1 /* 2 * linux/kernel/workqueue.c 3 * 4 * Generic mechanism for defining kernel helper threads for running 5 * arbitrary tasks in process context. 6 * 7 * Started by Ingo Molnar, Copyright (C) 2002 8 * 9 * Derived from the taskqueue/keventd code by: 10 * 11 * David Woodhouse <dwmw2@infradead.org> 12 * Andrew Morton 13 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 14 * Theodore Ts'o <tytso@mit.edu> 15 * 16 * Made to use alloc_percpu by Christoph Lameter. 17 */ 18 19 #include <linux/module.h> 20 #include <linux/kernel.h> 21 #include <linux/sched.h> 22 #include <linux/init.h> 23 #include <linux/signal.h> 24 #include <linux/completion.h> 25 #include <linux/workqueue.h> 26 #include <linux/slab.h> 27 #include <linux/cpu.h> 28 #include <linux/notifier.h> 29 #include <linux/kthread.h> 30 #include <linux/hardirq.h> 31 #include <linux/mempolicy.h> 32 #include <linux/freezer.h> 33 #include <linux/kallsyms.h> 34 #include <linux/debug_locks.h> 35 #include <linux/lockdep.h> 36 #define CREATE_TRACE_POINTS 37 #include <trace/events/workqueue.h> 38 39 /* 40 * The per-CPU workqueue (if single thread, we always use the first 41 * possible cpu). 42 */ 43 struct cpu_workqueue_struct { 44 45 spinlock_t lock; 46 47 struct list_head worklist; 48 wait_queue_head_t more_work; 49 struct work_struct *current_work; 50 51 struct workqueue_struct *wq; 52 struct task_struct *thread; 53 } ____cacheline_aligned; 54 55 /* 56 * The externally visible workqueue abstraction is an array of 57 * per-CPU workqueues: 58 */ 59 struct workqueue_struct { 60 struct cpu_workqueue_struct *cpu_wq; 61 struct list_head list; 62 const char *name; 63 int singlethread; 64 int freezeable; /* Freeze threads during suspend */ 65 int rt; 66 #ifdef CONFIG_LOCKDEP 67 struct lockdep_map lockdep_map; 68 #endif 69 }; 70 71 /* Serializes the accesses to the list of workqueues. */ 72 static DEFINE_SPINLOCK(workqueue_lock); 73 static LIST_HEAD(workqueues); 74 75 static int singlethread_cpu __read_mostly; 76 static const struct cpumask *cpu_singlethread_map __read_mostly; 77 /* 78 * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD 79 * flushes cwq->worklist. This means that flush_workqueue/wait_on_work 80 * which comes in between can't use for_each_online_cpu(). We could 81 * use cpu_possible_map, the cpumask below is more a documentation 82 * than optimization. 83 */ 84 static cpumask_var_t cpu_populated_map __read_mostly; 85 86 /* If it's single threaded, it isn't in the list of workqueues. */ 87 static inline int is_wq_single_threaded(struct workqueue_struct *wq) 88 { 89 return wq->singlethread; 90 } 91 92 static const struct cpumask *wq_cpu_map(struct workqueue_struct *wq) 93 { 94 return is_wq_single_threaded(wq) 95 ? cpu_singlethread_map : cpu_populated_map; 96 } 97 98 static 99 struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu) 100 { 101 if (unlikely(is_wq_single_threaded(wq))) 102 cpu = singlethread_cpu; 103 return per_cpu_ptr(wq->cpu_wq, cpu); 104 } 105 106 /* 107 * Set the workqueue on which a work item is to be run 108 * - Must *only* be called if the pending flag is set 109 */ 110 static inline void set_wq_data(struct work_struct *work, 111 struct cpu_workqueue_struct *cwq) 112 { 113 unsigned long new; 114 115 BUG_ON(!work_pending(work)); 116 117 new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING); 118 new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work); 119 atomic_long_set(&work->data, new); 120 } 121 122 static inline 123 struct cpu_workqueue_struct *get_wq_data(struct work_struct *work) 124 { 125 return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK); 126 } 127 128 static void insert_work(struct cpu_workqueue_struct *cwq, 129 struct work_struct *work, struct list_head *head) 130 { 131 trace_workqueue_insertion(cwq->thread, work); 132 133 set_wq_data(work, cwq); 134 /* 135 * Ensure that we get the right work->data if we see the 136 * result of list_add() below, see try_to_grab_pending(). 