1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 5 * Copyright (C) 2002 Ingo Molnar 6 * 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <dwmw2@infradead.org> 9 * Andrew Morton 10 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 11 * Theodore Ts'o <tytso@mit.edu> 12 * 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 17 * 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 24 * 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 27 28 #include <linux/export.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 32 #include <linux/signal.h> 33 #include <linux/completion.h> 34 #include <linux/workqueue.h> 35 #include <linux/slab.h> 36 #include <linux/cpu.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/hardirq.h> 40 #include <linux/mempolicy.h> 41 #include <linux/freezer.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 #include <linux/sched/isolation.h> 52 #include <linux/sched/debug.h> 53 #include <linux/nmi.h> 54 #include <linux/kvm_para.h> 55 #include <linux/delay.h> 56 57 #include "workqueue_internal.h" 58 59 enum { 60 /* 61 * worker_pool flags 62 * 63 * A bound pool is either associated or disassociated with its CPU. 64 * While associated (!DISASSOCIATED), all workers are bound to the 65 * CPU and none has %WORKER_UNBOUND set and concurrency management 66 * is in effect. 67 * 68 * While DISASSOCIATED, the cpu may be offline and all workers have 69 * %WORKER_UNBOUND set and concurrency management disabled, and may 70 * be executing on any CPU. The pool behaves as an unbound one. 71 * 72 * Note that DISASSOCIATED should be flipped only while holding 73 * wq_pool_attach_mutex to avoid changing binding state while 74 * worker_attach_to_pool() is in progress. 75 */ 76 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */ 77 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 78 79 /* worker flags */ 80 WORKER_DIE = 1 << 1, /* die die die */ 81 WORKER_IDLE = 1 << 2, /* is idle */ 82 WORKER_PREP = 1 << 3, /* preparing to run works */ 83 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 84 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 85 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 86 87 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 88 WORKER_UNBOUND | WORKER_REBOUND, 89 90 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 91 92 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 93 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 94 95 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 96 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 97 98 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 99 /* call for help after 10ms 100 (min two ticks) */ 101 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 102 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 103 104 /* 105 * Rescue workers are used only on emergencies and shared by 106 * all cpus. Give MIN_NICE. 107 */ 108 RESCUER_NICE_LEVEL = MIN_NICE, 109 HIGHPRI_NICE_LEVEL = MIN_NICE, 110 111 WQ_NAME_LEN = 32, 112 }; 113 114 /* 115 * Structure fields follow one of the following exclusion rules. 116 * 117 * I: Modifiable by initialization/destruction paths and read-only for 118 * everyone else. 119 * 120 * P: Preemption protected. Disabling preemption is enough and should 121 * only be modified and accessed from the local cpu. 122 * 123 * L: pool->lock protected. Access with pool->lock held. 124 * 125 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for 126 * reads. 127 * 128 * K: Only modified by worker while holding pool->lock. Can be safely read by 129 * self, while holding pool->lock or from IRQ context if %current is the 130 * kworker. 131 * 132 * S: Only modified by worker self. 133 * 134 * A: wq_pool_attach_mutex protected. 135 * 136 * PL: wq_pool_mutex protected. 137 * 138 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 139 * 140 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 141 * 142 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 143 * RCU for reads. 144 * 145 * WQ: wq->mutex protected. 146 * 147 * WR: wq->mutex protected for writes. RCU protected for reads. 148 * 149 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read 150 * with READ_ONCE() without locking. 151 * 152 * MD: wq_mayday_lock protected. 153 * 154 * WD: Used internally by the watchdog. 155 */ 156 157 /* struct worker is defined in workqueue_internal.h */ 158 159 struct worker_pool { 160 raw_spinlock_t lock; /* the pool lock */ 161 int cpu; /* I: the associated cpu */ 162 int node; /* I: the associated node ID */ 163 int id; /* I: pool ID */ 164 unsigned int flags; /* L: flags */ 165 166 unsigned long watchdog_ts; /* L: watchdog timestamp */ 167 bool cpu_stall; /* WD: stalled cpu bound pool */ 168 169 /* 170 * The counter is incremented in a process context on the associated CPU 171 * w/ preemption disabled, and decremented or reset in the same context 172 * but w/ pool->lock held. The readers grab pool->lock and are 173 * guaranteed to see if the counter reached zero. 174 */ 175 int nr_running; 176 177 struct list_head worklist; /* L: list of pending works */ 178 179 int nr_workers; /* L: total number of workers */ 180 int nr_idle; /* L: currently idle workers */ 181 182 struct list_head idle_list; /* L: list of idle workers */ 183 struct timer_list idle_timer; /* L: worker idle timeout */ 184 struct work_struct idle_cull_work; /* L: worker idle cleanup */ 185 186 struct timer_list mayday_timer; /* L: SOS timer for workers */ 187 188 /* a workers is either on busy_hash or idle_list, or the manager */ 189 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 190 /* L: hash of busy workers */ 191 192 struct worker *manager; /* L: purely informational */ 193 struct list_head workers; /* A: attached workers */ 194 struct list_head dying_workers; /* A: workers about to die */ 195 struct completion *detach_completion; /* all workers detached */ 196 197 struct ida worker_ida; /* worker IDs for task name */ 198 199 struct workqueue_attrs *attrs; /* I: worker attributes */ 200 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 201 int refcnt; /* PL: refcnt for unbound pools */ 202 203 /* 204 * Destruction of pool is RCU protected to allow dereferences 205 * from get_work_pool(). 206 */ 207 struct rcu_head rcu; 208 }; 209 210 /* 211 * Per-pool_workqueue statistics. These can be monitored using 212 * tools/workqueue/wq_monitor.py. 213 */ 214 enum pool_workqueue_stats { 215 PWQ_STAT_STARTED, /* work items started execution */ 216 PWQ_STAT_COMPLETED, /* work items completed execution */ 217 PWQ_STAT_CPU_TIME, /* total CPU time consumed */ 218 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */ 219 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */ 220 PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */ 221 PWQ_STAT_MAYDAY, /* maydays to rescuer */ 222 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */ 223 224 PWQ_NR_STATS, 225 }; 226 227 /* 228 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 229 * of work_struct->data are used for flags and the remaining high bits 230 * point to the pwq; thus, pwqs need to be aligned at two's power of the 231 * number of flag bits. 232 */ 233 struct pool_workqueue { 234 struct worker_pool *pool; /* I: the associated pool */ 235 struct workqueue_struct *wq; /* I: the owning workqueue */ 236 int work_color; /* L: current color */ 237 int flush_color; /* L: flushing color */ 238 int refcnt; /* L: reference count */ 239 int nr_in_flight[WORK_NR_COLORS]; 240 /* L: nr of in_flight works */ 241 242 /* 243 * nr_active management and WORK_STRUCT_INACTIVE: 244 * 245 * When pwq->nr_active >= max_active, new work item is queued to 246 * pwq->inactive_works instead of pool->worklist and marked with 247 * WORK_STRUCT_INACTIVE. 248 * 249 * All work items marked with WORK_STRUCT_INACTIVE do not participate in 250 * nr_active and all work items in pwq->inactive_works are marked with 251 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are 252 * in pwq->inactive_works. Some of them are ready to run in 253 * pool->worklist or worker->scheduled. Those work itmes are only struct 254 * wq_barrier which is used for flush_work() and should not participate 255 * in nr_active. For non-barrier work item, it is marked with 256 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works. 257 */ 258 int nr_active; /* L: nr of active works */ 259 struct list_head inactive_works; /* L: inactive works */ 260 struct list_head pending_node; /* LN: node on wq_node_nr_active->pending_pwqs */ 261 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 262 struct list_head mayday_node; /* MD: node on wq->maydays */ 263 264 u64 stats[PWQ_NR_STATS]; 265 266 /* 267 * Release of unbound pwq is punted to a kthread_worker. See put_pwq() 268 * and pwq_release_workfn() for details. pool_workqueue itself is also 269 * RCU protected so that the first pwq can be determined without 270 * grabbing wq->mutex. 271 */ 272 struct kthread_work release_work; 273 struct rcu_head rcu; 274 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 275 276 /* 277 * Structure used to wait for workqueue flush. 278 */ 279 struct wq_flusher { 280 struct list_head list; /* WQ: list of flushers */ 281 int flush_color; /* WQ: flush color waiting for */ 282 struct completion done; /* flush completion */ 283 }; 284 285 struct wq_device; 286 287 /* 288 * Unlike in a per-cpu workqueue where max_active limits its concurrency level 289 * on each CPU, in an unbound workqueue, max_active applies to the whole system. 290 * As sharing a single nr_active across multiple sockets can be very expensive, 291 * the counting and enforcement is per NUMA node. 292 * 293 * The following struct is used to enforce per-node max_active. When a pwq wants 294 * to start executing a work item, it should increment ->nr using 295 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over 296 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish 297 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in 298 * round-robin order. 299 */ 300 struct wq_node_nr_active { 301 int max; /* per-node max_active */ 302 atomic_t nr; /* per-node nr_active */ 303 raw_spinlock_t lock; /* nests inside pool locks */ 304 struct list_head pending_pwqs; /* LN: pwqs with inactive works */ 305 }; 306 307 /* 308 * The externally visible workqueue. It relays the issued work items to 309 * the appropriate worker_pool through its pool_workqueues. 310 */ 311 struct workqueue_struct { 312 struct list_head pwqs; /* WR: all pwqs of this wq */ 313 struct list_head list; /* PR: list of all workqueues */ 314 315 struct mutex mutex; /* protects this wq */ 316 int work_color; /* WQ: current work color */ 317 int flush_color; /* WQ: current flush color */ 318 atomic_t nr_pwqs_to_flush; /* flush in progress */ 319 struct wq_flusher *first_flusher; /* WQ: first flusher */ 320 struct list_head flusher_queue; /* WQ: flush waiters */ 321 struct list_head flusher_overflow; /* WQ: flush overflow list */ 322 323 struct list_head maydays; /* MD: pwqs requesting rescue */ 324 struct worker *rescuer; /* MD: rescue worker */ 325 326 int nr_drainers; /* WQ: drain in progress */ 327 328 /* See alloc_workqueue() function comment for info on min/max_active */ 329 int max_active; /* WO: max active works */ 330 int min_active; /* WO: min active works */ 331 int saved_max_active; /* WQ: saved max_active */ 332 int saved_min_active; /* WQ: saved min_active */ 333 334 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 335 struct pool_workqueue __rcu *dfl_pwq; /* PW: only for unbound wqs */ 336 337 #ifdef CONFIG_SYSFS 338 struct wq_device *wq_dev; /* I: for sysfs interface */ 339 #endif 340 #ifdef CONFIG_LOCKDEP 341 char *lock_name; 342 struct lock_class_key key; 343 struct lockdep_map lockdep_map; 344 #endif 345 char name[WQ_NAME_LEN]; /* I: workqueue name */ 346 347 /* 348 * Destruction of workqueue_struct is RCU protected to allow walking 349 * the workqueues list without grabbing wq_pool_mutex. 350 * This is used to dump all workqueues from sysrq. 351 */ 352 struct rcu_head rcu; 353 354 /* hot fields used during command issue, aligned to cacheline */ 355 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 356 struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */ 357 struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */ 358 }; 359 360 static struct kmem_cache *pwq_cache; 361 362 /* 363 * Each pod type describes how CPUs should be grouped for unbound workqueues. 364 * See the comment above workqueue_attrs->affn_scope. 365 */ 366 struct wq_pod_type { 367 int nr_pods; /* number of pods */ 368 cpumask_var_t *pod_cpus; /* pod -> cpus */ 369 int *pod_node; /* pod -> node */ 370 int *cpu_pod; /* cpu -> pod */ 371 }; 372 373 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES]; 374 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE; 375 376 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = { 377 [WQ_AFFN_DFL] = "default", 378 [WQ_AFFN_CPU] = "cpu", 379 [WQ_AFFN_SMT] = "smt", 380 [WQ_AFFN_CACHE] = "cache", 381 [WQ_AFFN_NUMA] = "numa", 382 [WQ_AFFN_SYSTEM] = "system", 383 }; 384 385 /* 386 * Per-cpu work items which run for longer than the following threshold are 387 * automatically considered CPU intensive and excluded from concurrency 388 * management to prevent them from noticeably delaying other per-cpu work items. 389 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter. 390 * The actual value is initialized in wq_cpu_intensive_thresh_init(). 391 */ 392 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX; 393 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644); 394 395 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 396 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 397 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 398 399 static bool wq_online; /* can kworkers be created yet? */ 400 401 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */ 402 static struct workqueue_attrs *wq_update_pod_attrs_buf; 403 404 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 405 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 406 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 407 /* wait for manager to go away */ 408 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait); 409 410 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 411 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 412 413 /* PL&A: allowable cpus for unbound wqs and work items */ 414 static cpumask_var_t wq_unbound_cpumask; 415 416 /* for further constrain wq_unbound_cpumask by cmdline parameter*/ 417 static struct cpumask wq_cmdline_cpumask __initdata; 418 419 /* CPU where unbound work was last round robin scheduled from this CPU */ 420 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 421 422 /* 423 * Local execution of unbound work items is no longer guaranteed. The 424 * following always forces round-robin CPU selection on unbound work items 425 * to uncover usages which depend on it. 426 */ 427 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 428 static bool wq_debug_force_rr_cpu = true; 429 #else 430 static bool wq_debug_force_rr_cpu = false; 431 #endif 432 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 433 434 /* the per-cpu worker pools */ 435 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 436 437 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 438 439 /* PL: hash of all unbound pools keyed by pool->attrs */ 440 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 441 442 /* I: attributes used when instantiating standard unbound pools on demand */ 443 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 444 445 /* I: attributes used when instantiating ordered pools on demand */ 446 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 447 448 /* 449 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a 450 * process context while holding a pool lock. Bounce to a dedicated kthread 451 * worker to avoid A-A deadlocks. 452 */ 453 static struct kthread_worker *pwq_release_worker; 454 455 struct workqueue_struct *system_wq __read_mostly; 456 EXPORT_SYMBOL(system_wq); 457 struct workqueue_struct *system_highpri_wq __read_mostly; 458 EXPORT_SYMBOL_GPL(system_highpri_wq); 459 struct workqueue_struct *system_long_wq __read_mostly; 460 EXPORT_SYMBOL_GPL(system_long_wq); 461 struct workqueue_struct *system_unbound_wq __read_mostly; 462 EXPORT_SYMBOL_GPL(system_unbound_wq); 463 struct workqueue_struct *system_freezable_wq __read_mostly; 464 EXPORT_SYMBOL_GPL(system_freezable_wq); 465 struct workqueue_struct *system_power_efficient_wq __read_mostly; 466 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 467 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 468 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 469 470 static int worker_thread(void *__worker); 471 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 472 static void show_pwq(struct pool_workqueue *pwq); 473 static void show_one_worker_pool(struct worker_pool *pool); 474 475 #define CREATE_TRACE_POINTS 476 #include <trace/events/workqueue.h> 477 478 #define assert_rcu_or_pool_mutex() \ 479 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 480 !lockdep_is_held(&wq_pool_mutex), \ 481 "RCU or wq_pool_mutex should be held") 482 483 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 484 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 485 !lockdep_is_held(&wq->mutex) && \ 486 !lockdep_is_held(&wq_pool_mutex), \ 487 "RCU, wq->mutex or wq_pool_mutex should be held") 488 489 #define for_each_cpu_worker_pool(pool, cpu) \ 490 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 491 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 492 (pool)++) 493 494 /** 495 * for_each_pool - iterate through all worker_pools in the system 496 * @pool: iteration cursor 497 * @pi: integer used for iteration 498 * 499 * This must be called either with wq_pool_mutex held or RCU read 500 * locked. If the pool needs to be used beyond the locking in effect, the 501 * caller is responsible for guaranteeing that the pool stays online. 502 * 503 * The if/else clause exists only for the lockdep assertion and can be 504 * ignored. 505 */ 506 #define for_each_pool(pool, pi) \ 507 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 508 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 509 else 510 511 /** 512 * for_each_pool_worker - iterate through all workers of a worker_pool 513 * @worker: iteration cursor 514 * @pool: worker_pool to iterate workers of 515 * 516 * This must be called with wq_pool_attach_mutex. 517 * 518 * The if/else clause exists only for the lockdep assertion and can be 519 * ignored. 520 */ 521 #define for_each_pool_worker(worker, pool) \ 522 list_for_each_entry((worker), &(pool)->workers, node) \ 523 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 524 else 525 526 /** 527 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 528 * @pwq: iteration cursor 529 * @wq: the target workqueue 530 * 531 * This must be called either with wq->mutex held or RCU read locked. 532 * If the pwq needs to be used beyond the locking in effect, the caller is 533 * responsible for guaranteeing that the pwq stays online. 534 * 535 * The if/else clause exists only for the lockdep assertion and can be 536 * ignored. 537 */ 538 #define for_each_pwq(pwq, wq) \ 539 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ 540 lockdep_is_held(&(wq->mutex))) 541 542 #ifdef CONFIG_DEBUG_OBJECTS_WORK 543 544 static const struct debug_obj_descr work_debug_descr; 545 546 static void *work_debug_hint(void *addr) 547 { 548 return ((struct work_struct *) addr)->func; 549 } 550 551 static bool work_is_static_object(void *addr) 552 { 553 struct work_struct *work = addr; 554 555 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 556 } 557 558 /* 559 * fixup_init is called when: 560 * - an active object is initialized 561 */ 562 static bool work_fixup_init(void *addr, enum debug_obj_state state) 563 { 564 struct work_struct *work = addr; 565 566 switch (state) { 567 case ODEBUG_STATE_ACTIVE: 568 cancel_work_sync(work); 569 debug_object_init(work, &work_debug_descr); 570 return true; 571 default: 572 return false; 573 } 574 } 575 576 /* 577 * fixup_free is called when: 578 * - an active object is freed 579 */ 580 static bool work_fixup_free(void *addr, enum debug_obj_state state) 581 { 582 struct work_struct *work = addr; 583 584 switch (state) { 585 case ODEBUG_STATE_ACTIVE: 586 cancel_work_sync(work); 587 debug_object_free(work, &work_debug_descr); 588 return true; 589 default: 590 return false; 591 } 592 } 593 594 static const struct debug_obj_descr work_debug_descr = { 595 .name = "work_struct", 596 .debug_hint = work_debug_hint, 597 .is_static_object = work_is_static_object, 598 .fixup_init = work_fixup_init, 599 .fixup_free = work_fixup_free, 600 }; 601 602 static inline void debug_work_activate(struct work_struct *work) 603 { 604 debug_object_activate(work, &work_debug_descr); 605 } 606 607 static inline void debug_work_deactivate(struct work_struct *work) 608 { 609 debug_object_deactivate(work, &work_debug_descr); 610 } 611 612 void __init_work(struct work_struct *work, int onstack) 613 { 614 if (onstack) 615 debug_object_init_on_stack(work, &work_debug_descr); 616 else 617 debug_object_init(work, &work_debug_descr); 618 } 619 EXPORT_SYMBOL_GPL(__init_work); 620 621 void destroy_work_on_stack(struct work_struct *work) 622 { 623 debug_object_free(work, &work_debug_descr); 624 } 625 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 626 627 void destroy_delayed_work_on_stack(struct delayed_work *work) 628 { 629 destroy_timer_on_stack(&work->timer); 630 debug_object_free(&work->work, &work_debug_descr); 631 } 632 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 633 634 #else 635 static inline void debug_work_activate(struct work_struct *work) { } 636 static inline void debug_work_deactivate(struct work_struct *work) { } 637 #endif 638 639 /** 640 * worker_pool_assign_id - allocate ID and assign it to @pool 641 * @pool: the pool pointer of interest 642 * 643 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 644 * successfully, -errno on failure. 645 */ 646 static int worker_pool_assign_id(struct worker_pool *pool) 647 { 648 int ret; 649 650 lockdep_assert_held(&wq_pool_mutex); 651 652 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 653 GFP_KERNEL); 654 if (ret >= 0) { 655 pool->id = ret; 656 return 0; 657 } 658 return ret; 659 } 660 661 static struct pool_workqueue __rcu ** 662 unbound_pwq_slot(struct workqueue_struct *wq, int cpu) 663 { 664 if (cpu >= 0) 665 return per_cpu_ptr(wq->cpu_pwq, cpu); 666 else 667 return &wq->dfl_pwq; 668 } 669 670 /* @cpu < 0 for dfl_pwq */ 671 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu) 672 { 673 return rcu_dereference_check(*unbound_pwq_slot(wq, cpu), 674 lockdep_is_held(&wq_pool_mutex) || 675 lockdep_is_held(&wq->mutex)); 676 } 677 678 /** 679 * unbound_effective_cpumask - effective cpumask of an unbound workqueue 680 * @wq: workqueue of interest 681 * 682 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which 683 * is masked with wq_unbound_cpumask to determine the effective cpumask. The 684 * default pwq is always mapped to the pool with the current effective cpumask. 685 */ 686 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq) 687 { 688 return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask; 689 } 690 691 static unsigned int work_color_to_flags(int color) 692 { 693 return color << WORK_STRUCT_COLOR_SHIFT; 694 } 695 696 static int get_work_color(unsigned long work_data) 697 { 698 return (work_data >> WORK_STRUCT_COLOR_SHIFT) & 699 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 700 } 701 702 static int work_next_color(int color) 703 { 704 return (color + 1) % WORK_NR_COLORS; 705 } 706 707 /* 708 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 709 * contain the pointer to the queued pwq. Once execution starts, the flag 710 * is cleared and the high bits contain OFFQ flags and pool ID. 711 * 712 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 713 * and clear_work_data() can be used to set the pwq, pool or clear 714 * work->data. These functions should only be called while the work is 715 * owned - ie. while the PENDING bit is set. 716 * 717 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 718 * corresponding to a work. Pool is available once the work has been 719 * queued anywhere after initialization until it is sync canceled. pwq is 720 * available only while the work item is queued. 721 * 722 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 723 * canceled. While being canceled, a work item may have its PENDING set 724 * but stay off timer and worklist for arbitrarily long and nobody should 725 * try to steal the PENDING bit. 726 */ 727 static inline void set_work_data(struct work_struct *work, unsigned long data, 728 unsigned long flags) 729 { 730 WARN_ON_ONCE(!work_pending(work)); 731 atomic_long_set(&work->data, data | flags | work_static(work)); 732 } 733 734 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 735 unsigned long extra_flags) 736 { 737 set_work_data(work, (unsigned long)pwq, 738 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 739 } 740 741 static void set_work_pool_and_keep_pending(struct work_struct *work, 742 int pool_id) 743 { 744 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 745 WORK_STRUCT_PENDING); 746 } 747 748 static void set_work_pool_and_clear_pending(struct work_struct *work, 749 int pool_id) 750 { 751 /* 752 * The following wmb is paired with the implied mb in 753 * test_and_set_bit(PENDING) and ensures all updates to @work made 754 * here are visible to and precede any updates by the next PENDING 755 * owner. 756 */ 757 smp_wmb(); 758 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 759 /* 760 * The following mb guarantees that previous clear of a PENDING bit 761 * will not be reordered with any speculative LOADS or STORES from 762 * work->current_func, which is executed afterwards. This possible 763 * reordering can lead to a missed execution on attempt to queue 764 * the same @work. E.g. consider this case: 765 * 766 * CPU#0 CPU#1 767 * ---------------------------- -------------------------------- 768 * 769 * 1 STORE event_indicated 770 * 2 queue_work_on() { 771 * 3 test_and_set_bit(PENDING) 772 * 4 } set_..._and_clear_pending() { 773 * 5 set_work_data() # clear bit 774 * 6 smp_mb() 775 * 7 work->current_func() { 776 * 8 LOAD event_indicated 777 * } 778 * 779 * Without an explicit full barrier speculative LOAD on line 8 can 780 * be executed before CPU#0 does STORE on line 1. If that happens, 781 * CPU#0 observes the PENDING bit is still set and new execution of 782 * a @work is not queued in a hope, that CPU#1 will eventually 783 * finish the queued @work. Meanwhile CPU#1 does not see 784 * event_indicated is set, because speculative LOAD was executed 785 * before actual STORE. 786 */ 787 smp_mb(); 788 } 789 790 static void clear_work_data(struct work_struct *work) 791 { 792 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 793 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 794 } 795 796 static inline struct pool_workqueue *work_struct_pwq(unsigned long data) 797 { 798 return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK); 799 } 800 801 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 802 { 803 unsigned long data = atomic_long_read(&work->data); 804 805 if (data & WORK_STRUCT_PWQ) 806 return work_struct_pwq(data); 807 else 808 return NULL; 809 } 810 811 /** 812 * get_work_pool - return the worker_pool a given work was associated with 813 * @work: the work item of interest 814 * 815 * Pools are created and destroyed under wq_pool_mutex, and allows read 816 * access under RCU read lock. As such, this function should be 817 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 818 * 819 * All fields of the returned pool are accessible as long as the above 820 * mentioned locking is in effect. If the returned pool needs to be used 821 * beyond the critical section, the caller is responsible for ensuring the 822 * returned pool is and stays online. 