xref: /openbmc/linux/kernel/workqueue.c (revision 78c99ba1)
1 /*
2  * linux/kernel/workqueue.c
3  *
4  * Generic mechanism for defining kernel helper threads for running
5  * arbitrary tasks in process context.
6  *
7  * Started by Ingo Molnar, Copyright (C) 2002
8  *
9  * Derived from the taskqueue/keventd code by:
10  *
11  *   David Woodhouse <dwmw2@infradead.org>
12  *   Andrew Morton
13  *   Kai Petzke <wpp@marie.physik.tu-berlin.de>
14  *   Theodore Ts'o <tytso@mit.edu>
15  *
16  * Made to use alloc_percpu by Christoph Lameter.
17  */
18 
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
35 #include <linux/lockdep.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/workqueue.h>
38 
39 /*
40  * The per-CPU workqueue (if single thread, we always use the first
41  * possible cpu).
42  */
43 struct cpu_workqueue_struct {
44 
45 	spinlock_t lock;
46 
47 	struct list_head worklist;
48 	wait_queue_head_t more_work;
49 	struct work_struct *current_work;
50 
51 	struct workqueue_struct *wq;
52 	struct task_struct *thread;
53 } ____cacheline_aligned;
54 
55 /*
56  * The externally visible workqueue abstraction is an array of
57  * per-CPU workqueues:
58  */
59 struct workqueue_struct {
60 	struct cpu_workqueue_struct *cpu_wq;
61 	struct list_head list;
62 	const char *name;
63 	int singlethread;
64 	int freezeable;		/* Freeze threads during suspend */
65 	int rt;
66 #ifdef CONFIG_LOCKDEP
67 	struct lockdep_map lockdep_map;
68 #endif
69 };
70 
71 /* Serializes the accesses to the list of workqueues. */
72 static DEFINE_SPINLOCK(workqueue_lock);
73 static LIST_HEAD(workqueues);
74 
75 static int singlethread_cpu __read_mostly;
76 static const struct cpumask *cpu_singlethread_map __read_mostly;
77 /*
78  * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD
79  * flushes cwq->worklist. This means that flush_workqueue/wait_on_work
80  * which comes in between can't use for_each_online_cpu(). We could
81  * use cpu_possible_map, the cpumask below is more a documentation
82  * than optimization.
83  */
84 static cpumask_var_t cpu_populated_map __read_mostly;
85 
86 /* If it's single threaded, it isn't in the list of workqueues. */
87 static inline int is_wq_single_threaded(struct workqueue_struct *wq)
88 {
89 	return wq->singlethread;
90 }
91 
92 static const struct cpumask *wq_cpu_map(struct workqueue_struct *wq)
93 {
94 	return is_wq_single_threaded(wq)
95 		? cpu_singlethread_map : cpu_populated_map;
96 }
97 
98 static
99 struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu)
100 {
101 	if (unlikely(is_wq_single_threaded(wq)))
102 		cpu = singlethread_cpu;
103 	return per_cpu_ptr(wq->cpu_wq, cpu);
104 }
105 
106 /*
107  * Set the workqueue on which a work item is to be run
108  * - Must *only* be called if the pending flag is set
109  */
110 static inline void set_wq_data(struct work_struct *work,
111 				struct cpu_workqueue_struct *cwq)
112 {
113 	unsigned long new;
114 
115 	BUG_ON(!work_pending(work));
116 
117 	new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING);
118 	new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
119 	atomic_long_set(&work->data, new);
120 }
121 
122 static inline
123 struct cpu_workqueue_struct *get_wq_data(struct work_struct *work)
124 {
125 	return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
126 }
127 
128 static void insert_work(struct cpu_workqueue_struct *cwq,
129 			struct work_struct *work, struct list_head *head)
130 {
131 	trace_workqueue_insertion(cwq->thread, work);
132 
133 	set_wq_data(work, cwq);
134 	/*
135 	 * Ensure that we get the right work->data if we see the
136 	 * result of list_add() below, see try_to_grab_pending().
