1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 5 * Copyright (C) 2002 Ingo Molnar 6 * 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <dwmw2@infradead.org> 9 * Andrew Morton 10 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 11 * Theodore Ts'o <tytso@mit.edu> 12 * 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 17 * 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 24 * 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 27 28 #include <linux/export.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 32 #include <linux/signal.h> 33 #include <linux/completion.h> 34 #include <linux/workqueue.h> 35 #include <linux/slab.h> 36 #include <linux/cpu.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/hardirq.h> 40 #include <linux/mempolicy.h> 41 #include <linux/freezer.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 #include <linux/sched/isolation.h> 52 #include <linux/nmi.h> 53 54 #include "workqueue_internal.h" 55 56 enum { 57 /* 58 * worker_pool flags 59 * 60 * A bound pool is either associated or disassociated with its CPU. 61 * While associated (!DISASSOCIATED), all workers are bound to the 62 * CPU and none has %WORKER_UNBOUND set and concurrency management 63 * is in effect. 64 * 65 * While DISASSOCIATED, the cpu may be offline and all workers have 66 * %WORKER_UNBOUND set and concurrency management disabled, and may 67 * be executing on any CPU. The pool behaves as an unbound one. 68 * 69 * Note that DISASSOCIATED should be flipped only while holding 70 * wq_pool_attach_mutex to avoid changing binding state while 71 * worker_attach_to_pool() is in progress. 72 */ 73 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */ 74 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 75 76 /* worker flags */ 77 WORKER_DIE = 1 << 1, /* die die die */ 78 WORKER_IDLE = 1 << 2, /* is idle */ 79 WORKER_PREP = 1 << 3, /* preparing to run works */ 80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 82 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 83 84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 85 WORKER_UNBOUND | WORKER_REBOUND, 86 87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 88 89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 91 92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 94 95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 96 /* call for help after 10ms 97 (min two ticks) */ 98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 99 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 100 101 /* 102 * Rescue workers are used only on emergencies and shared by 103 * all cpus. Give MIN_NICE. 104 */ 105 RESCUER_NICE_LEVEL = MIN_NICE, 106 HIGHPRI_NICE_LEVEL = MIN_NICE, 107 108 WQ_NAME_LEN = 24, 109 }; 110 111 /* 112 * Structure fields follow one of the following exclusion rules. 113 * 114 * I: Modifiable by initialization/destruction paths and read-only for 115 * everyone else. 116 * 117 * P: Preemption protected. Disabling preemption is enough and should 118 * only be modified and accessed from the local cpu. 119 * 120 * L: pool->lock protected. Access with pool->lock held. 121 * 122 * X: During normal operation, modification requires pool->lock and should 123 * be done only from local cpu. Either disabling preemption on local 124 * cpu or grabbing pool->lock is enough for read access. If 125 * POOL_DISASSOCIATED is set, it's identical to L. 126 * 127 * A: wq_pool_attach_mutex protected. 128 * 129 * PL: wq_pool_mutex protected. 130 * 131 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 132 * 133 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 134 * 135 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 136 * RCU for reads. 137 * 138 * WQ: wq->mutex protected. 139 * 140 * WR: wq->mutex protected for writes. RCU protected for reads. 141 * 142 * MD: wq_mayday_lock protected. 143 */ 144 145 /* struct worker is defined in workqueue_internal.h */ 146 147 struct worker_pool { 148 spinlock_t lock; /* the pool lock */ 149 int cpu; /* I: the associated cpu */ 150 int node; /* I: the associated node ID */ 151 int id; /* I: pool ID */ 152 unsigned int flags; /* X: flags */ 153 154 unsigned long watchdog_ts; /* L: watchdog timestamp */ 155 156 struct list_head worklist; /* L: list of pending works */ 157 158 int nr_workers; /* L: total number of workers */ 159 int nr_idle; /* L: currently idle workers */ 160 161 struct list_head idle_list; /* X: list of idle workers */ 162 struct timer_list idle_timer; /* L: worker idle timeout */ 163 struct timer_list mayday_timer; /* L: SOS timer for workers */ 164 165 /* a workers is either on busy_hash or idle_list, or the manager */ 166 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 167 /* L: hash of busy workers */ 168 169 struct worker *manager; /* L: purely informational */ 170 struct list_head workers; /* A: attached workers */ 171 struct completion *detach_completion; /* all workers detached */ 172 173 struct ida worker_ida; /* worker IDs for task name */ 174 175 struct workqueue_attrs *attrs; /* I: worker attributes */ 176 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 177 int refcnt; /* PL: refcnt for unbound pools */ 178 179 /* 180 * The current concurrency level. As it's likely to be accessed 181 * from other CPUs during try_to_wake_up(), put it in a separate 182 * cacheline. 183 */ 184 atomic_t nr_running ____cacheline_aligned_in_smp; 185 186 /* 187 * Destruction of pool is RCU protected to allow dereferences 188 * from get_work_pool(). 189 */ 190 struct rcu_head rcu; 191 } ____cacheline_aligned_in_smp; 192 193 /* 194 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 195 * of work_struct->data are used for flags and the remaining high bits 196 * point to the pwq; thus, pwqs need to be aligned at two's power of the 197 * number of flag bits. 198 */ 199 struct pool_workqueue { 200 struct worker_pool *pool; /* I: the associated pool */ 201 struct workqueue_struct *wq; /* I: the owning workqueue */ 202 int work_color; /* L: current color */ 203 int flush_color; /* L: flushing color */ 204 int refcnt; /* L: reference count */ 205 int nr_in_flight[WORK_NR_COLORS]; 206 /* L: nr of in_flight works */ 207 int nr_active; /* L: nr of active works */ 208 int max_active; /* L: max active works */ 209 struct list_head delayed_works; /* L: delayed works */ 210 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 211 struct list_head mayday_node; /* MD: node on wq->maydays */ 212 213 /* 214 * Release of unbound pwq is punted to system_wq. See put_pwq() 215 * and pwq_unbound_release_workfn() for details. pool_workqueue 216 * itself is also RCU protected so that the first pwq can be 217 * determined without grabbing wq->mutex. 218 */ 219 struct work_struct unbound_release_work; 220 struct rcu_head rcu; 221 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 222 223 /* 224 * Structure used to wait for workqueue flush. 225 */ 226 struct wq_flusher { 227 struct list_head list; /* WQ: list of flushers */ 228 int flush_color; /* WQ: flush color waiting for */ 229 struct completion done; /* flush completion */ 230 }; 231 232 struct wq_device; 233 234 /* 235 * The externally visible workqueue. It relays the issued work items to 236 * the appropriate worker_pool through its pool_workqueues. 237 */ 238 struct workqueue_struct { 239 struct list_head pwqs; /* WR: all pwqs of this wq */ 240 struct list_head list; /* PR: list of all workqueues */ 241 242 struct mutex mutex; /* protects this wq */ 243 int work_color; /* WQ: current work color */ 244 int flush_color; /* WQ: current flush color */ 245 atomic_t nr_pwqs_to_flush; /* flush in progress */ 246 struct wq_flusher *first_flusher; /* WQ: first flusher */ 247 struct list_head flusher_queue; /* WQ: flush waiters */ 248 struct list_head flusher_overflow; /* WQ: flush overflow list */ 249 250 struct list_head maydays; /* MD: pwqs requesting rescue */ 251 struct worker *rescuer; /* I: rescue worker */ 252 253 int nr_drainers; /* WQ: drain in progress */ 254 int saved_max_active; /* WQ: saved pwq max_active */ 255 256 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 257 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 258 259 #ifdef CONFIG_SYSFS 260 struct wq_device *wq_dev; /* I: for sysfs interface */ 261 #endif 262 #ifdef CONFIG_LOCKDEP 263 char *lock_name; 264 struct lock_class_key key; 265 struct lockdep_map lockdep_map; 266 #endif 267 char name[WQ_NAME_LEN]; /* I: workqueue name */ 268 269 /* 270 * Destruction of workqueue_struct is RCU protected to allow walking 271 * the workqueues list without grabbing wq_pool_mutex. 272 * This is used to dump all workqueues from sysrq. 273 */ 274 struct rcu_head rcu; 275 276 /* hot fields used during command issue, aligned to cacheline */ 277 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 278 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 279 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 280 }; 281 282 static struct kmem_cache *pwq_cache; 283 284 static cpumask_var_t *wq_numa_possible_cpumask; 285 /* possible CPUs of each node */ 286 287 static bool wq_disable_numa; 288 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 289 290 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 291 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 292 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 293 294 static bool wq_online; /* can kworkers be created yet? */ 295 296 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 297 298 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 299 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 300 301 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 302 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 303 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 304 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */ 305 306 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 307 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 308 309 /* PL: allowable cpus for unbound wqs and work items */ 310 static cpumask_var_t wq_unbound_cpumask; 311 312 /* CPU where unbound work was last round robin scheduled from this CPU */ 313 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 314 315 /* 316 * Local execution of unbound work items is no longer guaranteed. The 317 * following always forces round-robin CPU selection on unbound work items 318 * to uncover usages which depend on it. 319 */ 320 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 321 static bool wq_debug_force_rr_cpu = true; 322 #else 323 static bool wq_debug_force_rr_cpu = false; 324 #endif 325 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 326 327 /* the per-cpu worker pools */ 328 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 329 330 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 331 332 /* PL: hash of all unbound pools keyed by pool->attrs */ 333 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 334 335 /* I: attributes used when instantiating standard unbound pools on demand */ 336 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 337 338 /* I: attributes used when instantiating ordered pools on demand */ 339 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 340 341 struct workqueue_struct *system_wq __read_mostly; 342 EXPORT_SYMBOL(system_wq); 343 struct workqueue_struct *system_highpri_wq __read_mostly; 344 EXPORT_SYMBOL_GPL(system_highpri_wq); 345 struct workqueue_struct *system_long_wq __read_mostly; 346 EXPORT_SYMBOL_GPL(system_long_wq); 347 struct workqueue_struct *system_unbound_wq __read_mostly; 348 EXPORT_SYMBOL_GPL(system_unbound_wq); 349 struct workqueue_struct *system_freezable_wq __read_mostly; 350 EXPORT_SYMBOL_GPL(system_freezable_wq); 351 struct workqueue_struct *system_power_efficient_wq __read_mostly; 352 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 353 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 354 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 355 356 static int worker_thread(void *__worker); 357 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 358 359 #define CREATE_TRACE_POINTS 360 #include <trace/events/workqueue.h> 361 362 #define assert_rcu_or_pool_mutex() \ 363 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 364 !lockdep_is_held(&wq_pool_mutex), \ 365 "RCU or wq_pool_mutex should be held") 366 367 #define assert_rcu_or_wq_mutex(wq) \ 368 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 369 !lockdep_is_held(&wq->mutex), \ 370 "RCU or wq->mutex should be held") 371 372 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 373 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 374 !lockdep_is_held(&wq->mutex) && \ 375 !lockdep_is_held(&wq_pool_mutex), \ 376 "RCU, wq->mutex or wq_pool_mutex should be held") 377 378 #define for_each_cpu_worker_pool(pool, cpu) \ 379 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 380 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 381 (pool)++) 382 383 /** 384 * for_each_pool - iterate through all worker_pools in the system 385 * @pool: iteration cursor 386 * @pi: integer used for iteration 387 * 388 * This must be called either with wq_pool_mutex held or RCU read 389 * locked. If the pool needs to be used beyond the locking in effect, the 390 * caller is responsible for guaranteeing that the pool stays online. 391 * 392 * The if/else clause exists only for the lockdep assertion and can be 393 * ignored. 394 */ 395 #define for_each_pool(pool, pi) \ 396 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 397 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 398 else 399 400 /** 401 * for_each_pool_worker - iterate through all workers of a worker_pool 402 * @worker: iteration cursor 403 * @pool: worker_pool to iterate workers of 404 * 405 * This must be called with wq_pool_attach_mutex. 406 * 407 * The if/else clause exists only for the lockdep assertion and can be 408 * ignored. 409 */ 410 #define for_each_pool_worker(worker, pool) \ 411 list_for_each_entry((worker), &(pool)->workers, node) \ 412 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 413 else 414 415 /** 416 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 417 * @pwq: iteration cursor 418 * @wq: the target workqueue 419 * 420 * This must be called either with wq->mutex held or RCU read locked. 421 * If the pwq needs to be used beyond the locking in effect, the caller is 422 * responsible for guaranteeing that the pwq stays online. 423 * 424 * The if/else clause exists only for the lockdep assertion and can be 425 * ignored. 426 */ 427 #define for_each_pwq(pwq, wq) \ 428 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \ 429 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ 430 else 431 432 #ifdef CONFIG_DEBUG_OBJECTS_WORK 433 434 static struct debug_obj_descr work_debug_descr; 435 436 static void *work_debug_hint(void *addr) 437 { 438 return ((struct work_struct *) addr)->func; 439 } 440 441 static bool work_is_static_object(void *addr) 442 { 443 struct work_struct *work = addr; 444 445 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 446 } 447 448 /* 449 * fixup_init is called when: 450 * - an active object is initialized 451 */ 452 static bool work_fixup_init(void *addr, enum debug_obj_state state) 453 { 454 struct work_struct *work = addr; 455 456 switch (state) { 457 case ODEBUG_STATE_ACTIVE: 458 cancel_work_sync(work); 459 debug_object_init(work, &work_debug_descr); 460 return true; 461 default: 462 return false; 463 } 464 } 465 466 /* 467 * fixup_free is called when: 468 * - an active object is freed 469 */ 470 static bool work_fixup_free(void *addr, enum debug_obj_state state) 471 { 472 struct work_struct *work = addr; 473 474 switch (state) { 475 case ODEBUG_STATE_ACTIVE: 476 cancel_work_sync(work); 477 debug_object_free(work, &work_debug_descr); 478 return true; 479 default: 480 return false; 481 } 482 } 483 484 static struct debug_obj_descr work_debug_descr = { 485 .name = "work_struct", 486 .debug_hint = work_debug_hint, 487 .is_static_object = work_is_static_object, 488 .fixup_init = work_fixup_init, 489 .fixup_free = work_fixup_free, 490 }; 491 492 static inline void debug_work_activate(struct work_struct *work) 493 { 494 debug_object_activate(work, &work_debug_descr); 495 } 496 497 static inline void debug_work_deactivate(struct work_struct *work) 498 { 499 debug_object_deactivate(work, &work_debug_descr); 500 } 501 502 void __init_work(struct work_struct *work, int onstack) 503 { 504 if (onstack) 505 debug_object_init_on_stack(work, &work_debug_descr); 506 else 507 debug_object_init(work, &work_debug_descr); 508 } 509 EXPORT_SYMBOL_GPL(__init_work); 510 511 void destroy_work_on_stack(struct work_struct *work) 512 { 513 debug_object_free(work, &work_debug_descr); 514 } 515 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 516 517 void destroy_delayed_work_on_stack(struct delayed_work *work) 518 { 519 destroy_timer_on_stack(&work->timer); 520 debug_object_free(&work->work, &work_debug_descr); 521 } 522 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 523 524 #else 525 static inline void debug_work_activate(struct work_struct *work) { } 526 static inline void debug_work_deactivate(struct work_struct *work) { } 527 #endif 528 529 /** 530 * worker_pool_assign_id - allocate ID and assing it to @pool 531 * @pool: the pool pointer of interest 532 * 533 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 534 * successfully, -errno on failure. 535 */ 536 static int worker_pool_assign_id(struct worker_pool *pool) 537 { 538 int ret; 539 540 lockdep_assert_held(&wq_pool_mutex); 541 542 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 543 GFP_KERNEL); 544 if (ret >= 0) { 545 pool->id = ret; 546 return 0; 547 } 548 return ret; 549 } 550 551 /** 552 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 553 * @wq: the target workqueue 554 * @node: the node ID 555 * 556 * This must be called with any of wq_pool_mutex, wq->mutex or RCU 557 * read locked. 558 * If the pwq needs to be used beyond the locking in effect, the caller is 559 * responsible for guaranteeing that the pwq stays online. 560 * 561 * Return: The unbound pool_workqueue for @node. 562 */ 563 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 564 int node) 565 { 566 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 567 568 /* 569 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a 570 * delayed item is pending. The plan is to keep CPU -> NODE 571 * mapping valid and stable across CPU on/offlines. Once that 572 * happens, this workaround can be removed. 573 */ 574 if (unlikely(node == NUMA_NO_NODE)) 575 return wq->dfl_pwq; 576 577 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 578 } 579 580 static unsigned int work_color_to_flags(int color) 581 { 582 return color << WORK_STRUCT_COLOR_SHIFT; 583 } 584 585 static int get_work_color(struct work_struct *work) 586 { 587 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 588 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 589 } 590 591 static int work_next_color(int color) 592 { 593 return (color + 1) % WORK_NR_COLORS; 594 } 595 596 /* 597 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 598 * contain the pointer to the queued pwq. Once execution starts, the flag 599 * is cleared and the high bits contain OFFQ flags and pool ID. 600 * 601 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 602 * and clear_work_data() can be used to set the pwq, pool or clear 603 * work->data. These functions should only be called while the work is 604 * owned - ie. while the PENDING bit is set. 605 * 606 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 607 * corresponding to a work. Pool is available once the work has been 608 * queued anywhere after initialization until it is sync canceled. pwq is 609 * available only while the work item is queued. 610 * 611 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 612 * canceled. While being canceled, a work item may have its PENDING set 613 * but stay off timer and worklist for arbitrarily long and nobody should 614 * try to steal the PENDING bit. 615 */ 616 static inline void set_work_data(struct work_struct *work, unsigned long data, 617 unsigned long flags) 618 { 619 WARN_ON_ONCE(!work_pending(work)); 620 atomic_long_set(&work->data, data | flags | work_static(work)); 621 } 622 623 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 624 unsigned long extra_flags) 625 { 626 set_work_data(work, (unsigned long)pwq, 627 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 628 } 629 630 static void set_work_pool_and_keep_pending(struct work_struct *work, 631 int pool_id) 632 { 633 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 634 WORK_STRUCT_PENDING); 635 } 636 637 static void set_work_pool_and_clear_pending(struct work_struct *work, 638 int pool_id) 639 { 640 /* 641 * The following wmb is paired with the implied mb in 642 * test_and_set_bit(PENDING) and ensures all updates to @work made 643 * here are visible to and precede any updates by the next PENDING 644 * owner. 645 */ 646 smp_wmb(); 647 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 648 /* 649 * The following mb guarantees that previous clear of a PENDING bit 650 * will not be reordered with any speculative LOADS or STORES from 651 * work->current_func, which is executed afterwards. This possible 652 * reordering can lead to a missed execution on attempt to queue 653 * the same @work. E.g. consider this case: 654 * 655 * CPU#0 CPU#1 656 * ---------------------------- -------------------------------- 657 * 658 * 1 STORE event_indicated 659 * 2 queue_work_on() { 660 * 3 test_and_set_bit(PENDING) 661 * 4 } set_..._and_clear_pending() { 662 * 5 set_work_data() # clear bit 663 * 6 smp_mb() 664 * 7 work->current_func() { 665 * 8 LOAD event_indicated 666 * } 667 * 668 * Without an explicit full barrier speculative LOAD on line 8 can 669 * be executed before CPU#0 does STORE on line 1. If that happens, 670 * CPU#0 observes the PENDING bit is still set and new execution of 671 * a @work is not queued in a hope, that CPU#1 will eventually 672 * finish the queued @work. Meanwhile CPU#1 does not see 673 * event_indicated is set, because speculative LOAD was executed 674 * before actual STORE. 675 */ 676 smp_mb(); 677 } 678 679 static void clear_work_data(struct work_struct *work) 680 { 681 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 682 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 683 } 684 685 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 686 { 687 unsigned long data = atomic_long_read(&work->data); 688 689 if (data & WORK_STRUCT_PWQ) 690 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 691 else 692 return NULL; 693 } 694 695 /** 696 * get_work_pool - return the worker_pool a given work was associated with 697 * @work: the work item of interest 698 * 699 * Pools are created and destroyed under wq_pool_mutex, and allows read 700 * access under RCU read lock. As such, this function should be 701 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 702 * 703 * All fields of the returned pool are accessible as long as the above 704 * mentioned locking is in effect. If the returned pool needs to be used 705 * beyond the critical section, the caller is responsible for ensuring the 706 * returned pool is and stays online. 