823 * 824 * Return: The worker_pool @work was last associated with. %NULL if none. 825 */ 826 static struct worker_pool *get_work_pool(struct work_struct *work) 827 { 828 unsigned long data = atomic_long_read(&work->data); 829 int pool_id; 830 831 assert_rcu_or_pool_mutex(); 832 833 if (data & WORK_STRUCT_PWQ) 834 return work_struct_pwq(data)->pool; 835 836 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 837 if (pool_id == WORK_OFFQ_POOL_NONE) 838 return NULL; 839 840 return idr_find(&worker_pool_idr, pool_id); 841 } 842 843 /** 844 * get_work_pool_id - return the worker pool ID a given work is associated with 845 * @work: the work item of interest 846 * 847 * Return: The worker_pool ID @work was last associated with. 848 * %WORK_OFFQ_POOL_NONE if none. 849 */ 850 static int get_work_pool_id(struct work_struct *work) 851 { 852 unsigned long data = atomic_long_read(&work->data); 853 854 if (data & WORK_STRUCT_PWQ) 855 return work_struct_pwq(data)->pool->id; 856 857 return data >> WORK_OFFQ_POOL_SHIFT; 858 } 859 860 static void mark_work_canceling(struct work_struct *work) 861 { 862 unsigned long pool_id = get_work_pool_id(work); 863 864 pool_id <<= WORK_OFFQ_POOL_SHIFT; 865 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 866 } 867 868 static bool work_is_canceling(struct work_struct *work) 869 { 870 unsigned long data = atomic_long_read(&work->data); 871 872 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 873 } 874 875 /* 876 * Policy functions. These define the policies on how the global worker 877 * pools are managed. Unless noted otherwise, these functions assume that 878 * they're being called with pool->lock held. 879 */ 880 881 /* 882 * Need to wake up a worker? Called from anything but currently 883 * running workers. 884 * 885 * Note that, because unbound workers never contribute to nr_running, this 886 * function will always return %true for unbound pools as long as the 887 * worklist isn't empty. 888 */ 889 static bool need_more_worker(struct worker_pool *pool) 890 { 891 return !list_empty(&pool->worklist) && !pool->nr_running; 892 } 893 894 /* Can I start working? Called from busy but !running workers. */ 895 static bool may_start_working(struct worker_pool *pool) 896 { 897 return pool->nr_idle; 898 } 899 900 /* Do I need to keep working? Called from currently running workers. */ 901 static bool keep_working(struct worker_pool *pool) 902 { 903 return !list_empty(&pool->worklist) && (pool->nr_running <= 1); 904 } 905 906 /* Do we need a new worker? Called from manager. */ 907 static bool need_to_create_worker(struct worker_pool *pool) 908 { 909 return need_more_worker(pool) && !may_start_working(pool); 910 } 911 912 /* Do we have too many workers and should some go away? */ 913 static bool too_many_workers(struct worker_pool *pool) 914 { 915 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 916 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 917 int nr_busy = pool->nr_workers - nr_idle; 918 919 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 920 } 921 922 /** 923 * worker_set_flags - set worker flags and adjust nr_running accordingly 924 * @worker: self 925 * @flags: flags to set 926 * 927 * Set @flags in @worker->flags and adjust nr_running accordingly. 928 */ 929 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 930 { 931 struct worker_pool *pool = worker->pool; 932 933 lockdep_assert_held(&pool->lock); 934 935 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 936 if ((flags & WORKER_NOT_RUNNING) && 937 !(worker->flags & WORKER_NOT_RUNNING)) { 938 pool->nr_running--; 939 } 940 941 worker->flags |= flags; 942 } 943 944 /** 945 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 946 * @worker: self 947 * @flags: flags to clear 948 * 949 * Clear @flags in @worker->flags and adjust nr_running accordingly. 950 */ 951 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 952 { 953 struct worker_pool *pool = worker->pool; 954 unsigned int oflags = worker->flags; 955 956 lockdep_assert_held(&pool->lock); 957 958 worker->flags &= ~flags; 959 960 /* 961 * If transitioning out of NOT_RUNNING, increment nr_running. Note 962 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 963 * of multiple flags, not a single flag. 964 */ 965 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 966 if (!(worker->flags & WORKER_NOT_RUNNING)) 967 pool->nr_running++; 968 } 969 970 /* Return the first idle worker. Called with pool->lock held. */ 971 static struct worker *first_idle_worker(struct worker_pool *pool) 972 { 973 if (unlikely(list_empty(&pool->idle_list))) 974 return NULL; 975 976 return list_first_entry(&pool->idle_list, struct worker, entry); 977 } 978 979 /** 980 * worker_enter_idle - enter idle state 981 * @worker: worker which is entering idle state 982 * 983 * @worker is entering idle state. Update stats and idle timer if 984 * necessary. 985 * 986 * LOCKING: 987 * raw_spin_lock_irq(pool->lock). 988 */ 989 static void worker_enter_idle(struct worker *worker) 990 { 991 struct worker_pool *pool = worker->pool; 992 993 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 994 WARN_ON_ONCE(!list_empty(&worker->entry) && 995 (worker->hentry.next || worker->hentry.pprev))) 996 return; 997 998 /* can't use worker_set_flags(), also called from create_worker() */ 999 worker->flags |= WORKER_IDLE; 1000 pool->nr_idle++; 1001 worker->last_active = jiffies; 1002 1003 /* idle_list is LIFO */ 1004 list_add(&worker->entry, &pool->idle_list); 1005 1006 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1007 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1008 1009 /* Sanity check nr_running. */ 1010 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running); 1011 } 1012 1013 /** 1014 * worker_leave_idle - leave idle state 1015 * @worker: worker which is leaving idle state 1016 * 1017 * @worker is leaving idle state. Update stats. 1018 * 1019 * LOCKING: 1020 * raw_spin_lock_irq(pool->lock). 1021 */ 1022 static void worker_leave_idle(struct worker *worker) 1023 { 1024 struct worker_pool *pool = worker->pool; 1025 1026 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1027 return; 1028 worker_clr_flags(worker, WORKER_IDLE); 1029 pool->nr_idle--; 1030 list_del_init(&worker->entry); 1031 } 1032 1033 /** 1034 * find_worker_executing_work - find worker which is executing a work 1035 * @pool: pool of interest 1036 * @work: work to find worker for 1037 * 1038 * Find a worker which is executing @work on @pool by searching 1039 * @pool->busy_hash which is keyed by the address of @work. For a worker 1040 * to match, its current execution should match the address of @work and 1041 * its work function. This is to avoid unwanted dependency between 1042 * unrelated work executions through a work item being recycled while still 1043 * being executed. 1044 * 1045 * This is a bit tricky. A work item may be freed once its execution 1046 * starts and nothing prevents the freed area from being recycled for 1047 * another work item. If the same work item address ends up being reused 1048 * before the original execution finishes, workqueue will identify the 1049 * recycled work item as currently executing and make it wait until the 1050 * current execution finishes, introducing an unwanted dependency. 1051 * 1052 * This function checks the work item address and work function to avoid 1053 * false positives. Note that this isn't complete as one may construct a 1054 * work function which can introduce dependency onto itself through a 1055 * recycled work item. Well, if somebody wants to shoot oneself in the 1056 * foot that badly, there's only so much we can do, and if such deadlock 1057 * actually occurs, it should be easy to locate the culprit work function. 1058 * 1059 * CONTEXT: 1060 * raw_spin_lock_irq(pool->lock). 1061 * 1062 * Return: 1063 * Pointer to worker which is executing @work if found, %NULL 1064 * otherwise. 1065 */ 1066 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1067 struct work_struct *work) 1068 { 1069 struct worker *worker; 1070 1071 hash_for_each_possible(pool->busy_hash, worker, hentry, 1072 (unsigned long)work) 1073 if (worker->current_work == work && 1074 worker->current_func == work->func) 1075 return worker; 1076 1077 return NULL; 1078 } 1079 1080 /** 1081 * move_linked_works - move linked works to a list 1082 * @work: start of series of works to be scheduled 1083 * @head: target list to append @work to 1084 * @nextp: out parameter for nested worklist walking 1085 * 1086 * Schedule linked works starting from @work to @head. Work series to be 1087 * scheduled starts at @work and includes any consecutive work with 1088 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on 1089 * @nextp. 1090 * 1091 * CONTEXT: 1092 * raw_spin_lock_irq(pool->lock). 1093 */ 1094 static void move_linked_works(struct work_struct *work, struct list_head *head, 1095 struct work_struct **nextp) 1096 { 1097 struct work_struct *n; 1098 1099 /* 1100 * Linked worklist will always end before the end of the list, 1101 * use NULL for list head. 1102 */ 1103 list_for_each_entry_safe_from(work, n, NULL, entry) { 1104 list_move_tail(&work->entry, head); 1105 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1106 break; 1107 } 1108 1109 /* 1110 * If we're already inside safe list traversal and have moved 1111 * multiple works to the scheduled queue, the next position 1112 * needs to be updated. 1113 */ 1114 if (nextp) 1115 *nextp = n; 1116 } 1117 1118 /** 1119 * assign_work - assign a work item and its linked work items to a worker 1120 * @work: work to assign 1121 * @worker: worker to assign to 1122 * @nextp: out parameter for nested worklist walking 1123 * 1124 * Assign @work and its linked work items to @worker. If @work is already being 1125 * executed by another worker in the same pool, it'll be punted there. 1126 * 1127 * If @nextp is not NULL, it's updated to point to the next work of the last 1128 * scheduled work. This allows assign_work() to be nested inside 1129 * list_for_each_entry_safe(). 1130 * 1131 * Returns %true if @work was successfully assigned to @worker. %false if @work 1132 * was punted to another worker already executing it. 1133 */ 1134 static bool assign_work(struct work_struct *work, struct worker *worker, 1135 struct work_struct **nextp) 1136 { 1137 struct worker_pool *pool = worker->pool; 1138 struct worker *collision; 1139 1140 lockdep_assert_held(&pool->lock); 1141 1142 /* 1143 * A single work shouldn't be executed concurrently by multiple workers. 1144 * __queue_work() ensures that @work doesn't jump to a different pool 1145 * while still running in the previous pool. Here, we should ensure that 1146 * @work is not executed concurrently by multiple workers from the same 1147 * pool. Check whether anyone is already processing the work. If so, 1148 * defer the work to the currently executing one. 1149 */ 1150 collision = find_worker_executing_work(pool, work); 1151 if (unlikely(collision)) { 1152 move_linked_works(work, &collision->scheduled, nextp); 1153 return false; 1154 } 1155 1156 move_linked_works(work, &worker->scheduled, nextp); 1157 return true; 1158 } 1159 1160 /** 1161 * kick_pool - wake up an idle worker if necessary 1162 * @pool: pool to kick 1163 * 1164 * @pool may have pending work items. Wake up worker if necessary. Returns 1165 * whether a worker was woken up. 1166 */ 1167 static bool kick_pool(struct worker_pool *pool) 1168 { 1169 struct worker *worker = first_idle_worker(pool); 1170 struct task_struct *p; 1171 1172 lockdep_assert_held(&pool->lock); 1173 1174 if (!need_more_worker(pool) || !worker) 1175 return false; 1176 1177 p = worker->task; 1178 1179 #ifdef CONFIG_SMP 1180 /* 1181 * Idle @worker is about to execute @work and waking up provides an 1182 * opportunity to migrate @worker at a lower cost by setting the task's 1183 * wake_cpu field. Let's see if we want to move @worker to improve 1184 * execution locality. 1185 * 1186 * We're waking the worker that went idle the latest and there's some 1187 * chance that @worker is marked idle but hasn't gone off CPU yet. If 1188 * so, setting the wake_cpu won't do anything. As this is a best-effort 1189 * optimization and the race window is narrow, let's leave as-is for 1190 * now. If this becomes pronounced, we can skip over workers which are 1191 * still on cpu when picking an idle worker. 1192 * 1193 * If @pool has non-strict affinity, @worker might have ended up outside 1194 * its affinity scope. Repatriate. 1195 */ 1196 if (!pool->attrs->affn_strict && 1197 !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) { 1198 struct work_struct *work = list_first_entry(&pool->worklist, 1199 struct work_struct, entry); 1200 p->wake_cpu = cpumask_any_distribute(pool->attrs->__pod_cpumask); 1201 get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++; 1202 } 1203 #endif 1204 wake_up_process(p); 1205 return true; 1206 } 1207 1208 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT 1209 1210 /* 1211 * Concurrency-managed per-cpu work items that hog CPU for longer than 1212 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism, 1213 * which prevents them from stalling other concurrency-managed work items. If a 1214 * work function keeps triggering this mechanism, it's likely that the work item 1215 * should be using an unbound workqueue instead. 1216 * 1217 * wq_cpu_intensive_report() tracks work functions which trigger such conditions 1218 * and report them so that they can be examined and converted to use unbound 1219 * workqueues as appropriate. To avoid flooding the console, each violating work 1220 * function is tracked and reported with exponential backoff. 1221 */ 1222 #define WCI_MAX_ENTS 128 1223 1224 struct wci_ent { 1225 work_func_t func; 1226 atomic64_t cnt; 1227 struct hlist_node hash_node; 1228 }; 1229 1230 static struct wci_ent wci_ents[WCI_MAX_ENTS]; 1231 static int wci_nr_ents; 1232 static DEFINE_RAW_SPINLOCK(wci_lock); 1233 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS)); 1234 1235 static struct wci_ent *wci_find_ent(work_func_t func) 1236 { 1237 struct wci_ent *ent; 1238 1239 hash_for_each_possible_rcu(wci_hash, ent, hash_node, 1240 (unsigned long)func) { 1241 if (ent->func == func) 1242 return ent; 1243 } 1244 return NULL; 1245 } 1246 1247 static void wq_cpu_intensive_report(work_func_t func) 1248 { 1249 struct wci_ent *ent; 1250 1251 restart: 1252 ent = wci_find_ent(func); 1253 if (ent) { 1254 u64 cnt; 1255 1256 /* 1257 * Start reporting from the fourth time and back off 1258 * exponentially. 1259 */ 1260 cnt = atomic64_inc_return_relaxed(&ent->cnt); 1261 if (cnt >= 4 && is_power_of_2(cnt)) 1262 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n", 1263 ent->func, wq_cpu_intensive_thresh_us, 1264 atomic64_read(&ent->cnt)); 1265 return; 1266 } 1267 1268 /* 1269 * @func is a new violation. Allocate a new entry for it. If wcn_ents[] 1270 * is exhausted, something went really wrong and we probably made enough 1271 * noise already. 1272 */ 1273 if (wci_nr_ents >= WCI_MAX_ENTS) 1274 return; 1275 1276 raw_spin_lock(&wci_lock); 1277 1278 if (wci_nr_ents >= WCI_MAX_ENTS) { 1279 raw_spin_unlock(&wci_lock); 1280 return; 1281 } 1282 1283 if (wci_find_ent(func)) { 1284 raw_spin_unlock(&wci_lock); 1285 goto restart; 1286 } 1287 1288 ent = &wci_ents[wci_nr_ents++]; 1289 ent->func = func; 1290 atomic64_set(&ent->cnt, 1); 1291 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func); 1292 1293 raw_spin_unlock(&wci_lock); 1294 } 1295 1296 #else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1297 static void wq_cpu_intensive_report(work_func_t func) {} 1298 #endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1299 1300 /** 1301 * wq_worker_running - a worker is running again 1302 * @task: task waking up 1303 * 1304 * This function is called when a worker returns from schedule() 1305 */ 1306 void wq_worker_running(struct task_struct *task) 1307 { 1308 struct worker *worker = kthread_data(task); 1309 1310 if (!READ_ONCE(worker->sleeping)) 1311 return; 1312 1313 /* 1314 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check 1315 * and the nr_running increment below, we may ruin the nr_running reset 1316 * and leave with an unexpected pool->nr_running == 1 on the newly unbound 1317 * pool. Protect against such race. 1318 */ 1319 preempt_disable(); 1320 if (!(worker->flags & WORKER_NOT_RUNNING)) 1321 worker->pool->nr_running++; 1322 preempt_enable(); 1323 1324 /* 1325 * CPU intensive auto-detection cares about how long a work item hogged 1326 * CPU without sleeping. Reset the starting timestamp on wakeup. 1327 */ 1328 worker->current_at = worker->task->se.sum_exec_runtime; 1329 1330 WRITE_ONCE(worker->sleeping, 0); 1331 } 1332 1333 /** 1334 * wq_worker_sleeping - a worker is going to sleep 1335 * @task: task going to sleep 1336 * 1337 * This function is called from schedule() when a busy worker is 1338 * going to sleep. 1339 */ 1340 void wq_worker_sleeping(struct task_struct *task) 1341 { 1342 struct worker *worker = kthread_data(task); 1343 struct worker_pool *pool; 1344 1345 /* 1346 * Rescuers, which may not have all the fields set up like normal 1347 * workers, also reach here, let's not access anything before 1348 * checking NOT_RUNNING. 1349 */ 1350 if (worker->flags & WORKER_NOT_RUNNING) 1351 return; 1352 1353 pool = worker->pool; 1354 1355 /* Return if preempted before wq_worker_running() was reached */ 1356 if (READ_ONCE(worker->sleeping)) 1357 return; 1358 1359 WRITE_ONCE(worker->sleeping, 1); 1360 raw_spin_lock_irq(&pool->lock); 1361 1362 /* 1363 * Recheck in case unbind_workers() preempted us. We don't 1364 * want to decrement nr_running after the worker is unbound 1365 * and nr_running has been reset. 1366 */ 1367 if (worker->flags & WORKER_NOT_RUNNING) { 1368 raw_spin_unlock_irq(&pool->lock); 1369 return; 1370 } 1371 1372 pool->nr_running--; 1373 if (kick_pool(pool)) 1374 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1375 1376 raw_spin_unlock_irq(&pool->lock); 1377 } 1378 1379 /** 1380 * wq_worker_tick - a scheduler tick occurred while a kworker is running 1381 * @task: task currently running 1382 * 1383 * Called from scheduler_tick(). We're in the IRQ context and the current 1384 * worker's fields which follow the 'K' locking rule can be accessed safely. 1385 */ 1386 void wq_worker_tick(struct task_struct *task) 1387 { 1388 struct worker *worker = kthread_data(task); 1389 struct pool_workqueue *pwq = worker->current_pwq; 1390 struct worker_pool *pool = worker->pool; 1391 1392 if (!pwq) 1393 return; 1394 1395 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC; 1396 1397 if (!wq_cpu_intensive_thresh_us) 1398 return; 1399 1400 /* 1401 * If the current worker is concurrency managed and hogged the CPU for 1402 * longer than wq_cpu_intensive_thresh_us, it's automatically marked 1403 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items. 1404 * 1405 * Set @worker->sleeping means that @worker is in the process of 1406 * switching out voluntarily and won't be contributing to 1407 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also 1408 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to 1409 * double decrements. The task is releasing the CPU anyway. Let's skip. 1410 * We probably want to make this prettier in the future. 1411 */ 1412 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) || 1413 worker->task->se.sum_exec_runtime - worker->current_at < 1414 wq_cpu_intensive_thresh_us * NSEC_PER_USEC) 1415 return; 1416 1417 raw_spin_lock(&pool->lock); 1418 1419 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 1420 wq_cpu_intensive_report(worker->current_func); 1421 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++; 1422 1423 if (kick_pool(pool)) 1424 pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1425 1426 raw_spin_unlock(&pool->lock); 1427 } 1428 1429 /** 1430 * wq_worker_last_func - retrieve worker's last work function 1431 * @task: Task to retrieve last work function of. 1432 * 1433 * Determine the last function a worker executed. This is called from 1434 * the scheduler to get a worker's last known identity. 1435 * 1436 * CONTEXT: 1437 * raw_spin_lock_irq(rq->lock) 1438 * 1439 * This function is called during schedule() when a kworker is going 1440 * to sleep. It's used by psi to identify aggregation workers during 1441 * dequeuing, to allow periodic aggregation to shut-off when that 1442 * worker is the last task in the system or cgroup to go to sleep. 1443 * 1444 * As this function doesn't involve any workqueue-related locking, it 1445 * only returns stable values when called from inside the scheduler's 1446 * queuing and dequeuing paths, when @task, which must be a kworker, 1447 * is guaranteed to not be processing any works. 1448 * 1449 * Return: 1450 * The last work function %current executed as a worker, NULL if it 1451 * hasn't executed any work yet. 1452 */ 1453 work_func_t wq_worker_last_func(struct task_struct *task) 1454 { 1455 struct worker *worker = kthread_data(task); 1456 1457 return worker->last_func; 1458 } 1459 1460 /** 1461 * wq_node_nr_active - Determine wq_node_nr_active to use 1462 * @wq: workqueue of interest 1463 * @node: NUMA node, can be %NUMA_NO_NODE 1464 * 1465 * Determine wq_node_nr_active to use for @wq on @node. Returns: 1466 * 1467 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active. 1468 * 1469 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE. 1470 * 1471 * - Otherwise, node_nr_active[@node]. 1472 */ 1473 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq, 1474 int node) 1475 { 1476 if (!(wq->flags & WQ_UNBOUND)) 1477 return NULL; 1478 1479 if (node == NUMA_NO_NODE) 1480 node = nr_node_ids; 1481 1482 return wq->node_nr_active[node]; 1483 } 1484 1485 /** 1486 * wq_update_node_max_active - Update per-node max_actives to use 1487 * @wq: workqueue to update 1488 * @off_cpu: CPU that's going down, -1 if a CPU is not going down 1489 * 1490 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is 1491 * distributed among nodes according to the proportions of numbers of online 1492 * cpus. The result is always between @wq->min_active and max_active. 1493 */ 1494 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu) 1495 { 1496 struct cpumask *effective = unbound_effective_cpumask(wq); 1497 int min_active = READ_ONCE(wq->min_active); 1498 int max_active = READ_ONCE(wq->max_active); 1499 int total_cpus, node; 1500 1501 lockdep_assert_held(&wq->mutex); 1502 1503 if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective)) 1504 off_cpu = -1; 1505 1506 total_cpus = cpumask_weight_and(effective, cpu_online_mask); 1507 if (off_cpu >= 0) 1508 total_cpus--; 1509 1510 for_each_node(node) { 1511 int node_cpus; 1512 1513 node_cpus = cpumask_weight_and(effective, cpumask_of_node(node)); 1514 if (off_cpu >= 0 && cpu_to_node(off_cpu) == node) 1515 node_cpus--; 1516 1517 wq_node_nr_active(wq, node)->max = 1518 clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus), 1519 min_active, max_active); 1520 } 1521 1522 wq_node_nr_active(wq, NUMA_NO_NODE)->max = min_active; 1523 } 1524 1525 /** 1526 * get_pwq - get an extra reference on the specified pool_workqueue 1527 * @pwq: pool_workqueue to get 1528 * 1529 * Obtain an extra reference on @pwq. The caller should guarantee that 1530 * @pwq has positive refcnt and be holding the matching pool->lock. 1531 */ 1532 static void get_pwq(struct pool_workqueue *pwq) 1533 { 1534 lockdep_assert_held(&pwq->pool->lock); 1535 WARN_ON_ONCE(pwq->refcnt <= 0); 1536 pwq->refcnt++; 1537 } 1538 1539 /** 1540 * put_pwq - put a pool_workqueue reference 1541 * @pwq: pool_workqueue to put 1542 * 1543 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1544 * destruction. The caller should be holding the matching pool->lock. 1545 */ 1546 static void put_pwq(struct pool_workqueue *pwq) 1547 { 1548 lockdep_assert_held(&pwq->pool->lock); 1549 if (likely(--pwq->refcnt)) 1550 return; 1551 /* 1552 * @pwq can't be released under pool->lock, bounce to a dedicated 1553 * kthread_worker to avoid A-A deadlocks. 1554 */ 1555 kthread_queue_work(pwq_release_worker, &pwq->release_work); 1556 } 1557 1558 /** 1559 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1560 * @pwq: pool_workqueue to put (can be %NULL) 1561 * 1562 * put_pwq() with locking. This function also allows %NULL @pwq. 1563 */ 1564 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1565 { 1566 if (pwq) { 1567 /* 1568 * As both pwqs and pools are RCU protected, the 1569 * following lock operations are safe. 1570 */ 1571 raw_spin_lock_irq(&pwq->pool->lock); 1572 put_pwq(pwq); 1573 raw_spin_unlock_irq(&pwq->pool->lock); 1574 } 1575 } 1576 1577 static bool pwq_is_empty(struct pool_workqueue *pwq) 1578 { 1579 return !pwq->nr_active && list_empty(&pwq->inactive_works); 1580 } 1581 1582 static void __pwq_activate_work(struct pool_workqueue *pwq, 1583 struct work_struct *work) 1584 { 1585 unsigned long *wdb = work_data_bits(work); 1586 1587 WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE)); 1588 trace_workqueue_activate_work(work); 1589 if (list_empty(&pwq->pool->worklist)) 1590 pwq->pool->watchdog_ts = jiffies; 1591 move_linked_works(work, &pwq->pool->worklist, NULL); 1592 __clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb); 1593 } 1594 1595 /** 1596 * pwq_activate_work - Activate a work item if inactive 1597 * @pwq: pool_workqueue @work belongs to 1598 * @work: work item to activate 1599 * 1600 * Returns %true if activated. %false if already active. 1601 */ 1602 static bool pwq_activate_work(struct pool_workqueue *pwq, 1603 struct work_struct *work) 1604 { 1605 struct worker_pool *pool = pwq->pool; 1606 struct wq_node_nr_active *nna; 1607 1608 lockdep_assert_held(&pool->lock); 1609 1610 if (!(*work_data_bits(work) & WORK_STRUCT_INACTIVE)) 1611 return false; 1612 1613 nna = wq_node_nr_active(pwq->wq, pool->node); 1614 if (nna) 1615 atomic_inc(&nna->nr); 1616 1617 pwq->nr_active++; 1618 __pwq_activate_work(pwq, work); 1619 return true; 1620 } 1621 1622 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna) 1623 { 1624 int max = READ_ONCE(nna->max); 1625 1626 while (true) { 1627 int old, tmp; 1628 1629 old = atomic_read(&nna->nr); 1630 if (old >= max) 1631 return false; 1632 tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1); 1633 if (tmp == old) 1634 return true; 1635 } 1636 } 1637 1638 /** 1639 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq 1640 * @pwq: pool_workqueue of interest 1641 * @fill: max_active may have increased, try to increase concurrency level 1642 * 1643 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is 1644 * successfully obtained. %false otherwise. 1645 */ 1646 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill) 1647 { 1648 struct workqueue_struct *wq = pwq->wq; 1649 struct worker_pool *pool = pwq->pool; 1650 struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node); 1651 bool obtained = false; 1652 1653 lockdep_assert_held(&pool->lock); 1654 1655 if (!nna) { 1656 /* per-cpu workqueue, pwq->nr_active is sufficient */ 1657 obtained = pwq->nr_active < READ_ONCE(wq->max_active); 1658 goto out; 1659 } 1660 1661 /* 1662 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is 1663 * already waiting on $nna, pwq_dec_nr_active() will maintain the 1664 * concurrency level. Don't jump the line. 1665 * 1666 * We need to ignore the pending test after max_active has increased as 1667 * pwq_dec_nr_active() can only maintain the concurrency level but not 1668 * increase it. This is indicated by @fill. 1669 */ 1670 if (!list_empty(&pwq->pending_node) && likely(!fill)) 1671 goto out; 1672 1673 obtained = tryinc_node_nr_active(nna); 1674 if (obtained) 1675 goto out; 1676 1677 /* 1678 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs 1679 * and try again. The smp_mb() is paired with the implied memory barrier 1680 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either 1681 * we see the decremented $nna->nr or they see non-empty 1682 * $nna->pending_pwqs. 1683 */ 1684 raw_spin_lock(&nna->lock); 1685 1686 if (list_empty(&pwq->pending_node)) 1687 list_add_tail(&pwq->pending_node, &nna->pending_pwqs); 1688 else if (likely(!fill)) 1689 goto out_unlock; 1690 1691 smp_mb(); 1692 1693 obtained = tryinc_node_nr_active(nna); 1694 1695 /* 1696 * If @fill, @pwq might have already been pending. Being spuriously 1697 * pending in cold paths doesn't affect anything. Let's leave it be. 1698 */ 1699 if (obtained && likely(!fill)) 1700 list_del_init(&pwq->pending_node); 1701 1702 out_unlock: 1703 raw_spin_unlock(&nna->lock); 1704 out: 1705 if (obtained) 1706 pwq->nr_active++; 1707 return obtained; 1708 } 1709 1710 /** 1711 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq 1712 * @pwq: pool_workqueue of interest 1713 * @fill: max_active may have increased, try to increase concurrency level 1714 * 1715 * Activate the first inactive work item of @pwq if available and allowed by 1716 * max_active limit. 