137 	 */
138 	smp_wmb();
139 	list_add_tail(&work->entry, head);
140 	wake_up(&cwq->more_work);
141 }
142 
143 static void __queue_work(struct cpu_workqueue_struct *cwq,
144 			 struct work_struct *work)
145 {
146 	unsigned long flags;
147 
148 	spin_lock_irqsave(&cwq->lock, flags);
149 	insert_work(cwq, work, &cwq->worklist);
150 	spin_unlock_irqrestore(&cwq->lock, flags);
151 }
152 
153 /**
154  * queue_work - queue work on a workqueue
155  * @wq: workqueue to use
156  * @work: work to queue
157  *
158  * Returns 0 if @work was already on a queue, non-zero otherwise.
159  *
160  * We queue the work to the CPU on which it was submitted, but if the CPU dies
161  * it can be processed by another CPU.
162  */
163 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
164 {
165 	int ret;
166 
167 	ret = queue_work_on(get_cpu(), wq, work);
168 	put_cpu();
169 
170 	return ret;
171 }
172 EXPORT_SYMBOL_GPL(queue_work);
173 
174 /**
175  * queue_work_on - queue work on specific cpu
176  * @cpu: CPU number to execute work on
177  * @wq: workqueue to use
178  * @work: work to queue
179  *
180  * Returns 0 if @work was already on a queue, non-zero otherwise.
181  *
182  * We queue the work to a specific CPU, the caller must ensure it
183  * can't go away.
184  */
185 int
186 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
187 {
188 	int ret = 0;
189 
190 	if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
191 		BUG_ON(!list_empty(&work->entry));
192 		__queue_work(wq_per_cpu(wq, cpu), work);
193 		ret = 1;
194 	}
195 	return ret;
196 }
197 EXPORT_SYMBOL_GPL(queue_work_on);
198 
199 static void delayed_work_timer_fn(unsigned long __data)
200 {
201 	struct delayed_work *dwork = (struct delayed_work *)__data;
202 	struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
203 	struct workqueue_struct *wq = cwq->wq;
204 
205 	__queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work);
206 }
207 
208 /**
209  * queue_delayed_work - queue work on a workqueue after delay
210  * @wq: workqueue to use
211  * @dwork: delayable work to queue
212  * @delay: number of jiffies to wait before queueing
213  *
214  * Returns 0 if @work was already on a queue, non-zero otherwise.
215  */
216 int queue_delayed_work(struct workqueue_struct *wq,
217 			struct delayed_work *dwork, unsigned long delay)
218 {
219 	if (delay == 0)
220 		return queue_work(wq, &dwork->work);
221 
222 	return queue_delayed_work_on(-1, wq, dwork, delay);
223 }
224 EXPORT_SYMBOL_GPL(queue_delayed_work);
225 
226 /**
227  * queue_delayed_work_on - queue work on specific CPU after delay
228  * @cpu: CPU number to execute work on
229  * @wq: workqueue to use
230  * @dwork: work to queue
231  * @delay: number of jiffies to wait before queueing
232  *
233  * Returns 0 if @work was already on a queue, non-zero otherwise.
234  */
235 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
236 			struct delayed_work *dwork, unsigned long delay)
237 {
238 	int ret = 0;
239 	struct timer_list *timer = &dwork->timer;
240 	struct work_struct *work = &dwork->work;
241 
242 	if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
243 		BUG_ON(timer_pending(timer));
244 		BUG_ON(!list_empty(&work->entry));
245 
246 		timer_stats_timer_set_start_info(&dwork->timer);
247 
248 		/* This stores cwq for the moment, for the timer_fn */
249 		set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id()));
250 		timer->expires = jiffies + delay;
251 		timer->data = (unsigned long)dwork;
252 		timer->function = delayed_work_timer_fn;
253 
254 		if (unlikely(cpu >= 0))
255 			add_timer_on(timer, cpu);
256 		else
257 			add_timer(timer);
258 		ret = 1;
259 	}
260 	return ret;
261 }
262 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
263 
264 static void run_workqueue(struct cpu_workqueue_struct *cwq)
265 {
266 	spin_lock_irq(&cwq->lock);
267 	while (!list_empty(&cwq->worklist)) {
268 		struct work_struct *work = list_entry(cwq->worklist.next,
269 						struct work_struct, entry);
270 		work_func_t f = work->func;
271 #ifdef CONFIG_LOCKDEP
272 		/*
273 		 * It is permissible to free the struct work_struct
274 		 * from inside the function that is called from it,
275 		 * this we need to take into account for lockdep too.