707 * 708 * Return: The worker_pool @work was last associated with. %NULL if none. 709 */ 710 static struct worker_pool *get_work_pool(struct work_struct *work) 711 { 712 unsigned long data = atomic_long_read(&work->data); 713 int pool_id; 714 715 assert_rcu_or_pool_mutex(); 716 717 if (data & WORK_STRUCT_PWQ) 718 return ((struct pool_workqueue *) 719 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 720 721 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 722 if (pool_id == WORK_OFFQ_POOL_NONE) 723 return NULL; 724 725 return idr_find(&worker_pool_idr, pool_id); 726 } 727 728 /** 729 * get_work_pool_id - return the worker pool ID a given work is associated with 730 * @work: the work item of interest 731 * 732 * Return: The worker_pool ID @work was last associated with. 733 * %WORK_OFFQ_POOL_NONE if none. 734 */ 735 static int get_work_pool_id(struct work_struct *work) 736 { 737 unsigned long data = atomic_long_read(&work->data); 738 739 if (data & WORK_STRUCT_PWQ) 740 return ((struct pool_workqueue *) 741 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 742 743 return data >> WORK_OFFQ_POOL_SHIFT; 744 } 745 746 static void mark_work_canceling(struct work_struct *work) 747 { 748 unsigned long pool_id = get_work_pool_id(work); 749 750 pool_id <<= WORK_OFFQ_POOL_SHIFT; 751 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 752 } 753 754 static bool work_is_canceling(struct work_struct *work) 755 { 756 unsigned long data = atomic_long_read(&work->data); 757 758 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 759 } 760 761 /* 762 * Policy functions. These define the policies on how the global worker 763 * pools are managed. Unless noted otherwise, these functions assume that 764 * they're being called with pool->lock held. 765 */ 766 767 static bool __need_more_worker(struct worker_pool *pool) 768 { 769 return !atomic_read(&pool->nr_running); 770 } 771 772 /* 773 * Need to wake up a worker? Called from anything but currently 774 * running workers. 775 * 776 * Note that, because unbound workers never contribute to nr_running, this 777 * function will always return %true for unbound pools as long as the 778 * worklist isn't empty. 779 */ 780 static bool need_more_worker(struct worker_pool *pool) 781 { 782 return !list_empty(&pool->worklist) && __need_more_worker(pool); 783 } 784 785 /* Can I start working? Called from busy but !running workers. */ 786 static bool may_start_working(struct worker_pool *pool) 787 { 788 return pool->nr_idle; 789 } 790 791 /* Do I need to keep working? Called from currently running workers. */ 792 static bool keep_working(struct worker_pool *pool) 793 { 794 return !list_empty(&pool->worklist) && 795 atomic_read(&pool->nr_running) <= 1; 796 } 797 798 /* Do we need a new worker? Called from manager. */ 799 static bool need_to_create_worker(struct worker_pool *pool) 800 { 801 return need_more_worker(pool) && !may_start_working(pool); 802 } 803 804 /* Do we have too many workers and should some go away? */ 805 static bool too_many_workers(struct worker_pool *pool) 806 { 807 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 808 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 809 int nr_busy = pool->nr_workers - nr_idle; 810 811 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 812 } 813 814 /* 815 * Wake up functions. 816 */ 817 818 /* Return the first idle worker. Safe with preemption disabled */ 819 static struct worker *first_idle_worker(struct worker_pool *pool) 820 { 821 if (unlikely(list_empty(&pool->idle_list))) 822 return NULL; 823 824 return list_first_entry(&pool->idle_list, struct worker, entry); 825 } 826 827 /** 828 * wake_up_worker - wake up an idle worker 829 * @pool: worker pool to wake worker from 830 * 831 * Wake up the first idle worker of @pool. 832 * 833 * CONTEXT: 834 * spin_lock_irq(pool->lock). 835 */ 836 static void wake_up_worker(struct worker_pool *pool) 837 { 838 struct worker *worker = first_idle_worker(pool); 839 840 if (likely(worker)) 841 wake_up_process(worker->task); 842 } 843 844 /** 845 * wq_worker_running - a worker is running again 846 * @task: task waking up 847 * 848 * This function is called when a worker returns from schedule() 849 */ 850 void wq_worker_running(struct task_struct *task) 851 { 852 struct worker *worker = kthread_data(task); 853 854 if (!worker->sleeping) 855 return; 856 if (!(worker->flags & WORKER_NOT_RUNNING)) 857 atomic_inc(&worker->pool->nr_running); 858 worker->sleeping = 0; 859 } 860 861 /** 862 * wq_worker_sleeping - a worker is going to sleep 863 * @task: task going to sleep 864 * 865 * This function is called from schedule() when a busy worker is 866 * going to sleep. 867 */ 868 void wq_worker_sleeping(struct task_struct *task) 869 { 870 struct worker *next, *worker = kthread_data(task); 871 struct worker_pool *pool; 872 873 /* 874 * Rescuers, which may not have all the fields set up like normal 875 * workers, also reach here, let's not access anything before 876 * checking NOT_RUNNING. 877 */ 878 if (worker->flags & WORKER_NOT_RUNNING) 879 return; 880 881 pool = worker->pool; 882 883 if (WARN_ON_ONCE(worker->sleeping)) 884 return; 885 886 worker->sleeping = 1; 887 spin_lock_irq(&pool->lock); 888 889 /* 890 * The counterpart of the following dec_and_test, implied mb, 891 * worklist not empty test sequence is in insert_work(). 892 * Please read comment there. 893 * 894 * NOT_RUNNING is clear. This means that we're bound to and 895 * running on the local cpu w/ rq lock held and preemption 896 * disabled, which in turn means that none else could be 897 * manipulating idle_list, so dereferencing idle_list without pool 898 * lock is safe. 899 */ 900 if (atomic_dec_and_test(&pool->nr_running) && 901 !list_empty(&pool->worklist)) { 902 next = first_idle_worker(pool); 903 if (next) 904 wake_up_process(next->task); 905 } 906 spin_unlock_irq(&pool->lock); 907 } 908 909 /** 910 * wq_worker_last_func - retrieve worker's last work function 911 * @task: Task to retrieve last work function of. 912 * 913 * Determine the last function a worker executed. This is called from 914 * the scheduler to get a worker's last known identity. 915 * 916 * CONTEXT: 917 * spin_lock_irq(rq->lock) 918 * 919 * This function is called during schedule() when a kworker is going 920 * to sleep. It's used by psi to identify aggregation workers during 921 * dequeuing, to allow periodic aggregation to shut-off when that 922 * worker is the last task in the system or cgroup to go to sleep. 923 * 924 * As this function doesn't involve any workqueue-related locking, it 925 * only returns stable values when called from inside the scheduler's 926 * queuing and dequeuing paths, when @task, which must be a kworker, 927 * is guaranteed to not be processing any works. 928 * 929 * Return: 930 * The last work function %current executed as a worker, NULL if it 931 * hasn't executed any work yet. 932 */ 933 work_func_t wq_worker_last_func(struct task_struct *task) 934 { 935 struct worker *worker = kthread_data(task); 936 937 return worker->last_func; 938 } 939 940 /** 941 * worker_set_flags - set worker flags and adjust nr_running accordingly 942 * @worker: self 943 * @flags: flags to set 944 * 945 * Set @flags in @worker->flags and adjust nr_running accordingly. 946 * 947 * CONTEXT: 948 * spin_lock_irq(pool->lock) 949 */ 950 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 951 { 952 struct worker_pool *pool = worker->pool; 953 954 WARN_ON_ONCE(worker->task != current); 955 956 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 957 if ((flags & WORKER_NOT_RUNNING) && 958 !(worker->flags & WORKER_NOT_RUNNING)) { 959 atomic_dec(&pool->nr_running); 960 } 961 962 worker->flags |= flags; 963 } 964 965 /** 966 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 967 * @worker: self 968 * @flags: flags to clear 969 * 970 * Clear @flags in @worker->flags and adjust nr_running accordingly. 971 * 972 * CONTEXT: 973 * spin_lock_irq(pool->lock) 974 */ 975 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 976 { 977 struct worker_pool *pool = worker->pool; 978 unsigned int oflags = worker->flags; 979 980 WARN_ON_ONCE(worker->task != current); 981 982 worker->flags &= ~flags; 983 984 /* 985 * If transitioning out of NOT_RUNNING, increment nr_running. Note 986 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 987 * of multiple flags, not a single flag. 988 */ 989 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 990 if (!(worker->flags & WORKER_NOT_RUNNING)) 991 atomic_inc(&pool->nr_running); 992 } 993 994 /** 995 * find_worker_executing_work - find worker which is executing a work 996 * @pool: pool of interest 997 * @work: work to find worker for 998 * 999 * Find a worker which is executing @work on @pool by searching 1000 * @pool->busy_hash which is keyed by the address of @work. For a worker 1001 * to match, its current execution should match the address of @work and 1002 * its work function. This is to avoid unwanted dependency between 1003 * unrelated work executions through a work item being recycled while still 1004 * being executed. 1005 * 1006 * This is a bit tricky. A work item may be freed once its execution 1007 * starts and nothing prevents the freed area from being recycled for 1008 * another work item. If the same work item address ends up being reused 1009 * before the original execution finishes, workqueue will identify the 1010 * recycled work item as currently executing and make it wait until the 1011 * current execution finishes, introducing an unwanted dependency. 1012 * 1013 * This function checks the work item address and work function to avoid 1014 * false positives. Note that this isn't complete as one may construct a 1015 * work function which can introduce dependency onto itself through a 1016 * recycled work item. Well, if somebody wants to shoot oneself in the 1017 * foot that badly, there's only so much we can do, and if such deadlock 1018 * actually occurs, it should be easy to locate the culprit work function. 1019 * 1020 * CONTEXT: 1021 * spin_lock_irq(pool->lock). 1022 * 1023 * Return: 1024 * Pointer to worker which is executing @work if found, %NULL 1025 * otherwise. 1026 */ 1027 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1028 struct work_struct *work) 1029 { 1030 struct worker *worker; 1031 1032 hash_for_each_possible(pool->busy_hash, worker, hentry, 1033 (unsigned long)work) 1034 if (worker->current_work == work && 1035 worker->current_func == work->func) 1036 return worker; 1037 1038 return NULL; 1039 } 1040 1041 /** 1042 * move_linked_works - move linked works to a list 1043 * @work: start of series of works to be scheduled 1044 * @head: target list to append @work to 1045 * @nextp: out parameter for nested worklist walking 1046 * 1047 * Schedule linked works starting from @work to @head. Work series to 1048 * be scheduled starts at @work and includes any consecutive work with 1049 * WORK_STRUCT_LINKED set in its predecessor. 1050 * 1051 * If @nextp is not NULL, it's updated to point to the next work of 1052 * the last scheduled work. This allows move_linked_works() to be 1053 * nested inside outer list_for_each_entry_safe(). 1054 * 1055 * CONTEXT: 1056 * spin_lock_irq(pool->lock). 1057 */ 1058 static void move_linked_works(struct work_struct *work, struct list_head *head, 1059 struct work_struct **nextp) 1060 { 1061 struct work_struct *n; 1062 1063 /* 1064 * Linked worklist will always end before the end of the list, 1065 * use NULL for list head. 1066 */ 1067 list_for_each_entry_safe_from(work, n, NULL, entry) { 1068 list_move_tail(&work->entry, head); 1069 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1070 break; 1071 } 1072 1073 /* 1074 * If we're already inside safe list traversal and have moved 1075 * multiple works to the scheduled queue, the next position 1076 * needs to be updated. 1077 */ 1078 if (nextp) 1079 *nextp = n; 1080 } 1081 1082 /** 1083 * get_pwq - get an extra reference on the specified pool_workqueue 1084 * @pwq: pool_workqueue to get 1085 * 1086 * Obtain an extra reference on @pwq. The caller should guarantee that 1087 * @pwq has positive refcnt and be holding the matching pool->lock. 1088 */ 1089 static void get_pwq(struct pool_workqueue *pwq) 1090 { 1091 lockdep_assert_held(&pwq->pool->lock); 1092 WARN_ON_ONCE(pwq->refcnt <= 0); 1093 pwq->refcnt++; 1094 } 1095 1096 /** 1097 * put_pwq - put a pool_workqueue reference 1098 * @pwq: pool_workqueue to put 1099 * 1100 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1101 * destruction. The caller should be holding the matching pool->lock. 1102 */ 1103 static void put_pwq(struct pool_workqueue *pwq) 1104 { 1105 lockdep_assert_held(&pwq->pool->lock); 1106 if (likely(--pwq->refcnt)) 1107 return; 1108 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1109 return; 1110 /* 1111 * @pwq can't be released under pool->lock, bounce to 1112 * pwq_unbound_release_workfn(). This never recurses on the same 1113 * pool->lock as this path is taken only for unbound workqueues and 1114 * the release work item is scheduled on a per-cpu workqueue. To 1115 * avoid lockdep warning, unbound pool->locks are given lockdep 1116 * subclass of 1 in get_unbound_pool(). 1117 */ 1118 schedule_work(&pwq->unbound_release_work); 1119 } 1120 1121 /** 1122 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1123 * @pwq: pool_workqueue to put (can be %NULL) 1124 * 1125 * put_pwq() with locking. This function also allows %NULL @pwq. 1126 */ 1127 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1128 { 1129 if (pwq) { 1130 /* 1131 * As both pwqs and pools are RCU protected, the 1132 * following lock operations are safe. 1133 */ 1134 spin_lock_irq(&pwq->pool->lock); 1135 put_pwq(pwq); 1136 spin_unlock_irq(&pwq->pool->lock); 1137 } 1138 } 1139 1140 static void pwq_activate_delayed_work(struct work_struct *work) 1141 { 1142 struct pool_workqueue *pwq = get_work_pwq(work); 1143 1144 trace_workqueue_activate_work(work); 1145 if (list_empty(&pwq->pool->worklist)) 1146 pwq->pool->watchdog_ts = jiffies; 1147 move_linked_works(work, &pwq->pool->worklist, NULL); 1148 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1149 pwq->nr_active++; 1150 } 1151 1152 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1153 { 1154 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1155 struct work_struct, entry); 1156 1157 pwq_activate_delayed_work(work); 1158 } 1159 1160 /** 1161 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1162 * @pwq: pwq of interest 1163 * @color: color of work which left the queue 1164 * 1165 * A work either has completed or is removed from pending queue, 1166 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1167 * 1168 * CONTEXT: 1169 * spin_lock_irq(pool->lock). 1170 */ 1171 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1172 { 1173 /* uncolored work items don't participate in flushing or nr_active */ 1174 if (color == WORK_NO_COLOR) 1175 goto out_put; 1176 1177 pwq->nr_in_flight[color]--; 1178 1179 pwq->nr_active--; 1180 if (!list_empty(&pwq->delayed_works)) { 1181 /* one down, submit a delayed one */ 1182 if (pwq->nr_active < pwq->max_active) 1183 pwq_activate_first_delayed(pwq); 1184 } 1185 1186 /* is flush in progress and are we at the flushing tip? */ 1187 if (likely(pwq->flush_color != color)) 1188 goto out_put; 1189 1190 /* are there still in-flight works? */ 1191 if (pwq->nr_in_flight[color]) 1192 goto out_put; 1193 1194 /* this pwq is done, clear flush_color */ 1195 pwq->flush_color = -1; 1196 1197 /* 1198 * If this was the last pwq, wake up the first flusher. It 1199 * will handle the rest. 1200 */ 1201 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1202 complete(&pwq->wq->first_flusher->done); 1203 out_put: 1204 put_pwq(pwq); 1205 } 1206 1207 /** 1208 * try_to_grab_pending - steal work item from worklist and disable irq 1209 * @work: work item to steal 1210 * @is_dwork: @work is a delayed_work 1211 * @flags: place to store irq state 1212 * 1213 * Try to grab PENDING bit of @work. This function can handle @work in any 1214 * stable state - idle, on timer or on worklist. 1215 * 1216 * Return: 1217 * 1 if @work was pending and we successfully stole PENDING 1218 * 0 if @work was idle and we claimed PENDING 1219 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1220 * -ENOENT if someone else is canceling @work, this state may persist 1221 * for arbitrarily long 1222 * 1223 * Note: 1224 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1225 * interrupted while holding PENDING and @work off queue, irq must be 1226 * disabled on entry. This, combined with delayed_work->timer being 1227 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1228 * 1229 * On successful return, >= 0, irq is disabled and the caller is 1230 * responsible for releasing it using local_irq_restore(*@flags). 1231 * 1232 * This function is safe to call from any context including IRQ handler. 1233 */ 1234 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1235 unsigned long *flags) 1236 { 1237 struct worker_pool *pool; 1238 struct pool_workqueue *pwq; 1239 1240 local_irq_save(*flags); 1241 1242 /* try to steal the timer if it exists */ 1243 if (is_dwork) { 1244 struct delayed_work *dwork = to_delayed_work(work); 1245 1246 /* 1247 * dwork->timer is irqsafe. If del_timer() fails, it's 1248 * guaranteed that the timer is not queued anywhere and not 1249 * running on the local CPU. 1250 */ 1251 if (likely(del_timer(&dwork->timer))) 1252 return 1; 1253 } 1254 1255 /* try to claim PENDING the normal way */ 1256 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1257 return 0; 1258 1259 rcu_read_lock(); 1260 /* 1261 * The queueing is in progress, or it is already queued. Try to 1262 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1263 */ 1264 pool = get_work_pool(work); 1265 if (!pool) 1266 goto fail; 1267 1268 spin_lock(&pool->lock); 1269 /* 1270 * work->data is guaranteed to point to pwq only while the work 1271 * item is queued on pwq->wq, and both updating work->data to point 1272 * to pwq on queueing and to pool on dequeueing are done under 1273 * pwq->pool->lock. This in turn guarantees that, if work->data 1274 * points to pwq which is associated with a locked pool, the work 1275 * item is currently queued on that pool. 1276 */ 1277 pwq = get_work_pwq(work); 1278 if (pwq && pwq->pool == pool) { 1279 debug_work_deactivate(work); 1280 1281 /* 1282 * A delayed work item cannot be grabbed directly because 1283 * it might have linked NO_COLOR work items which, if left 1284 * on the delayed_list, will confuse pwq->nr_active 1285 * management later on and cause stall. Make sure the work 1286 * item is activated before grabbing. 1287 */ 1288 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1289 pwq_activate_delayed_work(work); 1290 1291 list_del_init(&work->entry); 1292 pwq_dec_nr_in_flight(pwq, get_work_color(work)); 1293 1294 /* work->data points to pwq iff queued, point to pool */ 1295 set_work_pool_and_keep_pending(work, pool->id); 1296 1297 spin_unlock(&pool->lock); 1298 rcu_read_unlock(); 1299 return 1; 1300 } 1301 spin_unlock(&pool->lock); 1302 fail: 1303 rcu_read_unlock(); 1304 local_irq_restore(*flags); 1305 if (work_is_canceling(work)) 1306 return -ENOENT; 1307 cpu_relax(); 1308 return -EAGAIN; 1309 } 1310 1311 /** 1312 * insert_work - insert a work into a pool 1313 * @pwq: pwq @work belongs to 1314 * @work: work to insert 1315 * @head: insertion point 1316 * @extra_flags: extra WORK_STRUCT_* flags to set 1317 * 1318 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1319 * work_struct flags. 1320 * 1321 * CONTEXT: 1322 * spin_lock_irq(pool->lock). 1323 */ 1324 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1325 struct list_head *head, unsigned int extra_flags) 1326 { 1327 struct worker_pool *pool = pwq->pool; 1328 1329 /* we own @work, set data and link */ 1330 set_work_pwq(work, pwq, extra_flags); 1331 list_add_tail(&work->entry, head); 1332 get_pwq(pwq); 1333 1334 /* 1335 * Ensure either wq_worker_sleeping() sees the above 1336 * list_add_tail() or we see zero nr_running to avoid workers lying 1337 * around lazily while there are works to be processed. 1338 */ 1339 smp_mb(); 1340 1341 if (__need_more_worker(pool)) 1342 wake_up_worker(pool); 1343 } 1344 1345 /* 1346 * Test whether @work is being queued from another work executing on the 1347 * same workqueue. 1348 */ 1349 static bool is_chained_work(struct workqueue_struct *wq) 1350 { 1351 struct worker *worker; 1352 1353 worker = current_wq_worker(); 1354 /* 1355 * Return %true iff I'm a worker executing a work item on @wq. If 1356 * I'm @worker, it's safe to dereference it without locking. 1357 */ 1358 return worker && worker->current_pwq->wq == wq; 1359 } 1360 1361 /* 1362 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1363 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1364 * avoid perturbing sensitive tasks. 1365 */ 1366 static int wq_select_unbound_cpu(int cpu) 1367 { 1368 static bool printed_dbg_warning; 1369 int new_cpu; 1370 1371 if (likely(!wq_debug_force_rr_cpu)) { 1372 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1373 return cpu; 1374 } else if (!printed_dbg_warning) { 1375 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1376 printed_dbg_warning = true; 1377 } 1378 1379 if (cpumask_empty(wq_unbound_cpumask)) 1380 return cpu; 1381 1382 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1383 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1384 if (unlikely(new_cpu >= nr_cpu_ids)) { 1385 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1386 if (unlikely(new_cpu >= nr_cpu_ids)) 1387 return cpu; 1388 } 1389 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1390 1391 return new_cpu; 1392 } 1393 1394 static void __queue_work(int cpu, struct workqueue_struct *wq, 1395 struct work_struct *work) 1396 { 1397 struct pool_workqueue *pwq; 1398 struct worker_pool *last_pool; 1399 struct list_head *worklist; 1400 unsigned int work_flags; 1401 unsigned int req_cpu = cpu; 1402 1403 /* 1404 * While a work item is PENDING && off queue, a task trying to 1405 * steal the PENDING will busy-loop waiting for it to either get 1406 * queued or lose PENDING. Grabbing PENDING and queueing should 1407 * happen with IRQ disabled. 1408 */ 1409 lockdep_assert_irqs_disabled(); 1410 1411 debug_work_activate(work); 1412 1413 /* if draining, only works from the same workqueue are allowed */ 1414 if (unlikely(wq->flags & __WQ_DRAINING) && 1415 WARN_ON_ONCE(!is_chained_work(wq))) 1416 return; 1417 rcu_read_lock(); 1418 retry: 1419 if (req_cpu == WORK_CPU_UNBOUND) 1420 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1421 1422 /* pwq which will be used unless @work is executing elsewhere */ 1423 if (!