1717 * 1718 * Returns %true if an inactive work item has been activated. %false if no 1719 * inactive work item is found or max_active limit is reached. 1720 */ 1721 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill) 1722 { 1723 struct work_struct *work = 1724 list_first_entry_or_null(&pwq->inactive_works, 1725 struct work_struct, entry); 1726 1727 if (work && pwq_tryinc_nr_active(pwq, fill)) { 1728 __pwq_activate_work(pwq, work); 1729 return true; 1730 } else { 1731 return false; 1732 } 1733 } 1734 1735 /** 1736 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active 1737 * @nna: wq_node_nr_active to activate a pending pwq for 1738 * @caller_pool: worker_pool the caller is locking 1739 * 1740 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked. 1741 * @caller_pool may be unlocked and relocked to lock other worker_pools. 1742 */ 1743 static void node_activate_pending_pwq(struct wq_node_nr_active *nna, 1744 struct worker_pool *caller_pool) 1745 { 1746 struct worker_pool *locked_pool = caller_pool; 1747 struct pool_workqueue *pwq; 1748 struct work_struct *work; 1749 1750 lockdep_assert_held(&caller_pool->lock); 1751 1752 raw_spin_lock(&nna->lock); 1753 retry: 1754 pwq = list_first_entry_or_null(&nna->pending_pwqs, 1755 struct pool_workqueue, pending_node); 1756 if (!pwq) 1757 goto out_unlock; 1758 1759 /* 1760 * If @pwq is for a different pool than @locked_pool, we need to lock 1761 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock 1762 * / lock dance. For that, we also need to release @nna->lock as it's 1763 * nested inside pool locks. 1764 */ 1765 if (pwq->pool != locked_pool) { 1766 raw_spin_unlock(&locked_pool->lock); 1767 locked_pool = pwq->pool; 1768 if (!raw_spin_trylock(&locked_pool->lock)) { 1769 raw_spin_unlock(&nna->lock); 1770 raw_spin_lock(&locked_pool->lock); 1771 raw_spin_lock(&nna->lock); 1772 goto retry; 1773 } 1774 } 1775 1776 /* 1777 * $pwq may not have any inactive work items due to e.g. cancellations. 1778 * Drop it from pending_pwqs and see if there's another one. 1779 */ 1780 work = list_first_entry_or_null(&pwq->inactive_works, 1781 struct work_struct, entry); 1782 if (!work) { 1783 list_del_init(&pwq->pending_node); 1784 goto retry; 1785 } 1786 1787 /* 1788 * Acquire an nr_active count and activate the inactive work item. If 1789 * $pwq still has inactive work items, rotate it to the end of the 1790 * pending_pwqs so that we round-robin through them. This means that 1791 * inactive work items are not activated in queueing order which is fine 1792 * given that there has never been any ordering across different pwqs. 1793 */ 1794 if (likely(tryinc_node_nr_active(nna))) { 1795 pwq->nr_active++; 1796 __pwq_activate_work(pwq, work); 1797 1798 if (list_empty(&pwq->inactive_works)) 1799 list_del_init(&pwq->pending_node); 1800 else 1801 list_move_tail(&pwq->pending_node, &nna->pending_pwqs); 1802 1803 /* if activating a foreign pool, make sure it's running */ 1804 if (pwq->pool != caller_pool) 1805 kick_pool(pwq->pool); 1806 } 1807 1808 out_unlock: 1809 raw_spin_unlock(&nna->lock); 1810 if (locked_pool != caller_pool) { 1811 raw_spin_unlock(&locked_pool->lock); 1812 raw_spin_lock(&caller_pool->lock); 1813 } 1814 } 1815 1816 /** 1817 * pwq_dec_nr_active - Retire an active count 1818 * @pwq: pool_workqueue of interest 1819 * 1820 * Decrement @pwq's nr_active and try to activate the first inactive work item. 1821 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock. 1822 */ 1823 static void pwq_dec_nr_active(struct pool_workqueue *pwq) 1824 { 1825 struct worker_pool *pool = pwq->pool; 1826 struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node); 1827 1828 lockdep_assert_held(&pool->lock); 1829 1830 /* 1831 * @pwq->nr_active should be decremented for both percpu and unbound 1832 * workqueues. 1833 */ 1834 pwq->nr_active--; 1835 1836 /* 1837 * For a percpu workqueue, it's simple. Just need to kick the first 1838 * inactive work item on @pwq itself. 1839 */ 1840 if (!nna) { 1841 pwq_activate_first_inactive(pwq, false); 1842 return; 1843 } 1844 1845 /* 1846 * If @pwq is for an unbound workqueue, it's more complicated because 1847 * multiple pwqs and pools may be sharing the nr_active count. When a 1848 * pwq needs to wait for an nr_active count, it puts itself on 1849 * $nna->pending_pwqs. The following atomic_dec_return()'s implied 1850 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to 1851 * guarantee that either we see non-empty pending_pwqs or they see 1852 * decremented $nna->nr. 1853 * 1854 * $nna->max may change as CPUs come online/offline and @pwq->wq's 1855 * max_active gets updated. However, it is guaranteed to be equal to or 1856 * larger than @pwq->wq->min_active which is above zero unless freezing. 1857 * This maintains the forward progress guarantee. 1858 */ 1859 if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max)) 1860 return; 1861 1862 if (!list_empty(&nna->pending_pwqs)) 1863 node_activate_pending_pwq(nna, pool); 1864 } 1865 1866 /** 1867 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1868 * @pwq: pwq of interest 1869 * @work_data: work_data of work which left the queue 1870 * 1871 * A work either has completed or is removed from pending queue, 1872 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1873 * 1874 * CONTEXT: 1875 * raw_spin_lock_irq(pool->lock). 1876 */ 1877 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data) 1878 { 1879 int color = get_work_color(work_data); 1880 1881 if (!(work_data & WORK_STRUCT_INACTIVE)) 1882 pwq_dec_nr_active(pwq); 1883 1884 pwq->nr_in_flight[color]--; 1885 1886 /* is flush in progress and are we at the flushing tip? */ 1887 if (likely(pwq->flush_color != color)) 1888 goto out_put; 1889 1890 /* are there still in-flight works? */ 1891 if (pwq->nr_in_flight[color]) 1892 goto out_put; 1893 1894 /* this pwq is done, clear flush_color */ 1895 pwq->flush_color = -1; 1896 1897 /* 1898 * If this was the last pwq, wake up the first flusher. It 1899 * will handle the rest. 1900 */ 1901 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1902 complete(&pwq->wq->first_flusher->done); 1903 out_put: 1904 put_pwq(pwq); 1905 } 1906 1907 /** 1908 * try_to_grab_pending - steal work item from worklist and disable irq 1909 * @work: work item to steal 1910 * @is_dwork: @work is a delayed_work 1911 * @flags: place to store irq state 1912 * 1913 * Try to grab PENDING bit of @work. This function can handle @work in any 1914 * stable state - idle, on timer or on worklist. 1915 * 1916 * Return: 1917 * 1918 * ======== ================================================================ 1919 * 1 if @work was pending and we successfully stole PENDING 1920 * 0 if @work was idle and we claimed PENDING 1921 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1922 * -ENOENT if someone else is canceling @work, this state may persist 1923 * for arbitrarily long 1924 * ======== ================================================================ 1925 * 1926 * Note: 1927 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1928 * interrupted while holding PENDING and @work off queue, irq must be 1929 * disabled on entry. This, combined with delayed_work->timer being 1930 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1931 * 1932 * On successful return, >= 0, irq is disabled and the caller is 1933 * responsible for releasing it using local_irq_restore(*@flags). 1934 * 1935 * This function is safe to call from any context including IRQ handler. 1936 */ 1937 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1938 unsigned long *flags) 1939 { 1940 struct worker_pool *pool; 1941 struct pool_workqueue *pwq; 1942 1943 local_irq_save(*flags); 1944 1945 /* try to steal the timer if it exists */ 1946 if (is_dwork) { 1947 struct delayed_work *dwork = to_delayed_work(work); 1948 1949 /* 1950 * dwork->timer is irqsafe. If del_timer() fails, it's 1951 * guaranteed that the timer is not queued anywhere and not 1952 * running on the local CPU. 1953 */ 1954 if (likely(del_timer(&dwork->timer))) 1955 return 1; 1956 } 1957 1958 /* try to claim PENDING the normal way */ 1959 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1960 return 0; 1961 1962 rcu_read_lock(); 1963 /* 1964 * The queueing is in progress, or it is already queued. Try to 1965 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1966 */ 1967 pool = get_work_pool(work); 1968 if (!pool) 1969 goto fail; 1970 1971 raw_spin_lock(&pool->lock); 1972 /* 1973 * work->data is guaranteed to point to pwq only while the work 1974 * item is queued on pwq->wq, and both updating work->data to point 1975 * to pwq on queueing and to pool on dequeueing are done under 1976 * pwq->pool->lock. This in turn guarantees that, if work->data 1977 * points to pwq which is associated with a locked pool, the work 1978 * item is currently queued on that pool. 1979 */ 1980 pwq = get_work_pwq(work); 1981 if (pwq && pwq->pool == pool) { 1982 debug_work_deactivate(work); 1983 1984 /* 1985 * A cancelable inactive work item must be in the 1986 * pwq->inactive_works since a queued barrier can't be 1987 * canceled (see the comments in insert_wq_barrier()). 1988 * 1989 * An inactive work item cannot be grabbed directly because 1990 * it might have linked barrier work items which, if left 1991 * on the inactive_works list, will confuse pwq->nr_active 1992 * management later on and cause stall. Make sure the work 1993 * item is activated before grabbing. 1994 */ 1995 pwq_activate_work(pwq, work); 1996 1997 list_del_init(&work->entry); 1998 pwq_dec_nr_in_flight(pwq, *work_data_bits(work)); 1999 2000 /* work->data points to pwq iff queued, point to pool */ 2001 set_work_pool_and_keep_pending(work, pool->id); 2002 2003 raw_spin_unlock(&pool->lock); 2004 rcu_read_unlock(); 2005 return 1; 2006 } 2007 raw_spin_unlock(&pool->lock); 2008 fail: 2009 rcu_read_unlock(); 2010 local_irq_restore(*flags); 2011 if (work_is_canceling(work)) 2012 return -ENOENT; 2013 cpu_relax(); 2014 return -EAGAIN; 2015 } 2016 2017 /** 2018 * insert_work - insert a work into a pool 2019 * @pwq: pwq @work belongs to 2020 * @work: work to insert 2021 * @head: insertion point 2022 * @extra_flags: extra WORK_STRUCT_* flags to set 2023 * 2024 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 2025 * work_struct flags. 2026 * 2027 * CONTEXT: 2028 * raw_spin_lock_irq(pool->lock). 2029 */ 2030 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 2031 struct list_head *head, unsigned int extra_flags) 2032 { 2033 debug_work_activate(work); 2034 2035 /* record the work call stack in order to print it in KASAN reports */ 2036 kasan_record_aux_stack_noalloc(work); 2037 2038 /* we own @work, set data and link */ 2039 set_work_pwq(work, pwq, extra_flags); 2040 list_add_tail(&work->entry, head); 2041 get_pwq(pwq); 2042 } 2043 2044 /* 2045 * Test whether @work is being queued from another work executing on the 2046 * same workqueue. 2047 */ 2048 static bool is_chained_work(struct workqueue_struct *wq) 2049 { 2050 struct worker *worker; 2051 2052 worker = current_wq_worker(); 2053 /* 2054 * Return %true iff I'm a worker executing a work item on @wq. If 2055 * I'm @worker, it's safe to dereference it without locking. 2056 */ 2057 return worker && worker->current_pwq->wq == wq; 2058 } 2059 2060 /* 2061 * When queueing an unbound work item to a wq, prefer local CPU if allowed 2062 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 2063 * avoid perturbing sensitive tasks. 2064 */ 2065 static int wq_select_unbound_cpu(int cpu) 2066 { 2067 int new_cpu; 2068 2069 if (likely(!wq_debug_force_rr_cpu)) { 2070 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 2071 return cpu; 2072 } else { 2073 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n"); 2074 } 2075 2076 new_cpu = __this_cpu_read(wq_rr_cpu_last); 2077 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 2078 if (unlikely(new_cpu >= nr_cpu_ids)) { 2079 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 2080 if (unlikely(new_cpu >= nr_cpu_ids)) 2081 return cpu; 2082 } 2083 __this_cpu_write(wq_rr_cpu_last, new_cpu); 2084 2085 return new_cpu; 2086 } 2087 2088 static void __queue_work(int cpu, struct workqueue_struct *wq, 2089 struct work_struct *work) 2090 { 2091 struct pool_workqueue *pwq; 2092 struct worker_pool *last_pool, *pool; 2093 unsigned int work_flags; 2094 unsigned int req_cpu = cpu; 2095 2096 /* 2097 * While a work item is PENDING && off queue, a task trying to 2098 * steal the PENDING will busy-loop waiting for it to either get 2099 * queued or lose PENDING. Grabbing PENDING and queueing should 2100 * happen with IRQ disabled. 2101 */ 2102 lockdep_assert_irqs_disabled(); 2103 2104 2105 /* 2106 * For a draining wq, only works from the same workqueue are 2107 * allowed. The __WQ_DESTROYING helps to spot the issue that 2108 * queues a new work item to a wq after destroy_workqueue(wq). 2109 */ 2110 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) && 2111 WARN_ON_ONCE(!is_chained_work(wq)))) 2112 return; 2113 rcu_read_lock(); 2114 retry: 2115 /* pwq which will be used unless @work is executing elsewhere */ 2116 if (req_cpu == WORK_CPU_UNBOUND) { 2117 if (wq->flags & WQ_UNBOUND) 2118 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 2119 else 2120 cpu = raw_smp_processor_id(); 2121 } 2122 2123 pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu)); 2124 pool = pwq->pool; 2125 2126 /* 2127 * If @work was previously on a different pool, it might still be 2128 * running there, in which case the work needs to be queued on that 2129 * pool to guarantee non-reentrancy. 2130 */ 2131 last_pool = get_work_pool(work); 2132 if (last_pool && last_pool != pool) { 2133 struct worker *worker; 2134 2135 raw_spin_lock(&last_pool->lock); 2136 2137 worker = find_worker_executing_work(last_pool, work); 2138 2139 if (worker && worker->current_pwq->wq == wq) { 2140 pwq = worker->current_pwq; 2141 pool = pwq->pool; 2142 WARN_ON_ONCE(pool != last_pool); 2143 } else { 2144 /* meh... not running there, queue here */ 2145 raw_spin_unlock(&last_pool->lock); 2146 raw_spin_lock(&pool->lock); 2147 } 2148 } else { 2149 raw_spin_lock(&pool->lock); 2150 } 2151 2152 /* 2153 * pwq is determined and locked. For unbound pools, we could have raced 2154 * with pwq release and it could already be dead. If its refcnt is zero, 2155 * repeat pwq selection. Note that unbound pwqs never die without 2156 * another pwq replacing it in cpu_pwq or while work items are executing 2157 * on it, so the retrying is guaranteed to make forward-progress. 2158 */ 2159 if (unlikely(!pwq->refcnt)) { 2160 if (wq->flags & WQ_UNBOUND) { 2161 raw_spin_unlock(&pool->lock); 2162 cpu_relax(); 2163 goto retry; 2164 } 2165 /* oops */ 2166 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 2167 wq->name, cpu); 2168 } 2169 2170 /* pwq determined, queue */ 2171 trace_workqueue_queue_work(req_cpu, pwq, work); 2172 2173 if (WARN_ON(!list_empty(&work->entry))) 2174 goto out; 2175 2176 pwq->nr_in_flight[pwq->work_color]++; 2177 work_flags = work_color_to_flags(pwq->work_color); 2178 2179 /* 2180 * Limit the number of concurrently active work items to max_active. 2181 * @work must also queue behind existing inactive work items to maintain 2182 * ordering when max_active changes. See wq_adjust_max_active(). 2183 */ 2184 if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) { 2185 if (list_empty(&pool->worklist)) 2186 pool->watchdog_ts = jiffies; 2187 2188 trace_workqueue_activate_work(work); 2189 insert_work(pwq, work, &pool->worklist, work_flags); 2190 kick_pool(pool); 2191 } else { 2192 work_flags |= WORK_STRUCT_INACTIVE; 2193 insert_work(pwq, work, &pwq->inactive_works, work_flags); 2194 } 2195 2196 out: 2197 raw_spin_unlock(&pool->lock); 2198 rcu_read_unlock(); 2199 } 2200 2201 /** 2202 * queue_work_on - queue work on specific cpu 2203 * @cpu: CPU number to execute work on 2204 * @wq: workqueue to use 2205 * @work: work to queue 2206 * 2207 * We queue the work to a specific CPU, the caller must ensure it 2208 * can't go away. Callers that fail to ensure that the specified 2209 * CPU cannot go away will execute on a randomly chosen CPU. 2210 * But note well that callers specifying a CPU that never has been 2211 * online will get a splat. 2212 * 2213 * Return: %false if @work was already on a queue, %true otherwise. 2214 */ 2215 bool queue_work_on(int cpu, struct workqueue_struct *wq, 2216 struct work_struct *work) 2217 { 2218 bool ret = false; 2219 unsigned long flags; 2220 2221 local_irq_save(flags); 2222 2223 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 2224 __queue_work(cpu, wq, work); 2225 ret = true; 2226 } 2227 2228 local_irq_restore(flags); 2229 return ret; 2230 } 2231 EXPORT_SYMBOL(queue_work_on); 2232 2233 /** 2234 * select_numa_node_cpu - Select a CPU based on NUMA node 2235 * @node: NUMA node ID that we want to select a CPU from 2236 * 2237 * This function will attempt to find a "random" cpu available on a given 2238 * node. If there are no CPUs available on the given node it will return 2239 * WORK_CPU_UNBOUND indicating that we should just schedule to any 2240 * available CPU if we need to schedule this work. 2241 */ 2242 static int select_numa_node_cpu(int node) 2243 { 2244 int cpu; 2245 2246 /* Delay binding to CPU if node is not valid or online */ 2247 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 2248 return WORK_CPU_UNBOUND; 2249 2250 /* Use local node/cpu if we are already there */ 2251 cpu = raw_smp_processor_id(); 2252 if (node == cpu_to_node(cpu)) 2253 return cpu; 2254 2255 /* Use "random" otherwise know as "first" online CPU of node */ 2256 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 2257 2258 /* If CPU is valid return that, otherwise just defer */ 2259 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 2260 } 2261 2262 /** 2263 * queue_work_node - queue work on a "random" cpu for a given NUMA node 2264 * @node: NUMA node that we are targeting the work for 2265 * @wq: workqueue to use 2266 * @work: work to queue 2267 * 2268 * We queue the work to a "random" CPU within a given NUMA node. The basic 2269 * idea here is to provide a way to somehow associate work with a given 2270 * NUMA node. 2271 * 2272 * This function will only make a best effort attempt at getting this onto 2273 * the right NUMA node. If no node is requested or the requested node is 2274 * offline then we just fall back to standard queue_work behavior. 2275 * 2276 * Currently the "random" CPU ends up being the first available CPU in the 2277 * intersection of cpu_online_mask and the cpumask of the node, unless we 2278 * are running on the node. In that case we just use the current CPU. 2279 * 2280 * Return: %false if @work was already on a queue, %true otherwise. 2281 */ 2282 bool queue_work_node(int node, struct workqueue_struct *wq, 2283 struct work_struct *work) 2284 { 2285 unsigned long flags; 2286 bool ret = false; 2287 2288 /* 2289 * This current implementation is specific to unbound workqueues. 2290 * Specifically we only return the first available CPU for a given 2291 * node instead of cycling through individual CPUs within the node. 2292 * 2293 * If this is used with a per-cpu workqueue then the logic in 2294 * workqueue_select_cpu_near would need to be updated to allow for 2295 * some round robin type logic. 2296 */ 2297 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 2298 2299 local_irq_save(flags); 2300 2301 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 2302 int cpu = select_numa_node_cpu(node); 2303 2304 __queue_work(cpu, wq, work); 2305 ret = true; 2306 } 2307 2308 local_irq_restore(flags); 2309 return ret; 2310 } 2311 EXPORT_SYMBOL_GPL(queue_work_node); 2312 2313 void delayed_work_timer_fn(struct timer_list *t) 2314 { 2315 struct delayed_work *dwork = from_timer(dwork, t, timer); 2316 2317 /* should have been called from irqsafe timer with irq already off */ 2318 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2319 } 2320 EXPORT_SYMBOL(delayed_work_timer_fn); 2321 2322 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 2323 struct delayed_work *dwork, unsigned long delay) 2324 { 2325 struct timer_list *timer = &dwork->timer; 2326 struct work_struct *work = &dwork->work; 2327 2328 WARN_ON_ONCE(!wq); 2329 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 2330 WARN_ON_ONCE(timer_pending(timer)); 2331 WARN_ON_ONCE(!list_empty(&work->entry)); 2332 2333 /* 2334 * If @delay is 0, queue @dwork->work immediately. This is for 2335 * both optimization and correctness. The earliest @timer can 2336 * expire is on the closest next tick and delayed_work users depend 2337 * on that there's no such delay when @delay is 0. 2338 */ 2339 if (!delay) { 2340 __queue_work(cpu, wq, &dwork->work); 2341 return; 2342 } 2343 2344 dwork->wq = wq; 2345 dwork->cpu = cpu; 2346 timer->expires = jiffies + delay; 2347 2348 if (unlikely(cpu != WORK_CPU_UNBOUND)) 2349 add_timer_on(timer, cpu); 2350 else 2351 add_timer(timer); 2352 } 2353 2354 /** 2355 * queue_delayed_work_on - queue work on specific CPU after delay 2356 * @cpu: CPU number to execute work on 2357 * @wq: workqueue to use 2358 * @dwork: work to queue 2359 * @delay: number of jiffies to wait before queueing 2360 * 2361 * Return: %false if @work was already on a queue, %true otherwise. If 2362 * @delay is zero and @dwork is idle, it will be scheduled for immediate 2363 * execution. 2364 */ 2365 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 2366 struct delayed_work *dwork, unsigned long delay) 2367 { 2368 struct work_struct *work = &dwork->work; 2369 bool ret = false; 2370 unsigned long flags; 2371 2372 /* read the comment in __queue_work() */ 2373 local_irq_save(flags); 2374 2375 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 2376 __queue_delayed_work(cpu, wq, dwork, delay); 2377 ret = true; 2378 } 2379 2380 local_irq_restore(flags); 2381 return ret; 2382 } 2383 EXPORT_SYMBOL(queue_delayed_work_on); 2384 2385 /** 2386 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 2387 * @cpu: CPU number to execute work on 2388 * @wq: workqueue to use 2389 * @dwork: work to queue 2390 * @delay: number of jiffies to wait before queueing 2391 * 2392 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 2393 * modify @dwork's timer so that it expires after @delay. If @delay is 2394 * zero, @work is guaranteed to be scheduled immediately regardless of its 2395 * current state. 2396 * 2397 * Return: %false if @dwork was idle and queued, %true if @dwork was 2398 * pending and its timer was modified. 2399 * 2400 * This function is safe to call from any context including IRQ handler. 2401 * See try_to_grab_pending() for details. 2402 */ 2403 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 2404 struct delayed_work *dwork, unsigned long delay) 2405 { 2406 unsigned long flags; 2407 int ret; 2408 2409 do { 2410 ret = try_to_grab_pending(&dwork->work, true, &flags); 2411 } while (unlikely(ret == -EAGAIN)); 2412 2413 if (likely(ret >= 0)) { 2414 __queue_delayed_work(cpu, wq, dwork, delay); 2415 local_irq_restore(flags); 2416 } 2417 2418 /* -ENOENT from try_to_grab_pending() becomes %true */ 2419 return ret; 2420 } 2421 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 2422 2423 static void rcu_work_rcufn(struct rcu_head *rcu) 2424 { 2425 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 2426 2427 /* read the comment in __queue_work() */ 2428 local_irq_disable(); 2429 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 2430 local_irq_enable(); 2431 } 2432 2433 /** 2434 * queue_rcu_work - queue work after a RCU grace period 2435 * @wq: workqueue to use 2436 * @rwork: work to queue 2437 * 2438 * Return: %false if @rwork was already pending, %true otherwise. Note 2439 * that a full RCU grace period is guaranteed only after a %true return. 2440 * While @rwork is guaranteed to be executed after a %false return, the 2441 * execution may happen before a full RCU grace period has passed. 2442 */ 2443 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 2444 { 2445 struct work_struct *work = &rwork->work; 2446 2447 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 2448 rwork->wq = wq; 2449 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn); 2450 return true; 2451 } 2452 2453 return false; 2454 } 2455 EXPORT_SYMBOL(queue_rcu_work); 2456 2457 static struct worker *alloc_worker(int node) 2458 { 2459 struct worker *worker; 2460 2461 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 2462 if (worker) { 2463 INIT_LIST_HEAD(&worker->entry); 2464 INIT_LIST_HEAD(&worker->scheduled); 2465 INIT_LIST_HEAD(&worker->node); 2466 /* on creation a worker is in !idle && prep state */ 2467 worker->flags = WORKER_PREP; 2468 } 2469 return worker; 2470 } 2471 2472 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool) 2473 { 2474 if (pool->cpu < 0 && pool->attrs->affn_strict) 2475 return pool->attrs->__pod_cpumask; 2476 else 2477 return pool->attrs->cpumask; 2478 } 2479 2480 /** 2481 * worker_attach_to_pool() - attach a worker to a pool 2482 * @worker: worker to be attached 2483 * @pool: the target pool 2484 * 2485 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 2486 * cpu-binding of @worker are kept coordinated with the pool across 2487 * cpu-[un]hotplugs. 2488 */ 2489 static void worker_attach_to_pool(struct worker *worker, 2490 struct worker_pool *pool) 2491 { 2492 mutex_lock(&wq_pool_attach_mutex); 2493 2494 /* 2495 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains 2496 * stable across this function. See the comments above the flag 2497 * definition for details. 2498 */ 2499 if (pool->flags & POOL_DISASSOCIATED) 2500 worker->flags |= WORKER_UNBOUND; 2501 else 2502 kthread_set_per_cpu(worker->task, pool->cpu); 2503 2504 if (worker->rescue_wq) 2505 set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool)); 2506 2507 list_add_tail(&worker->node, &pool->workers); 2508 worker->pool = pool; 2509 2510 mutex_unlock(&wq_pool_attach_mutex); 2511 } 2512 2513 /** 2514 * worker_detach_from_pool() - detach a worker from its pool 2515 * @worker: worker which is attached to its pool 2516 * 2517 * Undo the attaching which had been done in worker_attach_to_pool(). The 2518 * caller worker shouldn't access to the pool after detached except it has 2519 * other reference to the pool. 2520 */ 2521 static void worker_detach_from_pool(struct worker *worker) 2522 { 2523 struct worker_pool *pool = worker->pool; 2524 struct completion *detach_completion = NULL; 2525 2526 mutex_lock(&wq_pool_attach_mutex); 2527 2528 kthread_set_per_cpu(worker->task, -1); 2529 list_del(&worker->node); 2530 worker->pool = NULL; 2531 2532 if (list_empty(&pool->workers) && list_empty(&pool->dying_workers)) 2533 detach_completion = pool->detach_completion; 2534 mutex_unlock(&wq_pool_attach_mutex); 2535 2536 /* clear leftover flags without pool->lock after it is detached */ 2537 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 2538 2539 if (detach_completion) 2540 complete(detach_completion); 2541 } 2542 2543 /** 2544 * create_worker - create a new workqueue worker 2545 * @pool: pool the new worker will belong to 2546 * 2547 * Create and start a new worker which is attached to @pool. 2548 * 2549 * CONTEXT: 2550 * Might sleep. Does GFP_KERNEL allocations. 2551 * 2552 * Return: 2553 * Pointer to the newly created worker. 