1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There is one worker pool for each CPU and 20 * one extra for works which are better served by workers which are 21 * not bound to any specific CPU. 22 * 23 * Please read Documentation/workqueue.txt for details. 24 */ 25 26 #include <linux/export.h> 27 #include <linux/kernel.h> 28 #include <linux/sched.h> 29 #include <linux/init.h> 30 #include <linux/signal.h> 31 #include <linux/completion.h> 32 #include <linux/workqueue.h> 33 #include <linux/slab.h> 34 #include <linux/cpu.h> 35 #include <linux/notifier.h> 36 #include <linux/kthread.h> 37 #include <linux/hardirq.h> 38 #include <linux/mempolicy.h> 39 #include <linux/freezer.h> 40 #include <linux/kallsyms.h> 41 #include <linux/debug_locks.h> 42 #include <linux/lockdep.h> 43 #include <linux/idr.h> 44 #include <linux/jhash.h> 45 #include <linux/hashtable.h> 46 #include <linux/rculist.h> 47 #include <linux/nodemask.h> 48 #include <linux/moduleparam.h> 49 #include <linux/uaccess.h> 50 51 #include "workqueue_internal.h" 52 53 enum { 54 /* 55 * worker_pool flags 56 * 57 * A bound pool is either associated or disassociated with its CPU. 58 * While associated (!DISASSOCIATED), all workers are bound to the 59 * CPU and none has %WORKER_UNBOUND set and concurrency management 60 * is in effect. 61 * 62 * While DISASSOCIATED, the cpu may be offline and all workers have 63 * %WORKER_UNBOUND set and concurrency management disabled, and may 64 * be executing on any CPU. The pool behaves as an unbound one. 65 * 66 * Note that DISASSOCIATED should be flipped only while holding 67 * manager_mutex to avoid changing binding state while 68 * create_worker() is in progress. 69 */ 70 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */ 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 72 POOL_FREEZING = 1 << 3, /* freeze in progress */ 73 74 /* worker flags */ 75 WORKER_STARTED = 1 << 0, /* started */ 76 WORKER_DIE = 1 << 1, /* die die die */ 77 WORKER_IDLE = 1 << 2, /* is idle */ 78 WORKER_PREP = 1 << 3, /* preparing to run works */ 79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 81 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 82 83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 84 WORKER_UNBOUND | WORKER_REBOUND, 85 86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 87 88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 90 91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 93 94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 95 /* call for help after 10ms 96 (min two ticks) */ 97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 98 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 99 100 /* 101 * Rescue workers are used only on emergencies and shared by 102 * all cpus. Give -20. 103 */ 104 RESCUER_NICE_LEVEL = -20, 105 HIGHPRI_NICE_LEVEL = -20, 106 107 WQ_NAME_LEN = 24, 108 }; 109 110 /* 111 * Structure fields follow one of the following exclusion rules. 112 * 113 * I: Modifiable by initialization/destruction paths and read-only for 114 * everyone else. 115 * 116 * P: Preemption protected. Disabling preemption is enough and should 117 * only be modified and accessed from the local cpu. 118 * 119 * L: pool->lock protected. Access with pool->lock held. 120 * 121 * X: During normal operation, modification requires pool->lock and should 122 * be done only from local cpu. Either disabling preemption on local 123 * cpu or grabbing pool->lock is enough for read access. If 124 * POOL_DISASSOCIATED is set, it's identical to L. 125 * 126 * MG: pool->manager_mutex and pool->lock protected. Writes require both 127 * locks. Reads can happen under either lock. 128 * 129 * PL: wq_pool_mutex protected. 130 * 131 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads. 132 * 133 * WQ: wq->mutex protected. 134 * 135 * WR: wq->mutex protected for writes. Sched-RCU protected for reads. 136 * 137 * MD: wq_mayday_lock protected. 138 */ 139 140 /* struct worker is defined in workqueue_internal.h */ 141 142 struct worker_pool { 143 spinlock_t lock; /* the pool lock */ 144 int cpu; /* I: the associated cpu */ 145 int node; /* I: the associated node ID */ 146 int id; /* I: pool ID */ 147 unsigned int flags; /* X: flags */ 148 149 struct list_head worklist; /* L: list of pending works */ 150 int nr_workers; /* L: total number of workers */ 151 152 /* nr_idle includes the ones off idle_list for rebinding */ 153 int nr_idle; /* L: currently idle ones */ 154 155 struct list_head idle_list; /* X: list of idle workers */ 156 struct timer_list idle_timer; /* L: worker idle timeout */ 157 struct timer_list mayday_timer; /* L: SOS timer for workers */ 158 159 /* a workers is either on busy_hash or idle_list, or the manager */ 160 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 161 /* L: hash of busy workers */ 162 163 /* see manage_workers() for details on the two manager mutexes */ 164 struct mutex manager_arb; /* manager arbitration */ 165 struct mutex manager_mutex; /* manager exclusion */ 166 struct idr worker_idr; /* MG: worker IDs and iteration */ 167 168 struct workqueue_attrs *attrs; /* I: worker attributes */ 169 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 170 int refcnt; /* PL: refcnt for unbound pools */ 171 172 /* 173 * The current concurrency level. As it's likely to be accessed 174 * from other CPUs during try_to_wake_up(), put it in a separate 175 * cacheline. 176 */ 177 atomic_t nr_running ____cacheline_aligned_in_smp; 178 179 /* 180 * Destruction of pool is sched-RCU protected to allow dereferences 181 * from get_work_pool(). 182 */ 183 struct rcu_head rcu; 184 } ____cacheline_aligned_in_smp; 185 186 /* 187 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 188 * of work_struct->data are used for flags and the remaining high bits 189 * point to the pwq; thus, pwqs need to be aligned at two's power of the 190 * number of flag bits. 191 */ 192 struct pool_workqueue { 193 struct worker_pool *pool; /* I: the associated pool */ 194 struct workqueue_struct *wq; /* I: the owning workqueue */ 195 int work_color; /* L: current color */ 196 int flush_color; /* L: flushing color */ 197 int refcnt; /* L: reference count */ 198 int nr_in_flight[WORK_NR_COLORS]; 199 /* L: nr of in_flight works */ 200 int nr_active; /* L: nr of active works */ 201 int max_active; /* L: max active works */ 202 struct list_head delayed_works; /* L: delayed works */ 203 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 204 struct list_head mayday_node; /* MD: node on wq->maydays */ 205 206 /* 207 * Release of unbound pwq is punted to system_wq. See put_pwq() 208 * and pwq_unbound_release_workfn() for details. pool_workqueue 209 * itself is also sched-RCU protected so that the first pwq can be 210 * determined without grabbing wq->mutex. 211 */ 212 struct work_struct unbound_release_work; 213 struct rcu_head rcu; 214 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 215 216 /* 217 * Structure used to wait for workqueue flush. 218 */ 219 struct wq_flusher { 220 struct list_head list; /* WQ: list of flushers */ 221 int flush_color; /* WQ: flush color waiting for */ 222 struct completion done; /* flush completion */ 223 }; 224 225 struct wq_device; 226 227 /* 228 * The externally visible workqueue. It relays the issued work items to 229 * the appropriate worker_pool through its pool_workqueues. 230 */ 231 struct workqueue_struct { 232 struct list_head pwqs; /* WR: all pwqs of this wq */ 233 struct list_head list; /* PL: list of all workqueues */ 234 235 struct mutex mutex; /* protects this wq */ 236 int work_color; /* WQ: current work color */ 237 int flush_color; /* WQ: current flush color */ 238 atomic_t nr_pwqs_to_flush; /* flush in progress */ 239 struct wq_flusher *first_flusher; /* WQ: first flusher */ 240 struct list_head flusher_queue; /* WQ: flush waiters */ 241 struct list_head flusher_overflow; /* WQ: flush overflow list */ 242 243 struct list_head maydays; /* MD: pwqs requesting rescue */ 244 struct worker *rescuer; /* I: rescue worker */ 245 246 int nr_drainers; /* WQ: drain in progress */ 247 int saved_max_active; /* WQ: saved pwq max_active */ 248 249 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */ 250 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */ 251 252 #ifdef CONFIG_SYSFS 253 struct wq_device *wq_dev; /* I: for sysfs interface */ 254 #endif 255 #ifdef CONFIG_LOCKDEP 256 struct lockdep_map lockdep_map; 257 #endif 258 char name[WQ_NAME_LEN]; /* I: workqueue name */ 259 260 /* hot fields used during command issue, aligned to cacheline */ 261 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 262 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 263 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */ 264 }; 265 266 static struct kmem_cache *pwq_cache; 267 268 static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */ 269 static cpumask_var_t *wq_numa_possible_cpumask; 270 /* possible CPUs of each node */ 271 272 static bool wq_disable_numa; 273 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 274 275 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 276 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT 277 static bool wq_power_efficient = true; 278 #else 279 static bool wq_power_efficient; 280 #endif 281 282 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 283 284 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 285 286 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 287 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 288 289 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 290 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 291 292 static LIST_HEAD(workqueues); /* PL: list of all workqueues */ 293 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 294 295 /* the per-cpu worker pools */ 296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 297 cpu_worker_pools); 298 299 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 300 301 /* PL: hash of all unbound pools keyed by pool->attrs */ 302 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 303 304 /* I: attributes used when instantiating standard unbound pools on demand */ 305 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 306 307 struct workqueue_struct *system_wq __read_mostly; 308 EXPORT_SYMBOL(system_wq); 309 struct workqueue_struct *system_highpri_wq __read_mostly; 310 EXPORT_SYMBOL_GPL(system_highpri_wq); 311 struct workqueue_struct *system_long_wq __read_mostly; 312 EXPORT_SYMBOL_GPL(system_long_wq); 313 struct workqueue_struct *system_unbound_wq __read_mostly; 314 EXPORT_SYMBOL_GPL(system_unbound_wq); 315 struct workqueue_struct *system_freezable_wq __read_mostly; 316 EXPORT_SYMBOL_GPL(system_freezable_wq); 317 struct workqueue_struct *system_power_efficient_wq __read_mostly; 318 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 319 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 320 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 321 322 static int worker_thread(void *__worker); 323 static void copy_workqueue_attrs(struct workqueue_attrs *to, 324 const struct workqueue_attrs *from); 325 326 #define CREATE_TRACE_POINTS 327 #include <trace/events/workqueue.h> 328 329 #define assert_rcu_or_pool_mutex() \ 330 rcu_lockdep_assert(rcu_read_lock_sched_held() || \ 331 lockdep_is_held(&wq_pool_mutex), \ 332 "sched RCU or wq_pool_mutex should be held") 333 334 #define assert_rcu_or_wq_mutex(wq) \ 335 rcu_lockdep_assert(rcu_read_lock_sched_held() || \ 336 lockdep_is_held(&wq->mutex), \ 337 "sched RCU or wq->mutex should be held") 338 339 #ifdef CONFIG_LOCKDEP 340 #define assert_manager_or_pool_lock(pool) \ 341 WARN_ONCE(debug_locks && \ 342 !lockdep_is_held(&(pool)->manager_mutex) && \ 343 !lockdep_is_held(&(pool)->lock), \ 344 "pool->manager_mutex or ->lock should be held") 345 #else 346 #define assert_manager_or_pool_lock(pool) do { } while (0) 347 #endif 348 349 #define for_each_cpu_worker_pool(pool, cpu) \ 350 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 351 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 352 (pool)++) 353 354 /** 355 * for_each_pool - iterate through all worker_pools in the system 356 * @pool: iteration cursor 357 * @pi: integer used for iteration 358 * 359 * This must be called either with wq_pool_mutex held or sched RCU read 360 * locked. If the pool needs to be used beyond the locking in effect, the 361 * caller is responsible for guaranteeing that the pool stays online. 362 * 363 * The if/else clause exists only for the lockdep assertion and can be 364 * ignored. 365 */ 366 #define for_each_pool(pool, pi) \ 367 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 368 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 369 else 370 371 /** 372 * for_each_pool_worker - iterate through all workers of a worker_pool 373 * @worker: iteration cursor 374 * @wi: integer used for iteration 375 * @pool: worker_pool to iterate workers of 376 * 377 * This must be called with either @pool->manager_mutex or ->lock held. 378 * 379 * The if/else clause exists only for the lockdep assertion and can be 380 * ignored. 381 */ 382 #define for_each_pool_worker(worker, wi, pool) \ 383 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \ 384 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \ 385 else 386 387 /** 388 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 389 * @pwq: iteration cursor 390 * @wq: the target workqueue 391 * 392 * This must be called either with wq->mutex held or sched RCU read locked. 393 * If the pwq needs to be used beyond the locking in effect, the caller is 394 * responsible for guaranteeing that the pwq stays online. 395 * 396 * The if/else clause exists only for the lockdep assertion and can be 397 * ignored. 398 */ 399 #define for_each_pwq(pwq, wq) \ 400 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \ 401 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ 402 else 403 404 #ifdef CONFIG_DEBUG_OBJECTS_WORK 405 406 static struct debug_obj_descr work_debug_descr; 407 408 static void *work_debug_hint(void *addr) 409 { 410 return ((struct work_struct *) addr)->func; 411 } 412 413 /* 414 * fixup_init is called when: 415 * - an active object is initialized 416 */ 417 static int work_fixup_init(void *addr, enum debug_obj_state state) 418 { 419 struct work_struct *work = addr; 420 421 switch (state) { 422 case ODEBUG_STATE_ACTIVE: 423 cancel_work_sync(work); 424 debug_object_init(work, &work_debug_descr); 425 return 1; 426 default: 427 return 0; 428 } 429 } 430 431 /* 432 * fixup_activate is called when: 433 * - an active object is activated 434 * - an unknown object is activated (might be a statically initialized object) 435 */ 436 static int work_fixup_activate(void *addr, enum debug_obj_state state) 437 { 438 struct work_struct *work = addr; 439 440 switch (state) { 441 442 case ODEBUG_STATE_NOTAVAILABLE: 443 /* 444 * This is not really a fixup. The work struct was 445 * statically initialized. We just make sure that it 446 * is tracked in the object tracker. 447 */ 448 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) { 449 debug_object_init(work, &work_debug_descr); 450 debug_object_activate(work, &work_debug_descr); 451 return 0; 452 } 453 WARN_ON_ONCE(1); 454 return 0; 455 456 case ODEBUG_STATE_ACTIVE: 457 WARN_ON(1); 458 459 default: 460 return 0; 461 } 462 } 463 464 /* 465 * fixup_free is called when: 466 * - an active object is freed 467 */ 468 static int work_fixup_free(void *addr, enum debug_obj_state state) 469 { 470 struct work_struct *work = addr; 471 472 switch (state) { 473 case ODEBUG_STATE_ACTIVE: 474 cancel_work_sync(work); 475 debug_object_free(work, &work_debug_descr); 476 return 1; 477 default: 478 return 0; 479 } 480 } 481 482 static struct debug_obj_descr work_debug_descr = { 483 .name = "work_struct", 484 .debug_hint = work_debug_hint, 485 .fixup_init = work_fixup_init, 486 .fixup_activate = work_fixup_activate, 487 .fixup_free = work_fixup_free, 488 }; 489 490 static inline void debug_work_activate(struct work_struct *work) 491 { 492 debug_object_activate(work, &work_debug_descr); 493 } 494 495 static inline void debug_work_deactivate(struct work_struct *work) 496 { 497 debug_object_deactivate(work, &work_debug_descr); 498 } 499 500 void __init_work(struct work_struct *work, int onstack) 501 { 502 if (onstack) 503 debug_object_init_on_stack(work, &work_debug_descr); 504 else 505 debug_object_init(work, &work_debug_descr); 506 } 507 EXPORT_SYMBOL_GPL(__init_work); 508 509 void destroy_work_on_stack(struct work_struct *work) 510 { 511 debug_object_free(work, &work_debug_descr); 512 } 513 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 514 515 #else 516 static inline void debug_work_activate(struct work_struct *work) { } 517 static inline void debug_work_deactivate(struct work_struct *work) { } 518 #endif 519 520 /* allocate ID and assign it to @pool */ 521 static int worker_pool_assign_id(struct worker_pool *pool) 522 { 523 int ret; 524 525 lockdep_assert_held(&wq_pool_mutex); 526 527 ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL); 528 if (ret >= 0) { 529 pool->id = ret; 530 return 0; 531 } 532 return ret; 533 } 534 535 /** 536 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 537 * @wq: the target workqueue 538 * @node: the node ID 539 * 540 * This must be called either with pwq_lock held or sched RCU read locked. 541 * If the pwq needs to be used beyond the locking in effect, the caller is 542 * responsible for guaranteeing that the pwq stays online. 543 */ 544 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 545 int node) 546 { 547 assert_rcu_or_wq_mutex(wq); 548 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 549 } 550 551 static unsigned int work_color_to_flags(int color) 552 { 553 return color << WORK_STRUCT_COLOR_SHIFT; 554 } 555 556 static int get_work_color(struct work_struct *work) 557 { 558 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 559 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 560 } 561 562 static int work_next_color(int color) 563 { 564 return (color + 1) % WORK_NR_COLORS; 565 } 566 567 /* 568 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 569 * contain the pointer to the queued pwq. Once execution starts, the flag 570 * is cleared and the high bits contain OFFQ flags and pool ID. 571 * 572 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 573 * and clear_work_data() can be used to set the pwq, pool or clear 574 * work->data. These functions should only be called while the work is 575 * owned - ie. while the PENDING bit is set. 576 * 577 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 578 * corresponding to a work. Pool is available once the work has been 579 * queued anywhere after initialization until it is sync canceled. pwq is 580 * available only while the work item is queued. 