(wq->flags & WQ_UNBOUND)) 1424 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1425 else 1426 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1427 1428 /* 1429 * If @work was previously on a different pool, it might still be 1430 * running there, in which case the work needs to be queued on that 1431 * pool to guarantee non-reentrancy. 1432 */ 1433 last_pool = get_work_pool(work); 1434 if (last_pool && last_pool != pwq->pool) { 1435 struct worker *worker; 1436 1437 spin_lock(&last_pool->lock); 1438 1439 worker = find_worker_executing_work(last_pool, work); 1440 1441 if (worker && worker->current_pwq->wq == wq) { 1442 pwq = worker->current_pwq; 1443 } else { 1444 /* meh... not running there, queue here */ 1445 spin_unlock(&last_pool->lock); 1446 spin_lock(&pwq->pool->lock); 1447 } 1448 } else { 1449 spin_lock(&pwq->pool->lock); 1450 } 1451 1452 /* 1453 * pwq is determined and locked. For unbound pools, we could have 1454 * raced with pwq release and it could already be dead. If its 1455 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1456 * without another pwq replacing it in the numa_pwq_tbl or while 1457 * work items are executing on it, so the retrying is guaranteed to 1458 * make forward-progress. 1459 */ 1460 if (unlikely(!pwq->refcnt)) { 1461 if (wq->flags & WQ_UNBOUND) { 1462 spin_unlock(&pwq->pool->lock); 1463 cpu_relax(); 1464 goto retry; 1465 } 1466 /* oops */ 1467 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1468 wq->name, cpu); 1469 } 1470 1471 /* pwq determined, queue */ 1472 trace_workqueue_queue_work(req_cpu, pwq, work); 1473 1474 if (WARN_ON(!list_empty(&work->entry))) 1475 goto out; 1476 1477 pwq->nr_in_flight[pwq->work_color]++; 1478 work_flags = work_color_to_flags(pwq->work_color); 1479 1480 if (likely(pwq->nr_active < pwq->max_active)) { 1481 trace_workqueue_activate_work(work); 1482 pwq->nr_active++; 1483 worklist = &pwq->pool->worklist; 1484 if (list_empty(worklist)) 1485 pwq->pool->watchdog_ts = jiffies; 1486 } else { 1487 work_flags |= WORK_STRUCT_DELAYED; 1488 worklist = &pwq->delayed_works; 1489 } 1490 1491 insert_work(pwq, work, worklist, work_flags); 1492 1493 out: 1494 spin_unlock(&pwq->pool->lock); 1495 rcu_read_unlock(); 1496 } 1497 1498 /** 1499 * queue_work_on - queue work on specific cpu 1500 * @cpu: CPU number to execute work on 1501 * @wq: workqueue to use 1502 * @work: work to queue 1503 * 1504 * We queue the work to a specific CPU, the caller must ensure it 1505 * can't go away. 1506 * 1507 * Return: %false if @work was already on a queue, %true otherwise. 1508 */ 1509 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1510 struct work_struct *work) 1511 { 1512 bool ret = false; 1513 unsigned long flags; 1514 1515 local_irq_save(flags); 1516 1517 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1518 __queue_work(cpu, wq, work); 1519 ret = true; 1520 } 1521 1522 local_irq_restore(flags); 1523 return ret; 1524 } 1525 EXPORT_SYMBOL(queue_work_on); 1526 1527 /** 1528 * workqueue_select_cpu_near - Select a CPU based on NUMA node 1529 * @node: NUMA node ID that we want to select a CPU from 1530 * 1531 * This function will attempt to find a "random" cpu available on a given 1532 * node. If there are no CPUs available on the given node it will return 1533 * WORK_CPU_UNBOUND indicating that we should just schedule to any 1534 * available CPU if we need to schedule this work. 1535 */ 1536 static int workqueue_select_cpu_near(int node) 1537 { 1538 int cpu; 1539 1540 /* No point in doing this if NUMA isn't enabled for workqueues */ 1541 if (!wq_numa_enabled) 1542 return WORK_CPU_UNBOUND; 1543 1544 /* Delay binding to CPU if node is not valid or online */ 1545 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 1546 return WORK_CPU_UNBOUND; 1547 1548 /* Use local node/cpu if we are already there */ 1549 cpu = raw_smp_processor_id(); 1550 if (node == cpu_to_node(cpu)) 1551 return cpu; 1552 1553 /* Use "random" otherwise know as "first" online CPU of node */ 1554 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 1555 1556 /* If CPU is valid return that, otherwise just defer */ 1557 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 1558 } 1559 1560 /** 1561 * queue_work_node - queue work on a "random" cpu for a given NUMA node 1562 * @node: NUMA node that we are targeting the work for 1563 * @wq: workqueue to use 1564 * @work: work to queue 1565 * 1566 * We queue the work to a "random" CPU within a given NUMA node. The basic 1567 * idea here is to provide a way to somehow associate work with a given 1568 * NUMA node. 1569 * 1570 * This function will only make a best effort attempt at getting this onto 1571 * the right NUMA node. If no node is requested or the requested node is 1572 * offline then we just fall back to standard queue_work behavior. 1573 * 1574 * Currently the "random" CPU ends up being the first available CPU in the 1575 * intersection of cpu_online_mask and the cpumask of the node, unless we 1576 * are running on the node. In that case we just use the current CPU. 1577 * 1578 * Return: %false if @work was already on a queue, %true otherwise. 1579 */ 1580 bool queue_work_node(int node, struct workqueue_struct *wq, 1581 struct work_struct *work) 1582 { 1583 unsigned long flags; 1584 bool ret = false; 1585 1586 /* 1587 * This current implementation is specific to unbound workqueues. 1588 * Specifically we only return the first available CPU for a given 1589 * node instead of cycling through individual CPUs within the node. 1590 * 1591 * If this is used with a per-cpu workqueue then the logic in 1592 * workqueue_select_cpu_near would need to be updated to allow for 1593 * some round robin type logic. 1594 */ 1595 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 1596 1597 local_irq_save(flags); 1598 1599 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1600 int cpu = workqueue_select_cpu_near(node); 1601 1602 __queue_work(cpu, wq, work); 1603 ret = true; 1604 } 1605 1606 local_irq_restore(flags); 1607 return ret; 1608 } 1609 EXPORT_SYMBOL_GPL(queue_work_node); 1610 1611 void delayed_work_timer_fn(struct timer_list *t) 1612 { 1613 struct delayed_work *dwork = from_timer(dwork, t, timer); 1614 1615 /* should have been called from irqsafe timer with irq already off */ 1616 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1617 } 1618 EXPORT_SYMBOL(delayed_work_timer_fn); 1619 1620 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1621 struct delayed_work *dwork, unsigned long delay) 1622 { 1623 struct timer_list *timer = &dwork->timer; 1624 struct work_struct *work = &dwork->work; 1625 1626 WARN_ON_ONCE(!wq); 1627 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 1628 WARN_ON_ONCE(timer_pending(timer)); 1629 WARN_ON_ONCE(!list_empty(&work->entry)); 1630 1631 /* 1632 * If @delay is 0, queue @dwork->work immediately. This is for 1633 * both optimization and correctness. The earliest @timer can 1634 * expire is on the closest next tick and delayed_work users depend 1635 * on that there's no such delay when @delay is 0. 1636 */ 1637 if (!delay) { 1638 __queue_work(cpu, wq, &dwork->work); 1639 return; 1640 } 1641 1642 dwork->wq = wq; 1643 dwork->cpu = cpu; 1644 timer->expires = jiffies + delay; 1645 1646 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1647 add_timer_on(timer, cpu); 1648 else 1649 add_timer(timer); 1650 } 1651 1652 /** 1653 * queue_delayed_work_on - queue work on specific CPU after delay 1654 * @cpu: CPU number to execute work on 1655 * @wq: workqueue to use 1656 * @dwork: work to queue 1657 * @delay: number of jiffies to wait before queueing 1658 * 1659 * Return: %false if @work was already on a queue, %true otherwise. If 1660 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1661 * execution. 1662 */ 1663 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1664 struct delayed_work *dwork, unsigned long delay) 1665 { 1666 struct work_struct *work = &dwork->work; 1667 bool ret = false; 1668 unsigned long flags; 1669 1670 /* read the comment in __queue_work() */ 1671 local_irq_save(flags); 1672 1673 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1674 __queue_delayed_work(cpu, wq, dwork, delay); 1675 ret = true; 1676 } 1677 1678 local_irq_restore(flags); 1679 return ret; 1680 } 1681 EXPORT_SYMBOL(queue_delayed_work_on); 1682 1683 /** 1684 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1685 * @cpu: CPU number to execute work on 1686 * @wq: workqueue to use 1687 * @dwork: work to queue 1688 * @delay: number of jiffies to wait before queueing 1689 * 1690 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1691 * modify @dwork's timer so that it expires after @delay. If @delay is 1692 * zero, @work is guaranteed to be scheduled immediately regardless of its 1693 * current state. 1694 * 1695 * Return: %false if @dwork was idle and queued, %true if @dwork was 1696 * pending and its timer was modified. 1697 * 1698 * This function is safe to call from any context including IRQ handler. 1699 * See try_to_grab_pending() for details. 1700 */ 1701 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1702 struct delayed_work *dwork, unsigned long delay) 1703 { 1704 unsigned long flags; 1705 int ret; 1706 1707 do { 1708 ret = try_to_grab_pending(&dwork->work, true, &flags); 1709 } while (unlikely(ret == -EAGAIN)); 1710 1711 if (likely(ret >= 0)) { 1712 __queue_delayed_work(cpu, wq, dwork, delay); 1713 local_irq_restore(flags); 1714 } 1715 1716 /* -ENOENT from try_to_grab_pending() becomes %true */ 1717 return ret; 1718 } 1719 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1720 1721 static void rcu_work_rcufn(struct rcu_head *rcu) 1722 { 1723 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 1724 1725 /* read the comment in __queue_work() */ 1726 local_irq_disable(); 1727 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 1728 local_irq_enable(); 1729 } 1730 1731 /** 1732 * queue_rcu_work - queue work after a RCU grace period 1733 * @wq: workqueue to use 1734 * @rwork: work to queue 1735 * 1736 * Return: %false if @rwork was already pending, %true otherwise. Note 1737 * that a full RCU grace period is guaranteed only after a %true return. 1738 * While @rwork is guaranteed to be executed after a %false return, the 1739 * execution may happen before a full RCU grace period has passed. 1740 */ 1741 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 1742 { 1743 struct work_struct *work = &rwork->work; 1744 1745 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1746 rwork->wq = wq; 1747 call_rcu(&rwork->rcu, rcu_work_rcufn); 1748 return true; 1749 } 1750 1751 return false; 1752 } 1753 EXPORT_SYMBOL(queue_rcu_work); 1754 1755 /** 1756 * worker_enter_idle - enter idle state 1757 * @worker: worker which is entering idle state 1758 * 1759 * @worker is entering idle state. Update stats and idle timer if 1760 * necessary. 1761 * 1762 * LOCKING: 1763 * spin_lock_irq(pool->lock). 1764 */ 1765 static void worker_enter_idle(struct worker *worker) 1766 { 1767 struct worker_pool *pool = worker->pool; 1768 1769 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1770 WARN_ON_ONCE(!list_empty(&worker->entry) && 1771 (worker->hentry.next || worker->hentry.pprev))) 1772 return; 1773 1774 /* can't use worker_set_flags(), also called from create_worker() */ 1775 worker->flags |= WORKER_IDLE; 1776 pool->nr_idle++; 1777 worker->last_active = jiffies; 1778 1779 /* idle_list is LIFO */ 1780 list_add(&worker->entry, &pool->idle_list); 1781 1782 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1783 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1784 1785 /* 1786 * Sanity check nr_running. Because unbind_workers() releases 1787 * pool->lock between setting %WORKER_UNBOUND and zapping 1788 * nr_running, the warning may trigger spuriously. Check iff 1789 * unbind is not in progress. 1790 */ 1791 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1792 pool->nr_workers == pool->nr_idle && 1793 atomic_read(&pool->nr_running)); 1794 } 1795 1796 /** 1797 * worker_leave_idle - leave idle state 1798 * @worker: worker which is leaving idle state 1799 * 1800 * @worker is leaving idle state. Update stats. 1801 * 1802 * LOCKING: 1803 * spin_lock_irq(pool->lock). 1804 */ 1805 static void worker_leave_idle(struct worker *worker) 1806 { 1807 struct worker_pool *pool = worker->pool; 1808 1809 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1810 return; 1811 worker_clr_flags(worker, WORKER_IDLE); 1812 pool->nr_idle--; 1813 list_del_init(&worker->entry); 1814 } 1815 1816 static struct worker *alloc_worker(int node) 1817 { 1818 struct worker *worker; 1819 1820 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1821 if (worker) { 1822 INIT_LIST_HEAD(&worker->entry); 1823 INIT_LIST_HEAD(&worker->scheduled); 1824 INIT_LIST_HEAD(&worker->node); 1825 /* on creation a worker is in !idle && prep state */ 1826 worker->flags = WORKER_PREP; 1827 } 1828 return worker; 1829 } 1830 1831 /** 1832 * worker_attach_to_pool() - attach a worker to a pool 1833 * @worker: worker to be attached 1834 * @pool: the target pool 1835 * 1836 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1837 * cpu-binding of @worker are kept coordinated with the pool across 1838 * cpu-[un]hotplugs. 1839 */ 1840 static void worker_attach_to_pool(struct worker *worker, 1841 struct worker_pool *pool) 1842 { 1843 mutex_lock(&wq_pool_attach_mutex); 1844 1845 /* 1846 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1847 * online CPUs. It'll be re-applied when any of the CPUs come up. 1848 */ 1849 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1850 1851 /* 1852 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains 1853 * stable across this function. See the comments above the flag 1854 * definition for details. 1855 */ 1856 if (pool->flags & POOL_DISASSOCIATED) 1857 worker->flags |= WORKER_UNBOUND; 1858 1859 list_add_tail(&worker->node, &pool->workers); 1860 worker->pool = pool; 1861 1862 mutex_unlock(&wq_pool_attach_mutex); 1863 } 1864 1865 /** 1866 * worker_detach_from_pool() - detach a worker from its pool 1867 * @worker: worker which is attached to its pool 1868 * 1869 * Undo the attaching which had been done in worker_attach_to_pool(). The 1870 * caller worker shouldn't access to the pool after detached except it has 1871 * other reference to the pool. 1872 */ 1873 static void worker_detach_from_pool(struct worker *worker) 1874 { 1875 struct worker_pool *pool = worker->pool; 1876 struct completion *detach_completion = NULL; 1877 1878 mutex_lock(&wq_pool_attach_mutex); 1879 1880 list_del(&worker->node); 1881 worker->pool = NULL; 1882 1883 if (list_empty(&pool->workers)) 1884 detach_completion = pool->detach_completion; 1885 mutex_unlock(&wq_pool_attach_mutex); 1886 1887 /* clear leftover flags without pool->lock after it is detached */ 1888 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1889 1890 if (detach_completion) 1891 complete(detach_completion); 1892 } 1893 1894 /** 1895 * create_worker - create a new workqueue worker 1896 * @pool: pool the new worker will belong to 1897 * 1898 * Create and start a new worker which is attached to @pool. 1899 * 1900 * CONTEXT: 1901 * Might sleep. Does GFP_KERNEL allocations. 1902 * 1903 * Return: 1904 * Pointer to the newly created worker. 1905 */ 1906 static struct worker *create_worker(struct worker_pool *pool) 1907 { 1908 struct worker *worker = NULL; 1909 int id = -1; 1910 char id_buf[16]; 1911 1912 /* ID is needed to determine kthread name */ 1913 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL); 1914 if (id < 0) 1915 goto fail; 1916 1917 worker = alloc_worker(pool->node); 1918 if (!worker) 1919 goto fail; 1920 1921 worker->id = id; 1922 1923 if (pool->cpu >= 0) 1924 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1925 pool->attrs->nice < 0 ? "H" : ""); 1926 else 1927 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1928 1929 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1930 "kworker/%s", id_buf); 1931 if (IS_ERR(worker->task)) 1932 goto fail; 1933 1934 set_user_nice(worker->task, pool->attrs->nice); 1935 kthread_bind_mask(worker->task, pool->attrs->cpumask); 1936 1937 /* successful, attach the worker to the pool */ 1938 worker_attach_to_pool(worker, pool); 1939 1940 /* start the newly created worker */ 1941 spin_lock_irq(&pool->lock); 1942 worker->pool->nr_workers++; 1943 worker_enter_idle(worker); 1944 wake_up_process(worker->task); 1945 spin_unlock_irq(&pool->lock); 1946 1947 return worker; 1948 1949 fail: 1950 if (id >= 0) 1951 ida_simple_remove(&pool->worker_ida, id); 1952 kfree(worker); 1953 return NULL; 1954 } 1955 1956 /** 1957 * destroy_worker - destroy a workqueue worker 1958 * @worker: worker to be destroyed 1959 * 1960 * Destroy @worker and adjust @pool stats accordingly. The worker should 1961 * be idle. 1962 * 1963 * CONTEXT: 1964 * spin_lock_irq(pool->lock). 1965 */ 1966 static void destroy_worker(struct worker *worker) 1967 { 1968 struct worker_pool *pool = worker->pool; 1969 1970 lockdep_assert_held(&pool->lock); 1971 1972 /* sanity check frenzy */ 1973 if (WARN_ON(worker->current_work) || 1974 WARN_ON(!list_empty(&worker->scheduled)) || 1975 WARN_ON(!(worker->flags & WORKER_IDLE))) 1976 return; 1977 1978 pool->nr_workers--; 1979 pool->nr_idle--; 1980 1981 list_del_init(&worker->entry); 1982 worker->flags |= WORKER_DIE; 1983 wake_up_process(worker->task); 1984 } 1985 1986 static void idle_worker_timeout(struct timer_list *t) 1987 { 1988 struct worker_pool *pool = from_timer(pool, t, idle_timer); 1989 1990 spin_lock_irq(&pool->lock); 1991 1992 while (too_many_workers(pool)) { 1993 struct worker *worker; 1994 unsigned long expires; 1995 1996 /* idle_list is kept in LIFO order, check the last one */ 1997 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1998 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1999 2000 if (time_before(jiffies, expires)) { 2001 mod_timer(&pool->idle_timer, expires); 2002 break; 2003 } 2004 2005 destroy_worker(worker); 2006 } 2007 2008 spin_unlock_irq(&pool->lock); 2009 } 2010 2011 static void send_mayday(struct work_struct *work) 2012 { 2013 struct pool_workqueue *pwq = get_work_pwq(work); 2014 struct workqueue_struct *wq = pwq->wq; 2015 2016 lockdep_assert_held(&wq_mayday_lock); 2017 2018 if (!wq->rescuer) 2019 return; 2020 2021 /* mayday mayday mayday */ 2022 if (list_empty(&pwq->mayday_node)) { 2023 /* 2024 * If @pwq is for an unbound wq, its base ref may be put at 2025 * any time due to an attribute change. Pin @pwq until the 2026 * rescuer is done with it. 2027 */ 2028 get_pwq(pwq); 2029 list_add_tail(&pwq->mayday_node, &wq->maydays); 2030 wake_up_process(wq->rescuer->task); 2031 } 2032 } 2033 2034 static void pool_mayday_timeout(struct timer_list *t) 2035 { 2036 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 2037 struct work_struct *work; 2038 2039 spin_lock_irq(&pool->lock); 2040 spin_lock(&wq_mayday_lock); /* for wq->maydays */ 2041 2042 if (need_to_create_worker(pool)) { 2043 /* 2044 * We've been trying to create a new worker but 2045 * haven't been successful. We might be hitting an 2046 * allocation deadlock. Send distress signals to 2047 * rescuers. 2048 */ 2049 list_for_each_entry(work, &pool->worklist, entry) 2050 send_mayday(work); 2051 } 2052 2053 spin_unlock(&wq_mayday_lock); 2054 spin_unlock_irq(&pool->lock); 2055 2056 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 2057 } 2058 2059 /** 2060 * maybe_create_worker - create a new worker if necessary 2061 * @pool: pool to create a new worker for 2062 * 2063 * Create a new worker for @pool if necessary. @pool is guaranteed to 2064 * have at least one idle worker on return from this function. If 2065 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 2066 * sent to all rescuers with works scheduled on @pool to resolve 2067 * possible allocation deadlock. 2068 * 2069 * On return, need_to_create_worker() is guaranteed to be %false and 2070 * may_start_working() %true. 2071 * 2072 * LOCKING: 2073 * spin_lock_irq(pool->lock) which may be released and regrabbed 2074 * multiple times. Does GFP_KERNEL allocations. Called only from 2075 * manager. 2076 */ 2077 static void maybe_create_worker(struct worker_pool *pool) 2078 __releases(&pool->lock) 2079 __acquires(&pool->lock) 2080 { 2081 restart: 2082 spin_unlock_irq(&pool->lock); 2083 2084 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 2085 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 2086 2087 while (true) { 2088 if (create_worker(pool) || !need_to_create_worker(pool)) 2089 break; 2090 2091 schedule_timeout_interruptible(CREATE_COOLDOWN); 2092 2093 if (!need_to_create_worker(pool)) 2094 break; 2095 } 2096 2097 del_timer_sync(&pool->mayday_timer); 2098 spin_lock_irq(&pool->lock); 2099 /* 2100 * This is necessary even after a new worker was just successfully 2101 * created as @pool->lock was dropped and the new worker might have 2102 * already become busy. 2103 */ 2104 if (need_to_create_worker(pool)) 2105 goto restart; 2106 } 2107 2108 /** 2109 * manage_workers - manage worker pool 2110 * @worker: self 2111 * 2112 * Assume the manager role and manage the worker pool @worker belongs 2113 * to. At any given time, there can be only zero or one manager per 2114 * pool. The exclusion is handled automatically by this function. 2115 * 2116 * The caller can safely start processing works on false return. On 2117 * true return, it's guaranteed that need_to_create_worker() is false 2118 * and may_start_working() is true. 2119 * 2120 * CONTEXT: 2121 * spin_lock_irq(pool->lock) which may be released and regrabbed 2122 * multiple times. Does GFP_KERNEL allocations. 2123 * 2124 * Return: 2125 * %false if the pool doesn't need management and the caller can safely 2126 * start processing works, %true if management function was performed and 2127 * the conditions that the caller verified before calling the function may 2128 * no longer be true. 2129 */ 2130 static bool manage_workers(struct worker *worker) 2131 { 2132 struct worker_pool *pool = worker->pool; 2133 2134 if (pool->flags & POOL_MANAGER_ACTIVE) 2135 return false; 2136 2137 pool->flags |= POOL_MANAGER_ACTIVE; 2138 pool->manager = worker; 2139 2140 maybe_create_worker(pool); 2141 2142 pool->manager = NULL; 2143 pool->flags &= ~POOL_MANAGER_ACTIVE; 2144 wake_up(&wq_manager_wait); 2145 return true; 2146 } 2147 2148 /** 2149 * process_one_work - process single work 2150 * @worker: self 2151 * @work: work to process 2152 * 2153 * Process @work. This function contains all the logics necessary to 2154 * process a single work including synchronization against and 2155 * interaction with other workers on the same cpu, queueing and 2156 * flushing. As long as context requirement is met, any worker can 2157 * call this function to process a work. 2158 * 2159 * CONTEXT: 2160 * spin_lock_irq(pool->lock) which is released and regrabbed. 