2554 */ 2555 static struct worker *create_worker(struct worker_pool *pool) 2556 { 2557 struct worker *worker; 2558 int id; 2559 char id_buf[23]; 2560 2561 /* ID is needed to determine kthread name */ 2562 id = ida_alloc(&pool->worker_ida, GFP_KERNEL); 2563 if (id < 0) { 2564 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n", 2565 ERR_PTR(id)); 2566 return NULL; 2567 } 2568 2569 worker = alloc_worker(pool->node); 2570 if (!worker) { 2571 pr_err_once("workqueue: Failed to allocate a worker\n"); 2572 goto fail; 2573 } 2574 2575 worker->id = id; 2576 2577 if (pool->cpu >= 0) 2578 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 2579 pool->attrs->nice < 0 ? "H" : ""); 2580 else 2581 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 2582 2583 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 2584 "kworker/%s", id_buf); 2585 if (IS_ERR(worker->task)) { 2586 if (PTR_ERR(worker->task) == -EINTR) { 2587 pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n", 2588 id_buf); 2589 } else { 2590 pr_err_once("workqueue: Failed to create a worker thread: %pe", 2591 worker->task); 2592 } 2593 goto fail; 2594 } 2595 2596 set_user_nice(worker->task, pool->attrs->nice); 2597 kthread_bind_mask(worker->task, pool_allowed_cpus(pool)); 2598 2599 /* successful, attach the worker to the pool */ 2600 worker_attach_to_pool(worker, pool); 2601 2602 /* start the newly created worker */ 2603 raw_spin_lock_irq(&pool->lock); 2604 2605 worker->pool->nr_workers++; 2606 worker_enter_idle(worker); 2607 kick_pool(pool); 2608 2609 /* 2610 * @worker is waiting on a completion in kthread() and will trigger hung 2611 * check if not woken up soon. As kick_pool() might not have waken it 2612 * up, wake it up explicitly once more. 2613 */ 2614 wake_up_process(worker->task); 2615 2616 raw_spin_unlock_irq(&pool->lock); 2617 2618 return worker; 2619 2620 fail: 2621 ida_free(&pool->worker_ida, id); 2622 kfree(worker); 2623 return NULL; 2624 } 2625 2626 static void unbind_worker(struct worker *worker) 2627 { 2628 lockdep_assert_held(&wq_pool_attach_mutex); 2629 2630 kthread_set_per_cpu(worker->task, -1); 2631 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask)) 2632 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0); 2633 else 2634 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0); 2635 } 2636 2637 static void wake_dying_workers(struct list_head *cull_list) 2638 { 2639 struct worker *worker, *tmp; 2640 2641 list_for_each_entry_safe(worker, tmp, cull_list, entry) { 2642 list_del_init(&worker->entry); 2643 unbind_worker(worker); 2644 /* 2645 * If the worker was somehow already running, then it had to be 2646 * in pool->idle_list when set_worker_dying() happened or we 2647 * wouldn't have gotten here. 2648 * 2649 * Thus, the worker must either have observed the WORKER_DIE 2650 * flag, or have set its state to TASK_IDLE. Either way, the 2651 * below will be observed by the worker and is safe to do 2652 * outside of pool->lock. 2653 */ 2654 wake_up_process(worker->task); 2655 } 2656 } 2657 2658 /** 2659 * set_worker_dying - Tag a worker for destruction 2660 * @worker: worker to be destroyed 2661 * @list: transfer worker away from its pool->idle_list and into list 2662 * 2663 * Tag @worker for destruction and adjust @pool stats accordingly. The worker 2664 * should be idle. 2665 * 2666 * CONTEXT: 2667 * raw_spin_lock_irq(pool->lock). 2668 */ 2669 static void set_worker_dying(struct worker *worker, struct list_head *list) 2670 { 2671 struct worker_pool *pool = worker->pool; 2672 2673 lockdep_assert_held(&pool->lock); 2674 lockdep_assert_held(&wq_pool_attach_mutex); 2675 2676 /* sanity check frenzy */ 2677 if (WARN_ON(worker->current_work) || 2678 WARN_ON(!list_empty(&worker->scheduled)) || 2679 WARN_ON(!(worker->flags & WORKER_IDLE))) 2680 return; 2681 2682 pool->nr_workers--; 2683 pool->nr_idle--; 2684 2685 worker->flags |= WORKER_DIE; 2686 2687 list_move(&worker->entry, list); 2688 list_move(&worker->node, &pool->dying_workers); 2689 } 2690 2691 /** 2692 * idle_worker_timeout - check if some idle workers can now be deleted. 2693 * @t: The pool's idle_timer that just expired 2694 * 2695 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in 2696 * worker_leave_idle(), as a worker flicking between idle and active while its 2697 * pool is at the too_many_workers() tipping point would cause too much timer 2698 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let 2699 * it expire and re-evaluate things from there. 2700 */ 2701 static void idle_worker_timeout(struct timer_list *t) 2702 { 2703 struct worker_pool *pool = from_timer(pool, t, idle_timer); 2704 bool do_cull = false; 2705 2706 if (work_pending(&pool->idle_cull_work)) 2707 return; 2708 2709 raw_spin_lock_irq(&pool->lock); 2710 2711 if (too_many_workers(pool)) { 2712 struct worker *worker; 2713 unsigned long expires; 2714 2715 /* idle_list is kept in LIFO order, check the last one */ 2716 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2717 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2718 do_cull = !time_before(jiffies, expires); 2719 2720 if (!do_cull) 2721 mod_timer(&pool->idle_timer, expires); 2722 } 2723 raw_spin_unlock_irq(&pool->lock); 2724 2725 if (do_cull) 2726 queue_work(system_unbound_wq, &pool->idle_cull_work); 2727 } 2728 2729 /** 2730 * idle_cull_fn - cull workers that have been idle for too long. 2731 * @work: the pool's work for handling these idle workers 2732 * 2733 * This goes through a pool's idle workers and gets rid of those that have been 2734 * idle for at least IDLE_WORKER_TIMEOUT seconds. 2735 * 2736 * We don't want to disturb isolated CPUs because of a pcpu kworker being 2737 * culled, so this also resets worker affinity. This requires a sleepable 2738 * context, hence the split between timer callback and work item. 2739 */ 2740 static void idle_cull_fn(struct work_struct *work) 2741 { 2742 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work); 2743 LIST_HEAD(cull_list); 2744 2745 /* 2746 * Grabbing wq_pool_attach_mutex here ensures an already-running worker 2747 * cannot proceed beyong worker_detach_from_pool() in its self-destruct 2748 * path. This is required as a previously-preempted worker could run after 2749 * set_worker_dying() has happened but before wake_dying_workers() did. 2750 */ 2751 mutex_lock(&wq_pool_attach_mutex); 2752 raw_spin_lock_irq(&pool->lock); 2753 2754 while (too_many_workers(pool)) { 2755 struct worker *worker; 2756 unsigned long expires; 2757 2758 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2759 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2760 2761 if (time_before(jiffies, expires)) { 2762 mod_timer(&pool->idle_timer, expires); 2763 break; 2764 } 2765 2766 set_worker_dying(worker, &cull_list); 2767 } 2768 2769 raw_spin_unlock_irq(&pool->lock); 2770 wake_dying_workers(&cull_list); 2771 mutex_unlock(&wq_pool_attach_mutex); 2772 } 2773 2774 static void send_mayday(struct work_struct *work) 2775 { 2776 struct pool_workqueue *pwq = get_work_pwq(work); 2777 struct workqueue_struct *wq = pwq->wq; 2778 2779 lockdep_assert_held(&wq_mayday_lock); 2780 2781 if (!wq->rescuer) 2782 return; 2783 2784 /* mayday mayday mayday */ 2785 if (list_empty(&pwq->mayday_node)) { 2786 /* 2787 * If @pwq is for an unbound wq, its base ref may be put at 2788 * any time due to an attribute change. Pin @pwq until the 2789 * rescuer is done with it. 2790 */ 2791 get_pwq(pwq); 2792 list_add_tail(&pwq->mayday_node, &wq->maydays); 2793 wake_up_process(wq->rescuer->task); 2794 pwq->stats[PWQ_STAT_MAYDAY]++; 2795 } 2796 } 2797 2798 static void pool_mayday_timeout(struct timer_list *t) 2799 { 2800 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 2801 struct work_struct *work; 2802 2803 raw_spin_lock_irq(&pool->lock); 2804 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */ 2805 2806 if (need_to_create_worker(pool)) { 2807 /* 2808 * We've been trying to create a new worker but 2809 * haven't been successful. We might be hitting an 2810 * allocation deadlock. Send distress signals to 2811 * rescuers. 2812 */ 2813 list_for_each_entry(work, &pool->worklist, entry) 2814 send_mayday(work); 2815 } 2816 2817 raw_spin_unlock(&wq_mayday_lock); 2818 raw_spin_unlock_irq(&pool->lock); 2819 2820 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 2821 } 2822 2823 /** 2824 * maybe_create_worker - create a new worker if necessary 2825 * @pool: pool to create a new worker for 2826 * 2827 * Create a new worker for @pool if necessary. @pool is guaranteed to 2828 * have at least one idle worker on return from this function. If 2829 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 2830 * sent to all rescuers with works scheduled on @pool to resolve 2831 * possible allocation deadlock. 2832 * 2833 * On return, need_to_create_worker() is guaranteed to be %false and 2834 * may_start_working() %true. 2835 * 2836 * LOCKING: 2837 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2838 * multiple times. Does GFP_KERNEL allocations. Called only from 2839 * manager. 2840 */ 2841 static void maybe_create_worker(struct worker_pool *pool) 2842 __releases(&pool->lock) 2843 __acquires(&pool->lock) 2844 { 2845 restart: 2846 raw_spin_unlock_irq(&pool->lock); 2847 2848 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 2849 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 2850 2851 while (true) { 2852 if (create_worker(pool) || !need_to_create_worker(pool)) 2853 break; 2854 2855 schedule_timeout_interruptible(CREATE_COOLDOWN); 2856 2857 if (!need_to_create_worker(pool)) 2858 break; 2859 } 2860 2861 del_timer_sync(&pool->mayday_timer); 2862 raw_spin_lock_irq(&pool->lock); 2863 /* 2864 * This is necessary even after a new worker was just successfully 2865 * created as @pool->lock was dropped and the new worker might have 2866 * already become busy. 2867 */ 2868 if (need_to_create_worker(pool)) 2869 goto restart; 2870 } 2871 2872 /** 2873 * manage_workers - manage worker pool 2874 * @worker: self 2875 * 2876 * Assume the manager role and manage the worker pool @worker belongs 2877 * to. At any given time, there can be only zero or one manager per 2878 * pool. The exclusion is handled automatically by this function. 2879 * 2880 * The caller can safely start processing works on false return. On 2881 * true return, it's guaranteed that need_to_create_worker() is false 2882 * and may_start_working() is true. 2883 * 2884 * CONTEXT: 2885 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2886 * multiple times. Does GFP_KERNEL allocations. 2887 * 2888 * Return: 2889 * %false if the pool doesn't need management and the caller can safely 2890 * start processing works, %true if management function was performed and 2891 * the conditions that the caller verified before calling the function may 2892 * no longer be true. 2893 */ 2894 static bool manage_workers(struct worker *worker) 2895 { 2896 struct worker_pool *pool = worker->pool; 2897 2898 if (pool->flags & POOL_MANAGER_ACTIVE) 2899 return false; 2900 2901 pool->flags |= POOL_MANAGER_ACTIVE; 2902 pool->manager = worker; 2903 2904 maybe_create_worker(pool); 2905 2906 pool->manager = NULL; 2907 pool->flags &= ~POOL_MANAGER_ACTIVE; 2908 rcuwait_wake_up(&manager_wait); 2909 return true; 2910 } 2911 2912 /** 2913 * process_one_work - process single work 2914 * @worker: self 2915 * @work: work to process 2916 * 2917 * Process @work. This function contains all the logics necessary to 2918 * process a single work including synchronization against and 2919 * interaction with other workers on the same cpu, queueing and 2920 * flushing. As long as context requirement is met, any worker can 2921 * call this function to process a work. 2922 * 2923 * CONTEXT: 2924 * raw_spin_lock_irq(pool->lock) which is released and regrabbed. 2925 */ 2926 static void process_one_work(struct worker *worker, struct work_struct *work) 2927 __releases(&pool->lock) 2928 __acquires(&pool->lock) 2929 { 2930 struct pool_workqueue *pwq = get_work_pwq(work); 2931 struct worker_pool *pool = worker->pool; 2932 unsigned long work_data; 2933 #ifdef CONFIG_LOCKDEP 2934 /* 2935 * It is permissible to free the struct work_struct from 2936 * inside the function that is called from it, this we need to 2937 * take into account for lockdep too. To avoid bogus "held 2938 * lock freed" warnings as well as problems when looking into 2939 * work->lockdep_map, make a copy and use that here. 2940 */ 2941 struct lockdep_map lockdep_map; 2942 2943 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2944 #endif 2945 /* ensure we're on the correct CPU */ 2946 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2947 raw_smp_processor_id() != pool->cpu); 2948 2949 /* claim and dequeue */ 2950 debug_work_deactivate(work); 2951 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2952 worker->current_work = work; 2953 worker->current_func = work->func; 2954 worker->current_pwq = pwq; 2955 worker->current_at = worker->task->se.sum_exec_runtime; 2956 work_data = *work_data_bits(work); 2957 worker->current_color = get_work_color(work_data); 2958 2959 /* 2960 * Record wq name for cmdline and debug reporting, may get 2961 * overridden through set_worker_desc(). 2962 */ 2963 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 2964 2965 list_del_init(&work->entry); 2966 2967 /* 2968 * CPU intensive works don't participate in concurrency management. 2969 * They're the scheduler's responsibility. This takes @worker out 2970 * of concurrency management and the next code block will chain 2971 * execution of the pending work items. 2972 */ 2973 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE)) 2974 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2975 2976 /* 2977 * Kick @pool if necessary. It's always noop for per-cpu worker pools 2978 * since nr_running would always be >= 1 at this point. This is used to 2979 * chain execution of the pending work items for WORKER_NOT_RUNNING 2980 * workers such as the UNBOUND and CPU_INTENSIVE ones. 2981 */ 2982 kick_pool(pool); 2983 2984 /* 2985 * Record the last pool and clear PENDING which should be the last 2986 * update to @work. Also, do this inside @pool->lock so that 2987 * PENDING and queued state changes happen together while IRQ is 2988 * disabled. 2989 */ 2990 set_work_pool_and_clear_pending(work, pool->id); 2991 2992 pwq->stats[PWQ_STAT_STARTED]++; 2993 raw_spin_unlock_irq(&pool->lock); 2994 2995 lock_map_acquire(&pwq->wq->lockdep_map); 2996 lock_map_acquire(&lockdep_map); 2997 /* 2998 * Strictly speaking we should mark the invariant state without holding 2999 * any locks, that is, before these two lock_map_acquire()'s. 3000 * 3001 * However, that would result in: 3002 * 3003 * A(W1) 3004 * WFC(C) 3005 * A(W1) 3006 * C(C) 3007 * 3008 * Which would create W1->C->W1 dependencies, even though there is no 3009 * actual deadlock possible. There are two solutions, using a 3010 * read-recursive acquire on the work(queue) 'locks', but this will then 3011 * hit the lockdep limitation on recursive locks, or simply discard 3012 * these locks. 3013 * 3014 * AFAICT there is no possible deadlock scenario between the 3015 * flush_work() and complete() primitives (except for single-threaded 3016 * workqueues), so hiding them isn't a problem. 3017 */ 3018 lockdep_invariant_state(true); 3019 trace_workqueue_execute_start(work); 3020 worker->current_func(work); 3021 /* 3022 * While we must be careful to not use "work" after this, the trace 3023 * point will only record its address. 3024 */ 3025 trace_workqueue_execute_end(work, worker->current_func); 3026 pwq->stats[PWQ_STAT_COMPLETED]++; 3027 lock_map_release(&lockdep_map); 3028 lock_map_release(&pwq->wq->lockdep_map); 3029 3030 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 3031 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 3032 " last function: %ps\n", 3033 current->comm, preempt_count(), task_pid_nr(current), 3034 worker->current_func); 3035 debug_show_held_locks(current); 3036 dump_stack(); 3037 } 3038 3039 /* 3040 * The following prevents a kworker from hogging CPU on !PREEMPTION 3041 * kernels, where a requeueing work item waiting for something to 3042 * happen could deadlock with stop_machine as such work item could 3043 * indefinitely requeue itself while all other CPUs are trapped in 3044 * stop_machine. At the same time, report a quiescent RCU state so 3045 * the same condition doesn't freeze RCU. 3046 */ 3047 cond_resched(); 3048 3049 raw_spin_lock_irq(&pool->lock); 3050 3051 /* 3052 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked 3053 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than 3054 * wq_cpu_intensive_thresh_us. Clear it. 3055 */ 3056 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 3057 3058 /* tag the worker for identification in schedule() */ 3059 worker->last_func = worker->current_func; 3060 3061 /* we're done with it, release */ 3062 hash_del(&worker->hentry); 3063 worker->current_work = NULL; 3064 worker->current_func = NULL; 3065 worker->current_pwq = NULL; 3066 worker->current_color = INT_MAX; 3067 pwq_dec_nr_in_flight(pwq, work_data); 3068 } 3069 3070 /** 3071 * process_scheduled_works - process scheduled works 3072 * @worker: self 3073 * 3074 * Process all scheduled works. Please note that the scheduled list 3075 * may change while processing a work, so this function repeatedly 3076 * fetches a work from the top and executes it. 3077 * 3078 * CONTEXT: 3079 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3080 * multiple times. 3081 */ 3082 static void process_scheduled_works(struct worker *worker) 3083 { 3084 struct work_struct *work; 3085 bool first = true; 3086 3087 while ((work = list_first_entry_or_null(&worker->scheduled, 3088 struct work_struct, entry))) { 3089 if (first) { 3090 worker->pool->watchdog_ts = jiffies; 3091 first = false; 3092 } 3093 process_one_work(worker, work); 3094 } 3095 } 3096 3097 static void set_pf_worker(bool val) 3098 { 3099 mutex_lock(&wq_pool_attach_mutex); 3100 if (val) 3101 current->flags |= PF_WQ_WORKER; 3102 else 3103 current->flags &= ~PF_WQ_WORKER; 3104 mutex_unlock(&wq_pool_attach_mutex); 3105 } 3106 3107 /** 3108 * worker_thread - the worker thread function 3109 * @__worker: self 3110 * 3111 * The worker thread function. All workers belong to a worker_pool - 3112 * either a per-cpu one or dynamic unbound one. These workers process all 3113 * work items regardless of their specific target workqueue. The only 3114 * exception is work items which belong to workqueues with a rescuer which 3115 * will be explained in rescuer_thread(). 3116 * 3117 * Return: 0 3118 */ 3119 static int worker_thread(void *__worker) 3120 { 3121 struct worker *worker = __worker; 3122 struct worker_pool *pool = worker->pool; 3123 3124 /* tell the scheduler that this is a workqueue worker */ 3125 set_pf_worker(true); 3126 woke_up: 3127 raw_spin_lock_irq(&pool->lock); 3128 3129 /* am I supposed to die? */ 3130 if (unlikely(worker->flags & WORKER_DIE)) { 3131 raw_spin_unlock_irq(&pool->lock); 3132 set_pf_worker(false); 3133 3134 set_task_comm(worker->task, "kworker/dying"); 3135 ida_free(&pool->worker_ida, worker->id); 3136 worker_detach_from_pool(worker); 3137 WARN_ON_ONCE(!list_empty(&worker->entry)); 3138 kfree(worker); 3139 return 0; 3140 } 3141 3142 worker_leave_idle(worker); 3143 recheck: 3144 /* no more worker necessary? */ 3145 if (!need_more_worker(pool)) 3146 goto sleep; 3147 3148 /* do we need to manage? */ 3149 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 3150 goto recheck; 3151 3152 /* 3153 * ->scheduled list can only be filled while a worker is 3154 * preparing to process a work or actually processing it. 3155 * Make sure nobody diddled with it while I was sleeping. 3156 */ 3157 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 3158 3159 /* 3160 * Finish PREP stage. We're guaranteed to have at least one idle 3161 * worker or that someone else has already assumed the manager 3162 * role. This is where @worker starts participating in concurrency 3163 * management if applicable and concurrency management is restored 3164 * after being rebound. See rebind_workers() for details. 3165 */ 3166 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 3167 3168 do { 3169 struct work_struct *work = 3170 list_first_entry(&pool->worklist, 3171 struct work_struct, entry); 3172 3173 if (assign_work(work, worker, NULL)) 3174 process_scheduled_works(worker); 3175 } while (keep_working(pool)); 3176 3177 worker_set_flags(worker, WORKER_PREP); 3178 sleep: 3179 /* 3180 * pool->lock is held and there's no work to process and no need to 3181 * manage, sleep. Workers are woken up only while holding 3182 * pool->lock or from local cpu, so setting the current state 3183 * before releasing pool->lock is enough to prevent losing any 3184 * event. 3185 */ 3186 worker_enter_idle(worker); 3187 __set_current_state(TASK_IDLE); 3188 raw_spin_unlock_irq(&pool->lock); 3189 schedule(); 3190 goto woke_up; 3191 } 3192 3193 /** 3194 * rescuer_thread - the rescuer thread function 3195 * @__rescuer: self 3196 * 3197 * Workqueue rescuer thread function. There's one rescuer for each 3198 * workqueue which has WQ_MEM_RECLAIM set. 3199 * 3200 * Regular work processing on a pool may block trying to create a new 3201 * worker which uses GFP_KERNEL allocation which has slight chance of 3202 * developing into deadlock if some works currently on the same queue 3203 * need to be processed to satisfy the GFP_KERNEL allocation. This is 3204 * the problem rescuer solves. 3205 * 3206 * When such condition is possible, the pool summons rescuers of all 3207 * workqueues which have works queued on the pool and let them process 3208 * those works so that forward progress can be guaranteed. 3209 * 3210 * This should happen rarely. 3211 * 3212 * Return: 0 3213 */ 3214 static int rescuer_thread(void *__rescuer) 3215 { 3216 struct worker *rescuer = __rescuer; 3217 struct workqueue_struct *wq = rescuer->rescue_wq; 3218 bool should_stop; 3219 3220 set_user_nice(current, RESCUER_NICE_LEVEL); 3221 3222 /* 3223 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 3224 * doesn't participate in concurrency management. 3225 */ 3226 set_pf_worker(true); 3227 repeat: 3228 set_current_state(TASK_IDLE); 3229 3230 /* 3231 * By the time the rescuer is requested to stop, the workqueue 3232 * shouldn't have any work pending, but @wq->maydays may still have 3233 * pwq(s) queued. This can happen by non-rescuer workers consuming 3234 * all the work items before the rescuer got to them. Go through 3235 * @wq->maydays processing before acting on should_stop so that the 3236 * list is always empty on exit. 3237 */ 3238 should_stop = kthread_should_stop(); 3239 3240 /* see whether any pwq is asking for help */ 3241 raw_spin_lock_irq(&wq_mayday_lock); 3242 3243 while (!list_empty(&wq->maydays)) { 3244 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 3245 struct pool_workqueue, mayday_node); 3246 struct worker_pool *pool = pwq->pool; 3247 struct work_struct *work, *n; 3248 3249 __set_current_state(TASK_RUNNING); 3250 list_del_init(&pwq->mayday_node); 3251 3252 raw_spin_unlock_irq(&wq_mayday_lock); 3253 3254 worker_attach_to_pool(rescuer, pool); 3255 3256 raw_spin_lock_irq(&pool->lock); 3257 3258 /* 3259 * Slurp in all works issued via this workqueue and 3260 * process'em. 3261 */ 3262 WARN_ON_ONCE(!list_empty(&rescuer->scheduled)); 3263 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 3264 if (get_work_pwq(work) == pwq && 3265 assign_work(work, rescuer, &n)) 3266 pwq->stats[PWQ_STAT_RESCUED]++; 3267 } 3268 3269 if (!list_empty(&rescuer->scheduled)) { 3270 process_scheduled_works(rescuer); 3271 3272 /* 3273 * The above execution of rescued work items could 3274 * have created more to rescue through 3275 * pwq_activate_first_inactive() or chained 3276 * queueing. Let's put @pwq back on mayday list so 3277 * that such back-to-back work items, which may be 3278 * being used to relieve memory pressure, don't 3279 * incur MAYDAY_INTERVAL delay inbetween. 3280 */ 3281 if (pwq->nr_active && need_to_create_worker(pool)) { 3282 raw_spin_lock(&wq_mayday_lock); 3283 /* 3284 * Queue iff we aren't racing destruction 3285 * and somebody else hasn't queued it already. 3286 */ 3287 if (wq->rescuer && list_empty(&pwq->mayday_node)) { 3288 get_pwq(pwq); 3289 list_add_tail(&pwq->mayday_node, &wq->maydays); 3290 } 3291 raw_spin_unlock(&wq_mayday_lock); 3292 } 3293 } 3294 3295 /* 3296 * Put the reference grabbed by send_mayday(). @pool won't 3297 * go away while we're still attached to it. 3298 */ 3299 put_pwq(pwq); 3300 3301 /* 3302 * Leave this pool. Notify regular workers; otherwise, we end up 3303 * with 0 concurrency and stalling the execution. 3304 */ 3305 kick_pool(pool); 3306 3307 raw_spin_unlock_irq(&pool->lock); 3308 3309 worker_detach_from_pool(rescuer); 3310 3311 raw_spin_lock_irq(&wq_mayday_lock); 3312 } 3313 3314 raw_spin_unlock_irq(&wq_mayday_lock); 3315 3316 if (should_stop) { 3317 __set_current_state(TASK_RUNNING); 3318 set_pf_worker(false); 3319 return 0; 3320 } 3321 3322 /* rescuers should never participate in concurrency management */ 3323 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 3324 schedule(); 3325 goto repeat; 3326 } 3327 3328 /** 3329 * check_flush_dependency - check for flush dependency sanity 3330 * @target_wq: workqueue being flushed 3331 * @target_work: work item being flushed (NULL for workqueue flushes) 3332 * 3333 * %current is trying to flush the whole @target_wq or @target_work on it. 3334 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 3335 * reclaiming memory or running on a workqueue which doesn't have 3336 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 3337 * a deadlock. 3338 */ 3339 static void check_flush_dependency(struct workqueue_struct *target_wq, 3340 struct work_struct *target_work) 3341 { 3342 work_func_t target_func = target_work ? target_work->func : NULL; 3343 struct worker *worker; 3344 3345 if (target_wq->flags & WQ_MEM_RECLAIM) 3346 return; 3347 3348 worker = current_wq_worker(); 3349 3350 WARN_ONCE(current->flags & PF_MEMALLOC, 3351 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 3352 current->pid, current->comm, target_wq->name, target_func); 3353 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 3354 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 3355 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 3356 worker->current_pwq->wq->name, worker->current_func, 3357 target_wq->name, target_func); 3358 } 3359 3360 struct wq_barrier { 3361 struct work_struct work; 3362 struct completion done; 3363 struct task_struct *task; /* purely informational */ 3364 }; 3365 3366 static void wq_barrier_func(struct work_struct *work) 3367 { 3368 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 3369 complete(&barr->done); 3370 } 3371 3372 /** 3373 * insert_wq_barrier - insert a barrier work 3374 * @pwq: pwq to insert barrier into 3375 * @barr: wq_barrier to insert 3376 * @target: target work to attach @barr to 3377 * @worker: worker currently executing @target, NULL if @target is not executing 3378 * 3379 * @barr is linked to @target such that @barr is completed only after 3380 * @target finishes execution. Please note that the ordering 3381 * guarantee is observed only with respect to @target and on the local 3382 * cpu. 3383 * 3384 * Currently, a queued barrier can't be canceled. This is because 3385 * try_to_grab_pending() can't determine whether the work to be 3386 * grabbed is at the head of the queue and thus can't clear LINKED 3387 * flag of the previous work while there must be a valid next work 3388 * after a work with LINKED flag set. 3389 * 3390 * Note that when @worker is non-NULL, @target may be modified 3391 * underneath us, so we can't reliably determine pwq from @target. 3392 * 3393 * CONTEXT: 3394 * raw_spin_lock_irq(pool->lock). 3395 */ 3396 static void insert_wq_barrier(struct pool_workqueue *pwq, 3397 struct wq_barrier *barr, 3398 struct work_struct *target, struct worker *worker) 3399 { 3400 unsigned int work_flags = 0; 3401 unsigned int work_color; 3402 struct list_head *head; 3403 3404 /* 3405 * debugobject calls are safe here even with pool->lock locked 3406 * as we know for sure that this will not trigger any of the 3407 * checks and call back into the fixup functions where we 3408 * might deadlock. 3409 */ 3410 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 3411 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 3412 3413 init_completion_map(&barr->done, &target->lockdep_map); 3414 3415 barr->task = current; 3416 3417 /* The barrier work item does not participate in nr_active. */ 3418 work_flags |= WORK_STRUCT_INACTIVE; 3419 3420 /* 3421 * If @target is currently being executed, schedule the 3422 * barrier to the worker; otherwise, put it after @target. 3423 */ 3424 if (worker) { 3425 head = worker->scheduled.next; 3426 work_color = worker->current_color; 3427 } else { 3428 unsigned long *bits = work_data_bits(target); 3429 3430 head = target->entry.next; 3431 /* there can already be other linked works, inherit and set */ 3432 work_flags |= *bits & WORK_STRUCT_LINKED; 3433 work_color = get_work_color(*bits); 3434 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 3435 } 3436 3437 pwq->nr_in_flight[work_color]++; 3438 work_flags |= work_color_to_flags(work_color); 3439 3440 insert_work(pwq, &barr->work, head, work_flags); 3441 } 3442 3443 /** 3444 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 3445 * @wq: workqueue being flushed 3446 * @flush_color: new flush color, < 0 for no-op 3447 * @work_color: new work color, < 0 for no-op 3448 * 3449 * Prepare pwqs for workqueue flushing. 