581 * 582 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 583 * canceled. While being canceled, a work item may have its PENDING set 584 * but stay off timer and worklist for arbitrarily long and nobody should 585 * try to steal the PENDING bit. 586 */ 587 static inline void set_work_data(struct work_struct *work, unsigned long data, 588 unsigned long flags) 589 { 590 WARN_ON_ONCE(!work_pending(work)); 591 atomic_long_set(&work->data, data | flags | work_static(work)); 592 } 593 594 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 595 unsigned long extra_flags) 596 { 597 set_work_data(work, (unsigned long)pwq, 598 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 599 } 600 601 static void set_work_pool_and_keep_pending(struct work_struct *work, 602 int pool_id) 603 { 604 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 605 WORK_STRUCT_PENDING); 606 } 607 608 static void set_work_pool_and_clear_pending(struct work_struct *work, 609 int pool_id) 610 { 611 /* 612 * The following wmb is paired with the implied mb in 613 * test_and_set_bit(PENDING) and ensures all updates to @work made 614 * here are visible to and precede any updates by the next PENDING 615 * owner. 616 */ 617 smp_wmb(); 618 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 619 } 620 621 static void clear_work_data(struct work_struct *work) 622 { 623 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 624 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 625 } 626 627 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 628 { 629 unsigned long data = atomic_long_read(&work->data); 630 631 if (data & WORK_STRUCT_PWQ) 632 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 633 else 634 return NULL; 635 } 636 637 /** 638 * get_work_pool - return the worker_pool a given work was associated with 639 * @work: the work item of interest 640 * 641 * Return the worker_pool @work was last associated with. %NULL if none. 642 * 643 * Pools are created and destroyed under wq_pool_mutex, and allows read 644 * access under sched-RCU read lock. As such, this function should be 645 * called under wq_pool_mutex or with preemption disabled. 646 * 647 * All fields of the returned pool are accessible as long as the above 648 * mentioned locking is in effect. If the returned pool needs to be used 649 * beyond the critical section, the caller is responsible for ensuring the 650 * returned pool is and stays online. 651 */ 652 static struct worker_pool *get_work_pool(struct work_struct *work) 653 { 654 unsigned long data = atomic_long_read(&work->data); 655 int pool_id; 656 657 assert_rcu_or_pool_mutex(); 658 659 if (data & WORK_STRUCT_PWQ) 660 return ((struct pool_workqueue *) 661 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 662 663 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 664 if (pool_id == WORK_OFFQ_POOL_NONE) 665 return NULL; 666 667 return idr_find(&worker_pool_idr, pool_id); 668 } 669 670 /** 671 * get_work_pool_id - return the worker pool ID a given work is associated with 672 * @work: the work item of interest 673 * 674 * Return the worker_pool ID @work was last associated with. 675 * %WORK_OFFQ_POOL_NONE if none. 676 */ 677 static int get_work_pool_id(struct work_struct *work) 678 { 679 unsigned long data = atomic_long_read(&work->data); 680 681 if (data & WORK_STRUCT_PWQ) 682 return ((struct pool_workqueue *) 683 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 684 685 return data >> WORK_OFFQ_POOL_SHIFT; 686 } 687 688 static void mark_work_canceling(struct work_struct *work) 689 { 690 unsigned long pool_id = get_work_pool_id(work); 691 692 pool_id <<= WORK_OFFQ_POOL_SHIFT; 693 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 694 } 695 696 static bool work_is_canceling(struct work_struct *work) 697 { 698 unsigned long data = atomic_long_read(&work->data); 699 700 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 701 } 702 703 /* 704 * Policy functions. These define the policies on how the global worker 705 * pools are managed. Unless noted otherwise, these functions assume that 706 * they're being called with pool->lock held. 707 */ 708 709 static bool __need_more_worker(struct worker_pool *pool) 710 { 711 return !atomic_read(&pool->nr_running); 712 } 713 714 /* 715 * Need to wake up a worker? Called from anything but currently 716 * running workers. 717 * 718 * Note that, because unbound workers never contribute to nr_running, this 719 * function will always return %true for unbound pools as long as the 720 * worklist isn't empty. 721 */ 722 static bool need_more_worker(struct worker_pool *pool) 723 { 724 return !list_empty(&pool->worklist) && __need_more_worker(pool); 725 } 726 727 /* Can I start working? Called from busy but !running workers. */ 728 static bool may_start_working(struct worker_pool *pool) 729 { 730 return pool->nr_idle; 731 } 732 733 /* Do I need to keep working? Called from currently running workers. */ 734 static bool keep_working(struct worker_pool *pool) 735 { 736 return !list_empty(&pool->worklist) && 737 atomic_read(&pool->nr_running) <= 1; 738 } 739 740 /* Do we need a new worker? Called from manager. */ 741 static bool need_to_create_worker(struct worker_pool *pool) 742 { 743 return need_more_worker(pool) && !may_start_working(pool); 744 } 745 746 /* Do I need to be the manager? */ 747 static bool need_to_manage_workers(struct worker_pool *pool) 748 { 749 return need_to_create_worker(pool) || 750 (pool->flags & POOL_MANAGE_WORKERS); 751 } 752 753 /* Do we have too many workers and should some go away? */ 754 static bool too_many_workers(struct worker_pool *pool) 755 { 756 bool managing = mutex_is_locked(&pool->manager_arb); 757 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 758 int nr_busy = pool->nr_workers - nr_idle; 759 760 /* 761 * nr_idle and idle_list may disagree if idle rebinding is in 762 * progress. Never return %true if idle_list is empty. 763 */ 764 if (list_empty(&pool->idle_list)) 765 return false; 766 767 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 768 } 769 770 /* 771 * Wake up functions. 772 */ 773 774 /* Return the first worker. Safe with preemption disabled */ 775 static struct worker *first_worker(struct worker_pool *pool) 776 { 777 if (unlikely(list_empty(&pool->idle_list))) 778 return NULL; 779 780 return list_first_entry(&pool->idle_list, struct worker, entry); 781 } 782 783 /** 784 * wake_up_worker - wake up an idle worker 785 * @pool: worker pool to wake worker from 786 * 787 * Wake up the first idle worker of @pool. 788 * 789 * CONTEXT: 790 * spin_lock_irq(pool->lock). 791 */ 792 static void wake_up_worker(struct worker_pool *pool) 793 { 794 struct worker *worker = first_worker(pool); 795 796 if (likely(worker)) 797 wake_up_process(worker->task); 798 } 799 800 /** 801 * wq_worker_waking_up - a worker is waking up 802 * @task: task waking up 803 * @cpu: CPU @task is waking up to 804 * 805 * This function is called during try_to_wake_up() when a worker is 806 * being awoken. 807 * 808 * CONTEXT: 809 * spin_lock_irq(rq->lock) 810 */ 811 void wq_worker_waking_up(struct task_struct *task, int cpu) 812 { 813 struct worker *worker = kthread_data(task); 814 815 if (!(worker->flags & WORKER_NOT_RUNNING)) { 816 WARN_ON_ONCE(worker->pool->cpu != cpu); 817 atomic_inc(&worker->pool->nr_running); 818 } 819 } 820 821 /** 822 * wq_worker_sleeping - a worker is going to sleep 823 * @task: task going to sleep 824 * @cpu: CPU in question, must be the current CPU number 825 * 826 * This function is called during schedule() when a busy worker is 827 * going to sleep. Worker on the same cpu can be woken up by 828 * returning pointer to its task. 829 * 830 * CONTEXT: 831 * spin_lock_irq(rq->lock) 832 * 833 * RETURNS: 834 * Worker task on @cpu to wake up, %NULL if none. 835 */ 836 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu) 837 { 838 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 839 struct worker_pool *pool; 840 841 /* 842 * Rescuers, which may not have all the fields set up like normal 843 * workers, also reach here, let's not access anything before 844 * checking NOT_RUNNING. 845 */ 846 if (worker->flags & WORKER_NOT_RUNNING) 847 return NULL; 848 849 pool = worker->pool; 850 851 /* this can only happen on the local cpu */ 852 if (WARN_ON_ONCE(cpu != raw_smp_processor_id())) 853 return NULL; 854 855 /* 856 * The counterpart of the following dec_and_test, implied mb, 857 * worklist not empty test sequence is in insert_work(). 858 * Please read comment there. 859 * 860 * NOT_RUNNING is clear. This means that we're bound to and 861 * running on the local cpu w/ rq lock held and preemption 862 * disabled, which in turn means that none else could be 863 * manipulating idle_list, so dereferencing idle_list without pool 864 * lock is safe. 865 */ 866 if (atomic_dec_and_test(&pool->nr_running) && 867 !list_empty(&pool->worklist)) 868 to_wakeup = first_worker(pool); 869 return to_wakeup ? to_wakeup->task : NULL; 870 } 871 872 /** 873 * worker_set_flags - set worker flags and adjust nr_running accordingly 874 * @worker: self 875 * @flags: flags to set 876 * @wakeup: wakeup an idle worker if necessary 877 * 878 * Set @flags in @worker->flags and adjust nr_running accordingly. If 879 * nr_running becomes zero and @wakeup is %true, an idle worker is 880 * woken up. 881 * 882 * CONTEXT: 883 * spin_lock_irq(pool->lock) 884 */ 885 static inline void worker_set_flags(struct worker *worker, unsigned int flags, 886 bool wakeup) 887 { 888 struct worker_pool *pool = worker->pool; 889 890 WARN_ON_ONCE(worker->task != current); 891 892 /* 893 * If transitioning into NOT_RUNNING, adjust nr_running and 894 * wake up an idle worker as necessary if requested by 895 * @wakeup. 896 */ 897 if ((flags & WORKER_NOT_RUNNING) && 898 !(worker->flags & WORKER_NOT_RUNNING)) { 899 if (wakeup) { 900 if (atomic_dec_and_test(&pool->nr_running) && 901 !list_empty(&pool->worklist)) 902 wake_up_worker(pool); 903 } else 904 atomic_dec(&pool->nr_running); 905 } 906 907 worker->flags |= flags; 908 } 909 910 /** 911 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 912 * @worker: self 913 * @flags: flags to clear 914 * 915 * Clear @flags in @worker->flags and adjust nr_running accordingly. 916 * 917 * CONTEXT: 918 * spin_lock_irq(pool->lock) 919 */ 920 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 921 { 922 struct worker_pool *pool = worker->pool; 923 unsigned int oflags = worker->flags; 924 925 WARN_ON_ONCE(worker->task != current); 926 927 worker->flags &= ~flags; 928 929 /* 930 * If transitioning out of NOT_RUNNING, increment nr_running. Note 931 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 932 * of multiple flags, not a single flag. 933 */ 934 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 935 if (!(worker->flags & WORKER_NOT_RUNNING)) 936 atomic_inc(&pool->nr_running); 937 } 938 939 /** 940 * find_worker_executing_work - find worker which is executing a work 941 * @pool: pool of interest 942 * @work: work to find worker for 943 * 944 * Find a worker which is executing @work on @pool by searching 945 * @pool->busy_hash which is keyed by the address of @work. For a worker 946 * to match, its current execution should match the address of @work and 947 * its work function. This is to avoid unwanted dependency between 948 * unrelated work executions through a work item being recycled while still 949 * being executed. 950 * 951 * This is a bit tricky. A work item may be freed once its execution 952 * starts and nothing prevents the freed area from being recycled for 953 * another work item. If the same work item address ends up being reused 954 * before the original execution finishes, workqueue will identify the 955 * recycled work item as currently executing and make it wait until the 956 * current execution finishes, introducing an unwanted dependency. 957 * 958 * This function checks the work item address and work function to avoid 959 * false positives. Note that this isn't complete as one may construct a 960 * work function which can introduce dependency onto itself through a 961 * recycled work item. Well, if somebody wants to shoot oneself in the 962 * foot that badly, there's only so much we can do, and if such deadlock 963 * actually occurs, it should be easy to locate the culprit work function. 964 * 965 * CONTEXT: 966 * spin_lock_irq(pool->lock). 967 * 968 * RETURNS: 969 * Pointer to worker which is executing @work if found, NULL 970 * otherwise. 971 */ 972 static struct worker *find_worker_executing_work(struct worker_pool *pool, 973 struct work_struct *work) 974 { 975 struct worker *worker; 976 977 hash_for_each_possible(pool->busy_hash, worker, hentry, 978 (unsigned long)work) 979 if (worker->current_work == work && 980 worker->current_func == work->func) 981 return worker; 982 983 return NULL; 984 } 985 986 /** 987 * move_linked_works - move linked works to a list 988 * @work: start of series of works to be scheduled 989 * @head: target list to append @work to 990 * @nextp: out paramter for nested worklist walking 991 * 992 * Schedule linked works starting from @work to @head. Work series to 993 * be scheduled starts at @work and includes any consecutive work with 994 * WORK_STRUCT_LINKED set in its predecessor. 995 * 996 * If @nextp is not NULL, it's updated to point to the next work of 997 * the last scheduled work. This allows move_linked_works() to be 998 * nested inside outer list_for_each_entry_safe(). 999 * 1000 * CONTEXT: 1001 * spin_lock_irq(pool->lock). 1002 */ 1003 static void move_linked_works(struct work_struct *work, struct list_head *head, 1004 struct work_struct **nextp) 1005 { 1006 struct work_struct *n; 1007 1008 /* 1009 * Linked worklist will always end before the end of the list, 1010 * use NULL for list head. 1011 */ 1012 list_for_each_entry_safe_from(work, n, NULL, entry) { 1013 list_move_tail(&work->entry, head); 1014 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1015 break; 1016 } 1017 1018 /* 1019 * If we're already inside safe list traversal and have moved 1020 * multiple works to the scheduled queue, the next position 1021 * needs to be updated. 1022 */ 1023 if (nextp) 1024 *nextp = n; 1025 } 1026 1027 /** 1028 * get_pwq - get an extra reference on the specified pool_workqueue 1029 * @pwq: pool_workqueue to get 1030 * 1031 * Obtain an extra reference on @pwq. The caller should guarantee that 1032 * @pwq has positive refcnt and be holding the matching pool->lock. 1033 */ 1034 static void get_pwq(struct pool_workqueue *pwq) 1035 { 1036 lockdep_assert_held(&pwq->pool->lock); 1037 WARN_ON_ONCE(pwq->refcnt <= 0); 1038 pwq->refcnt++; 1039 } 1040 1041 /** 1042 * put_pwq - put a pool_workqueue reference 1043 * @pwq: pool_workqueue to put 1044 * 1045 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1046 * destruction. The caller should be holding the matching pool->lock. 1047 */ 1048 static void put_pwq(struct pool_workqueue *pwq) 1049 { 1050 lockdep_assert_held(&pwq->pool->lock); 1051 if (likely(--pwq->refcnt)) 1052 return; 1053 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1054 return; 1055 /* 1056 * @pwq can't be released under pool->lock, bounce to 1057 * pwq_unbound_release_workfn(). This never recurses on the same 1058 * pool->lock as this path is taken only for unbound workqueues and 1059 * the release work item is scheduled on a per-cpu workqueue. To 1060 * avoid lockdep warning, unbound pool->locks are given lockdep 1061 * subclass of 1 in get_unbound_pool(). 1062 */ 1063 schedule_work(&pwq->unbound_release_work); 1064 } 1065 1066 /** 1067 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1068 * @pwq: pool_workqueue to put (can be %NULL) 1069 * 1070 * put_pwq() with locking. This function also allows %NULL @pwq. 1071 */ 1072 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1073 { 1074 if (pwq) { 1075 /* 1076 * As both pwqs and pools are sched-RCU protected, the 1077 * following lock operations are safe. 1078 */ 1079 spin_lock_irq(&pwq->pool->lock); 1080 put_pwq(pwq); 1081 spin_unlock_irq(&pwq->pool->lock); 1082 } 1083 } 1084 1085 static void pwq_activate_delayed_work(struct work_struct *work) 1086 { 1087 struct pool_workqueue *pwq = get_work_pwq(work); 1088 1089 trace_workqueue_activate_work(work); 1090 move_linked_works(work, &pwq->pool->worklist, NULL); 1091 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1092 pwq->nr_active++; 1093 } 1094 1095 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1096 { 1097 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1098 struct work_struct, entry); 1099 1100 pwq_activate_delayed_work(work); 1101 } 1102 1103 /** 1104 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1105 * @pwq: pwq of interest 1106 * @color: color of work which left the queue 1107 * 1108 * A work either has completed or is removed from pending queue, 1109 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1110 * 1111 * CONTEXT: 1112 * spin_lock_irq(pool->lock). 1113 */ 1114 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1115 { 1116 /* uncolored work items don't participate in flushing or nr_active */ 1117 if (color == WORK_NO_COLOR) 1118 goto out_put; 1119 1120 pwq->nr_in_flight[color]--; 1121 1122 pwq->nr_active--; 1123 if (!list_empty(&pwq->delayed_works)) { 1124 /* one down, submit a delayed one */ 1125 if (pwq->nr_active < pwq->max_active) 1126 pwq_activate_first_delayed(pwq); 1127 } 1128 1129 /* is flush in progress and are we at the flushing tip? */ 1130 if (likely(pwq->flush_color != color)) 1131 goto out_put; 1132 1133 /* are there still in-flight works? */ 1134 if (pwq->nr_in_flight[color]) 1135 goto out_put; 1136 1137 /* this pwq is done, clear flush_color */ 1138 pwq->flush_color = -1; 1139 1140 /* 1141 * If this was the last pwq, wake up the first flusher. It 1142 * will handle the rest. 1143 */ 1144 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1145 complete(&pwq->wq->first_flusher->done); 1146 out_put: 1147 put_pwq(pwq); 1148 } 1149 1150 /** 1151 * try_to_grab_pending - steal work item from worklist and disable irq 1152 * @work: work item to steal 1153 * @is_dwork: @work is a delayed_work 1154 * @flags: place to store irq state 1155 * 1156 * Try to grab PENDING bit of @work. This function can handle @work in any 1157 * stable state - idle, on timer or on worklist. Return values are 1158 * 1159 * 1 if @work was pending and we successfully stole PENDING 1160 * 0 if @work was idle and we claimed PENDING 1161 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1162 * -ENOENT if someone else is canceling @work, this state may persist 1163 * for arbitrarily long 1164 * 1165 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1166 * interrupted while holding PENDING and @work off queue, irq must be 1167 * disabled on entry. This, combined with delayed_work->timer being 1168 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1169 * 1170 * On successful return, >= 0, irq is disabled and the caller is 1171 * responsible for releasing it using local_irq_restore(*@flags). 1172 * 1173 * This function is safe to call from any context including IRQ handler. 