2161 */ 2162 static void process_one_work(struct worker *worker, struct work_struct *work) 2163 __releases(&pool->lock) 2164 __acquires(&pool->lock) 2165 { 2166 struct pool_workqueue *pwq = get_work_pwq(work); 2167 struct worker_pool *pool = worker->pool; 2168 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2169 int work_color; 2170 struct worker *collision; 2171 #ifdef CONFIG_LOCKDEP 2172 /* 2173 * It is permissible to free the struct work_struct from 2174 * inside the function that is called from it, this we need to 2175 * take into account for lockdep too. To avoid bogus "held 2176 * lock freed" warnings as well as problems when looking into 2177 * work->lockdep_map, make a copy and use that here. 2178 */ 2179 struct lockdep_map lockdep_map; 2180 2181 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2182 #endif 2183 /* ensure we're on the correct CPU */ 2184 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2185 raw_smp_processor_id() != pool->cpu); 2186 2187 /* 2188 * A single work shouldn't be executed concurrently by 2189 * multiple workers on a single cpu. Check whether anyone is 2190 * already processing the work. If so, defer the work to the 2191 * currently executing one. 2192 */ 2193 collision = find_worker_executing_work(pool, work); 2194 if (unlikely(collision)) { 2195 move_linked_works(work, &collision->scheduled, NULL); 2196 return; 2197 } 2198 2199 /* claim and dequeue */ 2200 debug_work_deactivate(work); 2201 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2202 worker->current_work = work; 2203 worker->current_func = work->func; 2204 worker->current_pwq = pwq; 2205 work_color = get_work_color(work); 2206 2207 /* 2208 * Record wq name for cmdline and debug reporting, may get 2209 * overridden through set_worker_desc(). 2210 */ 2211 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 2212 2213 list_del_init(&work->entry); 2214 2215 /* 2216 * CPU intensive works don't participate in concurrency management. 2217 * They're the scheduler's responsibility. This takes @worker out 2218 * of concurrency management and the next code block will chain 2219 * execution of the pending work items. 2220 */ 2221 if (unlikely(cpu_intensive)) 2222 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2223 2224 /* 2225 * Wake up another worker if necessary. The condition is always 2226 * false for normal per-cpu workers since nr_running would always 2227 * be >= 1 at this point. This is used to chain execution of the 2228 * pending work items for WORKER_NOT_RUNNING workers such as the 2229 * UNBOUND and CPU_INTENSIVE ones. 2230 */ 2231 if (need_more_worker(pool)) 2232 wake_up_worker(pool); 2233 2234 /* 2235 * Record the last pool and clear PENDING which should be the last 2236 * update to @work. Also, do this inside @pool->lock so that 2237 * PENDING and queued state changes happen together while IRQ is 2238 * disabled. 2239 */ 2240 set_work_pool_and_clear_pending(work, pool->id); 2241 2242 spin_unlock_irq(&pool->lock); 2243 2244 lock_map_acquire(&pwq->wq->lockdep_map); 2245 lock_map_acquire(&lockdep_map); 2246 /* 2247 * Strictly speaking we should mark the invariant state without holding 2248 * any locks, that is, before these two lock_map_acquire()'s. 2249 * 2250 * However, that would result in: 2251 * 2252 * A(W1) 2253 * WFC(C) 2254 * A(W1) 2255 * C(C) 2256 * 2257 * Which would create W1->C->W1 dependencies, even though there is no 2258 * actual deadlock possible. There are two solutions, using a 2259 * read-recursive acquire on the work(queue) 'locks', but this will then 2260 * hit the lockdep limitation on recursive locks, or simply discard 2261 * these locks. 2262 * 2263 * AFAICT there is no possible deadlock scenario between the 2264 * flush_work() and complete() primitives (except for single-threaded 2265 * workqueues), so hiding them isn't a problem. 2266 */ 2267 lockdep_invariant_state(true); 2268 trace_workqueue_execute_start(work); 2269 worker->current_func(work); 2270 /* 2271 * While we must be careful to not use "work" after this, the trace 2272 * point will only record its address. 2273 */ 2274 trace_workqueue_execute_end(work); 2275 lock_map_release(&lockdep_map); 2276 lock_map_release(&pwq->wq->lockdep_map); 2277 2278 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2279 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2280 " last function: %ps\n", 2281 current->comm, preempt_count(), task_pid_nr(current), 2282 worker->current_func); 2283 debug_show_held_locks(current); 2284 dump_stack(); 2285 } 2286 2287 /* 2288 * The following prevents a kworker from hogging CPU on !PREEMPT 2289 * kernels, where a requeueing work item waiting for something to 2290 * happen could deadlock with stop_machine as such work item could 2291 * indefinitely requeue itself while all other CPUs are trapped in 2292 * stop_machine. At the same time, report a quiescent RCU state so 2293 * the same condition doesn't freeze RCU. 2294 */ 2295 cond_resched(); 2296 2297 spin_lock_irq(&pool->lock); 2298 2299 /* clear cpu intensive status */ 2300 if (unlikely(cpu_intensive)) 2301 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2302 2303 /* tag the worker for identification in schedule() */ 2304 worker->last_func = worker->current_func; 2305 2306 /* we're done with it, release */ 2307 hash_del(&worker->hentry); 2308 worker->current_work = NULL; 2309 worker->current_func = NULL; 2310 worker->current_pwq = NULL; 2311 pwq_dec_nr_in_flight(pwq, work_color); 2312 } 2313 2314 /** 2315 * process_scheduled_works - process scheduled works 2316 * @worker: self 2317 * 2318 * Process all scheduled works. Please note that the scheduled list 2319 * may change while processing a work, so this function repeatedly 2320 * fetches a work from the top and executes it. 2321 * 2322 * CONTEXT: 2323 * spin_lock_irq(pool->lock) which may be released and regrabbed 2324 * multiple times. 2325 */ 2326 static void process_scheduled_works(struct worker *worker) 2327 { 2328 while (!list_empty(&worker->scheduled)) { 2329 struct work_struct *work = list_first_entry(&worker->scheduled, 2330 struct work_struct, entry); 2331 process_one_work(worker, work); 2332 } 2333 } 2334 2335 static void set_pf_worker(bool val) 2336 { 2337 mutex_lock(&wq_pool_attach_mutex); 2338 if (val) 2339 current->flags |= PF_WQ_WORKER; 2340 else 2341 current->flags &= ~PF_WQ_WORKER; 2342 mutex_unlock(&wq_pool_attach_mutex); 2343 } 2344 2345 /** 2346 * worker_thread - the worker thread function 2347 * @__worker: self 2348 * 2349 * The worker thread function. All workers belong to a worker_pool - 2350 * either a per-cpu one or dynamic unbound one. These workers process all 2351 * work items regardless of their specific target workqueue. The only 2352 * exception is work items which belong to workqueues with a rescuer which 2353 * will be explained in rescuer_thread(). 2354 * 2355 * Return: 0 2356 */ 2357 static int worker_thread(void *__worker) 2358 { 2359 struct worker *worker = __worker; 2360 struct worker_pool *pool = worker->pool; 2361 2362 /* tell the scheduler that this is a workqueue worker */ 2363 set_pf_worker(true); 2364 woke_up: 2365 spin_lock_irq(&pool->lock); 2366 2367 /* am I supposed to die? */ 2368 if (unlikely(worker->flags & WORKER_DIE)) { 2369 spin_unlock_irq(&pool->lock); 2370 WARN_ON_ONCE(!list_empty(&worker->entry)); 2371 set_pf_worker(false); 2372 2373 set_task_comm(worker->task, "kworker/dying"); 2374 ida_simple_remove(&pool->worker_ida, worker->id); 2375 worker_detach_from_pool(worker); 2376 kfree(worker); 2377 return 0; 2378 } 2379 2380 worker_leave_idle(worker); 2381 recheck: 2382 /* no more worker necessary? */ 2383 if (!need_more_worker(pool)) 2384 goto sleep; 2385 2386 /* do we need to manage? */ 2387 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2388 goto recheck; 2389 2390 /* 2391 * ->scheduled list can only be filled while a worker is 2392 * preparing to process a work or actually processing it. 2393 * Make sure nobody diddled with it while I was sleeping. 2394 */ 2395 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2396 2397 /* 2398 * Finish PREP stage. We're guaranteed to have at least one idle 2399 * worker or that someone else has already assumed the manager 2400 * role. This is where @worker starts participating in concurrency 2401 * management if applicable and concurrency management is restored 2402 * after being rebound. See rebind_workers() for details. 2403 */ 2404 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2405 2406 do { 2407 struct work_struct *work = 2408 list_first_entry(&pool->worklist, 2409 struct work_struct, entry); 2410 2411 pool->watchdog_ts = jiffies; 2412 2413 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2414 /* optimization path, not strictly necessary */ 2415 process_one_work(worker, work); 2416 if (unlikely(!list_empty(&worker->scheduled))) 2417 process_scheduled_works(worker); 2418 } else { 2419 move_linked_works(work, &worker->scheduled, NULL); 2420 process_scheduled_works(worker); 2421 } 2422 } while (keep_working(pool)); 2423 2424 worker_set_flags(worker, WORKER_PREP); 2425 sleep: 2426 /* 2427 * pool->lock is held and there's no work to process and no need to 2428 * manage, sleep. Workers are woken up only while holding 2429 * pool->lock or from local cpu, so setting the current state 2430 * before releasing pool->lock is enough to prevent losing any 2431 * event. 2432 */ 2433 worker_enter_idle(worker); 2434 __set_current_state(TASK_IDLE); 2435 spin_unlock_irq(&pool->lock); 2436 schedule(); 2437 goto woke_up; 2438 } 2439 2440 /** 2441 * rescuer_thread - the rescuer thread function 2442 * @__rescuer: self 2443 * 2444 * Workqueue rescuer thread function. There's one rescuer for each 2445 * workqueue which has WQ_MEM_RECLAIM set. 2446 * 2447 * Regular work processing on a pool may block trying to create a new 2448 * worker which uses GFP_KERNEL allocation which has slight chance of 2449 * developing into deadlock if some works currently on the same queue 2450 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2451 * the problem rescuer solves. 2452 * 2453 * When such condition is possible, the pool summons rescuers of all 2454 * workqueues which have works queued on the pool and let them process 2455 * those works so that forward progress can be guaranteed. 2456 * 2457 * This should happen rarely. 2458 * 2459 * Return: 0 2460 */ 2461 static int rescuer_thread(void *__rescuer) 2462 { 2463 struct worker *rescuer = __rescuer; 2464 struct workqueue_struct *wq = rescuer->rescue_wq; 2465 struct list_head *scheduled = &rescuer->scheduled; 2466 bool should_stop; 2467 2468 set_user_nice(current, RESCUER_NICE_LEVEL); 2469 2470 /* 2471 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2472 * doesn't participate in concurrency management. 2473 */ 2474 set_pf_worker(true); 2475 repeat: 2476 set_current_state(TASK_IDLE); 2477 2478 /* 2479 * By the time the rescuer is requested to stop, the workqueue 2480 * shouldn't have any work pending, but @wq->maydays may still have 2481 * pwq(s) queued. This can happen by non-rescuer workers consuming 2482 * all the work items before the rescuer got to them. Go through 2483 * @wq->maydays processing before acting on should_stop so that the 2484 * list is always empty on exit. 2485 */ 2486 should_stop = kthread_should_stop(); 2487 2488 /* see whether any pwq is asking for help */ 2489 spin_lock_irq(&wq_mayday_lock); 2490 2491 while (!list_empty(&wq->maydays)) { 2492 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2493 struct pool_workqueue, mayday_node); 2494 struct worker_pool *pool = pwq->pool; 2495 struct work_struct *work, *n; 2496 bool first = true; 2497 2498 __set_current_state(TASK_RUNNING); 2499 list_del_init(&pwq->mayday_node); 2500 2501 spin_unlock_irq(&wq_mayday_lock); 2502 2503 worker_attach_to_pool(rescuer, pool); 2504 2505 spin_lock_irq(&pool->lock); 2506 2507 /* 2508 * Slurp in all works issued via this workqueue and 2509 * process'em. 2510 */ 2511 WARN_ON_ONCE(!list_empty(scheduled)); 2512 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2513 if (get_work_pwq(work) == pwq) { 2514 if (first) 2515 pool->watchdog_ts = jiffies; 2516 move_linked_works(work, scheduled, &n); 2517 } 2518 first = false; 2519 } 2520 2521 if (!list_empty(scheduled)) { 2522 process_scheduled_works(rescuer); 2523 2524 /* 2525 * The above execution of rescued work items could 2526 * have created more to rescue through 2527 * pwq_activate_first_delayed() or chained 2528 * queueing. Let's put @pwq back on mayday list so 2529 * that such back-to-back work items, which may be 2530 * being used to relieve memory pressure, don't 2531 * incur MAYDAY_INTERVAL delay inbetween. 2532 */ 2533 if (need_to_create_worker(pool)) { 2534 spin_lock(&wq_mayday_lock); 2535 get_pwq(pwq); 2536 list_move_tail(&pwq->mayday_node, &wq->maydays); 2537 spin_unlock(&wq_mayday_lock); 2538 } 2539 } 2540 2541 /* 2542 * Put the reference grabbed by send_mayday(). @pool won't 2543 * go away while we're still attached to it. 2544 */ 2545 put_pwq(pwq); 2546 2547 /* 2548 * Leave this pool. If need_more_worker() is %true, notify a 2549 * regular worker; otherwise, we end up with 0 concurrency 2550 * and stalling the execution. 2551 */ 2552 if (need_more_worker(pool)) 2553 wake_up_worker(pool); 2554 2555 spin_unlock_irq(&pool->lock); 2556 2557 worker_detach_from_pool(rescuer); 2558 2559 spin_lock_irq(&wq_mayday_lock); 2560 } 2561 2562 spin_unlock_irq(&wq_mayday_lock); 2563 2564 if (should_stop) { 2565 __set_current_state(TASK_RUNNING); 2566 set_pf_worker(false); 2567 return 0; 2568 } 2569 2570 /* rescuers should never participate in concurrency management */ 2571 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2572 schedule(); 2573 goto repeat; 2574 } 2575 2576 /** 2577 * check_flush_dependency - check for flush dependency sanity 2578 * @target_wq: workqueue being flushed 2579 * @target_work: work item being flushed (NULL for workqueue flushes) 2580 * 2581 * %current is trying to flush the whole @target_wq or @target_work on it. 2582 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2583 * reclaiming memory or running on a workqueue which doesn't have 2584 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2585 * a deadlock. 2586 */ 2587 static void check_flush_dependency(struct workqueue_struct *target_wq, 2588 struct work_struct *target_work) 2589 { 2590 work_func_t target_func = target_work ? target_work->func : NULL; 2591 struct worker *worker; 2592 2593 if (target_wq->flags & WQ_MEM_RECLAIM) 2594 return; 2595 2596 worker = current_wq_worker(); 2597 2598 WARN_ONCE(current->flags & PF_MEMALLOC, 2599 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 2600 current->pid, current->comm, target_wq->name, target_func); 2601 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2602 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2603 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 2604 worker->current_pwq->wq->name, worker->current_func, 2605 target_wq->name, target_func); 2606 } 2607 2608 struct wq_barrier { 2609 struct work_struct work; 2610 struct completion done; 2611 struct task_struct *task; /* purely informational */ 2612 }; 2613 2614 static void wq_barrier_func(struct work_struct *work) 2615 { 2616 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2617 complete(&barr->done); 2618 } 2619 2620 /** 2621 * insert_wq_barrier - insert a barrier work 2622 * @pwq: pwq to insert barrier into 2623 * @barr: wq_barrier to insert 2624 * @target: target work to attach @barr to 2625 * @worker: worker currently executing @target, NULL if @target is not executing 2626 * 2627 * @barr is linked to @target such that @barr is completed only after 2628 * @target finishes execution. Please note that the ordering 2629 * guarantee is observed only with respect to @target and on the local 2630 * cpu. 2631 * 2632 * Currently, a queued barrier can't be canceled. This is because 2633 * try_to_grab_pending() can't determine whether the work to be 2634 * grabbed is at the head of the queue and thus can't clear LINKED 2635 * flag of the previous work while there must be a valid next work 2636 * after a work with LINKED flag set. 2637 * 2638 * Note that when @worker is non-NULL, @target may be modified 2639 * underneath us, so we can't reliably determine pwq from @target. 2640 * 2641 * CONTEXT: 2642 * spin_lock_irq(pool->lock). 2643 */ 2644 static void insert_wq_barrier(struct pool_workqueue *pwq, 2645 struct wq_barrier *barr, 2646 struct work_struct *target, struct worker *worker) 2647 { 2648 struct list_head *head; 2649 unsigned int linked = 0; 2650 2651 /* 2652 * debugobject calls are safe here even with pool->lock locked 2653 * as we know for sure that this will not trigger any of the 2654 * checks and call back into the fixup functions where we 2655 * might deadlock. 2656 */ 2657 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2658 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2659 2660 init_completion_map(&barr->done, &target->lockdep_map); 2661 2662 barr->task = current; 2663 2664 /* 2665 * If @target is currently being executed, schedule the 2666 * barrier to the worker; otherwise, put it after @target. 2667 */ 2668 if (worker) 2669 head = worker->scheduled.next; 2670 else { 2671 unsigned long *bits = work_data_bits(target); 2672 2673 head = target->entry.next; 2674 /* there can already be other linked works, inherit and set */ 2675 linked = *bits & WORK_STRUCT_LINKED; 2676 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2677 } 2678 2679 debug_work_activate(&barr->work); 2680 insert_work(pwq, &barr->work, head, 2681 work_color_to_flags(WORK_NO_COLOR) | linked); 2682 } 2683 2684 /** 2685 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2686 * @wq: workqueue being flushed 2687 * @flush_color: new flush color, < 0 for no-op 2688 * @work_color: new work color, < 0 for no-op 2689 * 2690 * Prepare pwqs for workqueue flushing. 2691 * 2692 * If @flush_color is non-negative, flush_color on all pwqs should be 2693 * -1. If no pwq has in-flight commands at the specified color, all 2694 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2695 * has in flight commands, its pwq->flush_color is set to 2696 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2697 * wakeup logic is armed and %true is returned. 2698 * 2699 * The caller should have initialized @wq->first_flusher prior to 2700 * calling this function with non-negative @flush_color. If 2701 * @flush_color is negative, no flush color update is done and %false 2702 * is returned. 2703 * 2704 * If @work_color is non-negative, all pwqs should have the same 2705 * work_color which is previous to @work_color and all will be 2706 * advanced to @work_color. 2707 * 2708 * CONTEXT: 2709 * mutex_lock(wq->mutex). 2710 * 2711 * Return: 2712 * %true if @flush_color >= 0 and there's something to flush. %false 2713 * otherwise. 2714 */ 2715 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2716 int flush_color, int work_color) 2717 { 2718 bool wait = false; 2719 struct pool_workqueue *pwq; 2720 2721 if (flush_color >= 0) { 2722 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2723 atomic_set(&wq->nr_pwqs_to_flush, 1); 2724 } 2725 2726 for_each_pwq(pwq, wq) { 2727 struct worker_pool *pool = pwq->pool; 2728 2729 spin_lock_irq(&pool->lock); 2730 2731 if (flush_color >= 0) { 2732 WARN_ON_ONCE(pwq->flush_color != -1); 2733 2734 if (pwq->nr_in_flight[flush_color]) { 2735 pwq->flush_color = flush_color; 2736 atomic_inc(&wq->nr_pwqs_to_flush); 2737 wait = true; 2738 } 2739 } 2740 2741 if (work_color >= 0) { 2742 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2743 pwq->work_color = work_color; 2744 } 2745 2746 spin_unlock_irq(&pool->lock); 2747 } 2748 2749 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2750 complete(&wq->first_flusher->done); 2751 2752 return wait; 2753 } 2754 2755 /** 2756 * flush_workqueue - ensure that any scheduled work has run to completion. 2757 * @wq: workqueue to flush 2758 * 2759 * This function sleeps until all work items which were queued on entry 2760 * have finished execution, but it is not livelocked by new incoming ones. 2761 */ 2762 void flush_workqueue(struct workqueue_struct *wq) 2763 { 2764 struct wq_flusher this_flusher = { 2765 .list = LIST_HEAD_INIT(this_flusher.list), 2766 .flush_color = -1, 2767 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 2768 }; 2769 int next_color; 2770 2771 if (WARN_ON(!wq_online)) 2772 return; 2773 2774 lock_map_acquire(&wq->lockdep_map); 2775 lock_map_release(&wq->lockdep_map); 2776 2777 mutex_lock(&wq->mutex); 2778 2779 /* 2780 * Start-to-wait phase 2781 */ 2782 next_color = work_next_color(wq->work_color); 2783 2784 if (next_color != wq->flush_color) { 2785 /* 2786 * Color space is not full. The current work_color 2787 * becomes our flush_color and work_color is advanced 2788 * by one. 2789 */ 2790 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2791 this_flusher.flush_color = wq->work_color; 2792 wq->work_color = next_color; 2793 2794 if (!wq->first_flusher) { 2795 /* no flush in progress, become the first flusher */ 2796 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2797 2798 wq->first_flusher = &this_flusher; 2799 2800 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2801 wq->work_color)) { 2802 /* nothing to flush, done */ 2803 wq->flush_color = next_color; 2804 wq->first_flusher = NULL; 2805 goto out_unlock; 2806 } 2807 } else { 2808 /* wait in queue */ 2809 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2810 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2811 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2812 } 2813 } else { 2814 /* 2815 * Oops, color space is full, wait on overflow queue. 2816 * The next flush completion will assign us 2817 * flush_color and transfer to flusher_queue. 2818 */ 2819 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2820 } 2821 2822 check_flush_dependency(wq, NULL); 2823 2824 mutex_unlock(&wq->mutex); 2825 2826 wait_for_completion(&this_flusher.done); 2827 2828 /* 2829 * Wake-up-and-cascade phase 2830 * 2831 * First flushers are responsible for cascading flushes and 2832 * handling overflow. Non-first flushers can simply return. 2833 */ 2834 if (wq->first_flusher != &this_flusher) 2835 return; 2836 2837 mutex_lock(&wq->mutex); 2838 2839 /* we might have raced, check again with mutex held */ 2840 if (wq->first_flusher != &this_flusher) 2841 goto out_unlock; 2842 2843 wq->first_flusher = NULL; 2844 2845 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2846 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2847 2848 while (true) { 2849 struct wq_flusher *next, *tmp; 2850 2851 /* complete all the flushers sharing the current flush color */ 2852 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2853 if (next->flush_color != wq->flush_color) 2854 break; 2855 list_del_init(&next->list); 2856 complete(&next->done); 2857 } 2858 2859 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2860 wq->flush_color != work_next_color(wq->work_color)); 2861 2862 /* this flush_color is finished, advance by one */ 2863 wq->flush_color = work_next_color(wq->flush_color); 2864 2865 /* one color has been freed, handle overflow queue */ 2866 if (!list_empty(&wq->flusher_overflow)) { 2867 /* 2868 * Assign the same color to all overflowed 2869 * flushers, advance work_color and append to 2870 * flusher_queue. This is the start-to-wait 2871 * phase for these overflowed flushers. 