137 */ 138 smp_wmb(); 139 list_add_tail(&work->entry, head); 140 wake_up(&cwq->more_work); 141 } 142 143 static void __queue_work(struct cpu_workqueue_struct *cwq, 144 struct work_struct *work) 145 { 146 unsigned long flags; 147 148 spin_lock_irqsave(&cwq->lock, flags); 149 insert_work(cwq, work, &cwq->worklist); 150 spin_unlock_irqrestore(&cwq->lock, flags); 151 } 152 153 /** 154 * queue_work - queue work on a workqueue 155 * @wq: workqueue to use 156 * @work: work to queue 157 * 158 * Returns 0 if @work was already on a queue, non-zero otherwise. 159 * 160 * We queue the work to the CPU on which it was submitted, but if the CPU dies 161 * it can be processed by another CPU. 162 */ 163 int queue_work(struct workqueue_struct *wq, struct work_struct *work) 164 { 165 int ret; 166 167 ret = queue_work_on(get_cpu(), wq, work); 168 put_cpu(); 169 170 return ret; 171 } 172 EXPORT_SYMBOL_GPL(queue_work); 173 174 /** 175 * queue_work_on - queue work on specific cpu 176 * @cpu: CPU number to execute work on 177 * @wq: workqueue to use 178 * @work: work to queue 179 * 180 * Returns 0 if @work was already on a queue, non-zero otherwise. 181 * 182 * We queue the work to a specific CPU, the caller must ensure it 183 * can't go away. 184 */ 185 int 186 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work) 187 { 188 int ret = 0; 189 190 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) { 191 BUG_ON(!list_empty(&work->entry)); 192 __queue_work(wq_per_cpu(wq, cpu), work); 193 ret = 1; 194 } 195 return ret; 196 } 197 EXPORT_SYMBOL_GPL(queue_work_on); 198 199 static void delayed_work_timer_fn(unsigned long __data) 200 { 201 struct delayed_work *dwork = (struct delayed_work *)__data; 202 struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work); 203 struct workqueue_struct *wq = cwq->wq; 204 205 __queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work); 206 } 207 208 /** 209 * queue_delayed_work - queue work on a workqueue after delay 210 * @wq: workqueue to use 211 * @dwork: delayable work to queue 212 * @delay: number of jiffies to wait before queueing 213 * 214 * Returns 0 if @work was already on a queue, non-zero otherwise. 215 */ 216 int queue_delayed_work(struct workqueue_struct *wq, 217 struct delayed_work *dwork, unsigned long delay) 218 { 219 if (delay == 0) 220 return queue_work(wq, &dwork->work); 221 222 return queue_delayed_work_on(-1, wq, dwork, delay); 223 } 224 EXPORT_SYMBOL_GPL(queue_delayed_work); 225 226 /** 227 * queue_delayed_work_on - queue work on specific CPU after delay 228 * @cpu: CPU number to execute work on 229 * @wq: workqueue to use 230 * @dwork: work to queue 231 * @delay: number of jiffies to wait before queueing 232 * 233 * Returns 0 if @work was already on a queue, non-zero otherwise. 