu)
4383 {
4384 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
4385 
4386 	ida_destroy(&pool->worker_ida);
4387 	free_workqueue_attrs(pool->attrs);
4388 	kfree(pool);
4389 }
4390 
4391 /**
4392  * put_unbound_pool - put a worker_pool
4393  * @pool: worker_pool to put
4394  *
4395  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
4396  * safe manner.  get_unbound_pool() calls this function on its failure path
4397  * and this function should be able to release pools which went through,
4398  * successfully or not, init_worker_pool().
4399  *
4400  * Should be called with wq_pool_mutex held.
4401  */
4402 static void put_unbound_pool(struct worker_pool *pool)
4403 {
4404 	DECLARE_COMPLETION_ONSTACK(detach_completion);
4405 	struct worker *worker;
4406 	LIST_HEAD(cull_list);
4407 
4408 	lockdep_assert_held(&wq_pool_mutex);
4409 
4410 	if (--pool->refcnt)
4411 		return;
4412 
4413 	/* sanity checks */
4414 	if (WARN_ON(!(pool->cpu < 0)) ||
4415 	    WARN_ON(!list_empty(&pool->worklist)))
4416 		return;
4417 
4418 	/* release id and unhash */
4419 	if (pool->id >= 0)
4420 		idr_remove(&worker_pool_idr, pool->id);
4421 	hash_del(&pool->hash_node);
4422 
4423 	/*
4424 	 * Become the manager and destroy all workers.  This prevents
4425 	 * @pool's workers from blocking on attach_mutex.  We're the last
4426 	 * manager and @pool gets freed with the flag set.
4427 	 *
4428 	 * Having a concurrent manager is quite unlikely to happen as we can
4429 	 * only get here with
4430 	 *   pwq->refcnt == pool->refcnt == 0
4431 	 * which implies no work queued to the pool, which implies no worker can
4432 	 * become the manager. However a worker could have taken the role of
4433 	 * manager before the refcnts dropped to 0, since maybe_create_worker()
4434 	 * drops pool->lock
4435 	 */
4436 	while (true) {
4437 		rcuwait_wait_event(&manager_wait,
4438 				   !(pool->flags & POOL_MANAGER_ACTIVE),
4439 				   TASK_UNINTERRUPTIBLE);
4440 
4441 		mutex_lock(&wq_pool_attach_mutex);
4442 		raw_spin_lock_irq(&pool->lock);
4443 		if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4444 			pool->flags |= POOL_MANAGER_ACTIVE;
4445 			break;
4446 		}
4447 		raw_spin_unlock_irq(&pool->lock);
4448 		mutex_unlock(&wq_pool_attach_mutex);
4449 	}
4450 
4451 	while ((worker = first_idle_worker(pool)))
4452 		set_worker_dying(worker, &cull_list);
4453 	WARN_ON(pool->nr_workers || pool->nr_idle);
4454 	raw_spin_unlock_irq(&pool->lock);
4455 
4456 	wake_dying_workers(&cull_list);
4457 
4458 	if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
4459 		pool->detach_completion = &detach_completion;
4460 	mutex_unlock(&wq_pool_attach_mutex);
4461 
4462 	if (pool->detach_completion)
4463 		wait_for_completion(pool->detach_completion);
4464 
4465 	/* shut down the timers */
4466 	del_timer_sync(&pool->idle_timer);
4467 	cancel_work_sync(&pool->idle_cull_work);
4468 	del_timer_sync(&pool->mayday_timer);
4469 
4470 	/* RCU protected to allow dereferences from get_work_pool() */
4471 	call_rcu(&pool->rcu, rcu_free_pool);
4472 }
4473 
4474 /**
4475  * get_unbound_pool - get a worker_pool with the specified attributes
4476  * @attrs: the attributes of the worker_pool to get
4477  *
4478  * Obtain a worker_pool which has the same attributes as @attrs, bump the
4479  * reference count and return it.  If there already is a matching
4480  * worker_pool, it will be used; otherwise, this function attempts to
4481  * create a new one.
4482  *
4483  * Should be called with wq_pool_mutex held.
4484  *
4485  * Return: On success, a worker_pool with the same attributes as @attrs.
4486  * On failure, %NULL.
4487  */
4488 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
4489 {
4490 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
4491 	u32 hash = wqattrs_hash(attrs);
4492 	struct worker_pool *pool;
4493 	int pod, node = NUMA_NO_NODE;
4494 
4495 	lockdep_assert_held(&wq_pool_mutex);
4496 
4497 	/* do we already have a matching pool? */
4498 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
4499 		if (wqattrs_equal(pool->attrs, attrs)) {
4500 			pool->refcnt++;
4501 			return pool;
4502 		}
4503 	}
4504 
4505 	/* If __pod_cpumask is contained inside a NUMA pod, that's our node */
4506 	for (pod = 0; pod < pt->nr_pods; pod++) {
4507 		if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
4508 			node = pt->pod_node[pod];
4509 			break;
4510 		}
4511 	}
4512 
4513 	/* nope, create a new one */
4514 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
4515 	if (!pool || init_worker_pool(pool) < 0)
4516 		goto fail;
4517 
4518 	pool->node = node;
4519 	copy_workqueue_attrs(pool->attrs, attrs);
4520 	wqattrs_clear_for_pool(pool->attrs);
4521 
4522 	if (worker_pool_assign_id(pool) < 0)
4523 		goto fail;
4524 
4525 	/* create and start the initial worker */
4526 	if (wq_online && !create_worker(pool))
4527 		goto fail;
4528 
4529 	/* install */
4530 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
4531 
4532 	return pool;
4533 fail:
4534 	if (pool)
4535 		put_unbound_pool(pool);
4536 	return NULL;
4537 }
4538 
4539 static void rcu_free_pwq(struct rcu_head *rcu)
4540 {
4541 	kmem_cache_free(pwq_cache,
4542 			container_of(rcu, struct pool_workqueue, rcu));
4543 }
4544 
4545 /*
4546  * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
4547  * refcnt and needs to be destroyed.
4548  */
4549 static void pwq_release_workfn(struct kthread_work *work)
4550 {
4551 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
4552 						  release_work);
4553 	struct workqueue_struct *wq = pwq->wq;
4554 	struct worker_pool *pool = pwq->pool;
4555 	bool is_last = false;
4556 
4557 	/*
4558 	 * When @pwq is not linked, it doesn't hold any reference to the
4559 	 * @wq, and @wq is invalid to access.
4560 	 */
4561 	if (!list_empty(&pwq->pwqs_node)) {
4562 		mutex_lock(&wq->mutex);
4563 		list_del_rcu(&pwq->pwqs_node);
4564 		is_last = list_empty(&wq->pwqs);
4565 		mutex_unlock(&wq->mutex);
4566 	}
4567 
4568 	if (wq->flags & WQ_UNBOUND) {
4569 		mutex_lock(&wq_pool_mutex);
4570 		put_unbound_pool(pool);
4571 		mutex_unlock(&wq_pool_mutex);
4572 	}
4573 
4574 	if (!list_empty(&pwq->pending_node)) {
4575 		struct wq_node_nr_active *nna =
4576 			wq_node_nr_active(pwq->wq, pwq->pool->node);
4577 
4578 		raw_spin_lock_irq(&nna->lock);
4579 		list_del_init(&pwq->pending_node);
4580 		raw_spin_unlock_irq(&nna->lock);
4581 	}
4582 
4583 	call_rcu(&pwq->rcu, rcu_free_pwq);
4584 
4585 	/*
4586 	 * If we're the last pwq going away, @wq is already dead and no one
4587 	 * is gonna access it anymore.  Schedule RCU free.
4588 	 */
4589 	if (is_last) {
4590 		wq_unregister_lockdep(wq);
4591 		call_rcu(&wq->rcu, rcu_free_wq);
4592 	}
4593 }
4594 
4595 /* initialize newly allocated @pwq which is associated with @wq and @pool */
4596 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
4597 		     struct worker_pool *pool)
4598 {
4599 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
4600 
4601 	memset(pwq, 0, sizeof(*pwq));
4602 
4603 	pwq->pool = pool;
4604 	pwq->wq = wq;
4605 	pwq->flush_color = -1;
4606 	pwq->refcnt = 1;
4607 	INIT_LIST_HEAD(&pwq->inactive_works);
4608 	INIT_LIST_HEAD(&pwq->pending_node);
4609 	INIT_LIST_HEAD(&pwq->pwqs_node);
4610 	INIT_LIST_HEAD(&pwq->mayday_node);
4611 	kthread_init_work(&pwq->release_work, pwq_release_workfn);
4612 }
4613 
4614 /* sync @pwq with the current state of its associated wq and link it */
4615 static void link_pwq(struct pool_workqueue *pwq)
4616 {
4617 	struct workqueue_struct *wq = pwq->wq;
4618 
4619 	lockdep_assert_held(&wq->mutex);
4620 
4621 	/* may be called multiple times, ignore if already linked */
4622 	if (!list_empty(&pwq->pwqs_node))
4623 		return;
4624 
4625 	/* set the matching work_color */
4626 	pwq->work_color = wq->work_color;
4627 
4628 	/* link in @pwq */
4629 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
4630 }
4631 
4632 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
4633 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
4634 					const struct workqueue_attrs *attrs)
4635 {
4636 	struct worker_pool *pool;
4637 	struct pool_workqueue *pwq;
4638 
4639 	lockdep_assert_held(&wq_pool_mutex);
4640 
4641 	pool = get_unbound_pool(attrs);
4642 	if (!pool)
4643 		return NULL;
4644 
4645 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
4646 	if (!pwq) {
4647 		put_unbound_pool(pool);
4648 		return NULL;
4649 	}
4650 
4651 	init_pwq(pwq, wq, pool);
4652 	return pwq;
4653 }
4654 
4655 /**
4656  * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
4657  * @attrs: the wq_attrs of the default pwq of the target workqueue
4658  * @cpu: the target CPU
4659  * @cpu_going_down: if >= 0, the CPU to consider as offline
4660  *
4661  * Calculate the cpumask a workqueue with @attrs should use on @pod. If
4662  * @cpu_going_down is >= 0, that cpu is considered offline during calculation.
4663  * The result is stored in @attrs->__pod_cpumask.
4664  *
4665  * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
4666  * and @pod has online CPUs requested by @attrs, the returned cpumask is the
4667  * intersection of the possible CPUs of @pod and @attrs->cpumask.
4668  *
4669  * The caller is responsible for ensuring that the cpumask of @pod stays stable.
4670  */
4671 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu,
4672 				int cpu_going_down)
4673 {
4674 	const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
4675 	int pod = pt->cpu_pod[cpu];
4676 
4677 	/* does @pod have any online CPUs @attrs wants? */
4678 	cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
4679 	cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask);
4680 	if (cpu_going_down >= 0)
4681 		cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask);
4682 
4683 	if (cpumask_empty(attrs->__pod_cpumask)) {
4684 		cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
4685 		return;
4686 	}
4687 
4688 	/* yeap, return possible CPUs in @pod that @attrs wants */
4689 	cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]);
4690 
4691 	if (cpumask_empty(attrs->__pod_cpumask))
4692 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
4693 				"possible intersect\n");
4694 }
4695 
4696 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
4697 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
4698 					int cpu, struct pool_workqueue *pwq)
4699 {
4700 	struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
4701 	struct pool_workqueue *old_pwq;
4702 
4703 	lockdep_assert_held(&wq_pool_mutex);
4704 	lockdep_assert_held(&wq->mutex);
4705 
4706 	/* link_pwq() can handle duplicate calls */
4707 	link_pwq(pwq);
4708 
4709 	old_pwq = rcu_access_pointer(*slot);
4710 	rcu_assign_pointer(*slot, pwq);
4711 	return old_pwq;
4712 }
4713 
4714 /* context to store the prepared attrs & pwqs before applying */
4715 struct apply_wqattrs_ctx {
4716 	struct workqueue_struct	*wq;		/* target workqueue */
4717 	struct workqueue_attrs	*attrs;		/* attrs to apply */
4718 	struct list_head	list;		/* queued for batching commit */
4719 	struct pool_workqueue	*dfl_pwq;
4720 	struct pool_workqueue	*pwq_tbl[];
4721 };
4722 
4723 /* free the resources after success or abort */
4724 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
4725 {
4726 	if (ctx) {
4727 		int cpu;
4728 
4729 		for_each_possible_cpu(cpu)
4730 			put_pwq_unlocked(ctx->pwq_tbl[cpu]);
4731 		put_pwq_unlocked(ctx->dfl_pwq);
4732 
4733 		free_workqueue_attrs(ctx->attrs);
4734 
4735 		kfree(ctx);
4736 	}
4737 }
4738 
4739 /* allocate the attrs and pwqs for later installation */
4740 static struct apply_wqattrs_ctx *
4741 apply_wqattrs_prepare(struct workqueue_struct *wq,
4742 		      const struct workqueue_attrs *attrs,
4743 		      const cpumask_var_t unbound_cpumask)
4744 {
4745 	struct apply_wqattrs_ctx *ctx;
4746 	struct workqueue_attrs *new_attrs;
4747 	int cpu;
4748 
4749 	lockdep_assert_held(&wq_pool_mutex);
4750 
4751 	if (WARN_ON(attrs->affn_scope < 0 ||
4752 		    attrs->affn_scope >= WQ_AFFN_NR_TYPES))
4753 		return ERR_PTR(-EINVAL);
4754 
4755 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
4756 
4757 	new_attrs = alloc_workqueue_attrs();
4758 	if (!ctx || !new_attrs)
4759 		goto out_free;
4760 
4761 	/*
4762 	 * If something goes wrong during CPU up/down, we'll fall back to
4763 	 * the default pwq covering whole @attrs->cpumask.  Always create
4764 	 * it even if we don't use it immediately.