2872 */ 2873 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2874 tmp->flush_color = wq->work_color; 2875 2876 wq->work_color = work_next_color(wq->work_color); 2877 2878 list_splice_tail_init(&wq->flusher_overflow, 2879 &wq->flusher_queue); 2880 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2881 } 2882 2883 if (list_empty(&wq->flusher_queue)) { 2884 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2885 break; 2886 } 2887 2888 /* 2889 * Need to flush more colors. Make the next flusher 2890 * the new first flusher and arm pwqs. 2891 */ 2892 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2893 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2894 2895 list_del_init(&next->list); 2896 wq->first_flusher = next; 2897 2898 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2899 break; 2900 2901 /* 2902 * Meh... this color is already done, clear first 2903 * flusher and repeat cascading. 2904 */ 2905 wq->first_flusher = NULL; 2906 } 2907 2908 out_unlock: 2909 mutex_unlock(&wq->mutex); 2910 } 2911 EXPORT_SYMBOL(flush_workqueue); 2912 2913 /** 2914 * drain_workqueue - drain a workqueue 2915 * @wq: workqueue to drain 2916 * 2917 * Wait until the workqueue becomes empty. While draining is in progress, 2918 * only chain queueing is allowed. IOW, only currently pending or running 2919 * work items on @wq can queue further work items on it. @wq is flushed 2920 * repeatedly until it becomes empty. The number of flushing is determined 2921 * by the depth of chaining and should be relatively short. Whine if it 2922 * takes too long. 2923 */ 2924 void drain_workqueue(struct workqueue_struct *wq) 2925 { 2926 unsigned int flush_cnt = 0; 2927 struct pool_workqueue *pwq; 2928 2929 /* 2930 * __queue_work() needs to test whether there are drainers, is much 2931 * hotter than drain_workqueue() and already looks at @wq->flags. 2932 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2933 */ 2934 mutex_lock(&wq->mutex); 2935 if (!wq->nr_drainers++) 2936 wq->flags |= __WQ_DRAINING; 2937 mutex_unlock(&wq->mutex); 2938 reflush: 2939 flush_workqueue(wq); 2940 2941 mutex_lock(&wq->mutex); 2942 2943 for_each_pwq(pwq, wq) { 2944 bool drained; 2945 2946 spin_lock_irq(&pwq->pool->lock); 2947 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2948 spin_unlock_irq(&pwq->pool->lock); 2949 2950 if (drained) 2951 continue; 2952 2953 if (++flush_cnt == 10 || 2954 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2955 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2956 wq->name, flush_cnt); 2957 2958 mutex_unlock(&wq->mutex); 2959 goto reflush; 2960 } 2961 2962 if (!--wq->nr_drainers) 2963 wq->flags &= ~__WQ_DRAINING; 2964 mutex_unlock(&wq->mutex); 2965 } 2966 EXPORT_SYMBOL_GPL(drain_workqueue); 2967 2968 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 2969 bool from_cancel) 2970 { 2971 struct worker *worker = NULL; 2972 struct worker_pool *pool; 2973 struct pool_workqueue *pwq; 2974 2975 might_sleep(); 2976 2977 rcu_read_lock(); 2978 pool = get_work_pool(work); 2979 if (!pool) { 2980 rcu_read_unlock(); 2981 return false; 2982 } 2983 2984 spin_lock_irq(&pool->lock); 2985 /* see the comment in try_to_grab_pending() with the same code */ 2986 pwq = get_work_pwq(work); 2987 if (pwq) { 2988 if (unlikely(pwq->pool != pool)) 2989 goto already_gone; 2990 } else { 2991 worker = find_worker_executing_work(pool, work); 2992 if (!worker) 2993 goto already_gone; 2994 pwq = worker->current_pwq; 2995 } 2996 2997 check_flush_dependency(pwq->wq, work); 2998 2999 insert_wq_barrier(pwq, barr, work, worker); 3000 spin_unlock_irq(&pool->lock); 3001 3002 /* 3003 * Force a lock recursion deadlock when using flush_work() inside a 3004 * single-threaded or rescuer equipped workqueue. 3005 * 3006 * For single threaded workqueues the deadlock happens when the work 3007 * is after the work issuing the flush_work(). For rescuer equipped 3008 * workqueues the deadlock happens when the rescuer stalls, blocking 3009 * forward progress. 3010 */ 3011 if (!from_cancel && 3012 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) { 3013 lock_map_acquire(&pwq->wq->lockdep_map); 3014 lock_map_release(&pwq->wq->lockdep_map); 3015 } 3016 rcu_read_unlock(); 3017 return true; 3018 already_gone: 3019 spin_unlock_irq(&pool->lock); 3020 rcu_read_unlock(); 3021 return false; 3022 } 3023 3024 static bool __flush_work(struct work_struct *work, bool from_cancel) 3025 { 3026 struct wq_barrier barr; 3027 3028 if (WARN_ON(!wq_online)) 3029 return false; 3030 3031 if (WARN_ON(!work->func)) 3032 return false; 3033 3034 if (!from_cancel) { 3035 lock_map_acquire(&work->lockdep_map); 3036 lock_map_release(&work->lockdep_map); 3037 } 3038 3039 if (start_flush_work(work, &barr, from_cancel)) { 3040 wait_for_completion(&barr.done); 3041 destroy_work_on_stack(&barr.work); 3042 return true; 3043 } else { 3044 return false; 3045 } 3046 } 3047 3048 /** 3049 * flush_work - wait for a work to finish executing the last queueing instance 3050 * @work: the work to flush 3051 * 3052 * Wait until @work has finished execution. @work is guaranteed to be idle 3053 * on return if it hasn't been requeued since flush started. 3054 * 3055 * Return: 3056 * %true if flush_work() waited for the work to finish execution, 3057 * %false if it was already idle. 3058 */ 3059 bool flush_work(struct work_struct *work) 3060 { 3061 return __flush_work(work, false); 3062 } 3063 EXPORT_SYMBOL_GPL(flush_work); 3064 3065 struct cwt_wait { 3066 wait_queue_entry_t wait; 3067 struct work_struct *work; 3068 }; 3069 3070 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 3071 { 3072 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 3073 3074 if (cwait->work != key) 3075 return 0; 3076 return autoremove_wake_function(wait, mode, sync, key); 3077 } 3078 3079 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 3080 { 3081 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 3082 unsigned long flags; 3083 int ret; 3084 3085 do { 3086 ret = try_to_grab_pending(work, is_dwork, &flags); 3087 /* 3088 * If someone else is already canceling, wait for it to 3089 * finish. flush_work() doesn't work for PREEMPT_NONE 3090 * because we may get scheduled between @work's completion 3091 * and the other canceling task resuming and clearing 3092 * CANCELING - flush_work() will return false immediately 3093 * as @work is no longer busy, try_to_grab_pending() will 3094 * return -ENOENT as @work is still being canceled and the 3095 * other canceling task won't be able to clear CANCELING as 3096 * we're hogging the CPU. 3097 * 3098 * Let's wait for completion using a waitqueue. As this 3099 * may lead to the thundering herd problem, use a custom 3100 * wake function which matches @work along with exclusive 3101 * wait and wakeup. 3102 */ 3103 if (unlikely(ret == -ENOENT)) { 3104 struct cwt_wait cwait; 3105 3106 init_wait(&cwait.wait); 3107 cwait.wait.func = cwt_wakefn; 3108 cwait.work = work; 3109 3110 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 3111 TASK_UNINTERRUPTIBLE); 3112 if (work_is_canceling(work)) 3113 schedule(); 3114 finish_wait(&cancel_waitq, &cwait.wait); 3115 } 3116 } while (unlikely(ret < 0)); 3117 3118 /* tell other tasks trying to grab @work to back off */ 3119 mark_work_canceling(work); 3120 local_irq_restore(flags); 3121 3122 /* 3123 * This allows canceling during early boot. We know that @work 3124 * isn't executing. 3125 */ 3126 if (wq_online) 3127 __flush_work(work, true); 3128 3129 clear_work_data(work); 3130 3131 /* 3132 * Paired with prepare_to_wait() above so that either 3133 * waitqueue_active() is visible here or !work_is_canceling() is 3134 * visible there. 3135 */ 3136 smp_mb(); 3137 if (waitqueue_active(&cancel_waitq)) 3138 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 3139 3140 return ret; 3141 } 3142 3143 /** 3144 * cancel_work_sync - cancel a work and wait for it to finish 3145 * @work: the work to cancel 3146 * 3147 * Cancel @work and wait for its execution to finish. This function 3148 * can be used even if the work re-queues itself or migrates to 3149 * another workqueue. On return from this function, @work is 3150 * guaranteed to be not pending or executing on any CPU. 3151 * 3152 * cancel_work_sync(&delayed_work->work) must not be used for 3153 * delayed_work's. Use cancel_delayed_work_sync() instead. 3154 * 3155 * The caller must ensure that the workqueue on which @work was last 3156 * queued can't be destroyed before this function returns. 3157 * 3158 * Return: 3159 * %true if @work was pending, %false otherwise. 3160 */ 3161 bool cancel_work_sync(struct work_struct *work) 3162 { 3163 return __cancel_work_timer(work, false); 3164 } 3165 EXPORT_SYMBOL_GPL(cancel_work_sync); 3166 3167 /** 3168 * flush_delayed_work - wait for a dwork to finish executing the last queueing 3169 * @dwork: the delayed work to flush 3170 * 3171 * Delayed timer is cancelled and the pending work is queued for 3172 * immediate execution. Like flush_work(), this function only 3173 * considers the last queueing instance of @dwork. 3174 * 3175 * Return: 3176 * %true if flush_work() waited for the work to finish execution, 3177 * %false if it was already idle. 3178 */ 3179 bool flush_delayed_work(struct delayed_work *dwork) 3180 { 3181 local_irq_disable(); 3182 if (del_timer_sync(&dwork->timer)) 3183 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 3184 local_irq_enable(); 3185 return flush_work(&dwork->work); 3186 } 3187 EXPORT_SYMBOL(flush_delayed_work); 3188 3189 /** 3190 * flush_rcu_work - wait for a rwork to finish executing the last queueing 3191 * @rwork: the rcu work to flush 3192 * 3193 * Return: 3194 * %true if flush_rcu_work() waited for the work to finish execution, 3195 * %false if it was already idle. 3196 */ 3197 bool flush_rcu_work(struct rcu_work *rwork) 3198 { 3199 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 3200 rcu_barrier(); 3201 flush_work(&rwork->work); 3202 return true; 3203 } else { 3204 return flush_work(&rwork->work); 3205 } 3206 } 3207 EXPORT_SYMBOL(flush_rcu_work); 3208 3209 static bool __cancel_work(struct work_struct *work, bool is_dwork) 3210 { 3211 unsigned long flags; 3212 int ret; 3213 3214 do { 3215 ret = try_to_grab_pending(work, is_dwork, &flags); 3216 } while (unlikely(ret == -EAGAIN)); 3217 3218 if (unlikely(ret < 0)) 3219 return false; 3220 3221 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 3222 local_irq_restore(flags); 3223 return ret; 3224 } 3225 3226 /** 3227 * cancel_delayed_work - cancel a delayed work 3228 * @dwork: delayed_work to cancel 3229 * 3230 * Kill off a pending delayed_work. 3231 * 3232 * Return: %true if @dwork was pending and canceled; %false if it wasn't 3233 * pending. 3234 * 3235 * Note: 3236 * The work callback function may still be running on return, unless 3237 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 3238 * use cancel_delayed_work_sync() to wait on it. 3239 * 3240 * This function is safe to call from any context including IRQ handler. 3241 */ 3242 bool cancel_delayed_work(struct delayed_work *dwork) 3243 { 3244 return __cancel_work(&dwork->work, true); 3245 } 3246 EXPORT_SYMBOL(cancel_delayed_work); 3247 3248 /** 3249 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3250 * @dwork: the delayed work cancel 3251 * 3252 * This is cancel_work_sync() for delayed works. 3253 * 3254 * Return: 3255 * %true if @dwork was pending, %false otherwise. 3256 */ 3257 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3258 { 3259 return __cancel_work_timer(&dwork->work, true); 3260 } 3261 EXPORT_SYMBOL(cancel_delayed_work_sync); 3262 3263 /** 3264 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3265 * @func: the function to call 3266 * 3267 * schedule_on_each_cpu() executes @func on each online CPU using the 3268 * system workqueue and blocks until all CPUs have completed. 3269 * schedule_on_each_cpu() is very slow. 3270 * 3271 * Return: 3272 * 0 on success, -errno on failure. 3273 */ 3274 int schedule_on_each_cpu(work_func_t func) 3275 { 3276 int cpu; 3277 struct work_struct __percpu *works; 3278 3279 works = alloc_percpu(struct work_struct); 3280 if (!works) 3281 return -ENOMEM; 3282 3283 get_online_cpus(); 3284 3285 for_each_online_cpu(cpu) { 3286 struct work_struct *work = per_cpu_ptr(works, cpu); 3287 3288 INIT_WORK(work, func); 3289 schedule_work_on(cpu, work); 3290 } 3291 3292 for_each_online_cpu(cpu) 3293 flush_work(per_cpu_ptr(works, cpu)); 3294 3295 put_online_cpus(); 3296 free_percpu(works); 3297 return 0; 3298 } 3299 3300 /** 3301 * execute_in_process_context - reliably execute the routine with user context 3302 * @fn: the function to execute 3303 * @ew: guaranteed storage for the execute work structure (must 3304 * be available when the work executes) 3305 * 3306 * Executes the function immediately if process context is available, 3307 * otherwise schedules the function for delayed execution. 3308 * 3309 * Return: 0 - function was executed 3310 * 1 - function was scheduled for execution 3311 */ 3312 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3313 { 3314 if (!in_interrupt()) { 3315 fn(&ew->work); 3316 return 0; 3317 } 3318 3319 INIT_WORK(&ew->work, fn); 3320 schedule_work(&ew->work); 3321 3322 return 1; 3323 } 3324 EXPORT_SYMBOL_GPL(execute_in_process_context); 3325 3326 /** 3327 * free_workqueue_attrs - free a workqueue_attrs 3328 * @attrs: workqueue_attrs to free 3329 * 3330 * Undo alloc_workqueue_attrs(). 3331 */ 3332 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3333 { 3334 if (attrs) { 3335 free_cpumask_var(attrs->cpumask); 3336 kfree(attrs); 3337 } 3338 } 3339 3340 /** 3341 * alloc_workqueue_attrs - allocate a workqueue_attrs 3342 * 3343 * Allocate a new workqueue_attrs, initialize with default settings and 3344 * return it. 3345 * 3346 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3347 */ 3348 struct workqueue_attrs *alloc_workqueue_attrs(void) 3349 { 3350 struct workqueue_attrs *attrs; 3351 3352 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); 3353 if (!attrs) 3354 goto fail; 3355 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) 3356 goto fail; 3357 3358 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3359 return attrs; 3360 fail: 3361 free_workqueue_attrs(attrs); 3362 return NULL; 3363 } 3364 3365 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3366 const struct workqueue_attrs *from) 3367 { 3368 to->nice = from->nice; 3369 cpumask_copy(to->cpumask, from->cpumask); 3370 /* 3371 * Unlike hash and equality test, this function doesn't ignore 3372 * ->no_numa as it is used for both pool and wq attrs. Instead, 3373 * get_unbound_pool() explicitly clears ->no_numa after copying. 3374 */ 3375 to->no_numa = from->no_numa; 3376 } 3377 3378 /* hash value of the content of @attr */ 3379 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3380 { 3381 u32 hash = 0; 3382 3383 hash = jhash_1word(attrs->nice, hash); 3384 hash = jhash(cpumask_bits(attrs->cpumask), 3385 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3386 return hash; 3387 } 3388 3389 /* content equality test */ 3390 static bool wqattrs_equal(const struct workqueue_attrs *a, 3391 const struct workqueue_attrs *b) 3392 { 3393 if (a->nice != b->nice) 3394 return false; 3395 if (!cpumask_equal(a->cpumask, b->cpumask)) 3396 return false; 3397 return true; 3398 } 3399 3400 /** 3401 * init_worker_pool - initialize a newly zalloc'd worker_pool 3402 * @pool: worker_pool to initialize 3403 * 3404 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3405 * 3406 * Return: 0 on success, -errno on failure. Even on failure, all fields 3407 * inside @pool proper are initialized and put_unbound_pool() can be called 3408 * on @pool safely to release it. 3409 */ 3410 static int init_worker_pool(struct worker_pool *pool) 3411 { 3412 spin_lock_init(&pool->lock); 3413 pool->id = -1; 3414 pool->cpu = -1; 3415 pool->node = NUMA_NO_NODE; 3416 pool->flags |= POOL_DISASSOCIATED; 3417 pool->watchdog_ts = jiffies; 3418 INIT_LIST_HEAD(&pool->worklist); 3419 INIT_LIST_HEAD(&pool->idle_list); 3420 hash_init(pool->busy_hash); 3421 3422 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 3423 3424 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 3425 3426 INIT_LIST_HEAD(&pool->workers); 3427 3428 ida_init(&pool->worker_ida); 3429 INIT_HLIST_NODE(&pool->hash_node); 3430 pool->refcnt = 1; 3431 3432 /* shouldn't fail above this point */ 3433 pool->attrs = alloc_workqueue_attrs(); 3434 if (!pool->attrs) 3435 return -ENOMEM; 3436 return 0; 3437 } 3438 3439 #ifdef CONFIG_LOCKDEP 3440 static void wq_init_lockdep(struct workqueue_struct *wq) 3441 { 3442 char *lock_name; 3443 3444 lockdep_register_key(&wq->key); 3445 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 3446 if (!lock_name) 3447 lock_name = wq->name; 3448 3449 wq->lock_name = lock_name; 3450 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); 3451 } 3452 3453 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3454 { 3455 lockdep_unregister_key(&wq->key); 3456 } 3457 3458 static void wq_free_lockdep(struct workqueue_struct *wq) 3459 { 3460 if (wq->lock_name != wq->name) 3461 kfree(wq->lock_name); 3462 } 3463 #else 3464 static void wq_init_lockdep(struct workqueue_struct *wq) 3465 { 3466 } 3467 3468 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3469 { 3470 } 3471 3472 static void wq_free_lockdep(struct workqueue_struct *wq) 3473 { 3474 } 3475 #endif 3476 3477 static void rcu_free_wq(struct rcu_head *rcu) 3478 { 3479 struct workqueue_struct *wq = 3480 container_of(rcu, struct workqueue_struct, rcu); 3481 3482 wq_free_lockdep(wq); 3483 3484 if (!(wq->flags & WQ_UNBOUND)) 3485 free_percpu(wq->cpu_pwqs); 3486 else 3487 free_workqueue_attrs(wq->unbound_attrs); 3488 3489 kfree(wq->rescuer); 3490 kfree(wq); 3491 } 3492 3493 static void rcu_free_pool(struct rcu_head *rcu) 3494 { 3495 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3496 3497 ida_destroy(&pool->worker_ida); 3498 free_workqueue_attrs(pool->attrs); 3499 kfree(pool); 3500 } 3501 3502 /** 3503 * put_unbound_pool - put a worker_pool 3504 * @pool: worker_pool to put 3505 * 3506 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 3507 * safe manner. get_unbound_pool() calls this function on its failure path 3508 * and this function should be able to release pools which went through, 3509 * successfully or not, init_worker_pool(). 3510 * 3511 * Should be called with wq_pool_mutex held. 3512 */ 3513 static void put_unbound_pool(struct worker_pool *pool) 3514 { 3515 DECLARE_COMPLETION_ONSTACK(detach_completion); 3516 struct worker *worker; 3517 3518 lockdep_assert_held(&wq_pool_mutex); 3519 3520 if (--pool->refcnt) 3521 return; 3522 3523 /* sanity checks */ 3524 if (WARN_ON(!(pool->cpu < 0)) || 3525 WARN_ON(!list_empty(&pool->worklist))) 3526 return; 3527 3528 /* release id and unhash */ 3529 if (pool->id >= 0) 3530 idr_remove(&worker_pool_idr, pool->id); 3531 hash_del(&pool->hash_node); 3532 3533 /* 3534 * Become the manager and destroy all workers. This prevents 3535 * @pool's workers from blocking on attach_mutex. We're the last 3536 * manager and @pool gets freed with the flag set. 3537 */ 3538 spin_lock_irq(&pool->lock); 3539 wait_event_lock_irq(wq_manager_wait, 3540 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock); 3541 pool->flags |= POOL_MANAGER_ACTIVE; 3542 3543 while ((worker = first_idle_worker(pool))) 3544 destroy_worker(worker); 3545 WARN_ON(pool->nr_workers || pool->nr_idle); 3546 spin_unlock_irq(&pool->lock); 3547 3548 mutex_lock(&wq_pool_attach_mutex); 3549 if (!list_empty(&pool->workers)) 3550 pool->detach_completion = &detach_completion; 3551 mutex_unlock(&wq_pool_attach_mutex); 3552 3553 if (pool->detach_completion) 3554 wait_for_completion(pool->detach_completion); 3555 3556 /* shut down the timers */ 3557 del_timer_sync(&pool->idle_timer); 3558 del_timer_sync(&pool->mayday_timer); 3559 3560 /* RCU protected to allow dereferences from get_work_pool() */ 3561 call_rcu(&pool->rcu, rcu_free_pool); 3562 } 3563 3564 /** 3565 * get_unbound_pool - get a worker_pool with the specified attributes 3566 * @attrs: the attributes of the worker_pool to get 3567 * 3568 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3569 * reference count and return it. If there already is a matching 3570 * worker_pool, it will be used; otherwise, this function attempts to 3571 * create a new one. 3572 * 3573 * Should be called with wq_pool_mutex held. 3574 * 3575 * Return: On success, a worker_pool with the same attributes as @attrs. 3576 * On failure, %NULL. 3577 */ 3578 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3579 { 3580 u32 hash = wqattrs_hash(attrs); 3581 struct worker_pool *pool; 3582 int node; 3583 int target_node = NUMA_NO_NODE; 3584 3585 lockdep_assert_held(&wq_pool_mutex); 3586 3587 /* do we already have a matching pool? */ 3588 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3589 if (wqattrs_equal(pool->attrs, attrs)) { 3590 pool->refcnt++; 3591 return pool; 3592 } 3593 } 3594 3595 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3596 if (wq_numa_enabled) { 3597 for_each_node(node) { 3598 if (cpumask_subset(attrs->cpumask, 3599 wq_numa_possible_cpumask[node])) { 3600 target_node = node; 3601 break; 3602 } 3603 } 3604 } 3605 3606 /* nope, create a new one */ 3607 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3608 if (!pool || init_worker_pool(pool) < 0) 3609 goto fail; 3610 3611 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3612 copy_workqueue_attrs(pool->attrs, attrs); 3613 pool->node = target_node; 3614 3615 /* 3616 * no_numa isn't a worker_pool attribute, always clear it. See 3617 * 'struct workqueue_attrs' comments for detail. 3618 */ 3619 pool->attrs->no_numa = false; 3620 3621 if (worker_pool_assign_id(pool) < 0) 3622 goto fail; 3623 3624 /* create and start the initial worker */ 3625 if (wq_online && !create_worker(pool)) 3626 goto fail; 3627 3628 /* install */ 3629 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3630 3631 return pool; 3632 fail: 3633 if (pool) 3634 put_unbound_pool(pool); 3635 return NULL; 3636 } 3637 3638 static void rcu_free_pwq(struct rcu_head *rcu) 3639 { 3640 kmem_cache_free(pwq_cache, 3641 container_of(rcu, struct pool_workqueue, rcu)); 3642 } 3643 3644 /* 3645 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3646 * and needs to be destroyed. 