xref: /openbmc/linux/kernel/workqueue.c (revision 7b6d864b)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There is one worker pool for each CPU and
20  * one extra for works which are better served by workers which are
21  * not bound to any specific CPU.
22  *
23  * Please read Documentation/workqueue.txt for details.
24  */
25 
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/jhash.h>
45 #include <linux/hashtable.h>
46 #include <linux/rculist.h>
47 #include <linux/nodemask.h>
48 #include <linux/moduleparam.h>
49 #include <linux/uaccess.h>
50 
51 #include "workqueue_internal.h"
52 
53 enum {
54 	/*
55 	 * worker_pool flags
56 	 *
57 	 * A bound pool is either associated or disassociated with its CPU.
58 	 * While associated (!DISASSOCIATED), all workers are bound to the
59 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
60 	 * is in effect.
61 	 *
62 	 * While DISASSOCIATED, the cpu may be offline and all workers have
63 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
64 	 * be executing on any CPU.  The pool behaves as an unbound one.
65 	 *
66 	 * Note that DISASSOCIATED should be flipped only while holding
67 	 * manager_mutex to avoid changing binding state while
68 	 * create_worker() is in progress.
69 	 */
70 	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
71 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72 	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
73 
74 	/* worker flags */
75 	WORKER_STARTED		= 1 << 0,	/* started */
76 	WORKER_DIE		= 1 << 1,	/* die die die */
77 	WORKER_IDLE		= 1 << 2,	/* is idle */
78 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
79 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
80 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
81 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
82 
83 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
84 				  WORKER_UNBOUND | WORKER_REBOUND,
85 
86 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
87 
88 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
89 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
90 
91 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
92 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
93 
94 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
95 						/* call for help after 10ms
96 						   (min two ticks) */
97 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
98 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
99 
100 	/*
101 	 * Rescue workers are used only on emergencies and shared by
102 	 * all cpus.  Give -20.
103 	 */
104 	RESCUER_NICE_LEVEL	= -20,
105 	HIGHPRI_NICE_LEVEL	= -20,
106 
107 	WQ_NAME_LEN		= 24,
108 };
109 
110 /*
111  * Structure fields follow one of the following exclusion rules.
112  *
113  * I: Modifiable by initialization/destruction paths and read-only for
114  *    everyone else.
115  *
116  * P: Preemption protected.  Disabling preemption is enough and should
117  *    only be modified and accessed from the local cpu.
118  *
119  * L: pool->lock protected.  Access with pool->lock held.
120  *
121  * X: During normal operation, modification requires pool->lock and should
122  *    be done only from local cpu.  Either disabling preemption on local
123  *    cpu or grabbing pool->lock is enough for read access.  If
124  *    POOL_DISASSOCIATED is set, it's identical to L.
125  *
126  * MG: pool->manager_mutex and pool->lock protected.  Writes require both
127  *     locks.  Reads can happen under either lock.
128  *
129  * PL: wq_pool_mutex protected.
130  *
131  * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
132  *
133  * WQ: wq->mutex protected.
134  *
135  * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
136  *
137  * MD: wq_mayday_lock protected.
138  */
139 
140 /* struct worker is defined in workqueue_internal.h */
141 
142 struct worker_pool {
143 	spinlock_t		lock;		/* the pool lock */
144 	int			cpu;		/* I: the associated cpu */
145 	int			node;		/* I: the associated node ID */
146 	int			id;		/* I: pool ID */
147 	unsigned int		flags;		/* X: flags */
148 
149 	struct list_head	worklist;	/* L: list of pending works */
150 	int			nr_workers;	/* L: total number of workers */
151 
152 	/* nr_idle includes the ones off idle_list for rebinding */
153 	int			nr_idle;	/* L: currently idle ones */
154 
155 	struct list_head	idle_list;	/* X: list of idle workers */
156 	struct timer_list	idle_timer;	/* L: worker idle timeout */
157 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
158 
159 	/* a workers is either on busy_hash or idle_list, or the manager */
160 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
161 						/* L: hash of busy workers */
162 
163 	/* see manage_workers() for details on the two manager mutexes */
164 	struct mutex		manager_arb;	/* manager arbitration */
165 	struct mutex		manager_mutex;	/* manager exclusion */
166 	struct idr		worker_idr;	/* MG: worker IDs and iteration */
167 
168 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
169 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
170 	int			refcnt;		/* PL: refcnt for unbound pools */
171 
172 	/*
173 	 * The current concurrency level.  As it's likely to be accessed
174 	 * from other CPUs during try_to_wake_up(), put it in a separate
175 	 * cacheline.
176 	 */
177 	atomic_t		nr_running ____cacheline_aligned_in_smp;
178 
179 	/*
180 	 * Destruction of pool is sched-RCU protected to allow dereferences
181 	 * from get_work_pool().
182 	 */
183 	struct rcu_head		rcu;
184 } ____cacheline_aligned_in_smp;
185 
186 /*
187  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
188  * of work_struct->data are used for flags and the remaining high bits
189  * point to the pwq; thus, pwqs need to be aligned at two's power of the
190  * number of flag bits.
191  */
192 struct pool_workqueue {
193 	struct worker_pool	*pool;		/* I: the associated pool */
194 	struct workqueue_struct *wq;		/* I: the owning workqueue */
195 	int			work_color;	/* L: current color */
196 	int			flush_color;	/* L: flushing color */
197 	int			refcnt;		/* L: reference count */
198 	int			nr_in_flight[WORK_NR_COLORS];
199 						/* L: nr of in_flight works */
200 	int			nr_active;	/* L: nr of active works */
201 	int			max_active;	/* L: max active works */
202 	struct list_head	delayed_works;	/* L: delayed works */
203 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
204 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
205 
206 	/*
207 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
208 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
209 	 * itself is also sched-RCU protected so that the first pwq can be
210 	 * determined without grabbing wq->mutex.
211 	 */
212 	struct work_struct	unbound_release_work;
213 	struct rcu_head		rcu;
214 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
215 
216 /*
217  * Structure used to wait for workqueue flush.
218  */
219 struct wq_flusher {
220 	struct list_head	list;		/* WQ: list of flushers */
221 	int			flush_color;	/* WQ: flush color waiting for */
222 	struct completion	done;		/* flush completion */
223 };
224 
225 struct wq_device;
226 
227 /*
228  * The externally visible workqueue.  It relays the issued work items to
229  * the appropriate worker_pool through its pool_workqueues.
230  */
231 struct workqueue_struct {
232 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
233 	struct list_head	list;		/* PL: list of all workqueues */
234 
235 	struct mutex		mutex;		/* protects this wq */
236 	int			work_color;	/* WQ: current work color */
237 	int			flush_color;	/* WQ: current flush color */
238 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
239 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
240 	struct list_head	flusher_queue;	/* WQ: flush waiters */
241 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
242 
243 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
244 	struct worker		*rescuer;	/* I: rescue worker */
245 
246 	int			nr_drainers;	/* WQ: drain in progress */
247 	int			saved_max_active; /* WQ: saved pwq max_active */
248 
249 	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
250 	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
251 
252 #ifdef CONFIG_SYSFS
253 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
254 #endif
255 #ifdef CONFIG_LOCKDEP
256 	struct lockdep_map	lockdep_map;
257 #endif
258 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
259 
260 	/* hot fields used during command issue, aligned to cacheline */
261 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
262 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
263 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
264 };
265 
266 static struct kmem_cache *pwq_cache;
267 
268 static int wq_numa_tbl_len;		/* highest possible NUMA node id + 1 */
269 static cpumask_var_t *wq_numa_possible_cpumask;
270 					/* possible CPUs of each node */
271 
272 static bool wq_disable_numa;
273 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
274 
275 /* see the comment above the definition of WQ_POWER_EFFICIENT */
276 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
277 static bool wq_power_efficient = true;
278 #else
279 static bool wq_power_efficient;
280 #endif
281 
282 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
283 
284 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
285 
286 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
287 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
288 
289 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
290 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
291 
292 static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
293 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
294 
295 /* the per-cpu worker pools */
296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
297 				     cpu_worker_pools);
298 
299 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
300 
301 /* PL: hash of all unbound pools keyed by pool->attrs */
302 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
303 
304 /* I: attributes used when instantiating standard unbound pools on demand */
305 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
306 
307 struct workqueue_struct *system_wq __read_mostly;
308 EXPORT_SYMBOL(system_wq);
309 struct workqueue_struct *system_highpri_wq __read_mostly;
310 EXPORT_SYMBOL_GPL(system_highpri_wq);
311 struct workqueue_struct *system_long_wq __read_mostly;
312 EXPORT_SYMBOL_GPL(system_long_wq);
313 struct workqueue_struct *system_unbound_wq __read_mostly;
314 EXPORT_SYMBOL_GPL(system_unbound_wq);
315 struct workqueue_struct *system_freezable_wq __read_mostly;
316 EXPORT_SYMBOL_GPL(system_freezable_wq);
317 struct workqueue_struct *system_power_efficient_wq __read_mostly;
318 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
319 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
320 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
321 
322 static int worker_thread(void *__worker);
323 static void copy_workqueue_attrs(struct workqueue_attrs *to,
324 				 const struct workqueue_attrs *from);
325 
326 #define CREATE_TRACE_POINTS
327 #include <trace/events/workqueue.h>
328 
329 #define assert_rcu_or_pool_mutex()					\
330 	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
331 			   lockdep_is_held(&wq_pool_mutex),		\
332 			   "sched RCU or wq_pool_mutex should be held")
333 
334 #define assert_rcu_or_wq_mutex(wq)					\
335 	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
336 			   lockdep_is_held(&wq->mutex),			\
337 			   "sched RCU or wq->mutex should be held")
338 
339 #ifdef CONFIG_LOCKDEP
340 #define assert_manager_or_pool_lock(pool)				\
341 	WARN_ONCE(debug_locks &&					\
342 		  !lockdep_is_held(&(pool)->manager_mutex) &&		\
343 		  !lockdep_is_held(&(pool)->lock),			\
344 		  "pool->manager_mutex or ->lock should be held")
345 #else
346 #define assert_manager_or_pool_lock(pool)	do { } while (0)
347 #endif
348 
349 #define for_each_cpu_worker_pool(pool, cpu)				\
350 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
351 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
352 	     (pool)++)
353 
354 /**
355  * for_each_pool - iterate through all worker_pools in the system
356  * @pool: iteration cursor
357  * @pi: integer used for iteration
358  *
359  * This must be called either with wq_pool_mutex held or sched RCU read
360  * locked.  If the pool needs to be used beyond the locking in effect, the
361  * caller is responsible for guaranteeing that the pool stays online.
362  *
363  * The if/else clause exists only for the lockdep assertion and can be
364  * ignored.
365  */
366 #define for_each_pool(pool, pi)						\
367 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
368 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
369 		else
370 
371 /**
372  * for_each_pool_worker - iterate through all workers of a worker_pool
373  * @worker: iteration cursor
374  * @wi: integer used for iteration
375  * @pool: worker_pool to iterate workers of
376  *
377  * This must be called with either @pool->manager_mutex or ->lock held.
378  *
379  * The if/else clause exists only for the lockdep assertion and can be
380  * ignored.
381  */
382 #define for_each_pool_worker(worker, wi, pool)				\
383 	idr_for_each_entry(&(pool)->worker_idr, (worker), (wi))		\
384 		if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
385 		else
386 
387 /**
388  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
389  * @pwq: iteration cursor
390  * @wq: the target workqueue
391  *
392  * This must be called either with wq->mutex held or sched RCU read locked.
393  * If the pwq needs to be used beyond the locking in effect, the caller is
394  * responsible for guaranteeing that the pwq stays online.
395  *
396  * The if/else clause exists only for the lockdep assertion and can be
397  * ignored.
398  */
399 #define for_each_pwq(pwq, wq)						\
400 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
401 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
402 		else
403 
404 #ifdef CONFIG_DEBUG_OBJECTS_WORK
405 
406 static struct debug_obj_descr work_debug_descr;
407 
408 static void *work_debug_hint(void *addr)
409 {
410 	return ((struct work_struct *) addr)->func;
411 }
412 
413 /*
414  * fixup_init is called when:
415  * - an active object is initialized
416  */
417 static int work_fixup_init(void *addr, enum debug_obj_state state)
418 {
419 	struct work_struct *work = addr;
420 
421 	switch (state) {
422 	case ODEBUG_STATE_ACTIVE:
423 		cancel_work_sync(work);
424 		debug_object_init(work, &work_debug_descr);
425 		return 1;
426 	default:
427 		return 0;
428 	}
429 }
430 
431 /*
432  * fixup_activate is called when:
433  * - an active object is activated
434  * - an unknown object is activated (might be a statically initialized object)
435  */
436 static int work_fixup_activate(void *addr, enum debug_obj_state state)
437 {
438 	struct work_struct *work = addr;
439 
440 	switch (state) {
441 
442 	case ODEBUG_STATE_NOTAVAILABLE:
443 		/*
444 		 * This is not really a fixup. The work struct was
445 		 * statically initialized. We just make sure that it
446 		 * is tracked in the object tracker.
447 		 */
448 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
449 			debug_object_init(work, &work_debug_descr);
450 			debug_object_activate(work, &work_debug_descr);
451 			return 0;
452 		}
453 		WARN_ON_ONCE(1);
454 		return 0;
455 
456 	case ODEBUG_STATE_ACTIVE:
457 		WARN_ON(1);
458 
459 	default:
460 		return 0;
461 	}
462 }
463 
464 /*
465  * fixup_free is called when:
466  * - an active object is freed
467  */
468 static int work_fixup_free(void *addr, enum debug_obj_state state)
469 {
470 	struct work_struct *work = addr;
471 
472 	switch (state) {
473 	case ODEBUG_STATE_ACTIVE:
474 		cancel_work_sync(work);
475 		debug_object_free(work, &work_debug_descr);
476 		return 1;
477 	default:
478 		return 0;
479 	}
480 }
481 
482 static struct debug_obj_descr work_debug_descr = {
483 	.name		= "work_struct",
484 	.debug_hint	= work_debug_hint,
485 	.fixup_init	= work_fixup_init,
486 	.fixup_activate	= work_fixup_activate,
487 	.fixup_free	= work_fixup_free,
488 };
489 
490 static inline void debug_work_activate(struct work_struct *work)
491 {
492 	debug_object_activate(work, &work_debug_descr);
493 }
494 
495 static inline void debug_work_deactivate(struct work_struct *work)
496 {
497 	debug_object_deactivate(work, &work_debug_descr);
498 }
499 
500 void __init_work(struct work_struct *work, int onstack)
501 {
502 	if (onstack)
503 		debug_object_init_on_stack(work, &work_debug_descr);
504 	else
505 		debug_object_init(work, &work_debug_descr);
506 }
507 EXPORT_SYMBOL_GPL(__init_work);
508 
509 void destroy_work_on_stack(struct work_struct *work)
510 {
511 	debug_object_free(work, &work_debug_descr);
512 }
513 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
514 
515 #else
516 static inline void debug_work_activate(struct work_struct *work) { }
517 static inline void debug_work_deactivate(struct work_struct *work) { }
518 #endif
519 
520 /* allocate ID and assign it to @pool */
521 static int worker_pool_assign_id(struct worker_pool *pool)
522 {
523 	int ret;
524 
525 	lockdep_assert_held(&wq_pool_mutex);
526 
527 	ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL);
528 	if (ret >= 0) {
529 		pool->id = ret;
530 		return 0;
531 	}
532 	return ret;
533 }
534 
535 /**
536  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
537  * @wq: the target workqueue
538  * @node: the node ID
539  *
540  * This must be called either with pwq_lock held or sched RCU read locked.
541  * If the pwq needs to be used beyond the locking in effect, the caller is
542  * responsible for guaranteeing that the pwq stays online.
543  */
544 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
545 						  int node)
546 {
547 	assert_rcu_or_wq_mutex(wq);
548 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
549 }
550 
551 static unsigned int work_color_to_flags(int color)
552 {
553 	return color << WORK_STRUCT_COLOR_SHIFT;
554 }
555 
556 static int get_work_color(struct work_struct *work)
557 {
558 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
559 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
560 }
561 
562 static int work_next_color(int color)
563 {
564 	return (color + 1) % WORK_NR_COLORS;
565 }
566 
567 /*
568  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
569  * contain the pointer to the queued pwq.  Once execution starts, the flag
570  * is cleared and the high bits contain OFFQ flags and pool ID.
571  *
572  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
573  * and clear_work_data() can be used to set the pwq, pool or clear
574  * work->data.  These functions should only be called while the work is
575  * owned - ie. while the PENDING bit is set.
576  *
577  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
578  * corresponding to a work.  Pool is available once the work has been
579  * queued anywhere after initialization until it is sync canceled.  pwq is
580  * available only while the work item is queued.
581  *
582  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
583  * canceled.  While being canceled, a work item may have its PENDING set
584  * but stay off timer and worklist for arbitrarily long and nobody should
585  * try to steal the PENDING bit.
586  */
587 static inline void set_work_data(struct work_struct *work, unsigned long data,
588 				 unsigned long flags)
589 {
590 	WARN_ON_ONCE(!work_pending(work));
591 	atomic_long_set(&work->data, data | flags | work_static(work));
592 }
593 
594 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
595 			 unsigned long extra_flags)
596 {
597 	set_work_data(work, (unsigned long)pwq,
598 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
599 }
600 
601 static void set_work_pool_and_keep_pending(struct work_struct *work,
602 					   int pool_id)
603 {
604 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
605 		      WORK_STRUCT_PENDING);
606 }
607 
608 static void set_work_pool_and_clear_pending(struct work_struct *work,
609 					    int pool_id)
610 {
611 	/*
612 	 * The following wmb is paired with the implied mb in
613 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
614 	 * here are visible to and precede any updates by the next PENDING
615 	 * owner.
616 	 */
617 	smp_wmb();
618 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
619 }
620 
621 static void clear_work_data(struct work_struct *work)
622 {
623 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
624 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
625 }
626 
627 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
628 {
629 	unsigned long data = atomic_long_read(&work->data);
630 
631 	if (data & WORK_STRUCT_PWQ)
632 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
633 	else
634 		return NULL;
635 }
636 
637 /**
638  * get_work_pool - return the worker_pool a given work was associated with
639  * @work: the work item of interest
640  *
641  * Return the worker_pool @work was last associated with.  %NULL if none.
642  *
643  * Pools are created and destroyed under wq_pool_mutex, and allows read
644  * access under sched-RCU read lock.  As such, this function should be
645  * called under wq_pool_mutex or with preemption disabled.
646  *
647  * All fields of the returned pool are accessible as long as the above
648  * mentioned locking is in effect.  If the returned pool needs to be used
649  * beyond the critical section, the caller is responsible for ensuring the
650  * returned pool is and stays online.
651  */
652 static struct worker_pool *get_work_pool(struct work_struct *work)
653 {
654 	unsigned long data = atomic_long_read(&work->data);
655 	int pool_id;
656 
657 	assert_rcu_or_pool_mutex();
658 
659 	if (data & WORK_STRUCT_PWQ)
660 		return ((struct pool_workqueue *)
661 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
662 
663 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
664 	if (pool_id == WORK_OFFQ_POOL_NONE)
665 		return NULL;
666 
667 	return idr_find(&worker_pool_idr, pool_id);
668 }
669 
670 /**
671  * get_work_pool_id - return the worker pool ID a given work is associated with
672  * @work: the work item of interest
673  *
674  * Return the worker_pool ID @work was last associated with.
675  * %WORK_OFFQ_POOL_NONE if none.
676  */
677 static int get_work_pool_id(struct work_struct *work)
678 {
679 	unsigned long data = atomic_long_read(&work->data);
680 
681 	if (data & WORK_STRUCT_PWQ)
682 		return ((struct pool_workqueue *)
683 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
684 
685 	return data >> WORK_OFFQ_POOL_SHIFT;
686 }
687 
688 static void mark_work_canceling(struct work_struct *work)
689 {
690 	unsigned long pool_id = get_work_pool_id(work);
691 
692 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
693 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
694 }
695 
696 static bool work_is_canceling(struct work_struct *work)
697 {
698 	unsigned long data = atomic_long_read(&work->data);
699 
700 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
701 }
702 
703 /*
704  * Policy functions.  These define the policies on how the global worker
705  * pools are managed.  Unless noted otherwise, these functions assume that
706  * they're being called with pool->lock held.