4765 	 */
4766 	copy_workqueue_attrs(new_attrs, attrs);
4767 	wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
4768 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
4769 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4770 	if (!ctx->dfl_pwq)
4771 		goto out_free;
4772 
4773 	for_each_possible_cpu(cpu) {
4774 		if (new_attrs->ordered) {
4775 			ctx->dfl_pwq->refcnt++;
4776 			ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
4777 		} else {
4778 			wq_calc_pod_cpumask(new_attrs, cpu, -1);
4779 			ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
4780 			if (!ctx->pwq_tbl[cpu])
4781 				goto out_free;
4782 		}
4783 	}
4784 
4785 	/* save the user configured attrs and sanitize it. */
4786 	copy_workqueue_attrs(new_attrs, attrs);
4787 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4788 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
4789 	ctx->attrs = new_attrs;
4790 
4791 	ctx->wq = wq;
4792 	return ctx;
4793 
4794 out_free:
4795 	free_workqueue_attrs(new_attrs);
4796 	apply_wqattrs_cleanup(ctx);
4797 	return ERR_PTR(-ENOMEM);
4798 }
4799 
4800 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
4801 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4802 {
4803 	int cpu;
4804 
4805 	/* all pwqs have been created successfully, let's install'em */
4806 	mutex_lock(&ctx->wq->mutex);
4807 
4808 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4809 
4810 	/* save the previous pwqs and install the new ones */
4811 	for_each_possible_cpu(cpu)
4812 		ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
4813 							ctx->pwq_tbl[cpu]);
4814 	ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
4815 
4816 	/* update node_nr_active->max */
4817 	wq_update_node_max_active(ctx->wq, -1);
4818 
4819 	mutex_unlock(&ctx->wq->mutex);
4820 }
4821 
4822 static void apply_wqattrs_lock(void)
4823 {
4824 	/* CPUs should stay stable across pwq creations and installations */
4825 	cpus_read_lock();
4826 	mutex_lock(&wq_pool_mutex);
4827 }
4828 
4829 static void apply_wqattrs_unlock(void)
4830 {
4831 	mutex_unlock(&wq_pool_mutex);
4832 	cpus_read_unlock();
4833 }
4834 
4835 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4836 					const struct workqueue_attrs *attrs)
4837 {
4838 	struct apply_wqattrs_ctx *ctx;
4839 
4840 	/* only unbound workqueues can change attributes */
4841 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4842 		return -EINVAL;
4843 
4844 	/* creating multiple pwqs breaks ordering guarantee */
4845 	if (!list_empty(&wq->pwqs)) {
4846 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4847 			return -EINVAL;
4848 
4849 		wq->flags &= ~__WQ_ORDERED;
4850 	}
4851 
4852 	ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
4853 	if (IS_ERR(ctx))
4854 		return PTR_ERR(ctx);
4855 
4856 	/* the ctx has been prepared successfully, let's commit it */
4857 	apply_wqattrs_commit(ctx);
4858 	apply_wqattrs_cleanup(ctx);
4859 
4860 	return 0;
4861 }
4862 
4863 /**
4864  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4865  * @wq: the target workqueue
4866  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4867  *
4868  * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
4869  * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
4870  * work items are affine to the pod it was issued on. Older pwqs are released as
4871  * in-flight work items finish. Note that a work item which repeatedly requeues
4872  * itself back-to-back will stay on its current pwq.
4873  *
4874  * Performs GFP_KERNEL allocations.
4875  *
4876  * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
4877  *
4878  * Return: 0 on success and -errno on failure.
4879  */
4880 int apply_workqueue_attrs(struct workqueue_struct *wq,
4881 			  const struct workqueue_attrs *attrs)
4882 {
4883 	int ret;
4884 
4885 	lockdep_assert_cpus_held();
4886 
4887 	mutex_lock(&wq_pool_mutex);
4888 	ret = apply_workqueue_attrs_locked(wq, attrs);
4889 	mutex_unlock(&wq_pool_mutex);
4890 
4891 	return ret;
4892 }
4893 
4894 /**
4895  * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug
4896  * @wq: the target workqueue
4897  * @cpu: the CPU to update pool association for
4898  * @hotplug_cpu: the CPU coming up or going down
4899  * @online: whether @cpu is coming up or going down
4900  *
4901  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4902  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update pod affinity of
4903  * @wq accordingly.
4904  *
4905  *
4906  * If pod affinity can't be adjusted due to memory allocation failure, it falls
4907  * back to @wq->dfl_pwq which may not be optimal but is always correct.
4908  *
4909  * Note that when the last allowed CPU of a pod goes offline for a workqueue
4910  * with a cpumask spanning multiple pods, the workers which were already
4911  * executing the work items for the workqueue will lose their CPU affinity and
4912  * may execute on any CPU. This is similar to how per-cpu workqueues behave on
4913  * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
4914  * responsibility to flush the work item from CPU_DOWN_PREPARE.
4915  */
4916 static void wq_update_pod(struct workqueue_struct *wq, int cpu,
4917 			  int hotplug_cpu, bool online)
4918 {
4919 	int off_cpu = online ? -1 : hotplug_cpu;
4920 	struct pool_workqueue *old_pwq = NULL, *pwq;
4921 	struct workqueue_attrs *target_attrs;
4922 
4923 	lockdep_assert_held(&wq_pool_mutex);
4924 
4925 	if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
4926 		return;
4927 
4928 	/*
4929 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4930 	 * Let's use a preallocated one.  The following buf is protected by
4931 	 * CPU hotplug exclusion.
4932 	 */
4933 	target_attrs = wq_update_pod_attrs_buf;
4934 
4935 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4936 	wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
4937 
4938 	/* nothing to do if the target cpumask matches the current pwq */
4939 	wq_calc_pod_cpumask(target_attrs, cpu, off_cpu);
4940 	if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
4941 		return;
4942 
4943 	/* create a new pwq */
4944 	pwq = alloc_unbound_pwq(wq, target_attrs);
4945 	if (!pwq) {
4946 		pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
4947 			wq->name);
4948 		goto use_dfl_pwq;
4949 	}
4950 
4951 	/* Install the new pwq. */
4952 	mutex_lock(&wq->mutex);
4953 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
4954 	goto out_unlock;
4955 
4956 use_dfl_pwq:
4957 	mutex_lock(&wq->mutex);
4958 	pwq = unbound_pwq(wq, -1);
4959 	raw_spin_lock_irq(&pwq->pool->lock);
4960 	get_pwq(pwq);
4961 	raw_spin_unlock_irq(&pwq->pool->lock);
4962 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
4963 out_unlock:
4964 	mutex_unlock(&wq->mutex);
4965 	put_pwq_unlocked(old_pwq);
4966 }
4967 
4968 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4969 {
4970 	bool highpri = wq->flags & WQ_HIGHPRI;
4971 	int cpu, ret;
4972 
4973 	wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
4974 	if (!wq->cpu_pwq)
4975 		goto enomem;
4976 
4977 	if (!(wq->flags & WQ_UNBOUND)) {
4978 		for_each_possible_cpu(cpu) {
4979 			struct pool_workqueue **pwq_p =
4980 				per_cpu_ptr(wq->cpu_pwq, cpu);
4981 			struct worker_pool *pool =
4982 				&(per_cpu_ptr(cpu_worker_pools, cpu)[highpri]);
4983 
4984 			*pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
4985 						       pool->node);
4986 			if (!*pwq_p)
4987 				goto enomem;
4988 
4989 			init_pwq(*pwq_p, wq, pool);
4990 
4991 			mutex_lock(&wq->mutex);
4992 			link_pwq(*pwq_p);
4993 			mutex_unlock(&wq->mutex);
4994 		}
4995 		return 0;
4996 	}
4997 
4998 	cpus_read_lock();
4999 	if (wq->flags & __WQ_ORDERED) {
5000 		struct pool_workqueue *dfl_pwq;
5001 
5002 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
5003 		/* there should only be single pwq for ordering guarantee */
5004 		dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5005 		WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5006 			      wq->pwqs.prev != &dfl_pwq->pwqs_node),
5007 		     "ordering guarantee broken for workqueue %s\n", wq->name);
5008 	} else {
5009 		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
5010 	}
5011 	cpus_read_unlock();
5012 
5013 	/* for unbound pwq, flush the pwq_release_worker ensures that the
5014 	 * pwq_release_workfn() completes before calling kfree(wq).
5015 	 */
5016 	if (ret)
5017 		kthread_flush_worker(pwq_release_worker);
5018 
5019 	return ret;
5020 
5021 enomem:
5022 	if (wq->cpu_pwq) {
5023 		for_each_possible_cpu(cpu) {
5024 			struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5025 
5026 			if (pwq)
5027 				kmem_cache_free(pwq_cache, pwq);
5028 		}
5029 		free_percpu(wq->cpu_pwq);
5030 		wq->cpu_pwq = NULL;
5031 	}
5032 	return -ENOMEM;
5033 }
5034 
5035 static int wq_clamp_max_active(int max_active, unsigned int flags,
5036 			       const char *name)
5037 {
5038 	if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
5039 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
5040 			max_active, name, 1, WQ_MAX_ACTIVE);
5041 
5042 	return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
5043 }
5044 
5045 /*
5046  * Workqueues which may be used during memory reclaim should have a rescuer
5047  * to guarantee forward progress.
5048  */
5049 static int init_rescuer(struct workqueue_struct *wq)
5050 {
5051 	struct worker *rescuer;
5052 	int ret;
5053 
5054 	if (!(wq->flags & WQ_MEM_RECLAIM))
5055 		return 0;
5056 
5057 	rescuer = alloc_worker(NUMA_NO_NODE);
5058 	if (!rescuer) {
5059 		pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5060 		       wq->name);
5061 		return -ENOMEM;
5062 	}
5063 
5064 	rescuer->rescue_wq = wq;
5065 	rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name);
5066 	if (IS_ERR(rescuer->task)) {
5067 		ret = PTR_ERR(rescuer->task);
5068 		pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5069 		       wq->name, ERR_PTR(ret));
5070 		kfree(rescuer);
5071 		return ret;
5072 	}
5073 
5074 	wq->rescuer = rescuer;
5075 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
5076 	wake_up_process(rescuer->task);
5077 
5078 	return 0;
5079 }
5080 
5081 /**
5082  * wq_adjust_max_active - update a wq's max_active to the current setting
5083  * @wq: target workqueue
5084  *
5085  * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5086  * activate inactive work items accordingly. If @wq is freezing, clear
5087  * @wq->max_active to zero.