3647 */ 3648 static void pwq_unbound_release_workfn(struct work_struct *work) 3649 { 3650 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3651 unbound_release_work); 3652 struct workqueue_struct *wq = pwq->wq; 3653 struct worker_pool *pool = pwq->pool; 3654 bool is_last; 3655 3656 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3657 return; 3658 3659 mutex_lock(&wq->mutex); 3660 list_del_rcu(&pwq->pwqs_node); 3661 is_last = list_empty(&wq->pwqs); 3662 mutex_unlock(&wq->mutex); 3663 3664 mutex_lock(&wq_pool_mutex); 3665 put_unbound_pool(pool); 3666 mutex_unlock(&wq_pool_mutex); 3667 3668 call_rcu(&pwq->rcu, rcu_free_pwq); 3669 3670 /* 3671 * If we're the last pwq going away, @wq is already dead and no one 3672 * is gonna access it anymore. Schedule RCU free. 3673 */ 3674 if (is_last) { 3675 wq_unregister_lockdep(wq); 3676 call_rcu(&wq->rcu, rcu_free_wq); 3677 } 3678 } 3679 3680 /** 3681 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3682 * @pwq: target pool_workqueue 3683 * 3684 * If @pwq isn't freezing, set @pwq->max_active to the associated 3685 * workqueue's saved_max_active and activate delayed work items 3686 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3687 */ 3688 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3689 { 3690 struct workqueue_struct *wq = pwq->wq; 3691 bool freezable = wq->flags & WQ_FREEZABLE; 3692 unsigned long flags; 3693 3694 /* for @wq->saved_max_active */ 3695 lockdep_assert_held(&wq->mutex); 3696 3697 /* fast exit for non-freezable wqs */ 3698 if (!freezable && pwq->max_active == wq->saved_max_active) 3699 return; 3700 3701 /* this function can be called during early boot w/ irq disabled */ 3702 spin_lock_irqsave(&pwq->pool->lock, flags); 3703 3704 /* 3705 * During [un]freezing, the caller is responsible for ensuring that 3706 * this function is called at least once after @workqueue_freezing 3707 * is updated and visible. 3708 */ 3709 if (!freezable || !workqueue_freezing) { 3710 pwq->max_active = wq->saved_max_active; 3711 3712 while (!list_empty(&pwq->delayed_works) && 3713 pwq->nr_active < pwq->max_active) 3714 pwq_activate_first_delayed(pwq); 3715 3716 /* 3717 * Need to kick a worker after thawed or an unbound wq's 3718 * max_active is bumped. It's a slow path. Do it always. 3719 */ 3720 wake_up_worker(pwq->pool); 3721 } else { 3722 pwq->max_active = 0; 3723 } 3724 3725 spin_unlock_irqrestore(&pwq->pool->lock, flags); 3726 } 3727 3728 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3729 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3730 struct worker_pool *pool) 3731 { 3732 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3733 3734 memset(pwq, 0, sizeof(*pwq)); 3735 3736 pwq->pool = pool; 3737 pwq->wq = wq; 3738 pwq->flush_color = -1; 3739 pwq->refcnt = 1; 3740 INIT_LIST_HEAD(&pwq->delayed_works); 3741 INIT_LIST_HEAD(&pwq->pwqs_node); 3742 INIT_LIST_HEAD(&pwq->mayday_node); 3743 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3744 } 3745 3746 /* sync @pwq with the current state of its associated wq and link it */ 3747 static void link_pwq(struct pool_workqueue *pwq) 3748 { 3749 struct workqueue_struct *wq = pwq->wq; 3750 3751 lockdep_assert_held(&wq->mutex); 3752 3753 /* may be called multiple times, ignore if already linked */ 3754 if (!list_empty(&pwq->pwqs_node)) 3755 return; 3756 3757 /* set the matching work_color */ 3758 pwq->work_color = wq->work_color; 3759 3760 /* sync max_active to the current setting */ 3761 pwq_adjust_max_active(pwq); 3762 3763 /* link in @pwq */ 3764 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3765 } 3766 3767 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3768 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3769 const struct workqueue_attrs *attrs) 3770 { 3771 struct worker_pool *pool; 3772 struct pool_workqueue *pwq; 3773 3774 lockdep_assert_held(&wq_pool_mutex); 3775 3776 pool = get_unbound_pool(attrs); 3777 if (!pool) 3778 return NULL; 3779 3780 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3781 if (!pwq) { 3782 put_unbound_pool(pool); 3783 return NULL; 3784 } 3785 3786 init_pwq(pwq, wq, pool); 3787 return pwq; 3788 } 3789 3790 /** 3791 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3792 * @attrs: the wq_attrs of the default pwq of the target workqueue 3793 * @node: the target NUMA node 3794 * @cpu_going_down: if >= 0, the CPU to consider as offline 3795 * @cpumask: outarg, the resulting cpumask 3796 * 3797 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3798 * @cpu_going_down is >= 0, that cpu is considered offline during 3799 * calculation. The result is stored in @cpumask. 3800 * 3801 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3802 * enabled and @node has online CPUs requested by @attrs, the returned 3803 * cpumask is the intersection of the possible CPUs of @node and 3804 * @attrs->cpumask. 3805 * 3806 * The caller is responsible for ensuring that the cpumask of @node stays 3807 * stable. 3808 * 3809 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3810 * %false if equal. 3811 */ 3812 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3813 int cpu_going_down, cpumask_t *cpumask) 3814 { 3815 if (!wq_numa_enabled || attrs->no_numa) 3816 goto use_dfl; 3817 3818 /* does @node have any online CPUs @attrs wants? */ 3819 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3820 if (cpu_going_down >= 0) 3821 cpumask_clear_cpu(cpu_going_down, cpumask); 3822 3823 if (cpumask_empty(cpumask)) 3824 goto use_dfl; 3825 3826 /* yeap, return possible CPUs in @node that @attrs wants */ 3827 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3828 3829 if (cpumask_empty(cpumask)) { 3830 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 3831 "possible intersect\n"); 3832 return false; 3833 } 3834 3835 return !cpumask_equal(cpumask, attrs->cpumask); 3836 3837 use_dfl: 3838 cpumask_copy(cpumask, attrs->cpumask); 3839 return false; 3840 } 3841 3842 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3843 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3844 int node, 3845 struct pool_workqueue *pwq) 3846 { 3847 struct pool_workqueue *old_pwq; 3848 3849 lockdep_assert_held(&wq_pool_mutex); 3850 lockdep_assert_held(&wq->mutex); 3851 3852 /* link_pwq() can handle duplicate calls */ 3853 link_pwq(pwq); 3854 3855 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3856 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3857 return old_pwq; 3858 } 3859 3860 /* context to store the prepared attrs & pwqs before applying */ 3861 struct apply_wqattrs_ctx { 3862 struct workqueue_struct *wq; /* target workqueue */ 3863 struct workqueue_attrs *attrs; /* attrs to apply */ 3864 struct list_head list; /* queued for batching commit */ 3865 struct pool_workqueue *dfl_pwq; 3866 struct pool_workqueue *pwq_tbl[]; 3867 }; 3868 3869 /* free the resources after success or abort */ 3870 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 3871 { 3872 if (ctx) { 3873 int node; 3874 3875 for_each_node(node) 3876 put_pwq_unlocked(ctx->pwq_tbl[node]); 3877 put_pwq_unlocked(ctx->dfl_pwq); 3878 3879 free_workqueue_attrs(ctx->attrs); 3880 3881 kfree(ctx); 3882 } 3883 } 3884 3885 /* allocate the attrs and pwqs for later installation */ 3886 static struct apply_wqattrs_ctx * 3887 apply_wqattrs_prepare(struct workqueue_struct *wq, 3888 const struct workqueue_attrs *attrs) 3889 { 3890 struct apply_wqattrs_ctx *ctx; 3891 struct workqueue_attrs *new_attrs, *tmp_attrs; 3892 int node; 3893 3894 lockdep_assert_held(&wq_pool_mutex); 3895 3896 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL); 3897 3898 new_attrs = alloc_workqueue_attrs(); 3899 tmp_attrs = alloc_workqueue_attrs(); 3900 if (!ctx || !new_attrs || !tmp_attrs) 3901 goto out_free; 3902 3903 /* 3904 * Calculate the attrs of the default pwq. 3905 * If the user configured cpumask doesn't overlap with the 3906 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 3907 */ 3908 copy_workqueue_attrs(new_attrs, attrs); 3909 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask); 3910 if (unlikely(cpumask_empty(new_attrs->cpumask))) 3911 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask); 3912 3913 /* 3914 * We may create multiple pwqs with differing cpumasks. Make a 3915 * copy of @new_attrs which will be modified and used to obtain 3916 * pools. 3917 */ 3918 copy_workqueue_attrs(tmp_attrs, new_attrs); 3919 3920 /* 3921 * If something goes wrong during CPU up/down, we'll fall back to 3922 * the default pwq covering whole @attrs->cpumask. Always create 3923 * it even if we don't use it immediately. 3924 */ 3925 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3926 if (!ctx->dfl_pwq) 3927 goto out_free; 3928 3929 for_each_node(node) { 3930 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 3931 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3932 if (!ctx->pwq_tbl[node]) 3933 goto out_free; 3934 } else { 3935 ctx->dfl_pwq->refcnt++; 3936 ctx->pwq_tbl[node] = ctx->dfl_pwq; 3937 } 3938 } 3939 3940 /* save the user configured attrs and sanitize it. */ 3941 copy_workqueue_attrs(new_attrs, attrs); 3942 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3943 ctx->attrs = new_attrs; 3944 3945 ctx->wq = wq; 3946 free_workqueue_attrs(tmp_attrs); 3947 return ctx; 3948 3949 out_free: 3950 free_workqueue_attrs(tmp_attrs); 3951 free_workqueue_attrs(new_attrs); 3952 apply_wqattrs_cleanup(ctx); 3953 return NULL; 3954 } 3955 3956 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 3957 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 3958 { 3959 int node; 3960 3961 /* all pwqs have been created successfully, let's install'em */ 3962 mutex_lock(&ctx->wq->mutex); 3963 3964 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 3965 3966 /* save the previous pwq and install the new one */ 3967 for_each_node(node) 3968 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 3969 ctx->pwq_tbl[node]); 3970 3971 /* @dfl_pwq might not have been used, ensure it's linked */ 3972 link_pwq(ctx->dfl_pwq); 3973 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 3974 3975 mutex_unlock(&ctx->wq->mutex); 3976 } 3977 3978 static void apply_wqattrs_lock(void) 3979 { 3980 /* CPUs should stay stable across pwq creations and installations */ 3981 get_online_cpus(); 3982 mutex_lock(&wq_pool_mutex); 3983 } 3984 3985 static void apply_wqattrs_unlock(void) 3986 { 3987 mutex_unlock(&wq_pool_mutex); 3988 put_online_cpus(); 3989 } 3990 3991 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 3992 const struct workqueue_attrs *attrs) 3993 { 3994 struct apply_wqattrs_ctx *ctx; 3995 3996 /* only unbound workqueues can change attributes */ 3997 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 3998 return -EINVAL; 3999 4000 /* creating multiple pwqs breaks ordering guarantee */ 4001 if (!list_empty(&wq->pwqs)) { 4002 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4003 return -EINVAL; 4004 4005 wq->flags &= ~__WQ_ORDERED; 4006 } 4007 4008 ctx = apply_wqattrs_prepare(wq, attrs); 4009 if (!ctx) 4010 return -ENOMEM; 4011 4012 /* the ctx has been prepared successfully, let's commit it */ 4013 apply_wqattrs_commit(ctx); 4014 apply_wqattrs_cleanup(ctx); 4015 4016 return 0; 4017 } 4018 4019 /** 4020 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 4021 * @wq: the target workqueue 4022 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 4023 * 4024 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 4025 * machines, this function maps a separate pwq to each NUMA node with 4026 * possibles CPUs in @attrs->cpumask so that work items are affine to the 4027 * NUMA node it was issued on. Older pwqs are released as in-flight work 4028 * items finish. Note that a work item which repeatedly requeues itself 4029 * back-to-back will stay on its current pwq. 4030 * 4031 * Performs GFP_KERNEL allocations. 4032 * 4033 * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus(). 4034 * 4035 * Return: 0 on success and -errno on failure. 4036 */ 4037 int apply_workqueue_attrs(struct workqueue_struct *wq, 4038 const struct workqueue_attrs *attrs) 4039 { 4040 int ret; 4041 4042 lockdep_assert_cpus_held(); 4043 4044 mutex_lock(&wq_pool_mutex); 4045 ret = apply_workqueue_attrs_locked(wq, attrs); 4046 mutex_unlock(&wq_pool_mutex); 4047 4048 return ret; 4049 } 4050 4051 /** 4052 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 4053 * @wq: the target workqueue 4054 * @cpu: the CPU coming up or going down 4055 * @online: whether @cpu is coming up or going down 4056 * 4057 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 4058 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 4059 * @wq accordingly. 4060 * 4061 * If NUMA affinity can't be adjusted due to memory allocation failure, it 4062 * falls back to @wq->dfl_pwq which may not be optimal but is always 4063 * correct. 4064 * 4065 * Note that when the last allowed CPU of a NUMA node goes offline for a 4066 * workqueue with a cpumask spanning multiple nodes, the workers which were 4067 * already executing the work items for the workqueue will lose their CPU 4068 * affinity and may execute on any CPU. This is similar to how per-cpu 4069 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 4070 * affinity, it's the user's responsibility to flush the work item from 4071 * CPU_DOWN_PREPARE. 4072 */ 4073 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 4074 bool online) 4075 { 4076 int node = cpu_to_node(cpu); 4077 int cpu_off = online ? -1 : cpu; 4078 struct pool_workqueue *old_pwq = NULL, *pwq; 4079 struct workqueue_attrs *target_attrs; 4080 cpumask_t *cpumask; 4081 4082 lockdep_assert_held(&wq_pool_mutex); 4083 4084 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 4085 wq->unbound_attrs->no_numa) 4086 return; 4087 4088 /* 4089 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 4090 * Let's use a preallocated one. The following buf is protected by 4091 * CPU hotplug exclusion. 4092 */ 4093 target_attrs = wq_update_unbound_numa_attrs_buf; 4094 cpumask = target_attrs->cpumask; 4095 4096 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 4097 pwq = unbound_pwq_by_node(wq, node); 4098 4099 /* 4100 * Let's determine what needs to be done. If the target cpumask is 4101 * different from the default pwq's, we need to compare it to @pwq's 4102 * and create a new one if they don't match. If the target cpumask 4103 * equals the default pwq's, the default pwq should be used. 4104 */ 4105 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 4106 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 4107 return; 4108 } else { 4109 goto use_dfl_pwq; 4110 } 4111 4112 /* create a new pwq */ 4113 pwq = alloc_unbound_pwq(wq, target_attrs); 4114 if (!pwq) { 4115 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 4116 wq->name); 4117 goto use_dfl_pwq; 4118 } 4119 4120 /* Install the new pwq. */ 4121 mutex_lock(&wq->mutex); 4122 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 4123 goto out_unlock; 4124 4125 use_dfl_pwq: 4126 mutex_lock(&wq->mutex); 4127 spin_lock_irq(&wq->dfl_pwq->pool->lock); 4128 get_pwq(wq->dfl_pwq); 4129 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 4130 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 4131 out_unlock: 4132 mutex_unlock(&wq->mutex); 4133 put_pwq_unlocked(old_pwq); 4134 } 4135 4136 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4137 { 4138 bool highpri = wq->flags & WQ_HIGHPRI; 4139 int cpu, ret; 4140 4141 if (!(wq->flags & WQ_UNBOUND)) { 4142 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 4143 if (!wq->cpu_pwqs) 4144 return -ENOMEM; 4145 4146 for_each_possible_cpu(cpu) { 4147 struct pool_workqueue *pwq = 4148 per_cpu_ptr(wq->cpu_pwqs, cpu); 4149 struct worker_pool *cpu_pools = 4150 per_cpu(cpu_worker_pools, cpu); 4151 4152 init_pwq(pwq, wq, &cpu_pools[highpri]); 4153 4154 mutex_lock(&wq->mutex); 4155 link_pwq(pwq); 4156 mutex_unlock(&wq->mutex); 4157 } 4158 return 0; 4159 } 4160 4161 get_online_cpus(); 4162 if (wq->flags & __WQ_ORDERED) { 4163 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 4164 /* there should only be single pwq for ordering guarantee */ 4165 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 4166 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 4167 "ordering guarantee broken for workqueue %s\n", wq->name); 4168 } else { 4169 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4170 } 4171 put_online_cpus(); 4172 4173 return ret; 4174 } 4175 4176 static int wq_clamp_max_active(int max_active, unsigned int flags, 4177 const char *name) 4178 { 4179 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 4180 4181 if (max_active < 1 || max_active > lim) 4182 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4183 max_active, name, 1, lim); 4184 4185 return clamp_val(max_active, 1, lim); 4186 } 4187 4188 /* 4189 * Workqueues which may be used during memory reclaim should have a rescuer 4190 * to guarantee forward progress. 4191 */ 4192 static int init_rescuer(struct workqueue_struct *wq) 4193 { 4194 struct worker *rescuer; 4195 int ret; 4196 4197 if (!(wq->flags & WQ_MEM_RECLAIM)) 4198 return 0; 4199 4200 rescuer = alloc_worker(NUMA_NO_NODE); 4201 if (!rescuer) 4202 return -ENOMEM; 4203 4204 rescuer->rescue_wq = wq; 4205 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name); 4206 ret = PTR_ERR_OR_ZERO(rescuer->task); 4207 if (ret) { 4208 kfree(rescuer); 4209 return ret; 4210 } 4211 4212 wq->rescuer = rescuer; 4213 kthread_bind_mask(rescuer->task, cpu_possible_mask); 4214 wake_up_process(rescuer->task); 4215 4216 return 0; 4217 } 4218 4219 __printf(1, 4) 4220 struct workqueue_struct *alloc_workqueue(const char *fmt, 4221 unsigned int flags, 4222 int max_active, ...) 4223 { 4224 size_t tbl_size = 0; 4225 va_list args; 4226 struct workqueue_struct *wq; 4227 struct pool_workqueue *pwq; 4228 4229 /* 4230 * Unbound && max_active == 1 used to imply ordered, which is no 4231 * longer the case on NUMA machines due to per-node pools. While 4232 * alloc_ordered_workqueue() is the right way to create an ordered 4233 * workqueue, keep the previous behavior to avoid subtle breakages 4234 * on NUMA. 4235 */ 4236 if ((flags & WQ_UNBOUND) && max_active == 1) 4237 flags |= __WQ_ORDERED; 4238 4239 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4240 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4241 flags |= WQ_UNBOUND; 4242 4243 /* allocate wq and format name */ 4244 if (flags & WQ_UNBOUND) 4245 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 4246 4247 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4248 if (!wq) 4249 return NULL; 4250 4251 if (flags & WQ_UNBOUND) { 4252 wq->unbound_attrs = alloc_workqueue_attrs(); 4253 if (!wq->unbound_attrs) 4254 goto err_free_wq; 4255 } 4256 4257 va_start(args, max_active); 4258 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4259 va_end(args); 4260 4261 max_active = max_active ?: WQ_DFL_ACTIVE; 4262 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4263 4264 /* init wq */ 4265 wq->flags = flags; 4266 wq->saved_max_active = max_active; 4267 mutex_init(&wq->mutex); 4268 atomic_set(&wq->nr_pwqs_to_flush, 0); 4269 INIT_LIST_HEAD(&wq->pwqs); 4270 INIT_LIST_HEAD(&wq->flusher_queue); 4271 INIT_LIST_HEAD(&wq->flusher_overflow); 4272 INIT_LIST_HEAD(&wq->maydays); 4273 4274 wq_init_lockdep(wq); 4275 INIT_LIST_HEAD(&wq->list); 4276 4277 if (alloc_and_link_pwqs(wq) < 0) 4278 goto err_unreg_lockdep; 4279 4280 if (wq_online && init_rescuer(wq) < 0) 4281 goto err_destroy; 4282 4283 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4284 goto err_destroy; 4285 4286 /* 4287 * wq_pool_mutex protects global freeze state and workqueues list. 4288 * Grab it, adjust max_active and add the new @wq to workqueues 4289 * list. 4290 */ 4291 mutex_lock(&wq_pool_mutex); 4292 4293 mutex_lock(&wq->mutex); 4294 for_each_pwq(pwq, wq) 4295 pwq_adjust_max_active(pwq); 4296 mutex_unlock(&wq->mutex); 4297 4298 list_add_tail_rcu(&wq->list, &workqueues); 4299 4300 mutex_unlock(&wq_pool_mutex); 4301 4302 return wq; 4303 4304 err_unreg_lockdep: 4305 wq_unregister_lockdep(wq); 4306 wq_free_lockdep(wq); 4307 err_free_wq: 4308 free_workqueue_attrs(wq->unbound_attrs); 4309 kfree(wq); 4310 return NULL; 4311 err_destroy: 4312 destroy_workqueue(wq); 4313 return NULL; 4314 } 4315 EXPORT_SYMBOL_GPL(alloc_workqueue); 4316 4317 /** 4318 * destroy_workqueue - safely terminate a workqueue 4319 * @wq: target workqueue 4320 * 4321 * Safely destroy a workqueue. All work currently pending will be done first. 4322 */ 4323 void destroy_workqueue(struct workqueue_struct *wq) 4324 { 4325 struct pool_workqueue *pwq; 4326 int node; 4327 4328 /* drain it before proceeding with destruction */ 4329 drain_workqueue(wq); 4330 4331 /* sanity checks */ 4332 mutex_lock(&wq->mutex); 4333 for_each_pwq(pwq, wq) { 4334 int i; 4335 4336 for (i = 0; i < WORK_NR_COLORS; i++) { 4337 if (WARN_ON(pwq->nr_in_flight[i])) { 4338 mutex_unlock(&wq->mutex); 4339 show_workqueue_state(); 4340 return; 4341 } 4342 } 4343 4344 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) || 4345 WARN_ON(pwq->nr_active) || 4346 WARN_ON(!list_empty(&pwq->delayed_works))) { 4347 mutex_unlock(&wq->mutex); 4348 show_workqueue_state(); 4349 return; 4350 } 4351 } 4352 mutex_unlock(&wq->mutex); 4353 4354 /* 4355 * wq list is used to freeze wq, remove from list after 4356 * flushing is complete in case freeze races us. 4357 */ 4358 mutex_lock(&wq_pool_mutex); 4359 list_del_rcu(&wq->list); 4360 mutex_unlock(&wq_pool_mutex); 4361 4362 workqueue_sysfs_unregister(wq); 4363 4364 if (wq->rescuer) 4365 kthread_stop(wq->rescuer->task); 4366 4367 if (!(wq->flags & WQ_UNBOUND)) { 4368 wq_unregister_lockdep(wq); 4369 /* 4370 * The base ref is never dropped on per-cpu pwqs. Directly 4371 * schedule RCU free. 4372 */ 4373 call_rcu(&wq->rcu, rcu_free_wq); 4374 } else { 4375 /* 4376 * We're the sole accessor of @wq at this point. Directly 4377 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4378 * @wq will be freed when the last pwq is released. 4379 */ 4380 for_each_node(node) { 4381 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4382 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4383 put_pwq_unlocked(pwq); 4384 } 4385 4386 /* 4387 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4388 * put. Don't access it afterwards. 4389 */ 4390 pwq = wq->dfl_pwq; 4391 wq->dfl_pwq = NULL; 4392 put_pwq_unlocked(pwq); 4393 } 4394 } 4395 EXPORT_SYMBOL_GPL(destroy_workqueue); 4396 4397 /** 4398 * workqueue_set_max_active - adjust max_active of a workqueue 4399 * @wq: target workqueue 4400 * @max_active: new max_active value. 4401 * 4402 * Set max_active of @wq to @max_active. 4403 * 4404 * CONTEXT: 4405 * Don't call from IRQ context. 