276 		 * To avoid bogus "held lock freed" warnings as well
277 		 * as problems when looking into work->lockdep_map,
278 		 * make a copy and use that here.
279 		 */
280 		struct lockdep_map lockdep_map = work->lockdep_map;
281 #endif
282 		trace_workqueue_execution(cwq->thread, work);
283 		cwq->current_work = work;
284 		list_del_init(cwq->worklist.next);
285 		spin_unlock_irq(&cwq->lock);
286 
287 		BUG_ON(get_wq_data(work) != cwq);
288 		work_clear_pending(work);
289 		lock_map_acquire(&cwq->wq->lockdep_map);
290 		lock_map_acquire(&lockdep_map);
291 		f(work);
292 		lock_map_release(&lockdep_map);
293 		lock_map_release(&cwq->wq->lockdep_map);
294 
295 		if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
296 			printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
297 					"%s/0x%08x/%d\n",
298 					current->comm, preempt_count(),
299 				       	task_pid_nr(current));
300 			printk(KERN_ERR "    last function: ");
301 			print_symbol("%s\n", (unsigned long)f);
302 			debug_show_held_locks(current);
303 			dump_stack();
304 		}
305 
306 		spin_lock_irq(&cwq->lock);
307 		cwq->current_work = NULL;
308 	}
309 	spin_unlock_irq(&cwq->lock);
310 }
311 
312 static int worker_thread(void *__cwq)
313 {
314 	struct cpu_workqueue_struct *cwq = __cwq;
315 	DEFINE_WAIT(wait);
316 
317 	if (cwq->wq->freezeable)
318 		set_freezable();
319 
320 	set_user_nice(current, -5);
321 
322 	for (;;) {
323 		prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
324 		if (!freezing(current) &&
325 		    !kthread_should_stop() &&
326 		    list_empty(&cwq->worklist))
327 			schedule();
328 		finish_wait(&cwq->more_work, &wait);
329 
330 		try_to_freeze();
331 
332 		if (kthread_should_stop())
333 			break;
334 
335 		run_workqueue(cwq);
336 	}
337 
338 	return 0;
339 }
340 
341 struct wq_barrier {
342 	struct work_struct	work;
343 	struct completion	done;
344 };
345 
346 static void wq_barrier_func(struct work_struct *work)
347 {
348 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
349 	complete(&barr->done);
350 }
351 
352 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
353 			struct wq_barrier *barr, struct list_head *head)
354 {
355 	INIT_WORK(&barr->work, wq_barrier_func);
356 	__set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
357 
358 	init_completion(&barr->done);
359 
360 	insert_work(cwq, &barr->work, head);
361 }
362 
363 static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
364 {
365 	int active = 0;
366 	struct wq_barrier barr;
367 
368 	WARN_ON(cwq->thread == current);
369 
370 	spin_lock_irq(&cwq->lock);
371 	if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) {
372 		insert_wq_barrier(cwq, &barr, &cwq->worklist);
373 		active = 1;
374 	}
375 	spin_unlock_irq(&cwq->lock);
376 
377 	if (active)
378 		wait_for_completion(&barr.done);
379 
380 	return active;
381 }
382 
383 /**
384  * flush_workqueue - ensure that any scheduled work has run to completion.
385  * @wq: workqueue to flush
386  *
387  * Forces execution of the workqueue and blocks until its completion.
388  * This is typically used in driver shutdown handlers.
389  *
390  * We sleep until all works which were queued on entry have been handled,
391  * but we are not livelocked by new incoming ones.
392  *
393  * This function used to run the workqueues itself.  Now we just wait for the
394  * helper threads to do it.