1174 */ 1175 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1176 unsigned long *flags) 1177 { 1178 struct worker_pool *pool; 1179 struct pool_workqueue *pwq; 1180 1181 local_irq_save(*flags); 1182 1183 /* try to steal the timer if it exists */ 1184 if (is_dwork) { 1185 struct delayed_work *dwork = to_delayed_work(work); 1186 1187 /* 1188 * dwork->timer is irqsafe. If del_timer() fails, it's 1189 * guaranteed that the timer is not queued anywhere and not 1190 * running on the local CPU. 1191 */ 1192 if (likely(del_timer(&dwork->timer))) 1193 return 1; 1194 } 1195 1196 /* try to claim PENDING the normal way */ 1197 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1198 return 0; 1199 1200 /* 1201 * The queueing is in progress, or it is already queued. Try to 1202 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1203 */ 1204 pool = get_work_pool(work); 1205 if (!pool) 1206 goto fail; 1207 1208 spin_lock(&pool->lock); 1209 /* 1210 * work->data is guaranteed to point to pwq only while the work 1211 * item is queued on pwq->wq, and both updating work->data to point 1212 * to pwq on queueing and to pool on dequeueing are done under 1213 * pwq->pool->lock. This in turn guarantees that, if work->data 1214 * points to pwq which is associated with a locked pool, the work 1215 * item is currently queued on that pool. 1216 */ 1217 pwq = get_work_pwq(work); 1218 if (pwq && pwq->pool == pool) { 1219 debug_work_deactivate(work); 1220 1221 /* 1222 * A delayed work item cannot be grabbed directly because 1223 * it might have linked NO_COLOR work items which, if left 1224 * on the delayed_list, will confuse pwq->nr_active 1225 * management later on and cause stall. Make sure the work 1226 * item is activated before grabbing. 1227 */ 1228 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1229 pwq_activate_delayed_work(work); 1230 1231 list_del_init(&work->entry); 1232 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work)); 1233 1234 /* work->data points to pwq iff queued, point to pool */ 1235 set_work_pool_and_keep_pending(work, pool->id); 1236 1237 spin_unlock(&pool->lock); 1238 return 1; 1239 } 1240 spin_unlock(&pool->lock); 1241 fail: 1242 local_irq_restore(*flags); 1243 if (work_is_canceling(work)) 1244 return -ENOENT; 1245 cpu_relax(); 1246 return -EAGAIN; 1247 } 1248 1249 /** 1250 * insert_work - insert a work into a pool 1251 * @pwq: pwq @work belongs to 1252 * @work: work to insert 1253 * @head: insertion point 1254 * @extra_flags: extra WORK_STRUCT_* flags to set 1255 * 1256 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1257 * work_struct flags. 1258 * 1259 * CONTEXT: 1260 * spin_lock_irq(pool->lock). 1261 */ 1262 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1263 struct list_head *head, unsigned int extra_flags) 1264 { 1265 struct worker_pool *pool = pwq->pool; 1266 1267 /* we own @work, set data and link */ 1268 set_work_pwq(work, pwq, extra_flags); 1269 list_add_tail(&work->entry, head); 1270 get_pwq(pwq); 1271 1272 /* 1273 * Ensure either wq_worker_sleeping() sees the above 1274 * list_add_tail() or we see zero nr_running to avoid workers lying 1275 * around lazily while there are works to be processed. 1276 */ 1277 smp_mb(); 1278 1279 if (__need_more_worker(pool)) 1280 wake_up_worker(pool); 1281 } 1282 1283 /* 1284 * Test whether @work is being queued from another work executing on the 1285 * same workqueue. 1286 */ 1287 static bool is_chained_work(struct workqueue_struct *wq) 1288 { 1289 struct worker *worker; 1290 1291 worker = current_wq_worker(); 1292 /* 1293 * Return %true iff I'm a worker execuing a work item on @wq. If 1294 * I'm @worker, it's safe to dereference it without locking. 1295 */ 1296 return worker && worker->current_pwq->wq == wq; 1297 } 1298 1299 static void __queue_work(int cpu, struct workqueue_struct *wq, 1300 struct work_struct *work) 1301 { 1302 struct pool_workqueue *pwq; 1303 struct worker_pool *last_pool; 1304 struct list_head *worklist; 1305 unsigned int work_flags; 1306 unsigned int req_cpu = cpu; 1307 1308 /* 1309 * While a work item is PENDING && off queue, a task trying to 1310 * steal the PENDING will busy-loop waiting for it to either get 1311 * queued or lose PENDING. Grabbing PENDING and queueing should 1312 * happen with IRQ disabled. 1313 */ 1314 WARN_ON_ONCE(!irqs_disabled()); 1315 1316 debug_work_activate(work); 1317 1318 /* if dying, only works from the same workqueue are allowed */ 1319 if (unlikely(wq->flags & __WQ_DRAINING) && 1320 WARN_ON_ONCE(!is_chained_work(wq))) 1321 return; 1322 retry: 1323 if (req_cpu == WORK_CPU_UNBOUND) 1324 cpu = raw_smp_processor_id(); 1325 1326 /* pwq which will be used unless @work is executing elsewhere */ 1327 if (!(wq->flags & WQ_UNBOUND)) 1328 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1329 else 1330 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1331 1332 /* 1333 * If @work was previously on a different pool, it might still be 1334 * running there, in which case the work needs to be queued on that 1335 * pool to guarantee non-reentrancy. 1336 */ 1337 last_pool = get_work_pool(work); 1338 if (last_pool && last_pool != pwq->pool) { 1339 struct worker *worker; 1340 1341 spin_lock(&last_pool->lock); 1342 1343 worker = find_worker_executing_work(last_pool, work); 1344 1345 if (worker && worker->current_pwq->wq == wq) { 1346 pwq = worker->current_pwq; 1347 } else { 1348 /* meh... not running there, queue here */ 1349 spin_unlock(&last_pool->lock); 1350 spin_lock(&pwq->pool->lock); 1351 } 1352 } else { 1353 spin_lock(&pwq->pool->lock); 1354 } 1355 1356 /* 1357 * pwq is determined and locked. For unbound pools, we could have 1358 * raced with pwq release and it could already be dead. If its 1359 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1360 * without another pwq replacing it in the numa_pwq_tbl or while 1361 * work items are executing on it, so the retrying is guaranteed to 1362 * make forward-progress. 1363 */ 1364 if (unlikely(!pwq->refcnt)) { 1365 if (wq->flags & WQ_UNBOUND) { 1366 spin_unlock(&pwq->pool->lock); 1367 cpu_relax(); 1368 goto retry; 1369 } 1370 /* oops */ 1371 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1372 wq->name, cpu); 1373 } 1374 1375 /* pwq determined, queue */ 1376 trace_workqueue_queue_work(req_cpu, pwq, work); 1377 1378 if (WARN_ON(!list_empty(&work->entry))) { 1379 spin_unlock(&pwq->pool->lock); 1380 return; 1381 } 1382 1383 pwq->nr_in_flight[pwq->work_color]++; 1384 work_flags = work_color_to_flags(pwq->work_color); 1385 1386 if (likely(pwq->nr_active < pwq->max_active)) { 1387 trace_workqueue_activate_work(work); 1388 pwq->nr_active++; 1389 worklist = &pwq->pool->worklist; 1390 } else { 1391 work_flags |= WORK_STRUCT_DELAYED; 1392 worklist = &pwq->delayed_works; 1393 } 1394 1395 insert_work(pwq, work, worklist, work_flags); 1396 1397 spin_unlock(&pwq->pool->lock); 1398 } 1399 1400 /** 1401 * queue_work_on - queue work on specific cpu 1402 * @cpu: CPU number to execute work on 1403 * @wq: workqueue to use 1404 * @work: work to queue 1405 * 1406 * Returns %false if @work was already on a queue, %true otherwise. 1407 * 1408 * We queue the work to a specific CPU, the caller must ensure it 1409 * can't go away. 1410 */ 1411 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1412 struct work_struct *work) 1413 { 1414 bool ret = false; 1415 unsigned long flags; 1416 1417 local_irq_save(flags); 1418 1419 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1420 __queue_work(cpu, wq, work); 1421 ret = true; 1422 } 1423 1424 local_irq_restore(flags); 1425 return ret; 1426 } 1427 EXPORT_SYMBOL(queue_work_on); 1428 1429 void delayed_work_timer_fn(unsigned long __data) 1430 { 1431 struct delayed_work *dwork = (struct delayed_work *)__data; 1432 1433 /* should have been called from irqsafe timer with irq already off */ 1434 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1435 } 1436 EXPORT_SYMBOL(delayed_work_timer_fn); 1437 1438 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1439 struct delayed_work *dwork, unsigned long delay) 1440 { 1441 struct timer_list *timer = &dwork->timer; 1442 struct work_struct *work = &dwork->work; 1443 1444 WARN_ON_ONCE(timer->function != delayed_work_timer_fn || 1445 timer->data != (unsigned long)dwork); 1446 WARN_ON_ONCE(timer_pending(timer)); 1447 WARN_ON_ONCE(!list_empty(&work->entry)); 1448 1449 /* 1450 * If @delay is 0, queue @dwork->work immediately. This is for 1451 * both optimization and correctness. The earliest @timer can 1452 * expire is on the closest next tick and delayed_work users depend 1453 * on that there's no such delay when @delay is 0. 1454 */ 1455 if (!delay) { 1456 __queue_work(cpu, wq, &dwork->work); 1457 return; 1458 } 1459 1460 timer_stats_timer_set_start_info(&dwork->timer); 1461 1462 dwork->wq = wq; 1463 dwork->cpu = cpu; 1464 timer->expires = jiffies + delay; 1465 1466 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1467 add_timer_on(timer, cpu); 1468 else 1469 add_timer(timer); 1470 } 1471 1472 /** 1473 * queue_delayed_work_on - queue work on specific CPU after delay 1474 * @cpu: CPU number to execute work on 1475 * @wq: workqueue to use 1476 * @dwork: work to queue 1477 * @delay: number of jiffies to wait before queueing 1478 * 1479 * Returns %false if @work was already on a queue, %true otherwise. If 1480 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1481 * execution. 1482 */ 1483 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1484 struct delayed_work *dwork, unsigned long delay) 1485 { 1486 struct work_struct *work = &dwork->work; 1487 bool ret = false; 1488 unsigned long flags; 1489 1490 /* read the comment in __queue_work() */ 1491 local_irq_save(flags); 1492 1493 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1494 __queue_delayed_work(cpu, wq, dwork, delay); 1495 ret = true; 1496 } 1497 1498 local_irq_restore(flags); 1499 return ret; 1500 } 1501 EXPORT_SYMBOL(queue_delayed_work_on); 1502 1503 /** 1504 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1505 * @cpu: CPU number to execute work on 1506 * @wq: workqueue to use 1507 * @dwork: work to queue 1508 * @delay: number of jiffies to wait before queueing 1509 * 1510 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1511 * modify @dwork's timer so that it expires after @delay. If @delay is 1512 * zero, @work is guaranteed to be scheduled immediately regardless of its 1513 * current state. 1514 * 1515 * Returns %false if @dwork was idle and queued, %true if @dwork was 1516 * pending and its timer was modified. 1517 * 1518 * This function is safe to call from any context including IRQ handler. 1519 * See try_to_grab_pending() for details. 1520 */ 1521 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1522 struct delayed_work *dwork, unsigned long delay) 1523 { 1524 unsigned long flags; 1525 int ret; 1526 1527 do { 1528 ret = try_to_grab_pending(&dwork->work, true, &flags); 1529 } while (unlikely(ret == -EAGAIN)); 1530 1531 if (likely(ret >= 0)) { 1532 __queue_delayed_work(cpu, wq, dwork, delay); 1533 local_irq_restore(flags); 1534 } 1535 1536 /* -ENOENT from try_to_grab_pending() becomes %true */ 1537 return ret; 1538 } 1539 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1540 1541 /** 1542 * worker_enter_idle - enter idle state 1543 * @worker: worker which is entering idle state 1544 * 1545 * @worker is entering idle state. Update stats and idle timer if 1546 * necessary. 1547 * 1548 * LOCKING: 1549 * spin_lock_irq(pool->lock). 1550 */ 1551 static void worker_enter_idle(struct worker *worker) 1552 { 1553 struct worker_pool *pool = worker->pool; 1554 1555 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1556 WARN_ON_ONCE(!list_empty(&worker->entry) && 1557 (worker->hentry.next || worker->hentry.pprev))) 1558 return; 1559 1560 /* can't use worker_set_flags(), also called from start_worker() */ 1561 worker->flags |= WORKER_IDLE; 1562 pool->nr_idle++; 1563 worker->last_active = jiffies; 1564 1565 /* idle_list is LIFO */ 1566 list_add(&worker->entry, &pool->idle_list); 1567 1568 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1569 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1570 1571 /* 1572 * Sanity check nr_running. Because wq_unbind_fn() releases 1573 * pool->lock between setting %WORKER_UNBOUND and zapping 1574 * nr_running, the warning may trigger spuriously. Check iff 1575 * unbind is not in progress. 1576 */ 1577 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1578 pool->nr_workers == pool->nr_idle && 1579 atomic_read(&pool->nr_running)); 1580 } 1581 1582 /** 1583 * worker_leave_idle - leave idle state 1584 * @worker: worker which is leaving idle state 1585 * 1586 * @worker is leaving idle state. Update stats. 1587 * 1588 * LOCKING: 1589 * spin_lock_irq(pool->lock). 1590 */ 1591 static void worker_leave_idle(struct worker *worker) 1592 { 1593 struct worker_pool *pool = worker->pool; 1594 1595 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1596 return; 1597 worker_clr_flags(worker, WORKER_IDLE); 1598 pool->nr_idle--; 1599 list_del_init(&worker->entry); 1600 } 1601 1602 /** 1603 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it 1604 * @pool: target worker_pool 1605 * 1606 * Bind %current to the cpu of @pool if it is associated and lock @pool. 1607 * 1608 * Works which are scheduled while the cpu is online must at least be 1609 * scheduled to a worker which is bound to the cpu so that if they are 1610 * flushed from cpu callbacks while cpu is going down, they are 1611 * guaranteed to execute on the cpu. 1612 * 1613 * This function is to be used by unbound workers and rescuers to bind 1614 * themselves to the target cpu and may race with cpu going down or 1615 * coming online. kthread_bind() can't be used because it may put the 1616 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used 1617 * verbatim as it's best effort and blocking and pool may be 1618 * [dis]associated in the meantime. 1619 * 1620 * This function tries set_cpus_allowed() and locks pool and verifies the 1621 * binding against %POOL_DISASSOCIATED which is set during 1622 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker 1623 * enters idle state or fetches works without dropping lock, it can 1624 * guarantee the scheduling requirement described in the first paragraph. 1625 * 1626 * CONTEXT: 1627 * Might sleep. Called without any lock but returns with pool->lock 1628 * held. 1629 * 1630 * RETURNS: 1631 * %true if the associated pool is online (@worker is successfully 1632 * bound), %false if offline. 1633 */ 1634 static bool worker_maybe_bind_and_lock(struct worker_pool *pool) 1635 __acquires(&pool->lock) 1636 { 1637 while (true) { 1638 /* 1639 * The following call may fail, succeed or succeed 1640 * without actually migrating the task to the cpu if 1641 * it races with cpu hotunplug operation. Verify 1642 * against POOL_DISASSOCIATED. 1643 */ 1644 if (!(pool->flags & POOL_DISASSOCIATED)) 1645 set_cpus_allowed_ptr(current, pool->attrs->cpumask); 1646 1647 spin_lock_irq(&pool->lock); 1648 if (pool->flags & POOL_DISASSOCIATED) 1649 return false; 1650 if (task_cpu(current) == pool->cpu && 1651 cpumask_equal(¤t->cpus_allowed, pool->attrs->cpumask)) 1652 return true; 1653 spin_unlock_irq(&pool->lock); 1654 1655 /* 1656 * We've raced with CPU hot[un]plug. Give it a breather 1657 * and retry migration. cond_resched() is required here; 1658 * otherwise, we might deadlock against cpu_stop trying to 1659 * bring down the CPU on non-preemptive kernel. 1660 */ 1661 cpu_relax(); 1662 cond_resched(); 1663 } 1664 } 1665 1666 static struct worker *alloc_worker(void) 1667 { 1668 struct worker *worker; 1669 1670 worker = kzalloc(sizeof(*worker), GFP_KERNEL); 1671 if (worker) { 1672 INIT_LIST_HEAD(&worker->entry); 1673 INIT_LIST_HEAD(&worker->scheduled); 1674 /* on creation a worker is in !idle && prep state */ 1675 worker->flags = WORKER_PREP; 1676 } 1677 return worker; 1678 } 1679 1680 /** 1681 * create_worker - create a new workqueue worker 1682 * @pool: pool the new worker will belong to 1683 * 1684 * Create a new worker which is bound to @pool. The returned worker 1685 * can be started by calling start_worker() or destroyed using 1686 * destroy_worker(). 1687 * 1688 * CONTEXT: 1689 * Might sleep. Does GFP_KERNEL allocations. 1690 * 1691 * RETURNS: 1692 * Pointer to the newly created worker. 1693 */ 1694 static struct worker *create_worker(struct worker_pool *pool) 1695 { 1696 struct worker *worker = NULL; 1697 int id = -1; 1698 char id_buf[16]; 1699 1700 lockdep_assert_held(&pool->manager_mutex); 1701 1702 /* 1703 * ID is needed to determine kthread name. Allocate ID first 1704 * without installing the pointer. 1705 */ 1706 idr_preload(GFP_KERNEL); 1707 spin_lock_irq(&pool->lock); 1708 1709 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT); 1710 1711 spin_unlock_irq(&pool->lock); 1712 idr_preload_end(); 1713 if (id < 0) 1714 goto fail; 1715 1716 worker = alloc_worker(); 1717 if (!worker) 1718 goto fail; 1719 1720 worker->pool = pool; 1721 worker->id = id; 1722 1723 if (pool->cpu >= 0) 1724 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1725 pool->attrs->nice < 0 ? "H" : ""); 1726 else 1727 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1728 1729 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1730 "kworker/%s", id_buf); 1731 if (IS_ERR(worker->task)) 1732 goto fail; 1733 1734 /* 1735 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1736 * online CPUs. It'll be re-applied when any of the CPUs come up. 1737 */ 1738 set_user_nice(worker->task, pool->attrs->nice); 1739 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1740 1741 /* prevent userland from meddling with cpumask of workqueue workers */ 1742 worker->task->flags |= PF_NO_SETAFFINITY; 1743 1744 /* 1745 * The caller is responsible for ensuring %POOL_DISASSOCIATED 1746 * remains stable across this function. See the comments above the 1747 * flag definition for details. 1748 */ 1749 if (pool->flags & POOL_DISASSOCIATED) 1750 worker->flags |= WORKER_UNBOUND; 1751 1752 /* successful, commit the pointer to idr */ 1753 spin_lock_irq(&pool->lock); 1754 idr_replace(&pool->worker_idr, worker, worker->id); 1755 spin_unlock_irq(&pool->lock); 1756 1757 return worker; 1758 1759 fail: 1760 if (id >= 0) { 1761 spin_lock_irq(&pool->lock); 1762 idr_remove(&pool->worker_idr, id); 1763 spin_unlock_irq(&pool->lock); 1764 } 1765 kfree(worker); 1766 return NULL; 1767 } 1768 1769 /** 1770 * start_worker - start a newly created worker 1771 * @worker: worker to start 1772 * 1773 * Make the pool aware of @worker and start it. 1774 * 1775 * CONTEXT: 1776 * spin_lock_irq(pool->lock). 1777 */ 1778 static void start_worker(struct worker *worker) 1779 { 1780 worker->flags |= WORKER_STARTED; 1781 worker->pool->nr_workers++; 1782 worker_enter_idle(worker); 1783 wake_up_process(worker->task); 1784 } 1785 1786 /** 1787 * create_and_start_worker - create and start a worker for a pool 1788 * @pool: the target pool 1789 * 1790 * Grab the managership of @pool and create and start a new worker for it. 1791 */ 1792 static int create_and_start_worker(struct worker_pool *pool) 1793 { 1794 struct worker *worker; 1795 1796 mutex_lock(&pool->manager_mutex); 1797 1798 worker = create_worker(pool); 1799 if (worker) { 1800 spin_lock_irq(&pool->lock); 1801 start_worker(worker); 1802 spin_unlock_irq(&pool->lock); 1803 } 1804 1805 mutex_unlock(&pool->manager_mutex); 1806 1807 return worker ? 0 : -ENOMEM; 1808 } 1809 1810 /** 1811 * destroy_worker - destroy a workqueue worker 1812 * @worker: worker to be destroyed 1813 * 1814 * Destroy @worker and adjust @pool stats accordingly. 1815 * 1816 * CONTEXT: 1817 * spin_lock_irq(pool->lock) which is released and regrabbed. 