4406 */ 4407 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4408 { 4409 struct pool_workqueue *pwq; 4410 4411 /* disallow meddling with max_active for ordered workqueues */ 4412 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4413 return; 4414 4415 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4416 4417 mutex_lock(&wq->mutex); 4418 4419 wq->flags &= ~__WQ_ORDERED; 4420 wq->saved_max_active = max_active; 4421 4422 for_each_pwq(pwq, wq) 4423 pwq_adjust_max_active(pwq); 4424 4425 mutex_unlock(&wq->mutex); 4426 } 4427 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4428 4429 /** 4430 * current_work - retrieve %current task's work struct 4431 * 4432 * Determine if %current task is a workqueue worker and what it's working on. 4433 * Useful to find out the context that the %current task is running in. 4434 * 4435 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 4436 */ 4437 struct work_struct *current_work(void) 4438 { 4439 struct worker *worker = current_wq_worker(); 4440 4441 return worker ? worker->current_work : NULL; 4442 } 4443 EXPORT_SYMBOL(current_work); 4444 4445 /** 4446 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4447 * 4448 * Determine whether %current is a workqueue rescuer. Can be used from 4449 * work functions to determine whether it's being run off the rescuer task. 4450 * 4451 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4452 */ 4453 bool current_is_workqueue_rescuer(void) 4454 { 4455 struct worker *worker = current_wq_worker(); 4456 4457 return worker && worker->rescue_wq; 4458 } 4459 4460 /** 4461 * workqueue_congested - test whether a workqueue is congested 4462 * @cpu: CPU in question 4463 * @wq: target workqueue 4464 * 4465 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4466 * no synchronization around this function and the test result is 4467 * unreliable and only useful as advisory hints or for debugging. 4468 * 4469 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4470 * Note that both per-cpu and unbound workqueues may be associated with 4471 * multiple pool_workqueues which have separate congested states. A 4472 * workqueue being congested on one CPU doesn't mean the workqueue is also 4473 * contested on other CPUs / NUMA nodes. 4474 * 4475 * Return: 4476 * %true if congested, %false otherwise. 4477 */ 4478 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4479 { 4480 struct pool_workqueue *pwq; 4481 bool ret; 4482 4483 rcu_read_lock(); 4484 preempt_disable(); 4485 4486 if (cpu == WORK_CPU_UNBOUND) 4487 cpu = smp_processor_id(); 4488 4489 if (!(wq->flags & WQ_UNBOUND)) 4490 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4491 else 4492 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4493 4494 ret = !list_empty(&pwq->delayed_works); 4495 preempt_enable(); 4496 rcu_read_unlock(); 4497 4498 return ret; 4499 } 4500 EXPORT_SYMBOL_GPL(workqueue_congested); 4501 4502 /** 4503 * work_busy - test whether a work is currently pending or running 4504 * @work: the work to be tested 4505 * 4506 * Test whether @work is currently pending or running. There is no 4507 * synchronization around this function and the test result is 4508 * unreliable and only useful as advisory hints or for debugging. 4509 * 4510 * Return: 4511 * OR'd bitmask of WORK_BUSY_* bits. 4512 */ 4513 unsigned int work_busy(struct work_struct *work) 4514 { 4515 struct worker_pool *pool; 4516 unsigned long flags; 4517 unsigned int ret = 0; 4518 4519 if (work_pending(work)) 4520 ret |= WORK_BUSY_PENDING; 4521 4522 rcu_read_lock(); 4523 pool = get_work_pool(work); 4524 if (pool) { 4525 spin_lock_irqsave(&pool->lock, flags); 4526 if (find_worker_executing_work(pool, work)) 4527 ret |= WORK_BUSY_RUNNING; 4528 spin_unlock_irqrestore(&pool->lock, flags); 4529 } 4530 rcu_read_unlock(); 4531 4532 return ret; 4533 } 4534 EXPORT_SYMBOL_GPL(work_busy); 4535 4536 /** 4537 * set_worker_desc - set description for the current work item 4538 * @fmt: printf-style format string 4539 * @...: arguments for the format string 4540 * 4541 * This function can be called by a running work function to describe what 4542 * the work item is about. If the worker task gets dumped, this 4543 * information will be printed out together to help debugging. The 4544 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4545 */ 4546 void set_worker_desc(const char *fmt, ...) 4547 { 4548 struct worker *worker = current_wq_worker(); 4549 va_list args; 4550 4551 if (worker) { 4552 va_start(args, fmt); 4553 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4554 va_end(args); 4555 } 4556 } 4557 EXPORT_SYMBOL_GPL(set_worker_desc); 4558 4559 /** 4560 * print_worker_info - print out worker information and description 4561 * @log_lvl: the log level to use when printing 4562 * @task: target task 4563 * 4564 * If @task is a worker and currently executing a work item, print out the 4565 * name of the workqueue being serviced and worker description set with 4566 * set_worker_desc() by the currently executing work item. 4567 * 4568 * This function can be safely called on any task as long as the 4569 * task_struct itself is accessible. While safe, this function isn't 4570 * synchronized and may print out mixups or garbages of limited length. 4571 */ 4572 void print_worker_info(const char *log_lvl, struct task_struct *task) 4573 { 4574 work_func_t *fn = NULL; 4575 char name[WQ_NAME_LEN] = { }; 4576 char desc[WORKER_DESC_LEN] = { }; 4577 struct pool_workqueue *pwq = NULL; 4578 struct workqueue_struct *wq = NULL; 4579 struct worker *worker; 4580 4581 if (!(task->flags & PF_WQ_WORKER)) 4582 return; 4583 4584 /* 4585 * This function is called without any synchronization and @task 4586 * could be in any state. Be careful with dereferences. 4587 */ 4588 worker = kthread_probe_data(task); 4589 4590 /* 4591 * Carefully copy the associated workqueue's workfn, name and desc. 4592 * Keep the original last '\0' in case the original is garbage. 4593 */ 4594 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4595 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4596 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4597 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4598 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4599 4600 if (fn || name[0] || desc[0]) { 4601 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 4602 if (strcmp(name, desc)) 4603 pr_cont(" (%s)", desc); 4604 pr_cont("\n"); 4605 } 4606 } 4607 4608 static void pr_cont_pool_info(struct worker_pool *pool) 4609 { 4610 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4611 if (pool->node != NUMA_NO_NODE) 4612 pr_cont(" node=%d", pool->node); 4613 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4614 } 4615 4616 static void pr_cont_work(bool comma, struct work_struct *work) 4617 { 4618 if (work->func == wq_barrier_func) { 4619 struct wq_barrier *barr; 4620 4621 barr = container_of(work, struct wq_barrier, work); 4622 4623 pr_cont("%s BAR(%d)", comma ? "," : "", 4624 task_pid_nr(barr->task)); 4625 } else { 4626 pr_cont("%s %ps", comma ? "," : "", work->func); 4627 } 4628 } 4629 4630 static void show_pwq(struct pool_workqueue *pwq) 4631 { 4632 struct worker_pool *pool = pwq->pool; 4633 struct work_struct *work; 4634 struct worker *worker; 4635 bool has_in_flight = false, has_pending = false; 4636 int bkt; 4637 4638 pr_info(" pwq %d:", pool->id); 4639 pr_cont_pool_info(pool); 4640 4641 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active, 4642 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4643 4644 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4645 if (worker->current_pwq == pwq) { 4646 has_in_flight = true; 4647 break; 4648 } 4649 } 4650 if (has_in_flight) { 4651 bool comma = false; 4652 4653 pr_info(" in-flight:"); 4654 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4655 if (worker->current_pwq != pwq) 4656 continue; 4657 4658 pr_cont("%s %d%s:%ps", comma ? "," : "", 4659 task_pid_nr(worker->task), 4660 worker == pwq->wq->rescuer ? "(RESCUER)" : "", 4661 worker->current_func); 4662 list_for_each_entry(work, &worker->scheduled, entry) 4663 pr_cont_work(false, work); 4664 comma = true; 4665 } 4666 pr_cont("\n"); 4667 } 4668 4669 list_for_each_entry(work, &pool->worklist, entry) { 4670 if (get_work_pwq(work) == pwq) { 4671 has_pending = true; 4672 break; 4673 } 4674 } 4675 if (has_pending) { 4676 bool comma = false; 4677 4678 pr_info(" pending:"); 4679 list_for_each_entry(work, &pool->worklist, entry) { 4680 if (get_work_pwq(work) != pwq) 4681 continue; 4682 4683 pr_cont_work(comma, work); 4684 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4685 } 4686 pr_cont("\n"); 4687 } 4688 4689 if (!list_empty(&pwq->delayed_works)) { 4690 bool comma = false; 4691 4692 pr_info(" delayed:"); 4693 list_for_each_entry(work, &pwq->delayed_works, entry) { 4694 pr_cont_work(comma, work); 4695 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4696 } 4697 pr_cont("\n"); 4698 } 4699 } 4700 4701 /** 4702 * show_workqueue_state - dump workqueue state 4703 * 4704 * Called from a sysrq handler or try_to_freeze_tasks() and prints out 4705 * all busy workqueues and pools. 4706 */ 4707 void show_workqueue_state(void) 4708 { 4709 struct workqueue_struct *wq; 4710 struct worker_pool *pool; 4711 unsigned long flags; 4712 int pi; 4713 4714 rcu_read_lock(); 4715 4716 pr_info("Showing busy workqueues and worker pools:\n"); 4717 4718 list_for_each_entry_rcu(wq, &workqueues, list) { 4719 struct pool_workqueue *pwq; 4720 bool idle = true; 4721 4722 for_each_pwq(pwq, wq) { 4723 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) { 4724 idle = false; 4725 break; 4726 } 4727 } 4728 if (idle) 4729 continue; 4730 4731 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4732 4733 for_each_pwq(pwq, wq) { 4734 spin_lock_irqsave(&pwq->pool->lock, flags); 4735 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4736 show_pwq(pwq); 4737 spin_unlock_irqrestore(&pwq->pool->lock, flags); 4738 /* 4739 * We could be printing a lot from atomic context, e.g. 4740 * sysrq-t -> show_workqueue_state(). Avoid triggering 4741 * hard lockup. 4742 */ 4743 touch_nmi_watchdog(); 4744 } 4745 } 4746 4747 for_each_pool(pool, pi) { 4748 struct worker *worker; 4749 bool first = true; 4750 4751 spin_lock_irqsave(&pool->lock, flags); 4752 if (pool->nr_workers == pool->nr_idle) 4753 goto next_pool; 4754 4755 pr_info("pool %d:", pool->id); 4756 pr_cont_pool_info(pool); 4757 pr_cont(" hung=%us workers=%d", 4758 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000, 4759 pool->nr_workers); 4760 if (pool->manager) 4761 pr_cont(" manager: %d", 4762 task_pid_nr(pool->manager->task)); 4763 list_for_each_entry(worker, &pool->idle_list, entry) { 4764 pr_cont(" %s%d", first ? "idle: " : "", 4765 task_pid_nr(worker->task)); 4766 first = false; 4767 } 4768 pr_cont("\n"); 4769 next_pool: 4770 spin_unlock_irqrestore(&pool->lock, flags); 4771 /* 4772 * We could be printing a lot from atomic context, e.g. 4773 * sysrq-t -> show_workqueue_state(). Avoid triggering 4774 * hard lockup. 4775 */ 4776 touch_nmi_watchdog(); 4777 } 4778 4779 rcu_read_unlock(); 4780 } 4781 4782 /* used to show worker information through /proc/PID/{comm,stat,status} */ 4783 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 4784 { 4785 int off; 4786 4787 /* always show the actual comm */ 4788 off = strscpy(buf, task->comm, size); 4789 if (off < 0) 4790 return; 4791 4792 /* stabilize PF_WQ_WORKER and worker pool association */ 4793 mutex_lock(&wq_pool_attach_mutex); 4794 4795 if (task->flags & PF_WQ_WORKER) { 4796 struct worker *worker = kthread_data(task); 4797 struct worker_pool *pool = worker->pool; 4798 4799 if (pool) { 4800 spin_lock_irq(&pool->lock); 4801 /* 4802 * ->desc tracks information (wq name or 4803 * set_worker_desc()) for the latest execution. If 4804 * current, prepend '+', otherwise '-'. 4805 */ 4806 if (worker->desc[0] != '\0') { 4807 if (worker->current_work) 4808 scnprintf(buf + off, size - off, "+%s", 4809 worker->desc); 4810 else 4811 scnprintf(buf + off, size - off, "-%s", 4812 worker->desc); 4813 } 4814 spin_unlock_irq(&pool->lock); 4815 } 4816 } 4817 4818 mutex_unlock(&wq_pool_attach_mutex); 4819 } 4820 4821 #ifdef CONFIG_SMP 4822 4823 /* 4824 * CPU hotplug. 4825 * 4826 * There are two challenges in supporting CPU hotplug. Firstly, there 4827 * are a lot of assumptions on strong associations among work, pwq and 4828 * pool which make migrating pending and scheduled works very 4829 * difficult to implement without impacting hot paths. Secondly, 4830 * worker pools serve mix of short, long and very long running works making 4831 * blocked draining impractical. 4832 * 4833 * This is solved by allowing the pools to be disassociated from the CPU 4834 * running as an unbound one and allowing it to be reattached later if the 4835 * cpu comes back online. 4836 */ 4837 4838 static void unbind_workers(int cpu) 4839 { 4840 struct worker_pool *pool; 4841 struct worker *worker; 4842 4843 for_each_cpu_worker_pool(pool, cpu) { 4844 mutex_lock(&wq_pool_attach_mutex); 4845 spin_lock_irq(&pool->lock); 4846 4847 /* 4848 * We've blocked all attach/detach operations. Make all workers 4849 * unbound and set DISASSOCIATED. Before this, all workers 4850 * except for the ones which are still executing works from 4851 * before the last CPU down must be on the cpu. After 4852 * this, they may become diasporas. 4853 */ 4854 for_each_pool_worker(worker, pool) 4855 worker->flags |= WORKER_UNBOUND; 4856 4857 pool->flags |= POOL_DISASSOCIATED; 4858 4859 spin_unlock_irq(&pool->lock); 4860 mutex_unlock(&wq_pool_attach_mutex); 4861 4862 /* 4863 * Call schedule() so that we cross rq->lock and thus can 4864 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4865 * This is necessary as scheduler callbacks may be invoked 4866 * from other cpus. 4867 */ 4868 schedule(); 4869 4870 /* 4871 * Sched callbacks are disabled now. Zap nr_running. 4872 * After this, nr_running stays zero and need_more_worker() 4873 * and keep_working() are always true as long as the 4874 * worklist is not empty. This pool now behaves as an 4875 * unbound (in terms of concurrency management) pool which 4876 * are served by workers tied to the pool. 4877 */ 4878 atomic_set(&pool->nr_running, 0); 4879 4880 /* 4881 * With concurrency management just turned off, a busy 4882 * worker blocking could lead to lengthy stalls. Kick off 4883 * unbound chain execution of currently pending work items. 4884 */ 4885 spin_lock_irq(&pool->lock); 4886 wake_up_worker(pool); 4887 spin_unlock_irq(&pool->lock); 4888 } 4889 } 4890 4891 /** 4892 * rebind_workers - rebind all workers of a pool to the associated CPU 4893 * @pool: pool of interest 4894 * 4895 * @pool->cpu is coming online. Rebind all workers to the CPU. 4896 */ 4897 static void rebind_workers(struct worker_pool *pool) 4898 { 4899 struct worker *worker; 4900 4901 lockdep_assert_held(&wq_pool_attach_mutex); 4902 4903 /* 4904 * Restore CPU affinity of all workers. As all idle workers should 4905 * be on the run-queue of the associated CPU before any local 4906 * wake-ups for concurrency management happen, restore CPU affinity 4907 * of all workers first and then clear UNBOUND. As we're called 4908 * from CPU_ONLINE, the following shouldn't fail. 4909 */ 4910 for_each_pool_worker(worker, pool) 4911 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4912 pool->attrs->cpumask) < 0); 4913 4914 spin_lock_irq(&pool->lock); 4915 4916 pool->flags &= ~POOL_DISASSOCIATED; 4917 4918 for_each_pool_worker(worker, pool) { 4919 unsigned int worker_flags = worker->flags; 4920 4921 /* 4922 * A bound idle worker should actually be on the runqueue 4923 * of the associated CPU for local wake-ups targeting it to 4924 * work. Kick all idle workers so that they migrate to the 4925 * associated CPU. Doing this in the same loop as 4926 * replacing UNBOUND with REBOUND is safe as no worker will 4927 * be bound before @pool->lock is released. 4928 */ 4929 if (worker_flags & WORKER_IDLE) 4930 wake_up_process(worker->task); 4931 4932 /* 4933 * We want to clear UNBOUND but can't directly call 4934 * worker_clr_flags() or adjust nr_running. Atomically 4935 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4936 * @worker will clear REBOUND using worker_clr_flags() when 4937 * it initiates the next execution cycle thus restoring 4938 * concurrency management. Note that when or whether 4939 * @worker clears REBOUND doesn't affect correctness. 4940 * 4941 * WRITE_ONCE() is necessary because @worker->flags may be 4942 * tested without holding any lock in 4943 * wq_worker_running(). Without it, NOT_RUNNING test may 4944 * fail incorrectly leading to premature concurrency 4945 * management operations. 4946 */ 4947 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4948 worker_flags |= WORKER_REBOUND; 4949 worker_flags &= ~WORKER_UNBOUND; 4950 WRITE_ONCE(worker->flags, worker_flags); 4951 } 4952 4953 spin_unlock_irq(&pool->lock); 4954 } 4955 4956 /** 4957 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4958 * @pool: unbound pool of interest 4959 * @cpu: the CPU which is coming up 4960 * 4961 * An unbound pool may end up with a cpumask which doesn't have any online 4962 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4963 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4964 * online CPU before, cpus_allowed of all its workers should be restored. 4965 */ 4966 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 4967 { 4968 static cpumask_t cpumask; 4969 struct worker *worker; 4970 4971 lockdep_assert_held(&wq_pool_attach_mutex); 4972 4973 /* is @cpu allowed for @pool? */ 4974 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 4975 return; 4976 4977 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 4978 4979 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 4980 for_each_pool_worker(worker, pool) 4981 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 4982 } 4983 4984 int workqueue_prepare_cpu(unsigned int cpu) 4985 { 4986 struct worker_pool *pool; 4987 4988 for_each_cpu_worker_pool(pool, cpu) { 4989 if (pool->nr_workers) 4990 continue; 4991 if (!create_worker(pool)) 4992 return -ENOMEM; 4993 } 4994 return 0; 4995 } 4996 4997 int workqueue_online_cpu(unsigned int cpu) 4998 { 4999 struct worker_pool *pool; 5000 struct workqueue_struct *wq; 5001 int pi; 5002 5003 mutex_lock(&wq_pool_mutex); 5004 5005 for_each_pool(pool, pi) { 5006 mutex_lock(&wq_pool_attach_mutex); 5007 5008 if (pool->cpu == cpu) 5009 rebind_workers(pool); 5010 else if (pool->cpu < 0) 5011 restore_unbound_workers_cpumask(pool, cpu); 5012 5013 mutex_unlock(&wq_pool_attach_mutex); 5014 } 5015 5016 /* update NUMA affinity of unbound workqueues */ 5017 list_for_each_entry(wq, &workqueues, list) 5018 wq_update_unbound_numa(wq, cpu, true); 5019 5020 mutex_unlock(&wq_pool_mutex); 5021 return 0; 5022 } 5023 5024 int workqueue_offline_cpu(unsigned int cpu) 5025 { 5026 struct workqueue_struct *wq; 5027 5028 /* unbinding per-cpu workers should happen on the local CPU */ 5029 if (WARN_ON(cpu != smp_processor_id())) 5030 return -1; 5031 5032 unbind_workers(cpu); 5033 5034 /* update NUMA affinity of unbound workqueues */ 5035 mutex_lock(&wq_pool_mutex); 5036 list_for_each_entry(wq, &workqueues, list) 5037 wq_update_unbound_numa(wq, cpu, false); 5038 mutex_unlock(&wq_pool_mutex); 5039 5040 return 0; 5041 } 5042 5043 struct work_for_cpu { 5044 struct work_struct work; 5045 long (*fn)(void *); 5046 void *arg; 5047 long ret; 5048 }; 5049 5050 static void work_for_cpu_fn(struct work_struct *work) 5051 { 5052 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 5053 5054 wfc->ret = wfc->fn(wfc->arg); 5055 } 5056 5057 /** 5058 * work_on_cpu - run a function in thread context on a particular cpu 5059 * @cpu: the cpu to run on 5060 * @fn: the function to run 5061 * @arg: the function arg 5062 * 5063 * It is up to the caller to ensure that the cpu doesn't go offline. 5064 * The caller must not hold any locks which would prevent @fn from completing. 5065 * 5066 * Return: The value @fn returns. 5067 */ 5068 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 5069 { 5070 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 5071 5072 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 5073 schedule_work_on(cpu, &wfc.work); 5074 flush_work(&wfc.work); 5075 destroy_work_on_stack(&wfc.work); 5076 return wfc.ret; 5077 } 5078 EXPORT_SYMBOL_GPL(work_on_cpu); 5079 5080 /** 5081 * work_on_cpu_safe - run a function in thread context on a particular cpu 5082 * @cpu: the cpu to run on 5083 * @fn: the function to run 5084 * @arg: the function argument 5085 * 5086 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 5087 * any locks which would prevent @fn from completing. 5088 * 5089 * Return: The value @fn returns. 5090 */ 5091 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) 5092 { 5093 long ret = -ENODEV; 5094 5095 get_online_cpus(); 5096 if (cpu_online(cpu)) 5097 ret = work_on_cpu(cpu, fn, arg); 5098 put_online_cpus(); 5099 return ret; 5100 } 5101 EXPORT_SYMBOL_GPL(work_on_cpu_safe); 5102 #endif /* CONFIG_SMP */ 5103 5104 #ifdef CONFIG_FREEZER 5105 5106 /** 5107 * freeze_workqueues_begin - begin freezing workqueues 5108 * 5109 * Start freezing workqueues. After this function returns, all freezable 5110 * workqueues will queue new works to their delayed_works list instead of 5111 * pool->worklist. 5112 * 5113 * CONTEXT: 5114 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5115 */ 5116 void freeze_workqueues_begin(void) 5117 { 5118 struct workqueue_struct *wq; 5119 struct pool_workqueue *pwq; 5120 5121 mutex_lock(&wq_pool_mutex); 5122 5123 WARN_ON_ONCE(workqueue_freezing); 5124 workqueue_freezing = true; 5125 5126 list_for_each_entry(wq, &workqueues, list) { 5127 mutex_lock(&wq->mutex); 5128 for_each_pwq(pwq, wq) 5129 pwq_adjust_max_active(pwq); 5130 mutex_unlock(&wq->mutex); 5131 } 5132 5133 mutex_unlock(&wq_pool_mutex); 5134 } 5135 5136 /** 5137 * freeze_workqueues_busy - are freezable workqueues still busy? 5138 * 5139 * Check whether freezing is complete. This function must be called 5140 * between freeze_workqueues_begin() and thaw_workqueues(). 5141 * 5142 * CONTEXT: 5143 * Grabs and releases wq_pool_mutex. 5144 * 5145 * Return: 5146 * %true if some freezable workqueues are still busy. %false if freezing 5147 * is complete. 5148 */ 5149 bool freeze_workqueues_busy(void) 5150 { 5151 bool busy = false; 5152 struct workqueue_struct *wq; 5153 struct pool_workqueue *pwq; 5154 5155 mutex_lock(&wq_pool_mutex); 5156 5157 WARN_ON_ONCE(!workqueue_freezing); 5158 5159 list_for_each_entry(wq, &workqueues, list) { 5160 if (!(wq->flags & WQ_FREEZABLE)) 5161 continue; 5162 /* 5163 * nr_active is monotonically decreasing. It's safe 5164 * to peek without lock. 5165 */ 5166 rcu_read_lock(); 5167 for_each_pwq(pwq, wq) { 5168 WARN_ON_ONCE(pwq->nr_active < 0); 5169 if (pwq->nr_active) { 5170 busy = true; 5171 rcu_read_unlock(); 5172 goto out_unlock; 5173 } 5174 } 5175 rcu_read_unlock(); 5176 } 5177 out_unlock: 5178 mutex_unlock(&wq_pool_mutex); 5179 return busy; 5180 } 5181 5182 /** 5183 * thaw_workqueues - thaw workqueues 5184 * 5185 * Thaw workqueues. Normal queueing is restored and all collected 5186 * frozen works are transferred to their respective pool worklists. 