395  */
396 void flush_workqueue(struct workqueue_struct *wq)
397 {
398 	const struct cpumask *cpu_map = wq_cpu_map(wq);
399 	int cpu;
400 
401 	might_sleep();
402 	lock_map_acquire(&wq->lockdep_map);
403 	lock_map_release(&wq->lockdep_map);
404 	for_each_cpu(cpu, cpu_map)
405 		flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
406 }
407 EXPORT_SYMBOL_GPL(flush_workqueue);
408 
409 /**
410  * flush_work - block until a work_struct's callback has terminated
411  * @work: the work which is to be flushed
412  *
413  * Returns false if @work has already terminated.
414  *
415  * It is expected that, prior to calling flush_work(), the caller has
416  * arranged for the work to not be requeued, otherwise it doesn't make
417  * sense to use this function.
418  */
419 int flush_work(struct work_struct *work)
420 {
421 	struct cpu_workqueue_struct *cwq;
422 	struct list_head *prev;
423 	struct wq_barrier barr;
424 
425 	might_sleep();
426 	cwq = get_wq_data(work);
427 	if (!cwq)
428 		return 0;
429 
430 	lock_map_acquire(&cwq->wq->lockdep_map);
431 	lock_map_release(&cwq->wq->lockdep_map);
432 
433 	prev = NULL;
434 	spin_lock_irq(&cwq->lock);
435 	if (!list_empty(&work->entry)) {
436 		/*
437 		 * See the comment near try_to_grab_pending()->smp_rmb().
438 		 * If it was re-queued under us we are not going to wait.
439 		 */
440 		smp_rmb();
441 		if (unlikely(cwq != get_wq_data(work)))
442 			goto out;
443 		prev = &work->entry;
444 	} else {
445 		if (cwq->current_work != work)
446 			goto out;
447 		prev = &cwq->worklist;
448 	}
449 	insert_wq_barrier(cwq, &barr, prev->next);
450 out:
451 	spin_unlock_irq(&cwq->lock);
452 	if (!prev)
453 		return 0;
454 
455 	wait_for_completion(&barr.done);
456 	return 1;
457 }
458 EXPORT_SYMBOL_GPL(flush_work);
459 
460 /*
461  * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
462  * so this work can't be re-armed in any way.
463  */
464 static int try_to_grab_pending(struct work_struct *work)
465 {
466 	struct cpu_workqueue_struct *cwq;
467 	int ret = -1;
468 
469 	if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work)))
470 		return 0;
471 
472 	/*
473 	 * The queueing is in progress, or it is already queued. Try to
474 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
475 	 */
476 
477 	cwq = get_wq_data(work);
478 	if (!cwq)
479 		return ret;
480 
481 	spin_lock_irq(&cwq->lock);
482 	if (!list_empty(&work->entry)) {
483 		/*
484 		 * This work is queued, but perhaps we locked the wrong cwq.
485 		 * In that case we must see the new value after rmb(), see
486 		 * insert_work()->wmb().
487 		 */
488 		smp_rmb();
489 		if (cwq == get_wq_data(work)) {
490 			list_del_init(&work->entry);
491 			ret = 1;
492 		}
493 	}
494 	spin_unlock_irq(&cwq->lock);
495 
496 	return ret;
497 }
498 
499 static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq,
500 				struct work_struct *work)
501 {
502 	struct wq_barrier barr;
503 	int running = 0;
504 
505 	spin_lock_irq(&cwq->lock);
506 	if (unlikely(cwq->current_work == work)) {
507 		insert_wq_barrier(cwq, &barr, cwq->worklist.next);
508 		running = 1;
509 	}
510 	spin_unlock_irq(&cwq->lock);
511 
512 	if (unlikely(running))
513 		wait_for_completion(&barr.done);
514 }
515 
516 static void wait_on_work(struct work_struct *work)
517 {
518 	struct cpu_workqueue_struct *cwq;
519 	struct workqueue_struct *wq;
520 	const struct cpumask *cpu_map;
521 	int cpu;
522 
523 	might_sleep();
524 
525 	lock_map_acquire(&work->lockdep_map);
526 	lock_map_release(&work->lockdep_map);
527 
528 	cwq = get_wq_data(work);
529 	if (!cwq)
530 		return;
531 
532 	wq = cwq->wq;
533 	cpu_map = wq_cpu_map(wq);
534 
535 	for_each_cpu(cpu, cpu_map)
536 		wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
537 }
538 
539 static int __cancel_work_timer(struct work_struct *work,
540 				struct timer_list* timer)
541 {
542 	int ret;
543 
544 	do {
545 		ret = (timer && likely(del_timer(timer)));
546 		if (!ret)
547 			ret = try_to_grab_pending(work);
548 		wait_on_work(work);
549 	} while (unlikely(ret < 0));
550 
551 	work_clear_pending(work);
552 	return ret;
553 }
554 
555 /**
556  * cancel_work_sync - block until a work_struct's callback has terminated
557  * @work: the work which is to be flushed
558  *
559  * Returns true if @work was pending.