1818 */ 1819 static void destroy_worker(struct worker *worker) 1820 { 1821 struct worker_pool *pool = worker->pool; 1822 1823 lockdep_assert_held(&pool->manager_mutex); 1824 lockdep_assert_held(&pool->lock); 1825 1826 /* sanity check frenzy */ 1827 if (WARN_ON(worker->current_work) || 1828 WARN_ON(!list_empty(&worker->scheduled))) 1829 return; 1830 1831 if (worker->flags & WORKER_STARTED) 1832 pool->nr_workers--; 1833 if (worker->flags & WORKER_IDLE) 1834 pool->nr_idle--; 1835 1836 list_del_init(&worker->entry); 1837 worker->flags |= WORKER_DIE; 1838 1839 idr_remove(&pool->worker_idr, worker->id); 1840 1841 spin_unlock_irq(&pool->lock); 1842 1843 kthread_stop(worker->task); 1844 kfree(worker); 1845 1846 spin_lock_irq(&pool->lock); 1847 } 1848 1849 static void idle_worker_timeout(unsigned long __pool) 1850 { 1851 struct worker_pool *pool = (void *)__pool; 1852 1853 spin_lock_irq(&pool->lock); 1854 1855 if (too_many_workers(pool)) { 1856 struct worker *worker; 1857 unsigned long expires; 1858 1859 /* idle_list is kept in LIFO order, check the last one */ 1860 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1861 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1862 1863 if (time_before(jiffies, expires)) 1864 mod_timer(&pool->idle_timer, expires); 1865 else { 1866 /* it's been idle for too long, wake up manager */ 1867 pool->flags |= POOL_MANAGE_WORKERS; 1868 wake_up_worker(pool); 1869 } 1870 } 1871 1872 spin_unlock_irq(&pool->lock); 1873 } 1874 1875 static void send_mayday(struct work_struct *work) 1876 { 1877 struct pool_workqueue *pwq = get_work_pwq(work); 1878 struct workqueue_struct *wq = pwq->wq; 1879 1880 lockdep_assert_held(&wq_mayday_lock); 1881 1882 if (!wq->rescuer) 1883 return; 1884 1885 /* mayday mayday mayday */ 1886 if (list_empty(&pwq->mayday_node)) { 1887 list_add_tail(&pwq->mayday_node, &wq->maydays); 1888 wake_up_process(wq->rescuer->task); 1889 } 1890 } 1891 1892 static void pool_mayday_timeout(unsigned long __pool) 1893 { 1894 struct worker_pool *pool = (void *)__pool; 1895 struct work_struct *work; 1896 1897 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */ 1898 spin_lock(&pool->lock); 1899 1900 if (need_to_create_worker(pool)) { 1901 /* 1902 * We've been trying to create a new worker but 1903 * haven't been successful. We might be hitting an 1904 * allocation deadlock. Send distress signals to 1905 * rescuers. 1906 */ 1907 list_for_each_entry(work, &pool->worklist, entry) 1908 send_mayday(work); 1909 } 1910 1911 spin_unlock(&pool->lock); 1912 spin_unlock_irq(&wq_mayday_lock); 1913 1914 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 1915 } 1916 1917 /** 1918 * maybe_create_worker - create a new worker if necessary 1919 * @pool: pool to create a new worker for 1920 * 1921 * Create a new worker for @pool if necessary. @pool is guaranteed to 1922 * have at least one idle worker on return from this function. If 1923 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1924 * sent to all rescuers with works scheduled on @pool to resolve 1925 * possible allocation deadlock. 1926 * 1927 * On return, need_to_create_worker() is guaranteed to be %false and 1928 * may_start_working() %true. 1929 * 1930 * LOCKING: 1931 * spin_lock_irq(pool->lock) which may be released and regrabbed 1932 * multiple times. Does GFP_KERNEL allocations. Called only from 1933 * manager. 1934 * 1935 * RETURNS: 1936 * %false if no action was taken and pool->lock stayed locked, %true 1937 * otherwise. 1938 */ 1939 static bool maybe_create_worker(struct worker_pool *pool) 1940 __releases(&pool->lock) 1941 __acquires(&pool->lock) 1942 { 1943 if (!need_to_create_worker(pool)) 1944 return false; 1945 restart: 1946 spin_unlock_irq(&pool->lock); 1947 1948 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1949 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1950 1951 while (true) { 1952 struct worker *worker; 1953 1954 worker = create_worker(pool); 1955 if (worker) { 1956 del_timer_sync(&pool->mayday_timer); 1957 spin_lock_irq(&pool->lock); 1958 start_worker(worker); 1959 if (WARN_ON_ONCE(need_to_create_worker(pool))) 1960 goto restart; 1961 return true; 1962 } 1963 1964 if (!need_to_create_worker(pool)) 1965 break; 1966 1967 __set_current_state(TASK_INTERRUPTIBLE); 1968 schedule_timeout(CREATE_COOLDOWN); 1969 1970 if (!need_to_create_worker(pool)) 1971 break; 1972 } 1973 1974 del_timer_sync(&pool->mayday_timer); 1975 spin_lock_irq(&pool->lock); 1976 if (need_to_create_worker(pool)) 1977 goto restart; 1978 return true; 1979 } 1980 1981 /** 1982 * maybe_destroy_worker - destroy workers which have been idle for a while 1983 * @pool: pool to destroy workers for 1984 * 1985 * Destroy @pool workers which have been idle for longer than 1986 * IDLE_WORKER_TIMEOUT. 1987 * 1988 * LOCKING: 1989 * spin_lock_irq(pool->lock) which may be released and regrabbed 1990 * multiple times. Called only from manager. 1991 * 1992 * RETURNS: 1993 * %false if no action was taken and pool->lock stayed locked, %true 1994 * otherwise. 1995 */ 1996 static bool maybe_destroy_workers(struct worker_pool *pool) 1997 { 1998 bool ret = false; 1999 2000 while (too_many_workers(pool)) { 2001 struct worker *worker; 2002 unsigned long expires; 2003 2004 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2005 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2006 2007 if (time_before(jiffies, expires)) { 2008 mod_timer(&pool->idle_timer, expires); 2009 break; 2010 } 2011 2012 destroy_worker(worker); 2013 ret = true; 2014 } 2015 2016 return ret; 2017 } 2018 2019 /** 2020 * manage_workers - manage worker pool 2021 * @worker: self 2022 * 2023 * Assume the manager role and manage the worker pool @worker belongs 2024 * to. At any given time, there can be only zero or one manager per 2025 * pool. The exclusion is handled automatically by this function. 2026 * 2027 * The caller can safely start processing works on false return. On 2028 * true return, it's guaranteed that need_to_create_worker() is false 2029 * and may_start_working() is true. 2030 * 2031 * CONTEXT: 2032 * spin_lock_irq(pool->lock) which may be released and regrabbed 2033 * multiple times. Does GFP_KERNEL allocations. 2034 * 2035 * RETURNS: 2036 * spin_lock_irq(pool->lock) which may be released and regrabbed 2037 * multiple times. Does GFP_KERNEL allocations. 2038 */ 2039 static bool manage_workers(struct worker *worker) 2040 { 2041 struct worker_pool *pool = worker->pool; 2042 bool ret = false; 2043 2044 /* 2045 * Managership is governed by two mutexes - manager_arb and 2046 * manager_mutex. manager_arb handles arbitration of manager role. 2047 * Anyone who successfully grabs manager_arb wins the arbitration 2048 * and becomes the manager. mutex_trylock() on pool->manager_arb 2049 * failure while holding pool->lock reliably indicates that someone 2050 * else is managing the pool and the worker which failed trylock 2051 * can proceed to executing work items. This means that anyone 2052 * grabbing manager_arb is responsible for actually performing 2053 * manager duties. If manager_arb is grabbed and released without 2054 * actual management, the pool may stall indefinitely. 2055 * 2056 * manager_mutex is used for exclusion of actual management 2057 * operations. The holder of manager_mutex can be sure that none 2058 * of management operations, including creation and destruction of 2059 * workers, won't take place until the mutex is released. Because 2060 * manager_mutex doesn't interfere with manager role arbitration, 2061 * it is guaranteed that the pool's management, while may be 2062 * delayed, won't be disturbed by someone else grabbing 2063 * manager_mutex. 2064 */ 2065 if (!mutex_trylock(&pool->manager_arb)) 2066 return ret; 2067 2068 /* 2069 * With manager arbitration won, manager_mutex would be free in 2070 * most cases. trylock first without dropping @pool->lock. 2071 */ 2072 if (unlikely(!mutex_trylock(&pool->manager_mutex))) { 2073 spin_unlock_irq(&pool->lock); 2074 mutex_lock(&pool->manager_mutex); 2075 spin_lock_irq(&pool->lock); 2076 ret = true; 2077 } 2078 2079 pool->flags &= ~POOL_MANAGE_WORKERS; 2080 2081 /* 2082 * Destroy and then create so that may_start_working() is true 2083 * on return. 2084 */ 2085 ret |= maybe_destroy_workers(pool); 2086 ret |= maybe_create_worker(pool); 2087 2088 mutex_unlock(&pool->manager_mutex); 2089 mutex_unlock(&pool->manager_arb); 2090 return ret; 2091 } 2092 2093 /** 2094 * process_one_work - process single work 2095 * @worker: self 2096 * @work: work to process 2097 * 2098 * Process @work. This function contains all the logics necessary to 2099 * process a single work including synchronization against and 2100 * interaction with other workers on the same cpu, queueing and 2101 * flushing. As long as context requirement is met, any worker can 2102 * call this function to process a work. 2103 * 2104 * CONTEXT: 2105 * spin_lock_irq(pool->lock) which is released and regrabbed. 2106 */ 2107 static void process_one_work(struct worker *worker, struct work_struct *work) 2108 __releases(&pool->lock) 2109 __acquires(&pool->lock) 2110 { 2111 struct pool_workqueue *pwq = get_work_pwq(work); 2112 struct worker_pool *pool = worker->pool; 2113 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2114 int work_color; 2115 struct worker *collision; 2116 #ifdef CONFIG_LOCKDEP 2117 /* 2118 * It is permissible to free the struct work_struct from 2119 * inside the function that is called from it, this we need to 2120 * take into account for lockdep too. To avoid bogus "held 2121 * lock freed" warnings as well as problems when looking into 2122 * work->lockdep_map, make a copy and use that here. 2123 */ 2124 struct lockdep_map lockdep_map; 2125 2126 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2127 #endif 2128 /* 2129 * Ensure we're on the correct CPU. DISASSOCIATED test is 2130 * necessary to avoid spurious warnings from rescuers servicing the 2131 * unbound or a disassociated pool. 2132 */ 2133 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) && 2134 !(pool->flags & POOL_DISASSOCIATED) && 2135 raw_smp_processor_id() != pool->cpu); 2136 2137 /* 2138 * A single work shouldn't be executed concurrently by 2139 * multiple workers on a single cpu. Check whether anyone is 2140 * already processing the work. If so, defer the work to the 2141 * currently executing one. 2142 */ 2143 collision = find_worker_executing_work(pool, work); 2144 if (unlikely(collision)) { 2145 move_linked_works(work, &collision->scheduled, NULL); 2146 return; 2147 } 2148 2149 /* claim and dequeue */ 2150 debug_work_deactivate(work); 2151 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2152 worker->current_work = work; 2153 worker->current_func = work->func; 2154 worker->current_pwq = pwq; 2155 work_color = get_work_color(work); 2156 2157 list_del_init(&work->entry); 2158 2159 /* 2160 * CPU intensive works don't participate in concurrency 2161 * management. They're the scheduler's responsibility. 2162 */ 2163 if (unlikely(cpu_intensive)) 2164 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true); 2165 2166 /* 2167 * Unbound pool isn't concurrency managed and work items should be 2168 * executed ASAP. Wake up another worker if necessary. 2169 */ 2170 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool)) 2171 wake_up_worker(pool); 2172 2173 /* 2174 * Record the last pool and clear PENDING which should be the last 2175 * update to @work. Also, do this inside @pool->lock so that 2176 * PENDING and queued state changes happen together while IRQ is 2177 * disabled. 2178 */ 2179 set_work_pool_and_clear_pending(work, pool->id); 2180 2181 spin_unlock_irq(&pool->lock); 2182 2183 lock_map_acquire_read(&pwq->wq->lockdep_map); 2184 lock_map_acquire(&lockdep_map); 2185 trace_workqueue_execute_start(work); 2186 worker->current_func(work); 2187 /* 2188 * While we must be careful to not use "work" after this, the trace 2189 * point will only record its address. 2190 */ 2191 trace_workqueue_execute_end(work); 2192 lock_map_release(&lockdep_map); 2193 lock_map_release(&pwq->wq->lockdep_map); 2194 2195 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2196 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2197 " last function: %pf\n", 2198 current->comm, preempt_count(), task_pid_nr(current), 2199 worker->current_func); 2200 debug_show_held_locks(current); 2201 dump_stack(); 2202 } 2203 2204 spin_lock_irq(&pool->lock); 2205 2206 /* clear cpu intensive status */ 2207 if (unlikely(cpu_intensive)) 2208 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2209 2210 /* we're done with it, release */ 2211 hash_del(&worker->hentry); 2212 worker->current_work = NULL; 2213 worker->current_func = NULL; 2214 worker->current_pwq = NULL; 2215 worker->desc_valid = false; 2216 pwq_dec_nr_in_flight(pwq, work_color); 2217 } 2218 2219 /** 2220 * process_scheduled_works - process scheduled works 2221 * @worker: self 2222 * 2223 * Process all scheduled works. Please note that the scheduled list 2224 * may change while processing a work, so this function repeatedly 2225 * fetches a work from the top and executes it. 2226 * 2227 * CONTEXT: 2228 * spin_lock_irq(pool->lock) which may be released and regrabbed 2229 * multiple times. 2230 */ 2231 static void process_scheduled_works(struct worker *worker) 2232 { 2233 while (!list_empty(&worker->scheduled)) { 2234 struct work_struct *work = list_first_entry(&worker->scheduled, 2235 struct work_struct, entry); 2236 process_one_work(worker, work); 2237 } 2238 } 2239 2240 /** 2241 * worker_thread - the worker thread function 2242 * @__worker: self 2243 * 2244 * The worker thread function. All workers belong to a worker_pool - 2245 * either a per-cpu one or dynamic unbound one. These workers process all 2246 * work items regardless of their specific target workqueue. The only 2247 * exception is work items which belong to workqueues with a rescuer which 2248 * will be explained in rescuer_thread(). 2249 */ 2250 static int worker_thread(void *__worker) 2251 { 2252 struct worker *worker = __worker; 2253 struct worker_pool *pool = worker->pool; 2254 2255 /* tell the scheduler that this is a workqueue worker */ 2256 worker->task->flags |= PF_WQ_WORKER; 2257 woke_up: 2258 spin_lock_irq(&pool->lock); 2259 2260 /* am I supposed to die? */ 2261 if (unlikely(worker->flags & WORKER_DIE)) { 2262 spin_unlock_irq(&pool->lock); 2263 WARN_ON_ONCE(!list_empty(&worker->entry)); 2264 worker->task->flags &= ~PF_WQ_WORKER; 2265 return 0; 2266 } 2267 2268 worker_leave_idle(worker); 2269 recheck: 2270 /* no more worker necessary? */ 2271 if (!need_more_worker(pool)) 2272 goto sleep; 2273 2274 /* do we need to manage? */ 2275 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2276 goto recheck; 2277 2278 /* 2279 * ->scheduled list can only be filled while a worker is 2280 * preparing to process a work or actually processing it. 2281 * Make sure nobody diddled with it while I was sleeping. 2282 */ 2283 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2284 2285 /* 2286 * Finish PREP stage. We're guaranteed to have at least one idle 2287 * worker or that someone else has already assumed the manager 2288 * role. This is where @worker starts participating in concurrency 2289 * management if applicable and concurrency management is restored 2290 * after being rebound. See rebind_workers() for details. 2291 */ 2292 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2293 2294 do { 2295 struct work_struct *work = 2296 list_first_entry(&pool->worklist, 2297 struct work_struct, entry); 2298 2299 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2300 /* optimization path, not strictly necessary */ 2301 process_one_work(worker, work); 2302 if (unlikely(!list_empty(&worker->scheduled))) 2303 process_scheduled_works(worker); 2304 } else { 2305 move_linked_works(work, &worker->scheduled, NULL); 2306 process_scheduled_works(worker); 2307 } 2308 } while (keep_working(pool)); 2309 2310 worker_set_flags(worker, WORKER_PREP, false); 2311 sleep: 2312 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker)) 2313 goto recheck; 2314 2315 /* 2316 * pool->lock is held and there's no work to process and no need to 2317 * manage, sleep. Workers are woken up only while holding 2318 * pool->lock or from local cpu, so setting the current state 2319 * before releasing pool->lock is enough to prevent losing any 2320 * event. 2321 */ 2322 worker_enter_idle(worker); 2323 __set_current_state(TASK_INTERRUPTIBLE); 2324 spin_unlock_irq(&pool->lock); 2325 schedule(); 2326 goto woke_up; 2327 } 2328 2329 /** 2330 * rescuer_thread - the rescuer thread function 2331 * @__rescuer: self 2332 * 2333 * Workqueue rescuer thread function. There's one rescuer for each 2334 * workqueue which has WQ_MEM_RECLAIM set. 2335 * 2336 * Regular work processing on a pool may block trying to create a new 2337 * worker which uses GFP_KERNEL allocation which has slight chance of 2338 * developing into deadlock if some works currently on the same queue 2339 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2340 * the problem rescuer solves. 2341 * 2342 * When such condition is possible, the pool summons rescuers of all 2343 * workqueues which have works queued on the pool and let them process 2344 * those works so that forward progress can be guaranteed. 2345 * 2346 * This should happen rarely. 2347 */ 2348 static int rescuer_thread(void *__rescuer) 2349 { 2350 struct worker *rescuer = __rescuer; 2351 struct workqueue_struct *wq = rescuer->rescue_wq; 2352 struct list_head *scheduled = &rescuer->scheduled; 2353 2354 set_user_nice(current, RESCUER_NICE_LEVEL); 2355 2356 /* 2357 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2358 * doesn't participate in concurrency management. 2359 */ 2360 rescuer->task->flags |= PF_WQ_WORKER; 2361 repeat: 2362 set_current_state(TASK_INTERRUPTIBLE); 2363 2364 if (kthread_should_stop()) { 2365 __set_current_state(TASK_RUNNING); 2366 rescuer->task->flags &= ~PF_WQ_WORKER; 2367 return 0; 2368 } 2369 2370 /* see whether any pwq is asking for help */ 2371 spin_lock_irq(&wq_mayday_lock); 2372 2373 while (!list_empty(&wq->maydays)) { 2374 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2375 struct pool_workqueue, mayday_node); 2376 struct worker_pool *pool = pwq->pool; 2377 struct work_struct *work, *n; 2378 2379 __set_current_state(TASK_RUNNING); 2380 list_del_init(&pwq->mayday_node); 2381 2382 spin_unlock_irq(&wq_mayday_lock); 2383 2384 /* migrate to the target cpu if possible */ 2385 worker_maybe_bind_and_lock(pool); 2386 rescuer->pool = pool; 2387 2388 /* 2389 * Slurp in all works issued via this workqueue and 2390 * process'em. 2391 */ 2392 WARN_ON_ONCE(!list_empty(&rescuer->scheduled)); 2393 list_for_each_entry_safe(work, n, &pool->worklist, entry) 2394 if (get_work_pwq(work) == pwq) 2395 move_linked_works(work, scheduled, &n); 2396 2397 process_scheduled_works(rescuer); 2398 2399 /* 2400 * Leave this pool. If keep_working() is %true, notify a 2401 * regular worker; otherwise, we end up with 0 concurrency 2402 * and stalling the execution. 2403 */ 2404 if (keep_working(pool)) 2405 wake_up_worker(pool); 2406 2407 rescuer->pool = NULL; 2408 spin_unlock(&pool->lock); 2409 spin_lock(&wq_mayday_lock); 2410 } 2411 2412 spin_unlock_irq(&wq_mayday_lock); 2413 2414 /* rescuers should never participate in concurrency management */ 2415 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2416 schedule(); 2417 goto repeat; 2418 } 2419 2420 struct wq_barrier { 2421 struct work_struct work; 2422 struct completion done; 2423 }; 2424 2425 static void wq_barrier_func(struct work_struct *work) 2426 { 2427 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2428 complete(&barr->done); 2429 } 2430 2431 /** 2432 * insert_wq_barrier - insert a barrier work 2433 * @pwq: pwq to insert barrier into 2434 * @barr: wq_barrier to insert 2435 * @target: target work to attach @barr to 2436 * @worker: worker currently executing @target, NULL if @target is not executing 2437 * 2438 * @barr is linked to @target such that @barr is completed only after 2439 * @target finishes execution. Please note that the ordering 2440 * guarantee is observed only with respect to @target and on the local 2441 * cpu. 2442 * 2443 * Currently, a queued barrier can't be canceled. This is because 2444 * try_to_grab_pending() can't determine whether the work to be 2445 * grabbed is at the head of the queue and thus can't clear LINKED 2446 * flag of the previous work while there must be a valid next work 2447 * after a work with LINKED flag set. 2448 * 2449 * Note that when @worker is non-NULL, @target may be modified 2450 * underneath us, so we can't reliably determine pwq from @target. 