707  */
708 
709 static bool __need_more_worker(struct worker_pool *pool)
710 {
711 	return !atomic_read(&pool->nr_running);
712 }
713 
714 /*
715  * Need to wake up a worker?  Called from anything but currently
716  * running workers.
717  *
718  * Note that, because unbound workers never contribute to nr_running, this
719  * function will always return %true for unbound pools as long as the
720  * worklist isn't empty.
721  */
722 static bool need_more_worker(struct worker_pool *pool)
723 {
724 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
725 }
726 
727 /* Can I start working?  Called from busy but !running workers. */
728 static bool may_start_working(struct worker_pool *pool)
729 {
730 	return pool->nr_idle;
731 }
732 
733 /* Do I need to keep working?  Called from currently running workers. */
734 static bool keep_working(struct worker_pool *pool)
735 {
736 	return !list_empty(&pool->worklist) &&
737 		atomic_read(&pool->nr_running) <= 1;
738 }
739 
740 /* Do we need a new worker?  Called from manager. */
741 static bool need_to_create_worker(struct worker_pool *pool)
742 {
743 	return need_more_worker(pool) && !may_start_working(pool);
744 }
745 
746 /* Do I need to be the manager? */
747 static bool need_to_manage_workers(struct worker_pool *pool)
748 {
749 	return need_to_create_worker(pool) ||
750 		(pool->flags & POOL_MANAGE_WORKERS);
751 }
752 
753 /* Do we have too many workers and should some go away? */
754 static bool too_many_workers(struct worker_pool *pool)
755 {
756 	bool managing = mutex_is_locked(&pool->manager_arb);
757 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
758 	int nr_busy = pool->nr_workers - nr_idle;
759 
760 	/*
761 	 * nr_idle and idle_list may disagree if idle rebinding is in
762 	 * progress.  Never return %true if idle_list is empty.
763 	 */
764 	if (list_empty(&pool->idle_list))
765 		return false;
766 
767 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
768 }
769 
770 /*
771  * Wake up functions.
772  */
773 
774 /* Return the first worker.  Safe with preemption disabled */
775 static struct worker *first_worker(struct worker_pool *pool)
776 {
777 	if (unlikely(list_empty(&pool->idle_list)))
778 		return NULL;
779 
780 	return list_first_entry(&pool->idle_list, struct worker, entry);
781 }
782 
783 /**
784  * wake_up_worker - wake up an idle worker
785  * @pool: worker pool to wake worker from
786  *
787  * Wake up the first idle worker of @pool.
788  *
789  * CONTEXT:
790  * spin_lock_irq(pool->lock).
791  */
792 static void wake_up_worker(struct worker_pool *pool)
793 {
794 	struct worker *worker = first_worker(pool);
795 
796 	if (likely(worker))
797 		wake_up_process(worker->task);
798 }
799 
800 /**
801  * wq_worker_waking_up - a worker is waking up
802  * @task: task waking up
803  * @cpu: CPU @task is waking up to
804  *
805  * This function is called during try_to_wake_up() when a worker is
806  * being awoken.
807  *
808  * CONTEXT:
809  * spin_lock_irq(rq->lock)
810  */
811 void wq_worker_waking_up(struct task_struct *task, int cpu)
812 {
813 	struct worker *worker = kthread_data(task);
814 
815 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
816 		WARN_ON_ONCE(worker->pool->cpu != cpu);
817 		atomic_inc(&worker->pool->nr_running);
818 	}
819 }
820 
821 /**
822  * wq_worker_sleeping - a worker is going to sleep
823  * @task: task going to sleep
824  * @cpu: CPU in question, must be the current CPU number
825  *
826  * This function is called during schedule() when a busy worker is
827  * going to sleep.  Worker on the same cpu can be woken up by
828  * returning pointer to its task.
829  *
830  * CONTEXT:
831  * spin_lock_irq(rq->lock)
832  *
833  * RETURNS:
834  * Worker task on @cpu to wake up, %NULL if none.
835  */
836 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
837 {
838 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
839 	struct worker_pool *pool;
840 
841 	/*
842 	 * Rescuers, which may not have all the fields set up like normal
843 	 * workers, also reach here, let's not access anything before
844 	 * checking NOT_RUNNING.
845 	 */
846 	if (worker->flags & WORKER_NOT_RUNNING)
847 		return NULL;
848 
849 	pool = worker->pool;
850 
851 	/* this can only happen on the local cpu */
852 	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
853 		return NULL;
854 
855 	/*
856 	 * The counterpart of the following dec_and_test, implied mb,
857 	 * worklist not empty test sequence is in insert_work().
858 	 * Please read comment there.
859 	 *
860 	 * NOT_RUNNING is clear.  This means that we're bound to and
861 	 * running on the local cpu w/ rq lock held and preemption
862 	 * disabled, which in turn means that none else could be
863 	 * manipulating idle_list, so dereferencing idle_list without pool
864 	 * lock is safe.
865 	 */
866 	if (atomic_dec_and_test(&pool->nr_running) &&
867 	    !list_empty(&pool->worklist))
868 		to_wakeup = first_worker(pool);
869 	return to_wakeup ? to_wakeup->task : NULL;
870 }
871 
872 /**
873  * worker_set_flags - set worker flags and adjust nr_running accordingly
874  * @worker: self
875  * @flags: flags to set
876  * @wakeup: wakeup an idle worker if necessary
877  *
878  * Set @flags in @worker->flags and adjust nr_running accordingly.  If
879  * nr_running becomes zero and @wakeup is %true, an idle worker is
880  * woken up.
881  *
882  * CONTEXT:
883  * spin_lock_irq(pool->lock)
884  */
885 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
886 				    bool wakeup)
887 {
888 	struct worker_pool *pool = worker->pool;
889 
890 	WARN_ON_ONCE(worker->task != current);
891 
892 	/*
893 	 * If transitioning into NOT_RUNNING, adjust nr_running and
894 	 * wake up an idle worker as necessary if requested by
895 	 * @wakeup.
896 	 */
897 	if ((flags & WORKER_NOT_RUNNING) &&
898 	    !(worker->flags & WORKER_NOT_RUNNING)) {
899 		if (wakeup) {
900 			if (atomic_dec_and_test(&pool->nr_running) &&
901 			    !list_empty(&pool->worklist))
902 				wake_up_worker(pool);
903 		} else
904 			atomic_dec(&pool->nr_running);
905 	}
906 
907 	worker->flags |= flags;
908 }
909 
910 /**
911  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
912  * @worker: self
913  * @flags: flags to clear
914  *
915  * Clear @flags in @worker->flags and adjust nr_running accordingly.
916  *
917  * CONTEXT:
918  * spin_lock_irq(pool->lock)
919  */
920 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
921 {
922 	struct worker_pool *pool = worker->pool;
923 	unsigned int oflags = worker->flags;
924 
925 	WARN_ON_ONCE(worker->task != current);
926 
927 	worker->flags &= ~flags;
928 
929 	/*
930 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
931 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
932 	 * of multiple flags, not a single flag.
933 	 */
934 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
935 		if (!(worker->flags & WORKER_NOT_RUNNING))
936 			atomic_inc(&pool->nr_running);
937 }
938 
939 /**
940  * find_worker_executing_work - find worker which is executing a work
941  * @pool: pool of interest
942  * @work: work to find worker for
943  *
944  * Find a worker which is executing @work on @pool by searching
945  * @pool->busy_hash which is keyed by the address of @work.  For a worker
946  * to match, its current execution should match the address of @work and
947  * its work function.  This is to avoid unwanted dependency between
948  * unrelated work executions through a work item being recycled while still
949  * being executed.
950  *
951  * This is a bit tricky.  A work item may be freed once its execution
952  * starts and nothing prevents the freed area from being recycled for
953  * another work item.  If the same work item address ends up being reused
954  * before the original execution finishes, workqueue will identify the
955  * recycled work item as currently executing and make it wait until the
956  * current execution finishes, introducing an unwanted dependency.
957  *
958  * This function checks the work item address and work function to avoid
959  * false positives.  Note that this isn't complete as one may construct a
960  * work function which can introduce dependency onto itself through a
961  * recycled work item.  Well, if somebody wants to shoot oneself in the
962  * foot that badly, there's only so much we can do, and if such deadlock
963  * actually occurs, it should be easy to locate the culprit work function.
964  *
965  * CONTEXT:
966  * spin_lock_irq(pool->lock).
967  *
968  * RETURNS:
969  * Pointer to worker which is executing @work if found, NULL
970  * otherwise.
971  */
972 static struct worker *find_worker_executing_work(struct worker_pool *pool,
973 						 struct work_struct *work)
974 {
975 	struct worker *worker;
976 
977 	hash_for_each_possible(pool->busy_hash, worker, hentry,
978 			       (unsigned long)work)
979 		if (worker->current_work == work &&
980 		    worker->current_func == work->func)
981 			return worker;
982 
983 	return NULL;
984 }
985 
986 /**
987  * move_linked_works - move linked works to a list
988  * @work: start of series of works to be scheduled
989  * @head: target list to append @work to
990  * @nextp: out paramter for nested worklist walking
991  *
992  * Schedule linked works starting from @work to @head.  Work series to
993  * be scheduled starts at @work and includes any consecutive work with
994  * WORK_STRUCT_LINKED set in its predecessor.
995  *
996  * If @nextp is not NULL, it's updated to point to the next work of
997  * the last scheduled work.  This allows move_linked_works() to be
998  * nested inside outer list_for_each_entry_safe().
999  *
1000  * CONTEXT:
1001  * spin_lock_irq(pool->lock).
1002  */
1003 static void move_linked_works(struct work_struct *work, struct list_head *head,
1004 			      struct work_struct **nextp)
1005 {
1006 	struct work_struct *n;
1007 
1008 	/*
1009 	 * Linked worklist will always end before the end of the list,
1010 	 * use NULL for list head.
1011 	 */
1012 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1013 		list_move_tail(&work->entry, head);
1014 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1015 			break;
1016 	}
1017 
1018 	/*
1019 	 * If we're already inside safe list traversal and have moved
1020 	 * multiple works to the scheduled queue, the next position
1021 	 * needs to be updated.
1022 	 */
1023 	if (nextp)
1024 		*nextp = n;
1025 }
1026 
1027 /**
1028  * get_pwq - get an extra reference on the specified pool_workqueue
1029  * @pwq: pool_workqueue to get
1030  *
1031  * Obtain an extra reference on @pwq.  The caller should guarantee that
1032  * @pwq has positive refcnt and be holding the matching pool->lock.
1033  */
1034 static void get_pwq(struct pool_workqueue *pwq)
1035 {
1036 	lockdep_assert_held(&pwq->pool->lock);
1037 	WARN_ON_ONCE(pwq->refcnt <= 0);
1038 	pwq->refcnt++;
1039 }
1040 
1041 /**
1042  * put_pwq - put a pool_workqueue reference
1043  * @pwq: pool_workqueue to put
1044  *
1045  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1046  * destruction.  The caller should be holding the matching pool->lock.
1047  */
1048 static void put_pwq(struct pool_workqueue *pwq)
1049 {
1050 	lockdep_assert_held(&pwq->pool->lock);
1051 	if (likely(--pwq->refcnt))
1052 		return;
1053 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1054 		return;
1055 	/*
1056 	 * @pwq can't be released under pool->lock, bounce to
1057 	 * pwq_unbound_release_workfn().  This never recurses on the same
1058 	 * pool->lock as this path is taken only for unbound workqueues and
1059 	 * the release work item is scheduled on a per-cpu workqueue.  To
1060 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1061 	 * subclass of 1 in get_unbound_pool().
1062 	 */
1063 	schedule_work(&pwq->unbound_release_work);
1064 }
1065 
1066 /**
1067  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1068  * @pwq: pool_workqueue to put (can be %NULL)
1069  *
1070  * put_pwq() with locking.  This function also allows %NULL @pwq.
1071  */
1072 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1073 {
1074 	if (pwq) {
1075 		/*
1076 		 * As both pwqs and pools are sched-RCU protected, the
1077 		 * following lock operations are safe.
1078 		 */
1079 		spin_lock_irq(&pwq->pool->lock);
1080 		put_pwq(pwq);
1081 		spin_unlock_irq(&pwq->pool->lock);
1082 	}
1083 }
1084 
1085 static void pwq_activate_delayed_work(struct work_struct *work)
1086 {
1087 	struct pool_workqueue *pwq = get_work_pwq(work);
1088 
1089 	trace_workqueue_activate_work(work);
1090 	move_linked_works(work, &pwq->pool->worklist, NULL);
1091 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1092 	pwq->nr_active++;
1093 }
1094 
1095 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1096 {
1097 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1098 						    struct work_struct, entry);
1099 
1100 	pwq_activate_delayed_work(work);
1101 }
1102 
1103 /**
1104  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1105  * @pwq: pwq of interest
1106  * @color: color of work which left the queue
1107  *
1108  * A work either has completed or is removed from pending queue,
1109  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1110  *
1111  * CONTEXT:
1112  * spin_lock_irq(pool->lock).
1113  */
1114 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1115 {
1116 	/* uncolored work items don't participate in flushing or nr_active */
1117 	if (color == WORK_NO_COLOR)
1118 		goto out_put;
1119 
1120 	pwq->nr_in_flight[color]--;
1121 
1122 	pwq->nr_active--;
1123 	if (!list_empty(&pwq->delayed_works)) {
1124 		/* one down, submit a delayed one */
1125 		if (pwq->nr_active < pwq->max_active)
1126 			pwq_activate_first_delayed(pwq);
1127 	}
1128 
1129 	/* is flush in progress and are we at the flushing tip? */
1130 	if (likely(pwq->flush_color != color))
1131 		goto out_put;
1132 
1133 	/* are there still in-flight works? */
1134 	if (pwq->nr_in_flight[color])
1135 		goto out_put;
1136 
1137 	/* this pwq is done, clear flush_color */
1138 	pwq->flush_color = -1;
1139 
1140 	/*
1141 	 * If this was the last pwq, wake up the first flusher.  It
1142 	 * will handle the rest.
1143 	 */
1144 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1145 		complete(&pwq->wq->first_flusher->done);
1146 out_put:
1147 	put_pwq(pwq);
1148 }
1149 
1150 /**
1151  * try_to_grab_pending - steal work item from worklist and disable irq
1152  * @work: work item to steal
1153  * @is_dwork: @work is a delayed_work
1154  * @flags: place to store irq state
1155  *
1156  * Try to grab PENDING bit of @work.  This function can handle @work in any
1157  * stable state - idle, on timer or on worklist.  Return values are
1158  *
1159  *  1		if @work was pending and we successfully stole PENDING
1160  *  0		if @work was idle and we claimed PENDING
1161  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1162  *  -ENOENT	if someone else is canceling @work, this state may persist
1163  *		for arbitrarily long
1164  *
1165  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1166  * interrupted while holding PENDING and @work off queue, irq must be
1167  * disabled on entry.  This, combined with delayed_work->timer being
1168  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1169  *
1170  * On successful return, >= 0, irq is disabled and the caller is
1171  * responsible for releasing it using local_irq_restore(*@flags).
1172  *
1173  * This function is safe to call from any context including IRQ handler.
1174  */
1175 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1176 			       unsigned long *flags)
1177 {
1178 	struct worker_pool *pool;
1179 	struct pool_workqueue *pwq;
1180 
1181 	local_irq_save(*flags);
1182 
1183 	/* try to steal the timer if it exists */
1184 	if (is_dwork) {
1185 		struct delayed_work *dwork = to_delayed_work(work);
1186 
1187 		/*
1188 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1189 		 * guaranteed that the timer is not queued anywhere and not
1190 		 * running on the local CPU.
1191 		 */
1192 		if (likely(del_timer(&dwork->timer)))
1193 			return 1;
1194 	}
1195 
1196 	/* try to claim PENDING the normal way */
1197 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1198 		return 0;
1199 
1200 	/*
1201 	 * The queueing is in progress, or it is already queued. Try to
1202 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1203 	 */
1204 	pool = get_work_pool(work);
1205 	if (!pool)
1206 		goto fail;
1207 
1208 	spin_lock(&pool->lock);
1209 	/*
1210 	 * work->data is guaranteed to point to pwq only while the work
1211 	 * item is queued on pwq->wq, and both updating work->data to point
1212 	 * to pwq on queueing and to pool on dequeueing are done under
1213 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1214 	 * points to pwq which is associated with a locked pool, the work
1215 	 * item is currently queued on that pool.
1216 	 */
1217 	pwq = get_work_pwq(work);
1218 	if (pwq && pwq->pool == pool) {
1219 		debug_work_deactivate(work);
1220 
1221 		/*
1222 		 * A delayed work item cannot be grabbed directly because
1223 		 * it might have linked NO_COLOR work items which, if left
1224 		 * on the delayed_list, will confuse pwq->nr_active
1225 		 * management later on and cause stall.  Make sure the work
1226 		 * item is activated before grabbing.
1227 		 */
1228 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1229 			pwq_activate_delayed_work(work);
1230 
1231 		list_del_init(&work->entry);
1232 		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1233 
1234 		/* work->data points to pwq iff queued, point to pool */
1235 		set_work_pool_and_keep_pending(work, pool->id);
1236 
1237 		spin_unlock(&pool->lock);
1238 		return 1;
1239 	}
1240 	spin_unlock(&pool->lock);
1241 fail:
1242 	local_irq_restore(*flags);
1243 	if (work_is_canceling(work))
1244 		return -ENOENT;
1245 	cpu_relax();
1246 	return -EAGAIN;
1247 }
1248 
1249 /**
1250  * insert_work - insert a work into a pool
1251  * @pwq: pwq @work belongs to
1252  * @work: work to insert
1253  * @head: insertion point
1254  * @extra_flags: extra WORK_STRUCT_* flags to set
1255  *
1256  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1257  * work_struct flags.
1258  *
1259  * CONTEXT:
1260  * spin_lock_irq(pool->lock).
1261  */
1262 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1263 			struct list_head *head, unsigned int extra_flags)
1264 {
1265 	struct worker_pool *pool = pwq->pool;
1266 
1267 	/* we own @work, set data and link */
1268 	set_work_pwq(work, pwq, extra_flags);
1269 	list_add_tail(&work->entry, head);
1270 	get_pwq(pwq);
1271 
1272 	/*
1273 	 * Ensure either wq_worker_sleeping() sees the above
1274 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1275 	 * around lazily while there are works to be processed.
1276 	 */
1277 	smp_mb();
1278 
1279 	if (__need_more_worker(pool))
1280 		wake_up_worker(pool);
1281 }
1282 
1283 /*
1284  * Test whether @work is being queued from another work executing on the
1285  * same workqueue.
1286  */
1287 static bool is_chained_work(struct workqueue_struct *wq)
1288 {
1289 	struct worker *worker;
1290 
1291 	worker = current_wq_worker();
1292 	/*
1293 	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1294 	 * I'm @worker, it's safe to dereference it without locking.
1295 	 */
1296 	return worker && worker->current_pwq->wq == wq;
1297 }
1298 
1299 static void __queue_work(int cpu, struct workqueue_struct *wq,
1300 			 struct work_struct *work)
1301 {
1302 	struct pool_workqueue *pwq;
1303 	struct worker_pool *last_pool;
1304 	struct list_head *worklist;
1305 	unsigned int work_flags;
1306 	unsigned int req_cpu = cpu;
1307 
1308 	/*
1309 	 * While a work item is PENDING && off queue, a task trying to
1310 	 * steal the PENDING will busy-loop waiting for it to either get
1311 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1312 	 * happen with IRQ disabled.