5088  */
5089 static void wq_adjust_max_active(struct workqueue_struct *wq)
5090 {
5091 	bool activated;
5092 	int new_max, new_min;
5093 
5094 	lockdep_assert_held(&wq->mutex);
5095 
5096 	if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5097 		new_max = 0;
5098 		new_min = 0;
5099 	} else {
5100 		new_max = wq->saved_max_active;
5101 		new_min = wq->saved_min_active;
5102 	}
5103 
5104 	if (wq->max_active == new_max && wq->min_active == new_min)
5105 		return;
5106 
5107 	/*
5108 	 * Update @wq->max/min_active and then kick inactive work items if more
5109 	 * active work items are allowed. This doesn't break work item ordering
5110 	 * because new work items are always queued behind existing inactive
5111 	 * work items if there are any.
5112 	 */
5113 	WRITE_ONCE(wq->max_active, new_max);
5114 	WRITE_ONCE(wq->min_active, new_min);
5115 
5116 	if (wq->flags & WQ_UNBOUND)
5117 		wq_update_node_max_active(wq, -1);
5118 
5119 	if (new_max == 0)
5120 		return;
5121 
5122 	/*
5123 	 * Round-robin through pwq's activating the first inactive work item
5124 	 * until max_active is filled.
5125 	 */
5126 	do {
5127 		struct pool_workqueue *pwq;
5128 
5129 		activated = false;
5130 		for_each_pwq(pwq, wq) {
5131 			unsigned long flags;
5132 
5133 			/* can be called during early boot w/ irq disabled */
5134 			raw_spin_lock_irqsave(&pwq->pool->lock, flags);
5135 			if (pwq_activate_first_inactive(pwq, true)) {
5136 				activated = true;
5137 				kick_pool(pwq->pool);
5138 			}
5139 			raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
5140 		}
5141 	} while (activated);
5142 }
5143 
5144 __printf(1, 4)
5145 struct workqueue_struct *alloc_workqueue(const char *fmt,
5146 					 unsigned int flags,
5147 					 int max_active, ...)
5148 {
5149 	va_list args;
5150 	struct workqueue_struct *wq;
5151 	size_t wq_size;
5152 	int name_len;
5153 
5154 	/*
5155 	 * Unbound && max_active == 1 used to imply ordered, which is no longer
5156 	 * the case on many machines due to per-pod pools. While
5157 	 * alloc_ordered_workqueue() is the right way to create an ordered
5158 	 * workqueue, keep the previous behavior to avoid subtle breakages.
5159 	 */
5160 	if ((flags & WQ_UNBOUND) && max_active == 1)
5161 		flags |= __WQ_ORDERED;
5162 
5163 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
5164 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5165 		flags |= WQ_UNBOUND;
5166 
5167 	/* allocate wq and format name */
5168 	if (flags & WQ_UNBOUND)
5169 		wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5170 	else
5171 		wq_size = sizeof(*wq);
5172 
5173 	wq = kzalloc(wq_size, GFP_KERNEL);
5174 	if (!wq)
5175 		return NULL;
5176 
5177 	if (flags & WQ_UNBOUND) {
5178 		wq->unbound_attrs = alloc_workqueue_attrs();
5179 		if (!wq->unbound_attrs)
5180 			goto err_free_wq;
5181 	}
5182 
5183 	va_start(args, max_active);
5184 	name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
5185 	va_end(args);
5186 
5187 	if (name_len >= WQ_NAME_LEN)
5188 		pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5189 			     wq->name);
5190 
5191 	max_active = max_active ?: WQ_DFL_ACTIVE;
5192 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
5193 
5194 	/* init wq */
5195 	wq->flags = flags;
5196 	wq->max_active = max_active;
5197 	wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5198 	wq->saved_max_active = wq->max_active;
5199 	wq->saved_min_active = wq->min_active;
5200 	mutex_init(&wq->mutex);
5201 	atomic_set(&wq->nr_pwqs_to_flush, 0);
5202 	INIT_LIST_HEAD(&wq->pwqs);
5203 	INIT_LIST_HEAD(&wq->flusher_queue);
5204 	INIT_LIST_HEAD(&wq->flusher_overflow);
5205 	INIT_LIST_HEAD(&wq->maydays);
5206 
5207 	wq_init_lockdep(wq);
5208 	INIT_LIST_HEAD(&wq->list);
5209 
5210 	if (flags & WQ_UNBOUND) {
5211 		if (alloc_node_nr_active(wq->node_nr_active) < 0)
5212 			goto err_unreg_lockdep;
5213 	}
5214 
5215 	if (alloc_and_link_pwqs(wq) < 0)
5216 		goto err_free_node_nr_active;
5217 
5218 	if (wq_online && init_rescuer(wq) < 0)
5219 		goto err_destroy;
5220 
5221 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5222 		goto err_destroy;
5223 
5224 	/*
5225 	 * wq_pool_mutex protects global freeze state and workqueues list.
5226 	 * Grab it, adjust max_active and add the new @wq to workqueues
5227 	 * list.
5228 	 */
5229 	mutex_lock(&wq_pool_mutex);
5230 
5231 	mutex_lock(&wq->mutex);
5232 	wq_adjust_max_active(wq);
5233 	mutex_unlock(&wq->mutex);
5234 
5235 	list_add_tail_rcu(&wq->list, &workqueues);
5236 
5237 	mutex_unlock(&wq_pool_mutex);
5238 
5239 	return wq;
5240 
5241 err_free_node_nr_active:
5242 	if (wq->flags & WQ_UNBOUND)
5243 		free_node_nr_active(wq->node_nr_active);
5244 err_unreg_lockdep:
5245 	wq_unregister_lockdep(wq);
5246 	wq_free_lockdep(wq);
5247 err_free_wq:
5248 	free_workqueue_attrs(wq->unbound_attrs);
5249 	kfree(wq);
5250 	return NULL;
5251 err_destroy:
5252 	destroy_workqueue(wq);
5253 	return NULL;
5254 }
5255 EXPORT_SYMBOL_GPL(alloc_workqueue);
5256 
5257 static bool pwq_busy(struct pool_workqueue *pwq)
5258 {
5259 	int i;
5260 
5261 	for (i = 0; i < WORK_NR_COLORS; i++)
5262 		if (pwq->nr_in_flight[i])
5263 			return true;
5264 
5265 	if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
5266 		return true;
5267 	if (!pwq_is_empty(pwq))
5268 		return true;
5269 
5270 	return false;
5271 }
5272 
5273 /**
5274  * destroy_workqueue - safely terminate a workqueue
5275  * @wq: target workqueue
5276  *
5277  * Safely destroy a workqueue. All work currently pending will be done first.
5278  */
5279 void destroy_workqueue(struct workqueue_struct *wq)
5280 {
5281 	struct pool_workqueue *pwq;
5282 	int cpu;
5283 
5284 	/*
5285 	 * Remove it from sysfs first so that sanity check failure doesn't
5286 	 * lead to sysfs name conflicts.
5287 	 */
5288 	workqueue_sysfs_unregister(wq);
5289 
5290 	/* mark the workqueue destruction is in progress */
5291 	mutex_lock(&wq->mutex);
5292 	wq->flags |= __WQ_DESTROYING;
5293 	mutex_unlock(&wq->mutex);
5294 
5295 	/* drain it before proceeding with destruction */
5296 	drain_workqueue(wq);
5297 
5298 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5299 	if (wq->rescuer) {
5300 		struct worker *rescuer = wq->rescuer;
5301 
5302 		/* this prevents new queueing */
5303 		raw_spin_lock_irq(&wq_mayday_lock);
5304 		wq->rescuer = NULL;
5305 		raw_spin_unlock_irq(&wq_mayday_lock);
5306 
5307 		/* rescuer will empty maydays list before exiting */
5308 		kthread_stop(rescuer->task);
5309 		kfree(rescuer);
5310 	}
5311 
5312 	/*
5313 	 * Sanity checks - grab all the locks so that we wait for all
5314 	 * in-flight operations which may do put_pwq().
5315 	 */
5316 	mutex_lock(&wq_pool_mutex);
5317 	mutex_lock(&wq->mutex);
5318 	for_each_pwq(pwq, wq) {
5319 		raw_spin_lock_irq(&pwq->pool->lock);
5320 		if (WARN_ON(pwq_busy(pwq))) {
5321 			pr_warn("%s: %s has the following busy pwq\n",
5322 				__func__, wq->name);
5323 			show_pwq(pwq);
5324 			raw_spin_unlock_irq(&pwq->pool->lock);
5325 			mutex_unlock(&wq->mutex);
5326 			mutex_unlock(&wq_pool_mutex);
5327 			show_one_workqueue(wq);
5328 			return;
5329 		}
5330 		raw_spin_unlock_irq(&pwq->pool->lock);
5331 	}
5332 	mutex_unlock(&wq->mutex);
5333 
5334 	/*
5335 	 * wq list is used to freeze wq, remove from list after
5336 	 * flushing is complete in case freeze races us.
5337 	 */
5338 	list_del_rcu(&wq->list);
5339 	mutex_unlock(&wq_pool_mutex);
5340 
5341 	/*
5342 	 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5343 	 * to put the base refs. @wq will be auto-destroyed from the last
5344 	 * pwq_put. RCU read lock prevents @wq from going away from under us.
5345 	 */
5346 	rcu_read_lock();
5347 
5348 	for_each_possible_cpu(cpu) {
5349 		put_pwq_unlocked(unbound_pwq(wq, cpu));
5350 		RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
5351 	}
5352 
5353 	put_pwq_unlocked(unbound_pwq(wq, -1));
5354 	RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
5355 
5356 	rcu_read_unlock();
5357 }
5358 EXPORT_SYMBOL_GPL(destroy_workqueue);
5359 
5360 /**
5361  * workqueue_set_max_active - adjust max_active of a workqueue
5362  * @wq: target workqueue
5363  * @max_active: new max_active value.
5364  *
5365  * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5366  * comment.
5367  *
5368  * CONTEXT:
5369  * Don't call from IRQ context.
5370  */
5371 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
5372 {
5373 	/* disallow meddling with max_active for ordered workqueues */
5374 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5375 		return;
5376 
5377 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
5378 
5379 	mutex_lock(&wq->mutex);
5380 
5381 	wq->flags &= ~__WQ_ORDERED;
5382 	wq->saved_max_active = max_active;
5383 	if (wq->flags & WQ_UNBOUND)
5384 		wq->saved_min_active = min(wq->saved_min_active, max_active);
5385 
5386 	wq_adjust_max_active(wq);
5387 
5388 	mutex_unlock(&wq->mutex);
5389 }
5390 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
5391 
5392 /**
5393  * current_work - retrieve %current task's work struct
5394  *
5395  * Determine if %current task is a workqueue worker and what it's working on.
5396  * Useful to find out the context that the %current task is running in.
5397  *
5398  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
5399  */
5400 struct work_struct *current_work(void)
5401 {
5402 	struct worker *worker = current_wq_worker();
5403 
5404 	return worker ? worker->current_work : NULL;
5405 }
5406 EXPORT_SYMBOL(current_work);
5407 
5408 /**
5409  * current_is_workqueue_rescuer - is %current workqueue rescuer?
5410  *
5411  * Determine whether %current is a workqueue rescuer.  Can be used from
5412  * work functions to determine whether it's being run off the rescuer task.
5413  *
5414  * Return: %true if %current is a workqueue rescuer. %false otherwise.
5415  */
5416 bool current_is_workqueue_rescuer(void)
5417 {
5418 	struct worker *worker = current_wq_worker();
5419 
5420 	return worker && worker->rescue_wq;
5421 }
5422 
5423 /**
5424  * workqueue_congested - test whether a workqueue is congested
5425  * @cpu: CPU in question
5426  * @wq: target workqueue
5427  *
5428  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
5429  * no synchronization around this function and the test result is
5430  * unreliable and only useful as advisory hints or for debugging.
5431  *
5432  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
5433  *
5434  * With the exception of ordered workqueues, all workqueues have per-cpu
5435  * pool_workqueues, each with its own congested state. A workqueue being
5436  * congested on one CPU doesn't mean that the workqueue is contested on any
5437  * other CPUs.
5438  *
5439  * Return:
5440  * %true if congested, %false otherwise.