2451 * 2452 * CONTEXT: 2453 * spin_lock_irq(pool->lock). 2454 */ 2455 static void insert_wq_barrier(struct pool_workqueue *pwq, 2456 struct wq_barrier *barr, 2457 struct work_struct *target, struct worker *worker) 2458 { 2459 struct list_head *head; 2460 unsigned int linked = 0; 2461 2462 /* 2463 * debugobject calls are safe here even with pool->lock locked 2464 * as we know for sure that this will not trigger any of the 2465 * checks and call back into the fixup functions where we 2466 * might deadlock. 2467 */ 2468 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2469 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2470 init_completion(&barr->done); 2471 2472 /* 2473 * If @target is currently being executed, schedule the 2474 * barrier to the worker; otherwise, put it after @target. 2475 */ 2476 if (worker) 2477 head = worker->scheduled.next; 2478 else { 2479 unsigned long *bits = work_data_bits(target); 2480 2481 head = target->entry.next; 2482 /* there can already be other linked works, inherit and set */ 2483 linked = *bits & WORK_STRUCT_LINKED; 2484 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2485 } 2486 2487 debug_work_activate(&barr->work); 2488 insert_work(pwq, &barr->work, head, 2489 work_color_to_flags(WORK_NO_COLOR) | linked); 2490 } 2491 2492 /** 2493 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2494 * @wq: workqueue being flushed 2495 * @flush_color: new flush color, < 0 for no-op 2496 * @work_color: new work color, < 0 for no-op 2497 * 2498 * Prepare pwqs for workqueue flushing. 2499 * 2500 * If @flush_color is non-negative, flush_color on all pwqs should be 2501 * -1. If no pwq has in-flight commands at the specified color, all 2502 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2503 * has in flight commands, its pwq->flush_color is set to 2504 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2505 * wakeup logic is armed and %true is returned. 2506 * 2507 * The caller should have initialized @wq->first_flusher prior to 2508 * calling this function with non-negative @flush_color. If 2509 * @flush_color is negative, no flush color update is done and %false 2510 * is returned. 2511 * 2512 * If @work_color is non-negative, all pwqs should have the same 2513 * work_color which is previous to @work_color and all will be 2514 * advanced to @work_color. 2515 * 2516 * CONTEXT: 2517 * mutex_lock(wq->mutex). 2518 * 2519 * RETURNS: 2520 * %true if @flush_color >= 0 and there's something to flush. %false 2521 * otherwise. 2522 */ 2523 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2524 int flush_color, int work_color) 2525 { 2526 bool wait = false; 2527 struct pool_workqueue *pwq; 2528 2529 if (flush_color >= 0) { 2530 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2531 atomic_set(&wq->nr_pwqs_to_flush, 1); 2532 } 2533 2534 for_each_pwq(pwq, wq) { 2535 struct worker_pool *pool = pwq->pool; 2536 2537 spin_lock_irq(&pool->lock); 2538 2539 if (flush_color >= 0) { 2540 WARN_ON_ONCE(pwq->flush_color != -1); 2541 2542 if (pwq->nr_in_flight[flush_color]) { 2543 pwq->flush_color = flush_color; 2544 atomic_inc(&wq->nr_pwqs_to_flush); 2545 wait = true; 2546 } 2547 } 2548 2549 if (work_color >= 0) { 2550 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2551 pwq->work_color = work_color; 2552 } 2553 2554 spin_unlock_irq(&pool->lock); 2555 } 2556 2557 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2558 complete(&wq->first_flusher->done); 2559 2560 return wait; 2561 } 2562 2563 /** 2564 * flush_workqueue - ensure that any scheduled work has run to completion. 2565 * @wq: workqueue to flush 2566 * 2567 * This function sleeps until all work items which were queued on entry 2568 * have finished execution, but it is not livelocked by new incoming ones. 2569 */ 2570 void flush_workqueue(struct workqueue_struct *wq) 2571 { 2572 struct wq_flusher this_flusher = { 2573 .list = LIST_HEAD_INIT(this_flusher.list), 2574 .flush_color = -1, 2575 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2576 }; 2577 int next_color; 2578 2579 lock_map_acquire(&wq->lockdep_map); 2580 lock_map_release(&wq->lockdep_map); 2581 2582 mutex_lock(&wq->mutex); 2583 2584 /* 2585 * Start-to-wait phase 2586 */ 2587 next_color = work_next_color(wq->work_color); 2588 2589 if (next_color != wq->flush_color) { 2590 /* 2591 * Color space is not full. The current work_color 2592 * becomes our flush_color and work_color is advanced 2593 * by one. 2594 */ 2595 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2596 this_flusher.flush_color = wq->work_color; 2597 wq->work_color = next_color; 2598 2599 if (!wq->first_flusher) { 2600 /* no flush in progress, become the first flusher */ 2601 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2602 2603 wq->first_flusher = &this_flusher; 2604 2605 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2606 wq->work_color)) { 2607 /* nothing to flush, done */ 2608 wq->flush_color = next_color; 2609 wq->first_flusher = NULL; 2610 goto out_unlock; 2611 } 2612 } else { 2613 /* wait in queue */ 2614 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2615 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2616 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2617 } 2618 } else { 2619 /* 2620 * Oops, color space is full, wait on overflow queue. 2621 * The next flush completion will assign us 2622 * flush_color and transfer to flusher_queue. 2623 */ 2624 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2625 } 2626 2627 mutex_unlock(&wq->mutex); 2628 2629 wait_for_completion(&this_flusher.done); 2630 2631 /* 2632 * Wake-up-and-cascade phase 2633 * 2634 * First flushers are responsible for cascading flushes and 2635 * handling overflow. Non-first flushers can simply return. 2636 */ 2637 if (wq->first_flusher != &this_flusher) 2638 return; 2639 2640 mutex_lock(&wq->mutex); 2641 2642 /* we might have raced, check again with mutex held */ 2643 if (wq->first_flusher != &this_flusher) 2644 goto out_unlock; 2645 2646 wq->first_flusher = NULL; 2647 2648 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2649 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2650 2651 while (true) { 2652 struct wq_flusher *next, *tmp; 2653 2654 /* complete all the flushers sharing the current flush color */ 2655 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2656 if (next->flush_color != wq->flush_color) 2657 break; 2658 list_del_init(&next->list); 2659 complete(&next->done); 2660 } 2661 2662 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2663 wq->flush_color != work_next_color(wq->work_color)); 2664 2665 /* this flush_color is finished, advance by one */ 2666 wq->flush_color = work_next_color(wq->flush_color); 2667 2668 /* one color has been freed, handle overflow queue */ 2669 if (!list_empty(&wq->flusher_overflow)) { 2670 /* 2671 * Assign the same color to all overflowed 2672 * flushers, advance work_color and append to 2673 * flusher_queue. This is the start-to-wait 2674 * phase for these overflowed flushers. 2675 */ 2676 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2677 tmp->flush_color = wq->work_color; 2678 2679 wq->work_color = work_next_color(wq->work_color); 2680 2681 list_splice_tail_init(&wq->flusher_overflow, 2682 &wq->flusher_queue); 2683 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2684 } 2685 2686 if (list_empty(&wq->flusher_queue)) { 2687 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2688 break; 2689 } 2690 2691 /* 2692 * Need to flush more colors. Make the next flusher 2693 * the new first flusher and arm pwqs. 2694 */ 2695 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2696 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2697 2698 list_del_init(&next->list); 2699 wq->first_flusher = next; 2700 2701 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2702 break; 2703 2704 /* 2705 * Meh... this color is already done, clear first 2706 * flusher and repeat cascading. 2707 */ 2708 wq->first_flusher = NULL; 2709 } 2710 2711 out_unlock: 2712 mutex_unlock(&wq->mutex); 2713 } 2714 EXPORT_SYMBOL_GPL(flush_workqueue); 2715 2716 /** 2717 * drain_workqueue - drain a workqueue 2718 * @wq: workqueue to drain 2719 * 2720 * Wait until the workqueue becomes empty. While draining is in progress, 2721 * only chain queueing is allowed. IOW, only currently pending or running 2722 * work items on @wq can queue further work items on it. @wq is flushed 2723 * repeatedly until it becomes empty. The number of flushing is detemined 2724 * by the depth of chaining and should be relatively short. Whine if it 2725 * takes too long. 2726 */ 2727 void drain_workqueue(struct workqueue_struct *wq) 2728 { 2729 unsigned int flush_cnt = 0; 2730 struct pool_workqueue *pwq; 2731 2732 /* 2733 * __queue_work() needs to test whether there are drainers, is much 2734 * hotter than drain_workqueue() and already looks at @wq->flags. 2735 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2736 */ 2737 mutex_lock(&wq->mutex); 2738 if (!wq->nr_drainers++) 2739 wq->flags |= __WQ_DRAINING; 2740 mutex_unlock(&wq->mutex); 2741 reflush: 2742 flush_workqueue(wq); 2743 2744 mutex_lock(&wq->mutex); 2745 2746 for_each_pwq(pwq, wq) { 2747 bool drained; 2748 2749 spin_lock_irq(&pwq->pool->lock); 2750 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2751 spin_unlock_irq(&pwq->pool->lock); 2752 2753 if (drained) 2754 continue; 2755 2756 if (++flush_cnt == 10 || 2757 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2758 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2759 wq->name, flush_cnt); 2760 2761 mutex_unlock(&wq->mutex); 2762 goto reflush; 2763 } 2764 2765 if (!--wq->nr_drainers) 2766 wq->flags &= ~__WQ_DRAINING; 2767 mutex_unlock(&wq->mutex); 2768 } 2769 EXPORT_SYMBOL_GPL(drain_workqueue); 2770 2771 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr) 2772 { 2773 struct worker *worker = NULL; 2774 struct worker_pool *pool; 2775 struct pool_workqueue *pwq; 2776 2777 might_sleep(); 2778 2779 local_irq_disable(); 2780 pool = get_work_pool(work); 2781 if (!pool) { 2782 local_irq_enable(); 2783 return false; 2784 } 2785 2786 spin_lock(&pool->lock); 2787 /* see the comment in try_to_grab_pending() with the same code */ 2788 pwq = get_work_pwq(work); 2789 if (pwq) { 2790 if (unlikely(pwq->pool != pool)) 2791 goto already_gone; 2792 } else { 2793 worker = find_worker_executing_work(pool, work); 2794 if (!worker) 2795 goto already_gone; 2796 pwq = worker->current_pwq; 2797 } 2798 2799 insert_wq_barrier(pwq, barr, work, worker); 2800 spin_unlock_irq(&pool->lock); 2801 2802 /* 2803 * If @max_active is 1 or rescuer is in use, flushing another work 2804 * item on the same workqueue may lead to deadlock. Make sure the 2805 * flusher is not running on the same workqueue by verifying write 2806 * access. 2807 */ 2808 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) 2809 lock_map_acquire(&pwq->wq->lockdep_map); 2810 else 2811 lock_map_acquire_read(&pwq->wq->lockdep_map); 2812 lock_map_release(&pwq->wq->lockdep_map); 2813 2814 return true; 2815 already_gone: 2816 spin_unlock_irq(&pool->lock); 2817 return false; 2818 } 2819 2820 /** 2821 * flush_work - wait for a work to finish executing the last queueing instance 2822 * @work: the work to flush 2823 * 2824 * Wait until @work has finished execution. @work is guaranteed to be idle 2825 * on return if it hasn't been requeued since flush started. 2826 * 2827 * RETURNS: 2828 * %true if flush_work() waited for the work to finish execution, 2829 * %false if it was already idle. 2830 */ 2831 bool flush_work(struct work_struct *work) 2832 { 2833 struct wq_barrier barr; 2834 2835 lock_map_acquire(&work->lockdep_map); 2836 lock_map_release(&work->lockdep_map); 2837 2838 if (start_flush_work(work, &barr)) { 2839 wait_for_completion(&barr.done); 2840 destroy_work_on_stack(&barr.work); 2841 return true; 2842 } else { 2843 return false; 2844 } 2845 } 2846 EXPORT_SYMBOL_GPL(flush_work); 2847 2848 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 2849 { 2850 unsigned long flags; 2851 int ret; 2852 2853 do { 2854 ret = try_to_grab_pending(work, is_dwork, &flags); 2855 /* 2856 * If someone else is canceling, wait for the same event it 2857 * would be waiting for before retrying. 2858 */ 2859 if (unlikely(ret == -ENOENT)) 2860 flush_work(work); 2861 } while (unlikely(ret < 0)); 2862 2863 /* tell other tasks trying to grab @work to back off */ 2864 mark_work_canceling(work); 2865 local_irq_restore(flags); 2866 2867 flush_work(work); 2868 clear_work_data(work); 2869 return ret; 2870 } 2871 2872 /** 2873 * cancel_work_sync - cancel a work and wait for it to finish 2874 * @work: the work to cancel 2875 * 2876 * Cancel @work and wait for its execution to finish. This function 2877 * can be used even if the work re-queues itself or migrates to 2878 * another workqueue. On return from this function, @work is 2879 * guaranteed to be not pending or executing on any CPU. 2880 * 2881 * cancel_work_sync(&delayed_work->work) must not be used for 2882 * delayed_work's. Use cancel_delayed_work_sync() instead. 2883 * 2884 * The caller must ensure that the workqueue on which @work was last 2885 * queued can't be destroyed before this function returns. 2886 * 2887 * RETURNS: 2888 * %true if @work was pending, %false otherwise. 2889 */ 2890 bool cancel_work_sync(struct work_struct *work) 2891 { 2892 return __cancel_work_timer(work, false); 2893 } 2894 EXPORT_SYMBOL_GPL(cancel_work_sync); 2895 2896 /** 2897 * flush_delayed_work - wait for a dwork to finish executing the last queueing 2898 * @dwork: the delayed work to flush 2899 * 2900 * Delayed timer is cancelled and the pending work is queued for 2901 * immediate execution. Like flush_work(), this function only 2902 * considers the last queueing instance of @dwork. 2903 * 2904 * RETURNS: 2905 * %true if flush_work() waited for the work to finish execution, 2906 * %false if it was already idle. 2907 */ 2908 bool flush_delayed_work(struct delayed_work *dwork) 2909 { 2910 local_irq_disable(); 2911 if (del_timer_sync(&dwork->timer)) 2912 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2913 local_irq_enable(); 2914 return flush_work(&dwork->work); 2915 } 2916 EXPORT_SYMBOL(flush_delayed_work); 2917 2918 /** 2919 * cancel_delayed_work - cancel a delayed work 2920 * @dwork: delayed_work to cancel 2921 * 2922 * Kill off a pending delayed_work. Returns %true if @dwork was pending 2923 * and canceled; %false if wasn't pending. Note that the work callback 2924 * function may still be running on return, unless it returns %true and the 2925 * work doesn't re-arm itself. Explicitly flush or use 2926 * cancel_delayed_work_sync() to wait on it. 2927 * 2928 * This function is safe to call from any context including IRQ handler. 2929 */ 2930 bool cancel_delayed_work(struct delayed_work *dwork) 2931 { 2932 unsigned long flags; 2933 int ret; 2934 2935 do { 2936 ret = try_to_grab_pending(&dwork->work, true, &flags); 2937 } while (unlikely(ret == -EAGAIN)); 2938 2939 if (unlikely(ret < 0)) 2940 return false; 2941 2942 set_work_pool_and_clear_pending(&dwork->work, 2943 get_work_pool_id(&dwork->work)); 2944 local_irq_restore(flags); 2945 return ret; 2946 } 2947 EXPORT_SYMBOL(cancel_delayed_work); 2948 2949 /** 2950 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 2951 * @dwork: the delayed work cancel 2952 * 2953 * This is cancel_work_sync() for delayed works. 2954 * 2955 * RETURNS: 2956 * %true if @dwork was pending, %false otherwise. 2957 */ 2958 bool cancel_delayed_work_sync(struct delayed_work *dwork) 2959 { 2960 return __cancel_work_timer(&dwork->work, true); 2961 } 2962 EXPORT_SYMBOL(cancel_delayed_work_sync); 2963 2964 /** 2965 * schedule_on_each_cpu - execute a function synchronously on each online CPU 2966 * @func: the function to call 2967 * 2968 * schedule_on_each_cpu() executes @func on each online CPU using the 2969 * system workqueue and blocks until all CPUs have completed. 2970 * schedule_on_each_cpu() is very slow. 2971 * 2972 * RETURNS: 2973 * 0 on success, -errno on failure. 2974 */ 2975 int schedule_on_each_cpu(work_func_t func) 2976 { 2977 int cpu; 2978 struct work_struct __percpu *works; 2979 2980 works = alloc_percpu(struct work_struct); 2981 if (!works) 2982 return -ENOMEM; 2983 2984 get_online_cpus(); 2985 2986 for_each_online_cpu(cpu) { 2987 struct work_struct *work = per_cpu_ptr(works, cpu); 2988 2989 INIT_WORK(work, func); 2990 schedule_work_on(cpu, work); 2991 } 2992 2993 for_each_online_cpu(cpu) 2994 flush_work(per_cpu_ptr(works, cpu)); 2995 2996 put_online_cpus(); 2997 free_percpu(works); 2998 return 0; 2999 } 3000 3001 /** 3002 * flush_scheduled_work - ensure that any scheduled work has run to completion. 3003 * 3004 * Forces execution of the kernel-global workqueue and blocks until its 3005 * completion. 3006 * 3007 * Think twice before calling this function! It's very easy to get into 3008 * trouble if you don't take great care. Either of the following situations 3009 * will lead to deadlock: 3010 * 3011 * One of the work items currently on the workqueue needs to acquire 3012 * a lock held by your code or its caller. 3013 * 3014 * Your code is running in the context of a work routine. 3015 * 3016 * They will be detected by lockdep when they occur, but the first might not 3017 * occur very often. It depends on what work items are on the workqueue and 3018 * what locks they need, which you have no control over. 3019 * 3020 * In most situations flushing the entire workqueue is overkill; you merely 3021 * need to know that a particular work item isn't queued and isn't running. 3022 * In such cases you should use cancel_delayed_work_sync() or 3023 * cancel_work_sync() instead. 3024 */ 3025 void flush_scheduled_work(void) 3026 { 3027 flush_workqueue(system_wq); 3028 } 3029 EXPORT_SYMBOL(flush_scheduled_work); 3030 3031 /** 3032 * execute_in_process_context - reliably execute the routine with user context 3033 * @fn: the function to execute 3034 * @ew: guaranteed storage for the execute work structure (must 3035 * be available when the work executes) 3036 * 3037 * Executes the function immediately if process context is available, 3038 * otherwise schedules the function for delayed execution. 3039 * 3040 * Returns: 0 - function was executed 3041 * 1 - function was scheduled for execution 3042 */ 3043 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3044 { 3045 if (!in_interrupt()) { 3046 fn(&ew->work); 3047 return 0; 3048 } 3049 3050 INIT_WORK(&ew->work, fn); 3051 schedule_work(&ew->work); 3052 3053 return 1; 3054 } 3055 EXPORT_SYMBOL_GPL(execute_in_process_context); 3056 3057 #ifdef CONFIG_SYSFS 3058 /* 3059 * Workqueues with WQ_SYSFS flag set is visible to userland via 3060 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 3061 * following attributes. 