1313 	 */
1314 	WARN_ON_ONCE(!irqs_disabled());
1315 
1316 	debug_work_activate(work);
1317 
1318 	/* if dying, only works from the same workqueue are allowed */
1319 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1320 	    WARN_ON_ONCE(!is_chained_work(wq)))
1321 		return;
1322 retry:
1323 	if (req_cpu == WORK_CPU_UNBOUND)
1324 		cpu = raw_smp_processor_id();
1325 
1326 	/* pwq which will be used unless @work is executing elsewhere */
1327 	if (!(wq->flags & WQ_UNBOUND))
1328 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1329 	else
1330 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1331 
1332 	/*
1333 	 * If @work was previously on a different pool, it might still be
1334 	 * running there, in which case the work needs to be queued on that
1335 	 * pool to guarantee non-reentrancy.
1336 	 */
1337 	last_pool = get_work_pool(work);
1338 	if (last_pool && last_pool != pwq->pool) {
1339 		struct worker *worker;
1340 
1341 		spin_lock(&last_pool->lock);
1342 
1343 		worker = find_worker_executing_work(last_pool, work);
1344 
1345 		if (worker && worker->current_pwq->wq == wq) {
1346 			pwq = worker->current_pwq;
1347 		} else {
1348 			/* meh... not running there, queue here */
1349 			spin_unlock(&last_pool->lock);
1350 			spin_lock(&pwq->pool->lock);
1351 		}
1352 	} else {
1353 		spin_lock(&pwq->pool->lock);
1354 	}
1355 
1356 	/*
1357 	 * pwq is determined and locked.  For unbound pools, we could have
1358 	 * raced with pwq release and it could already be dead.  If its
1359 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1360 	 * without another pwq replacing it in the numa_pwq_tbl or while
1361 	 * work items are executing on it, so the retrying is guaranteed to
1362 	 * make forward-progress.
1363 	 */
1364 	if (unlikely(!pwq->refcnt)) {
1365 		if (wq->flags & WQ_UNBOUND) {
1366 			spin_unlock(&pwq->pool->lock);
1367 			cpu_relax();
1368 			goto retry;
1369 		}
1370 		/* oops */
1371 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1372 			  wq->name, cpu);
1373 	}
1374 
1375 	/* pwq determined, queue */
1376 	trace_workqueue_queue_work(req_cpu, pwq, work);
1377 
1378 	if (WARN_ON(!list_empty(&work->entry))) {
1379 		spin_unlock(&pwq->pool->lock);
1380 		return;
1381 	}
1382 
1383 	pwq->nr_in_flight[pwq->work_color]++;
1384 	work_flags = work_color_to_flags(pwq->work_color);
1385 
1386 	if (likely(pwq->nr_active < pwq->max_active)) {
1387 		trace_workqueue_activate_work(work);
1388 		pwq->nr_active++;
1389 		worklist = &pwq->pool->worklist;
1390 	} else {
1391 		work_flags |= WORK_STRUCT_DELAYED;
1392 		worklist = &pwq->delayed_works;
1393 	}
1394 
1395 	insert_work(pwq, work, worklist, work_flags);
1396 
1397 	spin_unlock(&pwq->pool->lock);
1398 }
1399 
1400 /**
1401  * queue_work_on - queue work on specific cpu
1402  * @cpu: CPU number to execute work on
1403  * @wq: workqueue to use
1404  * @work: work to queue
1405  *
1406  * Returns %false if @work was already on a queue, %true otherwise.
1407  *
1408  * We queue the work to a specific CPU, the caller must ensure it
1409  * can't go away.
1410  */
1411 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1412 		   struct work_struct *work)
1413 {
1414 	bool ret = false;
1415 	unsigned long flags;
1416 
1417 	local_irq_save(flags);
1418 
1419 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1420 		__queue_work(cpu, wq, work);
1421 		ret = true;
1422 	}
1423 
1424 	local_irq_restore(flags);
1425 	return ret;
1426 }
1427 EXPORT_SYMBOL(queue_work_on);
1428 
1429 void delayed_work_timer_fn(unsigned long __data)
1430 {
1431 	struct delayed_work *dwork = (struct delayed_work *)__data;
1432 
1433 	/* should have been called from irqsafe timer with irq already off */
1434 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1435 }
1436 EXPORT_SYMBOL(delayed_work_timer_fn);
1437 
1438 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1439 				struct delayed_work *dwork, unsigned long delay)
1440 {
1441 	struct timer_list *timer = &dwork->timer;
1442 	struct work_struct *work = &dwork->work;
1443 
1444 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1445 		     timer->data != (unsigned long)dwork);
1446 	WARN_ON_ONCE(timer_pending(timer));
1447 	WARN_ON_ONCE(!list_empty(&work->entry));
1448 
1449 	/*
1450 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1451 	 * both optimization and correctness.  The earliest @timer can
1452 	 * expire is on the closest next tick and delayed_work users depend
1453 	 * on that there's no such delay when @delay is 0.
1454 	 */
1455 	if (!delay) {
1456 		__queue_work(cpu, wq, &dwork->work);
1457 		return;
1458 	}
1459 
1460 	timer_stats_timer_set_start_info(&dwork->timer);
1461 
1462 	dwork->wq = wq;
1463 	dwork->cpu = cpu;
1464 	timer->expires = jiffies + delay;
1465 
1466 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1467 		add_timer_on(timer, cpu);
1468 	else
1469 		add_timer(timer);
1470 }
1471 
1472 /**
1473  * queue_delayed_work_on - queue work on specific CPU after delay
1474  * @cpu: CPU number to execute work on
1475  * @wq: workqueue to use
1476  * @dwork: work to queue
1477  * @delay: number of jiffies to wait before queueing
1478  *
1479  * Returns %false if @work was already on a queue, %true otherwise.  If
1480  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1481  * execution.
1482  */
1483 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1484 			   struct delayed_work *dwork, unsigned long delay)
1485 {
1486 	struct work_struct *work = &dwork->work;
1487 	bool ret = false;
1488 	unsigned long flags;
1489 
1490 	/* read the comment in __queue_work() */
1491 	local_irq_save(flags);
1492 
1493 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1494 		__queue_delayed_work(cpu, wq, dwork, delay);
1495 		ret = true;
1496 	}
1497 
1498 	local_irq_restore(flags);
1499 	return ret;
1500 }
1501 EXPORT_SYMBOL(queue_delayed_work_on);
1502 
1503 /**
1504  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1505  * @cpu: CPU number to execute work on
1506  * @wq: workqueue to use
1507  * @dwork: work to queue
1508  * @delay: number of jiffies to wait before queueing
1509  *
1510  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1511  * modify @dwork's timer so that it expires after @delay.  If @delay is
1512  * zero, @work is guaranteed to be scheduled immediately regardless of its
1513  * current state.
1514  *
1515  * Returns %false if @dwork was idle and queued, %true if @dwork was
1516  * pending and its timer was modified.
1517  *
1518  * This function is safe to call from any context including IRQ handler.
1519  * See try_to_grab_pending() for details.
1520  */
1521 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1522 			 struct delayed_work *dwork, unsigned long delay)
1523 {
1524 	unsigned long flags;
1525 	int ret;
1526 
1527 	do {
1528 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1529 	} while (unlikely(ret == -EAGAIN));
1530 
1531 	if (likely(ret >= 0)) {
1532 		__queue_delayed_work(cpu, wq, dwork, delay);
1533 		local_irq_restore(flags);
1534 	}
1535 
1536 	/* -ENOENT from try_to_grab_pending() becomes %true */
1537 	return ret;
1538 }
1539 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1540 
1541 /**
1542  * worker_enter_idle - enter idle state
1543  * @worker: worker which is entering idle state
1544  *
1545  * @worker is entering idle state.  Update stats and idle timer if
1546  * necessary.
1547  *
1548  * LOCKING:
1549  * spin_lock_irq(pool->lock).
1550  */
1551 static void worker_enter_idle(struct worker *worker)
1552 {
1553 	struct worker_pool *pool = worker->pool;
1554 
1555 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1556 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1557 			 (worker->hentry.next || worker->hentry.pprev)))
1558 		return;
1559 
1560 	/* can't use worker_set_flags(), also called from start_worker() */
1561 	worker->flags |= WORKER_IDLE;
1562 	pool->nr_idle++;
1563 	worker->last_active = jiffies;
1564 
1565 	/* idle_list is LIFO */
1566 	list_add(&worker->entry, &pool->idle_list);
1567 
1568 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1569 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1570 
1571 	/*
1572 	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1573 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1574 	 * nr_running, the warning may trigger spuriously.  Check iff
1575 	 * unbind is not in progress.
1576 	 */
1577 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1578 		     pool->nr_workers == pool->nr_idle &&
1579 		     atomic_read(&pool->nr_running));
1580 }
1581 
1582 /**
1583  * worker_leave_idle - leave idle state
1584  * @worker: worker which is leaving idle state
1585  *
1586  * @worker is leaving idle state.  Update stats.
1587  *
1588  * LOCKING:
1589  * spin_lock_irq(pool->lock).
1590  */
1591 static void worker_leave_idle(struct worker *worker)
1592 {
1593 	struct worker_pool *pool = worker->pool;
1594 
1595 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1596 		return;
1597 	worker_clr_flags(worker, WORKER_IDLE);
1598 	pool->nr_idle--;
1599 	list_del_init(&worker->entry);
1600 }
1601 
1602 /**
1603  * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1604  * @pool: target worker_pool
1605  *
1606  * Bind %current to the cpu of @pool if it is associated and lock @pool.
1607  *
1608  * Works which are scheduled while the cpu is online must at least be
1609  * scheduled to a worker which is bound to the cpu so that if they are
1610  * flushed from cpu callbacks while cpu is going down, they are
1611  * guaranteed to execute on the cpu.
1612  *
1613  * This function is to be used by unbound workers and rescuers to bind
1614  * themselves to the target cpu and may race with cpu going down or
1615  * coming online.  kthread_bind() can't be used because it may put the
1616  * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1617  * verbatim as it's best effort and blocking and pool may be
1618  * [dis]associated in the meantime.
1619  *
1620  * This function tries set_cpus_allowed() and locks pool and verifies the
1621  * binding against %POOL_DISASSOCIATED which is set during
1622  * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1623  * enters idle state or fetches works without dropping lock, it can
1624  * guarantee the scheduling requirement described in the first paragraph.
1625  *
1626  * CONTEXT:
1627  * Might sleep.  Called without any lock but returns with pool->lock
1628  * held.
1629  *
1630  * RETURNS:
1631  * %true if the associated pool is online (@worker is successfully
1632  * bound), %false if offline.
1633  */
1634 static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1635 __acquires(&pool->lock)
1636 {
1637 	while (true) {
1638 		/*
1639 		 * The following call may fail, succeed or succeed
1640 		 * without actually migrating the task to the cpu if
1641 		 * it races with cpu hotunplug operation.  Verify
1642 		 * against POOL_DISASSOCIATED.
1643 		 */
1644 		if (!(pool->flags & POOL_DISASSOCIATED))
1645 			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1646 
1647 		spin_lock_irq(&pool->lock);
1648 		if (pool->flags & POOL_DISASSOCIATED)
1649 			return false;
1650 		if (task_cpu(current) == pool->cpu &&
1651 		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1652 			return true;
1653 		spin_unlock_irq(&pool->lock);
1654 
1655 		/*
1656 		 * We've raced with CPU hot[un]plug.  Give it a breather
1657 		 * and retry migration.  cond_resched() is required here;
1658 		 * otherwise, we might deadlock against cpu_stop trying to
1659 		 * bring down the CPU on non-preemptive kernel.
1660 		 */
1661 		cpu_relax();
1662 		cond_resched();
1663 	}
1664 }
1665 
1666 static struct worker *alloc_worker(void)
1667 {
1668 	struct worker *worker;
1669 
1670 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1671 	if (worker) {
1672 		INIT_LIST_HEAD(&worker->entry);
1673 		INIT_LIST_HEAD(&worker->scheduled);
1674 		/* on creation a worker is in !idle && prep state */
1675 		worker->flags = WORKER_PREP;
1676 	}
1677 	return worker;
1678 }
1679 
1680 /**
1681  * create_worker - create a new workqueue worker
1682  * @pool: pool the new worker will belong to
1683  *
1684  * Create a new worker which is bound to @pool.  The returned worker
1685  * can be started by calling start_worker() or destroyed using
1686  * destroy_worker().
1687  *
1688  * CONTEXT:
1689  * Might sleep.  Does GFP_KERNEL allocations.
1690  *
1691  * RETURNS:
1692  * Pointer to the newly created worker.
1693  */
1694 static struct worker *create_worker(struct worker_pool *pool)
1695 {
1696 	struct worker *worker = NULL;
1697 	int id = -1;
1698 	char id_buf[16];
1699 
1700 	lockdep_assert_held(&pool->manager_mutex);
1701 
1702 	/*
1703 	 * ID is needed to determine kthread name.  Allocate ID first
1704 	 * without installing the pointer.
1705 	 */
1706 	idr_preload(GFP_KERNEL);
1707 	spin_lock_irq(&pool->lock);
1708 
1709 	id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1710 
1711 	spin_unlock_irq(&pool->lock);
1712 	idr_preload_end();
1713 	if (id < 0)
1714 		goto fail;
1715 
1716 	worker = alloc_worker();
1717 	if (!worker)
1718 		goto fail;
1719 
1720 	worker->pool = pool;
1721 	worker->id = id;
1722 
1723 	if (pool->cpu >= 0)
1724 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1725 			 pool->attrs->nice < 0  ? "H" : "");
1726 	else
1727 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1728 
1729 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1730 					      "kworker/%s", id_buf);
1731 	if (IS_ERR(worker->task))
1732 		goto fail;
1733 
1734 	/*
1735 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1736 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1737 	 */
1738 	set_user_nice(worker->task, pool->attrs->nice);
1739 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1740 
1741 	/* prevent userland from meddling with cpumask of workqueue workers */
1742 	worker->task->flags |= PF_NO_SETAFFINITY;
1743 
1744 	/*
1745 	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1746 	 * remains stable across this function.  See the comments above the
1747 	 * flag definition for details.
1748 	 */
1749 	if (pool->flags & POOL_DISASSOCIATED)
1750 		worker->flags |= WORKER_UNBOUND;
1751 
1752 	/* successful, commit the pointer to idr */
1753 	spin_lock_irq(&pool->lock);
1754 	idr_replace(&pool->worker_idr, worker, worker->id);
1755 	spin_unlock_irq(&pool->lock);
1756 
1757 	return worker;
1758 
1759 fail:
1760 	if (id >= 0) {
1761 		spin_lock_irq(&pool->lock);
1762 		idr_remove(&pool->worker_idr, id);
1763 		spin_unlock_irq(&pool->lock);
1764 	}
1765 	kfree(worker);
1766 	return NULL;
1767 }
1768 
1769 /**
1770  * start_worker - start a newly created worker
1771  * @worker: worker to start
1772  *
1773  * Make the pool aware of @worker and start it.
1774  *
1775  * CONTEXT:
1776  * spin_lock_irq(pool->lock).
1777  */
1778 static void start_worker(struct worker *worker)
1779 {
1780 	worker->flags |= WORKER_STARTED;
1781 	worker->pool->nr_workers++;
1782 	worker_enter_idle(worker);
1783 	wake_up_process(worker->task);
1784 }
1785 
1786 /**
1787  * create_and_start_worker - create and start a worker for a pool
1788  * @pool: the target pool
1789  *
1790  * Grab the managership of @pool and create and start a new worker for it.
1791  */
1792 static int create_and_start_worker(struct worker_pool *pool)
1793 {
1794 	struct worker *worker;
1795 
1796 	mutex_lock(&pool->manager_mutex);
1797 
1798 	worker = create_worker(pool);
1799 	if (worker) {
1800 		spin_lock_irq(&pool->lock);
1801 		start_worker(worker);
1802 		spin_unlock_irq(&pool->lock);
1803 	}
1804 
1805 	mutex_unlock(&pool->manager_mutex);
1806 
1807 	return worker ? 0 : -ENOMEM;
1808 }
1809 
1810 /**
1811  * destroy_worker - destroy a workqueue worker
1812  * @worker: worker to be destroyed
1813  *
1814  * Destroy @worker and adjust @pool stats accordingly.
1815  *
1816  * CONTEXT:
1817  * spin_lock_irq(pool->lock) which is released and regrabbed.
1818  */
1819 static void destroy_worker(struct worker *worker)
1820 {
1821 	struct worker_pool *pool = worker->pool;
1822 
1823 	lockdep_assert_held(&pool->manager_mutex);
1824 	lockdep_assert_held(&pool->lock);
1825 
1826 	/* sanity check frenzy */
1827 	if (WARN_ON(worker->current_work) ||
1828 	    WARN_ON(!list_empty(&worker->scheduled)))
1829 		return;
1830 
1831 	if (worker->flags & WORKER_STARTED)
1832 		pool->nr_workers--;
1833 	if (worker->flags & WORKER_IDLE)
1834 		pool->nr_idle--;
1835 
1836 	list_del_init(&worker->entry);
1837 	worker->flags |= WORKER_DIE;
1838 
1839 	idr_remove(&pool->worker_idr, worker->id);
1840 
1841 	spin_unlock_irq(&pool->lock);
1842 
1843 	kthread_stop(worker->task);
1844 	kfree(worker);
1845 
1846 	spin_lock_irq(&pool->lock);
1847 }
1848 
1849 static void idle_worker_timeout(unsigned long __pool)
1850 {
1851 	struct worker_pool *pool = (void *)__pool;
1852 
1853 	spin_lock_irq(&pool->lock);
1854 
1855 	if (too_many_workers(pool)) {
1856 		struct worker *worker;
1857 		unsigned long expires;
1858 
1859 		/* idle_list is kept in LIFO order, check the last one */
1860 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1861 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1862 
1863 		if (time_before(jiffies, expires))
1864 			mod_timer(&pool->idle_timer, expires);
1865 		else {
1866 			/* it's been idle for too long, wake up manager */
1867 			pool->flags |= POOL_MANAGE_WORKERS;
1868 			wake_up_worker(pool);
1869 		}
1870 	}
1871 
1872 	spin_unlock_irq(&pool->lock);
1873 }
1874 
1875 static void send_mayday(struct work_struct *work)
1876 {
1877 	struct pool_workqueue *pwq = get_work_pwq(work);
1878 	struct workqueue_struct *wq = pwq->wq;
1879 
1880 	lockdep_assert_held(&wq_mayday_lock);
1881 
1882 	if (!wq->rescuer)
1883 		return;
1884 
1885 	/* mayday mayday mayday */
1886 	if (list_empty(&pwq->mayday_node)) {
1887 		list_add_tail(&pwq->mayday_node, &wq->maydays);
1888 		wake_up_process(wq->rescuer->task);
1889 	}
1890 }
1891 
1892 static void pool_mayday_timeout(unsigned long __pool)
1893 {
1894 	struct worker_pool *pool = (void *)__pool;
1895 	struct work_struct *work;
1896 
1897 	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1898 	spin_lock(&pool->lock);
1899 
1900 	if (need_to_create_worker(pool)) {
1901 		/*
1902 		 * We've been trying to create a new worker but
1903 		 * haven't been successful.  We might be hitting an
1904 		 * allocation deadlock.  Send distress signals to
1905 		 * rescuers.
1906 		 */
1907 		list_for_each_entry(work, &pool->worklist, entry)
1908 			send_mayday(work);
1909 	}
1910 
1911 	spin_unlock(&pool->lock);
1912 	spin_unlock_irq(&wq_mayday_lock);
1913 
1914 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1915 }
1916 
1917 /**
1918  * maybe_create_worker - create a new worker if necessary
1919  * @pool: pool to create a new worker for
1920  *
1921  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1922  * have at least one idle worker on return from this function.  If
1923  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1924  * sent to all rescuers with works scheduled on @pool to resolve
1925  * possible allocation deadlock.
1926  *
1927  * On return, need_to_create_worker() is guaranteed to be %false and
1928  * may_start_working() %true.
1929  *
1930  * LOCKING:
1931  * spin_lock_irq(pool->lock) which may be released and regrabbed
1932  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1933  * manager.
1934  *
1935  * RETURNS:
1936  * %false if no action was taken and pool->lock stayed locked, %true
1937  * otherwise.