3450 * 3451 * If @flush_color is non-negative, flush_color on all pwqs should be 3452 * -1. If no pwq has in-flight commands at the specified color, all 3453 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 3454 * has in flight commands, its pwq->flush_color is set to 3455 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 3456 * wakeup logic is armed and %true is returned. 3457 * 3458 * The caller should have initialized @wq->first_flusher prior to 3459 * calling this function with non-negative @flush_color. If 3460 * @flush_color is negative, no flush color update is done and %false 3461 * is returned. 3462 * 3463 * If @work_color is non-negative, all pwqs should have the same 3464 * work_color which is previous to @work_color and all will be 3465 * advanced to @work_color. 3466 * 3467 * CONTEXT: 3468 * mutex_lock(wq->mutex). 3469 * 3470 * Return: 3471 * %true if @flush_color >= 0 and there's something to flush. %false 3472 * otherwise. 3473 */ 3474 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 3475 int flush_color, int work_color) 3476 { 3477 bool wait = false; 3478 struct pool_workqueue *pwq; 3479 3480 if (flush_color >= 0) { 3481 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 3482 atomic_set(&wq->nr_pwqs_to_flush, 1); 3483 } 3484 3485 for_each_pwq(pwq, wq) { 3486 struct worker_pool *pool = pwq->pool; 3487 3488 raw_spin_lock_irq(&pool->lock); 3489 3490 if (flush_color >= 0) { 3491 WARN_ON_ONCE(pwq->flush_color != -1); 3492 3493 if (pwq->nr_in_flight[flush_color]) { 3494 pwq->flush_color = flush_color; 3495 atomic_inc(&wq->nr_pwqs_to_flush); 3496 wait = true; 3497 } 3498 } 3499 3500 if (work_color >= 0) { 3501 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 3502 pwq->work_color = work_color; 3503 } 3504 3505 raw_spin_unlock_irq(&pool->lock); 3506 } 3507 3508 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 3509 complete(&wq->first_flusher->done); 3510 3511 return wait; 3512 } 3513 3514 /** 3515 * __flush_workqueue - ensure that any scheduled work has run to completion. 3516 * @wq: workqueue to flush 3517 * 3518 * This function sleeps until all work items which were queued on entry 3519 * have finished execution, but it is not livelocked by new incoming ones. 3520 */ 3521 void __flush_workqueue(struct workqueue_struct *wq) 3522 { 3523 struct wq_flusher this_flusher = { 3524 .list = LIST_HEAD_INIT(this_flusher.list), 3525 .flush_color = -1, 3526 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 3527 }; 3528 int next_color; 3529 3530 if (WARN_ON(!wq_online)) 3531 return; 3532 3533 lock_map_acquire(&wq->lockdep_map); 3534 lock_map_release(&wq->lockdep_map); 3535 3536 mutex_lock(&wq->mutex); 3537 3538 /* 3539 * Start-to-wait phase 3540 */ 3541 next_color = work_next_color(wq->work_color); 3542 3543 if (next_color != wq->flush_color) { 3544 /* 3545 * Color space is not full. The current work_color 3546 * becomes our flush_color and work_color is advanced 3547 * by one. 3548 */ 3549 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 3550 this_flusher.flush_color = wq->work_color; 3551 wq->work_color = next_color; 3552 3553 if (!wq->first_flusher) { 3554 /* no flush in progress, become the first flusher */ 3555 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3556 3557 wq->first_flusher = &this_flusher; 3558 3559 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 3560 wq->work_color)) { 3561 /* nothing to flush, done */ 3562 wq->flush_color = next_color; 3563 wq->first_flusher = NULL; 3564 goto out_unlock; 3565 } 3566 } else { 3567 /* wait in queue */ 3568 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 3569 list_add_tail(&this_flusher.list, &wq->flusher_queue); 3570 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 3571 } 3572 } else { 3573 /* 3574 * Oops, color space is full, wait on overflow queue. 3575 * The next flush completion will assign us 3576 * flush_color and transfer to flusher_queue. 3577 */ 3578 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 3579 } 3580 3581 check_flush_dependency(wq, NULL); 3582 3583 mutex_unlock(&wq->mutex); 3584 3585 wait_for_completion(&this_flusher.done); 3586 3587 /* 3588 * Wake-up-and-cascade phase 3589 * 3590 * First flushers are responsible for cascading flushes and 3591 * handling overflow. Non-first flushers can simply return. 3592 */ 3593 if (READ_ONCE(wq->first_flusher) != &this_flusher) 3594 return; 3595 3596 mutex_lock(&wq->mutex); 3597 3598 /* we might have raced, check again with mutex held */ 3599 if (wq->first_flusher != &this_flusher) 3600 goto out_unlock; 3601 3602 WRITE_ONCE(wq->first_flusher, NULL); 3603 3604 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 3605 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3606 3607 while (true) { 3608 struct wq_flusher *next, *tmp; 3609 3610 /* complete all the flushers sharing the current flush color */ 3611 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 3612 if (next->flush_color != wq->flush_color) 3613 break; 3614 list_del_init(&next->list); 3615 complete(&next->done); 3616 } 3617 3618 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 3619 wq->flush_color != work_next_color(wq->work_color)); 3620 3621 /* this flush_color is finished, advance by one */ 3622 wq->flush_color = work_next_color(wq->flush_color); 3623 3624 /* one color has been freed, handle overflow queue */ 3625 if (!list_empty(&wq->flusher_overflow)) { 3626 /* 3627 * Assign the same color to all overflowed 3628 * flushers, advance work_color and append to 3629 * flusher_queue. This is the start-to-wait 3630 * phase for these overflowed flushers. 3631 */ 3632 list_for_each_entry(tmp, &wq->flusher_overflow, list) 3633 tmp->flush_color = wq->work_color; 3634 3635 wq->work_color = work_next_color(wq->work_color); 3636 3637 list_splice_tail_init(&wq->flusher_overflow, 3638 &wq->flusher_queue); 3639 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 3640 } 3641 3642 if (list_empty(&wq->flusher_queue)) { 3643 WARN_ON_ONCE(wq->flush_color != wq->work_color); 3644 break; 3645 } 3646 3647 /* 3648 * Need to flush more colors. Make the next flusher 3649 * the new first flusher and arm pwqs. 3650 */ 3651 WARN_ON_ONCE(wq->flush_color == wq->work_color); 3652 WARN_ON_ONCE(wq->flush_color != next->flush_color); 3653 3654 list_del_init(&next->list); 3655 wq->first_flusher = next; 3656 3657 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 3658 break; 3659 3660 /* 3661 * Meh... this color is already done, clear first 3662 * flusher and repeat cascading. 3663 */ 3664 wq->first_flusher = NULL; 3665 } 3666 3667 out_unlock: 3668 mutex_unlock(&wq->mutex); 3669 } 3670 EXPORT_SYMBOL(__flush_workqueue); 3671 3672 /** 3673 * drain_workqueue - drain a workqueue 3674 * @wq: workqueue to drain 3675 * 3676 * Wait until the workqueue becomes empty. While draining is in progress, 3677 * only chain queueing is allowed. IOW, only currently pending or running 3678 * work items on @wq can queue further work items on it. @wq is flushed 3679 * repeatedly until it becomes empty. The number of flushing is determined 3680 * by the depth of chaining and should be relatively short. Whine if it 3681 * takes too long. 3682 */ 3683 void drain_workqueue(struct workqueue_struct *wq) 3684 { 3685 unsigned int flush_cnt = 0; 3686 struct pool_workqueue *pwq; 3687 3688 /* 3689 * __queue_work() needs to test whether there are drainers, is much 3690 * hotter than drain_workqueue() and already looks at @wq->flags. 3691 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 3692 */ 3693 mutex_lock(&wq->mutex); 3694 if (!wq->nr_drainers++) 3695 wq->flags |= __WQ_DRAINING; 3696 mutex_unlock(&wq->mutex); 3697 reflush: 3698 __flush_workqueue(wq); 3699 3700 mutex_lock(&wq->mutex); 3701 3702 for_each_pwq(pwq, wq) { 3703 bool drained; 3704 3705 raw_spin_lock_irq(&pwq->pool->lock); 3706 drained = pwq_is_empty(pwq); 3707 raw_spin_unlock_irq(&pwq->pool->lock); 3708 3709 if (drained) 3710 continue; 3711 3712 if (++flush_cnt == 10 || 3713 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 3714 pr_warn("workqueue %s: %s() isn't complete after %u tries\n", 3715 wq->name, __func__, flush_cnt); 3716 3717 mutex_unlock(&wq->mutex); 3718 goto reflush; 3719 } 3720 3721 if (!--wq->nr_drainers) 3722 wq->flags &= ~__WQ_DRAINING; 3723 mutex_unlock(&wq->mutex); 3724 } 3725 EXPORT_SYMBOL_GPL(drain_workqueue); 3726 3727 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 3728 bool from_cancel) 3729 { 3730 struct worker *worker = NULL; 3731 struct worker_pool *pool; 3732 struct pool_workqueue *pwq; 3733 3734 might_sleep(); 3735 3736 rcu_read_lock(); 3737 pool = get_work_pool(work); 3738 if (!pool) { 3739 rcu_read_unlock(); 3740 return false; 3741 } 3742 3743 raw_spin_lock_irq(&pool->lock); 3744 /* see the comment in try_to_grab_pending() with the same code */ 3745 pwq = get_work_pwq(work); 3746 if (pwq) { 3747 if (unlikely(pwq->pool != pool)) 3748 goto already_gone; 3749 } else { 3750 worker = find_worker_executing_work(pool, work); 3751 if (!worker) 3752 goto already_gone; 3753 pwq = worker->current_pwq; 3754 } 3755 3756 check_flush_dependency(pwq->wq, work); 3757 3758 insert_wq_barrier(pwq, barr, work, worker); 3759 raw_spin_unlock_irq(&pool->lock); 3760 3761 /* 3762 * Force a lock recursion deadlock when using flush_work() inside a 3763 * single-threaded or rescuer equipped workqueue. 3764 * 3765 * For single threaded workqueues the deadlock happens when the work 3766 * is after the work issuing the flush_work(). For rescuer equipped 3767 * workqueues the deadlock happens when the rescuer stalls, blocking 3768 * forward progress. 3769 */ 3770 if (!from_cancel && 3771 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) { 3772 lock_map_acquire(&pwq->wq->lockdep_map); 3773 lock_map_release(&pwq->wq->lockdep_map); 3774 } 3775 rcu_read_unlock(); 3776 return true; 3777 already_gone: 3778 raw_spin_unlock_irq(&pool->lock); 3779 rcu_read_unlock(); 3780 return false; 3781 } 3782 3783 static bool __flush_work(struct work_struct *work, bool from_cancel) 3784 { 3785 struct wq_barrier barr; 3786 3787 if (WARN_ON(!wq_online)) 3788 return false; 3789 3790 if (WARN_ON(!work->func)) 3791 return false; 3792 3793 lock_map_acquire(&work->lockdep_map); 3794 lock_map_release(&work->lockdep_map); 3795 3796 if (start_flush_work(work, &barr, from_cancel)) { 3797 wait_for_completion(&barr.done); 3798 destroy_work_on_stack(&barr.work); 3799 return true; 3800 } else { 3801 return false; 3802 } 3803 } 3804 3805 /** 3806 * flush_work - wait for a work to finish executing the last queueing instance 3807 * @work: the work to flush 3808 * 3809 * Wait until @work has finished execution. @work is guaranteed to be idle 3810 * on return if it hasn't been requeued since flush started. 3811 * 3812 * Return: 3813 * %true if flush_work() waited for the work to finish execution, 3814 * %false if it was already idle. 3815 */ 3816 bool flush_work(struct work_struct *work) 3817 { 3818 return __flush_work(work, false); 3819 } 3820 EXPORT_SYMBOL_GPL(flush_work); 3821 3822 struct cwt_wait { 3823 wait_queue_entry_t wait; 3824 struct work_struct *work; 3825 }; 3826 3827 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 3828 { 3829 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 3830 3831 if (cwait->work != key) 3832 return 0; 3833 return autoremove_wake_function(wait, mode, sync, key); 3834 } 3835 3836 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 3837 { 3838 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 3839 unsigned long flags; 3840 int ret; 3841 3842 do { 3843 ret = try_to_grab_pending(work, is_dwork, &flags); 3844 /* 3845 * If someone else is already canceling, wait for it to 3846 * finish. flush_work() doesn't work for PREEMPT_NONE 3847 * because we may get scheduled between @work's completion 3848 * and the other canceling task resuming and clearing 3849 * CANCELING - flush_work() will return false immediately 3850 * as @work is no longer busy, try_to_grab_pending() will 3851 * return -ENOENT as @work is still being canceled and the 3852 * other canceling task won't be able to clear CANCELING as 3853 * we're hogging the CPU. 3854 * 3855 * Let's wait for completion using a waitqueue. As this 3856 * may lead to the thundering herd problem, use a custom 3857 * wake function which matches @work along with exclusive 3858 * wait and wakeup. 3859 */ 3860 if (unlikely(ret == -ENOENT)) { 3861 struct cwt_wait cwait; 3862 3863 init_wait(&cwait.wait); 3864 cwait.wait.func = cwt_wakefn; 3865 cwait.work = work; 3866 3867 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 3868 TASK_UNINTERRUPTIBLE); 3869 if (work_is_canceling(work)) 3870 schedule(); 3871 finish_wait(&cancel_waitq, &cwait.wait); 3872 } 3873 } while (unlikely(ret < 0)); 3874 3875 /* tell other tasks trying to grab @work to back off */ 3876 mark_work_canceling(work); 3877 local_irq_restore(flags); 3878 3879 /* 3880 * This allows canceling during early boot. We know that @work 3881 * isn't executing. 3882 */ 3883 if (wq_online) 3884 __flush_work(work, true); 3885 3886 clear_work_data(work); 3887 3888 /* 3889 * Paired with prepare_to_wait() above so that either 3890 * waitqueue_active() is visible here or !work_is_canceling() is 3891 * visible there. 3892 */ 3893 smp_mb(); 3894 if (waitqueue_active(&cancel_waitq)) 3895 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 3896 3897 return ret; 3898 } 3899 3900 /** 3901 * cancel_work_sync - cancel a work and wait for it to finish 3902 * @work: the work to cancel 3903 * 3904 * Cancel @work and wait for its execution to finish. This function 3905 * can be used even if the work re-queues itself or migrates to 3906 * another workqueue. On return from this function, @work is 3907 * guaranteed to be not pending or executing on any CPU. 3908 * 3909 * cancel_work_sync(&delayed_work->work) must not be used for 3910 * delayed_work's. Use cancel_delayed_work_sync() instead. 3911 * 3912 * The caller must ensure that the workqueue on which @work was last 3913 * queued can't be destroyed before this function returns. 3914 * 3915 * Return: 3916 * %true if @work was pending, %false otherwise. 3917 */ 3918 bool cancel_work_sync(struct work_struct *work) 3919 { 3920 return __cancel_work_timer(work, false); 3921 } 3922 EXPORT_SYMBOL_GPL(cancel_work_sync); 3923 3924 /** 3925 * flush_delayed_work - wait for a dwork to finish executing the last queueing 3926 * @dwork: the delayed work to flush 3927 * 3928 * Delayed timer is cancelled and the pending work is queued for 3929 * immediate execution. Like flush_work(), this function only 3930 * considers the last queueing instance of @dwork. 3931 * 3932 * Return: 3933 * %true if flush_work() waited for the work to finish execution, 3934 * %false if it was already idle. 3935 */ 3936 bool flush_delayed_work(struct delayed_work *dwork) 3937 { 3938 local_irq_disable(); 3939 if (del_timer_sync(&dwork->timer)) 3940 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 3941 local_irq_enable(); 3942 return flush_work(&dwork->work); 3943 } 3944 EXPORT_SYMBOL(flush_delayed_work); 3945 3946 /** 3947 * flush_rcu_work - wait for a rwork to finish executing the last queueing 3948 * @rwork: the rcu work to flush 3949 * 3950 * Return: 3951 * %true if flush_rcu_work() waited for the work to finish execution, 3952 * %false if it was already idle. 3953 */ 3954 bool flush_rcu_work(struct rcu_work *rwork) 3955 { 3956 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 3957 rcu_barrier(); 3958 flush_work(&rwork->work); 3959 return true; 3960 } else { 3961 return flush_work(&rwork->work); 3962 } 3963 } 3964 EXPORT_SYMBOL(flush_rcu_work); 3965 3966 static bool __cancel_work(struct work_struct *work, bool is_dwork) 3967 { 3968 unsigned long flags; 3969 int ret; 3970 3971 do { 3972 ret = try_to_grab_pending(work, is_dwork, &flags); 3973 } while (unlikely(ret == -EAGAIN)); 3974 3975 if (unlikely(ret < 0)) 3976 return false; 3977 3978 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 3979 local_irq_restore(flags); 3980 return ret; 3981 } 3982 3983 /* 3984 * See cancel_delayed_work() 3985 */ 3986 bool cancel_work(struct work_struct *work) 3987 { 3988 return __cancel_work(work, false); 3989 } 3990 EXPORT_SYMBOL(cancel_work); 3991 3992 /** 3993 * cancel_delayed_work - cancel a delayed work 3994 * @dwork: delayed_work to cancel 3995 * 3996 * Kill off a pending delayed_work. 3997 * 3998 * Return: %true if @dwork was pending and canceled; %false if it wasn't 3999 * pending. 4000 * 4001 * Note: 4002 * The work callback function may still be running on return, unless 4003 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 4004 * use cancel_delayed_work_sync() to wait on it. 4005 * 4006 * This function is safe to call from any context including IRQ handler. 4007 */ 4008 bool cancel_delayed_work(struct delayed_work *dwork) 4009 { 4010 return __cancel_work(&dwork->work, true); 4011 } 4012 EXPORT_SYMBOL(cancel_delayed_work); 4013 4014 /** 4015 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 4016 * @dwork: the delayed work cancel 4017 * 4018 * This is cancel_work_sync() for delayed works. 4019 * 4020 * Return: 4021 * %true if @dwork was pending, %false otherwise. 4022 */ 4023 bool cancel_delayed_work_sync(struct delayed_work *dwork) 4024 { 4025 return __cancel_work_timer(&dwork->work, true); 4026 } 4027 EXPORT_SYMBOL(cancel_delayed_work_sync); 4028 4029 /** 4030 * schedule_on_each_cpu - execute a function synchronously on each online CPU 4031 * @func: the function to call 4032 * 4033 * schedule_on_each_cpu() executes @func on each online CPU using the 4034 * system workqueue and blocks until all CPUs have completed. 4035 * schedule_on_each_cpu() is very slow. 4036 * 4037 * Return: 4038 * 0 on success, -errno on failure. 4039 */ 4040 int schedule_on_each_cpu(work_func_t func) 4041 { 4042 int cpu; 4043 struct work_struct __percpu *works; 4044 4045 works = alloc_percpu(struct work_struct); 4046 if (!works) 4047 return -ENOMEM; 4048 4049 cpus_read_lock(); 4050 4051 for_each_online_cpu(cpu) { 4052 struct work_struct *work = per_cpu_ptr(works, cpu); 4053 4054 INIT_WORK(work, func); 4055 schedule_work_on(cpu, work); 4056 } 4057 4058 for_each_online_cpu(cpu) 4059 flush_work(per_cpu_ptr(works, cpu)); 4060 4061 cpus_read_unlock(); 4062 free_percpu(works); 4063 return 0; 4064 } 4065 4066 /** 4067 * execute_in_process_context - reliably execute the routine with user context 4068 * @fn: the function to execute 4069 * @ew: guaranteed storage for the execute work structure (must 4070 * be available when the work executes) 4071 * 4072 * Executes the function immediately if process context is available, 4073 * otherwise schedules the function for delayed execution. 4074 * 4075 * Return: 0 - function was executed 4076 * 1 - function was scheduled for execution 4077 */ 4078 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 4079 { 4080 if (!in_interrupt()) { 4081 fn(&ew->work); 4082 return 0; 4083 } 4084 4085 INIT_WORK(&ew->work, fn); 4086 schedule_work(&ew->work); 4087 4088 return 1; 4089 } 4090 EXPORT_SYMBOL_GPL(execute_in_process_context); 4091 4092 /** 4093 * free_workqueue_attrs - free a workqueue_attrs 4094 * @attrs: workqueue_attrs to free 4095 * 4096 * Undo alloc_workqueue_attrs(). 4097 */ 4098 void free_workqueue_attrs(struct workqueue_attrs *attrs) 4099 { 4100 if (attrs) { 4101 free_cpumask_var(attrs->cpumask); 4102 free_cpumask_var(attrs->__pod_cpumask); 4103 kfree(attrs); 4104 } 4105 } 4106 4107 /** 4108 * alloc_workqueue_attrs - allocate a workqueue_attrs 4109 * 4110 * Allocate a new workqueue_attrs, initialize with default settings and 4111 * return it. 4112 * 4113 * Return: The allocated new workqueue_attr on success. %NULL on failure. 4114 */ 4115 struct workqueue_attrs *alloc_workqueue_attrs(void) 4116 { 4117 struct workqueue_attrs *attrs; 4118 4119 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); 4120 if (!attrs) 4121 goto fail; 4122 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) 4123 goto fail; 4124 if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL)) 4125 goto fail; 4126 4127 cpumask_copy(attrs->cpumask, cpu_possible_mask); 4128 attrs->affn_scope = WQ_AFFN_DFL; 4129 return attrs; 4130 fail: 4131 free_workqueue_attrs(attrs); 4132 return NULL; 4133 } 4134 4135 static void copy_workqueue_attrs(struct workqueue_attrs *to, 4136 const struct workqueue_attrs *from) 4137 { 4138 to->nice = from->nice; 4139 cpumask_copy(to->cpumask, from->cpumask); 4140 cpumask_copy(to->__pod_cpumask, from->__pod_cpumask); 4141 to->affn_strict = from->affn_strict; 4142 4143 /* 4144 * Unlike hash and equality test, copying shouldn't ignore wq-only 4145 * fields as copying is used for both pool and wq attrs. Instead, 4146 * get_unbound_pool() explicitly clears the fields. 4147 */ 4148 to->affn_scope = from->affn_scope; 4149 to->ordered = from->ordered; 4150 } 4151 4152 /* 4153 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the 4154 * comments in 'struct workqueue_attrs' definition. 4155 */ 4156 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs) 4157 { 4158 attrs->affn_scope = WQ_AFFN_NR_TYPES; 4159 attrs->ordered = false; 4160 } 4161 4162 /* hash value of the content of @attr */ 4163 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 4164 { 4165 u32 hash = 0; 4166 4167 hash = jhash_1word(attrs->nice, hash); 4168 hash = jhash(cpumask_bits(attrs->cpumask), 4169 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 4170 hash = jhash(cpumask_bits(attrs->__pod_cpumask), 4171 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 4172 hash = jhash_1word(attrs->affn_strict, hash); 4173 return hash; 4174 } 4175 4176 /* content equality test */ 4177 static bool wqattrs_equal(const struct workqueue_attrs *a, 4178 const struct workqueue_attrs *b) 4179 { 4180 if (a->nice != b->nice) 4181 return false; 4182 if (!cpumask_equal(a->cpumask, b->cpumask)) 4183 return false; 4184 if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask)) 4185 return false; 4186 if (a->affn_strict != b->affn_strict) 4187 return false; 4188 return true; 4189 } 4190 4191 /* Update @attrs with actually available CPUs */ 4192 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs, 4193 const cpumask_t *unbound_cpumask) 4194 { 4195 /* 4196 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If 4197 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to 4198 * @unbound_cpumask. 4199 */ 4200 cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask); 4201 if (unlikely(cpumask_empty(attrs->cpumask))) 4202 cpumask_copy(attrs->cpumask, unbound_cpumask); 4203 } 4204 4205 /* find wq_pod_type to use for @attrs */ 4206 static const struct wq_pod_type * 4207 wqattrs_pod_type(const struct workqueue_attrs *attrs) 4208 { 4209 enum wq_affn_scope scope; 4210 struct wq_pod_type *pt; 4211 4212 /* to synchronize access to wq_affn_dfl */ 4213 lockdep_assert_held(&wq_pool_mutex); 4214 4215 if (attrs->affn_scope == WQ_AFFN_DFL) 4216 scope = wq_affn_dfl; 4217 else 4218 scope = attrs->affn_scope; 4219 4220 pt = &wq_pod_types[scope]; 4221 4222 if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) && 4223 likely(pt->nr_pods)) 4224 return pt; 4225 4226 /* 4227 * Before workqueue_init_topology(), only SYSTEM is available which is 4228 * initialized in workqueue_init_early(). 4229 */ 4230 pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 4231 BUG_ON(!pt->nr_pods); 4232 return pt; 4233 } 4234 4235 /** 4236 * init_worker_pool - initialize a newly zalloc'd worker_pool 4237 * @pool: worker_pool to initialize 4238 * 4239 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 4240 * 4241 * Return: 0 on success, -errno on failure. Even on failure, all fields 4242 * inside @pool proper are initialized and put_unbound_pool() can be called 4243 * on @pool safely to release it. 4244 */ 4245 static int init_worker_pool(struct worker_pool *pool) 4246 { 4247 raw_spin_lock_init(&pool->lock); 4248 pool->id = -1; 4249 pool->cpu = -1; 4250 pool->node = NUMA_NO_NODE; 4251 pool->flags |= POOL_DISASSOCIATED; 4252 pool->watchdog_ts = jiffies; 4253 INIT_LIST_HEAD(&pool->worklist); 4254 INIT_LIST_HEAD(&pool->idle_list); 4255 hash_init(pool->busy_hash); 4256 4257 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 4258 INIT_WORK(&pool->idle_cull_work, idle_cull_fn); 4259 4260 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 4261 4262 INIT_LIST_HEAD(&pool->workers); 4263 INIT_LIST_HEAD(&pool->dying_workers); 4264 4265 ida_init(&pool->worker_ida); 4266 INIT_HLIST_NODE(&pool->hash_node); 4267 pool->refcnt = 1; 4268 4269 /* shouldn't fail above this point */ 4270 pool->attrs = alloc_workqueue_attrs(); 4271 if (!pool->attrs) 4272 return -ENOMEM; 4273 4274 wqattrs_clear_for_pool(pool->attrs); 4275 4276 return 0; 4277 } 4278 4279 #ifdef CONFIG_LOCKDEP 4280 static void wq_init_lockdep(struct workqueue_struct *wq) 4281 { 4282 char *lock_name; 4283 4284 lockdep_register_key(&wq->key); 4285 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 4286 if (!lock_name) 4287 lock_name = wq->name; 4288 4289 wq->lock_name = lock_name; 4290 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); 4291 } 4292 4293 static void wq_unregister_lockdep(struct workqueue_struct *wq) 4294 { 4295 lockdep_unregister_key(&wq->key); 4296 } 4297 4298 static void wq_free_lockdep(struct workqueue_struct *wq) 4299 { 4300 if (wq->lock_name != wq->name) 4301 kfree(wq->lock_name); 4302 } 4303 #else 4304 static void wq_init_lockdep(struct workqueue_struct *wq) 4305 { 4306 } 4307 4308 static void wq_unregister_lockdep(struct workqueue_struct *wq) 4309 { 4310 } 4311 4312 static void wq_free_lockdep(struct workqueue_struct *wq) 4313 { 4314 } 4315 #endif 4316 4317 static void free_node_nr_active(struct wq_node_nr_active **nna_ar) 4318 { 4319 int node; 4320 4321 for_each_node(node) { 4322 kfree(nna_ar[node]); 4323 nna_ar[node] = NULL; 4324 } 4325 4326 kfree(nna_ar[nr_node_ids]); 4327 nna_ar[nr_node_ids] = NULL; 4328 } 4329 4330 static void init_node_nr_active(struct wq_node_nr_active *nna) 4331 { 4332 atomic_set(&nna->nr, 0); 4333 raw_spin_lock_init(&nna->lock); 4334 INIT_LIST_HEAD(&nna->pending_pwqs); 4335 } 4336 4337 /* 4338 * Each node's nr_active counter will be accessed mostly from its own node and 4339 * should be allocated in the node. 4340 */ 4341 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar) 4342 { 4343 struct wq_node_nr_active *nna; 4344 int node; 4345 4346 for_each_node(node) { 4347 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node); 4348 if (!nna) 4349 goto err_free; 4350 init_node_nr_active(nna); 4351 nna_ar[node] = nna; 4352 } 4353 4354 /* [nr_node_ids] is used as the fallback */ 4355 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE); 4356 if (!nna) 4357 goto err_free; 4358 init_node_nr_active(nna); 4359 nna_ar[nr_node_ids] = nna; 4360 4361 return 0; 4362 4363 err_free: 4364 free_node_nr_active(nna_ar); 4365 return -ENOMEM; 4366 } 4367 4368 static void rcu_free_wq(struct rcu_head *rcu) 4369 { 4370 struct workqueue_struct *wq = 4371 container_of(rcu, struct workqueue_struct, rcu); 4372 4373 if (wq->flags & WQ_UNBOUND) 4374 free_node_nr_active(wq->node_nr_active); 4375 4376 wq_free_lockdep(wq); 4377 free_percpu(wq->cpu_pwq); 4378 free_workqueue_attrs(wq->unbound_attrs); 4379 kfree(wq); 4380 } 4381 4382 static void rcu_free_pool(struct rcu_head *rcu) 4383 { 4384 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 4385 4386 ida_destroy(&pool->worker_ida); 4387 free_workqueue_attrs(pool->attrs); 4388 kfree(pool); 4389 } 4390 4391 /** 4392 * put_unbound_pool - put a worker_pool 4393 * @pool: worker_pool to put 4394 * 4395 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 4396 * safe manner. get_unbound_pool() calls this function on its failure path 4397 * and this function should be able to release pools which went through, 4398 * successfully or not, init_worker_pool(). 4399 * 4400 * Should be called with wq_pool_mutex held. 4401 */ 4402 static void put_unbound_pool(struct worker_pool *pool) 4403 { 4404 DECLARE_COMPLETION_ONSTACK(detach_completion); 4405 struct worker *worker; 4406 LIST_HEAD(cull_list); 4407 4408 lockdep_assert_held(&wq_pool_mutex); 4409 4410 if (--pool->refcnt) 4411 return; 4412 4413 /* sanity checks */ 4414 if (WARN_ON(!(pool->cpu < 0)) || 4415 WARN_ON(!list_empty(&pool->worklist))) 4416 return; 4417 4418 /* release id and unhash */ 4419 if (pool->id >= 0) 4420 idr_remove(&worker_pool_idr, pool->id); 4421 hash_del(&pool->hash_node); 4422 4423 /* 4424 * Become the manager and destroy all workers. This prevents 4425 * @pool's workers from blocking on attach_mutex. We're the last 4426 * manager and @pool gets freed with the flag set. 4427 * 4428 * Having a concurrent manager is quite unlikely to happen as we can 4429 * only get here with 4430 * pwq->refcnt == pool->refcnt == 0 4431 * which implies no work queued to the pool, which implies no worker can 4432 * become the manager. However a worker could have taken the role of 4433 * manager before the refcnts dropped to 0, since maybe_create_worker() 4434 * drops pool->lock 4435 */ 4436 while (true) { 4437 rcuwait_wait_event(&manager_wait, 4438 !