5441  */
5442 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
5443 {
5444 	struct pool_workqueue *pwq;
5445 	bool ret;
5446 
5447 	rcu_read_lock();
5448 	preempt_disable();
5449 
5450 	if (cpu == WORK_CPU_UNBOUND)
5451 		cpu = smp_processor_id();
5452 
5453 	pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5454 	ret = !list_empty(&pwq->inactive_works);
5455 
5456 	preempt_enable();
5457 	rcu_read_unlock();
5458 
5459 	return ret;
5460 }
5461 EXPORT_SYMBOL_GPL(workqueue_congested);
5462 
5463 /**
5464  * work_busy - test whether a work is currently pending or running
5465  * @work: the work to be tested
5466  *
5467  * Test whether @work is currently pending or running.  There is no
5468  * synchronization around this function and the test result is
5469  * unreliable and only useful as advisory hints or for debugging.
5470  *
5471  * Return:
5472  * OR'd bitmask of WORK_BUSY_* bits.
5473  */
5474 unsigned int work_busy(struct work_struct *work)
5475 {
5476 	struct worker_pool *pool;
5477 	unsigned long flags;
5478 	unsigned int ret = 0;
5479 
5480 	if (work_pending(work))
5481 		ret |= WORK_BUSY_PENDING;
5482 
5483 	rcu_read_lock();
5484 	pool = get_work_pool(work);
5485 	if (pool) {
5486 		raw_spin_lock_irqsave(&pool->lock, flags);
5487 		if (find_worker_executing_work(pool, work))
5488 			ret |= WORK_BUSY_RUNNING;
5489 		raw_spin_unlock_irqrestore(&pool->lock, flags);
5490 	}
5491 	rcu_read_unlock();
5492 
5493 	return ret;
5494 }
5495 EXPORT_SYMBOL_GPL(work_busy);
5496 
5497 /**
5498  * set_worker_desc - set description for the current work item
5499  * @fmt: printf-style format string
5500  * @...: arguments for the format string
5501  *
5502  * This function can be called by a running work function to describe what
5503  * the work item is about.  If the worker task gets dumped, this
5504  * information will be printed out together to help debugging.  The
5505  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
5506  */
5507 void set_worker_desc(const char *fmt, ...)
5508 {
5509 	struct worker *worker = current_wq_worker();
5510 	va_list args;
5511 
5512 	if (worker) {
5513 		va_start(args, fmt);
5514 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
5515 		va_end(args);
5516 	}
5517 }
5518 EXPORT_SYMBOL_GPL(set_worker_desc);
5519 
5520 /**
5521  * print_worker_info - print out worker information and description
5522  * @log_lvl: the log level to use when printing
5523  * @task: target task
5524  *
5525  * If @task is a worker and currently executing a work item, print out the
5526  * name of the workqueue being serviced and worker description set with
5527  * set_worker_desc() by the currently executing work item.
5528  *
5529  * This function can be safely called on any task as long as the
5530  * task_struct itself is accessible.  While safe, this function isn't
5531  * synchronized and may print out mixups or garbages of limited length.
5532  */
5533 void print_worker_info(const char *log_lvl, struct task_struct *task)
5534 {
5535 	work_func_t *fn = NULL;
5536 	char name[WQ_NAME_LEN] = { };
5537 	char desc[WORKER_DESC_LEN] = { };
5538 	struct pool_workqueue *pwq = NULL;
5539 	struct workqueue_struct *wq = NULL;
5540 	struct worker *worker;
5541 
5542 	if (!(task->flags & PF_WQ_WORKER))
5543 		return;
5544 
5545 	/*
5546 	 * This function is called without any synchronization and @task
5547 	 * could be in any state.  Be careful with dereferences.
5548 	 */
5549 	worker = kthread_probe_data(task);
5550 
5551 	/*
5552 	 * Carefully copy the associated workqueue's workfn, name and desc.
5553 	 * Keep the original last '\0' in case the original is garbage.
5554 	 */
5555 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
5556 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
5557 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
5558 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
5559 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
5560 
5561 	if (fn || name[0] || desc[0]) {
5562 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
5563 		if (strcmp(name, desc))
5564 			pr_cont(" (%s)", desc);
5565 		pr_cont("\n");
5566 	}
5567 }
5568 
5569 static void pr_cont_pool_info(struct worker_pool *pool)
5570 {
5571 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
5572 	if (pool->node != NUMA_NO_NODE)
5573 		pr_cont(" node=%d", pool->node);
5574 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
5575 }
5576 
5577 struct pr_cont_work_struct {
5578 	bool comma;
5579 	work_func_t func;
5580 	long ctr;
5581 };
5582 
5583 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
5584 {
5585 	if (!pcwsp->ctr)
5586 		goto out_record;
5587 	if (func == pcwsp->func) {
5588 		pcwsp->ctr++;
5589 		return;
5590 	}
5591 	if (pcwsp->ctr == 1)
5592 		pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
5593 	else
5594 		pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
5595 	pcwsp->ctr = 0;
5596 out_record:
5597 	if ((long)func == -1L)
5598 		return;
5599 	pcwsp->comma = comma;
5600 	pcwsp->func = func;
5601 	pcwsp->ctr = 1;
5602 }
5603 
5604 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
5605 {
5606 	if (work->func == wq_barrier_func) {
5607 		struct wq_barrier *barr;
5608 
5609 		barr = container_of(work, struct wq_barrier, work);
5610 
5611 		pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
5612 		pr_cont("%s BAR(%d)", comma ? "," : "",
5613 			task_pid_nr(barr->task));
5614 	} else {
5615 		if (!comma)
5616 			pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
5617 		pr_cont_work_flush(comma, work->func, pcwsp);
5618 	}
5619 }
5620 
5621 static void show_pwq(struct pool_workqueue *pwq)
5622 {
5623 	struct pr_cont_work_struct pcws = { .ctr = 0, };
5624 	struct worker_pool *pool = pwq->pool;
5625 	struct work_struct *work;
5626 	struct worker *worker;
5627 	bool has_in_flight = false, has_pending = false;
5628 	int bkt;
5629 
5630 	pr_info("  pwq %d:", pool->id);
5631 	pr_cont_pool_info(pool);
5632 
5633 	pr_cont(" active=%d refcnt=%d%s\n",
5634 		pwq->nr_active, pwq->refcnt,
5635 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
5636 
5637 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5638 		if (worker->current_pwq == pwq) {
5639 			has_in_flight = true;
5640 			break;
5641 		}
5642 	}
5643 	if (has_in_flight) {
5644 		bool comma = false;
5645 
5646 		pr_info("    in-flight:");
5647 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5648 			if (worker->current_pwq != pwq)
5649 				continue;
5650 
5651 			pr_cont("%s %d%s:%ps", comma ? "," : "",
5652 				task_pid_nr(worker->task),
5653 				worker->rescue_wq ? "(RESCUER)" : "",
5654 				worker->current_func);
5655 			list_for_each_entry(work, &worker->scheduled, entry)
5656 				pr_cont_work(false, work, &pcws);
5657 			pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5658 			comma = true;
5659 		}
5660 		pr_cont("\n");
5661 	}
5662 
5663 	list_for_each_entry(work, &pool->worklist, entry) {
5664 		if (get_work_pwq(work) == pwq) {
5665 			has_pending = true;
5666 			break;
5667 		}
5668 	}
5669 	if (has_pending) {
5670 		bool comma = false;
5671 
5672 		pr_info("    pending:");
5673 		list_for_each_entry(work, &pool->worklist, entry) {
5674 			if (get_work_pwq(work) != pwq)
5675 				continue;
5676 
5677 			pr_cont_work(comma, work, &pcws);
5678 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5679 		}
5680 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5681 		pr_cont("\n");
5682 	}
5683 
5684 	if (!list_empty(&pwq->inactive_works)) {
5685 		bool comma = false;
5686 
5687 		pr_info("    inactive:");
5688 		list_for_each_entry(work, &pwq->inactive_works, entry) {
5689 			pr_cont_work(comma, work, &pcws);
5690 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5691 		}
5692 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5693 		pr_cont("\n");
5694 	}
5695 }
5696 
5697 /**
5698  * show_one_workqueue - dump state of specified workqueue
5699  * @wq: workqueue whose state will be printed
5700  */
5701 void show_one_workqueue(struct workqueue_struct *wq)
5702 {
5703 	struct pool_workqueue *pwq;
5704 	bool idle = true;
5705 	unsigned long flags;
5706 
5707 	for_each_pwq(pwq, wq) {
5708 		if (!pwq_is_empty(pwq)) {
5709 			idle = false;
5710 			break;
5711 		}
5712 	}
5713 	if (idle) /* Nothing to print for idle workqueue */
5714 		return;
5715 
5716 	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
5717 
5718 	for_each_pwq(pwq, wq) {
5719 		raw_spin_lock_irqsave(&pwq->pool->lock, flags);
5720 		if (!pwq_is_empty(pwq)) {
5721 			/*
5722 			 * Defer printing to avoid deadlocks in console
5723 			 * drivers that queue work while holding locks
5724 			 * also taken in their write paths.
5725 			 */
5726 			printk_deferred_enter();
5727 			show_pwq(pwq);
5728 			printk_deferred_exit();
5729 		}
5730 		raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
5731 		/*
5732 		 * We could be printing a lot from atomic context, e.g.
5733 		 * sysrq-t -> show_all_workqueues(). Avoid triggering
5734 		 * hard lockup.
5735 		 */
5736 		touch_nmi_watchdog();
5737 	}
5738 
5739 }
5740 
5741 /**
5742  * show_one_worker_pool - dump state of specified worker pool
5743  * @pool: worker pool whose state will be printed
5744  */
5745 static void show_one_worker_pool(struct worker_pool *pool)
5746 {
5747 	struct worker *worker;
5748 	bool first = true;
5749 	unsigned long flags;
5750 	unsigned long hung = 0;
5751 
5752 	raw_spin_lock_irqsave(&pool->lock, flags);
5753 	if (pool->nr_workers == pool->nr_idle)
5754 		goto next_pool;
5755 
5756 	/* How long the first pending work is waiting for a worker. */
5757 	if (!list_empty(&pool->worklist))
5758 		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
5759 
5760 	/*
5761 	 * Defer printing to avoid deadlocks in console drivers that
5762 	 * queue work while holding locks also taken in their write
5763 	 * paths.
5764 	 */
5765 	printk_deferred_enter();
5766 	pr_info("pool %d:", pool->id);
5767 	pr_cont_pool_info(pool);
5768 	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
5769 	if (pool->manager)
5770 		pr_cont(" manager: %d",
5771 			task_pid_nr(pool->manager->task));
5772 	list_for_each_entry(worker, &pool->idle_list, entry) {
5773 		pr_cont(" %s%d", first ? "idle: " : "",
5774 			task_pid_nr(worker->task));
5775 		first = false;
5776 	}
5777 	pr_cont("\n");
5778 	printk_deferred_exit();
5779 next_pool:
5780 	raw_spin_unlock_irqrestore(&pool->lock, flags);
5781 	/*
5782 	 * We could be printing a lot from atomic context, e.g.
5783 	 * sysrq-t -> show_all_workqueues(). Avoid triggering
5784 	 * hard lockup.
5785 	 */
5786 	touch_nmi_watchdog();
5787 
5788 }
5789 
5790 /**
5791  * show_all_workqueues - dump workqueue state
5792  *
5793  * Called from a sysrq handler and prints out all busy workqueues and pools.
5794  */
5795 void show_all_workqueues(void)
5796 {
5797 	struct workqueue_struct *wq;
5798 	struct worker_pool *pool;
5799 	int pi;
5800 
5801 	rcu_read_lock();
5802 
5803 	pr_info("Showing busy workqueues and worker pools:\n");
5804 
5805 	list_for_each_entry_rcu(wq, &workqueues, list)
5806 		show_one_workqueue(wq);
5807 
5808 	for_each_pool(pool, pi)
5809 		show_one_worker_pool(pool);
5810 
5811 	rcu_read_unlock();
5812 }
5813 
5814 /**
5815  * show_freezable_workqueues - dump freezable workqueue state
5816  *
5817  * Called from try_to_freeze_tasks() and prints out all freezable workqueues
5818  * still busy.