234 */ 235 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 236 struct delayed_work *dwork, unsigned long delay) 237 { 238 int ret = 0; 239 struct timer_list *timer = &dwork->timer; 240 struct work_struct *work = &dwork->work; 241 242 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) { 243 BUG_ON(timer_pending(timer)); 244 BUG_ON(!list_empty(&work->entry)); 245 246 timer_stats_timer_set_start_info(&dwork->timer); 247 248 /* This stores cwq for the moment, for the timer_fn */ 249 set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id())); 250 timer->expires = jiffies + delay; 251 timer->data = (unsigned long)dwork; 252 timer->function = delayed_work_timer_fn; 253 254 if (unlikely(cpu >= 0)) 255 add_timer_on(timer, cpu); 256 else 257 add_timer(timer); 258 ret = 1; 259 } 260 return ret; 261 } 262 EXPORT_SYMBOL_GPL(queue_delayed_work_on); 263 264 static void run_workqueue(struct cpu_workqueue_struct *cwq) 265 { 266 spin_lock_irq(&cwq->lock); 267 while (!list_empty(&cwq->worklist)) { 268 struct work_struct *work = list_entry(cwq->worklist.next, 269 struct work_struct, entry); 270 work_func_t f = work->func; 271 #ifdef CONFIG_LOCKDEP 272 /* 273 * It is permissible to free the struct work_struct 274 * from inside the function that is called from it, 275 * this we need to take into account for lockdep too. 276 * To avoid bogus "held lock freed" warnings as well 277 * as problems when looking into work->lockdep_map, 278 * make a copy and use that here. 279 */ 280 struct lockdep_map lockdep_map = work->lockdep_map; 281 #endif 282 trace_workqueue_execution(cwq->thread, work); 283 cwq->current_work = work; 284 list_del_init(cwq->worklist.next); 285 spin_unlock_irq(&cwq->lock); 286 287 BUG_ON(get_wq_data(work) != cwq); 288 work_clear_pending(work); 289 lock_map_acquire(&cwq->wq->lockdep_map); 290 lock_map_acquire(&lockdep_map); 291 f(work); 292 lock_map_release(&lockdep_map); 293 lock_map_release(&cwq->wq->lockdep_map); 294 295 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 296 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: " 297 "%s/0x%08x/%d\n", 298 current->comm, preempt_count(), 299 task_pid_nr(current)); 300 printk(KERN_ERR " last function: "); 301 print_symbol("%s\n", (unsigned long)f); 302 debug_show_held_locks(current); 303 dump_stack(); 304 } 305 306 spin_lock_irq(&cwq->lock); 307 cwq->current_work = NULL; 308 } 309 spin_unlock_irq(&cwq->lock); 310 } 311 312 static int worker_thread(void *__cwq) 313 { 314 struct cpu_workqueue_struct *cwq = __cwq; 315 DEFINE_WAIT(wait); 316 317 if (cwq->wq->freezeable) 318 set_freezable(); 319 320 set_user_nice(current, -5); 321 322 for (;;) { 323 prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE); 324 if (!freezing(current) && 325 !kthread_should_stop() && 326 list_empty(&cwq->worklist)) 327 schedule(); 328 finish_wait(&cwq->more_work, &wait); 329 330 try_to_freeze(); 331 332 if (kthread_should_stop()) 333 break; 334 335 run_workqueue(cwq); 336 } 337 338 return 0; 339 } 340 341 struct wq_barrier { 342 struct work_struct work; 343 struct completion done; 344 }; 345 346 static void wq_barrier_func(struct work_struct *work) 347 { 348 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 349 complete(&barr->done); 350 } 351 352 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq, 353 struct wq_barrier *barr, struct list_head *head) 354 { 355 INIT_WORK(&barr->work, wq_barrier_func); 356 __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work)); 357 358 init_completion(&barr->done); 359 360 insert_work(cwq, &barr->work, head); 361 } 362 363 static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq) 364 { 365 int active = 0; 366 struct wq_barrier barr; 367 368 WARN_ON(cwq->thread == current); 369 370 spin_lock_irq(&cwq->lock); 371 if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) { 372 insert_wq_barrier(cwq, &barr, &cwq->worklist); 373 active = 1; 374 } 375 spin_unlock_irq(&cwq->lock); 376 377 if (active) 378 wait_for_completion(&barr.done); 379 380 return active; 381 } 382 383 /** 384 * flush_workqueue - ensure that any scheduled work has run to completion. 