(pool->flags & POOL_MANAGER_ACTIVE), 4439 TASK_UNINTERRUPTIBLE); 4440 4441 mutex_lock(&wq_pool_attach_mutex); 4442 raw_spin_lock_irq(&pool->lock); 4443 if (!(pool->flags & POOL_MANAGER_ACTIVE)) { 4444 pool->flags |= POOL_MANAGER_ACTIVE; 4445 break; 4446 } 4447 raw_spin_unlock_irq(&pool->lock); 4448 mutex_unlock(&wq_pool_attach_mutex); 4449 } 4450 4451 while ((worker = first_idle_worker(pool))) 4452 set_worker_dying(worker, &cull_list); 4453 WARN_ON(pool->nr_workers || pool->nr_idle); 4454 raw_spin_unlock_irq(&pool->lock); 4455 4456 wake_dying_workers(&cull_list); 4457 4458 if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers)) 4459 pool->detach_completion = &detach_completion; 4460 mutex_unlock(&wq_pool_attach_mutex); 4461 4462 if (pool->detach_completion) 4463 wait_for_completion(pool->detach_completion); 4464 4465 /* shut down the timers */ 4466 del_timer_sync(&pool->idle_timer); 4467 cancel_work_sync(&pool->idle_cull_work); 4468 del_timer_sync(&pool->mayday_timer); 4469 4470 /* RCU protected to allow dereferences from get_work_pool() */ 4471 call_rcu(&pool->rcu, rcu_free_pool); 4472 } 4473 4474 /** 4475 * get_unbound_pool - get a worker_pool with the specified attributes 4476 * @attrs: the attributes of the worker_pool to get 4477 * 4478 * Obtain a worker_pool which has the same attributes as @attrs, bump the 4479 * reference count and return it. If there already is a matching 4480 * worker_pool, it will be used; otherwise, this function attempts to 4481 * create a new one. 4482 * 4483 * Should be called with wq_pool_mutex held. 4484 * 4485 * Return: On success, a worker_pool with the same attributes as @attrs. 4486 * On failure, %NULL. 4487 */ 4488 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 4489 { 4490 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA]; 4491 u32 hash = wqattrs_hash(attrs); 4492 struct worker_pool *pool; 4493 int pod, node = NUMA_NO_NODE; 4494 4495 lockdep_assert_held(&wq_pool_mutex); 4496 4497 /* do we already have a matching pool? */ 4498 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 4499 if (wqattrs_equal(pool->attrs, attrs)) { 4500 pool->refcnt++; 4501 return pool; 4502 } 4503 } 4504 4505 /* If __pod_cpumask is contained inside a NUMA pod, that's our node */ 4506 for (pod = 0; pod < pt->nr_pods; pod++) { 4507 if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) { 4508 node = pt->pod_node[pod]; 4509 break; 4510 } 4511 } 4512 4513 /* nope, create a new one */ 4514 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node); 4515 if (!pool || init_worker_pool(pool) < 0) 4516 goto fail; 4517 4518 pool->node = node; 4519 copy_workqueue_attrs(pool->attrs, attrs); 4520 wqattrs_clear_for_pool(pool->attrs); 4521 4522 if (worker_pool_assign_id(pool) < 0) 4523 goto fail; 4524 4525 /* create and start the initial worker */ 4526 if (wq_online && !create_worker(pool)) 4527 goto fail; 4528 4529 /* install */ 4530 hash_add(unbound_pool_hash, &pool->hash_node, hash); 4531 4532 return pool; 4533 fail: 4534 if (pool) 4535 put_unbound_pool(pool); 4536 return NULL; 4537 } 4538 4539 static void rcu_free_pwq(struct rcu_head *rcu) 4540 { 4541 kmem_cache_free(pwq_cache, 4542 container_of(rcu, struct pool_workqueue, rcu)); 4543 } 4544 4545 /* 4546 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero 4547 * refcnt and needs to be destroyed. 4548 */ 4549 static void pwq_release_workfn(struct kthread_work *work) 4550 { 4551 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 4552 release_work); 4553 struct workqueue_struct *wq = pwq->wq; 4554 struct worker_pool *pool = pwq->pool; 4555 bool is_last = false; 4556 4557 /* 4558 * When @pwq is not linked, it doesn't hold any reference to the 4559 * @wq, and @wq is invalid to access. 4560 */ 4561 if (!list_empty(&pwq->pwqs_node)) { 4562 mutex_lock(&wq->mutex); 4563 list_del_rcu(&pwq->pwqs_node); 4564 is_last = list_empty(&wq->pwqs); 4565 mutex_unlock(&wq->mutex); 4566 } 4567 4568 if (wq->flags & WQ_UNBOUND) { 4569 mutex_lock(&wq_pool_mutex); 4570 put_unbound_pool(pool); 4571 mutex_unlock(&wq_pool_mutex); 4572 } 4573 4574 if (!list_empty(&pwq->pending_node)) { 4575 struct wq_node_nr_active *nna = 4576 wq_node_nr_active(pwq->wq, pwq->pool->node); 4577 4578 raw_spin_lock_irq(&nna->lock); 4579 list_del_init(&pwq->pending_node); 4580 raw_spin_unlock_irq(&nna->lock); 4581 } 4582 4583 call_rcu(&pwq->rcu, rcu_free_pwq); 4584 4585 /* 4586 * If we're the last pwq going away, @wq is already dead and no one 4587 * is gonna access it anymore. Schedule RCU free. 4588 */ 4589 if (is_last) { 4590 wq_unregister_lockdep(wq); 4591 call_rcu(&wq->rcu, rcu_free_wq); 4592 } 4593 } 4594 4595 /* initialize newly allocated @pwq which is associated with @wq and @pool */ 4596 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 4597 struct worker_pool *pool) 4598 { 4599 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 4600 4601 memset(pwq, 0, sizeof(*pwq)); 4602 4603 pwq->pool = pool; 4604 pwq->wq = wq; 4605 pwq->flush_color = -1; 4606 pwq->refcnt = 1; 4607 INIT_LIST_HEAD(&pwq->inactive_works); 4608 INIT_LIST_HEAD(&pwq->pending_node); 4609 INIT_LIST_HEAD(&pwq->pwqs_node); 4610 INIT_LIST_HEAD(&pwq->mayday_node); 4611 kthread_init_work(&pwq->release_work, pwq_release_workfn); 4612 } 4613 4614 /* sync @pwq with the current state of its associated wq and link it */ 4615 static void link_pwq(struct pool_workqueue *pwq) 4616 { 4617 struct workqueue_struct *wq = pwq->wq; 4618 4619 lockdep_assert_held(&wq->mutex); 4620 4621 /* may be called multiple times, ignore if already linked */ 4622 if (!list_empty(&pwq->pwqs_node)) 4623 return; 4624 4625 /* set the matching work_color */ 4626 pwq->work_color = wq->work_color; 4627 4628 /* link in @pwq */ 4629 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 4630 } 4631 4632 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 4633 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 4634 const struct workqueue_attrs *attrs) 4635 { 4636 struct worker_pool *pool; 4637 struct pool_workqueue *pwq; 4638 4639 lockdep_assert_held(&wq_pool_mutex); 4640 4641 pool = get_unbound_pool(attrs); 4642 if (!pool) 4643 return NULL; 4644 4645 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 4646 if (!pwq) { 4647 put_unbound_pool(pool); 4648 return NULL; 4649 } 4650 4651 init_pwq(pwq, wq, pool); 4652 return pwq; 4653 } 4654 4655 /** 4656 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod 4657 * @attrs: the wq_attrs of the default pwq of the target workqueue 4658 * @cpu: the target CPU 4659 * @cpu_going_down: if >= 0, the CPU to consider as offline 4660 * 4661 * Calculate the cpumask a workqueue with @attrs should use on @pod. If 4662 * @cpu_going_down is >= 0, that cpu is considered offline during calculation. 4663 * The result is stored in @attrs->__pod_cpumask. 4664 * 4665 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled 4666 * and @pod has online CPUs requested by @attrs, the returned cpumask is the 4667 * intersection of the possible CPUs of @pod and @attrs->cpumask. 4668 * 4669 * The caller is responsible for ensuring that the cpumask of @pod stays stable. 4670 */ 4671 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu, 4672 int cpu_going_down) 4673 { 4674 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 4675 int pod = pt->cpu_pod[cpu]; 4676 4677 /* does @pod have any online CPUs @attrs wants? */ 4678 cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask); 4679 cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask); 4680 if (cpu_going_down >= 0) 4681 cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask); 4682 4683 if (cpumask_empty(attrs->__pod_cpumask)) { 4684 cpumask_copy(attrs->__pod_cpumask, attrs->cpumask); 4685 return; 4686 } 4687 4688 /* yeap, return possible CPUs in @pod that @attrs wants */ 4689 cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]); 4690 4691 if (cpumask_empty(attrs->__pod_cpumask)) 4692 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 4693 "possible intersect\n"); 4694 } 4695 4696 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */ 4697 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq, 4698 int cpu, struct pool_workqueue *pwq) 4699 { 4700 struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu); 4701 struct pool_workqueue *old_pwq; 4702 4703 lockdep_assert_held(&wq_pool_mutex); 4704 lockdep_assert_held(&wq->mutex); 4705 4706 /* link_pwq() can handle duplicate calls */ 4707 link_pwq(pwq); 4708 4709 old_pwq = rcu_access_pointer(*slot); 4710 rcu_assign_pointer(*slot, pwq); 4711 return old_pwq; 4712 } 4713 4714 /* context to store the prepared attrs & pwqs before applying */ 4715 struct apply_wqattrs_ctx { 4716 struct workqueue_struct *wq; /* target workqueue */ 4717 struct workqueue_attrs *attrs; /* attrs to apply */ 4718 struct list_head list; /* queued for batching commit */ 4719 struct pool_workqueue *dfl_pwq; 4720 struct pool_workqueue *pwq_tbl[]; 4721 }; 4722 4723 /* free the resources after success or abort */ 4724 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 4725 { 4726 if (ctx) { 4727 int cpu; 4728 4729 for_each_possible_cpu(cpu) 4730 put_pwq_unlocked(ctx->pwq_tbl[cpu]); 4731 put_pwq_unlocked(ctx->dfl_pwq); 4732 4733 free_workqueue_attrs(ctx->attrs); 4734 4735 kfree(ctx); 4736 } 4737 } 4738 4739 /* allocate the attrs and pwqs for later installation */ 4740 static struct apply_wqattrs_ctx * 4741 apply_wqattrs_prepare(struct workqueue_struct *wq, 4742 const struct workqueue_attrs *attrs, 4743 const cpumask_var_t unbound_cpumask) 4744 { 4745 struct apply_wqattrs_ctx *ctx; 4746 struct workqueue_attrs *new_attrs; 4747 int cpu; 4748 4749 lockdep_assert_held(&wq_pool_mutex); 4750 4751 if (WARN_ON(attrs->affn_scope < 0 || 4752 attrs->affn_scope >= WQ_AFFN_NR_TYPES)) 4753 return ERR_PTR(-EINVAL); 4754 4755 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL); 4756 4757 new_attrs = alloc_workqueue_attrs(); 4758 if (!ctx || !new_attrs) 4759 goto out_free; 4760 4761 /* 4762 * If something goes wrong during CPU up/down, we'll fall back to 4763 * the default pwq covering whole @attrs->cpumask. Always create 4764 * it even if we don't use it immediately. 4765 */ 4766 copy_workqueue_attrs(new_attrs, attrs); 4767 wqattrs_actualize_cpumask(new_attrs, unbound_cpumask); 4768 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 4769 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 4770 if (!ctx->dfl_pwq) 4771 goto out_free; 4772 4773 for_each_possible_cpu(cpu) { 4774 if (new_attrs->ordered) { 4775 ctx->dfl_pwq->refcnt++; 4776 ctx->pwq_tbl[cpu] = ctx->dfl_pwq; 4777 } else { 4778 wq_calc_pod_cpumask(new_attrs, cpu, -1); 4779 ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs); 4780 if (!ctx->pwq_tbl[cpu]) 4781 goto out_free; 4782 } 4783 } 4784 4785 /* save the user configured attrs and sanitize it. */ 4786 copy_workqueue_attrs(new_attrs, attrs); 4787 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 4788 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 4789 ctx->attrs = new_attrs; 4790 4791 ctx->wq = wq; 4792 return ctx; 4793 4794 out_free: 4795 free_workqueue_attrs(new_attrs); 4796 apply_wqattrs_cleanup(ctx); 4797 return ERR_PTR(-ENOMEM); 4798 } 4799 4800 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 4801 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 4802 { 4803 int cpu; 4804 4805 /* all pwqs have been created successfully, let's install'em */ 4806 mutex_lock(&ctx->wq->mutex); 4807 4808 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 4809 4810 /* save the previous pwqs and install the new ones */ 4811 for_each_possible_cpu(cpu) 4812 ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu, 4813 ctx->pwq_tbl[cpu]); 4814 ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq); 4815 4816 /* update node_nr_active->max */ 4817 wq_update_node_max_active(ctx->wq, -1); 4818 4819 mutex_unlock(&ctx->wq->mutex); 4820 } 4821 4822 static void apply_wqattrs_lock(void) 4823 { 4824 /* CPUs should stay stable across pwq creations and installations */ 4825 cpus_read_lock(); 4826 mutex_lock(&wq_pool_mutex); 4827 } 4828 4829 static void apply_wqattrs_unlock(void) 4830 { 4831 mutex_unlock(&wq_pool_mutex); 4832 cpus_read_unlock(); 4833 } 4834 4835 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 4836 const struct workqueue_attrs *attrs) 4837 { 4838 struct apply_wqattrs_ctx *ctx; 4839 4840 /* only unbound workqueues can change attributes */ 4841 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 4842 return -EINVAL; 4843 4844 /* creating multiple pwqs breaks ordering guarantee */ 4845 if (!list_empty(&wq->pwqs)) { 4846 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4847 return -EINVAL; 4848 4849 wq->flags &= ~__WQ_ORDERED; 4850 } 4851 4852 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask); 4853 if (IS_ERR(ctx)) 4854 return PTR_ERR(ctx); 4855 4856 /* the ctx has been prepared successfully, let's commit it */ 4857 apply_wqattrs_commit(ctx); 4858 apply_wqattrs_cleanup(ctx); 4859 4860 return 0; 4861 } 4862 4863 /** 4864 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 4865 * @wq: the target workqueue 4866 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 4867 * 4868 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps 4869 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that 4870 * work items are affine to the pod it was issued on. Older pwqs are released as 4871 * in-flight work items finish. Note that a work item which repeatedly requeues 4872 * itself back-to-back will stay on its current pwq. 4873 * 4874 * Performs GFP_KERNEL allocations. 4875 * 4876 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock(). 4877 * 4878 * Return: 0 on success and -errno on failure. 4879 */ 4880 int apply_workqueue_attrs(struct workqueue_struct *wq, 4881 const struct workqueue_attrs *attrs) 4882 { 4883 int ret; 4884 4885 lockdep_assert_cpus_held(); 4886 4887 mutex_lock(&wq_pool_mutex); 4888 ret = apply_workqueue_attrs_locked(wq, attrs); 4889 mutex_unlock(&wq_pool_mutex); 4890 4891 return ret; 4892 } 4893 4894 /** 4895 * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug 4896 * @wq: the target workqueue 4897 * @cpu: the CPU to update pool association for 4898 * @hotplug_cpu: the CPU coming up or going down 4899 * @online: whether @cpu is coming up or going down 4900 * 4901 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 4902 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update pod affinity of 4903 * @wq accordingly. 4904 * 4905 * 4906 * If pod affinity can't be adjusted due to memory allocation failure, it falls 4907 * back to @wq->dfl_pwq which may not be optimal but is always correct. 4908 * 4909 * Note that when the last allowed CPU of a pod goes offline for a workqueue 4910 * with a cpumask spanning multiple pods, the workers which were already 4911 * executing the work items for the workqueue will lose their CPU affinity and 4912 * may execute on any CPU. This is similar to how per-cpu workqueues behave on 4913 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's 4914 * responsibility to flush the work item from CPU_DOWN_PREPARE. 4915 */ 4916 static void wq_update_pod(struct workqueue_struct *wq, int cpu, 4917 int hotplug_cpu, bool online) 4918 { 4919 int off_cpu = online ? -1 : hotplug_cpu; 4920 struct pool_workqueue *old_pwq = NULL, *pwq; 4921 struct workqueue_attrs *target_attrs; 4922 4923 lockdep_assert_held(&wq_pool_mutex); 4924 4925 if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered) 4926 return; 4927 4928 /* 4929 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 4930 * Let's use a preallocated one. The following buf is protected by 4931 * CPU hotplug exclusion. 4932 */ 4933 target_attrs = wq_update_pod_attrs_buf; 4934 4935 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 4936 wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask); 4937 4938 /* nothing to do if the target cpumask matches the current pwq */ 4939 wq_calc_pod_cpumask(target_attrs, cpu, off_cpu); 4940 if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs)) 4941 return; 4942 4943 /* create a new pwq */ 4944 pwq = alloc_unbound_pwq(wq, target_attrs); 4945 if (!pwq) { 4946 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n", 4947 wq->name); 4948 goto use_dfl_pwq; 4949 } 4950 4951 /* Install the new pwq. */ 4952 mutex_lock(&wq->mutex); 4953 old_pwq = install_unbound_pwq(wq, cpu, pwq); 4954 goto out_unlock; 4955 4956 use_dfl_pwq: 4957 mutex_lock(&wq->mutex); 4958 pwq = unbound_pwq(wq, -1); 4959 raw_spin_lock_irq(&pwq->pool->lock); 4960 get_pwq(pwq); 4961 raw_spin_unlock_irq(&pwq->pool->lock); 4962 old_pwq = install_unbound_pwq(wq, cpu, pwq); 4963 out_unlock: 4964 mutex_unlock(&wq->mutex); 4965 put_pwq_unlocked(old_pwq); 4966 } 4967 4968 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4969 { 4970 bool highpri = wq->flags & WQ_HIGHPRI; 4971 int cpu, ret; 4972 4973 wq->cpu_pwq = alloc_percpu(struct pool_workqueue *); 4974 if (!wq->cpu_pwq) 4975 goto enomem; 4976 4977 if (!(wq->flags & WQ_UNBOUND)) { 4978 for_each_possible_cpu(cpu) { 4979 struct pool_workqueue **pwq_p = 4980 per_cpu_ptr(wq->cpu_pwq, cpu); 4981 struct worker_pool *pool = 4982 &(per_cpu_ptr(cpu_worker_pools, cpu)[highpri]); 4983 4984 *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, 4985 pool->node); 4986 if (!*pwq_p) 4987 goto enomem; 4988 4989 init_pwq(*pwq_p, wq, pool); 4990 4991 mutex_lock(&wq->mutex); 4992 link_pwq(*pwq_p); 4993 mutex_unlock(&wq->mutex); 4994 } 4995 return 0; 4996 } 4997 4998 cpus_read_lock(); 4999 if (wq->flags & __WQ_ORDERED) { 5000 struct pool_workqueue *dfl_pwq; 5001 5002 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 5003 /* there should only be single pwq for ordering guarantee */ 5004 dfl_pwq = rcu_access_pointer(wq->dfl_pwq); 5005 WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node || 5006 wq->pwqs.prev != &dfl_pwq->pwqs_node), 5007 "ordering guarantee broken for workqueue %s\n", wq->name); 5008 } else { 5009 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 5010 } 5011 cpus_read_unlock(); 5012 5013 /* for unbound pwq, flush the pwq_release_worker ensures that the 5014 * pwq_release_workfn() completes before calling kfree(wq). 5015 */ 5016 if (ret) 5017 kthread_flush_worker(pwq_release_worker); 5018 5019 return ret; 5020 5021 enomem: 5022 if (wq->cpu_pwq) { 5023 for_each_possible_cpu(cpu) { 5024 struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 5025 5026 if (pwq) 5027 kmem_cache_free(pwq_cache, pwq); 5028 } 5029 free_percpu(wq->cpu_pwq); 5030 wq->cpu_pwq = NULL; 5031 } 5032 return -ENOMEM; 5033 } 5034 5035 static int wq_clamp_max_active(int max_active, unsigned int flags, 5036 const char *name) 5037 { 5038 if (max_active < 1 || max_active > WQ_MAX_ACTIVE) 5039 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 5040 max_active, name, 1, WQ_MAX_ACTIVE); 5041 5042 return clamp_val(max_active, 1, WQ_MAX_ACTIVE); 5043 } 5044 5045 /* 5046 * Workqueues which may be used during memory reclaim should have a rescuer 5047 * to guarantee forward progress. 5048 */ 5049 static int init_rescuer(struct workqueue_struct *wq) 5050 { 5051 struct worker *rescuer; 5052 int ret; 5053 5054 if (!(wq->flags & WQ_MEM_RECLAIM)) 5055 return 0; 5056 5057 rescuer = alloc_worker(NUMA_NO_NODE); 5058 if (!rescuer) { 5059 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n", 5060 wq->name); 5061 return -ENOMEM; 5062 } 5063 5064 rescuer->rescue_wq = wq; 5065 rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name); 5066 if (IS_ERR(rescuer->task)) { 5067 ret = PTR_ERR(rescuer->task); 5068 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe", 5069 wq->name, ERR_PTR(ret)); 5070 kfree(rescuer); 5071 return ret; 5072 } 5073 5074 wq->rescuer = rescuer; 5075 kthread_bind_mask(rescuer->task, cpu_possible_mask); 5076 wake_up_process(rescuer->task); 5077 5078 return 0; 5079 } 5080 5081 /** 5082 * wq_adjust_max_active - update a wq's max_active to the current setting 5083 * @wq: target workqueue 5084 * 5085 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and 5086 * activate inactive work items accordingly. If @wq is freezing, clear 5087 * @wq->max_active to zero. 5088 */ 5089 static void wq_adjust_max_active(struct workqueue_struct *wq) 5090 { 5091 bool activated; 5092 int new_max, new_min; 5093 5094 lockdep_assert_held(&wq->mutex); 5095 5096 if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) { 5097 new_max = 0; 5098 new_min = 0; 5099 } else { 5100 new_max = wq->saved_max_active; 5101 new_min = wq->saved_min_active; 5102 } 5103 5104 if (wq->max_active == new_max && wq->min_active == new_min) 5105 return; 5106 5107 /* 5108 * Update @wq->max/min_active and then kick inactive work items if more 5109 * active work items are allowed. This doesn't break work item ordering 5110 * because new work items are always queued behind existing inactive 5111 * work items if there are any. 5112 */ 5113 WRITE_ONCE(wq->max_active, new_max); 5114 WRITE_ONCE(wq->min_active, new_min); 5115 5116 if (wq->flags & WQ_UNBOUND) 5117 wq_update_node_max_active(wq, -1); 5118 5119 if (new_max == 0) 5120 return; 5121 5122 /* 5123 * Round-robin through pwq's activating the first inactive work item 5124 * until max_active is filled. 5125 */ 5126 do { 5127 struct pool_workqueue *pwq; 5128 5129 activated = false; 5130 for_each_pwq(pwq, wq) { 5131 unsigned long flags; 5132 5133 /* can be called during early boot w/ irq disabled */ 5134 raw_spin_lock_irqsave(&pwq->pool->lock, flags); 5135 if (pwq_activate_first_inactive(pwq, true)) { 5136 activated = true; 5137 kick_pool(pwq->pool); 5138 } 5139 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); 5140 } 5141 } while (activated); 5142 } 5143 5144 __printf(1, 4) 5145 struct workqueue_struct *alloc_workqueue(const char *fmt, 5146 unsigned int flags, 5147 int max_active, ...) 5148 { 5149 va_list args; 5150 struct workqueue_struct *wq; 5151 size_t wq_size; 5152 int name_len; 5153 5154 /* 5155 * Unbound && max_active == 1 used to imply ordered, which is no longer 5156 * the case on many machines due to per-pod pools. While 5157 * alloc_ordered_workqueue() is the right way to create an ordered 5158 * workqueue, keep the previous behavior to avoid subtle breakages. 5159 */ 5160 if ((flags & WQ_UNBOUND) && max_active == 1) 5161 flags |= __WQ_ORDERED; 5162 5163 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 5164 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 5165 flags |= WQ_UNBOUND; 5166 5167 /* allocate wq and format name */ 5168 if (flags & WQ_UNBOUND) 5169 wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1); 5170 else 5171 wq_size = sizeof(*wq); 5172 5173 wq = kzalloc(wq_size, GFP_KERNEL); 5174 if (!wq) 5175 return NULL; 5176 5177 if (flags & WQ_UNBOUND) { 5178 wq->unbound_attrs = alloc_workqueue_attrs(); 5179 if (!wq->unbound_attrs) 5180 goto err_free_wq; 5181 } 5182 5183 va_start(args, max_active); 5184 name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args); 5185 va_end(args); 5186 5187 if (name_len >= WQ_NAME_LEN) 5188 pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n", 5189 wq->name); 5190 5191 max_active = max_active ?: WQ_DFL_ACTIVE; 5192 max_active = wq_clamp_max_active(max_active, flags, wq->name); 5193 5194 /* init wq */ 5195 wq->flags = flags; 5196 wq->max_active = max_active; 5197 wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE); 5198 wq->saved_max_active = wq->max_active; 5199 wq->saved_min_active = wq->min_active; 5200 mutex_init(&wq->mutex); 5201 atomic_set(&wq->nr_pwqs_to_flush, 0); 5202 INIT_LIST_HEAD(&wq->pwqs); 5203 INIT_LIST_HEAD(&wq->flusher_queue); 5204 INIT_LIST_HEAD(&wq->flusher_overflow); 5205 INIT_LIST_HEAD(&wq->maydays); 5206 5207 wq_init_lockdep(wq); 5208 INIT_LIST_HEAD(&wq->list); 5209 5210 if (flags & WQ_UNBOUND) { 5211 if (alloc_node_nr_active(wq->node_nr_active) < 0) 5212 goto err_unreg_lockdep; 5213 } 5214 5215 if (alloc_and_link_pwqs(wq) < 0) 5216 goto err_free_node_nr_active; 5217 5218 if (wq_online && init_rescuer(wq) < 0) 5219 goto err_destroy; 5220 5221 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 5222 goto err_destroy; 5223 5224 /* 5225 * wq_pool_mutex protects global freeze state and workqueues list. 5226 * Grab it, adjust max_active and add the new @wq to workqueues 5227 * list. 5228 */ 5229 mutex_lock(&wq_pool_mutex); 5230 5231 mutex_lock(&wq->mutex); 5232 wq_adjust_max_active(wq); 5233 mutex_unlock(&wq->mutex); 5234 5235 list_add_tail_rcu(&wq->list, &workqueues); 5236 5237 mutex_unlock(&wq_pool_mutex); 5238 5239 return wq; 5240 5241 err_free_node_nr_active: 5242 if (wq->flags & WQ_UNBOUND) 5243 free_node_nr_active(wq->node_nr_active); 5244 err_unreg_lockdep: 5245 wq_unregister_lockdep(wq); 5246 wq_free_lockdep(wq); 5247 err_free_wq: 5248 free_workqueue_attrs(wq->unbound_attrs); 5249 kfree(wq); 5250 return NULL; 5251 err_destroy: 5252 destroy_workqueue(wq); 5253 return NULL; 5254 } 5255 EXPORT_SYMBOL_GPL(alloc_workqueue); 5256 5257 static bool pwq_busy(struct pool_workqueue *pwq) 5258 { 5259 int i; 5260 5261 for (i = 0; i < WORK_NR_COLORS; i++) 5262 if (pwq->nr_in_flight[i]) 5263 return true; 5264 5265 if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1)) 5266 return true; 5267 if (!pwq_is_empty(pwq)) 5268 return true; 5269 5270 return false; 5271 } 5272 5273 /** 5274 * destroy_workqueue - safely terminate a workqueue 5275 * @wq: target workqueue 5276 * 5277 * Safely destroy a workqueue. All work currently pending will be done first. 5278 */ 5279 void destroy_workqueue(struct workqueue_struct *wq) 5280 { 5281 struct pool_workqueue *pwq; 5282 int cpu; 5283 5284 /* 5285 * Remove it from sysfs first so that sanity check failure doesn't 5286 * lead to sysfs name conflicts. 5287 */ 5288 workqueue_sysfs_unregister(wq); 5289 5290 /* mark the workqueue destruction is in progress */ 5291 mutex_lock(&wq->mutex); 5292 wq->flags |= __WQ_DESTROYING; 5293 mutex_unlock(&wq->mutex); 5294 5295 /* drain it before proceeding with destruction */ 5296 drain_workqueue(wq); 5297 5298 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ 5299 if (wq->rescuer) { 5300 struct worker *rescuer = wq->rescuer; 5301 5302 /* this prevents new queueing */ 5303 raw_spin_lock_irq(&wq_mayday_lock); 5304 wq->rescuer = NULL; 5305 raw_spin_unlock_irq(&wq_mayday_lock); 5306 5307 /* rescuer will empty maydays list before exiting */ 5308 kthread_stop(rescuer->task); 5309 kfree(rescuer); 5310 } 5311 5312 /* 5313 * Sanity checks - grab all the locks so that we wait for all 5314 * in-flight operations which may do put_pwq(). 5315 */ 5316 mutex_lock(&wq_pool_mutex); 5317 mutex_lock(&wq->mutex); 5318 for_each_pwq(pwq, wq) { 5319 raw_spin_lock_irq(&pwq->pool->lock); 5320 if (WARN_ON(pwq_busy(pwq))) { 5321 pr_warn("%s: %s has the following busy pwq\n", 5322 __func__, wq->name); 5323 show_pwq(pwq); 5324 raw_spin_unlock_irq(&pwq->pool->lock); 5325 mutex_unlock(&wq->mutex); 5326 mutex_unlock(&wq_pool_mutex); 5327 show_one_workqueue(wq); 5328 return; 5329 } 5330 raw_spin_unlock_irq(&pwq->pool->lock); 5331 } 5332 mutex_unlock(&wq->mutex); 5333 5334 /* 5335 * wq list is used to freeze wq, remove from list after 5336 * flushing is complete in case freeze races us. 5337 */ 5338 list_del_rcu(&wq->list); 5339 mutex_unlock(&wq_pool_mutex); 5340 5341 /* 5342 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq 5343 * to put the base refs. @wq will be auto-destroyed from the last 5344 * pwq_put. RCU read lock prevents @wq from going away from under us. 5345 */ 5346 rcu_read_lock(); 5347 5348 for_each_possible_cpu(cpu) { 5349 put_pwq_unlocked(unbound_pwq(wq, cpu)); 5350 RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL); 5351 } 5352 5353 put_pwq_unlocked(unbound_pwq(wq, -1)); 5354 RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL); 5355 5356 rcu_read_unlock(); 5357 } 5358 EXPORT_SYMBOL_GPL(destroy_workqueue); 5359 5360 /** 5361 * workqueue_set_max_active - adjust max_active of a workqueue 5362 * @wq: target workqueue 5363 * @max_active: new max_active value. 5364 * 5365 * Set max_active of @wq to @max_active. See the alloc_workqueue() function 5366 * comment. 5367 * 5368 * CONTEXT: 5369 * Don't call from IRQ context. 