5819  */
5820 void show_freezable_workqueues(void)
5821 {
5822 	struct workqueue_struct *wq;
5823 
5824 	rcu_read_lock();
5825 
5826 	pr_info("Showing freezable workqueues that are still busy:\n");
5827 
5828 	list_for_each_entry_rcu(wq, &workqueues, list) {
5829 		if (!(wq->flags & WQ_FREEZABLE))
5830 			continue;
5831 		show_one_workqueue(wq);
5832 	}
5833 
5834 	rcu_read_unlock();
5835 }
5836 
5837 /* used to show worker information through /proc/PID/{comm,stat,status} */
5838 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
5839 {
5840 	int off;
5841 
5842 	/* always show the actual comm */
5843 	off = strscpy(buf, task->comm, size);
5844 	if (off < 0)
5845 		return;
5846 
5847 	/* stabilize PF_WQ_WORKER and worker pool association */
5848 	mutex_lock(&wq_pool_attach_mutex);
5849 
5850 	if (task->flags & PF_WQ_WORKER) {
5851 		struct worker *worker = kthread_data(task);
5852 		struct worker_pool *pool = worker->pool;
5853 
5854 		if (pool) {
5855 			raw_spin_lock_irq(&pool->lock);
5856 			/*
5857 			 * ->desc tracks information (wq name or
5858 			 * set_worker_desc()) for the latest execution.  If
5859 			 * current, prepend '+', otherwise '-'.
5860 			 */
5861 			if (worker->desc[0] != '\0') {
5862 				if (worker->current_work)
5863 					scnprintf(buf + off, size - off, "+%s",
5864 						  worker->desc);
5865 				else
5866 					scnprintf(buf + off, size - off, "-%s",
5867 						  worker->desc);
5868 			}
5869 			raw_spin_unlock_irq(&pool->lock);
5870 		}
5871 	}
5872 
5873 	mutex_unlock(&wq_pool_attach_mutex);
5874 }
5875 
5876 #ifdef CONFIG_SMP
5877 
5878 /*
5879  * CPU hotplug.
5880  *
5881  * There are two challenges in supporting CPU hotplug.  Firstly, there
5882  * are a lot of assumptions on strong associations among work, pwq and
5883  * pool which make migrating pending and scheduled works very
5884  * difficult to implement without impacting hot paths.  Secondly,
5885  * worker pools serve mix of short, long and very long running works making
5886  * blocked draining impractical.
5887  *
5888  * This is solved by allowing the pools to be disassociated from the CPU
5889  * running as an unbound one and allowing it to be reattached later if the
5890  * cpu comes back online.
5891  */
5892 
5893 static void unbind_workers(int cpu)
5894 {
5895 	struct worker_pool *pool;
5896 	struct worker *worker;
5897 
5898 	for_each_cpu_worker_pool(pool, cpu) {
5899 		mutex_lock(&wq_pool_attach_mutex);
5900 		raw_spin_lock_irq(&pool->lock);
5901 
5902 		/*
5903 		 * We've blocked all attach/detach operations. Make all workers
5904 		 * unbound and set DISASSOCIATED.  Before this, all workers
5905 		 * must be on the cpu.  After this, they may become diasporas.
5906 		 * And the preemption disabled section in their sched callbacks
5907 		 * are guaranteed to see WORKER_UNBOUND since the code here
5908 		 * is on the same cpu.
5909 		 */
5910 		for_each_pool_worker(worker, pool)
5911 			worker->flags |= WORKER_UNBOUND;
5912 
5913 		pool->flags |= POOL_DISASSOCIATED;
5914 
5915 		/*
5916 		 * The handling of nr_running in sched callbacks are disabled
5917 		 * now.  Zap nr_running.  After this, nr_running stays zero and
5918 		 * need_more_worker() and keep_working() are always true as
5919 		 * long as the worklist is not empty.  This pool now behaves as
5920 		 * an unbound (in terms of concurrency management) pool which
5921 		 * are served by workers tied to the pool.
5922 		 */
5923 		pool->nr_running = 0;
5924 
5925 		/*
5926 		 * With concurrency management just turned off, a busy
5927 		 * worker blocking could lead to lengthy stalls.  Kick off
5928 		 * unbound chain execution of currently pending work items.
5929 		 */
5930 		kick_pool(pool);
5931 
5932 		raw_spin_unlock_irq(&pool->lock);
5933 
5934 		for_each_pool_worker(worker, pool)
5935 			unbind_worker(worker);
5936 
5937 		mutex_unlock(&wq_pool_attach_mutex);
5938 	}
5939 }
5940 
5941 /**
5942  * rebind_workers - rebind all workers of a pool to the associated CPU
5943  * @pool: pool of interest
5944  *
5945  * @pool->cpu is coming online.  Rebind all workers to the CPU.
5946  */
5947 static void rebind_workers(struct worker_pool *pool)
5948 {
5949 	struct worker *worker;
5950 
5951 	lockdep_assert_held(&wq_pool_attach_mutex);
5952 
5953 	/*
5954 	 * Restore CPU affinity of all workers.  As all idle workers should
5955 	 * be on the run-queue of the associated CPU before any local
5956 	 * wake-ups for concurrency management happen, restore CPU affinity
5957 	 * of all workers first and then clear UNBOUND.  As we're called
5958 	 * from CPU_ONLINE, the following shouldn't fail.
5959 	 */
5960 	for_each_pool_worker(worker, pool) {
5961 		kthread_set_per_cpu(worker->task, pool->cpu);
5962 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5963 						  pool_allowed_cpus(pool)) < 0);
5964 	}
5965 
5966 	raw_spin_lock_irq(&pool->lock);
5967 
5968 	pool->flags &= ~POOL_DISASSOCIATED;
5969 
5970 	for_each_pool_worker(worker, pool) {
5971 		unsigned int worker_flags = worker->flags;
5972 
5973 		/*
5974 		 * We want to clear UNBOUND but can't directly call
5975 		 * worker_clr_flags() or adjust nr_running.  Atomically
5976 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5977 		 * @worker will clear REBOUND using worker_clr_flags() when
5978 		 * it initiates the next execution cycle thus restoring
5979 		 * concurrency management.  Note that when or whether
5980 		 * @worker clears REBOUND doesn't affect correctness.
5981 		 *
5982 		 * WRITE_ONCE() is necessary because @worker->flags may be
5983 		 * tested without holding any lock in
5984 		 * wq_worker_running().  Without it, NOT_RUNNING test may
5985 		 * fail incorrectly leading to premature concurrency
5986 		 * management operations.
5987 		 */
5988 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5989 		worker_flags |= WORKER_REBOUND;
5990 		worker_flags &= ~WORKER_UNBOUND;
5991 		WRITE_ONCE(worker->flags, worker_flags);
5992 	}
5993 
5994 	raw_spin_unlock_irq(&pool->lock);
5995 }
5996 
5997 /**
5998  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5999  * @pool: unbound pool of interest
6000  * @cpu: the CPU which is coming up
6001  *
6002  * An unbound pool may end up with a cpumask which doesn't have any online
6003  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
6004  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
6005  * online CPU before, cpus_allowed of all its workers should be restored.
6006  */
6007 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6008 {
6009 	static cpumask_t cpumask;
6010 	struct worker *worker;
6011 
6012 	lockdep_assert_held(&wq_pool_attach_mutex);
6013 
6014 	/* is @cpu allowed for @pool? */
6015 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6016 		return;
6017 
6018 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
6019 
6020 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
6021 	for_each_pool_worker(worker, pool)
6022 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
6023 }
6024 
6025 int workqueue_prepare_cpu(unsigned int cpu)
6026 {
6027 	struct worker_pool *pool;
6028 
6029 	for_each_cpu_worker_pool(pool, cpu) {
6030 		if (pool->nr_workers)
6031 			continue;
6032 		if (!create_worker(pool))
6033 			return -ENOMEM;
6034 	}
6035 	return 0;
6036 }
6037 
6038 int workqueue_online_cpu(unsigned int cpu)
6039 {
6040 	struct worker_pool *pool;
6041 	struct workqueue_struct *wq;
6042 	int pi;
6043 
6044 	mutex_lock(&wq_pool_mutex);
6045 
6046 	for_each_pool(pool, pi) {
6047 		mutex_lock(&wq_pool_attach_mutex);
6048 
6049 		if (pool->cpu == cpu)
6050 			rebind_workers(pool);
6051 		else if (pool->cpu < 0)
6052 			restore_unbound_workers_cpumask(pool, cpu);
6053 
6054 		mutex_unlock(&wq_pool_attach_mutex);
6055 	}
6056 
6057 	/* update pod affinity of unbound workqueues */
6058 	list_for_each_entry(wq, &workqueues, list) {
6059 		struct workqueue_attrs *attrs = wq->unbound_attrs;
6060 
6061 		if (attrs) {
6062 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6063 			int tcpu;
6064 
6065 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6066 				wq_update_pod(wq, tcpu, cpu, true);
6067 
6068 			mutex_lock(&wq->mutex);
6069 			wq_update_node_max_active(wq, -1);
6070 			mutex_unlock(&wq->mutex);
6071 		}
6072 	}
6073 
6074 	mutex_unlock(&wq_pool_mutex);
6075 	return 0;
6076 }
6077 
6078 int workqueue_offline_cpu(unsigned int cpu)
6079 {
6080 	struct workqueue_struct *wq;
6081 
6082 	/* unbinding per-cpu workers should happen on the local CPU */
6083 	if (WARN_ON(cpu != smp_processor_id()))
6084 		return -1;
6085 
6086 	unbind_workers(cpu);
6087 
6088 	/* update pod affinity of unbound workqueues */
6089 	mutex_lock(&wq_pool_mutex);
6090 	list_for_each_entry(wq, &workqueues, list) {
6091 		struct workqueue_attrs *attrs = wq->unbound_attrs;
6092 
6093 		if (attrs) {
6094 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6095 			int tcpu;
6096 
6097 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6098 				wq_update_pod(wq, tcpu, cpu, false);
6099 
6100 			mutex_lock(&wq->mutex);
6101 			wq_update_node_max_active(wq, cpu);
6102 			mutex_unlock(&wq->mutex);
6103 		}
6104 	}
6105 	mutex_unlock(&wq_pool_mutex);
6106 
6107 	return 0;
6108 }
6109 
6110 struct work_for_cpu {
6111 	struct work_struct work;
6112 	long (*fn)(void *);
6113 	void *arg;
6114 	long ret;
6115 };
6116 
6117 static void work_for_cpu_fn(struct work_struct *work)
6118 {
6119 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6120 
6121 	wfc->ret = wfc->fn(wfc->arg);
6122 }
6123 
6124 /**
6125  * work_on_cpu_key - run a function in thread context on a particular cpu
6126  * @cpu: the cpu to run on
6127  * @fn: the function to run
6128  * @arg: the function arg
6129  * @key: The lock class key for lock debugging purposes
6130  *
6131  * It is up to the caller to ensure that the cpu doesn't go offline.
6132  * The caller must not hold any locks which would prevent @fn from completing.
6133  *
6134  * Return: The value @fn returns.
6135  */
6136 long work_on_cpu_key(int cpu, long (*fn)(void *),
6137 		     void *arg, struct lock_class_key *key)
6138 {
6139 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6140 
6141 	INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6142 	schedule_work_on(cpu, &wfc.work);
6143 	flush_work(&wfc.work);
6144 	destroy_work_on_stack(&wfc.work);
6145 	return wfc.ret;
6146 }
6147 EXPORT_SYMBOL_GPL(work_on_cpu_key);
6148 
6149 /**
6150  * work_on_cpu_safe_key - run a function in thread context on a particular cpu
6151  * @cpu: the cpu to run on
6152  * @fn:  the function to run
6153  * @arg: the function argument
6154  * @key: The lock class key for lock debugging purposes
6155  *
6156  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
6157  * any locks which would prevent @fn from completing.
6158  *
6159  * Return: The value @fn returns.