1938  */
1939 static bool maybe_create_worker(struct worker_pool *pool)
1940 __releases(&pool->lock)
1941 __acquires(&pool->lock)
1942 {
1943 	if (!need_to_create_worker(pool))
1944 		return false;
1945 restart:
1946 	spin_unlock_irq(&pool->lock);
1947 
1948 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1949 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1950 
1951 	while (true) {
1952 		struct worker *worker;
1953 
1954 		worker = create_worker(pool);
1955 		if (worker) {
1956 			del_timer_sync(&pool->mayday_timer);
1957 			spin_lock_irq(&pool->lock);
1958 			start_worker(worker);
1959 			if (WARN_ON_ONCE(need_to_create_worker(pool)))
1960 				goto restart;
1961 			return true;
1962 		}
1963 
1964 		if (!need_to_create_worker(pool))
1965 			break;
1966 
1967 		__set_current_state(TASK_INTERRUPTIBLE);
1968 		schedule_timeout(CREATE_COOLDOWN);
1969 
1970 		if (!need_to_create_worker(pool))
1971 			break;
1972 	}
1973 
1974 	del_timer_sync(&pool->mayday_timer);
1975 	spin_lock_irq(&pool->lock);
1976 	if (need_to_create_worker(pool))
1977 		goto restart;
1978 	return true;
1979 }
1980 
1981 /**
1982  * maybe_destroy_worker - destroy workers which have been idle for a while
1983  * @pool: pool to destroy workers for
1984  *
1985  * Destroy @pool workers which have been idle for longer than
1986  * IDLE_WORKER_TIMEOUT.
1987  *
1988  * LOCKING:
1989  * spin_lock_irq(pool->lock) which may be released and regrabbed
1990  * multiple times.  Called only from manager.
1991  *
1992  * RETURNS:
1993  * %false if no action was taken and pool->lock stayed locked, %true
1994  * otherwise.
1995  */
1996 static bool maybe_destroy_workers(struct worker_pool *pool)
1997 {
1998 	bool ret = false;
1999 
2000 	while (too_many_workers(pool)) {
2001 		struct worker *worker;
2002 		unsigned long expires;
2003 
2004 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2005 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2006 
2007 		if (time_before(jiffies, expires)) {
2008 			mod_timer(&pool->idle_timer, expires);
2009 			break;
2010 		}
2011 
2012 		destroy_worker(worker);
2013 		ret = true;
2014 	}
2015 
2016 	return ret;
2017 }
2018 
2019 /**
2020  * manage_workers - manage worker pool
2021  * @worker: self
2022  *
2023  * Assume the manager role and manage the worker pool @worker belongs
2024  * to.  At any given time, there can be only zero or one manager per
2025  * pool.  The exclusion is handled automatically by this function.
2026  *
2027  * The caller can safely start processing works on false return.  On
2028  * true return, it's guaranteed that need_to_create_worker() is false
2029  * and may_start_working() is true.
2030  *
2031  * CONTEXT:
2032  * spin_lock_irq(pool->lock) which may be released and regrabbed
2033  * multiple times.  Does GFP_KERNEL allocations.
2034  *
2035  * RETURNS:
2036  * spin_lock_irq(pool->lock) which may be released and regrabbed
2037  * multiple times.  Does GFP_KERNEL allocations.
2038  */
2039 static bool manage_workers(struct worker *worker)
2040 {
2041 	struct worker_pool *pool = worker->pool;
2042 	bool ret = false;
2043 
2044 	/*
2045 	 * Managership is governed by two mutexes - manager_arb and
2046 	 * manager_mutex.  manager_arb handles arbitration of manager role.
2047 	 * Anyone who successfully grabs manager_arb wins the arbitration
2048 	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
2049 	 * failure while holding pool->lock reliably indicates that someone
2050 	 * else is managing the pool and the worker which failed trylock
2051 	 * can proceed to executing work items.  This means that anyone
2052 	 * grabbing manager_arb is responsible for actually performing
2053 	 * manager duties.  If manager_arb is grabbed and released without
2054 	 * actual management, the pool may stall indefinitely.
2055 	 *
2056 	 * manager_mutex is used for exclusion of actual management
2057 	 * operations.  The holder of manager_mutex can be sure that none
2058 	 * of management operations, including creation and destruction of
2059 	 * workers, won't take place until the mutex is released.  Because
2060 	 * manager_mutex doesn't interfere with manager role arbitration,
2061 	 * it is guaranteed that the pool's management, while may be
2062 	 * delayed, won't be disturbed by someone else grabbing
2063 	 * manager_mutex.
2064 	 */
2065 	if (!mutex_trylock(&pool->manager_arb))
2066 		return ret;
2067 
2068 	/*
2069 	 * With manager arbitration won, manager_mutex would be free in
2070 	 * most cases.  trylock first without dropping @pool->lock.
2071 	 */
2072 	if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2073 		spin_unlock_irq(&pool->lock);
2074 		mutex_lock(&pool->manager_mutex);
2075 		spin_lock_irq(&pool->lock);
2076 		ret = true;
2077 	}
2078 
2079 	pool->flags &= ~POOL_MANAGE_WORKERS;
2080 
2081 	/*
2082 	 * Destroy and then create so that may_start_working() is true
2083 	 * on return.
2084 	 */
2085 	ret |= maybe_destroy_workers(pool);
2086 	ret |= maybe_create_worker(pool);
2087 
2088 	mutex_unlock(&pool->manager_mutex);
2089 	mutex_unlock(&pool->manager_arb);
2090 	return ret;
2091 }
2092 
2093 /**
2094  * process_one_work - process single work
2095  * @worker: self
2096  * @work: work to process
2097  *
2098  * Process @work.  This function contains all the logics necessary to
2099  * process a single work including synchronization against and
2100  * interaction with other workers on the same cpu, queueing and
2101  * flushing.  As long as context requirement is met, any worker can
2102  * call this function to process a work.
2103  *
2104  * CONTEXT:
2105  * spin_lock_irq(pool->lock) which is released and regrabbed.
2106  */
2107 static void process_one_work(struct worker *worker, struct work_struct *work)
2108 __releases(&pool->lock)
2109 __acquires(&pool->lock)
2110 {
2111 	struct pool_workqueue *pwq = get_work_pwq(work);
2112 	struct worker_pool *pool = worker->pool;
2113 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2114 	int work_color;
2115 	struct worker *collision;
2116 #ifdef CONFIG_LOCKDEP
2117 	/*
2118 	 * It is permissible to free the struct work_struct from
2119 	 * inside the function that is called from it, this we need to
2120 	 * take into account for lockdep too.  To avoid bogus "held
2121 	 * lock freed" warnings as well as problems when looking into
2122 	 * work->lockdep_map, make a copy and use that here.
2123 	 */
2124 	struct lockdep_map lockdep_map;
2125 
2126 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2127 #endif
2128 	/*
2129 	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
2130 	 * necessary to avoid spurious warnings from rescuers servicing the
2131 	 * unbound or a disassociated pool.
2132 	 */
2133 	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2134 		     !(pool->flags & POOL_DISASSOCIATED) &&
2135 		     raw_smp_processor_id() != pool->cpu);
2136 
2137 	/*
2138 	 * A single work shouldn't be executed concurrently by
2139 	 * multiple workers on a single cpu.  Check whether anyone is
2140 	 * already processing the work.  If so, defer the work to the
2141 	 * currently executing one.
2142 	 */
2143 	collision = find_worker_executing_work(pool, work);
2144 	if (unlikely(collision)) {
2145 		move_linked_works(work, &collision->scheduled, NULL);
2146 		return;
2147 	}
2148 
2149 	/* claim and dequeue */
2150 	debug_work_deactivate(work);
2151 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2152 	worker->current_work = work;
2153 	worker->current_func = work->func;
2154 	worker->current_pwq = pwq;
2155 	work_color = get_work_color(work);
2156 
2157 	list_del_init(&work->entry);
2158 
2159 	/*
2160 	 * CPU intensive works don't participate in concurrency
2161 	 * management.  They're the scheduler's responsibility.
2162 	 */
2163 	if (unlikely(cpu_intensive))
2164 		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2165 
2166 	/*
2167 	 * Unbound pool isn't concurrency managed and work items should be
2168 	 * executed ASAP.  Wake up another worker if necessary.
2169 	 */
2170 	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2171 		wake_up_worker(pool);
2172 
2173 	/*
2174 	 * Record the last pool and clear PENDING which should be the last
2175 	 * update to @work.  Also, do this inside @pool->lock so that
2176 	 * PENDING and queued state changes happen together while IRQ is
2177 	 * disabled.
2178 	 */
2179 	set_work_pool_and_clear_pending(work, pool->id);
2180 
2181 	spin_unlock_irq(&pool->lock);
2182 
2183 	lock_map_acquire_read(&pwq->wq->lockdep_map);
2184 	lock_map_acquire(&lockdep_map);
2185 	trace_workqueue_execute_start(work);
2186 	worker->current_func(work);
2187 	/*
2188 	 * While we must be careful to not use "work" after this, the trace
2189 	 * point will only record its address.
2190 	 */
2191 	trace_workqueue_execute_end(work);
2192 	lock_map_release(&lockdep_map);
2193 	lock_map_release(&pwq->wq->lockdep_map);
2194 
2195 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2196 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2197 		       "     last function: %pf\n",
2198 		       current->comm, preempt_count(), task_pid_nr(current),
2199 		       worker->current_func);
2200 		debug_show_held_locks(current);
2201 		dump_stack();
2202 	}
2203 
2204 	spin_lock_irq(&pool->lock);
2205 
2206 	/* clear cpu intensive status */
2207 	if (unlikely(cpu_intensive))
2208 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2209 
2210 	/* we're done with it, release */
2211 	hash_del(&worker->hentry);
2212 	worker->current_work = NULL;
2213 	worker->current_func = NULL;
2214 	worker->current_pwq = NULL;
2215 	worker->desc_valid = false;
2216 	pwq_dec_nr_in_flight(pwq, work_color);
2217 }
2218 
2219 /**
2220  * process_scheduled_works - process scheduled works
2221  * @worker: self
2222  *
2223  * Process all scheduled works.  Please note that the scheduled list
2224  * may change while processing a work, so this function repeatedly
2225  * fetches a work from the top and executes it.
2226  *
2227  * CONTEXT:
2228  * spin_lock_irq(pool->lock) which may be released and regrabbed
2229  * multiple times.
2230  */
2231 static void process_scheduled_works(struct worker *worker)
2232 {
2233 	while (!list_empty(&worker->scheduled)) {
2234 		struct work_struct *work = list_first_entry(&worker->scheduled,
2235 						struct work_struct, entry);
2236 		process_one_work(worker, work);
2237 	}
2238 }
2239 
2240 /**
2241  * worker_thread - the worker thread function
2242  * @__worker: self
2243  *
2244  * The worker thread function.  All workers belong to a worker_pool -
2245  * either a per-cpu one or dynamic unbound one.  These workers process all
2246  * work items regardless of their specific target workqueue.  The only
2247  * exception is work items which belong to workqueues with a rescuer which
2248  * will be explained in rescuer_thread().
2249  */
2250 static int worker_thread(void *__worker)
2251 {
2252 	struct worker *worker = __worker;
2253 	struct worker_pool *pool = worker->pool;
2254 
2255 	/* tell the scheduler that this is a workqueue worker */
2256 	worker->task->flags |= PF_WQ_WORKER;
2257 woke_up:
2258 	spin_lock_irq(&pool->lock);
2259 
2260 	/* am I supposed to die? */
2261 	if (unlikely(worker->flags & WORKER_DIE)) {
2262 		spin_unlock_irq(&pool->lock);
2263 		WARN_ON_ONCE(!list_empty(&worker->entry));
2264 		worker->task->flags &= ~PF_WQ_WORKER;
2265 		return 0;
2266 	}
2267 
2268 	worker_leave_idle(worker);
2269 recheck:
2270 	/* no more worker necessary? */
2271 	if (!need_more_worker(pool))
2272 		goto sleep;
2273 
2274 	/* do we need to manage? */
2275 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2276 		goto recheck;
2277 
2278 	/*
2279 	 * ->scheduled list can only be filled while a worker is
2280 	 * preparing to process a work or actually processing it.
2281 	 * Make sure nobody diddled with it while I was sleeping.
2282 	 */
2283 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2284 
2285 	/*
2286 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2287 	 * worker or that someone else has already assumed the manager
2288 	 * role.  This is where @worker starts participating in concurrency
2289 	 * management if applicable and concurrency management is restored
2290 	 * after being rebound.  See rebind_workers() for details.
2291 	 */
2292 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2293 
2294 	do {
2295 		struct work_struct *work =
2296 			list_first_entry(&pool->worklist,
2297 					 struct work_struct, entry);
2298 
2299 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2300 			/* optimization path, not strictly necessary */
2301 			process_one_work(worker, work);
2302 			if (unlikely(!list_empty(&worker->scheduled)))
2303 				process_scheduled_works(worker);
2304 		} else {
2305 			move_linked_works(work, &worker->scheduled, NULL);
2306 			process_scheduled_works(worker);
2307 		}
2308 	} while (keep_working(pool));
2309 
2310 	worker_set_flags(worker, WORKER_PREP, false);
2311 sleep:
2312 	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2313 		goto recheck;
2314 
2315 	/*
2316 	 * pool->lock is held and there's no work to process and no need to
2317 	 * manage, sleep.  Workers are woken up only while holding
2318 	 * pool->lock or from local cpu, so setting the current state
2319 	 * before releasing pool->lock is enough to prevent losing any
2320 	 * event.
2321 	 */
2322 	worker_enter_idle(worker);
2323 	__set_current_state(TASK_INTERRUPTIBLE);
2324 	spin_unlock_irq(&pool->lock);
2325 	schedule();
2326 	goto woke_up;
2327 }
2328 
2329 /**
2330  * rescuer_thread - the rescuer thread function
2331  * @__rescuer: self
2332  *
2333  * Workqueue rescuer thread function.  There's one rescuer for each
2334  * workqueue which has WQ_MEM_RECLAIM set.
2335  *
2336  * Regular work processing on a pool may block trying to create a new
2337  * worker which uses GFP_KERNEL allocation which has slight chance of
2338  * developing into deadlock if some works currently on the same queue
2339  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2340  * the problem rescuer solves.
2341  *
2342  * When such condition is possible, the pool summons rescuers of all
2343  * workqueues which have works queued on the pool and let them process
2344  * those works so that forward progress can be guaranteed.
2345  *
2346  * This should happen rarely.
2347  */
2348 static int rescuer_thread(void *__rescuer)
2349 {
2350 	struct worker *rescuer = __rescuer;
2351 	struct workqueue_struct *wq = rescuer->rescue_wq;
2352 	struct list_head *scheduled = &rescuer->scheduled;
2353 
2354 	set_user_nice(current, RESCUER_NICE_LEVEL);
2355 
2356 	/*
2357 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2358 	 * doesn't participate in concurrency management.
2359 	 */
2360 	rescuer->task->flags |= PF_WQ_WORKER;
2361 repeat:
2362 	set_current_state(TASK_INTERRUPTIBLE);
2363 
2364 	if (kthread_should_stop()) {
2365 		__set_current_state(TASK_RUNNING);
2366 		rescuer->task->flags &= ~PF_WQ_WORKER;
2367 		return 0;
2368 	}
2369 
2370 	/* see whether any pwq is asking for help */
2371 	spin_lock_irq(&wq_mayday_lock);
2372 
2373 	while (!list_empty(&wq->maydays)) {
2374 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2375 					struct pool_workqueue, mayday_node);
2376 		struct worker_pool *pool = pwq->pool;
2377 		struct work_struct *work, *n;
2378 
2379 		__set_current_state(TASK_RUNNING);
2380 		list_del_init(&pwq->mayday_node);
2381 
2382 		spin_unlock_irq(&wq_mayday_lock);
2383 
2384 		/* migrate to the target cpu if possible */
2385 		worker_maybe_bind_and_lock(pool);
2386 		rescuer->pool = pool;
2387 
2388 		/*
2389 		 * Slurp in all works issued via this workqueue and
2390 		 * process'em.
2391 		 */
2392 		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2393 		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2394 			if (get_work_pwq(work) == pwq)
2395 				move_linked_works(work, scheduled, &n);
2396 
2397 		process_scheduled_works(rescuer);
2398 
2399 		/*
2400 		 * Leave this pool.  If keep_working() is %true, notify a
2401 		 * regular worker; otherwise, we end up with 0 concurrency
2402 		 * and stalling the execution.
2403 		 */
2404 		if (keep_working(pool))
2405 			wake_up_worker(pool);
2406 
2407 		rescuer->pool = NULL;
2408 		spin_unlock(&pool->lock);
2409 		spin_lock(&wq_mayday_lock);
2410 	}
2411 
2412 	spin_unlock_irq(&wq_mayday_lock);
2413 
2414 	/* rescuers should never participate in concurrency management */
2415 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2416 	schedule();
2417 	goto repeat;
2418 }
2419 
2420 struct wq_barrier {
2421 	struct work_struct	work;
2422 	struct completion	done;
2423 };
2424 
2425 static void wq_barrier_func(struct work_struct *work)
2426 {
2427 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2428 	complete(&barr->done);
2429 }
2430 
2431 /**
2432  * insert_wq_barrier - insert a barrier work
2433  * @pwq: pwq to insert barrier into
2434  * @barr: wq_barrier to insert
2435  * @target: target work to attach @barr to
2436  * @worker: worker currently executing @target, NULL if @target is not executing
2437  *
2438  * @barr is linked to @target such that @barr is completed only after
2439  * @target finishes execution.  Please note that the ordering
2440  * guarantee is observed only with respect to @target and on the local
2441  * cpu.
2442  *
2443  * Currently, a queued barrier can't be canceled.  This is because
2444  * try_to_grab_pending() can't determine whether the work to be
2445  * grabbed is at the head of the queue and thus can't clear LINKED
2446  * flag of the previous work while there must be a valid next work
2447  * after a work with LINKED flag set.
2448  *
2449  * Note that when @worker is non-NULL, @target may be modified
2450  * underneath us, so we can't reliably determine pwq from @target.
2451  *
2452  * CONTEXT:
2453  * spin_lock_irq(pool->lock).
2454  */
2455 static void insert_wq_barrier(struct pool_workqueue *pwq,
2456 			      struct wq_barrier *barr,
2457 			      struct work_struct *target, struct worker *worker)
2458 {
2459 	struct list_head *head;
2460 	unsigned int linked = 0;
2461 
2462 	/*
2463 	 * debugobject calls are safe here even with pool->lock locked
2464 	 * as we know for sure that this will not trigger any of the
2465 	 * checks and call back into the fixup functions where we
2466 	 * might deadlock.
2467 	 */
2468 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2469 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2470 	init_completion(&barr->done);
2471 
2472 	/*
2473 	 * If @target is currently being executed, schedule the
2474 	 * barrier to the worker; otherwise, put it after @target.
2475 	 */
2476 	if (worker)
2477 		head = worker->scheduled.next;
2478 	else {
2479 		unsigned long *bits = work_data_bits(target);
2480 
2481 		head = target->entry.next;
2482 		/* there can already be other linked works, inherit and set */
2483 		linked = *bits & WORK_STRUCT_LINKED;
2484 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2485 	}
2486 
2487 	debug_work_activate(&barr->work);
2488 	insert_work(pwq, &barr->work, head,
2489 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2490 }
2491 
2492 /**
2493  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2494  * @wq: workqueue being flushed
2495  * @flush_color: new flush color, < 0 for no-op
2496  * @work_color: new work color, < 0 for no-op
2497  *
2498  * Prepare pwqs for workqueue flushing.
2499  *
2500  * If @flush_color is non-negative, flush_color on all pwqs should be
2501  * -1.  If no pwq has in-flight commands at the specified color, all
2502  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2503  * has in flight commands, its pwq->flush_color is set to
2504  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2505  * wakeup logic is armed and %true is returned.
2506  *
2507  * The caller should have initialized @wq->first_flusher prior to
2508  * calling this function with non-negative @flush_color.  If
2509  * @flush_color is negative, no flush color update is done and %false
2510  * is returned.