5370 */ 5371 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 5372 { 5373 /* disallow meddling with max_active for ordered workqueues */ 5374 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 5375 return; 5376 5377 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 5378 5379 mutex_lock(&wq->mutex); 5380 5381 wq->flags &= ~__WQ_ORDERED; 5382 wq->saved_max_active = max_active; 5383 if (wq->flags & WQ_UNBOUND) 5384 wq->saved_min_active = min(wq->saved_min_active, max_active); 5385 5386 wq_adjust_max_active(wq); 5387 5388 mutex_unlock(&wq->mutex); 5389 } 5390 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 5391 5392 /** 5393 * current_work - retrieve %current task's work struct 5394 * 5395 * Determine if %current task is a workqueue worker and what it's working on. 5396 * Useful to find out the context that the %current task is running in. 5397 * 5398 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 5399 */ 5400 struct work_struct *current_work(void) 5401 { 5402 struct worker *worker = current_wq_worker(); 5403 5404 return worker ? worker->current_work : NULL; 5405 } 5406 EXPORT_SYMBOL(current_work); 5407 5408 /** 5409 * current_is_workqueue_rescuer - is %current workqueue rescuer? 5410 * 5411 * Determine whether %current is a workqueue rescuer. Can be used from 5412 * work functions to determine whether it's being run off the rescuer task. 5413 * 5414 * Return: %true if %current is a workqueue rescuer. %false otherwise. 5415 */ 5416 bool current_is_workqueue_rescuer(void) 5417 { 5418 struct worker *worker = current_wq_worker(); 5419 5420 return worker && worker->rescue_wq; 5421 } 5422 5423 /** 5424 * workqueue_congested - test whether a workqueue is congested 5425 * @cpu: CPU in question 5426 * @wq: target workqueue 5427 * 5428 * Test whether @wq's cpu workqueue for @cpu is congested. There is 5429 * no synchronization around this function and the test result is 5430 * unreliable and only useful as advisory hints or for debugging. 5431 * 5432 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 5433 * 5434 * With the exception of ordered workqueues, all workqueues have per-cpu 5435 * pool_workqueues, each with its own congested state. A workqueue being 5436 * congested on one CPU doesn't mean that the workqueue is contested on any 5437 * other CPUs. 5438 * 5439 * Return: 5440 * %true if congested, %false otherwise. 5441 */ 5442 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 5443 { 5444 struct pool_workqueue *pwq; 5445 bool ret; 5446 5447 rcu_read_lock(); 5448 preempt_disable(); 5449 5450 if (cpu == WORK_CPU_UNBOUND) 5451 cpu = smp_processor_id(); 5452 5453 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 5454 ret = !list_empty(&pwq->inactive_works); 5455 5456 preempt_enable(); 5457 rcu_read_unlock(); 5458 5459 return ret; 5460 } 5461 EXPORT_SYMBOL_GPL(workqueue_congested); 5462 5463 /** 5464 * work_busy - test whether a work is currently pending or running 5465 * @work: the work to be tested 5466 * 5467 * Test whether @work is currently pending or running. There is no 5468 * synchronization around this function and the test result is 5469 * unreliable and only useful as advisory hints or for debugging. 5470 * 5471 * Return: 5472 * OR'd bitmask of WORK_BUSY_* bits. 5473 */ 5474 unsigned int work_busy(struct work_struct *work) 5475 { 5476 struct worker_pool *pool; 5477 unsigned long flags; 5478 unsigned int ret = 0; 5479 5480 if (work_pending(work)) 5481 ret |= WORK_BUSY_PENDING; 5482 5483 rcu_read_lock(); 5484 pool = get_work_pool(work); 5485 if (pool) { 5486 raw_spin_lock_irqsave(&pool->lock, flags); 5487 if (find_worker_executing_work(pool, work)) 5488 ret |= WORK_BUSY_RUNNING; 5489 raw_spin_unlock_irqrestore(&pool->lock, flags); 5490 } 5491 rcu_read_unlock(); 5492 5493 return ret; 5494 } 5495 EXPORT_SYMBOL_GPL(work_busy); 5496 5497 /** 5498 * set_worker_desc - set description for the current work item 5499 * @fmt: printf-style format string 5500 * @...: arguments for the format string 5501 * 5502 * This function can be called by a running work function to describe what 5503 * the work item is about. If the worker task gets dumped, this 5504 * information will be printed out together to help debugging. The 5505 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 5506 */ 5507 void set_worker_desc(const char *fmt, ...) 5508 { 5509 struct worker *worker = current_wq_worker(); 5510 va_list args; 5511 5512 if (worker) { 5513 va_start(args, fmt); 5514 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 5515 va_end(args); 5516 } 5517 } 5518 EXPORT_SYMBOL_GPL(set_worker_desc); 5519 5520 /** 5521 * print_worker_info - print out worker information and description 5522 * @log_lvl: the log level to use when printing 5523 * @task: target task 5524 * 5525 * If @task is a worker and currently executing a work item, print out the 5526 * name of the workqueue being serviced and worker description set with 5527 * set_worker_desc() by the currently executing work item. 5528 * 5529 * This function can be safely called on any task as long as the 5530 * task_struct itself is accessible. While safe, this function isn't 5531 * synchronized and may print out mixups or garbages of limited length. 5532 */ 5533 void print_worker_info(const char *log_lvl, struct task_struct *task) 5534 { 5535 work_func_t *fn = NULL; 5536 char name[WQ_NAME_LEN] = { }; 5537 char desc[WORKER_DESC_LEN] = { }; 5538 struct pool_workqueue *pwq = NULL; 5539 struct workqueue_struct *wq = NULL; 5540 struct worker *worker; 5541 5542 if (!(task->flags & PF_WQ_WORKER)) 5543 return; 5544 5545 /* 5546 * This function is called without any synchronization and @task 5547 * could be in any state. Be careful with dereferences. 5548 */ 5549 worker = kthread_probe_data(task); 5550 5551 /* 5552 * Carefully copy the associated workqueue's workfn, name and desc. 5553 * Keep the original last '\0' in case the original is garbage. 5554 */ 5555 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn)); 5556 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq)); 5557 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq)); 5558 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1); 5559 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1); 5560 5561 if (fn || name[0] || desc[0]) { 5562 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 5563 if (strcmp(name, desc)) 5564 pr_cont(" (%s)", desc); 5565 pr_cont("\n"); 5566 } 5567 } 5568 5569 static void pr_cont_pool_info(struct worker_pool *pool) 5570 { 5571 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 5572 if (pool->node != NUMA_NO_NODE) 5573 pr_cont(" node=%d", pool->node); 5574 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 5575 } 5576 5577 struct pr_cont_work_struct { 5578 bool comma; 5579 work_func_t func; 5580 long ctr; 5581 }; 5582 5583 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp) 5584 { 5585 if (!pcwsp->ctr) 5586 goto out_record; 5587 if (func == pcwsp->func) { 5588 pcwsp->ctr++; 5589 return; 5590 } 5591 if (pcwsp->ctr == 1) 5592 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func); 5593 else 5594 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func); 5595 pcwsp->ctr = 0; 5596 out_record: 5597 if ((long)func == -1L) 5598 return; 5599 pcwsp->comma = comma; 5600 pcwsp->func = func; 5601 pcwsp->ctr = 1; 5602 } 5603 5604 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp) 5605 { 5606 if (work->func == wq_barrier_func) { 5607 struct wq_barrier *barr; 5608 5609 barr = container_of(work, struct wq_barrier, work); 5610 5611 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 5612 pr_cont("%s BAR(%d)", comma ? "," : "", 5613 task_pid_nr(barr->task)); 5614 } else { 5615 if (!comma) 5616 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 5617 pr_cont_work_flush(comma, work->func, pcwsp); 5618 } 5619 } 5620 5621 static void show_pwq(struct pool_workqueue *pwq) 5622 { 5623 struct pr_cont_work_struct pcws = { .ctr = 0, }; 5624 struct worker_pool *pool = pwq->pool; 5625 struct work_struct *work; 5626 struct worker *worker; 5627 bool has_in_flight = false, has_pending = false; 5628 int bkt; 5629 5630 pr_info(" pwq %d:", pool->id); 5631 pr_cont_pool_info(pool); 5632 5633 pr_cont(" active=%d refcnt=%d%s\n", 5634 pwq->nr_active, pwq->refcnt, 5635 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 5636 5637 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 5638 if (worker->current_pwq == pwq) { 5639 has_in_flight = true; 5640 break; 5641 } 5642 } 5643 if (has_in_flight) { 5644 bool comma = false; 5645 5646 pr_info(" in-flight:"); 5647 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 5648 if (worker->current_pwq != pwq) 5649 continue; 5650 5651 pr_cont("%s %d%s:%ps", comma ? "," : "", 5652 task_pid_nr(worker->task), 5653 worker->rescue_wq ? "(RESCUER)" : "", 5654 worker->current_func); 5655 list_for_each_entry(work, &worker->scheduled, entry) 5656 pr_cont_work(false, work, &pcws); 5657 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 5658 comma = true; 5659 } 5660 pr_cont("\n"); 5661 } 5662 5663 list_for_each_entry(work, &pool->worklist, entry) { 5664 if (get_work_pwq(work) == pwq) { 5665 has_pending = true; 5666 break; 5667 } 5668 } 5669 if (has_pending) { 5670 bool comma = false; 5671 5672 pr_info(" pending:"); 5673 list_for_each_entry(work, &pool->worklist, entry) { 5674 if (get_work_pwq(work) != pwq) 5675 continue; 5676 5677 pr_cont_work(comma, work, &pcws); 5678 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 5679 } 5680 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 5681 pr_cont("\n"); 5682 } 5683 5684 if (!list_empty(&pwq->inactive_works)) { 5685 bool comma = false; 5686 5687 pr_info(" inactive:"); 5688 list_for_each_entry(work, &pwq->inactive_works, entry) { 5689 pr_cont_work(comma, work, &pcws); 5690 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 5691 } 5692 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 5693 pr_cont("\n"); 5694 } 5695 } 5696 5697 /** 5698 * show_one_workqueue - dump state of specified workqueue 5699 * @wq: workqueue whose state will be printed 5700 */ 5701 void show_one_workqueue(struct workqueue_struct *wq) 5702 { 5703 struct pool_workqueue *pwq; 5704 bool idle = true; 5705 unsigned long flags; 5706 5707 for_each_pwq(pwq, wq) { 5708 if (!pwq_is_empty(pwq)) { 5709 idle = false; 5710 break; 5711 } 5712 } 5713 if (idle) /* Nothing to print for idle workqueue */ 5714 return; 5715 5716 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 5717 5718 for_each_pwq(pwq, wq) { 5719 raw_spin_lock_irqsave(&pwq->pool->lock, flags); 5720 if (!pwq_is_empty(pwq)) { 5721 /* 5722 * Defer printing to avoid deadlocks in console 5723 * drivers that queue work while holding locks 5724 * also taken in their write paths. 5725 */ 5726 printk_deferred_enter(); 5727 show_pwq(pwq); 5728 printk_deferred_exit(); 5729 } 5730 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); 5731 /* 5732 * We could be printing a lot from atomic context, e.g. 5733 * sysrq-t -> show_all_workqueues(). Avoid triggering 5734 * hard lockup. 5735 */ 5736 touch_nmi_watchdog(); 5737 } 5738 5739 } 5740 5741 /** 5742 * show_one_worker_pool - dump state of specified worker pool 5743 * @pool: worker pool whose state will be printed 5744 */ 5745 static void show_one_worker_pool(struct worker_pool *pool) 5746 { 5747 struct worker *worker; 5748 bool first = true; 5749 unsigned long flags; 5750 unsigned long hung = 0; 5751 5752 raw_spin_lock_irqsave(&pool->lock, flags); 5753 if (pool->nr_workers == pool->nr_idle) 5754 goto next_pool; 5755 5756 /* How long the first pending work is waiting for a worker. */ 5757 if (!list_empty(&pool->worklist)) 5758 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000; 5759 5760 /* 5761 * Defer printing to avoid deadlocks in console drivers that 5762 * queue work while holding locks also taken in their write 5763 * paths. 5764 */ 5765 printk_deferred_enter(); 5766 pr_info("pool %d:", pool->id); 5767 pr_cont_pool_info(pool); 5768 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers); 5769 if (pool->manager) 5770 pr_cont(" manager: %d", 5771 task_pid_nr(pool->manager->task)); 5772 list_for_each_entry(worker, &pool->idle_list, entry) { 5773 pr_cont(" %s%d", first ? "idle: " : "", 5774 task_pid_nr(worker->task)); 5775 first = false; 5776 } 5777 pr_cont("\n"); 5778 printk_deferred_exit(); 5779 next_pool: 5780 raw_spin_unlock_irqrestore(&pool->lock, flags); 5781 /* 5782 * We could be printing a lot from atomic context, e.g. 5783 * sysrq-t -> show_all_workqueues(). Avoid triggering 5784 * hard lockup. 5785 */ 5786 touch_nmi_watchdog(); 5787 5788 } 5789 5790 /** 5791 * show_all_workqueues - dump workqueue state 5792 * 5793 * Called from a sysrq handler and prints out all busy workqueues and pools. 5794 */ 5795 void show_all_workqueues(void) 5796 { 5797 struct workqueue_struct *wq; 5798 struct worker_pool *pool; 5799 int pi; 5800 5801 rcu_read_lock(); 5802 5803 pr_info("Showing busy workqueues and worker pools:\n"); 5804 5805 list_for_each_entry_rcu(wq, &workqueues, list) 5806 show_one_workqueue(wq); 5807 5808 for_each_pool(pool, pi) 5809 show_one_worker_pool(pool); 5810 5811 rcu_read_unlock(); 5812 } 5813 5814 /** 5815 * show_freezable_workqueues - dump freezable workqueue state 5816 * 5817 * Called from try_to_freeze_tasks() and prints out all freezable workqueues 5818 * still busy. 5819 */ 5820 void show_freezable_workqueues(void) 5821 { 5822 struct workqueue_struct *wq; 5823 5824 rcu_read_lock(); 5825 5826 pr_info("Showing freezable workqueues that are still busy:\n"); 5827 5828 list_for_each_entry_rcu(wq, &workqueues, list) { 5829 if (!(wq->flags & WQ_FREEZABLE)) 5830 continue; 5831 show_one_workqueue(wq); 5832 } 5833 5834 rcu_read_unlock(); 5835 } 5836 5837 /* used to show worker information through /proc/PID/{comm,stat,status} */ 5838 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 5839 { 5840 int off; 5841 5842 /* always show the actual comm */ 5843 off = strscpy(buf, task->comm, size); 5844 if (off < 0) 5845 return; 5846 5847 /* stabilize PF_WQ_WORKER and worker pool association */ 5848 mutex_lock(&wq_pool_attach_mutex); 5849 5850 if (task->flags & PF_WQ_WORKER) { 5851 struct worker *worker = kthread_data(task); 5852 struct worker_pool *pool = worker->pool; 5853 5854 if (pool) { 5855 raw_spin_lock_irq(&pool->lock); 5856 /* 5857 * ->desc tracks information (wq name or 5858 * set_worker_desc()) for the latest execution. If 5859 * current, prepend '+', otherwise '-'. 5860 */ 5861 if (worker->desc[0] != '\0') { 5862 if (worker->current_work) 5863 scnprintf(buf + off, size - off, "+%s", 5864 worker->desc); 5865 else 5866 scnprintf(buf + off, size - off, "-%s", 5867 worker->desc); 5868 } 5869 raw_spin_unlock_irq(&pool->lock); 5870 } 5871 } 5872 5873 mutex_unlock(&wq_pool_attach_mutex); 5874 } 5875 5876 #ifdef CONFIG_SMP 5877 5878 /* 5879 * CPU hotplug. 5880 * 5881 * There are two challenges in supporting CPU hotplug. Firstly, there 5882 * are a lot of assumptions on strong associations among work, pwq and 5883 * pool which make migrating pending and scheduled works very 5884 * difficult to implement without impacting hot paths. Secondly, 5885 * worker pools serve mix of short, long and very long running works making 5886 * blocked draining impractical. 5887 * 5888 * This is solved by allowing the pools to be disassociated from the CPU 5889 * running as an unbound one and allowing it to be reattached later if the 5890 * cpu comes back online. 5891 */ 5892 5893 static void unbind_workers(int cpu) 5894 { 5895 struct worker_pool *pool; 5896 struct worker *worker; 5897 5898 for_each_cpu_worker_pool(pool, cpu) { 5899 mutex_lock(&wq_pool_attach_mutex); 5900 raw_spin_lock_irq(&pool->lock); 5901 5902 /* 5903 * We've blocked all attach/detach operations. Make all workers 5904 * unbound and set DISASSOCIATED. Before this, all workers 5905 * must be on the cpu. After this, they may become diasporas. 5906 * And the preemption disabled section in their sched callbacks 5907 * are guaranteed to see WORKER_UNBOUND since the code here 5908 * is on the same cpu. 5909 */ 5910 for_each_pool_worker(worker, pool) 5911 worker->flags |= WORKER_UNBOUND; 5912 5913 pool->flags |= POOL_DISASSOCIATED; 5914 5915 /* 5916 * The handling of nr_running in sched callbacks are disabled 5917 * now. Zap nr_running. After this, nr_running stays zero and 5918 * need_more_worker() and keep_working() are always true as 5919 * long as the worklist is not empty. This pool now behaves as 5920 * an unbound (in terms of concurrency management) pool which 5921 * are served by workers tied to the pool. 5922 */ 5923 pool->nr_running = 0; 5924 5925 /* 5926 * With concurrency management just turned off, a busy 5927 * worker blocking could lead to lengthy stalls. Kick off 5928 * unbound chain execution of currently pending work items. 5929 */ 5930 kick_pool(pool); 5931 5932 raw_spin_unlock_irq(&pool->lock); 5933 5934 for_each_pool_worker(worker, pool) 5935 unbind_worker(worker); 5936 5937 mutex_unlock(&wq_pool_attach_mutex); 5938 } 5939 } 5940 5941 /** 5942 * rebind_workers - rebind all workers of a pool to the associated CPU 5943 * @pool: pool of interest 5944 * 5945 * @pool->cpu is coming online. Rebind all workers to the CPU. 5946 */ 5947 static void rebind_workers(struct worker_pool *pool) 5948 { 5949 struct worker *worker; 5950 5951 lockdep_assert_held(&wq_pool_attach_mutex); 5952 5953 /* 5954 * Restore CPU affinity of all workers. As all idle workers should 5955 * be on the run-queue of the associated CPU before any local 5956 * wake-ups for concurrency management happen, restore CPU affinity 5957 * of all workers first and then clear UNBOUND. As we're called 5958 * from CPU_ONLINE, the following shouldn't fail. 5959 */ 5960 for_each_pool_worker(worker, pool) { 5961 kthread_set_per_cpu(worker->task, pool->cpu); 5962 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 5963 pool_allowed_cpus(pool)) < 0); 5964 } 5965 5966 raw_spin_lock_irq(&pool->lock); 5967 5968 pool->flags &= ~POOL_DISASSOCIATED; 5969 5970 for_each_pool_worker(worker, pool) { 5971 unsigned int worker_flags = worker->flags; 5972 5973 /* 5974 * We want to clear UNBOUND but can't directly call 5975 * worker_clr_flags() or adjust nr_running. Atomically 5976 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 5977 * @worker will clear REBOUND using worker_clr_flags() when 5978 * it initiates the next execution cycle thus restoring 5979 * concurrency management. Note that when or whether 5980 * @worker clears REBOUND doesn't affect correctness. 5981 * 5982 * WRITE_ONCE() is necessary because @worker->flags may be 5983 * tested without holding any lock in 5984 * wq_worker_running(). Without it, NOT_RUNNING test may 5985 * fail incorrectly leading to premature concurrency 5986 * management operations. 5987 */ 5988 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 5989 worker_flags |= WORKER_REBOUND; 5990 worker_flags &= ~WORKER_UNBOUND; 5991 WRITE_ONCE(worker->flags, worker_flags); 5992 } 5993 5994 raw_spin_unlock_irq(&pool->lock); 5995 } 5996 5997 /** 5998 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 5999 * @pool: unbound pool of interest 6000 * @cpu: the CPU which is coming up 6001 * 6002 * An unbound pool may end up with a cpumask which doesn't have any online 6003 * CPUs. When a worker of such pool get scheduled, the scheduler resets 6004 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 6005 * online CPU before, cpus_allowed of all its workers should be restored. 6006 */ 6007 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 6008 { 6009 static cpumask_t cpumask; 6010 struct worker *worker; 6011 6012 lockdep_assert_held(&wq_pool_attach_mutex); 6013 6014 /* is @cpu allowed for @pool? */ 6015 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 6016 return; 6017 6018 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 6019 6020 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 6021 for_each_pool_worker(worker, pool) 6022 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 6023 } 6024 6025 int workqueue_prepare_cpu(unsigned int cpu) 6026 { 6027 struct worker_pool *pool; 6028 6029 for_each_cpu_worker_pool(pool, cpu) { 6030 if (pool->nr_workers) 6031 continue; 6032 if (!create_worker(pool)) 6033 return -ENOMEM; 6034 } 6035 return 0; 6036 } 6037 6038 int workqueue_online_cpu(unsigned int cpu) 6039 { 6040 struct worker_pool *pool; 6041 struct workqueue_struct *wq; 6042 int pi; 6043 6044 mutex_lock(&wq_pool_mutex); 6045 6046 for_each_pool(pool, pi) { 6047 mutex_lock(&wq_pool_attach_mutex); 6048 6049 if (pool->cpu == cpu) 6050 rebind_workers(pool); 6051 else if (pool->cpu < 0) 6052 restore_unbound_workers_cpumask(pool, cpu); 6053 6054 mutex_unlock(&wq_pool_attach_mutex); 6055 } 6056 6057 /* update pod affinity of unbound workqueues */ 6058 list_for_each_entry(wq, &workqueues, list) { 6059 struct workqueue_attrs *attrs = wq->unbound_attrs; 6060 6061 if (attrs) { 6062 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 6063 int tcpu; 6064 6065 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 6066 wq_update_pod(wq, tcpu, cpu, true); 6067 6068 mutex_lock(&wq->mutex); 6069 wq_update_node_max_active(wq, -1); 6070 mutex_unlock(&wq->mutex); 6071 } 6072 } 6073 6074 mutex_unlock(&wq_pool_mutex); 6075 return 0; 6076 } 6077 6078 int workqueue_offline_cpu(unsigned int cpu) 6079 { 6080 struct workqueue_struct *wq; 6081 6082 /* unbinding per-cpu workers should happen on the local CPU */ 6083 if (WARN_ON(cpu != smp_processor_id())) 6084 return -1; 6085 6086 unbind_workers(cpu); 6087 6088 /* update pod affinity of unbound workqueues */ 6089 mutex_lock(&wq_pool_mutex); 6090 list_for_each_entry(wq, &workqueues, list) { 6091 struct workqueue_attrs *attrs = wq->unbound_attrs; 6092 6093 if (attrs) { 6094 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 6095 int tcpu; 6096 6097 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 6098 wq_update_pod(wq, tcpu, cpu, false); 6099 6100 mutex_lock(&wq->mutex); 6101 wq_update_node_max_active(wq, cpu); 6102 mutex_unlock(&wq->mutex); 6103 } 6104 } 6105 mutex_unlock(&wq_pool_mutex); 6106 6107 return 0; 6108 } 6109 6110 struct work_for_cpu { 6111 struct work_struct work; 6112 long (*fn)(void *); 6113 void *arg; 6114 long ret; 6115 }; 6116 6117 static void work_for_cpu_fn(struct work_struct *work) 6118 { 6119 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 6120 6121 wfc->ret = wfc->fn(wfc->arg); 6122 } 6123 6124 /** 6125 * work_on_cpu_key - run a function in thread context on a particular cpu 6126 * @cpu: the cpu to run on 6127 * @fn: the function to run 6128 * @arg: the function arg 6129 * @key: The lock class key for lock debugging purposes 6130 * 6131 * It is up to the caller to ensure that the cpu doesn't go offline. 6132 * The caller must not hold any locks which would prevent @fn from completing. 6133 * 6134 * Return: The value @fn returns. 6135 */ 6136 long work_on_cpu_key(int cpu, long (*fn)(void *), 6137 void *arg, struct lock_class_key *key) 6138 { 6139 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 6140 6141 INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key); 6142 schedule_work_on(cpu, &wfc.work); 6143 flush_work(&wfc.work); 6144 destroy_work_on_stack(&wfc.work); 6145 return wfc.ret; 6146 } 6147 EXPORT_SYMBOL_GPL(work_on_cpu_key); 6148 6149 /** 6150 * work_on_cpu_safe_key - run a function in thread context on a particular cpu 6151 * @cpu: the cpu to run on 6152 * @fn: the function to run 6153 * @arg: the function argument 6154 * @key: The lock class key for lock debugging purposes 6155 * 6156 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 6157 * any locks which would prevent @fn from completing. 6158 * 6159 * Return: The value @fn returns. 6160 */ 6161 long work_on_cpu_safe_key(int cpu, long (*fn)(void *), 6162 void *arg, struct lock_class_key *key) 6163 { 6164 long ret = -ENODEV; 6165 6166 cpus_read_lock(); 6167 if (cpu_online(cpu)) 6168 ret = work_on_cpu_key(cpu, fn, arg, key); 6169 cpus_read_unlock(); 6170 return ret; 6171 } 6172 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key); 6173 #endif /* CONFIG_SMP */ 6174 6175 #ifdef CONFIG_FREEZER 6176 6177 /** 6178 * freeze_workqueues_begin - begin freezing workqueues 6179 * 6180 * Start freezing workqueues. After this function returns, all freezable 6181 * workqueues will queue new works to their inactive_works list instead of 6182 * pool->worklist. 6183 * 6184 * CONTEXT: 6185 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 6186 */ 6187 void freeze_workqueues_begin(void) 6188 { 6189 struct workqueue_struct *wq; 6190 6191 mutex_lock(&wq_pool_mutex); 6192 6193 WARN_ON_ONCE(workqueue_freezing); 6194 workqueue_freezing = true; 6195 6196 list_for_each_entry(wq, &workqueues, list) { 6197 mutex_lock(&wq->mutex); 6198 wq_adjust_max_active(wq); 6199 mutex_unlock(&wq->mutex); 6200 } 6201 6202 mutex_unlock(&wq_pool_mutex); 6203 } 6204 6205 /** 6206 * freeze_workqueues_busy - are freezable workqueues still busy? 6207 * 6208 * Check whether freezing is complete. This function must be called 6209 * between freeze_workqueues_begin() and thaw_workqueues(). 6210 * 6211 * CONTEXT: 6212 * Grabs and releases wq_pool_mutex. 6213 * 6214 * Return: 6215 * %true if some freezable workqueues are still busy. %false if freezing 6216 * is complete. 6217 */ 6218 bool freeze_workqueues_busy(void) 6219 { 6220 bool busy = false; 6221 struct workqueue_struct *wq; 6222 struct pool_workqueue *pwq; 6223 6224 mutex_lock(&wq_pool_mutex); 6225 6226 WARN_ON_ONCE(!workqueue_freezing); 6227 6228 list_for_each_entry(wq, &workqueues, list) { 6229 if (!(wq->flags & WQ_FREEZABLE)) 6230 continue; 6231 /* 6232 * nr_active is monotonically decreasing. It's safe 6233 * to peek without lock. 6234 */ 6235 rcu_read_lock(); 6236 for_each_pwq(pwq, wq) { 6237 WARN_ON_ONCE(pwq->nr_active < 0); 6238 if (pwq->nr_active) { 6239 busy = true; 6240 rcu_read_unlock(); 6241 goto out_unlock; 6242 } 6243 } 6244 rcu_read_unlock(); 6245 } 6246 out_unlock: 6247 mutex_unlock(&wq_pool_mutex); 6248 return busy; 6249 } 6250 6251 /** 6252 * thaw_workqueues - thaw workqueues 6253 * 6254 * Thaw workqueues. Normal queueing is restored and all collected 6255 * frozen works are transferred to their respective pool worklists. 6256 * 6257 * CONTEXT: 6258 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 6259 */ 6260 void thaw_workqueues(void) 6261 { 6262 struct workqueue_struct *wq; 6263 6264 mutex_lock(&wq_pool_mutex); 6265 6266 if (!workqueue_freezing) 6267 goto out_unlock; 6268 6269 workqueue_freezing = false; 6270 6271 /* restore max_active and repopulate worklist */ 6272 list_for_each_entry(wq, &workqueues, list) { 6273 mutex_lock(&wq->mutex); 6274 wq_adjust_max_active(wq); 6275 mutex_unlock(&wq->mutex); 6276 } 6277 6278 out_unlock: 6279 mutex_unlock(&wq_pool_mutex); 6280 } 6281 #endif /* CONFIG_FREEZER */ 6282 6283 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask) 6284 { 6285 LIST_HEAD(ctxs); 6286 int ret = 0; 6287 struct workqueue_struct *wq; 6288 struct apply_wqattrs_ctx *ctx, *n; 6289 6290 lockdep_assert_held(&wq_pool_mutex); 6291 6292 list_for_each_entry(wq, &workqueues, list) { 6293 if (!(wq->flags & WQ_UNBOUND)) 6294 continue; 6295 /* creating multiple pwqs breaks ordering guarantee */ 6296 if (wq->flags & __WQ_ORDERED) 6297 continue; 6298 6299 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask); 6300 if (IS_ERR(ctx)) { 6301 ret = PTR_ERR(ctx); 6302 break; 6303 } 6304 6305 list_add_tail(&ctx->list, &ctxs); 6306 } 6307 6308 list_for_each_entry_safe(ctx, n, &ctxs, list) { 6309 if (!ret) 6310 apply_wqattrs_commit(ctx); 6311 apply_wqattrs_cleanup(ctx); 6312 } 6313 6314 if (!ret) { 6315 mutex_lock(&wq_pool_attach_mutex); 6316 cpumask_copy(wq_unbound_cpumask, unbound_cpumask); 6317 mutex_unlock(&wq_pool_attach_mutex); 6318 } 6319 return ret; 6320 } 6321 6322 /** 6323 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 6324 * @cpumask: the cpumask to set 6325 * 6326 * The low-level workqueues cpumask is a global cpumask that limits 6327 * the affinity of all unbound workqueues. This function check the @cpumask 6328 * and apply it to all unbound workqueues and updates all pwqs of them. 6329 * 6330 * Return: 0 - Success 6331 * -EINVAL - Invalid @cpumask 6332 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 6333 */ 6334 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 6335 { 6336 int ret = -EINVAL; 6337 6338 /* 6339 * Not excluding isolated cpus on purpose. 