6160  */
6161 long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
6162 			  void *arg, struct lock_class_key *key)
6163 {
6164 	long ret = -ENODEV;
6165 
6166 	cpus_read_lock();
6167 	if (cpu_online(cpu))
6168 		ret = work_on_cpu_key(cpu, fn, arg, key);
6169 	cpus_read_unlock();
6170 	return ret;
6171 }
6172 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
6173 #endif /* CONFIG_SMP */
6174 
6175 #ifdef CONFIG_FREEZER
6176 
6177 /**
6178  * freeze_workqueues_begin - begin freezing workqueues
6179  *
6180  * Start freezing workqueues.  After this function returns, all freezable
6181  * workqueues will queue new works to their inactive_works list instead of
6182  * pool->worklist.
6183  *
6184  * CONTEXT:
6185  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6186  */
6187 void freeze_workqueues_begin(void)
6188 {
6189 	struct workqueue_struct *wq;
6190 
6191 	mutex_lock(&wq_pool_mutex);
6192 
6193 	WARN_ON_ONCE(workqueue_freezing);
6194 	workqueue_freezing = true;
6195 
6196 	list_for_each_entry(wq, &workqueues, list) {
6197 		mutex_lock(&wq->mutex);
6198 		wq_adjust_max_active(wq);
6199 		mutex_unlock(&wq->mutex);
6200 	}
6201 
6202 	mutex_unlock(&wq_pool_mutex);
6203 }
6204 
6205 /**
6206  * freeze_workqueues_busy - are freezable workqueues still busy?
6207  *
6208  * Check whether freezing is complete.  This function must be called
6209  * between freeze_workqueues_begin() and thaw_workqueues().
6210  *
6211  * CONTEXT:
6212  * Grabs and releases wq_pool_mutex.
6213  *
6214  * Return:
6215  * %true if some freezable workqueues are still busy.  %false if freezing
6216  * is complete.
6217  */
6218 bool freeze_workqueues_busy(void)
6219 {
6220 	bool busy = false;
6221 	struct workqueue_struct *wq;
6222 	struct pool_workqueue *pwq;
6223 
6224 	mutex_lock(&wq_pool_mutex);
6225 
6226 	WARN_ON_ONCE(!workqueue_freezing);
6227 
6228 	list_for_each_entry(wq, &workqueues, list) {
6229 		if (!(wq->flags & WQ_FREEZABLE))
6230 			continue;
6231 		/*
6232 		 * nr_active is monotonically decreasing.  It's safe
6233 		 * to peek without lock.
6234 		 */
6235 		rcu_read_lock();
6236 		for_each_pwq(pwq, wq) {
6237 			WARN_ON_ONCE(pwq->nr_active < 0);
6238 			if (pwq->nr_active) {
6239 				busy = true;
6240 				rcu_read_unlock();
6241 				goto out_unlock;
6242 			}
6243 		}
6244 		rcu_read_unlock();
6245 	}
6246 out_unlock:
6247 	mutex_unlock(&wq_pool_mutex);
6248 	return busy;
6249 }
6250 
6251 /**
6252  * thaw_workqueues - thaw workqueues
6253  *
6254  * Thaw workqueues.  Normal queueing is restored and all collected
6255  * frozen works are transferred to their respective pool worklists.
6256  *
6257  * CONTEXT:
6258  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6259  */
6260 void thaw_workqueues(void)
6261 {
6262 	struct workqueue_struct *wq;
6263 
6264 	mutex_lock(&wq_pool_mutex);
6265 
6266 	if (!workqueue_freezing)
6267 		goto out_unlock;
6268 
6269 	workqueue_freezing = false;
6270 
6271 	/* restore max_active and repopulate worklist */
6272 	list_for_each_entry(wq, &workqueues, list) {
6273 		mutex_lock(&wq->mutex);
6274 		wq_adjust_max_active(wq);
6275 		mutex_unlock(&wq->mutex);
6276 	}
6277 
6278 out_unlock:
6279 	mutex_unlock(&wq_pool_mutex);
6280 }
6281 #endif /* CONFIG_FREEZER */
6282 
6283 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
6284 {
6285 	LIST_HEAD(ctxs);
6286 	int ret = 0;
6287 	struct workqueue_struct *wq;
6288 	struct apply_wqattrs_ctx *ctx, *n;
6289 
6290 	lockdep_assert_held(&wq_pool_mutex);
6291 
6292 	list_for_each_entry(wq, &workqueues, list) {
6293 		if (!(wq->flags & WQ_UNBOUND))
6294 			continue;
6295 		/* creating multiple pwqs breaks ordering guarantee */
6296 		if (wq->flags & __WQ_ORDERED)
6297 			continue;
6298 
6299 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
6300 		if (IS_ERR(ctx)) {
6301 			ret = PTR_ERR(ctx);
6302 			break;
6303 		}
6304 
6305 		list_add_tail(&ctx->list, &ctxs);
6306 	}
6307 
6308 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
6309 		if (!ret)
6310 			apply_wqattrs_commit(ctx);
6311 		apply_wqattrs_cleanup(ctx);
6312 	}
6313 
6314 	if (!ret) {
6315 		mutex_lock(&wq_pool_attach_mutex);
6316 		cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
6317 		mutex_unlock(&wq_pool_attach_mutex);
6318 	}
6319 	return ret;
6320 }
6321 
6322 /**
6323  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
6324  *  @cpumask: the cpumask to set
6325  *
6326  *  The low-level workqueues cpumask is a global cpumask that limits
6327  *  the affinity of all unbound workqueues.  This function check the @cpumask
6328  *  and apply it to all unbound workqueues and updates all pwqs of them.
6329  *
6330  *  Return:	0	- Success
6331  *  		-EINVAL	- Invalid @cpumask
6332  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
6333  */
6334 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
6335 {
6336 	int ret = -EINVAL;
6337 
6338 	/*
6339 	 * Not excluding isolated cpus on purpose.
6340 	 * If the user wishes to include them, we allow that.
6341 	 */
6342 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
6343 	if (!cpumask_empty(cpumask)) {
6344 		apply_wqattrs_lock();
6345 		if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
6346 			ret = 0;
6347 			goto out_unlock;
6348 		}
6349 
6350 		ret = workqueue_apply_unbound_cpumask(cpumask);
6351 
6352 out_unlock:
6353 		apply_wqattrs_unlock();
6354 	}
6355 
6356 	return ret;
6357 }
6358 
6359 static int parse_affn_scope(const char *val)
6360 {
6361 	int i;
6362 
6363 	for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
6364 		if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
6365 			return i;
6366 	}
6367 	return -EINVAL;
6368 }
6369 
6370 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
6371 {
6372 	struct workqueue_struct *wq;
6373 	int affn, cpu;
6374 
6375 	affn = parse_affn_scope(val);
6376 	if (affn < 0)
6377 		return affn;
6378 	if (affn == WQ_AFFN_DFL)
6379 		return -EINVAL;
6380 
6381 	cpus_read_lock();
6382 	mutex_lock(&wq_pool_mutex);
6383 
6384 	wq_affn_dfl = affn;
6385 
6386 	list_for_each_entry(wq, &workqueues, list) {
6387 		for_each_online_cpu(cpu) {
6388 			wq_update_pod(wq, cpu, cpu, true);
6389 		}
6390 	}
6391 
6392 	mutex_unlock(&wq_pool_mutex);
6393 	cpus_read_unlock();
6394 
6395 	return 0;
6396 }
6397 
6398 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
6399 {
6400 	return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
6401 }
6402 
6403 static const struct kernel_param_ops wq_affn_dfl_ops = {
6404 	.set	= wq_affn_dfl_set,
6405 	.get	= wq_affn_dfl_get,
6406 };
6407 
6408 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
6409 
6410 #ifdef CONFIG_SYSFS
6411 /*
6412  * Workqueues with WQ_SYSFS flag set is visible to userland via
6413  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
6414  * following attributes.
6415  *
6416  *  per_cpu		RO bool	: whether the workqueue is per-cpu or unbound
6417  *  max_active		RW int	: maximum number of in-flight work items
6418  *
6419  * Unbound workqueues have the following extra attributes.
6420  *
6421  *  nice		RW int	: nice value of the workers
6422  *  cpumask		RW mask	: bitmask of allowed CPUs for the workers
6423  *  affinity_scope	RW str  : worker CPU affinity scope (cache, numa, none)
6424  *  affinity_strict	RW bool : worker CPU affinity is strict
6425  */
6426 struct wq_device {
6427 	struct workqueue_struct		*wq;
6428 	struct device			dev;
6429 };
6430 
6431 static struct workqueue_struct *dev_to_wq(struct device *dev)
6432 {
6433 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6434 
6435 	return wq_dev->wq;
6436 }
6437 
6438 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
6439 			    char *buf)
6440 {
6441 	struct workqueue_struct *wq = dev_to_wq(dev);
6442 
6443 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
6444 }
6445 static DEVICE_ATTR_RO(per_cpu);
6446 
6447 static ssize_t max_active_show(struct device *dev,
6448 			       struct device_attribute *attr, char *buf)
6449 {
6450 	struct workqueue_struct *wq = dev_to_wq(dev);
6451 
6452 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
6453 }
6454 
6455 static ssize_t max_active_store(struct device *dev,
6456 				struct device_attribute *attr, const char *buf,
6457 				size_t count)
6458 {
6459 	struct workqueue_struct *wq = dev_to_wq(dev);
6460 	int val;
6461 
6462 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
6463 		return -EINVAL;
6464 
6465 	workqueue_set_max_active(wq, val);
6466 	return count;
6467 }
6468 static DEVICE_ATTR_RW(max_active);
6469 
6470 static struct attribute *wq_sysfs_attrs[] = {
6471 	&dev_attr_per_cpu.attr,
6472 	&dev_attr_max_active.attr,
6473 	NULL,
6474 };
6475 ATTRIBUTE_GROUPS(wq_sysfs);
6476 
6477 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
6478 			    char *buf)
6479 {
6480 	struct workqueue_struct *wq = dev_to_wq(dev);
6481 	int written;
6482 
6483 	mutex_lock(&wq->mutex);
6484 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
6485 	mutex_unlock(&wq->mutex);
6486 
6487 	return written;
6488 }
6489 
6490 /* prepare workqueue_attrs for sysfs store operations */
6491 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
6492 {
6493 	struct workqueue_attrs *attrs;
6494 
6495 	lockdep_assert_held(&wq_pool_mutex);
6496 
6497 	attrs = alloc_workqueue_attrs();
6498 	if (!attrs)
6499 		return NULL;
6500 
6501 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
6502 	return attrs;
6503 }
6504 
6505 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
6506 			     const char *buf, size_t count)
6507 {
6508 	struct workqueue_struct *wq = dev_to_wq(dev);
6509 	struct workqueue_attrs *attrs;
6510 	int ret = -ENOMEM;
6511 
6512 	apply_wqattrs_lock();
6513 
6514 	attrs = wq_sysfs_prep_attrs(wq);
6515 	if (!attrs)
6516 		goto out_unlock;
6517 
6518 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
6519 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
6520 		ret = apply_workqueue_attrs_locked(wq, attrs);
6521 	else
6522 		ret = -EINVAL;
6523 
6524 out_unlock:
6525 	apply_wqattrs_unlock();
6526 	free_workqueue_attrs(attrs);
6527 	return ret ?: count;
6528 }
6529 
6530 static ssize_t wq_cpumask_show(struct device *dev,
6531 			       struct device_attribute *attr, char *buf)
6532 {
6533 	struct workqueue_struct *wq = dev_to_wq(dev);
6534 	int written;
6535 
6536 	mutex_lock(&wq->mutex);
6537 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
6538 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
6539 	mutex_unlock(&wq->mutex);
6540 	return written;
6541 }
6542 
6543 static ssize_t wq_cpumask_store(struct device *dev,
6544 				struct device_attribute *attr,
6545 				const char *buf, size_t count)