2511  *
2512  * If @work_color is non-negative, all pwqs should have the same
2513  * work_color which is previous to @work_color and all will be
2514  * advanced to @work_color.
2515  *
2516  * CONTEXT:
2517  * mutex_lock(wq->mutex).
2518  *
2519  * RETURNS:
2520  * %true if @flush_color >= 0 and there's something to flush.  %false
2521  * otherwise.
2522  */
2523 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2524 				      int flush_color, int work_color)
2525 {
2526 	bool wait = false;
2527 	struct pool_workqueue *pwq;
2528 
2529 	if (flush_color >= 0) {
2530 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2531 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2532 	}
2533 
2534 	for_each_pwq(pwq, wq) {
2535 		struct worker_pool *pool = pwq->pool;
2536 
2537 		spin_lock_irq(&pool->lock);
2538 
2539 		if (flush_color >= 0) {
2540 			WARN_ON_ONCE(pwq->flush_color != -1);
2541 
2542 			if (pwq->nr_in_flight[flush_color]) {
2543 				pwq->flush_color = flush_color;
2544 				atomic_inc(&wq->nr_pwqs_to_flush);
2545 				wait = true;
2546 			}
2547 		}
2548 
2549 		if (work_color >= 0) {
2550 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2551 			pwq->work_color = work_color;
2552 		}
2553 
2554 		spin_unlock_irq(&pool->lock);
2555 	}
2556 
2557 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2558 		complete(&wq->first_flusher->done);
2559 
2560 	return wait;
2561 }
2562 
2563 /**
2564  * flush_workqueue - ensure that any scheduled work has run to completion.
2565  * @wq: workqueue to flush
2566  *
2567  * This function sleeps until all work items which were queued on entry
2568  * have finished execution, but it is not livelocked by new incoming ones.
2569  */
2570 void flush_workqueue(struct workqueue_struct *wq)
2571 {
2572 	struct wq_flusher this_flusher = {
2573 		.list = LIST_HEAD_INIT(this_flusher.list),
2574 		.flush_color = -1,
2575 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2576 	};
2577 	int next_color;
2578 
2579 	lock_map_acquire(&wq->lockdep_map);
2580 	lock_map_release(&wq->lockdep_map);
2581 
2582 	mutex_lock(&wq->mutex);
2583 
2584 	/*
2585 	 * Start-to-wait phase
2586 	 */
2587 	next_color = work_next_color(wq->work_color);
2588 
2589 	if (next_color != wq->flush_color) {
2590 		/*
2591 		 * Color space is not full.  The current work_color
2592 		 * becomes our flush_color and work_color is advanced
2593 		 * by one.
2594 		 */
2595 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2596 		this_flusher.flush_color = wq->work_color;
2597 		wq->work_color = next_color;
2598 
2599 		if (!wq->first_flusher) {
2600 			/* no flush in progress, become the first flusher */
2601 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2602 
2603 			wq->first_flusher = &this_flusher;
2604 
2605 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2606 						       wq->work_color)) {
2607 				/* nothing to flush, done */
2608 				wq->flush_color = next_color;
2609 				wq->first_flusher = NULL;
2610 				goto out_unlock;
2611 			}
2612 		} else {
2613 			/* wait in queue */
2614 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2615 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2616 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2617 		}
2618 	} else {
2619 		/*
2620 		 * Oops, color space is full, wait on overflow queue.
2621 		 * The next flush completion will assign us
2622 		 * flush_color and transfer to flusher_queue.
2623 		 */
2624 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2625 	}
2626 
2627 	mutex_unlock(&wq->mutex);
2628 
2629 	wait_for_completion(&this_flusher.done);
2630 
2631 	/*
2632 	 * Wake-up-and-cascade phase
2633 	 *
2634 	 * First flushers are responsible for cascading flushes and
2635 	 * handling overflow.  Non-first flushers can simply return.
2636 	 */
2637 	if (wq->first_flusher != &this_flusher)
2638 		return;
2639 
2640 	mutex_lock(&wq->mutex);
2641 
2642 	/* we might have raced, check again with mutex held */
2643 	if (wq->first_flusher != &this_flusher)
2644 		goto out_unlock;
2645 
2646 	wq->first_flusher = NULL;
2647 
2648 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2649 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2650 
2651 	while (true) {
2652 		struct wq_flusher *next, *tmp;
2653 
2654 		/* complete all the flushers sharing the current flush color */
2655 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2656 			if (next->flush_color != wq->flush_color)
2657 				break;
2658 			list_del_init(&next->list);
2659 			complete(&next->done);
2660 		}
2661 
2662 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2663 			     wq->flush_color != work_next_color(wq->work_color));
2664 
2665 		/* this flush_color is finished, advance by one */
2666 		wq->flush_color = work_next_color(wq->flush_color);
2667 
2668 		/* one color has been freed, handle overflow queue */
2669 		if (!list_empty(&wq->flusher_overflow)) {
2670 			/*
2671 			 * Assign the same color to all overflowed
2672 			 * flushers, advance work_color and append to
2673 			 * flusher_queue.  This is the start-to-wait
2674 			 * phase for these overflowed flushers.
2675 			 */
2676 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2677 				tmp->flush_color = wq->work_color;
2678 
2679 			wq->work_color = work_next_color(wq->work_color);
2680 
2681 			list_splice_tail_init(&wq->flusher_overflow,
2682 					      &wq->flusher_queue);
2683 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2684 		}
2685 
2686 		if (list_empty(&wq->flusher_queue)) {
2687 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2688 			break;
2689 		}
2690 
2691 		/*
2692 		 * Need to flush more colors.  Make the next flusher
2693 		 * the new first flusher and arm pwqs.
2694 		 */
2695 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2696 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2697 
2698 		list_del_init(&next->list);
2699 		wq->first_flusher = next;
2700 
2701 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2702 			break;
2703 
2704 		/*
2705 		 * Meh... this color is already done, clear first
2706 		 * flusher and repeat cascading.
2707 		 */
2708 		wq->first_flusher = NULL;
2709 	}
2710 
2711 out_unlock:
2712 	mutex_unlock(&wq->mutex);
2713 }
2714 EXPORT_SYMBOL_GPL(flush_workqueue);
2715 
2716 /**
2717  * drain_workqueue - drain a workqueue
2718  * @wq: workqueue to drain
2719  *
2720  * Wait until the workqueue becomes empty.  While draining is in progress,
2721  * only chain queueing is allowed.  IOW, only currently pending or running
2722  * work items on @wq can queue further work items on it.  @wq is flushed
2723  * repeatedly until it becomes empty.  The number of flushing is detemined
2724  * by the depth of chaining and should be relatively short.  Whine if it
2725  * takes too long.
2726  */
2727 void drain_workqueue(struct workqueue_struct *wq)
2728 {
2729 	unsigned int flush_cnt = 0;
2730 	struct pool_workqueue *pwq;
2731 
2732 	/*
2733 	 * __queue_work() needs to test whether there are drainers, is much
2734 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2735 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2736 	 */
2737 	mutex_lock(&wq->mutex);
2738 	if (!wq->nr_drainers++)
2739 		wq->flags |= __WQ_DRAINING;
2740 	mutex_unlock(&wq->mutex);
2741 reflush:
2742 	flush_workqueue(wq);
2743 
2744 	mutex_lock(&wq->mutex);
2745 
2746 	for_each_pwq(pwq, wq) {
2747 		bool drained;
2748 
2749 		spin_lock_irq(&pwq->pool->lock);
2750 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2751 		spin_unlock_irq(&pwq->pool->lock);
2752 
2753 		if (drained)
2754 			continue;
2755 
2756 		if (++flush_cnt == 10 ||
2757 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2758 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2759 				wq->name, flush_cnt);
2760 
2761 		mutex_unlock(&wq->mutex);
2762 		goto reflush;
2763 	}
2764 
2765 	if (!--wq->nr_drainers)
2766 		wq->flags &= ~__WQ_DRAINING;
2767 	mutex_unlock(&wq->mutex);
2768 }
2769 EXPORT_SYMBOL_GPL(drain_workqueue);
2770 
2771 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2772 {
2773 	struct worker *worker = NULL;
2774 	struct worker_pool *pool;
2775 	struct pool_workqueue *pwq;
2776 
2777 	might_sleep();
2778 
2779 	local_irq_disable();
2780 	pool = get_work_pool(work);
2781 	if (!pool) {
2782 		local_irq_enable();
2783 		return false;
2784 	}
2785 
2786 	spin_lock(&pool->lock);
2787 	/* see the comment in try_to_grab_pending() with the same code */
2788 	pwq = get_work_pwq(work);
2789 	if (pwq) {
2790 		if (unlikely(pwq->pool != pool))
2791 			goto already_gone;
2792 	} else {
2793 		worker = find_worker_executing_work(pool, work);
2794 		if (!worker)
2795 			goto already_gone;
2796 		pwq = worker->current_pwq;
2797 	}
2798 
2799 	insert_wq_barrier(pwq, barr, work, worker);
2800 	spin_unlock_irq(&pool->lock);
2801 
2802 	/*
2803 	 * If @max_active is 1 or rescuer is in use, flushing another work
2804 	 * item on the same workqueue may lead to deadlock.  Make sure the
2805 	 * flusher is not running on the same workqueue by verifying write
2806 	 * access.
2807 	 */
2808 	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2809 		lock_map_acquire(&pwq->wq->lockdep_map);
2810 	else
2811 		lock_map_acquire_read(&pwq->wq->lockdep_map);
2812 	lock_map_release(&pwq->wq->lockdep_map);
2813 
2814 	return true;
2815 already_gone:
2816 	spin_unlock_irq(&pool->lock);
2817 	return false;
2818 }
2819 
2820 /**
2821  * flush_work - wait for a work to finish executing the last queueing instance
2822  * @work: the work to flush
2823  *
2824  * Wait until @work has finished execution.  @work is guaranteed to be idle
2825  * on return if it hasn't been requeued since flush started.
2826  *
2827  * RETURNS:
2828  * %true if flush_work() waited for the work to finish execution,
2829  * %false if it was already idle.
2830  */
2831 bool flush_work(struct work_struct *work)
2832 {
2833 	struct wq_barrier barr;
2834 
2835 	lock_map_acquire(&work->lockdep_map);
2836 	lock_map_release(&work->lockdep_map);
2837 
2838 	if (start_flush_work(work, &barr)) {
2839 		wait_for_completion(&barr.done);
2840 		destroy_work_on_stack(&barr.work);
2841 		return true;
2842 	} else {
2843 		return false;
2844 	}
2845 }
2846 EXPORT_SYMBOL_GPL(flush_work);
2847 
2848 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2849 {
2850 	unsigned long flags;
2851 	int ret;
2852 
2853 	do {
2854 		ret = try_to_grab_pending(work, is_dwork, &flags);
2855 		/*
2856 		 * If someone else is canceling, wait for the same event it
2857 		 * would be waiting for before retrying.
2858 		 */
2859 		if (unlikely(ret == -ENOENT))
2860 			flush_work(work);
2861 	} while (unlikely(ret < 0));
2862 
2863 	/* tell other tasks trying to grab @work to back off */
2864 	mark_work_canceling(work);
2865 	local_irq_restore(flags);
2866 
2867 	flush_work(work);
2868 	clear_work_data(work);
2869 	return ret;
2870 }
2871 
2872 /**
2873  * cancel_work_sync - cancel a work and wait for it to finish
2874  * @work: the work to cancel
2875  *
2876  * Cancel @work and wait for its execution to finish.  This function
2877  * can be used even if the work re-queues itself or migrates to
2878  * another workqueue.  On return from this function, @work is
2879  * guaranteed to be not pending or executing on any CPU.
2880  *
2881  * cancel_work_sync(&delayed_work->work) must not be used for
2882  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2883  *
2884  * The caller must ensure that the workqueue on which @work was last
2885  * queued can't be destroyed before this function returns.
2886  *
2887  * RETURNS:
2888  * %true if @work was pending, %false otherwise.
2889  */
2890 bool cancel_work_sync(struct work_struct *work)
2891 {
2892 	return __cancel_work_timer(work, false);
2893 }
2894 EXPORT_SYMBOL_GPL(cancel_work_sync);
2895 
2896 /**
2897  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2898  * @dwork: the delayed work to flush
2899  *
2900  * Delayed timer is cancelled and the pending work is queued for
2901  * immediate execution.  Like flush_work(), this function only
2902  * considers the last queueing instance of @dwork.
2903  *
2904  * RETURNS:
2905  * %true if flush_work() waited for the work to finish execution,
2906  * %false if it was already idle.
2907  */
2908 bool flush_delayed_work(struct delayed_work *dwork)
2909 {
2910 	local_irq_disable();
2911 	if (del_timer_sync(&dwork->timer))
2912 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2913 	local_irq_enable();
2914 	return flush_work(&dwork->work);
2915 }
2916 EXPORT_SYMBOL(flush_delayed_work);
2917 
2918 /**
2919  * cancel_delayed_work - cancel a delayed work
2920  * @dwork: delayed_work to cancel
2921  *
2922  * Kill off a pending delayed_work.  Returns %true if @dwork was pending
2923  * and canceled; %false if wasn't pending.  Note that the work callback
2924  * function may still be running on return, unless it returns %true and the
2925  * work doesn't re-arm itself.  Explicitly flush or use
2926  * cancel_delayed_work_sync() to wait on it.
2927  *
2928  * This function is safe to call from any context including IRQ handler.
2929  */
2930 bool cancel_delayed_work(struct delayed_work *dwork)
2931 {
2932 	unsigned long flags;
2933 	int ret;
2934 
2935 	do {
2936 		ret = try_to_grab_pending(&dwork->work, true, &flags);
2937 	} while (unlikely(ret == -EAGAIN));
2938 
2939 	if (unlikely(ret < 0))
2940 		return false;
2941 
2942 	set_work_pool_and_clear_pending(&dwork->work,
2943 					get_work_pool_id(&dwork->work));
2944 	local_irq_restore(flags);
2945 	return ret;
2946 }
2947 EXPORT_SYMBOL(cancel_delayed_work);
2948 
2949 /**
2950  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2951  * @dwork: the delayed work cancel
2952  *
2953  * This is cancel_work_sync() for delayed works.
2954  *
2955  * RETURNS:
2956  * %true if @dwork was pending, %false otherwise.
2957  */
2958 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2959 {
2960 	return __cancel_work_timer(&dwork->work, true);
2961 }
2962 EXPORT_SYMBOL(cancel_delayed_work_sync);
2963 
2964 /**
2965  * schedule_on_each_cpu - execute a function synchronously on each online CPU
2966  * @func: the function to call
2967  *
2968  * schedule_on_each_cpu() executes @func on each online CPU using the
2969  * system workqueue and blocks until all CPUs have completed.
2970  * schedule_on_each_cpu() is very slow.
2971  *
2972  * RETURNS:
2973  * 0 on success, -errno on failure.
2974  */
2975 int schedule_on_each_cpu(work_func_t func)
2976 {
2977 	int cpu;
2978 	struct work_struct __percpu *works;
2979 
2980 	works = alloc_percpu(struct work_struct);
2981 	if (!works)
2982 		return -ENOMEM;
2983 
2984 	get_online_cpus();
2985 
2986 	for_each_online_cpu(cpu) {
2987 		struct work_struct *work = per_cpu_ptr(works, cpu);
2988 
2989 		INIT_WORK(work, func);
2990 		schedule_work_on(cpu, work);
2991 	}
2992 
2993 	for_each_online_cpu(cpu)
2994 		flush_work(per_cpu_ptr(works, cpu));
2995 
2996 	put_online_cpus();
2997 	free_percpu(works);
2998 	return 0;
2999 }
3000 
3001 /**
3002  * flush_scheduled_work - ensure that any scheduled work has run to completion.
3003  *
3004  * Forces execution of the kernel-global workqueue and blocks until its
3005  * completion.
3006  *
3007  * Think twice before calling this function!  It's very easy to get into
3008  * trouble if you don't take great care.  Either of the following situations
3009  * will lead to deadlock:
3010  *
3011  *	One of the work items currently on the workqueue needs to acquire
3012  *	a lock held by your code or its caller.
3013  *
3014  *	Your code is running in the context of a work routine.
3015  *
3016  * They will be detected by lockdep when they occur, but the first might not
3017  * occur very often.  It depends on what work items are on the workqueue and
3018  * what locks they need, which you have no control over.
3019  *
3020  * In most situations flushing the entire workqueue is overkill; you merely
3021  * need to know that a particular work item isn't queued and isn't running.
3022  * In such cases you should use cancel_delayed_work_sync() or
3023  * cancel_work_sync() instead.
3024  */
3025 void flush_scheduled_work(void)
3026 {
3027 	flush_workqueue(system_wq);
3028 }
3029 EXPORT_SYMBOL(flush_scheduled_work);
3030 
3031 /**
3032  * execute_in_process_context - reliably execute the routine with user context
3033  * @fn:		the function to execute
3034  * @ew:		guaranteed storage for the execute work structure (must
3035  *		be available when the work executes)
3036  *
3037  * Executes the function immediately if process context is available,
3038  * otherwise schedules the function for delayed execution.
3039  *
3040  * Returns:	0 - function was executed
3041  *		1 - function was scheduled for execution
3042  */
3043 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3044 {
3045 	if (!in_interrupt()) {
3046 		fn(&ew->work);
3047 		return 0;
3048 	}
3049 
3050 	INIT_WORK(&ew->work, fn);
3051 	schedule_work(&ew->work);
3052 
3053 	return 1;
3054 }
3055 EXPORT_SYMBOL_GPL(execute_in_process_context);
3056 
3057 #ifdef CONFIG_SYSFS
3058 /*
3059  * Workqueues with WQ_SYSFS flag set is visible to userland via
3060  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
3061  * following attributes.
3062  *
3063  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
3064  *  max_active	RW int	: maximum number of in-flight work items
3065  *
3066  * Unbound workqueues have the following extra attributes.