3062 * 3063 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 3064 * max_active RW int : maximum number of in-flight work items 3065 * 3066 * Unbound workqueues have the following extra attributes. 3067 * 3068 * id RO int : the associated pool ID 3069 * nice RW int : nice value of the workers 3070 * cpumask RW mask : bitmask of allowed CPUs for the workers 3071 */ 3072 struct wq_device { 3073 struct workqueue_struct *wq; 3074 struct device dev; 3075 }; 3076 3077 static struct workqueue_struct *dev_to_wq(struct device *dev) 3078 { 3079 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 3080 3081 return wq_dev->wq; 3082 } 3083 3084 static ssize_t wq_per_cpu_show(struct device *dev, 3085 struct device_attribute *attr, char *buf) 3086 { 3087 struct workqueue_struct *wq = dev_to_wq(dev); 3088 3089 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 3090 } 3091 3092 static ssize_t wq_max_active_show(struct device *dev, 3093 struct device_attribute *attr, char *buf) 3094 { 3095 struct workqueue_struct *wq = dev_to_wq(dev); 3096 3097 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 3098 } 3099 3100 static ssize_t wq_max_active_store(struct device *dev, 3101 struct device_attribute *attr, 3102 const char *buf, size_t count) 3103 { 3104 struct workqueue_struct *wq = dev_to_wq(dev); 3105 int val; 3106 3107 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 3108 return -EINVAL; 3109 3110 workqueue_set_max_active(wq, val); 3111 return count; 3112 } 3113 3114 static struct device_attribute wq_sysfs_attrs[] = { 3115 __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL), 3116 __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store), 3117 __ATTR_NULL, 3118 }; 3119 3120 static ssize_t wq_pool_ids_show(struct device *dev, 3121 struct device_attribute *attr, char *buf) 3122 { 3123 struct workqueue_struct *wq = dev_to_wq(dev); 3124 const char *delim = ""; 3125 int node, written = 0; 3126 3127 rcu_read_lock_sched(); 3128 for_each_node(node) { 3129 written += scnprintf(buf + written, PAGE_SIZE - written, 3130 "%s%d:%d", delim, node, 3131 unbound_pwq_by_node(wq, node)->pool->id); 3132 delim = " "; 3133 } 3134 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 3135 rcu_read_unlock_sched(); 3136 3137 return written; 3138 } 3139 3140 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 3141 char *buf) 3142 { 3143 struct workqueue_struct *wq = dev_to_wq(dev); 3144 int written; 3145 3146 mutex_lock(&wq->mutex); 3147 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 3148 mutex_unlock(&wq->mutex); 3149 3150 return written; 3151 } 3152 3153 /* prepare workqueue_attrs for sysfs store operations */ 3154 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 3155 { 3156 struct workqueue_attrs *attrs; 3157 3158 attrs = alloc_workqueue_attrs(GFP_KERNEL); 3159 if (!attrs) 3160 return NULL; 3161 3162 mutex_lock(&wq->mutex); 3163 copy_workqueue_attrs(attrs, wq->unbound_attrs); 3164 mutex_unlock(&wq->mutex); 3165 return attrs; 3166 } 3167 3168 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 3169 const char *buf, size_t count) 3170 { 3171 struct workqueue_struct *wq = dev_to_wq(dev); 3172 struct workqueue_attrs *attrs; 3173 int ret; 3174 3175 attrs = wq_sysfs_prep_attrs(wq); 3176 if (!attrs) 3177 return -ENOMEM; 3178 3179 if (sscanf(buf, "%d", &attrs->nice) == 1 && 3180 attrs->nice >= -20 && attrs->nice <= 19) 3181 ret = apply_workqueue_attrs(wq, attrs); 3182 else 3183 ret = -EINVAL; 3184 3185 free_workqueue_attrs(attrs); 3186 return ret ?: count; 3187 } 3188 3189 static ssize_t wq_cpumask_show(struct device *dev, 3190 struct device_attribute *attr, char *buf) 3191 { 3192 struct workqueue_struct *wq = dev_to_wq(dev); 3193 int written; 3194 3195 mutex_lock(&wq->mutex); 3196 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask); 3197 mutex_unlock(&wq->mutex); 3198 3199 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 3200 return written; 3201 } 3202 3203 static ssize_t wq_cpumask_store(struct device *dev, 3204 struct device_attribute *attr, 3205 const char *buf, size_t count) 3206 { 3207 struct workqueue_struct *wq = dev_to_wq(dev); 3208 struct workqueue_attrs *attrs; 3209 int ret; 3210 3211 attrs = wq_sysfs_prep_attrs(wq); 3212 if (!attrs) 3213 return -ENOMEM; 3214 3215 ret = cpumask_parse(buf, attrs->cpumask); 3216 if (!ret) 3217 ret = apply_workqueue_attrs(wq, attrs); 3218 3219 free_workqueue_attrs(attrs); 3220 return ret ?: count; 3221 } 3222 3223 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 3224 char *buf) 3225 { 3226 struct workqueue_struct *wq = dev_to_wq(dev); 3227 int written; 3228 3229 mutex_lock(&wq->mutex); 3230 written = scnprintf(buf, PAGE_SIZE, "%d\n", 3231 !wq->unbound_attrs->no_numa); 3232 mutex_unlock(&wq->mutex); 3233 3234 return written; 3235 } 3236 3237 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 3238 const char *buf, size_t count) 3239 { 3240 struct workqueue_struct *wq = dev_to_wq(dev); 3241 struct workqueue_attrs *attrs; 3242 int v, ret; 3243 3244 attrs = wq_sysfs_prep_attrs(wq); 3245 if (!attrs) 3246 return -ENOMEM; 3247 3248 ret = -EINVAL; 3249 if (sscanf(buf, "%d", &v) == 1) { 3250 attrs->no_numa = !v; 3251 ret = apply_workqueue_attrs(wq, attrs); 3252 } 3253 3254 free_workqueue_attrs(attrs); 3255 return ret ?: count; 3256 } 3257 3258 static struct device_attribute wq_sysfs_unbound_attrs[] = { 3259 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 3260 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 3261 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 3262 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 3263 __ATTR_NULL, 3264 }; 3265 3266 static struct bus_type wq_subsys = { 3267 .name = "workqueue", 3268 .dev_attrs = wq_sysfs_attrs, 3269 }; 3270 3271 static int __init wq_sysfs_init(void) 3272 { 3273 return subsys_virtual_register(&wq_subsys, NULL); 3274 } 3275 core_initcall(wq_sysfs_init); 3276 3277 static void wq_device_release(struct device *dev) 3278 { 3279 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 3280 3281 kfree(wq_dev); 3282 } 3283 3284 /** 3285 * workqueue_sysfs_register - make a workqueue visible in sysfs 3286 * @wq: the workqueue to register 3287 * 3288 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 3289 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 3290 * which is the preferred method. 3291 * 3292 * Workqueue user should use this function directly iff it wants to apply 3293 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 3294 * apply_workqueue_attrs() may race against userland updating the 3295 * attributes. 3296 * 3297 * Returns 0 on success, -errno on failure. 3298 */ 3299 int workqueue_sysfs_register(struct workqueue_struct *wq) 3300 { 3301 struct wq_device *wq_dev; 3302 int ret; 3303 3304 /* 3305 * Adjusting max_active or creating new pwqs by applyting 3306 * attributes breaks ordering guarantee. Disallow exposing ordered 3307 * workqueues. 3308 */ 3309 if (WARN_ON(wq->flags & __WQ_ORDERED)) 3310 return -EINVAL; 3311 3312 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 3313 if (!wq_dev) 3314 return -ENOMEM; 3315 3316 wq_dev->wq = wq; 3317 wq_dev->dev.bus = &wq_subsys; 3318 wq_dev->dev.init_name = wq->name; 3319 wq_dev->dev.release = wq_device_release; 3320 3321 /* 3322 * unbound_attrs are created separately. Suppress uevent until 3323 * everything is ready. 3324 */ 3325 dev_set_uevent_suppress(&wq_dev->dev, true); 3326 3327 ret = device_register(&wq_dev->dev); 3328 if (ret) { 3329 kfree(wq_dev); 3330 wq->wq_dev = NULL; 3331 return ret; 3332 } 3333 3334 if (wq->flags & WQ_UNBOUND) { 3335 struct device_attribute *attr; 3336 3337 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 3338 ret = device_create_file(&wq_dev->dev, attr); 3339 if (ret) { 3340 device_unregister(&wq_dev->dev); 3341 wq->wq_dev = NULL; 3342 return ret; 3343 } 3344 } 3345 } 3346 3347 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 3348 return 0; 3349 } 3350 3351 /** 3352 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 3353 * @wq: the workqueue to unregister 3354 * 3355 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 3356 */ 3357 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 3358 { 3359 struct wq_device *wq_dev = wq->wq_dev; 3360 3361 if (!wq->wq_dev) 3362 return; 3363 3364 wq->wq_dev = NULL; 3365 device_unregister(&wq_dev->dev); 3366 } 3367 #else /* CONFIG_SYSFS */ 3368 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 3369 #endif /* CONFIG_SYSFS */ 3370 3371 /** 3372 * free_workqueue_attrs - free a workqueue_attrs 3373 * @attrs: workqueue_attrs to free 3374 * 3375 * Undo alloc_workqueue_attrs(). 3376 */ 3377 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3378 { 3379 if (attrs) { 3380 free_cpumask_var(attrs->cpumask); 3381 kfree(attrs); 3382 } 3383 } 3384 3385 /** 3386 * alloc_workqueue_attrs - allocate a workqueue_attrs 3387 * @gfp_mask: allocation mask to use 3388 * 3389 * Allocate a new workqueue_attrs, initialize with default settings and 3390 * return it. Returns NULL on failure. 3391 */ 3392 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask) 3393 { 3394 struct workqueue_attrs *attrs; 3395 3396 attrs = kzalloc(sizeof(*attrs), gfp_mask); 3397 if (!attrs) 3398 goto fail; 3399 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask)) 3400 goto fail; 3401 3402 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3403 return attrs; 3404 fail: 3405 free_workqueue_attrs(attrs); 3406 return NULL; 3407 } 3408 3409 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3410 const struct workqueue_attrs *from) 3411 { 3412 to->nice = from->nice; 3413 cpumask_copy(to->cpumask, from->cpumask); 3414 } 3415 3416 /* hash value of the content of @attr */ 3417 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3418 { 3419 u32 hash = 0; 3420 3421 hash = jhash_1word(attrs->nice, hash); 3422 hash = jhash(cpumask_bits(attrs->cpumask), 3423 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3424 return hash; 3425 } 3426 3427 /* content equality test */ 3428 static bool wqattrs_equal(const struct workqueue_attrs *a, 3429 const struct workqueue_attrs *b) 3430 { 3431 if (a->nice != b->nice) 3432 return false; 3433 if (!cpumask_equal(a->cpumask, b->cpumask)) 3434 return false; 3435 return true; 3436 } 3437 3438 /** 3439 * init_worker_pool - initialize a newly zalloc'd worker_pool 3440 * @pool: worker_pool to initialize 3441 * 3442 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs. 3443 * Returns 0 on success, -errno on failure. Even on failure, all fields 3444 * inside @pool proper are initialized and put_unbound_pool() can be called 3445 * on @pool safely to release it. 3446 */ 3447 static int init_worker_pool(struct worker_pool *pool) 3448 { 3449 spin_lock_init(&pool->lock); 3450 pool->id = -1; 3451 pool->cpu = -1; 3452 pool->node = NUMA_NO_NODE; 3453 pool->flags |= POOL_DISASSOCIATED; 3454 INIT_LIST_HEAD(&pool->worklist); 3455 INIT_LIST_HEAD(&pool->idle_list); 3456 hash_init(pool->busy_hash); 3457 3458 init_timer_deferrable(&pool->idle_timer); 3459 pool->idle_timer.function = idle_worker_timeout; 3460 pool->idle_timer.data = (unsigned long)pool; 3461 3462 setup_timer(&pool->mayday_timer, pool_mayday_timeout, 3463 (unsigned long)pool); 3464 3465 mutex_init(&pool->manager_arb); 3466 mutex_init(&pool->manager_mutex); 3467 idr_init(&pool->worker_idr); 3468 3469 INIT_HLIST_NODE(&pool->hash_node); 3470 pool->refcnt = 1; 3471 3472 /* shouldn't fail above this point */ 3473 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL); 3474 if (!pool->attrs) 3475 return -ENOMEM; 3476 return 0; 3477 } 3478 3479 static void rcu_free_pool(struct rcu_head *rcu) 3480 { 3481 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3482 3483 idr_destroy(&pool->worker_idr); 3484 free_workqueue_attrs(pool->attrs); 3485 kfree(pool); 3486 } 3487 3488 /** 3489 * put_unbound_pool - put a worker_pool 3490 * @pool: worker_pool to put 3491 * 3492 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU 3493 * safe manner. get_unbound_pool() calls this function on its failure path 3494 * and this function should be able to release pools which went through, 3495 * successfully or not, init_worker_pool(). 3496 * 3497 * Should be called with wq_pool_mutex held. 3498 */ 3499 static void put_unbound_pool(struct worker_pool *pool) 3500 { 3501 struct worker *worker; 3502 3503 lockdep_assert_held(&wq_pool_mutex); 3504 3505 if (--pool->refcnt) 3506 return; 3507 3508 /* sanity checks */ 3509 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) || 3510 WARN_ON(!list_empty(&pool->worklist))) 3511 return; 3512 3513 /* release id and unhash */ 3514 if (pool->id >= 0) 3515 idr_remove(&worker_pool_idr, pool->id); 3516 hash_del(&pool->hash_node); 3517 3518 /* 3519 * Become the manager and destroy all workers. Grabbing 3520 * manager_arb prevents @pool's workers from blocking on 3521 * manager_mutex. 3522 */ 3523 mutex_lock(&pool->manager_arb); 3524 mutex_lock(&pool->manager_mutex); 3525 spin_lock_irq(&pool->lock); 3526 3527 while ((worker = first_worker(pool))) 3528 destroy_worker(worker); 3529 WARN_ON(pool->nr_workers || pool->nr_idle); 3530 3531 spin_unlock_irq(&pool->lock); 3532 mutex_unlock(&pool->manager_mutex); 3533 mutex_unlock(&pool->manager_arb); 3534 3535 /* shut down the timers */ 3536 del_timer_sync(&pool->idle_timer); 3537 del_timer_sync(&pool->mayday_timer); 3538 3539 /* sched-RCU protected to allow dereferences from get_work_pool() */ 3540 call_rcu_sched(&pool->rcu, rcu_free_pool); 3541 } 3542 3543 /** 3544 * get_unbound_pool - get a worker_pool with the specified attributes 3545 * @attrs: the attributes of the worker_pool to get 3546 * 3547 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3548 * reference count and return it. If there already is a matching 3549 * worker_pool, it will be used; otherwise, this function attempts to 3550 * create a new one. On failure, returns NULL. 3551 * 3552 * Should be called with wq_pool_mutex held. 3553 */ 3554 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3555 { 3556 u32 hash = wqattrs_hash(attrs); 3557 struct worker_pool *pool; 3558 int node; 3559 3560 lockdep_assert_held(&wq_pool_mutex); 3561 3562 /* do we already have a matching pool? */ 3563 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3564 if (wqattrs_equal(pool->attrs, attrs)) { 3565 pool->refcnt++; 3566 goto out_unlock; 3567 } 3568 } 3569 3570 /* nope, create a new one */ 3571 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 3572 if (!pool || init_worker_pool(pool) < 0) 3573 goto fail; 3574 3575 if (workqueue_freezing) 3576 pool->flags |= POOL_FREEZING; 3577 3578 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3579 copy_workqueue_attrs(pool->attrs, attrs); 3580 3581 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3582 if (wq_numa_enabled) { 3583 for_each_node(node) { 3584 if (cpumask_subset(pool->attrs->cpumask, 3585 wq_numa_possible_cpumask[node])) { 3586 pool->node = node; 3587 break; 3588 } 3589 } 3590 } 3591 3592 if (worker_pool_assign_id(pool) < 0) 3593 goto fail; 3594 3595 /* create and start the initial worker */ 3596 if (create_and_start_worker(pool) < 0) 3597 goto fail; 3598 3599 /* install */ 3600 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3601 out_unlock: 3602 return pool; 3603 fail: 3604 if (pool) 3605 put_unbound_pool(pool); 3606 return NULL; 3607 } 3608 3609 static void rcu_free_pwq(struct rcu_head *rcu) 3610 { 3611 kmem_cache_free(pwq_cache, 3612 container_of(rcu, struct pool_workqueue, rcu)); 3613 } 3614 3615 /* 3616 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3617 * and needs to be destroyed. 3618 */ 3619 static void pwq_unbound_release_workfn(struct work_struct *work) 3620 { 3621 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3622 unbound_release_work); 3623 struct workqueue_struct *wq = pwq->wq; 3624 struct worker_pool *pool = pwq->pool; 3625 bool is_last; 3626 3627 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3628 return; 3629 3630 /* 3631 * Unlink @pwq. Synchronization against wq->mutex isn't strictly 3632 * necessary on release but do it anyway. It's easier to verify 3633 * and consistent with the linking path. 3634 */ 3635 mutex_lock(&wq->mutex); 3636 list_del_rcu(&pwq->pwqs_node); 3637 is_last = list_empty(&wq->pwqs); 3638 mutex_unlock(&wq->mutex); 3639 3640 mutex_lock(&wq_pool_mutex); 3641 put_unbound_pool(pool); 3642 mutex_unlock(&wq_pool_mutex); 3643 3644 call_rcu_sched(&pwq->rcu, rcu_free_pwq); 3645 3646 /* 3647 * If we're the last pwq going away, @wq is already dead and no one 3648 * is gonna access it anymore. Free it. 3649 */ 3650 if (is_last) { 3651 free_workqueue_attrs(wq->unbound_attrs); 3652 kfree(wq); 3653 } 3654 } 3655 3656 /** 3657 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3658 * @pwq: target pool_workqueue 3659 * 3660 * If @pwq isn't freezing, set @pwq->max_active to the associated 3661 * workqueue's saved_max_active and activate delayed work items 3662 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3663 */ 3664 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3665 { 3666 struct workqueue_struct *wq = pwq->wq; 3667 bool freezable = wq->flags & WQ_FREEZABLE; 3668 3669 /* for @wq->saved_max_active */ 3670 lockdep_assert_held(&wq->mutex); 3671 3672 /* fast exit for non-freezable wqs */ 3673 if (!freezable && pwq->max_active == wq->saved_max_active) 3674 return; 3675 3676 spin_lock_irq(&pwq->pool->lock); 3677 3678 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) { 3679 pwq->max_active = wq->saved_max_active; 3680 3681 while (!list_empty(&pwq->delayed_works) && 3682 pwq->nr_active < pwq->max_active) 3683 pwq_activate_first_delayed(pwq); 3684 3685 /* 3686 * Need to kick a worker after thawed or an unbound wq's 3687 * max_active is bumped. It's a slow path. Do it always. 3688 */ 3689 wake_up_worker(pwq->pool); 3690 } else { 3691 pwq->max_active = 0; 3692 } 3693 3694 spin_unlock_irq(&pwq->pool->lock); 3695 } 3696 3697 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3698 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3699 struct worker_pool *pool) 3700 { 3701 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3702 3703 memset(pwq, 0, sizeof(*pwq)); 3704 3705 pwq->pool = pool; 3706 pwq->wq = wq; 3707 pwq->flush_color = -1; 3708 pwq->refcnt = 1; 3709 INIT_LIST_HEAD(&pwq->delayed_works); 3710 INIT_LIST_HEAD(&pwq->pwqs_node); 3711 INIT_LIST_HEAD(&pwq->mayday_node); 3712 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3713 } 3714 3715 /* sync @pwq with the current state of its associated wq and link it */ 3716 static void link_pwq(struct pool_workqueue *pwq) 3717 { 3718 struct workqueue_struct *wq = pwq->wq; 3719 3720 lockdep_assert_held(&wq->mutex); 3721 3722 /* may be called multiple times, ignore if already linked */ 3723 if (!list_empty(&pwq->pwqs_node)) 3724 return; 3725 3726 /* 3727 * Set the matching work_color. This is synchronized with 3728 * wq->mutex to avoid confusing flush_workqueue(). 