560  *
561  * cancel_work_sync() will cancel the work if it is queued. If the work's
562  * callback appears to be running, cancel_work_sync() will block until it
563  * has completed.
564  *
565  * It is possible to use this function if the work re-queues itself. It can
566  * cancel the work even if it migrates to another workqueue, however in that
567  * case it only guarantees that work->func() has completed on the last queued
568  * workqueue.
569  *
570  * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
571  * pending, otherwise it goes into a busy-wait loop until the timer expires.
572  *
573  * The caller must ensure that workqueue_struct on which this work was last
574  * queued can't be destroyed before this function returns.
575  */
576 int cancel_work_sync(struct work_struct *work)
577 {
578 	return __cancel_work_timer(work, NULL);
579 }
580 EXPORT_SYMBOL_GPL(cancel_work_sync);
581 
582 /**
583  * cancel_delayed_work_sync - reliably kill off a delayed work.
584  * @dwork: the delayed work struct
585  *
586  * Returns true if @dwork was pending.
587  *
588  * It is possible to use this function if @dwork rearms itself via queue_work()
589  * or queue_delayed_work(). See also the comment for cancel_work_sync().
590  */
591 int cancel_delayed_work_sync(struct delayed_work *dwork)
592 {
593 	return __cancel_work_timer(&dwork->work, &dwork->timer);
594 }
595 EXPORT_SYMBOL(cancel_delayed_work_sync);
596 
597 static struct workqueue_struct *keventd_wq __read_mostly;
598 
599 /**
600  * schedule_work - put work task in global workqueue
601  * @work: job to be done
602  *
603  * This puts a job in the kernel-global workqueue.
604  */
605 int schedule_work(struct work_struct *work)
606 {
607 	return queue_work(keventd_wq, work);
608 }
609 EXPORT_SYMBOL(schedule_work);
610 
611 /*
612  * schedule_work_on - put work task on a specific cpu
613  * @cpu: cpu to put the work task on
614  * @work: job to be done
615  *
616  * This puts a job on a specific cpu
617  */
618 int schedule_work_on(int cpu, struct work_struct *work)
619 {
620 	return queue_work_on(cpu, keventd_wq, work);
621 }
622 EXPORT_SYMBOL(schedule_work_on);
623 
624 /**
625  * schedule_delayed_work - put work task in global workqueue after delay
626  * @dwork: job to be done
627  * @delay: number of jiffies to wait or 0 for immediate execution
628  *
629  * After waiting for a given time this puts a job in the kernel-global
630  * workqueue.
631  */
632 int schedule_delayed_work(struct delayed_work *dwork,
633 					unsigned long delay)
634 {
635 	return queue_delayed_work(keventd_wq, dwork, delay);
636 }
637 EXPORT_SYMBOL(schedule_delayed_work);
638 
639 /**
640  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
641  * @cpu: cpu to use
642  * @dwork: job to be done
643  * @delay: number of jiffies to wait
644  *
645  * After waiting for a given time this puts a job in the kernel-global
646  * workqueue on the specified CPU.