3067  *
3068  *  id		RO int	: the associated pool ID
3069  *  nice	RW int	: nice value of the workers
3070  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
3071  */
3072 struct wq_device {
3073 	struct workqueue_struct		*wq;
3074 	struct device			dev;
3075 };
3076 
3077 static struct workqueue_struct *dev_to_wq(struct device *dev)
3078 {
3079 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3080 
3081 	return wq_dev->wq;
3082 }
3083 
3084 static ssize_t wq_per_cpu_show(struct device *dev,
3085 			       struct device_attribute *attr, char *buf)
3086 {
3087 	struct workqueue_struct *wq = dev_to_wq(dev);
3088 
3089 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3090 }
3091 
3092 static ssize_t wq_max_active_show(struct device *dev,
3093 				  struct device_attribute *attr, char *buf)
3094 {
3095 	struct workqueue_struct *wq = dev_to_wq(dev);
3096 
3097 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3098 }
3099 
3100 static ssize_t wq_max_active_store(struct device *dev,
3101 				   struct device_attribute *attr,
3102 				   const char *buf, size_t count)
3103 {
3104 	struct workqueue_struct *wq = dev_to_wq(dev);
3105 	int val;
3106 
3107 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3108 		return -EINVAL;
3109 
3110 	workqueue_set_max_active(wq, val);
3111 	return count;
3112 }
3113 
3114 static struct device_attribute wq_sysfs_attrs[] = {
3115 	__ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
3116 	__ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
3117 	__ATTR_NULL,
3118 };
3119 
3120 static ssize_t wq_pool_ids_show(struct device *dev,
3121 				struct device_attribute *attr, char *buf)
3122 {
3123 	struct workqueue_struct *wq = dev_to_wq(dev);
3124 	const char *delim = "";
3125 	int node, written = 0;
3126 
3127 	rcu_read_lock_sched();
3128 	for_each_node(node) {
3129 		written += scnprintf(buf + written, PAGE_SIZE - written,
3130 				     "%s%d:%d", delim, node,
3131 				     unbound_pwq_by_node(wq, node)->pool->id);
3132 		delim = " ";
3133 	}
3134 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3135 	rcu_read_unlock_sched();
3136 
3137 	return written;
3138 }
3139 
3140 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3141 			    char *buf)
3142 {
3143 	struct workqueue_struct *wq = dev_to_wq(dev);
3144 	int written;
3145 
3146 	mutex_lock(&wq->mutex);
3147 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3148 	mutex_unlock(&wq->mutex);
3149 
3150 	return written;
3151 }
3152 
3153 /* prepare workqueue_attrs for sysfs store operations */
3154 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3155 {
3156 	struct workqueue_attrs *attrs;
3157 
3158 	attrs = alloc_workqueue_attrs(GFP_KERNEL);
3159 	if (!attrs)
3160 		return NULL;
3161 
3162 	mutex_lock(&wq->mutex);
3163 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
3164 	mutex_unlock(&wq->mutex);
3165 	return attrs;
3166 }
3167 
3168 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3169 			     const char *buf, size_t count)
3170 {
3171 	struct workqueue_struct *wq = dev_to_wq(dev);
3172 	struct workqueue_attrs *attrs;
3173 	int ret;
3174 
3175 	attrs = wq_sysfs_prep_attrs(wq);
3176 	if (!attrs)
3177 		return -ENOMEM;
3178 
3179 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3180 	    attrs->nice >= -20 && attrs->nice <= 19)
3181 		ret = apply_workqueue_attrs(wq, attrs);
3182 	else
3183 		ret = -EINVAL;
3184 
3185 	free_workqueue_attrs(attrs);
3186 	return ret ?: count;
3187 }
3188 
3189 static ssize_t wq_cpumask_show(struct device *dev,
3190 			       struct device_attribute *attr, char *buf)
3191 {
3192 	struct workqueue_struct *wq = dev_to_wq(dev);
3193 	int written;
3194 
3195 	mutex_lock(&wq->mutex);
3196 	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3197 	mutex_unlock(&wq->mutex);
3198 
3199 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3200 	return written;
3201 }
3202 
3203 static ssize_t wq_cpumask_store(struct device *dev,
3204 				struct device_attribute *attr,
3205 				const char *buf, size_t count)
3206 {
3207 	struct workqueue_struct *wq = dev_to_wq(dev);
3208 	struct workqueue_attrs *attrs;
3209 	int ret;
3210 
3211 	attrs = wq_sysfs_prep_attrs(wq);
3212 	if (!attrs)
3213 		return -ENOMEM;
3214 
3215 	ret = cpumask_parse(buf, attrs->cpumask);
3216 	if (!ret)
3217 		ret = apply_workqueue_attrs(wq, attrs);
3218 
3219 	free_workqueue_attrs(attrs);
3220 	return ret ?: count;
3221 }
3222 
3223 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3224 			    char *buf)
3225 {
3226 	struct workqueue_struct *wq = dev_to_wq(dev);
3227 	int written;
3228 
3229 	mutex_lock(&wq->mutex);
3230 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
3231 			    !wq->unbound_attrs->no_numa);
3232 	mutex_unlock(&wq->mutex);
3233 
3234 	return written;
3235 }
3236 
3237 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3238 			     const char *buf, size_t count)
3239 {
3240 	struct workqueue_struct *wq = dev_to_wq(dev);
3241 	struct workqueue_attrs *attrs;
3242 	int v, ret;
3243 
3244 	attrs = wq_sysfs_prep_attrs(wq);
3245 	if (!attrs)
3246 		return -ENOMEM;
3247 
3248 	ret = -EINVAL;
3249 	if (sscanf(buf, "%d", &v) == 1) {
3250 		attrs->no_numa = !v;
3251 		ret = apply_workqueue_attrs(wq, attrs);
3252 	}
3253 
3254 	free_workqueue_attrs(attrs);
3255 	return ret ?: count;
3256 }
3257 
3258 static struct device_attribute wq_sysfs_unbound_attrs[] = {
3259 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3260 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3261 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3262 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3263 	__ATTR_NULL,
3264 };
3265 
3266 static struct bus_type wq_subsys = {
3267 	.name				= "workqueue",
3268 	.dev_attrs			= wq_sysfs_attrs,
3269 };
3270 
3271 static int __init wq_sysfs_init(void)
3272 {
3273 	return subsys_virtual_register(&wq_subsys, NULL);
3274 }
3275 core_initcall(wq_sysfs_init);
3276 
3277 static void wq_device_release(struct device *dev)
3278 {
3279 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3280 
3281 	kfree(wq_dev);
3282 }
3283 
3284 /**
3285  * workqueue_sysfs_register - make a workqueue visible in sysfs
3286  * @wq: the workqueue to register
3287  *
3288  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3289  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3290  * which is the preferred method.
3291  *
3292  * Workqueue user should use this function directly iff it wants to apply
3293  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3294  * apply_workqueue_attrs() may race against userland updating the
3295  * attributes.
3296  *
3297  * Returns 0 on success, -errno on failure.
3298  */
3299 int workqueue_sysfs_register(struct workqueue_struct *wq)
3300 {
3301 	struct wq_device *wq_dev;
3302 	int ret;
3303 
3304 	/*
3305 	 * Adjusting max_active or creating new pwqs by applyting
3306 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
3307 	 * workqueues.
3308 	 */
3309 	if (WARN_ON(wq->flags & __WQ_ORDERED))
3310 		return -EINVAL;
3311 
3312 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3313 	if (!wq_dev)
3314 		return -ENOMEM;
3315 
3316 	wq_dev->wq = wq;
3317 	wq_dev->dev.bus = &wq_subsys;
3318 	wq_dev->dev.init_name = wq->name;
3319 	wq_dev->dev.release = wq_device_release;
3320 
3321 	/*
3322 	 * unbound_attrs are created separately.  Suppress uevent until
3323 	 * everything is ready.
3324 	 */
3325 	dev_set_uevent_suppress(&wq_dev->dev, true);
3326 
3327 	ret = device_register(&wq_dev->dev);
3328 	if (ret) {
3329 		kfree(wq_dev);
3330 		wq->wq_dev = NULL;
3331 		return ret;
3332 	}
3333 
3334 	if (wq->flags & WQ_UNBOUND) {
3335 		struct device_attribute *attr;
3336 
3337 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3338 			ret = device_create_file(&wq_dev->dev, attr);
3339 			if (ret) {
3340 				device_unregister(&wq_dev->dev);
3341 				wq->wq_dev = NULL;
3342 				return ret;
3343 			}
3344 		}
3345 	}
3346 
3347 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3348 	return 0;
3349 }
3350 
3351 /**
3352  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3353  * @wq: the workqueue to unregister
3354  *
3355  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3356  */
3357 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3358 {
3359 	struct wq_device *wq_dev = wq->wq_dev;
3360 
3361 	if (!wq->wq_dev)
3362 		return;
3363 
3364 	wq->wq_dev = NULL;
3365 	device_unregister(&wq_dev->dev);
3366 }
3367 #else	/* CONFIG_SYSFS */
3368 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
3369 #endif	/* CONFIG_SYSFS */
3370 
3371 /**
3372  * free_workqueue_attrs - free a workqueue_attrs
3373  * @attrs: workqueue_attrs to free
3374  *
3375  * Undo alloc_workqueue_attrs().
3376  */
3377 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3378 {
3379 	if (attrs) {
3380 		free_cpumask_var(attrs->cpumask);
3381 		kfree(attrs);
3382 	}
3383 }
3384 
3385 /**
3386  * alloc_workqueue_attrs - allocate a workqueue_attrs
3387  * @gfp_mask: allocation mask to use
3388  *
3389  * Allocate a new workqueue_attrs, initialize with default settings and
3390  * return it.  Returns NULL on failure.
3391  */
3392 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3393 {
3394 	struct workqueue_attrs *attrs;
3395 
3396 	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3397 	if (!attrs)
3398 		goto fail;
3399 	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3400 		goto fail;
3401 
3402 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3403 	return attrs;
3404 fail:
3405 	free_workqueue_attrs(attrs);
3406 	return NULL;
3407 }
3408 
3409 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3410 				 const struct workqueue_attrs *from)
3411 {
3412 	to->nice = from->nice;
3413 	cpumask_copy(to->cpumask, from->cpumask);
3414 }
3415 
3416 /* hash value of the content of @attr */
3417 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3418 {
3419 	u32 hash = 0;
3420 
3421 	hash = jhash_1word(attrs->nice, hash);
3422 	hash = jhash(cpumask_bits(attrs->cpumask),
3423 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3424 	return hash;
3425 }
3426 
3427 /* content equality test */
3428 static bool wqattrs_equal(const struct workqueue_attrs *a,
3429 			  const struct workqueue_attrs *b)
3430 {
3431 	if (a->nice != b->nice)
3432 		return false;
3433 	if (!cpumask_equal(a->cpumask, b->cpumask))
3434 		return false;
3435 	return true;
3436 }
3437 
3438 /**
3439  * init_worker_pool - initialize a newly zalloc'd worker_pool
3440  * @pool: worker_pool to initialize
3441  *
3442  * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3443  * Returns 0 on success, -errno on failure.  Even on failure, all fields
3444  * inside @pool proper are initialized and put_unbound_pool() can be called
3445  * on @pool safely to release it.
3446  */
3447 static int init_worker_pool(struct worker_pool *pool)
3448 {
3449 	spin_lock_init(&pool->lock);
3450 	pool->id = -1;
3451 	pool->cpu = -1;
3452 	pool->node = NUMA_NO_NODE;
3453 	pool->flags |= POOL_DISASSOCIATED;
3454 	INIT_LIST_HEAD(&pool->worklist);
3455 	INIT_LIST_HEAD(&pool->idle_list);
3456 	hash_init(pool->busy_hash);
3457 
3458 	init_timer_deferrable(&pool->idle_timer);
3459 	pool->idle_timer.function = idle_worker_timeout;
3460 	pool->idle_timer.data = (unsigned long)pool;
3461 
3462 	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3463 		    (unsigned long)pool);
3464 
3465 	mutex_init(&pool->manager_arb);
3466 	mutex_init(&pool->manager_mutex);
3467 	idr_init(&pool->worker_idr);
3468 
3469 	INIT_HLIST_NODE(&pool->hash_node);
3470 	pool->refcnt = 1;
3471 
3472 	/* shouldn't fail above this point */
3473 	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3474 	if (!pool->attrs)
3475 		return -ENOMEM;
3476 	return 0;
3477 }
3478 
3479 static void rcu_free_pool(struct rcu_head *rcu)
3480 {
3481 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3482 
3483 	idr_destroy(&pool->worker_idr);
3484 	free_workqueue_attrs(pool->attrs);
3485 	kfree(pool);
3486 }
3487 
3488 /**
3489  * put_unbound_pool - put a worker_pool
3490  * @pool: worker_pool to put
3491  *
3492  * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3493  * safe manner.  get_unbound_pool() calls this function on its failure path
3494  * and this function should be able to release pools which went through,
3495  * successfully or not, init_worker_pool().
3496  *
3497  * Should be called with wq_pool_mutex held.
3498  */
3499 static void put_unbound_pool(struct worker_pool *pool)
3500 {
3501 	struct worker *worker;
3502 
3503 	lockdep_assert_held(&wq_pool_mutex);
3504 
3505 	if (--pool->refcnt)
3506 		return;
3507 
3508 	/* sanity checks */
3509 	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3510 	    WARN_ON(!list_empty(&pool->worklist)))
3511 		return;
3512 
3513 	/* release id and unhash */
3514 	if (pool->id >= 0)
3515 		idr_remove(&worker_pool_idr, pool->id);
3516 	hash_del(&pool->hash_node);
3517 
3518 	/*
3519 	 * Become the manager and destroy all workers.  Grabbing
3520 	 * manager_arb prevents @pool's workers from blocking on
3521 	 * manager_mutex.
3522 	 */
3523 	mutex_lock(&pool->manager_arb);
3524 	mutex_lock(&pool->manager_mutex);
3525 	spin_lock_irq(&pool->lock);
3526 
3527 	while ((worker = first_worker(pool)))
3528 		destroy_worker(worker);
3529 	WARN_ON(pool->nr_workers || pool->nr_idle);
3530 
3531 	spin_unlock_irq(&pool->lock);
3532 	mutex_unlock(&pool->manager_mutex);
3533 	mutex_unlock(&pool->manager_arb);
3534 
3535 	/* shut down the timers */
3536 	del_timer_sync(&pool->idle_timer);
3537 	del_timer_sync(&pool->mayday_timer);
3538 
3539 	/* sched-RCU protected to allow dereferences from get_work_pool() */
3540 	call_rcu_sched(&pool->rcu, rcu_free_pool);
3541 }
3542 
3543 /**
3544  * get_unbound_pool - get a worker_pool with the specified attributes
3545  * @attrs: the attributes of the worker_pool to get
3546  *
3547  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3548  * reference count and return it.  If there already is a matching
3549  * worker_pool, it will be used; otherwise, this function attempts to
3550  * create a new one.  On failure, returns NULL.
3551  *
3552  * Should be called with wq_pool_mutex held.
3553  */
3554 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3555 {
3556 	u32 hash = wqattrs_hash(attrs);
3557 	struct worker_pool *pool;
3558 	int node;
3559 
3560 	lockdep_assert_held(&wq_pool_mutex);
3561 
3562 	/* do we already have a matching pool? */
3563 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3564 		if (wqattrs_equal(pool->attrs, attrs)) {
3565 			pool->refcnt++;
3566 			goto out_unlock;
3567 		}
3568 	}
3569 
3570 	/* nope, create a new one */
3571 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3572 	if (!pool || init_worker_pool(pool) < 0)
3573 		goto fail;
3574 
3575 	if (workqueue_freezing)
3576 		pool->flags |= POOL_FREEZING;
3577 
3578 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3579 	copy_workqueue_attrs(pool->attrs, attrs);
3580 
3581 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3582 	if (wq_numa_enabled) {
3583 		for_each_node(node) {
3584 			if (cpumask_subset(pool->attrs->cpumask,
3585 					   wq_numa_possible_cpumask[node])) {
3586 				pool->node = node;
3587 				break;
3588 			}
3589 		}
3590 	}
3591 
3592 	if (worker_pool_assign_id(pool) < 0)
3593 		goto fail;
3594 
3595 	/* create and start the initial worker */
3596 	if (create_and_start_worker(pool) < 0)
3597 		goto fail;
3598 
3599 	/* install */
3600 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3601 out_unlock:
3602 	return pool;
3603 fail:
3604 	if (pool)
3605 		put_unbound_pool(pool);
3606 	return NULL;
3607 }
3608 
3609 static void rcu_free_pwq(struct rcu_head *rcu)
3610 {
3611 	kmem_cache_free(pwq_cache,
3612 			container_of(rcu, struct pool_workqueue, rcu));
3613 }
3614 
3615 /*
3616  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3617  * and needs to be destroyed.
3618  */
3619 static void pwq_unbound_release_workfn(struct work_struct *work)
3620 {
3621 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3622 						  unbound_release_work);
3623 	struct workqueue_struct *wq = pwq->wq;
3624 	struct worker_pool *pool = pwq->pool;
3625 	bool is_last;
3626 
3627 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3628 		return;
3629 
3630 	/*
3631 	 * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3632 	 * necessary on release but do it anyway.  It's easier to verify
3633 	 * and consistent with the linking path.
3634 	 */
3635 	mutex_lock(&wq->mutex);
3636 	list_del_rcu(&pwq->pwqs_node);
3637 	is_last = list_empty(&wq->pwqs);
3638 	mutex_unlock(&wq->mutex);
3639 
3640 	mutex_lock(&wq_pool_mutex);
3641 	put_unbound_pool(pool);
3642 	mutex_unlock(&wq_pool_mutex);
3643 
3644 	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3645 
3646 	/*
3647 	 * If we're the last pwq going away, @wq is already dead and no one
3648 	 * is gonna access it anymore.  Free it.
3649 	 */
3650 	if (is_last) {
3651 		free_workqueue_attrs(wq->unbound_attrs);
3652 		kfree(wq);
3653 	}
3654 }
3655 
3656 /**
3657  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3658  * @pwq: target pool_workqueue
3659  *
3660  * If @pwq isn't freezing, set @pwq->max_active to the associated
3661  * workqueue's saved_max_active and activate delayed work items
3662  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3663  */
3664 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3665 {
3666 	struct workqueue_struct *wq = pwq->wq;
3667 	bool freezable = wq->flags & WQ_FREEZABLE;
3668 
3669 	/* for @wq->saved_max_active */
3670 	lockdep_assert_held(&wq->mutex);
3671 
3672 	/* fast exit for non-freezable wqs */
3673 	if (!freezable && pwq->max_active == wq->saved_max_active)
3674 		return;
3675 
3676 	spin_lock_irq(&pwq->pool->lock);
3677 
3678 	if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3679 		pwq->max_active = wq->saved_max_active;
3680 
3681 		while (!list_empty(&pwq->delayed_works) &&
3682 		       pwq->nr_active < pwq->max_active)
3683 			pwq_activate_first_delayed(pwq);
3684 
3685 		/*
3686 		 * Need to kick a worker after thawed or an unbound wq's
3687 		 * max_active is bumped.  It's a slow path.  Do it always.
3688 		 */
3689 		wake_up_worker(pwq->pool);
3690 	} else {
3691 		pwq->max_active = 0;
3692 	}
3693 
3694 	spin_unlock_irq(&pwq->pool->lock);
3695 }
3696 
3697 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3698 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3699 		     struct worker_pool *pool)
3700 {
3701 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3702 
3703 	memset(pwq, 0, sizeof(*pwq));
3704 
3705 	pwq->pool = pool;
3706 	pwq->wq = wq;
3707 	pwq->flush_color = -1;
3708 	pwq->refcnt = 1;
3709 	INIT_LIST_HEAD(&pwq->delayed_works);
3710 	INIT_LIST_HEAD(&pwq->pwqs_node);
3711 	INIT_LIST_HEAD(&pwq->mayday_node);
3712 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3713 }
3714 
3715 /* sync @pwq with the current state of its associated wq and link it */
3716 static void link_pwq(struct pool_workqueue *pwq)
3717 {
3718 	struct workqueue_struct *wq = pwq->wq;
3719 
3720 	lockdep_assert_held(&wq->mutex);
3721 
3722 	/* may be called multiple times, ignore if already linked */
3723 	if (!list_empty(&pwq->pwqs_node))
3724 		return;
3725 
3726 	/*
3727 	 * Set the matching work_color.  This is synchronized with
3728 	 * wq->mutex to avoid confusing flush_workqueue().
3729 	 */
3730 	pwq->work_color = wq->work_color;
3731 
3732 	/* sync max_active to the current setting */
3733 	pwq_adjust_max_active(pwq);
3734 
3735 	/* link in @pwq */
3736 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3737 }
3738 
3739 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3740 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3741 					const struct workqueue_attrs *attrs)
3742 {
3743 	struct worker_pool *pool;
3744 	struct pool_workqueue *pwq;
3745 
3746 	lockdep_assert_held(&wq_pool_mutex);
3747 
3748 	pool = get_unbound_pool(attrs);
3749 	if (!pool)
3750 		return NULL;
3751 
3752 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3753 	if (!pwq) {
3754 		put_unbound_pool(pool);
3755 		return NULL;
3756 	}
3757 
3758 	init_pwq(pwq, wq, pool);
3759 	return pwq;
3760 }
3761 
3762 /* undo alloc_unbound_pwq(), used only in the error path */
3763 static void free_unbound_pwq(struct pool_workqueue *pwq)
3764 {
3765 	lockdep_assert_held(&wq_pool_mutex);
3766 
3767 	if (pwq) {
3768 		put_unbound_pool(pwq->pool);
3769 		kmem_cache_free(pwq_cache, pwq);
3770 	}
3771 }
3772 
3773 /**
3774  * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3775  * @attrs: the wq_attrs of interest
3776  * @node: the target NUMA node
3777  * @cpu_going_down: if >= 0, the CPU to consider as offline
3778  * @cpumask: outarg, the resulting cpumask
3779  *
3780  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3781  * @cpu_going_down is >= 0, that cpu is considered offline during
3782  * calculation.  The result is stored in @cpumask.  This function returns
3783  * %true if the resulting @cpumask is different from @attrs->cpumask,
3784  * %false if equal.