385 * @wq: workqueue to flush 386 * 387 * Forces execution of the workqueue and blocks until its completion. 388 * This is typically used in driver shutdown handlers. 389 * 390 * We sleep until all works which were queued on entry have been handled, 391 * but we are not livelocked by new incoming ones. 392 * 393 * This function used to run the workqueues itself. Now we just wait for the 394 * helper threads to do it. 395 */ 396 void flush_workqueue(struct workqueue_struct *wq) 397 { 398 const struct cpumask *cpu_map = wq_cpu_map(wq); 399 int cpu; 400 401 might_sleep(); 402 lock_map_acquire(&wq->lockdep_map); 403 lock_map_release(&wq->lockdep_map); 404 for_each_cpu(cpu, cpu_map) 405 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu)); 406 } 407 EXPORT_SYMBOL_GPL(flush_workqueue); 408 409 /** 410 * flush_work - block until a work_struct's callback has terminated 411 * @work: the work which is to be flushed 412 * 413 * Returns false if @work has already terminated. 414 * 415 * It is expected that, prior to calling flush_work(), the caller has 416 * arranged for the work to not be requeued, otherwise it doesn't make 417 * sense to use this function. 418 */ 419 int flush_work(struct work_struct *work) 420 { 421 struct cpu_workqueue_struct *cwq; 422 struct list_head *prev; 423 struct wq_barrier barr; 424 425 might_sleep(); 426 cwq = get_wq_data(work); 427 if (!cwq) 428 return 0; 429 430 lock_map_acquire(&cwq->wq->lockdep_map); 431 lock_map_release(&cwq->wq->lockdep_map); 432 433 prev = NULL; 434 spin_lock_irq(&cwq->lock); 435 if (!list_empty(&work->entry)) { 436 /* 437 * See the comment near try_to_grab_pending()->smp_rmb(). 438 * If it was re-queued under us we are not going to wait. 439 */ 440 smp_rmb(); 441 if (unlikely(cwq != get_wq_data(work))) 442 goto out; 443 prev = &work->entry; 444 } else { 445 if (cwq->current_work != work) 446 goto out; 447 prev = &cwq->worklist; 448 } 449 insert_wq_barrier(cwq, &barr, prev->next); 450 out: 451 spin_unlock_irq(&cwq->lock); 452 if (!prev) 453 return 0; 454 455 wait_for_completion(&barr.done); 456 return 1; 457 } 458 EXPORT_SYMBOL_GPL(flush_work); 459 460 /* 461 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit, 462 * so this work can't be re-armed in any way. 463 */ 464 static int try_to_grab_pending(struct work_struct *work) 465 { 466 struct cpu_workqueue_struct *cwq; 467 int ret = -1; 468 469 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) 470 return 0; 471 472 /* 473 * The queueing is in progress, or it is already queued. Try to 474 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 475 */ 476 477 cwq = get_wq_data(work); 478 if (!cwq) 479 return ret; 480 481 spin_lock_irq(&cwq->lock); 482 if (!list_empty(&work->entry)) { 483 /* 484 * This work is queued, but perhaps we locked the wrong cwq. 485 * In that case we must see the new value after rmb(), see 486 * insert_work()->wmb(). 