3729 */ 3730 pwq->work_color = wq->work_color; 3731 3732 /* sync max_active to the current setting */ 3733 pwq_adjust_max_active(pwq); 3734 3735 /* link in @pwq */ 3736 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3737 } 3738 3739 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3740 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3741 const struct workqueue_attrs *attrs) 3742 { 3743 struct worker_pool *pool; 3744 struct pool_workqueue *pwq; 3745 3746 lockdep_assert_held(&wq_pool_mutex); 3747 3748 pool = get_unbound_pool(attrs); 3749 if (!pool) 3750 return NULL; 3751 3752 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3753 if (!pwq) { 3754 put_unbound_pool(pool); 3755 return NULL; 3756 } 3757 3758 init_pwq(pwq, wq, pool); 3759 return pwq; 3760 } 3761 3762 /* undo alloc_unbound_pwq(), used only in the error path */ 3763 static void free_unbound_pwq(struct pool_workqueue *pwq) 3764 { 3765 lockdep_assert_held(&wq_pool_mutex); 3766 3767 if (pwq) { 3768 put_unbound_pool(pwq->pool); 3769 kmem_cache_free(pwq_cache, pwq); 3770 } 3771 } 3772 3773 /** 3774 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node 3775 * @attrs: the wq_attrs of interest 3776 * @node: the target NUMA node 3777 * @cpu_going_down: if >= 0, the CPU to consider as offline 3778 * @cpumask: outarg, the resulting cpumask 3779 * 3780 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3781 * @cpu_going_down is >= 0, that cpu is considered offline during 3782 * calculation. The result is stored in @cpumask. This function returns 3783 * %true if the resulting @cpumask is different from @attrs->cpumask, 3784 * %false if equal. 3785 * 3786 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3787 * enabled and @node has online CPUs requested by @attrs, the returned 3788 * cpumask is the intersection of the possible CPUs of @node and 3789 * @attrs->cpumask. 3790 * 3791 * The caller is responsible for ensuring that the cpumask of @node stays 3792 * stable. 3793 */ 3794 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3795 int cpu_going_down, cpumask_t *cpumask) 3796 { 3797 if (!wq_numa_enabled || attrs->no_numa) 3798 goto use_dfl; 3799 3800 /* does @node have any online CPUs @attrs wants? */ 3801 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3802 if (cpu_going_down >= 0) 3803 cpumask_clear_cpu(cpu_going_down, cpumask); 3804 3805 if (cpumask_empty(cpumask)) 3806 goto use_dfl; 3807 3808 /* yeap, return possible CPUs in @node that @attrs wants */ 3809 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3810 return !cpumask_equal(cpumask, attrs->cpumask); 3811 3812 use_dfl: 3813 cpumask_copy(cpumask, attrs->cpumask); 3814 return false; 3815 } 3816 3817 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3818 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3819 int node, 3820 struct pool_workqueue *pwq) 3821 { 3822 struct pool_workqueue *old_pwq; 3823 3824 lockdep_assert_held(&wq->mutex); 3825 3826 /* link_pwq() can handle duplicate calls */ 3827 link_pwq(pwq); 3828 3829 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3830 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3831 return old_pwq; 3832 } 3833 3834 /** 3835 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 3836 * @wq: the target workqueue 3837 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 3838 * 3839 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 3840 * machines, this function maps a separate pwq to each NUMA node with 3841 * possibles CPUs in @attrs->cpumask so that work items are affine to the 3842 * NUMA node it was issued on. Older pwqs are released as in-flight work 3843 * items finish. Note that a work item which repeatedly requeues itself 3844 * back-to-back will stay on its current pwq. 3845 * 3846 * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on 3847 * failure. 3848 */ 3849 int apply_workqueue_attrs(struct workqueue_struct *wq, 3850 const struct workqueue_attrs *attrs) 3851 { 3852 struct workqueue_attrs *new_attrs, *tmp_attrs; 3853 struct pool_workqueue **pwq_tbl, *dfl_pwq; 3854 int node, ret; 3855 3856 /* only unbound workqueues can change attributes */ 3857 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 3858 return -EINVAL; 3859 3860 /* creating multiple pwqs breaks ordering guarantee */ 3861 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))) 3862 return -EINVAL; 3863 3864 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL); 3865 new_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3866 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3867 if (!pwq_tbl || !new_attrs || !tmp_attrs) 3868 goto enomem; 3869 3870 /* make a copy of @attrs and sanitize it */ 3871 copy_workqueue_attrs(new_attrs, attrs); 3872 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3873 3874 /* 3875 * We may create multiple pwqs with differing cpumasks. Make a 3876 * copy of @new_attrs which will be modified and used to obtain 3877 * pools. 3878 */ 3879 copy_workqueue_attrs(tmp_attrs, new_attrs); 3880 3881 /* 3882 * CPUs should stay stable across pwq creations and installations. 3883 * Pin CPUs, determine the target cpumask for each node and create 3884 * pwqs accordingly. 3885 */ 3886 get_online_cpus(); 3887 3888 mutex_lock(&wq_pool_mutex); 3889 3890 /* 3891 * If something goes wrong during CPU up/down, we'll fall back to 3892 * the default pwq covering whole @attrs->cpumask. Always create 3893 * it even if we don't use it immediately. 3894 */ 3895 dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3896 if (!dfl_pwq) 3897 goto enomem_pwq; 3898 3899 for_each_node(node) { 3900 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) { 3901 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3902 if (!pwq_tbl[node]) 3903 goto enomem_pwq; 3904 } else { 3905 dfl_pwq->refcnt++; 3906 pwq_tbl[node] = dfl_pwq; 3907 } 3908 } 3909 3910 mutex_unlock(&wq_pool_mutex); 3911 3912 /* all pwqs have been created successfully, let's install'em */ 3913 mutex_lock(&wq->mutex); 3914 3915 copy_workqueue_attrs(wq->unbound_attrs, new_attrs); 3916 3917 /* save the previous pwq and install the new one */ 3918 for_each_node(node) 3919 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]); 3920 3921 /* @dfl_pwq might not have been used, ensure it's linked */ 3922 link_pwq(dfl_pwq); 3923 swap(wq->dfl_pwq, dfl_pwq); 3924 3925 mutex_unlock(&wq->mutex); 3926 3927 /* put the old pwqs */ 3928 for_each_node(node) 3929 put_pwq_unlocked(pwq_tbl[node]); 3930 put_pwq_unlocked(dfl_pwq); 3931 3932 put_online_cpus(); 3933 ret = 0; 3934 /* fall through */ 3935 out_free: 3936 free_workqueue_attrs(tmp_attrs); 3937 free_workqueue_attrs(new_attrs); 3938 kfree(pwq_tbl); 3939 return ret; 3940 3941 enomem_pwq: 3942 free_unbound_pwq(dfl_pwq); 3943 for_each_node(node) 3944 if (pwq_tbl && pwq_tbl[node] != dfl_pwq) 3945 free_unbound_pwq(pwq_tbl[node]); 3946 mutex_unlock(&wq_pool_mutex); 3947 put_online_cpus(); 3948 enomem: 3949 ret = -ENOMEM; 3950 goto out_free; 3951 } 3952 3953 /** 3954 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 3955 * @wq: the target workqueue 3956 * @cpu: the CPU coming up or going down 3957 * @online: whether @cpu is coming up or going down 3958 * 3959 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 3960 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 3961 * @wq accordingly. 3962 * 3963 * If NUMA affinity can't be adjusted due to memory allocation failure, it 3964 * falls back to @wq->dfl_pwq which may not be optimal but is always 3965 * correct. 3966 * 3967 * Note that when the last allowed CPU of a NUMA node goes offline for a 3968 * workqueue with a cpumask spanning multiple nodes, the workers which were 3969 * already executing the work items for the workqueue will lose their CPU 3970 * affinity and may execute on any CPU. This is similar to how per-cpu 3971 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 3972 * affinity, it's the user's responsibility to flush the work item from 3973 * CPU_DOWN_PREPARE. 3974 */ 3975 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 3976 bool online) 3977 { 3978 int node = cpu_to_node(cpu); 3979 int cpu_off = online ? -1 : cpu; 3980 struct pool_workqueue *old_pwq = NULL, *pwq; 3981 struct workqueue_attrs *target_attrs; 3982 cpumask_t *cpumask; 3983 3984 lockdep_assert_held(&wq_pool_mutex); 3985 3986 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND)) 3987 return; 3988 3989 /* 3990 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 3991 * Let's use a preallocated one. The following buf is protected by 3992 * CPU hotplug exclusion. 3993 */ 3994 target_attrs = wq_update_unbound_numa_attrs_buf; 3995 cpumask = target_attrs->cpumask; 3996 3997 mutex_lock(&wq->mutex); 3998 if (wq->unbound_attrs->no_numa) 3999 goto out_unlock; 4000 4001 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 4002 pwq = unbound_pwq_by_node(wq, node); 4003 4004 /* 4005 * Let's determine what needs to be done. If the target cpumask is 4006 * different from wq's, we need to compare it to @pwq's and create 4007 * a new one if they don't match. If the target cpumask equals 4008 * wq's, the default pwq should be used. If @pwq is already the 4009 * default one, nothing to do; otherwise, install the default one. 4010 */ 4011 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) { 4012 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 4013 goto out_unlock; 4014 } else { 4015 if (pwq == wq->dfl_pwq) 4016 goto out_unlock; 4017 else 4018 goto use_dfl_pwq; 4019 } 4020 4021 mutex_unlock(&wq->mutex); 4022 4023 /* create a new pwq */ 4024 pwq = alloc_unbound_pwq(wq, target_attrs); 4025 if (!pwq) { 4026 pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 4027 wq->name); 4028 goto out_unlock; 4029 } 4030 4031 /* 4032 * Install the new pwq. As this function is called only from CPU 4033 * hotplug callbacks and applying a new attrs is wrapped with 4034 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed 4035 * inbetween. 4036 */ 4037 mutex_lock(&wq->mutex); 4038 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 4039 goto out_unlock; 4040 4041 use_dfl_pwq: 4042 spin_lock_irq(&wq->dfl_pwq->pool->lock); 4043 get_pwq(wq->dfl_pwq); 4044 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 4045 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 4046 out_unlock: 4047 mutex_unlock(&wq->mutex); 4048 put_pwq_unlocked(old_pwq); 4049 } 4050 4051 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4052 { 4053 bool highpri = wq->flags & WQ_HIGHPRI; 4054 int cpu; 4055 4056 if (!(wq->flags & WQ_UNBOUND)) { 4057 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 4058 if (!wq->cpu_pwqs) 4059 return -ENOMEM; 4060 4061 for_each_possible_cpu(cpu) { 4062 struct pool_workqueue *pwq = 4063 per_cpu_ptr(wq->cpu_pwqs, cpu); 4064 struct worker_pool *cpu_pools = 4065 per_cpu(cpu_worker_pools, cpu); 4066 4067 init_pwq(pwq, wq, &cpu_pools[highpri]); 4068 4069 mutex_lock(&wq->mutex); 4070 link_pwq(pwq); 4071 mutex_unlock(&wq->mutex); 4072 } 4073 return 0; 4074 } else { 4075 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4076 } 4077 } 4078 4079 static int wq_clamp_max_active(int max_active, unsigned int flags, 4080 const char *name) 4081 { 4082 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 4083 4084 if (max_active < 1 || max_active > lim) 4085 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4086 max_active, name, 1, lim); 4087 4088 return clamp_val(max_active, 1, lim); 4089 } 4090 4091 struct workqueue_struct *__alloc_workqueue_key(const char *fmt, 4092 unsigned int flags, 4093 int max_active, 4094 struct lock_class_key *key, 4095 const char *lock_name, ...) 4096 { 4097 size_t tbl_size = 0; 4098 va_list args; 4099 struct workqueue_struct *wq; 4100 struct pool_workqueue *pwq; 4101 4102 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4103 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4104 flags |= WQ_UNBOUND; 4105 4106 /* allocate wq and format name */ 4107 if (flags & WQ_UNBOUND) 4108 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]); 4109 4110 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4111 if (!wq) 4112 return NULL; 4113 4114 if (flags & WQ_UNBOUND) { 4115 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL); 4116 if (!wq->unbound_attrs) 4117 goto err_free_wq; 4118 } 4119 4120 va_start(args, lock_name); 4121 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4122 va_end(args); 4123 4124 max_active = max_active ?: WQ_DFL_ACTIVE; 4125 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4126 4127 /* init wq */ 4128 wq->flags = flags; 4129 wq->saved_max_active = max_active; 4130 mutex_init(&wq->mutex); 4131 atomic_set(&wq->nr_pwqs_to_flush, 0); 4132 INIT_LIST_HEAD(&wq->pwqs); 4133 INIT_LIST_HEAD(&wq->flusher_queue); 4134 INIT_LIST_HEAD(&wq->flusher_overflow); 4135 INIT_LIST_HEAD(&wq->maydays); 4136 4137 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 4138 INIT_LIST_HEAD(&wq->list); 4139 4140 if (alloc_and_link_pwqs(wq) < 0) 4141 goto err_free_wq; 4142 4143 /* 4144 * Workqueues which may be used during memory reclaim should 4145 * have a rescuer to guarantee forward progress. 4146 */ 4147 if (flags & WQ_MEM_RECLAIM) { 4148 struct worker *rescuer; 4149 4150 rescuer = alloc_worker(); 4151 if (!rescuer) 4152 goto err_destroy; 4153 4154 rescuer->rescue_wq = wq; 4155 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", 4156 wq->name); 4157 if (IS_ERR(rescuer->task)) { 4158 kfree(rescuer); 4159 goto err_destroy; 4160 } 4161 4162 wq->rescuer = rescuer; 4163 rescuer->task->flags |= PF_NO_SETAFFINITY; 4164 wake_up_process(rescuer->task); 4165 } 4166 4167 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4168 goto err_destroy; 4169 4170 /* 4171 * wq_pool_mutex protects global freeze state and workqueues list. 4172 * Grab it, adjust max_active and add the new @wq to workqueues 4173 * list. 4174 */ 4175 mutex_lock(&wq_pool_mutex); 4176 4177 mutex_lock(&wq->mutex); 4178 for_each_pwq(pwq, wq) 4179 pwq_adjust_max_active(pwq); 4180 mutex_unlock(&wq->mutex); 4181 4182 list_add(&wq->list, &workqueues); 4183 4184 mutex_unlock(&wq_pool_mutex); 4185 4186 return wq; 4187 4188 err_free_wq: 4189 free_workqueue_attrs(wq->unbound_attrs); 4190 kfree(wq); 4191 return NULL; 4192 err_destroy: 4193 destroy_workqueue(wq); 4194 return NULL; 4195 } 4196 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 4197 4198 /** 4199 * destroy_workqueue - safely terminate a workqueue 4200 * @wq: target workqueue 4201 * 4202 * Safely destroy a workqueue. All work currently pending will be done first. 4203 */ 4204 void destroy_workqueue(struct workqueue_struct *wq) 4205 { 4206 struct pool_workqueue *pwq; 4207 int node; 4208 4209 /* drain it before proceeding with destruction */ 4210 drain_workqueue(wq); 4211 4212 /* sanity checks */ 4213 mutex_lock(&wq->mutex); 4214 for_each_pwq(pwq, wq) { 4215 int i; 4216 4217 for (i = 0; i < WORK_NR_COLORS; i++) { 4218 if (WARN_ON(pwq->nr_in_flight[i])) { 4219 mutex_unlock(&wq->mutex); 4220 return; 4221 } 4222 } 4223 4224 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) || 4225 WARN_ON(pwq->nr_active) || 4226 WARN_ON(!list_empty(&pwq->delayed_works))) { 4227 mutex_unlock(&wq->mutex); 4228 return; 4229 } 4230 } 4231 mutex_unlock(&wq->mutex); 4232 4233 /* 4234 * wq list is used to freeze wq, remove from list after 4235 * flushing is complete in case freeze races us. 4236 */ 4237 mutex_lock(&wq_pool_mutex); 4238 list_del_init(&wq->list); 4239 mutex_unlock(&wq_pool_mutex); 4240 4241 workqueue_sysfs_unregister(wq); 4242 4243 if (wq->rescuer) { 4244 kthread_stop(wq->rescuer->task); 4245 kfree(wq->rescuer); 4246 wq->rescuer = NULL; 4247 } 4248 4249 if (!(wq->flags & WQ_UNBOUND)) { 4250 /* 4251 * The base ref is never dropped on per-cpu pwqs. Directly 4252 * free the pwqs and wq. 4253 */ 4254 free_percpu(wq->cpu_pwqs); 4255 kfree(wq); 4256 } else { 4257 /* 4258 * We're the sole accessor of @wq at this point. Directly 4259 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4260 * @wq will be freed when the last pwq is released. 4261 */ 4262 for_each_node(node) { 4263 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4264 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4265 put_pwq_unlocked(pwq); 4266 } 4267 4268 /* 4269 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4270 * put. Don't access it afterwards. 4271 */ 4272 pwq = wq->dfl_pwq; 4273 wq->dfl_pwq = NULL; 4274 put_pwq_unlocked(pwq); 4275 } 4276 } 4277 EXPORT_SYMBOL_GPL(destroy_workqueue); 4278 4279 /** 4280 * workqueue_set_max_active - adjust max_active of a workqueue 4281 * @wq: target workqueue 4282 * @max_active: new max_active value. 4283 * 4284 * Set max_active of @wq to @max_active. 4285 * 4286 * CONTEXT: 4287 * Don't call from IRQ context. 4288 */ 4289 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4290 { 4291 struct pool_workqueue *pwq; 4292 4293 /* disallow meddling with max_active for ordered workqueues */ 4294 if (WARN_ON(wq->flags & __WQ_ORDERED)) 4295 return; 4296 4297 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4298 4299 mutex_lock(&wq->mutex); 4300 4301 wq->saved_max_active = max_active; 4302 4303 for_each_pwq(pwq, wq) 4304 pwq_adjust_max_active(pwq); 4305 4306 mutex_unlock(&wq->mutex); 4307 } 4308 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4309 4310 /** 4311 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4312 * 4313 * Determine whether %current is a workqueue rescuer. Can be used from 4314 * work functions to determine whether it's being run off the rescuer task. 4315 */ 4316 bool current_is_workqueue_rescuer(void) 4317 { 4318 struct worker *worker = current_wq_worker(); 4319 4320 return worker && worker->rescue_wq; 4321 } 4322 4323 /** 4324 * workqueue_congested - test whether a workqueue is congested 4325 * @cpu: CPU in question 4326 * @wq: target workqueue 4327 * 4328 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4329 * no synchronization around this function and the test result is 4330 * unreliable and only useful as advisory hints or for debugging. 4331 * 4332 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4333 * Note that both per-cpu and unbound workqueues may be associated with 4334 * multiple pool_workqueues which have separate congested states. A 4335 * workqueue being congested on one CPU doesn't mean the workqueue is also 4336 * contested on other CPUs / NUMA nodes. 4337 * 4338 * RETURNS: 4339 * %true if congested, %false otherwise. 4340 */ 4341 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4342 { 4343 struct pool_workqueue *pwq; 4344 bool ret; 4345 4346 rcu_read_lock_sched(); 4347 4348 if (cpu == WORK_CPU_UNBOUND) 4349 cpu = smp_processor_id(); 4350 4351 if (!(wq->flags & WQ_UNBOUND)) 4352 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4353 else 4354 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4355 4356 ret = !list_empty(&pwq->delayed_works); 4357 rcu_read_unlock_sched(); 4358 4359 return ret; 4360 } 4361 EXPORT_SYMBOL_GPL(workqueue_congested); 4362 4363 /** 4364 * work_busy - test whether a work is currently pending or running 4365 * @work: the work to be tested 4366 * 4367 * Test whether @work is currently pending or running. There is no 4368 * synchronization around this function and the test result is 4369 * unreliable and only useful as advisory hints or for debugging. 