6546 {
6547 	struct workqueue_struct *wq = dev_to_wq(dev);
6548 	struct workqueue_attrs *attrs;
6549 	int ret = -ENOMEM;
6550 
6551 	apply_wqattrs_lock();
6552 
6553 	attrs = wq_sysfs_prep_attrs(wq);
6554 	if (!attrs)
6555 		goto out_unlock;
6556 
6557 	ret = cpumask_parse(buf, attrs->cpumask);
6558 	if (!ret)
6559 		ret = apply_workqueue_attrs_locked(wq, attrs);
6560 
6561 out_unlock:
6562 	apply_wqattrs_unlock();
6563 	free_workqueue_attrs(attrs);
6564 	return ret ?: count;
6565 }
6566 
6567 static ssize_t wq_affn_scope_show(struct device *dev,
6568 				  struct device_attribute *attr, char *buf)
6569 {
6570 	struct workqueue_struct *wq = dev_to_wq(dev);
6571 	int written;
6572 
6573 	mutex_lock(&wq->mutex);
6574 	if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
6575 		written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
6576 				    wq_affn_names[WQ_AFFN_DFL],
6577 				    wq_affn_names[wq_affn_dfl]);
6578 	else
6579 		written = scnprintf(buf, PAGE_SIZE, "%s\n",
6580 				    wq_affn_names[wq->unbound_attrs->affn_scope]);
6581 	mutex_unlock(&wq->mutex);
6582 
6583 	return written;
6584 }
6585 
6586 static ssize_t wq_affn_scope_store(struct device *dev,
6587 				   struct device_attribute *attr,
6588 				   const char *buf, size_t count)
6589 {
6590 	struct workqueue_struct *wq = dev_to_wq(dev);
6591 	struct workqueue_attrs *attrs;
6592 	int affn, ret = -ENOMEM;
6593 
6594 	affn = parse_affn_scope(buf);
6595 	if (affn < 0)
6596 		return affn;
6597 
6598 	apply_wqattrs_lock();
6599 	attrs = wq_sysfs_prep_attrs(wq);
6600 	if (attrs) {
6601 		attrs->affn_scope = affn;
6602 		ret = apply_workqueue_attrs_locked(wq, attrs);
6603 	}
6604 	apply_wqattrs_unlock();
6605 	free_workqueue_attrs(attrs);
6606 	return ret ?: count;
6607 }
6608 
6609 static ssize_t wq_affinity_strict_show(struct device *dev,
6610 				       struct device_attribute *attr, char *buf)
6611 {
6612 	struct workqueue_struct *wq = dev_to_wq(dev);
6613 
6614 	return scnprintf(buf, PAGE_SIZE, "%d\n",
6615 			 wq->unbound_attrs->affn_strict);
6616 }
6617 
6618 static ssize_t wq_affinity_strict_store(struct device *dev,
6619 					struct device_attribute *attr,
6620 					const char *buf, size_t count)
6621 {
6622 	struct workqueue_struct *wq = dev_to_wq(dev);
6623 	struct workqueue_attrs *attrs;
6624 	int v, ret = -ENOMEM;
6625 
6626 	if (sscanf(buf, "%d", &v) != 1)
6627 		return -EINVAL;
6628 
6629 	apply_wqattrs_lock();
6630 	attrs = wq_sysfs_prep_attrs(wq);
6631 	if (attrs) {
6632 		attrs->affn_strict = (bool)v;
6633 		ret = apply_workqueue_attrs_locked(wq, attrs);
6634 	}
6635 	apply_wqattrs_unlock();
6636 	free_workqueue_attrs(attrs);
6637 	return ret ?: count;
6638 }
6639 
6640 static struct device_attribute wq_sysfs_unbound_attrs[] = {
6641 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
6642 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
6643 	__ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
6644 	__ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
6645 	__ATTR_NULL,
6646 };
6647 
6648 static struct bus_type wq_subsys = {
6649 	.name				= "workqueue",
6650 	.dev_groups			= wq_sysfs_groups,
6651 };
6652 
6653 static ssize_t wq_unbound_cpumask_show(struct device *dev,
6654 		struct device_attribute *attr, char *buf)
6655 {
6656 	int written;
6657 
6658 	mutex_lock(&wq_pool_mutex);
6659 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
6660 			    cpumask_pr_args(wq_unbound_cpumask));
6661 	mutex_unlock(&wq_pool_mutex);
6662 
6663 	return written;
6664 }
6665 
6666 static ssize_t wq_unbound_cpumask_store(struct device *dev,
6667 		struct device_attribute *attr, const char *buf, size_t count)
6668 {
6669 	cpumask_var_t cpumask;
6670 	int ret;
6671 
6672 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6673 		return -ENOMEM;
6674 
6675 	ret = cpumask_parse(buf, cpumask);
6676 	if (!ret)
6677 		ret = workqueue_set_unbound_cpumask(cpumask);
6678 
6679 	free_cpumask_var(cpumask);
6680 	return ret ? ret : count;
6681 }
6682 
6683 static struct device_attribute wq_sysfs_cpumask_attr =
6684 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
6685 	       wq_unbound_cpumask_store);
6686 
6687 static int __init wq_sysfs_init(void)
6688 {
6689 	struct device *dev_root;
6690 	int err;
6691 
6692 	err = subsys_virtual_register(&wq_subsys, NULL);
6693 	if (err)
6694 		return err;
6695 
6696 	dev_root = bus_get_dev_root(&wq_subsys);
6697 	if (dev_root) {
6698 		err = device_create_file(dev_root, &wq_sysfs_cpumask_attr);
6699 		put_device(dev_root);
6700 	}
6701 	return err;
6702 }
6703 core_initcall(wq_sysfs_init);
6704 
6705 static void wq_device_release(struct device *dev)
6706 {
6707 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6708 
6709 	kfree(wq_dev);
6710 }
6711 
6712 /**
6713  * workqueue_sysfs_register - make a workqueue visible in sysfs
6714  * @wq: the workqueue to register
6715  *
6716  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
6717  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
6718  * which is the preferred method.
6719  *
6720  * Workqueue user should use this function directly iff it wants to apply
6721  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
6722  * apply_workqueue_attrs() may race against userland updating the
6723  * attributes.
6724  *
6725  * Return: 0 on success, -errno on failure.
6726  */
6727 int workqueue_sysfs_register(struct workqueue_struct *wq)
6728 {
6729 	struct wq_device *wq_dev;
6730 	int ret;
6731 
6732 	/*
6733 	 * Adjusting max_active or creating new pwqs by applying
6734 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
6735 	 * workqueues.
6736 	 */
6737 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6738 		return -EINVAL;
6739 
6740 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
6741 	if (!wq_dev)
6742 		return -ENOMEM;
6743 
6744 	wq_dev->wq = wq;
6745 	wq_dev->dev.bus = &wq_subsys;
6746 	wq_dev->dev.release = wq_device_release;
6747 	dev_set_name(&wq_dev->dev, "%s", wq->name);
6748 
6749 	/*
6750 	 * unbound_attrs are created separately.  Suppress uevent until
6751 	 * everything is ready.
6752 	 */
6753 	dev_set_uevent_suppress(&wq_dev->dev, true);
6754 
6755 	ret = device_register(&wq_dev->dev);
6756 	if (ret) {
6757 		put_device(&wq_dev->dev);
6758 		wq->wq_dev = NULL;
6759 		return ret;
6760 	}
6761 
6762 	if (wq->flags & WQ_UNBOUND) {
6763 		struct device_attribute *attr;
6764 
6765 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
6766 			ret = device_create_file(&wq_dev->dev, attr);
6767 			if (ret) {
6768 				device_unregister(&wq_dev->dev);
6769 				wq->wq_dev = NULL;
6770 				return ret;
6771 			}
6772 		}
6773 	}
6774 
6775 	dev_set_uevent_suppress(&wq_dev->dev, false);
6776 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
6777 	return 0;
6778 }
6779 
6780 /**
6781  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
6782  * @wq: the workqueue to unregister
6783  *
6784  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
6785  */
6786 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
6787 {
6788 	struct wq_device *wq_dev = wq->wq_dev;
6789 
6790 	if (!wq->wq_dev)
6791 		return;
6792 
6793 	wq->wq_dev = NULL;
6794 	device_unregister(&wq_dev->dev);
6795 }
6796 #else	/* CONFIG_SYSFS */
6797 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
6798 #endif	/* CONFIG_SYSFS */
6799 
6800 /*
6801  * Workqueue watchdog.
6802  *
6803  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
6804  * flush dependency, a concurrency managed work item which stays RUNNING
6805  * indefinitely.  Workqueue stalls can be very difficult to debug as the
6806  * usual warning mechanisms don't trigger and internal workqueue state is
6807  * largely opaque.
6808  *
6809  * Workqueue watchdog monitors all worker pools periodically and dumps
6810  * state if some pools failed to make forward progress for a while where
6811  * forward progress is defined as the first item on ->worklist changing.
6812  *
6813  * This mechanism is controlled through the kernel parameter
6814  * "workqueue.watchdog_thresh" which can be updated at runtime through the
6815  * corresponding sysfs parameter file.
6816  */
6817 #ifdef CONFIG_WQ_WATCHDOG
6818 
6819 static unsigned long wq_watchdog_thresh = 30;
6820 static struct timer_list wq_watchdog_timer;
6821 
6822 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
6823 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
6824 
6825 /*
6826  * Show workers that might prevent the processing of pending work items.
6827  * The only candidates are CPU-bound workers in the running state.
6828  * Pending work items should be handled by another idle worker
6829  * in all other situations.
6830  */
6831 static void show_cpu_pool_hog(struct worker_pool *pool)
6832 {
6833 	struct worker *worker;
6834 	unsigned long flags;
6835 	int bkt;
6836 
6837 	raw_spin_lock_irqsave(&pool->lock, flags);
6838 
6839 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6840 		if (task_is_running(worker->task)) {
6841 			/*
6842 			 * Defer printing to avoid deadlocks in console
6843 			 * drivers that queue work while holding locks
6844 			 * also taken in their write paths.
6845 			 */
6846 			printk_deferred_enter();
6847 
6848 			pr_info("pool %d:\n", pool->id);
6849 			sched_show_task(worker->task);
6850 
6851 			printk_deferred_exit();
6852 		}
6853 	}
6854 
6855 	raw_spin_unlock_irqrestore(&pool->lock, flags);
6856 }
6857 
6858 static void show_cpu_pools_hogs(void)
6859 {
6860 	struct worker_pool *pool;
6861 	int pi;
6862 
6863 	pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
6864 
6865 	rcu_read_lock();
6866 
6867 	for_each_pool(pool, pi) {
6868 		if (pool->cpu_stall)
6869 			show_cpu_pool_hog(pool);
6870 
6871 	}
6872 
6873 	rcu_read_unlock();
6874 }
6875 
6876 static void wq_watchdog_reset_touched(void)
6877 {
6878 	int cpu;
6879 
6880 	wq_watchdog_touched = jiffies;
6881 	for_each_possible_cpu(cpu)
6882 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
6883 }
6884 
6885 static void wq_watchdog_timer_fn(struct timer_list *unused)
6886 {
6887 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
6888 	bool lockup_detected = false;
6889 	bool cpu_pool_stall = false;
6890 	unsigned long now = jiffies;
6891 	struct worker_pool *pool;
6892 	int pi;
6893 
6894 	if (!thresh)
6895 		return;
6896 
6897 	rcu_read_lock();
6898 
6899 	for_each_pool(pool, pi) {
6900 		unsigned long pool_ts, touched, ts;
6901 
6902 		pool->cpu_stall = false;
6903 		if (list_empty(&pool->worklist))
6904 			continue;
6905 
6906 		/*
6907 		 * If a virtual machine is stopped by the host it can look to
6908 		 * the watchdog like a stall.