487 */ 488 smp_rmb(); 489 if (cwq == get_wq_data(work)) { 490 list_del_init(&work->entry); 491 ret = 1; 492 } 493 } 494 spin_unlock_irq(&cwq->lock); 495 496 return ret; 497 } 498 499 static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq, 500 struct work_struct *work) 501 { 502 struct wq_barrier barr; 503 int running = 0; 504 505 spin_lock_irq(&cwq->lock); 506 if (unlikely(cwq->current_work == work)) { 507 insert_wq_barrier(cwq, &barr, cwq->worklist.next); 508 running = 1; 509 } 510 spin_unlock_irq(&cwq->lock); 511 512 if (unlikely(running)) 513 wait_for_completion(&barr.done); 514 } 515 516 static void wait_on_work(struct work_struct *work) 517 { 518 struct cpu_workqueue_struct *cwq; 519 struct workqueue_struct *wq; 520 const struct cpumask *cpu_map; 521 int cpu; 522 523 might_sleep(); 524 525 lock_map_acquire(&work->lockdep_map); 526 lock_map_release(&work->lockdep_map); 527 528 cwq = get_wq_data(work); 529 if (!cwq) 530 return; 531 532 wq = cwq->wq; 533 cpu_map = wq_cpu_map(wq); 534 535 for_each_cpu(cpu, cpu_map) 536 wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work); 537 } 538 539 static int __cancel_work_timer(struct work_struct *work, 540 struct timer_list* timer) 541 { 542 int ret; 543 544 do { 545 ret = (timer && likely(del_timer(timer))); 546 if (!ret) 547 ret = try_to_grab_pending(work); 548 wait_on_work(work); 549 } while (unlikely(ret < 0)); 550 551 work_clear_pending(work); 552 return ret; 553 } 554 555 /** 556 * cancel_work_sync - block until a work_struct's callback has terminated 557 * @work: the work which is to be flushed 558 * 559 * Returns true if @work was pending. 560 * 561 * cancel_work_sync() will cancel the work if it is queued. If the work's 562 * callback appears to be running, cancel_work_sync() will block until it 563 * has completed. 564 * 565 * It is possible to use this function if the work re-queues itself. It can 566 * cancel the work even if it migrates to another workqueue, however in that 567 * case it only guarantees that work->func() has completed on the last queued 568 * workqueue. 569 * 570 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not 571 * pending, otherwise it goes into a busy-wait loop until the timer expires. 572 * 573 * The caller must ensure that workqueue_struct on which this work was last 574 * queued can't be destroyed before this function returns. 575 */ 576 int cancel_work_sync(struct work_struct *work) 577 { 578 return __cancel_work_timer(work, NULL); 579 } 580 EXPORT_SYMBOL_GPL(cancel_work_sync); 581 582 /** 583 * cancel_delayed_work_sync - reliably kill off a delayed work. 584 * @dwork: the delayed work struct 585 * 586 * Returns true if @dwork was pending. 587 * 588 * It is possible to use this function if @dwork rearms itself via queue_work() 589 * or queue_delayed_work(). See also the comment for cancel_work_sync(). 590 */ 591 int cancel_delayed_work_sync(struct delayed_work *dwork) 592 { 593 return __cancel_work_timer(&dwork->work, &dwork->timer); 594 } 595 EXPORT_SYMBOL(cancel_delayed_work_sync); 596 597 static struct workqueue_struct *keventd_wq __read_mostly; 598 599 /** 600 * schedule_work - put work task in global workqueue 601 * @work: job to be done 602 * 603 * This puts a job in the kernel-global workqueue. 604 */ 605 int schedule_work(struct work_struct *work) 606 { 607 return queue_work(keventd_wq, work); 608 } 609 EXPORT_SYMBOL(schedule_work); 610 611 /* 612 * schedule_work_on - put work task on a specific cpu 613 * @cpu: cpu to put the work task on 614 * @work: job to be done 615 * 616 * This puts a job on a specific cpu 617 */ 618 int schedule_work_on(int cpu, struct work_struct *work) 619 { 620 return queue_work_on(cpu, keventd_wq, work); 621 } 622 EXPORT_SYMBOL(schedule_work_on); 623 624 /** 625 * schedule_delayed_work - put work task in global workqueue after delay 626 * @dwork: job to be done 627 * @delay: number of jiffies to wait or 0 for immediate execution 628 * 629 * After waiting for a given time this puts a job in the kernel-global 630 * workqueue. 