3785  *
3786  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3787  * enabled and @node has online CPUs requested by @attrs, the returned
3788  * cpumask is the intersection of the possible CPUs of @node and
3789  * @attrs->cpumask.
3790  *
3791  * The caller is responsible for ensuring that the cpumask of @node stays
3792  * stable.
3793  */
3794 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3795 				 int cpu_going_down, cpumask_t *cpumask)
3796 {
3797 	if (!wq_numa_enabled || attrs->no_numa)
3798 		goto use_dfl;
3799 
3800 	/* does @node have any online CPUs @attrs wants? */
3801 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3802 	if (cpu_going_down >= 0)
3803 		cpumask_clear_cpu(cpu_going_down, cpumask);
3804 
3805 	if (cpumask_empty(cpumask))
3806 		goto use_dfl;
3807 
3808 	/* yeap, return possible CPUs in @node that @attrs wants */
3809 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3810 	return !cpumask_equal(cpumask, attrs->cpumask);
3811 
3812 use_dfl:
3813 	cpumask_copy(cpumask, attrs->cpumask);
3814 	return false;
3815 }
3816 
3817 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3818 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3819 						   int node,
3820 						   struct pool_workqueue *pwq)
3821 {
3822 	struct pool_workqueue *old_pwq;
3823 
3824 	lockdep_assert_held(&wq->mutex);
3825 
3826 	/* link_pwq() can handle duplicate calls */
3827 	link_pwq(pwq);
3828 
3829 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3830 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3831 	return old_pwq;
3832 }
3833 
3834 /**
3835  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3836  * @wq: the target workqueue
3837  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3838  *
3839  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3840  * machines, this function maps a separate pwq to each NUMA node with
3841  * possibles CPUs in @attrs->cpumask so that work items are affine to the
3842  * NUMA node it was issued on.  Older pwqs are released as in-flight work
3843  * items finish.  Note that a work item which repeatedly requeues itself
3844  * back-to-back will stay on its current pwq.
3845  *
3846  * Performs GFP_KERNEL allocations.  Returns 0 on success and -errno on
3847  * failure.
3848  */
3849 int apply_workqueue_attrs(struct workqueue_struct *wq,
3850 			  const struct workqueue_attrs *attrs)
3851 {
3852 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3853 	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3854 	int node, ret;
3855 
3856 	/* only unbound workqueues can change attributes */
3857 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3858 		return -EINVAL;
3859 
3860 	/* creating multiple pwqs breaks ordering guarantee */
3861 	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3862 		return -EINVAL;
3863 
3864 	pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3865 	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3866 	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3867 	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3868 		goto enomem;
3869 
3870 	/* make a copy of @attrs and sanitize it */
3871 	copy_workqueue_attrs(new_attrs, attrs);
3872 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3873 
3874 	/*
3875 	 * We may create multiple pwqs with differing cpumasks.  Make a
3876 	 * copy of @new_attrs which will be modified and used to obtain
3877 	 * pools.
3878 	 */
3879 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3880 
3881 	/*
3882 	 * CPUs should stay stable across pwq creations and installations.
3883 	 * Pin CPUs, determine the target cpumask for each node and create
3884 	 * pwqs accordingly.
3885 	 */
3886 	get_online_cpus();
3887 
3888 	mutex_lock(&wq_pool_mutex);
3889 
3890 	/*
3891 	 * If something goes wrong during CPU up/down, we'll fall back to
3892 	 * the default pwq covering whole @attrs->cpumask.  Always create
3893 	 * it even if we don't use it immediately.
3894 	 */
3895 	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3896 	if (!dfl_pwq)
3897 		goto enomem_pwq;
3898 
3899 	for_each_node(node) {
3900 		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3901 			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3902 			if (!pwq_tbl[node])
3903 				goto enomem_pwq;
3904 		} else {
3905 			dfl_pwq->refcnt++;
3906 			pwq_tbl[node] = dfl_pwq;
3907 		}
3908 	}
3909 
3910 	mutex_unlock(&wq_pool_mutex);
3911 
3912 	/* all pwqs have been created successfully, let's install'em */
3913 	mutex_lock(&wq->mutex);
3914 
3915 	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3916 
3917 	/* save the previous pwq and install the new one */
3918 	for_each_node(node)
3919 		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3920 
3921 	/* @dfl_pwq might not have been used, ensure it's linked */
3922 	link_pwq(dfl_pwq);
3923 	swap(wq->dfl_pwq, dfl_pwq);
3924 
3925 	mutex_unlock(&wq->mutex);
3926 
3927 	/* put the old pwqs */
3928 	for_each_node(node)
3929 		put_pwq_unlocked(pwq_tbl[node]);
3930 	put_pwq_unlocked(dfl_pwq);
3931 
3932 	put_online_cpus();
3933 	ret = 0;
3934 	/* fall through */
3935 out_free:
3936 	free_workqueue_attrs(tmp_attrs);
3937 	free_workqueue_attrs(new_attrs);
3938 	kfree(pwq_tbl);
3939 	return ret;
3940 
3941 enomem_pwq:
3942 	free_unbound_pwq(dfl_pwq);
3943 	for_each_node(node)
3944 		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
3945 			free_unbound_pwq(pwq_tbl[node]);
3946 	mutex_unlock(&wq_pool_mutex);
3947 	put_online_cpus();
3948 enomem:
3949 	ret = -ENOMEM;
3950 	goto out_free;
3951 }
3952 
3953 /**
3954  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3955  * @wq: the target workqueue
3956  * @cpu: the CPU coming up or going down
3957  * @online: whether @cpu is coming up or going down
3958  *
3959  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3960  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3961  * @wq accordingly.
3962  *
3963  * If NUMA affinity can't be adjusted due to memory allocation failure, it
3964  * falls back to @wq->dfl_pwq which may not be optimal but is always
3965  * correct.
3966  *
3967  * Note that when the last allowed CPU of a NUMA node goes offline for a
3968  * workqueue with a cpumask spanning multiple nodes, the workers which were
3969  * already executing the work items for the workqueue will lose their CPU
3970  * affinity and may execute on any CPU.  This is similar to how per-cpu
3971  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3972  * affinity, it's the user's responsibility to flush the work item from
3973  * CPU_DOWN_PREPARE.
3974  */
3975 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3976 				   bool online)
3977 {
3978 	int node = cpu_to_node(cpu);
3979 	int cpu_off = online ? -1 : cpu;
3980 	struct pool_workqueue *old_pwq = NULL, *pwq;
3981 	struct workqueue_attrs *target_attrs;
3982 	cpumask_t *cpumask;
3983 
3984 	lockdep_assert_held(&wq_pool_mutex);
3985 
3986 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
3987 		return;
3988 
3989 	/*
3990 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3991 	 * Let's use a preallocated one.  The following buf is protected by
3992 	 * CPU hotplug exclusion.
3993 	 */
3994 	target_attrs = wq_update_unbound_numa_attrs_buf;
3995 	cpumask = target_attrs->cpumask;
3996 
3997 	mutex_lock(&wq->mutex);
3998 	if (wq->unbound_attrs->no_numa)
3999 		goto out_unlock;
4000 
4001 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4002 	pwq = unbound_pwq_by_node(wq, node);
4003 
4004 	/*
4005 	 * Let's determine what needs to be done.  If the target cpumask is
4006 	 * different from wq's, we need to compare it to @pwq's and create
4007 	 * a new one if they don't match.  If the target cpumask equals
4008 	 * wq's, the default pwq should be used.  If @pwq is already the
4009 	 * default one, nothing to do; otherwise, install the default one.
4010 	 */
4011 	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4012 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4013 			goto out_unlock;
4014 	} else {
4015 		if (pwq == wq->dfl_pwq)
4016 			goto out_unlock;
4017 		else
4018 			goto use_dfl_pwq;
4019 	}
4020 
4021 	mutex_unlock(&wq->mutex);
4022 
4023 	/* create a new pwq */
4024 	pwq = alloc_unbound_pwq(wq, target_attrs);
4025 	if (!pwq) {
4026 		pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4027 			   wq->name);
4028 		goto out_unlock;
4029 	}
4030 
4031 	/*
4032 	 * Install the new pwq.  As this function is called only from CPU
4033 	 * hotplug callbacks and applying a new attrs is wrapped with
4034 	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4035 	 * inbetween.
4036 	 */
4037 	mutex_lock(&wq->mutex);
4038 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4039 	goto out_unlock;
4040 
4041 use_dfl_pwq:
4042 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
4043 	get_pwq(wq->dfl_pwq);
4044 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4045 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4046 out_unlock:
4047 	mutex_unlock(&wq->mutex);
4048 	put_pwq_unlocked(old_pwq);
4049 }
4050 
4051 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4052 {
4053 	bool highpri = wq->flags & WQ_HIGHPRI;
4054 	int cpu;
4055 
4056 	if (!(wq->flags & WQ_UNBOUND)) {
4057 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4058 		if (!wq->cpu_pwqs)
4059 			return -ENOMEM;
4060 
4061 		for_each_possible_cpu(cpu) {
4062 			struct pool_workqueue *pwq =
4063 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4064 			struct worker_pool *cpu_pools =
4065 				per_cpu(cpu_worker_pools, cpu);
4066 
4067 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4068 
4069 			mutex_lock(&wq->mutex);
4070 			link_pwq(pwq);
4071 			mutex_unlock(&wq->mutex);
4072 		}
4073 		return 0;
4074 	} else {
4075 		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4076 	}
4077 }
4078 
4079 static int wq_clamp_max_active(int max_active, unsigned int flags,
4080 			       const char *name)
4081 {
4082 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4083 
4084 	if (max_active < 1 || max_active > lim)
4085 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4086 			max_active, name, 1, lim);
4087 
4088 	return clamp_val(max_active, 1, lim);
4089 }
4090 
4091 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4092 					       unsigned int flags,
4093 					       int max_active,
4094 					       struct lock_class_key *key,
4095 					       const char *lock_name, ...)
4096 {
4097 	size_t tbl_size = 0;
4098 	va_list args;
4099 	struct workqueue_struct *wq;
4100 	struct pool_workqueue *pwq;
4101 
4102 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4103 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4104 		flags |= WQ_UNBOUND;
4105 
4106 	/* allocate wq and format name */
4107 	if (flags & WQ_UNBOUND)
4108 		tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4109 
4110 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4111 	if (!wq)
4112 		return NULL;
4113 
4114 	if (flags & WQ_UNBOUND) {
4115 		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4116 		if (!wq->unbound_attrs)
4117 			goto err_free_wq;
4118 	}
4119 
4120 	va_start(args, lock_name);
4121 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4122 	va_end(args);
4123 
4124 	max_active = max_active ?: WQ_DFL_ACTIVE;
4125 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4126 
4127 	/* init wq */
4128 	wq->flags = flags;
4129 	wq->saved_max_active = max_active;
4130 	mutex_init(&wq->mutex);
4131 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4132 	INIT_LIST_HEAD(&wq->pwqs);
4133 	INIT_LIST_HEAD(&wq->flusher_queue);
4134 	INIT_LIST_HEAD(&wq->flusher_overflow);
4135 	INIT_LIST_HEAD(&wq->maydays);
4136 
4137 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4138 	INIT_LIST_HEAD(&wq->list);
4139 
4140 	if (alloc_and_link_pwqs(wq) < 0)
4141 		goto err_free_wq;
4142 
4143 	/*
4144 	 * Workqueues which may be used during memory reclaim should
4145 	 * have a rescuer to guarantee forward progress.
4146 	 */
4147 	if (flags & WQ_MEM_RECLAIM) {
4148 		struct worker *rescuer;
4149 
4150 		rescuer = alloc_worker();
4151 		if (!rescuer)
4152 			goto err_destroy;
4153 
4154 		rescuer->rescue_wq = wq;
4155 		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4156 					       wq->name);
4157 		if (IS_ERR(rescuer->task)) {
4158 			kfree(rescuer);
4159 			goto err_destroy;
4160 		}
4161 
4162 		wq->rescuer = rescuer;
4163 		rescuer->task->flags |= PF_NO_SETAFFINITY;
4164 		wake_up_process(rescuer->task);
4165 	}
4166 
4167 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4168 		goto err_destroy;
4169 
4170 	/*
4171 	 * wq_pool_mutex protects global freeze state and workqueues list.
4172 	 * Grab it, adjust max_active and add the new @wq to workqueues
4173 	 * list.
4174 	 */
4175 	mutex_lock(&wq_pool_mutex);
4176 
4177 	mutex_lock(&wq->mutex);
4178 	for_each_pwq(pwq, wq)
4179 		pwq_adjust_max_active(pwq);
4180 	mutex_unlock(&wq->mutex);
4181 
4182 	list_add(&wq->list, &workqueues);
4183 
4184 	mutex_unlock(&wq_pool_mutex);
4185 
4186 	return wq;
4187 
4188 err_free_wq:
4189 	free_workqueue_attrs(wq->unbound_attrs);
4190 	kfree(wq);
4191 	return NULL;
4192 err_destroy:
4193 	destroy_workqueue(wq);
4194 	return NULL;
4195 }
4196 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4197 
4198 /**
4199  * destroy_workqueue - safely terminate a workqueue
4200  * @wq: target workqueue
4201  *
4202  * Safely destroy a workqueue. All work currently pending will be done first.
4203  */
4204 void destroy_workqueue(struct workqueue_struct *wq)
4205 {
4206 	struct pool_workqueue *pwq;
4207 	int node;
4208 
4209 	/* drain it before proceeding with destruction */
4210 	drain_workqueue(wq);
4211 
4212 	/* sanity checks */
4213 	mutex_lock(&wq->mutex);
4214 	for_each_pwq(pwq, wq) {
4215 		int i;
4216 
4217 		for (i = 0; i < WORK_NR_COLORS; i++) {
4218 			if (WARN_ON(pwq->nr_in_flight[i])) {
4219 				mutex_unlock(&wq->mutex);
4220 				return;
4221 			}
4222 		}
4223 
4224 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4225 		    WARN_ON(pwq->nr_active) ||
4226 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4227 			mutex_unlock(&wq->mutex);
4228 			return;
4229 		}
4230 	}
4231 	mutex_unlock(&wq->mutex);
4232 
4233 	/*
4234 	 * wq list is used to freeze wq, remove from list after
4235 	 * flushing is complete in case freeze races us.
4236 	 */
4237 	mutex_lock(&wq_pool_mutex);
4238 	list_del_init(&wq->list);
4239 	mutex_unlock(&wq_pool_mutex);
4240 
4241 	workqueue_sysfs_unregister(wq);
4242 
4243 	if (wq->rescuer) {
4244 		kthread_stop(wq->rescuer->task);
4245 		kfree(wq->rescuer);
4246 		wq->rescuer = NULL;
4247 	}
4248 
4249 	if (!(wq->flags & WQ_UNBOUND)) {
4250 		/*
4251 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4252 		 * free the pwqs and wq.
4253 		 */
4254 		free_percpu(wq->cpu_pwqs);
4255 		kfree(wq);
4256 	} else {
4257 		/*
4258 		 * We're the sole accessor of @wq at this point.  Directly
4259 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4260 		 * @wq will be freed when the last pwq is released.
4261 		 */
4262 		for_each_node(node) {
4263 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4264 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4265 			put_pwq_unlocked(pwq);
4266 		}
4267 
4268 		/*
4269 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4270 		 * put.  Don't access it afterwards.
4271 		 */
4272 		pwq = wq->dfl_pwq;
4273 		wq->dfl_pwq = NULL;
4274 		put_pwq_unlocked(pwq);
4275 	}
4276 }
4277 EXPORT_SYMBOL_GPL(destroy_workqueue);
4278 
4279 /**
4280  * workqueue_set_max_active - adjust max_active of a workqueue
4281  * @wq: target workqueue
4282  * @max_active: new max_active value.
4283  *
4284  * Set max_active of @wq to @max_active.
4285  *
4286  * CONTEXT:
4287  * Don't call from IRQ context.
4288  */
4289 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4290 {
4291 	struct pool_workqueue *pwq;
4292 
4293 	/* disallow meddling with max_active for ordered workqueues */
4294 	if (WARN_ON(wq->flags & __WQ_ORDERED))
4295 		return;
4296 
4297 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4298 
4299 	mutex_lock(&wq->mutex);
4300 
4301 	wq->saved_max_active = max_active;
4302 
4303 	for_each_pwq(pwq, wq)
4304 		pwq_adjust_max_active(pwq);
4305 
4306 	mutex_unlock(&wq->mutex);
4307 }
4308 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4309 
4310 /**
4311  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4312  *
4313  * Determine whether %current is a workqueue rescuer.  Can be used from
4314  * work functions to determine whether it's being run off the rescuer task.
4315  */
4316 bool current_is_workqueue_rescuer(void)
4317 {
4318 	struct worker *worker = current_wq_worker();
4319 
4320 	return worker && worker->rescue_wq;
4321 }
4322 
4323 /**
4324  * workqueue_congested - test whether a workqueue is congested
4325  * @cpu: CPU in question
4326  * @wq: target workqueue
4327  *
4328  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4329  * no synchronization around this function and the test result is
4330  * unreliable and only useful as advisory hints or for debugging.
4331  *
4332  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4333  * Note that both per-cpu and unbound workqueues may be associated with
4334  * multiple pool_workqueues which have separate congested states.  A
4335  * workqueue being congested on one CPU doesn't mean the workqueue is also
4336  * contested on other CPUs / NUMA nodes.
4337  *
4338  * RETURNS:
4339  * %true if congested, %false otherwise.
4340  */
4341 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4342 {
4343 	struct pool_workqueue *pwq;
4344 	bool ret;
4345 
4346 	rcu_read_lock_sched();
4347 
4348 	if (cpu == WORK_CPU_UNBOUND)
4349 		cpu = smp_processor_id();
4350 
4351 	if (!(wq->flags & WQ_UNBOUND))
4352 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4353 	else
4354 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4355 
4356 	ret = !list_empty(&pwq->delayed_works);
4357 	rcu_read_unlock_sched();
4358 
4359 	return ret;
4360 }
4361 EXPORT_SYMBOL_GPL(workqueue_congested);
4362 
4363 /**
4364  * work_busy - test whether a work is currently pending or running
4365  * @work: the work to be tested
4366  *
4367  * Test whether @work is currently pending or running.  There is no
4368  * synchronization around this function and the test result is
4369  * unreliable and only useful as advisory hints or for debugging.
4370  *
4371  * RETURNS:
4372  * OR'd bitmask of WORK_BUSY_* bits.
4373  */
4374 unsigned int work_busy(struct work_struct *work)
4375 {
4376 	struct worker_pool *pool;
4377 	unsigned long flags;
4378 	unsigned int ret = 0;
4379 
4380 	if (work_pending(work))
4381 		ret |= WORK_BUSY_PENDING;
4382 
4383 	local_irq_save(flags);
4384 	pool = get_work_pool(work);
4385 	if (pool) {
4386 		spin_lock(&pool->lock);
4387 		if (find_worker_executing_work(pool, work))
4388 			ret |= WORK_BUSY_RUNNING;
4389 		spin_unlock(&pool->lock);
4390 	}
4391 	local_irq_restore(flags);
4392 
4393 	return ret;
4394 }
4395 EXPORT_SYMBOL_GPL(work_busy);
4396 
4397 /**
4398  * set_worker_desc - set description for the current work item
4399  * @fmt: printf-style format string
4400  * @...: arguments for the format string
4401  *
4402  * This function can be called by a running work function to describe what
4403  * the work item is about.  If the worker task gets dumped, this
4404  * information will be printed out together to help debugging.  The
4405  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4406  */
4407 void set_worker_desc(const char *fmt, ...)
4408 {
4409 	struct worker *worker = current_wq_worker();
4410 	va_list args;
4411 
4412 	if (worker) {
4413 		va_start(args, fmt);
4414 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4415 		va_end(args);
4416 		worker->desc_valid = true;
4417 	}
4418 }
4419 
4420 /**
4421  * print_worker_info - print out worker information and description
4422  * @log_lvl: the log level to use when printing
4423  * @task: target task
4424  *
4425  * If @task is a worker and currently executing a work item, print out the
4426  * name of the workqueue being serviced and worker description set with
4427  * set_worker_desc() by the currently executing work item.