647  */
648 int schedule_delayed_work_on(int cpu,
649 			struct delayed_work *dwork, unsigned long delay)
650 {
651 	return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
652 }
653 EXPORT_SYMBOL(schedule_delayed_work_on);
654 
655 /**
656  * schedule_on_each_cpu - call a function on each online CPU from keventd
657  * @func: the function to call
658  *
659  * Returns zero on success.
660  * Returns -ve errno on failure.
661  *
662  * schedule_on_each_cpu() is very slow.
663  */
664 int schedule_on_each_cpu(work_func_t func)
665 {
666 	int cpu;
667 	struct work_struct *works;
668 
669 	works = alloc_percpu(struct work_struct);
670 	if (!works)
671 		return -ENOMEM;
672 
673 	get_online_cpus();
674 	for_each_online_cpu(cpu) {
675 		struct work_struct *work = per_cpu_ptr(works, cpu);
676 
677 		INIT_WORK(work, func);
678 		schedule_work_on(cpu, work);
679 	}
680 	for_each_online_cpu(cpu)
681 		flush_work(per_cpu_ptr(works, cpu));
682 	put_online_cpus();
683 	free_percpu(works);
684 	return 0;
685 }
686 
687 void flush_scheduled_work(void)
688 {
689 	flush_workqueue(keventd_wq);
690 }
691 EXPORT_SYMBOL(flush_scheduled_work);
692 
693 /**
694  * execute_in_process_context - reliably execute the routine with user context
695  * @fn:		the function to execute
696  * @ew:		guaranteed storage for the execute work structure (must
697  *		be available when the work executes)
698  *
699  * Executes the function immediately if process context is available,
700  * otherwise schedules the function for delayed execution.
701  *
702  * Returns:	0 - function was executed
703  *		1 - function was scheduled for execution
704  */
705 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
706 {
707 	if (!in_interrupt()) {
708 		fn(&ew->work);
709 		return 0;
710 	}
711 
712 	INIT_WORK(&ew->work, fn);
713 	schedule_work(&ew->work);
714 
715 	return 1;
716 }
717 EXPORT_SYMBOL_GPL(execute_in_process_context);
718 
719 int keventd_up(void)
720 {
721 	return keventd_wq != NULL;
722 }
723 
724 int current_is_keventd(void)
725 {
726 	struct cpu_workqueue_struct *cwq;
727 	int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */
728 	int ret = 0;
729 
730 	BUG_ON(!keventd_wq);
731 
732 	cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
733 	if (current == cwq->thread)
734 		ret = 1;
735 
736 	return ret;
737 
738 }
739 
740 static struct cpu_workqueue_struct *
741 init_cpu_workqueue(struct workqueue_struct *wq, int cpu)
742 {
743 	struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
744 
745 	cwq->wq = wq;
746 	spin_lock_init(&cwq->lock);
747 	INIT_LIST_HEAD(&cwq->worklist);
748 	init_waitqueue_head(&cwq->more_work);
749 
750 	return cwq;
751 }
752 
753 static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
754 {
755 	struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
756 	struct workqueue_struct *wq = cwq->wq;
757 	const char *fmt = is_wq_single_threaded(wq) ? "%s" : "%s/%d";
758 	struct task_struct *p;
759 
760 	p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);
761 	/*
762 	 * Nobody can add the work_struct to this cwq,
763 	 *	if (caller is __create_workqueue)
764 	 *		nobody should see this wq
765 	 *	else // caller is CPU_UP_PREPARE
766 	 *		cpu is not on cpu_online_map
767 	 * so we can abort safely.