631 */ 632 int schedule_delayed_work(struct delayed_work *dwork, 633 unsigned long delay) 634 { 635 return queue_delayed_work(keventd_wq, dwork, delay); 636 } 637 EXPORT_SYMBOL(schedule_delayed_work); 638 639 /** 640 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay 641 * @cpu: cpu to use 642 * @dwork: job to be done 643 * @delay: number of jiffies to wait 644 * 645 * After waiting for a given time this puts a job in the kernel-global 646 * workqueue on the specified CPU. 647 */ 648 int schedule_delayed_work_on(int cpu, 649 struct delayed_work *dwork, unsigned long delay) 650 { 651 return queue_delayed_work_on(cpu, keventd_wq, dwork, delay); 652 } 653 EXPORT_SYMBOL(schedule_delayed_work_on); 654 655 /** 656 * schedule_on_each_cpu - call a function on each online CPU from keventd 657 * @func: the function to call 658 * 659 * Returns zero on success. 660 * Returns -ve errno on failure. 661 * 662 * schedule_on_each_cpu() is very slow. 663 */ 664 int schedule_on_each_cpu(work_func_t func) 665 { 666 int cpu; 667 struct work_struct *works; 668 669 works = alloc_percpu(struct work_struct); 670 if (!works) 671 return -ENOMEM; 672 673 get_online_cpus(); 674 for_each_online_cpu(cpu) { 675 struct work_struct *work = per_cpu_ptr(works, cpu); 676 677 INIT_WORK(work, func); 678 schedule_work_on(cpu, work); 679 } 680 for_each_online_cpu(cpu) 681 flush_work(per_cpu_ptr(works, cpu)); 682 put_online_cpus(); 683 free_percpu(works); 684 return 0; 685 } 686 687 void flush_scheduled_work(void) 688 { 689 flush_workqueue(keventd_wq); 690 } 691 EXPORT_SYMBOL(flush_scheduled_work); 692 693 /** 694 * execute_in_process_context - reliably execute the routine with user context 695 * @fn: the function to execute 696 * @ew: guaranteed storage for the execute work structure (must 697 * be available when the work executes) 698 * 699 * Executes the function immediately if process context is available, 700 * otherwise schedules the function for delayed execution. 701 * 702 * Returns: 0 - function was executed 703 * 1 - function was scheduled for execution 704 */ 705 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 706 { 707 if (!in_interrupt()) { 708 fn(&ew->work); 709 return 0; 710 } 711 712 INIT_WORK(&ew->work, fn); 713 schedule_work(&ew->work); 714 715 return 1; 716 } 717 EXPORT_SYMBOL_GPL(execute_in_process_context); 718 719 int keventd_up(void) 720 { 721 return keventd_wq != NULL; 722 } 723 724 int current_is_keventd(void) 725 { 726 struct cpu_workqueue_struct *cwq; 727 int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */ 728 int ret = 0; 729 730 BUG_ON(!keventd_wq); 731 732 cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu); 733 if (current == cwq->thread) 734 ret = 1; 735 736 return ret; 737 738 } 739 740 static struct cpu_workqueue_struct * 741 init_cpu_workqueue(struct workqueue_struct *wq, int cpu) 742 { 743 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu); 744 745 cwq->wq = wq; 746 spin_lock_init(&cwq->lock); 747 INIT_LIST_HEAD(&cwq->worklist); 748 init_waitqueue_head(&cwq->more_work); 749 750 return cwq; 751 } 752 753 static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu) 754 { 755 struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 }; 756 struct workqueue_struct *wq = cwq->wq; 757 const char *fmt = is_wq_single_threaded(wq) ? "%s" : "%s/%d"; 758 struct task_struct *p; 759 760 p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu); 761 /* 762 * Nobody can add the work_struct to this cwq, 763 * if (caller is __create_workqueue) 764 * nobody should see this wq 765 * else // caller is CPU_UP_PREPARE 766 * cpu is not on cpu_online_map 767 * so we can abort safely. 