5187 * 5188 * CONTEXT: 5189 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5190 */ 5191 void thaw_workqueues(void) 5192 { 5193 struct workqueue_struct *wq; 5194 struct pool_workqueue *pwq; 5195 5196 mutex_lock(&wq_pool_mutex); 5197 5198 if (!workqueue_freezing) 5199 goto out_unlock; 5200 5201 workqueue_freezing = false; 5202 5203 /* restore max_active and repopulate worklist */ 5204 list_for_each_entry(wq, &workqueues, list) { 5205 mutex_lock(&wq->mutex); 5206 for_each_pwq(pwq, wq) 5207 pwq_adjust_max_active(pwq); 5208 mutex_unlock(&wq->mutex); 5209 } 5210 5211 out_unlock: 5212 mutex_unlock(&wq_pool_mutex); 5213 } 5214 #endif /* CONFIG_FREEZER */ 5215 5216 static int workqueue_apply_unbound_cpumask(void) 5217 { 5218 LIST_HEAD(ctxs); 5219 int ret = 0; 5220 struct workqueue_struct *wq; 5221 struct apply_wqattrs_ctx *ctx, *n; 5222 5223 lockdep_assert_held(&wq_pool_mutex); 5224 5225 list_for_each_entry(wq, &workqueues, list) { 5226 if (!(wq->flags & WQ_UNBOUND)) 5227 continue; 5228 /* creating multiple pwqs breaks ordering guarantee */ 5229 if (wq->flags & __WQ_ORDERED) 5230 continue; 5231 5232 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs); 5233 if (!ctx) { 5234 ret = -ENOMEM; 5235 break; 5236 } 5237 5238 list_add_tail(&ctx->list, &ctxs); 5239 } 5240 5241 list_for_each_entry_safe(ctx, n, &ctxs, list) { 5242 if (!ret) 5243 apply_wqattrs_commit(ctx); 5244 apply_wqattrs_cleanup(ctx); 5245 } 5246 5247 return ret; 5248 } 5249 5250 /** 5251 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 5252 * @cpumask: the cpumask to set 5253 * 5254 * The low-level workqueues cpumask is a global cpumask that limits 5255 * the affinity of all unbound workqueues. This function check the @cpumask 5256 * and apply it to all unbound workqueues and updates all pwqs of them. 5257 * 5258 * Retun: 0 - Success 5259 * -EINVAL - Invalid @cpumask 5260 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 5261 */ 5262 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 5263 { 5264 int ret = -EINVAL; 5265 cpumask_var_t saved_cpumask; 5266 5267 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) 5268 return -ENOMEM; 5269 5270 /* 5271 * Not excluding isolated cpus on purpose. 5272 * If the user wishes to include them, we allow that. 5273 */ 5274 cpumask_and(cpumask, cpumask, cpu_possible_mask); 5275 if (!cpumask_empty(cpumask)) { 5276 apply_wqattrs_lock(); 5277 5278 /* save the old wq_unbound_cpumask. */ 5279 cpumask_copy(saved_cpumask, wq_unbound_cpumask); 5280 5281 /* update wq_unbound_cpumask at first and apply it to wqs. */ 5282 cpumask_copy(wq_unbound_cpumask, cpumask); 5283 ret = workqueue_apply_unbound_cpumask(); 5284 5285 /* restore the wq_unbound_cpumask when failed. */ 5286 if (ret < 0) 5287 cpumask_copy(wq_unbound_cpumask, saved_cpumask); 5288 5289 apply_wqattrs_unlock(); 5290 } 5291 5292 free_cpumask_var(saved_cpumask); 5293 return ret; 5294 } 5295 5296 #ifdef CONFIG_SYSFS 5297 /* 5298 * Workqueues with WQ_SYSFS flag set is visible to userland via 5299 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 5300 * following attributes. 5301 * 5302 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 5303 * max_active RW int : maximum number of in-flight work items 5304 * 5305 * Unbound workqueues have the following extra attributes. 5306 * 5307 * pool_ids RO int : the associated pool IDs for each node 5308 * nice RW int : nice value of the workers 5309 * cpumask RW mask : bitmask of allowed CPUs for the workers 5310 * numa RW bool : whether enable NUMA affinity 5311 */ 5312 struct wq_device { 5313 struct workqueue_struct *wq; 5314 struct device dev; 5315 }; 5316 5317 static struct workqueue_struct *dev_to_wq(struct device *dev) 5318 { 5319 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5320 5321 return wq_dev->wq; 5322 } 5323 5324 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 5325 char *buf) 5326 { 5327 struct workqueue_struct *wq = dev_to_wq(dev); 5328 5329 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 5330 } 5331 static DEVICE_ATTR_RO(per_cpu); 5332 5333 static ssize_t max_active_show(struct device *dev, 5334 struct device_attribute *attr, char *buf) 5335 { 5336 struct workqueue_struct *wq = dev_to_wq(dev); 5337 5338 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 5339 } 5340 5341 static ssize_t max_active_store(struct device *dev, 5342 struct device_attribute *attr, const char *buf, 5343 size_t count) 5344 { 5345 struct workqueue_struct *wq = dev_to_wq(dev); 5346 int val; 5347 5348 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 5349 return -EINVAL; 5350 5351 workqueue_set_max_active(wq, val); 5352 return count; 5353 } 5354 static DEVICE_ATTR_RW(max_active); 5355 5356 static struct attribute *wq_sysfs_attrs[] = { 5357 &dev_attr_per_cpu.attr, 5358 &dev_attr_max_active.attr, 5359 NULL, 5360 }; 5361 ATTRIBUTE_GROUPS(wq_sysfs); 5362 5363 static ssize_t wq_pool_ids_show(struct device *dev, 5364 struct device_attribute *attr, char *buf) 5365 { 5366 struct workqueue_struct *wq = dev_to_wq(dev); 5367 const char *delim = ""; 5368 int node, written = 0; 5369 5370 get_online_cpus(); 5371 rcu_read_lock(); 5372 for_each_node(node) { 5373 written += scnprintf(buf + written, PAGE_SIZE - written, 5374 "%s%d:%d", delim, node, 5375 unbound_pwq_by_node(wq, node)->pool->id); 5376 delim = " "; 5377 } 5378 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 5379 rcu_read_unlock(); 5380 put_online_cpus(); 5381 5382 return written; 5383 } 5384 5385 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 5386 char *buf) 5387 { 5388 struct workqueue_struct *wq = dev_to_wq(dev); 5389 int written; 5390 5391 mutex_lock(&wq->mutex); 5392 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 5393 mutex_unlock(&wq->mutex); 5394 5395 return written; 5396 } 5397 5398 /* prepare workqueue_attrs for sysfs store operations */ 5399 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5400 { 5401 struct workqueue_attrs *attrs; 5402 5403 lockdep_assert_held(&wq_pool_mutex); 5404 5405 attrs = alloc_workqueue_attrs(); 5406 if (!attrs) 5407 return NULL; 5408 5409 copy_workqueue_attrs(attrs, wq->unbound_attrs); 5410 return attrs; 5411 } 5412 5413 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 5414 const char *buf, size_t count) 5415 { 5416 struct workqueue_struct *wq = dev_to_wq(dev); 5417 struct workqueue_attrs *attrs; 5418 int ret = -ENOMEM; 5419 5420 apply_wqattrs_lock(); 5421 5422 attrs = wq_sysfs_prep_attrs(wq); 5423 if (!attrs) 5424 goto out_unlock; 5425 5426 if (sscanf(buf, "%d", &attrs->nice) == 1 && 5427 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 5428 ret = apply_workqueue_attrs_locked(wq, attrs); 5429 else 5430 ret = -EINVAL; 5431 5432 out_unlock: 5433 apply_wqattrs_unlock(); 5434 free_workqueue_attrs(attrs); 5435 return ret ?: count; 5436 } 5437 5438 static ssize_t wq_cpumask_show(struct device *dev, 5439 struct device_attribute *attr, char *buf) 5440 { 5441 struct workqueue_struct *wq = dev_to_wq(dev); 5442 int written; 5443 5444 mutex_lock(&wq->mutex); 5445 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5446 cpumask_pr_args(wq->unbound_attrs->cpumask)); 5447 mutex_unlock(&wq->mutex); 5448 return written; 5449 } 5450 5451 static ssize_t wq_cpumask_store(struct device *dev, 5452 struct device_attribute *attr, 5453 const char *buf, size_t count) 5454 { 5455 struct workqueue_struct *wq = dev_to_wq(dev); 5456 struct workqueue_attrs *attrs; 5457 int ret = -ENOMEM; 5458 5459 apply_wqattrs_lock(); 5460 5461 attrs = wq_sysfs_prep_attrs(wq); 5462 if (!attrs) 5463 goto out_unlock; 5464 5465 ret = cpumask_parse(buf, attrs->cpumask); 5466 if (!ret) 5467 ret = apply_workqueue_attrs_locked(wq, attrs); 5468 5469 out_unlock: 5470 apply_wqattrs_unlock(); 5471 free_workqueue_attrs(attrs); 5472 return ret ?: count; 5473 } 5474 5475 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5476 char *buf) 5477 { 5478 struct workqueue_struct *wq = dev_to_wq(dev); 5479 int written; 5480 5481 mutex_lock(&wq->mutex); 5482 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5483 !wq->unbound_attrs->no_numa); 5484 mutex_unlock(&wq->mutex); 5485 5486 return written; 5487 } 5488 5489 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 5490 const char *buf, size_t count) 5491 { 5492 struct workqueue_struct *wq = dev_to_wq(dev); 5493 struct workqueue_attrs *attrs; 5494 int v, ret = -ENOMEM; 5495 5496 apply_wqattrs_lock(); 5497 5498 attrs = wq_sysfs_prep_attrs(wq); 5499 if (!attrs) 5500 goto out_unlock; 5501 5502 ret = -EINVAL; 5503 if (sscanf(buf, "%d", &v) == 1) { 5504 attrs->no_numa = !v; 5505 ret = apply_workqueue_attrs_locked(wq, attrs); 5506 } 5507 5508 out_unlock: 5509 apply_wqattrs_unlock(); 5510 free_workqueue_attrs(attrs); 5511 return ret ?: count; 5512 } 5513 5514 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5515 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5516 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5517 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5518 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5519 __ATTR_NULL, 5520 }; 5521 5522 static struct bus_type wq_subsys = { 5523 .name = "workqueue", 5524 .dev_groups = wq_sysfs_groups, 5525 }; 5526 5527 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5528 struct device_attribute *attr, char *buf) 5529 { 5530 int written; 5531 5532 mutex_lock(&wq_pool_mutex); 5533 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5534 cpumask_pr_args(wq_unbound_cpumask)); 5535 mutex_unlock(&wq_pool_mutex); 5536 5537 return written; 5538 } 5539 5540 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5541 struct device_attribute *attr, const char *buf, size_t count) 5542 { 5543 cpumask_var_t cpumask; 5544 int ret; 5545 5546 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5547 return -ENOMEM; 5548 5549 ret = cpumask_parse(buf, cpumask); 5550 if (!ret) 5551 ret = workqueue_set_unbound_cpumask(cpumask); 5552 5553 free_cpumask_var(cpumask); 5554 return ret ? ret : count; 5555 } 5556 5557 static struct device_attribute wq_sysfs_cpumask_attr = 5558 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5559 wq_unbound_cpumask_store); 5560 5561 static int __init wq_sysfs_init(void) 5562 { 5563 int err; 5564 5565 err = subsys_virtual_register(&wq_subsys, NULL); 5566 if (err) 5567 return err; 5568 5569 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr); 5570 } 5571 core_initcall(wq_sysfs_init); 5572 5573 static void wq_device_release(struct device *dev) 5574 { 5575 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5576 5577 kfree(wq_dev); 5578 } 5579 5580 /** 5581 * workqueue_sysfs_register - make a workqueue visible in sysfs 5582 * @wq: the workqueue to register 5583 * 5584 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5585 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5586 * which is the preferred method. 5587 * 5588 * Workqueue user should use this function directly iff it wants to apply 5589 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5590 * apply_workqueue_attrs() may race against userland updating the 5591 * attributes. 5592 * 5593 * Return: 0 on success, -errno on failure. 5594 */ 5595 int workqueue_sysfs_register(struct workqueue_struct *wq) 5596 { 5597 struct wq_device *wq_dev; 5598 int ret; 5599 5600 /* 5601 * Adjusting max_active or creating new pwqs by applying 5602 * attributes breaks ordering guarantee. Disallow exposing ordered 5603 * workqueues. 5604 */ 5605 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 5606 return -EINVAL; 5607 5608 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5609 if (!wq_dev) 5610 return -ENOMEM; 5611 5612 wq_dev->wq = wq; 5613 wq_dev->dev.bus = &wq_subsys; 5614 wq_dev->dev.release = wq_device_release; 5615 dev_set_name(&wq_dev->dev, "%s", wq->name); 5616 5617 /* 5618 * unbound_attrs are created separately. Suppress uevent until 5619 * everything is ready. 5620 */ 5621 dev_set_uevent_suppress(&wq_dev->dev, true); 5622 5623 ret = device_register(&wq_dev->dev); 5624 if (ret) { 5625 put_device(&wq_dev->dev); 5626 wq->wq_dev = NULL; 5627 return ret; 5628 } 5629 5630 if (wq->flags & WQ_UNBOUND) { 5631 struct device_attribute *attr; 5632 5633 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5634 ret = device_create_file(&wq_dev->dev, attr); 5635 if (ret) { 5636 device_unregister(&wq_dev->dev); 5637 wq->wq_dev = NULL; 5638 return ret; 5639 } 5640 } 5641 } 5642 5643 dev_set_uevent_suppress(&wq_dev->dev, false); 5644 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5645 return 0; 5646 } 5647 5648 /** 5649 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5650 * @wq: the workqueue to unregister 5651 * 5652 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5653 */ 5654 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5655 { 5656 struct wq_device *wq_dev = wq->wq_dev; 5657 5658 if (!wq->wq_dev) 5659 return; 5660 5661 wq->wq_dev = NULL; 5662 device_unregister(&wq_dev->dev); 5663 } 5664 #else /* CONFIG_SYSFS */ 5665 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5666 #endif /* CONFIG_SYSFS */ 5667 5668 /* 5669 * Workqueue watchdog. 5670 * 5671 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 5672 * flush dependency, a concurrency managed work item which stays RUNNING 5673 * indefinitely. Workqueue stalls can be very difficult to debug as the 5674 * usual warning mechanisms don't trigger and internal workqueue state is 5675 * largely opaque. 5676 * 5677 * Workqueue watchdog monitors all worker pools periodically and dumps 5678 * state if some pools failed to make forward progress for a while where 5679 * forward progress is defined as the first item on ->worklist changing. 5680 * 5681 * This mechanism is controlled through the kernel parameter 5682 * "workqueue.watchdog_thresh" which can be updated at runtime through the 5683 * corresponding sysfs parameter file. 5684 */ 5685 #ifdef CONFIG_WQ_WATCHDOG 5686 5687 static unsigned long wq_watchdog_thresh = 30; 5688 static struct timer_list wq_watchdog_timer; 5689 5690 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 5691 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 5692 5693 static void wq_watchdog_reset_touched(void) 5694 { 5695 int cpu; 5696 5697 wq_watchdog_touched = jiffies; 5698 for_each_possible_cpu(cpu) 5699 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5700 } 5701 5702 static void wq_watchdog_timer_fn(struct timer_list *unused) 5703 { 5704 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 5705 bool lockup_detected = false; 5706 struct worker_pool *pool; 5707 int pi; 5708 5709 if (!thresh) 5710 return; 5711 5712 rcu_read_lock(); 5713 5714 for_each_pool(pool, pi) { 5715 unsigned long pool_ts, touched, ts; 5716 5717 if (list_empty(&pool->worklist)) 5718 continue; 5719 5720 /* get the latest of pool and touched timestamps */ 5721 pool_ts = READ_ONCE(pool->watchdog_ts); 5722 touched = READ_ONCE(wq_watchdog_touched); 5723 5724 if (time_after(pool_ts, touched)) 5725 ts = pool_ts; 5726 else 5727 ts = touched; 5728 5729 if (pool->cpu >= 0) { 5730 unsigned long cpu_touched = 5731 READ_ONCE(per_cpu(wq_watchdog_touched_cpu, 5732 pool->cpu)); 5733 if (time_after(cpu_touched, ts)) 5734 ts = cpu_touched; 5735 } 5736 5737 /* did we stall? */ 5738 if (time_after(jiffies, ts + thresh)) { 5739 lockup_detected = true; 5740 pr_emerg("BUG: workqueue lockup - pool"); 5741 pr_cont_pool_info(pool); 5742 pr_cont(" stuck for %us!\n", 5743 jiffies_to_msecs(jiffies - pool_ts) / 1000); 5744 } 5745 } 5746 5747 rcu_read_unlock(); 5748 5749 if (lockup_detected) 5750 show_workqueue_state(); 5751 5752 wq_watchdog_reset_touched(); 5753 mod_timer(&wq_watchdog_timer, jiffies + thresh); 5754 } 5755 5756 notrace void wq_watchdog_touch(int cpu) 5757 { 5758 if (cpu >= 0) 5759 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5760 else 5761 wq_watchdog_touched = jiffies; 5762 } 5763 5764 static void wq_watchdog_set_thresh(unsigned long thresh) 5765 { 5766 wq_watchdog_thresh = 0; 5767 del_timer_sync(&wq_watchdog_timer); 5768 5769 if (thresh) { 5770 wq_watchdog_thresh = thresh; 5771 wq_watchdog_reset_touched(); 5772 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 5773 } 5774 } 5775 5776 static int wq_watchdog_param_set_thresh(const char *val, 5777 const struct kernel_param *kp) 5778 { 5779 unsigned long thresh; 5780 int ret; 5781 5782 ret = kstrtoul(val, 0, &thresh); 5783 if (ret) 5784 return ret; 5785 5786 if (system_wq) 5787 wq_watchdog_set_thresh(thresh); 5788 else 5789 wq_watchdog_thresh = thresh; 5790 5791 return 0; 5792 } 5793 5794 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 5795 .set = wq_watchdog_param_set_thresh, 5796 .get = param_get_ulong, 5797 }; 5798 5799 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 5800 0644); 5801 5802 static void wq_watchdog_init(void) 5803 { 5804 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 5805 wq_watchdog_set_thresh(wq_watchdog_thresh); 5806 } 5807 5808 #else /* CONFIG_WQ_WATCHDOG */ 5809 5810 static inline void wq_watchdog_init(void) { } 5811 5812 #endif /* CONFIG_WQ_WATCHDOG */ 5813 5814 static void __init wq_numa_init(void) 5815 { 5816 cpumask_var_t *tbl; 5817 int node, cpu; 5818 5819 if (num_possible_nodes() <= 1) 5820 return; 5821 5822 if (wq_disable_numa) { 5823 pr_info("workqueue: NUMA affinity support disabled\n"); 5824 return; 5825 } 5826 5827 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(); 5828 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5829 5830 /* 5831 * We want masks of possible CPUs of each node which isn't readily 5832 * available. Build one from cpu_to_node() which should have been 5833 * fully initialized by now. 5834 */ 5835 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL); 5836 BUG_ON(!tbl); 5837 5838 for_each_node(node) 5839 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5840 node_online(node) ? node : NUMA_NO_NODE)); 5841 5842 for_each_possible_cpu(cpu) { 5843 node = cpu_to_node(cpu); 5844 if (WARN_ON(node == NUMA_NO_NODE)) { 5845 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5846 /* happens iff arch is bonkers, let's just proceed */ 5847 return; 5848 } 5849 cpumask_set_cpu(cpu, tbl[node]); 5850 } 5851 5852 wq_numa_possible_cpumask = tbl; 5853 wq_numa_enabled = true; 5854 } 5855 5856 /** 5857 * workqueue_init_early - early init for workqueue subsystem 5858 * 5859 * This is the first half of two-staged workqueue subsystem initialization 5860 * and invoked as soon as the bare basics - memory allocation, cpumasks and 5861 * idr are up. It sets up all the data structures and system workqueues 5862 * and allows early boot code to create workqueues and queue/cancel work 5863 * items. Actual work item execution starts only after kthreads can be 5864 * created and scheduled right before early initcalls. 5865 */ 5866 int __init workqueue_init_early(void) 5867 { 5868 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5869 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ; 5870 int i, cpu; 5871 5872 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5873 5874 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 5875 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags)); 5876 5877 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5878 5879 /* initialize CPU pools */ 5880 for_each_possible_cpu(cpu) { 5881 struct worker_pool *pool; 5882 5883 i = 0; 5884 for_each_cpu_worker_pool(pool, cpu) { 5885 BUG_ON(init_worker_pool(pool)); 5886 pool->cpu = cpu; 5887 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5888 pool->attrs->nice = std_nice[i++]; 5889 pool->node = cpu_to_node(cpu); 5890 5891 /* alloc pool ID */ 5892 mutex_lock(&wq_pool_mutex); 5893 BUG_ON(worker_pool_assign_id(pool)); 5894 mutex_unlock(&wq_pool_mutex); 5895 } 5896 } 5897 5898 /* create default unbound and ordered wq attrs */ 5899 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5900 struct workqueue_attrs *attrs; 5901 5902 BUG_ON(!(attrs = alloc_workqueue_attrs())); 5903 attrs->nice = std_nice[i]; 5904 unbound_std_wq_attrs[i] = attrs; 5905 5906 /* 5907 * An ordered wq should have only one pwq as ordering is 5908 * guaranteed by max_active which is enforced by pwqs. 5909 * Turn off NUMA so that dfl_pwq is used for all nodes. 5910 */ 5911 BUG_ON(!(attrs = alloc_workqueue_attrs())); 5912 attrs->nice = std_nice[i]; 5913 attrs->no_numa = true; 5914 ordered_wq_attrs[i] = attrs; 5915 } 5916 5917 system_wq = alloc_workqueue("events", 0, 0); 5918 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5919 system_long_wq = alloc_workqueue("events_long", 0, 0); 5920 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5921 WQ_UNBOUND_MAX_ACTIVE); 5922 system_freezable_wq = alloc_workqueue("events_freezable", 5923 WQ_FREEZABLE, 0); 5924 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5925 WQ_POWER_EFFICIENT, 0); 5926 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5927 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5928 0); 5929 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5930 !system_unbound_wq || !system_freezable_wq || 5931 !system_power_efficient_wq || 5932 !system_freezable_power_efficient_wq); 5933 5934 return 0; 5935 } 5936 5937 /** 5938 * workqueue_init - bring workqueue subsystem fully online 5939 * 5940 * This is the latter half of two-staged workqueue subsystem initialization 5941 * and invoked as soon as kthreads can be created and scheduled. 5942 * Workqueues have been created and work items queued on them, but there 5943 * are no kworkers executing the work items yet. Populate the worker pools 5944 * with the initial workers and enable future kworker creations. 5945 */ 5946 int __init workqueue_init(void) 5947 { 5948 struct workqueue_struct *wq; 5949 struct worker_pool *pool; 5950 int cpu, bkt; 5951 5952 /* 5953 * It'd be simpler to initialize NUMA in workqueue_init_early() but 5954 * CPU to node mapping may not be available that early on some 5955 * archs such as power and arm64. As per-cpu pools created 5956 * previously could be missing node hint and unbound pools NUMA 5957 * affinity, fix them up. 5958 * 5959 * Also, while iterating workqueues, create rescuers if requested. 5960 */ 5961 wq_numa_init(); 5962 5963 mutex_lock(&wq_pool_mutex); 5964 5965 for_each_possible_cpu(cpu) { 5966 for_each_cpu_worker_pool(pool, cpu) { 5967 pool->node = cpu_to_node(cpu); 5968 } 5969 } 5970 5971 list_for_each_entry(wq, &workqueues, list) { 5972 wq_update_unbound_numa(wq, smp_processor_id(), true); 5973 WARN(init_rescuer(wq), 5974 "workqueue: failed to create early rescuer for %s", 5975 wq->name); 5976 } 5977 5978 mutex_unlock(&wq_pool_mutex); 5979 5980 /* create the initial workers */ 5981 for_each_online_cpu(cpu) { 5982 for_each_cpu_worker_pool(pool, cpu) { 5983 pool->flags &= ~POOL_DISASSOCIATED; 5984 BUG_ON(!create_worker(pool)); 5985 } 5986 } 5987 5988 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 5989 BUG_ON(!create_worker(pool)); 5990 5991 wq_online = true; 5992 wq_watchdog_init(); 5993 5994 return 0; 5995 } 5996