768 	 */
769 	if (IS_ERR(p))
770 		return PTR_ERR(p);
771 	if (cwq->wq->rt)
772 		sched_setscheduler_nocheck(p, SCHED_FIFO, &param);
773 	cwq->thread = p;
774 
775 	trace_workqueue_creation(cwq->thread, cpu);
776 
777 	return 0;
778 }
779 
780 static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
781 {
782 	struct task_struct *p = cwq->thread;
783 
784 	if (p != NULL) {
785 		if (cpu >= 0)
786 			kthread_bind(p, cpu);
787 		wake_up_process(p);
788 	}
789 }
790 
791 struct workqueue_struct *__create_workqueue_key(const char *name,
792 						int singlethread,
793 						int freezeable,
794 						int rt,
795 						struct lock_class_key *key,
796 						const char *lock_name)
797 {
798 	struct workqueue_struct *wq;
799 	struct cpu_workqueue_struct *cwq;
800 	int err = 0, cpu;
801 
802 	wq = kzalloc(sizeof(*wq), GFP_KERNEL);
803 	if (!wq)
804 		return NULL;
805 
806 	wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
807 	if (!wq->cpu_wq) {
808 		kfree(wq);
809 		return NULL;
810 	}
811 
812 	wq->name = name;
813 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
814 	wq->singlethread = singlethread;
815 	wq->freezeable = freezeable;
816 	wq->rt = rt;
817 	INIT_LIST_HEAD(&wq->list);
818 
819 	if (singlethread) {
820 		cwq = init_cpu_workqueue(wq, singlethread_cpu);
821 		err = create_workqueue_thread(cwq, singlethread_cpu);
822 		start_workqueue_thread(cwq, -1);
823 	} else {
824 		cpu_maps_update_begin();
825 		/*
826 		 * We must place this wq on list even if the code below fails.
827 		 * cpu_down(cpu) can remove cpu from cpu_populated_map before
828 		 * destroy_workqueue() takes the lock, in that case we leak
829 		 * cwq[cpu]->thread.
830 		 */
831 		spin_lock(&workqueue_lock);
832 		list_add(&wq->list, &workqueues);
833 		spin_unlock(&workqueue_lock);
834 		/*
835 		 * We must initialize cwqs for each possible cpu even if we
836 		 * are going to call destroy_workqueue() finally. Otherwise
837 		 * cpu_up() can hit the uninitialized cwq once we drop the
838 		 * lock.
839 		 */
840 		for_each_possible_cpu(cpu) {
841 			cwq = init_cpu_workqueue(wq, cpu);
842 			if (err || !cpu_online(cpu))
843 				continue;
844 			err = create_workqueue_thread(cwq, cpu);
845 			start_workqueue_thread(cwq, cpu);
846 		}
847 		cpu_maps_update_done();
848 	}
849 
850 	if (err) {
851 		destroy_workqueue(wq);
852 		wq = NULL;
853 	}
854 	return wq;
855 }
856 EXPORT_SYMBOL_GPL(__create_workqueue_key);
857 
858 static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq)
859 {
860 	/*
861 	 * Our caller is either destroy_workqueue() or CPU_POST_DEAD,
862 	 * cpu_add_remove_lock protects cwq->thread.
863 	 */
864 	if (cwq->thread == NULL)
865 		return;
866 
867 	lock_map_acquire(&cwq->wq->lockdep_map);
868 	lock_map_release(&cwq->wq->lockdep_map);
869 
870 	flush_cpu_workqueue(cwq);
871 	/*
872 	 * If the caller is CPU_POST_DEAD and cwq->worklist was not empty,
873 	 * a concurrent flush_workqueue() can insert a barrier after us.
874 	 * However, in that case run_workqueue() won't return and check
875 	 * kthread_should_stop() until it flushes all work_struct's.
876 	 * When ->worklist becomes empty it is safe to exit because no
877 	 * more work_structs can be queued on this cwq: flush_workqueue
878 	 * checks list_empty(), and a "normal" queue_work() can't use
879 	 * a dead CPU.
880 	 */
881 	trace_workqueue_destruction(cwq->thread);
882 	kthread_stop(cwq->thread);
883 	cwq->thread = NULL;
884 }
885 
886 /**
887  * destroy_workqueue - safely terminate a workqueue
888  * @wq: target workqueue
889  *
890  * Safely destroy a workqueue. All work currently pending will be done first.