768 */ 769 if (IS_ERR(p)) 770 return PTR_ERR(p); 771 if (cwq->wq->rt) 772 sched_setscheduler_nocheck(p, SCHED_FIFO, ¶m); 773 cwq->thread = p; 774 775 trace_workqueue_creation(cwq->thread, cpu); 776 777 return 0; 778 } 779 780 static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu) 781 { 782 struct task_struct *p = cwq->thread; 783 784 if (p != NULL) { 785 if (cpu >= 0) 786 kthread_bind(p, cpu); 787 wake_up_process(p); 788 } 789 } 790 791 struct workqueue_struct *__create_workqueue_key(const char *name, 792 int singlethread, 793 int freezeable, 794 int rt, 795 struct lock_class_key *key, 796 const char *lock_name) 797 { 798 struct workqueue_struct *wq; 799 struct cpu_workqueue_struct *cwq; 800 int err = 0, cpu; 801 802 wq = kzalloc(sizeof(*wq), GFP_KERNEL); 803 if (!wq) 804 return NULL; 805 806 wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct); 807 if (!wq->cpu_wq) { 808 kfree(wq); 809 return NULL; 810 } 811 812 wq->name = name; 813 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 814 wq->singlethread = singlethread; 815 wq->freezeable = freezeable; 816 wq->rt = rt; 817 INIT_LIST_HEAD(&wq->list); 818 819 if (singlethread) { 820 cwq = init_cpu_workqueue(wq, singlethread_cpu); 821 err = create_workqueue_thread(cwq, singlethread_cpu); 822 start_workqueue_thread(cwq, -1); 823 } else { 824 cpu_maps_update_begin(); 825 /* 826 * We must place this wq on list even if the code below fails. 827 * cpu_down(cpu) can remove cpu from cpu_populated_map before 828 * destroy_workqueue() takes the lock, in that case we leak 829 * cwq[cpu]->thread. 830 */ 831 spin_lock(&workqueue_lock); 832 list_add(&wq->list, &workqueues); 833 spin_unlock(&workqueue_lock); 834 /* 835 * We must initialize cwqs for each possible cpu even if we 836 * are going to call destroy_workqueue() finally. Otherwise 837 * cpu_up() can hit the uninitialized cwq once we drop the 838 * lock. 839 */ 840 for_each_possible_cpu(cpu) { 841 cwq = init_cpu_workqueue(wq, cpu); 842 if (err || !cpu_online(cpu)) 843 continue; 844 err = create_workqueue_thread(cwq, cpu); 845 start_workqueue_thread(cwq, cpu); 846 } 847 cpu_maps_update_done(); 848 } 849 850 if (err) { 851 destroy_workqueue(wq); 852 wq = NULL; 853 } 854 return wq; 855 } 856 EXPORT_SYMBOL_GPL(__create_workqueue_key); 857 858 static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq) 859 { 860 /* 861 * Our caller is either destroy_workqueue() or CPU_POST_DEAD, 862 * cpu_add_remove_lock protects cwq->thread. 863 */ 864 if (cwq->thread == NULL) 865 return; 866 867 lock_map_acquire(&cwq->wq->lockdep_map); 868 lock_map_release(&cwq->wq->lockdep_map); 869 870 flush_cpu_workqueue(cwq); 871 /* 872 * If the caller is CPU_POST_DEAD and cwq->worklist was not empty, 873 * a concurrent flush_workqueue() can insert a barrier after us. 874 * However, in that case run_workqueue() won't return and check 875 * kthread_should_stop() until it flushes all work_struct's. 876 * When ->worklist becomes empty it is safe to exit because no 877 * more work_structs can be queued on this cwq: flush_workqueue 878 * checks list_empty(), and a "normal" queue_work() can't use 879 * a dead CPU. 880 */ 881 trace_workqueue_destruction(cwq->thread); 882 kthread_stop(cwq->thread); 883 cwq->thread = NULL; 884 } 885 886 /** 887 * destroy_workqueue - safely terminate a workqueue 888 * @wq: target workqueue 889 * 890 * Safely destroy a workqueue. All work currently pending will be done first. 