6909 		 */
6910 		kvm_check_and_clear_guest_paused();
6911 
6912 		/* get the latest of pool and touched timestamps */
6913 		if (pool->cpu >= 0)
6914 			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
6915 		else
6916 			touched = READ_ONCE(wq_watchdog_touched);
6917 		pool_ts = READ_ONCE(pool->watchdog_ts);
6918 
6919 		if (time_after(pool_ts, touched))
6920 			ts = pool_ts;
6921 		else
6922 			ts = touched;
6923 
6924 		/* did we stall? */
6925 		if (time_after(now, ts + thresh)) {
6926 			lockup_detected = true;
6927 			if (pool->cpu >= 0) {
6928 				pool->cpu_stall = true;
6929 				cpu_pool_stall = true;
6930 			}
6931 			pr_emerg("BUG: workqueue lockup - pool");
6932 			pr_cont_pool_info(pool);
6933 			pr_cont(" stuck for %us!\n",
6934 				jiffies_to_msecs(now - pool_ts) / 1000);
6935 		}
6936 
6937 
6938 	}
6939 
6940 	rcu_read_unlock();
6941 
6942 	if (lockup_detected)
6943 		show_all_workqueues();
6944 
6945 	if (cpu_pool_stall)
6946 		show_cpu_pools_hogs();
6947 
6948 	wq_watchdog_reset_touched();
6949 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
6950 }
6951 
6952 notrace void wq_watchdog_touch(int cpu)
6953 {
6954 	if (cpu >= 0)
6955 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
6956 
6957 	wq_watchdog_touched = jiffies;
6958 }
6959 
6960 static void wq_watchdog_set_thresh(unsigned long thresh)
6961 {
6962 	wq_watchdog_thresh = 0;
6963 	del_timer_sync(&wq_watchdog_timer);
6964 
6965 	if (thresh) {
6966 		wq_watchdog_thresh = thresh;
6967 		wq_watchdog_reset_touched();
6968 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
6969 	}
6970 }
6971 
6972 static int wq_watchdog_param_set_thresh(const char *val,
6973 					const struct kernel_param *kp)
6974 {
6975 	unsigned long thresh;
6976 	int ret;
6977 
6978 	ret = kstrtoul(val, 0, &thresh);
6979 	if (ret)
6980 		return ret;
6981 
6982 	if (system_wq)
6983 		wq_watchdog_set_thresh(thresh);
6984 	else
6985 		wq_watchdog_thresh = thresh;
6986 
6987 	return 0;
6988 }
6989 
6990 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
6991 	.set	= wq_watchdog_param_set_thresh,
6992 	.get	= param_get_ulong,
6993 };
6994 
6995 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
6996 		0644);
6997 
6998 static void wq_watchdog_init(void)
6999 {
7000 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
7001 	wq_watchdog_set_thresh(wq_watchdog_thresh);
7002 }
7003 
7004 #else	/* CONFIG_WQ_WATCHDOG */
7005 
7006 static inline void wq_watchdog_init(void) { }
7007 
7008 #endif	/* CONFIG_WQ_WATCHDOG */
7009 
7010 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7011 {
7012 	if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7013 		pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7014 			cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7015 		return;
7016 	}
7017 
7018 	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7019 }
7020 
7021 /**
7022  * workqueue_init_early - early init for workqueue subsystem
7023  *
7024  * This is the first step of three-staged workqueue subsystem initialization and
7025  * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7026  * up. It sets up all the data structures and system workqueues and allows early
7027  * boot code to create workqueues and queue/cancel work items. Actual work item
7028  * execution starts only after kthreads can be created and scheduled right
7029  * before early initcalls.
7030  */
7031 void __init workqueue_init_early(void)
7032 {
7033 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7034 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
7035 	int i, cpu;
7036 
7037 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
7038 
7039 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
7040 	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7041 	restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7042 	restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
7043 	if (!cpumask_empty(&wq_cmdline_cpumask))
7044 		restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
7045 
7046 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7047 
7048 	wq_update_pod_attrs_buf = alloc_workqueue_attrs();
7049 	BUG_ON(!wq_update_pod_attrs_buf);
7050 
7051 	/* initialize WQ_AFFN_SYSTEM pods */
7052 	pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7053 	pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7054 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7055 	BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7056 
7057 	BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7058 
7059 	pt->nr_pods = 1;
7060 	cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7061 	pt->pod_node[0] = NUMA_NO_NODE;
7062 	pt->cpu_pod[0] = 0;
7063 
7064 	/* initialize CPU pools */
7065 	for_each_possible_cpu(cpu) {
7066 		struct worker_pool *pool;
7067 
7068 		i = 0;
7069 		for_each_cpu_worker_pool(pool, cpu) {
7070 			BUG_ON(init_worker_pool(pool));
7071 			pool->cpu = cpu;
7072 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7073 			cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7074 			pool->attrs->nice = std_nice[i++];
7075 			pool->attrs->affn_strict = true;
7076 			pool->node = cpu_to_node(cpu);
7077 
7078 			/* alloc pool ID */
7079 			mutex_lock(&wq_pool_mutex);
7080 			BUG_ON(worker_pool_assign_id(pool));
7081 			mutex_unlock(&wq_pool_mutex);
7082 		}
7083 	}
7084 
7085 	/* create default unbound and ordered wq attrs */
7086 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7087 		struct workqueue_attrs *attrs;
7088 
7089 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7090 		attrs->nice = std_nice[i];
7091 		unbound_std_wq_attrs[i] = attrs;
7092 
7093 		/*
7094 		 * An ordered wq should have only one pwq as ordering is
7095 		 * guaranteed by max_active which is enforced by pwqs.
7096 		 */
7097 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7098 		attrs->nice = std_nice[i];
7099 		attrs->ordered = true;
7100 		ordered_wq_attrs[i] = attrs;
7101 	}
7102 
7103 	system_wq = alloc_workqueue("events", 0, 0);
7104 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
7105 	system_long_wq = alloc_workqueue("events_long", 0, 0);
7106 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
7107 					    WQ_MAX_ACTIVE);
7108 	system_freezable_wq = alloc_workqueue("events_freezable",
7109 					      WQ_FREEZABLE, 0);
7110 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7111 					      WQ_POWER_EFFICIENT, 0);
7112 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
7113 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
7114 					      0);
7115 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
7116 	       !system_unbound_wq || !system_freezable_wq ||
7117 	       !system_power_efficient_wq ||
7118 	       !system_freezable_power_efficient_wq);
7119 }
7120 
7121 static void __init wq_cpu_intensive_thresh_init(void)
7122 {
7123 	unsigned long thresh;
7124 	unsigned long bogo;
7125 
7126 	pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
7127 	BUG_ON(IS_ERR(pwq_release_worker));
7128 
7129 	/* if the user set it to a specific value, keep it */
7130 	if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7131 		return;
7132 
7133 	/*
7134 	 * The default of 10ms is derived from the fact that most modern (as of
7135 	 * 2023) processors can do a lot in 10ms and that it's just below what
7136 	 * most consider human-perceivable. However, the kernel also runs on a
7137 	 * lot slower CPUs including microcontrollers where the threshold is way
7138 	 * too low.
7139 	 *
7140 	 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7141 	 * This is by no means accurate but it doesn't have to be. The mechanism
7142 	 * is still useful even when the threshold is fully scaled up. Also, as
7143 	 * the reports would usually be applicable to everyone, some machines
7144 	 * operating on longer thresholds won't significantly diminish their
7145 	 * usefulness.
7146 	 */
7147 	thresh = 10 * USEC_PER_MSEC;
7148 
7149 	/* see init/calibrate.c for lpj -> BogoMIPS calculation */
7150 	bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7151 	if (bogo < 4000)
7152 		thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7153 
7154 	pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7155 		 loops_per_jiffy, bogo, thresh);
7156 
7157 	wq_cpu_intensive_thresh_us = thresh;
7158 }
7159 
7160 /**
7161  * workqueue_init - bring workqueue subsystem fully online
7162  *
7163  * This is the second step of three-staged workqueue subsystem initialization
7164  * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7165  * been created and work items queued on them, but there are no kworkers
7166  * executing the work items yet. Populate the worker pools with the initial
7167  * workers and enable future kworker creations.
7168  */
7169 void __init workqueue_init(void)
7170 {
7171 	struct workqueue_struct *wq;
7172 	struct worker_pool *pool;
7173 	int cpu, bkt;
7174 
7175 	wq_cpu_intensive_thresh_init();
7176 
7177 	mutex_lock(&wq_pool_mutex);
7178 
7179 	/*
7180 	 * Per-cpu pools created earlier could be missing node hint. Fix them
7181 	 * up. Also, create a rescuer for workqueues that requested it.
7182 	 */
7183 	for_each_possible_cpu(cpu) {
7184 		for_each_cpu_worker_pool(pool, cpu) {
7185 			pool->node = cpu_to_node(cpu);
7186 		}
7187 	}
7188 
7189 	list_for_each_entry(wq, &workqueues, list) {
7190 		WARN(init_rescuer(wq),
7191 		     "workqueue: failed to create early rescuer for %s",
7192 		     wq->name);
7193 	}
7194 
7195 	mutex_unlock(&wq_pool_mutex);
7196 
7197 	/* create the initial workers */
7198 	for_each_online_cpu(cpu) {
7199 		for_each_cpu_worker_pool(pool, cpu) {
7200 			pool->flags &= ~POOL_DISASSOCIATED;
7201 			BUG_ON(!create_worker(pool));
7202 		}
7203 	}
7204 
7205 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
7206 		BUG_ON(!create_worker(pool));
7207 
7208 	wq_online = true;
7209 	wq_watchdog_init();
7210 }
7211 
7212 /*
7213  * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7214  * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7215  * and consecutive pod ID. The rest of @pt is initialized accordingly.
7216  */
7217 static void __init init_pod_type(struct wq_pod_type *pt,
7218 				 bool (*cpus_share_pod)(int, int))
7219 {
7220 	int cur, pre, cpu, pod;
7221 
7222 	pt->nr_pods = 0;
7223 
7224 	/* init @pt->cpu_pod[] according to @cpus_share_pod() */
7225 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7226 	BUG_ON(!pt->cpu_pod);
7227 
7228 	for_each_possible_cpu(cur) {
7229 		for_each_possible_cpu(pre) {
7230 			if (pre >= cur) {
7231 				pt->cpu_pod[cur] = pt->nr_pods++;
7232 				break;
7233 			}
7234 			if (cpus_share_pod(cur, pre)) {
7235 				pt->cpu_pod[cur] = pt->cpu_pod[pre];
7236 				break;
7237 			}
7238 		}
7239 	}
7240 
7241 	/* init the rest to match @pt->cpu_pod[] */
7242 	pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7243 	pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
7244 	BUG_ON(!pt->pod_cpus || !pt->pod_node);
7245 
7246 	for (pod = 0; pod < pt->nr_pods; pod++)
7247 		BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
7248 
7249 	for_each_possible_cpu(cpu) {
7250 		cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
7251 		pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
7252 	}
7253 }
7254 
7255 static bool __init cpus_dont_share(int cpu0, int cpu1)
7256 {
7257 	return false;
7258 }
7259 
7260 static bool __init cpus_share_smt(int cpu0, int cpu1)
7261 {
7262 #ifdef CONFIG_SCHED_SMT
7263 	return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
7264 #else
7265 	return false;
7266 #endif
7267 }
7268 
7269 static bool __init cpus_share_numa(int cpu0, int cpu1)
7270 {
7271 	return cpu_to_node(cpu0) == cpu_to_node(cpu1);
7272 }
7273 
7274 /**
7275  * workqueue_init_topology - initialize CPU pods for unbound workqueues
7276  *
7277  * This is the third step of there-staged workqueue subsystem initialization and
7278  * invoked after SMP and topology information are fully initialized. It
7279  * initializes the unbound CPU pods accordingly.
7280  */
7281 void __init workqueue_init_topology(void)
7282 {
7283 	struct workqueue_struct *wq;
7284 	int cpu;
7285 
7286 	init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
7287 	init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
7288 	init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
7289 	init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
7290 
7291 	mutex_lock(&wq_pool_mutex);
7292 
7293 	/*
7294 	 * Workqueues allocated earlier would have all CPUs sharing the default
7295 	 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU
7296 	 * combinations to apply per-pod sharing.
7297 	 */
7298 	list_for_each_entry(wq, &workqueues, list) {
7299 		for_each_online_cpu(cpu)
7300 			wq_update_pod(wq, cpu, cpu, true);
7301 		if (wq->flags & WQ_UNBOUND) {
7302 			mutex_lock(&wq->mutex);
7303 			wq_update_node_max_active(wq, -1);
7304 			mutex_unlock(&wq->mutex);
7305 		}
7306 	}
7307 
7308 	mutex_unlock(&wq_pool_mutex);
7309 }
7310 
7311 void __warn_flushing_systemwide_wq(void)
7312 {
7313 	pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
7314 	dump_stack();
7315 }
7316 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
7317 
7318 static int __init workqueue_unbound_cpus_setup(char *str)
7319 {
7320 	if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
7321 		cpumask_clear(&wq_cmdline_cpumask);
7322 		pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
7323 	}
7324 
7325 	return 1;
7326 }
7327 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
7328