891  */
892 void destroy_workqueue(struct workqueue_struct *wq)
893 {
894 	const struct cpumask *cpu_map = wq_cpu_map(wq);
895 	int cpu;
896 
897 	cpu_maps_update_begin();
898 	spin_lock(&workqueue_lock);
899 	list_del(&wq->list);
900 	spin_unlock(&workqueue_lock);
901 
902 	for_each_cpu(cpu, cpu_map)
903 		cleanup_workqueue_thread(per_cpu_ptr(wq->cpu_wq, cpu));
904  	cpu_maps_update_done();
905 
906 	free_percpu(wq->cpu_wq);
907 	kfree(wq);
908 }
909 EXPORT_SYMBOL_GPL(destroy_workqueue);
910 
911 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
912 						unsigned long action,
913 						void *hcpu)
914 {
915 	unsigned int cpu = (unsigned long)hcpu;
916 	struct cpu_workqueue_struct *cwq;
917 	struct workqueue_struct *wq;
918 	int ret = NOTIFY_OK;
919 
920 	action &= ~CPU_TASKS_FROZEN;
921 
922 	switch (action) {
923 	case CPU_UP_PREPARE:
924 		cpumask_set_cpu(cpu, cpu_populated_map);
925 	}
926 undo:
927 	list_for_each_entry(wq, &workqueues, list) {
928 		cwq = per_cpu_ptr(wq->cpu_wq, cpu);
929 
930 		switch (action) {
931 		case CPU_UP_PREPARE:
932 			if (!create_workqueue_thread(cwq, cpu))
933 				break;
934 			printk(KERN_ERR "workqueue [%s] for %i failed\n",
935 				wq->name, cpu);
936 			action = CPU_UP_CANCELED;
937 			ret = NOTIFY_BAD;
938 			goto undo;
939 
940 		case CPU_ONLINE:
941 			start_workqueue_thread(cwq, cpu);
942 			break;
943 
944 		case CPU_UP_CANCELED:
945 			start_workqueue_thread(cwq, -1);
946 		case CPU_POST_DEAD:
947 			cleanup_workqueue_thread(cwq);
948 			break;
949 		}
950 	}
951 
952 	switch (action) {
953 	case CPU_UP_CANCELED:
954 	case CPU_POST_DEAD:
955 		cpumask_clear_cpu(cpu, cpu_populated_map);
956 	}
957 
958 	return ret;
959 }
960 
961 #ifdef CONFIG_SMP
962 
963 struct work_for_cpu {
964 	struct completion completion;
965 	long (*fn)(void *);
966 	void *arg;
967 	long ret;
968 };
969 
970 static int do_work_for_cpu(void *_wfc)
971 {
972 	struct work_for_cpu *wfc = _wfc;
973 	wfc->ret = wfc->fn(wfc->arg);
974 	complete(&wfc->completion);
975 	return 0;
976 }
977 
978 /**
979  * work_on_cpu - run a function in user context on a particular cpu
980  * @cpu: the cpu to run on
981  * @fn: the function to run
982  * @arg: the function arg
983  *
984  * This will return the value @fn returns.
985  * It is up to the caller to ensure that the cpu doesn't go offline.
986  * The caller must not hold any locks which would prevent @fn from completing.
987  */
988 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
989 {
990 	struct task_struct *sub_thread;
991 	struct work_for_cpu wfc = {
992 		.completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
993 		.fn = fn,
994 		.arg = arg,
995 	};
996 
997 	sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
998 	if (IS_ERR(sub_thread))
999 		return PTR_ERR(sub_thread);
1000 	kthread_bind(sub_thread, cpu);
1001 	wake_up_process(sub_thread);
1002 	wait_for_completion(&wfc.completion);
1003 	return wfc.ret;
1004 }
1005 EXPORT_SYMBOL_GPL(work_on_cpu);
1006 #endif /* CONFIG_SMP */
1007 
1008 void __init init_workqueues(void)
1009 {
1010 	alloc_cpumask_var(&cpu_populated_map, GFP_KERNEL);
1011 
1012 	cpumask_copy(cpu_populated_map, cpu_online_mask);
1013 	singlethread_cpu = cpumask_first(cpu_possible_mask);
1014 	cpu_singlethread_map = cpumask_of(singlethread_cpu);
1015 	hotcpu_notifier(workqueue_cpu_callback, 0);
1016 	keventd_wq = create_workqueue("events");
1017 	BUG_ON(!keventd_wq);
1018 }
1019