4428  *
4429  * This function can be safely called on any task as long as the
4430  * task_struct itself is accessible.  While safe, this function isn't
4431  * synchronized and may print out mixups or garbages of limited length.
4432  */
4433 void print_worker_info(const char *log_lvl, struct task_struct *task)
4434 {
4435 	work_func_t *fn = NULL;
4436 	char name[WQ_NAME_LEN] = { };
4437 	char desc[WORKER_DESC_LEN] = { };
4438 	struct pool_workqueue *pwq = NULL;
4439 	struct workqueue_struct *wq = NULL;
4440 	bool desc_valid = false;
4441 	struct worker *worker;
4442 
4443 	if (!(task->flags & PF_WQ_WORKER))
4444 		return;
4445 
4446 	/*
4447 	 * This function is called without any synchronization and @task
4448 	 * could be in any state.  Be careful with dereferences.
4449 	 */
4450 	worker = probe_kthread_data(task);
4451 
4452 	/*
4453 	 * Carefully copy the associated workqueue's workfn and name.  Keep
4454 	 * the original last '\0' in case the original contains garbage.
4455 	 */
4456 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4457 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4458 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4459 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4460 
4461 	/* copy worker description */
4462 	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4463 	if (desc_valid)
4464 		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4465 
4466 	if (fn || name[0] || desc[0]) {
4467 		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4468 		if (desc[0])
4469 			pr_cont(" (%s)", desc);
4470 		pr_cont("\n");
4471 	}
4472 }
4473 
4474 /*
4475  * CPU hotplug.
4476  *
4477  * There are two challenges in supporting CPU hotplug.  Firstly, there
4478  * are a lot of assumptions on strong associations among work, pwq and
4479  * pool which make migrating pending and scheduled works very
4480  * difficult to implement without impacting hot paths.  Secondly,
4481  * worker pools serve mix of short, long and very long running works making
4482  * blocked draining impractical.
4483  *
4484  * This is solved by allowing the pools to be disassociated from the CPU
4485  * running as an unbound one and allowing it to be reattached later if the
4486  * cpu comes back online.
4487  */
4488 
4489 static void wq_unbind_fn(struct work_struct *work)
4490 {
4491 	int cpu = smp_processor_id();
4492 	struct worker_pool *pool;
4493 	struct worker *worker;
4494 	int wi;
4495 
4496 	for_each_cpu_worker_pool(pool, cpu) {
4497 		WARN_ON_ONCE(cpu != smp_processor_id());
4498 
4499 		mutex_lock(&pool->manager_mutex);
4500 		spin_lock_irq(&pool->lock);
4501 
4502 		/*
4503 		 * We've blocked all manager operations.  Make all workers
4504 		 * unbound and set DISASSOCIATED.  Before this, all workers
4505 		 * except for the ones which are still executing works from
4506 		 * before the last CPU down must be on the cpu.  After
4507 		 * this, they may become diasporas.
4508 		 */
4509 		for_each_pool_worker(worker, wi, pool)
4510 			worker->flags |= WORKER_UNBOUND;
4511 
4512 		pool->flags |= POOL_DISASSOCIATED;
4513 
4514 		spin_unlock_irq(&pool->lock);
4515 		mutex_unlock(&pool->manager_mutex);
4516 
4517 		/*
4518 		 * Call schedule() so that we cross rq->lock and thus can
4519 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4520 		 * This is necessary as scheduler callbacks may be invoked
4521 		 * from other cpus.
4522 		 */
4523 		schedule();
4524 
4525 		/*
4526 		 * Sched callbacks are disabled now.  Zap nr_running.
4527 		 * After this, nr_running stays zero and need_more_worker()
4528 		 * and keep_working() are always true as long as the
4529 		 * worklist is not empty.  This pool now behaves as an
4530 		 * unbound (in terms of concurrency management) pool which
4531 		 * are served by workers tied to the pool.
4532 		 */
4533 		atomic_set(&pool->nr_running, 0);
4534 
4535 		/*
4536 		 * With concurrency management just turned off, a busy
4537 		 * worker blocking could lead to lengthy stalls.  Kick off
4538 		 * unbound chain execution of currently pending work items.
4539 		 */
4540 		spin_lock_irq(&pool->lock);
4541 		wake_up_worker(pool);
4542 		spin_unlock_irq(&pool->lock);
4543 	}
4544 }
4545 
4546 /**
4547  * rebind_workers - rebind all workers of a pool to the associated CPU
4548  * @pool: pool of interest
4549  *
4550  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4551  */
4552 static void rebind_workers(struct worker_pool *pool)
4553 {
4554 	struct worker *worker;
4555 	int wi;
4556 
4557 	lockdep_assert_held(&pool->manager_mutex);
4558 
4559 	/*
4560 	 * Restore CPU affinity of all workers.  As all idle workers should
4561 	 * be on the run-queue of the associated CPU before any local
4562 	 * wake-ups for concurrency management happen, restore CPU affinty
4563 	 * of all workers first and then clear UNBOUND.  As we're called
4564 	 * from CPU_ONLINE, the following shouldn't fail.
4565 	 */
4566 	for_each_pool_worker(worker, wi, pool)
4567 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4568 						  pool->attrs->cpumask) < 0);
4569 
4570 	spin_lock_irq(&pool->lock);
4571 
4572 	for_each_pool_worker(worker, wi, pool) {
4573 		unsigned int worker_flags = worker->flags;
4574 
4575 		/*
4576 		 * A bound idle worker should actually be on the runqueue
4577 		 * of the associated CPU for local wake-ups targeting it to
4578 		 * work.  Kick all idle workers so that they migrate to the
4579 		 * associated CPU.  Doing this in the same loop as
4580 		 * replacing UNBOUND with REBOUND is safe as no worker will
4581 		 * be bound before @pool->lock is released.
4582 		 */
4583 		if (worker_flags & WORKER_IDLE)
4584 			wake_up_process(worker->task);
4585 
4586 		/*
4587 		 * We want to clear UNBOUND but can't directly call
4588 		 * worker_clr_flags() or adjust nr_running.  Atomically
4589 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4590 		 * @worker will clear REBOUND using worker_clr_flags() when
4591 		 * it initiates the next execution cycle thus restoring
4592 		 * concurrency management.  Note that when or whether
4593 		 * @worker clears REBOUND doesn't affect correctness.
4594 		 *
4595 		 * ACCESS_ONCE() is necessary because @worker->flags may be
4596 		 * tested without holding any lock in
4597 		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4598 		 * fail incorrectly leading to premature concurrency
4599 		 * management operations.
4600 		 */
4601 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4602 		worker_flags |= WORKER_REBOUND;
4603 		worker_flags &= ~WORKER_UNBOUND;
4604 		ACCESS_ONCE(worker->flags) = worker_flags;
4605 	}
4606 
4607 	spin_unlock_irq(&pool->lock);
4608 }
4609 
4610 /**
4611  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4612  * @pool: unbound pool of interest
4613  * @cpu: the CPU which is coming up
4614  *
4615  * An unbound pool may end up with a cpumask which doesn't have any online
4616  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4617  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4618  * online CPU before, cpus_allowed of all its workers should be restored.
4619  */
4620 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4621 {
4622 	static cpumask_t cpumask;
4623 	struct worker *worker;
4624 	int wi;
4625 
4626 	lockdep_assert_held(&pool->manager_mutex);
4627 
4628 	/* is @cpu allowed for @pool? */
4629 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4630 		return;
4631 
4632 	/* is @cpu the only online CPU? */
4633 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4634 	if (cpumask_weight(&cpumask) != 1)
4635 		return;
4636 
4637 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4638 	for_each_pool_worker(worker, wi, pool)
4639 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4640 						  pool->attrs->cpumask) < 0);
4641 }
4642 
4643 /*
4644  * Workqueues should be brought up before normal priority CPU notifiers.
4645  * This will be registered high priority CPU notifier.
4646  */
4647 static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
4648 					       unsigned long action,
4649 					       void *hcpu)
4650 {
4651 	int cpu = (unsigned long)hcpu;
4652 	struct worker_pool *pool;
4653 	struct workqueue_struct *wq;
4654 	int pi;
4655 
4656 	switch (action & ~CPU_TASKS_FROZEN) {
4657 	case CPU_UP_PREPARE:
4658 		for_each_cpu_worker_pool(pool, cpu) {
4659 			if (pool->nr_workers)
4660 				continue;
4661 			if (create_and_start_worker(pool) < 0)
4662 				return NOTIFY_BAD;
4663 		}
4664 		break;
4665 
4666 	case CPU_DOWN_FAILED:
4667 	case CPU_ONLINE:
4668 		mutex_lock(&wq_pool_mutex);
4669 
4670 		for_each_pool(pool, pi) {
4671 			mutex_lock(&pool->manager_mutex);
4672 
4673 			if (pool->cpu == cpu) {
4674 				spin_lock_irq(&pool->lock);
4675 				pool->flags &= ~POOL_DISASSOCIATED;
4676 				spin_unlock_irq(&pool->lock);
4677 
4678 				rebind_workers(pool);
4679 			} else if (pool->cpu < 0) {
4680 				restore_unbound_workers_cpumask(pool, cpu);
4681 			}
4682 
4683 			mutex_unlock(&pool->manager_mutex);
4684 		}
4685 
4686 		/* update NUMA affinity of unbound workqueues */
4687 		list_for_each_entry(wq, &workqueues, list)
4688 			wq_update_unbound_numa(wq, cpu, true);
4689 
4690 		mutex_unlock(&wq_pool_mutex);
4691 		break;
4692 	}
4693 	return NOTIFY_OK;
4694 }
4695 
4696 /*
4697  * Workqueues should be brought down after normal priority CPU notifiers.
4698  * This will be registered as low priority CPU notifier.
4699  */
4700 static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
4701 						 unsigned long action,
4702 						 void *hcpu)
4703 {
4704 	int cpu = (unsigned long)hcpu;
4705 	struct work_struct unbind_work;
4706 	struct workqueue_struct *wq;
4707 
4708 	switch (action & ~CPU_TASKS_FROZEN) {
4709 	case CPU_DOWN_PREPARE:
4710 		/* unbinding per-cpu workers should happen on the local CPU */
4711 		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4712 		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4713 
4714 		/* update NUMA affinity of unbound workqueues */
4715 		mutex_lock(&wq_pool_mutex);
4716 		list_for_each_entry(wq, &workqueues, list)
4717 			wq_update_unbound_numa(wq, cpu, false);
4718 		mutex_unlock(&wq_pool_mutex);
4719 
4720 		/* wait for per-cpu unbinding to finish */
4721 		flush_work(&unbind_work);
4722 		break;
4723 	}
4724 	return NOTIFY_OK;
4725 }
4726 
4727 #ifdef CONFIG_SMP
4728 
4729 struct work_for_cpu {
4730 	struct work_struct work;
4731 	long (*fn)(void *);
4732 	void *arg;
4733 	long ret;
4734 };
4735 
4736 static void work_for_cpu_fn(struct work_struct *work)
4737 {
4738 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4739 
4740 	wfc->ret = wfc->fn(wfc->arg);
4741 }
4742 
4743 /**
4744  * work_on_cpu - run a function in user context on a particular cpu
4745  * @cpu: the cpu to run on
4746  * @fn: the function to run
4747  * @arg: the function arg
4748  *
4749  * This will return the value @fn returns.
4750  * It is up to the caller to ensure that the cpu doesn't go offline.
4751  * The caller must not hold any locks which would prevent @fn from completing.
4752  */
4753 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4754 {
4755 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4756 
4757 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4758 	schedule_work_on(cpu, &wfc.work);
4759 	flush_work(&wfc.work);
4760 	return wfc.ret;
4761 }
4762 EXPORT_SYMBOL_GPL(work_on_cpu);
4763 #endif /* CONFIG_SMP */
4764 
4765 #ifdef CONFIG_FREEZER
4766 
4767 /**
4768  * freeze_workqueues_begin - begin freezing workqueues
4769  *
4770  * Start freezing workqueues.  After this function returns, all freezable
4771  * workqueues will queue new works to their delayed_works list instead of
4772  * pool->worklist.
4773  *
4774  * CONTEXT:
4775  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4776  */
4777 void freeze_workqueues_begin(void)
4778 {
4779 	struct worker_pool *pool;
4780 	struct workqueue_struct *wq;
4781 	struct pool_workqueue *pwq;
4782 	int pi;
4783 
4784 	mutex_lock(&wq_pool_mutex);
4785 
4786 	WARN_ON_ONCE(workqueue_freezing);
4787 	workqueue_freezing = true;
4788 
4789 	/* set FREEZING */
4790 	for_each_pool(pool, pi) {
4791 		spin_lock_irq(&pool->lock);
4792 		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4793 		pool->flags |= POOL_FREEZING;
4794 		spin_unlock_irq(&pool->lock);
4795 	}
4796 
4797 	list_for_each_entry(wq, &workqueues, list) {
4798 		mutex_lock(&wq->mutex);
4799 		for_each_pwq(pwq, wq)
4800 			pwq_adjust_max_active(pwq);
4801 		mutex_unlock(&wq->mutex);
4802 	}
4803 
4804 	mutex_unlock(&wq_pool_mutex);
4805 }
4806 
4807 /**
4808  * freeze_workqueues_busy - are freezable workqueues still busy?
4809  *
4810  * Check whether freezing is complete.  This function must be called
4811  * between freeze_workqueues_begin() and thaw_workqueues().
4812  *
4813  * CONTEXT:
4814  * Grabs and releases wq_pool_mutex.
4815  *
4816  * RETURNS:
4817  * %true if some freezable workqueues are still busy.  %false if freezing
4818  * is complete.
4819  */
4820 bool freeze_workqueues_busy(void)
4821 {
4822 	bool busy = false;
4823 	struct workqueue_struct *wq;
4824 	struct pool_workqueue *pwq;
4825 
4826 	mutex_lock(&wq_pool_mutex);
4827 
4828 	WARN_ON_ONCE(!workqueue_freezing);
4829 
4830 	list_for_each_entry(wq, &workqueues, list) {
4831 		if (!(wq->flags & WQ_FREEZABLE))
4832 			continue;
4833 		/*
4834 		 * nr_active is monotonically decreasing.  It's safe
4835 		 * to peek without lock.
4836 		 */
4837 		rcu_read_lock_sched();
4838 		for_each_pwq(pwq, wq) {
4839 			WARN_ON_ONCE(pwq->nr_active < 0);
4840 			if (pwq->nr_active) {
4841 				busy = true;
4842 				rcu_read_unlock_sched();
4843 				goto out_unlock;
4844 			}
4845 		}
4846 		rcu_read_unlock_sched();
4847 	}
4848 out_unlock:
4849 	mutex_unlock(&wq_pool_mutex);
4850 	return busy;
4851 }
4852 
4853 /**
4854  * thaw_workqueues - thaw workqueues
4855  *
4856  * Thaw workqueues.  Normal queueing is restored and all collected
4857  * frozen works are transferred to their respective pool worklists.
4858  *
4859  * CONTEXT:
4860  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4861  */
4862 void thaw_workqueues(void)
4863 {
4864 	struct workqueue_struct *wq;
4865 	struct pool_workqueue *pwq;
4866 	struct worker_pool *pool;
4867 	int pi;
4868 
4869 	mutex_lock(&wq_pool_mutex);
4870 
4871 	if (!workqueue_freezing)
4872 		goto out_unlock;
4873 
4874 	/* clear FREEZING */
4875 	for_each_pool(pool, pi) {
4876 		spin_lock_irq(&pool->lock);
4877 		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4878 		pool->flags &= ~POOL_FREEZING;
4879 		spin_unlock_irq(&pool->lock);
4880 	}
4881 
4882 	/* restore max_active and repopulate worklist */
4883 	list_for_each_entry(wq, &workqueues, list) {
4884 		mutex_lock(&wq->mutex);
4885 		for_each_pwq(pwq, wq)
4886 			pwq_adjust_max_active(pwq);
4887 		mutex_unlock(&wq->mutex);
4888 	}
4889 
4890 	workqueue_freezing = false;
4891 out_unlock:
4892 	mutex_unlock(&wq_pool_mutex);
4893 }
4894 #endif /* CONFIG_FREEZER */
4895 
4896 static void __init wq_numa_init(void)
4897 {
4898 	cpumask_var_t *tbl;
4899 	int node, cpu;
4900 
4901 	/* determine NUMA pwq table len - highest node id + 1 */
4902 	for_each_node(node)
4903 		wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4904 
4905 	if (num_possible_nodes() <= 1)
4906 		return;
4907 
4908 	if (wq_disable_numa) {
4909 		pr_info("workqueue: NUMA affinity support disabled\n");
4910 		return;
4911 	}
4912 
4913 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4914 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
4915 
4916 	/*
4917 	 * We want masks of possible CPUs of each node which isn't readily
4918 	 * available.  Build one from cpu_to_node() which should have been
4919 	 * fully initialized by now.
4920 	 */
4921 	tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
4922 	BUG_ON(!tbl);
4923 
4924 	for_each_node(node)
4925 		BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
4926 				node_online(node) ? node : NUMA_NO_NODE));
4927 
4928 	for_each_possible_cpu(cpu) {
4929 		node = cpu_to_node(cpu);
4930 		if (WARN_ON(node == NUMA_NO_NODE)) {
4931 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
4932 			/* happens iff arch is bonkers, let's just proceed */
4933 			return;
4934 		}
4935 		cpumask_set_cpu(cpu, tbl[node]);
4936 	}
4937 
4938 	wq_numa_possible_cpumask = tbl;
4939 	wq_numa_enabled = true;
4940 }
4941 
4942 static int __init init_workqueues(void)
4943 {
4944 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4945 	int i, cpu;
4946 
4947 	/* make sure we have enough bits for OFFQ pool ID */
4948 	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
4949 		     WORK_CPU_END * NR_STD_WORKER_POOLS);
4950 
4951 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4952 
4953 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4954 
4955 	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4956 	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4957 
4958 	wq_numa_init();
4959 
4960 	/* initialize CPU pools */
4961 	for_each_possible_cpu(cpu) {
4962 		struct worker_pool *pool;
4963 
4964 		i = 0;
4965 		for_each_cpu_worker_pool(pool, cpu) {
4966 			BUG_ON(init_worker_pool(pool));
4967 			pool->cpu = cpu;
4968 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
4969 			pool->attrs->nice = std_nice[i++];
4970 			pool->node = cpu_to_node(cpu);
4971 
4972 			/* alloc pool ID */
4973 			mutex_lock(&wq_pool_mutex);
4974 			BUG_ON(worker_pool_assign_id(pool));
4975 			mutex_unlock(&wq_pool_mutex);
4976 		}
4977 	}
4978 
4979 	/* create the initial worker */
4980 	for_each_online_cpu(cpu) {
4981 		struct worker_pool *pool;
4982 
4983 		for_each_cpu_worker_pool(pool, cpu) {
4984 			pool->flags &= ~POOL_DISASSOCIATED;
4985 			BUG_ON(create_and_start_worker(pool) < 0);
4986 		}
4987 	}
4988 
4989 	/* create default unbound wq attrs */
4990 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4991 		struct workqueue_attrs *attrs;
4992 
4993 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4994 		attrs->nice = std_nice[i];
4995 		unbound_std_wq_attrs[i] = attrs;
4996 	}
4997 
4998 	system_wq = alloc_workqueue("events", 0, 0);
4999 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5000 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5001 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5002 					    WQ_UNBOUND_MAX_ACTIVE);
5003 	system_freezable_wq = alloc_workqueue("events_freezable",
5004 					      WQ_FREEZABLE, 0);
5005 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5006 					      WQ_POWER_EFFICIENT, 0);
5007 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5008 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5009 					      0);
5010 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5011 	       !system_unbound_wq || !system_freezable_wq ||
5012 	       !system_power_efficient_wq ||
5013 	       !system_freezable_power_efficient_wq);
5014 	return 0;
5015 }
5016 early_initcall(init_workqueues);
5017