891 */ 892 void destroy_workqueue(struct workqueue_struct *wq) 893 { 894 const struct cpumask *cpu_map = wq_cpu_map(wq); 895 int cpu; 896 897 cpu_maps_update_begin(); 898 spin_lock(&workqueue_lock); 899 list_del(&wq->list); 900 spin_unlock(&workqueue_lock); 901 902 for_each_cpu(cpu, cpu_map) 903 cleanup_workqueue_thread(per_cpu_ptr(wq->cpu_wq, cpu)); 904 cpu_maps_update_done(); 905 906 free_percpu(wq->cpu_wq); 907 kfree(wq); 908 } 909 EXPORT_SYMBOL_GPL(destroy_workqueue); 910 911 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb, 912 unsigned long action, 913 void *hcpu) 914 { 915 unsigned int cpu = (unsigned long)hcpu; 916 struct cpu_workqueue_struct *cwq; 917 struct workqueue_struct *wq; 918 int ret = NOTIFY_OK; 919 920 action &= ~CPU_TASKS_FROZEN; 921 922 switch (action) { 923 case CPU_UP_PREPARE: 924 cpumask_set_cpu(cpu, cpu_populated_map); 925 } 926 undo: 927 list_for_each_entry(wq, &workqueues, list) { 928 cwq = per_cpu_ptr(wq->cpu_wq, cpu); 929 930 switch (action) { 931 case CPU_UP_PREPARE: 932 if (!create_workqueue_thread(cwq, cpu)) 933 break; 934 printk(KERN_ERR "workqueue [%s] for %i failed\n", 935 wq->name, cpu); 936 action = CPU_UP_CANCELED; 937 ret = NOTIFY_BAD; 938 goto undo; 939 940 case CPU_ONLINE: 941 start_workqueue_thread(cwq, cpu); 942 break; 943 944 case CPU_UP_CANCELED: 945 start_workqueue_thread(cwq, -1); 946 case CPU_POST_DEAD: 947 cleanup_workqueue_thread(cwq); 948 break; 949 } 950 } 951 952 switch (action) { 953 case CPU_UP_CANCELED: 954 case CPU_POST_DEAD: 955 cpumask_clear_cpu(cpu, cpu_populated_map); 956 } 957 958 return ret; 959 } 960 961 #ifdef CONFIG_SMP 962 963 struct work_for_cpu { 964 struct completion completion; 965 long (*fn)(void *); 966 void *arg; 967 long ret; 968 }; 969 970 static int do_work_for_cpu(void *_wfc) 971 { 972 struct work_for_cpu *wfc = _wfc; 973 wfc->ret = wfc->fn(wfc->arg); 974 complete(&wfc->completion); 975 return 0; 976 } 977 978 /** 979 * work_on_cpu - run a function in user context on a particular cpu 980 * @cpu: the cpu to run on 981 * @fn: the function to run 982 * @arg: the function arg 983 * 984 * This will return the value @fn returns. 985 * It is up to the caller to ensure that the cpu doesn't go offline. 986 * The caller must not hold any locks which would prevent @fn from completing. 987 */ 988 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg) 989 { 990 struct task_struct *sub_thread; 991 struct work_for_cpu wfc = { 992 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion), 993 .fn = fn, 994 .arg = arg, 995 }; 996 997 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu"); 998 if (IS_ERR(sub_thread)) 999 return PTR_ERR(sub_thread); 1000 kthread_bind(sub_thread, cpu); 1001 wake_up_process(sub_thread); 1002 wait_for_completion(&wfc.completion); 1003 return wfc.ret; 1004 } 1005 EXPORT_SYMBOL_GPL(work_on_cpu); 1006 #endif /* CONFIG_SMP */ 1007 1008 void __init init_workqueues(void) 1009 { 1010 alloc_cpumask_var(&cpu_populated_map, GFP_KERNEL); 1011 1012 cpumask_copy(cpu_populated_map, cpu_online_mask); 1013 singlethread_cpu = cpumask_first(cpu_possible_mask); 1014 cpu_singlethread_map = cpumask_of(singlethread_cpu); 1015 hotcpu_notifier(workqueue_cpu_callback, 0); 1016 keventd_wq = create_workqueue("events"); 1017 BUG_ON(!keventd_wq); 1018 } 1019