6340 * If the user wishes to include them, we allow that. 6341 */ 6342 cpumask_and(cpumask, cpumask, cpu_possible_mask); 6343 if (!cpumask_empty(cpumask)) { 6344 apply_wqattrs_lock(); 6345 if (cpumask_equal(cpumask, wq_unbound_cpumask)) { 6346 ret = 0; 6347 goto out_unlock; 6348 } 6349 6350 ret = workqueue_apply_unbound_cpumask(cpumask); 6351 6352 out_unlock: 6353 apply_wqattrs_unlock(); 6354 } 6355 6356 return ret; 6357 } 6358 6359 static int parse_affn_scope(const char *val) 6360 { 6361 int i; 6362 6363 for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) { 6364 if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i]))) 6365 return i; 6366 } 6367 return -EINVAL; 6368 } 6369 6370 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp) 6371 { 6372 struct workqueue_struct *wq; 6373 int affn, cpu; 6374 6375 affn = parse_affn_scope(val); 6376 if (affn < 0) 6377 return affn; 6378 if (affn == WQ_AFFN_DFL) 6379 return -EINVAL; 6380 6381 cpus_read_lock(); 6382 mutex_lock(&wq_pool_mutex); 6383 6384 wq_affn_dfl = affn; 6385 6386 list_for_each_entry(wq, &workqueues, list) { 6387 for_each_online_cpu(cpu) { 6388 wq_update_pod(wq, cpu, cpu, true); 6389 } 6390 } 6391 6392 mutex_unlock(&wq_pool_mutex); 6393 cpus_read_unlock(); 6394 6395 return 0; 6396 } 6397 6398 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp) 6399 { 6400 return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]); 6401 } 6402 6403 static const struct kernel_param_ops wq_affn_dfl_ops = { 6404 .set = wq_affn_dfl_set, 6405 .get = wq_affn_dfl_get, 6406 }; 6407 6408 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644); 6409 6410 #ifdef CONFIG_SYSFS 6411 /* 6412 * Workqueues with WQ_SYSFS flag set is visible to userland via 6413 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 6414 * following attributes. 6415 * 6416 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 6417 * max_active RW int : maximum number of in-flight work items 6418 * 6419 * Unbound workqueues have the following extra attributes. 6420 * 6421 * nice RW int : nice value of the workers 6422 * cpumask RW mask : bitmask of allowed CPUs for the workers 6423 * affinity_scope RW str : worker CPU affinity scope (cache, numa, none) 6424 * affinity_strict RW bool : worker CPU affinity is strict 6425 */ 6426 struct wq_device { 6427 struct workqueue_struct *wq; 6428 struct device dev; 6429 }; 6430 6431 static struct workqueue_struct *dev_to_wq(struct device *dev) 6432 { 6433 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 6434 6435 return wq_dev->wq; 6436 } 6437 6438 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 6439 char *buf) 6440 { 6441 struct workqueue_struct *wq = dev_to_wq(dev); 6442 6443 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 6444 } 6445 static DEVICE_ATTR_RO(per_cpu); 6446 6447 static ssize_t max_active_show(struct device *dev, 6448 struct device_attribute *attr, char *buf) 6449 { 6450 struct workqueue_struct *wq = dev_to_wq(dev); 6451 6452 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 6453 } 6454 6455 static ssize_t max_active_store(struct device *dev, 6456 struct device_attribute *attr, const char *buf, 6457 size_t count) 6458 { 6459 struct workqueue_struct *wq = dev_to_wq(dev); 6460 int val; 6461 6462 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 6463 return -EINVAL; 6464 6465 workqueue_set_max_active(wq, val); 6466 return count; 6467 } 6468 static DEVICE_ATTR_RW(max_active); 6469 6470 static struct attribute *wq_sysfs_attrs[] = { 6471 &dev_attr_per_cpu.attr, 6472 &dev_attr_max_active.attr, 6473 NULL, 6474 }; 6475 ATTRIBUTE_GROUPS(wq_sysfs); 6476 6477 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 6478 char *buf) 6479 { 6480 struct workqueue_struct *wq = dev_to_wq(dev); 6481 int written; 6482 6483 mutex_lock(&wq->mutex); 6484 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 6485 mutex_unlock(&wq->mutex); 6486 6487 return written; 6488 } 6489 6490 /* prepare workqueue_attrs for sysfs store operations */ 6491 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 6492 { 6493 struct workqueue_attrs *attrs; 6494 6495 lockdep_assert_held(&wq_pool_mutex); 6496 6497 attrs = alloc_workqueue_attrs(); 6498 if (!attrs) 6499 return NULL; 6500 6501 copy_workqueue_attrs(attrs, wq->unbound_attrs); 6502 return attrs; 6503 } 6504 6505 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 6506 const char *buf, size_t count) 6507 { 6508 struct workqueue_struct *wq = dev_to_wq(dev); 6509 struct workqueue_attrs *attrs; 6510 int ret = -ENOMEM; 6511 6512 apply_wqattrs_lock(); 6513 6514 attrs = wq_sysfs_prep_attrs(wq); 6515 if (!attrs) 6516 goto out_unlock; 6517 6518 if (sscanf(buf, "%d", &attrs->nice) == 1 && 6519 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 6520 ret = apply_workqueue_attrs_locked(wq, attrs); 6521 else 6522 ret = -EINVAL; 6523 6524 out_unlock: 6525 apply_wqattrs_unlock(); 6526 free_workqueue_attrs(attrs); 6527 return ret ?: count; 6528 } 6529 6530 static ssize_t wq_cpumask_show(struct device *dev, 6531 struct device_attribute *attr, char *buf) 6532 { 6533 struct workqueue_struct *wq = dev_to_wq(dev); 6534 int written; 6535 6536 mutex_lock(&wq->mutex); 6537 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 6538 cpumask_pr_args(wq->unbound_attrs->cpumask)); 6539 mutex_unlock(&wq->mutex); 6540 return written; 6541 } 6542 6543 static ssize_t wq_cpumask_store(struct device *dev, 6544 struct device_attribute *attr, 6545 const char *buf, size_t count) 6546 { 6547 struct workqueue_struct *wq = dev_to_wq(dev); 6548 struct workqueue_attrs *attrs; 6549 int ret = -ENOMEM; 6550 6551 apply_wqattrs_lock(); 6552 6553 attrs = wq_sysfs_prep_attrs(wq); 6554 if (!attrs) 6555 goto out_unlock; 6556 6557 ret = cpumask_parse(buf, attrs->cpumask); 6558 if (!ret) 6559 ret = apply_workqueue_attrs_locked(wq, attrs); 6560 6561 out_unlock: 6562 apply_wqattrs_unlock(); 6563 free_workqueue_attrs(attrs); 6564 return ret ?: count; 6565 } 6566 6567 static ssize_t wq_affn_scope_show(struct device *dev, 6568 struct device_attribute *attr, char *buf) 6569 { 6570 struct workqueue_struct *wq = dev_to_wq(dev); 6571 int written; 6572 6573 mutex_lock(&wq->mutex); 6574 if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL) 6575 written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n", 6576 wq_affn_names[WQ_AFFN_DFL], 6577 wq_affn_names[wq_affn_dfl]); 6578 else 6579 written = scnprintf(buf, PAGE_SIZE, "%s\n", 6580 wq_affn_names[wq->unbound_attrs->affn_scope]); 6581 mutex_unlock(&wq->mutex); 6582 6583 return written; 6584 } 6585 6586 static ssize_t wq_affn_scope_store(struct device *dev, 6587 struct device_attribute *attr, 6588 const char *buf, size_t count) 6589 { 6590 struct workqueue_struct *wq = dev_to_wq(dev); 6591 struct workqueue_attrs *attrs; 6592 int affn, ret = -ENOMEM; 6593 6594 affn = parse_affn_scope(buf); 6595 if (affn < 0) 6596 return affn; 6597 6598 apply_wqattrs_lock(); 6599 attrs = wq_sysfs_prep_attrs(wq); 6600 if (attrs) { 6601 attrs->affn_scope = affn; 6602 ret = apply_workqueue_attrs_locked(wq, attrs); 6603 } 6604 apply_wqattrs_unlock(); 6605 free_workqueue_attrs(attrs); 6606 return ret ?: count; 6607 } 6608 6609 static ssize_t wq_affinity_strict_show(struct device *dev, 6610 struct device_attribute *attr, char *buf) 6611 { 6612 struct workqueue_struct *wq = dev_to_wq(dev); 6613 6614 return scnprintf(buf, PAGE_SIZE, "%d\n", 6615 wq->unbound_attrs->affn_strict); 6616 } 6617 6618 static ssize_t wq_affinity_strict_store(struct device *dev, 6619 struct device_attribute *attr, 6620 const char *buf, size_t count) 6621 { 6622 struct workqueue_struct *wq = dev_to_wq(dev); 6623 struct workqueue_attrs *attrs; 6624 int v, ret = -ENOMEM; 6625 6626 if (sscanf(buf, "%d", &v) != 1) 6627 return -EINVAL; 6628 6629 apply_wqattrs_lock(); 6630 attrs = wq_sysfs_prep_attrs(wq); 6631 if (attrs) { 6632 attrs->affn_strict = (bool)v; 6633 ret = apply_workqueue_attrs_locked(wq, attrs); 6634 } 6635 apply_wqattrs_unlock(); 6636 free_workqueue_attrs(attrs); 6637 return ret ?: count; 6638 } 6639 6640 static struct device_attribute wq_sysfs_unbound_attrs[] = { 6641 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 6642 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 6643 __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store), 6644 __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store), 6645 __ATTR_NULL, 6646 }; 6647 6648 static struct bus_type wq_subsys = { 6649 .name = "workqueue", 6650 .dev_groups = wq_sysfs_groups, 6651 }; 6652 6653 static ssize_t wq_unbound_cpumask_show(struct device *dev, 6654 struct device_attribute *attr, char *buf) 6655 { 6656 int written; 6657 6658 mutex_lock(&wq_pool_mutex); 6659 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 6660 cpumask_pr_args(wq_unbound_cpumask)); 6661 mutex_unlock(&wq_pool_mutex); 6662 6663 return written; 6664 } 6665 6666 static ssize_t wq_unbound_cpumask_store(struct device *dev, 6667 struct device_attribute *attr, const char *buf, size_t count) 6668 { 6669 cpumask_var_t cpumask; 6670 int ret; 6671 6672 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 6673 return -ENOMEM; 6674 6675 ret = cpumask_parse(buf, cpumask); 6676 if (!ret) 6677 ret = workqueue_set_unbound_cpumask(cpumask); 6678 6679 free_cpumask_var(cpumask); 6680 return ret ? ret : count; 6681 } 6682 6683 static struct device_attribute wq_sysfs_cpumask_attr = 6684 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 6685 wq_unbound_cpumask_store); 6686 6687 static int __init wq_sysfs_init(void) 6688 { 6689 struct device *dev_root; 6690 int err; 6691 6692 err = subsys_virtual_register(&wq_subsys, NULL); 6693 if (err) 6694 return err; 6695 6696 dev_root = bus_get_dev_root(&wq_subsys); 6697 if (dev_root) { 6698 err = device_create_file(dev_root, &wq_sysfs_cpumask_attr); 6699 put_device(dev_root); 6700 } 6701 return err; 6702 } 6703 core_initcall(wq_sysfs_init); 6704 6705 static void wq_device_release(struct device *dev) 6706 { 6707 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 6708 6709 kfree(wq_dev); 6710 } 6711 6712 /** 6713 * workqueue_sysfs_register - make a workqueue visible in sysfs 6714 * @wq: the workqueue to register 6715 * 6716 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 6717 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 6718 * which is the preferred method. 6719 * 6720 * Workqueue user should use this function directly iff it wants to apply 6721 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 6722 * apply_workqueue_attrs() may race against userland updating the 6723 * attributes. 6724 * 6725 * Return: 0 on success, -errno on failure. 6726 */ 6727 int workqueue_sysfs_register(struct workqueue_struct *wq) 6728 { 6729 struct wq_device *wq_dev; 6730 int ret; 6731 6732 /* 6733 * Adjusting max_active or creating new pwqs by applying 6734 * attributes breaks ordering guarantee. Disallow exposing ordered 6735 * workqueues. 6736 */ 6737 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 6738 return -EINVAL; 6739 6740 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 6741 if (!wq_dev) 6742 return -ENOMEM; 6743 6744 wq_dev->wq = wq; 6745 wq_dev->dev.bus = &wq_subsys; 6746 wq_dev->dev.release = wq_device_release; 6747 dev_set_name(&wq_dev->dev, "%s", wq->name); 6748 6749 /* 6750 * unbound_attrs are created separately. Suppress uevent until 6751 * everything is ready. 6752 */ 6753 dev_set_uevent_suppress(&wq_dev->dev, true); 6754 6755 ret = device_register(&wq_dev->dev); 6756 if (ret) { 6757 put_device(&wq_dev->dev); 6758 wq->wq_dev = NULL; 6759 return ret; 6760 } 6761 6762 if (wq->flags & WQ_UNBOUND) { 6763 struct device_attribute *attr; 6764 6765 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 6766 ret = device_create_file(&wq_dev->dev, attr); 6767 if (ret) { 6768 device_unregister(&wq_dev->dev); 6769 wq->wq_dev = NULL; 6770 return ret; 6771 } 6772 } 6773 } 6774 6775 dev_set_uevent_suppress(&wq_dev->dev, false); 6776 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 6777 return 0; 6778 } 6779 6780 /** 6781 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 6782 * @wq: the workqueue to unregister 6783 * 6784 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 6785 */ 6786 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 6787 { 6788 struct wq_device *wq_dev = wq->wq_dev; 6789 6790 if (!wq->wq_dev) 6791 return; 6792 6793 wq->wq_dev = NULL; 6794 device_unregister(&wq_dev->dev); 6795 } 6796 #else /* CONFIG_SYSFS */ 6797 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 6798 #endif /* CONFIG_SYSFS */ 6799 6800 /* 6801 * Workqueue watchdog. 6802 * 6803 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 6804 * flush dependency, a concurrency managed work item which stays RUNNING 6805 * indefinitely. Workqueue stalls can be very difficult to debug as the 6806 * usual warning mechanisms don't trigger and internal workqueue state is 6807 * largely opaque. 6808 * 6809 * Workqueue watchdog monitors all worker pools periodically and dumps 6810 * state if some pools failed to make forward progress for a while where 6811 * forward progress is defined as the first item on ->worklist changing. 6812 * 6813 * This mechanism is controlled through the kernel parameter 6814 * "workqueue.watchdog_thresh" which can be updated at runtime through the 6815 * corresponding sysfs parameter file. 6816 */ 6817 #ifdef CONFIG_WQ_WATCHDOG 6818 6819 static unsigned long wq_watchdog_thresh = 30; 6820 static struct timer_list wq_watchdog_timer; 6821 6822 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 6823 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 6824 6825 /* 6826 * Show workers that might prevent the processing of pending work items. 6827 * The only candidates are CPU-bound workers in the running state. 6828 * Pending work items should be handled by another idle worker 6829 * in all other situations. 6830 */ 6831 static void show_cpu_pool_hog(struct worker_pool *pool) 6832 { 6833 struct worker *worker; 6834 unsigned long flags; 6835 int bkt; 6836 6837 raw_spin_lock_irqsave(&pool->lock, flags); 6838 6839 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 6840 if (task_is_running(worker->task)) { 6841 /* 6842 * Defer printing to avoid deadlocks in console 6843 * drivers that queue work while holding locks 6844 * also taken in their write paths. 6845 */ 6846 printk_deferred_enter(); 6847 6848 pr_info("pool %d:\n", pool->id); 6849 sched_show_task(worker->task); 6850 6851 printk_deferred_exit(); 6852 } 6853 } 6854 6855 raw_spin_unlock_irqrestore(&pool->lock, flags); 6856 } 6857 6858 static void show_cpu_pools_hogs(void) 6859 { 6860 struct worker_pool *pool; 6861 int pi; 6862 6863 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n"); 6864 6865 rcu_read_lock(); 6866 6867 for_each_pool(pool, pi) { 6868 if (pool->cpu_stall) 6869 show_cpu_pool_hog(pool); 6870 6871 } 6872 6873 rcu_read_unlock(); 6874 } 6875 6876 static void wq_watchdog_reset_touched(void) 6877 { 6878 int cpu; 6879 6880 wq_watchdog_touched = jiffies; 6881 for_each_possible_cpu(cpu) 6882 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 6883 } 6884 6885 static void wq_watchdog_timer_fn(struct timer_list *unused) 6886 { 6887 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 6888 bool lockup_detected = false; 6889 bool cpu_pool_stall = false; 6890 unsigned long now = jiffies; 6891 struct worker_pool *pool; 6892 int pi; 6893 6894 if (!thresh) 6895 return; 6896 6897 rcu_read_lock(); 6898 6899 for_each_pool(pool, pi) { 6900 unsigned long pool_ts, touched, ts; 6901 6902 pool->cpu_stall = false; 6903 if (list_empty(&pool->worklist)) 6904 continue; 6905 6906 /* 6907 * If a virtual machine is stopped by the host it can look to 6908 * the watchdog like a stall. 6909 */ 6910 kvm_check_and_clear_guest_paused(); 6911 6912 /* get the latest of pool and touched timestamps */ 6913 if (pool->cpu >= 0) 6914 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu)); 6915 else 6916 touched = READ_ONCE(wq_watchdog_touched); 6917 pool_ts = READ_ONCE(pool->watchdog_ts); 6918 6919 if (time_after(pool_ts, touched)) 6920 ts = pool_ts; 6921 else 6922 ts = touched; 6923 6924 /* did we stall? */ 6925 if (time_after(now, ts + thresh)) { 6926 lockup_detected = true; 6927 if (pool->cpu >= 0) { 6928 pool->cpu_stall = true; 6929 cpu_pool_stall = true; 6930 } 6931 pr_emerg("BUG: workqueue lockup - pool"); 6932 pr_cont_pool_info(pool); 6933 pr_cont(" stuck for %us!\n", 6934 jiffies_to_msecs(now - pool_ts) / 1000); 6935 } 6936 6937 6938 } 6939 6940 rcu_read_unlock(); 6941 6942 if (lockup_detected) 6943 show_all_workqueues(); 6944 6945 if (cpu_pool_stall) 6946 show_cpu_pools_hogs(); 6947 6948 wq_watchdog_reset_touched(); 6949 mod_timer(&wq_watchdog_timer, jiffies + thresh); 6950 } 6951 6952 notrace void wq_watchdog_touch(int cpu) 6953 { 6954 if (cpu >= 0) 6955 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 6956 6957 wq_watchdog_touched = jiffies; 6958 } 6959 6960 static void wq_watchdog_set_thresh(unsigned long thresh) 6961 { 6962 wq_watchdog_thresh = 0; 6963 del_timer_sync(&wq_watchdog_timer); 6964 6965 if (thresh) { 6966 wq_watchdog_thresh = thresh; 6967 wq_watchdog_reset_touched(); 6968 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 6969 } 6970 } 6971 6972 static int wq_watchdog_param_set_thresh(const char *val, 6973 const struct kernel_param *kp) 6974 { 6975 unsigned long thresh; 6976 int ret; 6977 6978 ret = kstrtoul(val, 0, &thresh); 6979 if (ret) 6980 return ret; 6981 6982 if (system_wq) 6983 wq_watchdog_set_thresh(thresh); 6984 else 6985 wq_watchdog_thresh = thresh; 6986 6987 return 0; 6988 } 6989 6990 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 6991 .set = wq_watchdog_param_set_thresh, 6992 .get = param_get_ulong, 6993 }; 6994 6995 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 6996 0644); 6997 6998 static void wq_watchdog_init(void) 6999 { 7000 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 7001 wq_watchdog_set_thresh(wq_watchdog_thresh); 7002 } 7003 7004 #else /* CONFIG_WQ_WATCHDOG */ 7005 7006 static inline void wq_watchdog_init(void) { } 7007 7008 #endif /* CONFIG_WQ_WATCHDOG */ 7009 7010 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask) 7011 { 7012 if (!cpumask_intersects(wq_unbound_cpumask, mask)) { 7013 pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n", 7014 cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask)); 7015 return; 7016 } 7017 7018 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask); 7019 } 7020 7021 /** 7022 * workqueue_init_early - early init for workqueue subsystem 7023 * 7024 * This is the first step of three-staged workqueue subsystem initialization and 7025 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are 7026 * up. It sets up all the data structures and system workqueues and allows early 7027 * boot code to create workqueues and queue/cancel work items. Actual work item 7028 * execution starts only after kthreads can be created and scheduled right 7029 * before early initcalls. 7030 */ 7031 void __init workqueue_init_early(void) 7032 { 7033 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 7034 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 7035 int i, cpu; 7036 7037 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 7038 7039 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 7040 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask); 7041 restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ)); 7042 restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN)); 7043 if (!cpumask_empty(&wq_cmdline_cpumask)) 7044 restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask); 7045 7046 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 7047 7048 wq_update_pod_attrs_buf = alloc_workqueue_attrs(); 7049 BUG_ON(!wq_update_pod_attrs_buf); 7050 7051 /* initialize WQ_AFFN_SYSTEM pods */ 7052 pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 7053 pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL); 7054 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 7055 BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod); 7056 7057 BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE)); 7058 7059 pt->nr_pods = 1; 7060 cpumask_copy(pt->pod_cpus[0], cpu_possible_mask); 7061 pt->pod_node[0] = NUMA_NO_NODE; 7062 pt->cpu_pod[0] = 0; 7063 7064 /* initialize CPU pools */ 7065 for_each_possible_cpu(cpu) { 7066 struct worker_pool *pool; 7067 7068 i = 0; 7069 for_each_cpu_worker_pool(pool, cpu) { 7070 BUG_ON(init_worker_pool(pool)); 7071 pool->cpu = cpu; 7072 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 7073 cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu)); 7074 pool->attrs->nice = std_nice[i++]; 7075 pool->attrs->affn_strict = true; 7076 pool->node = cpu_to_node(cpu); 7077 7078 /* alloc pool ID */ 7079 mutex_lock(&wq_pool_mutex); 7080 BUG_ON(worker_pool_assign_id(pool)); 7081 mutex_unlock(&wq_pool_mutex); 7082 } 7083 } 7084 7085 /* create default unbound and ordered wq attrs */ 7086 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 7087 struct workqueue_attrs *attrs; 7088 7089 BUG_ON(!(attrs = alloc_workqueue_attrs())); 7090 attrs->nice = std_nice[i]; 7091 unbound_std_wq_attrs[i] = attrs; 7092 7093 /* 7094 * An ordered wq should have only one pwq as ordering is 7095 * guaranteed by max_active which is enforced by pwqs. 7096 */ 7097 BUG_ON(!(attrs = alloc_workqueue_attrs())); 7098 attrs->nice = std_nice[i]; 7099 attrs->ordered = true; 7100 ordered_wq_attrs[i] = attrs; 7101 } 7102 7103 system_wq = alloc_workqueue("events", 0, 0); 7104 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 7105 system_long_wq = alloc_workqueue("events_long", 0, 0); 7106 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 7107 WQ_MAX_ACTIVE); 7108 system_freezable_wq = alloc_workqueue("events_freezable", 7109 WQ_FREEZABLE, 0); 7110 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 7111 WQ_POWER_EFFICIENT, 0); 7112 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 7113 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 7114 0); 7115 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 7116 !system_unbound_wq || !system_freezable_wq || 7117 !system_power_efficient_wq || 7118 !system_freezable_power_efficient_wq); 7119 } 7120 7121 static void __init wq_cpu_intensive_thresh_init(void) 7122 { 7123 unsigned long thresh; 7124 unsigned long bogo; 7125 7126 pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release"); 7127 BUG_ON(IS_ERR(pwq_release_worker)); 7128 7129 /* if the user set it to a specific value, keep it */ 7130 if (wq_cpu_intensive_thresh_us != ULONG_MAX) 7131 return; 7132 7133 /* 7134 * The default of 10ms is derived from the fact that most modern (as of 7135 * 2023) processors can do a lot in 10ms and that it's just below what 7136 * most consider human-perceivable. However, the kernel also runs on a 7137 * lot slower CPUs including microcontrollers where the threshold is way 7138 * too low. 7139 * 7140 * Let's scale up the threshold upto 1 second if BogoMips is below 4000. 7141 * This is by no means accurate but it doesn't have to be. The mechanism 7142 * is still useful even when the threshold is fully scaled up. Also, as 7143 * the reports would usually be applicable to everyone, some machines 7144 * operating on longer thresholds won't significantly diminish their 7145 * usefulness. 7146 */ 7147 thresh = 10 * USEC_PER_MSEC; 7148 7149 /* see init/calibrate.c for lpj -> BogoMIPS calculation */ 7150 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1); 7151 if (bogo < 4000) 7152 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC); 7153 7154 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n", 7155 loops_per_jiffy, bogo, thresh); 7156 7157 wq_cpu_intensive_thresh_us = thresh; 7158 } 7159 7160 /** 7161 * workqueue_init - bring workqueue subsystem fully online 7162 * 7163 * This is the second step of three-staged workqueue subsystem initialization 7164 * and invoked as soon as kthreads can be created and scheduled. Workqueues have 7165 * been created and work items queued on them, but there are no kworkers 7166 * executing the work items yet. Populate the worker pools with the initial 7167 * workers and enable future kworker creations. 7168 */ 7169 void __init workqueue_init(void) 7170 { 7171 struct workqueue_struct *wq; 7172 struct worker_pool *pool; 7173 int cpu, bkt; 7174 7175 wq_cpu_intensive_thresh_init(); 7176 7177 mutex_lock(&wq_pool_mutex); 7178 7179 /* 7180 * Per-cpu pools created earlier could be missing node hint. Fix them 7181 * up. Also, create a rescuer for workqueues that requested it. 7182 */ 7183 for_each_possible_cpu(cpu) { 7184 for_each_cpu_worker_pool(pool, cpu) { 7185 pool->node = cpu_to_node(cpu); 7186 } 7187 } 7188 7189 list_for_each_entry(wq, &workqueues, list) { 7190 WARN(init_rescuer(wq), 7191 "workqueue: failed to create early rescuer for %s", 7192 wq->name); 7193 } 7194 7195 mutex_unlock(&wq_pool_mutex); 7196 7197 /* create the initial workers */ 7198 for_each_online_cpu(cpu) { 7199 for_each_cpu_worker_pool(pool, cpu) { 7200 pool->flags &= ~POOL_DISASSOCIATED; 7201 BUG_ON(!create_worker(pool)); 7202 } 7203 } 7204 7205 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 7206 BUG_ON(!create_worker(pool)); 7207 7208 wq_online = true; 7209 wq_watchdog_init(); 7210 } 7211 7212 /* 7213 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to 7214 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique 7215 * and consecutive pod ID. The rest of @pt is initialized accordingly. 7216 */ 7217 static void __init init_pod_type(struct wq_pod_type *pt, 7218 bool (*cpus_share_pod)(int, int)) 7219 { 7220 int cur, pre, cpu, pod; 7221 7222 pt->nr_pods = 0; 7223 7224 /* init @pt->cpu_pod[] according to @cpus_share_pod() */ 7225 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 7226 BUG_ON(!pt->cpu_pod); 7227 7228 for_each_possible_cpu(cur) { 7229 for_each_possible_cpu(pre) { 7230 if (pre >= cur) { 7231 pt->cpu_pod[cur] = pt->nr_pods++; 7232 break; 7233 } 7234 if (cpus_share_pod(cur, pre)) { 7235 pt->cpu_pod[cur] = pt->cpu_pod[pre]; 7236 break; 7237 } 7238 } 7239 } 7240 7241 /* init the rest to match @pt->cpu_pod[] */ 7242 pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 7243 pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL); 7244 BUG_ON(!pt->pod_cpus || !pt->pod_node); 7245 7246 for (pod = 0; pod < pt->nr_pods; pod++) 7247 BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL)); 7248 7249 for_each_possible_cpu(cpu) { 7250 cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]); 7251 pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu); 7252 } 7253 } 7254 7255 static bool __init cpus_dont_share(int cpu0, int cpu1) 7256 { 7257 return false; 7258 } 7259 7260 static bool __init cpus_share_smt(int cpu0, int cpu1) 7261 { 7262 #ifdef CONFIG_SCHED_SMT 7263 return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1)); 7264 #else 7265 return false; 7266 #endif 7267 } 7268 7269 static bool __init cpus_share_numa(int cpu0, int cpu1) 7270 { 7271 return cpu_to_node(cpu0) == cpu_to_node(cpu1); 7272 } 7273 7274 /** 7275 * workqueue_init_topology - initialize CPU pods for unbound workqueues 7276 * 7277 * This is the third step of there-staged workqueue subsystem initialization and 7278 * invoked after SMP and topology information are fully initialized. It 7279 * initializes the unbound CPU pods accordingly. 7280 */ 7281 void __init workqueue_init_topology(void) 7282 { 7283 struct workqueue_struct *wq; 7284 int cpu; 7285 7286 init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share); 7287 init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt); 7288 init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache); 7289 init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa); 7290 7291 mutex_lock(&wq_pool_mutex); 7292 7293 /* 7294 * Workqueues allocated earlier would have all CPUs sharing the default 7295 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU 7296 * combinations to apply per-pod sharing. 7297 */ 7298 list_for_each_entry(wq, &workqueues, list) { 7299 for_each_online_cpu(cpu) 7300 wq_update_pod(wq, cpu, cpu, true); 7301 if (wq->flags & WQ_UNBOUND) { 7302 mutex_lock(&wq->mutex); 7303 wq_update_node_max_active(wq, -1); 7304 mutex_unlock(&wq->mutex); 7305 } 7306 } 7307 7308 mutex_unlock(&wq_pool_mutex); 7309 } 7310 7311 void __warn_flushing_systemwide_wq(void) 7312 { 7313 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n"); 7314 dump_stack(); 7315 } 7316 EXPORT_SYMBOL(__warn_flushing_systemwide_wq); 7317 7318 static int __init workqueue_unbound_cpus_setup(char *str) 7319 { 7320 if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) { 7321 cpumask_clear(&wq_cmdline_cpumask); 7322 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n"); 7323 } 7324 7325 return 1; 7326 } 7327 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup); 7328