4370 * 4371 * RETURNS: 4372 * OR'd bitmask of WORK_BUSY_* bits. 4373 */ 4374 unsigned int work_busy(struct work_struct *work) 4375 { 4376 struct worker_pool *pool; 4377 unsigned long flags; 4378 unsigned int ret = 0; 4379 4380 if (work_pending(work)) 4381 ret |= WORK_BUSY_PENDING; 4382 4383 local_irq_save(flags); 4384 pool = get_work_pool(work); 4385 if (pool) { 4386 spin_lock(&pool->lock); 4387 if (find_worker_executing_work(pool, work)) 4388 ret |= WORK_BUSY_RUNNING; 4389 spin_unlock(&pool->lock); 4390 } 4391 local_irq_restore(flags); 4392 4393 return ret; 4394 } 4395 EXPORT_SYMBOL_GPL(work_busy); 4396 4397 /** 4398 * set_worker_desc - set description for the current work item 4399 * @fmt: printf-style format string 4400 * @...: arguments for the format string 4401 * 4402 * This function can be called by a running work function to describe what 4403 * the work item is about. If the worker task gets dumped, this 4404 * information will be printed out together to help debugging. The 4405 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4406 */ 4407 void set_worker_desc(const char *fmt, ...) 4408 { 4409 struct worker *worker = current_wq_worker(); 4410 va_list args; 4411 4412 if (worker) { 4413 va_start(args, fmt); 4414 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4415 va_end(args); 4416 worker->desc_valid = true; 4417 } 4418 } 4419 4420 /** 4421 * print_worker_info - print out worker information and description 4422 * @log_lvl: the log level to use when printing 4423 * @task: target task 4424 * 4425 * If @task is a worker and currently executing a work item, print out the 4426 * name of the workqueue being serviced and worker description set with 4427 * set_worker_desc() by the currently executing work item. 4428 * 4429 * This function can be safely called on any task as long as the 4430 * task_struct itself is accessible. While safe, this function isn't 4431 * synchronized and may print out mixups or garbages of limited length. 4432 */ 4433 void print_worker_info(const char *log_lvl, struct task_struct *task) 4434 { 4435 work_func_t *fn = NULL; 4436 char name[WQ_NAME_LEN] = { }; 4437 char desc[WORKER_DESC_LEN] = { }; 4438 struct pool_workqueue *pwq = NULL; 4439 struct workqueue_struct *wq = NULL; 4440 bool desc_valid = false; 4441 struct worker *worker; 4442 4443 if (!(task->flags & PF_WQ_WORKER)) 4444 return; 4445 4446 /* 4447 * This function is called without any synchronization and @task 4448 * could be in any state. Be careful with dereferences. 4449 */ 4450 worker = probe_kthread_data(task); 4451 4452 /* 4453 * Carefully copy the associated workqueue's workfn and name. Keep 4454 * the original last '\0' in case the original contains garbage. 4455 */ 4456 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4457 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4458 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4459 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4460 4461 /* copy worker description */ 4462 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid)); 4463 if (desc_valid) 4464 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4465 4466 if (fn || name[0] || desc[0]) { 4467 printk("%sWorkqueue: %s %pf", log_lvl, name, fn); 4468 if (desc[0]) 4469 pr_cont(" (%s)", desc); 4470 pr_cont("\n"); 4471 } 4472 } 4473 4474 /* 4475 * CPU hotplug. 4476 * 4477 * There are two challenges in supporting CPU hotplug. Firstly, there 4478 * are a lot of assumptions on strong associations among work, pwq and 4479 * pool which make migrating pending and scheduled works very 4480 * difficult to implement without impacting hot paths. Secondly, 4481 * worker pools serve mix of short, long and very long running works making 4482 * blocked draining impractical. 4483 * 4484 * This is solved by allowing the pools to be disassociated from the CPU 4485 * running as an unbound one and allowing it to be reattached later if the 4486 * cpu comes back online. 4487 */ 4488 4489 static void wq_unbind_fn(struct work_struct *work) 4490 { 4491 int cpu = smp_processor_id(); 4492 struct worker_pool *pool; 4493 struct worker *worker; 4494 int wi; 4495 4496 for_each_cpu_worker_pool(pool, cpu) { 4497 WARN_ON_ONCE(cpu != smp_processor_id()); 4498 4499 mutex_lock(&pool->manager_mutex); 4500 spin_lock_irq(&pool->lock); 4501 4502 /* 4503 * We've blocked all manager operations. Make all workers 4504 * unbound and set DISASSOCIATED. Before this, all workers 4505 * except for the ones which are still executing works from 4506 * before the last CPU down must be on the cpu. After 4507 * this, they may become diasporas. 4508 */ 4509 for_each_pool_worker(worker, wi, pool) 4510 worker->flags |= WORKER_UNBOUND; 4511 4512 pool->flags |= POOL_DISASSOCIATED; 4513 4514 spin_unlock_irq(&pool->lock); 4515 mutex_unlock(&pool->manager_mutex); 4516 4517 /* 4518 * Call schedule() so that we cross rq->lock and thus can 4519 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4520 * This is necessary as scheduler callbacks may be invoked 4521 * from other cpus. 4522 */ 4523 schedule(); 4524 4525 /* 4526 * Sched callbacks are disabled now. Zap nr_running. 4527 * After this, nr_running stays zero and need_more_worker() 4528 * and keep_working() are always true as long as the 4529 * worklist is not empty. This pool now behaves as an 4530 * unbound (in terms of concurrency management) pool which 4531 * are served by workers tied to the pool. 4532 */ 4533 atomic_set(&pool->nr_running, 0); 4534 4535 /* 4536 * With concurrency management just turned off, a busy 4537 * worker blocking could lead to lengthy stalls. Kick off 4538 * unbound chain execution of currently pending work items. 4539 */ 4540 spin_lock_irq(&pool->lock); 4541 wake_up_worker(pool); 4542 spin_unlock_irq(&pool->lock); 4543 } 4544 } 4545 4546 /** 4547 * rebind_workers - rebind all workers of a pool to the associated CPU 4548 * @pool: pool of interest 4549 * 4550 * @pool->cpu is coming online. Rebind all workers to the CPU. 4551 */ 4552 static void rebind_workers(struct worker_pool *pool) 4553 { 4554 struct worker *worker; 4555 int wi; 4556 4557 lockdep_assert_held(&pool->manager_mutex); 4558 4559 /* 4560 * Restore CPU affinity of all workers. As all idle workers should 4561 * be on the run-queue of the associated CPU before any local 4562 * wake-ups for concurrency management happen, restore CPU affinty 4563 * of all workers first and then clear UNBOUND. As we're called 4564 * from CPU_ONLINE, the following shouldn't fail. 4565 */ 4566 for_each_pool_worker(worker, wi, pool) 4567 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4568 pool->attrs->cpumask) < 0); 4569 4570 spin_lock_irq(&pool->lock); 4571 4572 for_each_pool_worker(worker, wi, pool) { 4573 unsigned int worker_flags = worker->flags; 4574 4575 /* 4576 * A bound idle worker should actually be on the runqueue 4577 * of the associated CPU for local wake-ups targeting it to 4578 * work. Kick all idle workers so that they migrate to the 4579 * associated CPU. Doing this in the same loop as 4580 * replacing UNBOUND with REBOUND is safe as no worker will 4581 * be bound before @pool->lock is released. 4582 */ 4583 if (worker_flags & WORKER_IDLE) 4584 wake_up_process(worker->task); 4585 4586 /* 4587 * We want to clear UNBOUND but can't directly call 4588 * worker_clr_flags() or adjust nr_running. Atomically 4589 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4590 * @worker will clear REBOUND using worker_clr_flags() when 4591 * it initiates the next execution cycle thus restoring 4592 * concurrency management. Note that when or whether 4593 * @worker clears REBOUND doesn't affect correctness. 4594 * 4595 * ACCESS_ONCE() is necessary because @worker->flags may be 4596 * tested without holding any lock in 4597 * wq_worker_waking_up(). Without it, NOT_RUNNING test may 4598 * fail incorrectly leading to premature concurrency 4599 * management operations. 4600 */ 4601 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4602 worker_flags |= WORKER_REBOUND; 4603 worker_flags &= ~WORKER_UNBOUND; 4604 ACCESS_ONCE(worker->flags) = worker_flags; 4605 } 4606 4607 spin_unlock_irq(&pool->lock); 4608 } 4609 4610 /** 4611 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4612 * @pool: unbound pool of interest 4613 * @cpu: the CPU which is coming up 4614 * 4615 * An unbound pool may end up with a cpumask which doesn't have any online 4616 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4617 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4618 * online CPU before, cpus_allowed of all its workers should be restored. 4619 */ 4620 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 4621 { 4622 static cpumask_t cpumask; 4623 struct worker *worker; 4624 int wi; 4625 4626 lockdep_assert_held(&pool->manager_mutex); 4627 4628 /* is @cpu allowed for @pool? */ 4629 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 4630 return; 4631 4632 /* is @cpu the only online CPU? */ 4633 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 4634 if (cpumask_weight(&cpumask) != 1) 4635 return; 4636 4637 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 4638 for_each_pool_worker(worker, wi, pool) 4639 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4640 pool->attrs->cpumask) < 0); 4641 } 4642 4643 /* 4644 * Workqueues should be brought up before normal priority CPU notifiers. 4645 * This will be registered high priority CPU notifier. 4646 */ 4647 static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb, 4648 unsigned long action, 4649 void *hcpu) 4650 { 4651 int cpu = (unsigned long)hcpu; 4652 struct worker_pool *pool; 4653 struct workqueue_struct *wq; 4654 int pi; 4655 4656 switch (action & ~CPU_TASKS_FROZEN) { 4657 case CPU_UP_PREPARE: 4658 for_each_cpu_worker_pool(pool, cpu) { 4659 if (pool->nr_workers) 4660 continue; 4661 if (create_and_start_worker(pool) < 0) 4662 return NOTIFY_BAD; 4663 } 4664 break; 4665 4666 case CPU_DOWN_FAILED: 4667 case CPU_ONLINE: 4668 mutex_lock(&wq_pool_mutex); 4669 4670 for_each_pool(pool, pi) { 4671 mutex_lock(&pool->manager_mutex); 4672 4673 if (pool->cpu == cpu) { 4674 spin_lock_irq(&pool->lock); 4675 pool->flags &= ~POOL_DISASSOCIATED; 4676 spin_unlock_irq(&pool->lock); 4677 4678 rebind_workers(pool); 4679 } else if (pool->cpu < 0) { 4680 restore_unbound_workers_cpumask(pool, cpu); 4681 } 4682 4683 mutex_unlock(&pool->manager_mutex); 4684 } 4685 4686 /* update NUMA affinity of unbound workqueues */ 4687 list_for_each_entry(wq, &workqueues, list) 4688 wq_update_unbound_numa(wq, cpu, true); 4689 4690 mutex_unlock(&wq_pool_mutex); 4691 break; 4692 } 4693 return NOTIFY_OK; 4694 } 4695 4696 /* 4697 * Workqueues should be brought down after normal priority CPU notifiers. 4698 * This will be registered as low priority CPU notifier. 4699 */ 4700 static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb, 4701 unsigned long action, 4702 void *hcpu) 4703 { 4704 int cpu = (unsigned long)hcpu; 4705 struct work_struct unbind_work; 4706 struct workqueue_struct *wq; 4707 4708 switch (action & ~CPU_TASKS_FROZEN) { 4709 case CPU_DOWN_PREPARE: 4710 /* unbinding per-cpu workers should happen on the local CPU */ 4711 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn); 4712 queue_work_on(cpu, system_highpri_wq, &unbind_work); 4713 4714 /* update NUMA affinity of unbound workqueues */ 4715 mutex_lock(&wq_pool_mutex); 4716 list_for_each_entry(wq, &workqueues, list) 4717 wq_update_unbound_numa(wq, cpu, false); 4718 mutex_unlock(&wq_pool_mutex); 4719 4720 /* wait for per-cpu unbinding to finish */ 4721 flush_work(&unbind_work); 4722 break; 4723 } 4724 return NOTIFY_OK; 4725 } 4726 4727 #ifdef CONFIG_SMP 4728 4729 struct work_for_cpu { 4730 struct work_struct work; 4731 long (*fn)(void *); 4732 void *arg; 4733 long ret; 4734 }; 4735 4736 static void work_for_cpu_fn(struct work_struct *work) 4737 { 4738 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 4739 4740 wfc->ret = wfc->fn(wfc->arg); 4741 } 4742 4743 /** 4744 * work_on_cpu - run a function in user context on a particular cpu 4745 * @cpu: the cpu to run on 4746 * @fn: the function to run 4747 * @arg: the function arg 4748 * 4749 * This will return the value @fn returns. 4750 * It is up to the caller to ensure that the cpu doesn't go offline. 4751 * The caller must not hold any locks which would prevent @fn from completing. 4752 */ 4753 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 4754 { 4755 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 4756 4757 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 4758 schedule_work_on(cpu, &wfc.work); 4759 flush_work(&wfc.work); 4760 return wfc.ret; 4761 } 4762 EXPORT_SYMBOL_GPL(work_on_cpu); 4763 #endif /* CONFIG_SMP */ 4764 4765 #ifdef CONFIG_FREEZER 4766 4767 /** 4768 * freeze_workqueues_begin - begin freezing workqueues 4769 * 4770 * Start freezing workqueues. After this function returns, all freezable 4771 * workqueues will queue new works to their delayed_works list instead of 4772 * pool->worklist. 4773 * 4774 * CONTEXT: 4775 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4776 */ 4777 void freeze_workqueues_begin(void) 4778 { 4779 struct worker_pool *pool; 4780 struct workqueue_struct *wq; 4781 struct pool_workqueue *pwq; 4782 int pi; 4783 4784 mutex_lock(&wq_pool_mutex); 4785 4786 WARN_ON_ONCE(workqueue_freezing); 4787 workqueue_freezing = true; 4788 4789 /* set FREEZING */ 4790 for_each_pool(pool, pi) { 4791 spin_lock_irq(&pool->lock); 4792 WARN_ON_ONCE(pool->flags & POOL_FREEZING); 4793 pool->flags |= POOL_FREEZING; 4794 spin_unlock_irq(&pool->lock); 4795 } 4796 4797 list_for_each_entry(wq, &workqueues, list) { 4798 mutex_lock(&wq->mutex); 4799 for_each_pwq(pwq, wq) 4800 pwq_adjust_max_active(pwq); 4801 mutex_unlock(&wq->mutex); 4802 } 4803 4804 mutex_unlock(&wq_pool_mutex); 4805 } 4806 4807 /** 4808 * freeze_workqueues_busy - are freezable workqueues still busy? 4809 * 4810 * Check whether freezing is complete. This function must be called 4811 * between freeze_workqueues_begin() and thaw_workqueues(). 4812 * 4813 * CONTEXT: 4814 * Grabs and releases wq_pool_mutex. 4815 * 4816 * RETURNS: 4817 * %true if some freezable workqueues are still busy. %false if freezing 4818 * is complete. 4819 */ 4820 bool freeze_workqueues_busy(void) 4821 { 4822 bool busy = false; 4823 struct workqueue_struct *wq; 4824 struct pool_workqueue *pwq; 4825 4826 mutex_lock(&wq_pool_mutex); 4827 4828 WARN_ON_ONCE(!workqueue_freezing); 4829 4830 list_for_each_entry(wq, &workqueues, list) { 4831 if (!(wq->flags & WQ_FREEZABLE)) 4832 continue; 4833 /* 4834 * nr_active is monotonically decreasing. It's safe 4835 * to peek without lock. 4836 */ 4837 rcu_read_lock_sched(); 4838 for_each_pwq(pwq, wq) { 4839 WARN_ON_ONCE(pwq->nr_active < 0); 4840 if (pwq->nr_active) { 4841 busy = true; 4842 rcu_read_unlock_sched(); 4843 goto out_unlock; 4844 } 4845 } 4846 rcu_read_unlock_sched(); 4847 } 4848 out_unlock: 4849 mutex_unlock(&wq_pool_mutex); 4850 return busy; 4851 } 4852 4853 /** 4854 * thaw_workqueues - thaw workqueues 4855 * 4856 * Thaw workqueues. Normal queueing is restored and all collected 4857 * frozen works are transferred to their respective pool worklists. 4858 * 4859 * CONTEXT: 4860 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4861 */ 4862 void thaw_workqueues(void) 4863 { 4864 struct workqueue_struct *wq; 4865 struct pool_workqueue *pwq; 4866 struct worker_pool *pool; 4867 int pi; 4868 4869 mutex_lock(&wq_pool_mutex); 4870 4871 if (!workqueue_freezing) 4872 goto out_unlock; 4873 4874 /* clear FREEZING */ 4875 for_each_pool(pool, pi) { 4876 spin_lock_irq(&pool->lock); 4877 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING)); 4878 pool->flags &= ~POOL_FREEZING; 4879 spin_unlock_irq(&pool->lock); 4880 } 4881 4882 /* restore max_active and repopulate worklist */ 4883 list_for_each_entry(wq, &workqueues, list) { 4884 mutex_lock(&wq->mutex); 4885 for_each_pwq(pwq, wq) 4886 pwq_adjust_max_active(pwq); 4887 mutex_unlock(&wq->mutex); 4888 } 4889 4890 workqueue_freezing = false; 4891 out_unlock: 4892 mutex_unlock(&wq_pool_mutex); 4893 } 4894 #endif /* CONFIG_FREEZER */ 4895 4896 static void __init wq_numa_init(void) 4897 { 4898 cpumask_var_t *tbl; 4899 int node, cpu; 4900 4901 /* determine NUMA pwq table len - highest node id + 1 */ 4902 for_each_node(node) 4903 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1); 4904 4905 if (num_possible_nodes() <= 1) 4906 return; 4907 4908 if (wq_disable_numa) { 4909 pr_info("workqueue: NUMA affinity support disabled\n"); 4910 return; 4911 } 4912 4913 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL); 4914 BUG_ON(!wq_update_unbound_numa_attrs_buf); 4915 4916 /* 4917 * We want masks of possible CPUs of each node which isn't readily 4918 * available. Build one from cpu_to_node() which should have been 4919 * fully initialized by now. 4920 */ 4921 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL); 4922 BUG_ON(!tbl); 4923 4924 for_each_node(node) 4925 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 4926 node_online(node) ? node : NUMA_NO_NODE)); 4927 4928 for_each_possible_cpu(cpu) { 4929 node = cpu_to_node(cpu); 4930 if (WARN_ON(node == NUMA_NO_NODE)) { 4931 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 4932 /* happens iff arch is bonkers, let's just proceed */ 4933 return; 4934 } 4935 cpumask_set_cpu(cpu, tbl[node]); 4936 } 4937 4938 wq_numa_possible_cpumask = tbl; 4939 wq_numa_enabled = true; 4940 } 4941 4942 static int __init init_workqueues(void) 4943 { 4944 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 4945 int i, cpu; 4946 4947 /* make sure we have enough bits for OFFQ pool ID */ 4948 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) < 4949 WORK_CPU_END * NR_STD_WORKER_POOLS); 4950 4951 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 4952 4953 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 4954 4955 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP); 4956 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN); 4957 4958 wq_numa_init(); 4959 4960 /* initialize CPU pools */ 4961 for_each_possible_cpu(cpu) { 4962 struct worker_pool *pool; 4963 4964 i = 0; 4965 for_each_cpu_worker_pool(pool, cpu) { 4966 BUG_ON(init_worker_pool(pool)); 4967 pool->cpu = cpu; 4968 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 4969 pool->attrs->nice = std_nice[i++]; 4970 pool->node = cpu_to_node(cpu); 4971 4972 /* alloc pool ID */ 4973 mutex_lock(&wq_pool_mutex); 4974 BUG_ON(worker_pool_assign_id(pool)); 4975 mutex_unlock(&wq_pool_mutex); 4976 } 4977 } 4978 4979 /* create the initial worker */ 4980 for_each_online_cpu(cpu) { 4981 struct worker_pool *pool; 4982 4983 for_each_cpu_worker_pool(pool, cpu) { 4984 pool->flags &= ~POOL_DISASSOCIATED; 4985 BUG_ON(create_and_start_worker(pool) < 0); 4986 } 4987 } 4988 4989 /* create default unbound wq attrs */ 4990 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 4991 struct workqueue_attrs *attrs; 4992 4993 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 4994 attrs->nice = std_nice[i]; 4995 unbound_std_wq_attrs[i] = attrs; 4996 } 4997 4998 system_wq = alloc_workqueue("events", 0, 0); 4999 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5000 system_long_wq = alloc_workqueue("events_long", 0, 0); 5001 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5002 WQ_UNBOUND_MAX_ACTIVE); 5003 system_freezable_wq = alloc_workqueue("events_freezable", 5004 WQ_FREEZABLE, 0); 5005 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5006 WQ_POWER_EFFICIENT, 0); 5007 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5008 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5009 0); 5010 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5011 !system_unbound_wq || !system_freezable_wq || 5012 !system_power_efficient_wq || 5013 !system_freezable_power_efficient_wq); 5014 return 0; 5015 } 5016 early_initcall(init_workqueues); 5017